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Abstract

The energy transition towards renewable energy sources and distributed generation
is essential to mitigate climate change. However, the renewable energy sources are
intermittent in nature, and therefore it may cause network congestion during peak
consumption in future. Therefore, demand side energy flexibility is inevitable in
complement to the supply side management and energy storage. The residential sector is
the largest energy consumer and is therefore essential to implement demand-side energy
flexibility. In addition to the existing approaches of energy flexibility, we present in this
thesis a non-monetary “indirect" flexibility through the implementation of a behavioral
science experiment with 175 French households. The set of nudges used in this experiment
does not oblige the participating households to implement energy flexibility for either

monetary gain or loss aversion.

Nudge alerts are generated by predictive algorithms and sent by SMS to a group of
households with the aim of carrying out either load shifting or load shedding. The nudge
alerts are complemented with the suggestions about using (or not using) committed
appliances to implement energy flexibility. After each alert, the group receives graphical
feedback in which the load curve measured by LINKY smart meter is superposed by a
theoretical reference curve specific to each household. In comparison to a control group, we
can quantify the impact of these nudge signals on the energy consumption of the treated
group. Finally, an energy disaggregation algorithm is presented that will allow us to detect
the equipment used during the flexibility and thus will do an analysis of the commitment of

households to look for potential appliances for energy flexibility.
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ChapterI

Electricity grid and social challenge: Inevitability of

residential consumer participation in energy flexibility

Energy flexibility has been in practice since many decades. However, in a future
energy mix predominant with distributed generation of renewable sources, the need of
demand side energy flexibility will be inevitable to complement supply side management
and energy storage. The residential sector remains the focus of demand response programs,
however the traditional demand response technique brings certain constraints towards the

decision making of residential consumer.

This chapter emphasizes the need on energy flexibility in the future. In addition to
existing demand response technique, a new technique is briefly introduced. The purpose of
this technique is to use behavioral insights to aid the decision making of residential

consumer without causing any monetary loss.






I.L1 Electricity Supply, Associated CO:z Emission and
Necessity of Energy Flexibility

I.1.a Energy transition as a tool to mitigate climate change

The supply of sustainable energy is a necessity for humankind. Solar energy remains
the most used form of energy as it provides heat and light throughout the day. The discovery
of fossil energy sources and technologies introduced industrial eras in the world. The first
industrial era in 19%* century served the humanity with coal for mass scale energy
consumption. The second industrial era in 20t century centralized electricity as bulk energy
source for mass scale consumption. Electrical energy is traditionally generated by base load
power plants and peak load power plants. The base load power plants (such as hydroelectric,
coal-fired and nuclear power plants) are operational all the time. The energy provided by
these power plants ensures fulfillment of minimum level of demand on an electrical grid.
Conventionally, the peak load power plants (such as oil-fired and gas-fired power plants)

are connected to the electric grid for balancing peak energy consumption.

The reliance on fossil fuel power plants brings CO. emission, which is a main
contributor in the phenomenon of global warming. This leads to the climate change. The
issue of climate change has been in discussion worldwide in a series of conferences since
1992. As a result, 191 head of states ratified ‘Paris Agreement’ in COP21. This agreement
binds the signatories to hold “the increase in the global average temperature to well below

2 °C the pre-industrial levels” by the end of 21st century (United Nations, 2015).

The global warming beyond 1.5 °C is an existential threat to the biosphere and it has
a considerable impact on human life. It is estimated by the pledges and targets of various
countries that the global warming may reach 2.4 °C by the end of this century; however,
with the current policies in place, the global warming may reach 3.1 °C by the end of this
century (Climate Action Tracker, 2021). The projections are alarming for the sustainability
of biosphere and the impact of climate change will become harsher over the course of time.

Some impacts of climate change that the humanity is currently facing are as follows:

- Increased frequency of direct impacts i.e., drought, flood, heatwave and wildfire;
- Increase in indirect impacts i.e., water quality, air quality and ecological change;
- Variation in environmental factors i.e., geography and vegetation;

- Social impacts i.e., loss of habitation, poverty and hunger;

1 COP21 is the 21 Conference of Parties (COP21) organized by UNFCCC (United Nations Framework Convention on Climate Change)
in Paris in November 2015.
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- Health impacts like mental stress, undernutrition, respiratory and cardiovascular

disease (World Health Organisation, 2018)

The scientists argue that the atmospheric CO. concentration must not exceed 350 ppm?
to maintain the global warming significantly less than 1.5 °C, however this threshold is
surpassed in 1988 whereas it is exceeded to 410 ppm in 2020 (Desing & Widmer, 2021).
Figure 1.1 represents the global warming projection until 2100. It is therefore required to

decrease the atmospheric CO. concentration by decreasing the CO. emissions.
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Emissions and expected warming based on pledges and current policies Tracker

B 70 May 2021 update
@
>
> 60 Warming projected
S 50 by 2100
] Current policies
w40 2.7-3.1°C
2 Historical
g 30 2.4°C
= .
v 20
£
Qo 10 2.0°C
o
S o0
L 1.6-1.7°C
o

-10

20 1.3°C

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Figure I.1 Global Warming Projection w.r.t different scenarios until 2100 (Climate Action Tracker,

2021)

During 2018, an increase of 1 °C in the global temperature of the earth is observed
with respect to the average global temperature of pre-industrial period (1850 to 1900),
whereas an increase of 2.1 °C is observed in metropolitan France with respect to the average
temperature of the period between 1961 and 1990 (Manuel Baude et al., 2021). The power
generation from fossil fuel is a major contributor of CO, emissions in the world. During
2018, the electricity production accounted for 41% of CO. emission in the world, whereas
6.67% of total CO, emission in France is caused by electricity production (Manuel Baude et

al., 2021; Réseau de Transport d Electricité France, 2018).

Keeping in account the CO, emissions pertained to the electricity production, the
exigency of mitigating climate change brought an evolution in the energy sector during 215t
century. This evolution is not only caused by the continuous depletion of primary fossil fuel,
but it also imparts the quest for consuming sustainable energy. In the third industrial era,

the renewable energy (e.g., solar and wind energy) is preferred over the fossil fuel plants at

2 Parts per million



grid level as well as at micro-grid level. The transition of energy landscape is under process

and is essential to bring sustainable energy to the doorstep of humankind.

The application of renewable sources also bring innovation in the domain of micro-
grid. Prosumerism (also known as auto-consumption) is one of these innovations, which
tend individuals to generate, self-consume and sell electrical energy from renewable
source(s) at their local site. Generally, the prosumers install photovoltaic solar panels or
biogas plant along with electricity storage at their local site. Local energy communities also
came in to being as an extension of individual prosumers. These energy communities
produce and self-consume energy from renewable sources. The prosumers sell excess
energy to either national grid or make peer-to-peer energy exchange on low voltage micro-
grid. The decentralization of renewable energy production (with its merits and limitations)
makes individuals (and local communities) more self-sufficient in their need of energy

consumption via micro-grids, which may also solve the problem of price fluctuation.

I.1.b The quest for sustainable energy mix in European Union and in

France

In pursuit of having a sustainable energy mix, European Union is actively working
in coordination with its member countries by issuing climate change directives. For this
purpose, the European Union set short term, medium term and long-term goals for 2020,
2030 and 2050 respectively. As a long term goal, the European Union aims “to achieve net-
zero greenhouse gas emissions by 2050 through a socially fair transition in a cost-efficient

manner” (European Commission, 2018).

TableI.1  Short Term and Medium Term Targets set by EU to mitigate climate change (Amanatidis, 2019)

. Climate and
Climate and
. . Energy
Directives | Energy Package
Framework
Targets 2020
2030
GHG emission reduction target (below 1990 levels) 20% 40%
Increase in share of energy consumption from renewable sources 20% 27%
Improving energy efficiency to reduce the use of primary energy
20% 27%
compared to forecasted levels

During 2019, the GHG emissions was reduced by 24% (as compared to 1990 level)
in 27 EU member states; in which the power sector remained a major contributor with a
reduction of 15% GHG emissions (European Commission, 2020). The share of final
electricity from renewable energy production is 34% in 2020 (Potr¢ et al., 2021). These
achievements set a baseline for EU to move forward for fulfilling the medium-term ambition

until 2030.



Table I.2 French multi-year energy programs (Ministry of ecological transition and solidarity France,

2019)
Program | Energy Program Energy Program
2019-2023 2024-2028

Targets
GHG emission from energy consumption (as compared to

14% 30%
2016)
Increase in share of energy consumption from renewable

50% 100%
sources (as compared to 2017)
Decrease in the primary energy consumption from fossil

. 20% 35%

fuels (with respect to 2012)

In line with the United Nations and European Union directives, France has also set
targets for reducing GHG emissions and increasing the share of renewable energy for
electricity production. A study from ADEME? suggests 47% and 82% share of renewable
energy in electricity mix until 2030 and 2050 respectively (ADEME, 2014). In this context,
the installed capacity of wind and solar energy has been increasing in France, while the
percentage share of fossil fuel power plants has been decreasing since 2017. It can be
observed by Figure I.2 that the renewable power production (from hydro-electric, wind and
solar) increased by 17%, whereas the non-renewable power production (i.e. fossil fuel)
decreased by 23% in 2018 as compared to previous year. Consequently, the CO. emission

decreased by 27% in 2018 as compared to previous year (as illustrated by Figure 1.3).
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Figure 1.2 Annual Power Production (TW) in France#4

3 ADEME is the French Environment and Energy management Agency.
4 éCO2mix power data: https://www.rte-france.com/eco2mix/telecharger-les-indicateurs
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Figure 1.3 Annual CO2 Emission (MTCO2 eq.) in France5

I.1.c The impact of renewable energy mix on electricity price

The diversity in the marginal cost of generating one unit of electricity establishes a
merit order among the electricity generation sources. Despite having high capital cost of
installation, hydroelectric energy and nuclear energy have low marginal cost of electricity
production due to low operational/fuel cost. Conventionally, these energy sources enter the
merit order at the lowest price level. Contrary to this, the fossil fuel power plants have low
capital cost of installation, however they have high operational cost. Higher operational cost
elevates the marginal cost of one unit of electricity production; therefore these plants follow
hydroelectric and nuclear plants in the merit order. The marginal cost has effect on the
pricing when the electricity demand increases. As mentioned above, the fossil fuel power
plants are connected to keep the energy balance in the grid during peak demand. Therefore,
if real time pricing mechanism is followed, the price of electricity significantly increases for

electricity production by fossil fuel power plants (as illustrated in Figure 1.4 (a)).

Contrary to this, the marginal cost of one unit of electricity production by renewable
sources is near zero, except for biomass-fired power plants (Bahar & Sauvage, 2013).
Therefore, the renewable energy sources enter the merit order at the lowest level along with
hydroelectric energy. Therefore, the price per unit of electricity remains nearly unchanged
for same demand. Consequently, the CO, emission from fossil fuel power plants is avoided.
However, this is not true all the time. The intermittency of renewable sources may push the
electricity generation towards fossil fuel power plants to meet the peak demand. Yet, the

generated energy quantity from fossil fuel power plants will be low compared to the

5 éC0O2mix power data: https://www.rte-france.com/eco2mix/telecharger-les-indicateurs
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conventional merit order. Hence, the CO2 emissions and cost of electricity will also be

lower.
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Figure I.4 (a) Conventional merit order (b) New merit order including renewable energy sources

(Bahar & Sauvage, 2013)
I.1.d Intermittency of renewable energy and need of energy
flexibility
Where the renewable energy mitigates the effects of climate change, it poses
constraint to electricity grid. Unlike the conventional power plants, the energy produced by
renewable energy is intermittent in nature. e.g. the solar plants can only produce energy in

daylight, the wind turbines rotates with wind speed and run of river plants produces

electricity with respect to the volume of flowing water.

This intermittency of renewable energy production induces network congestion on
the electric grid during peak consumption hours. The imbalance in the grid is harmful to
the electricity infrastructure and hence to the reliable supply of electricity. The supply side
management has a limited role in mitigating the effects of network congestion. It
corresponds to the actions taken to ensure the efficient supply of energy; which includes
production from efficient power plants and reduction of line losses by up-gradation of
transmission and distribution networks (Karunanithi et al., 2017). It incurs recurring cost;
therefore, it increases the price of electricity and is not sustainable for affordable energy

consumption.

Energy storage can be deemed as another solution to reduce the impact of
intermittency of renewable energy. The solution is very effective for micro-grid e.g., the
excess energy produced by PV panels during the day can be stored to use at night. Many
energy storage technologies have matured over the years (as illustrated in Figure I.5),
however, like supply side management, the energy storage technologies also incur capital
cost and recurring operation and maintenance costs. In addition, the energy storage

technologies wastes around 10-30% of energy for its own consumption (AL Shagsi et al.,
8



2020). The energy transition towards intermittent renewable energy is introducing the
world to a new paradigm, in which the demand must be adjusted according to the
intermittent supply. In this case, “it is unlikely that storage capacity will fully compensate

for supply volatility, at least for short term” (Giet, 2019).

A
Flywheel
TRL ton “TRiC Technology priorities
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Flow battary Nanici/ Nas - - Past and Present:
TRL 9 — actual system SCES Sensible ML:: L PHS and batteries
proven in operational 9 SMES " Metal air e
environment Hydrogen /fﬂlcro CAES
TRL 8 - system complete 8 fuel cell o )
and qualified Technology priorities - Medium/Long term:
TRL 7 - prototype 7 » Advanced PHS
demonstration 6 Solar fuel » Advanced batteries
Sparatonal s wonmeat » Advanced TES (local level and for CSP)
TRL 6 - technology
demonstrated in relevant 5 »” Hydroaen fuel cells
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TRL S - technology 4 X
validated in relevant 3 # Chemical energy storage
environment ® Thermal energy storage
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TRL 2 - technology concept 5 »
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TRL 1 - basic principles stration dUCﬁOI‘\
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Figure L.5 Maturity of Energy Storage Technologies until 2017 (Nguyen et al., 2017)

In the context of energy transition, the future energy grid will be massively energized
with renewable energy. The energy demand is also increasing with time. Therefore, it can
be anticipated that the intermittency of renewable energy and the increased demand will
frequently pose network congestion on the electrical grid. Where it will bring stress to the
electrical network and will be harmful for the sustainable power dispatch to the consumers,
it will also bring loss of comfort to the consumer. In addition to this, it will also incur
maintenance cost to the electrical grid. With an optimistic outlook of 100% energy
transition in France in 2050, ADEME suggests complementing this energy transition with
the inclusion of energy storage and demand side energy flexibility. Energy storage is
expected to address the intermittency problem of renewable energy sources at supply side.
ADEME suggests three types of energy storage solutions namely intra-day, weekly and
seasonal. It is estimated that in a scenario of 100% renewable energy in 2050, the energy
storage by weekly, intra-day and seasonal solution would be 7 GW, 12 GW and 17 GW
respectively (ADEME, 2015).

The demand side energy flexibility tends the consumer to consume energy within
the available capacity. In the case of residential consumer, the energy flexibility is significant
to curtail the peak by either load curtailment or load shifting. Valley filling can also be
practiced in response to a DSO or aggregator signal and is more significant for industrial
consumers or aggregated load. In its study of 100% energy transition, ADEME identifies 4
potential loads that can actively participate in the challenge of energy flexibility. These

potential loads are water heating, white appliances (i.e., washing machine, cloth dryer and
9



dishwasher), electric vehicle and space heating. With an estimated annual peak demand of
134 GW, the demand side energy flexibility potential of aforementioned loads would be 3
GW, 3 GW, 7 GW and 25 GW per annum respectively (ADEME, 2015). This brings a
potential demand side flexibility of 28.36%. It is cost-effective and brings in consumer
participation to meet the challenge of sustainable energy use. The solution is also cheaper
than supply side management and energy storage. It can traditionally lessen the impact of

intermittency in the same time scale of 10 seconds and 30 minutes.
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Figure 1.6 Flexibility solutions relevant to intermittent renewable production (International Energy
Agency, 2018)

.2 Energy Flexibility and its wusual modes of

implementation

The definition of the term energy flexibility trickles down from a consumption
sector (i.e. Industry, Agriculture ...) to the individual consumer. It is also widely presented
by the terms of demand side management and demand response. As the buildings are
massive energy consumers, therefore the definition of energy flexibility is generally
attributed to buildings. “The energy flexibility of a building is the ability to manage its
demand and generation according to local climate conditions, user needs, and energy

network requirements” (Jensen et al., 2017).
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The history of energy flexibility in the residential sector starts in 1915, when an
entrepreneur in Switzerland invented an electric water heater called CUMULUS®. It is one
of the first DHW (Domestic Hot Water) storage system enabling production during low
electricity price hours. This invention was commercialized in 1923 for private housing. The
necessity of energy flexibility was thoroughly established in the decade of 1970. The
electricity generation mix of USA’ was dominated by fossil fuel power plants in 1970s. To
reduce the impact of energy crisis in 1970s, the distribution system operators in USA
introduced energy flexibility programs. The need of energy flexibility is further catalyzed by
the phenomenon of climate change. Hence, the energy flexibility programs are categorized
into energy crisis era programs and climate change era programs (Ehrhardt-Martinez &

Donnelly, 2010).

The energy flexibility can be implemented directly or indirectly. The term direct or
indirect is used with respect to DSO (Distribution System Operator) or aggregator. The
direct energy flexibility is achieved due to incentivizing the consumer, whereas
conventionally, the indirect flexibility is achieved by offering the consumer a dynamic tariff.

The classification of energy flexibility is briefly given in Figure 1.7.

Demand Response (DR)

|
1 1

Price-based | Incentive-based I
Real time pricing = )
Retail market Wholesale market
Peak time rebates —
Time of use Direct load control —| Ancillary services
Critical peak Interruptible load Capacity market
pricing — program
Demand
bidding/buyback Emergency DR
program
Figure L.y Hierarchy of demand response (Alasseri et al., 2021)

I.2.a Incentive based direct Flexibility and its limitations

Incentive based programs allow the DSO?® or aggregator to implement direct

flexibility. It is also known as direct load control. Keeping in consideration the network

6 History of CUMULUS : https://cumulus-lamarque.com/historique/
7 United States of America
8 Distribution system operator

11


https://cumulus-lamarque.com/historique/

condition, the DSO or aggregator may achieve direct flexibility by switching the end-user
load in accordance with a predefined contractual agreement. It is intrusive and requires
installation of switching devices (e.g., relays and circuit breakers) at the end-user location.
In addition to this, it does not consider the participation of energy consumer to implement

energy flexibility in real time.

Direct flexibility is significant for industrial sector to curtail big loads during peak
hours. For instance, Energy Pool° is an aggregator of industrial loads, data centers and
hospitals, which is practicing the business of direct flexibility in France. Around 1500 MW
of flexible capacity is available to Energy Pool; whereby through an optimal decision-
making for its clients, Energy Pool identifies flexibility potential of the clients, integrates
the demand response and offers load adjustments in different markets (Eid et al., 2015).
The clients of Energy Pool receive specific payments for their participation in either energy

based or capacity based trading (Pool, 2015).

Contrary to the Energy Pool, Voltalis' is another aggregator which targets the
residential users for load curtailment of electrical heating. The electrical heating accounted
for 36% of the annual electricity consumption in French residential buildings during 2017
(ADEME, 2018). When Voltalis receives a signal from the transmission system operator, it
curtails the electrical heating of its clients in short time intervals through a device installed
at client’s premises. The clients have a choice to opt out at any time by pushing a button on
the device and use their electrical heating normally. Voltalis trades the aggregated flexibility
in balancing markets and demand response mechanisms of the transmission system
operator (Eid et al., 2015). The clients do not receive any financial benefit for reducing their
electric heating load, however, they receive a reduction in their electricity bill as reward of

participating in demand response.

Despite its robustness, the direct flexibility has certain limitations. The capacity
curtailed through direct load control varies from client to client, therefore, certain concerns
exist among the clients regarding the privacy and balanced use of direct load control (Haque
et al., 2019). Additionally, it normally targets big loads like heating and cooling in
households, which brings in loss of comfort for the residents. Where it incurs cost to the
distribution system operator, it is also intrusive to the customer’s energy consumption.

Therefore, the consumers may be reluctant to give the control of their domestic appliances.

 Energy-Pool : https://www.energy-pool.eu/en/
10 yoltalis : https://www.voltalis.com/
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1.2.b Price based indirect flexibility and its limitations

Contrary to the direct load control, price-based programs are introduced for
encouraging the energy consumers to implement energy flexibility themselves. These
programs are grouped as indirect load control, therefore provide indirect energy flexibility.
They bring the cognitive burden of flexibility to the consumer and impel the consumer
through extrinsic motivation to manage their energy consumption for monetary reasons.
Therefore, in response to any of the price-based instrument and in accordance with the

client’s degree of flexibility, the client practices load curtailment or load shifting.

Time-of-use (TOU) is one of the price-based energy flexibility instruments. As
indicated by the name, electricity price is set in accordance with the time of use. In TOU
tariff, the electricity price is higher during peak hours and is lower during off-peak hours. It
encourages the clients to consume less energy during peak hours for economic saving.
HC/HP (Heures Pleines/Heures Creuses) is a time of use tariff offered by the energy
providers in France. More than 40% of the subscribers of EDF*! are subscribed to this tariff.
The price of electricity is relatively cheaper for 8 hours of a day than the rest of the day. The
time slots for these off-peak hours are defined by ENEDIS™ and vary from city to city.

Real time pricing (RTP) is a price-based energy flexibility instrument, which is
related to electricity price in real time on hourly basis. Real time pricing is in practice by
some DSOs in Nordic countries. Critical peak pricing (CPP) is another price-based energy
flexibility instrument. EDF has introduced two color coded critical peak pricing

mechanisms and sends day ahead notifications to its residential subscribers.

- TEMPO is a mechanism of critical peak pricing introduced by EDF, in which the
electricity price for a day ‘D’ varies with respect to the color assigned on day ‘D-1’. In
this regard, the days of normal price of electricity is characterized by white color.
The electricity price on blue colored day is cheaper while it is more expensive for red
colored day as compared to the white color days (Albadi & El-Saadany, 2007).

- EJP is another instrument of critical peak pricing, in which the peak consumption
day is color-coded in red and the subscribers pay a low tariff all year round, except

for the 21 red days with higher tariff (Bivas, 2011).

Despite that the dynamic pricing is specifically more pertinent for the residential
sector, it poses certain difficulties for its effective implementation. It requires installation of

a smart meter at consumer site. The smart meter collects energy consumption data of the

1 Electricity of France : https://www.edf.fr/

12 French distribution system operator : https://www.enedis.fr/
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consumers and log it on the DSO server. This collection can be quite intrusive to a
consumer’s personal life as one can learn substantially about the habits and endeavors of a
person by looking at energy consumption data. Therefore, the skeptic consumer is reluctant
to allow the DSO to install smart meter owing to data privacy and security reason (Goulden

etal., 2014).

Another factor that hinders the decision making of a residential consumer is lack of
motivation. This lack of motivation occurs owing to limited information and the uncertainty
about the potential consequences of the flexibility (Diitschke & Paetz, 2013; Goulden et al.,
2014; Krishnamurti et al., 2012). In a longer run, this lack of motivation does not cause any
formation of habit in response to dynamic signal pricing. The third constraint is that the
consumer often deems a low, invisible and uncertain return from their effort, especially with

dynamic tariff (Hargreaves et al., 2010).

Another constraint of consumer regarding dynamic pricing is the everyday life of a
household (Diitschke & Paetz, 2013; Goulden et al., 2014). To maximize the benefit from
the subscribed energy flexibility tariff, the consumer has to take action with respect to the
price signal within the defined time slot of the DSO/aggregator. The consumer cannot
postpone these actions if the consumer might not be able to follow the signal subjecting to
externalities (absence from home, unfavorable ambient temperature etc.). In consequence,
neither the peak consumption on the grid is considerably reduced, nor the electricity bill of

the consumer. Table 1.1 illustrates the merits and limitations of traditional energy flexibility.

Table 1.3 Merits and Limitations of traditional energy flexibility
Characteristics Direct Flexibility Indirect Flexibility
Merits

Nature of signal Incentive based Price based
Significant sectors Industrial Residential
Type of response Automated Cognitive burden for the occupant
Response time Fast Response Delayed Response
Guarantee of load control Yes Possibly
Anticipated type(s) of | Load curtailment Load curtailment, load shifting,
flexibility Possibly valley filling
Limitations

Is it intrusive? Yes Possibly, but normally no
Installation of switching | Yes No
devices needed?
Target number of loads A few loads, mainly electric | A number of loads, depending upon

heating for domestic users the degree of flexibility of consumer
Intervention may cause loss | May be It depends upon the degree of
of comfort? flexibility of consumer
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I.3 The challenge of energy flexibility in residential sector

I.3.a Potentiality of residential sector

According to RTE", the residential sector is the biggest electricity consumption
sector in France. During the period between 2017 and 2019,The share of total annual energy
consumption of residential sector increased from 36% to 38% (Réseau de Transport
d’Electricité France, 2017, 2018, 2019, 2020a). The residential sector remained focal energy
consumption sector in energy flexibility programs worldwide (Ehrhardt-Martinez &
Donnelly, 2010; Hatton & Charpentier, 2014).Based on the measured power consumption
of participating entities throughout France, ENEDIS models a load curve of each
consumption sector. These modelled load curves are called profile coefficients'*, whereas “a
profile reflects a pattern of consumption or generation, i.e. how an average customer

consumes or generates electricity over time” (Réseau de Transport d’Electricité France,

2020Db).
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Figure 1.8 Modelled average daily load curve of residential sector (ENEDIS, 2021)

The modelled average daily load curve of residential sector is illustrated in Figure
L.8. It is based on the historical data of profile coefficient of residential sector. Independent
of the season, three major consumption peaks are observed: one for weekday evenings, one
for weekend mornings and a last one for weekend evenings. The energy consumption in
winter is more than in summer due to the use of electric heating. In terms of energy
flexibility, it is estimated that the residential sector can contribute up to 1 GW of (direct and

indirect) energy flexibility annually by 2030, which is equal to the combined flexibility

13 French national grid operator: https://www.rte-france.com/
14 profile coefficients: https://data.enedis.fr/explore/dataset/coefficients-des-profils/information
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expected by batteries and pumped hydro energy storage by the same year (Le Dréau et al.,

2019). Which makes it a significant sector to achieve energy flexibility.

As mentioned above, Voltalis targets the electric load of residential sector as an
aggregator, while giving a choice to its clients to opt out. Implementing energy flexibility on
electric heating is not often exercisable. In case of direct flexibility, it may cause loss of
thermal comfort to the residential customer. Furthermore, in the case of indirect flexibility,
lack of motivation from dynamic pricing and fear of comfort loss may prevent the residential
consumers to dial down their radiators during the hours of low ambient temperature. In
such a case, it is more interesting to find out other loads that can actively take part in the

process of energy flexibility.

I.3.b Identification of potential appliances for energy flexibility

The household appliances are categorized as follows:

- Continuously consuming appliances: There are some appliances which
consumes energy continuously round the year e.g., refrigerator, freezer etc.

- Binary appliances: The binary appliances (e.g. kettle and coffee maker) are
ON/OFF appliances and are becomes operational for a few minutes.

- Multi-stage appliances: The appliances such as washing machine and
dishwasher are termed as multi-stage appliances as they have multiple cycles of

operation for each usage.

Here, the first question arises that which appliance has more potential in achieving
the goal of energy flexibility. Usually, the intended duration of energy flexibility is in the
range of few minutes to few hours. Therefore, an appliance has more potential of flexibility
if it offers large amount of flexible power in a short period. It can be observed from Figure
I.g that the maximum annual energy consumption of each household appliances is 500 kWh
(except for water boiler). The average duration of operation of each appliance is different.
E.g., the fridge is a continuous load, yet it consumes energy in the same fashion as cloth
dryer (which is a multicycle load). However, they consume energy in the same fashion.
Therefore, it is found difficult to identify potential appliances in a household by looking only

at their annual energy consumption.
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Figure 1.10 suggest that the nominal power of fridge is around 10 times less than the
cloth dryer. Therefore, for a short intended period of interventions, cloth dryer offers more
potential than fridge. If we recall the study of ADEME regarding the potential appliances

for energy, it reflects that around 3 GW of energy flexibility can be obtained from these
appliances in year 2050 (ADEME, 2015).
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I.3.c Non-monetary indirect energy flexibility: A new mechanism for

residential sector

The limitation of direct flexibility and indirect flexibility for residential sector are
briefly discussed in section I.2. In the case of dynamic pricing, where the consumer is given
a choice to implement energy flexibility, it also brings in the notion that not implementing
energy flexibility cause monetary loss. Generally, the residential consumer does not know
the purpose of dunamic pricing i.e., reducing peak consumption to meet either

intermittency of renewable energy or to avoid fossil fuel generation.

The classical economics suggests that a residential consumer behaves rationally
towards the dynamic pricing. However, despite available information on pricing, there
exists certain behavioral obstacles and externalities that hinders consumer decision to
implement energy flexibility (Sirin & Gonul, 2016). The deviation from rational decision
making is not an anomaly, rather it indicates that the decision making structure is
influenced by factors like culture, environment and ambient temperature (Gowdy, 2008).
In some cases, the DSOs offers dynamic pricing on an opt-in basis, yet the overall consumer
participation is low, signaling the weakness of the opt-in design (Schneider & Sunstein,
2017). In this case, it is required to influence the preference of residential consumer in such

a way that it offers zero risk to the residential consumer for implementing energy flexibility.

Unlike classical economics based policy of incentivizing the consumer, the
behavioral economics has demonstrated that the decision making can be influenced by non-
monetary and pro-social impulses (Pratt & Erickson, 2020). A way of doing this is to
introduce a competition among the consumers. It has been found that a comparison of
home energy usage with a focus on peer consumption decreased energy consumption by 1%
to 2% (Ayres et al., 2013). The competition-based programs tend the consumer to win only
and therefore are effective during the duration of competition. In case of unlimited duration
with no considerable monetary gain, the consumer might abandon its efforts after a period.

Thus, these type of programs does not remain sustainable in a long run.

Another important aspect of energy flexibility that is usually neglected in indirect
energy flexibility is to bring the human in the loop through providing feedback. In case of
direct feedback, the demand response operator is obliged to give feedback to its customers
in real time. Contrary to this, indirect feedback is given to the consumer after the flexibility
period is finished. A review of 36 energy flexibility programs carried out between 1995 and
2010 has been performed to measure the impact of feedbacks (Ehrhardt-Martinez &
Donnelly, 2010). The category called indirect feedback is characterized by global
information such as the monthly invoice, provided with a consequent delay of several
months. The energy savings linked to this feedback are relatively low, up to 8% with daily
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information. The other category corresponds to real-time feedback directly related to the
occupants' action. This immediacy is much more valuable in improving occupant behavior,
which can reach average savings of more than 10%. New French buildings are subject to
regulations related to efficiency (i.e., RT2012), which requires to have an energy
consumption monitoring system that informs occupants, at least monthly, of their energy
use, by energy type. However, sub-metering by usage or by dwelling is not required if a

mathematical disaggregation method is implemented.
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Figure I.11 Average household energy saving with respect to type of feedback(Ehrhardt-Martinez &

Donnelly, 2010)

As an alternative to price based indirect energy flexibility, the behavioral economics
provides a key to influence the preference of a residential consumer while offering zero risk
at the same time. For this purpose, non-monetary and pro-social signals should be sent to
the consumer. The ecological signals are found most effective in relatively liberal
communities (Costa & Kahn, 2013). This thesis presents the design and results of a
conceived indirect energy flexibility mechanism based on behavioral insights. In this regard,
a new non-monetary, pro-environmental indirect energy flexibility mechanism is designed

and tested with several households. A similar instrument is introduced in November 2020
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by RTE in collaboration with ADEME in France. This instrument is called mon-ecowatt*

and it notifies the subscribers to curtail their load for an anticipated peak consumption.
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Figure I.12 Behavioral Insight based signal to implement indirect energy flexibility

In this thesis work, pro-environmental nudge signals are introduced to implement

indirect energy flexibility with the following characteristics.

Like price based indirect flexibility, it is non-intrusive.
No price-based information is given to the households. Instead, the following
information is given to the residential consumers

o Anticipated network congestion or elevated renewable production.

o Certain actions are suggested to do during this period of network congestion

or elevated renewable production

Unlike price based indirect flexibility, the households have zero (monetary) risk to
act on the notification. No monetary gain or loss is induced.
The households are given a system of choice to opt out of their pre-defined
commitment with no obligation. Mon-ecowatt does not offer any such procedure.
Unlike mon-ecowatt, the households are given indirect feedback of their energy

flexibility in graphical form of load curve (as illustrated in Figure 1.13).

15 Mon-Eco-Watt : https://www.monecowatt.fr/
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Figure I.13 Indirect feedback in graphical form of load curve

.4 Conclusion

The power sector is a major contributor of GHG emissions in the world, and
therefore is majorly contributing to the phenomenon of climate change. The energy
transition from fossil fuel power plants towards renewable power plants is inevitable to
mitigate the effects of global warming. However, the renewable energy sources are
intermittent in nature. In a future scenario when renewable energy production will be
dominant in the electricity mix and demand will be increasing, the intermittency of
renewable sources will pose network congestion problems to the electrical grid. The supply
side management and energy storage cope with this challenge to a certain extent and

therefore requires a performing demand side management.

The residential sector being one of the biggest consumption sectors offers potential
for demand side flexibility. Incentive based direct flexibility is significant for controlling big
loads; however it is not agreeable for the residential consumer due to unwanted remote
switching. The price based indirect flexibility puts the burden of action on the consumer,
however, the limited knowledge of dynamic tariff and uncertain return for the effort limits
the implementation of indirect flexibility. In this case, it is required to influence the
preference of the residential consumer in such way that it presents zero risk to the consumer
in implementing energy flexibility. Behavioral economics provide a way to design non-

monetary, pro-social and environmental mechanisms of indirect energy flexibility.

