
HAL Id: tel-03766448
https://theses.hal.science/tel-03766448

Submitted on 1 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybridizing metaheuristics with machine learning for
combinatorial optimization : a taxonomy and learning to

select operators
Maryam Karimi Mamaghan

To cite this version:
Maryam Karimi Mamaghan. Hybridizing metaheuristics with machine learning for combinatorial op-
timization : a taxonomy and learning to select operators. Operations Research [math.OC]. Ecole na-
tionale supérieure Mines-Télécom Atlantique, 2022. English. �NNT : 2022IMTA0297�. �tel-03766448�

https://theses.hal.science/tel-03766448
https://hal.archives-ouvertes.fr


THESE DE DOCTORAT DE 

 
 

 

L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE 

BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE 

 
 

ECOLE DOCTORALE N° 601  
Mathématiques et Sciences et Technologies  
de l'Information et de la Communication  
Spécialité : Informatique 
 

Hybridizing Metaheuristics with Machine Learning for Combinatorial 
Optimization: A Taxonomy and Learning to Select Operators 
 
 
Thèse présentée et soutenue à Brest, le 20 juillet 2022 
Unité de recherche : Lab-STICC/DECIDE 
Thèse N° : 2022IMTA0297 

 

Par 

Maryam KARIMI MAMAGHAN 

 

 

 

 

Rapporteurs avant soutenance : 
 
Kenneth SORRENSEN  Professeur, University of Antwerp, Anvers, Belgique 
Jin-Kao HAO   Professeur, Université d'Angers, Angers, France 

 
Composition du Jury :  
 

Président : Olga BATTAIA    Professeur, KEDGE Business School, Bordeaux, France 
Examinateurs :  Kenneth SORRENSEN   Professeur, University of Antwerp, Anvers, Belgique 

Jin-Kao HAO    Professeur, Université d'Angers, Angers, France 
Sébastien VEREL   Professeur, Université du Littoral Côté d'Opale, Dunkerque, France 
Axel PARMENTIER   Maître de Conférences, École des Ponts ParisTech, Paris, France 
Bastien PASDELOUP   Maître de Conférences, IMT Atlantique, Brest, France 

Dir. de thèse : Patrick MEYER    Professeur, IMT Atlantique, Brest, France 
 

Invité : 
Mehrdad MOHAMMADI       Maître de Conférences, IMT Atlantique, Brest, France  



2



3 Acknowledgments

Acknowledgments

I would like to first thank my supervisory team, Patrick Meyer, Mehrdad Mohammadi,
and Bastien Pasdeloup for their support during these three years. It was a great expe-
rience working with them.

I would like to express my deepest gratitude to my jury members, Kenneth Sorrensen,
Jin-kao Hao, Olga Battaia, Sebastien Verel, and Axel Parmentier for their evaluation
and valuable remarks on my work and their presence in my PhD defense.

I am grateful to Ender Ozcan, who invited me for a research visit at the University of
Nottingham, for his support and sharing knowledge throughout our collaboration, and
all the members of COL lab at the University of Nottingham who made good moments
for me during my stay at Nottingham. It was really nice to meet them all and have
interesting discussion with most of them.

I am also thankful to Nadia Lahrichi and Andrea Lodi who invited me for a research
visit at Polytechnique Montreal for their valuable remarks and exchange during our
collaboration.

I would like to thank Ecole des Docteurs Bretagne Loire, PÃťle Doctoral de Rennes,
and Ecole Doctoral MathSTIC, and IMT ATlantique Bretagne-Pays de la Loire for their
financial support that made it possible for me to have two research visit during my PhD.
IâĂŹd like to acknowledge my colleagues in DECIDE team and the Lab-STICC research
lab with whom I had nice discussions through the monthly seminars of the team.

Words cannot express my gratitude to my family for their unconditional support during
pursuing my PhD.

I could not have undertaken this journey without the support and love of my dearest
husband, who shared this entire journey with me with all its ups and downs. Thank you
for being an inspiration to me.



Acknowledgments 4



5 Contents

Contents

Acknowledgments 3

Résumé 15

Abstract 25

1 Introduction 27
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2 Contribution of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.2.1 ML-into-MH: A taxonomy . . . . . . . . . . . . . . . . . . . . . . . 30
1.2.2 ML-into-MH: Learning to select operators . . . . . . . . . . . . . . 31

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Theoretical Background 33
2.1 Combinatorial optimization problems . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Traveling salesman problem . . . . . . . . . . . . . . . . . . . . . . 34
2.1.2 Permutation flowshop scheduling problem . . . . . . . . . . . . . . 35

2.2 Meta-heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Supervised learning algorithms . . . . . . . . . . . . . . . . . . . . 39
2.3.2 Unsupervised learning algorithms . . . . . . . . . . . . . . . . . . . 40
2.3.3 Semi-supervised learning . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.4 Reinforcement learning algorithms . . . . . . . . . . . . . . . . . . 41

2.4 Adaptive Operator Selection & Learning . . . . . . . . . . . . . . . . . . . 43

3 Integration of Machine Learning into Meta-heuristics: A Taxonomy 45
3.1 Taxonomy and review methodology . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.2 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.3 Search methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Algorithm selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Literature classification & analysis . . . . . . . . . . . . . . . . . . 52
3.2.2 Discussion & future research directions . . . . . . . . . . . . . . . . 54

3.2.2.1 Guideline & requirements . . . . . . . . . . . . . . . . . . 54
3.2.2.2 Challenges & future research directions . . . . . . . . . . 54

3.3 Fitness evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1 Literature classification & analysis . . . . . . . . . . . . . . . . . . 57
3.3.2 Discussion & future research directions . . . . . . . . . . . . . . . . 58



Contents 6

3.4 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Literature classification & analysis . . . . . . . . . . . . . . . . . . 60
3.4.2 Discussion & future research directions . . . . . . . . . . . . . . . . 61

3.5 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.1 Operator selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1.1 Literature classification & analysis . . . . . . . . . . . . . 66
3.5.1.2 Discussion & future research directions . . . . . . . . . . 69

3.5.2 Learnable evolution model . . . . . . . . . . . . . . . . . . . . . . . 71
3.5.2.1 Literature classification & analysis . . . . . . . . . . . . . 72
3.5.2.2 Discussion & future research directions . . . . . . . . . . 73

3.5.3 Neighbor generation . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5.3.1 Literature classification & analysis . . . . . . . . . . . . . 74
3.5.3.2 Discussion & future research directions . . . . . . . . . . 75

3.6 Parameter setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6.1 Literature classification & analysis . . . . . . . . . . . . . . . . . . 77
3.6.2 Discussion & future research directions . . . . . . . . . . . . . . . . 78

3.7 Cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.7.1 Literature classification & analysis . . . . . . . . . . . . . . . . . . 80
3.7.2 Discussion & future research directions . . . . . . . . . . . . . . . . 82

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Q-learning for Operator Selection: A General Framework 85
4.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Application to TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.1 Set of search operators . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.2 QILS framework to select local search operators . . . . . . . . . . 93
4.2.3 QILS framework to select perturbation operators . . . . . . . . . . 95

4.3 Application to PFSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.1 Set of search operators . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.2 QILS framework to select perturbation operators . . . . . . . . . . 97

4.4 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.2 Benchmark comparison . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.3 Performance comparison metrics . . . . . . . . . . . . . . . . . . . 101
4.4.4 Statistical test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.5 Parameters tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5.1 Application of QILS to TSP . . . . . . . . . . . . . . . . . . . . . . 104
4.5.2 Application of the QILS framework to PFSP . . . . . . . . . . . . 107

4.5.2.1 Phase 1: comparison between QILS, RILS, and IILS al-
gorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.2.2 Phase 2: comparison of QILS with state-of-the-art algo-
rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.2.3 Adaptiveness of operators to the problem instances . . . 122
4.5.2.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . 124

4.5.3 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Conclusions and Future Research 131

Publications 139



7 Contents

A Appendices 141
A.1 List of COPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.2 Best-known solutions for PFSP . . . . . . . . . . . . . . . . . . . . . . . . 143

Bibliography 147



Contents 8



9 List of Figures

List of Figures

1 Cadre QILS proposé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Iterated local search algorithm . . . . . . . . . . . . . . . . . . . . . . . . 38
3 A generic scheme of RL algorithm . . . . . . . . . . . . . . . . . . . . . . 41
4 AOS with an online learning . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Taxonomy on the use of ML in MHs (ML-in-MH) . . . . . . . . . . . . . . 48
6 Number of papers per year and per each type of integration of ML tech-

niques in MHs for solving COPs . . . . . . . . . . . . . . . . . . . . . . . 50
7 Procedure of ASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8 Exploration vs. Exploitation of selection methods . . . . . . . . . . . . . . 68
9 Cooperation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

10 Flowchart of the proposed QILS framework . . . . . . . . . . . . . . . . . 87
11 Independent improving moves in the best-independent-moves 2-opt operator 91
12 Performance comparison of IILSd based on ARPD (%) for Taillard dataset103
13 Boxplot of QILS, RILS and IILSd based on RPD (%) for each instance set

of Taillard dataset. The average performance of each algorithm is shown
using red circles, and the median value is shown on the right side of each
boxplot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

14 Boxplot of QILS, RILS and IILSd based on CPU time (s) for each instance
set of Taillard dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

15 Convergence rate of QILS, RILS and IILSd for each instance set of Taillard
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

16 Boxplot of QILS, RILS and IILSd based on normalized objective function
value over all instances of each dataset . . . . . . . . . . . . . . . . . . . . 113

17 Boxplot of QILS, RILS and IILSd based on normalized CPU time (s) over
all instances of each dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 113

18 Boxplot of QILS, RILS, and benchmark algorithms based on RPD (%)
for scale t = 120 for each instance set of Taillard dataset . . . . . . . . . . 121

19 Boxplot of QILS and benchmark IGs based on normalized objective value
over all instances of each dataset . . . . . . . . . . . . . . . . . . . . . . . 122

20 Relative improvement index for each perturbation operator in certain in-
stance sets of Taillard dataset . . . . . . . . . . . . . . . . . . . . . . . . . 123

21 Application of each perturbation operator at each step of the search pro-
cess in certain instances of Taillard dataset . . . . . . . . . . . . . . . . . 124

22 Sensitivity of QILS to its parameters. Values found in Table 13 are high-
lighted in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

23 Performance comparison of QILS and RILS based on ARPD (%) for dif-
ferent sizes of the action set on Taillard dataset . . . . . . . . . . . . . . . 126



List of Figures 10



11 List of Tables

List of Tables

1 Number of Hamiltonian tours for TSP . . . . . . . . . . . . . . . . . . . . 28

2 Classification of papers studying ASP . . . . . . . . . . . . . . . . . . . . 52
3 Classification of papers studying fitness evaluation . . . . . . . . . . . . . 58
4 Classification of papers studying initialization . . . . . . . . . . . . . . . . 61
5 Credit assignment methods . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6 Selection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7 Move acceptance methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8 Classification of papers studying AOS . . . . . . . . . . . . . . . . . . . . 67
9 Classification of papers studying LEM . . . . . . . . . . . . . . . . . . . . 73
10 Classification of papers studying neighbor generation . . . . . . . . . . . . 75
11 Classification of papers studying parameter setting . . . . . . . . . . . . . 77
12 Classification of papers studying cooperation . . . . . . . . . . . . . . . . 81

13 Parameters of QILS, their corresponding levels and tuned values . . . . . 103
14 Performance comparison of QILS for local search operator selection with

the corresponding RILS, and IILS in TSP application. The best val-
ues for each set of instances among different algorithms have been high-
lighted in gray. Furthermore, bold values indicate results that are not
statistically distinguishable from results of the QILS algorithm. The
(min, mean, max) of statistical significant p-values with 95% of confidence
interval is equal to (0, 0.003, 0.072). . . . . . . . . . . . . . . . . . . . . . . 105

15 Performance comparison of QILS for perturbation operator selection with
the corresponding RILS, and IILS for TSP application. The best val-
ues for each set of instances among different algorithms have been high-
lighted in gray. Furthermore, bold values indicate results that are not
statistically distinguishable from results of the QILS algorithm. The
(min, mean, max) of statistical significant p-values with 95% of confidence
interval is equal to (0, 0.001, 0.048). . . . . . . . . . . . . . . . . . . . . . . 106

16 Performance comparison of QILS, RILS and IILSd on Taillard dataset.
The best values for each set of instances among different algorithms have
been highlighted in gray. Furthermore, bold values indicate results that
are not statistically distinguishable from results of the QILS algorithm.
The (min, mean, max) of statistical significant p-values with 95% of con-
fidence interval is equal to (0, 0.004, 0.041). . . . . . . . . . . . . . . . . . 108

17 Performance comparison of QILS, RILS and IILSd on VRF-hard-small
dataset. The (min, mean, max) of statistical significant p-values with
95% of confidence interval is equal to (0, 0.005, 0.040). . . . . . . . . . . . 108

18 Performance comparison of QILS, RILS and IILSd on VRF-hard-large
dataset. The (min, mean, max) of statistical significant p-values with
95% of confidence interval is equal to (0, 0.001, 0.037). . . . . . . . . . . . 109



List of Tables 12

19 ARPD of QILS, RILS, and IILSd for different datasets . . . . . . . . . . . 112
20 Results of comparing QILS with RILS and benchmark algorithms for scale

t = 60 on Taillard dataset. The (min, mean, max) of statistical significant
p-values with 95% of confidence interval is equal to (0, 0.004, 0.047). . . . 115

21 Results of comparing QILS with RILS and benchmark algorithms for scale
t = 90 on Taillard dataset. The (min, mean, max) of statistical significant
p-values with 95% of confidence interval is equal to (0, 0.003, 0.019). . . . 115

22 Results of comparing QILS with RILS and benchmark algorithms for scale
t = 120 on Taillard dataset. The (min, mean, max) of statistical signifi-
cant p-values with 95% of confidence interval is equal to (0, 0.002, 0.035). . 116

23 Results of comparing QILS with RILS and benchmark algorithms for
scale t = 60 on VRF-hard-small dataset. The (min, mean, max) of sta-
tistical significant p-values with 95% of confidence interval is equal to
(0, 0.017, 0.048). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

24 Results of comparing QILS with RILS and benchmark algorithms for
scale t = 90 on VRF-hard-small dataset. The (min, mean, max) of sta-
tistical significant p-values with 95% of confidence interval is equal to
(0, 0.011, 0.042). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

25 Results of comparing QILS with RILS and benchmark algorithms for
scale t = 120 on VRF-hard-small dataset. The (min, mean, max) of
statistical significant p-values with 95% of confidence interval is equal to
(0, 0.008, 0.049). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

26 Results of comparing QILS with RILS and algorithms for scale t = 60 on
VRF-hard-large dataset. The (min, mean, max) of statistical significant
p-values with 95% of confidence interval is equal to (0, 0.002, 0.047). . . . 118

27 Results of comparing QILS with RILS and benchmark algorithms for
scale t = 90 on VRF-hard-large dataset. The (min, mean, max) of sta-
tistical significant p-values with 95% of confidence interval is equal to
(0, 0.002, 0.049). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

28 Results of comparing QILS with RILS and benchmark algorithms for
scale t = 120 on VRF-hard-large dataset. The (min, mean, max) of sta-
tistical significant p-values with 95% of confidence interval is equal to
(0, 0.002, 0.049). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

29 ARPD of QILS, RILS, and benchmark algorithms for different datasets . 122
30 Results of comparing QILS with the proposed local/global reward mech-

anism to QILS with 0/1 reward mechanism for scale t = 120 on Taillard
dataset. The (min, mean, max) of statistical significant p-values with
95% of confidence interval is equal to (0, 0.013, 0.044). . . . . . . . . . . . 126

31 Performance comparison of QILS and RILS for different actions on Tail-
lard dataset. The (min, mean, max) of statistical significant p-values with
95% of confidence interval is equal to (0, 0.004, 0.042). . . . . . . . . . . . 127

32 Complexity of QILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.1 Exhaustive list and the abbreviation (Abv.) of the COPs studied by the
articles reviewed in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.2 Best-known solutions (C∗
max) vs. the best Cmax found by QILS for each

instance over 30 runs for time scale t = 120 of Taillard dataset. LB and
UB stand for lower bound and upper bound, respectively. . . . . . . . . . 143

A.3 Best-known solutions (C∗
max) vs. the best Cmax found by QILS for each

instance over 30 runs for time scale t = 120 of VRF-hard-small dataset.
LB and UB stand for lower bound and upper bound, respectively. . . . . . 144



13 List of Tables

A.4 Best-known solutions (C∗
max) vs. the best Cmax found by QILS for each

instance over 30 runs for time scale t = 120 of VRF-hard-large dataset.
LB and UB stand for lower bound and upper bound, respectively. . . . . . 145



List of Tables 14



15 Résumé

Résumé

Les problèmes d’optimisation combinatoire (POC) sont une classe de problèmes d’opti-
misation difficiles à résoudre. Le mot combinatoire concerne la sélection, l’arrangement
ou le séquençage d’une collection d’objets. L’optimisation combinatoire est la recherche
de la meilleure sélection, disposition ou séquence par rapport à une fonction objectif
dans un espace de recherche fini. Il existe une variété de types de POC qui ont été lar-
gement étudiés par la communauté de recherche opérationnelle. Un POC classique qui a
été largement étudié dans différents domaines de recherche est le problème du voyageur
de commerce (Traveling Salesman Problem - TSP en anglais). Dans le TSP, il y a un
vendeur qui doit effectuer une tournée en visitant un ensemble de n villes exactement une
fois et en revenant au point de départ (c’est-à-dire une tournée hamiltonienne). Chaque
arc reliant deux villes i et j est associé à une distance dij et le but est de trouver le tour
hamiltonien des villes avec une distance totale minimale. Considérons un algorithme de
recherche exhaustive qui évalue tous les tours hamiltoniens possibles d’une instance de
TSP donnée et renvoie le tour avec la distance totale minimale comme la solution op-
timale. Lorsque le nombre de villes est faible (par exemple, n ≤ 6), un algorithme de
recherche exhaustif est efficace et trouve rapidement la solution optimale. Cependant,
à mesure que le nombre de villes augmente, ce qui est le cas dans les problèmes du
monde réel, il devient de plus en plus fastidieux (voire impossible à calculer) d’utiliser
un algorithme de recherche exhaustif pour trouver la solution optimale pour le TSP.

Pour être plus précis, le nombre de tours hamiltoniens possibles pour une instance de
TSP avec n villes avec une matrice de distance symétrique entre les villes vaut (n−1)!/2.
En conséquence, si le nombre de villes augmente même de petites valeurs, le nombre de
tours hamiltoniens augmente d’un ordre de (n−1)!/2. Cela implique que la complexité de
calcul d’un algorithme de recherche exhaustive est O(n!) pour résoudre une instance de
TSP de taille n. Par exemple, pour une instance de TSP de petite taille avec un nombre
n = 20 de villes, un algorithme de recherche exhaustif devrait évaluer 6, 08006E + 16
tours hamiltoniens différents. Considérant que chaque évaluation ne prend qu’une µs,
une instance de TSP avec n = 20 villes prend environ vingt mille siècles pour être résolue
de manière exhaustive.

En général, le TSP est classé comme une classe NP-difficile de problèmes d’optimisation
pour lesquels aucun algorithme de résolution connu avec une complexité polynomiale
en temps de O(Cnk) (pour certains k et C > 0) n’existe [Woe03]. Semblable au TSP,
la plupart des POC appartiennent à la classe NP-difficile des problèmes d’optimisation.
Tout problème NP-difficile peut être résolu en utilisant une recherche exhaustive. Ce-
pendant, lorsque la taille des instances augmente, le temps d’exécution d’une recherche
exhaustive devient extrêmement élevé, même pour des instances de taille relativement
petite dans le monde réel.

Les algorithmes de recherche exhaustive appartiennent à une classe générale d’algo-
rithmes appelés algorithmes exacts [LN87 ; Woe03]. Les algorithmes exacts (par exemple,
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branch-and-bound, décomposition de Benders, etc.), comme leur nom l’indique, sont
des algorithmes qui résolvent toujours un problème d’optimisation de manière optimale
[FK13]. Résoudre les instances de TSP du monde réel comprenant des milliers de villes
à l’optimalité serait très difficile et prendrait beaucoup de temps (voire impossible à
calculer).

La complexité inhérente aux POC rend nécessaire l’utilisation d’algorithmes approchés.
Les algorithmes approchés sont une classe d’algorithmes d’optimisation qui sont princi-
palement développés pour résoudre des problèmes d’optimisation NP-difficiles [GK06].
Ces algorithmes sont capables de trouver des solutions (quasi) optimales en un temps
de calcul raisonnable ; cependant, ils ne garantissent pas l’optimalité des solutions ob-
tenues. Parmi les différents algorithmes d’approchés, les algorithmes Méta-heuristiques
(MH) sont des paradigmes d’intelligence computationnelle largement utilisés pour ré-
soudre des problèmes d’optimisation complexes, en particulier (POC), s’ils sont bien
conçus et adaptés [OL96]. Compte tenu de leur capacité à trouver des solutions (quasi)
optimales pour les POC en un temps de calcul raisonnable, ils sont de bons substituts
aux algorithmes exacts [HW90 ; OL96 ; Tal09]. C’est la raison principale de la croissance
significative de l’intérêt pour la conception et l’emploi des MHs au cours des dernières
décennies.

D’un point de vue technique, les MHs sont des algorithmes d’optimisation qui organisent
et pilotent une interaction entre des procédures d’amélioration locale et des stratégies
globales afin de créer un processus de recherche itératif capable d’échapper aux optima
locaux et d’effectuer une recherche robuste d’un espace de recherche [GP10]. Au cours
d’un tel processus de recherche itératif, un nombre considérable de solutions sont géné-
rées, évaluées et évoluent jusqu’à ce qu’une solution prometteuse soit obtenue. En fait,
pendant le processus de recherche, les MHs génèrent un volume considérable de données,
y compris les bonnes (élites) ou mauvaises solutions en termes de leurs valeurs de fitness,
la séquence des opérateurs de recherche du début à la fin, les trajectoires d’évolution des
différentes solutions, les optima locaux, etc. Ces données sont potentiellement porteuses
de connaissances utiles telles que les propriétés des bonnes et mauvaises solutions, la
performance des différents opérateurs à différentes étapes du processus de recherche, la
préséance des opérateurs de recherche, etc.

Les MHs classiques n’utilisent aucune forme de connaissance cachée dans ces données
pour résoudre les POC. Cependant, au cours de la dernière décennie, un grand intérêt a
été porté à l’exploitation de ces données et à l’extraction de connaissances utiles pour la
résolution des POC. À cet égard, un nombre considérable d’études se sont penchées sur
l’utilisation de techniques d’apprentissage automatique (AA) (Machine Learning - ML en
anglais) dans la résolution de POC. D’une manière générale, l’AA est un sous-domaine
de l’intelligence artificielle qui utilise des approches algorithmiques et statistiques pour
donner aux ordinateurs la capacité d’"apprendre" à partir de données, c’est-à-dire d’amé-
liorer leurs performances dans la résolution de tâches sans être explicitement program-
més pour chacune d’entre elles. Ces systèmes améliorent leur apprentissage au fil du
temps de manière autonome, en utilisant les connaissances extraites des données et des
informations sous forme d’observations et d’interactions avec le monde réel. Les connais-
sances acquises permettent à ces systèmes de se généraliser correctement à de nouveaux
contextes.

Les techniques d’AA ont été utilisées pour résoudre les POC de deux manières ; premiè-
rement, pour résoudre directement les POC [JG10], et deuxièmement, être intégré dans
les MHs pour extraire des connaissances utiles des données générées et les injecter dans
le processus de recherche dans le but d’améliorer les performances des MHs [DLPS17].
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L’objectif principal de l’intégration d’AA dans les MHs est d’améliorer l’efficacité des
MHs en accélérant le processus de recherche par des approximations, en injectant des
connaissances dans le processus de recherche ou en trouvant de meilleures solutions
en remplaçant les connaissances et l’expérience des experts par de meilleures décisions
obtenues par des techniques d’AA. Plusieurs études ont été réalisées en utilisant diffé-
rentes techniques d’AA pour différentes tâches dans les MHs. Certaines études se sont
concentrées sur l’utilisation de techniques classiques d’AA pour des tâches convention-
nelles telles que la génération de solutions initiales ou l’approximation de la fonction de
fitness. D’autre part, il existe des études utilisant des techniques d’AA plus avancées
pour concevoir des méta-heuristiques plus sophistiquées à travers des cadres coopératifs.
Cette intégration peut en effet guider les MHs vers la prise de meilleures décisions et par
conséquent rendre les MHs plus intelligentes et améliorer leurs performances en termes
de qualité de solution, de taux de convergence et de robustesse.

Au cours de la dernière décennie, l’intégration des techniques d’AA dans les méthodes
d’optimisation, en particulier les MHs, a suscité une attention considérable et cette
attention croissante a donné lieu à de nombreux articles de recherche. Cependant, il
existe encore de nombreuses directions de recherche qui peuvent être approfondies [Tal02 ;
STÃ19 ; BLP21b].

Contributions Principales

La contribution de cette thèse au domaine de l’intégration des techniques d’AA dans
les MHs (AA-dans-MH) se situe à deux niveaux : analytique et technique. Au niveau
analytique, cette thèse fournit, pour la première fois en son genre, une revue complète
sur l’intégration AA-dans-MH qui non seulement classifie différents articles de recherche
avec différents objectifs d’intégration mais fournit également une analyse complète et
une discussion sur les détails techniques de cette intégration (par exemple, les défis,
les avantages, les inconvénients, les opportunités, etc.) Au niveau technique, nous nous
concentrons sur un objectif d’intégration particulier, où nous étudions l’intégration de
l’AA pour guider les MHs dans la sélection de l’opérateur de recherche le plus approprié
à chaque étape du processus de recherche. Ces contributions sont discutées plus en détail
dans les deux sous-sections suivantes.

AA-dans-MH : une taxonomie

À notre connaissance, il n’existe pas de revue complète sur l’intégration de l’AA dans les
MHs qui étudie également l’intégration d’un point de vue technique. [JDT06] a fourni
une brève étude sur la façon dont les techniques d’AA peuvent aider les MHs, sans
discussion détaillée sur la façon dont cette intégration se produit. Une autre étude a
été réalisée par [Zha+11] sur la façon dont les techniques d’AA peuvent améliorer les
performances des algorithmes de calcul évolutionnaire. En plus, à cet égard, [Tal16] a
étudié différentes manières d’hybridation entre différents MHs ainsi que d’hybridation
des MHs avec la programmation mathématique, la programmation par contraintes et
l’AA. Bien que l’auteur fournisse une bonne vue générale sur la façon d’hybridation des
MHs, il est moins concentré sur l’intégration AA-dans-MH.

Plus récemment, des études plus générales et plus complètes ont été réalisées par [STÃ19]
et [Tal20] sur l’intégration d’AA et MH. Cependant, [STÃ19] a fourni moins de détails
sur l’intégration AA-dans-MH par rapport à [Tal20]. Les deux Ãľtudes manquent une
discussion approfondie sur les défis de la recherche et les orientations futures de la re-
cherche pour l’intégration de l’AA dans l’optimisation. Elles n’entrent pas également
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dans les détails sur les exigences, les défis, et les possibles directions de recherche futures
sur l’utilisation des techniques d’AA dans chaque niveau d’intégration

À notre connaissance, il n’existe aucune étude dans la littérature qui examine de manière
complète et technique comment les techniques d’AA peuvent être intégrées dans les MHs
et pour quels buts spécifiques. Pour combler ce problème, et après avoir passé en revue
les tentatives faites par les communautés de l’informatique et de la recherche opéra-
tionnelle, cette thèse fournit une revue complète, pour la première fois, sur l’utilisation
des techniques d’AA dans la conception de différents éléments de MHs pour différents
objectifs, y compris sélection des algorithmes, évaluation de la fonction objective, initia-
lisation, évolution catégorisée en sélection de l’opérateur, modèle d’évolution apprenable,
et génération de voisins, paramétrage, et enfin, coopération. De manière pédagogique,
nous décrivons les concepts clés et les préliminaires de chaque mode d’intégration. De
plus, nous passons en revue les avancées récentes sur chaque sujet et classons les articles
de la littérature pour identifier les défis de la recherche. Nous proposons également une
taxonomie pour fournir une terminologie et une classification communes. Une partie im-
portante de l’étude consiste en une discussion technique sur les avantages et les limites,
les exigences et les défis de la mise en œuvre de chaque mode d’intégration. Enfin, des
directions de recherche prometteuses sont identifiées en fonction de la manière d’inté-
grer l’AA dans les MHs. Nous pensons que cette revue est indispensable non seulement
pour les non-experts dans le domaine des MHs désirant utiliser des techniques d’AA,
mais aussi pour les chercheurs seniors qui souhaitent enseigner aux étudiants juniors, en
particulier les doctorants en recherche opérationnelle et en informatique.

AA-dans-MH : apprendre à sélectionner des opérateurs

Parmi les différents objectifs de l’intégration AA-dans-MH, nous nous concentrons sur
sélection d’opérateurs dans cette thèse. La raison est le fait que l’utilisation des tech-
niques d’AA pour la sélection des opérateurs de recherche a été un sujet de recherche
actif ces dernières années et a montré des résultats prometteurs [San+14 ; MGS20]. Plus
important encore, le succès de toute MH dépend fortement du choix/conception de ses
opérateurs de recherche (c’est-à-dire la recherche locale et les opérateurs de pertur-
bation). Par conséquent, dans cette thèse, nous nous concentrons sur la sélection des
opérateurs et nous visons à proposer un cadre général à utiliser par n’importe quelle
MH pour sélectionner le meilleur opérateur de recherche lorsqu’il s’agit d’opérateurs de
recherche multiple utilisant des techniques d’AA.

Tout d’abord, discutons de la principale motivation pour laquelle les MHs peuvent avoir
besoin d’utiliser plusieurs opérateurs. L’espace de recherche d’un POC est un environne-
ment non stationnaire comprenant différentes régions de recherche aux caractéristiques
dissemblables [Fia10]. En conséquence, le comportement d’un opérateur individuel peut
changer en fonction de la région explorée, de sorte que les bons opérateurs peuvent de-
venir médiocres dans certaines régions, et vice-versa. Par conséquent, l’utilisation d’une
combinaison de plusieurs opérateurs avec des caractéristiques différentes devrait amélio-
rer la performance globale des MH, ce qui a été observé dans la résolution de différents
POC [San+14 ; Li+15 ; DT+15]. En outre, l’utilisation d’une combinaison de divers
opérateurs de recherche conduit à un processus de recherche plus étendu et permet de
découvrir de nouvelles zones où de bonnes solutions peuvent être trouvées. Par consé-
quent, cela peut améliorer les capacités d’exploration et d’exploitation des MHs.

Lors de la conception de MHs avec de multiples opérateurs de recherche, une question
majeure se pose : dans quel ordre les opérateurs de recherche doivent-ils être employés
pour guider efficacement la MH vers la solution optimale ? Cette question est désignée
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sous le nom de problème de sélection des opérateurs. Pour résoudre ce problème, deux
mécanismes principaux peuvent être utilisés. Le mécanisme de sélection de l’opérateur
peut être soit hors ligne (offline en anglais), soit en ligne (online en anglais). Dans une
sélection d’opérateurs hors ligne, l’ordre des opérateurs de recherche est déterminé a
priori et reste fixe tout au long du processus de recherche. Au contraire, dans la sélection
d’opérateurs en ligne, les opérateurs sont sélectionnés et employés de manière dynamique
pendant le processus de recherche. Dans la littérature, l’accent a été mis davantage sur
la sélection d’opérateurs en ligne, ce qui est plus compatible avec l’hypothèse de non-
stationnarité de l’espace de recherche.

L’approche de sélection d’opérateurs en ligne la plus simple consiste à sélectionner les
opérateurs de manière aléatoire et uniforme à chaque étape de la recherche, sans te-
nir compte de leurs performances au cours du processus de recherche. Cependant, une
telle sélection donne une chance égale à chaque opérateur d’être sélectionné, ignorant la
bonne ou la mauvaise performance de l’opérateur. Contrairement à une telle sélection
aveugle, une approche efficace consiste à prendre en compte les performances des opé-
rateurs de recherche dans le processus de sélection. À cet égard, Sélection Adaptative
d’Opérateurs (SAO) est une approche de sélection en ligne qui sélectionne et emploie
dynamiquement les opérateurs les plus appropriés en fonction de l’historique de leurs
performances pendant le processus de recherche [Fia10]. La SAO comporte deux tâches
principales : le affectation de crédit qui attribue un crédit aux opérateurs en fonction de
leur impact sur le processus de recherche et le sélection d’opérateur qui sélectionne le
prochain opérateur à appliquer lors de l’itération suivante. Les méthodes pour réaliser
la SAO diffèrent dans leur mécanisme d’affectation de crédit, des méthodes simples ba-
sées sur les scores [MJTM19 ; LT16 ; Zan+09], aux méthodes plus avancées utilisant des
techniques d’AA [MGS20 ; Ahm+18 ; BEB17 ; San+14]. Comme étudié et montré par
[TSH21], la SAO avec des méthodes d’affectation de crédits simples n’apportent pas de
valeur ajoutée significative à la performance globale des MHs.

Pour surmonter l’inconvénient de la méthode d’affectation de crédits simple, les tech-
niques d’AA telles que l’apprentissage par renforcement sont capables de trouver le
meilleur comportement des MH (c’est-à-dire de sélectionner le meilleur opérateur) en
utilisant l’expérience acquise en interagissant avec l’environnement. Une telle intégra-
tion AA-dans-MH pour la sélection de l’opérateur n’a pas été étudiée techniquement
dans la littérature, et il y a un besoin d’études de recherche pour aborder ce problème
en profondeur et étudier les défis, les limites et les opportunités à cet égard. Pour combler
ce problème, nous proposons un cadre général dans lequel nous utilisons l’apprentissage
par renforcement, plus précisément l’algorithme Q-learning, pour la SAO qui peut être
employé dans n’importe quel MH. Ce cadre est applicable à un large éventail de POC
sans nécessiter d’adaptations majeures. Nous évaluons les performances du cadre proposé
en l’appliquant à la résolution de deux problèmes NP-hard, le problème du voyageur de
commerce (Traveling Salesman Problem - TSP en anglais) et le problème d’ordonnan-
cement de type flowshop de permutation (Permutation flow-shop scheduling problem -
PFSP en anglais). En outre, les exigences, les défis et les limites de ce cadre sont discutés
en détail. Cela aide les chercheurs à utiliser ce cadre pour leurs propres POC.

Cadre générale proposé

Nous proposons un cadre pour montrer comment l’AA peut être intégré dans les MHs
pour sélectionner automatiquement les opérateurs de recherche sans injecter les connais-
sances des experts dans le processus de sélection. Parfois, les connaissances des experts
ne sont pas suffisantes/optimales et peuvent conduire à des décisions dont les résultats ne
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sont pas satisfaisants. Considérons un MH avec un ensemble d’opérateurs de recherche
multiples. L’objectif de la sélection des opérateurs est de décider quel opérateur doit
être sélectionné et appliqué à chaque étape de la recherche. La qualité (performance) des
opérateurs à chaque étape de la recherche dépend de deux critères : premièrement, la
nature stochastique du processus d’évolution, où certains opérateurs apparemment peu
performants peuvent simplement avoir été malchanceux à certaines étapes, et deuxiè-
mement, la région de l’espace de recherche explorée et ses caractéristiques, où un bon
opérateur peut présenter une performance médiocre dans certaines régions. Par consé-
quent, il serait difficile de prévoir a priori la performance des opérateurs à chaque étape
de la recherche et de déterminer le meilleur opérateur à l’aide de la connaissance ex-
perte, puisque cette performance dépend des caractéristiques de l’espace de solution de
l’instance du problème à traiter ainsi que de la nature stochastique de l’évolution. Par
conséquent, la connaissance experte ne pourrait pas nous donner l’opérateur optimal et
donc la décision optimale.

Pour résoudre ce problème, nous proposons de remplacer les connaissances des experts
par des techniques d’AA pour sélectionner automatiquement les opérateurs. Parmi les
différentes techniques d’AA (apprentissage supervisé, apprentissage non supervisé, ap-
prentissage semi-supervisé, et apprentissage par renforcement), nous proposons d’utili-
ser l’apprentissage par renforcement. Dans l’apprentissage supervisé, l’expert doit fournir
l’ensemble des données d’entrée ainsi que les données de sortie attendues (comportement)
pour entraÃőner le modèle d’AA et le but est d’imiter aveuglément l’expert et non d’op-
timiser une certaine mesure de performance. Cependant, il arrive que les connaissances
de l’expert ne soient pas optimales/satisfaisantes. Dans ce cas, l’apprentissage par renfor-
cement peut entrer en jeu pour former un modèle par essais et erreurs sans avoir besoin
de connaissances spécialisées. Ce modèle est capable d’explorer l’espace des décisions
possibles et d’apprendre par l’expérience le comportement le plus performant. En outre,
dans l’apprentissage supervisé, le comportement appris peut ne pas être généralisé à des
cas non vus. Au contraire, dans l’apprentissage par renforcement, pour une récompense
donnée, le modèle apprend à trouver le meilleur comportement pour chaque instance.

La Figure 1 montre le mécanisme du cadre proposé. D’après la Figure 1, le cadre proposé
comporte deux composantes principales : une technique d’AA et un algorithme méta-
heuristique. Pour le composant d’AA, nous avons utilisé le Q-learning, une technique
basée sur l’apprentissage par renforcement. En ce qui concerne la méta-heuristique, nous
avons utilisé la recherche locale itérée (Iterated Local Search - ILS en anglais). ILS est
une méta-heuristique simple basée sur une solution unique et puissante à la fois dans
l’exploitation et l’exploration. Il convient de mentionner que le cadre proposé est général
et qu’il peut être intégré à n’importe quelle méta-heuristique, qu’elle soit basée sur une
solution unique ou sur une population. De même, il peut être appliqué pour résoudre tout
problème d’optimisation combinatoire. Considérant le Q-learning comme la technique
d’AA et l’ILS comme la MH, nous appelons le cadre proposé QILS.

Le cadre QILS proposé commence par la composante MH, où une solution initiale est
d’abord générée. La solution passe ensuite par trois étapes principales de l’ILS : l’étape
de perturbation (exploration), l’étape de recherche locale (exploitation) et l’acceptation.
Une technique d’apprentissage par renforcement a été intégrée à l’ILS pour sélectionner
l’opérateur le plus approprié parmi un ensemble de multiples opérateurs disponibles à
appliquer à la solution. Par conséquent, selon l’objectif de l’utilisateur, l’apprentissage
par renforcement peut être intégré à l’étape de perturbation, aux étapes de recherche
locale, ou aux deux. Pour simplifier, dans la Figure 1, nous montrons un cas où l’al-
gorithme de Q-learning, en tant que technique d’apprentissage par renforcement, a été
utilisé pour sélectionner les opérateurs de perturbation dans l’étape de perturbation.
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Figure 1 – Cadre QILS proposé

Dans notre processus de sélection, nous utilisons l’idée de la SAO, dans laquelle les opé-
rateurs sont sélectionnés de manière adaptative tout au long du processus de recherche
en fonction de leur qualité. En outre, nous prenons en compte le concept d’états dans
l’apprentissage par renforcement dans notre processus de sélection. Les opérateurs sont
sélectionnés en fonction de deux critères à chaque point de décision : l’historique des
performances des opérateurs depuis le début de la recherche qui représente la qualité
de l’opérateur, et l’état actuel (statut) de la recherche qui caractérise l’environnement
étudié. Nous modélisons la sélection des opérateurs en utilisant l’algorithme Q-learning.
Le Q-learning est composé de trois éléments principaux : l’ensemble des états s ∈ S qui
représentent l’état de l’environnement, l’ensemble des actions a ∈ A qui représentent
l’ensemble des décisions qui doivent être apprises par l’interaction avec l’environnement,
et enfin, une fonction de récompense qui vise à guider le modèle pour prendre des dé-
cisions qui maximisent la récompense cumulative. Dans QILS, les actions (décisions)
sont les opérateurs (perturbation, recherche locale) qui doivent être sélectionnés par
Q-learning. D’autre part, l’ensemble des états et la fonction de récompense sont des
propriétés spécifiques au problème qui sont déterminées en fonction du contexte et de
l’objectif de l’utilisation du Q-learning.

Dans QILS, l’application de toute action est suivie d’une récompense immédiate de
l’environnement (c’est-à-dire le problème) qui montre l’impact immédiat de l’opérateur
appliqué sur le processus de recherche. Ensuite, sur la base de cette récompense immé-
diate et de l’historique des performances des opérateurs, l’algorithme Q-learning affecte
un crédit à chaque opérateur. En fonction de l’état actuel de la recherche ainsi que du
crédit de chaque opérateur, le prochain opérateur de perturbation est sélectionné pour
être appliqué. Pour la sélection, nous utilisons la stratégie ϵ-glouton pour trouver un
équilibre entre l’exploitation des opérateurs qui ont bien fonctionné jusqu’à présent et
l’exploration d’autres opérateurs pour leur donner une chance d’être sélectionnés. Nous
introduisons le concept d’épisode dans le cadre proposé, dans lequel chaque action a une
chance d’un épisode égal à un nombre fixe d’itérations avant d’évaluer sa performance.

Analyse Empirique

Nous faisons des expériences complètes pour étudier les performances de l’algorithme
QILS. Les expériences sont menées sur une grande variété d’instances de TSP et PFSP
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afin de répondre à quatre questions de recherche : 1) Est-ce que l’incorporation de plu-
sieurs opérateurs de recherche locale (perturbation) améliore la capacité d’exploitation
(exploration) et les performances de l’ILS, et dans quelle mesure ? 2) Est-ce que l’utilisa-
tion de l’algorithme de Q-learning pour sélectionner les opérateurs appropriés améliore
les performances de l’ILS, et dans quelle mesure ? 3) Dans quelle mesure l’algorithme
de QILS proposé est-il compétitif par rapport aux algorithmes de la littérature ?, et
4) Comment l’algorithme QILS proposé adapte-t-il automatiquement les opérateurs à
l’instance du problème à traiter ?

Pour le TSP, nous avons utilisé un ensemble d’instances de TSP symétriques sélection-
nées au hasard dans la bibliothèque TSPLIB [Tsp] avec un nombre de villes différent
allant de 50 à 2150 villes. Pour le PFSP, nous avons utilisé trois jeux de données bien
connus, à savoir les jeux de données Taillard (contenant de 120 instances classées en 12
ensembles d’instances allant de 20 tâches avec 5 machines à 500 tâches avec 20 machines),
VRF-hard-small (contenant de 240 instances réparties en 24 ensembles d’instances allant
de 10 tâches et 5 machines à 60 tâches et 20 machines), et VRF-hard-large (contenant de
240 instances de grande taille classées en 24 ensembles d’instances allant de 100 travaux
et 20 machines à 800 travaux et 60 machines).

Compte tenu de la nature stochastique des algorithmes et pour étudier la robustesse
des algorithmes QILS pour trouver les solutions (quasi) optimales, chaque algorithme
a été exécuté 30 fois indépendamment pour chaque instance et la moyenne des résul-
tats a été calculée. Trois mesures clés de comparaison des performances sont utilisées
pour comparer les performances des algorithmes : L’écart relatif moyen en pourcentage
(Average Relative Percentage deviation - ARPD en anglais), le temps de calcul moyen,
l’écart-type et le comportement de convergence.

Différentes comparaisons ont été effectuées pour la TSP et la PFSP. Pour la TSP, nous
comparons l’algorithme QILS avec ses versions sans apprentissage (l’algorithme ILS avec
des opérateurs de recherche locale (perturbation) uniques, et l’algorithme ILS avec le
même ensemble d’opérateurs de recherche locale (perturbation) que QILS sélectionnés
uniformément et aléatoirement). Pour le PFSP, nous comparons le QILS avec ses versions
sans apprentissage, ainsi que sept algorithmes de la littérature.

Conclusion et discussion
Comme première contribution, des défis particuliers et des directions de recherche futures
ont été élaborés pour chaque mode d’intégration AA-dans-MH tout au long du manuscrit.
En outre, il existe un ensemble de défis communs et de perspectives futures, quelle que
soit la méthode d’intégration.

Chaque fois qu’une technique d’AA est intégrée dans un MH, une série de paramètres
supplémentaires sont introduits et doivent être soigneusement réglés/contrÃťlés pour
obtenir les meilleures performances. La définition de la valeur de ces paramètres sup-
plémentaires peut augmenter l’effort de calcul de l’étape de définition des paramètres,
cependant, la définition des paramètres est généralement une tâche unique et le gain que
les techniques d’AA apportent en économisant l’effort de calcul du processus de recherche
peut compenser l’effort de calcul supplémentaire de la définition des paramètres.

Plus le volume de données est important, plus les performances des techniques d’AA sont
élevées. La disponibilité des données est un autre défi lors de l’intégration des techniques
d’AA dans les MHs. En effet, la collecte ou même la génération de suffisamment de
données est une tâche difficile. Même si suffisamment de données historiques sont dispo-
nibles, la façon d’échantillonner à partir des données historiques pour imiter de manière
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appropriée le comportement reflété dans ces données est un autre défi [BLP21a]. Une fa-
çon de relever le défi de la disponibilité des données pourrait consister à utiliser Few-Shot
Learning pour former un modèle avec une très petite quantité de données de formation
[Wan+20a]. En utilisant la connaissance préalable d’instances de problèmes similaires,
l’apprentissage à quelques instants peut être rapidement généralisé à de nouvelles tâches
ne contenant que quelques instances de problèmes avec des informations supervisées.

La majorité des études dans la littérature utilisent des techniques classiques d’AA telles
que la méthode des k plus proches voisins (k-Nearest Neighbours en anglais), k-means,
les machines à vecteurs de support (support vector machines en anglais), la régression lo-
gistique (logistics regression en anglais), etc. Avec le développement rapide des nouvelles
technologies, les problèmes du monde réel deviennent de plus en plus complexes, et avec
les nouvelles avancées de la numérisation, diverses données en temps réel sont collectées
massivement qui ne peuvent pas être traitées par les techniques d’AA classiques. Ces
données volumineuses soulèvent plusieurs problèmes qui doivent être pris en considé-
ration [Emr16]. Pour faire face à de telles données volumineuses, des techniques d’AA
plus avancées telles que l’apprentissage profond peuvent être intégrées dans les MH. À
cet égard, lorsque diverses techniques d’AA sont disponibles pour être intégrées dans les
MHs pour un but particulier, le problème de sélection d’algorithme peut être étudié pour
sélectionner la technique d’AA la plus appropriée. En outre, avec le développement des
superordinateurs, l’exploration du concept de parallélisme dans l’intégration des tech-
niques d’AA dans les MHs à l’aide d’accélérateurs GPU (Graphics Processing Units en
anglais) et TPU (Tensor Processing Units en anglais) pourrait être une direction de
recherche future intéressante : [CMT04 ; Alb05 ; VLMT11].

En ce qui concerne notre deuxième contribution, nous avons montré que le cadre proposé
obtient des résultats prometteurs à la fois pour le TSP et le PFSP. En ce qui concerne
le TSP, nous avons observé que l’intégration de l’algorithme Q-learning améliore signifi-
cativement les performances de l’ILS par rapport à ses versions sans apprentissage. En
ce qui concerne le PFSP, l’algorithme QILS proposé obtient les meilleures performances.
Nous tirons quelques conclusions et observations principales que nous avons obtenues
par l’application à ces deux problèmes.

La principale conclusion à tirer de la comparaison des performances de QILS par rapport
à sa version à sélection aléatoire est que l’utilisation de l’algorithme de Q-learning pour
sélectionner automatiquement les opérateurs permet une amélioration significative des
performances. En d’autres termes, la connaissance recueillie par le processus d’appren-
tissage tout au long du processus de recherche est précieuse et conduit à l’identification
de l’opérateur le plus approprié à chaque point de décision et par conséquent au succès
du cadre en convergeant plus rapidement vers de meilleures solutions. Par ailleurs, nous
avons également observé que plus la taille des instances est élevée, plus la performance
de notre algorithme est élevée.

Nous avons également observé que le QILS est presque insensible (ou pas très sensible)
à la taille de l’ensemble des actions. Le fait que QILS ne soit pas très sensible à la taille
des actions devient de plus en plus important et utile lorsqu’il n’y a pas de connais-
sances préalables suffisantes concernant les performances des opérateurs individuels. Par
conséquent, QILS peut être exécuté avec un ensemble d’opérateurs différents, mais pas
nécessairement les meilleurs ; le mécanisme de sélection proposé, basé sur l’algorithme
de Q-learning, est alors capable de sélectionner automatiquement les opérateurs les plus
appropriés, c’est-à-dire les actions, pendant le processus de recherche parmi tous les
opérateurs disponibles.

