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Abstract

Keywords: Lattice kinetics, Point defects, Absorbing Markov chains, First-Passage
processes, Krylov subspace projection, Sink strengths, Kinetic Monte Carlo

The microstructural evolution of nuclear materials is driven by the agglom-
eration and recombination of the defects that are created under irradiation,
such as vacancies and interstitial atoms. Predicting the ageing kinetics of
these irradiation defects is essential to understand how the mechanical prop-
erties of the materials will evolve with time. Many physical models describ-
ing the ageing kinetics account for the elementary jump frequencies of point
defects at the atomic scale and involve a master equation governing the time
evolution of a state probability vector given an initial state. Transition state
theory and elasticity theory are used to compute the jump frequencies and
construct the transition rate matrix that is the crucial ingredient of the master
equation.

In this thesis, we develop non-stochastic numerical techniques to character-
ize the motion of individual defects migrating over long distances prior to
recombining with another mobile defect or being absorbed by a sink, usually
an immobile extended defect. Our approach is based on the theory of absorb-
ing Markov chains in which the absorbing states correspond to the recombi-
nations of two mobile defects or to the absorptions of a defect by an immobile
sink. The defect motions are then entirely determined by their first-passage
time distribution to distant absorbing locations, no-passage distribution, and
the probability fluxes to the sinks. These quantities directly stem from the
spectral properties of the transition rate matrix and define the probabilistic
laws of non-local events that can then be simulated by a first-passage kinetic
Monte Carlo algorithm. They also allow computing the sink strengths that
are the crucial input parameters of rate-equation cluster dynamics simula-
tions.

Assuming that defects undergo reversible diffusion, we show that the ab-
sorbing transition rate matrix is diagonally similar to a symmetric definite
positive matrix. This feature greatly facilitates the extraction of its spectral
properties by using iterative sparse solvers. We demonstrate the efficiency of
the approach with direct computations of elastodiffusion properties of a va-
cancy around a cavity in aluminum and Monte Carlo computations of clus-
ter diffusivity in low alloyed manganese steels. Additionally, we also assess
the efficiency of various mathematical schemes to characterize the evolution
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laws of a point defect near a sink. In particular, we develop a scheme combin-
ing Krylov subspace projection and eigenvalue deflation. For our model sys-
tem describing the absorption of a vacancy by a cavity in aluminum, a small
Krylov subspace deflated by the unique eigenmode corresponding to the
quasi-stationary distribution makes it possible to capture the kinetics of the
defect absorption faithfully. Finally, we discuss how a first-passage kinetic
Monte Carlo algorithm performing non-local moves of small self-interstitial
clusters can be used to compute sink strengths efficiently.
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Résumé

Mots-clés: Cinétiques sur réseau, Défauts ponctuels, Chaînes de Markov
absorbantes, Algorithme de premier passage, Projection sur sous-espaces de Krylov,

Force de puits, Monte Carlo cinétique

L’évolution microstructurale des matériaux pour le nucléaire est pilotée par
l’agglomération et la recombinaison des défauts créés sous irradiation, tels
que les lacunes et les atomes interstitiels. Prédire les cinétiques des dé-
fauts d’irradiation est essentiel si l’on souhaite comprendre comment les pro-
priétés mécaniques des matériaux vont évoluer dans le temps. De nombreux
modèles physiques décrivant les cinétiques de vieillissement prennent en
compte les fréquences des saut élémentaires des défauts ponctuels à l’échelle
atomique et font intervenir une équation maîtresse régissant l’évolution tem-
porelle d’un vecteur de probabilité d’état, étant donné un état initial. La
théorie des états de transition et la théorie de l’élasticité sont ici utilisées pour
calculer les fréquences de saut et construire la matrice des taux de transition
qui est l’ingrédient crucial de l’équation maîtresse.

Dans cette thèse, nous développons des techniques numériques non-
stochastiques pour caractériser le mouvement de défauts individuels mi-
grant sur de longues distances avant de se recombiner avec un autre défaut
mobile ou d’être absorbés par un puits, généralement un défaut étendu im-
mobile. Notre approche est fondée sur la théorie des chaînes de Markov
absorbantes dans laquelle les états absorbants correspondent à des recom-
binaisons de défauts ou des absorptions de défauts mobiles par des puits
fixes. Les mouvements des défauts sont alors entièrement déterminés par la
distribution des temps de premier passage vers des sites éloignés, la distri-
bution de non-passage, et les flux de probabilité vers les puits. Ces quantités
découlent directement des propriétés spectrales de la matrice des taux de
transition et définissent les lois probabilistes des événements non locaux qui
peuvent ensuite être simulés par un algorithme de Monte Carlo cinétique de
premier passage. Elles permettent également de calculer les forces de puits
qui sont les paramètres d’entrée cruciaux des équations de cinétique chim-
ique considérées dans les simulations de dynamique d’amas.

En supposant que les défauts migrent suivant un processus de diffusion
réversible, nous montrons que la matrice des taux de transition absorbante
est diagonalement similaire à une matrice symétrique définie positive. Cette
particularité facilite grandement l’extraction de ses propriétés spectrales par
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des solveurs itératifs creux. Nous démontrons l’efficacité de l’approche en
calculant directement les propriétés d’élastodiffusion d’une lacune autour
d’une cavité dans l’aluminium et en mesurant la diffusivité de petits amas
de solutés dans des aciers faiblement alliés en manganèse. En outre, nous
évaluons également l’efficacité de divers schémas mathématiques pour car-
actériser les lois d’évolution d’un défaut ponctuel près d’un puits. En par-
ticulier, nous développons un schéma combinant projection sur des sous-
espaces de Krylov et déflation de modes propres. Dans le cas du système
modèle décrivant l’absorption d’une lacune par une cavité dans l’aluminium,
un petit sous-espace de Krylov déflaté par le mode propre unique correspon-
dant à la distribution quasi-stationnaire est capable de capturer fidèlement la
cinétique d’absorption du défaut. Enfin, nous discutons de la manière dont
un algorithme de Monte Carlo cinétique peut être mis en œuvre pour calculer
efficacement les forces de puits de petits amas auto-interstitiels migrant rapi-
dement le long d’une ligne de glissement et effectuant occasionnellement des
rotations.
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Synopsis

Radiation damages in nuclear materials adversely affect their mechanical
and ageing properties [1]. In order to better understand irradiation effects
in materials, computer modeling has become an indispensable complement
to experimental characterization. Depending on the length scale, from a few
pico-meters (10�12 m) to meters (m), there exist different types of computa-
tion techniques. These techniques can be categorized as solving quantum
mechanical models that include the information on electrons, molecular dy-
namics models that incorporate the propagation of atoms/lattices, and con-
tinuum levels, including diffusion processes. Often, the changes visible at
the macroscopic scale are caused by phenomena occurring at the microscopic
scale. The atomic mechanisms for these phenomena are studied more thor-
oughly via both experimental characterization techniques and computational
modeling approaches [2, 3]. To understand the micro-structural evolution of
the materials, it is necessary to comprehend the physical phenomenon occur-
ring at the microscopic scale, i.e., formation, agglomeration, and propagation
of defects. The Service de Recherche en Métallurgie Physique/Physical Met-
allurgy Research Service in CEA-Saclay provides the research study behind
nuclear material’s foundation science, including experiments at the Jannus
facility [4] and collaborated work with computational or numerical modeling
techniques [5, 6]. This thesis presents the computational modeling approach
to study the short-term and long-term effects of point defects formed under
irradiation using physical theories.

The stochastic processes are categorized as Markov chains, Gaussian pro-
cesses, Langevin dynamics, among others. These processes and the prob-
ability theory are commonly used as mathematical models to understand
dynamic systems dealing with random variables. The most common math-
ematical representation of these processes is a set of differential equations
known as the master equation that describes the time evolution of the prob-
ability of the system. Introductory examples for processes governed by a
master equation are random walk on an integer line with possible steps in
forward and backward directions, Brownian motion, the path of a diffus-
ing particle before it gets absorbed [7, 8]. The time evolution of condensed
matter systems can be simulated directly using a stochastic approach like
Langevin dynamics for model systems whose phase space is continuous and
Kinetic Monte Carlo (KMC) methods for discrete systems. One such discrete
system where KMC is widely used is in studying the dynamics of a defect
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in alloys, for instance, understanding vacancy motion in general or vacan-
cy/interstitial clustering in ion or neutron-irradiated materials of nuclear re-
actors [9, 10]. While pressure vessels in industrial reactors are usually made
of ferritic stainless steels, aluminum alloys are also employed in some exper-
imental/research reactors (RR). Under irradiation, these materials lose their
mechanical properties over time due to the vacancies and interstitials that
recombine and form vacancy cavities and interstitial loops. This gives rise
to physical phenomenons such as hardening and swelling. Given its com-
plexity, the master equation (ME) associated with the microstructural evo-
lution [11, 12] of irradiated materials is often simulated using various KMC
methods [13].

The thesis is organized as follows:

– Chapter 1 provides readers an insight on industrial aspects of primary
damage caused by irradiation in nuclear power plants. A brief descrip-
tion of the numerical modeling has been discussed.

– Chapter 2 details the importance of the theory, different types, and
properties of Markov chains. Further, this Chapter describes the First-
passage (FP) algorithm to deal with stochastic processes. Additionally,
transitions state theory (TST) and theory of elasticity are also discussed
as they are used in constructing the transition rate matrix.

– Chapter 3 introduces the mathematical formalism employed in the
theory of absorbing Markov chains with conditionally reversible pro-
cesses. It illustrates features of the approach on two realistic problems:
the elasto-diffusion of vacancies in the neighborhood of cavities [14]
in pure Aluminum and the diffusion of small vacancy-Mn clusters in
↵-iron. In addition, we discuss the ability of these new features to com-
pute transition currents over large physical volumes and to approxi-
mate the evolution operator.

– Chapter 4 describes model order reduction (MOR) techniques based on
Krylov subspace projection and eigenvalue decomposition. First, we
assess the efficiency of the various sparse iterative eigensolvers. Sec-
ond, we test the efficiency of developed MOR algorithms to the physi-
cal model describing the absorption of a distant single vacancy by a cav-
ity in Aluminum [14]. In addition, we discuss the most efficient strat-
egy to compute the probability vector at times shorter than the mean
first-passage time depending on the problem.

– Chapter 5 focuses on the reaction kinetics using rate theory (RT). Dif-
ferent analytical solutions and numerical approaches to determine sink
strengths are presented. In this chapter, we also discuss and present
numerical approach to evaluate sink strengths for mixed mobilities of
defect clusters.

The manuscript finally reviews the conclusions and avenues of future re-
search of the work done. Annexes describe well-established techniques used
in or required for this work done.
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Industrial Aspect
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The substantial increase in urbanization and the world’s population has led
to the rise in global energy consumption. Many challenges lie in front of the
human-kind to fulfill the demand of world energy consumption, also tak-
ing into account the reduction of carbon footprints1. Alongside fossil fuels,
which produce 64% of the total electricity, there exists low carbon emission
technologies that make 36.7% of the electricity2. One of the low carbon emis-
sion technologies is nuclear energy that contributes 10.4% to global electricity
production. In the early 1950s, the nuclear power industry first came into ex-
istence in the United States of America. And up to date, as per IAEA data,
there are about 440 operational nuclear power reactors3 producing 393,068
MWe of electricity.

The critical difference between nuclear power reactors and other operating
power reactors is the process of energy production - a controlled fission chain
reaction. In this, a heavy nucleus of an atom splits into lighter nuclei, neu-
trons, and releases some kinetic energy, known as the fission products. These
newly generated neutrons can further cause more fission reactions. Hence,
the self-sustaining reaction repeats. Over the years, different nuclear power
reactors from Generation I to Generation IV have been introduced.

1https://www.world-nuclear.org/information-library/

current-and-future-generation/world-energy-needs-and-nuclear-power.

aspx
2https://ourworldindata.org/electricity-mix
3https://pris.iaea.org/pris/

https://www.world-nuclear.org/information-library/current-and-future-generation/world-energy-needs-and-nuclear-power.aspx
https://www.world-nuclear.org/information-library/current-and-future-generation/world-energy-needs-and-nuclear-power.aspx
https://www.world-nuclear.org/information-library/current-and-future-generation/world-energy-needs-and-nuclear-power.aspx
https://ourworldindata.org/electricity-mix
https://pris.iaea.org/pris/
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The most common type of reactors in use today is the thermal reactors. Com-
mon examples of these reactors are light water reactors (LWR), which are fur-
ther categorized based on moderator and coolant materials: the pressurized
water reactor (PWR), the boiling water reactor (BWR), and the supercritical
water reactor (SCWR). After the USA, France is the second-largest country
that produces 70% of the electricity by using its 56 pressurized water reac-
tors (PWRs) that are part of Generation II reactor design.

A typical nuclear reactor operates on three distinct yet inter-connected cir-
cuits: primary, secondary, and tertiary. The primary circuit comprises a re-
actor pressure vessel (RPV) which is the source of energy generation. The
inside of RPV is a complex structure with approximately 13.2m of height and
5.5m in diameter (depicted in Fig. 1.1) designed by taking into account all the
safety guidelines4. It is because of the presence of nuclear fuel assemblies.
These fuel assemblies consist of uranium oxide (UO2) fuel pellets encased in
a zircaloy cladding. The secondary circuit consists of the coolant and the heat
exchange system. The reactor coolant pump pumps the water to the primary
circuit (i.e., into the RPV), transfers the generated energy out of the reactor
core in the form of steam. Later, the steam of the secondary circuit drives the
steam turbine and condenses in a condenser again to water to feed it back to
steam generators. In the last stage, the heat released in the condenser is dis-
charged via a cooling water system (tertiary circuit) to the river or the cooling
tower.

The materials used in the construction of NPPs are thoroughly examined,
both theoretically and experimentally. In case of RPV, it is important to em-
ploy material with high structural integrity such that RPV structure under-
goes less of a damage due to radiation. Thus, Research reactors (RR)5 are
used to study primary radiation effects in materials. Different testbeds in var-
ious shapes, sizes, and types are used to evaluate the structural materials and
fuel assemblies for NPP. The primary function of RR is to generate neutrons
via fission reaction for nuclear education and training purposes, to analyze
neutron activation and neutron scattering studies, among others [16]. One
such RR used to study structural changes in materials using intense neutron
irradiation is Material testing reactors (MTR). Choosing the right materials
used for the construction of an RPV is vital as NPP operates at high temper-
atures at which structural changes such as embrittlement at macro scale are
visible. One such example of MTR is the Jules Horowitz Reactor (RJH) in
Cadarache, France, which will contribute to the development and qualifica-
tion of materials and nuclear fuel used in the future NPP or optimization for
existing NPP.

This chapter aims at giving the physical background behind the importance
of the materials used in nuclear reactors and research reactors. First, a piece

4https://www-pub.iaea.org/MTCD/publications/PDF/Pub1013e_web.pdf
5https://www.world-nuclear.org/information-library/

non-power-nuclear-applications/radioisotopes-research/

research-reactors.aspx

https://www-pub.iaea.org/MTCD/publications/PDF/Pub1013e_web.pdf
https://www.world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/research-reactors.aspx
https://www.world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/research-reactors.aspx
https://www.world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/research-reactors.aspx
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1.1 Types of Materials

There are numerous components in NPPs with the complex design as it op-
erates in different circuits as discussed above. The RPV is the most difficult
and expensive component to be fixed or replaced [17]. Thus, it is a limiting
factor to achieve a long-term operation. The fission chain reaction occurring
in the reactor core produces a high amount of energy that can lead to the
fracture of the RPV’s material. In PWRs, the heavy steel RPV must with-
stand the pressure ranging from 14 to 17 MPa, coolant temperature around
290�C, and high energy neutrons to achieve thermodynamic efficiency [2].
The structural materials employed in an RPV’s internal structure, such as a
reactor core, are austenitic stainless steels and nickel-based alloys in commer-
cial NPPs to protect from corrosion. The material used for commercial RPVs
fabrication is low alloy ferritic steels, including different solutes such as Ni,
Si, Mn, etc. These solutes are added to enhance the mechanical properties of
the steel (structural integrity) [18].

In conventional operating mode of an NPP, the energy in form of heat pro-
duced due to the fission reaction produces an electrical output. Some amount
of energy stored reflects in the nuclear activation of defects. Therefore, the
structural materials that resist less heat are favored. RRs perform studies to
minimize the heat generation by non-fissile materials. In RR, aluminum al-
loy is used to construct many components, including RPV (which usually
withstand coolant temperatures > 100�C). By the exact naming, it is a 6061-
aluminum alloy that contains magnesium and silicon as their major alloying
elements as depicted in Fig. 1.2. Different properties of aluminum alloy have
been discussed in the Ref. [16].
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1.2 Damage in reactor pressure vessels

The entire functioning of the nuclear reactor core provides exposure of high-
energy neutrons to the internal components of RPV due to fission reaction.
These high-energy neutrons damage the material and alter its mechanical
properties. The RPV steels usually exhibit high fracture toughness. How-
ever, neutron irradiation increases the hardness and reduces the ductility,
impeding the motion of atoms in the materials, causing dislocations. With
the increase in hardening, there will be a change of the tensile properties as
well (the yield stress and ultimate tensile strength increase with increased
neutron fluence), as illustrated in Figs. 1.3 and 1.4.

Figure 1.3: Evolution of a stress-strain curve after irradiation [19].

Figure 1.4: Evolution of a stress-strain curve for A533B steel for different neutron
exposures [20].

The RPV is the component which receives least amount of neutron flux i.e.
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dose rate. At end of cycle (EOC) of the reactor, it receives of total neutron flu-
ence6,7 from 5⇥1022 m�2 to 1.6⇥1024 m�2, which is also equivalent to 0.0075-
0.24 displacements per atom (dpa) that leads to embrittlement in the RPV
steel [2, 21]. The displacements-per-atom which is a dimensionless quantity,
given as

dpa =
Number of displaced atoms in the given volume

Total number of atoms in the given volume
(1.1)

Further, the number of displaced atoms can be quantified by the formula

Nd =
K(E � Q̂)

2Ed

=
KÊ

2Ed

(1.2)

where K is the displacement efficiency, Q̂ is the total energy lost in the cas-
cade by electronic excitation, Ed is the displacement threshold energy, E is
the primary knock-on atom (PKA) energy, and Ê is the damage energy for
the atom displacement [22]. This method was first proposed in 1975 [22]
to analyze the total number of defects created in terms of deposited energy.
If the damage energy is high enough, then it causes the displaced atoms to
induce other atomic displacements as well, hence damaging the crystal lat-
tice site [3]. The model discussed by Ref. [22] is widely used to study the
displacement rates. The primary damage caused by irradiation is discussed
more briefly in Sec. 1.3.

Vessel integrity analysis requires activities from in-service flaw inspections
to thermal-hydraulic stress analysis. The actual issue in material damage
does not lie in the toughness of the fabricated RPVs. However, it is the expo-
sure to neutrons in the beltline region of the RPV that surrounds the reactor
core. Indeed it degrades fracture toughness of RPV steels [23]. A familiar
method used to investigate embrittlement caused by neutron irradiation is
to estimate its ductile-brittle transition temperature (DBTT) [24]. This quan-
tity marks the transition between low toughness brittle and high toughness
ductile fracture regimes. The transition temperature can also be determined
by Master curve methodology [25, 26]. Figure 1.5 represents the DBTT (∆TT)
shift. The transition temperature in certain cases exceed 200�C [27].

Nuclear regulatory bodies initiated several surveillance programs to under-
stand more about the degradation of RPV steels. In France, PSI (Programme
de Surveillance à l’Irradiation) was the first monitoring program established
in early 1970 [25, 28, 29]. The surveillance capsules of the steels similar to
those used for the fabrication of RPV are used. The required samples of RPV
steels are mounted in the reactor core and later are collected to investigate the
ageing of the steels. These samples experience neutron flux higher than what
a typical RPV experiences in normal operating conditions. These sample cap-
sules are extracted periodically and tested for tensile strength, ductility, and

6Neutron fluence is defined as the flux integrated over time (n/m2).
7Neutron flux is defined as the number of neutrons crossing a unit area per unit time

(nm−

2s−1).
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Figure 1.5: Representation of shift in ductile to brittle transition temperature
(∆TT).

fracture mechanical properties [24, 30, 31, 32]. The data obtained from this set
of evaluations, combined with neutron-irradiated materials from experimen-
tal reactors, for example, MTRs, provides crucial information on irradiated
materials. However, the number of test samples is limited and due to the
operational life-cycle constraint, repeated extraction of the samples is not an
ideal solution [3]. Thus, in addition to the experimental approach, multi-
scale computational modeling approach is also necessary to complement the
study of primary damage and altered mechanical properties in materials due
to irradiation which is discussed in next section.

1.3 Primary damage caused by neutron irradiation

The radiation damages or effects seen at macroscopic levels are due to the
structural modifications at the atomic level, i.e., high-energy neutrons in
MeV. The whole process is known to follow three phenomena; nuclear ac-
tivation, transmutation, and atomic displacement [3, 33, 34]. All these three
effects are harmful, and the consequence (embrittlement) depends majorly
on the neutron field (neutron flux, fluence, and energy), irradiation tempera-
ture, and impurities present in the steels. The irradiation temperature ranges
between 300�C to 400�C, which plays a vital role in investigating the damage.
The atomic processes such as diffusion, recombination, annihilation, and seg-
regation of defects depend on the temperature [24]. In addition, minor alloy-
ing elements such as Copper and Phosphorus acts as additional elements that
impact the irradiation effects [17].
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is higher than 2Ed, then the targeted atom becomes the PKA (see Fig. 1.6 (b))
and removes other atoms from the lattice sites [37]. If PKA has kinetic energy
⇠ 80 keV, the target atom will be able to travel without any collision and be
responsible for the material’s damage. This process is known as channeling
Fig. 1.6 (c). The mobile channeling target atom interacts with the surround-
ings and loses its energy to the other target material (Fig. 1.6 (d)). Eventu-
ally, the PKA will slow down and will go under another collision with an-
other atom (Fig. 1.6 (e)). Depending on their energies from the collision, it
could be possible for them to move further and cause sub-cascade branching
(Fig. 1.6 (f)). Once the kinetic energies of the moving atoms get below ⇠ 30
keV, the interactions with the surrounding will get strong, and further colli-
sions will get frequent to cause the displacement phase of the cascade. An
approximate value for the lifetime of a displacement cascade is few picosec-
onds (10�12). The region displaced on the lattice site by cascade of collisions
forms displacement (Fig. 1.6 (g)) spike initiated from its equilibrium posi-
tion and has a length of a few nano-meters (10�9m). The whole displacement
cascade is categorized into three phases: ballistic phase, thermal spike, and
recombination phase (refer to chapter 15 from the book [3, 32]). The region
of irradiation damage caused by displaced atoms constitutes point defects
such as self-interstitial atoms, and vacancies [1]. Defects such as vacancies
are the missing atoms from their actual lattice position, and interstitials are
atoms present in non-lattice positions. Figure. 1.7 depicts the schematic of
point defects. During the evolution, point defects agglomerates and form
clusters. Thus, the lattice site’s final configuration could be a vacancy-rich
region neighboring SIAs (probably in clusters), commonly known as cascade
debris. This whole process is known as the primary damage of neutron irra-
diation.

Usually, SIAs defects migrate faster than the vacancies. As per the natural
phenomena, the defects migrate and get absorbed in sinks. Here, sinks are
defined as the particular characteristic at a micro-structural level in which
the defects are absorbed/annihilate through the recombination process when
they encounter each other. Dislocations, grain boundaries are examples of
sinks for single point defects and the clusters [3, 39, 40]. An example of a
three-dimensional cavity is a cluster of point defects that act as a sink for
single point defects. These clusters then grow and migrate [41]. There-
fore, it is essential to know the size and the density of the sinks and the
defect migration mechanism to determine the distance traveled by the de-
fects. The vacancy clusters are usually less mobile if they grow in size, and
they become voids visible through Transmission electron microscopy (TEM).
Whereas small clusters or single vacancies are noticeable using Positron an-
nihilation spectroscopy (PAS) or Small-Angle Neutron Scattering (SANS) [24,
42, 43].

All microscopic effects occurring over time due to the defects generation at
nano-meters scale highly compromise the ability of a material to maintain its
integrity with visible consequences at macroscopic levels. Quoting the lit-
erature, "these radiation effects are a multi-physics problem - implying the
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Figure 1.8: Schematic representation of the multi-scale simulation method [44].

