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Abstract 

 

The energy transition towards renewable energy sources and distributed generation 

is essential to mitigate climate change. However, the renewable energy sources are 

intermittent in nature, and therefore it may cause network congestion during peak 

consumption in future. Therefore, demand side energy flexibility is inevitable in 

complement to the supply side management and energy storage. The residential sector is 

the largest energy consumer and is therefore essential to implement demand-side energy 

flexibility. In addition to the existing approaches of energy flexibility, we present in this 

thesis a non-monetary “indirect" flexibility through the implementation of a behavioral 

science experiment with 175 French households. The set of nudges used in this experiment 

does not oblige the participating households to implement energy flexibility for either 

monetary gain or loss aversion.  

 

Nudge alerts are generated by predictive algorithms and sent by SMS to a group of 

households with the aim of carrying out either load shifting or load shedding. The nudge 

alerts are complemented with the suggestions about using (or not using) committed 

appliances to implement energy flexibility. After each alert, the group receives graphical 

feedback in which the load curve measured by LINKY smart meter is superposed by a 

theoretical reference curve specific to each household. In comparison to a control group, we 

can quantify the impact of these nudge signals on the energy consumption of the treated 

group. Finally, an energy disaggregation algorithm is presented that will allow us to detect 

the equipment used during the flexibility and thus will do an analysis of the commitment of 

households to look for potential appliances for energy flexibility. 
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Chapter I  

 

 

 

Electricity grid and social challenge: Inevitability of 

residential consumer participation in energy flexibility 

 

 

 

Energy flexibility has been in practice since many decades. However, in a future 

energy mix predominant with distributed generation of renewable sources, the need of 

demand side energy flexibility will be inevitable to complement supply side management 

and energy storage. The residential sector remains the focus of demand response programs, 

however the traditional demand response technique brings certain constraints towards the 

decision making of residential consumer. 

This chapter emphasizes the need on energy flexibility in the future. In addition to 

existing demand response technique, a new technique is briefly introduced. The purpose of 

this technique is to use behavioral insights to aid the decision making of residential 

consumer without causing any monetary loss. 
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I.1 Electricity Supply, Associated CO2 Emission and 

Necessity of Energy Flexibility 

I.1.a Energy transition as a tool to mitigate climate change 

The supply of sustainable energy is a necessity for humankind. Solar energy remains 

the most used form of energy as it provides heat and light throughout the day. The discovery 

of fossil energy sources and technologies introduced industrial eras in the world. The first 

industrial era in 19th century served the humanity with coal for mass scale energy 

consumption. The second industrial era in 20th century centralized electricity as bulk energy 

source for mass scale consumption. Electrical energy is traditionally generated by base load 

power plants and peak load power plants. The base load power plants (such as hydroelectric, 

coal-fired and nuclear power plants) are operational all the time. The energy provided by 

these power plants ensures fulfillment of minimum level of demand on an electrical grid. 

Conventionally, the peak load power plants (such as oil-fired and gas-fired power plants) 

are connected to the electric grid for balancing peak energy consumption. 

The reliance on fossil fuel power plants brings CO2 emission, which is a main 

contributor in the phenomenon of global warming. This leads to the climate change. The 

issue of climate change has been in discussion worldwide in a series of conferences since 

1992. As a result, 191 head of states ratified ‘Paris Agreement’ in COP211. This agreement 

binds the signatories to hold “the increase in the global average temperature to well below 

2 °C the pre-industrial levels” by the end of 21st century (United Nations, 2015).  

The global warming beyond 1.5 °C is an existential threat to the biosphere and it has 

a considerable impact on human life. It is estimated by the pledges and targets of various 

countries that the global warming may reach 2.4 °C by the end of this century; however, 

with the current policies in place, the global warming may reach 3.1 °C by the end of this 

century (Climate Action Tracker, 2021). The projections are alarming for the sustainability 

of biosphere and the impact of climate change will become harsher over the course of time. 

Some impacts of climate change that the humanity is currently facing are as follows: 

- Increased frequency of direct impacts i.e., drought, flood, heatwave and wildfire; 

- Increase in indirect impacts i.e., water quality, air quality and ecological change; 

- Variation in environmental factors i.e., geography and vegetation; 

- Social impacts i.e., loss of habitation, poverty and hunger; 

                                                        
 

1 COP21 is the 21st Conference of Parties (COP21) organized by UNFCCC (United Nations Framework Convention on Climate Change) 
in Paris in November 2015. 
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- Health impacts like mental stress, undernutrition, respiratory and cardiovascular 

disease (World Health Organisation, 2018) 

The scientists argue that the atmospheric CO2 concentration must not exceed 350 ppm2 

to maintain the global warming significantly less than 1.5 °C, however this threshold is 

surpassed in 1988 whereas it is exceeded to 410 ppm in 2020 (Desing & Widmer, 2021). 

Figure I.1 represents the global warming projection until 2100. It is therefore required to 

decrease the atmospheric CO2 concentration by decreasing the CO2 emissions. 

 

Figure I.1 Global Warming Projection w.r.t different scenarios until 2100 (Climate Action Tracker, 
2021) 

During 2018, an increase of 1 °C in the global temperature of the earth is observed 

with respect to the average global temperature of pre-industrial period (1850 to 1900), 

whereas an increase of 2.1 °C is observed in metropolitan France with respect to the average 

temperature of the period between 1961 and 1990 (Manuel Baude et al., 2021). The power 

generation from fossil fuel is a major contributor of CO2 emissions in the world. During 

2018, the electricity production accounted for 41% of CO2 emission in the world, whereas 

6.67% of total CO2 emission in France is caused by electricity production (Manuel Baude et 

al., 2021; Réseau de Transport d’Électricité France, 2018).  

Keeping in account the CO2 emissions pertained to the electricity production, the 

exigency of mitigating climate change brought an evolution in the energy sector during 21st 

century. This evolution is not only caused by the continuous depletion of primary fossil fuel, 

but it also imparts the quest for consuming sustainable energy. In the third industrial era, 

the renewable energy (e.g., solar and wind energy) is preferred over the fossil fuel plants at 

                                                        
 

2 Parts per million 



5 
 

grid level as well as at micro-grid level. The transition of energy landscape is under process 

and is essential to bring sustainable energy to the doorstep of humankind. 

The application of renewable sources also bring innovation in the domain of micro-

grid. Prosumerism (also known as auto-consumption) is one of these innovations, which 

tend individuals to generate, self-consume and sell electrical energy from renewable 

source(s) at their local site. Generally, the prosumers install photovoltaic solar panels or 

biogas plant along with electricity storage at their local site. Local energy communities also 

came in to being as an extension of individual prosumers. These energy communities 

produce and self-consume energy from renewable sources. The prosumers sell excess 

energy to either national grid or make peer-to-peer energy exchange on low voltage micro-

grid. The decentralization of renewable energy production (with its merits and limitations) 

makes individuals (and local communities) more self-sufficient in their need of energy 

consumption via micro-grids, which may also solve the problem of price fluctuation. 

I.1.b The quest for sustainable energy mix in European Union and in 

France 

In pursuit of having a sustainable energy mix, European Union is actively working 

in coordination with its member countries by issuing climate change directives. For this 

purpose, the European Union set short term, medium term and long-term goals for 2020, 

2030 and 2050 respectively. As a long term goal, the European Union aims “to achieve net-

zero greenhouse gas emissions by 2050 through a socially fair transition in a cost-efficient 

manner” (European Commission, 2018). 

Table I.1      Short Term and Medium Term Targets set by EU to mitigate climate change (Amanatidis, 2019) 

 

Directives 

Targets 

Climate and 

Energy Package 

2020 

Climate and 

Energy 

Framework 

2030 

GHG emission reduction target (below 1990 levels) 20% 40% 

Increase in share of energy consumption from renewable sources 20% 27% 

Improving energy efficiency to reduce the use of primary energy 

compared to forecasted levels 
20% 27% 

During 2019, the GHG emissions was reduced by 24% (as compared to 1990 level) 

in 27 EU member states; in which the power sector remained a major contributor with a 

reduction of 15% GHG emissions (European Commission, 2020). The share of final 

electricity from renewable energy production is 34% in 2020 (Potrč et al., 2021). These 

achievements set a baseline for EU to move forward for fulfilling the medium-term ambition 

until 2030. 
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Table I.2            French multi-year energy programs (Ministry of ecological transition and solidarity France, 
2019) 

                 Program 

 

Targets 

Energy Program 

2019-2023 

Energy Program 

2024-2028 

GHG emission from energy consumption (as compared to 

2016) 
14% 30% 

Increase in share of energy consumption from renewable 

sources (as compared to 2017) 
50% 100% 

Decrease in the primary energy consumption from fossil 

fuels (with respect to 2012) 
20% 35% 

In line with the United Nations and European Union directives, France has also set 

targets for reducing GHG emissions and increasing the share of renewable energy for 

electricity production. A study from ADEME3 suggests 47% and 82% share of renewable 

energy in electricity mix until 2030 and 2050 respectively (ADEME, 2014). In this context, 

the installed capacity of wind and solar energy has been increasing in France, while the 

percentage share of fossil fuel power plants has been decreasing since 2017. It can be 

observed by Figure I.2 that the renewable power production (from hydro-electric, wind and 

solar) increased by 17%, whereas the non-renewable power production (i.e. fossil fuel) 

decreased by 23% in 2018 as compared to previous year. Consequently, the CO2 emission 

decreased by 27% in 2018 as compared to previous year (as illustrated by Figure I.3). 

 

Figure I.2 Annual Power Production (TW) in France4 

                                                        
 

3 ADEME is the French Environment and Energy management Agency. 
4 éCO2mix power data: https://www.rte-france.com/eco2mix/telecharger-les-indicateurs  

https://www.rte-france.com/eco2mix/telecharger-les-indicateurs
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Figure I.3 Annual CO2 Emission (MTCO2 eq.) in France5 

I.1.c The impact of renewable energy mix on electricity price 

The diversity in the marginal cost of generating one unit of electricity establishes a 

merit order among the electricity generation sources. Despite having high capital cost of 

installation, hydroelectric energy and nuclear energy have low marginal cost of electricity 

production due to low operational/fuel cost. Conventionally, these energy sources enter the 

merit order at the lowest price level. Contrary to this, the fossil fuel power plants have low 

capital cost of installation, however they have high operational cost. Higher operational cost 

elevates the marginal cost of one unit of electricity production; therefore these plants follow 

hydroelectric and nuclear plants in the merit order. The marginal cost has effect on the 

pricing when the electricity demand increases. As mentioned above, the fossil fuel power 

plants are connected to keep the energy balance in the grid during peak demand. Therefore, 

if real time pricing mechanism is followed, the price of electricity significantly increases for 

electricity production by fossil fuel power plants (as illustrated in Figure I.4 (a)).  

Contrary to this, the marginal cost of one unit of electricity production by renewable 

sources is near zero, except for biomass-fired power plants (Bahar & Sauvage, 2013). 

Therefore, the renewable energy sources enter the merit order at the lowest level along with 

hydroelectric energy. Therefore, the price per unit of electricity remains nearly unchanged 

for same demand. Consequently, the CO2 emission from fossil fuel power plants is avoided. 

However, this is not true all the time. The intermittency of renewable sources may push the 

electricity generation towards fossil fuel power plants to meet the peak demand. Yet, the 

generated energy quantity from fossil fuel power plants will be low compared to the 

                                                        
 

5 éCO2mix power data: https://www.rte-france.com/eco2mix/telecharger-les-indicateurs  

https://www.rte-france.com/eco2mix/telecharger-les-indicateurs
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conventional merit order. Hence, the CO2 emissions and cost of electricity will also be 

lower. 

 

(a) 

 

(b) 

Figure I.4 (a) Conventional merit order (b) New merit order including renewable energy sources 
(Bahar & Sauvage, 2013) 

I.1.d Intermittency of renewable energy and need of energy 

flexibility 

Where the renewable energy mitigates the effects of climate change, it poses 

constraint to electricity grid. Unlike the conventional power plants, the energy produced by 

renewable energy is intermittent in nature. e.g. the solar plants can only produce energy in 

daylight, the wind turbines rotates with wind speed and run of river plants produces 

electricity with respect to the volume of flowing water.  

This intermittency of renewable energy production induces network congestion on 

the electric grid during peak consumption hours. The imbalance in the grid is harmful to 

the electricity infrastructure and hence to the reliable supply of electricity. The supply side 

management has a limited role in mitigating the effects of network congestion. It 

corresponds to the actions taken to ensure the efficient supply of energy; which includes 

production from efficient power plants and reduction of line losses by up-gradation of 

transmission and distribution networks (Karunanithi et al., 2017). It incurs recurring cost; 

therefore, it increases the price of electricity and is not sustainable for affordable energy 

consumption. 

Energy storage can be deemed as another solution to reduce the impact of 

intermittency of renewable energy. The solution is very effective for micro-grid e.g., the 

excess energy produced by PV panels during the day can be stored to use at night. Many 

energy storage technologies have matured over the years (as illustrated in Figure I.5), 

however, like supply side management, the energy storage technologies also incur capital 

cost and recurring operation and maintenance costs. In addition, the energy storage 

technologies wastes around 10-30% of energy for its own consumption (AL Shaqsi et al., 
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2020). The energy transition towards intermittent renewable energy is introducing the 

world to a new paradigm, in which the demand must be adjusted according to the 

intermittent supply. In this case, “it is unlikely that storage capacity will fully compensate 

for supply volatility, at least for short term” (Giet, 2019). 

 

Figure I.5 Maturity of Energy Storage Technologies until 2017 (Nguyen et al., 2017) 

In the context of energy transition, the future energy grid will be massively energized 

with renewable energy. The energy demand is also increasing with time. Therefore, it can 

be anticipated that the intermittency of renewable energy and the increased demand will 

frequently pose network congestion on the electrical grid. Where it will bring stress to the 

electrical network and will be harmful for the sustainable power dispatch to the consumers, 

it will also bring loss of comfort to the consumer. In addition to this, it will also incur 

maintenance cost to the electrical grid.  With an optimistic outlook of 100% energy 

transition in France in 2050, ADEME suggests complementing this energy transition with 

the inclusion of energy storage and demand side energy flexibility. Energy storage is 

expected to address the intermittency problem of renewable energy sources at supply side. 

ADEME suggests three types of energy storage solutions namely intra-day, weekly and 

seasonal. It is estimated that in a scenario of 100% renewable energy in 2050, the energy 

storage by weekly, intra-day and seasonal solution would be 7 GW, 12 GW and 17 GW 

respectively (ADEME, 2015). 

The demand side energy flexibility tends the consumer to consume energy within 

the available capacity. In the case of residential consumer, the energy flexibility is significant 

to curtail the peak by either load curtailment or load shifting. Valley filling can also be 

practiced in response to a DSO or aggregator signal and is more significant for industrial 

consumers or aggregated load. In its study of 100% energy transition, ADEME identifies 4 

potential loads that can actively participate in the challenge of energy flexibility. These 

potential loads are water heating, white appliances (i.e., washing machine, cloth dryer and 
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dishwasher), electric vehicle and space heating. With an estimated annual peak demand of 

134 GW, the demand side energy flexibility potential of aforementioned loads would be 3 

GW, 3 GW, 7 GW and 25 GW per annum respectively (ADEME, 2015). This brings a 

potential demand side flexibility of 28.36%. It is cost-effective and brings in consumer 

participation to meet the challenge of sustainable energy use. The solution is also cheaper 

than supply side management and energy storage. It can traditionally lessen the impact of 

intermittency in the same time scale of 10 seconds and 30 minutes. 

 

Figure I.6 Flexibility solutions relevant to intermittent renewable production (International Energy 
Agency, 2018) 

I.2 Energy Flexibility and its usual modes of 

implementation 

The definition of the term energy flexibility trickles down from a consumption 

sector (i.e. Industry, Agriculture …) to the individual consumer. It is also widely presented 

by the terms of demand side management and demand response. As the buildings are 

massive energy consumers, therefore the definition of energy flexibility is generally 

attributed to buildings. “The energy flexibility of a building is the ability to manage its 

demand and generation according to local climate conditions, user needs, and energy 

network requirements” (Jensen et al., 2017).  



11 
 

The history of energy flexibility in the residential sector starts in 1915, when an 

entrepreneur in Switzerland invented an electric water heater called CUMULUS6. It is one 

of the first DHW (Domestic Hot Water) storage system enabling production during low 

electricity price hours. This invention was commercialized in 1923 for private housing. The 

necessity of energy flexibility was thoroughly established in the decade of 1970. The 

electricity generation mix of USA7 was dominated by fossil fuel power plants in 1970s. To 

reduce the impact of energy crisis in 1970s, the distribution system operators in USA 

introduced energy flexibility programs. The need of energy flexibility is further catalyzed by 

the phenomenon of climate change. Hence, the energy flexibility programs are categorized 

into energy crisis era programs and climate change era programs (Ehrhardt-Martinez & 

Donnelly, 2010).  

The energy flexibility can be implemented directly or indirectly. The term direct or 

indirect is used with respect to DSO (Distribution System Operator) or aggregator. The 

direct energy flexibility is achieved due to incentivizing the consumer, whereas 

conventionally, the indirect flexibility is achieved by offering the consumer a dynamic tariff. 

The classification of energy flexibility is briefly given in Figure I.7. 

 

Figure I.7 Hierarchy of demand response (Alasseri et al., 2021) 

I.2.a Incentive based direct Flexibility and its limitations 

Incentive based programs allow the DSO8 or aggregator to implement direct 

flexibility. It is also known as direct load control. Keeping in consideration the network 

                                                        
 

6 History of CUMULUS : https://cumulus-lamarque.com/historique/ 
7 United States of America 
8 Distribution system operator 

https://cumulus-lamarque.com/historique/
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condition, the DSO or aggregator may achieve direct flexibility by switching the end-user 

load in accordance with a predefined contractual agreement. It is intrusive and requires 

installation of switching devices (e.g., relays and circuit breakers) at the end-user location. 

In addition to this, it does not consider the participation of energy consumer to implement 

energy flexibility in real time.  

Direct flexibility is significant for industrial sector to curtail big loads during peak 

hours. For instance, Energy Pool9 is an aggregator of industrial loads, data centers and 

hospitals, which is practicing the business of direct flexibility in France. Around 1500 MW 

of flexible capacity is available to Energy Pool; whereby through an optimal decision-

making for its clients, Energy Pool identifies flexibility potential of the clients, integrates 

the demand response and offers load adjustments in different markets (Eid et al., 2015). 

The clients of Energy Pool receive specific payments for their participation in either energy 

based or capacity based trading (Pool, 2015).  

Contrary to the Energy Pool, Voltalis10 is another aggregator which targets the 

residential users for load curtailment of electrical heating. The electrical heating accounted 

for 36% of the annual electricity consumption in French residential buildings during 2017 

(ADEME, 2018). When Voltalis receives a signal from the transmission system operator, it 

curtails the electrical heating of its clients in short time intervals through a device installed 

at client’s premises. The clients have a choice to opt out at any time by pushing a button on 

the device and use their electrical heating normally. Voltalis trades the aggregated flexibility 

in balancing markets and demand response mechanisms of the transmission system 

operator (Eid et al., 2015). The clients do not receive any financial benefit for reducing their 

electric heating load, however, they receive a reduction in their electricity bill as reward of 

participating in demand response.  

Despite its robustness, the direct flexibility has certain limitations. The capacity 

curtailed through direct load control varies from client to client, therefore, certain concerns 

exist among the clients regarding the privacy and balanced use of direct load control (Haque 

et al., 2019). Additionally, it normally targets big loads like heating and cooling in 

households, which brings in loss of comfort for the residents. Where it incurs cost to the 

distribution system operator, it is also intrusive to the customer’s energy consumption. 

Therefore, the consumers may be reluctant to give the control of their domestic appliances. 

                                                        
 

9 Energy-Pool : https://www.energy-pool.eu/en/  
10 Voltalis : https://www.voltalis.com/  

https://www.energy-pool.eu/en/
https://www.voltalis.com/
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I.2.b Price based indirect flexibility and its limitations 

Contrary to the direct load control, price-based programs are introduced for 

encouraging the energy consumers to implement energy flexibility themselves. These 

programs are grouped as indirect load control, therefore provide indirect energy flexibility. 

They bring the cognitive burden of flexibility to the consumer and impel the consumer 

through extrinsic motivation to manage their energy consumption for monetary reasons. 

Therefore, in response to any of the price-based instrument and in accordance with the 

client’s degree of flexibility, the client practices load curtailment or load shifting.  

Time-of-use (TOU) is one of the price-based energy flexibility instruments. As 

indicated by the name, electricity price is set in accordance with the time of use. In TOU 

tariff, the electricity price is higher during peak hours and is lower during off-peak hours. It 

encourages the clients to consume less energy during peak hours for economic saving. 

HC/HP (Heures Pleines/Heures Creuses) is a time of use tariff offered by the energy 

providers in France. More than 40% of the subscribers of EDF11 are subscribed to this tariff. 

The price of electricity is relatively cheaper for 8 hours of a day than the rest of the day. The 

time slots for these off-peak hours are defined by ENEDIS12 and vary from city to city. 

Real time pricing (RTP) is a price-based energy flexibility instrument, which is 

related to electricity price in real time on hourly basis. Real time pricing is in practice by 

some DSOs in Nordic countries. Critical peak pricing (CPP) is another price-based energy 

flexibility instrument. EDF has introduced two color coded critical peak pricing 

mechanisms and sends day ahead notifications to its residential subscribers.  

- TEMPO is a mechanism of critical peak pricing introduced by EDF, in which the 

electricity price for a day ‘D’ varies with respect to the color assigned on day ‘D-1’. In 

this regard, the days of normal price of electricity is characterized by white color. 

The electricity price on blue colored day is cheaper while it is more expensive for red 

colored day as compared to the white color days (Albadi & El-Saadany, 2007).  

- EJP is another instrument of critical peak pricing, in which the peak consumption 

day is color-coded in red and the subscribers pay a low tariff all year round, except 

for the 21 red days with higher tariff (Bivas, 2011).  

Despite that the dynamic pricing is specifically more pertinent for the residential 

sector, it poses certain difficulties for its effective implementation. It requires installation of 

a smart meter at consumer site. The smart meter collects energy consumption data of the 

                                                        
 

11 Electricity of France : https://www.edf.fr/  
12 French distribution system operator : https://www.enedis.fr/  

https://www.edf.fr/
https://www.enedis.fr/
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consumers and log it on the DSO server. This collection can be quite intrusive to a 

consumer’s personal life as one can learn substantially about the habits and endeavors of a 

person by looking at energy consumption data. Therefore, the skeptic consumer is reluctant 

to allow the DSO to install smart meter owing to data privacy and security reason (Goulden 

et al., 2014).  

Another factor that hinders the decision making of a residential consumer is lack of 

motivation. This lack of motivation occurs owing to limited information and the uncertainty 

about the potential consequences of the flexibility (Dütschke & Paetz, 2013; Goulden et al., 

2014; Krishnamurti et al., 2012). In a longer run, this lack of motivation does not cause any 

formation of habit in response to dynamic signal pricing. The third constraint is that the 

consumer often deems a low, invisible and uncertain return from their effort, especially with 

dynamic tariff (Hargreaves et al., 2010). 

Another constraint of consumer regarding dynamic pricing is the everyday life of a 

household (Dütschke & Paetz, 2013; Goulden et al., 2014). To maximize the benefit from 

the subscribed energy flexibility tariff, the consumer has to take action with respect to the 

price signal within the defined time slot of the DSO/aggregator. The consumer cannot 

postpone these actions if the consumer might not be able to follow the signal subjecting to 

externalities (absence from home, unfavorable ambient temperature etc.). In consequence, 

neither the peak consumption on the grid is considerably reduced, nor the electricity bill of 

the consumer. Table I.1 illustrates the merits and limitations of traditional energy flexibility. 

Table I.3  Merits and Limitations of traditional energy flexibility 

Characteristics Direct Flexibility Indirect Flexibility 

Merits 

Nature of signal Incentive based Price based 

Significant sectors Industrial Residential 

Type of response Automated Cognitive burden for the occupant 

Response time Fast Response Delayed Response 

Guarantee of load control Yes Possibly 

Anticipated type(s) of 

flexibility 

Load curtailment Load curtailment, load shifting, 

Possibly valley filling 

Limitations 

Is it intrusive? Yes Possibly, but normally no 

Installation of switching 

devices needed? 

Yes No 

Target number of loads A few loads, mainly electric 

heating for domestic users 

A number of loads, depending upon 

the degree of flexibility of consumer 

Intervention may cause loss 

of comfort? 

May be It depends upon the degree of 

flexibility of consumer 
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I.3 The challenge of energy flexibility in residential sector 

I.3.a Potentiality of residential sector 

According to RTE13, the residential sector is the biggest electricity consumption 

sector in France. During the period between 2017 and 2019,The share of total annual energy 

consumption of residential sector increased from 36% to 38% (Réseau de Transport 

d’Électricité France, 2017, 2018, 2019, 2020a). The residential sector remained focal energy 

consumption sector in energy flexibility programs worldwide (Ehrhardt-Martinez & 

Donnelly, 2010; Hatton & Charpentier, 2014).Based on the measured power consumption 

of participating entities throughout France, ENEDIS models a load curve of each 

consumption sector. These modelled load curves are called profile coefficients14, whereas “a 

profile reflects a pattern of consumption or generation, i.e. how an average customer 

consumes or generates electricity over time” (Réseau de Transport d’Électricité France, 

2020b). 

 

Figure I.8 Modelled average daily load curve of residential sector (ENEDIS, 2021) 

The modelled average daily load curve of residential sector is illustrated in Figure 

I.8. It is based on the historical data of profile coefficient of residential sector. Independent 

of the season, three major consumption peaks are observed: one for weekday evenings, one 

for weekend mornings and a last one for weekend evenings. The energy consumption in 

winter is more than in summer due to the use of electric heating. In terms of energy 

flexibility, it is estimated that the residential sector can contribute up to 1 GW of (direct and 

indirect) energy flexibility annually by 2030, which is equal to the combined flexibility 

                                                        
 

13 French national grid operator: https://www.rte-france.com/  
14 Profile coefficients: https://data.enedis.fr/explore/dataset/coefficients-des-profils/information  

https://www.rte-france.com/
https://data.enedis.fr/explore/dataset/coefficients-des-profils/information
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expected by batteries and pumped hydro energy storage by the same year (Le Dréau et al., 

2019). Which makes it a significant sector to achieve energy flexibility.  

As mentioned above, Voltalis targets the electric load of residential sector as an 

aggregator, while giving a choice to its clients to opt out. Implementing energy flexibility on 

electric heating is not often exercisable. In case of direct flexibility, it may cause loss of 

thermal comfort to the residential customer. Furthermore, in the case of indirect flexibility, 

lack of motivation from dynamic pricing and fear of comfort loss may prevent the residential 

consumers to dial down their radiators during the hours of low ambient temperature. In 

such a case, it is more interesting to find out other loads that can actively take part in the 

process of energy flexibility. 

I.3.b Identification of potential appliances for energy flexibility 

The household appliances are categorized as follows:  

- Continuously consuming appliances: There are some appliances which 

consumes energy continuously round the year e.g., refrigerator, freezer etc.  

- Binary appliances: The binary appliances (e.g. kettle and coffee maker) are 

ON/OFF appliances and are becomes operational for a few minutes.  

- Multi-stage appliances: The appliances such as washing machine and 

dishwasher are termed as multi-stage appliances as they have multiple cycles of 

operation for each usage. 

Here, the first question arises that which appliance has more potential in achieving 

the goal of energy flexibility. Usually, the intended duration of energy flexibility is in the 

range of few minutes to few hours. Therefore, an appliance has more potential of flexibility 

if it offers large amount of flexible power in a short period. It can be observed from Figure 

I.9 that the maximum annual energy consumption of each household appliances is 500 kWh 

(except for water boiler). The average duration of operation of each appliance is different. 

E.g., the fridge is a continuous load, yet it consumes energy in the same fashion as cloth 

dryer (which is a multicycle load). However, they consume energy in the same fashion. 

Therefore, it is found difficult to identify potential appliances in a household by looking only 

at their annual energy consumption. 
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Figure I.9 Annual Energy Consumption (kWh) of household appliances (Energie Douce, 2021; Energie 
Mobile, 2021; Réseau de Transport d’Électricité France, 2017, 2018, 2019, 2020a) 

Figure I.10 suggest that the nominal power of fridge is around 10 times less than the 

cloth dryer. Therefore, for a short intended period of interventions, cloth dryer offers more 

potential than fridge. If we recall the study of ADEME regarding the potential appliances 

for energy, it reflects that around 3 GW of energy flexibility can be obtained from these 

appliances in year 2050 (ADEME, 2015). 

 

Figure I.10 Nominal power of household appliances (Energie Developpement, 2013; Energie Douce, 
2021; Energie Mobile, 2021) 
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I.3.c Non-monetary indirect energy flexibility: A new mechanism for 

residential sector 

The limitation of direct flexibility and indirect flexibility for residential sector are 

briefly discussed in section I.2. In the case of dynamic pricing, where the consumer is given 

a choice to implement energy flexibility, it also brings in the notion that not implementing 

energy flexibility cause monetary loss. Generally, the residential consumer does not know 

the purpose of dunamic pricing i.e., reducing peak consumption to meet either 

intermittency of renewable energy or to avoid fossil fuel generation. 

The classical economics suggests that a residential consumer behaves rationally 

towards the dynamic pricing. However, despite available information on pricing, there 

exists certain behavioral obstacles and externalities that hinders consumer decision to 

implement energy flexibility (Sirin & Gonul, 2016). The deviation from rational decision 

making is not an anomaly, rather it indicates that the decision making structure is 

influenced by factors like culture, environment and ambient temperature (Gowdy, 2008). 

In some cases, the DSOs offers dynamic pricing on an opt-in basis, yet the overall consumer 

participation is low, signaling the weakness of the opt-in design (Schneider & Sunstein, 

2017). In this case, it is required to influence the preference of residential consumer in such 

a way that it offers zero risk to the residential consumer for implementing energy flexibility. 

Unlike classical economics based policy of incentivizing the consumer, the 

behavioral economics has demonstrated that the decision making can be influenced by non-

monetary and pro-social impulses (Pratt & Erickson, 2020). A way of doing this is to 

introduce a competition among the consumers. It has been found that a comparison of 

home energy usage with a focus on peer consumption decreased energy consumption by 1% 

to 2% (Ayres et al., 2013). The competition-based programs tend the consumer to win only 

and therefore are effective during the duration of competition. In case of unlimited duration 

with no considerable monetary gain, the consumer might abandon its efforts after a period. 

Thus, these type of programs does not remain sustainable in a long run. 

Another important aspect of energy flexibility that is usually neglected in indirect 

energy flexibility is to bring the human in the loop through providing feedback. In case of 

direct feedback, the demand response operator is obliged to give feedback to its customers 

in real time. Contrary to this, indirect feedback is given to the consumer after the flexibility 

period is finished. A review of 36 energy flexibility programs carried out between 1995 and 

2010 has been performed to measure the impact of feedbacks (Ehrhardt-Martinez & 

Donnelly, 2010). The category called indirect feedback is characterized by global 

information such as the monthly invoice, provided with a consequent delay of several 

months. The energy savings linked to this feedback are relatively low, up to 8% with daily 
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information. The other category corresponds to real-time feedback directly related to the 

occupants' action. This immediacy is much more valuable in improving occupant behavior, 

which can reach average savings of more than 10%. New French buildings are subject to 

regulations related to efficiency (i.e., RT2012), which requires to have an energy 

consumption monitoring system that informs occupants, at least monthly, of their energy 

use, by energy type. However, sub-metering by usage or by dwelling is not required if a 

mathematical disaggregation method is implemented. 

 

Figure I.11 Average household energy saving with respect to type of feedback(Ehrhardt-Martinez & 
Donnelly, 2010) 

As an alternative to price based indirect energy flexibility, the behavioral economics 

provides a key to influence the preference of a residential consumer while offering zero risk 

at the same time. For this purpose, non-monetary and pro-social signals should be sent to 

the consumer. The ecological signals are found most effective in relatively liberal 

communities (Costa & Kahn, 2013). This thesis presents the design and results of a 

conceived indirect energy flexibility mechanism based on behavioral insights. In this regard, 

a new non-monetary, pro-environmental indirect energy flexibility mechanism is designed 

and tested with several households. A similar instrument is introduced in November 2020 
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by RTE in collaboration with ADEME in France. This instrument is called mon-ecowatt15 

and it notifies the subscribers to curtail their load for an anticipated peak consumption. 

 

Figure I.12 Behavioral Insight based signal to implement indirect energy flexibility 

In this thesis work, pro-environmental nudge signals are introduced to implement 

indirect energy flexibility with the following characteristics. 

- Like price based indirect flexibility, it is non-intrusive. 

- No price-based information is given to the households. Instead, the following 

information is given to the residential consumers 

o Anticipated network congestion or elevated renewable production. 

o Certain actions are suggested to do during this period of network congestion 

or elevated renewable production 

- Unlike price based indirect flexibility, the households have zero (monetary) risk to 

act on the notification. No monetary gain or loss is induced. 