Nous avons montré que l’ajout de l’apprentissage par renforcement n’augmente pas de
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manière significative la complexité du cadre par rapport à la version de base de MH.
En considérant la complexité dans le pire des cas, l’apprentissage par renforcement a un
surcoÃżt de complexité de la taille de l’ensemble d’actions (O(|A|) qui est constant, et
il ne dépend pas de la taille du problème. Même en pratique, nous avons montré que le
cadre proposé obtient de meilleurs résultats avec un effort de calcul encore plus faible,
en particulier pour les grandes instances, en raison d’une convergence plus rapide vers de
bonnes solutions (quasi-optimales/optimales). Cette conclusion peut être généralisée à
n’importe quel MH utilisé dans le cadre, et également appliquée à n’importe quel POC.

Un défi important dans l’algorithme de Q-learning est de définir un ensemble d’états en
fonction de l’objectif de l’utilisation de Q-learning. Les états doivent être complètement
descriptifs de l’état du problème pour permettre de sélectionner l’action correcte. Il y
a trois façons de définir les états. Les états peuvent être 1) dépendants de la recherche
qui reflètent les propriétés du processus de recherche, comme le nombre d’itérations
non améliorées, 2) dépendants du problème qui reflètent les propriétés du problème
par le biais de caractéristiques génériques, ou 3) dépendants de l’instance qui reflètent
les propriétés de l’instance du problème, comme le nombre de bacs dans un problème
d’emballage de bacs.

Afin de surmonter le défi de déterminer les opérateurs a priori pour l’algorithme de Q-
learning, une direction de recherche future prometteuse est de considérer un ensemble
dynamique d’opérateurs candidats, au lieu d’un ensemble statique avec des opérateurs
fixes, pour gérer un grand ensemble d’opérateurs d’une manière en ligne. L’idée est
que les opérateurs jugés inefficaces à certaines étapes de la recherche sont momentané-
ment désactivés en quittant l’ensemble de candidats pour un nombre fixe d’itérations,
et d’autres nouveaux opérateurs peuvent être invités à être inclus dans l’ensemble de
candidats pour des étapes particulières de la recherche. Ce mécanisme permet d’inclure
des opérateurs efficaces et d’exclure des opérateurs inefficaces à différents stades de la
recherche afin d’obtenir les meilleures performances sans imposer de surcharge de calcul
supplémentaire. Ce mécanisme est appelé gestion adaptative des opérateurs.
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Abstract

In recent years, there has been a growing research interest in integrating machine learning
techniques into meta-heuristics for solving combinatorial optimization problems. This
integration aims to guide the meta-heuristics toward making better decisions and conse-
quently make meta-heuristics more efficient and improve their performance in terms of
solution quality, convergence rate, and robustness. The contribution of this thesis to this
interdisciplinary research domain between Operations Research and Computer Science
is an analytical-technical contribution.

From an analytical viewpoint, we provide, as the first of its kind, a comprehensive yet
technical review on the research works addressing this integration. Through this review,
we propose a unified taxonomy for different ways of integration, including algorithm
selection, fitness evaluation, initialization, evolution categorized into operator selection,
learnable evolution model, and neighbor generation, parameter setting, and cooperation.
After a detailed classification of the papers corresponding to each class of integration,
more importantly, a complete analysis and discussion is provided on technical details
(i.g., challenges, advantages, disadvantages, perspectives, etc.) of each way of integra-
tion.

From a technical aspect, we focus on a particular integration and address the problem of
adaptive operator selection in meta-heuristics using reinforcement learning techniques.
More precisely, we propose a general framework that integrates the Q-learning algo-
rithm, as a reinforcement learning algorithm, into the iterated local search algorithm to
adaptively and dynamically select the most appropriate search operators at each step
of the search process based on their history of performance. The proposed framework
is general and can be applied to any meta-heuristics, where a set of competitive search
operators exist for solving the problem.

To investigate the performance of the proposed framework, we applied it on two combi-
natorial optimization problems, traveling salesman problem and permutation flowshop
scheduling problem. In both applications, the framework yields significant improvement
in terms of solution quality and convergence rate compared to its non-learning version,
where operators are selected randomly. Besides, we show that our algorithm performs
even better when dealing with large size instances of the problems. Moreover, we ob-
serve that the proposed framework shows the state-of-the-art behavior when solving the
permutation flowshop scheduling problem.
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1.1 Introduction

Combinatorial Optimization Problem (COP) is a class of optimization problems that
is challenging to solve. The word Combinatorics is concerned with the selection, ar-
rangement, or sequencing of a collection of objects. Combinatorial optimization is the
search for the best selection, arrangement, or sequence with respect to some objective
function in a finite search space. There are a variety of types of COPs that have been
widely studied by the Operations Research community. One classical COP that has
been widely studied is the Traveling Salesman Problem (TSP). In TSP, there is a sales-
man who performs a tour by visiting a set of n cities exactly once and returning to
the starting point (i.e., Hamiltonian tour). Each edge connecting two cities i and j is
associated with a distance dij , and the goal is to find the Hamiltonian tour of cities
with the minimum total distance. Let’s consider an exhaustive search (enumeration)
algorithm that evaluates all possible Hamiltonian tours of a given TSP instance and
returns the tour with the minimum total distance as the optimal solution. When the
number of cities is low (e.g., n ≤ 6), an exhaustive search algorithms is efficient and
finds the optimal solution rapidly. However, as the number of cities increases, which
is the case in real-world problems, it would become more and more time-consuming (if
not computationally impossible) to employ an exhaustive search algorithm to find the
optimal solution for TSP. To be more precise, the number of possible Hamiltonian tours
for a TSP of n cities with a symmetric distance matrix between the cities is calculated
as (n − 1)!/2. Table 1 shows how the number of Hamiltonian tours increases by increas-
ing the number of cities. According to Table 1, as the number of cities increases by
even small values, the number of Hamiltonian tours increases explosively by an order of
(n − 1)!/2. It implies that the computational complexity of an exhaustive search algo-
rithm is O(n!) for solving a TSP instance of size n. For example, for a small-sized TSP
instance with n = 20 number of cities, an exhaustive search algorithm should evaluate
6.08006E + 16 different Hamiltonian tours. Considering that each evaluation takes only
a µs, a TSP instance with n = 20 cities takes around twenty thousand centuries to be
solved exhaustively.

Table 1 – Number of Hamiltonian tours for TSP
# of cities (n) # of Hamiltonian tours
5 12
6 60
7 360
8 2520
9 20160
10 181440
20 6.08226E+16
25 3.10224E+23

TSP belongs to the NP-hard class of optimization problems for which no known resolu-
tion algorithm with a polynomial time complexity of O(nk) (for some k) exists [Woe03].
Similar to TSP, most COPs belong to the NP-hard class of optimization problems. Any
NP-hard problem can be solved using exhaustive search. However, when the size of the
instances grows, the running time for an exhaustive search becomes severely huge, even
for instances of fairly small size in real-world.

Exhaustive search algorithms belong to a general class of algorithms called Exact al-
gorithms [LN87; Woe03]. Exact algorithms (e.g., branch-and-bound, benders decom-
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position, etc.), as their name implies, are algorithms that always solve an optimization
problem to optimality [FK13]. For some large-sized TSP instances, there may exist ex-
act algorithms able to solve them to optimality in a polynomial time. However, TSP
and most COPs are NP-hard in general and solving real-world large-sized instances to
optimality would be very hard and time-consuming (if not computationally impossible).

The inherent complexity of COPs enforces the need for approximate algorithms. Ap-
proximate algorithms are a class of optimization algorithms that are mainly developed
to solve complex optimization problem (i.e., COPs) [GK06]. These algorithms are able
to find (near-) optimal solutions in a reasonable computational time; however, they do
not guarantee the optimality of the obtained solutions. For more details on the approx-
imate algorithms, interested readers are referred to Section 2.2 in Chapter 2. Among
different categories of approximate algorithms, Meta-heuristic (MH) algorithms are com-
putational intelligence paradigms applicable to a large variety of optimization problems,
if well-designed and tailored [OL96]. Considering their ability in finding (near-) optimal
solutions for COPs in a reasonable computational time, they are good substitutes for
exact algorithms [HW90; OL96; Tal09]. From a technical point of view, MHs are op-
timization algorithms that arrange and pilot an interaction between local improvement
procedures and higher-level strategies to create an iterative search process capable to
escape from local optima and perform a robust search of a search space [GP10]. Dur-
ing such an iterative search process, a considerable number of solutions are generated,
evaluated, and evolved until a promising solution is obtained. In fact, during the search
process, MHs generate a considerable volume of data including good (elite) or bad so-
lutions in terms of their fitness values, the sequence of search operators from beginning
to the end, evolution trajectories of different solutions, local optima, etc. These data
potentially carry useful knowledge such as the properties of good and bad solutions, the
performance of different operators in different stages of the search process, precedence
of search operators, etc. Classical MHs do not use any form of knowledge hidden in
these data to solve COPs. However, in the last decade, there has been a huge interest
to make benefit of these data and extract useful knowledge from them to solve COPs.
In this regard, numerous studies have investigated the use of Machine Learning (ML)
techniques when solving COPs.

ML is a subfield of artificial intelligence whose primary concern is the design and analysis
of algorithms which enable computers to learn [WBK20]. As a subfield of artificial
intelligence, ML has the ability to learn and adapt to changes in a changing environment
and accordingly to generalize well to new settings without the need to foresee and provide
solutions for all possible settings. ML techniques autonomously learn how to perform a
task or make predictions by detecting certain patterns or regularities using the training
data or past expegrience, assuming that the future will not be much different from the
past. ML can be used to teach computers to perform a wide variety of tasks, ranging from
automatic object detection and speech recognition to robotics and predictive analytics
used for forecasting purposes.

ML techniques can be used for solving COPs either directly as a solver or in an integrated
way into exact and approximate solution algorithms. ML techniques can directly solve
COPs either using their predictive ability to predict good/optimal solution for COPs
[Jos+22; Ben+20] or distinguish between optimal and non-optimal solutions [AS19] or
through the automatic design of good/fast algorithms from scratch able to solve different
COP instances with different settings by exploiting common patterns in different problem
instances [Kha+17]. On the other hand, ML techniques can be integrated into solution
algorithms to extract useful knowledge from the generated data and inject it into the
search process with the aim to improve the performance of the algorithms [BLP21b;
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Kar].

When integrating ML techniques into MHs, the main goal is to improve the efficiency of
MHs either through speeding up the search process by doing approximations or injecting
knowledge into the search process or through finding better solutions by replacing the
expert knowledge and experience with better decisions obtained using ML techniques.
In this regard, various studies have been done on the integration of ML techniques into
MHs for different purposes. Some studies focused on using classical ML techniques for
conventional purposes, such as initial solution generation or approximating the fitness
function. On the other hand, there are studies using more advanced ML techniques for
automatic design of advanced MHs through cooperative frameworks. This integration
can guide the MHs toward making better decisions and consequently make MHs more
efficient and improve their performance in terms of solution quality, convergence rate,
and robustness [Kar].

1.2 Contribution of thesis

In recent decade, the integration of ML techniques into optimization methods, partic-
ularly MHs, has gained a considerable interest which has yielded in numerous research
articles. However, there are still plenty of research directions which can be further in-
vestigated [Tal02; STÃ19; BLP21b]. The contribution of this thesis to the domain of
integrating ML techniques into MHs (ML-into-MH) lays in two analytical and technical
levels. As an analytical level, this thesis provides as the first of its kind a comprehensive
review on the ML-into-MH integration that not only classifies and reviews different re-
search articles with different integration purposes but also provides a complete analysis
and discussion on technical details of this integration (i.g., challenges, advantages, disad-
vantages, opportunities, etc.). In the technical level, we focus on a particular integration
purpose, where we investigate the integration of ML techniques to guide MH through
selecting the most appropriate search operator at each step of the search process. These
contributions are discussed in more details in the two following subsections.

1.2.1 ML-into-MH: A taxonomy

Due to an increasing interest in the integration of ML techniques into MHs, numerous
research articles have been presented in this domain, especially in the recent decade. Ac-
cordingly, different researchers have provided review studies to study the recent advances
in this domain [JDT06; Zha+11; CDJ12; Tal16; Cal+17; STÃ19; Tal20]. Although there
are different review studies in the literature, we believe that there is still a lack of a re-
view study to go beyond mere description of the literature, to take a critical view to
investigate the technical aspects of such integration by focusing on a set of challenges,
guidelines, and limitations that researchers may face, and also to foster future research
by developing new ideas and insights.

In order to fill this gap, we provided such a review with the mentioned characteristics.
Our proposed review study contributes to the literature from three aspects: first, it serves
as a pedagogical study that is a good starting point for the researchers who intend to
begin doing research in this field, and second, it is a technical study that identifies and
clarifies, without any bias, the technical challenges, requirements, and limitations of this
integration, and finally, by providing a broader view over this integration, it proposes
new ideas and research insights to deal with the identified challenges. The main features
of our work that distinguish it from the available review studies in the literature have
been elaborated in detail in Section 3.1.1 in Chapter 3.
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According to our proposed taxonomy, ML techniques can be integrated into MHs for dif-
ferent purposes including algorithm selection, fitness evaluation, initialization, evolution
categorized into operator selection, learnable evolution model, and neighbor generation,
parameter setting, and finally, cooperation. Each category has been explained in detail
in Chapter 3.

1.2.2 ML-into-MH: Learning to select operators

Importantly, the success of any MH highly depends on the choice/design of its search
operators (i.e., local search and perturbation operators), and MHs with multiple op-
erators have shown better performance when solving COPs [San+14; Li+15; DT+15].
In fact, the search space of a COP is a non-stationary environment including different
search regions with dissimilar characteristics [Fia10]. Accordingly, the behavior of an
individual operator may change depending on the region being explored such that good
operators might become poor at some regions, and vice-versa. Hence, it is reasonable
to expect that employing different operators combined appropriately during the search
process will produce better solutions. Accordingly, among different purposes of the ML-
into-MH integration, we focus on operator selection in this thesis, with the aim to help
MHs to select the most appropriate search operator at each step of their search pro-
cess. Moreover, the use of ML techniques for selecting the search operators in MHs has
been an active research topic in recent years and has shown promising results [San+14;
MGS20]. Therefore, in this thesis, we focus on operator selection and aim to propose a
general framework to be used by any MH to automatically select the most appropriate
search operator, when dealing with multiple search operators, using ML techniques.

In such framework, a major question arises: in which order should the search operators
be employed to efficiently guide the MH toward the optimal solution? The order of
operators can be determined either a priori (i.e., offline selection) or during the search
process (i.e., online selection). In the literature, there has been more focus on online
operator selection, which is more compatible with the non-stationarity of the search space
of COPs. Through an online selection, the operators can be selected either randomly
(i.e., blind selection) or dynamically based on the performance of the operators. The
latter is referred as to Adaptive Operator Selection (AOS). In an AOS, an important
task is to assign a credit to each operator based on their performance. This assignment
plays an important role in the success of an AOS and can be done using either simple
score-based methods [MJTM19; LT16; Zan+09], to more advanced methods using ML
techniques [MGS20; Ahm+18; BEB17; San+14]. [TSH21] has done a meta-analysis on
the added-value of using simple credit assignment methods, with focus on the adaptive
large neighborhood search MH. According to their analysis, AOS with simple credit
assignment methods do not bring significant added-value to the overall performance of
the MH.

To overcome the drawback of the simple credit-assignment methods, ML techniques
such as Reinforcement Learning (RL) can be employed. RL is a ML technique that
sequentially learns, through trial-and-error, the best action to take at a given state to
achieve a goal. In RL, there is an agent that interacts with an environment and iteratively
learns the best action to take to maximize the cumulative reward (i.e., feedback received
from the environment as a result of performing an action) through this interaction.
Using RL for AOS, the agent would be able to learn the best operator (i.e., action) to
select at each decision point based on the experience gained through interaction with
the environment. Such ML-into-MH integration for operator selection has not been
technically studied in the literature, and there is a need for research studies to address
this problem and study the challenges, limitations, and opportunities in this regard. To
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fill this gap, we propose a general framework where we use RL, more specifically the
Q-learning algorithm, for AOS that can be employed in any MHs. This framework is
applicable to a wide range of COPs without the need for any major adaptations. We
assess the performance of the proposed framework by applying it to solve two NP-hard
COPs, TSP and Permutation Flowshop Scheduling Problem (PFSP). Furthermore, the
requirements, challenges, and limitations of this framework are thoroughly discussed,
and future research directions have been proposed. This technical discussion helps the
researchers to employ the proposed framework to solve their own COPs.

1.3 Thesis outline
In this chapter, we introduced the subject of the thesis and elaborated two main con-
tributions of this thesis to the literature. To realize these contributions, the following
outline is proposed.

First, Chapter 2 ”Theoretical Background” introduces the main concepts and methods
used in this thesis including MHs, ML techniques and their different types, as well
as the COPs. These are the three main elements of this thesis. In addition to the
general definitions provided in Chapter 2, we explain in detail the formal definition and
formulation of two COPs (i.e., TSP and the PFSP), as well as the Iterated Local Search
(ILS) as the MH and Q-learning as the ML technique that we used in this thesis.

After defining and explaining the prerequisites, Chapter 3 ”Integration of Machine Learn-
ing into Meta-heuristics: A Taxonomy” realizes the first contribution of this thesis and
provides a taxonomy and classification of different purposes for which ML techniques can
be integrated into MHs. Each purpose is then explored in detail, and valuable technical
discussion and insights are provided for each different purpose.

After providing a comprehensive and technical overview on the ML-into-MH integration,
the readers will follow Chapter 4 ”Q-learning for Operator Selection: A General Frame-
work” that develops a general framework for the purpose of operator selection using ML
techniques. The framework is first designed and characterized, then applied to solve
two NP-hard COPs, TSP and PFSP. Through the application to these two problems,
we analyze the gains of integrating ML techniques into MHs for AOS. We finally show
that the proposed operator selection framework outperforms its non-learning variants in
terms of solution quality and convergence rate, and shows the state-of-the-art behavior
for PFSP.

Finally, Chapter 5 ”Conclusions and Future Research” concludes this thesis, discusses
the obtained results, and proposes promising research directions, especially on the gen-
eralization of the proposed framework to other COPs. This generalization has been
addressed partially through a technical work that we have done, which will be briefly
discussed at the end.
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In this chapter, we introduce the main concepts and methods used in this the-
sis, including the COPS, MHs, and ML techniques. We start, first, by providing a
formal definition of COPs and their inherent complexity, and present the mathemat-
ical formulations of two COPs we used as our application, TSP and PFSP. Next, we
continue by defining approximate algorithms in general, their main categories and the
specific features of each category. We focus on MHs, as a specific category of approx-
imate algorithms, and define the common concepts of MHs. We also explain in detail
the procedure of ILS as the MH that we used in this thesis. Then, we define ML tech-
niques and explain different types of ML techniques including supervised, unsupervised,
semi-supervised, and RL techniques. Considering that we have used the Q-learning as
our ML technique in this thesis, we elaborate on the Q-learning, the concepts of states,
action, and the reward function. Finally, we provide a general overview on the operator
selection paradigm, AOS, and the role of ML techniques in AOS.

2.1 Combinatorial optimization problems
In general, optimization problems can be seen as decision problems, where the solutions
are additionally evaluated by a function, called the objective function. The goal is then
to find a solution, among an infinite number of feasible solutions, with optimal objective
function value (i.e., the optimal solution).

Combinatorial optimization is an emerging field at the cutting edge of combinatorics
and theoretical computer science that attempts to use combinatorial techniques to solve
discrete optimization problems. Accordingly, any combinatorial optimization problem
(COP) can be stated as an optimization problem with discrete decision variables, where
the number of feasible solutions is finite, although still too large for an exhaustive search
to be a realistic option [Kor+12]. The formal representation of a COP is as follows:

min f(x)
s.t. x ∈ S

(2.1)

where S is the finite set of feasible solutions to the problem such that S ⊂ Zn, n ∈ Z+,
and f : X → Z. Z is the set of integers, Z+ is the set of positive integers, and Zn =
Z × Z × ... × Z is the set of n-vectors with integer components.

Most COPs belong to the NP-hard class of optimization problems, which require expo-
nential time to be solved to optimality [Tal09]. Our proposed operator selection frame-
work has been applied to solve two NP-hard COPs, TSP and PFSP whose definition
and mathematical formulation are presented in the following.

2.1.1 Traveling salesman problem

TSP is a classical NP-hard COP that was first introduced by an Irish mathematician
Sir William Rowan Hamilton and a British mathematician Thomas Penyngton Kirkman
[BLW86]. The general form of TSP has been first studied by the mathematicians, mainly
Karl Menger during the 1930s. TSP has a wide variety of applications in real-world. TSP
naturally arises in transportation and logistics, allowing to address the problems arising
in everyday life for the ordinary people (the problem of arranging school bus routes) as
well as the transportation companies providing delivery services to the customers (the
problem of parcel delivery). This is the main reason why TSP has been widely studied
by many researchers from the Computer Science and Operations Research communities.
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TSP can be formally defined by means of a weighted graph G = (V, E) where V =
{1, 2, ..., v} is the set of vertices representing cities and E = {⟨i, j⟩ : i, j ∈ V} is the set of
edges that connect the vertices of V. The edge that connects cities i and j has a weight
of dij ∈ D, which represents the distance between cities i and j; i, j ∈ V. A solution to
the TSP is a tour of cities Γ := (γ1, γ2, . . . , γv) ∈ S(V), where γj ∈ V denotes the index
of the city appearing at position j in the tour Γ. In TSP, the aim is to find a Hamiltonian
tour Γ of the minimum total travel distance z such that all vertices are visited exactly
once. The mathematical formulation of TSP has given in Equations (2.2)-(2.6).

min z =
|V|∑
i=1

|V|∑
j=1

dijxij (2.2)

|V|∑
i=1

xij = 1 ∀j ∈ V (2.3)

|V |∑
j=1

xij = 1 ∀i ∈ V (2.4)

∑
i,j∈H

xij ≤ |H| − 1 ∀H ⊂ V (2.5)

xij ∈ {0, 1} ∀i ̸= j ∈ V (2.6)

Equation (2.2) defines the total travel distance z to be minimized. Equations (2.3) and
(2.4) ensure that each city is visited exactly once. Accordingly, each city has a unique
precedent and subsequent cities. Equation (2.5) ensures that a tour is fully connected by
eliminating the sub-tours and finally, Equation (2.6) is the binary integrality constraint.

2.1.2 Permutation flowshop scheduling problem

The flowshop scheduling problem is a well-known class of scheduling problems, where
a set N = {1, 2, . . . , n} of n independent jobs have to be processed on a set M =
{1, 2, . . . , m} of m machines. When the sequence of jobs is the same for all machines,
the problem is denoted as PFSP. PFSP is a conventional optimization problem that
arises in most production systems. A solution to the PFSP is a permutation Π :=
(π1, . . . , πn) ∈ S(N) of the jobs, where πj ∈ N denotes the index of the job appearing at
position j in the sequence Π. Let piπj denote the processing time of job πj on machine
i. The completion time of job πj on machine i, Ciπj , can be determined in a recursive
way using Equations (2.7)-(2.10):

C1π1 = p1,π1 , (2.7)

C1πj = C1,πj−1 + p1,πj , ∀j ≥ 2 (2.8)

Ciπ1 = Ci−1,π1 + pi,π1 , ∀i ≥ 2 (2.9)

Ciπj = max{Ci−1,πj , Ci,πj−1} + pi,πj , ∀i ≥ 2, j ≥ 2 (2.10)

Solving a PFSP involves determining the permutation Π such that a particular objective
is optimized [Joh54]. Different objectives can be considered for the PFSP such as the
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minimization of makespan, total flow time, total tardiness or sum of the total earliness
and tardiness [FVMPF20]. In this thesis, we focus on the makespan objective function
Cmax, given in Equation (2.11), which is one of the most complex variants among the
variants with different objective functions and has proven to be NP-hard even for very
small-sized instances (m > 2) [RS07]. Later in this work, we use Cmax(Π) as a convenient
notation to denote the makespan of a solution Π.

Cmax = Cmπn (2.11)

2.2 Meta-heuristics

As elaborated in Chapter 1, solving a large number of real-life COPs (e.g., TSP) in an
exact manner is intractable within a reasonable amount of computational time. Approx-
imate algorithms are then alternatives to solve these problems. Although approximate
algorithms do not guarantee the optimality, their goal is to obtain solutions as close as
possible to the optimal solution in a reasonable amount of computational time, at most
polynomial [Tal09].

Approximate algorithms are divided into two classes of approximation algorithms and
heuristic algorithms [Tal09]. The approximation algorithms are efficient algorithms that
employ approximate rules and find approximate solutions to optimization problems with
provable guarantees on the distance of the obtained solution to the optimal one [WS11].
For instance, the class of k-approximation algorithms for solving the TSP, return a
tour whose cost is never more than k times of the cost of an optimal tour. The 2-
approximation and 3/2-approximation algorithm are algorithms to approximate the so-
lution of the TSP. The former approximates a Hamiltonian tour based on the idea of
minimum spanning tree that is not twice worse than the optimal solution. The complex-
ity of the 2-approximation algorithm is O(n6) when using Lawler’s matroid intersection
algorithm [Law01]. With a complexity of O(n3), the 3/2-approximation algorithm yields
a tour that is at most 3/2 times longer than the optimal one [Chr76].

Unlike the approximation algorithms, for heuristic algorithms, there is no known ef-
ficient way to find an approximate solution with a given upper-bound on its gap to
optimality. These heuristic algorithms are either problem-specific heuristics or MHs.
Problem-specific heuristics are designed for and are applicable to a particular problem
at hand. For example, the Lin-Kernighan Heuristic [LK73] is a problem-specific heuristic
algorithm for TSP. On the other hand, MHs represent more general algorithms applica-
ble to a large variety of optimization problems, if well-designed and tailored. Generally,
MHs need to be provided with expert knowledge and tailored to a specific problem
domain.

The term meta-heuristic was first introduced by Glover in 1986 [Glo86]. The word
heuristic (from an old Greek work heuriskein or euriskein, to search) signifies ”the art
of discovering new strategies (rules) to solve problems”, and the word meta (from the
Greek prefix meta, beyond in the sense of high-level) means ”upper level methodology”.
Therefore, the word meta-heuristic is defined as an ”upper level general methodology
that can be used as a guiding strategy in designing underlying heuristics to solve spe-
cific optimization problems” [SG13]. More technically, MHs are ”solution methods that
orchestrate an interaction between local improvement procedures and higher level strate-
gies to create a process capable of escaping from local optima and performing a robust
search of a solution space” [GP10].
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MHs can be classified in different ways. They can be nature-inspired or non-nature in-
spired [Tal09]. Many MHs are inspired by natural phenomena. Evolutionary Algorithms
(EAs) such as Genetic Algorithm (GA) [Hol+92], Memetic Algorithm (MA) [Mos+89],
and Differential Evolution (DE) [SP97] are inspired by biology; Artificial Bee Colony
(ABC) [Kar05], Ant Colony Optimization (ACO) [DB05], and Particle Swarm Opti-
mization (PSO) [Ken06] are inspired by swarm intelligence; and Simulated Annealing
(SA) [KGV83] from physics. There are also MHs inspired by non-natural phenomena;
Imperialist Competitive Algorithm (ICA) [AGL07] from society, and Harmony Search
(HS) [GKL01] from musics. From another perspective, MHs can be memoryless, or they
may use memory during the search process [Tal09]. Memoryless MHs (e.g., GA, SA, etc.)
do not use the historical information dynamically during the search process. However,
MHs with memory, such as Tabu Search (TS) [GL98], memorize historical information
during the search process, and this memory helps to avoid making repetitive decisions.

Furthermore, MHs can make deterministic or stochastic decisions during the search pro-
cess to solve optimization problems [Tal09]. MHs with deterministic rules (e.g., TS)
always obtain the same final solution when starting from the same initial solution, while
stochastic MHs (e.g., SA, GA) apply random rules to solve the problem and obtain dif-
ferent final solutions when starting from the same initial solution. Moreover, in terms
of their starting point, MHs are divided into single-solution based or population-based
MHs [Tal09]. Single-solution based MHs, also known as trajectory methods, such as ILS
[LMS03], Breakout Local Search (BLS) [BEB17], Descent-based Local Search (DLS)
[ZHD16], Guided Local Search (GLS) [VT99], Variable Neighborhood Search (VNS)
[MH97], Hill Climbing (HC) [JPY88], Large Neighborhood Search (LNS) [Sha98], Great
Deluge (GD) [Due93], TS, SA, etc., manipulate and transform a single solution to reach
the (near-) optimal solution. Population-based MHs such as Water Wave Optimization
(WWO) [Zhe15], GA, PSO, ACO, etc., try to find the optimal solution by evolving a
population of solutions. Because of this nature, population-based MHs are more ex-
ploration search algorithms, and they allow a better diversification in the entire search
space. Single-solution based MHs are more exploitation search algorithms, and they
have the power to intensify the search in local regions.

Finally, depending on their search mechanism, MHs can be iterative or greedy [Tal09].
The former (e.g., ILS, GA) starts with a complete solution and manipulates it at each
iteration using a set of search operators. The latter, also called constructive algorithm,
starts from an empty solution and constructs the solution step by step until a complete
solution is obtained. Classical examples of greedy algorithms are Nearest Neighbor (NN),
Greedy Heuristic (GH), Greedy Randomized Heuristic (GRH), and Greedy Randomized
Adaptive Search Procedure (GRASP) [FR95].

Iterated Local Search – In the following, the ILS algorithm is explained in more detail,
since it will be used throughout this thesis. ILS is a well-known MH for its effectiveness in
both exploration and exploitation, and its simplicity in practice [LMS03]. The general
Pseudo code of ILS is given in Algorithm 1 representing that ILS involves iteratively
three main operations: Perturbation, Local search, and Acceptance.
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Algorithm 1. Pseudo code of the ILS

1 get an initial solution s0
2 s∗ := LocalSearch(s0)
3 sbest := s∗

4 while termination criterion not reached do
5 s′ := Perturbation(s∗)
6 s∗′ := LocalSearch(s′)
7 s∗ := Acceptance(s∗, s∗′

, sbest)
8 end
9 return the best found solution sbest
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LocalSearch(.) LocalSearch(.)

Perturbation(.)

Figure 2 – Iterated local search algorithm

Starting from an initial solution s0, as in Figure 2, a LocalSearch(.) function (i.e.,
local search operator) is first performed on the initial solution s0 to defines the starting
point s∗ for the main loop of the ILS. Subsequently, s∗ is archived as the current best
solution sbest. Each iteration of the main loop involves three consecutive perturbation,
local search, and acceptance operations as follows:

• Perturbation: ILS performs a Perturbation(.) function (i.e., perturbation
operator) over the current local optimum solution s∗ to help the search process to
escape from the local optimum; whereby an intermediate solution s′ is generated.
The perturbation should not be too severe to act as a random restart but enough
powerful to kicks out the solution from the local optimum.

• Local search: After applying the Perturbation(.) function, the LocalSearch(.)
function (i.e., local search operator) is performed on the intermediate solution s′

to obtain a new local optimal solution s∗′ .
• Acceptance: Finally, the Acceptance(s∗, s∗′

, sbest) function is employed to check
whether the new local optimal solution s∗′ is accepted. The Acceptance(.) func-
tion can only accept better solution (i.e., Only Improvement strategy) or it can
even accept worse solution with a small gap (i.e., Metropolis acceptance strategy
[Met+53]).

These steps are repeated until the termination criterion (e.g., maximum number of itera-
tions, total execution time, number of iterations without improvement, etc.) is satisfied.
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2.3 Machine learning

ML is a subfield of artificial intelligence that uses algorithmic and statistical approaches
to give computers the ability to "learn" from data, i.e., to improve their performance
in solving tasks without being explicitly programmed for each one [Sam88]. The term
”Machine Learning” was coined in 1952 by Arthur Samuel who was a computer scientist
at IBM and a pioneer in AI and computer gaming, when he designed a computer program
for playing checkers. In fact, the more the program played the game, the more it learned
from its experience, thanks to a minimax algorithm for studying moves to find winning
strategies. ML is therefore used to teach machines how to handle the data more efficiently
or to let algorithms discover patterns in the data. The data can be numbers, words,
images, statistics, etc. In fact, anything that can be stored digitally can serve as data
for ML. The algorithms improve their learning over time autonomously, using discovered
patterns and extracted knowledge from data and information in the form of observations
and real-world interactions. The acquired knowledge allows these systems to correctly
generalize to new settings.

Accordingly, ML techniques learn from data and build a mathematical model over input
data. The input data used to learn ML techniques are usually divided in three data
sets: training, validation and test sets [Bis06]. The training dataset is the sample of
data used to initially fit the model. In fact, the algorithm sees and learns from this data.
The validation dataset is actually used to provide an unbiased evaluation of a model
fit on the training dataset while tuning model hyperparameters. Indeed, the algorithm
occasionally sees these data, but never learns from them. They are used to update the
level of hyperparameters during learning. The test dataset is finally used to provide an
unbiased evaluation of a final model fit on the training dataset. Accordingly, these data
are only used once the ML technique is completely trained and a final model is fitted
(using the train and validation sets).

According to [Bis06], ML techniques can be generally classified into supervised, unsuper-
vised, semi-supervised, and reinforcement learning algorithms. In the following, these
classes are explained briefly.

2.3.1 Supervised learning algorithms

In supervised learning, the machine is taught by an example. The operator provides
the ML technique with a known dataset, wherein the values of input variables and the
corresponding values of the output variables (labels) are known a priori. The algorithm
must then automatically figure out the relationship between the input variables and
the output labels, and use it to predict the output for new input variables [WBK20].
While the operator knows the correct relation between the inputs and the outputs,
the algorithm observes and identifies patterns in data, learns from observations, and
makes predictions. While learning, the algorithm makes predictions and is corrected
by the operator. This learning process continues until the algorithm achieves a high
level of accuracy/performance. Depending on the aim of learning, supervised learning
algorithms can be classified into classification, regression, and forecasting algorithms. In
classification tasks, the goal is to draw a conclusion from observed values and determine
to what class new observations belong. For example, when filtering emails as ”spam”
or ”not spam”, the ML technique must observe the available data and filter the emails
accordingly. In regression tasks, the ML technique must first understand, then estimate
the relationships among a set of independent variables and one dependent variable. In
forecasting tasks, the ML technique makes predictions about the future based on the
past and present data.
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Classical supervised learning algorithms include Linear Regression (LR) to model the
relationship between one dependent variable (response) and one or more independent
(explanatory) variables, Logistic Regression (LogR) to model the probability of a binary
response (e.g., true/false, yes/no) given a set of input variables, Linear Discriminant
Analysis (LDA) to find a linear combination of variables (features) that characterizes
or separates two or more classes of objects, Support Vector Machine (SVM) to find a
hyperplane in an N -dimensional space (N – the number of variables) that distinctly clas-
sifies the input data points, Naive Bayes (NB) to classify every variable as independent
of any others using probability, Gradient Boosting (GB) to predict a model in the form
of an ensemble of weak prediction models, Decision Tree (DT) to create a model that
predicts the value of a target variable by learning simple decision rules inferred from the
input data, Random Forest (RF) that is similar to DT but operates by constructing a
multitude DTs at training time, k-Nearest Neighbor (kNN) to estimate how likely a data
point is to be a member of one class or another, and finally, Artificial Neural Network
(ANN) that comprises ”units” arranged in a series of mutually-connected layers to model
non-linear relationships in high-dimensional data, etc [Wit+05].

In a more advanced scheme, Few-Shot Learning (FSL), also known as Low-Shot Learning
(LSL) in few sources, is a type of supervised ML technique where the training dataset
contains limited information [Wan+20a]. FSL aims to build accurate models with low
amount of training data.

2.3.2 Unsupervised learning algorithms

The unsupervised ML techniques are used when there is no label for the training data
and no answer key or human operator is available to provide instruction. Therefore,
the values of input variables are known while there are no associated value for the
output variables. In an unsupervised learning process, the ML technique is then left
to figure out and describe the patterns hidden in the input data [WBK20]. Due to
more available unlabeled data, an unsupervised ML technique assesses more data and
gradually improves its ability to make decisions on that data and becomes more refined.

Clustering, Association Rules (ARs) and Dimension Reduction (DR) are three main
tasks of unsupervised learning [WBK20]. In clustering, the main goal is grouping sets of
similar data (based on defined criteria) into distinct clusters. Clustering task is useful for
segmenting data into several clusters and performing analysis on the data of each cluster
to find patterns. In association rules learning, the main aim is to discover interesting
relations between variables in large datasets to identify strong rules discovered in the
data using some measures of interestingness [KK06]. Dimension reduction is finally to
reduces the number of variables being considered to find the exact information required
[Cun08].

Classical unsupervised learning algorithms include k-means clustering to categorize un-
labeled data into k number of clusters (value of k is given a priori) based on the features
provided, Shared Nearest Neighbor Clustering (SNNC) to categorize high-dimensional
data into cluster of varying density that share many of their nearest neighbors, Self-
Organizing Map (SOM) to produce a low-dimensional (typically two) representation of
a higher dimensional dataset while preserving the topological structure of the input
data, Principal Component Analysis (PCA) to reduce the dimension of the input data
by computing the principal components and using them to perform a change of basis on
the data (i.e., keeping the first few principal components and ignoring the rest), Mul-
tiple Correspondence Analysis (MCA) to detect and represent underlying structures in
nominal categorical data, and finally, Apriori algorithms for ARs to recognize properties
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that frequently occur in a dataset and to deduce a categorization [AS+94; WBK20].

2.3.3 Semi-supervised learning

In the two previous learning algorithms, either labels are present for all the observa-
tions in the dataset (supervised learning) or there are no labels (unsupervised learning).
Semi-supervised learning falls in between the two. In general, semi-supervised learn-
ing is similar to supervised learning, but uses both labelled and unlabeled data. The
idea behind semi-supervised learning is that even though the group memberships of the
unlabeled data are unknown, this data carries important information about the group
parameters. By using this combination, ML techniques can then learn to label the
unlabeled data. Therefore, the goal of semi-supervised learning is to understand how
combining labeled and unlabeled data may change the learning behavior, and design
algorithms that take advantage of such combination [ZG09].

2.3.4 Reinforcement learning algorithms

Reinforcement Learning (RL) is a type of ML technique that enables an agent to learn
in an interactive environment by trial and error using feedback from its own actions and
experiences” [KLM96; SB18]. Figure 3 illustrate a generic scheme of RL algorithm. In
RL, the environment is the agent’s world in which it lives and interacts. The agent’s
action is the way by which it interacts with the environment, however; it cannot influence
the rules or dynamics of the environment by its actions.

Figure 3 – A generic scheme of RL algorithm

With every interaction of the agent with the environment, the environment returns a
new state of the environment, making the agent move to a new state. The environment
also sends a positive value (i.e., the so-called reward) to the desired actions, and sends
a negative value (i.e., the so-called punishment) to punish undesired behaviors. These
values are scalar values that act as feedback for the agent whether its action was good
or bad. This procedure allows the agent to seek long-term and maximum overall reward
to achieve an optimal solution. This optimal solution is also called the optimal policy.
The policy is essentially a probability that tells the agent the odds of certain actions
resulting in rewards, or beneficial states. Accordingly, the RL algorithm attempts to
iteratively maximize the cumulative reward collected by an agent through trial-and-
error interactions with its environment. RL differs from supervised learning in a way
that in supervised learning the training data has the labels by which the model is trained
whereas in RL, there is no label, and the reinforcement agent decides what to do to
perform the given task. In the absence of a training dataset, the agent actually learns
from its experience.

RL algorithms can be mainly divided into two model-based and model-free categories
[SB18]. In this context, the model helps the agent to infer its environment. For example,
using the model, the agent might predict the next state and next reward, given its current
state and action. In model-based algorithms, the RL environment can be described with
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a Markov decision process (MDP), which consists of the set of states and actions, as well
as a reward function and the Transition Probability Distribution (TPD) associated with
the MDP. The TPD and the reward function are often collectively called the ”model” of
the environment. The goal of the agent is then to find out the optimal policy (i.e., the
best sequence of actions) using the model of the environment to maximize its cumulative
reward. However, for most problems, including COPs, such a model is not available
[Wau+13]. In such cases, model-free algorithms can be used that does not use the
transition probability distribution.

Among model-free RL algorithms, including Learning Automata (LA), Opposition-based
Reinforcement Learning (OPRL), Monte Carlo RL, State-action-reward-state-action (SARSA),
Q-learning (QL), SARSA [RN94] and Q-learning [Wat89] are two common algorithms
that have been widely used. The SARSA starts by giving the agent what is known as
a policy. Accordingly, SARSA is also called an on-policy algorithm that learns based
on its current action derived from its current policy. The Q-learning, as a Monte Carlo
and Temporal Differences algorithm [SB18], is an off-policy method in which the agent
learns based on an action derived from another policy. Indeed, the agent receives no
policy, meaning its exploration of its environment is more self-directed [Wat89]. These
techniques actually differ in the way of exploring their environments. Despite their sim-
plicity and freeness of the environment’s model, these two algorithms lack generality, as
they do not have the ability to estimates unseen states. In the following, the Q-learning
algorithm is explained in more detail, since it will be used in our proposed framework
in Chapter 4.

Q-learning algorithm – In Q-learning, each state-action pair (s, a) ∈ S×A is associated
with a score Q(s, a) ∈ R, representing the expected gain associated with the choice of a
possible action a at state s:

Q(s, a) := Q(s, a) + α[r + γ max
a′

Q(s′, a′) − Q(s, a)] , (2.12)

where s is the current state, a is the action taken in state s, s′ is the next state after
performing action a, and a′ is a possible action in state s′. Furthermore, α (0 < α ≤ 1)
controls the learning rate that determines the ratio of accepting newly learned infor-
mation, r is the reward received after performing action a, and γ (0 < γ ≤ 1) is the
discount factor that determines the influence of the future reward maxa′ Q(s′, a′). Note
that S is a finite set, and possible actions A may generally depend on the state.

An important point in the Q-learning algorithm is making a balance between exploration
and exploitation when selecting the actions. One strategy could be to always select the
action with the maximum Q-value which would augment the exploitation property of the
Q-learning algorithm, as the other state-action pairs remain unexplored. On the other
hand, Q-learning is proven to converge to the optimal Q(s, a) if each state-action pair is
visited numerous times [Wat89]. Therefore, besides the state-action pair with maximum
Q-value, other pairs should also be given a chance to be executed/explored. The ϵ-
greedy strategy [SB18] is a good strategy that makes a balance between exploration and
exploitation by attributing an ϵ selection probability to other actions. It is expressed as
follows:
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a =

arg max
a∈A

Q(s, a) with probability 1 − ϵ

any action selected uniformly and randomly in A with probability ϵ
(2.13)

It is common practice to reduce the value of ϵ throughout the search process using a
parameter β called ϵ-decay. This degradation aims at moving from exploring new actions
toward exploiting the best actions throughout the search process.

The Q-learning algorithms becomes less effective if the number of actions and states
increase significantly. In such cases, updating the table of Q-value become quickly out
of control, and the amount of memory required to save and update the table as well as the
amount of time required to explore each state increase unrealistically. In this situation,
the Q-values are approximated using other ML techniques like ANNs. These algorithms
are called Deep Reinforcement Learning (DRL), or particularly Deep Q-learning (DQL).

2.4 Adaptive Operator Selection & Learning

Through designing MHs with multiple search operators, we can take advantage of sev-
eral operators with different performances by switching between them during the search
process. In addition, an appropriate implementation of different operators significantly
affects the exploration and exploitation abilities of a MH and provides an Exploration-
Exploitation balance during the search process. In designing such algorithms, one im-
portant question to answer is which operator (among multiple operators) to select and
apply at each stage of the search process? This question is referred to as the operator
selection problem.

There are two operator selection mechanisms: offline operator selection or online opera-
tor selection. In offline operator selection, the order of the search operators is determined
a priori and is kept fixed throughout the search process. On the contrary, in online op-
erator selection, the operators are dynamically selected and employed during the search
process. AOS is an online operator selection mechanism that select the operators based
on an online feedback on their performance. In this way, AOS gives the chance to adapt
MHs behavior to the characteristics of the search space by selecting their operators
during the search process based on their historical performance. AOS consists of five
main steps: performance criteria identification, reward computation, credit assignment,
selection, and move acceptance which are explained in detail in Section 3.5.1 of Chapter
3.

In AOS literature, most studies have used simple methods for credit assignment. The
simple methods assign an initial score (set to a same value, typically zero) to each opera-
tor at the beginning of the search and update this score at each iteration by accumulating
the scores obtained from the beginning of the search or during limited iterations. The
scores could increase by one (additive) if the operator has been successful, and decrease
by one (subtractive) if the operator has not been successful [Fia10; Bur+13]. In 2021, a
meta-analysis has been done by [TSH21] to investigate the added-value of using simple
credit assignment methods, with focus on the adaptive large neighborhood search MH.
According to their analysis, AOS with simple credit assignment methods do not bring
significant added-value to the overall performance of the MH.

On the other hand, in recent years, the use of ML techniques for AOS has attracted
the researchers [MGS20; Ahm+18; GLL18; Zha+21]. ML techniques can help the AOS



Chapter 2. Theoretical Background 44

to use feedback information on the performance of the operators. To be more specific,
ML techniques can be integrated into the credit assignment step to gather feedback
information from the search, determine how to assign a credit to each operator based
on the gathered feedback, and the rules to update this credit throughout the search
process. In this regard, reinforcement learning techniques such as Q-learning [MGS20]
and learning automata [GLL18] have been used for AOS.

The overall scheme of the AOS framework using ML techniques is shown in Figure 4.
This framework consists of two main components, a ML technique integrated into a
MH to help select the operators in order to solve a given COP. In this thesis, a general
framework is developed based on the idea of Figure 4, wherein we used the Iterated
Local Search (ILS) as a MH and the Q-learning algorithm as the ML algorithm.

Figure 4 – AOS with an online learning
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This chapter presents our first contribution in this thesis, a comprehensive review on
the ML-into-MH integration, which has been published in the European Journal of Op-
erational Research [Kar]. In this review, first, we propose a unified taxonomy and
classification on the use of ML techniques in the design of different elements of MHs
for different purposes. According to our classification, ML techniques can be integrated
into MHs for different purposes including Algorithm Selection, Fitness Evaluation, Ini-
tialization, Evolution, Parameter Setting, and finally, Cooperation. A whole section has
been dedicated to each class of the proposed taxonomy. In each section, first, we define
the main concepts and classify and review the articles under the corresponding category
with focusing on a set of major features (such as the online/offline learning, the used
ML techniques, etc.). Then, we analyze the articles in a technical manner, provide tech-
nical discussion on the guidelines, requirements, and challenges of this integration, and
identify the existing research gaps. Finally, based on the identified gaps, we propose
numerous insights for future research.

One of the main contributions of this review that distinguishes it from other review
studies on ML-into-MH integration is that this review not only classifies different existing
studies in the literature but also follows a technical viewpoint to address a set of the
technical challenges that a user may face when integrating ML techniques into MHs.
Considering the identified research gaps and the challenges, this review provides a set of
research insights and future directions that is worth exploring more.

We take the first step by ourselves to address one of the research gaps identified in this
chapter by proposing a general framework to integrate RL into MHs for the purpose of
operator selection in Chapter 4.

3.1 Taxonomy and review methodology

This section aims first at providing the main contributions of our review study comparing
to the studies existing in the literature. Then it presents a taxonomy to provide a
common terminology and classification on the integration of machine learning into meta-
heuristics. Finally, the search methodology describing the procedure of searching and
obtaining the relevant papers is presented.

3.1.1 Contributions

In this section, we elaborate the main features of our review study that distinguish it
from the existing review studies in the literature. There are several review studies in the
literature that study the integration of ML techniques and MH, either for a specific pur-
pose or for different purposes. [JDT06] provided a short survey on how ML techniques
can help MHs with no detailed discussion on how such integration occurs. Another sur-
vey has been done by [Zha+11] on how ML techniques can improve the performance of
evolutionary computation algorithms. [CDJ12] investigated the synergy between oper-
ations research and data mining, with a focus on multi-objective approaches. With the
rapid advances in the use of new ML techniques in MHs for even new purposes, as well
as the increasing trend in the number of annually published papers in the area, there is
a need to update the outdated review papers [JDT06; Zha+11; CDJ12]. In this regard,
[Tal16] studied different ways of hybridization between different MHs as well as hybridiz-
ing MHs with mathematical programming, constraint programming, and ML. Although
the author provides a good overview on how to hybridize MHs, it is less focused on
the integration of ML into MHs. [Cal+17] reviewed the integration of ML and MH for
solving optimization problems with dynamic inputs. The authors enumerate different
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ways of integrating ML into MH and vice versa; however, their work lacks a technical
discussion on the requirements, challenges, and future works of each way of integration.

More recently, more general and comprehensive studies have been done by [STÃ19] and
[Tal20] on integrating ML and MH. [STÃ19] studied the integration of ML and opti-
mization in general and not particularly MHs. The authors review all four optimization-
in-ML, ML-in-optimization, ML-in-ML, and Opt-in-Opt ways of integration. However,
[STÃ19] provided fewer details on the integration of ML in MHs compared to [Tal20].
Merely providing general research directions, it lacks a comprehensive discussion on the
research gaps and future research directions for the ML-in-optimization way of integra-
tion. [Tal20] provided a more complete and unified taxonomy on the integration of ML
into MHs. The author identifies the integration of ML in MHs in three levels: 1) problem
level integration, where ML is used, for example, to decompose the solution space or to
reformulate the objectives and constraints of an optimization problem, 2) high-level in-
tegration between MHs, where ML techniques are used to make a link between different
MHs, and 3) low-level integration in a MH, where ML techniques are used in the com-
ponents of MHs (e.g., initialization, operator selection, population management, etc.).
Although the work by [Tal20] is a good comprehensive and pedagogical review paper
explaining different general ways (i.e., levels) that ML techniques can be integrated into
MHs, it does not go into the details on the requirements, challenges, and possible future
research directions on the use of ML techniques in each level of integration.