Starting from the lowest scale, i.e., the atomic level interactions, ab-initio
quantum mechanical (QM) calculations, often based on density functional
theory (DFT) are used [5, 45]. The main aim of DFT calculations is to deter-
mine the ground state energy of the interacting particles in the given system.
It is a one-body formulation of the many-body quantum mechanical problem
and is governed by the Schrödinger equation. However, limitation arises in
their application when the system size increases. So only clusters of a few
point defects can be studied using DFT. The DFT simulations become very
expensive in CPU time. To avoid the limitation of the restricted size of the
system and the CPU time, two approaches based on approximate methods
are Molecular dynamics (MD) and the Monte Carlo methods (MC). MD sim-
ulations are often deterministic, whereas MC is always probabilistic [3]. With
the current configurations of the recent computers, system sizes of up to 107

atoms can be studied using MD simulations [46]. It is often challenging to
validate the results obtained from the MD simulations via experiments be-
cause the limitation is the simulated time, which corresponds to the cascade
timescale. So, the output of the MD simulations is given as an input to the
MC method. The MC method encompasses a many algorithms and covers
numerous families of versatile approaches based on stochastic modeling. An
example is the Markov Chain Monte Carlo method. MC methods consist of
drawing from a probability distribution, performing numerical integration
analysis, and solving the optimization problem. The first set of simulations
performed using MC methods in materials science was to study the short-
term annealing of defects in fcc (face-centered cubic) and bcc (body-centered
cubic) materials [47, 48]. Over the decades, many MC methods have devel-
oped [49], and nowadays, the Kinetic Monte Carlo (KMC) method is being
used quite extensively in materials science [13, 50, 51]. In this thesis work, we
develop an evolution laws for the point defects by implementing the theory
of absorbing Markov chains.
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1.5 Summary

In this chapter, we briefly presented the materials used in nuclear power
plants and research reactors. These materials specially for reactor pressure
vessel steels are deteriorated under neutron irradiation due high energy neu-
trons. The phenomenon that affects the mechanical properties is well known
as primary damage. It is caused by the different kinds of point defects such
as vacancies and interstials that are created at microstructrual level. To study
the microstructual evolution experimental studies are validated with numer-
ical approach. We have briefly discussed about different kinds of multi-scale
numerical approaches. In a multi-scale modeling approach, a chain of sim-
ulation techniques is formed from highly accurate DFT calculations for the
smaller scales to MC methods for approximated simulations at higher order
scale. In the next chapter, we discuss the theory of Markov chains, first-
passage events, and present algorithm based on first-passage events.





Chapter 2

Theoretical Context and Objectives

Contents
2.1 Markov Chains and first-passage events . . . . . . . . . . . 20

2.1.1 Discrete Time Markov chain . . . . . . . . . . . . . . . 20

2.1.2 Continuous Time Markov chain . . . . . . . . . . . . 21

2.1.3 Absorbing Markov chains . . . . . . . . . . . . . . . . 21

2.1.4 First-passage events . . . . . . . . . . . . . . . . . . . 23

2.1.5 Properties of Markov chain . . . . . . . . . . . . . . . 24

2.2 Numerical Algorithms . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Standard KMC method . . . . . . . . . . . . . . . . . 27

2.2.2 First-passage Kinetic Monte Carlo method (FPKMC) 28

2.3 Construction of the transition rate matrix . . . . . . . . . . . 30

2.3.1 Transition state theory . . . . . . . . . . . . . . . . . . 30

2.3.2 Effect of elastic field on point defects . . . . . . . . . . 30

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

This chapter introduces the probabilistic computational modeling technique
based on stochastic processes in general and MC methods in particular. Dif-
ferent research studies involving stochastic methods are stock market fluc-
tuations; speech, audio, and video signals; blood pressure. Theoretically,
the KMC method is based on the theory of Markov chains and is discussed
briefly in Section. 2.1. Further, the Markov chains are also categorized based
on time and boundary conditions. A general introduction to KMC and the
type of algorithm implemented is presented in Section. 2.2. We also demon-
strate the importance of first-passage processes in Section. 2.1.4. In this thesis,
we have developed the acceleration technique named first passage Kinetic
Monte Carlo (FPKMC). In Section. 2.2.2, we give a brief presentation of the
FPKMC methodology. Finally, in Section. 2.3, we present the various atomic-
scale theories that are used for modeling the migration of point defects, such
as vacancies and interstitials.



20 Chapter 2: Theoretical Context and Objectives

2.1 Markov Chains and first-passage events

Any stochastic process can be described using probability theory and the con-
cept of random variables [52]. Markov chains are one of the stochastic tools
often used in probability theory to simulate a model with random events that
are described by a Chapman–Kolmogorov equation [53]. The probability of
each event in Markov chains is independent of the previously visited state.
Thus, the future state or value of the variable is independent of the history of
the trajectories. This property is referred as Markov property. The change in
system states is called transitions, and the associated probabilities are called
transition probabilities. Mathematically, Markov chains are represented as
state space using a transition rate matrix that defines the transition probabil-
ities. If the Markov chain moves with given discrete time steps, it is known
as discrete-time Markov Chain (DTMC). Whereas, for continuous-time, the
process is called a continuous-time Markov chain (CTMC). Further in this
section, we provide basic information on different types of Markov chains
and properties that the Markov chain satisfies.

2.1.1 Discrete Time Markov chain

A discrete-time Markov chain (DTMC) is the sequence of random variables
in discrete-time step n = 0, 1, 2, · · · , i.e., the time step of each jump in the
system to be constant. The Xn state represents the value of state at time n.
If the random variables are discrete in space, then the stochastic process is
called discrete-valued. Besides, values of Xn belong to a state space, denoted
as S. This is the most common type of Markov Chain. Formally, DTMC is
defined as the sequence of discrete random variables with the property of
conditional distribution of Xn+1 given that X0,X1, · · · ,Xn�1 depends only on
the value of Xn but not on Xn�1 such that [54]

P
�
Xn+1 = j|X0 = i, · · · ,Xn = j

�
= P

�
Xn+1 = j|Xn = i

�
= Pij, (2.1)

where Pij is the transition probability to move from state i to state j. The total
transition probability matrix is a general stochastic matrix, written as

P =

X1 X2 X3 . . . Xm0
BBBB@

1
CCCCA

X1 P11 P12 P13 . . . P1m

X2 P21 P22 P23 . . . P1m

X3 P31 P32 P33 . . . P1m
...

...
...

...
...

Xm Pmm Pm2 Pm3 . . . Pmm

. (2.2)

where Xm 2 S. Let define p as the state probability vector, for which com-
ponents Pi stands for the probability that system is in state Xi and

P
Pi = 1.

The state probability vector for DTMC governed by a master equation (ME)
is given as

pT (n+ 1) = pT (n)P, (2.3)
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where n represents the discrete time step an T stands for transposition. The
solution to Eq. (2.3) is

pT (n) = pT (0)Pn. (2.4)

In the following text, we refer to a state Xi by its label i.

2.1.2 Continuous Time Markov chain

In a DTMC, the time spent in any state i visited by the chain is equal to the
same unit value. At variance, in a continuous time Markov chains (CTMC),
the time spent in any state i by the random walker is a strictly positive ran-
dom variable ti is known as hitting time [55]. The next state j in the system
is attained when there is a jump with transition rate Kij and the hitting time
for the respective state i ends.

Formally, a CTMC is defined as the stochastic process in continuous time
X(t) : t � 0 in a discrete state space S

P
�
X(s+ t) = j|X(s) = i, {X(u) : 0  u  s}

�
= P

�
X(s+ t) = j|X(s) = i

�
Pij

�
,

(2.5)
where s � 0, i 2 S, j 2 S, X(s + t) is the future state, X(s) is the present
state, and the condition {X(u) : 0  u  s} signifies no relation between
the present and future state [55, 56]. Thus, CTMC satisfies the Markov prop-
erty and hitting times are distributed as exponential random variables that is
discussed in Section. 2.1.5.

Analogous to Eq.(2.3), the state probability vector for CTMC is given by
time derivative of Chapman–Kolmogorov equation which is known as mas-
ter equation (ME)

ṗT (t) = pT (t)K, (2.6)

where K is the Markov matrix. Its elements Kij are the transition rates from
state i to state j with the unit of time�1 and superscript T stands for trans-
position. The solution to Eq.(2.6) is given by the exponential of the Markov
matrix,

pT (t) = pT (0) exp
⇥
�Kt

⇤
(2.7)

2.1.3 Absorbing Markov chains

In probability theory, a Markov chain is an absorbing Markov chain (AMC)
if at least one of the states in the state space is an absorbing state. In an fi-
nite number of steps, it is possible to go from any state, i.e., transient to an
absorbing state. Once the system enters an absorbing state, it never leaves.
A state Xi is an absorbing state of a Markov chain if in row i of the transi-
tion probability matrix, the diagonal entry Pii is equal to 1 and all the other
entries Pij,j 6=i are zero. That means the state with the diagonal entry equal to
1 can not be left once entered. To have better understanding of the concept,
let us consider a series of Markov chain system with 5 distinctive states. The
sequence of Markov chain in Fig. 2.1 is an AMC as it has three states X1, X2,
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• Raise the transition rate matrix to high power n, such that P remains
stable and provides with the probability of ending in an absorbing state.

• Sub-divide the original transition rate matrix to its canonical form and
evaluate the fundamental matrix for the AMC.

In this thesis, the notation for transition rate matrix associated with the ab-
sorbing Markov matrix is represented as [59]

Ka =

✓
�A A~1
~0T 0

◆
(2.9)

where A is a N ⇥ N matrix such that Aij = �Kij , A~1 = �a0, and ~1 =

(1, · · · , 1)T the N -dimensional column vector whose components all equal
one. Vector ~0 = (0, · · · , 0)T is similarly defined.

Different random walker models can be solved using by resorting to the the-
ory of AMC. In literature, first-passage processes are employed to character-
ize the evolution laws for the random walker. In the next section, we discuss
the idea of the first-passage process and provide an analogy of it with AMC.

2.1.4 First-passage events

The concept of first-passage process (FPP) was introduced in the early 1970s
by the name of first hitting times models [60, 61, 62, 63]. FPP have been con-
stantly implemented in diverse fields of study such as medicine, economics,
physics, finance, and sociology. Basic idea behind these processes is when a
random walker or stochastic process is initiated from a state and encounters
a set of boundary state. The boundary can be anything, naming a barrier or
a different state of the system. The model consists of two basic components:

• a stochastic process X(t) 2 X state space at t 2 T time space with initial
value X0 = i,

• a boundary condition B ⇢ X .

Consider an initial state X0 = i 2 X , and a different set of states that corre-
sponds to B. Here we can define a random variable N as first passage time
at which the system jumps from state i to states in B [62],

N = inf{t : X0 2 B}. (2.10)

The overall time required for the entire process, starting from one initial state
i to encounter a boundary condition is termed as the first passage time. The
probability distribution of the times when the process reaches site or enters
boundary for the first time is termed as first passage probability distribution.
And the process is defined as the first passage process.
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2.1.4.1 First-passage time

Time taken by the Markov chains to start from one state i and reach another
state j for the first time is known as first-passage time. In literature, this time
is also called hitting time. The exponential distribution law gives the time
when a random walker enters a state and remains there for a while before it
transit to another state. The exponential distribution provides the distribu-
tion of elapsed time. Note, in the case of AMC, the exponential distribution
is known as a phase-type distribution constructed from a stochastic process
with transient and absorbing states. All the states of AMC represent individ-
ual phases. For AMC, the transition rate matrix is written as Eq.(2.9). The
probability density function for the distribution is given as Pa(t) = exp(Kat).
The mathematical derivation is presented in Section. 3.2 of Chapter 3.

A model describing a stochastic process can be solved using FPP and AMC
by considering the set of boundary states as absorbing states. Once the ran-
dom walker satisfies the boundary condition, it remains inside forever. In
this thesis, we employ AMC as a tool to characterize first-passage events by
evaluating first passage times. This method is termed as the first passage
kinetic monte carlo (FPKMC) discussed in Section. 2.2.2. In the next section,
we present important properties associated to Markov chains.

2.1.5 Properties of Markov chain

In this section, we will present some basic Markov chain properties without
going in to detailed mathematical descriptions [64]. These properties have
been taken into account in this PhD work to mathematically formalize the
computational modeling method.

2.1.5.1 Ergodicity

Markov chains are said to be irreducible when the probability is always pos-
itive, and it is possible to reach any state to any other state. This is known
as the accessibility property. A state i in the Markov chain is ergodic if it is
aperiodic and positive recurrent. This property is known as irreducibility in
mathematics. In physics, this property is related to the concept of periodicity
and possible return length. Besides, if all the states in the Markov chain are
aperiodic and irreducible, then the Markov chain is ergodic in nature.

For any state i,
Pij = P (Xn = i, n � 1|X0 = i). (2.11)

Besides, a state is said to be recurrent; if a random walker leaves that state, it
will return to that state in the future with probability one i.e. Pij = 1. All the
absorbing states are recurrent states. If the probability of return is less than
one Pij  1, the state is called transient.
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2.1.5.2 Detailed Balance

The detailed balanced condition writes

⇡iPij = ⇡jPji (2.12)

where Pij is the transition probability from state i to state j, Pji is the transi-
tion probability from state j to state i, ⇡i and ⇡j are the stationary probabilities
of states i and j. If a Markov chain satisfies the detailed balance condition,
then it is called reversible Markov chain.

2.1.5.3 Residence times

The first-passage times are known as the residence times. As mentioned in
Section. 2.1.4.1, the time is exponentially distributed. Here, we present an
example of a single state i having n transitions, reaching to an absorbing
state that is labeled as n + 1. Using complementary cumulative distribution
function1 (CCDF), the transition probability of this system is given as

P
�
min{t1, · · · , tn} > t

�
= exp

⇣
� t

nX

j=1

j

⌘
, (2.13)

where {t1, · · · , tn} are random variables that are distributed exponentially
with 1, · · · ,n rate parameters. CCDF is usually implemented to study
the survival function S(t) which evaluates the survival of the phase after
specified time t which corresponds to the residence time. The mathematical
derivation of residence times is detailed in Section. 3.3.4 of Chapter. 3.

2.2 Numerical Algorithms

As mentioned before, the stochastic processes are extensively used in engi-
neering, medicine, finance, and many science fields. A basic example is the
random walker that perform steps in the forward or backward direction.
These stochastic processes are simulated using the so-called Monte Carlo
(MC) methods which samples the possible outcomes of the micro-states of
a system according to the known multi-dimensional energy surface. In phys-
ical sciences, the Kinetic Monte Carlo (KMC) method is a particular branch
of MC methods that focuses on the dynamical properties of many-body sys-
tems. A series of physical events are considered in the KMC method, for
which probability of occurrence is known; hence its name is "Kinetic Monte
Carlo." The main principle of this method is to assign transition rate or proba-
bility to each event and test whether the event has occurred or not depending
on the generation of random numbers.

The potential energy surfaces exhibits high activation energy barriers (usu-
ally more significant than the value of kBT ) which define thermally activated

1https://en.wikipedia.org/wiki/Cumulative_distribution_function#

Complementary_cumulative_distribution_function_(tail_distribution)

https://en.wikipedia.org/wiki/Cumulative_distribution_function#Complementary_cumulative_distribution_function_(tail_distribution)
https://en.wikipedia.org/wiki/Cumulative_distribution_function#Complementary_cumulative_distribution_function_(tail_distribution)
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events [51]. These kinds of events are classified as rare events. Typically it
takes few picoseconds for individual atoms to reach a transition state, i.e.,
to cross a barrier and reach another system’s state. The system’s time evo-
lution is provided by the hops between different states, commonly known
as metastable states or basins. As the system tends to spend more time in
one potential basin, it loses its initial memory. Before entering the next basin,
each possible way of escaping from the basin becomes utterly independent
of its preceding history. The escape time of a system from a state is usually
larger than the time that it takes to cross the saddle region separating two
stable states. This process gives rise to the exponential decay of the survival
probability before the escape. These types of state-to-state jumps satisfy the
Markov property discussed in Section. 2.1. The KMC method is a tool that is
based on Markov chains. Thus, the system evolution is characterized by the
evolution operator:

P(t, t
0

) = exp((t
0 � t)K), (2.14)

which is the formal solution to the CTMC ME as given in Eq.(2.6). Recalling,
matrix element Pij(t, t

0

) are the probability to find a system in state j at time
t
0 given that it was previously in state i at time t. K is the Markov matrix

with elements Kij which are the transition rates from state i to state j with
the unit of time�1 and Kii = �

P
j 6=i Kij .

It is unfeasible to solve a system with a huge number of transitions tabu-
lated in the matrix form. Thus, a comprehensive way to study the evolution
of the system using KMC is to generate stochastic trajectories using random
number generators at random times. In principle, correct time evolution of
the system can then be calculated by averaging over these trajectories. The
first KMC application to the lattice dynamics was proposed by A. Bortz, et
al. [65]. A system generates a trajectory with an average time of ∆t, depend-
ing on the hops from the visited states along the trajectory. The time depends
on the total escape rate and is estimated using

∆t =
lnR

Kii

, (2.15)

where R / U[0,1[ is a uniformly distributed random number in [0, 1[. The
random number is completely dependent on the total rate K with no mem-
ory of its primary trajectory. This rate determines to which state the system
will propagate. In simple terms, the new state becomes the starting point
for the next KMC step. In practice, different types of algorithms are being
implemented depending on the investigated time and space scales. They are
selected or implemented on the movements of the atoms in the lattice space
state in Lattice Kinetic Monte Carlo (LKMC). In Atomistic Kinetic Monte
Carlo (AKMC), the position of all atoms on the lattice [65, 66, 67] or over
the space [68, 69]. In this method, position tracking of all the atoms is con-
sidered. It is based on the atomic interaction model of a rigid or non rigid
lattice type. Hence, this method accounts for hopping frequencies, and their
influence on the surroundings [70]. This type of method requires taking into
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account all the atoms present in the system (jumps of the point defects). An-
other method, commonly known as OKMC, rather simulates diffusing en-
tities like defect-solute clusters [71]. In this method, the system consists of
clusters that altogether are treated as objects [72]. All events that can occur
are atomic jumps, the creation of point defects by irradiation, the annihila-
tion of defects sinks and clusters (dislocations, grain boundaries, etc.). The
main issue in this approach is to determine the rates of the activated mech-
anisms. The most frequent atomic jump limits the physical time that can be
simulated. The class of OKMC methods encompasses event Kinetic Monte
Carlo (EKMC) methods [60, 73, 74] and first-passage kinetic Monte Carlo
(FPKMC) methods [75, 76]. The former assumes that all events are possible
at any time independently of each other. Simultaneously, the latter approach
introduces spatial protections and enforces the synchronization of the dif-
fusing entities rigorously based on the exact first-passage and no-passage
distributions defined hereafter. In EKMC, the total event is considered for
modeling i.e. the sequence of atomic hops which cause the sinks or cluster to
evolve. This method usually accounts for the macro time step, in which all
the events occurring during that time step are considered [77]. The notation
and implementation of KMC is discussed in Section. 3.2.2 and Section. 3.2.2
of Chapter 3, respectively.

2.2.1 Standard KMC method

A common KMC algorithm named as BKL algorithm or residence time al-
gorithm follows simple few steps, which also includes the random number
generation [78, 79].

1. Set the clock at time, t = 0.

2. Choose the initial state i.

3. Tabulate all the transition rates l from state i to state j for all the pos-
sible n transitions in the system .

4. Calculate the total cumulative frequencies.

5. Estimate random number R1 / U[0,1[

6. Find the event j to carry out such that
P`�1

l=1 l  R1l 
P`

l=1 l, where
j(l) denotes the ending state associated with the l-th listed transition.

7. Propagate the event.

8. Update the clock t = t+∆t where ∆t = � lnR2

l

where R2 / U[0,1[

9. Repeat from step 2, until the total target time or number of events is
achieved.

All transitions are associated with probabilities and are evaluated. Hereafter,
the cumulative frequencies l are denoted as frequency Kij(l).
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practice, the first-passage time of both the particles are generated randomly
from the first-passage distribution. All the samples event times are put into
an event queue, and the shortest time is identified for corresponding particle.
The global clock of the simulation time is updated at each step by the least
first-passage time.

Historically, FPKMC algorithms have been developed to speed up KMC sim-
ulations. Indeed, the conventional KMC method may become inefficient
when employed to simulate all the hops of defects on a lattice [82] and when
the transition rate matrix equation exhibits a broad spectrum of frequen-
cies. The causes of inefficiency may be energetic or entropic in origin. In
the former situation, a diffusing defect performs many transitions between
a few atomic configurations connected by small energy barriers, typically a
vacancy binding to a solute cluster, before escaping elsewhere [83]. These
connected configurations form trapping basins. The typical escape time of
a defect is much higher than the typical time to cross into the small barri-
ers. Subsequently, the freed vacancy may perform a considerable number
of hops in bulk before recombining with another defect or being absorbed:
the entropic origin for simulation inefficiency refers to this situation. The
statistically exact approach to mitigate the inefficiency of the KMC methods
is to draw sequences of events and first-passage times based on the theory
of absorbing Markov chains [57, 75, 76, 80, 84, 85, 86]. Mathematically, the
first passage times are the sum of the residence times spent by the walker
in connected states before getting absorbed by the boundary such as an ar-
tificial or physical sink. The absorbing sink is artificial when it corresponds
to the peripheral states of an energetic trap, while a physical absorbing sink
usually corresponds to an energetic trapping basin, like solute clusters and
dislocations. Furthermore, once the system has reached an absorbing state in
absorbing Markov chains, it stays there infinitely. Because the probability of
being absorbed tends to one as time tends to infinity, the connected states of
the trapping basin are commonly known as transient states. Besides, a defect
initially located in any transient state can reach any absorbing state, typically
in many steps. This entails that the defect can also reach any transient state.
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2.3 Construction of the transition rate matrix

The reactive events associated with radiation defects can be characterized
with the help of AMC. It is achieved by computing the first-passage and no-
passage distributions numerically. The first function represents the distribu-
tion of first passage times for a defect to reach the absorbing sink. The second
function represents the distribution of the defect at a given time knowing
that it did not reach the absorbing sink yet. To achieve these tasks, one im-
plements one of the two following randomization procedures: kinetic path
sampling or reverse sampling that is based on the factorization [59, 85, 87]
or the eigenvalue decomposition [57, 59] of the absorbing transition rate ma-
trix, respectively. A detailed explanation of the eigenvalue decomposition
method is presented in Chapter. 3. Here, we will address the two crucial
physical theories employed to construct the transition rate matrix.

2.3.1 Transition state theory

In diffusion processes, the point defects transition from state i to state j
through a saddle point2 on the potential energy surface. The energy of the
system reaches its maximum value at the saddle points. The difference be-
tween the saddle energy and energy at the initial configuration is called as
migration energy of the involved defect. A theory developed by Refs. [88, 89],
named as Transition state theory (TST) studies the rate at which the atoms
propagate from the initial state i to the final state j. In this thesis work, we
employ TST to model the thermally-activated frequency Kij for a point defect

Kij = ⌫0 exp
⇣
� Emig

i!s

kBT

⌘
, (2.16)

where ⌫0 is the attempt jump frequency, kB is the Boltzmann constant, T is
the temperature, and Emig

i!s = E(s)�E(i) is the migration energy of the point
defect to go from initial state i to final state j.

A lower value of the migration energy means that reaction will be faster,
since the transition rate will be greater. This value of the migration energy
may be calculated using ab-initio calculations [92] or empirical inter-atomic
potentials.

2.3.2 Effect of elastic field on point defects

The material properties are altered when point defects such as vacancy or
self interstitial atoms are introduced or created in the lattice. There are long-
range disturbances in the lattices due to the presence of elastic fields [93]. In
practice, it is not feasible to take into account the distortion of every lattice
point for the calculations explicitly in a crystal of any size. Instead, the crystal
must be treated as a continuum. The continuum for lattice imperfections

2The state with the highest energy along with the reaction coordinate. The saddle state
corresponds to a path on the energy landscape or surface.
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2.3.2.1 Elastic Dipole Tensor

The elastic equilibrium attained by a deformed body is given by the solu-
tion under certain boundary conditions. Using Eq.(2.18), the conditions for
equilibrium in an infinite elastic medium are

Cijkl
@2uk(r)

@rjrk
+ fi(r) = 0) �ij + fi(r) = 0, (2.19)

where u(r) is the elastic displacement field and f is the external body
forces [93, 98]. Refer Appendix D for notations.

The elastic Green’s function can be used to solve for the equilibrium equation
Eq.(2.19). The Green’s function G(r, r0) is defined as

CijklGkm,l(r, r
0) + �im�(r

0 � r) = 0, (2.20)

where �(r0 � r) is the Dirac delta function i.e. � = 0 if r0 6= r and otherwise.
For isotropic materials, the Green’s function is written as [98]

Gkm(r) =
1

16⇡µ(1� ⌫)r

"
(3� 4⌫)�km +

rkrm
kr2k

#
, (2.21)

where rk and rm are the cartesian components of r; r = r0 � r. µ is the shear
modulus, and ⌫ is the Poisson ratio, both corresponding to Lamé coefficients.

