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Abstract

Particle accelerators play a central role in the advancement of fundamental physics
research. In circular accelerators such as the Large Hadron Collider (LHC) at CERN, the
trajectory of the particle beams must be bent with magnetic fields. For this purpose,
the LHC utilizes superconducting dipole magnets, which allow the electric current to
flow without resistance. A cooling system of superfluid helium (He II) ensures the
superconducting state by maintaining the magnets at temperatures below 2 K. However,
the confined structures surrounding the dipole coils hinder the cooling process. The metal
collars, which restrict the dipoles to counter the electromagnetic forces, are spaced 200
microns apart from each other. If the magnets lose the superconductive properties (i.e.,
during a magnet quench), the energy dissipated is such that helium undergoes drastic
thermodynamic changes, causing the failure of the machine and severe damages to its
components.

The present work focuses on the thermal phenomena occurring at this level of ge-
ometrical confinement in He II when subject to high heat fluxes. Experiments were
conducted in a cryostat with pressurized He II at various bath temperatures. The tests
consisted of applying a clamped heat flux in rectangular cross-section channels with high
aspect ratios, resembling the gap between the collars. Numerous tests were carried out
with different channel orientations and thicknesses. A thermo-fluid dynamic numerical
model was developed to simulate the heat and mass transfer in He I1. Novel dimensionless
numbers were derived to validate the assumption at the basis of the single-fluid governing
equations implemented in the model. The numerical model, which is based on the finite
volume method, is capable of simulating transient conjugate heat transfer events in multi-
dimensional geometries. Moreover, a novel algorithm was conceptualized to deal with
the second and first-order phase transitions that helium undergoes above the critical
heat fluxes. At atmospheric pressure, the second-order one (i.e., lambda transition) is
associated with the threshold of the superfluid state, whereas the first-order one relates
liquid helium to helium vapour.

The experiments in He II resulted in reliable temperature measurements with a preci-
sion uncertainty of around 0.12 %. The superfluid helium model was successfully validated
against experimental data from both the literature and this work with a relative error
around 1 %. The experiments that involved multiple helium phases revealed a significant
dependence of the proportion between the different phases on the channel thickness and
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orientation, as well as the initial temperature of the fluid. The speed at which the liquid
helium-He II interface travels appears to be highly affected by the presence of a helium
vapour film. At high heat fluxes, the phase change fronts propagate at a similar rate,
indicating a strong correlation between the two. The phase transitions algorithm was
tested at moderate heat fluxes in both subcooled liquid helium and He II. The comparison
with the channel experiments showed satisfactory agreement in the temperature profiles
and propagation of the phase change fronts with a relative error around 10 %. The
computational model may constitute the basis of further development of the code for the

simulation of events at greater pressure and temperature variations.



Résumé

Les accélérateurs de particules jouent un réle central dans ’avancement de la recherche en
physique fondamentale. Dans les accélérateurs circulaires tels que le Large Hadron Collider
(LHC) du CERN, la trajectoire des faisceaux de particules doit étre courbée par des champs
magnétiques. A cette fin, le LHC utilise des aimants dipolaires supraconducteurs, qui per-
mettent au courant électrique de circuler sans résistance. Un systéme de refroidissement
a I’hélium superfluide (He II) assure I'état supraconducteur en maintenant les aimants a
des températures inférieures a 2 K. Toutefois, les structures confinées qui entourent les
bobines dip6laires entravent le processus de refroidissement. Les colliers métalliques, qui
permettent de contrer les forces électromagnétiques, sont espacés de 200 microns les uns
des autres. Si les aimants perdent leurs propriétés supraconductrices (par exemple, lors
d’'un quench de I'aimant), I'énergie dissipée est telle que I'hélium subit des changements
thermodynamiques drastiques, pouvant entrainer la défaillance de la machine et de graves
dommages a ses composants.

Le présent travail se concentre sur les phénomeénes thermiques en He Il se produisant a
ce niveau de confinement géométrique lorsqu’il est soumis a des flux de chaleur élevés. Des
expériences ont été menées dans un cryostat en He Il pressurisé a différentes températures
de bain. Les essais ont consisté a appliquer un flux de chaleur de confinement dans
des canaux de section rectangulaire avec des rapports d’aspect élevés, ressemblant a
’espace entre les colliers métalliques. De nombreux essais ont été réalisés avec différentes
orientations et épaisseurs de canaux. Un modéle numérique dynamique thermo-fluide a
été développé pour simuler le transfert de chaleur et de masse dans I’'He II. De nouveaux
nombres sans dimension ont été dérivés pour valider 'hypothése a la base des équations
gouvernantes monofluide mises en ceuvre dans le modele. Le modele numérique, qui est
basé sur la méthode des volumes finis, est capable de simuler des événements transitoires
de transfert de chaleur conjugués dans des géométries multidimensionnelles. De plus, un
nouvel algorithme a été conceptualisé pour traiter les transitions de phase de second et
premier ordre que I'hélium subit au-dessus des flux de chaleur critiques. A la pression
atmosphérique, la transition de second ordre (c’est-a-dire la transition lambda) est associée
au seuil de I’état superfluide, tandis que la transition de premier ordre relie ’hélium liquide
a la vapeur d’hélium.

Les expériences en He II ont permis d’obtenir des mesures de température fiables avec
une incertitude de précision d’environ 0.12 %. Le modele de I’hélium superfluide a été
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validé avec succes par rapport aux données expérimentales de la littérature et de ce travail
avec une erreur relative d’environ 1 %. Les expériences impliquant plusieurs phases de
I’hélium ont révélé une dépendance significative de la proportion entre les différentes
phases sur 1’épaisseur et I'orientation du canal, ainsi que sur la température initiale du
fluide. La vitesse a laquelle 'interface hélium liquide-He I1 se déplace semble étre fortement
affectée par la présence d’'un film de vapeur d’hélium. A des flux de chaleur élevés, les
fronts de changement de phase se propagent a une vitesse similaire, indiquant une forte
corrélation entre les deux. L’algorithme des transitions de phase a été testé a des flux de
chaleur modérés dans de I’hélium liquide sous-refroidi et de I'He II. La comparaison avec
les expériences en canal a montré un accord satisfaisant dans les profils de température et
la propagation des fronts de changement de phase avec une erreur relative d’environ 10 %.
Le modele de calcul peut constituer la base d'un développement ultérieur du code pour la
simulation d’événements a des variations de pression et de température plus importantes.
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1.1 Background

Fundamental research in particle physics has yet many open problems to solve. Su-
persymmetry is only one of many conjectures that await experimental evidence to be
proved or disproved [103]. In the search for answers to such unsolved problems, over the
years various types of particle accelerators have been designed to investigate the basic
structure of matter. Such devices boost charged particles via electromagnetic fields to
reach high energies of several GeV. The particle beam eventually collides with either a
target or another beam to produce radiations and fast decaying particles. The product of
the collision is subject to a magnetic field in order for specific detectors to measure the
characteristics of the newly generated particles. In facilities such as the Large Hadron
Collider (LHC) at CERN, the accelerator is circular in order for the beam to cover more
distance and hence gain more energy at each turn of the circumference. In this way, the
LHC is able to accelerate particles at an energy of 6.5 TeV in its 26.7 km ring, where two
beams are sped up in opposite directions in pipes situated 19 cm far from each other
(see Fig. 1.1). A magnetic field must be then exerted to keep the beams in a circular

Heat exchanger
- pipe in

Steel collars

-

~< saturated He II
~ = = Iron yoke
Superconducting
dipole coils RSN
~
~
Beam pipe

Figure 1.1: Cross section of the Large Hadron Collider at a location of bending magnets
[49].

orbit. The bending magnets of the LHC operate at a magnetic field of 8.3 T with a
nominal electric current of 12 kA. Because of the electrical resistance, the usage of an
ordinary conductor such as copper would cause unaffordable power losses and require an
enormous amount of wiring and energy to fulfill these requirements. For these reasons,
the main magnet coils at the LHC are made out of niobium-titanium (NbTi), which acquires
superconductive properties below certain critical values of current density, magnetic field,



and temperature. The superconductive state allows the electric current to flow without
resistance, preventing the dissipation of energy. More specifically, the NbTi alloy becomes
a superconductor below 9.3 K, which imposes cryogenic requirements on the accelerator
technology. In order to maintain the desired operating conditions of the machine, the
generated heat loads must be extracted by means of a working fluid below 2 K [96]. At
this temperature, the obvious choice for the fluid was “He, a stable isotope of helium that
has superfluid properties below 2.17 K at atmospheric pressure. Superfluid helium (He
IT) represents a great option as it does not solidify under its own vapour pressure, it is
nearly inviscid, and it possesses an apparent thermal conductivity about two orders of
magnitude higher than copper in the presence of a 10 kW/m? heat current. The LHC
cooling system is schematized in Fig. 1.2. He II is utilized at 1.9 K both at saturation

Saturated He II Heat exchanger pipe

/ Pressurized He 11
T o @

=i

\

Superconducting Helium vessel

bending magnet

Superconducting
bus-bar connection

Figure 1.2: Scheme of the LHC helium cooling system [95].

and atmospheric pressure. The heat load is absorbed by the saturated two-phase mixture,
which flows in forced-flow regime in the copper heat exchanger pipe also shown in Fig. 1.1.
The phase stratification occurring in the pipe allows the liquid phase to be always directed
towards the source of the load, which is effectively extracted by evaporation. The actual
thermal link between the copper pipe and the superconducting magnets is a stagnant bath
of pressurized He II, which quickly transports the load via conduction owing to its high
thermal conductivity. The stagnant bath permeates the superconducting coils and the
components surrounding the magnets. In particular, He II, because of its very low viscosity,
is able to creep in between the polyimide tapes that are wrapped around the cables to
insulate them electrically. He II is also present between the metal collars situated around
the dipoles (see Fig. 1.1). The huge electric current that flows through the coils generates
an outward horizontal Lorentz force of about 350 tonnes per meter for two poles. The
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purpose of the collars consists of restricting the magnet dipoles to counter this force. They
are made out of austenitic steel, which makes them essentially non-magnetic [15]. The
helium vessel indicated in Fig. 1.2 is constituted by two outer stainless steel shells that are
welded around the iron yoke (see Fig. 1.1), which, in turn, compresses the collars to secure

the coils.

1.2 Motivation and Objectives

Despite the outstanding properties of He II, the confined structures surrounding the
magnet coils hinder significantly the cooling process. The cable electrical insulation tapes
create a network of micro-channels in the range of 10 um, which constitutes a thermal
barrier between the He II stagnant bath and the coils. The necessity to improve the magnet
cooling incentivized extensive studies to investigate the heat transfer taking place in such
conditions [108], [12], [131], [3], [61] and come up with novel tape configurations that
enhance the heat removal [59].