This thesis presents an indirect energy flexibility mechanism for residential
consumers, based on behavioral insights and indirect feedback. For validation, the
mechanism is experimented with a batch of French households using non-monetary and
pro-environmental interventions. The following chapters will discuss:
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The significance of behavioral insight (specifically green nudges) in designing a new
energy flexibility mechanism

The design of experiment (including the conceived set of nudges and the
architecture for each intervention)

The day-ahead forecast of modelled national load curve of residential sector

The measure of effectiveness of nudge signals

A proof of concept to detect potential appliances for energy flexibility
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Chapter II

Case Study: Nudge signals for implementing indirect

energy flexibility in French households

The traditional demand response techniques are found to introduce limitations on
the decision making of a residential consumer. According to dual process theory, the human
brain uses system 2 of thinking in response to dynamic pricing and he poses certain
questions to himself, which makes it riskier to act upon the price signal. Behavioral insights
is significant in designing a new mode of energy flexibility that tend the energy consumer to
use the system 1 of thinking. For this purpose, nudge tool is used that rearranges several

choices in a choice architecture and drives individuals towards the desirable behavior.

In this chapter, an overview of the limitation of dynamic pricing are presented.
Following this, nudge-based energy flexibility is introduced. The architecture of a nudge
based energy flexibility experiment with households is presented in the later part of the

chapter.
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II.1 Price based energy flexibility in the light of classical

economics

The dynamic pricing has been in practice worldwide since many decades as indirect
energy flexibility. The non-linear pricing of this tariff is usually based on a number of
factors, i.e. the forecasted intermittent production, forecasted peak consumption etc. It is
found in the literature that the predominant intention of introducing dynamic pricing is
load curtailment. Where it helps the electric grid to avoid network congestion, it also helps
the customer to decrease his energy bill in direct proportion to his energy consumption.
The impact of dynamic pricing for load shifting is studied by; for instance; (Valenzuela et
al., 2012). A dynamic pricing model is also studied “to reduce the overlaps between
residential and charging station loads by inspiring the temporal load shifting of electrical

vehicles during evening peak load hours” (Moghaddam et al., 2019)

The classical economics presents a theory of rational choice regarding the human
behavior towards consumption. This theory states that “all actions are fundamentally
rational in character and the people calculate the likely costs and benefits of any action
before deciding what to do” (Browning et al., 1999). It constructs a theoretical model of
human, which is called as ‘homo economicus’. In a choice paradigm, the homo economicus’
behaves rationally for his self-interest to pursue his defined goal optimally (Urbina & Ruiz-
Villaverde, 2019). The classical economics considers that ‘homo economicus’ has
characteristics like flawless rationality, unlimited cognitive capacity, narrow self-interest

and preference consistency.

The cognitive burden of understanding and acting upon the tariff of dynamic pricing
rests on the consumer. It has been observed that the consumers show cognitive difficulty in
understanding nonlinear price systems i.e. dynamic pricing (Bartolome, 1995; Ito, 2014).
The consumer either lacks information or is unable to process all the information of time
varying electricity price in real time. The homo-economicus model suggests that the
consumer responds to the actual marginal price; however it has been found that a rational
consumer responds to expected marginal price(Ito, 2014; Severin Borenstein, 2009). The
expected marginal price is the one that is perceived by the consumer, and it may differ to a
larger extent from the actual marginal price. It is also observed that in certain situations
despite having updated information, the people do not know what to do in response to a
signal. Despite their will to decrease electricity consumption, they do not know which
appliances should be effective for either load curtailment during peak hours or load shifting

towards off-peak hours. Therefore, they are unable to act upon the signal.
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Another challenge comes when the consumer is uncertain about the potential
consequences of the flexibility despite having proper information of dynamic tariff. The
classical economics deals this situation with the ‘expected utility theory’. It states that the
decision maker chooses between risky or uncertain prospects by comparing their expected
utility values. Through dynamic pricing, it is expected that the high price during peak hour
prompts the consumer to implement energy flexibility (usually in the form of load
curtailment). However, any exogenous factor (e.g., extreme ambient temperature) may lead
the consumer to think otherwise. If a consumer does not make any effort (i.e., load shifting
or load curtailment), the consumer might bring undesirable impact towards the electric
grid. If the consumer is uncertain about the consequences of the flexibility, the consumer

might not choose (or act upon) the dynamic pricing as it seems too risky.

In conclusion, the dynamic pricing acts as an extrinsic motivator to prompt the
consumers for implementing energy flexibility. It is found that the households are likely to
exhibit energy flexibility in response to higher prices, yet the dynamic pricing has modest
to substantial impact to achieve energy flexibility (Faruqui & Sergici, 2010). The studies
show that dynamic pricing is riskier to respond towards the real time need of energy
flexibility, mainly due to cognitive limitations of the consumer. Though the homo-
economicus model fits in the case of classical economics, yet a transition from homo-
economicus towards homo-sapiens is required to drive the residential consumers towards

energy flexibility.

Cognitive Limitations

Decision

Information Imperfections .
P Making

Time Constraints

Figure II.1 Factors pertaining to decision making

I1.2 Behavioral insights for indirect energy flexibility

According to behavioral economics, the human thinking is represented by ‘dual
process theory’. This theory classifies human thinking in two types of systems namely
system 1 and system 2. System 1 (of thinking) operates unconsciously, automatically, with
little or no effort and with high capacity processes; whereas system 2 (of thinking) operates
consciously, in control, with high effort and low capacity process (Kahneman, 2011). Table

II.1 illustrates some attributes of dual system of thinking.
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Table I1.1 Attributes of dual system of thinking (J. S. B. T. Evans, 2008)

Characteristics System 1 System 2
Unconscious Conscious
Implicit Explicit
Automatic Controlled
Consciousness Rapid Slow
Low Effort High Effort
Default Process Inhibitory
Holistic, perceptual Analytic, reflective
Associative Rule based
Functionality Domain specific Domain general
Pragmatic Logical
Parallel Sequential

The human behavior is influenced by several factors. It requires to maintain
conformity between the actions or feelings with values, goals and public perception of
personality (Bénabou & Tirole, 2006). The economics suggests that individuals respond to
extrinsic motivators, e.g., monetary incentives, loss aversion etc. However, according to
certain studies, the extrinsic motivators undermine the intrinsic motivation of the
consumer, has limited impact on treatment and negative impact on the persistence of

treatment (Bénabou & Tirole, 2003, 2006).

Dynamic pricing serves as an extrinsic motivator, with the general purpose of driving
the consumers to curtail their load. The consumers are susceptible to be influenced by the
context, emotions, short-sightedness or any other driver towards irrationality (Shroff et al.,
2019). Therefore, the dynamic pricing instigates system 2 of thinking. The cognitive burden
of acting on energy flexibility signal is on consumer which enables the consumer to make a
controlled and calculated decision after analyzing the situation. The cognitive difficulty of
understanding the dynamic pricing makes it riskier to implement following a decision

through system 2 of thinking.

Behavioral insights is a toolbox emerged by the interdisciplinary conjunction
between economics, psychology and sociology. The consumers are susceptible to be
influenced by their immediate environment, emotions and other forms of irrationality. The
behavioral insights studies people’s cognitive biases and how they make choices and behave
in real life situations. By studying these cognitive biases the behavioral economics serves to
develop new methods, mechanisms and other interventions that would help people to

achieve what they want (Shroff et al., 2019).

To tend the consumers towards implementing energy flexibility, it is inevitable that
certain tools and mechanisms should be developed that instigate system 1 of thinking. In

this way, the mechanism of decision making of implementing energy flexibility will be
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unconscious and automatic. The consumer does not have to do any mental effort to weigh
the possibility of outcome or the opportunity cost of energy flexibility. This mechanism can
be used in parallel with the monetary mechanism. Such mechanism can be devised by the
utility of behavioral insights, in such a way that the mechanism keeps in account the

cognitive ability of a residential energy consumer and external influencing factors.

I1.2.a Nudge

Nudge is a technique in behavioral insights which provides indirect suggestions to
influence the decision making of an individual or a group. The purpose of nudge is to bring
positive reinforcement in the decision making. The most prominent definition of nudge is
that “it is any aspect of the choice architecture that alters people’s behavior in a predictable
way without forbidding any options or significantly changing their economic incentives. To
count as a mere nudge, the intervention must be easy and cheap to avoid.” (Thaler &

Sunstein, 2008).

Nudge has been in use by governments around the word to make soft policies. These
policies can be regulatory, economic or communication of information. For example, a
randomized control trial experiment was performed in UK during 2011. The purpose of
this experiment is to see whether and how the repayment rate of overdue taxes could be
increased. For this purpose, the control group received usual letter while the treated group
received a letter with different text. It has been found that “if the recipient was told that
most people in UK paid their taxes on time, repayment rates increased by 5%. However, if
they were told about the repayment of the people in their town, the figure increased to 15%.”

(van Bavel et al., 2013).

The individuals found it difficult to understand the situation and suffers from an
imperfect ability to process new information due to the limitations in cognitive processes
(Momsen & Stoerk, 2014). The nudges are distinguished by conventional instruments of
policy formation by its virtue of not assuming the economic benefit of rational choice. They
are based on dual process theory; where preferences are rearranged in a choice architecture
to abridge the thinking process. Nudge instigates the system 1 of thinking for automatic and
involuntary decision making. An important element to consider while designing a nudge is
the choice architecture offered to an individual or a group for bringing positive
reinforcement towards decision making. “The choice architecture refers to the practice of

influencing choice by organizing the context in which people make decisions” (Shafir, 2013).

16 United Kingdom
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It is observed through an experiment that nudge is easy to comprehend, resulting in
an immediate reduction of energy consumption, whereas it takes longer for an individual to
understand the impact of dynamic price on their energy consumption (Buckley & Llerena,
2018). While giving a freedom of choice, the right stimuli are put into focus in choice
architecture so that the desired choice is either chosen by default or is easy and automatic
to be chosen by the targeted individual or group. The following section demonstrates green

nudges and their usability for energy flexibility.

I1.2.b Green Nudge

Green nudge is an extension of nudge technique which is attributed to
environmental cause and is used for the policy making at national and regional level. The
purpose of a green nudge is to use behavioral biases in order to encourage citizens to adopt
lifestyles showing a greater respect for the environment (Centre d’analyse stratégique,

2011). An example of green nudge is illustrated in Figure II.2.

sava paper - save the planet ‘i save paper - save the planat @" S%lapperisave theplanat @
wr It

Figure II.2 Green nudge to reduce the excessive towel paper use (Lars Biesewig & Annie Krautkraemer,
2018)

The fossil fuel is under the process of phasing out during energy transition while
simultaneously integrating renewable energy in the energy mix. The conventional model of
energy provision shows that the generation of electricity follows the demand, i.e., higher the
forecasted demand, higher will be the need of electricity generation. However, this might
not be the case in the future. In a future energy mix predominant in renewable energy, the
intermittency of production will pose a constraint on the provision of energy. The continuity
of conventional pattern of energy consumption will not only bring network congestion but

might also damage the transmission infrastructure.
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The distributed generation of renewable energy is considered as a common pool
resource. For instance, (Wolsink, 2012, 2014) discusses the characterization and impact of
distributed generation as a common pool resource, whereas (Gollwitzer et al., 2018)
discussed whether the common pool resource theory “can assist in analyzing and designing
sustainable institutions for managing electricity provision in rural mini-grids”. A common
pool resource is a certain stock of particular goods from which a flow of resource units can
be drawn within its specific boundaries (Ostrom, 1990). The distributed renewable energy

generation has the following characteristics which makes it a common pool resource:

- Renewability of stock i.e., energy;
- Scarcity of stock with respect to the optimal location of installation and
intermittency of generation;

- Co-production of a common good in the form of energy community (Wolsink, 2012).

The usual pattern of energy consumption depicts that the individuals draw more
than the sustainable amount of resource units from the available stock of electricity. This is
considered as an overuse of electricity. However, in the future energy mix predominant with
renewable energy sources, this usual practice of energy consumption will cause scarcity of
energy, either through intermittency of renewable energy or high demand at a certain time.
The provision of electricity is excludable in nature i.e., an individual can use the electricity
if he/she pays for it. However, the energy scarcity is not excludable as everyone connected
to the grid will be affected from this deficiency. In this case, the conventional pattern needs

to be altered where the demand should follow the intermittent energy production.

To avoid this socio-technical dilemma in the future, it is inevitable that the
individuals should show flexible gesture towards energy consumption. Residential sector
being the highest energy consumption sector offers an opportunity that the households
should be accustomed with the energy flexibility gestures. In the present, encouraging a
responsible and eco-friendly behavior towards energy consumption can contribute to the
reduction of GHG emissions (and hence climate change). Though, the benefits of reducing
GHG emissions are spread temporally, yet the cost should be borne in the present to be able

to enjoy present and future benefits.

I1.2.c Review of nudges used in the field of energy worldwide

There are several experiments of indirect energy flexibility based on nudge that has
been carried out in the world. Social norms remained effective in the study of non-price-
based energy flexibility in most of these experiments. It should be noted that the purpose of
these programs was mostly energy conservation. Table II.2 gives an overview of these
experiments that were conducted worldwide in residential sector for reduction of energy

consumption.
30



Table I1.2

The nudge based indirect energy flexibility experiments in households

Sample Size
Reference (Households) Type of treatment Results
and Location
(Brandon & | 120 Comparative  norm, | 4.6% decrease in energy usage
Lewis, 1999) UK intervention
(Schultz et al., | 270 Descriptive Norm, Descriptive norm led to decrease of
2007) USA Injunctive Norm 1.22 to 1.72kWh/day, boomerang effect
disappears with inclusion of injunctive
norm.
(Costa, 2010) 35000 Descriptive Norm, On average 2% reduction in electricity
USA Injunctive Norm consumption (1.7% for conservatives,
2.4% for liberals).
(Allcott, 2011) 600000 Descriptive Norm, On average 2% reduction in electricity
USA Injunctive Norm consumption
(Ayres et al., | 169000 Comparative On average 1.2 to 2.1% reduction in
2013) USA feedback electricity consumption
(Allcott & Rogers, | 78887 Descriptive Norm, Average 1-1.3% immediate reduction
2014) USA Injunctive Norm in consumption, discontinuing nudge
leads to a decay of effect by 10-20% per
year
(Dolan & | 569 Social descriptive | On average 6% reduction in electricity
Metcalfe, 2015) UK norm consumption
(Graffeo et al., | 300 Social descriptive | Social norm led to an intention to
2015) Israel norm conserve energy by 12.1 to 34.4% in
treated group as compared to control
group
(Tto et al., 2018) 691 Moral Suasion Moral suasion induced a short-run
Japan reduction in peak-hour electricity
usage by 8%, economic incentive
produced electricity consumption
reduction of 14 to 17%.
(Buckley & | 240 Comparison of nudge | Nudge does not bring welfare loss of
Llerena, 2018) France and price based individual or group, price based
incentive does
(Pratt & | 16149 Gamification Percentage collective change of 4.34 to
Erickson, 2020) USA 11.98 % on treatment days w.r.t control
days for households.
(Jorgensen et al., | 143 Information  about | Reduction in peak consumption by
2021) Australia peaks in consumption | 12% to 20%.

The most prominent non-price nudge field study was performed in USA, in which
the energy consumption of a household for a period is compared with the energy
consumption of energy efficient neighbors and all neighbors. This comparison is presented
in graphical form along with energy conservation tips in the report and is considered as the
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descriptive norm. An injunctive norm is also added in the report by giving a rating in the
form of efficiency standing. This efficiency standing categorized the household as Great,
Good or Below Average. Both norms are collectively called as Home Energy Report (HER).
It is observed from the study that HER causes an average of 2% reduction in electricity
consumption (Allcott, 2011), whereas discontinuing the HER leads to decay of energy

conservation practice by 10-20% per year (Allcott & Rogers, 2014).

Another significant work in this regard is (Ito et al., 2018), in which the authors
studied the effect of moral suasion and economic incentives for energy conservation using
randomized controlled trial in households. The habituation and dishabituation is also
studied. It has been found that moral suasion induced a short-run reduction in peak-hour
electricity usage by 8%, economic incentive produced electricity consumption reduction of
14 to 17%. In the case of moral suasion, “the treatment effect diminishes after repeated
interventions but can be restored to the original level by a sufficient time interval between
interventions. Economic incentives induce larger treatment effects, little habituation, and

significant habit formation” (Ito et al., 2018).

(Buckley & Llerena, 2018) played demand response as a common pool resource
game in a lab experiment to do a comparison between nudge and peak pricing-based
interventions. It is found that in the absence of an energy conservation policy, the
individuals do not achieve socially optimal level of consumption. “The nudges were quick,
easy to understand and resulted in an immediate reduction in consumption in the period
following initial feedback. On the other hand, individuals took longer to understand the
effect of the increased price on their consumption and so took longer to integrate it into

their decision making process” (Buckley & Llerena, 2018).

The impact of load curtailment signal complemented with two types of incentive
schemes is studied by (Llerena et al., 2021). An honorary contest is held in one group with
an incentive for social cause. The subject that consumes lowest energy during the predefined
load curtailment timeslots was considered winner. As incentive, the reward would be given
to the NGO (non-governmental organization); chosen by the winner. In addition to this, the
name of winner was publicly displayed on the welcome display of the building. The other
contest was monetary in nature; in which half of the reward was given to the winner and the
rest was distributed among other subjects. The results show that honorary contest bring a
significant load curtailment by the subjects. Whereas the monetary contest seems to have
no impact for load curtailment, albeit a chance of winning money. This experimental study
brings the idea of testing nudge-based energy flexibility in residential sector. The types of

nudges used in the experiment and the architecture of nudges is given as follows.
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I1.2.d The Set of Green Nudges Used In the Experiments

There are several ways that can be used to design a choice architecture for nudging.

For this experiment, a set of green nudges are conceived. The characteristics of this set is

given below, whereas the information about each nudge in the set is given in Table II.3.

- Unlike most of the past experiments, no social or comparative norm is used as

nudge. This is a peculiarity of this experiment.

- Unlike the past experiments which usually relies on extrinsic motivators, the

purpose of this experiment is to nudge the intrinsic motivation of residential

consumer.

- Feedback is added as a nudge in this experiment. This can be considered as a novel

nudge.

- The nudges are designed in such a way that the mechanism for each intervention

should be simple, equitable, have low or negligible cost and have no risk for the

subjects.

Table I1.3 The nudges used in the experiment

Sr.

Type of Nudge
No.

Remarks

1 Information ¥’

Since a common residential consumer is not aware of the forecasted grid
condition, therefore information is given to the subjects of treated group
of this experiment. The information pertains either about the forecasted

network congestion or about the elevated renewable energy production.

2 Commitment

The commitment nudges tend the individual or group to remain

behaviorally consistent by maintaining their commitment.

3 Feedback

Feedback of each intervention is given back to the subjects of treated
group, as described in detail in section II.3.c.iii. The purpose of this nudge
is to introduce salience 12 in the intervention. It is expected from this
nudge that it serves to keep the subject motivated for the future

interventions.

II.3 An experiment of indirect energy flexibility in

residential sector using green nudges

As mentioned before, the experiments related to nudge based indirect energy

flexibility were conducted for the prime purpose of energy saving, rather than energy

flexibility. One important aspect of these experiments is to distribute the subjects into

control group and treated group. The control group acts as a standard against which the

7 Information can also be considered as priming. A primed stimulus is unconsciously held in the associative memory of the decision
maker to subsequently influence the decision.
18 A feature salience makes a choice more noticeable than others by emphasizing certain aspects of choice architecture.
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impact of treatment given to the treated group is analyzed. Another important aspect of
these experiments is giving direct or indirect feedback to the subjects so that they can also

know the impact of their action for energy conservation.

This section demonstrates the design of a behavioral science experiment for the
purpose of implementing indirect energy flexibility in the residential sector. Contrary to the
earlier experiments available in the literature review, our experiment does not use any social
norm among peers or ratings for the participating subjects. Among the diverse nudge tools,
non-social nudges are chosen. However, like earlier experiments, it includes a control group
and indirect feedback towards the participating subjects. The impact of indirect energy
flexibility for load curtailment (during peak hours) and load shifting (from peak hours to
off-peak hours) is analyzed in the experiment. The section is divided in to following

subsections.

- Methodological aspect of the experiment
- Protocol of interaction between subjects and experiment organizers
- Set of green nudges

- Architecture of experiment

I1.3.a Methodological aspect of the experiment

A field experiment is conducted to find out the causal effects of real-world behaviors
on energy flexibility. Field experiment is defined as “a data collection strategy that employs
manipulation and random assignment to investigate preferences and behaviors in naturally
occurring contexts” (Baldassarri & Abascal, 2017). Internal and external validities are
related to both lab experiment and field experiment. “Internal validity refers to the ability
to draw confident causal conclusions from one's research. External validity refers to the
ability to generalize from the research context to the settings that the research is intended
to approximate” (Loewenstein, 1999). Contrary to lab experiment, a field experiment has
the benefit of having external validity from the real-world environment in a large-scale
experiment pool. However, a field experiment has less internal validity as compared to a lab
experiment. In contrary to lab experiment, some variables (that affects the treatment group)

cannot be controlled in a field experiment.

This field experiment is conducted in a randomized control trial mode. In this type
of field experiment, the subjects are assigned to one (or multiple) treatment conditions. The
effectiveness of treatment interventions is evaluated by comparing treated subjects with
those in a control group (or those who received a different treatment). These interventions
affect the normal approach of subjects towards the problem under study (in this case energy
consumption). The motive of these interventions is to encourage individuals for taking

actions to improve their individual and social well-being (Banerje & Duflo, 2011). Figure
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I1.3 illustrates an example of randomized field trial. The randomized control trial is used to
implement energy conservation for moral suasion of subjects in Japan (Ito et al., 2018). The
future electricity grid needs energy flexibility at consumer side; therefore, it is necessary to
understand the consumer behavior towards this challenge. For this purpose, this
experiment is targeted to know the residential consumer behavior towards the challenge of
energy flexibility. It should be noted that though the methodological aspect of this
experiment is same as that of (Ito et al., 2018), however the approach i.e. the protocol is

different.

wrerveron
1y f'

Population is splitinto 2 Outcomes for both
groups by random lot groups are measured

¢

CONTROL

'=Iookingforwork ' = found work

Figure I1.3 An example of randomized controlled field trial (Haynes et al., 2012)
I1.3.b Protocol of interaction between subjects and experiment

organizers
The protocol of the experiment consists of multiple steps that were carried out before and
within the duration. It is related to selection and interaction with the subjects of the

experiment. It is given as follows.

I1.3.b.i Campaign and recruitment of subjects for experiment

The recruitment of subjects was carried out between March and May 2019. A
campaign for recruiting subjects was launched by the economists of GAEL' lab in
collaboration with the social scientists and pro-environment associations. Distribution of
flyers, personal interactions and sending emails to the subject already presented in the

laboratory panel was the mode of communication of campaigning. The persons listed as

19 Grenoble applied economics lab : https://gael.univ-grenoble-alpes.fr/accueil-gael
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student in the laboratory panel were excluded from the recruitment process. The interested
candidates were offered to fill in an online form. The gathered information was concerned
about the type of housing, the composition of the household, the socio-professional

category, the presence of a smart meter, the type of heating, etc.

686 candidates filled the online form to participate in the experiment. At this stage
of the recruitment process, the information given to individuals was limited to the launch
of a study on energy consumption and the development of renewable energy. A selection
criterion is decided in order to select the potential subjects among the candidates. Out of
686 candidates, 175 households are recruited for the purpose of experiment. The selection

criteria is as follows:

- The household should be composed of at least 2 people.

- The household should be in the area of metropolitan Grenoble.

- The household should be equipped with LINKY?® smart meter. The LINKY smart
meter permits the experiment organizers to collect the power consumption data
from ENEDIS as per written consent with the subject.

- The household should not have a specific electricity supply contract (i.e. dynamic

pricing).

I1.3.b.ii Categorization of recruited subjects into groups

The recruited households are distributed into control group and treated group. The
control group comprises of 79 households and treated group comprises of 96 households.
The allocation of the selected subjects between the two groups was carried out based on the

strictest possible equivalence rule using following criteria.

- The number of people in the household.
- The size of the dwelling.
- The presence of household members in the home at least 3 days per week.

- The number of household appliances in the home.

The treatment group receives treatment in the form of a set of nudges for each
intervention. Indirect feedback is also given to the treated group for each intervention. No
intervention is made on weekends and French national holidays. The control group does
not receive any treatment. It is formed to find out the externalities that are affecting the
treatment of treated group during the experiment. It ensures that the energy consumption

of treated group is only influenced by the nudge during alert day.

20 | INKY smart meter : https://www.enedis.fr/le-compteur-linky-un-outil-pour-la-transition-ecologique
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Depending on their treatment assignment, subjects were invited to attend a study
presentation session. The organization of the sessions ensured that no communication

between subjects belonging to different treatments took place.

I1.3.b.iii Remuneration of participation in the experiment

To keep the subjects engaged in the experiment, a small annual remuneration is
given at the end of each experiment year. The amount of remuneration is 40€ per subject
per year for 3 years of participations. It should be noted that this remuneration is not given
as areward for implementing energy flexibility, rather the remuneration serves as monetary

indemnity against a survey and the consent of using subjects’ energy consumption data.

I1.3.b.iv Types of Alerts
This field experiment is conducted from November 2019 to September 2021. The
following types of alerts are sent to the subjects. For the sake of convenience, the day of

treatment is hereafter referred as alert day and is symbolized by ‘D’.

- Green alert (GA) The purpose of this alert is to nudge the treated group to
shift their partial load from evening to the duration between

noon and 3:00 PM on alert day ‘D’.

/\
\ //

o | i i i >
12 PM 3PM 6PM 8PM L

Figure I1.4 Load shifting from evening peak hours to afternoon

- Orange alert (OA) The purpose of this alert is to nudge the treated group to
curtail their load between 6:00 PM and 8:00 PM on alert day
‘D’.
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Figure IL.5 Load curtailment during peak hours in the evening
I1.3.b.v Sessions of Instruction

The presentation of the instructions respected the anonymity of the subjects and no
communication between the subjects. To avoid any strategic behavior, especially in terms
of the responses concerning the subjects’ commitments, the principle of increasing
information in several phases was adopted. Each subject was given a personal code to keep
them anonymous. The sessions included between 16 and 25 subjects from the same

treatment. Each session was organized in a strictly identical manner in 6 phases.

1. The first phase of the instructions consisted of presenting the challenge of energy
transition towards renewable energy and consumption by households. Particular
attention was paid to the gap between production times e.g., during sun hours in
case of solar and consumption times i.e., peak of the household in the evening. To
cope with this mismatch, the flexibility of household consumption was highlighted
as one of the solutions to avoid the use of polluting thermal installations. Based on
this information, the objectives of the study were presented. For the treated group,
the aim is to better understand the opportunities for greater flexibility among
households by testing recommendations and advice. For the control group, only the
considerations of a better understanding of consumption behavior were mentioned.

2. The second phase of the instructions concerned the conduct and organization of the
study. The presentation of the study process was identical for both groups. It was

indicated that the duration of 2 years of study requires the inclusion of further
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phases where subjects would be asked to update their information about their
equipment and usage, as well as (only for treated group) a questionnaire for the
collection of information about the recommendations and feedback on the periods
of intervention. For the control group, the presentation of the organization of the
study simply consisted in underlining the need to collect information on the
equipment and its uses from the beginning to the end of the study. For the treated
group, the presentation of the organization of the study consisted in describing the
critical periods for the consumption of electricity.
The third phase of the instructions consisted of collecting information on equipment
and its use within households. A comprehensive questionnaire was administered
before the subjects were informed of the very existence of a commitment principle
that they would be asked to carry out in the next phase. This questionnaire, based
on a study of the professional literature and institutional reports on household
equipment, provides a fairly accurate representation of the dwelling, the set of
equipment and their uses for each subject in the study.
The fourth phase of the instructions was primarily consisted of the
recommendations for the orange alerts and green alerts. In parallel to this
presentation, subjects were asked to indicate: i) which equipment was not present
in their dwelling and ii) which equipment was not generally used during the
intended period of intervention for orange alerts or was generally used during the
intended period of intervention for green alerts. This step was particularly important
to avoid subjects making commitments to actions that they could not carry out or
were already carrying out. It was only based on the collection of this information, in
a second stage that subjects were informed of the principle of commitments to be
made for each type of period. These commitments were made based on information
on the impacts that these could have in terms of energy consumption.
For the sake of convenience, the periods of intervention for orange alerts will be
called as orange periods, whereas the periods of intervention for green alerts will be
called as green periods. The fifth phase focused on the alert system implemented
throughout the study, for both the orange and green periods. For each orange or
green period on day ‘D’, this system is based on:
a. an alert via SMS on day ‘D-1’ between 6:45 PM and 7:15 PM

a second SMS inviting subjects to consult the commitments made at the start

of the study and, if necessary, to modify them for the coming period between

7.30 PM and 10.30 PM on day ‘D-1". The consultation of the commitments,

and their modifications for the current period, was carried out via a

dedicated website with personal and secure access.

c. afinal reminder SMS on day D, at 7.30 am.
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d. Finally, this fifth phase presented the feedback system on subjects' electricity
consumption for the different orange or green periods. Thus, an SMS
informs the subjects to view their personal account on the study website
where they could find the consumption curves for each day with a period,
namely a measured curve, made with the data from the smart meters at a
step of Y2 hour, and a reference curve which is an estimate of the usual
consumption at that time of the day.

6. The sixth and final phase of the instructions concerned the presentation of the
operational conditions for data collection, storage and security provisions applied to
the data (both relating to the questionnaires and to electricity consumption). This
phase ended with the collection of the subjects' consents for sharing of their data

from the smart meter according to the regulations in vigor.

I1.3.b.vi Survey through questionnaire
A questionnaire is given to each subject to obtain information regarding the presence

of various appliances in their respective household. The questions were related to;

- Whether an appliance from given list of appliances is present in the house. The
subjects are also asked to mention if any other appliance in present in the house.

- The number of each type of appliances present in the house.

- The time of use of the appliances present in household. For this purpose, a standard
day is split into 7 timeslots. In addition to this, the subjects are also asked about the

use of appliances during weekdays and weekends.

I1.3.b.vii GDPR Consent

A consent is signed with the subjects of the experiment in compliance with GDPR*
every year for a period of 3 years. The subjects might opt out of the experiment after a year
if they are not interested in signing the consent. Through this consent, the subject gives
rights to the experiment organizers to use his/her data. For collecting power consumption
data, the subject provides his/her identity number of electricity dispatch point (in French:
ID point de livraison) and permits the experiment organizers to obtain the power
consumption data of the subject from ENEDIS as a third party. This consent binds the
experiment organizers to strictly use the data of subject within the limits of experiment. The
data includes response to questionnaire, measured load curve, appliance commitments and

contact details.

21 General data protection regulation (EU) : https://gdpr.eu/what-is-gdpr/
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I1.3.b.viii Website
A dedicated subdomain Etude-Elec? has been made available to the subjects of the

experiment. The sample screenshots of website are given in Annex A. All the subjects have

their personal account on the site, which allows them to;

- Respond to the online questionnaire regarding the presence of equipment.
- Change their default commitment for an alert day ‘D’.

- View the result of their effort on alert day as feedback in graphical form.

I1.3.c Design of set of green nudges

A set of green nudges is introduced in the experiment. Its purpose is to nudge the subjects
to implement energy flexibility on alert day ‘D’. The timeline of sending these nudge signals
gives ample time to the treated subjects for making a decision. This timeline is given in
section I1.3.d. These nudges are devised to answer the 4 basic questions of a residential

consumer i.e.

- Why should energy flexibility be implemented?
- When to act to implement energy flexibility?
- Which appliances should be used to implement energy flexibility?

- Following the implementation of energy flexibility, how did my effort perform?

Questions

\ 4

Contribution towards common good
Why to act? » Adopting energy flexibility gesture so that sustainable
amount of energy is available for all the consumers.

Treatment (Nudge cocktail)

How and when to

send a signal? I Type and content of green nudge

A 4 A A A 4

— Information (Priming)

When to act? ‘@ ‘Ba}{, + The day-ahead forecasted energy production and its
= . environmental impact.
em) Da Commitment
How to act? ‘D-}Il’ + A customized set of advice about how to optimize
energy consumption within pre-defined commitment.
o Da Feedback (Feature Salience)
How did it go? ‘_@ ‘D+!3/’ + The availability of feedback image on the personal
— account of subject on ETUDE-ELEC site.
Figure 11.6 Curious questions and corresponding designed nudge treatment

22 Etude-Elec: https://etudelec.univ-grenoble-alpes.fr/. The website is made for the purpose of study. It may not be available
anymore.
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IL.3.c.i Information

The subjects are primed with an informational message regarding energy production
and its environmental impact. “The primed stimulus remains in associative memory and
influences behavior in a predictable manner over a certain period of time” (N. Evans et al.,
2017). For this purpose, a SMS is sent to the subjects of treated group on day before alert
day i.e. day ‘D-1’. This SMS is hereafter called as ‘alert SMS’. The text of alert SMS for each

type of alert is as follows:

- Green alert (GA) Tomorrow, from noon to 3 PM, the production of electricity

from renewable energy will be maximum.

- Orange alert (OA) Tomorrow, from 6 PM to 8 PM, a consumption peak is

expected with maximum use of thermal power plants.

I1.3.c.ii Commitment

During the introductory meeting between the experiment organizers and subjects,
the subjects filled a questionnaire. This questionnaire contains questions regarding the
number of diverse appliances in the household and the use of these appliances during
timeslots in a standard day. These timeslots are defined by the experiment organizers e.g.,
one timeslot is between 6 PM and 8 PM. The purpose of this questionnaire is to make the
energy consumption of appliances evident to the subject. Following this, the subjects are
given a list of actions that they can possibly implement in the case of receiving an alert. The
subjects are asked to give their commitment of using (or not using) one or multiple
appliances during treatment period by selecting the actions in the list. In response, the
applicants committed appliances in accordance with their prospective degree of comfort
during treatment period. In conjunction with alert SMS, a subject specified commitment
SMS is also sent to remind each subject of treated group their default commitment on day

before alert day i.e. ‘D-1".