Accordingly, the main difference of our review comparing to the existing review studies
in the literature is that in addition to a classification over all different purposes that
ML can be integrated into MHs, this review provides a technical study that identifies
and clarifies the technical challenges, requirements, and limitations of this integration.
Finally, by providing a broader view over this integration, it proposes new ideas and re-
search directions for future research to fill the identified gaps and deal with the identified
challenges.

3.1.2 Taxonomy

Although MHs and ML techniques have been initially developed for different purposes,
they may perform common tasks such as feature selection or solving optimization prob-
lems. MHs and ML techniques frequently interact to improve their search and/or learn-
ing abilities. MHs have been widely employed in ML tasks (MH-in-ML) for decades
[WA05; Xue+15]. For Instance, MHs can be used for feature selection, parameter set-
ting of ML techniques [Oli+10], or pattern recognition [KIG14]. ML techniques are being
extensively integrated into MHs (ML-in-MH) to make the search process intelligent and
more autonomous. For instance, RL can help to select the most efficient operators of
MHs during the search process [San+14].

The purpose of this chapter is to review the studies wherein ML techniques have been
integrated into MHs for solving COPs. We propose a taxonomy on integrating ML
techniques into MHs, ML-in-MH branch of Figure 5. Discovering the MH-in-ML branch
of Figure 5 is out of the scope of this thesis, and we refer interested readers to the
latest literature reviews on the use of MHs in ML tasks and the references cited therein
[Cal+17; STÃ19; GGNS20].

We propose to classify different types of integration according to the taxonomy presented
on Figure 5. According to this classification, ML techniques can be integrated into MHs
for the following purposes:

• Algorithm selection – When solving an optimization problem with MHs, the first
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decision is to select one or a set of MHs for solving the problem. ML techniques
can predict the performance of MHs in solving optimization problems.

• Fitness evaluation – The success of any MH in achieving a specific goal (objective)
is evaluated by fitness evaluation of the solutions during the search process. ML
techniques can speed up the search process by approximating computationally
expensive fitness functions.

• Initialization – Any MH starts its search process from an initial solution or a
population of solutions. ML techniques can help to generate good initial solutions
by using the knowledge of good solutions on similar instances, or speeding up the
initialization by decomposing the input data space into smaller sub-spaces.

• Evolution – It represents the entire search process, starting from the initial solu-
tion (population) toward the final solution (population). ML techniques can intel-
ligently select the search operators (i.e., Operator selection), evolve a population
of solutions using the knowledge of good and bad solutions during the search (i.e.,
Learnable evolution model), and to guide the neighbor generation process using
the knowledge obtained during the search process (i.e., Neighbor generation).

• Parameter setting – Any MH, depending on its nature, has a set of parameters
which need to be set before the search process starts. ML techniques can help to
set or control the values of the parameters before or during the search process.

• Cooperation – Several MHs can cooperate with each other to solve optimization
problems in parallel or sequentially. ML techniques can improve the performance
of cooperative MHs by adjusting their behavior during the search process.

Each type of integration in Figure 5 can also be classified from another viewpoint into:
problem-level, high-level, and low-level integration [Tal20]. Algorithm selection and fit-
ness evaluation represent a high-level and problem-level integration of ML into MHs.
Depending on the strategy to generate initial solutions, initialization belongs to either
problem-level or low-level integration. Evolution and parameter setting fall in the cat-
egory of low-level integration. Finally, cooperation may belong to either high-level or
low-level integration, depending on the level of cooperation.

Parameter 
Setting

ML used for ...

ML MH

MH-in-ML

InitializationAlgorithm 
Selection

Cooperation

Learnable Evolution Model 

Operator Selection

Evolution

Neighbor Generation

ML-in-MH

Fitness 
Evaluation

Figure 5 – Taxonomy on the use of ML in MHs (ML-in-MH)

3.1.3 Search methodology

To conduct the literature review, first, well-known scientific databases including Sco-
pus, Google Scholar, IEEE Explore, Science Direct, Springer, ACM Digital Library, and
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Emerald have been carefully searched to find the relevant papers in both scientific jour-
nals and international conferences. To do that, we have identified a set of particular
keywords for each type of integration. Then, the search process is conducted using the
following search rule:

{keyword1 AND keyword2 AND keyword3 AND keyword4}

keyword1 is an element of a set of keywords related to the integration types of ML tech-
niques into MHs, as explained in Section 3.1.2 and Figure 5. More precisely, keyword1
belongs to the union of the sets {algorithm selection, algorithm recommendation, au-
tonomous algorithm selection, performance prediction, meta-learning, meta-feature} (for
the algorithm selection), {fitness approximation, surrogate model, metamodel, fitness re-
duction} (for the fitness evaluation), {initialization, initial solution generation} (for the
initialization), {adaptive operator selection, autonomous operator selection, learnable
evolution model, non-Darwinian evolution, pattern extraction, rule extraction, rule in-
jection} (for the evolution), {parameter setting, parameter tuning, parameter control}
(for the parameter setting), and, {cooperation, cooperative MHs, parallel MHs, Hybrid
MHs, sequential MHs} (for the cooperation of algorithms). keyword2 stands for the ML
techniques extracted from Section 2.3 in Chapter 2. keyword3 accounts for different
MHs, ranging from single-solution to population-based MHs, extracted from Section 2.2
in Chapter 2. Finally, keyword4 is dedicated to the COP under study. We provide a
complete list of COPs in Table A.1 in Appendix A.2.

After filtering the obtained papers, a total number of 136 papers are kept, which are
relevant to the scope of this review. All these papers are reviewed and classified in de-
tails. Figure 6 shows the number of reviewed papers per year (from 2000 to early 2021)
and for each type of integration illustrated in Figure 5. Looking at the whole number of
papers regardless of which type of integration they belong to, Figure 6 shows a signifi-
cant increase in the number of papers integrating ML techniques into MHs for different
purposes throughout the last two decades, which illustrates a meaningful growth in the
knowledge and popularity of the topic. Among all types of integration, studies on evo-
lution contribute the most to the total number of papers over time, and an increasing
trend can be seen for the last decade. Algorithm selection and initialization have been
at the second place of attention, and they have gained significant attention throughout
the last two decades. Cooperation, parameter setting, and fitness evaluation are also the
types of integration with semi-constant trend of attention. In summary, Figure 6 illus-
trates that algorithm selection, evolution, and initialization are being studied attentively,
and fitness evaluation, parameter setting, and cooperation are less-studied directions and
they are worthy to be explored more in the future.

The rest of this chapter is structured as follows. Each section explains in details each
way of integrating ML techniques into MHs and starts with an introduction to the cor-
responding type of integration. Then, relevant papers are reviewed, classified, and ana-
lyzed. Finally, the chapter ends with a comprehensive discussion on the corresponding
guidelines, requirements, challenges, and future research directions. Finally, conclusions
and perspectives are given in Section 3.8.

3.2 Algorithm selection

There are many studies in the literature developing high-performance MHs for well-
known COPs. However, there is no single MH that dominates all other MHs in solving
all problem instances. Instead, different MHs perform well on different problem in-
stances (i.e., performance complementarity phenomena) [Ker+19]. Therefore, there is
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Figure 6 – Number of papers per year and per each type of integration of ML techniques
in MHs for solving COPs

always an unsolved question as "Which algorithm is likely to perform best for a given
COP" [Ric+76]? The ideal way to find the best algorithm to solve a COP, when the
computational resources are unlimited, is to exhaustively run all available algorithms
and choose the best solution, no matter by which algorithm it has been obtained. How-
ever, because of the limited computational resources, it is practically impossible to test
all available algorithms on a particular problem instance. In this situation, a major ques-
tion arises as "Among the existing algorithms, how to select the most appropriate one
for solving a particular problem instance?". ML techniques help to answer this question
by selecting the most appropriate algorithm(s). This is where the Algorithm Selection
Problem (ASP) steps in.

ASP aims at automatically selecting the most appropriate algorithm(s) for solving a
problem instance using ML techniques [Ker+19; Kot14]. The original framework of
ASP was developed by [Ric+76] based on four principal components: 1) the problem
space, including a set of problem instances, 2) the feature space, including a set of
quantitative characteristics of the problem instances, 3) the algorithm space, including a
set of all available algorithms for solving the problem instances, and 4) the performance
space that maps each algorithm from the algorithm space to a set of performance metrics
such as the Objective Function Value (OFV), CPU Time (CT), etc. The final goal is to
find the problem-algorithm mapping with the highest performance.

To find the best problem-algorithm mapping, ASP employs Meta-learning, a subfield
of ML, that learns the problem-algorithm mapping on a set of training instances and
creates a metamodel. The metamodel is then used to predict the appropriate map-
ping for new problem instances [Kot14]. In solving COPs, studying ASP has enabled
researchers to take advantage of various MHs by systematically selecting the most ap-
propriate algorithm among the existing ones, and has resulted in significant performance
improvements [Kot16]. In the literature, ASP has been referred to as algorithm selec-
tion [Kan+16], per-instance algorithm selection [Ker+19], algorithm recommendation
model [Chu+19], and automated algorithm selection [DP18]. However, they all share the
same goal of automatically selecting the most appropriate algorithm(s) for a particular
problem instance.

We illustrate the procedure of ASP in Figure 7. As it can be seen in Figure 7, ASP
involves two main steps: 1) meta-data extraction, and 2) meta-learning and metamodel
creation.

• Meta-data extraction – Given the problem and algorithm spaces, the goal is
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to determine the feature and performance spaces called meta-data. Meta-data is
classified into two categories: meta-features and meta-target features [Kan+16].
Meta-features are a set of quantitative features that represent the properties of a
problem instance, while meta-target features are a set of performance data that de-
scribe the performance of each algorithm on a particular problem instance. Consid-
ering the importance of defining appropriate meta-features, there are several works
in the literature which aim to identify good meta-features for different COPs, in-
cluding SAT [Ker+19], TSP [SML12; Mer+13; Ker+19], AP [AZ02; SML12], OP
[Bos+18], KP [SML12], BPP [SML12], and GCP [SML12].

• Meta-learning and metamodel creation – Using the meta-data, a metamodel
is created which can predict the performance of each algorithm for each problem
instance and determine the problem-algorithm mapping. Depending on the type of
prediction expected from the metamodel, different ML techniques can be used for
meta-learning and creating the metamodel. Different types of prediction include
selecting the best algorithm [SM08], selecting a set of most appropriate algorithms
[Kan+11a], and ranking a set of appropriate algorithms [Kan+16] for solving a
problem instance. Depending on the type of prediction, the task of meta-learning
could be Single-label Classification (SLC), Multi-label Classification (MLC), and
Label-ranking Classification (LRC), respectively. Besides classification techniques,
regression techniques such as LR can also be used to predict the performance of
each MH. Using regression techniques, the meta-learning problem is a multiple
regression problem wherein one target variable is considered for each MH.

Considering the way to create the metamodel, ASP can be either online or offline. In
offline ASP, the metamodel is constructed using a particular set of training instances with
the aim to predict the problem-algorithm mapping for new problem instances [SM08;
Kan+16; Mir+18]. However, in online ASP, the metamodel is constructed and employed
dynamically while solving a set of problem instances [Arm+06; GS10; Deg+16; Ker+19].
Furthermore, the algorithm space, commonly known as algorithm portfolio, is classified
as static or dynamic. Static portfolios contain a set of fixed algorithms which are included
into the portfolio before solving a problem instance and the composition of the portfolio
along with the algorithms within the portfolio do not change during solving an instance,
while dynamic portfolios contain a set of algorithms whose composition and configuration
may change while solving a problem instance [Kot14].

In the rest of this section, the research papers studying ASP for COPs are reviewed
and classified, followed by a detailed discussion on the corresponding guidelines, require-
ments, challenges, and future research directions.
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Figure 7 – Procedure of ASP
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3.2.1 Literature classification & analysis

Inspired from Figure 7, Table 2 classifies the papers studying ASP for COPs based on
different characteristics such as problem space, algorithm space, algorithm portfolio type,
performance space, learning mechanism, meta-learning task, the employed ML technique,
and the size of the training set. To the best of our knowledge, Table 2 lists all relevant
papers, including the most recent papers in the literature that study ASP for selecting
MHs to solve COPs using ML techniques. Other papers which miss at least one of these
three main components (i.e., MHs, ML techniques, or COPs) are out of the scope of this
thesis and are not reviewed in this thesis.

Regarding the problem space, TSP and QAP are the most studied problems compared
to the other COPs. Also, Table 2 shows that a majority of the studied COPs have a
common characteristic, they either have permutation-based representation (e.g., TSP,
VRP, FSP) or discrete value based representation (e.g., AP, QAP). One of the major
reasons for such an observation is the availability of various powerful MHs for these
representations, as well as the simplicity of manipulating these types of representations
[Koç+16; AA16; AB+18].

Considering the algorithm space, Table 2 reveals that the algorithm portfolio in most of
the studies is composed of MHs with different mechanisms, varying from single-solution
to population-based, from memory-less MHs (e.g., ILS) to MHs with memory (e.g., TS),
from MHs with accepting only better solutions (e.g., ILS) to MHs with accepting worse
solutions (e.g., SA), and from MHs with fixed neighborhood size (e.g., TS and SA)
to MHs with variable neighborhood size (e.g., VNS). The utilization of such different
algorithms in a portfolio highlights the fact that different MHs with different search
mechanisms perform differently for different instances of COPs [San+14].

Table 2 also shows that all reviewed papers use a static portfolio. Since the algorithms
and their configurations do not change in static portfolios, their selection becomes more
crucial for the overall success of the resolution process. An efficient way to construct the
portfolio is to involve algorithms that complement each other, such that good perfor-
mance can be achieved on a wide range of different problem instances. There has been
a debate on the composition and characteristics of the algorithms within the portfolio
among the reviewed papers. The first and the most straightforward manner to construct
the portfolio is to randomly select algorithms from a large pool of diverse MHs. The
second manner is to incorporate MHs with the best overall performance in the portfolio.
However, the third and the most promising manner is to construct a portfolio with al-
gorithms of complementary strengths. An ASP with a portfolio composed of MHs with
complementary strengths logically seems to be more efficient, comparing to an ASP with
a portfolio composed of MHs with the best overall performance. However, most research
papers construct the portfolio less explicitly using the MHs that have performed well in
the literature when solving particular instances of the COP at hand, regardless of their
strengths and weaknesses when facing new problem instances.

Table 2 – Classification of papers studying ASP
Ref. Prob. space Alg. space Portfolio Perf. space Learning Task ML tech. Size

[Hut+06] SAT ILS Static CT Offline Reg. LR 30000
[SM08] QAP ILS, TS, ACO Static OFV Offline SLC ANN 644
[Kan+11a] TSP TS, GRASP, SA,

GA
Static OFV Offline MLC k-NN, ANN,

NB
2500

[Kan+11b] TSP TS, GRASP, SA,
GA

Static OFV Offline LRC ANN 2000

[Kan+12] TSP TS, SA, GA, ACO Static OFV Offline LRC ANN 300
[PBA13] QAP TS, VNS Static OFV Offline SLC LR, SVM, AR 137
[MDC14] PSP TS, GA Static OFV Offline SLC DT 3140
[SM+14] GCP HC, TS, ACO Static OFV Offline MLC SVM, NB 675

To be continued ...
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Table 2 (continued)
Ref. Prob. space Alg. space Portfolio Perf. space Learning Task ML tech. Size

[Kan+16] TSP TS, SA, GA, ACO Static OFV Offline LRC ANN, k-NN,
DT

600

[BAW17] QAP TS, VNS, GA, MA Static OFV, CT Offline SLC k-NN 94
[Leó+17a] BAP LNS Static OFV Offline LRC k-NN 720
[Leó+17b] TSP, VRP GRASP, SA, LNS Static OFV Offline LRC k-NN 130
[Mir+18] MAX-SAT GA, PSO Static OFV Offline SLC ANN, SVM,

DT
555

[PKD18] FSP HC, SA, TS, ILS Static OFV Offline MLC GB 27000
[PDK18] FSP HC, SA, TS, ILS Static OFV Offline SLC DT 12000
[DP18] QAP BLS, ACO, TS Static OFV Offline SLC RF 135
[DGVDC18] AP TS Static OFV Offline SLC RF 286
[GR+19] VRP EA, GA, PSO Static OFV Offline SLC ANN 56
[DP20] QAP BLS, ACO, MA Static OFV Offline MLC RF 5000
[WDS20] BAP HC, GRASP, ILS Static OFV, CT Offline SLC k-NN 2100
[Sad+20] MAX-SAT GA, GRASP Static OFV, CT Offline SLC k-NN, RF,

ANN
1534

[RR+21] TTP ILS, SA, VNS Static OFV Offline Reg. LR 6000

Considering the performance space, we can see that most of the papers evaluate the
performance of an algorithm based on the OFV of the obtained solutions. Although
considering the quality of solutions in terms of their OFV is the most common criterion
to compare algorithms, there are other criteria that play an important role when selecting
an algorithm, among which the CT and robustness have a high importance, especially
for solving COPs [San+14; CWL19; MGS20]. Therefore, OFV, CT, and robustness are
the three most important criteria by which the algorithms could be compared. Although
there is a trade-off between these measures, and usually no algorithm performs best in
all criteria, taking into account these criteria provides more efficient algorithm selection
when solving COPs [BAW17; WDS20]. The multiple criteria ASP can be modeled
through a multi-objective perspective [Ker+19].

Table 2 shows that all reviewed papers have created the metamodel in an offline manner,
and none of them studies the online ASP for solving COPs. A big disadvantage of ASP
in an offline manner is that in this way, the performance of the selected algorithms is
not monitored to confirm whether they satisfy the expectations that led them being
selected or not. Accordingly, offline ASP is inherently vulnerable to bad choices of MHs;
however, the advantage of an offline ASP is its lower computational effort since the
metamodel is created once based on a set of training instances. On the contrary, the
major advantage of an online ASP is the more justified decisions that can be made during
the algorithm selection process, which also reduces the negative impact of a bad choice.
However, adding such flexibility imposes an extra effort, as the metamodel is created
and employed dynamically while solving a set of problem instances and thus decisions
on algorithm selection need to be made more frequently throughout the resolution of the
new problem instances. Broadly speaking, there is no evidence to show the superiority
of one method over the other, and both methods have led to performance improvements
[Kan+16; WDS20]. Hence, the choice of whether to create the metamodel in an offline
or an online manner depends highly on the specific application.

Another studied characteristic in Table 2 is the meta-learning task. The most common
output of ASP is a single best algorithm from the portfolio and using it to solve the
problem instance (i.e., the result of SLC task). A disadvantage of selecting a single
best algorithm is having no way of compensating a wrong selection. Indeed, if a single
algorithm is selected and shows unsatisfying performance on a new problem instance,
there are no other recommended algorithms to replace such an inefficient algorithm. An
alternative approach is selecting multiple algorithms (i.e., the result of MLC and RLC
tasks). However, there is no report to show that one of these approaches is superior to
another.
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3.2.2 Discussion & future research directions

In this section, first, a guideline is provided for researchers on when to study ASP
and which requirements to meet to study ASP. Second, a set of technical challenges
of studying ASP are discussed. Finally, several future research directions are provided
based on the research gaps extracted from Table 2.

3.2.2.1 Guideline & requirements

The aim of providing a guideline for studying ASP is to help researchers to understand
that although studying ASP may provide the most appropriate MH(s) to solve COPs,
it is not always the best choice. In the following, we first describe the situations where
ASP is useful; then, the requirements of using ASP are elaborated.

Studying ASP is useful when the computational resources (i.e., available time and the
number of available cores) for solving a problem instance are limited. This is the case
for optimization problems at an operational level where limited time is available, and
the problems should be solved more frequently. On the other hand, for the optimization
problems at the strategic level (e.g., FLP), where there is enough time, the best choice is
to execute all algorithms and select the most appropriate one, since in the strategic level,
finding better solutions outweighs the computational cost of executing all algorithms.
Furthermore, another moment when studying ASP becomes indispensable is when there
are several efficient competitive algorithms for the problem at hand and none of them
could be definitely selected for solving the problem instance. In addition, ASP can help
non-experts to select appropriate algorithm(s) for solving optimization problems. In
other words, ASP can be replaced by the traditional trial-and-error optimization tasks,
especially when the number of candidate algorithms is large and little prior knowledge
of the problem is available.

Once the use of ASP is justified, a set of requirements should be fulfilled before applying
ASP. The first requirement for using ASP is affordability of the selection procedure in
terms of computational resources. In fact, if studying ASP for a problem instance is
more expensive than solving the problem instance with all algorithms and selecting the
best one, there is no need at all to study ASP. The next important requirement that
could be also a challenge for ASP is data availability. When creating the metamodel,
it is necessary to provide a pool of sufficient training instances that well represent new
instances. It should be noted that having a pool of sufficient instances does not guar-
antee the efficiency of ASP, and instance dissimilarity and algorithmic discrimination
are two other requirements that need to be satisfied [SM+14]. The former denotes the
necessity of providing instances which are as diverse as possible and spread out over
different regions. The latter denotes the necessity to provide instances that show differ-
ent behaviors while being solved by different algorithms in the portfolio. Indeed, some
instances should be easy for some algorithms and hard for others. Algorithmic discrim-
ination requirement helps to learn the strengths and weaknesses of different algorithms
when solving different instances with different characteristics.

3.2.2.2 Challenges & future research directions

Despite the effectiveness of ASP in solving COPs, the implementation of an algorithm
selection procedure is not always straightforward, and researchers may face several chal-
lenges throughout the ASP procedure, from the design to its implementation.

The first challenge to deal with is called data generation challenge. As mentioned earlier,
two important requirements of ASP are instance dissimilarity and algorithmic discrim-
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ination that allow generating a rich data set of instances with different characteristics
that leads to a more efficient metamodel creation. To generate such a rich data set,
the algorithms need to be provided with a wide range of instances. This challenge is
twofold: 1) Finding or generating a set of sufficient instances that ensure the data avail-
ability requirements, particularly instance dissimilarity and algorithmic discrimination,
is a complicated task and 2) Executing all candidate algorithms on the generated in-
stances might be very time-consuming if the number of instances is large. This makes the
metamodel creation computationally expensive. This first challenge becomes more and
more complicated if little knowledge is available for the COPs at hand. On the other
hand, it would be less challenging to generate a set of sufficient instances that fulfils
the mentioned requirements for classical COPs for which there exists several instance
libraries (e.g., TSPLIB for TSP [Rei91] and Taillard for FSP [Tai93]).

Apart from the data generation challenge, the second challenge is instance characteri-
zation. A major issue in creating a metamodel is the characterization of the problem
instances through a set of appropriate measures, called meta-features [SML12]. Meta-
features must reveal instance properties that affect the performance of the algorithm.
More informative and appropriate features lead to a better mapping between the meta-
features and algorithm performance, and consequently a high-quality metamodel. The
instance characterization challenge has two aspects; first, the type of meta-features to
extract and, second, the computational time associated with the meta-feature extrac-
tion. The type of meta-features varies from the most basic ones such as descriptive
statistics (e.g., minimum, maximum, mean, and median of input parameters) to more
complex ones such as landscape features of COPs. Taking TSP as an example, the
basic meta-features include "Edge and vertex measures" such as number of vertices,
the lowest/highest vertex cost, and the lowest/highest edge cost, and the more complex
meta-features could be "complex network measures" such as average geodesic distance,
network vulnerability, and target entropy [Kan+16]. Depending on the type of meta-
features, feature extraction can be a computationally cheap task for basic features and
expensive for more complex ones. Therefore, in selecting the meta-features, one should
consider both the level of information they provide and their corresponding computa-
tional time. The optimal way is to select a set of features that are as informative as
possible while computationally affordable. To put the issue into perspective, creating a
high-quality metamodel is a complicated interplay between using a set of diverse train-
ing instances with different behavior over different algorithms and using a subset of
informative meta-features whose extraction is computationally cheap.

There is always an unanswered question on the trade-off between the performance of the
algorithm selection and its complexity, particularly on the extraction of meta-features.
An important direction for future research is moving from problem-specific features
toward more general and simple features, which are computationally cheaper to be ex-
tracted when studying ASP. There is evidence that shows for particular optimization
problems, a small number of simple meta-features suffice for achieving excellent perfor-
mance of ASP [Hoo+18].

In the reviewed studies, the focus has been on heterogeneous portfolios composed of
different MHs with different characteristics; while different configurations of a single
MH in a homogeneous portfolio also show different behavior in solving a COP. Another
intriguing future research direction could be studying ASP for COPs with a homogeneous
portfolio, to select a particular configuration of a single MH among a set of particular
configurations, which is even less challenging compared to dealing with a portfolio of
different algorithms.
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As explained in Section 3.2.2.1, instance dissimilarity and algorithmic discrimination are
two requirements and also two challenges of ASP. An interesting research direction could
be the idea of evolving instances using EAs [Hem06; SMHL10; Mer+13; BT16]. Indeed,
the idea is to use EAs to evolve instances of COPs as distinct as possible to ensure
instance dissimilarity. In this way, a set of diverse instances are obtained, improving the
performance of the metamodel.

Developing an online ASP is another promising future research direction. As shown
in section 3.2.1, all papers have studied offline ASP, where the metamodel is created
using a set of training instances. However, it might be possible to get even better
results using online ASP, which adapts the algorithm selection mechanism while solving
a set of problem instances. Although the online ASP imposes an extra computational
overhead, it increases the robustness, as adjustments (if required) can be applied to
the algorithm selection mechanism during the resolution of COP instances. It is worth
mentioning that the extra overhead can be alleviated by using computationally cheap
meta-features. Another way to cope with the extra overhead is using incremental or
online active learning techniques, where an already trained model is used and improved
incrementally during the search process [Lug17].

When the output of ASP is multiple selected algorithms, one can study how multiple
selected algorithms are scheduled to solve a problem instance. The key idea of scheduling
is to execute a sequence of algorithms from a given set, one after another, each for a given
(maximum) time [Kot14]. Most of the research papers in Table 2 proposing multiple al-
gorithms have not studied the algorithm schedule. However, more flexibility is obtained
throughout the search process when an algorithm with particular strength (i.e., explo-
ration and exploitation) is employed whenever needed. Accordingly, one future research
direction could be scheduling multiple recommended algorithms to solve a problem in-
stance. The schedule of algorithms can be either static or dynamic [Kad+11]. In a
static algorithm schedule, algorithms are executed based on a given order. In a dynamic
schedule, the sequence of algorithms may change based on their historical performance,
and certain algorithms may not be used at all.

Another interesting future research direction could be taking into account multiple per-
formance criteria by which the algorithms are evaluated when studying ASP. The mul-
tiple criteria ASP can be modeled through a multi-objective perspective [Ker+19]. Last
but not least, Table 2 reveals that the focus has been mostly on COPs with permutation-
based and discrete value based representations. As a future research direction, ASP can
be extended to other COPs such as different types of scheduling problems for which a
lot of efficient MHs have been developed in recent years [All15].

3.3 Fitness evaluation
Fitness evaluation is one of the key components of MHs to guide the search process
towards the promising regions of the search space. For some optimization problems,
there is no analytical fitness function by which the solutions are evaluated, or even if it
exists, it is computationally expensive to evaluate. ML techniques can be integrated into
MHs to reduce the computational effort for solving such optimization problems either
through fitness approximation [Jin05; Jin11; DMTC17] or fitness reduction [Sax+12].
Fitness approximation is categorized into functional approximation and evolutionary
approximation [Jin05]:

• Functional approximation – It is used when evaluating the solutions using the
original fitness function is computationally expensive. In this condition, the com-
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putationally expensive fitness function is replaced with an approximate model that
imitates the behavior of the original fitness function as closely as possible, while
being computationally cheaper to evaluate. These approximate models are built
using ML techniques such as polynomial regression [SRS10], RF [Zho+05], ANN
[JS04; PK17], SVM [LSS10; GJAP19], Radial Basis Functions (RBFs) [Qas+13],
and Gaussian process models also referred to as Kriging [Kno06]. These ML tech-
niques are trained using a set of training data, wherein the input variable is a
set of features extracted from the solution instances and the output variable is
the original fitness value of each solution instance. The aim is then to approx-
imate the fitness value of the new generated solutions. The approximate model
can be created either offline or online. A particular use of functional approxima-
tion in MHs is known as surrogate-assisted MHs [Jin11], wherein the approximate
(surrogate) model is iteratively refined (i.e., online refining) during the search pro-
cess. The first surrogate-assisted MHs were developed for continuous optimization
problems, and there are numerous efficient surrogate modeling techniques for con-
tinuous functions [Pel+20]. In recent years, they have also gained attraction for
discrete optimization problems [BBZ17]. Surrogate models are categorized into
single, multi-fidelity, and ensemble surrogate models [BBZ17].

• Evolutionary approximation – It is specifically developed to deal with EAs.
Instead of approximating the fitness function, the evolutionary approximation aims
at reducing the computational effort by approximating the elements of the EAs.
There are two main sub-categories of evolutionary approximation:

– Fitness inheritance in which the fitness value of an individual is calculated
based on the fitness values of its parents. For instance, the fitness value of an
offspring can be the (weighted) average of the fitness values of its parents.

– Fitness imitation in which the fitness value of an individual is calculated us-
ing the fitness value of its siblings. Using ML techniques such as clustering
techniques, the population is divided into several clusters, and only the rep-
resentative individuals of each cluster are evaluated. Afterward, the fitness
values of other individuals are calculated based on their corresponding rep-
resentatives in the clusters. Clustering techniques have been widely used for
fitness imitation in the literature [Yu+17; Xia+20].

Apart from fitness approximation, fitness reduction is another approach for dealing with
computationally expensive fitness functions in multi-objective optimization problems
[Sax+12]. Instead of approximating the fitness function, fitness reduction aims at re-
ducing the number of fitness functions using ML techniques such as PCA [Sax+12] and
Feature Selection (FS) techniques [LJCCC08] as well as reducing the number of fitness
function evaluations by using clustering techniques [Zha+16b; Sun+19].

In the following, first, we review, classify, and analyze the relevant papers, and then the
corresponding challenges and future research directions are provided.

3.3.1 Literature classification & analysis

Table 3 classifies the papers using ML techniques for fitness evaluation of COPs based on
different characteristics such as the fitness evaluation approach, the type of the problem
(single/ multi objective), the employed ML technique, the MH algorithm, and the COP
under study.
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Table 3 – Classification of papers studying fitness evaluation
Ref. Fitness evaluation Single/

Multi obj.
ML
tech.

MH COP

[PSS08] Functional approximation Multi ANN GA PSP
[LJCCC08] Fitness reduction Multi FS GA KP
[MKY11] Functional approximation Single RBF GA QAP
[Hor+13] Functional approximation Single ANN MA ATOP
[Ngu+14] Evolutionary approximation Single k-NN GA JSP
[Hao+16] Functional approximation Single ANN DE SMSP
[WJ18; ZFX19] Functional approximation Multi RF GA KP
[Luc+20] Functional approximation Single DT VNS VRP

Considering Table 3, it can be seen that there are few studies applying fitness approx-
imation/ reduction to COPs. The reason is twofold; first, for most COPs, there exists
an analytical fitness function whose evaluation is not computationally expensive [HL14],
and second, constructing surrogate models for COPs is a complicated task and several
additional issues should be overcome to create an accurate and reliable surrogate model
for COPs [Pel+20].

It can be seen from Table 3 that fitness approximation is mostly used for single-objective
COPs whose original fitness function is calculated by a time-consuming simulation
[Hor+13; Hao+16], or an approximate fitness function is used to help the search to
escape from the local optima [Luc+20]. There are also studies that apply fitness ap-
proximation to multi-objective COPs. Indeed, it is more computationally expensive for
a MH to evaluate solutions using multiple fitness functions compared to a single fitness
function, especially when there are too many objective functions.

Table 3 shows that fitness approximation/ reduction is mostly used for EAs (e.g., GA and
MA). The main reason is that EAs generate and evolve a population of solutions at each
iteration, and it might be therefore very time-consuming to evaluate every new solution
at each iteration of the algorithm. Using fitness approximation especially becomes crucial
when the evaluation of each new solution is computationally expensive (e.g., using time-
consuming simulation to evaluate a solution [Hor+13]). This necessity has led to the
development of new EAs called surrogate-assisted EAs.

3.3.2 Discussion & future research directions

As all MHs do an iterative process to reach the (near-) optimal solution, many fitness
evaluations are needed to find an acceptable solution. Fitness approximation may help
MHs to significantly reduce their computational effort for computing the fitness value
[Jin05]. However, using fitness approximation in MHs is not as straightforward as one
may expect, and it has its own challenges.

One of the major challenges is the accuracy of the approximate function and its function-
ality over the global search space [Jin05]. To replace the original fitness function of a MH
with an approximate function, it has to be ensured that the MH with the approximate
function converges to the (near-) optimal solution of the original function. However, due
to some issues such as few training data and high dimensionality of the search space,
it is difficult to construct such an approximate function. Therefore, to overcome this
issue, one way is to use both the original and the approximate fitness function during the
resolution of the problem. This is addressed as model management or evolution control
in the literature [Jin05].

An open question in fitness approximation is choosing the best suited technique for fit-
ness approximation in COPs. The answer mainly depends on the COP under study
and the user’s preferences; however, due to numerous approximation techniques, select-
ing the best suited technique a priori is often impossible. In this regard, the first try
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could be using the simplest technique. If the performance of the approximate function
obtained by the simplest technique is unsatisfactory or degrades over time, more sophis-
ticated techniques can be used. A future research direction could provide a comparative
study on the performance of different techniques for approximating the fitness function
of COPs. These techniques may differ from simple techniques such as fitness inheritance
or k-NN to more sophisticated ones such as polynomial regression, Kriging, RBF, and
clustering/classification techniques [SR10]. Usually more complex methods provide bet-
ter fitting accuracy but need more construction time. Another way to answer this open
question is using ensemble surrogate modeling that aggregates several surrogate models.

Apart from fitness approximation, another aspect that deserves to be explored more in
the future is online fitness generation, wherein new objectives are targeted depending
on the status of the search process. The new fitness function is generated based on
some knowledge of the optimization problem at hand, as well as the features extracted
from the visited regions during the search process. For instance, a set of representative
features of the good solutions for the COP at hand can be extracted during the search
process to form a new objective, and once the MH gets trapped in a local optimum,
the original fitness function is replaced by the new one. During the search process, the
original and the new fitness function can interchange to guide the MH toward promising
solutions [Luc+20]. Another example of online fitness generation in MHs can be found
in GLS that modifies the original fitness function when trapped in a local optimum
[VT03]. Such a modification is done by adding a set of penalty terms to the original
fitness function. Whenever the GLS gets stuck in a local optimum, the penalties are
modified and the search process continues to optimize the transformed fitness function.

Real-time COPs are those COPs that need to be solved regularly (e.g., every hour or
every day) under a time limitation. For these problems, the computational time spent
even in one iteration of MHs, especially population-based MHs, may be too long for
real-time applications. Therefore, to cope with real-time COPs, especially large-scale
COPs, one future research direction is to employ fitness approximation to lower the
computational effort of fitness evaluation.

3.4 Initialization

There are three main strategies for generating initial solutions for MHs: random, greedy,
and hybrid strategies [Tal09]. In the random strategy, an initial solution is generated
randomly, regardless of the quality of the solution. In the greedy strategy, a solution
is initialized with a good-enough quality. Finally, the hybrid strategy combines two
random and greedy strategies. There is always a trade-off between the use of these
strategies in terms of exploration and exploitation. Indeed, the way of initializing a
MH has a profound impact on its exploration and exploitation abilities. If the initial
solutions are not well diversified, a premature convergence may occur, and the MH gets
stuck in local optima. On the other hand, starting from low quality solutions may take
a larger number of iterations to converge. In this regard, ML techniques can be used
not only to maintain the diversity of solutions but also to produce initial solutions with
good quality. ML techniques can contribute to the initialization through three major
strategies:

• Complete generation – As a low-level integration, ML techniques can replace
the solution generation strategies to construct the initial solution on their own.
Indeed, ML techniques are used to construct a complete solution from an empty
solution. The main ML techniques used in this category are RL-based techniques



Chapter 3. Integration of Machine Learning into Meta-heuristics: A Taxonomy 60

such as QL [San+14; Kha+17] , ANN [Ben+20], and Opposition-based Learning
[RTS08].

• Partial generation – As a low-level integration, ML techniques are used to gen-
erate partial initial solutions using the apriori knowledge of good solutions. Then,
the remaining part of the solution can be generated using any of the initialization
strategies. ML techniques extract knowledge from previous good solutions and
inject it into the new initial solutions [LO05; Nas+19]. This knowledge is mostly
in the form of ARs, which characterize the properties of good solutions. Apriori
algorithms are widely used to extract the rules in ARs [Li+16]. Another example is
case-based initialization strategy [LM04] derived from the idea of Case-Based Rea-
soning (CBR), in which the initial solutions are generated based on the solutions
of already solved similar instances.

• Decomposition – As a problem-level integration, the decomposition is done ei-
ther in the data space or in the search space. In data space decomposition, ML
techniques are used to decompose the data space into several sub-spaces and con-
sequently facilitate generating initial solutions by reducing the required computa-
tional effort. In this regard, an initial solution is generated for each subspace using
any of the initialization strategies, and finally a complete solution is constructed
from the partial solutions of the sub-spaces [Cha17; MJL19; AEK20]. In search
space decomposition, ML techniques are used to diversify the initial solutions over
the search space, where different solutions represent different regions of the search
space. For example, the problem of selecting the subregions of the search space
to explore can be formulated using the Multi-armed Bandit (MAB) technique,
wherein each arm represents a region of the search space, and the technique learns
which regions worth exploring further and which are not [CDM14].

Depending on how ML techniques are employed in generating the initial solutions, learn-
ing can occur either offline or online. In offline learning, knowledge is gathered from the
initial solutions generated for a set of training instances with the aim to generate initial
solution(s) for a new problem instance. The properties of those good initial solutions
that led to a better performance are extracted and used to generate promising initial
solution(s) for a new problem instance. Although an offline learning can provide rich
knowledge, it might be very time-consuming, and the extracted knowledge might not be
useful enough when applied to a new problem instance with completely different proper-
ties compared to the training instances. On the contrary, in online learning, knowledge is
extracted and employed dynamically while generating the initial solution(s) for a prob-
lem instance. Although the extracted knowledge might not be that rich, it completely
suits the instance at hand. In the rest of this section, the relevant papers are reviewed
and analyzed and the corresponding challenges along with future research directions are
provided.

3.4.1 Literature classification & analysis

Table 4 classifies the papers generating initial solutions for COPs using ML techniques
based on different characteristics such as the initialization strategy, learning mechanism,
the used ML technique, the MH algorithm for which the initialization is performed, the
COP under study, and the size of the training set in case of offline learning.

Considering Table 4, RL, particularly QL is a widely used technique to generate complete
initial solutions. QL can be counted as a hybrid initialization strategy that balances
exploration and exploitation abilities of a MH through its parameters. QL constructs
the solutions successively by exploiting the knowledge of the search space using the
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reward matrix. Taking TSP as an example, QL starts construction with a random city
and proceeds with the cities which bring the maximum reward, where the reward is
representative of the problem’s objective function (e.g., the reward is inversely related
to the distance from the current selected city to the next potential city). The superiority
of QL over other typical initialization strategies in terms of the quality of the solutions
and convergence rate of the algorithm has been illustrated for TSP by [San+14].

Table 4 shows that the decomposition strategy is mostly used for routing-based COPs
including VRP and TSP. Clustering algorithms such as k-means are the widely used ML
techniques in these studies, where the cities are clustered into several groups, and an
initial solution is obtained by using a greedy strategy for each group. Finally, a complete
path connecting different groups is created.

3.4.2 Discussion & future research directions

In the integration of ML techniques into MHs for generating initial solutions, the simplic-
ity of the classical random and greedy strategies is sacrificed to gain better performance
in terms of the trade-off between exploration and exploitation through more advanced
initialization strategies (i.e., complete generation, partial generation and decomposition).
The integration of ML techniques into initialization of MHs has been reported to lead
to an improvement in the convergence rate of MHs when better solutions have been
found in less computational efforts compared to classical random and greedy strategies
[LM04; San+14; Has+18; AEK20]. These improvements have been more expressive
when solving larger instances of COPs as MHs start with already a (set of) good initial
solution(s) [San+14; Has+18]. This phenomenon saves the computational effort toward
exploring/exploiting more promising regions in the solution space, instead of spending
extensive efforts to find primary good (local) solutions during the search process.

Table 4 – Classification of papers studying initialization
Ref. Strategy Learning ML tech. MH COP Size

[LM04] Partial generation Offline Apriori GA JSP 50
[LO05] Partial generation Offline DT MHs JSP 19900
[LJMN07]; Complete generation Online QL GRASP, GA TSP –
[DLDMN08];
[San+10]
[DPRVZD10]; Decomposition Online k-means GA VRP –
[HZG10]
[San+14] Complete generation Online QL VNS TSP –
[CDM14] Decomposition Online MAB HC QAP –
[DLZ15] Decomposition Online k-means GA TSP –
[ZHD16] Complete generation Online RL DLS GCP –
[Li+16] Partial generation Online Apriori GA TSP –
[XP16]; Decomposition Online k-means ACO VRP –
[Zha17]
[Gao+16] Decomposition Online k-means ACO LRP –
[Kha+17] Complete generation Online QL MHs TSP –
[Cha17] Decomposition Online k-means ACO TSP –
[Has+18] Decomposition Online LR GA TSP –
[LSRVMG18] Decomposition Online k-means ACO WSRP –
[Ali+18] Complete generation Online RL GA TSP –
[MYE18] Partial generation Offline DRL MHs TSP 200000
[AEK19] Decomposition Online k-means GA, DE TSP –
[GY19] Decomposition Online k-means GA VRP –
[MJL19] Decomposition Online k-means TS VRP –
[Nas+19] Partial generation Offline Apriori GA, PSO JSP 35
[Ben+20] Complete generation Offline LR, ANN MHs FLP 45000
[LMR20] Partial generation Offline LogR, ANN,

NB
MHs FLP 7145

[AEK20] Decomposition Online k-means DE TSP –
[Che+21] Decomposition Online k-means ABC JSP –

These advanced initialization strategies bring their own challenges. An important chal-
lenge is the complexity of using such advanced techniques with additional parameters
that need to be carefully tuned to get the highest performance. A set of other challenges
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arises depending on the way solutions are initialized. For instance, a big challenge when
using QL is how to define the set of states and actions so that they satisfy the properties
of a Markov decision process. One of the main requirements is to define a set of states
such that it is sufficient to characterize the system without the need for the history of
information achieved so far. Taking TSP as an example, if one considers the state as the
currently selected city and the action as the next city to be added to the tour, the state
is not sufficient to characterize the system, and an action depends on the information
on the history of the states.

As a new concept in ML and inspired from the opposite relationship among entities,
Opposition-based Learning can provide efficient strategies to generate the initial pop-
ulation. Using this concept, the initial population is approximated from two opposite
sides [RTS08], wherein an initial population is first generated randomly. Next, an op-
posite population in terms of values of the solution vector is generated to the randomly
generated population. The MH then merges the two populations and selects half of the
best solutions to form the initial population. The main aim of opposition-based learning
is keeping the diversity between the initial solutions to increase the exploration ability
of the MHs. In addition to opposition-based learning, an interpolation technique can
also be used to generate the initial population. This technique attempts to provide good
solutions by interpolating a set of randomly generated solutions. The interpolated solu-
tions are then used to form the initial population. Neither opposition-based learning nor
interpolation have been applied to COPs. Therefore, using these techniques and other
advanced ML techniques such as ANNs [YA01] to generate the initial solutions of COPs
could be a future research direction.

3.5 Evolution
ML techniques can be integrated into the evolution process in three major ways:

• ML techniques help to use feedback information on the performance of the opera-
tors during the search process to select the most appropriate operator (see Section
3.5.1).

• ML techniques provide a learning mode to generate new populations in EAs (see
Section 3.5.2).

• ML techniques help to extract the properties of good solutions to generate new
solutions (see Section 3.5.3).

3.5.1 Operator selection

Operator selection has its roots in hyper-heuristics. The term hyper-heuristic can be
defined as a high-level automated search methodology which explores a search space
of low-level heuristics (i.e., neighborhood or search operators) or heuristic components,
to solve optimization problems [Bur+13]. Regarding the nature of the heuristic search
space, hyper-heuristics are classified into heuristic selection and heuristic generation
methodologies [Dra+19]. The former aims at selecting among a set of heuristics, while
the latter aims at generating new heuristics. Operator selection inherently belongs to
heuristic selection methodologies in hyper-heuristics; however, it has been also used in
designing MHs [San+14; MGS20]. Accordingly, it has led to a certain level of confusion
in the literature in distinguishing MHs involving operator selection from hyper-heuristics.
Despite the differences between the design and performance of hyper-heuristics and MHs,
operator selection in both methods targets the same goal as selecting and applying (an)
appropriate operator(s) during the search process. In this work, the focus is on MHs
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involving operator selection. In this regard, a MH called adaptive large neighborhood
search, an extension to the classical large neighborhood search, has been developed with
the particular aim of selecting operators during its search process. A meta-analysis on
adaptive large neighborhood search MHs has been provided by [TSH20]. Apart from
adaptive large neighborhood search, this work focuses on operator selection in all other
types of MHs.

Search operators are divided into four categories [Tal09; OB14]:

• Mutational/ Perturbation Operators (MPOs) - They are unary operators
that perform small changes on a single individual solution by swapping, changing,
reversing, inserting, or removing solution components. The aim of the mutation
operator is thus to explore the neighborhood of the current solution, or to roam
the undiscovered regions of the search space.

• Ruin-Recreate (destruction-construction) Operators (RROs) - These op-
erators partially ruin a solution and then rebuild or recreate it. Differing from
MPOs, these operators can be considered as large neighborhood structures that
can incorporate problem specific construction operators to rebuild the solution.

• Local Search or Hill-Climbing Operators (LSOs) - These operators iter-
atively make small changes to a solution, by only accepting non-deteriorating
changes, until a local optimum is found, or a stopping condition is met. Dif-
fering from MPOs, these operators perform an iterative improvement process and
guarantee that a non-deteriorating solution will be produced. However, this con-
dition can be relaxed if deteriorating solutions are also accepted in order to escape
the local optima (e.g., SA).

• Crossover or Recombination Operators (XROs) - Unlike unary operators,
the crossover operators are binary and sometimes n-ary that take two solutions
(called "parents" in EAs), combine them and return either a single or multiple new
solutions (called "offspring"). The role of the crossover operators is thus to inherit
the characteristics of two solutions to generate new solutions.

AOS, as an online operator selection mechanism, consists of five main steps:

• Performance criteria identification – Whenever an operator is selected and
applied to a problem instance, a set of feedback information can be collected that
represents the performance of the algorithm. This feedback can be different per-
formance criteria such as OFV, Diversity of Solutions (DOS), CT, and Depth of
the Local Optima (DLP). The credit of an operator highly depends on how the
performance criteria are identified and assessed. This makes performance criteria
identification an important step in AOS. Therefore, in solving COPs, the perfor-
mance criteria should be efficiently identified and integrated (in case of multiple
criteria) to lead the MH toward the optimal solution.

• Reward computation – Once the performance criteria are identified, this step
computes how much the application of each operator improves/deteriorates the
performance criteria.

• Credit assignment (CA) – In this step, a credit is assigned to an operator based
on the rewards calculated in the reward computation step. There are different
credit assignment methods including Score-based CA (SCA) [Pen+19], Q-Learning
based CA (QLCA) [Wau+13], Compass CA (CCA) [Mat+09], Learning Automata
based CA (LACA) [GLL18], Average CA (ACA) [Fia10], and Extreme Value-based
CA (EVCA) [Fia10] presented in Table 5.
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Table 5 – Credit assignment methods
Method Description

SCA As a simple version of RL, it assigns an initial score (credit) to each operator and updates
their credits based on their performance at each step of the search process. Generally,
initial credits are set to a same value, typically zero.

Ci,t+1 = Ci,t + ri,t

where Ci,t and ri,t are the credit and the reward of operator i at time (step) t.
QLCA It assigns a Q-value (credit) to an operator (action) at each state of the search process

based on its previous performance.

Q(st, a) = Q(st, a) + α[rt + γ max
a′

Q(st+1, a′) − Q(st, a)]
where st is the state at time t, st+1 is the new state at time t + 1, a is the operator

selected in state s, a′ is a possible operator in state st+1, rt is the reward (punishment)
received after selecting operator a at time t, α is the learning rate, and γ is the discount
factor which indicates the importance of future rewards.

