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Annual meeting of the public health doctoral network “Réseau Doctoral en Santé Publique”, 

10-11 June 2021, Rennes. 

*presenting author 

 

3. Posters 

 Chaker, J.*, Kristensen, D.M., Jégou, B., David, A., Développements analytiques pour la 

caractérisation non-ciblée de l'exposome chimique dans des matrices biologiques 

humaines, 12th Annual meeting of the Réseau Francophone de Métabolomique et 

Fluxomique, 21-23 May 2019, Clermont-Ferrand, France. 

 

 Chaker, J.*, Kristensen, D.M., Chevrier, C., Jégou, B., David, A., Assessing sample 

preparation methods for HRMS-based human chemical exposomics: the case of plasma 

and serum, 17th Annual Conference of the Metabolomics Society, 22-24 June 2021, 

Online. 

*presenting author 

 

4. Large-scale collaboration  

 Participation to the NORMAN Network’s first collaborative trial in biota (i.e. freeze-dried 

whole fish homogenate samples from a contaminated and a reference site). The efficiency 

of reference and in-house sample preparation methods as well as suspect and non-

targeted screening workflows were compared between 16 labs. Two months of this PhD 

were dedicated to this task. A publication titled “What’s in the fish? Harmonization efforts 

in sample preparation methods for suspect and non-target screening in biota” summarizing 

this collaborative trial’s findings is in preparation. The implementation of the workflow 

developed in this PhD (from sample preparation to annotation) resulted in the most 

successful identification of spiked compounds for LC-HRMS among 16 participating 

laboratories, and was deemed of interest for further harmonization efforts. 
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5. Outreach and science popularization activities 

 Scientific animation of the French School of Public Health (EHESP) stand on the chemical 

exposome at the Festival of Science, 05-06 October 2021, Rennes. 

 

 Scientific animation of the joint French School of Public Health (EHESP) and Irset stand 

on the chemical exposome at the Festival of Science, 13-15 October 2020, Rennes. 

 

 Scientific conception of the joint French School of Public Health (EHESP) and Irset stand 

on the chemical exposome at the Festival of Science, July-October 2020, Rennes. 

 

 Scientific animation of the French School of Public Health (EHESP) stand on urban health 

at the Festival of Science, 6 October 2019, Rennes. 

 

 Interviewed for the Swiss radio RTS’s program “CQFD” titled “L’exposome ou comment 

l’environnement agit sur notre santé” regarding the concept of the exposome and its 

implementation. Broadcasted 15 May 2019. 

 

6. Supervising and training 

 Training of all new team members (5 postdoctoral researchers) to sample preparation, LC-

HRMS analysis, data processing and annotation since 2019.  

 

 Supervising of Ibrahim Maras during his master’s degree internship, « Applications 

d’approches non-ciblées par UHPLC-ESI-HRMS pour caractériser l’exposition prénatale 

aux mélanges de xénobiotiques”, March 1, 2020 – August 17, 2020. 

 

 Training of Habiba Selmi during her master’s degree apprenticeship, « Identification de 

métabolites de paracétamol issus du microbiote intestinal par analyses non-ciblées par 

UHPLC-ESI-HRMS et HRMS/MS » to non-targeted approaches (including sample 

preparation, LC-HRMS analysis, data processing and annotation), January 1, 2021-August 

31, 2021. 

 

 Training of Jaroslav Semerad (postdoctoral fellow from the Czech Academy of Science, 

Prague) to non-targeted data processing and annotation to characterize water samples. 

November 8, 2021 – December 3, 2021. 
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« Si le problème a une solution, il ne sert à rien de s'inquiéter. Mais s'il n'en a pas, alors 

s'inquiéter ne change rien. » 

Proverbe tibétain 
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1. Introduction 

Les maladies chroniques, telles que les cancers, les maladies cardio-vasculaires ou encore 

les diabètes étaient estimées responsables de 71% de la mortalité mondiale en 20181. 

L’origine de la survenue de ces événements de santé multifactoriels a d’abord été investiguée 

au travers du Human Genome Project (HGP), qui a permis de procéder à un séquençage des 

3 milliards de paires de bases du génome humain à la suite d’un effort international pendant 

13 ans2. Ce projet a permis de mener des études d’association pangénomiques afin d’identifier 

des facteurs génétiques de susceptibilité à certains événements de santé3. Bien que plusieurs 

variants génétiques aient pu être associés à certains états de santé, il a également été 

constaté que les maladies considérées ne se déclenchaient que pour une partie des individus 

présentant ces variants4. Ce phénomène, appelé pénétrance, dépend de nombreux facteurs, 

tels que l’importance de la voie métabolique affectée, l’existence de voies métaboliques 

alternatives, ou encore les interactions avec l’environnement4. Dans ce contexte, Christopher 

Wild définit en 2005 le concept d’exposome, marquant le début d’un intérêt croissant de la 

communauté scientifique pour la caractérisation des liens existant entre les facteurs 

environnementaux et la survenue d’événements de santé défavorables, incluant les maladies 

chroniques5. L’exposome est alors définit comme étant l’ensemble des expositions 

environnementales (incluant des facteurs de style de vie), à partir de la période prénatale. En 

2012, il étend cette définition pour prendre en compte les réponses biologiques (i.e. 

l’exposome interne) à ces facteurs environnementaux6. La caractérisation de l’exposome est 

donc une tâche complexe, puisqu’elle implique de capturer des facteurs de natures très 

diverses (socioéconomiques, physiques, biologiques, chimiques, etc.) et qui évoluent au cours 

de la vie. En pratique, il n’existe actuellement pas de moyen dynamique de mesurer 

l’exposome ; il est donc souvent entrepris de se concentrer sur des périodes particulièrement 

sensibles, telles que la période prénatale, l’enfance, l’adolescence, ou toute autre période 

d’intérêt vis-à-vis de l’événement de santé considéré. De plus, la caractérisation de 

l’exposome est souvent partitionnée en fonction de la nature des facteurs environnementaux 

considérés. Dans le cadre de cette thèse, c’est l’exposition humaine aux contaminants 

chimiques (i.e. les molécules exogènes dont des xénobiotiques), ou l’exposome chimique 

humain interne, qui est considéré, puisque cette exposition est fortement suspectée de 

contribuer à la survenue d’évènements de santé délétères.  

La mesure de l’exposition des humains aux xénobiotiques se fait couramment de manière 

conventionnelle à l’aide d’approches dites « ciblées », qui permettent de générer des données 

quantitatives sur des listes préétablies de composés d’intérêts. Bien que ces méthodes soient 

extrêmement utiles pour évaluer l’exposition humaine à des composés supposés ou avérés 



Résumé de la thèse en français 

26  
 

toxiques, elles peuvent être complémentées par des méthodes dites « non-ciblées ». 

Encouragées par le développement de technologies de pointe telles que la spectrométrie de 

masse à haute résolution, ces méthodes innovantes commencent à voir le jour pour 

investiguer l’exposition des humains aux xénobiotiques sans a priori. Ces nouvelles méthodes 

appliquées à des matrices biologiques permettent de profiler des milliers de molécules 

endogènes et exogènes simultanément sans avoir préalablement établi de liste de composés 

d’intérêts. Elles peuvent être utilisées à des fins exploratoires pour détecter et identifier de 

nouvelles molécules de synthèse qui arrivent nouvellement dans l’environnement en 

remplacement de celles considérées toxiques et dont l’usage devient restreint, ou qui ont été 

sous-investiguées jusqu’à présent7. Les méthodes non-ciblées reposant sur la spectrométrie 

de masse haute résolution impliquent dans la plupart des cas une technique séparative en 

amont pour décomplexifier les échantillons biologiques, telle que la chromatographie liquide. 

Ce couplage permet de générer différentes données chimiques caractérisant les signaux 

détectés, telles que le ratio masse/charge (m/z) auxquels sont associés un temps de rétention 

(Rt), et une abondance (e.g. aire) qui est propre à chaque échantillon analysé. Ces 

informations permettent de remonter à une élucidation structurale (i.e. à l’annotation), c’est-à-

dire de les relier à une identité chimique par différents éléments de preuve. Depuis le début 

des années 2010, ces méthodes ont permis d’évaluer la présence de composés dans des 

matrices environnementales8 et biologiques9, 10.  

Bien que très prometteuses concernant l’évaluation de l’exposition humaine aux contaminants 

chimiques, les méthodes non-ciblées sont toujours sujettes à plusieurs verrous 

méthodologiques et techniques. Tout d’abord, la large diversité de contaminants chimiques 

auxquels les humains sont potentiellement exposés implique que chaque choix 

méthodologique (e.g. technique analytique, préparation d’échantillons, etc.) imposera une 

limitation de l’espace chimique visible, qu’il convient de définir. En effet, il y a actuellement 111 

millions de composés référencés dans la base de donnée PubChem11 ; la diversité de leurs 

caractéristiques physico-chimiques (e.g. masse, polarité) explique l’impossibilité d’une part de 

les profiler avec une seule méthode, et d’autre part d’évaluer les performances de 

recouvrement et de sensibilité pour les composés détectables par la méthode considérée. Par 

ailleurs, la caractérisation de l’exposome chimique au travers de matrices biologiques est 

complexe, puisque ces matrices sont constituées de composés dans une large gamme de 

concentrations (du g/L pour certains composés endogènes au pg/L pour certains contaminants 

exogènes environnementaux). Or, ces différentiels de concentration peuvent induire des 

phénomènes tels que la suppression ionique, qui mène au masquage des composés peu 

abondants par des composés largement abondants. Il est donc impératif de développer des 

méthodes analytiques adaptées pour la détection de ces molécules exogènes dans les 
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matrices biologiques avec des approches non-ciblées (i.e. qui permettent d’éliminer 

suffisamment de composés matriciels en forte abondance). De plus, les outils bioinformatiques 

utilisés pour traiter les données non-ciblées ont, pour la plupart, été développés pour la 

métabolomique, qui s’axe sur l’étude des composés endogènes, qui peuvent être jusqu’à 1010 

fois plus abondants en matrice biologique que les composés environnementaux12. Leur 

application pour l’identification de composés exogènes peu abondants peut donc être limitée. 

Enfin, le processus d’annotation est fastidieux et incomplet ; il consiste à rassembler des 

preuves de différentes natures pour valider une identité chimique pour un signal13. Ce 

processus inclut quasi-systématiquement une vérification manuelle pour éliminer les faux 

positifs, qui sont souvent nombreux. On estime aujourd’hui que moins de 10% des signaux 

identifiés sont annotés14. Ainsi, ces freins méthodologiques et technologiques doivent être 

surmontés pour obtenir des méthodes non-ciblées robustes, adaptées aux matrices 

biologiques, et adaptées aux applications à large échelle.  

Dans ce contexte, ce travail de doctorat s’inscrit dans une dynamique visant à apporter, à 

terme, une réponse opérationnelle au concept d’exposome chimique dans le champ de la 

santé environnementale. L’objectif final est de pouvoir implémenter ces approches non-ciblées 

au sein d’études épidémiologiques à large échelle pour contribuer à l’identification de 

nouveaux mélanges ou de substances émergentes associés à certains évènements de santé. 

Ainsi, deux objectifs principaux ont été fixés pour ce travail : i) développer un workflow robuste 

de méthodes innovantes de production et de traitement de données analytiques non-ciblées, 

incluant la préparation d’échantillon, la méthode analytique de chromatographie liquide 

couplée à la spectrométrie de masse haute résolution, le traitement des données, et 

l’annotation, et ii) appliquer ces méthodes à plus large échelle sur 125 échantillons de sérum 

afin de permettre une évaluation de l’exposition chimique de 125 adolescents bretons.  

2. Acquisition de l’empreinte chimique : optimiser l’équilibre 

entre sensibilité et sélectivité 

L’acquisition de l’empreinte chimique a tout d’abord été optimisée. En effet, a caractérisation 

d’échantillons biologiques tels que le plasma ou le sérum dépend en partie du choix de la 

méthode de préparation d’échantillon. Ce choix est décisif, puisque les composés éliminés à 

cette étape initiale ne peuvent pas être récupérés par la suite. De plus, bien que les données 

chimiques générées pourront être ré-analysées à mesure que de nouveaux outils et 

algorithmes de traitement des données apparaitront, les échantillons biologiques ne sont 

disponibles qu’en quantités limitées ; leur préparation doit donc être optimisée initialement.  
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L’un des freins à l’étude de l’exposome chimique est la présence de certains contaminants à 

très faible dose dans le corps, et donc dans les échantillons biologiques. De ce fait, de hautes 

performances en sensibilité sont nécessaires pour caractériser plus exhaustivement 

l’exposome chimique. Or, les matrices biologiques sont complexes car constituées de 

composés endogènes en abondance, tels que les protéines et les phospholipides par 

exemple. Ces composés peuvent, de par leur concentration largement supérieure, limiter la 

détection des composés exogènes à cause de phénomènes tels que la suppression ionique. 

Ainsi, il est nécessaire de procéder à une purification de l’échantillon pour éliminer ces 

interférents analytiques, tout en conservant tous les analytes d’intérêt. Cet équilibre entre 

sensibilité et sélectivité doit donc être pris en compte lors de l’optimisation de la méthode de 

préparation d’échantillons.  

Dans le cadre de cette thèse de doctorat, douze méthodes de préparation d’échantillons ont 

été évaluées pour la caractérisation de l’exposome chimique par des échantillons de plasma 

ou de sérum. Cette évaluation a reposé sur l’implémentation de critères complémentaires 

rarement utilisés pour l’évaluation des méthodes non-ciblées, à savoir des critères quantitatifs 

(e.g. taux de recouvrement, répétabilité, effet de matrice, etc.) systématiquement utilisés dans 

le domaine des analyses ciblées multirésidus, et qualitatifs (e.g. annotation, facilité et rapidité 

d’implémentation, etc.). Ces critères ont été définis dans le but de documenter au mieux le 

périmètre analytique observable de l’exposome chimique profilé avec chacune de ces 

méthodes. Cette délimitation des limites de ces méthodes est cruciale pour l’interprétation des 

jeux de données HRMS (e.g. aide à l’annotation). Ces méthodes reposent sur quatre principes 

de fonctionnement: l’élimination des phospholipides (sept méthodes), l’extraction en phase 

solide (trois méthodes), l’extraction liquide sur support (une méthode), et la précipitation de 

protéines (une méthode), classiquement utilisée en métabolomique. L’évaluation 

systématique de ces méthodes a été effectuée en utilisant un mélange de cinquante molécules 

sélectionnées pour leur diversité de caractéristiques physico-chimiques (i.e. masse, polarité), 

et leur appartenance à différentes classes chimiques susceptibles d’être présentes dans des 

échantillons dérivés de sang (i.e. composés endogènes, composés issus de l’alimentation, 

médicaments, pesticides, etc.).  

L’évaluation systématique de ces méthodes de préparation a été effectuée en trois étapes. 

Tout d’abord, le mélange de molécules a été utilisé pour doper des homogénats de sérum à 

une concentration moyenne dans un contexte d’exposition (40 ng/mL). Le recouvrement, la 

répétabilité et l’effet de matrice a été évaluée pour les cinquante molécules et les douze 

méthodes. Ces premiers résultats ont permis de présélectionner la méthode de précipitation 

de protéines, une méthode d’élimination des phospholipides, ainsi qu’une méthode 
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d’extraction en phase solide, qui présentaient toutes des performances satisfaisantes sur tous 

les critères d’évaluation. La deuxième étape de l’évaluation a consisté en un dopage 

d’homogénats de sérum et de plasma avec le même mélange de molécules à une 

concentration plus faible (10 ng/mL). La fréquence de détection, le rapport signal/bruit, la 

répétabilité, la significativité du dopage (i.e. significativité de la différence d’aires entre 

échantillons dopés et non-dopés), et la facilité d’implémentation ont été évalués pour les trois 

méthodes évoquées, ainsi que pour une combinaison de la méthode d’extraction en phase 

solide et la méthode d’élimination des phospholipides. Cette deuxième étape a permis de 

démontrer que la précipitation de protéines et la méthode d’élimination des phospholipides 

permettaient toutes deux d’atteindre des performances supérieures aux deux méthodes 

impliquant l’extraction en phase solide, notamment sur les critères de répétabilité et facilité 

d’implémentation. Enfin, ces deux méthodes ont été appliquées sur les mêmes échantillons 

de cohorte (plasma et sérum) afin de les comparer en conditions réelles (i.e. sans dopage). 

Des composés exogènes ayant des caractéristiques physico-chimiques diverses ont été 

annotés, soulignant dans un premier temps la pertinence de ces deux méthodes de 

préparation pour caractériser l’exposome chimique. De plus, cette comparaison a permis 

d’observer la complémentarité de ces deux méthodes ; dans les deux matrices, plus de 40% 

des composés annotés n’étaient visibles qu’avec l’une des deux méthodes de préparation.  

Cette approche d’évaluation systématique des méthodes de préparation d’échantillons pour la 

caractérisation de l’exposome chimique dans du plasma et du sérum humain a donc permis 

de documenter le périmètre de l’espace chimique détecté. Elle a également permis de 

démontrer la complémentarité de deux méthodes de préparation d’échantillons qui peuvent 

être utilisées conjointement au sein d’un workflow simple pour élargir l’espace chimique visible 

(jusqu’à 80% des marqueurs sont spécifiques à une méthode), et qui sera ensuite utilisé pour 

la suite des travaux de thèse. Après l’optimisation de l’acquisition de cette empreinte chimique, 

il est nécessaire d’évaluer les solutions de traitement des données disponibles. Un protocole 

de préparation d’échantillons impliquant ces deux méthodes a été proposé afin d’augmenter 

l’espace chimique visible. 
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3. Prétraitement des données et développement d’un logiciel de 

profilage de suspects   

3.1.  Adaptation des logiciels de prétraitement des données aux 

applications en exposomique 

Suite à l’acquisition de l’empreinte chimique d’un ou de plusieurs échantillons, l’information 

chromatographique et spectrale générée doit être transformée en une liste de marqueurs 

caractérisés par un rapport masse/charge, un temps de rétention, et une aire par échantillon. 

Bien qu’il existe de nombreux outils de traitement des données non-ciblées, ils ont été, pour 

la plupart, développés pour des applications en métabolomique. Dans un contexte d’étude en 

exposomique, les composés d’intérêts sont souvent peu abondants ; il est donc critique de 

s’assurer que ces outils sont capables de les différencier du bruit. D’autre part, le processus 

d’annotation, souvent basé sur la liste de marqueurs générés précédemment, doit également 

être optimisés pour ces signaux peu abondants qui ne déclenchent pas systématiquement un 

acquisition MS2. L’objectif de ce chapitre est donc de sélectionner et optimiser l’outil adéquat 

pour améliorer l’efficacité de ce processus de traitement des données, à l’instar de ce qui a 

été fait pour les applications en métabolomique15-17, mais qui n’a pour le moment jamais été 

fait pour des applications exposomiques.  

Dans le cadre de ce travail, quatre outils de traitement des données ont été optimisés et 

comparés pour le traitement de données non-ciblées issues d’une application en 

exposomique. Deux de ces outils sont des logiciel vendeur (MarkerView de SCIEX et 

Progenesis QI for metabolomics de Waters), et les deux autres sont des outils open source 

fréquemment utilisés en métabolomique (MZmine218 et XCMS19). Ce travail d’optimisation et 

de comparaison a été effectué en utilisant les données issues du dopage à 10 ng/mL des 

échantillons de plasma et de sérum préparés par la précipitation de protéines. Chaque outil 

de traitement des données a tout d’abord été optimisé individuellement, manuellement et 

automatiquement si possible (i.e. paramétrage automatisée de XCMS par IPO16 et 

Autotuner15), et les données issues du paramétrage optimisé pour chaque outil ont été 

comparées entre elles. Cette comparaison a été effectuée sur cinq critères : la fréquence de 

détection, le temps de calcul, la facilité d’implémentation, la répétabilité de l’intégration 

automatique, et la significativité de la détection (i.e. résultat du t-test comparant les aires 

associées aux composés dopants entre les échantillons dopés et non-dopés). Dans un 

premier temps, il a été démontré que l’utilisation d’outils automatisés de paramétrage 

développés pour la métabolomique n’était pas adaptée aux applications en exposomique. 

Ainsi, le paramétrage suggéré par IPO, basé sur les pics jugés « fiables » en fonction de leur 
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rapport 13C/12C, a résulté en une largeur de pic trop élevée (30.7 s), menant à une détection 

de moins de 30% des composés dopés dans les deux matrices. A l’inverse, l’outil Autotuner a 

suggéré une largeur de pic trop faible (<10 s), qui a mené à une mauvaise performance en 

répétabilité (< 20% des composés avec une répétabilité satisfaisante) due à une scission 

excessive des pics détectés. L’optimisation manuelle a donc été préférée dans le cadre de 

l’application considérée. Il a dans un second temps été constaté que l’optimisation individuelle 

des outils permettait d’augmenter la fréquence de détection des composés de jusqu’à 60% 

(XCMS). En effet, certains paramètres comme la largeur de pic et le niveau de bruit 

généralement proposés par défaut ne sont pas applicables aux applications en exposomique, 

et doivent être réduits pour correspondre aux pics d’intérêt. De plus, bien que les outils open 

source permettent d’avoir beaucoup plus de libertés sur le choix des algorithmes et des 

paramètres utilisés, ils nécessitent une meilleure connaissance technique et présentent des 

temps de calcul 4 à 16 fois plus long que les logiciels vendeurs. Ainsi, tous les logiciels ont 

permis d’obtenir des performances satisfaisantes en termes de fréquence de détection, de 

répétabilité et de significativité de détection. Dans le cadre d’applications à large échelle, il 

peut être approprié de s’appuyer sur les logiciels vendeurs pour obtenir des résultats fiables 

plus rapidement. Il demeure cependant nécessaire de continuer à optimiser ces outils, car 

aucun d’entre eux n’a permis de détecter tous les composés dopés identifiés manuellement 

dans les chromatogrammes bien que ceux-ci présentaient des aires, profils isotopiques et 

profils MS2 fiables. 

3.2. Développement d’un logiciel pour assister les approches de 

profilage de suspects 

Les jeux de données obtenus suite au traitement des données chromatographiques et 

spectrales sont ensuite utilisés pour l’annotation. L’annotation de données HRMS non-ciblées 

peut être effectuée par à l’aide de deux stratégies majeures : le profilage non-ciblé, qui repose 

sur l’annotation de marqueurs priorisés car différenciants entre deux groupes, ou le profilage 

de suspects, qui repose sur l’annotation de marqueurs priorisés pour leur similitude avec des 

composés listés dans une librairie/base de données de suspects. Cette deuxième 

méthodologie est aujourd’hui très prometteuse, en partie car elle a un fort potentiel 

d’automatisation et permet de prioriser très rapidement des signaux d’intérêt. En effet, la 

comparaison de marqueurs et de suspects sur des éléments caractéristiques tels que leur 

rapport masse/charge ou leur profil de fragmentation MS2 peut être effectuée partiellement 

automatiquement, avant d’être validée manuellement dans la majorité des cas. Cependant, 

les composés d’intérêt généralement peu abondants en exposomique ne déclenchent pas 

systématiquement d’acquisition MS2, ce qui limite fortement le niveau de confiance de 
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l’annotation effectuée13. Dans ce contexte, un outil de profilage de suspects adapté aux 

données MS1 a été développé, et comparé aux outils de profilage de suspect existants (i.e. 

xMSannotator20, MS-DIAL21, msPurity22 et MZmine218). Ce nouvel outil repose sur la 

comparaison du rapport masse/charge, du profil isotopique, et de temps de rétentions 

expérimentaux ou prédits entre marqueurs et suspects, ce dernier prédicteur n’étant 

implémenté dans aucun autre outil. Ce logiciel permet aussi d’afficher un score de proximité 

appelé indice de confiance entre le marqueur et le suspect pour ces trois prédicteurs, ainsi 

qu’un indice de confiance global qui permet d’évaluer efficacement la plausibilité de 

l’annotation. Bien que la comparaison de ces outils ait été compliquée par la grande diversité 

de leur principe de fonctionnement, l’implémentation de l’utilisation de temps de rétention 

expérimentaux et prédits, ainsi que l’affichage des indices de confiance ont permis à notre 

logiciel de se démarquer des autres outils notamment en l’absence de données MS2. Une 

comparaison plus poussée avec MS-DIAL est proposée dans le chapitre application à large 

échelle. Ainsi, cet outil permet de prioriser efficacement les pré-annotations, qui doivent 

ensuite être validées manuellement. Cette priorisation permet d’effectuer un gain de temps 

considérable, qui pourrait contribuer à la plus large annotation des jeux de données non-

ciblées existants. La pertinence de cet outil a été mise en avant lors de l’essai collaboratif 

NORMAN (meilleure fréquence de détection des composés dopés en matrice par ce logiciel) 

qui regroupait 16 laboratoires différents. 

4. Application du workflow développé au sein de la cohorte mère-

enfant Pélagie 

L’intérêt croissant pour l’étude des liens entre expositions environnementales et santé a mené 

au développement et à l’optimisation de méthodes non-ciblées et de profilage de suspects 

pour caractériser l’exposome chimique interne humain. Les optimisations de méthodes 

effectuées dans le cadre de cette thèse ont ainsi permis d’améliorer leurs capacités de 

sensibilité; leur robustesse a également été vérifiée lors d’une application à plus large échelle. 

Ainsi, 125 échantillons de sérum sanguins issus de pré-adolescents (12 ans) bretons ont été 

analysés après leur préparation par deux méthodes de préparation d’échantillon, et dans les 

deux modes d’ionisation (positif et négatif), représentant ainsi 500 échantillons analysés (960 

analyses au total en incluant les échantillons composites de contrôle qualité et les acquisitions 

MS2). Ces adolescents font partie de la cohorte Pélagie, qui a inclus environ 3500 femmes 

enceintes entre 2002 et 2005, toujours suivies avec leur enfant à l’heure actuelle. L’un des 

suivis a été effectué aux 12 ans des enfants, au cours duquel des paramètres cliniques tels 

que la croissance ou l’adiposité ont été vérifiés. Des échantillons sanguins ont été collectés 

pour, entre autres, évaluer l’exposition de ces adolescents aux contaminants organiques. 
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Quatre objectifs majeurs ont été établis pour ce chapitre : tout d’abord, évaluer la robustesse 

des méthodes analytiques et bioinformatiques optimisées dans le cadre de cette thèse. 

Ensuite, l’utilisation de prédicteurs MS1 (logiciel développé au laboratoire) et MS2 (MS-DIAL) 

pour l’annotation de xénobiotiques en matrice complexe a été comparée. Les expositions 

chimiques des pré-adolescents de la cohorte Pélagie ont subséquemment été caractérisées 

(n=92 annotations). Enfin, la complémentarité des deux méthodes de préparation d’échantillon 

utilisées conjointement comme recommandé dans un chapitre précédent a été étudiée à plus 

large échelle. 

Lors de cette application à large échelle, des contrôles qualité (i.e. même échantillon 

composite injecté plusieurs fois intra- (n=11, dont 5 initiaux pour équilibrer le système) et 

interbacth (n=110 par méthode de préparation d’échantillons)) basés sur l’aire des marqueurs 

détectés dans les échantillons composites injectés à répétition au cours des séquences, et sur 

leur temps de rétention ont été mis en place afin de veiller à la comparabilité des échantillons. 

De même, la stabilité de l’aire et du temps de rétention des 22 standards internes dopés dans 

tous les échantillons (n=125 par méthode de préparation d’échantillon) et les échantillons 

composites injectés entre les échantillons ont été vérifiées, soit dans 310 échantillons au total. 

Ces vérifications ont permis de constater la nécessité de procéder à une normalisation de l’aire 

des marqueurs par le courant ionique total, qui présentait une variation batch-dépendante. 

Cette normalisation a notamment permis de baisser le coefficient de variation calculé sur les 

aires des marqueurs communs à 80% des marqueurs composites d’environ 35% par rapport 

à sa valeur brute pour les deux méthodes de préparation des échantillons, démontrant ainsi 

sa pertinence pour cette application. 

Dans un second temps, les données obtenues ont été annotées par une approche de profilage 

de suspects à l’aide du logiciel développé, qui se base sur des prédicteurs MS1, et MS-DIAL, 

basé majoritairement sur des prédicteurs MS2. L’utilisation de ces deux outils a permis de 

comparer ces deux fonctionnements, et a permis de démontrer que l’utilisation de prédicteurs 

MS1 était pertinente et complémentaire à une approche basée sur la MS2 dans une application 

exposomique, où les données MS2 ne sont pas toujours de bonne qualité, voire inexistantes. 

Cependant, la curation manuelle nécessaire pour confirmer ces pré-annotations est plus 

importante, puisqu’elle implique de rechercher et comparer les motifs de fragmentation 

manuellement. Ainsi, certains composés n’ayant pas été fragmentés lors de l’acquisition MS2, 

tels que le pentachlorophenol ou le triclosan glucuronide, n’ont pas été annotés par MS-DIAL. 

Cependant, ces composés présentent des schémas isotopiques discriminants, ainsi que des 

valeurs de Rt prédits cohérentes avec les valeurs de Rt expérimentales (indices de confiance 

sur le Rt supérieurs à 0.84). Dans le cas du triclosan glucuronide, une indication 
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supplémentaire étayant l’annotation porte sur l’annotation d’un autre métabolite (i.e. triclosan 

sulfate) provenant du même composé parent (i.e. triclosan). Cette étape a donc également 

mené à la proposition d’une nouvelle version de la classification des niveaux de confiance des 

annotations proposée par Schymanski et al. (2014)13. Cette nouvelle version de la 

classification prend en compte les développements méthodologiques qui ont été effectués lors 

de cette thèse, tels que la vérification des ratios d’isotopologues, et ces dernières années, tels 

que les modèles de prédiction du temps de rétention23-26, ou de prédiction de la fragmentation 

MS227, 28, qui permettent de générer des indices forts appuyant ou écartant l’annotation 

effectuée. Au total, 92 annotations ont été effectuées.  

Les composés annotés se répartissent en quatre grandes classes : les métabolites de la flore 

intestinale (7%), les composés issus de l’alimentation (45%), les composés utilisés pour la 

santé et l’hygiène (18%, incluant 11% de principes actifs pharmaceutiques) et les composés 

industriels (30%, incluant 8% de pesticides et 8% de plastifiants). Ces composés présentent 

des caractéristiques physico-chimiques variées (-2.7 ≤ logP ≤ 16, et 100.0754 ≤ [M+H]+ ≤ 

811.4913), et des sources diverses, ce qui démontre qu’il est possible d’observer un large 

espace chimique avec les méthodes développées au cours de cette thèse. La détection de 

ces composés dans chaque échantillon a été évaluée. Il a été établi que les proportions de 

métabolites intestinaux et de composés naturels issus de l’alimentation étaient très peu 

variables entre les participants (coefficients de variation CV calculés sur les proportions sous 

15% pour chaque classe et chaque méthode de préparation d’échantillons). A l’inverse, les 

expositions aux retardateurs de flammes organophosphorés (CV de 165% et 210% dans les 

échantillons PPT et Phree respectivement), aux intermédiaires de synthèse (CV de 115% et 

27% dans les échantillons PPT et Phree respectivement) et aux pesticides (CV de 65% et 9% 

dans les échantillons PPT et Phree respectivement) sont hautement variables d’un individu à 

un autre. Ces observations sont cohérentes avec une exposition ubiquitaire aux métabolites 

intestinaux et aux composés naturels de l’alimentation, mais dépendante du style de vie 

(urbain ou rural, habitudes alimentaires, etc.) en ce qui concerne les polluants 

environnementaux. Certains pesticides (et métabolites) annotés, tels que le bromoxynil ou le 

fipronil sulfone, avaient déjà été détectés en population générale à de faibles niveaux (i.e. état 

de trace à 140 ng/mL)29, 30. Ces faibles niveaux documentés constituent une première 

indication (à confirmer avec des essais ciblés quantitatifs) sur les performances de sensibilité 

des approches développées au cours de cette thèse. Un métabolite du pesticide bromoxynil 

très largement détecté dans cette étude et auparavant jamais décrit dans des études de 

biosurveillance a été annoté. Ce métabolite est plus détecté que bromoxynil (97% contre 61%) 

et les aires observées dans les échantillons sont 3 à 8 fois plus élevées que celles du 

bromoxynil. Ces observations confirment ainsi la faisabilité d’utiliser des approches de 
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profilage de suspects pour identifier de nouveaux biomarqueurs d’exposition de composés 

d’intérêt.  

Enfin, les deux méthodes de préparation d’échantillon utilisées dans le cadre de cette 

application à large échelle ont été comparées. Les rapports d’aires des composés annotés 

ainsi que de l’ensemble des marqueurs ont été calculés, et ont permis de déterminer que plus 

de 80% des marqueurs ne sont visibles que par l’une ou l’autre des méthodes de préparation. 

A l’échelle des composés annotés, plusieurs tendances observées ont permis d’émettre des 

hypothèses sur les facteurs influant sur la bonne détection des composés avec l’une des deux 

méthodes de préparation d’échantillons. Tout d’abord, les composés polaires sont 

généralement mieux détectés avec la précipitation de protéines, ce qui pourrait s’expliquer par 

le mécanisme d’action des plaques d’élimination des phospholipides, qui serait basé sur la 

rétention de la tête polaire des phospholipides31. A l’inverse, les composés plutôt apolaires 

sont mieux détectés dans les échantillons préparés par Phree. Cette observation est 

cohérente avec la présence importante de phospholipides et lysophospholipides dans les 

échantillons préparés par PPT, qui peut gêner l’ionisation d’autres composés moins abondants 

ayant un temps de rétention similaire (i.e. suppression ionique). Ensuite, les retardateurs de 

flamme organophosphorés sont mieux détectés dans les échantillons Phree, ce qui pourrait 

s’expliquer par le fait que ces plaques ne retiendraient que les groupes phosphates les plus 

polaires, tels que ceux qui forment la tête des phospholipides. Enfin, les phthalates semblent 

mieux détectés avec Phree, à l’exception d’un téréphthalate encombré stériquement, qui n’est 

pas strictement favorisé par une méthode. Cela pourrait s’expliquer par un mauvais 

recouvrement de composés encombrés stériquement par les plaques Phree. 

Ainsi, ce chapitre a permis d’appliquer les méthodes développées au cours de cette thèse à 

large échelle, sur 125 échantillons de la cohorte bretonne Pélagie. Cette application a mené à 

l’annotation de 92 composés d’une grande diversité physico-chimique, qui contribue à la 

documentation du périmètre de l’espace chimique observable en utilisant les méthodes 

optimisées décrites. Les données obtenues pourront également être utilisées en association 

avec d’autres données contextuelles, telles que le lieu de vie ou les habitudes alimentaires, 

afin de prioriser d’autres marqueurs pour l’annotation avec une approche non-ciblée.  

5. Conclusions et perspectives 

La caractérisation de l’exposome chimique interne humain avec des approches non-ciblées 

offre de nouvelles promesses pour l’identification de nouveaux facteurs de risque chimique 

mais présente encore des obstacles technologique et méthodologiques qui doivent être 

surmontés. Ces limites viennent principalement du fait que les molécules exogènes sont 
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souvent présentes à l’état de trace dans des matrices biologiques complexes, et que les outils 

d’annotation automatisés n’existent pas encore. Ainsi, les méthodes classiquement utilisées 

en métabolomique doivent être adaptées et optimisées pour ces nouvelles applications 

nécessitant de meilleures performances en termes de sélectivité, sensibilité et robustesse. Ce 

travail de thèse présente l’optimisation des étapes méthodologiques les plus critiques pour 

implémenter des approches non-ciblées à large échelle basées sur la spectrométrie de masse 

à haute résolution. L’efficacité des méthodes optimisées dans le cadre de cette thèse pour 

caractériser l’exposome chimique interne humain a été démontrée. Ces approches constituent 

des atouts importants pour mieux comprendre l’effet de notre environnement chimique sur 

l’origine d’événements de santé. Elles génèrent un intérêt croissant aux échelles européenne 

et internationale, comme démontré par la création de l’infrastructure EIRENE par exemple. La 

mise en place de collaborations à cette échelle permettra de générer des données robustes 

et comparables entre les laboratoires pour décrire plus précisément et exhaustivement 

l’exposome chimique interne humain.  
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Chronic diseases are the leading cause of worldwide mortality and morbidity, representing an 

estimated 71% of all deaths globally in 20181. For decades, the impact of genetic factors on 

the emergence of these diseases was investigated through major conceptual and 

technological developments in the genomics field. These developments were notably achieved 

through an international collaborative effort during the Human Genome Project (HGP) 

conducted between 1990 and 20032. In reaching its goal of mapping the human genome, the 

HGP paved the way for the first genome-wide association studies (GWAS), aimed to establish 

associations between genetic variants (typically single nucleotide polymorphisms, SNP) and 

various traits. Despite the identification of highly prevalent SNP (i.e. presence in >5% of the 

population), their often low penetrance limited the applicability of GWAS alone to exhaustively 

elucidate the etiology of non-communicable diseases. In 2005, director of Leeds Institute of 

Genetics, Health and Therapeutics Christopher Wild underlined the necessity of considering 

environmental exposures to understand chronic disease etiology at the population level, thus 

introducing the concept of exposome to complement the genome3. The exposome was 

therefore defined as the totality of human environmental exposures from conception onwards, 

and was extended in 2012 to account for the biological effects resulting from these exposures4. 

Investigating the exposome is hence a complex task, as environmental exposures are both 

extremely variable in nature and through time. Environmental exposures can be classified in 

three main categories defined by Wild (2012)4: the general external exposome (i.e. social 

capital, stress, urban or rural environment, etc.), the specific external exposome (i.e. radiation, 

chemical contaminants, lifestyle factors, etc.), and the internal exposome (i.e. metabolism, gut 

microflora, ageing, etc.) These definitions are still discussed to account for emerging topics of 

interest, such as the transformation products of environmental chemicals in the body5. It is 

currently unfeasible to exhaustively characterize the exposome, due to the considerable 

number and diversity of environmental factors. Hence, investigating the exposome is 

fractioned in various subfields, including the socio-exposome focused on determinants such 

as socio-economic category and social inequalities6, the physical exposome focused on factors 

such as radiation or noise7 or the chemical exposome, encompassing chemical exposures that 

can accumulate in humans through food, medication, pesticides, etc.5. Exposure to chemical 

compounds can occur in various circumstances, counting domestic, industrial or agricultural 

use of these molecules. Investigating the chemical exposome can therefore be studied both 

through the analysis of environmental (i.e. water, air, dust, food, etc.) and human biological 

matrices (i.e. blood, urine, tissue, hair, etc.). However, due to the high diversity of compounds 

constituting our chemical environment (i.e. tens of thousands), there is still a sore lack of data 

regarding human exposure. Acquiring broader knowledge on the human chemical exposome 

is therefore a first necessary step in accurately assessing its effect on human health.  
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Investigating the human chemical exposome in biological matrices has classically been done 

using targeted methods, which offer quantitative data on a set list of compounds of interest 

identified prior to the analysis. While these methods are exceptionally useful and robust to 

generate exposure data for already known or suspected toxicants, they can now be 

complemented by non-targeted methods, which allow the characterization of samples through 

collection of qualitative or semi-quantitative data without an a priori list of investigated 

compounds. These non-targeted approaches may be used as an exploratory tool to detect and 

identify new chemicals that might be of emerging concern, whether because they have newly 

appeared in the environment as a replacement to regulated substances or because they are 

newly identified or suspected toxicants8. They may also be useful to describe more thoroughly 

chemical mixtures, which are a well-documented challenge in exposure science9, and 

therefore provide relevant data for toxicological tests. Most non-targeted methods rely on the 

recent technological progress in the field of high-resolution mass spectrometry (HRMS), 

resulting in the possibility of screening thousands of compounds simultaneously, with a high 

mass accuracy. Concurrently, significant progress in the bioinformatics field allowed the 

processing of such complex data. Compounds detected throughout the analysis can thus be 

isolated, characterized by their mass-to-charge ratio (m/z), their retention time (Rt) and their 

area, and annotated (i.e. associated to a chemical identity through various elements of proof). 

During the first half of the 2010s, these approaches have started to be used to assess the 

presence of contaminants in environmental matrices10-12, or exogenous compounds in 

biological matrices, both animal13-15 and human16.  

Non-targeted approaches, while valuable and increasingly used, are still subject to a number 

of technological barriers and methodological issues. Firstly, as there are no predefined 

analytes, method performances regarding recovery and sensitivity cannot be determined for 

all potentially detectable compounds. Moreover, it appears unreasonable to expect the 

exhaustive characterization of a sample, even by such methods; it is therefore necessary to 

delineate the width of what is observable using any particular workflow. Secondly, existing data 

processing tools were mostly built for metabolomics applications, i.e. the detection of 

endogenous (and often rather abundant) compounds, and may not be suitable for exposomics 

applications aimed to detect exogenous chemicals present at trace levels (below ng/ml). 

Thirdly, annotation is an often tedious and incomplete process, as it is estimated that less than 

10% of non-targeted datasets are annotated5. This is further exacerbated for exposomics 

applications due the limited availability of compound libraries including or dedicated to 

exogenous chemicals. This process is time-consuming largely due to the necessity of manual 

curation to dismiss the usually high number of false positive annotations. All of these 
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technological and methodological bottlenecks must be overcome to create robust non-targeted 

workflows that may be used for high-throughput applications. 

The main aim of this PhD work is to develop an HRMS-based non-targeted workflow applicable 

to human epidemiological studies, in order to provide an operational solution to assess human 

exposure to complex chemical mixtures at a large scale. Given the above-mentioned 

considerations, two specific objectives were defined for this PhD. The first objective is to 

develop innovative methods to generate and process non-targeted data, including sample 

preparation, analytical HRMS method(s) coupled to liquid chromatography (LC), data 

processing, and annotation. These methods must answer the need for sensitivity, robustness, 

and must be relevant in the case of human blood plasma and serum analysis. The second 

objective of this work is to apply these developed methods for non-targeted approaches on 

large-scale epidemiological applications to test the robustness and sensitivity and detect new 

biomarkers of exposure. This application was performed using samples from a promising local 

cohort. Blood serum samples from 125 12-year-old boys issued from the Breton mother-child 

cohort Pélagie were used to implement this large-scale application. This cohort, started in 

2002, is a longitudinal study implemented to measure exposure to organic pollutants during 

the pregnancy. It included approximately 3,500 women pregnant between 2002 and 2005 in 

Brittany. Follow up was carried out at birth, and then at 2, 6, and 9-16 years old, through the 

collection of biological samples and clinical data, and answering questionnaires. A 

questionnaire was provided to 12-year-olds and their families to obtain physical growth data 

and pubertal stage. A clinical evaluation was performed on a subset of 500 12-year-olds, with 

the assessment of clinical parameters such as growth, adiposity, visual function and oral-

dental health. The considered blood samples were collected at this time to evaluate sex 

hormones and to assess exposure to organic contaminants. This cohort, in its entirety, 

therefore offers a promising opportunity to study the long-term consequences of early-life 

exposure to environmental contaminants. 

To reach the first objective, each step of the non-targeted workflow was optimized. Indeed, 

reference protocols for the preparation and high-throughput injection of plasma and serum 

samples were established and validated using new quantitative and qualitative criteria to define 

the perimeter of the profiled chemical exposome. Moreover, in-house libraries were 

constructed to implement suspect screening approaches, consisting of an a posteriori 

screening of suspected xenobiotics in chromatograms. Concomitantly, a software was 

developed to partly automatize suspect screening approaches through the implementation of 

confidence indices, scoring proximity between experimental features and suspects. 
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Reaching the second objective was achieved by using the previously described methods and 

tools (initially developed at the batch level) in the case of a high-scale application. Additionally, 

large-scale quality controls and inter-batch correction were implemented to ensure 

comparability from first to last sample. 

Chapter 1 describes the state-of-the-art regarding the application of HRMS-based exposomics 

to cohort-based epidemiological studies. Reported technological and methodological 

challenges regarding the application of such approaches are detailed and discussed. 

Chapter 2 relates the instrumental method development, the data processing steps, as well as 

the annotation tools needed for this work. The suspect screening software developed in the 

context of this PhD is also thoroughly described. 

Chapter 3 presents the systematic evaluation and comparison of sample preparation methods 

for the purpose of detecting low-abundant chemicals in blood plasma and serum samples. The 

impact of the two best-performing methods on the visible chemical space is described using 

cohort plasma and serum samples. 

Chapter 4 details the optimization of the data processing step to accurately transform LC-ESI-

HRMS data to a list of features when compounds of interest are lowly abundant. Suspect 

screening tools including the in-house software were compared on cohort samples. 