This SMS (a green nudge of type commitment) tends the subject to remain
behaviorally consistent in accordance with the commitment. However, the subjects are
given a choice to modify their pre-defined commitment via their personal account on the
Etude-Elec website within an hour or receiving the commitment SMS. With the help of color
codes associated to their default commitment, the subjects are conveyed about which
actions should be taken by default, or else they can modify their commitment for
corresponding alert. The text of commitment SMS for each type of alert is as follows. For
the sake of privacy, the dotted line represents the pre-defined commitment, whereas the

asterisks represent the etude-elec website link.
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- Green alert (GA) Tomorrow, your commitment iS tO US€ .......cccceerveerneene To

modify, visit

- Orange alert (OA) Tomorrow, your commitment is to NOT use ........cccccecueuenee.

s .

In addition to the alert SMS and the commitment SMS sent to the treated group on
day before alert day ‘D-1’, a reminder SMS is also sent to the treated group on alert day ‘D’.
The text of the reminder SMS is as follows.

- Green alert (GA) Reminder: Today, green period from noon to 3 PM

- Orange alert (OA) Reminder: Today, orange period from 6 PM to 8 PM

I1.3.c.iii Feedback

This green nudge aims to make ecological choices more noticeable by emphasizing
specific aspects of the choice architecture. For each intervention (i.e., alert day ‘D’), the
subjects of the treated group are given indirect feedback in graphical form. The subject
specific image contains the measured load curve of the subject household on alert day ‘D’,
which is superposed by a calculated reference load curve of the same household. The
calculation of reference load curve is based on the historical consumption of the household.
The formulation of reference load curve will be explained in detail in Section IV.3. Visually,
the difference of area between the reference load curve and measured load curve makes the

energy flexibility effort noticeable at a glance.

For each subject of treated group, this image (as indirect feedback) is uploaded on
his personal account on Etude-Elec website on day ‘D+2’. The subjects of treated group is
sent an ‘image visualization SMS’ on the following day ‘D+3’. Irrespective of the alert type,
the text for all the subjects of treated group is as follows. For the sake of convenience, the
dotted line represents the date of the alert day, whereas asterisk represent the link of Etude-

Elec website.

- Green alert (GA) You can view the consumption curve for the period of

- Orange alert (OA)  .ooeveiveeniens , by logging on to **#****¥**_
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Figure IL.7 Feature salience through comparison of load curves

I1.3.d Architecture of Experiment

The architecture of conducting this field experiment is set-up by G2ELab*

(Grenoble electrical engineering lab) in close coordination with GAEL lab. The architecture

is conceived to fulfill the following three prerequisites of experiment.

- How to collect the data of daily measured load curve of the subjects?
- How to identify a day-ahead potential alert?

- What is the protocol of each intervention including giving feedback?

Figure II1.8 illustrates the schematic diagram of the experiment. The schematic
diagram briefly demonstrates the collection of data, accessing the historic data from
ENEDIS as well as accessing the day-ahead forecasted notification via web-services APT*.
However, it does not demonstrate the protocol of each intervention in the form of timeline.
The schematic diagram is described in detail in the sub-sections below, whereas the protocol

of each intervention is given from Figure II.9 to Figure IL.11.

2 Grenoble electrical engineering lab : https://g2elab.grenoble-inp.fr/en
24 API : Application Programming Interface

44


https://g2elab.grenoble-inp.fr/en

Green Alert
(For load shifting)

ENEDIS

INFOCLIMAT (

Historical National Smoothened
— Load Curve of National
Average ity i ial Sector Temperature

7
X e

Residential Sector

Day-ahead Prediction of
National Load Curve of

Orange Alert
ENEDIS (For load curtailment)
I —d) > —[=3, [ EXPESIGNO RTE 1
e Consumption 3 Algorithm : PP1/PP2
Notification
175 Househotas  -INKY T
“Nudge" <& %> Feedback
Signal l |
Figure I1.8 Schematic Diagram of project “EXPESIGNO”
3:00 PM 6:00 PM 6:45 PM
- —— - - ¢ ——————————— - — " §—"—"—"—"—"—"—"—"—"—"—"—"——/"@— - — — —
‘ I
/ 1) Accessing national Green Alert Orange Alert

residential load curve and 1) Accessing the

\

Accessing the status of day ‘D’

Interrogating IF an alert is
registered for day ‘D’

G2ELab Server MHI Database

Sending an alert SMS to treated
group

G2ELab Server Subject’s Mobile

Sending a commitment SMS to
treated group

\
| [ .
=

G2ELab Server Subject’s Mobile

_storing in database nebulosity of day ‘D’ P
T || e | g R B
A o A b oty ENCEE
s2las - l; < Nebulosity 2 IL LV RTE Server
- . Server . ~
f— 4 G2ELab Server InfoClimat Server| - _, . Py
MHI Database 2) Calculating the G2ELab "'&CEGM::& IL
2) Accessing the smoothened coefficient.... for day ‘D’ Server ’ 2
national temperature and e A v ENEDIS Server
_storing in database - 6 - .» Coefficeintgy, Y
.IH - s q = )
S2tLab : - g Prediction of national
server P E;:S!f residential load curve
= for day ‘D’ /
=
MHI Database
3) Accessing the forecasted
temperature of 32 French cities
and storing in database Registering an alert for day ‘D’
l,j _ H if the criteria fulfills
= >
L g -
Ser Lot T s Lo .. y,
-, - - Server i )
= < —
MH“-D-;;’“E / G2ELab Server MHI Database
Figure I.9 Timeline illustrating the signaling on day ‘D-1’

45




12:00 PM to 3:00 PM

6:00 PM to 8:00 PM

Orange Alert

Interrogating IF an alert is ™
registered on database for today

PN

I|J_ ..... >
L i =
y

G2ELab Server MHI Datahase/

Sending a reminder SMS to ™
treated group

80

=
G2ELab Server Subject’s Mobily

Figure I.10

¥ '
k 12PM 3PM

Period of action for load curtailment \

é

e\

12PM

3PM

Timeline illustrating the reminder SMS and period of action on day ‘D’

3:00 PM 3:15PM
-

Arrival of measured load curves
of day ‘D’ on G2Elab FTP

j\j_r_ﬁﬁ_@

ENEDIS Server G2ELab FTP

Figure II.11

Accessing and displaying the
feedback image on Etude-Elec site

toring the measured load curve
__of day ‘D’ on database

1 — | -
o0 || B
G2ELab Server I GAEL Server PR =
"’ G2Elab FT G2ELab FTP

s = @

Etude-Elec Site

——
MHI Database

v

@
1) Accessing measured load curve from MHI database\
2) Calculating reference load curve and storing an image of
reference load curve superposed on measured load curve on FTP
Green Alert

<

s

P ~.
= a—
G2ELab Server 0
MHI Data L-"
1 bﬁ" .
. \

|
v

/Sending an SMS to treated group
about the availability of feedback
image on their personal account

o

G2ELab FTP

N

iﬂ_ ..... ]

G2ELab Server Subject’s Mobile

Timeline illustrating the indirect feedback on day ‘D+3’

I1.3.d.iCollection of data regarding measured load curve of subjects

It is essential for this field experiment that the experiment organizer must have

access to the energy consumption data of all the subjects collected by LINKY smart meter.

LINKY transmits the daily measured load curve of the consumer at a resolution of 30

minutes to ENEDIS server (Duplex et al., 2013). In line with a written consent signed by the

subjects regarding access to their energy consumption data as a third party, G2ELab

receives the daily measured load curve of each household from ENEDIS in encrypted form.

An automatic script decrypts and anonymizes the data as per GDPR consent signed with

each household.

46



I1.3.d.ii Identification of a potential day ahead green alert

For the sake of comprehension, it is recalled here that the purpose of this alert is for
nudging the treated group to shift their partial load from evening to the duration between
noon and 3:00 PM on alert day ‘D’. It is pre-defined that the green alert should only be
triggered for the day when the production from renewable energy is maximum. There is no
such instrument exist on national level that notifies about maximum renewable production,
or at least the renewable production more than a defined threshold. Therefore, the following
criteria is set for the identification of a day ahead green alert. To register a green alert, both

conditions must be fulfilled.

- The average nebulosity in the afternoon of a potential alert day ‘D’ in Grenoble must
be zero. i.e., the sky will be clear and the solar production will be maximum. For this
purpose, the forecasted nebulosity by INFOCLIMAT® is accessed via an API a day
before ‘D-1’ at 6 PM

- Based on the forecasted (and modelled) French national load curve of residential
sector, a coefficient is calculated. This coefficient is a ratio between the day ahead
average energy consumption in the evening and day ahead average energy
consumption in the afternoon. The forecasting model will be discussed in detail in
section II.4. To trigger a green alert, this coefficient should be greater than 1. This
implies that the forecasted average evening consumption is greater than forecasted
average afternoon consumption. Therefore, the usual energy consumption of the
evening can be shifted towards afternoon of the same day (as illustrated in Figure

I1.4). The coefficient is mathematically given in equation II.1.

8 PM )2
6 PM ! consummed ¢

1
Z?zpyM Pconsummed/t Equation 11.1
2

Coefficientgy =

where t; and t, are number of hours in the evening and in the afternoon respectively.

Their values are 2 and 3 respectively.

I1.3.d.iii Identification of a potential day ahead orange alert

For the sake of comprehension, it is recalled here that the purpose of this alert is to
nudge the treated group for curtailing their partial load in the evening between 6 PM and 8
PM on alert day ‘D’. It is pre-defined that the orange alert should only be triggered for the

day when a consumption peak is expected with maximum use of thermal power plants on

25 INFOCLIMAT API: https://www.infoclimat.fr/api-previsions-meteo.htm|?id=3014728&cntry=FR
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alert day ‘D’. The orange alert is based on the day ahead announcement of PP1/PP2%. These
days correspond to high electricity consumption determined by RTE. The day PP1 is based
on the forecasted day ahead extreme meteorological condition whereas PP2 is based on

forecasted day ahead network congestion.

The announcement of PP1/PP2 days serves in capacity mechanism to ensure the
supply of electricity for forecasted network congestion. The capacity mechanism has been
regulated in France since January 2017 to address the growing energy demand while
maintaining energy balance in the grid and ensuring secure supply during peak energy
consumption. The energy generation companies and load curtailment operators are obliged
to commit the availability of their production and load curtailing capacity during these peak
periods. By default, RTE can attribute at maximum 15 PP1 days per year and 25 PP2 days
per year (ENOPTEA, 2018) in winter season. For identifying a potential day ahead orange
alert ‘D’, the PP1/PP2 announcement is accessed via an API at 6 PM on day ‘D-1’. If a
PP1/PP2 day is declared, the program registers an orange alert for next day ‘D’.

It is worth mentioning that during the first wave of orange alert, the meteorological
conditions in France were not extreme enough that RTE forecasted a congestion on the
electrical network for several days. In this case, the rest of the alerts were triggered based
on day ahead announcement of TEMPO? and/or EJP*®. TEMPO is a mechanism of critical
peak pricing introduced by EDF, in which the tariff for color-coded day ‘D’ varies according
to the color assigned on day ‘D-1’. The tariff on day ‘D’ is cheaper than time of use price for
blue color, slightly expensive than time of use price for white color and very expensive for
red color (Albadi & El-Saadany, 2007). EJP is another instrument of critical peak pricing,
in which the peak consumption day is color-coded in red and the subscribers pay a low tariff

all year round, except for the 21 red days with higher tariff (Bivas, 2011).

26 pP1/PP2: https://www.services-rte.com/fr/visualisez-les-donnees-publiees-par-rte/signaux-ppl-et-pp2.html
27 TEMPO : https://particulier.edf.fr/fr/accueil/contrat-et-conso/options/tempo.html#/selection-bp
28 E)P : https://particulier.edf.fr/fr/accueil /contrat-et-conso/options/tempo.html#/selection-bp
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Figure II.12 Calendar of the months for orange alerts based on EJP

EDF notifies subscribers on day ‘D-1’ regarding the day-ahead color of TEMPO and
EJP. Therefore, EJP and TEMPO are added to the protocol of orange alerts for the months
of February and March 2020. Like PP1/PP2, the day-ahead notification is obtained via the
APIs of EJP and TEMPO at 6:00 PM on day ‘D-1’. The pre-defined condition for a triggered
alert based on EJP and TEMPO is that either of the two instruments notified the day ahead
in red color. Figure II.12 and Figure I1.13 demonstrate the color-coded days during the

months of February and March 2020 for EJP and TEMPO respectively.
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The experiment is performed for a period of three years. The alerts are sent during
the first two years while the third year is set to find out the habit formation of the
households. The timeline is adjusted within the temporal constraints (i.e. the availability of
measured load curve by ENEDIS). It is also adjusted in accordance with the observation of
(Ito et al., 2018) i.e. to retain the treatment effect by introducing sufficient time interval
within consecutive treatments. The triggering of orange alerts is simply based on the APT
notification by RTE regarding the forecasted network congestion in the national grid.
However, the triggering of green alert is based on two criteria. One of the criteria of green
alert is based on the prediction of day ahead residential energy consumption, which is

discussed below.

II.4 Prediction of modelled national load curve of

residential sector

The criteria for identifying a potential green alert is discussed in the section I11.3.d.ii.
For the sake of convenience, it is recalled here that one of the criteria is that the value of
coefficientca (coefficient of green alert, see equation II.1) should be greater than a threshold
value. In this case, the threshold value is 1. The coefficientc, is a ratio between the average
energy consumption in the evening and the average energy consumption in the afternoon.
Since the calculation of coefficientca is based on the day ahead energy consumption (which
cannot be measured on day before), therefore it requires forecasting of the day ahead energy

consumption.

API for real time prediction of day ahead energy consumption is not available by the
French electrical grid operators or a third party. Therefore, a supervised learning model is
developed for day ahead prediction of energy consumption. RTE provides the historical
gross daily energy consumption®” data at national level. This data represents the
accumulated electricity consumption for all the sectors (residential, industrial, etc.). This
might be effective in case of sending a general signal to the consumers of all the energy
consumption sectors, however it is more significant if customized signals are sent to the

consumers of respective consumption sector, i.e. in our case residential sector.

For this purpose, the historical data of modelled load curve of French residential

sector®® is used. To refine the prediction, the historical data of smoothened national

2 French daily energy consumption: https://opendata.reseaux-energies.fr/explore/dataset/consommation-quotidienne-
brute/api/?sort=-date heure

30 Modelled load «curve of French residential sector: https://data.enedis.fr/explore/dataset/coefficients-des-
profils/information/?disjunctive.sous_profil
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temperature of France® is also used. This data is used by ENEDIS and is also accessible on
their open data platform via an API. In addition to this, the forecasted temperature of 32
French cities is also accessed via an API of Climacell (rebranded as tomorrow.io*). The
detail of these APIs and their corresponding data is discussed in detail in section I1.4.c.
Numerous techniques are available in the literature for short term load forecasting.
Moghram & Rahman (1989) presented an overview of 5 short term load forecasting
techniques namely; multiple linear regression, stochastic time series, general exponential
smoothing, state space and Kalman filter. Liu et al. (1996) presented fuzzy logic, neural
networks, and autoregressive (AR) models in their article. Taylor & McSharry (2007)
presented autoregressive approaches such as ARIMA and periodic AR, or Holt-Winters
exponential smoothing and a method based on the principal component analysis (PCA).
Recently, recurrent neural network (RNN) based short term load forecasting has been
presented in multiple articles. Bianchi et al. (2017) presents a comparative analysis of RNN

which includes Long Short Term Memory (LSTM) and gated recurrent unit (GRU).

The results of different techniques are studied for the purpose of prediction.
Normally, LSTM prediction gives good results however, it needs a lot of computation, which
is not necessarily required for this study. Random Forest regression gives good results as
well and needs less computational time than LSTM, Therefore, for the purpose of
forecasting the French national load curve of residential sector, random forest regression

model is used. The following section presents the working principal of random forest.

I1.4.a Random Forest Regression

Random forest is an ensemble

supervised  learning method for

Tree 1 . Tree 2. () . Treen
classification and regression. “It operates ®e © o o e
by constructing a multitude of decision 0000 O ® o
trees at training time and outputting the Prediction 1 Prediction 2 fo) Prediction n
class that is mean/average prediction

(regression) of the individual trees” (Tin

Kam Ho, 1995, 1998). Figure IL.14

represents the schematic diagram of Figure I1.14 Random Forest Regression
random forest regression.
31 Smoothened national temperature : https://data.enedis.fr/explore/dataset/donnees-de-temperature-et-de-pseudo-

rayonnement/table/?sort=-horodate
32 Climacell (rebranded as tomorrow.io) : https://www.tomorrow.io/
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I1.4.b Regression Model Creation

A supervised regression model has three phases. The first phase is related to the
training of a model. For this phase, it is necessary to have sufficient historical data. In case
of multiple input variables, the data of all the quantities is needed. Following this, the choice
of a suitable regression technique is important. A target variable is also defined in this
phase, of whom the prediction will be performed. In the training phase, the historical data
of (one or multiple) quantities is used as input (mathematically denoted as X;,.,;,), whereas
the target is defined as output (mathematically denoted as Y;,.4in). Using the chosen
technique, the model learns that each x input leads to its respective y output (where x is the

instantaneous input and y is the instantaneous output).

The second phase is related to validation of model. Usually, a fraction of training
data is kept for validation. Since the data is in vectorial form, therefore rather than having
a simple arithmetic difference, a validation indicator is chosen in this phase. For the given
input data X,,;, the model performs a prediction Y. The difference of prediction ¥ with the
target Y,,; according to the chosen indicator gives us a measure of how well the model is
performing. Certain measures can then be taken to improve the model if the model seems
to be not working up to the expected standards. The third phase is related to the real time

prediction, where a validated model is used to do the prediction Y for given input data X.
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Figure I1.15 Principal of regression model creation, validation and use in real time

For the purpose of prediction, scikit-learn package (Pedregosa et al., 2011) of python
language is used. The script access data via APIs of ENEDIS and Climacell (weather
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forecasting enterprise) and store it in a database. It should be noted that the random forest
model created by scikit-learn method does not update regularly. Therefore, with the
availability of sufficient new data, the python script trains a new model on whole available
historical data. For this purpose, the same script runs daily to make a model with ensemble
of available data. Another python script runs automatically at 6:00 PM every day and make

the prediction using the random forest model based on the available input data.

I1.4.c Third Party APIs used for Forecast
Third party APIs are used to obtain updated data from ENEDIS and Climacell on

regular basis. These APIs and the data obtained from them are briefly explained below.

IL.4.c.i Profile Coefficient of Residential Sector

ENEDIS constructs national profiles of the energy consumption sectors in France.
The data of these profiles is published as open source and is validated by energy regulation
commission. A profile coefficient depicts a form of consumption or production of electricity
over time. Each consumption profile is modelled based on the energy consumption data of
a sample of customers (in this case, residential consumers) selected throughout France. A
profile represents average behavior of a group of users and reflects how an average
individual in the group consumes electricity with the passage of time (Réseau de Transport
d’Electricité France, 2020b). Figure I1.16 illustrates the profile coefficient of residential

sector, displayed on the data visualization platform of ENEDIS.
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Figure I1.16 Load curve of residential profile coefficient33 by ENEDIS

33 Enedis Data Visualisation : https://data.enedis.fr/pages/accueil/?id=dataviz-profils
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For our study, we have selected profile coefficient curves of category Residential with
sub-category RES1_BASE. This sub-category consists of the residential consumers which
have contracted power < 6 kVA. This is a classical contracted power which is being
subscribed by around 7 out of 10 French households (Pinon, 2018). These households do
not have electrical heating in their home. In our experiment, around 8 out of 10 households
does not have electrical heating in their home. Therefore, this sub-category is close to the
experimental case. Further, there exist 3 types of profile coefficient curves in this sub-

category. All these curves are sampled at 30 minutes.

- The prepared coefficient depicts a model about how an average customer of this
category consumes electricity over time at normal temperature. The normal
temperature is further described in section II.4.c.ii. The normal temperature is
established by RTE for a period of 10 years based on historical measured
temperature of previous 30 years. Using the normal temperature, the values are
adjusted for special days. The data is available for this coefficient since 26 December
2015;

- The adjusted coefficient depicts a model about how an average customer of this
category consumes electricity over time at national temperature (instead of normal
temperature). The national temperature is further described in section II.4.c.ii.
Using national temperature, the values are adjusted for special days and weather.
The data is available for this coefficient since 26 December 2015;

- The dynamic coefficient is the result of a more precise modelling. This coefficient
directly take into account weather and special days (i.e. holidays). The data is
available for this coefficient since 15t July 2018 (Réseau de Transport d’Electricité

France, 2020Db).

Assuming these curves as the modelled load curve of residential sector, the dynamic
coefficient curve is selected for the forecasting of French national load curve of residential

sector.

I1.4.c.ii Temperature

This dataset corresponds to the national temperatures of France. Both types of
temperature given below is used to calculate a coefficient of proportionality, which is called
temperature gradient. It refers to the variation in consumption with respect to variation in
1 °C of temperature. However, it needs to consider the inertia of consumption in relation to
temperature variations. For this purpose, the temperature is smoothened to take in to
account the thermal inertia of buildings. The purpose of this is to make a hypothetical
relation between the ambient temperature and the internal temperature of buildings

(without knowing the internal temperature). The national temperature is calculated by a
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weighted aggregation of measured temperature for 32 French cities where weather stations
are installed. The data is sampled at 30 minutes. There are two types of temperatures

available in this dataset.

- The normal temperature corresponds to a weighted average of smoothened
normalized temperature of the 32 weather stations. The normal temperatures per
station are established for a period of 10 years based on temperatures observed over
a period of 30 years;

- The national temperature corresponds to a weighted average of smoothened
measured temperatures of 32 weather stations on day ‘D-2’ (Réseau de Transport

d’Electricité France, 2020b).

To forecast the French national load curve of residential sector, the measured national

temperature dataset is taken. The data of this dataset is available until day ‘D-2’ every day.

I1.4.c.iii Weather Forecast API

Since we only have data until day ‘D-2’ from ENEDIS API of temperature and
pseudo-radiation, we need to collect forecasted temperature of the 32 French weather
stations. For this purpose, we use the API of Climacell to gather the forecasted temperature
data. For each French weather station, the API offers 109 hours of forecast with a time step

of 1 hour.

RTE France (2020) presents the method of smoothing the temperature of 32 French
weather stations, which is illustrated in Figure II.17. The smoothening is carried out by

successive application of the following formulae.

Adjustment of Calculation of
temperature Summation of smoothened
Measured according to temperatures to French
temperature of 32 electrical weight obtain fictive temperature by
French cities e; calculated by French using thermal
ENEDIS. temperature. inertia coeffients a
wherei=1...32 and b.
e

Figure I1.17 The procedure of smoothening the measured temperature of 32 cities

Tir(hd,y) = (1= ap) X Te(h,d,y) + apy % Tr(h—1,d,y) Equation 11.2

T(h' d, Y) = (1 - bh) X TF(h' d'y) + bh X TLT(h' d' y) Equation 1.3
Where h = hour, d = day, y = year, a, b = coefficients adjusting building thermal
inertia, Tr (h, j, n) = brute fictive temperature of France, T, (h, j, n) = Long term temperature

and T (h, j,n) = smoothed French temperature.
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II.4.d Regression Model Parameters

Figure I1.18 gives a schematic diagram of the regression model.
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Figure I1.18 The prediction model for predicting profile coefficient of day ‘D’

II.4.d.iDynamic Profile Coefficient

The historical data of dynamic profile coefficient obtained by ENEDIS API French
national load curve of residential sector is used as input ‘X’ for training the model. In
addition to this, 2 parameters of lagged dynamic profile coefficient are introduced in the
dataset as part of input X’. One parameter of the model is dynamic profile coefficient lagged
by 14 days, while other parameter is dynamic profile coefficient lagged by 28 days. The
frequency of availability of new data for these curves is variable. The data is generally
available until day D-n where n = 1.....10. Normally RTE updates the data on their open-
source platform either weekly or every 10 days. This is the reason that lag of 14 days and 28
days are selected respectively rather than a lag of 1 day or 7 days. Figure 11.19 shows a
correlation between the actual profile coefficient and the lagged profile coefficient by 14

days and 28 days respectively. It shows the periodicity of the curve of profile coefficient.
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Figure I.19 The correlation of profile coefficient with lagged profile coefficients
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I1.4.d.ii Temperature

The historical data of smoothened national measured temperature of 32 French
weather stations is obtained by ENEDIS API. In addition to this, 6 parameters of lagged
temperature are added to the dataset. These temperature parameters are lagged by 1 hour,
6 hours, 12 hours, 1 day, 1 week and 30 days respectively. Another parameter of rolling
average of 6 hours is also added in the dataset for training of model. Thus, a total of 8
parameters related to temperature are added in the dataset as part of input X for training of
regression model. The smoothened national forecasted curve obtained by ClimaCell API is

used for prediction by the created model.

I1.4.d.iii Temporal Parameters

The following temporal parameters are added in the training dataset with one hot encoding.
One hot encoding is a process by which categorical variables are converted into binary
columns. e.g. a column having 7 day of week can be transformed into 7 binary columns

representing each day of week.

Hour of day: 24 one hot encoded columns are introduced to the training dataset

for the parameter of hour of the day.

- Day of week: 7 one hot encoded columns are introduced to the training dataset for
the parameter of day of week.

- Day of year: 365 one hot encoded columns are introduced to the training dataset
for the parameter of day of year. It should be noted that data of leap day from year
2020 was removed from the model for the sake of convenience.

- ‘Is_weekday’: A Boolean column is added as parameter is_weekday. The value
remains o if weekday, else 1 for weekend.

- ‘Is_holiday’: A Boolean column is added as parameter is_holiday. The value

remains 1 if the day is a French holiday, else it remains o.

I1.4.e Model Evaluation and relative importance of features

Figure I1.20 illustrates the prediction of load curve for weekdays as well as weekend.
Since the model upgrades with the availability of new data, therefore for the purpose of
illustration, the results are based on training of a historical data of 3 years and 2 months. It
can be seen in the figure that the model is also capable of predicting the weekend, though

the aim of prediction for the experiment is to have good prediction for weekdays.
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Figure II.20 Prediction of French residential load curve by random forest regression

It is worth mentioning that initially a model consisting of temporal features as input
and dynamic profile coefficient as output is analyzed. Following this, the lagged features of
dynamic profile coefficient are added in the model. Lastly, the temperature and lagged
temperature features are also added in the model. An interesting factor to look at is the
relative feature importance of the input parameters. The analysis of base model with
temporal features and subsequent introduction of new features is illustrated below with

respect to feature importance.

hou r_Of_day _
day_of_weekl

is_weekday

is_holiday:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Relative Importance

Figure I1.21 Relative Importance of temporal features

It can be observed in Figure II.21 that hour of day is relatively most important
feature among the temporal features. However, with the introduction of lagged features of

dynamic coefficient, the temporal feature of day of year appears to be relatively most

58



important feature among temporal features (as demonstrated in Figure I1.22). Among all

the temporal features and lagged dynamic coefficient features, the dynamic profile

coefficients lagged by 14 days remains the most important feature.
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day_of year

coefficient_dynamic_ZSd_lagI

hour_of _day
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is_weekday
is_holiday-
0.0 0.2 0.4 0.6 0.8
Relative Importance

Figure II.22 Relative Importance of temporal features and lagged profile coefficient

Yet it can be observed in Figure I1.23, a temperature feature lagged by 12 hours is
relatively more important than the temporal features. Despite this, it is found that the
temporal features are significant to improve the model performance. It can also be noticed
that the feature illustrating whether the target day is a holiday does not seem to have any

relative importance among all the features. Likewise, the features illustrating whether the

target day is a weekday seems to be least important among all the features relatively.
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Figure I1.23 Relative Importance of all features in model
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I.4.f Performance Metric

It is observed in the previous section that the importance of input features can be
calculated relative to each other. The relativity changes if new features are added in the
model or certain features are removed. However, this does not give an absolute measure of
the absolute validation of a model. Therefore, a performance metric is needed to measure
the validation of a model. Mean absolute percentage error (MAPE) is taken as the
performance metric to validate the results. The mathematical formula is given below.

ytrue - ypredicted/

true

MAPE (%) =

X 100 :
Number of Yirue Equation 11.4

Figure II.24 demonstrates the distribution of mean absolute percentage error
recorded over a period of 3 years and 1 month. It should be noted that the outliers are not
shown in the figure for the sake of comprehendible presentation. The prediction model
having only temporal features gives a large distribution of mean absolute percentage error.
The average MAPE observed in this case is 9.49% with a standard deviation of 6.77%. To
improve the performance of model, the lagged features of dynamic coefficient profile and
features regarding temperature are subsequently added. The addition of former decreased
the average mean absolute percentage error to 6.43% whereas the addition of later
decreased the error to 4.11%. The standard deviation also decreased. It concludes that
besides temporal features, the prediction has a strong dependence on the historical data

and temperature.
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Figure I1.24 The comparison of performance metric
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Table I1.4 Statistics of performance metric for each type of model

Model
Input Temporal, profile
Temporal and profile .
Temporal features . coefficient and
coefficient features
Aggregate temperature features
Function
Count (Days) 808 808 808
Average (%) 9.49 6.43 4.11
Standard Deviation (%) 6.77 3.48 2.08
Minimum (%) 1.28 1.70 1.29
Maximum (%) 31.45 21.95 14.34

I1.4.g Conclusion on the prediction of French residential load curve

A demand side management signal to the residential consumer based on the
forecasted grid consumption retains the effect of all energy consumptions sectors.
Therefore, it is more significant to send energy flexibility signals to the residential
customers solely based on the forecasted condition of residential consumption. One way of

doing this is by making a forecast on national load curve of residential sector.

Random forest regression is used to do prediction of modelled French national load
curve of residential sector. The analysis of feature importance depicts that the historical
value of French national load curve of residential sector is most important, followed by the
temperature parameters and temporal parameters. The performance metric suggests that
the addition of lagged features related to French national load curve of residential sector
and national temperature improves the performance of the model. This prediction serves to
calculate the Coefficient;, (green alert coefficient) to identify a day ahead potential alert
for load shifting. With a forecasted clear sky and Coef ficient;, greater than 1, the treated

group is nudged to shift their energy consumption from evening to afternoon on next day.

I.5 Conclusion

Dynamic pricing is a tool to motivate consumer towards moderate energy
consumption. The residential consumer faces constraint of limited knowledge and
uncertain utility. If a consumer has enough information, the consumer does not know how
to implement energy flexibility. The consumer makes decision according to system 2 of
thinking by calculating the outcome and opportunity cost of energy flexibility. The
residential consumer should be motivated to make automatic decision through system 1 of
thinking while keeping in account the social, psychological, and ambient factors. Since the
distributed generation serves as common pool resource, the residential consumer should be

enlightened about the requirement of energy flexibility.
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The general questions of the consumer regarding energy flexibility are identified i.e.
why to act, when to act, how to act and how did it go. A green nudge-based energy flexibility
mechanism is experimented with a pool of French households. A set of green nudges are
used to answer the above questions. It includes information, commitment, and feedback.

The purpose of this set of nudges is to intrinsically motivate the treated group.

Two types of interventions are experimented i.e. load curtailment and load shifting.
The signal of load curtailment is based on the day ahead forecasted network congestion of
the French electric grid. One of the criteria for load shifting signal is based on the forecasted
modelled load curve of national residential sector. A prediction model is created using
random forest regression. It is observed that by adding the lagging features of historical
curve and temperature, the performance of prediction model is improved up to 57% of the
baseline model only containing temporal features. It demonstrates the significance of
lagged features of historical data for better prediction. Following the presentation of
experimental architecture of nudge-based energy flexibility, the next chapter will discuss

the efficiency of these nudge signals.
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Chapter III

Measuring the impact of nudge signal

This chapter deals with the statistics of alerts i.e. interventions made for energy
flexibility. It also presents a comparison of statistical and energy consumption
characteristics of control group and treated group. The later section of this chapter discusses
the quantification of the energy flexibility implemented by treated group as compared to the

control group.
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II1.1 Introduction

In the previous chapter, the architecture of the experiment representing nudge
based indirect energy flexibility in the households is presented. The purpose of this
experiment is to study the impact of green alerts for load shifting and the impact of orange
alerts for load curtailment. It is recalled here that the purpose of green alerts is to increase
the energy consumption during the hours of elevated renewable energy production in the
afternoon of summer season, whereas the purpose of orange alerts is to reduce the peak
energy consumption during the evening in winter season. This chapter deals with analyzing
the characteristics of subjects during alert days and non-alert days. Additionally, it also

deals with measuring the impact of nudge signals.

II1.2 General Statistics of the alerts

There were 175 households that participated in the study during the first session of
orange alert and green alert. These households were categorized into control group and
treated group based on strictly possible equivalence. Before the commencement of second
session of experiment, the subjects were asked to re-sign a consent for continuing their
participation in the experiment. Certain subjects left the experiment before the
commencement of second session while some other left the experiment amidst the second
session. This is owing to their personal choice, mal communication of smart meter or the
fact that the households were relocated. The number of households in each group for each

session is given in Table III.1.

Table III.1 Number of households in each group with respect to each year
Sr. Type of group
No. Control Group Treated Group Total
Year
o1 Year 1 79 96 175
02 Year 2 76 87 163

Two sessions of green alerts as well as two sessions of orange alerts were conducted
during a period of 2 years. The experiment was conducted between November 2019 and
September 2021. The duration of each session and the number of alerts triggered during
each session is given in Table IIl.2. For the sake of comprehension, the following

terminologies will be used hereafter:

- Green (or It represents the type of alerts for load shifting (or load

Orange): curtailment) respectively.
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Session X of

green alerts (or

orange alerts):

Non-alert days

of session X:

Alert Days of

session X:

Period of

interest (or

The respective session of green alerts or orange alerts. Here

the value of X is either 1 or 2.