CCA It integrates three measures at every application of an operator: population diversity
variation, mean fitness variation, and execution time. A sliding window stores the last
W changes in terms of diversity and fitness. A compromised value is then calculated
between the diversity and fitness measures. Finally, the compromised value is divided by
the operatorâĂŹs execution time to obtain the final credit of each operator.

LACA It assigns a probability value to each operator based on its previous performance. The
following formulations show the selection probabilities (credits) of successful and unsuc-
cessful operators, respectively.

pi,t+1 = pi,t + λ1ri,t(1 − pi,t) − λ2(1 − ri,t)pi,t

pi,t+1 = pi,t − λ1ri,tpi,t + λ2(1 − ri,t)[(K − 1)−1 − pi,t]
where pi,t is the selection probability of operator i at time t, λ1 and λ2 refer to the learning
rates used to update the selection probabilities, and K is the number of operators.

ACA It assigns credit to each operator according to its performance achieved by its last W
applications (Instantaneous credit assignment if W =1). Using W as the size of the sliding
window for each operator, the performance of an operator is aggregated over a given time
period.

EVCA It follows the principle that infrequent, yet large improvements in the performance cri-
teria are likely to be more effective than frequent but moderate improvements. At each
application of an operator, the changes in the performance criteria are added to a sliding
window of size W following a FIFO rule and the maximum value within the window is
assigned as a credit to that operator. Despite the ACA, this method emphasizes on re-
wards to the operators with recent large improvements even once throughout their last
W applications.

Ci,t = max
t′=t−W,...,t

{ri,t′ }

• Selection – Once a credit has been assigned to each operator, AOS selects the
operator to apply in the next iteration. Different selection methods including Ran-
dom selection (RS), Max-Credit Selection (MCS), Roulette-wheel Selection (RWS)
[GLL18], Probability Matching Selection (PMS) [Fia+08], Adaptive Pursuit Selec-
tion (APS) [Fia+08], Soft-Max Selection (SMS) [GB17], Upper Confidence Bound
Multi-Armed Bandit Selection (UCB-MABS) [Fia+08], Dynamic Multi-Armed
Bandit Selection (D-MABS) [Mat+09], Epsilon Greedy Selection (EGS) [San+14],
and Heuristic-based Selection (HS) [CWL18] are presented in Table 6.

• Move acceptance – After the application of an operator, AOS decides whether
to accept the move provided by the operator or not. Different move acceptance
methods including All Moves Acceptance (AMA), Only Improvement Acceptance
(OIA), Naive Acceptance (NA), Threshold Acceptance (TA), Metropolis Accep-
tance (MA) [Met+53], Probabilistic Worse Acceptance (PWA), Simulated Anneal-
ing Acceptance (SAA) [MGS20], and Late Acceptance (LTA) are listed in Table
7.
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Table 6 – Selection methods
Method Description

RS It uniformly selects an operator at random, ignoring the credit values.
pi,t =

1
K

where K is the number of operators.
MCS It selects an operator with the maximum credit.
RWS It assigns a selection probability pi,t to operator i at time t based on its proportional credit, and

selects an operator randomly based on these probabilities. The more the credit of an operator,
the more the chance to be selected.

pi,t+1 =
Ci,t∑K

j=1 Cj,t

where Ci,t is the assigned credit of operator i at time t, and K is the number of operators.
PMS It assigns a selection probability to each operator based on its proportional credit, while keeping

a minimum selection probability for all operators to give them a chance to be selected regardless
of their credit.

pi,t+1 = pmin + (1 − K × pmin)
Ci,t∑K

j=1 Cj,t

where pmin is the minimum selection probability of each operator, K is the number of operators,
and Ci,t is the assigned credit of operator i at time t.

APS Instead of proportionally assigning probabilities to all operators, it selects the operator with the
maximum credit, increases its probability, and reduces the probabilities of all other operators.
Operator i∗ is selected as follow:{

pi,t+1 = pi,t + β(1 − (K − 1)pmin − pi,t)(β > 0) i∗ = arg max{Ci,t}
pi,t+1 = pi,t + β(pmin − pi,t) otherwise

where the notations are similar to PMS and β is the learning rate.
SMS It uses a Boltzmann distribution to transform the credit of each operator to a probability, and

involves a temperature parameter τ to amplify or condense the differences between the operator
probabilities. It uniformly selects an operator based on the probability values. As long as the
temperature decreases, this method becomes more greedy towards selecting the best available
operator.

pi,t+1 =
e(Ci,t/τ)∑K

j=1 e(Cj,t/τ)

UCB-
MABS

It assigns a cumulative credit to each operator and selects the operator with the maximum
value of:

Ci,t + G

√
log

∑K

j=1 nj,t

ni,t

where ni,t denotes the number of times the ith arm has been played up to time t and G is
the Scaling factor used to properly balance rewards and application frequency (Exploration-
Exploitation balance) while still maintaining a small selection probability of other operators for
exploration purposes.

D-MABS It adapts the classical multi-armed bandit scenario to a dynamic context where the reward
probability of each arm is neither independent nor fixed. To address the dynamic context, the
classical UCB [ACBF02] algorithm is combined with a Page Hinkley test [Pag54], to identify
the change of reward probabilities.

EGS It selects the operator with the highest credit with probability of (1 − ϵ); otherwise, it selects
an operator randomly.

i∗ =
{

arg maxj Cj,t with probability 1 − ϵ

any other operator with probability ϵ

HS It uses either heuristic rules or optimization algorithms to select the operators. A heuristic rule
can be a tabu list of operators to exclude them from being selected during a certain number of
iterations. On the other hand, the sequence of operators can be defined as a decision variable
and optimization algorithms (e.g., MHs) are employed to find the optimal sequence.

ML techniques help the operator selection to use feedback information on the perfor-
mance of the operators. In this situation, operators are selected based on a credit
assigned to each operator (i.e., feedback from their historical performance). Considering
the nature of the feedback, the learning can be offline or online. In offline learning,
ML techniques such as case-based reasoning [BPQ06] help to gather knowledge in the
form of rules from a set of training instances with the aim to select operators in new
problem instances. However, in online learning, knowledge is extracted and employed
dynamically while solving a problem instance [Tal16; Bur+19].
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Table 7 – Move acceptance methods
Method Description

AMA It always accepts the applied move regardless of whether the move improves the solution or not.
OIA It only accepts the moves that improve the solution.
NA It always accepts the moves that improve the solution and considers an acceptance probability

of 0.5 for moves that deteriorate the solution.
TA It always accepts the moves that improve the solution and accepts the moves that deteriorate

the solution less than a prefixed threshold (in terms of the solution quality).
MA It accepts each move with a probability of e

∆f
T , where ∆f is the difference between the fitness

values before and after applying that move, and T denotes the temperature. The higher the
value of T , the higher the chance to accept worse moves and vice versa.

PWA As a variant of Metropolis acceptance, it accepts each move with a probability of e
∆f

T ∗µimpr ,
where µimpr is the average of previous improvements on the solution quality.

SAA As a variant of Metropolis acceptance, it accepts each move with a probability

e
( ∆f

T ∗µimpr
× tmax

tmax−tcurrent
)
, wherein the temperature T decreases gradually over time. In ad-

dition, tmax denotes the maximum time allowed to execute the algorithm, and tcurrent denotes
the current elapsed time.

LTA It accepts a move that provides a solution with better or equal quality compared to the obtained
solutions in the last n iterations. During the initial n iterations, any move that provides a better
solution compared to the initial solution is accepted.

3.5.1.1 Literature classification & analysis

Table 8 classifies the papers studying AOS for COPs based on different characteristics
such as performance criteria, credit assignment method, selection method, move accep-
tance method, the MH algorithm, type of the operators to be selected, and the COP
under study.

Considering the performance criteria, Table 8 indicates that all reviewed papers rely
on OFV as the criterion used for evaluating the operators. In the meantime, only few
papers have incorporated other criteria such as CT and DOS into their evaluation process
[MS08; Mat+09; Sak+10; ST12; DT+15]. Although OFV is the most straightforward
criterion by which the operators can be evaluated, DOS is also needed to avoid premature
convergence [DT+15].

By looking at Table 8, it can be seen that among the credit assignment methods,
RL-based methods (e.g., simple SCA and QLCA) have been mostly studied. Among
the studied credit assignment methods, the ACA method is biased toward conservative
strategies. Indeed, using this method, the operators with frequent small improvements
are preferred over operators with rare but high improvements. Despite ACA method,
EVCA method assumes that rare but high improvements are even more important than
frequent but moderate ones [Fia+08]. Using the EVCA method, the operators are cred-
ited based on the maximum improvement during their last W applications. In order
to avoid the premature convergence, CCA method has incorporated DOS into its eval-
uation process. This method takes into consideration both the OFV and DOS, which
are related to the exploitation and exploration abilities of MHs, respectively. The ACA,
EVCA, and CCA methods assign credit to the operators based on their immediate per-
formance (through the last W applications). This may rise the possibility that the
optimization is short-sighted.

On the other hand, RL-based methods including SCA, QLCA, and LACA methods assign
credit to the operators based on their performance from their very first application.
Indeed, they are able to learn a policy to maximize the rewards in a long-term prospect,
which makes it possible to gain optimal operator selection policies. In addition to a long-
term prospect, some RL-based methods such as QL are model-free that do not require
the complete model of the system including the matrix of transition probabilities and
the expected value of the reward for each state-action pair.
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Table 8 – Classification of papers studying AOS
Ref. Perf. criteria Credit asnt. Selection Move acpt. MH Operator COP

[PE02] OFV SCA MS OIA GA MPO, XRO TSP
[MS08] OFV, DOS, CT CCA PMS OIA GA MPO, XRO SAT
[Mat+09] OFV, DOS, CT CCA, EVCA D-MABS OIA GA MPO, XRO SAT
[Sak+10]; OFV, CT QLCA SMS OIA GA MPO, XRO TSP
[ST12]
[Fra+11] OFV EVCA APS, PMS OIA MA XRO QAP
[Bur+11] OFV,FT EVCA APS, RWS AMA ILS MPO, XRO,

RRO, LSO
FSP

[Wal+12] OFV EVCA APS AMA-OIA ILS MPO, XRO,
RRO, LSO

VRP

[Han+14] OFV QLCA PMS, APS OIA MA XRO QAP
[San+14] OFV QLCA EGS OIA VNS LSO TSP
[CY14] OFV, DOS CCA D-MABS OIA MA XRO ARP
[BKB14] OFV QLCA EGS, SMS OIA EA MPO, XRO TSP
[Yua+14] OFV SCA APS, D-MABS OIA MA XRO QAP
[DT+15] OFV, DOS, CT CCA PMS OIA EA XRO SAT
[Li+15] OFV ACA RWS OIA, AMA ILS MPO, LSO VRP
[LT16] OFV SCA RWS OIA VNS LSO VRP
[SFH16] OFV QLCA APS OIA EA MPO, XRO TEPP
[Moh+16] OFV SCA RWS OIA ICA XRO HLP
[Che+16] OFV SCA UCB-MABS OIA VNS LSO VRP
[Zha+16a] OFV SCA RWS OIA GA MPO, XRO LRP
[GB17] OFV ACA UCB-MABS SAA ILS MPO NRP
[GLL18] OFV LACA RS, RWS OIA, SAA ILS LSO OP
[Ahm+18] OFV, DOS QLCA EEGS OIA GA MPO, XRO SSP
[MJTM19] OFV SCA RWS OIA GA MPO, XRO HLP
[Pen+19] OFV SCA RWS OIA MA LSO VRP
[LZY19] OFV SCA RWS OIA ILS MPO, LSO VRP
[MGS20] OFV QLCA EGS SAA SA LSO MASP
[Zha+21] OFV QLCA EGS OIA WWO MPO FSP
[KM+21] OFV QLCA EGS OIA ILS LSO TSP

This is especially useful for COPs since generally, a complete model is not available
for COPs [Wau+13]. Furthermore, many RL-based methods are able to converge to
the optimal state-action pair under several conditions. Among these methods, QL has
proven to converge to the optimal state-action pair under three conditions: the system
model is a Markov decision process, each state-action pair is visited many times, and the
immediate reward given to each action is not unbounded (i.e., limited to some constant)
[Wat89]. Among the RL-based methods in Table 8, the techniques based on Temporal
Differences such as QL take advantage of the concept of delayed reward. They are based
on the assumption that there might be a delay before the effect of an action appears.
Accordingly, they consider a delayed reward in addition to an immediate reward. On
the other hand, LACA method [GLL18] and SCA method [Che+16] work in a single
state environment and merely take into account an immediate reward.

The selection step decides which operator to apply in the next iteration. This step can
also be seen as an exploration and exploitation dilemma, where there is a need to be
a trade-off between selecting the best operator with the best performance so far (i.e.,
exploitation), and giving a chance to the other operators which may bring the best perfor-
mance from then (i.e., exploration). Figure 8 illustrates how different selection methods
balance exploration and exploitation abilities of a MH. For each selection method, the
responsible parameters and their corresponding effects for making such balance have
been also identified. For example, in APS method, increasing the parameters pmin and
β augments the exploration ability of the method, while decreasing pmin and β increases
the exploitation ability of the method.

As it can be seen in Figure 8, the MCS method is a purely exploitation-based method
where there is no chance for exploring other operators. In other words, the MCS method
selects the operator with the maximum credit at each iteration, giving no chance to other
lower quality operators to be selected.

The RWS method selects the operators based on their proportional credit, where there is
also a chance for all operators to be selected. However, using the RWS method, operators
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Figure 8 – Exploration vs. Exploitation of selection methods

which do not show good performance during a long time, have very low or even zero
chance to be selected, while they might perform well in the latter stages of the search
process. To tackle this issue, the PMS method assigns a minimum selection probability
to each operator, pmin, regardless of its performance. This preserves the balance between
exploration and exploitation thorough a minimal level of exploration that is kept fixed
during the search process. Indeed, the selection probability of operators with zero credit
slowly converges to pmin. In this way, the operators with even moderate performance
keep being selected, and this degrades the performance of this method [Mat+09]. To
address this drawback, the proposed APS method updates the selection probabilities
using the winner-takes-all strategy. Indeed, instead of updating the probabilities based
on operators’ proportional credit, the APS method increases the selection probability
of the best operator while decreasing the selection probability of all other operators.
This aims at quickly enhancing the application probability of the current best operator
[Fia10]. Considering the trade-off between exploration and exploitation, this method
keeps a minimal level of exploration through pmin, which is fixed throughout the search
process.

In the SMS method, the balance between exploration and exploitation is controlled
through a temperature parameter, τ . As the temperature increases, the selection prob-
abilities tend to be equal for all operators. While decreasing the temperature leads to
a larger difference between selection probabilities. In an extreme viewpoint, when the
temperature goes to zero, SMS becomes a purely exploitation-based method where only
the best operator is selected. The UCB-MABS method also makes a trade-off between
the exploration and exploitation abilities of a MH by keeping a minimum selection prob-

ability for each operator to be selected through G

√
log

∑K

j=1 nj,t

ni,t
, where G is a scaling

factor to balance the trade-off. Similarly, the EGS method controls the trade-off between
exploration and exploitation using the predefined parameter ϵ. Increasing ϵ increases the
exploration ability of the algorithm by giving a chance to the other operators to be se-
lected, while decreasing ϵ favors the selection of the best operator. Accordingly, when
ϵ = 1, the EGS method becomes a purely exploration-based method. Finally, the HS
method uses a heuristic rule to select operators. For instance, the rule could be a tabu
list of operators that excludes successful operators from being selected during a certain
number of iterations. The size of the tabu list makes a balance between exploration
and exploitation. As the tabu size increases, the successful operators remain longer in
the tabu list, giving a chance to other operators to be selected, which leads the method
toward exploration.

Table 8 indicates that AOS is mostly applied to EAs (e.g., GA and MA) to select the
mutational and crossover operators. The reason may rely on the popularity of EAs
for solving COPs and the availability of a variety of problem-specific mutational and



69 3.5. Evolution

crossover operators, which needs to be carefully selected during the search process since
the performance of EAs is highly affected by its operators. In the meanwhile, AOS is
also applied to select the local search operators in ILS and VNS.

3.5.1.2 Discussion & future research directions

In this section, first, a guideline is provided for researchers on when to use AOS, and
the fundamental requirements of using AOS are identified. Next, challenges and future
research directions are discussed.

There is a rise in the number and variety of problem-specific operators (heuristics) for
efficiently solving optimization problems. Selecting and applying these operators within
a MH requires much expertise in the domain. That is especially the case for COPs
with plenty of proposed problem-specific operators, where the classical operators are
not as competent as problem-specific ones. Indeed, for COPs with standard represen-
tations (e.g., permutation-based representations), users can make the use of classical
non-specialized operators, which does not necessarily require much expertise. However,
for COPs out of this standard framework, one must have knowledge over the problem-
specific operators to efficiently select the operators. This issue highlights the necessity
of an automatic approach to select the most appropriate operator(s) based on their per-
formance without having an expertise in the domain. In this way, even inexperienced
users are able to select appropriate operators for solving COPs. In addition, AOS is
most useful when dealing with several competitive state-of-the-art operators for solving
a COP such that none of them can be preferred over the others a priori, and choosing
the best operator exhaustively is computationally expensive. In this condition, there is
a need for automatic operator selection.

There are a set of specific requirements for the QLCA method as the most common
RL-based method used in AOS. Before applying the QLCA method in AOS, one needs
to define the set of possible states and actions. In defining the states, the following
preconditions should be checked:

• The states should be completely descriptive of the problem status to allow selecting
the correct action. There are three ways to define the states. The states could
be 1) search-dependent that reflect the properties of the search process such as
the number of non-improving iterations, 2) problem-dependent that reflect the
properties of the problem through generic features, or 3) instance-dependent that
reflect the properties of the problem instance such as the number of bins in a bin
packing problem [Wau+13].

• The states should be defined in such a way that do not grow exponentially and
allow the algorithm to visit each state-action pair many times. This is one of the
main conditions of QLCA method convergence. For instance, if the number of
states grows exponentially with the size of the problem, the algorithm might need
to be executed more times to satisfy the convergence condition.

The integration of ML techniques into AOS has led to an improvement in terms of
both solution quality and even computational time. Using advanced ML techniques
in AOS such as QLCA [Ahm+18; MGS20; Zha+21] and LACA [GLL18] has brought
significant improvements compared to the non-learning version of MHs. Besides, even
new best-known solutions have been obtained for certain COPs [Ahm+18; GLL18]. More
interestingly, such integration has been reported to be more efficient as the size of the
problem instances increases, and the proposed MHs have shown more stable behavior
when solving larger COP instances [San+14; Zha+21].
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Apart from the advantages that AOS brings into application, a set of important chal-
lenges arises in this regard. The first challenge is related to the computational overhead
of learning in the MHs. Although AOS gives the user the flexibility to adapt the MH’s
behavior to the characteristics of the search space by selecting its operators during the
search process, achieving such flexibility adds an extra computational overhead. Keeping
track of the performance of the operators during the search process, assigning credits to
them, and updating their selection probabilities all impose an extra computational over-
head. This overhead can be compensated by an optimal design of the AOS mechanism
wherein the MH converges sooner to the (near-) optimal solution, and consequently the
saved computational time compensates the extra overhead.

Another challenge is related to the tuning of the parameters of AOS. Most credit as-
signment and selection methods introduce new parameters that need to be tuned before
applying AOS. Tuning the values of these parameters can significantly affect the per-
formance of AOS; thus they need to be carefully tuned. For example, in the QLCA
method, there are two new parameters, the learning rate (α) and the discount factor
(γ). The former controls the ratio of accepting the newly learned information, while the
latter controls the impact of the future reward. Higher levels of α tend to the replace-
ment of the old information by new information. On the other hand, lower values of α
emphasize on the existing information. Furthermore, as γ increases, more emphasis is
given to future reward compared to the immediate reward.

This challenge becomes more critical when tuning a set of parameters responsible for
making a balance between the exploration and exploitation abilities of MHs since they
directly control the behavior of MHs and influence the performance of AOS. One way
to overcome this challenge is to use the parameter setting methods explained in Section
3.6, wherein the parameters of the MHs are tuned offline or controlled in an online
manner. In almost all papers so far, these parameters are considered fixed during the
search process, while they can be dynamically adjusted based on the characteristics
of the search space. Accordingly, employing an online parameter control method (see
Section 3.6) within AOS can be a promising future research direction.

Another challenge in AOS is related to the number of operators involved in AOS. In-
creasing the number of operators may reduce the performance of AOS. As the number of
operators increases, more effort is required to perform AOS, and consequently a higher
level of overhead is imposed on AOS. In addition, the performance of AOS may degrade
if some operators do not perform well, and they will be selected fewer and fewer in the
long term. The presence of such operators increases the computational overhead with no
significant gain. One way to overcome this challenge is to use Adaptive Operator Man-
agement (AOM) that aims to manage operators during the search process by excluding
inefficient operators and including other operators in AOS [Mat+11]. The use of AOM
in AOS could be further investigated as a future research direction.

Another promising research direction could be employing AOS in multi-objective COPs
where several objectives are evaluated simultaneously. An issue in this regard is how to
assign a reward to an operator that improves one objective function but degrades the
other objectives. In addition, integrating multiple rewards into a single credit value to
be assigned to each operator is another issue to be addressed. One way to cope with
these issues could be incorporating the crowding distance as well as the rank of the
non-dominated fronts to calculate the reward/credit.
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3.5.2 Learnable evolution model

Darwinian-type EAs (e.g., GA) are inspired from the principles of Darwin’s theory of
evolution. They apply usual genetic operators like mutation, crossover, and selection
to generate new populations. These semi-random operators, which govern the evolution
process, do not consider the experiences of individual solutions, the experience of an
entire population, or a collection of populations. Therefore, new solutions are generated
through a parallel trial-and-error process, so the lessons learned from the past genera-
tions are not used in these types of MHs. To overcome some of these inefficiencies, a
new class of EAs has been proposed as Learnable Evolution Models (LEMs) [Mic00].
In opposition to Darwinian-type EAs that contain a Darwinian evolution mode, LEM
contains a learning mode wherein ML techniques are employed to generate new popu-
lations. In the learning mode, a learning system seeks reasons (rules) by particular ML
techniques (e.g., AQ18 & AQ21 rule learning, C4.5 decision tree, etc.) on why certain
solutions in a population (or a collection of past populations) are superior to others in
performing a designated class of tasks.

Specifically, the learning mode of LEM consists of two processes [Mic00; WWH11]:

• Hypothesis generation – It determines a set of hypotheses that characterizes
the differences between high-fitness and low-fitness solutions in recent or previous
populations.

• Hypothesis instantiation – It generates new solutions on the basis of the learned
hypotheses obtained in the hypothesis generation process. The learning mode thus
produces new solutions not through semi-random Darwinian-type operations, but
through a deliberate reasoning process involving the generation and instantiation
of hypotheses about populations of solutions. The new populations are normally
generated by injecting the extracted rules (i.e., rule injection) into the new solu-
tions.

For the hypothesis generation process, two groups (sets) of individuals are selected from
the population at each iteration: the high performance group, briefly H-group, and the
low performance group, briefly L-group, based on the values of the fitness function. The
collection of H-group and L-group solutions can be a subset of the population, or they
can encompass the whole population [Mic00]. The H-group and L-group can be formed
using two methods [Mic00]:

• Fitness-based formation (FBF) - In this method, the population is partitioned
according to two fitness thresholds, high fitness threshold and low fitness threshold.
These thresholds are presented as a percentage and determine the high and low
portions of the total fitness value range in the population. These portions are then
used to form the H-group and L-group of solutions. Indeed, the solutions whose
fitness value is not worse than the high fitness threshold% of the best fitness value
in the population form H-group, and those whose fitness value is better than the
low fitness threshold% of the worst fitness value in the population form L-group.
When using fitness-based formation method, the size of the H-group and L-group
will vary from population to population, since it depends on the range of solutions’
fitness values at each iteration.

• Population-based formation (PBF) - In this method, the H-group and L-
group are formed according to two thresholds expressed as the percentage of the
number of solutions in the population. These thresholds are called high population
threshold and low population threshold. The high population threshold% of the best
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solutions form H-group and the low population threshold% of the worst solutions
form L-group.

The above two methods can be applied to the entire population as a global approach, or
they can be applied to different subsets of the population as a local approach. The idea
behind a local approach is that different solutions of the population may carry different
information, and there would be no global information that can characterize the whole
population.

Once H-group and L-group are formed, a ML technique is employed to generate qualita-
tive descriptions that discriminate between these two groups [Mic00]. The description of
an H-group represents a hypothesis that the landscape covered by H-group contains the
solutions with higher fitness values compared to the landscape of L-group. Therefore,
the H-group’s qualitative description can be interpreted as the search direction toward
the promising areas. LEMs account for such qualitative descriptions to guide the evolu-
tion process, rather than relying on semi-blind Darwinian-type evolutionary operators.
Such an intelligent evolution in LEMs leads to the detection of the right directions for
evolution; hence, making large improvements in the individuals’ fitness values.

Two versions of LEM are introduced in the literature [Mic00]: the uniLEM and duoLEM.
In uniLEM version, the evolution process is solely conducted through the learning mode,
while in duoLEM version both Darwinian and learning evolution processes are coupled.

3.5.2.1 Literature classification & analysis

This section classifies and analyzes the relevant papers wherein LEM has been used to
solve COPs. Table 9 classifies the relevant studies based on different characteristics
related to the design and implementation of LEM including hypothesis generation, hy-
pothesis instantiation, group formation, uniLEM/duoLEM evolution version, the MH
algorithm and the COP under study.

A set of insights can be extracted from Table 9. In terms of hypothesis generation,
the learning mode of LEM can potentially employ different learning methods that can
generate descriptions discriminating between classes of individuals in a population (i.e.,
H-group versus L-group). If individuals are described by a vector of values (e.g., a
permutation of a number of cities in TSP or a number of jobs in FSP), the rule learning
methods such as AQ learners [KM00; Dom+04; WWH11; WWH12; Mor19], decision
tree learners such as C4.5 [Jou+05; JKK18], or ANN can be utilized. It can be stated
from Table 9 that AQ learners, in which the learning systems employ some form of AQ
algorithms, are particularly suitable for implementing LEM.

Regarding the hypothesis instantiation, it can be seen that the majority of the studies
have used a rule injection mechanism, wherein H-group and L-group of individuals are
investigated and their strengths and weaknesses are described in terms of rules. Tak-
ing TSP as an example, a partial sequence of cities that frequently appears in H-group
individuals could be a rule, and such rules can be used to evolve the population by inject-
ing frequent sequences to create new solutions. However, due to the complexity of the
COP at hand in terms of prior knowledge on the structure of the solutions and descrip-
tive characteristics of H-group and L-group of individuals, the learning program uses
an abstract, rather than precise, specification of different individuals [Jou+05; JKK18].
Consequently, the learned rules are also referred to as an abstraction of individuals. The
system is then able to instantiate these abstract rules in many ways to generate new
solutions in further populations. The rule instantiation process must, however, follow
the constraints of the COP at hand.
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Table 9 – Classification of papers studying LEM
Ref. Hypothesis gen. Hypothesis inst. Group frmt. uni/duoLEM MH COP

[KM00]; AQ18 Sequence injection FBF duoLEM EA HEDP
[Dom+04]
[Jou+05] C4.5 Rule injection FBF uniLEM EA WDSDP
[WWH11] AQ21 Rule injection FBF duoLEM GA VRP
[WWH12] AQ21 Rule injection FBF duoLEM MA VRP
[WT17b] Edge-intersection Rule injection PBF duoLEM GA TSP
[JKK18] C4.5 Rule injection FBF duoLEM HS WDSDP
[Mor19] AQ18 Sequence injection FBF uniLEM EA VRP

3.5.2.2 Discussion & future research directions

This section identifies the challenges of implementing LEM for solving optimization
problems, particularly COPs. Throughout the discussion, future research directions are
also elaborated.

Considering the group formation in Table 9, there is a requirement for implementing
LEM as well as an important challenge when employing fitness-based formation to cre-
ate H-group and L-group. Indeed, the fundamental assumption underlying LEM is that
there is a method for evaluating the performance of individuals in evolving populations.
Consequently, the ability to determine the fitness value of an individual, or an approxi-
mation of this value, is a precondition for the LEM application. Therefore, LEM cannot
be implemented for COPs for which defining or even approximating the fitness function
is not possible.

A challenge related to the fitness-based formation that may happen in particular COPs
is that in some evolutionary processes, the fitness function may not be constant through-
out the entire process and change over time. It happens for particular COPs wherein
the parameters change in a piece-wise manner depending on the level of the decision
variables. A change in the fitness function may be gradual (i.e., fitness function drift)
or abrupt (i.e., fitness function shift) [Mic00]. Indeed, if the fitness function is changing
during the evolution process, some high-fitness individuals (i.e., H-group) in a previous
population may become low-fitness individuals (L-group) in a future population and vice
versa.

One way to overcome this challenge is keeping a record of the L-groups determined in past
populations and not only the current population. Therefore, a set of past L-groups plus
L-group in the current population become the actual L-group supplied to the learning
mode. The number of past L-groups to be taken into consideration is controlled by a
parameter. It is worth mentioning that there is no significant need to store past H-
groups, because the current H-group inherently contains the best individuals until now.
Generally, the formation of H-group and L-group from the current population in the
evolution process ignores the history of evolution [Mic00].

An issue that may happen when using population-based formation is the possibility
of an intersection between H-group and L-group. This issue should be resolved before
hypothesis generation. Simple methods can be used for handling this issue such as
ignoring inconsistent solutions, including inconsistent solutions in H-group or L-group,
or employing statistical methods to solve the inconsistencies [Mic00].

Regarding the way of coupling LEM and Darwinian evolution modes, there are research
papers [Dom+04; WT17b] that place the learning mode before Darwinian Evolution
mode. On the other hand, LEM can start with Darwinian Evolution mode [WWH12],
and then the two modes can alternate until the LEM termination criterion is met.

It has been regularly mentioned that involving discriminant descriptions provided by ML
techniques in EAs significantly accelerates the search process toward promising solutions.
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Such accelerations have been shown as frequent quantum leaps of the fitness function
that signify the discovery of the correct direction of the evolution process. However, such
an evolutionary acceleration imposes a higher computational complexity on the search
process. This extra complexity mostly depends on the ML technique used. Therefore,
employing efficient ML techniques and a parallel implementation of the AQ algorithm
can reduce the complexity. Among them, the latter can reduce the complexity from
linear to logarithmic.

Although the initial results from employing LEM to solve COPs are promising, there
are still plenty of unsolved questions that require further research. The first attempt for
future research direction should be doing numerous systematic theoretical and experi-
mental implementations of LEM to better understand the trade-off between LEM and
Darwinian evolution modes.

Among COPs, LEM has been mostly implemented on routing (e.g., TSP, VRP) and
design (e.g., HEDP, WDSDP) problems. Therefore, the second important future research
direction for the interested researchers is implementing LEM on other COPs to figure
out the strengths, weaknesses, and limitations of both LEM and Darwinian evolution
modes and to identify the most appropriate areas for their application.

3.5.3 Neighbor generation

After selecting the most appropriate operator in Section 3.5.1, it is the time to generate
the neighbors from the current solution(s) using the selected operator(s). One naive
way to generate neighbors is to generate all possible neighbors and select the ones with
the best OFV. Another way is to generate neighbors randomly. However, considering
the computational time and the goal to lead the search process towards promising areas
of the search space, both strategies might not be very efficient. To be as efficient as
possible, ML techniques can be used to leverage the generation of good neighbors by
extracting knowledge from the generated good solutions so far.

Indeed, using ML techniques, we can extract the common characteristics that are often
present in good solutions during or before the search, and use this knowledge to generate
new solutions with the same characteristics by fixing or prohibiting specific solution
characteristics. In this way, we can lead the search towards promising areas of the search
space and accelerate the process of finding a good solution. Usually, this knowledge is
in the form of a set of rules or patterns that are discovered in good solutions [Arn+21].
This process is composed of two phases: knowledge extraction and knowledge injection
[Arn+21]. In knowledge extraction, the common characteristics found in good solutions
are extracted. Then, in knowledge injection, the extracted knowledge is used to generate
the neighbors. When the knowledge appears as a set of patterns, the most frequent
patterns of good solutions are injected into the new solutions to generate the neighbors.

The knowledge extraction phase can occur either offline or online. In offline extraction,
knowledge is extracted from a set of training instances with the aim to generate good
solutions for new instances. However, in online extraction, knowledge is extracted from
good solutions obtained during the search process, while solving the problem instance.
The most common ML techniques in neighbor generation are Apriori algorithms for ARs,
RL, and DT.

3.5.3.1 Literature classification & analysis

Table 10 classifies the papers using ML techniques for neighbor generation based on
different characteristics such as learning mechanism, the ML technique used to extract
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knowledge, the MH algorithm that conducts the search process, the operator to generate
new neighborhood, the COP under study, and the size of the training set for studies
that have used offline knowledge extraction.

Table 10 – Classification of papers studying neighbor generation
Ref. Learning ML tech. MH Operator COP Size

[San+06] Online Apriori GA XRO VRP –
[RPM06; Bar+13] Online Apriori GRASP RRO SPP –
[ZHD16] Online RL LS RRO GCP –
[Arn+21] Online Apriori GA, GLS LSO VRP –
[TZ19] Online Apriori VNS LSO SMSP –
[Sad+19] Online Apriori ABC LSO MAX-SAT –
[AS19] Offline DT, SVM, RF GLS LSO VRP 192000
[Fai+19] Online RL ABC LSO TSP –
[Wan+20b] Online RL LS RRO WIDP –
[ZHD20] Online Apriori EAs MPO QAP –
[AD+18] Online Apriori GRASP LSO VRP –

As can be seen in Table 10, almost all reviewed papers have used the online manner to
extract knowledge in the form of patterns. Indeed, when dealing with a new instance
with unknown characteristics, the most efficient way to extract patterns is online. An
advantage of online pattern extraction is avoiding the misleading patterns extracted in
an offline manner that may not correctly represent the properties of the good solutions
of the new problem instance; however, the computational overhead of online pattern
extraction should not be ignored.

3.5.3.2 Discussion & future research directions

In this section, the requirements and challenges of applying ML techniques for neighbor
generation are discussed. Then, some directions for future research are presented.

One of the most important requirements of using ARs is data availability. In fact, when
extracting patterns, it is indispensable to have a sufficient pool of good solutions, since
the accuracy of the extracted patterns directly depends on the availability of sufficient
data. The higher the availability of data, the higher the precision and usefulness of the
extracted patterns.

The first challenge of neighbor generation is to determine the stage of the search process
at which the knowledge should be extracted to generate new neighbors. This challenge
is twofold; first, in the beginning of the search process, the improvements are larger,
and the set of good solutions frequently change, and no precise pattern can be extracted
from the pool of good solutions. Therefore, the knowledge should be extracted after some
iterations are passed. Second, if the knowledge is injected into the neighbor generation
process in the earlier stages of the search process, it prevents the MH to explore different
areas of the search space, and it may cause a premature convergence to a local optimum.

The second challenge is related to the frequency at which the extracted pattern should
be updated and injected to create new neighbors. Indeed, one may identify the patterns
once and use them for neighbor generation throughout the search process, or update the
patterns frequently based on the characteristics of the newest good solutions. Pattern
extraction may be a time-consuming process which increases the computational cost of
the search process. Therefore, there is a trade-off between the accuracy of patterns based
on the latest information from the search process and the computational overhead of the
pattern extraction process.

Another challenge arises when several pieces of patterns are available in good solutions
and there might be plenty of possibilities to inject them into new solutions (i.e., separate
or combined injection of patterns). There is no guarantee that the combination of pieces



Chapter 3. Integration of Machine Learning into Meta-heuristics: A Taxonomy 76

of patterns also provides good solutions [Arn+21]. In other words, although several
single patterns may appear in a large number of good solutions, their combination does
not necessarily generate better or even good solutions. For instance, in permutation-
based representations, edges A − B and C − D may separately appear in good solutions,
however; there is no guarantee that edges A − B and C − D simultaneously lead to a
good solution.

Along with all the previously mentioned challenges, last but not least is making a deci-
sion about the ratio by which new solutions are generated using the extracted knowledge.
The level of such ratio affects the behavior of the MH in terms of its exploration and
exploitation abilities. If almost all solutions are generated based on the previous knowl-
edge, the MH tends to mostly exploit the currently observed area. On the other hand,
if a small ratio of solutions is generated based on the previous knowledge, the algorithm
has an opportunity to explore new areas of the search space. Therefore, the user has to
consider the exploration and exploitation abilities of the algorithm while deciding about
the ratio of the solutions to generate based on the extracted knowledge.

Considering Table 10, most of the studies that used ARs attempt to identify the char-
acteristics of the good solutions. One research direction could be using ARs to identify
the characteristics of bad solutions which have to be removed from the new solutions.
Then, this knowledge could be used merely to avoid bad solutions, or it could be used
besides the knowledge obtained from good solutions to complement the patterns of good
solutions.

In addition, most of the papers in the literature have used the knowledge of good so-
lutions to exploit the most promising areas of the search space, while the exploration
aspect of the search process should be also taken into consideration. One way of doing
that is extracting the rare patterns from the visited solutions and injecting them into
new solutions to generate solutions far from the solutions visited so far.

3.6 Parameter setting

The success of any MH significantly depends on the values of its parameters [Tal09].
As the parameters control the behavior of the algorithm during the search process,
the values of parameters should be properly set to obtain the highest performance.
Although there are several suggestions on the values of parameters for a similar group
of problem instances in the literature, they are not necessarily the most appropriate
settings when solving the problem instances at hand [WM97]. Indeed, parameter setting
is not a onetime task, and researchers need to set the algorithm’s parameters whenever
they solve new problem instances [HLY19]. Parameter setting, also known as algorithm
configuration [Hoo11], is divided into two categories, parameter tuning and parameter
control [EHM99].

• Parameter tuning – Also known as offline parameter setting, identifies appropri-
ate parameter levels before employing the algorithm to solve the problem instances
at hand. In this case, the levels of parameters remain unchanged during the ex-
ecution of the algorithm. Parameter tuning can be done using different methods
such as brute force experiments [Pha+19], Design of Experiments (DOE) [Tal09],
racing procedures [HLY19], and meta-optimization [Tal09].

• Parameter control – Also known as online parameter setting, focuses on ad-
justing the levels of parameters of an algorithm during its execution, rather than
using initially fine-tuned parameters that remain unchanged during the whole exe-
cution. Parameter control methods have been developed based on the observation
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that tuning the parameters does not necessarily guarantee the optimal performance
of a MH, since different settings of a parameter may be appropriate at different
stages of the search process [Ale12]. The reason is attributed to the non-stationary
search space of optimization problems that results in a dynamic behavior of the
MHs, which should evolve regularly from a global search mode, requiring parameter
values suited for the exploration of the search space, to a local search mode, requir-
ing parameter values suitable for exploiting the neighborhood. Parameter control
can be performed in three manners [KHE14]; deterministic manner in which the
levels of parameters are adjusted using given schedules (e.g., pre-defined iterations)
without no feedback from the search process, adaptive manner in which the levels
of parameters are adjusted using feedback from the search process, where a credit
is assigned to the parameters levels based on their performance, and self-adaptive
manner in which the parameters levels are encoded into solution chromosomes and
evolved during the search process.

ML techniques can be employed in both parameter tuning and parameter control. In
parameter tuning, ML techniques such as LogR [Ram+05], LR [CR09], SVM [LCA11],
and ANN [Dob10] are used to predict the performance of a given set of parameters
based on a set of training instances. In parameter control, ML techniques can involve
in adaptive parameter control to help control the parameters levels by using feedback
information on the performance of the parameters levels during the search process. The
integration of ML techniques in adaptive parameter control is similar to that of AOS
(Section 3.5.1), where feedback is used to adapt the parameters levels to the search space.
It similarly involves four main steps (except Move Acceptance step): 1) performance
criteria identification, 2) reward computation, 3) credit assignment, and 4) selection,
which have been explained in detail in Section 3.5.1.

3.6.1 Literature classification & analysis

This section aims at classifying, reviewing, and analyzing the studies on the use of
ML techniques in the parameter setting of the MHs. In this regard, Table 11 classifies
the papers based on different characteristics including parameter tuning/control, the
employed ML technique, credit assignment and selection methods, the MH for which
the parameters are set, the parameters to set, the COP under study, and finally the size
of the training set for the papers that have studied parameter tuning.

Table 11 – Classification of papers studying parameter setting
Ref. Tuning/

control
ML tech. Credit

ast.
Selection MH Parameter COP Size

[Hon+02] Control RL SCA MCS GA Crossover & mutation rates KP –
[Ram+05] Tuning LogR – – EA Population size TSP 25
[MR07] Control RL SCA MCS GA Crossover & mutation rates JSP –
[CR09] Tuning LR – – GH Population size CLSP 4992
[ZEC10] Tuning SVM – – TS Intensification rate TSP, VRP 25000
[LCA11] Tuning SVM, LR – – PSO Learning rates WDSDP 5284
[LT12] Control RL SCA MCS EA Mutation rate PDP –
[Ale+14] Control LR – – EA Crossover & mutation rates QAP –
[AP14] Control RL SCA PMS DE Perturbation & Mutation

rates
KP –

[Seg+16] Control RL SCA MCS, PMS MA Mutation rate AP –
[BEB17] Control RL QLCA SMS BLS Number & probability of per-

turbation
VSP –

[Che+20] Control RL QLCA EGS GA Crossover & mutation rates FSP –
[Özt+20] Control RL QLCA EGS VNS Acceptance & QL parameters FSP –

As can be seen from Table 11, parameter control has attracted much more attention
compared to parameter tuning when solving COPs. Indeed, the main reason is that
fixed values of the parameters do not necessarily guarantee the best performance of a
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MH during the whole search process. The underlying cause is the non-stationarity of the
search space, as explained at the beginning of this section. From a general point of view,
the performance of a MH significantly depends on its capability to explore and exploit
the promising areas of the search space, and the exploration and exploitation abilities of
a MH depend on the levels of its parameters. Taking the GA as an example, the crossover
and mutation rates should change depending on the performance of the algorithm and
the properties of the search space. For example, once a promising solution is explored,
that solution should be exploited carefully. Therefore, the mutation and crossover rates
should be decreased and increased, respectively. On the other hand, when the algorithm
gets stuck in local optima, the mutation rate can be increased to help the solution to
escape from the local optima.

Based on Table 11, ML techniques based on RL have been mostly employed when control-
ling the parameters during the search process. The underlying reason is that RL agent
iteratively learns from interactions with its environment to take actions that would max-
imize the reward. In the context of parameter setting, a list of different configurations
can be defined as a set of actions and each time a configuration set provides better solu-
tions, a reward is assigned to that set of configurations. Indeed, at the beginning of the
search process, all possible configuration sets have the same probability to be selected.
During the search process, these probabilities can change according to their success in
creating better solutions [AP14]. It has been reported in the literature that in the earlier
stages of the search process, the selection probability of each configuration set changes
more often compared to the latter stages of the search process. It has been explained by
the diversity loss that occurs during the search process [LT12; AP14; Seg+16; BEB17].
In addition, there is evidence that the levels of exploration representative parameters
(e.g., mutation rate in GA and DE, size of Tabu list in TS) change more frequently at
the earlier stages of the search process when the MH is exploring the search space. On
the other hand, the exploitation representative parameters get more attention in the
latter stages of the search process, when the MH needs to exploit promising solutions
found so far [ZEC10; LT12; AP14; BEB17].

Another insight from Table 11 is that most of the papers have done parameter set-
ting for population-based MHs. Population-based MHs possess both exploration and
exploitation representative parameters, and a balance between these abilities should be
well established. If not, the search process either gets stuck in local optima or performs
a random search.

3.6.2 Discussion & future research directions

The first challenge when performing parameter setting is to decide whether to tune or
control the parameters. Each mode of setting has its own advantages/disadvantages.
There are experimental evidence revealing that the optimal parameter settings are dif-
ferent not only for different problem instances, but also for different stages of the search
process of the same problem instance. In this situation, it is recommended to perform
parameter control despite the computational overhead imposed on the search process. A
big challenge related to the parameter control is the trade-off between exploration and
exploitation to select the current best configuration(s) or search for new good ones. Once
the configuration is changed during the search process, the new configuration should work
for a certain number of iterations so that its performance can be evaluated. An extra
parameter should be then defined to control when the configuration should be changed
(i.e., the rate of configuration change). The rate of configuration change itself is another
parameter that needs to be tuned or controlled during the search process. Therefore,
the parameter control itself introduces a set of other parameters (i.e., parameters of the
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parameter control mechanism) that need to be tuned or controlled, which results in the
increase of the complexity of the parameter control.

Parameter control faces another challenge when dealing with continuous parameters,
where an infinite number of values exist for each parameter. One way to deal with this
challenge is considering the parameter setting as a separate optimization problem and
the parameter levels as decision variables to be optimized. The other way is developing
a self-adaptive parameter control mechanism. Another way studied in the literature
is subdividing the levels of parameters into feasible intervals [Ale12]. In this way, the
interval borders are normally fixed and not manipulated by the search process. As a
result, the number and the size of the intervals have to be determined by the user a priori
that may jeopardize the accuracy of the interval as well as the efficiency of the MHs. If
the levels of a parameter are divided into several narrow intervals, the accuracy of the
intervals would be higher, while the computational effort of selecting among the intervals
significantly increases. Accordingly, there is a risk to find good intervals late, or there
might be some intervals that are not selected at all. If the intervals are wide, different
parameter values belonging to a single interval may lead to different performance of
the MH, as wide intervals may encompass smaller intervals that behave differently. As
a result, no unique performance behavior can be attributed to such wide intervals. To
cope with this issue, adaptive range parameter control method [AMM12] adapts intervals
during the search process, and entropy-based adaptive range parameter control method
[AM13] clusters parameter values based on their performance. However, more research
is indeed required to understand the impact of small changes in the values of continuous
parameters on the performance of the MHs.

Considering Table 11, one future research direction is applying parameter setting meth-
ods to other MHs such as single-solution based MHs. A first try can be developing a
parameter setting mechanism to control the parameters of SA, such as the cooling tem-
perature, which is always a challenging problem for practitioners. Additionally, further
investigation could be done on controlling parameters that have received little attention
so far.

Another research direction that should be put in priority is implementing parameter
setting on multi-objective COPs using ML techniques. It should be noted that one of
the challenges of adaptive parameter control in multi-objective optimization problems is
how to define the feedback with a single value such that it would be representative of
the quality of a parameter value over multiple objective functions.

3.7 Cooperation

Different MHs with particular strengths and weaknesses working on the same problem
instance produce different results. In this situation, using a framework enabling the use
of different MHs in a cooperative way could result in an improved search process. The
main motivation of developing cooperative MHs is to take advantage of the strengths of
different MHs in one framework, to balance exploration and exploitation, and to direct
the search towards promising regions of the search space [Mar+11]. The interest in
using such frameworks for solving COPs has risen due to their successful results [Tal02;
Mar+16]. The cooperation framework can be modeled as a multi-agent system in which
the search process is performed by a set of agents that exchange information about states,
models, entire sub-problems, solutions, or other search space characteristics [BR03].

In multi-agent based cooperative MHs, each agent could be a MH or a MH’s component
such as an operator, a search strategy, a solution, etc. that tries to solve the problem,
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while communicating with other agents [Sil+18]. The cooperation could happen either
at the algorithm level (between several MHs) wherein different MHs with specific charac-
teristics cooperate to solve a COP, or it can happen at the operator level (inside a MH),
wherein different operators cooperate when discovering different regions of the search
space. The former belongs to the category of high-level integration of ML techniques
into MHs while the latter falls in the low-level category of integration.

ML techniques can help in designing intelligent cooperation frameworks by extracting
the knowledge from the resolution of the problem instances by different agents (MHs).
This knowledge is then incorporated into the framework that enables the framework to
continuously adapt itself to the search space. In this way, ML techniques can improve
the overall performance of the cooperation framework. The integration of ML techniques
into a cooperation framework can happen in two learning levels: inter-agent and intra-
agent levels. The former is to adapt the behavior of the overall framework to the search
space, while the latter is to adapt the behavior of each agent to the search space.

ML

.....

MLML

Information Pool

Indirect Information Sharing

Direct Information Sharing
Agent Agent Agent

MH� MH� MHn

Agent to share information

Figure 9 – Cooperation procedure

Figure 9 illustrates the process of cooperation between agents. Agents can cooperate se-
quentially or in parallel [Tal02]. The cooperation between the agents can be synchronous,
where the agents work in a parallel way and none of them waits for the results from other
agents, or asynchronous, otherwise [Mar+16]. As can be seen in Figure 9, the exchange
of information between the agents is direct (many-to-many), where each agent is allowed
to communicate with any other agent and indirect, where agents are only allowed to use
the information provided in a common pool [Mar+16]. While cooperating, the agents
can share partial or complete solutions to proceed the search process.