Another example of thermal barrier is represented by the steel collars, which are
stack in series along the two magnet dipoles and separated by spacings of about 200 pm

(see Fig. 1.3). An inefficient heat extraction at this level of confinement may cause a

Steel collar B Collars

spacing

S~ o
~

P
- ~
-

Superconducting
dipole coils

Cable electrical
insulation

Figure 1.3: Detail of the steel collars stack around one superconducting magnet dipole
[168].

temperature increase in the coil, upon which the coil may become resistive. This event,
commonly known as “magnet quench”, can be caused by beam losses, which induce heat
depositions that make the magnet’s temperature exceed locally the critical value. The
enormous electric current flowing through the resistive part of the coils generates via the



Joule effect a heat burst that propagates quickly the quench throughout the whole magnet.
The resulting energy dissipated is such that the pressurized He 1I instantly evaporates,
causing an abrupt expansion that displaces and deforms the adjacent components. The risk
of such sudden events motivated a series of studies to understand the quench phenomena
and prevent them [20], [32], [60], [16].

Nevertheless, the phenomena arising in He 1I following high energy dissipations are
yet to be clarified for geometrical confinements of few hundreds of microns. Unlike other
fluids, “He has three different fluid states. Besides the already mentioned superfluid
state, “He can take the form of either an ordinary viscous liquid or a gas depending on
its thermodynamic conditions. It follows that there exist two phase transitions associated
with *He as a fluid. Depending on the amount of energy released in He II contained in
narrow spacings, one or both transitions can be triggered with consequent drastic changes
in the thermophysical properties of the fluid. One goal of this work consists of unraveling
the fundamental thermal phenomena occurring in He II when subject to high heat fluxes
in thin geometries with high aspect ratios, resembling the space between the collars. The
study focuses on the heat and mass transfer of superfluid helium as well as the other phases
of “He. In particular, a wide range of heat fluxes will be tested to investigate the evolution
and propagation of the helium phase transitions. In addition, the present work aims at
developing a multi-dimensional numerical model capable of simulating the thermo-fluid
dynamics of He Il along with the conjugate heat transfer with solids. The rarely approached
topic of simulation techniques applied to the helium phase changes will also be addressed
in the effort to provide a computational tool to be coupled with magnet quench simulators.

This dissertation is divided into six chapters including this one. The second chapter
(Ch. 2) is dedicated to the theory of superfluid helium. A summary of the historical
background is reported before introducing the main features of helium superfluidity.
The physical principles that determine He II thermo-fluid dynamics are presented and
discussed together with the nature of its phase transitions. The third chapter (Ch. 3)
describes the experimental and numerical tools utilized for this study. The characteristics
of the test rig are detailed and illustrated along with the experimental setup. The main
numerical methods that the chosen open-source toolbox is based on are explained. A
brief overview of multiphase flow solvers is also discussed from the perspective of the
problem under examination. The fourth chapter (Ch. 4) presents the methodology and
results of the experiments and simulations conducted with helium in the superfluid state.
The governing equations implemented in the code are derived and explained. The fifth
chapter (Ch. 5) pertains to the study of the phase transitions in helium from both the
experimental and numerical points of view. The multiphase model is described along with
the algorithm utilized. The sixth and last chapter (Ch. 6) summarizes the results and draws
the conclusions of this study.
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2.1 Quantum Fluid

Helium is the first element of the noble gas group in the periodic table and presents two
stable isotopes, *He and “He. The latter is the most abundant in nature and the subject
of this dissertation. Fig. 2.1 shows the different phases of “He in a pressure-temperature

diagram. Below a certain temperature, called lambda temperature T} (2.17 K at saturated
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Figure 2.1: Phase diagram of “He.

vapour pressure), *He becomes a superfluid and acquires unique properties such as the
ability to flow without resistance. The discovery of superfluidity is traditionally attributed
to the experimental physicist Pyotr Kapitza, who found out in 1937 that the viscosity of
“He below T is “at least 1500 times smaller” than the one of normal liquid helium (He I)
[80]. However, it must be said that several efforts were already made by other scientists
who surely contributed in inspiring Kapitza’s work [11]. During the same year, similar
results were independently achieved by Allen and Misener [5], who would then have been
officially mentioned 40 years later during the Nobel prize ceremony of Kapitza for his
discoveries in low-temperature physics. In his paper, Kapitza suggests for the first time
the name “superfluid”, but he also mentions the terms “lambda point” and “helium 11",
both previously introduced by Keesom, Wolfke and Clusius [169], [82]. Keesom was able
to find that, below the lambda point, *He shows anomalies such as a much larger thermal
conductivity with respect to He I [83], which brought him to come up with the idea of a
second state of “He, the so-called He II [84]. He also observed in 1930 the ability of He II
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to flow through small capillaries that would be inaccessible by viscous fluids [85]. Another
peculiar phenomenon was already observed in 1932 by McLennan, Smith, and Wilhelm,
who noticed the disappearance of boiling in He IT due to its high thermal conductivity [105].

This evidence pushed theoretical physicists to deepen the reasons for the strange
behaviour of He II. In particular, an experiment conducted by Allen and Jones [4], in which
the well-known “fountain effect” was observed for the first time, inspired Fritz London
in creating the base of the theory of superfluid helium. The fountain effect manifests,
for example, in a capillary filled with He II where the pressure increases following an
applied heat flux, causing a rise of the helium level till the aperture of the capillary where
a fountain-like flow develops. London associated this effect with the quantum statistics
model developed by Einstein and based on the ideal gas statistics theory of Bose [18].
Einstein predicted in 1924 that for a Bose ideal gas, below a certain critical temperature
T., a large fraction of the particles accumulates in the ground state giving rise to the so-
called Bose-Einstein condensate (BEC) [47]. In 1938 London advanced the idea that He II
obeys the Bose-Einstein statistics because of its high zero point motion of the atoms and,
therefore, can be considered as a quantum fluid [99]. The zero point energy AE /kp is the
lowest possible energy of a quantum system and can be evaluated using the Heisenberg

uncertainty principle through the kinetic energy uncertainty AF [158]:

APAz ~ h, (2.1a)
AP)?

AE ~ (Qm) (2.1b)
AE h?

. ~ P—— (Aac)2 ~ 24K, (2.1¢)
where 7 is the reduced Planck constant, P is the momentum associated with the atom
mass m, kp is the Boltzmann constant and Az is the position uncertainty of an atom in
the solid helium lattice structure. For %He, the zero point energy is much larger than
the intermolecular forces, which can be estimated through the Lennard-Jones attractive
potential energy (¢p./kp ~ 10 K) [88]. This fact has the impressive consequence that
“He does not solidify under its own vapour pressure as the temperature is lowered towards
absolute zero. In order to achieve the solid state, an external pressure of at least 2.5 MPa
must be exerted.

According to the Bose-Einstein statistics, the ground state fraction of the population
No/N depends on the temperature:

3
Ny 1— <) ’ , forT <T,, (2.2a)
0, forT >T.. (2.2b)

It can be shown that, for the case of a Bose ideal gas as dense as “He, T, is about
3.14 K [158]. Although its proximity to T, the discrepancy suggests that He II cannot be
entirely assumed as an ideal BEC because of its strong interactions between atoms. This
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is supported, for instance, by the fact that, unlike a BEC, the transition between He I and
He Il is a second-order phase change. As explained in detail in Section 2.4, a second-order
phase transition involves no latent heat and hence the two phases cannot coexist.

In 1937 the physicist Laszl6 Tisza, trying to escape the Hungarian fascist persecution,
moved to Paris, where he met London who was working at the “Institut Henri Poincaré”.
This encounter has great importance for the theory of superfluid helium because Tisza,
inspired by the ideas of London about the quantum nature of He II, laid the foundation of
what nowadays is widely used to describe the hydrodynamics of superfluid helium — the
two-fluid model. He proposed for the first time that He II can be thought of as a mixture of
two components: a normal fluid that behaves like a classical viscous fluid and a superfluid
constituted by the quantum ground state population [154]. The normal component carries
all the thermal energy and the superfluid component has no entropy (no internal energy)
and no viscosity, which also means that the superfluid has to be irrotational. Moreover,
each of the components is associated with a velocity that is independent of the other.
Tisza also predicted the existence of “temperature waves” in He II that propagate as a
result of entropy fluctuations in the fluid [153]. These temperature waves would have been
referred to as “second sound” a few years later by Lev Landau, the physicist who developed
a complete hydrodynamic model for He II starting from Tisza’s two-fluid concept. In 1941
Landau published a theory based on the breakthrough idea that the motion of He Il particles
is quantized in elementary excitations [93], the set of which characterizes the energy
spectrum of helium, shown in Fig. 2.2. The energy of these excitations depends on the
momentum of energy carriers defined as quanta. Landau’s model comprises two types of
them: long-wavelength quanta (phonons), which are the typical longitudinal sound waves
present in any liquid, and short-wavelength quanta of higher momentum and energy called

rotons. Their energy e is given by

cP, for phonons, (2.3a)

€= (P — Py)?

A+ , for rotons, (2.3b)
20

where c is the speed of sound and A, Py, and y are spectrum parameters determined via
neutron scattering experiments. In particular, A and p are respectively the minimum
energy and the effective mass of a roton [87]. Energy dissipation in superfluid helium
can result just from the emissions of these excitations. Since in a quantum fluid these
excitations are emitted in a discrete way, in order for the fluid to be excited there must be
a minimum amount of energy below which “He is a frictionless superfluid. If one considers
He 11 flowing in a capillary at zero temperature, the minimum value of energy corresponds

to a critical velocity v., above which superfluidity disappears, defined as

Ve = — (2.4)

P min.
Therefore, a superfluid is characterized by the condition v, # 0. The value of v, at zero
temperature (=~ 60 m/s) was calculated by Landau and can be derived in Fig. 2.2 from a
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Figure 2.2: Experimental results of the energy spectrum of the elementary excitations in
liquid helium obtained from neutron scattering [67]. The free particle curve represents
the theoretical dispersion for free helium atoms at absolute zero.

straight line passing through the origin and the roton minimum of the curve. Above this
velocity, He I has non-null vorticity, which means that the fluid is no more irrotational.
2.1.1 Two-Fluid Model

The quantum excitations present in He II give rise to two independent motions. The
aforementioned two-fluid model captures the fluid mechanics of these motions. Each of
them is associated with one of the two components of He II: the normal fluid and the
superfluid. The normal fluid is characterized by the density p,, and the superfluid by p;,
which are related to the total density p of the liquid by

P = pPn + Ps. (2.5)
The mass flux density of He II can be thus expressed as

PV = pPpVp + PsVs. (2.6)
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Eq. (2.6) suggests another peculiar feature of He II. Because of the two-motion nature of
He II, a zero net mass flow (i.e., the LHS of Eq. (2.6) is equal to zero) does not imply that
the fluid is static. Instead, from Eq. (2.6) follows that the two components can still flow
in opposite directions giving rise to an internal convection known as “counterflow”. The
continuity equation for He II can be obtained from the principle of mass conservation:

dp

N + V- (pnVn + psvs) =0, (2.7)

where ¢ is time. A complete set of equations for He II can be achieved by deriving the
Navier-Stokes equations for the two components.