A point defect is described as the distribution of equilibrated point forces on a
continuous solid body. The force denoted by F q, is exerted to the neighboring
atoms q at position rq illustrated in Fig. 2.4. The net force distribution when
atoms are displaced from the equilibrium position is

f(r) =
NX

q=1

F q�
�
r � rq

�
, (2.22)

which are also known as defect forces [93, 99, 100].

According to elasticity theory, the displacements produced and the body
force are related by the Green’s function Gij

ui(r) =
NX

q=1

Gij

�
r � rq

�
F q
j , (2.23)

where N is the total number of neighboring atoms at the position rq of the
point defect. When the force is distributed using Taylor series expansion and
Einstein convention, the displacement Eq.(2.23) can be written as

ui(r) = Gij(r)
NX

q=1

F q
j �Gij,k(r)

NX

q=1

F q
j r

q
k + o

�
|rq|

�
, (2.24)
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2.3.2.2 Elastic interaction energy

Here, we provide the derivation of elastic interaction energy Eint of the point
defect with an external elastic field uext adapted from Ref. [93]. The elastic
energy can be written as:

Eint = �
NX

q=1

F q · uext(rq). (2.27)

Assuming the external field is changing very slowly near point defects, then
Eq. (2.27) can be written as by series expansion of displacement in first order

Eint = �uext
i (0)

NX

q=1

F q
i � uext

i,j (0)
NX

q=1

F q
i r

q
j , (2.28)

where by using Einstein convention over indices i and j, uext
i,j = @uext

i /@aj .
Due to the equilibrium properties of force distribution,

Eint = �Piju
ext
i,j . (2.29)

Since, P is a symmetric tensor, we deduce an expression of elastic interaction
energy as a function of the symmetric strain tensor

Eint = �Pij"ij. (2.30)

The study of elastic interactions between point defects is important as
it affects the migration energy between the saddle position and stable
points [101]. In this thesis, point defects are represented by their elastic dipole
tensors and are computed by DFT calculations [14].

2.4 Summary

This chapter briefly discusses how the migration of point defects under irra-
diation can be fully understood using the computational mathematical tech-
nique based on Markov chains. The key point here to be noticed is the anal-
ogy between the absorbing Markov chains and first-passage processes. Then,
we present a basic algorithm for the KMC method and introduce the concept
of first-passage Kinetic Monte Carlo. Additionally, we have shown two es-
sential theories such as transition state theory and theory of elasticity, used in
constructing the transition rate matrix. In the following chapter, we will fo-
cus on the techniques to draw first passage times to simulate the behavior of
point defects. We provide the mathematical derivation employing the theory
of absorbing Markov chains for reversible diffusion processes using different
assumptions.
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In this chapter, we introduce mathematical derivation for AMC theory for
conditionally reversible processes in Section. 3.2. Then, we illustrate several
features of the AMC theory on two realistic problems: the elasto-diffusion
of vacancies in the neighborhood of cavities [14] in pure Aluminum and the
diffusion of small vacancy-Mn clusters in ↵-iron. In Section. 3.3, we present
new features involving the ability to compute transition currents over large
physical volumes and to approximate the evolution operator through pro-
jection on reduced subspaces. These two aspects are discussed little in the
literature on lattice-based Markov processes, to our knowledge.

3.1 Introduction

We recall here that KMC method can be used for analysing a physical system
with a model governed by a ME. But efficiency of the KMC reduces when-
ever the transition rate matrix describing the rate of the system exhibits a
wide spectrum of frequencies. In this situation, the system transits a huge
number of times between configurations separated by small energy barriers.
These connected configurations form trapping basins from which the aver-
age escape time is much larger than the characteristic time for crossing the
small barriers inside the basins. This issue is recurrent in KMC simulations.
Cavities may form under irradiation and remain stable over a long period of
time due to the low vacancy emission rate resulting from the strong attrac-
tion between cavities and neighboring vacancies. Kinetic trapping may also
be caused by the formation of dynamically stable clusters of Manganese or
Copper substitutional atoms and vacancies in ↵-iron. These solute clusters
migrate slowly without dissociating owing to numerous atomic rearrange-
ments.

Different ways of enhancing the efficiency of the KMC method are available
in the literature. First, the encountered events may be tabulated for later
reuse [68, 103, 104, 105, 106, 107, 108, 109, 110], which avoids repeatedly
evaluating the same transition rates. This way of proceeding is particularly
relevant whenever stable and saddle point energies are costly to evaluate as
in off-lattice simulations [111]. Transition rates associated to tabulated events
are then retrieved on the fly.

Spatial protection of defects and exact time synchronization is considered
to separate out the propagation of each point defect. As mentioned in Sec-
tion. 2.4, this Spatial protection helps to prevent from collision of two point
defects or enables two neighboring defects to recombine. For the time syn-
chronization, we use the theory of AMC (refer to Section. 2.1.3) to draw first-
passage times and paths to distant states located on the periphery of the pro-
tection, which acts as an absorbing sink [57, 80, 85, 86]. These first-passage
times are achieved via two randomization methods which are:

1. Direct factorization of the absorbing transition rate matrix [85]: This
method is based on the probabilistic interpretation of the factorization
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in term of paths [112, 113, 114]. This interpretation is implicitly invoked
in the matrix method [115, 116, 117] to compute correlation factors as-
sociated with vacancy-solute exchanges in dilute alloy models for any
crystallographic structure. These correlation factors are crucial quanti-
ties giving access to diffusion coefficients. They are obtained by invert-
ing a matrix, which amounts to summing over all paths between two
consecutive vacancy-solute exchanges. Green functions used in atomic
transport theory [118, 119] also appear as pseudo-inverses of transition
rate matrices and may also be interpreted as geometric sums of path
probabilities.

2. Eigenvalue decomposition [57, 58, 84, 86, 120]: This method consists of
entirely computing the evolution operator for transient states, a matrix
exponential. The approach was extended to Gaussian random walks
in continuous three dimensional spaces using a Green function formal-
ism [8, 75, 76]. In this framework, the probability that the walker is
still in its protected volume appears as a series of decaying (real) expo-
nential functions. At times large enough, the infinite sum can be safely
truncated retaining only a limited number of the slowest eigen-modes
because the contributions of the fastest eigen-modes rapidly decay with
time. In these studies [8, 75, 76], the spectral decomposition is analyti-
cally tractable for the considered symmetric diffusion operators.

The symmetry property assumed in Ref. [8, 75, 76] entails that atomic trans-
port is mediated by defects whose diffusion is reversible at equilibrium, i.e.
the involved diffusion processes obey detailed balance even though the de-
fect concentration may be out of equilibrium, as for instance after a quench
or an irradiation cascade. This assumption is satisfied in many materials of
practical interest. Even the state-to-state evolution of far from equilibrium
glasses can be well approximated by a Markov chain that does obey detailed
balance. A noticeable exception involves alloy systems subjected to steady
irradiation, temperature gradients or chemical potential gradients. At the
atomic scale, a consequence of reversibility is that the discrete transition rate
matrix can be symmetrized by similarity transformation [118, 121]. For ab-
sorbing Markov processes, reversibility of diffusion is conditional upon the
fact that the system is still located in a transient state. This guarantees that
the transition rate matrix restricted to transient states is similar to a symmet-
ric definite negative and that the transient evolution operator is the sum of
decaying exponential functions. In this chapter, we investigate the computa-
tional implications of the conditional reversibility of the diffusion processes
involved.
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3.2 Theory and methods

3.2.1 Master equation and evolution operator

The phase space is considered to be discrete and is denoted by Ω. States de-
scribing the system correspond to the locations of atoms and defects (such
as vacancies) on a crystalline lattice. Our knowledge about the current state
of the system is materialized by a probability vector, i.e. a probability dis-
tribution over Ω. The time evolution of the probability vector pt ⌘ p(t) is
governed by the following master equation

ṗT
t = pT

t K, (3.1)

where K stands for the Markov matrix of transition rates, assumed here to
be time-independent: Kij is the rate of transition from state i to state j (off-
diagonal elements only). The standard convention is used to define the di-
agonal elements as Kii = �P` 6=i Ki`. Superscript T stands for transpose.
The evolution operator, obtained formally from solutions of the ME, can be
expressed as an exponential of the Markov matrix of transition rates (t1 > t0)

P(t0, t1) = exp

Z t1

t0

Kdt

�
= exp [(t1 � t0)K] . (3.2)

Matrix element Pij(t0, t1) is the probability to find the system in state j at t1
given that it was in state i at time t0. This operator fully characterizes the
time evolution of the probability vector: pT (t1) = pT (t0)P(t0, t1). As defined,
the evolution operator belongs to the class of stochastic matrices such thatP

` Pi` = 1 and Pij � 0 for any i, j, t0 and t1. This property entails conser-
vation of the total probability. Besides, the stationary distribution satisfies
ρTP(t1, t0) = ρT , it is a left-eigenvector of the evolution operator associated
with eigenvalue one.

If known, the evolution operator can be used to sample transitions between
any two states and over arbitrary time intervals ⌧ = t1 � t0. In practice, the
evolution operator can only be solved for small subspaces delimited by artifi-
cial absorbing boundaries. Substantial simulation speed-ups can be achieved
by sampling transitions to distant states located on the absorbing perimeters
of encountered trapping basins [57, 84, 85, 86, 112].

Prior to explaning how the theory of absorbing Markov chains, can be used
to formulate such accelerated KMC algorithms, we recall the standard KMC
method.

3.2.2 Standard Kinetic Monte Carlo

Standard KMC methods avoid exponentiating the transition rate matrix. The
evolution operator is instead linearized to get a simple stochastic matrix and
a randomization procedure is invoked to draw the time at which the event
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occurred. The simplest form of such matrix is

Plin = I + ⌧K (3.3)

where I is the identity operator and ⌧ is a positive time step that must be
lower or equal to �1/Kii for all states Si 2 Ω. Time randomization then con-
sists in drawing a time in the exponentially decaying distribution of rate ⌧�1.
Since P lin

ii � 0, it is possible that no transition has occurred after time incre-
mentation. In practice, a different stochastic matrix is implemented, so as to
guarantee a KMC transition at each step. Letting Diag(K) denote the diago-
nal matrix composed of the diagonal elements of K, the following stochastic
matrix is rather used

Pstd = I �Diag(K)�1K. (3.4)

If system is currently located in state i, the exponentially decaying distribu-
tion of rate �Kii must instead be used to sample the residence time, i.e a
stochastic variable yielding the elapsed time. The mean residence time on
i is then �1/Kii, compensating for the fact that the stationary distribution
of Pstd is proportional to �Diag(K)ρ, a left eigenvector associated with the
eigenvalue equal to 1. In the following we consider the generic stochastic
matrix of the form

P(0) = I + diag
�
τ (0)

�
K (3.5)

where τ (0) stands for an effective residence time vector such that ⌧
(0)
i 

�1/Kii for all i and diag
�
τ (0)

�
denotes the diagonal matrix composed of the

elements of τ (0).

KMC implementation

The natural way of implementing KMC algorithm does not involve explicitly
forming the transition matrices appearing in Eq. (3.5). At each cycle, the
possible transition events are tabulated and two random numbers r1 and r2

are drawn uniformly in )0, 1] interval. The selected transition ` satisfies the
following double inequality

`�1X

l=1

Ki,j(l) < �r1Kii 
X̀

l=1

Ki,j(l),

where i and j(l) denote the current state and the ending state associated with
the l-th listed transition, while the elapsed time is simulated from Kii ln r2.

An alternative algorithm consists in assigning an independent Markov pro-
cess and time clock to each diffusing or reacting entity, while keeping a time
ordered list of events up to date. Let d

i stand for the total transition rate
of the d-th diffusing entity from state i. At each KMC cycle, the time of the
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master clock is incremented to the time of the next event and the correspond-
ing transition is performed. After an event occurred, a limited number of
events needs being annihilated, created or re-sampled. This way of proceed-
ing is statistically equivalent because the distribution of the minimum of ex-
ponential random variables is exponential with rate

P
d 

d
i = �Kii (refer to

Sec. 2.2.1). This alternative algorithm is easier to implement on a parallel
computer architecture [67, 122]. It is currently implemented in EKMC meth-
ods [60, 73], wherein distant binary collisions can easily be simulated using
simplified laws assumed to be mutually independent.

3.2.3 First-passage kinetic Monte Carlo

The FPKMC algorithm briefly described in Sec. 2.2.2, is a statistically exact
EKMC algorithm in which spatial protections is introduced to ensure that bi-
nary collisions are handled rigorously [8, 75, 76, 84, 86]. Figure 3.1 depicts
the principle of the first-passage approach applied to the diffusion and colli-
sion of two vacancies in presence of trapping precipitates. FPKMC compu-
tations of the mobilities of vacancy-Manganese clusters in Iron are reported
in Sec. 3.5. FPKMC technique requires forming the transition rate matrices
appearing in Eq. (3.5).

3.2.4 Application of absorbing Markov chains

For the ease of exposition, trapping states are labeled from 1 to N and are
called transient. Perimeter states connected to the transient states are pooled
together into a single absorbing state labeled by index N+1. Transitions from
a transient state to any perimeter states are thus replaced by a single transi-
tion to the absorbing macro-state with an overall transition rate cumulating
the transition rates towards pooled peripheral states. Transitions from the
macro-state to transient states or any other states are no more permitted. As
defined, the absorbing Markov process coincides with the original Markov
process as long as it remains located inside the trapping basin. As a result,
the N trapping states become transient and the absorbing macro-state, acting
like an artificial sink trapping the system infinitely, remains the only recurrent
state of the system. The system being initially in a transient state, states be-
yond the perimeter states can not be reached and need not being considered.
Recalling from Eq.(2.9), the Markov matrix for the absorbing process is thus
defined as

Ka =

✓
�A A~1
~0T 0

◆
(3.6)

where A is a N ⇥ N matrix such that Aij = �Kij and ~1 = (1, · · · , 1)T the
N -dimensional column vector whose components all equal one. Vector ~0 =
(0, · · · , 0)T is similarly defined and I will stand for the N⇥N identity matrix.
The associated evolution operator reads

Pa(t) = exp[Kat]. (3.7)
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Figure 3.1: Schematic of FPKMC method for two vacancies evolving on a square
lattice symbolizing a FeMn alloy. Fe and Mn atoms are displayed in orange and
violet. Vacancies V 1 and V 2, represented by the two labeled squares, are initially
trapped inside Mn clusters. Exit sites for the trapped vacancies are indicated by

stars. First-passage events are represented by dotted arrows. Events occurring first
and second are colored in green and red, respectively. The sequence of events is as
follows: (a) The two V -Mn clusters are spatially protected; First-passage times t1fp
and t2fp are drawn (here t2fp < t1fp); (b) V 2 dissociates from Mn cluster, diffuses and

collides with spatial protection of V 1 at time t2col (here t2col < t1fp); A no-passage
event [8, 75, 76, 84, 86], materialized by the green solid arrow, is generated for

synchronization; (c) V 2 attaches to the V 1-Mn cluster (nearest neighbor
interactions are assumed); (d) a diffusing entity composed of two vacancies is
created and spatially protected. Vacancy locations inside the thick solid line

correspond to states that are referred to as transient in the theory of absorbing
Markov processes. Absorbing states are those with the vacancy located on a starred

site, beyond the solid line and before the dashed line.
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With these definitions, Ka is a proper transition rate matrix and likewise Pa

is a proper stochastic matrix, their components in each row summing to zero
and one respectively:

Ka
�
~1
1

�
=
�
~0
0

�
and Pa

�
~1
1

�
=
�
~1
1

�
. (3.8)

Consequently, for any probability vector πt ⌘ π(t) evolving according to the
ME π̇T

t = πT
t K

a the probability to find the walker in one of the N + 1 states
is conserved over time and we have πT

t = πT
0 exp [Kat]. We are now going to

express the evolution operator Eq. (3.7) as a function of the exponential of A.
We first notice that the powers of minus the absorbing transition rate matrix
writes for h � 1

(�Ka)h =

✓
A �A~1

0T 0

◆h

=

✓
Ah �Ah~1

0T 0

◆
. (3.9)

This relation enables us to rearrange the matrix exponential as:

exp [Kat] =

✓
I 0

0T 1

◆
+

+1X

h=1

✓
Ah �Ah~1

0T 0

◆
(�t)h
h!

=

✓
exp [�At] (I� exp [�At])~1

0T 1

◆
, (3.10)

where we substituted back the two matrix exponentials for the series in the
two upper blocks of Eq. (3.10). The probability of being in state j  N at time
t starting from state i  N is

P a
ij(t) = eTi exp (�At) ej (3.11)

where ei denotes the ith standard basis vector.

3.3 Mathematical derivation

3.3.1 Conditional reversibility

We assume here that the original Markov process obeys detailed balance,
which implies that the probability flux from state i to state j is equal to the
reverse flux. The i-to-j probability flux is defined as the product of the sta-
tionary probability ⇢i to be in state i and the rate Kij of transitioning to state
j. The equation of detailed balance thus writes

⇢iKij = ⇢jKji. (3.12)

When condition in Eq. (3.12) is satisfied, the stationary probability vector ρ

of the reference Markov process is usually associated with an equilibrium
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Gibbs-Boltzmann distribution. It corresponds to the left eigenvector of the
Markov rate matrix for eigenvalue 0, since we have ρTK = 0T .

The detailed balance condition in Eq. (3.12) can be recast with respect to the
absorbing Markov process considering the allowed transitions between the
N transient states (1  i, j  N ):

p
⇢iAij

�p
⇢j =

p
⇢jAji

�p
⇢i. (3.13)

The following symmetric matrix is defined from Eq. (3.13),

AB
ij = sisj

p
⇢iAij

�p
⇢j = AB

ji, (3.14)

where the scaling factors si are strictly positive. They are numerical parame-
ters reflecting the degree of freedom in the construction of stochastic matrices
for KMC simulations based on Eq. (3.5). To specify this statement, we cast
transformation Eq. (3.14) into matrix form resorting to the N ⇥ N diagonal
matrices

S =
NX

i=1

sieie
T
i , R =

NX

i=1

1p
⇢i
eie

T
i , (3.15)

which are both diagonal definite positive. Hence matrices S, R and B = S2

commute and are invertible, enabling one to define

AB = SR�1ARS = (SR)�1BA(SR). (3.16)

Scaling matrix B acts like a preconditioner. Its aim is to decrease the condi-
tion number of AB, which will be the main matrix in the first-passage prob-
lems investigated in the following. B-scaling is introduced in the formalism
for the sake of generality. Setting B to identity amounts to disabling the ex-
plicit preconditioning, as done in most literature studies and in Ref. [85] in
particular. This setup also arises in the linearized KMC method based on
Eq. (3.3), up to the ⌧ limiting factor. In other works [112, 113, 114, 123], B is
set to Diag(A)�1. This setup arises in the standard KMC method based on
Eq. (3.4). Noticeably, it entails that si = 1/

p
Aii and AB

ii = 1 for all i. We carry
out a comparative study between the two mentioned setups in Sec. 3.4.2.

Matrix SR serves to make a diagonal similarity transformation and to for-
mulate a generalized symmetric eigenvalue problem. Setting B to identity
allows us to conclude that A is similar to a symmetric matrix AI . Similar-
ity transformations preserving spectral properties and the spectrum of sym-
metric matrices being real, we conclude that the eigenvalues of A are real.
By applying Gershgorin circle theorem to A, we also conclude that they are
positive. Eventually none of the eigenvalues are equal to zero, otherwise a
stationary distribution over transient states would possibly be established,
which is excluded.
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3.3.2 Spectral decomposition of the evolution operator

Matrices A and B�1AB being similar, we deduce that the spectrum of A

can be obtained by solving the generalized symmetric eigenvalue problem
(GSEP)

ABϕk = Bϕk�k. (3.17)

Sorting the eigenvalues (�1, · · · ,�N) of Eq. (3.17) in ascending order and let-
ting Φ = (ϕ1,ϕ2, · · · ,ϕN) be a B-orthonormal basis of eigenvectors, the
GSEP can be cast in the following matrix form

AB
Φ = BΦΛ. (3.18)

where Λ is a diagonal matrix with diagonal elements Λii equal to �i. Left mul-
tiplying both sides of Eq. (3.18) by Φ

T and then right-multiplying Eq. (3.18)
again by Φ

T yields the two relations

Φ
TAB

Φ = Λ, AB = BΦΛΦ
TB (3.19)

where we simplified resorting to B-orthogonality of Φ:

Φ
TBΦ = I, ΦΦ

T = B�1. (3.20)

Using the generalized spectral theorem Eq. (3.19) and reverting relation
Eq. (3.16), the absorbing matrix may therefore be decomposed as A =
RSΦΛΦ

TSR�1. Expanding the matrix exponential of A in series, substi-
tuting B for S2 and invoking B-orthogonality in Eq. (3.20) eventually yield

exp [�At] = RSΦ exp [�Λt]ΦTSR�1. (3.21)

To express components of the matrix exponential, it is practically convenient
to introduce a few additional notations. We denote the scaling and rescaling
vectors composed of the diagonal elements of S and R by s and r, respec-
tively. We have s = S~1 and r = R~1. Letting � and ↵ symbols stand for
element-wise multiplication and division, we also define two sets of rescaled
basis vectors gi = ei � s� r and dj = ej � s↵ r. Then, resorting to the scalar
products ghi = ϕT

hgi and dhj = ϕT
hdj , the evolution operator in Eq. (3.11) reads

P a
ij(t) =

NX

h=1

ghi d
h
j exp (��ht) , (3.22)

where (i, j)  N . The survival probability after duration t given that the
system was prepared in state i  N at t0 = 0 corresponds to the probability
of not having been absorbed during the elapsed time, i.e. the probability of
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remaining in one of the N transient states,

psi(t) ,
NX

j=1

P a
i,j(t)

= (eTi , 0) exp [K
at]
�
~1
0

�

= eTi exp [�At]~1

=
NX

h=1

ahi exp (��ht) , (3.23)

where the weighing coefficients read

ahi = ghi

NX

j=1

dhj . (3.24)

Since matrix Φ
T is B-orthogonal, the ahi coefficients sum to one:

NX

h=1

ahi =
NX

j,h=1

ri
rj
Φihs

2
hΦjh =

NX

j=1

ri
rj
Iij = 1.

This feature is consistent with the fact that initially the survival probability
of the absorbing process is one : psi(0) = 1.

KMC simulations require drawing first-passage times with the appropriate
statistics. This may be achieved by sampling a random number r2 / U)0,1]

that is uniformly distributed in )0, 1] and looking for tfp satisfying psi(tfp) = R.
This way of proceeding requires evaluating the survival distribution though
the spectral decomposition of A. To avoid collision with another absorbing
process interacting with the transient states, it is sometimes necessary to stop
the simulation at a given time tcol for synchronizing the Markov processes.
This task, depicted in Fig. 3.1.b, involves the ability to sample the so-called
no-passage distribution [8, 75, 76, 84, 86].

3.3.3 No-passage and quasi-stationary distributions

The no-passage distribution is the conditional probability to find the system
in transient state j at time t given that it was initially in transient state i and
that the process has not been absorbed yet. It is obtained by dividing the
probability of being in j by the survival probability psi(t):

P np
ij (t) =

eTi exp [�At] ej

eTi exp [�At]~1
.

The quasi-stationary distribution over transient states corresponds to the
probability vector q that is reached asymptotically in time by the no-passage
distribution [124]. This asymptotic distribution is independent of the initial
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distribution, arbitrarily set equal to state i in the limit below

qj = lim
t!1

P np
ij (t) =

d1jPN
`=1 d

1
`

The quasi-stationary distribution being proportional to ϕ1 � s ↵ r, is also a
left eigenvector of the lowest eigenvalue of the transition rate matrix A.

3.3.4 Expected values of first-passage times, residence times
and exit probabilities

The complementary of the survival probability, pai (t) = 1� psi(t), corresponds
to the probability of having been absorbed. Its time derivative at t is pos-
itive and equal to the probability density of exiting at t. Since pai (0) = 0
and pai (1) = 1, the absorbing probability pai (t) coincides with the cumulative
distribution of the time probability of first passage. The mean first-passage
time from i is the time expected with respect to the first-passage probability
distribution. It can be formally obtained through integration by part:

⌧
(N)
i =

Z 1

0

t
d

dt
pai (t)dt

= [tpai (t)� t]10 �
Z 1

0

{pai (t)� 1} dt

=

Z 1

0

eTi exp (�At)~1dt = eTi A
�1~1. (3.25)

The mean-first passage time satisfies Aτ (N) = ~1 and is always more rapidly
obtained by solving the linear system of equations involving the definite
symmetric matrix AB:

ABxB = bB. (3.26)

Symmetrizing the linear system entails scaling the right-hand side vector bB

and rescaling back the obtained solution. This is done by resorting to relation
Eq. (3.16) between A and AB. Setting bB to s↵r yields the mean first-passage
times as τ (N) = xB � s� r.