The days for which no alert was in place during a session X.
These days represent usual behavior of energy consumption
of households. The energy consumption during the period of
interest is significant to measure the impact of nudges on

alert days.

The days for which an alert was in place during a session X.
These are the days when the households are expected to

implement energy flexibility during period of intervention.

The period of a day (in hours) for which an energy flexibility
is expected to be implemented by the households of treated

intervention) group on alert days. This period is between noon and 3 PM
for green alerts and between 6 PM and 8 PM for orange alerts.
To distinguish it for non-alert days and alert days, this period
will be hereafter called as period of interest for non-alert days
and period of intervention for alert days.
Table III.2 Number of alert days with respect to each session and alert type
Period of Number
. Number
Sr. Alert | Purposeof | interest (or . . of non-
. Duration of session of alert
No. Type Alert Intervention alert
days
) days
First session:
15t July 2020 — 315t July 2020
and 46 5
24™h  August 2020 - 3oth
o September 2020
o1 Green Load shifting | Noon to 3 PM i
Second session:
15t April 2021 — 315t July 2021
and 108 2
24%™  August 2021 — 3ot
September 2021
First session:
1t November 2019 — 318t 99 9
Load March 2020
02 Orange . 6 PM to 8 PM _
curtailment Second session:
1t November 2020 - 31t 96 12
March 2021
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II1.2.a Green Alerts

The first session of green alerts was originally planned from April 2020 to September
2020. However, due to the first national lockdown in France caused by COVID-19
pandemic, the first session was re-planned from July 2020 to September 2020. It was done
to not bother the subjects during the lockdown (and immediate post-lockdown) period. As
it can be also observed in Figure I11.1, the weekly average consumption in France during the
lockdowns remained different comparing to the range of weekly average consumption of
previous 5 years (Réseau de Transport d’Electricité France, 2020a). Therefore, triggering
any alert during the lockdown period would not be effective to measure the impact of energy
flexibility regarding usual energy consumption behavior. Besides, the behavior of energy
consumption during the lockdown would be different than the normal behavior of energy

consumption in the households, which would influence the experiment.

It is recalled here from section II.3.d.ii that two criterions were put in place for
triggering a green alert. The principal criterion is related to the day-ahead forecasted
nebulosity during the afternoon in Grenoble. The nebulosity should be zero. The second
criterion is based on calculating day-ahead Coefficient;,. This coefficient is a ratio of
average evening energy consumption and average afternoon energy consumption. It should
be greater than 1. It was expected that there will be a significant number of green alerts
during the second session. However, contrary to the expectations, only 2 green alerts were
triggered by the automatic system between April 2021 and September 2021. This was since
the sky remained cloudy almost throughout the summer 2021 in Grenoble. Table III.3
demonstrates the basis of each triggered green alert for both sessions.

Adjusted consumption in France: weekly average* (MW)
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Weekly adjusted consumption in 2020 . Range 2014-2019

*adjusted consumption, business days only

1st confinement: from Tuesday, 17 March to Monday, 11 May 2020
2nd confinement: from Wednesday, 30 October to Tuesday, 15 December 2020

Figure III.1 The impact of lockdown on French energy consumption during 2020 (Réseau de Transport
d’Electricité France, 2020a)

67



Table I11.3 Basis of triggered green alerts

No. of Average Evening Average Afternoon
Alert Date Energy Energy Coefficientgy
Consumption Consumption
Green Session 1
o1 27 July, 2020 1.15 0.98 1.17
02 25 August, 2020 1.19 1.02 1.17
03 14 September, 2020 1.3 0.98 1.33
04 17 September, 2020 1.26 0.92 1.37
05 22 September, 2020 1.28 0.84 1.52
Green Session 2
06 14 June, 2021 1.18 0.98 1.20
o7 06 September, 2021 1.19 0.92 1.29

I11.2.b Orange Alerts

The first orange alert was triggered based on the forecasted negative temperature of
Grenoble. This served as a test to find out whether the designed mechanism of the
experiment works. Following this, the protocol of sending alerts based on the PP1/PP2
notifications was adapted. As the winter was not cold enough to bring network congestion
on the national grid, it is deduced that there might be no more PP1/PP2 notifications.
Therefore, EJP and TEMPO notifications are added as secondary protocol. EDF split the
territory of France in 4 zones to notify about the status of day ahead EJP. For triggering

orange alerts, the notifications of EJP for south zone is used.

Contrary to the 15t session of orange alert, the winter season during the second
session of orange alert was colder and RTE notified 19 PP1/PP2 days. It is defined in the
protocol that two consecutive alerts should not be sent for two consecutive days. Therefore,
only 12 PP1/PP2 days were considered during 27 session of orange alert. Since the number
of alert days were enough, therefore no secondary protocol was adapted. Table III.4

demonstrates the basis of each triggered orange alert for both sessions.

Table I11.4 Basis of triggered orange alerts

No. of Alert Date Basis of alert

Orange Session 1

o1 14 November, 2019 Manual Alert (Temperature < 0)
02 20 December, 2019 PP1/PP2

03 20 January, 2020 EJP (South Zone) 34

04 06 February, 2020 EJP (South Zone)

34The region of Auvergne-Rhdénes-Alpes, where the experiment is performed is included in the south zone by EDF for EJP notifications
: https://www.fournisseurs-electricite.com/edf/tarifs/ejp/zone
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05 19 February, 2020 TEMPO
06 27 February, 2020 EJP (South Zone)
o7 02 March, 2020 EJP (South Zone)
o8 04 March, 2020 EJP (South Zone)
09 09 March, 2020 EJP (South Zone)
Orange Session 2
10 30 November, 2020 PP1/PP2
11 02 December, 2020 PP1/PP2
12 04 December, 2020 PP1/PP2
13 07 December, 2020 PP1/PP2
14 09 December, 2020 PP1/PP2
15 18 December, 2020 PP1/PP2
16 04 January, 2021 PP1/PP2
17 06 January, 2021 PP1/PP2
18 08 January, 2021 PP1/PP2
19 11 January, 2021 PP1/PP2
20 26 January, 2021 PP1/PP2
21 11 February, 2021 PP1/PP2

II1.3 Comparison of statistical variables of control group and

treated group

Before discussing the impact of nudge signals for energy flexibility, it is important
to assess the resemblance between the groups. Though the groups are formed with respect
to strictest possible equivalence, it is pertinent to compare various statistical variables of
both groups. The information of households regarding the statistical variables was gathered
through the questionnaire filled by the subjects. If statistically significant difference is found
between the groups for a number of statistical variables, the later results about the impact

of nudge signals will be affected and may not be statistically validated.

The purpose of this section is to compare the similarity (or dissimilarity) of certain
statistical variables between two groups. The variables that are analyzed in this section is
related to the number of occupants (and appliances) in the households, the presence of
occupants in the household and the characteristics of the building. For the sake of
convenience, the variables are converted into their corresponding fraction in percentage.

The variables and their percentage share are given in annex B.

A Chi-square test * (also known as ‘goodness of fit’ test) is performed on the

statistical variables between the control group and the treated group. It is used to analyze

35 The analysis was performed in RStudio in the programming language ‘R’. A group of students of econometrics assisted in this
evaluation. The evaluation served as a course project for the students.
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categorical data and to check the homogeneity of two groups. It measures that if the groups
are independent, how well the observed distribution of data fits with the expected
distribution. A quality of Chi-square test is that it does not require equality of variances
among the study groups or homoscedasticity in the data (McHugh, 2013). Two hypotheses
are formulated i.e., the null hypothesis (Ho) and the alternative hypothesis (H1). These

hypotheses are given below.

- Ho: The groups are similar/identical.

- Hi: The groups are significantly different.

The retention of null hypothesis (Ho) requires that the p-value in the result of Chi-square
test should be greater than the value of significance level (denoted by a). The value of a is
fixed at 0.05, which means that the test has a confidence level of 95% i.e., we are 95%
confident that the observed results are real and are not an error caused by randomness. The

results of Chi-square test for various variables are tabulated in Table III.5.

Table I11.5 Chi-square test of independence of various variables

Sr. . Null hypothesis
Variable Name p-value .
No. retained?

Household characteristics

o1 Owner/Tenant 1 Yes
02 | House/Apartment 0.44 Yes
03 Surface of household 0.24 Yes
04 Year of construction 0.04 No

05 Number of persons in the household 0.83 Yes
06 Presence in the household at least 3 days per week (during 052 Yes

weekdays)
07 | Types of electric heating 1 Yes*

Presence of appliances

08 | Electric water heater 0.49 Yes
09 Air Conditioning 0.82 Yes
10 Heat Pump 0.99 Yes*
11 PV panels 0.31 Yes*
12 Double glazing of windows 0.16 Yes*

Number of appliances in household

13 Electric Oven 0.98 Yes*
14 Dishwasher 0.57 Yes
15 Washing Machine 0.30 Yes*
16 Cloth Dryer 0.26 Yes
17 Electric Vehicle 0.56 Yes*
Energy Consumption during weekdays
18 Pressing Iron 0.49 Yes
19 Electric Oven 0.08 Yes
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20 Dishwasher 0.64 Yes

21 Washing Machine 0.60 Yes
22 Cloth Dryer 1 Yes
23 Electric hotplates 0.50 Yes
24 Radiator 1 Yes

Energy Consumption during the weekend

25 Pressing Iron 0.51 Yes
26 Electric Oven 0.51 Yes
27 Dishwasher 1 Yes
28 | Washing Machine 1 Yes
29 | Cloth Dryer 1 Yes
30 Electric hotplates 0.63 Yes
31 Radiator 1 Yes

The p-value of Chi-square test for each of these variables is greater than 0.05. The
case is contrary for the variable “year of construction”. Therefore, the null hypothesis is
retained for all the variables in Table III.5 except for the variable “year of construction”.
The information regarding this variable is collected for the purpose of using thermal loss of
the dwellings in the study. However, since the experiment did not consider the modes of

space heating, therefore this variable is not important in the study.

It should be noted in Table II1.5 that for some variables, an asterisk is placed in the
fourth column, next to ‘Yes’. These asterisks represent a warning during the execution of
test, indicating that the approximation of Chi-square test of independence may not be aptly
correct. For a chi-square test, it is assumed that the values in the ‘expected’ column should
be equal to or more than 5 in at least 80% of the cells, and no cell in the ‘expected’ column
should have value less than 1 (Bewick et al., 2003; McHugh, 2013). The warning might be
raised due to non-fulfillment of assumption for respective variables. Though this makes

estimation with a warning, yet it gives a result regarding the similarity in the groups.

The social comparison of both groups depicts that there is no statistically significant
difference between the groups for most of the socio-technical statistical variables. In the
results, there lies a limitation for certain statistical variables due to the non-fulfillment of
basic assumption, yet the end results with respect to the data of both groups depicts that
there is no statistically significant difference. Since the null hypothesis is retained for most
of the variables, therefore it can be concluded that the two groups are statistically similar

for multiple social characteristics.

71



II1.4 Comparison of normal energy consumption between

two groups

It has been observed in the previous section that the control group and treated group
are found identical for several statistical variables. Yet, it is still to be studied that whether
the energy consumption of treated groups is like the control group, and if so, then to what
extent. The normal (or non-alert days) energy consumption in this case refers to the energy
consumption on the weekdays when no energy flexibility is activated. If the normal energy
consumption looks similar (or have negligible difference), it validates that the control group
can be used as a standard against which the effect of treatment on treated group can be

quantified.

For this purpose, meta-analyses is studied between the groups. A meta-analysis is a
statistical analysis of a number of analysis results in order to integrate their findings (Crits-
Christoph, 1992; Glass, 1976). Its purpose is to address a research question as definitely as
possible through combining findings of multiple studies (TARG Bristol, 2017). The meta-
analysis of energy consumption for non-alert days is discussed in this section with the

methodology given below.

- The consumption data is split for each session as follows.

o To analyze the normal consumption, the measured load curve of non-alert
days of each session is taken. The number of non-alert days are given in Table
III.2.

- The meta-analysis is performed on the measured load curve of period of interest.
The reason being that we are interested in knowing the impact of the nudge signals
during period of intervention on alert day. It is recalled here that:

o For green alerts, this period is between noon and 3 PM.
o For orange alerts, this period is between 6 PM and 8 PM.

- The measured load curve data is originally sampled at 30 minutes. The data is
analyzed in the form of average energy consumption per hour (during the period of
interest). i.e.

o The average energy consumption per hour is mathematically defined as:
_ =P

E = —_—_—_—_——_—
average n/z Equation I11.1

Where P; is the instantaneous power at instant i’

o For green alerts, the number of measurements between noon and 3 PM are
6. The measurements are added and then divided by 3 to obtain the average

energy consumption per hour.
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o Similarly for orange alerts, the number of measurements between 6 PM and
8 PM are 4. The measurements are added and then divided by 2 to obtain the
average energy consumption per hour.

o For all the analyses given below, it is found that there is no difference
between the results if we either take the energy consumption of the whole
period of interest or take average energy consumption per hour during the
period of interest. Since it is common practice to present energy consumed
per hour, therefore, the average energy consumed per hour is taken as unit.
Besides, it is also helpful to compare the average energy consumption per
hour in the evening to that of average energy consumption per hour in the
afternoon.

- The analysis is performed using the following three statistical tools.
- Kernel Density Estimation: To visually compare the statistically
distribution of energy consumption of both

groups.

- Mann Whitney U Test: To observe whether the data of both groups is

statistically similar or different.

II1.4.a Visualization of statistical distribution on normal days

This analysis gives a global picture of the energy consumption during the period of
interest on non alert days. The kernel density estimation®® (shortened as KDE) is used to
visualize the statistical distribution. For non-parametric data, KDE is an estimate of
probability density function of a random variable (i.e. energy consumption in this case).
Based on a finite number of data, KDE attempts to infer characteristics of a population of
data. In our case, the comparison is done by the superposition of KDE distribution of treated

group on the KDE distribution of control group.

Figure III.2 illustrates it for the non-alert days of green session 1 and green session
2 respectively. The peak density of energy consumption for both groups is found to be less
than 0.5 kWh. It suggests that it is highly probable that the energy consumption of a
household remains less than 0.5 kWh. The peak density of control group is higher than the
peak density of treated group during 1%t session of green alerts. It might be caused due to re-

adjustment towards normal life during post-confinement, when the subjects had to adjust

36 The estimation is made using the visualization function of Kernel density estimation in “pandas” package (of python language). This
visualization function uses a class “scipy.stats.gaussian_kde” from “scipy” python package at backend. For the estimation, the default
parameters are used i.e. Gaussian kernel is used alongwith “scott” method as bandwidth estimator of density estimation.
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their work hours at their workplace and in their home. However, comparing to the 1st

session, the peak density of both groups is within proximity in 2rd session.

Session 1 - Non-alert days between noon and 3 PM

—— Control Group
—— Treated Group
= Overlapping: 88.2 %

Session 2 - Non-alert days between noon and 3 PM

1.4

Control Group
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— Qverlapping: 92.5 %
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Figure III.2 The distribution of non-alert days of green sessions

The distribution of control group is overlapped by the distribution of treated group
by 88.2% and 92.5% for green session 1 and green session 2 respectively. The difference of
the mean values between both groups is minimal, whereas the coefficient of variation of
both groups is also closer. Therefore, it can be concluded that the two groups are similar in
terms of energy consumption during non-alert days of green sessions. The coefficient of
variation is a ratio of standard deviation and mean value and it gives a measure of dispersion
of data relative to the mean (Lovie, 2005). The third column entitled ‘ratio’ in the graphs

below represents the values calculated as follows;

ROW, COLUMN FORMULA
MEAN, RATIO Ke
Ur
6

SD (STANDARD DEVIATION), RATIO 6_C
T

cv
cV (), RATIO g

" CVy

Where u is the mean value, 6 is the standard deviation, CV is the coefficient of
variation and the subscripts C and T represents control group and treated group

respectively.

The distribution of non-alert days of orange sessions using KDE is illustrated in
Figure II1.3. The distribution of control group is overlapped by the distribution of treated
group by more than 90%. Like the case of green sessions, the difference in mean values is

minimal whereas the ratio of coefficient of variation is also closer to 1. Therefore, it can be
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concluded that the two groups are similar in terms of energy consumption during non-alert

days of orange sessions.

Session 1 - Non-alert days between 6 PM and 8 PM Session 2 - Non-alert days between 6 PM and 8 PM
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Figure II1.3 The distribution of non-alert days of orange sessions
I11.4.b Assessment of statistical difference in the normal energy

consumption

This analysis gives a global demonstration of the energy consumption during the
period of interest on non-alert days. As observed from the Figure I11.2 and Figure III.3, the
data is asymmetric and does not follow normal distribution. Therefore, a statistical test for
non-parametric data, which is known as Mann-Whitney U Test " is performed. With
respect to the alternative hypothesis (H1), the test is further classified into one-sided or two-
sided. Here, our interest is to check whether the distribution underlying control group is
similar (or significantly different) than the distribution underlying treated group. A two-
sided Mann-Whitney U Test is done in this regard with the following hypotheses.

- Null hypothesis (Ho): The distribution (of energy consumption data) of control
group is similar to the distribution (of energy consumption data) of treated group.
- Alternative hypothesis (H1): The distribution (of energy consumption data) of
control group is significantly different than the distribution (of energy

consumption data) of treated group.

The rejection of null hypothesis (Ho) represents the presence of statistically significant
difference between the distributions of both groups. Since no intervention is made on non-

alert days, therefore our interest is to find out whether the null hypothesis is retained for

37 This test is also known as Wilcoxon rank sum test. The test was performed using the function “scipy.stats.mannwhitneyu()” of
Python’s SciPy package.
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the energy consumption data of non-alert days. Statistically, it can be observed if the p-value
of two-sided Mann-Whitney U Test is greater than a = 0.05. The results of two-sided Mann-
Whitney U Test is globally given below for green and orange sessions in Table III.6. Since
the p-value for both types of sessions are greater than q, therefore it can be concluded that
there does not exist any statistically significant difference in the energy consumption of both
groups for non-alert days. In other words, the energy consumption of both groups is found

similar for non-alert days.

Table III.6 The Mann-Whitney U Test for non-alert days of both types of sessions
S Control Group Treated Group Mann-Whitney U Test
r.
Sessions p-
No. Obs TTe oc Obs ur or Stat
value
1 Green 9684 0.77 0.85 11794 0.77 0.81 56800317 0.50
2 Orange 16474 1.42 1.50 19285 1.34 1.43 164398493 1.19

where Obs = number of observations, u = Mean value of observations, 6 = standard

deviation of observations.

II1.5 Analysis of the impact of nudge signals

The visual analysis and statistical analysis in section II1.4 concludes that the energy
consumption of both groups during the period of interest on non-alert days is similar. It is
now pertinent to perform the analysis of impact of nudge signals for the alert days. Firstly,
a visual analysis of the energy consumption during the period of intervention on alert days
is presented. It tells us whether the distribution curve of treated group is displaced with
respect to the distribution curve of control group. Secondly, a statistical analysis is
presented to find out whether the distribution underlying treated group is statistically less
than (or greater than) the distribution underlying treated group. And finally, a linear
regression is presented to find out the impact of each nudge signal in terms of percentage

variation.

III.5.a Visualization of statistical distribution on alert days

This analysis presents a global comparison of energy consumption during period of
intervention on alert days with respect to the energy consumption during the same period
on non-alert days. Figure III.4 and Figure III.5 represents the distribution of energy
consumption for green session 1 and green session 2 respectively. The distribution curve of
treated group displaced towards left as compared to distribution curve of control group. For
both green sessions, the ratio of mean energy consumption between control group and
treated group decreased during alert days as compared to non-alert days. It merely suggests
that the treated group increased their energy consumption during the period of

intervention. In the case of green session 1, the ratio of coefficient of variation has negligible
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difference between non-alert days and alert days. It means that the data is near-identically
dispersed around the mean value. Despite, the difference of ratios is considerable for green
session 2, the data of measured load curve of 27 green alert was not registered by ENEDIS
owing to a technical problem in its server. Therefore, Figure III.5 only represents the 1st

green alert of 2nd session, which is insufficient for current and forthcoming analysis of green
session 2.

Session 1 - Non-alert days between noon and 3 PM Session 1 - Alert days between noon and 3 PM

1.4

= Control Group ~—— Control Group
= Treated Group — Treated Group
= Overlapping: 88.2 % = QOverlapping: 81.5 %
1.2 1.2
1.0
.08 Control | Treated Ratio Control | Treated Ratio
= Mean 0.68 0.73 0.93 0.66 0.83 0.8
S SD 0.69 0.77 0.9 0.69 0.91 0.76
Oo6 cv 1.01 1.05 0.96 1.05 1.1 0.95
0.4
0.0 /A 2 e
1 2 3 4 5 [ 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Average Energy per hour (kWh) Average Energy per hour (kWh)
Figure II1.4 The distribution of non-alert days and alert days of green session 1
14 Session 2 - Non-alert days between noon and 3 PM 14 Session 2 - Alert days between noon and 3 PM
’ = Control Group ’ = Control Group
Treated Group —— Treated Group
= QOverlapping: 92.5 % = QOverlapping: 76.2 %
1.2 1.2
1.0 1.0
.08 Control | Treated Ratio 508 Control | Treated Ratio
5 0.82 0.79 1.04 = Mean 0.82 1.01 0.81
S 0.92 0.83 1.11 S SD 0.79 1.01 0.78
Oy, 112 1.05 1.07 Ooe cv 0.96 1.0 0.96
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%
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Figure II1.5 The distribution of non-alert days and alert days of green session 2

Figure I11.6 and Figure III.7 represents the distribution of energy consumption for
orange session 1 and orange session 2 respectively. As compared to the mean consumption
of control group, the mean consumption of treated group relatively decreased more for alert
days as compared to non-alert days. On alert days, the distribution curve of treated group

is displaced towards right (i.e. towards lower energy consumption) as compared to the
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distribution curve of control group. Overall, the visual analysis between non-alert days and

alert days gives a vague idea about the impact of nudge signal. Therefore, no clear

conclusion can be drawn from this analysis and the results merit further analysis.

Session 1 - Non-alert days between 6 PM and 8 PM

Session 1 - Alert days between 6 PM and 8 PM

0.6 0.6
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Figure II1.6 The distribution of non-alert days and alert days of session 1 of type ‘orange’
06 Session 2 - Non-alert days between 6 PM and 8 PM 06 Session 2 - Alert days between 6 PM and 8 PM
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Figure IIL.7

I11.5.b

consumption on alert days

Assessment of

For this purpose, one-sided Mann-Whitney U Test is used with the following

hypotheses.

statistical

(kWh)

Average Energy per

difference in

The distribution of non-alert days and alert days of session 2 of type ‘orange’

energy

- Null hypothesis (H0): The distribution (of energy consumption data) of control

group is statistically greater than the distribution (of energy consumption data) of

treated group.
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- Alternative hypothesis (H1): The distribution (of energy consumption data) of
control group is statistically less than the distribution (of energy consumption data)

of treated group.

Since interventions are made for green alert days, therefore our interest is to find out
whether the null hypothesis is rejected for the energy consumption data of alert days.
Statistically, it can be observed if the p-value of one-sided Mann-Whitney U Test is less than

a = 0.05, which validates our alternative hypothesis.

Table IIL.7 The Mann-Whitney U Test for green alert days of both sessions
Control Group Treated Group Mann-Whitney U Test
s Alert Null
r. e - uc-
ob P hypo-
No Date Obs 1T oc ur or Stat | valu . ur
s thesis
e
retained
Green Session 1
27-07-
1 58 0.62 0.55 71 0.99 1.21 1736 0.06 Yes -0.37
2020
25-08-
2 45 0.82 0.63 34 0.81 0.64 772 0.53 Yes 0.01
2020
14-09-
3 66 0.7 0.6 88 0.79 0.83 2871 0.45 Yes -0.09
2020
17-09-
4 65 0.69 1.03 88 0.77 0.68 2522 0.11 Yes -0.08
2020
22-09-
5 62 0.47 0.39 88 0.79 0.96 2253 0.04 No -0.32
2020
Green Session 2
14-06-
6 72 0.82 0.78 85 1.01 1 2895 0.28 Yes -0.19
2021
06-09-
7 - - - - - - - - - -
2021
Aggregated Result
Aggregated ‘ 368 ‘ 0.69 ‘ 0.71 ‘ 454 ‘ 0.86 ‘ 0.93 ‘ 76914 ‘ 0.025 ‘ No -0.17

The results for each alert of green sessions are tabulated above in Table IIL.7. Despite
having negative difference of mean value of control group and treated group for most of
green alerts, it is observed that the null hypothesis is only rejected for 5th green alert.
However, the aggregated result of all 6 green alerts rejects null hypothesis i.e., the
distribution (of energy consumption data) of control group is statistically less than the
distribution (of energy consumption data) of treated group. It means that for all the green
alerts globally, the treated group implemented load shifting for energy flexibility between
noon and 3 PM. Yet, it seems a weak conclusion; considering that the retention of null

hypothesis for 5 out of 6 green alerts is not supportive for aggregated results.
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Table IT1.8 The Mann-Whitney U Test for orange alert days of both sessions

Control Group Treated Group Mann-Whitney U Test
Sr. p- Null e~
No Alert Date Obs uc oc ob ur or Stat | valu hype- ur
S thesis
© retained
Orange Session 1
1 14-11-2019 78 141 | 1.37 | 92 1.32 2.39 | 4212 | 0.97 Yes 0.09
2 20-12-2019 77 1.25 | 1.4 90 0.92 0.74 3830 0.88 Yes 0.33
3 20-01-2020 77 1.65 | 1.76 92 1.3 1.57 4174 0.98 Yes 0.35
4 06-02-2020 79 141 | 1.6 91 111 1.31 4174 | 0.97 Yes 0.3
5 19-02-2020 79 1.47 | 1.61 | o1 1.19 1.29 | 4071 | 0.93 Yes 0.28
6 27-02-2020 78 1.26 | 1.33 91 1.23 1.32 3760 0.75 Yes 0.03
7 02-03-2020 78 1.38 | 1.42 | 90 0.93 1.07 4450 1.00 Yes 0.45
8 04-03-2020 79 1.22 | 1.37 91 0.98 1.06 4026 0.91 Yes 0.24
9 09-03-2020 78 1.32 | 1.32 | 90 1.26 1.91 3992 0.94 Yes 0.06
Orange Session 2
10 30-11-2020 75 1.55 | 1.67 | 88 1.21 0.9 3449 0.69 Yes 0.34
11 02-12-2020 75 1.69 | 1.71 89 1.4 1.06 3511 0.72 Yes 0.29
12 04-12-2020 75 1.68 | 1.83 | 89 1.25 1.15 3801 0.94 Yes 0.43
13 07-12-2020 75 1.52 | 1.46 | 89 1.4 1.43 3664 0.86 Yes 0.12
14 09-12-2020 75 1.74 | 1.93 | 89 1.48 1.32 3468 0.67 Yes 0.26
15 18-12-2020 75 1.33 | 1.37 | 88 1.19 1.05 3513 0.76 Yes 0.14
16 04-01-2021 73 1.63 | 1.71 88 1.57 1.79 3506 0.84 Yes 0.06
17 06-01-2021 74 1.74 | 1.89 | 88 1.61 2.11 3600 0.88 Yes 0.13
18 08-01-2021 74 1.61 | 1.93 | 88 1.4 1.97 3798 0.97 Yes 0.21
19 11-01-2021 74 1.86 | 2.11 | 88 1.75 1.92 3578 0.86 Yes 0.11
20 26-01-2021 73 1.74 | 1.92 | 87 1.37 1.23 3420 0.80 Yes 0.37
21 11-02-2021 74 1.53 | 1.71 87 1.23 1.44 3496 0.83 Yes 0.3
Aggregated Result

Aggregated 1595 | 1.52 | 1.66 1i7 1.29 1.51 1626472 1.00 Yes 0.23

The results for each alert of orange sessions are tabulated above in Table III.8. It is
expected that the treated group curtail their load between 6 PM and 8 PM. Though, this can
be observed by the positive difference in the mean of control group and treated group. Yet,
the one-sided Mann-Whitney U Test validates it by retaining the null hypothesis, i.e. the
distribution (of energy consumption data) of control group is stochastically greater than the
distribution (of energy consumption data) of treated group. The null hypothesis is retained
for energy consumption of individual alerts as well as for aggregated energy consumption
of all alerts. It suggests that globally and for individual alerts, the treated group
implemented load curtailment for energy flexibility between 6 PM and 8 PM.
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I11.5.c Quantification of change in the energy consumption

during the period of intervention

It is now significant to quantify the change in the energy consumption during period of
intervention on alert days. For this purpose, ordinary least square (OLS) regression test®® is
performed. The least square model is created by estimating the parameters in a regression
model by minimizing the sum of the squared residuals. It can be applied to single or multiple
explanatory variables and also categorical explanatory variables (Hutcheson & Sofroniou,
1999). For analysis, it is used to quantify the variation in energy consumption for all the
alerts globally as well as for individual alerts. The variables for the test and origin of their
data are tabulated in Table III.9.

Table III.9 The variables of ordinary least square test
Sr. . . . . . .
N Variable Name Description of variable and origin of data Type of Data
o.
Dependent Variable (Y)
For each subject, the natural log of energy
1 Ln (Period Energy) | consumption during the period of intervention on alert Float (Decimal)

day.
Independent Variables (X)

For each subject, the natural log of energy .
2 Ln (Day Energy) : . Float (Decimal)
consumption during whole alert day.

The alert SMS sent to the subject of treated group on
3 Sent SMS Boolean
day ‘D-1’. 1 for sent SMS and o for no sent SMS.

The average temperature in Grenoble on alert day. The
unit of temperature is degree Celsius. The temperature
4 Temperature is recorded at GreEn-ER. GreEn-ER is a research Float (Decimal)
supporting living lab with microgrid interaction in

Grenoble (Delinchant et al., 2016).

It is recalled here that the original set of nudges consists of 3 types of SMS. However,
we are only taking the alert SMS for analysis with the assumption that all the other SMS are
also well received by treated group. Certain subjects of treated group did not receive alert
SMS (owing to mal functioning of 3 party dispatch server), therefore these subjects are
considered as part of control group for respective alert. The global as well as individual
impact of nudge signals for each alert is discussed in this section. The following general

interpretations are helpful for understanding the change in the energy consumption. These

38 The test was performed using the function “statsmodels.regression.linear_model.OLS” of Python’s StatsModel package. The default
parameters of the function are used.

81



interpretations are given with respect to the data type of each independent variable. The

value of coefficient coef in the OLS regression gives us change in the energy consumption.

- The positive sign of coefficient coef indicates that the dependent variable Y increases
with respect to the corresponding independent variable X. Similarly, a negative sign
of coefficient coef indicates that the dependent variable Y decreased with respect to
the corresponding independent variable X.

- If the dependent variable Y is log-transformed and independent variable X is in its
original datatype, then:

o The value of coefficient coef is expontiated i.e. b = exp(coef).

o Then it is transformed into percentage usinga = (b — 1) = 100.

o The results are interpreted as; the dependent variable Y will be changed by
‘a’ % for one unit rise in independent variable X.

- If both dependent variable Y and independent variable X are log-transformed, then
the dependent variable Y will be changed by coef % with respect to 1% change in the

independent variable X.

Figure II1.8 summarizes the global results, whereas the detailed results are
presented in annex C in tabular and graphical form. For green alerts, the increase in the
energy consumption of treated group by the virtue of nudge signal is observed by 11.17%
within a confidence interval of (0.9%, 21.4%) overall. This change in energy consumption is
attributed to the nudge signal by 11.49% for 1t green session, whereas it is 7.09% for the 2rd
green session. However, in the case of second green session, the results only take in to
account one green alert, therefore due to less data, the results might not be statistically valid
despite having a R2 value of 0.707. The impact of exogenous variables like daily energy
consumption and temperature is also found statistically significant during the period of

intervention.
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Dependent variable:np.log(green_period_energy)

Both Sessions Green Session 1 Green Session 2

(1) (2) (3)

Intercept -3.764™" -3.713™ -0.008™
(-4.476 , -3.051) (-4.620 , -2.806) (-0.009 , -0.006)

Impact of SMS 0.1127 0.115" 0.071
(0.009, 0.214) (-0.002, 0.232) (-0.102, 0.244)

Ln (Day Energy) 1.123™ 11117 1.1307
(1.050, 1.196) (1.021, 1.202) (1.039, 1.221)

Temperature 0.023™ 0.026™ -0.158™
(0.010, 0.036) (0.010, 0.042) (-0.198 , -0.118)

Observations 899 612 156
R? 0.681 0.653 0.707
Adjusted R? 0.680 0.651 0.704
Residual Std. Error 0.539 (df=895) 0.547 (df=608) 0.548 (df=153)
F Statistic 314.8097" (df=3; 895) 198.935  (df=3; 608) 10057.4517" (df=2; 153)
Note: "p<0.1; "p<0.05; ""p<0.01

Standard Errors are clustered by subject ID

Figure II1.8 The statistical results of OLS regression for green sessions

We also analyze the change in the energy consumption of treated group during the
period of intervention on green alert days versus the same period in previous non-alert days
of the same session. Table III.10 gives us the results for both green sessions, where the
change in energy consumption can be observed in the column ‘Difference on alert day’. e.g.
the energy consumption of treated group between noon and 3 PM on the 1%t alert day
increased by 9.7% as compared to the previous non-alert weekdays. And it is statistically
significant within the range (0.01, 0.05] of the significant code*. However, the results are
inverse for alert 3 and alert 5. By looking at the values in Table I11.10 and Figure IIL.9, it can
be deduced that no evidence of habit formation is found for load shifting against the green

alerts.