In absence of dissipation, it is convenient to consider that the superfluid is accelerated
by a thermodynamic driving force represented by the gradient of the chemical potential
5

Ovs
ot

The RHS of Eq. (2.8) can be derived from the expression of the total energy density U [126]:

+ (vs - V)vs ==V (2.8)

1
U=Uy+vs- (pnvns) + EPVE, (2-9)

where v,s is the relative velocity between the normal and the superfluid component
(Vns = v, — V) and Uy is defined by the thermodynamic identity

dUp = pudp +Td(ps) + Vps » d (pnVns) , (2.10)

where s is the specific entropy. The last term on the RHS of Eq. (2.10) shows that the
velocity can be expressed by the derivative of the energy with respect to the momentum

[94]. Let us consider the definition of the pressure p:

__owv)
D= v (2.11)

where V is the volume. From Egs. (2.9), (2.10) and (2.11) it is possible to obtain

dp = pdu+ psdT + (ppVns) - Avys - (2.12)
Therefore, isolating the gradient of the chemical potential and using vector calculus
identities, Eq. (2.8) becomes

Ovg
ot

1 n
+ (vs+ V)vg =sVT — ;Vp + g—vags. (2.13)

The total fluid momentum equation can be written as the incompressible form of the
Navier-Stokes equation with the viscous term being associated with the normal component

only:

ov JT— 1
Ny _ B2y, — Zwp, 2.14
5 +(v-V)v va pr (2.14)
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where p is the dynamic viscosity. Substituting Eq. (2.6) into Eq. (2.14) yields:

HNn |, OV
Pn ot Ps ot

The momentum equation for the normal component can be derived using Egs. (2.13) and
(2.15):

+ pon (Vn . V) Vi + Ps (Vs . V) Vs = ,UJVQVn - Vp. (2-15)

Bthn + (v - V) v, = p—'liVQVn - %SVT — ;Vp - g—;VviS. (2.16)
Egs. (2.13) and (2.16) form the Navier-Stokes equations for incompressible He 11 valid within
the so-called Landau regime, that is, when the superfluid velocity is below the critical value
(Eq. (2.29)).

It is easy to picture the driving force of the counterflow by considering the linearized
Euler’s equation (i.e., the inviscid form of Eq. (2.14)), in which we neglect the quadratic
term in the velocity (pdv/0t = —Vp). Substituting for the pressure gradient in Eq. (2.13)
and neglecting again the quadratic terms, we obtain

= —psVT. (2.17)

It is clear from Eq. (2.17) that a temperature gradient generates counterflow. Moreover,
in absence of dissipation, the relative motion of the two components is reversible and the
resulting entropy conservation can be expressed by
9 (ps)
ot
where only the velocity of the component carrying energy appears. Eq. (2.18) implies that

= —V - (psvn), (2.18)

at zero net mass flow the heat flux q is given by
q = psTv, = pssTVps. (2.19)

The two-fluid model is particularly good at explaining some of the impressive macro-
scopic phenomena arising in He II as a manifestation of its quantum nature. The main ones

are described in the following sub-sections.

2.1.1.1 Thermo-Mechanical Effect

Let us consider the experimental apparatus of Fig. 2.3. A vessel with a capillary tube is
submerged in a He II bath. The bottom part of the tube is filled with semi-permeable
materials that connect the bath to the internal part of the vessel. If the tube is heated
up, for example, with light beams, a flow builds up through the capillary and generates a
fountain at the upper exit of the tube. It is possible to explain this behaviour through Eq.
(2.13). At equilibrium, the velocity does not change with time (i.e., Ov, /9t = 0). Moreover,
in Landau regime, the velocities are quite small and hence the terms that are quadratic in
the velocity can be neglected. Eq. (2.13) becomes thus

dp = psdT'. (2.20)
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Figure 2.3: Schematic representation of the experimental apparatus used by Allen and
Jones [4] to show the fountain effect [167].

Eq. (2.20) is named London’s equation and shows that a temperature gradient causes a
pressure difference in the superfluid. The normal component of He II, being the only
one with an associated entropy, flows towards the zone at a lower temperature. The
superfluid component, because of the counterflow, goes in the opposite direction driven by
the pressure gradient. This phenomenon was called thermo-mechanical effect by London
[98] and represents the base of the fountain effect discovered by Allen and Jones [4]. When
the vessel in Fig. 2.3 is heated up, a temperature gradient is established throughout the
tube. The temperature difference between the He II inside and outside the vessel causes a
pressure difference that drives the superfluid component into the vessel. Since the porous
membrane obstacles the flow of the viscous component towards the bath, the superfluid is
pushed into the capillary and, if the driving pressure is higher than the hydrostatic head,
rushes out with a fountain-like flow.

It is straightforward that, viceversa, if a pressure drop is established between two He II
regions connected by a microcapillary tube (thus accessible by the superfluid component
only), a temperature difference between the regions develops. This is another aspect of
the same phenomenon and is named mechano-caloric effect. It is possible to interpret this
effect also by considering that, when the superfluid is forced to flow by an applied external

pressure towards a different region, the concentration of the superfluid component in that
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region increases. Since the superfluid carries no energy, the total entropy in that region
decreases, making the temperature drop. The mechano-caloric effect thus means that in
He II it is possible to induce a heat transfer by forcing the superfluid to flow.

Another phenomenon related to the thermo-mechanical effect is the so-called Rollin
film, named after the scientist who first explained its origin [132]. Let us consider the
scheme in Fig. 2.4 representing one of the first experiments that showed the Rollin film.

An empty beaker is submerged in a saturated He II bath. The beaker starts to be filled
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Figure 2.4: Scheme of the beaker experiment conducted by Daunt and Mendelssohn [41]:
(a) equilibrium state, (b) beaker emptying, (c) beaker filling.
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with helium (Fig. 2.4c) till the level equilibrium with the bath is reached (Fig. 2.4a).
When the beaker is lifted from the bath, the helium starts to drop outside of the beaker
into the bath trying to equalise the level (Fig. 2.4b). This mechanism can be explained
through the properties of He II films. The surfaces of a container filled with a liquid at
saturation are normally covered with a thin layer of the liquid being in equilibrium with
its saturated vapour. In the case of He I, this film is able to move because of the frictionless
superfluid component. If the helium levels inside and outside the beaker are not equal, the
resulting hydrostatic head forces the helium to flow towards the lower level via the film
that connects the beaker and the bath. The thermo-mechanical effect implies that, because
of the pressure difference established between the two environments, the Rollin film is able

to transmit heat flow.

2.1.1.2 Second Sound

The existence of two independent motions brings to unique properties of the sound
propagation in He II. The two-fluid model is able to describe the sound mechanism in He
II through the two equations presented below. One of these equations can be obtained by

combining Eq. (2.7) with the linearized Euler’s equation to give

p _

o V2p. (2.21)



18 Chapter 2. Thermo-Fluid Dynamics of Superfluid Helium

Let us take the divergence of Eq. (2.17) and substitute for V - v from the steady-state

version of the continuity equation (i.e., p does not vary with time) (Eq. (2.7)):

pn O 2
—— (pV - = —psV-T. 2.22
. o (pV - vy) = —ps (2.22)
Using the entropy conservation equation (Eq. (2.18)) and assuming small variations of s
yields
2
s _ s agep (2.23)
otr  pn

Egs. (2.21) and (2.23) form the system of equations that describes the sound propaga-
tion in He IL If we consider the variation of pressure and temperature in terms of entropy

and density, ) )
_(op op
dp = <3p)sdp+ <as>pd5, (2.24a)
dT = <8T> dp + (8T> ds, (2.24b)
op ), 0s o

it is possible to express the solution of the system in the form of plane waves [167]:

2 2 _
(CQ — 1) <62 — 1) = M. (2.25)
51 155 Cp

In Eq. (2.25), c; is the ordinary sound speed (also called first sound) and ¢ is the so-called
second sound. The speeds ¢; and ¢; are the solutions of the wave equations (2.21) and (2.23)
respectively. Since the heat capacities of He I C), and C'y, respectively at constant pressure
and volume, are almost equal, the RHS of Eq. (2.25) can be set to zero and the sound speed

¢ can assume two possible values, either c¢; or co:

cl = (0}9) , first sound, (2.26a)
op),

cy=S§ Ps (8T> , second sound. (2.26b)
pn \0s ),

Egs. (2.26) manifest the intrinsic difference between the two sound modes: the first
sound propagates in the form of density waves driven by pressure variations, while the
second sound propagates as thermal waves driven by temperature variations. Eq. (2.26a)
shows that the first sound occurs in absence of entropy fluctuations, that is, when the
temperature gradient is zero. It follows from Eq. (2.17) that the velocities of the two
components equal each other and the fluid moves as a whole (i.e., the fluid components
are in phase). On the other hand, second sound occurs at constant density, which means
from the continuity equation that the total velocity is zero and the two components move
in counterflow and out of phase. The two modes of sound propagation are related to each
other by terms associated with the expansion coefficient, which are small enough to be
neglected though. It is interesting to think about the second sound from the point of view of



19

the elementary excitations. Considering again Eq. (2.3a) in terms of second sound implies
that temperature fluctuations cause oscillations in the excitation density. Therefore, the
second sound can be viewed as the ordinary sound of the quantized excitations [87].

The implications of the two-fluid model about the sound propagation in He II were
experimentally confirmed in various observations, the first of which was conducted by
Peshkov [123]. The speed of first and second sound was measured to be roughly 240 m/s
and 20 m/s (between 1 K and 2 K) respectively.

2.1.2 Thermophysical Properties

The quantum excitation theory and the two-fluid model allow to derive the temperature
and pressure dependence of the thermophysical properties of liquid helium. The values
of the thermophysical properties represented as a function of temperature in the figures
below are taken from the commercial database HEPAK® [68]. From the contributions of
phonons and rotons in the excitation spectrum it is possible to obtain expressions for the
state properties of He II. Fig. 2.5 shows the density of the total fluid along with the density

fraction of each component that constitutes it. The normal fluid density fraction can be
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Figure 2.5: He II density as a function of temperature at the saturated vapour pressure.

extrapolated from the entropy temperature dependence by considering that the entropy
associated with the total fluid corresponds to the one of the normal component (see Eq.
(2.18)). The superfluid density follows directly from Eq. (2.5) and vanishes at T, where
helium turns into an ordinary liquid. Since entropy is a strong function of temperature, at
1 K He 11 is constituted by the superfluid already for the 99%. He II has a maximum density
just above the lambda temperature T'. Below T}, He II exhibits a negative expansivity that
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goes to zero towards absolute zero. At higher pressures, the energy gap A in the Eq. (2.3b)
for the roton energy decreases [157]. Since the portion of the normal fluid density due
to the rotons is proportional to the inverse of the exponential of A [167], p,, significantly
increases with pressure. It follows that, at higher pressures, p,, matches the total density
of the fluid at lower temperatures, which explains the shape of the lambda line in Fig. 2.1.