The mean residence time in transient state j knowing that the system started
from state i is given by the time integral

Z 1

0

dtPij(t) =

Z 1

0

eTi exp (�At) ejdt

= eTi A
�1ej. (3.27)

The residence time vector associated with initial distribution π reads θ(N)T =
πTA�1 or, after taking the transpose, θ(N) = A�Tπ. As for the mean first-
passage problem, the symmetric linear system Eq. (3.26) is invoked. How-
ever, it is solved using a different right-hand side vector and with transposed
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scalings. Setting bB to π � s� r eventually provides us with mean residence
times via θ(N) = xB � s↵ r.

The absorbing probability at state ` is the sum of the probability flux from
neighboring connected states and of the initial source contribution, reflected
by the identity matrix Ii` below:

P
(N)
i` = Ii` +

NX

j=1

Z 1

0

dtP a
ij(t)Kj`

= Ii` +
NX

j=1

eTi A
�1ejKj` (3.28)

The probability P
(N)
i` is equal to 0 if state ` is transient (` < N ) or not con-

nected to any transient state. It is non-zero for transitions to the peripheral
states pooled in the absorbing macro-state.

The stochastic matrix P
(N)
i` yields the transition probabilities used in first-

passage or mean first-passage KMC methods. The latter variant method,
implemented in Sec. 3.5 and referred to as factorized KMC, increments the
elapsed time by the mean first-passage time. The mean of the first-passage
times can be used when a simulated walker (defect) never collides with an-
other walker. In this case, the Markov process needs not being interrupted
and synchronization is not required. Note that the stochastic matrix and res-
idence time vector can be extended so as to encompass transitions from non-
transient states i > N :

P
(N)
ij = P

(0)
ij +

NX

`=1

P
(0)
i` P

(N)
`j (3.29)

⌧
(N)
i = ⌧

(0)
i +

NX

`=1

P
(0)
i` ⌧

(N)
` (3.30)

where P(0) and τ (0) are defined in Eq. (3.5).

3.3.5 Rank-one update

Let us assume that we have already identified n � 1 trapping states, turned
them transient by computing the transition probabilities P(n�1) together with
the mean times τ (n�1) and θ(n�1), and eventually performed a distant move.
In practice, it may happen that the selected peripheral state is also a trapping
state, in the sense that the system will later return to this peripheral state
with a high probability. Fortunately, stochastic matrix P(n) needs not being
computed again from scratch. It is possible to perform a rank-one update of
the stochastic matrix P(n�1) by directly adding the selected peripheral state
to the list of transient state. Based on P(n�1), the probability of a transition
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from i to j via the new transient state labeled n is

P
(n)
ij = P

(n�1)
ij + P

(n�1)
in

+1X

f=0

h
P (n�1)
nn

if
P

(n�1)
nj , j > n,

P
(n)
ij = 0 j  n,

where the sum accounts for the probabilities of all possible round-trips from
n. Note that the updating rule involves both transient and peripheral states
as starting states i. It is also possible to update the mean time vectors directly
to get τ (n) and θ(n). The mean first-passage time to make a non-local transi-
tion starting from state n to any state j > n is updated by accounting for the
mean time spent performing flickers from n

⌧ (n)n =
+1X

f=0

h
P (n�1)
nn

if ⇥
1� P (n�1)

nn

⇤
(f + 1)⌧ (n�1)

n

= ⌧ (n�1)
n

.�
1� P (n�1)

nn

�
. (3.32)

Concerning the mean first-passage time to make the non-local transitions
from any state i to any state j > n, one must account for a possible transition
to state n, which eventually leads to

⌧
(n)
i = ⌧

(n�1)
i + P

(n�1)
in ⌧ (n)n . (3.33)

The updating rule obviously covers the case i equal to n.

3.3.6 Path factorization and space-time randomization

Path factorization [85] consists of directly constructing stochastic matrix P(N)

by repeatedly applying rank-one updates starting from stochastic matrix P(0)

defined in Eq. (3.5). The factorization may involve on-the-fly re-indexing.
The mean first-passage time vector needs to be initialized. For all relevant
states i, ⌧ (0)i may be set to either ⌧ = mini2Ω (�1/Kii) or �1/Kii. The repeated
updates can also be performed on the mean residence time vector θ(n�1) . The
starting vector θ(0) is initially set to τ (0) � π and the updating rule Eq. (3.33)
becomes:

✓
(n)
j = ✓

(n�1)
j + P̃

(n�1)
nj ✓(n)n , (3.34)

where the involved probability is defined from detailed balance and reads

P̃
(n�1)
nj =

⇢j⌧
(0)
n

⇢n⌧
(0)
j

P
(n�1)
jn . (3.35)

This quantity corresponds to the canceled probability to eliminated states
j < n, otherwise it is P

(n�1)
nj , the usual absorbing probability to the states

j � n that are not yet eliminated. Hence, setting j equal to n in Eq. (3.34)
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yields

✓(n)n = ✓(n�1)
n

.�
1� P (n�1)

nn

�
. (3.36)

Note that updating rules Eq. (3.32) and Eq. (3.36) exhibit a similar form.

The usefulness of path factorization is that it can be used not only to com-
pute the expected values of the first-passage and residence times, but also
to draw these two random variables from their exact distributions. Such
randomization thus obviates the need to perform an eigenvalue decompo-
sition. Algorithm 3 described in Appendix A and illustrated in Sec. 3.4.3
implements time randomization based on the probabilistic interpretation of
the factorization.

Path factorization amounts to constructing the triangular matrices involved
in LU or LDLT decomposition as well as their inverses, as shown in Ap-
pendix A.3. It is shown that the repeated application of updating rules
Eq. (3.33) and Eq. (3.34) to obtain τ (N) and θ(N) from τ (0) and θ(0) amounts to
directly applying the inverted triangular factors on τ (0) and θ(0). Noticeably,
transitions to new transient states are removed within path factorization in
the same way as matrix elements are canceled through Gaussian elimina-
tion. The latter technique is the crucial ingredient for direct solvers. A di-
rect sparse solver is implemented in Sec. 3.4.2 to investigate the algorithmic
complexity on the vacancy elastodiffusion problem. The solver computes the
solutions τ (N) and θ(N) of Eq.(3.26) through forward and backward substitu-
tions based on the symmetric triangular factor without its explicit inversion.
The advantage of programming the rank-one updates is that the transition
rate property of the transformed matrices can be preserved, as explained by
Wales et al. in Ref. [114, 123]. Hence, the approach is more robust, albeit
much slower, than available direct solvers. Preservation of probability fluxes
is achieved by imposing that the flicker probability P

(n�1)
nn from n and the cor-

responding escape probability, Dnn =
P

j>n P
(n�1)
nj , exactly sum to one after

each elimination. Path factorization is found more appropriate for studying
trapping of vacancies in small Mn clusters in iron. It is used to accelerate
KMC measurements of Mn-cluster diffusion coefficients in Sec. 3.5.
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3.4 Elasto-diffusion of vacancies in Aluminium

In the first application, we consider the diffusion of a single vacancy around a
cavity in Aluminium. The crystalline structure is face-centered cubic. The co-
ordination number is Z = 12. The vacancy formation energy is Ef

V = 0.67 eV.
It corresponds to the energy difference for displacing a vacancy from a free
surface to the bulk. In our model, it determines the interaction energy of two
neighboring vacancies. We consider nearest-neighbor pair interactions only
and set Enn

V V = �2Ef
V /Z. We also set Enn

V Fe = 0 and Enn
FeFe = 0. These interac-

tion energies entail that nearest-neighbor vacancy pairs are energetically fa-
vored. The model describing thermally activated jumps of Aluminum atoms
into next nearest-neighbor vacancy accounts for the elastic field created by
the cavity [14]. The dipole tensor associated with the vacancy has been com-
puted using electronic structure calculations. It is assumed to be indepen-
dent of the induced elastic strain, i.e., higher order terms in the fast-multiple
expansion of elastic interactions are neglected.

3.4.1 Vacancy emission flux from cavity

We focus on the emission of a single vacancy from a cavity. In this set-up,
we neglect some dynamical effects and assume that only a single vacancy
can migrate and be emitted from a static cavity. The vacancy emission rate
could conceivably be impacted by a dynamically evolving cavity. The cavity
is composed first of 2243 vacancies. Cavity sites are located inside a sphere of
radius 20.7 Å. The mobile vacancy is considered to be initially equilibrated
at temperature T = 600K on the sites of the first shell of the cavity. Trap-
ping results from the fast intra-shell vacancy jumps and from the immediate
re-connection of the vacancy after it just disconnected from it. A total of
N = 259320 transient states are used to characterize the vacancy emission
properties, which correspond to the vacancy sites located inside the protec-
tive sphere of radius 101 Åand centered on the cavity center.

We first resorted to algorithm 1 to construct matrix AB. We next solved equa-
tion Eq. (3.26) by implementing a direct solver (see Sec. 3.4.2) to obtain the
mean residence time vector θ(N) associated with the imposed initial distri-
bution π and through appropriate rescaling (see Sec. 3.3.4). We next define
the mean probability currents ✓jKj` � ✓`K`j between both transient and ab-
sorbing states, where θ stands for an extended mean residence time vector
coinciding with θ(N) on transient states and canceling elsewhere. Probabil-
ity currents are a practical tool serving to characterize not only nonequilib-
rium steady states [121, 125], but also transient nonequilibrium regimes as
presently. Letting r̂i denote the three-dimensional lattice coordinates of the
vacancy associated with state i, the vacancy flux at r̂i is defined as the three-
dimensional vacancy current density:

φ̂j =
1

2v

X

`

(✓jKj` � ✓`K`j) (r̂` � r̂j) . (3.37)
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The site volume v is uniform and the half factor stems from the fact that ad-
jacent transitions are counted twice and entails an average of the fluxes en-
tering and leaving lattice site r̂j . Note that for reversible dynamics obeying
detailed balance, probability currents and vacancy fluxes vanish at equilib-
rium. The absorbing probability to state ` > N given initial distribution π

is eventually computed by plugging the residence time vector into relation
Eq. (3.28), which yields

⇡a
` =

X

iN

⇡iP
(N)
i` =

X

iN

✓
(N)
i Ki`. (3.38)

Residence times and vacancy fluxes are displayed in Fig. 3.2 for sites j located
in the (001) plane intercepting the cavity center. Vacancy fluxes along [001]
direction inside this particular (001) plane cancel due to the reflective system
symmetry. The absorbing probabilities to the peripheral states are displayed
in Fig. 3.3 for the emission of a single vacancy from the (hidden) cavity lo-
cated at the center. In Fig 3.2.a, we have scaled the residence times with re-
spect to the corresponding equilibrium distribution for comparison. We ob-
serve that residence time distribution coincides with the equilibrium distri-
bution on trapping sites located on the first two shells of the cavity. However,
the former distribution becomes considerably smaller than the latter one as
the vacancy moves away from the cavity. The emission anisotropy is clearly
evidenced in Fig 3.2.b wherein the residence times have been rescaled with
respect to their spherical averages. The vacancy preferentially resides along
h100i crystalline directions. This trend induces an identical anisotropy of the
radial flux observed in Fig. 3.2.c. Preferential emission paths along h110i crys-
talline directions may result from the orthoradial components of the flux that
move the vacancy away from h110i or towards h100i directions beyond the
first outer shells as evidenced in Fig. 3.2.d. The emission anisotropy is not
due to the nearest-neighbor chemical interactions between the vacancy and
the cavity but to the elastic interactions. This property is confirmed by the
fact that isotropic fluxes are obtained when elastic interactions are switched
off.
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Figure 3.2: Emission of a single vacancy from the centered gray cavity of radius
20.7Å to the absorbing sphere of radius 101Å: Panels (a) and (b) display the

residence times using two distinct color scales; Panels (c) and (d) display the radial
and orthoradial vacancy fluxes, respectively. Coordinates of displayed sites satisfy

r̂j · k̂ = 0 where k̂ is the normalized basis vector orthogonal to (001). The
Euclidean norm kr̂jk corresponds to the distance to the cavity center and ✓ (kr̂jk) is

the average residence time on the centered sphere of radius kr̂jk and surface area
4⇡kr̂jk2. Vector n̂j = r̂j/kr̂jk is the normalized radial vector. The cross product

n̂j ⇥ k̂ corresponds to the orthoradial direction of the flux at r̂j .
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Figure 3.3: Anisotropy of peripheral site absorption for vacancies emitted from a
small Aluminum cavity. Absorbing probability vector is paT = πTP(N). Red and
blue coloration respectively indicates values larger and lower than the one average

for the displayed site absorbing probabilities. The inverse mean probability
corresponds to the number of peripheral sites. Cavity and protection radii are 20.7

Å and 101 Å, respectively.

The strong local heterogeneity observed in Fig. 3.3 for the absorbing proba-
bilities is attributed to the varying numbers of interconnections between tran-
sient and absorbing states. However, smaller modulations are clearly visible
at larger scale indicating that absorption is more important along h100i di-
rections and smaller along h110i directions, in agreement with the measured
vacancy fluxes. Further, we discuss about the computational aspects of the
sparse linear solvers tested in the vacancy emission problem.
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3.4.2 Computational complexity and stability

For problems involving the hopping of a defect on a lattice, the absorbing
transition rate matrix is sparse and contains a maximum of Z +1 nonzero el-
ements per rows (Z = 12), while its size may exceed several millions in prac-
tice. Such linear systems are efficiently solved using either a multi-frontal
sparse direct solver based on LDLT decomposition [126, 127] or sparse itera-
tive solvers based on Krylov subspace projection (KSP) methods [128, Chap-
ter 6 and 7] based on PETSc software [129]. We first compare the costs of solv-
ing the linear system using iterative solvers to those of using direct solvers.

As for sparse iterative solvers, conjugate gradient (CG) is the appropri-
ate method when the matrix is symmetric definite positive, however we
also tested the minimum residual (MinRes) method that is adapted to gen-
eral symmetric matrices. Three preconditioners were tested: the additive
Schwarz method (ASM), the Jacobi and Block-Jacobi methods (B and BJ, re-
spectively).

As for the multi-frontal sparse LDLT factorization, we installed Version 5.2
of MUMPS [126, 127], which enables OpenMP threading and implements
several ordering packages to construct the elimination tree. Among them,
we selected METIS for its efficiency. The block-low rank (BLR) compres-
sion of the factors was also tested. Enabling this option reduces both storage
and number of operations by an amount inversely proportional to the toler-
ance on the solution. The tolerance control parameter was set to 10�5 which
yielded a good trade-off between performance and accuracy. Simulations are
performed for the emission problem in which the emitted vacancy reaches a
protective sphere of increasing radii. The largest matrix size is nearly 2.106

(number of transient states). Results are displayed in Fig. 3.4. Scaling matrix
B is first set to identity.

We observe that the iterative solver performs better than the direct solver,
by a factor of 10-20. We obtain a square complexity for the standard direct
solver, as expected for a sparse matrix describing transitions or connections
within a 3-dimensional space. BLR becomes more beneficial the larger the
matrices. For 106 transient states, BLR is 2.5 times faster and requires 15 times
less operations than the standard factorization. The observed complexity of
the iterative solvers is between square and linear with the combination of
conjugate gradient and Jacobi preconditioning being the most efficient.

CPU costs for computing the transition rates and assembling AB matrix are
also reported in Fig. 3.4. They are represented by the dotted line referred to as
“Assembly". Asymptotically, the overhead cost grows linearly with system
size. It however remains larger than the one taken by any iterative solver for
all simulated sizes. The preliminary calculation of transition rates is in fact
substantial and should certainly be optimized in future KMC applications.

KSP methods for sparse symmetric linear system [128, Chapter 6 and 7] al-
low to solve first-passage problems over large volume, with matrix sizes
that could not be investigated before. Note that implementing iterative KSP
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methods with the original non symmetric matrix, for instance resorting to
generalized minimal residual method, increases the computational cost by
one-to-two orders of magnitude and requires more memory by the same
amount. The deterioration of efficiency results from the orthogonalization
procedure that must be performed with respect to all Krylov basis vectors. At
variance, with symmetric matrices orthogonalization is performed with re-
spect to the two last vectors, omitting occasional re-orthogonalizations aim-
ing at preserving accuracy.

Further, we investigate the effect of scaling matrix B on the condition number
of AB, denoted by 

�
AB
�
, and on the accuracy of the direct solver (LDLT fac-

torization with MUMPS). The 1-norm of the obtained residual vectors with
respect to the absorbing rate matrix serves as a measure of accuracy. The
1-norms and condition numbers are evaluated for a series of temperatures
ranging from 160 K to 600 K and are displayed in Fig. 3.5 wherein ∆ stands
for Diag(A)�1 and B is set to I or ∆.
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Figure 3.5: Effect of scaling matrix B on accuracy of residence and first-passage
time calculations. The residual norms and condition numbers are displayed for two
setups: B equal to I and ∆ = Diag(A)�1. The corresponding mean-first passage
times, evaluated from πTτ (N) and θT~1, are displayed for comparison. Note that

k~1k1 = N and kπk1 = 1.

We notice that the latter scaling variant improves mainly the numerical accu-
racy for mean first-passage time calculations. Besides, it systematically yields
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the lowest condition numbers 
�
AB
�
. Note that the direct solver fails below

180 K, compared to 250 K for the best iterative solver (conjugate gradient).
When the solvers fail to converge, the probability flux is not preserved and
negative times may even be returned. As Wales et al. [114, 123], we believe
that this issue is due to round-off errors and too large differences between
the diagonal and non-diagonal elements. For stiff problems, like the one in-
volving the diffusivity of Mn-clusters in 3.5, path factorization is to be im-
plemented to guarantee that the special structure of the transition matrix is
preserved during eliminations.

Another advantage of performing the factorization is that additional solu-
tions can be obtained at a much smaller cost using forward/backward sub-
stitution. The factorization can be reused to compute mean residence times
over each site given any new initial conditions or to generate first-passage
times directly from the exact distribution through randomization. To val-
idate the latter time randomization procedure, we show that it is possible
to reconstruct the survival probability distribution from a sample of first-
passage times.

3.4.3 Survival probabilities and spectral truncation

Equation. (3.22) yields the survival probabilities at time t with respect to the
set of initial distributions {ei}iN . For the particular initial distribution π,
the probability becomes S(t) = πTps(t). Defining and plugging the scalar
product ↵h =

P
iN ⇡ia

h
i into the survival probability yields

S(t) =
NX

h=1

↵h exp [��ht] . (3.39)

Considering the vacancy emission problem again, we entirely solved the
eigenvalue problem for a small system containing 236 transient states and
13 immobile vacancies in the central cavity of radius 4.04Å. The protective
sphere radius is 10.1Å. The default dense solver from Lapack library was
used. The survival probability and the distribution of first-passage log-times
are reported in Fig. 3.6 for reference. We next run Algorithm 1 and 2 of Ap-
pendix A to make the factorization of BA and Algorithm 3 to generate a sam-
ple of 105 first-passage time to the protective sphere. The survival probability
distribution reconstructed from the generated sample of first-passage times
is reported in Fig. 3.6. It perfectly matches with the reference distribution
obtained from Eq.(3.39), which validates the time randomization approach.

Interestingly, a perfect agreement is also observed when the survival prob-
ability is evaluated retaining only the lowest eigenvalue associated with the
quasi-stationary distribution. This suggests that it is possible to truncate the
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spectral decomposition above a certain threshold and approximate the sur-
vival probability retaining the k first terms:

Sk(t) =
kX

h=1

↵h exp [��ht] . (3.40)

The truncation error can be directly quantified at time t = 0 since we know
that S(0) = 1. The time-integral of the error can also be quantified from the
ratio

Tk =

Pk
h=1 ↵h/�hPN
h=1 ↵h/�h

, (3.41)

where the denominator formally corresponds to the mean first-passage time
πTτ (N) and is thus rather computed from a linear solve.

For the large considered systems, the k lowest eigenvalues and their as-
sociated eigenvectors are efficiently extracted by performing reverse itera-
tions using the KrylovSchur method [130, 131] and the factored matrix. This
amounts to extracting the largest eigenvalues of the inverse matrix. Calcu-
lations are performed using SLEPc software [132, 133]. We investigate the
effect of truncating the spectral decomposition on two computational setups:
(i) the emission of a single vacancy from a cavity of radius 20.7Å to a pro-
tective sphere of radius 101Å (same conditions as in Fig. 3.2 and 3.3) and
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(ii) the absorption by the cavity of a single vacancy initially located at a dis-
tance of 57.13Å from cavity center in [110] direction. In setup (ii), there is no
protective sphere and the cell is periodically replicated along h100i directions
with periodicity length 80.8Å. The absorbing macro-state is reached when-
ever the hopping vacancy becomes connected to the cavity. Setup (ii) entails
34801 transient states compared to 259320 for setup (i).
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Figure 3.7: Emission of a single vacancy from the cavity (20.7 Å radius) to the
protective sphere (101 Å radius). Survival probabilities and first-passage

distributions are respectively plotted in panels (a) and (b) using various truncation
thresholds k.

The survival probabilities and first-passage distributions are reported for
various truncation threshold in Figs. 3.7 and 3.8. We observe that the trap-
ping kinetics is governed by the quasi-stationary distribution [124] for the
vacancy emission process at all times, and for the vacancy absorption only at
times larger than the mean first-passage time. At short times, a substantial
portion of 10% of the decaying exponentials needs to be included to faithfully
reproduce the early stages of the absorption kinetics.

To rationalize this trend, the convergence of the truncated and reduced quan-
tities Tk and Sk(0) are displayed in panel (a) and (b) of Fig. 3.9, respectively.
We observe that truncation errors are lower in the estimation of the mean
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Figure 3.8: Absorption of a single vacancy by the cavity (20.5 Å radius). Survival
probability distribution [panel (a)] and first-passage distribution [panel (b)] as a

function of time.

first-passage time than of the initial survival probability. Convergence is
non monotonous and proceeds by plateaus, suggesting the predominance
of specific modes. To evidence them, scatter plots of computed eigenvalues
and associated ↵k factors are shown in Fig. 3.10. We indeed observe that
many more modes with large eigenvalues contribute in the absorption prob-
lem compared to the emission one. Furthermore, the large spectral gap be-
tween �1 and �2 explains the fast time-decay of the truncation error on the
survival probability. At times larger than the mean-first passage time, the
quasi-stationary distribution is reached. The early stage absorption kinet-
ics is the most problematic to compute from spectral decomposition because
many modes contribute.
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Figure 3.9: Effect of retaining the k lowest modes for approximating the reduced
mean first-passage time Tk [panel (a)] and the initial survival probability [panel

(b)].
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In this situation, we observe that it is far more efficient to compute the prob-
ability vector πT

t = πT
0 exp[�At] at a given time t using a krylov subspace

method [134] for evaluating the application of a vector on a matrix function.
Here, we applied the scaled initial probability to the exponential of�tAI and
then reverted the scaling as follows:

πt =
�
exp

⇥
�tAI

⇤
(π0 � r)

 
↵ r (3.42)

This method however becomes less efficient than the truncated eigenvalue
decomposition method as time increases. At half the mean first-passage time
of the absorption kinetics, the QSD already yields an excellent approxima-
tion. This one is less efficiently extracted using the forward iterations of
Ref. [134] than reverse iterations within Krylov-Schur method. The open
question to address is how to combine both approaches optimally. Note
that the absorption kinetics is paradoxically easier to simulate using KMC
simulations because the energetic basin of attraction is precisely the absorb-
ing sink. Extensive KMC simulations have been performed for the present
absorption problem in Ref [14] for calculating sink strengths of various cavi-
ties and dislocations.

3.5 Diffusion of Mn-V clusters in ↵-iron

In this second application, we illustrate how path factorization can be imple-
mented in kinetic Monte Carlo simulations to compute diffusion coefficients
in FeMn system and how additional simulation speedups can be obtained by
storing and efficiently retrieving the factorizations in hash tables. Simulation
aims at computing the diffusivity of small Mn clusters. The enhanced mobil-
ity of solute clusters impacts the early stage of phase separation kinetics in
quenched alloys [135], and is also suspected to be responsible for the anoma-
lous incubation times observed in some Aluminium commercial alloys [136].

The simulation box contains 103 unit cells with two nodes per cell. The crys-
talline structure is body centered cubic and periodic boundary conditions are
used. Interaction energies of Fe and Mn atoms and vacancies have been de-
duced from electronic structure calculations and are given in Ref. [137, 138].
Below 700 K, Mn atoms tend to form a single cluster that rarely dissociates
during the simulations. This is due to their thermodynamic stability and to
the high emission barriers. The two following algorithms are implemented
and tested:

• The standard kinetic Monte Carlo algorithm denoted by KMC: At each
cycle, a single vacancy transits to one of its nearest neighbour sites, i.e.
exchanges with a nearest neighbour atom. Time is incremented by the
mean residence time on the previously occupied site;

• The factorized KMC algorithm denoted by F-KMC: The vacancy makes
a non-local transition and escapes the trapping basin based on the
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path factorization algorithm. The set of transient states (the trap) en-
compasses the initial vacancy state and all states that can be reached
via vacancy-Mn exchanges exclusively. The physical time is increased
by the mean first passage time associated with the non-local escaping
transition. It corresponds to the kinetic path sampling algorithm of
Ref. [85].