- The households are given a system of choice to opt out of their pre-defined 

commitment with no obligation. Mon-ecowatt does not offer any such procedure. 

- Unlike mon-ecowatt, the households are given indirect feedback of their energy 

flexibility in graphical form of load curve (as illustrated in Figure I.13).  

                                                        
 

15 Mon-Eco-Watt : https://www.monecowatt.fr/  

https://www.monecowatt.fr/
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Figure I.13 Indirect feedback in graphical form of load curve 

I.4 Conclusion 

The power sector is a major contributor of GHG emissions in the world, and 

therefore is majorly contributing to the phenomenon of climate change. The energy 

transition from fossil fuel power plants towards renewable power plants is inevitable to 

mitigate the effects of global warming. However, the renewable energy sources are 

intermittent in nature. In a future scenario when renewable energy production will be 

dominant in the electricity mix and demand will be increasing, the intermittency of 

renewable sources will pose network congestion problems to the electrical grid. The supply 

side management and energy storage cope with this challenge to a certain extent and 

therefore requires a performing demand side management. 

 The residential sector being one of the biggest consumption sectors offers potential 

for demand side flexibility. Incentive based direct flexibility is significant for controlling big 

loads; however it is not agreeable for the residential consumer due to unwanted remote 

switching. The price based indirect flexibility puts the burden of action on the consumer, 

however, the limited knowledge of dynamic tariff and uncertain return for the effort limits 

the implementation of indirect flexibility. In this case, it is required to influence the 

preference of the residential consumer in such way that it presents zero risk to the consumer 

in implementing energy flexibility. Behavioral economics provide a way to design non-

monetary, pro-social and environmental mechanisms of indirect energy flexibility.  

This thesis presents an indirect energy flexibility mechanism for residential 

consumers, based on behavioral insights and indirect feedback. For validation, the 

mechanism is experimented with a batch of French households using non-monetary and 

pro-environmental interventions. The following chapters will discuss: 
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- The significance of behavioral insight (specifically green nudges) in designing a new 

energy flexibility mechanism 

- The design of experiment (including the conceived set of nudges and the 

architecture for each intervention) 

- The day-ahead forecast of modelled national load curve of residential sector 

- The measure of effectiveness of nudge signals 

- A proof of concept to detect potential appliances for energy flexibility 
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Chapter II  

 

 

 

Case Study: Nudge signals for implementing indirect 

energy flexibility in French households 

 

 

 

The traditional demand response techniques are found to introduce limitations on 

the decision making of a residential consumer. According to dual process theory, the human 

brain uses system 2 of thinking in response to dynamic pricing and he poses certain 

questions to himself, which makes it riskier to act upon the price signal. Behavioral insights 

is significant in designing a new mode of energy flexibility that tend the energy consumer to 

use the system 1 of thinking. For this purpose, nudge tool is used that rearranges several 

choices in a choice architecture and drives individuals towards the desirable behavior.   

In this chapter, an overview of the limitation of dynamic pricing are presented. 

Following this, nudge-based energy flexibility is introduced. The architecture of a nudge 

based energy flexibility experiment with households is presented in the later part of the 

chapter. 
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II.1 Price based energy flexibility in the light of classical 

economics 

The dynamic pricing has been in practice worldwide since many decades as indirect 

energy flexibility. The non-linear pricing of this tariff is usually based on a number of 

factors, i.e. the forecasted intermittent production, forecasted peak consumption etc. It is 

found in the literature that the predominant intention of introducing dynamic pricing is 

load curtailment. Where it helps the electric grid to avoid network congestion, it also helps 

the customer to decrease his energy bill in direct proportion to his energy consumption.  

The impact of dynamic pricing for load shifting is studied by; for instance; (Valenzuela et 

al., 2012). A dynamic pricing model is also studied “to reduce the overlaps between 

residential and charging station loads by inspiring the temporal load shifting of electrical 

vehicles during evening peak load hours” (Moghaddam et al., 2019) 

The classical economics presents a theory of rational choice regarding the human 

behavior towards consumption. This theory states that “all actions are fundamentally 

rational in character and the people calculate the likely costs and benefits of any action 

before deciding what to do” (Browning et al., 1999). It constructs a theoretical model of 

human, which is called as ‘homo economicus’. In a choice paradigm, the ‘homo economicus’ 

behaves rationally for his self-interest to pursue his defined goal optimally (Urbina & Ruiz-

Villaverde, 2019). The classical economics considers that ‘homo economicus’ has 

characteristics like flawless rationality, unlimited cognitive capacity, narrow self-interest 

and preference consistency. 

The cognitive burden of understanding and acting upon the tariff of dynamic pricing 

rests on the consumer. It has been observed that the consumers show cognitive difficulty in 

understanding nonlinear price systems i.e. dynamic pricing (Bartolome, 1995; Ito, 2014). 

The consumer either lacks information or is unable to process all the information of time 

varying electricity price in real time. The homo-economicus model suggests that the 

consumer responds to the actual marginal price; however it has been found that a rational 

consumer responds to expected marginal price(Ito, 2014; Severin Borenstein, 2009). The 

expected marginal price is the one that is perceived by the consumer, and it may differ to a 

larger extent from the actual marginal price. It is also observed that in certain situations 

despite having updated information, the people do not know what to do in response to a 

signal. Despite their will to decrease electricity consumption, they do not know which 

appliances should be effective for either load curtailment during peak hours or load shifting 

towards off-peak hours. Therefore, they are unable to act upon the signal. 
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Another challenge comes when the consumer is uncertain about the potential 

consequences of the flexibility despite having proper information of dynamic tariff. The 

classical economics deals this situation with the ‘expected utility theory’. It states that the 

decision maker chooses between risky or uncertain prospects by comparing their expected 

utility values. Through dynamic pricing, it is expected that the high price during peak hour 

prompts the consumer to implement energy flexibility (usually in the form of load 

curtailment). However, any exogenous factor (e.g., extreme ambient temperature) may lead 

the consumer to think otherwise. If a consumer does not make any effort (i.e., load shifting 

or load curtailment), the consumer might bring undesirable impact towards the electric 

grid. If the consumer is uncertain about the consequences of the flexibility, the consumer 

might not choose (or act upon) the dynamic pricing as it seems too risky. 

In conclusion, the dynamic pricing acts as an extrinsic motivator to prompt the 

consumers for implementing energy flexibility. It is found that the households are likely to 

exhibit energy flexibility in response to higher prices, yet the dynamic pricing has modest 

to substantial impact to achieve energy flexibility (Faruqui & Sergici, 2010). The studies 

show that dynamic pricing is riskier to respond towards the real time need of energy 

flexibility, mainly due to cognitive limitations of the consumer. Though the homo-

economicus model fits in the case of classical economics, yet a transition from homo-

economicus towards homo-sapiens is required to drive the residential consumers towards 

energy flexibility. 

 

Figure II.1 Factors pertaining to decision making 

II.2 Behavioral insights for indirect energy flexibility 

According to behavioral economics, the human thinking is represented by ‘dual 

process theory’. This theory classifies human thinking in two types of systems namely 

system 1 and system 2. System 1 (of thinking) operates unconsciously, automatically, with 

little or no effort and with high capacity processes; whereas system 2 (of thinking) operates 

consciously, in control, with high effort and low capacity process (Kahneman, 2011). Table 

II.1 illustrates some attributes of dual system of thinking. 
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Table II.1 Attributes of dual system of thinking (J. S. B. T. Evans, 2008) 

Characteristics System 1 System 2 

Consciousness 

Unconscious Conscious 

Implicit Explicit 

Automatic Controlled 

Rapid Slow 

Low Effort High Effort 

Default Process Inhibitory 

Holistic, perceptual Analytic, reflective 

Functionality 

Associative Rule based 

Domain specific Domain general 

Pragmatic Logical 

Parallel Sequential 

The human behavior is influenced by several factors. It requires to maintain 

conformity between the actions or feelings with values, goals and public perception of 

personality (Bénabou & Tirole, 2006). The economics suggests that individuals respond to 

extrinsic motivators, e.g., monetary incentives, loss aversion etc. However, according to 

certain studies, the extrinsic motivators undermine the intrinsic motivation of the 

consumer, has limited impact on treatment and negative impact on the persistence of 

treatment (Bénabou & Tirole, 2003, 2006).  

Dynamic pricing serves as an extrinsic motivator, with the general purpose of driving 

the consumers to curtail their load. The consumers are susceptible to be influenced by the 

context, emotions, short-sightedness or any other driver towards irrationality (Shroff et al., 

2019). Therefore, the dynamic pricing instigates system 2 of thinking. The cognitive burden 

of acting on energy flexibility signal is on consumer which enables the consumer to make a 

controlled and calculated decision after analyzing the situation. The cognitive difficulty of 

understanding the dynamic pricing makes it riskier to implement following a decision 

through system 2 of thinking. 

Behavioral insights is a toolbox emerged by the interdisciplinary conjunction 

between economics, psychology and sociology. The consumers are susceptible to be 

influenced by their immediate environment, emotions and other forms of irrationality. The 

behavioral insights studies people’s cognitive biases and how they make choices and behave 

in real life situations. By studying these cognitive biases the behavioral economics serves to 

develop new methods, mechanisms and other interventions that would help people to 

achieve what they want (Shroff et al., 2019). 

To tend the consumers towards implementing energy flexibility, it is inevitable that 

certain tools and mechanisms should be developed that instigate system 1 of thinking. In 

this way, the mechanism of decision making of implementing energy flexibility will be 
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unconscious and automatic. The consumer does not have to do any mental effort to weigh 

the possibility of outcome or the opportunity cost of energy flexibility. This mechanism can 

be used in parallel with the monetary mechanism. Such mechanism can be devised by the 

utility of behavioral insights, in such a way that the mechanism keeps in account the 

cognitive ability of a residential energy consumer and external influencing factors. 

II.2.a Nudge 

Nudge is a technique in behavioral insights which provides indirect suggestions to 

influence the decision making of an individual or a group. The purpose of nudge is to bring 

positive reinforcement in the decision making. The most prominent definition of nudge is 

that “it is any aspect of the choice architecture that alters people’s behavior in a predictable 

way without forbidding any options or significantly changing their economic incentives. To 

count as a mere nudge, the intervention must be easy and cheap to avoid.” (Thaler & 

Sunstein, 2008).  

Nudge has been in use by governments around the word to make soft policies. These 

policies can be regulatory, economic or communication of information. For example, a 

randomized control trial experiment was performed in UK16 during 2011. The purpose of 

this experiment is to see whether and how the repayment rate of overdue taxes could be 

increased. For this purpose, the control group received usual letter while the treated group 

received a letter with different text. It has been found that “if the recipient was told that 

most people in UK paid their taxes on time, repayment rates increased by 5%. However, if 

they were told about the repayment of the people in their town, the figure increased to 15%.” 

(van Bavel et al., 2013).  

The individuals found it difficult to understand the situation and suffers from an 

imperfect ability to process new information due to the limitations in cognitive processes 

(Momsen & Stoerk, 2014). The nudges are distinguished by conventional instruments of 

policy formation by its virtue of not assuming the economic benefit of rational choice. They 

are based on dual process theory; where preferences are rearranged in a choice architecture 

to abridge the thinking process. Nudge instigates the system 1 of thinking for automatic and 

involuntary decision making. An important element to consider while designing a nudge is 

the choice architecture offered to an individual or a group for bringing positive 

reinforcement towards decision making. “The choice architecture refers to the practice of 

influencing choice by organizing the context in which people make decisions” (Shafir, 2013). 

                                                        
 

16 United Kingdom 
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It is observed through an experiment that nudge is easy to comprehend, resulting in 

an immediate reduction of energy consumption, whereas it takes longer for an individual to 

understand the impact of dynamic price on their energy consumption (Buckley & Llerena, 

2018). While giving a freedom of choice, the right stimuli are put into focus in choice 

architecture so that the desired choice is either chosen by default or is easy and automatic 

to be chosen by the targeted individual or group. The following section demonstrates green 

nudges and their usability for energy flexibility. 

II.2.b Green Nudge 

Green nudge is an extension of nudge technique which is attributed to 

environmental cause and is used for the policy making at national and regional level. The 

purpose of a green nudge is to use behavioral biases in order to encourage citizens to adopt 

lifestyles showing a greater respect for the environment (Centre d’analyse stratégique, 

2011). An example of green nudge is illustrated in Figure II.2. 

 

Figure II.2 Green nudge to reduce the excessive towel paper use (Lars Biesewig & Annie Krautkraemer, 
2018) 

The fossil fuel is under the process of phasing out during energy transition while 

simultaneously integrating renewable energy in the energy mix. The conventional model of 

energy provision shows that the generation of electricity follows the demand, i.e., higher the 

forecasted demand, higher will be the need of electricity generation. However, this might 

not be the case in the future. In a future energy mix predominant in renewable energy, the 

intermittency of production will pose a constraint on the provision of energy. The continuity 

of conventional pattern of energy consumption will not only bring network congestion but 

might also damage the transmission infrastructure. 
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The distributed generation of renewable energy is considered as a common pool 

resource. For instance, (Wolsink, 2012, 2014) discusses the characterization and impact of 

distributed generation as a common pool resource, whereas (Gollwitzer et al., 2018) 

discussed whether the common pool resource theory “can assist in analyzing and designing 

sustainable institutions for managing electricity provision in rural mini-grids”. A common 

pool resource is a certain stock of particular goods from which a flow of resource units can 

be drawn within its specific boundaries (Ostrom, 1990). The distributed renewable energy 

generation has the following characteristics which makes it a common pool resource: 

- Renewability of stock i.e., energy; 

- Scarcity of stock with respect to the optimal location of installation and 

intermittency of generation; 

- Co-production of a common good in the form of energy community (Wolsink, 2012). 

The usual pattern of energy consumption depicts that the individuals draw more 

than the sustainable amount of resource units from the available stock of electricity. This is 

considered as an overuse of electricity. However, in the future energy mix predominant with 

renewable energy sources, this usual practice of energy consumption will cause scarcity of 

energy, either through intermittency of renewable energy or high demand at a certain time. 

The provision of electricity is excludable in nature i.e., an individual can use the electricity 

if he/she pays for it. However, the energy scarcity is not excludable as everyone connected 

to the grid will be affected from this deficiency. In this case, the conventional pattern needs 

to be altered where the demand should follow the intermittent energy production.  

To avoid this socio-technical dilemma in the future, it is inevitable that the 

individuals should show flexible gesture towards energy consumption. Residential sector 

being the highest energy consumption sector offers an opportunity that the households 

should be accustomed with the energy flexibility gestures. In the present, encouraging a 

responsible and eco-friendly behavior towards energy consumption can contribute to the 

reduction of GHG emissions (and hence climate change). Though, the benefits of reducing 

GHG emissions are spread temporally, yet the cost should be borne in the present to be able 

to enjoy present and future benefits. 

II.2.c Review of nudges used in the field of energy worldwide 

There are several experiments of indirect energy flexibility based on nudge that has 

been carried out in the world. Social norms remained effective in the study of non-price-

based energy flexibility in most of these experiments. It should be noted that the purpose of 

these programs was mostly energy conservation. Table II.2 gives an overview of these 

experiments that were conducted worldwide in residential sector for reduction of energy 

consumption. 
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Table II.2 The nudge based indirect energy flexibility experiments in households 

Reference 

Sample Size 

(Households) 

and Location 

Type of treatment Results 

(Brandon & 

Lewis, 1999) 

120 

UK 

Comparative norm, 

intervention 

4.6% decrease in energy usage 

(Schultz et al., 

2007) 

270 

USA 

Descriptive Norm, 

Injunctive Norm 

Descriptive norm led to decrease of 

1.22 to 1.72kWh/day, boomerang effect 

disappears with inclusion of injunctive 

norm. 

(Costa, 2010) 35000 

USA 

Descriptive Norm, 

Injunctive Norm 

On average 2% reduction in electricity 

consumption (1.7% for conservatives, 

2.4% for liberals). 

(Allcott, 2011) 600000 

USA 

Descriptive Norm, 

Injunctive Norm 

On average 2% reduction in electricity 

consumption 

(Ayres et al., 

2013) 

169000 

USA 

Comparative 

feedback 

On average 1.2 to 2.1% reduction in 

electricity consumption 

(Allcott & Rogers, 

2014) 

78887 

USA 

Descriptive Norm, 

Injunctive Norm 

Average 1-1.3% immediate reduction 

in consumption, discontinuing nudge 

leads to a decay of effect by 10-20% per 

year 

(Dolan & 

Metcalfe, 2015) 

569 

UK 

Social descriptive 

norm 

On average 6% reduction in electricity 

consumption 

(Graffeo et al., 

2015) 

300 

Israel 

Social descriptive 

norm 

Social norm led to an intention to 

conserve energy by 12.1 to 34.4% in 

treated group as compared to control 

group 

(Ito et al., 2018) 691 

Japan 

Moral Suasion Moral suasion induced a short-run 

reduction in peak-hour electricity 

usage by 8%, economic incentive 

produced electricity consumption 

reduction of 14 to 17%. 

(Buckley & 

Llerena, 2018) 

240 

France 

Comparison of nudge 

and price based 

Nudge does not bring welfare loss of 

individual or group, price based 

incentive does 

(Pratt & 

Erickson, 2020) 

16149 

USA 

Gamification Percentage collective change of 4.34 to 

11.98 % on treatment days w.r.t control 

days for households. 

(Jorgensen et al., 

2021) 

143 

Australia 

Information about 

peaks in consumption 

Reduction in peak consumption by 

12% to 20%. 

The most prominent non-price nudge field study was performed in USA, in which 

the energy consumption of a household for a period is compared with the energy 

consumption of energy efficient neighbors and all neighbors. This comparison is presented 

in graphical form along with energy conservation tips in the report and is considered as the 
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descriptive norm. An injunctive norm is also added in the report by giving a rating in the 

form of efficiency standing. This efficiency standing categorized the household as Great, 

Good or Below Average. Both norms are collectively called as Home Energy Report (HER). 

It is observed from the study that HER causes an average of 2% reduction in electricity 

consumption (Allcott, 2011), whereas discontinuing the HER leads to decay of energy 

conservation practice by 10-20% per year (Allcott & Rogers, 2014). 

Another significant work in this regard is (Ito et al., 2018), in which the authors 

studied the effect of moral suasion and economic incentives for energy conservation using 

randomized controlled trial in households. The habituation and dishabituation is also 

studied. It has been found that moral suasion induced a short-run reduction in peak-hour 

electricity usage by 8%, economic incentive produced electricity consumption reduction of 

14 to 17%. In the case of moral suasion, “the treatment effect diminishes after repeated 

interventions but can be restored to the original level by a sufficient time interval between 

interventions. Economic incentives induce larger treatment effects, little habituation, and 

significant habit formation” (Ito et al., 2018). 

 (Buckley & Llerena, 2018) played demand response as a common pool resource 

game in a lab experiment to do a comparison between nudge and peak pricing-based 

interventions. It is found that in the absence of an energy conservation policy, the 

individuals do not achieve socially optimal level of consumption. “The nudges were quick, 

easy to understand and resulted in an immediate reduction in consumption in the period 

following initial feedback. On the other hand, individuals took longer to understand the 

effect of the increased price on their consumption and so took longer to integrate it into 

their decision making process” (Buckley & Llerena, 2018). 

 The impact of load curtailment signal complemented with two types of incentive 

schemes is studied by (Llerena et al., 2021). An honorary contest is held in one group with 

an incentive for social cause. The subject that consumes lowest energy during the predefined 

load curtailment timeslots was considered winner. As incentive, the reward would be given 

to the NGO (non-governmental organization); chosen by the winner. In addition to this, the 

name of winner was publicly displayed on the welcome display of the building. The other 

contest was monetary in nature; in which half of the reward was given to the winner and the 

rest was distributed among other subjects. The results show that honorary contest bring a 

significant load curtailment by the subjects. Whereas the monetary contest seems to have 

no impact for load curtailment, albeit a chance of winning money. This experimental study 

brings the idea of testing nudge-based energy flexibility in residential sector. The types of 

nudges used in the experiment and the architecture of nudges is given as follows. 
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II.2.d The Set of Green Nudges Used In the Experiments 

There are several ways that can be used to design a choice architecture for nudging. 

For this experiment, a set of green nudges are conceived. The characteristics of this set is 

given below, whereas the information about each nudge in the set is given in Table II.3. 

- Unlike most of the past experiments, no social or comparative norm is used as 

nudge. This is a peculiarity of this experiment. 

- Unlike the past experiments which usually relies on extrinsic motivators, the 

purpose of this experiment is to nudge the intrinsic motivation of residential 

consumer.   

- Feedback is added as a nudge in this experiment. This can be considered as a novel 

nudge. 

- The nudges are designed in such a way that the mechanism for each intervention 

should be simple, equitable, have low or negligible cost and have no risk for the 

subjects. 

Table II.3 The nudges used in the experiment 

Sr. 

No. 
Type of Nudge Remarks 

1 Information 17 Since a common residential consumer is not aware of the forecasted grid 

condition, therefore information is given to the subjects of treated group 

of this experiment. The information pertains either about the forecasted 

network congestion or about the elevated renewable energy production. 

2 Commitment The commitment nudges tend the individual or group to remain 

behaviorally consistent by maintaining their commitment.  

3 Feedback Feedback of each intervention is given back to the subjects of treated 

group, as described in detail in section II.3.c.iii. The purpose of this nudge 

is to introduce salience 18 in the intervention. It is expected from this 

nudge that it serves to keep the subject motivated for the future 

interventions. 

II.3 An experiment of indirect energy flexibility in 

residential sector using green nudges 

As mentioned before, the experiments related to nudge based indirect energy 

flexibility were conducted for the prime purpose of energy saving, rather than energy 

flexibility. One important aspect of these experiments is to distribute the subjects into 

control group and treated group. The control group acts as a standard against which the 

                                                        
 

17 Information can also be considered as priming. A primed stimulus is unconsciously held in the associative memory of the decision 
maker to subsequently influence the decision. 
18 A feature salience makes a choice more noticeable than others by emphasizing certain aspects of choice architecture. 
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impact of treatment given to the treated group is analyzed. Another important aspect of 

these experiments is giving direct or indirect feedback to the subjects so that they can also 

know the impact of their action for energy conservation. 

This section demonstrates the design of a behavioral science experiment for the 

purpose of implementing indirect energy flexibility in the residential sector. Contrary to the 

earlier experiments available in the literature review, our experiment does not use any social 

norm among peers or ratings for the participating subjects. Among the diverse nudge tools, 

non-social nudges are chosen. However, like earlier experiments, it includes a control group 

and indirect feedback towards the participating subjects. The impact of indirect energy 

flexibility for load curtailment (during peak hours) and load shifting (from peak hours to 

off-peak hours) is analyzed in the experiment. The section is divided in to following 

subsections. 

- Methodological aspect of the experiment 

- Protocol of interaction between subjects and experiment organizers 

- Set of green nudges 

- Architecture of experiment 

II.3.a Methodological aspect of the experiment 

A field experiment is conducted to find out the causal effects of real-world behaviors 

on energy flexibility. Field experiment is defined as “a data collection strategy that employs 

manipulation and random assignment to investigate preferences and behaviors in naturally 

occurring contexts” (Baldassarri & Abascal, 2017). Internal and external validities are 

related to both lab experiment and field experiment. “Internal validity refers to the ability 

to draw confident causal conclusions from one's research. External validity refers to the 

ability to generalize from the research context to the settings that the research is intended 

to approximate” (Loewenstein, 1999). Contrary to lab experiment, a field experiment has 

the benefit of having external validity from the real-world environment in a large-scale 

experiment pool. However, a field experiment has less internal validity as compared to a lab 

experiment. In contrary to lab experiment, some variables (that affects the treatment group) 

cannot be controlled in a field experiment.  

 This field experiment is conducted in a randomized control trial mode. In this type 

of field experiment, the subjects are assigned to one (or multiple) treatment conditions. The 

effectiveness of treatment interventions is evaluated by comparing treated subjects with 

those in a control group (or those who received a different treatment). These interventions 

affect the normal approach of subjects towards the problem under study (in this case energy 

consumption). The motive of these interventions is to encourage individuals for taking 

actions to improve their individual and social well-being (Banerje & Duflo, 2011). Figure 
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II.3 illustrates an example of randomized field trial. The randomized control trial is used to 

implement energy conservation for moral suasion of subjects in Japan (Ito et al., 2018). The 

future electricity grid needs energy flexibility at consumer side; therefore, it is necessary to 

understand the consumer behavior towards this challenge. For this purpose, this 

experiment is targeted to know the residential consumer behavior towards the challenge of 

energy flexibility. It should be noted that though the methodological aspect of this 

experiment is same as that of (Ito et al., 2018), however the approach i.e. the protocol is 

different. 

 

Figure II.3 An example of randomized controlled field trial (Haynes et al., 2012) 

II.3.b Protocol of interaction between subjects and experiment 

organizers 

The protocol of the experiment consists of multiple steps that were carried out before and 

within the duration. It is related to selection and interaction with the subjects of the 

experiment. It is given as follows. 

II.3.b.i  Campaign and recruitment of subjects for experiment 

The recruitment of subjects was carried out between March and May 2019. A 

campaign for recruiting subjects was launched by the economists of GAEL19 lab in 

collaboration with the social scientists and pro-environment associations. Distribution of 

flyers, personal interactions and sending emails to the subject already presented in the 

laboratory panel was the mode of communication of campaigning. The persons listed as 

                                                        
 

19 Grenoble applied economics lab : https://gael.univ-grenoble-alpes.fr/accueil-gael  

https://gael.univ-grenoble-alpes.fr/accueil-gael
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student in the laboratory panel were excluded from the recruitment process. The interested 

candidates were offered to fill in an online form. The gathered information was concerned 

about the type of housing, the composition of the household, the socio-professional 

category, the presence of a smart meter, the type of heating, etc.  

686 candidates filled the online form to participate in the experiment. At this stage 

of the recruitment process, the information given to individuals was limited to the launch 

of a study on energy consumption and the development of renewable energy. A selection 

criterion is decided in order to select the potential subjects among the candidates. Out of 

686 candidates, 175 households are recruited for the purpose of experiment. The selection 

criteria is as follows: 

- The household should be composed of at least 2 people. 

- The household should be in the area of metropolitan Grenoble. 

- The household should be equipped with LINKY20 smart meter. The LINKY smart 

meter permits the experiment organizers to collect the power consumption data 

from ENEDIS as per written consent with the subject. 

- The household should not have a specific electricity supply contract (i.e. dynamic 

pricing). 

II.3.b.ii Categorization of recruited subjects into groups 

The recruited households are distributed into control group and treated group. The 

control group comprises of 79 households and treated group comprises of 96 households. 

The allocation of the selected subjects between the two groups was carried out based on the 

strictest possible equivalence rule using following criteria. 

- The number of people in the household. 

- The size of the dwelling. 

- The presence of household members in the home at least 3 days per week. 

- The number of household appliances in the home.  

The treatment group receives treatment in the form of a set of nudges for each 

intervention. Indirect feedback is also given to the treated group for each intervention. No 

intervention is made on weekends and French national holidays. The control group does 

not receive any treatment. It is formed to find out the externalities that are affecting the 

treatment of treated group during the experiment. It ensures that the energy consumption 

of treated group is only influenced by the nudge during alert day. 

                                                        
 

20 LINKY smart meter : https://www.enedis.fr/le-compteur-linky-un-outil-pour-la-transition-ecologique 

https://www.enedis.fr/le-compteur-linky-un-outil-pour-la-transition-ecologique
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Depending on their treatment assignment, subjects were invited to attend a study 

presentation session. The organization of the sessions ensured that no communication 

between subjects belonging to different treatments took place. 

II.3.b.iii Remuneration of participation in the experiment 

To keep the subjects engaged in the experiment, a small annual remuneration is 

given at the end of each experiment year. The amount of remuneration is 40€ per subject 

per year for 3 years of participations. It should be noted that this remuneration is not given 

as a reward for implementing energy flexibility, rather the remuneration serves as monetary 

indemnity against a survey and the consent of using subjects’ energy consumption data. 

II.3.b.iv Types of Alerts 

This field experiment is conducted from November 2019 to September 2021. The 

following types of alerts are sent to the subjects. For the sake of convenience, the day of 

treatment is hereafter referred as alert day and is symbolized by ‘D’.  

- Green alert (GA) The purpose of this alert is to nudge the treated group to 

shift their partial load from evening to the duration between 

noon and 3:00 PM on alert day ‘D’. 

 

Figure II.4 Load shifting from evening peak hours to afternoon 

- Orange alert (OA) The purpose of this alert is to nudge the treated group to 

curtail their load between 6:00 PM and 8:00 PM on alert day 

‘D’. 
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Figure II.5 Load curtailment during peak hours in the evening 

II.3.b.v Sessions of Instruction 

The presentation of the instructions respected the anonymity of the subjects and no 

communication between the subjects. To avoid any strategic behavior, especially in terms 

of the responses concerning the subjects' commitments, the principle of increasing 

information in several phases was adopted. Each subject was given a personal code to keep 

them anonymous. The sessions included between 16 and 25 subjects from the same 

treatment. Each session was organized in a strictly identical manner in 6 phases. 

1. The first phase of the instructions consisted of presenting the challenge of energy 

transition towards renewable energy and consumption by households. Particular 

attention was paid to the gap between production times e.g., during sun hours in 

case of solar and consumption times i.e., peak of the household in the evening. To 

cope with this mismatch, the flexibility of household consumption was highlighted 

as one of the solutions to avoid the use of polluting thermal installations. Based on 

this information, the objectives of the study were presented. For the treated group, 

the aim is to better understand the opportunities for greater flexibility among 

households by testing recommendations and advice. For the control group, only the 

considerations of a better understanding of consumption behavior were mentioned. 

2. The second phase of the instructions concerned the conduct and organization of the 

study. The presentation of the study process was identical for both groups. It was 

indicated that the duration of 2 years of study requires the inclusion of further 
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phases where subjects would be asked to update their information about their 

equipment and usage, as well as (only for treated group) a questionnaire for the 

collection of information about the recommendations and feedback on the periods 

of intervention. For the control group, the presentation of the organization of the 

study simply consisted in underlining the need to collect information on the 

equipment and its uses from the beginning to the end of the study. For the treated 

group, the presentation of the organization of the study consisted in describing the 

critical periods for the consumption of electricity.  

3. The third phase of the instructions consisted of collecting information on equipment 

and its use within households. A comprehensive questionnaire was administered 

before the subjects were informed of the very existence of a commitment principle 

that they would be asked to carry out in the next phase. This questionnaire, based 

on a study of the professional literature and institutional reports on household 

equipment, provides a fairly accurate representation of the dwelling, the set of 

equipment and their uses for each subject in the study. 

4. The fourth phase of the instructions was primarily consisted of the 

recommendations for the orange alerts and green alerts. In parallel to this 

presentation, subjects were asked to indicate: i) which equipment was not present 

in their dwelling and ii) which equipment was not generally used during the 

intended period of intervention for orange alerts or was generally used during the 

intended period of intervention for green alerts. This step was particularly important 

to avoid subjects making commitments to actions that they could not carry out or 

were already carrying out. It was only based on the collection of this information, in 

a second stage that subjects were informed of the principle of commitments to be 

made for each type of period. These commitments were made based on information 

on the impacts that these could have in terms of energy consumption. 

5. For the sake of convenience, the periods of intervention for orange alerts will be 

called as orange periods, whereas the periods of intervention for green alerts will be 

called as green periods. The fifth phase focused on the alert system implemented 

throughout the study, for both the orange and green periods. For each orange or 

green period on day ‘D’, this system is based on:  

a. an alert via SMS on day ‘D-1’ between 6:45 PM and 7:15 PM 

b. a second SMS inviting subjects to consult the commitments made at the start 

of the study and, if necessary, to modify them for the coming period between 

7.30 PM and 10.30 PM on day ‘D-1’. The consultation of the commitments, 

and their modifications for the current period, was carried out via a 

dedicated website with personal and secure access. 

c. a final reminder SMS on day D, at 7.30 am.  
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d. Finally, this fifth phase presented the feedback system on subjects' electricity 

consumption for the different orange or green periods. Thus, an SMS 

informs the subjects to view their personal account on the study website 

where they could find the consumption curves for each day with a period, 

namely a measured curve, made with the data from the smart meters at a 

step of ½ hour, and a reference curve which is an estimate of the usual 

consumption at that time of the day.  

6. The sixth and final phase of the instructions concerned the presentation of the 

operational conditions for data collection, storage and security provisions applied to 

the data (both relating to the questionnaires and to electricity consumption). This 

phase ended with the collection of the subjects' consents for sharing of their data 

from the smart meter according to the regulations in vigor. 

II.3.b.vi Survey through questionnaire 

A questionnaire is given to each subject to obtain information regarding the presence 

of various appliances in their respective household. The questions were related to; 

- Whether an appliance from given list of appliances is present in the house. The 

subjects are also asked to mention if any other appliance in present in the house. 