3.7.1 Literature classification & analysis

Table 12 classifies the papers studying cooperation for COPs based on different char-
acteristics such as cooperation level, parallel/ sequential mode of cooperation, learning
level, the employed ML technique, direct/ indirect information sharing, solution sharing
type between the agents, the MH algorithms participated in the cooperation, and finally
the COP under study. To the best of our knowledge, Table 12 reviews the most relevant
papers, including the most recent papers in the literature that study the cooperation
between MHs (or MHs’ components) to solve COPs using ML techniques.
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Table 12 – Classification of papers studying cooperation
Ref. Coop.

level
Parl./
Seq.

Learning ML tech. (In)Direct Sharing MH COP

[LBCK05] Alg. Parl. Inter Apriori Ind. Part. TS VRP
[MCK08; MCK09; MKC10] Alg. Parl. Intra RL Di. Comp. EA VRP, FLP
[CGM09] Alg. Parl. Inter DT Ind. Comp. GA, SA, TS KP
[Bar10a] Opr. Parl. Inter RL Ind. Comp. LS VRP
[Sil+15] Alg. Parl. Intra LA Ind. Comp. ILS VRP
[LA16] Alg. Parl. Inter LA Ind. Comp. GA, DE, SA,

ACO, GD, TS
MSP

[Mar+16] Alg. Parl. Inter Apriori Di. Part. MHs FSP, VRP
[Sgh+15; SJG18] Opr. Seq. Inter RL Ind. Comp. GA, LS QAP, KP,

GCP, WDP
[WT17a] Alg. Seq. Inter k-means Di. Comp. MA, LS FSP
[Sil+19] Alg. Parl. Intra QL Ind. Comp. ILS VRP, PMSP
[KM+20a] Alg. Seq. Inter k-means Di. Comp. DE, ILS IPP
[KM+20b] Alg. Seq. Inter k-means Di. Comp. GA, ILS HLP

As can be seen in Table 12, the majority of the studies applied cooperation in a parallel
manner. The main motivation has been an attempt to reduce the computational time
of executing several MHs one after another (i.e., sequential cooperation). In Parallelism,
the MHs are executed simultaneously, and consequently, it results in the reduction of
the search process time. Indeed, the combination of cooperation and parallelism allows
self-sufficient algorithms to run simultaneously while exchanging information about the
search [Sil+18]. This combination has attracted increasing attention in optimization,
especially for solving COPs, since they have shown good results on different COPs
[Mar+16; KM+20a]. Moreover, as mentioned by [Tal02] and [CTA05], the best results
obtained for many optimization problems are achieved by the cooperative algorithms.
In addition, there is greater access to parallel computing resources, which provides new
possibilities for developing these techniques [Sil+18].

Regarding synchronous and asynchronous cooperation, the majority of the studies focus
on the asynchronous way of cooperation. Indeed, in most of the time when MHs have
been executed in parallel, their cooperation has been asynchronous, wherein none of MHs
wait for the results of the others. Asynchronous cooperation carries fewer operational
challenges and gives the opportunity to modify the cooperation framework easily. Using
asynchronous cooperation, MHs can be added or dropped easily without any change to
the overall framework. On the other hand, a synchronous cooperation faces more chal-
lenges. In synchronous cooperation, the agents must coordinate their actions in time.
In other words, the agents are activated only when all agents are ready to act [Bar10b].
Indeed, although the agents work independently, the activation times of the agents de-
pend on each other. Accordingly, there is a need to determine a synchronization point in
which the agents announce their readiness and start to act. Hence, the time dependence
of the agents may cause some agents to wait, and consequently some processors stay idle
for a period of time.

According to Table 12, the agents of a cooperative system could be the MHs or MHs’
components. The cooperation could happen either at an algorithm level or operator
level. The difference between the cooperation at the operator level and AOS (Section
3.5.1) relies on the fact that in AOS, operators are selected one after another based on
their history of performance, while in the cooperation framework, the operators share
information while searching for solutions cooperatively.

The main ML techniques used in cooperative MHs are RL and Apriori algorithms for
ARs. RL has been used to help the system adapt its behavior based on the experience it
gains throughout the search process. RL is used in two levels; within the agents (intra-
agent level) to adapt their behavior to the characteristics of the search space during the
search process by modifying their components (selecting the operators) and in a higher
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level (inter-agent level) to adapt the application of the agents based on their performance
compared to other agents. On the other hand, ARs are used to identify the common
characteristics of good solutions. Then, this knowledge is shared among the agents in
the form of partial solutions, which allows each agent to generate new solutions based
on the identified patterns and guide the search toward promising regions.

3.7.2 Discussion & future research directions

This section aims at introducing the requirements and potential challenges when de-
signing a cooperation framework of MHs. Next, a set of future research directions are
provided.

The design and implementation of efficient cooperative MHs require sufficient apriori
knowledge about different MHs. To take advantage of the strengths of different algo-
rithms, which is the main motivation of developing cooperative algorithms, one needs to
be aware of a broad spectrum of algorithms and have knowledge on their strengths and
weaknesses. For instance, population-based MHs are powerful in exploration. On the
other hand, single-solution based MHs are strong in exploitation. As can be seen in Table
12, studies with heterogeneous algorithms have incorporated both population-based and
single-solution based MHs into their cooperation framework to take advantage of both
exploration and exploitation abilities. As discussed earlier, the information between the
agents can be shared in the form of partial solutions, where ARs can be used to generate
these partial solutions. In this regard, a set of challenges in front of ARs for partial
solution generation, which were elaborated in Section 3.5.3, also needs to be addressed
in the design of cooperation frameworks.

Considering Table 12, in most of the studies, the agents (MHs) attempt to save and
share good obtained solutions partially or completely. In this way, each MH would be
aware of the promising regions exploited by other MHs. As a future research direction,
sharing the bad solutions and their corresponding characteristics could be also useful
to prevent MHs to explore non-promising regions. Indeed, the non-promising regions
already visited by a MH could be prohibited to be explored and exploited again by other
MHs.

Most of the reviewed papers in this section have used cooperative MHs to solve single-
objective COPs, and there are only few papers that study cooperation in multi-objective
COPs [KM+20b; KM+20a]. These two papers have used k-means to link multi-objective
population-based MHs with single-solution based MHs. Once the non-dominated so-
lutions are obtained via the population-based MHs, k-means is used to cluster these
solutions. Then, the representative of each cluster is given to the single-solution based
MH to be more exploited. This cooperation has led to better non-dominated solutions
in terms of both the quality and the computational time of the search process. In this
regard, another future research direction could be extending the concept of cooperation
to multi-objective COPs.

3.8 Conclusion

In recent years, ML techniques have been extensively integrated into MHs for solving
COPs, and promising results have been obtained in terms of solution quality, convergence
rate, and robustness. In this chapter we provided a comprehensive and technical review
on the integration of ML techniques in the design of different elements of MHs for differ-
ent purposes including algorithm selection, fitness evaluation, initialization, evolution,
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parameter setting, and cooperation. Throughout this chapter, a set of requirements,
challenges, and insights have been elaborated for each purpose of integrating.

The prominent difference of this chapter compared to the existing review studies in the
literature is its technical overview on each way of ML-into-MH integration. This com-
prehensive and technical survey provided a complete description of all the key concepts
and preliminaries (on MHs, ML techniques, and COPs) and then, proposes a taxonomy
to provide a common terminology and classification, followed by a technical discussion
on the advantages/limitations, requirements, and challenges of implementing each way
of integration, and finally, terminated with providing promising future insights and di-
rections.

We observed that integrating ML techniques into MHs mostly leads to an overall im-
provement of the MH’s performance; however, each type of integration carries its own
challenges and limitations. The challenges mostly relate to the extra complexity that ML
techniques introduce to the search process, particularly the learning process of ML tech-
niques. This complexity is often acceptable when significant improvement is obtained in
the MH’s performance. However, is the performance improvement is not that significant,
the integration of ML techniques into MHs might be questioned (unnecessary). There
is also a common challenge beyond the particular way of ML-into-MH integration; that
is, introducing new parameters (i.e., ML’s parameters) to the algorithm that need to be
well tuned to guarantee the best performance of ML techniques. This tuning should be
done very carefully, and it might be time-consuming and even risky.

Another overall conclusion of this survey study was that the majority of studies in the
literature attempt to use simple but efficient ML techniques. This intention is, in one
way, to limit the extra complexity that ML techniques introduce to MHs, and also
to provide the highest performance improvement for the MHs. Accordingly, although
complex and advanced ML may provide more concrete knowledge, they do not necessarily
yield better overall performance, particularly when the computational time is limited.

Now, considering the terminology and classification we provided in this chapter, we
focus on operator selection, a subclass of evolution, in Chapter 4. We propose a general
framework to integrate ML into MHs to select appropriate search operator.
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In Chapter 3, we showed that ML can be integrated into MHs for different purposes
including algorithm selection, fitness evaluation, initialization, evolution, parameter set-
ting, and cooperation. In this chapter, we focus on operator selection, a subclass of
evolution and propose a general framework on how ML can be integrated into MHs
to learn to select appropriate search operators during the search process. This is the
second contribution of this thesis that has been published in the European Journal of
Operational Research [KM+22].

We, first, propose a general framework that is able to automatically select the search
operators without the need for expert knowledge. Then, we apply the framework to solve
two COPs, TSP and PFSP. In order to apply the framework to solve these problems,
first we need to determine the properties of Q-leaning based on the goal for which we
use the Q-learning, and to introduce the problem-specific information such as the set of
available operators for these problems. Next, we design a set of experiments explaining
the employed datasets, parameter setting procedure, and the performance metrics by
which the framework has been evaluated. Finally, the obtained numerical results have
been provided for both applications and the complexity of the framework has been
investigated.

4.1 General framework
There is a rise in the number and variety of problem-specific operators for efficiently
solving optimization problems. Selecting and applying these operators within a MH
requires much expertise in the domain. That is especially the case for COPs with
plenty of proposed problem-specific operators, where the classical operators are not as
competent as problem-specific ones. This issue highlights the necessity of an automatic
approach to select the most appropriate operator(s) based on their performance without
having an expertise in the domain. In this way, even inexperienced users are able to
select appropriate operators for solving COPs.

In this section, we aim to propose a framework to show how ML can be integrated into
MHs to automatically select the search operators without injecting experts knowledge
into the selection process. Sometimes, the expert knowledge may not be sufficient/op-
timal and may lead to decisions with unsatisfactory results. Consider a MH with a set
of multiple search operators. The goal of operator selection is to decide which operator
to be selected and applied at each step of the search. The quality (performance) of the
operators at each step of the search depends on two criteria: first, the stochastic na-
ture of the evolution process where some seemingly poorly performing operators might
just have been unlucky at some steps and second, the region of the search space being
explored and its landscape characteristics where a good operator might show a poor
performance in some regions. Therefore, it would be hard to forecast the performance
of the operators at each step of the search a priori and to determine the best opera-
tor using the expert knowledge, since this performance does depend on the landscape
characteristics of the problem instance at hand as well as the stochastic nature of the
evolution. Therefore, the expert knowledge may not give us the optimal operator and
consequently the optimal decision.

To deal with this issue, we propose to substitute expert knowledge with ML techniques
to automatically select the operators. Among different ML techniques (i.e., supervised
learning, unsupervised learning, semi-supervised learning, and RL), we propose to use
RL. In supervised learning, the expert must provide the set of input as well as the
expected output (behavior) to train the machine learning model and the goal is to
blindly mimic the expert and not to optimize some performance measure. However,
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sometimes the expert knowledge is not optimal/satisfactory. In this condition, RL can
come into play to train a model through trial and error without the need for expert
knowledge. This model is able to explore the space of possible decisions and learn out of
the experience the best performing behavior. Furthermore, in supervised learning, the
learned behavior may not generalize well to unseen instances. On the contrary, in RL,
for a given reward, the model learns to find the best behavior for each single instance.

Figure 10 shows the mechanism of the proposed framework. Furthermore, the detailed
procedure of the QILS framework has been described in Algorithm 2. According to
Figure 10, the proposed framework has two main components; a ML technique and
a MH. As the ML component, we have used Q-learning, a technique based on RL.
Regarding the MH, we have used the ILS algorithm (please see Section 2.2 of Chapter
2), which is a simple single-solution based meta-heuristic powerful in both exploitation
and exploration. Considering the Q-learning as the ML technique and ILS as the MH,
we call the proposed framework QILS hereafter.

Figure 10 – Flowchart of the proposed QILS framework

The proposed QILS framework starts with the MH component, where an initial solution
is first generated. The solution then goes through three main steps of ILS: the pertur-
bation (exploration) step, the local search (exploitation) step, and the acceptance. A
RL technique has been integrated into the ILS to select the most appropriate operator
among a set of multiple available operators to be applied to the solution. Accordingly,
depending on the user’s goal, RL can be integrated into the perturbation step, the local
search steps, or both. For simplicity, in Figure 10, we show a case where Q-learning, as
a RL technique, has been used to select the perturbation operators in the perturbation
step. In the following, we go into more details of the operator selection process.

In our selection process, we use the idea of AOS, wherein the operators are selected
adaptively throughout the search process based on their quality. In addition, we take
into account the concept of states in RL in our selection process. The operators are
selected based on two criteria at each decision point: the performance history of the
operators from the beginning of the search that represents the quality of the operator,
and the current state (status) of the search that characterizes the environment under
study. We model the operator selection using the Q-learning algorithm. The Q-learning
is composed of three main elements: the set of states s ∈ S that represents the status of
the environment, the set of actions A that represents the set of decisions that need to
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be learned though interaction with the environment, and finally, a reward function that
aims to guide the model to make decisions that maximize the cumulative reward.

Algorithm 2. Pseudo code of the proposed framework
Input: ϵ, β, α, γ, E, η // Set of parameters

Input: A // Set of possible actions at each state

Input: S // Set of states

Input: OPT l // A given local search operator

Output: S∗ // Best solution found

1 Function QILS(ϵ, β, α, γ, E, η,A,S, OPT l):
2 S := initialSolution() // Initialize solution using a heuristic

3 S := applyOperator(OPT l, S) // Apply local search to the initial

solution

4 S∗ := S // Remember the best solution found

5 Q := [0] // Initialize Q, a zero-filled |S| × |A| table

6 s := initialState(S) // Initialize the state

7 OPT p := randomChoice(A) // Initial action is drawn randomly from A

8 while ! terminationCriterion() do
9 // Start of an episode

10 Fb := f(S) // Remember OFV of current local optimum before an episode

11 F ∗
b := f(S∗) // Remember OFV of best solution found before an episode

12 F := Fb // Remember OFV of the best local optimum during an episode

13 F ∗ := F ∗
b // Remember OFV of the best solution found during an episode

14 for e = 1 : E do
15 // Perturbation:

16 S ′ := applyOperator(OPT p, S) // Apply selected operator

17 // Local search

18 S ′ := applyOperator(OPT l, S ′) // Apply local search operator

19 // Acceptance

20 if accept(S ′, S) then
21 S := S ′

22 F := min(F, f(S)) // Track OFV of best local optimum during an

episode

23 end
24 if better(S ′, S∗) then // Update best solution found

25 S∗ := S ′

26 F ∗ := f(S∗)
27 end
28 end
29 // Update Q, change state s and select LLHp (action) for next episode

30 Q, s, OPT p := Q-learning(Fb, F ∗
b , F, F ∗, ϵ, α, γ, β, η,A, s, LLHp)

31 end
32 return Π∗

In the QILS framework, the actions (decisions) are the operators (perturbation, local
search) that need to be selected by Q-learning. On the other hand, the set of states and
the reward function are problem-specific properties that are determined based on the
context and the goal of using Q-learning.

In the QILS framework, the application of any action is followed by an immediate re-
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ward from the environment (i.e., the problem) that shows the immediate impact of the
applied operator on the search process. Next, based on this immediate reward and the
operators’ performance history, the Q-learning algorithm assigns a credit to each opera-
tor. Depending on the current state of the search as well as the credit of each operator,
the next perturbation operator is selected to be applied. For the selection, we use the
ϵ-greedy strategy to make a balance between exploiting the operators that have per-
formed well so far and exploring other operators to give them a chance to be selected.
We introduce the concept of episode in the proposed framework, wherein each action is
given a chance of one episode equal to a fixed number of iterations before evaluating its
performance.

The proposed framework is most useful when dealing with several competitive operators
for solving a COP such that none of them can be preferred over the others a priori, and
choosing the best operator exhaustively is computationally expensive. In this condition,
Q-learning can be used to automatically select the operators.

It is worth mentioning that the proposed QILS framework is general and can be inte-
grated into any MH, ranging from single-solution based to population-based MHs. Also,
it can be applied to solve any COP. In order to integrate the framework into any MH and
apply it to other COPs, there are two types of application-specific properties that needs
to be determined: first, the properties of Q-learning including a set of states, actions
and reward function that depends on the goal of using Q-learning, and second, a set
of search operators that depends on the COP at hand. It would be good to consider
a pool of operators with different characteristics to be able to take advantage of these
characteristic simultaneously.

4.2 Application to TSP
In this section, as the first application, we apply the QILS framework to solve the
traveling salesman problem. The QILS framework is applied separately for two different
purposes: first, to select the local search operators of ILS with the hope to improve the
exploitation ability and second, to select the perturbation operators of ILS aiming at
improving the exploration ability of ILS. The set of problem-specific properties of the
QILS framework including the set of search operators (local search and perturbation) for
TSP, and the properties of Q-learning such as the set of actions, states, and the reward
function are defined for each of these two purposes.

4.2.1 Set of search operators

Various local search and perturbation operators exist for TSP in the literature [JRR95].
Among different local search operators, we use the basic 2-opt operator [Tal09], and
propose two new operators based on the basic 2-opt and basic insertion operators. Ac-
cordingly, we include three operators in the set of available operators as the basic 2-opt,
an extended version of 2-opt which we call it best-independent-moves 2-opt, and an
extended version of insertion operator that we call it 4-move insertion. It is worth men-
tioning that in the QILS framework, the local search operators perform a descent-based
search and continue until no more improvements are found. Considering that a solution
to TSP is a Hamiltonian tour Γ := (γ1, . . . , γv) ∈ S(V ) of the cities, where γj ∈ V de-
notes the index of the city at position j in the tour Γ, the mechanism of these operators
are explained in the following:

• Basic 2-opt: This operator has been motivated by the an observation in Eu-
clidean problems [JRR95]. If a Hamiltonian cycle crosses itself it can be easily
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shortened by removing the crossing edges and reconnecting the two resulting sub-
routes by new edges without a cross. This makes the new route shorter than the
initial one. Accordingly, the basic 2-opt operator takes two edges from the route
of the cities, removes them, and reconnects the two resulting sub-routes with new
edges. If the move leads to a shorter travel distance the current route will be up-
dated [Cro58]. The pseudo code of the basic 2-opt local search operator is provided
as Algorithm 3.

Algorithm 3. Pseudo code of the basic 2-opt swap local search operator
Input: G // Weighted graph G = (V, E)
Input: D // Distance matrix
Input: Γ // A given tour
Input: f(Γ) // Objective function value of tour Γ
Output: Γ // A local optimum

1 Function 2opt-swap(Γ, D):
2 while ! terminationCriterion() do
3 for i = 1 : |V | − 2 do
4 for j = i + 2 : |V | do
5 δ := dγi,γj + dγi+1,γj+1 − dγi,γi+1 − dγj ,γj+1
6 if δ < 0 then // Update solution during the local search
7 Γ′ := swap(i, j, Γ) // Swap the permutation between cities γi

and γj

8 f(Γ) := f(Γ) + δ
9 break

10 end
11 end
12 end
13 end
14 return Γ

• Best-independent-moves 2-opt: We propose an extended version of 2-opt op-
erator based on the idea of best-move 2-opt presented in [EKEB+18]. In the
best-move 2-opt, in each iteration of the local search, all the improving moves
are identified and sorted based on their improvement value, and only the best
improving move is performed. In this way, the information gathered about other
improving moves is neglected and remain unused. However, in the proposed 2-opt,
the main idea is to use the gathered information about the improving moves and
to perform all possible moves simultaneously as long as they can be done inde-
pendently (i.e., they do not share any segment of the route). In this way, in an
iteration of the local search, a greater value of improvement achieves. We call
this new 2opt, the best-independent-moves 2-opt. To explain the procedure of
the proposed 2-opt, consider a simple example of Figure 11. In the first step, all
improving moves are identified (moves I, II, III, and IV with improving values in
parenthesis). Then, the improving moves are sorted based on their improvement
values in a descending order (moves II, VI, I, III). Finally, starting from the first
move, all the independent moves are performed simultaneously (moves II, VI, and
III). Indeed, move I cannot be applied immediately after move VI since they share
the same segment ”γ18 −γ19 −γ1”. The pseudo code of the best-independent-moves
2-opt local search operator is provided as Algorithm 4.
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Figure 11 – Independent improving moves in the best-independent-moves 2-opt operator

Algorithm 4. Pseudo code of best-independent-moves 2-opt swap local search
operator

Input: G // Weighted graph G = (V, E)
Input: D // Distance matrix
Input: Γ // A given solution
Input: f(Γ) // Objective function value of solution Γ
Output: Γ // A local optimum

1 Function 2opt-swap-BIM(Γ, D):
2 while ! terminationCriterion() do
3 I = {}
4 for i = 1 : |V | − 2 do
5 for j = i + 2 : |V | do
6 δ := dγi,γj

+ dγi+1,γj+1 − dγi,γi+1 − dγj ,γj+1
7 if δ < 0 then // Archive improving moves
8 I[(γi, γj)] = δ
9 end

10 end
11 end
12 I := sort(I) // Sort (γi, γj) pairs based on decreasing δ

13 J := {}
14 for (γi, γj) ∈ I do
15 if (γi, γj) /∈ J then // Do moves without shared edges
16 Γ′ := swap(γi, γj , Γ) // Swap the permutation between cities γi and

γj

17 f(Γ) := f(Γ) + δ
18 J := J ∪ (γi, γj)
19 end
20 end
21 end
22 return Γ

• 4-move insertion: The basic insertion operator removes a random city from
the permutation of cities and reinserts it into another position [JM97]. we pro-
pose a new insertion operator considering four types of moves: forward-left (FL),
forward-right (FR), backward-left (BL), and backward-right (BR). Let’s consider
two sampled segments γi−1 → γi → γi+1 and γj−1 → γj → γj+1 of the tour,
where the first segment is visited before the second segment. In addition, consider
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that two cities γi and γj undergo the 4-move insertion operator. The four above-
mentioned insertion moves produce four new segments of γj−1 → γi → γj → γj+1,
γj−1 → γj → γi → γj+1, γi−1 → γj → γi → γi+1, and γi−1 → γi → γj → γi+1,
respectively. Finally, the insertion move with the maximum improvement (i.e., the
shortest travel distance) is applied to the solution. The pseudo code of the 4-move
insertion local search operator is provided as Algorithm 5.

Algorithm 5. Pseudo code of 4-move insertion local search operator
Input: G // Weighted graph G = (V, E)
Input: D // Distance matrix
Input: Γ // A given solution
Input: f(Γ) // Objective function value of solution Γ
Output: Γ // A local optimum

1 Function 4-move-insertion(Γ, D):
2 while ! terminationCriterion() do
3 for i = 1 : |V | − 2 do
4 for j = i + 2 : |V | do
5 δBL := dγi−1,γj + dγi,γj + dγj−1,γj+1 − dγi−1,γi − dγj−1,γj − dj,γj+1

6 δBR := dγi,γj + dγi+1,γj + dγj−1,γj+1 − dγi,γi+1 − dγj−1,γj − dj,γj+1

7 δF L := dγi−1,γi+1 + dγi,γj−1 + dγi,γj
− dγi−1,γi

− dγi,γi+1 − dγj−1,γj

8 δF R := dγi−1,γj
+ dγi,γj

+ dγi,γj+1 − dγi−1,γi
− dγi,γi+1 − dj,γj+1

9 m∗ := arg min
m

{δm} // Find best insertion move m ∈ {BL,BR,FL,FR}

10 if δm∗ < 0 then // Update solution during the local search
11 Γ′ := insert(i, j, m∗, Γ) // Apply insertion move m∗ over

cities γi and γj

12 f(Γ) := f(Γ) + δm∗

13 break
14 end
15 end
16 end
17 end
18 return Γ

As perturbation operators, we employ a set of three different types of operators including
Double-bridge, Shuffle-sequence, and Reversion-sequence operators. The mechanism of
these operators are provided as follows:

• Double-bridge: This operator has been motivated to escape from local optima
found by local search operators which perform only sequential moves such as the
2-opt, 3-opt, and Lin-Kernighan [MOF92]. The original Lin-Kernighan algorithm
is based on doing sequential moves [Hel09]. For cities i and j to be exchanged,
two cities should be adjacent. By other words, if two edges (i, i + 1) and (j, j + 1)
are supposed to be removed, there should be the edge (i, j) in the route (i.e., i
and j are adjacent). Such an exchange is called sequential. Double-bridge is the
simplest non-sequential 4-opt move which cannot be undone by 2-opt, 3-opt and
Lin-Kernighan, and thus, it avoids the search process being trapped in the local
optimum generated by those local search operators. Using this operator, four edges
are removed from the route of the cities and sub-routes are reconnected in order to
obtain a non-sequential move so that Lin-Kernighan cannot undo. [MOF92]. For
instance, consider two sampled non-overlapping segments i−1 → i → i+1 → i+2
and j − 1 → j → j + 1 → j + 2. Applying the double-bridge operator over edges
(bridges) i → i + 1 and j → j + 1 results two new segments as i − 1 → j →
j + 1 → i + 2 and j − 1 → i → i + 1 → j + 2. The pseudo code of the double-bridge
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perturbation operator is provided as Algorithm 6.

Algorithm 6. Pseudo code of double-bridge perturbation operator
Input: Γ // A given solution
Output: Γ // A perturbed solution

1 Function double-bridge(Γ):
2 γi, γj := select(Γ) // Select two cities γi and γj where the edges linked to

them do not overlap
3 Γ := exchange((γi, γi+1), (γj , γj+1), Γ) // Exchange edges (γi, γi+1) and (γj , γj+1)
4 return Γ

• Shuffle-sequence: The shuffle-sequence operator randomly selects a sequence of
cities and shuffles (re-order) the selected sequence at random with the goal to per-
turb the solution [CWL19]. The pseudo code of the shuffle-sequence perturbation
operator is provided as Algorithm 7.

Algorithm 7. Pseudo code of shuffle-sequence perturbation operator
Input: Γ // A given solution
Output: Γ // A perturbed optimum

1 Function shuffle-sequence(Γ):
2 γi, γj := select(Γ) // Select two non-adjacent cities γi and γj

3 Γ := shuffle(γi, γj , Γ) // Shuffle the sequence between cities γi and γj

4 return Γ

• Reversion-sequence: The reversion-sequence operator randomly selects a se-
quence of cities and reverses the selected sequence [CWL19]. Noteworthy, a reversion-
sequence move is equal to a single 2-opt move, no matter what gain (positive or
negative) the move yields. The pseudo code of the reversion-sequence perturbation
operator is provided as Algorithm 8.

Algorithm 8. Pseudo code of reversion-sequence perturbation operator
Input: Γ // A given solution
Output: Γ // A perturbed optimum

1 Function reversion-sequence(Γ):
2 i, j := select(Γ) // Select two non-adjacent cities i and j

3 Γ := reverse(i, j, Γ) // Reverse the sequence between cities i and j

4 return Γ

It is worth mentioning that since the goal of perturbation operators is to perturb the
solution to escape from a local optimum without losing many of the good properties of
the current solution, in the QILS framework, the perturbation operators are performed
only once.

4.2.2 QILS framework to select local search operators

As explained in the beginning of Chapter 4, the definition of states and actions depends
on the goal of using Q-learning. In this section, the goal of Q-learning is to select the
most appropriate local search operator at each step of the search process. Accordingly,
we define the set of actions, states, and the reward function as follows:

Set of actions – The set of actions are defined as different local search operators that
can be selected and applied at each step of the search process. The actions are going
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to be learned using the Q-learning algorithm. Accordingly, in the QILS framework, the
set of actions A consists of the basic 2-opt, best-independent-moves 2-opt, and four-move
insertion operators which results in a set of actions of size three.

Set of states – In Q-learning, the application of any action is linked to the status of
the environment, which is represented by a set of states. In this section, we aim to
learn which operator is most appropriate to apply after applying the current operator.
In other words, we aim to learn the sequence of local search operators. Accordingly,
we define the set of states as the sequence of last k selected local search operators. For
the case where k is equal to 1, the set of states becomes the same as the set of actions,
including the local search operators.

Reward function – At the end of each episode, the performance of the employed
local search operator (i.e., action) is evaluated based on a reward function. There are
different mechanisms to calculate the reward. The most basic reward mechanism in the
literature is to represent the reward as 0/1 values, depending on whether the operators
have led to an improvement (i.e., reward equal to 1) or not (i.e., reward equal to 0)
regardless of the amount of improvement [Nar03]. Alternatively, the reward value can
be proportional to the amount of improvement that an operator obtains. In this section,
we use the second mechanism, and the reward is computed by taking into account two
improvements across the episode: the improvement in the current local optimum (i.e.,
local improvement) calculated as Equation (4.1), as well as the improvement of the
best solution found (i.e., global improvement) calculated via Equation (4.2). These two
improvements are then integrated into a single value as Equation (4.3), where η (1-η)
represents the weights (importance) of a local (global) improvement. The higher the
value of η, the higher the importance of local improvement. On the other hand, if the
value of η is low, more importance is given to global improvement in comparison to local
improvement, and a premature learning may occur when the best found solution is an
isolated solution. In this way, no (or a very small) reward is assigned to the operator,
even though good local improvements are achieved. Therefore, the value of η directly
affects the learning procedure, and it should be carefully determined.

rlocal = max(Fb − F, 0)
Fb

(4.1)

rglobal = max(F ∗
b − F ∗, 0)
F ∗

b

(4.2)

r = η · rlocal + (1 − η) · rglobal (4.3)

If the employed operator is able to improve the current solution or the best solution
found, it receives a positive reinforcement. Otherwise, the reward would be zero.

Other parameters – In this section, to generate the initial solution, we use the nearest-
neighbor strategy, which is a greedy approach for initialization. we use double-bridge
as a single perturbation operator. The Acceptance(.) function applies a Metropolis
acceptance strategy [Met+53] that accepts all improved solutions and non-improved
solutions with a probability of exp ∆f

T , where ∆f is the difference between the objective
function before and after applying the local search operator, and parameter T denotes
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the cooling temperature which depends on the size of the instance and is computed as
Equation (4.4), wherein τ is the temperature scale. The higher the value of T , the higher
the chance to accept worse moves and vice versa.

T = τ ·
√

n (4.4)

4.2.3 QILS framework to select perturbation operators

In this section, the goal of Q-learning is to select the most appropriate perturbation
operator at each step of the search process. Accordingly, we define the set of states,
actions, and the reward function as follows:

Set of actions – In this algorithm, our goal is to select the best perturbation operator
among different types of operator with the hope to enhance the exploration ability of
the algorithm. Besides the type of the perturbation operators that has an impact on
the exploration ability, another important feature is the intensity of perturbation, i.e.,
the number of replications of the perturbation operators. We incorporate both the
operators’ type and intensity into our action set to extend the action space to a more
diverse set. Accordingly, we define an action as a tuple (P, R), where P is the type of
the perturbation operator and R is the repetition number of the perturbation operator
P . We consider the maximum number of repetitions R of double-bride, shuffle-sequence
and reversion-sequence are considered equal to 3, 1, and 1, respectively.

Set of States – The main goal of applying perturbation operators in a MH is to help
the search to escape from local optima and to converge faster toward (near-) optimal
solution. Therefore, we relate the selection of perturbation operators to the status of
the search, whether being trapped in local optima or not. Intuitively, when a MH gets
trapped in a local optimum a more explorative perturbation operator is needed and
in case of continuous improvement without a stuck in local optima a less perturbative
operator may be more appropriate. Accordingly, we define the set of states as a binary
set S = {0, 1}. State s = 0 represents a situation when the algorithm has been trapped
in a local optimum and has failed to improve the current solution, and s = 1 represents
a situation that the algorithm has been able to improve the current solution. The
transition between states s = 0 and s = 1 happens as follows: I) if algorithm is in state
s = 0 and no improvement happens, then s′ = 0, II) if algorithm is in state s = 0
and an improvement happens, then s′ = 1, III) if algorithm is in state s = 1 and an
improvement happens, then s′ = 1, and finally VI) if algorithm is in state s = 1 and no
improvement happens, then s′ = 0.

Reward function – The reward function is calculated in the same way using Equations
(4.1) to (4.3).

Other parameters – In this section, we use the best-independent-moves 2-opt as a
single local search operator.

4.3 Application to PFSP

In this section, we apply the QILS framework to solve the permutation flowshop schedul-
ing problem. The framework is applied to select the perturbation operators of ILS with
the hope to improve the exploration ability. Considering that the insertion operator
(which we explain in the following) is the most effective local search operator for PFSP
[FVRF17], we only include the insertion operator in the local search step and therefore,
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there would be no operator selection in the local search step. However, we use a set
of multiple perturbation operators and use the QILS framework to select among them.
The set of problem-specific properties of the QILS framework including the set of search
operators (local search and perturbation) for PFSP, and the properties of Q-learning
such are defined below.

4.3.1 Set of search operators

Different operators exist for PFSP in the literature. The insertion operator is one of
the most effective local search operators for PFSP, and it is the base of most developed
operators for PFSP. As the perturbation operator, destruction-construction operator,
whose base is the insertion operator, is one of the efficient operators.

Considerig that a solution to the PFSP is a permutation Π := (π1, . . . , πn) ∈ S(N)
of the jobs, where πj ∈ N denotes the index of the job appearing at position j in the
sequence Π, the mechanism of these operators have been explained in the following:

• Insertion: The insertion operator removes a random element from the permuta-
tion of jobs and reinserts it into the best possible position which results in the best
value of objective function. Most operators of PFSP rely on a speed-up technique
called Taillard acceleration, introduced by Taillard in 1990 [Tai90]. This technique
allows to reduce the computational complexity of evaluating the best possible posi-
tion where a removed job can be reinserting and consequently speed up the search
process. Whenever a job is being inserted in its best position, usually a consid-
erable number of ties – different positions that provide the same minimum value
of Cmax – occurs. The mechanism employed to deal with (break) these ties has a
large effect in the quality of the ïňĄnal solution obtained [FVF19]. Accordingly,
different mechanisms have been introduced in the literature that prioritizes jobs
based on some criteria [FVRF17]. The pseudo code of the Insertion operator is
provided in Algorithm 9.

Algorithm 9. Pseudo code of insertion local search operator
Input: Π // A given solution
Output: Π // A local optimum

1 Function insertion(Π):
2 f∗ := f(Π) // Remember Cmax of the best solution found during the local

search
3 Π∗ := Π // Remember the best solution found during the local search
4 while ! terminationCriterion() do
5 ΠS := shuffle(Π) // Shuffle sequence Π
6 for π ∈ ΠS do
7 k∗ := arg min

k
{f(insert(Π, π, k))}

8 Π := insert(Π, π, k∗)
9 if better(Π, Π∗) then // Update best solution found during the

local search
10 f∗ := f(Π)
11 Π∗ := Π
12 end
13 end
14 end
15 return Π∗

• Destruction-construction: This operator is a ruin-recreate operator where first,
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a solution is partially ruined and then is rebuilt. Accordingly, this operator involves
a constructive heuristic, wherein first, d jobs are randomly removed from the se-
quence of the current solution (destruction phase). Then, the extracted jobs are
re-inserted one by one at their best position in the remaining partial sequence (con-
struction phase). It is worth mentioning that d is a input parameter that needs to
be determined a priori. The pseudo code of the destruction-construction operator
is provided in Algorithm 10.

Algorithm 10. Pseudo code of destruction-construction perturbation oper-
ator

Input: Π // A given solution
Output: Π // A perturbed solution

1 Function destruction-construction(Π):
2 // a. Destruction phase
3 D := destruction(Π, d) // Remove d jobs from Π to form partial sequence

Π\D

4 Π\D := Π \ D

5 // b. Optional : Local search (Algorithm 9) on partial sequence
6 Π\D := insertion(Π\D)
7 // c. Construction phase
8 for π ∈ Π\D do
9 k∗ := arg min

k
{f(insert(Π, π, k))}

10 Π := insert(Π, π, k∗)
11 end
12 return Π

It is worth mentioning that in the QILS framework, the local search operators perform
a descent-based search and continue until no more improvements are found.

4.3.2 QILS framework to select perturbation operators

In this section, a Q-learning algorithm is integrated into the perturbation mechanism
to adaptively select perturbation operators during the search process. The motiva-
tion behind using Q-learning in the perturbation step lies on the fact that using the
destruction-construction operator, the user needs to tune the value of d which controls
the strength and intensity of perturbation a priori. As a result, the solution is perturbed
similarly at each step of the search process. This mechanism considers a constant degree
of exploration regardless of the search state, which limits the ability of the algorithm to
escape from the local optima. To cope with this issue, an appropriate degree of explo-
ration needs to be adjusted at different steps of the search process based on the status
of the search.

Accordingly, we define the set of states, actions, and the reward function as follows:

Set of actions – The set of actions is defined as different perturbation operators with
different strengths that can be applied at each step of the search process. More precisely,
a set of different values of d in the destruction-construction operator is considered as the
set of actions A represented as:

A = {1, 2, . . . , dmax}, (4.5)
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where dmax is the maximum number of jobs to be removed in the destruction phase. The
goal of considering different values of d is to provide a set of perturbation operators with
different exploration strengths. Indeed, as the value of d increases, a higher number of
jobs are removed from and re-inserted into the sequence of jobs, which leads to a higher
degree of perturbation in the solution.

Set of States – We recall that in this work, the main goal of integrating Q-learning into
the Iterated Greedy algorithm is to select the most appropriate perturbation operators
at each step of the search process, with the hope to improve the exploration ability of the
algorithm. Therefore, similar to TSP, we relate the selection of perturbation operators
to the status of the search whether being trapped in local optima or not. In this regard,
we define the set of states as a binary set S = {0, 1}, where s, s′ ∈ S. State s = 1
is attained when the current perturbation operator has been successful in the recent
episode to bring out the solution from the local optimum. Otherwise, when state s = 0,
the operator has failed and a perturbation operator with different strength is required.

Reward function – The reward function is calculated in the same way using Equations
(4.1) to (4.3).

Other parameters – To generate initial solutions for PFSP, we use a heuristic called
Nawaz, Enscore and Ham (NEH) [NEJH83]. This heuristic is one of the best methods
of initial solution generation for solving PFSP by meta-heuristic algorithms [FVF19;
FVMPF20]. The pseudo code of NEH heuritic is given in Algorithm 11.

Algorithm 11. Pseudo code of the NEH heuristic
Output: Π // A complete sequence of jobs

1 Function NEH():
2 Π := ∅ // Start by an empty sequence Π
3 ΠS := sort() // Sort jobs j ∈ N in descending order based on

∑
i∈M

pij

4 Π := Π ∪ π1 // π1: the job in the first position of ΠS

5 ΠS := ΠS \ {π1} // remove π1 from ΠS

6 while ΠS ̸= ∅ do
7 k∗ := arg min

k
{f(insert(Π, π1, k))} // Find the best position k∗ in Π to

insert π1

8 // insert(Π, πj , k): inserts πj in kth position of sequence Π
(k ∈ K, |K| = |Π| + 1)

9 Π := insert(Π, π1, k∗)
10 Π := localSearch(Π) // Optional: apply local search on partial

sequence Π
11 ΠS := ΠS \ {π1}
12 end
13 return Π

To deal with the ties that occurs during the search, we employ the tie-breaking mech-
anism proposed by [FVF14] (i.e., during initial solution generation, construction phase,
and local search). This tie-breaking mechanism prioritizes jobs with the lowest sum of
the idle times in the sequence.

To accept new local optima, this work uses the Metropolis acceptance strategy [Met+53],
which allows non-improving solutions to be accepted with a probability of exp(Cmax(Π)−Cmax(Π′)

T ),
where T is a cooling temperature parameter which depends on the size of the instance
and is computed as Equation (4.6), wherein τ is the temperature scale [RS07].
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T = τ ·
∑n

i=1
∑m

j=1 pij

n · m · 10 (4.6)

4.4 Experimental design
This section designs comprehensive experiments to investigate the performance of the
QILS framework. The experiments are conducted on a wide variety of instances to
answer four research questions:

• Does incorporating multiple local search (perturbation) operators enhance the ex-
ploitation (exploration) ability and the performance of ILS and how much?

• Does employing Q-learning to select appropriate operators improve the perfor-
mance of ILS and how much?

• How competitive is the proposed QILS framework in comparison to the state-of-
the-art algorithms from the literature?

• How does the proposed QILS framework automatically adapt the operators to the
problem instance at hand?

4.4.1 Dataset

The computational experiments are conducted on several well-known datasets of TSP
and PFSP instances with different sizes.

TSP – For TSP, we have used a set of randomly selected symmetric TSP instances from
the TSPLIB library [Tsp] with different number of cities ranging from 50 to 2150 cities.

PFSP – For PFSP, we have used three well-known datasets, namely Taillard, VRF-
hard-small, and VRF-hard-large datasets. The characteristics of each dataset are as
follows:

• Taillard dataset [Tai93] is a well-known and common dataset used by almost all
studies to evaluate the performance of their algorithms in solving PFSP. This
dataset contains 120 instances categorized into 12 sets of instances ranging from
20 jobs with 5 machines to 500 jobs with 20 machines.

• VRF-hard-small dataset [VRF15] is a well-known dataset developed in 2015, with
the aim to propose a benchmark dataset containing hard instances with more
discriminant power than the most common benchmark from the literature. In order
to generate hard instances, they have done exhaustive experimental procedure,
generating thousands of instances and selecting the hardest ones based on the gap
computed by different algorithms. This dataset includes 240 instances categorized
into 24 sets of instances ranging from 10 jobs and 5 machines to 60 jobs and 20
machines.

• VRF-hard-large dataset [VRF15] includes 240 hard large instances categorized into
24 sets of instances ranging from 100 jobs and 20 machines to 800 jobs and 60
machines.

4.4.2 Benchmark comparison

In order to answer the four above-mentioned questions, two major experimental phases
are designed. The first phase aims at answering the first two questions, by comparing
the performance of the proposed QILS framework with two algorithms: ILS algorithms
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with an individual local search (perturbation) operator denoted as IILS and an ILS
algorithm with the same set of local search (perturbation) operators as QILS selected
uniformly and randomly denoted as RILS. The stopping criterion of all algorithms is
fixed to a predetermined number of iterations. Let’s consider the maximum number
of iterations for the while loop of QILS, RILS, and IILS as IQILS , IRILS , and IIILS ,
respectively. To determine a suitable number of iterations (i.e., not too small to lose
further improvements and not too large to avoid unnecessary computational efforts)
for each instance set, in a trial and error way, all algorithms were executed and once
no significant improvement is observed (i.e., the improvement over the last 10% of the
search process divided by the total improvement so far is less than 0.01), the algorithms
were stopped. Next, the maximum number of total iterations among all algorithms (i.e.,
max{IQILS×E, IRILS , IIILS}) was considered as the stopping criterion for all algorithms.

The second phase aims at answering the third question. It is addressed by comparing
QILS to the state-of-the-art algorithms from the literature, which are the most recent
and relevant algorithms to our work. Since in this phase the aim is to evaluate the
competitiveness of the proposed QILS framework, the stopping criterion for all algo-
rithms is fixed as a limited CPU time of T = nm

2 t milliseconds (ms) where t is a scale
(t ∈ {60, 90, 120}) [RS07].

Finally, the results of QILS are used to answer the fourth research question. In this
regard, we extract information on the contribution of each operator to the overall im-
provement from the initial solution to the final best found solution. In addition, it is
shown how different operators have been applied at each step of the search process.

For TSP, the experiments have been limited to phase 1, comparison with the non-
learning versions of QILS, since the primary goal of this application was to investigate
the effectiveness of incorporating Q-learning into ILS for operator selection. Based on
the primary results and considering the availability of many efficient algorithms in the
literature for solving TSP (i.e., exact and approximate algorithms), comparison with
these state-of-the-art algorithms has not been conducted. Actually, the application of
the proposed QILS framework on TSP is just to validate the interest of integrating the
Q-learning in the ILS algorithm, and not indeed obtain the state-of-the-art behavior.
Furthermore, the ILS algorithm is not itself the state-of-the-art algorithm for solving
TSP instances; hence, any improvement in ILS using Q-learning does not necessarily
yield state-of-the-art behavior.

To summarize, QILS is compared to a set of benchmark algorithms for TSP and PFSP,
which are described as follows:

TSP – For TSP, we compare QILS with non-learning versions of QILS as follows:

• ILS algorithms with a single local search (perturbation) operator to compare with
the QILS of Section 4.2.2 (4.2.3)

• ILS algorithm with the same set of local search (perturbation) operators as QILS
selected uniformly and randomly to compare with the QILS of Section 4.2.2 (4.2.3)

PFSP – For PFSP, we compare QILS with non-learning versions of QILS as well as a
set of seven state-of-the-art algorithms from the literature:

• ILS algorithms with a single perturbation operator (i.e., with fixed values of d

• ILS algorithm with the same set of perturbation operators (i.e., with different
values of d) as QILS selected uniformly and randomly
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• Seven state-of-the-art algorithms from the literature proposed by [RS07], [PTL08],
[FVF14], [DLPS17], [Kiz+19], [PS19], and [FVF19] which are the most recent and
relevant algorithms to our work.

It is worth mentioning that, we implemented all the benchmark algorithms including the
state-of-the-art algorithms in the literature under the same conditions; they are coded in
the same programming language sharing the same libraries, functions, and data struc-
tures and executed on the same computer environment with the same configurations. All
algorithms are coded in Python 3.7 and all experiments are carried out on four servers
each containing four Intel XEON processors with 5GB of RAM memory running at 2.3
GHz. It should be noted that only one processor was used to carry out the experiments,
and no parallel programming technique is employed. To ensure the reproducibility of
the results, the source codes used to perform the subsequent experiments have been put
online 1.

4.4.3 Performance comparison metrics

Considering the stochastic nature of the algorithms and to investigate the robustness of
the QILS framework for finding the (near-) optimal solutions, each algorithm has been
run 30 independent times for each instance and the results are averaged. Three key
performance comparison metrics are used to compare the performance of the algorithms:

• Average Relative Percentage Deviation (ARPD): To evaluate the quality of the
solutions, we use ARPD from the proven optimum (if available) or from the best-
known solution in the literature. The Relative Percentage Deviation (RPD) of
algorithm j for instance i, RPDi,j , is calculated as Equation 4.7, where fi,j(S) is
the objective function value of the solution obtained by algorithm j for instance i,
and f∗

i (S) is the objective function value of the optimal solution (or best-known
solution) for that instance. The best-known solutions of each instance of TSP and
PFSP as well as the best found solutions of the QILS framework are reported in
Tables A.2 to A.4 in Appendix A.2.

RPDi,j = fi,j(S) − f∗
i (S)

f∗
i (S) × 100 (4.7)

• Average computational time: To evaluate the competitiveness and complexity of
the proposed algorithm with respect to the other algorithms, we use the average
time to achieve the final solution.

• Standard deviation: To evaluate the robustness of the solutions, we use the stan-
dard deviation that measures how disperse are the obtained solution for different
executions of the same setting with respect to the mean value.

• Convergence behavior: The convergence behavior of an algorithm measures how
fast (i.e., when/ at which iteration) the algorithm converges to the best found
(optimal) solution.

4.4.4 Statistical test

Statistical tests are widely used to investigate whether there is a statistically significant
difference between a new proposed method over the existing methods [Der+11]. Sta-
tistical test are categorized into parametric and non-parametric methods, depending on
the type of data employed. Parametric methods are based on a set of assumptions with

1. Source codes: https://osf.io/x7y8d/?view_only=a2a33ed1a10441e2abf102beb14bbb00

https://osf.io/x7y8d/?view_only=a2a33ed1a10441e2abf102beb14bbb00
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respect to the employed data such as the independence, normality, and homoscedasticity.
When the previous assumptions cannot be satisfied, a non-parametric test can be used.

In this thesis, since the difference between two algorithms’ means cannot be assumed
to be normally distributed, we employ a non-parametric test, the Wilcoxon signed rank
test [Wil92] with 95% confidence level for statistical comparisons. This test investigates
the difference between paired scores obtained by two compared algorithms, where the
null hypothesis indicates no significant difference between the median of two algorithms.
If the p-value is less than 0.05, the null hypothesis is rejected in favor of the alter-
native hypothesis that explains a significant difference between the median of the two
algorithms. We perform the Wilcoxon signed rank test for each pairwise comparison
between the QILS framework and another algorithm (IILS, RILS, etc.) to see whether
the QILS framework offers a significant improvement over the existing algorithms or
not. Throughout the experiments of Section 4.5, we provide the minimum, average, and
maximum of statistically significant p-values.