Because a single vacancy is used in simulations, the time for performing a
transition does not need to be drawn in its first-passage distribution and
its expected value is used. This amounts to performing conditioning over
time [139] and aims at reducing the statistical variance of the estimated dif-
fusion coefficients. We consider here the diffusion coefficient of solute Mn
atoms, defined as the three-dimensional average of half the time derivative
of the mean square displacement (MSD)

D(X, T ) =
1

6
lim
t!1

d

dt
hkx̂(t)� x̂(0)k2i (3.43)

where X is the number of Mn atoms, T is temperature and x̂(t) is the so-
lute displacement vector at time t. With non-local events and conditioning
performed over time, the time variable is replaced by the product of `, the
number of involved jumps, and b⌧L = 1

L

PL
h=1 ⌧h, the mean first-passage time

averaged over a sample of size L generated using KMC or F-KMC. The solute
diffusion coefficient is then estimated resorting to the following estimator

bDL
` =

1
L�`

PL�`

h=1 kx̂h+` � x̂hk2
6`b⌧L (3.44)

where x̂`+h is the solute displacement vector after `+ h jumps.

Simulations are carried out for temperatures T ranging from 300 K to 1200 K
and numbers X of Mn atoms increasing from 1 to 60. For each (X, T ) pair, a
series of ten runs of eight hours are performed using a Gold-6140 Intel Xeon
processor running at 2.30 GHz. The computed diffusion coefficients and their
average over the 10 runs are displayed in Fig. 3.11. For better visualization,
a rescaling has been done using the high temperature activation energy for
Mn monomer diffusion (X = 1) at 600 K. The diffusivity of V-MnX clusters
increases with increasing X before tapering off for all temperatures lower
than 800 K. Furthermore, the diffusivity maximum increases with tempera-
ture, suggesting the presence of a maximum at Mn content that could not be
simulated.

A similar increase trend has been reported in FeCu system using standard
KMC simulations (see Fig.9 in Ref. [140]), although the temperature depen-
dence of the maximum could not be investigated due to a severe vacancy
trapping in Cu clusters.

With increasing Mn content, F-KMC simulations failed to converge. This is
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because path factorization becomes too costly. Besides, at the lower temper-
atures, the system gets trapped in super-basins containing several vacancy-
cluster shapes. To understand the limitations of the current F-KMC algorithm
and quantify the potential speedups of future developments, we tested two
additional features in F-KMC algorithm, namely

1. A dictionary-enhanced version denoted by FD-KMC: Hash tables are
used to store computed data about cluster shapes and factorizations.
The goal is to retrieve the stored information when needed to avoid
performing the same factorizations many times. This algorithm is de-
scribed in chapters 5 and 6 of Ref. [141].

2. A graph-enhanced version denoted by FDG-KMC: The nodes of the
graph correspond to the cluster keys that have been added to the dictio-
nary. The edges of the graph correspond to the previously encountered
non-local transitions. The goal is to save computational resources by
making transitions from one cluster shape to another one in the graph
without recalculating the cluster key. This algorithm is described in
chapter 7 of Ref. [141].
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Figure 3.12: Relative efficiencies of the algorithms as a function of cluster size.
Efficiency is evaluated as the ratio of the simulated physical time to that of F-KMC

for a given wall-clock time. Filling around curves corresponds to the 68%
confidence interval.

Simulations at 600 K with increasing Mn cluster sizes have been performed
using the four algorithms and their relative efficiencies are displayed in
Fig. 3.12. The efficiency of KMC algorithm relative to F-KMC is observed
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to decrease with increasing Mn content. This trend already reported in [85]
for FeCu is attributed to the increase of vacancy trapping with cluster size.
The observed increase of FD-KMC efficiency with increasing Mn content is
explained by the concomitant increase in factorization costs: it is more and
more advantageous to store and retrieve the factored matrices, as their sizes
and computational costs increase. When cluster sizes exceed 40, it is also
beneficial to connect the various clusters resorting to a graph using FGD-
KMC algorithm. This trend results from the fact that the kinetics repeatedly
visit a few cluster shapes, as observed in FeCu system [85]. These simula-
tions show that the use of hash tables and graphs are also beneficial for KMC
simulations on a rigid lattices. A point left for future developments involves
the optimal deallocation of entries rarely looked up whenever the dictionary
memory reaches a given threshold.

3.6 Summary

In this chapter, the theory of AMC is applied to characterize rare events oc-
curring when the diffusion process is trapped within a finite set of states.
The initial probability distribution are considered to be emitting source while
the peripheral states of the trap become an artificial absorbing sink. For
the reversible non-absorbing diffusion process, we show that the associated
first-passage problem can be simplified. The absorbing process then inher-
its a reversibility property that is conditional on that the dynamics has not
reached the absorbing state. It transiently satisfies Kolmogorov’s criterion:
the probability of any circular sequence of transient states is equal to that of
the time-reversed sequence, even though probability currents are nonzero.
This conditional reversibility entails in particular that the absorbing transi-
tion rate matrix is similar to a symmetric definite negative matrix and that
the transformation matrix exhibits a simple diagonal form.

We implement the path factorization technique to compute mean first-
passage times, exit probabilities, and source-to-sink probability flux for small
system. This method also corresponds to a direct and robust method for
solving linear problems based on Gaussian elimination. Using path factor-
ization approach, we formulated randomization procedure that enables first-
passage times and exits to be drawn directly from the exact distributions.
Furthermore, it has been shown that the acceleration in KMC simulations
employing path factorization is substantial and makes it possible to compute
the mobility of kinetically stable Mn clusters in iron down to the operating
temperatures of pressurized reactors/vessels.

Evaluating the distributions requires the knowledge of both eigenvalues and
eigenvectors of a symmetric positive definite matrix. In practical applica-
tions, we observe that the evolution of the transient state is governed only by
a fraction of the eigenspectrum. The most contributing mode is the one pos-
sessing the lowest eigenvalue, and its eigenvector corresponds to the quasi-
stationary distribution. We studied the single vacancy emission problem,
which exhibits strong, energetic trapping; the quasi-stationary distribution
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overwhelmingly predominates and correctly describes the transient evolu-
tion. In the case of the vacancy absorption problem, where trapping is es-
sentially entropic, a small but substantial fraction of the slow modes are ob-
served to contribute to the no-passage distribution and to govern the slow
decay of the survival probability. For problems with more than 104 tran-
sient states, the transition rate matrix becomes sparse and iterative solvers are
used to evaluate the eigenvalues and their contributions to no-passage dis-
tributions on the fly. We advocate to perform reverse iterations for extracting
eigenvalues in ascending order. This can be achieved by iteratively applying
the inverted matrix resorting to the LDLT factorization, which amounts to
extracting the largest eigenvalues of the inverted matrix.

For very large trap sizes, we show that resorting to a direct multi-frontal
LDLT solver (possibly combined with block low-rank compression) makes
it possible to perform sink strength calculations for the absorption of a va-
cancy from a cavity and also to compute vacancy emission rates from the
cavity. Computations can be done using millions of transient states per pro-
cessor, allowing us to investigate realistic cavity concentrations in irradiated
or quenched Aluminum.

In the next chapter, we present a new algorithm based on eigenvector defla-
tion and Krylov subspace projection. It will be shown that the new algorithm
is able to correctly characterize the transient evolution with high efficiency
and low computation cost for the vacancy absorption problem. In Chapter. 5,
we show how to apply the developed approaches to compute sink strengths.





Chapter 4

First passage algorithms based on
Krylov subspace projection and
eigenvalue deflation

This chapter is based on the article "Absorption kinetics of vacancies by
cavities in aluminum: Numerical characterization of sink strengths and
first-passage statistics through Krylov subspace projection and eigenvalue
deflation", Journal of Computational Physics, 454, 110987 (2022).
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The chapter is organized as follows. In Section. 4.2, we describe model order
reduction techniques combining Krylov subspace projection and eigenvalue
deflation. In Section. 4.4, we assess the efficiency of the developed methods
by applying them on two problems, a laplacian model for two dimensional
defect absorption and a realistic model describing the absorption of a distant
single vacancy by a cavity in Aluminum [14]. We discuss the most efficient
strategy to compute the probability vector at times shorter than the mean
first-passage time depending on the problem. We conclude in Section. 4.5.

4.1 Introduction

As before mentioned, FPKMC method is used to accelerate the conventional
KMC simulations. Indeed, the conventional KMC method may become in-
efficient when employed to simulate all the hops of defects on a lattice [82]
and when the transition rate matrix equation exhibits a broad spectrum of
frequencies as discussed previously. The causes of inefficiency may be en-
ergetic or entropic in origin. The statistically exact approach to mitigate the
inefficiency of the KMC methods is to draw sequences of events and first-
passage times based on the theory of absorbing Markov chains [57, 75, 80, 84,
85, 86]. Mathematically, the first passage times are the sum of the residence
times spent by the walker in connected states prior to getting absorbed by an
artificial or physical sink. The absorbing sink is artificial when it corresponds
to the peripheral states of an energetic trap, while a physical absorbing sink
usually correspond to an energetic trapping basin, like solute clusters and
dislocations. Furthermore, in absorbing Markov chains, once the system has
reached an absorbing state, it stays there infinitely. Because the probability of
being absorbed tends to one as time tends to infinity, the connected states of
the trapping basin are commonly known as transient states. Besides, a defect
initially located in any transient state can possibly reach any absorbing state,
but not necessarily in one step. The no-passage distribution is the conditional
probability distribution of the defect on the transient states knowing that it
has not been absorbed yet: the sum of probabilities over the transient states
is one.

There exist several ways to characterize absorbing Markov chains numer-
ically. The essential goal is to compute the first-passage and no-passage
distributions. These two distributions serve to draw the first passage times
and moves for a defect to reach the absorbing sink. To achieve these tasks,
one implements one of the two following randomization procedures: kinetic
path sampling or reverse sampling, based on the factorization [59, 85, 87] or
the eigenvalue decomposition [57, 59] of the absorbing transition rate ma-
trix, respectively. When eigenvalue decomposition is performed [57, 59, 84,
86], the survival probability of the defect on the transient state is computed
directly, making it possible to draw the desired first-passage or no-passage
times through reverse sampling. The original Markov chain describing the
defect evolution is assumed to be reversible. This means that the transport
of defects obeys detailed balance; the transition probability flux between any
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two states is invariant under Markov chain reversal. The transition rate ma-
trix of the Markov chain can therefore be symmetrized using similarity trans-
formation, which ensures the matrix to be symmetric negative semi-definite.
The survival probability of the defect before getting absorbed is obtained
from the transient evolution operator, a matrix exponential, which is the sum
of decaying exponentials. The eigenspectrum of the matrix is real and strictly
negative. In this work, the survival probability distribution is estimated us-
ing the eigenvalue decomposition method.

In practice, it is difficult to entirely factorize or diagonalize large sparse ma-
trices using dense solvers based on Gaussian elimination, Givens rotations
or Householder reflections due to memory limitations. Krylov subspace pro-
jection (KSP) methods are commonly used to obtain solutions for sparse high
dimensional linear systems. The approximations to these solutions are esti-
mated by minimizing the residual over the subspace formed. A well known
KSP method is conjugate gradient (CG) [142], which is used for solving linear
systems involving symmetric and positive definite matrices. For symmet-
ric and possibly indefinite system, iterative method like minimum residual
(MINRES) method is rather used [143]. In case of non-symmetric matrices,
the biconjugate gradient stabilized (BiCGSTAB) method [128, 144] that is a
generalized CG method, and also a generalized minimum residual (GMRES)
method [144] are available. KSP methods can also be employed to extract
a few pairs of eigenvectors and eigenvalues iteratively, like for instance the
Krylov-Schur method [131, 145].

The eigenvector associated with the smallest eigenvalue is proportional to
the quasi-stationary distribution (QSD). It corresponds to the eigenmode ex-
hibiting the slowest decay and thus to the limit of the no-passage distribu-
tion in the asymptotic time limit [146]. The QSD is observed to considerably
contribute to the first-passage and no-passage distributions in applications
in Chapter 3. It completely characterizes them when trapping is severe and
has an energetic origin. However, for purely entropic traps, it is observed
that many additional eigenmodes are necessary to correctly capture the early
stage absorption kinetics in Chapter 3. Consequently, the computational cost
increases with the number of significant eigenmodes. In this work, we in-
vestigate the ability of model order reduction techniques based on Krylov
subspace projection and eigenvalue deflation to faithfully characterize the
early-stage kinetics at a reduced cost, given an initial probability vector.

4.2 Model Order Reduction and Iterative Methods

4.2.1 Eigenvector Subspace Model Projection

As mentioned in the introduction and observed in Chapter 3, it is not possi-
ble to compute the entire eigenspectrum of huge sparse matrices using stan-
dard dense solvers. For the mathematical formalism, refer the reader to Sec-
tion. 3.3. Instead, sparse and iterative eigenvalue solvers [129, 133, 147] are
to be implemented to extract a limited portion of the eigenspectrum and to
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approximate the evolution operator by its projection on the reduced eigenba-
sis [59]. In practice, the basis encompasses the k eigenvectors with smallest
eigenvalues. By doing so, a reduction of the model is performed and the
symmetric transition rate matrix A in Eq.(3.21) is approximated by

A(k) = SR

"
kX

h=0

ϕhϕ
T
h�h

#
SR�1, (4.1)

where S and R are discussed in Section. 3.3.1. The evolution operator is
approximated by

P
(k)
ij (t) =

kX

h=1

ghi d
h
j exp(��ht), (4.2)

where ghi and dhj are discussed in Section.3.3.2.

In the following, we will refer to this approach as the Eigenvector Subspace
Model Projection (ESMP) method. Assessing the convergence as a function
of the eigenvalue number k can be done by calculating the survival probabil-
ity on the reduced eigenvector space and comparing the result with the one
obtained using a standard solver computing the matrix exponential function
with a built-in convergence criteria [134]. An additional verification can be
performed by comparing the truncated MFPT

⌧
(k)
i =

kX

h=1

↵h
i /�h (4.3)

to the exact one, i.e., to the value ⌧
(N)
i defined in Eq. (3.25) and computed us-

ing two well-established and robust methods: conjugate gradient and multi-
frontal Cholesky [126] algorithms.

In the following subsections, we present additional model reduction ap-
proaches based on Krylov subspace projection methods: refer to [128, Ch.
7] for a textbook. Notice that A 2 R

N⇥N will stand for AI , i.e. for the sake of
generality will always be equal to the identity to restrict our investigation.

4.2.2 Krylov Subspaces

Evaluating matrix functions via eigenvalue decomposition becomes ex-
tremely costly for large sparse matrices whenever many eigenpairs are
needed. A solution to this problem is to restrict the computation to the prod-
uct of a vector b 2 R

N on the matrix A 2 R
N⇥N function

x = f(A)b. (4.4)

This task is efficiently accomplished using a Krylov subspace projection
(KSP) method [148]. In particular, KSP methods are among the most effi-
cient algorithms for estimating the solution of huge sparse linear systems.
As examples of Krylov subspace solvers, one mentioned in the introduction,
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the conjugate gradient and minimal residual methods aim at computing the
quantity

x = A
�1b, (4.5)

which amounts to setting f(A) = A
�1 [128, Ch. 9]. The Krylov subspace is

characterized by its dimension `, matrix A, and vector b and is denoted by
K`(A,b). Its construction proceeds as follows: vector b is left multiplied by
A, which results in a new vector Ab. The new vector is multiplied again with
matrix A to find A

2b, and this goes on ` � 1 times, vector b being included
in the subspace:

K`(A,b) = span
�
b,Ab,A2b, ...,A`�1b

 
. (4.6)

Gram-Schmidt algorithm is also used on the fly to construct an orthogonal
basis of K`(A,b) whose dimension is always equal to `. If it happens that
A

l 2 Kl(A,b), the subspace construction is resumed and ` is set to l. The
basis of K`(A,b) is denoted by V`.

4.2.3 Krylov Subspace Model Projection

In this section, using the definition of Krylov subspace from Section. 4.2.2,
the standard scheme involving matrix-vector multiplications is recalled. In
practice, the problem of computing the exponential of a huge sparse matrix
A 2 R

N,N is reduced to the one of computing the exponential of a small
matrix T` of dimension `

AV` = V`T` + T`+1,`v`+1e
T
` , (4.7)

where V` =
⇥
v1,v2, . . . ,v`

⇤
consists of ` orthonormal column vectors and

T` 2 R
`,` is a symmetric tri-diagonal matrix. Since the vectors from V` basis

are orthonormal, we have VT
` V` = I` where I` 2 R

`,` is the identity matrix.
T` corresponds to the projection of A onto V`, and eT` denotes the `th unit
coordinate vector of R`. The reduced tridiagonal matrix is obtained by left-
multiplying both sides of Eq.(4.7) by VT

` :

VT
` AV` = VT

` V`T` = T`, (4.8)

while the Arnoldi approximation of A is V`T`V
T
` . This last matrix is then

used to approximate f(A)b using the following vector

f` = f
�
V`T`V

T
`

�
b = �V`f(T`)e1, (4.9)

where e1 stands for the first unit coordinate vector of R`, � for kbk, the Eu-
clidean norm of b, and where we plugged the relation b = �V`e1.

This approach is another example of model order reduction. For a sparse
matrix, the complexity is O(N`) for storage and O(N2`) for the ` steps of it-
eration [149, 150]. Krylov subspaces K`(A,b) of low dimensions are used
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in practice, hence this approach is considerably faster than exact full diago-
nalization techniques that exhibit O(N3) complexity in number of operations
and O(N2) in storage.

4.2.4 Eigenvector and Krylov Subspace Model Projection

In this section, we describe a third approach, referred to as eigenvector and
Krylov subspace projection method (EKSMP), consisting in projecting the
model both on eigenvector and Krylov subspaces. It is based on the standard
deflation technique of linear algebra [151, 152, 153]. In deflation, the approx-
imated subspace is divided into two complementary subspaces, so that the
two parts of the solution are easier to find using an exact method in the first
subspace and an iterative method in the second deflated subspace.

The deflation approach is usually implemented for solving linear systems
but we consider it here for evaluating the application of any matrix function
on a vector, i.e. f(A)b. As previously, function f will be either the inverse or
scaled exponential functions. The main objective of this scheme is to obtain
a deflated matrix A

? whose condition number will be smaller than that of
A. This is done by discarding the contribution of a few smallest eigenvalues
from the system, and focusing on a deflated matrix. Hence, the first subspace
is generated by the k eigenvectors of A associated with the lowest eigenval-
ues as in Section. 4.2.1 and is denoted by Ek(A). The deflated subspace is
the orthogonal component of the eigenvector subspace and is denoted by
Ek(A)?. The Krylov subspace is then constructed in the deflated space. The
goal is to accelerate the convergence of the projected dynamics towards the
exact solution as the dimension ` of the Krylov subspace increases.

An orthogonal basis of Ek(A) writes Φk =
⇥
ϕ1,ϕ2, . . . ,ϕk

⇤
, entailing that P =

ΦkΦ
T
k and I�P are the orthogonal projection operators on Ek(A) and Ek(A)?.

A general property of projection operators is that they are involution, i.e.
Pn = P. A particular property of P and I�P is that they commute with A, as
a result of the spectral theorem. Hence, any power of A can be decomposed
as

A
n = (PA)nP+ ((I�P)A)n(I�P) =

⇣
A

k
⌘n

P+
�
A

?
�n

(I�P), (4.10)

where A
k = PA, A? = A �A

k. Consequently, the desired quantity can be
decomposed as the sum of the following two terms:

f(A)b = f
⇣
A

k
⌘
bk + f

�
A

?
�
b?, (4.11)

where bk and b? stands for Pb and (I�P)b, respectively. Note that the
Krylov subspace in the deflated space can be simply generated from the pro-
jected initial vector (I�P)b, which is formally stated by

K`

�
A

?,b?
�
= K`(A,b�Pb). (4.12)
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As a result, the approximation subspace is the sum of two subspaces:

Gk,`(A,b) = Ek(A)�K`(A,b�Pb), (4.13)

which are orthogonal to each other. Note that ESMP method considers the
first subspace only [Section. 4.2.1], while KSMP method the second one only
[Section. 4.2.3]. The second term in Eq.(4.11) is projected onto the orthogonal
Krylov subspace K`

�
A

?,b?
�

and evaluated using full eigenvalue decompo-
sition. The matrix that must be diagonalized is

T?
` =

�
V?

`

�T
AV?

` , (4.14)

where V?
` is the standard orthogonal basis of K`

�
A

?,b?
�
. The accuracy of

the model order reduction method can be verified by checking the conver-
gence of survival probability distribution and estimation of MFPTs as a func-
tion of ` given k. The survival probability of a system that has evolved from
initial probability vector π at time t = 0 evaluated using EKSMP method is

Sk,`(t) =
NX

i=1

kX

h=1

⇡i↵
h
i exp(��ht) +

NX

i=1

X̀

h=1

⇡ib↵h
i exp(��?

h t) (4.15)

where �?
h is the hth eigenvavalue of T` and the weighting coefficient b↵h

i

involves the corresponding hth eigenvector bϕh in the Krylov subspace.
After projecting with operator bϕT

hV
T
` , we obtain b↵h

i = bghi bdh with ĝhi =

bϕT
hV

T
` s� r� ei and bdh = bϕT

hV
T
k s↵ r. Note that assuming exact arithmetic,

the survival probability S(t) = πTps(t) defined from Eq.(3.23) is equal to
SN�`,`(t) in Eq.(4.15), 8` 2 J0, NK, since the approximation space GN�`,`(A,π)
spans the entire phase space.

To later monitor the convergence of the methods as a function of k and `, we
will first inspect the estimated survival probability at t = 0 and additionally
evaluate the following reduced MFPT:

Tk,` =

PN
i=1 ⇡i

hPk
h=1 ↵

h
i /�h +

P`

h=1 b↵h
i /�

?
h

i

PN
i=1 ⇡i⌧

N
i

, (4.16)

where the denominator in Eq.(4.16) corresponds to the MFPT from initial
distribution π. This is computed using two linear solvers (sparse Cholesky
and CG).

4.3 Implementation

The methods described above have been coded in PETSc/SLEPc environ-
ments resorting to the matrix function (MFN) object [129, 132, 133, 147, 154,
155]. MFN object also provides the restarted Krylov subspace projection
method (R-KSP) [134] to compute the product of common matrix functions
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and a vector. R-KSP was used to compute reference values to check the cor-
rectness of the faster methods described above. R-KSP is a robust and well-
established KSP solver with built-in convergence criteria [134, 154] wherein
the Krylov basis is restarted until a convergence criterion is fulfilled. We refer
the reader to refer to Appendix B for details. In our case, the application of
vector b on the matrix exponential is computed for a predetermined set of
times

n
tn

o
0nL

:

x = exp(�Atn)b. (4.17)

The operation must be repeated at each considered time. For this purpose,
R-KSP method is much more expensive than EKSMP method, because it is
not able to provide the entire first-passage law at once.

4.4 Numerical results and analysis

In this section, we first discuss the scalability and efficiency of the four dif-
ferent solvers used to extract eigenvalues. We set up a simple absorption
model in two dimensions in Section. 4.4.1. Next, we illustrate the three com-
putational methods discussed in Section. 4.2 by applying them to a realistic
problem, the absorption of a single vacancy in a cavity in aluminum in Sec-
tion. 4.4.2. The model describing thermally activated jumps of aluminum
atoms into a next nearest-neighbor vacancy is detailed in Ref. [59]. It ac-
counts in particular for the dipole-dipole elastic interactions between the va-
cancy and the cavity [14]. We characterize the absorption kinetics of the va-
cancy around the cavity and quantify the effect of the elastic interactions on
the vacancy flux towards the cavity in Section. 4.4.3, and on sink strengths
(Section. 5.3).

4.4.1 Efficiency and scalability of eigensolvers

The simple absorption model describes the motion of a defect on a periodi-
cally replicated square lattice of size L and coordination number Z = 4. The
defect hops from any site to any of its four nearest neighboring sites with
reduced frequency of 1. The number of transient states is N = L2. The defect
can also reach the absorbing sink from a singularized site with an absorbing
frequency equal to 10�2. In this particular application, the considered tran-
sition rate matrix A is thus a modified Laplacian matrix: diagonal elements
are equal to 4, but one element is set to value 4.01, while the 4N off-diagonal
elements corresponding to transitions are all equal to -1. The matrix A is thus
symmetric positive definite by construction. We herein evaluate the cost of
extracting the linear system using the various sparse iterative solvers from
SLEPc library [133] in PETSc environment [129] and with varying the num-
ber of cores in the computations. This enables one to deduce the speedup and
efficiency resulting from implementing the solvers on a parallel computer ar-
chitecture.
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The survival probability distribution are computed using both setups of ini-
tial distributions, resorting to Eq.(3.23). The tolerance parameter was set to
10�12 and computations are performed using SLEPc and PETSc softwares
[132, 133, 154, 155].