- The number of each type of appliances present in the house. 

- The time of use of the appliances present in household. For this purpose, a standard 

day is split into 7 timeslots. In addition to this, the subjects are also asked about the 

use of appliances during weekdays and weekends. 

II.3.b.vii GDPR Consent 

A consent is signed with the subjects of the experiment in compliance with GDPR21 

every year for a period of 3 years. The subjects might opt out of the experiment after a year 

if they are not interested in signing the consent. Through this consent, the subject gives 

rights to the experiment organizers to use his/her data. For collecting power consumption 

data, the subject provides his/her identity number of electricity dispatch point (in French: 

ID point de livraison) and permits the experiment organizers to obtain the power 

consumption data of the subject from ENEDIS as a third party. This consent binds the 

experiment organizers to strictly use the data of subject within the limits of experiment. The 

data includes response to questionnaire, measured load curve, appliance commitments and 

contact details. 

                                                        
 

21 General data protection regulation (EU) : https://gdpr.eu/what-is-gdpr/  

https://gdpr.eu/what-is-gdpr/
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II.3.b.viii Website 

A dedicated subdomain Etude-Elec22 has been made available to the subjects of the 

experiment. The sample screenshots of website are given in Annex A. All the subjects have 

their personal account on the site, which allows them to; 

- Respond to the online questionnaire regarding the presence of equipment. 

- Change their default commitment for an alert day ‘D’. 

- View the result of their effort on alert day as feedback in graphical form. 

II.3.c Design of set of green nudges 

A set of green nudges is introduced in the experiment. Its purpose is to nudge the subjects 

to implement energy flexibility on alert day ‘D’. The timeline of sending these nudge signals 

gives ample time to the treated subjects for making a decision. This timeline is given in 

section II.3.d. These nudges are devised to answer the 4 basic questions of a residential 

consumer i.e. 

- Why should energy flexibility be implemented? 

- When to act to implement energy flexibility? 

- Which appliances should be used to implement energy flexibility? 

- Following the implementation of energy flexibility, how did my effort perform? 

 

Figure II.6 Curious questions and corresponding designed nudge treatment 

                                                        
 

22 Etude-Elec : https://etudelec.univ-grenoble-alpes.fr/. The website is made for the purpose of study. It may not be available 
anymore. 

https://etudelec.univ-grenoble-alpes.fr/
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II.3.c.i Information 

The subjects are primed with an informational message regarding energy production 

and its environmental impact. “The primed stimulus remains in associative memory and 

influences behavior in a predictable manner over a certain period of time” (N. Evans et al., 

2017). For this purpose, a SMS is sent to the subjects of treated group on day before alert 

day i.e. day ‘D-1’. This SMS is hereafter called as ‘alert SMS’. The text of alert SMS for each 

type of alert is as follows: 

- Green alert (GA) Tomorrow, from noon to 3 PM, the production of electricity 

from renewable energy will be maximum. 

- Orange alert (OA) Tomorrow, from 6 PM to 8 PM, a consumption peak is 

expected with maximum use of thermal power plants. 

II.3.c.ii Commitment 

During the introductory meeting between the experiment organizers and subjects, 

the subjects filled a questionnaire. This questionnaire contains questions regarding the 

number of diverse appliances in the household and the use of these appliances during 

timeslots in a standard day. These timeslots are defined by the experiment organizers e.g., 

one timeslot is between 6 PM and 8 PM. The purpose of this questionnaire is to make the 

energy consumption of appliances evident to the subject. Following this, the subjects are 

given a list of actions that they can possibly implement in the case of receiving an alert. The 

subjects are asked to give their commitment of using (or not using) one or multiple 

appliances during treatment period by selecting the actions in the list. In response, the 

applicants committed appliances in accordance with their prospective degree of comfort 

during treatment period. In conjunction with alert SMS, a subject specified commitment 

SMS is also sent to remind each subject of treated group their default commitment on day 

before alert day i.e. ‘D-1’.  

This SMS (a green nudge of type commitment) tends the subject to remain 

behaviorally consistent in accordance with the commitment. However, the subjects are 

given a choice to modify their pre-defined commitment via their personal account on the 

Etude-Elec website within an hour or receiving the commitment SMS. With the help of color 

codes associated to their default commitment, the subjects are conveyed about which 

actions should be taken by default, or else they can modify their commitment for 

corresponding alert. The text of commitment SMS for each type of alert is as follows. For 

the sake of privacy, the dotted line represents the pre-defined commitment, whereas the 

asterisks represent the etude-elec website link. 
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- Green alert (GA) Tomorrow, your commitment is to use ……………………. To 

modify, visit ***************. 

- Orange alert (OA) Tomorrow, your commitment is to NOT use ……………………. 

To modify, visit ***************. 

In addition to the alert SMS and the commitment SMS sent to the treated group on 

day before alert day ‘D-1’, a reminder SMS is also sent to the treated group on alert day ‘D’. 

The text of the reminder SMS is as follows. 

- Green alert (GA) Reminder: Today, green period from noon to 3 PM 

- Orange alert (OA) Reminder: Today, orange period from 6 PM to 8 PM 

II.3.c.iii Feedback 

This green nudge aims to make ecological choices more noticeable by emphasizing 

specific aspects of the choice architecture. For each intervention (i.e., alert day ‘D’), the 

subjects of the treated group are given indirect feedback in graphical form. The subject 

specific image contains the measured load curve of the subject household on alert day ‘D’, 

which is superposed by a calculated reference load curve of the same household. The 

calculation of reference load curve is based on the historical consumption of the household. 

The formulation of reference load curve will be explained in detail in Section IV.3. Visually, 

the difference of area between the reference load curve and measured load curve makes the 

energy flexibility effort noticeable at a glance.  

For each subject of treated group, this image (as indirect feedback) is uploaded on 

his personal account on Etude-Elec website on day ‘D+2’. The subjects of treated group is 

sent an ‘image visualization SMS’ on the following day ‘D+3’. Irrespective of the alert type, 

the text for all the subjects of treated group is as follows. For the sake of convenience, the 

dotted line represents the date of the alert day, whereas asterisk represent the link of Etude-

Elec website. 

- Green alert (GA) 

- Orange alert (OA) 

You can view the consumption curve for the period of 

………………., by logging on to ********. 
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Figure II.7 Feature salience through comparison of load curves 

II.3.d Architecture of Experiment 

The architecture of conducting this field experiment is set-up by G2ELab23 

(Grenoble electrical engineering lab) in close coordination with GAEL lab. The architecture 

is conceived to fulfill the following three prerequisites of experiment. 

- How to collect the data of daily measured load curve of the subjects? 

- How to identify a day-ahead potential alert? 

- What is the protocol of each intervention including giving feedback? 

Figure II.8 illustrates the schematic diagram of the experiment. The schematic 

diagram briefly demonstrates the collection of data, accessing the historic data from 

ENEDIS as well as accessing the day-ahead forecasted notification via web-services API24. 

However, it does not demonstrate the protocol of each intervention in the form of timeline. 

The schematic diagram is described in detail in the sub-sections below, whereas the protocol 

of each intervention is given from Figure II.9 to Figure II.11. 

                                                        
 

23 Grenoble electrical engineering lab : https://g2elab.grenoble-inp.fr/en  
24 API : Application Programming Interface 

https://g2elab.grenoble-inp.fr/en
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Figure II.8 Schematic Diagram of project “EXPESIGNO” 

 

Figure II.9 Timeline illustrating the signaling on day ‘D-1’ 
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Figure II.10 Timeline illustrating the reminder SMS and period of action on day ‘D’ 

 

Figure II.11 Timeline illustrating the indirect feedback on day ‘D+3’ 

II.3.d.i Collection of data regarding measured load curve of subjects 

It is essential for this field experiment that the experiment organizer must have 

access to the energy consumption data of all the subjects collected by LINKY smart meter. 

LINKY transmits the daily measured load curve of the consumer at a resolution of 30 

minutes to ENEDIS server (Duplex et al., 2013). In line with a written consent signed by the 

subjects regarding access to their energy consumption data as a third party, G2ELab 

receives the daily measured load curve of each household from ENEDIS in encrypted form. 

An automatic script decrypts and anonymizes the data as per GDPR consent signed with 

each household. 
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II.3.d.ii Identification of a potential day ahead green alert 

For the sake of comprehension, it is recalled here that the purpose of this alert is for 

nudging the treated group to shift their partial load from evening to the duration between 

noon and 3:00 PM on alert day ‘D’. It is pre-defined that the green alert should only be 

triggered for the day when the production from renewable energy is maximum. There is no 

such instrument exist on national level that notifies about maximum renewable production, 

or at least the renewable production more than a defined threshold. Therefore, the following 

criteria is set for the identification of a day ahead green alert. To register a green alert, both 

conditions must be fulfilled. 

- The average nebulosity in the afternoon of a potential alert day ‘D’ in Grenoble must 

be zero. i.e., the sky will be clear and the solar production will be maximum. For this 

purpose, the forecasted nebulosity by INFOCLIMAT25 is accessed via an API a day 

before ‘D-1’ at 6 PM 

- Based on the forecasted (and modelled) French national load curve of residential 

sector, a coefficient is calculated. This coefficient is a ratio between the day ahead 

average energy consumption in the evening and day ahead average energy 

consumption in the afternoon. The forecasting model will be discussed in detail in 

section II.4. To trigger a green alert, this coefficient should be greater than 1. This 

implies that the forecasted average evening consumption is greater than forecasted 

average afternoon consumption. Therefore, the usual energy consumption of the 

evening can be shifted towards afternoon of the same day (as illustrated in Figure 

II.4). The coefficient is mathematically given in equation II.1. 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝐺𝐴 =  

∑ 𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑚𝑒𝑑
8 𝑃𝑀
6 𝑃𝑀

𝑡1
⁄

∑ 𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑚𝑒𝑑
3 𝑃𝑀
12 𝑃𝑀

𝑡2
⁄

 
Equation II.1 

where 𝑡1 and 𝑡2 are number of hours in the evening and in the afternoon respectively. 

Their values are 2 and 3 respectively. 

II.3.d.iii Identification of a potential day ahead orange alert 

For the sake of comprehension, it is recalled here that the purpose of this alert is to 

nudge the treated group for curtailing their partial load in the evening between 6 PM and 8 

PM on alert day ‘D’. It is pre-defined that the orange alert should only be triggered for the 

day when a consumption peak is expected with maximum use of thermal power plants on 

                                                        
 

25 INFOCLIMAT API: https://www.infoclimat.fr/api-previsions-meteo.html?id=3014728&cntry=FR 

https://www.infoclimat.fr/api-previsions-meteo.html?id=3014728&cntry=FR
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alert day ‘D’. The orange alert is based on the day ahead announcement of PP1/PP226. These 

days correspond to high electricity consumption determined by RTE. The day PP1 is based 

on the forecasted day ahead extreme meteorological condition whereas PP2 is based on 

forecasted day ahead network congestion. 

The announcement of PP1/PP2 days serves in capacity mechanism to ensure the 

supply of electricity for forecasted network congestion. The capacity mechanism has been 

regulated in France since January 2017 to address the growing energy demand while 

maintaining energy balance in the grid and ensuring secure supply during peak energy 

consumption. The energy generation companies and load curtailment operators are obliged 

to commit the availability of their production and load curtailing capacity during these peak 

periods. By default, RTE can attribute at maximum 15 PP1 days per year and 25 PP2 days 

per year (ENOPTEA, 2018) in winter season. For identifying a potential day ahead orange 

alert ‘D’, the PP1/PP2 announcement is accessed via an API at 6 PM on day ‘D-1’. If a 

PP1/PP2 day is declared, the program registers an orange alert for next day ‘D’. 

It is worth mentioning that during the first wave of orange alert, the meteorological 

conditions in France were not extreme enough that RTE forecasted a congestion on the 

electrical network for several days.  In this case, the rest of the alerts were triggered based 

on day ahead announcement of TEMPO27 and/or EJP28. TEMPO is a mechanism of critical 

peak pricing introduced by EDF, in which the tariff for color-coded day ‘D’ varies according 

to the color assigned on day ‘D-1’. The tariff on day ‘D’ is cheaper than time of use price for 

blue color, slightly expensive than time of use price for white color and very expensive for 

red color (Albadi & El-Saadany, 2007). EJP is another instrument of critical peak pricing, 

in which the peak consumption day is color-coded in red and the subscribers pay a low tariff 

all year round, except for the 21 red days with higher tariff (Bivas, 2011). 

                                                        
 

26 PP1/PP2: https://www.services-rte.com/fr/visualisez-les-donnees-publiees-par-rte/signaux-pp1-et-pp2.html  
27 TEMPO : https://particulier.edf.fr/fr/accueil/contrat-et-conso/options/tempo.html#/selection-bp  
28 EJP : https://particulier.edf.fr/fr/accueil/contrat-et-conso/options/tempo.html#/selection-bp  

https://www.services-rte.com/fr/visualisez-les-donnees-publiees-par-rte/signaux-pp1-et-pp2.html
https://particulier.edf.fr/fr/accueil/contrat-et-conso/options/tempo.html#/selection-bp
https://particulier.edf.fr/fr/accueil/contrat-et-conso/options/tempo.html#/selection-bp
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Figure II.12 Calendar of the months for orange alerts based on EJP 

EDF notifies subscribers on day ‘D-1’ regarding the day-ahead color of TEMPO and 

EJP. Therefore, EJP and TEMPO are added to the protocol of orange alerts for the months 

of February and March 2020. Like PP1/PP2, the day-ahead notification is obtained via the 

APIs of EJP and TEMPO at 6:00 PM on day ‘D-1’. The pre-defined condition for a triggered 

alert based on EJP and TEMPO is that either of the two instruments notified the day ahead 

in red color. Figure II.12 and Figure II.13 demonstrate the color-coded days during the 

months of February and March 2020 for EJP and TEMPO respectively. 

 

Figure II.13 Calendar of the months for orange alert based on TEMPO for 1st session 
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The experiment is performed for a period of three years. The alerts are sent during 

the first two years while the third year is set to find out the habit formation of the 

households. The timeline is adjusted within the temporal constraints (i.e. the availability of 

measured load curve by ENEDIS). It is also adjusted in accordance with the observation of 

(Ito et al., 2018) i.e. to retain the treatment effect by introducing sufficient time interval 

within consecutive treatments. The triggering of orange alerts is simply based on the API 

notification by RTE regarding the forecasted network congestion in the national grid. 

However, the triggering of green alert is based on two criteria. One of the criteria of green 

alert is based on the prediction of day ahead residential energy consumption, which is 

discussed below.  

II.4 Prediction of modelled national load curve of 

residential sector 

The criteria for identifying a potential green alert is discussed in the section II.3.d.ii. 

For the sake of convenience, it is recalled here that one of the criteria is that the value of 

coefficientGA (coefficient of green alert, see equation II.1) should be greater than a threshold 

value. In this case, the threshold value is 1. The coefficientGA is a ratio between the average 

energy consumption in the evening and the average energy consumption in the afternoon. 

Since the calculation of coefficientGA is based on the day ahead energy consumption (which 

cannot be measured on day before), therefore it requires forecasting of the day ahead energy 

consumption. 

API for real time prediction of day ahead energy consumption is not available by the 

French electrical grid operators or a third party. Therefore, a supervised learning model is 

developed for day ahead prediction of energy consumption. RTE provides the historical 

gross daily energy consumption29 data at national level. This data represents the 

accumulated electricity consumption for all the sectors (residential, industrial, etc.). This 

might be effective in case of sending a general signal to the consumers of all the energy 

consumption sectors, however it is more significant if customized signals are sent to the 

consumers of respective consumption sector, i.e. in our case residential sector. 

For this purpose, the historical data of modelled load curve of French residential 

sector30 is used. To refine the prediction, the historical data of smoothened national 

                                                        
 

29 French daily energy consumption : https://opendata.reseaux-energies.fr/explore/dataset/consommation-quotidienne-
brute/api/?sort=-date_heure  
30 Modelled load curve of French residential sector: https://data.enedis.fr/explore/dataset/coefficients-des-
profils/information/?disjunctive.sous_profil 

https://opendata.reseaux-energies.fr/explore/dataset/consommation-quotidienne-brute/api/?sort=-date_heure
https://opendata.reseaux-energies.fr/explore/dataset/consommation-quotidienne-brute/api/?sort=-date_heure
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temperature of France31 is also used. This data is used by ENEDIS and is also accessible on 

their open data platform via an API. In addition to this, the forecasted temperature of 32 

French cities is also accessed via an API of Climacell (rebranded as tomorrow.io32). The 

detail of these APIs and their corresponding data is discussed in detail in section II.4.c. 

Numerous techniques are available in the literature for short term load forecasting. 

Moghram & Rahman (1989) presented an overview of 5 short term load forecasting 

techniques namely; multiple linear regression, stochastic time series, general exponential 

smoothing, state space and Kalman filter. Liu et al. (1996) presented fuzzy logic, neural 

networks, and autoregressive (AR) models in their article. Taylor & McSharry (2007) 

presented autoregressive approaches such as ARIMA and periodic AR, or Holt-Winters 

exponential smoothing and a method based on the principal component analysis (PCA). 

Recently, recurrent neural network (RNN) based short term load forecasting has been 

presented in multiple articles. Bianchi et al. (2017) presents a comparative analysis of RNN 

which includes Long Short Term Memory (LSTM) and gated recurrent unit (GRU). 

The results of different techniques are studied for the purpose of prediction. 

Normally, LSTM prediction gives good results however, it needs a lot of computation, which 

is not necessarily required for this study. Random Forest regression gives good results as 

well and needs less computational time than LSTM, Therefore, for the purpose of 

forecasting the French national load curve of residential sector, random forest regression 

model is used. The following section presents the working principal of random forest. 

II.4.a Random Forest Regression 

Random forest is an ensemble 

supervised learning method for 

classification and regression. “It operates 

by constructing a multitude of decision 

trees at training time and outputting the 

class that is mean/average prediction 

(regression) of the individual trees” (Tin 

Kam Ho, 1995, 1998). Figure II.14 

represents the schematic diagram of 

random forest regression.  

 

 

 
Figure II.14 Random Forest Regression 

 

 

                                                        
 

31 Smoothened national temperature : https://data.enedis.fr/explore/dataset/donnees-de-temperature-et-de-pseudo-
rayonnement/table/?sort=-horodate  
32 Climacell (rebranded as tomorrow.io) : https://www.tomorrow.io/ 

https://data.enedis.fr/explore/dataset/donnees-de-temperature-et-de-pseudo-rayonnement/table/?sort=-horodate
https://data.enedis.fr/explore/dataset/donnees-de-temperature-et-de-pseudo-rayonnement/table/?sort=-horodate
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II.4.b Regression Model Creation 

A supervised regression model has three phases. The first phase is related to the 

training of a model. For this phase, it is necessary to have sufficient historical data. In case 

of multiple input variables, the data of all the quantities is needed. Following this, the choice 

of a suitable regression technique is important. A target variable is also defined in this 

phase, of whom the prediction will be performed. In the training phase, the historical data 

of (one or multiple) quantities is used as input (mathematically denoted as 𝑋𝑡𝑟𝑎𝑖𝑛), whereas 

the target is defined as output (mathematically denoted as 𝑌𝑡𝑟𝑎𝑖𝑛). Using the chosen 

technique, the model learns that each 𝑥 input leads to its respective 𝑦 output (where 𝑥 is the 

instantaneous input and 𝑦 is the instantaneous output).  

 The second phase is related to validation of model. Usually, a fraction of training 

data is kept for validation. Since the data is in vectorial form, therefore rather than having 

a simple arithmetic difference, a validation indicator is chosen in this phase. For the given 

input data 𝑋𝑣𝑎𝑙, the model performs a prediction �̂�. The difference of prediction �̂� with the 

target 𝑌𝑣𝑎𝑙 according to the chosen indicator gives us a measure of how well the model is 

performing. Certain measures can then be taken to improve the model if the model seems 

to be not working up to the expected standards. The third phase is related to the real time 

prediction, where a validated model is used to do the prediction �̂� for given input data 𝑋. 

 

Figure II.15 Principal of regression model creation, validation and use in real time 

For the purpose of prediction, scikit-learn package (Pedregosa et al., 2011) of python 

language is used. The script access data via APIs of ENEDIS and Climacell (weather 
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forecasting enterprise) and store it in a database. It should be noted that the random forest 

model created by scikit-learn method does not update regularly. Therefore, with the 

availability of sufficient new data, the python script trains a new model on whole available 

historical data. For this purpose, the same script runs daily to make a model with ensemble 

of available data. Another python script runs automatically at 6:00 PM every day and make 

the prediction using the random forest model based on the available input data. 

II.4.c Third Party APIs used for Forecast 

Third party APIs are used to obtain updated data from ENEDIS and Climacell on 

regular basis. These APIs and the data obtained from them are briefly explained below. 

II.4.c.i Profile Coefficient of Residential Sector 

ENEDIS constructs national profiles of the energy consumption sectors in France. 

The data of these profiles is published as open source and is validated by energy regulation 

commission. A profile coefficient depicts a form of consumption or production of electricity 

over time. Each consumption profile is modelled based on the energy consumption data of 

a sample of customers (in this case, residential consumers) selected throughout France. A 

profile represents average behavior of a group of users and reflects how an average 

individual in the group consumes electricity with the passage of time (Réseau de Transport 

d’Électricité France, 2020b). Figure II.16 illustrates the profile coefficient of residential 

sector, displayed on the data visualization platform of ENEDIS. 

 

Figure II.16 Load curve of residential profile coefficient33 by ENEDIS 

                                                        
 

33 Enedis Data Visualisation : https://data.enedis.fr/pages/accueil/?id=dataviz-profils  

https://data.enedis.fr/pages/accueil/?id=dataviz-profils
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For our study, we have selected profile coefficient curves of category Residential with 

sub-category RES1_BASE. This sub-category consists of the residential consumers which 

have contracted power ≤ 6 kVA. This is a classical contracted power which is being 

subscribed by around 7 out of 10 French households (Pinon, 2018). These households do 

not have electrical heating in their home. In our experiment, around 8 out of 10 households 

does not have electrical heating in their home. Therefore, this sub-category is close to the 

experimental case. Further, there exist 3 types of profile coefficient curves in this sub-

category. All these curves are sampled at 30 minutes. 

- The prepared coefficient depicts a model about how an average customer of this 

category consumes electricity over time at normal temperature. The normal 

temperature is further described in section II.4.c.ii. The normal temperature is 

established by RTE for a period of 10 years based on historical measured 

temperature of previous 30 years. Using the normal temperature, the values are 

adjusted for special days. The data is available for this coefficient since 26 December 

2015; 

- The adjusted coefficient depicts a model about how an average customer of this 

category consumes electricity over time at national temperature (instead of normal 

temperature). The national temperature is further described in section II.4.c.ii. 

Using national temperature, the values are adjusted for special days and weather. 

The data is available for this coefficient since 26 December 2015; 

- The dynamic coefficient is the result of a more precise modelling. This coefficient 

directly take into account weather and special days (i.e. holidays). The data is 

available for this coefficient since 1st July 2018 (Réseau de Transport d’Électricité 

France, 2020b).  

Assuming these curves as the modelled load curve of residential sector, the dynamic 

coefficient curve is selected for the forecasting of French national load curve of residential 

sector. 

II.4.c.ii Temperature 

This dataset corresponds to the national temperatures of France. Both types of 

temperature given below is used to calculate a coefficient of proportionality, which is called 

temperature gradient. It refers to the variation in consumption with respect to variation in 

1 °C of temperature. However, it needs to consider the inertia of consumption in relation to 

temperature variations. For this purpose, the temperature is smoothened to take in to 

account the thermal inertia of buildings. The purpose of this is to make a hypothetical 

relation between the ambient temperature and the internal temperature of buildings 

(without knowing the internal temperature). The national temperature is calculated by a 
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weighted aggregation of measured temperature for 32 French cities where weather stations 

are installed. The data is sampled at 30 minutes. There are two types of temperatures 

available in this dataset.  

- The normal temperature corresponds to a weighted average of smoothened 

normalized temperature of the 32 weather stations. The normal temperatures per 

station are established for a period of 10 years based on temperatures observed over 

a period of 30 years; 

- The national temperature corresponds to a weighted average of smoothened 

measured temperatures of 32 weather stations on day ‘D-2’ (Réseau de Transport 

d’Électricité France, 2020b). 

To forecast the French national load curve of residential sector, the measured national 

temperature dataset is taken. The data of this dataset is available until day ‘D-2’ every day.  

II.4.c.iii Weather Forecast API 

Since we only have data until day ‘D-2’ from ENEDIS API of temperature and 

pseudo-radiation, we need to collect forecasted temperature of the 32 French weather 

stations. For this purpose, we use the API of Climacell to gather the forecasted temperature 

data. For each French weather station, the API offers 109 hours of forecast with a time step 

of 1 hour. 

 RTE France (2020) presents the method of smoothing the temperature of 32 French 

weather stations, which is illustrated in Figure II.17. The smoothening is carried out by 

successive application of the following formulae. 

 

Figure II.17 The procedure of smoothening the measured temperature of 32 cities 

 

𝑇𝐿𝑇(ℎ, 𝑑, 𝑦) = (1 − 𝑎[ℎ]) × 𝑇𝐹(ℎ, 𝑑, 𝑦)   +  𝑎[ℎ] ×  𝑇𝐿𝑇(ℎ − 1, 𝑑, 𝑦) 
Equation II.2 

𝑇(ℎ, 𝑑, 𝑦) = (1 − 𝑏ℎ) × 𝑇𝐹(ℎ, 𝑑, 𝑦) +  𝑏ℎ ×  𝑇𝐿𝑇(ℎ, 𝑑, 𝑦) 
Equation II.3 

Where h = hour, d = day, y = year, a, b = coefficients adjusting building thermal 

inertia, 𝑇𝐹(ℎ, 𝑗, 𝑛) = brute fictive temperature of France, 𝑇𝐿𝑇(ℎ, 𝑗, 𝑛) = Long term temperature 

and 𝑇(ℎ, 𝑗, 𝑛) = smoothed French temperature. 
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II.4.d Regression Model Parameters 

Figure II.18 gives a schematic diagram of the regression model. 

 

Figure II.18 The prediction model for predicting profile coefficient of day ‘D’ 

II.4.d.i Dynamic Profile Coefficient 

The historical data of dynamic profile coefficient obtained by ENEDIS API French 

national load curve of residential sector is used as input ‘X’ for training the model. In 

addition to this, 2 parameters of lagged dynamic profile coefficient are introduced in the 

dataset as part of input ‘X’. One parameter of the model is dynamic profile coefficient lagged 

by 14 days, while other parameter is dynamic profile coefficient lagged by 28 days. The 

frequency of availability of new data for these curves is variable. The data is generally 

available until day D-n where n = 1…..10. Normally RTE updates the data on their open-

source platform either weekly or every 10 days. This is the reason that lag of 14 days and 28 

days are selected respectively rather than a lag of 1 day or 7 days. Figure II.19 shows a 

correlation between the actual profile coefficient and the lagged profile coefficient by 14 

days and 28 days respectively. It shows the periodicity of the curve of profile coefficient. 

 

Figure II.19 The correlation of profile coefficient with lagged profile coefficients 
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II.4.d.ii Temperature 

The historical data of smoothened national measured temperature of 32 French 

weather stations is obtained by ENEDIS API. In addition to this, 6 parameters of lagged 

temperature are added to the dataset. These temperature parameters are lagged by 1 hour, 

6 hours, 12 hours, 1 day, 1 week and 30 days respectively. Another parameter of rolling 

average of 6 hours is also added in the dataset for training of model. Thus, a total of 8 

parameters related to temperature are added in the dataset as part of input X for training of 

regression model. The smoothened national forecasted curve obtained by ClimaCell API is 

used for prediction by the created model. 

II.4.d.iii Temporal Parameters 

The following temporal parameters are added in the training dataset with one hot encoding. 

One hot encoding is a process by which categorical variables are converted into binary 

columns. e.g. a column having 7 day of week can be transformed into 7 binary columns 

representing each day of week. 

- Hour of day: 24 one hot encoded columns are introduced to the training dataset 

for the parameter of hour of the day. 

- Day of week: 7 one hot encoded columns are introduced to the training dataset for 

the parameter of day of week. 

- Day of year: 365 one hot encoded columns are introduced to the training dataset 

for the parameter of day of year. It should be noted that data of leap day from year 

2020 was removed from the model for the sake of convenience. 

- ‘Is_weekday’: A Boolean column is added as parameter is_weekday. The value 

remains 0 if weekday, else 1 for weekend. 

- ‘Is_holiday’: A Boolean column is added as parameter is_holiday. The value 

remains 1 if the day is a French holiday, else it remains 0. 

II.4.e Model Evaluation and relative importance of features 

Figure II.20 illustrates the prediction of load curve for weekdays as well as weekend. 

Since the model upgrades with the availability of new data, therefore for the purpose of 

illustration, the results are based on training of a historical data of 3 years and 2 months. It 

can be seen in the figure that the model is also capable of predicting the weekend, though 

the aim of prediction for the experiment is to have good prediction for weekdays.  
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Figure II.20 Prediction of French residential load curve by random forest regression 

It is worth mentioning that initially a model consisting of temporal features as input 

and dynamic profile coefficient as output is analyzed. Following this, the lagged features of 

dynamic profile coefficient are added in the model. Lastly, the temperature and lagged 

temperature features are also added in the model. An interesting factor to look at is the 

relative feature importance of the input parameters. The analysis of base model with 

temporal features and subsequent introduction of new features is illustrated below with 

respect to feature importance. 

 

Figure II.21 Relative Importance of temporal features 

It can be observed in Figure II.21 that hour of day is relatively most important 

feature among the temporal features. However, with the introduction of lagged features of 

dynamic coefficient, the temporal feature of day of year appears to be relatively most 
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important feature among temporal features (as demonstrated in Figure II.22). Among all 

the temporal features and lagged dynamic coefficient features, the dynamic profile 

coefficients lagged by 14 days remains the most important feature.  

 

Figure II.22 Relative Importance of temporal features and lagged profile coefficient 

Yet it can be observed in Figure II.23, a temperature feature lagged by 12 hours is 

relatively more important than the temporal features. Despite this, it is found that the 

temporal features are significant to improve the model performance. It can also be noticed 

that the feature illustrating whether the target day is a holiday does not seem to have any 

relative importance among all the features. Likewise, the features illustrating whether the 

target day is a weekday seems to be least important among all the features relatively. 

 

Figure II.23 Relative Importance of all features in model 
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II.4.f Performance Metric 

It is observed in the previous section that the importance of input features can be 

calculated relative to each other. The relativity changes if new features are added in the 

model or certain features are removed. However, this does not give an absolute measure of 

the absolute validation of a model. Therefore, a performance metric is needed to measure 

the validation of a model. Mean absolute percentage error (MAPE) is taken as the 

performance metric to validate the results. The mathematical formula is given below. 

𝑀𝐴𝑃𝐸 (%) =  
|
𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑦𝑡𝑟𝑢𝑒
⁄ |

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦𝑡𝑟𝑢𝑒

× 100 Equation II.4 

Figure II.24 demonstrates the distribution of mean absolute percentage error 

recorded over a period of 3 years and 1 month. It should be noted that the outliers are not 

shown in the figure for the sake of comprehendible presentation. The prediction model 

having only temporal features gives a large distribution of mean absolute percentage error. 

The average MAPE observed in this case is 9.49% with a standard deviation of 6.77%. To 

improve the performance of model, the lagged features of dynamic coefficient profile and 

features regarding temperature are subsequently added. The addition of former decreased 

the average mean absolute percentage error to 6.43% whereas the addition of later 

decreased the error to 4.11%. The standard deviation also decreased. It concludes that 

besides temporal features, the prediction has a strong dependence on the historical data 

and temperature.  

 

Figure II.24 The comparison of performance metric 
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Table II.4 Statistics of performance metric for each type of model 

Model 

Input 

 

Aggregate           

Function 

Temporal features 
Temporal and profile 

coefficient features 

Temporal, profile 

coefficient and 

temperature features 

Count (Days) 808 808 808 

Average (%) 9.49 6.43 4.11 

Standard Deviation (%) 6.77 3.48 2.08 

Minimum (%) 1.28 1.70 1.29 

Maximum (%) 31.45 21.95 14.34 

II.4.g Conclusion on the prediction of French residential load curve 

A demand side management signal to the residential consumer based on the 

forecasted grid consumption retains the effect of all energy consumptions sectors. 

Therefore, it is more significant to send energy flexibility signals to the residential 

customers solely based on the forecasted condition of residential consumption. One way of 

doing this is by making a forecast on national load curve of residential sector.  

Random forest regression is used to do prediction of modelled French national load 

curve of residential sector. The analysis of feature importance depicts that the historical 

value of French national load curve of residential sector is most important, followed by the 

temperature parameters and temporal parameters. The performance metric suggests that 

the addition of lagged features related to French national load curve of residential sector 

and national temperature improves the performance of the model. This prediction serves to 

calculate the 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝐺𝐴 (green alert coefficient) to identify a day ahead potential alert 

for load shifting. With a forecasted clear sky and 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝐺𝐴 greater than 1, the treated 

group is nudged to shift their energy consumption from evening to afternoon on next day. 

