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General Introduction 

General Introduction 

The use of enzymes for synthetic applications (e.g. production of pharmaceuticals and fine 

chemical, degradation of pollutants, etc.) has been a major goal for decades, owing to their 

unique characteristics.1 Enzymes are extremely selective and efficient natural catalysts 

(biocatalysts) that transform their substrate with high turn-over numbers under mild 

operating conditions (ambient temperature, atmospheric pressure and in aqueous solution).1 

These characteristics could eventually simplify catalytic operations and render them more-

cost effective and ecocompatible.1 The benefits gained from the use of enzymes do not 

however depict their current use in biocatalytic applications, which covers only a small 

percentage of the overall enzyme market. This difference derives from multiples reasons.2 

Enzymes -under their natural soluble form- cannot be easily removed from reaction mixtures, 

hence demanding expensive and time-consuming separation steps to separate the products 

from the biocatalysts. Furthermore, due to their solubility, the recycling of enzymes and in 

certain cases that of required co-factors (e.g. NAD, NADH) is not possible, thereby increasing 

the total cost of biocatalysis. The fragile nature of enzymes is another limiting factor for their 

application.2 The use of organic solvents and/or high temperatures is sometimes necessary 

for industrial processes, which however may deactivate or even totally denaturate enzymes. 

Deactivation of enzymes can also be caused by by-products formed during the catalytic 

reaction. These barriers on the practical use of enzymes can be addressed through their 

immobilization on solid supports. An immobilized enzyme can be more easily recovered from 

the reaction mixture (e.g. via filtration, centrifugation...) and reused multiple times. 

Moreover, the solid matrix can provide a protective and stabilizing environment for enzymes, 

thus enabling their use under denaturating conditions.2 

The immobilization matrix must preserve maximal enzymatic activity, i.e. maximal loading and 

minimal leaching, while not hindering the diffusion of reactants/products to and from the 

enzyme’s active site. The field of enzyme immobilization has been under investigation for 

decades,3 which allowed the development of four main types of immobilization that are 

surface adsorption, covalent binding, pore inclusion and entrapment.4–6 The two first cases 

concern the immobilization of enzymes at the external surface of materials either via weak 

reversible interactions (van der Waals, electrostatic, hydrophobic/hydrophilic…) or via the 

formation of irreversible covalent bonds. The major limitation of these two methods is the 

need to control the orientation of the enzyme’s active site that must be exposed on the 

external surface of the particles in order to remain accessible to reactants. Moreover, the 

enzyme is not protected from the external conditions and may easily be denatured. For the 

pore inclusion and the entrapment methods, the enzymes are confined into either the internal 

surface of a porous solid matrix or in the inter-particle porosity of the matrix, respectively. The 

important difference between pore inclusion and entrapment is that in the first case, the 
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enzymes are encapsulated inside the cavities of a pre-formed matrix, while in the latter case 

the immobilization takes place simultaneously with the synthesis of the support around the 

enzyme. Enzymes are generally protected against denaturing conditions by using these 

approaches, since the host matrices can create a three-dimensional stabilizing 

microenvironment for them through specific host−guest interactions and confinement 

effects. However, the diffusion of reactants to the biomolecules depends on the remaining 

porosity of the matrices and thus the mass-transfer efficiency of analytes may be strongly 

limited in some cases. The choice of the immobilization strategy strongly depends on the 

enzyme/host matrix couple and on the biocatalytic process. 

This work focused on the use of heme enzymes (containing an Fe(III)-protoporphyrin IX or 

heme cofactor) and more specifically on the mini-enzyme, microperoxidase 8 (MP8).8 While 

heme enzymes are generally divided into two classes, peroxidases and mono-oxygenases with 

two distinct catalytic functions,9 MP8 combines both activities. Via the peroxidase-like 

function, MP8 catalyzes the oxidation of substrates (phenols, sulfur compounds, synthetic 

dyes…) in the presence of H2O2, rendering them less toxic and/or more easily biodegradable.10 

Via the mono-oxygenase-like function (typically that of Cytochrome P450s), it catalyzes the 

hydroxylation of phenols and O- N- dealkylation reactions in the presence of H2O2.10 Despite 

its remarkable activity, MP8 presents several limitations in solution that prevent its extensive 

use. It can be easily and irreversibly deactivated in the presence of its co-substrate, H2O2. A 

loss of activity can also occur under acidic conditions, while its tendency to aggregate in 

aqueous solutions, at concentrations ≥ 2μΜ also decreases MP8’s catalytic activity.11–13 

Moreover, similarly to the majority of enzymes, MP8 in its soluble form cannot be recycled. 

Finally, due to its simple structure and the lack of a specific catalytic pocket, MP8 shows a poor 

selectivity towards substrates.14 The challenge of this project was thus to effectively 

immobilize MP8 into a solid support, in order to protect it under harsh conditions, allow its 

recyclability and enhance the efficiency and selectivity of its catalytic activity. To fulfill these 

objectives, the pore inclusion and the entrapment methods appeared to be the most 

appropriate as a three-dimensional confinement should allow the protection and stabilization 

of MP8 by creating a favourable microenvironment. 

The solid supports that have been mostly studied for the pore inclusion of enzymes are 

mesoporous (alumino)silica15 and clays minerals.16 While such materials have robust 

structures and/or well-established biocompatibility, they may suffer from enzyme leaching 

due to their low affinity for biological molecules, which is not always high enough to stabilize 

enzymes within their structure. Subsequently, their functionalization or association with 

organic moieties (e.g. biopolymers, cross-linking agents…) is often required to increase the 

interactions between the enzymes and the host material.7 The entrapment method requires 

synthetic conditions that will not degrade the biological activity (i.e. aqueous media, low 

temperature, no toxic by-product....) and has been mainly reported with biopolymers,17 for 

compatibility reasons, and inorganic matrices (silica, alumina).18 While the polymeric matrices 

may suffer from low stability (swelling, low mechanical properties), inorganic matrices have 
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led to relatively stable and protecting systems but the diffusion of reactants may be slow. The 

design of hybrid matrices through the association of different materials may be indispensable 

to build-up an effective support that combines organic and inorganic characteristics.7 

Moreover, the majority of these materials has a non-ordered porosity with large size 

distributions. An improved control of the porosity and the presence of large cavities are 

required to ensure a homogeneous distribution of the enzymes and promote the diffusion of 

substrates. 

Taking into account the aforementioned drawbacks of the commonly used solid supports, 

Metal-Organic Frameworks (MOFs) were introduced in this work as a promising alternative to 

enzyme immobilization. MOFs are crystalline, highly porous, hybrid materials that are 

obtained by the self-assembly of inorganic and organic building blocks, giving rise to porous 

networks. MOFs can exhibit high internal surface areas (> 6000 m2/g), with monodispersed 

and tunable micro or mesoporosity. These characteristics along with the almost unlimited 

chemical and structural possibilities have rendered MOFs attractive candidates for numerous 

applications (gas storage/separation, catalysis, drug delivery etc.).19–21 The use of MOFs as 

host matrices for enzymes has emerged recently, most notably via the cage inclusion and the 

entrapment approaches.22–24 The first reports were promising, showing minimal leaching and 

preservation of the enzymatic activity in non-natural environments.25 These results were 

attributed to the hybrid nature of MOFs that stabilized the enzymes through specific 

interactions and to the protective microenvironment provided by the MOF framework.22–24 

Based on these first studies, the use of MOFs for the immobilization of MP8 (and other 

enzymes) was targeted as a possible strategy to overcome its limitations (stability, selectivity 

etc.). 

The manuscript is divided into four main chapters: 

The first chapter is a bibliographic survey concerning enzyme immobilization for biocatalytic 

applications, with a special focus on MOF materials. The interest of enzymes in biocatalysis is 

briefly presented. It then focuses on microperoxidase 8, its structural characteristics and 

catalytic properties, along with its limitations in solution. A detailed analysis of the different 

immobilization techniques, of the most commonly used solid matrices and of the 

characteristics of such materials is presented. Finally, this chapter deals with Metal-Organic 

Frameworks (structural properties, synthesis and main applications) and their use as host 

matrices for the immobilization of enzymes. It is presented in the format of a mini-review that 

was published in 2017, and then some recent works are highlighted. 

The second chapter is focused on the use of mesoporous MOFs for the inclusion of the mini-

enzyme MP8. Among the synthetized MOF structures, only the ultra-stable MIL-101(Cr) was 

finally selected for the cage inclusion of MP8. This immobilization of MP8 in MIL-101(Cr) and 

the study of its catalytic properties are presented in a format of an article, recently published. 

The third chapter is devoted to the functionalization of MIL-101(Cr) and the influence of this 

functionalization on the encapsulation and the catalytic activity of MP8. The first part covers 
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the ligand functionalization of MIL-101(Cr) by two different groups (-NH2 and -SO3H). The 

functionalized MOFs were used for the inclusion of MP8. The impact of the functional groups 

on the enzyme loading and on its catalytic activity towards the sulfoxidation of thioanisole 

derivatives was evaluated. This work is presented in a format of an article that will be 

submitted in a near future. The second part of this chapter deals with the functionalization of 

the metal cluster of MIL-101(Cr) with Fe(III), in order to obtain a stable structure with a 

catalytic activity (Lewis acid catalysis). The attempts to obtain the mixed-metal MIL-101(Cr/Fe) 

will be discussed, along with the chemical stability study of this MOF. 

The last chapter of the manuscript focuses on the entrapment of enzymes during the in-situ 

synthesis of the MOF material. The first part will present the efforts made to obtain MIL-

53(Al)-FA under conditions that are compatible with the presence of enzymes (water as a 

solvent, room temperature). The synthetic conditions were then transferred for the 

immobilization a model protein (BSA). The extensive study of the structural characteristics of 

the bio-hybrid material will be discussed. The second part will focus on an alternative 

approach for the immobilization of enzymes by shaping hybrid MOF/alginate beads. Finally, 

some very preliminary results on the encapsulation of the enzyme Horseradish peroxidase and 

its catalytic activity will be presented, along with a preliminary study on the use of MIL-100(Fe) 

for the entrapment of BSA. 

Finally, the conclusions and perspectives of the project are presented, along with the annexes 

giving supplementary information on the work. 
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Introduction 

The aim of this work was to investigate the possible use of Metal-Organic Frameworks as 

enzymatic immobilization matrices. This chapter will thus first cover the interest of enzymes 

in catalytic processes and highlight the importance of immobilizing them. In a first part, the 

mini enzyme chosen for immobilization, microperoxidase-8 (MP8) will be presented. The 

catalytic performances of MP8 along with its limitation in solution will be analyzed to show 

the reasons why we selected this specific enzyme for this work. The second part of the chapter 

will deal with the different immobilization techniques that have been reported, using a large 

variety of solid matrices, and will depict the benefits and limitations of such techniques. The 

impact of immobilization on the structural conformation of enzymes and their catalytic 

activities will be discussed. The key parameters that influence the catalytic activities (either in 

a positive or in a negative way) will be covered. In a third part, typical examples of solid 

supports used for enzyme immobilization along with their characteristics will be presented. 

Finally, the last section will be devoted to Metal-Organic frameworks. Their structural 

properties and synthesis will be detailed as well as their main applications. Some examples of 

their use for the purposes of immobilization will be provided, along with perspectives for their 

future use. 
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A. About enzymes 

This section will present enzymes and the benefits gained from their use in bio-catalysis. Some 

examples of enzymatic processes, used in industry will be provided. Then, the section will 

focus on heme enzymes and in particular on microperoxidase 8 (MP8), a mini enzyme that 

combines two catalytic functions (peroxidase- and Cytochrome P450-like activities). The 

characteristics of MP8 as well as its limitations will be presented. 

Biocatalytic applications exhibit many advantages as enzymes are often selective with a high 

turn-over numbers. They derive from natural sources and require mild operational conditions 

(ambient temperature, atmospheric pressure and aqueous solution) that simplify catalytic 

operations and lower their cost. The benefits gained with the use of enzymes, coupled with 

the advances in biotechnology (tailored-made enzymes, synthesis and purification on a large 

scale) enabled their use for industrial applications, at a lower cost than before. However, in 

some cases the need to include co-factors (e.g. NAD, NADH) in bio-catalytic processes 

increases the total cost. The word market of industrial enzymes reached around $4.5-5 billion 

in 2015, with hydrolases (e.g. proteases, amylases, cellulases etc.) being the most commonly 

used enzymes.1 Some selected examples of commercially used enzymes are presented in 

Table 1-1.2,3 
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Table 1-1: Some enzymes used in industrial applications. Adapted from3 

Industry Enzyme class Application 

 Protease Protein stain removal 

Detergent Amylase Starch stain removal 

 Lipase Lipid stain removal 

 Cellulase Cleaning, color clarification 

 Glucose Isomerase Glucose to fructose conversion 

Starch and fuel Xylanase Viscosity reduction (fuel/starch) 

 Cyclodextrin-glycosyltranderase Cyclodextrin production 

 Amylase Saccharification 

 Protease Milk clotting, flavor 

Food Lipase Cheese flavor 

 Lactase Lactose removal (milk) 

 Pectin methyl esterase Firming fruit-based products 

 Amylase Bread softness and volume 

Baking Glucose oxidase Dough strengthening 

 Phospholipase Dough stability and conditioning 

 Protease Biscuits, cookies 

 Cellulase Cotton softening 

Textile Amylase De-sizing 

 Laccase Bleaching 

 Peroxidase Excess dye removal 

 Protease Biofilm removal 

Pulp and paper Xylase Bleach boosting 

 Cellulase De-inking 

 Amylase De-inking, drainage improvement 

 Lipase Chiral alcohols and amides 

Organic synthesis Acylase Semisynthetic penicillin 

 Nitrilae Enandiopure carboxylic acids 

 Amyloglucosidase Antimicrobial 

Personal care Glucose oxidase Bleaching, antimicrobial 

 Peroxidase Antimicrobial 

 

Enzymes for biocatalytic applications represent only a small amount of the overall enzyme 

market, which valued around $ 230 million, in 2015 (Figure 1-1).1 The soluble forms of 

enzymes used in most applications do not allow their removal from the reaction mixtures and 

require time-consuming and expensive separation steps to isolate the pure products (e.g in 

the production of fine chemicals). Moreover, soluble forms do not allow a repetitive use, 

which increases the overall cost of the procedure. While the progress in enzyme engineering 

can allow the design of robust enzymes that will not be degraded in non-standard conditions 

(organic solvents, high temperatures etc.), the issue of their recovery still remains.4 This 

drawback can be effectively addressed by the immobilization of enzymes in solid supports. 

The immobilization provides an easier handling of enzymes, when compared to their soluble 

forms (shaping of the biocatalyst). Moreover, it enables their separation from the products, 

thus eliminating enzyme contamination, and their recycling and reuse, resulting in a more 
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cost-effective process. Finally, the solid support used for the immobilization may provide 

stabilization and protection of the enzymes, under non-natural environments (high 

temperatures, organic solvents, denaturating factors, extreme pH). 

 

Figure 1-1: Global enzyme market by sector. Adapted from1 

The current amount of immobilized enzymes used in real industrial applications constitutes a 

very small part of the total enzyme market.1 On the contrary, the research devoted to enzyme 

immobilization (immobilization methods, development of new supports) is constantly 

increasing over the years. This difference between research and application is related to the 

specific requirements of industrial processes. As the immobilization procedure adds extra 

costs, the target is to develop new applications or offer other benefits compared to the soluble 

enzyme form that would compensate the added cost of immobilization.1 Table 1-2 shows 

some industrials processes in which immobilized enzymes are used. 

Table 1-2: Some industrial applications using immobilized enzymes. Adapted from1 

Enzyme Immobilization process Application 

Glucose isomerase 

Cross-linked (cell)/ 

immobilized/covalently 

bonded 

High fructose corn syrup from corn syrup 

Nitrile hydratase Cross-linked (cell) Acrylamide from acrylonitrile 

Lipase Immobilized Trans-esterification of food oils 

Lactase Immobilized Lactose hydrolysis, galacto-oligosaccharides synthesis 

Lipase Immobilized Biodiesel from triglycerides 

Penicillin G acylase Covalently bonded Antibiotic modifications 

Aspartase 
Cross-linked (cell)/ 

immobilized 
L-aspartic acid from fumaric acid 

Thermolysin Immobilized Aspartame synthesis 

Lipase 
Immobilized/covalently 

bonded 
Chiral resolution of alcohols and amines 

Immobilized = surface adsorption or pore inclusion or entrapment 
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In the following part of this section, a description of heme enzymes will be given and more 

specifically of microperoxidase 8 (MP8), along with its catalytic activities and applications. 

Heme enzymes 

Metalloporphyrins are broadly distributed in nature and among them, iron(III) protoporphyrin 

IX or heme (Figure 1-2) is the most common one. The main functions of heme enzymes in 

living cells are electron and oxygen transport and they thus constitute a subclass of oxido-

reductases. This section will only focus on oxidation reactions, which were used for the 

purposes of this work. Two classes of heme enzymes with an oxidative activity will be 

presented, peroxidases that use peroxides (typically H2O2) to oxidize substrates (for example 

horseradish peroxidase, HRP) and mono-oxygenases that use O2 to oxygenate substrates (for 

example Cytochrome P450s).5 

This work focused on the use of a mini-enzyme, microperoxidase 8 (MP8) as it is an effective 

biocatalyst, combining both types of activities (peroxidase-like and Cytochrome P450-like). 

The following section will describe the structural characteristics of MP8 and its catalytic 

functions. 

 

Figure 1-2: Molecular structure of iron protoporphyrin IX (heme). 

Microperoxidase 8 

Microperoxidases (MPs) are heme-containing peptides obtained by the proteolytic digestion 

of Cytochrome c (Cyt c). Seven different MPs have been isolated and consist of an iron 

protoporphyrin IX linked to a peptide, comprising a variable number of amino acids, that 

derives from Cytochrome c; MP5 (residues 13-14/17-18) MP6 (residues 14-19), MP7 (residues 

14-20), MP8 (residues 14-21), MP9 (residues 14-22), MP10 (residues 13-22) and MP11 

(residues 11-21).6 This section will be exclusively focused on MP8. 

1. MP8 structure 

Until today, no crystal structure of MP8 has been reported. The structural description of MP8 

was provided by various spectroscopic studies (mass, NMR, Raman) and dynamic simulations. 
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MP8, along with MP11, are the most studied peroxidase systems, as their small size facilitates 

mechanistic studies, allowing the easier characterization of intermediate species in solution.6 

It has been shown that the polypeptide chain retains a similar conformation to that of the 

amino acid residues of the parent Cytochrome c protein. The chain is covalently linked to the 

porphyrin moiety via two thioether bonds between Cys14 and Cys17 and the vinyl 

substituents of two pyrrole rings (Figure 1-3).7 The peptide chain is shielding the proximal face 

of the porphyrin, whereas the distal face is completely exposed to the solvent. At neutral pH, 

a nitrogen atom of the imidazole side chain of His18 is coordinated to the iron(III) on the 

proximal face of the heme whereas on the distal face, the sixth axial position of the iron(III) is 

occupied by a water molecule. The loosely bound water molecule can be easily replaced by a 

variety of ligands (e.g. imidazole, cyanide, thioethers and primary amines). This ability of MP8 

to bind different ligands has been used as a powerful tool to assess the accessibility of the 

Fe(III) center in MP8 complexes with different species (e.g. antibodies), as the coordination 

results in different absorbing species that can be monitored by UV-vis spectroscopy.8 The 

bound H2O molecule can be replaced by an oxygen donor (e.g. H2O2), which leads to the 

formation of highly oxidized intermediates (Compound I and II)5 and to peroxidase-like and 

Cytochrome P450-like catalytic reactions.9 

 

Figure 1-3: Molecular structure of microperoxidase 8. The amino acid residues numbering derives from the parent 
Cytochrome c from horse heart. Adapted from9 

The coordination of His18 is crucial for the catalytic function of MP8 and is pH dependent, as 

seen in Figure 1-4. At low pH, the imidazole of His18 is protonated, which results in a loss of 

activity. The coordination to the Fe(III) occurs at pH= 4.4. In the same pH range the 

deprotonation of the heme propionates also occurs.6,10  
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Figure 1-4: Dependence of His18 coordination as a function of pH in MP8 molecule. Adapted from10 

2. Peroxidase cycle 

The catalytic mechanism of peroxidase-like reactions of MP8 is similar to that of common 

peroxidase enzymes. The first step of the catalytic cycle is the formation of Compound I. In 

the case of heme peroxidases such as Horseradish peroxidase (HRP) and Cytochrome c 

peroxidase (CCP), this mechanism is facilitated by a “push-pull” effect, arising from the 

proximal and distal amino acid residues surrounding the heme.5,11,12 While many studies have 

investigated the nature of intermediates in the catalytic cycle of MP8 with H2O2, 13–15 the lack 

of a known crystal structure of MP8 hinders the exact determination of the formed 

intermediates. Nonetheless, most reports suggest a similar mechanism to that of common 

peroxidases.13 Figure 1-5 shows the mechanism of Compound I formation in presence of H2O2, 

for CCP that has been extensively studies thanks to the determination of its crystal structure. 

Moreover, this mechanism highlights the importance of the proximal and distal amino acids 

in peroxidases. CCP (as MP8 and most peroxidases) has a proximal Histidine (His) ligand 

coordinated through the N atom of the imidazole ring to the Fe(III) center. The aspartate 

residue (Asp) on the proximal side forms a hydrogen bond with the proximal His, which 

increases the electron density on the imidazole ring and thereby facilitates the heterolytic 

cleavage of the O–O bond (push effect).5,16 Meanwhile, the His of the distal pocket acts as a 

base, withdrawing the proton linked to O1 atom of H2O2. The formed distal histidinium can 

then transfer its proton to O2 atom of the coordinated hydroperoxide ion, to facilitate the 

cleavage (pull effect) of the O-O bond that leads to the formation of the FeIV=O CCP+. 

(Compound I). While CCP forms a Trp radical in Compound I, other peroxidases like HRP and 

MP8 form a porphyrin π cation radical.5 

As already seen from its structure (Figure 1-3), MP8 has no catalytic pocket, with amino acids 

assisting the activation of H2O2 except the coordinated His18, thus its catalytic efficiency is 

relatively weaker compared to classic peroxidases. Moreover, the lack of catalytic pocket 

minimizes the selectivity of MP8.17 
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Figure 1-5: Heterolytic cleavage of H2O2, assisted by the distal and proximal aminoacids of Cytochrome c 
peroxidase and formation of Compound I (Fe atoms in orange, N atoms in blue, O atoms in red, H atoms in white 
and carbon atoms in grey expect carbon atoms of protoporphyrin IX, which are shown in green).Adapted from5 

After the formation of Compound I, the next step of the peroxidase-like cycle of MP8 concerns 

the oxidation of a substrate molecule (SH). A first substrate molecule (SH) transfers one 

electron to Compound I that is reduced into the FeIV oxo species (Compound II), while the 

substrate is oxidized (S·). (Figure 1-6). Finally, one-electron oxidation of a second substrate 

molecule leads to the reduction of FeIV (Compound II) into FeIII (ground state). 

 

Figure 1-6: Catalytic cycle of MP8 and heme peroxidases (Fe atoms in orange, N atoms in blue, O atoms in red and 
carbon atoms in grey expect carbon atoms of protoporphyrin IX, which are shown in green). Adapted from5 

Peroxidase-like reactions 

The main examples of this type of activity were reported with typical peroxidase substrates 

like 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2-methoxyphenol.18,19 

MP8 was also shown to catalyze the nitration of phenolic compounds of biological interest in 

the presence of H2O2 and nitrite.20 The S-oxidation of sulfides to sulfoxides by MP8 has also 

been reported, which however resulted in racemic mixtures, due to the lack of catalytic 

pocket. The mechanism was found to be a two-step oxygen transfer, involving a substrate 
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derived radical cation intermediate.21 Moreover, MP8 (like all peroxidases) is known to 

enzymatically transform industrial pollutants in less toxic and more easily biodegradable 

products, such as phenols/halogenated phenols,22 sulfur compounds21 and synthetic dyes.23,24 

3. Cytochrome P450 cycle 

MP8 has a double catalytic function and beyond peroxidase-like reactions, it can also catalyze 

cytochrome P450-like reactions, leading to the formation of monooxyganated products.5 

However, instead of O2 (original oxygen source of Cyt P450)25 MP8 uses H2O2. The first steps 

of the Cyt P450-like catalytic cycle of MP8 are identical to the peroxidase-like mechanism, 

described above.26 The distal water molecule bound to the sixth axial position of the Fe(III) is 

easily exchanged with H2O2, leading to the formation of oxidized intermediate Compound I.9 

The reaction proceeds with Compound I abstracting a hydrogen atom from the substrate (SH) 

molecule, which forms Compound II and a carbon radical (S·).26,27 The so-called oxygen 

rebound of Compound II to the one-electron oxidized substrate molecule (S·) results in the 

formation of a monooxyganated product (SOH), while MP8 returns to its ground state (Figure 

1-7).26,27 It is important to note that monooxyganated products can also result through the 

peroxidase-like mechanism of MP8. In that case, two substrate molecules are oxidized (S·) by 

Compounds I & II (see Figure 1-6 above), and the incorporation of the oxygen to the oxidized 

substrates is via molecular oxygen or water molecules and not via H2O2.26–28 The important 

difference between these two mechanisms is that with the former only monooxyganated 

products are formed, while with the latter a mixture with dimerized and polymerized products 

also occur through radical recombination of the oxidized substrates (S·).26–28 

 

Figure 1-7: Oxygen rebound mechanism of aliphatic hydroxylation catalyzed by MP8. (Fe atoms in orange, N atoms 
in blue, O atoms in red and carbon atoms in grey expect carbon atoms of protoporphyrin IX, which are shown in 
green). Adapted from25 

Cytochrome P450-like reactions 

MP8 was shown to catalyze the para-hydroxylation of aniline and phenol derivatives in the 

presence of H2O2. The mechanism of the reaction was proven to be fully P450-like, through 
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an one-electron oxidation of the substrate by Compound I to give Compound II and a substrate 

radical that gave rise to the 4-aminophenol.26 MP8 can also catalyze O- and N-dealkylation 

reactions.27 The mechanism can be either peroxidase-like or Cytochrome P450-like. In the 

peroxidase-like mechanism, many polymeric products were identified and the mechanism was 

based on radical intermediates. However, when the peroxidase-like mechanism was blocked, 

the formation of polymeric products was strongly prevented, whereas the dealkylation 

reactions were not affected.27 Similar results were also observed during the aromatic 

monooxygenation of hydrocarbons (e.g. benzene, naphthalene and anthracene).28 

4. Challenges in the use of MP8 

Despite the plethora of chemical reactions that MP8 catalyzes, its use in many applications is 

limited due to its apparent instability in solution. Three main parameters cause the loss of 

activity of MP8. First, MP8 (like all peroxidases) is deactivated in the presence of its natural 

substrate H2O2. This auto-oxidation is severely destructive for the heme group (heme 

bleaching) and irreversible. Despite structural variations between different peroxidases, a 

common deactivation mechanism has been proposed.16 As seen in Figure 1-8, in the absence 

of substrate or in the presence of high concentrations of H2O2, H2O2 reacts with Compound II 

and generates superoxide radicals that convert Compound II into a highly reactive peroxy-

iron(III) porphyrin free radical (Compound III), which is not part of the peroxidase cycle.29–31 

After the formation of Compound III, different decomposition pathways can occur. As the 

hydroperoxyl radicals are close to the heme group, one possibility is the oxidation of the 

porphyrin ring. This oxidation results in the cleavage of the carbon bonds that connect the 

pyrrole rings, leading to the destruction of the porphyrin ring and the formation of an open-

chain tetra-pyrrole structure (biliverdin). This pathway can be confirmed by the detection of 

free Fe(III) in solution (heme bleaching). The destruction of the porphyrin ring has been 

observed in many peroxidases (hemoglobin, myoglobin, HRP, MP11, MP8 etc.)32–34 The 

addition of substrate in excess can in some cases eliminate the deactivation of peroxidases, 

as the substrate would compete with H2O2 for binding in MP8.29,35 

 

Figure 1-8: Schematic illustration of the deactivation pathway of peroxidases in excess of H2O2.29 The CO groups 
in the deactivated molecule are shown perpendicular to the heme for reasons of clarity of the schematic 
illustration. In reality, they are on the same plane with the heme. 

Secondly, the catalytic function of MP8 depends strongly on the coordination of His18 to the 

Fe(III) (push effect) and this coordination depends on the pH conditions. Therefore, under 

acidic conditions, in which His18 is protonated, the catalytic function of MP8 is almost 
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negligible, limiting its use under neutral or alkaline conditions. Finally, the use of MP8 is also 

hampered by its tendency to aggregate in aqueous alkaline solutions, even at low 

concentrations (~2 μΜ). Two main mechanisms are involved in the aggregation: (i) a 

concentration-dependent intermolecular coordination, where the N-terminal amino group of 

Cys14 is coordinated to the sixth axial position of Fe(III) of another MP8 molecule, thus 

preventing the coordination of substrates,6 (ii) π-stacking between the more exposed distal 

faces of two or more MP8 molecules.36 The intermolecular coordination can be limited by the 

acetylation of the amino groups of MP8. Finally, another important disadvantage of MP8 is its 

relatively low selectivity, due to the lack of a specific catalytic pocket. 

B. About immobilization 

Types of Immobilization 

The immobilization of enzymes is not a new concept; significant efforts have been devoted to 

the design of effective solid supports for enzymes since at least the second half of last 

century.37 The different types of immobilization used so far can be divided into five general 

categories (Figure 1-9):2,38,39 

1. Surface Adsorption 

The surface adsorption of enzymes on a solid support is achieved via van der Waals, 

electrostatic, hydrophobic interactions and/or hydrogen bonding. The supports used for this 

technique can be either porous or non-porous, inorganic, organic or carbon 2D or 3D 

materials. Some typical examples of such supports are oxides (alumina, silica), activated 

carbons, clays and zeolites. Key parameters for this immobilization are parameters that will 

drive the interactions between the enzyme and the substrate such as the pH of the mixture, 

the ionic strength and the relative concentrations of the enzymes and of the support. It is a 

mild and facile procedure, without constrains regarding the size of the enzymes but requires 

thorough optimization in order to prevent desorption (leaching) of the enzyme from the 

supports, as it is only immobilized by weak interactions. Often the cross-linking of the 

immobilized enzymes with glutaraldehyde is employed to minimize leaching. The orientation 

of the enzyme’s active center must also be controlled to remain accessible to substrates. 

Moreover, the operating conditions need to be carefully tuned, considering that the support 

will offer minimal protection to the enzymes.2,38,39 

2. Covalent Binding 

In order to enhance the interactions of the enzyme molecules and the solid supports, covalent 

binding can be applied, that results to the irreversible binding of the enzyme molecules at the 

surface of the supports. The attachment of enzymes can occur directly on reactive groups 

present in the support (hydroxyl, amino, carboxyl groups) or by functionalizing the support 

with various spacer arms containing such reactive groups. The strong covalent bonds can 

prevent the leaching of the enzymes from the support and in some cases, provide stabilization 
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of the enzymes under harsh conditions (temperature, organic solvents etc.). However, the 

reduced mobility of the enzymes can also lead to severe conformational changes and decrease 

the catalytic activity or even completely denaturate the immobilized enzymes. Moreover, 

similar to the surface adsorption the exposed enzymes are not protected by the solid matrix 

and can be easily deactivated (e.g. inhibitors, proteolytic enzymes etc.), while the control of 

the orientation of the enzyme’s active center is also required.2,38,39 

3. Pore Inclusion 

An alternative to the surface exposed enzymes is the inclusion of enzymes inside the cavities 

of porous matrices, via physical adsorption. An organic, inorganic or hybrid material with a 

three dimensional arrangement of its structure is generally used for this technique (e.g. 

mesoporous silica, porous carbons, layered double hydroxides, etc.). The main advantage of 

the pore inclusion is that the immobilized enzymes are confined inside the pores and can be 

possibly protected under harsh operational conditions. A minimal leaching can be also 

expected if the relative size of the pores and the enzyme match. On the other hand, some 

limitations of the procedure are the constraints regarding the size of enzymes and the mass 

transfer efficiency of reactants.2,38,39 

4. Entrapment 

In this category, the immobilization of enzymes takes place simultaneously with the synthesis 

of the solid support, yielding the entrapment of enzymes inside the support. Since the 

synthesis of the matrices is taking place in the presence of the enzyme molecules, the choice 

of the materials should be done carefully, taking into consideration that the synthetic 

conditions must be compatible with the enzyme’s stability (hence, aqueous solutions and 

ambient temperatures). Typical materials used for entrapment are biopolymers (e.g. alginate, 

chitosan) and sol-gel silica. The facility (one-step procedure) and the mildness of the synthetic 

conditions render it a cost-effective and sustainable immobilization process. Similarly to the 

cage inclusion, the 3D confinement of enzymes assists in their protection, due to a favored 

local microenvironment and provides mechanical constrains for enzyme unfolding. At the 

same time, the relative low chemical and mechanical stability of certain supports (e.g. swelling 

of biopolymers) can result in severe leaching of the immobilized species. The slower diffusion 

of reactants through the support can be another drawback that impacts the catalytic activity 

of the entrapped enzymes.2,38,39 Alternatively, entrapment of enzymes can also be achieved 

via a coprecipitation method by mixing enzymes molecules and preformed particles in 

solution (e.g. metal oxides, metallic particles…). This process results in the entrapment of 

enzymes inside the interparticle spaces, eliminating leaching issues that are often present in 

the surface adsorption.40 While, this approach may result to efficient bio-hybrid materials, 

there is no control over the formed microstructure and the porosity of the material and may 

lead to important diffusion issues. 

The combination of several immobilization strategies (e.g. surface adsorption and cross-

linking) can be used to combine their advantages. 
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Figure 1-9: Different strategies employed in the immobilization of enzymes. 

Different immobilization methods and solid supports are still being developed and the number 

of publications concerning immobilized enzymes is increasing every year.41 However, it is not 

always clear whether the advantages gained by the immobilization result in a more effective 

and sustainable biocatalyst with respect to its soluble form. On one hand, immobilization 

provides all the benefits of heterogeneous catalysts (reuse over multiple cycles, separation of 

biocatalyst from product stream, enhanced stability of biocatalysts, co-immobilization with 

other enzymes etc.). On the other hand, the design of a biocatalyst with high performances 

requires a careful tuning of the microstructural interfacial properties of the material. 

Parameters influencing the activity of immobilized enzymes 

The following section will analyze the parameters influencing the catalytic efficiency of 

immobilized enzymes, and how they can be tuned to result biocatalysts with enhanced 

activity. As the number of reports concerning enzyme immobilization is vast, a few examples 

were selected. 

1. Conformational and dynamic changes of immobilized enzymes 

The conformational changes of immobilized enzymes is one of the main reasons for their 

activity loss.1,4 Alteration of their native conformation mostly occurs due to interactions 

between the immobilized enzyme and the support and strongly depends on the nature of both 

components. In general, rigid enzymes (e.g. HRP) do not undergo as much conformation 

changes as flexible enzymes (e.g. Candida Antarctica lipase), which are more susceptible to 

interactions with the surface of the matrix.42 

Enzyme-support interactions 

While multiple covalent binding is more likely to cause conformational changes, weaker 

interactions (polar, hydrophobic/hydrophilic interactions) can also be responsible for several 

conformational changes, depending on the amino acid composition of the enzyme. Generally, 

in the quaternary structure of enzymes, hydrophobic amino acids (like phenylalanine, tyrosine 
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etc.) tend to be orientated towards the core of the protein, whereas acidic and basic amino 

acids (capable of forming hydrogen bonds) are mainly located at the surface, in order to 

maximize interactions with the native hydrophilic environments.4 

 Polar interactions with the support 

Conformational changes can result from the variation of the enzyme’s charge state in the bulk 

solvent and at the surface of the support. It is well established that the local pH and ionic 

strength of the solution near the surface and/or present in the pores of a solid support differ 

from the bulk solution away from the solid.43 Consequently, the local pH and ionic strength 

might not be optimal for the immobilized enzymes, causing alteration in the protonated state 

of amino acids and the enzyme’s hydration shell and thus resulting into severe conformational 

changes. Moreover, the charged amino acids at the surface of the enzymes can interact 

electrostatically with charged groups present in the support. The attraction or repulsion can 

lead to distortion of the enzyme or influence its orientation to the support in a way that its 

active site is oriented towards the surface, becoming inaccessible to reactants. For example, 

Hamlin et al., demonstrated that β-galactosidase showed reduced activity when immobilized 

onto an anionic polyelectrolyte surface, due to the conformational changes, which was not 

the case when a cationic support was used.44 A different study showed that the charge density 

of the matrix could also affect the activity of immobilized enzymes.45 More precisely, α-

chymotrypsin was immobilized inside the mesopores of silica SBA-15 and aluminum doped 

SBA-15 (SBA = Santa Barbara Amorphous). The presence of Brønsted acid sites in Al-SBA-15 

resulted in the protonation of the enzyme’s carboxyl groups and to hydrogen bonding of the 

N-H groups of the enzyme with the negative charges of the support. The modified ionization 

state of the enzyme and the strong interactions with the support, led to a decreased enzymatic 

activity, compared to the pure SBA-15.45 By carefully monitoring the charges of the solid 

surface (i.e. with ζ-potential), the micro-environmental pH (of the surface and or the pores) 

can be tailored depending on the nature of the selected enzymes.4,43 

 Hydrophobic/hydrophilic interactions 

Even though the surface of enzymes is mostly hydrophilic, some hydrophobic residues can 

also be exposed at their surface. Those hydrophobic amino acids can interact with 

hydrophobic surfaces, changing their structure. This was, for example, demonstrated in the 

case of trypsin immobilization on silica (hydrophilic) and polystyrene (hydrophobic) surfaces.46 

Trypsin showed stronger affinity for the hydrophobic surface, but almost no activity was 

detected after immobilization due to the structural changes in the secondary and tertiary 

structures of the enzyme. Moreover, hydrophobic supports have been shown to reduce 

enzymatic activity as they cause the unfolding of the hydrophobic core toward the surface in 

order to minimize the energy of the system.4 It should also be noted however that certain 

enzymes such as lipases have demonstrated enhanced activities after immobilization on 

hydrophobic supports.47 
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Dynamics of immobilized enzymes 

Another important factor that can affect the activity of enzymes is their decreased mobility 

after immobilization. Some enzymes like lipases require fine movements in order to perform 

their catalytic function.4 In the case of surface bound enzymes, a way to solve the decrease in 

mobility is the attachment of the enzyme via a spacer arm to the surface of the support, 

allowing a higher dynamic motion for interactions with the substrates.48 Nevertheless, in some 

cases the loss of flexibility can have positive effects on the catalytic activity. The immobilized 

enzymes can be stabilized in a way that no conformational changes can occur under harsh 

operational conditions. On the contrary, enzymes in solution are expected to lose their activity 

due to severe conformational changes (Figure 1-10).49 This is typically observed when enzymes 

are covalently attached to rigid supports.50 A similar rigidity occurs for enzymes confined 

inside rigid, porous supports (via entrapment or cage inclusion) that would hinder their 

unfolding, resulting to more thermostable and tolerant to denaturants enzymes.51 

Enzyme Loading 

The amount of immobilized enzymes can influence the overall activity since it affects the 

conformation of enzymes and the diffusion of substrates. Very low enzyme loadings can result 

to reduced enzymatic activities, due to the maximized contact between enzyme molecules 

and the surface of the support that causes conformational changes. Similarly, very high 

enzyme loadings can also lead to reduced activities due to mass-transfer limitations that arise 

from the formation of multilayers or aggregates of enzymes.42 

 

Figure 1-10: Rigidification of immobilized enzyme eliminates conformational changes under harsh operation 
conditions. 