We display in Fig. 4.5(a) the survival probability distribution computed us-
ing the R-KSP method (refer to Appendix B) as well as the ESMP method
(Section. 4.2.1) for up to the 3500 eigenvalues. For the ESMP method, we
extracted the lowest eigenvalues by implementing the Krylov-Schur method
with the tolerance parameter set to 10�12. For the R-KSP method, the toler-
ance parameter set was to 10�10 for better convergence. We extracted these
lowest eigenvalues by implementing the Krylov-Schur method. The dis-
played distributions are scaled using the MFPT, estimated independently us-
ing the two standard linear solvers (sparse Cholesky and conjugate gradient).
As it is observed from Fig. 4.5(a), the initial survival probability obtained
from the ESMP method is not equal to one. This discrepancy is attributed to
the fact that a substantial number of eigenmodes, higher than 3500, signif-
icantly contributes to the short time kinetics. The cost of extracting a huge
portion of the eigen spectrum limits the applicability of the ESMP method.
As for the R-KSP method, the survival probability is equal to one, but one
needs to specify the Krylov subspace dimension. Typically, the value for the
dimension of the Krylov subspace should not be less than 100. The number
of restarted iterations to converge depends on the subspace dimension.

We display in Fig. 4.5(b) CPU times versus physical times for the R-KSP
method. We observe that the simulation requires only 0.9 seconds for short
time kinetics. However, this method becomes less efficient as time increases.
It requires four more orders of magnitude of CPU time to converge at times
larger than MFPT. It entails that R-KSP can be practically implemented for
the evaluation of survival probabilities at short times only. We now inves-
tigate the range of applicability of KSMP and EKSMP methods and check
whether they exhibit the same limitations as the ESMP method. The R-KSP
method provides the reference data to support the EKSMP and KSMP algo-
rithms.

The survival probability distributions estimated using KSMP and EKSMP
methods for localized initial distribution are displayed in Fig. 4.6. The full
eigenvalue decomposition of the reduced matrix T` was performed using
a dense solver from LAPACK library. The Krylov subspace dimension `

is varying. We observe a fast convergence with respect to the Krylov sub-
space dimension for EKSMP and KSMP methods. Interestingly, the EKSMP
method with k = 1 requires a substantially smaller Krylov subspace, about
50 to 100, than the KSMP method does, about 500. This implies that the extra
dimension required by the KSMP method aims at capturing the long-term
kinetics of the QSD mode. This trend is more pronounced when the initial
distribution is uniform, as observed in Fig. 4.7 wherein the survival proba-
bility and first passage distribution are displayed using KSMP and EKSMP
methods and the same setups. This feature is attributed to the higher over-
lap between the initial distribution and the QSD. The dependence on initial
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Processor Methods Condition CPU Time (s) Cores (Nc)

Proc-A ESMP k = 3500, `=0 3.02 ·104 1
k = 3500, `=0 2.13 ·103 28

Proc-B

ESMP k = 1, `=0 8.93 ·101 1
k = 3500, `=0 2.96 ·104 1

KSMP k = 0, `=50 1.10 ·101 1
k = 0, `=500 8.60 ·101 1

EKSMP k = 1, `=50 9.83 ·101 1
k = 1, `=500 2.35 ·102 1

ESMP-CP k = 3500, `=0 4.66 ·103 1
EKSMP-CP k = 1, `=500 1.70 ·102 1

Table 4.1: CPU time taken by ESMP, KSMP, and EKSMP methods to compute the
first passage distributions for the single vacancy absorption. Processor A is Intel(R)

Xeon(R) Gold 6132 CPU, each node running at 2.60GHz with 2⇥ 14 cores.
Processor B is Intel i5-8400H running at 2.5GhZ with eight cores. CP stands for
Cholesky preconditioning using MUMPS package and Nc is the used number of

cores.

seconds of computational time. However, if one is interested in the absorp-
tion kinetics from a set of initial vacancy positions, then the EKSMP method
will be more efficient because the QSD is computed once.

We quantified the reduced MFPT Tk,` and survival probability Sk,`(0) esti-
mated using the different methods to monitor the convergence as a function
of k and `. The results are displayed in Fig. 4.8. The blue curve corresponds
to the ESMP method. The 3500 eigenvalues evaluated previously have been
used. The green and red curves correspond to EKSMP and KSMP for ` =
500, respectively. The reduced MFPT converges within 2 · 10�3 after ` = 200
for EKSMP. Truncation errors for estimating the MFPTs are lower with a
monotonous behavior and a fast convergence for the KSMP and EKSMP
methods as compared to the ESMP method. In panel (c) of Fig. 4.8, we clearly
distinguish the convergence rates of the three methods.

To sample the MFPT starting from a uniform initial distribution, we used
the EKSMP method. The quantity Tk,` was computed with k = 1, and the
results are displayed in Fig. 4.9. Convergence is clearly much faster when
the initial distribution is uniform than when it is localized. Hence, a smaller
Krylov subspace is required to evaluate the first passage distributions with
accuracy and at a low computational cost. The main argument for using
both Krylov subspace and eigenvector subspace projections is to reduce the
dimension of the former subspace and to reuse the second subspace in other
calculations. In Appendix C, additional results are reported concerning the
use of Cholesky preconditioning (CP) and about the relevance of increasing
the eigenvalue subspace k in EKSMP method. It is shown that CP decreases
the overall CPU cost and facilitates the extraction of additional eigenpairs. It
should therefore be enabled whenever possible.
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4.4.3 Vacancy absorption kinetics

To visualize the absorption kinetics, we compute and display the probability
fluxes to the cavity and the sink strengths from the initial sites of the mobile
vacancy. The goal is to investigate the effect of the elastic deformation on the
vacancy pathway to cavity.

Vacancy flux to cavity

We computed the mean residence time vector θ defined by

θT = πTA�1, (4.19)

for initial distribution π by casting this equation in the form of Eq. (4.5) and
using both the sparse Cholesky and CG solvers (to check that results were
matching). Then, introducing the three dimensional lattice coordinates r̂j of
the vacancy for state j [59], the vacancy flux was computed from the relation

φ̂j =
1

2v

X

`

�
✓jKj` � ✓`K`j

�
(r̂` � r̂j) (4.20)

where ✓jKj`� ✓`K`j are the mean probability currents between both the tran-
sient and absorbing states, θ is the mean residence time vector and v repre-
sents the unit cell volume assumed to be uniform over the simulation box.
All panels in Fig. 4.10 represents a quarter of the (001) plane containing the
center of the cavity. The vacancy resides on the (100, 100, 0) Cartesian coor-
dinates in Fig. 4.10, along < 110 > direction. We computed residence times
Eq.(4.19) and vacancy fluxes Eq.(4.20) for the localized initial distribution for
sites j using linear solver. The algorithm used to compute these quantities
are detailed in [59]. Figure 4.10.(a) represents the scaled residence times.
We observe that the residence time is high at the periphery and low near
the center, where the vacancy is more easily absorbed. Besides, anisotropy
in the residence times can be observed as the vacancy evolves through the
system and stays for shorter times along [100] and [010] directions, as ob-
served in Fig. 4.10(b). The anisotropy in radial fluxes can also be observed in
Fig. 4.10(c). Absorption path along the crystalline direction [110] depicts the
anisotropic behavior.
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Figure 4.10: Estimation of residence times (a,b), radial vacancy flux (c), and
ortho-radial vacancy fluxes (d) starting from a localized initial distribution.

Absorption of a single vacancy initially located at a distance of 57.98 Å from the
cavity center in < 100 > crystalline directions. Coordinates of displayed sites
satisfy r̂j · k̂ = 0 where k̂ is the normalized basis vector orthogonal to (001).
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The computed vacancy fluxes and residence times for the uniform distribu-
tion are displayed in Fig. 4.11. The trends are qualitatively similar to those
observed when the initial distribution was localized, but not quantitatively.
In this setup, the residence times for vacancy at each site are less, implying
that vacancy absorption happens faster.
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Figure 4.11: Estimation of residence times (a,b), radial vacancy flux (c), and
ortho-radial vacancy fluxes (d) using a uniform initial distribution. The cavity

center is in < 100 > crystalline directions. Coordinates of displayed sites satisfy
r̂j · k̂ = 0 where k̂ is the normalized basis vector orthogonal to (001).

Replacing the reduced residence time vector θ/θT~1 with the quasi-stationary
probability vector q in Eq.(4.20), provides the fluxes in the asymptotic time
limit. The results are displayed in Fig. 4.12. The radial dependence of the
QSD is shown in Fig. 4.12(a). The reduced probability decreases from 2 far
from the cavity to 0.25 at the cavity periphery where the vacancy is about to
get absorbed. The anisotropic nature of the radial and ortho-radial fluxes can
also be observed in Fig. 4.12 (c,d). The more pronounced anisotropic behav-
ior observed in Fig. 4.10 is due to the localized initial distribution, whereas
anisotropy is less critical in Fig. 4.11 and Fig. 4.12. The redidual anisotropy
associated with the QSD is entrirely due to the presence of the elastic field
created by the cavity.
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Figure 4.12: Estimated quasi-stationary distribution (a), anisotropy of
quasi-stationary distribution probability (b), anisotropy of radial vacancy fluxes (c),
and anisotropic ortho-radial vacancy fluxes (d) for the localized initial distribution.
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4.5 Summary

The transition matrices involved in diffusion problems are considered sparse.
The usual approach for sparse high-dimensional matrices is similar by re-
peatedly extracting portions of the eigenspectrum using iterative solvers
based on deflation techniques. However, this still requires substantial com-
putational time, restricting the range of applicability of this technique for
simulating aging kinetics and microstructural evolution. We succeeded in
overcoming this issue by applying Krylov subspace projection techniques.
This approach involves vector-matrix multiplications only and reduces the
computational complexity by calculating the exponential of a much lower-
dimensional transition rate matrix. Two algorithms have been developed
dubbed KSMP and EKSMP. KSMP aims at constructing a Krylov basis that
starts from the initial probability vector and capturing its subsequent evolu-
tion. As the KSMP approach introduces a dependence on the initial vector,
we have also developed and tested the additional EKSMP method to de-
flate the Krylov subspace using the slowest eigenmodes. EKSMP and KSMP
methods were implemented to study the absorption kinetics of a vacancy by
a cavity in Aluminium. The correctness of the two algorithms was assessed
by comparing the results obtained for a subset of times using the R-KSP
method as a reference: survival probabilities and first-passage distributions
could be accurately reproduced using EKSMP and KSMP methods. Notice-
ably, an important simplification of the problem to solve stems from the fact
that the diffusion process is reversible [59] entailing that all transition rate
matrices can be symmetrized through diagonal similarity transformations.
The reversibility condition is fulfilled in most applications involving the dif-
fusion of defects even though these defects are created by an irreversible pro-
cess like neutron, ion, or electron irradiation.

The important parameter controlling the convergence of KSMP and EKSMP
methods is the dimension of the Krylov subspace. We found that the KSMP
method yields accurate results with a Krylov basis (KB) whose dimension
is five times the cubic root of the matrix dimension (the size of the three-
dimensional lattice). Such a dimension for the KB makes it possible to cap-
ture long sequences of defect hops through the entire cell until absorption,
and hence to account for the contribution of the QSD mode. We also ob-
served that for our typical sink problem using the EKSMP method, the KB
dimension is considerably reduced, by a factor of 10, even when only the
QSD mode is included. This trend results from the fact that the QSD regime
is reached very quickly and only involves the local diffusion of the defect.
Besides, the extra cost associated with the QSD calculation being less or sim-
ilar to the cost that is spared by reducing the Krylov subspace dimension,
the EKSMP method is more advantageous than the KSMP method. This is
especially true when more than one initial defect distribution is considered,
a typical situation occurring in KMC and mean-field applications. Because
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the eigenvalues are often degenerate and eigenmodes occur in bundles, it
was practically inconvenient and computationally expensive to include ad-
ditional eigenmodes in the EKSMP method. The working space dimension
must be determined in the Krylov-Schur solver previously selected in our ap-
plications for its superior performance compared to other iterative solvers.

To conclude this Chapter, we show that it is unnecessary to extract several
eigenmodes to characterize the absorbing kinetics fully. In the next chapter,
we apply the developed numerical methods to compute sink strengths which
are crucial input parameters in rate-equation cluster dynamic simulations.
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Under irradiation, microstructures contain many types of defects. The de-
fects are classified here into two subsets. The first subset contains defects that
are mobile like vacancy, self-interstitial atoms, and small vacancy or intersti-
tial clusters. The second subset contains defects that are considered immo-
bile, like voids, dislocations, etc. Mobile defects can be annihilated by mutual
recombination (for example, vacancy encounters an interstitial) or radiation-
induced segregation (RIS) to grain boundaries, dislocations, or precipitates.
Point defects can also agglomerate together to form clusters of defects. To
study the microstructure evolution, various computational approaches exist,
as reviewed in Section. 1.2. At the coarse-grained level, rate equation clus-
ter dynamics (RECD) is performed to analyze the defect’s behavior [158]. In
RECD, rate equations derived from rate theory (RT) are employed to study
the reaction between mobile and immobile defects. In this chapter, we briefly
discuss RT in Section. 5.1. Further, in Sec 5.2, we introduce the concept of sink
strengths [159] which are the crucial parameters for RECD. Besides, we show
how these quantities can be approximated using various analytical theories
or estimated using KMC simulations. Finally, in the last Section. 5.4, we show
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how to quantify sink strengths restoring to the theory of absorbing Markov
chains.

5.1 Reaction rate theory

Modern reaction kinetics involves the study of the rate of chemical processes
or transformations of reactants to products. The rate of the chemical reac-
tion is expressed in terms of the change in concentration with respect to
time [160]. The reactions involving defects whether they are created un-
der irradiation or not can be described thoroughly by transition state theory
(TST) [90] (refer Section. 2.3.1). It provides well-established ways of formu-
lating the transition rates. In addition to this, an important approximation
that is used in RT is the mean-field approximation (MFA) which provides the
average concentration of the defect population instead of the detailed popu-
lation.

Defects created under irradiation represent the microstructure that evolves
through time. At coarse-grained level, RT and MFA are the most appropriate
and straightforward methods used to simplify the complexity in microstruc-
ture and to perform cluster dynamic simulations [158]. In its simplest form,
the rate equations with the concentration of vacancies (CV ) and interstitial
(CI) in the presence of a sink are two nonlinear coupled differential equa-
tions [161]:

dCI

dt
= Kp �KrCVCI � k2

IDICI ,

dCV

dt
= Kp �KrCVCI � k2

VDV (CV � Ce
V ),

(5.1)

where Kp is the rate of defect production in dpa.sec�1. Note that the pro-
duction rate is same for vacancies and interstitials. The quantities DV

and DI are vacancy and interstitial diffusion coefficients, and Ce
V is the

vacancy concentration at equilibrium. The diffusion coefficients are con-
sidered to be homogeneous in space. The second term of the right hand
sides of Eq. (5.1) represents the rate of loss of defects due to the recombi-
nation [162] with the rate constant which is mathematically represented as
Kr = 4⇡rrec(Dvc + Din)V

�1 [161]; rrec is the recombination radius and V is
the atomic volume. The terms k2

V and k2
I are called sink strengths of defects

V and I , respectively. Their derivation is discussed in Sec. 5.2. These rates
completely depend on the nature of the mobile and immobile defects. The
presence of elastic interactions between point defects and sinks causes an
absorption bias that was initially described in Ref. [163].
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5.2 Sink strengths

As mentioned earlier, the mobile defects annihilate to immobile defects, mu-
tually recombine or agglomerate to form larger or smaller clusters of defects,
respectively. Accordingly, rate theory predicts the point defect concentra-
tions in space by considering a crystal lattice as an average medium contain-
ing an absorbing sinks [160]. The absorption rate of the defects to the sink
depends on various factors such as type of defects, concentration, distribu-
tion of the defects. This rate is usually given by the term sink strengths k2

or absorption efficiency  by normalizing with the sink concentration. Here,
in this section, we discuss the theoretical methods proposed in the literature
and used to estimate sink strengths Sec. 5.2.1.

5.2.1 Analytical solution to sink strength

Analytical formulae for sink strengths were first proposed by F. A. Nico-
las [164]. The spatially independent rate equations in Eq. (5.1) are written
in terms of currents of point defects towards the sink

dCI

dt
= Kp �KrCVCI � II ,

dCV

dt
= Kp �KrCVCI � IV ,

(5.2)

where IV and II are the vacancy and interstitial currents entering sink, re-
spectively. Also, known as sink strengths. Initial assumptions made in an-
alytical derivations are: zero rate of defect production (Kp = 0) and steady
state

�
dCV

dt
= dCI

dt
= 0
�
.

The possible solutions of Eq.(5.2) to obtain sink strengths are provided by
solving Laplace’s equation or Poisson’s equation, and by Wiederisch’s ap-
proach depending on the different geometries of the sink [164, 165, 166]. Here
we present the simplest spherical sink model with radius rcv that is enclosed
in a spherical shell of radius R depicted in Fig. 5.1. The term rcv is the sum of
the cavity radius and the vacancy radius i.e. rcv = rca + rV .

5.2.1.1 Laplace’s approach

The defect concentration is obtained by solving the Laplace equation

r2C = 0, (5.3)

where C is the concentration of either vacancies or interstitials. The bound-
ary conditions are such that Ci and Co are the fixed concentrations at rcv and
R. Let us focus on the vacancy case. So, the vacancy current on the inner sink
surface at r = rcv is given as

IV = 4⇡rcv(Co � Ci)DV
R

R� rcv
. (5.4)
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Here, the sink strengths are evaluated from the concentration on the outer
surface. The boundary conditions impose that the vacancy flux at outer re-
gion of the sink is null i.e.

�
dC
dr

�
R
= 0, and at r = rcv, we have the equality

Cr=rcv = Ci. We obtain the vacancy current at r = rcv

IV =
4

3
⇡(R3 � r3cv)Kp. (5.8)

The vacancy current estimated by Poisson’s approach in Eq. (5.8) is indepen-
dent of the diffusion coefficient in comparison to Laplace’s approach Eq.(5.4).
However, it depends on the defects that will be produced in the spherical re-
gion between rcv to R. The concentration at r = R depends on DV , and the
total vacancy current or sink strengths in this case is given as

IV = 4⇡rcv(Co � Ci)DV

1�
�
rcv
R

�3

1� 3
2

�
rcv
R

�
+ 1

2

�
rcv
R

�3 . (5.9)

If considered the assumption of low volume fraction R � rcv, then sink
strengths is given as

IV = 4⇡rcv(Co � Ci)DV . (5.10)

The absorption efficiency for this case is given as

 =
Iv

D(Co � Ci)
= 4⇡rcv. (5.11)

The formulation of sink strengths using Laplace’s approach in Eq. (5.5) is
similar to Poisson’s approach Eq. (5.10) [164].

5.2.1.3 Wiederisch’s approach

Wiederisch [164, 165] proposed an additional method to determine the sink
strengths. The same boundary condition is assumed as in the case of Pois-
son’s approach. The total vacancy current is estimated by averaging out the
vacancy concentration at the outer sink. This implies spatial integration of
the vacancy concentration over the sink surfaces in the volume between rcv
and R using Gauss’s theorem. Thus, the vacancy current to this particular
case is given as

IV =
6

b2
DV Pk∆C, (5.12)

where b is the defect hop distance, ∆C = CV � Ce
V with Ce

V being the ther-
mal concentration of the vacancies, Pk is the probability of each defect being
absorbed at sink. In Wiederisch formulation, concentration Ce

V is similar to
concentration C at the sink surface. Therefore, the vacancy current or sink
strength at r = rcv is written as

IV = 4⇡rcv(C � Ci)DV

1�
�
rcv
R

�3

1� 1.8 rcv
R

+
�
rcv
R

�3 � 0.2
�
rcv
R

�6 . (5.13)
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The absorption efficiency for this analytical approach is given as

 = 4⇡rcv
1�

�
rcv
R

�3

1� 1.8 rcv
R

+
�
rcv
R

�3 � 0.2
�
rcv
R

�6 (5.14)

Expressions in Eq. (5.13) yields the same sink strengths as in Eq. (5.5) and
Eq. (5.10) at low sink densities, i.e. R ! 1. Besides, the three approaches
given by formulas Eq. (5.5), Eq. (5.9) and Eq. (5.13) discussed in this section
do not account for the elasticity in their assumptions. In fact, it is difficult to
derive analytical expressions for anisotropic sink strengths and account for
effect of elastic interactions. This is because of the spherical symmetry that is
assumed in the analytical derivations and that is broken by the elastic inter-
actions. Wiedersich’s approach based on averaging the defect concentration
is considered more realistic by F. A. Nichols [164]. In Ref. [160], the author do
not recommend Laplace’s approach as it is equivalent to the assumption of
having infinite sink strength in the medium as it is less accurate than Wieder-
sich’s approach. In this thesis work, we do not discuss the effective medium
approach, which is recommended and described briefly in Ref. [77, 160].

5.2.2 Numerical approaches to sink strengths computation

The analytical calculations of sink strengths are impossible whenever the
sink geometries are complex and the elastic fields generated by the sinks
are an important factor. There are numerical modeling approaches based on
partial differential equations such as diffusion equation and a recently for-
mulated phase-field equation [167] employed to quantify sink strengths. The
stationary regime is extracted using finite-difference methods [101, 168, 169]
or finite-element methods [77, 170, 171, 172] which belongs to partial differ-
ential equations (PDE).In the finite-difference or finite-element methods, the
studies are performed on finite-size volume, including the sink. Further, the
boundary conditions are applied to the point defects concentrations, which
makes it similar to Laplace’s or Poisson’s approaches.

At variance, in the phase-field approach, the complex defects of the mi-
crostructure may be included in the model , which allows accounting for the
migration of point defects in dislocations. Such models are more realistic but
can be inappropriate for the sink strength calculations [77, 101]. Recently, the
diffusion equation approach using the finite-element method has been used
in Ref. [101] to study the microstructural heterogeneities evolution. This nu-
merical scheme is quite extensive and requires a huge amount of CPU time.
They do not consider the lattice structure while modeling the problem. In
BCC steels, the motion of small SIA clusters is able to propagate along a par-
ticular glide direction and to change its gliding direction by rotating [173]
occasionally. Unfortunately, it is difficult to model the rotation events using
partial differential equations (PDE) method.

Another important computational approach to determine sink strengths is
to simulate the diffusion of point defects towards the sink using the KMC
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method. In this method, migration of defects is considered in a simulation
box that contains one or several sinks. This migration of the defects depends
on the various properties of the medium and sink. Periodic boundary condi-
tions are usually applied. Recombination of vacancy and SIA is usually not
considered. The sink is assumed to be immobile, and sink strength for a given
volume and sink concentration is estimated depending on the concentration
of the mobile defect and on its production rate of the involved defect. The
sink strength is then deduced from the average point defect concentration at
the stationary state [174, 175]

k2 =
2N

d2hni (5.15)

where N is the space dimension (N =3 for three-dimensional migration) and
hni is the average number of jumps made by a defect before absorption, d is
the average jump distance. The value of d is a0

p
3⌫/2 for BCC lattice and

a0
p
⌫/2 for FCC lattice, where a0 is the lattice parameter. Another KMC

method employed to evaluate sink strengths is using equation [176]

k2 =
Kp

DC
, (5.16)

where Kp is the production rate per unit time of point defects in the simula-
tion box, D is the respective diffusion coefficient, and C is the average con-
centration of defects. The Eq. (5.15) and Eq. (5.16) are similar to each other as
they are both equal to the inverse of the time spent by one defect before ab-
sorption multiplied by the inverse of the diffusion coefficient. This approach
is more similar to the Wiederisch approach. Both approaches in Eq. (5.15)
and Eq. (5.16) are valid in presence or absence of elastic interactions.

In summary, numerical approaches to the sink strength problems allows us
to consider the elastic interactions naturally. The numerical solution of the
diffusion equation by finite-difference and finite-element allows taking into
account the elastic interactions [77]. The KMC calculations also allow tak-
ing into account the interaction energy, with the precise consideration of the
properties of point defects [176].
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5.3 Characterization of sink strengths: single va-
cancy absorption to the cavity

In this section, we quantify sink strength parameters for two physical mod-
els of point defects. We assess the efficiency of the numerical approaches by
comparing the results obtained in absence of elastic interactions with those
obtained from the analytical methods. The numerical approaches consid-
ered here are based on the theory of absorbing Markov chains introduced in
Chapter. 3.