II.5 Conclusion 

Dynamic pricing is a tool to motivate consumer towards moderate energy 

consumption. The residential consumer faces constraint of limited knowledge and 

uncertain utility. If a consumer has enough information, the consumer does not know how 

to implement energy flexibility. The consumer makes decision according to system 2 of 

thinking by calculating the outcome and opportunity cost of energy flexibility. The 

residential consumer should be motivated to make automatic decision through system 1 of 

thinking while keeping in account the social, psychological, and ambient factors. Since the 

distributed generation serves as common pool resource, the residential consumer should be 

enlightened about the requirement of energy flexibility.  
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The general questions of the consumer regarding energy flexibility are identified i.e. 

why to act, when to act, how to act and how did it go. A green nudge-based energy flexibility 

mechanism is experimented with a pool of French households. A set of green nudges are 

used to answer the above questions. It includes information, commitment, and feedback. 

The purpose of this set of nudges is to intrinsically motivate the treated group. 

Two types of interventions are experimented i.e. load curtailment and load shifting. 

The signal of load curtailment is based on the day ahead forecasted network congestion of 

the French electric grid. One of the criteria for load shifting signal is based on the forecasted 

modelled load curve of national residential sector. A prediction model is created using 

random forest regression. It is observed that by adding the lagging features of historical 

curve and temperature, the performance of prediction model is improved up to 57% of the 

baseline model only containing temporal features. It demonstrates the significance of 

lagged features of historical data for better prediction. Following the presentation of 

experimental architecture of nudge-based energy flexibility, the next chapter will discuss 

the efficiency of these nudge signals.  
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Chapter III  

 

 

 

Measuring the impact of nudge signal 

 

 

 

This chapter deals with the statistics of alerts i.e. interventions made for energy 

flexibility. It also presents a comparison of statistical and energy consumption 

characteristics of control group and treated group. The later section of this chapter discusses 

the quantification of the energy flexibility implemented by treated group as compared to the 

control group. 
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III.1 Introduction 

In the previous chapter, the architecture of the experiment representing nudge 

based indirect energy flexibility in the households is presented. The purpose of this 

experiment is to study the impact of green alerts for load shifting and the impact of orange 

alerts for load curtailment. It is recalled here that the purpose of green alerts is to increase 

the energy consumption during the hours of elevated renewable energy production in the 

afternoon of summer season, whereas the purpose of orange alerts is to reduce the peak 

energy consumption during the evening in winter season. This chapter deals with analyzing 

the characteristics of subjects during alert days and non-alert days. Additionally, it also 

deals with measuring the impact of nudge signals. 

III.2 General Statistics of the alerts 

There were 175 households that participated in the study during the first session of 

orange alert and green alert. These households were categorized into control group and 

treated group based on strictly possible equivalence. Before the commencement of second 

session of experiment, the subjects were asked to re-sign a consent for continuing their 

participation in the experiment. Certain subjects left the experiment before the 

commencement of second session while some other left the experiment amidst the second 

session. This is owing to their personal choice, mal communication of smart meter or the 

fact that the households were relocated. The number of households in each group for each 

session is given in Table III.1. 

Table III.1 Number of households in each group with respect to each year 

Sr. 

No. 

Type of group 

 

Year 

Control Group Treated Group Total 

01 Year 1 79 96 175 

02 Year 2 76 87 163 

Two sessions of green alerts as well as two sessions of orange alerts were conducted 

during a period of 2 years. The experiment was conducted between November 2019 and 

September 2021. The duration of each session and the number of alerts triggered during 

each session is given in Table III.2. For the sake of comprehension, the following 

terminologies will be used hereafter: 

- Green (or 

Orange): 

It represents the type of alerts for load shifting (or load 

curtailment) respectively. 
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- Session X of 

green alerts (or 

orange alerts): 

The respective session of green alerts or orange alerts. Here 

the value of X is either 1 or 2. 

- Non-alert days 

of session X: 

The days for which no alert was in place during a session X. 

These days represent usual behavior of energy consumption 

of households. The energy consumption during the period of 

interest is significant to measure the impact of nudges on 

alert days.  

- Alert Days of 

session X: 

The days for which an alert was in place during a session X. 

These are the days when the households are expected to 

implement energy flexibility during period of intervention. 

- Period of 

interest (or 

intervention) 

The period of a day (in hours) for which an energy flexibility 

is expected to be implemented by the households of treated 

group on alert days. This period is between noon and 3 PM 

for green alerts and between 6 PM and 8 PM for orange alerts. 

To distinguish it for non-alert days and alert days, this period 

will be hereafter called as period of interest for non-alert days 

and period of intervention for alert days. 

Table III.2 Number of alert days with respect to each session and alert type 

Sr. 

No. 

Alert 

Type 

Purpose of 

Alert 

Period of 

interest (or 

Intervention

) 

Duration of session 

Number 

of non-

alert 

days 

Number 

of alert 

days 

01 Green Load shifting Noon to 3 PM 

First session: 

1st July 2020 – 31st July 2020 

and 

24th August 2020 – 30th 

September 2020 

46 5 

Second session: 

1st April 2021 – 31st July 2021 

and 

24th August 2021 – 30th 

September 2021 

108 2 

02 Orange 
Load 

curtailment 
6 PM to 8 PM 

First session: 

1st November 2019 – 31st 

March 2020 

99 9 

Second session: 

1st November 2020 – 31st 

March 2021 

96 12 
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III.2.a Green Alerts 

The first session of green alerts was originally planned from April 2020 to September 

2020. However, due to the first national lockdown in France caused by COVID-19 

pandemic, the first session was re-planned from July 2020 to September 2020. It was done 

to not bother the subjects during the lockdown (and immediate post-lockdown) period. As 

it can be also observed in Figure III.1, the weekly average consumption in France during the 

lockdowns remained different comparing to the range of weekly average consumption of 

previous 5 years (Réseau de Transport d’Électricité France, 2020a). Therefore, triggering 

any alert during the lockdown period would not be effective to measure the impact of energy 

flexibility regarding usual energy consumption behavior. Besides, the behavior of energy 

consumption during the lockdown would be different than the normal behavior of energy 

consumption in the households, which would influence the experiment. 

It is recalled here from section II.3.d.ii that two criterions were put in place for 

triggering a green alert. The principal criterion is related to the day-ahead forecasted 

nebulosity during the afternoon in Grenoble. The nebulosity should be zero. The second 

criterion is based on calculating day-ahead 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝐺𝐴. This coefficient is a ratio of 

average evening energy consumption and average afternoon energy consumption. It should 

be greater than 1. It was expected that there will be a significant number of green alerts 

during the second session. However, contrary to the expectations, only 2 green alerts were 

triggered by the automatic system between April 2021 and September 2021. This was since 

the sky remained cloudy almost throughout the summer 2021 in Grenoble. Table III.3 

demonstrates the basis of each triggered green alert for both sessions. 

 

Figure III.1 The impact of lockdown on French energy consumption during 2020 (Réseau de Transport 
d’Électricité France, 2020a) 
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Table III.3 Basis of triggered green alerts 

No. of 

Alert 
Date 

Average Evening 

Energy 

Consumption 

Average Afternoon 

Energy 

Consumption 

𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕𝑮𝑨 

Green Session 1 

01 27 July, 2020 1.15 0.98 1.17 

02 25 August, 2020 1.19 1.02 1.17 

03 14 September, 2020 1.3 0.98 1.33 

04 17 September, 2020 1.26 0.92 1.37 

05 22 September, 2020 1.28 0.84 1.52 

Green Session 2 

06 14 June, 2021 1.18 0.98 1.20 

07 06 September, 2021 1.19 0.92 1.29 

III.2.b Orange Alerts 

The first orange alert was triggered based on the forecasted negative temperature of 

Grenoble. This served as a test to find out whether the designed mechanism of the 

experiment works. Following this, the protocol of sending alerts based on the PP1/PP2 

notifications was adapted. As the winter was not cold enough to bring network congestion 

on the national grid, it is deduced that there might be no more PP1/PP2 notifications. 

Therefore, EJP and TEMPO notifications are added as secondary protocol. EDF split the 

territory of France in 4 zones to notify about the status of day ahead EJP. For triggering 

orange alerts, the notifications of EJP for south zone is used.  

Contrary to the 1st session of orange alert, the winter season during the second 

session of orange alert was colder and RTE notified 19 PP1/PP2 days. It is defined in the 

protocol that two consecutive alerts should not be sent for two consecutive days. Therefore, 

only 12 PP1/PP2 days were considered during 2nd session of orange alert. Since the number 

of alert days were enough, therefore no secondary protocol was adapted. Table III.4 

demonstrates the basis of each triggered orange alert for both sessions. 

Table III.4 Basis of triggered orange alerts 

No. of Alert Date Basis of alert 

Orange Session 1 

01 14 November, 2019 Manual Alert (Temperature < 0) 

02 20 December, 2019 PP1/PP2 

03 20 January, 2020 EJP (South Zone) 34 

04 06 February, 2020 EJP (South Zone) 

                                                        
 

34 The region of Auvergne-Rhônes-Alpes, where the experiment is performed is included in the south zone by EDF for EJP notifications 
: https://www.fournisseurs-electricite.com/edf/tarifs/ejp/zone  

https://www.fournisseurs-electricite.com/edf/tarifs/ejp/zone
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05 19 February, 2020 TEMPO 

06 27 February, 2020 EJP (South Zone) 

07 02 March, 2020 EJP (South Zone) 

08 04 March, 2020 EJP (South Zone) 

09 09 March, 2020 EJP (South Zone) 

Orange Session 2 

10 30 November, 2020 PP1/PP2 

11 02 December, 2020 PP1/PP2 

12 04 December, 2020 PP1/PP2 

13 07 December, 2020 PP1/PP2 

14 09 December, 2020 PP1/PP2 

15 18 December, 2020 PP1/PP2 

16 04 January, 2021 PP1/PP2 

17 06 January, 2021 PP1/PP2 

18 08 January, 2021 PP1/PP2 

19 11 January, 2021 PP1/PP2 

20 26 January, 2021 PP1/PP2 

21 11 February, 2021 PP1/PP2 

III.3 Comparison of statistical variables of control group and 

treated group 

Before discussing the impact of nudge signals for energy flexibility, it is important 

to assess the resemblance between the groups. Though the groups are formed with respect 

to strictest possible equivalence, it is pertinent to compare various statistical variables of 

both groups. The information of households regarding the statistical variables was gathered 

through the questionnaire filled by the subjects. If statistically significant difference is found 

between the groups for a number of statistical variables, the later results about the impact 

of nudge signals will be affected and may not be statistically validated.  

The purpose of this section is to compare the similarity (or dissimilarity) of certain 

statistical variables between two groups. The variables that are analyzed in this section is 

related to the number of occupants (and appliances) in the households, the presence of 

occupants in the household and the characteristics of the building. For the sake of 

convenience, the variables are converted into their corresponding fraction in percentage. 

The variables and their percentage share are given in annex B. 

A Chi-square test 35 (also known as ‘goodness of fit’ test) is performed on the 

statistical variables between the control group and the treated group. It is used to analyze 

                                                        
 

35 The analysis was performed in RStudio in the programming language ‘R’. A group of students of econometrics assisted in this 
evaluation. The evaluation served as a course project for the students. 
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categorical data and to check the homogeneity of two groups. It measures that if the groups 

are independent, how well the observed distribution of data fits with the expected 

distribution. A quality of Chi-square test is that it does not require equality of variances 

among the study groups or homoscedasticity in the data (McHugh, 2013). Two hypotheses 

are formulated i.e., the null hypothesis (H0) and the alternative hypothesis (H1). These 

hypotheses are given below. 

- H0: The groups are similar/identical. 

- H1: The groups are significantly different. 

The retention of null hypothesis (H0) requires that the p-value in the result of Chi-square 

test should be greater than the value of significance level (denoted by α). The value of α is 

fixed at 0.05, which means that the test has a confidence level of 95% i.e., we are 95% 

confident that the observed results are real and are not an error caused by randomness. The 

results of Chi-square test for various variables are tabulated in Table III.5. 

Table III.5 Chi-square test of independence of various variables 

Sr. 

No. 
Variable Name p-value 

Null hypothesis 

retained? 

Household characteristics 

01 Owner/Tenant 1 Yes 

02 House/Apartment 0.44 Yes 

03 Surface of household 0.24 Yes 

04 Year of construction 0.04 No 

05 Number of persons in the household 0.83 Yes 

06 
Presence in the household at least 3 days per week (during 

weekdays) 
0.52 Yes 

07 Types of electric heating 1 Yes* 

Presence of appliances 

08 Electric water heater 0.49 Yes 

09 Air Conditioning 0.82 Yes 

10 Heat Pump 0.99 Yes* 

11 PV panels 0.31 Yes* 

12 Double glazing of windows 0.16 Yes* 

Number of appliances in household 

13 Electric Oven 0.98 Yes* 

14 Dishwasher 0.57 Yes 

15 Washing Machine 0.30 Yes* 

16 Cloth Dryer 0.26 Yes 

17 Electric Vehicle 0.56 Yes* 

Energy Consumption during weekdays 

18 Pressing Iron 0.49 Yes 

19 Electric Oven 0.08 Yes 
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20 Dishwasher 0.64 Yes 

21 Washing Machine 0.60 Yes 

22 Cloth Dryer 1 Yes 

23 Electric hotplates 0.50 Yes 

24 Radiator 1 Yes 

Energy Consumption during the weekend 

25 Pressing Iron 0.51 Yes 

26 Electric Oven 0.51 Yes 

27 Dishwasher 1 Yes 

28 Washing Machine 1 Yes 

29 Cloth Dryer 1 Yes 

30 Electric hotplates 0.63 Yes 

31 Radiator 1 Yes 

The p-value of Chi-square test for each of these variables is greater than 0.05. The 

case is contrary for the variable “year of construction”. Therefore, the null hypothesis is 

retained for all the variables in  Table III.5 except for the variable “year of construction”. 

The information regarding this variable is collected for the purpose of using thermal loss of 

the dwellings in the study. However, since the experiment did not consider the modes of 

space heating, therefore this variable is not important in the study. 

It should be noted in  Table III.5 that for some variables, an asterisk is placed in the 

fourth column, next to ‘Yes’. These asterisks represent a warning during the execution of 

test, indicating that the approximation of Chi-square test of independence may not be aptly 

correct. For a chi-square test, it is assumed that the values in the ‘expected’ column should 

be equal to or more than 5 in at least 80% of the cells, and no cell in the ‘expected’ column 

should have value less than 1 (Bewick et al., 2003; McHugh, 2013). The warning might be 

raised due to non-fulfillment of assumption for respective variables. Though this makes 

estimation with a warning, yet it gives a result regarding the similarity in the groups.  

The social comparison of both groups depicts that there is no statistically significant 

difference between the groups for most of the socio-technical statistical variables. In the 

results, there lies a limitation for certain statistical variables due to the non-fulfillment of 

basic assumption, yet the end results with respect to the data of both groups depicts that 

there is no statistically significant difference. Since the null hypothesis is retained for most 

of the variables, therefore it can be concluded that the two groups are statistically similar 

for multiple social characteristics. 
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III.4 Comparison of normal energy consumption between 

two groups 

It has been observed in the previous section that the control group and treated group 

are found identical for several statistical variables. Yet, it is still to be studied that whether 

the energy consumption of treated groups is like the control group, and if so, then to what 

extent. The normal (or non-alert days) energy consumption in this case refers to the energy 

consumption on the weekdays when no energy flexibility is activated. If the normal energy 

consumption looks similar (or have negligible difference), it validates that the control group 

can be used as a standard against which the effect of treatment on treated group can be 

quantified. 

 For this purpose, meta-analyses is studied between the groups. A meta-analysis is a 

statistical analysis of a number of analysis results in order to integrate their findings (Crits-

Christoph, 1992; Glass, 1976). Its purpose is to address a research question as definitely as 

possible through combining findings of multiple studies (TARG Bristol, 2017). The meta-

analysis of energy consumption for non-alert days is discussed in this section with the 

methodology given below. 

- The consumption data is split for each session as follows. 

o To analyze the normal consumption, the measured load curve of non-alert 

days of each session is taken. The number of non-alert days are given in Table 

III.2. 

- The meta-analysis is performed on the measured load curve of period of interest. 

The reason being that we are interested in knowing the impact of the nudge signals 

during period of intervention on alert day. It is recalled here that: 

o For green alerts, this period is between noon and 3 PM.  

o For orange alerts, this period is between 6 PM and 8 PM.  

- The measured load curve data is originally sampled at 30 minutes. The data is 

analyzed in the form of average energy consumption per hour (during the period of 

interest). i.e.  

o The average energy consumption per hour is mathematically defined as: 

𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  
∑ 𝑃𝑖

𝑛
𝑡=𝑖
𝑛

2⁄
 

Equation III.1 

 Where 𝑃𝑖 is the instantaneous power at instant ‘i’.  

o For green alerts, the number of measurements between noon and 3 PM are 

6. The measurements are added and then divided by 3 to obtain the average 

energy consumption per hour. 
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o Similarly for orange alerts, the number of measurements between 6 PM and 

8 PM are 4. The measurements are added and then divided by 2 to obtain the 

average energy consumption per hour. 

o For all the analyses given below, it is found that there is no difference 

between the results if we either take the energy consumption of the whole 

period of interest or take average energy consumption per hour during the 

period of interest. Since it is common practice to present energy consumed 

per hour, therefore, the average energy consumed per hour is taken as unit. 

Besides, it is also helpful to compare the average energy consumption per 

hour in the evening to that of average energy consumption per hour in the 

afternoon. 

- The analysis is performed using the following three statistical tools. 

- Kernel Density Estimation:   To visually compare the statistically 

distribution of energy consumption of both 

groups.  

- Mann Whitney U Test: To observe whether the data of both groups is 

statistically similar or different.  

III.4.a Visualization of statistical distribution on normal days 

This analysis gives a global picture of the energy consumption during the period of 

interest on non alert days. The kernel density estimation36 (shortened as KDE) is used to 

visualize the statistical distribution. For non-parametric data, KDE is an estimate of 

probability density function of a random variable (i.e. energy consumption in this case). 

Based on a finite number of data, KDE attempts to infer characteristics of a population of 

data. In our case, the comparison is done by the superposition of KDE distribution of treated 

group on the KDE distribution of control group.  

Figure III.2 illustrates it for the non-alert days of green session 1 and green session 

2 respectively. The peak density of energy consumption for both groups is found to be less 

than 0.5 kWh. It suggests that it is highly probable that the energy consumption of a 

household remains less than 0.5 kWh. The peak density of control group is higher than the 

peak density of treated group during 1st session of green alerts. It might be caused due to re-

adjustment towards normal life during post-confinement, when the subjects had to adjust 

                                                        
 

36 The estimation is made using the visualization function of Kernel density estimation in “pandas” package (of python language). This 
visualization function uses a class “scipy.stats.gaussian_kde” from “scipy” python package at backend. For the estimation, the default 
parameters are used i.e. Gaussian kernel is used alongwith “scott” method as bandwidth estimator of density estimation. 
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their work hours at their workplace and in their home. However, comparing to the 1st 

session, the peak density of both groups is within proximity in 2nd session.  

 

Figure III.2 The distribution of non-alert days of green sessions 

The distribution of control group is overlapped by the distribution of treated group 

by 88.2% and 92.5% for green session 1 and green session 2 respectively. The difference of 

the mean values between both groups is minimal, whereas the coefficient of variation of 

both groups is also closer. Therefore, it can be concluded that the two groups are similar in 

terms of energy consumption during non-alert days of green sessions. The coefficient of 

variation is a ratio of standard deviation and mean value and it gives a measure of dispersion 

of data relative to the mean (Lovie, 2005). The third column entitled ‘ratio’ in the graphs 

below represents the values calculated as follows; 

ROW, COLUMN FORMULA 

MEAN, RATIO 
𝜇𝐶

𝜇𝑇
 

SD (STANDARD DEVIATION), RATIO 
б𝐶

б𝑇
 

CV (
Б

𝝁
), RATIO 

CV𝐶

CV𝑇
 

Where 𝜇 is the mean value, б is the standard deviation, CV is the coefficient of 

variation and the subscripts C and T represents control group and treated group 

respectively. 

The distribution of non-alert days of orange sessions using KDE is illustrated in 

Figure III.3. The distribution of control group is overlapped by the distribution of treated 

group by more than 90%. Like the case of green sessions, the difference in mean values is 

minimal whereas the ratio of coefficient of variation is also closer to 1. Therefore, it can be 
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concluded that the two groups are similar in terms of energy consumption during non-alert 

days of orange sessions. 

 

Figure III.3 The distribution of non-alert days of orange sessions 

III.4.b Assessment of statistical difference in the normal energy 

consumption 

This analysis gives a global demonstration of the energy consumption during the 

period of interest on non-alert days. As observed from the Figure III.2 and Figure III.3, the 

data is asymmetric and does not follow normal distribution. Therefore, a statistical test for 

non-parametric data, which is known as Mann-Whitney U Test 37 is performed. With 

respect to the alternative hypothesis (H1), the test is further classified into one-sided or two-

sided. Here, our interest is to check whether the distribution underlying control group is 

similar (or significantly different) than the distribution underlying treated group. A two-

sided Mann-Whitney U Test is done in this regard with the following hypotheses. 

- Null hypothesis (H0): The distribution (of energy consumption data) of control 

group is similar to the distribution (of energy consumption data) of treated group. 

- Alternative hypothesis (H1): The distribution (of energy consumption data) of 

control group is significantly different than the distribution (of energy 

consumption data) of treated group. 

The rejection of null hypothesis (H0) represents the presence of statistically significant 

difference between the distributions of both groups. Since no intervention is made on non-

alert days, therefore our interest is to find out whether the null hypothesis is retained for 

                                                        
 

37 This test is also known as Wilcoxon rank sum test. The test was performed using the function “scipy.stats.mannwhitneyu()” of 
Python’s SciPy package. 
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the energy consumption data of non-alert days. Statistically, it can be observed if the p-value 

of two-sided Mann-Whitney U Test is greater than α = 0.05. The results of two-sided Mann-

Whitney U Test is globally given below for green and orange sessions in Table III.6. Since 

the p-value for both types of sessions are greater than α, therefore it can be concluded that 

there does not exist any statistically significant difference in the energy consumption of both 

groups for non-alert days. In other words, the energy consumption of both groups is found 

similar for non-alert days. 

Table III.6 The Mann-Whitney U Test for non-alert days of both types of sessions 

Sr. 

No. 
Sessions 

Control Group Treated Group Mann-Whitney U Test 

Obs µC бC Obs µT бT Stat 
p-

value 

1 Green 9684 0.77 0.85 11794 0.77 0.81 56800317 0.50 

2 Orange 16474 1.42 1.50 19285 1.34 1.43 164398493 1.19 

where Obs = number of observations,  µ = Mean value of observations, б = standard 

deviation of observations. 

III.5 Analysis of the impact of nudge signals 

The visual analysis and statistical analysis in section III.4 concludes that the energy 

consumption of both groups during the period of interest on non-alert days is similar. It is 

now pertinent to perform the analysis of impact of nudge signals for the alert days. Firstly, 

a visual analysis of the energy consumption during the period of intervention on alert days 

is presented. It tells us whether the distribution curve of treated group is displaced with 

respect to the distribution curve of control group. Secondly, a statistical analysis is 

presented to find out whether the distribution underlying treated group is statistically less 

than (or greater than) the distribution underlying treated group. And finally, a linear 

regression is presented to find out the impact of each nudge signal in terms of percentage 

variation. 

III.5.a Visualization of statistical distribution on alert days 

This analysis presents a global comparison of energy consumption during period of 

intervention on alert days with respect to the energy consumption during the same period 

on non-alert days. Figure III.4 and Figure III.5 represents the distribution of energy 

consumption for green session 1 and green session 2 respectively. The distribution curve of 

treated group displaced towards left as compared to distribution curve of control group. For 

both green sessions, the ratio of mean energy consumption between control group and 

treated group decreased during alert days as compared to non-alert days. It merely suggests 

that the treated group increased their energy consumption during the period of 

intervention. In the case of green session 1, the ratio of coefficient of variation has negligible 
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difference between non-alert days and alert days. It means that the data is near-identically 

dispersed around the mean value. Despite, the difference of ratios is considerable for green 

session 2, the data of measured load curve of 2nd green alert was not registered by ENEDIS 

owing to a technical problem in its server. Therefore, Figure III.5 only represents the 1st 

green alert of 2nd session, which is insufficient for current and forthcoming analysis of green 

session 2. 

 

Figure III.4 The distribution of non-alert days and alert days of green session 1 

 

Figure III.5 The distribution of non-alert days and alert days of green session 2 

Figure III.6 and Figure III.7 represents the distribution of energy consumption for 

orange session 1 and orange session 2 respectively. As compared to the mean consumption 

of control group, the mean consumption of treated group relatively decreased more for alert 

days as compared to non-alert days. On alert days, the distribution curve of treated group 

is displaced towards right (i.e. towards lower energy consumption) as compared to the 
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distribution curve of control group. Overall, the visual analysis between non-alert days and 

alert days gives a vague idea about the impact of nudge signal. Therefore, no clear 

conclusion can be drawn from this analysis and the results merit further analysis. 

 

Figure III.6 The distribution of non-alert days and alert days of session 1 of type ‘orange’ 

 

Figure III.7 The distribution of non-alert days and alert days of session 2 of type ‘orange’ 

III.5.b Assessment of statistical difference in energy 

consumption on alert days 

For this purpose, one-sided Mann-Whitney U Test is used with the following 

hypotheses.  

- Null hypothesis (H0): The distribution (of energy consumption data) of control 

group is statistically greater than the distribution (of energy consumption data) of 

treated group. 
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- Alternative hypothesis (H1): The distribution (of energy consumption data) of 

control group is statistically less than the distribution (of energy consumption data) 

of treated group. 

Since interventions are made for green alert days, therefore our interest is to find out 

whether the null hypothesis is rejected for the energy consumption data of alert days. 

Statistically, it can be observed if the p-value of one-sided Mann-Whitney U Test is less than 

α = 0.05, which validates our alternative hypothesis.  

Table III.7 The Mann-Whitney U Test for green alert days of both sessions 

Sr. 

No 

Alert 

Date 

Control Group Treated Group Mann-Whitney U Test 

µC - 

µT Obs µC бC 
Ob

s 
µT бT Stat 

p-

valu

e 

Null 

hypo-

thesis 

retained 

Green Session 1 

1 
27-07-

2020 
58 0.62 0.55 71 0.99 1.21 1736 0.06 Yes -0.37 

2 
25-08-

2020 
45 0.82 0.63 34 0.81 0.64 772 0.53 Yes 0.01 

3 
14-09-

2020 
66 0.7 0.6 88 0.79 0.83 2871 0.45 Yes -0.09 

4 
17-09-

2020 
65 0.69 1.03 88 0.77 0.68 2522 0.11 Yes -0.08 

5 
22-09-

2020 
62 0.47 0.39 88 0.79 0.96 2253 0.04 No -0.32 

Green Session 2 

6 
14-06-

2021 
72 0.82 0.78 85 1.01 1 2895 0.28 Yes -0.19 

7 
06-09-

2021 
- - - - - - - - - - 

Aggregated Result 

Aggregated 368 0.69 0.71 454 0.86 0.93 76914 0.025 No -0.17 

The results for each alert of green sessions are tabulated above in Table III.7. Despite 

having negative difference of mean value of control group and treated group for most of 

green alerts, it is observed that the null hypothesis is only rejected for 5th green alert. 

However, the aggregated result of all 6 green alerts rejects null hypothesis i.e., the 

distribution (of energy consumption data) of control group is statistically less than the 

distribution (of energy consumption data) of treated group. It means that for all the green 

alerts globally, the treated group implemented load shifting for energy flexibility between 

noon and 3 PM. Yet, it seems a weak conclusion; considering that the retention of null 

hypothesis for 5 out of 6 green alerts is not supportive for aggregated results. 
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Table III.8 The Mann-Whitney U Test for orange alert days of both sessions 

Sr. 

No 
Alert Date 

Control Group Treated Group Mann-Whitney U Test 

µC - 

µT Obs µC бC 
Ob

s 
µT бT Stat 

p-

valu

e 

Null 

hypo-

thesis 

retained 

Orange Session 1 

1 14-11-2019 78 1.41 1.37 92 1.32 2.39 4212 0.97 Yes 0.09 

2 20-12-2019 77 1.25 1.4 90 0.92 0.74 3830 0.88 Yes 0.33 

3 20-01-2020 77 1.65 1.76 92 1.3 1.57 4174 0.98 Yes 0.35 

4 06-02-2020 79 1.41 1.6 91 1.11 1.31 4174 0.97 Yes 0.3 

5 19-02-2020 79 1.47 1.61 91 1.19 1.29 4071 0.93 Yes 0.28 

6 27-02-2020 78 1.26 1.33 91 1.23 1.32 3760 0.75 Yes 0.03 

7 02-03-2020 78 1.38 1.42 90 0.93 1.07 4450 1.00 Yes 0.45 

8 04-03-2020 79 1.22 1.37 91 0.98 1.06 4026 0.91 Yes 0.24 

9 09-03-2020 78 1.32 1.32 90 1.26 1.91 3992 0.94 Yes 0.06 

Orange Session 2 

10 30-11-2020 75 1.55 1.67 88 1.21 0.9 3449 0.69 Yes 0.34 

11 02-12-2020 75 1.69 1.71 89 1.4 1.06 3511 0.72 Yes 0.29 

12 04-12-2020 75 1.68 1.83 89 1.25 1.15 3801 0.94 Yes 0.43 

13 07-12-2020 75 1.52 1.46 89 1.4 1.43 3664 0.86 Yes 0.12 

14 09-12-2020 75 1.74 1.93 89 1.48 1.32 3468 0.67 Yes 0.26 

15 18-12-2020 75 1.33 1.37 88 1.19 1.05 3513 0.76 Yes 0.14 

16 04-01-2021 73 1.63 1.71 88 1.57 1.79 3506 0.84 Yes 0.06 

17 06-01-2021 74 1.74 1.89 88 1.61 2.11 3600 0.88 Yes 0.13 

18 08-01-2021 74 1.61 1.93 88 1.4 1.97 3798 0.97 Yes 0.21 

19 11-01-2021 74 1.86 2.11 88 1.75 1.92 3578 0.86 Yes 0.11 

20 26-01-2021 73 1.74 1.92 87 1.37 1.23 3420 0.80 Yes 0.37 

21 11-02-2021 74 1.53 1.71 87 1.23 1.44 3496 0.83 Yes 0.3 

Aggregated Result 

Aggregated 1595 1.52 1.66 
187

6 
1.29 1.51 

16672

24 
1.00 Yes 0.23 

The results for each alert of orange sessions are tabulated above in Table III.8. It is 

expected that the treated group curtail their load between 6 PM and 8 PM. Though, this can 

be observed by the positive difference in the mean of control group and treated group. Yet, 

the one-sided Mann-Whitney U Test validates it by retaining the null hypothesis, i.e. the 

distribution (of energy consumption data) of control group is stochastically greater than the 

distribution (of energy consumption data) of treated group. The null hypothesis is retained 

for energy consumption of individual alerts as well as for aggregated energy consumption 

of all alerts. It suggests that globally and for individual alerts, the treated group 

implemented load curtailment for energy flexibility between 6 PM and 8 PM. 
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III.5.c Quantification of change in the energy consumption 

during the period of intervention 

It is now significant to quantify the change in the energy consumption during period of 

intervention on alert days. For this purpose, ordinary least square (OLS) regression test38 is 

performed. The least square model is created by estimating the parameters in a regression 

model by minimizing the sum of the squared residuals. It can be applied to single or multiple 

explanatory variables and also categorical explanatory variables (Hutcheson & Sofroniou, 

1999). For analysis, it is used to quantify the variation in energy consumption for all the 

alerts globally as well as for individual alerts. The variables for the test and origin of their 

data are tabulated in Table III.9.  

Table III.9 The variables of ordinary least square test 

Sr. 

No. 
Variable Name Description of variable and origin of data Type of Data 

Dependent Variable (Y) 

1 Ln (Period Energy) 

For each subject, the natural log of energy 

consumption during the period of intervention on alert 

day. 

Float (Decimal) 

Independent Variables (X) 

2 Ln (Day Energy) 
For each subject, the natural log of energy 

consumption during whole alert day. 
Float (Decimal) 

3 Sent SMS 
The alert SMS sent to the subject of treated group on 

day ‘D-1’. 1 for sent SMS and 0 for no sent SMS. 
Boolean 

4 Temperature 

The average temperature in Grenoble on alert day. The 

unit of temperature is degree Celsius. The temperature 

is recorded at GreEn-ER. GreEn-ER is a research 

supporting living lab with microgrid interaction in 

Grenoble (Delinchant et al., 2016). 