2. Diffusional barriers 

An important parameter that can influence the activity of immobilized enzymes is the mass 

transport limitations and concerns both the diffusion of reactants into the active center of 

enzymes and the diffusion of the products from the solid support. In the surface 

immobilization, diffusion limitations arise mostly from the orientation of the enzymes’ active 
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site (if the active center is orientated towards the support surface) and/or the enzyme protein 

loading (e.g. neighboring enzyme molecules blocking the access to the active site).52 In the 

pore inclusion immobilization, the morphology of the pores is in very close relation with 

diffusion limitations. Systems with one-dimensional porosity (1D channels) are more likely to 

show reduced diffusion of reactants since the enzymes immobilized at the center of porous 

channels are more difficult to reach, resulting in a reduced activity. An interconnected porosity 

would limit diffusion issues, if the reactants can easily pass from one meso-channel to the 

other. Ideally, 3D interconnected porous systems that consist of meso-cages not fully 

occupied by enzymes are prone to isolate the enzymes from each other, while allowing the 

diffusion of analytes from all directions. In certain cases, the diffusional issues can however 

result in enhanced catalytic activities.50 For instance, when high concentrations of substrates 

result in the inhibition of enzymes, the slower diffusion can give improved activities. For 

example, in the case of immobilized peroxidases a limited diffusion of the co-substrate, H2O2 

can protect them from deactivation (heme destruction or enzyme oxidation).50 

3. Diffusion of water 

The chemical nature of the solid support as well as the diffusion phenomena can play a crucial 

role in enzymatic reactions, especially in those performed in organic solvents. The enzymatic 

activity depends strongly on the distribution of free water molecules around the enzymes, as 

water molecules contribute to their quaternary structure. The large majority of enzymes 

requires water in order to function and in dehydrated environments they lose most of their 

activity.53 The use of highly porous and hydrophilic supports can be applied to ensure high 

water circulation around the immobilized enzymes. In that way, even when hydrophobic 

media are required for a specific catalytic reaction, the water molecules adsorbed on the 

external surface of the support will change their distribution and will be mostly oriented inside 

the pores, thus providing a sufficient hydrated environment for the immobilized enzymes.53,54 

Immobilized enzyme systems are more complex compared to their soluble forms as the nature 

of solid supports and the physical/chemical interactions between enzymes and host matrices 

can modify their properties. Therefore, the solid support should not be considered as just a 

vessel to facilitate the use of enzymes, but also as a powerful tool to potentially optimize the 

properties of immobilized enzymes. 

Improved enzymatic activity via immobilization 

Even though many parameters can result in a decreased activity after immobilization, 

numerous examples in the literature report improved activity and selectivity of immobilized 

enzymes. These improved performances are generally attributed to a stabilization and 

protective effect of the solid supports, as it will be discussed below.50 

1. Preventing enzyme aggregation 

The aggregation enzymes in the reaction media may occur from different parameters such as 

the use of anhydrous solvents (in which many enzymes are insoluble), high enzyme 
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concentrations, pH conditions close to the isoelectric point of enzymes… etc. The aggregation 

results in reduced activities50,55 but can be minimized through immobilization, e.g. by covalent 

binding, which provides a certain separation, or by pore entrapment, on the condition that 

each enzyme molecule is isolated inside the pores and has no contact with other enzymes. By 

eliminating the possibility of aggregation, immobilized enzymes can be used in higher 

concentrations, in the presence of anhydrous solvents. 

2. Preventing inhibitors effect 

The activity of enzymes can be affected by the presence of high concentrations of substrates, 

products/by-products of the catalytic process or inhibitors that can bind to the active site and 

reduce or even totally cancel the enzymatic activity.56 In some cases, the immobilization can 

reduce the effect of those inhibitors and therefore increase the activity of the immobilized 

enzyme, compared to the enzyme in solution.57 A possible way to eliminate the inhibition via 

immobilization is the steric exclusion of the inhibitors, as it was demonstrated for example 

with caldolysin that was covalently attached to Sepharose 4B (Figure 1-11).58 The covalent 

binding of the enzyme to the matrix hindered the access of inhibitors to the active site, 

without significantly affect the catalytic activity.58 

 

Figure 1-11: Elimination of enzyme inhibition via immobilization. Adapted from50 

3. Increased activity under harsh conditions 

Despite the favorable catalytic properties of enzymes, they are relatively unstable with a very 

narrow range of optimum operational conditions. Their immobilization inside porous supports 

or in certain cases, via covalent binding can enhance their stability under harsh operational 

conditions. An important parameter that influences the catalytic activity of enzymes is the pH. 

When immobilized in porous supports (via pore inclusion or entrapment), the 

microenvironment around the immobilized enzyme can differ from the bulk solution and 

provide smoother pH conditions (Figure 1-12). This was demonstrated in the case of alkaline 

phosphatase entrapped in silica matrices.59 The study showed that even if the optimum pH of 

the enzyme was 9, it remained active when entrapped in silica even at extreme acidic 
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conditions (pH 0.9). This was attributed to the low number of solvent molecules (H2O, H3O+) 

that surrounded the entrapped enzyme inside the pore, compared to the bulk solution. The 

impact of the few hydronium ions that were required to reach the equilibrium of pH inside 

the pores was therefore almost negligible (minimal denaturation). In that way, the entrapped 

enzyme was not severely protonated. The same results were obtained in the case of the acid 

phosphatase (optimum pH 4.5) which maintained its activity at pH 13.59 The immobilization of 

enzymes may also allow their protection from denaturating factors. For example, in presence 

of high concentration of detergents, enzymes may lose their activity due to inhibition or 

conformational changes, while when immobilized in a porous matrix, they can be partially 

protected inside the pores, due to steric exclusion.57 Similar effects can take place in the 

presence of proteolytic enzymes (e.g. pepsin that cleaves the amino acid chains). If the 

proteolytic enzyme is larger than the pores, it cannot interact with the immobilized enzymes, 

the activity of which will thus be unchanged. 

 

Figure 1-12: Increased activity of immobilized enzyme under acid conditions, thanks to a specific 
microenvironment inside the pore of the support. 

One may notice that most of the discussed parameters may either have a negative or a 

positive influence on the catalytic activity of enzymes. Consequently, no general rule can be 

defined for a successful immobilization, as the line between activation/deactivation is very 

thin. Moreover, no immobilization process is universal and the system should be adapted each 

time depending the selected enzyme and the envisioned application. Thus, a careful balance 

needs to be found in order to turn the disadvantages of immobilization into advantages and 

obtain more stable and active immobilized bio-catalysts. Nevertheless, some general 

observations can be given. The covalent binding can be considered as an effective technique 

for simple systems, in which relatively robust enzymes are securely immobilized and the 

principal focus of the immobilization is recycling. On the contrary, surface adsorption, without 

any further stabilization (e.g. crosslinking with glutaraldehyde), is not always sufficient to 

retain the enzymes and prevent leaching. For more unstable enzymes, where higher control 

of their environment is needed (fragility, polymerization, low selectivity…), a 3D encapsulation 

would be preferred. Effects like steric exclusion, protective microenvironment and controlled 

diffusion of reactants can be achieved almost exclusively with such encapsulation systems. 

Considering the limitations of MP8, its 3D confinement inside a porous matrix seems an 

appropriate way to tackle its drawbacks and design an enhance biocatalyst. 
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C. Types of solid matrices used in immobilization 

In this section, we will describe the most commonly reported immobilization matrices, 

highlighting their advantages and drawbacks. The materials will be presented based on their 

chemical composition (organic, inorganic…). A special emphasis toward encapsulation 

materials will be given, with an attention on their porosity as this method is the most adequate 

for the immobilization of MP8. Most materials show disordered porous networks, with wide 

pore distributions (e.g. polymers, sol-gel materials…), while others have, inherent ordered 

porous structures (e.g. clay minerals, zeolites, metal-organic frameworks…). In certain cases, 

the use of surfactants or templates is applied for the formation of ordered porous structures 

(e.g. mesoporous silica). IUPAC has classified porous materials based on the pore diameter 

into three categories: microporous materials (ø < 2 nm), mesoporous materials (2 nm≤ ø ≤ 50 

nm) and macroporous materials (ø > 50 nm) (Figure 1-13). Typical examples of microporous 

materials are zeolites. Metal-Organic Frameworks (MOFs) fall into the same category, 

although some mesoporous MOFs also exist. Larger pore diameters are found in mesoporous 

(organo)silica materials and mesoporous carbons, whereas templated silica gels can also have 

pores in the range of the macropores, along with carbon foams, hydrogels (polymeric or 

inorganic) etc.60 

 

Figure 1-13: Classification of porous materials depending on their pore size. Adapted from60 

Organic/carbon materials 

1. Polymers 

Polymers (synthetic and biopolymers) have been widely used as solid supports. An important 

advantage of polymers is their easy shaping (beads, membranes, fibers etc.), which is very 

convenient for biocatalytic applications. However, they are amorphous or semi-crystalline in 

nature with large pore distributions, which may not favor a homogeneous immobilization of 
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enzymes and renders the characterization of the materials and the localization of enzymes 

rather complicated. 

In the case of synthetic polymers, the nature and the amount of the starting monomers 

determine their characteristics (solubility, porosity, stability and mechanical properties) and 

thus monomers can be selected based on the specific requirements of a given enzyme 

molecule.61 Certain polymers require relatively low-cost synthetic procedures and have stable 

structures.62 The enzyme immobilization on polymeric matrices involves usually surface 

adsorption (van der Waals and hydrophobic interactions). Candida antartica lipase B adsorbed 

on macroporous acrylic resin is an example of commercially available (Novozym 435) 

enzyme/polymer system.38 An advantage of polymeric systems is that they can be 

functionalized (e.g. carbonyl. carboxyl, hydroxyl, amine groups etc.),53 in order to provide 

attachment sites for the covalent binding of enzymes and to minimize the leaching usually 

observed for physically adsorbed enzymes.63,64 However, it should be noted that the 

functionalization of polymers can be a complicated, time-consuming and costly process.61 

Biopolymers have similar characteristics with synthetic polymers, but also possess other 

benefits, like natural origin, biocompatibility, biodegradability and good affinity to proteins 

that render them suitable enzyme supports. A large variety of materials have been extensively 

studied as immobilization matrices with the most common being chitosan,65–68 alginate, 

cellulose69–71 and proteins like albumin61 and gelatin.72–75 Biopolymers can interact with 

enzymes through electrostatic and van der Waals interactions,65 as well as through covalent 

bonds after the functionalization of the biopolymer.71 Regardless the advantages of 

biopolymers, their exclusive use is limited due to their low mechanical stability and swelling 

that leads to sever leaching.74,75 Moreover, the entrapment of enzymes in hydrogels can cause 

important diffusion issues.76 Often, biopolymers are combined with other more robust 

materials (e.g. silica), in order to design stable and biocompatible enzymatic matrices (see 

following parts). This section will focus on alginate as it was used for the purposes of this work. 

Alginates is a class of polyanionic copolymers that derive mainly from brown sea algae.77 They 

are linear polysaccharides that consist of α-L-glucuronic acid (G) and β-D-mannuronic acid (M) 

residues, connected together by -1-4 linkages (Figure 1-14). Three distinct regions are 

present in alginates; MM and GG sequences that are intercalated with regions of alternating 

MG sequences.78 The key advantage of alginates is their ability to form 3D cross-linked 

networks (hydrogels) in the presence of divalent or multivalent cations. As it can be seen from 

Figure 1-14, the soluble sodium salt of alginate readily forms hydrogels with high water 

contents (> 95 %) upon metal exchange with Ca2+. In the so-called “egg-box” form, each Ca2+ 

is coordinated to the carboxyl and hydroxyl groups of four G-monomers that derive from two 

different chains of the biopolymer.77,79–81 Thanks to their compatibility and gelation properties 

under mild conditions, alginate hydrogels have been among the most studied biopolymers for 

the immobilization of enzymes and whole cells, as well as for pharmaceutical applications 

(drug delivery, tissue regeneration etc.).81,82 Alginates are usually studied under the form of 

beads/capsules but other forms are also possible (films, sponges, fibers) depending on the 

cross-linking process.61 The shaping of alginate is also possible without gelation, for example 
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by ice templating processes that result in alginate foams.83 Enzymes entrapped in alginate 

beads have shown enhanced stability under extreme pH conditions and temperatures, 

although severe leaching was observed in many cases. 61,76,84 Such drawbacks can be limited 

by combining alginate with other materials and enhance its stability.85 

 

Figure 1-14: Structure of GG and MM segments of sodium alginate and cross-linking process in the presence of 
Ca2+.80 

2. Carbon Materials 

Carbon-based materials like activated carbons, carbon foams86 and more recently carbon 

nanotubes (CNTs),87 graphene88 and graphene oxide (GO)89 have attracted much attention for 

enzyme immobilization. Carbon materials exhibit high, chemical and mechanical properties, 

and some of them show good thermal stability. Moreover, they can also enhance electron 

transfer between substrates and immobilized redox enzymes and this is why most 

enzyme/carbon systems are tested for bio-electrochemical sensing applications and biofuel 

cells.61 The enzyme immobilization in most carbon-based materials is performed via surface 

adsorption and covalent binding, after functionalization. The enzymes are thus, exposed at 

the surface and not protected by the solid support. In few cases, this drawback has been 

addressed by the combination of multiple carbon materials (e.g. activated carbon and CNTs 

or CNTs and GO) that resulted in complex systems, with enhanced protection of the enzyme 

molecules (Figure 1-15).87,89 However, those approaches may be rather complicated, costly 

and not easily adaptable for different systems. In the case of porous materials, like activated 

carbons or carbon foams, the cage inclusion can also be used, which allows a better control of 

the enzymes’ environment. Nonetheless, the large pore size distributions may result in poor 

homogeneity of the enzyme’s distribution and/or to the aggregation of the enzymes in large 

mesopores of macropores. Alternatively, ordered mesoporous carbons (OMCs) have also 

been extensively studied for enzymatic immobilization, which are usually synthesized with 

carbon sources in the presence of silica templates.90 More recently, some few examples of 

Covalent Organic Frameworks (COFs) used for the immobilization of enzymes in their 

mesopores have also been reported.91,92 
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Figure 1-15: (a) Catalase and HRP immobilization via covalent binding on carbon film, decorated with multiwall 
CNTs;87 (b) Laccase immobilized in a 3D flower-like structure via the self-assembly of graphene oxide, CNTs and 
copper phosphate.89 

Inorganic Materials 

1. Inorganic Oxides 

Several inorganic oxides have been used for immobilization purposes. Their robustness 

(mechanical, chemical and thermal stability), as well as their microbial resistance compared 

to most organic materials and their biocompatibility have rendered oxides like silica (SiO2), 

titania (TiO2) and alumina (Al2O3) important supports for enzymes and other biomolecules.61 

Several enzymes have been immobilized at the surface of inorganic oxides via physical 

adsorption or covalent binding (depending on the nature of the surface).61,93,94 However, the 

large advantage of such materials is the possibility to synthesize them under mild conditions 

at room temperature via the sol-gel process, which can be compatible with the enzyme 

molecules. The typical sol–gel process involves the hydrolysis of metal alkoxide precursors 

under acidic conditions, followed by the condensation and poly-condensation of the 

hydroxylated units, leading to the formation of amorphous porous gels.95 However, while this 

process is performed in mild condition, the formation of alcohol during the hydrolysis of metal 

alkoxides and the acidic pH can denaturate enzymes. Several biocompatible routes have been 

developed to adapt the sol-gel process in the presence of enzymes and biomolecules (e.g. 

addition of biomolecules after alcohol evaporation, use of sodium silicate, use of 

biocompatible alcohols…).96 The pore diameters depend strongly on the synthetic and drying 

conditions of the gels, but they have generally sub-micrometer dimensions.95 When the 

enzymes are mixed with the alkoxide precursors, they end-up entrapped inside the metal-oxo 

polymer matrix, while remaining accessible to external reagents.97 The following section will 

focus extensively in the use of silica gel for the immobilization/entrapment of enzymes, as it 

represents the most studied inorganic oxide for such applications. Nevertheless, titania and 

alumina gels have also been used for the entrapment of enzymes, resulting in stable enzymes 

under denaturating conditions, with long-operational performances.98,99 

Sol-gel silica 

Sol-gel silica materials have attracted enormous attention since the early 1900’s for the 

purposes of enzyme immobilization and other biological molecules, like antibodies, DNA, 
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phospholipids and even whole cells (Figure 1-16).96,100,101 It has been demonstrated in many 

studies that the entrapment of enzymes in the sol-gel rigid matrix provides a protective 

environment, which does not allow their unfolding and denaturation under extreme 

conditions (non-physiological pH, high temperatures, organic solvents).59,102–105 Braun et al. 

reported one of the pioneer works on sol-gel immobilized enzymes, in which alkaline 

phosphatase (ALP) was immobilized in a sol-gel silica glass.102 The entrapped ALP maintained 

only 30 % of its activity compared to the free enzyme, but the enhanced stability at elevated 

temperatures (70 oC) and the high stability over storage at room temperature (2 months) were 

encouraging results that led to the thorough exploration of sol-gel immobilization matrices. 

 

Figure 1-16: Enzyme entrapment in silica gel matrix, which remains accessible to reactants (e.g. substrate 
molecules), via the porous network. Adapted from97 

Silica is composed of SiO4 tetrahedra with shared vertices. Its structure is an infinite lattice of 

Si-O-Si siloxane bridges, whereas on its surface silanol groups (Si-OH) are also present due to 

hydration of silica and/or due to incomplete condensation.93 The silanol groups have an acidic 

character, rendering silica surfaces negatively charged in a wide range of pH that can interact 

with enzyme molecules via electrostatic interactions. However, the lack of functional groups 

in the silica matrix can in certain cases result in the leaching of the enzymes in the solution. 

This drawback has been addressed by the synthesis of hybrid organic-inorganic sol-gel silica, 

using either mixtures of organic molecules with the alkoxides or organosilanes.106,107 

While the entrapment of enzymes in silica gels is an extensively used and effective procedure, 

in certain cases a more fine control of the porosity is required, with narrow pore distributions 

and spatial compartmentation of the enzymes. For such cases, the use of ordered mesoporous 

silica materials can be applied. 

Mesoporous Silica 

Mesoporous silica materials represent a very important category of porous solids used for 

enzyme immobilization, thanks to their high surface areas, specific pore volumes and their 

narrow pore distributions.108,109 They are generally prepared by the polymerization of silica 

alkoxide precursors in the presence of surfactants (and triblock copolymers) that act as 

templating agents. Upon thermal treatment at elevated temperature (~ 500 oC), the 

templating micelles are removed leaving large mesopores. Even though, mesoporous silica 
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materials are amorphous, their porosity presents a long-range order, due to the templating 

mesoscopic organization. Depending on the surfactants used and the synthetic conditions, 

materials of different pore diameters and surface areas (up to 1500 m2/g) can be obtained.110 

The first report on ordered mesoporous silica was made in the early 1900’s, with the family of 

M41S materials, like the hexagonal (MCM-41), the cubic (MCM-48) and the lamellar (MCM-

50) forms (MCM = Mobil Composition of Matter) (Figure 1-17).111,112 These materials possess 

regular arrays of pores up to 4 nm in diameter, with narrow pore distributions. Even though, 

the possibility of using these materials for enzyme immobilization was explored, they were 

mainly used for catalytic applications. The field of enzyme immobilization, using such 

materials, expanded importantly with the development of extra-large mesoporous silica, like 

SBA-15113,114 (SBA = Santa Barbara Amorphous) with pore size up to 8-10 nm that can serve 

for the cage inclusion of enzymes. 

 

Figure 1-17: Structures of some typical mesoporous silica materials. MCM-41 (2D hexagonal), MCM-48 (cubic) and 
MCM-50 (lamellar) and the mesoporous cage-like silica, SBA-16 (body-centered cubic) and FDU-12 (face-centered 
cubic).Adapted from115,116 

Some of the most studied mesoporous silica for enzyme immobilization are shown in Table 1-

3. MCM-41 and SBA-15 have 3D hexagonal structures and exhibit the same 1D porous system 

(with different pore diameters), whereas FDU-5 (FDU= Fudan University) has a 3D cubic 

structure, with a bicontinuous, gyroidal pore system. Finally, SBA-16 and FDU-12 have 3D 

structures with 3D cage-like pores, which are connected together via microporous channels. 

Despite the large pore volume of the cages, the size of the channels can sometimes be a 

limiting parameter for the immobilization of enzymes.116,117 

Table 1-3: Some ordered mesoporous silicas used for enzyme immobilization. Adapted from117 

Mesoporous silica Pore diameter (nm) Structure 

MCM-41 2-5 Hexagonal array of 1-D channels 

SBA-15 5-10 Hexagonal array of 1-D channels 

FDU-5 5-8 Bicontinuous gyroidal structure 

SBA-16 min. 1-6; max. 4-9 Body-centered arrangement of cages 

FDU-12 min. 4-9; max. 10-12 Face-centered arrangement of cages 

 

As discussed for the sol-gel silica, many efforts have been made to incorporate organic groups 

to mesoporous silica materials and obtain hybrid networks that would provide specific 

interactions with enzyme molecules and other biomolecules.115,117–119 However, the 

incorporation of organic moieties can sometimes result in decreased pore volumes or even to 
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total pore blockage, depending on the size of the organic groups, as well as to disordered pore 

systems with relatively wide distributions.115 Alternatively the cross-linking of enzymes (e.g. 

glutaraldehyde) can also stabilize their immobilization and prevent leaching. 

While, inorganic oxides provide many advantages for the immobilization of enzymes, like 

biocompatibility, stability and the possibility to synthesize them in mild conditions compatible 

with enzymes, their amorphous nature, along with the wide pore size distributions do not 

always allow a fine tuning of the immobilization. Moreover, their inorganic nature is 

sometimes insufficient for the stabilization of enzymes and their functionalization with 

organic moieties is indispensable to prevent leaching. Finally, concerning the mesoporous 

silica materials, they represent an effective alternative, when more controlled porous systems 

are required, but their functionalization is also indispensable. 

2. Clay minerals 

Clay minerals are two-dimensional lamellar inorganic solids and are generally divided into 

cationic clays and layered double hydroxides (LDHs) or anionic clays.120 Cationic clays derive 

from natural sources and are aluminium or magnesium phyllosilicates, build up from one or 

two tetrahedral sheets, sandwiching one octahedral metal oxide or hydroxide sheet. In the 

tetrahedral sheets the dominant cation is Si4+, whereas in the octahedral sheets the cation is 

usually Al3+ or Mg2+. The isomorphic substitutions within the octahedral and/or the 

tetrahedral sheets lead to negative charges of the layers, which are compensated by interlayer 

cations.121 LDHs are synthetic clays with a layered structure, composed of positive layers [M1-

x
2+Mx

3+(OH)2]x+, which are separated by intercalated anions and water molecules [Ax/n∙nH2O]x- 

(Figure 1-18). A variety of chemical composition exists, like MgAl-LDHs, ZnCr-LDHs, NiAl-LDHs, 

ZnAl-LDHs etc.122 Clay minerals have been extensively used for the development of 

amperometric (bio)sensors, due to their thermal and chemical stability, their well-defined 

layered structure, their ion-exchange properties and their low cost.123 Cationic clays have the 

ability to swell and adsorb enzymes molecules between their layers. The adsorption of enzyme 

molecules in LDHs can be performed either by a delamination-restacking process that results 

in the entrapment of enzymes between the LDHs sheets or by a coprecipitation method in the 

presence of enzymes.122 Usually clay minerals suffer from leaching issues that can be 

addressed via covalent binding to reinforce the relatively weak interactions (electrostatic and 

van der Waals) of such inorganic matrices with enzymes.121 Alternatively, cross-linking with 

glutaraldehyde or composites with biopolymers (e.g. chitosan and alginate)120 have also been 

used to stabilize the enzymes in the matrices, but they may lead to diffusion issues. 
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Figure 1-18: Left: Structure of a cationic clay (2:1) in which cations and water molecules separate the negatively 
charged layers; Right: Structure of an anionic clay or LDH in which anions and water molecules separate the 
positively charged layers. Adapted from124 

3. Zeolites 

Zeolites are natural or synthetic, crystalline, hydrated aliminosilicates. They are composed of 

TO4 tetrahedra (T= Al3+ or Si4+) that are corner-linked to each other by sharing all of the four 

oxygen atoms. The infinite extension of the tetrahedra gives a 3D microporous network. The 

diameters of the micropores are between 3 and 10 Å and depend on the number of the TO4 

tetrahedra (Figure 1-19).125 The micropores are occupied by counter ions (mostly Na+, K+, 

Mg2+, Ca2+), which can easily be exchanged with other cations depending on the selected 

application.126 Zeolites have been mostly studied and used for gas adsorption/separation 

thanks to their molecular sieving properties127 and as catalysts (oil reefing, petrochemical 

processes etc.)128 However, some examples for enzyme immobilization have also been 

reported.129 

 

Figure 1-19: (a) Schematic representation of a zeolite assembly, where corner-sharing TO4 tetrahedra (T= Al3+ or 
Si4+) form the secondary building unit (SBU)of the 3D network; (b) Zeolite framework with faujazite topology, in 
which sodalite cages and hexagonal prims form a supercage. 

The microporosity of zeolites does not allow their use for the pore inclusion strategy, as their 

sizes are smaller than that of enzymes. Different approaches have been proposed in order to 

create meso/macroporosity in zeolites. Silica spheres have been used as templating agents to 

create 3D interconnected macroporous zeolite membranes.130 Alternatively, a partial 

desilication with alkaline solutions (partial dissolution of the structure by removal of Si atoms) 
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can be applied to generate non-periodic mesoporous cavities.131 However, these approaches 

can be relatively complex and thus zeolites are not extensively used as enzymatic 

immobilization matrices. 

Evaluating the materials already studied for the immobilization of enzymes, it is impossible to 

select just one (or even a group of them) as an ideal candidate for immobilization. 

Nonetheless, depending on the targeted application, different characteristics of solid supports 

are required. For biocatalytic applications, which is the purpose of this study, the key issues 

that need to be addressed via immobilization are the stabilization and protection of enzymes 

under denaturation conditions, the minimization of leaching and the enhanced diffusion of 

substrates. Thus, an “ideal” support should provide specific interactions with enzymes, while 

been relatively mechanically and chemically robust to prevent leaching. The presence of 

ordered-porous networks, compatible with the size of enzymes may ensure their protection 

from non-natural operation conditions, allow a homogeneous immobilization and promote 

the diffusion of substrates. Based on these requirements some general conclusions can be 

drawn for the commonly studied matrices. 

Organic materials possess the advantages of specific interactions with the biomolecules and 

some of them are biocompatible. At the same time, they can suffer from swelling, causing 

enzyme leaching and they also have low mechanical properties. On the other hand, inorganic 

materials are more robust, but they do not show high affinity to biological molecules. Their 

organic-functionalization is often necessary either to provide specific interactions and/or to 

improve the compatibility between the material and the enzyme. Thus, the association of 

different materials is necessary to provide a hybrid material that combines inorganic-organic 

characteristics. Furthermore, with the exception of mesoporous silica, most of the materials 

have poorly controlled porosity, with high size distribution or microporosity, which is 

incompatible with the size of enzymes. In the next section, the case of the porous hybrid 

materials named Metal-Organic Frameworks (or MOFs) as potential immobilization matrices 

will be discussed. MOFs possess hierarchical micro- or mesoporosity that can be exploited for 

the immobilization of enzymes. Even though, as we will see, MOFs can answer some of the 

problems mentioned previously (hybrid nature, ordered crystalline structure, hierarchal 

porosity…), their exploitation as immobilization matrices is in its infancy, compared to 

traditional supports and lots of questions need to be addressed in the next years. However, 

the first scientific results seem promising and perhaps the field of enzyme immobilization can 

take advantage of those materials for industrial applications in the future. 

D. Metal-Organic Frameworks 

Metal-Organic Frameworks (MOFs) is a class of crystalline, porous, hybrid materials. The 

assembly of inorganic and organic building blocks gives rise to infinite 3D porous networks 

(Figure 1-20). Their unique characteristics: high porosity (up to 90 % free volume), high 

internal surface areas (> 6000 m2/g) and almost unlimited chemical and structural tunability 

have rendered MOFs attractive candidates for a vast number of applications (gas 
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storage/separation, catalysis, drug delivery etc.).132–134 The research on MOF materials began 

in the late 80’s with a first example reported by R. Robson135 and expanded in the 90’s, with 

multiple groups (S. Kitagawa, O. M. Yaghi and G. Férey) reporting new MOF structures.136–138 

Some of the first well-known MOFs are MOF-5, HKUST-1 (HKUST= Hong-Kong University of 

Science and Technology), the series of flexible MOFs, MIL-53 and MIL-88 (i.e. pores volume 

increases or decreases upon external stimuli) and the stable mesoporous MOFs, MIL-100 and 

MIL-101, (MIL= Matériaux Institut Lavoisier).138–142 

 

Figure 1-20: Schematic illustration of the construction of Metal-Organic Frameworks. Inorganic and organic 
building units are associated via strong iono-covalent bonds to form elementary units. To periodic association of 
these units gives rise to infinite 3D frameworks. Adapted from143 

1. Building blocks of MOFs 

The inorganic building block is formed by various elements such as 3p metals (Al3+, Ga3+, In3+), 

transition metals (Zn2+, Cu2+, Fe3+, Cr3+, Ti4+, Zr4+…), alkaline earths, or also lanthanides and 

actinides.144–146 The inorganic blocks can either be single metal atoms, like in the case of ZIF-8 

(ZIF = Zeolitic Imidazole Framework), metal clusters or metal chains, known as SBUs 

(Secondary Building Units). Depending on the nature of the metal cation and its reactivity in 

solution, different SBUs can be formed in the presence of polydentate organic ligands (Figure 

1-21). Some SBUs can also be isolated as molecular complexes (e.g CuO5 dimer,147 μ3-oxo 

trimers148 and Zr6O4(OH)4 hexamers),149 whereas others are formed only in the presence of 

ligands during the MOF synthesis (e.g. 1D chains of trans-connected AlO4(OH)2 octahedra).150–

152 The geometry of the SBUs (along with the synthetic conditions) govern the structural 

characteristics of the MOF framework.153 In general, high valence cations (M3+ or M4+) result 

in more stable (chemically and thermally) structures compared to divalent cations, thanks to 

the stronger metal-oxygen bonds.144 The organic building blocks can be different di-, tri- or 

poly-dentate ligands as carboxylic acids, N-donor ligands (e.g. imidazole and pyridine), 

sulfonates and phosphonates (Figure 1-22). A combination of different ligands (with different 

lengths and functional groups) is also possible. Aromatic carboxylic acids are generally 

preferred for the synthesis of highly porous and robust structures, as they form strong iono-

covalent bonds with metal ions (M-O-C), resulting robust SBUs and MOF structures. Moreover, 

the ionic nature of such ligands results generally in neutral frameworks, obviating the need 
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for charge compensating counter-ions in the pores and thus diminishing the risk of framework 

collapsing after the evacuation/exchange of the counterions.151 

 

Figure 1-21: Examples of SBUs than can be found in MOF structures. (a) Zn2+ ion of ZIF-8, connected with four N 
atoms of the ligands; (b) CuO5 dimer of HKUST-1 (or IR-MOF-1); (c) μ3-oxo trimer of MIL-100/101(Cr,Fe,Al); (d) 
ZnO4 tetramer of MOF-5; (e) Zr6O4(OH)4 of UiO-66; (f) TiO5OH octamer of MIL-125 and (g) 1D AlO4(OH)2 chain of 
MIL-53 (C atoms in grey, O atoms in red, N atoms in blue). 

 

Figure 1-22: Examples of ligands commonly used for the synthesis of MOFs. (a) 2-methylimidazole; (b) fumaric 
acid; (c) terephthalic acid; (d) trimesic acid; (e) 1,3,6,8-tetrakis(p-benzoic-acid)pyrene (H4TBAPy) and (f) 4,4’,4’’-s-
triazine-2,4,6-triyl-tri-benzoate (TATB). C atoms (grey), O atoms (red), N atoms (blue), H atoms are omitted for 
clarity and dotted lines represent aromatic or partial double bonds. 

2. Synthesis 

The large majority of the reported MOF structures has been obtained by (hydro)-solvothermal 

syntheses. Solvothermal reactions consist in heating the starting reactants (organic ligand and 

metal source) in closed vessels, under autogenous pressure above the boiling point of the 

selected solvent (or water in case of hydrothermal reactions). These conditions favor the 

dissolution of generally insoluble aromatic ligands and promote the reactivity of inert ions 

(e.g. Cr3+).154 Some MOFs obtained by (hydro)-solvothermal reactions are MIL-100/101, MIL-

53, PCN-333/777, UiO-66, etc. (PCN = Porous Coordination Networks, UiO = Universitetet i 

Oslo). A special sub-class of (hydro)-solvothermal reactions includes those performed under 
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microwave irradiation (microwave-assisted (hydro)-solvothermal synthesis). The use of 

microwaves (mw) permits high heating rates and homogeneous heating throughout the 

sample, which results in the acceleration of the nucleation/crystallization process and possibly 

the formation of monodispersed, nanoscaled materials. The first example of such synthesis 

was MIL-100(Cr), which was synthesized in only 4 h, under mw at 220 oC, compared to the 

conventional hydrothermal synthesis that requires 96 h.141,155 Since then, the use of mw-

synthesis has attracted enormous attention and its extensive use and optimization has 

resulted in the formation of nanoMOFs (particle size in the nanoscale) in very short reaction 

times (nanoMIL-101(Cr): 50 nm in 5 min; nanoMIL-101(Fe)-NH2: 173 nm in 5 min; nanoMIL-

100(Fe): 60 nm in 30 min…).156,157 Reactions at ambient pressure at various temperatures (RT 

≤ T ≤ solvent boiling point), such as room temperature or reflux syntheses have also been used 

for MOF synthesis. Ambient pressure syntheses allow a better control of the reaction 

conditions and the study of product formation (via kinetic studies with aliquots of the 

reaction) Moreover, such syntheses are more suited for large-scale productions, especially 

when non-toxic solvents are used. Typical examples of MOFs synthesized under ambient 

pressure are MOF-5, HKUST-1, ZIF-8 etc., Even though, the number of MOFs synthesized under 

such conditions are limited compared to the vast number of solvothermally obtained 

structures, extensive efforts have been made in the last years to optimize the synthetic 

conditions and pass from (hydro)-solvothermal reactions to more sustainable syntheses.158 

Finally other synthetic methods, such as electrochemical, mechanochemical and 

sonochemical methods, have also been applied for MOFs, but to a lesser extent.154 A key point 

after the synthesis of MOFs is the evacuation of the solvent molecules and the impurities (e.g. 

unreacted ligand molecules) contained in the pores and obtain highly porous materials. 

3. Structural characteristics of some M3+-polycarboxylate MOFs 

As mentioned above, depending on the chosen metal cation and organic linker, different 

structures can be obtained. Depending on the synthetic conditions, the same building blocks 

(inorganic and organic) can lead to MOFs with different topologies that are called “MOF 

polymorphs”. The formation of different polymorphs in respect to the synthetic conditions is 

a key to understand the driving forces of the synthesis. Another possibility is to obtain similar 

topologies but with different organic ligands (having the same symmetry). In that case, the 

term “isostructural MOFs” is employed. It is a very powerful tool to modulate the 

physicochemical properties (hydrophobic/hydrophilic balance, stability, flexibility…) and the 

pore size of MOFs. In this section, these two cases will be discussed for M3+-polycarboxylate 

MOFs, which are the main MOFs studied in the next chapters due to their high chemical 

stability. 

In general, when water in used as solvent, the synthesis of most M3+ cation MOFs is performed 

under slightly acidic conditions to avoid the competing formation of metal oxides/hydroxides, 

which are predominant in a large range of pH as seen from the Pourbaix diagrams of Cr, Fe 

and Al in water (Figure 1-23). However, the acidic conditions hinder the solubilization of the 

organic ligands due to the protonation of the carboxylate group. This obstacle is in most cases 



 

Page | 43  
 

Chapter 1 

Enzyme Immobilization 

addressed by the use of hydrothermal conditions that allow the increase of temperature 

above 100 oC, promoting thus the solubilization of the ligands. Typical example are the 

hydrothermal synthesis of MIL-69(Al) 159 at 210 oC and MIL-101(Cr)142 at 220 oC. Alternatively, 

the use of organic solvents allows the solubilization of the ligands and limits the formation of 

oxides. The use of additives as inhibitors like HF, HCl or monocarboxylic acids can also 

contribute to the formation of highly crystalline MOF structures.144 

 

Figure 1-23: Pourbaix diagrams of chromium (left), iron (middle) and aluminum (right) calculated for [M3+] = 0.001 
M, at 25 oC, using the Hydra/Medousa software. Green dashed lines represent the redox couples O2/H2O and 
H2O/H2. 

MOF polymorphs 

Among the possible SBUs of M3+ cations (Al, Sc, V, Cr, Fe…) formed with polycarboxylate 

ligands, two SBUs are mostly predominant: the 1D chain build up from μ2-hydroxo corner-

sharing octahedra and the μ3-oxo trimer of MO6 octahedra (Figure 1-22 c and g).144 

When the 1D chain SBU is combined with linear dicarboxylate ligands, two polymorphs are 

mostly formed, MIL-68 and MIL-53 with the M(OH)(BDC) formula (BDC= benzene dicarboxylic 

acid, i.e. terephthalic acid).139,160,161 Both MOFs have 3D structures and 1D micropores (or 

channels), which are either triangular or hexagonal-shaped (MIL-68) or diamond-shaped (MIL-

53) (Figure 1-24). The main difference between these two polymorphs is that MIL-68 has a 

rigid structure, whereas MIL-53 is a flexible MOF (i.e. expansion or contraction of the 

framework, resulting in different unit cell volumes). The flexibility of the framework depends 

on multiple stimuli like temperature, guest molecules and (mechanical) pressure.162,163 MIL-

53 is generally easier to obtain under various conditions, whereas the synthesis of MIL-68 is 

favored when organic solvents such as DMF (Dimethylformamide) are used, possibly due to a 

templating effect that stabilizes the triangle-shaped 1D channels.144,164 

The combination of terephthalic acid with the trimeric SBU (μ3-oxo trimer of M(III) octahedra) 

results in two polymorphs, MIL-88B (or MOF-235) and MIL-101 with formula 

M3O(BTC)3X(H2O)2∙nH2O (X= F-, OH-… depending the synthetic/treatment conditions) (Figure 

1-25). The structure of MIL-88B consists of triangle-based hybrid bipyramid, in which each 

corner is occupied by a trimeric SBU. The combination of the bipyramids with the terephthalic 
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acid forms two types of micropores, one along the axis of the bipyramids and the other one 

perpendicular to this axis. MIL-88B has an acs topology (acs = aligned, corner sharing) and a 

flexible structure, which depends on the solvent used.144,150,163  

 

Figure 1-24: Two MOF polymorphs, starting from 1D chain SBU and terephthalic acid: MIL-68, a rigid MOF and 
MIL-53, a flexible MOF. 