Chapter 5 documents the large-scale application of the optimized non-targeted workflow on 

125 serum cohort samples. The use of MS1 and MS2 predictors for annotation is compared 

and discussed. The identification of markers of exposure is described, and results are 

discussed in light of the use of two sample preparation methods.  

The last chapter is dedicated to the conclusion and perspectives of this work. 
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1. Studying the human internal chemical exposome: context, 

definitions and challenges 

1.1. The Exposome: from a concept to a call to action  

In 1985, chancellor of the University of California Robert Sinsheimer first discussed the 

possibility of sequencing the human genome, which led to the first funding of research 

dedicated to genome sequencing in 1986. Four years later, the Human Genome Project (HGP) 

was launched with the objective of sequencing the entirety of the human genome1. The 

mobilization of over 2,800 researchers from the international scientific community and 

approximately 4 billion euros over thirteen years allowed reaching the set goal of sequencing 

the 3 billion base pairs of the human genome2. In 2001, Francis Collins, director of the National 

Human Genome Research Institute, declared about this near-exhaustive vision of the human 

genome: “It’s a shop manual, with an incredibly detailed blueprint for building every human 

cell. And it's a transformative textbook of medicine, with insights that will give health care 

providers immense new powers to treat, prevent and cure disease.”3. Understandably, such a 

tremendous advancement in knowledge on human biology held great promises for a better 

understanding of disease etiology. 

This incredible international effort was accompanied by constant methodological and 

technological progress. Indeed, the appeal of the HGP federated efforts to develop new high-

throughput technologies and new computational strategies1. This later proved to be a crucial 

advantage when the knowledge generated by the HGP was used to identify genes affecting 

susceptibility to specific diseases. Genome-wide association studies (GWAS) were designed 

to identify variants associated with multifactorial diseases (with frequencies ≥ 5%)4. While 

many variants associated with different diseases have been identified so far, their often-low 

penetrance (i.e. the fact that only a small proportion of individuals presenting the variant 

develop the corresponding phenotype) limit the practical applications of GWAS5. It should be 

noted that the investigation of particularly infrequent single nucleotide polymorphisms (<1%) 

may still uncover valuable results, even though it would require a high number of participants 

(and therefore important resources) to achieve satisfactory statistical power. Variant 

penetrance is a complex characteristic that depends on many factors (i.e. interaction with other 

genes, importance of the affected pathway, existence of alternative pathways substituting for 

function loss, etc.), one of which is the interaction with the environment6. 

In this context, Christopher Wild introduced in 2005 the concept of exposome to account for 

the impact of environmental factors on human health through the genetic-environmental 

interactions7. The conceptualization of an exposome to complement the genome helped to 
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emphasize the need for reliable exposure assessment tools to better understand disease 

etiology through a more thorough description of the interplays between environmental 

exposures and genetic susceptibility factors. He defines the exposome as “life-course 

environmental exposures (including lifestyle factors), from the prenatal period onwards”. In his 

editorial, he underlines the need for the funding and development of reliable exposure 

assessment tools to “balance the effort going towards characterization of the genome”, and for 

a strong collaboration between scientists of different backgrounds as was done for the HGP7. 

In 2012, the definition of the exposome concept is expanded to take into account the biological 

responses to environmental exposures8. As of today’s most widely accepted definition, the 

exposome is “an entity that encompasses all life-course environmental exposures and the 

associated biological responses, including during the prenatal period”7-11. One significant 

aspect of the exposome is the chemical exposome, i.e. the exposure to all chemicals, whether 

from external or internal sources12.  

Characterizing the chemical exposome is an arduous challenge. Indeed, it has been estimated 

that up to 350,000 chemical compounds and mixtures are registered for production and use 

worldwide, with up to 120,000 of them being either unknown or ambiguously defined13. As of 

2020, there were close to 23,000 compounds registered by the European Chemical Agency, 

more than 2,000 of which are produced over the 1,000t/year limit14. The organic compounds 

most frequently registered are mostly registered as synthesis intermediates (e.g. styrene, 

ethylbenzene). This diversity of compounds, coupled to the diversity of potential sources for 

each compound present important hindrances to exhaustively characterize one’s chemical 

exposures. Human exposure to some persistent organic compounds, such as organochlorine 

insecticides (e.g. DDT and its metabolites), polychlorinated biphenyls (e.g. PCB 153), 

brominated flame retardants (e.g. BDE 47, BDE 99), or polycyclic aromatic hydrocarbons (e.g. 

naphthalene and metabolites) have already been well reported in large-scale HBM studies15-

18. These compounds have historically been studied for their widespread use, their potential or 

confirmed toxicity, or their persistence in the environment. Non-persistent compounds such as 

phthalates or bisphenols, however, are more challenging to accurately describe since their 

half-life in the human body is limited (a few hours to a few days). Moreover, their metabolization 

and excretion pathways may not be entirely documented, which may affect the ability to detect 

these compounds in their relevant forms19. Overall, the available data on human exposure to 

chemicals is limited and mostly oriented towards lists of hundreds of “usual suspects” (i.e. 

priority substances with already known exposure and toxicity data). This partial view of the 

human exposure to chemicals (few hundreds as opposed to tens of thousands on the market) 

undoubtedly leads to an underestimation of the chemical risk evaluation.  
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Exogenously derived chemicals and their biotransformation products accumulating in human 

will further be referred to as the internal chemical exposome, and will be distinguished from 

endogenously derived chemicals that constitute the metabolome. Many of these endogenous 

compounds, while also important to assess the impact of environmental chemical exposures 

on human health, are usually largely more abundant in biological matrices compared to 

exogenous compounds20, and can be studied using differently optimized 

metabolomics/lipidomics workflows. A schematized representation of the human internal 

chemical exposome is represented in Figure I.1. 

 

Figure I.1 – Schematized representation of the distinction between endogenous metabolites and 

exogenous chemicals and related biotransformation products. These small molecules (50–1200 Da) 

present in human biological matrices can be profiled using High Resolution Mass Spectrometry. 

Traditionally, exposure assessments to chemicals have been performed through targeted 

approaches. These approaches rely on pre-established lists of compounds of interest (for their 

ubiquity, their high toxicity or both) and developing methods to quantify them in any given 

matrix of interest. Targeted assays result in highly accurate and robust quantitative data, with 

limits of detection often being as low as the ng-pg/mL range in complex matrices such as 

urine21-23 and blood serum24, 25. Together with toxicological and other biological approaches, 

targeted methods have allowed limiting human exposure to toxic compounds, such as 

plasticizer bisphenol A26 or pesticide atrazine27 through public health measures either limiting 

or outright banning their use. These approaches were the first to allow the acquisition of HBM 

data at the massive scale needed to efficiently support policy making, as was started with the 
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priority lists established through the collaboration of the HBM4EU consortium and a European 

Union policy board28. 

While exceptionally useful, targeted approaches only allow accounting for already established 

compounds of interest. Indeed, the inclusion of a given compound in a targeted method must 

be preceded by the expectation that it is either ubiquitous or toxic enough to warrant medium 

to large-scale biomonitoring, given that there are an estimated >350,000 compounds currently 

in use in the human population29, 30. This ever-expanding list of diverse chemicals must be 

prioritized in order to identify chemicals of emerging concern (CEC) and launch the process of 

toxicological assays and targeted method development. Hence, the technological 

advancements of the last few years in high resolution mass spectrometry (HRMS)-based 

analysis has offered new possibilities to tackle the complexity of the chemical exposome. This 

may be achieved using new non-targeted approaches (NTA), which are complementary to 

targeted approaches31 and do not rely on pre-established chemical lists. Through the 

technological progress achieved notably in HRMS, it is possible to simultaneously screen tens 

of thousands of small molecules (between 50-1200 Da) in a single analysis. NTA often uses a 

separative technique prior to HRMS analysis to decomplexify the sample, such as liquid 

chromatography (LC). These analyses result in lists of signals, called features, each 

characterized by a mass-to-charge ratio (m/z), a retention time (Rt), and an area. The data 

acquired during NTA is used to assign chemical identities to the obtained features, allowing 

potentially identifying new compounds of interest due to high detection frequencies and/or 

association to a health event. These approaches have already been successfully applied in 

proof-of-concept studies23, 32-34, thus demonstrating the relevance and applicability of 

environment-wide associated studies (EWAS).  

Another challenge inherent to the characterization of the exposome, including the chemical 

exposome, its dynamic nature. Indeed, the temporal variability of chemical exposures 

constitutes, along with its vast scope, incredibly challenging features of its characterization (for 

targeted as well as non-targeted approaches). Firstly, the dynamic nature of the chemical 

exposome entails that its measurement should be dynamic as well, either through an inherently 

dynamic measurement method or through a series of snapshots at crucial times in an 

individual’s lifetime. This second approach can be applied at key times of life, such as the 

prenatal period, childhood, puberty and reproductive years, to allow a vision of presumably 

radically different exposure patterns throughout an individual’s life35.  

The prenatal period is a well-known time of vulnerability in one’s life. The DOHaD 

(Developmental Origins of Health and Disease) hypothesis, originally formulated by Barker 

and Osmond (1986)36, postulates that nutrition during pregnancy could impact disease 
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outcome during the lifetime. This concept was expanded to take into account exposure to 

environmental chemical contaminants during the prenatal period, as evidence of their impact 

on health endpoints such as obesity arose37. Chemical exposures are therefore often 

investigated during this time to improve knowledge on disease etiology38-40. Another period of 

vulnerability in an individual’s life is the transition into adolescence41. Indeed, as it is a 

transitional stage of development (physical, psychological, etc.) implicating significant 

hormonal activity, the impact of environmental chemicals (and in particular endocrine 

disruptors) on teenagers’ health has been questioned42. 

Despite the many promises held by NTA as an exploratory tool to better understand 

environmental triggers to chronic diseases, several methodological and technological barriers 

remain to uncover their full potential. Notably, the still vast scope of the chemical exposome 

entails the need to determine the impact of matrix and analytical platform choice on the visible 

chemical space when using NTA.  

1.2. Main conceptual challenges for the non-targeted characterization 

of the human chemical exposome: study design questionings   

1.2.1 . Direct and indirect measurements: choosing between environmental and 

biological matrices 

Given the complexity of the human chemical exposome, designing a study for its non-targeted 

characterization raises several questions. Firstly, the human chemical exposome can be 

characterized through conceptually different approaches. Indeed, direct and indirect 

measurements are available to this end. Direct measurements consist in screening for 

chemicals directly in the considered individuals, as for example through biomonitoring22, 43, 

while indirect measurements rely on studying the environment, and coupling this data to 

bioaccessibility studies and/or time of contact data to estimate human exposure44, 45. Indirect 

measurements allow identifying sources and determinants of exposure. They present the 

advantages of being less invasive, less costly, suitable for passive sampling (thus being more 

representative on the dynamic aspect of exposure), and using overall less complex matrices 

than direct measurements. However, they may only approximate the actual human exposure 

to chemicals. This may be due to the use of mathematical models with inherent uncertainty, or 

the inexact accounting for a significant source of exposure (whether under- or over-

estimated)46, 47On the other hand, direct measurements allow evaluating the exposure as a 

whole, regardless of the sources and routes of exposure. Although the implementing of direct 

measurements is limited by their more limited cost-effectiveness (usually requiring higher 

funding and more long-term compliant participants)48, biomonitoring is widely recognized as a 



Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies:  
State-of-the-art and challenges 

51  
 

useful tool for exposure and risk assessment49, 50. In this PhD, a biomonitoring approach will 

be used to contribute to decipher the human internal chemical exposome using HRMS-based 

methods. 

Biomonitoring studies have been widely used as a tool of choice to assess human exposure 

to environmental chemicals. Unprecedented levels of funding at national and EU levels are 

currently being implemented to provide novel human exposure data to chemicals through 

biomonitoring studies. At the national level, the French agency for public health Santé Publique 

France has led the French HBM program since 2010. This initiative aims to paint a 

representative image of the French population’s exposure to chemical compounds, through 

the analysis of urine, blood and hair samples. This program consists in two surveys: a subset 

of the French Elfe cohort (>4100 individuals) as a perinatal component, and the Esteban 

project, which in general population-based (18-74 years). The data generated by this program 

is made available to research teams, notably those working on establishing exposure-health 

associations in the Elfe cohort. Furthermore, this data helps inform the relevant authorities 

regarding the determined environmental substances51. Conjointly with Anses (French Agency 

for Food, Environmental and Occupational Health & Safety), Santé publique France (SpF) has 

also launched the PestiRiv project in 2021. This initiative is geared towards the assessment of 

pesticide exposure for citizens residing in proximity to vineyards. Its main objective is to 

determine whether the proximity to agricultural land, particularly vineyards, has an effect on 

pesticide exposure. This may lead to the establishment or modification of public health 

measures to implement appropriate measures to protect citizen’s health. Multiple sources will 

be accounted for (e.g. air, food, domestic use and profession), and both biological (i.e. urine 

and hair) and environmental (i.e. air, dust, food) will be collected. 

Other sizable HBM studies (detailed in paragraph I.3.1) have gradually been undertaken in the 

last decade. At the European scale, projects such as HELIX, EXPOsOMICs (both started in 

2012), HBM4EU (started in 2017), ATHLETE and EXPANSE (both started in 2020) have used 

HBM as a key tool to assess individuals’ exposure to environmental chemicals. This growing 

implementation of large-scale HBM studies helps informing researchers and policymakers on 

the exposure-health relationship. 

Overall, direct and indirect approaches are highly complementary and may also be used 

successively to obtain orthogonal data. For instance, an initial HBM approach may help identify 

chemicals of interest, and a following indirect measurement approach may allow identifying 

sources of exposure. Combining the data collected from these approaches may be critical in 

implementing new relevant public health measures to dampen the health burden of the 

chemical exposome. 
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As a part of this large scale collective effort to characterize the human internal chemical 

exposome5, this PhD work focuses on implementing direct measures for the non-targeted 

characterization of the human chemical exposome.  

1.2.2 . Choosing the biological matrix  

When aiming to directly characterize the human chemical exposome, the choice of biological 

matrix is the second study design element that should be clarified. Many factors can influence 

the choice of biological matrix: availability, invasiveness and cost of sampling, possible focus 

on some chemical classes with specific characteristics (e.g. persistence, accumulation in a 

specific biological compartment, etc.), etc.  

One of the most commonly sampled matrices in HBM and epidemiological studies is urine28, 

52-54. Its sampling is fairly non-invasive and inexpensive, and is easily performed by the 

participants themselves. Urine is a relevant matrix for exposure assessment as it is the main 

route of excretion of many non-persistent chemicals, whether in their free form or after phase 

I and/or phase II metabolization to increase polarity. One of its main drawbacks is fact that only 

short-term exposure (usually hours or days depending on the chemical’s half-life) is visible 

when using this matrix, with often different forms of the chemical visible at different points in 

time19, 55. The visible window may be widened using pooled repeated measurements, which 

may be best to capture the dynamic nature of the exposure11, as was described in the 

European projects HELIX and EuroMix for the assessment of exposure to phthalates and 

phenols in urine samples56, 57. Another well-known issue when using urine is the need for 

normalization (often using the creatinine level), as sample volume and chemical concentration 

may be extremely variable depending on the individual’s hydration state58. Lastly, this matrix 

is not the most suitable for the detection of exposures to persistent organic pollutants, which 

tend to accumulate in other matrices such as blood and hair55, 59, although the metabolites of 

these compounds may be found in urine28. 

Blood-derived matrices (i.e. total blood, plasma and/or serum) 53, 60-62 are also commonly 

sampled in HBM and epidemiological studies, and are therefore frequently available in 

biobanks. Their sampling is more costly and more invasive than urine, but blood-derived 

matrices are often considered the golden standard to study chemical exposure. One 

advantage of blood-derived matrices is that the biologically active parent (i.e. non-metabolized) 

form of chemicals might be in some cases more readily observable than in urine, which can 

be an advantage considering the sometimes non-specific nature of metabolites63. This was 

applied in the HBM4EU initiative with, for instance, the biomonitoring of parent halogenated 

flame retardants in serum, and of four metabolites of organophosphate flame retardants in 



Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies:  
State-of-the-art and challenges 

53  
 

urine64. However, parent and phase I/II metabolite concentrations in blood are often lower than 

metabolite concentrations in urine in which they can accumulate over time65. Another 

advantage of blood-derived matrices is that blood circulates in the whole body and is in 

equilibrium with all tissues, and thus provides a more accurate reflection of internal chemical 

concentration58. In the case of a pregnancy, maternal blood is also in contact with the fetus 

through the placenta, which is why maternal blood may be relevant to evaluate fetal exposure 

during the prenatal period66, 67. Other matrices such as placenta, cord blood or meconium are 

also well suited for this purpose67-69, but their limited quantity and availability is an important 

hindrance. Maternal hair was also reported to be a suitable matrix to assess prenatal exposure 

especially for persistent organic pollutants (POPs) 67, 70, 71, although several concerns regarding 

external pollution and lack of reference data are often put forward22, 28, 58. 

As no matrix will be ideal in every situation depending on target compound class, availability 

and ease of sampling, it should be understood that its choice will affect the observable internal 

chemical exposome. In the context of this work, blood-derived samples (i.e. plasma and serum) 

were used due to the advantages presented by these matrices, as well as for their availability 

in general in biobanks, and more particularly in the considered epidemiological studies (i.e. 

Pelagie). This PhD work is one of the first applications of HRMS-based characterizations of 

the internal chemical exposome in blood32.   

1.2.3 .  Analytical platform choice 

Analyzing biological samples to characterize the human internal chemical exposome can be 

done using many platforms, most of which rely on chromatography (such as gas 

chromatography (GC) and liquid chromatography (LC)) coupled to HRMS. The breadth of the 

chemical exposome due to the ever-expanding number of produced chemical compounds 

(growth estimated at 3.4% each year until 203030) implies the need to detect compounds with 

vastly different physical-chemical properties (e.g. polarity). At this time, no single technology 

allows capturing this diversity; ideally, complementary analytical platforms should be combined 

to observe the width of the chemical space5, 72-75. This is however challenging, since when 

aiming for large-scale applications such as epidemiological studies, analysis should be as not 

too expensive and high-throughput as possible to allow analyzing sufficient numbers of sample 

for statistical power, which is undeniably more difficult to achieve when multiple analytical 

platforms are involved. The choice of analytical platform(s) will therefore affect the observable 

chemical exposome, as represented in Figure I.2. 

To date, the most commonly used platforms for NTA are equipped with LC, electrospray 

ionization (ESI) and coupled with time-of-flight (TOF) or Orbitrap analyzers5, 76. Hybrid 
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analyzers such as quadrupole-time-of-flight (QTOF) or quadrupole-Orbitrap (Q-Exactive 

family) are also frequently used and are important to provide relevant MS2 data77. LC-ESI-

HRMS platforms are highly versatile and provide a soft ionization5, which is useful to provide 

information on the molecular ion and avoid compound fragmentation and obtaining 

pseudomolecular ion mass77. However, the ionization process using ESI sources leads to less 

reproducible fragmentation patterns, making the construction of reference spectral libraries 

challenging, and in turn affecting the complexity of compound annotation78. LC separations 

can be performed using a large diversity of stationary and mobile phases, although reverse-

phase (RP) columns are often used for their versatility and for easier comparison and 

harmonization between laboratories. Indeed, RP columns allow the simultaneous detection of 

compounds with a wide polarity range, such as the polar nicotine metabolite cotinine and the 

non-polar insecticide chlorpyrifos. Hydrophilic interaction chromatography (HILIC) is also 

emerging since it offers better performance for highly polar compounds such as pesticide 

glyphosate and antiviral acyclovir, thus providing orthogonal data to RP chromatography79. 

Two-dimensional chromatography combining HILIC and RP has been used to widen the 

observable polarity range80, 81. Regarding mobile phases, generic methanol/water or 

acetonitrile/water gradients are commonly used77, 82 to avoid further limiting the range of 

observable compounds. The main disadvantages of LC-based platforms are the matrix-related 

issues such as ion suppression83.  

GC-HRMS platforms have been increasingly used to detect non-polar semi-volatile to volatile 

compounds such as POPs28, 84-86, which are not detected using LC-ESI-HRMS. Characterizing 

the chemical exposure to POPs, which notably  include polychlorinated biphenyls and 

organochlorine pesticides, is particularly relevant, as it has been linked to detrimental health 

effects such as endocrine disruption, cardiovascular and reproductive diseases, and cancer, 

in part linked to their bio-accumulative, toxic potential and non-degradable nature87. These 

characteristics also explain their presence in biological and environmental matrices several 

years or decades after banning. GC-HRMS platforms predominantly use hard ionization 

sources (i.e. Electron ionization), which often lead to the fragmentation of the molecular ion 

and the need for large spectral libraries for compound annotation78. The choice of stationary 

and mobile phases is far more limited in GC-based platforms, with a widespread use of 

nonpolar capillary column with 5% phenyl methylpolysiloxane and helium as carrier gas. While 

nitrogen and hydrogen can also be used as mobile phases since they are less expensive than 

helium, they are usually set aside due to efficiency and safety reasons respectively76. While 

GC-based platforms suffer less matrix effect than LC-based platforms, additional sample 

preparation steps such as derivatization are often required to improve versatility and avoid 

premature clogging of the column due to non-volatile compounds. 
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Figure I.2 - Conceptual visualisation of the impact of overarching methodological choices on the profiled 

fraction of the exposome by David et al., Env Int., 2021. Specificities and overlaps of the different HRMS 

platforms are schematically represented. Log Kow=octanol/water partition coefficient; GC=gas 

chromatography; LC=liquid chromatography; IC=ion chromatography, CE=capillary electrophoresis, 

ESI=Electrospray ionisation, HRMS=High Resolution Mass Spectrometry 

Other analytical platforms such as ion chromatography (IC) and capillary electrophoresis (CE) 

coupled to HRMS can be used to improve coverage of highly ionic and/or polar compounds77 

such as haloacetic acids and antibiotics sulfonamides respectively, although they are not as 

widespread as LC and GC-based platforms. 

The choice of analytical platform is therefore, in itself, a constraint on the observable chemical 

space of the exposome. Together with the choice of direct or indirect measure and biological 

matrix, it conditions the structure of the non-target and suspect screening workflow that should 

be implemented and optimized to characterize the exposome. In the context of this PhD, LC-

based approaches were favored for their versatility and their relevance to detect pollutants of 

emerging concern, which are often non-persistent as opposed to historical contaminants (e.g. 

POPs). Moreover, the visibility of the pseudomolecular ion due to the soft ionization process, 

and the substantial availability of MS2 reference data are two important advantages to carry 

out the annotation process. 
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2. Implementing NTA to characterize the exposome: constructing a 

non-targeted and suspect screening workflow  

Once the overarching conceptual and methodological choices are made for the generation of 

the chemical fingerprints, a non-targeted and/or suspect screening workflow including many 

steps has to be implemented and optimized to correctly process UHPLC-ESI-HRMS raw data. 

These steps include the implementation of bioinformatics tools to extract chemical features, 

statistics to prioritize relevant features, and the annotation step to assign a chemical identity 

to features of interest. To date, there is no comprehensive tool to perform raw data 

interpretation from data processing to annotation, although some online infrastructures such 

as Workflow4metabolomics built upon the Galaxy web-based platform tend towards it88. Due 

to the wide variety of available approaches to perform non-targeted and suspect screening, 

there are also no guidelines to orient the choice of data processing tools, or their 

parametrization89. This is reportedly one of the major bottlenecks of NTA89, 90.  

The main steps of a workflow to characterize the chemical exposome in blood-derived 

biological matrices using LC-ESI-HRMS are presented in Figure I.3.  Workflows used for 

exposomics applications are, per their general structure, quite similar to workflows used for 

metabolomics applications91, 92. However, in metabolomics, the focus is put on endogenous 

Figure I.3 – Main steps of a non-targeted and suspect screening workflow implemented to investigate the 

chemical exposome in biological matrices 
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chemicals only, with blood concentrations up to eight orders of magnitude above blood 

concentrations of exogenous chemicals (e.g. steroids or lipids found at ~1 mg/mL compared 

to industrial pollutants found at ~10 pg/mL) 5, 20. In exposomics approaches, both are of interest 

although with a focus on exogenous compounds. This wide range of concentrations implies 

adaptations to the workflow at every step to ensure that low-abundant compounds are lost 

neither to ion suppression (first analytical step) nor to inadequate noise levels (first 

bioinformatics step). The several steps of the workflow are presented in the following sections. 

2.1. Acquisition of the chemical fingerprint 

Optimizing the acquisition of a chemical fingerprint involves two main steps, namely sample 

preparation and sample analysis. Regarding sample preparation, to date, there are no 

universal guidelines recommended for exposomics applications on human biological matrices. 

Recently, the HBM4EU initiative included for the first time a work package dedicated to suspect 

and non-target screening in human biological samples. The first steps towards a harmonization 

of sample preparation practices for suspect and non-targeted screening have been 

documented89, 93. These initial advancements allowed identifying crucial points of vigilance that 

must be carefully considered with NTA. These critical points include the starting volume, which 

should be minimized while retaining sufficient sensitivity performances, the extraction method, 

which greatly impacts the sensitivity versus selectivity compromise further described below, 

and the inclusion (or lack thereof) of a deconjugation step, which is traditionally used in 

targeted methods applied on urine samples but may lead to added variability89, 93. However, 

no consensus has yet been reached considering the complexity of the task and, importantly, 

the diversity of research objectives (e.g. exposure assessment in blood-derived matrices). This 

can be explained by several reasons. Firstly, while these matrices all contain high-abundant 

endogenous compounds which are likely to cause matrix-related troubles, they each have their 

specificities, thus possibly influencing the choice of the most appropriate sample preparation 

techniques. These specificities are even visible on matrices that may appear similar initially, 

such as blood serum and blood plasma, or even blood plasmas obtained with different 

anticoagulants94. Secondly, as no sample preparation method can comprehensively cover the 

width of compounds constituting the chemical exposome, it is beneficial to the community as 

a whole to explore different methods on similar (or even identical) samples. These 

developments condition the feasibility of implementing operational workflows combining 

different sample preparation methods, while still meeting the miniaturization requirements 

encountered in the case of valuable biological samples with limited availability.  

The most commonly used sample preparation method (SPM) in metabolomics is protein 

precipitation (PPT)95-98. As proteins is one of the major classes of compounds in blood-derived 
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samples, notably regarding abundance, their elimination is the minimum sample purification 

necessary to reduce matrix effect and preserve the analytical system integrity (e.g. extending 

column life). This method was historically favored as it is simple, fast and highly non-selective, 

which is particularly sought after in non-targeted approaches. However, there are other classes 

of compounds highly abundant in plasma and serum samples that are not eliminated through 

this process, such as phospholipids and lysophospholipids. The gain in compound detection 

obtained from the low selectivity may therefore be compensated by the loss of signal due to 

ion suppression99. Moreover, issues with the analytical system such as clogging or poor 

column life may be exacerbated by the still complex PPT samples99. This partly explains the 

growing interest in solid phase extraction and filtration plates such as protein and phospholipid 

removal (PLR) methods in HRMS-based exposomics. 

PLR methods have gained traction in the last few years as sample delipidation combined with 

deproteinization as they allow decreasing ion-suppression phenomena and extending LC-MS 

system life83. These methods specifically retain phospholipids through sometimes undivulged 

mechanisms, presumably relying on interactions between the packed-bed structure and polar 

esterified phosphate group found in phospholipids100. PLR methods have been shown to 

enhance analyte detection of non-lipid compounds compared to PPT methods97, 101, and have 

been described as complementary to PPT in terms of metabolome coverage95.  

Other sample preparation method such as supported liquid extraction (SLE) also allow further 

sample purification. SLE methods aim to purify samples by using the affinity of compounds of 

interest for one solvent over another (both solvents being immiscible). These methods are 

similar to liquid-liquid extraction (LLE), with the exception that a solid media is used to support 

the extraction, replacing the interface traditionally formed between the two immiscible solvent. 

SLE methods are favored in the case of blood-derived sample preparation due to often high 

emulsification in the case of LLE, as well as an easier miniaturization of the sample volume 

needed102. LLE methods, such as the Bligh-Dyer103 or the Folch104 method, have been 

successfully used in metabolomics and lipidomics approaches to simultaneously cover non-

polar lipids and polar metabolites105, 106. While primarily aimed at non-polar compounds due to 

the natures of the solid media and the extraction solvent, SLE methods have been reported to 

perform adequately on more polar compounds107. As other mentioned SPM are often more 

geared towards polar compounds, the use of SLE may allow the observation of another facet 

of the chemical exposome. 

Lastly, solid phase extraction (SPE) methods have vastly been used for biological matrices95, 

98, 99, 101, as they offer a high level of sample purification and hugely limit matrix effects. 

However, despite the expected drastic decrease in ion suppression and for preserving UHPLC 
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columns, there is a concern for excessive method selectivity leading to a loss of information. 

Moreover, the overall complexity of SPE protocols allow more room for human error. These 

concerns have however been dampened by previous studies using non-targeted 

metabolomics approaches, where it was determined that the sometimes-reduced recovery of 

specific compounds was not necessarily associated with total loss of relevant information, 

especially when considering the possibility of increased concentration of extracts96, 99.  

Other sample preparation methods seem promising despite their limited reported use, such as 

solid phase micro extraction (SPME), which is reported to allow the recovery of compounds 

with a wide range of physical-chemical properties and limiting samples handling steps108, 109.  

Sample preparation for NTA are especially challenging to optimize, as there is no set list of 

compounds of interest on which to rely to ensure adequate performance. Moreover, it is less 

simple to monitor external contamination compared to targeted approaches. A systematic 

assessment of sample preparation performance for HRMS-based exposomics applications 

should therefore be conducted to document its impact on the observed chemical space. 

Consequently, a performance assessment of the sample preparation step will be the subject 

of one of the chapters of this PhD. 

2.2. Data processing 

Data processing for non-targeted approaches is the next decisive step in the workflow. This 

step involves transforming chromatographic and spectral data to a list of features; each 

attributed a m/z, a Rt, and an area for each analyzed sample. This step is critical since the rest 

of the workflow, especially annotation, is based on the feature list generated at this point. Its 

optimization is therefore paramount to ensure the correct detection and integration of features 

of interest. In the case of exposomics applications, with low-abundant compounds in complex 

matrices, it is particularly important to ensure that the data processing allows the disentangling 

of these signals from the noise. Very few to no studies are available regarding the optimization 

of this step for HRMS-based exposomics.  

Data processing is conducted in four main steps: firstly, the signal is translated to peaks in 

each analyzed sample (i.e. peak picking). Peaks of all included samples are then aligned to 

obtain a single peak list. Missing values are filled if peaks were missed in some samples during 

the initial step (i.e. gap filling). Lastly, areas are normalized to ensure inter-sample 

comparability. A representation of this process is presented in Figure I.4. 
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A number of open source software are available for non-targeted data processing, among 

which are the commonly used XCMS operated under an R environment110 or online111, 

MZmine2112, MS-DIAL113, and XCMS galaxy-based Workflow4Metabolomics88. Vendors also 

provide non-targeted data processing software, such as Mass Profiler Professional from 

Agilent, MetaboScape from Bruker, Compound Discoverer and TraceFinder from Thermo, 

MarkerView and XCMSplus from Sciex, or Progenesis QI from Waters. This multiplicity of tools, 

while beneficial to allow tailoring data processing to each application’s need, also leads to an 

absence of guidelines regarding the preferential use of a particular software tool for select 

applications, or even regarding the parameter settings that should be used114. This is 

exacerbated by the lack of consensus regarding reporting data processing parameters in the 

literature, possibly explained by the fact that highly customizable processing workflows entail 

a large number of parameters to set and report. 

While several data processing workflow optimizations and comparisons are available in the 

literature114-118, they are tailored towards metabolomics applications. However, as compounds 

of interest in exposomics applications are often low abundant, the suggested optimized 

parameters may lead to failure to correctly identify peaks of interest. Parameters such as noise 

threshold, peak width or maximum authorized asymmetry should be adjusted to account for 

peaks presenting different characteristics to those classically encountered in metabolomics. 

As for the sample preparation method, the data processing method should be thoroughly 

evaluated to ensure that important chemical information is not lost at this stage. 

Figure I.4 – Main steps of the non-targeted data processing workflow, comprising of peak picking, alignment, 

gap filling, and normalization. These steps are presented on quality control (QC) samples. Various strategies 

and algorithms are available for the peak picking step, the alignment step and the normalization step, as 

detailed in Chapter II. 
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2.3. Interbatch correction 

When performing large-scale exposomics applications, the chemical analysis may be 

performed in several batches during several weeks. The collected data may suffer from 

systematic variability in Rt and signal119 due to LC-ESI-HRMS analytical drifts, which may 

result in loss of data (e.g. sensitivity loss). These analytical issues, alongside data processing 

problems such as incorrect binning can lead to inaccuracy of further statistical analyses120. To 

correct the analytical drift in terms of retention time and intensity, interbatch correction should 

be implemented. While interbatch correction is usually considered part of the data processing 

step (i.e. alignment and normalization steps), the methods commonly used for these steps may 

not be sufficient to account for low-abundant compounds.  

Traditional alignment processes only rely on a Rt tolerance value which is applied across 

samples, i.e. peaks with the same m/z value (within a m/z tolerance) in different samples will 

be considered as one feature if their Rt value is identical within this user-set tolerance value. 

The issue with this approach is that when a drift phenomenon is observed, the tolerance would 

have to be set at a high value to account for difference between first and last samples. This 

could lead to the alignment of peaks that are in fact two distinct compounds with similar 

although not identical Rt values (i.e. aforementioned binning issue). Moreover, the often non-

linear nature of Rt drift with LC methods puts the relevance of a fixed Rt tolerance value into 

question. To address this issue, various data processing software provide additional Rt 

correction algorithms. These algorithms usually rely on peaks present in most or all samples 

to perform the Rt correction, whether they are user-specified (i.e. internal standards, such as 

for MS-DIAL), or chosen by the processing tool (i.e. adjustRtime - peakGroups algorithm 

available with XCMS121).  

In targeted approaches, signal drift correction is usually performed by using internal 

standards119. However, in non-targeted approaches, these compounds only represent a 

fraction of the features, which may not be representative of varying signal fluctuation between 

chemical classes122. Similarly, signal drift correction methods traditionally used for NTA, based 

on total intensity or intensity of most abundant features, may fail to account for differing 

variability between metabolite classes119. This observation led to the development of quality 

control (QC)-based methods, where a sample constituted of pooled aliquots of all samples is 

repeatedly injected throughout the batches and used as a reference point92, 119, 122-124. Although 

not often compared in the literature, algorithms relying on all features of QC samples such as 

batchCorr119 are reported to outperform internal standard drift correction and other linear 

sequence corrections92, 119, 125. 



Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies:  
State-of-the-art and challenges 

62  
 

This interbatch correction step, while often incorporated into the data processing workflow, 

should be carefully considered to ensure that the obtained feature list can be relied on for 

statistical analysis, and later non-targeted screening and/or suspect screening. 

2.4. Statistical analysis 

As non-targeted exposomics applications can generate datasets comprised of tens of 

thousands of features, statistical analyses are helpful to identify and prioritize features 

significantly altered between samples, either for further characterization (e.g. MS2 acquisition) 

or for annotation. Both univariate and multivariate analyses can be used to this end. The choice 

of a strategy for statistical analyses highly depends on the study design (e.g. case-control 

study, exposed vs non-exposed, etc.) as well as the nature and volume of data collected 

alongside the biological samples (e.g. socio-economic, geographical, clinical data). 

While the non-targeted chemical exposome characterization is by nature multivariate (i.e. 

simultaneous observations of multiple variables), the high dimensionality of the generated 

datasets entails a high proportion of sparse information leading possible loss of multivariate 

model performance126. Multivariate data-driven dimension reduction techniques, such as 

principal component analysis (PCA) or partial least squares (PLS) can be used to describe the 

exposome or to evaluate exposome-health associations127. These approaches can describe 

the exposome by combining variables (i.e. exposures) that tend to occur simultaneously into 

independent components. These components describe the main patterns discriminating 

individuals or groups of individuals. However, due to the complex nature of the data, it may be 

difficult to summarize it with a reasonable number of patterns127. Establishing correlations 

between exposures and health is also challenging. Indeed, correlations between exposures, 

described as the exposome correlation structure, is largely dependent on the study settings 

and strongly affect the statistical method’s performance in differentiating between true patterns 

predictors and correlated covariates127, 128. The low interpretability of generated independent 

components and the limited possibility of adjusting for confounders are also challenges for 

these multivariate exposome statistical analyses. Overall, despite the lack of guidelines, the 

growing implementation of large-scale exposomics studies will allow to better assess the 

performance of statistical exposome methods in varying contexts. 

Multivariate approaches can be complemented by univariate approaches, which consider each 

feature individually. While considerably easier to implement, univariate statistical analyses in 

a multivariate context requires several adaptations to correct the dramatically increased false 

positive results (type I error). Indeed, as the number of hypotheses tests increases, so does 

the probability of wrongly rejecting the null hypothesis. To limit this multiple testing problem, p-
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values generated by parametric or non-parametric tests (depending on whether the data is 

normally distributed and homoscedastic129) can be corrected. The Bonferroni correction, for 

instance, aims to strictly limit the amount of type I errors, although sometimes at the expense 

of type II errors (i.e. false negatives, or wrongly accepting the null hypothesis). Since missing 

a true significant difference is a concern, other approaches such as the false discovery rate 

(FDR) are often preferred126. Briefly, FDR correction adjusts p-values based on the initial non-

corrected p-values and on the distribution of p-values among all the considered tests. To do 

so, a critical value is computed as a function of the feature’s significance rank, the total number 

of tests and the chosen false discovery rate (usually 5%); the largest p-value that is inferior to  

to this critical value, as well as all smaller p-values, are significant. An adjusted p-value that is 

a function of the raw p-value, the feature’s significance rank and the total number of tests can 

be computed. Both of these corrections can be performed depending on the application, 

although FDR corrections such as Benjamini-Hochberg are often preferred for non-targeted 

approaches126, 129. Vinaixa et al. (2012) 126 provide a detailed and comprehensive workchart to 

help navigate the implementation of univariate analyses for non-targeted data. 

While methodological challenges still exist, univariate and multivariate statistical methods can 

improve the efficiency and reliability of the non-targeted workflow. These methods allow 

prioritizing features of interest for further investigation through various annotation strategies. 

2.5. Annotation: non-targeted and suspect screening 

Non-targeted HRMS-based methods, while not entirely comprehensive in their coverage of the 

chemical exposome, still generate a large amount of data. Exposomics datasets often include 

10,000 to 50,000 features, as even low-abundant peaks are of potential interest. The 

annotation step aims to assign chemical identities to the detected signals with varying 

confidence levels depending on the amount and nature of the gathered elements of proof130. 

The consensus ranking currently used by the HRMS-based non-targeted community is the one 

proposed by Schymanski et al. (2014), where the highest confidence level is achieved by 

matching exact mass, MS/MS fragmentation pattern and Rt to a standard compounds, as 

schematized in Figure I.5130. It should be noted that the development of new methodological 

tools in the last few years, such as retention time prediction models131-134, raise the question of 

updating this ranking system to account for other predictors. Due to a combination of the high 

volume of data generated, time restrictions and limited access to standards (for financial or 

availability reasons), it is usually admitted than less than 10% of features are identified5.  
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Figure I.5 – Identification confidence levels in high-resolution mass spectrometry proposed by 

Schymanski et al., ES&T, 2014. 

Assigning chemical identities to features can be performed through two main approaches, 

namely non-targeted screening and suspect screening. Both of these approaches aim to 

identify new and/or infrequently investigated markers of chemical exposure through different 

methodologies.  

Non-targeted screening consists in unambiguously identifying a feature’s identity with no prior 

reference knowledge. This task is incredibly complex, as the number of tentative candidates, 

even restricted by a chemical formula, can still be extremely high; for example, a saturated 

alkane such as C10H22 already presents 75 possible isomers and 136 possible stereoisomers. 

Moreover, strong knowledge on analytical chemistry and biochemistry are needed to assess 

the plausibility of a given candidate; precise structure elucidation may require the use of other 

analytical techniques, such as nuclear magnetic resonance. Another bottleneck of annotation 

is the large size of non-targeted datasets, which cannot be entirely annotated. This can be 

managed by using statistical analyses to prioritize features of interest for non-targeted 

screening.  

Suspect screening is performed by using one or more lists of compounds suspected to be 

present in a sample (e.g. expected dietary or occupational biomarkers), which is compared 

using several criteria to the feature list generated during the previous steps. This comparison 

is usually done through the comparison of chemical descriptors (e.g. m/z, Rt, isotopes93, 135) 

and correlation/clustering methods. Several automatized solutions based on this principle have 

been developed over the last few (e.g. CAMERA, MolNetEnhancer ProbMetab, and 

MetAssign)136-139. The use of biological matrices has also led to the use of biological correlation 
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(i.e. implication in the same pathways, etc.) to assist automatized suspect screening (e.g. 

xMSannotator140). Another powerful chemical predictor is the MS2 fragmentation pattern, 

which is also widely used to assist suspect screening in some software tools (e.g. MS-DIAL113, 

msPurity141, and DecoMetDIA142). While these annotation tools sometimes allow to directly use 

publicly available databases such as HMDB143 or KEGG144, the suspect screening strategy can 

be less time-consuming if the list of suspects is prioritized depending on varying criteria (e.g. 

chemical class, toxicity, production volume, etc.). Moreover, these databases were initially 

designed for metabolomics. They may therefore only be moderately relevant for exposomics 

applications. While these databases are still relevant to monitor a biological reaction to an 

exposure (i.e. biomarkers of effect), other databases such as the Blood Exposome Database145 

, Exposome Explorer146 or CECscreen147 may be better suited to identify biomarkers of 

exposure. 

While suspect screening strategies have been greatly improved in the last few years77, the use 

of sufficient and relevant chemical predictors is needed to decrease the rate of false positives 

and therefore limit the number of putative annotations that need manual curation. Furthermore, 

there is still a high need for the automation of this process, as few tools are available to 

implement suspect screening approaches. Most of the existing tools rely on highly 

discriminating MS2 fragmentation patterns, which can be difficult to obtain for less commonly 

investigated environmental contaminants. The use of in silico fragmentation algorithms, such 

MetFrag148 or CFM-ID149, can help bridge the gap between the number of potential substances 

of interest and the available experimental spectra150. When standards are available, local 

reference libraries can also be built, and the acquired spectra can be submitted to large 

databases such as MassBank151. As MS2 acquisitions may be difficult to trigger in the case of 

low-abundant compounds such as xenobiotics, the suspect screening process can rely on 

other MS1 predictors. For instance, as for theoretical MS2 fragmentation models, several 

algorithms for retention time prediction have been developed and evaluated132, 133, 152, 153, such 

as PredRet134, the retention time index RTI154, Retip131, and linear regression models using the 

octanol-water partition coefficient155. While predicted Rt values are not as reliable as 

experimental values, they are still helpful in combination with other chemical predictors to 

decrease the rate of false positive annotations. A chapter of this PhD work was dedicated to 

the development of a suspect screening tool relying on MS1 predictors to partly automatize 

this process and efficiently prioritize features of interest. 
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2.6. Semi-quantification 

To date, NTA mainly provide qualitative data, i.e. presence/absence of a given biomarker, and 

semi-quantitative data, i.e. area fold changes between samples. This is a hindrance for the 

application of NTA in epidemiological studies, which heavily rely on quantitative data to perform 

statistical exposure-health associations, as well as for risk assessment purposes, which also 

consider quantitative data.  

Semi-quantification relies on the hypothesis of a linear concentration-response relationship. 

Although rarely perfectly accurate over large concentration ranges156, these relative 

comparisons are useful to establish fold change values and investigate statistically significant 

features for prioritization. Indeed, semi-quantitative results from univariate statistical analysis 

(corrected for multiple comparisons) have been used to compare emerging contaminants 

levels in human blood157. The same methodology has also been applied to investigate 

emerging contaminants in environmental matrices158. While normalization approaches can 

improve comparability between samples156, differing ionization potentials make cross-chemical 

comparisons based on estimated concentrations difficult with this approach5, 156, 159. 

To generate quantitative data using NTA in epidemiological studies, two main types of 

approaches can be considered: quantification by surrogate standard or response modeling 

from chemical structure156. Quantification by surrogate standard consists in constructing 

calibration curves with a list of reference standard deemed representative of the chemicals of 

interest, and pairing them when similar analytical behaviors are expected (e.g. a parent 

compound and a metabolite, compounds from the same chemical class, etc.). However, due 

to intrinsic analytical variance and model uncertainty, these approaches have been reported 

to yield highly variable inaccuracies depending on the considered compound, and seem 

challenging to apply for predictive purposes160.  