Float (Decimal) 

It is recalled here that the original set of nudges consists of 3 types of SMS. However, 

we are only taking the alert SMS for analysis with the assumption that all the other SMS are 

also well received by treated group. Certain subjects of treated group did not receive alert 

SMS (owing to mal functioning of 3rd party dispatch server), therefore these subjects are 

considered as part of control group for respective alert. The global as well as individual 

impact of nudge signals for each alert is discussed in this section. The following general 

interpretations are helpful for understanding the change in the energy consumption. These 

                                                        
 

38 The test was performed using the function “statsmodels.regression.linear_model.OLS” of Python’s StatsModel package. The default 
parameters of the function are used. 
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interpretations are given with respect to the data type of each independent variable. The 

value of coefficient coef in the OLS regression gives us change in the energy consumption. 

- The positive sign of coefficient coef indicates that the dependent variable Y increases 

with respect to the corresponding independent variable X. Similarly, a negative sign 

of coefficient coef indicates that the dependent variable Y decreased with respect to 

the corresponding independent variable X. 

- If the dependent variable Y is log-transformed and independent variable X is in its 

original datatype, then: 

o The value of coefficient coef is expontiated i.e. b = exp(coef). 

o Then it is transformed into percentage using 𝑎 =  (𝑏 − 1) ∗ 100. 

o The results are interpreted as; the dependent variable Y will be changed by 

‘a’ % for one unit rise in independent variable X. 

- If both dependent variable Y and independent variable X are log-transformed, then 

the dependent variable Y will be changed by coef % with respect to 1% change in the 

independent variable X. 

Figure III.8 summarizes the global results, whereas the detailed results are 

presented in annex C in tabular and graphical form. For green alerts, the increase in the 

energy consumption of treated group by the virtue of nudge signal is observed by 11.17% 

within a confidence interval of (0.9%, 21.4%) overall. This change in energy consumption is 

attributed to the nudge signal by 11.49% for 1st green session, whereas it is 7.09% for the 2nd 

green session. However, in the case of second green session, the results only take in to 

account one green alert, therefore due to less data, the results might not be statistically valid 

despite having a R2 value of 0.707. The impact of exogenous variables like daily energy 

consumption and temperature is also found statistically significant during the period of 

intervention. 
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Figure III.8 The statistical results of OLS regression for green sessions 

We also analyze the change in the energy consumption of treated group during the 

period of intervention on green alert days versus the same period in previous non-alert days 

of the same session. Table III.10 gives us the results for both green sessions, where the 

change in energy consumption can be observed in the column ‘Difference on alert day’. e.g. 

the energy consumption of treated group between noon and 3 PM on the 1st alert day 

increased by 9.7% as compared to the previous non-alert weekdays. And it is statistically 

significant within the range (0.01, 0.05] of the significant code39. However, the results are 

inverse for alert 3 and alert 5. By looking at the values in Table III.10 and Figure III.9, it can 

be deduced that no evidence of habit formation is found for load shifting against the green 

alerts. 

 

                                                        
 

39 Significant codes:  a) *** [0, 0.001] , b) ** (0.001, 0.01] , c) * (0.01 , 0.05] 
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Table III.10 The assessment of impact of green alert on alert day as compared to non alert days 

Sr. 

No. 
Alert Date Obs R2 

Condition 

Number 

Difference 

on alert 

day 

Log 

(Energy 

of day) 

Temperature 

(°C) 

Session 1 – Green Alerts 

1 27-07-2020 1969 0.728 370.19 0.097* 1.067*** -0.012 

2 25-08-2020 2185 0.741 341.881 0.004 1.069*** -0.009* 

3 14-09-2020 3547 0.727 317.336 -0.017 1.062*** 0.002 

4 17-09-2020 3716 0.721 319.488 0.004 1.06*** 0.0 

5 22-09-2020 4063 0.717 320.414 -0.033 1.066*** 0.002 

Session 2 – Green Alerts 

6 14-06-2021 6189 0.693 190.825 0.059 0.992*** -0.002 

 

Figure III.9 The percentage change in the energy consumption on alert day as compared to non-alert day 

Similar to the green alerts, the global impact of all the orange alerts comprising of 

both sessions (as well as individual session) is analyzed. Figure III.10 summarizes these 

results, whereas the detailed results are presented in annex C in tabular and graphical form. 

Overall, a decrease of 18.21% in the energy consumption of treated group is observed by the 

virtue of nudge signal within the confidence interval of (-25.8%, -10.6%). This change in 

energy consumption is attributed to the nudge signal by 22.78% for 1st orange session, 

whereas it is 14.68% for the 2nd orange session. The impact of exogenous variables like daily 

energy consumption is found statistically significant, yet the impact of temperature is found 

minimal.  

A study of similar nature is done in the Monash residence halls in Australia 

(Jorgensen et al., 2021), in which the load curtailment is found in the range of 12-20% in 

response to behavioral science oriented treatment. The result of our study is closer to the 

study done in Australia, yet the protocol is different. 
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Figure III.10 The statistical results of OLS regression for orange sessions 

Finally, we analyze the change in the energy consumption of treated group during 

the period of intervention on orange alert days versus the same period in previous non-alert 

days of the same session. Table III.11 gives us the results for both orange sessions, where 

the change in energy consumption can be observed in the column difference on alert day. 

e.g., the energy consumption of treated group on the 2nd orange alert day decreased by 

23.8% as compared to the previous non-alert weekdays. And it is statistically significant 

within the range [0, 0.001] of the significant code40. The difference of alert day is 

graphically presented in Figure III.11 and Figure III.12 for orange session 1 and orange 

session 2 respectively. Like the green alerts, no evidence of habit formation is found for both 

alerts. However, the difference of energy is considerable as compared to the green alerts.  

 

                                                        
 

40 Significant codes:  a) *** [0, 0.001] , b) ** (0.001, 0.01] , c) * (0.01 , 0.05] 
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Table III.11 The assessment of impact of orange alert on alert day as compared to non-alert days 

Sr. 

No. 
Alert Date Obs R2 

Condition 

Number 

Difference 

on alert 

day 

Log 

(Energy 

of day) 

Temperature 

(°C) 

Session 1 – Orange Alerts 

1 14-11-2019 1181 0,696 149.721 -0.09 1.058*** 0.003 

2 20-12-2019 4333 0,672 146.638 -0.238*** 1.032*** 0.003 

3 20-01-2020 6934 0,693 129.438 -0.106 1.036*** 0.005* 

4 06-02-2020 8375 0,693 129.682 -0.134* 1.026*** 0.004 

5 19-02-2020 9462 0,689 131.124 -0.131* 1.018*** 0.005** 

6 27-02-2020 10082 0,687 131.659 -0.118 1.016*** 0.004* 

7 02-03-2020 10351 0,688 132.009 -0.24*** 1.017*** 0.004* 

8 04-03-2020 10441 0,687 132.036 -0.172** 1.016*** 0.004* 

9 09-03-2020 10798 0,689 132.263 -0.091 1.016*** 0.003 

Session 2 – Orange Alerts 

10 30-11-2020 2536 0,702 159.553 -0.065 0.983*** 0.007* 

11 02-12-2020 2625 0,701 157.091 -0.045 0.982*** 0.007* 

12 04-12-2020 2713 0,705 157.56 -0.21*** 0.986*** 0.007* 

13 07-12-2020 2889 0,708 150.887 -0.109 0.986*** 0.009*** 

14 09-12-2020 2976 0,706 150.29 -0.052 0.978*** 0.009*** 

15 18-12-2020 3672 0,704 145.66 -0.192*** 0.981*** 0.008*** 

16 04-01-2021 5060 0,726 134.413 0.018 1.008*** 0.01*** 

17 06-01-2021 5148 0,727 133.575 -0.046 1.009*** 0.01*** 

18 08-01-2021 5235 0,725 132.967 -0.107 1.006*** 0.01*** 

19 11-01-2021 5409 0,727 131.205 0.041 1.007*** 0.01*** 

20 26-01-2021 6609 0,718 128.838 0.102 0.991*** 0.007*** 

21 11-02-2021 7889 0,718 131.477 -0.099 0.989*** 0.007*** 

 

Figure III.11 The percentage change in the energy consumption on alert day as compared to non-alert day 
for 1st session of orange alerts 
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Figure III.12 The percentage change in the energy consumption on alert day as compared to non-alert day 
for 2nd session of orange alerts 

III.6 Conclusion 

Statistical analysis is a mean of measuring the impact of a treatment given to one 

group against a standard group. By using a statistical method, it is observed that there is no 

statistically significant difference between both groups with respect to most of the socio-

technical statistical variables. The visual comparison of energy consumption of treated 

group with control group on non-alert days shows that the energy consumption is quite 

closer. It is also found that there does not exist any statistically significant difference 

between the energy consumption of control group with treated group. The similitude of 

energy consumption of both groups during non-alert days suggests that the impact of the 

nudge signal on alert days can be visualized and quantified by observing a difference in 

energy consumption. 

  Similar to the non-alert days, the comparison of energy consumption of control 

group and treated group is also done for alert days. The visual analysis shows that the 

distribution curve of treated group is displaced with respect to control group for alert days. 

This gives a mere conclusion that the nudge signals do have impact on the energy 

consumption during the period of intervention on alert days. In addition to this, the impact 

for each alert day is also measured to find out habit formation. The statistical test does not 

conform that all green alerts performed well, however it suggests that all the orange alerts 

does perform well.  

Finally, it is observed that the treated group implemented load shifting of energy 

flexibility by 11.17% against the green alert SMS as compared to control group. Similarly, a 

load curtailment of energy flexibility by 18.21% is observed against the orange alert SMS. 



88 
 

Yet, by looking the energy consumption of treated group for each alert day with respect to 

previous non-alert weekdays, no significant (i.e., either horizontal or linear) pattern is 

observed regarding habit formation. In a nutshell, an impact of nudge signals is found and 

quantified for treated group as compared to control group. Yet no evidence of habit 

formation is found for implementation of energy flexibility by treated group. 
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Chapter IV  

 

 

 

Reference Load Curve: An approach for indirect 

feedback 

 

 

 

In this chapter, reference load curve is studied as a tool: 

- to give an indirect feedback in graphical form 

- to potentially replace control group and 

- to categorize the individual with respect to their effort of energy flexibility 

according to a defined threshold. 
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IV.1 Introduction 

The visualization of measured load curve in comparison to a baseline load curve 

serves as an easy and quick to understand feedback at a glance. “People can interpret various 

kinds of charts and tabular presentations if they are well designed” (Karjalainen, 2011). A 

residential consumer can himself analyze the impact of its effort conveniently before the 

next alert signal. In this case, the indirect feedback itself serves as a nudge for motivating 

the residential consumer. This baseline load curve can serve as a reference for measuring 

the impact on alert days. Hence, hereafter it will be called as reference load curve.  

Here, it poses a scientific question as how to formulate a reference load curve that 

neither extremely underestimates or extremely over-estimates the effort of energy flexibility 

on alert day ‘D’. To explore the answer to this scientific question, multiple techniques are 

analyzed to formulate a reference load curve. These techniques include both naïve methods 

and some machine learning methods. By looking at the meta-analysis in chapter 3, it can be 

observed that a control group is inevitable to measure the impact of treatment. Therefore, 

we will try to answer another scientific question as whether the reference load curve can be 

used as an alternative to control group. Before defining the characteristics of a reference 

load curve, it is interesting to look at the conventional forms of indirect feedback. In this 

regard, a literature review of indirect feedback is given below. 

IV.2 Literature review of Indirect Feedback 

An indirect feedback is given to the customer by the energy utility after processing 

the raw data of energy consumption for a specific period of time; The purpose of indirect 

feedback is that the customer learns energy flexibility via reading and reflecting upon 

habitual energy usage (Darby, 2001). Despite the fact that the literature is heavily focused 

on direct feedback through either IHDs (Intelligent home devices) or web services, very few 

literature is available that talks about the mode of presentation of indirect feedback. Mostly, 

the indirect feedback is found in the form of frequent bills with either historic comparison 

(comparing the energy consumption with the past consumption of the same household), or 

normative comparison (comparing household energy consumption with that of a group of 

similar households) of energy consumed in kWh.  

During the last decade of twentieth century, the indirect feedback was in the form of 

sending frequent billing with comparative or suggestive information. This includes more 

frequent energy bills with historical feedback (Wilhite & Ling, 1995), with normative 

feedback, with disaggregated feedback or with detailed annually or quarterly energy reports 

(Wilhite, 1999). Another form of indirect feedback is also tested by sending SMS and emails 

to the subjects in an experiment of Danish electricity supplier SYD ENERGI (Gleerup et al., 
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2010). The SMS and emails are sent to the groups on daily basis, weekly basis or monthly 

basis. The purpose of the feedback is to inform the subject about deviation in energy 

consumption from their historical consumption level.  

The famous study with home energy reports (HER) also used indirect feedback with 

historical comparison, normative comparison and injunctive norm (see section II.2.c). A 

study is also done to find out the consumer preference for feedback on household electricity 

consumption. It is observed in the study that many people find it difficult to understand the 

difference between power (W) and energy (kWh). Since the electricity bills are for energy 

consumption, therefore numerical feedback in the unit of W is not easily comprehensible 

for a non-professional. The study presents a variety of informational feedbacks and the 

consumers are found interested in the presentations of costs (over a period of time), 

appliance-specific consumption breakdown and historical comparison (Karjalainen, 2011). 

However, the diverse informational feedback causes the problem of information overload 

for the consumer. This makes it difficult for the consumer to understand the essence of 

feedback and to make decision accordingly for the future period of interventions. 

 In a nut shell, the state of the art suggests that the indirect feedback is either historic 

or normative  (F. Wang et al., 2018). It is normally presented in numerical form e.g. kWh, 

cost, CO2 emissions (Fischer, 2008), in the form of clustered baseline load curve of identical 

households (Abreu, Câmara Pereira, and Ferrão, 2012) or as average daily load curve 

(Ozawa, Furusato, and Yoshida, 2016). Following the idea of average daily load curve, some 

other naïve methods and machine learning models are statistically analyzed to formulate 

reference load curve of residential consumer. 

IV.3 Formulation of Reference load curve 

A reference load curve is a prediction of energy consumption for each instant on a 

non-alert day. Supposedly, a reference load curve serves to represent the usual behavior of 

energy consumption of a household on a non-alert day. Then the difference of area between 

the reference load curve and flexibility activated measured load curve gives a measure of 

energy flexibility on alert day. Besides, it also serves to graphically visualize the measure of 

energy flexibility, therefore serves as an easy to comprehend tool for indirect feedback of 

energy flexibility. 
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Figure IV.1 An ideal reference load curve 

Figure IV.1 represents an ideal case of reference load curve. Ideally, it is expected 

from the reference load curve that the difference between reference load curve and 

measured load curve at each instant of measurement should be zero on non-alert day. In 

other words, the reference load curve exactly predict the energy consumption pattern of a 

household on a non-alert day. However, the formulation of reference load curve is 

practically based on predictive methods. Therefore, it may either under-estimate or over-

estimate the energy consumption on a non-alert day. In other words, it suggests that 

practically, the difference between reference load curve and measured load curve at each 

instant of measurement is not zero (as illustrated in Figure IV.2). Since no technique fulfills 

the ideal condition of reference load curve, therefore it is required to choose a suitable 

method of formulating a reference load curve. A suitable method should formulate a 

reference load curve that should be as close as possible to measured load curve on non-alert 

days. 

 

Figure IV.2 A practical reference load curve 



94 
 

IV.3.a Key Performance Indicators 

Before discussing the techniques and their efficiency analysis for formulating 

reference load curve, it is necessary to define key performance indicators (KPIs). In this 

case, two indicators will be used i.e. energy difference indicator and coefficient of 

determination (also known as R2 score). The energy difference indicator will later help us in 

understanding why alert type specific methods are defined in some technique. These KPIs 

are briefly discussed below. 

IV.3.a.i Energy Difference Indicator 

An energy difference indicator is the difference of reference load curve and measured 

load curve during the period of interest or intervention. Mathematically, it is given as 

follows: 

𝑬𝒏𝒆𝒓𝒈𝒚 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝑰𝒏𝒅𝒊𝒄𝒂𝒕𝒐𝒓|𝒕𝟏

𝒕𝟐 =  ∑ 𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝑳𝒐𝒂𝒅 𝑪𝒖𝒓𝒗𝒆 −  ∑ 𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒅 𝑳𝒐𝒂𝒅 𝑪𝒖𝒓𝒗𝒆
𝒕𝟐

𝒕𝟏

𝒕𝟐

𝒕𝟏

 Equation 
IV.1 

where, 

- t1: The starting time of period of interest/intervention. For type green, it is noon, 

whereas for type orange, it is 6 PM. 

- t2: The ending time of period of interest/intervention. For type green, it is 3 PM, 

whereas for type orange, it is 8 PM. 

In an ideal case, the energy difference indicator is zero for non-alert days. This is 

under the assumption that the reference load curve exactly predicts the (usual behavior of) 

energy consumption. For favorable feedback, we expect that the reference load curve should 

serve as nudge and its difference with measured load curve should be zero on non-alert days. 

However, it is not guaranteed that the prediction exactly estimates the measured load curve 

on non-alert days. The reference load curve either under-estimate or over-estimate the 

energy consumption on non-alert days practically. Table IV.1 illustrates the ideal and 

practical cases graphically. The energy difference is highlighted in blue color between the 

two curves. It should be noted that the underestimation (or overestimation) of reference 

load curve is illustrated with respect to the measured load curve. 
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Table IV.1 Ideal and practical case of energy difference indicator on non-alert days 

Sr. 

No. 
Case Graphical Illustration 

Sign of energy 

difference indicator 

01 Ideal Case 

 

Zero 

02 
Practical 

underestimation 

 

Negative 

03 
Practical 

overestimation 

 

Positive 

Our interest in the case of green alert is to measure load shifting on alert days, 

therefore a practical reference load curve that minimally underestimates the measured load 

curve on non-alert days is suitable in this case. The value of energy difference indicator will 

be negative in this case. Alternatively, if a reference load curve that overestimates the 

measured load curve on non-alert days is selected to measure load shifting, it brings error 

in the calculation of energy flexibility for alert day.  

Contrary to this, load curtailment is to be measured in response to orange alerts, 

therefore a practical reference load curve that minimally overestimates the measured load 

curve on non-alert days is suitable in this case. A reference load curve that underestimates 

measured load curve is not suitable in this case as it brings error in the calculation of energy 

flexibility for alert day. This problem is further discussed in section IV.4 regarding removal 

of error to measure energy flexibility on alert day. 
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 In a nutshell, practically, a reference load curve that minimally underestimates the 

measured load curve on non-alert days is suitable to measure load shifting on green alert 

days. Whereas, a reference load curve that minimally overestimates the measured load 

curve on non-alert days is suitable to measure load curtailment on orange alert days. We 

will use this notion in section IV.3.b.ii and IV.3.b.iii to distinguishing the methods of 

formulation for green alert and orange alert. 

IV.3.a.ii Coefficient of determination (R2 Score 41) 

R-square is a statistical measure to find out about how close the data is to the fitted 

regression line. “The coefficient of determination can take values in the range (−∞, 1] 

according to the mutual relation between the ground truth and the prediction model” 

(Chicco et al., 2021). In complement to the energy difference indicator, the R2 score suggests 

the suitability of the method. If the predicted value is equal to actual value, then R2 score 

becomes 1. If a model disregards the input features and always predicts the expected value, 

then the R2 score becomes 0. 

IV.3.b Techniques studied to formulate reference load curve 

Multiple techniques are studied in this regard to formulate a reference load curve. 

None of the technique requires non-supervised modelling, rather they are based on 

historical data of energy consumption. The techniques are explained in detail in their 

relevant subsection below, whereas Table IV.2 briefly presents the reason for choice of 

techniques. 

Table IV.2 The choice of techniques to formulate reference load curve 

Sr. 

No. 
Technique Remarks 

Classical method 

01 
Kernel Density Estimation This technique serves to find the most probable 

value of energy consumption. 

Naïve methods 

02 
𝑀𝑖𝑛(𝐸𝐷−1: 𝐸𝐷−5) 

𝑀𝑎𝑥(𝐸𝐷−1: 𝐸𝐷−5) 

These methods are explored following kernel 

density estimation method. These methods are 

easily implementable and require less amount of 

near past energy consumption data of alert day 

‘D’ as compared to classical method. Since these 

methods only takes the energy consumption 

data of previous 5 weekdays, therefore they also 

takes into account the variation in energy 

03 

𝑀𝑒𝑎𝑛[𝑃𝐷−1,𝑖  , 𝑀𝑖𝑛(𝑃𝐷−2,𝑖 , 𝑃𝐷−3,𝑖 , 𝑃𝐷−4,𝑖 , 𝑃𝐷−5,𝑖)] 

𝑀𝑒𝑎𝑛[𝑃𝐷−1,𝑖  , 𝑀𝑎𝑥(𝑃𝐷−2,𝑖 , 𝑃𝐷−3,𝑖 , 𝑃𝐷−4,𝑖 , 𝑃𝐷−5,𝑖)] 

                                                        
 

41 The R2 score is calculated for each day in the data using the ‘r2_score’ method in the ‘metrics’ class of scikit-learn python package.  
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consumption behavior (e.g. with respect to for 

example temperature). 

Machine learning methods 

05 Random Forest (Point to Point) These methods are studies to find the impact of 

two architectural schemes of prediction. 06 Random Forest (Sequence to Sequence) 

The following techniques are studied for the formulation of reference load curve. 

Among these techniques, two techniques have different statistical variables with respect to 

green alert and orange alert. Therefore, these techniques will be presented with respect to 

the type of alerts. It should be noted that the forthcoming analysis is done for the sole 

purpose of finding a suitable reference load curve that has near zero difference to the 

measured load curve on non-alert days. 

IV.3.b.i The high-density value of Kernel Density Estimation of same 

timeslot 

For an instance ‘i’, kernel density estimation is plotted based on the recorded 

consumption of previous ‘n’ weekdays. The purpose of doing this is to find out the most 

probable value of the same timeslot to put in reference load curve. In the distribution curve 

plotted through kernel density estimation, the consumption value with highest peak (i.e. 

density) is selected as the reference value of the instance ‘i’ in the reference load curve. 

 Figure IV.3 illustrated an example of orange period of interest. It shows an example 

where the kernel density estimation curve is plotted for the ‘n’ previous weekdays for 

timeslot 6:30 PM. The consumption value with highest density on kernel density estimation 

curve is taken as the reference value on reference load curve for timeslot 6:30 PM. The same 

procedure is used for the green period of interest. 

 

Figure IV.3 Formulation of reference load curve using Kernel Density Estimation 

IV.3.b.ii Measured load curve of minimum (or maximum) energy 

consumption as reference load curve 

This technique is type specific; therefore, we first discuss type green and later discuss 

type orange. As it is aforementioned that a practically suitable green reference load curve 

should have near zero yet negative error with measured load curve on non-alert day, 

therefore owing to this logic, the measured load curve having minimum energy 
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consumption between past 5 weekdays is taken as reference load curve. The choice of 

number of days can vary. In this case, the objective is to investigate the historical energy 

consumption during previous week, therefore 5 previous weekdays are chosen. Figure IV.4 

represents measured load curve having minimum energy consumption between day ‘D-1 

and day ‘D-5’ as reference load curve on day ‘D’. It can be mathematically represented as: 

𝑀𝑖𝑛(𝐸𝐷−1: 𝐸𝐷−5) = 𝑀𝑖𝑛 (∑ 𝑃𝐷−1,𝑖

𝑛

𝑡=𝑖

, ∑ 𝑃𝐷−2,𝑖

𝑛

𝑡=𝑖

, ∑ 𝑃𝐷−3,𝑖

𝑛

𝑡=𝑖

, ∑ 𝑃𝐷−4,𝑖

𝑛

𝑡=𝑖

, ∑ 𝑃𝐷−5,𝑖

𝑛

𝑡=𝑖

  ) 
Equation IV.2 

 Where; 

- Min() represents a function that gives the minimum value of a sample as an output. 

- 𝐸𝐷−1 is the energy consumption during period of interest on day ‘D-1’. Similarly, 𝐸𝐷−5 is the 

energy consumption during period of interest on day ‘D-5’. 

- i → n shows the range between 12:30 PM and 3:00 PM with half hourly samples. 

- 𝑃𝐷−1,𝑖 represents the power consumption at instantaneous value ‘i’ on day ‘D-1’. Similar for 

others days from ‘D-2’ to ‘D-5’. 

 

Figure IV.4 Selecting the minimum energy measured load curve as reference load curve 

Using the same logic that the orange reference load curve should have minute 

positive error on non-alert days, the measured load curve having maximum energy 

consumption between past 5 weekdays is taken as reference load curve. Figure IV.5 

represents measured load curve having maximum energy consumption between day ‘D-1’ 

and day ‘D-5’ as reference load curve on day ‘D’. It can be mathematically represented as: 

𝑀𝑎𝑥(𝐸𝐷−1: 𝐸𝐷−5) = 𝑀𝑎𝑥 (∑ 𝑃𝐷−1,𝑖

𝑛

𝑡=𝑖

, ∑ 𝑃𝐷−2,𝑖

𝑛

𝑡=𝑖

, ∑ 𝑃𝐷−3,𝑖

𝑛

𝑡=𝑖

, ∑ 𝑃𝐷−4,𝑖

𝑛

𝑡=𝑖

, ∑ 𝑃𝐷−5,𝑖

𝑛

𝑡=𝑖

  ) 
Equation IV.3 
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Figure IV.5 Selecting the maximum energy measured load curve as reference load curve 

IV.3.b.iii Average of measured load curve of day ‘D-1’ and the day having 

minimum (or maximum) energy consumption between day ‘D-2’ and day ‘D-5’ 

The technique presented in previous section is modified to formulate a new 

reference load curve. For a green reference load curve, an average is taken between the 

measured load curve of day ‘D-1’ and the measured load curve having minimum energy 

consumption between day ‘D-2’ and day ‘D-5’. Figure IV.6 represents the green reference 

load curve.  

 

Figure IV.6 Green reference load curve formulation by taking average of measured load curve of day ‘D-
1’ and day having minimum consumption between day ‘D-2’ and day ‘D-5’ 

Similar to the green reference load curve, an orange reference load curve is also 

formulated. However, for an orange reference load curve, an average is taken between the 

measured load curve of day ‘D-1’ and the measured load curve having maximum energy 

consumption between day ‘D-2’ and day ‘D-5’. 

 

Figure IV.7 Orange reference load curve formulation by taking average of measured load curve of day ‘D-
1’ and day having maximum consumption between day ‘D-2’ and day ‘D-5’ 
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IV.3.b.iv Random Forest Point to Point 

In this technique, random forest is used to predict each instance (of period of 

interest) with respect to the rolling historical values of previous 5 weekdays of the same 

instance. The training of the model is done using all the historical data of same session. 

Figure IV.8 represents this technique for formulation of green reference load curve. e.g. to 

predict the reference value at 12:30 PM on day ‘D’, the measured energy consumption value 

at 12:30 PM during previous 5 weekdays is given as an input to the random forest prediction 

model. Similarly, the reference value at 1:00 PM, 1:30 PM, 2:00 PM, 2:30 PM and 3:00 PM 

are calculated to formulate the green reference load curve of day ‘D’. 

 

Figure IV.8 Random Forest Point to Point technique for creation of green reference load curve 

 

Figure IV.9 Random Forest Point to Point technique for creation of orange reference load curve 

Similarly, the orange reference load curve is also studied using this technique. Figure 

IV.10 represents an illustrative example of model training and prediction of instance 6:30 

PM at a day ‘D’. It should be noted that no additional parameter (e.g. temperature etc.) is 

added to the model, rather the historical consumption is only used for the prediction of 

reference load curve. 
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Figure IV.10 Training the model and predicting the instance 6:30 PM for a day ‘D’ 

IV.3.b.v Random Forest Sequence to Sequence 

This technique is like the ‘Random Forest Point to Point’ technique presented in 

previous section. The only difference is that the prediction of instance is replaced by 

prediction of a sequence. i.e. rather than predicting each instance and then formulating 

reference load curve, a sequence is predicted using the sequences of previous 5 weekdays. 

Figure IV.11 and Figure IV.12are representing the techniques for green reference load curve 

and orange reference load curve respectively. Like random forest point to point, it should 

be noted that no additional parameter (e.g. temperature etc.) is added to the model, rather 

the historical consumption is only used for the prediction of reference load curve. 

 

Figure IV.11 Random Forest Sequence to Sequence for creation of green reference load curve 

 

Figure IV.12 Random Forest Sequence to Sequence for creation of orange reference load curve 
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IV.3.c Analysis for the suitability of a technique to formulate the 

reference load curve 

In this section, we analyze the suitability of the techniques with respect to both key 

performance indicators. The reference load curves are calculated using the above 

techniques with the following characteristics.  

- For analysis, the data of measured load curve for 175 households is used.  

- Since the original data is sampled at 30 minutes, so we used the original sampling 

for analysis. 

- The reference load curve is calculated for all the weekdays in both sessions of type 

green and type orange. The data of alert days is omitted to only analyze the non-alert 

days. 

- Only the data corresponding to the duration of sessions is taken for analysis. The 

only exception is in the case of green session where the last date of data is 2nd July, 

2021 instead of 30th September, 2021. It is because the fact that the analysis is done 

multiple times and it was lastly revisited in the month of July, 2021. No change in 

the results was observed during the multiple rounds of analysis.  

- For each technique, the distribution of the energy difference indicator is presented 

in the form of box plot. The outliers are not presented with the boxplots. The reason 

for doing this is that the boxplots are strongly pinched by the outliers around OX 

axis on the graph. Thus, the boxplots become very small and could not be easily 

analyzed with naked eye. 

- For each subject and each day, R2 is calculated between measured load curve and 

reference load curve. The R2 is only calculated for the period of interest. For each 

technique, the distribution of R2 is presented in the form of box plot. Similar to the 

above case, the outliers are not presented with the boxplots. 

IV.3.c.i Analysis of green reference load curves 

The distribution of energy difference indicator for green reference load curves can 

be observed in the Figure IV.13. Recalling the characteristics of a suitable green load curve, 

it is expected from a green reference load curve that the difference should be negative yet 

arbitrarily closer to zero. In the term of a boxplot, these characteristics can be translated in 

such a way that: 

- The boxplot is less dispersed around zero. It suggests that the reference load curve 

is closer to the measured load curve. 

- Ideally, the boxplot should be beneath zero. Practically, the distribution of most of 

the data should be negative. 
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By observing the boxplots in Figure IV.13, it can be observed that the random forest 

techniques are not suitable as green reference load curve. The reason is that more than 50% 

data distribution of the boxplot is positive, suggesting that the predicted value of reference 

load curve is mostly higher than the measured load curve. Besides, they are widely dispersed 

as compared to the green reference load curve of other three methods. By comparing 2nd 

and 3rd boxplots, it is observed that the 3rd boxplot is less dispersed as compared to 2nd 

boxplot. Therefore according to the energy difference indicator, the 1st and 3rd method are 

suitable to formulate the reference load curve. 

 

Figure IV.13 Distribution of energy difference indicator for green reference load curves 

The R2 score distribution boxplots for both random forest techniques (in Figure 

IV.14) also conforms the results of energy difference indicator in Figure IV.13.  Though, the 

R2 score of 2nd and 3rd method are close, yet the less dispersed data favors 3rd method over 

2nd method. Among all the methods, the KDE methods performed better than others. Yet, it 

is easier to explain the underlying mechanism of 3rd method to our subjects as compared to 

KDE method. Therefore, in our experiment we chose the 3rd method albeit that the KDE 

method seems more promising for the formulation of a reference load curve to measure the 

load shifting of energy flexibility. 
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Figure IV.14 Distribution of R2 score for green reference load curves 

IV.3.c.ii Analysis of orange reference load curves 

The distribution of energy difference indicator for orange reference load curves can 

be observed in the Figure IV.15. Recalling the characteristics of a suitable orange load curve 

from section IV.3.a.i, it is expected from an orange reference load curve that the difference 

should be positive yet closer to zero. In the term of a boxplot, these characteristics can be 

translated in such a way that: 

- The boxplot is less dispersed around zero. It suggests that the reference load curve 

is closer to the measured load curve. 

- Ideally, the boxplot should be above zero. Practically, the distribution of most of the 

data should be positive. 

It can be observed in Figure IV.15 that the kernel density estimation technique is not 

suitable for orange reference load curve. The reason is that around 75% of data distribution 

is negative, suggesting that the predicted value of reference load curve is mostly lower than 

the measured load curve. The 2nd boxplot is predominately positive yet highly dispersed as 

compared to others. Surprisingly, the random forest techniques give similar results albeit 

different values in their sample space and the two boxplots are also less dispersed. The 

random forest models are outperforming other methods with respect to energy difference 

indicator. 
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Figure IV.15 Distribution of energy difference indicator for orange reference load curves 

The R2 score boxplot of kernel density estimation in Figure IV.16 suggests it to be 

the most suitable reference load curve formulating method, yet the result of energy 

difference indicator is contradictory to this deduction. The R2 score distribution of 2nd 

method is in the range of [-180,1], which is lower comparing to the others. The 2nd lower R2 

score distribution is of 3rd method, which is in the range of [-70,1]. On the other hand, the 

random forest sequence to sequence method is found to be better than the random forest 

point to point method according to R2 score distribution. It is evident that the random forest 

sequence to sequence method of formulating reference load curve outperforms other 

methods to measure the load curtailment of energy flexibility. Yet, since the machine 

learning methods are explored at a later stage during experiment, so the 3rd method was 

chosen to formulate the reference load curve for the reasons that: 

- It has the best results among the first 3 methods. 