4.4.5 Parameters tuning

Since the performance of meta-heuristics are widely affected by their parameter values,
they need to be tuned carefully. Indeed, the values of parameters directly affect the ex-
ploration/exploitation abilities of the algorithm to find (near-) optimal solutions. In this
paper, the values of parameters are tuned by the Response Surface Methodology (RSM)
[BW51]. RSM is a regression-based optimization method that identifies a dependent
variable (i.e., response value) as a function of independent variables through a set of ex-
periments. Among various design of experiment methods, we have used the 3k factorial
Box-Behnken design due to its advantages in requiring fewer experiments and having
high efficiency [BB60]. To use the RSM, first, the significant parameters are identified.
Accordingly, we identify seven effective parameters for the proposed QILS framework
including τ (temperature scale for the Metropolis acceptance strategy), ϵ (probability
of exploring new actions), β (ϵ-decay rate), α (learning rate), γ (discount factor), E
(episode size), and η (local/global improvement weight). In a 3k factorial Box-Behnken
design, three levels are considered for each variable, coded by −1, 0, and +1, which
represent the min, mean, and max levels of the variables, respectively. To transform the
uncoded values of variables into these standardized levels, we use Equation 4.8, where
Xi is the coded value of the ith independent variable, xi is its uncoded value, and xmax

and xmin are the maximum and minimum levels of the ith uncoded variable.

Xi =
xi − xmax+xmin

2
xmax−xmin

2
(4.8)

A seven-variable Box-Behnken design is performed, which results in 62 experiments
[BB60]. To perform the experiments, for TSP, a set of instances with different sizes
are selected randomly from the TSPLIB library. For PFSP, a set of 60 instances are
selected randomly from each set of instances in the benchmarks (i.e., 12 instances from
Taillard, 24 instances from VRF-hard-small and 24 instances from VRF-hard-large) and
the stopping criterion is considered as T = nm

2 60 ms. Using RSM and Box-Behnken
design, the levels and the tuned values of the significant parameters of the proposed
QILS framework for TSP and PFSP are shown in Table 13. In these tables, the levels
"−1" and "+1 of the parameters have been identified either logically (e.g., the level +1
of parameters τ , ϵ, β, α, γ and the level "−1" of parameter E) or based on the literature.
Furthermore, to provide a more trustworthy parameter tuning, the identified ranges of
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the parameters from the literature are enlarged with a margin of 10%, if possible. The
level "0" of the parameters then represents the middle of the identified ranges. Finally,
the ranges of parameters η is fixed to the interval [0.2, 0.8], to provide a balance between
the inclusion of the local and global improvements in the calculated reward values.

Table 13 – Parameters of QILS, their corresponding levels and tuned values
Parameter Notation Levels Tuned value

-1 0 +1 TSP PFSP

Temperature scale τ 0.5 0.75 1 1 0.7
Epsilon-greedy ϵ 0.7 0.85 1 0.8 0.8
Epsilon-decay β 0.990 0.995 1 0.999 0.996
Learning rate α 0.5 0.75 1 0.6 0.6
Discount factor γ 0.7 0.85 1 0.5 0.8
Size of episode E 1 4 7 1 6
Local/global improvement weight η 0.2 0.5 0.8 0 3

According to Section 4.3.2, for PFSP, we apply the QILS framework to select the best
perturbation operator among a set of available operators. In this regard, destruction-
construction operator with different values of d are considered as a set of available pertur-
bation operators. In destruction-construction operator, d is a parameter related to the
number of jobs to remove in destruction phase. In order to determine the set of pertur-
bation operators, we need to determine the value of d. According to the literature, IILSd

with lower values of d provide better performance [RS07; DLPS17; FVF19]. However,
we perform additional experiments based on different values of d (i.e., d = 1, 2, ..., 10)
with a predetermined number of iterations (see Figure 15) to investigate this assertion.
Figure 12 shows the average performance (i.e., Average Relative Percentage Deviation
- ARPD (%)) of IILSd for different values of d on Taillard dataset. As it can be seen,
the best average performance belongs to IILS2 and for greater values of d, as the value
of d increases the average performance of IILSd degrades. Additionally, we investigate
whether the difference between IILSd (d = 1, 2, ..., 10) is statistically significant. For this
aim, we employ the Wilcoxon signed rank test [Wil92] with 95% confidence level (see
Section 4.4.4 for more details).

We observe that IILSd≥4 both on average and for each instance set is statistically domi-
nated by at least one of other three IILS1, IILS2, and IILS3. Furthermore, no dominance
observed among IILS1, IILS2, and IILS3 over different instance sets. Accordingly, we
incorporate three perturbation operators with d = 1, d = 2, and d = 3 (i.e., dmax = 3)
into QILS and RILS.

Figure 12 – Performance comparison of IILSd based on ARPD (%) for Taillard dataset
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4.5 Computational results

4.5.1 Application of QILS to TSP

In this section, first, we compare the performance of RILS over IILS to investigate
how employing multiple perturbation operators affects the exploration ability of an ILS
algorithm. Then, we compare the performance of QILS with RILS to demonstrate
the effectiveness of Q-learning in operator selection over random selection. It is worth
mentioning that the following results are only to show the interest of integrating Q-
learning into ILS to solve the well-known TSP. Hence, these results are not competitive
compared to the state-of-the-art.

Comparison based on optimality gap – Tables 14 and 15 show the performance of
QILS for both local search and perturbation operator selection and their corresponding
RILS and IILS algorithms for different instances of TSPLIB. In each of these tables,
column ”AvS” reports the ARPD (%) across 30 solutions (i.e., 30 independent runs for
each instance) obtained by each algorithm for each instance. In addition, column ”BS”
shows the RPD (%) of the best solutions (i.e., the best solution among 30 runs) obtained
by each algorithm for each instance. Finally, column ”T (s)” indicates the average CPU
time in seconds across all 30 runs of each instance.

Table 14 indicates that QILS for local search operator selection is able to find optimal
solution in both small- and medium-sized instances, and it is able to find near-optimal
solutions with an optimality gap of 3.83% for the largest instance with 2152 cities. By
looking at the ”AvS” and the ”BS” results, it can be seen that QILS has produced small
gaps over all 30 executions. In terms of the CPU time, the higher the size of the instance,
the higher the CPU time of the algorithm. By looking at the column ”T”, it can be
seen how expensive certain instances are in terms of CPU time. Some observations from
Table 14 can also be generalized to the results of Table 15. Besides the zero optimality
gap for small- and medium-sized instances, QILS for perturbation operator selection is
even able to find optimal solution for some large-sized instances up to 300 cities. For
larger instances, small gaps have been also reported with an optimality gap of 3.94% for
the largest instance with 2152 cities.

By comparing RILS with IILS in both Tables 14 and 15, it can be concluded that RILS
outperforms IILS in almost all instances. These results answer the first research question
and imply that incorporating multiple perturbation operators into the ILS algorithm
significantly improves the exploration ability of the ILS algorithm when solving TSP
instances. We now analyze the benefits of using a Q-learning approach for operator
selection over a random one, which provides the answer to the second research question.
Tables 14 and 15 show that QILS can reach better solutions in terms of both AvS and BS
in almost all instance sets comparing to RILS. This highlights the outperformance of the
proposed QILS framework in terms of the optimality gap. This observation illustrates the
efficiency of integrating the knowledge from the Q-learning algorithm into the operator
selection mechanism of the ILS algorithm.
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Table 14 – Performance comparison of QILS for local search operator selection with the corresponding RILS, and IILS in TSP application. The
best values for each set of instances among different algorithms have been highlighted in gray. Furthermore, bold values indicate results that are
not statistically distinguishable from results of the QILS algorithm. The (min, mean, max) of statistical significant p-values with 95% of confidence
interval is equal to (0, 0.003, 0.072).

Instance Algorithms
IILS1 IILS2 IILS3 RILS QILS

AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s)
berlin52 0.204 0 0.610 0.353 0 0.900 0.752 0 0.600 0.164 0 1.100 0 0 0.663
st70 0.993 0 6.700 0.874 0 6.100 1.037 0 7.010 0.800 0 6.400 0.037 0 9.883
kroA100 0.684 0.108 8.200 0.432 0.301 11.500 2.180 0.601 10.400 0.349 0 11.600 0.005 0 10.200
rd100 1.707 0.695 16.200 1.808 0.506 14.600 3.932 3.173 18.900 1.145 0.430 16.800 0.173 0 25.933
lin105 0.869 0 13.300 0.846 0 15.100 2.288 1.015 16.500 0.689 0 13.600 0 0 15.247
pr124 0.491 0.097 24.500 0.281 0 31.800 1.882 0.935 34.500 0.385 0 30.300 0.004 0 34.116
ch130 2.399 1.408 58.300 1.039 0.131 60.500 3.666 3.159 50.700 1.468 0.229 65.600 0.546 0.262 73.380
ch150 1.656 0.490 43.500 1.765 1.103 47.500 4.519 3.676 43.400 1.419 0.322 46.200 0.465 0.077 50.796
u159 1.713 1.440 61.200 1.262 0 66.000 2.548 2.405 70.600 1.702 0 65.100 0.492 0 55.360
d198 0.650 0.234 170.300 0.772 0.190 188.200 2.260 1.141 201.400 0.699 0.057 185.100 0.263 0.165 220.863
kroA200 1.158 0.661 184.400 0.718 0.054 214.100 2.329 1.583 214.100 0.883 0.129 221.900 0.352 0.051 237.510
ts225 0.811 0.187 62.000 0.968 0.696 47.000 2.749 0.187 46.900 0.723 0 46.900 0.013 0 48.030
pr264 1.139 0.092 180.600 1.076 0.263 177.600 5.709 3.446 170.600 1.409 0.794 170.100 0.402 0 207.061
a280 2.443 0.814 314.500 2.869 1.978 347.200 6.126 4.847 333.200 2.559 1.590 362.200 0.587 0 396.827
pr299 2.491 1.836 605.300 2.075 1.828 646.700 5.493 3.779 644.900 2.654 2.139 618.800 0.805 0.151 704.277
lin318 2.049 1.278 591.300 2.153 1.604 605.600 3.048 2.563 632.500 2.144 1.549 604.900 1.559 0.895 688.655
fl417 2.712 1.113 683.700 2.900 1.846 701.900 7.984 5.843 706.300 2.378 1.374 738.900 0.966 0.430 796.136
pr439 4.406 3.553 709.300 4.029 3.622 690.700 6.281 5.441 615.500 3.848 2.174 722.100 2.308 0.755 778.177
pcb442 2.932 2.030 681.600 2.992 1.798 661.300 5.577 4.984 687.500 2.457 1.587 698.000 1.568 1.061 758.390
d493 3.020 1.617 594.900 3.657 2.603 648.400 7.051 5.483 604.200 3.007 2.311 659.500 2.135 1.451 643.362
vm1084 5.266 3.703 2186.200 5.398 4.217 1953.125 12.399 12.112 2006.400 5.082 3.610 2082.000 4.217 3.025 2012.244
d1291 5.177 3.335 1946.600 5.658 3.903 1817.900 10.422 10.090 1911.900 5.498 2.248 1808.100 4.295 3.173 1835.273
u1817 6.278 5.409 596.500 7.812 6.250 667.900 10.801 10.281 771.841 7.153 4.472 765.800 4.858 4.142 664.385
u2152 6.162 4.825 778.300 7.416 6.001 880.000 11.447 10.701 956.400 7.412 4.493 850.500 4.841 3.836 919.772
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Table 15 – Performance comparison of QILS for perturbation operator selection with the corresponding RILS, and IILS for TSP application. The
best values for each set of instances among different algorithms have been highlighted in gray. Furthermore, bold values indicate results that are
not statistically distinguishable from results of the QILS algorithm. The (min, mean, max) of statistical significant p-values with 95% of confidence
interval is equal to (0, 0.001, 0.048).

Instance Algorithms

IILS1 IILS2 IILS3 RILS QILS

AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s)

berlin52 0.167 0 0.7 0.239 0 0.6 0.219 0 0.7 0.003 0.000 0.2 0 0 0.2
st70 0.770 0.148 4.2 0.415 0 4.1 0.815 0.148 3.1 0.681 0.148 3.2 0.109 0 4.5
kroA100 0.583 0.000 7.7 0.328 0 8.1 0.438 0 8.7 0.227 0 8.1 0 0 7.3
rd100 0.885 0.695 11.1 0.927 0 9.8 1.088 0 10.2 0.714 0 10.6 0.201 0 14.2
lin105 0.977 0 7.8 0.759 0 9.3 0.462 0.000 8.7 0.174 0 5.6 0 0 4.5
pr124 0.571 0 11.9 0.377 0 10.7 0.469 0.078 12.3 0.221 0 8.9 0 0 8.7
ch130 1.434 0.802 27.4 1.126 0.245 24.4 1.198 0.769 26.6 1.129 0.720 25.2 0.359 0 40.4
ch150 2.106 1.486 23.8 1.385 0.475 24.6 1.544 0.659 27.0 0.928 0.414 19.6 0.374 0 33.2
u159 1.435 0.803 44.2 0.586 0.000 42.8 0.507 0.000 34.1 0.264 0.000 33.1 0.112 0 42.9
d198 1.363 0.976 122.8 0.887 0.253 121.3 0.749 0.418 106.5 0.368 0.228 97.4 0.180 0.057 147.5
kroA200 1.282 0.855 153.4 0.420 0.000 148.3 0.719 0.320 157.2 0.344 0.000 211.6 0.150 0.000 194.8
ts225 1.043 0.641 84.1 0.585 0.285 95.2 0.531 0.364 108.1 0.077 0.000 95.7 0.002 0 108.9
pr264 1.257 0.995 107.7 0.796 0.311 101.4 0.500 0.033 112.9 0.390 0.033 120.8 0.172 0 135.8
a280 4.044 3.024 216.3 2.497 0.310 214.4 2.389 0.698 221.2 2.212 0.388 266.2 0.498 0 276.5
pr299 3.741 2.706 403.1 2.336 0.689 400.7 2.557 1.384 380.8 2.495 1.600 451.2 0.274 0 440.7
lin318 3.755 2.927 407.3 2.626 1.394 425.1 2.527 1.554 403.0 2.225 1.651 492.1 0.795 0.302 479.6
rd400 4.651 3.802 475.7 3.432 2.375 486.0 3.491 1.983 475.0 2.927 0.962 541.5 1.461 0.825 519.4
fl417 4.235 1.425 457.9 2.535 1.239 467.1 2.332 0.995 422.8 1.514 0.590 448.4 0.339 0.211 553.0
pr439 3.157 1.791 602.8 3.215 0.889 501.2 3.287 1.034 499.5 3.057 1.959 640.2 1.392 0.438 528.2
pcb442 3.313 2.578 616.6 3.161 2.407 502.6 3.475 2.724 511.7 2.385 1.804 614.7 1.294 0.640 521.6
d493 4.511 3.437 527.4 3.709 2.437 511.8 3.588 2.774 537.3 2.776 1.703 604.6 1.499 0.923 587.8
vm1084 5.887 4.984 2073.4 5.172 4.011 2039.7 5.675 4.271 1845.6 4.911 3.458 1822.8 3.717 3.061 2608.3
d1291 6.555 4.092 2356.5 5.799 3.870 1605.3 6.129 4.335 1541.2 5.547 2.327 1580.7 3.418 2.281 2060.1
u1817 7.685 6.250 1232.7 7.220 6.087 1323.2 7.354 6.250 1488.8 6.003 3.844 942.1 4.366 3.449 1416.0
u2152 7.008 6.001 1169.3 7.421 6.001 1487.9 7.378 6.001 1306.0 6.357 4.123 1261.3 4.531 3.947 1022.3
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4.5.2 Application of the QILS framework to PFSP

4.5.2.1 Phase 1: comparison between QILS, RILS, and IILS algorithms

In this section, first, we compare the performance of RILS over IILS to investigate
how employing multiple perturbation operators affects the exploration ability of an ILS
algorithm. Then, we compare the performance of the QILS framework with RILS to
demonstrate the effectiveness of Q-learning in operator selection over random selection.

Comparison based on optimality gap – Tables 16, 17 18 show the performance of
QILS, RILS, and four IILSd for different instance sets of Taillard, VRF-hard-small, and
VRF-hard-large datasets, respectively. In each of these tables, column ”AvS” reports
the ARPD (%) across 300 solutions (i.e., 10 instances of each size and 30 independent
runs for each instance) obtained by each algorithm for each instance set with a size
of n jobs and m machines. In addition, column ”BS” shows the ARPD (%) across 10
best solutions (i.e., the best solution among 30 runs) obtained by each algorithm for
each instance set. Finally, column ”T (s)” indicates the average CPU time in seconds
across all 300 runs of each instance set. The negative values in columns ”AvS” and ”BS”
indicate obtaining better solutions compared to the upper bound of the best-known
solutions in the literature.

By comparing RILS with IILSd in all tables, it can be concluded that RILS outperforms
IILSd in almost all sets of instances. The statistical analyses conducted using Wilcoxon
signed rank test also shows a significant difference between RILS and each of the IILSd

on average. These results answer the first research question and imply that incorpo-
rating multiple perturbation operators into the ILS algorithm significantly improves the
exploration ability of the ILS algorithm when solving PFSP instances.

We now analyze the benefits of using a Q-learning approach for operator selection over
a random one, which provides the answer to the second research question. Tables 16 to
18 show that QILS can reach better solutions in terms of both AvS and BS in almost
all instance sets comparing to RILS. Focusing on Taillard dataset, as the size of the
instance sets increases, the outperformance of QILS becomes clearer. Regarding the
VRF-hard-small dataset, the difference between algorithms is not that significant, since
all algorithms are able to find good solutions for such small instances. The results on
the VRF-hard-large dataset clearly show that the proposed perturbation mechanism is
a key component for the success of the ILS algorithm that considerably enhances the
exploration ability of the algorithm. The observed behavior has also been statistically
verified.

Let us now analyze the performance of QILS, RILS, and IILSd in more details. Due
to space limitations, we only focus on the Taillard dataset, though the same overall
conclusions have been obtained for the other two datasets. To illustrate the robustness
of QILS, Figure 13 depicts the boxplots of RPD (%) of 30 independent runs of all
algorithms for Taillard dataset. As it can be seen, QILS obtains better median and
mean values, and it even shows more robust behavior (i.e., lower standard deviation)
compared to RILS and IILSd, particularly for large-sized instance sets. For the small-
sized instance sets, QILS exhibits a highly robust performance as it is able to reach the
optimal solution for ”tai_20_5” and a very small RPD for ”tai_50_5” and ”tai_100_5”.
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Table 16 – Performance comparison of QILS, RILS and IILSd on Taillard dataset. The best values for each set of instances among different
algorithms have been highlighted in gray. Furthermore, bold values indicate results that are not statistically distinguishable from results of the
QILS algorithm. The (min, mean, max) of statistical significant p-values with 95% of confidence interval is equal to (0, 0.004, 0.041).

Instance Algorithms

set IILS1 IILS2 IILS3 IILS4 RILS QILS

n m AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s)

20 5 0.041 0.041 1.2 0.041 0.041 1.4 0.039 0 1.5 0.041 0.041 1.6 0.039 0 1.7 0.036 0 1.8
20 10 0.066 0 1.5 0.027 0 1.8 0.034 0 1.9 0.034 0 2.0 0.029 0 2.0 0.027 0 2.2
20 20 0.054 0 4.1 0.011 0 4.6 0.009 0 4.9 0.012 0 5.0 0.010 0 5.0 0.007 0 5.3
50 5 0.002 0 5.7 0.003 0 6.6 0.002 0 7.0 0.002 0 7.1 0.002 0 6.9 0.002 0 7.3
50 10 0.436 0.288 18.7 0.440 0.290 22.9 0.487 0.307 25.6 0.544 0.348 26.4 0.428 0.279 24.0 0.401 0.255 24.6
50 20 0.546 0.272 37.8 0.555 0.315 45.6 0.610 0.333 50.6 0.697 0.400 52.5 0.556 0.304 45.9 0.538 0.239 44.7
100 5 0.009 0.008 18.1 0.009 0.008 19.9 0.008 0.008 21.0 0.010 0.008 21.6 0.008 0.008 20.6 0.008 0.008 21.7
100 10 0.085 0.030 40.6 0.094 0.019 48.4 0.118 0.032 51.7 0.130 0.028 53.2 0.079 0.021 47.6 0.052 0.016 48.9
100 20 0.714 0.432 156.6 0.761 0.479 192.9 0.830 0.572 211.9 0.909 0.647 225.7 0.671 0.411 192.4 0.608 0.315 185.3
200 10 0.057 0.037 65.5 0.050 0.032 77.5 0.059 0.035 84.6 0.060 0.030 88.5 0.046 0.033 74.9 0.043 0.024 76.9
200 20 0.926 0.642 295.9 0.910 0.618 377.9 0.963 0.682 419.4 0.989 0.723 445.5 0.749 0.493 349.5 0.662 0.455 334.7
500 20 0.485 0.352 916.4 0.466 0.334 1102 0.459 0.333 1144 0.472 0.341 1159 0.338 0.218 913.0 0.288 0.202 812.9

Average 0.285 0.175 130.2 0.281 0.178 158.5 0.302 0.192 168.7 0.325 0.214 174.1 0.246 0.147 140.3 0.223 0.126 130.5

Table 17 – Performance comparison of QILS, RILS and IILSd on VRF-hard-small dataset. The (min, mean, max) of statistical significant p-values
with 95% of confidence interval is equal to (0, 0.005, 0.040).

Instance Algorithms

set IILS1 IILS2 IILS3 IILS4 RILS QILS

n m AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s)

10 5 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.1 0 0 0.1
10 10 0.006 0 0.1 0 0 0.1 0 0 0.1 0 0 0.1 0 0 0.1 0 0 0.1
10 15 0.037 0 0.1 0.001 0 0.1 0 0 0.1 0.001 0 0.1 0 0 0.1 0 0 0.1
10 20 0.058 0 0.1 0.019 0 0.1 0.001 0 0.1 0.004 0 0.1 0.013 0 0.1 0 0 0.1
20 5 0.029 0.000 0.6 0.027 0.008 0.7 0.027 0.008 0.8 0.027 0.008 0.8 0.026 0 0.9 0.026 0 0.9
20 10 0.079 0.038 2.7 0.048 0.038 3.1 0.048 0.038 3.3 0.052 0.038 3.4 0.049 0.038 3.5 0.047 0.038 3.7
20 15 0.041 0 2.9 0.003 0 3.4 0.005 0 3.6 0.006 0 3.7 0.004 0 3.8 0.003 0 4.1
20 20 0.044 0 3.2 0.008 0 3.7 0.004 0 3.9 0.007 0 4.0 0.004 0 4.1 0.004 0 4.3
30 5 0.040 0 1.1 0.025 0.012 1.2 0.021 0.012 1.3 0.021 0.012 1.3 0.019 0 1.4 0.012 0 1.5
30 10 0.239 0.071 9.3 0.202 0 11.3 0.212 0.005 12.2 0.249 0.029 12.7 0.209 0.005 12.2 0.171 0 12.7
30 15 0.149 0.021 10.9 0.073 -0.004 12.9 0.082 -0.004 14.0 0.104 -0.004 14.7 0.075 -0.004 13.9 0.073 -0.004 14.3
30 20 0.153 0 13.2 0.096 0 15.3 0.093 0 16.7 0.095 0 17.6 0.093 0 16.5 0.093 0 17.0
40 5 0.026 0 1.7 0.022 0 1.9 0.018 0 2.0 0.021 0 2.2 0.017 0 2.0 0.017 0 2.2
40 10 0.380 0.102 9.2 0.371 0.117 11.2 0.416 0.166 12.3 0.460 0.202 12.8 0.378 0.094 12.0 0.348 0.053 12.4
40 15 0.279 -0.016 21.3 0.285 0.000 25.9 0.342 0.034 28.7 0.396 0.035 30.2 0.274 -0.036 27.2 0.271 -0.041 27.2
40 20 0.231 -0.057 24.3 0.158 -0.069 29.3 0.165 -0.078 32.5 0.212 -0.060 34.4 0.162 -0.060 30.7 0.158 -0.087 30.9
50 5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.6
50 10 0.426 0.157 13.6 0.432 0.171 16.8 0.439 0.194 18.5 0.466 0.214 19.1 0.407 0.157 17.0 0.349 0.144 17.7
50 15 0.491 0.148 29.0 0.562 0.208 35.7 0.641 0.253 39.7 0.763 0.370 41.1 0.485 0.181 36.8 0.450 0.143 36.1
50 20 0.244 -0.122 37.3 0.250 -0.075 45.2 0.304 -0.080 50.3 0.410 0.035 52.3 0.269 -0.034 46.9 0.242 -0.069 45.4

To be continued ...
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Table 17 (continued)
Instance Algorithms

set IILS1 IILS2 IILS3 IILS4 RILS QILS

n m AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s)

60 5 0 0 0.7 0 0 0.8 0 0 0.8 0 0 0.9 0 0 0.8 0 0 0.9
60 10 0.319 0.121 20.4 0.326 0.178 24.9 0.354 0.233 28.1 0.400 0.220 29.7 0.290 0.133 26.1 0.260 0.062 26.8
60 15 0.405 0.122 35.7 0.441 0.137 43.3 0.536 0.163 48.0 0.609 0.295 50.7 0.400 0.119 43.7 0.369 0.088 42.4
60 20 0.329 -0.023 47.4 0.344 0.015 57.0 0.419 -0.012 63.2 0.546 0.132 67.5 0.326 -0.035 57.2 0.291 -0.120 54.7

Average 0.167 0.023 11.9 0.154 0.032 14.3 0.172 0.039 15.9 0.202 0.064 16.7 0.146 0.023 14.9 0.133 0.009 14.8

Table 18 – Performance comparison of QILS, RILS and IILSd on VRF-hard-large dataset. The (min, mean, max) of statistical significant p-values
with 95% of confidence interval is equal to (0, 0.001, 0.037).

Instance Algorithms

set IILS1 IILS2 IILS3 IILS4 RILS QILS

n m AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s)

100 20 0.250 -0.007 110 0.317 0.045 135 0.409 0.133 153 0.549 0.290 161 0.242 -0.034 146 0.142 -0.107 134
100 40 0.227 -0.064 147 0.215 -0.121 172 0.366 0.053 190 0.506 0.193 203 0.208 -0.092 184 0.189 -0.156 171
100 60 0.218 -0.104 154 0.207 -0.095 180 0.276 -0.005 223 0.450 0.196 230 0.215 -0.038 185 0.177 -0.111 177
200 20 0.443 0.212 243 0.430 0.199 303 0.442 0.255 343 0.504 0.322 372 0.238 0.011 306 0.123 -0.120 281
200 40 -0.071 -0.280 586 -0.015 -0.270 726 0.095 -0.199 834 0.201 -0.039 908 -0.074 -0.323 763 -0.143 -0.450 667
200 60 -0.137 -0.366 855 -0.114 -0.381 1046 0.040 -0.169 1194 0.141 -0.104 1298 -0.116 -0.369 1067 -0.159 -0.397 975
300 20 0.286 0.112 425 0.273 0.096 529 0.284 0.127 621 0.287 0.102 653 0.088 -0.081 553 -0.020 -0.172 492
300 40 0.025 -0.211 931 0.095 -0.160 1187 0.130 -0.116 1354 0.205 -0.035 1432 0.010 -0.297 1188 -0.081 -0.343 1081
300 60 0.005 -0.222 988 0.013 -0.237 1246 0.105 -0.130 1387 0.135 -0.163 1534 -0.001 -0.263 1269 -0.068 -0.367 1137
400 20 0.289 0.149 614 0.268 0.128 750 0.260 0.135 763 0.272 0.153 804 0.107 -0.021 680 0.015 -0.099 597
400 40 0.099 -0.155 1068 0.133 -0.078 1393 0.191 -0.024 1593 0.171 -0.032 1777 0.017 -0.226 1392 -0.084 -0.330 1263
400 60 -0.085 -0.290 1598 -0.060 -0.311 2061 0.008 -0.216 2435 0.052 -0.149 2712 -0.098 -0.378 2065 -0.132 -0.380 1924
500 20 0.242 0.110 761 0.224 0.085 936 0.221 0.099 1004 0.242 0.122 1034 0.082 -0.018 848 0.025 -0.074 731
500 40 0.061 -0.148 1434 0.119 -0.087 1924 0.139 -0.085 2211 0.154 -0.064 2357 -0.112 -0.298 1879 -0.210 -0.442 1759
500 60 -0.025 -0.195 2478 0.012 -0.198 3185 0.025 -0.165 3521 0.062 -0.145 3567 -0.036 -0.249 3199 -0.061 -0.275 2956
600 20 0.153 0.047 1019 0.150 0.042 1195 0.146 0.058 1251 0.155 0.043 1262 0.036 -0.058 1079 -0.034 -0.112 962
600 40 0.171 -0.009 1747 0.162 -0.015 2356 0.183 0.002 2736 0.196 0.035 2836 -0.137 -0.351 2258 -0.229 -0.415 2091
600 60 -0.056 -0.257 2169 -0.015 -0.207 2870 0.006 -0.198 3363 0.024 -0.178 3772 -0.086 -0.303 2892 -0.182 -0.376 2644
700 20 0.181 0.095 1394 0.190 0.079 1546 0.164 0.058 1564 0.172 0.070 1567 0.053 -0.037 1368 -0.002 -0.082 1225
700 40 0.055 -0.097 1965 0.103 -0.041 2688 0.124 -0.068 3153 0.142 -0.016 3284 -0.269 -0.430 2504 -0.350 -0.529 2326
700 60 -0.030 -0.222 2802 -0.021 -0.177 3763 0.019 -0.197 4512 0.039 -0.140 4896 -0.091 -0.267 3560 -0.196 -0.356 3285
800 20 0.148 0.061 1214 0.126 0.048 1380 0.112 0.050 1472 0.131 0.054 1477 0.042 -0.047 1317 0.015 -0.051 1186
800 40 0.094 -0.055 2747 0.087 -0.076 3632 0.116 -0.050 3731 0.156 0.008 3730 -0.267 -0.431 3489 -0.373 -0.568 3295
800 60 0.063 -0.128 3747 0.105 -0.118 5098 0.106 -0.061 5412 0.146 -0.004 5588 -0.067 -0.235 4864 -0.127 -0.314 4567

Average 0.109 -0.084 1300 0.125 -0.077 1679 0.165 -0.030 1876 0.212 0.022 1977 -0.001 -0.201 1627 -0.073 -0.276 1497
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Figure 13 – Boxplot of QILS, RILS and IILSd based on RPD (%) for each instance
set of Taillard dataset. The average performance of each algorithm is shown using red
circles, and the median value is shown on the right side of each boxplot.

Comparison based on CPU time – Based on the CPU times reported in Tables
16 to 18, it can be seen that although QILS comes at the cost of a small complexity
overhead compared to the ILS (see Section 4.5.3), it significantly improves the quality
of solutions.

For smaller instance sets, QILS requires more CPU time, though this is not a strong
limitation considering the short time scale. However, for large-sized instance sets, QILS
experimentally requires lower CPU time under a fixed number of iterations than other
algorithms except IILS1, though still achieves significantly better solutions compared to
IILS1. Noteworthy, QILS outperforms all other algorithms in terms of both optimality
gap and CPU time for tai_500_20 instance set and some other large-sized instances in
VRF-hard-large dataset. In this regard, the boxplots of Figure 14 provide an overview of
CPU times spent by different algorithms for 30 independent runs over Taillard dataset.
They confirm a CPU time overhead for small instances, as well as better statistics for
larger instance sets compared to RILS and IILSd. The same behavior has also been
observed for other two datasets in terms of CPU time.

The reason behind the better performance of QILS in terms of CPU time for larger
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instance sets lies in the appropriateness of selecting perturbation operators. Indeed,
the adjustment of the degree of perturbation in the proposed QILS framework keeps
the local search from doing redundant efforts, including either finding the same local
optimum as the recently visited one or repairing a highly perturbed solution to find a
new local optimum. The former happens when the employed perturbation operator has
been unable to bring out the solution from the local optimum, and the latter happens
when a severe unnecessary perturbation has occurred. Experiments supporting this
claim are provided in Section 4.5.2.3.

Figure 14 – Boxplot of QILS, RILS and IILSd based on CPU time (s) for each instance
set of Taillard dataset

Comparison based on convergence behavior – In order to illustrate the perfor-
mance of the algorithms throughout the search process, Figure 15 shows the convergence
behavior of different algorithms for Taillard dataset. The number of iterations used as
stopping criteria, as determined in Section 4.4.2, are shown in parentheses for each in-
stance set. As it can be seen, the convergence curve of QILS always stays below the
convergence curve of other algorithms throughout the search process, indicating a better
exploration of the search space. This is in particular the case for large-sized instance
sets, wherein QILS converges faster to the best found solution among all algorithms. It
can be also seen that as long as the search proceeds, the convergence behavior of the
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algorithms remains unchanged, as no crossings occur until the end of the search pro-
cess. Accordingly, stopping the algorithms after extra iterations should not change the
performance order of the algorithms.

Figure 15 – Convergence rate of QILS, RILS and IILSd for each instance set of Taillard
dataset

Overall comparison of algorithms – Table 19 summarizes the results of phase 1
and also shows the ARPD (%) of algorithms over all datasets. The QILS improves the
performance of four IILSd in terms of optimality gaps by 50%, 49%, 56%, and 62%,
respectively. Moreover, this improvement has been of 28% for RILS, which shows the
contribution of a Q-learning based operator selection mechanism in an ILS algorithm
with multiple perturbation operators. These improvements have been shown to be sta-
tistically significant.

Table 19 – ARPD of QILS, RILS, and IILSd for different datasets
Dataset Algorithms

IILS1 IILS2 IILS3 IILS4 RILS QILS

Taillard 0.285 0.281 0.302 0.325 0.246 0.223
VRF-hard-small 0.167 0.154 0.172 0.202 0.146 0.133
VRF-hard-large 0.109 0.125 0.165 0.212 -0.001 -0.073

Average 0.187 0.187 0.213 0.246 0.130 0.094

The overall robustness and computational effort of algorithms are illustrated in Figures
16 and 17 in terms of objective function value and CPU time, respectively. To compare
the performance of the algorithms in terms of objective function value and CPU time
across all instance sets and every execution, we normalize the corresponding values in a
common range of [0, 1] using xN = (x − xmin)/(xmax − xmin), where xN and x are the
normalized and real values, respectively. In addition, xmin and xmax are the minimum
and maximum values over all instances, respectively. This normalization is performed
separately for each dataset. Generally, in comparing the algorithms, lower values indicate
better performance, while the performance gets worse as the values increase to one.
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Looking at each dataset in Figure 16 and particularly Taillard and VRF-hard-large
datasets, QILS yields better overall performance comparing to other algorithms with
significantly lower median and mean values. Furthermore, as it can be seen in Figure 17,
QILS in overall does not impose significant computational overhead when solving PFSP
instances.

Figure 16 – Boxplot of QILS, RILS and IILSd based on normalized objective function
value over all instances of each dataset

Figure 17 – Boxplot of QILS, RILS and IILSd based on normalized CPU time (s) over
all instances of each dataset

At this step of the numerical experiments, we are able to answer the two first research
questions. Regarding the first research question, employing multiple perturbation opera-
tors improves the performance of the ILS algorithm in finding better solutions. Moreover,
regarding the second research question, incorporating the information about the status
of the search into the selection of perturbation operators using Q-learning provides more
efficient exploration of the search space and results in finding better solutions even with
less computational effort for large-sized instances. Both of these results have been sta-
tistically verified.

4.5.2.2 Phase 2: comparison of QILS with state-of-the-art algorithms

In this phase, we compare the performance of QILS against seven well-known and efficient
state-of-the-art algorithms and RILS to show how competitive QILS is comparing to the
literature.

Comparison based on optimality gap – In this section, we analyze the performance
of algorithms based on their optimality gaps. First, we start our analysis on Taillard
dataset. Considering Tables 20 to 22 which respectively show the performance of QILS
and the benchmark algorithms on Taillard dataset under three scales of t ∈ {60, 90, 120},
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it can be seen that QILS obtains better results than the benchmark algorithms in terms of
both AvS and BS measures. The good performance of QILS can be attributed to its high
exploration ability obtained by adding multiple perturbation operators and an adaptive
selection of these operators according to the status of the search process as well as the
history of their performance. The outperformance of QILS is also statistically verified for
most of the instance sets. For some instance sets including ”tai_20_5”, ”tai_20_10”,
and ”tai_50_5”, even though QILS obtains better results, the difference between QILS
and other benchmark algorithms is not statistically significant. The reason is that these
instance sets are among the easy PFSP instances and all algorithms are able to find
solutions very close to the optimal solutions with small gaps.

To investigate the comparative performance of QILS on harder benchmark instances, we
have extended our experiments also to two other datasets. Tables 23 to 25 and Tables 26
to 28 present the comparisons of QILS and benchmark algorithms on VRF-hard-small
and VRF-hard-large datasets, respectively. For most of the instance sets in VRF-hard-
small dataset, all algorithms have been able to achieve optimal solutions or solutions
with small gaps. However, QILS still demonstrates higher performance compared to
other benchmark algorithms. Considering the results on VRF-hard-small dataset, as
the size of instances increases, we clearly observe better performance of QILS.

Looking at the results on VRF-hard-large dataset, the outperformance of QILS be-
comes more significant in finding good solutions for such large instances. This finding
is promising, since solving large PFSP instances could be challenging for any algorithm.
Furthermore, looking at Table 28 with scale t = 120 reveals that QILS significantly
improves the best-known solutions of the VRF-hard-large dataset by achieving negative
gaps.

To illustrate the robustness of QILS in comparison with the benchmark algorithms under
limited CPU time, Figure 18 depicts the boxplots of RPD (%) of the algorithms for
Taillard dataset for scale t = 120. As it can be seen for almost all the instance sets,
QILS achieves a set of solutions with lower median and mean values as well as lower
standard deviations. The latter implies that QILS exhibits a more robust behavior
comparing to the other algorithms, particularly in larger instance sets.

Overall comparison of algorithms – Finally, we compare the overall performance of
QILS against benchmark algorithms over all datasets. In this regard, Table 29 summa-
rizes the results of phase 2 and the last row shows the ARPD (%) of each algorithm over
all datasets. Accordingly, the QILS improves the performance of benchmark algorithms
IGDP S , IGKT P G, IGP S , and IGF F ∗ by 41%, 33%, 27%, and 29% in terms of optimality
gap, respectively. Moreover, Figure 19 illustrates the overall robustness of algorithms
for each dataset at scale t = 120 based on the normalized objective function values.
The same technique of normalization has been used as the one in phase 1. Looking at
each dataset and particularly Taillard and VRF-hard-large datasets, QILS yields bet-
ter overall performance with lower median and mean values as well as lower standard
deviations.
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Table 20 – Results of comparing QILS with RILS and benchmark algorithms for scale t = 60 on Taillard dataset. The (min, mean, max) of
statistical significant p-values with 95% of confidence interval is equal to (0, 0.004, 0.047).

Inst. Algorithms

set IGRS IGPTL IGFF IGDPS IGKTPG IGPS IGFF∗ RILS QILS

n m AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS

20 5 0.036 0 0.035 0 0.034 0 0.036 0 0.040 0 0.037 0 0.034 0 0.039 0 0.034 0
20 10 0.011 0 0.015 0 0.015 0 0.010 0 0.018 0 0.016 0 0.009 0 0.014 0 0.010 0
20 20 0.023 0 0.023 0 0.020 0 0.003 0 0.008 0 0.014 0.013 0.005 0 0.003 0 0 0
50 5 0.002 0 0.002 0 0.002 0 0.002 0 0.002 0 0.002 0 0.002 0 0.002 0 0.002 0
50 10 0.470 0.290 0.481 0.276 0.474 0.276 0.505 0.310 0.482 0.290 0.448 0.279 0.475 0.310 0.472 0.297 0.446 0.255
50 20 0.667 0.294 0.682 0.302 0.654 0.326 0.617 0.317 0.612 0.310 0.605 0.305 0.593 0.295 0.614 0.344 0.599 0.263
100 5 0.009 0.008 0.015 0.008 0.011 0.008 0.010 0.008 0.010 0.008 0.010 0.008 0.008 0.008 0.008 0.008 0.008 0.008
100 10 0.164 0.025 0.152 0.023 0.140 0.042 0.138 0.034 0.129 0.042 0.115 0.026 0.122 0.034 0.115 0.021 0.087 0.016
100 20 0.992 0.554 1.049 0.598 1.012 0.610 0.996 0.632 0.894 0.573 0.860 0.608 0.883 0.593 0.902 0.550 0.837 0.483
200 10 0.082 0.033 0.087 0.032 0.079 0.038 0.058 0.034 0.057 0.032 0.056 0.030 0.055 0.033 0.047 0.033 0.044 0.025
200 20 1.249 0.880 1.199 0.820 1.135 0.766 1.144 0.819 1.084 0.766 0.943 0.729 0.978 0.728 0.944 0.663 0.846 0.572
500 20 0.693 0.514 0.657 0.464 0.619 0.428 0.595 0.428 0.551 0.397 0.499 0.375 0.496 0.364 0.437 0.283 0.350 0.229

Average 0.599 0.329 0.716 0.452 0.588 0.333 0.343 0.215 0.324 0.201 0.3 0.198 0.305 0.197 0.3 0.183 0.272 0.154

Table 21 – Results of comparing QILS with RILS and benchmark algorithms for scale t = 90 on Taillard dataset. The (min, mean, max) of
statistical significant p-values with 95% of confidence interval is equal to (0, 0.003, 0.019).

Inst. Algorithms

set IGRS IGPTL IGFF IGDPS IGKTPG IGPS IGFF∗ RILS QILS

n m AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS

20 5 0.032 0 0.034 0 0.032 0 0.034 0 0.036 0 0.034 0 0.033 0 0.035 0 0.028 0
20 10 0.008 0 0.006 0 0.005 0 0.005 0 0.008 0 0.011 0 0.005 0 0.008 0 0.005 0
20 20 0.016 0 0.016 0 0.016 0 0.001 0 0.006 0 0.010 0.009 0.003 0 0 0 0 0
50 5 0 0 0 0 0 0 0 0 0 0 0.001 0 0 0 0 0 0 0
50 10 0.429 0.273 0.431 0.276 0.424 0.269 0.464 0.289 0.431 0.276 0.409 0.276 0.439 0.282 0.436 0.279 0.403 0.255
50 20 0.589 0.264 0.612 0.262 0.576 0.256 0.562 0.242 0.543 0.250 0.544 0.259 0.534 0.244 0.557 0.307 0.539 0.193
100 5 0.008 0.008 0.014 0.008 0.011 0.008 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
100 10 0.145 0.025 0.130 0.023 0.119 0.025 0.108 0.027 0.111 0.025 0.100 0.025 0.097 0.023 0.093 0.021 0.059 0.016
100 20 0.910 0.508 0.970 0.549 0.916 0.515 0.914 0.553 0.800 0.500 0.811 0.535 0.820 0.530 0.808 0.486 0.754 0.430
200 10 0.072 0.033 0.070 0.030 0.064 0.037 0.052 0.033 0.051 0.031 0.054 0.029 0.052 0.033 0.044 0.033 0.042 0.024
200 20 1.194 0.847 1.145 0.783 1.085 0.746 1.094 0.792 1.044 0.746 0.898 0.687 0.954 0.706 0.882 0.626 0.785 0.513
500 20 0.677 0.509 0.637 0.448 0.599 0.416 0.578 0.411 0.542 0.396 0.473 0.342 0.476 0.357 0.406 0.277 0.325 0.223

Average 0.34 0.206 0.339 0.198 0.321 0.189 0.318 0.196 0.299 0.186 0.279 0.181 0.285 0.182 0.273 0.17 0.246 0.138
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Table 22 – Results of comparing QILS with RILS and benchmark algorithms for scale t = 120 on Taillard dataset. The (min, mean, max) of
statistical significant p-values with 95% of confidence interval is equal to (0, 0.002, 0.035).

Inst. Algorithms

set IGRS IGPTL IGFF IGDPS IGKTPG IGPS IGFF∗ RILS QILS

n m AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS

20 5 0.030 0 0.032 0 0.030 0 0.034 0 0.035 0 0.032 0 0.032 0 0.032 0 0.027 0
20 10 0.003 0 0.003 0 0.004 0.000 0.003 0 0.003 0 0.009 0 0.002 0 0.007 0 0.002 0
20 20 0.012 0 0.014 0 0.011 0 0 0 0.003 0 0.009 0.009 0.002 0 0 0 0 0
50 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 10 0.401 0.269 0.406 0.273 0.394 0.265 0.444 0.276 0.406 0.273 0.392 0.276 0.420 0.282 0.405 0.273 0.372 0.255
50 20 0.535 0.240 0.554 0.229 0.537 0.242 0.514 0.217 0.510 0.237 0.505 0.216 0.488 0.215 0.516 0.235 0.494 0.193
100 5 0.008 0.008 0.013 0.008 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
100 10 0.133 0.025 0.114 0.023 0.110 0.021 0.092 0.027 0.094 0.021 0.090 0.025 0.081 0.019 0.073 0.021 0.048 0.016
100 20 0.856 0.486 0.898 0.514 0.857 0.463 0.863 0.553 0.769 0.478 0.776 0.502 0.791 0.521 0.759 0.465 0.703 0.386
200 10 0.062 0.033 0.063 0.030 0.059 0.036 0.049 0.032 0.049 0.030 0.050 0.029 0.048 0.033 0.042 0.029 0.040 0.024
200 20 1.159 0.790 1.107 0.763 1.047 0.723 1.051 0.764 1.011 0.723 0.874 0.660 0.926 0.691 0.838 0.569 0.738 0.480
500 20 0.664 0.493 0.622 0.441 0.590 0.408 0.564 0.396 0.535 0.394 0.455 0.328 0.463 0.342 0.387 0.258 0.307 0.220

Average 0.322 0.195 0.319 0.19 0.304 0.18 0.302 0.189 0.285 0.18 0.267 0.171 0.271 0.176 0.256 0.155 0.228 0.132

Table 23 – Results of comparing QILS with RILS and benchmark algorithms for scale t = 60 on VRF-hard-small dataset. The (min, mean, max)
of statistical significant p-values with 95% of confidence interval is equal to (0, 0.017, 0.048).

Inst. Algorithms

set IGRS IGPTL IGFF IGDPS IGKTPG IGPS IGFF∗ RILS QILS

n m AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS

10 5 0 0 0 0 0 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000
10 10 0 0 0 0 0 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000
10 15 0 0 0 0 0 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000
10 20 0 0 0 0 0 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000
20 5 0.019 0.008 0.016 0 0.018 0 0.016 0.008 0.016 0.000 0.018 0.000 0.015 0.000 0.016 0.000 0.016 0.000
20 10 0.061 0.038 0.066 0.038 0.055 0.038 0.040 0.038 0.057 0.038 0.050 0.038 0.046 0.038 0.043 0.038 0.040 0.038
20 15 0.006 0 0.007 0 0.007 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000
20 20 0.004 0 0.003 0 0.002 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000
30 5 0.024 0 0.032 0 0.021 0 0.014 0.000 0.017 0.000 0.015 0.000 0.013 0.000 0.015 0.000 0.010 0.000
30 10 0.259 0.021 0.267 0.031 0.256 0.026 0.224 0.049 0.245 0.031 0.231 0.026 0.221 0.035 0.236 0.024 0.216 0.014
30 15 0.184 0.025 0.172 0 0.170 0.021 0.076 0.008 0.074 0.021 0.077 0.017 0.075 0.008 0.076 -0.004 0.075 -0.004
30 20 0.184 0 0.199 0 0.176 0 0.090 0.000 0.098 0.000 0.094 0.021 0.089 0.000 0.089 0.000 0.089 0.000
40 5 0.023 0 0.026 0 0.025 0.009 0.014 0.000 0.017 0.000 0.014 0.000 0.015 0.000 0.010 0.000 0.010 0.000
40 10 0.382 0.065 0.395 0.090 0.378 0.061 0.377 0.109 0.380 0.065 0.380 0.065 0.366 0.069 0.377 0.090 0.350 0.053
40 15 0.359 0.039 0.387 0.042 0.347 0.007 0.333 0.060 0.347 0.007 0.349 0.042 0.343 0.039 0.341 0.029 0.332 -0.009
40 20 0.313 -0.017 0.328 -0.050 0.327 -0.042 0.165 -0.062 0.207 -0.017 0.200 -0.026 0.204 -0.017 0.201 -0.054 0.199 -0.066
50 5 0 0 0 0 0 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000
50 10 0.449 0.179 0.491 0.208 0.445 0.218 0.424 0.207 0.421 0.172 0.411 0.165 0.416 0.186 0.415 0.174 0.371 0.144
50 15 0.592 0.202 0.616 0.196 0.587 0.187 0.605 0.238 0.594 0.223 0.579 0.196 0.592 0.196 0.586 0.240 0.533 0.187
50 20 0.502 0.005 0.528 0.067 0.483 0.020 0.330 -0.047 0.344 0.020 0.338 0.040 0.334 0.020 0.363 -0.019 0.326 -0.029
60 5 0 0 0 0 0 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000
60 10 0.355 0.123 0.373 0.110 0.359 0.128 0.363 0.172 0.322 0.123 0.312 0.104 0.334 0.110 0.327 0.144 0.298 0.074

To be continued ...
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Table 23 (continued)
Inst. Algorithms

set IGRS IGPTL IGFF IGDPS IGKTPG IGPS IGFF∗ RILS QILS

n m AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS

60 15 0.538 0.145 0.554 0.169 0.534 0.140 0.504 0.176 0.504 0.169 0.488 0.161 0.496 0.148 0.492 0.140 0.466 0.137
60 20 0.558 0.081 0.618 0.143 0.503 0.039 0.441 -0.006 0.435 0.039 0.417 0.095 0.425 0.055 0.428 0.036 0.392 -0.047

Average 0.2 0.038 0.212 0.044 0.196 0.035 0.167 0.04 0.17 0.037 0.165 0.039 0.166 0.037 0.167 0.035 0.155 0.02

Table 24 – Results of comparing QILS with RILS and benchmark algorithms for scale t = 90 on VRF-hard-small dataset. The (min, mean, max)
of statistical significant p-values with 95% of confidence interval is equal to (0, 0.011, 0.042).