Since there are several limitations to the surrogate standard assignment approach, models 

aiming to model compounds’ ionization response based on their structure and properties (i.e. 

hydrophobicity, molecular weight, etc.) have been developed159, 161. An important consideration 

for these approaches is that the constructed models will only be usable in their validity domain, 

which is conditioned by the diversity (or lack thereof) of the training dataset. This implies that 

quantitative data would have to be acquired for compounds from different chemical classes, 

with a wide range of physical-chemical properties, functional groups, etc. in both ionization 

modes and in matrix to yield a robust model. Such an approach was carried out by Liigand et 

al. (2020) which allowed an rather low prediction error on compound concentration (i.e. 

averaging at two-fold)160, encouraging further investigations of these approaches using 
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ionization response predictions to provide reliable quantitative data even with non-targeted 

approaches. 

2.7. Reporting 

Reporting NTA data can be challenging as no consensus format exists as of yet. While most 

reports contain the 1 to 5 confidence levels as described by Schymanski et al. (2014)130, there 

may be some discrepancies between laboratories depending on interpretation. For instance, 

it may be relevant to add information regarding predicted Rt values, which are not taken into 

account in the existing annotation and reporting standards130, or to document potential 

deconjugation steps implemented in the sample preparation procedure93. Moreover, the ever-

evolving technologies, prediction models and methodological approaches may lead to 

annotations not fitting in any described categories, as is the case for annotations supported by 

predicted retention times or biotransformation products5. All the elements of proof used to 

assign the considered chemical identity should therefore be reported, along with any additional 

information that may support plausibility (e.g. production volume) or justify a further 

prioritization (e.g. toxicity). A common template for the reporting of non-targeted and suspect 

screening results is currently developed in the HBM4EU initiative93. Other recommendations 

are available in the literature, such as those from Dumas et al. (2022) which include providing 

m/z, Rt, molecular ion species detected, and fold change values, to ensure providing sufficient 

analytical, statistical and biological information to allow a full understanding of results162.  

Additionally, providing raw data and associated metadata through online workflows such as 

XCMSOnline111 or Workflow4metabolomics88, on through data repositories such as 

MetaboLights163 or Metabolomics Workbench164 helps enhance cooperation and further tool 

and database development165. 

2.8. Conclusion 

While structurally inspired from workflows developed for metabolomics, HRMS-based 

exposomics workflow must be adapted and optimized for these specific exposure assessment 

applications. While highly challenging, this workflow optimization allows ensuring that each 

step’s impact on the produced results is thoroughly investigated, and ideally vastly reduced. A 

systematic evaluation and optimization of the solutions available for every item of this workflow 

is necessary to implement robust large-scale applications that are minimally biased, and 

provide a wide view of the chemical exposome. Epidemiological cohort-based studies 

associating exposomics data and health data can therefore be carried out and shed some light 

on the complex links between environmental factors and non-communicable diseases. 
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3. When non-targeted and suspect screening meet epidemiology: 

first large-scale applications, achievements and remaining 

challenges 

3.1. Large-scale applications and achievements 

To date, there have been no large-scale applications of non-targeted and/or suspect screening 

approaches in epidemiological studies. However, several exposomics research initiatives have 

appeared in the last decade in Europe and worldwide (even though not all of them implemented 

NTA based on HRMS) ( 

Table I.1).  

European projects (FP7) 

(2012-2017) 

Project name 

Main objective 

Funding 

(Million euros) 

HELIX 

The Human Early-Life Exposome 

Novel tools for integrating environmental exposures during early 

life and child health across Europe 

11.3 

EXPOsOMICs 

Enhanced exposure assessment and omic profiling 

Developing a new approach to assess environmental exposures, 

focusing on air and water pollution 

11.6 

NIEHS projects (USA) 
Project name 

Main objective 

Funding 

(Million euros) 

CHEAR 
The Children’s Health Exposure Analysis Resource 

Implementing the exposome concept in children’s health studies 
34 

HHEAR 

Human Health Exposure Analysis Resource 

Capturing the effects of environmental exposures on human 

health outcomes across the life course 

35 

European projects (H2020) 

(2017-2022) 

Project name 

Main objective 

Funding 

(Million euros) 

HBM4EU 

The European Human Biomonitoring Initiative 

Coordinating and advancing human biomonitoring in Europe to 

provide evidence for chemical policy making 

74.9 

The European Human Exposome 

Network  

(2020-2025) 

Project name 

Main objective 

Funding 

(Million euros) 

ATHLETE 

Advancing tools for human early life-course exposome research 

and translation 

Developing a human exposome toolbox to evaluate the effects 

of environmental exposure 

12.0 

EXPANSE 
Exposome powered tools for healthy living in urban settings 

Maximizing one’s health in a modern urban environment 
12.0 
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Table I.1 – Research initiatives investigating the links between the chemical exposome and health. 

NIEHS: National Institute of Environmental Health Sciences. Adapted from David et al., m/s, 2021. 

3.1.1. From 2012 to 2017 

The emergence of the exposome concept has motivated the funding of several European and 

international projects aiming to characterize the exposome at a wide scale. Among the first 

large-scale research projects, two European projects funded in part by the European 

Commission through the seventh Framework Programme (FP7) were launched in 2012. 

Firstly, the HELIX project set out to characterize early-life exposures to multiple environmental 

factors and associate them with omics biomarkers and health outcomes. Methodological tools 

such as spatial models and exposure monitors were used to evaluate exposure to physical 

factors such as surrounding green spaces, noise and radiation. Other tools such as 

questionnaires and chemical analysis were used to assess early-life exposure to a wide range 

of environmental chemicals including various persistent organic pollutants (polychlorinated 

biphenyls, dichlorodiphenyldichloroethylene, hexachlorobenzene, polybrominated diphenyl 

ethers, perfluroalkyl substances), non-persistent pollutants (phtalates, phenols, 

organophosphate pesticides), and various metals166. These chemical parameters were 

measured in blood using GC-MS-based methods (aforementioned persistent pollutants), in 

urine using LC-MS-based methods (aforementioned non-persistent pollutants) or hair 

(mercury). In addition, the links between indirect measurements conducted on environmental 

samples and direct measurements conducted on biological matrices were investigated to give 

new insights on future exposure assessments. The HELIX project implicated six European 

birth cohorts (more than 30,000 mother-child pairs), with a subcohort of more than 1,300 

mother-child pairs for which biomarkers, omics signatures and child health outcomes were 

measured at ages 6-11167.  This project required a total budget of 11.3 million euros (8.6 million 

euros from FP7), and allowed to establish several significant environment-health outcomes 

associations such as perfluoroalkyl substances and cardiometabolic factors39, and multiple 

exposures (including chemical mixtures) and cognitive function168.  

Secondly, the EXPOsOMICs project aimed to characterize exposure to air and water 

contaminants for more than 3000 participants (including newborns, children and adults) from 

14 European regions, and to establish links with adverse health outcomes such as 

cardiovascular diseases, respiratory diseases and type II diabetes. Real-time monitors 

measuring notably fine particulate matter and innovative models were used to assess 

exposure to air pollution. Water contamination, on the other hand, was assessed through the 

determination of disinfection by-products notably in drinkable water and biological matrices 

such as urine. Omics data was also generated from biological samples obtained from the highly 
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exposed participants to potentially identify biomarkers of risk and better understand chemical 

compounds’ mechanisms of action (“meet in the middle” approach169). It was funded for over 

11.6 million euros, with a contribution of more than 8.7 million euros from the European 

Commission.  

These projects, both closed in 2017, undertook the characterization of the chemical exposome 

at a large scale. However, while a large number of determinants were investigated, they still 

relied on targeted measurements of known toxicants.  

During the same period, sizable infrastructures dedicated to the characterization of the 

exposome were set up in the United States of America.  In 2013, the National Institute of 

Environmental Health Sciences (NIEHS, USA) funded HERCULES, an environmental health 

sciences center dedicated to supporting environmental health research through the 

development of new tools and technologies. This Core center was the first of its kind focused 

on the exposome concept. This platform supported many research projects throughout the 

years, providing targeted and high-resolution metabolomics analyses (aiming to identify both 

biomarkers of effect and exposure), as well as support regarding data analysis38, 170. Its funding 

was renewed for a second cycle in 2017171. In 2015, NIEHS also launched the Children’s 

Health Exposure Analysis Resource (CHEAR), a large-scale infrastructure to allow 

researchers working specifically on children’s health to incorporate the concept of exposome 

to their research172. Using targeted and high-resolution metabolomics, this infrastructure 

allowed researchers to characterize the chemical exposome of over 50,000 children in over 30 

studies investigating the links between environmental exposures and adverse health outcomes 

such as asthma, obesity, autism, etc. In 2019, the Human Health Exposure Analysis Resource 

(HHEAR) was in turn launched to expand the characterization of the chemical exposome to 

other time windows of vulnerability during adulthood173.  

3.1.2. From 2017 to 2020 (extended to 2022)  

The European Human Biomonitoring Initiative (HBM4EU) was launched in 2017 with a 

contribution from the European Commission of almost 50 million euros through the Horizon 

2020 program (75 million euros of funding in total). This project is a joint effort of 30 countries 

to coordinate and harmonize human biomonitoring practices to improve the evaluation of the 

actual exposure of citizens to chemicals and to better understand the effect of mixtures on 

human health. Its main objectives included the harmonization of procedures for HBM to 

improve data comparability for policy makers, establishing links between chemical exposures 

and health outcomes, and adapting risk assessment procedures to account for multiple 

sources. It was one of the first major projects to include, in addition to targeted approaches 
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relying on lists of priority substances, non-targeted and suspect screening of biological 

matrices to characterize environmental exposures. HBM4EU’s sixteenth work package titled 

“Emerging chemicals” is specifically dedicated to the harmonization and implementation of 

NTA72, 76, 93. The work carried out in the context of this work package has contributed to the 

field of the non-targeted characterization of the exposome on several aspects, notably the 

establishment of a list of chemicals of emerging concern76, 93, 147, and recommendations on 

practices harmonization93. At a larger scale, this project has allowed, amongst other results, 

establishing recommendations for the harmonization of the use of HBM data in risk 

assessment49, 174, as well as HBM guidance values for chemicals such as phthalates175 or 

cadmium compounds176. 

In this context, the European-wide research program PARC (Partnership for the Assessment 

of Risks from Chemicals) was developed. This partnership established under Horizon Europe 

and co-funded for 400 million euros, will last 7 years. It implicates 200 partners, including 3 

European Union agencies. PARC’s main objectives revolve around the consolidation of the 

European Union’s research capacity for chemical risk assessment to improve the protection of 

human and environmental health. Work package 4 of this program is specifically dedicated to 

the exposure and monitoring of chemicals through the development of innovative tools and 

methods to perform HBM and environmental monitoring. Non-targeted and suspect screening 

methods will be implemented in this work package. 

Lastly, in 2018, the European Strategy Forum on Research Infrastructures (ESFRI) identified 

a gap in the health and food domain and recommended building an infrastructure dedicated to 

research surrounding the human exposome at a European level. This prompted the setup of 

Environmental Exposure Assessment Research Infrastructure (EIRENE), which includes more 

than 50 partners from 17 countries (including the United Kingdom and the United States of 

America). EIRENE was added to ESFRI’s roadmap in 2021. It aims to bring together 

complementary capacities of partners to improve exposome research and achieve the high-

throughput characterization of the human exposome.  Another important aim of EIRENE is the 

translation of research results towards innovation and policymaking.  

3.1.3. From 2020 onwards 

In 2020, a large-scale network of projects focused on studying the impact of environmental 

exposure on human health, the European Human Exposome Network (EHEN), was launched. 

It was funded from Horizon 2020 for over 106 million euros, and aims to protect citizen’s health 

and well-being from environmental factors. It consists of 9 research projects implicating 126 

research groups from 24 countries. One of its main objectives is to develop a Findable 
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Accessible Interoperable Reusable (FAIR) toolbox for exposome research. This toolbox will 

notably include innovative tools for the assessment of the exposome, and new methodologies 

to associate this data to health data.  

The Advancing Tools for Human Early Lifecourse Exposome Research and Translation 

(ATHLETE) project, as a part of EHEN, was launched in 2020. ATHLETE’s objectives include 

the setting-up of a Europe-wide prospective cohort to cover the first 20 years of life using 17 

already existing cohorts, measuring multiple environmental exposures and linking it to 

children’s biological responses177. A work package dedicated to the non-targeted screening of 

emerging chemicals will, amongst other analyses including targeted screening, use LC- and 

GC-HRMS to perform non-targeted and suspect screening on the HELIX subcohort (1 300 

individuals). Simultaneously launched in 2020, the EXposome Powered tools for healthy living 

in urbAN SEttings (EXPANSE) project was also funded for 12 million euros through the Horizon 

2020 European program. It involves 20 partners in Europe and in the United States of America 

working together to identify factors influencing human health in urban environments178. 

EXPANSE includes four main study types: administrative cohorts, adult cohorts, matures birth 

cohorts, and urban labs with data collected 55 million, 2 million, 30 000 and 5 000 individuals 

respectively. Biological data was collected for all study types except administrative cohorts.  

Non-targeted screenings on 10 000 blood samples will be performed using both LC- and GC-

HRMS. Both the ATHLETE and EXPANSE project will integrate multiple omics datasets to 

uncover exposome-health relationships, and allow expanding knowledge on biological 

pathways. Moreover, exposome-health associations will be explore with epidemiological 

approaches, as clinical data is available for individuals in the cohorts. 

Although these many large-scale EU and international initiatives have been launched to 

decipher the impact of the chemical exposome on human health, to date, there are no large-

scale epidemiological applications of non-targeted or suspect screening approaches. 

However, there are some studies using non-targeted or suspect screening approaches to 

characterize the chemical exposome and establish links with endogenous compounds to 

investigate the effect of various exposures on biological pathways32, 179, 180. While these studies 

constitute the crucial first steps towards conducting epidemiological analyses to investigate 

associations between environmental chemical exposures and adverse fetal health outcomes 

(e.g. preterm birth, low birth weight, preeclampsia)32, breast cancer179 or liver diseases180, they 

report several remaining limitations in achieving this goal. 
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3.2. Remaining limitations 

3.2.1. Statistical power in non-targeted applications 

As mentioned above, no large-scale applications of non-targeted and suspect screening are 

described to date, and this is explained by many major methodological issues. The major 

challenge for the application of NTA in epidemiological studies is statistical power. Indeed, 

statistical power in these applications is limited by the large and unknown number of 

determinants (i.e. exposures) investigated127. This is further exacerbated by the fact that high-

dimensional collinear data is generated through these approaches126, 127.  

It should be noted that this issue is also prevalent for EWAS conducted using targeted 

approaches. Indeed, when considering that the association sizes are often low to moderate, 

and that a substantial proportion of substance concentrations is below the limit of detection, 

high sample sizes are needed to achieve sufficient power127, 181 167, 169. A study investigating 

the link between 128 environmental contaminants and semen quality found in a post-hoc 

power analysis that sample size requirements when using a Bonferroni or a FDR correction 

were of at least 1795 and 925 men  respectively, thus determining that many existing cohorts 

were vastly underpowered to undertake EWAS-like approaches181.  

Regardless of whether targeted or non-targeted approaches are undertaken to characterize 

the exposome, high sample sizes can be difficult to achieve for various reasons: limited funding 

for sample collection and analysis, analytical platform availability, loss of follow-up167, 169, or 

investigation of rare diseases with low frequencies180. Theoretical and methodological studies 

are therefore still required to overcome the critical challenge of statistical power for use of NTA 

in epidemiological research. 

3.2.2. The incomplete annotation process 

Despite the many available tools and databases, the annotation process is still tedious and 

incomplete. It requires many steps, including searching for mass spectral information in 

databases, verifying the potential match to the observed feature, and even in some cases, 

such as isotope elucidation, using non-traditional additional approaches such as using other 

analytical techniques. While it would not be necessary to annotate the entirety of datasets, 

annotating only the statistically significant features can still remain an arduous task. For 

instance, Walker et al. (2021) described identifying 54 compounds associated to primary 

sclerosing cholangitis, resulting in only one high-confidence match. This can be partly 

explained by the fact that, to date, the main annotation approach used is suspect screening, 

since it requires fewer resources and has potential for automation. However, a critical aspect 
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of suspect screening is the construction of the reference database against which features are 

compared. 

The Matthew effect is a psychological phenomenon described as maintaining prominence of 

items (i.e. compounds) that have been prominent in the past183. This bias includes the 

prioritization of compounds only based on previously researched compounds and the 

interpretation of lack of data as a null concentration. While NTA were specifically designed to 

overcome the restriction of set lists of well-researched compounds of interest, the data 

generated from these approaches must be made interpretable by expanding knowledge on 

compounds not traditionally investigated, including through the acquisition of MS2 spectra. 

Indeed, while hundreds of thousands of compounds are known to be in our environment, it is 

estimated that only 0.57-3.6% of them have spectral information available150. Ongoing efforts 

for the harmonized and collaborative acquisition of MS2 spectra must therefore be maintained 

and even expanded. 

3.2.3. Interpretability of results: toxicology and determinants of exposure 

Once an association between an environmental exposure and an adverse health outcome has 

been established, additional steps must be taken to understand the nature of this association. 

Indeed, in datasets as highly collinear as non-targeted exposomics data, it may be difficult to 

disentangle true predictors of health status and correlated covariates. Additional assays such 

as high-throughput toxicity screenings models may help to ascertain the effect of an 

environmental compound on various biological pathways32. To this end, the ToxCast program 

was launched by the U.S. Environmental Protection Agency (EPA) in 2006 to use 

computational chemistry, high-throughput screening and toxicogenomics technologies to 

predict toxicity and prioritize chemicals for limited in-vivo tests184. The data generated by this 

program is freely available and allows having preliminary data on the predicted toxicity of over 

4,400 chemicals. As chemical mixtures may have synergic effects, additional developments 

must be made to allow these toxicological approaches to integrate multiple compounds. The 

implementation of toxicological approaches in exposomics is needed both to improve 

mechanistic understanding of chemicals’ effects on human health and to translate these 

findings into regulatory measures in risk assessment185.  

Lastly, the detection and identification of new toxicants to which humans are exposed raise the 

question of the determinants of exposure. Indeed, to implement public health policies and limit 

the exposure to such compounds, the major sources of exposure must be identified. This can 

be challenging, as there are often multiple sources and confounding factors. To date, this task 

is mostly accomplished by using detailed questionnaires23 that allow collecting large amounts 
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of data regarding socio-demographic features, diet, lifestyle, etc. Although this method is not 

ideal due to the data being subject to potential recall and reporting biases186, it is often the 

most cost-effective way to obtain a starting point to establish the determinants of a given 

exposure. 

Overall, there are still some key conceptual and methodological obstacles to implements NTA 

for epidemiological studies, including the unresolved question of statistical power, the tedious 

and incomplete annotation process, and the limited interpretability of the generated data. To 

address those issues, collaborative efforts must be maintained regarding the generation of 

additional knowledge, as well as regarding the development of new data processing and 

statistical methodologies needed to uncover the potential of NTA to investigate the etiology of 

diseases. 

4. Conclusion 

This first chapter illustrates the significance of the exposome concept to investigate the etiology 

of non-communicable chronic diseases, as genetic factors are not sufficient to explain alone 

their emergence. This exposome concept, combined with the advancement of technologies 

such as HRMS, paved the way for a change of paradigm for exposure assessment to chemical 

mixtures and emerging contaminants. Indeed, the development of new non-targeted 

approaches has allowed envisioning a characterization of the chemical exposome without 

establishing set lists of prioritized chemicals, but with an (ideally) unbiased vision.  However, 

many technological barriers that come with the non-targeted characterization of the human 

internal chemical exposome remain. The many necessary methodological choices, which 

include the choice of matrix, analytical platform, sample preparation and parametrization of 

bioinformatics tools used for data processing have a hard-to-discern impact on the observable 

chemical space, which in turn may limit the applicability of these novel approaches in 

epidemiological studies. Indeed, the diverse and dynamic nature of the chemical exposome 

are both considerable obstacles to its exhaustive characterization. The combination of different 

biological matrices (i.e. urine, blood, placenta, hair, etc.), analytical platforms (i.e. LC-HRMS, 

GC-HRMS, etc.) and sample preparation methods is necessary to encompass the wide range 

of chemicals that constitute the chemical exposome. Moreover, the data processing and 

annotation algorithms are not yet fully efficient to translate the non-targeted chemical 

fingerprints to a list of identified chemical compounds, which is a hindrance to the application 

of NTA at a large scale. Lastly, the extensive amount of data generated by NTA is also a 

challenge to establish links between the characterized exposures and the considered health 

outcomes. 
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These many conceptual and methodological challenges for the application of non-targeted 

approaches to epidemiological studies are slowly being addressed through the efforts of 

independent laboratories and regional and worldwide collaborations. In 2020, the European 

Human Exposome Network was launched with the aim to bring together 9 research projects 

studying the impact of environmental exposure on human health. It is partly funded by the 

European Commission for over 100 million euros, and involves 126 research groups from 24 

countries. Closely following in 2021, the Research Infrastructure for EnvIRonmental Exposure 

assessmeNt in Europe (EIRENE RI) entered in the European Strategy Forum on Research 

Infrastructures (ESFRI) roadmap. This European research infrastructure connects 50 research 

institutions from 17 countries and aims to support large-scale research on human health and 

the environment, way of life, diet, exercise, economic pressures and psychosocial problems. 

These initiatives hold great promises for supporting the development and harmonization of 

new methodologies aiming to bridge the gaps in knowledge regarding the impact of 

environmental exposures on human health, as it is a complex task only achievable through the 

collaboration of multiple partners focusing on its different aspects. 

In this context of rising global interest, this PhD thesis project was focused on developing and 

optimizing a workflow for the non-targeted LC-ESI-HRMS characterization of the chemical 

exposome in blood plasma and serum samples. This was conducted by optimizing the 

acquisition of the chemical fingerprint and notably the sample preparation step, as well as the 

data processing step for the characterization of low-abundant environmental compounds in 

complex matrices. Moreover, a suspect screening workflow was developed to improve the 

efficiency of the annotation step, which remains an important bottleneck for the implementation 

of NTA. Lastly, a proof-of-concept study was conducted on serum samples from Breton 

adolescents to demonstrate this workflow’s efficiency to characterize the chemical exposome 

at a large scale. 
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1. Instrumental method development and optimization 

A LC-ESI-HRMS SCIEX ExionLCTM Ultra-High Performance Liquid Chromatography (UHPLC) 

system (Framingham, USA) coupled to a high-resolution QTOF mass spectrometer SCIEX 

X500R equipped with a Turbo V ion source with a twin-sprayer ESI probe and a hybrid 

quadrupole time-of-flight mass spectrometer was used for all experiments. External calibration 

was systematically performed by infusion of AB SCIEX calibration mixtures for negative and 

positive ionization modes before all injections. The instrument was controlled by SCIEX OS 

software version 1.2. LC optimizations and development (e.g. columns, flow rates, solvent of 

injection) were made using a mix of standards spiked in solvent and plasma/serum to ensure 

a good analytical sensitivity and repeatability. 

1.1. Mix of standards used for the optimizations 

One of the main challenges of non-targeted method development is the width and depth of the 

chemical space intended to be observed. Indeed, compounds constituting the chemical 

exposome are extremely varied in both physical-chemical properties and concentrations in 

biological matrices. While there are indubitably less constraints in non-targeted methods 

regarding quantification performances compared to targeted methods, there is an added 

difficulty in ensuring a high coverage of the observable chemical space to characterize the 

chemical exposome as thoroughly as possible given the chosen analytical system.  

To achieve this goal, a mix of 50 compounds, referred to as the optimization mix, was 

designed. These compounds were chosen to meet three main objectives: 

(i) Belong to different chemical classes of interest in the context of an exposomics 

application in human biological matrices (i.e. endogenous compounds such as 

steroids and eicosanoids, and exogenous compounds such as pesticides and 

drugs). 

(ii) Represent a wide range of physical-chemical properties (i.e. m/z and polarity) to 

cover the entire space of the LC method. 

(iii) Cover both ESI (+) and ESI (−) ionization modes. 

An overview of this compound set is presented in Figure II., while a detailed list is available in 

Appendix 1.1. To summarize, chosen compounds are distributed as follows: 14 endogenous 

compounds (1 neurotransmitter, 6 steroids and 7 eicosanoids) and 36 exogenous compounds 

(2 food compounds, 13 drugs, 19 pesticides, and 2 environmental pollutants linked to 

smoking). These compounds present monoisotopic mass values ranging between 133.0640 

and 496.2607 Da and octanol-water partition coefficients (logP) ranging between 0.07 and 
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6.99. Overall, 36 compounds are better observed in ESI (+) mode, while 14 are better observed 

in ESI (−) mode. 

 

Figure II.1 – Overview of the physical-chemical properties of the 50-compound optimization mix, 

including endogenous compounds (in blue) and exogenous compounds (in orange). The octanol-water 

partition coefficient (logP) and the monoisotopic mass (Da) are presented. 

This optimization mix was prepared at 1 µg/mL in methanol, and diluted and reconstituted in 

the optimized reconstitution phase (see paragraph 1.3.2) as needed for sample spiking or for 

injection in solvent. Usually, mix concentration was kept between 0.1 and 100 ng/mL in vial 

(whether in solvent or in matrix) to avoid excessive system contamination. 

1.2. Quality assurance and quality control procedures 

Several quality assurance/quality control procedures were implemented for non-targeted 

analyses. One solvent blank (i.e. acetonitrile/ultrapure water 90:10 (v/v)) and one extraction 

blank sample (i.e. preparation with UHPLC grade water instead of sample) were systematically 

injected with each batch. This allowed ensuring lack of carryover in the UHPLC system and 

monitoring the contamination linked to the sample preparation process respectively. 

Contamination linked to the sample preparation process for annotated compounds in particular 

was taken into account by verifying their presence in the extraction blank, and if so, subtracting 

the blank level from samples. Additionally, composite quality control samples were prepared 

and injected after blanks to equilibrate the analytical system, and periodically throughout the 
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batch (i.e. every 5-7 samples) to monitor the analytical drift and repeatability. In the case of 

multiple batches, samples were assigned randomly, and samples were injected randomly in 

all cases. Internal standards were systematically used in samples and monitored to assess 

analytical drift. MS2 acquisitions were performed at the end of each batch to generate 

fragmentation data for the annotation process. 

1.3. LC method optimization 

In non-targeted approaches, the chromatographic separation is important to optimize to ensure 

that sufficient chromatographic separation is achieved. Optimizing the LC method parameters 

is a crucial step, since ESI sources are prone to phenomena such as ion suppression, 

particularly in complex biological matrix. To limit the impact of ion suppression and maximize 

sensitivity performances, the LC method should be optimized to reduce co-elution, which can 

be done by increasing chromatographic dilution for instance.  

A base gradient was set as follows for a flow rate of 0.1 mL/min: 0-2.5 min, 10-20% B; 2.5-20 

min, 20-30% B; 20-38 min, 30-45% B; 38-45 min, 45-100% B; 45-55 min, 100% B; 55-60 min, 

10% B, for a total run time of 60 minutes. While run times in metabolomics are typically shorter 

(from 15 to 30 minutes1-3), some studies rely on longer methods (from 45 to 85 minutes4, 5) to 

increase Rt stability or to ensure sufficient separation between isomers through less steep 

gradients. Moreover, the need for high sensitivity often entails lower flow rates6 for better 

sample decomplexification7, which in turn leads to longer run times. A 60-minute run was 

determined adequate as it notably allowed to separate isomers prostaglandins D2 and E2 (Rt 

values of 16.25 min and 15.52 min respectively). The test of different flow rates was performed 

with comparable gradients, with the adjustment of times to allow the flow of an identical amount 

of solvent. 

Using the optimization mix, three parameters of the LC method were then optimized; firstly, 

two reverse phase columns (both 1.8µm, 150mm Acquity HSS T3, Waters, with diameters of 

2.1mm and 1.0mm) were tested. These assays were done conjointly with the flow rate 

optimization, as two flow rates were tested for each column. Lastly, the organic phase 

percentage of the reconstitution solvent was optimized.  

1.3.1. Column diameter and flow rate optimization 

The optimization mix was spiked post-extraction (protein precipitation) in a serum homogenate 

and injected in two quantities (20 and 200 pg) using a 2.1 mm diameter column and a 1.0 mm 

diameter column. Each column was tested using two flow rates (0.3 and 0.15 mL/min for the 

2.1 mm column, and 0.1 and 0.05 mL/min for the 0.1mm column). Compounds’ areas were 
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integrated manually using SCIEX OS, and area coefficient of variation (CV) values were 

calculated from four replicate injections. A generic elution gradient of water (A) and acetonitrile 

(B) both supplemented with 0.01% of formic acid was used. Oven temperature was maintained 

at 40°C for all experiments. The results are summarized in Table II.1, and detailed results are 

available in Appendix 1.2. 

 Ø 2.1 mm Ø 1.0 mm 

 0.30 mL/min 0.15 mL/min 0.10 mL/min 0.05 mL/min 

20 pg 1.17 e+4 (2.4%) 1.96 e+4 (2.1%) 2.75 e+4 (2.0%) 4.42 e+4 (2.0%) 

200 pg 1.70 e+5 (2.1%) 2.50 e+5 (1.7%) 3.08 e+5 (1.7%) 3.80 e+5 (2.2%) 

Table II.1 – Median area (and area CV) of compounds from the optimization mix injected in four replicate 

depending on the column diameter and flow rate. 

Although results were compound-dependent, the overall trend showed that area values 

increased as flow rate (and column diameter) decreased. This led to the favoring of the 1.0 

mm diameter column, as sufficient pressure could be achieved using lower flow rates. 

However, it was also observed that using this column, area repeatability and retention time 

stability were significantly improved using the 0.10 mL/min flow rate compared to 0.05 mL/min. 

Retention time being a key factor for accurate binning during the data processing, and because 

sensitivity was already improved with this flow rate, the 0.10 mL/min flow rate with the 1.0 mm 

column were kept as analytical conditions.  

1.3.2. Reconstitution phase optimization 

Prior to the injection, samples are often evaporated then reconstituted for conservation, 

concentration or composition purposes. The reconstitution phase composition’s impact on the 

metabolome coverage in non-targeted analyses has been demonstrated, and more precisely 

the relevance of using 100% water as a reconstitution phase compared to 100% methanol and 

50:50 water:methanol8. For this optimization, acetonitrile was preferred as it is the gradient’s 

organic phase. Considering the range of polarities present in the mix, seven compositions were 

compared (i.e. from 25:75 to 100:0 water:acetonitrile). The comparison was performed on 

serum homogenates prepared by protein precipitation and spiked with the optimization mix at 

100 ng/mL. Two parameters were determined:  

(i) the percentage of compounds which attained the largest area with each 

reconstitution phase, and  
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(ii) the percentage of compounds with areas above the median area for all 

reconstitution phases.  

The results are summarized in Table II.2. It was observed that 31% of compounds had the 

largest area value using the 70:30 (water:acetonitrile) composition, which was the best 

performance for this criterion. However, this condition is moderately distant from the 

chromatographic method’s initial conditions (90:10 water:acetonitrile), which significantly 

affected peak shapes for some compounds as shown in Figure II.2.A. This would be an issue 

for the data processing step, as such an irregular peak shape would lead to poorer integrations.  

Reconstitution phase 

(water:acetonitrile) 

Percentage of compounds 

with largest area for each 

composition (%) 

Percentage of compounds 

with area for each composition 

above the median area (%) 

25:75 13 29 

50:50 2 27 

60:40 4 35 

70:30 31 60 

80:20 19 69 

90:10 21 54 

100:0 10 25 

Table II.2 – Impact of the reconstitution phase composition on areas of 50 compounds spiked in serum 

homogenates and injected on UHPLC-ESI-QTOF in positive and negative ionization modes. 

 

Figure II.2 – Extracted ion chromatogram for Aminobenzimidazole (logP = 0.91) in ESI (+) mode (A) and 

Arachidonic acid (logP = 6.98) in ESI (−) mode (B) depending on the reconstitution phase composition 

(generated with a m/z tolerance of 10 ppm).  



Chapter II. Material and methods 

92  
 

It was then established that 69% of compounds had areas in the 80:20 (water:acetonitrile) 

phase above the median area in all reconstitution phases. This composition allowed retaining 

a satisfying peak shape as it was closer to the initial chromatographic conditions, and was 

therefore kept as the optimized reconstitution phase composition.  

It is worthy to note that the 100% water condition was not the best reconstitution phase in this 

case, contrary to what was suggested in the literature, although it still presented significantly 

better results than the 50:50 composition. This difference with the literature may be explained 

by the difference in the organic phase (acetonitrile here versus methanol in the literature), as 

well as the fact that in this work, the effects of reconstitution phase composition were evaluated 

on a set of compounds, as opposed to being done at the non-targeted scale as presented in 

the litterature8.  

Overall, optimization of the chromatographic separation was not the main aim of this PhD but 

as a critical step in non-targeted LC-HRMS analyses, it was important to ensure that it was 

possible to observe a wide range of compounds using this method. Moreover, it was also 

important to check the repeatability of the retention time using the mix spiked in blood serum 

for this method as it could affects further data processing steps such as compound annotation, 

which may rely on such a parameter.  

1.4. MS optimization 

1.4.1. MS acquisition  

Full-scan mass spectra was acquired in both – and + ESI modes for all samples. The mass 

range was set between 50-1100 m/z. The MS analysis was performed using original ESI 

source settings: temperature 550°C, ionspray voltage 4,5kV (-4,5kV in negative mode), 

declustering potential 80V (-80V in negative mode), accumulation time 300 ms, spray N2 gas 

35 arbitrary units, heat conduction gas 35 arbitrary units, curtain gas 7 arbitrary units, 

collisionally activated dissociation gas 7 arbitrary units. Run time was set at 60 min in 

coherence with the LC method. For all the experiments in this PhD, injections of samples were 

always performed first in full scan to obtain the most comprehensive chemical fingerprint 

without affecting the sensitivity as explained below, and then a selection of samples were re-

injected using MS2 for further work on structural elucidation. 

1.4.2. MS2 acquisition  

MS2 acquisitions were performed in addition to MS acquisitions on randomly selected 

samples. The choice to separate these two acquisitions was made to obtain higher 

accumulation times for both analyses, thus attaining better sensitivity performances. Sensitivity 



Chapter II. Material and methods 

93  
 

was prioritized over run time, as the aim was to constitute digital archives possibly extensively 

re-usable, with accurate chemical information even for low-abundant compounds. MS2 

acquisitions were performed either using data dependent acquisition or data independent 

acquisitions. 

1.4.2.1. Data dependent acquisition 

Data dependent acquisition was performed using SCIEX’s Information Dependent Acquisition 

(IDA) methods. IDA experiments allow data analysis concomitantly to its acquisition, changing 

conditions accordingly; the selection of precursor ions on which dependent scans are 

performed is made during the analysis. This results in the acquisition of often high quality 

fragmentation spectra on a selected number of precursors. Since the aim was to obtained MS2 

data for the highest numbers of chemicals potentially present at low concentrations (e.g. 

exogenous chemicals), the number of maximum precursor ions per scan was optimized by 

comparing four threshold values (i.e. 10, 20, 50 and 100) for the MS2 analysis of the 50-

compound optimization mix at 10 ng/mL in plasma. Three parameters were compared: firstly, 

the percentage of compounds successfully triggering MS2 analysis, secondly, the percentage 

of compounds for which a usable MS2 spectra is obtained (i.e. intensity of at least one fragment 

over 20 counts per second), and thirdly, the median number of spectra acquired by compound. 

The results are summarized in Table II.3 below. 

Maximum precursor ions 

(per scan) 

Compounds 

triggering MS2 

analysis (%) 

Compounds for which a 

usable spectra is 

obtained (%)   

Median number of 

acquired spectra by 

compound 

10 52 46 4 

20 84 78 4 

50 80 60 3 

100 80 48 1 

Table II.3 – Results of the Information Dependent Analysis (IDA) method optimization through the 

selection of adequate maximum precursor ions per scan for the mix injected at 10ng/ml on QTOF in ESI 

(−) and ESI (+) modes  

It was observed more than 80% of compounds spiked at 10 ng/ml in plasma triggered MS2 

analysis whenever the maximum number of precursor ions per scan was set above 20. On the 

other hand, the best performance on number of acquired spectra by compound was achieved 

with lower thresholds. Better performance for higher thresholds was expected, as low-

abundant compounds in complex matrices are more likely to be picked when a higher number 

of candidate ions are authorized. However, legible spectra for those compounds were mostly 

obtained at lower thresholds. This may be explained by the fact that the set MS2 accumulation 
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time of 100 ms per scan was divided between fewer acquisitions in the case of lower 

thresholds, thus resulting in better sensitivity. This led to the choosing of 20 maximum 

precursor ions per scan. 

IDA experiments were performed in both ESI (–) and (+) modes, using the following source 

settings: MS1 accumulation time 250 ms, MS2 accumulation time 100 ms, collision energy 35 

eV) and ESI (+) ionization modes is presented in Table II.4.  

Window index ESI (−) ESI (+) 

1 49.5 – 59.4 49.5 – 60.5 

2 58.4 – 68.9 59.5 – 74.5 

3 67.9 – 85.7 73.5 – 80.0 

4 84.7 – 114.0 79.0 – 99.3 

5 113.0 – 149.7 98.3 – 109.3 

6 148.7 – 177.8 108.3 – 135.0 

7 176.8 – 200.7 134.0 – 161.8 

8 199.7 – 245.7 160.8 – 199.6 

9 244.7 – 269.4 198.6 – 240.4 

10 268.4 – 310.9 239.4 – 268.9 

11 309.0 – 323.5 267.9 – 324.5 

12 322.5 – 346.1 323.5 – 367.8 

13 345.1 – 388.1 366.8 – 395.9 

14 387.1 – 454.2 394.9 – 425.6 

15 453.2 – 515.1 424.6 – 474.7 

16 514.1 – 569.7 473.7 – 506.7 

17 568.7 – 593.4 505.7 – 533.0 

18 592.4 – 677.9 532.0 – 577.1 

19 676.9 – 844.6 576.1 – 771.8 

20 844.6 – 999.9 770.8 – 999.9 

Table II.4 - Example of SWATH windows generated by the vendor SWATH windows calculator on 

plasma quality control samples in ESI (−) and ESI (+) ionization modes 

SWATH experiments were performed in both – and + ESI modes, using the following source 

settings: MS1 accumulation time 80 ms, MS2 accumulation time 30 ms, collision energy set 

as a ramp evolving from 20 to 50 eV (35±15 eV), cycle time 469 ms, mass range 50-1100 m/z.  

2. Sample preparation methods for non-targeted exposomics 

This section aims to provide more details on the principle of the different techniques used in 

this PhD, however, the thorough investigation of the impact of sample preparation on the 

extraction of the components of the chemical exposome using blood plasma and blood serum 
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samples will be done in Chapter III. As non-targeted methods aim to accurately detect a high 

number of unknown compounds in a given sample, the choice of a sample preparation 

technique is particularly challenging. Indeed, it is often recommended that non-targeted 

approaches rely on minimal sample preparation procedure to avoid loss of potential 

compounds of interest. However, when exploring the chemical exposome with complex 

biological matrices using LC, issues such as ion suppression may arise, resulting in a need for 

efficient sample purification. Moreover, human biological matrices are often only available in 

small quantities, meaning that SPM should use minimal matrix amount while allowing sufficient 

concentration to keep high sensitivity performances.  

Based on the methods used in the literature, the investigation of the chemical exposome using 

blood plasma and blood serum samples may be done using, at least, four major types of SPM, 

from least to most selective: protein precipitation (PPT), supported liquid extraction (SLE), 

protein and phospholipid removal (PLR), and solid phase extraction (SPE). As mentioned 

earlier, a systematic evaluation of the impact of the SPM for non-targeted exposomics 

analyses is presented in Chapter III; the following paragraphs introduce the advantages of 

each type of SPM through a generic outline of the associated protocol. They each offer a 

different balance between sensitivity and selectivity, thus potentially offering a different vision 

of the chemical space.  

2.1. Protein precipitation 

The use of PPT methods is widespread in both metabolomics and recent exposomics 

applications2, 3, 7. It is the least selective of all the listed SPM types, as it only consists of 

precipitation the proteins present in the sample with a solvent (often methanol, acetonitrile, or 

a mixture of both) used at a 1:1 to 4:1 ratio compared to the sample volume9-13. The mixtures 

are then left for one hour at -20°C to allow precipitation to occur, after which a centrifugation 

is performed. The operating principle is schematized in Figure II.3.The supernatants are then 

collected and may be evaporated and reconstituted as needed, usually with a concentration 

factor of 1 to 39-13.  
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Figure II.3 – Operating principle of protein precipitation. Samples are mixed with an organic solvent 

(usually methanol or acetonitrile) at a solvent:sample ratio of 1:1 to 4:1. After a prolonged contact, 

centrifugation allows forming a protein pellet (in orange) and the purified supernatant can be used. 

2.2. Protein and Phospholipid removal 

PLR methods allow an additional sample purification compared to PPT, as phospholipids and 

lysophospholipids elimination is performed in addition to protein removal. PLR methods are 

performed by using a solid phase in a cartridge or a plate as a filter through which the sample 

(sometimes diluted with an organic solvent) must be passed. Most proteins, phospholipids and 

lysophospholipids should be retained on the stationary phase and leave a purified sample. 

Vendors often recommend a prior deproteinization of the sample to avoid saturation of the 

packed-bed structure. Acidification of the sample (e.g. 1% with formic acid) is also 

recommended to help protein precipitation. Moreover, vendors often recommend using a 

specific solvent to maximize performance. A schematized protocol is presented in Figure II.4. 

 

Figure II.4 – Operating principle of solid phase extraction. Samples are filtered through a stationary 

phase that retains phospholipids (in shades of orange) and leaves other compounds (in green) pass 

through. 

Following this protocol, the filtrate can be evaporated and reconstituted with a concentration 

factor varying between 1 and 514, 15. It is usually possible to increase the concentration factor 

compared to PPT, as further sample purification is achieved, resulting in less concern for 
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clogging, carry-over and matrix effect. The exact retention mechanism of the sorbents is not 

known, although some of them are hypothesized to retain the phosphate group inherent with 

all phospholipids with zirconia atoms on the stationary phase through Lewis acid-base 

interactions16. However, other mechanisms (such as apolar retention) may affect the retention 

of compounds. This will be systematically evaluated in Chapter III. Systematic evaluations of 

blood-derived sample preparation methods for HRMS-based chemical exposomics 

2.3. Supported Liquid Extraction 

SLE is also performed using a solid sorbent, which in this case acts as an interface between 

two immiscible liquid phases. The whole sample is loaded on the sorbent, which the aqueous 

sample soaks. As the entirety of the sample is retained on the sorbent, it is critical to ensure 

that a sufficient amount is used to soak the total volume. The sorbent is then washed using the 

extraction solvent, selectively eluting the analytes. The extraction solvent is often hexane, ethyl 

acetate, or methyl tert-butyl ether (MTBE), as they are immiscible with aqueous matrices. In 

the context of this PhD, only the Isolute SLE (Biotage) was used with MTBE, as per the 

vendor’s recommendations. Compounds that have a high affinity to the extraction solvent will 

be carried, while other compounds will be retained by the solid media. A schematized operating 

principle is presented in Figure II.5. 

2.4. Solid Phase Extraction 

SPE is a selective SPM that is performed using a multi-step protocol in order to remove 

interferents (e.g. proteins, salts) and concentrate potential compounds of interest. It first 

requires conditioning the solid phase, followed by sample loading. The solid phase is then 

rinsed with an aqueous solvent to eliminate interferents, and dried. Lastly, an extraction solvent 

is used to recover compounds of interest previously retained by the solid phase. A schematized 

operating principle is presented in  

Figure II.5 - Operating principle of supported liquid extraction. The sample is loaded onto a sorbent, which 

retains the entire sample. The analytes are then selectively eluted using an immiscible organic solvent. 
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Figure II.6. This standard protocol contains significantly more steps than any other mentioned 

SPM, which may lead to poorer repeatability. However, it provides significant sample 

purification, and is traditionally used in targeted approaches to improve sensitivity. It is 

therefore a key type of SPM to evaluate when using human biological matrices. As eluates 

have a high purity level, similar concentration ratios to those used for PLR are considered, i.e. 

between 1 and 59-11. 

 

 

Figure II.6 - Operating principle of solid phase extraction. The solid phase is conditioned, followed by 

sample loading. Interferents are washed usually using water, and compounds of interest are eluted 

using an elution solvent.  