MIL-101 is build-up by supertetrahedra, formed by the self-assembly of the trimeric SBU (at 

the corners) and terephthalic acid (on the edges). The supertetrahedra are connected 

together to result in a mesoporous structure with an augmented zeolitic MTN-type topology 

(MTN = Mobil Thirty-Nine). Two different 3D pores (or cages) are present in the structure; a 

large cage of 34 Å in diameter with microporous pentagonal (12 Å in diagonal) and hexagonal 

(12 × 16 Å in diagonal) windows and a small cage of 29 Å in diameter with microporous 

pentagonal windows (12 Å in diagonal) (Figure 1-26). The cages of MIL-101 are 

interconnected, rendering accessible all the internal surface of the material. The synthesis of 

MIL-101(Cr) was a milestone in the field of MOFs, as at the time it was one of the few stable 

mesoporous MOFs reported, with a surface area of ~5900 m2/g (the mesoporous MIL-100 had 

been reported one year earlier).142 Analogues of MIL-101 based on Fe, Al, V have also been 

reported, however they show less stable structures, possibly due to the higher reactivity of 

their cations compared to that of Cr(III).165–167 A detailed discussion on the porosity/stability 

of MOFs is given below. 

Depending on the synthetic conditions used, it is possible to obtain a mixture of these different 

structures (e.g. MIL-53/MIL-88B/MIL-101), as the starting precursors are the same (MIL-68 is 

mostly favored in organic solutions). The reaction time, temperature, nature of the solvent 

and the concentration of the reactants selected will favor the formation of one structure over 

the other. In general, MIL-53 is more thermodynamically stable than MIL-88B and MIL-101 

and thus, longer reaction times can induce its formation, whereas higher temperatures and 

shorter reaction times may induce the formation of the kinetic phases, MIL-88B and MIL-101 

(when the same metal cation is employed).144 
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Figure 1-25: Two MOF polymorphs, starting from μ3-oxo trimer and terephthalic acid: MIL-88B, a flexible 
microporous MOF and MIL-101 a rigid mesoporous MOF. Yellow spheres represent the pore volume. 

 

Figure 1-26: Schematic illustration of the construction of MIL-101. In solution, the building blocks are self-
assembled to give supertetrahedra, which are further connected together to result in the 3D porous structure 
with a MTN topology. MIL-101 has two different mesoporous interconnected cages. 

Isostructural MOFs 

The combination of a specific SBU with different ligands of the same connectivity results in 

the formation of MOFs with similar structures, but different characteristics that are governed 

by the nature of the chosen ligand. Typical examples of such MOFs comprise the series of 

isostructural MIL-53(Al) that have been obtained by replacing the terephthalic acid with linear 

dicarboxylates (Figure 1-27). MIL-53 has a flexible structure, which is also described as 

breathing effect.168,169 In the case of MIL-53(Al), the as-synthesized solid shows 1D rhombic 

channels of 2.6 × 13.6 Å free aperture (cell volume 1383 Å3) and is described as the narrow 

pore configuration. The thermal treatment of this MOF (~ 272 oC) (or other stimuli, solvent 

exchange, pressure) results in the increase of the channel whose dimensions reach 8.8 × 8.5 

Å free aperture and in a larger cell volume of 1383 Å3 (large pore configuration).152 When 

terephthalic acid is replaced by 2,6-naphthalenedicarboxylic acid, the isostructural MIL-69(Al) 

is obtained with 1D channels of 2.7 × 19.4 Å.159 This structure has a lower flexibility than MIL-
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53(Al) as the strong π-π interactions between the ligands do not allow the pore opening after 

dehydration.152 An other isostructure that will be discussed here is the MIL-53(Al)-FA (FA = 

fumaric acid) or Basolite A520.170 The combination of fumaric acid with 1D Al-chains gives a 

non-flexible structure due to the rigidity of the ligand with 1D microporous channels of 5.7 × 

6.0 Å.171 Basolite A520 is one of the six MOFs that are currently commercialized by BASF and 

Sigma-Aldrich and is used commercially as a sorbent for the storage and delivery of natural 

gas to automotive applications (large scale production: 3600 kg m-3day-1).172 Even though 

Basolite A520 appeared in the patent literature since 2007,173 the poor crystallinity of this 

MOF did not allow the resolution of its structure before 2015, when Alvarez et al. reported an 

optimized synthesis with higher crystallinity that allowed the structure resolution by a 

combination of PXRD, solid-state NMR, molecular simulation and IR spectroscopy.171 The 

advantages of MIL-53(Al)-FA that promoted its commercialization were its water-based 

synthesis with low-cost and non-toxic reactants (Al-sulfate and fumaric acid), the high-yield 

production (98 mol %) and the relatively large surface area of the material (1080-1300 

m2/g).172 Moreover, Basolite A520 shows excellent water-stability, with a uniform 

hydrophilicity of the internal surface area.173 Other isostructural MIL-53(Al) MOFs also exist, 

like DUT-5 (DUT= Dresden University of Technology) with 4,4’-biphenyldicarboxylic acid, CAU-

13 (CAU = Christian-Albrechts-Universität) with 1, 4-cyclohexanedicarboxylic acid and 

Al(OH)(1,4-ndc) (ndc = naphthalenedicarboxylate) with 1, 4-naphthalenedicarboxylic acid, but 

they will not be discussed further.174–176 

 

Figure 1-27: Some isostructural MOFs obtained by the combination of 1D Al-chains with linear dicarboxylate 
ligands. MIL-53(Al)-FA with fumaric acid; MIL-53(Al) with terephthalic acid; and MIL-69(Al) with 2,6-
naphthalenedicarboxylic acid. MIL-53 and MIL-69 are shown in their narrow pore configuration. 

4. Open-metal sites and catalytically active MOFs 

An interesting characteristic of MOFs is the presence of open-metal sites (OMSs) that are also 

referred to as coordinatively unsaturated metal sites (CUSs). OMSs are generally produced by 

the removal of coordinated guest molecules (via thermal treatment) from the SBU, which 

leads to Lewis acid sites (Figure 1-28).177 The presence of defects (missing ligands, SBUs) in the 

MOF structures tends to increase the number of OMSs. Such sites in a MOF can be investigated 
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using spectroscopic techniques such as in-situ and operando IR with probe molecules (e.g. CO 

and NO) that are known to coordinate to the OMSs.178 A large variety of MOFs with OMSs has 

been studied with the most famous being HKUST-1, MIL-100/MIL-101(Cr,Fe), UiO-66, etc. The 

reactivity of OMSs has been used for different applications such as catalysis, gas or 

hydrocarbons adsorption and separation.179,180 Among the catalytic applications, OMSs have 

been used as mild Lewis acids for the oxidation of various substrates, in the presence the 

oxidizing agent H2O2, because molecular oxygen can generally not be activated by the OMSs 

under mild reaction conditions. Typical oxidation reactions performed by MOFs with OMSs 

are the oxidation of sulfides (MIL-101(Cr))181, oxidation of waste water pollutants (HKUST-

10),182 alcohol oxidation and olefin hydrogenation (Pd-based MOF).183 However, the presence 

of reductive metals in the SBU can generate redox pairs, such as Fe3+/Fe2+ (upon proper 

thermal activation) that can form peroxides directly from molecular oxygen.177 It has also been 

demonstrated that the catalytic activity of OMSs of MOFs depends on the accessibility of the 

catalytic site, as well as the nature of the metal ions. For example, several MOFs were tested 

for Prins condensation reactions and it was shown that highly porous MOFs (MIL-100(Cr,Fe)) 

showed better activities than microporous MOFs (ZIF-8, MIL-53(Al) and Fe-BTC). The Fe-based 

MIL-100 showed the highest activity due to the electroactivity of Fe ions.184 

 
Figure 1-28: Generation of open-metal sites in the trimeric SBU of MIL-101(Cr). Adapted from177 

Finally, an interesting catalytic property of Fe(III)-based MOFs is their peroxidase-like activity, 

without the need for thermal activation. Different Fe(III)-phases (MIL-53185, MIL-100,186 MIL-

88B,187MIL-68188…) are able to catalytically activate H2O2 through electron transfer and 

produce HO· radicals that are able to oxidize various substrates, through a Fenton 

mechanisms. This characteristic of Fe(III)-based MOFs is very interesting for the design of 

cascade systems with immobilized enzymes. 

5. Ligand functionalization 

The introduction of functional groups on MOFs is of great interest, as it can modify the 

physicochemical properties of the framework. Such functionalities can provide specific 

interactions with targeted molecules (gas molecules, drugs, molecular complexes, enzymes 

etc.),189 modify certain characteristics (e.g. stability, breathing behavior)190,191 and bring new 

properties (e.g. fluorescence, proton conductivity, catalytic properties).192,193 Thus, an 

important part of research has been focused on the functionalization of MOFs. Two general 

approaches are used: the in-situ functionalization, by introducing functionalized ligands or a 

mixture of ligands into the MOF’s synthesis194; and the post-synthetic functionalization that 

involves either the chemical introduction of the functional group on the organic ligand or a 
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partial exchange of the parent ligand with a new functionalized one.189 In some cases these 

two approaches can be combined.190 

The first approach is a direct one-step process, which is always desirable in terms of facility 

and superior control over the localization of the functional groups. However, as most MOFs 

are obtained by (hydro)-solvothermal syntheses at high temperatures, some functionalized 

groups cannot be incorporated since the functional groups usually decompose under such 

synthetic conditions. Moreover, functionalized ligands can have different solubility and 

reactivity than their unfunctionalized analogues, thus a synthesis optimization is often 

required.166,195 Lammert et al. have performed a high-throughput investigation on the 

synthesis of single- and mixed-ligand MIL-101(Cr) derivatives, in order to obtain thermally and 

chemically stable functionalized MOFs with high porosities.194 The tested chromium 

precursors along with functionalized ligands are shown in Figure 1-29. One of the challenges 

of this work was to obtain pure MIL-101 phases as a competition with the polymorphs MIL-53 

and MIL-88B was observed. Pure functionalized MOFs were obtained in the cases of bromo- 

and methyl-terephthalic acids, and mixed functionalized MIL-101(Cr) derivatives were also 

formed (e.g. -Br/-NO2; -Br/-SO3/H, -SO3H/-NO2, -SO3H/-H etc.) Pure MIL-101(Cr)-SO3H and 

MIL-101(Cr)-NH2 could not be isolated using these conditions, however it was demonstrated 

that a post-synthetic reduction of MIL-101(Cr)-NO2 could give the pure MIL-101(Cr)-NH2, as it 

was previously reported.196 Pure MIL-101(Cr)-SO3H can nevertheless be obtained directly 

using CrO3 as precursors197 but, due to the high toxicity of Cr6+, usually post-synthetic 

modifications of MIL-101(Cr) obtained from Cr3+ precursors are preferred.198 

 

Figure 1-29: Schematic representation of terephthalic acid derivatives and chromium precursors used in the high-
throughput screening to obtain single- and mixed-ligand MIL-101(Cr)-X compounds.194 

Regarding the post-synthetic modification, two main approaches are used (different 

variations also exist): the post-synthetic modification either by the covalent attachment of a 

functional groups to the organic ligand or by covalent bonding of a functional group to the 

OMSs of MOFs (Figure 1-30). Typical examples of the ligand functionalization are the 

decoration with anhydrides and isocyanates of amine-functionalized Zn2+-MOFs, like IRMOF-

3. Some examples of the decoration of SBUs, are the alkylamine- and proline-functionalization 

of MIL-101(Cr), that resulted in organocatalytic frameworks.189 We will not focus on the post-
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synthetic modification since for simple functionalization (e.g. -NH2, -SO3H, -COOH etc.) the 

direct approach is preferred, as it will be discussed in chapter 3. 

 

Figure 1-30: Different strategies used in post-synthetic modifications. (a) covalent attachment of a functional 
group to the ligand and (b) iono-covalent bonding of a functional group to the OMS of a MOF’s SBU.189 

6. Mixed-metal MOFs 

Another type of functionalization is the incorporation of different metals in a framework. The 

different metals can be incorporated either directly or via a post-synthetic metal-exchange 

process.199 Mixed-metal MOFs show modified properties like gas uptake or fluorescence.200 

For example, the synthesis of mixed MIL-125(Fe/M2+) (M2+ = Ni2+, Co2+ and Mg2+) resulted in 

MOFs with much higher sorption properties of CO2 and CO than the pure Fe-form of MIL-

125.201 A mixed MIL-53(Cr/Fe) also showed enhanced CO2 uptake with respect to the pure 

MIL-53(Cr, Fe) phases, by tuning the breathing effect of the structure.202 In another work, the 

doping of MIL-78(Y) with different lanthanides (Eu, Tb, Dy), gave high luminescent MOFs with 

different emissions of red, green and blue respectively.203 However, one of the most exciting 

applications of mixed-metal MOFs is in the field of catalysis.199 Mitchell et al. reported the 

direct synthesis of mixed MIL-100(Sc/M, M = Al, Cr, Fe).204 It was shown that the activity of 

mixed-metal MOFs, in the Lewis-acid catalyzed Friedel-Crafts reaction, increased with 

increasing amounts of Sc. Moreover, as the Fe-based MOFs are known to promote oxidation 

reactions (described above), the mixed MIL-100(Sc/Fe) was used for a tandem Friedel-Crafts 

addition and oxidation reaction and was compared with a mixture of pure MIL-100(Sc) and 

MIL-100(Fe). It was shown that the simple physical mixture of MOFs also catalyzed the 

sequential reaction, but with a lower conversion (78%) than that obtained with the mixed-

metal MOF (95%), suggesting that the combination of the two active sites within the same 

particle, reduced the average diffusion path, thus enhancing the activity.204 As we will see in 

the next chapters the incorporation of Fe into stable MOFs is of great interest for such 

oxidation reactions. 

7. Porosity 

The large majority of MOFs are microporous and even though this microporosity is a desired 

characteristic for many applications demanding molecular sieving properties such as gas 

separation (H2/CO2 and CO2/N2),205 other applications requiring high adsorption capacities are 

mostly favored when mesoporous materials are used (e.g. (bio)-catalysis, drug delivery, gas 
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storage, heat storage, etc.) Consequently, much research has been devoted to the synthesis 

of large-pore MOFs, since almost the beginning of the MOF’s research field. 

Extended ligand approach 

One typical approach for the increase of the pore size is the use of extended ligands that can 

replace the shorter parent ligand and result in isostructural topologies with increased pore 

sizes. Eddaoudi et al. used this strategy to replace the terephthalate ligand of MOF-5 (Zn2+-

carboxylate MOF) with a series of linear dicarboxylate extended ligands.206 As seen in Figure 

1-31, the pore diameter increases proportionally to the length of the ligand, leading to free 

volumes up to 91.1 % of the crystal volume (IRMOF-16, IRMOF = Isoreticular MOF). 

Considering that the parent MOF, MOF-5 is unstable in water or moisture,207 the extended 

frameworks showed even more unstable structures (chemically and thermally). This work 

however, paved the way for the expansion of MOFs’ frameworks. 

 

Figure 1-31: Some isostructures of MOF-5 with extended organic ligands and increasing pore sizes. Adapted 
from206 

The same approach was used for the expansion of a number of MOF structures such as MOF-

74 with channel sizes up to 98 × 85 Å free aperture,208 MIL-100/ MIL-101 with cage diameters 

up to 55 and 68 Å,209 PCN-333 (PCN= Porous Coordination Network) with cage diameters up 

to 42 and 55 Å etc.210 Details on these extended MOFs are included in the following minireview 

that we published. While this approach is promising for the synthesis of ultra-large 

mesoporous MOFs, it shows several limitations such as low chemical stability of the extended 

frameworks and a risk of obtaining interpenetrated structures. Additionally, the complexity of 

the organic synthesis that is often required for the production of extended ligands, severely 

limits their application. 

Macropores hollow capsules and etching approach 

An alternative approach to create large porosity (usually macroporosity) is the fabrication of 

hollow capsules of MOFs. This can be achieved when oil/water systems are used for the 

dispersion of the ligands in oil and the metal precursors in water. MOF capsules are formed at 

the oil/water interface.211 Such systems can be formed using either microfluidic approaches 

(reported for Cu-BTC and MIL-88A)211,212 or typical oil-in-water (o/w) emulsions (reported for 

ZIF-8).213When enzymes are mixed in the water solution, they can be in-situ immobilized.212 In 

order to enhance the diffusion pathways, an etching approach206 (i.e. controlled dissociation 

of the framework) can be applied. More specifically, a recent work demonstrated the 
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fabrication of ZIF-8 colloidosomes (hollow capsules) by a one-pot o/w emulsion-templating 

method.213 The colloidosomes were then treated with an aqueous solution of imidazole (Im), 

which resulted in the formation of macropores through an etching mechanism that consists 

in a proton exchange between the imidazole and the more basic 2-methylimidazole (2-MeIm) 

of the ZIF-8 framework (Figure 1-32). This resulted in the controlled dissociation of the capsule 

and the formation of diffusional pathways.213 A different way to create mesoporosity is the 

acidic etching of stable high valence metal-based MOF containing labile ligands that can easily 

be hydrolyzed upon acidic treatment, resulting in defects (missing ligands).214 The defects (or 

resulted mesopores) can be controlled by adjusting the initial amount of labile ligands 

incorporated in the framework. This was demonstrated for the microporous Zr-based MOF, 

PCN-160, which contains the labile to hydrolysis ligand, 4-carboxybenzylidene-4-

aminobenzate. Upon treatment with acetic acid, the ligand dissociates into 4-amino benzoic 

acid and 4-formylbenzoic acid, resulting in the removal of the metal cluster connected with 

the hydrolyzed ligands. Using this approach, the porosity of PCN-160 was increased from 1.5 

nm to 18 nm.214 

 

Figure 1-32: SEM images of ZIF-8 colloidosomes formed by a dodecane-water emulsion template (scale bars, 10 
μm for (a) and 1 μm for (b); (c) and (d) colored SEM images highlighting the hierarchical hollow structures of the 
etched colloidosomes by imidazole (scale bars 1 μm for both).213 

Other methods to obtain ultra-large mesoporosity or macroporosity consist in templating 

approaches with the use of surfactants and block-copolymers (similar to mesoporous silica 

templating approaches).215–217 Alternatively, metal oxides have also been used as templates 

and sacrificial metal sources for the MOF formation to result in highly ordered macroporous 

MOFs.218 As these approaches are far from the scope of this work, they will not be discussed. 

8. Stability 

Depending on the selected application, stability in different conditions is required. For 

example, chemical (water, vapor) and thermal stability are required for gas 
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storage/separation and catalysis, whereas for bio-catalysis or bio-detection water stability and 

stability under various pH conditions are more important than thermal stability. The following 

section deals with the characteristics of MOFs that govern their thermal and chemical stability. 

Thermal stability 

The thermal stability of a MOF strongly depends on the nature of both the SBU and the organic 

ligand and vary globally from 150 oC to 500 oC. Compared to the materials described before 

(inorganic oxides, zeolites, carbon materials etc.), the presence of the organic ligands in MOFs 

represents a limiting factor for their thermal stability. However, for applications like bio-

catalysis, that is the focus of this work, the thermal stability of MOFs is more than adequate. 

Different parameters can influence the thermal stability. For example, when comparing the 

nature of the metal cation in MIL-53, (Al, Cr or Fe) it seems that the increasing strength of the 

metal-ligand bond (Fe-O: 1.95 Å, Cr-O: 1.93 Å and Al-O: 1.87 Å) results in more thermally stable 

MOFs.144,219,220 The nature of the SBU also influences the stability as MOFs with infinite SBUs 

show increased stabilities compared to those having molecular SBUs. For example, MIL-

101(Cr) (trimeric SBU) decomposes at ~230 oC, whereas MIL-53(Cr) (infinite chain decomposes 

at ~330 oC.144 

Chemical stability 

The chemical stability of MOFs depends on multiple parameters, like the charge and 

coordination number of the metal cation along with its redox properties, the pKa of the 

complexing groups of the ligand, the hydrophobicity and the porosity of the frameworks 

etc.221 The different parameters that influence the overall water stability of a framework can 

be divided into thermodynamic and kinetic factors. 

Thermodynamic factors: 

The chemically weak point of MOFs stands in the iono-covalent metal-ligand bonds in 

presence of water. This iono-covalent bond that involves the electrophilic metal center and 

the nucleophilic ligand can be prone to hydrolysis, depending on the reaction conditions and 

the nature of the metal and ligand.221 Acidic conditions can accelerate the hydrolysis, leading 

to protonated ligands, while basic conditions can lead to the formation of oxides and 

hydroxides.220 Low et al., performed an extensive study on the hydrothermal stability of 

several MOFs, which was monitored by PXRD and calculated the activation energy of ligand 

displacement by a water molecule (Figure 1-33). Some general observations are discussed 

below.222 

Concerning MOFs with divalent cations like Zn2+, the use of ionic, N-containing ligands often 

yields to more chemically stable MOFs like ZIFs and ZMOFs (Zeolite-like MOFs) than those with 

carboxylic acids.220 Their stability has been attributed to the higher pKa of those ligands (> 10), 

compared to that of carboxylate ligands (pKa around 3.5-5.5), explaining the difference in 

stability of ZIF-8 (Zn2+-imidazolate) compared to MOF-5 (Zn2+-terephthalate).144 
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For MOFs containing the same type of ligand, e.g. carboxylic acid, it was shown that the 

oxidation state of the cation is in direct relation with the chemical stability. Thus, metals with 

low oxidation states (Cu2+, Zn2+), form less stable structures (MOF-5, HKUST-1), than metal 

with higher oxidation states (Al3+, Cr3+, Ti4+), which form stable structures (MIL-53, MIL-

101…).144,222 

Another parameter influencing the chemical stability of MOFs is the redox properties of the 

metal. Frameworks containing metal species that are not easily reduced tend to be more 

stable. For example, the V4+-based MIL-53, which can be partially reduced to V3+ showed the 

lowest stability compared to the Cr3+ and Al3+ analogues.219 

 

Figure 1-33: Hydrothermal stability of several MOFs, as a function of temperature and water vapor, monitored by 
PXRD. The calculated energy of activation (ΔE) for ligand displacement is shown in magenta. Adapted from222 

Kinetic Factors: 

An important factor that governs the kinetic stability of MOFs is the water exchange rate for 

a metal cation, which depends on the ionic radius and charge of the metal ion, along with the 

electronic configuration of the d-orbitals (for transition metal ions).223 Figure 1-34 shows the 

exchange rate constants (kH2O) of different metal ions. Cations with kH2O < 10-1 are kinetically 

inert, while those with kH2O > 10-1 are kinetically labile. In general, the transition metal ions 

of the first row of the periodic table are more labile compared to those of the second and third 

row, with the exception of Cr3+. The electron configuration Cr3+ ([Ar] d3) stabilizes the 

octahedral environment and render it very chemically inert (kH2O = 10-6 s-1),224 thus octahedral 

Cr SBUs are very stable. On the contrary, Fe3+ ([Ar] d5) is highly labile to substitution (kH2O = 

102 s-1). The Al3+ cation shows a medium inertness (kH2O = 1 s-1) that is attributed to its small 

ionic radius (0.53 Å) and consequently to the polarization of the coordinated water 

molecules.223 The water exchange rate constants of the cations can possibly explain the 
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difference in the water stability of MIL-101(Cr) > MIL-101(Al) > MIL-101(Fe) and MIL-53(Cr) 

>MIL-53(Al).219 

Other parameters that can result to enhanced kinetic stability is the hydrophobicity of the 

framework and steric effects, arising from the small pore opening that can hinder the 

adsorption of water molecules.220 

 

Figure 1-34: Water exchange rate constants (kH2O) in the first coordination sphere of [M(H2O)n]m+. Black bars 
represent determined values and white bars calculated ones. Adapted from223 

Thanks to the combination of unique characteristics (crystallinity, high surface areas, 

hierarchical porosity, easy functionalization, catalytic properties etc.) MOFs have been 

proposed for a large number of applications. One of the most important applications concern 

gas separation and storage.205,225 Some MOFs like Basolite A520 and C300 are already 

produced industrially by BASF and used for CH4 storage.172 In the same category are the works 

studying the removal of toxic gases and VOC’s using MOFs.226,227 Catalytic and biomedical 

applications also represent a very important part of the MOFs’ research, with works been 

reported almost from the beginning of the field.228–230 However, the combination of MOFs 

with other species (polymers, oxides, nanoparticles, POMs, carbon materials etc)158,231 to form 

optimized composites has paved the way for the application of MOFs in new fields 

(electronics, proton-conduction etc.)232,233 The use of MOFs as matrices for enzyme 

immobilization is also one of the emerging applications, which appeared only in the last few 

years.234 The following section will describe the advances in that field. 
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E. MOFs as matrices for enzyme immobilization 

Metal-Organic Frameworks: a novel host platform for enzymatic catalysis and 

detection 

Introduction and contributions 

The following section is a useful survey concerning the design of MOFs as host matrices of 

enzymes. In a first part, the work will be presented in the format of mini-review that was 

published in Material Horizons (RSC publications) in 2017, with the following title: “Metal-

Organic frameworks: a new host platform for enzymatic catalysis and detection”. In a second 

part, the main developments since the mini-review publication will be highlighted. 

The mini-review briefly describes the properties of MOFs used for such applications and the 

expected advantages compared to more traditional supports, like polymers and silica 

materials. The different strategies applied for the immobilization of enzymes were presented 

and a detailed state of the art of the field was given. Afterward, the review focused on some 

specific examples that demonstrate the usefulness of MOFs for such applications (in catalysis 

and sensing) and the advantages gained from using hybrid, highly porous and ordered 

materials. Finally, the limitations on the current MOF field along with the perspectives for the 

preparation of more effective and enhanced enzyme-MOFs composites were critically 

highlighted. 

The bibliographic research for this work was performed by myself and Dr. Clémence Sicard 

along with the writing of the manuscript. Prof. Nathalie Steunou was strongly implicated on 

the writing and the revision of this work. Dr. Christian Serre, Prof. Jean-Pierre Mahy and Dr. 

Rémy Ricoux were strongly implicated on the revision of the manuscript and for further fruitful 

discussions. 
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Some more recent works 

Since the publication of the mini-review, some important works in the field of enzymatic 

immobilization using MOFs have been reported. It was thus essential to discuss them here. 

This description will be based on the immobilization method used. The cage inclusion and the 

in-situ synthesis methods are more specific to MOFs matrices and provide enhanced 

protection, compared to the surface adsorption and the covalent binding. Therefore, the 

majority of works were performed using exclusively these two methods. 

1. Advances using the cage inclusion method 

As it has been extensively discussed in previous sections, immobilized enzymes often suffer 

from severe diffusional issues. The work of Li et al., demonstrated the importance of having 

hierarchical porous systems with free diffusion pathways.235 A Zr-based MOF, NU-1000 

(Northwestern University) was selected for the immobilization of the enzyme cutinase (4.5 × 

3.0 × 3.0 nm). NU-1000 has hexagonal channels (Ø = 3.1 nm), as well as triangular channels (Ø 

= 1.5 nm) that are interconnected. Cutinase could only be encapsulated inside the hexagonal 

channels, leaving the other channels free for the diffusion of reactants. This system was 

compared to cutinase immobilized in PCN-600, which only has hexagonal channels of around 

3.0 nm in diameter. It was demonstrated that in the NU-1000 93 % of the immobilized enzyme 

was active, whereas for PCN-600 only 6 % was active. The low activity of the cutinase@PCN-

600 was attributed to the blockage of the mesoporous channels by cutinase molecules, where 

the substrates could not diffuse anymore, whereas for cutinase@NU-1000, the smaller 

triangular channels, that were not occupied by the enzymes, could be used for substrate 

diffusion.235 Similarly, isostructural NU-1000 frameworks, with extended ligands were used for 

the formation of MOFs with larger pore apertures with diameters from 3.3 to 6.7 nm (same 

pore system as above).236 The isostructural series of NU-1000 were used for the 

immobilization of lactate dehydrogenase (LDH) in the hexagonal channels, while the triangular 

channels of those MOFs were used for the immobilization of the co-enzymes nicotinamide 

adenine dinucleotide (NAD and NADH). It was demonstrated that the activity of the 

immobilized LDH was dependent on the pore windows and channels because of different 

diffusion rates of the substrates and the co-enzymes (Figure 1-35).236 

A different study demonstrated the importance of having hierarchical pore systems, in a 

different way. An isostructural MIL-100 MOF, named PCN-888(Al) with two different cages 

with diameters of 5.0 and 6.2 nm was used for the encapsulation of glucose oxidase (GOx) and 

horseradish peroxidase (HRP). GOx (6.0 × 5.2 × 7.7 nm) could only fit in the large cage, whereas 

HRP (4.0 × 4.4 × 6.8 nm) could be accommodated in both cages.237 Thus, a stepwise 

encapsulation (starting from GOx) was important in order to precisely control the distribution 

of GOx and HRP in the large and the small cage, respectively. An opposite strategy would result 

in the encapsulation of HRP in both cages, rendering impossible the immobilization of GOx. 

The bi-enzymatic system was tested for the oxidation of ABTS by HRP, in which the H2O2 co-
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substrate was produced in situ by the catalytic oxidation of glucose by GOx and showed good 

catalytic efficiency.237 

 

Figure 1-35: Schematic representation of the immobilization of enzymes and co-enzymes in interconnected 
hierarchical MOFs with different channel apertures. (a) The narrow windows and channels allows the diffusion of 
co-enzymes and substrates and limit the space for enzyme-co-enzyme recognition; (b) a system with wide 
windows and channels shows fast diffusion rates for the co-enzymes and the substrates and sufficient space for 
enzyme-co-enzyme recognition.236 

Finally, an important parameter was demonstrated in these new studies: the role of the crystal 

size on the diffusion of the reactants and thus, on the overall activity. NU-1003 (same structure 

as the series above) was used for the immobilization of the nerve agent hydrolyzing enzyme, 

organophosphorous acid anhydrolase (OPAA).238 The immobilization was performed with 

particles of different sizes (micro- and nano-particles) and it was demonstrated that by 

nanosizing the MOF carrier (particle size = 300 nm), the catalytic activity of the immobilized 

OPAA, was improved compared to the OPAA immobilized in larger particles (particle size = 

7000 nm) and even compared to the free enzyme. This was attributed to the improved 

substrate diffusion, due to the small size of the particles. (Figure 1-36).238 MOF enzymatic 

nanocarriers have also been used to other studies, related to in vitro and in vivo 

applications.239,240 

 

Figure 1-36: (a) Schematic illustration of an enzyme-MOF carrier, with evenly immobilized enzymes and the 
diffusion of reactants from the solution into the carrier’s particle; (b) Initial turnover rate of OPAA@NU-1003 (300 
nm), OPAA@NU-1003 (7000 nm) and free OPAA. Adapted from238 
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These new studies provided insights on the cage inclusion strategy and addressed one of the 

main problems of encapsulated enzymes, the diffusion issues. Thanks to the vast possibilities 

of chemical structures of MOFs and the ability to tune the particle size, it seems rather likely 

to minimize such limitation in the future. 

2. Advances using the in-situ synthesis method 

Regarding the in-situ synthesis method, great attention has been given to the use of ZIF-8 

since the first report on the so called biomimetic mineralization of this MOF in the presence 

of enzymes and other biomolecules.241 Most MOF structures are synthesized under conditions 

non-compatible for enzymes (high temperatures, pressures, organic solvents etc...). It is thus 

of high interest to fully exploit a MOF as a host matrix that can be synthesized under mild 

conditions. Several works have used ZIF-8 for the entrapment of enzymes like Cyt c, HRP, CALB, 

GOx, which has led to enhanced stability under unnatural environments..242–245 It was even 

extended to other biomolecules such as viruses246 and yeast cells.247 

However, the original authors of this ZIF-8 based approach have recently reported that this 

process strongly depends on various parameters (concentration of reactants, relative molar 

ratios, stirring conditions etc.).248 The variation of those parameters can either form the ZIF-8 

phase (sodalite topology), which is the kinetic phase, a different, more thermodynamically 

favored phase (diamond topology), an amorphous phase or mixtures of them. Moreover, 

different spatial distributions of biomolecules in the ZIF-8 matrix were observed, depending 

on the surface chemistry of the biomolecules and their affinity to Zn2+ cations. When 

rhodamine B-tagged BSA (ζ-potential= -13.5 at pH = 9.5), with a high affinity to the Zn-cations 

was used, the protein was localized in the core and at the exterior of the ZIF-8 particles. 

However, when fluorescein isothiocyanate-tagged BSA (ζ-potential= -9.4 at pH = 9.5) was 

used, the protein molecules were predominantly localized at the surface of the ZIF-8 crystal. 

A further layer (or multiple layers of ZIF-8/BSA) was then applied to ensure the entrapment of 

the biomolecule (Figure 1-37).248 

 

Figure 1-37: Schematic illustrations of (a) different BSA spatial distributions in the ZIF-8 crystal, depending on the 
surface chemistry of the protein (on the left FTIC-BSA in green, on the right RhoB-BSA in red) and (b) synthetic 
method of the multiple-core-shell fluorescein-tagged BSA@ZIF-8 composite. Adapted from248 
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A further investigation on the influence of the surface chemistry of the protein on the process 

was then reported.249 The chemical modification of the amino acids of the surface of different 

biomolecules (BSA, pepsin, myoglobin and hemoglobin) was performed either by 

succinylation, acetylation (lysine residue) or amination (aspartate and glutamate residues). 

The modified biomolecules along with the non-modified were tested for their ability to induce 

biomimetic mineralization. It was demonstrated that biomolecules bearing high concentration 

of acidic residues, which are negatively charged under basic conditions (e.g aspartate and 

glutamate), induced the formation of ZIF-8. On the contrary, biomolecules having high 

isoelectric point values (e.g. lysine and arginine on their surfaces) and are thus positively 

charged, did not allow the formation of ZIF-8 (Figure 1-38). Following these results, the 

authors proceeded to the functionalization of the biomolecules, leading to the modification 

of the overall surface charge. The biomolecules with ζ-potential values below -30 mV induced 

the precipitation of ZIF-8 (after succinylation or acetylation), whereas biomolecules with 

higher ζ-potential values did not (after amination) These results were attributed to the affinity 

of the overall negatively charged surfaces to the Zn cations.249 

 

Figure 1-38: Plots (a) of the calculated pI of BSA, pepsin, myoglobin and hemoglobin with or without surface 
modifications; (b) experimental ζ-potentials for the same biomolecules and (c) the general changes in ζ-potential 
for the three types of chemical modifications used (succinylation, acetylation and amination).249 

ZIF-8 has been also used for the simultaneous immobilization of NiPd hollow nanoparticles 

and GOx for the fabrication of an artificial enzyme system for tandem catalysis.250 NiPd 

particles exhibited peroxidase-like activity and consumed the H2O2 produced catalytically by 

the immobilized GOx. This system showed rapid detection of glucose and could be used as an 

effective colorimetric sensor.250 

While the ZIF-8 system seems very promising for the entrapment of enzymes in a facile and 

effective way, a careful control of the synthetic conditions, together with a careful selection 

of the enzyme must be made in order to obtain the desired system. Moreover, ZIF-8 is a 

microporous hydrophobic MOF and for bio-catalytic applications, the choice of a more 

hydrophilic or amphiphilic MOF seems more adequate. 

The group of Sanchez-Sanchez has presented a series of works for the preparation of 

amphiphilic MOFs under mild aqueous conditions, like MIL-100(Fe)251, Basolite F300 (a semi-

amorphous Fe-BTC phase)252 and MIL-53(Al)-H or -NH2.253 MIL-100(Fe) synthesized at room 
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temperature (RT) had high surface area (1974 m2/g) and crystallinity, similar to that of the 

original MOF structure (2028 m2/g) and could be a very promising candidate for the 

entrapment of enzymes. Moreover, the peroxidase-like activity of this Fe(III)-MOF could be 

used for cascade enzymatic reactions.251 Basolite F300 was used for the immobilization of 

multiple enzymes (alcohol dehydrogenase, lipase and GOx).252 The immobilized enzymes 

showed reduced activities, possibly due to diffusional limitations caused by the poor 

crystallinity of Basolite F300. MIL-53(Al)-H and -NH2 systems were used for the immobilization 

of β-galactosidase. The MOFs showed much higher enzyme loadings and retention than the 

respective surface immobilized systems and improved catalytic activities.253 
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F. Conclusions 

In this chapter, we explored the interest of bio-catalysis and the need for the immobilization 

of enzymes in order to provide protection under harsh operational conditions and gain the 

possibility of recycling them. 

The first part presented heme enzymes and in particular microperoxidase 8, a small enzyme 

that combines the activity of both peroxidases and monooxygenases (typically that of 

Cytochrome P450s). Both catalytic mechanisms were detailed. The peroxidase-like activity 

enables the oxidation of a wide range of substrates in presence of H2O2 (eg organic dyes 

phenols, organosulfur compounds…), whereas the monoxygenase-like activity allows 

hydroxylation of phenol derivatives and O- and N- dealkylation reactions. The interest of MP8 

for this work beyond its remarkable activity, resides in its limitations in solution. Indeed, MP8 

-in its soluble form- is easily deactivated under acidic conditions and in the presence of high 

concentrations of H2O2 (oxidative degradation). An activity loss also derives due to 

polymerization (< 2 μM). Moreover, the lack of a specific catalytic pocket renders MP8 non-

selective. Thus, it is of interest to immobilize MP8 to limit the aforementioned disadvantages 

and possibly enhance its selectivity by its confinement inside a solid matrix. Additionally, the 

small size of MP8 renders it a perfect candidate for the immobilization inside the cavities of 

porous matrices. 

In a second part, the methods, benefits and limitations of enzyme immobilization were 

discussed. Immobilization is performed to stabilize and protect enzymes under denaturation 

conditions, enables their separation from the reaction mixtures and their recycling, while 

providing an easier handling compared to their soluble forms (shaping of the biocatalyst). 

Different immobilization techniques have been reported with various solid matrices and can 

be classified into four categories: surface adsorption, covalent binding, pore inclusion and 

entrapment. While being relatively simple techniques, the major limitation of the surface 

immobilization (either by adsorption or covalent binding) is their incapacity to provide any 

protection to the enzymes from denaturation factors. Porous matrices are generally more 

protective due to 3D confinement of enzymes that limits their unfolding and can lead to 

favorable local micro-environments. The pore inclusion method is limited to systems with a 

size matching between the enzyme size and the pore size of the host matrix. This is not 

required for the entrapment method, but in that case, synthetic conditions compatible with 

the preservation of the enzymatic activity (i.e. aqueous media, room temperature) are 

necessary. Furthermore, the support used may lead to slower diffusion of reactants. 

The impact of immobilization on the structural conformation of enzymes and their catalytic 

activities was then described. Specific interactions between the enzyme and the support 

(polar, hydrophobic/hydrophilic), the dynamics of immobilized enzymes and the enzyme 

loading can drastically modify the enzymatic activity. Other important parameters are the 

mass transfer limitations that concerns the diffusion of reactants to and from the enzyme’s 

active site, along with water diffusion. 
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Typical examples of solid supports along with their characteristics were then presented. 