39 Significant codes: a) *** [0, 0.001] , b) ** (0.001, 0.01], c) * (0.01, 0.05]
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Table III.10 The assessment of impact of green alert on alert day as compared to non alert days

. Difference Log
Sr. Condition Temperature
Alert Date Obs Rz on alert (Energy
No. Number O
day of day)
Session 1 — Green Alerts
1 27-07-2020 1969 0.728 370.19 0.097* 1.067%%* -0.012
2 25-08-2020 2185 0.741 341.881 0.004 1.069*** -0.009*
3 14-09-2020 3547 0.727 317.336 -0.017 1.062%** 0.002
4 17-09-2020 3716 0.721 319.488 0.004 1.06%** 0.0
5 22-09-2020 4063 0.717 320.414 -0.033 1.066%** 0.002
Session 2 — Green Alerts
6 14-06-2021 6189 | 0.693 | 190.825 0.059 0.992%** -0.002

12
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QA% [ VR

Change in percentage on alert day w.r.t non alert day
(=]

-10

-12 2020-07-27 2020-08-25 2020-09-14 2020-09-17 2020-09-22 2021-06-14
Green Alert Dates

Figure IIL.9 The percentage change in the energy consumption on alert day as compared to non-alert day

Similar to the green alerts, the global impact of all the orange alerts comprising of
both sessions (as well as individual session) is analyzed. Figure III.10 summarizes these
results, whereas the detailed results are presented in annex C in tabular and graphical form.
Overall, a decrease of 18.21% in the energy consumption of treated group is observed by the
virtue of nudge signal within the confidence interval of (-25.8%, -10.6%). This change in
energy consumption is attributed to the nudge signal by 22.78% for 15t orange session,
whereas it is 14.68% for the 2m orange session. The impact of exogenous variables like daily
energy consumption is found statistically significant, yet the impact of temperature is found

minimal.

A study of similar nature is done in the Monash residence halls in Australia
(Jorgensen et al., 2021), in which the load curtailment is found in the range of 12-20% in
response to behavioral science oriented treatment. The result of our study is closer to the
study done in Australia, yet the protocol is different.
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Both Sessions

(1)

QOrange Session 1

)

Dependent variable:np.log(orange_period_energy)

Orange Session 2

3)

Intercept -1.905™ -2.004™ -1.804™
(-2.355 , -1.454) (-2.531,-1.477) (-2.301, -1.307)
Impact of SMS 0.182™ -0.228™ 0147
(-0.258 , -0.106) (-0.318 , -0.137) (-0.231, -0.062)
Ln (Day Energy) 0.984™ 0.992™ 0.974™

(0.938 , 1.030)

ET

(0.938 , 1.045)

(0.923 , 1.024)

Temperature -0.007 -0.005 -0.005

(-0.012, -0.003) (-0.010, 0.001) (-0.011, 0.002)
Observations 3,440 1,508 1,932
R2 0.726 0.704 0.741
Adjusted R? 0.726 0.704 0.740

Residual Std. Error 0.521 (df=3436) 0.554 (df=1504) 0.492 (df=1928)

F Statistic 658.505"" (df=3; 3436) 488.978"" (df=3; 1504) 520.543" (df=3; 1928)

=%

Note: "p<0.1; "p<0.05; " p<0.01

Standard Errors are clustered by subject ID

Figure III.10 The statistical results of OLS regression for orange sessions

Finally, we analyze the change in the energy consumption of treated group during
the period of intervention on orange alert days versus the same period in previous non-alert
days of the same session. Table III.11 gives us the results for both orange sessions, where
the change in energy consumption can be observed in the column difference on alert day.
e.g., the energy consumption of treated group on the 21 orange alert day decreased by
23.8% as compared to the previous non-alert weekdays. And it is statistically significant
within the range [0, 0.001] of the significant code®. The difference of alert day is
graphically presented in Figure III.11 and Figure III.12 for orange session 1 and orange
session 2 respectively. Like the green alerts, no evidence of habit formation is found for both

alerts. However, the difference of energy is considerable as compared to the green alerts.

40 Significant codes: a) *** [0, 0.001] , b) ** (0.001, 0.01], c) * (0.01, 0.05]
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Table ITI.11 The assessment of impact of orange alert on alert day as compared to non-alert days

. Difference Log
Sr. Condition Temperature
Alert Date Obs R2 on alert | (Energy
No. Number °O)
day of day)
Session 1 — Orange Alerts
1 14-11-2019 1181 0,696 149.721 -0.09 1.058%** 0.003
2 20-12-2019 4333 0,672 146.638 -0.238%** 1.032%** 0.003
3 20-01-2020 6934 0,693 129.438 -0.106 1.036%*%* 0.005%
4 06-02-2020 8375 0,693 129.682 -0.134% 1.026%** 0.004
5 19-02-2020 0462 0,689 131.124 -0.131% 1.018%** 0.005%*
6 27-02-2020 10082 | 0,687 131.659 -0.118 1.016%** 0.004*
7 02-03-2020 10351 | 0,688 132.009 -0.24%%* 1.017%%* 0.004*
8 04-03-2020 10441 | 0,687 132.036 -0.172%* 1.016%** 0.004*
9 09-03-2020 10798 | 0,689 132.263 -0.091 1.016%** 0.003
Session 2 — Orange Alerts
10 30-11-2020 2536 0,702 159.553 -0.065 0.983%** 0.007*
11 02-12-2020 2625 0,701 157.091 -0.045 0.982%** 0.007*
12 04-12-2020 2713 0,705 157.56 -0.21%%* 0.986%** 0.007*
13 07-12-2020 2889 | 0,708 150.887 -0.109 0.986%** 0.009***
14 09-12-2020 2976 0,706 150.29 -0.052 0.978%*** 0.009***
15 18-12-2020 3672 0,704 145.66 -0.192%** 0.981%** 0.008%***
16 04-01-2021 5060 0,726 134.413 0.018 1.008%** 0.01***
17 06-01-2021 5148 0,727 133.575 -0.046 1.009*** 0.01***
18 08-01-2021 5235 0,725 132.967 -0.107 1.006*** 0.01***
19 11-01-2021 5409 0,727 131.205 0.041 1.007%** 0.01***
20 26-01-2021 6609 0,718 128.838 0.102 0.991%** 0.007%**
21 11-02-2021 7889 0,718 131.477 -0.099 0.989g*** 0.007%**
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Figure IIL.11 The percentage change in the energy consumption on alert day as compared to non-alert day
for 1st session of orange alerts
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Figure III.12 The percentage change in the energy consumption on alert day as compared to non-alert day
for 2nd session of orange alerts

II1.6 Conclusion

Statistical analysis is a mean of measuring the impact of a treatment given to one
group against a standard group. By using a statistical method, it is observed that there is no
statistically significant difference between both groups with respect to most of the socio-
technical statistical variables. The visual comparison of energy consumption of treated
group with control group on non-alert days shows that the energy consumption is quite
closer. It is also found that there does not exist any statistically significant difference
between the energy consumption of control group with treated group. The similitude of
energy consumption of both groups during non-alert days suggests that the impact of the
nudge signal on alert days can be visualized and quantified by observing a difference in

energy consumption.

Similar to the non-alert days, the comparison of energy consumption of control
group and treated group is also done for alert days. The visual analysis shows that the
distribution curve of treated group is displaced with respect to control group for alert days.
This gives a mere conclusion that the nudge signals do have impact on the energy
consumption during the period of intervention on alert days. In addition to this, the impact
for each alert day is also measured to find out habit formation. The statistical test does not
conform that all green alerts performed well, however it suggests that all the orange alerts

does perform well.

Finally, it is observed that the treated group implemented load shifting of energy
flexibility by 11.17% against the green alert SMS as compared to control group. Similarly, a
load curtailment of energy flexibility by 18.21% is observed against the orange alert SMS.
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Yet, by looking the energy consumption of treated group for each alert day with respect to
previous non-alert weekdays, no significant (i.e., either horizontal or linear) pattern is
observed regarding habit formation. In a nutshell, an impact of nudge signals is found and
quantified for treated group as compared to control group. Yet no evidence of habit

formation is found for implementation of energy flexibility by treated group.
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Chapter IV

Reference Load Curve: An approach for indirect

feedback

In this chapter, reference load curve is studied as a tool:

- to give an indirect feedback in graphical form

- to potentially replace control group and

- to categorize the individual with respect to their effort of energy flexibility
according to a defined threshold.
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IV.1 Introduction

The visualization of measured load curve in comparison to a baseline load curve
serves as an easy and quick to understand feedback at a glance. “People can interpret various
kinds of charts and tabular presentations if they are well designed” (Karjalainen, 2011). A
residential consumer can himself analyze the impact of its effort conveniently before the
next alert signal. In this case, the indirect feedback itself serves as a nudge for motivating
the residential consumer. This baseline load curve can serve as a reference for measuring

the impact on alert days. Hence, hereafter it will be called as reference load curve.

Here, it poses a scientific question as how to formulate a reference load curve that
neither extremely underestimates or extremely over-estimates the effort of energy flexibility
on alert day ‘D’. To explore the answer to this scientific question, multiple techniques are
analyzed to formulate a reference load curve. These techniques include both naive methods
and some machine learning methods. By looking at the meta-analysis in chapter 3, it can be
observed that a control group is inevitable to measure the impact of treatment. Therefore,
we will try to answer another scientific question as whether the reference load curve can be
used as an alternative to control group. Before defining the characteristics of a reference
load curve, it is interesting to look at the conventional forms of indirect feedback. In this

regard, a literature review of indirect feedback is given below.

IV.2 Literature review of Indirect Feedback

An indirect feedback is given to the customer by the energy utility after processing
the raw data of energy consumption for a specific period of time; The purpose of indirect
feedback is that the customer learns energy flexibility via reading and reflecting upon
habitual energy usage (Darby, 2001). Despite the fact that the literature is heavily focused
on direct feedback through either IHDs (Intelligent home devices) or web services, very few
literature is available that talks about the mode of presentation of indirect feedback. Mostly,
the indirect feedback is found in the form of frequent bills with either historic comparison
(comparing the energy consumption with the past consumption of the same household), or
normative comparison (comparing household energy consumption with that of a group of

similar households) of energy consumed in kWh.

During the last decade of twentieth century, the indirect feedback was in the form of
sending frequent billing with comparative or suggestive information. This includes more
frequent energy bills with historical feedback (Wilhite & Ling, 1995), with normative
feedback, with disaggregated feedback or with detailed annually or quarterly energy reports
(Wilhite, 1999). Another form of indirect feedback is also tested by sending SMS and emails
to the subjects in an experiment of Danish electricity supplier SYD ENERGI (Gleerup et al.,

o1



2010). The SMS and emails are sent to the groups on daily basis, weekly basis or monthly
basis. The purpose of the feedback is to inform the subject about deviation in energy

consumption from their historical consumption level.

The famous study with home energy reports (HER) also used indirect feedback with
historical comparison, normative comparison and injunctive norm (see section II.2.c). A
study is also done to find out the consumer preference for feedback on household electricity
consumption. It is observed in the study that many people find it difficult to understand the
difference between power (W) and energy (kWh). Since the electricity bills are for energy
consumption, therefore numerical feedback in the unit of W is not easily comprehensible
for a non-professional. The study presents a variety of informational feedbacks and the
consumers are found interested in the presentations of costs (over a period of time),
appliance-specific consumption breakdown and historical comparison (Karjalainen, 2011).
However, the diverse informational feedback causes the problem of information overload
for the consumer. This makes it difficult for the consumer to understand the essence of

feedback and to make decision accordingly for the future period of interventions.

In a nut shell, the state of the art suggests that the indirect feedback is either historic
or normative (F. Wang et al., 2018). It is normally presented in numerical form e.g. kWh,
cost, CO2 emissions (Fischer, 2008), in the form of clustered baseline load curve of identical
households (Abreu, Camara Pereira, and Ferrdo, 2012) or as average daily load curve
(Ozawa, Furusato, and Yoshida, 2016). Following the idea of average daily load curve, some
other naive methods and machine learning models are statistically analyzed to formulate

reference load curve of residential consumer.

IV.3 Formulation of Reference load curve

A reference load curve is a prediction of energy consumption for each instant on a
non-alert day. Supposedly, a reference load curve serves to represent the usual behavior of
energy consumption of a household on a non-alert day. Then the difference of area between
the reference load curve and flexibility activated measured load curve gives a measure of
energy flexibility on alert day. Besides, it also serves to graphically visualize the measure of
energy flexibility, therefore serves as an easy to comprehend tool for indirect feedback of

energy flexibility.
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Ideal case when NO flexibility is activated:
A Reference Load Curve — Measured Load Curve = 0

=== Reference Load Curve

== = Measured Load Curve

| L L] L] L

12:00 PM 3:00 PM 6:00 PM 8:00 PM

Figure IV.1 An ideal reference load curve

Figure IV.1 represents an ideal case of reference load curve. Ideally, it is expected
from the reference load curve that the difference between reference load curve and
measured load curve at each instant of measurement should be zero on non-alert day. In
other words, the reference load curve exactly predict the energy consumption pattern of a
household on a non-alert day. However, the formulation of reference load curve is
practically based on predictive methods. Therefore, it may either under-estimate or over-
estimate the energy consumption on a non-alert day. In other words, it suggests that
practically, the difference between reference load curve and measured load curve at each
instant of measurement is not zero (as illustrated in Figure IV.2). Since no technique fulfills
the ideal condition of reference load curve, therefore it is required to choose a suitable
method of formulating a reference load curve. A suitable method should formulate a
reference load curve that should be as close as possible to measured load curve on non-alert

days.

Practical case when NO flexibility is activated :
A Reference Load Curve — Measured Load Curve # 0

r
;)

\ === Reference Load Curve

== = Measured Load Curve

1 [ 1 [ -
| L L] >

12:00 PM 3:00 PM 6:00 PM 8:00 PM

Figure IV.2 A practical reference load curve
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IV.3.a Key Performance Indicators

Before discussing the techniques and their efficiency analysis for formulating
reference load curve, it is necessary to define key performance indicators (KPIs). In this
case, two indicators will be used i.e. energy difference indicator and coefficient of
determination (also known as R2 score). The energy difference indicator will later help us in
understanding why alert type specific methods are defined in some technique. These KPIs

are briefly discussed below.

IV.3.a.i Energy Difference Indicator
An energy difference indicator is the difference of reference load curve and measured
load curve during the period of interest or intervention. Mathematically, it is given as

follows:

ty t2
Energy Difference Indicat0r|2 = Z Reference Load Curve — Measured Load Curve Equation
fn “ V.1

where,

- t:: The starting time of period of interest/intervention. For type green, it is noon,
whereas for type orange, it is 6 PM.
- t.: The ending time of period of interest/intervention. For type green, it is 3 PM,

whereas for type orange, it is 8 PM.

In an ideal case, the energy difference indicator is zero for non-alert days. This is
under the assumption that the reference load curve exactly predicts the (usual behavior of)
energy consumption. For favorable feedback, we expect that the reference load curve should
serve as nudge and its difference with measured load curve should be zero on non-alert days.
However, it is not guaranteed that the prediction exactly estimates the measured load curve
on non-alert days. The reference load curve either under-estimate or over-estimate the
energy consumption on non-alert days practically. Table IV.1 illustrates the ideal and
practical cases graphically. The energy difference is highlighted in blue color between the
two curves. It should be noted that the underestimation (or overestimation) of reference

load curve is illustrated with respect to the measured load curve.
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Table IV.1

Ideal and practical case of energy difference indicator on non-alert days

Sr. . . Sign of energy
Case Graphical Illustration . L.
No. difference indicator
A
P
Reference
Load Curve Measured
Load Curve
o1 Ideal Case Zero
L L] ’
6:00 8:00 t
A
P
Measured
Load Curve
Practical Negati
02 egative
underestimation Reference &
Load Curve
6:00 8:00 t
A
P Reference
Load Curve
Practical
03 . . Measured Positive
overestimation Load Curve
' 3 o
6:00 8:00 t

therefore a practical reference load curve that minimally underestimates the measured load
curve on non-alert days is suitable in this case. The value of energy difference indicator will
be negative in this case. Alternatively, if a reference load curve that overestimates the

measured load curve on non-alert days is selected to measure load shifting, it brings error

Our interest in the case of green alert is to measure load shifting on alert days,

in the calculation of energy flexibility for alert day.

therefore a practical reference load curve that minimally overestimates the measured load
curve on non-alert days is suitable in this case. A reference load curve that underestimates
measured load curve is not suitable in this case as it brings error in the calculation of energy

flexibility for alert day. This problem is further discussed in section IV.4 regarding removal

Contrary to this, load curtailment is to be measured in response to orange alerts,

of error to measure energy flexibility on alert day.
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In a nutshell, practically, a reference load curve that minimally underestimates the
measured load curve on non-alert days is suitable to measure load shifting on green alert
days. Whereas, a reference load curve that minimally overestimates the measured load
curve on non-alert days is suitable to measure load curtailment on orange alert days. We
will use this notion in section IV.3.b.ii and IV.3.b.iii to distinguishing the methods of

formulation for green alert and orange alert.

IV.3.a.ii Coefficient of determination (R2 Score 41)

R-square is a statistical measure to find out about how close the data is to the fitted
regression line. “The coefficient of determination can take values in the range (-, 1]
according to the mutual relation between the ground truth and the prediction model”
(Chicco et al., 2021). In complement to the energy difference indicator, the R2 score suggests
the suitability of the method. If the predicted value is equal to actual value, then R2 score
becomes 1. If a model disregards the input features and always predicts the expected value,

then the R2 score becomes 0.

IV.3.b Techniques studied to formulate reference load curve

Multiple techniques are studied in this regard to formulate a reference load curve.
None of the technique requires non-supervised modelling, rather they are based on
historical data of energy consumption. The techniques are explained in detail in their

relevant subsection below, whereas Table IV.2 briefly presents the reason for choice of

techniques.
Table IV.2 The choice of techniques to formulate reference load curve
Sr. .
No. Technique Remarks
Classical method

Kernel Density Estimation This technique serves to find the most probable

ot value of energy consumption.

Naive methods

Min(Ep_1: Ep_g) These methods are explored following kernel
02 Max(Ep_y: Ep_s) density estimation method. These methods are
Mean[Pp_y;,Min(Pp_z;, Pp_31 Pp—4.0, Pp—s,:)] easily implementable and require less amount of
Mean[Py_y; ,Max(Pps Po—s1 Po—ssr Po—si)] near past energy consumption data of alert day
‘D’ as compared to classical method. Since these
03 methods only takes the energy consumption
data of previous 5 weekdays, therefore they also
takes into account the variation in energy

41 The R? score is calculated for each day in the data using the ‘r2_score’ method in the ‘metrics’ class of scikit-learn python package.
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consumption behavior (e.g. with respect to for

example temperature).

Machine learning methods

05 | Random Forest (Point to Point) These methods are studies to find the impact of

06 | Random Forest (Sequence to Sequence) two architectural schemes of prediction.

The following techniques are studied for the formulation of reference load curve.
Among these techniques, two techniques have different statistical variables with respect to
green alert and orange alert. Therefore, these techniques will be presented with respect to
the type of alerts. It should be noted that the forthcoming analysis is done for the sole
purpose of finding a suitable reference load curve that has near zero difference to the

measured load curve on non-alert days.

IV.3.b.i The high-density value of Kernel Density Estimation of same
timeslot

For an instance 7, kernel density estimation is plotted based on the recorded
consumption of previous ‘n’ weekdays. The purpose of doing this is to find out the most
probable value of the same timeslot to put in reference load curve. In the distribution curve
plotted through kernel density estimation, the consumption value with highest peak (i.e.

density) is selected as the reference value of the instance ‘i’ in the reference load curve.

Figure IV.3 illustrated an example of orange period of interest. It shows an example
where the kernel density estimation curve is plotted for the ‘n’ previous weekdays for
timeslot 6:30 PM. The consumption value with highest density on kernel density estimation
curve is taken as the reference value on reference load curve for timeslot 6:30 PM. The same

procedure is used for the green period of interest.

Reference
Load Curve

Most Probable Value

Measured
M\ Load curve

Kernel Density Estimation

Figure IV.3 Formulation of reference load curve using Kernel Density Estimation

IV.3.b.ii Measured load curve of minimum (or maximum) energy
consumption as reference load curve

This technique is type specific; therefore, we first discuss type green and later discuss
type orange. As it is aforementioned that a practically suitable green reference load curve
should have near zero yet negative error with measured load curve on non-alert day,

therefore owing to this logic, the measured load curve having minimum energy
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consumption between past 5 weekdays is taken as reference load curve. The choice of
number of days can vary. In this case, the objective is to investigate the historical energy
consumption during previous week, therefore 5 previous weekdays are chosen. Figure IV.4
represents measured load curve having minimum energy consumption between day ‘D-1

and day ‘D-5’ as reference load curve on day ‘D’. It can be mathematically represented as:

n

n n n
Min(Ep_y: Ep_s) = Min (Z PD—l,i'ZPD—Z,i ’Z PD—3,i'Z PD—4,L"Z Pp_s, ) Equation V.2
t=i t=i t=i

n
t=i t=i

Where;

- Min() represents a function that gives the minimum value of a sample as an output.

- Ep_; is the energy consumption during period of interest on day ‘D-1’. Similarly, E},_s is the
energy consumption during period of interest on day ‘D-5’.

- i— n shows the range between 12:30 PM and 3:00 PM with half hourly samples.

- P,_;,; represents the power consumption at instantaneous value i’ on day ‘D-1’. Similar for

others days from ‘D-2’ to ‘D-5’.

A A
Measured
P P Measured
Load Curve
i A Load Curve
between day ‘D-1 ,,
R of day ‘D’ =
and day ‘D-5 Zz \
/ \
1 1 > T 3 g
12:00 3:00 t 12P:30 3::“0 t
Figure IV.4 Selecting the minimum energy measured load curve as reference load curve

Using the same logic that the orange reference load curve should have minute
positive error on non-alert days, the measured load curve having maximum energy
consumption between past 5 weekdays is taken as reference load curve. Figure IV.5
represents measured load curve having maximum energy consumption between day ‘D-1’

and day ‘D-5’ as reference load curve on day ‘D’. It can be mathematically represented as:

n

n n n n
Max(Ep_q1: Ep_s) = Max (Z Pp_q; 'Z Pp_y; 'Z PD—3,i'Z Pp_y; 'Z Pp_s; > Equation V.3
=i =i

t=i t=i t=i
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Reference

Measured Load Curve
P Load Curve P
b dav ‘D-1° Measured
e(tjv:eert v b1 - Load Curve
and dav ‘D-5 / \ of day ‘D’
a /
3 i o 3 1 >
6:00 8:00 t 6:00 8:00 t
Figure IV.5 Selecting the maximum energy measured load curve as reference load curve

IV.3.b.iii Average of measured load curve of day ‘D-1’ and the day having
minimum (or maximum) energy consumption between day ‘D-2’ and day ‘D-5’
The technique presented in previous section is modified to formulate a new
reference load curve. For a green reference load curve, an average is taken between the
measured load curve of day ‘D-1" and the measured load curve having minimum energy

consumption between day ‘D-2’ and day ‘D-5’. Figure IV.6 represents the green reference

load curve.
A A
P Measured load curve P
of D-1 é Measured
Load Curve
Measured Load curve - Reference
having minimum energy / % Load Curve
consumption between /\
D-2 and D-5
12:00 3:00 t 12:00 8300 t
Figure IV.6 Green reference load curve formulation by taking average of measured load curve of day ‘D-

1" and day having minimum consumption between day ‘D-2’ and day ‘D-5’

Similar to the green reference load curve, an orange reference load curve is also
formulated. However, for an orange reference load curve, an average is taken between the
measured load curve of day ‘D-1" and the measured load curve having maximum energy

consumption between day ‘D-2’ and day ‘D-5’.

R Meésured Lf)ad curve Reference
having maximum energy Load Curve
P consumption between P
D-2 and D-5 Measured
Load Curve
é -
/N
Measured load curve 7
of D-1
1 1 o 1 1 >
6:00 goo  t 6:00 T §
Figure IV.7 Orange reference load curve formulation by taking average of measured load curve of day ‘D-

1’ and day having maximum consumption between day ‘D-2’ and day ‘D-5’
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IV.3.b.iv Random Forest Point to Point

In this technique, random forest is used to predict each instance (of period of
interest) with respect to the rolling historical values of previous 5 weekdays of the same
instance. The training of the model is done using all the historical data of same session.
Figure IV.8 represents this technique for formulation of green reference load curve. e.g. to
predict the reference value at 12:30 PM on day ‘D’, the measured energy consumption value
at 12:30 PM during previous 5 weekdays is given as an input to the random forest prediction
model. Similarly, the reference value at 1:00 PM, 1:30 PM, 2:00 PM, 2:30 PM and 3:00 PM

are calculated to formulate the green reference load curve of day ‘D’.

Input (X) Target (Y)
Day D-5 Day D-4 Day D-3 Day D-2 Day D-1 Day D
12:30 PM 12:30 PM 12:30 PM 12:30 PM 12:30 PM 12:30 PM
Day D-5 Day D-4 Day D-3 Day D-2 Day D-1 Day D
3:00 PM 3:00 PM 3:00 PM 3:00 PM 3:00 PM 3:00 PM
Figure IV.8 Random Forest Point to Point technique for creation of green reference load curve
Input (X) Target (Y)
Day D-5 Day D-4 Day D-3 Day D-2 Day D-1 Day D
6:30 PM 6:30 PM 6:30 PM 6:30 PM 6:30 PM 6:30 PM
Day D-5 Day D-4 Day D-3 Day D-2 Day D-1 Day D
8:00 PM 8:00 PM 8:00 PM 8:00 PM 8:00 PM 8:00 PM
Figure IV.9 Random Forest Point to Point technique for creation of orange reference load curve

Similarly, the orange reference load curve is also studied using this technique. Figure
IV.10 represents an illustrative example of model training and prediction of instance 6:30
PM at a day ‘D’. It should be noted that no additional parameter (e.g. temperature etc.) is
added to the model, rather the historical consumption is only used for the prediction of

reference load curve.
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Figure IV.10 Training the model and predicting the instance 6:30 PM for a day ‘D’
IV.3.b.v Random Forest Sequence to Sequence

This technique is like the ‘Random Forest Point to Point’ technique presented in

previous section. The only difference is that the prediction of instance is replaced by

prediction of a sequence. i.e. rather than predicting each instance and then formulating

reference load curve, a sequence is predicted using the sequences of previous 5 weekdays.

Figure IV.11 and Figure IV.12are representing the techniques for green reference load curve

and orange reference load curve respectively. Like random forest point to point, it should

be noted that no additional parameter (e.g. temperature etc.) is added to the model, rather

the historical consumption is only used for the prediction of reference load curve.

Input (X) Target (Y)
Df;,?:‘ Day D-5 | DayD-5 | DayD-5 | DayD-5 | DayD-5 Df;_;’: 1D;-vag DayD | DayD | DayD | DayD | DayD
. 1:00PM | 1:30PM | 2:00PM | 2:30PM | 3:00 PM A T . 1:00PM | 1:30PM | 2:00PM | 2:30PM | 3:00 PM
PM PM PM
Figure IV.11 Random Forest Sequence to Sequence for creation of green reference load curve
Input (X) Target (Y)
Day D-5 | DayD-5 | DayD-5 | DayD-5 | DayD-4 | Day D-4 | Day D-4 Day D Day D Day D Day D
6:30PM | 7:00PM | 7:30PM | 8:00PM | 6:30PM | 7:00PM | 7:30 PM 6:30PM | 7:00PM | 7:30PM | 8:00 PM
Figure IV.12 Random Forest Sequence to Sequence for creation of orange reference load curve
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IV.3.cAnalysis for the suitability of a technique to formulate the

reference load curve

In this section, we analyze the suitability of the techniques with respect to both key
performance indicators. The reference load curves are calculated using the above

techniques with the following characteristics.

- For analysis, the data of measured load curve for 175 households is used.

- Since the original data is sampled at 30 minutes, so we used the original sampling
for analysis.

- The reference load curve is calculated for all the weekdays in both sessions of type
green and type orange. The data of alert days is omitted to only analyze the non-alert
days.

- Only the data corresponding to the duration of sessions is taken for analysis. The
only exception is in the case of green session where the last date of data is 2rd July,
2021 instead of 30t September, 2021. It is because the fact that the analysis is done
multiple times and it was lastly revisited in the month of July, 2021. No change in
the results was observed during the multiple rounds of analysis.

- For each technique, the distribution of the energy difference indicator is presented
in the form of box plot. The outliers are not presented with the boxplots. The reason
for doing this is that the boxplots are strongly pinched by the outliers around OX
axis on the graph. Thus, the boxplots become very small and could not be easily
analyzed with naked eye.

- For each subject and each day, R2 is calculated between measured load curve and
reference load curve. The R2 is only calculated for the period of interest. For each
technique, the distribution of R2is presented in the form of box plot. Similar to the

above case, the outliers are not presented with the boxplots.

IV.3.c.i Analysis of green reference load curves

The distribution of energy difference indicator for green reference load curves can
be observed in the Figure IV.13. Recalling the characteristics of a suitable green load curve,
it is expected from a green reference load curve that the difference should be negative yet
arbitrarily closer to zero. In the term of a boxplot, these characteristics can be translated in

such a way that:

- The boxplot is less dispersed around zero. It suggests that the reference load curve
is closer to the measured load curve.

- Ideally, the boxplot should be beneath zero. Practically, the distribution of most of
the data should be negative.
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By observing the boxplots in Figure IV.13, it can be observed that the random forest
techniques are not suitable as green reference load curve. The reason is that more than 50%
data distribution of the boxplot is positive, suggesting that the predicted value of reference
load curve is mostly higher than the measured load curve. Besides, they are widely dispersed
as compared to the green reference load curve of other three methods. By comparing 2rd
and 3 boxplots, it is observed that the 3 boxplot is less dispersed as compared to 2nd
boxplot. Therefore according to the energy difference indicator, the 15t and 34 method are

suitable to formulate the reference load curve.
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Figure IV.13 Distribution of energy difference indicator for green reference load curves

The R2 score distribution boxplots for both random forest techniques (in Figure
IV.14) also conforms the results of energy difference indicator in Figure IV.13. Though, the
R2 score of 27 and 34 method are close, yet the less dispersed data favors 34 method over
2nd method. Among all the methods, the KDE methods performed better than others. Yet, it
is easier to explain the underlying mechanism of 34 method to our subjects as compared to
KDE method. Therefore, in our experiment we chose the 34 method albeit that the KDE
method seems more promising for the formulation of a reference load curve to measure the

load shifting of energy flexibility.
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Figure IV.14 Distribution of R2 score for green reference load curves
IV.3.c.ii Analysis of orange reference load curves

The distribution of energy difference indicator for orange reference load curves can
be observed in the Figure IV.15. Recalling the characteristics of a suitable orange load curve
from section IV.3.a.i, it is expected from an orange reference load curve that the difference
should be positive yet closer to zero. In the term of a boxplot, these characteristics can be

translated in such a way that:

- The boxplot is less dispersed around zero. It suggests that the reference load curve
is closer to the measured load curve.

- Ideally, the boxplot should be above zero. Practically, the distribution of most of the
data should be positive.

It can be observed in Figure IV.15 that the kernel density estimation technique is not
suitable for orange reference load curve. The reason is that around 75% of data distribution
is negative, suggesting that the predicted value of reference load curve is mostly lower than
the measured load curve. The 2nd boxplot is predominately positive yet highly dispersed as
compared to others. Surprisingly, the random forest techniques give similar results albeit
different values in their sample space and the two boxplots are also less dispersed. The
random forest models are outperforming other methods with respect to energy difference

indicator.
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Figure IV.15 Distribution of energy difference indicator for orange reference load curves

The R2 score boxplot of kernel density estimation in Figure IV.16 suggests it to be
the most suitable reference load curve formulating method, yet the result of energy
difference indicator is contradictory to this deduction. The R2 score distribution of 2rd
method is in the range of [-180,1], which is lower comparing to the others. The 274 lower R2
score distribution is of 3" method, which is in the range of [-70,1]. On the other hand, the
random forest sequence to sequence method is found to be better than the random forest
point to point method according to R2 score distribution. It is evident that the random forest
sequence to sequence method of formulating reference load curve outperforms other
methods to measure the load curtailment of energy flexibility. Yet, since the machine
learning methods are explored at a later stage during experiment, so the 3@ method was

chosen to formulate the reference load curve for the reasons that:

- It has the best results among the first 3 methods.
- Itis easy to explain to the subjects.

- Itis symmetric to the method chosen for the case of green alerts.
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Figure IV.16 Distribution of R2 score for orange reference load curves

IV.4 Reference load curve in the form of feedback

In our experiment, the initial purpose of reference load curve is to present it as an
easy and quick to understand graphical feedback for alert days. Figure IV.17 demonstrates
the use of reference load curve for both type of alerts as user interface design of energy

feedback.

Formerly, the two methods presented in section IV.3.b.ii and section IV.3.b.iii are analyzed
whereas latterly, the two random forest methods are also analyzed. Since the following
method (already presented in section IV.3.b.iii) is found suitable in the former analysis,

therefore, it is retained to formulate alert day reference load curve as feedback.

- For green alert day ‘D’, the average of measured load curve of ‘D-1’ and measured
load curve having lowest energy consumption between day ‘D-2’ and day ‘D-5’.
- For orange alert day ‘D’, the average of measured load curve of ‘D-1’ and measured

load curve having highest energy consumption between day ‘D-2’ and day ‘D-5’.
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Figure IV.17 Indirect feedback using reference load curve for (a) Green Alert and (b) Orange Alert

As compared to displays and bills, the web-based feedback is found more effective
as a tool of feedback for load curtailment (Vassileva et al., 2012). On day ‘D+2’ of each alert
day ‘D’ and subjecting to the provision of measured load curve of alert day, an image of
reference load curve superposed on measured load curve (of alert day) is uploaded on the
personal space of subjects of treated group on Etud-Elec website. A total number of 2141
feedback images are created and presented to subjects of treated group individually on their
personal account on Etud-Elec site. This does not include the 274 green alert of 27 session,
for which the measured load curve data was not recorded on ENEDIS server owing to a

technical problem at their end. On day ‘D+3’ after each alert, the subjects of treated group
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are sent an SMS stating that they can view feedback of their consumption on alert day ‘D’

by logging in to their personal account.