3. Data processing methods for non-targeted exposomics 

This section presents how the data processing of a HRMS chemical fingerprint is used to 

translate this acquired data to a list of features. As this list is used as a basis for the annotation 

and/or suspect screening steps, it is critical to ensure that the data processing steps taken 

allow the proper recovery of all the detected signals, including the low-abundant ones. Data 

processing is a crucial step as poor parameter optimization may result in the propagation of 

errors on the subsequent workflow steps. Moreover, it is a complex step that involves many 

substeps, each achievable through various algorithms that are not all implemented in the 

chosen data processing software. Therefore, its optimization for the intended application is 

critical, especially in the case of an interest in low-abundant compounds in complex matrices, 

where data quality may be limited due to sensitivity issues. Like for sample preparation, a 

thorough evaluation and optimization of the data processing step for the detection of low-

abundant compounds in complex matrices is presented in Chapter IV. In the next paragraphs, 

the used data processing tools along with the four major steps and algorithms implemented 

successively during this work’s non-targeted data processing are presented: peak detection, 

alignment, gap filling and normalization.  



Chapter II. Material and methods 

99  
 

3.1. Data processing tools 

Five data processing tools were used in the frame of this PhD work: MarkerView, Progenesis 

QI for Metabolomics, MZmine2, XCMS, and MS-DIAL 4.0. The first four tools were optimized 

and compared; detailed results are available in Chapter IV.  

MarkerView and Progenesis QI are vendor software provided by AB SCIEX and Waters, 

respectively. MZmine217 and MS-DIAL18 are open source solutions with graphical user 

interfaces, and XCMS19 is an open source R-based package. While vendor software are 

usually more user-friendly compared to open source software, they often operate in a black 

box-like fashion, with little to no information on the algorithms and parameters used to process 

the data. The following paragraphs detail the different algorithms available for each major data 

processing steps in open source software, as this information is not available for vendor 

software. 

3.2. Peak picking 

The first data processing substep is peak picking, during which features are detected in each 

individual sample.  

First, MS spectra are individually centroided (i.e. represented by a single value, often the mass 

peak apex20). Different algorithms are available depending on the chosen data processing 

software, such as centWave and Wavelet transform algorithms in XCMS and MZmine2 

respectively or ADAP in MZmine2. The first two cited algorithms are continuous wavelet 

transform (CWT) algorithms based on matching m/z peaks to a “Mexican hat” or “Ricker” 

wavelet model17. These algorithms have been reported as particularly well-suited for noisy 

data17. Automated Data Analysis Pipeline (ADAP), on the other hand, is a complete data 

processing pipeline as underlined in the name. Although there is little available information on 

its specific mechanisms, the peak detection module within this pipeline is described to be 

particularly efficient in reducing false positive peak detection compared with CWT algorithms21. 

Several parameters used to perform this step critically affect the data processing results, in 

particular the peak width (usually required as a minimum value or as a range) and the noise 

threshold.  

Then, close-to-identical m/z values observed over consecutive scans are combined into 

chromatogram objects. These objects might be either a single peak, or a group of peaks with 

similar m/z and Rt. They therefore need to be deconvoluted into individual peaks. Several 

algorithms may also be used for deconvolution, relying on finding local minima or using the 

chromatogram curve’s second derivative (i.e. Savitzky-Golay algorithm) to establish 
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boundaries between peaks17, 22. MZmine2 offers both of these options, while it is still unclear 

on which strategy XCMS’s refineChromPeaks function relies. 

A schematized representation of the peak picking process is available in Figure II.7. 

 

Figure II.7 – Representation of the peak picking process, which consists of four steps: centroidation, 

peak detection, creation of chromatogram objects and deconvolution. 

The most critical parameters for this step are usually the minimum peak width (or range of 

peak widths) that should be expected by the software, and the noise threshold. In this PhD 

work, these parameters were tested with default values and optimized for the detection of low-

abundant chemicals in complex biological matrices. Given the LC method used in the context 

of this PhD, the minimal and maximal peak width values were found to be 6-10 s and 50 s 

respectively, depending on the software. Minimizing the noise threshold (i.e. setting it at 0-10 

depending on what is allowed by the software) was also found to provide the best results. 

3.3. Alignment 

Once individual peaks have been detected for each sample, an alignment must be performed 

to establish the common features among different samples. In this step, peaks with identical 

m/z and Rt (with a user-determined tolerance range) across samples are matched across the 

samples. A Rt correction can also be implemented at this stage; indeed, analytical drift on Rt 

is a frequent issue, and it is possible to adjust the data by shifting signals to align them between 

samples. MZmine2 offers the Join aligner and the RANSAC aligner. The first one only relies 

on the tolerance ranges specified by the user, with no additional adjustment. The second one 

(RANdom Sample Consensus, RANSAC) is an iterative algorithm which adjusts parameters 

from a mathematical model based on random observations, and checks the fit. It was 

determined that this algorithm provide a significantly better alignment performance than the 

Join aligner17. XCMS also offers two alignment algorithms called obiwarp and peakGroups. 
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Obiwarp relies on a center sample against which all other samples are aligned23. The 

peakGroups algorithm is based on peaks present in most or all samples. With this algorithm, 

the retention time deviation of peaks is established using a linear or a polynomial model. The 

obtained model is then extended to close peaks that are not present in all samples. This 

algorithm is presumably similar or identical to the one used in MS-DIAL, considering the 

requested parameters. However, in MS-DIAL, only specific user-determined features (often 

internal standards) are used to establish the linear or polynomial model. 

These different alignment strategies were tested and evaluated for exposomics applications. 

In the case of our selected analytical system, the tolerance ranges chosen for m/z and Rt were 

of 10 ppm and 2 min respectively. These values were determined based on vendor 

recommendation (m/z tolerance are typically set lower with Orbitrap analyzers compared to 

QTOF analyzers for instance) and visual examination of the raw data.  An in-depth detail of 

software parametrization is presented in Chapter IV. 

3.4. Gap filling 

Following the alignment, the obtained feature matrix might contain missing data (i.e. no peak 

detected for a m/z × Rt combination in one or more samples). This may either be due to an 

absence of signal, or to a failure of the peak detection algorithm during the first data processing 

substep. All data processing software can therefore proceed to the gap filling step, where raw 

signal in the m/z × Rt region of interest is extracted, integrated and added to the matrix. This 

is usually done by exploring the raw data, but may also be performed with data collected at the 

peak picking stage. For the work presented in this manuscript, this step was systematically 

performed. As there is no parametrization for this step, it did not require optimization.  

3.5. Normalization 

Normalization of the feature areas is the last critical substep of data processing. It is often 

required to perform statistical analysis or to report any semi-quantitative data, as there is a 

need for area comparability between samples. While XCMS does not support normalization at 

this time, both MS-DIAL and MZmine2 offer to normalize feature areas through a user-

specified list of reference compounds that should have identical areas in all samples (often 

internal standards). MZmine2 also offers linear normalization, where all areas are divided by a 

normalization factor (e.g. average intensity or total raw signal). In the context of this PhD, 

normalization strategies based on total ion chromatogram were systematically attempted with 

software that allowed it (i.e. MarkerView an MZMine2) and compared to raw results to 

determine relevance. This is notably demonstrated in Chapter V. 
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In the context of this PhD work, a thorough comparison of data processing tools for this 

purpose was implemented. This work is presented in Chapter IV. This allowed demonstrating 

that adjustments still need to be made to these tools to be suited for exposomics applications, 

and that vendor software, while opaque, can be an efficient solution to non-targeted data 

processing. 

4. Annotation methods and tools 

At the end of the data processing step, a feature list each characterized by a m/z, a Rt and 

one area per sample is obtained. The last critical step of the non-targeted workflow is to link 

these features to chemical identities. This link may be formed in two ways: non-targeted 

screening, and suspect screening. Both have been used during this PhD, even though suspect 

screening was predominantly used. Non-targeted screening was notably used for the 

NORMAN Network’s first collaborative trial in biota, as mentioned in the “Scientific valorization 

chapter, paragraph 4.    

4.1. Non-targeted screening: statistical analysis 

Non-targeted screening aims to assign a chemical identity to an experimental feature with no 

pre-existing idea regarding the compound’s structure. This approach is highly challenging, as 

unequivocal structural elucidation of a compound requires advanced knowledge and means in 

many fields, such as mass spectrometry, nuclear magnetic resonance, organic chemistry, 

biochemistry, and bioinformatics. However, it is also very promising as a mean of expanding 

knowledge regarding the chemical exposome by uncovering entirely uninvestigated 

compounds.   

In this work, univariate analyses were performed under an R environment (version 3.6.3). 

Individual features were compared between samples by performing unpaired t-tests and 

computing p-values with an Adaptive Benjamini-Hochberg (ABH)24 correction for multiple 

comparisons. Features presenting lowest adjusted p-values (i.e. < 0.01) were prioritized for 

the annotation process. Multivariate analyses were also performed to compare sample groups 

and establish whether there was an observable and explainable discrimination between 

groups. To this end, unsupervised Principal Component Analysis (PCA) and Partial Least 

Square-Discriminant Analysis (PLS-DA) were implemented under an R environment25. 

4.2. Suspect screening tool 

As mentioned in Chapter I, suspect screening is an approach that consists in linking 

experimental features to compounds that are suspected of being present in the sample a 

posteriori. The establishment of this link is a time-consuming task that has the potential to be 
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at least partly automatized. An important part of this PhD was devoted to develop a fully 

automated software using several chemical descriptors and developing intermediate and 

global confidence scoring. 

The developed suspect screening software is a Python software tool first developed in 2019 in 

LERES to assist suspect screening approaches using MS1 analyses. It aims to perform an 

automatized pre-annotation of processed datasets obtained from liquid LC coupled to HRMS 

analyses. To this end, confidence indices (CI) were constructed to score the proximity between 

experimental features and suspects. This proximity is established through three chemical 

predictors, each scored individually: the classically used m/z, isotopic fit (which combines m/z 

and relative abundance fit) and Rt. Pre-annotated features need further manual curation based 

on fragmentation patterns found in either MS1 or MS2 acquisitions, isotopic pattern 

(particularly in the case of the presence of a bromine and/or chlorine atoms), and plausibility.  

4.2.1. Suspect screening predictors 

Suspect screening approaches aim to link experimental features to a list of compounds post-

analysis. Linking features to suspects can be done through various indicators, such as the 

often-used MS2 fragmentation pattern18, 26. In the following paragraph, the three predictors 

implemented in the in-house tool and their relevance for MS1 suspect screening are presented. 

They will be further developed in Chapter IV. 

4.2.1.1. Mass-to-charge ratio 

The mass-to-charge ratio (m/z) is the basis of all annotation and suspect screening 

approaches. Indeed, the precision of exact masses generated by HRMS analyses allow 

significantly restraining the number of chemical formulas that may be associated with a given 

signal. This predictor is therefore fundamental to implement a suspect screening approach.  

4.2.1.2. Isotopic fit 

Another parameter that can be used to elucidate a compound’s chemical formula is its isotopic 

pattern. Indeed, the presence of certain atoms such as bromine, chlorine, or sulfur in a 

molecule is reflected in the compound’s isotopic pattern due to the 81Br/79Br, 37Cl/35Cl, and 

34S/32S ratio values of approximately 1.00, 0.32 and 0.05 respectively. This information is 

particularly relevant in the case of some compounds classes such as pesticides, which often 

include one or more bromine or chlorine atoms.  
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4.2.1.3. Retention time 

While m/z and isotopic pattern can give a reliable indication of a compound’s chemical formula, 

other compound characteristics can be explored. Retention time (Rt) is an indication of a 

compound’s affinity to the column’s stationary phase compared to the mobile phase; in the 

case of many LC-HRMS systems, this translates to the compound’s polarity (even though 

caution must be taken to not overgeneralize). This parameter is represented by a logP value, 

which can allow a distinction between two compounds having an identical chemical formula. 

Despite the potential of such a predictor, the retention time is not often implemented in 

annotation or suspect screening software currently available, except with a user-specified 

library containing experimental retention times17, 18. While the experimental retention time is 

the ultimate parameter to reach a level 1 annotation according to Schymanski et al.27, it 

requires the use of a standard injected on the same system. Yet, acquiring standards for a 

large number of compounds is not feasible due to limitations in terms of both financial 

resources and commercial availability. Thus, Rt values may also be predicted through various 

algorithms such as RTI28, Retip29, or classically-used linear regressions using logP values30. 

Although these predicted values are less reliable than experimental values, they can help 

prioritize the most likely annotation of a feature and drastically reduce false positives. To date, 

no major screening tool implements the use of predicted Rt values to assist this process, which 

is why it was implemented in the in-house software. 

These suspect screening predictors are used to score the similarity between features and 

suspects. Individual scores are then combined to a global confidence index that indicates the 

overall similarity between the feature and suspect. The schematized operating principle is 

presented in Figure II.8. To operate, the in-house software is structured in two main 

complementary modules: a library that regroups all the suspect compounds’ theoretical 

properties, and a suspect screening module that matches experimental features to said 

suspects. The next paragraphs detail the last updated version of the in-house software (version 

2.0). A presentation of its first version is available in Chapter IV paragraphs 4.4 and 4.5.  
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4.2.2. Library module: generating suspects data 

The library module allows indexing and computing the reference data for the list of suspects. 

Every compound listed in the library must be linked to a chemical formula, a unique identifier 

such as the SMILES, and if available, Rt values (experimental or predicted) and an logP value. 

The library then outputs data regarding the compound’s m/z, theoretical isotopic pattern, and 

Rt. Indeed, the chemical formula allows calculating nine exact masses: the monoisotopic 

mass, the masses of four positively charged adducts ([M+H]+, [M+Na]+, [M+K]+, [M+NH4]+), and 

the masses of four negatively charged adducts ([M-H]-, [M-H2O-H]-, [M+Cl]-, [M+FA-H]-). 

Moreover, the formula allows the computing of theoretical isotopologue probabilities P0, P1, 

and P2 (i.e. first, second, and third isotopologue) as well as their masses M0, M1 and M2 through 

a polynomial-based algorithm adapted from the MIDAs software31.  Four parameters are 

computed and presented to the user: mass differences M1-M0 and M2-M0, as well as probability 

ratios P1/P0 and P2/P0. Lastly, the logP value given by the user can be used to predict a Rt 

Figure II.8 – Schematized operating principle of the in-house annotation workflow in four steps: 

comparing successively m/z, Rt and isotopic fit, then generating a global scoring.  
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value under the condition that the library contains at least 20 compounds that have both an 

experimental Rt and a logP value indicated. 

The library used for this work contains close to 6000 compounds, which were compiled from 

various sources: 

(i) Xenobiotics previously reported as detected in blood plasma or serum in the 

literature32-35; 

(ii) Compounds reported in open access databases Human Metabolome Database36, 

Exposome Explorer37, Foodb38, and the Normal Suspect List Exchange39 

The compounds listed in the library can be modified depending on the research question. Once 

all the predictors’ data is calculated, the suspect list can be compared to the experimental 

features in the suspect screening module through the computing of confidence indices. 

4.2.3. Suspect screening module: computing confidence indices 

The suspect screening module requires a feature list obtained from any data processing tool, 

containing the following columns: m/z, Rt, and areas for all analyzed samples. Each feature is 

compared to compounds from the suspect list through confidence indices computed on the 

three predictors presented in paragraph 4.2.1. CI values are computed according to Equation 

II.1. 

CIi = 1 −  

| 
ifeature − isuspect

isuspect
 |

i
 

Equation II.1 - Expression of Confidence Indices (CI) for all predictors (i= m/z, Rt, or An/A0 ratio, where 

An refers to the area of the nth isotopologue). Δi is a confidence interval and is specifically defined for 

each predictor as the maximal acceptable deviation from the reference value. 

4.2.3.1. Mass-to-charge ratio 

Depending on the ESI mode specified by the user, the software compares the feature’s m/z 

with one of the two sets of adducts generated by the library. This predictor acts as a filter, as 

suspects with m/z values outside the confidence interval are eliminated as potential 

annotations. The confidence interval Δm/z is based on instrumental precision. It takes the value 

of 15 or 10 ppm depending if the m/z is strictly lower than 200 Da or over 200 Da respectively. 

4.2.3.2. Isotopic fit  

The matching between a feature and a suspect’s isotopic fit is evaluated in a stepwise manner. 

At first, the software determines which isotopologue should be investigated. As mentioned 
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earlier, compounds containing chlorine, bromine, or sulfur atoms present a distinctive isotopic 

pattern involving a high abundance of the second isotopologue. If one of these compounds is 

the considered suspect, as well as if a [M+Cl]- adduct is considered, the software will focus on 

the second isotopologue. The first isotopologue will be considered for all other compounds and 

adducts.  

Then, the software will establish whether there is a feature in the dataset that may be the M+n 

(n=1 or 2 for first or second isotopologue) of the annotated signal. To do so, it will compare the 

mass differences between two features and the suspect’s theoretical Mn-M0 value computed 

by the library module. A first temporary CI is computed based on the m/z difference proximity 

between suspect and feature, with the same Δm/z values as the ones presented in paragraph 

3.2.3.2. A second temporary CI is also computed based on the Rt proximity between the 

annotated feature and the M+n, with a strict ΔRt value of 6 seconds (0.1 min). Indeed, 

isotopologues should be detected exactly at the same time; the confidence interval is set to 

take the instrument’s and the data processing tool’s uncertainties into account. The two 

temporary CI are averaged to obtain a first intermediate CI, referred to as “M+n identification 

CI”. 

Once the M+n feature is identified, area ratios are compared under the condition that the area 

of the M+0 (i.e. the annotated feature) is superior to 100. This is because low areas are often 

poorly integrated, resulting in inaccurate ratio values. If this is not verified, only the intermediate 

M+n identification CI is displayed. Else, the area ratios are compared and a second 

intermediate CI is computed for abundances with a ΔA2/A0 value of 0.1. The determination of 

the confidence interval is based on a regression of experimental area ratio values against 

theoretical area ratio values for 98 compounds. The root mean square error (RMSE) was 

calculated and the confidence interval was established at 3 RMSE to encompass 99.7% of 

projected data points (assuming normal distribution and applying statistics’ empirical rule). A 

detailed explanation is presented in Chapter IV, paragraphs 4.4.3 and 5.2.2. 

Lastly, an overall CI for isotopic fit is computed as a weighed sum of the two intermediate CI 

for M+n identification and abundance. For the reason cited earlier regarding limited confidence 

in the integration of small areas, the ponderation is determined based on the area of the M+n. 

Indeed, the two CI are weighed identically if the M+n area is higher than 20, else the M+n 

identification CI is weighed at 1/3 and the abundance CI is weighed at 2/3. 
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4.2.3.3. Retention time 

As previously mentioned, the in-house software supports up to four Rt value per compound in 

the library: one experimental Rt, an up to three predicted Rt. All CI for Rt are computed using 

the standard formula presented in Equation II.1 with the appropriate ΔRt values. 

In the software’s initial version, the ΔRt value for experimental Rt was determined manually 

based on analytical Rt variability. Detailed explanations regarding these Rt prediction models 

are available Chapter IV, paragraphs 4.4.2 and 5.2.1. Briefly, compounds from the optimization 

mix spiked in plasma and serum samples (n=8) as well as isotopically labeled compounds 

(listed in Appendix 1.1) spiked in 16 plasma and serum samples were used to determine the 

standard deviation (SD) on Rt values. The chromatogram was divided in four sections based 

on observable variability as analytical variability in Rt is heterogeneous. The ΔRt value was 

constructed by selecting the highest compound Rt SD for each section, to avoid excessive 

stringency, and multiplying by three. In the software’s current version, the suspect screening 

module is able to automatically compute ΔRt values based on a user-filled Excel sheet 

containing triplicate Rt data for at least 20 known compounds. The user may also specify their 

desired way of sectioning the chromatogram, or leave the standard sectioning of the 

chromatogram in quarters.   

Regarding the three predicted Rt, for this work, they were obtained through an in-house 

regression model based on logP, the quantitative structure-retention relationship-based tool 

RTI28, and machine learning-based tool Retip29. These three prediction models were evaluated 

and compared based on a set of 134 compounds presented in Appendix 1.3, which allowed 

ranking them from most reliable (RTI) to less reliable (logP). Detailed explanations regarding 

these Rt prediction models are also available Chapter IV, paragraphs 4.4.2 and 5.2.1. Briefly, 

the ΔRt values for all predicted retention times were established manually by comparing 

experimental Rt and predicted Rt when both values were available. Absolute differences 

between these two values were calculated and the standard deviation of each model’s 

prediction within each predetermined chromatogram section was established. These values 

were multiplied by three to obtain the ΔRt values, each specific to a model and a chromatogram 

section. 

The Rt CI was computed for all available Rt values for a given suspect, whether experimental 

or predicted. However, the global CI combining all predictors was computed using only the CI 

associated to the most reliable Rt available (i.e. experimental, then RTI, then Retip, then logP).  

The in-house software was designed to compute CI on three chemical predictors to establish 

the similarity between features and suspects. The global CI is then computed as an average 
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of all the available CI values. Thus, each suggested annotation generated by the software is 

scored between 0 and 1 on all the mentioned predictors, as well as overall. The global CI is 

also preceded by a “G3”, “G2” or “G1” mention, which accounts for the number of predictors 

taken into account in its computing. 

In the context of exposomics applications, where compounds of interest are often low-

abundant in complex matrices and therefore often do not trigger MS2 acquisition, a tool such 

as this software which relies on MS1 predictors is a valuable help in assisting pre-annotation. 

Indeed, while manual curation is still required to confirm or infirm the suggested annotations, 

its discriminating scoring system allows prioritizing plausible annotations by drastically 

reducing false positives. 

4.2.4. Manual curation 

The in-house software was created to assist suspect screening approaches that provides pre-

annotations. These suggested chemical identities must then be manually curated to rule out 

false positives (i.e. incorrectly identified chemical). This manual curation process comprises 

four main steps. Firstly, the extraction blank is manually checked to ensure that the 

compound’s presence is not linked to contamination during the sample preparation process. If 

the compound is present in the blank, the blank area is subtracted from the area in the 

samples. Secondly, the feature’s isotopic pattern is verified to ensure coherence with the 

suggested chemical formula (i.e. verification of whether the investigated m/z is a 

pseudomolecular ion, and of the isotopic ratios in case it was not performed by the software). 

Thirdly, the suspect’s fragmentation pattern should be compared to a reference spectra, which 

can be obtained through online databases40, or through in silico fragmentation models41, 42. 

This pattern is used to partly or entirely confirm molecular structure (e.g. positional isomers or 

diastereoisomers may not be distinguishable). Other parameters such as polarity (via logP-

predicted retention time) may help narrow the suggested annotation. Lastly, the plausibility is 

verified through a database search of the suggested formula, and a comparison of the pre-

annotation with other possible close structural matches. For instance, if there is a strong 

structural resemblance between a well-documented endogenous compound and an 

exogenous compound never documented in blood, plausibility would dictate to rule in favor of 

the former.  

5. Biological samples 

The optimized workflow was then applied in a large-scale application. Initially, this application 

was to be made using blood plasma samples obtained from a Danish mother-child cohort 

dating back to 1988-89. More specifically, 256 blood plasma samples from pregnant women 
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linked with their daughter’s clinical data 20 years later were selected through a collaboration 

with the Rigshospitalet (Copenhagen, DK) with David Kristensen. Reproductive health data for 

the daughters was also collected and available. This cohort would have therefore allowed 

linking data for environmental exposures during the prenatal period and reproductive health. 

However, due to the unforeseen pandemic circumstances and unresolved ethical procedures 

on the epidemiological side, samples from the local Breton Pélagie cohort were used. This 

cohort, initially built as a longitudinal study to measure exposure to organic pollutants during 

the pregnancy, included 3,500 women pregnant between 2002 and 2005 in Brittany. One of 

the follow-ups occurred when the children turned 12, at which time a questionnaire was 

provided to obtain physical growth data and pubertal stage. Additional clinical parameters such 

as growth, adiposity, visual function and oral-dental health were evaluated on a subset of 500 

12-year-olds. Serum samples were collected from 250 12-year-olds at this time to measure 

sex hormones and to assess exposure to organic contaminants. Serum samples from 125 

boys were used in this PhD work to perform a suspect screening approach to characterize the 

human internal chemical exposome. 
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1. Context and summary 

This chapter was published as an original paper as first author in the journal Analytical 

Chemistry: Chaker, J., Kristensen, D. M., Halldorsson, T. I., Olsen, S.F., Monfort, C., Chevrier, C., 

Jégou, B., David, A.* (2022). Comprehensive Evaluation of Blood Plasma and Serum Sample 

Preparations for HRMS-Based Chemical Exposomics: Overlaps and Specificities. Anal Chem (IF=6.8), 

94(2), 866–874.  

The non-targeted characterization of biological samples strongly depends on the 

methodological choices made throughout the workflow. As the first critical step in the workflow, 

sample preparation must be diligently chosen and optimized. Indeed, this choice is highly 

decisive, as the compounds lost to sample preparation step cannot be recovered through any 

optimization of the following steps in the workflow. Since new data processing and annotation 

tools are continuously developed, it is crucial to obtain optimized HRMS fingerprints of often 

precious samples, that may be reprocessed to broaden the knowledge of the chemical 

exposome. When choosing and optimizing the SPM, the right middle ground has to be found 

between the sensitivity required to detect often low-abundant exogenous chemical compounds 

and the selectivity needed to eliminate highly abundant endogenous compounds responsible 

for ion suppression. As described in Chapter II paragraph 2, there are many categories of SPM 

available to prepare plasma or serum samples, with varying degrees of selectivity. The 

objectives of this chapter were to systematically evaluate the performance of twelve SPM to 

detect low-abundant compounds in complex biological matrices, and to document their effect 

on the visible chemical space. 

In the following article, twelve SPM (seven PLR methods, three SPE methods, one SLE 

method and one PPT method) were systematically evaluated for the characterization of the 

chemical exposome through blood plasma and serum samples. This evaluation was performed 

based on the implementation of complementary criteria rarely used to evaluate non-targeted 

methods, namely quantitative (e.g. recovery, repeatability, matrix effect) systematically used 

in targeted approaches, and qualitative (e.g. time and ease of implementation) criteria. This 

evaluation process allowed documenting the observable analytical perimeter of the chemical 

exposome profiled with each of these SPM. Delineating the observable analytical perimeter of 

each SPM is crucial for further interpretation of HRMS datasets. 

The SPM were evaluated using a stepwise approach. Firstly, the 50-compound set 

(optimization mix described in Chapter II, paragraph 1.1) was spiked at a mid-range level (i.e. 

40 ng/mL) in serum samples, and recovery, repeatability and matrix effect were determined. 

Secondly, SPM suitable for this application were applied to serum and plasma samples spiked 
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with the same 50-compound set at a lower level (i.e. 10 ng/mL). Detection frequency, S/N, 

repeatability, spiking significance (i.e. significance of the difference in areas between spiked 

and non-spiked samples) and ease of implementation were evaluated, resulting on the further 

selection of two appropriate SPM. Lastly, those SPM were applied to cohort plasma and serum 

samples. Annotated compounds’ areas were compared for the same samples prepared with 

one SPM or the other to assess the impact of the SPM choice on the visible chemical space. 

Results of these comparisons are described and discussed throughout this article. A simple 

sample preparation workflow involving both SPM was proposed to broaden the visible 

chemical space as they appear complementary. 

Comprehensive evaluation of blood plasma and serum sample 

preparations for HRMS-based chemical exposomics:  overlaps 

and specificities 

 

Jade Chakera, David M. Kristensenab, Thorhallur Ingi Halldorssoncd, Sjurdur Frodi Olsence, Christine 

Monforta, Cécile Chevrier a, Bernard Jégou a†, Arthur David a* 

 

a Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 

1085, F-35000 Rennes, France 

b Department of Neurology, Danish Headache Center, Rigshospitalet, University of Copenhagen, 

Copenhagen, Denmark 

c Center for Fetal Programming, Department of Epidemiology Research, Statens Serum 

Institut, Copenhagen, Denmark. 

d The Unit for Nutrition Research, Faculty of Food Science and Nutrition, School of Health 

Sciences, University of Iceland, Reykjavik, Iceland. 

e Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 

United States of America. 

 

* Corresponding author 

 

To whom correspondence should be addressed: 

Tel: +33 299022885 

email: arthur.david@ehesp.fr 

mailto:arthur.david@ehesp.fr


Chapter III. Systematic evaluation of blood-derived sample preparation methods for HRMS-based 
chemical exposomics 

116  
 

2. Abstract 

Sample preparation of complex biological samples can have a substantial impact on the 

coverage of small molecules detectable using liquid chromatography-high-resolution mass 

spectrometry (LC-HRMS). This initial step is particularly critical for the detection of externally-

derived chemicals and their metabolites (internal chemical exposome) generally present at 

trace levels. Hence, our objective was to investigate how blood sample preparation methods 

affect the detection of low-abundant chemicals and to propose alternative methods to improve 

the coverage of the human internal chemical exposome. We performed a comprehensive 

evaluation of twelve sample preparation methods (SPM) using phospholipid and protein 

removal plates (PLR), solid phase extraction plates (SPE), supported liquid extraction cartridge 

(SLE), and conventionally used protein precipitation (PPT). We implemented new quantitative 

and qualitative criteria for non-targeted analyses (detection frequency, recoveries, 

repeatability, matrix effect, low-level spiking significance, method detection limits, throughput 

and ease of use) to amply characterize these SPM in a step-by-step-type approach. As a final 

step, PPT and one PLR plate were applied to cohort plasma and serum samples injected in 

triplicate to monitor batch repeatability, and annotation was performed on the related datasets 

to compare the respective impacts of these SPM. We demonstrate that sample preparation 

significantly affects both the range of observable compounds and the level at which they can 

be observed (more than 40% of total feature only detected using one SPM). We propose to 

use PPT and PLR on the same samples by implementing a simple analytical workflow as their 

complementarity would allow the broadening of the visible chemical space.  

Key words: Non-targeted exposomics, high-resolution mass spectrometry, sample 

preparation, plasma, serum 

 

Graphical abstract 

 

Figure III.1 – Graphical abstract of the research paper titled “Comprehensive evaluation of blood plasma 

and serum sample preparations for HRMS-based chemical exposomics: overlaps and specificities   
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3. Introduction 

As the impact of environmental exposures and particularly chemical exposures to the global 

burden of chronic disease is uncovered1, 2, the need for sensitive, robust and comprehensive 

detection of exogenous chemicals, their biotransformation products and their metabolites 

present as complex mixtures in human biological matrices grows. During the last few years, 

the technological progress regarding high-resolution mass spectrometry (HRMS) has allowed 

to simultaneously and reproducibly profile thousands of compounds (including both 

endogenous and exogenous chemicals) in biological samples using non-targeted 

approaches3-6. Concomitantly, significant developments and optimizations have been made on 

bioinformatics tools to improve their suitability to peak pick and annotate low-abundant 

chemicals in complex matrices, which are of particular interest for exposomics studies7, 8. 

However, optimizations are still lacking to ensure that the first analytical step of the workflow 

can profile unbiasedly the internal components of the human chemical exposome (i.e. 

exogenously derived chemicals accumulating in humans). A special focus on analytical 

methods allowing the detection of exogenous chemicals is necessary since concentrations of 

exogenous chemicals such as pesticides and plasticizers are generally 700 times lower than 

those of endogenous compounds in blood-derived samples9, 10. Considering the widespread 

use of liquid chromatography (LC) for compound separation coupled to HRMS, the presence 

of exogenous chemicals at trace levels in complex biological matrices (i.e. pg/ml) raises the 

question of sensitivity issues partially due to ion suppression11. Hence, a particular attention 

must be payed to the sample preparation step for exposomics applications to allow elimination 

of abundant interfering chemicals while ensuring minimal loss of compounds of interest. 

Furthermore, the determination of quantitative/qualitative parameters must be better defined 

to document the perimeter of the internal chemical exposome profiled with a given method12-

14.   

The most commonly described sample preparation methods (SPM) for metabolomics 

applications of plasma or serum samples rely on solvent-based protein precipitation (PPT), 

and use cold methanol or acetonitrile with ratios of solvent-to-sample ratio between 1 and 411, 

15-18. For mid-range spiking concentrations (i.e. 800-5000 ng/mL), PPT was described as 

allowing high recovery rates15, and producing more information-rich samples with a slight 

decrease in repeatability when using acetonitrile compared to methanol11. Overall, PPT is one 

of the least selective preparation methods. However, the presence of abundant compounds 

such as phospholipids in PPT extracted blood sample may be detrimental for the detection of 

low-abundant compounds19 and/or method repeatability. Coupled with the need to extend 

column life and within batch analytical drifts, particularly in the case of high-throughput 
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applications, this has led to a growing interest in more selective SPM such as liquid-liquid 

extraction (LLE), phospholipid and proteins removal (PLR) methods, and solid phase 

extraction (SPE) methods11, 15, 16, 19-22. LLE offers sample decomplexification while maintaining 

good coverage among polar and non-polar compounds23. However, due to repeatability issues 

linked to emulsification and the need for high sample volume, supported liquid extraction (SLE) 

can be preferred to LLE for blood-derived sample preparation24. PLR and SPE allow further 

sample purification physically and chemically, as their packed-bed structure filter large 

precipitated proteins and aim to retain phospholipids25. When applied on samples with mid-

range spiking concentrations, these SPM tend to perform better in terms of matrix effect than 

PPT15, and have been described as complementary to PPT in terms of metabolome 

coverage16. 

Comparisons of SPM for plasma and serum samples to attain an optimal compromise between 

sensitivity and selectivity have been published, but have either relied on evaluating method 

performance at the non-targeted scale16, or used only mid-concentration range spiking levels 

and endogenous spiking compounds (n < 20) 11, 15, 20 which is not suitable for exposomics 

applications. One study has however offered a performance evaluation for a SPE plate on 

exogenous compounds in lower concentrations19. To date and to the best of the authors’ 

knowledge, there is no reported large-scale comparison of SPM for both blood plasma and 

serum oriented towards human chemical exposomics applications. Thus, the objective of this 

work is to evaluate twelve SPM for the chemical exposomics analysis of plasma and serum 

samples, with a focus on low-abundant compounds. Considering the complexity of human 

blood-derived samples in terms of number and concentration of chemicals, a large set of 

exogenous and endogenous spiking compounds (n=50) with a wide range of physical-

chemical properties (0.07 ≤ logP ≤ 6.99 ; 133.0640 ≤ Monoisotopic mass (Da) ≤ 496.2607) was 

used to cover the chemical space26. Quantitative and qualitative criteria (i.e. respectively 

detection frequency, recoveries, repeatability, matrix effect, low-level spiking significance, 

method detection limits, and time of implementation, complementarity) were used to amply 

characterize these SPM in a step-by-step-type approach aiming to compare the reference PPT 

with alternative SPMs. The best-suited SPM were applied to cohort plasma (n=8) and serum 

(n=10) samples which were then injected in triplicate to monitor within batch repeatability, and 

annotation was performed on the related datasets to compare the respective impacts of these 

SPM on the obtained results at a larger scale. 
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4. Experimental section 

4.1. Biological samples  

Human blood plasma and serum bags used for method development were acquired from the 

French blood agency (Etablissement Français du Sang, EFS). For the final step of method 

validation, serum samples (n=10) were obtained from 12-year-old children from the PELAGIE 

cohort regrouping 3,421 women from Brittany (France) enrolled by gynecologists from the 

general population during early pregnancy between 2002 and 200627 and plasma samples 

(n=8) were obtained from a Danish mother-child cohort. 

4.2. Sample preparation methods comparison 

The ability of twelve SPMs to detect low-abundant chemicals in biological matrices were 

evaluated using a step-by-step comparison process. The methodology is presented in Figure 

III.2. First, a two-step procedure (including a SPM preselection step and then a comparison of 

preselected SPMs with the reference PPT) was conducted consecutively using sets of spiking 

experiments on homogenate plasma and serum samples. A mix of 50 spiking compounds was 

chosen to cover different chemical classes of contaminants (i.e. diet toxins, drugs, and 

pesticides) and metabolites (i.e. eicosanoids, neurotransmitters, and steroids). Labeled 

internal standards (IS) (n = 17, 100 ng/mL) were used throughout to monitor analytical 

variability attributed to UHPLC-ESI-QTOF injections (spiked post-extraction in the preselection 

phase) or sample preparation (spiked pre-extraction in the following phases). Suppliers and 

further physical-chemical data can be found in the Supporting Information (SI), Tables A1 and 

A2. The preparation methods selected through these two experiments were then applied to 

cohort serum (n=10) and plasma (n=8) samples and compared.  
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Figure III.2 – Diagram of the methodology used to compare sample preparation methods. Two low-level 

spiking experiments were conducted to compare various phospholipid and protein removal plates (PLR), 

solid phase extraction cartridges (SPE), and supported liquid extraction cartridge (SLE) among 

themselves, and to the classically used protein precipitation (PPT). The best-suited methods were 

selected using a set of qualitative and quantitative criteria, then applied to plasma and serum cohort 

samples to observe the impact of the sample preparation method on the visible chemical space. 

4.2.1. Preselection 

Seven procedures using phospholipid and protein removal (PLR) plates, three using solid 

phase extraction (SPE) plates, one using supported liquid extraction (SLE) cartridges, and 

conventionally used protein precipitation (PPT) (i.e. a total of twelve SPM) were implemented 

to prepare serum samples. Details on individual preparation procedures can be found in the 

SI. For each preparation method, homogenate serum samples (n=4) were spiked at 40 ng/mL 

using the 50-compound spiking set. Calibration samples (n=5, 20-150 ng/mL spiked after 

extraction) as well as an extracted matrix blank (n=1) and an extracted ultrapure water blank 

(n=1) were also prepared. Each batch was injected with calibration samples (n=5, 20-150 

ng/mL) prepared in solvent. Absolute recovery percentage was calculated as the ratio of peak 

area of each compound in samples spiked before and after extraction. Repeatability was 
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assessed for each compound using the coefficient of variation (CV) of peak area on four 

replicates. Matrix effect (ME) was calculated as described in Equation III. for each compound 

at two concentration levels (lowest and highest points of calibration range). 

𝑀𝐸[𝑋, 𝐶] (%) =  
𝐴[𝑋, 𝐶]𝑠𝑜𝑙𝑣𝑒𝑛𝑡 −  𝐴[𝑋, 𝐶]𝑚𝑎𝑡𝑟𝑖𝑥

𝐴[𝑋, 𝐶]𝑠𝑜𝑙𝑣𝑒𝑛𝑡
∗ 100 

Equation III.1– Matrix effect formula, where A is the peak area of a given compound X at a given 

concentration C. 

SPM that were found adequate on all three criteria (i.e. recovery between 70-120%, 

repeatability below 20%, and low matrix effect) were preselected and further compared to the 

conventionally used solvent-based PPT. 

4.2.2. Comparison to PPT at real-life concentrations 

The preselected PLR plate (Phree – Acetonitrile (ACN)), the preselected SPE plate (StrataX), 

as well as a combination of these two preparation methods, were compared to PPT, which is 

a reference method for metabolomics21, 22, 28. For each of these four methods, plasma and 

serum homogenate samples (n=4 each) were spiked to a real life concentration (10 ng/mL) in 

plasma and serum. Background contamination was assessed using similar but non-spiked 

plasma and serum homogenates (n=4 each) and an extracted solvent blank (n=1). Detection 

frequency of compounds in spiked versus non-spiked samples and repeatability (using CV 

computations) were determined for each SPM. Signal-to-noise ratio (S/N) was retrieved for 

each compound and SPM. Spiking significance was assessed by computing p-values 

(unpaired t-tests) on compound IS-corrected areas in spiked versus non-spiked samples 

(threshold set at p = 0.05). Lastly, SPM were ranked on speed of implementation. Based on 

these criteria, two SPM were compared at the non-targeted scale on cohort samples. 

4.2.3. Final comparison 

The Phree PLR plate and PPT were used to prepare serum and plasma cohort samples (n=10 

and 8, respectively). Batches included quality control (QC) samples and each sample was 

injected in triplicate. Analytical repeatability was assessed at the targeted scale using IS peak 

areas in QC and sample replicates, and at the non-targeted scale using the criteria proposed 

by Want et al.28, according to which at least 80% of features found in at least 80% of QC should 

have a CV below 30%. Features varying significantly between the two SPM for each cohort 

were identified using t-tests (p-value threshold set at 0.01). These two data subsets were 

screened using an in-house automatized suspect screening tool8 to characterize the impact of 

each SPM. Annotated features’ S/N and fold changes (FC) between methods were also 
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reported. Details are available in Section 6. Further method characterization was achieved by 

determining the method detection limits (MDL). To this end, plasma and serum homogenate 

sample were spiked post-extraction at 0.1, 0.5, 1, 5, 10, 20, 40 ng/mL and were then injected 

in triplicate. MDL was determined as the lowest concentration with area CV lower than 10% 

and S/N higher than 100. 

4.3. Data acquisition and quality assurance procedures 

Samples were analyzed using a QTOF-MS (AB SCIEX X500R) interfaced with a UHPLC 

system (AB SCIEX ExionLC AD). Chromatographic separation was performed on injection 

volume of 2μL using an Acquity UHPLC HSS T3 C18 column (1.8μm, 1.0 × 150 mm) 

maintained at 40°C. Additional information regarding the chromatographic separation and 

(ESI) source parameters are available in the SI. Samples were analyzed with full scan 

experiments in both − and + ESI modes. MS/ MS fragmentation data were obtained by analysis 

of selected samples in sequential window acquisition of the theoretical mass spectrum 

(SWATH) or data dependent acquisition (DDA). Quality Control procedures are specified in 

the SI.  

4.4. Data processing 

4.4.1. Non-targeted data processing 

Mass spectra acquired in full scan were processed using vendor software MarkerView v.1.3 

(AB SCIEX). Main parameter values were set as: noise threshold of 10, minimal intensity of 20 

counts, m/z tolerance of 10 ppm, retention time (Rt) tolerance of 2 min, minimum Rt of 1 min, 

no isotope filtering. This data processing workflow (i.e. software and parameters) was 

previously optimized and validated to detect low-abundant chemicals in blood plasma and 

serum samples8. Blank subtraction was performed by subtracting the solvent blank area from 

the sample’s area for any given feature.  

4.4.2. Targeted data processing 

Manual peak integration for all spiked compounds and IS was achieved using vendor software 

Sciex OS v.1.6 (AB SCIEX). 

4.5. Suspect screening and annotation 

4.5.1. Suspect screening tool 

Feature tables obtained through non-targeted data processing were screened using an in-

house 6000-compound library mainly comprised of food intake biomarkers, pesticides (and 

metabolites), industrial pollutants, cosmetic ingredients, and pharmaceuticals/drugs (and 
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metabolites). An automatized in-house screening tool scoring proximity of m/z, Rt 

(experimental and predicted29, 30) and isotopic pattern between suspects and features was 

used8. Manual curation on MS/MS data was performed to confirm results obtained through the 

assisting suspect screening tool. 

4.5.2. Annotation 

Feature tables were uploaded into an R environment (version 3.6.3) to run univariate analyses. 

Statistical analyses were performed separately for each sample (i.e. individual), considering 

analytical replicates and two performed SPM. The impact of the SPM was assessed by 

performing unpaired t-tests and computing p-values with an Adaptive Benjamini-Hochberg 

(ABH) correction for multiple comparisons. Features presenting lowest adjusted p-values and 

a sample-to-blank area ratio of more than three for at least one sample were prioritized for the 

annotation process. Annotation was conducted manually, relying on chemical information 

databases31, 32, experimental MS/MS databases33, and in silico fragmentation prediction tools34, 

35. Confidence levels based on recommendations made by Schymanski et al. (2014)36 were 

provided in the SI, Tables A5a and A5b for serum and plasma samples respectively. 

5. Results and discussion 

5.1. Preselection of most suitable SPM 

The twelve SPM performances regarding recovery, repeatability and matrix effect on 50 

compounds spiked at 40 ng/mL in serum are presented in Figure III.3. Results for individual 

compounds are available in the SI, Table A3. 

 

Figure III.3 – Comparison of the recovery (A), repeatability (B), and median matrix effect performances 

(C) of the eleven considered sample preparation methods using a 50-compound mix spiked in serum 

(n=4). Preparation methods include protein precipitation (PPT), phospholipid removal (PLR) plates, solid 

phase extraction (SPE) cartridges, and a supported liquid extraction (SLE) cartridge. For the recovery 
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and repeatability criteria, Q1, Q3 and median values are represented with two green lines and one blue 

line respectively. Median values for two spiking concentrations are presented for the matrix effect 

criterion. 