Other two state properties are shown in Fig. 2.6. Since the lambda point marks a second-
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Figure 2.6: He II state properties as a function of temperature at the saturated vapour
pressure. The red dashed line marks the lambda temperature location.

order phase transition, at T the entropy is continuous and the specific heat capacity is
discontinuous. The reason behind this behaviour at the transition will be clear in Section
2.4. Above 1.1 K, the state properties are mainly determined by the rotons, which prevail
as energy carrier in that range of temperature. The consequence in terms of temperature
dependence is that entropy and specific heat are proportional to 7 from 1.1 K to T} [158].
The discontinuity of the specific heat at 7'\ manifests in a steep rise of its value resulting
in a shape that reminds of the greek character “\”, which gives the name to this type of
transition. In the vicinity of the lambda point, the specific heat seems to be proportional
to —In|T — T)| and hence it tends to infinite while approaching T’ [25].

The transport properties of He II are defined by the equations of the two-fluid model.
The dynamic viscosity, shown in Fig. 2.7a, above T’ decreases along with the temperature.
This is an uncommon behaviour for liquids and, instead, proper of gases. In fact, it was
observed that liquid helium viscosity can be calculated through the Bose gas model [167].
A similar observation can be made for the thermal conductivity, shown in Fig. 2.7b, far
from T). Despite the similarity between He I and gas properties, there is an appreciable

difference with respect to helium gas values. This is mainly due to the higher mean velocity
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Figure 2.7: Hell transport properties as a function of temperature at the saturated vapour
pressure. The red dashed line marks the lambda temperature location.

of the atoms in He I, which is attributed to its higher zero point energy. Accounting for
this higher value in the gas model brings to a satisfactory agreement [150]. Below T}, the
viscosity continues to drop till around 1.8 K and then acquires the typical behaviour of
liquids, increasing with decreasing temperature. This is clearly due to the viscous forces
of the normal component of He 11, as shown by Andronikashvili in his experiment utilizing
a rotating viscometer [7]. The measured values of the viscosity can change according to
the settings of the experiment: in thin capillaries, where the normal component cannot
access, no viscosity is detected [48]. Above T}, the thermal conductivity below a certain
temperature is not available in the database HEPAK® because of the great uncertainty due
to the vicinity with the He II phase state. The dots depicted in Fig. 2.7b are taken from a
complete review paper about the observed properties of liquid helium [43]. The thermal
conductivity of He II is a complicated function of temperature and pressure that strongly
depends on the magnitude of heat currents potentially present. For this reason, it will be
discussed in detail in Section 2.2.2.

2.2 Quantum Turbulence

In Section 2.1 we have seen that, at an ideal state at zero temperature, He II is a frictionless
superfluid as long as its velocity is below a certain critical value. However, experimental
evidence was in great disagreement with Landau’s critical velocity. This was due to the
fact that, at a finite temperature below the lambda point, there exist other excitations

known as quantum vortices, which are a result of the turbulent motion of the superfluid
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component of He II. This quantum turbulence is caused by the friction between the
superfluid component and the normal component, which is present at finite temperatures
and carries the excitations. The quantum vortex lines were theoretically predicted in 1949
by Onsager [118] and independently a few years later by Feynman [52]. Feynman’s theory
was based on quantum mechanics and allowed him to figure out that the circulation of the
superfluid along a vortex line is quantized as

n:]{vs-dlz ﬁ, (2.27)

m

where the ratio i /m between the Planck constant and the helium atom mass represents the
quantum of circulation (k ~ 9.97 x 10~* cm?/s). The formation of these quantum vortices
causes a considerable drop in the value of the critical velocity with respect to Landau’s
prediction. In fact, Feynman was able to derive a value of the critical velocity that is close
to experimental evidence by linking the velocity to the phase of the wave function of the

He II condensed population [8]:

h d
se~—1In|{—), 2.2
v md n(2a0) (2.28)

where aq is the vortex core radius (ag ~ 10~ cm). Shortly after, Hall and Vinen confirmed
experimentally Feynman’s results [63], which definitively established the connection
between He II and a BEC. The critical velocity can be roughly estimated through the
empirical formula [158]

Ve ™ d-i [%} , (2.29)

where d (in cm) is the diameter of the channel. The critical velocity dependence on the
inverse of the channel diameter suggests that it is hard to observe superfluidity in large
pipes. By associating Eq. (2.29) with Eq. (2.19) it follows that there must be a critical heat
flux g, such that

ge = 22 psTo, ., (2.30)

Pn

which marks the passage from laminar to turbulent regime. It was observed that, for heat
fluxes above ¢, turbulence hinders the wave propagation of second sound and attenuates
its speed [161]. By studying the onset of this attenuation as a function of the heat flux,
Vinen was able to derive an empirical formula for the time needed to achieve a fully-
developed turbulent regime:

T = aq_%, (2-31)

where a is a parameter that depends on the temperature and characteristic dimension of
the channel. In the heat flux scale of engineering application, 7 turns out to be very small
[158].

The friction between the normal component and the superfluid moving along the

quantum vortex lines produces a force called mutual friction. The idea of a mutual friction
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force between the two components was first advanced by Gorter and Mellink in an attempt
to explain the heat transfer in He II in the presence of a non-negligible heat current [58].
The theory behind it was later developed by Vinen, who approached the topic from the
point of view of the vortex line length L per unit fluid volume [160]. Let us consider the
velocity of the vortex line vy, with respect to v, and v,,. Making the assumption that the
three velocities are equally directed allowed Vinen to distinguish between two cases in
relation to the relative velocity v, s and the drift velocity of the vortex (v, — vs). When vy,
is lower than the drift velocity, the friction force tends to contract the vortex. Viceversa, if
the relative velocity is higher than the drift one, the vortex is expanded. Since, as seen in
Eq. (2.17), a temperature gradient generates relative velocity between the two components
of the fluid, a heat flux tends to enhance the quantum turbulence. Therefore, the vortex
line length changes in time according to the net value between the rates of generation and

decay of the vortex lines:

L
dt

9

dL  dL

T d (2.32)

d
The steady-state form of Eq. (2.32) (i.e., in the presence of a steady heat current) allows to

derive an expression for the vortex line length at equilibrium L [158]:

2
Ly =a(T) (ppn%) , (2.33)

where a(T) is some function of the temperature. Using dimensional considerations, Vinen
derived the net force acting on a vortex line in an isotropic vortex tangle at steady state
(see Fig. 2.8), which can be simplified into the form [167]

f= ,Bmpspp" (Vo — VL), (2.34)

Figure 2.8: Simulation of a vortex tangle in presence of mutual friction at 1.6 K [156].
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where (3 is a constant. Since in the tangle the vortex lines form an irregular mass, the
average of the velocity vy, in the whole tangle can be assumed to be equal to the superfluid
one [167]. The total mutual friction force per unit volume F,,; can be calculated as the
product

Fns = LOf: AG’Mpspn |Un - Us|2 (Vn - Vs) ) (2-35)

where the Gorter-Mellink coefficient Ay is proportional to p? /p® and hence is temper-
ature dependent such that Agy, o T°. Eq. (2.35) turns out to be the confirmation
of the expression for F,s supposed by Gorter and Mellink by observing heat current
measurements in superfluid helium. Vinen also performed some heat pulse experiments
to show the effect of the mutual friction force on the second sound propagation [161]. The
second sound wave has a limit in the amount of energy that it can carry. When the heat
current is high enough to produce quantum turbulence, the wave gets saturated and it is
possible to observe the velocity at which the turbulent front propagates. Combining the
mutual friction force with the equations of second sound brings to an additional term that
diminishes the second sound velocity by an attenuation that is proportional to the square
of the heat flux applied.

It is possible to produce quantum vortices also in the absence of mutual friction. A
typical situation concerns a famous paradox that arises when He II is put in rotation. Let
us consider a vessel in rotation containing He II. Let us assume that the temperature is
much lower than the lambda temperature, which means that the total density is pretty
much equal to the superfluid one, and that the fluid is incompressible (0p/dt = 0). 1t
follows from the continuity equation (Eq. (2.7)) that V - v4 = 0. Also, since the superfluid
component has no viscosity, the fluid is irrotational (V x vg = 0). The solution to
the Laplace’s equation (V2vs = 0) thus implies that the fluid must be static. However,
experiments by Osborne showed that He Il actually rotates along with the bucket [120]. The
contradiction can be solved by considering the existence of vortex lines generated by the
rotation of the fluid (see Fig. 2.9). Each vortex core is associated with a circulation quantum
given by Eq. (2.27). Each circulation cancels out with the neighbouring one keeping the
fluid outside the vortices at rest. The fluid in contact with the rotating bucket though is
put in motion because of the non-null circulation of the vortices next to the boundary.

2.2.1 HVBK Equations

The mutual friction force can strongly affect the thermo-dynamic behaviour of superfluid
helium. In presence of dissipation, it is necessary to add this term into the two-fluid model
to come up with a general system of equations that macroscopically characterizes He II.
This system is constituted by the so-called Hall-Vinen-Bekharevich-Khalatnikov (HVBK)
equations, named after the scientists who contributed the most in their development [64],

[14]. The HVBK equations can be considered like a generalization of the Landau’s two-fluid
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Figure 2.9: Representation of the quantum vortices in rotating He II [62]. On the dashed
lines the velocity is zero.

model involving also quantum turbulence and read as follows:

0
8—5 + V- (ppVn + psvs) =0, (2.36)
n S 1 S
OVn + (V- V)v, = ﬂVQVn _ Py - ~Vp— p—Vv%s — AGMpsvgsvns, (2.37)
ot Pn Pn P 2p
8"3 1 Pn 2 2
+ (vs+ V) vy =sVT — =Vp+ =V, + AcrMpnVsVns, (2.38)
ot P 2p
0 (pS) . AGMPnpsvas
o -V . (pSVn) + # (2.39)

Eq. (2.36) matches the continuity equation previously introduced in Section 2.1.1 (Eq. (2.7)).
Egs. (2.37) and (2.38) are the incompressible momentum equations for the normal fluid
and the superfluid respectively. In the superfluid momentum equation there should also
be a term related to the vortex tension that, however, is proportional to the circulation
quantum and hence negligible. Eq. (2.39) is the entropy equation that stands for the energy
equation of the system.