Inst. Algorithms

set IGRS IGPTL IGFF IGDPS IGKTPG IGPS IGFF∗ RILS QILS

n m AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS

10 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 5 0.014 0 0.014 0 0.014 0 0.014 0.008 0.015 0 0.014 0 0.013 0 0.014 0 0.014 0
20 10 0.055 0.038 0.062 0.038 0.054 0.038 0.039 0.038 0.051 0.038 0.046 0.038 0.041 0.038 0.039 0.038 0.038 0.038
20 15 0.003 0 0.004 0 0.005 0 0 0 0 0 0 0 0 0 0 0 0 0
20 20 0.003 0 0.002 0 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0
30 5 0.016 0 0.028 0 0.020 0 0.012 0 0.012 0 0.014 0 0.009 0 0.011 0 0.007 0
30 10 0.210 0.021 0.208 -0.005 0.211 0.005 0.198 0.015 0.208 0.031 0.185 0.005 0.178 0.005 0.198 0.005 0.168 -0.005
30 15 0.147 0 0.142 0 0.134 0.021 0.051 -0.013 0.056 0.021 0.053 -0.013 0.049 -0.021 0.052 -0.025 0.050 -0.025
30 20 0.144 0 0.165 0 0.152 0 0.065 0 0.081 0 0.079 0.004 0.069 0 0.066 0 0.065 0
40 5 0.021 0 0.025 0 0.023 0.009 0.012 0 0.016 0 0.012 0 0.012 0 0.009 0 0.009 0
40 10 0.329 0.041 0.348 0.045 0.327 0.041 0.328 0.081 0.326 0.041 0.319 0.041 0.322 0.033 0.337 0.069 0.302 0.033
40 15 0.295 0.028 0.325 0.011 0.286 -0.014 0.275 0.018 0.286 -0.014 0.272 0.028 0.280 0.028 0.275 -0.036 0.273 -0.041
40 20 0.262 -0.063 0.271 -0.059 0.272 -0.060 0.125 -0.084 0.171 -0.063 0.151 -0.072 0.158 -0.063 0.146 -0.084 0.144 -0.087
50 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 10 0.412 0.143 0.453 0.179 0.399 0.179 0.392 0.161 0.385 0.143 0.382 0.136 0.386 0.143 0.370 0.137 0.331 0.131
50 15 0.504 0.154 0.541 0.149 0.509 0.163 0.549 0.193 0.522 0.149 0.506 0.149 0.514 0.149 0.503 0.184 0.465 0.143
50 20 0.409 -0.029 0.440 0.001 0.392 -0.033 0.248 -0.077 0.259 -0.033 0.250 -0.050 0.249 -0.033 0.275 -0.034 0.247 -0.082
60 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 10 0.337 0.083 0.339 0.099 0.328 0.103 0.335 0.161 0.291 0.123 0.272 0.093 0.307 0.099 0.291 0.133 0.264 0.068
60 15 0.473 0.098 0.478 0.122 0.473 0.089 0.434 0.129 0.430 0.122 0.428 0.122 0.418 0.098 0.411 0.127 0.382 0.088
60 20 0.455 -0.032 0.516 0.048 0.404 -0.018 0.339 -0.075 0.351 -0.018 0.332 -0.033 0.334 -0.032 0.340 -0.011 0.298 -0.118

Average 0.17 0.02 0.182 0.026 0.167 0.022 0.142 0.023 0.144 0.023 0.138 0.019 0.139 0.018 0.139 0.021 0.127 0.006
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Table 25 – Results of comparing QILS with RILS and benchmark algorithms for scale t = 120 on VRF-hard-small dataset. The (min, mean, max)
of statistical significant p-values with 95% of confidence interval is equal to (0, 0.008, 0.049).

Inst. Algorithms

set IGRS IGPTL IGFF IGDPS IGKTPG IGPS IGFF∗ RILS QILS

n m AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS

10 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 5 0.011 0 0.013 0 0.011 0 0.011 0 0.015 0 0.014 0 0.010 0 0.011 0 0.011 0
20 10 0.047 0 0.059 0 0.051 0 0.037 0.019 0.044 0 0.044 0.025 0.040 0.038 0.038 0.038 0.036 0
20 15 0.002 0 0.003 0 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0
20 20 0.003 0 0.001 0 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0
30 5 0.014 0 0.025 0 0.018 0 0.011 0 0.011 0 0.012 0 0.007 0 0.010 0 0.007 0
30 10 0.177 -0.005 0.178 -0.005 0.179 -0.005 0.169 0 0.171 0.031 0.160 -0.005 0.154 0 0.170 0.005 0.146 -0.005
30 15 0.123 0 0.124 0 0.121 -0.004 0.042 -0.025 0.048 -0.004 0.043 -0.025 0.039 -0.025 0.043 -0.025 0.042 -0.025
30 20 0.129 0 0.142 0 0.132 0 0.051 0 0.069 0 0.056 0 0.054 0 0.050 0 0.050 0
40 5 0.018 0 0.022 0 0.023 0.009 0.011 0 0.015 0 0.011 0 0.011 0 0.009 0 0.009 0
40 10 0.304 0.005 0.314 0.024 0.305 0.021 0.304 0.081 0.302 0.005 0.295 0.005 0.290 0.024 0.314 0.069 0.277 0.004
40 15 0.260 -0.030 0.275 -0.027 0.241 -0.028 0.239 0.015 0.241 -0.028 0.239 -0.030 0.246 -0.030 0.238 -0.042 0.238 -0.044
40 20 0.222 -0.085 0.234 -0.059 0.242 -0.060 0.093 -0.094 0.124 -0.085 0.117 -0.094 0.119 -0.085 0.109 -0.094 0.106 -0.099
50 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 10 0.394 0.133 0.428 0.169 0.386 0.175 0.375 0.154 0.367 0.140 0.363 0.126 0.367 0.133 0.340 0.131 0.309 0.127
50 15 0.439 0.120 0.471 0.122 0.456 0.122 0.504 0.181 0.467 0.122 0.450 0.128 0.457 0.122 0.453 0.154 0.412 0.116
50 20 0.352 -0.040 0.385 -0.021 0.337 -0.077 0.198 -0.093 0.214 -0.077 0.207 -0.071 0.202 -0.077 0.220 -0.096 0.194 -0.109
60 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 10 0.316 0.065 0.325 0.099 0.311 0.103 0.317 0.161 0.267 0.065 0.254 0.093 0.297 0.099 0.274 0.113 0.235 0.051
60 15 0.424 0.041 0.417 0.044 0.422 0.037 0.393 0.081 0.377 0.044 0.381 0.044 0.376 0.041 0.371 0.052 0.323 0.036
60 20 0.395 -0.111 0.446 0.032 0.307 -0.042 0.281 -0.096 0.286 -0.042 0.278 -0.042 0.282 -0.111 0.279 -0.109 0.239 -0.122

Average 0.151 0.004 0.161 0.016 0.148 0.01 0.127 0.016 0.126 0.007 0.122 0.006 0.123 0.005 0.122 0.008 0.110 -0.003

Table 26 – Results of comparing QILS with RILS and algorithms for scale t = 60 on VRF-hard-large dataset. The (min, mean, max) of statistical
significant p-values with 95% of confidence interval is equal to (0, 0.002, 0.047).

Inst. Algorithms

set IGRS IGPTL IGFF IGDPS IGKTPG IGPS IGFF∗ RILS QILS

n m AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS

100 20 0.606 0.162 0.715 0.347 0.624 0.291 0.579 0.248 0.485 0.162 0.460 0.106 0.469 0.089 0.477 0.155 0.380 0.090
100 40 0.604 0.164 0.664 0.287 0.594 0.264 0.367 0.055 0.305 0.023 0.334 -0.006 0.326 0.006 0.342 0.015 0.304 -0.009
100 60 0.494 0.124 0.520 0.240 0.494 0.192 0.221 -0.051 0.211 -0.003 0.208 -0.092 0.192 -0.094 0.223 -0.027 0.172 -0.124
200 20 0.800 0.507 0.845 0.544 0.767 0.448 0.702 0.471 0.552 0.281 0.513 0.170 0.519 0.221 0.452 0.170 0.299 0.079
200 40 0.724 0.376 0.919 0.496 0.748 0.322 0.341 0.040 0.283 0.040 0.297 -0.056 0.277 -0.024 0.286 -0.051 0.202 -0.087
200 60 0.568 0.160 0.700 0.356 0.632 0.307 0.277 0.016 0.232 0.007 0.247 -0.048 0.234 -0.047 0.258 -0.016 0.179 -0.126
300 20 0.629 0.425 0.593 0.400 0.527 0.331 0.461 0.297 0.394 0.116 0.322 0.097 0.341 0.077 0.224 0.013 0.144 -0.055
300 40 0.793 0.431 1.080 0.680 0.868 0.458 0.415 0.125 0.323 0.146 0.295 0.034 0.344 0.010 0.306 0.027 0.220 -0.026
300 60 0.722 0.402 0.890 0.551 0.794 0.490 0.276 0.046 0.228 0.017 0.238 0.001 0.251 -0.004 0.235 -0.014 0.202 -0.055
400 20 0.524 0.340 0.503 0.331 0.458 0.305 0.419 0.277 0.341 0.177 0.268 0.109 0.291 0.106 0.217 0.077 0.103 -0.025

To be continued ...
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Table 26 (continued)
Inst. Algorithms

set IGRS IGPTL IGFF IGDPS IGKTPG IGPS IGFF∗ RILS QILS

n m AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS

400 40 0.763 0.455 0.984 0.654 0.828 0.544 0.355 0.157 0.232 0.063 0.238 -0.002 0.258 0.047 0.224 -0.012 0.149 -0.104
400 60 0.747 0.439 0.920 0.558 0.818 0.529 0.200 -0.084 0.170 -0.072 0.171 -0.110 0.160 -0.081 0.165 -0.150 0.157 -0.159
500 20 0.446 0.270 0.435 0.297 0.416 0.270 0.336 0.214 0.275 0.147 0.224 0.063 0.230 0.104 0.166 0.052 0.088 -0.019
500 40 0.661 0.391 0.857 0.574 0.657 0.438 0.271 0.074 0.199 -0.075 0.144 -0.106 0.131 -0.115 0.077 -0.126 0.003 -0.255
500 60 0.759 0.450 0.952 0.653 0.823 0.535 0.211 -0.001 0.210 -0.025 0.200 -0.009 0.202 -0.011 0.204 -0.023 0.189 -0.024
600 20 0.348 0.222 0.332 0.220 0.304 0.168 0.222 0.119 0.152 0.047 0.135 0.017 0.139 0.056 0.107 0.020 0.025 -0.055
600 40 0.640 0.382 0.849 0.566 0.589 0.392 0.269 0.067 0.143 -0.039 0.120 -0.110 0.130 -0.078 0.057 -0.159 -0.032 -0.257
600 60 0.647 0.382 0.840 0.599 0.602 0.294 0.094 -0.126 0.065 -0.141 0.044 -0.148 0.050 -0.127 0.036 -0.182 -0.011 -0.200
700 20 0.347 0.231 0.350 0.235 0.320 0.200 0.244 0.141 0.151 0.039 0.139 0.019 0.145 0.038 0.128 0.019 0.061 -0.024
700 40 0.545 0.321 0.711 0.476 0.437 0.209 0.186 0.021 0.018 -0.114 -0.003 -0.181 -0.009 -0.201 -0.081 -0.230 -0.166 -0.341
700 60 0.587 0.331 0.752 0.497 0.564 0.295 0.086 -0.084 0.069 -0.120 0.036 -0.170 0.054 -0.144 0.021 -0.148 -0.042 -0.204
800 20 0.274 0.193 0.261 0.185 0.254 0.130 0.186 0.089 0.129 0.033 0.101 0.028 0.113 0.037 0.077 -0.011 0.041 -0.029
800 40 0.521 0.332 0.673 0.446 0.413 0.207 0.180 0.028 0.058 -0.082 0.014 -0.183 0.027 -0.164 -0.05 -0.221 -0.137 -0.316
800 60 0.635 0.412 0.847 0.665 0.571 0.382 0.145 -0.003 0.126 -0.075 0.105 -0.082 0.110 -0.072 0.085 -0.099 0.035 -0.134

Average 0.599 0.329 0.716 0.452 0.588 0.333 0.293 0.089 0.223 0.023 0.202 -0.027 0.208 -0.015 0.176 -0.038 0.107 -0.102

Table 27 – Results of comparing QILS with RILS and benchmark algorithms for scale t = 90 on VRF-hard-large dataset. The (min, mean, max)
of statistical significant p-values with 95% of confidence interval is equal to (0, 0.002, 0.049).

Inst. Algorithms

set IGRS IGPTL IGFF IGDPS IGKTPG IGPS IGFF∗ RILS QILS

n m AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS

100 20 0.507 0.103 0.611 0.230 0.504 0.193 0.481 0.171 0.382 0.045 0.349 -0.011 0.357 0.025 0.389 0.071 0.257 -0.011
100 40 0.516 0.085 0.541 0.142 0.483 0.162 0.256 -0.028 0.219 -0.072 0.216 -0.102 0.202 -0.098 0.222 -0.088 0.179 -0.147
100 60 0.392 0.062 0.415 0.114 0.407 0.133 0.142 -0.099 0.123 -0.118 0.127 -0.149 0.100 -0.165 0.108 -0.150 0.070 -0.178
200 20 0.744 0.455 0.777 0.490 0.708 0.395 0.645 0.436 0.507 0.264 0.455 0.142 0.462 0.164 0.378 0.142 0.231 -0.008
200 40 0.621 0.309 0.805 0.426 0.641 0.209 0.236 -0.021 0.204 -0.021 0.194 -0.118 0.164 -0.103 0.180 -0.115 0.057 -0.246
200 60 0.460 0.069 0.619 0.263 0.528 0.207 0.149 -0.121 0.138 -0.137 0.124 -0.188 0.130 -0.141 0.118 -0.159 0.069 -0.217
300 20 0.601 0.410 0.562 0.373 0.497 0.297 0.436 0.267 0.378 0.100 0.282 0.041 0.296 0.050 0.191 -0.020 0.082 -0.093
300 40 0.717 0.382 1.004 0.616 0.803 0.411 0.334 0.092 0.256 0.068 0.227 -0.030 0.276 -0.021 0.221 -0.060 0.119 -0.155
300 60 0.644 0.323 0.792 0.474 0.663 0.398 0.179 -0.044 0.156 -0.073 0.147 -0.088 0.157 -0.116 0.135 -0.102 0.098 -0.137
400 20 0.503 0.328 0.481 0.286 0.434 0.293 0.396 0.261 0.313 0.130 0.241 0.095 0.268 0.092 0.190 0.060 0.062 -0.042
400 40 0.712 0.392 0.922 0.593 0.745 0.443 0.290 0.080 0.168 -0.032 0.177 -0.042 0.187 -0.012 0.163 -0.060 0.071 -0.187
400 60 0.678 0.380 0.857 0.464 0.717 0.441 0.121 -0.160 0.114 -0.163 0.089 -0.182 0.095 -0.185 0.071 -0.206 0.059 -0.256
500 20 0.431 0.264 0.414 0.272 0.397 0.258 0.325 0.199 0.267 0.129 0.188 0.031 0.210 0.047 0.139 0.030 0.062 -0.049
500 40 0.618 0.346 0.810 0.543 0.594 0.359 0.217 0.016 0.129 -0.111 0.093 -0.130 0.103 -0.118 0.051 -0.149 -0.055 -0.298
500 60 0.702 0.392 0.905 0.599 0.743 0.449 0.163 -0.041 0.154 -0.032 0.150 -0.033 0.142 -0.036 0.147 -0.057 0.123 -0.096
600 20 0.334 0.213 0.318 0.202 0.296 0.159 0.212 0.112 0.139 0.015 0.110 -0.015 0.117 0.022 0.088 -0.015 0 -0.092
600 40 0.596 0.345 0.815 0.553 0.548 0.355 0.237 0.042 0.119 -0.109 0.076 -0.174 0.082 -0.131 0.016 -0.211 -0.091 -0.322
600 60 0.596 0.355 0.801 0.561 0.533 0.228 0.047 -0.149 0.008 -0.192 -0.005 -0.244 -0.013 -0.229 -0.017 -0.238 -0.060 -0.244
700 20 0.339 0.226 0.336 0.221 0.302 0.184 0.237 0.139 0.132 0.007 0.121 -0.003 0.109 0.002 0.110 -0.003 0.042 -0.039
700 40 0.518 0.293 0.667 0.451 0.401 0.179 0.159 -0.009 -0.030 -0.193 -0.048 -0.245 -0.068 -0.243 -0.115 -0.276 -0.210 -0.381
700 60 0.551 0.285 0.722 0.468 0.513 0.239 0.051 -0.122 0.041 -0.161 0.003 -0.206 0.016 -0.180 -0.015 -0.186 -0.086 -0.247
800 20 0.263 0.184 0.249 0.178 0.240 0.126 0.179 0.083 0.104 0.010 0.086 -0.019 0.095 -0.004 0.066 -0.017 0.030 -0.040

To be continued ...
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Table 27 (continued)
Inst. Algorithms

set IGRS IGPTL IGFF IGDPS IGKTPG IGPS IGFF∗ RILS QILS

n m AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS

800 40 0.488 0.305 0.641 0.403 0.384 0.177 0.155 0.010 0.029 -0.150 -0.026 -0.246 0.000 -0.184 -0.082 -0.262 -0.181 -0.353
800 60 0.601 0.376 0.824 0.644 0.527 0.342 0.116 -0.062 0.091 -0.095 0.069 -0.104 0.077 -0.098 0.048 -0.120 -0.001 -0.163

Average 0.547 0.287 0.662 0.399 0.525 0.277 0.24 0.044 0.173 -0.037 0.144 -0.084 0.149 -0.069 0.117 -0.091 0.039 -0.167

Table 28 – Results of comparing QILS with RILS and benchmark algorithms for scale t = 120 on VRF-hard-large dataset. The (min, mean, max)
of statistical significant p-values with 95% of confidence interval is equal to (0, 0.002, 0.049).

Inst. Algorithms

set IGRS IGPTL IGFF IGDPS IGKTPG IGPS IGFF∗ RILS QILS

n m AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS AvS BS

100 20 0.428 0.027 0.537 0.177 0.434 0.092 0.412 0.139 0.309 -0.034 0.273 -0.052 0.284 -0.056 0.303 0.051 0.180 -0.089
100 40 0.434 0.014 0.456 0.114 0.397 0.046 0.158 -0.127 0.135 -0.168 0.121 -0.196 0.133 -0.174 0.154 -0.170 0.100 -0.251
100 60 0.324 0.036 0.360 0.057 0.343 0.027 0.062 -0.150 0.051 -0.154 0.036 -0.181 0.031 -0.226 0.038 -0.210 0 -0.262
200 20 0.710 0.419 0.728 0.465 0.670 0.373 0.605 0.370 0.425 0.212 0.403 0.087 0.410 0.143 0.334 0.087 0.162 -0.094
200 40 0.551 0.229 0.714 0.329 0.570 0.169 0.157 -0.088 0.146 -0.110 0.120 -0.149 0.101 -0.184 0.097 -0.181 -0.061 -0.375
200 60 0.377 0.005 0.545 0.196 0.452 0.133 0.069 -0.183 0.075 -0.193 0.038 -0.220 0.054 -0.267 0.025 -0.243 -0.036 -0.308
300 20 0.583 0.387 0.542 0.345 0.480 0.287 0.418 0.258 0.342 0.081 0.243 0.008 0.259 0.035 0.163 -0.032 0.039 -0.120
300 40 0.676 0.349 0.950 0.565 0.742 0.349 0.286 0.024 0.213 0.002 0.185 -0.081 0.220 -0.088 0.161 -0.131 0.043 -0.199
300 60 0.584 0.250 0.728 0.394 0.580 0.289 0.097 -0.123 0.088 -0.129 0.071 -0.166 0.087 -0.235 0.049 -0.234 0.013 -0.242
400 20 0.487 0.324 0.463 0.278 0.416 0.282 0.381 0.240 0.306 0.106 0.217 0.090 0.248 0.088 0.172 0.054 0.037 -0.076
400 40 0.671 0.353 0.885 0.535 0.683 0.379 0.253 0.044 0.123 -0.069 0.143 -0.085 0.162 -0.044 0.134 -0.090 0.003 -0.232
400 60 0.633 0.334 0.818 0.406 0.644 0.386 0.058 -0.197 0.060 -0.197 0.025 -0.240 0.036 -0.238 0.003 -0.280 -0.019 -0.310
500 20 0.421 0.257 0.402 0.263 0.388 0.257 0.319 0.196 0.252 0.080 0.174 0.020 0.189 0.028 0.123 0.020 0.041 -0.064
500 40 0.583 0.279 0.783 0.518 0.549 0.322 0.178 -0.024 0.091 -0.139 0.067 -0.160 0.079 -0.147 0.020 -0.163 -0.111 -0.320
500 60 0.657 0.361 0.864 0.572 0.684 0.391 0.124 -0.086 0.108 -0.054 0.097 -0.068 0.090 -0.078 0.093 -0.103 0.071 -0.133
600 20 0.324 0.212 0.304 0.193 0.283 0.153 0.205 0.104 0.120 -0.007 0.093 -0.030 0.103 -0.002 0.069 -0.030 -0.015 -0.098
600 40 0.563 0.317 0.790 0.535 0.513 0.328 0.209 0.020 0.091 -0.146 0.056 -0.202 0.070 -0.149 -0.011 -0.243 -0.118 -0.334
600 60 0.563 0.314 0.765 0.538 0.485 0.175 0.011 -0.164 -0.025 -0.223 -0.029 -0.264 -0.046 -0.262 -0.041 -0.260 -0.095 -0.282
700 20 0.330 0.210 0.322 0.216 0.297 0.182 0.231 0.136 0.122 -0.007 0.115 -0.007 0.094 -0.007 0.098 -0.007 0.023 -0.060
700 40 0.491 0.268 0.639 0.420 0.375 0.153 0.133 -0.031 -0.055 -0.260 -0.068 -0.280 -0.095 -0.276 -0.144 -0.299 -0.242 -0.401
700 60 0.520 0.254 0.696 0.443 0.484 0.216 0.021 -0.157 -0.003 -0.205 -0.038 -0.225 -0.018 -0.207 -0.043 -0.205 -0.118 -0.290
800 20 0.258 0.180 0.241 0.163 0.232 0.120 0.175 0.082 0.096 -0.002 0.081 -0.023 0.087 -0.011 0.057 -0.022 0.024 -0.045
800 40 0.464 0.287 0.615 0.394 0.357 0.158 0.137 -0.015 -0.004 -0.178 -0.043 -0.269 -0.019 -0.193 -0.105 -0.269 -0.212 -0.404
800 60 0.580 0.362 0.803 0.610 0.494 0.300 0.090 -0.083 0.077 -0.105 0.044 -0.117 0.049 -0.110 0.018 -0.138 -0.026 -0.186

Average 0.509 0.251 0.623 0.364 0.481 0.232 0.2 0.008 0.131 -0.079 0.101 -0.117 0.109 -0.111 0.074 -0.129 -0.013 -0.216
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Figure 18 – Boxplot of QILS, RILS, and benchmark algorithms based on RPD (%) for
scale t = 120 for each instance set of Taillard dataset
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Table 29 – ARPD of QILS, RILS, and benchmark algorithms for different datasets
Dataset Algorithm

IGRS IGPTL IGFF IGDPS IGKTPG IGPS IGFF∗ RIG QIG

t = 60

Taillard 0.367 0.366 0.35 0.343 0.324 0.300 0.305 0.300 0.272
VRF-small 0.2 0.212 0.196 0.167 0.170 0.165 0.166 0.167 0.155
VRF-large 0.599 0.716 0.588 0.293 0.223 0.202 0.208 0.176 0.107

Average 0.389 0.431 0.378 0.268 0.239 0.222 0.226 0.214 0.178

t = 90

Taillard 0.34 0.339 0.321 0.318 0.299 0.279 0.285 0.273 0.246
VRF-small 0.17 0.182 0.167 0.142 0.144 0.138 0.139 0.139 0.127
VRF-large 0.547 0.662 0.525 0.240 0.173 0.144 0.149 0.117 0.039

Average 0.352 0.394 0.338 0.233 0.205 0.187 0.191 0.176 0.137

t = 120

Taillard 0.322 0.319 0.304 0.302 0.285 0.267 0.271 0.256 0.228
VRF-small 0.151 0.161 0.148 0.127 0.126 0.122 0.123 0.122 0.110
VRF-large 0.509 0.623 0.481 0.200 0.131 0.101 0.109 0.074 -0.013

Average 0.327 0.368 0.311 0.210 0.181 0.163 0.168 0.151 0.108

We come to the conclusion that not only visually, but also from a statistical viewpoint,
the proposed QILS shows a significantly better performance. It answers the third re-
search question, that the proposed QILS framework performs better than benchmark
algorithms from the literature.

4.5.2.3 Adaptiveness of operators to the problem instances

In this section, we aim at answering the fourth research question and investigate how
the proposed QILS framework automatically adapts the perturbation operators to the
problem instance at hand, and determine if this adaptiveness has been significant among
different operators. For this aim, we analyze how much each perturbation operator
contributes to the total improvement of the initial solution and also illustrate how (where
and at which frequency) different operators have been employed throughout the search
process.

Figure 19 – Boxplot of QILS and benchmark IGs based on normalized objective value
over all instances of each dataset

For each perturbation operator a ∈ A (A is the set of actions defined in Section 4.3.2),
we calculate the total gap improvement GI(a) obtained in a number of SI(a) successful
applications. Note that a single application of the perturbation operator a is followed by
a full neighborhood exploitation using the local search. The ratio R(a) = GI(a)/SI(a)
then indicates the average expected improvement that a successful exploration of opera-
tor a would produce. Accordingly, we compute the Relative Improvement index for each
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perturbation operator a with respect to the set of all available perturbation operators
as Equation (4.9).

RI(a) = R(a)∑
a′∈A

R(a′) × 100 (4.9)

In this regard, Figure 20 shows the Relative Improvement index of each perturbation
operator a ∈ A for sample instances from instance sets ”tai_50_20”, ”tai_100_20”,
”tai_200_20”, and ”tai_500_20” of Taillard dataset. As it can be seen, all the per-
turbation operators significantly contribute to the overall improvement in each instance.
However, these contributions differ from an instance set to another. Accordingly, it can
be concluded that depending on the problem instance, the proposed QILS adapts the
perturbation operators to the instance at hand throughout the search process.

Figure 20 – Relative improvement index for each perturbation operator in certain
instance sets of Taillard dataset

To show in more detail how the proposed QILS framework adapts different perturba-
tion operators when solving different instances, Figure 21 illustrates the perturbation
operator that has been selected and used at each iteration of the search process for
the same instances of Figure 20. As it can be observed, QILS has selected different
operators at different stages of the search process and all three perturbation operators
(i.e., d ∈ {1, 2, 3}) have been effectively employed throughout the search process of each
instance.

In instance ”tai_50_20”, one may see that the density of employing the perturbation
operator d = 3 (with higher exploration ability) is higher than the two other operators
at the beginning of the search process. Vice versa, the density of the perturbation
operator d = 1 (with weaker exploration ability) is higher at the end of the search
process. The reason can be attributed to a typical intuition in the literature [Tal09] that
meta-heuristics put more efforts on exploration at the beginning of the search process
to well explore unseen regions and less exploration (or higher exploitation) at the end of
the search process to well exploit the promising found regions. This interpretation is in
line with considering the selection of perturbation operators as a function of iterations.

This phenomenon happened in instance ”tai_50_20” can be interpreted from a second
viewpoint related to the quality of the initial solution. Since we use NEH heuristic, the
generated initial solution of instance ”tai_50_20” has already a good quality in terms
of objective function (i.e., it is already a good local optimum). Therefore, a good initial
solution forces the proposed algorithm to employ perturbation operators with higher
strength to allow the solution to escape from local optima. In this situation, most effort
is used to escape from these local optima rather than exploring unseen regions. This
interpretation relates the selection of perturbation operators mostly to the status of the
search and not as a function of iterations.
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Figure 21 – Application of each perturbation operator at each step of the search process
in certain instances of Taillard dataset

After looking at other three instances of Figure 21, and checking the majority of instances
over all datasets, we observed that the first interpretation (i.e., selection as a function of
iterations) is not the case in our problem. For example, in other instances of Figure 21,
there is not a particular pattern on the employment of different perturbation operators
at particular iterations. Accordingly, we conclude that the proposed QILS framework
adapts the perturbation operators to each problem instance based on the status of the
search and adjust the degree of exploration to guide the search process toward more
promising solutions.

4.5.2.4 Sensitivity analysis

In this section, we perform a sensitivity analysis on the performance of the proposed
QILS framework with regard to its parameters levels, the size of the action set (i.e., |A|),
and the reward function.

QILS’s parameters – As explained in Section 4.4.5, we tune the parameters of the pro-
posed QILS framework using RSM that finds the optimum level of parameters. However,
in this section, to illustrate how much the performance of the proposed QILS is sensi-
tive to different levels of parameters, we do a sensitivity analysis on all its parameters
including τ , ϵ, β, α, γ, E, and η on Taillard dataset.

The results of this analysis has been provided in Figure 22, where for each subplot, the
corresponding parameter value has been changed while other parameters are kept fixed
at their tuned optimum level as in Table 13. As it can be seen, the performance of the
proposed QILS framework is sensitive to the level of parameters, and this sensitivity
varies from one parameter to another. The lowest and the highest sensitivities belong
to the parameters α (learning rate) and E (number of episodes), respectively. However,
these sensitivities are not very severe to force the users to spend significant effort on the
parameter tuning. As also mentioned above, the better quality of the solutions that the
proposed QILS obtains prevails the parameter tuning effort.
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Figure 22 – Sensitivity of QILS to its parameters. Values found in Table 13 are
highlighted in red.

Action set size |A| – In this section, we perform a sensitivity analysis on the perfor-
mance of the proposed QILS framework with regard to the size of the action set (i.e.,
|A|). For this aim, we vary |A| from 2 (the lowest possible size of |A| for considering
multiple actions in QILS) until a maximum number of 10 actions. Considering that
IILSd with perturbation operators of d = 1, d = 2, and d = 3 individually shows the
best performance among other values of d (i.e., the performance of IILSd with higher
values of d ≥ 4 are statistically dominated by the values of d ≤ 3), we incorporate these
three values to construct different action lists in QILS. On the other hand, for the QILS
with |A| = 2, we consider three different action lists as A = {1, 2}, A = {1, 3}, and
A = {2, 3}. Furthermore, the QILS with |A| = 3 is formed based on d = 1, d = 2, and
d = 3 (i.e., A = {1, 2, 3}). Moreover, we keep all d = 1, d = 2, and d = 3 and add
d = 4, 5, ..., 10 one by one incrementally to form QILS with 4 ≤ |A| ≤ 10. The reason
is to keep the best actions (i.e., d = 1, d = 2, and d = 3) always in the list of available
actions. Accordingly, we have seven more sets of actions as A = {1 − 4}, A = {1 − 5},
..., and A = {1 − 10} that correspond to action lists with d = 1, 2, 3, 4, d = 1, 2, 3, 4, 5,
..., and d = 1, 2, ..., 10, respectively. Finally, the QILS is executed with 11 sets of actions
to investigate the sensitivity of QILS to the size of action set. In the meantime, the
performance of QILS is also compared with its corresponding RILS.

Figure 23 shows the average performance of QILS and RILS for different sets of actions
with different sizes on Taillard dataset. The detailed results of all executions for each
instance set has been provided in Table 31. It can be seen that the QILS with A =
{1 − 3} provides the minimum ARPD and there is not visually a big difference between
the performance of QILSs with different sizes of actions. In addition, in a statistical
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viewpoint using Wilcoxon signed rank test, there is no significant difference between
QILS with A = {1 − 3} and all other QILSs, except the QILSs with A = {1 − 8}, {1 −
9}, {1 − 10}, {2, 3} with the (min, mean, max) of p-value equal to (0, 0.005, 0.012). This
small difference shows that the performance of QILS is almost insensitive (or not that
sensitive) to the size of the action set. The point that QILS is not very sensitive to the
size of actions becomes more and more important and useful when there is no sufficient
prior knowledge regarding the performance of individual operators. Accordingly, QILS
can be executed with a set of different operators and not necessarily the best ones; then,
the proposed Q-learning based selection mechanism is able to automatically select the
most appropriate operators, i.e. actions, during the search process among all available
operators. In addition, by comparing the results of QILS with its corresponding RILS,
two important facts are revealed. First, QILS is always better than RILS and can reach
better solutions. This behavior has also been statistically verified. Second, the higher
the size of action set, the worse the performance of RILS. Indeed, as much as the size
of action set increases, the best operators are selected less in RILS. In this situation, a
part of the search process in RILS is wasted to perform less performing operators.

Figure 23 – Performance comparison of QILS and RILS based on ARPD (%) for
different sizes of the action set on Taillard dataset

Reward function – In this section, the aim is to investigate the effectiveness of the
reward mechanism in the proposed QILS compared to the basic 0/1 reward mechanism
in the literature. Table 30 compares the performance of QILS with its current reward
mechanism based on local/global improvements against the 0/1 reward mechanism on
Taillard dataset.
Table 30 – Results of comparing QILS with the proposed local/global reward mecha-
nism to QILS with 0/1 reward mechanism for scale t = 120 on Taillard dataset. The
(min, mean, max) of statistical significant p-values with 95% of confidence interval is
equal to (0, 0.013, 0.044).

Inst. Algorithms

QILS with 0/1 reward mechanism QILS with local/global reward mechanism

n m AvS BS AvS BS

20 5 0.036 0 0.027 0
20 10 0.012 0 0.002 0
20 20 0.003 0 0 0
50 5 0.001 0 0 0
50 10 0.413 0.273 0.372 0.255
50 20 0.503 0.237 0.494 0.193
100 5 0.008 0.008 0.008 0.008
100 10 0.068 0.019 0.048 0.016
100 20 0.736 0.397 0.703 0.386
200 10 0.042 0.029 0.040 0.024
200 20 0.774 0.492 0.738 0.480
500 20 0.330 0.221 0.307 0.220

Average 0.245 0.140 0.228 0.132
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Table 31 – Performance comparison of QILS and RILS for different actions on Taillard dataset. The (min, mean, max) of statistical significant
p-values with 95% of confidence interval is equal to (0, 0.004, 0.042).

Inst. Algorithms

set QILS1,2 RILS1,2 QILS1,3 RILS1,3 QILS2,3 RILS2,3

n m AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s)

20 5 0.038 0 3.1 0.041 0.041 1.8 0.038 0 1.9 0.038 0 1.8 0.038 0 2.7 0.041 0.041 2.6
20 10 0.027 0 0.7 0.029 0 2.2 0.033 0 2.3 0.037 0 2.1 0.027 0 3.1 0.032 0 2.9
20 20 0.015 0 3.2 0.017 0 6.4 0.015 0 6.6 0.017 0 6.2 0.010 0 7.7 0.011 0 7.3
50 5 0.003 0 7.4 0.001 0 7.3 0.003 0 7.8 0.003 0 7.3 0.003 0 9.9 0.003 0 9.4
50 10 0.406 0.269 22.2 0.428 0.282 26.4 0.407 0.273 31.0 0.441 0.303 30.7 0.437 0.276 27.8 0.468 0.306 26.4
50 20 0.540 0.242 81.1 0.549 0.277 45.6 0.536 0.200 46.2 0.554 0.240 47.1 0.527 0.226 63.7 0.562 0.285 61.7
100 5 0.008 0.008 15.4 0.009 0.008 22.5 0.009 0.008 27.3 0.010 0.008 25.9 0.008 0.008 28.0 0.010 0.008 26.8
100 10 0.055 0.016 35.8 0.066 0.019 57.7 0.056 0.017 56.8 0.071 0.025 55.6 0.050 0.019 65.0 0.066 0.019 64.1
100 20 0.611 0.357 193.6 0.669 0.447 187.6 0.616 0.362 186.5 0.683 0.407 194.4 0.654 0.388 258.2 0.709 0.478 252.7
200 10 0.048 0.030 55.1 0.052 0.036 73.9 0.047 0.027 77.8 0.053 0.028 75.3 0.047 0.031 95.9 0.051 0.035 94.4
200 20 0.657 0.426 417.3 0.729 0.487 377.3 0.660 0.428 360.5 0.740 0.455 375.5 0.665 0.447 438.2 0.734 0.489 444.0
500 20 0.290 0.199 949.7 0.351 0.234 761.1 0.302 0.209 798.3 0.340 0.224 888.0 0.289 0.196 803.2 0.321 0.220 887.1

Average 0.225 0.129 148.7 0.245 0.152 130.8 0.227 0.127 133.6 0.249 0.141 142.5 0.229 0.133 150.3 0.251 0.157 156.6

Inst. Algorithms

set QILS1−3 RILS1−3 QILS1−4 RILS1−4 QILS1−5 RILS1−5

n m AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s)

20 5 0.036 0 1.8 0.039 0 1.7 0.038 0 2.0 0.038 0 1.9 0.038 0 2.0 0.038 0 1.9
20 10 0.027 0 2.2 0.029 0 2.0 0.024 0 2.4 0.026 0 2.3 0.031 0 2.4 0.031 0 2.3
20 20 0.007 0 5.3 0.010 0 5.0 0.013 0 6.7 0.015 0 6.3 0.015 0 5.8 0.016 0 5.5
50 5 0.002 0 7.3 0.002 0 6.9 0.003 0 8.0 0.002 0 7.6 0.002 0 7.7 0.002 0 7.4
50 10 0.401 0.255 24.6 0.428 0.279 24.0 0.415 0.286 31.8 0.456 0.323 31.2 0.414 0.273 26.0 0.471 0.320 26.2
50 20 0.538 0.239 44.7 0.556 0.304 45.9 0.539 0.274 48.0 0.582 0.280 49.8 0.546 0.280 47.6 0.591 0.331 51.0
100 5 0.008 0.008 21.7 0.008 0.008 20.6 0.008 0.008 27.8 0.010 0.008 26.2 0.009 0.008 23.2 0.011 0.008 22.5
100 10 0.052 0.016 48.9 0.079 0.021 47.6 0.053 0.019 59.5 0.058 0.021 58.5 0.053 0.019 50.2 0.063 0.021 50.3
100 20 0.608 0.315 185.3 0.671 0.411 192.4 0.611 0.391 195.7 0.691 0.441 208.4 0.607 0.371 190.1 0.702 0.385 210.2
200 10 0.043 0.024 76.9 0.046 0.033 74.9 0.046 0.033 80.8 0.051 0.037 79.1 0.045 0.028 76.3 0.049 0.029 75.7
200 20 0.662 0.455 334.7 0.749 0.493 349.5 0.665 0.422 384.2 0.739 0.524 403.9 0.664 0.460 336.7 0.750 0.504 358.4
500 20 0.288 0.202 812.9 0.338 0.218 913.0 0.290 0.208 848.9 0.331 0.237 939.6 0.294 0.211 754.7 0.327 0.240 837.4

Average 0.223 0.126 130.5 0.246 0.147 140.3 0.225 0.137 141.3 0.250 0.156 151.2 0.226 0.137 126.9 0.254 0.153 137.4

Inst. Algorithms

QILS1−6 RILS1−6 QILS1−7 RILS1−7 QILS1−8 RILS1−8

n m AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s)

20 5 0.038 0 2.1 0.039 0 2.0 0.041 0.041 2.6 0.041 0.041 2.5 0.038 0 1.9 0.039 0 1.8
20 10 0.028 0 2.6 0.033 0 2.4 0.031 0 3.1 0.036 0 2.9 0.026 0 2.4 0.035 0 2.3
20 20 0.013 0 6.1 0.013 0 5.8 0.012 0 7.5 0.012 0 7.2 0.012 0 5.9 0.012 0 5.7
50 5 0.002 0 8.2 0.002 0 7.7 0.002 0 10.0 0.002 0 9.5 0.002 0 7.7 0.002 0 7.3
50 10 0.412 0.266 32.8 0.488 0.316 33.0 0.413 0.236 28.1 0.478 0.320 28.3 0.428 0.283 26.2 0.503 0.293 27.1
50 20 0.538 0.258 49.9 0.600 0.268 53.8 0.525 0.234 59.1 0.624 0.312 64.4 0.540 0.274 46.7 0.631 0.323 52.5
100 5 0.009 0.008 24.0 0.011 0.008 23.4 0.008 0.008 28.2 0.011 0.008 26.8 0.009 0.008 23.2 0.012 0.008 22.5

To be continued ...
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Table 31 (continued)
Inst. Algorithms

set QILS1,2 RILS1,2 QILS1,3 RILS1,3 QILS2,3 RILS2,3

n m AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s)

100 10 0.052 0.019 52.8 0.062 0.021 52.7 0.049 0.016 64.7 0.060 0.021 64.1 0.061 0.016 53.3 0.066 0.019 53.5
100 20 0.610 0.377 199.3 0.720 0.427 224.6 0.615 0.342 238.5 0.770 0.458 268.4 0.621 0.358 192.1 0.746 0.479 223.7
200 10 0.047 0.025 80.2 0.048 0.035 79.7 0.045 0.031 101.0 0.050 0.031 99.6 0.042 0.029 81.3 0.050 0.036 81.1
200 20 0.672 0.469 352.6 0.773 0.515 380.6 0.690 0.452 431.3 0.788 0.524 470.4 0.689 0.488 353.9 0.799 0.556 391.8
500 20 0.288 0.204 867.9 0.326 0.234 963.5 0.290 0.208 857.1 0.321 0.227 949.2 0.293 0.217 819.3 0.339 0.239 895.4

Average 0.226 0.136 139.9 0.260 0.152 152.4 0.227 0.131 152.6 0.266 0.162 166.1 0.230 0.139 134.5 0.269 0.163 147.1

Inst. Algorithms

QILS1−9 RILS1−9 QILS1−10 RILS1−10

n m AvS BS T (s) AvS BS T (s) AvS BS T (s) AvS BS T (s)

20 5 0.039 0 2.4 0.041 0.041 2.3 0.038 0 2.1 0.039 0 2.0
20 10 0.031 0 3.0 0.038 0 2.8 0.033 0 2.5 0.033 0 2.4
20 20 0.011 0 6.2 0.014 0 6.0 0.014 0 6.0 0.014 0 5.8
50 5 0.002 0 10.0 0.002 0 9.4 0.002 0 8.2 0.002 0 7.9
50 10 0.420 0.256 27.1 0.500 0.303 27.9 0.426 0.269 33.2 0.498 0.350 34.2
50 20 0.532 0.259 59.2 0.667 0.325 66.3 0.541 0.274 49.0 0.672 0.320 56.1
100 5 0.009 0.008 30.9 0.011 0.008 29.7 0.010 0.008 24.0 0.013 0.008 23.4
100 10 0.052 0.019 54.2 0.079 0.021 54.5 0.058 0.021 53.8 0.080 0.021 54.5
100 20 0.616 0.345 244.1 0.767 0.493 280.2 0.614 0.388 197.2 0.786 0.493 234.0
200 10 0.046 0.025 102.5 0.051 0.036 101.1 0.045 0.034 83.4 0.053 0.034 82.6
200 20 0.674 0.460 362.6 0.802 0.472 402.8 0.662 0.445 362.3 0.810 0.588 402.9
500 20 0.296 0.190 913.9 0.327 0.231 1025.1 0.297 0.197 924.9 0.329 0.220 1049.5

Average 0.227 0.130 151.3 0.275 0.161 167.3 0.228 0.136 145.6 0.277 0.170 162.9
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Indeed, in our proposed reward mechanism, each operator receives a reward based on
the amount of improvements that occurs in both the best found solution (i.e., global)
and the current local optimum (i.e., local) due to its employment. This mechanism
allows the operator to be evaluated both locally and globally. However, in the 0/1
reward mechanism, an operator receives a reward equal to 1, if a global improvement
is obtained and 0 otherwise, where the amount of the improvement is neglected. As
a result, two operators that improve the best found solution receive the same reward
equal to 1, regardless of the amount of improvement. The results of Table 30 show
that for all instance sets, the QILS framework with the proposed local/global reward
mechanism outperforms the QILS framework with 0/1 reward mechanism and achieves
better solutions. This shows the effectiveness of considering the amount of local and
global improvements into the reward mechanism.

4.5.3 Complexity analysis

The worst-case complexity of the proposed QILS framework is analyzed according to
Algorithm 2. In the following, we provide the complexities of the sub-functions used in
this algorithm:

• initialSolution: The initial solution can be generated randomly, in a greedy
manner, or using a heuristic, each of which may have a different complexity.

• applyOperator: The complexity of this function depends on the type of the op-
erator used and on the recurring or a single application of the operator to the
solution.

• terminationCriterion: The choice of a termination criterion is left to the user.
In case of using the total execution time, the number of iterations or the number
of non-improving iterations, this can be done in O(1);

• Q-learning: The only required operation in this function is to find a maximum
Q-value from a list of size |A|. Accordingly, the complexity of this function is
O(|A|);

• accept: The complexity of this function depends on the type of the employed
acceptance strategy.

Let ItrILS and ItrQILS (ItrILS = ItrQILS × E) denote the number of iterations per-
formed by the while loops of ILS and QILS, respectively. Considering the complexities
of the sub-functions, the (detailed) worst-case complexity of Algorithm 2, O(QILS), is
given as Equation 4.10:

O(QILS) ≈ O(initialSolution)+
O(OPT l)+

ItrQILS

(
E

(
O(OPT p) + O(OPT l)

)
+ O(Q-learning)

) (4.10)

Similarly, the (detailed) worst-case complexity of the simple ILS algorithm (without the
integration of Q-learning), O(ILS) is given as Equation :
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O(QILS) ≈ O(initialSolution)+
O(OPT l)+

ItrILS

(
O(OPT p) + O(OPT l)

) (4.11)

Considering that E is a constant, the overhead complexity (i.e., the extra complexity
required to use QILS instead of ILS) is equal to ItrQILS×|A|. As a consequence, the com-
plexity overhead of QILS compared to ILS mainly depends on the number of iterations
ItrQILS (not on the size of the problem instances) and it imposes only O(|A|) = O(1)
extra computations per iteration since |A| is a given constant. In practice, QILS even
provides better results with even less computational effort for large instances due to faster
convergence toward good (near-optimal/optimal) solutions. The above experiments and
results are evidence to support this fact.

The worst-case complexity of the QILS for both applications to TSP and PFSP based on
our algorithmic choices (initial solution generation method, local search and perturbation
operators, acceptance strategy) is given in Table 32.

Table 32 – Complexity of QILS
App. QILS to select O(initialSolution) O(OPT l) O(OPT p) O(Q-learning)

TSP Local search O(|V |2) O(|V |3) O(1) O(|A|)
Perturbation O(|V |2) O(|V |3) O(1) O(|A|)

PFSP Perturbation O(|N |2|M |) O(|N |2|M |) O(|A| + (|N | − |A|)2|M | + |A||N ||M |) O(|A|)

The set of actions in TSP when we use QILS for perturbation operator selection is a
tuple A = (p, R), where p ∈ P = {OPT l, OPT p} is the type of the perturbation operator
and R is the repetition number of the perturbation operator P . Accordingly, the size
of action set |A| = |P| × |R|. Considering that there are a set of multiple local search
and perturbation operators, we estimate the O(OPT l) and O(OPT p) functions based
on the worst-case complexity of the existing operators.

To conclude the chapter, we remind you that we first proposed a general framework
that integrates Q-learning into ILS algorithm and is able to automatically select the
search operators without the need for expert knowledge. The proposed framework is
applicable to any MHs for solving COPs when a variety of efficient and competing
search operators exists. Afterwards, we investigated the performance of the proposed
framework through its application to two COPs, TSP and PFSP. In both applications,
we observed that the integration of Q-learning into the ILS algorithm yields promising
results compared to non-learning version of the ILS algorithm. However, the proposed
framework showed the state-of-the-art behavior when solving the PFSP. Despite the
generality of the proposed framework to be applied for any MHs, there is still a need to
characterize the framework for different COPs, including search operator identifications
and parameter tuning. These concerns will be discussed in more detail in the next
chapter.
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In this thesis, we contributed to an interdisciplinary research domain between Opera-
tions Research and Computer Science to investigate how ML techniques can help for
automatic design of advanced MHs. This integration is for the aim to guide the MHs
toward making better decisions and consequently make MHs more efficient and improve
their performance in terms of solution quality, convergence rate, and robustness. The
contribution of this thesis to the domain of integrating ML techniques into MHs is an
analytical-technical contribution.