Median spiked compound recovery varied between 56.3% (PLUltra) and 102.6% (PLD). PL 

and PLUltra are seemingly the least adequate SPM for the intended application, only allowing 

a median compound recovery of 61.7% and 56.3% respectively. SPM recovery performances 

for individual compounds indicated that PL and PLUltra specifically performed less adequately 

on polar compounds (0.07 ≤ logP ≤ 1.73). This may be explained by the fact that both of these 

plates retain phospholipids using a Lewis acid-base interaction between the stationary phase 

and the polar esterified phosphate group found in phospholipids37. However, due to lack of 

information on the phospholipid retention mechanism of other PLR plates, this hypothesis 

cannot be further investigated. The SLE cartridge did not seem adequate either for the 

intended application, as 20% of compounds were not recovered at all. Most of these non-

recovered compounds (90%) were compounds usually favored in – ESI mode notably due to 

the presence of a common carboxylic acid group, which may suggest a less efficient desorption 

of such molecules when using this cartridge. Similarly, Prime HLB seemingly disadvantaged 

the recovery of compounds presenting a carboxylic acid group (100% of non-recovered 

compounds). This SPM also seemed inadequate for the recovery of selective serotonin 

reuptake inhibitors fluoxetine and paroxetine (8.8% and 1.5% recovery respectively), which 

may indicate a particular affinity of the sorbent for this class of compounds. It should be noted 

that eight compounds (i.e. 2-phenylphenol, acetylsalicylic acid, arachidonic acid, cotinine, 

nicotine, leukotriene D4, and prostaglandins D2 and J2) were generally poorly recovered 

(recovery below 70% for at least six SPM). As these compounds span across wide ranges of 

m/z (162.1167 ≤ Monoisotopic mass (Da) ≤ 496.2607) and Rt (3.76 ≤ Rt (min) ≤ 46.64), and 

share no common substructure, it appears that recovery in the case of low-level spiking in a 

complex matrix is partly compound-dependent with no evident generalization hypothesis. A 

similar observation regarding overall poor compound recovery regardless of the used 

extraction method was reported by Tulipani et al. (2015)20.  

Overall, five out of eleven methods (i.e. PLR plates Ostro, Phree with both solvents, StrataX 

and StrataXC) in addition to reference SPM PPT presented Q1 and Q3 recovery values 

comprised between 70% and 120%, constituting adequate performance for this criterion. 

Despite the generally satisfying recovery values obtained with these SPM, Ostro also tended 

to disadvantage compounds with a carboxylic acid group, although at a lesser level than Isolute 

or Prime HLB (14% of compounds were not recovered). Phree PLR plates mildly 

disadvantaged two thiophosphates, i.e. chlorpyrifos and diazinon (42.8-63.6% recovery), 
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regardless of the used solvent. Another thiophosphate, i.e. Malathion, was only recovered at 

53.8% when using Phree with methanol. This insecticide, along with its precursor 

dimethyldithiophosphate, were also mildly to strongly disadvantaged by both Strata SPE 

cartridges (2.8-69.2% recovery). This tendency may indicate a need for a particular attention 

to thiophosphates when choosing and optimizing an SPM for non-targeted exposomics 

studies. 

Observed repeatability on compound recovery was suitable for all SPM, with a calculated CV 

below 20% for 80% (HLB Oasis) to 100% (PLD) of spiked compounds. Lower interquartile 

ranges (i.e. difference between the third and first quartiles) were noted for PLR plates (3.4-

9.2%) compared to SPE cartridges (9.1-13.1%). This suggests that PLR-based methods are 

more repeatable than SPE-based methods overall, which may be attributable to the higher 

complexity of SPE protocols (i.e. higher number of steps), as was previously suggested by 

Rico et al. (2014)16.  

Median matrix effects were highly variable among SPM, ranging from 31.9-75.0% (Phree ACN 

and PPT respectively) for the 20 ng/mL spiking level and from 22.6-83.0% (PLD and HLB 

Oasis respectively) for the 150 ng/mL spiking level. As expected, higher median matrix effect 

were observed with the lower spiking concentration for most SPM, with the exception of HLB 

Oasis (69.7-83.0% at 20 and 150 ng/mL). Additionally, PPT showed high matrix effect 

compared to other SPM, which was expected since it is the least selective. For PLR plates, 

Phree ACN performed best with a low median matrix effect at both spiking levels (31.9% and 

28.0% at 20 and 150 ng/mL). It is to be noted that while Phree MeOH allowed similar 

performance on the recovery criterion, the use of methanol as a solvent exacerbated the 

observed matrix effect, in coherence with what was previously reported by Sitnikov et al. 

(2016)15. StrataX was the best-performing SPE cartridge at both spiking levels (52.0% and 

47.9% at 20 and 150 ng/mL).  

Overall, Phree ACN was the best compromise among PLR plates between high compound 

recovery, high repeatability and low matrix effect in the case of low-level spiking. Similarly, for 

SPE cartridges, StrataX was identified as the most appropriate given the considered criteria. 

Lastly, the SLE cartridge did not allow sufficient homogeneity in compound recovery to be 

selected for the next SPM comparison step.  

5.2. Comparison to PPT at real-life concentrations 

The preselected SPM Phree ACN and StrataX were compared to the commonly used solvent-

based PPT on plasma and serum samples. Moreover, as relatively high matrix effects were 

observed namely for StrataX, a combination of both preselected SPM, further referred to as 
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Phree+StrataX, was carried out to attempt further purification of the samples. The SPM 

performances regarding spiked compound detection frequency, S/N, semi-quantification 

performance, detection significance, and speed of implementation were evaluated following a 

10 ng/mL spiking of plasma and serum samples. Results are presented in Figure III.4. Results 

for individual compounds are available in the SI, Table A4. 

Some differences were observed between matrices; indeed, median S/N values were lower 

for plasma for all SPM except Phree, and semi-quantification was poorer for this matrix when 

using PPT or StrataX. Observed areas are smaller in plasma samples overall (although not for 

all compounds), which could partly explain both the lower S/N values and area irregularities. 

This is consistent with prior reports of compound-dependent anticoagulant-caused ion 

suppression in plasma samples.38 

All SPM allowed adequate spiked compounds detection frequencies in both matrices (88-96% 

of low-level spiked compounds detected in serum, 92-100% in plasma), although the 

combination of Phree ACN and StrataX systematically ranked last. Similarly, median S/N for 

spiked compounds were satisfying in all cases, ranging from 1024-3437 (Phree ACN-PPT 

respectively) in serum and 1082-2803 in plasma (Phree ACN-StrataX respectively). Lower S/N 

for SPM Phree ACN and Phree+StrataX seem to be partly linked to less detected signal overall 

with a more noticeable impact on peaks (compared to noise), presumably attributable to the 

common use of Phree ACN. The addition of an additional matrix purification step with the use 

of SPE cartridge StrataX allowed a better performance of Phree+StrataX compared to Phree 

ACN alone through a lower noise level in the case of serum. 

Repeatability was assessed through semi-quantification performance, representing the 

percentage of detected compounds with CV ≤ 20% on 4 replicates. PPT and Phree ACN were 

Figure III.4 – Sample preparation methods evaluation for the detection of 50 low-level spiked compounds 

in (A) serum and (B) plasma samples (n=4 each). Outer edges identify best performances. 
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the only two SPM that allowed a suitable performance on both serum (94 and 93% 

respectively) and plasma (81 and 94% respectively). In coherence with the observations 

presented in the SPM preselection process, StrataX produced less repeatable results 

compared to Phree ACN, which is further reflected in the Phree+StrataX SPM. Moreover, lower 

semi-quantification performance values for these two SPM are once again not linked to overall 

higher CV values for all compounds, but rather to a stronger heterogeneity over the range of 

compounds. Indeed, CV interquartile ranges are of 4.0%, 6.7%, 13.0% and 18.0% for PPT, 

Phree, StrataX and Phree+StrataX respectively in serum (8.4%, 6.8%, 14.5% and 26.5% in 

plasma).  High CV values (i.e. CV ≥ 25%) with the use of StrataX and Phree+StrataX SPM in 

serum were found for compounds that were discussed in the preselection process, such as 

selective serotonin reuptake inhibitors fluoxetine and paroxetine, as well as triphosphates 

chlorpyrifos and diazinon. StrataX also seemed to induce low repeatability for triazoles 

propiconazole and tebuconazole for this real-life-level spiking (10 ng/mL), which was not visible 

during the preselection phase (40 ng/mL). This observation, coupled with previous reports of 

comparable repeatability between PPT and SPE-based SPM at high spiking levels (800-5000 

ng/mL) 11, 15, suggests the need for application-appropriate evaluations of SPM, as the 

detection of xenobiotics at real-life concentrations may be further hindered by the choice of an 

unfitting SPM. 

All four SPM allowed the statistical differentiation (p≤0.01) of spiked compounds areas in 

spiked and non-spiked samples for both matrices for more than 75% of detected compounds. 

Overall, PPT and Phree ACN performed best for this criterion, followed by StrataX then 

Phree+StrataX. This is coherent with the data obtained on repeatability, as significance 

decreases with repeatability. Indeed, high p-values (p≥0.01) are generally observed on 

compounds with high CV values (e.g. diazinon in both matrices, paroxetine in serum, nicotine 

in plasma, etc.). Phree+StrataX also predictably ranked last regarding the speed of 

implementation criterion, as the multiplication of extraction steps to achieve further sample 

purification led to a longer sample preparation process. 

Overall, PPT and Phree ACN both present similar and superior performances for the detection 

of low-level compounds in complex blood-derived matrices compared to StrataX and 

Phree+StrataX. The study design based on fifty spiked compounds did not allow to 

demonstrate any clear advantage on one compared to the other; a final comparison of these 

two SPM was made through their application to serum and plasma cohort samples to obtain a 

wider point of view on each method’s impact on results of a non-targeted exposomics 

approach. 
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5.3. Final comparison with MDL determination and application on cohort 

samples 

First, MDL were determined for PPT and Phree ACN on thirty xenobiotics, in plasma and 

serum. Results on individual compounds are presented in the SI, Table A6. Median MDL 

values were 0.1 and 0.3 ng/mL for Phree and PPT respectively in both matrices, which 

suggests lower matrix effect presumably linked to further sample purification with Phree. 

Contrary to this tendency, some compounds, such as chlorpyrifos and tebuconazole in plasma, 

present a higher MDL for Phree compared to PPT. Similarly, pravastatin is only detected in 

samples prepared with PPT in both matrices. Overall, these differences in MDL highlight that 

the chosen SPM has an effect on both the range of visible compounds and the level at which 

they are reliably observable. 

Further comparison of PPT and Phree ACN was performed by using both SPM to prepare 

serum and plasma cohort samples (n=10 and 8, respectively). Quality control was performed 

on the injected batches, both at the targeted and non-targeted scales. Detailed results of the 

quality control criteria are presented in the SI, Figure S1. Repeatability was assessed at the 

non-targeted scale through area CV of features found in more than 80% of QC samples. For 

both SPM and both matrices, more than 80% of QC features presented area CV of less than 

30%, which validates the criterion suggested by Want et al. (2010)28. Median area CV of all 

QC features was always less than 20% (11-13%). Similarly, median area CV of IS spiked in 

QC samples and in cohort samples was always less than 10% (respectively 2-6% and 2-8%). 

There was little observable difference between SPM or cohorts for these four quality control 

criteria regardless of the considered scale (i.e. targeted or non-targeted). Lastly, Euclidian 

distances between analytical replicates were computed. Although all values for median 

Euclidian distances were satisfactory (<12%), a difference was observed between cohorts, as 

plasma from the Danish cohort produced more repeatable results compared to serum from 

Pelagie for both SPM. Moreover, plasma samples prepared using PPT were more repeatable 

than those prepared using Phree (p-value<0.01), whereas no significant effect of SPM could 

be observed on serum samples.  

Following the validation of quality control criteria, suspect screening was performed on the 

datasets obtained from both cohorts and both SPM using an in-house automatized suspect 

screening tool8, followed by manual curation using fragmentation data. In total, 44 and 41 

xenobiotics were annotated in the Pelagie serum samples and the Danish plasma samples, 

respectively. Maximum fold changes (FC) were computed between both SPM for all annotated 
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compounds, and are reported in Figure III.5. Additional information on individual annotations 

are available in the SI, Tables A5a and A5b for serum and plasma samples respectively. 

 

Figure III.5 – Comparison of annotated xenobiotics’ areas in samples prepared with protein precipitation 

(PPT) and protein removal plate Phree in Pelagie serum samples (A) and Danish plasma samples (B). 

Logged values of fold changes (i.e. area ratio between Phree and PPT) are presented on the x-axis, 

where –∞ and +∞ values represent the absence of compounds in samples prepared with Phree and 

PPT, respectively. Bars on the left of the y-axis represent compounds presenting higher areas in PPT 

samples and vice-versa.   

In serum, 93% of annotated xenobiotics presented FC values below 0.5 or above 2, whereas 

it was the case for only 70% of compounds annotated in plasma, seemingly suggesting a more 

pronounced effect of SPM on serum than on plasma. As this observation may be skewed by 

the low amount of annotations compared to the total number of features (>20,000), this 

tendency was further investigated by computing FC values on QC samples. Results are 

presented in Table III.1. 

 

Table III.1– Percentage of features of quality control samples categorized by fold change value (i.e. area 

ratio of features in Phree and protein precipitation). Values are computed for Pelagie serum samples 

and Danish plasma samples. 
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Overall, features obtained in serum samples present more differences between the two 

considered SPM (i.e. FC values closer to the extremes) compared to what is observed in 

plasma samples. This may be explained in part by the presence of highly abundant and often 

multiply charged peptide peaks observed in serum samples prepared using PPT, which seem 

mostly retained during the sample preparation step for Phree samples. These peptide peaks 

are mostly observed within a specific Rt range (39-45 minutes), which is also the range where 

phospholipids and lysophospholipids (which are specifically retained by Phree plates) are 

observed. A comparative visualization of FC values organized by Rt value in serum and plasma 

is presented in the SI, Figure S2. These peaks are not as abundant in plasma samples 

prepared with protein precipitation, and therefore present less polarizing FC values. The 

differentiating presence of these dominating peptide peaks in serum compared to plasma has 

already been reported38, 39. Importantly, in both matrices, more than 40% of feature are only 

detected using one SPM (43.2-54.0% in plasma and serum, respectively). This highlights the 

complementarity of these SPM, as they only partially overlap. The use of both PPT and Phree 

therefore allow to broaden the visible chemical space. 

Xenobiotics of various origin were detected using Phree and PPT SPM, including 

environmental pollutants (e.g. diethylphthalate and chlorothalonil metabolite 4-hydroxy-2,5,6-

trichloroisophthalonitrile), compounds used in cosmetic formulations (e.g. octaethylene glycol, 

benzophenone-4 and various parabens), medication (e.g. paracetamol, diazepam and 

metabolite nordazepam), and dietary compounds (e.g. caffeine and metabolites, piperine, and 

flavoring agent bourbonal). This diversity of compounds in terms of polarity (-0.9 ≤ logP ≤6.4), 

mass (138.0316 ≤ monoisotopic mass ≤ 766.4562) and chemical functions underlines the 

adequacy of these SPM for a wide chemical exposome coverage.  

FC values were coherent (i.e. always favored by the same SPM or not favored by any SPM) 

for compounds detected in both serum and plasma cohort samples, such as tryptophan (FC 

values of 0.041 and 0.132 in serum and plasma respectively), or caffeine (FC values of 0.65 

and 1.25 in serum and plasma respectively). Overall, there is no evident correlation between 

polarity, mass, or presence of any chemical function and favored detection by either SPM, 

which does not allow the anticipation of the SPM’s effect on other compounds or classes of 

compounds. This observation underlines the critical need for orthogonal data when aiming for 

a thorough characterization of a sample, as choice of SPM conditions both the range (i.e. 

observed compounds) and depth (i.e. observed level) of the visible chemical space. 

Documenting the perimeter of the profiled internal chemical exposome for each set of 

analytical conditions is particularly crucial when aiming for large-scale epidemiological 

applications. Indeed, non-targeted approaches may be used as exploratory work to identify 
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previously uninvestigated compounds that are either particularly prevalent or linked to any 

given health outcomes, potentially resulting in priority lists used in targeted assays focused on 

quantitation. Yet, the choice of SPM evidently skews the visible information obtained from a 

sample by either completely preventing the detection of certain compounds, or conditioning it 

to higher levels in matrix, which may never be reached due to low exposure and/or lack of 

bioaccumulation. This is not negligible when considering that low-level exposure may still result 

in toxicity in the case of chronic exposure or low-level exposure to biologically active 

compounds. For example, known potent toxicant pentachlorophenol is favored by PPT, as is 

toxicant metabolite triclosan sulfate. In light of this context, biological sample preparation for 

non-targeted approaches should ideally include multiple SPM to allow a more holistic view of 

the exposure. Considering the two retained SPM in the case of plasma and serum, this could 

be achieved by first performing a PPT, followed by a division of the extract between an injection 

as is (after proper reconstitution) and a further purification using a Phree PLR plate. As 

biological sample availability is often limited in volume, this suggested sample preparation 

workflow requires additional effort in miniaturization throughout the process, from the 

preparation in itself to the injection step. Nevertheless, the gain in terms of coverage of the 

human internal exposome in both range and depth makes these improvements in efficiency 

unmistakably worthwhile. 

6. Conclusion 

Twelve SPM were systematically compared for the HRMS-based non-targeted detection of 

low-abundant chemicals in complex blood-derived matrices using an innovative methodology 

based on a large and diverse spiking set at exposure-relevant concentrations. We 

demonstrated that SPM choice must be investigated with an application-appropriate design, 

as spiking levels and choice of spiking compounds may greatly affect the understanding of the 

SPM’s impact on non-targeted assays results. The blood-derived matrix choice should also be 

investigated, as it may affect the observed chemical space. Based on the criteria used in this 

work, we showed that phospholipid and protein removal plate Phree and the classically used 

protein precipitation are both well suited to investigate the chemical exposome in serum or 

plasma samples. Moreover, they can both be used on the same samples, as their 

complementarity allow the broadening of the visible chemical space.  
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7. Associated content 

7.1. Supporting Information 

- “Supporting Information – Tables A“ : chemicals and reagents, detailed results of the SPM 

preselection, comparison of preselected SPM to protein precipitation,  annotations obtained 

following the application of selected SPM to cohort samples, and methods detection limits 

(Excel). 

- “Supporting Information – Figures S” : Solvents and chemicals, data acquisition parameters, 

quality control procedures, detailed sample preparation procedures, and quality control data 

for the cohort applications (Word). 
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1. Context and summary 

This chapter was published as an original paper as first author in the journal Analytical 

Chemistry: Chaker, J., Gilles, E., Leger, T., Jegou, B., & David, A.* (2021). From metabolomics to 

HRMS-based exposomics: Adapting peak picking and developing scoring for MS1 suspect screening. 

Anal Chem (IF=6.8), 93(3), 1792-1800. 

Once an optimized analytical fingerprint of a sample is acquired, this data must be transformed 

to a list of features, each characterized by a m/z, an Rt, and an area. Features are then aligned 

for all samples, and annotation or suspect screening may be performed. While many software 

tools are available to process non-targeted data, most if not all were developed for 

metabolomics applications. In the case of exposomics, as compounds of interest are often 

lowly abundant, it is crucial to ensure that data processing tools are capable of accurately 

disentangling these signals from the noise. The aligned feature lists generated by the data 

processing step are then used for annotation. As for data processing, there are many available 

tools relying on various principles to achieve this step. The appropriate tool must thus be found 

and optimized (i.e. relying on the suitable parameters, implementing a relevant library, etc.) to 

improve efficiency and lower the number of false positive annotations. A key step of the 

exposomics workflow therefore consists in optimizing these tools to process non-targeted data. 

This chapter is the result of two separate optimization steps (i.e. data processing and suspect 

screening) condensed in one manuscript published in Analytical Chemistry. 

The first objective of this chapter was to systematically optimize and evaluate four software 

tools for the processing of non-targeted exposomics data. This was performed by comparing 

the processing results of data obtained from plasma and serum samples spiked using a 45-

compound set spiked at 10 ng/mL (see Chapter III, paragraph 4.2.2). Each tool was first 

optimized individually, manually and with automatized parametrization tools when available 

(i.e. IPO and Autotuner for XCMS), and the best datasets were compared among the tools. 

Evaluated parameters were detection frequency of spiked compounds, computing time, ease 

of implementation, area integration repeatability, and detection significance (i.e. significance 

of the difference in areas between spiked and non-spiked samples). 

The second objective of this chapter was to describe the newly developed suspect screening 

tool . It relies on different chemical predictors (i.e. m/z, experimental and/or predicted retention 

time, as well as isotopic fit) to score the proximity between features and suspects, and 

therefore provides an easy-to-read indicator of each annotation’s reliability. The modelling of 

these predictors is described, and their relevance and accuracy are illustrated through an 

application to non-spiked samples. 
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Results of these comparisons are described and discussed throughout this article.The 

inadequacy of existing automatized parametrization tools built for metabolomics applications 

is discussed. Moreover, the need for tailored and optimized tools for processing HRMS-based 

exposomics data is underlined. Furthermore, the usefulness of confidence indices for suspect 

screening implemented in the in-house tool is demonstrated as an efficient way to prioritize 

annotations for manual curation. 
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2. Abstract 

The technological advances of cutting-edge high-resolution mass spectrometry (HRMS) has 

set the stage for a new paradigm for exposure assessment. However, some adjustments of 

the metabolomics workflow are needed before HRMS-based methods can detect the low-

abundant xenobiotics in human matrices. It is also essential to provide tools to speed up 

marker identifications. Here, we first show that metabolomics software packages developed 

for automated optimization of XCMS parameters can lead to a false negative rate of up to 80% 

for chemicals spiked at low levels in blood. We then demonstrate that manual selection criteria 

in open source (XCMS, MZmine2) and vendor software (MarkerViewTM, Progenesis QI) allow 

to decrease the rates of false negative up to 2% for these spiked chemicals. We next report 

an MS1 automatized suspect screening workflow that allow for a rapid pre-annotation of HRMS 

datasets. The novelty of this suspect screening workflow is to combine several predictors 

based on m/z, retention time (Rt) prediction models and isotope ratio to generate intermediate 

and global scorings. Several Rt prediction models were tested and hierarchized (PredRet, 

Retip, RTI and a logP model), and a non-linear scoring was developed to account for Rt 

variations observed within individual runs. We then tested the efficiency of this suspect 

screening tool to detect spiked and non-spiked chemicals in human blood. Compared to other 

existing annotation tools, its main advantages include the use of Rt predictors using different 

models, its speed and the use of efficient scoring algorithms to prioritize pre-annotated markers 

and reduce false positives.  

Key words: Exposomics, high-resolution mass spectrometry, exposure assessment, peak 

picking, suspect screening, annotation tool 

 

Graphical abstract 

 

Figure IV.1 – Graphical abstract for the research paper titled “From metabolomics to HRMS-based 

exposomics: adapting peak-picking and developing scoring for MS1 suspect screening” 
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3. Introduction 

Recently, the technological advances of cutting-edge high-resolution mass spectrometry 

(HRMS) has set the stage for a new paradigm to assess human exposure to complex mixtures 

of xenobiotics.1 Using HRMS platforms coupled to liquid chromatography (LC), it is now 

possible to profile several thousands of small molecules (<1500 Da) in a biological sample 

during a single analysis, including both endogenous and exogenous molecules and their 

transformation products.2, 3 The holistic characterization of exogenous chemical mixtures 

accumulating in human biological samples (i.e. the internal chemical exposome) using HRMS 

platforms would be a step forward to investigate the environmental aetiology of many 

multifactorial chronic diseases with an unprecedented precision.1, 4, 5 It is therefore paramount 

to break down the remaining technological barriers and methodological issues to be able to 

perform large-scale exposomics studies using HRMS-based methods.  

One of the obstacles to overcome is the analytical sensitivity issue which is currently preventing 

the detection of low-abundant exogenous chemicals in complex biological matrices.6, 7 

Concentrations of environmental contaminants can be on average 1,000 times lower than 

concentrations of endogenous chemicals and food chemicals in human blood.8 Improving the 

analytical sensitivity of LC-HRMS platforms is therefore a necessary step to go from 

metabolomics-oriented studies toward exposomics studies.2, 3 It is also critical to ensure that 

bioinformatics tools designed to process LC-HRMS data can disentangle chemicals’ small 

signals from the noise. To this aim, optimization of adjustable parameters in software available 

for processing raw data is a key step to ensure that even the low abundant chemicals of interest 

will be picked up.9, 10 Software packages such as the IPO11 or Autotuner12 have already been 

developed for automated optimization of XCMS parameters to improve the detection of reliable 

signals. Studies comparing automated optimization and manual selection criteria for 

metabolomics applications have already been performed.13 However, these studies are 

missing for exposomics applications where the aim is also to include infrequent signals often 

close to the noise that can be used to identify unrecognized exposure.14  

Besides sensitivity, another bottleneck preventing comprehensive characterization of 

exogenous chemical mixtures present in biological samples is the annotation of the thousands 

of signals present in HRMS datasets. Over the years, many annotation tools (e.g. CAMERA, 

ProbMetab, MolNetEnhancer and MetAssign) relying on analytical predictors (e.g. m/z, Rt, 

isotopes) and correlation/clustering methods have been developed for metabolite 

annotation.15-18 More recently, annotation tools such as xMSannotator19 have incorporated 

biological correlations in addition to analytical correlations while other tools are now integrating 

MS/MS20-22 to improve metabolite annotation. Besides these annotation tools, the qualitative 
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suspect screening approach is also being increasingly used to prioritize relevant xenobiotics 

for human exposure assessment.23, 24 Suspect screening uses exact mass of suspects from 

in-house libraries/database as a priori information.25, 26 Compared to other annotation tools 

which often rely on large databases such as HMDB27, KEGG28 or ChemSpider,29 the suspect 

screening strategy can be less time-consuming in particular if the list of suspects arises from 

a systematic prioritization strategy. However, predictors other than exact mass must be added 

in the suspect screening workflow to decrease the rate of false positives and therefore limit the 

number of putative annotations that need manual curation. 

Here, we first compared the ability of metabolomics software packages developed for 

automated optimization of XCMS (IPO11 and Autotuner12) and manual selection criteria to 

detect low-abundant spiked chemicals. Manual optimization was also extended to another 

open source software (MZmine230) and 2 vendor tools (e.g. MarkerViewTM and Progenesis QI) 

to compare their efficiency to detect low-abundant spiked chemicals. We demonstrate the 

importance of fine-tuning critical parameters for both open source and vendor software to 

dramatically decrease the rate of false negatives. We next report an MS1 automatized suspect 

screening workflow. The novelty of this suspect screening workflow is to combine several 

predictors based on m/z, Rt prediction models and isotope ratio checks to generate 

intermediate and global scorings using multi-criteria algorithms. Several Rt prediction models 

were tested and hierarchized, and a non-linear scoring was developed to account for Rt 

variations observed within individual runs. We show this suspect screening tool’s high 

efficiency for the rapid annotation of low-abundant spiked and non-spiked exogenous 

chemicals in human plasma and serum (annotation confirmed with MS/MS data). Compared 

to other existing annotation tools (e.g. xMSannotator,19 MS-DIAL,20 msPurity21), its main 

advantages include the use of Rt predictors based on different models, its speed and the use 

of efficient scoring algorithm to prioritize pre-annotated markers and reduce false positives.  

4. Experimental section 

4.1. Spiking experiments and sample preparation  

Spiking experiments were performed on human blood plasma and serum samples to optimize 

and compare the efficiency of data processing software to detect low-abundant signals in 

biological samples. Plasma and serum bags were acquired from the French blood agency 

(Etablissement Français du Sang, EFS). Homogenate plasma and serum samples (n=4, 100 

µL each) were spiked with a mix of selected classes of contaminants (i.e. pesticides, 

pharmaceuticals and diet toxins) and metabolites (i.e. steroids, eicosanoids and 

neurotransmitters) (n=45, see Supporting Information Table A1 for suppliers) to give 10 ng/mL 
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in matrix. Non-spiked plasma and serum samples (n=4, 100 µL each) from the same 

homogenates were also used to check for any background contamination. A mix of 21 labeled 

internal standards (100 ng/mL) was used to monitor analytical variabilities during sample 

preparation and UHPLC-ESI-QTOF injections. Protein precipitation was performed using a 4:1 

(v:v) ratio of cold methanol to matrix. To improve protein removal, samples were allowed to 

stand at -20°C for one hour prior to centrifugation. After centrifugation at 4°C and 17,000g for 

20 min, supernatants were collected and evaporated to dryness under vacuum. Samples were 

recovered in 100 µL of 90:10 (v:v) ultrapure water to acetonitrile ratio. 

4.2. Data acquisition and quality control 

Samples were analyzed on an AB SCIEX X500R QTOF interfaced with an AB SCIEX ExionLC 

AD UHPLC. Compound chromatographic separation was achieved with an Acquity UHPLC 

HSS T3 C18 column (1.8µm, 1.0 x150mm) maintained at 40°C. Details regarding the injection, 

chromatographic separation and ESI source parameters can be found in the SI. Samples were 

analyzed in full scan experiment in both – and + ESI modes. MS/MS fragmentation data for 

chemical elucidation was obtained by analysis of selected samples in sequential window 

acquisition of theoretical mass spectrum (SWATH). Quality Control procedures are specified 

in the SI. 

4.3. Peak picking optimization: data processing tools 

    Mass spectra acquired in full scan were processed (peak picking, deconvolution, alignment, 

gap filling) using four software programs: instrument-specific software MarkerViewTM1.3 (AB 

SCIEX), vendor software Progenesis QI for Metabolomics (Waters), and open-source solutions 

MZmine230 (v2.51) and XCMS31 (v3.6.1). Two R packages, IPO11 and Autotuner12, were used 

to test automatized parameter optimization of XCMS. For Progenesis, XCMS and MZmine2, 

raw data files (in wiff2 data format) were converted to 64 bit .mzML (full scan) using MSConvert 

from ProteoWizard.32 Two pipelines were used within the MZmine2 solution: Automated Data 

Analysis Pipeline (ADAP) (with “ADAP Chromatogram Builder” and “Chromatogram 

Deconvolution – Wavelets (ADAP)” steps), and Continuous Wavelet Transformation (CWT) 

(with “Chromatogram Builder” and “Chromatogram deconvolution – Wavelets (XCMS)” steps). 

For all software, a set of default parameters and a set of optimized parameters were tested to 

ensure optimal detection of spiked compounds (Figure IV.2).  

Five criteria were established to compare the four software tools and all possible parameter 

optimization algorithms. First, the detection frequency of spiked chemicals in blood plasma and 

serum samples was used to study the efficiency of parameters optimization. Then, mean areas 

for spiked and non-spiked samples, associated standard deviations, fold changes, and p-
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values (unpaired t-tests) were computed to model the detection significance in spiked versus 

non-spiked samples (threshold set at p=0.05). The semi-quantification performances were the 

third parameter implemented; the percentage of spiked compounds with area coefficient of 

variation (CV) below 30% were compared for all software according to the criteria proposed by 

Want et al.33 Independent peak integration of all spiked compounds were carried out using 

Sciex OS software (v1.2) to validate the accuracy of these 3 parameters. The fourth parameter 

was computing time (computer configuration available in SI Table A2) and the last one was 

ease of implementation (based on presence and user-friendliness of GUI, as well as number 

of customizable parameters).  

 

Figure IV.2 - Data preprocessing flowchart illustrating all tested parameters, including default 

parameters for the authors’ system (*) and optimized parameters (in bold and red) for each data 

preprocessing software tool. 

4.4. Suspect screening predictors 

4.4.1. Mass-to-charge ratio (m/z) 

Mass-to-charge ratios were calculated in-house using atomic monoisotopic masses obtained 

through the MIDAs C++ program (Molecular Isotopic Distribution Analysis)34 with the Fast 

Fourier Transform (FFT)-based method (nucleon domain).  

4.4.2. Retention time  

Four tools were used to attempt modelling Rt. Two models were first constructed using a 

training set of 134 standards and then evaluated using a set of 30 standards (see SI Table 
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A3). Experimental Rt for these standards were acquired from repeated injections (n=4). Simple 

regression linear models were used; adjusted coefficients of determination R²adj were 

computed to describe correlation between variables and standard deviation of predictions. 

Models were considered validated if a R² value greater than 0.7 was reached. 

The first Rt prediction model was constructed using octanol-water partition coefficients (logP). 

Although compounds may be ionized in the considered experimental conditions, logP was 

preferred to logD since experimental logD values are hardly available. LogP values were 

extracted from PubChem.35 Compounds of the training set were only used for model 

construction if an experimental logP was available (see SI Fig.B2). Experimental Rts were 

regressed on experimental logP values from compounds of the training set for which this 

parameter was available (n=101). The resulting equation was used to predict Rts for validation 

set compounds.  

A Quantitative Structure-Retention Relationship-based tool, available on the online Retention 

Time Indices (RTI) platform, was used to construct the second model through correlation of Rt 

and chemical structure of a compound,36  and is calibrated using two sets of nineteen 

compounds (see SI Table A4). Compounds from the training and evaluation sets were 

submitted through the “Batch mode” pipe, using the “Chemical Space Boundary” uncertainty 

measurement. Experimental Rt were regressed on RTI values of compounds of the training 

set for which a RTI value was generated (n=99), as some compounds were out of the model’s 

applicability domain. Rt values for the validation set compounds were predicted using the 

resulting equation to perform model evaluation. 

The third and fourth Rt prediction tools did not require the construction of a model, as a 

predicted Rt value was directly available. Retip37 relies on five machine learning algorithms, 

and requires previously acquired experimental Rt values and InChI identifiers. PredRet38 uses 

a user-driven database of compounds Rt to return a prediction of a compound’s Rt if it has 

been determined in a similar chromatographic system. To implement this last tool, the in-house 

chromatographic system was described: column type, column, eluents and additives were 

specified. Compounds from the training and validation set as well as their InChI identifiers were 

inputted. 

4.4.3. Isotopic pattern 

Theoretical isotopologue probabilities P0, P1, and P2 (i.e. first, second, and third isotopologue 

of masses M0, M1 and M2) for all compounds from the training and validation set were 

computed using the MIDAs34 software with the FFT-based method. Experimental isotopologue 

abundances A0, A1 and A2 were determined through targeted data processing. P2/P0 was 
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regressed on A2/A0 for all standards for which an experimental A2 was detected (n=103). 

Prediction bands (99%) were determined to estimate confidence in A2/A0 ratio value.  

4.5. Suspect screening annotation tools 

A two-part Visual Basic program was used to automatize part of the suspect screening 

annotation step. The two parts of the suspect screening program were created to respectively 

generate the predictors for a suspect list database and then test the correlations between 

suspects and markers from HRMS datasets. The database includes 2198 compounds 

commonly detected in human blood referenced in databases such as HMDB39 or the Blood 

Exposome Database.40 In this database, three predictors (m/z, Rt, and isotopic fit) were 

generated for each suspect: suspect compounds were associated to a formula, M0, M2, P0 and 

P2 values, and experimental or predicted Rt values if available. The library computes 

monoisotopic mass, as well as common adducts masses ([M+H]+, [M+Na]+, [M+K]+, [M+NH4]+ 

for positively charged adducts, and [M-H]-, [M-H2O-H]-, [M+Cl]-, [M+FA-H]- for negatively 

charged).  

The second part of the program, which performs the pre-annotation, scans individual markers 

(Mass × Rt), evaluates their proximity to the suspects using Confidence Indices (CI), and 

prioritizes the best candidate, if any. CI were built for each predictor as shown in Equation IV.1. 

A global confidence index (GCI) was also built as the mean of the three CI. 

CIi = 1 −  

| 
ifeature − isuspect

isuspect
 |

i
 

Equation IV.1 – Expression of Confidence Indices (CI) for all predictors (i= m/z, Rt, or M2/M0 ratio). Δi is 

a confidence interval and is specifically defined for each predictor as the maximal acceptable deviation 

from the reference value. 

The maximal acceptable deviation for mass Δm/z was defined based on instrumental 

uncertainty, and can take two values: 15 ppm for masses strictly lower than 200 Da, and 10 

ppm for masses over 200 Da.  

The ΔRt value was determined based on analytical Rt variability. This variability was estimated 

by computing Rt standard deviation (SD) for spiking standards in all analyzed spiked sample 

(8 spiked plasmas and sera) and for all isotopically-labeled compounds spiked in all analyzed 

sample (16 spiked and unspiked plasmas and sera). As analytical variability in Rt is 

heterogeneous along the chromatogram, run time was divided in sections based on observable 

different variability levels. The maximal expected Rt deviation ΔRt was constructed by selecting 

the highest compound Rt SD for each section, matrix and mode, and multiplying by three 
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(assuming normal distribution and applying statistics’ empirical rule to encompass 99.7% of 

values). Highest SD was selected in order to avoid excessive stringency and account for 

untested factors such as long-term analytical drift.  

The ΔA2/A0 value was also set by using the empirical rule: RMSE of A2/A0 error (ratio of 

integration of experimental signals vs. ratio of theoretical abundances) as presented in 6.3 was 

multiplied by three. The calculation of the CI for this last predictor is based on a step-wise 

approach. Indeed, the software tool first provides the likeliness of presence of the M2 

isotopologue in the feature table, and then proceeds with the abundance A2/A0 ratio computing. 

A more detailed representation of this tool’s workflow is available in SI Fig.B1. 

This in-house suspect screening tool was compared to four already available annotation and/or 

suspect screening software tools: xMSannotator,19 MS-DIAL,20 msPurity21 and MZmine2.30 The 

following criteria was used for comparison: possible use of in-house libraries or existing 

databases, possible use of experimental and/or predicted Rt for annotation (as opposed to 

clustering), use of MS2 predictor, scoring, and prioritization of annotations.  

4.6. Data availability 

The data files and associated metadata are available as .mzML  in the MetaboLights 

repository41 under the identification number: MTBLS1785. 

 

5. Results and discussion 

5.1. Optimization of HRMS data processing tools for exposomics 

studies 

Independent peak integration of all spiked compounds ensured they provided reliable signals. 

In plasma (serum), signal/noise values ranged from 38 to 1.3E+7 (23 to 1.4E+6), median m/z 

and Rt shifts were 1ppm and 0.1mn (1ppm and 0.1mn), peak asymmetry factors were 

averaging at 1.47 (1.41) and all below 1.86 (1.76), and area values were above 3.6E+3 

(2.7E+2). 

5.1.1. XCMS: automated optimization versus manual selection criteria  

The ability of two automatized optimization tools IPO and Autotuner, which were both 

developed for metabolomics applications, were tested for R-implemented open source XCMS 

(Fig.2). IPO-optimized parameters allowed detection of only 29% of spiked compounds in 

plasma (20% in serum), but with a maximal semi-quantification score. Since IPO optimization 
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parameters rely on “reliable peaks” which are defined based on the identification of 13C peaks 

using 3 criteria relative to the 12C  peak,11 we can only assume that these criteria were too 

stringent for many spiked compounds although they produced relevant analytical criteria for 

both detection (see above) and annotation (including relevant MS/MS spectra). Since low 

abundant peaks did not necessarily answer the algorithm’s criteria, parameter optimization 

such as “max peakwidth” were too high (30.7s) for most of these signals. Autotuner, on the 

other hand, allowed the detection of 73% of spiked compounds in both matrices, but less than 

20% of them had an area CV lower than 30% on four replicates.  The “max peakwidth” 

parameter is tuned to a low value (less than 10s), which is not coherent with the width of the 

considered compounds, leading to a splitting of peaks and thus a less reliable integration value. 

These results highlight the necessity to adapt tools built for metabolomics to the needs of 

chemical exposomics, and underlines the already described efficiency of manual tuning when 

dealing with less optimal peaks.13   

XCMS was then tested using four sets of parameters (Figure IV.3). Firstly, the set further 

referred to as “default parameters” was determined by a priori adaptation of suggested 

parameters for detection of low-abundant chemicals in complex matrices. Secondly, through 

visual examination of the data (data not depicted), the “peakwidth” parameter from the 

“centWave” function was determined to be sensitive and was optimized: the minimal time for 

a peak identification was set at 1 second to account for narrow signals. This allowed to increase 

the detection percentage of spiked compounds of 18 points in plasma (64 to 82%) and 11 

points in serum (60 to 71%).  

 

 

Figure IV.3 - Data processing (i.e. peak picking, deconvolution, alignment, gap filling) evaluation using 

XCMS for detection and semi-quantification of low-level spiked compounds in plasma samples (n=4 

each). Four sets of parameters were used: Default (blue squares), manual (green rounds), IPO (purple 

triangles), and Autotuner (orange diamonds) optimization. Outer edges identify best performances. 
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5.1.2. Manual optimization of MZmine 2 and vendor software 

As for XCMS, individual optimization of each tool was mandatory to decrease the rate of false 

negatives and determine relevant parameters to detect low-abundant compounds.  

For MZmine2, the CWT and the ADAP pipelines were both optimized and compared. Default 

CWT parameters refer to values used by Myers et al. (2017) for plasma samples.10 Within this 

pipeline, the “wavelet scales” parameter was identified as critical through GUI data 

visualization. The optimized bracket (0.10-1.00) showed a 9-point increase in detection 

frequency of spiked compounds in plasma and a 6-point increase in serum compared with the 

default bracket (0.02-1.20). This comes at the cost of computing time, which almost doubles 

for plasma samples and increases about 15% for serum samples. 

As for the ADAP pipeline for MZmine2, parameters were optimized through data 

previsualization. Wavelet range parameter was identified as critical, and the bracket 0.10-1.00 

was determined to be most appropriate. The two optimized pipelines were compared at the 

lowest attainable noise level with the available hardware (10 for CWT, 50 for ADAP). ADAP 

presented better results in terms of spiked compounds detection percentage (82% to 96% in 

plasma and 84% to 89% in serum).  

For MarkerViewTM and Progenesis QI vendor software, only few parameters can be modified 

and the most critical one is the noise threshold. For MarkerViewTM, three lower values (e.g. 50, 

20 and 10) were tested in addition to the default (100). Intensity threshold value of 10 was 

determined to be optimal, with a detection of 89% of spiked compounds in plasma and 82% in 

serum. For Progenesis QI, the automatic sensitivity method was used and sensitivity values 

“default” and “more” were tested. The “more” value was selected as optimal, as compared to 

the default, detection of spiked compounds increased 18 points for plasma (62 to 80%) and 11 

points for serum (67 to 78%).  

5.1.3. Comparison of optimized data processing tools to detect low abundant 

compounds 

The ability to detect low-abundant chemicals in plasma and serum was assessed for the 4 

software tools (Figure IV.4). Detailed results for each spiking compound and all tested 

parameters is available in SI (Table A5 and Figure B4). For both matrices, MZmine2 offers the 

best detection frequency of spiked compounds. As for detection significance between spiked 

samples and non-spiked samples, all tools allowed to reach the 0.05 p-value threshold to 

describe a significant difference in areas of detected spiking compounds between spiked and 

non-spiked samples. Median detection significance (t-test p-value) in plasma is lower (i.e. 
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higher p-value) for Progenesis QI compared to the other three tools. In serum, XCMS gives 

the lowest detection significance.  

Regarding semi-quantification performance, all tools allowed to pass the repeatability criteria 

from Want et al.33 (i.e. feature integration such as more than 80% of detected spiked 

compounds had an area CV lower than 30%). In serum, similar values are achieved for all 

software programs (between 80% for MZmine2 and 86% for MarkerViewTM). In plasma, value 

for this parameter was significantly better using MZmine2 compared to the other three tools.   

 

 

Figure IV.4 - Data processing (i.e. peak picking, deconvolution, alignment, gap filling) evaluation for 

detection and semi-quantification of low-level spiked compounds in (A) plasma and (B) serum samples 

(n=4 each). Four optimized software tools were used: MZmine 2 (blue squares), XCMS (green rounds), 

MarkerViewTM (purple triangles), and Progenesis QI (orange diamonds). Outer edges identify best 

performances. 

As for computing time and ease of implementation, vendor software tools have the best 

performances. These tools are the fastest and easiest to implement, as they have user-friendly 

GUIs and require little to no building of the processing pipeline. Progenesis QI also offers visual 

reviewing of the data which allows the user added control. MZmine2 is the most time-

consuming data processing tool (averaging at 18 hours). XCMS is the most flexible and is 

constantly evolving but is less user friendly as it uses command-line interface.  

In conclusion, the four investigated data processing tools, when optimized, presented 

acceptable performance regarding detection frequency, detection significance in spiked versus 

non-spiked samples and semi-quantitative performance. Vendor tools made a significant 

difference regarding computing time. MarkerViewTM is particularly interesting since it was 

proven to be effective over the five indicators. Its main disadvantage is its “black-box”-like 

functioning, with little user input or overview and only accepting wiff2 format. MZmine2 had the 
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best performance for spiking standard detection, and offers both a GUI and control on the data 

processing workflow, but its comparatively long computing time can stifle its systematized use. 

Improvements are nevertheless still required to improve the detection of low-abundant signals 

close to the baseline for all software to decrease the remaining false negatives. 