Organic solids (polymers, carbon materials) provide ideal interaction sites for enzyme 

molecules, but they are not always sufficiently robust to ensure a stable immobilization. On 

the contrary, inorganic supports (silica, clay minerals, zeolites) are highly stable, but need 

extra functionalization to ensure interaction sites with enzymes. In many cases, a combination 

of organic/inorganic materials is needed for an effective immobilization. Furthermore, besides 

mesoporous silica, most of the aforementioned materials have poorly controlled porosity, 

with large pore size distributions or microporosity, which is incompatible with the size of 

enzymes. 

Finally, the last section was devoted to a new class of immobilization supports, the Metal-

Organic Frameworks. The hybrid, crystalline nature of MOFs along with the uniform porosity, 

the high surface areas and the easy tunability of their structures make MOFs ideal candidates 

as enzymatic host matrices. Interesting results have been reported in terms of minimal 

leaching and preservation of the enzymatic activity in unnatural environments. This is 

attributed to the confinement of the enzyme within the matrix and to the hybrid nature of 

MOF that creates stabilizing microenvironments for enzymes through specific host-guest 

interactions. Also, the porosity of the MOF matrices was used to implement size selectivity to 

the enzymatic reactions.  

The use of MOFs for the immobilization of MP8 seems thus an interesting strategy to 

overcome its limitations (stability, selectivity…).  
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Introduction 

This chapter deals with the cage inclusion of the mini-enzyme MP8 into mesoporous MOFs. 

The cage inclusion, as already discussed, involves the entrapment of small enzyme molecules 

inside the pores of preformed mesoporous MOFs. Consequently, the size of the selected 

enzymes must be compatible with the pore openings (windows) and pore dimensions of the 

MOF. However, as already reported, it is possible to entrap enzyme molecules of slightly larger 

size compared to the pore dimensions, as enzymes are not rigid molecules and can undergo 

partial unfolding that allows them to migrate inside the pores.1 Moreover, in order to limit the 

diffusional issues of immobilized enzymes, the presence of cavities, that are too small to host 

the enzymes is considered critical. These cavities can serve for the diffusion of substrates to 

and from the enzymes. In addition to the structural characteristics of the selected MOFs, 

another important parameter is their chemical stability and more specifically the water 

stability that is crucial for both the immobilization procedure and the biocatalytic applications. 

We thus focused our efforts on the investigation of different mesoporous MOFs for the cage 

inclusion of MP8. The small size of MP8 (< 3.3 × 1.1 × 1.7 nm) is ideal for this procedure. The 

cage inclusion approach was preferred, as the 3D confinement has already been shown to 

enhance the stability and the protection of immobilized enzymes and it may be assumed that 

this encapsulation can protect MP8 against high concentrations of H2O2 and acidic 

environments. Moreover, the isolation of MP8 molecules inside the pores of mesoporous 

MOFs can limit its aggregation and possibly enhance its selectivity. 

Among the reported mesoporous MOFs, ultra-large frameworks like PCN-333 have attracted 

much attention for the immobilization of enzymes.2 Hence, the first part of this chapter deals 

with PCN-333(Al) and with the attempts to optimize its synthesis and obtain reproducible 

results. The investigation on the stability of PCN-333(Al) in water will finally result in excluding 

this MOF as a matrix for the immobilization. The second part deals with the use of the ultra-

stable mesoporous MOFs as enzymatic supports. More specifically, MIL-101(Cr) will be 

investigated for the immobilization of MP8. The study of the MP8@MIL-101(Cr) biocatalyst is 

presented in a format of an article, recently published. 
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A. Mesoporous MOFs 

PCN-333(Al) 

1. Description 

The first candidate for this work was the mesoporous PCN-333(Al) (Porous Coordination 

Network), which has an extended MIL-100 structure, with an MTN topology (Mobil Thirty-

Nine). PCN-333 is constructed by the assembly of μ3-oxo trimers (M3+= Fe, Al, Sc) and the tri-

topic ligand 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoic acid (TATB), giving rise to a framework with 

two mesoporous cages of 42 and 55 Å in diameter (Figure 2-1).2 Contrary to many extended 

MOFs, PCN-333(Al) has been reported to have a very stable structure in aqueous solutions 

and in a large pH range (pH 3 and pH 9). This was attributed to the symmetry and the nature 

of the ligand. TATB as a free anion has an idealized D3h symmetry, due to its planarity. When 

incorporated into the framework of PCN-333, the symmetry of TATB is reduced to C3ν, due to 

a bowl-shaped bending. Nevertheless, the six oxygen atoms reside in the same plane, thanks 

to the presence of the triazine ring that give rise to a stable super tetrahedron (Figure 2-2).3 

This could possibly explain the difference in the stability of PCN-333 and the extended form 

of MIL-100, with the ligand 1,3,5-benzenetribenzoic acid (BTB) (named MIL-100-BTB).4 With 

BTB a co-planar symmetry is energetically disfavored due to the repulsions between the H 

atoms of the central benzene ring and the three peripheral rings,3 which leads to the fast 

degradation of the structure in aqueous solutions.4 

 

Figure 2-1: Schematic illustration of the construction of PCN-333 framework, with MTN topology. The combination 
of μ3-oxo trimers with the ligand TATB forms super tetrahedra (STs) of 11 Å in diameter. The self-assembly of the 
STs gives rise to two mesoporous cages of 42 and 55 Å. Adapted from2 

PCN-333(Al) has successfully been used for the inclusion of HRP, Cyt c and MP11 that all 

showed enhanced activities in organic solvents and good recyclability.2 Accordingly, the ultra-

large pores of PCN-333(Al) should permit high MP8 loadings, while the presence of two 

different cavities could allow the design of bi-enzymatic systems (e.g. co-immobilization of 

GOx). These results along with the reported water stability of PCN-333(Al), encouraged us to 

study this ultra-mesoporous MOF for the cage inclusion of MP8. 
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Figure 2-2: Symmetries of TATB in solution (D3h) and in PCN-333 with a bend geometry (C3ν). Adapted from3 

2. Synthesis and characterization of PCN-333(Al) 

The synthesis of PCN-333(Al) was initially carried out according to the already reported 

procedure.2 We first proceeded with the synthesis of the TATB ligand, as it is not commercially 

available, and then continued with the synthesis of the MOF. Due to reproducibility issues, a 

modified synthesis of PCN-333(Al) was finally used, as well as an optimized synthesis pathway 

for the ligand. 

TATB synthesis 

The two-step procedure for the synthesis of TATB is illustrated in Figure 2-3. It was obtained 

following an already reported synthesis that was slightly modified in order to obtain the pure 

ligand.2,3 At first, to a 100 mL three-necked flask 27 g of AlCl3 were dissolved in 50 mL dry 

toluene and heated at 60 oC. 8.3 g of 2,4,6-trichloro-1,3,5-triazine were added in the mixture 

portionwise over 1 h. The mixture was left overnight under stirring at 60 oC. The resulting 

reddish sticky oil was poured into 100 mL of ice-cooled distilled water to stop the catalytic 

activity of AlCl3 and was extracted with CHCl3 (~ 300 mL for 3 extractions). After removing the 

solvent under reduced pressure, the crude product was dissolved in a CH2Cl2/EtOH mixture 

(100 mL) and was allowed to recrystallize for 1 week. MeOH that was initially reported as a 

solvent to dissolve the crude product was replaced by CH2Cl2/EtOH that allowed both a better 

dissolution and a better separation from the unreacted precursors. The recrystallization step 

needed to be performed one more time in order to obtain white crystals of the 2,4,6-tri-p-

tolyl-1,3,5-triazine product (~5 g, yield: 32 %). 

 

Figure 2-3: Schematic illustration of the two-step synthesis of the ligand TATB. 



 

Page | 92 
 

Chapter 2 

Cage Inclusion of MP8 into Mesoporous MOFs 

In the next step, in a 500 mL three-necked flask, 1.5 g of 2,4,6-tri-p-tolyl-1,3,5-triazine were 

dissolved in 35 mL concentrated acetic acid (AcOH) and 2.2 mL concentrated H2SO4 were then 

added. A solution of 3.6 g CrO3 in 5 mL of acetic anhydride (Ac2O) was then added dropwise 

(exothermic reaction) to the reaction flask that was placed into an ice bath. After 1 h, the ice 

bath was removed and the mixture was allowed to stir overnight at RT. The resulting dark-

green slurry was poured into 125 mL of cold water and stirred for 1 h, in order to remove the 

excess of chromic acid. The product was separated by centrifugation and washed three more 

times with water. The light green solid was dissolved in 100 mL NaOH (2 M) and was filtrated 

to remove the unreacted 2,4,6-tri-p-tolyl-1,3,5-triazine. Finally, the solution was acidified to 

pH 1 with 6 M HCl, in order to precipitate the white TATB product. Recrystallization in DMF (2 

weeks) resulted in pure white crystals of TATB (~1.5 g, yield: 80 %). 

The purity of the products was confirmed by 1H NMR spectroscopy. Figure 2-4 shows the 1H 

NMR spectrum of the 2,4,6-tri-p-tolyl-1,3,5-triazine precursor in CDCl3. The single peak at 2.5 

ppm was assigned to the 9 equivalent protons of the methyl groups and the two doublets (6 

protons each) were assigned to the ortho and meta protons of the phenyl rings. The 1H NMR 

spectrum of the TATB ligand in DMSO-d6 is shown in Figure 2-5. The two doublets were 

assigned to the ortho and meta protons (6 equivalent per position) of the phenyl rings. 

 

Figure 2-4: 1H NMR spectrum of 2,4,6-tri-tolyl-1,3,5-triazine in CDCl3*. 
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Figure 2-5: 1H NMR spectrum of TATB in DMSO-d6. 

PCN-333(Al) synthesis 

PCN-33(Al) (formula: [Al3O(OH)(H2O)2(TATB)2]) was synthesized under solvothermal 

conditions, by dissolving 50 mg TATB (0.1 mmol) and 120 mg AlCl3∙6H2O (0.5 mmol) in 10 mL 

DEF (N,N-Diethylformamide). 1 mL trifluoroacetic acid (TFA) was added to the mixture (acidic 

modulator) and the autoclave was sealed and placed in an oven at 135 oC for 48 h. The 

resulting white solid was centrifuged and then washed several times with DMF. PCN-333(Al) 

was stored in DMF.2 

While the reported procedure by Feng et al., resulted in pure products with good crystallinity, 

the reaction was not reproducible. It was found that pre-heating the oven was a key 

parameter for the crystallization of PCN-333(Al). Due to these reproducibility issues, the 

synthesis was optimized, using the conditions reported for the extended MIL-100 series.4 The 

use of the acidic modulator, trifluoroacetic acid, was avoided because even though it can 

enhance the crystallinity of the framework, it is rather toxic. Finally, the modified synthesis 

was slightly scaled-up compared to the reported one, which allowed the formation of higher 

amounts of PCN-333(Al). 

The modified solvothermal synthesis involved the mixing of 308 mg TATB (0.7 mmol) with 241 

mg AlCl3∙6H2O (1 mmol) in 4 mL DMF. The reaction mixture was heated at 100 oC for 10 h, with 

a temperature ramp of 1 h. The white solid was centrifuged and washed several times with 

DMF, until it was finally stored in DMF. 
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Characterization of PCN-333(Al) 

The PCN-333(Al) products obtained by the two different synthetic routes were characterized 

by powder X-ray diffraction (PXRD), infrared spectroscopy (FT-IR), thermogravimetric analysis 

(TGA) and nitrogen porosimetry. 

Figure 2-6 shows the PXRD pattern of the PCN-333(Al) product, obtained using the modified 

synthesis, compared to that reported by Feng et al.2 and to the calculated pattern of PCN-

333(Al). The modified route resulted in a PCN-333(Al) framework with a lower crystallinity, 

which could be possibly assigned to the absence of trifluoroacetic acid during of the synthesis 

or to a lower particle size. No SEM analysis of the sample, that would have allowed the 

validation of the second hypothesis, was performed. Nonetheless, both patterns match the 

calculated pattern of PCN-333(Al). 

 

Figure 2-6: Normalized PXRD patterns of the PCN-333(Al) products obtained with the two different synthetic 
routes; Feng et al. synthesis (blue) and the modified synthesis (green), compared with the calculated patterns. 

The FT-IR spectra of the two PCN-333(Al) products and of the free TATB are shown in Figure 

2-7. A small band at 1700 cm-1 is present in the spectra of both products. It is characteristic of 

a ν(C=O) stretching mode that could be assigned to traces of unreacted ligand molecules or to 

DMF molecules in the pores of the MOFs. The complexation of the ligand to the metal center 

is confirmed by the presence of two new bands: the asymmetric ν(C-O)as=1600 cm-1 and the 

symmetric ν(C-O)s=1430 cm-1 stretching modes. Other vibration bands, characteristic of the 

free TATB, the ν(C-O)=1350 cm-1 stretching mode and the ν(C-O)=1280 cm-1 bending mode 

were not observed in the spectrum of PCN-333(Al)). 
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Figure 2-7: FT-IR spectra of the free TATB (black) and the two PCN-333(Al) products; Feng et al. (blue) and modified 
synthesis (green). 

The TGA curves for the two PCN-333(Al) products are shown in Figure 2-8. The first weight 

loss (≤ 100 oC) that corresponds to the removal of adsorbed solvent molecules is almost 

negligible for both products. The second weight loss that is observed after 100 oC and 

continues up to 350 oC corresponds to the release of coordinated solvent molecules, as well 

as solvent molecules and free ligand molecules entrapped in the pores. The degradation of 

the ligand and thus the destruction of the structure is observed for both cases at around 450 
oC, leaving a final Al2O3 residue. The table in Figure 2-8 shows the percentages of the ligand 

and metal oxide of the two products, without taking into account the water molecules or 

impurities on the frameworks. The experimental values indicate traces of metal oxide 

impurities in both products, which are however close to the calculated values. The calculated 

values were extracted by the formula: Al3OH(H2O)3O(TATB)2. 

Finally, the material prepared following the modified procedure was characterized by N2 

porosimetry whereas the sorption measurement could not be performed with the sample 

prepared by the Feng et al. procedure, due to the very low amounts of product obtained (< 

10 mg). As seen in Figure 2-9, under the reported activation conditions (150 oC/24 h, under 

secondary vacuum), a very low BET surface area was obtained (659 m2/g), compared to the 

reported one (4000 m2/g). 
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Figure 2-8: (a) TGA curves of the two PCN-333(Al) products under O2 flow; Feng et al. (blue) and modified synthesis 
(green); (b) Table with normalized values taking into account only the percentages of the ligand and the metal 
oxide. 

We therefore used as an alternative activation method, supercritical CO2 drying, a method 

that has been extensively used to access the total internal surface area of relatively unstable 

structures and for MOFs whose porosity is lost after solvent removal.5–7 Briefly, the solvent 

(DMF) that remains within the pores and stabilizes the MOF structure was exchanged with dry 

EtOH, which is miscible with CO2. The EtOH-exchanged powder was then placed in a chamber 

and the dry EtOH was exchanged with liquid CO2 for a period of 5 h. After the complete CO2 

exchange, the sample was sealed in the chamber and the temperature was raised to 40 oC, 

causing the increase of the pressure at around 88.4 atm, above the CO2 critical point (T = 31 
oC; P = 73 atm),5 and was maintained under these conditions for 1 h. Finally, the pressure of 

the chamber was slowly decreased down to atmospheric pressure and the N2 sorption of the 

sample was measured. This procedure allows a direct transition from the supercritical phase 

to the gaseous phase, which avoids the strong capillary forces and surface tension that are 

responsible for the decrease of the porosity.7 This supercritical CO2 activation resulted in a 

measured BET surface area of 2300 m2/g, which was significantly higher than the one obtained 

with the conventional activation (659 m2/g), but still much lower than the reported one (4000 

m2/g).2 
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Figure 2-9: N2 adsorption/desorption isotherms of PCN-333(Al) at 77 K; sample activation: 150 oC/24 h, under 
vacuum (light blue) and CO2 supercritical activation (dark blue). 

Stability of PCN-333(Al) 

As discussed above, due to the nature of TATB, PCN-333(Al) was reported to have an excellent 

chemical stability compared to that of its MIL-100-BTB analog. Given that the presence of 

modulators can change the structural properties and thus the stability of MOF’s frameworks,8–

10 the PCN-333(Al) obtained by the route reported by Feng et al. was selected for the stability 

tests. 

A common risk of ultra-large mesoporous MOF frameworks is the decrease of the porosity 

after the release of solvent molecules from the pores. We thus evaluated the stability of the 

PCN-333(Al) framework after drying at 100 oC overnight. As seen in Figure 2-9, no change in 

the PXRD diagram was observed, which confirms the previously stated importance of the 

triazine ring for the stability of the framework. Since PCN-333(Al) was selected as a potential 

support for the MP8 enzyme, it was crucial to confirm its stability in water. Briefly, 3 solutions 

containing each 20 mg of MOF in 10 mL H2O were prepared. The stability was monitored for 

10 min, 30 min and overnight (under stirring). The powders were recovered by centrifugation, 

dried at 100 oC for 1 h and then analyzed by PXRD. Figure 2-10 shows the obtained PXRD 

patterns. After only 10 min in H2O, the intensity of the first peaks of PCN-333(Al) decreases 

drastically. This is even more apparent after 30 min in H2O. These changes in the intensity of 

the peaks at small angles are similar to those that have already been observed for other 

mesoporous MOFs, in which the pores were occupied by large amounts of guest molecules (in 

this case H2O), which creates local disorder.11 Finally, when in contact with H2O overnight, no 

diffraction peaks were observed in the diagram, which may suggest that the structure of PCN-

333(Al) was destroyed. 
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Figure 2-10: Normalized PXRD patterns of PCN-333(Al) powder suspended in EtOH and dried at 100 oC, overnight. 

 

Figure 2-11: Normalized PXRD patterns of PCN-333(Al) after contact with water for different times. 

PXRD data without indexing are not sufficient to suggest the progressive degradation of the 

PCN-333(Al) framework into an amorphous solid. Additional characterizations would be 

required to confirm the poor stability of PCN-333(Al), like N2 porosimetry sorption 

measurements (possible decrease of porosity), SEM (textural changes of the particles), ICP 

analysis (concentration of Al3+ leached in H2O) etc… However, the observed poor quality of 

the PXRD data (severe decrease of intensity of Bragg peaks) is not consistent with the reported 

stability of PCN-333(Al).2 Moreover, this behavior in the presence of water constitutes a strong 

issue for the use of this material for the immobilization of the enzyme and the catalytic tests. 

The apparent low stability of extended PCN-333(Al) framework, along with the need for time-

consuming organic synthesis for the preparation of the ligand and the use of toxic, 

carcinogenic and corrosive compounds (e.g. 2,4,6-trichloro-1,3,5-triazine and CrO3) motivated 
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us to exclude this material and use instead ultra-stable mesoporous MOFs such as MIL-101 

(Cr) for further studies.11 

 

MIL-101(Cr) 

The next candidate for the cage inclusion immobilization was MIL-101(Cr), a chromium 

terephthalate mesoporous MOF that shows excellent chemical and thermal stability.11 

Moreover, it is synthesized from commercially available and inexpensive reactants. Different 

synthetic routes have been used for the synthesis of MIL-101(Cr),11–13 including a 5 min 

microwave-assisted hydrothermal synthesis (developed previously in the lab) that results in 

~70 nm nanoparticles.14 Details on the synthesis of MIL-101(Cr) as well as its use for the cage 

inclusion of MP8 are given in the article that follows. 
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Enzyme encapsulation in mesoporous Metal-Organic Frameworks for selective 

biodegradation of harmful dye molecules  

Introduction and contributions 

This work is described in the format of a research communication article, recently published 

in Angewandte Chemie International Edition (doi.org/10.1002/anie.201811327). 

The following paper describes the cage inclusion of microperoxidase 8 in nanoparticles of MIL-

101(Cr). MP8 was selected due to its exceptional, dual enzymatic activity (peroxidase-like 

activity and cytochrome P450-like activity) that is essential for the degradation of 

environmental pollutants such as the oxidative degradation of toxic organic dyes (e.g. methyl 

orange). However, MP8 suffers from several drawbacks: deterioration of the catalytic activity 

under acidic pH and oxidative conditions, dimerization of MP8 at concentrations above 2 µM, 

as well as low substrate selectivity. The objective of this work was to combine MP8 with MIL-

101(Cr) in order to optimize the stability and the catalytic properties of the enzyme. The MP8 

encapsulation in the mesoporous MOF led to a biocatalyst with enhanced long-term, 

recyclable catalytic activity under acidic or oxidative conditions. This was attributed to the 

isolation and confinement of MP8 inside the cavities of MIL-101(Cr), along with the excellent 

adsorption properties of MIL-101(Cr) that induced the selective and efficient degradation of 

dyes, through a charge-based pre-concentration mechanism. 

In this work, most of the synthesis and characterizations of nanoMIL-101(Cr) and the 

composite MP8@nanoMIL-101(Cr) were performed by me. The N2 sorption measurements 

were performed by Dr. A. Tissot. The SEM images were recorded by Dr. C. Livage and Dr. M. 

Benzaqui. The selective adsorption of dye molecules by MIL-101 materials has been studied 

initially by Dr. Q. Zhang. The ζ-potential measurements were performed by L. Benahmed that 

also helped me with the catalytic tests. The preparation, purification and characterization of 

MP8 were carried out by Dr. R. Ricoux and myself. The MALDI-TOF mass spectroscopy was 

performed by V. Guerineau. The ICP-OES measurements were carried out by F. Bourdreux. Dr. 

C. Sicard, Prof. N. Steunou, Prof. J.-P. Mahy, Dr. C. Serre and Dr. R. Ricoux strongly supervised 

the work and Dr. C. Sicard, with the help and corrections of all authors, wrote the article. 

  

https://doi.org/10.1002/anie.201811327
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B. Conclusions 

In this chapter, we focused our efforts on the investigation of different mesoporous MOFs to 

be used for the cage inclusion of microperoxidase 8. A 3D confinement of MP8 was preferred, 

as this procedure has already been shown to enhance the stability and protect immobilized 

enzymes. Moreover, the small size of MP8 was compatible with this approach. 

The first candidate for this work was the mesoporous PCN-333(Al), which has an extended 

MIL-100 structure. This MOF was selected due to its large cavities (42 and 55 Å) and its 

reported high stability in water (essential for biocatalytic applications). The reported synthetic 

procedure was not always reproducible, which forced us to optimize the synthetic conditions. 

However, based on the poor PCN-333(Al) stability in water, it was not found suitable for the 

immobilization of MP8. Therefore, the ultra-stable mesoporous MIL-101(Cr) was selected 

instead as an immobilization matrix for MP8. MIL-101(Cr) contains two mesopores (29 and 34 

Å) that can host the MP8 molecules. Nanoparticles of MIL-101(Cr) were thus used for the 

immobilization of MP8. The immobilized enzyme showed an enhanced stability under acidic 

environments and in the presence of oxidizing agents and was found to be reusable several 

times, which highlighted the protection of the enzyme by the 3D framework. Finally, the 

selective adsorption of dye molecules by the MIL-101(Cr), provided an enhanced catalytic 

activity for the biodegradation of harmful dye molecules (like methyl orange) through a 

charge-based pre-concentration mechanism. 

These results are promising for the use of Metal-Organic Frameworks as enzymatic matrices 

and encourage for the research of new, stable mesoporous frameworks. A more extensive 

study though is required to better define and possibly tune the interactions between the 

enzymes and the MOF frameworks. As we will see in the following chapter, the ligand 

functionalization of MIL-101(Cr) can influence the immobilization and reactivity of the 

enzymes, highlighting the importance of interactions between the enzymes and the support. 
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Introduction 

This chapter deals with the functionalization of MIL-101(Cr) and with its influence on the 

encapsulation of microperoxidase 8 (MP8) and its catalytic activity. Two different approaches 

have been investigated, the ligand functionalization and the metal functionalization of the 

framework. For the first approach, two functionalized ligands have been selected, 2-amino-

terephthalic acid and 2-sulfo-terephthalic acid. The functionalized MOFs have then been used 

for the encapsulation of MP8. The catalytic activity of the obtained bio-hybrid materials was 

examined first by the oxidation of a typical peroxidase chromogenic substrate (ABTS) and, 

second, via a more challenging reaction, the oxidation of organosulfur compounds. The 

resulting catalytic activities have been compared to those of MP8@MIL-101(Cr) and of the 

free enzyme. Concerning the functionalization of the metal cluster, the objective was the 

partial substitution of the inorganic chromium(III) Secondary Building Unit (SBU) with iron(III) 

in order to obtain a stable mesoporous and catalytically active structure (as Lewis acid and/or 

peroxidase-like catalyst). The attempts to obtain pure phases of MIL-101(Cr/Fe), using greener 

and milder synthetic conditions will be presented, along with the chemical stability study of 

the MOF. 
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A. Ligand functionalization in MIL-101(Cr) 

Introduction and contributions 

This work is presented in the format of a research article that will soon be submitted for 

publication. 

The following paper describes our studies on the effect of ligand functionalization in MIL-

101(Cr) on the immobilization process of MP8 and on the resulting catalytic activities. Two 

different functionalized MOFs were selected, MIL-101(Cr)-NH2 and MIL-101(Cr)-SO3H and 

were compared to the non-functionalized MIL-101(Cr). The choice of the functional groups 

was based on their difference in polarity, acidity and the particles’ surface charge that could 

lead to different interactions with the MP8 molecules. MP8 loadings higher than those in MIL-

101(Cr) were observed in the functionalized MOFs, which could be due to the enhanced 

adsorption of some enzyme molecules at the external surface of the MOFs through additional 

specific interactions (H-bonding, additional electrostatic interactions etc…). The catalytic 

activity of the composites and of the free MP8 was evaluated both in the oxidation of a typical 

peroxidase substrate (ABTS) and in a more challenging reaction, the oxidation of thioanisole 

derivatives by hydrogen peroxide. MP8@MIL-101(Cr) and MP8@MIL-101(Cr)-NH2 showed 

similar catalytic activities, due to the similar microenvironment of their structures in terms of 

surface charge and acidity, whereas MP8@MIL-101(Cr)-SO3H showed a poor catalytic activity 

probably due to its high acidity, which may have led to the deactivation of MP8. 

In this work, the preparation, purification and characterization of MP8 were carried out by Dr. 

R. Ricoux and myself. Most of the synthesis and characterizations of MIL-101(Cr)-X and the 

composites MP8@MIL-101(Cr)-X were performed by me. The Raman measurements were 

performed by Dr. I. Stenger. The synthesis optimization of MIL-101(Cr)-SO3H was carried out 

by N. Ayoub. S. Salas assisted me with the catalytic tests of ABTS. The SEM images were 

recorded by Dr. F. Nouar. Dr. R. Ricoux and Kalani Kariyawasam-Bowithanthri assisted me with 

the sufloxidation reactions. The ICP-OES measurements were carried out by F. Bourdreux. Dr 

C. Sicard, Dr. R. Ricoux Prof. J.-P. Mahy, Prof. N. Steunou and Dr. C. Serre strongly supervised 

the work and Dr. C. Sicard and I, with the help and corrections of all authors, wrote the article. 

 

  



 

Page | 129  
 

Chapter 3 

Influence of MIL-101(Cr) functionalization on enzymatic immobilization and catalysis 

Influence of MIL-101(Cr)-X functionalization on enzymatic immobilization and 

their efficiency for sulfoxidation reactions 

Effrosyni Gkaniatsou, Rémy Ricoux,* Narjès Ayoub, Samanta Salas, Kalani Kariyawasam-

Bowithanthri, Ingrid Stenger, Christian Serre, Jean-Pierre Mahy, Nathalie Steunou, Clémence 

Sicard* 

 

N. Ayoub, S. Salas, E. Gkaniatsou, Dr. C. Sicard, Pr. N. Steunou 

Institut Lavoisier de Versailles, UVSQ, CNRS, Université Paris-Saclay, Versailles, France. 

clemence.sicard@uvsq.fr 

 

Dr. I. Stenger 

Groupe d'étude de la matière condensée, UVSQ, CNRS, Université Paris-Saclay, Versailles, 

France. 

 

K. Kariyawasam-Bowithanthri, Dr. R. Ricoux, Pr. J.P. Mahy 

Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des 

Matériaux d’Orsay, UMR 8182, Université Paris Sud, Université Paris-Saclay, Orsay, France. 

remy.ricoux@u-psud.fr 

 

Dr. C. Serre 

Institut des Matériaux Poreux de Paris, FRE 2000 CNRS Ecole Normale Supérieure, Ecole 

Supérieure de Physique et de Chimie Industrielles de Paris, PSL Research University, Paris, 

France. 

  

mailto:clemence.sicard@uvsq.fr
mailto:remy.ricoux@u-psud.fr


 

Page | 130 
 

Chapter 3 

Influence of MIL-101(Cr) functionalization on enzymatic immobilization and catalysis 

1. Introduction 

Organosulfur compounds are common pollutants of wastewaters and fossil fuels. Their 

presence in the latter is a significant issue as their combustion results in the emission of toxic 

SOx compounds. Therefore, desulfurization is often required and vast research has been 

conducted on the topic.1,2 Among the developed techniques, oxidation has appeared as 

sustainable process that can also yield compounds that are of great importance for the 

synthesis of fine chemicals, biological active compounds, chiral auxiliaries etc.3–6 A variety of 

catalysts has been employed over the years for such transformations, like polyoxometallates,7 

Schiff-base complexes8 and titanium oxide.9 Among them, peroxidase enzymes represent a 

very promising class of bio-catalysts, as they combine environmental friendly operational 

conditions and high selectivity.10,11 However, a drawback of most peroxidases is their low 

operational stability, as a result of an easy oxidative degradation by H2O2 (natural co-

substrate) and denaturation under acidic conditions.12 Their difficult recovery and reusability 

may also hamper their application. These problems can be circumvented by their 

immobilization on solid supports, which provides the benefits of heterogeneous catalysis 

(recycling, shaping…) and may protect the enzyme from the operational conditions. 

Traditional inorganic and organic supports (sol-gel glasses, synthetic polymers, biopolymers) 

have been used to enhance the activity of peroxidases, during the oxidation of sulfides.13–15 

The combination of several supports may however be required to obtain hybrid matrices that 

address stability and leaching issues.16,17 Besides, most of these materials do not present any 

long-range order, thereby limiting any control over the distribution of enzymes. 

Recently, Metal-Organic Frameworks (MOFs), a class of hybrid crystalline porous materials, 

have been highlighted as promising immobilization matrices.18–21 MOFs are built-up from the 

assembly of inorganic units and polytopic organic ligands. They combine the advantages of 

organic and inorganic supports, providing specific interactions with enzymes and robust 

structures. Their high surface area and porosity can ensure homogeneous immobilization of 

biomolecules with high loadings. Several immobilization techniques have been developed, but 

the entrapment of enzymes inside the porosity of preformed MOFs (i.e. cage inclusion) has 

been largely preferred for biocatalytic applications, since the 3D confinement of enzymes 

provides enhanced protection and stabilization.22–24 The first studies were mainly focused on 

the biocatalysis of model reactions, with typical chromogenic substrates (e.g. 3,5-dit-butyl-

catechol (DTBC), p-nitrophenyl butyrate (PNPB), 2,2'-azino-bis(3-ethylbenzothiazoline-6-

sulphonic acid) (ABTS), etc.).22,25,26 Only very recently, more challenging reactions such as 

nerve agent detoxification27 and tumor specific prodrug activation28 have been reported.  

In this work, Microperoxidase 8 (MP8), a small heme octapeptide, was selected as a mini 

peroxidase enzyme that was shown to be able to catalyze the oxidation of sulfides in the 

presence of H2O2.29 MP8 derives from the hydrolytic digestion of bovine Cytochrome c (Cyt c) 

and contains the amino acid residues 14 to 21 of Cyt c and the heme prosthetic group, whose 

iron(III) ion is bound to His 17 of this octapeptide. MP8 possesses a dual catalytic activity 

(peroxidase- and Cytochrome P450-like reactions) that allows the selective oxidation of 
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organosulfur compounds.29 However, the catalytic activity of MP8 is usually hampered by high 

concentrations of H2O2 and acidic conditions.30 We have recently demonstrated that MP8 

encapsulation in nanoparticles of MIL-101(Cr) enabled its protection and stabilization, under 

these conditions.31 It was thus of interest to investigate the activity of MP8 encapsulated in 

MIL-101(Cr) for the catalysis of a more challenging reaction such as sulfoxidation. Accordingly, 

the oxidation of sulfides such as thioanisole derivatives by hydrogen peroxide was studied. 

The reactivity of para-substituted thioanisole derivatives is known to increase with electron 

donating groups and decrease with electron withdrawing groups as a result of the modulation 

of the electronic density on the sulfur atom.32 Several thioanisole derivatives bearing 

substituting groups: -H, -OCH3 (strong activator via resonance effect), -CH3 (weak activator via 

inductive effect) and -NO2 (strong deactivator via resonance and inductive effect) were thus 

selected to study their influence on the catalytic activity of free and immobilized MP8. 

Furthermore, while some key parameters for designing optimized MOF-enzyme systems have 

been highlighted, the influence of pending functional groups in the MOF frameworks on the 

stability and activity of encapsulated enzymes has been rarely investigated. Functional groups 

may promote stabilizing interactions between the MOF and the enzyme, enabling higher 

loadings and/or enhancing its catalytic activity. Among the important factors for the selection 

of MOF matrices for the cage inclusion of enzymes, three criteria appeared as critical. The size 

matching between the enzyme size and the pores apertures is a prerequisite for a successful 

immobilization. The presence of interconnected hierarchical porosity that allows enzyme 

encapsulation in larger pores, while preserving a free porosity for the diffusion of substrates 

was shown to lead to biocatalysts with superior performances than isolated 1-D channel 

porous system.25 Finally, MOFs nanoparticles have been shown to favor substrate diffusion 

compared to micron-sized MOFs.33 All of the aforementioned requirements are fulfilled by the 

water stable nanoMIL-101(Cr) material.34 MIL-101(Cr) has a high hierarchical, interconnected 

mesoporosity (cages of 2.9 nm and 3.4 nm) (Figure 3-1), compatible with the size of MP8 (3.3 

× 1.1 × 1.7 nm). Once the enzyme is immobilized, part of the porosity can remain accessible 

for the diffusion of substrates. Interestingly, various functionalized MIL-101(Cr) analogs (some 

of at the nanoscale) had already been reported.35–37 Among them, we focused on MIL-101(Cr) 

bearing hydrophilic substituents to induce a good affinity with the hydrophilic MP8 enzyme.38 

On the contrary, hydrophobic environments can promote the denaturation of hydrophilic 

enzymes.39 MIL-101(Cr)-NH2 was selected due to the potential interactions between the 

MOF’s amino groups and the four free carboxylic acid groups of MP8. To complement the 

study, another functionalized MOF, MIL-101(Cr)-SO3H was taken for its different acidic 

properties. MP8 was encapsulated in the three MOFs. MP8@MIL-101(Cr)-X (X = H, NH2, SO3H) 

materials were structurally characterized and Raman spectroscopy was employed to 

investigate the structure of the MP8 molecules after their immobilization. The catalytic 

activity of the MP8@MIL-101(Cr)-X along with the protecting effect of the MOF matrices 

against acidic conditions were evaluated first toward the oxidation of a typical peroxidase 

substrate, 2,2´-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). Their catalytic 
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activity toward the oxidation of thioanisole derivatives with various electron donating and 

electron withdrawing groups was also studied in a second time. 

2. Experimental Section 

Materials 

All chemicals were purchased from commercial sources and used without any further 

purification: Cr(NO3)3∙9H2O (98.5% Alfa Aesar), terephthalic acid (98 %, Sigma Aldrich), 2-

animoterephthalic acid (> 98 %, TCI Chemicals), 2-sulfoterephthalic acid monosodium salt (> 

98 %, TCI Chemicals), Cytochrome c from bovine heart (≥ 95 %, Sigma-Aldrich). Thioanisole (> 

99 % TCI Chemicals), 4-nitrothioanisole (99 %, ACROS Organics), 4-methylthioanisole (> 99 %, 

TCI Chemicals), and 4-methoxythioanisole (99 %, ACROS Organics). 

Synthesis of MOFs 

MIL-101(Cr) was synthesized following a reported microwave-assisted hydrothermal 

synthesis.34 MIL-101(Cr)-NH2 was synthesized following a reported hydrothermal synthesis.35 

For the synthesis of MIL-101(Cr)-SO3H, 400 mg of Cr(NO3)3∙9H2O (1 mmol) and 840 mg of 2-

sulfoterephthalic acid (3 mmol, BDC-SO3H) were added in a 15 mL Teflon reactor and dissolved 

in 5 mL of a 27 mM tetramethylammonium hydroxide (TMAOH) solution. The reaction mixture 

was heated under autogenous pressure at 190 °C for 24 h. After cooling at room temperature, 

the solid product was isolated by centrifugation and washed three times with H2O and three 

times with absolute ethanol. The resulting particles were kept as a suspension in ethanol. 

Synthesis of Microperoxidase 8 

MP8 was prepared and purified as described previously in the literature.40 Briefly, 400 mg of 

Cyt c were mixed with 10.4 mg of pepsin and dissolved in 5 mL of H2O. The pH of the solution 

was adjusted to 2.6 with HCl (1 M). The mixture was incubated for 1 h at 37°. After a second 

addition of 10.4 mg of pepsin, the pH was adjusted to 2.6. The incubation continued for 5 h 

and the main product of the reaction was microperoxidase 11 (MP11). The pepsin activity was 

quenched by raising the pH to 9 with NH4HCO3 solution (1 M). 8 mg of trypsin were then added 

for the digestion of MP11 to MP8 and the mixture was incubated at 37°C overnight. MP8 was 

collected from the reaction mixture by gel filtration chromatography (biogel P6; 4 × 100 cm). 

The purified MP8 was lyophilized and stored at 4°C. The concentration of the MP8 solutions 

were calculated using the reported extinction coefficient, ε396 = 1.57 × 105 M-1∙cm-1.40 

Characterizations 

Powder X-ray diffraction was carried out with a Siemens D5000 diffractometer (θ-2θ), with Cu 

radiation. Infrared spectra were collected with a ThermoScientificNicolet 6700 FT-IR. 

Thermogravimetric analyses (TGA) were performed on a Mettler Toledo TGA/DSC 1, 

STAR®System apparatus under O2 flow between room temperature and 700 °C, with a heating 

speed of 3 °C/min. Micro-Raman spectra were collected on a Horiba Jobin Yvon Labram HR 

8500 (confocal) spectrometer, with an excitation wavelength of 488 nm and P=1.175 mW. 
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Scanning electron microscopy (SEM) images were recorded on a JEOL JSM-7001F microscope, 

using gold-coated samples. Dynamic light scattering (DLS)/ζ-potential measurements were 

performed on a Malvern Instrument Zetasizer Nano ZS. Inductively coupled plasma optical 

emission spectroscopy (ICP-OES) was carried out with an Agilent 720 Series with axially-

viewed plasma and with a Cr/Fe calibration curve of 50-30,000 ppb. Ultraviolet–visible (UV-

vis) spectra were collected on a PerkinElmer LAMBDA 750 UV/Vis/NIR Spectrophotometer. 

Gas chromatography analyses were performed with a SHIMADZU GC-2014A, equipped with a 

Zebron ZB Semi Volatiles column (30 m × 0.25 mm × 0.25 mm). 