From an analytical viewpoint, we provided, for the first time in the literature, a compre-
hensive yet technical review on the whole studies addressing this integration. Through
this review, we proposed a taxonomy for different ways of integration (i.e., including
algorithm selection, fitness evaluation, initialization, evolution categorized into oper-
ator selection, learnable evolution model, and neighbor generation, parameter setting,
and cooperation) and classified the papers corresponding to each class of integration.
Furthermore, we provided a complete analysis and discussion on technical details (i.g.,
challenges, advantages, disadvantages, perspectives, etc.) of different integrations.

From a technical viewpoint, we focused on a particular integration and addressed the
problem of adaptive operator selection in MHs using ML techniques. To address this
problem, we proposed a general framework that integrates the Q-learning algorithm into
MHs to adaptively and dynamically select the most appropriate search operators at each
step of the search process based on their history of performance. The proposed frame-
work can be applied to any MHs and is mostly recommended when MHs benefit from
multiple competitive operators for solving a COP. The reason is that all operators would
contribute to the search process and the selection process is not biased toward a single
operator (i.e., the most competitive one). In this condition, Q-learning is used to auto-
matically select the most appropriate operator (from a pool of competitive operators)
depending on the state of the search and the operator’s history of performance.

The employment of the proposed framework is mostly highlighted when there is a rise in
the number and variety of problem-specific operators (heuristics) for efficiently solving
optimization problems. Selecting and applying these operators within a MH requires
much expertise in the domain. That is especially the case for COPs with plenty of
proposed problem-specific operators as well as classical operators. In order to efficiently
select the operators, one must have knowledge over both the classical and the problem-
specific operators. This issue highlights the necessity of an automatic approach to select
the most appropriate operator(s) based on their performance without having an expertise
in the domain. In this regard, we showed that Q-learning helps users to automatically
select operators without any need for the human knowledge. In this way, even inexperi-
enced users are able to select appropriate operators for solving COPs.

We investigated the performance of the proposed framework through its application
to two COPs, TSP and PFSP. In both applications, the framework yields significant
improvement – in terms of solution quality and convergence rate – compared to its non-
learning version, where operators are selected randomly. In other words, the knowledge
gathered through the learning process throughout the search process is precious and leads
to identifying the most appropriate operator at each decision point and consequently
to the success of the framework in converging faster to better solutions. Besides, we
also observed that the higher the size of instances, the higher the performance of our
algorithm. The main reason can be attributed to a faster convergence of the framework
toward better solutions.

Through a sensitivity analysis on the size of the actions, we also observed that the pro-
posed framework is almost insensitive (or very slightly sensitive) to the size of the action
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set. This insensitivity becomes more and more important and useful when there is no
sufficient prior knowledge regarding the performance of individual operators. Accord-
ingly, the framework can be executed with a set of different operators and not necessarily
the best ones; then, the proposed Q-learning based selection mechanism is able to select
the operators in a way that the most competitive ones favor.

As another important point, we showed that adding Q-learning does not introduce signifi-
cant complexity to the framework. Considering the worst-case complexity, the Q-learning
introduces a complexity overhead of size of the action set which is a finite constant, and
it does not depend on the size of the problem. This complexity overhead becomes even
negligible when the size of the action set is small. In practice, we showed that the pro-
posed framework obtains even better results with fewer computational effort, especially
for larger instances due to faster convergence toward good (near-optimal/optimal) solu-
tions. This conclusion can be generalized to any MH used in the framework, and also
application to any COP.

In terms of the adaptiveness of the proposed framework, we showed how Q-learning is
able to adapt the MH’s behavior to the characteristics of the search space by selecting
the most appropriate operators during the search process. In other words, Q-learning
is able to identify the best decision (operator) based on the properties of the problem
instance at-hand (the properties of the search space and landscape) merely through a
trial and error learning process and without the need to be trained for each specific
problem instance a priori. This property can eliminate an extra computational effort for
training phase, and assure the user to be applied to any problem instance without any
modification.

Besides all the advantages that the proposed framework provides, the integration of RL
into MHs carries a set of challenges and limitations. Foremost, this integration introduces
a set of additional parameters that need to be tuned/controlled and accordingly more
computational effort would be required for parameter setting. For instance, the Q-
learning algorithm introduces five more parameters to the framework that need to be
carefully tuned. However, we observed that the advantages that the Q-learning brings in
terms of obtaining significantly better solutions in even less computational time prevail
over this particular challenge.

Another important challenge in Q-learning algorithm is defining a set of states depending
on the goal of its usage. The states should be completely descriptive of the problem status
to allow selecting the correct action. There are three ways to define the states. The states
could be 1) search-dependent that reflect the properties of the search process such as the
number of non-improving iterations, 2) problem-dependent that reflect the properties of
the problem through generic features, or 3) instance-dependent that reflect the properties
of the problem instance such as the number of bins in a bin packing problem [Wau+13].
In this thesis, we have used a search-dependent state. However, other type of states can
be defined as a future research direction to evaluate their performance compared to the
performance of the proposed framework.

Another important challenge is when the number of available operators for a COP do-
main increases. For each problem domain, there are numerous search operators available
in the literature which show different behavior in solving different instances, and it is
difficult to predict how they would behave in solving at-hand instances. There would be
three ways to deal with many operators.

The first and simplest approach is to include all available operators in the list of candidate
operators among which the selection would be performed. This leads to a high number
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of actions in the Q-learning algorithm that results in a higher complexity. When the
number of actions increases and due to the use of ϵ-greedy strategy for action selection,
there would be an ϵ probability of selection even for inefficient actions. Accordingly, we
expect that the overall performance of the algorithm would degrade, as some operators
may yield no or little improvement to the solution process. More importantly, when
the number of states and actions increases significantly, it would not be possible in
practice to infer the Q-value of new states from already explored states due to a large
amount of memory needed to save and update the table and also a large amount of time
required to explore each state. To overcome this challenge, Q-learning can be replaced
with deep Q-learning. The idea behind deep Q-learning is to approximate the Q-values
using machine learning techniques such as neural network instead of directly inferring
the Q-values from the Q-table.

The second approach is to reduce the number of operators by determining a subset
of efficient operators and only including them in the set of candidate operators. This
approach requires a pre-processing phase to identify the most efficient operators. There
are different ways to identify the efficient operators. One may exhaustively execute
MHs with every individual operator, solve the problem instances with these individual
operators, and then select the best performing operators. One of the deficiencies of
this approach is that it ignores the points that the efficiency of the operators changes
according to the region of the search space that is currently being explored due to the
non-stationarity of COPs’ search space. As a result, one may omit good performing
operators base on their premature performance in the pre-processing phase. Also, the
computational efforts of the pre-procession phase should not be ignored.

The two above-mentioned approaches possess their particular limitations and challenges.
They either add a significant complexity to the framework (first approach) or require an
extra and time-consuming pre-processing effort.Therefore, the use of simple yet efficient
techniques is recommended. In this regard, the third approach – which we are currently
working on – is to consider a dynamic set of candidate operators, instead of a static set
with fixed operators, to manage a large set of operators in an online manner. The idea
is that the operators found to be inefficient at some stages of the search are momentarily
disabled by leaving the candidate set for a fixed number of iterations, and other new
operators might be invited to be included in the candidate set for only particular steps of
the search. This mechanism is able to include effective and exclude ineffective operator at
different stages of the search to attain the highest performance without imposing extra
computational overhead. This mechanism is based on the idea of adaptive operator
management (AOM) inspired from [Mat+11; MLS10]. Using this approach, despite the
second approach, we do not delete any poor operator from the beginning since they
may show good performance later on, and at the same time we do not need to spend
computational effort to do a pre-processing. To realize this approach, I was invited
for a sabbatical leave of three months (May–July 2022) at Polytechnique MontrÃľal
(MontrÃľal, Canada) to collaborate with Professor Andrea Lodi and Professor Nadia
Lahrichi. Until now, we have designed the framework and the next step would be to
apply this framework to the PFSP instances to investigate its performance and compare
it to our current proposed framework.

Apart from the challenges of the proposed framework, one limitation of this work is that
the proposed framework has been only applied to two COPs. These applications and the
obtained results could be a good starting point that show the efficiency of Q-learning for
operator selection. However, to generalize these conclusions, there is a need to do more
research and apply the proposed framework to solve different COPs. Accordingly, we
advocate more research on different COPs to validate these results on other problems
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as well. As the first step toward this path, I was offered a research visit of two months
(November & December 2021) at the University of Nottingham (Nottingham, England)
to collaborate with Professor Ender Ozcan, we the aim to investigate the generalizability
of the results on other COP domains. During this research visit, first, we assessed
whether the proposed framework can be seen as a hyper-heuristic. In fact, operator
selection has its root in hyper-heuristics. Hyper-heuristics are high-level automated
search methodologies that automate the design and selection of heuristics in solving
different problems. Despite meta-heuristics, hyper-heuristics perform search over the
space of a set of heuristics, instead of directly searching over the solution space. Given
a problem instance and a set of heuristics, hyper-heuristics are able to automatically
select/generate appropriate heuristics at each step during the search process. Since our
proposed framework is general considering that it can be integrated into any MH, and
can be applied to any COP, we aimed to investigate its performance over different COP
domains.

The framework was therefore implemented in HyFlex (Hyper-heuristics Flexible frame-
work) a Java interface for design and development of hyper-heuristic. HyFlex was ini-
tially developed for the first Cross-Domain Heuristic Search Challenge, CHeSC 2011
whose aim was to encourage researchers to design hyper-heuristic algorithms able to
be well generalized across different problem domains, to provide a common ground for
the implementation and comparison of different participants’ algorithms. From then on,
most studies developing hyper-heuristics have implemented their algorithms in HyFlex
and therefore, it is a good interface allowing to compare the performance of newly devel-
oped hyper-heuristics with the existing ones. HyFlex includes five different problem do-
mains including Boolean Satisfiability (SAT), Bin Packing (BP), Permutation Flowshop
Scheduling Problem (PFSP), Traveling Salesman Problem (TSP), and Vehicle Routing
Problem (VRP), a set of instances and a set of low-level heuristics for each domain.
In HyFlex all the information about a problem domain is hidden to the user and the
low-level heuristics are black-boxes whose type is the only information available to the
user.

We have executed our framework on a set of instances for CHeSC 2011 challenge (5
instances per problem domain). We also followed the same rules as CheSC 2011. Ac-
cordingly, our algorithm has been run 31 independent times for each instance and the
median result for each instance has been recorded. We compared our algorithm with 20
developed hyper-heuristics of CheSC 2011 and also three state-of-the-art hyper-heuristics
from the literature [CWL18; KÖ16; DÖB15]. The set of algorithms within the compari-
son are then given a score based on their median values for each instance using a formula
1 point scoring system. Based on this system, for each instance, the top performing algo-
rithm receives 10 points, the subsequent receives 8 points, and then 6,4,2, and 1 points.
If a tie occurs, the corresponding point is equally shared between each algorithm. The
algorithms are then ranked based on their total score over thirty instances across all six
problem domains.

We have performed initial experiments to obtain initial results. Using the CHeSC 2011
scoring system, the score of our algorithm for each problem domain as well as the total
score over all problem domains has been recorded. Accordingly, the proposed framework
(i.e., QILS) has initially obtained the highest scores for SAT and PFSP, as we expected
for PFSP, and in total, the QILS framework has obtained the rank 4 with a total score
of 83.0. This shows that our approach can perform well also as a hyper-heuristic, and
it is competitive to the state-of-the-art hyper-heuristics. Despite meta-heuristics that
need to be tailored to a specific domain and once tailored to a specific domain they may
not be efficient to solve problems from other domains, hyper-heuristics are able to deal
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with different variety of problem domains with only being tailored once.

At the end of this chapter, we are interested to go beyond the integration of ML tech-
niques to MHs for the purpose of operator selection and discuss some general chal-
lenges and limitations about the integration of ML techniques into MHs regardless of
its purposes. Furthermore, promising research directions are also proposed, where ML
techniques can help to deal with optimization problems.

In this integration, it is obvious that the higher the volume of data, the higher the per-
formance of ML techniques. Data availability is indeed an important challenge when
integrating ML techniques into MHs. In fact, collecting or even generating enough data
is a hard task. Even if enough historical data is available, the way of sampling from
historical data to appropriately mimic the behavior reflected in such data is another
challenge [BLP21a]. One way of tackling the data availability challenge could be us-
ing Few-Shot Learning to train a model with a very small amount of training data
[Wan+20a]. By using prior knowledge of similar problem instances, few-shot learning
can be rapidly generalized to new tasks containing only a few problem instances with
supervised information.

The majority of studies in the literature use conventional ML techniques such as k-NN,
k-means, SVMs, LR, etc. With the rapid development of new technologies, real-world
problems are becoming increasingly complex, and with the new advances in digitaliza-
tion, various real-time data are collected massively that cannot be processed by classical
ML techniques. Such big data carries several issues that need to be taken into consid-
eration [Emr16]. To cope with such big data, more advanced ML techniques such as
deep learning can be integrated into MHs. In this regard, when various ML techniques
are available to be integrated into MHs for a particular purpose, the algorithm selection
problem can be studied to select the most appropriate ML technique. Also, with the
development of supercomputers, it could be an interesting future research direction to
explore the parallelism concept in the integration of ML techniques into MHs using GPU
(Graphics Processing Units) and TPUs (Tensor Processing Units) accelerators [CMT04;
Alb05; VLMT11].

Two important issues to consider in real-world optimization problems are the uncer-
tainty of input data, particularly when the input data statistically contains various
distributions, and the dynamicity of the input data. For data uncertainty, one promis-
ing research direction could be using ML techniques such as clustering methods (e.g.,
k-means, SOM) to cluster the input data with the aim of discriminating the data with
different distributions. These classes of data can be then used/integrated to solve the
optimization problem at hand. For the dynamicity of data, ML techniques can be used
to monitor/predict the evolution of the input data, and once a new evolution is detected
by ML techniques, the optimization variables are updated correspondingly.

Although there are lots of studies in the literature studying each way of integration, the
trade-off between the gains vs. the extra computational effort of using ML techniques
has not been explicitly studied in most studied. Also, some classes such as Initialization
(see Section 3.4) has been studied only for a few COP domains. Accordingly, another
future research direction is to investigate using the integration of ML techniques into
MHs for other COP domains as well as complex optimization problems such as multi-
objective optimization, bi-level optimization, etc., to investigate the applicability and
potential gain of this integration, and also to check whether the obtained conclusions
can be validated on/generalized to other COPs as well. This direction also opens other
research questions that are worthy for further investigations.
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Almost all the studies in the literature only deal with the integration of ML techniques
into MHs with a single purpose, while the higher performance of MHs is expected to be
achieved when ML techniques serve MHs for multiple purposes. Therefore, an interesting
future research direction could be integrating ML techniques into MHs simultaneously
for different purposes. For instance, implementing parameter control and adaptive oper-
ator selection simultaneously in a MH may increase the overall performance of the MH
throughout the search process.
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Appendices

A.1 List of COPs

Table A.1 – Exhaustive list and the abbreviation (Abv.) of the COPs studied by the
articles reviewed in this thesis

COP Abv. Description

Assignment Problem AP Assigning a set of locations to a set of facilities such that the total assignment
cost is minimized [DGVDC18].

Arc Routing Prob-
lem

ARP Finding a set of tours with minimum cost in an undirected graph to serve the
positive demand of edges by a set of available vehicles where each tour begins
and ends at the depot [CY14].

Assemble-To-Order
Problem

ATOP Determining an order based on which the parts and sub-assemblies are made
but the final assembly is delayed until the customer orders are received such
that the total production cost is minimized [Hor+13].

Berth Allocation
Problem

BAP Allocating the berthing position and berthing time to the incoming vessels to
perform loading/unloading activities such that the total vessels’ waiting time
or the early or delayed departures is minimized [WDS20].

Bin-Packing Prob-
lem

BPP Placing N items in a number of capacitated knapsacks so that the total number
of knapsacks used to pack all items is minimized [Bur+11].

Capacitated Lot Siz-
ing Problem

CLSP Planning the lot size of a set of different items over a planning horizon under
production capacity constraints such that the total production, setup, and
inventory cost is minimized [CR09].

Facility Location
Problem

FLP Locating a number of facilities in a set of potential locations to serve a set
of customers with predefined locations such that the total opening and trans-
portation cost is minimized [MKC10].

Flowshop Schedul-
ing Problem

FSP Finding the order of processing N jobs on M machines with the same se-
quence such that the makespan, total tardiness, or total lag between the jobs
is minimized [PKD18].

Graph Coloring
Problem

GCP Finding the minimum number of colors for coloring the vertices of a graph such
that no two adjacent vertices have the same color or finding the maximum sub-
graph of a graph to be colored with k colors such that no two adjacent vertices
have the same color [ZHD16; MKN20].

Heat Exchanger De-
sign Problem

HEDP Designing the structure of tubes under technical and environmental constraints
including the size of the exchanger and air temperature such that the heat
transfer rate is maximized [Dom+04].

Hub Location Prob-
lem

HLP Locating a set of hubs and allocating a set of origin and destination nodes
to the located hubs for transferring the origin-destination flows through the
hubs such that the total hub opening and transportation costs is minimized
[MJTM19].

Inspection Planning
Problem

IPP Determining which quality characteristics of a product should be inspected at
which stage of the production process such that the total inspection cost is
minimized [KM+20a].

Job-Shop Scheduling JSP scheduling the processing of N jobs consists of a sequence of tasks that need
to be performed in a given order on specific subsets of M machines such that
the makespan or total tardiness is minimized [Nas+19].

Knapsack problem KP Placing a number of items with specific values and dimension in M capacitated
knapsacks such that the total value of the knapsacks is maximized [CGM09].

To be continued ...
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Table A.1 (continued)
COP Abv. Description

Location-Routing
Problem

LRP Locating a number of facilities in a set of potential locations, assigning cus-
tomers with predefined demand to the located facilities, and finding the routes
from located facilities to customers such that the total cost of opening facilities,
cost of vehicles and transportation cost is minimized [Zha+16a].

Maximum Satisfia-
bility Problem

MAX-
SAT

Finding an assignment of the truth values to the variables of a Boolean formula
such that the number of satisfied clauses is maximized [Mir+18].

Mixed-model As-
sembly Line Se-
quencing Problem

MASP Determining the optimal production planning of multiple products along a
single assembly line while maintaining the least possible inventories [MGS20].

Multiprocessor
Scheduling Problem

MSP Given a directed graph representing a parallel program, where the vertices
represent the tasks and the edges represent the communication cost and task
dependencies, scheduling the tasks on a network of processors under task prece-
dence constraints such that the makespan is minimized [LA16].

Nurse Rostering
Problem

NRP Assigning nurses to working shifts under a set of constraints including nurse
preferences, time restrictions, labor legislation, and hospital standards such
that the total cost of the hospital is minimized or the nurses’ preferences are
maximized [GB17].

Orienteering Prob-
lem

OP Selecting a set of nodes from available nodes with specific score and determin-
ing the shortest path between the selected nodes such that the total score of
the visited nodes is maximized [GLL18].

Pickup and Delivery
Problem

PDP Designing a set of routes to collect commodities from specific origins and
deliver them to their specific destinations using capacitated vehicles such that
the total cost is minimized [LT12].

Parallel Machine
Scheduling Problem

PMSP Scheduling the processing of N jobs on M identical parallel machines such
that the total makespan is minimized [Sil+19].

Project Scheduling
Problem

PSP Assigning limited resources (employees) to activities with predefined duration
and resource requirements under activity precedence relations such that the
lateness or the total tardiness is minimized [PSS08].

Personnel Schedul-
ing Problem

PSSP Assigning personnel to working shifts under a set of constraints (e.g., shift
time) such that the total cost is minimized [Bur+11].

Quadratic Assign-
ment Problem

QAP A special case of Assignment Problem with quadratic objective function
[PBA13].

Boolean Satisfiabil-
ity Problem

SAT Determining if the variables of a Boolean formula can be substituted by True
and False values such that the Boolean formula turns out to be TRUE (Sat-
isfiable) or not [MS08].

Single-Machine
Scheduling Problem

SMSP A special case of Flow-Shop scheduling problem where there is only a single
machine [TZ19].

Set Packing Problem SPP Determining/picking a subset of elements from a bigger set such that the total
value of picking is maximized [RPM06].

Job Sequencing
and Tool Switching
Problem

SSP Sequencing N jobs, each of which requires a predefined set of tools, on a single
flexible machine and assigning tools to a capacitated machine such that the
number of tool switches is minimized [Ahm+18].

Transmission Ex-
pansion Planning
Problem

TEPP Planning new transmission facilities as an expansion to the existing trans-
mission network to satisfy demand without load interruption under technical
constraints such that the total investment and operational cost is minimized
[SFH16].

Traveling Salesman
Problem

TSP Finding a tour in a complete weighted graph that goes through all vertices only
once and returns to the starting vertex such that the tour cost is minimized
[Kan+16].

Timetabling Prob-
lem

TTP Allocating predefined resources (teachers and rooms) to events (classes) such
that there is no conflict between any two events and a set of objectives are
satisfied [RR+21].

Vehicle Routing
Problem

VRP Finding a set of undirected edges in a graph by which the demand of customers
located in the vertices is satisfied by a set of vehicles that visit each customer
exactly once. Vehicles start and end their route at the depot such that the
total transportation cost is minimized [GR+19].

Vertex Separator
Problem

VSP Partitioning the graph into three non-empty subsets A, B, and C such that
there is no edge between A and B, and |C| is minimized subject to a bound
on max{|A|, |B|} [BEB17].

Winner Determina-
tion Problem

WDP Considering a set of bids in a combinatorial auction, assigning items to bidders
such that the auctioneerâĂŹs revenue is maximized [SJG18].

To be continued ...
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Table A.1 (continued)
COP Abv. Description

Water Distribution
System Design Prob-
lem

WDSDPDetermining the location, size, and capacity of water system components in-
cluding pipes and pumps such that the system’s reliability (ability to supply
adequate water with acceptable pressure and quality to customers) is maxi-
mized [LCA11].

Weighted Indepen-
dent Domination
Problem

WIDP Determining a pairwise non-adjacent subset D of V of a graph G = (V, E) such
that every vertex not in D is adjacent to at least one vertex in D [Wan+20b].

Workforce Schedul-
ing and Routing
Problem

WSRP Assigning workforce to the activities needed to be performed at different loca-
tions where the workforce need to travel between locations to perform the
activities such that the employees travel time or hiring cost is minimized
[LSRVMG18].

A.2 Best-known solutions for PFSP

Table A.2 – Best-known solutions (C∗
max) vs. the best Cmax found by QILS for each

instance over 30 runs for time scale t = 120 of Taillard dataset. LB and UB stand for
lower bound and upper bound, respectively.

Instance (tai#) C∗
max Best Instance (tai#) C∗

max Instance (tai#) C∗
max Best

# n m LB UB Cmax # n m LB UB Cmax # n m LB UB Cmax

001 20 5 1278 1278 1278 041 50 10 2991 2991 3023 081 100 20 6106 6202 6234
002 20 5 1359 1359 1359 042 50 10 2867 2867 2870 082 100 20 6183 6183 6206
003 20 5 1081 1081 1081 043 50 10 2839 2839 2852 083 100 20 6252 6271 6284
004 20 5 1293 1293 1293 044 50 10 3063 3063 3063 084 100 20 6254 6269 6303
005 20 5 1235 1235 1235 045 50 10 2976 2976 2977 085 100 20 6262 6314 6343
006 20 5 1195 1195 1195 046 50 10 3006 3006 3006 086 100 20 6302 6364 6379
007 20 5 1234 1234 1234 047 50 10 3093 3093 3101 087 100 20 6184 6268 6283
008 20 5 1206 1206 1206 048 50 10 3037 3037 3038 088 100 20 6315 6401 6423
009 20 5 1230 1230 1230 049 50 10 2897 2897 2902 089 100 20 6204 6275 6305
010 20 5 1108 1108 1108 050 50 10 3065 3065 3078 090 100 20 6404 6434 6464
011 20 10 1582 1582 1582 051 50 20 3771 3850 3863 091 200 10 10862 10862 10870
012 20 10 1659 1659 1659 052 50 20 3668 3704 3708 092 200 10 10480 10480 10485
013 20 10 1496 1496 1496 053 50 20 3591 3640 3642 093 200 10 10922 10922 10922
014 20 10 1377 1377 1377 054 50 20 3635 3720 3730 094 200 10 10889 10889 10889
015 20 10 1419 1419 1419 055 50 20 3553 3610 3611 095 200 10 10524 10524 10526
016 20 10 1397 1397 1397 056 50 20 3667 3681 3689 096 200 10 10326 10326 10330
017 20 10 1484 1484 1484 057 50 20 3672 3704 3711 097 200 10 10854 10854 10857
018 20 10 1538 1538 1538 058 50 20 3627 3691 3700 098 200 10 10730 10730 10733
019 20 10 1593 1593 1593 059 50 20 3645 3743 3750 099 200 10 10438 10438 10438
020 20 10 1591 1591 1591 060 50 20 3696 3756 3767 100 200 10 10675 10675 10676
021 20 20 2297 2297 2297 061 100 5 5493 5493 5493 101 200 20 11152 11195 11224
022 20 20 2099 2099 2099 062 100 5 5268 5268 5268 102 200 20 11143 11203 11279
023 20 20 2326 2326 2326 063 100 5 5171 5171 5175 103 200 20 11281 11281 11382
024 20 20 2223 2223 2223 064 100 5 5014 5014 5014 104 200 20 11275 11275 11322
025 20 20 2291 2291 2291 065 100 5 5250 5250 5250 105 200 20 11259 11259 11288
026 20 20 2226 2226 2226 066 100 5 5135 5135 5135 106 200 20 11176 11176 11224
027 20 20 2273 2273 2273 067 100 5 5246 5246 5246 107 200 20 111337 11360 11425
028 20 20 2200 2200 2200 068 100 5 5094 5094 5094 108 200 20 11301 11334 11387
029 20 20 2237 2237 2237 069 100 5 5448 5448 5448 109 200 20 11145 11192 11241
030 20 20 2178 2178 2178 070 100 5 5322 5322 5322 110 200 20 11284 11288 11332
031 50 5 2724 2724 2724 071 100 10 5770 5770 5770 111 500 20 26040 26059 26112
032 50 5 2834 2834 2834 072 100 10 5349 5349 5349 112 500 20 26500 26520 26634
033 50 5 2621 2621 2621 073 100 10 5676 5676 5676 113 500 20 26371 26371 26435
034 50 5 2751 2751 2751 074 100 10 5781 5781 5781 114 500 20 26456 26456 26520
035 50 5 2863 2863 2863 075 100 10 5467 5467 5467 115 500 20 26334 26334 26366
036 50 5 2829 2829 2829 076 100 10 5303 5303 5303 116 500 20 26469 26477 26522
037 50 5 2725 2725 2725 077 100 10 5595 5595 5596 117 500 20 26389 26389 26412
038 50 5 2683 2683 2683 078 100 10 5617 5617 5621 118 500 20 26560 26560 26619
039 50 5 2552 2552 2552 079 100 10 5871 5871 5875 119 500 20 26005 26005 26075
040 50 5 2782 2782 2782 080 100 10 5845 5845 5845 120 500 20 26457 26457 26513
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Table A.3 – Best-known solutions (C∗
max) vs. the best Cmax found by QILS for each

instance over 30 runs for time scale t = 120 of VRF-hard-small dataset. LB and UB
stand for lower bound and upper bound, respectively.
Instance (vrf#) C∗

max Best Instance (vrf#) C∗
max Best Instance (vrf#) C∗

max Best

# n m LB UB Cmax # n m LB UB Cmax # n m LB UB Cmax

001 10 5 523 695 695 081 30 5 1727 1805 1805 161 50 5 2970 3055 3055
002 10 5 556 698 698 082 30 5 1510 1575 1575 162 50 5 2784 2853 2853
003 10 5 588 728 728 083 30 5 1608 1673 1673 163 50 5 2682 2746 2746
004 10 5 565 697 697 084 30 5 1716 1781 1781 164 50 5 2773 2836 2836
005 10 5 578 713 713 085 30 5 1645 1707 1707 165 50 5 2806 2866 2866
006 10 5 617 748 748 086 30 5 1807 1875 1875 166 50 5 2782 2841 2841
007 10 5 602 728 728 087 30 5 1686 1749 1749 167 50 5 2548 2600 2600
008 10 5 568 683 683 088 30 5 1646 1706 1706 168 50 5 2631 2684 2684
009 10 5 633 761 761 089 30 5 1674 1735 1735 169 50 5 2570 2621 2621
010 10 5 554 664 664 090 30 5 1582 1637 1637 170 50 5 2781 2834 2834
011 10 10 797 1097 1097 091 30 10 1721 1944 1943 171 50 10 2746 2926 2930
012 10 10 845 1146 1146 092 30 10 1860 2098 2098 172 50 10 2841 3035 3035
013 10 10 831 1124 1124 093 30 10 1857 2077 2077 173 50 10 2836 3019 3016
014 10 10 769 1038 1038 094 30 10 1747 1945 1945 174 50 10 2838 3003 3009
015 10 10 817 1093 1093 095 30 10 1818 2023 2023 175 50 10 3070 3252 3252
016 10 10 812 1085 1085 096 30 10 1830 2043 2043 176 50 10 2973 3149 3149
017 10 10 839 1115 1115 097 30 10 1767 1967 1967 177 50 10 2722 2842 2865
018 10 10 840 1113 1113 098 30 10 1701 1896 1896 178 50 10 2932 3072 3075
019 10 10 789 1045 1045 099 30 10 1712 1908 1908 179 50 10 2858 3022 3022
020 10 10 832 1099 1099 100 30 10 1722 1915 1915 180 50 10 2906 3056 3060
021 10 15 921 1307 1307 101 30 15 1999 2381 2378 181 50 15 2988 3316 3322
022 10 15 988 1399 1399 102 30 15 1952 2318 2317 182 50 15 3037 3347 3359
023 10 15 996 1398 1398 103 30 15 1950 2304 2304 183 50 15 2998 3301 3301
024 10 15 1041 1452 1452 104 30 15 2079 2444 2444 184 50 15 3192 3521 3520
025 10 15 992 1373 1373 105 30 15 2062 2423 2421 185 50 15 3039 3334 3337
026 10 15 964 1329 1329 106 30 15 1968 2306 2306 186 50 15 3042 3346 3355
027 10 15 1049 1445 1445 107 30 15 1978 2316 2316 187 50 15 3181 3490 3493
028 10 15 1048 1443 1443 108 30 15 2019 2366 2366 188 50 15 3135 3430 3430
029 10 15 1058 1428 1428 109 30 15 1929 2259 2259 189 50 15 2928 3205 3205
030 10 15 1085 1461 1461 110 30 15 2047 2385 2385 190 50 15 3104 3399 3406
031 10 20 1191 1652 1652 111 30 20 2119 2643 2643 191 50 20 3164 3693 3686
032 10 20 1273 1759 1759 112 30 20 2284 2835 2835 192 50 20 3224 3719 3713
033 10 20 1254 1726 1726 113 30 20 2265 2783 2783 193 50 20 3284 3784 3778
034 10 20 1236 1678 1678 114 30 20 2213 2680 2680 194 50 20 3231 3709 3707
035 10 20 1259 1700 1700 115 30 20 2205 2672 2672 195 50 20 3157 3632 3629
036 10 20 1400 1889 1889 116 30 20 2245 2715 2715 196 50 20 3295 3795 3787
037 10 20 1251 1678 1678 117 30 20 2244 2712 2712 197 50 20 3219 3696 3696
038 10 20 1235 1655 1655 118 30 20 2328 2812 2812 198 50 20 3295 3783 3783
039 10 20 1280 1706 1706 119 30 20 2318 2795 2795 199 50 20 3337 3816 3809
040 10 20 1248 1663 1663 120 30 20 2329 2805 2805 200 50 20 3301 3769 3767
041 20 5 1095 1192 1192 121 40 5 2292 2396 2396 201 60 5 3276 3350 3350
042 20 5 1173 1275 1275 122 40 5 2351 2442 2442 202 60 5 2990 3054 3054
043 20 5 1224 1323 1323 123 40 5 2106 2174 2174 203 60 5 3147 3214 3214
044 20 5 1047 1127 1127 124 40 5 2082 2149 2149 204 60 5 3202 3266 3266
045 20 5 1244 1339 1339 125 40 5 2179 2247 2247 205 60 5 3139 3197 3197
046 20 5 994 1066 1066 126 40 5 2091 2154 2154 206 60 5 3058 3107 3107
047 20 5 1078 1154 1154 127 40 5 2143 2207 2207 207 60 5 3263 3315 3315
048 20 5 1030 1102 1102 128 40 5 2350 2414 2414 208 60 5 3386 3438 3438
049 20 5 1231 1317 1317 129 40 5 2247 2305 2305 209 60 5 3074 3121 3121
050 20 5 1164 1243 1243 130 40 5 2289 2348 2348 210 60 5 3608 3663 3663
051 20 10 1290 1532 1532 131 40 10 2258 2480 2480 211 60 10 3256 3435 3441
052 20 10 1292 1525 1525 132 40 10 2237 2444 2444 212 60 10 3489 3655 3664
053 20 10 1352 1592 1592 133 40 10 2244 2412 2412 213 60 10 3261 3423 3419
054 20 10 1226 1442 1442 134 40 10 2313 2472 2471 214 60 10 3305 3455 3461
055 20 10 1371 1604 1604 135 40 10 2276 2425 2425 215 60 10 3359 3505 3506
056 20 10 1348 1576 1576 136 40 10 2387 2547 2547 216 60 10 3448 3594 3594
057 20 10 1363 1591 1591 137 40 10 2344 2501 2501 217 60 10 3501 3654 3654
058 20 10 1353 1574 1574 138 40 10 2338 2491 2490 218 60 10 3402 3552 3552
059 20 10 1312 1530 1530 139 40 10 2275 2411 2411 219 60 10 3529 3685 3685
060 20 10 1279 1489 1489 140 40 10 2337 2478 2481 220 60 10 3346 3492 3492
061 20 15 1525 1936 1936 141 40 15 2624 3011 3005 221 60 15 3623 3940 3947
062 20 15 1526 1905 1905 142 40 15 2491 2821 2821 222 60 15 3582 3888 3888
063 20 15 1453 1798 1798 143 40 15 2572 2906 2904 223 60 15 3590 3880 3883
064 20 15 1466 1813 1813 144 40 15 2576 2919 2915 224 60 15 3413 3716 3718
065 20 15 1517 1875 1875 145 40 15 2615 2945 2946 225 60 15 3611 3881 3880
066 20 15 1587 1960 1960 146 40 15 2494 2805 2811 226 60 15 3598 3893 3888
067 20 15 1566 1933 1933 147 40 15 2555 2868 2863 227 60 15 3529 3809 3813
068 20 15 1477 1822 1822 148 40 15 2578 2900 2897 228 60 15 3456 3749 3746
069 20 15 1575 1940 1940 149 40 15 2407 2708 2705 229 60 15 3512 3800 3807
070 20 15 1511 1861 1861 150 40 15 2625 2945 2948 230 60 15 3610 3902 3902
071 20 20 1741 2270 2270 151 40 20 2770 3326 3322 231 60 20 3689 4163 4158
072 20 20 1682 2170 2170 152 40 20 2697 3226 3224 232 60 20 3804 4290 4281
073 20 20 1772 2277 2277 153 40 20 2713 3233 3228 233 60 20 3870 4365 4357
074 20 20 1685 2165 2165 154 40 20 2724 3233 3233 234 60 20 3731 4193 4187
075 20 20 1736 2225 2225 155 40 20 2571 3055 3052 235 60 20 3747 4196 4194
076 20 20 1790 2291 2291 156 40 20 2699 3192 3187 236 60 20 3764 4202 4200
077 20 20 1785 2282 2282 157 40 20 2749 3244 3244 237 60 20 3818 4263 4256
078 20 20 1707 2178 2178 158 40 20 2764 3266 3261 238 60 20 3758 4180 4186
079 20 20 1851 2354 2354 159 40 20 2834 3335 3332 239 60 20 3764 4221 4217
080 20 20 1732 2199 2199 160 40 20 2653 3122 3117 240 60 20 3779 4202 4187
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Table A.4 – Best-known solutions (C∗
max) vs. the best Cmax found by QILS for each

instance over 30 runs for time scale t = 120 of VRF-hard-large dataset. LB and UB
stand for lower bound and upper bound, respectively.
Instance (vrf#) C∗

max Best Instance (vrf#) C∗
max Best Instance (vrf#) C∗

max Best

# n m LB UB Cmax # n m LB UB Cmax # n m LB UB Cmax

001 100 20 5705 6198 6200 081 300 60 17876 20522 20508 161 600 40 32219 33839 33714
002 100 20 5836 6306 6299 082 300 60 17750 20399 20315 162 600 40 31978 33467 33433
003 100 20 5771 6238 6234 083 300 60 17894 20434 20350 163 600 40 32316 33866 33711
004 100 20 5783 6245 6250 084 300 60 17837 20395 20340 164 600 40 32162 33693 33572
005 100 20 5876 6296 6286 085 300 60 17791 20341 20239 165 600 40 32071 33553 33467
006 100 20 5913 6321 6307 086 300 60 17814 20388 20351 166 600 40 32290 33809 33677
007 100 20 6004 6434 6428 087 300 60 17935 20457 20440 167 600 40 32203 33686 33641
008 100 20 5694 6104 6088 088 300 60 17918 20410 20411 168 600 40 32039 33482 33353
009 100 20 5928 6354 6345 089 300 60 18000 20549 20475 169 600 40 32228 33697 33536
010 100 20 5766 6145 6148 090 300 60 17937 20472 20444 170 600 40 32235 33642 33504
011 100 40 6611 7881 7853 091 400 20 20727 21120 21068 171 600 60 33093 36198 36066
012 100 40 6738 8007 7980 092 400 20 21092 21457 21432 172 600 60 33108 36184 35940
013 100 40 6698 7935 7901 093 400 20 21133 21441 21432 173 600 60 33159 36201 36103
014 100 40 6715 7932 7920 094 400 20 20942 21247 21251 174 600 60 33225 36136 36085
015 100 40 6778 8011 7997 095 400 20 21203 21553 21552 175 600 60 33093 36153 36089
016 100 40 6816 8023 8011 096 400 20 20944 21214 21195 176 600 60 33093 36116 36061
017 100 40 6793 8006 8006 097 400 20 21331 21625 21605 177 600 60 33215 36179 36068
018 100 40 6807 7979 7956 098 400 20 21029 21277 21276 178 600 60 33206 36185 36061
019 100 40 6758 7931 7901 099 400 20 21059 21346 21313 179 600 60 33273 36195 36139
020 100 40 6774 7952 7932 100 400 20 21235 21538 21533 180 600 60 33177 36163 36078
021 100 60 7502 9395 9361 101 400 40 22002 23578 23494 181 700 20 36078 36394 36385
022 100 60 7720 9596 9567 102 400 40 21903 23456 23375 182 700 20 36032 36337 36327
023 100 60 7523 9349 9331 103 400 40 22099 23575 23498 183 700 20 36287 36568 36502
024 100 60 7596 9426 9417 104 400 40 21897 23409 23377 184 700 20 36188 36452 36413
025 100 60 7638 9465 9437 105 400 40 21843 23339 23302 185 700 20 36380 36584 36594
026 100 60 7809 9667 9637 106 400 40 22011 23444 23396 186 700 20 36376 36671 36627
027 100 60 7576 9391 9352 107 400 40 22078 23556 23488 187 700 20 36381 36624 36618
028 100 60 7697 9534 9529 108 400 40 21921 23411 23378 188 700 20 36287 36522 36504
029 100 60 7706 9527 9500 109 400 40 22109 23637 23579 189 700 20 36091 36329 36312
030 100 60 7774 9598 9568 110 400 40 22257 23720 23692 190 700 20 36282 36417 36398
031 200 20 10928 11305 11317 111 400 60 22867 25607 25518 191 700 40 37286 38964 38796
032 200 20 10898 11265 11250 112 400 60 22869 25656 25654 192 700 40 37211 38775 38624
033 200 20 10958 11327 11323 113 400 60 23079 25821 25743 193 700 40 37080 38621 38559
034 200 20 10857 11208 11186 114 400 60 23097 25837 25756 194 700 40 37232 38785 38737
035 200 20 10861 11208 11190 115 400 60 23077 25877 25771 195 700 40 37125 38671 38479
036 200 20 10981 11367 11355 116 400 60 22802 25536 25503 196 700 40 37186 38710 38464
037 200 20 11034 11380 11382 117 400 60 22868 25600 25493 197 700 40 36959 38585 38395
038 200 20 10783 11141 11105 118 400 60 23058 25800 25657 198 700 40 37508 39059 38872
039 200 20 10773 11123 11111 119 400 60 23108 25882 25807 199 700 40 37261 38814 38604
040 200 20 10965 11310 11310 120 400 60 23104 25767 25683 200 700 40 37419 38850 38748
041 200 40 11812 13132 13162 121 500 20 26071 26411 26403 201 700 60 38230 41436 41311
042 200 40 11735 13102 13082 122 500 20 26358 26681 26653 202 700 60 38173 41375 41101
043 200 40 11879 13264 13253 123 500 20 26116 26409 26378 203 700 60 38127 41317 41224
044 200 40 11862 13232 13169 124 500 20 25844 26124 26091 204 700 60 38287 41401 41288
045 200 40 11662 13043 12955 125 500 20 26505 26781 26748 205 700 60 38212 41262 41203
046 200 40 11788 13124 13120 126 500 20 26152 26443 26443 206 700 60 38305 41340 41202
047 200 40 11926 13299 13166 127 500 20 26163 26433 26413 207 700 60 37882 40876 40785
048 200 40 11864 13238 13163 128 500 20 26062 26318 26305 208 700 60 38427 41474 41387
049 200 40 11817 13166 13068 129 500 20 26199 26442 26446 209 700 60 38212 41291 41179
050 200 40 11921 13228 13195 130 500 20 25838 26072 26065 210 700 60 38368 41377 41269
051 200 60 12824 14990 14950 131 500 40 26940 28548 28476 211 800 20 41256 41558 41533
052 200 60 12862 14954 14930 132 500 40 27162 28793 28687 212 800 20 41145 41407 41371
053 200 60 12996 15200 15134 133 500 40 27064 28607 28516 213 800 20 41159 41425 41380
054 200 60 12925 15044 14967 134 500 40 27231 28828 28691 214 800 20 41157 41426 41426
055 200 60 13012 15130 15058 135 500 40 27109 28683 28604 215 800 20 41457 41710 41710
056 200 60 12952 15035 14997 136 500 40 26903 28524 28437 216 800 20 41795 42010 41970
057 200 60 12958 15040 15016 137 500 40 27162 28760 28662 217 800 20 41138 41425 41418
058 200 60 12947 14968 14962 138 500 40 27215 28698 28597 218 800 20 41241 41492 41462
059 200 60 12878 15022 14946 139 500 40 27298 28870 28750 219 800 20 41517 41796 41796
060 200 60 12892 15000 14959 140 500 40 27225 28758 28730 220 800 20 41331 41574 41568
061 300 20 15773 16149 16123 141 500 60 27846 30861 30785 221 800 40 42144 43671 43559
062 300 20 16123 16512 16510 142 500 60 27819 30828 30811 222 800 40 42197 43746 43634
063 300 20 15835 16173 16160 143 500 60 28045 31125 30958 223 800 40 42180 43749 43596
064 300 20 15860 16181 16152 144 500 60 28054 30928 30987 224 800 40 42360 43892 43705
065 300 20 15987 16342 16356 145 500 60 27936 30935 30872 225 800 40 42473 43905 43746
066 300 20 15804 16137 16103 146 500 60 28091 31027 31006 226 800 40 42258 43811 43600
067 300 20 15932 16266 16259 147 500 60 27962 30928 30929 227 800 40 42242 43766 43554
068 300 20 16093 16416 16402 148 500 60 28089 30988 30984 228 800 40 42362 43839 43660
069 300 20 16059 16376 16339 149 500 60 28098 30978 30915 229 800 40 42341 43879 43619
070 300 20 16517 16899 16850 150 500 60 28190 31050 30987 230 800 40 42335 43861 43674
071 300 40 16764 18298 18259 151 600 20 31124 31433 31389 231 800 60 43230 46470 46363
072 300 40 17015 18454 18465 152 600 20 31124 31418 31394 232 800 60 43189 46493 46441
073 300 40 16983 18457 18391 153 600 20 31186 31429 31436 233 800 60 43271 46389 46317
074 300 40 16914 18351 18305 154 600 20 31254 31547 31509 234 800 60 43274 46457 46339
075 300 40 17070 18484 18431 155 600 20 31204 31448 31414 235 800 60 43319 46401 46276
076 300 40 16978 18449 18431 156 600 20 31470 31717 31714 236 800 60 43210 46421 46302
077 300 40 17049 18419 18433 157 600 20 31254 31527 31527 237 800 60 43207 46319 46206
078 300 40 16927 18392 18341 158 600 20 31299 31564 31461 238 800 60 43358 46474 46332
079 300 40 16987 18394 18345 159 600 20 31320 31577 31528 239 800 60 43406 46538 46470
080 300 40 17007 18401 18332 160 600 20 30885 31130 31108 240 800 60 43236 46244 46295
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TPD Transition Probability Distribution. 42

TS Tabu Search. 37

TSP Traveling Salesman Problem. 28

VNS Variable Neighborhood Search. 37

WWO Water Wave Optimization. 37
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Titre : Hybridation des métaheuristiques avec l'apprentissage automatique pour l'optimisation 
combinatoire : une taxonomie et apprendre à sélectionner des opérateurs 

Mots clés : Optimisation combinatoire, méta-heuristiques, apprentissage automatique, sélection 
adaptative des opérateurs 

Résumé : Cette thèse intègre des techniques 
d'apprentissage automatique dans des méta-
heuristiques pour résoudre des problèmes 
d'optimisation combinatoire. Cette intégration guidera 
les méta-heuristiques vers la prise de meilleures 
décisions et par conséquent à rendre les méta-
heuristiques plus efficaces. Cette thèse, tout d'abord, 
fournit une revue complète mais technique de la 
littérature et propose une taxonomie unifiée sur les 
différentes manières d'intégration. Pour chaque type 
d'intégration, une analyse et une discussion 
complètes sont fournies sur les détails techniques, y 
compris les défis, les avantages, les inconvénients et 
les perspectives.  
 
Nous nous concentrons ensuite sur une intégration 
particulière et abordons le problème de la sélection 
adaptative des opérateurs dans les méta-
heuristiques utilisant des techniques d'apprentissage 
par renforcement.  

Plus précisément, nous proposons un cadre général 
qui intègre l'algorithme Q-learning dans l'algorithme 
de recherche locale itérée afin de sélectionner de 
manière adaptative les opérateurs de recherche les 
plus appropriés à chaque étape du processus de 
recherche en fonction de leur historique de 
performance.  
 
Le cadre proposé est appliqué à deux problèmes 
d'optimisation combinatoire, le problème du 
voyageur de commerce et le problème 
d'ordonnancement de type flowshop de 
permutation. Dans les deux applications, le cadre 
proposé est plus performant en termes de qualité de 
solution et de taux de convergence qu'une sélection 
aléatoire d'opérateurs. De plus, nous observons que 
le cadre proposé montre un comportement d’état de 
l’art lors de la résolution du problème 
d'ordonnancement des flux de permutation. 

 

Title: Hybridizing Metaheuristics with Machine Learning for Combinatorial Optimization: A 
Taxonomy and Learning to Select Operators 

Keywords: Combinatorial optimization, meta-heuristiques, machine learning, adaptive operator 
selection 

Abstract: This thesis integrates machine learning 
techniques into meta-heuristics for solving 
combinatorial optimization problems. This integration 
aims to guide the meta-heuristics toward making 
better decisions and consequently make meta-
heuristics more efficient and improve their 
performance in terms of solution quality and 
convergence rate. This thesis, first, provides a 
comprehensive yet technical review of the literature 
and proposes a unified taxonomy on different ways 
of the integration. For each type of integration, a 
complete analysis and discussion is provided on 
technical details, including challenges, advantages, 
disadvantages, and perspectives. 
 
From a technical aspect, we then focus on a 
particular integration and address the problem of 
adaptive operator selection in meta-heuristics using 
reinforcement learning techniques.  

More precisely, we propose a general framework 
that integrates the Q-learning algorithm, as a 
reinforcement learning algorithm, into the iterated 
local search algorithm to adaptively and dynamically 
select the most appropriate search operators at 
each step of the search process based on their 
history of performance.  

 
The proposed framework is finally applied on two 
combinatorial optimization problems, traveling 
salesman problem and permutation flowshop 
scheduling problem. In both applications, the 
framework better performance in terms of solution 
quality and convergence rate compared to a 
random selection of operators, especially for large 
size instances of the problems. Moreover, we 
observe that the proposed framework shows the 
state-of-the-art behavior when solving the 
permutation flowshop scheduling problem. 
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