5.2. Modelling suspect screening predictors 

We next developed a suspect screening workflow that incorporate for the first time several Rt 

prediction models in addition to m/z and isotope ratio checks. Multi-criteria algorithms were 

then developed to generate intermediate CI for each predictor as well as a global CI built as 

the mean of the three CI.  

5.2.1. Retention time prediction models 

Four tools were used to attempt Rt modelling: an in-house model based on logP, Retip, RTI, 

and PredRet. However, PredRet could not be retained for further comparison with the other 

models since predicted Rt were returned for 16 compounds out of 134 submitted (12% 

response rate) which is significantly lower than what was obtained for RTI (74% response rate). 

Lack of data regarding previous injections of those standards on similar chromatographic 

systems could explain these results. This highlights the need for community participation to 

such tools, for a more thorough coverage of chromatographic systems and compounds.  

 

Figure IV.5 - Construction (A) of two Rt prediction models using simple linear regression 

models and validation (B) of all usable Rt prediction models. The logP model uses 

experimental octanol-water partition coefficients as predictors and the RTI model uses 

Retention Time Indices (RTI) as predictors. PredRet, a fourth Rt prediction tool, was also 

tested. PredRet predictions are not depicted as the number of responses were significantly 

lower (n=16), rendering it not statistically comparable. 
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Linear regression models construction for logP and RTI models are presented in Figure IV.5A, 

and results on the validation set for the logP, Retip and RTI models are presented in Figure 

IV.5B. A coefficient of determination of 0.72 was obtained for the logP model. R² value was 

higher compared to other models constructed similarly, such as the ones described by 

McEachran et al. (2018)42 (R²=0.66 on 78 compounds) and Bade et al. (2015)43 (R²=0.67 on 

595 compounds). This was expected as experimental logP values were exclusively used to 

build this model to avoid accumulating error from logP modelling and Rt modelling. The model 

constructed using RTI values presented a R² value of 0.77. This model’s performance is 

coherent with the RTI developers’ model description36 namely a R² value around 0.84.  

Both models as well as the Retip model were then validated using a 30-compound validation 

set; both R² values were similar, although with 28 and 19 compounds for Retip and RTI, 

respectively, since some compounds were not covered by the models. RMSE values were 

found to be of 13.7%, 12.6% and 11.5% of run time for the logP, Retip, and RTI models, 

respectively, suggesting a more precise prediction of Rt using the RTI model, then Retip, then 

the logP model. Based on these results, the four possible Rt values for a given compound 

were hierarchized for determination of CI as follows: experimental Rt if available, followed by 

the RTI predicted, Retip predicted, then logP predicted. In addition to evaluation of Rt 

prediction tools, analytical Rt variability was investigated to avoid excessive stringency in the 

CI calculation by accounting for fluctuations in analytical variability caused by the matrix or 

conditions of elution over the course of the analysis (see SI Fig.B3). Computed SD for 

compounds were plotted against run time and allowed the creation of four sections based on 

visual inspection of the data: 0-5 min, 5-15 min, 15-30 min, and 30-60 min. The third section 

(15-30 min) showed maximal Rt variability for all matrix×mode combination, whereas the 

second section (5-15 min) presented lowest Rt variability in all cases except for compounds in 

serum in ESI (-) mode (where variability was lower in first section). 

Overall, similar values were found within each sector for all four tested conditions (matrix × 

ionization mode), as lowest SD was always less than 15s from highest SD in a given sector. 

Therefore, to avoid multiplication of conditions, highest SD was selected for each sector, and 

multiplied by three to define maximal acceptable deviation for Rt depending on absolute Rt. 

The obtained variable is referred to as ΔRt and takes the value of 0.28, 0.21, 1.29 or 0.93 min 

if the compounds has a Rt of 0-5, 5-15, 15-30, or 30-60 min respectively.  

5.2.2. Isotopic pattern 

Isotopic pattern distribution was described using the ratio of third to first isotopologue A2/A0. 

The linear regression correlating theoretical P2/P0 and experimental A2/A0 ratios (n=98) is 
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represented in Figure IV.6. A R² value of 0.996 and a RMSE of 0.02 were achieved, suggesting 

a high similarity between these two ratios and thus confirms a practical feasibility of using this 

ratio for suspect screening with the applied conditions.  

The investigated compounds were separated into eleven groups based on contents in Br, Cl 

and S atoms (and combinations). Compounds constituting these groups formed varyingly 

distant clusters. Five main clusters are formed based on contents in halogens Br and Cl (no 

halogens, one Cl, two Cl, three Cl or one Br, and combination of one Br and two Cl), which 

largely influence A2/A0 value. It is also observed that compounds’ content in S atoms dictates 

their placement within each of these five main clusters, which is coherent with the 34S/32S ratio 

value of 0.05. 

Prediction bands were placed at 3 RMSE to establish a limit where more than 99% of future 

points are expected to be placed. A value for maximal acceptable deviation between P2/P0 and 

A2/A0 ratio of 0.1 was determined from the width of prediction bands. Given this value, it would 

be possible to discriminate compounds from different major clusters (i.e. based on Br or Cl 

content), but not compounds from groups with equal contents in halogens and different 

contents in sulfur. The maximal acceptable deviation value of 0.1 is identified as Δisotopic fit and 

is used to assist suspect screening approaches by determination of the CI for isotopic pattern 

(or CIisotopic fit). This CI is implemented in the suspect screening annotation tool. 

Figure IV.6 - Linear regression analysis of A2/A0 according to P2/P0. Prediction bands placed at 

3 RMSE (99%) are depicted in dotted lines. Compounds are separated into 11 groups based 

on contents in Br, Cl, and S atoms (and combinations) 
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5.3. Efficiency of the suspect screening tool and comparison with other 

annotation tools 

The in-house automatized suspect screening annotation tool was applied to the eight spiked 

plasma and serum samples to assess its performance. In addition, four other annotation and 

suspect screening tools were used for comparison (Figure IV.7).  

Results for the in-house suspect screening annotation tool individual compounds are available 

in SI Table A6, and SI Fig.B5. Overall, 100% of spiked compounds that were picked up could 

be pre-annotated in plasma and serum samples, with an average of 1.1 suggested markers 

per compound in both plasma and serum when filtering on CIm/z > 0.7 and CIRt > 0.5. A CIisotopic 

fit was computed for 31% of detected spiked compounds in plasma, and 36% in serum. Mean 

CIm/z, CIRt and CIisotopic fit values for detected spiked compounds in plasma (serum) were 0.82 

(0.83), 0.98 (0.97), and 0.76 (0.71). Overall, all three mean CI were found to be over 0.70 for 

spiked compounds, which highlights the relevance of these indicators for pre-annotation. Using 

our library of 2198 chemicals, the time needed to generate this pre-annotation after data 

acquisition was less than 2h (50 min for MarkerView data processing and 1 h for the pre-

annotation VBA-based program). 

It is important to mention that it is quite difficult to compare all annotation tools since they do 

not work the same way and have different purposes. Indeed, some tools use specific analytical 

predictor such as the MS2 for the annotation (MS-DIAL, msPurity, MZmine2) while our in-

house tool is the only one to rely on Rt prediction models. Considering these limitations, we 

observed that frequency of detection in plasma (and serum) were, respectively, of 100% 

(100%) for MZmine2, 79% (79%) for MS-DIAL, 79% (79%) for MS-DIAL, 77% (73%) for 

msPurity, and 66% (66%) for xMSannotator. Since different factors inherent to the tool could 

be involved in the difference of frequency of detection of this selected list of compounds, we 

mainly based our comparison on their ability to score and prioritize successful annotations 

made. MZmine2 is the only tool which does not provide scoring of the suggested annotation, 

although it offers some parameters such as detection frequency and whether peaks are 

detected or estimated which can help prioritization. MS-DIAL uses a score as a cutoff, even 

though it is not displayed to the user. xMSannotator bases its scoring on m/z feature matching 

with different adducts/isotopes of a candidate, and in-set correlation between features. 

msPurity scores precursor purity to establish reliability of spectral matching for all features. Our 

in-house annotation tool displays four scores based on the three previously described 

predictors and global fit to pre-annotation. Scores from msPurity and xMSannotator can also 

be used for prioritization, although they offer mild visibility on the fit between feature and pre-
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annotation. MS-DIAL offers an efficient form of ranking with an indication of whether the pre-

annotation considers MS/MS or not, and allows a visualization of spectral matching. The 

individual score for each predictor accompanied by the global confidence index offered for the 

in-house tool allows a particularly efficient way to cutoff and prioritize pre-annotations. It is 

important to mention that some of these annotation tools offer specificities that could not be 

considered (e.g. biological correlations for xMSannotator) in the context of this study but that 

are definitively worth of interest.  

  

 

Figure IV.7 - Comparison of five suspect screening tools: xMSannotator (blue), MS-DIAL 

(purple), msPurity (green), MZmine2 (yellow) and in-house tool (red). Comparison was made 

on use of in-house databases, use of predicted or experimental Rt and MS/MS, speed of 

implementation, scoring and prioritization. Details are available in SI Fig.B6. 

This suspect screening tool was then used on data generated from the four non-spiked plasma 

and serum samples to evaluate its applicability and relevance when investigating the internal 

chemical exposome. MS/MS data was used to manually confirm pre-annotations according to 

Schymanski et al.44 Both over-the-counter medication such as ibuprofen (level 1, both 

matrices) or paracetamol (level 1, plasma), and prescription drugs such as the diuretic 

medication hydrochlorothiazide (level 2a, serum) were annotated. Markers indicative of 

lifestyle were confirmed in plasma, such as nicotine metabolites cotinine (level 1) and 3-

hydroxycotinine (level 2a), or tetrahydrocannabinol (level 2a) and cannabidiol (level 2a). Other 

exposition markers were annotated, such as plasticizer bisphenol F (level 2a, serum), mono(2-

ethylhexyl) phthalate (level 2a, plasma), organophosphate flame-retardant tris(1-chloro-2-

propyl) phosphate (level 2a, serum) or antifungals ethyl- and butyl- paraben and metabolite 4-

hydroxybenzoic acid (level 2a, serum). Dietary biomarkers were found in both plasma and 

serum, such as α-tocopherol (level 2a) or caffeine (level 1) and its three metabolites 
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paraxanthine, theobromine and theophylline (level 2a). The calorie-free sweetener acesulfame 

(level 1), was also found in both matrices.  

6. Conclusion 

HRMS-based methods have a great potential to help characterizing the human internal 

exposome. We demonstrated here that adjustments of the metabolomics workflow is 

nevertheless required for exposomics applications to detect low-abundant xenobiotics. 

Optimization of specific criteria for open source and vendor software can decrease dramatically 

the false negative rate. Nevertheless, this false negative rate can still reach up to 29% for some 

software, highlighting the need for further improvements. Besides detection frequency, 

automatic suspect screening workflow could help to speed up the annotation of the internal 

chemical exposome as this approach relies on suspect lists that can be prioritized. We report 

here an innovative workflow that incorporates for the first time several Rt prediction models. 

We also provide a comparison of several recent annotation tools that use specific different 

analytical criteria for the annotation process. One of the main advantages of this in-house 

suspect screening tool lie in the development of individual scores for each predictor 

accompanied by the global confidence index allowing a particularly efficient way to cutoff and 

prioritize pre-annotations. 
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In the recent years, the growing interest in investigating the links between environmental 

exposures and health has led to the development of new methodologies to study the 

exposome1-3. Following the technological advancements based on HRMS, the rise of non-

targeted approaches, in particular, hold great promises to expand knowledge on the human 

chemical exposome2, 4. However, these approaches require the optimization of each step of 

the workflow (notably sample preparation, data processing, annotation) to achieve the 

sensitivity and robustness ideally needed to limit biases in the visible chemical space5-8. The 

previous chapters presented the optimization steps undertaken to improve the efficiency of the 

aforementioned steps. Briefly, a dual sample preparation process involving PPT and the Phree 

PLR plate was recommended based on the complementarity of the image of the chemical 

exposome they provide. Regarding data processing, several software tools (including both 

vendor and open source tools) were optimized to detect low-abundant chemicals in blood-

derived matrices, and correctly optimized vendor software was found to adequately perform 

this task with low implementation times. Lastly, an annotation tool adapted to exposomics 

application was developed. MS1 chemical predictors were chosen and optimized to compare 

suspects and features, and significantly lower the rate of false positive annotations. These 

developments allowed constructing a workflow suited to detect low-abundant compounds in 

plasma and serum samples.  

While the presented optimizations allow achieving an adequate sensitivity performance, the 

workflow’s robustness must still be evaluated. To this end, the workflow may be implemented 

at a larger scale, i.e. move beyond the scale of one batch. Large-scale applications come with 

specific challenges, mainly revolving around insufficient system stability over the course of 

multiple batches, sometimes injected over several weeks or months9, 10. This may be translated 

by a low repeatability in Rt, and/or in signal, leading to poor comparability between samples.  

The optimized workflow was applied to analyze blood serum samples from 125 12-year-old 

boys issued from the Breton mother-child cohort Pélagie. Given the large amount of data 

collected and generated for this cohort11-13, it will offer a rare opportunity to study the links 

between the chemical exposome and health. The first step in establishing these links is to 

accurately describe the chemical exposome of this population through the non-targeted 

analysis of 125 serum samples.  

In this chapter, 125 serum samples were analyzed and processed using the non-targeted 

optimized workflow developed in the context of this PhD work. Quality control criteria based 

on feature area and Rt repeatability in QC samples and internal standards were established to 

ensure comparability of the samples. The processed data was then annotated assisted by the 

in-house tool and MS-DIAL14.  
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Hence, the objectives of this chapter were: 

i. To study the robustness of the analytical and bio-informatics workflow 

implemented during this PhD. 

ii. To study the relevance of using the in-house software through the comparison of 

MS1 and MS2 predictors’ accuracy (MS-DIAL) for the annotated compounds.  

iii. To characterize chemical exposures in Pélagie through the categorization of 

annotated compounds. Exposure profiles combining various chemicals of interest 

were described.  

iv. To study the complementarity of the two used SPM at larger scale (as described 

in Chapter III). 

1. Outgrowing the scale of a batch: quality control 

The 125 samples were prepared with two SPM using the pipeline based on PPT and Phree, 

as proposed in Chapter III (Figure V.1). For each SPM, the 125 samples were separated in 

five 25-sample batches and injected to acquire data in both ESI modes (i.e. 500 injections in 

total for the samples), and 20% of randomly selected samples were re-injected for MS2 

acquisitions in both ESI modes. In total, 20 batches were to be injected (n= 960 injections in 

total including QCs and MS2). However, due to technical difficulties mainly revolving around 

the instability of the LC, only the first three batches of Phree samples (as opposed to 5 for 

PPT) were further processed, i.e. 75 samples. The comparison of the two SPMs (robustness, 

annotation) were then only performed on the first three batches. 

Figure V.1 – Schematized representation of a dual sample preparation process, where half of the 

supernatant from protein precipitation is injected as is (after reconstitution), and the other half is used for 

further protein and phospholipid removal before injection on the UPLC-ESI-QTOF. In total, 960 samples 

were injected including QCs and MS2 acquisitions. 
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Sample analysis was performed over the course of 9 weeks (7.5 weeks of non-stop analysis, 

and 1.5 weeks of cumulated preventive and curative maintenances between batches). The 

same composite QC sample was injected throughout all batches for interbatch correction. One 

large composite QC sample by SPM was prepared (800 µL per SPM), and was injected 11 

times per batch (first 5 injections for system equilibration, last 6 to assess analytical drift). To 

ensure the comparability of data acquired over this extended period, quality control was 

performed on the injected batches on select analytes (i.e. spiked internal standards) and at the 

non-targeted scale. This quality control step was performed at the targeted level, using internal 

standards spiked in all samples (including QC samples), and at the non-targeted level on all 

features obtained from QC samples. Results of the quality control process are presented in 

Figure V.2. 

 

Figure V.2 – Quality control parameters for the application of two sample preparation methods to cohort 

samples (n=75 samples) before correction. Outer edges identify best performances. 

Firstly, the repeatability of the analytical sensitivity of the QTOF was evaluated on all batches 

at the non-targeted scale (i.e. on all features of all injected QCs) using the criteria proposed by 

Want et al. (2010)15, by verifying that over 80% of QC features common to at least 80% of QC 

samples (i.e. 5 out of the 6 QCs injected between samples at the batch level) presented area 

CV values under 30%. This parameter was assessed at 82% and 83% for Phree and PPT, 

respectively, which indicates a satisfactory repeatability in both cases. Furthermore, the 

median area CV was computed on all batches for all features, for internal standards in QC 

samples, and for internal standards in all samples. Median are CV values at the non-targeted 

scale were of 16.1% and 17.4% in samples prepared by Phree and PPT respectively. When 

focusing on internal standards, median area CV were of 16.0% and 14.5% in QC samples and 

in all samples when prepared by Phree, and of 18.2% and 15.1% in QC samples and in all 
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samples when prepared by PPT. These values, while all under the 20% threshold, were 

indicative of a general tendency for batch-dependent variability, especially towards the last 

batches. This was remedied through the implementation of a total ion current normalization on 

all samples (including QC samples), i.e. a division of each feature’s area by the sample’s total 

ion current. This normalization was chosen for its already demonstrated efficiency in other 

omics approaches16, and was performed on all SPM×ESI mode combination (i.e. PPT in ESI 

(−) mode, PPT in ESI (+) mode, Phree in ESI (−) mode, Phree in ESI (+) mode). The results 

of this normalization on the mean feature area in the case of PPT samples injected in ESI (+) 

mode is illustrated in Figure V.3. Results for other SPM×ESI mode combinations are available 

in Appendix 4.1.  

 

Besides analytical sensitivity, the Rt CV on internal standards in QC samples was computed 

and determined to be satisfactory, i.e. under the 10% threshold for both SPM on all batches 

(1.5% and 9.6% in PPT and Phree samples respectively).  After this normalization, the mean 

feature area is comparable in samples across all batches. This normalization step was 

performed to the analytical variations between batches. The effect of normalization on a large 

scale was verified by performing a PCA before and after normalization. Results on PPT 

samples injected in ESI (+) mode are presented in Figure V.4. Results for other SPM×ESI 

mode combinations are available in Appendix 4.1. As expected, the normalization step allowed 

reducing the dispersion of samples initially observed in batch 5 (and at a lesser scale in batch 

1) in this case. 

Figure V.3 – Mean feature raw area (A) and mean feature area after total ion current correction (B), shown on 

samples (including the composite quality control samples) prepared by protein precipitation (PPT) injected in 

ESI (+) mode on the UHPLC-ESI-QTOF. Blank samples for each batch are identified by orange squares. 
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Quality control parameters were computed again using normalized data. Results are presented 

in Figure V.5. The normalization step resulted in a decrease of median area CV values at the 

non-targeted scale 35% for both SPM (CV values of 10.5% and 11.2% for Phree and PPT 

respectively). Similarly, when focusing on internal standards in QC samples and in all samples 

for both SPM, a 31-48% decrease in median area CV was observed. This significant reduction 

in area variability underlines the relevance of the total ion current normalization. Overall, 

median area CV values were always under 12%, which is a satisfactory value in regards to the 

scale of this application. It should also be noted that there is no observed difference in median 

area CV between both SPM, thus confirming their equal adequacy for large-scale applications.  

 

Figure V.4 – PCA using raw area (A) and PCA using area after total ion current correction (B), shown on 

samples prepared by protein precipitation (PPT) injected in ESI (+) mode on the UHPLC-ESI-QTOF.  

Figure V.5 – Quality control parameters for the application of two sample preparation methods to 

cohort samples (n=75 samples) after correction. Outer edges identify best performances. 
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2. Implementing a suspect screening approach at a large scale 

3.1. Comparing the use of MS1 and MS2 predictors for annotation in an 

exposomics context 

Two suspect screening approaches were implemented to perform the annotations. Firstly, raw 

data obtained from the chemical analysis was processed using the optimized MarkerView data 

processing tool as described in Chapter IV, paragraph 5.1.3. The resulting feature list was then 

processed by the in-house tool, resulting in pre-annotations prioritized using MS1 predictors. 

Secondly, raw MS2 IDA data was processed using MS-DIAL’s All public spectral database, 

resulting in annotations prioritized through an MS2 matching. Manual curation was performed 

on results from both tools. In the case of the in-house tool, MS2 spectra for suggested pre-

annotations were compared to reference spectra, isotopic patterns were verified, and 

plausibility was checked. Reference spectra could be spectra acquired in-house (highest 

confidence), obtained from shared online databases such as MassBank17 (high confidence), 

or obtained from in-silico prediction tools such as CFM-ID18 or MetFrag19 (medium confidence). 

In the case of MS-DIAL, the visual representation of the matching feature and reference MS2 

spectra (from online MS2 spectra database) was checked, along with isotopic patterns and 

plausibility. Results from the manual curation are available in Appendices 4.2 and 4.3. 

Generating pre-annotation data was faster with the in-house tool while manual curation was 

overall faster using MS-DIAL, as spectral data is made available to the user. Table V.1 provides 

an overview of the data generated by both tools and the results of manual curation. Annotated 

compounds are available in Appendix 4.2, and MS2 data is available in Appendix 4.3. 

 In-house software MS-DIAL 

Number of suspects 
5,898 (ESI +) 

5,898 (ESI −) 

13,303 (ESI +) 

12,879 (ESI −)  

Median number of unique suggested annotations 2,422 418 

Median number of total suggested annotations 8,354 (raw) 

1,928 (global CI > 0.70) 

730 

Cumulated number of confirmed annotations 81 68 

Estimated manual curation time (effective days) ~ 35 ~ 15 

Table V.1 – Overview of the data generated by two suspect screening tools based on either MS1 or 

MS2 predictors (In-house software and MS-DIAL respectively). Median and cumulated values are 

determined based on the four sample preparation method × ionization mode possible combinations (i.e. 

protein precipitation and Phree phospholipid removal plate in positive and negative ionization modes). 
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As expected, the in-house tool generated more suggested annotations. This can be explained 

by the joint effect of the high selectivity of fragmentation patterns, leading to more elimination 

of false positive suggested annotations, and the fact that only a limited number of compounds 

were fragmented during the MS2 analysis, which may lead to some false negatives (i.e. 

compounds present in the sample, detected during the analytical step, but not annotated). 

Moreover, the total number of annotations suggested by the in-house software could be 

reduced using threshold values on the implemented confidence indices (CI). A cutoff value of 

0.70 was choosen based on previous observations to reduce this number by 74-82%.  This 

also allows prioritizing features that deserved more attention for manual curation. On the other 

hand, the MS1 annotations suggested by MS-DIAL (without MS2 data) average at around 

11,000 per SPM×ESI mode combination, and can hardly be further prioritized due to the lack 

of additional reliable information such as scoring.   

Manual curation allowed to confirm the annotation of 92 compounds with a level of 4 (with 

global CI ≥ 0.85) or better according to Schymanski et al. (2014)20, with the overlap of 57 

compounds between the two suspect screening tools. MS-DIAL did not suggest 24 of the total 

annotated compounds. Firstly, three compounds (i.e. 4-chlorophenol, pentachlorophenol and 

triclosan glucuronide) were only prioritized by the in-house software since no associated MS2 

data was acquired, and attributed a level 4. However, this level does not accurately reflect the 

confidence that can be put in these annotations. Indeed, it does not account for the verification 

of the very particular isotopic patterns linked to the presence of one, five and three chlorine 

atoms respectively, which is a highly discriminating characteristic when looking at the M2/M0 

ratio. Moreover, predicted Rt values strongly support these annotations. The current 

confidence level system also does not account for the annotation of another metabolite of 

triclosan (i.e. triclosan sulfate, level 1). A visualization of MS1 evidence supporting the 

pentachlorophenol and triclosan glucuronide annotations is presented in Figure V.6. 

Thirteen additional compounds were attributed a 2b level since there is no available MS2 

experimental (in-house or from shared databases) reference spectra for these structures (e.g. 

1,3,5-tris(2,2-dimethylpropionylamino)benzene or propylparaben sulfate), requiring the use of 

a fragmentation prediction model such as MetFrag19 or CFM-ID18, 19. The remaining eight 

compounds not annotated by MS-DIAL were not listed in their database and were confirmed 

with analytical standards available in-house (e.g. triclosan sulfate, acetaminophen 

glucuronide, etc.). On the other hand, eleven compounds were not prioritized by the in-house 

software because they were not in the used suspect list (e.g. 10,11-dihydroxy-10,11-

dihydrocarbamazepine, auraptene, lenticin, etc.). This underlines the need for sustaining the 

data collection effort in the community to continue expanding suspect lists with relevant 

compounds. 
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Overall, the use of MS2 predictors is extremely powerful but can encounter some critical 

obstacles in exposomics applications, notably the lack of MS2 acquisition for the feature of 

interest, and the lack of reference spectra for the hundreds of thousands possible suspects21. 

When these issues arise, it is crucial to have other predictors based on MS1 to efficiently 

prioritize the massive number of suggested annotations for manual curation. Predictors such 

Figure V.6 – MS1 predictors supporting the pentachlorophenol (A- isotopic pattern, C- retention time) 

and the triclosan glucuronide (B- isotopic pattern, D- retention time) annotations. Theoretical and 

experimental isotopic patterns are compared based on coherence between mass/charge ratios and 

isotopic area ratios. Experimental retention times are compared to values predicted using RTI (orange), 

Retip (yellow) or a polarity-based linear regression (logP) (green) and their respective confidence 

intervals (represented by the color gradients). This data was acquired in negative ionization mode on 

the UHPLC-ESI-QTOF. 

A B 

C D 
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as predicted Rt values and isotopic pattern, associated to confidence indices scoring the 

proximity between suspect and feature, allow avoiding false negatives and prioritizing features 

of interest. For instance, the pentachlorophenol and triclosan glucuronide annotations, both 

standing at a level 4, cumulate distinctive isotopic pattern (confirmed with comparison of 

therotical M2/M0) and coherence with multiple predicted retention times, as shown in Figure 

V.6. This underlines the lack of accounting for some important discriminating predictors in the 

current confidence level system. In these particular cases, intermediary levels could be 

considered to distinguish between compounds with no MS2 data but different amounts of MS1 

evidence. Other parameters not used with this analytical system, such as the collision cross 

section (CCS) used in ion mobility systems, may also be considered in this updated 

classification, as presented in Figure V.7. In this case, using the in-house software was critical 

in significantly expanding the number of annotated compounds (+26%).The confidence levels 

attributed to annotated compounds using both classifications are available in Appendix 4.4. 

 

Figure V.7 – Updated identification confidence levels accounting for new methodological tools, such as 

prediction models for retention time (Rt) and biotransformation products. MS2 refers to any form of 

fragmentation. 

 



Chapter V. Implementing a large-scale suspect screening approach to characterize the human 
chemical exposome 

168  
 

3.2. Describing the environmental chemical exposures in the Pélagie 

cohort 

The data collected on PPT samples and  Phree samples injected in both ESI (−) and ESI (+) 

modes allowed annotating 92 compounds from the internal chemical exposome with a level of 

4 or higher according to Schymanski et al. (2014)20 (level MS1-3 or higher according to the 

suggested updated classification). Exposure to most of these compounds can occur through 

multiple sources (e.g. 2-hydroxybenzoic acid, or salicylic acid, primarily used as a preservative 

in industrial foods, but that can also be used as a medication or as a synthesis intermediate). 

A non-exhaustive classification of sources for annotated compounds is available in Appendix 

4.5. However, for illustrating purposes, only primary uses were considered in the following 

descriptions. The repartition of the 92 annotated compounds by primary use is presented in 

Appendix 4.5. The repartition of primary uses is presented in Figure V.8. 

 

Figure V.8 – Classification of the major source of annotated compounds (n=92), expressed in 

percentages. Gut microbiota metabolites are shown in yellow, compounds obtained from food in blues, 

compounds obtained from health and personal hygiene products in greens, and industrial compounds 

in oranges.   

Four main categories were identified: gut microbiota metabolites, compounds originating from 

food, compounds used for health and hygiene purposes (e.g. pain management, antiepileptic 

medication, surfactants used in shower gels), and industrial compounds (e.g. synthesis 

intermediates used in the manufacturing of dyes, rubbers or pesticides). These categories 

represented respectively 7%, 45%, 18% and 30% of annotated compounds. Gut microbiota 

metabolites are included in the internal chemical exposome, as the microbiome operates as 

an interface between external exposures and the individual; therefore, gut microbiota 
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metabolites may reflect the external exposome and constitute their own category of 

substances from the human internal chemical exposome. 

The highest contributing subcategory was natural compounds obtained from food and their 

metabolites (e.g. caffeine and paraxanthine, piperine, flavins, etc.) representing almost a third 

of annotated compounds. Representing a significant 11%, the medication subcategory (health 

and personal hygiene category) includes, for instance, non-steroidal anti-inflammatory 

ibuprofen, as well as antiepileptic carbamazepine and metabolites 10,11-dihydroxy-10,11-

dihydrocarbamazepine and 2-hydroxycarbamazepine. Food compounds and pharmaceutical 

products (i.e. medication) represent more than half of annotated compounds (56%). This was 

expected, as they can be concentrated up to 106 times more than some industrial pollutants 

(e.g. pesticides) in blood2. The pesticides subcategory, contributing 9% of all annotated 

compounds, includes parent compounds such as bromoxynil or tritosulfuron, and metabolites 

such as chlorothalonil metabolite 4-hydroxy-2,5,6-trichloroisophthalonitrile and bromoxynil 

metabolite 3,5-dibromo-4-hydroxybenzoic acid. Usual suspects were annotated in the 

plasticizer subcategory (8%) such as phthalates and perfluoroalkyl substances4, 22. The 

detection of annotated compounds was assessed in each sample. A representation of the 

detected compounds in each participant is presented in Figure V.9. Proportionately, the most 

represented chemical class is natural food compounds (49% of annotated compounds in PPT 

samples, 27% in Phree samples), and the least represented is organophosphate flame 

retardants (0.6% and 0.4%).  

Figure V.9 – Detection of suspect compounds per class in each participant (separated by batch) in protein 

precipitated samples (A) and Phree samples (B). Preservatives and other stabilizers found in processed 

foods, health and personal hygiene products and industrial compounds were combined in a single 

category for clarity. 
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For both SPM, gut microbiota metabolites and natural food compounds showed little variation 

in proportions among participants. CV were computed on proportions of these two classes 

were under 15% for both SPM (14% and 7% respectively in PPT samples, and 14% and 8% 

in Phree samples). The highest inter-individual variability was observed for the proportions of 

organophosphate flame retardants (CV values of 165% and 210% in PPT and Phree samples 

respectively), synthesis intermediates (CV values of 115% and 27% in PPT and Phree 

samples respectively) and pesticides and their metabolites (CV values of 65% and 9% in PPT 

and Phree samples respectively). This is coherent with the fact that most individuals would be 

exposed to ubiquitous food compounds and well-known gut microbiota metabolites, but their 

exposure to industrial compounds are more susceptible to vary depending on their lifestyle 

(e.g. living in an urban or rural area, dietary habits, etc.). It should be noted that some 

combinations of compounds may be indicative of a given individual’s lifestyle. For instance, as 

the case of 48 participants, co-exposure to pesticides ioxynil, bromoxynil and transformation 

product 3,5-dibromo-4-hydroxybenzoic acid, which are mostly used in agriculture, may indicate 

living in a rural area. Similarly, co-exposure to artificial sweeteners acesulfame, aspartame and 

sucralose, as is the case for 12 participants, may be an indication of a more industrial 

processed diet. However, given that the number of annotated compounds is high compared to 

the number of participants, establishing such profiles is challenging in terms of statistical 

power. Moreover, finding the determinants of those exposures would require additional indirect 

measurements (i.e. analyzing environmental samples) and/or the use of questionnaires.  

Detection frequencies for all compounds and both SPM were computed. Detailed results are 

available in Appendix 4.4. Overall, out of 92 annotated compounds, 54 have a detection 

frequency over 80% in either or both SPM. As shown in Appendix 4.6, almost 15% of those 

ubiquitous compounds (i.e. 8 compounds) are not documented in the NORMAN Network’s 

extensive SUSDAT list, which combines more than 111,000 structures from 94 community-

shared suspect lists21. These compounds include 3 phase I and II metabolites (hydroxylated 

and sulfated forms), which highlights the need to include known or predicted metabolites in 

suspect lists. It should also be noted that other metabolization pathways should be taken into 

account when predicting metabolite structures, as they could allow integrating a temporal 

aspect to the exposure evaluation23. Moreover, 10 compounds have a detection frequency 

over 80% with at least one SPM, and do not have any available toxicological data according 

to the CompTox dashboard24. One of those compounds (Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2-

hydroxy-5-methylbenzyl)-4-methylphenyl) terephthalate, found in 86% of PPT samples) is a 

phthalate, some of which are classified as endocrine and metabolic disruptors25. This 

underlines the potential of suspect screening approaches to uncover previously poorly 

documented exposures to chemical compounds of concern.  
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Pesticide and endocrine disruptor bromoxynil, detected in 61% of samples, had previously 

been reported in the urine of 22% of pregnant women from this cohort26. This may suggest a 

repeated or chronic exposure to this compound for some individuals of this cohort. Moreover, 

previously reported levels of bromoxynil in plasma samples from rural teenage residents varied 

from trace levels to 140 ng/mL27. Similarly, pesticide metabolite fipronil sulfone, detected in 

29% of samples, was previously reported in human blood (general population) at concentration 

comprised between 0.1 and 4 ng/mL28. These documented low levels are a preliminary 

indication that the implemented workflow presents adequate sensitivity performances, 

although targeted assays should be performed on the investigated samples to confirm 

bromoxynil levels.  

Previous studies on the Pélagie cohort did not investigate bromoxynil metabolite 3,5-dibromo-

4-hydroxybenzoic acid. However, this compound is detected in 97% of samples with higher 

area values (factor 3-8 depending on sample). Further review of the literature indicated that 

this metabolite was not reported in HBM studies in blood or urine before. This underlines the 

potential of using suspect screening approaches to uncover new relevant biotransformation 

products to better evaluate human exposure to chemicals of concern. Although bromoxynil 

was banned in France in 2021, identifying this new biomarker of exposure may be useful for 

retrospective analysis, in the case of persistence in the environment, or in countries where it 

is not banned.  

Overall, a set of compounds with very diverse physical-chemical characteristics (i.e. -2.7 ≤ 

logP ≤ 16, and 100.0754 ≤ [M+H]+ ≤ 811.4913) was annotated in these samples. These 

compounds also include various chemical functions, and have diverse sources. The most inter-

individual variability was observed on compounds usually referred to as pollutants, as opposed 

to food compounds and gut microbiota metabolites, which appears coherent. Lastly, the visible 

exposure profiles on PPT and Phree samples seem to present differences both in the 

proportions and variability of chemical classes, which raises a question regarding the 

relevance of using two SPM in light of the performed annotations.  

3.3. Exploring the potential of dual sample preparation 

The two SPM used to prepare the serum samples were compared according to the 

methodology described in Chapter III, paragraph 4.2.3. Briefly, area fold changes (FC) were 

computed between both SPM on compounds annotated in the first three batches (i.e. 89 

compounds out of 92 annotated in total). Median fold changes are represented in Figure V.10.  

Xenobiotics presenting FC values below 0.5 and over 2 (i.e. favored by one of the SPM) 

represented 94% of the total annotated compounds. This is coherent to the results from the 
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pilot study presented in Chapter III, for which this condition represented 93% of annotated 

compounds. Moreover, more than 74% of annotated compounds were only visible using one 

SPM, which confirms the critical need for orthogonal methods to widen the visible chemical 

space. This tendency was further explored at a larger scale by computing FC values on quality 

control samples. Results are presented in Table V.2. 

 

 

 

 

 

 

Table V.2 – Percentage of features of quality control samples injected in positive and negative ionization 

modes on the UHPLC-ESI-QTOF, categorized by fold change (FC) values (i.e. area ratio of features in 

Phree and protein precipitation).  

At this scale, 80% of features are visible with only one SPM, and an additional 13% of features 

are favored by one SPM. Overall, FC values are oriented towards extreme values. This is 

coherent with what was observed in the serum samples in the pilot study. This was tentatively 

attributed in part to the observation of abundant and often multiple charged peptide peaks in 

serum samples prepared with PPT only. This observation was replicated in this assay, which 

supports this hypothesis.  

There was no visible bias towards either SPM in terms of proportion of favored features, 

despite the fact that Phree samples were two times more concentrated than PPT samples. 

This might be explained by the fact that the sensitivity gain through the concentration factor in 

Phree samples is compensated by the higher selectivity of this SPM (i.e. loss of signal for 

phospholipids, etc.).  

Fold change (FC) values Features (%)  

0 (only in PPT) 43.0 

0 < FC ≤ 0.5 5.3 

0.5 < FC ≤ 2 7.2 

2 < FC < ∞ 7.3 

∞ (only in Phree) 37.2 
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Figure V.10 -Comparison of annotated xenobiotics’ areas in samples prepared with protein precipitation (PPT) and 

protein removal plate Phree in Pelagie serum samples. Logged values of fold changes (i.e. area ratio between 

Phree and PPT) are presented on the x-axis, where –∞ and +∞ values represent the absence of compounds in 

samples prepared with Phree and PPT, respectively. Bars on the left of the central vertical axis represent 

compounds presenting higher areas in PPT samples and vice-versa. 



Chapter V. Implementing a large-scale suspect screening approach to characterize the human 
chemical exposome 

174  
 

Given the relatively small number of annotations, identifying with certainty the driving factors 

of the enhanced detection of compounds with one SPM or the other is challenging. However, 

some tendencies were identified. Overall, polar compounds (i.e. low Rt) seemed favored by 

PPT. For instance, 2/3 of compounds with Rt values under 10 minutes had FC values under 

1. This might be explained by the hypothesized capability of the Phree plate to retain highly 

polar compounds (i.e. polar heads of phospholipids)29, thus leading to the lower detection of 

these compounds when using this SPM. On the contrary, 2/3 of compounds with Rt values 

over 40 minutes had FC values over 1 (i.e. favored by Phree). This was expected, since 

samples prepared by PPT presumably contain more phospholipids notably, which are usually 

detected between 40 and 45 minutes. Phenomena such as ion suppression may therefore 

explain why other compounds eluting at this time are proportionately less ionized, and 

therefore less detected.  

Regarding compounds favored by PPT, gut microbiota metabolites seem to be more readily 

detectable when using this SPM, with 5 compounds out of 6 presenting a FC value lower than 

0.021, i.e. detected more than 476 times more in samples prepared with PPT than with Phree, 

and the 3 indole derivatives out of those 5 were only detected with PPT. Similarly, phase II 

sulfate metabolites seem to be more detectable in PPT samples, with 6 out of 7 compounds 

(including 3 also classified at gut microbiota metabolites) presenting a FC value between 0.428 

and 0 (i.e. over 2.3 times in PPT samples compared to Phree to only detected in PPT samples).  

On the other hand, both organophosphate flame retardants are detected almost 20 times and 

2300 times more in Phree samples compared to PPT samples (Triethylphosphate and Tris(2-

butoxyethyl)phosphate respectively). The only other compound with a phosphate group (i.e. 

diphenylphosphate) was also favored by Phree (not detectable at all in PPT samples). This 

was rather unexpected, as PLR plates are hypothesized to retain phospholipids through a 

Lewis acid-base interaction between the stationary phase and the esterified phosphate group 

found in phospholipids29. However, it is possible that only highly polar phosphate groups such 

as those found in phospholipids are retained by the plate, since the considered compounds 

are mid-polar (logP values ranging from 0.8 to 2.8). Lastly, 3 out of 4 annotated phthalates are 

better detected in samples prepared by the Phree PLR plate (FC varying from 5.28 to +∞). The 

remaining phthalate is, more precisely, a terephthalate (i.e. substituents are in the para- 

position instead of the ortho- position), and is very mildly favored by PPT (FC = 0.86). 

Alongside the fact that the terephthalate substituents are larger than the substituents on the 

annotated phthalates, it could be hypothesized that sterically hindered phthalates are less 

likely to pass through the PLR plate, thus being less favored by this SPM compared to less 

hindered ones. 
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Overall, using a dual sample preparation process to prepare complex samples such as serum 

samples allows significantly increasing the width of the observable chemical space, in this case 

almost twofold. The relevance of using complementary SPM is very probably exacerbated by 

the overall low abundance of xenobiotics in the samples. Indeed, low-abundant compounds 

have an increased probability of being lost to either SPM, and therefore generating an extreme 

FC value. Therefore, using a dual sample preparation process is a major advantage to increase 

the accuracy of the characterization of the chemical exposome. However, initial sample volume 

should account for this fact, which might be limiting in the case of valuable biological samples.  

In this chapter, the large-scale application of the previously optimized workflow using 125 

samples from the Breton Pélagie cohort was presented. This scaling up process has 

necessitated using total ion current area normalization to account for the analytical variability 

that occurred over the course of the multiple-week analysis campaign. The use of a suspect 

screening strategy involving MS1 and MS2 predictors has led to the annotation of 92 

environmental chemical compounds with various uses including pesticides, medication, 

preservatives and synthesis intermediates. Comparing the detection of these annotated 

compounds in samples prepared with PPT and the Phree PLR plate demonstrated the 

relevance of combining SPM to expand the visible chemical space. Indeed, close to 75% of 

annotated compounds were only visible with one SPM. This comparison also allowed 

identifying some factors, such as polarity or steric hindrance, that might determine whether a 

compound is more readily detectable with either SPM. For instance, polar compounds seem 

to be better detected in samples prepared with PPT, whereas organophosphate flame-

retardants are favored in samples prepared with Phree PLR plates. This large-scale application 

is therefore a successful application of the optimized suspect screening workflow developed 

in this PhD work. Its implementation has allowed expanding knowledge about the chemical 

exposome of the considered population. As one of the Pélagie cohort’s objectives is to 

investigate the role of the urban-rural context on human health, the chemical fingerprints could 

be further used in association to this contextual data. This could be useful to prioritize more 

features for annotation and continue documenting the chemical exposome of Breton 12-year-

olds.  
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Characterizing the human internal chemical exposome using non-targeted approaches 

presents several methodological and technological challenges. Indeed, existing workflows 

classically used in metabolomics should be adapted at every step to allow the detection of low-

abundant chemicals in complex biological matrices. To address these challenges, the 

optimization of the most critical steps of an HRMS-based exposomics workflow was performed 

in this PhD project. The developed HRMS-based non-targeted workflow was then implemented 

in a larger scale application to assess human exposure to complex chemical mixtures. 

Three steps of the non-targeted and suspect screening workflow were investigated, namely 

sample preparation, data processing, and annotation. Firstly, the preparation of serum and 

plasma samples with twelve sample preparation methods was investigated. Two SPM, namely 

protein precipitation and the Phree phospholipid removal plate, presented adequate 

performance for quantitative (e.g. recovery, repeatability, etc.) and qualitative (e.g. ease of 

implementation, etc.) criteria. Their application on cohort plasma and serum samples allowed 

demonstrating their complementarity, as more than 60% of features were at least significantly 

favored by either SPM, and 40% of features was only visible in with one SPM. As they provided 

different pictures on the chemical exposome, their combined use is relevant in the context of 

characterizing a diverse set of compounds. A single sample preparation workflow involving 

both sample preparation methods was proposed as a way to widen the visible chemical space. 

This work demonstrated the necessity to systematically delineate the impact of sample 

preparation on the perimeter of the observable chemical space. 

Data processing in non-targeted exposomics applications is a particularly complex task, as the 

compounds of interest often present as low-abundant signals that should be properly 

disentangled from the noise. As the many available data processing software tools were mostly 

built for metabolomics, they should be optimized and evaluated for exposomics applications. 

Four software tools, including vendor (i.e. MarkerView and Progenesis QI) and open source 

(i.e. MZMine2 and XCMS) software, were therefore optimized and compared for the 

processing non-targeted exposomics data. This systematic evaluation highlighted the need for 

manual optimization of non-targeted data processing software for exposomics applications. 

This optimization is necessary, as it allowed increasing the detection of spiked samples by as 

much as 18%.  

Lastly, the need for efficient annotation strategies is still salient in HRMS-based exposomics 

applications. The developed software aimed to partly automatize a suspect screening 

approach based on three MS1 chemical predictors:  m/z, experimental and/or predicted Rt and 

isotopic fit. Confidence indices were built to score the likeness of suspects and features, and 

allow the efficient prioritization of suggested pre-annotations. A global confidence index 
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combines all computed CI to score the overall resemblance between suspect and feature, and 

can used as a cut-off criterion to limit false positive annotations. This tool was compared to 

other tools available to assist suspect screening approaches (i.e. xMSannotator, MS-DIAL, 

msPurity and MZMine2). The use of experimental and predicted Rt as well as the scoring 

system were major advantages of the in-house software for compound prioritization. However, 

it does not yet allow the use of MS2 fragmentation patterns, which is a highly discriminant 

criterion allowing to significantly limit false positive annotation when it is available. The first 

implementation of the in-house software allowed the annotation of diverse compounds of the 

internal chemical exposome with high confidence indices, which highlighted the relevance of 

the scoring system for prioritizing suggested annotations. 