- It is easy to explain to the subjects. 

- It is symmetric to the method chosen for the case of green alerts. 
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Figure IV.16 Distribution of R2 score for orange reference load curves 

IV.4 Reference load curve in the form of feedback 

In our experiment, the initial purpose of reference load curve is to present it as an 

easy and quick to understand graphical feedback for alert days. Figure IV.17 demonstrates 

the use of reference load curve for both type of alerts as user interface design of energy 

feedback.  

Formerly, the two methods presented in section IV.3.b.ii and section IV.3.b.iii are analyzed 

whereas latterly, the two random forest methods are also analyzed. Since the following 

method (already presented in section IV.3.b.iii) is found suitable in the former analysis, 

therefore, it is retained to formulate alert day reference load curve as feedback. 

- For green alert day ‘D’, the average of measured load curve of ‘D-1’ and measured 

load curve having lowest energy consumption between day ‘D-2’ and day ‘D-5’. 

- For orange alert day ‘D’, the average of measured load curve of ‘D-1’ and measured 

load curve having highest energy consumption between day ‘D-2’ and day ‘D-5’. 
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(a) 

 

(b) 

Figure IV.17 Indirect feedback using reference load curve for (a) Green Alert and (b) Orange Alert 

As compared to displays and bills, the web-based feedback is found more effective 

as a tool of feedback for load curtailment (Vassileva et al., 2012). On day ‘D+2’ of each alert 

day ‘D’ and subjecting to the provision of measured load curve of alert day, an image of 

reference load curve superposed on measured load curve (of alert day) is uploaded on the 

personal space of subjects of treated group on Etud-Elec website. A total number of 2141 

feedback images are created and presented to subjects of treated group individually on their 

personal account on Etud-Elec site. This does not include the 2nd green alert of 2nd session, 

for which the measured load curve data was not recorded on ENEDIS server owing to a 

technical problem at their end. On day ‘D+3’ after each alert, the subjects of treated group 
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are sent an SMS stating that they can view feedback of their consumption on alert day ‘D’ 

by logging in to their personal account. 

Through the log of Etud-Elec site, it is observed that the subjects of treated group 

only visited their personal account 57 times in total. In percentage term, it makes 2.7% 

(57/2141) of the total feedback images. The lower number of visits on website might be 

owing to the time of day of receiving the SMS. Generally, the SMS was sent at noon on day 

‘D+3’, however for certain alerts, it was sent at any time of day. The low number of views of 

indirect feedback makes it insufficient to statistically analyze the impact of reference load 

curve as a feedback. Besides serving the purpose of embellishing graphical feedback, the 

reference load curve also serves to categorize the subjects of treated group with respect to 

their response towards the nudge signals. However, before doing so, it is significant to 

determine whether the reference load curve is equally effective. 

IV.5 Impact of error ∈𝐧𝐨𝐧−𝐚𝐥𝐞𝐫𝐭 in the calculation of energy 

flexibility 

We observed the impact of under-estimation and over-estimation of reference load 

curve (with respect to measured load curve) for non-alert days in section IV.3.a.i. If an 

energy difference (owing to underestimation or overestimation) persists for non-alert days, 

its impact is counted in the calculation of energy flexibility. Therefore, it should be removed 

for corrected measure of energy flexibility. For the sake of convenience, we call; 

- The underestimation (or overestimation) on non-alert days as error ∈non−alert. 

- The energy flexibility achieved on alert day as Eflexibility,alert. 

To measure the energy flexibility Eflexibility,alert. on alert day, the error ∈non−alert 

should be removed from the energy difference of reference load curve and measured load 

curve on alert day. Mathematically, these can be given as; 

∈non−alert |𝑡1

𝑡2 =  Ereference,non−alert|t1

𝑡2 − Emeasured,non−alert|𝑡1

𝑡2 

Eflexibility,alert|𝑡1

𝑡2 =  (Ereference,alert|𝑡1

𝑡2 −  ∈non−alert |𝑡1

𝑡2) −  Emeasured,alert|𝑡1

𝑡2  

Equation IV.4 

 

Equation IV.5 

where t1 and t2 are extreme timestamps of the period of interest (or intervention). 

The case of underestimating green load curve as well as overestimating orange load curve is 

illustrated graphically in Table IV.3 below. It should be noted that the area highlighted in 

blue represents ∈non−alert, whereas the area highlighted in yellow represents  Eflexibility,alert. 
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Table IV.3 Green and orange load curves to measure energy flexibility Eflexibility,alert 

Sr. 

No. 
Case Graphical Illustration 

Sign of energy 

difference indicator 

01 

Underestimating 

reference load curve 

(for green alerts) 

 

∈non−alert = Negative 

 Eflexibility,alert = Negative 

02 

Overestimating 

reference load curve 

(for orange alerts) 

 

∈non−alert = Positive 

 Eflexibility,alert = Positive 

IV.6 Analysis regarding reference load curve as an 

alternative of control group 

As mentioned earlier, it is observed in the section of meta-analyses that the energy 

consumption of treated group is compared to that of control group. The analyses are done 

on group level, rather than on individual level for each subject. The meta-analysis 

emphasizes the requirement of control group to measure the impact of treatment. Here it 

raises a scientific question whether it is possible to replace the control group with another 

tool  that is able to measure the impact of treatment on individual level. 

To explore this question, we put the reference load curve in place of control group and 

compare it with the results in section III.5.b. In this regard, the following two methods of 

formulation of reference load curve are analyzed. The results of former method is presented 

and discussed below whereas the results of later method is presented in Annex D and briefly 

discussed here. 

- The average of measured load curve of ‘D-1’ and the measured load curve having 

o Lowest energy consumption between day ‘D-2’ and day ‘D-5’ (for green 

alert). 
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o Highest energy consumption between day ‘D-2’ and day ‘D-5’ (for orange 

alert).  

- Random forest sequence to sequence 

- One-sided Mann-Whitney U Test is used with the following hypotheses. 

- Null hypothesis (H0): The distribution (of energy consumption data) of control 

group is statistically greater than the distribution (of energy consumption data) of 

treated group. 

- Alternative hypothesis (H1): The distribution (of energy consumption data) of 

control group is statistically less than the distribution (of energy consumption data) 

of treated group. 

In the case of green alert days, our interest is to find out whether the null hypothesis 

is rejected for the energy consumption data of alert days. Statistically, it can be observed if 

the p-value of Mann-Whitney U Test is less than α = 0.05, which validates our alternative 

hypothesis. Table IV.4 shows the results for the reference load curve used in the experiment, 

where ‘µ’ represents mean value, ‘б’ represents the standard deviation, subscript ‘r’ and 

subscript ‘t’ represents reference load curve and measured load curve of treated group 

respectively. It should be noted that the effect of error ∈non−alert is removed from the 

reference load curve of alert days in all the analyses given below. 

Table IV.4 The Mann-Whitney U Test for green alert days of both sessions using 

𝑀𝑒𝑎𝑛[𝑃𝐷−1,𝑖  , 𝑀𝑖𝑛(𝑃𝐷−2,𝑖 , 𝑃𝐷−3,𝑖 , 𝑃𝐷−4,𝑖 , 𝑃𝐷−5,𝑖)] reference load curve in place of control group 

S

r. 

N

o 

Alert Date 

Reference load 

curve 
Treated Group Mann-Whitney U Test 

µr - 

µT 
Obs µr бr 

Ob

s 
µT бT Stat 

p-

value 

Null 

hypo-

thesis 

retained 

Green Session 1 

1 27-07-2020 70 0.71 0.67 71 0.99 1.21 2296 0.22 Yes -0.28 

2 25-08-2020 7 0.66 0.45 34 0.81 0.64 110 0.38 Yes -0.15 

3 14-09-2020 82 0.71 0.76 88 0.79 0.83 3607 0.5 Yes -0.08 

4 17-09-2020 88 0.71 0.54 88 0.77 0.68 3894 0.53 Yes -0.06 

5 
22-09-2020 88 0.6

8 

0.49 88 0.79 0.96 4053 0.7 Yes -0.11 

Green Session 2 

6 14-06-2021 85 0.74 0.62 85 1.01 1 3328 0.19 Yes -0.27 

7 06-09-2021 - - - - - - - - - - 

Aggregated Result 

Aggregated 420 0.71 0.62 454 0.86 0.93 93171 0.28 Yes -0.15 
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The results of Table IV.4 are found considerably different than the results of Table 

III.7. A comparison of control group with treated group (in Table III.7) suggests that the 

distribution of control group is statistically less than the distribution of treated group for 5th 

green alert and all green alerts combined. On the other hand, the results in Table IV.4  shows 

that the distribution of reference load curve is statistically greater than the distribution of 

treated group for all alerts (and at aggregated level). The results in Table D.1 also shows 

same results. Therefore, the results do not emphasize that a reference load curve can be 

used as a replacement of control group to measure the load shifting of energy flexibility. 

Table IV.5 The Mann-Whitney U Test for orange alert days of both sessions using 

𝑀𝑒𝑎𝑛[𝑃𝐷−1,𝑖  , 𝑀𝑎𝑥(𝑃𝐷−2,𝑖 , 𝑃𝐷−3,𝑖 , 𝑃𝐷−4,𝑖 , 𝑃𝐷−5,𝑖)] reference load curve in place of control group 

Sr. 

No 
Alert Date 

Reference load 

curve 
Treated Group Mann-Whitney U Test 

µr - 

µT Ob

s 
µr бr 

Ob

s 
µT бT Stat 

p-

valu

e 

Null 

hypo-

thesis 

retained 

Orange Session 1 

1 14-11-2019 91 1.68 2.44 91 1.32 2.41 4968 0.99 Yes 0.36 

2 20-12-2019 90 1.03 1.04 90 0.92 0.74 4415 0.85 Yes 0.11 

3 20-01-2020 92 1.24 1.35 92 1.3 1.57 4317 0.59 Yes -0.06 

4 06-02-2020 91 1.37 1.4 91 1.11 1.31 4896 0.98 Yes 0.26 

5 19-02-2020 91 1.29 1.11 91 1.19 1.29 4680 0.94 Yes 0.1 

6 27-02-2020 90 1.19 1.17 91 1.23 1.32 4307 0.73 Yes -0.04 

7 02-03-2020 90 1.19 1.22 90 0.93 1.07 4828 0.99 Yes 0.26 

8 04-03-2020 91 1.2 1.4 91 0.98 1.06 4698 0.94 Yes 0.22 

9 09-03-2020 90 0.88 1.32 90 1.26 1.91 3501 0.06 Yes -0.38 

Orange Session 2 

10 30-11-2020 88 1.39 1.1 88 1.21 0.9 4236 0.86 Yes 0.18 

11 02-12-2020 89 1.53 1.47 89 1.4 1.06 4073 0.63 Yes 0.13 

12 04-12-2020 89 1.37 1.3 89 1.25 1.15 4204 0.76 Yes 0.12 

13 07-12-2020 89 1.29 1.19 89 1.4 1.43 3886 0.42 Yes -0.11 

14 09-12-2020 89 1.31 1.11 89 1.48 1.32 3814 0.34 Yes -0.17 

15 18-12-2020 88 1.47 1.4 88 1.19 1.05 4410 0.94 Yes 0.28 

16 04-01-2021 88 1.53 1.68 88 1.57 1.79 3992 0.64 Yes -0.04 

17 06-01-2021 88 1.64 1.54 88 1.61 2.11 4297 0.9 Yes 0.03 

18 08-01-2021 88 1.62 1.9 88 1.4 1.97 4301 0.9 Yes 0.22 

19 11-01-2021 88 1.46 2.09 88 1.75 1.92 3361 0.06 Yes -0.29 

20 26-01-2021 87 1.37 1.26 87 1.37 1.23 3818 0.54 Yes 0 

21 11-02-2021 87 1.4 1.63 87 1.23 1.44 4036 0.78 Yes 0.17 

Aggregated Result 

Aggregated 
187

4 
1.35 1.49 

187

5 
1.29 1.51 

18667

90 
1 Yes 0.06 
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In the case of orange alert days, our interest is to find out whether the null hypothesis 

is retained for the energy consumption data of alert days. Table IV.5 shows the results where 

the test is performed on the reference load curve used in this experiment as compared to 

the measured load curve of treated group. The number of observations for both groups are 

same. The difference of mean values ‘µr - µT’ in Table IV.5 is found to be slightly higher than 

the difference of mean values ‘µC - µT’ in Table III.8; albeit having more observations of 

reference load curve in Table IV.5 as compared to observations of control group in Table 

III.8.  Yet, the results of one-sided Mann-Whitney U Test in Table IV.5 are found closer to 

the results of Table III.8.  

The technique of random forest sequence to sequence is found to be the best 

technique to formulate a reference load curve for load curtailment (i.e. orange alerts) in our 

analysis presented in section IV.3.c.ii. The results of this technique is presented in Table D.2 

in appendix D The value of ‘µr - µT’ for certain alerts in Table D.2 is negative, although the 

one-sided Mann-Whitney U Test results show that the null hypothesis is retained for these 

alerts. Overall, the results of Table IV.5 and table D.2 in comparison with Table III.8 

emphasizes that the reference load curve can replace control group to measure the load 

curtailment of energy flexibility. 

In a nutshell, the one sided mann whitney test does not emphasize that a reference 

load curve can replace control group to measure load shifting. However, the result of same 

test emphasizes that the reference load curve can replace control group to measure load 

curtailment. Since it is demonstrated that the reference load curve can effectively measure 

load curtailment, therefore in the following section, an analysis of measure of energy 

flexibility (i.e. load curtailment) with respect to the reference load curve is presented for 

individual subjects. 

IV.7 Measure of response of individual subjects towards 

orange alerts with respect to the reference load curve 

It is discussed earlier that the energy flexibility against a treatment is measured 

through the comparison of treated group against a control group. This analysis does not give 

information on individual level for each subject of treated group. Therefore, the results of 

group are generalized for each subject. Contrary to this, the reference load curve is 

calculated for each individual subject. Subjected to the validation of reference load curve, it 

permits to analyze the response of each subject towards the call of energy flexibility. 

Therefore, the subjects of treated group can be identified as those who: 

- acted positively in response to nudge signals. 

- did not act positively in response to nudge signals. 
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- consumption did not change (or negligibly changed) in response to nudge signals 

OR the response to nudge signals cannot be determined. 

To analyze this problem, the following methodology is adopted. 

- The reference load curve that we used in our experiment is taken for analysis. 

- Since the formulation of reference load curve is based on the historical consumption 

of previous 5 weekdays of alert day ‘D’, therefore for the sake of comparison, the 

energy consumption data of these days is taken.  

- An average error ∈non−alert,average |6 PM
8 PM is calculated for the error ∈non−alert,D−n |6 PM

8 PM 

of each non-alert day between ‘D-1’ to ‘D-5', where n = 1 to 5.  

- For each subject of treated group, the Eflexibility,alert|6 𝑃𝑀
8 PM is calculated using Equation 

IV.5, in which ∈non−alert |6 PM
8 PM is replaced by ∈non−alert,average |6 PM

8 PM. 

- The results are presented in the unit of average energy per hour (Wh) during the 

period of intervention. The results are only presented for those subjects of treated 

group whose reference load curve is successfully calculated for all 21 orange alerts.  

- For each subject and orange alerts altogether, the results are presented in the form 

of boxplots. 

To identify how the subjects of treated group responded towards the call of energy 

flexibility, it is imperative to fix a threshold. There is no universal rule for fixing threshold. 

Therefore, a sensitivity analysis is performed for multiple threshold values and is presented 

in Table IV.6. It is observed that the number of undetermined subjects increases with 

increasing the threshold value, whereas the values of other two variable consequently 

decreases. It suggests that a suitable threshold should be selected after due diligence of the 

appliances and the potential of energy flexibility. 

Table IV.6 Sensitivity analysis of thresholds of identifying responses 

Sr. 

No. 
Response Criterion 

Number of identified 

subjects 

Lower threshold = -50Wh, Upper threshold = 50Wh 

01 Positive Eflexibility,alert|6 𝑃𝑀
8 PM > 50 Wh 36 

02 Not positive Eflexibility,alert|6 𝑃𝑀
8 PM < -50 Wh 27 

03 
Cannot be 

determined 

-50 Wh ≤ Eflexibility,alert|6 𝑃𝑀
8 PM ≥ 50 Wh 

16 

Lower threshold = -100Wh, Upper threshold = 100Wh 

04 Positive Eflexibility,alert|6 𝑃𝑀
8 PM > 100 Wh 29 

05 Not positive Eflexibility,alert|6 𝑃𝑀
8 PM < -100 Wh 18 

06 
Cannot be 

determined 

-100 Wh ≤ Eflexibility,alert|6 𝑃𝑀
8 PM  ≥ 100 Wh 

32 

Lower threshold = -150Wh, Upper threshold = 150Wh 
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07 Positive Eflexibility,alert|6 𝑃𝑀
8 PM > 150 Wh 25 

08 Not positive Eflexibility,alert|6 𝑃𝑀
8 PM < -150 Wh 10 

09 
Cannot be 

determined 

-150 Wh ≤ Eflexibility,alert|6 𝑃𝑀
8 PM ≥ 150 Wh 

44 

Lower threshold = -200Wh, Upper threshold = 200Wh 

10 Positive Eflexibility,alert|6 𝑃𝑀
8 PM > 200 Wh 20 

11 Not positive Eflexibility,alert|6 𝑃𝑀
8 PM < -200 Wh 8 

12 
Cannot be 

determined 

-200 Wh ≤ Eflexibility,alert|6 𝑃𝑀
8 PM ≥ 200 Wh 

51 

For the sake of presentation, the threshold values of -200Wh/200Wh are explored. 

The average value of distribution in the box plot is considered for analysis of 

Eflexibility,alert|6 𝑃𝑀
8 PM. It is recalled here that the difference is calculated between reference load 

curve and measured load curve, therefore a positive value indicates load curtailment 

whereas a negative value indicated no positive effort for load curtailment during the period 

of intervention. 

Based on the selected threshold, Figure IV.18 demonstrates the distribution of 

energy flexibility of the subjects who acted positively for most of alerts. The black dots 

represent the outliers in the distribution made for boxplot, whereas the blue dotted line 

represents the threshold value of 200 Wh. It can be observed that the median value of 

subject 399 and subject 404 lies beneath the threshold line, yet the outliers made the 

average energy flexibility of these subjects greater than the threshold value. Therefore, these 

subjects are considered as positively acting subjects against the nudge signal of load 

curtailment. In total, 20 (out of 79) subjects are found in this category. 

 

Figure IV.18 The energy flexibility of subjects who curtailed their load for most of the orange alerts 
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According to the selected threshold values, Figure IV.19 demonstrates the 

distribution of energy flexibility of the subjects who did not acted positively for most of 

alerts. The blue dotted line represents the threshold value of -200 Wh. In total, 8 (out of 79) 

subjects are found in this category. A particular case in this category is of subject 388, who 

achieved an average load curtailment of more than 2 kWh (per hour) for 5 orange alerts, 

however the case is contrary for most of the rest of the orange alerts. 

 

Figure IV.19 The energy flexibility of subjects who did not remain positive for most of the orange alerts 

Finally, Figure IV.20 demonstrates the distribution of energy flexibility of the subjects who 

remained within the range of [-200 Wh, 200Wh]. We can further split it in to 2 sub-categories. The 

first category represents those whose energy consumption remains stable during alert days as 

compared to non-alert days. In other words, we can say that the effect is zero or negligible. In this 

regard, those subjects are identified whose average energy flexibility is in the range of [-25Wh, 

25Wh]. In total, 9 (out of 79) subjects are identified in this category. For the rest of the 42 subjects, 

the energy flexibility activity cannot be determined with respect to the fixed threshold. 

 

Figure IV.20 The energy flexibility of subjects whose effort of energy flexibility cannot be determined 
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IV.8 Conclusion 

A reference load curve is a predicted load curve on non-alert day. It is assumed that 

it represents the normal behavior of energy consumption of a household. Its superposition 

with flexibility driven measured load curve of alert day gives a visual assessment of the effort 

of energy flexibility. Ideally, the difference of reference load curve with measured load curve 

should be zero on non-alert day, yet practically it is not possible. Therefore, multiple 

techniques are analyzed to formulate a reference load curve. By analyzing the distribution 

of each technique with respect to KPIs, it is concluded that the classical method (using 

kernel density estimation) performs better than the others for measuring the impact of load 

shifting on alert day. In the case of load curtailment, it is relatively emphasized by the R2 

score indicator that a machine learning based method performed better than the others. Yet 

it is a future prospect to improve the performance of machine learning model with the 

introduction of supplementary parameters.  

The original purpose of formulating reference load curve is to send as indirect 

feedback towards the treated group and analyze the impact of this feedback. However, the 

smaller number of views of indirect feedback makes it insufficient to statistically analyze 

the impact of reference load curve as feedback. Besides, an aspect of reference load curve is 

also explored where it is analyzed whether the reference load curve can replace control 

group in energy flexibility programs. Through our analysis, we are unable to conclude that 

the reference load curve could replace control group for load shifting, yet it is found effective 

to replace the control group for load curtailment.  

Traditionally, the effort of energy flexibility is assessed on group level by comparing 

treated group with a control group. However, a suitable and valid reference load curve can 

serve to measure the effort of energy flexibility at individual level. This individual 

assessment serves to identify the subjects that have or have not positively responded 

towards the nudge signal of energy flexibility. Therefore, in complement to the statistical 

meta-analysis that quantifies the energy flexibility at group level, this instrument serves to 

quantify and categorize the individual effort of energy flexibility. 
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Chapter V  

 

 

 

The quest of finding potential appliances for energy 

flexibility in line with subject commitment 

 

 

 

This chapter presents a proof of concept regarding detection of potential appliances 

for energy flexibility in line with the subject commitment. For this purpose, an open source 

NILM algorithm is explored on multiple datasets of appliance level energy consumption. 
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V.1 Introduction 

In the previous two chapters, we explored the impact of nudge signals on the energy 

flexibility of the treated group, and we explored an approach where a reference load curve 

can serve in energy flexibility programs. However, it is interesting to look for the potential 

appliances for energy flexibility among the appliances that are committed by the treated 

group. In this chapter, we discuss a proof of concept (and the factors bringing constraints 

to it) to look for the appliances that have potential for energy flexibility. 

We recall here the section I.3.b in which an analysis of various appliances is done. 

This analysis is performed based on the annual energy consumption and the nominal power 

of the appliances. It is deduced from this theoretical analysis that the white appliances (i.e. 

washing machine, dishwasher and cloth dryer) might have highest potential of energy 

flexibility within a period of intervention. This is owing to their highest nominal power as 

compared to others. However, it can be observed by using non intrusive load monitoring 

(NILM). Generally, the energy disaggregation is done on load curves with a much higher 

granularity (e.g. 1 second, 8 seconds etc.); however the granularity in our experiment is 

much lower (i.e. 30 minutes). Therefore, we would like to implement it on a 30 minutes 

resolution. In the following section, the state of the art of non-intrusive energy 

disaggregation is presented. Whereas, in the rest of the chapter, we will discuss a proof of 

concept that can be used to detect potential appliances for energy flexibility using the NILM 

energy disaggregation technique. 

V.2 Non-Intrusive Load Monitoring 

Energy disaggregation is the process of acquiring the device level energy 

consumption data; correlated with the global energy consumption data of smart meter. It 

can be either hardware centric or software defined approach. The former is known as 

intrusive load monitoring (or in short ILM); in which energy consumption recording 

sensors are connected to the appliances. In this case, it is easy to acquire the energy 

consumption data of appliances individually at the expense of costly hardware materials 

and propriety communication protocols. The later is known as non-intrusive load 

monitoring (or in short NILM42); in which the appliance level energy consumption data is 

extracted from the global energy consumption data. Rather than the installation of costly 

sensors, this approach contends on the machine learning techniques to disaggregate the 

global consumption data.  

                                                        
 

42 It is also sometimes referred as non-intrusive appliance load monitoring or NIALM in short. 
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Figure V.1 Non-intrusive load monitoring (Parson, 2017) 

NILM is initially studied in 1992 through a detailed analysis of current and voltage 

of smart meter data (Hart, 1992). Since the mass deployment of smart meters, the research 

work in NILM become more significant. The state of the art discusses two aspects of NILM, 

namely; open-source datasets and the algorithms. These are briefly discussed below. 

V.2.a Energy disaggregation datasets 

The intrusive load monitoring significantly complements the NILM approach to 

gather data. Using the ILM approach, public (and private) datasets of energy consumption 

data are collected. These datasets are used to train NILM models and to validate these 

models via performance metrics. In various research works, the data is collected for a 

sampling period of as low as 1 second and as high as 30 minutes throughout the world. Table 

V.1 illustrates some open-source datasets for residential sector. 

Table V.1 Some open source NILM datasets 

Sr. 

No. 
Name of dataset 

Country 

of origin 

Number of 

households 

Duration of 

data 

(yrs=years, 

m=months) 

Sampling period 

(min=minutes, 

sec=seconds) 

01 
REDD (Kolter & 

Johnson, 2011) 
USA 6 Several months 1 sec 

02 
DEDDIAG (Wenninger 

et al., 2021)    
Germany 15 3.5 yrs 1 sec 

03 
UKDALE(J. Kelly & 

Knottenbelt, 2015) 
UK 5 > 1yr 6 sec 
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04 
REFIT (Murray et al., 

2017) 
UK 20 2 yrs 8 sec 

05 

Individual household 

electric power 

consumption Data Set 

(Hebrail & Berard, 2012) 

France 1 4 yrs 1 min 

06 
AMPDs (Makonin et al., 

2016) 
Canada 1 2 yrs 1 min 

V.2.b NILM Techniques 

NILM is widely considered as a single channel blind source separation problem. 

Most of the research work tackles NILM as a regression problem, in which the individual 

models of appliances predict the energy consumption based on the global consumption as 

input. The state of the art also generally prefers supervised learning over non-supervised 

learning. However, some research work also tackles it as a classification problem, where the 

appliance (ON/OFF) state is detected and classified using the energy signature of the 

appliance (Basu et al., 2015). In essence, it should be a combination of both in which the 

appliance state should be detected and then a prediction regarding its consumption should 

be made.  

 The techniques  of NILM are categorized as optimization problem, probability 

statistics, graph signal processing, machine learning and deep learning (Zhuang et al., 

2018). Some research work of these techniques are given as follows: 

- Optimization problem: Aided linear integer programming (Bhotto et al., 2017) 

and evolutionary optimization algorithm (Egarter et al., 2013) are among 

optimization techniques studied for NILM.  

- Probability Statistics: Hidden Markov model is a widely studied probability 

statics technique for NILM (H. Kim et al., 2011; X. Wang et al., 2018; Zhong et al., 

2014). Among probability statics techniques, Viterbi algorithm (Zeifman, 2012) and 

Bayesian approach (Srinivasarengan et al., 2013) are also studied. 

- Graph Signal Processing: NILM research work is also explored using graph 

signal processing (He et al., 2018; Stankovic et al., 2014; Zhao et al., 2015, 2016).  

- Machine Learning: The machine learning techniques are used for pattern 

recognition in NILM. Random Forest (Y. Liu et al., 2021; Wu et al., 2019) and 

support vector machine (Moradzadeh et al., 2020; Schirmer & Mporas, 2019) are 

among the machine learning techniques that are studied.  

- Deep Learning: Various deep learning architectures are also extensively 

researched for the purpose of non-intrusive load monitoring. In this regard, various 

architectures of auto-encoder (Bonfigli et al., 2018; Tsai et al., 2018), recurrent 
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neural networks (J. Kim et al., 2016; Le et al., 2016) and convolutional neural 

network (D. Kelly, 2016; Penha & Castro, 2017) are studied.  

The application of recurrent neural network is also compared with convolutional 

neural network (Pedro Paulo Marques do Nascimento, 2016). Most of the research in the 

field of energy disaggregation yields individual model for each appliance. However, the 

research is also done in order to make a unique model for disaggregation of multiple 

appliances (Faustine et al., 2020). However, this research is limited. 

V.2.c Remarks on the state of the art 

Following observations are made in the state of the art of non-intrusive load 

monitoring. 

- The research on energy disaggregation approaches is extensively tested on 4 publicly 

available datasets. i.e. REDD, REFIT, AMPDs and UK-DALE. 

- It is not found that energy disaggregation models are trained on an ensemble of 

datasets. Rather, the models are trained on individual datasets separately. 

- The energy disaggregation algorithms are seldom available publicly for 

reproducibility of results. 

- There does not exist a universal energy disaggregation algorithm. Rather, each 

research article explores the efficiency of its proposed algorithm. The efficiency is 

presented against one (or multiple) benchmark algorithms using chosen key 

performance indicators.  

- The models trained and tested on 1 dataset might not be equally efficient for other 

datasets. This is an open research question under investigation regarding transfer 

learning. This point will be further investigated in section V.6 and section V.7. 

- A number of benchmark algorithms tested on publicly available datasets are 

available by the name of NILM-TK43 (Batra et al., 2014). However, it is found 

difficult to reproduce the results of these benchmark algorithms for a dataset other 

than those available in toolkit. Besides, it has the limitation of disaggregating for 5 

highest consuming appliances in the household. 

 Before discussing the proof of concept using NILM, the methodology of exploring an 

open-source algorithm is presented in section below. 

                                                        
 

43 NILM-TK is publicly available at https://github.com/nilmtk/nilmtk. 

https://github.com/nilmtk/nilmtk
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V.3 Methodology 

The following schematic diagram shows the methodology adapted to evaluate the 

models for energy disaggregation. 

 

Figure V.2 Schematic diagram of energy disaggregation of measured load curves on alert days 

V.4 Committed appliances by the subjects 

As mentioned in Section II.3.c.ii, the information regarding the presence of diverse 

appliances present in the households is collected. In addition to this, the information 

regarding the time of use of appliances with respect to defined timeslots is also collected. 

The purpose of collecting this information and having a special session with the subjects is 

to make the energy consumption and the nominal power of appliances visible to the 

subjects. Once the subjects of treated group are enlightened about the impact of individual 

appliance, they are requested to choose appliances from a given set that they can commit to 

use (in response to green alert) or not use (in response to orange alert). 
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Figure V.3 shows the frequency of committed appliances by the treated group for 

both green alerts and orange alerts respectively. For instance, the washing machine is the 

appliance that is mostly committed by the subjects of treated group for both green alerts 

and orange alerts. The commitment frequency of washing machine is followed by 

dishwasher and electronic gadgets. It is significant to see that the treated group committed 

the cooking appliances mostly for load curtailment. It is the same case for space heating 

appliances, however the frequency of commitment of space heating is less as compared to 

the cooking appliances. 

 

Figure V.3 Frequency of appliances committed for green alert 

The subjects of treated group are given a choice to change their default commitment 

before the alert day. However as already mentioned in section IV.4, it is observed that the 

subjects of treated group very rarely logged in to their personal account on Etude-Elec. A 

total of 8 modifications were made for all the alerts. The low number of modifications of 

indirect feedback makes it insufficient to statistically analyze the impact of modified 

commitment against default commitment. Therefore, for the sake of argument, we consider 

that the subjects of treated group stick to their default commitment reminded to them by 

the commitment SMS. 

 Since the frequency of appliance commitment of the experiment is analyzed, it is 

now significant to explore an energy consumption dataset. This dataset serves to train the 

model of respective appliances for energy disaggregation. The dataset must have maximum 

number of appliances in common with the committed appliances of the experiment. For this 

purpose, IRISE dataset is used, which is demonstrated in the following section. This 

database is not open-source, therefore it is not mentioned in the Table V.1. 
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V.5 The characteristics of IRISE dataset 

IRISE dataset is a subset from European database of residential consumption as part 

of REMODECE project44 (Enertech, 2008), for residential monitoring to decrease energy 

use and carbon emissions in Europe (Basu et al., 2015). The dataset is private in nature. As 

part of IRISE dataset, the energy consumption data of 98 houses for a span of a year is 

recorded. The data is sampled by 10 minutes. The dataset has data of site consumption as 

well as energy consumption of individual appliances. The site consumption also includes 

the unmeasured load which were either intentionally (or non-intentionally) added to the 

dataset. Therefore, in addition to the site consumption, the aggregated consumption is 

calculated by summing up the energy consumption of known appliances at each instance. 