ζ-potential measurements 

The ζ-potential of MP8 and MIL-101(Cr)-X particles as a function of pH were measured with 

aqueous suspensions of 0.1 mg/mL. Prior to each measurement, the sample was sonicated in 

an ultrasonic bath for 15 min for complete dispersion of the nanoparticles. 

Immobilization of MP8 into MIL-101(Cr)-X 

An aqueous solution of MP8 (1 mg/mL) was mixed with the respective MIL-101(Cr)-X particles, 

suspended in ethanol (5 mg/mL). The pH of the mixtures was adjusted at pH 5 for MIL-101(Cr) 

and MIL-101(Cr)-NH2, and at pH 3 for MIL-101(Cr)-SO3H. The mixtures were incubated at 37°C 

and gently shaken for 48 h. The immobilized MP8@MIL-101(Cr)-X catalysts were washed 

several times with H2O to remove loosely bound enzyme molecules from the MOF surface and 

were stored at 4°C in aqueous suspensions. The MP8 loadings were evaluated by inductively 

coupled plasma - optical emission spectrometry (ICP-OES), through the quantification of Cr 

and Fe concentrations derived from the MOFs and the enzyme, respectively (samples 

preparation is described in SI). 

Imidazole coordination studies 

The reactions were performed with 1 μΜ catalyst (free MP8, MP8@MIL-101(Cr) and 

MP8@MIL-101(Cr)-SO3H) in the presence of increasing concentrations of imidazole (ImH) in 

phosphate buffer (0.01 M) at pH 7. With ImH addition, the initial maximum absorbance 

wavelength of MP8-Fe(III) (λmax= 396 nm) progressively shifted to λmax= 404 nm, due to the 

formation of the MP8-Fe(III)(ImH) complex.41 

Oxidation of ABTS by free MP8 and MP8@MIL-101(Cr)-X 

The catalytic activity of the free MP8 and MP8@MIL-101-X was evaluated using a typical 

peroxidase substrate 2,2´-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), which 

was catalytically oxidized in the presence of H2O2 into the ABTS˙+. The activity was measured 

by monitoring the increase in absorbance at 420 nm over time, due to the formation of ABTS˙+ 

(ε420=3.6 × 104 M-1∙cm-1).42 The reactions were typically performed with 2 mM ABTS, 0.35 μΜ 

MP8 (free MP8 and MP8@MIL-101-X), 0.1-1.8 mM H2O2 in citrate buffer (0.01 M) at pH 5 or 

in phosphate buffer (0.01 M) at pH 7 at room temperature with a total volume of 3 mL. The 

total reaction time was fixed to 300 sec. The reaction rates were calculated by the slope of the 

absorbance (at 420 nm) over time for the first 20 sec of the reaction. 
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Sulfoxidation reactions catalyzed by free and immobilized MP8@MIL-101-X 

Typically, the reactions were performed with 1 mM of the respective thioanisole substrate 

(thioanisole, 4-nitrothioanisole, 4-methylthioanisole, and 4-methoxythioanisole), 1 μΜ MP8 

(either as free MP8 or MP8@MIL-101-X), and 0.5 mM H2O2 in a mixture 80:20 v/v phosphate 

buffer (0.01 M, pH 7):CH3CN, at room temperature, under stirring with a total volume of 0.5 

mL. The total reaction time was fixed to 1 h. Acetophenone was added after 1 h as the internal 

standard for GC analysis. The sulfoxidized products were collected by extracting the organic 

phase with ethyl acetate and analyzed by GC. Retention times of respective sulfoxides: 7.4 

min (thioanisole), 9.2 min (4-nitrothioanisole), 8.4 min (4-methylthioanisole) and 9.6 min (4-

methoxythioanisole) and 4 min for internal standard. 

3. Results and Discussion 

MIL-101(Cr)-X 

MIL-101(Cr) and two functionalized forms were selected, MIL-101(Cr)-NH2 and MIL-101(Cr)-

SO3H, based on their difference in polarity and acidity as well as the surface charge of particles. 

These physico-chemical properties of MOFs may affect their interaction with MP8. MIL-

101(Cr) and MIL-101(Cr)-NH2 (Figure 3-1) were synthesized following already reported 

protocols.34,35 For MIL-101(Cr)-SO3H, a novel synthetic protocol was developed to avoid the 

use of toxic chemicals (e.g. Cr(VI) - CrO3
43 or hydrofluoric acid44) and reduce the reaction time. 

The synthetic conditions were based on the protocol of MIL-101(Cr) reported by Yang et al, 

involved the use of tetramethylammonium hydroxide (TMAOH) as a base to increase the 

reaction pH to 6, improve the solubility of terephthalic acid and thus the sample crystallinity.45 

The nature of the chromium precursor (Cr(NO3)3∙9H2O) as well as the metal 

cation:ligand:TMAOH molar ratio were found to be key parameters for the successful 

synthesis of MIL-101(Cr)-SO3H. 

 

Figure 3-1: Structure of MIL-101(Cr)-X (X= -H, NH2, -SO3H) with an MTN topology, containing interconnected cages 
with diameters of 34 and 29 Å, respectively. 

As indicated from the X-ray powder diffraction (XPRD) patterns in Figure 3-2, the diffraction 

peaks of MIL-101(Cr)-X are in agreement with the calculated pattern of MIL-101(Cr). The main 
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difference between the MIL-101(Cr)-X analogs concerns the crystallinity that was lower for 

MIL-101(Cr)-NH2 and higher for MIL-101(Cr)-SO3H. The broad peaks are consistent with the 

small particle size: ~50 nm for MIL-101(Cr), ~ 70 nm MIL-101(Cr)-NH2 and ~200 nm for MIL-

101(Cr)-SO3H, as indicated by SEM images in Figure S1. The particle size of these MOFs are in 

the nanoscale, which favors the diffusion kinetics of the reactants in the catalytic process.23,33 

MIL-101(Cr)-SO3H was further characterized by elemental analysis (C: 29.4 ± 0.3 % and S: 6.4 

± 0.1 %), indicating that 64 % of the ligands in the MOF’s framework contained the sulfonic 

groups. The incomplete substitution can be explained by the partial degradation of some 

sulfonic groups during the synthesis of the MOF. Moreover, the purity of the starting ligand 

(98%) could also influence this substitution, since the functionalized and non-modified ligand 

may not present the same reactivity. 

 

Figure 3-2: PXRD patterns prior and after immobilization of MP8 of MIL-101(Cr), MIL-101(Cr)-NH2, MIL-101(Cr)-
SO3H and the calculated pattern of MIL-101(Cr). 

MP8 immobilization within MIL-101(Cr)-X 

Prior to the immobilization, the possible electrostatic interactions between MP8 molecules 

and MOF particles were evaluated by measuring the ζ-potential as a function of pH, as shown 

in Figure 3-3. MIL-101(Cr) and MIL-101(Cr)-NH2 were positively charged under acidic 

conditions. This positive charge may be attributed to the carboxylic acid groups and the water 

molecules coordinated to the open metal sites.46 For MIL-101(Cr)-NH2 the positive charge 

under acidic conditions can also arise from the protonation of the amino group. The point of 

zero charge was found to be 7 for MIL-101(Cr) and 8 for MIL-101(Cr)-NH2. The particle charge 

of MIL-101(Cr)-SO3H was negative over the whole pH range due to the presence of the 

negatively charged SO3
- groups. In the case of MP8 (Figure 3-4), a positive charge was observed 
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at pH ≤ 4, due to the protonation of the proximal His18 in agreement with the pKα1 = 4.4 

reported in the literature.47 Above this pH, MP8 showed a negative charge since the carboxylic 

acid groups of the enzyme and the water molecule, coordinated to the sixth axial position of 

Fe(III), were deprotonated (Figure S2). 

 

Figure 3-3: ζ-potential measurements of MP8 (red circles), MIL-101(Cr) (blue diamonds), MIL-101(Cr)-NH2 (green 
squares) and MIL-101(Cr)-SO3H (purple triangles) as a function of pH. Errors bars are the standard deviation of 
three measurements. 

 

Figure 3-4: Molecular structure of microperoxidase 8, containing an Fe(III) porphyrin and the amino acid residues 
14-21 of Cytochrome c (Structural data were obtained from the structure resolution of PDB∙1OCD).48 Schematic 
representation of the immobilization process: at pH 3, MP8 is positively charged and can be immobilized in the 
negatively charged MIL-101(Cr)-SO3H, whereas at pH 5 MP8 is negatively charged and can be immobilized in the 
positively charged MIL-101(Cr) and MIL-101(Cr)-NH2. 

The MP8 immobilization was performed by simply mixing MP8 with MIL-101(Cr)-X at room 

temperature for 48 hours. Based on the ζ-potential measurements, the pH was fixed to 5, 

where attractive electrostatic interactions between MP8 and MIL-101(Cr), MIL-101(Cr)-NH2 

are present. The MP8 loadings of the resulting MP8@MIL-101(Cr)-X materials were 

determined experimentally by inductively coupled plasma atomic emission spectroscopy (ICP-

OES) based on the ratio of Fe and Cr found in MP8 and MIL-101(Cr)-X. The MP8 loadings were 

also confirmed from the remaining MP8 amounts in the supernatants measured by UV-Vis 
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spectroscopy. As seen in Table 3-1, at pH 5, a 5 % w/w loading of MP8 was measured in the 

MP8@MIL-101(Cr) material, while a higher content of 8.1 % w/w was found in MP8@MIL-

101(Cr)-NH2. The encapsulation of MP8 in MP8@MIL-101(Cr)-SO3H at pH 5 was not successful. 

This is consistent with repulsive coulombic interactions between MP8 and MIL-101(Cr)-SO3H, 

since they were both negatively charged at pH 5. The immobilization was thus performed at 

pH 3, where opposite charges between MP8 and MIL-101(Cr)-SO3H were observed (Figures 3-

3 and Figure 3-4). The obtained MP8@MIL-101(Cr)-SO3H showed a higher loading of 7.2 % 

w/w, demonstrating that coulombic interactions are an important driving force in the 

immobilization procedure. The higher loading of MP8 in functionalized MOFs than in the bare 

MIL-101(Cr) was not expected when considering the reduced free volume of the cages of 

functionalized MOFs resulting from the presence of the pending functional groups. Therefore, 

this higher enzyme loadings may result from the presence of strongly anchored MP8 

molecules at the external surface of MOFs, due to specific interactions (H-bonding, additional 

electrostatic interactions etc…) between the -NH2/NH3
+ and - SO3

- groups and the enzyme 

molecules. These results are in agreement with previous immobilization studies, in which the 

amino-functionalization of porous matrices resulted in higher enzyme loadings.49 On the 

contrary, any MP8 molecules loosely bound at the external surface of the bare MIL-101(Cr) 

could be successfully removed by the washing procedure of the particles, leaving only the MP8 

molecules that were confined inside the porosity. 

Table 3-1: MP8 loading in MIL-101(Cr)-X determined by ICP-OES 

Catalyst MP8 loading (w/w %) 
MP8@MIL-101(Cr) 5.0 ± 0.3 
MP8@MIL-101(Cr)-NH2 8.1 ± 0.5 
MP8@MIL-101(Cr)-SO3H (pH 2) 7.2 ± 0.1 
MP8@MIL-101(Cr)-SO3H (pH 5) - 

 

Characterization of MP8@MIL-101(Cr)-X 

As revealed from the PXRD patterns shown in Figure 3-2, the crystalline structure of MIL-

101(Cr)-X was preserved after immobilization of MP8 molecules. The UV-vis spectra (Figure 

S3) showed the characteristic Soret band of MP8 at 396 nm for MP8@MIL-101(Cr) and MIL-

101(Cr)-SO3H, which confirmed the presence of immobilized MP8 molecules. The MP8 Soret 

band could not be clearly distinguished in MP8@MIL-101(Cr)-NH2 as it superimposed with a 

broad band arising from the MOF in the 356-400 nm range. From the FT-IR spectra (Figure S4), 

once immobilized in the MIL-101(Cr)-X particles, the characteristic amide I, amide II and amide 

III vibrations of MP8 (1652, 1540 and 1413 cm-1, respectively) could not be clearly observed, 

as they overlap with the carboxylate vibration bands (ν(CO)as 1628, ν(CO)s 1394 cm-1) of the 

MOFs. However, a slight broadening of the bands in 1620-1510 cm-1 region was observed for 

MIL-101(Cr) and MIL-101(Cr)-NH2 that may be attributed to the presence of MP8 molecules. 

Raman spectroscopy was employed in order to further examine the presence of MP8 

molecules in the MOF particles and investigate possible interactions. Figure 3-5 shows the 



 

Page | 138 
 

Chapter 3 

Influence of MIL-101(Cr) functionalization on enzymatic immobilization and catalysis 

Raman spectra of free MP8, MIL-101(Cr)-X and MP8@MIL-101(Cr)-X and the detailed 

attributions of the bands are reported in Table S1. The spectra of MP8@MIL-101(Cr)-X showed 

the presence of characteristic vibration modes of both the MP8 and MIL-101(Cr)-X and thus 

confirmed the immobilization of MP8 in all MOF particles. Note that, due to the low 

crystallinity of MIL-101(Cr)-NH2, its vibration bands are broad and cannot be clearly identified. 

MIL-101(Cr), MIL-101(Cr)-NH2, and MIL-101(Cr)-SO3H exhibited vibrations characteristic of the 

carboxylate stretching mode (1615, 1580 and 1607 cm-1, respectively) and two stretching 

modes of the ν(C=C) of the aromatic system (1453/1154 cm-1, 1393/1139 and 1445/1143 cm-

1, respectively). The spectra of MIL-101(Cr) and MIL-101(Cr)-SO3H display also the symmetric 

stretching band ν(Cr-O) of the chromium trimers (869 and 811 cm-1, respectively).50 In the case 

of MIL-101(Cr)-SO3H, two additional bands at 1100 cm-1 and 763 cm-1 can be assigned to the 

ν(S=O) and ν(C-S) modes of the sulfonic groups. The frequencies of the skeletal stretching 

modes of the heme in MP8 are located in the high-frequency region between 1300 and 1600 

cm-1.41 The bands related to the Fe(III) coordination and spin state, ν10, ν3, and ν2, are 

summarized in Table 3-2 (Figure S5).51 In the spectrum of free MP8, these vibration bands 

were indicative of the presence of both penta-coordinated high-spin (5C-HS) and hexa-

coordinated low-spin (6C-LS) iron species. The 5C-HS form corresponds to the monomeric 

form of MP8, whereas the 6C-LS form could be attributed to intermolecular bonding between 

MP8 molecules (large aggregates).41,52 The oxidation state marker band, ν4, was surprisingly 

observed for free MP8 at 1359 cm-1, which is characteristic of a reduced Fe(II)MP8, instead of 

~1370 cm-1 as expected for Fe(III)MP8.53 The reduction of Fe(III) center to Fe(II) in free MP8 

was possibly due to the laser irradiation of the sample, as similar changes have been reported 

for other heme containing enzymes.54 The ν10, ν3, and ν2 modes of MP8@MIL-101(Cr)-X are 

characteristic of iron 5C-HS species, although not all modes were visible due to overlapping 

with the MIL-101(Cr)-X modes. It may suggest that the immobilized MP8 molecules were 

mainly in the monomeric form and thus their dispersion in the MOF frameworks avoided their 

aggregation. Moreover, the ν4 modes of MP8@MIL-101(Cr) and MP8@MIL-101(Cr)-SO3H 

indicated a Fe(III) oxidation state for MP8 (1371 cm-1) that is thus not reduced under the laser 

irradiation, suggesting a protection of MP8 by its encapsulation into the MOF. Other 

characteristic modes of MP8, ν29 and ν21 (1398 and 1313 cm-1), were slightly shifted in the 

cases of MIL-101(Cr) (1405 and 1309 cm-1) and MIL-101(Cr)-SO3H (1404 and 1309 cm-1), 

indicating interactions between the MP8 molecules and the frameworks.55 
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Figure 3-5: Raman spectra of (a) free MP8 (red), MP8@MIL-101(Cr) (grey) and MIL-101(Cr) (blue); (b) free MP8 
(red), MP8@MIL-101(Cr)-NH2 (orange) and MIL-101(Cr)-NH2 (brown); (c) free MP8 (red), MP8@MIL-101(Cr)-SO3H 
(green) and MIL-101(Cr)-SO3H (purple). 
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Table 3-2: High-frequency Raman modes (cm-1) of free MP8 and immobilized MP8@MIL-101(Cr), MP8@MIL-
101(Cr)-NH2 and MP8@MIL-101(Cr)-SO3H 

Catalyst 

Hexacoordinated  

low-spin state 

Pentacoordinated  

high-spin state ν4 

ν10 ν3 ν2 ν10 ν3 ν2 

MP8 1639 - 1585 1620 1456 1565 
1359 

(Fe2+) 

MP8@MIL-101(Cr) 
Overlap 

ν(C-O) 

Overlap 

ν(C=C) 
- 

Overlap 

ν(C-O) 

Overlap 

ν(C=C) 
1572 

1371 

(Fe3+) 

MP8@MIL-101(Cr)-NH2 - - 
Overlap 

ν(C-O) 
1622 1451 

Overlap 

ν(C-O) 
- 

MP8@MIL-101(Cr)-SO3H - 
Overlap 

ν(C=C) 
- 1629 

Overlap 

ν(C=C) 
1568 

1371 

(Fe3+) 

 

Accessibility of immobilized MP8 

The sixth axial position of Fe(III) in MP8 is generally occupied by a water molecule and it can 

easily be replaced by ligands with high binding affinity for the Fe(III) such as imidazole (ImH). 

ImH has been used in previous studies56 to evaluate the accessibly of the Fe center of MP8 as 

its coordination to the Fe(III) results in a spectral evolution that can be easily monitored by 

UV-vis spectroscopy. The Soret band at 396 nm of free MP8 gradually red shifts to 404 nm due 

to the formation of MP8Fe(III)(ImH) complex. The accessibility of Fe(III) was evaluated for free 

MP8, and for the immobilized MP8@MIL-101(Cr) and MP8@MIL-101(Cr)-SO3H. MP8@MIL-

101(Cr)-NH2 was not studied due to its poor crystallinity. For all samples, a red shift was 

observed upon addition of imidazole, in agreement with the formation of MP8Fe(III)(ImH), 

thereby indicating that the Fe center of MP8 remained accessible upon immobilization (Figure 

S6). The amounts of imidazole needed to reach the complete coordination of the MP8 Fe(III) 

center was 0.57, 3.7 and 7.83 mM for MP8, MP8@MIL-101(Cr) and MP8@MIL-101(Cr)-SO3H, 

respectively. The higher amount of imidazole required for the immobilized MP8 suggested 

diffusional limitations, which was consistent with the inclusion of MP8 inside the 

mesoporosity of MIL-101(Cr)-X. However, the imidazole concentration required for the 

complete MP8 complexation in MP8@MIL-101(Cr)-SO3H was two-times higher than that of 

MP8@MIL-101(Cr), suggesting important diffusion limitations in MIL-101(Cr)-SO3H. It is 

possible that the presence of some MP8 molecules at the external surface of this MOF limit 

the diffusion of imidazole in the internal surface of the MOF and thus its coordination to the 

MP8 molecules that are confined in the cavities. 

Evaluation of the catalytic activity of MP8@MIL-101(Cr)-X 

The catalytic activity of free and immobilized MP8 molecules with similar MP8 content was 

evaluated using a typical peroxidase reaction: the oxidation of the chromogenic substrate 

ABTS to ABTS∙+ (λmax = 420 nm) in the presence of H2O2. No catalytic activity was detected for 

the three MOFs. Figure 3-6 shows the amounts of ABTS∙+ formed after 300 sec, as well as the 

initial reaction rates, with increasing concentrations of H2O2 at pH 7. Free MP8 oxidized faster 

the ABTS and led to higher concentrations of oxidized substrate than MP8 immobilized into 
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the MOFs (kinetics of the catalytic reactions in Figure S7) after 300 s. This is in agreement with 

previous studies in which immobilized enzymes have shown slower kinetics due to diffusion 

barriers from the host matrix.57 The amounts of ABTS∙+ formed, as well as the rates of oxidation 

were similar for MP8@MIL-101(Cr) and MP8@MIL-101(Cr)-NH2. However, considering the 

higher MP8 loading in MIL-101(Cr)-NH2, the specific activity per gram of material is expected 

to be higher for MP8@MIL-101(Cr)-NH2 than that of MP8@MIL-101(Cr) when similar amounts 

of MP8@MIL-101(Cr)-X materials are used. On the contrary, the catalytic activity of 

MP8@MIL-101(Cr)-SO3H was low as shown by the moderate amounts of ABTS∙+ converted and 

the almost negligible reaction rates. The acidic conditions (pH 3) necessary for the MP8 

immobilization in MIL-101(Cr)-SO3H may have led to the cleavage of the Fe(III)-His18 bond as 

a result of the protonation of the nitrogen atom bound to the iron and may be responsible for 

the loss of catalytic activity. Moreover, the presence of sulfonic acid groups of low pka (~ -7) 

did not favor the coordination of the His18 to the Fe(III) once MP8 was immobilized in MIL-

101(Cr)-SO3H. High H2O2 concentrations are known to be detrimental to the MP8 catalytic 

activity.58 The MOF frameworks may provide protection against the oxidative degradation of 

MP8 due to the slower diffusion of reactant and thus may reduce local H2O2 concentrations, 

enhancing the catalytic activity. Importantly, by increasing the H2O2 concentration, the 

difference of the formed ABTS∙+ amounts between free MP8 and immobilized MP8 in MIL-

101(Cr) and MIL-101(Cr)-NH2 decreased. For example, while at 0.1 mM H2O2, MP8@MIL-

101(Cr) oxidized only 16.5 % and MP8@MIL-101(Cr)-NH2 10.9 % ABTS∙+ compared to free MP8 

(100%), at 1.8 mM they oxidized 29.6 % and 25.8 % respectively. Thus, this increase in ABTS∙+ 

amounts for immobilized MP8, at high H2O2 may indicate the protective effect of the 

frameworks. Since the reaction kinetics were slower for the MP8@MIL-101(Cr)-X, the 

oxidation of ABTS was also assessed for longer reaction times (1 hour). Figure 3-7 illustrated 

the ABTS∙+ amounts formed after 1 hour, as well as the reaction kinetics for the free and the 

immobilized MP8 with 0.9 mM H2O2 and at pH 7. As observed, even though free MP8 reached 

the maximum ABTS∙+ amount (35 μM) in less than 10 min, MP8@MIL-101(Cr) and MP8@MIL-

101(Cr)-NH2 oxidized higher amounts of ABTS in 1 h (48 μM). Furthermore, for free MP8, the 

absorbance of ABTS∙+ decreased with time as a result of its over-oxidation to ABTS2+ by H2O2.59 

Neither MP8@MIL-101(Cr) nor MP8@MIL-101(Cr)-NH2 showed this effect, probably due to 

the stabilization of ABTS∙+ by the MOFs framework, as previously reported.60 
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Figure 3-6: (a) ABTS∙+ amounts and (b) reaction rates for the oxidation of ABTS in the presence of increasing 
concentration of H2O2 (0.1-1.8 mM) for similar amounts of free MP8 and MP8@MIL-101(Cr)-X in phosphate 
buffer at pH 7 for 300 sec of reaction. Errors bars are the standard deviation of three measurements. 

 

Figure 3-7: (a) ABTS∙+ amounts with 0.9 mM H2O2, equivalent amounts of free MP8 and MP8@MIL-101(Cr)-X in 
phosphate buffer, pH 7 for 1 h reaction time, (b) the respective reaction kinetics. 

In a previous work,31 it has been demonstrated that the MOF framework could protect MP8 

molecules under acidic conditions (pH 5) as a result of a confined micro-environment in the 

pores that limited the protonation of the axial His18. The protective role of the framework 
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was also examined for MIL-101(Cr)-NH2 and MIL-101(Cr)-SO3H. Figure 3-8 displays the ABTS∙+ 

amounts after 300 s and the reaction rates of oxidation with increasing concentrations of 

H2O2, at pH 5 (kinetics of the catalytic reactions in Figure S8). MIL-101(Cr) and MIL-101(Cr)-

NH2 had a similar catalytic activity and both immobilized enzymes could catalyze the oxidation 

of higher amount of ABTS with faster reaction rates than free MP8, showing the protective 

role of the MOF framework toward MP8 catalytic activity. MP8@MIL-101(Cr)-SO3H showed 

the lowest catalytic activity due to the acidic pore environment, as discussed above. 

 

Figure 3-8: (a) ABTS∙+ amounts and (b) reaction rates of the oxidation of ABTS in the presence of increasing 
concentration of H2O2 (0.1-1.8 mM) by equivalent amounts of free MP8 and MP8@MIL-101(Cr)-X at citrate 
buffer, pH 5 for 300 sec of reaction. 

Catalytic oxidation of thioanisole derivatives to sulfoxides 

The ability of free and immobilized MP8 to catalyze the sulfoxidation of different para-

substituted thioanisole derivatives, in presence of H2O2 was investigated (Figure 3-9) and the 

obtained products were quantified by gas chromatography. The reactivity of para-substituted 

thioanisole derivatives for the electrophilic oxygen transfer reaction is known to increase with 

electron donating group (EDG), with the order 4-methoxythioanisole (strong activator via 

resonance effect) > 4-methylthioanisole (weak activator via inductive effect) > thioanisole > 

4-nitrothioanisole (strong deactivator via resonance and inductive effect).32 
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Figure 3-9: Oxidation of thioanisole derivatives catalyzed by free MP8 or MP8@MIL-101(Cr)-X, in presence of 
H2O2. 

No product was detected in the absence of MP8 in a medium containing H2O2 and MIL-

101(Cr)-X. As seen in Table 3-3 and Figure 3-10, the immobilized MP8@MIL-101(Cr)-X 

catalyzed the chemo-selective oxidation of thioanisole derivatives into the respective 

sulfoxides. MP8@MIL-101(Cr)-X catalysts led to lower yields in sulfoxides than the free MP8, 

in agreement with diffusional limitation as previously explained. The catalytic activity of the 

bio-catalysts followed the order MP8 > MP8@MIL-101(Cr) / MP8@MIL-101(Cr)-NH2 > 

MP8@MIL-101(Cr)-SO3H, also in agreement with the catalytic activity observed for the 

oxidation of ABTS. The most efficient conversion was achieved with the 4-methoxythioanisole 

derivative, bearing a strong EDG, that may activate the electrophilic oxygen transfer reaction 

as previously shown.61 The 4-methylthioanisole derivative and thioanisole were also 

successfully converted. The sulfoxidation of the 4-nitrothioanisole was very limited when 

compared to the other thioanisole derivatives, as its phenyl ring was substituted with a strong 

electron withdrawing group (EWG, NO2 that deactivated the sulfur atom for the electrophilic 

oxygen transfer reaction). While for free MP8 the impact of EDG groups led to a tremendous 

increase of the conversion of the thioanisole derivatives (+ 372 % increase in presence of -

OCH3), the impact was much less important for MIL-101(Cr)-X (+177 % and + 151 % increase 

in presence of -OCH3 for MIL-101(Cr) and MIL-101(Cr)-NH2, respectively). The MOF 

frameworks thus seem to reduce the impact of the substituting groups on MP8’s reactivity for 

the sulfoxidation reactions. Based on the current results, it is not possible to explain this effect 

and further investigation is required. 

Table 3-3: Amount of oxidized thioanisole derivatives obtained after 1 hour by the catalytic conversion with free 
MP8 and MP8@MIL-101(Cr)-X 

 Oxidized product (μM) 

Thioanisole 

derivative 
MP8 MP8@MIL-101(Cr) 

MP8@MIL-101(Cr)-

NH2 

MP8@MIL-101(Cr)-

SO3H 

-H 43± 15 36 ± 8 35 ± 9 16 ± 7 

-NO2 3 ± 3 4 ± 3 4 ± 3 - 

-CH3 74 ± 12 47 ± 6 44 ± 3 32 ± 6 

-OCH3 161 ± 1 64 ± 2 53 ± 2 45 ± 5 
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Figure 3-10: Sulfoxidized amounts of thioanisole derivatives with 0.5 mM H2O2 by equivalent amounts of free 
MP8 and MP8@MIL-101(Cr)-X, at 80:20 phosphate buffer (pH 7):CH3CN for 1 h of reaction. 

4. Conclusions 

In conclusion, MIL-101(Cr), bearing different functionalized groups (-NH2 and -SO3H) were 

used for the immobilization of Microperoxidase 8 (MP8), with preservation of their crystalline 

structures. The electrostatic interaction between the MP8 molecules and the MOF matrix was 

found to be a key parameter for successful immobilization. Moreover, the presence of 

functional groups resulted in higher immobilized amounts of MP8 compared to the bare MIL-

101(Cr). This may be attributed to specific interactions between the MP8 molecules and the 

functionalized groups that enabled strong adsorption of MP8 at the external surface of the 

functionalized MOFs. Raman spectroscopy was found to be an interesting tool to probe MP8 

structure. The immobilized MP8 molecules were found to be dispersed in the MIL-101(Cr)-X 

matrices as monomers without aggregation. Furthermore, the shifts observed in the 

characteristic bands of MP8, suggested interactions between the enzyme molecules and the 

MOF matrices. The presence of the MOF frameworks seemed to protect the MP8 iron(III) from 

reduction by the laser irradiation. The catalytic activity was found to be similar for MP8@MIL-

101(Cr) and MP8@MIL-101(Cr)-NH2 at identical MP8 contents. However, MIL-101(Cr)-NH2 

immobilized higher amounts of enzyme and thus the specific activity per gram of material is 

expected to be increased. On the contrary, MP8@MIL-101(Cr)-SO3H showed a very low 

catalytic activity. The acidic conditions for the encapsulation and the acidic environment of 

the MOF matrix may have caused the deprotonation of the histidine residue in MP8, which is 

detrimental for its catalytic activity. Similarly to the already reported protective nature of 

MP8@MIL-101(Cr), MP8@MIL-101(Cr)-NH2 efficiently enhanced MP8’s catalytic activity 

under acidic conditions. MP8@MIL-101(Cr) and MP8@MIL-101(Cr)-NH2 were successfully 

used for the oxidation of thioanisole derivatives to sulfoxides. Similarly to free MP8, the 

immobilized enzymes were more reactive when sulfides bearing EDG groups were used. 
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However, the influence of the para-substituted groups on immobilized MP8 reactivity was 

much less important compared to free MP8. 

Ackowledgements 

This work was supported by the ANR-11-LABEX-0039 (labex charm3at). We thank Dr. M. 

Benzaqui and C. Livage for the SEM experiments, F. Bourdreux for ICP-OES measurements. 

 

5. Supporting Information 

 

Determination of the MP8 loading by ICP-AOS 

The enzyme loading was measured by detecting the Fe present from the MP8 molecules and 

the Cr from the MIL-101(Cr)-X by ICP - OES. 

Sample treatment: Typically, a sample was heated at 100 oC overnight to evaporate the 

remaining solvent. Afterwards, 1 mL of HCl (37%) was added and the sample was heated in a 

closed vial at 80 oC, overnight (16 h) for total mineralization. The sample was diluted to 40 mL 

with ultrapure H2O before the analysis. 
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Figure S1: SEM images of MIL-101(Cr) (~ 50nm), MIL-101(Cr)-NH2 (~ 70 nm) and MIL-101(Cr)-SO3H (~ 200 nm). 

 

Figure S2: Schematic representation of His18 coordination to the Fe(III) of MP8 as a function of pH. 
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Figure S3: UV-vis spectra of (a) free MP8 and MP8@MIL-101(Cr),(b) free MP8 and MP8@MIL-101(Cr)-NH2 and 
(c) free MP8 and MP8@MIL-101(Cr)-SO3H. 
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Figure S4: FT-IR spectra of (a) free MP8, MIL-101(Cr) and MP8@MIL-101(Cr),(b) free MP8, MIL-101(Cr)-NH2 and 
MP8@MIL-101(Cr)-NH2 and (c) free MP8, MIL-101(Cr)-SO3H and MP8@MIL-101(Cr)-SO3H. 
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Table S1: Raman modes (cm-1) of free MP8, immobilized MP8@MIL-101(Cr)-X and MIL-101(Cr)-X 

Sample MP8 vibration bands MIL-101(Cr)-X vibration bands 

 ν10 ν2 ν3 ν29 ν4 ν21 ν(C-O) ν(C=C) ν(Cr-O) ν(S=O) ν(C-S) 

MP8 
1639/ 

1620 

1585/ 

1565 
1456 1398 1359 1312 

     

MP8@MIL-

101(Cr) 

Overlap 

ν(C-O) 
1527 

Overlap 

ν(C=C) 
1405 1371 1309 

1614 1457/ 

1152 

871   

MP8@MIL-

101(Cr)-NH2 
1622 

Overlap 

ν(C-O) 
- 

Overlap 

ν(C=C) 
- 1319 

1579 1984    

MP8@MIL-

101(Cr)-SO3H 
1629 1568 

Overlap 

ν(C=C) 
1404 1371 1309 

1610 1451/ 

1030 

912 1169 754 

MIL-101(Cr)       
1615 1453/ 

1154 

869   

MIL-101(Cr)-

NH2 
      

1580 1393    

MIL-101(Cr)-

SO3H 
      

1607 1445/ 

1143 

811 1100 763 

 

 

Figure S5: Characteristic skeletal stretching modes of the heme in MP8. 
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Figure S6: Spectral evolution of MP8 Soret band in the presence of increasing concentrations of imidazole for 
free MP8 (top), MP8@MIL-101(Cr) (middle) and MP8@MIL-101(Cr)-SO3H (bottom). 
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Figure S7: Time course of ABTS oxidation by free MP8 (red), MP8@MIL-101(Cr) (grey), MP8@MIL-101(Cr)-NH2 
(orange) and MP8@MIL-101(Cr)-SO3H (green) as a function of H2O2 concentration (0.1-1.8 mM) at pH 7. 

 

Figure S8: Time course of ABTS oxidation by the free MP8 (red), MP8@MIL-101(Cr) (grey), MP8@MIL-101(Cr)-
NH2 (orange) and MP8@MIL-101(Cr)-SO3H (green) as a function of H2O2 concentration (0.1-1.8 mM) at pH 5. 
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B. Metal functionalization in MIL-101(Cr): MIL-101(Cr/Fe) 

Even though the structure of MIL-101(Cr) stands among the most stable MOF structures, its 

Fe3+-based form, MIL-101(Fe) shows very poor chemical stability.62 Nonetheless, the use of 

Fe-based MOFs is of interest due to their inherent catalytic activity (see chapter 1) that, 

coupled with MP8, may result in synergetic properties. For that reason, we were interested in 

studying the use of the mixed-metal MIL-101(Cr/Fe) as enzymatic support. 

MIL-101(Cr/Fe) combines the properties induced both by the Cr ions (stability) and by the 

substituent Fe ions (catalytic activity). A possible way to obtain the mixed-cation MIL-101 is 

the post-synthetic cation exchange, through the reaction of MIL-101(Cr) with an iron salt 

under reflux.63 However, when possible, direct syntheses are generally preferred, as they are 

usually easier to control and more cost-effective. Vu et al. reported the direct hydrothermal 

synthesis of the mixed MIL-101(Cr/Fe), by replacing 25 wt% of the total Cr(NO3)3∙9H2O by 

Fe(NO3)3∙9H2O.64 FT-IR and XPS analyses demonstrated that Fe3+ was indeed incorporated in 

the structure and not encapsulated in the pores as iron oxides, which was also supported by 

the measured high specific surface area (3000 m2/g). MIL-101(Cr/Fe) was successfully used for 

the photo-degradation of a commercially azo-dye, via a Fenton mechanism, using H2O2 as 

oxidant.64 While these results are promising, the reported synthetic route for MIL-101(Cr/Fe) 

uses hydrofluoric acid (HF) as an acidic modulator.64 HF has been extensively used in the past 

as a mineralizing agent, since it favors the formation of well crystalline MOF phases.65 

However, HF is a highly hazardous material (highly toxic and corrosive) and thus not 

acceptable for green and sustainable syntheses that are targeted nowadays. Consequently, 

the synthesis optimization was a mandatory step in order to avoid the use of HF, while 

producing a pure and well crystallized MIL-101(Cr/Fe). 

1. Optimization of the synthesis of MIL-101(Cr/Fe) 

Important efforts have been made lately to replace HF by other less toxic and less dangerous 

acidic modulators such as HCl, acetic acid (AcOH) or to avoid completely the use of 

modulators.66,67 Inspired by such works, we first tried to follow a direct protocol similar to that 

reported, but we replaced HF by AcOH or performed the synthesis without additives. Figure 

3-11 shows the PXRD patterns of the obtained samples. The use of additive did not seem to 

have a significant impact on the products’ crystallinity. When mixtures of Cr and Fe nitrates 

were used, mixtures of MIL-101/MIL-88B were obtained (MIL-88B Bragg peaks are at 9.4o and 

10.5o). As described in the first chapter, MIL-101 and MIL-88B are two polymorphs, i.e. distinct 

phases composed of the same building units (metal trimers and terephthalic acid), and it is 

often possible to have a mixture of these two MOFs. The use of AcOH and the lower Fe ratios 

(3Cr:1Fe) seemed to enhance the crystallization of MIL-101, based on the relative intensities 

of the MIL-101 Bragg peaks. This suggests that the higher reactivity of the Fe ions (more 

reactive than Cr ions) led to the formation of the two MOF phases. A possible way to address 

this difference in reactivity is the use of a less reactive Fe source such as metal iron. Fe0 has 

already successfully been used for the preparation of the mixed metal MIL-53(Cr/Fe).68 
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Figure 3-11: Normalized PXRD patterns of the obtained products using different ratios of the metal sources 
Cr(NO3)3∙9H2O and Fe(NO3)3∙9H2O. Hydrothermal conditions: 220 oC for 8 h; without additives (top) and with 0.17 
M AcOH (down). 

Based on the conditions that seem to favor MIL-101 formation (use of AcOH and low Fe 

contents), we performed a second series of reactions, using Fe0 as an iron source. As seen in 

Figure 3-12, the use a Fe0 seemed to importantly limit the formation of the MIL-88B phase, 

which was nevertheless present in all the products. The use of a 4Cr:1Fe ratio was more 

favorable for the synthesis of MIL-101, than a 3Cr:1Fe ratio. AcOH concentrations ≥ 0.35 M 

also limited drastically the formation of MIL-88B, but did not fully prevented its formation. 
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Figure 3-12: Normalized PXRD patterns of the obtained products using as metal sources Cr(NO3)3∙9H2O and Fe0 
with different concentrations of AcOH (0.17-0.9 M). Hydrothermal conditions: 220 oC for 8 h; metal ratio 3Cr:1Fe 
(top) and 4:Cr:Fe (down). 

A third series of reactions was performed using the conditions previously reported for the 

preparation of the mixed metal MIL-53(Cr/Fe) that allowed the incorporation of Fe in the 

structure of a Cr-based MOF.68 The MIL-53 phase is generally prepared from a Cr3+ or a Fe3+ 

source and terephthalic acid (similarly to MIL-101). MIL-53 is a thermodynamically stable 

phase (chains of M3+ and 1D micropores), whereas MIL-101 is a kinetically favored phase (M3+ 

trimers and 3D mesopores).69 It was thus hypothesized that by decreasing the reported 

reaction time from 96 h to 48 h, it would be possible to promote only the formation of MIL-

101. However, as seen in Figure 3-13, none of the tested conditions (varying AcOH 
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concentrations) gave the pure MIL-101 phase, as shown by the presence of MIL-88B Bragg 

peaks at 9.4o and 10.5o and MIL-53 Bragg peaks at 12.3o and 17.0o in all the patterns. 