Through the log of Etud-Elec site, it is observed that the subjects of treated group
only visited their personal account 57 times in total. In percentage term, it makes 2.7%
(57/2141) of the total feedback images. The lower number of visits on website might be
owing to the time of day of receiving the SMS. Generally, the SMS was sent at noon on day
‘D+3’, however for certain alerts, it was sent at any time of day. The low number of views of
indirect feedback makes it insufficient to statistically analyze the impact of reference load
curve as a feedback. Besides serving the purpose of embellishing graphical feedback, the
reference load curve also serves to categorize the subjects of treated group with respect to
their response towards the nudge signals. However, before doing so, it is significant to

determine whether the reference load curve is equally effective.

IV.5 Impact of error €,,,_aert in the calculation of energy
flexibility

We observed the impact of under-estimation and over-estimation of reference load
curve (with respect to measured load curve) for non-alert days in section IV.3.a.i. If an
energy difference (owing to underestimation or overestimation) persists for non-alert days,

its impact is counted in the calculation of energy flexibility. Therefore, it should be removed

for corrected measure of energy flexibility. For the sake of convenience, we call;

- The underestimation (or overestimation) on non-alert days as error €, _aert-

- The energy flexibility achieved on alert day as Eqexipility,alert-

To measure the energy flexibility Efexibility,alert- ON alert day, the error €,on_atert

should be removed from the energy difference of reference load curve and measured load

curve on alert day. Mathematically, these can be given as;

€ |t2 = E |t2 - E |t2 .
non-—alert Ity reference,non—alertlt; measured,non—alert|¢; Equation V.4
t2 _ ty t2 ty
]E‘:ﬂexibility,alert|t1 - (Ereference,alertlt1 - Enon—alert |t1 - Emeasured,alertlt1 £ . V5
quation V.

where t; and t. are extreme timestamps of the period of interest (or intervention).
The case of underestimating green load curve as well as overestimating orange load curve is
illustrated graphically in Table IV.3 below. It should be noted that the area highlighted in

blue represents €;,on_aert, whereas the area highlighted in yellow represents Egexibility,alert-
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Table IV.3 Green and orange load curves to measure energy flexibility Egexibility,alert

Sr. A . Sign of energy
Case Graphical Illustration . Lo
No. difference indicator
P PVI easured
Load Curvef \

Underestimatin, .
8 €non-alert = Negatlve

o1 reference load curve Reference

Efiexibility al t=Ne ative
\ Load Curve exibiitty.ater &

(for green alerts)

P | Reference
Load Curve

Measured
Load Curve €non-alert = Positive

Eﬂexibility,alert = Positive

Overestimating
02 reference load curve

(for orange alerts)

IV.6 Analysis regarding reference load curve as an

alternative of control group

As mentioned earlier, it is observed in the section of meta-analyses that the energy
consumption of treated group is compared to that of control group. The analyses are done
on group level, rather than on individual level for each subject. The meta-analysis
emphasizes the requirement of control group to measure the impact of treatment. Here it
raises a scientific question whether it is possible to replace the control group with another

tool that is able to measure the impact of treatment on individual level.

To explore this question, we put the reference load curve in place of control group and
compare it with the results in section III.5.b. In this regard, the following two methods of
formulation of reference load curve are analyzed. The results of former method is presented
and discussed below whereas the results of later method is presented in Annex D and briefly

discussed here.

- The average of measured load curve of ‘D-1’ and the measured load curve having
o Lowest energy consumption between day ‘D-2’ and day ‘D-5° (for green

alert).
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o Highest energy consumption between day ‘D-2” and day ‘D-5’ (for orange
alert).

Random forest sequence to sequence

One-sided Mann-Whitney U Test is used with the following hypotheses.

Null hypothesis (Ho): The distribution (of energy consumption data) of control

group is statistically greater than the distribution (of energy consumption data) of

treated group.

Alternative hypothesis (H1): The distribution (of energy consumption data) of

control group is statistically less than the distribution (of energy consumption data)

of treated group.

In the case of green alert days, our interest is to find out whether the null hypothesis

is rejected for the energy consumption data of alert days. Statistically, it can be observed if

the p-value of Mann-Whitney U Test is less than a = 0.05, which validates our alternative

hypothesis. Table IV.4 shows the results for the reference load curve used in the experiment,

where ‘W’ represents mean value, ‘6’ represents the standard deviation, subscript T’ and

subscript ‘t’ represents reference load curve and measured load curve of treated group

respectively. It should be noted that the effect of error €,,,_a1ert 1S removed from the

reference load curve of alert days in all the analyses given below.

Table IV.4

The Mann-Whitney U Test for green alert days of both sessions using

Mean[Pp_y;, Min(Pp_3, Pp—3;, Pp—4i Po—s, )| reference load curve in place of control group

Reference load
S curve Treated Group Mann-Whitney U Test
r. Null Mr-
N Alert Date ob > hypo- ur
Obs e or ur or Stat
o S value thesis
retained
Green Session 1
1 | 27-07-2020 70 0.71 | 0.67 71 0.99 1.21 2296 0.22 Yes -0.28
2 | 25-08-2020 | 7 0.66 | 0.45 34 0.81 0.64 110 0.38 Yes -0.15
3 | 14-09-2020 82 0.71 | 0.76 88 0.79 0.83 3607 | 0.5 Yes -0.08
4 | 17-09-2020 88 0.71 | 0.54 88 0.77 0.68 3894 | 0.53 Yes -0.06
22-09-2020 88 0.6 0.49 88 0.79 0.96 4053 0.7 Yes -0.11
5 8
Green Session 2
6 | 14-06-2021 85 0.74 | 0.62 85 1.01 1 3328 0.19 Yes -0.27
06-09-2021 - - - - - - - - - -
Aggregated Result
Aggregated ‘ 420 ‘ 0.71 ‘ 0.62 ‘ 454 ‘ 0.86 ‘ 0.93 ‘ 03171 ‘ 0.28 ‘ Yes -0.15
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The results of Table IV.4 are found considerably different than the results of Table

III.7. A comparison of control group with treated group (in Table III.7) suggests that the

distribution of control group is statistically less than the distribution of treated group for 5t

green alert and all green alerts combined. On the other hand, the results in Table IV.4 shows

that the distribution of reference load curve is statistically greater than the distribution of

treated group for all alerts (and at aggregated level). The results in Table D.1 also shows

same results. Therefore, the results do not emphasize that a reference load curve can be

used as a replacement of control group to measure the load shifting of energy flexibility.

Table IV.5 The Mann-Whitney U Test for orange alert days of both sessions using
Mean[Pp_y; ,Max(Pp_2;, Pp—3i, Pp-4 Pp—s,; )| reference load curve in place of control group
Reference load
Treated Group Mann-Whitney U Test
curve
Sr. Null e -
No Alert Date Ob Ob P hypo- ur
Ur Or ur or Stat | valu
S s thesis
€ retained
Orange Session 1
1 14-11-2019 91 1.68 2.44 91 1.32 2.41 4968 | 0.99 Yes 0.36
2 20-12-2019 90 1.03 1.04 90 0.92 0.74 4415 | 0.85 | Yes 0.11
3 20-01-2020 | 92 1.24 1.35 92 1.3 1.57 4317 | 0.59 | Yes -0.06
4 06-02-2020 91 1.37 1.4 91 1.11 1.31 4896 | 0.98 Yes 0.26
5 19-02-2020 91 1.29 1.11 91 1.19 1.29 4680 | 0.94 | Yes 0.1
6 27-02-2020 | 90 1.19 1.17 91 1.23 1.32 4307 | 0.73 Yes -0.04
7 02-03-2020 90 1.19 1.22 90 0.93 1.07 4828 | 0.99 Yes 0.26
8 04-03-2020 91 1.2 1.4 91 0.98 1.06 4608 | 0.94 Yes 0.22
9 09-03-2020 90 0.88 1.32 90 1.26 1.91 3501 0.06 Yes -0.38
Orange Session 2
10 30-11-2020 88 1.39 1.1 88 1.21 0.9 4236 | 0.86 Yes 0.18
11 02-12-2020 89 1.53 1.47 89 1.4 1.06 4073 | 0.63 Yes 0.13
12 04-12-2020 89 1.37 1.3 89 1.25 1.15 4204 | 0.76 Yes 0.12
13 07-12-2020 89 1.29 1.19 89 1.4 1.43 3886 | 0.42 Yes -0.11
14 09-12-2020 89 1.31 1.11 89 1.48 1.32 3814 0.34 Yes -0.17
15 18-12-2020 88 1.47 1.4 88 1.19 1.05 4410 0.94 Yes 0.28
16 04-01-2021 88 1.53 1.68 88 1.57 1.79 3992 | 0.64 Yes -0.04
17 06-01-2021 88 1.64 1.54 88 1.61 2.11 4297 | 0.9 Yes 0.03
18 08-01-2021 88 1.62 1.9 88 1.4 1.97 4301 | 0.9 Yes 0.22
19 11-01-2021 88 1.46 2.09 88 1.75 1.92 3361 0.06 Yes -0.29
20 26-01-2021 87 1.37 1.26 87 1.37 1.23 3818 0.54 Yes 0
21 11-02-2021 87 1.4 1.63 87 1.23 1.44 4036 | 0.78 Yes 0.17
Aggregated Result
Aggregated 1i7 1.35 1.49 127 1.29 1.51 1896067 1 Yes 0.06
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In the case of orange alert days, our interest is to find out whether the null hypothesis
is retained for the energy consumption data of alert days. Table IV.5 shows the results where
the test is performed on the reference load curve used in this experiment as compared to
the measured load curve of treated group. The number of observations for both groups are
same. The difference of mean values ‘u, - pr’ in Table IV.5 is found to be slightly higher than
the difference of mean values ‘puc - pr’ in Table II1.8; albeit having more observations of
reference load curve in Table IV.5 as compared to observations of control group in Table
II1.8. Yet, the results of one-sided Mann-Whitney U Test in Table IV.5 are found closer to
the results of Table II1.8.

The technique of random forest sequence to sequence is found to be the best
technique to formulate a reference load curve for load curtailment (i.e. orange alerts) in our
analysis presented in section IV.3.c.ii. The results of this technique is presented in Table D.2
in appendix D The value of ‘u.- pr’ for certain alerts in Table D.2 is negative, although the
one-sided Mann-Whitney U Test results show that the null hypothesis is retained for these
alerts. Overall, the results of Table IV.5 and table D.2 in comparison with Table III.8
emphasizes that the reference load curve can replace control group to measure the load

curtailment of energy flexibility.

In a nutshell, the one sided mann whitney test does not emphasize that a reference
load curve can replace control group to measure load shifting. However, the result of same
test emphasizes that the reference load curve can replace control group to measure load
curtailment. Since it is demonstrated that the reference load curve can effectively measure
load curtailment, therefore in the following section, an analysis of measure of energy
flexibility (i.e. load curtailment) with respect to the reference load curve is presented for

individual subjects.

IV.7 Measure of response of individual subjects towards

orange alerts with respect to the reference load curve

It is discussed earlier that the energy flexibility against a treatment is measured
through the comparison of treated group against a control group. This analysis does not give
information on individual level for each subject of treated group. Therefore, the results of
group are generalized for each subject. Contrary to this, the reference load curve is
calculated for each individual subject. Subjected to the validation of reference load curve, it
permits to analyze the response of each subject towards the call of energy flexibility.

Therefore, the subjects of treated group can be identified as those who:

- acted positively in response to nudge signals.

- did not act positively in response to nudge signals.

112



consumption did not change (or negligibly changed) in response to nudge signals

OR the response to nudge signals cannot be determined.
To analyze this problem, the following methodology is adopted.

The reference load curve that we used in our experiment is taken for analysis.

Since the formulation of reference load curve is based on the historical consumption
of previous 5 weekdays of alert day ‘D’, therefore for the sake of comparison, the
energy consumption data of these days is taken.

An average error €non—alertaverage lo pi i calculated for the error €,0n—atert,p—n |5 by

of each non-alert day between ‘D-1’ to ‘D-5', where n = 1 to 5.

For each subject of treated group, the Eqeyibility,alert|& PM is calculated using Equation

. . 8 PM : 8 PM
IV.5, in which €,on_atert | pym 1S replaced by €non-alertaverage |6 PM-

The results are presented in the unit of average energy per hour (Wh) during the
period of intervention. The results are only presented for those subjects of treated
group whose reference load curve is successfully calculated for all 21 orange alerts.

For each subject and orange alerts altogether, the results are presented in the form

of boxplots.

To identify how the subjects of treated group responded towards the call of energy

flexibility, it is imperative to fix a threshold. There is no universal rule for fixing threshold.

Therefore, a sensitivity analysis is performed for multiple threshold values and is presented

in Table IV.6. It is observed that the number of undetermined subjects increases with

increasing the threshold value, whereas the values of other two variable consequently

decreases. It suggests that a suitable threshold should be selected after due diligence of the

appliances and the potential of energy flexibility.

Table IV.6 Sensitivity analysis of thresholds of identifying responses
Sr. L. Number of identified
Response Criterion .
No. subjects
Lower threshold = -50Wh, Upper threshold = 50Wh
o1 Positive Efexibility,alert|g pm > 50 Wh 36
02 Not positive Eﬂexibility,alertlg IP;I\I\; <-50 Wh 27
03 Cannot be -50 Wh < Egeyibility,alert|s by = 50 Wh 6
determined
Lower threshold = -100Wh, Upper threshold = 100Wh
04 Positive Efiexibility,alert|g pp > 100 Wh 29
05 Not positive Eﬂexibility,alertlg 51]\\44 <-100 Wh 18
06 Cannot be -100 Wh < Eﬂexibility,alertlg gnl\g >100 Wh 32
determined
Lower threshold = -150Wh, Upper threshold = 150Wh
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o 8PM
07 Positive Efiexibility,alertlé pm > 150 Wh 25

o8 Not positive Eﬂexibility,alertlg IEI\MI <-150 Wh 10
§PM
Cannot be -150 Wh < Efexibility,atertls pm = 150 Wh
09 . 44
determined

Lower threshold = -200Wh, Upper threshold = 200Wh

10 Positive Eflexibility,alert|é py > 200 Wh 20
11 Not positive Eﬂexibility,alertlg IEI\MI <-200 Wh 8
Cannot be -200 Wh < Eﬂexibility alertlg gnl\g > 200 Wh
12 . ' 51
determined

For the sake of presentation, the threshold values of -200Wh/200Wh are explored.
The average value of distribution in the box plot is considered for analysis of
Eflexibility,alert|g PM Itis recalled here that the difference is calculated between reference load

curve and measured load curve, therefore a positive value indicates load curtailment

whereas a negative value indicated no positive effort for load curtailment during the period
of intervention.

Based on the selected threshold, Figure IV.18 demonstrates the distribution of
energy flexibility of the subjects who acted positively for most of alerts. The black dots
represent the outliers in the distribution made for boxplot, whereas the blue dotted line
represents the threshold value of 200 Wh. It can be observed that the median value of
subject 399 and subject 404 lies beneath the threshold line, yet the outliers made the
average energy flexibility of these subjects greater than the threshold value. Therefore, these
subjects are considered as positively acting subjects against the nudge signal of load

curtailment. In total, 20 (out of 79) subjects are found in this category.
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Figure IV.18 The energy flexibility of subjects who curtailed their load for most of the orange alerts
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According to the selected threshold values, Figure IV.19 demonstrates the
distribution of energy flexibility of the subjects who did not acted positively for most of
alerts. The blue dotted line represents the threshold value of -200 Wh. In total, 8 (out of 79)
subjects are found in this category. A particular case in this category is of subject 388, who
achieved an average load curtailment of more than 2 kWh (per hour) for 5 orange alerts,

however the case is contrary for most of the rest of the orange alerts.
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Figure IV.19 The energy flexibility of subjects who did not remain positive for most of the orange alerts

Finally, Figure IV.20 demonstrates the distribution of energy flexibility of the subjects who
remained within the range of [-200 Wh, 200Wh]. We can further split it in to 2 sub-categories. The
first category represents those whose energy consumption remains stable during alert days as
compared to non-alert days. In other words, we can say that the effect is zero or negligible. In this
regard, those subjects are identified whose average energy flexibility is in the range of [-25Wh,
25Wh]. In total, 9 (out of 79) subjects are identified in this category. For the rest of the 42 subjects,

the energy flexibility activity cannot be determined with respect to the fixed threshold.
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Figure IV.20 The energy flexibility of subjects whose effort of energy flexibility cannot be determined
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IV.8 Conclusion

A reference load curve is a predicted load curve on non-alert day. It is assumed that
it represents the normal behavior of energy consumption of a household. Its superposition
with flexibility driven measured load curve of alert day gives a visual assessment of the effort
of energy flexibility. Ideally, the difference of reference load curve with measured load curve
should be zero on non-alert day, yet practically it is not possible. Therefore, multiple
techniques are analyzed to formulate a reference load curve. By analyzing the distribution
of each technique with respect to KPIs, it is concluded that the classical method (using
kernel density estimation) performs better than the others for measuring the impact of load
shifting on alert day. In the case of load curtailment, it is relatively emphasized by the R2
score indicator that a machine learning based method performed better than the others. Yet
it is a future prospect to improve the performance of machine learning model with the

introduction of supplementary parameters.

The original purpose of formulating reference load curve is to send as indirect
feedback towards the treated group and analyze the impact of this feedback. However, the
smaller number of views of indirect feedback makes it insufficient to statistically analyze
the impact of reference load curve as feedback. Besides, an aspect of reference load curve is
also explored where it is analyzed whether the reference load curve can replace control
group in energy flexibility programs. Through our analysis, we are unable to conclude that
the reference load curve could replace control group for load shifting, yet it is found effective

to replace the control group for load curtailment.

Traditionally, the effort of energy flexibility is assessed on group level by comparing
treated group with a control group. However, a suitable and valid reference load curve can
serve to measure the effort of energy flexibility at individual level. This individual
assessment serves to identify the subjects that have or have not positively responded
towards the nudge signal of energy flexibility. Therefore, in complement to the statistical
meta-analysis that quantifies the energy flexibility at group level, this instrument serves to

quantify and categorize the individual effort of energy flexibility.
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ChapterV

The quest of finding potential appliances for energy

flexibility in line with subject commitment

This chapter presents a proof of concept regarding detection of potential appliances
for energy flexibility in line with the subject commitment. For this purpose, an open source

NILM algorithm is explored on multiple datasets of appliance level energy consumption.
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V.1 Introduction

In the previous two chapters, we explored the impact of nudge signals on the energy
flexibility of the treated group, and we explored an approach where a reference load curve
can serve in energy flexibility programs. However, it is interesting to look for the potential
appliances for energy flexibility among the appliances that are committed by the treated
group. In this chapter, we discuss a proof of concept (and the factors bringing constraints

to it) to look for the appliances that have potential for energy flexibility.

We recall here the section 1.3.b in which an analysis of various appliances is done.
This analysis is performed based on the annual energy consumption and the nominal power
of the appliances. It is deduced from this theoretical analysis that the white appliances (i.e.
washing machine, dishwasher and cloth dryer) might have highest potential of energy
flexibility within a period of intervention. This is owing to their highest nominal power as
compared to others. However, it can be observed by using non intrusive load monitoring
(NILM). Generally, the energy disaggregation is done on load curves with a much higher
granularity (e.g. 1 second, 8 seconds etc.); however the granularity in our experiment is
much lower (i.e. 30 minutes). Therefore, we would like to implement it on a 30 minutes
resolution. In the following section, the state of the art of non-intrusive energy
disaggregation is presented. Whereas, in the rest of the chapter, we will discuss a proof of
concept that can be used to detect potential appliances for energy flexibility using the NILM

energy disaggregation technique.

V.2 Non-Intrusive Load Monitoring

Energy disaggregation is the process of acquiring the device level energy
consumption data; correlated with the global energy consumption data of smart meter. It
can be either hardware centric or software defined approach. The former is known as
intrusive load monitoring (or in short ILM); in which energy consumption recording
sensors are connected to the appliances. In this case, it is easy to acquire the energy
consumption data of appliances individually at the expense of costly hardware materials
and propriety communication protocols. The later is known as non-intrusive load
monitoring (or in short NILM*?); in which the appliance level energy consumption data is
extracted from the global energy consumption data. Rather than the installation of costly
sensors, this approach contends on the machine learning techniques to disaggregate the

global consumption data.

42|t is also sometimes referred as non-intrusive appliance load monitoring or NIALM in short.
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‘tal consumption
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Appliance 2

App'iaan 3

Figure V.1 Non-intrusive load monitoring (Parson, 2017)

NILM is initially studied in 1992 through a detailed analysis of current and voltage
of smart meter data (Hart, 1992). Since the mass deployment of smart meters, the research
work in NILM become more significant. The state of the art discusses two aspects of NILM,

namely; open-source datasets and the algorithms. These are briefly discussed below.

V.2.a Energy disaggregation datasets

The intrusive load monitoring significantly complements the NILM approach to
gather data. Using the ILM approach, public (and private) datasets of energy consumption
data are collected. These datasets are used to train NILM models and to validate these
models via performance metrics. In various research works, the data is collected for a
sampling period of as low as 1 second and as high as 30 minutes throughout the world. Table

V.1 illustrates some open-source datasets for residential sector.

Table V.1 Some open source NILM datasets
Duration of . .
Sampling period
Sr. Country Number of data i .
Name of dataset . (min=minutes,
No. of origin households (yrs=years,

sec=seconds)
m=months)

REDD (Kolter &
o1 USA 6 Several months 1sec
Johnson, 2011)

DEDDIAG (Wenninger
02 Germany 15 3.5 yIs 1sec
et al., 2021)

UKDALE(J. Kelly &
03 UK 5 > 1yr 6 sec
Knottenbelt, 2015)
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REFIT (Murray et al.,

04 UK 20 2 y1s 8 sec
2017)
Individual  household
electric power .
05 France 1 4yrs 1 min

consumption Data Set
(Hebrail & Berard, 2012)
AMPDs (Makonin et al.,

06 Canada 1 2 yrs 1 min
2016)

V.2.b NILM Techniques

NILM is widely considered as a single channel blind source separation problem.

Most of the research work tackles NILM as a regression problem, in which the individual
models of appliances predict the energy consumption based on the global consumption as
input. The state of the art also generally prefers supervised learning over non-supervised
learning. However, some research work also tackles it as a classification problem, where the
appliance (ON/OFF) state is detected and classified using the energy signature of the
appliance (Basu et al., 2015). In essence, it should be a combination of both in which the
appliance state should be detected and then a prediction regarding its consumption should

be made.

The techniques of NILM are categorized as optimization problem, probability
statistics, graph signal processing, machine learning and deep learning (Zhuang et al.,

2018). Some research work of these techniques are given as follows:

- Optimization problem: Aided linear integer programming (Bhotto et al., 2017)
and evolutionary optimization algorithm (Egarter et al., 2013) are among
optimization techniques studied for NILM.

- Probability Statistics: Hidden Markov model is a widely studied probability
statics technique for NILM (H. Kim et al., 2011; X. Wang et al., 2018; Zhong et al.,
2014). Among probability statics techniques, Viterbi algorithm (Zeifman, 2012) and
Bayesian approach (Srinivasarengan et al., 2013) are also studied.

- Graph Signal Processing: NILM research work is also explored using graph
signal processing (He et al., 2018; Stankovic et al., 2014; Zhao et al., 2015, 2016).

-  Machine Learning: The machine learning techniques are used for pattern
recognition in NILM. Random Forest (Y. Liu et al., 2021; Wu et al., 2019) and
support vector machine (Moradzadeh et al., 2020; Schirmer & Mporas, 2019) are
among the machine learning techniques that are studied.

- Deep Learning: Various deep learning architectures are also extensively
researched for the purpose of non-intrusive load monitoring. In this regard, various

architectures of auto-encoder (Bonfigli et al., 2018; Tsai et al., 2018), recurrent
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neural networks (J. Kim et al., 2016; Le et al., 2016) and convolutional neural

network (D. Kelly, 2016; Penha & Castro, 2017) are studied.

The application of recurrent neural network is also compared with convolutional
neural network (Pedro Paulo Marques do Nascimento, 2016). Most of the research in the
field of energy disaggregation yields individual model for each appliance. However, the
research is also done in order to make a unique model for disaggregation of multiple

appliances (Faustine et al., 2020). However, this research is limited.

V.2.c Remarks on the state of the art

Following observations are made in the state of the art of non-intrusive load

monitoring.

- Theresearch on energy disaggregation approaches is extensively tested on 4 publicly
available datasets. i.e. REDD, REFIT, AMPDs and UK-DALE.

- It is not found that energy disaggregation models are trained on an ensemble of
datasets. Rather, the models are trained on individual datasets separately.

- The energy disaggregation algorithms are seldom available publicly for
reproducibility of results.

- There does not exist a universal energy disaggregation algorithm. Rather, each
research article explores the efficiency of its proposed algorithm. The efficiency is
presented against one (or multiple) benchmark algorithms using chosen key
performance indicators.

- The models trained and tested on 1 dataset might not be equally efficient for other
datasets. This is an open research question under investigation regarding transfer
learning. This point will be further investigated in section V.6 and section V.7.

- A number of benchmark algorithms tested on publicly available datasets are
available by the name of NILM-TK43 (Batra et al., 2014). However, it is found
difficult to reproduce the results of these benchmark algorithms for a dataset other
than those available in toolkit. Besides, it has the limitation of disaggregating for 5

highest consuming appliances in the household.

Before discussing the proof of concept using NILM, the methodology of exploring an

open-source algorithm is presented in section below.

43 NILM-TK is publicly available at https://github.com/nilmtk/nilmtk.
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V.3 Methodology

The following schematic diagram shows the methodology adapted to evaluate the

models for energy disaggregation.

* ldentifying the appliances in the
EXPESIGNO dataset
* Counting the number of
commitment of each appliance

Reproducing the results of an energy
disaggregation algorithm

Reproducing the claimed results

through test on the same dataset

on which models are trained

Reproducing the claimed results
through test on a different
datasetto the trained dataset

Looking for the presence of
appliances of EXPESIGNO dataset in
IRISE dataset

Figure V.2

V.4 Committed appliances by the subjects

If the reproduced results are
same as that of claimed results

Creating energy disaggregation
models of common appliancesin
EXPESIGNO and IRISE dataset

Testing the trained models of
appliances (using IRISE dataset) on
one unseen house of IRISE dataset

If the results on unseen house
of IRISE dataset are reliable

If the results on unseen house
of IRISE dataset are notreliable

Validating the trained models
using IRISE dataset on the houses
of EXPESIGNO dataset for whom
the appliance level
instantaneous power is also
recorded.

If the models
are validated I
Using the validated models to
disaggregate the measured load
curve of treated group on alert
day (only for the period of
intervention) to measure the
impact of individual appliances
on energy flexibility.

The quest for finding reliable
energy disaggregation model(s)
continues.

If the models are
not validated

Schematic diagram of energy disaggregation of measured load curves on alert days

As mentioned in Section II.3.c.ii, the information regarding the presence of diverse

appliances present in the households is collected. In addition to this, the information

regarding the time of use of appliances with respect to defined timeslots is also collected.

The purpose of collecting this information and having a special session with the subjects is

to make the energy consumption and the nominal power of appliances visible to the

subjects. Once the subjects of treated group are enlightened about the impact of individual

appliance, they are requested to choose appliances from a given set that they can commit to

use (in response to green alert) or not use (in response to orange alert).
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Figure V.3 shows the frequency of committed appliances by the treated group for
both green alerts and orange alerts respectively. For instance, the washing machine is the
appliance that is mostly committed by the subjects of treated group for both green alerts
and orange alerts. The commitment frequency of washing machine is followed by
dishwasher and electronic gadgets. It is significant to see that the treated group committed
the cooking appliances mostly for load curtailment. It is the same case for space heating
appliances, however the frequency of commitment of space heating is less as compared to

the cooking appliances.

Supplementary Electric radiator & = Green Alerts
Set thermostat of electric heating after 2 AM & Orange Alerts
Electric car m=
Electric mobility vehicles jm—
Hotplate —
Clothes drier e ——
Hair care appliances
Pressing 1ron m——
Non-heating kitchen appliances ————————
Mains-power audiovisual devices e —
Microwave OVen —

Heating kitchen appliances j

Electric Oven |

Electronics connected to main supply

Electronics gadgets |

Dishwasher

Washing Machine §
0 10 20 30 40 50 60 70

Figure V.3 Frequency of appliances committed for green alert

The subjects of treated group are given a choice to change their default commitment
before the alert day. However as already mentioned in section IV.4, it is observed that the
subjects of treated group very rarely logged in to their personal account on Etude-Elec. A
total of 8 modifications were made for all the alerts. The low number of modifications of
indirect feedback makes it insufficient to statistically analyze the impact of modified
commitment against default commitment. Therefore, for the sake of argument, we consider
that the subjects of treated group stick to their default commitment reminded to them by

the commitment SMS.

Since the frequency of appliance commitment of the experiment is analyzed, it is
now significant to explore an energy consumption dataset. This dataset serves to train the
model of respective appliances for energy disaggregation. The dataset must have maximum
number of appliances in common with the committed appliances of the experiment. For this
purpose, IRISE dataset is used, which is demonstrated in the following section. This

database is not open-source, therefore it is not mentioned in the Table V.1.
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V.5 The characteristics of IRISE dataset

IRISE dataset is a subset from European database of residential consumption as part
of REMODECE project* (Enertech, 2008), for residential monitoring to decrease energy
use and carbon emissions in Europe (Basu et al., 2015). The dataset is private in nature. As
part of IRISE dataset, the energy consumption data of 98 houses for a span of a year is
recorded. The data is sampled by 10 minutes. The dataset has data of site consumption as
well as energy consumption of individual appliances. The site consumption also includes
the unmeasured load which were either intentionally (or non-intentionally) added to the
dataset. Therefore, in addition to the site consumption, the aggregated consumption is

calculated by summing up the energy consumption of known appliances at each instance.

V.5.a Committed appliances of treated group in the IRISE dataset

Before using IRISE dataset, it is significant to find whether the energy consumption
data of the committed appliances by the treated group is available in the IRISE dataset. In
this regard, the following 6 appliances are exactly found in the IRISE database. It is more
probable that these appliances could be easily traced in the energy consumption data of
treated group by using a trained model on IRISE. The frequency of presence of these
appliances in IRISE households is given in Figure V.4.

- Electric Oven - Washing Machine - Dishwasher

- Microwave Oven - Hotplate - Cloth dryer

Frequency of appliances in IRISE database (Group 1)

clothes_drier

dish_washer

electric_oven

hot_plate

microwave_oven

washing_machine

(] 10 20 30 a0
Frequence
Figure V.4 Frequency of matched appliances in IRISE dataset with committed appliances

4 Information regarding integration of IRISE dataset in REMODECE project:
https://remodece.isr.uc.pt/database/Campaign _Irise.html
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The following 5 committed appliances are found closer to certain appliances found
in IRISE database. In the EXPESIGNO dataset, these appliances are grouped under the
name of a) Electronics connected to main supply, b) Heating kitchen appliances, ¢) Mains-
power audiovisual devices, d) Set thermostat of electric heating after 2 AM and e)
Supplementary Electric radiator. The frequency of presence of these appliances in IRISE

households is given in Figure V.5.

- Computer site - Electric Cooker
- Electric Deep Fryer - Electric Heating
- TV

Frequency of appliances in IRISE database (Group 2)

Iz

1

computer_site

electric_cooker 0

electric_deep_frier

electric_heating

0 10 20 30 40 50 60 70
Frequence
Figure V.5 Frequency of closely matched appliances in IRISE dataset with committed appliances of
treated group

Beside the group of appliances, the following 3 appliances are not found in IRISE
database. Since the IRISE dataset is recorded between 1999 and 2001, therefore it is obvious
that the energy consumption data of electric vehicle and electric mobility could not be found
in the IRISE dataset.

- Pressing Iron - Electric vehicle - Electric mobility

V.5.b The statistics of appliances in IRISE dataset

Before going further, it is interesting to look at the statistical variables of each
appliance. For each appliance, these variables are calculated for their respective data
present in IRISE households. Table V.2 represents the statistics of IRISE appliances at 10
minutes sampling. Since zeros represent that the appliance is OFF, therefore it is omitted
during the calculation of mean, median and standard deviation. The aggregated

consumption in the table represents the aggregated consumption of the appliances below in
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all the houses in which the appliances are present. The average window size represents the

average of the various lengths of duration when the appliance consumed energy.

Table V.2 Statistics for IRISE appliances at 10 minutes sampling
Standard . Average
. ON | OFF | Mean L. Median | Max .
Appliance Count Deviation window
%) | (%) W) W) w) .
W) size
Aggregated 5103252 | X X 176 365 76 X X
Hotplate 12817 2 98 109 87 88 604 3
Electric 44 56
. 594695 151 187 90 10924 | 23
Heating
Electric Oven | 137399 9 91 56 93 21 4246 29
Electric 11 89
179874 52 95 3 1259 9
Cooker
Clothes drier | 102373 95 137 138 103 1287 11
Dishwasher 85566 97 174 161 119 628 5
Microwave 153982 96 39 49 23 587
TV 1703741 24 76 11 16 9 856 13
Washing 6 94
. 301406 73 107 22 5866 7
Machine

The data of energy consumption in our (EXPESIGNO) experiment is collected by

LINKY smart meter, which is sampled at 30 minutes. To keep the homogeneity in the

sampling rate of IRISE with EXPESIGNO, the power consumption data of IRISE appliances

are down sampled at 30 minutes by taking the mean value for half hourly timestamps. The

statistics of IRISE appliances are calculated and presented in Table V.3.