We quantify the sink strengths defined by

k2
V =

1

⌧DV

=
N

PN
j=1 ⌧

(N)
j DV

(5.17)

where ⌧ denotes the MFPT associated with the uniform distribution is calcu-
lated using expression Eq.(3.25), Dv the diffusion coefficient of the vacancy.
Letting ⌫ denote the vacancy-atom exchange frequency, we have Dv = ↵a2⌫
and ⌫ = ⌫0e

�Em/(kBT ) with Em the migration energy, ⌫0 the Debye frequency
of aluminum, kB Boltzmann’s constant, and T the temperature (600 K), ↵ = 1
for FCC lattice [14]. To compare between simulations and theory, it is conve-
nient to define absorption efficiencies  by re-normalizing the sink strengths
by the cavity concentration:

 = k2
V /Cc, (5.18)

where the cavity concentration Cc = (2R)�3 and R is the average half distance
between sinks (cavity) [177]. For each theoretical approaches reviewed in
Sec. 5.2.1 we compiled the absorption efficiencies in Table.5.1. We consider a

Approach Absorption Efficiency

Laplace 4⇡rcv

Poisson 4⇡rcv
1�⌘3

1� 3
2
⌘+ 1

2
⌘3

Wiederisch 4⇡rcv
1�⌘3

1� 9
5
⌘+⌘3� 1

5
⌘6

Table 5.1: Analytical solution of absorption efficiency by different approaches for
spherical sink geometry [14, 164]. The term rcv is the equal to sum of the cavity
radius and the vacancy radius i.e. rcv = rca + rV . We estimate ⌘ in Wiedersich

approach as rcv/R.
.

model describes the absorption of a single vacancy by a cavity, here in FCC
lattice of aluminum.

The computed absorption efficiencies are displayed in Fig. 5.2. The curve
provided by Wiedersich model ( Table.5.1) has an almost perfect match with
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k2(j) = 1/(⌧jDv) where ⌧j is the MFPT from site j. Their anisotropy, clearly
visible in Fig. 5.4.a, is very moderate, in contrast to the radial dependence
shown in Fig. 5.4.b.

This means that there is no need to account for elasticity to compute sink
strengths of small cavities with respect to vacancies in aluminium under ir-
radiation. Note that the size of the simulation box is restricted to 3 ⇥ 106

sites due to memory constraints, and that the cavity sizes is also modest.
We however expect a higher effect of the elastic field created by interstitial
loops on the absorbing/emitting fluxes of point defects in aluminum [14].
The anisotropy of these fluxes may introduce a substantial angular disper-
sion of sink strengths which should ideally be taken into account in cluster
dynamics simulations. This can be achieved by implementing the approach
developed in a recent work [177] in which the dispersion effect of the dis-
tances between the sinks is correctly accounted for in hybrid cluster dynam-
ics simulations [178].
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5.4 Sink strengths for mixed mobilities

Analytical solutions to sink strengths for the two mobile defect clusters mi-
grating isotropically in the three-dimensional space (3D-3D) are available in
the literature [173]. They can be deduced from the particular case where one
of the defects is immobile (3D-0) and by considering that the diffusion coef-
ficient of the hybrid defect is the sum of the diffusion coefficients of the two
original defects. In Ref [40], the authors have considered small defect clusters
with mixed mobility, involving a migration mechanism between pure 3D-
mobility and pure 1D-mobility [173]. The migration mechanism associated
with 1D/3D mixed mobility consists of random hops of defect clusters along
its 1D glide direction. We refer to the mixed 1D/3D mobility as 1DR mo-
bility, hereafter. Occasionally, these defect clusters rotate and migrate along
new glide direction. The rotation mechanism is thermally activated or may
result from a collision with another defect [174]. It is challenging to derive
the analytical expressions of absorption rates or cluster sink strengths (CSS)
for mixed mobilities that depend on defect geometry, interaction energies,
migration paths, and spatial properties. This type of mixed mobility has not
been implemented in the RECD method so far. We will focus here on the
1DR-1DR migration mechanism of two defect clusters with non-zero rota-
tion frequency. This set-up has been sparsely studied in the literature so far.
The limiting case where the rotation frequencies go to zero corresponds to
the so-called 1D-1D mobility [173].

The schematic representation of 1D-1D mobility is displayed in Fig. 5.5 with
two defect clusters A and B gliding in non-coplanar and distinct directions
in a 3D system. The cluster radii are denoted by RA and RB. The quantity
h is the distance separating the two planes. It is also the minimum distance
separating the two defects. The value of h determines whether the two glid-
ing clusters can agglomerate [173]. If the value of h distance is large enough,
the clusters glide in their respective directions without and possibility to ag-
glomerate. The condition for any two defect clusters to agglomerate before
rotation is to be in an agglomeration slab, i.e., when h  RA+RB. The mixed
mobility of 1D-1D was first considered by Gösele [179] and co-authors. They
showed that it is analogous to the case of a 2D mobile defect with respect to
an immobile sink (1D-1D$ 2D-0). The migration of two non-colinear defect
clusters, A and B, with coplanar glide directions is illustrated in Fig. 5.6. This
model is described geometrically as a 2D random walk with its midpoint in
the plane. The minimum distance between two defect clusters is reached at
the intersection of the two glide directions. Agglomeration occurs when the
distance between the origin and the midpoint becomes equal to the RA+RB

2

and h = 0.

In the following section, we further detail the case of two self-interstitial de-
fect clusters with 1DR-1DR mobility that can agglomerate and explain how
to estimate sink strengths associated with this model. Two algorithms are
used to evaluate sink strengths discussed in Appendix E. The first algorithm
aims at computing the mean first-passage times by solving a linear system of
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5.5 Agglomeration between two interstitial clus-
ters in ↵-Fe

This section presents the model to study the agglomeration kinetics of two
mobile interstitial defect clusters, both evolving with mixed 1DR mobility.
The two clusters A and B are of different radii RA and RB and glide along
with their respective directions with different non-zero rotation frequencies.
The clusters are considered to propagate, and agglomerate, which can be
conceptualized by considering an artificial absorbing sink—the geometrical
representation of the 1DR-1DR mobility as discussed in Sec. 5.4 is applicable
here as well. The crystal lattice considered here is ↵-Fe BCC cubic lattice with
48 symmetries, i.e., 24 rotational and 24 reflections. The transition rate ma-
trix of the 1DR-1DR mobility represents the transition frequencies associated
with the hops.

We implement two different algorithms to estimate sink strengths for this
model. Figure. 5.7 represents the general steps followed by both algorithms.
As a first step, we reduce the transition rate matrix by taking into account
of the cubic symmetries. We introduce a descriptor over the space of con-
figuration, that is here an integer value. For any two distinct configuration,
the two associated descriptor values are different. This allows distinguishing
configurations. We also construct classes of configuration as follow.

Configuration classes are generated by applying the 48 cubic symmetries to
all the configuration and retaining the distinct configurations in each class.
The configuration descriptors are then sorted out in ascending order, and the
smallest one corresponds to the class descriptor. The transition rate matrix
is then constructed with respect to the set of classes. A reduction of the di-
mension of the transition rate matrix by a factor of almost 48 is achieved for
systems large enough.

Algorithm 4 in appendix E describes the compression of the transition rate
matrix and the reduction of the linear system of equations yielding the
mean first-passage times. Subsequently, sink strengths are computed us-
ing Eq. (5.2) where D = DA + DB. Algorithm 5 in appendix E details a
kinetic path sampling algorithm for computing the sink strengths when the
defect concentration is so low that the linear system cannot be solved numer-
ically. Algorithm 5 is based on the factorization and randomization proce-
dure which allows drawing first-passage times and displacement along the
gliding directions.

Figure. 5.8 represents the sequence of hops made by cluster A along the glide
segment before reaching the artificial sink, a process corresponding to lines
14 and 23 in algorithm 5. To assess the efficiency of the developed algo-
rithms, first-passage time distributions are evaluated using both KMC and
kPS algorithms. The results are displayed in Fig. 5.9. It takes few seconds on
Intel i5-8400H processor (running at 2.5GhZ with eight cores) to generate the
distribution with kPS algorithm but few hours with the conventional KMC
algorithm. In the example of Fig. 5.9, the line segment consists of 2001 sites
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number of transient states. As a comparison, the complexity of the conven-
tional KMC algorithm is O(N2). Thus, the kPS algorithm will be expected to
be much more efficient and cheaper than the KMC algorithm for this partic-
ular sink strength problem.
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Figure 5.8: Schematic view of hops for cluster A in glide direction represented as a
segment for 2N � 1 sites where N is the number of transient states.
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Figure 5.9: Comparison of mean first-passage times (MFPT) for N transient states
computed with KMC and kPS methods.
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We finally displayed in Fig. 5.10 the sink strengths estimated directly using
algorithm 4 for three rotation-to-translation frequency ratios (10�6, 10�3 and
1) and with varying the supercell sizes L. We observe that the absorbing ef-
ficiencies may either increase or decrease with L�1, depending on the value
of the rotation-to-translation frequency ratio. Capturing these two opposite
trends in an analytical model will be highly challenging. This shows the rele-
vance of developing efficient computational approaches to directly compute
the sink strengths for defects with mixed mobilities.
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Figure 5.10: Comparison of absorption efficiencies and sink strengths calculated for
the sink absorption model using algorithm 4.
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5.6 Summary

In this chapter, we presented the analytical expressions to compute sink
strengths. We then quantify sink strengths by considering the initial point-
defect distribution homogeneous in space and compared the results obtained
using the numerical approach with those obtained using analytical formulae.
Overall, we show that numerical linear algebra methods enable us to study
the diffusion of a mobile defect around a sink in model system accounting
for elastic dipole interactions and comprising up to million lattice sites. If
linear system becomes too vast, it cannot be solved numerically due to mem-
ory constraints. We briefly describe kinetic path sampling algorithms, im-
plementing the concept of conditioning techniques [139] and able to directly
generate first passage events. We tested algorithm 4 in appendix E, by gen-
erating first-passage times on a segment line and compared it with conven-
tional KMC algorithm. Second approach algorithm 5 is still under progress.
We firmly believe that it may allow computing sink strengths relative to any
kind of defect clusters exhibiting mixed mobilities efficiently [173, 180]. This
is an open-end to this thesis work; we present other avenues of future in
perspectives.





Conclusions

The research work presented in this thesis concerns the modeling of mi-
crostructural evolution in materials under irradiation. The damages created
under irradiation by neutron or charged particles can be point defects like va-
cancies and self interstitial atoms (SIAs) or extended defects such as cavities
and dislocation loops. The evolution in materials is governed by the migra-
tion of point defects, which affects the mechanical properties of the materi-
als. This study aims to characterize the evolution laws of defects near sinks
or recombination to other defects. The primary objective of the thesis was to
develop first-passage algorithms that can characterize the evolution law for
the point defects based on auxiliary absorbing Markov chains (AMC). These
evolutions laws can be used in KMC and to compute sink strengths. This
kind of approach was initially proposed by M. A. Novotny [57], using evo-
lution laws to draw first-passage events in KMC, resorting to AMC. To our
knowledge, only dense solvers have been used in practice so far. In this the-
sis, we aim to use advanced iterative sparse solvers. Furthermore, we chose
the numerical linear algebra approach to study the point defect evolution.

We recall the structure of the thesis and summarize most relevant results
obtained in this work:

• In Chapter 1, we briefly discussed the primary damages caused by the
irradiation and reviewed the different modeling methods to study the
defect evolution.

• In Chapter 2, we detail the theory of Markov chains, the traditional
KMC method and the concept of first-passage processes. We recall the
theory of transition state theory and elastic interaction energies to cal-
culate the transition frequencies for atomic-scale modeling of point de-
fects.

• In Chapter 3, the approach of AMC is applied to characterize rare
events occurring when the diffusion process is trapped within a finite
set of states. The AMC theory yields formal expressions for the tran-
sient evolution operator, the source-to-sink probability fluxes, and the
mean residence times on transient states. Furthermore, we show the re-
versible property of an absorbing processBesides this, we present math-
ematical solution to characterize the transient distribution using eigen-
values and eigenvectors.
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Using iterative sparse solvers, we observe that the evolution of the tran-
sient state is governed only by a fraction of the eigenspectrum. The
most contributing mode is the one possessing the lowest eigenvalue,
and its eigenvector corresponds to the quasi-stationary distribution.
We test the efficiency of the first-passage KMC to the vacancy emis-
sion problem, which exhibits strong energetic trapping. We observe the
quasi-stationary distribution fairly describing the transient evolution.
For the vacancy absorption problem, where trapping is essentially en-
tropic, small but substantial fraction of the slow modes were observed
to contribute to the no-passage distribution and govern the slow decay
of the survival probability.

• In Chapter 4, we developed several algorithms based on the defla-
tion technique to characterize mobile defect absorption kinetics by a
sink. We used Krylov subspace projection techniques that only involve
vector-matrix multiplications and reduce the computational complex-
ity by calculating the exponential of a much lower dimensional tran-
sition rate matrix. Two algorithms Krylov Subspace Model Projec-
tion (KSMP) and Eigenvalue and Krylov Subspace Model Projection
(EKSMP) were developed. The efficiency of these two algorithms was
assessed by comparing the results obtained from the Restarted Krylov
Subspace Projection (R-KSP) method as a reference: survival probabil-
ities and first-passage distributions. The crucial parameter controlling
the convergence of KSMP and EKSMP methods is the dimension of the
Krylov subspace. Overall, we show that it is unnecessary to extract
several eigenmodes to characterize the absorbing kinetics fully.

• In Chapter 5, we illustrate a way to estimate sink strengths parame-
ter; with the help of matrix formulation algorithms. The correctness
of the numerical modeling results are compared with the analytical
Wiederisch and Laplace approaches. Additionally, we introduce a new
hybrid algorithm based on Krylov subspace projection and the kPS
method discussed in Chapter 3. We present an algorithm that quan-
tifies the sink strength for two mobile defects and characterizes their
evolution law before recombination or their absorption to a physical
sink.

To conclude, we show that symmetrizing the transition rate matrix associ-
ated with reversible diffusion processes enables one to apply efficient lin-
ear and eigenvalue solvers. We illustrate a rigorous approach to character-
ize the essential rare events governing the long-term microstructural evolu-
tion of alloys, such as cluster mobilities, sink strengths, and associated first-
passage distributions. All these physical quantities are crucial input param-
eters for larger-scale simulations employing object/event KMC methods or
Rate Equation Cluster Dynamics (RECD). The dependence of cluster mobil-
ities on their size and temperature can possibly be included in larger-scale
models.





Perspectives

The work presented in this thesis is subjected to further improvements and
investigations. Following are the points that are an open-end question of this
thesis:

• In KMC stochastic approach, the master equation provides jump prob-
abilities of the transitioning defects. The irradiation causes long-time
phenomenon such as dislocation and dislocation loops in which one
plane is usually missing. The stochastic approaches are not efficient
enough to study the evolution laws for the long times. With the help of
developed first-passage laws (as discussed in Chapter 3 & Chapter 4,
we can characterize the long-term evolution of the defects. It can be
achieved by resorting the first-passage laws to the traditional OKMC
method with spatial protection for a non-rigid crystal lattice. The entire
evolution law from one state to the other will result in the macro jump.

• The hybrid algorithm with KMC method and conditioning tech-
niques [139] discussed in Chapter 5 is under development. Thus, there
are no supporting results concerning its applications. Nevertheless, we
firmly believe that the algorithm could be more efficient and accurate
to study the recombination kinetics for the point defects.

• Concerning the computation of sink strengths at lower sink densities,
algorithm 5 discussed in appendix E consisting of Krylov subspace pro-
jection technique and KMC method as conditioning techniques [139]
can be implemented to circumvent the curse of dimensionality and
memory constraints.

• We point out that the proposed approach is based on the actual tran-
sition rate matrix on the crystal lattice. It may then straightforwardly
be applied to investigate the anisotropic migration of interstitial clus-
ters, whose diffusion mechanism mixes fast translations and slow ro-
tations. The approach may allow computing sink strengths relative to
any different kind of defect clusters exhibiting mixed mobilities effi-
ciently such as 1DR as discussed in Ref. [173, 180].

• Later the computed value of sink strength in mixed mobilities can be
used as an input parameter in CRESCENDO code [158] which is based
on the Rate Equation Cluster Dynamics (RECD). This has never been
included in RECD so far.





Appendix A

Algorithmic implementation

Adapted from the article "Elastodiffusion and cluster mobilities using ki-
netic Monte Carlo simulations: Fast first-passage algorithms for reversible
diffusion processes", Physical Review Materials 3, 103802 (2019).

A.1 Path factorization

Algorithm 1 is used to compute transition rates, to discriminate transient
and absorbing states and to assemble the associated transition sub-matrices.
Then, algorithm 2 is used to make the path factorization. Note that the char-
acterization of transition rates and transient states can be done on the fly in
algorithm 2. This requires a selection rule for next transient state based on
the transformed transition probabilities, as done in Ref. [85] for simulating
the anomalous diffusion of a defect on a disordered substrate.

A.2 Spacetime randomization

At the N th rank-one update, stochastic probability matrix P(N) subsumes
all possible transitions involving the deleted states in the trapping basin
E = {1, · · · , N}. Although any intermediate matrix P(n) with n 2 E can
be used to randomly generate escapes from any state i 2 E, a trajectory gen-
erated using P(N) is the simplest containing a single transition. On the other
end, reverting back to a standard KMC simulation based on P(0), a detailed
escape trajectory that accounts for all transitions within E can be generated.
Remarkably, it is possible to efficiently construct statistically correct escape
trajectories without ever performing any detailed (and inefficient) KMC sim-
ulation. Space-time randomization is based from the set of conditional prob-
abilities defined for all i and for j > n

R
(n)
ij = P

(n�1)
ij /P

(n)
ij . (A.1)
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Algorithm 1 Assembly of transition sub-matrices.

1: N  1; N tot  1;
2: initial transient state is indexed 1; i N ;
3: while i  N do
4: list the Zi possible transitions of Si;
5: for ` = 1, · · · , Zi do
6: evaluate key for final state associated with `-th transition;
7: if new key then
8: N tot  N tot + 1; j  N tot;
9: add key and its state index j to dictionary;

10: if state transient then
11: N  N + 1 ;
12: end if
13: else . key exists
14: retrieve state index j of existing key;
15: end if
16: evaluate Kij , transition rate from Si to Sj ; . for `-th listed

transition
17: end for
18: i i+ 1
19: end while
20: re-order transient states from 1 to N and absorbing states from N + 1 to

N tot;
21: construct τ (0), P(0) and absorbing transient rate matrix AB from K;

Algorithm 2 path factorization [85] adapted from graph transformation [114]
and an early version [112].

1: construct P(0) and τ (0);
2: if flux enabled then
3: θ(0) = τ (0) � π;
4: end if
5: for n from 1 to N do
6: if adaptation enabled then
7: select new transient state and label it n
8: re-order P(n), τ (n) and possibly θ(n) ;
9: end if

10: compute P(n) by performing rank-one update of P(n�1);
11: compute τ (n) by performing rank-one update of τ (n�1);
12: if flux enable then
13: compute θ(n) by performing rank-one update of θ(n�1);
14: end if
15: end for
16: if flux calculation enabled then
17: compute fluxes from θ(n)

18: end if
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A particular R
(n)
ij yields the probability that an nth order transition from i

to j > n avoids site n when decomposed in term of (n � 1)th order transi-
tions. Prior to describing space-time randomization, the following prelimi-
nary definitions are required. The binomial law of trial number h 2 N and
success probability r is denoted by B(h, r). The probability of s successes is�
h
s

�
rs(1 � r)h�s. The negative binomial law of success number h and success

(escape) probability 1 � p is denoted by NB (h, 1� p). The probability of f
failures before the h-th success is

�
f+h�1

f

�
pf (1 � p)h where p is the failure or

flicker probability (flickers will correspond to round-trips from a given state).
The gamma law of shape parameter h and time-scale ⌧ is denoted by j(h, ⌧).
C↵ denotes the categorical laws whose probability vector is the ↵-th row of
P(N) if ↵  N or of the stochastic matrix obtained from P(0). The symbol ⇠
means “is a random variate distributed according to the law that follows”.
Let A denote the set of absorbing peripheral states. The set of states beyond
the peripheral states (that are non transient and non absorbing) is A [ E, the
complementary of the union of A and E. State ↵ denote the current state of
the system.

After implementation of Algorithm 3, the system has moved beyond the pe-
ripheral set and is disconnected to the trapping basin reached: the current
state ↵ belongs to E [ A in item (6). The gamma law j

⇣
Tn, ⌧

(0)
n

⌘
in (23) sim-

ulates the time elapsed after performing Tn consecutive Poisson processes of
rate 1/⌧

(0)
n . Indeed, after any hop or flicker performed with P(0), the physi-

cal time must be incremented by a residence time drawn in the exponential
distribution of time-scale ⌧

(0)
n . Note that algorithm (3) generalizes the time

randomization procedure proposed by Mason and coworkers [181] for the
second-order residence time algorithm [112].

In practice, several transitions exiting E are typically recorded in the hop-
ping matrix. As a result, the elapsed physical time is generated for several
escaping trajectories simultaneously. The generated path may also return to
the same trap several times prior to reaching another trap. In practice, the
current path factorization is re-used as many times as necessary.

A.3 Reformulation of path factorization

A.3.1 LU decomposition

We herein establish the connection between rank-one updates of Sec. 3.3.5
and the Gauss-Jordan elimination method on the scaled transition rate matrix
BA. Scaling matrix B is set to ⌧I or Diag(A)�1 where ⌧ = min(1/Aii : 1  i 
N).

More precisely, we show that path factorization entails decomposition BA =
L+DU+ when the initial stochastic matrix P(0) is set to I � BA. Matrix D

is diagonal and its diagonal elements Dnn are equal to 1� P
(n�1)
nn , the escape

probability from state n. The quantity P
(n�1)
nn is the probability of a round-trip
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Algorithm 3 Kinetic path sampling [85]: subset E = {1, · · · , N} encompasses
the transient states and subset A = {N + 1, · · · , Ntot} includes absorbing
peripheral states; system is initially in state ↵ 2 E [ A

1: define Nc ⇥Nc hoping matrix H(N) and set its entries to zero;
2: while ↵ 2 A [ E do
3: draw j / C↵;
4: increment H(N)

↵,j by one;
5: ↵ j; . move current state ↵ to j
6: end while . ↵ 2 A [ E

7: for n = N to 1: do
8: evaluate P(n�1) ;
9: deallocate P(n) ;

10: for i 2 {E [ A} \ {n} and j 2 {n+ 1, ..., Nc} do
11: evaluate R

(n)
ij = P

(n�1)
ij /P

(n)
ij

12: draw H
(n�1)
ij ⇠ B

⇣
H

(n)
ij , R

(n)
ij

⌘

13: end for
14: for i 2 {E [ A} \ {n} do . count new hops from i to n:
15: H

(n�1)
in =

P
j2{n+1,...,Nc}

H
(n)
ij �H

(n�1)
ij

16: end for
17: for j 2 {n+ 1, ..., Nc} do . count hops from n to j

18: H
(n�1)
nj = H

(n)
nj +

P
i2E\{n} H

(n)
ij �H

(n�1)
ij

19: end for
20: hn =

P
j2{n+1,...,Nc}

H
(n�1)
nj . count hop number from n,

21: H
(n�1)
nn ⇠ NB

⇣
hn, 1� P

(n�1)
nn

⌘
. draw flicker number

22: Tn = hn +H
(n�1)
nn . evaluate hop number from n,

23: ✓̃n ⇠ j
⇣
Tn, ⌧

(0)
n

⌘
. convert to residence time in n,

24: deallocate H(n) and R(n);
25: end for
26: evaluate first-passage time ⌧̃ (N) =

P
`2E[A ✓̃` associated with the path

generated in (2);
27: increment the physical time t by ⌧̃ (N).
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from the same state. We next define three matrices L+
ij , U

�
ij and U+

ij whose
entries are initially set to zero. At the nth update, the nth columns L+

in and
U�
in are filled by setting

L+
in =

8
><
>:

P
(n�1)
in � Iin

P
(n�1)
nn � 1

if i � n

0, if i < n

, (A.2)

U�
in =

(
Iin if i � n

P
(n�1)
in if i < n

(A.3)

The nth row U+
nj is filled as

U+
nj =

P
(n�1)
nj � Inj

P
(n�1)
nn � 1

. (A.4)

We have

L+
in � U�

inD
�1
nn = � P

(n�1)
in

1� P
(n�1)
nn

, (A.5)

DnnU
+
nj = P

(n�1)
nj � Inj. (A.6)

Since P
(n�1)
ij = 0 for j  n � 1, matrix U+ remains upper triangular after

the nth row addition. The nth rank-one update of Sec. 3.3.5 amounts to con-
structing P(n) as follows:

P
(n)
ij = P

(n�1)
ij +

�
L+
in � U�

inD
�1
nn

�
DnnU

+
nj, (A.7)

where P
(n)
ij = 0 for j  n, as required. This property holds by induction up to

n = N . Recall that the probabilities of transitions from i to j (j > n) subsume
the canceled probability of all possible transitions from i to n. This ensures
that the transformed matrices P(n) remain stochastic.