 

Figure 3-13: Normalized PXRD patterns of the obtained products using as metal sources Cr(NO3)3∙9H2O and Fe0, 
with different concentrations of AcOH (0.35-0.7 M) and metal ratio 4Cr:Fe. Hydrothermal conditions: 180 oC for 
48 h. 

The use of AcOH resulted in all the above series of reactions in mixture of phases, MIL-

101/MIL-88B and MIL-101/MIL-88B/MIL-53. It was thus concluded that this acidic modulator 

was not adequate for the formation of a pure MIL-101(Cr/Fe) phase. Similar results were also 

obtained without the use of additives. Besides acidic modulators, basic additives have also 

been studied for the synthesis of MIL-101 materials, like NaOH, KOH and trimethylammonium 

hydroxide (TMAOH).70 Their use has been reported to enhance the solubility of the 

terephthalic acid and the nucleation process, as the pH conditions are shifted around pH 6, 

thus promoting the synthesis of MIL-101. However, more basic conditions should be avoided 

because they would lead to the formation of oxides.45 MIL-101(Cr) synthesized in the presence 

of low concentrations of TMAOH showed a good crystallinity, high specific surface areas and 

the formation of pure phases.45,71 It was hence of interest to investigate the use of this base 

for the formation of the mixed metal MIL-101(Cr/Fe). 

As shown in Figure 3-14, the concentration of TMAOH varies linearly with the purity of MIL-

101. At very low concentration (0.012 M), a small MIL-53 impurity (main Bragg peaks at 10.6o 

and 12.7o) was observed, which seemed to decrease with increasing concentrations of 

TMAOH (based on relative intensities of the Bragg peaks). At 0.07 M of TMAOH, no Bragg peak 

characteristic of MIL-53 was observed. When the TMAOH concentration was further 

increased, the crystallinity of the product significantly decreased until an amorphous solid was 
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obtained at 0.09 M of TMAOH. These results are in agreement with the previous studies that 

showed the effect of the TMAOH concentration on the crystallinity of MIL-101.14 

 

Figure 3-14: Normalized PXRD patterns of the obtained products using as metal sources Cr(NO3)3∙9H2O and Fe0, 
with different concentrations of TMAOH and metal ratio 4Cr:Fe. Hydrothermal conditions: 180 oC for 48 h; 
[TMAOH] = 0.0125-0.06 M (left) and 0.07-0.09 M (right). 

From the PXRD data shown in Figure 3-14, the MIL-101(Cr/Fe) sample prepared with 0.07 M 

TMAOH appeared to be promising and this MOF was thus selected for further characterization 

(Figure 3-15). However, the N2 sorption measurement of the product revealed a very low BET 

surface area (1974 m2/g), compared to that of a pure MIL-101(Cr) product (~3000 m2/g) 

(synthesized without TMAOH). This poor specific surface area could neither be attributed to 

an inadequate activation of the sample (remaining unreacted ligand), nor to the presence of 

iron oxides, as the TGA analysis of the sample was similar to the pure MIL-101(Cr). SEM images 

revealed that the product contained crystals of different morphologies, which may justify the 

low surface area. 
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Figure 3-15: (a) N2 sorption measurements of MIL-101(Cr) and MIL-101(Cr/Fe) (0.07 M TMAOH); (b) TGA curves 
of MIL-101(Cr) and MIL-101(Cr/Fe) (0.07 M TMAOH) under O2 flow; (c) SEM image of MIL-101(Cr/Fe) (0.07 M 
TMAOH). 
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Finally, by further reducing the reaction temperature to 150 °C it was possible to isolate pure 

MIL-101(Cr/Fe) products, with different Cr/Fe compositions. In this case, 1.5 mmol 

terephthalic acid was mixed with 1 mmol metal source (ratios 3Cr:1Fe and 4Cr:1Fe) in 10 mL 

TMAOH (0.06 M) and heated at 150 oC for 48 h. The obtained solids were isolated by 

centrifugation (20 min, 14500 rpm) and washed several times with water and EtOH (abs.). In 

order to remove the residual ligand molecules from the pores, the solids were treated with a 

solution of KF (0.1 M) for 1 h. The purified products were dried at 150 oC, prior to their 

characterization. Attempts to further increase the Fe content resulted in amorphous solids 

(data not shown). 

2. Characterization of the mixed metal MIL-101(Cr/Fe) 

The mixed metal MOFs were synthetized starting from 3Cr:1Fe and 4Cr:1Fe ratios. However, 

the incorporation of the Fe3+ cations was found to be lower in both cases, as 4Cr:1Fe and 

5.9Cr:1Fe ratios were determined respectively from the EDX data (see below). Therefore, the 

isolated mixed metal MOFs will be referred to as MIL-101(Cr/Fe) (4:1) and MIL-101(Cr/Fe) 

(5.9:1). 

As expected, the incorporation of Fe3+ cations was reflected in the color of the products. While 

the powder of the pure MIL-101(Cr) had a dark green color, MIL-101(Cr) (4:1) showed a light 

brown color and MIL-101(Cr/Fe) (5.9:1) had a light green-brown powder (Figure 3-16). 

 

Figure 3-16: Photos of the powders of MIL-101(Cr), MIL-101(Cr/Fe) (4:1) and MIL-101(Cr/Fe) (5.9:1). 

Figure 3-17 shows the PXRD patterns of the obtained MIL-101(Cr/Fe) (4:1), MIL-101(Cr/Fe) 

(5.9:1) and the calculated pattern of MIL-101(Cr). Both products showed characteristic 

diffraction peaks of MIL-101, without any additional peaks, which confirmed the formation of 

a single MOF phase. Both MOFs showed a reduced crystallinity compared to the reported pure 

MIL-101(Cr) phase possibly, because Fe3+ cations introduced a certain disorder in the 

frameworks. Accordingly, MIL-101(Cr) (4:1), which has a higher Fe content, showed a less 

crystalline structure than MIL-101(Cr/Fe) (5.9:1). 

The FT-IR spectra of the two mixed metal MIL-101(Cr/Fe) are shown in Figure 3-18. No 

stretching band corresponding to the carboxyl groups of the free ligand, (ν(C=O)= 1700 cm-1) 

was present in the spectrum of MIL-101(Cr/Fe) (5.9:1), but a small residual band was present 

in the spectrum of MIL-101(Cr/Fe) (4:1), indicating traces of unreacted terephthalic acid. The 

complexation of the ligand with the metal ions is depicted by bands at ~1600 cm-1 and ~ 1440 
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cm-1 corresponding respectively to the asymmetric ν(C-O)as and symmetric ν(C-O)s stretching 

modes. The broader bands of MIL-101(Cr/Fe) (4Cr:1Fe) are consistent with the lower 

crystallinity of this sample. 

 

Figure 3-17: Normalized PXRD patterns of MIL-101(Cr/Fe) (4:1) and MIL-101(Cr/Fe) (5.9:1), compared with the 
calculated pattern of MIL-101(Cr). 

 

Figure 3-18: FT-IR spectra of MIL-101(Cr/Fe) (4:1) and MIL-101(Cr/Fe) (5.9:1). 

The TGA curves of the two mixed metal MOFs are compared with that of MIL-101(Cr) in Figure 

3-19. Note that MIL-101(Cr) was synthesized hydrothermally, without the use of TMAOH. The 
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chemical formulas of the MOFs deduced from the EDX results are Cr2.4Fe0.6OH(H2O)2O[(O2C)-

C6H4-(CO2)]3, Cr2.57Fe0.43OH(H2O)2O[(O2C)-C6H4-(CO2)]3 for MIL-101(Cr/Fe) (4:1) and MIL-

101(Cr/Fe) (5.9:1) respectively, whereas that corresponding to the pure MIL-101(Cr) is 

Cr3OH(H2O)2O[(O2C)-C6H4-(CO2)]3.72 The first weight loss (≤ 100 oC) corresponds to the removal 

of adsorbed solvent molecules (H2O and EtOH). The second weight loss between 100 and 300 
oC is attributed to the release of coordinated solvent molecules and free terephtalate 

molecules entrapped in the pores of the MOFs. The degradation of the structures is observed 

around 300 oC, which is similar to the degradation temperature of the pure MIL-101(Cr),72 

indicating that the incorporation of Fe3+ cations, did not affect the thermal stability of the 

frameworks. The percentage of Cr2O3 residue obtained in the case of MIL-101(Cr) (31 %) is 

slightly lower than then global percentage of the oxide residues (Cr2O3 + Fe2O3) formed in the 

case of the mixed metal MOFs: 34.7 % for MIL-101(Cr/Fe) (4:1) (27.8 % Cr2O3 + 6.9 % Fe2O3) 

and 32.1 % for MIL-101(Cr/Fe) (5.9:1) (27.5 % Cr2O3 + 4.6 % Fe2O3). This may indicate that a 

part of the metal precursors used for the synthesis of the MOFs may have formed oxides that 

could not be removed during the activation of the samples (washing procedure). 

 

Figure 3-19: TGA curves of MIL-101(Cr/Fe) (4:1), MIL-101(Cr/Fe) (5.9:1) and MIL-101(Cr), under O2 flow. 

Figure 3-20 shows the N2 sorption isotherms of MIL-101(Cr/Fe) (4:1) and MIL-101(Cr/Fe) 

(5.9:1) at 77 K. Both mixed metal MOFs exhibit secondary uptakes at p/p0 ~0.1 and p/p0 ~0.2, 

which are characteristic of the two microporous windows (pentagonal and hexagonal) of the 

two mesoporous cages. The apparent BET surface areas are 2660 and 3040 m2/g for MIL-

101(Cr/Fe) (4:1) and MIL-101(Cr/Fe) (5.9:1), respectively. Both mixed metal MOFs exhibit 

lower surfaces areas than that reported for the pure MIL-101(Cr) (~3500 m2/g),72 which could 

be due to the presence of traces of metal oxides and unreacted ligand molecules in the pores. 
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Figure 3-20: N2 sorption isotherms of MIL-101 (Cr) (black cycles), MIL-101(Cr/Fe) (4:1) (brown triangles) and MIL-
101(Cr/Fe) (5.9:1) (green diamonds) at 77 K. 

The particles of the mixed metal MOFs did not show a well-defined morphology and were 

much aggregated. Nonetheless, both MOFs showed uniform particles of around 100 nm. 

Figure 3-21 shows the SEM images of the two mixed metal MOFs and the Cr and Fe atomic 

composition based on EDX analysis. MIL-101(Cr/Fe) (4:1) contains 81 ± 2% Cr and 19± 2.0 % 

Fe, whereas MIL-101(Cr/Fe) (5.9:1) contains 85 ± 1 % Cr and 15 ± 1 % Fe. 

 

Figure 3-21: SEM-EDX analysis of MIL-101(Cr/Fe) (4:1) and MIL-101(Cr/Fe) (5.9:1). 
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The Mössbauer spectrometry on the MIL-101(Cr/Fe) materials was performed by Dr. Jean-

Marc Greneche at the Institut des Molécules et Matériaux du Mans (UMR CNRS 6283), at 

the Le Mans Université. 

57Fe Mössbauer spectrometry was used to gain information about the oxidation and the spin 

state of Fe, along with its electronic environment, in order to confirm that the detected Fe of 

the mixed MOFs was indeed incorporated in their crystal structures and exclude the possibility 

of Fe being under the forms of Fe oxides or hydroxides. The transmission Mössbauer spectra 

of MIL-101(Cr/Fe) (4:1) recorded at 300 K and 77 K, consist of quadrupolar doublets with 

broadened and overlapped lines, indicative of different environments of Fe atoms (Figure 3-

22). They were first recorded at 4 mm/s to check that the samples did not contain any HS Fe(II) 

species and then at 2 mm/s. Figure 3-22 illustrates only the spectra recorded at 2 mm/s. 

Different fitting models could be applied with 2 components (top of figure) or 3 components 

(bottom of figure), resulting in the same mean values of isomer shift (0.33 and 0.48 mm/s at 

300 K and 77 K, respectively) and quadrupolar splitting (0.68 and 0.74 mm/s at 300 K and 77 

K, respectively). These values are consistent with the presence of HS Fe(III) in an octahedral 

environmental, suggesting that they may be located in the octahedral units of the inorganic 

building blocks.73–75 This is further supported by the similarity between the Mössbauer spectra 

of the mixed MIL-101(Cr/Fe) (4:1) and the reported spectrum of MIL-100(Fe) (Figure 3-23).75 

The isomer shift values of MIL-100(Fe) are significantly higher (0.42 and 0.54 mm/s at 300 K 

and 77 K, respectively). This difference could result from the amount of fluorine ions contained 

in the structure, as the presence of F ions in the Fe environment leads to higher isomer shifts 

than Fe surrounded by O.68 MIL-100(Fe) synthesis was performed in presence of KF and it has 

been previously demonstrated that the resulting structure has one fluorine atom per Fe 

trimer. However, in the case of MIL-101 (Cr/Fe) the synthesis was performed without fluorine 

which can usually be replaced by hydroxyl ions in the structure.76 The present mean values of 

isomer shift are rather typical of Fe3+ surrounded by oxygen or hydroxyl groups, in fair 

agreement with the absence of KF during the synthesis of MIL-101(Cr/Fe). When the content 

of Fe incorporated in the synthesis was decreased (ratio Cr/Fe 5.9:1), no significant differences 

were observed in the Mössbauer spectrum (Figure 3-24), except for a slight increase of the 

quadrupolar doublet asymmetry. The presence of water molecules in the framework 

influences the Mössbauer spectra and may be responsible for this difference. It is important 

to emphasize that the lack of resolution of the hyperfine structure does not allow to exclude 

the presence of some iron(III) oxides in MIL-101(Ce/Fe) samples, similarly to the case of MIL 

100(Fe). 
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Figure 3-22: Mössbauer transmission spectra of MIL-101(Cr/Fe) (4:1), recorded at 300 K and 77 K with 2 fitting 
models (see text). 

 

Figure 3-23: Mössbauer transmission spectra of MIL-101(Cr/Fe) (4:1) and MIL-100(Fe), recorded at 300 K and 77 
K. 
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Figure 3-24: Mössbauer transmission spectra of MIL-101(Cr/Fe) (5.9:1), MIL-101(Cr/Fe) (4:1) and MIL-100(Fe), 
recorded at 77 K. 

 

While the thermal stability of the mixed metal MIL-101(Cr/Fe) MOFs was not affected by the 

incorporation of the Fe atoms, it was also important to evaluate the chemical stability of the 

MOFs and especially in water, as these materials have been designed to be used for 

biocatalytic applications. For the water stability tests, 50 mg of MIL-101(Cr/Fe) (4:1) were 

dispersed in 5 mL H2O and left under stirring at RT or reflux for 24 h. The powders were then 

recovered by centrifugation and dried at 100 oC for 1 h, prior to their characterization by PXRD. 

As observed in Figure 3-25 no change was observed in the PXRD patterns neither at RT nor 

under reflux conditions, indicating the chemical robustness of MIL-101(Cr) (4:1) in water. 
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Figure 3-25: Normalized PXRD patterns of MIL-101(Cr/Fe) (4:1) after contact with water at RT and reflux for 24 h. 

Prior to the utilization of the mixed-metal MOFs as potential catalytically active immobilization 

matrices, it was important to fully evaluate their catalytic activity. Some preliminary catalytic 

results of the MIL-101(Cr/Fe) (4:1) are presented in Annex 1, concerning the Lewis acid 

catalyzed reactions, Prins coupling and ring opening of epoxides. 
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C. Conclusions 

In this chapter, we focused our efforts on the functionalization of MIL-101(Cr) and on studying 

the effects that could have on the encapsulation of MP8 on its resulting catalytic activity. Two 

different studies were performed: the ligand functionalization and the metal 

functionalization. 

Concerning the first study, the terephthalic acid of MIL-101(Cr) was replaced by its 

functionalized analogs, 2-aminotephthalic acid and 2-sulfoterepththalic acid. The choice of the 

ligands was based on their difference in polarity, acidity and surface charge of the MOF 

particles that could have different effects on MP8 immobilization and activity. Higher amounts 

of MP8 were immobilized in the functionalized MOFs than in MIL-101(Cr), possibly because of 

additional specific interactions (H-bonding, additional electrostatic interactions etc…) that 

stabilized some enzyme molecules at the external surface of the MOFs. The catalytic activity 

the immobilized MP8 was evaluated both with a typical substrate (ABTS) and a more 

challenging catalytic conversion, the oxidation of thioanisole derivatives bearing electron 

donating, EDG (-CH3, -OCH3) or electron withdrawing, EWG (-NO2) groups. MP8@MIL-101(Cr) 

and MP8@MIL-101(Cr)-NH2 showed similar activities, due to the similar microenvironment of 

their structures in terms of surface charge and acidity. MP8@MIL-101(Cr)-SO3H showed poor 

activity probably due to its high acidity that could result in the protonation of the His18 

residue, which is essential for the activity of MP8. Similar to what was observed with free MP8, 

the immobilized enzymes were more reactive when sulfides bearing EDG groups were used. 

However, their reactivity was less influenced than with free MP8, suggesting a minimized 

influence of the nucleophilic character of the substrate when immobilized MP8 was used. 

For the metal functionalization of MIL-101(Cr), the goal was to partially substitute the 

inorganic Cr(III) SBU with Fe(III) in order to obtain a more stable mesoporous structure, which 

could be catalytically active either as Lewis acid catalyst or as peroxidase-like catalyst. The 

combination of this MOF with MP8 could be envisioned for coupling complementary catalytic 

activities. An optimization of the synthesis was performed in order to avoid toxic reactants 

used in the reported protocols. Two MOFs with different Cr(III)/Fe(III) ratios, MIL-101(Cr/Fe) 

(4:1) and MIL-101(Cr/Fe) (5.9:1) were obtained and characterized. Both MOFs showed good 

chemical stability and Lewis acid catalytic activity. 
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Introduction 

This chapter deals with the “in-situ synthesis” approach for the immobilization of enzyme 

molecules. It is a one-step and sustainable process in which, the MOF synthesis is taking place 

simultaneously with the immobilization of the enzymes, resulting in the entrapment of 

enzymes by aggregates of MOF particles. As the enzyme molecules are surrounded by the 

MOF particles, they can be stabilized and protected under non-natural environments, similarly 

to what occurs for the inclusion of enzymes in MOF cages. Moreover, there is no limitation on 

the MOFs’ pore size, as the enzymes are not occupying the MOF porosity. The MOF porosity 

is left free for the diffusion of substrates and therefore there is reduced diffusion limitations 

to the enzyme’s active site. The challenging part of this approach is to perform the synthesis 

of MOFs under mild conditions (T≤ 37 oC, aqueous solutions, and physiological pH) to be 

compatible with the preservation of enzymes’ catalytic activity. Most MOFs are obtained 

under high temperatures and pressures and in organic solvents or acidic conditions (discussed 

in the first chapter). As a result, in most cases synthesis optimization is required to obtain 

MOFs under milder conditions. The selection of potential MOFs for the “in-situ synthesis” 

must be made taking into account several key parameters: (i) the MOF precursors must at 

least partially soluble in water, and the MOFs must be (ii) composed of reactive cations in 

order to synthesize them under atmospheric pressure; (iii) chemically and water stable and 

finally (iv) relatively hydrophilic to minimize the denaturation of hydrophilic enzymes and 

maintain a humid environment when non-aqueous media are required for catalytic 

applications. 

Based on these parameters, two chemically stable MOF structures were selected for the “in-

situ synthesis” process, MIL-53(Al)-FA a microporous, hydrophilic MOF and MIL-100(Fe) a 

mesoporous, amphiphilic MOF that is known to be highly biocompatible. The first part of this 

chapter presents the efforts made to obtain MIL-53(Al)-FA in water under ambient 

temperature and pressure. The obtained MIL-53(Al)-FA was then used for the immobilization 

of proteins. The study was performed with bovine serum albumin (BSA), as a model protein 

that is relatively robust and commercially available at low costs. The systems were thoroughly 

characterized to gain information on their structural characteristics and on the localization of 

the immobilized biomolecules. While the “in-situ synthesis” approach using MIL-53(Al)-FA has 

been studied from the beginning of this PhD project, the required synthesis optimization and 

the complexity of the system did not permit the completion of this work, which still remains 

under investigation. Thus, some preliminary results obtained for the encapsulation of the 

model and commercially available enzyme, Horseradish peroxidase (HRP) and the catalytic 

efficiency of the resulting HRP@MIL-53(Al)-FA materials, are briefly presented. Despite the 

extensive optimization of MIL-53(Al)-FA, the synthesis pH remained acidic, as this is necessary 

for the formation of MIL-53(Al)-FA. Therefore, an alternative approach for the immobilization 

of pH sensitive enzymes is also presented. It involves the synthesis of hybrid MIL-53(Al)-

FA/alginate beads materials. Finally, the use of MIL-100(Fe) as an immobilization matrix will 

be briefly discussed.  
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A. MIL-53(Al)-FA 

MIL-53(Al)-FA (or Basolite A520) is one of the few commercialized MOFs, used as a adsorbent 

of CH4 by BASF, thanks to its low-cost and non-toxic components (aluminum sulfate and 

fumaric acid) and to its excellent water stability and its relatively high surface area (~1100 

m2/g).1 Moreover, fumaric acid is soluble in water (7 g/L at 25 oC), which should make possible 

the synthesis of this MOF in water under ambient conditions. All these characteristics render 

MIL-53(Al)-FA a perfect candidate for the “in-situ synthesis” immobilization. The structure of 

MIL-53(Al)-FA is presented in Figure 4-1. Its 3D framework is composed by 1D chains of corner 

sharing Al(III) octahedra linked together by fumarate ligands, giving a microporous structure 

with 1D channels of 5.7 × 6.0 Å free aperture.2 

 

Figure 4-1: Structure of MIL-53(Al)-FA (or Basolite A520). 

1. Synthesis Optimization 

This work has been performed by myself with the contribution of Stellina Giannopoulou 

(Master 2 student) and Chrysoula Kartsiouka (bachelor student) as part of their internship 

at the Institut Lavoisier de Versailles. 

The synthesis optimization of MIL-53(Al)-FA was based on the conditions reported in the BASF 

patent and the PhD work of Elsa Alvarez:3 0.105 mol Al2(SO4)3∙18H2O (0.16 M) dissolved in 300 

mL H2O were heated at 60 oC. A mixture of 0.209 mol fumaric acid (0.32 M) and 0.630 mol 

NaOH (0.95 M) dissolved in 360 mL H2O was heated at 60 oC and then added to the aluminium 

sulfate solution. The formed white suspension was collected by filtration. 

In order to adapt the patent synthesis to milder temperature conditions, the concentration of 

the reactants was decreased, to achieve a better solubility. Moreover, various aluminum 

precursors, as well as various metal cation:ligand:base molar ratios were tested. The 

temperature of the syntheses was fixed at RT or 37 oC (use of incubator) and the reaction time 

was extended from 16 to 72 h. Table 4-1 summarizes the tested synthetic conditions. 
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Table 4-1: Parameters studied for the synthesis of MIL-53(Al)-FA, in H2O and ambient conditions. 

Parameters Tested Conditions Optimal Conditions 

Al precursors 

Al2(SO4)3∙18H2O, Al(NO3)3∙9H2O, 

Al(NH4)(SO4)2∙12H2O, Al(OH)3, 

Al(OH)(C2H3O2)2, Al2O3, NaAlO2 

Al2(SO4)3∙18H2O & NaAlO2 

Al concentration (M) 0.05, 0.075 0.05 & 0.075 (respectively) 

Molar ratio metal 

cation:ligand:NaOH 

1:2:6, 1:2:6, 1:2:7, 1:2:7.5, 1:2:8,1:2:0, 

1.5:2:0, 2:2:0, 2.5:2:0, 2:2:0.5 

1:2:6 & 1.5:2:0 

(respectively) 

Temperature (oC) RT, 37 oC RT 

Time (h) 16, 48, 72 48 

 

A key parameter for the synthesis of MIL-53(Al)-FA is the pH of the solution. As seen from the 

Pourbaix diagram of aluminium (Figure 4-2), Al3+ is soluble in water, under acidic conditions 

(pH ≤ 4) or under basic conditions (pH > 10). However, the coordination of aluminium is pH 

dependent.4 At low pH, the dominant species of aluminium is [Al(H2O)6]3+, in which the Al3+ 

ion is coordinated by six water molecules in an octahedral geometry.5 With the increase of the 

pH, some of the coordinated water molecules lose a proton, resulting to coordinated hydroxyl 

ions. They are more strongly attracted to the Al atom, which leads to a lower effective Al ionic 

radius and reduces the space for other coordinating species. Therefore, at basic pH (pH > 10) 

the coordination number of Al decreases to four and the dominant species in aqueous solution 

are the tetrahedra is Al(OH)4-5, in which the Al3+ ion is coordinated by four hydroxylates in a 

tetrahedral geometry(Figure 4-2).5 A control of the pH is also important for the viability of the 

encapsulated enzymes (quaternary structure and resulting catalytic activity), as acidic 

conditions are known to denaturate many of them. It was thus crucial to maintain the pH of 

the reaction around 4, in order to promote the synthesis of the 1D chains of Al octahedra of 

MIL-53(Al)-FA. In the meantime, as it is also crucial not to expose enzyme molecules to very 

acidic conditions, some attempts were made to obtain the MIL-53(Al)-FA at pH~5. 

Precursors choice: Different aluminium precursors were tested in order to replace 

Al2(SO4)3∙18H2O (patent synthesis) and to increase the pH of the reaction to render the 

synthesis more compatible for pH-sensitive enzymes. Al(NH4)(SO4)2∙12H2O, Al(NO3)3∙9H2O, 

and Al(OH)(C2H3O2)2 were selected due to their slightly lower acidity compared to that of 

Al2(SO4)3∙18H2O. Al(OH)3 and Al2O3 were chosen as they could dissolve progressively upon 

reaction with fumaric acid, resulting in the formation of the MOF. However, the low reaction 

temperature did not permit their slow dissolution and were thus disregarded as precursors. 

Al(OH)(C2H3O2)2 was discarded as Al3+ sources since it was not possible to remove the 

unreacted precursor by washing the obtained solid with water. Al(NO3)3∙9H2O and 

Al(NH4)(SO4)2∙12H2O, even though they were both soluble in water, did not induce a sufficient 

crystallization of MIL-53(Al)-FA. The increase of the reaction pH to 5 using these precursors 

caused an important decrease in the crystallinity of the samples, highlighting the need of 

lower pH conditions. Finally, it was possible to obtain well crystallized MIL-53(Al)-FA, with two 
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different metal precursors: Al2(SO4)3∙18H2O and NaAlO2. Therefore, two synthetic routes were 

developed. 

 

Figure 4-2: (a) Pourbaix diagram of aluminum calculated for [Al3+] = 0.001 M, at 25 oC, using the Hydra/Medousa 
software. Green dashed lines represent the redox couples O2/H2O and H2O/H2; (b) pH-dependent equilibria of 
soluble Al species in water. 

Molar ratio of reactants: Similarly to the investigation of different aluminium precursors, 

different molar ratios of reactants were tested in order to tune the reaction pH around 5. 

However, this increase led either to amorphous phases or to very poorly crystallized MIL-

53(Al)-FA particles. The optimal metal cation:ligand:NaOH ratios 1:2:6 & 1.5:2:0 for the two 

synthetic routes with Al2(SO4)3∙18H2O and NaAlO2, respectively, resulted in a pH value of ~ 4. 

Reaction Temperature: No difference in crystallinity and surface area were observed by 

increasing the temperature from RT to 37 oC. Therefore, the temperature was set at RT. 

Reaction time: The crystallization of MIL-53(Al)-FA started immediately after the mixing of the 

metal precursor and the ligand (for both precursors). However, as we were aiming to study 

the structural characteristics of the MOF and its composites with different biomolecules, a 

well-crystallized structure, with possibly a lower number of defects was preferred and the 

reaction time was set at 48 h. No noticeable differences in crystallinity and surface area could 

be observed by increasing the reaction time over 48 h. Note that in case of highly pH-sensitive 

enzymes, shorter reaction times should be preferred, in order to limit as much as possible the 

duration of the exposure of the biomolecules to the slightly acidic conditions of the synthesis 

(pH 4) that could affect their catalytic activities. 

Synthetic route based on Al2(SO4)3∙18H2O: The first synthetic route is very similar to the 

already reported one and involves the use of aluminium sulfate (0.05 M). More specifically, 1 

mmol of Al2(SO4)3∙18H2O was dissolved in 10 mL H2O (pH 3.3), under stirring at RT. 2 mmol of 

fumaric acid and 6 mmol of NaOH were then dissolved in 10 mL H2O (pH 12) and the resulting 

solution was added to the aluminium sulfate solution (pH ~3.7). The mixture was left under 

stirring at RT for 48 h. The obtained white solid was recovered by centrifugation (1000 rpm, 3 
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min) and was then washed 6 times with H2O, to remove any unreacted precursors. The pure 

MIL-53(Al)-FA was dried overnight at 100oC. Yield =81.1 % 

Synthetic route based on NaAlO2: The second procedure was obtained with sodium aluminate 

(0.075 M). Briefly, 1.5 mmmol NaAlO2 was dissolved in 20 mL H2O (pH 10). In this case, there 

was no need for NaOH, as the dissolution of NaAlO2 in water produces basic Al(OH)4
-. 2 mmol 

fumaric acid were added directly (as powder) in the metal solution (pH ~4.4) and the mixture 

was left stirring at RT for 48 h. The obtained white solid was recovered by centrifugation and 

purified as described above. Yield= 67.3 % 

2. Characterization of MIL-53(Al)-FA products 

Figure 4-3 shows the normalized PXRD diagrams of the two MIL-53(Al)-FA products, obtained 

in H2O at RT after 48 h of reaction, along with that of the MOF obtained from the synthesis 

described in the patent and the calculated pattern. The diagrams of both products match with 

the diagram obtained from the patent synthesis, indicating the formation of the MIL-53(Al)-

FA phase. The width of the characteristic Bragg peaks (10.5, 15, 21, 30, 31.6, 42.5 43.8 o) is 

much larger than that obtained from the patent synthesis, especially for the MOF obtained 

with Al2(SO4)3∙18H2O. This could arise either from a low crystallinity of the MOF and/or from 

a small particle size. However, it is not possible to conclude on that point, considering the 

strong aggregation of the particles, as shown by the SEM images below (Figure 4-7). The use 

of AlNaO2 seems to result in a better crystallized product, compared to that obtained from 

Al2(SO4)3∙18H2O. Nonetheless, Basolite A520 (or MIL-53(Al)-FA) is well-known to give poorly 

crystallized particles,2 and a decrease of the crystallinity could be expected with the decrease 

of the reaction temperature from 60 oC (patent conditions) to RT. The successful formation of 

MIL-53(Al)-FA by both synthetic routes was also confirmed by solid-state 27Al NMR 

spectroscopy (see Annex 2). 

 

Figure 4-3: Normalized XRD patterns of the calculated pattern of MIL-53(Al)-FA (black), Basolite A520, synthesized 
based on the patent conditions (grey), MIL-53(Al)-FA, synthesized with Al2(SO4)3∙18H2O in water at room 
temperature (blue) and MIL-53(Al)-FA, synthesized with NaAlO2 in water at room temperature (green). 
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The FT-IR spectra of the two MIL-53(A)-FA products, along with that of Basolite A520 are 

shown in Figure 4-4. The stretching band of the C=O bond of the carboxylic acid groups of the 

free ligand, ν(C=O) = 1700 cm-1 is present only in the case of the MIL-53(Al)-FA 

(Al2(SO4)3∙18H2O) product, indicating the presence of small amounts of remaining unreacted 

fumaric acid. The asymmetric ν(C-O)as and symmetric ν(C-O)s stretching modes of the 

coordinated carboxylate groups are found around 1600 cm-1 and 1400 cm-1 respectively, for 

all three products. The spectrum of MIL-53(Al)-FA (Al2(SO4)3∙18H2O) shows broader IR bands 

than those of the other samples, which is consistent with a lower crystallinity of the sample. 

Figure 4-5 shows the TGA curves of the MIL-53(A)-FA products and of Basolite A520. The 

calculated weight losses were based on the formula AlOH(C4O4H2)∙xH2O (x~4).2 Both MIL-

53(Al)-FA products show a lower decomposition temperature (~380 oC), than Basolite A520 

(~400 oC). Moreover, Basolite A520 and MIL-53(Al)-FA (Al2(SO4)3∙18H2O) lead to higher 

amounts of residues than the calculated values, indicating the presence of hydroxides or 

oxides in the samples. On the contrary, the oxide residue of MIL-53(Al)-FA (NaAlO2) is close to 

the calculated value, which is consistent with the formation of a MOF with high purity. 

 

Figure 4-4: FT-IR spectra of Basolite A520 (patent) (grey), MIL-53(Al)-FA (NaAlO2) (green) and MIL-53(Al)-FA 
(Al2(SO4)3∙18H2O) (blue). 

The N2 adsorption isotherms are shown in Figure 4-6. All products display a type I isotherm, 

characteristic of microporous materials, and the calculated BET surface areas are close to 1000 

m2/g, independently of the synthetic conditions. Given that MIL-53(Al)-FA (NaAlO2) led to a 

better crystallinity compared to the Al2(SO4)3∙18H2O product, based on the PXRD diagrams 

and a to higher purity of its structure, based on the TG analysis, it would be expected to have 

a slightly higher BET surface area than the other two products. However, it should be noticed 

that the standard error of TGA measurements is around ± 5% and, thus, it is possible that the 

amounts of the residual oxides could be over or under estimated. Similarly, the BET analysis 

also has a value of incertitude. 
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Figure 4-5: TGA curves of Basolite A520 (patent) (grey), MIL-53(Al)-FA (NaAlO2) (green) and MIL-53(Al)-FA 
(Al2(SO4)3∙18H2O) (blue), measured under O2 flow. 

The SEM images of the two MIL-53(Al)-FA products and Basolite A520 are presented in Figure 

4-7. No morphological information could be extracted for MIL-53(Al)-FA (Al2(SO4)3∙18H2O), as 

in this case, the particles are very aggregated and their size is extremely small. MIL-53(Al)-FA 

(NaAlO2) forms larger particles, which however, do not have a specific form. These results are 

not surprising as Basolite A520 obtained following the patent synthesis also forms particles 

with non-specific morphology.2 

 

Figure 4-6: N2 adsorption isotherms of Basolite A520 (patent) (grey), MIL-53(Al)-FA (NaAlO2) (green) and MIL-
53(Al)-FA (Al2(SO4)3∙18H2O) (blue) at 77 K; sample activation: 150 oC/24 h, under vacuum. 
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Figure 4-7: SEM images of MIL-53(Al)-FA (Al2(SO4)3∙18H2O) on the top left and MIL-53(Al)-FA (NaAlO2) on the top 
right and Basolite A520 (patent)2 on the bottom. 

3. In-situ immobilization of BSA protein in MIL-53(Al)-FA 

The in-situ immobilization of the protein BSA (Bovine Serum Albumin) was performed with the 

Al2(SO4)3∙18H2O precursor, as this synthetic procedure was developed prior to the NaAlO2 

procedure. Nonetheless, it would be of interest to test the NaAlO2 precursor for the in-situ 

immobilization of biomolecules in the future, as it results into products with higher 

crystallinity. 

BSA was chosen first as a model biomolecule, for its properties, including its large size (~66 

kDa), its robustness and cheap commercial availability. In addition, it has already been 

extensively used to study similar systems (mostly with ZIF-8), in which BSA seems to attract 

and concentrate metal cations and ligands, thus facilitating the MOF synthesis.6–8 At a first 

stage, the goal of the study was mainly to investigate the immobilization process and the 

structural characteristics of the bio-hybrid materials, thus the use of a catalytically active 

biomolecule was not required. It should however be noticed that different biomolecules may 

have different interactions with the MOF precursors and thus result to different structural 

characteristics or even modify the crystallization process of the material. 

The first in-situ experiments were performed with a fluorophore-tagged biomolecule, FITC-

BSA (FITC-BSA= fluorescein isothiocyanate conjugate of BSA), as the immobilization of FITC-

BSA and its localization in the MOF matrix could be followed by fluorescence microscopy. For 
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the immobilization, 5 mg of FITC-BSA (as powder) were added to the ligand/base aqueous 

solution and the synthetic procedure was identical to that described above. The obtained solid 

was washed six times with water and left to dry at RT. 

As seen in Figure 4-8, the immobilization of the FITC-BSA can be confirmed by the color change 

of the powder from white to yellow, due to the presence of the tagged biomolecule. The 

supernatant and the washing solution of the FITC-BSA@MIL-53(Al)-FA were uncolored, which 

may indicate the full immobilization of the biomolecule. The composite was then analyzed by 

confocal laser scanning microscopy (CLSM) in order to investigate the localization of FITC-BSA 

in the MOF powder. As seen in Figure 4-8(b), the composite shows green fluorescence that 

confirms the presence of FITC-BSA in the MOF powder. 

 

Figure 4-8: (a) Powders of MIL-53(Al)-FA (white) and 5mg FITC-BSA@MIL-53(Al)-FA (yellow), synthesized in H2O at 
RT; (b) CLSM image of 5mg FITC-BSA@MIL-53(Al)-FA showing the contribution of the FITC-labeled protein. 

The PXRD diagram of the composite superimposes with that of MIL-53(Al)-FA, suggesting that 

the crystal structure of the MOF was preserved upon the association with FITC-BSA (Figure 4-

9). 

 

Figure 4-9: Normalized PXRD patterns of Basolite A520 (patent) (grey), MIL-53(Al)-FA (blue) and FITC-BSA@MIL-
53(Al)-FA (yellow). 
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The composite was further characterized by IR spectroscopy, TG analysis and N2 porosimetry. 

However, since the amount of immobilized FITC-BSA was rather low (~0.01 mg 

biomolecule/mg MIL-53(Al)-FA), no difference was observed between the analyses of the 

composite and those of the parent MOF (Figure 4-10). It was thus concluded that higher 

amounts of FITC-BSA were required for a complete characterization of the system. The use of 

FITC-BSA in large quantities is problematic, due to its high cost. Nonetheless, one more 

experiment was performed with FITC-BSA, as it allows the visualization of the protein by 

confocal microscopy. Specifically, we proceeded with the immobilization of 50 mg FITC-BSA in 

MIL-53(Al)-FA via the in-situ approach and for comparison, 50 mg FITC-BSA were immobilized 

with pre-formed particles of MIL-53(Al)-FA, in order to investigate any differences on the 

localization of the protein. The CLSM images of 50 mg FITC-BSA@MIL-53(Al)-FA and 50 mg 

FITC-BSA@MIL-53(Al)-FA (post-synthesis) are shown in Figure 4-11. Both composites 

presented green fluorescence, deriving from the FITC-conjugated protein. The protein was 

homogeneously dispersed in both samples, but its exact localization was not possible due to 

the small size of the MOF particles and the extensive aggregation. The morphology of the 

samples showed important differences. In the case of the in-situ composite, extended 

aggregates of very small particles were present forming a kind of network, whereas the post-

synthesis sample displayed separated aggregates of larger particles. Interestingly, variations 

were also found in the thickness of the two composites. While the aggregates of the post-

synthesis sample presented important thickness (z~ 8 μm), the in-situ composite presented 

very thin aggregates (z = 1.8 μm) (Figure 4-12). These results may indicate that BSA modified 

the formation of the MOF particles, possibly by providing multiple nucleation sites for the 

MOF resulting in small nanoparticles that aggregated in larger particles. To fully evaluate the 

role of BSA and the induced changes in the formation of MIL-53(Al)-FA, we continued our 

studies with BSA non-conjugate with FITC for reasons of cost. 
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Figure 4-10: (a) FT-IR spectra, (b) TGA curves, under O2 flow and (c) N2 adsorption isotherms at 77 K of MIL-53(Al)-
FA (blue) and FITC-BSA@ MIL-53(Al)-FA (yellow). 