Table V.3 Statistics for IRISE appliances at 30 minutes sampling
Standard ) Average
] ON | OFF | Mean L. Median | Max ]
Appliance Count Deviation window
%) | (%) W) W) W) ]
W) size

Aggregated 1716530 | X X 174 293 78 X X
Hotplate 6759 4 96 69 61 49 434 3
Electric 47 53

. 211074 142 174 77 3641 | 35
Heating
Electric Oven | 48718 10 90 52 77 22 1421 11
Electric 14 86

72977 43 73 6 623 5

Cooker
Clothes drier | 39331 5 95 119 122 87 1082 | 5
Dishwasher 39754 5 95 126 105 126 469 3
Microwave 105928 8 92 19 29 11 355 3
v 647996 | 27 73 9 10 8 856 7
Washing 8 92

. 129679 57 74 22 1955 3
Machine
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By implementing down sampling (by taking average) on the data, it is common to
find the maximum value of energy consumption different than the maximum value of
original sampling. It is because the maximum value of original sampling is averaged with
its adjacent values, therefore it is modified. However, it is expected that the mean
consumption should remain same irrespective of the down-sampling. By comparing Table
V.2 and Table V.3, it is found out that the mean values vary to a considerable extent for
hotplate, dishwasher and microwave. The mean values are highlighted in yellow in the
tables. A possible explanation of this variation lies in the consumption pattern of these
appliances. These appliances have very short time of peak consumption, while the rest of
the time they have low consumption during their cycle of operation. Therefore, the mean

value varies for these appliances upon down sampling.

V.6 Reproducibility of an open-source energy

disaggregation algorithm

To train and test models of energy disaggregation on IRISE dataset, an open-source
algorithm known as Transfer-NILM* is used. It uses sequence to point*® architecture of
neural networks. This algorithm deals with the transfer learning of energy disaggregation.
The transferability of model is tested for appliance level (i.e. model trained on one appliance
is used to do energy disaggregation on another appliance) and cross dataset level (i.e. model
of an appliance trained on one dataset and tested on the same appliance from another

dataset) (D’Incecco et al., 2020).

Before training models on IRISE dataset using transfer-NILM algorithms, the
claimed results in the research article should be verified. For this purpose, the results are
reproduced for washing machine and microwave oven on the open-source REFIT* dataset
(already mentioned in Table V.1). To check the cross-dataset results, the training is done on
REFIT dataset whereas it is tested on REDD*® dataset (already mentioned in Table V.1). The
length of data subsets is given in Table V.4. The data of REDD is down sampled and the
same length is cropped as of REFIT dataset. Previously, we have observed that the IRISE
dataset has a default resolution of 10 minutes, whereas to bring homogeneity with the
resolution of LINKY data, IRISE dataset is resampled at 10 minutes. Similarly, to bring
homogeneity in the resolution of REFIT (by default at 8 seconds) and REDD (by default at

1 seconds), the REDD dataset is down sampled to a resolution of 8 seconds.

% |t is available at https://github.com/MingjunZhong/transferNILM.
%6 The python libraries of tenorflow and keras are used for algorithm formulation.

47 Data source: https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements-cleaned
48 Data source: http://redd.csail.mit.edu/
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Table V.4 The length of data subsets in REFIT and REDD dataset

REFIT and REDD data sampled at 8 seconds
) Training Validation Test
Sr. No. Appliance
Subset Subset Subset
(Million) (Million) (Million)
o1 Microwave 18.22 5.43 6.76
02 Washing Machine 43.47 5 6

The following performance metrics are used to match the reproducible results with
the claimed results. These performance metrics are chosen since they are used in the

original article of the algorithm. Therefore, it is easier to compare the results.

- Mean Absolute Error (MAE): It evaluates the absolute difference between the

prediction %, and ground truth x, at each instance and calculates the mean value.

T
1
MAE = Tlet — x| Equation V.1
t=

- Signal aggregate Error (SAE): It indicates the relative error of the total energy.

‘T’ denotes the total consumption of the appliance and # the predicted total energy.

|7 — 7]
r Equation V.2

SAE =

- Energy per day (EpD): This metric indicates the absolute error of the predicted
energy used in a day, which is typically useful when the household users are
interested in the total energy consumed in a period. Where e = Y, x; denotes the

energy consumed in a day period and D is the total number of days.

D
1
EpD = lee —el Equation V.3

- Normalized disaggregation error (NDE): This metric measures the
normalized error of the squared difference between the prediction and the ground
truth of the appliances.

Yie(xie — Xi)?

NDE = Yt Xit? Equation V.4
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V.6.a Training and testing on same dataset (REFIT)

REFIT dataset is sampled at 8 seconds. It consists of a total of 43 million data points
in the training subset of washing machine. For processing 43 million data points, it requires
a compatible hardware solution in memory and computing capacity. That's why 2
approaches are compared i.e. a complete dataset (of 43 million data points) processed on a
remote server with parallelization capacity on GPU and a reduced subset for training on
personal computer. The following results are observed regarding the time of training
without and with GPU installed on the server. NVIDIA RTX6000 GPU is installed on the
server machine. The results show that with a GPU installed on a computer machine, the

time taken to train a model considerably reduce to a greater extent.

Table V.5 The comparison of model creation with and without GPU
Sr.
N Parameter Without GPU With GPU
0.
o1 | Appliance Washing Machine Washing Machine
02 | Length of training dataset used 5 (out of 43) million 43 (out of 43) million
03 | Length of validation dataset used 5 (out of 5) million 5 (out of 5) million
04 | Epochs 5 10 (early stopping at 5t epoch)
05 | Time taken Around 13 hours Around 6 hours

Here the results of washing machine (WM) and microwave oven (MO) are
presented. The results of washing machine are graphically presented in Figure V.6 below.
The purpose of energy disaggregation (as stated earlier) is to disaggregate the smart meter
measured load curve into the consumption of respective appliances. Here, we reproduce the
results to test that the disaggregated load curve of the appliance recognizes well the state of
the appliance by comparing it to the ground truth value of the appliance. Not much
difference is spotted for MAE and NDE, however difference in SAE and EpD is observed.
Overall, it can be observed that the results are close. It demonstrates that the results are

reproduced as they were claimed in (D’Incecco et al., 2020).

Table V.6 Trained and tested on REFIT dataset at sample period of 8 seconds
Results of (D’Incecco et al., 2020) Reproduced results
Appliance EpD EpD
MAE SAE NDE MAE SAE NDE
(Wh) (Wh)
Microwave
12.66 0.17 95.78 0.71 9.5 0.007 105.07 0.71
Oven
Washing
. 16.85 2.61 319.11 0.54 32.09 0.16 418.16 0.58
Machine
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Figure V.6 Energy disaggregation of washing machine via model trained on REFIT dataset and tested
on REFIT house no. 8. Grey curve represents aggregated consumption, red curve represents the actual
consumption of washing machine and blue curve represents the predic

V.6.b Training on REFIT and testing on REDD dataset: transfer

learning

The REDD dataset is sampled at 1 seconds for smart meter, whereas 3 seconds for
appliances. To keep homogeneity with REFIT, the REDD dataset is resampled to 8 seconds.
It is significant to look at the statistical values of appliances in Table V.7 before reproducing
results. Since the same appliance in different datasets does not belongs to same brand and
same model, therefore their energy consumption pattern is different. Besides, the
appliances are not operated all the time, therefore they have different time of utilization. By
looking at Table V.7, it can be observed that the appliances in REDD dataset have low
utilization time (i.e. ON time), yet high mean and standard deviation value as compared to
the appliances in REFIT dataset. It is illustrated in Figure V.7 as well, in which the peak
consumption of washing machine for REDD dataset is higher than that of REFIT dataset.
Besides, there is also impact of other appliances in the aggregated consumption. Therefore,

these constraints bring difficulty in the transfer learning of energy disaggregation.

Table V.7 The statistical characteristics of appliances in REFIT and REDD dataset
Appliance On (%) OFF (%) Mean (W) Standard
Deviation (W)

REFIT dataset (sampled at 8 seconds)

Microwave Oven 6.6 93.4 9 92

Washing Machine 10.94 89.06 147 478
REDD dataset (sampled at 8 seconds)

Microwave Oven 2.03 97.97 358 613

Washing Machine 0.69 99.31 2282 743
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Figure V.7 The comparison of peak energy consumption of washing machine in REFIT dataset with

REDD dataset

The models of washing machine and microwave that are previously trained on
REFIT dataset is used to disaggregate data of REDD dataset. The reproduced results are
found closer to the claimed results (D’Incecco et al., 2020) in both cases. The result of

washing machine is presented in Figure V.8.

Table V.8 Trained on REFIT and tested on REDD dataset at sample period of 8 seconds
Results of (D’Incecco et al., 2020) Reproduced results
Appliance EpD EpD
MAE SAE NDE MAE SAE NDE
(Wh) (Wh)
Microwave
23.10 0.36 208 0.71 23.81 0.30 221.03 0.76
Oven
Washing
. 36.83 0.74 750.85 0.91 35.24 0.87 778.04 0.96
Machine
N . =
\ L
) L \ 7Y n
Figure V.8 Energy disaggregation of washing machine via model trained on REFIT dataset and tested

on RED house no. 3. Grey curve represents aggregated consumption, red curve represents the actual
consumption of washing machine and blue curve represents the predicted curve of washing machine
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V.7 NILM on IRISE dataset

As the reproducibility of results using transfer-NILM algorithm is verified, it is now
significant to create disaggregation models for the appliances that are discussed in the
section V.5.a. These are the appliances that are present in the EXPESIGNO dataset and are
either found in the IRISE dataset or certain appliances in IRISE dataset are found closer to
the appliances in EXPESIGNO. It should be noted that transfer-NILM algorithm makes
unique prediction model for each appliance. Before training models on IRISE dataset, the
data is checked for the presence of outliers. Certain outliers are found in the data which
represents the abnormal energy consumption of appliance at a certain instance. The outliers
might be caused owing to the mal communication of sensor. These outliers are removed by

the technique mentioned in the section below.

V.7.a Removing outliers from IRISE dataset

For an appliance X, these outliers are removed using the following technique.

- The energy consumption of an appliance X is sorted in ascending order. The highest
consumption being Xy .

- A scatter plot is created. The ordinate and abscissa represent the energy
consumption of appliance X. Figure V.9 illustrates this scatter plot.

- Starting from the highest value ‘Xn’, if the following equation holds,

5
i=1 Xn—i = Xn—i-1
5 Equation V.5

Xy — Xpoq >

- 1i.e. the distance between two highest consumption values is greater than the average
distances of subsequent 5 values, than either;
o Replace the outlier value with zero if the preceding and succeeding values in
the unsorted vector are zeros.
o Replace the outlier value with the average of preceding and succeeding
values in the unsorted vector, if both preceding and succeeding values are

non-zero, otherwise replace the outlier with zero.
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Figure V.9 Detection of outliers in washing machine of a household in IRISE dataset

V.7.b Predictive model creation based on IRISE dataset

To train a predictive model of an appliance for energy disaggregation, the energy
consumption data of respective appliance and aggregated data is collected from ‘n’
households in IRISE dataset. where ‘n’ represents the total number of houses in which the
data of respective appliance is found. The data is split for training, validation and testing of
model. The data of ‘n-2” household is kept for training; one household is kept for validation
and one household is kept for test. The open-source algorithm with sequence to point neural
network architecture (D’Incecco et al., 2020) as discussed in section V.6 is used to train the
models. The reproducibility of the claimed result of this algorithm is already verified in the
same section. The same procedure is adapted for IRISE dataset as it was earlier used for

the energy disaggregation of REFIT and REDD dataset.

The models are trained for 100 epochs with early stopping. An epoch represents one
training cycle of dataset, whereas by default the same model should be trained 100 times.
However, with a threshold criterion fixed for early stopping, the algorithm checks if the
decrease in validation loss between an epoch ‘n’ and ‘n-1’ is greater than the threshold value
for three consecutive epoch runs. If the condition does not fulfill, then the training is
stopped earlier and the model with the best validation score is saved. It is observed that the

model training early stopped within the 5% and 10t epoch.

The split of households with respect to each appliance (discussed in section V.5.a) is
given in Annex E. The training and validation loss is also given Annex E. whereas Table V.9
represents the length of data subsets (in number of rows) for data sampled at 10 minutes as
well as data sampled at 30 minutes. It is obvious that the values for data down sampled at

30 minutes is one third the values of data originally sampled at 10 minutes.
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Table V.9

The length of data subsets for training the predictive model of each appliance

Data sampled at 10 minutes Data sampled at 30 minutes
Sr. ] Training | Validation Test Training | Validation Test
No. Appliance Subset Subset Subset Subset Subset Subset
(Million) | (Million) | (Million) | (Million) | (Million) | (Million)
o1 | Hotplate 0.387 0.054 0.053 0.126 0.018 0.018
02 | Electric Heating 1.083 0.054 0.054 0.361 0.018 0.018
03 | Electric Oven 1.304 0.054 0.053 0.435 0.018 0.018
04 | Electric Cooker 1.458 0.054 0.053 0.488 0.018 0.018
05 | Clothes drier 1.625 0.054 0.054 0.542 0.018 0.018
06 | Dishwasher 2.485 0.054 0.053 0.832 0.018 0.018
07 | Microwave 3.624 0.054 0.053 1.211 0.018 0.018
o8 | TV 4.157 0.054 0.053 1.391 0.018 0.018
09 | Washing Machine | 4.490 0.054 0.053 1.502 0.018 0.018

For the test of predictive models, the performance indicators are tabulated below in

Table V.10. It is pertinent to discuss here that these performance indicators are different

than the one used in section V.6. The purpose of former performance metrics is to verify the

reproduction of the results by comparing it with the claimed results in the scientific

publication of (D’Incecco et al., 2020). These performance metrics are given in the scientific

publication and served to calculate the error in the prediction of energy consumption.

Therefore, for the sake of convenience, the reproduced results are compared with the

claimed results using the same performance metrics. In the case of detecting potential

appliances for energy flexibility, the most significant element is to detect the state of

appliance (i.e. ON/OFF) at each instant in the period of intervention. The prediction of

extent of consumption is a matter of secondary importance in this regard. Therefore, our

interest here is to detect the percentage of correctly predicted instances.

Table V.10 The performance indicators for testing the predicted models
Sr. .
N Performance Indicator Remarks
o.
. Actual state : ON
o1 True Positive (TP) .
Predicted state : ON
. Actual state : OFF
02 True Negative (TN) .
Predicted state : OFF
. Actual state : OFF
03 False Positive (FP) )
Predicted state : ON
. Actual state : ON
04 False Negative (FN) .
Predicted state : OFF
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F1 score is a harmonic mean of precision*® and recall®. In the terms
of the above 4 performance indicators, the F1 score is mathematically

05 F1 Score given as:
precision Xrecall TP

precision +recall  p | {% x (FP + FN)}

Pi =2 X

V.7.c The results of energy disaggregation in terms of performance

indicators

Initially the median value (of measured consumption) is taken as a threshold for
disaggregation results. These median values are given in Table V.2 and Table V.3 for
resolution of 10 minutes and 30 minutes respectively. These median values are greater in
value than 10W for the appliances except for electric cooker and TV. The threshold value
brings sensitivity to results therefore it must be carefully selected by looking at the noise of
the prediction. By looking at the results graphically, it is observed that the disaggregated
curve does not have same amplitude as the measured curve of the appliance. Besides, it is
also observed graphically that the disaggregated curve is found oscillatory within a specific
amplitude around OX axis. Therefore, the threshold is set to 10W for all the appliances to
suppress the effect of noise in the prediction on the results. The only exceptions in this

regard are electric cooker and TV for which the threshold is set to 5W.

Table V.11 The results with respect to performance indicators for data sampled at 10 minutes
True Values Performance Indicators
True True False False
Sr. Threshold
N Appliance w) ON OFF Positive | Negative | Positive | Negative F1
0.
%) | (%) (TP) (TN) (FP) (FN) Score
(%) (%) (%) (%)
o1 | Hotplate 10 2 98 1 93 5 1 0.17
Electric
02 . 10 13 87 12 75 12 1 0.65
Heating
Electric
03 10 3 97 3 90 7 o 0.45
Oven
Electric
04 5 4 96 2 83 13 2 0.21
Cooker
Clothes
05 . 10 0.44 | 99.56 | 0.38 96.49 3.07 0.05 0.2
drier
06 | Dishwasher | 10 2 98 2 94 4 o) 0.5
07 | Microwave 10 3 97 1 95 2 2 0.33
o8 | TV 5 27 73 24 53 20 3 0.68

4 Precision is a ratio of true positives and the actual values. In terms of true positive (TP) and false positive (FP), the precision is
mathematically given as Precision = v
%0 Recall is a ratio of true positives and the predicted values. In terms of true positive (TP) and false negative (FN), the recall is
mathematically given as Recall =

TP+FN
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Washing
09 . 10 3.62 | 96.38 | 1.73 90.88 5.72 1.67 0.32
Machine

The results for 10 minutes sampling and 30 minutes sampling are presented in Table
V.11 and Table V.12 respectively. For the sake of presentation, the values are rounded off,
except for the highlighted appliances for whom it is found difficult to present results with

rounded off numbers. Therefore, the results of these appliances are rounded off to 2 decimal

digits.
Table V.12 The results with respect to performance indicators for data sampled at 30 minutes
True Values Performance Indicators
True True False False
Sr. . Threshold
N Appliance W) ON OFF Positive | Negative | Positive | Negative F1
0.
(%) (%) (TP) (TN) (FP) (FN) Score
(%) (%) (%) (%)
o1 | Hotplate 10 2.41 | 97.59 | 0.88 04.04 3.55 1.53 0.26
Electric
02 . 10 18 82 17 58 24 1 0.58
Heating
Electric
03 10 4 96 4 90 6 (o} 0.57
Oven
Electric
04 5 4 96 3 78 19 1 0.22
Cooker
Clothes
05 . 10 0.54 | 99.46 | 0.45 94.36 5.10 0.08 0.15
drier
06 | Dishwasher | 10 3 97 3 91 6 o) 0.5
07 | Microwave 10 6.68 | 93.32 | 1.25 91.63 1.68 5.43 0.26
o8 | TV 5 29 71 27 45 26 2 0.66
Washing
09 . 10 4 96 2 88 8 2 0.29
Machine

It can be observed in Table V.11 that the ON (percentage) is very less as compared to
OFF (percentage). The percentage value of false positive (FP) predictions is found greater
(or equal to) the true positive (TP) predictions. It means that besides accurately predicting
the ON instances, the model also predicts a large number of ON instances when the
appliance was actually OFF. In addition to this, the percentage of false negatives (FN) is also
(more or less) equal to the true positive (TP). False negative (FN) means that there were
certain instances when the appliance was in ON state, however the model predicted that it
is OFF. The same pattern is observed in the Table V.12 for the data sampled at 30 minutes.
This makes a model less reliable as we expect that the number of true positives (TP) and
true negatives (TN) should be much higher than false positives (FP) and false negatives
(FN). Despite having considerable percentage of false positives (FP), the F1 score of certain
appliances suggests them to be good models yet sensitive to the fixed threshold. The electric

heating, electric oven, dishwasher and TV are notable in this regard.
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Figure V.10 Test result for dishwasher on IRISE house 997 at sampling rate of 30 minutes

V.8 Transferability on the EXPESIGNO dataset

The principal objective of creating predictive models of energy disaggregation is to
use them on the energy consumption data of treated group during the period of intervention
on alert days. In this way, the transfer learning of the predictive models could be analyzed.
The created predictive models are based on deep learning. Due to its ability to identify
shared factors present in the input, deep learning is deemed good for transfer learning.
“Although preliminary experiments have shown much potential of deep learning in transfer
learning, applying deep learning to this field is relatively new and much more needs to be

done for improved performance” (Chen & Lin, 2014).

The proof of concept is presented and tested on a household of IRISE dataset for
each appliance. The proof of concept works, though more reliable predictive models are
sought. We need more reliable models to detect more true positives and less false positives
so that transfer learning of predictive models from an open-source dataset (or ensemble of
datasets) towards the EXPESIGNO dataset can be analyzed. For validation of predictive
models, the performance of predictive models will be analyzed by using the intrusive load
monitoring data of 4 households in EXPESIGNO dataset. It should be noted that
instantaneous energy consumption data is recorded as appliance level for these 4
households as part of a side project of EXPESIGNO (known as DEEP-EXPESIGNO).
Following the validation, the measured load curve during period of intervention will be

disaggregated to identify potential appliances.
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V.9 Conclusion

Energy disaggregation (particularly non-intrusive load monitoring) can serve as a
helpful tool to analyze the impact of energy flexibility at appliance level. This does not only
validate the potentiality of appliances for energy flexibility, but it also helps in verifying the
impact of commitment for energy flexibility (in case commitment exists). In our experiment
regarding nudge-based energy flexibility, the white appliances are mostly committed

appliances.

Several interventions are made in our experiment. The principal objective is to
analyze the impact of nudges at appliance level, however as a starting point, a proof of
concept is presented. This proof-of-concept deals with the non-intrusive load monitoring
through supervised learning using a dataset of recorded consumption at global level as well
as at appliance level. The results of an open source NILM algorithm are reproduced to verify
the claimed results before training the predictive models using IRISE dataset. The

algorithm produces unique model for each appliance with respect to the given parameters.

The test results of IRISE dataset (by models trained on same dataset) depicts that
the models can equally (or to a larger extent) predict false positives as compared to true
positives. The F1 score of certain appliances are found well albeit these appliances having
more false positives as compared to true positives. Though the models are not found reliable
enough to implement on our experiment case, yet we found that NILM can serve as a
promising tool to measure the potential of appliances during period of interventions. Here
we have explored only a small part of the scientific objectives of such a study. There still
needs many points to be addressed in order to ensure the quality of the results that we will

be able to obtain on our EXPESIGNO experiment.
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Chapter VI

Conclusion and Future Prospects

This chapter presents a general conclusion of this thesis in light of preceding chapters and

present future prospects for research work.
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VI.1 General Conclusion

Energy flexibility has been in practice worldwide in the form of demand response
programs since many decades. These programs are implemented on the electric grid
predominantly energized by conventional fossil fuel plants. However, the energy mix is in
transition and it tends towards renewable energy sources through distributed generation.
Where the integration of distributed renewable generation mitigates climate change to
benefit environment, it also poses technical constraint of intermittent production (leading
to possible network congestion). To keep energy balance in a future energy mix which is
predominantly energized by renewable energy sources, it is inevitable to implement the

different modes of energy flexibility.

Residential sector (being the highest consumer of electricity) remained the focal
point of demand response. It still remains a potential sector to implement energy flexibility.
Feedback is another important aspect of demand response. It can be either direct (i.e., in
real time) or indirect (after the period of consumption). Direct energy flexibility is an
incentive-based approach to switch loads at remote end. It is significant for industrial
sector; however, it is not desirable for residential consumers since it is intrusive. Besides,
there exist concerns among consumers regarding privacy and balanced use of direct load
control. Contrary to this, the indirect energy flexibility offers price-based approaches that
acts as extrinsic motivator for the consumers. However, there are certain factors that
hinders the decision making of a residential consumer to implement price-based energy
flexibility. It includes privacy, cognitive difficulty in understanding non-linear price system,
information imperfection in the price-based signal, lack of motivation and uncertainty
about potential consequences. Chapter I begins with a discussion on the changing
landscape of energy mix and the constraints of traditional energy flexibility mechanisms,
which leads us to the significance non-monetary energy flexibility mechanism and a brief

introduction of implementation of its gist in this thesis.

Regarding the indirect energy flexibility, the cognitive burden of acting on price
signal is on consumer which enables the consumer to make a controlled and calculated
decision. The dual process theory of thinking suggests that the dynamic pricing instigates
system 2 of thinking, which operates consciously, in control, with high effort and low-
capacity process. It makes the consumer to think about the implementation and
consequences of responding to the price signal with certain questions i.e., a) why to act? b)
when to act? c) how to act? and d) how did it go? This makes it riskier to implement price
based indirect energy flexibility. Besides, the distributed generation of renewable energy is
considered as a common pool resource. In the anticipated energy mix predominant with

renewable energy sources, the usual energy consumption will cause scarcity of energy,
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either through intermittency of renewable energy or high demand at a certain time.
Therefore, it is inevitable that the individuals should implement flexibility in energy
consumption to avoid future dilemma. The practice of energy flexibility in present will

eventually become a habit in future.

Chapter II begins with a discussion on the socio-cognitive constraints of human
being. As a complement to the traditional demand response mechanisms, behavioral
insights based energy flexibility mechanism is then presented with the introduction of
“Nudge” (and eventually “Green Nudge”) as a tool. Nudge provides indirect suggestions to
influence the decision making, whereas green nudge is an extension of nudge technique
which is attributed to environmental cause. A review of nudges used in the field of energy
worldwide is also presented. Most of these nudges used either a self-comparative or social
comparative norm. In contrast to this, the architecture of a field experiment in residential
sector using green nudges is presented. This non-monetary field experiment is performed
with 175 French households (within the constraints of GDPR); categorized in control group
and treated group. Two types of interventions are conceived i.e. orange alerts for load
curtailment and green alerts for load shifting. The nudge signals (assisting with the curious
questions) in the form of SMS are sent to the treated group for both types of interventions.
The orange alerts are based on the forecasted grid congestion whereas the green alert
requires prediction of load curve of residential sector, which is presented in the later section

of this chapter.

Chapter III begins with the general statistics of alerts and a comparison of socio-
technical variables of both groups. Both groups are found identical in all the statistical
variables except the year of construction. However, this statistical variable does not have
any concern with our experiment. Following this, the distribution of energy consumption of
both groups is compared for normal days. The normal energy consumption of both groups
is found similar by the visualization of distribution curve and statistical test of significant
difference. The last section of this chapter deals with the meta-analysis of impact of nudge
signals. It is observed that the distribution curve of treated group is shifted towards right
for green alerts when superposed on the distribution curve of control group. In the case of
orange alerts, the distribution curve of treated group is shifted towards left as compared to
control group. It fairly gives a notion that the nudge signal has an impact on the energy

consumption during the period of intervention on alert days.

The statistical test concludes that the distribution of consumption of treated group
for all green alerts is greater than the distribution of control group, yet the result of
individual green alert does not support this. On contrary, the result of individual orange

alert supports the aggregated result that the distribution of consumption of treated group
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for all green alerts is less than the distribution of control group. The variation in the energy
consumption is quantified for both types of alerts. On aggregated level, the treated group
implemented load shifting of energy flexibility by 11.17% in response to green alerts,
whereas the group implemented load curtailment by 18.21% in response to orange alerts.
The result regarding load curtailment of 18.21% sounds better compared than the study of
moral suasion which yielded 8% (Ito et al., 2018), whereas it is closer to the results of a
study of similar nature which yielded load curtailment in the range of 12-20% (Jorgensen
et al., 2021). It is worth mentioning that the subjects of our experiment are environment
conscious, therefore, the results of green nudges could be different for a bigger sample of

subjects having different environment related ideologies.

Chapter IV presents a tool that can serve to provide feedback as well as to detect
the effort of energy flexibility for each intervention. This tool is named as reference load
curve. The original purpose of reference load curve is to provide the treated group graphical
indirect feedback of each intervention and to measure its impact on the energy flexibility.
However, the low number of views by the treated group is insufficient to measure this
impact. Yet to present the feedback, the question raised as how to formulate reference load
curve. In this regard, a classical method, two naive methods and two machine learning
methods are analyzed by energy difference indicator and R2 score. According to the
indicators, a classical reference load curve based on kernel density estimation is found
suitable for measuring load shifting while a machine learning based reference load curve is
found suitable for measuring load curtailment. In our experiment, we selected a naive
method to measure both types of energy flexibility since its results were best among the

formerly studied methods and it is easy to explain to the treated group.

Unlike the comparison of control group and treated group, the reference load serves
to measure the energy flexibility at individual level. To do so, it is imperative to first validate
whether the reference load curve can potentially replace control group. An analysis is done
in this regard, and it is observed that the reference load curve can replace control group for
load curtailment. The later section presents the utility of reference load curve to detect the
individual effort of energy flexibility and to categorize the consumers into groups i.e., a) who
acted positive in response to nudge signal, b) who did not act positive in response to nudge

signal and c) those for whom the impact is negligible or cannot be determined.

Chapter V demonstrates the frequency of committed appliances for both (green
and orange) alert by the treated group. It serves to identify the appliances that were
potential to implement energy flexibility during the period of intervention. A proof of
concept is presented using NILM energy disaggregation. The idea is to use NILM for

disaggregating the measured load curve of our experiment to identify the potentiality of an
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appliance during the period of intervention. Yet many analyses are required to explore in

order to ensure the quality of the results that we will be able to obtain on our experiment.

In a nutshell, the green nudge based non-monetary energy flexibility mechanism is
found effective for energy flexibility of load shifting as well as load curtailment. The
designed mechanism answers the curious questions of residential consumer upon receiving
an energy flexibility alert. This mechanism complements the existing mechanisms of direct
load control and dynamic pricing. The results for downward flexibility are found more
concrete as compared to the results of load shifting. A reference load curve can replace the
control group to detect the individual effort of energy flexibility. To identify the potentiality
of an appliance, the NILM energy disaggregation can be used, however it needs to be

explored in order to ensure the quality of results on our experiment.

VI.2 Future Prospects

This thesis offers several future prospects in multiple axes. The axes can be
categorized based on use of other nudges in behavioral science, architecture development,

reference load curve and data analysis in depth. We discuss each of these below.

VI.2.a Use of other nudges of behavioral science for energy
flexibility

In our study, we used a set of green nudges for motivating people to implement
energy flexibility. It includes information (of forecasted grid condition), default
commitment, reminder and feedback. However, several other nudges should also be
explored to implement energy flexibility. For instance, the intuitive metrics can be used to
express information and/or the consequences of energy flexibility can be reframed in terms

people care about (Yoeli et al., 2017).

In addition to this, the nudge of personalized target can be explored. These nudges
are designed for everyone separately. Each individual subject could be communicated about
the impact of switching an appliance present in his/her household. The impact of feedback
as a nudge is an interesting subject to explore. We have seen in our experiment that the
subjects are seldom interested in looking at their feedback. For instance, anchoring could
be used during the information sessions in which the subjects should be informed about the
importance of feedback. The feedback could be intertwined with few Yes/No questions to
be responded by the subject. This in return also give data about the extent of easiness of

implementing energy flexibility for each subject which could then be analyzed statistically.
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VIL.2.b Architecture development for experiment

There are certain developments that can be made as future prospect in the

architecture. Some of these are outlined as follows.

- The orange alerts in our experiment are based on forecasted network congestion
(PP1/PP2) on French national grid. Like EJP which is notified with respect to the
part of the France (north, south, east or west), the forecasted network congestion
can be further disintegrated at department level (in France). For local energy
communities, it is essential to be more realistic and problem-oriented that the
forecasted network congestion of its mini-grid should be used.

- Regarding the green alerts, a threshold of nebulosity is used as one of the criteria. It
represents the solar energy, whereas criterion should also be explored for other
types of renewable energy e.g., threshold for wind speed etc.

- Auto-consumption could be taken into account while sending nudges.

- In the architecture of our experiment, we used the modelled residential load curve
(of national level) to evaluate a criterion of green alerts. This load curve is periodic
within the constraints of its coefficient values. However, it would be more significant
to model the residential load curve at experiment level. It is possible that this
modelled load curve could not be as periodic as the national residential load curve.

- In the architecture of our experiment, we only took into account the smoothened
national temperature for the prediction of modelled residential load curve. The
historical data of pseudo-radiation (in percentage) is also given at national level. The
impact of this variable could be explored for the prediction of residential load curve.
Besides, we used random forest for prediction (with good results), however other
techniques should also be explored, for instance deep learning (though it needs a

large amount of data).

VI.2.cReference Load curve

Reference load curve is a significant tool that has been explored for the sake of this
experiment at a greater extent. However, according to our information, the work in this

regard is preliminary and offers a lot of prospects. Some of these are outlined here.

- Since reference load curve is a prediction, therefore methods other than Random
Forest should also be explored. For instance, deep learning with a sufficient amount
of data might give better results than machine learning models.

- Only two performance indicators are explored in this thesis. Other performance
indicators should also be explored for better presentation of suitability of a method

to formulate reference load curve.
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- With our analysis, we cannot show that the reference load curve can replace control
group to detect and measure load shifting. However, this area of research deserves
a lot of improvement and several methods of formulating reference load curve
should be analyzed in this regard in future.

- Based on a sensitivity analysis of the thresholds for detecting positively acting

subjects, a most suitable threshold value should be selected.

VIL.2.d In-depth data analysis of potential appliances for energy
flexibility
In Chapter V, a proof of concept regarding in-depth analysis of potential appliances

for energy flexibility is presented. It offers several future prospects, of which some are

mentioned below.

The impact of resolution on NILM should be evaluated in depth. It should be
evaluated in depth that whether the models trained on higher resolution are equally
(or near equally) effective to disaggregate the aggregated load curve of lower

resolution.

The impact of training NILM models on an ensemble of open-source datasets (for a
fixed value of resolution) should be evaluated. With respect to the performance
indicators, the impact of training on individual datasets should be compared with

the training on ensemble of datasets.

Finally, the models should be tested on the EXPESIGNO dataset to identify and
quantify the potentiality of appliances during the period of intervention. A naive

method of quantification in terms of percentage could be using the formula below.

Number of times the curtailment (or shifting) of appliance is identified during period of alert
*

Potentiality of appliance = 100

Total number of subjects who committed this appliance
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ANNEX B

B.1 Household Characteristics

B.1.i Owner/Tenant

This variable concerns the status of households regarding their housing (owner or tenant).

Table B.1: Distribution of household status according to group
Control Group Treated Group
Status Number of Percentage Number of Percentage
subjects (%) subjects (%)

Owner 62 78.5 74 77.9
Tenant 17 21.5 21 22.1

Total 79 100 95 100

B.1.ii House/Apartment

This variable concerns the type of housing of the household (apartment or house).