2.2.2 Heat Transfer in He II

In order to describe the heat transport in superfluid helium, it is useful to take as starting
point the HVBK equations. Let us take into account the steady-state version of Egs. (2.37),
(2.38) and multiply them by their respective densities. If we neglect the quadratic terms
in the velocity, it is possible to derive the Poiseuille equation by adding together the two

momentum equations:
Vp = pViv,. (2.40)

Let us consider again the superfluid momentum equation. If we neglect the same terms as
previously, isolating for the pressure gradient yields

Vp = spVT + AGrrppnv2 Vas. (2.41)
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Combining Egs. (2.40) and (2.41) by eliminating the pressure term allows to write an
expression for the temperature gradient. Let us consider a one dimensional channel of

diameter d to simplify the equation:

dr by Agmpn 3
L , 2.42
dz spd? v s ns (2.42)

where —bv,, /d? ~ V?v,, and bis a constant that depends on the geometrical configuration
of the channel (b = 12 for parallel plates, b = 32 for circular tubes). Let us use Eq. (2.19) to

substitute the velocities and express Eq. (2.42) in function of the heat flux:

dT bu Agmpn 3

dz _.92p2Td2q - sAp3T e (2.43)

The terms on the RHS represent respectively the viscous and the turbulent contributions
to the temperature gradient along the channel. Because of the third power of the heat
flux associated with the second term, for relatively high heat currents the turbulent
contribution largely dominates. On the other hand, the first term is proportional to the
inverse of the square of the channel diameter and hence the viscous contribution prevails
for small geometries and negligible heat fluxes. The latter case can be associated with the
Landau regime, whereas the first one describes the thermal behaviour of He II above the
critical heat flux (Eq. (2.30)) and is known as Gorter-Mellink regime. To have a better idea
about the order of magnitude of these quantities, Fig. 2.10 shows how the temperature
gradient varies with the heat flux in a 0.2 mm thick channel enclosed between two parallel
plates. At low heat fluxes, the function is a straightline because the linear behaviour of
the viscous term prevails. The function begins to rise with the cubic power when the heat

current increases. Although the transition from laminar to turbulent regime seems to be
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Figure 2.10: Temperature gradient as a function of the heat flux applied in a 0.2 mm
thick channel constrained by two flat plates. The red dashed line represents the viscous
contribution only.
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continuous according to (2.43) (shown in Fig. 2.10), in reality there exists hysteresis: when
the turbulent regime is established, decreasing the heat flux down below the critical value
does not cause transition to laminar regime because of the presence of the vortices.

In superconducting magnets cooling applications of He II, usually the heat fluxes
involved are much higher than the ones showed in Fig. 2.10. Therefore, the viscous term
in Eq. (2.43) can be neglected and the following steady-state heat transport equation is
obtained:

iz = —f(T,p)q", (2.44)

where f (T, p) is the heat conductivity function and is defined as

o AGMpn

f(T,p) = W' (2.45)

Fig. 2.11 shows values for f(7T,p) at different pressures from the database HEPAK®
[68]. At the saturated vapour pressure, the inverse of f(T, p) has a maximum at around
1.95 K, which decreases with increasing pressure. In engineering applications of He II, a
pressurized helium bath is usually kept at around the temperature at which a curve in
Fig. 2.11 has the peak, in order to maximise the conductive properties of He II. From Eq.

1.2 1.7 2.2
T [K]

Figure 2.11: Temperature dependence of the He II heat conductivity function at different
pressures.

(2.43) we see that the coefficient n should be equal to 3. In reality, several experiments
showed that n depends on the temperature and ranges from 3 to about 4 around T}, [2],
[24], [31], [86], [97]. Some authors used 3.4, which seems to be a good approximation in the
range of temperatures between 1.7 K and T}, [17]. In particular, Sato performed a series
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of experiments at steady state to derive an accurate correlation for the heat conductivity
function for n = 3.4 [134]:

Fs(T,p)™" = h(1)gpear (p), (2.46)

where h(t) and gpeqr(p) are empirical functions and equal to

9
h(t) =1+ (t = tyear)” Y lan (t — 1)"], (2.47a)
n=0
Gpeak (p) = exp (a + bp + Cp2) . (2.47b)

The reduced temperature ¢ is equal to the ratio between the temperature and T), at the
pressure of interest, while a,,, a, b, ¢ are empirically determined coefficients.

Eq. (2.44) can be generalized through the Fourier’s law into a heat diffusion equation
to describe the thermal behaviour of He II in transient conditions:

(2.48)

ar 9 1 aT\»

P T ox (f(T,p)afE) ’
where ¢, is the specific heat capacity. The unusual conductive heat exponential coefficient
makes Eq. (2.48) strongly non-linear and difficult to solve analytically. Dresner proposed
an analytic method to solve the equation for n = 3 based on the so-called similarity
solutions [44], [45]. Basically, temperature profiles at different time instants are connected
to each other and belong to groups of solutions with similar characteristics. Exploiting this
fact, Dresner was able to turn the diffusion partial differential equation into an ordinary
differential one that can be solved analytically. However, this method requires strong
simplifications (e.g., constant properties, one-dimensionality) that restrict its applicability

to relatively simple problems.

2.3 Kapitza Resistance

When a heat flux is established through two different materials that are in contact, a
thermal boundary resistance takes place between them. This resistance strongly depends
on the inverse of the temperature and hence it is usually negligible in the majority of the
cases. In He II though, below the lambda point the temperatures are low enough to make
this resistance considerably important in the heat transfer mechanism between helium
and a solid. This phenomenon results in a significant temperature jump across the solid-
helium interface, which was first observed by Kapitza in 1941 [79]. The heat flux through
the two materials can be written in the form of radiation heat transfer:

g=o (T} —Th.), (2.49)

where T and T, are the temperatures of the solid and the helium at the interface and
o is a quantity that depends on the thermal characteristics of the solid. For small enough
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temperature differences between the two media (AT < T'), T — T4, ~ 4T3 AT and Eq.
(2.49) can be formulated as [124]

q=hgk (Ts - TH@) s (2.50)

where the conductance h is the inverse of the Kapitza resistance. Various theories have
been proposed over the years in order to explain the temperature dependence of the
Kapitza conductance. The first one was the acoustic mismatch model of Khalatnikov [87],
who tried to provide an explanation from the acoustic theory by considering the significant
difference of the sound speed in liquid helium and solids. This discrepancy hinders the
phonon transmission between the two media in a way that can be described by the Snell

law:

Cs

CHe

sinf, = sin 0;, (2.51)

where 0, is the transmission angle of a helium phonon incident on the interface with an
angle 6;. Since the angle of transmission must be less than 90°, the arcsine of the ratio
cHe/cs between the sound speeds in liquid helium and a solid determines the critical angle
above which an incident phonon cannot be transmitted to the solid. The critical angle thus
circumscribes a cone of incidence within which the phonons are able to be transmitted. The
energy transferred to the solid by the phonons incident on the interface within the cone

can be evaluated by integrating the heat flux per unit area over the cone [158]:

3
Cs CHe
== 2.52
q 4 'ph ( Cs > ) ( )

where E,, is the phonon energy density and can be estimated through the Debye theory
by assuming that the temperatures involved are much lower than the Debye temperature
of the solid. Eq. (2.52) must be corrected to take into account a coefficient of transmission
between the two media [145]. The transmission coefficient ¢ indicates the probability
of phonon transmission and can be determined after associating an acoustic impedance
with each material. In cases involving liquid helium and a solid, the impedance of He 1I
is much smaller than the one of the solid and hence the transmission coefficient can be
approximated as t = 4py.cpe/(pscs) with ps being the density of the solid. The final form
of the net heat flux provides an expression for the Kapitza conductance:

21.4
T k;BpHecHe

hi =
K 30R3psc3

FT3., (2.53)
where the parameter F' accounts for the fact that in solids also transverse waves are present
as well as the longitudinal ones [124].

Although the Kapitza conductance predicted by the acoustic mismatch theory shows
a temperature dependence in line with experiments, its value is always much lower than
the actual one for any material. This evidence pushed Snyder to wonder about what could

be the maximum Kapitza conductance for a phonon regulated heat current between two
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Figure 2.12: Kapitza conductance as a function of the helium bath temperature for copper-
helium interfaces. The theoretical curves are labeled, whereas the solid and dashed lines

refer to experimental values from various authors for clean and dirty surfaces respectively
[139].

media [139]. This upper limit is known as phonon radiation limit and yields overestimated
values for the Kapitza conductance via simplification of the Khalatnikov’s model: in the
calculation of the helium phonon energy density both longitudinal and transverse waves
are considered, even though the latter is absent in liquids; the conductance depends on
the characteristics of the solid but not of helium; the probability of phonon transmission is
100%. As shown in Fig. 2.12, the experimental values of the Kapitza conductance lie always
in between the acoustic mismatch theory and the phonon radiation limit.

In Fig. 2.12 it is also depicted a curve from the theory of Challis, who modified the
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acoustic mismatch model by taking into account the presence of a dense layer of helium
formed at the interface because of Van der Waals forces [30]. After Challis’s work, other
theories were proposed based on quantum considerations [112], [106], [1]. Despite the
theoretical interest in the thermal boundary resistance mechanism, the Kapitza conduc-
tance is strongly dependent on the materials involved and their surface characteristics
(see Fig. 2.12) and hence quite difficult to estimate through mere theory. For this reason,
for practical use the temperature dependence of h x is usually obtained experimentally for
each material and the resulting heat flux takes the form

a[[TbmH (TS — Tb) , for AT < T, (2.54a)
q =
ar (T —T;""), for AT =T, (2.54b)

where a and m are empirical coefficients that depend on the solid material and T}, is the

bath temperature of the liquid helium.

2.4 Phase Transitions

As briefly mentioned at the beginning of this chapter, the so-called \-transition between
He I and He 11 is characterized by the absence of latent heat and a discontinuity of certain
thermophysical properties such as the specific heat capacity c,. In order to rigorously
discern between this type of transition and boiling phenomena, it is useful to introduce
the Ehrenfest classification [46], which was created after the first experimental evidence
of the critical phenomena of liquid helium. This classification bases the differentiation of
the phase changes on the Gibbs free energy g¢:

dg=vdp—sdT. (2.55)

Ehrenfest associated each transition type with a specific order n, which is determined by
the lowest derivative of g that shows a discontinuity at the transition point. In other words,
anth-order phase transition presents continuous derivatives of g up to the order n—1. The

first-order derivatives of the Gibbs free energy are the specific entropy s and volume v:

dg\
<8T>p = —s, (2.56a)

(gi)T = . (2.56b)

First-order transitions show then an entropy discontinuity, which implies the presence
of latent heat. It follows that phase changes such as vaporization/condensation belong to
this category. It can be demonstrated that the Gibbs functions of the liquid and vapour
phases of a substance at saturation equal each other [125]. In fact, this constitutes the
necessary condition for two phases to be in equilibrium during a phase change, which is

proper of first-order transitions only. In the present study, the first-order transition of
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interest is represented by the helium vapour-He I phase change. On the other hand, second-
order transitions are not isothermal processes and the temperature dependence of entropy
is continuous, like in the case of the He I-He II phase change (see Fig. 2.6a). This type
of transitions are discontinuous in the specific heat, isothermal compressibility «r, and

isobaric expansivity o, which are the second derivatives of the Gibbs free energy:

0%g > p
—= ] =-= (2.57a)

<8T2 » T

2
<g})g> = _UK’T7 (2.57b)
T
0 89)

— | =va,. (2.57¢)

<8T)p (8]? T P

The discontinuous specific heat of helium at the A-point has already been shown (see Fig.
2.6b), while the compressibility and expansivity can be seen in Fig. 2.13. The phase change

occurring at the A-point is clearly a second-order transition.