 

Figure 4-11: CLSM image of (a) 50mg FITC-BSA@MIL-53(Al)-FA and (b) 50mg FITC-BSA@MIL-53(Al)-FA (post-
synthesis) showing the contribution of the FITC-labeled protein. 
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Figure 4-12: 3D view of (a) 50mg FITC-BSA@MIL-53(Al)-FA and (b) 50mg FITC-BSA@MIL-53(Al)-FA (post-synthesis), 
demonstrating the thickness of the samples (z). The images were constructed by the confocal microscopy 
measurements. 

The immobilization procedure for BSA was similar to that described above. Different amounts 

of BSA (50, 200 and 400 mg) were added to the fumaric acid/NaOH aqueous solution 

(2mmol/6mmol) and then mixed with the Al2(SO4)3∙18H2O aqueous solution (1 mmol). After 

48 h, the solids were recovered by centrifugation (3 min, 10000 rpm) and washed six times 

with H2O. The purified products were then dried overnight at 100 oC. The immobilized BSA 

amounts were estimated approximately by subtracting the weight of the MIL-53(Al)-FA, 

obtained without BSA from the weight of the composite. In order to evaluate the entrapment 

effect of this procedure, a control reaction was also performed, in which 200 mg of BSA were 

mixed with a pre-formed sample of MIL-53(Al)-FA for 48 h (200 mg BSA@MIL-53(Al)-FA, post 

synthesis). The amount of BSA adsorbed at the outer surface of the MOF was calculated in the 

same manner. As seen in Table 4-2, for all composites almost all the amount of the added BSA 

was immobilized. This translates into extremely high loadings (over 116 % wt BSA) by 

comparison with those already reported for MOF bio-hybrids (≤ 10 %)9–11. One explanation 

could be that the presence of BSA favors strongly the formation of the MOF and increases the 

overall mass of MIL-53(Al)-FA formed, compared to its synthesis in the absence of 
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biomolecule. However, the important increase of the composites’ mass could not be 

attributed only to that effect, as this would lead to unrealistic changes to the MOF’s yield (over 

2-fold increase of MIL-53(Al)-FA mass). Besides, the theoretical yield (100 %) of reaction is 411 

mg, thus the rest of the composites’ mass can only be attributed to BSA. The high loading of 

the composite prepared via post-synthesis (58.8 wt %) is valid and cannot be due to the 

change of the reaction yield, as preformed particles were used. Such immobilization systems 

are very complex and little understood, as a variety of factors may influence the loading 

(nature of biomolecule and matrix, isoelectric points, specific interactions, kinetics of MOF 

synthesis…). It is thus not easy to explain the significant differences in the BSA loadings of MIL-

53(Al) with the commonly used MOFs (ZIF-8). Some of the ZIF-8 based articles state that the 

biomolecules promote the crystallization of ZIF-8, which does not occur with the same kinetics 

without the biomolecules. This phenomenon requires low biomolecules amounts to favor the 

local crystallization of the MOF and may be one the reasons to explain the lower loadings. As 

already noted in the introduction, this work is not completed and a more adequate and precise 

quantification of the immobilized amounts of BSA needs to be performed. The chemical 

composition of the samples and the UV-Vis spectra of the supernatants will be investigated to 

enable a more precise quantification of the BSA loadings. 

Table 4-2: Approximate BSA loading (wt % of MOF) of composites. 

 

 

 

 

 

 

Figure 4-13 shows the PRXD diagrams of the composites, along with those of MIL-53(Al)-FA 

and Basolite A520. All samples showed a similar broadening of the Bragg peaks, compared to 

Basolite A520, which could be attributed to a lower crystallinity and/or to a smaller particle 

size. Nonetheless, the crystal structure of the MOF was not affected by the presence of high 

amounts of BSA. This was not the case for other immobilization systems (like ZIF-8), in which 

the crystallization of the MOF was totally hampered in the presence of high amounts of 

biomolecules.6 

Sample 
Composite 

(mg) 

BSA weight 

(mg) 

BSA loading 

(mg/mg, wt %) 

MIL-53(Al)-FA - - - 

50mg BSA@MIL-53(Al)-FA 382 ± 12 48 ± 11 14 

200mg BSA@MIL-53(Al)-FA 533 ±62 199 ± 38 60 

200mg BSA@MIL-53(Al)-FA 

(post synthesis) 
529 ± 49 196 ± 26 60 

400mg BSA@MIL-53(Al)-FA 719 ± 46 385 ± 22 116 
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Figure 4-13: Normalized PXRD diagrams of Basolite A520 (grey), MIL-53(Al)-FA (blue), 50mg BSA@MIL-53(Al)-FA 
(orange), 200mg BSA@MIL-53(Al)-FA (green), 200mg BSA@MIL-53(Al)-FA (post-synthesis) (red) and 400mg 
BSA@MIL-53(Al)-FA (purple). 

Figure 4-14 shows the characteristic vibrations of the peptide bonds found in proteins that 

can be detected by IR spectroscopy. The amide I vibration (~1650 cm-1) is mainly attributed to 

the v(C=O) stretching mode of the amide groups, with a minor contribution of the v(N-H) 

bending mode.12 This vibration is strongly dependent on the secondary structure of the 

protein that derives from hydrogen bonding between one amino hydrogen atom and one 

carbonyl oxygen atom in the polypeptide chain and reflects the backbone conformation and 

the hydrogen-bonding pattern (α-helix, β-sheet, etc.).13 It is thus, commonly used for 

structural analysis of the protein backbone. The amide II vibration (~1550 cm-1) is assigned to 

the v(C-N) stretching mode with a small contribution of the v(N-H) bending vibration.12 The 

amide II vibration can also be used to extract structural information about the secondary 

structure of the protein but to a lesser extent when compared to the amide I vibration. Finally, 

the amide III (1400-1200 cm-1) vibration is the combination of the v(N-H) bending and the v(C-

N) stretching modes. This vibration is more complex, as it depends on the side chain structure 

(chemical groups attached to the alpha-carbon atoms of the peptide backbone), but in certain 

cases it can also give information about the secondary structure of proteins.12 

 

Figure 4-14: Schematic illustration of the characteristic vibrations of the peptide bonds found in protein molecules, 
like BSA. 
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The IR spectra of the composites are shown in Figure 4-15. The asymmetric (~1580 cm-1) and 

symmetric (~1400 cm-1) stretching modes of the carboxylates are overlapping with the amide 

vibrations, thus it was not possible to extract any structural information about the 

immobilized BSA. However, as the loading of BSA increased, a clear broadening of the 

vibration bands at 1700-1500 cm-1 was observed, which suggested a significant contribution 

of the amide I & II vibration bands is this region. This is consistent with the presence of BSA in 

the composites. At the highest BSA loading (400 mg), the appearance of a double band was 

observed (1600 & 1580 cm-1) that could be assigned to the amide I vibration of the 

immobilized BSA and to the v(CO)as of MIL-53(Al)-FA. A similar double band was also observed 

in the case of the post-synthesis sample. The amide III vibration was not easily detectable. 

However, in the cases of the post-synthesis sample and the 400 mg BSA@MIL-53(Al)-FA, the 

broadening of the vibration around 1380 cm-1 may arise from the overlapping of v(CO)s of the 

MOF and the amide III vibrations. 

 

Figure 4-15: FT-IR spectra of Basolite A520 (grey), MIL-53(Al)-FA (blue), 50mg BSA@MIL-53(Al)-FA (orange), 200mg 
BSA@MIL-53(Al)-FA (green), 200mg BSA@MIL-53(Al)-FA (post-synthesis) (red), 400mg BSA@MIL-53(Al)-FA 
(purple) and free BSA (black). 

The presence of BSA in MIL-53(Al)-FA samples is also consistent with the 13C MAS NMR spectra 

of the composites as they showed resonances of α-carbons, aliphatic carbons and carbonyl 

carbons of the peptide bonds, characteristic of the BSA molecule. Moreover, the BSA did not 

seem to affect the structure of the MOF, based on the 27Al MAS NMR spectra of the 

composites, which are identical to the parent MOF. (for details see Annex 2). 

The composites were also analyzed by TGA (Figure 4-16). While in the absence of BSA, the 

destruction of the MIL-53(Al)-FA structure due to the decomposition of the coordinated 

fumarate is observed around 350 oC, in the presence of BSA the decomposition temperature 
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decreases with increasing amounts of BSA. The presence of BSA is consistent with the increase 

in the organic loss and the gradual decomposition of the organic part, due to the gradual 

decomposition of BSA (200-520 oC). By normalizing the residual Al2O3 content in all the 

composites to the oxide content of MIL-53(Al)-FA, it was possible to quantify the amounts of 

immobilized BSA (indicated in the graphs). The loadings extracted by TGA were in close 

agreement with the estimated amounts by simple weighing of the composites. The small 

differences can be possibly assigned to the standard error of both the TGA measurements and 

of the previously quantified amounts by simple weighing. Nonetheless, the values are close 

enough to confirm the previously calculated high loadings of BSA in MIL-53(Al)-FA, but a more 

precise quantification (elemental analysis, UV-vis of the supernatants) would be indispensable 

in the future. 

 

Figure 4-16: TGA curves of MIL-53(Al)-FA (blue), 50mg BSA@MIL-53(Al)-FA (orange), 200mg BSA@MIL-53(Al)-FA 
(green), 200mg BSA@MIL-53(Al)-FA (post-synthesis) (red), 400mg BSA@MIL-53(Al)-FA (purple) and free BSA 
(black). The dotted line marks the decomposition temperature of the samples. 



 

Page | 191  
 

Chapter 4 

“In-situ synthesis” of MOFs and enzyme immobilization 

The N2 sorption isotherms of the composites are shown in Figure 4-17. All the composites 

prepared with the in-situ synthesis process, showed a decreased surface area that could be 

attributed to BSA molecules, blocking some of the micropores of the structure. The post-

synthesis immobilization of BSA in MIL-53(Al)-FA resulted in a non-porous material, due to the 

total blockage of the external surface of the MOF by BSA molecules. The calculated BET 

surface areas were based on normalized weights of the materials (subtracting the weight of 

BSA). However, the accuracy of the BET surface values is not high, according to the 

approximate content of BSA. Interestingly, the isotherms of the in-situ synthesis samples show 

a type I isotherm, characteristic of a microporous material and similar to the adsorption 

isotherm of MIL-53(Al)-FA, but the desorption isotherms present a hysteresis loop. Hysteresis 

is usually associated with capillary condensation in mesoporous structures and can have 

different shapes (similarly to the type of isotherms) depending on the shape of the pores. All 

three composites prepared with the in-situ process show a H4 hysteresis loop, associated with 

narrow slit-like pores.14 This is typically observed in the case of large defects in the structure 

or important interparticle spaces that are generated through the aggregation of MOF 

nanoparticles.15,16 

 

Figure 4-17: N2 sorption isotherms of MIL-53(Al)-FA (blue diamonds), 50mg BSA@MIL-53(Al)-FA (orange circles), 
200mg BSA@MIL-53(Al)-FA (green squares), 400mg BSA@MIL-53(Al)-FA (purple triangles) and 200mg BSA@MIL-
53(Al)-FA (post-synthesis) (red diamonds), measured at 77 K. Filled symbols correspond to the adsorption process 
and unfilled symbols to the desorption process. Sample activation: 150 oC for 16 h, under secondary vacuum. 

Figure 4-18 shows the pore-size distribution calculated from the N2 sorption data. While 

Basolite A520 and MIL-53(Al)-FA did not present any mesopores, in agreement with the 

microporous structure of the MOF (0.6 nm), the presence of BSA has induced the formation 

of larger pores in the composites with radius of 2.4, 3.0 and 1.7 nm for 50mg BSA@ MIL-53(Al)-

FA, 200mg BSA@ MIL-53(Al)-FA and 400mg BSA@ MIL-53(Al)-FA, respectively. Due to the 

large size of these formed pores, it is very unlikely that they derive from defects in the crystal 

structure, as it would require important parts of the structure missing. A more probable 

explanation is that the presence of BSA molecules results into important interparticle spaces 
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in the range of mesopores. It seems possible that the presence of BSA influences the 

crystallization and/or morphology of the material. In particular, the BSA surface may provide 

nucleation sites for the MOF synthesis and thus small nanoparticles may be formed that are 

aggregated and/or are retained together on the BSA surface. However, only the N2 

porosimetry and the calculated pore-size distribution cannot be enough to conclude on these 

results. As we will see below, electronic microscopy techniques and in-situ FT-IR analysis were 

employed in order to examine more extensively the morphology and porosity of the 

composites. 

 

Figure 4-18: Calculated pore size distribution of mesopores via the BJH method for Basolite A520 (grey diamonds), 
MIL-53(Al)-FA (blue diamonds), 50mg BSA@MIL-53(Al)-FA (orange circles), 200mg BSA@MIL-53(Al)-FA (green 
squares) and 400mg BSA@MIL-53(Al)-FA (purple triangles). 

The composites were characterized by transmission electron microscopy (TEM), Scanning 

transmission electron microscopy (STEM) and Energy-dispersive X-ray spectroscopy (XEDS) 

to investigate their morphology and the distribution of BSA in the MOF matrix. The TEM, 

STEM and EDX characterizations were performed by Prof. Nicolas Menguy at the Institut de 

Minéralogie, de Physique des Matériaux et de Cosmochimie at Sorbonne Université. 

Figure 4-19 shows the STEM image of MIL-53(Al)-FA. No important morphological information 

could be extracted, due to the extended aggregation of the particles and their small size. 

Figure 4-20 presents the TEM images of BSA@MIL-53(Al)-FA composites. All samples showed 

extended aggregated networks, in which it was not possible to distinguish isolate particles and 

obtain information on their morphology. No significant morphological differences could be 

observed between the samples, but interestingly in the case of 50 mg BSA@MIL-53(Al)-FA and 

200 mg BSA@MIL-53(Al)-FA the aggregated networks presented non-uniform mesoporous 

cavities that may be due to interparticle spaces. This could not be clearly evidenced on the 

400 mg BSA@MIL-53(Al)-FA and the post-synthesis sample, suggesting that mesoporous 

cavities were less present in those samples. 
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XEDS analysis was performed in order to investigate the presence of BSA, by detecting the N 

atoms of the protein molecules. In the MIL-53(Al)-FA, three main elements were detected, Al, 

C and O that derive from the structure of the MOF (metal clusters and organic ligands) (Figure 

4-21). Concerning the composites with BSA, four main elements were detected, Al, C, O and 

N. The detected N atoms may thus confirm the presence of BSA in the composites. (Figures 4-

22/4-24). Furthermore, with increasing amounts of BSA, the detected N atoms also increased, 

following the order 400mg BSA@MIL-53(Al)-FA > 200mg BSA@MIL-53(Al)-FA (post-synthesis) 

> 50mg BSA@MIL-53(Al)-FA. It should however be noted that the elemental maps are not 

quantitative, but they demonstrate a general distribution of the elements in the samples. All 

elements were distributed homogeneously in the samples, which indicates that there is no 

phase separation between the BSA molecules and the MOF particles. Note that the apparent 

heterogeneous distribution of the O, C and N atoms in the composite 400mg BSA@MIL-53(Al)-

FA is an effect of shadowing. (Figure 4-24) Backscatter electrons depend on the atomic mass 

of the elements. Thus, the lighter O, C and N atoms are less likely to diffuse through the sample 

and reach the detector compared to the Al atoms, resulting in a different elemental 

distribution. The detected Cu derives from the sample holder, the S atoms may be due to the 

use of Al2(SO4)3∙18H2O for the synthesis of the MOF, while the small trace of Si could be 

attributed to impurities during the sample preparation (use of glassware). 

 

Figure 4-19: High-resolution STEM image of MIL-53(Al)-FA. 
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Figure 4-20: High resolution TEM images of 50mg BSA@MIL-53(Al)-FA (orange), 200mg BSA@MIL-53(Al)-FA 
(green), 200mg BSA@MIL-53(Al)-FA (post-synthesis) (red) and 400mg BSA@MIL-53(Al)-FA (purple) 
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Figure 4-21: STEM-XEDS elemental mapping of MIL-53(Al)-FA acquired using energy windows related respectively 
to Al-Kα (magenta area), C-Kα (cyan area), O-Kα (red area) and N-Kα (green area) lines. Elemental maps are not 
quantitative. 
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x  

Figure 4-22: STEM-XEDS elemental mapping of 50mg BSA@MIL-53(Al)-FA acquired using energy windows related 
respectively to Al-Kα (magenta area), C-Kα (cyan area), O-Kα (red area) and N-Kα (green area) lines. Elemental 
maps are not quantitative. 
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Figure 4-23: STEM-XEDS elemental mapping of 200mg BSA@MIL-53(Al)-FA (post-synthesis) acquired using energy 
windows related respectively to Al-Kα (magenta area), C-Kα (cyan area), O-Kα (red area) and N-Kα (green area) 
lines. Elemental maps are not quantitative. 
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Figure 4-24: STEM-XEDS elemental mapping of 400mg BSA@MIL-53(Al)-FA acquired using energy windows related 
respectively to Al-Kα (magenta area), C-Kα (cyan area), O-Kα (red area) and N-Kα (green area) lines. Elemental 
maps are not quantitative. 
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In order to further investigate the localization of the BSA molecules in the composites and 

the presence of large interparticle spaces, we employed an in-situ FT-IR analysis upon 

adsorption of probe molecules. These experiments were performed by Dr. Josefine Schnee 

and Prof. Marco Daturi, in the Laboratoire de Catalyse & Spectrochimie at the Université de 

Caen Normandie. 

Probe molecules like CO, pyridine and CD3CN have been extensively used for the investigation 

of Lewis acid sites (open metal sites) in MOFs, via in-situ FT-IR.2,17–19 This approach was used 

in this work in order to extract information about the localization of BSA in the composites, 

the potential pore blockage or the presence of large interparticle spaces, compared to the 

parent MOF. More precisely, two nitriles of different size were used, deuterated acetonitrile 

(CD3CN) (kinetic diameter = 0.38-0.42 nm) and pivalonitrile ((CH3)3CCN) (kinetic diameter ≥ 0.6 

nm).20 CD3CN was used instead of CH3CN, as it gives a less complex spectrum, in which the 

v(CN) frequency is not perturbed by the Fermi resonance.19 The nitriles probes interact with 

the Lewis acid sites of the MOF through the electron lone pair of the nitrogen atom. Thus, 

after their coordination to the electron acceptor open metal sites of the MOF, a v(CN) 

stretching mode can be observed on the FT-IR spectrum of the MOF. By comparing the area 

of this IR band in the spectra of MIL-53(Al)-FA and its composites with BSA, it may be possible 

to extract information about the external surface of the materials, as well as their porosity.2,19 

Prior to the adsorption of the probe molecules, the samples were heated at 150 oC under 

secondary vacuum (10-6 Torr), overnight to evacuate physisorbed water. Except the free BSA 

which was deposited on a silicon wafer, all samples were pressed into a self-supported disc (2 

cm2 area, 10 mg cm-2), resulting in pellets. These were placed into a homemade IR cell 

equipped with KBr windows and a heating system. In the case of free BSA, a homogeneous 

deposition was not possible and so it was not analyzed. The preparation of the pellet of the 

200 mg BSA@MIL-53(Al)-FA (post-synthesis) composite was also complicated, as the material 

presented an extra hardness, possibly due to the large amount of BSA at its external surface. 

The signal of this sample was very weak and not exploitable. Thus, only the results of MIL-

53(Al)-FA and its composites with BSA, prepared with the in-situ method are given below. 

As seen in Figure 4-25(a) and Table 4-3, in the case of the smallest probe molecule CD3CN, the 

area of the IR absorption band associated to the characteristic v(CN) (~2320 cm-1)2 decreases 

with increasing concentrations of immobilized BSA. Due to the incompatibility of BSA 

dimensions (140 × 40 × 40 Å)21 and the pore dimensions of MIL-53(Al)-FA (5.7 × 6.0 Å), the 

presence of BSA inside the pores is excluded. The decreased area of v(CN) could be attributed 

to the blockage of some pores by BSA molecules that are located at the surface of the MOF 

particles, reducing the accessibility to the Lewis acid sites. The composite with 200 mg BSA 

shows a small decrease of this band compared to that of the composite with 50 mg BSA, which 

is also consistent with the similar BET surface areas shown above. However, the composite 

with 400 mg BSA shows an important decrease in the area of the v(CN) band, which is also in 

agreement with the lower surface area of this sample. When the larger probe molecule 

(CH3)3CCN was used, the observed area of the v(CN) band at ~2300 cm-1 increased importantly 
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in the presence of 50 and 200 mg BSA, compared to that observed for MIL-53(Al)-FA and to a 

lesser extent to that observed in the presence of 400 mg BSA (Figure 4-25(b)). The diffusion 

of a larger probe molecule seems thus to be favored in the presence of BSA, which could 

possibly indicate that the BSA is not immobilized exclusively at the external surface of the 

material, as if it was the case the diffusion of larger probe molecule would not be favored. The 

presence of BSA may have induced large interparticle spaces, as the (CH3)3CCN is too large to 

diffuse inside the pores of MIL-53(Al)-FA but small enough to diffuse through the composites. 

Taking into consideration the low area of the IR band of the composite with 400 mg, it could 

be assumed that when very high amounts of BSA are used, the amount of BSA at the surface 

increases and BSA may induce diffusion issues that minimize the access to the open-metal 

sites. 

 

Figure 4-25: Absorbance IR spectra of MIL-53(Al)-FA (blue), 50mg BSA@MIL-53(Al)-FA (orange), 200mg BSA@MIL-
53(Al)-FA (green) and 400mg BSA@MIL-53(Al)-FA (purple) after adsorption of nitriles; (a)CD3CN and (b) (CH3)3CCN. 
The spectra show only the characteristic IR band of the v(CN) vibration due to the chemisorption of the nitriles on 
the MOFs. 

Table 4-3: Area of the IR band characteristic of each adsorbed nitrile in the Lewis sites of MIL-53(Al)-FA 

Probe molecule CD3CN (CH3)3CCN 

MIL-53(Al)-FA 4.25 0.25 

50 mgBSA@MIL-53(Al)-FA 3.03 1.80 

200 mgBSA@MIL-53(Al)-FA 2.90 2.06 

400 mgBSA@MIL-53(Al)-FA 1.72 0.67 

 

Attempts to perform mercury porosimetry measurements (in collaboration with Dr. Pascal 

Yot, ICGM) were also exploited to further characterize these interparticle spaces. However, 

the mechanical robustness of the composites was not sufficient to allow accurate 

measurements. 

In conclusion, the characterization of the composite samples showed that the crystalline 

structure of MIL-53(Al)-FA was preserved when synthesized in presence of BSA. High BSA 
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loadings were achieved, while no phase separation between BSA and MIL-53(Al)-FA were 

observed, suggesting that BSA was dispersed in the material. An extra mesoporosity was 

observed for the in-situ samples (for 50 and 200 mg of BSA) that may be due to interparticle 

porosity. This mesoporosity was not observed for the post-synthesis adsorbed BSA, suggesting 

that the presence of BSA impacts the synthesis of MIL-53(Al)-FA. This might be due to the 

influence of the BSA surface on the nucleation process of the MOF; however, further studies 

are required to conclude on the exact mechanisms. 

4. Preliminary catalytic results: Immobilization of HRP enzyme 

In order to evaluate the effectiveness of MIL-53(Al)-FA as a matrix for the design of a 

biocatalyst, we proceeded with the immobilization of Horseradish Peroxidase (HRP). HRP was 

chosen to be immobilized for several reasons. First, HRP is a bulky enzyme (~44 kDa), which 

means that its 3D confinement inside a MOF material can only by performed with the “in-situ 

synthesis” approach. Second, it is a commercially available enzyme, which allows to perform 

easily preliminary tests. Third, studying the catalytic activity of immobilized HRP, a typical 

peroxidase, in reactions similar to the ones described in Chapters 1 & 2 was of interest, and, 

if promising results were to be obtained, the encapsulation of MP8 could also be envisioned 

next. Finally, HRP is a relatively stable enzyme that could probably be little affected by the 

relatively acidic conditions used for the synthesis of MIL-53(Al)-FA. 

For the preparation of the biocatalyst, a procedure identical to that used for the BSA 

composites was followed: 5 mg HRP were dissolved in 10 mL H2O. 2 mmol of fumaric acid and 

6 mmol of NaOH were added to the HRP solution and the mixture was then stirred for 5 min 

at RT. A solution containing 1 mmol of Al2(SO4)3∙18H2O in 10 mL H2O was prepared and was 

added to the HRP/fumaric acid/NaOH solution. The mixture was left under stirring at RT for 

24 h. This shorter reaction time (24 h instead of 48 h of the original synthesis) was preferred 

to minimize to presence of HRP in acidic conditions. The immobilized HRP was recovered by 

centrifugation (10000 rpm, 3 min) and washed six times with water to remove any unreacted 

precursors and non-entrapped HRP. Finally, it was redispersed in 20 mL water and stored at 4 
oC until used. As seen in Figure 4-26, the presence of HRP did not influence the crystallization 

of the MOF The PXRD diagram of the HRP@MIL-53(Al)-FA superimposed with that of the pure 

MOF. No difference was observed by IR spectroscopy, TG analysis and N2 porosimetry, 

between the composites and the MOF (Figure 4-27). Considering the low quantity of the 

immobilized HRP (~0.01 mg HRP/mg MIL-53(Al)-FA)) this behavior was expected and was also 

in agreement with the 5 mg FITC-BSA@MIL-53(Al)-FA system. 
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Figure 4-26: Normalized PXRD patterns of Basolite A520 (patent) (grey), MIL-53(Al)-FA (blue) and HRP@MIL-
53(Al)-FA (red). 

 

Figure 4-27: (a) FT-IR spectra, (b) TGA curves, under O2 flow and (c) N2 adsorption isotherms at 77 K of MIL-53(Al)-
FA (blue) and HRP@ MIL-53(Al)-FA (red). 
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The immobilization efficiency of the MOF was evaluated by analyzing the supernatant of 

HRP@MIL-53(Al)-FA by UV-vis spectroscopy. As seen in Figure 4-28(a), the supernatant was 

clear, showing no absorbance at 406 nm (Soret band of HRP, ε406 = 1.5 × 105 M-1 cm-1),22 

therefore indicating that all the HRP was immobilized in the MOF matrix. A more extensive 

quantification by ICP-OES of the HRP loading should be performed in the future (the ratio 

between the Fe3+ of HRP and the Al3+ of MIL-53(Al)-FA should be determined). The catalytic 

efficiency of HRP@MIL-53(Al)-FA was evaluated by its capacity to oxidize the chromogenic 

substrate ABTS (2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)) and was compared to 

that of the free HRP. No catalytic activity was detected when MIL-53(Al)-FA was used. Briefly, 

0.55 μM catalyst (free HRP or HRP@MIL-53(Al)-FA) and 10 mM ABTS were added to phosphate 

buffer (0.01 M) at pH 7 in a total volume of 3 mL. The reactions were initiated by addition 16 

μM H2O2 and left to react for 30 min, under stirring. At the end of the reaction, the sample 

containing the immobilized HRP was centrifuged to remove HRP@MIL-53(Al)-FA, as the 

particles of the MOF could interfere in the UV-vis measurement by causing light scattering. 

Both reactions were then analyzed by UV-vis spectroscopy. As seen in Figure 4-28(b), 

HRP@MIL-53(Al) oxidized similar amount of substrate ([ABTS˙+]= 21.7 μΜ) with the free HRP 

([ABTS˙+]= 19.6 μΜ). The concentrations of oxidized ABTS ([ABTS˙+]) were calculated based on 

the reported extinction coefficient, ε420 = 3.6 × 104 M-1 cm-1.23 These first catalytic results are 

very promising as they show that the activity of HRP was maintained after the in-situ 

immobilization and encourage for further extensive studies of this MOF as immobilization 

system. 

 

Figure 4-28: (a) UV-vis spectrum of the supernatant of HRP@MIL-53(Al)-FA; (b) UV-vis spectra of oxidized ABTS 
after 30 min of reaction using 0.55 μM catalyst (free HRP or HRP@MIL-53(Al)-FA), 16 μM H2O2 and 10 mM ABTS 
in phosphate buffer (0.01 M), pH7. 

B. Perspectives: Alternative systems 

1. Protection of fragile enzymes and shaping of MIL-53(Al) 

While the first results concerning the use of MIL-53(Al)-FA as an in-situ immobilization matrix 

for biomolecules are rather promising, the relatively acidic conditions (pH 4) during its 
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synthesis could be problematic for pH-sensitive enzymes. A direct increase of the pH (during 

the synthesis) was not compatible with the formation of MIL-53(Al)-FA, as discussed above. It 

was thus considered important to investigate an alternative approach, in which pH-sensitive 

enzymes can be protected during the synthesis of the MOF. Inspired by previous systems, 

where the combination of multiple materials have been used to design biocompatible and 

stable matrices (e.g. silica & alginate),24 we decided to associate alginate with MIL-53(Al)-FA. 

Alginate salts have the ability to form hydrogels upon metal exchange with metal cations 

(typically Ca2+). The metal cation is coordinated to the carbonyl and hydroxyl groups of four 

α-L-glucuronic acid-monomers, deriving from two different chains of the biopolymer (for 

more details see chapter 1).25 Alginate would thus provide a biocompatible environment for 

fragile enzymes and MIL-53(Al)-FA, a mechanically and chemically stable porous shell that 

could allow the controlled diffusion of reactants (Figure 4-29). This process has already been 

reported with HKUST-1/alginate beads that resulted in the homogeneous crystallization of the 

MOF particles around the alginate core.26 Nonetheless, this possible core-shell structure of 

MIL-53(Al)-FA/alginate beads remains to be confirmed experimentally. 

 

Figure 4-29: Schematic illustration of a possible MIL-53(Al)-FA/alginate bead. 

The different routes tested for the preparation of MIL-53(Al)-FA/alginate beads are presented 

in Figure 4-30. The first step of the procedure concerned the preparation of alginate beads. 

Once the beads were successfully formed two different approaches were investigated for the 

formation of the MIL-53(Al)-FA/alginate beads: a one-pot route and a layer-by-layer route. 

The parameters studied for the preparation of MIL-53(Al)-FA/alginate beads are presented in 

Table 4-4. 

Table 4-4: Parameters studied for the preparation of MIL-53(Al)-FA/alginate beads. 

Parameters Tested Conditions Optimal Conditions 

Sodium alginate concentration (w/v %) 3, 5, 10 10 

Gelation agents Ca2+, Ca2+/Al3+, Al3+ Al3+ 

Gelation agent concentration (M) 0.1, 0.2, 0.3 0.3 

Molar ratio metal:ligand:NaOH 1:2:6, 1:2:3 1:2:3 

Temperature (oC) RT, 37 RT 

Addition of reactants One-pot, layer-by layer layer-by layer 
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Formation of alginate beads: The dropwise addition of a concentrated aqueous solution of 

sodium alginate in an aqueous solution containing metal cations allowed the formation of 

hydrogels, upon exchange of sodium cations with the cations in the solution. Once the alginate 

beads were successfully formed, they were added to solutions containing the precursors of 

MIL-53(Al)-FA (Al2(SO4)3)∙18H2O, fumaric acid/NaOH) for the formation of the MOF around the 

alginate beads. 

For this study, a 10 % w/v sodium alginate aqueous solution was preferred as it resulted in 

more robust alginate beads. Concerning the choice of the gelation cation, the most commonly 

used Ca2+ was studied, along with a mixture of Ca2+/Al3+ and Al3+. Aluminium was chosen as it 

is a consecutive part of MIL-53(Al)-FA and may interact with the fumaric acid and favor the 

formation of the MOF around the alginate bead. When CaCl2∙2H2O (0.1 M) was used as a 

gelation agent, it resulted into robust alginate beads, which however did not allow the 

formation of MIL-53(Al)-FA around them. A mixture of CaCl2∙2H2O (0.1 M)/ Al2(SO4)3∙18H2O 

(0.2 M) was tested so that the Al3+ cations may promote the formation of the MOF, while Ca2+ 

could serve as complexing cation. This procedure resulted in the crystallization of MIL-53(Al)-

FA around the beads and it was assumed that Al3+ cation was indispensable for the formation 

of the MOF around the beads. These results encouraged us to test pure Al-Alginate beads. 

When a solution Al2(SO4)3∙18H2O (0.1 M) was used, the beads were successfully formed, but 

the MOF was not formed around the beads (based on PXRD measurements). Higher 

concentration of Al2(SO4)3∙18H2O solution (0.3 M) were thus tested to increase the amount of 

Al3+ ions so that they could serve both for the gelation of the beads and the formation of the 

MOF. The increased concentration of Al3+ promoted the formation of MIL-53(Al) around the 

beads and was preferred in order to avoid the unnecessary use of Ca2+. 

Formation of MIL-53(Al)-FA/alginate beads: After the successful formation of the Al3+-alginate 

beads, two different synthetic routes were investigated for the formation of the MOF: a one-

pot addition of all reactants (metal cation/ligand/base aqueous solution) and a layer-by-layer 

addition of reactants (ligand/base solution and then metal cation aqueous solution). While 

the one-pot route would be ideal due to its simplicity, the MOF was formed mostly in the 

solution and not around the beads probably due to the fast kinetics of the MIL-53(Al)-FA 

synthesis in solution, compared to the much slower process required for its formation around 

the beads. The layer-by-layer approach was successful, resulting in the formation of 

mechanically stable MIL-53(Al)-FA/alginate beads. 

The detailed layer-by-layer preparation of the MIL-53(Al)-FA/alginate beads is presented in 

Figure 4-30. An aqueous solution of sodium alginate (10 % w/v, 3 mL) was added dropwise to 

an aqueous solution of Al2(SO4)3∙18H2O (0.3 M, 10 mL). After the addition, the beads were left 

under stirring in the metal cation solution for 1 h. Then the solution was removed, the beads 

were washed three times with water and transferred into an aqueous solution (10 mL) 

containing fumaric acid (0.2 M) and NaOH (0.3 M) and left under stirring for 30 min. When 

compared to the original synthesis of the MOF, the concentration of NaOH was reduced from 

0.6 to 0.3 M, as the very basic conditions of the solution (with 0.6 M NaOH, pH 12), resulted 
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in the dissolution of the alginate beads. After 30 min, the beads were washed with water and 

transferred into an aqueous solution of Al2(SO4)3∙18H2O (0.1 M, 10 mL) for 30 min. This 

procedure was repeated once more and finally the beads were kept overnight under stirring 

in the metal cation solution. At the end of the layer-by-layer procedure, the beads were 

washed and stored in water, while some of them were dried at 100 oC for 2 h for further 

characterization. 

 

Figure 4-30: Schematic illustration for the preparation of MIL-53(Al)-FA/alginate beads. 

Although, this synthetic procedure can be considered as being relatively time-consuming, 

each step was found to be crucial for the crystallization of the MOF. Moreover, this layer-by 

layer approach may allow to finely control the thickness of the MOF layer, which may not be 

the case with an one-pot approach. Finally, the different metal cation and ligand solutions that 

were used in the process can be recycled and reused for the whole procedure, thus minimizing 

the cost of preparation. Besides, the shaping of the MIL-53(Al)-FA into beads can be of interest 

for different applications. As observed in Figure 4-31, the MIL-53(Al)-FA/alginate beads are 

white (the original alginate beads were brownish), as a result of the formation of the MOF 

shell at their surface, with a homogenous size and a diameter of about 3 mm. The beads were 

stable in water for more than three months, as no change in their shape was observed. 

However, an extensive mechanical and chemical stability study must be performed in the 

future, especially to investigate whether the MOF is only present as a shell on the outside of 

the bead or if it is also present within the alginate bead. 
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Figure 4-31: Pictures of the MIL-53(Al)-FA/alginate beads. 

The PXRD diagram of the beads is show in Figure 4-32. The beads show the characteristic Bragg 

peaks of MIL-53(Al)-FA at 10.5, 15 and 21o. However, they show a reduced crystallinity when 

compared to that of the pure MIL-53(Al)-FA, which could be assigned to the presence of a high 

amount of the amorphous alginate hydrogel, in the former case. The FT-IR spectrum of the 

beads is shown in Figure 4-33. The very weak band at 1700 cm-1 is assigned to traces of 

unreacted fumaric acid in the beads. The asymmetric (1600 cm-1) and symmetric (1430 cm-1) 

stretching modes of the carboxylates of the MIL-53(Al)-FA are overlapping with those of 

sodium alginate. The band at 1030 cm-1 is assigned to the v(C-O-C) stretching mode of the six-

membered ring of alginate (1020 cm-1 is sodium alginate).27 

 

Figure 4-32: Normalized PXRD diagrams of MIL-53(Al)-FA (blue) and MIL-53(Al)-FA/alginate beads (green). 

The beads were also characterized by N2 porosimetry (Figure 4-34). Prior to the 

measurements, the beads were grinded and activated at 150 oC under vacuum. As expected 

the beads were almost non-porous (as,BET= 83 m2/g), due to the large amount of the non-

porous alginate network. The surface area of the beads were calculated without taking into 

account the mass of alginate, as the chemical composition of the beads has not been 

investigated yet. The large amount of alginate can also be confirmed by the color change of 

the grinded beads after thermal treatment (inset in Figure 4-34). 
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Figure 4-33: FT-IR spectra of MIL-53(Al)-FA (blue), sodium alginate (brown) and MIL-53(Al)-FA/alginate beads 
(green). 

 

Figure 4-34: N2 sorption isotherms of MIL-53(Al)-FA (blue diamonds) and MIL-53(Al)-FA/alginate beads (green 
triangles), measured at 77 K. Filled symbols correspond to the adsorption process and unfilled symbols to the 
desorption process. Sample activation: 150 oC for 16 h, under secondary vacuum. Inset: image of crushed MIL-
53(Al)-FA/alginate beads before and after activation. 