Table B.2: Distribution of the type of housing of households according to the groups
Control Group Treated Group
Status Number of Percentage Number of Percentage
subjects (%) subjects (%)
House 36 54.4 50 52.6
Apartment 43 45.6 45 47.4
Total 79 100 95 100
B.1.iii Surface of household

This variable represents the living area of the household of both groups. In order to use this
variable, it was necessary to make groupings into classes. The surface areas are grouped by

classes of 50, whereas the last grouping is between from 150 to 400.

Table B.3: Distribution of liveable area by group
Control Group Treated Group
Surface Area Number of Percentage Number of Percentage
subjects (%) subjects (%)

[o-50( 5 6.3 9 9.4
[50-100[ 45 57.0 51 53.7
[100-150[ 24 30.4 24 25.3
[150-400] 5 6.3 11 11.6
Total 79 100 95 100
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B.1.1v Year of construction

This variable provides information on the period of construction of the household.

Table B.4: Distribution of the period of construction of the household according to the

groups
Control Group Treated Group
Year of
. Number of Percentage Number of Percentage
Construction .
subjects (%) subjects (%)
Avant 1949 9 11.4 7 7.4
1949-1961 2 2.5 13 13.7
1962-1974 31 39.2 23 24.2
1975-1989 14 17.7 16 16.8
1990-2012 18 22.8 25 26.3
Apres 2012 5 6.3 11 11.6
Total 79 100 95 100
B.1.v Number of persons in the household

This variable concerns the number of persons per household.

Table B.5: Distribution of the number of people in the household according to the

groups
Control Group Treated Group
Number of
Number of Percentage Number of Percentage
Persons
subjects (%) subjects (%)
1 8 10.10 13 13.70
2 20 25.30 25 26.30
3 24 30.40 22 23.20
4 16 20.30 22 23.20
5 or more 11 14.00 13 13.70
Total 79 100 95 100
B.1.vi Presence in the household at least 3 days per week
(during weekdays)

This variable corresponds to the household response for the question; "In your dwelling is

there a person during the day at least 3 days a week (excluding weekends)?"
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Table B.6: Distribution of the presence of a person in the dwelling at least 3 days a week
Control Group Treated Group
Presence 3 days
Number of Percentage Number of Percentage
per week )
subjects (%) subjects (%)
Yes 36 45.6 49 51.6
No 43 54.4 46 48.4
Total 79 100 95 100
B.1.vii  Types of electric heating

This variable provides information on the type of heating used by households.

Table B.7: Distribution of different types of heating according to group
Control Group Treated Group
Type of Heating Number of Percentage Number of Percentage
subjects (%) subjects (%)
Gas 53 67.1 64 67.4
Electricity 8.9 9 9.5
Liquid Fuel 4 5.1 5 5.3
Granular Wood | 1 1.3 5 5.3
Inverter AC (o] 0.0 2 2.1
Other 14 17.7 10 10.5
Total 79 100 95 100

B.2 Presence of appliances

B.2.1

This variable addresses whether or not the household has a water heater.

Electric water heater

Table B.8: Distribution of water heater ownership by group
Control Group Treated Group
Presence of
Number of Percentage Number of Percentage
water heater .
subjects (%) subjects (%)
Yes 22 72.2 21 22.1
No 57 27.8 74 77-9
Total 79 100 95 100
B.2.ii Air Conditioning

This variable provides information on the presence of air conditioning in households.
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Table B.9:

Distribution of presence of air conditioning by group

. Control Group Treated Group
Presence of air
.. Number of Percentage Number of Percentage
conditioner . .
subjects (%) subjects (%)
Yes 5 6.3 8 8.4
No 74 93.7 87 91.6
Total 79 100 95 100
B.2.iii Heat Pump

This variable provides information on presence of heat pump in the household.

Table B.10:  Distribution of presence of heat pump by group
Control Group Treated Group
Presence of heat
Number of Percentage Number of Percentage
um
pump subjects (%) subjects (%)
Yes 4 5.1 6 6.3
No 75 94.9 89 93.7
Total 79 100 95 100
B.2.iv PV panels

This variable allows us to see whether or not households have photovoltaic panels.

Table B.11:  Distribution of presence of PV panel by group
Control Group Treated Group
Presence of PV
Number of Percentage Number of Percentage
panels
subjects (%) subjects (%)
Yes 0 o} 3 3.2
No 79 100 92 96.8
Total 79 100 95 100
B.2.v Double glazing of windows

It is interesting to know about the presence of double glazed windows in the dwelling of
households.

Table B.12:  Distribution of presence of double glazing by group
Presence of Control Group Treated Group
double glazed Number of Percentage Number of Percentage
windows subjects (%) subjects (%)
Yes 66 83.5 84 88.4
No 5 6.3 8 8.4
Partially 10.1 3 3.4
Total 79 100 95 100
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B.3 Number of appliances in household

B.3.iElectric Oven

This variable refers to the number of ovens present per household.

Table B.13:  Distribution of number of ovens according to group
Control Group Treated Group
Number of
. Number of Percentage Number of Percentage
electric ovens .
subjects (%) subjects (%)
0 2 2.5 2 2.1
1 70 88.6 85 89.5
2 7 8.9 8 8.4
Total 79 100 95 100
B.3.ii Dishwasher

This variable provides information on the number of dishwashers per household.

Table B.14:  Distribution of number of dishwashers by group
Control Group Treated Group
Number of
Number of Percentage Number of Percentage
dishwashers
subjects (%) subjects (%)
0o 16 20.3 15 15.8
1 63 79.7 80 84.2
Total 79 100 95 100
B.3.iii  'Washing Machine

This variable shows the number of washing machines present in the homes.

Table B.15:  Distribution of number of washing machines according to group
Number of Control Group Treated Group
washing Number of Percentage Number of Percentage
machines subjects (%) subjects (%)
0 1 1.3 0 o}
1 77 97.5 95 100
2 1 1.3 0 0
Total 79 100 95 100
B.3.iv Cloth Dryer

This variable provides information on the number of clothes dryers owned by households.
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Table B.16:  Distribution of number of clothes dryers by group
Control Group Treated Group
Number of cloth
Number of Percentage Number of Percentage
dryers . .
subjects (%) subjects (%)
0 61 77.2 65 68.4
1 18 22.8 30 31.6
Total 79 100 95 100
B.3.v Electric Vehicle

This variable tells us whether or not households have an electric vehicle.

Table B.17:  Distribution of number of electric vehicle by group
Control Group Treated Group
Number of cloth
Number of Percentage Number of Percentage
dryers .
subjects (%) subjects (%)
o 79 100 93 97.9
1 0 o 2 2.1
Total 79 100 95 100
B.4 Energy Consumption during weekdays
B.4.iPressing Iron
This variable concerns with the hour of use of the iron during a weekday.
Table B.18:  Distribution of iron use during a weekday
Control Group Treated Group
Time of use of
L. Number of Percentage Number of Percentage
pressing iron
subjects (%) subjects (%)
6 AM to 9 AM 10 22,7 10 16.9
9 AM to Noon 5 11.3 11.8
Noon to 3 PM 1 2.3 3 5.1
3 PM to 6 PM 3 6.8 11.8
6 PM to 8 PM 7 15.1 14 23.7
8 PM to 11 PM 15 34.1 17 28.8
11 PM to 6 AM 1 2.3 1 1.7
Don’t know 2 4.5 0 0
Total 79 100 95 100
B.4.ii Electric Oven

This variable corresponds to the use of the oven on weekdays.
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Table B.19:

Distribution of electric oven use during weekday

X Control Group Treated Group
Time of use of
. Number of Percentage Number of Percentage
electric oven . .
subjects (%) subjects (%)
6 AM to 9 AM 4 5.3 3.4
9 AM to Noon 8 10.5 7.6
Noon to 3 PM 6 7.9 11 9.3
3 PM to 6 PM 3 3.9 7 5.9
6 PM to 8 PM 49 64.4 65 55.0
8 PM to 11 PM 6 7.9 21 17.7
11 PM to 6 AM 0] 0] 1 0.8
Don’t know o] 0] 0] o]
Total 79 100 95 100
B.4.1ii Dishwasher
This variable corresponds to dishwasher use on weekdays.
Table B.20:  Distribution of dishwasher use on weekdays
Control Group Treated Group
Time of use of
. Number of Percentage Number of Percentage
dishwasher
subjects (%) subjects (%)
6 AM to 9 AM 5 7.9 8 8.6
9 AM to Noon 5 7.9 9 9.7
Noon to 3 PM 5 7.9 9 9.7
3 PM to 6 PM 3 4.8 6 6.5
6 PM to 8 PM 6 9.5 5 5.4
8 PM to 11 PM 31 49.2 43 46.2
11 PM to 6 AM 8 12.7 13 14.0
Don’t know 0] 0] 0 0
Total 79 100 95 100
B.4.iv Washing Machine

This variable refers to the use of the washing machine on weekdays.

Table B.21:  Distribution of washing machine use on weekdays
Time of use of Control Group Treated Group

washing Number of Percentage Number of Percentage
machine subjects (%) subjects (%)

6 AM to 9 AM 5 6.7 6 5.5

9 AM to Noon 18 24.0 20 18.2

Noon to 3 PM 1 1.3 13 11.8

3 PM to 6 PM 15 20.0 16 14.5

6 PM to 8 PM 17 22.7 28 25.5
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8 PM to 11 PM 14 18.7 16 14.5
11 PM to 6 AM 3 4.0 9 8.2
Don’t know 2.7 1.8
Total 79 100 95 100
B.4.v Cloth Dryer

This variable refers to the use of the cloth dryer on weekdays.

Table B.22:  Distribution of cloth dryer use on weekdays
Control Group Treated Group
Time of use of
Number of Percentage Number of Percentage
cloth dryer i .
subjects (%) subjects (%)
6 AM to 9 AM 0 0 2 8.0
9 AM to Noon 3 21.4 6 24.0
Noon to 3 PM 0 o} 3 12.0
3 PM to 6 PM 1 7.1 o o
6 PM to 8 PM 2 14.3 5 20.0
8 PM to 11 PM 5 35.7 8 32.0
11 PM to 6 AM 1 7.1 1 4.0
Don’t know 2 14.3 0 0
Total 79 100 95 100
B.4.vi Electric hotplates

This variable refers to the use of the induction plates for the purpose of cooking on

weekdays.
Table B.23:  Distribution of induction plates use on weekdays
Time of use of Control Group Treated Group
hotplate Number of Percentage Number of Percentage
subjects (%) subjects (%)
6 AM to 9 AM 5 8.9 8 9.9
9 AM to Noon 8 14.3 10 12.3
Noon to 3 PM 10 17.9 13 16.0
3 PM to 6 PM 1 1.8 0 0
6 PM to 8 PM 27 48.2 37 45.7
8 PM to 11 PM 5 8.9 12 14.8
11 PM to 6 AM 0] 1 1.2
Don’t know 0 0] o] o]
Total 79 100 95 100
B.4.vii Radiator

This variable refers to the use of the electric radiator for space heating on weekdays.
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Table B.24:  Distribution of electric radiator use on weekdays

. Control Group Treated Group
Time of use of
. . Number of Percentage Number of Percentage
electric radiator . .
subjects (%) subjects (%)
6 AM to 9 AM 6 28.6 11 50.0
9 AM to Noon 1 4.8 0 0
Noon to 3 PM 0 0 0 (0]
3 PM to 6 PM 0 0 0 0
6 PM to 8 PM 12 57.1 9 40.9
8 PM to 11 PM 2 9.5 1 4.5
11 PM to 6 AM o (o) o o
Don’t know 0 0 1 4.5
Total 79 100 95 100

B.5 Energy Consumption during the weekend

B.5.i Pressing Iron

This variable concerns with the hour of use of the iron during a weekend.

Table B.25:  Distribution of iron use during a weekend

Control Group Treated Group
Time of use of
L. Number of Percentage Number of Percentage
pressing iron . .
subjects (%) subjects (%)
6 AM to 9 AM 1 2.6 2 3.4
9 AM to Noon 10 26.3 15 25.4
Noon to 3 PM 2 5.2 1 1.7
3 PM to 6 PM 5 13.1 15 25.4
6 PM to 8 PM 9 23.6 10 16.9
8 PM to 11 PM 6 15.7 13 22.0
11 PM to 6 AM 0 0.0 1 1.7
Don’t know 5 13.1 2 3.4
Total 79 100 95 100
B.5.ii Electric Oven

This variable corresponds to the use of the oven on weekend.

Table B.26:  Distribution of electric oven use during weekend

Control Group Treated Group
Time of use of
. Number of Percentage Number of Percentage
electric oven .
subjects (%) subjects (%)

6 AM to 9 AM 1 2.6 2 3.4

9 AM to Noon 10 26.3 15 25.4

Noon to 3 PM 2 5.3 1 1.7

161



3 PM to 6 PM 5 13.2 15 25.4
6 PM to 8 PM 9 23.7 10 16.9
8 PM to 11 PM 6 15.8 13 22.0
11 PM to 6 AM 0 0 1 1.7
Don’t know 5 13.2 2 3.4
Total 79 100 95 100
B.5.iii Dishwasher

This variable corresponds to dishwasher use on weekends.

Table B.27:  Distribution of dishwasher use on weekends
Control Group Treated Group
Time of use of
Number of Percentage Number of Percentage
dishwasher
subjects (%) subjects (%)
6 AM to 9 AM 1 1.3 4 4.2
9 AM to Noon 10 1.3 14 14.7
Noon to 3 PM 13 17.3 16 16.8
3 PM to 6 PM 12 16.0 84
6 PM to 8 PM 5 6.7 6.3
8 PM to 11 PM 24 32.0 31 32.6
11 PM to 6 AM 10 13.0 11 11.6
Don’t know 0 0 5 5.3
Total 79 100 95 100
B.5.iv Washing Machine

This variable refers to the use of the washing machine on weekend.

Table B.28:  Distribution of washing machine use on weekend
Time of use of Control Group Treated Group
washing Number of Percentage Number of Percentage
machine subjects (%) subjects (%)
6AMto9AM | 6 6.1 6 5.3
9 AM to Noon 34 34.7 49 43.0
Noon to 3 PM 16 16.3 14 12.3
3 PM to 6 PM 17 17.3 16 14.0
6 PM to 8 PM 9.2 11 9.6
8 PM to 11 PM 9.2 10 8.8
11 PM to 6 AM 3.1 6 5.3
Don’t know 4.1 2 1.8
Total 79 100 95 100
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B.5.v

Cloth Dryer

This variable refers to the use of the cloth dryer on weekend.

Table B.29:  Distribution of cloth dryer use on weekend
Control Group Treated Group
Time of use of
Number of Percentage Number of Percentage
cloth dryer . .
subjects (%) subjects (%)
6 AM to 9 AM 0 0 2 8.0
9 AM to Noon 3 16.0 6 24.0
Noon to 3 PM 2 11.0 5 20.0
3 PM to 6 PM 4 22.0 1 4.0
6 PM to 8 PM 3 16.0 4 16.0
8 PM to 11 PM 4 22.0 4 16.0
11 PM to 6 AM 0 0 2 8.0
Don’t know 2 11.0 1 4.0
Total 79 100 95 100
B.5.vi Electric hotplates

This variable refers to the use of the induction plates on weekend.

Table B.30:  Distribution of induction plates use on weekend
Control Group Treated Group
Time of use of
Number of Percentage Number of Percentage
hotplate . .
subjects (%) subjects (%)
6 AM to 9 AM 3 4.6 8 7.3
9 AM to Noon 11 16.9 21 19.1
Noon to 3 PM 18 27.7 26 23.6
3 PM to 6 PM 3 4.6 4 3.6
6 PM to 8 PM 24 36.9 37 33.6
8 PM to 11 PM 6 9.2 14 12.7
11 PM to 6 AM 0 0 0 0
Don’t know 0] 0 0 0]
Total 79 100 95 100
B.5.vii Radiator

This variable refers to the use of the electric radiator for space heating on weekdays.
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Table B.31:

Distribution of electric radiator use on weekdays

. Control Group Treated Group
Time of use of
. . Number of | Percentage Number of | Percentage

electric radiator ] .

subjects (%) subjects (%)
6 AM to 9 AM 4 20.0 4 17.4
9 AM to Noon 2 10.0 7 30.4
Noon to 3 PM o 0 0 (0]
3 PM to 6 PM 1 5.0 1 4.3
6 PM to 8 PM 11 55.0 8 34.8
8 PM to 11 PM 2 10.0 1 4.3
11 PM to 6 AM o o (¢} o
Don’t know 0 0 2 8.7
Total 79 100 95 100
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ANNEXC

C.1 The results of OLS regression for all green alerts

OLS Regression Results

Dep. Variable: np.log(green period energy) R-squared: 0.681
Model: OLS Adj. R-sguared: 0.680
Method: Least Squares F-statistic: 637.3
Date: Fri, 10 Dec 2021 Prob (F-statistic): 1.41e-221
Time: 10:34:13 Log-Likelihood: -718.09
No. Observations: 899 ATIC: 1444.
Df Residuals: 895 BIC: 1463.
Df Model: 3
Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
Intercept -4.8623 0.310 -15.695 0.000 -5.470 -4.254
C(sms received) [T.True] 0.1117 0.037 3.025 0.003 0.039 0.184
np.log(day_energy) 1.1231 0.026 43.450 0.000 1.072 1.174
temperature 0.0231 0.009 2.565 0.010 0.005 0.041
Omnibus: 7.496 Durbin-Watson: 2.013
Prob (Omnibus) : 0.024 Jarque-Bera (JB): 9.533
Skew: -0.088 Prob (JB) : 0.00851
Kurtosis: 3.472 Cond. No. 400.
Warnings:

[1] Standard Errors

assume that the covariance matrix of the errors is correctly specified.
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C.2 The results of OLS regression for green alerts of

session 1

OLS Regression Results

Dep. Variable: np.log(green _period energy) R-squared: 0.653
Model: OLS Adj. R-squared: 0.651
Method: Least Squares F-statistic: 381.6
Date: Fri, 10 Dec 2021 Prob (F-statistic): 2.53e-139
Time: 12:14:32 Log-Likelihood: -496.99
No. Observations: 612 AIC: 1002.
Df Residuals: 608 BIC: 1020.
Df Model: 3
Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
Intercept -4.8115 0.389 -12.381 0.000 -5.575 -4.048
C(sms received) [T.True] 0.1149 0.044 2.591 0.010 0.028 0.202
np.log(day energy) 1.1113 0.033 33.520 0.000 1.046 1.176
temperature 0.0259 0.011 2.296 0.022 0.004 0.048
Omnibus: 4.247 Durbin-Watson: 2.020
Prob (Omnibus) : 0.120 Jarque-Bera (JB): 5.207
Skew: -0.010 Prob (JB) : 0.0740
Kurtosis: 3.451 Cond. No. 399.
Notes:

[1] Standard Errors assume that the covariance matrix of the errors

is correctly specified.
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C.3 The results of OLS regression for green

session 2

OLS Regression Results

alerts of

Dep. Variable: np.log(green period energy) R-squared: 0.707
Model: oLS Adj. R-squared: 0.704
Method: Least Squares F-statistic: 185.0
Date: Fri, 10 Dec 2021 Prob (F-statistic): 1.47e-41
Time: 12:22:42 Log-Likelihood: -125.87
No. Observations: 156 ATC: 257.7
Df Residuals: 153 BIC: 266.9
Df Model: 2
Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
Intercept -0.0101 0.001 -7.853 0.000 -0.013 -0.008
C(sms_received)[T.True] 0.0709 0.088 0.809 0.420 -0.102 0.244
np.log(day energy) 1.1296 0.059 19.196 0.000 1.013 1.246
temperature -0.2103 0.027 -7.853 0.000 -0.263 -0.157
Omnibus: 0.050 Durbin-Watson: 1.882
Prob (Omnibus) : 0.975 Jarque-Bera (JB): 0.015
Skew: 0.020 Prob (JB) : 0.993
Kurtosis: 2.975 Cond. No. 8.6letl6
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 1.11e-29.
strong multicollinearity problems or that the

This

might indicate that there are
design matrix is singular.
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C.4 The results of OLS regression for all orange alerts

OLS Regression Results

Dep. Variable: np.log(orange period energy) R-squared: 0.726
Model : oLS Adj. R-squared: 0.726
Method: Least Squares F-statistic: 3035.
Date: Fri, 10 Dec 2021 Prob (F-statistic): 0.00
Time: 10:40:31 Log-Likelihood: -2639.3
No. Observations: 3440 AIC: 5287.
Df Residuals: 3436 BIC: 5311.
Df Model: 3
Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
Intercept -2.5978 0.102 -25.359 0.000 -2.799 -2.397
C(sms_ received) [T.True] -0.1821 0.018 -10.237 0.000 -0.217 -0.147
np.log(day energy) 0.9840 0.010 94.256 0.000 0.964 1.004
temperature -0.0073 0.002 -3.381 0.001 -0.012 -0.003
Omnibus: 147.318 Durbin-Watson: 1.995
Prob (Omnibus) : 0.000 Jarque-Bera (JB): 270.028
Skew: -0.331 Prob (JB) : 2.31e-59
Kurtosis: 4.202 Cond. No. 125.
Warnings:

[1] Standard Errors assume

that the covariance matrix of the errors is correctly specified.
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C.5 The results of OLS regression for orange alerts of

session 1

OLS Regression Results

Dep. Variable: np.log(orange_period_energy) R-squared: 0.704
Model: OLS Adj. R-squared: 0.704
Method: Least Squares F-statistic: 1195.
Date: Fri, 10 Dec 2021 Prob (F-statistic): 0.00
Time: 15:29:24 Log-Likelihood: -1248.1
No. Observations: 1508 ATC: 2504.
Df Residuals: 1504 BIC: 2525.
Df Model: 3
Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
Intercept -2.6969 0.163 -16.538 0.000 -3.017 -2.377
C(sms received) [T.True] -0.22778 0.029 -7.979 0.000 -0.284 -0.172
np.log(day_energy) 0.9917 0.017 59.171 0.000 0.959 1.025
temperature -0.0046 0.003 -1.491 0.136 -0.011 0.001
Omnibus: 48.030 Durbin-Watson: 2.034
Prob (Omnibus) : 0.000 Jarque-Bera (JB): 80.152
Skew: -0.260 Prob (JB) : 3.94e-18
Kurtosis: 3.996 Cond. No. 133.
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
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C.6 The results of OLS regression for orange alerts of

session 2

OLS Regression Results

Dep. Variable: np.log(orange period energy) R-squared: 0.741
Model: OLS Adj. R-squared: 0.740
Method: Least Squares F-statistic: 1837.
Date: Fri, 10 Dec 2021 Prob (F-statistic): 0.00
Time: 15:36:17 Log-Likelihood: -1370.6
No. Observations: 1932 AIC: 2749.
Df Residuals: 1928 BIC: 2771.
Df Model: 3
Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
Intercept -2.4976 0.130 -19.192 0.000 -2.753 —-2.242
C(sms received) [T.True] -0.1468 0.022 -6.547 0.000 -0.191 -0.103
np.log(day energy) 0.9737 0.013 73.659 0.000 0.948 1.000
temperature -0.0047 0.003 -1.341 0.180 -0.012 0.002
Omnibus: 99.792 Durbin-Watson: 1.976
Prob (Omnibus) : 0.000 Jarque-Bera (JB): 192.853
Skew: -0.367 Prob (JB) : 1.33e-42
Kurtosis: 4.363 Cond. No. 120.
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
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ANNEXD

D.1 The Mann-Whitney U Test for green alert days of

both sessions using random forest (sequence to

sequence) reference load curve in place of control

group
Reference Load .
Treated Group Mann-Whitney U Test
Curve
Null
Sr. Mr -
Alert Date pP- hypo-
No . ur
Obs T or Obs ur or Stat | valu thesis
e retaine
d
Green Session 1
1 27-07-2020 0.74 0.7 71 0.99 1.21 2374 0.28 Yes -0.25 0.74
2 25-08-2020 0.79 0.56 34 0.81 0.64 143 0.6 Yes -0.02 0.79
3 14-09-2020 0.71 0.82 88 0.79 0.83 3579 0.41 Yes -0.08 0.71
4 17-09-2020 0.71 0.6 88 0.77 0.68 3797 0.41 Yes -0.06 0.71
5 22-09-2020 0.7 0.57 88 0.79 0.96 3968 0.61 Yes -0.09 0.7
Green Session 2
6 14-06-2021 85 0.73 0.63 | 85 1.01 1 3299 0.16 Yes -0.28
06-09-2021 - - - - - - - - - -
Aggregated Result
0.6 930
Aggregated 304
423 0.72 7 454 0.86 0.93 0 0.21 Yes -0.14

D.2 The Mann-Whitney U Test for orange alert days of

both sessions random forest (sequence to sequence)

reference load curve in place of control group

Reference Load

Treated Group Mann-Whitney U Test
Curve
Null
Sr. Hr -
Alert Date P- hypothe
No Ob . ur
e Or Obs ur or Stat | valu sis
S
e retaine
d
Orange Session 1
1 | 14-11-2019 o1 1.63 1.99 91 1.32 2.41 5089 |1 Yes 0.31
2 | 20-12-2019 90 1.09 0.82 | 90 0.92 0.74 4615 | 0.95 | Yes 0.17
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3 | 20-01-2020 | 92 1.32 1.28 92 1.3 1.57 4742 | 0.92 | Yes 0.02
4 | 06-02-2020 | 91 1.42 1.29 91 111 1.31 5194 |1 Yes 0.31
5 19-02-2020 91 1.27 1.17 91 1.19 1.29 4656 0.93 Yes 0.08
6 27-02-2020 91 1.18 1.16 91 1.23 1.32 4356 0.73 Yes -0.05
7 | 02-03-2020 | 90 1.15 1.06 90 0.93 | 107 4870 | 0.99 | Yes 0.22
8 04-03-2020 91 1.2 1.21 91 0.98 1.06 4844 | 0.98 Yes 0.22
9 09-03-2020 90 0.97 1 90 1.26 1.91 3883 | 0.32 Yes -0.29
Orange Session 2
10 | 30-11-2020 88 1.43 1.03 88 1.21 0.9 4427 0.95 Yes 0.22
11 | 02-12-2020 89 1.48 1.26 89 1.4 1.06 4092 | 0.65 Yes 0.08
12 | 04-12-2020 89 1.35 1.1 89 1.25 1.15 4298 | 0.84 Yes 0.1
13 | 07-12-2020 89 1.39 1.13 89 1.4 1.43 4242 | 0.79 | Yes -0.01
14 | 09-12-2020 89 1.33 1.03 89 1.48 1.32 3913 0.45 Yes -0.15
15 | 18-12-2020 88 1.47 1.35 88 1.19 1.05 4503 0.97 Yes 0.28
16 | 04-01-2021 88 1.49 1.51 88 1.57 1.79 3954 0.6 Yes -0.08
17 | 06-01-2021 88 1.62 1.58 88 1.61 2.11 4251 0.87 Yes 0.01
18 | 08-01-2021 88 1.61 1.74 88 1.4 1.97 4563 0.98 Yes 0.21
19 | 11-01-2021 88 1.54 1.88 88 1.75 1.92 3653 0.26 Yes -0.21
20 | 26-01-2021 87 1.34 1.19 87 1.37 1.23 3830 | 0.56 Yes -0.03
21 | 11-02-2021 87 1.35 1.41 87 1.23 1.44 4116 0.84 Yes 0.12
Aggregated Result
Aggregated 187 19299
5 1.36 1.34 1875 1.29 1.51 17 1 Yes 0.07
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ANNEX E

E.1 The split of IRISE households data with respect to

each appliance

Sr.

Appliance Name

Households

Training subset

Validation

subset

Test

subset

o1

Hot plate

908, 916, 946, 947, 967, 974, 975, 980

982

983

02

Electric Heating

909, 914, 921, 928, 934, 936, 938, 944, 945, 953,
954, 959, 967, 968, 969, 971, 974, 975, 977, 978,
982

983

990

03

Electric Oven

908, 916, 919, 922, 926, 927, 931, 935, 937, 939,
943, 946, 947, 949, 952, 955, 956, 966, 970, 973,
974, 978, 979, 980, 982

996

997

04

Electric Cooker

993, 904, 906, 909, 910, 911, 912, 914, 915, 917,
918, 921, 923, 924, 928, 932, 933, 938, 941, 945,
948, 951, 964, 968, 972, 984, 985, 986

987

902

05

Clothes Drier

901, 902, 904, 907, 908, 914, 915, 927, 928, 930,
931, 934, 936, 938, 939, 940, 943, 944, 946, 947,
952, 959, 960, 962, 965, 966, 970, 972, 978, 987,
989

992

996

06

Dishwasher

901, 903, 907, 908, 910, 914, 916, 917, 920, 922,
925, 926, 928, 930, 931, 933, 936, 937, 938, 939,
940, 941, 943, 944, 946, 947, 948, 949, 950, 952,
953, 961, 964, 966, 969, 970, 972, 974, 979, 980,
0981, 983, 984, 985, 989, 991, 993

996

997

07

Microwave Oven

901, 902, 905, 906, 907, 908, 909, 910, 913, 914,
915, 916, 917, 918, 919, 920, 921, 922, 925, 927,
928, 929, 931, 932, 933, 934, 937, 939, 941, 942,
943, 945, 946, 947, 949, 950, 951, 952, 956, 957,
958, 959, 960, 962, 964, 967, 969, 971, 973, 975,
976, 977,979, 980, 981, 982, 983, 984, 985, 986,
987, 988, 989, 990, 991, 992, 993, 994, 995

996

997

08

901, 902, 905, 906, 908, 909, 910, 911, 912, 913,
914, 915, 916, 917, 918, 920, 921, 922, 923, 924,
927, 928, 929, 930, 932, 933, 934, 935, 936, 937,
938, 940, 941, 942, 945, 947, 949, 950, 952, 953,
954, 955, 956, 957, 958, 959, 960, 962, 963, 964,
966, 967, 968, 969, 970, 971, 972, 973, 974, 975,
976, 977, 978, 979, 980, 981, 982, 983, 984, 985,
986, 987, 988, 989, 990, 992, 993, 994, 995

996

997

09

Washing Machine

900, 901, 902, 903, 904, 905, 906, 907, 908,
909, 910, 911, 912, 913, 914, 915, 916, 917, 918,

996

997
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919, 920, 921, 923, 924, 925, 926, 927, 928, 930,
931, 932, 933, 934, 935, 936, 937, 938, 939, 940,
941, 942, 943, 944, 945, 946, 947, 949, 950, 951,
952, 953, 954, 955, 956, 957, 958, 959, 960, 961,
962, 963, 964, 965, 966, 967, 971, 972, 973, 975,
976, 978, 979, 980, 981, 984, 985, 986, 987, 988,
989, 990, 991, 993, 994, 995

E.2 The length of data subsets for training the

predictive model of each appliance

Data sampled at 10 minutes | Data sampled at 30 minutes
Sr. No. Appliance Training Validation Training Validation
Loss Loss Loss Loss
o1 Hotplate 0.05 0.05 0.07 0.06
Electric 0.14 0.02 0.09 0.02
02 Heating
03 Electric Oven | 0.08 0.06 0.12 0.11
04 Electric Cooker | 0.11 0.12 0.15 0.16
05 Clothes drier | 0.06 0.02 0.09 0.22
06 Dishwasher 0.03 0.02 0.07 0.03
07 Microwave 0.06 0.03 0.09 0.04
08 TV 0.47 0.37 0.46 0.37
Washing 0.13 0.12 0.10 0.09
09 Machine
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ANNEXF

F.1 Test result for hotplate on IRISE house 993 at

sampling rate of 30 minutes

—— aggregate
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F.2 Test result for electric heating on IRISE house

990 at sampling rate of 30 minutes
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F.3 Testresult for electric oven on IRISE house 997 at

sampling rate of 30 minutes
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F.4 Testresult for electric cooker on IRISE house 902

at sampling rate of 30 minutes
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F.5 Test result for clothes drier on IRISE house 996

at sampling rate of 30 minutes
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F.6 Test result for dishwasher on IRISE house 997 at

sampling rate of 30 minutes
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F.7 Test result for microwave oven on IRISE house

997 at sampling rate of 30 minutes
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F.8 Test result for tv on IRISE house 997 at sampling

rate of 30 minutes
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F.9 Test result for washing machine on IRISE house

997 at sampling rate of 30 minutes
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RESUME

La transition énergétique vers les sources d'énergie renouvelables est essentielle
pour atténuer le changement climatique. Mais, 'énergie renouvelable est intermittente en
nature, ce qui peut entralner a l'avenir une congestion du réseau lors des pics de
consommation. Par conséquent, la flexibilité d'énergie est inévitable en complément de la
gestion de l'offre et du stockage de 1'énergie. Le secteur résidentiel est le plus gros
consommateur d'énergie et il est donc essentiel de mettre en ceuvre la flexibilité d'énergie.
En complément des approches existantes, nous présentons dans cette these une flexibilité
"indirecte" non monétaire par la mise en oceuvre d'une expérience de science
comportementale avec 175 ménages francais. L'ensemble des "nudges" utilisés dans cette
expérience n'oblige pas les participants a mettre en ceuvre la flexibilité énergétique pour des

raisons de gain monétaire ou d'aversion aux pertes.

Les alertes sont générées par des algorithmes prédictifs et envoyées par SMS a un
groupe de ménages dans le but d'effectuer soit un transfert de charge, soit une effacement
d'énergie. Les alertes sont complétées par des suggestions sur l'utilisation (ou non)
d'appareils engagés pour mettre en ceuvre la flexibilité d'énergie. Apres chaque alerte, le
groupe recoit un retour graphique dans lequel la courbe de charge mesurée par le compteur
intelligent LINKY est superposée a une courbe de référence théorique propre a chaque
ménage. En comparaison avec un groupe de contrdle, nous pouvons quantifier 1'impact de
ces signaux de "nudge" sur la consommation d'énergie du groupe traité. Enfin, un
algorithme de désagrégation énergétique est présenté qui nous permettra de détecter les
équipements utilisés lors de la flexibilité et ainsi faire une analyse de I'engagement des

ménages a rechercher des appareils potentiels pour la flexibilité énergétique.
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