.5 2 2.5 3
T [K] T [K]

(a) Isothermal Compressibility (b) Isobaric Expansivity

Figure 2.13: Compressibility and expansivity of helium across the A-point as a function of
the temperature at the saturated vapour pressure. The red dashed line marks the lambda
temperature location.

Despite the impact that Ehrenfest’s work had in the field of critical phenomena, his
classification turned out to be simplistic in the attempt to categorize the various transitions
witnessed in science [77]. More elaborated classifications were created either on the
basis of the Ehrenfest’s one [111], [142] or from a complete new theory [155]. Probably
the most representative extension of the Ehrenfest classification was conceptualized by

Pippard [125], who characterized a wider variety of transitions while still using Ehrenfest’s
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terminology. In particular, Pippard distinguished higher-order transitions according
to the nature of the Gibbs free energy discontinuities. Fig. 2.14 shows a qualitative

representation of some phase transitions in Pippard’s classification. In the figure, 1

e
e ,

1 2 2a

T

Figure 2.14: Phase transitions representation in a heat capacity-temperature graph: 1
first-order transition; 2 second-order transition; 2a \-transition; 3 third-order transition.
Adapted from [125].

corresponds to Ehrenfest’s first-order phase transitions (e.g., liquid-vapour). Pippard
considered true second-order phase transitions only those with a finite discontinuity in
the second derivatives (2 in the figure). An example within this category is the transition
to the superconductive state of a conductor. In the case of superfluid helium though, the
specific heat tends logarithmically to infinite at T), as seen in Sec. 2.1.2. In Pippard’s
classification, such phase transitions associated with an infinite discontinuity belong to
a separate category named A-transitions (2a in the figure). Besides the He I-He II phase
change, another example of \-transition is the antiferromagnetic-paramagnetic shift at
the Néel temperature of a material like magnesium bromide. The ¢, evolution 3 in Fig.
2.14 is a third-order transition, which is continuous in the second derivatives of the Gibbs
free energy. An example of this category is the ferromagnetic-paramagnetic shift at the
Curie temperature of a material. Nevertheless, such distinctions are beyond the scope of
the present study. For this reason, the \-transition of He I-He II will be referred to as well

as second-order transition to distinguish it from the first-order one.

2.4.1 Lambda Transition

It is of interest investigating the heat transfer conditions that govern the onset of the
A-transition. Let us consider a one-dimensional channel of length L filled with static
subcooled He II at an initial temperature T},. The temperature at one side of the channel
is kept constant at the initial value T}, whereas a heat flux is applied on the other side.
It is then possible to compute the minimum heat flux necessary to reach the A-point
by integrating the heat conductivity function f of He II over the range of temperatures
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between T}, and T)y:

1 Ix TIL
dmin = ( f_l(T) dT> . (2.58)
L Jr,

Above ¢pin, the fluid in contact with the heating surface will eventually undergo A-
transition. It is straightforward that the \-time ¢ needed to achieve the A-transition varies
with the heat flux. Dresner derived a formula for ¢, as a function of the heat flux and

temperature difference utilizing his own analytical method [44]:

_ 75 (D —Th)?
(ag)" f(T)

where the thermophysical properties of He II are averaged in the range of temperatures

) (2.59)

between T}, and T, while the proportionality constant a is equal to 1.16 [137]. The \-
time appears to depend strongly on the heat flux, decreasing with the fourth power of
its reciprocal. Eq. (2.59) was validated experimentally with an agreement of 20 % [158].
An equivalent equation for the \-time was derived by Baudouy, who proposed a solution
independent of experimentally fitted parameters [13]. Another confirmation came from
the heat pulse experiments by Seyfert et al. [136], who obtained an equivalent relation in
terms of the energy AFE dissipated during the pulse:

AEQ = t\¢* = A, (2.60)

where A can be derived from Eq. (2.59) and agrees satisfactorily with Seyfert’s calculations.

Once t) is reached, a A-front is formed close to the heating surface. The rate of
transformation of He II into He I determines the way this front propagates throughout the
channel. In the context of the superfluid recovery in helium-cooled copper conductors,
Dresner was able to approximate the speed of the front v, as [45]

i

[z3 M) (Ty - Ty)]°
T% (Ts - T)\) ’

vy = (2.61)
where x) is the front position, T is the fluid temperature at the heating surface, and
the properties of helium are averaged between T and T). Despite the absence of copper
parameters, Eq. (2.61) was derived with the assumption that the longitudinal conduction

is mainly due to the copper conductor.

2.4.2 Triple-Phase Phenomena

For heat fluxes higher than ¢,,;,,, different fluid configurations can be established in the
previous static He II channel according to the thermodynamic conditions at the location
of the heating surface. If the pressure is lower than the value at the A-point (p) =~
5.04 kPa) (see Fig. 2.1), He II turns into helium vapour without the presence of He I (see
Fig. 2.15a). If the pressure is higher than p) (e.g., atmospheric pressure), a He II-He I
transformation occurs instead. In the latter case, the potential formation of the vapour
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Figure 2.15: Boiling regimes in horizontal He II channels below p) (a) and above (b) [158].

phase via evaporation of He I depends on various parameters such as the channel geometry
and initial temperature of the fluid. In pool boiling experiments [100], where the amount
of He I is large compared to the size of the heater, it is possible to distinguish three main
regimes depending on the heat flux applied: natural convection [69]; nucleate boiling [135];
film boiling [73]. In the convection regime, no phase change occurs. The heat transfer is
driven by the density difference between the liquid next to the heater and the bulk He
L. At higher heat fluxes, vapour bubbles start to appear at preferential locations named

nucleation sites, which strongly depend on the heating surface characteristics. As the

1.0285

1.0280
T 4 e 1-vapour
zc, interface
©v1.0275
& interface
o
>
B1.0270
81
o
"
W
%)
~

1.0265

1.0260

1 2 3
T [K]
(a) Refractive Index (b) Triple-Phase Visualization [23]

Figure 2.16: The He II-He I front is visible despite the absence of a discontinuity in the
refractive index of liquid helium across the lambda point. Picture taken during a vertical
channel experiment by Breon and Van Sciver [23].
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heat flux is further increased, the number of bubbles generated is such that they coalesce
into a vapour film that blankets the heating surface. More specifically, the vapour film
arises when a certain peak nucleate boiling heat flux ¢* is reached. However, in confined
geometries like horizontal narrow channels, the coolant volume is small and thus the
heat removal due to convection and nucleate boiling is limited. As a consequence, ¢* is
much lower and the vapour film is easily established. In engineering applications, this
phenomenon is undesirable as the heat transfer coefficient in the film boiling regime is
up to 100 times smaller than the Kapitza conductance [158]. Furthermore, even in pool
boiling configurations, ¢* is usually significantly lower than g,,;, (Eq. (2.58)). It follows
that, except when the initial temperature is very close to T}, if He Il undergoes A-transition
the heat flux is likely to be large enough to trigger the first-order transition too, resulting
in a stable triple-phase phenomenon (see Fig. 2.15b) [28], [23]. A photographic evidence of
the phenomenon is shown in Fig. 2.16b. The picture was taken during a vertical channel
experiment by Breon et al. [23]. It is important to underline that the clear observation of
the He II-He I interface is not an obvious outcome of the experiment. The density of liquid
helium is indeed continuous across the A-point and, most importantly, so is its refractive
index (Fig. 2.16a).
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3.1 Experimental Rig

As introduced in Ch. 1, part of this dissertation is dedicated to the results of experiments
realized in superfluid helium. The experimental rig needed to conduct the tests is
presented in this section along with the main components and sensors utilized. The
extremely low temperature necessary to achieve the superfluid state of helium sets various
limits and requirements on the experimental tools. Firstly, an isolated environment
capable of keeping the temperature at values below 2 K must be created. This is usually
obtained by means of a cryostat, a device that allows maintaining cryogenic conditions.
The tests are carried out within the cryostat, where the experimental setup is located. The
setup is constituted by solid components arranged together to form a thin channel, which
is submerged in He II during the tests. Another requirement concerns the sensors used for
monitoring the cryostat parameters and for experimental measurements. Temperature,
pressure, and level sensors must withstand cryogenic conditions without repercussions on

their accuracy and stability.

3.1.1 Cryostat

The cryostat used for the experiments is a typical Claudet cryostat, named after the
scientist who conceptualized it [33]. As such, it allows conducting the tests in a pressurized
He II bath rather than at saturated conditions. This is particularly useful for the goal of the
present study as the stagnant bath that surrounds the dipoles of the LHC is pressurized. The
cryostat, the scheme of which is shown in Fig. 3.1, is constituted by an outlying stainless
steel shell (see Fig. 3.2) and two copper vessels. The outer vessel is separated from the shell
by two radiation shields that minimize the radiative heat fluxes from the ambient condition
of the laboratory. A vacuum environment is created between the outer vessel and the shell
in order to enhance the thermal insulation of the cryostat. The external radiation shield
is surrounded by a helical pipe in which liquid nitrogen is forced to flow in order to pre-
cool the cryostat before the transfer of liquid helium. During the pre-cooling process, a
thermal switch connects the two radiation shields and ensures the thermal link with the
vessels. Once the pre-cooling is over, the switch is deactivated by means of a pressure input
in order to isolate the inner vessel before the helium transfer. The inner vessel is the actual
test environment that accommodates the setup, which is fixed to insert shown in Fig. 3.3.
This insert is a support frame that is composed of a few G10 bars, an insulating G10 plate,
four radiation shields, and an upper metal plate that serves to seal the cryostat when the
frame is placed inside it. The channel setup is anchored to the bars along with the wirings
that transmit the sensor signals to conjunction points on the metal plate, where proper
cables are connected and transfer the information to the data acquisition system. The thick
G10 plate is a thermal insulation that separates two environments of the inner vessel. The
outer vessel is connected to a pumping system that allows regulating the pressure inside
the vessel. The baths environment is shared with a recovery system that allows to minimize

helium losses and ensures safe operations. The two vessels are linked to each other by a
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Figure 3.1: Cryostat system scheme.

heat exchanger equipped with a throttling valve that exploits the Joule-Thomson effect.
When the support frame is placed inside the inner vessel and the cryostat is sealed,
the two vessels undergo multiple purge cycles to make sure that helium is the only gas
present in the experimental environments. After pre-cooling with nitrogen, liquid helium
is finally transferred into the inner vessel from a pressurized dewar through an insulated
line. A hole in the G10 plate allows the helium to flow beneath it and fill up the lower
environment of the inner vessel. In order to ensure thermal insulation between the two
environments, the hole is plugged with a metal rod when the filling process is over. The
experiment takes place in the lower bath (~ 12.3 L), which hence must be cooled down
below the lambda point. Whereas the bath above the G10 plate is kept at the atmospheric
boiling point. For this reason, this thick insulating plate is called A-plate. A level sensor
above the A-plate measures the height of the bath free surface. The injection of liquid
helium into the cryostat is repeated whenever the bath level is below a certain predefined
value. As mentioned above, the inner vessel is connected to the outer one through a heat
exchanger and a Joule-Thomson valve. When the bath above the A-plate is full, helium
starts expanding isenthalpically as it flows through the valve to the outer vessel. Since the

liquid temperature is much lower than the inversion temperature of helium (~ 45 K at
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Figure 3.2: External view on the cryostat.

ambient pressure), the reduction in pressure causes a first temperature drop. This process
continues until another level sensor in the outer vessel indicates that the free surface
reached the desired height.