The next step of this work would be the full characterization of the beads (chemical 

composition, TG analysis, morphological characteristics via SEM, TEM, thickness of the MOF 

layer, etc.). Finally, the entrapment of enzymes in the alginate hydrogel will be performed, 

prior to the formation of the MIL-53(Al)-FA/alginate, in order to evaluate the protective effect 

of this system. 
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2. MIL-100(Fe) 

The other candidate selected for the “in-situ synthesis” approach was MIL-100(Fe).28 This MOF 

results from the connection of trimesic acid and μ3-oxo trimers of Fe3+, leading to a 

mesoporous structure with MTN-type topology (Figure 4-35).28 MIL-100(Fe) presents two 

kinds of cavities with different diameters (24 and 29 Å), interconnected via microporous 

windows (5.5 and 8.6 Å) and it shows a maximum specific surface area of ~ 2000 m2/g.28 It has 

been one of the most studied MOFs for biological applications29,30 and more recently for the 

surface adsorption of enzymes,31,32 thanks to its stability, bio-compatibility (non-toxic 

components) and bio-degradability. Those same reasons render MIL-100(Fe) suitable for the 

in-situ entrapment of enzymes. Moreover, by comparison with the microporous MIL-53(Al)-

FA, its mesoporosity would be an added benefit, as it would enhance the diffusion of 

substrates to the catalytic center of the entrapped enzymes. Another important characteristic 

of MIL-100(Fe) is its peroxidase-like activity that could be potentially coupled with enzymes, 

to obtain enhanced biocatalysts.31 

 

Figure 4-35: Schematic illustration of the construction of MIL-100(Fe). Adapted from31 

Monik Panchal, Dr. Farid Nouar and Dr. Christian Serre had already performed the synthesis 

optimization of MIL-100 (Fe) in water, at room temperature at the Institut Lavoisier de 

Versailles. The synthesis of MIL-100(Fe) in water, at room temperature is part of a submitted 

patent, thus the specific synthetic procedure is not described. Their synthetic conditions were 

slightly adjusted for the in-situ immobilization of enzymes. 

For reasons similar to those described above for MIL-53(Al)-FA, BSA was used as a model 

protein. Various quantities of protein (5, 10 and 15 mg) were dissolved in water and mixed 

with the precursors of MIL-100(Fe) (Fe3+ cations and trimesic acid). The reactions kept under 

stirring for 72 h, at RT. The samples were then recovered by centrifugation (15 min, 14500 
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rpm) and washed six time with water. A part of the samples was dried at 100 oC overnight, for 

further characterization while the rest were stored in water. 

As can be seen from the Figure 4-36, the PXRD diagrams of MIL-100(Fe) with BSA, 

superimposed well with that of the calculated pattern, indicating the formation of MIL-

100(Fe). However, the BSA@MIL-100(Fe) composites showed a poor crystallinity that might 

be due to the low solubility of trimesic acid in water (2.6 g/L at 25 oC) that did not facilitate 

the crystallization of the MOF particles. N2 sorption measurements should be performed in 

the future to validate the formation of MIL-100(Fe) and exclude the possibility of forming the 

semi-amorphous Fe-BTC phase (Basolite F300). 

 

Figure 4-36: Normalized PXRD patterns of 5mg FITC-BSA@MIL-100(Fe) (blue), 10mg FITC-BSA@MIL-100(Fe) 
(orange), 15mg FITC-BSA@MIL-100(Fe) (green) and the calculated pattern of MIL-100(Fe) (black). 

From the FT-IR spectra of the composites (Figure 4-37), we can observe a band around 1550 

cm-1 that may correspond to the amide II vibration of the immobilized BSA. The amide I & III 

bands (1639 and 1390 cm-1, respectively) could not be observed as they overlap with the 

asymmetric and symmetric stretching modes of the carboxylates of MIL-100(Fe) (1631 and 

1380 cm-1, respectively) 

The TGA curves of the MIL-100(Fe) composites are shown in Figure 4-38. As expected, since 

similar amounts of protein were used, the three products displayed similar thermal profiles 

and close to that of MIL-100(Fe). Nonetheless, with increasing amounts of BSA, a small 

decrease of the decomposition temperature is observed, which may indicate that the 

structure of MIL-100(Fe) is more affected than MIL-53(Al)-FA in the presence of small amounts 

of biomolecules. 

The extensive study of MIL-100(Fe) as immobilization matrix could not be completed during 

this PhD work, but the first result seem promising and encourage for the investigating this 

MOF as enzymatic support. 
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Figure 4-37: FI-IR spectra of MIL-100(Fe) (grey) 5mg FITC-BSA@MIL-100(Fe) (blue), 10mg FITC-BSA@MIL-100(Fe) 
(orange), 15mg FITC-BSA@MIL-100(Fe) (green) and BSA (black). 

 

Figure 4-38: TGA of MIL-100(Fe) (grey) 5mg FITC-BSA@MIL-100(Fe) (blue), 10mg FITC-BSA@MIL-100(Fe) (orange) 
and 15mg FITC-BSA@MIL-100(Fe) (green), performed under O2 flow. 
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C. Conclusions 

This chapter was focused on the investigation of MOFs that can be used for the immobilization 

of enzymes via the in-situ synthesis approach to result in their 3D confinement inside the 

porous structure of MOFs. Two different MOFs were selected, the microporous, hydrophilic 

MIL-53(Al)-FA and the mesoporous, amphiphilic and catalytically active MIL-100(Fe). The 

selection of both MOFs was based on their high chemical stability, the non-toxicity of 

reactants used for their synthesis and the possibility to synthesize them in water at RT and in 

the presence of enzymes. 

Prior to using MIL-53(Al)-FA for the in-situ immobilization, an extensive synthesis optimization 

was performed that resulted in two different routes to obtain this MOF, in water at room 

temperature. While Al2(SO4)3∙18H2O gives higher reaction yields, the alternative synthesis 

with the NaAlO2 precursor is of interest as no additives are required, which can be 

advantageous for scale up applications. Moreover, NaAlO2 is a very cheap aluminum precursor 

(5 kg, 132 €, Sigma-Aldrich) which is also important for large-scale syntheses. The increase of 

the reaction time (over 48 h) could eventually result in higher yields. MIL-53(Al)-FA 

(Al2(SO4)3∙18H2O) was then synthesized in the presence of high amounts of the BSA protein, 

entrapping almost the totality of the protein used. The different BSA@MIL-53(Al)-FA 

composites were characterized by various techniques (PXRD, FT-IR, TGA) that confirmed both 

the preservation of the MIL-53(Al)-FA structure and the presence of BSA molecules. Moreover, 

the proteins may have induced the formation of large interparticle spaces in the in the MIL-

53(Al)-FA composites, as revealed by N2 porosimetry, TEM and in-situ FT-IR adsorption studies. 

A preliminary catalytic study with the immobilized Horseradish Peroxidase in MIL-53(Al)-FA, 

revealed that the enzyme preserved its activity after immobilization. 

An alternative immobilization approach was investigated through the formation of MIL-53(Al)-

FA/alginate beads for the entrapment of fragile enzymes that may be harmed by the acidic 

conditions of the MIL-53(Al)-FA synthesis. 

The synthesis optimization of MIL-100(Fe) in water at RT had already been performed from 

colleagues at ILV/IMAP and was used during this work for the entrapment of BSA. The protein 

molecules did not influence the synthesis of the MOF and they were successfully immobilized 

in the porous matrix. This study is at a very preliminary step, but the advantages of using MIL-

100(Fe) as a host matrix (chemical stability, biocompatibility, mesoporosity, peroxidase-like 

activity…) are encouraging for an extensive study of this system. 
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While enzymes are very efficient biocatalysts, their practical use is limited due to their fragile 

nature and the difficulty to recover and reuse them. This work was mostly focused on 

microperoxidase 8, a small enzyme that combines the activity of both peroxidases and 

monooxygenases (typically that of Cytochrome P450s). MP8 presents several limitations in 

solution that hinder its practical use (easy deactivation and poor selectivity). These 

disadvantages were addressed through its immobilization in MOF solid matrices. 

Among the different methods used to immobilize enzymes, the approaches that consist in a 

three-dimensional confinement inside a porous matrix (cage inclusion and entrapment) and 

that may provide a protective microenvironment for MP8 were preferred. MOF materials 

were preferred to traditional inorganic or organic materials because they combine hybrid 

crystalline structures, with a uniform porosity and high surface areas. Their organic-inorganic 

nature can minimize enzyme leaching, while their high and uniform porosity can provide a 

stabilizing and protective environment for enzymes, while favoring reactants diffusion. 

The first part of the thesis investigated the immobilization of MP8 via the cage inclusion 

approach (i.e. inclusion of the bio-entity inside the porosity of preformed chemically stable 

mesoporous MOFs). This approach could be applied thanks to the small molecular size of MP8. 

Two mesoporous MOFs were selected for this study based on their compatible pore 

dimensions with the size of MP8 and their reported water stability, which is essential for 

biocatalytic applications. An optimization of the synthesis of PCN-333(Al) was realized since 

the reported synthetic procedure was not reproducible. However, after a careful reevaluation 

of its water stability, PCN-333(Al) was not found suitable for the immobilization of MP8. 

Therefore, only the ultra-stable mesoporous MIL-101(Cr) was used as an immobilization 

matrix for MP8. The immobilized enzyme showed an enhanced stability under acidic 

conditions (pH 5) and in the presence of oxidizing agents (H2O2), which confirmed the 

protective effect of the 3D framework. MP8@nanoMIL-101 could be recycled several times 

and showed a stable activity under storage for several weeks. Finally, the selective adsorption 

of dye molecules by MIL-101(Cr) induced an enhanced selective biodegradation of the harmful 

methyl orange by the immobilized MP8, through a charge-based pre-concentration 

mechanism. 

In a second part, the ligand functionalization of MIL-101(Cr) and its influence on the 

encapsulation and on the catalytic activity of MP8 was studied. For the functionalization of 

the framework, a direct approach was preferred to a post-synthetic functionalization, due to 

its higher simplicity and reproducibility. Two functionalized ligands were selected, 2-

aminoterephthalic acid and 2-sulfoterephthalic acid that led to the synthesis of respective 

MIL-101(Cr)-NH2 and MIL-101(Cr)-SO3H. These MOFs possessed different polarity and acidity, 

as well as a different particles surface charge. The functionalized MOFs resulted in MP8 

loadings higher than that in the bare MOF, possibly because of additional specific interactions 

(H-bonding, additional electrostatic interactions etc…) that stabilized some enzyme molecules 
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at the external surface of the MOFs. The catalytic activity the immobilized MP8 was evaluated 

through the oxidation of a typical chromogenic substrate (ABTS) by H2O2 and through a more 

challenging catalytic reaction, the oxidation of thioanisole derivatives bearing electron 

donating, EDG (-CH3, -OCH3) or electron withdrawing, EWG (-NO2) groups by H2O2. MP8@MIL-

101(Cr) and MP8@MIL-101(Cr)-NH2 showed similar activities, presumably because of the 

similar microenvironment around MP8 in their structures in terms of surface charge and 

acidity. MP8@MIL-101(Cr)-SO3H showed a poor activity probably because its high acidity 

caused the cleavage of the Fe-histidine18 bond, which is essential for the activity of MP8. 

Similarly to free MP8, the immobilized enzymes were more reactive when sulfides bearing 

EDG groups were used. 

In a similar approach, the metal functionalization of MIL-101(Cr) was investigated. The goal 

was to substitute a few Cr(III) centers of the Secondary Building Unit by Fe(III) ions to obtain a 

stable mesoporous structure that would be catalytically active (as Lewis acid catalyst and/or 

peroxidase-like catalyst). Two MOFs with different Cr(III)/Fe(III) ratios, MIL-101(Cr/Fe) (4:1) 

and MIL-101(Cr/Fe) (5.9:1) were obtained. Both MOFs showed a good chemical stability and 

were found to catalyze the Prins reaction and the ring opening of epoxides. 

The last part of the thesis was focused on the immobilization of enzymes following the 

entrapment approach (i.e. formation of the immobilization matrix in the presence of the bio-

entities). Two MOFs were selected, namely MIL-53(Al)-FA and MIL-100(Fe) according to their 

high chemical stability and their synthesis that required non-toxic reactants. Concerning MIL-

53(Al)-FA, an extensive synthesis optimization was performed in order to obtain this MOF in 

water at room temperature. MIL-53(Al)-FA was then synthesized in the presence of high 

amounts of a model protein, Bovine Serum Albumin (BSA), giving rise to composites with 

immobilization rates close to 100 %. The presence of BSA in the composites and the 

preservation of the MOF structure were confirmed with various techniques (PXRD, FT-IR, TGA, 

NMR, fluorescence confocal microscopy, TEM-XEDS). Furthermore, based on N2 porosimetry 

and in-situ FT-IR adsorption studies, an extra mesoporority was evidenced. The protein 

molecules may have induced the formation of large interparticle spaces in the composites that 

could be due to the aggregation of small nanoparticles of MIL-53-FA. A preliminary catalytic 

study with horseradish peroxidase immobilized in MIL-53(Al)-FA revealed that the enzyme 

preserved its activity after immobilization. An alternative immobilization approach was 

investigated through the formation of MIL-53(Al)-FA/alginate beads for the entrapment of pH-

sensitive enzymes that may be harmed by the acidic conditions of the MIL-53(Al)-FA synthesis. 

Concerning MIL-100(Fe), the BSA molecules did not influence its synthesis and they were 

successfully immobilized in the porous matrix. Thus, the first preliminary results are 

encouraging for an extensive study of this system. 

While the cage inclusion of MP8 was thoroughly studied during the course of the thesis, some 

further work is needed to fully complete the study of the in-situ systems. 
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The in-situ formation of MIL-53(Al)-FA in the presence of BSA resulted in the entrapment of 

high amounts of biomolecules. The characterization of the composites by confocal microscopy 

using a fluorescent biomolecule (FITC-BSA) suggested that the presence of the biomolecules 

influences the morphology of the resulting particles. It is possible that the BSA molecules 

induce the nucleation of the MOF; however, this phenomenon is not yet understood. The 

investigation of the role of BSA could give useful information for the nucleation and growth of 

MIL-53(Al) and the possibility to control the morphology of the MOF, by tuning the nature of 

the biomolecule. In-situ liquid cell TEM may be a useful tool to follow the growth mechanism 

of MIL-53(Al)-FA directly in the reaction mixture, in presence of biomolecules. This technique 

has been successfully used to monitor the formation of gold nanoparticles and it has also been 

reported for the direct observation of MOF materials, like UiO-66. The second synthetic 

procedure, using NaAlO2 as precursor in presence of BSA should also be investigated. Finally, 

we should proceed with an extensive investigation on the catalytic activity of enzyme@MIL-

53(Al)-FA bio-hybrids. 

A thorough investigation of the in-situ synthesis of MIL-100(Fe) in presence of enzymes must 

also be performed. 

Concerning the MIL-53(Al)-FA/alginate beads material, an extensive investigation on its 

structure must be performed. Microscopy techniques, coupled with spectroscopy mapping 

(e.g. TEM/micro-IR and/or TEM/micro-Raman) may be used to investigate the micro-structure 

of the beads and the localization of the MOF particles. A next step would be the immobilization 

of pH-sensitive enzymes into the beads and the investigation of the protective effect of the 

matrix. A comparison with the immobilized enzyme in a MIL-53(Al)-FA matrix should be 

performed to evaluate the extent of protection by the alginate biopolymer. Finally, the 

stability and recyclability of the beads along with the possible leaching of the enzyme must be 

evaluated. The removal of alginate (via EDTA, citrate) after the immobilization of the enzyme 

should also be considered in order to limit the diffusion barriers of the system, along with 

decreasing the size of the beads, which could also improve the diffusion of substrates to the 

enzyme. Considering the microporosity of MIL-53(Al)-FA shell, the variety of substrates that 

can be used may be limited. Thus, the formation of MIL-100(Fe)/alginate beads would also be 

of interest in order to allow the diffusion of larger molecules through the mesopores of MIL-

100(Fe). 

Another aspect that we have started studying in this work consists in combining the catalytic 

properties of the MOF with those of the enzyme, in order to perform cascade –or tandem- 

reactions. Both MIL-101(Cr/Fe) products synthesized during this work showed good water 

stability and Lewis acid catalytic activity (Prins reactions and ring opening of epoxides). It 

would thus be of interest to combine the Lewis acid activity of theses MOFs with the catalytic 

activity of MP8. While, the ring opening of epoxides catalyzed by MIL-101(Cr/Fe) requires 

elevated temperatures (~ 50 oC) and the use of MeOH, MP8 (due to its simple structure) may 

be robust enough to preserve its enzymatic activity. Thus, a catalytic system able to perform 

cascade reactions could be designed by associating MP8 immobilized in MIL-101(Cr/Fe) that 
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could catalyze the epoxidation of olefins, with MIL-101(Cr/Fe) that could then catalyze the 

ring opening of the formed epoxides, thus mimicking microsomal epoxide hydrolases. 

Alternatively, a tandem reaction could be designed using the peroxidase-like activity of MIL-

101(Cr/Fe)s in combination with glucose oxidase immobilized at the external surface of MIL-

101(Cr/Fe), that would produce the hydrogen peroxide substrate of the peroxidase reaction. 

Similarly, MIL-100(Fe) combines chemically stability, bio-compatibility and catalytic activity, 

which could also be coupled with enzymes for tandem reactions. 

While very promising results were obtained in this work and in the literature, the use of MOFs 

for the immobilization of enzymes is a new research field and remains relatively unknown and 

unexplored. Many limitations need to be overcome, which leaves plenty of room for future 

studies. The cage inclusion of enzymes using MOF materials has been shown to adequately 

promote the design of stable and active immobilized biocatalysts. However, this approach is 

limited to a few small enzymes and to mesoporous MOFs with high water stability. There is 

thus a need to expand the number of possible MOF-enzymes. As discussed in chapter 1 the 

chemical stability of MOFs is a complex physicochemical phenomenon that depends on 

multiple parameters (metal cation, ligand, hydrophobicity, porosity…). Nonetheless, the use 

of the highly inert Cr(III) cation, which shows very low water exchange rate is interesting when 

high chemically stable and highly porous structures are targeted. The use of tetravalent metal 

cations (Ti, Zr) could be a more eco-friendly approach to design chemically stable mesoporous 

MOFs. The synthesis of extended organic ligands can allow the increase to some extent of the 

pore dimensions of MOFs, but as already discussed, very long organic ligands require 

complicated, time-consuming and sometimes toxic organic syntheses. Moreover, the use of 

extended ligands often results in unstable MOF structures. Thus, in order to enable a universal 

use of MOFs for the cage inclusion of enzymes, via a sustainable synthetic process, other 

approaches must be envisioned. The partial dissolution of the MOF matrix, either via the 

introduction of labile to hydrolysis ligands or by a chemical treatment could promote the 

formation of large cavities, able to host large enzymes. The key issue will be to control the 

localization of such defects in the structure, in order to allow a homogeneous distribution of 

the enzymes. Another alternative approach could be the formation of ordered mesoporous 

super-structures, by introducing surfactants during the MOF synthesis. In that way, the 

material retains all the properties of the parent MOF that makes it promising for enzyme 

encapsulation (crystallinity, hybrid nature, ordered porosity…), while the formation of large 

mesopores by the surfactants allows the immobilization of large enzymes. Examples of such 

structures have already been reported (chapter 1), but to my knowledge their use for the 

immobilization of enzymes has not been thoroughly studied. 

Following the concept of designing MOF-enzyme systems, in which MOFs are active 

components of the catalytic application, other systems can be targeted. For example, glucose 

isomerase is used for the conversion of D-glucose to D-fructose for the industrial production 

of high-fructose corn syrup. The immobilization of glucose isomerase in solid supports has 

been targeted for years for recycling purposes and stability issues. This enzyme requires 
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divalent metal ions (e.g. Mg2+, Mn2+, Co2+) for both maximal catalytic activity and stability. The 

immobilization of glucose isomerase in a MOF matrix that is constructed with divalent cations, 

could eventually promote its activity and stability and enable its reuse. However, the use of 

divalent cations often results in unstable MOF structures. A way to overcome this limitation 

could be the synthesis of mixed-valence MOFs that contain divalent cations needed for the 

catalytic activity and trivalent or tetravalent cations to ensure the stability of the structure. 

Considering the dimensions of glucose isomerase (~ 176 kDa), the in-situ approach should be 

preferred for its immobilization. Nonetheless, the synthesis of mixed-valent MOFs in presence 

of enzymes may be a rather complicated process. A solution would thus be the preformation 

of the mixed-valent secondary building units (SBUs), which could then react with the chosen 

organic ligands and the enzyme. Examples of such MOFs have already been reported, like MIL-

125-(Fe(III)/M(II) (M = Ni, Co, Mg). However, for the in-situ approach the choice of the ligand 

is limited to relatively water-soluble molecules. Thus, one possibility would be the formation 

of a mixed-valent MIL-100(Fe)/M(II), starting with preformed Fe(III)/M(II) trimeric SBUs. 
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Catalytic properties of mixed-metal MIL-101(Cr/Fe) 

The catalytic tests were performed at the Universitat Politècnica de València in Spain, in the 

group of Prof. Hermenegildo García by Cristina Vallés, Dr. Andrea Santiago, Dr. Mónica 

Jiménez-Marques, Prof. Mercedes Álvaro and Prof. Sergio Navalón. 

Prior to the utilization of the mixed metal MOFs as potential catalytically active immobilization 

matrices, it was important to fully evaluate their catalytic activity. First, the ability of MIL-

101(Cr/Fe) (4:1) to be used as catalyst was studied using two different types of organic 

reactions usually catalyzed by a Lewis acid, the Prins coupling reaction and the ring opening 

reaction. The catalytic activity of MIL-101(Cr) was already studied for such reactions, but 

relatively low conversions were obtained. Fe-based MOFs showed an enhanced activity 

compared to that of Cr-based MOFs, which was due to the redox properties of trivalent iron 

species that played a significant role in activating the reactants, as already demonstrated for 

Friedel-Crafts reactions catalyzed by MIL-100(Fe).1 It was thus believed that the mixed metal 

MIL-101(Cr/Fe) (4:1) would show a higher activity than both MIL-101(Cr) and the unstable 

MIL-101(Fe). 

Before starting the experiments, MIL-101(Cr/Fe) (4:1), MIL-101(Fe) and MIL-101(Cr) catalysts 

were activated at 150 oC for 16 h, in order to remove solvent molecules and to generate open-

metal sites (OMSs) in the inorganic clusters. For each test, 10 mg of catalyst were used. For 

the Prins reaction, β-pinene (1 mmol) and formaldehyde (1 mmol) were dissolved in 2.5 mL 

acetonitrile and the solution was mixed with the activated catalyst at 80 oC. For the ring 

opening reaction, styrene oxide (1 mmol) was dissolved in 2.5 mL methanol and mixed with 

the activated catalyst. The reactions were stirred and aliquots were taken at various reaction 

times. 

Figure 1 shows the first results obtained for the Prins reaction. In the presence of MIL-

101(Cr/Fe) (4:1), a maximum conversion of 70.3 % was reached after 24 h of reaction, whereas 

only 53.0 % conversion was observed with MIL-101(Fe). The higher activity of the mixed-metal 

MOF than that of its Fe analog was attributed to the higher stability of its framework. As 

revealed by the PXRD analysis of the catalysts after the reaction, MIL-101(Fe) had been totally 

converted into the more dense and stable phase MIL-88B, while no changes were observed 

for MIL-101(Cr/Fe) (4:1) (Figure 3). The conversion of the mesoporous MIL-101(Fe) into the 

microporous MIL-88B(Fe) may explain the apparent lower activity of the MOF, as the diffusion 

of reactants would be limited in the later MOF. The reported conversion of MIL-101(Cr) for 

the Prins reaction was around 30 %, which is in agreement with the lower Lewis acid activity 

of Cr-based MOFs.2 
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Figure 1: Top: schematic illustration of the Prins coupling reaction of β-pyrene and formaldehyde, catalyzed by 
MIL-101(X) materials at 80 oC; Bottom: time-conversion plot for the Prins coupling catalyzed by MIL-101(Cr/Fe) 
(4:1) (brown triangles), MIL-101(Fe) (grey circles) and the reported value for MIL-101(Cr) (black asterisk).2 

The results for the catalysis of the ring opening reaction are shown in Figure 2. In this case, 

similar conversion was observed both with MIL-101(Cr/Fe) and MIL-101(Fe) as catalysts after 

24 h of reaction (43.9 % and 38.3 %, respectively). The slightly higher activity of the mixed 

metal MOF was again attributed to the instability of MIL-101(Fe) under the reaction conditions 

that resulted in its transformation into MIL-88B (Figure 3). MIL-101(Cr) was much less active, 

leading to a conversion of 12 %. 

 

Figure 2: On top, schematic illustration of the ring opening reaction of epoxide by methanol, catalyzed by MIL-
101(X) materials at 50 oC; On bottom, time-conversion plot for ring opening catalyzed by MIL-101(Cr/Fe) (4:1) 
(brown triangles), MIL-101(Fe) (grey circles) and the reported values for MIL-101(Cr) (black squares).2 
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These first catalytic results thus appeared to be promising, which encourage for a more 

extensive study of the activity of MIL-101(Cr/Fe) (4:1) and also MIL-101(Cr/Fe) (5.9:1). 

Currently the catalytic activity of both MOFs is tested in Lewis acid catalyzed reactions, with a 

more extensive study on the stability of the catalysts (leaching of metal ions) and on their 

potential reusability. A comparison with more stable Fe-MOFs (like MIL-88B) is as well 

investigated. Once the catalytic activity of the mixed-metal MOFs will have fully been 

evaluated, they will be eventually studied as host matrices for enzymes. 

 

Figure 3: Normalized PXRD diagrams of (a) MIL-101(Cr/Fe) (4:1) and (b) MIL-101(Fe) before and after catalysis. 
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Solid-state NMR of MIL-53(Al)-FA and its composites with BSA 

The solid-state NMR study was performed by Dr. Charlotte Martineau-Corcos at the Institut 

Lavoisier de Versailles. 

The two MIL-53(Al)-FA products obtained at room temperature, in water (Al2(SO4)3∙18H2O and 

NaAlO2) and the composites of MIL-53(Al)-FA (Al2(SO4)3∙18H2O) with BSA were analyzed by 

solid-state NMR spectroscopy to gain insights about their structure. 

27Al nuclear magnetic resonance spectroscopy was used to confirm the formation of MIL-

53(Al)-FA, in water, at room temperature. Since 27Al is a quadrupolar nucleus (I= 5/2 > 1/2), 

the nucleus interacts both with the external magnetic field and the electric filed gradient that 

is generated by its surrounding environment.1,2 This usually gives rise to broadened and 

overlapping NMR resonances that are composed of a central transition (+1/2 ↔ -1/2), 

surrounded by satellite transitions (spinning sidebands). The chemical shift range of 27Al is 

relatively wide (~ -100 - 300 ppm) with the reference Al(H2O6)3+ at 0 ppm.1,2 It can give 

information about the coordination number of aluminium, with the general trend showing 

that the aluminium cations in octahedral environment usually show high field resonances, 

compared to tetrahedral of five-coordinated aluminum atoms. The chemical shift is mainly 

influenced by the electronegativity of the ligand and the more the aluminium is coordinated 

with donor ligands (e.g. O-, S-, -N-, P-) the stronger the shielding around the Al-center.1,2 In Al-

based MOFs, the aluminium atom is always in octahedral environment. However, depending 

on the synthetic conditions (ligands, temperature, solvent, pressure, reaction time etc.) 

different aluminium clusters (secondary building units, SBU) can be formed. For more details 

on SBUs, see chapter 1. The 27Al spectrum is representative of a specific SBU. The shape of the 

spectrum is yet importantly influenced by the hydration state of the MOF and the degree of 

crystallinity.1,2 

Figure 1 shows the 27Al MAS NMR spectrum of MIL-53(Al)-FA (Al2(SO4)3∙18H2O), compared 

with that of Basolite A520 (patent)3,4 and MIL-53(Al)-FA obtained with the reported optimized 

hydrothermal synthesis.4 All three spectra have similar line shapes and chemical shifts, 

characteristic of carboxylate-coordinated aluminium octahedra (AlO6), sharing opposite 

corners (Figure 2).4,5 It thus confirms the formation of MIL-53(Al)-FA in water, at room 

temperature. As already demonstrated by the PXRD analysis, MIL-53(Al)-FA (Al2(SO4)3∙18H2O) 

shows a lesser extend of crystallinity compared to the patent synthesis,3 while the optimized 

hydrothermal synthesis4 forms better crystallized particles compared to the two former 

samples. This is also confirmed, through the broadening of right part of the 27Al NMR 

resonance that follows the order of crystallinity MIL-53(Al)-FA (hydrothermal) > Basolite A520 

(patent) > MIL-53(Al)-FA (Al2(SO4)3∙18H2O). Moreover, the spectrum of MIL-53(Al)-FA 

(Al2(SO4)3∙18H2O) shows a broadening on the left part (denoted with *) that can be attributed 

to small traces of amorphous Al oxide/hydroxide.4 
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Figure 1: 27Al MAS NMR spectra of MIL-53(Al)-FA (Al2(SO4)3∙18H2O) (blue), Basolite A520 (patent) (grey) and MIL-
53(Al)-FA (hydrothermal) (black). All samples were dried at 100 °C overnight prior to the NMR measurement. Stars 
indicate the presence of aluminum oxide. 

 

Figure 2: The SBU of MIL-53(Al)-FA (or Basolite A520) 1D chain of AlO6 octahedra, sharing opposite corners. 

The 27Al MAS NMR of MIL-53(Al)-FA (NaAlO2) is almost identical to the one of MIL-53(Al)-FA 

(Al2(SO4)3∙18H2O) thus, confirming the synthesis of the MOF, by both synthetic roots (Figure 

3). Moreover, both products showed the same amounts of Al oxide/hydroxide impurity in 

their structure. This is not in accordance with the TG analysis showed in chapter 4, which 

highlights the important standard error of TGA. The difference on the right part of the spectra 

is attributed to the different levels of hydration of the samples. The signals denoted with * are 

attributed to spinning sidebands. 

 

Figure 3: 27Al MAS NMR spectra of MIL-53(Al)-FA (Al2(SO4)3∙18H2O) (blue) and MIL-53(Al)-FA (NaAlO2) (green). Stars 
indicate the position of the spinning sidebands. 
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The presence of BSA during the synthesis of MIL-53(Al)-FA did not seem to affect the crystal 

structure of the MOF. The 27Al MAS spectra of the composites with BSA are identical to the 

parent MOF, showing the same line shape, chemical shift and degree of signal broadening 

(Figure 4). 

 

Figure 4:
 

27Al MAS NMR spectra of MIL-53(Al)-FA (blue), 50mg BSA@MIL-53(Al)-FA (orange), 200mg BSA@MIL-
53(Al)-FA (green), 200mg BSA@MIL-53(Al)-FA (post-synthesis) (red) and 400mg BSA@MIL-53(Al)-FA (purple). All 
samples were dried at 100 °C overnight prior to the NMR measurement. Stars indicate the position of the spinning 
sidebands. 

MIL-53(Al)-FA and its composites with BSA were also analysed by solid-state 13C NMR 

spectroscopy. The 13C MAS NMR spectrum of MIL-53(Al)-FA exhibits two signals at δ ~ 138 and 

170 ppm (Figure 5). The high-field signal can be attributed to the two carbon atoms of the 

double bond (a) and the low-field signal to the two carboxyl carbon atoms (b). The small signal 

at δ ~ 172 may be due defects or disorder in the crystal structure of the MOF. The two principal 

signals are broader compared to those of Basolite A520, due to the lower crystallinity of the 

sample. 

Figure 6 shows the 13C MAS NMR spectra of BSA, MIL-53(Al)-FA and its composites with BSA. 

BSA exhibits a broad high-field signal between 10-70 ppm that can be attributed to the 

overlapping of resonances of α-carbons and aliphatic carbons.6–8 The small signal at δ ~ 130 

ppm may be due to the aromatic carbons, while the low-field signal at ~180 ppm can be 

attributed to the carbonyl carbons of the peptide bonds. 6–8 The composites of MIL-53(Al)-FA 

with important amounts of BSA (200 mg, 400 mg in-situ and 200 mg post-synthesis) exhibited 

similar 13C resonances with BSA, which is consistent with the presence of the biomolecules in 

the crystal structure of the MOF. The similar line shape and chemical shift of the BSA signals 

in the composites, compared to the free biomolecule may indicate that the BSA remained 

intact after immobilization The BSA incorporation had no effect on the 13C NMR line shape of 

the MOF. 
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Solid-state NMR of MIL-53(Al)-FA and its composites with BSA 

 

Figure 5: 13C MAS NMR spectra of MIL-53(Al)-FA (blue) and Basolite A520 (grey). Samples were dried at 100 °C 
overnight prior to the NMR measurement. Stars indicate the presence of an aluminum oxide. 

The solid-state NMR analysis confirmed the formation of MIL-53(Al)-FA in water, at room 

temperature (Al2(SO4)3∙18H2O and NaAlO2). The broadened line shape of the 27Al resonances 

are in agreement with the lower crystallinity of the samples, observed by the PXRD analysis. 
13C NMR confirmed the presence of BSA in the composite of MIL-53 (Al)-FA, without however 

giving any further information about specific interactions of BSA with the MOF structure. The 

MIL-53(Al)-FA structure was not influenced by the presence of BSA, based on 27Al and 13C 

NMR. 

 

Figure 6: 13C MAS NMR spectra of BSA (black), MIL-53(Al)-FA (blue), 50mg BSA@MIL-53(Al)-FA (orange), 200mg 
BSA@MIL-53(Al)-FA (green), 200mg BSA@MIL-53(Al)-FA (post-synthesis) (red) and 400mg BSA@MIL-53(Al)-FA 
(purple). All samples were dried at 100 °C overnight prior to the NMR measurement. 
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Résumé : Les enzymes sont des biocatalyseurs de plus en plus utilisés pour la transformation de 

molécules organiques (chimie fine, bioconversions, dépollution, chimie du pétrole) car elles possèdent 

de très bonnes sélectivité et réactivité, générant rapidement de larges quantités de produit. Cependant, 

la fragilité des enzymes, notamment en solution, limite souvent leur utilisation. Il est donc crucial de 

les immobiliser et de les stabiliser dans des supports adaptés. Une grande variété de matrices 

d’immobilisation (organiques ou inorganiques) a déjà étudiée, mais aucune ne satisfait pleinement aux 

critères nécessaires pour le développement de bio-réacteurs (accessibilité au site actif de l’enzyme, 

relargage de l’enzyme, diffusion des réactifs, recyclabilité, stabilité..). En outre, la majorité de ces 

matrices présente une porosité désordonnée, inadaptée pour une immobilisation homogène. 

L’utilisation de matériaux hybrides, cristallins et poreux de type Metal-Organic Frameworks (MOFs) 

a été récemment proposée comme alternative avec des applications en biocatalyse et en biodétection. 

Le travail de cette thèse a consisté à associer des matériaux de type Metal-Organic Frameworks à une 

mini-enzyme, la microperoxidase 8 (MP8), afin d’obtenir des matériaux multifonctionnels. Dans une 

première partie, le MOF mésoporeux, MIL-101(Cr), a été utilisé pour encapsuler la MP8, ce qui a 

conduit à une amélioration de son activité catalytique dans des conditions qui ne sont pas adéquates 

pour l’activité enzymatique (conditions acides, forte concentration en H2O2), démontrant ainsi le rôle 

protecteur du MOF vis-à-vis de l’enzyme. De plus, il a été possible de recycler le biocatalyseur. Cette 

approche a également permis d’améliorer considérablement la sélectivité de la MP8 pour la dégradation 

d’un colorant organique toxique négativement chargé, le méthyl orange, grâce à son adsorption 

sélective par interaction électrostatique avec les particules de MIL-101(Cr). La seconde partie a été 

consacrée à l’utilisation de matériaux MIL-101(Cr) fonctionnalisés. Tout d’abord, l’influence de la 

fonctionnalisation du ligand (avec un groupement –NH2 ou –SO3H) sur l’encapsulation de la MP8 ainsi 

que sur son activité catalytique pour des réactions de sulfoxydation a été étudiée. Il a été montré que 

l’activité catalytique et la réactivité de la MP8 sont affectées par le microenvironnement spécifique des 

pores du MOF, notamment pour des réactions de sulfoxydation mettant en jeu des dérivés thioanisole. 

Ensuite, un MOF à métal mixte (MIL-101(Cr/Fe)) choisi pour ses propriétés catalytiques stables, a été 

synthétisé et caractérisé. Enfin, la dernière partie de cette thèse a été consacrée à la synthèse in-situ 

d’un MOF (le microporeux MIL-53(Al)-FA) en présence de biomolécules (BSA) dans des conditions 

compatibles avec la préservation de la structure protéique (en solution aqueuse à température 

ambiante). Les matériaux hybrides obtenus ont été caractérisés en couplant de nombreuses techniques. 

Cette méthode d’encapsulation a conduit à des taux d’immobilisation extrêmement élevés. Une étude 

préliminaire a été initiée avec l’enzyme, Horseradish Peroxidase , qui conserve son activité catalytique 

après immobilisation. 
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Abstract : The use of enzymes in biocatalytic processes has been a challenging goal over the years. 

While enzymes present exceptional catalytic properties, their fragility hinders their industrial 

application. Their stabilization and protection are therefore of paramount importance. This can be 

effectively addressed through their immobilization within host solid matrices. Traditional materials 

(silica, clays, polymers, biopolymers, porous carbons…) have been widely studied as supports. Their 

pure organic or inorganic nature often requires a compromise between affinity with enzymes and 

robustness of the matrix. Besides, most of them have non-ordered porosity, with non-homogenous pore 

size distributions, unsuitable for homogeneous immobilization. Metal-Organic Frameworks (MOFs) 

have been recently introduced as alternative supports, thanks to their hybrid nature and their crystalline 

and highly porous structures. 

The aim of this PhD was to combine Metal-Organic Frameworks (highly porous and chemically stable 

polycarboxylate MOFs) and a mini-enzyme, microperoxidase 8 (MP8) to obtain multifunctional 

biocatalysts. In a first part, the mesoporous MIL-101(Cr) was used as a host matrix to encapsulate MP8. 

The encapsulation led to an increased catalytic activity under conditions (acidic conditions, high 

concentration of H2O2) detrimental to the catalytic activity of MP8, thereby demonstrating the 

protecting effect of MIL-101(Cr) matrix. The biocatalyst was also efficiently recycled. The selectivity 

of MP8 for the degradation of the harmful negatively charged organic dye methyl orange was also 

enhanced, thanks to the charged-based selective adsorption of the dye in MIL-101(Cr) porosity. A 

second part of the work was devoted to the use of functionalized MIL-101(Cr) analogs. First, 

functionalized ligands (bearing –NH2 and –SO3H groups) were used, and their influence on MP8 

encapsulation was evaluated. The catalytic activity toward sulfoxidation reactions was also studied. 

The successful encapsulation of MP8 was strongly dependent on charge matching between the enzyme 

and the MOFs particles, while its catalytic activity was affected by the specific microenvironment of 

the pores. The MOF frameworks also modified the reactivity of MP8 toward different thioanisole 

derivatives. Then, a mixed metal MOF (MIL-101(Cr/Fe)), selected for its stable catalytic properties, 

was synthesized and characterized. Finally, the last part was devoted to the in-situ synthesis of MOFs 

(microporous MIL-53(Al)-FA) in presence of biomolecules (BSA) under compatible conditions with 

the preservation of the protein’s quaternary structure (aqueous media and room temperature). The 

resulting hybrid materials were thoroughly characterized and presented high loadings of BSA. A 

preliminarily study was performed with the enzyme, Horseradish Peroxidase, which retained its 

catalytic activity after immobilization. 

 