The optimized workflow was implemented on a large-scale proof-of-concept application. This 

study on 125 serum samples from 12-year-old Bretons allowed demonstrating the applicability 

of this workflow on a multi-batch scale to characterize the human internal chemical exposome. 

Indeed, the use of the previously described strategies for sample preparation, data processing 

and annotation has allowed identifying 92 highly diverse compounds in terms of mass (i.e. 

100.0754 ≤ [M+H]+ ≤ 811.4913), polarity (i.e. -2.7 ≤ logP ≤ 16) and sources (e.g. dietary, 

medication, industrial, etc.). This application provided valuable information on the chemical 

exposome in general, and on the impact of different workflow steps on the results of such 

studies. In particular, the use of MS1 predictors for annotation allowed prioritizing metabolites 

of known toxicants, which would have otherwise been missed. The generated data will allow 

to better apprehend the perimeter of the chosen workflow, and to identify the gaps needing 

additional investigating efforts. Additionally, the chemical fingerprints generated in this large-

scale application could be  reused with different data processing and annotation strategies, 

such as integrating other types of data collected according to the epidemiological experimental 

design (i.e. data from targeted assays, clinical data, lifestyle data, etc.), and establishing 

associations to further investigate. 

Overall, non-targeted and suspect screening approaches are highly promising to investigate 

the environment-health links. However, several challenges remain to be addressed to 

implement these approaches to their full potential, such as the need for multi-systems 

approaches when aiming for a wider characterization of the chemical exposome. Indeed, no 

single analytical platform will allow capturing the wide range of compounds currently in use in 

our environment. Therefore, combining different technologies, such as LC-HRMS and GC-

HRMS, would be helpful in expanding the visible chemical space. Adding a separation to the 

chromatographic separation (i.e. LC×LC or GC×GC) or using ion mobility spectrometry may 

also present a valuable addition to characterize the human internal chemical exposome. The 
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two main limitations to these approaches are the financial burden induced by purchasing and 

maintaining several pieces of equipment, and the limited availability of software tools and/or 

databases to process the generated data. Collaborations at the national, European and/or 

international level may greatly help in overcoming these limitations. 

Another challenge that should be addressed is the ongoing need to improve the annotation 

process. Indeed, despite the many efforts undertaken in the last few years to expand suspect 

and MS2 libraries, they remain incomplete and/or non-interchangeable between tools. 

Pursuing the existing efforts in terms of both data collection and harmonization will be 

beneficial to the scientific community. Moreover, specific efforts should be dedicated to 

including known or predicted metabolites of exposome compounds, as they may only be 

detectable under metabolized forms. Acquiring MS2 data for these compounds is also 

challenging, as many are not commercialized, and their custom-made synthesis represents a 

financial burden. At the scale of the laboratory, further developments will be carried out 

regarding the in-house software, such as adding MS2 predictors to further reduce false positive 

annotations.  

Non-targeted and suspect screening approaches should be used to generate lists of 

compounds of interest that should be further investigated. Particularly, they should be followed 

up by large-scale targeted HBM studies, to confirm these compounds’ prevalence in the 

population of interest and to generate quantitative data. This would be crucial in evaluating the 

need for risk assessment, and regulatory action further down the line. These HBM programs 

should also go through a harmonization process to ensure inter-comparability of data acquired 

over several countries and/or continents, as is done in the HBM4EU initiative. 

Lastly, these chemicals of interest should be further investigated through toxicological 

approaches to improve knowledge on their mechanism of action. Regulatory action may be 

taken in accordance with the results of the risk assessment process. It should also be noted 

that the developed toxicological approaches should be high-throughput, and ideally consider 

mixture effects. 

To conclude, the workflow optimized in the context of this PhD was demonstrated as efficient 

for the non-targeted characterization of the human internal chemical exposome. These 

approaches are highly valuable tools to investigate the effects of environmental chemical 

exposures on health, and generate a rapidly increasing interest at the European and 

international scale, as demonstrated by the setting up of the EIRENE infrastructure for 

instance. Large-scale collaborations at these levels will allow generating robust and inter-

comparable data to both describe the human chemical exposome and hopefully better 
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understand the etiology of chronic disease. However, developments and harmonization efforts 

are still required to reach the full potential of non-targeted and suspect screening approaches, 

and offer operational solutions to limit the presence of harmful chemicals in our environment. 
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1. Appendix 1. Chapter II 

1.1. Detailed list of the optimization mix and internal standards 

Table A1 – Detailed list of the optimization mix and internal standards, with SMILES identifiers, chemical formulas, monoisotopic mass, 

observed ion, retention time, octanol-water partition coefficient (logP), and CAS number when available. 

 
Compound name SMILES Chemical formula 

Monoisotopic 
mass (Da) 

Observed 
ion 

Retention 
time (min) 

logP CAS 

Standard 
compounds 

2-Phenylphenol C1=CC=C(C=C1)C2=CC=CC=C2O C12H10O 170.0732 [M-H]- 30.19 3.28 90-43-7 

Acetochlor CCC1=CC=CC(=C1N(COCC)C(=O)CCl)C C14H20ClNO2 269.1183 [M-H]- 40.57 4.14 123113-74-6 

Acetylsalicylic acid CC(=O)OC1=CC=CC=C1C(=O)O C9H8O4 180.0423 [M-H]- 8.65 1.24 50-78-2 

Aflatoxin B1 COC1=C2C3=C(C(=O)CC3)C(=O)OC2=C4C5C=COC5OC4=C1 C17H12O6 312.0634 [M+H]+ 17.52 1.73 27261-02-5 

Aminobenzimidazole C1=CC=C2C(=C1)NC(=N2)N C7H7N3 133.0640 [M+H]+ 4.74 0.91 934-32-7 

Androstenedione CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4=O)C C19H26O2 286.1933 [M+H]+ 31.50 2.75 63-05-8 

Arachidonic Acid CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(O)=O C20H32O2 304.2402 [M-H]- 47.00 6.99 93444-49-6 

Azoxystrobin COC=C(C1=CC=CC=C1OC2=NC=NC(=C2)OC3=CC=CC=C3C#N)C(=O)OC C22H17N3O5 403.1168 [M+H]+ 38.03 2.64 215934-32-0 

Boscalid C1=CC=C(C(=C1)C2=CC=C(C=C2)Cl)NC(=O)C3=C(N=CC=C3)Cl C18H12Cl2N2O 342.0327 [M+H]+ 38.00 2.96 188425-85-6 

Carbamazepine C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N C15H12N2O 236.0950 [M+H]+ 18.01 2.45 298-46-4 

Carbendazim COC(=O)NC1=NC2=CC=CC=C2N1 C9H9N3O2 191.0695 [M+H]+ 5.69 1.52 63278-70-6 

Chlorpyrifos CCOP(=S)(OCC)OC1=NC(=C(C=C1Cl)Cl)Cl C9H11Cl3NO3PS 348.9263 [M+H]+ 45.53 4.70 39475-55-3 

Clothianidin CNC(=N[N+](=O)[O-])NCC1=CN=C(S1)Cl C6H8ClN5O2S 249.0087 [M+H]+ 7.99 0.73 205510-53-8 

Codeine CN1CCC23C4C1CC5=C2C(=C(C=C5)OC)OC3C(C=C4)O C18H21NO3 299.1521 [M+H]+ 5.12 1.39 76-57-3 

Cortisone CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C C21H28O5 360.1937 [M+H]+ 16.12 1.47 53-06-5 

Cotinine CN1C(CCC1=O)C2=CN=CC=C2 C10H12N2O 176.0950 [M+H]+ 4.31 0.07 486-56-6 

Cyprodinil CC1=CC(=NC(=N1)NC2=CC=CC=C2)C3CC3 C14H15N3 225.1266 [M+H]+ 33.22 4.00 121552-61-2 

Diazinon CCOP(=S)(OCC)OC1=NC(=NC(=C1)C)C(C)C C12H21N2O3PS 304.1011 [M+H]+ 43.38 3.81 30583-38-1 

Diclofenac C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl C14H11Cl2NO2 295.0167 [M-H]- 39.59 4.51 15307-86-5 

Dimethyldithiophosphate COP(=S)(OC)S C2H7O2PS2 157.9625 [M-H]- 2.95 0.63 756-80-9 
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Table A1 – (continued) Detailed list of the optimization mix and internal standards, with SMILES identifiers, chemical formulas, monoisotopic 

mass, observed ion, retention time, octanol-water partition coefficient (logP), and CAS number when available. 

 Compound name SMILES Chemical formula 
Monoisotopic 
mass (Da) 

Observed 
ion 

Retention 
time (min) 

logP CAS 

Standard 
compounds 

Estrone CC12CCC3C(C1CCC2=O)CCC4=C3C=CC(=C4)O C18H22O2 270.1620 [M+H]+ 31.60 3.13 53-16-7 

Fluoxetine CNCCC(C1=CC=CC=C1)OC2=CC=C(C=C2)C(F)(F)F C17H18F3NO 309.1340 [M+H]+ 23.71 4.05 57226-07-0 

Hydrocortisone CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)O C21H30O5 362.2093 [M+H]+ 15.86 1.61 50-23-7 

Hydroxyindoleacetic acid C1=CC2=C(C=C1O)C(=CN2)CC(=O)O C10H9NO3 191.0582 [M-H]- 5.71 1.41 113303-91-6 

Ibuprofen CC(C)CC1=CC=C(C=C1)C(C)C(=O)O C13H18O2 206.1307 [M-H]- 39.94 3.97 58560-75-1 

Imidacloprid C1CN(C(=N[N+](=O)[O-])N1)CC2=CN=C(C=C2)Cl C9H10ClN5O2 255.0523 [M+H]+ 8.57 0.57 138261-41-3 

Ketoprofen CC(C1=CC(=CC=C1)C(=O)C2=CC=CC=C2)C(=O)O C16H14O3 254.0943 [M+H]+ 28.13 3.12 22071-15-4 

Leukotriene B4 CCCCCC=CCC(C=CC=CC=CC(CCCC(=O)O)O)O C20H32O4 336.2301 [M-H]- 39.52 4.10 71160-24-2 

Leukotriene D4 CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)NCC(=O)O)N C25H40N2O6S 496.2607 [M-H]- 33.04 1.40 73836-78-9 

Malathion CCOC(=O)CC(C(=O)OCC)SP(=S)(OC)OC C10H19O6PS2  330.0361 [M+H]+ 40.81 2.89 121-75-5 

Nicotine CN1CCCC1C2=CN=CC=C2 C10H14N2 162.1157 [M+H]+ 3.37 1.17 551-13-3 

Paracetamol CC(=O)NC1=CC=C(C=C1)O C8H9NO2 151.0633 [M+H]+ 4.98 0.31 8055-08-1 

Paroxetine C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4 C19H20FNO3 329.1427 [M+H]+ 18.34 1.23 63952-24-9 

Piperine C1CCN(CC1)C(=O)C=CC=CC2=CC3=C(C=C2)OCO3 C17H19NO3 285.1365 [M+H]+ 36.42 2.78 147030-08-8 

Pravastatin CCC(C)C(=O)OC1CC(C=C2C1C(C(C=C2)C)CCC(CC(CC(=O)O)O)O)O C23H36O7 424.2461 [M+H]+ 20.50 1.65 81093-37-0 

Prochloraz CCCN(CCOC1=C(C=C(C=C1Cl)Cl)Cl)C(=O)N2C=CN=C2 C15H16Cl3N3O2 375.0308 [M+H]+ 38.74 3.78 67747-09-5 

Progesterone CC(=O)C1CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C C21H30O2 314.2246 [M+H]+ 42.10 3.87 257630-50-5 

Propiconazole CCCC1COC(O1)(CN2C=NC=N2)C3=C(C=C(C=C3)Cl)Cl C15H17Cl2N3O2 341.0698 [M+H]+ 41.73 3.72 75881-82-2 

Prostaglandin D2 CCCCCC(C=CC1C(C(CC1=O)O)CC=CCCCC(=O)O)O C20H32O5 352.2250 [M-H]- 27.60 3.23 41598-07-6 

Prostaglandin E2 CCCCCC(C=CC1C(CC(=O)C1CC=CCCCC(=O)O)O)O C20H32O5 352.2250 [M-H]- 26.50 2.82 363-24-6 

Prostaglandin F2a CCCCCC(C=CC1C(CC(C1CC=CCCCC(=O)O)O)O)O C20H34O5 354.2406 [M-H]- 25.60 2.61 13535-33-6 

Prostaglandin J2 CCCCCC(C=CC1C(C=CC1=O)CC=CCCCC(=O)O)O C20H30O4 334.2144 [M-H]- 26.54 3.60 60203-57-8 
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Table A1 – (continued) Detailed list of the optimization mix and internal standards, with SMILES identifiers, chemical formulas, monoisotopic 

mass, observed ion, retention time, octanol-water partition coefficient (logP), and CAS number when available. 

 Compound name SMILES Chemical formula 
Monoisotopic 
mass (Da) 

Observed 
ion 

Retention 
time (min) 

logP CAS 

Standard 
compounds 

Sertraline CNC1CCC(C2=CC=CC=C12)C3=CC(=C(C=C3)Cl)Cl C17H17Cl2N 305.0738 [M+H]+ 24.34 5.10 79559-97-0 

Solanidine CC1CCC2C(C3C(N2C1)CC4C3(CCC5C4CC=C6C5(CCC(C6)O)C)C)C C27H43NO 397.3345 [M+H]+ 24.54 4.88 80-78-4 

Tebuconazole CC(C)(C)C(CCC1=CC=C(C=C1)Cl)(CN2C=NC=N2)O C16H22ClN3O 307.1451 [M+H]+ 39.36 3.70 80443-41-0 

Testosterone CC12CCC3C(C1CCC2O)CCC4=CC(=O)CCC34C C19H28O2 288.2089 [M+H]+ 28.90 3.32 58-22-0 

Thiacloprid C1CSC(=NC#N)N1CC2=CN=C(C=C2)Cl C10H9ClN4S 252.0236 [M+H]+ 12.24 1.25 111988-49-9 

Thiamethoxam CN1COCN(C1=N[N+](=O)[O-])CC2=CN=C(S2)Cl C8H10ClN5O3S 291.0193 [M+H]+ 6.97 1.52 153719-23-4 

Triclosan C1=CC(=C(C=C1Cl)O)OC2=C(C=C(C=C2)Cl)Cl C12H7Cl3O2 287.9512 [M-H]- 43.79 4.76 3380-34-5 

Venlafaxine CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O C17H27NO2 277.2042 [M+H]+ 9.84 0.43 93413-69-5 

Internal 
standards 

2-phenylphenol-13C6 n.a. [13C]6C6H10O 176.0933 [M-H]- 30.19 n.a. 287389-48-4 

Acetochlor-d11 n.a. C14D11H9ClNO2 280.1873 [M-H]- 40.57 n.a. 1189897-44-6 

Azoxystrobin-d4 n.a. C22D4H13N3O5 407.1419 [M+H]+ 38.03 n.a. 1346606-39-0 

Carbamazepine-13C6 n.a. [13C]6C9H12N2O 242.1151 [M+H]+ 18.01 n.a. n.a. 

Carbendazim-d4 n.a. C9D4H5N3O2 195.0946 [M+H]+ 5.69 n.a. 291765-95-2 

Chlorpyrifos-d10 n.a. C9D10HCl3NO3PS 358.9891 [M+H]+ 45.53 n.a. 285138-81-0 

Cotinine-d3 n.a. C10D3H9N2O 179.1138 [M+H]+ 4.31 n.a. 110952-70-0 

Diazinon-d10 n.a. C12D10H11N2O3PS 314.1638 [M+H]+ 43.38 n.a. 100155-47-3 

Diclofenac-13C6 n.a. [13C]2C12H11Cl2NO2 297.0234 [M-H]- 39.59 n.a. n.a. 

Dimethyldithiophosphate-
13C2 

n.a. [13C]2H7O2PS2 159.9692 [M-H]- 2.95 n.a. 1329610-82-3 

Estrone-d4 n.a. C18D4H18O2 274.1871 [M+H]+ 31.60 n.a. 53866-34-5 

Fluoxetine-d6 n.a. C17D6H12F3NO 315.1717 [M+H]+ 23.71 n.a. n.a. 

Hydrocortisone-d4 n.a. C21D4H26O5 366.2344 [M+H]+ 15.86 n.a. 73565-87-4 

Ibuprofen-d3 n.a. C13D3H15O2 209.1495 [M-H]- 39.94 n.a. 121662-14-4 

Imidacloprid-d4 n.a. C9D4H6ClN5O2 259.0774 [M+H]+ 8.57 n.a. 1015855-75-0 

Ketoprofen-d3 n.a. C16D3H11O3 257.1131 [M+H]+ 28.13 n.a. 159490-55-8 
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Table A1 – (continued) Detailed list of the optimization mix and internal standards, with SMILES identifiers, chemical formulas, monoisotopic 

mass, observed ion, retention time, octanol-water partition coefficient (logP), and CAS number when available. 

 Compound name SMILES Chemical formula 
Monoisotopic 
mass (Da) 

Observed 
ion 

Retention 
time (min) 

logP CAS 

Internal 
standards 

Leukotriene B4-d4 n.a. C20D4H28O4 340.2552 [M-H]- 39.52 n.a. 93951-88-3 

Paracetamol-d4 n.a. C8D4H5NO2 155.0884 [M+H]+ 4.98 n.a. 64315-36-2 

Prostaglandin E2-d4 n.a. C20D4H28O5 356.2501 [M-H]- 26.50 n.a. 34210-10-1 

Tebuconazole-d6 n.a. C16D6H16ClN3O 313.1828 [M+H]+ 39.36 n.a. 1246818-83-6 

Testosterone-d3 n.a. C19D3H25O2 291.2278 [M+H]+ 28.90 n.a. 77546-39-5 

Thiamethoxam-d4 n.a. C8D4H6ClN5O3S 295.0444 [M+H]+ 6.97 n.a. 1331642-98-8 
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1.2. Column diameter and flow rate optimization 

Table A2a – Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization with 50 

standards spiked at 20 ng/mL 

 20 pg 

 Ø 2.1 mm Ø 1.0 mm 

 0.30 mL/min 0.15 mL/min 0.10 mL/min 0.05 mL/min 

Compound name Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) 
2-Phenylphenol 0 0.0 0 0.0 849 4.4 1711 2.6 
Acetochlor 4475 0.9 9755 3.6 7597 4.5 14321 1.1 
Acetylsalicylic acid 3808 11.9 1175 20.7 0 0.0 1522 10.5 
Aflatoxin B1 7860 2.1 14889 1.6 27507 4.4 48357 1.6 
Aminobenzimidazole 42778 1.9 66388 1.3 106609 0.7 109914 2.6 
Androstenedione 22545 1.0 43711 2.2 63325 3.9 116688 2.7 
Arachidonic Acid 0 0.0 0 0.0 10608 1.5 2145 2.9 
Azoxystrobin 27111 1.4 50413 1.9 74847 1.5 138630 1.2 
Boscalid 9724 2.4 19987 2.7 30977 1.7 59087 1.7 
Carbamazepine 40813 2.9 69130 1.6 56790 3.1 92419 1.5 
Carbendazim 26851 2.8 50107 1.3 58931 1.7 98122 2.2 
Chlorpyrifos 9160 2.9 8375 4.9 26006 4.2 17375 2.4 
Clothianidin 3967 1.8 7293 2.1 3512 3.3 6277 1.9 
Codeine 29568 2.3 51887 1.3 84592 1.0 125101 0.8 
Cortisone 11580 1.8 18896 1.8 36473 2.3 61874 1.2 
Cotinine 17447 1.8 24134 2.3 43291 0.6 44092 3.8 
Cyprodinil 220019 3.5 304236 2.0 154113 3.3 271592 2.6 
Diazinon 353679 1.8 670435 1.8 431259 1.1 646828 1.6 
Diclofenac 5852 1.8 11670 2.4 14361 1.3 26631 1.2 
Dimethyldithiophosphate 0 0.0 0 0.0 552 1.9 894 1.9 
Estrone 9883 2.0 20255 1.9 27555 1.4 54243 1.8 
Fluoxetine 34612 3.2 47031 1.8 48521 1.1 73356 0.9 
Hydrocortisone 15075 1.7 24010 1.2 47430 2.3 79301 2.0 
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Table A2a – (continued) Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization 

with 50 standards spiked at 20 ng/mL 

 20 pg 

 Ø 2.1 mm Ø 1.0 mm 

 0.30 mL/min 0.15 mL/min 0.10 mL/min 0.05 mL/min 

Compound name Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) 

Hydroxyindoleacetic acid 0 0.0 2694 4.2 1875 2.9 3388 2.8 

Ibuprofen 0 0.0 0 0.0 214 1.7 660 1.8 

Imidacloprid 11776 2.1 15929 1.4 9504 1.8 16735 1.2 

Ketoprofen 598052 1.0 942528 1.2 109328 1.1 173304 1.2 

Leukotriene B4 1917 3.3 2783 6.4 6625 1.3 9609 2.9 

Leukotriene D4 2623 18.4 3548 12.3 8816 8.4 13882 0.5 

Malathion 6006 2.5 11565 1.8 8529 3.4 15602 0.3 

Nicotine 4192 3.2 6936 3.3 6392 4.9 11201 2.8 

Paracetamol 6660 2.9 14481 3.6 15879 2.0 25567 2.5 

Paroxetine 64379 2.5 80067 2.8 111047 2.2 186423 0.3 

Piperine 22541 1.4 38849 3.4 49507 1.6 90501 1.3 

Pravastatin 2006 2.7 2444 4.0 2201 2.7 2201 3.1 

Prochloraz 11770 8.1 19850 5.7 16390 7.0 29451 2.2 

Progesterone 28426 0.3 71350 3.0 98298 7.9 161313 1.5 

Propiconazole 32615 3.4 80152 5.7 88708 4.6 137210 2.0 

Prostaglandin D2 2493 7.9 3345 8.9 9217 3.0 11703 4.3 

Prostaglandin E2 1808 8.2 2983 6.9 7654 1.3 13791 2.8 

Prostaglandin F2a 2448 6.7 3355 2.2 8857 0.9 16552 2.2 

Prostaglandin J2 2854 6.6 3149 2.1 7569 0.5 14228 2.2 

Sertraline 13444 3.0 19287 1.5 13848 2.3 21028 0.7 

Solanidine 64689 0.8 85483 1.8 100975 1.0 158675 2.5 

Tebuconazole 49740 4.3 79713 4.3 98595 6.2 166400 1.9 

Testosterone 27084 3.2 47005 1.9 72103 1.9 126546 1.3 

Thiacloprid 19908 3.3 28586 1.6 27747 4.1 54234 2.5 
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Table A2a – (continued) Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization 

with 50 standards spiked at 20 ng/mL 

 20 pg 

 Ø 2.1 mm Ø 1.0 mm 

 0.30 mL/min 0.15 mL/min 0.10 mL/min 0.05 mL/min 

Compound name Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) 

Thiamethoxam 3969 6.2 6867 2.7 8244 5.0 11818 2.2 

Triclosan 17442 2.4 20114 3.0 27857 1.2 44355 2.0 

Venlafaxine 118494 2.2 133888 1.4 143819 1.6 235916 2.4 

 
        

Median 11675 2.4 19569 2.1 27531 2.0 44224 2.0 

 

Table A2b – Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization with 50 

standards spiked at 200 ng/mL 

 200 pg 

 Ø 2.1 mm Ø 1.0 mm 

 0.30 mL/min 0.15 mL/min 0.10 mL/min 0.05 mL/min 

Compound name Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) 
2-Phenylphenol 1258 7.5 2523 0.7 6053 3.9 14740 2.6 
Acetochlor 44920 0.7 101742 1.0 72798 0.3 150161 2.6 
Acetylsalicylic acid 3511 5.4 1904 17.5 2541 6.0 5506 8.1 
Aflatoxin B1 92085 7.3 175374 2.1 278845 2.8 530533 2.1 
Aminobenzimidazole 482920 1.7 660167 2.2 1004025 0.9 1059186 1.2 
Androstenedione 314943 0.9 569012 2.8 728528 2.1 1391952 2.2 
Arachidonic Acid 11696 5.8 16799 3.7 76929 12.8 23384 9.4 
Azoxystrobin 416255 2.1 700821 1.8 839750 2.8 1579550 2.8 
Boscalid 136846 1.6 260687 1.9 365343 0.8 737820 0.5 
Carbamazepine 486607 1.6 794147 1.2 562533 1.2 1009330 3.3 
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Table A2b – (continued) Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization 

with 50 standards spiked at 200 ng/mL 

 200 pg 

 Ø 2.1 mm Ø 1.0 mm 

 0.30 mL/min 0.15 mL/min 0.10 mL/min 0.05 mL/min 

Compound name Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) 

Carbendazim 303001 1.4 529255 0.2 584976 2.3 1038643 0.9 

Chlorpyrifos 143384 7.2 132435 7.0 323684 0.5 232045 4.5 

Clothianidin 44093 0.8 77368 1.3 33979 1.7 61958 1.7 

Codeine 374122 2.4 596108 1.7 845795 1.6 1342160 1.6 

Cortisone 179839 0.9 251319 1.2 422111 1.6 717505 1.2 

Cotinine 189159 2.8 249964 0.5 424143 0.9 180963 4.5 

Cyprodinil 2408536 1.1 3459616 1.0 1716890 2.1 3191239 2.2 

Diazinon 3445514 1.5 6974612 2.0 4164532 1.1 6849338 1.0 

Diclofenac 66823 1.4 131355 1.6 158232 1.5 302371 2.6 

Dimethyldithiophosphate 16549 2.7 18745 2.5 19885 2.2 24558 2.2 

Estrone 123256 3.2 250416 2.2 307707 2.3 496308 3.1 

Fluoxetine 499044 2.5 639329 3.4 566846 1.2 887694 3.1 

Hydrocortisone 218973 5.1 321839 2.5 526415 0.8 910547 0.7 

Hydroxyindoleacetic acid 5521 2.8 25046 3.5 14672 4.0 26215 3.0 

Ibuprofen 22198 3.3 27854 3.1 27820 2.2 37854 2.5 

Imidacloprid 163270 1.2 177924 1.7 308757 2.9 382121 1.6 

Ketoprofen 601779 1.6 928294 0.5 114289 1.4 186576 2.4 

Leukotriene B4 17460 1.8 27102 1.2 69337 1.5 102238 2.7 

Leukotriene D4 26004 3.6 34823 2.8 117829 1.7 164339 2.0 

Malathion 75799 1.1 149175 5.4 96160 2.5 179783 4.5 

Nicotine 41136 2.3 60698 1.6 20386 9.6 48066 1.9 

Paracetamol 71826 2.6 149189 1.6 147647 1.0 239774 1.5 

Paroxetine 817603 2.5 1033107 1.1 1169024 6.1 2124497 1.2 

Piperine 313665 1.0 504088 1.2 586547 1.2 1098772 1.7 

Pravastatin 24687 2.3 27128 1.7 24320 4.1 22995 2.9 
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Table A2b – (continued) Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization 

with 50 standards spiked at 200 ng/mL 

 200 pg 

 Ø 2.1 mm Ø 1.0 mm 

 0.30 mL/min 0.15 mL/min 0.10 mL/min 0.05 mL/min 

Compound name Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) 

Prochloraz 177023 1.5 238416 1.2 199840 2.6 380390 2.0 

Progesterone 420824 2.1 971167 0.6 1057300 1.1 1883434 3.9 

Propiconazole 488615 1.4 1099382 1.0 1046343 1.9 1614942 0.6 

Prostaglandin D2 18030 2.9 30089 3.5 100645 2.2 129757 2.2 

Prostaglandin E2 15201 2.5 26502 4.0 84631 1.0 149932 5.7 

Prostaglandin F2a 12235 2.0 18597 1.7 19742 1.8 29545 2.0 

Prostaglandin J2 19452 2.0 24560 2.0 22457 1.7 31247 1.8 

Sertraline 189844 3.7 256606 1.1 150102 1.1 233249 1.7 

Solanidine 860779 2.8 1092428 3.4 1114014 3.7 1851604 2.9 

Tebuconazole 684637 2.0 1042733 2.2 1128292 2.1 1495029 4.1 

Testosterone 375611 1.5 599287 1.5 796827 1.2 1454106 1.6 

Thiacloprid 228117 1.3 338182 0.8 321764 0.9 380140 1.5 

Thiamethoxam 41008 2.9 73229 3.4 71889 3.9 110050 4.3 

Triclosan 178456 1.9 265478 1.4 345788 1.7 387750 1.5 

Venlafaxine 1836079 2.3 1964486 2.6 1365043 1.4 2392643 1.6 

 
        

Median 170146 2.1 250190 1.7 308232 1.7 380265 2.2 
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1.3. Detailed list of the retention time prediction set 

Table A3 – Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic mass, and 

CAS number 

Compound name SMILES Chemical formula 
Monoisotopic 
mass 

CAS 

1-(3,4-Dichlorophenyl)-3-methylurea CNC(=O)NC1=CC(=C(C=C1)Cl)Cl C8H8Cl2N2O 218.0014 3567-62-2 

1-(3,4-Dichlorophenyl)urea C1=CC(=C(C=C1NC(=O)N)Cl)Cl C7H6Cl2N2O 203.9857 2327-02-8 

1-(4-Isopropylphenyl)urea CC(C)C1=CC=C(C=C1)NC(=O)N C10H14N2O 178.1106 56046-17-4 

2,4-mcpa CC1=C(C=CC(=C1)Cl)OCC(=O)O C9H9ClO3 200.0240 94-74-6 

2-chloro-4-methylbenzoic acid CC1=CC(=C(C=C1)C(=O)O)Cl C8H7ClO2 170.0135 7697-25-8 

2-Phenylphenol C1=CC=C(C=C1)C2=CC=CC=C2O C12H10O 170.0732 90-43-7 

Acetamiprid CC(=NC#N)N(C)CC1=CN=C(C=C1)Cl C10H11ClN4 222.0672 135410-20-7 

Acetochlor CCC1=CC=CC(=C1N(COCC)C(=O)CCl)C C14H20ClNO2 269.1183 123113-74-6 

Aflatoxin B1 COC1=C2C3=C(C(=O)CC3)C(=O)OC2=C4C5C=COC5OC4=C1 C17H12O6 312.0634 27261-02-5 

Alachlor CCC1=C(C(=CC=C1)CC)N(COC)C(=O)CCl C14H20ClNO2 269.1183 15972-60-8 

Ametryn CCNC1=NC(=NC(=N1)SC)NC(C)C C9H17N5S 227.1205 834-12-8 

Amidosulfuron CN(S(=O)(=O)C)S(=O)(=O)NC(=O)NC1=NC(=CC(=N1)OC)OC C9H15N5O7S2 369.0412 120923-37-7 

Aminobenzimidazole C1=CC=C2C(=C1)NC(=N2)N C7H7N3 133.0640 934-32-7 

Androstenedione CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4=O)C C19H26O2 286.1933 63-05-8 

Arachidonic Acid CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(O)=O C20H32O2 304.2402 93444-49-6 

Atrazine CCNC1=NC(=NC(=N1)Cl)NC(C)C C8H14ClN5 215.0938 1912-24-9 

Atrazine-2-hydroxy CCNC1=NC(=O)NC(=N1)NC(C)C C8H15N5O 197.1277 2163-68-0 

Atrazine-deisopropyl CCNC1=NC(=NC(=N1)N)Cl C5H8ClN5 173.0468 1007-28-9 

Azoxystrobin COC=C(C1=CC=CC=C1OC2=NC=NC(=C2)OC3=CC=CC=C3C#N)C(=O)OC C22H17N3O5 403.1168 215934-32-0 

Beflubutamid CCC(C(=O)NCC1=CC=CC=C1)OC2=CC(=C(C=C2)F)C(F)(F)F C18H17F4NO2 355.1195 113614-08-7 

Bixafen CN1C=C(C(=N1)C(F)F)C(=O)NC2=C(C=C(C=C2)F)C3=CC(=C(C=C3)Cl)Cl C18H12Cl2F3N3O 413.0310 581809-46-3 

Boscalid C1=CC=C(C(=C1)C2=CC=C(C=C2)Cl)NC(=O)C3=C(N=CC=C3)Cl C18H12Cl2N2O 342.0327 188425-85-6 

Bromacil CCC(C)N1C(=O)NC(=C(Br)C1=O)C C9H13BrN2O2 260.0160 314-40-9 

Carbamazepine C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N C15H12N2O 236.0950 298-46-4 
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Table A3 – (continued) Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic 

mass, and CAS number 

Compound name SMILES Chemical formula Monoisotopic mass CAS 

Carbaryl CNC(=O)OC1=CC=CC2=CC=CC=C21 C12H11NO2 201.0790 51274-03-4 

Carbendazim COC(=O)NC1=NC2=CC=CC=C2N1 C9H9N3O2 191.0695 63278-70-6 

Carbetamide CCNC(=O)C(C)OC(=O)NC1=CC=CC=C1 C12H16N2O3 236.1161 16118-49-3 

Carbofuran CC1(CC2=C(O1)C(=CC=C2)OC(=O)NC)C C12H15NO3 221.1052 1563-66-2 

Chlorantraniliprole CC1=CC(=CC(=C1NC(=O)C2=CC(=NN2C3=C(C=CC=N3)Cl)Br)C(=O)NC)Cl C18H14BrCl2N5O2 480.9708 500008-45-7 

Chloridazon C1=CC=C(C=C1)N2C(=O)C(=C(C=N2)N)Cl C10H8ClN3O 221.0356 1698-60-8 

Chlorpyrifos CCOP(=S)(OCC)OC1=NC(=C(C=C1Cl)Cl)Cl C9H11Cl3NO3PS 348.9263 39475-55-3 

Chlortoluron CC1=C(C=C(C=C1)NC(=O)N(C)C)Cl C10H13ClN2O 212.0716 15545-48-9 

Clothianidin CNC(=N[N+](=O)[O-])NCC1=CN=C(S1)Cl C6H8ClN5O2S 249.0087 205510-53-8 

Codeine CN1CCC23C4C1CC5=C2C(=C(C=C5)OC)OC3C(C=C4)O C18H21NO3 299.1521 76-57-3 

Cortisone CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C C21H28O5 360.1937 53-06-5 

Cotinine CN1C(CCC1=O)C2=CN=CC=C2 C10H12N2O 176.0950 486-56-6 

Cyprodinil CC1=CC(=NC(=N1)NC2=CC=CC=C2)C3CC3 C14H15N3 225.1266 121552-61-2 

Diazinon CCOP(=S)(OCC)OC1=NC(=NC(=C1)C)C(C)C C12H21N2O3PS 304.1011 30583-38-1 

Dichlorprop CC(C(=O)O)OC1=C(C=C(C=C1)Cl)Cl C9H8Cl2O3 233.9851 120-36-5 

Diclofenac C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl C14H11Cl2NO2 295.0167 15307-86-5 

Dimethenamid CC1=CSC(=C1N(C(C)COC)C(=O)CCl)C C12H18ClNO2S 275.0747 87674-68-8 

Dimethomorph COC1=C(C=C(C=C1)C(=CC(=O)N2CCOCC2)C3=CC=C(C=C3)Cl)OC C21H22ClNO4 387.1237 110488-70-5 

Dimethyldithiophosphate COP(=S)(OC)S C2H7O2PS2 157.9625 756-80-9 

Diuron CN(C)C(=O)NC1=CC(=C(C=C1)Cl)Cl C9H10Cl2N2O 232.0170 102962-29-8 

Estradiol-2-hydroxy CC12CCC3C(C1CCC2O)CCC4=CC(=C(C=C34)O)O C18H24O3 288.1725 362-05-0 

Estrone CC12CCC3C(C1CCC2=O)CCC4=C3C=CC(=C4)O C18H22O2 270.1620 53-16-7 

Estrone-2-hydroxy CC12CCC3C(C1CCC2=O)CCC4=CC(=C(C=C34)O)O C18H22O3 286.1569 362-06-1 

Ethidimuron CCS(=O)(=O)C1=NN=C(S1)N(C)C(=O)NC C7H12N4O3S2 264.0351 30043-49-3 

Fenamidone CC1(C(=O)N(C(=N1)SC)NC2=CC=CC=C2)C3=CC=CC=C3 C17H17N3OS 311.1092 161326-34-7 

Fenpropidine CC(CC1=CC=C(C=C1)C(C)(C)C)CN2CCCCC2 C19H31N 273.2456 67306-00-7 
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Table A3 – (continued) Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic 

mass, and CAS number 

Compound name SMILES Chemical formula Monoisotopic mass CAS 

Fenpropimorph CC1CN(CC(O1)C)CC(C)CC2=CC=C(C=C2)C(C)(C)C C20H33NO 273.2456 67564-91-4 

Flonicamid C1=CN=CC(=C1C(F)(F)F)C(=O)NCC#N C9H6F3N3O 229.0463 158062-67-0 

Flufenacet CC(C)N(C1=CC=C(C=C1)F)C(=O)COC2=NN=C(S2)C(F)(F)F C14H13F4N3O2S 363.0665 142459-58-3 

Fluoxetine CNCCC(C1=CC=CC=C1)OC2=CC=C(C=C2)C(F)(F)F C17H18F3NO 309.1340 57226-07-0 

Fluroxypyr C(C(=O)O)OC1=NC(=C(C(=C1Cl)N)Cl)F C7H5Cl2FN2O3 253.9661 69377-81-7 

Flurtamone CNC1=C(C(=O)C(O1)C2=CC=CC=C2)C3=CC(=CC=C3)C(F)(F)F C18H14F3NO2 333.0977 96525-23-4 

Foramsulfuron CN(C)C(=O)C1=C(C=C(C=C1)NC=O)S(=O)(=O)NC(=O)NC2=NC(=CC(=N2)OC)OC C17H20N6O7S 452.1114 173159-57-4 

Fosthiazate CCO[P](=O)(SC(C)CC)N1CCSC1=O C9H18NO3PS2 283.0466 98886-44-3 

Hydrocortisone CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)O C21H30O5 362.2093 50-23-7 

Hydroxyindoleacetic acid C1=CC2=C(C=C1O)C(=CN2)CC(=O)O C10H9NO3 191.0582 113303-91-6 

Ibuprofen CC(C)CC1=CC=C(C=C1)C(C)C(=O)O C13H18O2 206.1307 58560-75-1 

Imazamethabenz-methyl CC1=CC(=C(C=C1)C(=O)OC)C2=NC(C(=O)N2)(C)C(C)C C16H20N2O3 288.1474 81405-85-8 

Imazamox CC(C)C1(C(=O)NC(=N1)C2=C(C=C(C=N2)COC)C(=O)O)C C15H19N3O4 305.1376 114311-32-9 

Imazaquin CC(C)C1(C(=O)NC(=N1)C2=NC3=CC=CC=C3C=C2C(=O)O)C C17H17N3O3 311.1270 81335-37-7 

Imidacloprid C1CN(C(=N[N+](=O)[O-])N1)CC2=CN=C(C=C2)Cl C9H10ClN5O2 255.0523 138261-41-3 

Iodosulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=C(C=CC(=C2)I)C(=O)OC C14H13IN5NaO6S 528.9529 144550-36-7  

Iprodione CC(C)NC(=O)N1CC(=O)N(C1=O)C2=CC(=CC(=C2)Cl)Cl C13H13Cl2N3O3 329.0334 36734-19-7 

Irgarol CC(C)(C)NC1=NC(=NC(=N1)NC2CC2)SC C11H19N5S 253.1361 28159-98-0 

Isoproturon CC(C)C1=CC=C(C=C1)NC(=O)N(C)C C12H18N2O 206.1419 34123-59-6 

Isoproturon-didemethyl CC(C)C1=CC=C(C=C1)NC(=O)N C10H14N2O 178.1106 56046-17-4 

Isoxaben CCC(C)(CC)C1=NOC(=C1)NC(=O)C2=C(C=CC=C2OC)OC C18H24N2O4 332.1736 82558-50-7 

Isoxaflutole CS(=O)(=O)C1=C(C=CC(=C1)C(F)(F)F)C(=O)C2=C(ON=C2)C3CC3 C15H12F3NO4S 359.0439 141112-29-0 

Leukotriene B4 CCCCCC=CCC(C=CC=CC=CC(CCCC(=O)O)O)O C20H32O4 336.2301 71160-24-2 

Leukotriene D4 CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)NCC(=O)O)N C25H40N2O6S 496.2607 73836-78-9 

Linuron CN(C(=O)NC1=CC(=C(C=C1)Cl)Cl)OC C9H10Cl2N2O2 248.0119 56645-87-5 

Mesosulfuron-methyl COC1=CC(=NC(=N1)NC(=O)NS(=O)(=O)C2=C(C=CC(=C2)CNS(=O)(=O)C)C(=O)OC)OC C17H21N5O9S2 503.0781 208465-21-8 
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Table A3 – (continued) Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic 

mass, and CAS number 

Compound name SMILES Chemical formula Monoisotopic mass CAS 

Mesotrione CS(=O)(=O)C1=CC(=C(C=C1)C(=O)C2C(=O)CCCC2=O)[N+](=O)[O-] C14H13NO7S 339.0413 104206-82-8 

Metalaxyl CC1=C(C(=CC=C1)C)N(C(C)C(=O)OC)C(=O)COC C15H21NO4 279.1471 57837-19-1 

Metamitron CC1=NN=C(C(=O)N1N)C2=CC=CC=C2 C10H10N4O 202.0855 41394-05-2 

Metazachlor CC1=C(C(=CC=C1)C)N(CN2C=CC=N2)C(=O)CCl C14H16ClN3O 277.0982 67129-08-2 

Methabenzthiazuron CNC(=O)N(C)C1=NC2=CC=CC=C2S1 C10H11N3OS 221.0623 18691-97-9 

Metobromuron CN(C(=O)NC1=CC=C(C=C1)Br)OC C9H11BrN2O2 258.0004 3060-89-7 

Metolachlor CCC1=CC=CC(=C1N(C(C)COC)C(=O)CCl)C C15H22ClNO2 283.1339 55762-76-0 

Metosulam CC1=C(C(=C(C=C1)Cl)NS(=O)(=O)C2=NN3C(=CC(=NC3=N2)OC)OC)Cl C14H13Cl2N5O4S 417.0065 139528-85-1 

Metribuzine CSC1=NN=C(C(=O)N1N)C(C)(C)C C8H14N4OS 214.0888 21087-64-9 

Metsulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=CC=CC=C2C(=O)OC C14H15N5O6S 381.0743 74223-64-6 

Nicosulfuron CN(C)C(=O)C1=C(N=CC=C1)S(=O)(=O)NC(=O)NC2=NC(=CC(=N2)OC)OC C15H18N6O6S 410.1009 111991-09-4 

Nicotine CN1CCCC1C2=CN=CC=C2 C10H14N2 162.1157 551-13-3 

Oryzalin CCCN(CCC)C1=C(C=C(C=C1[N+](=O)[O-])S(=O)(=O)N)[N+](=O)[O-] C12H18N4O6S 346.0947 19044-88-3 

Paclobutrazol CC(C)(C)C(C(CC1=CC=C(C=C1)Cl)N2C=NC=N2)O C30H40Cl2N6O2 586.2590 76738-62-0 

Paracetamol CC(=O)NC1=CC=C(C=C1)O C8H9NO2 151.0633 8055-08-1 

Paroxetine C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4 C19H20FNO3 329.1427 63952-24-9 

Pencycuron C1CCC(C1)N(CC2=CC=C(C=C2)Cl)C(=O)NC3=CC=CC=C3 C19H21ClN2O 328.1342 66063-05-6 

Piperine C1CCN(CC1)C(=O)C=CC=CC2=CC3=C(C=C2)OCO3 C17H19NO3 285.1365 147030-08-8 

Pirimicarb CC1=C(N=C(N=C1OC(=O)N(C)C)N(C)C)C C11H18N4O2 238.1430 23103-98-2 

Pravastatin CCC(C)C(=O)OC1CC(C=C2C1C(C(C=C2)C)CCC(CC(CC(=O)O)O)O)O C23H36O7 424.2461 81093-37-0 

Prochloraz CCCN(CCOC1=C(C=C(C=C1Cl)Cl)Cl)C(=O)N2C=CN=C2 C15H16Cl3N3O2 375.0308 67747-09-5 

Progesterone CC(=O)C1CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C C21H30O2 314.2246 257630-50-5 

Propachlor CC(C)N(C1=CC=CC=C1)C(=O)CCl C11H14ClNO 211.0764 1918-16-7 

Propamocarb CCCOC(=O)NCCCN(C)C C9H20N2O2 188.1525 24579-73-5 

Propiconazole CCCC1COC(O1)(CN2C=NC=N2)C3=C(C=C(C=C3)Cl)Cl C15H17Cl2N3O2 341.0698 75881-82-2 