Summing relation (A.7) from n = i to n = N when i  N yields the relation

P
(N)
ij = P

(i�1)
ij + L+

iiDiiU
+
ij �

NX

n=i

U�
inU

+
nj, (A.8)

= Iij �
NX

n=i

U�
inU

+
nj, (A.9)

where we substituted Iij for P
(i�1)
ij + L+

iiDiiU
+
ij . Let U+ and U� denote the

N ⇥ N upper triangular submatrices obtained by restricting U+
ij and U�

ij to
the trapping states i, j  N . Since P

(N)
ij = 0 for i, j  N , we obtain

I = U�U+, (A.10)
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recalling that I is the N ⇥ N identity matrix. Relation (A.10) entails that U�

is the inverse of U+. Summing relation (A.7) from ` = 1 to ` = i � 1 yields
the relation

P
(i)
ij = P

(0)
ij +

iX

n=1

L+
inDnnU

+
nj � U�

ii U
+
ij .

Since P
(i)
ij = Iij � U�

ii U
+
ij , we obtain the following factorization

iX

n=1

L+
inDnnU

+
nj = Iij � P

(0)
ij = BiiAij.

We eventually obtain the decomposition of the N ⇥ N scaled rate matrix
BA into the product of a lower triangular matrix, a diagonal matrix D =
diag(D11, D22, · · · , DNN) and an upper triangular matrix:

BA = L+DU+. (A.11)

Matrix U� being the inverse of U+, inverting A from the factorization still
requires inverting the lower triangular matrix L+. Let L� denote the inverse
of L+. D being diagonal and positive definite, its inverse, denoted below by
D�1, exists. Matrices L± can be written as products involving the following
elementary matrices

L±
n = I±

X

i 6=n

eiLinen. (A.12)

We have in particular L+ = L+
1 L

+
2 · · ·L+

N and L� = L�
NL

�
N�1 · · ·L

�
1 . From the

matrix products above and property L+
nL

�
n = I, we deduce that L+L� = I,

hence L� corresponds to the inverse of L+. The decomposition of L� and
U� into product of triangular elemental matrices are used in the updating
rule (3.33) to compute ~τ (N), the vector of mean first-passage times. The se-
quential procedure (3.33) amounts to applying vector b = B~1 on matrices
L�, D�1 and U�, successively:

b =
⇣
⌧
(0)
1 , ⌧

(0)
2 · · · , ⌧ (0)N

⌘T

L�b =
⇣
⌧
(0)
1 , ⌧

(1)
2 · · · , ⌧ (N�1)

N

⌘T

D�1L�b =
⇣
⌧
(1)
1 , ⌧

(2)
2 · · · , ⌧ (N)

N

⌘T

U�D�1L�b =
⇣
⌧
(N)
1 , ⌧

(N)
2 · · · , ⌧ (N)

N

⌘T
.

Replacing the product U�D�1L� by A�1B�1 in the last equation yields the
expected expression for the mean first-passage time:

A�1~1 = τ (N).
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As for time randomization (algorithm 3 ), the information processed to eval-
uate the conditional probabilities R(n)

ij defined in (A.1) can easily be retrieved
by resorting to (A.7) and the stored entries of L+, D, U+ and U�.

A.3.2 Cholesky decomposition

Whenever the underlying Markov process is reversible, the symmetric posi-
tive definite matrix AB = SR�1ARS can be defined, where diagonal matrix
R is defined in (3.15) from the equilibrium distribution ⇢. Cholesky decom-
position can then be applied, yielding

AB = LBDLBT (A.13)

where LB is a N⇥N lower triangular matrix with ones on the diagonal. Since
D, R and S commute, the absorbing transition rate matrix writes

BA = (SR)LB(SR)�1D(SR)LBT (SR)�1 (A.14)

Comparing to L+DU+ decomposition enables one to identify the following
relations

L+ = (SR)LB(SR)�1

U+ = (SR)LBT (SR)�1

We deduce that U+ = (SR)2L+T (SR)�2 and that the inverse of L+ is L� =
(SR)2U�T (SR)�2.





Appendix B

Restarted Krylov Subspace
Projection

The restarted Krylov subspace algorithm proposed in ref.[134], generates
Krylov basis of dimension `. In later step, that algorithm updates the ap-
proximation to f(A)b and discards the basis vectors except the one which
serves as an initial vector of the next Krylov subspace [182]. The following
derivation is to recall the restarted setup using two Lanczos decomposition

AV1
` = V1

`T
1
` + T 1

`+1,`v
1
`+1e

T
` (B.1)

AV2
` = V2

`T
2
` + T 2

`+1,`v
2
`+1e

T
` (B.2)

where V1 and V2 are the orthornormal bases of K`(A,v1) and K`(A,v`+1).
T1

` and T2
` are two tridiagonal matrices. eT` denotes the `th unit coordi-

nate vector 2 R
`. Together the columns of W2` := [V1

` ,V
2
` ] forms a basis

of K2`(A,b). On combining the two Lanczos decomposition Eq.(B.1) and
Eq.(B.2) to Lanczos-like decomposition we get,

AW2` = W2`T2` + T 2
`+1,`v

2
`+1e

T
2` (B.3)

where T2` is the tridiagonal block Matrix represented as,

T2` :=


T1

` O
T 1
`+1,`e1e

T
` T2

`

�
. (B.4)

The restarted method of Krylov subspace approximation associated to
Eq.(B.3) is given as,

f2` = �W2`f(T2`)e1. (B.5)

The f(T2`) term exhibits the following block lower triangular structure,

f(T2`) =


f(T1

`) O
X2,1 f(T2

`)

�
. (B.6)
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Hence, the approximation Eq.(B.5) has the form,

f2` = �V1
`f(T

1
`)e1 + �V2

`X2,1e1 (B.7)

where the first term of Eq.(B.7) is evaluated using Arnoldi approximation for
the basis K`(A,b). Once the X2,1e1 term is estimated, the basis vectors of V1

`

are discarded and Eq.(B.7) yields the basis of restarting method by updating
the Arnoldi approximation. The approximation after m restart cycles is given
as

fm = �Wm`f(Tm`)e1 = f (m�1) + �Vm
` [f(Tm`)e1](m�1)`+1:m` (B.8)

where the subscript of the last term in Eq.(B.8) represents the vector with the
last ` components of f(Tm`)e1 [134].





Appendix C

Cholesky preconditioning

CPU times for performing ESMP or EKSMP simulations are compiled in
Tables C.1, C.2 and C.3. From data reported in Table C.1, we observe that
Cholesky preconditioning (CP) should be performed whenever possible be-
cause it reduces the overall CPU times and improves the convergence of
the KS solver. Eigenvalues being pooled in bundles for symmetry reasons,
eigenvectors appears simultaneously in the extraction algorithm. Handling
the eigenvalue degeneracy is facilitated by the inverted iterations within CP.
CP is limited in memory because the computed Cholesky factor is a denser
matrix. The largest system CP can solve contains 217245 transient state, as
shown in table C.2. For the larger systems reported in Table C.3, the QSD
eigenvector was successively computed using KS solver without precondi-
tioning up to 905681 transient states.
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Input Output

CP NEV
CP Time EPS Time Converged

NCV Result
(s) (s) Eigenpairs

Disabled

1 - 8.93 ·101 1 16 C
5 - 1.23 ·102 1 20 D

10 - 1.30 ·102 2 25 D
30 - 1.91 ·102 21 60 D
40 - 2.25 ·102 31 80 D
50 - 2.35 ·102 53 100 C
60 - 1.91 ·102 60 120 C
70 - 1.94 ·102 70 140 C
80 - 2.34 ·102 82 160 C
90 - 2.45 ·102 90 180 C

100 - 2.89 ·102 102 200 C

Enabled

1 1.58 ·100 1.55 ·101 1 1 C
5 5.53 ·100 1.98 ·101 7 7 C

10 5.92 ·100 1.99 ·101 11 11 C
30 1.54 ·101 3.13 ·101 37 60 C
40 1.94 ·101 3.55 ·101 42 80 C
50 2.06 ·101 3.52 ·101 60 100 C
60 2.20 ·101 3.70 ·101 64 120 C
70 2.33 ·101 3.99 ·101 73 140 C
80 2.66 ·101 4.37 ·101 81 160 C
90 3.05 ·101 4.71 ·101 90 180 C

100 3.75 ·101 5.69 ·101 114 200 C
3500 1.52 ·103 4.73 ·103 3539 4000 C

Table C.1: CPU time taken by ESMP method to extract the indicated number of
eigenvalues (NEV) for the vacancy absorption model. The simulations are

performed using a single core of an Intel i5-8400H processor (running at 2.5GhZ).
Parameter NCV represents the maximum dimension of the working subspace to be

used by the solver. In inputs, Cholesky preconditioning (CP) may be enabled or
disabled. In the outputs, C and D of the result column denote whether simulations

have converged or diverged, respectively.
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Cell size (Å) Number of Transient States (N ) Time (s)

66.66 14141 3.55 ·100

74.74 21085 7.83 ·100

86.16 34801 2.13 ·101

98.98 53053 4.36 ·101

107.06 68061 7.06 ·101

127.26 116921 2.36 ·102

139.38 154973 4.83 ·102

147.46 184381 6.31 ·102

151.5 200369 7.91 ·102

159.58 217245 9.80 ·102

Table C.2: CPU time taken by ESMP to extract 10 eigenvalues for the indicated
number of system size (N ) using KS solver and Cholesky preconditioning from

MUMPS.

Cell size (Å) Number of Transient States (N ) Time (s)

74.74 21085 4.42 ·101

86.86 34801 1.11 ·102

98.98 53053 2.33 ·102

107.06 68061 4.10 ·102

119.18 95313 5.23 ·102

127.26 116921 7.47 ·102

139.38 154973 1.20 ·103

147.46 184381 1.57 ·103

151.50 200369 1.80 ·103

159.58 235033 2.62 ·103

167.66 273441 3.26 ·103

187.86 387101 5.66 ·103

208.06 497757 9.33 ·103

248.46 905681 2.38 ·104

Table C.3: CPU time to evaluate survival probability distributions for the
indicated number of system size (N ) using EKSMP method with (k, `) = (1, 50)

and KS solver without Cholesky preconditioning.





Appendix D

Theory of Elasticity

D.1 Strain Tensor

The theory of elasticity describes the mechanics of solid bodies. The solid-
body tends to deform under applied forces, i.e., there is a change in shape
and volume. When the body is deformed, every point in the structure is
displaced. Let us consider a particular point whose radius vector before de-
formation is denoted by r, and after deformation by r0. The displacement
due to deformation is given by

u = r0 � r (D.1)

called the displacement vector. The coordinates r0i of the displaced point
are the function of coordinate ri before the displacement as represented in
Fig. D.1. So, the displacement vector ui as a function of coordinates

ui = r0i � ri (D.2)

We define the measure of distortion tensor @ui/@rj in terms of vector dr be-
fore deformation that has been transformed as vector dr0 after deformation.
As represented Fig. D.1, a small cube becomes parallelepiped after deforma-
tion such that

dr0i =
⇣
�ij +

@ui

@rj

⌘
drj (D.3)

where �ij is the Kronecker delta which holds the values 1 or 0 according to
whether i and j are or are not equal, and the summation over all the repeated
indices are implicit1. The distortion tensor is made free from any reference of

1Einstien summation convention
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u

r’
r

dr1

dr2

dr 3

u1(r1,r2,r3)

u1(r1+dr1,r2,r3)

u3(r1,r2,r3+dr3)

u3(r1,r2,r3) u2(r1,r2,r3)

u2(r1,r2+dr2,r3)

dr’2

dr’1

dr’ 3

(a)

(b)

Figure D.1: Deformation of a solid body.

oriental of an elementary mesh and the strain tensor is defined by

"ij(r
0) =

1

2

" 
�in +

@un

@ri

! 
�nj +

@un

@rj

!
� �ij

#

=
1

2

 
@ui

@rj
+

@uj

@ri
+

@un

@ri

@un

@rj

! (D.4)

The expression represented in Eq.(D.4) provides the change in the shape and
volume when a body is deformed. From its definition, we can see that it is
symmetrical, such that

"ij = "ji (D.5)

When a body is deformed, the radius vector between any two points change
by the factor of the displacement vector. Let us consider two points, whose
radius vector joining before deformation is dri. After deformation, this ra-
dius vector joining the same two points after the deformations is dr0i = dri +

dui. The distance between the points is given as dl =
q�

dr21 + dr22 + dr23
�

be-

fore deformation, and dl0 =
q�

dr021 + dr022 + dr023
�

after deformation. Apply-
ing the general summation rule, we have dl2 = dr2i , dl02 = dr02i = (dri + dui)

2.
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The length element after the deformation can also be written as

dl02 = dl2 + 2"ijdridrj. (D.6)

For the small deformations, the strain tensor corresponds to the symmetric
part of the the distortion tensor given as

"ij(r) =
1

2

 
@ui

@rj
+

@uj

@ri

!
. (D.7)

Due to the absence of internal torque, there are no energetic contributions
and the anti-symmetric part of the distortion tensor.

D.2 Stress Tensor

A solid body is said to be in thermal equilibrium if it is not deformed by
means of any force. If the deformation occurs, the molecules in the body
tends to arrange and try attain the equilibrium. This happens due to the pres-
ence of internal forces, commonly known as internal stresses. These forces
are present due to the force of interaction between the molecules. However,
these forces are short range in action, and are considered negligible in the
macroscopic theory of elasticity. So, the forces which causes internal stresses
are the forces act only on the surface of the solid body. Let us consider the to-
tal force F acting on some portion of the untrained solid body. The total force
is equivalent to the summation of all the forces � ~F on all the volume element
�V of the strained body. Mathematically, the resultant total force can be con-
sidered as the sum of the forces exerted on the surface of the body i.e. as an
integral over the surface2. Thus, for any part of the body, the three compo-
nents of the resultant internal stresses

R
FidV can be written as integral over

surface3 The vector Fi must be the divergence rank two tensor.

�Fi =

Z

�V

fidV +

I

�S

�ijdSj (D.8)

where �ij is the stress tensor that defines the internal stresses [93]. If there is
mechanical equilibrium, then total resultant force is written as

Fi =
@�ij

@rj
(D.9)

The total force on any volume can also be written as
Z

FidV =

Z
@�ij

@rj
dV =

I
�ijdSj (D.10)

2As per Newton’s third law, the forces on some part of the solid body considered act on
one another provide zero resultant force.

3Applying Divergence theorem



138 Chapter D: Theory of Elasticity

where dfj are the surface element df components along the outward nor-
mal [96].

The torque T of the force F is defined as an anti-symmetrical rank two tensor
which has components such as Firj � Fjri, where ri are the coordinated of
the point where force is exerted4. As total force on any volume, the moment
can also be expressed as integral over surface

Tij =

Z  
@�ik

@rk
rj �

@�jk

@rk
ri

!
dV (D.11)

=

Z
@(�ikrj � �jkri)

@rk
dV �

Z  
�ik

@rj
@rk
� �jk

@ri
@rk

!
dV (D.12)

where the first term can be written as the divergence of a well defined vector
field and is thus identified as the only torque contribution. The second inte-
gral in Eq.(D.12) is therefore equal to zero. Since @rj/@rk is the unit tensor
�jk, we have �ik�jk = �ij and similarly �jk�ik = �ji. The stress tensor must
therefore be symmetrical

�ij = �ji. (D.13)

4The torque is defined as the vector product of F⇥r.





Appendix E

Algorithm for 1D-1D mobility

Algorithm 4 details the computational steps for evaluating the sink strength
associated with the agglomeration kinetics of two mobile defects. The al-
gorithm can possibly applied to any combination of migration mechanisms:
1DR-1DR, 1D-1D , 1DR-3D, 1DR-0, 3D-3D or 3D-0 (refer to Section. 5.4 for
an explanation of the notations) in cubic lattices. The algorithm is applied to
the agglomeration of two interstitial clusters both migrating through the 1DR
mechanism in BCC crystal structure corresponding to ↵-iron. The state space
comprises all the possible positions and orientations of two interstitial clus-
ters in a periodically replicated supercell. The supercell here is a BCC lattice.
Note that the algorithm involves solving a linear system whose dimension is
greatly reduced by accounting of the 48 cubic symmetries of BCC lattice.
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Algorithm 4 Numerical computation of sink strengths by solving a reduced
linear system involving the compressed transition rate matrix.

1: Construct the linear transformations Ts with s 2 N
?
48 associated with the

48 cubic symmetries;
2: Assign a descriptor D(S) to each supercell state S;
3: Determine the N transient states and the Na absorbing states;
4: Index the transient states as Sn with 1  n  N ;
5: Set class index i to 0 ;
6: for n = 1, · · · , N do . Construct classes
7: Evaluate class descriptor as Dc(Sn) = minD(Ts(Sn)) among s 2 N

?
48;

8: if new class then
9: i i+ 1 ;

10: Determine � = argminD(Ts(Sn)) among s 2 N
?
48 ;

11: Define class-representative state as Sc
i = T�(SN);

12: end if
13: end for
14: Define the number of classes by setting N c = i ;
15: for i = 1, · · · , N c do . Compute class cardinal ci
16: Set ci to the number of distinct states in {Ts(S

c)/s 2 N
?
48}

17: end for
18: Check that N =

PNc

i=1 ci
19: Set compressed transition rate matrix Ac to zero
20: for n,m = 1, · · · , N do . Construct Ac

21: if An,m is non zero then
22: Determine class index i (resp. j) of state Sn (resp. Sm);
23: if new pair (i, j) then
24: Set Ac

ij to Anm;
25: end if
26: end if
27: end for
28: Solve compressed linear system

PNc

j=1 A
c
ijcj⌧j = 1 with unknown τ =

(⌧1, · · · , ⌧Nc)T representing MFPT vector with respect to the classes;
29: Compute MFPT from uniform distribution ⌧̄ = 1

N

PNc

i=1 ci⌧i ;
30: Compute sink strength as : k2 = 1

⌧̄(DA+DB)
;
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Algorithm 5 Computation of sink strengths associated with the agglom-
eration of two interstitial clusters with mixed 1DR mobility. The first-
intersection times are drawn using the recursive kPS algorithm described in
Chapter 5. Its algorithmic complexity is logarithm in the number of transient
states.

1: Construct supercell and transition rate matrix; . Call of Algorihtm 4
2: Draw initial cluster configuation from uniform distribution;
3: for m = 1, · · · ,M do
4: while configuration not in agglomeration slab do . free propagation
5: Draw total number of hops prior next rotation from geometric dis-

tribution;
6: Dispatch hops between A and B defects using binomial law;
7: Dispatch hops between backward and forward hops using bino-

mial law for both defects;
8: Draw defect that will rotate using binomial law;
9: Draw elapsed time from total hop number using Gamma law;

10: Check whether new configuration in agglomeration slab by com-
puting the distance between the two glide lines;

11: end while . Configuration in agglomeration slab
12: Read agglomeration probability ⇡agg from table;
13: Draw first-rotation time ;
14: Draw first-intersection time for both defects
15: if first-intersection time lower than first-rotation time then
16: Synchronize defects to first-intersection time ;
17: else
18: Synchronize defects to first-rotation time ;
19: end if
20: while physical time lower than first-rotation time do
21: Draw first-intersection time for defect away intersection
22: if first-intersection time lower than first-rotation time then
23: Move defects away intersection to intersection
24: Synchronize other defect at intersection by free propagation;
25: else
26: Synchronize both defects to rotation-time;
27: Exit while loop;
28: end if
29: if Agglomeration then
30: Update number of agglomeration ⌫ag;
31: Draw new configuration from uniform distribution;
32: Exit while loop;
33: end if
34: end while
35: Monitor elapsed physical time in ✓m;
36: end for
37: Evaluate overall diffusion coefficient D = DA +DB;
38: Evaluate the standard estimate of sink strengths as k2 = ⌫ag

✓MD
;

39: Evaluate the conditioned estimate of sink strengths as k2 =
1

✓MD

PM
m=1 ⇡

ag
m ;





Appendix F

Résumé du manuscrit

L’évolution microstructurale des matériaux nucléaires est déterminée par
l’agglomération ou la recombinaison de défauts créés sous irradiation neu-
tronique. Ces défauts sont souvent des lacunes, des atomes interstitiels, des
dislocations, rassemblés en petits ou grand amas de défauts. Il est donc es-
sentiel de prédire la cinétique des défauts d’irradiation pour comprendre
comment les propriétés mécaniques des matériaux évoluent dans le temps.
De nombreuses étude théoriques permettent de d’écrit la cinétique de vieil-
lissement des matériaux et les conséquences qui en découlent sur les pro-
priétés.

Dans cette thèse, nous discutons de la cinétique de vieillissement des matéri-
aux à l’aide d’une l’approche numérique. Pour cela, nous prenons en compte
les fréquences de sauts élémentaire des défauts ponctuels à l’échelle atom-
ique et nous faisons intervenir une équation maîtresse régissant l’évolution
temporelle d’un vecteur de probabilité d’état à partir d’un état initial donné.
Nous avons utilisé la théorie des états de transition et la théorie de l’élasticité
pour calculer les fréquences de saut et construire la matrice des taux de tran-
sition, qui est l’ingrédient crucial de l’équation maîtresse.

Dans cette thèse, des techniques numériques non-stochastiques sont pro-
posées pour caractériser le mouvement de défauts ponctuels individuels mi-
grant sur de longues distances avant de s’agglomérer avec d’autres défauts
mobiles ou d’être absorbés par un puits, typiquement un défaut station-
naire étendu. L’approche est basée sur la théorie des chaînes de Markov
absorbantes dans lesquelles les états absorbants correspondent aux recom-
binaisons de défauts ou aux absorptions de défauts mobiles par des puits
fixes. Les mouvements des défauts sont alors entièrement déterminés par la
distribution des temps de premier passage vers des sites distants, la distribu-
tion des non-passages et les flux de probabilité vers les états absorbants. Ces
quantités sont dérivées directement des propriétés spectrales de la matrice
des taux de transition. Elles définissent également les lois probabilistes pour
les événements non locaux qui peuvent ensuite être simulés par l’algorithme
de Monte Carlo cinétique de premier passage. En outre, nous présentons
également comment les temps de premier passage permettent de calculer
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les forces de puits ou les efficacités d’absorption, qui sont les paramètres
d’entrée cruciaux des équations de cinétique chimique considérées dans les
simulations de dynamique d’amas.

En supposant que les défauts migrent selon un processus de diffusion
réversible, nous montrons que la matrice de taux de transition d’absorption
est diagonalement similaire à une matrice définie positive symétrique. Cette
caractéristique facilite considérablement l’extraction de ses propriétés spec-
trales par des solveurs itératifs à faible densité. Dans un premier temps, nous
testons l’efficacité des différents solveurs itératifs. Ensuite, nous démontrons
l’efficacité de l’approche numérique en calculant directement les propriétés
d’élasto-diffusion d’une lacune autour d’une cavité dans l’aluminium et en
mesurant la diffusivité de petits amas de solutés dans des aciers alliés à faible
teneur en manganèse. Par ailleurs, nous évaluons également l’efficacité de
divers schémas mathématiques pour caractériser les lois d’évolution d’un
défaut ponctuel près d’un puits. En particulier, nous développons un algo-
rithme combinant la projection sur des sous-espaces de Krylov et la défla-
tion des modes propres. Pour ce cas, nous choisissons le système modèle
qui décrit l’absorption d’une lacune par une cavité dans l’aluminium. Nous
montrons alors qui’un petit sous-espace de Krylov déflaté par l’unique mode
propre correspondant à la distribution quasi-stationnaire est capable de cap-
turer fidèlement la cinétique d’absorption du défaut.

Enfin, nous présentons de deux approches rigoureuses pour caractériser les
événements rares essentiels qui régissent l’évolution microstructurale à long
terme des alliages, telles que les mobilités des amas, les forces d’absorption
et les distributions de premier passage associées. La première approche est
basée sur l’algorithme cinétique de Monte Carlo et la secondé sur les événe-
ments de premier passage, qui peuvent être mis en œuvre efficacement pour
calculer les forces de puits de petits amas d’auto-interstitiels migrant rapide-
ment le long d’une direction de glissement et tournant occasionnellement.
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1. S. Kaur, M. Athènes, J. Creuze, "Absorption kinetics of vacancies by cavities
in aluminium: Numerical characterisation of sink strengths and first passage
statistics through Krylov subspace projection eigenvalue deflation", Journal
of Computational Physics, 2022 (DOI)

2. M. Athènes, S. Kaur, G. Adjanor, T. Vanacker, & T. Jourdan, "Elastod-
iffusion and cluster mobilities using kinetic Monte Carlo simulations: Fast
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Materials, 2019 (DOI)
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