At this point, both vessels are full of liquid helium and the cooling process to achieve
the superfluid state can be initiated. Since the outer vessel encloses the inner one,
the helium contained in the outer vessel wets the external surface of the inner vessel,
establishing a thermal link between the two baths. The pumping system connected to
the outer vessel is switched on to decrease the pressure of the bath. The pumped mass
flow is controlled by means of a butterfly valve that automatically adjusts according
to the pressure requirement. The pressure is then reduced by pumping on the liquid,
whose temperature decreases following the saturation line (see Fig. 3.4). In this way,
the temperature of the outer bath can be easily regulated in saturated conditions. The
outer bath is brought to the desired temperature below the lambda point. Because of
the great thermal conductivity of He II, the temperature of the helium below the A-plate
quickly decreases as the saturated bath is cooled down. When the bath temperature below
the A-plate crosses the A-line, the thermal link between the inner and outer baths is
enhanced and results in a responsive behaviour of one bath with respect to the other. This
link is hindered just by the thickness of the inner vessel, which is in copper though and
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Figure 3.3: Insert and its components together with the channel setup installed.

hence highly conductive. Therefore, any change in pressure in the saturated bath causes
a temperature variation of the inner bath, which is still at ambient pressure, and thus
subcooled superfluid helium can be achieved. The phase state of each helium environment
of the cryostat is represented in Fig. 3.4, which refers to the phase diagram of helium (see
Fig. 2.1).

The cryostat is equipped with four calibrated Cernox® CX-1050-SD-HT-1.4L [29] tem-
perature sensors located respectively in the subcooled bath, above the A-plate, in the
saturated bath, and in the pumping line. These sensors are specifically designed for
cryogenic conditions due to their consistency and accuracy over a wide temperature range
(calibrated from 1.4 K to 325 K). The subcooled bath is also equipped with a heater that
regulates its temperature during experiments, as will be clear in the following section.
The heater is controlled by a LakeShore® 336 [92] temperature controller, which utilizes a
proportional-integral-derivative (PID) control system to automatically correct the amount
of heat dissipated to the bath based on the bath sensor reading. The pressure of the
saturated bath, which needs to be regulated by the pumping system, is monitored with
an MKS® [109] Baratron® 627B absolute pressure sensor. The level of helium above the

A-plate and in the outer vessel is monitored with two AMI® [6] level controllers.
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Figure 3.4: Pressure-temperature state of the liquid helium baths in the cryostat.

3.1.2 Channel Setup

One of the research questions of this dissertation focuses on the thermo-hydraulic response

of superfluid helium following a significant release of heat load in confined geometries

of the size of few hundreds of microns. The experimental setup used for this purpose is

designed to form the desired geometry, which is meant to resemble the space in between

the collars surrounding the superconducting coils. The concept of the experiment is
represented in Fig. 3.5. He Il fills a thin channel that is open to the bath of the experimental
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Figure 3.5: Channel experiment concept representation.
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environment on one extremity and closed on the other by a heating source. The channel
is enclosed by thick solid pieces that insulate thermally the He II contained in the channel
from the bath. The heat source is supposed to dissipate energy only inside the channel.
This preferential direction of the heat flux is obtained by means of an insulating plug posed
behind the source and attached to the other solid parts. Several sensors mounted on the
solid pieces will provide information about the temperature and the pressure of the He I
in the channel.

The actual setup, the drawings of which are presented in Figs. 3.6 and 3.7, is constituted
by five main components: two stainless steel plates, two side stainless steel flanges, and
one G10 support. These five pieces are assembled together in order to shape a rectangular

_-- Pressure sensor

Temperature
'
.7 sensor

Stainless steel __ _
side flange

~_ Stainless

Machined __- steel plate

plate i

Figure 3.6: Channel components description with transparent upper plate [9].

cross-section channel. The relative position of all the pieces is fixed and ensured by several
stainless steel screws covered with vacuum grease, which does not crack at cryogenic
conditions. One of the metal plates is machined on the central part of one surface to house
the channel, which emerges when the other plate is put in contact with the machined
one. These two plates are placed between the two side flanges, which minimize lateral
leaks. The vacuum grease is also inserted in the space between the main pieces, with
particular attention to the contact surface of the two plates in order to not obstruct the
channel zone with impurities. The channel is 14 cm long and 5 cm wide, whereas its
thickness is determined by the machined surface. Since the thickness is one of the study

parameters, two machined plates were prepared in order to produce two channels of
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(b)

()

Figure 3.7: Channel structure drawing [9]: (a) view on the pressure sensors plate; (b) side
view; (c) view on the temperature sensors plate.

different thicknesses: 0.5 mm and 0.2 mm. Both plates are 2 cm thick and the overall side
metal thickness (side flange plus unmachined plate portion) is 2.25 cm per side. Because of
the small confined space inside the channel, a rough surface could affect the fluid motion.
Stainless steel was therefore chosen as the material in contact with helium to ensure the
smoothness of the contact surfaces. The G10 support stands for the heater plug previously
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mentioned and is 2 cm thick. The G10, which is fiberglass, was selected as a plug material
to ensure high thermal and electrical insulation for the heater. The surface of the plug that
faces the helium channel is grooved to house the heating source, which was chosen to be
a highly resistive wire made out of Manganin® [101] that allows producing Joule heating
through electric currents. The wire is as thick as the channel and as long as the width
of the channel, which means that the heater matches entirely one side of the channel.
The extremities of the wire are soft-soldered to high-temperature superconductive (HTS)
current leads on each side of the channel. The HTS leads, made out of a YBCO compound,
prevents heat dissipation outside of the channel. These tapes together with the heater
are glued to the grooved surface of the plug with a polymerized epoxy resin (3M™ Scotch-
Weld™ DP190) (see Fig. 3.8). The HTS leads, which are located between the side flanges and

G10 plug Manganin® wire
N ’
s ’

HTS current leads

Figure 3.8: Manganin® wire soft-soldered to the HTS current leads and glued on the G10
heater plug.

the plug, are in turn soft-soldered to NbTi superconducting wires with gold connectors to
reduce the heat deposition in the pressurized helium bath. The current led by the NbTi
wires to the heater is provided externally by a Tektronix® PWS4305 DC [151] power supply.
A picture of the channel setup installed in the insert is shown in Fig. 3.9.

As mentioned in the previous section, the pressurized bath is equipped with a heater
that acts to regulate and maintain the temperature of the bath at the desired value. When
a heat flux is applied through the Manganin® wire during a test, the heat released into the
channel alters the bath temperature. Since some experiments require a fixed boundary
condition at the aperture of the channel, in order to avoid temperature changes at that
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Figure 3.9: Channel setup anchored to the frame bars in horizontal position.

location the pressure of the saturated bath is kept at a value that corresponds to a lower
temperature than the desired one, which is then reached via a heat load provided by the
bath heater. When the channel heater causes an increment in the temperature of the bath,
the bath heater decreases the heat load to match again the desired temperature. This
system is automatically controlled by the LakeShore® PID controller previously introduced.

The channel setup is equipped with nine temperature sensors and two pressure sensors.
Due to the size of the channel and the consequent small amount of helium contained
in it, the temperature sensors are required to have a small size and thermal mass. For
this reason, bare chip Cernox® CX-1050-BC temperature sensors with a sapphire base are
adopted to ensure fast thermal response (1.5 ms at 4.2 K). Eight of them are inserted in
appropriate holes machined in one of the steel plates. Their position in the holes is fixed by
gluing them with epoxy resin to G10 supports, which also serve the purpose of electrically
and thermally insulating the sensors from the metal plate. The supports are placed inside
the holes so that the sensors are situated on the internal edge of the plate, without altering
the thickness of the channel at the hole location. The eight sensors are distanced 1.5 cm
from each other along the centerline of the unmachined plate and the closest sensor to
the heater is 1.5 cm far from it. This means that the farthest sensor from the heater is

2 cm far from the aperture of the channel. The final assembly of the setup is shown in
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Figure 3.10: Channel assebly.

Fig. 3.10. The ninth temperature sensor is meant to measure indirectly the temperature
of the heater. Because of the small thickness of the wire, it was not possible to make a
measurement with a sensor in direct contact with it. Therefore, a workaround, shown in
Fig. 3.11, was conceptualized and implemented. Inside a hole in the G10 support, a small
copper rod is put in direct contact with the heater. This rod is soldered to a bigger hollow

copper piece that expands the measurable surface. Finally, the sensor is glued inside the
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hollow piece at a total distance of 2.8 mm from the heater.

Cu hollow piece Curod Manganin® wire HTS leads Steel plate

\ 1 ’
\ \ 1 ’

Figure 3.11: Temperature measurement design for the heating wire [9].

The nine bare chip Cernox® sensors are not provided by the constructor along with
a calibration curve. Therefore, they were calibrated in absence of heat loads against
a Cernox® CX-1050-SD temperature sensor installed in the insert and situated near the
aperture of the channel. The calibration data was collected from 1.5 K up to ambient
temperature with the channel in the horizontal position in order to minimize temperature
stratification effects. Each bare chip is built-in with the 4-wire resistance-temperature-
detector (RTD) technique, which ensures accurate measurements by fully compensating
for the resistance error due to the wires. According to this technique, the current to power
the resistor is delivered through one pair of wires, and the actual voltage drop is measured
through the other pair of wires. The sensors are powered with 10 pA delivered by a battery
system.

The two pressure sensors are mounted along the centerline of the other steel plate,
facing the temperature sensors. One sensor is 1.5 cm far from the heater and the other
sensor is 1.5 cm far from the aperture of the channel. Because of the cryogenic conditions
of the experiments, the chosen sensors are Kulite® [90] cryogenic miniature ruggedized
pressure transducers of the CTL-190 (M) series. The shape of the sensors’ body allows to
screw them directly into threaded holes inside the plate. As for the case of the temperature
sensors, the sensitive surface of the sensors is located at the same level as the plate’s
internal edge. These Kulite® transducers are differential pressure sensors and, as such,
are equipped with a small capillary to measure the pressure of the reference environment,
which is the pressurized He Il bath. The calibration curve of these pressure sensors was not
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available and, thus, it was obtained by calibrating the sensors in superfluid helium against
two MKS® Baratron® absolute pressure sensors in a smaller cryostat. The Kulite® sensors
were tested at different pressures up to 7 bar with pressurized helium gas.