V.5.a Committed appliances of treated group in the IRISE dataset 

Before using IRISE dataset, it is significant to find whether the energy consumption 

data of the committed appliances by the treated group is available in the IRISE dataset. In 

this regard, the following 6 appliances are exactly found in the IRISE database. It is more 

probable that these appliances could be easily traced in the energy consumption data of 

treated group by using a trained model on IRISE. The frequency of presence of these 

appliances in IRISE households is given in Figure V.4. 

- Electric Oven - Washing Machine - Dishwasher 

- Microwave Oven - Hotplate - Cloth dryer 

 

Figure V.4 Frequency of matched appliances in IRISE dataset with committed appliances  

                                                        
 

44 Information regarding integration of IRISE dataset in REMODECE project: 
https://remodece.isr.uc.pt/database/Campaign_Irise.html  

https://remodece.isr.uc.pt/database/Campaign_Irise.html
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The following 5 committed appliances are found closer to certain appliances found 

in IRISE database. In the EXPESIGNO dataset, these appliances are grouped under the 

name of a) Electronics connected to main supply, b) Heating kitchen appliances, c) Mains-

power audiovisual devices, d) Set thermostat of electric heating after 2 AM and e) 

Supplementary Electric radiator. The frequency of presence of these appliances in IRISE 

households is given in Figure V.5. 

- Computer site - Electric Cooker 

- Electric Deep Fryer - Electric Heating 

- TV  

 

Figure V.5 Frequency of closely matched appliances in IRISE dataset with committed appliances of 
treated group 

Beside the group of appliances, the following 3 appliances are not found in IRISE 

database. Since the IRISE dataset is recorded between 1999 and 2001, therefore it is obvious 

that the energy consumption data of electric vehicle and electric mobility could not be found 

in the IRISE dataset. 

- Pressing Iron - Electric vehicle - Electric mobility 

V.5.b The statistics of appliances in IRISE dataset 

Before going further, it is interesting to look at the statistical variables of each 

appliance. For each appliance, these variables are calculated for their respective data 

present in IRISE households. Table V.2 represents the statistics of IRISE appliances at 10 

minutes sampling. Since zeros represent that the appliance is OFF, therefore it is omitted 

during the calculation of mean, median and standard deviation. The aggregated 

consumption in the table represents the aggregated consumption of the appliances below in 
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all the houses in which the appliances are present. The average window size represents the 

average of the various lengths of duration when the appliance consumed energy. 

Table V.2 Statistics for IRISE appliances at 10 minutes sampling 

Appliance Count 
ON 

(%) 

OFF 

(%) 

Mean 

(W) 

Standard 

Deviation 

(W) 

Median 

(W) 

Max 

(W) 

Average 

window 

size 

Aggregated 5103252 x x 176 365 76 x x 

Hotplate 12817 2 98 109 87 88 604 3 

Electric 

Heating 
594695 

44 56 
151 187 90 10924 23 

Electric Oven 137399 9 91 56 93 21 4246 29 

Electric 

Cooker 
179874 

11 89 
52 95 3 1259 9 

Clothes drier 102373 5 95 137 138 103 1287 11 

Dishwasher 85566 3 97 174 161 119 628 5 

Microwave 153982 4 96 39 49 23 587 3 

TV 1703741 24 76 11 16 9 856 13 

Washing 

Machine 
301406 

6 94 
73 107 22 5866 7 

The data of energy consumption in our (EXPESIGNO) experiment is collected by 

LINKY smart meter, which is sampled at 30 minutes. To keep the homogeneity in the 

sampling rate of IRISE with EXPESIGNO, the power consumption data of IRISE appliances 

are down sampled at 30 minutes by taking the mean value for half hourly timestamps. The 

statistics of IRISE appliances are calculated and presented in Table V.3.  

Table V.3 Statistics for IRISE appliances at 30 minutes sampling 

Appliance Count 
ON 

(%) 

OFF 

(%) 

Mean 

(W) 

Standard 

Deviation 

(W) 

Median 

(W) 

Max 

(W) 

Average 

window 

size 

Aggregated 1716530 x x 174 293 78 x x 

Hotplate 6759 4 96 69 61 49 434 3 

Electric 

Heating 
211074 

47 53 
142 174 77 3641 35 

Electric Oven 48718 10 90 52 77 22 1421 11 

Electric 

Cooker 
72977 

14 86 
43 73 6 623 5 

Clothes drier 39331 5 95 119 122 87 1082 5 

Dishwasher 39754 5 95 126 105 126 469 3 

Microwave 105928 8 92 19 29 11 355 3 

TV 647996 27 73 9 10 8 856 7 

Washing 

Machine 
129679 

8 92 
57 74 22 1955 3 
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By implementing down sampling (by taking average) on the data, it is common to 

find the maximum value of energy consumption different than the maximum value of 

original sampling. It is because the maximum value of original sampling is averaged with 

its adjacent values, therefore it is modified. However, it is expected that the mean 

consumption should remain same irrespective of the down-sampling. By comparing Table 

V.2 and Table V.3, it is found out that the mean values vary to a considerable extent for 

hotplate, dishwasher and microwave. The mean values are highlighted in yellow in the 

tables. A possible explanation of this variation lies in the consumption pattern of these 

appliances. These appliances have very short time of peak consumption, while the rest of 

the time they have low consumption during their cycle of operation. Therefore, the mean 

value varies for these appliances upon down sampling. 

V.6 Reproducibility of an open-source energy 

disaggregation algorithm 

To train and test models of energy disaggregation on IRISE dataset, an open-source 

algorithm known as Transfer-NILM45 is used. It uses sequence to point46 architecture of 

neural networks. This algorithm deals with the transfer learning of energy disaggregation. 

The transferability of model is tested for appliance level (i.e. model trained on one appliance 

is used to do energy disaggregation on another appliance) and cross dataset level (i.e. model 

of an appliance trained on one dataset and tested on the same appliance from another 

dataset) (D’Incecco et al., 2020).  

 Before training models on IRISE dataset using transfer-NILM algorithms, the 

claimed results in the research article should be verified. For this purpose, the results are 

reproduced for washing machine and microwave oven on the open-source REFIT47 dataset 

(already mentioned in Table V.1). To check the cross-dataset results, the training is done on 

REFIT dataset whereas it is tested on REDD48 dataset (already mentioned in Table V.1). The 

length of data subsets is given in Table V.4. The data of REDD is down sampled and the 

same length is cropped as of REFIT dataset. Previously, we have observed that the IRISE 

dataset has a default resolution of 10 minutes, whereas to bring homogeneity with the 

resolution of LINKY data, IRISE dataset is resampled at 10 minutes. Similarly, to bring 

homogeneity in the resolution of REFIT (by default at 8 seconds) and REDD (by default at 

1 seconds), the REDD dataset is down sampled to a resolution of 8 seconds. 

                                                        
 

45 It is available at https://github.com/MingjunZhong/transferNILM. 
46 The python libraries of tenorflow and keras are used for algorithm formulation. 
47 Data source: https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements-cleaned  
48 Data source: http://redd.csail.mit.edu/  

https://github.com/MingjunZhong/transferNILM
https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements-cleaned
http://redd.csail.mit.edu/
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Table V.4 The length of data subsets in REFIT and REDD dataset 

Sr. No. Appliance 

REFIT and REDD data sampled at 8 seconds 

Training 

Subset 

(Million) 

Validation 

Subset 

(Million) 

Test 

Subset 

(Million) 

01 Microwave 18.22 5.43 6.76 

02 Washing Machine 43.47 5 6 

The following performance metrics are used to match the reproducible results with 

the claimed results. These performance metrics are chosen since they are used in the 

original article of the algorithm. Therefore, it is easier to compare the results. 

- Mean Absolute Error (MAE): It evaluates the absolute difference between the 

prediction 𝑥𝑡 and ground truth 𝑥𝑡 at each instance and calculates the mean value. 

𝑀𝐴𝐸 =  
1

𝑇
∑|𝑥𝑡 − 𝑥𝑡|

𝑇

𝑡=1

 
Equation V.1 

- Signal aggregate Error (SAE): It indicates the relative error of the total energy. 

‘r’ denotes the total consumption of the appliance and �̂� the predicted total energy. 

𝑆𝐴𝐸 =  
|�̂� − 𝑟|

𝑟
 

Equation V.2 

- Energy per day (EpD): This metric indicates the absolute error of the predicted 

energy used in a day, which is typically useful when the household users are 

interested in the total energy consumed in a period. Where 𝑒 =  ∑ 𝑥𝑡𝑡  denotes the 

energy consumed in a day period and D is the total number of days. 

𝐸𝑝𝐷 =  
1

𝐷
∑|�̂� − 𝑒|

𝐷

𝑛=1

 
Equation V.3 

- Normalized disaggregation error (NDE): This metric measures the 

normalized error of the squared difference between the prediction and the ground 

truth of the appliances. 

𝑁𝐷𝐸 =  
∑ (𝑥𝑖𝑡 −  𝑥𝑖𝑡)2

𝑖,𝑡

∑ 𝑥𝑖𝑡
2

𝑖,𝑡
 

Equation V.4 
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V.6.a Training and testing on same dataset (REFIT) 

REFIT dataset is sampled at 8 seconds. It consists of a total of 43 million data points 

in the training subset of washing machine. For processing 43 million data points, it requires 

a compatible hardware solution in memory and computing capacity. That's why 2 

approaches are compared i.e. a complete dataset (of 43 million data points) processed on a 

remote server with parallelization capacity on GPU and a reduced subset for training on 

personal computer. The following results are observed regarding the time of training 

without and with GPU installed on the server. NVIDIA RTX6000 GPU is installed on the 

server machine. The results show that with a GPU installed on a computer machine, the 

time taken to train a model considerably reduce to a greater extent. 

Table V.5 The comparison of model creation with and without GPU 

Sr. 

No. 
Parameter Without GPU With GPU 

01 Appliance Washing Machine Washing Machine 

02 Length of training dataset used 5 (out of 43) million 43 (out of 43) million 

03 Length of validation dataset used 5 (out of 5) million 5 (out of 5) million 

04 Epochs 5 10 (early stopping at 5th epoch) 

05 Time taken Around 13 hours Around 6 hours 

Here the results of washing machine (WM) and microwave oven (MO) are 

presented. The results of washing machine are graphically presented in Figure V.6 below. 

The purpose of energy disaggregation (as stated earlier) is to disaggregate the smart meter 

measured load curve into the consumption of respective appliances. Here, we reproduce the 

results to test that the disaggregated load curve of the appliance recognizes well the state of 

the appliance by comparing it to the ground truth value of the appliance. Not much 

difference is spotted for MAE and NDE, however difference in SAE and EpD is observed. 

Overall, it can be observed that the results are close. It demonstrates that the results are 

reproduced as they were claimed in (D’Incecco et al., 2020).  

Table V.6 Trained and tested on REFIT dataset at sample period of 8 seconds 

Appliance 

Results of (D’Incecco et al., 2020) Reproduced results 

MAE SAE 
EpD 

(Wh) 
NDE MAE SAE 

EpD 

(Wh) 
NDE 

Microwave 

Oven 
12.66 0.17 95.78 0.71 9.5 0.007 105.07 0.71 

Washing 

Machine 
16.85 2.61 319.11 0.54 32.09 0.16 418.16 0.58 
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Figure V.6 Energy disaggregation of washing machine via model trained on REFIT dataset and tested 
on REFIT house no. 8. Grey curve represents aggregated consumption, red curve represents the actual 

consumption of washing machine and blue curve represents the predic 

V.6.b Training on REFIT and testing on REDD dataset: transfer 

learning 

The REDD dataset is sampled at 1 seconds for smart meter, whereas 3 seconds for 

appliances. To keep homogeneity with REFIT, the REDD dataset is resampled to 8 seconds. 

It is significant to look at the statistical values of appliances in Table V.7 before reproducing 

results. Since the same appliance in different datasets does not belongs to same brand and 

same model, therefore their energy consumption pattern is different. Besides, the 

appliances are not operated all the time, therefore they have different time of utilization. By 

looking at Table V.7, it can be observed that the appliances in REDD dataset have low 

utilization time (i.e. ON time), yet high mean and standard deviation value as compared to 

the appliances in REFIT dataset. It is illustrated in Figure V.7 as well, in which the peak 

consumption of washing machine for REDD dataset is higher than that of REFIT dataset. 

Besides, there is also impact of other appliances in the aggregated consumption. Therefore, 

these constraints bring difficulty in the transfer learning of energy disaggregation. 

Table V.7 The statistical characteristics of appliances in REFIT and REDD dataset 

Appliance On (%) OFF (%) Mean (W) 
Standard 

Deviation (W) 

REFIT dataset (sampled at 8 seconds) 

Microwave Oven 6.6 93.4 9 92 

Washing Machine 10.94 89.06 147 478 

REDD dataset (sampled at 8 seconds) 

Microwave Oven 2.03 97.97 358 613 

Washing Machine 0.69 99.31 2282 743 



132 
 

 

Figure V.7 The comparison of peak energy consumption of washing machine in REFIT dataset with 
REDD dataset 

The models of washing machine and microwave that are previously trained on 

REFIT dataset is used to disaggregate data of REDD dataset. The reproduced results are 

found closer to the claimed results (D’Incecco et al., 2020) in both cases. The result of 

washing machine is presented in Figure V.8. 

Table V.8 Trained on REFIT and tested on REDD dataset at sample period of 8 seconds 

Appliance 

Results of (D’Incecco et al., 2020) Reproduced results 

MAE SAE 
EpD 

(Wh) 
NDE MAE SAE 

EpD 

(Wh) 
NDE 

Microwave 

Oven 
23.10 0.36 208 0.71 23.81 0.30 221.03 0.76 

Washing 

Machine 
36.83 0.74 750.85 0.91 35.24 0.87 778.04 0.96 

 

Figure V.8 Energy disaggregation of washing machine via model trained on REFIT dataset and tested 
on RED house no. 3. Grey curve represents aggregated consumption, red curve represents the actual 
consumption of washing machine and blue curve represents the predicted curve of washing machine 
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V.7 NILM on IRISE dataset 

As the reproducibility of results using transfer-NILM algorithm is verified, it is now 

significant to create disaggregation models for the appliances that are discussed in the 

section V.5.a. These are the appliances that are present in the EXPESIGNO dataset and are 

either found in the IRISE dataset or certain appliances in IRISE dataset are found closer to 

the appliances in EXPESIGNO. It should be noted that transfer-NILM algorithm makes 

unique prediction model for each appliance. Before training models on IRISE dataset, the 

data is checked for the presence of outliers. Certain outliers are found in the data which 

represents the abnormal energy consumption of appliance at a certain instance. The outliers 

might be caused owing to the mal communication of sensor. These outliers are removed by 

the technique mentioned in the section below. 

V.7.a Removing outliers from IRISE dataset 

For an appliance X, these outliers are removed using the following technique. 

- The energy consumption of an appliance X is sorted in ascending order. The highest 

consumption being ‘Xn’. 

- A scatter plot is created. The ordinate and abscissa represent the energy 

consumption of appliance X. Figure V.9 illustrates this scatter plot. 

- Starting from the highest value ‘Xn’, if the following equation holds, 

𝑋𝑛 − 𝑋𝑛−1 >  
∑ 𝑋𝑛−𝑖

5
𝑖=1 − 𝑋𝑛−𝑖−1

5
 Equation V.5 

- i.e. the distance between two highest consumption values is greater than the average 

distances of subsequent 5 values, than either; 

o Replace the outlier value with zero if the preceding and succeeding values in 

the unsorted vector are zeros. 

o Replace the outlier value with the average of preceding and succeeding 

values in the unsorted vector, if both preceding and succeeding values are 

non-zero, otherwise replace the outlier with zero. 
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Figure V.9 Detection of outliers in washing machine of a household in IRISE dataset 

V.7.b Predictive model creation based on IRISE dataset 

To train a predictive model of an appliance for energy disaggregation, the energy 

consumption data of respective appliance and aggregated data is collected from ‘n’ 

households in IRISE dataset. where ‘n’ represents the total number of houses in which the 

data of respective appliance is found. The data is split for training, validation and testing of 

model. The data of ‘n-2’ household is kept for training; one household is kept for validation 

and one household is kept for test. The open-source algorithm with sequence to point neural 

network architecture (D’Incecco et al., 2020) as discussed in section V.6 is used to train the 

models. The reproducibility of the claimed result of this algorithm is already verified in the 

same section.  The same procedure is adapted for IRISE dataset as it was earlier used for 

the energy disaggregation of REFIT and REDD dataset. 

The models are trained for 100 epochs with early stopping. An epoch represents one 

training cycle of dataset, whereas by default the same model should be trained 100 times. 

However, with a threshold criterion fixed for early stopping, the algorithm checks if the 

decrease in validation loss between an epoch ‘n’ and ‘n-1’ is greater than the threshold value 

for three consecutive epoch runs. If the condition does not fulfill, then the training is 

stopped earlier and the model with the best validation score is saved. It is observed that the 

model training early stopped within the 5th and 10th epoch. 

The split of households with respect to each appliance (discussed in section V.5.a) is 

given in Annex E. The training and validation loss is also given Annex E.  whereas Table V.9 

represents the length of data subsets (in number of rows) for data sampled at 10 minutes as 

well as data sampled at 30 minutes. It is obvious that the values for data down sampled at 

30 minutes is one third the values of data originally sampled at 10 minutes. 
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Table V.9 The length of data subsets for training the predictive model of each appliance 

Sr. 

No. 
Appliance 

Data sampled at 10 minutes Data sampled at 30 minutes 

Training 

Subset 

(Million) 

Validation 

Subset 

(Million) 

Test 

Subset 

(Million) 

Training 

Subset 

(Million) 

Validation 

Subset 

(Million) 

Test 

Subset 

(Million) 

01 Hotplate 0.387 0.054 0.053 0.126 0.018 0.018 

02 Electric Heating 1.083 0.054 0.054 0.361 0.018 0.018 

03 Electric Oven 1.304 0.054 0.053 0.435 0.018 0.018 

04 Electric Cooker 1.458 0.054 0.053 0.488 0.018 0.018 

05 Clothes drier 1.625 0.054 0.054 0.542 0.018 0.018 

06 Dishwasher 2.485 0.054 0.053 0.832 0.018 0.018 

07 Microwave 3.624 0.054 0.053 1.211 0.018 0.018 

08 TV 4.157 0.054 0.053 1.391 0.018 0.018 

09 Washing Machine 4.490 0.054 0.053 1.502 0.018 0.018 

For the test of predictive models, the performance indicators are tabulated below in 

Table V.10. It is pertinent to discuss here that these performance indicators are different 

than the one used in section V.6. The purpose of former performance metrics is to verify the 

reproduction of the results by comparing it with the claimed results in the scientific 

publication of (D’Incecco et al., 2020). These performance metrics are given in the scientific 

publication and served to calculate the error in the prediction of energy consumption. 

Therefore, for the sake of convenience, the reproduced results are compared with the 

claimed results using the same performance metrics. In the case of detecting potential 

appliances for energy flexibility, the most significant element is to detect the state of 

appliance (i.e. ON/OFF) at each instant in the period of intervention. The prediction of 

extent of consumption is a matter of secondary importance in this regard. Therefore, our 

interest here is to detect the percentage of correctly predicted instances. 

Table V.10 The performance indicators for testing the predicted models 

Sr. 

No. 
Performance Indicator Remarks 

01 True Positive (TP) 
Actual state : ON 

Predicted state : ON 

02 True Negative (TN) 
Actual state : OFF 

Predicted state : OFF 

03 False Positive (FP) 
Actual state : OFF 

Predicted state : ON 

04 False Negative (FN) 
Actual state : ON 

Predicted state : OFF 
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05 F1 Score 

F1 score is a harmonic mean of precision49 and recall50. In the terms 

of the above 4 performance indicators, the F1 score is mathematically 

given as: 

𝐹1 = 2 ×  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=  

𝑇𝑃

𝑇𝑃 + {
1
2

× (𝐹𝑃 + 𝐹𝑁)}
 

V.7.c The results of energy disaggregation in terms of performance 

indicators 

Initially the median value (of measured consumption) is taken as a threshold for 

disaggregation results. These median values are given in Table V.2 and Table V.3 for 

resolution of 10 minutes and 30 minutes respectively. These median values are greater in 

value than 10W for the appliances except for electric cooker and TV. The threshold value 

brings sensitivity to results therefore it must be carefully selected by looking at the noise of 

the prediction. By looking at the results graphically, it is observed that the disaggregated 

curve does not have same amplitude as the measured curve of the appliance. Besides, it is 

also observed graphically that the disaggregated curve is found oscillatory within a specific 

amplitude around OX axis. Therefore, the threshold is set to 10W for all the appliances to 

suppress the effect of noise in the prediction on the results. The only exceptions in this 

regard are electric cooker and TV for which the threshold is set to 5W. 

Table V.11 The results with respect to performance indicators for data sampled at 10 minutes 

Sr. 

No. 
Appliance 

Threshold 

(W) 

True Values Performance Indicators 

ON 

(%) 

OFF 

(%) 

True 

Positive 

(TP) 

(%) 

True 

Negative 

(TN) 

(%) 

False 

Positive 

(FP) 

(%) 

False 

Negative 

(FN) 

(%) 

F1 

Score 

01 Hotplate 10 2 98 1 93 5 1 0.17 

02 
Electric 

Heating 
10 13 87 12 75 12 1 0.65 

03 
Electric 

Oven 
10 3 97 3 90 7 0 0.45 

04 
Electric 

Cooker 
5 4 96 2 83 13 2 0.21 

05 
Clothes 

drier 
10 0.44 99.56 0.38 96.49 3.07 0.05 0.2 

06 Dishwasher 10 2 98 2 94 4 0 0.5 

07 Microwave 10 3 97 1 95 2 2 0.33 

08 TV 5 27 73 24 53 20 3 0.68 

                                                        
 

49 Precision is a ratio of true positives and the actual values. In terms of true positive (TP) and false positive (FP), the precision is 

mathematically given as 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

50 Recall is a ratio of true positives and the predicted values.  In terms of true positive (TP) and false negative (FN), the recall is 

mathematically given as 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
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09 
Washing 

Machine 
10 3.62 96.38 1.73 90.88 5.72 1.67 0.32 

The results for 10 minutes sampling and 30 minutes sampling are presented in Table 

V.11 and Table V.12 respectively. For the sake of presentation, the values are rounded off, 

except for the highlighted appliances for whom it is found difficult to present results with 

rounded off numbers. Therefore, the results of these appliances are rounded off to 2 decimal 

digits. 

Table V.12 The results with respect to performance indicators for data sampled at 30 minutes 

Sr. 

No. 
Appliance 

Threshold 

(W) 

True Values Performance Indicators 

ON 

(%) 

OFF 

(%) 

True 

Positive 

(TP) 

(%) 

True 

Negative 

(TN) 

(%) 

False 

Positive 

(FP) 

(%) 

False 

Negative 

(FN) 

(%) 

F1 

Score 

01 Hotplate 10 2.41 97.59 0.88 94.04 3.55 1.53 0.26 

02 
Electric 

Heating 
10 18 82 17 58 24 1 0.58 

03 
Electric 

Oven 
10 4 96 4 90 6 0 0.57 

04 
Electric 

Cooker 
5 4 96 3 78 19 1 0.22 

05 
Clothes 

drier 
10 0.54 99.46 0.45 94.36 5.10 0.08 0.15 

06 Dishwasher 10 3 97 3 91 6 0 0.5 

07 Microwave 10 6.68 93.32 1.25 91.63 1.68 5.43 0.26 

08 TV 5 29 71 27 45 26 2 0.66 

09 
Washing 

Machine 
10 4 96 2 88 8 2 0.29 

It can be observed in Table V.11 that the ON (percentage) is very less as compared to 

OFF (percentage). The percentage value of false positive (FP) predictions is found greater 

(or equal to) the true positive (TP) predictions. It means that besides accurately predicting 

the ON instances, the model also predicts a large number of ON instances when the 

appliance was actually OFF. In addition to this, the percentage of false negatives (FN) is also 

(more or less) equal to the true positive (TP). False negative (FN) means that there were 

certain instances when the appliance was in ON state, however the model predicted that it 

is OFF. The same pattern is observed in the Table V.12 for the data sampled at 30 minutes. 

This makes a model less reliable as we expect that the number of true positives (TP) and 

true negatives (TN) should be much higher than false positives (FP) and false negatives 

(FN). Despite having considerable percentage of false positives (FP), the F1 score of certain 

appliances suggests them to be good models yet sensitive to the fixed threshold. The electric 

heating, electric oven, dishwasher and TV are notable in this regard. 
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Figure V.10 Test result for dishwasher on IRISE house 997 at sampling rate of 30 minutes 

V.8 Transferability on the EXPESIGNO dataset 

The principal objective of creating predictive models of energy disaggregation is to 

use them on the energy consumption data of treated group during the period of intervention 

on alert days. In this way, the transfer learning of the predictive models could be analyzed. 

The created predictive models are based on deep learning. Due to its ability to identify 

shared factors present in the input, deep learning is deemed good for transfer learning. 

“Although preliminary experiments have shown much potential of deep learning in transfer 

learning, applying deep learning to this field is relatively new and much more needs to be 

done for improved performance” (Chen & Lin, 2014). 

The proof of concept is presented and tested on a household of IRISE dataset for 

each appliance. The proof of concept works, though more reliable predictive models are 

sought. We need more reliable models to detect more true positives and less false positives 

so that transfer learning of predictive models from an open-source dataset (or ensemble of 

datasets) towards the EXPESIGNO dataset can be analyzed. For validation of predictive 

models, the performance of predictive models will be analyzed by using the intrusive load 

monitoring data of 4 households in EXPESIGNO dataset. It should be noted that 

instantaneous energy consumption data is recorded as appliance level for these 4 

households as part of a side project of EXPESIGNO (known as DEEP-EXPESIGNO). 

Following the validation, the measured load curve during period of intervention will be 

disaggregated to identify potential appliances. 
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V.9 Conclusion 

Energy disaggregation (particularly non-intrusive load monitoring) can serve as a 

helpful tool to analyze the impact of energy flexibility at appliance level. This does not only 

validate the potentiality of appliances for energy flexibility, but it also helps in verifying the 

impact of commitment for energy flexibility (in case commitment exists). In our experiment 

regarding nudge-based energy flexibility, the white appliances are mostly committed 

appliances.  

 Several interventions are made in our experiment. The principal objective is to 

analyze the impact of nudges at appliance level, however as a starting point, a proof of 

concept is presented. This proof-of-concept deals with the non-intrusive load monitoring 

through supervised learning using a dataset of recorded consumption at global level as well 

as at appliance level. The results of an open source NILM algorithm are reproduced to verify 

the claimed results before training the predictive models using IRISE dataset. The 

algorithm produces unique model for each appliance with respect to the given parameters.  

The test results of IRISE dataset (by models trained on same dataset) depicts that 

the models can equally (or to a larger extent) predict false positives as compared to true 

positives. The F1 score of certain appliances are found well albeit these appliances having 

more false positives as compared to true positives. Though the models are not found reliable 

enough to implement on our experiment case, yet we found that NILM can serve as a 

promising tool to measure the potential of appliances during period of interventions. Here 

we have explored only a small part of the scientific objectives of such a study. There still 

needs many points to be addressed in order to ensure the quality of the results that we will 

be able to obtain on our EXPESIGNO experiment. 
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Chapter VI  

 

 

 

Conclusion and Future Prospects 

 

 

 

This chapter presents a general conclusion of this thesis in light of preceding chapters and 

present future prospects for research work. 
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VI.1 General Conclusion 

Energy flexibility has been in practice worldwide in the form of demand response 

programs since many decades. These programs are implemented on the electric grid 

predominantly energized by conventional fossil fuel plants. However, the energy mix is in 

transition and it tends towards renewable energy sources through distributed generation. 

Where the integration of distributed renewable generation mitigates climate change to 

benefit environment, it also poses technical constraint of intermittent production (leading 

to possible network congestion). To keep energy balance in a future energy mix which is 

predominantly energized by renewable energy sources, it is inevitable to implement the 

different modes of energy flexibility. 

 Residential sector (being the highest consumer of electricity) remained the focal 

point of demand response. It still remains a potential sector to implement energy flexibility. 

Feedback is another important aspect of demand response. It can be either direct (i.e., in 

real time) or indirect (after the period of consumption). Direct energy flexibility is an 

incentive-based approach to switch loads at remote end. It is significant for industrial 

sector; however, it is not desirable for residential consumers since it is intrusive. Besides, 

there exist concerns among consumers regarding privacy and balanced use of direct load 

control. Contrary to this, the indirect energy flexibility offers price-based approaches that 

acts as extrinsic motivator for the consumers. However, there are certain factors that 

hinders the decision making of a residential consumer to implement price-based energy 

flexibility. It includes privacy, cognitive difficulty in understanding non-linear price system, 

information imperfection in the price-based signal, lack of motivation and uncertainty 

about potential consequences. Chapter I begins with a discussion on the changing 

landscape of energy mix and the constraints of traditional energy flexibility mechanisms, 

which leads us to the significance non-monetary energy flexibility mechanism and a brief 

introduction of implementation of its gist in this thesis. 

 Regarding the indirect energy flexibility, the cognitive burden of acting on price 

signal is on consumer which enables the consumer to make a controlled and calculated 

decision. The dual process theory of thinking suggests that the dynamic pricing instigates 

system 2 of thinking, which operates consciously, in control, with high effort and low-

capacity process. It makes the consumer to think about the implementation and 

consequences of responding to the price signal with certain questions i.e., a) why to act? b) 

when to act? c) how to act? and d) how did it go? This makes it riskier to implement price 

based indirect energy flexibility. Besides, the distributed generation of renewable energy is 

considered as a common pool resource. In the anticipated energy mix predominant with 

renewable energy sources, the usual energy consumption will cause scarcity of energy, 
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either through intermittency of renewable energy or high demand at a certain time. 

Therefore, it is inevitable that the individuals should implement flexibility in energy 

consumption to avoid future dilemma. The practice of energy flexibility in present will 

eventually become a habit in future.  

Chapter II begins with a discussion on the socio-cognitive constraints of human 

being. As a complement to the traditional demand response mechanisms, behavioral 

insights based energy flexibility mechanism is then presented with the introduction of 

“Nudge” (and eventually “Green Nudge”) as a tool. Nudge provides indirect suggestions to 

influence the decision making, whereas green nudge is an extension of nudge technique 

which is attributed to environmental cause. A review of nudges used in the field of energy 

worldwide is also presented. Most of these nudges used either a self-comparative or social 

comparative norm. In contrast to this, the architecture of a field experiment in residential 

sector using green nudges is presented. This non-monetary field experiment is performed 

with 175 French households (within the constraints of GDPR); categorized in control group 

and treated group. Two types of interventions are conceived i.e. orange alerts for load 

curtailment and green alerts for load shifting. The nudge signals (assisting with the curious 

questions) in the form of SMS are sent to the treated group for both types of interventions. 

The orange alerts are based on the forecasted grid congestion whereas the green alert 

requires prediction of load curve of residential sector, which is presented in the later section 

of this chapter. 

Chapter III begins with the general statistics of alerts and a comparison of socio-

technical variables of both groups. Both groups are found identical in all the statistical 

variables except the year of construction. However, this statistical variable does not have 

any concern with our experiment. Following this, the distribution of energy consumption of 

both groups is compared for normal days. The normal energy consumption of both groups 

is found similar by the visualization of distribution curve and statistical test of significant 

difference. The last section of this chapter deals with the meta-analysis of impact of nudge 

signals. It is observed that the distribution curve of treated group is shifted towards right 

for green alerts when superposed on the distribution curve of control group. In the case of 

orange alerts, the distribution curve of treated group is shifted towards left as compared to 

control group. It fairly gives a notion that the nudge signal has an impact on the energy  

consumption during the period of intervention on alert days.  

The statistical test concludes that the distribution of consumption of treated group 

for all green alerts is greater than the distribution of control group, yet the result of 

individual green alert does not support this. On contrary, the result of individual orange 

alert supports the aggregated result that the distribution of consumption of treated group 
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for all green alerts is less than the distribution of control group. The variation in the energy 

consumption is quantified for both types of alerts. On aggregated level, the treated group 

implemented load shifting of energy flexibility by 11.17% in response to green alerts, 

whereas the group implemented load curtailment by 18.21% in response to orange alerts. 

The result regarding load curtailment of 18.21% sounds better compared than the study of 

moral suasion which yielded 8% (Ito et al., 2018), whereas it is closer to the results of a 

study of similar nature which yielded load curtailment in the range of 12-20% (Jorgensen 

et al., 2021). It is worth mentioning that the subjects of our experiment are environment 

conscious, therefore, the results of green nudges could be different for a bigger sample of 

subjects having different environment related ideologies. 

 Chapter IV presents a tool that can serve to provide feedback as well as to detect 

the effort of energy flexibility for each intervention. This tool is named as reference load 

curve. The original purpose of reference load curve is to provide the treated group graphical 

indirect feedback of each intervention and to measure its impact on the energy flexibility. 

However, the low number of views by the treated group is insufficient to measure this 

impact. Yet to present the feedback, the question raised as how to formulate reference load 

curve. In this regard, a classical method, two naïve methods and two machine learning 

methods are analyzed by energy difference indicator and R2 score. According to the 

indicators, a classical reference load curve based on kernel density estimation is found 

suitable for measuring load shifting while a machine learning based reference load curve is 

found suitable for measuring load curtailment. In our experiment, we selected a naïve 

method to measure both types of energy flexibility since its results were best among the 

formerly studied methods and it is easy to explain to the treated group. 

 Unlike the comparison of control group and treated group, the reference load serves 

to measure the energy flexibility at individual level. To do so, it is imperative to first validate 

whether the reference load curve can potentially replace control group. An analysis is done 

in this regard, and it is observed that the reference load curve can replace control group for 

load curtailment. The later section presents the utility of reference load curve to detect the 

individual effort of energy flexibility and to categorize the consumers into groups i.e., a) who 

acted positive in response to nudge signal, b) who did not act positive in response to nudge 

signal and c) those for whom the impact is negligible or cannot be determined. 

 Chapter V demonstrates the frequency of committed appliances for both (green 

and orange) alert by the treated group. It serves to identify the appliances that were 

potential to implement energy flexibility during the period of intervention. A proof of 

concept is presented using NILM energy disaggregation. The idea is to use NILM for 

disaggregating the measured load curve of our experiment to identify the potentiality of an 
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appliance during the period of intervention. Yet many analyses are required to explore in 

order to ensure the quality of the results that we will be able to obtain on our experiment.   

 In a nutshell, the green nudge based non-monetary energy flexibility mechanism is 

found effective for energy flexibility of load shifting as well as load curtailment. The 

designed mechanism answers the curious questions of residential consumer upon receiving 

an energy flexibility alert. This mechanism complements the existing mechanisms of direct 

load control and dynamic pricing. The results for downward flexibility are found more 

concrete as compared to the results of load shifting. A reference load curve can replace the 

control group to detect the individual effort of energy flexibility. To identify the potentiality 

of an appliance, the NILM energy disaggregation can be used, however it needs to be 

explored in order to ensure the quality of results on our experiment. 

VI.2 Future Prospects 

This thesis offers several future prospects in multiple axes. The axes can be 

categorized based on use of other nudges in behavioral science, architecture development, 

reference load curve and data analysis in depth. We discuss each of these below. 

VI.2.a Use of other nudges of behavioral science for energy 

flexibility 

In our study, we used a set of green nudges for motivating people to implement 

energy flexibility. It includes information (of forecasted grid condition), default 

commitment, reminder and feedback. However, several other nudges should also be 

explored to implement energy flexibility. For instance, the intuitive metrics can be used to 

express information and/or the consequences of energy flexibility can be reframed in terms 

people care about (Yoeli et al., 2017).  

In addition to this, the nudge of personalized target can be explored. These nudges 

are designed for everyone separately. Each individual subject could be communicated about 

the impact of switching an appliance present in his/her household. The impact of feedback 

as a nudge is an interesting subject to explore. We have seen in our experiment that the 

subjects are seldom interested in looking at their feedback. For instance, anchoring could 

be used during the information sessions in which the subjects should be informed about the 

importance of feedback. The feedback could be intertwined with few Yes/No questions to 

be responded by the subject. This in return also give data about the extent of easiness of 

implementing energy flexibility for each subject which could then be analyzed statistically. 
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VI.2.b Architecture development for experiment 

There are certain developments that can be made as future prospect in the 

architecture. Some of these are outlined as follows. 

- The orange alerts in our experiment are based on forecasted network congestion 

(PP1/PP2) on French national grid. Like EJP which is notified with respect to the 

part of the France (north, south, east or west), the forecasted network congestion 

can be further disintegrated at department level (in France). For local energy 

communities, it is essential to be more realistic and problem-oriented that the 

forecasted network congestion of its mini-grid should be used. 

- Regarding the green alerts, a threshold of nebulosity is used as one of the criteria. It 

represents the solar energy, whereas criterion should also be explored for other 

types of renewable energy e.g., threshold for wind speed etc.  

- Auto-consumption could be taken into account while sending nudges.  

- In the architecture of our experiment, we used the modelled residential load curve 

(of national level) to evaluate a criterion of green alerts. This load curve is periodic 

within the constraints of its coefficient values. However, it would be more significant 

to model the residential load curve at experiment level. It is possible that this 

modelled load curve could not be as periodic as the national residential load curve. 

- In the architecture of our experiment, we only took into account the smoothened 

national temperature for the prediction of modelled residential load curve. The 

historical data of pseudo-radiation (in percentage) is also given at national level. The 

impact of this variable could be explored for the prediction of residential load curve. 

Besides, we used random forest for prediction (with good results), however other 

techniques should also be explored, for instance deep learning (though it needs a 

large amount of data). 

VI.2.c Reference Load curve 

Reference load curve is a significant tool that has been explored for the sake of this 

experiment at a greater extent. However, according to our information, the work in this 

regard is preliminary and offers a lot of prospects. Some of these are outlined here. 

- Since reference load curve is a prediction, therefore methods other than Random 

Forest should also be explored. For instance, deep learning with a sufficient amount 

of data might give better results than machine learning models. 

- Only two performance indicators are explored in this thesis. Other performance 

indicators should also be explored for better presentation of suitability of a method 

to formulate reference load curve. 
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- With our analysis, we cannot show that the reference load curve can replace control 

group to detect and measure load shifting. However, this area of research deserves 

a lot of improvement and several methods of formulating reference load curve 

should be analyzed in this regard in future. 

- Based on a sensitivity analysis of the thresholds for detecting positively acting 

subjects, a most suitable threshold value should be selected.  

VI.2.d In-depth data analysis of potential appliances for energy 

flexibility 

In Chapter V, a proof of concept regarding in-depth analysis of potential appliances 

for energy flexibility is presented. It offers several future prospects, of which some are 

mentioned below. 

The impact of resolution on NILM should be evaluated in depth. It should be 

evaluated in depth that whether the models trained on higher resolution are equally 

(or near equally) effective to disaggregate the aggregated load curve of lower 

resolution. 

The impact of training NILM models on an ensemble of open-source datasets (for a 

fixed value of resolution) should be evaluated. With respect to the performance 

indicators, the impact of training on individual datasets should be compared with 

the training on ensemble of datasets.  

Finally, the models should be tested on the EXPESIGNO dataset to identify and 

quantify the potentiality of appliances during the period of intervention. A naïve 

method of quantification in terms of percentage could be using the formula below. 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 (𝑜𝑟 𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔) 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑖𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑎𝑙𝑒𝑟𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑤ℎ𝑜 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 𝑡ℎ𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒
∗ 100 
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ANNEX A 

A.1 Web interface of Etude Elec Site 

 

A.2 Homepage of personal account 
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A.3 Default commitments for green alert 

 

A.4 Default Commitment of Orange Alert 
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A.5 Feedback of the alert 
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ANNEX B 

B.1 Household Characteristics 

B.1.i Owner/Tenant 

This variable concerns the status of households regarding their housing (owner or tenant). 

Table B.1: Distribution of household status according to group 

Status 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

Owner 62 78.5 74 77.9 

Tenant 17 21.5 21 22.1 

Total 79 100 95 100 

B.1.ii House/Apartment 

This variable concerns the type of housing of the household (apartment or house).   

Table B.2: Distribution of the type of housing of households according to the groups 

Status 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

House 36 54.4 50 52.6 

Apartment 43 45.6 45 47.4 

Total 79 100 95 100 

B.1.iii Surface of household 

This variable represents the living area of the household of both groups. In order to use this 

variable, it was necessary to make groupings into classes. The surface areas are grouped by 

classes of 50, whereas the last grouping is between from 150 to 400. 

Table B.3: Distribution of liveable area by group 

Surface Area 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

[0-50[ 5 6.3 9 9.4 

[50-100[ 45 57.0 51 53.7 

[100-150[ 24 30.4 24 25.3 

[150-400] 5 6.3 11 11.6 

Total 79 100 95 100 
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B.1.iv Year of construction 

This variable provides information on the period of construction of the household.  

Table B.4: Distribution of the period of construction of the household according to the 

groups 

Year of 

Construction 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

Avant 1949 9 11.4 7 7.4 

1949-1961 2 2.5 13 13.7 

1962-1974 31 39.2 23 24.2 

1975-1989 14 17.7 16 16.8 

1990-2012 18 22.8 25 26.3 

Après 2012 5 6.3 11 11.6 

Total 79 100 95 100 

B.1.v  Number of persons in the household 

This variable concerns the number of persons per household.  

Table B.5: Distribution of the number of people in the household according to the 

groups 

Number of 

Persons 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

1 8 10.10 13 13.70 

2 20 25.30 25 26.30 

3 24 30.40 22 23.20 

4 16 20.30 22 23.20 

5 or more 11 14.00 13 13.70 

Total 79 100 95 100 

B.1.vi Presence in the household at least 3 days per week 

(during weekdays) 

This variable corresponds to the household response for the question; "In your dwelling is 

there a person during the day at least 3 days a week (excluding weekends)?" 
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Table B.6: Distribution of the presence of a person in the dwelling at least 3 days a week 

Presence 3 days 

per week 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

Yes 36 45.6 49 51.6 

No 43 54.4 46 48.4 

Total 79 100 95 100 

B.1.vii Types of electric heating 

This variable provides information on the type of heating used by households.  

Table B.7: Distribution of different types of heating according to group 

Type of Heating 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

Gas 53 67.1 64 67.4 

Electricity 7 8.9 9 9.5 

Liquid Fuel 4 5.1 5 5.3 

Granular Wood 1 1.3 5 5.3 

Inverter AC 0 0.0 2 2.1 

Other 14 17.7 10 10.5 

Total 79 100 95 100 

B.2 Presence of appliances 

B.2.i  Electric water heater 

This variable addresses whether or not the household has a water heater. 

Table B.8: Distribution of water heater ownership by group 

Presence of 

water heater 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

Yes 22 72.2 21 22.1 

No 57 27.8 74 77.9 

Total 79 100 95 100 

B.2.ii Air Conditioning 

This variable provides information on the presence of air conditioning in households.  
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Table B.9: Distribution of presence of air conditioning by group 

Presence of air 

conditioner 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

Yes 5 6.3 8 8.4 

No 74 93.7 87 91.6 

Total 79 100 95 100 

B.2.iii Heat Pump 

This variable provides information on presence of heat pump in the household.   

Table B.10: Distribution of presence of heat pump by group 

Presence of heat 

pump 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

Yes 4 5.1 6 6.3 

No 75 94.9 89 93.7 

Total 79 100 95 100 

B.2.iv PV panels 

This variable allows us to see whether or not households have photovoltaic panels.  

Table B.11: Distribution of presence of PV panel by group 

Presence of PV 

panels 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

Yes 0 0 3 3.2 

No 79 100 92 96.8 

Total 79 100 95 100 

B.2.v Double glazing of windows 

It is interesting to know about the presence of double glazed windows in the dwelling of 

households.  

Table B.12: Distribution of presence of double glazing by group 

Presence of 

double glazed 

windows 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

Yes 66 83.5 84 88.4 

No 5 6.3 8 8.4 

Partially 8 10.1 3 3.4 

Total 79 100 95 100 
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B.3 Number of appliances in household 

B.3.i Electric Oven 

This variable refers to the number of ovens present per household.  

Table B.13: Distribution of number of ovens according to group 

Number of 

electric ovens 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

0 2 2.5 2 2.1 

1 70 88.6 85 89.5 

2 7 8.9 8 8.4 

Total 79 100 95 100 

B.3.ii Dishwasher 

This variable provides information on the number of dishwashers per household.  

Table B.14: Distribution of number of dishwashers by group 

Number of 

dishwashers 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

0 16 20.3 15 15.8 

1 63 79.7 80 84.2 

Total 79 100 95 100 

B.3.iii Washing Machine 

This variable shows the number of washing machines present in the homes.  

Table B.15: Distribution of number of washing machines according to group 

Number of 

washing 

machines 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

0 1 1.3 0 0 

1 77 97.5 95 100 

2 1 1.3 0 0 

Total 79 100 95 100 

B.3.iv Cloth Dryer 

This variable provides information on the number of clothes dryers owned by households.  
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Table B.16: Distribution of number of clothes dryers by group 

Number of cloth 

dryers 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

0 61 77.2 65 68.4 

1 18 22.8 30 31.6 

Total 79 100 95 100 

B.3.v Electric Vehicle 

This variable tells us whether or not households have an electric vehicle.  

Table B.17: Distribution of number of electric vehicle by group 

Number of cloth 

dryers 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

0 79 100 93 97.9 

1 0 0 2 2.1 

Total 79 100 95 100 

B.4 Energy Consumption during weekdays 

B.4.i Pressing Iron 

This variable concerns with the hour of use of the iron during a weekday.  

Table B.18: Distribution of iron use during a weekday 

Time of use of 

pressing iron 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

6 AM to 9 AM 10 22.7 10 16.9 

9 AM to Noon 5 11.3 7 11.8 

Noon to 3 PM 1 2.3 3 5.1 

3 PM to 6 PM 3 6.8 7 11.8 

6 PM to 8 PM 7 15.1 14 23.7 

8 PM to 11 PM 15 34.1 17 28.8 

11 PM to 6 AM 1 2.3 1 1.7 

Don’t know 2 4.5 0 0 

Total 79 100 95 100 

B.4.ii Electric Oven 

This variable corresponds to the use of the oven on weekdays.  
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Table B.19: Distribution of electric oven use during weekday 

Time of use of 

electric oven 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

6 AM to 9 AM 4 5.3 4 3.4 

9 AM to Noon 8 10.5 9 7.6 

Noon to 3 PM 6 7.9 11 9.3 

3 PM to 6 PM 3 3.9 7 5.9 

6 PM to 8 PM 49 64.4 65 55.0 

8 PM to 11 PM 6 7.9 21 17.7 

11 PM to 6 AM 0 0 1 0.8 

Don’t know 0 0 0 0 

Total 79 100 95 100 

B.4.iii Dishwasher 

This variable corresponds to dishwasher use on weekdays. 

Table B.20: Distribution of dishwasher use on weekdays 

Time of use of 

dishwasher 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

6 AM to 9 AM 5 7.9 8 8.6 

9 AM to Noon 5 7.9 9 9.7 

Noon to 3 PM 5 7.9 9 9.7 

3 PM to 6 PM 3 4.8 6 6.5 

6 PM to 8 PM 6 9.5 5 5.4 

8 PM to 11 PM 31 49.2 43 46.2 

11 PM to 6 AM 8 12.7 13 14.0 

Don’t know 0 0 0 0 

Total 79 100 95 100 

B.4.iv Washing Machine 

This variable refers to the use of the washing machine on weekdays.  

Table B.21: Distribution of washing machine use on weekdays 

Time of use of 

washing 

machine 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

6 AM to 9 AM 5 6.7 6 5.5 

9 AM to Noon 18 24.0 20 18.2 

Noon to 3 PM 1 1.3 13 11.8 

3 PM to 6 PM 15 20.0 16 14.5 

6 PM to 8 PM 17 22.7 28 25.5 
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8 PM to 11 PM 14 18.7 16 14.5 

11 PM to 6 AM 3 4.0 9 8.2 

Don’t know 2 2.7 2 1.8 

Total 79 100 95 100 

B.4.v Cloth Dryer 

This variable refers to the use of the cloth dryer on weekdays.  

Table B.22: Distribution of cloth dryer use on weekdays 

Time of use of 

cloth dryer 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

6 AM to 9 AM 0  0 2  8.0  

9 AM to Noon 3  21.4  6  24.0  

Noon to 3 PM 0  0 3  12.0  

3 PM to 6 PM 1  7.1  0  0 

6 PM to 8 PM 2  14.3  5  20.0  

8 PM to 11 PM 5  35.7  8  32.0  

11 PM to 6 AM 1  7.1  1  4.0  

Don’t know 2  14.3  0  0 

Total 79 100 95 100 

B.4.vi Electric hotplates 

This variable refers to the use of the induction plates for the purpose of cooking on 

weekdays.  

Table B.23: Distribution of induction plates use on weekdays 

Time of use of 

hotplate 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

6 AM to 9 AM 5 8.9 8 9.9 

9 AM to Noon 8 14.3 10 12.3 

Noon to 3 PM 10 17.9 13 16.0 

3 PM to 6 PM 1 1.8 0 0 

6 PM to 8 PM 27 48.2 37 45.7 

8 PM to 11 PM 5 8.9 12 14.8 

11 PM to 6 AM 0 0 1 1.2 

Don’t know 0 0 0 0 

Total 79 100 95 100 

B.4.vii Radiator 

This variable refers to the use of the electric radiator for space heating on weekdays.  

 



161 
 

Table B.24: Distribution of electric radiator use on weekdays 

Time of use of 

electric radiator 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

6 AM to 9 AM 6 28.6 11 50.0 

9 AM to Noon 1 4.8 0 0 

Noon to 3 PM 0 0 0 0 

3 PM to 6 PM 0 0 0 0 

6 PM to 8 PM 12 57.1 9 40.9 

8 PM to 11 PM 2 9.5 1 4.5 

11 PM to 6 AM 0 0 0 0 

Don’t know 0 0 1 4.5 

Total 79 100 95 100 

B.5 Energy Consumption during the weekend 

B.5.i Pressing Iron 

This variable concerns with the hour of use of the iron during a weekend. 

Table B.25: Distribution of iron use during a weekend 

Time of use of 

pressing iron 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

6 AM to 9 AM 1 2.6 2 3.4 

9 AM to Noon 10 26.3 15 25.4 

Noon to 3 PM 2 5.2 1 1.7 

3 PM to 6 PM 5 13.1 15 25.4 

6 PM to 8 PM 9 23.6 10 16.9 

8 PM to 11 PM 6 15.7 13 22.0 

11 PM to 6 AM 0 0.0 1 1.7 

Don’t know 5 13.1 2 3.4 

Total 79 100 95 100 

B.5.ii Electric Oven 

This variable corresponds to the use of the oven on weekend.  

Table B.26: Distribution of electric oven use during weekend 

Time of use of 

electric oven 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

6 AM to 9 AM 1 2.6 2 3.4 

9 AM to Noon 10 26.3 15 25.4 

Noon to 3 PM 2 5.3 1 1.7 



162 
 

3 PM to 6 PM 5 13.2 15 25.4 

6 PM to 8 PM 9 23.7 10 16.9 

8 PM to 11 PM 6 15.8 13 22.0 

11 PM to 6 AM 0 0 1 1.7 

Don’t know 5 13.2 2 3.4 

Total 79 100 95 100 

B.5.iii Dishwasher 

This variable corresponds to dishwasher use on weekends. 

Table B.27: Distribution of dishwasher use on weekends 

Time of use of 

dishwasher 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

6 AM to 9 AM 1 1.3 4 4.2 

9 AM to Noon 10 1.3 14 14.7 

Noon to 3 PM 13 17.3 16 16.8 

3 PM to 6 PM 12 16.0 8 8.4 

6 PM to 8 PM 5 6.7 6 6.3 

8 PM to 11 PM 24 32.0 31 32.6 

11 PM to 6 AM 10 13.0 11 11.6 

Don’t know 0 0 5 5.3 

Total 79 100 95 100 

B.5.iv Washing Machine 

This variable refers to the use of the washing machine on weekend.  

Table B.28: Distribution of washing machine use on weekend 

Time of use of 

washing 

machine 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

6 AM to 9 AM 6 6.1 6 5.3 

9 AM to Noon 34 34.7 49 43.0 

Noon to 3 PM 16 16.3 14 12.3 

3 PM to 6 PM 17 17.3 16 14.0 

6 PM to 8 PM 9 9.2 11 9.6 

8 PM to 11 PM 9 9.2 10 8.8 

11 PM to 6 AM 3 3.1 6 5.3 

Don’t know 4 4.1 2 1.8 

Total 79 100 95 100 
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B.5.v Cloth Dryer 

This variable refers to the use of the cloth dryer on weekend.  

Table B.29: Distribution of cloth dryer use on weekend 

Time of use of 

cloth dryer 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

6 AM to 9 AM 0  0 2  8.0  

9 AM to Noon 3  16.0  6  24.0  

Noon to 3 PM 2  11.0  5  20.0  

3 PM to 6 PM 4  22.0  1  4.0  

6 PM to 8 PM 3  16.0  4  16.0  

8 PM to 11 PM 4  22.0  4  16.0  

11 PM to 6 AM 0  0 2  8.0  

Don’t know 2  11.0  1  4.0  

Total 79 100 95 100 

B.5.vi Electric hotplates 

This variable refers to the use of the induction plates on weekend.  

Table B.30: Distribution of induction plates use on weekend 

Time of use of 

hotplate 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

6 AM to 9 AM 3 4.6 8 7.3 

9 AM to Noon 11 16.9 21 19.1 

Noon to 3 PM 18 27.7 26 23.6 

3 PM to 6 PM 3 4.6 4 3.6 

6 PM to 8 PM 24 36.9 37 33.6 

8 PM to 11 PM 6 9.2 14 12.7 

11 PM to 6 AM 0 0 0 0 

Don’t know 0 0 0 0 

Total 79 100 95 100 

B.5.vii Radiator 

This variable refers to the use of the electric radiator for space heating on weekdays.  
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Table B.31: Distribution of electric radiator use on weekdays 

Time of use of 

electric radiator 

Control Group Treated Group 

Number of 

subjects 

Percentage 

(%) 

Number of 

subjects 

Percentage 

(%) 

6 AM to 9 AM 4 20.0 4 17.4 

9 AM to Noon 2 10.0 7 30.4 

Noon to 3 PM 0 0 0 0 

3 PM to 6 PM 1 5.0 1 4.3 

6 PM to 8 PM 11 55.0 8 34.8 

8 PM to 11 PM 2 10.0 1 4.3 

11 PM to 6 AM 0 0 0 0 

Don’t know 0 0 2 8.7 

Total 79 100 95 100 
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ANNEX C 

C.1 The results of OLS regression for all green alerts 
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C.2 The results of OLS regression for green alerts of 

session 1 
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C.3 The results of OLS regression for green alerts of 

session 2 
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C.4 The results of OLS regression for all orange alerts 
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C.5 The results of OLS regression for orange alerts of 

session 1 
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C.6 The results of OLS regression for orange alerts of 

session 2 
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ANNEX D 

D.1 The Mann-Whitney U Test for green alert days of 

both sessions using random forest (sequence to 

sequence) reference load curve in place of control 

group 

Sr. 

No 
Alert Date 

Reference Load 

Curve 
Treated Group Mann-Whitney U Test 

µr - 

µT 
Obs µr бr Obs µT бT Stat 

p-

valu

e 

Null 

hypo-

thesis 

retaine

d 

Green Session 1 

1 27-07-2020 0.74 0.7 71 0.99 1.21 2374 0.28 Yes -0.25 0.74 

2 25-08-2020 0.79 0.56 34 0.81 0.64 143 0.6 Yes -0.02 0.79 

3 14-09-2020 0.71 0.82 88 0.79 0.83 3579 0.41 Yes -0.08 0.71 

4 17-09-2020 0.71 0.6 88 0.77 0.68 3797 0.41 Yes -0.06 0.71 

5 22-09-2020 0.7 0.57 88 0.79 0.96 3968 0.61 Yes -0.09 0.7 

Green Session 2 

6 14-06-2021 85 0.73 0.63 85 1.01 1 3299 0.16 Yes -0.28 

7 06-09-2021 - - - - - - - - - - 

Aggregated Result 

Aggregated 
423 0.72 

0.6

7 454 0.86 0.93 

9304

0 0.21 Yes -0.14 

D.2 The Mann-Whitney U Test for orange alert days of 

both sessions random forest (sequence to sequence) 

reference load curve in place of control group 

Sr. 

No 
Alert Date 

Reference Load 

Curve 
Treated Group Mann-Whitney U Test 

µr - 

µT Ob

s 
µr бr Obs µT бT Stat 

p-

valu

e 

Null 

hypothe

sis 

retaine

d 

Orange Session 1 

1 14-11-2019 91 1.63 1.99 91 1.32 2.41 5089 1 Yes 0.31 

2 20-12-2019 90 1.09 0.82 90 0.92 0.74 4615 0.95 Yes 0.17 
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3 20-01-2020 92 1.32 1.28 92 1.3 1.57 4742 0.92 Yes 0.02 

4 06-02-2020 91 1.42 1.29 91 1.11 1.31 5194 1 Yes 0.31 

5 19-02-2020 91 1.27 1.17 91 1.19 1.29 4656 0.93 Yes 0.08 

6 27-02-2020 91 1.18 1.16 91 1.23 1.32 4356 0.73 Yes -0.05 

7 02-03-2020 90 1.15 1.06 90 0.93 1.07 4870 0.99 Yes 0.22 

8 04-03-2020 91 1.2 1.21 91 0.98 1.06 4844 0.98 Yes 0.22 

9 09-03-2020 90 0.97 1 90 1.26 1.91 3883 0.32 Yes -0.29 

Orange Session 2 

10 30-11-2020 88 1.43 1.03 88 1.21 0.9 4427 0.95 Yes 0.22 

11 02-12-2020 89 1.48 1.26 89 1.4 1.06 4092 0.65 Yes 0.08 

12 04-12-2020 89 1.35 1.1 89 1.25 1.15 4298 0.84 Yes 0.1 

13 07-12-2020 89 1.39 1.13 89 1.4 1.43 4242 0.79 Yes -0.01 

14 09-12-2020 89 1.33 1.03 89 1.48 1.32 3913 0.45 Yes -0.15 

15 18-12-2020 88 1.47 1.35 88 1.19 1.05 4503 0.97 Yes 0.28 

16 04-01-2021 88 1.49 1.51 88 1.57 1.79 3954 0.6 Yes -0.08 

17 06-01-2021 88 1.62 1.58 88 1.61 2.11 4251 0.87 Yes 0.01 

18 08-01-2021 88 1.61 1.74 88 1.4 1.97 4563 0.98 Yes 0.21 

19 11-01-2021 88 1.54 1.88 88 1.75 1.92 3653 0.26 Yes -0.21 

20 26-01-2021 87 1.34 1.19 87 1.37 1.23 3830 0.56 Yes -0.03 

21 11-02-2021 87 1.35 1.41 87 1.23 1.44 4116 0.84 Yes 0.12 

Aggregated Result 

Aggregated 
187

5 1.36 1.34 1875 1.29 1.51 

19299

17 1 Yes 0.07 
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ANNEX E 

E.1 The split of IRISE households data with respect to 

each appliance 

Sr. 

No. 
Appliance Name 

Households 

Training subset 
Validation 

subset 

Test 

subset 

01 Hot plate 908, 916, 946, 947, 967, 974, 975, 980 982 983 

02 Electric Heating 

909, 914, 921, 928, 934, 936, 938, 944, 945, 953, 

954, 959, 967, 968, 969, 971, 974, 975, 977, 978, 

982 

983 990 

03 Electric Oven 

908, 916, 919, 922, 926, 927, 931, 935, 937, 939, 

943, 946, 947, 949, 952, 955, 956, 966, 970, 973, 

974, 978, 979, 980, 982 

996 997 

04 Electric Cooker 

993, 904, 906, 909, 910, 911, 912, 914, 915, 917, 

918, 921, 923, 924, 928, 932, 933, 938, 941, 945, 

948, 951, 964, 968, 972, 984, 985, 986 

987 902 

05 Clothes Drier 

901, 902, 904, 907, 908, 914, 915, 927, 928, 930, 

931, 934, 936, 938, 939, 940, 943, 944, 946, 947, 

952, 959, 960, 962, 965, 966, 970, 972, 978, 987, 

989 

992 996 

06 Dishwasher 

901, 903, 907, 908, 910, 914, 916, 917, 920, 922, 

925, 926, 928, 930, 931, 933, 936, 937, 938, 939, 

940, 941, 943, 944, 946, 947, 948, 949, 950, 952, 

953, 961, 964, 966, 969, 970, 972, 974, 979, 980, 

981, 983, 984, 985, 989, 991, 993 

996 997 

07 Microwave Oven 

901, 902, 905, 906, 907, 908, 909, 910, 913, 914, 

915, 916, 917, 918, 919, 920, 921, 922, 925, 927, 

928, 929, 931, 932, 933, 934, 937, 939, 941, 942, 

943, 945, 946, 947, 949, 950, 951, 952, 956, 957, 

958, 959, 960, 962, 964, 967, 969, 971, 973, 975, 

976, 977, 979, 980, 981, 982, 983, 984, 985, 986, 

987, 988, 989, 990, 991, 992, 993, 994, 995 

996 997 

08 TV 

901, 902, 905, 906, 908, 909, 910, 911, 912, 913, 

914, 915, 916, 917, 918, 920, 921, 922, 923, 924, 

927, 928, 929, 930, 932, 933, 934, 935, 936, 937, 

938, 940, 941, 942, 945, 947, 949, 950, 952, 953, 

954, 955, 956, 957, 958, 959, 960, 962, 963, 964, 

966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 

976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 

986, 987, 988, 989, 990, 992, 993, 994, 995 

996 997 

09 Washing Machine 
900, 901, 902, 903, 904, 905, 906, 907, 908, 

909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 

996 997 
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919, 920, 921, 923, 924, 925, 926, 927, 928, 930, 

931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 

941, 942, 943, 944, 945, 946, 947, 949, 950, 951, 

952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 

962, 963, 964, 965, 966, 967, 971, 972, 973, 975, 

976, 978, 979, 980, 981, 984, 985, 986, 987, 988, 

989, 990, 991, 993, 994, 995 

E.2 The length of data subsets for training the 

predictive model of each appliance 

Sr. No. Appliance 

Data sampled at 10 minutes Data sampled at 30 minutes 

Training 

Loss 

Validation 

Loss 

Training 

Loss 

Validation 

Loss 

01 Hotplate 0.05 0.05 0.07 0.06 

02 
Electric 

Heating 

0.14 0.02 0.09 0.02 

03 Electric Oven 0.08 0.06 0.12 0.11 

04 Electric Cooker 0.11 0.12 0.15 0.16 

05 Clothes drier 0.06 0.02 0.09 0.22 

06 Dishwasher 0.03 0.02 0.07 0.03 

07 Microwave 0.06 0.03 0.09 0.04 

08 TV 0.47 0.37 0.46 0.37 

09 
Washing 

Machine 

0.13 0.12 0.10 0.09 
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ANNEX F 

F.1 Test result for hotplate on IRISE house 993 at 

sampling rate of 30 minutes 

 

F.2 Test result for electric heating on IRISE house 

990 at sampling rate of 30 minutes 
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F.3 Test result for electric oven on IRISE house 997 at 

sampling rate of 30 minutes 

 

F.4 Test result for electric cooker on IRISE house 902 

at sampling rate of 30 minutes 
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F.5 Test result for clothes drier on IRISE house 996 

at sampling rate of 30 minutes 

 

F.6 Test result for dishwasher on IRISE house 997 at 

sampling rate of 30 minutes 

 

 

 

 



178 
 

F.7 Test result for microwave oven on IRISE house 

997 at sampling rate of 30 minutes 

 

F.8 Test result for tv on IRISE house 997 at sampling 

rate of 30 minutes 
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F.9 Test result for washing machine on IRISE house 

997 at sampling rate of 30 minutes 
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RÉSUMÉ 

 

La transition énergétique vers les sources d'énergie renouvelables est essentielle 

pour atténuer le changement climatique. Mais, l'énergie renouvelable est intermittente en 

nature, ce qui peut entraîner à l'avenir une congestion du réseau lors des pics de 

consommation. Par conséquent, la flexibilité d'énergie est inévitable en complément de la 

gestion de l'offre et du stockage de l'énergie. Le secteur résidentiel est le plus gros 

consommateur d'énergie et il est donc essentiel de mettre en œuvre la flexibilité d'énergie. 

En complément des approches existantes, nous présentons dans cette thèse une flexibilité 

"indirecte" non monétaire par la mise en œuvre d'une expérience de science 

comportementale avec 175 ménages français. L'ensemble des "nudges" utilisés dans cette 

expérience n'oblige pas les participants à mettre en œuvre la flexibilité énergétique pour des 

raisons de gain monétaire ou d'aversion aux pertes. 

 

Les alertes sont générées par des algorithmes prédictifs et envoyées par SMS à un 

groupe de ménages dans le but d'effectuer soit un transfert de charge, soit une effacement 

d'énergie. Les alertes sont complétées par des suggestions sur l'utilisation (ou non) 

d'appareils engagés pour mettre en œuvre la flexibilité d'énergie. Après chaque alerte, le 

groupe reçoit un retour graphique dans lequel la courbe de charge mesurée par le compteur 

intelligent LINKY est superposée à une courbe de référence théorique propre à chaque 

ménage. En comparaison avec un groupe de contrôle, nous pouvons quantifier l'impact de 

ces signaux de "nudge" sur la consommation d'énergie du groupe traité. Enfin, un 

algorithme de désagrégation énergétique est présenté qui nous permettra de détecter les 

équipements utilisés lors de la flexibilité et ainsi faire une analyse de l'engagement des 

ménages à rechercher des appareils potentiels pour la flexibilité énergétique. 