The analog signals of the sensors are transmitted to the data acquisition system and
digitized with 16-bit A/D converter cards. The resulting measurements are visualized and
acquired through a LabVIEW® [91] program.

Heat Leaks Despite this experimental setup is meant to provide information about the
thermal response of He 1II, the interaction between helium and the various components
surrounding it cannot be ignored. If He II undergoes phase transitions, its thermal time
constant becomes comparable with one of the solid components and, thus, heat leaks from
the channel through the materials start to be significant. In this paragraph, an analysis
of the heat losses is presented to estimate the amount of energy that is not dissipated in
helium. First off, the thermal time constant 7 = L?/q, defined as the ratio between the
square of the characteristic length L and the thermal diffusivity « of the material, must be
evaluated for the main leak paths of the setup. Components with a low time constant suffer
fast temperature changes, which affect the steady-state temperature profile of helium.
Fig. 3.12 reports 7 as a function of the temperature for different components. The time
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Figure 3.12: Thermal time constants of the experimental setup components.

constant of the HTS current leads is several orders of magnitude lower than the other
materials because of its high thermal conductivity. On the other hand, the G10 components
(temperature sensor supports and heater plug) have very high 7. Details on the time
constant per material can be seen in Fig. B.1 in Annex B.1.

The heat losses () are computed via one-dimensional integration of the thermal
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conductivity of the material for different ranges of temperature starting from the reference
value 1.9K:

A T
Q= T /1.9 k(T)dT, (3.1)

where A is the area of contact with the helium in the channel. The heat leak per material
canbe found in Fig. B.2 in Annex B.1, while the total heat losses are presented in Fig. 3.13 for

both channel thicknesses. More specifically, Fig. 3.13 shows the heat loss as a percentage
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Figure 3.13: Total heat losses estimation as a function of temperature for different
representative heat fluxes.

with respect to the heat applied through the heater. Since the heat loss increases with the
temperature, the zone that experiences the highest losses is the one nearby the heater. For
this reason, the contact surface A of the steel parts is taken as the area from the heater to
the first sensor. Taking into account that 10 % is an acceptable loss, the heat leaks become
significant above 5 K for an applied heat flux equal to 30 kW/m? and 15 K for 480 kW/m?.
It must be borne in mind though, that these values refer to the steady state and hence have
an actual impact only for test durations comparable with the thermal time constant of the
materials.

As a last consideration, it is useful to compute what percentage of these losses is
associated with which component. Table 3.1 reports such percentages for the same
components and heat fluxes considered above. The percentages do not vary significantly
in a wide range of heat fluxes. As it is clear, the steel components (plates and pressure
sensor pits) represent the highest portion of losses together with the HTS current leads.
In contrast, the percentage associated with the G10 plug appears very small as A in Eq.
(3.1) corresponds to the cross-sectional area of the channel. However, since the plug



53

q [kw/m?]
Leak Path 30 60 120 | 240 | 480
Steel Plates 70 | 70.5 | 71.2 | 72.1 | 72.9
Steel Sides 06 | 06 | 0.6 | 0.7 | 0.7
Steel PS Pit 16.5 | 16.6 | 16.8 | 17 | 17.2
G10 Plug 07 | 07 | 06 | 05 0.5
G10 TS Support 2 19 | 1.7 | 14 | 1.2
HTS Leads 10.2 | 9.7 | 9.1 8.3 7.5

Table 3.1: Heat loss percentage through the components of the experimental setup for
different representative heat fluxes.

houses the heater, the effective area must be larger and thus the result is most certainly
underestimated by the one-dimensionality of the analysis. This consideration will be

relevant in the numerical modeling of the thermal events.

3.1.3 Data Elaboration and Error Estimation

Experimental measurements inevitably carry intrinsic uncertainties due to both the pre-
cision of the instrumentation, the instability of the experimental conditions, and the
accuracy of the measurement method. It is essential to estimate the error made at
each measurement in order to comprehend how accurate the experimental data is. Two
different groups of errors can be distinguished: systematic and precision errors [149].
Systematic errors are associated with reproducible discrepancies with respect to the real
value of a measured quantity, whereas precision errors yield results that change at every
repetition of the measurement. Systematic errors are often difficult to recognize because
of their nature. One typical example is the error associated with the calibration of a
sensor. Normally, the calibration accuracy of a sensor is provided by the constructor
and depends on the measurement conditions. The specifications of the temperature
sensors and pressure transducers utilized in the present work are summarized in Table
3.2. Moreover, errors due to the acquisition system must be considered. The conversion
error from analog to digital signals with a 16-bit A/D converter results to be lower than the
residual noise of the A/D converter itself, which is about 20 uV. Since systematic errors
are constant throughout the measurements, no information about their magnitude can
be extrapolated from data samples. Therefore, the focus of the following paragraph is on
precision errors.

If a quantity x is measured several times under the same conditions, fluctuations in the

measured values can be observed. All the values scatter from a mean value Z that can be
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Sensor Range of use Accuracy
Cernox® CX-1050-SD | 0.1-420K +5 mK (4.2 K)
46 mK (10 K)
+10 mK (30 K)
+16 mK (77 K)
+40 mK (300 K)
MKS® Baratron® 627B | 100-7 x 10° Pa | +0.12 %
Kulite® CTL-190 0-7x10°Pa | £0.1%

Table 3.2: Accuracy and ranges of use of the temperature and pressure sensors.

calculated as

1 N
T= N;xi, (3.2)
1=

where N is the number of determinations of x. Let us imagine to subdivide these
measurements into several groups, each of one associated with a certain range of values
of x. If all the measurements are plotted in a histogram that shows how many values lie
in each group, the resulting shape of the histogram will resemble the Gaussian probability
distribution. This fact suggests that it is possible to apply statistical methods to analyze
precision errors. In statistics, the average difference between the measurements and the

mean of the sample distribution is generally calculated through the standard deviation o:

LN 3
Oy = [MZ(xi—x)Ql , (3.3)

i=1

where (N — 1) is the number of degrees of freedom and it is equal to the number of
measurements minus the number of intermediate parameters used, which, in this case,
is just one — the mean of the sample distribution. The final value of the error is given by
the standard deviation of the mean o:

e
VN’

At this point, it is necessary to introduce a topic that needs to be addressed in the

oz = (3.4)

estimation of measurement uncertainties — the propagation of errors. If the measured
quantity is not the final experimental result but rather serves the purpose of calculating
another one, the error made to measure the first one propagates to the quantity of interest.
The way this error propagates is regulated by statistical laws. Let us consider a variable y to
be calculated through n measured quantities (y = f(x1, 22, ..., ,,)). If we assume that the

mean 7 is a function of the mean of the measured quantities (y = f (71, T2, ..., T, )) and that
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this is also true for the result associated with each measurement (y; = f(x1,, 22,4, ..., Tn i),

then the Taylor expansion can be used to express the deviation of each result:

dy

Yi — Y (x172~—x1)88m+(x27i—x2)8x2+... (3.5)
Therefore, the variance O‘Z of the variable y reads
oo 2 (N, o (Oy)’ 2 (09 ( 9y
o, 0y, (Ei@l) + o0z, <8a:2> + .+ 205 4, <6ml> <81:2> + .., (3.6)
where 02 . is the covariance and tells how much the two measured quantities vary with
respect to each other:
2 1 <
e = T ; (w1 — F1) (224 — T2)]. (3.7)

In this dissertation, there are some experimental results that derive from measured
signals. For instance, the heat flux applied in the channel shown in the previous section
is calculated as ¢ = IV A~!, where V, I, and A are respectively the voltage across the
heater, the current provided, and the area of the heating surface. The error linked to
the measurement of voltage and current propagates to the heat flux result. The standard
deviation of the heat flux is evaluated with Eq. (3.6):

=

1
oq = — (I} + V%07 + 21Vo}y) (3.8)

A

Another calculated parameter is the temperature, which is a function of the resistance

R of the thermistors in temperature sensors. The way in which the temperature and

the resistance relate to each other depends on the choice of the calibration function

used to extrapolate the desired experimental result. In this dissertation, two cases are

distinguished to partially simplify the calibration procedure. On the one hand, if the range

of temperatures involved in an experiment is not too wide, such as in superfluid helium
(T < Ty), then a polynomial function can be satisfactorily utilized:

m

T=> aF, (3.9)

§=0
where a; refers to the polynomial coefficients. On the other hand, if helium vapour
is generated following a high heat flux, the temperature is likely to cover a greater
temperature range. In this case, the typical calibration curve resembles the shape of the
inverse of the natural logarithm and hence the Steinhart-Hart equation is used [143]:

T7' = ag + a1 In(R) + az [In(R))? . (3.10)

For the experimental results of the present study, it was decided to adopt a generalized
version of Eq. (3.10):

7! = Z a; [In(R)} . (3.11)
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The generalized Steinhart-Hart equation allows tailoring the number of terms (m+1) in Eq.
(3.11) differently to each of the temperature sensors utilized in the experiments in order
to optimize the fit. The calculation of the coefficients a; in Eq. (3.11) is less trivial than
the polynomial case. Therefore, they are computed in MATLAB® [104] by solving a system
of equations of the form [A][z] = [b], where [A] is the matrix of the logarithms, [z] is the
array of the unknown coefficients, and [b] is the array of the inverse of temperatures taken
from the pre-calibrated sensors of the cryostat. It is known that R = VI~!, where I in this
case is the current provided to power the thermal sensors and V' is the voltage signal from
the sensors. If we consider that the current is constant for each sensor, then the standard
deviation of the temperature can be computed through Eq. (3.6) by deriving Egs. (3.9) and
(3.11) for the voltage V:

( m .

ov Z %ijl, for T ~ Ty, (3.12a)

j=1

1

ar

Sy jagVl [In(vi—1))™
ov N2
(S ga; In(vI-Hy}

for T > Ty. (3.12b)

For what concerns the Kulite® pressure sensors, the calculation is straightforward
as the pressure difference is linearly proportional to the voltage signal. The standard
deviation is then o, ~ ajoy. It is important to underline that Egs. (3.9) and (3.11) do
not provide an exact value of the temperature. The calibration equations suffer, indeed,
from a curve-fitting error. The error that results from the fitting process is evaluated with
MATLAB® and must be considered in the total error of the measurement. The total error
oy tot associated with the measured quantity y is computed by taking the 2-norm of the
single standard deviations. If N is high enough (i.e., typically N > 10), it is common
practice to roughly estimate the interval within which a measure is likely to lie with
confidence of 95 %. This is obtained through the precision uncertainty Py ~ 20y 5t. A
measurement y; is then said to lie within the interval 5 + P; with 95 % probability. In this
study, the precision uncertainty associated with the temperature measurements without
the presence of boiling is roughly 0.12 % for all the sensors.

3.2 Numerical Toolbox

Nowadays, the usage of Computer-Aided Engineering (CAE) tools is widely spread in the
prediction of physical phenomena that might be too cost