Propoxycarbazone CCCOC1=NN(C(=O)N1C)C(=O)NS(=O)(=O)C2=CC=CC=C2C(=O)OC C15H17N4NaO7S 420.0716 181274-15-7 



Appendices 

197  
 

Table A3 – (continued) Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic 

mass, and CAS number 

Compound name SMILES Chemical formula Monoisotopic mass CAS 

Propyzamide CC(C)(C#C)NC(=O)C1=CC(=CC(=C1)Cl)Cl C12H11Cl2NO 255.0218 11097-11-3 

Prostaglandin D2 CCCCCC(C=CC1C(C(CC1=O)O)CC=CCCCC(=O)O)O C20H32O5 352.2250 41598-07-6 

Prostaglandin E2 CCCCCC(C=CC1C(CC(=O)C1CC=CCCCC(=O)O)O)O C20H32O5 352.2250 363-24-6 

Prostaglandin F2a CCCCCC(C=CC1C(CC(C1CC=CCCCC(=O)O)O)O)O C20H34O5 354.2406 13535-33-6 

Prosulfuron CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=CC=CC=C2CCC(F)(F)F C15H16F3N5O4S 419.0875 94125-34-5 

Pymetrozine CC1=NNC(=O)N(C1)N=CC2=CN=CC=C2 C10H11N5O 217.0964 123312-89-0 

Pyraclostrobin COC(=O)N(C1=CC=CC=C1COC2=NN(C=C2)C3=CC=C(C=C3)Cl)OC C19H18ClN3O4 387.0986 175013-18-0 

Pyrimethanil CC1=CC(=NC(=N1)NC2=CC=CC=C2)C C12H13N3 199.1109 53112-28-0 

Pyroxsulam COC1=CC(=NC2=NC(=NN12)NS(=O)(=O)C3=C(C=CN=C3OC)C(F)(F)F)OC C14H13F3N6O5S 434.0620 422556-08-9 

Quinmerac CC1=CC2=C(C(=C(C=C2)Cl)C(=O)O)N=C1 C11H8ClNO2 221.0244 90717-03-6 

Sertraline CNC1CCC(C2=CC=CC=C12)C3=CC(=C(C=C3)Cl)Cl C17H17Cl2N 305.0738 79559-97-0 

Simazine CCNC1=NC(=NC(=N1)Cl)NCC C7H12ClN5 201.0781 119603-94-0 

Solanidine CC1CCC2C(C3C(N2C1)CC4C3(CCC5C4CC=C6C5(CCC(C6)O)C)C)C C27H43NO 397.3345 80-78-4 

Spiroxamine CCCN(CC)CC1COC2(CCC(CC2)C(C)(C)C)O1 C18H35NO2 297.2668 118134-30-8 

Sulcotrione CS(=O)(=O)C1=CC(=C(C=C1)C(=O)C2C(=O)CCCC2=O)Cl C14H13ClO5S 328.0172 99105-77-8 

Tebuconazole CC(C)(C)C(CCC1=CC=C(C=C1)Cl)(CN2C=NC=N2)O C16H22ClN3O 307.1451 80443-41-0 

Tebutame CC(C)N(CC1=CC=CC=C1)C(=O)C(C)(C)C C15H23NO 233.1780 35256-85-0 

Terbuthylazine CCNC1=NC(=NC(=N1)Cl)NC(C)(C)C C9H16ClN5 229.1094 5915-41-3 

Terbutryne CCNC1=NC(=NC(=N1)SC)NC(C)(C)C C10H19N5S 241.1361 886-50-0 

Tertbutylazine-2-hydroxy CCNC1=NC(=O)NC(=N1)NC(C)(C)C C9H17N5O 211.1433 66753-07-9 

Testosterone CC12CCC3C(C1CCC2O)CCC4=CC(=O)CCC34C C19H28O2 288.2089 58-22-0 

Thiacloprid C1CSC(=NC#N)N1CC2=CN=C(C=C2)Cl C10H9ClN4S 252.0236 111988-49-9 

Thiamethoxam CN1COCN(C1=N[N+](=O)[O-])CC2=CN=C(S2)Cl C8H10ClN5O3S 291.0193 153719-23-4 

Thifensulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=C(SC=C2)C(=O)OC C12H13N5O6S2 387.0307 79277-27-3 

Triadimenol CC(C)(C)C(C(N1C=NC=N1)OC2=CC=C(C=C2)Cl)O C14H18ClN3O2 295.1088 55219-65-3 

Triazoxide C1=CC2=C(C=C1Cl)[N+](=NC(=N2)N3C=CN=C3)[O-] C10H6ClN5O 247.0261 72459-58-6 
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Table A3 – (continued) Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic 

mass, and CAS number 

Compound name SMILES Chemical formula Monoisotopic mass CAS 

Triclopyr C1=C(C(=NC(=C1Cl)Cl)OCC(=O)O)Cl C7H4Cl3NO3 254.9257 55335-06-3 

Triflusulfuron-methyl CC1=C(C(=CC=C1)C(=O)OC)S(=O)(=O)NC(=O)NC2=NC(=NC(=N2)OCC(F)(F)F)N(C)C C17H19F3N6O6S 492.1039 126535-15-7 

Trinexapac-ethyl CCOC(=O)C1CC(=O)C(=C(C2CC2)O)C(=O)C1 C13H16O5 252.0998 95266-40-3 

Triticonazole CC1(CCC(=CC2=CC=C(C=C2)Cl)C1(CN3C=NC=N3)O)C C17H20ClN3O 317.1295 131983-72-7 

Tritosulfuron COC1=NC(=NC(=N1)NC(=O)NS(=O)(=O)C2=CC=CC=C2C(F)(F)F)C(F)(F)F C13H9F6N5O4S 445.0279 142469-14-5 

Venlafaxine CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O C17H27NO2 277.2042 93413-69-5 
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2. Appendix 2. Supporting information – Chapter III 

2.1. Table A1 – Standard compounds form and suppliers 

Table A1 – Standard compounds form and suppliers 

Compound name SMILES Supplier Form 

Arachidonic Acid CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(O)=O Bertin Powder 

Leukotriene B4 CCCCCC=CCC(C=CC=CC=CC(CCCC(=O)O)O)O Bertin Powder 

Leukotriene D4 
CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)N
CC(=O)O)N Bertin Powder 

Prostaglandin D2 CCCCCC(C=CC1C(C(CC1=O)O)CC=CCCCC(=O)O)O Bertin Powder 

Prostaglandin E2 CCCCCC(C=CC1C(CC(=O)C1CC=CCCCC(=O)O)O)O Bertin Powder 

Prostaglandin F2a CCCCCC(C=CC1C(CC(C1CC=CCCCC(=O)O)O)O)O Bertin Powder 

Prostaglandin J2 CCCCCC(C=CC1C(C=CC1=O)CC=CCCCC(=O)O)O Bertin Powder 

Acetochlor CCC1=CC=CC(=C1N(COCC)C(=O)CCl)C LGC Powder 

Acetylsalicylic acid CC(=O)OC1=CC=CC=C1C(=O)O LGC Powder 

Androstenedione CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4=O)C LGC Powder 

Carbendazim COC(=O)NC1=NC2=CC=CC=C2N1 LGC Powder 

Clothianidin CNC(=N[N+](=O)[O-])NCC1=CN=C(S1)Cl LGC Powder 

Cortisone 
CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)
O)C LGC Powder 

Dimethyldithiophosphate COP(=S)(OC)S LGC Powder 

Estrone CC12CCC3C(C1CCC2=O)CCC4=C3C=CC(=C4)O LGC Powder 

Fluoxetine CNCCC(C1=CC=CC=C1)OC2=CC=C(C=C2)C(F)(F)F LGC 
1.0 mg/mL 
in MeOH 

Hydrocortisone 
CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)
O LGC Powder 

Ibuprofen CC(C)CC1=CC=C(C=C1)C(C)C(=O)O LGC Powder 

Paracetamol CC(=O)NC1=CC=C(C=C1)O LGC Powder 

Paroxetine C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4 LGC 
1.0 mg/mL 
in MeOH 

Progesterone CC(=O)C1CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C LGC Powder 

Sertraline CNC1CCC(C2=CC=CC=C12)C3=CC(=C(C=C3)Cl)Cl LGC 
1.0 mg/mL 
in MeOH 

Tebuconazole CC(C)(C)C(CCC1=CC=C(C=C1)Cl)(CN2C=NC=N2)O LGC Powder 

Testosterone CC12CCC3C(C1CCC2O)CCC4=CC(=O)CCC34C LGC Powder 

Thiacloprid C1CSC(=NC#N)N1CC2=CN=C(C=C2)Cl LGC Powder 

Venlafaxine CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O LGC Powder 

Aflatoxin B1 
COC1=C2C3=C(C(=O)CC3)C(=O)OC2=C4C5C=COC5OC4=
C1 Sigma Aldrich Powder 

Codeine CN1CCC23C4C1CC5=C2C(=C(C=C5)OC)OC3C(C=C4)O Sigma Aldrich Powder 

Hydroxyindoleacetic acid C1=CC2=C(C=C1O)C(=CN2)CC(=O)O Sigma Aldrich Powder 

Ketoprofen CC(C1=CC(=CC=C1)C(=O)C2=CC=CC=C2)C(=O)O Sigma Aldrich Powder 

Piperine C1CCN(CC1)C(=O)C=CC=CC2=CC3=C(C=C2)OCO3 Sigma Aldrich Powder 

Pravastatin 
CCC(C)C(=O)OC1CC(C=C2C1C(C(C=C2)C)CCC(CC(CC(=O)
O)O)O)O Sigma Aldrich Powder 

Solanidine 
CC1CCC2C(C3C(N2C1)CC4C3(CCC5C4CC=C6C5(CCC(C6)
O)C)C)C Sigma Aldrich Powder 

2-Phenylphenol C1=CC=C(C=C1)C2=CC=CC=C2O VWR Powder 

Aminobenzimidazole C1=CC=C2C(=C1)NC(=N2)N VWR Powder 
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Table A1 – (continued) Standard compounds form and suppliers 

Compound name SMILES Supplier Form 

Azoxystrobin 
COC=C(C1=CC=CC=C1OC2=NC=NC(=C2)OC3=CC=CC=C3
C#N)C(=O)OC VWR Powder 

Boscalid 
C1=CC=C(C(=C1)C2=CC=C(C=C2)Cl)NC(=O)C3=C(N=CC=C
3)Cl VWR Powder 

Carbamazepine C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N VWR Powder 

Chlorpyrifos CCOP(=S)(OCC)OC1=NC(=C(C=C1Cl)Cl)Cl VWR Powder 

Cotinine CN1C(CCC1=O)C2=CN=CC=C2 VWR Powder 

Cyprodinil CC1=CC(=NC(=N1)NC2=CC=CC=C2)C3CC3 VWR Powder 

Diazinon CCOP(=S)(OCC)OC1=NC(=NC(=C1)C)C(C)C VWR Powder 

Diclofenac C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl VWR Powder 

Imidacloprid C1CN(C(=N[N+](=O)[O-])N1)CC2=CN=C(C=C2)Cl VWR Powder 

Malathion CCOC(=O)CC(C(=O)OCC)SP(=S)(OC)OC VWR Powder 

Nicotine CN1CCCC1C2=CN=CC=C2 VWR Powder 

Prochloraz CCCN(CCOC1=C(C=C(C=C1Cl)Cl)Cl)C(=O)N2C=CN=C2 VWR Powder 

Propiconazole CCCC1COC(O1)(CN2C=NC=N2)C3=C(C=C(C=C3)Cl)Cl VWR Powder 

Thiamethoxam CN1COCN(C1=N[N+](=O)[O-])CC2=CN=C(S2)Cl VWR Powder 

Triclosan C1=CC(=C(C=C1Cl)O)OC2=C(C=C(C=C2)Cl)Cl VWR Powder 
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2.2. Table A2 – Standard compounds physical-chemical characteristics 

Table A2 – Standard compounds identifiers and physical-chemical characteristics 

(monoisotopic mass, retention time (Rt), octanol-water partition coefficient (logP)) 

Compound name Chemical formula 
Monoisotopic 
mass (Da) 

Observed 
ion 

Rt (min) logP CAS 

2-Phenylphenol C12H10O 170.0732 [M-H]- 30.19 3.28 90-43-7 
Acetochlor C14H20ClNO2 269.1183 [M-H]- 40.57 4.14 123113-74-6 
Acetylsalicylic acid C9H8O4 180.0423 [M-H]- 8.65 1.24 50-78-2 
Aflatoxin B1 C17H12O6 312.0634 [M+H]+ 17.52 1.73 27261-02-5 
Aminobenzimidazole C7H7N3 133.0640 [M+H]+ 4.74 0.91 934-32-7 
Androstenedione C19H26O2 286.1933 [M+H]+ 31.50 2.75 63-05-8 
Arachidonic Acid C20H32O2 304.2402 [M-H]- 47.00 6.99 93444-49-6 
Azoxystrobin C22H17N3O5 403.1168 [M+H]+ 38.03 2.64 215934-32-0 
Boscalid C18H12Cl2N2O 342.0327 [M+H]+ 38.00 2.96 188425-85-6 
Carbamazepine C15H12N2O 236.0950 [M+H]+ 18.01 2.45 298-46-4 
Carbendazim C9H9N3O2 191.0695 [M+H]+ 5.69 1.52 63278-70-6 
Chlorpyrifos C9H11Cl3NO3PS 348.9263 [M+H]+ 45.53 4.70 39475-55-3 
Clothianidin C6H8ClN5O2S 249.0087 [M+H]+ 7.99 0.73 205510-53-8 
Codeine C18H21NO3 299.1521 [M+H]+ 5.12 1.39 76-57-3 
Cortisone C21H28O5 360.1937 [M+H]+ 16.12 1.47 53-06-5 
Cotinine C10H12N2O 176.0950 [M+H]+ 4.31 0.07 486-56-6 
Cyprodinil C14H15N3 225.1266 [M+H]+ 33.22 4.00 121552-61-2 
Diazinon C12H21N2O3PS 304.1011 [M+H]+ 43.38 3.81 30583-38-1 
Diclofenac C14H11Cl2NO2 295.0167 [M-H]- 39.59 4.51 15307-86-5 
Dimethyldithiophosphate C2H7O2PS2 157.9625 [M-H]- 2.95 0.63 756-80-9 
Estrone C18H22O2 270.1620 [M+H]+ 31.60 3.13 53-16-7 
Fluoxetine C17H18F3NO 309.1340 [M+H]+ 23.71 4.05 57226-07-0 
Hydrocortisone C21H30O5 362.2093 [M+H]+ 15.86 1.61 50-23-7 
Hydroxyindoleacetic acid C10H9NO3 191.0582 [M-H]- 5.71 1.41 113303-91-6 
Ibuprofen C13H18O2 206.1307 [M+H]+ 39.94 3.97 58560-75-1 
Imidacloprid C9H10ClN5O2 255.0523 [M+H]+ 8.57 0.57 138261-41-3 
Ketoprofen C16H14O3 254.0943 [M+H]+ 28.13 3.12 22071-15-4 
Leukotriene B4 C20H32O4 336.2301 [M-H]- 39.52 4.10 71160-24-2 
Leukotriene D4 C25H40N2O6S 496.2607 [M-H]- 33.04 1.40 73836-78-9 
Malathion C10H19O6PS2  330.0361 [M+H]+ 40.81 2.89 121-75-5 
Nicotine C10H14N2 162.1157 [M+H]+ 3.37 1.17 551-13-3 
Paracetamol C8H9NO2 151.0633 [M+H]+ 4.98 0.31 8055-08-1 
Paroxetine C19H20FNO3 329.1427 [M+H]+ 18.34 1.23 63952-24-9 
Piperine C17H19NO3 285.1365 [M+H]+ 36.42 2.78 147030-08-8 
Pravastatin C23H36O7 424.2461 [M+H]+ 20.50 1.65 81093-37-0 
Prochloraz C15H16Cl3N3O2 375.0308 [M+H]+ 38.74 3.78 67747-09-5 
Progesterone C21H30O2 314.2246 [M+H]+ 42.10 3.87 257630-50-5 
Propiconazole C15H17Cl2N3O2 341.0698 [M+H]+ 41.73 3.72 75881-82-2 
Prostaglandin D2 C20H32O5 352.2250 [M-H]- 27.60 3.23 41598-07-6 
Prostaglandin E2 C20H32O5 352.2250 [M-H]- 26.50 2.82 363-24-6 
Prostaglandin F2a C20H34O5 354.2406 [M-H]- 25.60 2.61 13535-33-6 
Prostaglandin J2 C20H30O4 334.2144 [M-H]- 26.54 3.60 60203-57-8 
Sertraline C17H17Cl2N 305.0738 [M+H]+ 24.34 5.10 79559-97-0 
Solanidine C27H43NO 397.3345 [M+H]+ 24.54 4.88 80-78-4 
Tebuconazole C16H22ClN3O 307.1451 [M+H]+ 39.36 3.70 80443-41-0 
Testosterone C19H28O2 288.2089 [M+H]+ 28.90 3.32 58-22-0 
Thiacloprid C10H9ClN4S 252.0236 [M+H]+ 12.24 1.25 111988-49-9 
Thiamethoxam C8H10ClN5O3S 291.0193 [M+H]+ 6.97 1.52 153719-23-4 
Triclosan C12H7Cl3O2 287.9512 [M-H]- 43.79 4.76 3380-34-5 
Venlafaxine C17H27NO2 277.2042 [M+H]+ 9.84 0.43 93413-69-5 
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2.3. Table A3 – Preselection: Recovery, repeatability and matrix effect 

of all sample preparation methods on individual compounds  

Table A3 – Preselection: Recovery, repeatability (recovery coefficient of variation CV) and 

matrix effect (ME) at 20 and 150 ng/mL of all sample preparation methods on individual 

compounds 

  PROTEIN PRECIPITATION PHOSPHOLIPID AND PROTEIN REMOVAL PLATES 
  PPT Phree ACN Phree MeOH 

 Component 
Mean 
recov. 

(%) 

Recovery 
CV (%) 

Low-
level 
ME 
(%) 

High-
level 
ME 
(%) 

Mean 
recov. 

(%) 

Recovery 
CV (%) 

Low-
level 
ME 
(%) 

High-
level 
ME 
(%) 

Mean 
recov. 

(%) 

Recovery 
CV (%) 

Low-
level 
ME 
(%) 

High-
level 

ME (%) 

P
O

SI
TI

V
E 

IO
N

IS
A

T
IO

N
 

2-Aminobenzimidazole 103.6 13.2 73.6 77.0 113.1 6.3 3.2 -95.3 115.4 3.0 41.6 -32.0 

4-Androstene-3,17-dione 107.1 6.0 60.8 58.9 123.7 2.6 31.9 26.2 106.8 3.8 29.0 41.2 

Acetochlor 106.8 2.1 78.1 75.7 69.3 3.1 0.8 12.2 45.1 7.9 76.9 32.2 

Aflatoxin B1 55.5 5.5 92.4 95.9 111.4 4.5 16.5 28.0 95.4 9.3 72.6 45.3 

Azoxystrobin 108.2 2.8 75.0 72.5 106.1 3.9 -25.3 14.7 118.0 2.9 82.2 34.8 

Boscalid 105.7 4.6 61.0 61.4 102.9 3.7 25.0 30.7 111.0 5.5 78.2 45.3 

Carbamazepine 107.5 2.5 37.8 47.0 106.7 2.2 18.5 -56.6 112.2 5.1 51.0 -13.2 

Carbendazim 110.4 1.8 58.9 74.1 112.4 1.3 -1.4 -48.4 111.6 5.4 31.3 -18.5 

Chlorpyrifos 109.0 2.7 92.9 92.4 63.6 3.8 91.8 76.6 42.8 3.6 96.5 89.8 

Clothianidin 100.8 0.6 55.8 61.6 107.0 3.0 49.3 -16.1 121.1 6.7 67.0 18.2 

Codeine 129.0 10.9 57.8 57.8 87.8 16.0 53.6 -13.8 112.5 18.2 70.6 4.6 

Cortisone 105.1 3.6 86.5 85.0 107.6 3.0 85.1 21.6 101.4 7.0 92.1 46.3 

Cotinine 110.4 9.9 45.2 42.3 85.0 0.9 19.4 13.0 94.1 24.5 65.4 28.0 

Cyprodinil 106.0 3.2 38.7 34.2 139.7 41.3 75.3 2.3 56.6 7.3 63.7 -31.1 

Diazinon 106.2 11.8 87.2 80.8 49.8 10.8 38.7 44.8 51.4 3.3 92.0 74.9 

Estrone 112.5 4.9 61.8 59.6 119.5 3.7 45.8 32.6 119.2 6.5 80.4 58.6 

Fluoxetine 104.8 2.7 94.3 87.7 117.0 11.8 24.4 19.0 75.2 10.4 80.3 28.4 

Hydrocortisone 107.2 8.1 90.8 90.7 104.5 3.4 80.8 55.3 93.4 16.7 53.4 25.2 

Imidacloprid 107.8 2.2 49.1 53.0 109.5 2.2 10.8 -9.1 115.8 6.2 67.3 18.7 

Ketoprofen 107.0 2.7 94.7 95.7 118.9 3.2 22.3 -61.3 107.5 6.3 65.4 -14.2 

Malathion 93.7 42.5 96.2 95.0 79.4 0.6 14.6 0.8 53.8 8.4 74.9 9.4 

Nicotine 0.0  N/A N/A 84.7 3.0 80.5 55.9 61.6 45.9 94.9 89.4 

Paracetamol 100.7 8.6 80.5 81.3 131.3 2.7 83.4 33.9 107.0 8.4 81.6 56.8 

Paroxetine 132.4 22.1 93.6 85.8 131.8 34.8 25.5 23.9 90.6 6.7 82.0 34.8 

Piperine 156.2 12.4 93.4 91.1 114.9 20.0 55.1 67.4 107.5 15.0 88.7 82.0 

Pravastatin 0.0  N/A N/A 83.9 16.1 23.5 29.9 110.3 18.9 76.1 41.0 

Prochloraz 100.5 2.2 65.5 66.9 115.2 13.0 55.6 37.6 100.1 16.1 62.7 37.8 

Progesterone 132.5 33.5 61.1 57.1 125.4 2.6 63.0 40.5 97.8 9.7 50.7 55.5 

Propiconazole 107.3 5.1 62.4 60.2 113.0 4.7 7.5 42.7 108.7 5.1 80.7 50.2 

Sertraline 79.5 15.8 89.5 83.4 119.9 5.9 45.7 29.4 84.7 9.8 4.4 20.5 

Solanidine 195.0 30.3 86.6 80.0 112.6 7.6 45.5 42.1 104.2 10.2 15.1 39.8 

Tebuconazole 108.5 1.8 60.4 59.8 103.0 1.1 16.9 21.7 110.0 5.3 42.8 46.3 

Testosterone 95.4 47.7 65.1 60.3 115.3 4.7 49.1 17.1 100.7 3.0 72.4 27.2 

Thiacloprid 115.6 5.0 66.0 69.4 108.6 9.2 27.8 29.4 111.5 7.7 37.1 40.2 

Thiamethoxam 111.8 2.2 77.6 77.8 109.5 0.5 60.6 34.1 114.0 6.6 83.5 56.6 

Venlafaxine 110.9 5.8 60.8 55.0 104.7 9.6 21.5 20.9 84.1 9.1 81.2 31.0 

N
EG

A
T

IV
E 

IO
N

IS
A

TI
O

N
 

2-Phenylphenol 0.0  N/A N/A 0.0 0.0 13.1 28.3 0.0 0.0 95.3 44.4 

5-Hydroxyindole-3-acetic acid 0.0  100.0 98.9 110.3 19.6 36.1 47.9 96.1 29.7 -0.5 46.4 

Acetylsalicylic acid 0.0  N/A N/A 0.0 0.0 16.8 27.7 0.0 0.0 39.9 11.5 

Arachidonic acid 0.0  73.2 59.9 0.0 0.0 N/A N/A 0.0 0.0 N/A N/A 

Diclofenac 102.8 5.4 96.3 97.1 109.7 2.8 39.9 26.6 114.8 5.5 47.2 10.2 

Dimethyldithiophosphate 118.3 3.5 -2.6 -3.2 73.2 12.6 43.8 27.3 85.9 11.6 15.1 40.3 

Ibuprofen 0.0  100.0 98.9 89.4 19.6 21.3 5.3 0.0 0.0 -4.8 24.9 

Leukotriene B4 0.0  96.6 98.1 137.9 19.8 31.4 20.8 160.2 5.3 69.7 76.2 

Leukotriene D4 0.0  99.2 99.7 101.9 4.9 76.0 85.4 0.0 0.0 65.2 82.2 

Prostaglandin D2 0.0  N/A N/A 81.7 16.7 65.8 62.4 0.0 0.0 42.9 54.5 

Prostaglandin E2 160.6 67.5 99.0 99.4 87.8 6.4 78.8 74.0 101.9 17.0 70.9 71.6 

Prostaglandin F2a 57.5 45.5 99.0 99.5 109.8 4.8 79.8 79.1 83.8 12.5 71.1 79.8 

Prostaglandin J2 0.0  N/A N/A 81.5 11.2 19.1 32.8 71.1 9.5 -78.0 -7.7 

Triclosan 0.0  -9.7 81.7 137.3 32.8 27.7 50.5 87.5 19.2 61.7 68.1 
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Table A3 – (continued) Preselection: Recovery, repeatability (recovery coefficient of variation 

CV) and matrix effect (ME) at 20 and 150 ng/mL of all sample preparation methods on 

individual compounds 

  PHOSPHOLIPID AND PROTEIN REMOVAL PLATES 

  PLD Ostro Prime HLB 

 Component 
Mean 
recov. 

(%) 

Recovery 
CV (%) 

Low-
level 
ME 
(%) 

High-
level 
ME 
(%) 

Mean 
recov. 

(%) 

Recovery 
CV (%) 

Low-
level 
ME 
(%) 

High-
level 
ME 
(%) 

Mean 
recov. 

(%) 

Recovery 
CV (%) 

Low-
level 
ME 
(%) 

High-
level 

ME (%) 

P
O

SI
TI

V
E 

IO
N

IS
A

T
IO

N
 

2-Aminobenzimidazole 104.0 4.7 35.4 -0.3 95.5 14.2 66.1 70.6 121.3 4.7 -32.9 -4.3 

4-Androstene-3,17-dione 114.5 3.9 58.7 28.1 93.6 12.0 48.4 29.1 97.4 6.7 69.0 25.8 

Acetochlor 104.4 3.5 72.6 39.0 100.7 8.3 78.3 58.4 70.8 7.0 46.0 31.4 

Aflatoxin B1 137.4 2.8 50.8 38.8 97.0 14.6 64.9 75.6 88.8 7.4 20.9 33.0 

Azoxystrobin 127.8 2.3 63.8 8.2 100.9 8.7 54.6 29.5 103.9 4.6 29.4 13.1 

Boscalid 136.7 1.1 65.9 25.1 86.7 8.5 57.5 27.2 83.8 6.3 45.7 35.1 

Carbamazepine 124.2 1.4 N/A N/A 97.6 7.7 7.6 1.9 106.2 3.1 -43.3 -46.7 

Carbendazim 124.1 3.1 27.2 15.0 98.9 8.6 57.9 65.4 101.5 3.1 -21.6 17.6 

Chlorpyrifos 98.8 7.4 94.7 93.0 109.3 6.5 99.2 99.1 62.4 11.7 88.0 88.5 

Clothianidin 120.7 1.5 44.0 -2.8 100.1 4.1 62.6 67.6 121.9 4.7 0.8 0.6 

Codeine 107.5 19.0 36.5 -34.0 102.6 14.4 80.5 79.3 49.5 4.7 7.5 -19.9 

Cortisone 126.5 4.3 46.9 15.5 92.1 12.5 64.3 72.8 99.3 2.7 41.4 10.9 

Cotinine 90.4 9.9 52.7 48.9 83.3 13.6 N/A N/A 146.1 8.5 28.2 -4.2 

Cyprodinil 126.5 7.0 52.4 -7.6 184.2 10.3 96.2 93.2 182.9 9.6 67.1 56.2 

Diazinon 90.0 1.0 95.5 88.7 104.8 8.3 93.4 87.2 46.0 4.2 51.6 53.8 

Estrone 108.0 12.3 61.4 47.2 101.6 11.2 38.9 19.2 106.7 8.6 36.3 44.4 

Fluoxetine 123.5 0.6 59.8 15.3 100.4 10.1 95.9 94.9 8.8 12.6 48.7 33.7 

Hydrocortisone 115.9 10.4 44.1 14.7 81.1 10.0 71.5 74.3 71.0 30.4 24.9 -13.2 

Imidacloprid 122.1 2.5 44.6 -2.3 99.6 4.7 64.1 66.6 115.2 2.7 8.1 -9.1 

Ketoprofen 131.5 5.0 33.2 -17.3 96.6 10.5 13.1 -5.4 73.8 13.9 -13.1 -21.2 

Malathion 120.9 0.4 76.1 37.7 120.1 4.9 78.5 52.1 67.9 4.4 50.9 32.7 

Nicotine 60.7 11.8 83.8 66.3 0.0 0.0 N/A N/A 26.3 15.6 N/A N/A 

Paracetamol 130.3 7.7 79.5 56.9 96.8 9.7 82.0 85.4 74.1 5.1 47.4 64.6 

Paroxetine 118.8 3.7 55.6 9.2 99.9 9.0 97.3 95.7 1.5 35.7 37.6 28.3 

Piperine 102.5 13.3 56.7 14.9 124.7 17.7 79.3 78.1 153.1 13.7 66.7 73.4 

Pravastatin 98.2 2.5 -24.2 -84.1 87.2 9.1 88.1 91.5 84.4 7.5 -20.8 -33.1 

Prochloraz 120.7 2.1 66.3 25.3 93.7 22.7 93.8 93.6 124.1 3.6 64.2 60.7 

Progesterone 117.7 2.3 72.4 48.8 165.6 26.2 78.2 68.2 113.0 9.0 61.6 55.9 

Propiconazole 121.2 0.8 65.8 21.8 107.9 7.9 85.1 72.3 113.3 4.2 59.0 48.8 

Sertraline 100.6 5.6 70.3 61.5 90.7 12.0 97.8 96.9 82.1 11.2 61.7 51.9 

Solanidine 104.9 4.4 50.9 8.0 106.3 14.2 93.6 85.2 99.3 23.0 44.3 33.6 

Tebuconazole 122.3 2.2 59.4 11.0 101.2 8.5 73.8 64.5 105.3 4.4 45.8 37.7 

Testosterone 124.2 6.1 58.3 21.4 100.5 9.7 42.7 24.5 114.5 8.1 27.3 19.4 

Thiacloprid 136.7 3.1 49.7 27.4 94.0 7.0 60.0 66.3 121.1 4.8 15.9 24.8 

Thiamethoxam 121.3 1.8 72.5 46.3 99.7 7.3 87.3 85.1 101.1 6.3 53.6 39.0 

Venlafaxine 122.5 3.4 42.2 3.4 96.0 6.3 58.0 54.8 108.4 21.6 8.7 13.9 
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2-Phenylphenol 0.0 0.0 N/A N/A 0.0 0.0 N/A N/A 0.0 0.0 32.3 6.0 

5-Hydroxyindole-3-acetic acid 93.8 20.0 59.2 79.1 82.2 28.2 97.0 98.7 0.0 0.0 -8.3 62.2 

Acetylsalicylic acid 0.0 0.0 N/A N/A 0.0 0.0 N/A N/A 0.0 0.0 78.6 -5.3 

Arachidonic acid 0.0 0.0 N/A N/A 0.0 0.0 67.9 24.7 0.0 0.0 N/A N/A 

Diclofenac 134.7 3.2 33.6 31.8 98.8 8.1 36.4 48.1 81.4 12.1 -16.0 24.0 

Dimethyldithiophosphate 60.7 16.4 34.3 -37.9 79.7 12.3 74.2 70.0 0.0 0.0 -16.6 -87.4 

Ibuprofen 0.0 0.0 N/A N/A 62.2 46.9 16.8 49.2 0.0 0.0 -10.4 43.0 

Leukotriene B4 144.5 17.7 76.9 81.7 0.0 0.0 N/A N/A 103.5 15.6 65.3 77.2 

Leukotriene D4 125.8 10.1 93.0 88.1 0.0 0.0 99.4 99.7 47.4 31.6 95.6 86.7 

Prostaglandin D2 104.1 13.7 65.2 64.2 0.0 0.0 N/A N/A 65.0 26.9 35.5 46.7 

Prostaglandin E2 92.9 13.8 86.9 81.4 101.0 19.7 72.0 84.0 97.7 87.1 63.6 72.8 

Prostaglandin F2a 102.3 9.6 84.1 75.4 91.4 13.9 76.8 84.5 41.7 13.4 58.2 73.6 

Prostaglandin J2 0.0 0.0 N/A N/A 0.0 0.0 15.1 56.0 0.0 0.0 N/A N/A 

Triclosan 112.4 7.4 -92.8 39.1 109.7 12.1 35.7 73.0 74.7 15.0 54.7 43.5 
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Table A3 – (continued) Preselection: Recovery, repeatability (recovery coefficient of variation 

CV) and matrix effect (ME) at 20 and 150 ng/mL of all sample preparation methods on 

individual compounds 

  PHOSPHOLIPID AND PROTEIN REMOVAL PLATES 
SUPPORTED LIQUID EXTRACTION 

CARTRIDGE 

  PL PLUltra Isolute 

 Component 
Mean 
recov. 

(%) 

Recovery 
CV (%) 

Low-
level 
ME 
(%) 

High-
level 
ME 
(%) 

Mean 
recov. 

(%) 

Recovery 
CV (%) 

Low-
level 
ME 
(%) 

High-
level 
ME 
(%) 

Mean 
recov. 

(%) 

Recovery 
CV (%) 

Low-
level 
ME 
(%) 

High-
level ME 

(%) 

P
O

SI
TI

V
E 
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N
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A

T
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2-Aminobenzimidazole 57.6 10.9 -39.2 -33.1 45.3 10.7 -46.8 -27.0 69.2 2.6 47.9 26.1 

4-Androstene-3,17-dione 87.2 4.1 19.1 4.7 87.4 7.9 17.8 9.8 100.5 4.6 59.1 36.2 

Acetochlor 80.7 6.3 37.8 11.9 81.7 8.9 32.3 19.4 103.8 2.4 63.2 39.9 

Aflatoxin B1 60.5 8.9 4.5 5.1 46.4 3.3 -14.0 2.7 90.8 4.1 36.3 35.9 

Azoxystrobin 92.2 6.4 16.9 -16.0 88.5 7.4 7.1 -16.3 102.2 1.7 48.9 23.5 

Boscalid 106.5 5.5 35.6 16.6 82.9 8.9 37.9 27.5 93.2 3.6 55.9 29.8 

Carbamazepine 79.5 3.6 -72.8 -98.1 77.6 7.3 -86.4 -96.3 106.4 2.9 -4.4 -23.4 

Carbendazim 67.7 5.4 -45.1 -8.1 56.3 9.9 -54.1 -2.8 106.9 3.5 39.4 34.4 

Chlorpyrifos 82.7 9.1 88.8 91.2 79.7 7.7 90.5 91.7 79.9 2.4 91.8 90.7 

Clothianidin 51.2 8.2 -27.4 -33.7 43.7 9.7 -29.6 -19.7 101.4 4.1 34.0 2.2 

Codeine 35.9 3.2 -14.0 -57.6 29.6 4.3 -22.3 -47.9 91.4 4.9 47.7 3.6 

Cortisone 48.4 6.5 12.8 -18.7 41.0 6.9 12.7 -15.0 99.3 5.2 -67.1 2.2 

Cotinine 36.8 12.7 62.9 -25.2 26.7 25.0 37.9 -34.5 16.1 29.5 81.6 60.0 

Cyprodinil 137.3 8.5 66.0 62.6 96.8 10.9 65.5 62.3 105.7 11.9 87.1 81.4 

Diazinon 64.2 9.1 42.8 39.0 52.9 28.8 40.6 46.6 97.2 12.9 74.2 61.4 

Estrone 85.7 6.0 18.6 32.8 94.7 7.9 26.8 43.0 98.1 6.8 29.8 5.9 

Fluoxetine 86.3 2.9 43.7 22.2 78.8 7.8 45.2 43.0 98.3 2.7 86.4 78.3 

Hydrocortisone 48.7 10.9 46.6 -33.1 37.7 13.4 27.1 -26.5 106.3 18.9 85.8 88.9 

Imidacloprid 53.4 7.5 -30.9 -41.8 44.5 9.4 -29.2 -40.4 96.5 2.4 36.0 5.9 

Ketoprofen 83.8 2.3 -33.2 -55.2 84.4 6.8 -34.6 -50.3 1.5 5.5 45.2 -18.7 

Malathion 94.0 5.7   18.8 86.9 8.5 43.0 17.7 34.8 4.3 61.0 32.3 

Nicotine 26.9 9.8 44.6 65.9 21.2 9.1 N/A N/A 96.3 2.5 48.1 30.0 

Paracetamol 35.2 10.4 29.7 47.2 28.6 10.2 33.1 52.3 84.1 3.8 39.7 18.2 

Paroxetine 74.1 7.4 29.3 17.3 64.9 13.6 31.3 11.4 106.8 2.0 N/A 79.5 

Piperine 0.0 0.0 69.7 68.5 0.0 0.0 64.6 74.4 87.7 11.1 47.3 23.5 

Pravastatin 48.6 6.6 -76.9 -91.3 46.6 6.5 -82.7 -88.7 0.0 0.0 61.4 56.1 

Prochloraz 90.2 8.4 60.9 63.1 98.0 9.5 65.3 76.9 110.6 6.0 73.8 69.8 

Progesterone 109.0 1.5 56.4 48.7 113.9 4.2 55.3 57.9 95.7 2.5 61.3 48.3 

Propiconazole 118.9 3.4 53.3 44.4 118.1 6.5 55.6 56.2 104.4 1.5 66.8 54.4 

Sertraline 84.3 15.6 61.3 55.3 104.3 2.4 65.2 71.3 83.1 9.1 92.6 89.3 

Solanidine 125.9 5.7 38.5 28.6 140.1 8.2 39.4 41.4 88.9 5.0 78.4 70.5 

Tebuconazole 107.5 2.9 37.9 23.0 99.3 5.9 40.7 38.6 102.9 1.1 65.1 43.3 

Testosterone 91.7 1.9 22.5 -1.5 93.8 7.0 16.1 1.6 102.3 2.0 30.3 21.9 

Thiacloprid 63.3 4.6 -5.7 -3.6 55.2 10.1 -13.4 0.6 98.3 5.5 60.0 31.4 

Thiamethoxam 48.8 9.9 37.8 16.1 39.1 8.8 34.5 23.0 30.7 8.1 51.0 28.2 

Venlafaxine 67.3 5.2 48.0 -18.6 56.3 9.9 -25.4 -23.1 108.5 1.4 49.8 26.7 
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2-Phenylphenol 10.1 31.7 88.0 54.3 11.1 14.0 86.7 53.4 0.0 0.0 96.3 84.1 

5-Hydroxyindole-3-acetic acid 12.3 25.0 -0.4 49.4 9.3 48.2 19.6 54.1 0.0 0.0 75.4 82.7 

Acetylsalicylic acid 0.0 0.0 N/A N/A 0.0 0.0 N/A N/A 0.0 0.0 52.2 59.3 

Arachidonic acid 0.0 0.0 N/A N/A 0.0 0.0 N/A N/A 85.0 20.0 31.4 -17.3 

Diclofenac 112.4 2.2 51.2 27.4 106.7 3.7 53.3 30.7 18.6 10.3 0.1 5.2 

Dimethyldithiophosphate 52.8 10.2 15.4 -69.2 44.5 8.2 49.1 -54.9 0.0 0.0 85.4 70.9 

Ibuprofen 150.5 15.6 19.1 36.0 144.0 28.7 31.1 39.0 0.0 0.0 39.6 65.3 

Leukotriene B4 11.4 10.2 65.0 72.4 11.4 6.8 66.1 73.6 0.0 0.0 N/A N/A 

Leukotriene D4 15.0 0.6 73.5 83.9 16.0 6.7 75.7 85.1 0.0 0.0 68.1 77.9 

Prostaglandin D2 15.7 19.0 93.9 63.6 16.8 63.1 44.2 58.4 0.0 0.0 2.9 36.5 

Prostaglandin E2 65.2 8.9 43.3 59.3 64.1 5.1 97.0 64.2 2.7 15.7 42.6 51.2 

Prostaglandin F2a 70.8 5.9 69.2 62.1 70.3 4.1 70.7 63.3 2.9 4.9 50.8 56.0 

Prostaglandin J2 0.0 0.0 71.0 78.2 0.0 0.0 57.8 74.9 0.0 0.0 N/A N/A 

Triclosan 142.0 50.6 63.6 68.0 150.2 28.8 62.9 74.9 80.0 8.0 -86.9 41.6 
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Table A3 – (continued) Preselection: Recovery, repeatability (recovery coefficient of variation 

CV) and matrix effect (ME) at 20 and 150 ng/mL of all sample preparation methods on 

individual compounds 

  SOLID PHASE EXTRACTION CARTRIDGES 

  HLB Strata X Strata XC 

 Component 
Mean 
recov. 

(%) 

Recovery 
CV (%) 

Low-
level 
ME 
(%) 

High-
level 
ME 
(%) 

Mean 
recov. 

(%) 

Recovery 
CV (%) 

Low-
level 
ME 
(%) 

High-
level 
ME 
(%) 

Mean 
recov. 

(%) 

Recovery 
CV (%) 

Low-
level 
ME 
(%) 

High-
level 

ME (%) 

P
O
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2-Aminobenzimidazole 78.4 10.9 77.9 75.5 66.1 12.9 -4.8 22.9 0.0 0.0 11.4 16.0 

4-Androstene-3,17-dione 111.6 2.9 -68.8 -86.4 85.1 9.5 49.1 42.0 97.2 3.4 25.0 21.5 

Acetochlor 26.0 86.0 -11.8 -16.5 109.4 5.6 86.8 79.9 126.0 3.4 89.3 87.1 

Aflatoxin B1 112.8 3.9 27.3 35.7 73.4 19.3 49.7 44.3 134.5 20.0 55.0 60.9 

Azoxystrobin 119.8 2.1 64.3 49.0 87.7 13.1 57.7 41.2 97.6 2.6 45.6 25.9 

Boscalid 108.6 7.7 61.6 55.4 81.8 9.7 73.8 71.8 107.1 1.8 26.5 19.8 

Carbamazepine 0.0 0.0 -32.5 -36.0 97.9 5.6 N/A N/A 90.1 5.8 -38.8 -37.8 

Carbendazim 110.6 3.1 11.1 32.0 114.5 2.2 2.8 23.2 105.2 6.1 -6.8 27.3 

Chlorpyrifos 94.3 6.4 99.6 99.3 71.7 13.3 N/A N/A 109.4 22.3 99.4 98.5 

Clothianidin 110.2 4.2 46.5 36.8 107.9 4.5 28.8 8.8 102.0 1.9 41.7 38.5 

Codeine 98.9 22.3 29.4 11.7 110.5 3.2 21.5 -5.7 114.8 15.2 11.9 2.6 

Cortisone 124.9 2.6 25.2 17.9 107.8 4.3 31.5 7.4 86.9 17.0 33.5 23.7 

Cotinine 0.0 0.0 47.2 26.1 66.8 7.8 -25.6 16.6 0.0 0.0 65.7 47.1 

Cyprodinil 128.9 21.0 94.4 91.6 62.9 6.9 N/A N/A 88.8 4.2 67.2 60.1 

Diazinon 90.7 7.8 87.8 84.8 86.8 18.5 98.9 97.2 110.1 6.6 96.3 90.5 

Estrone 130.2 1.5 67.5 67.0 70.2 14.4 57.4 58.6 89.4 4.1 -74.3 -49.6 

Fluoxetine 116.9 8.5 93.7 89.2 110.0 8.7 76.9 78.7 103.1 1.6 80.8 76.0 

Hydrocortisone 126.4 7.8 22.7 24.5 109.1 11.2 53.8 19.5 103.9 8.8 44.5 25.9 

Imidacloprid 113.6 1.6 52.6 40.8 111.0 2.0 34.1 6.6 98.4 2.7 46.4 35.0 

Ketoprofen 117.8 0.9 59.1 49.5 106.2 6.8 26.8 2.2 109.1 2.9 44.5 37.5 

Malathion 113.7 3.9 82.1 73.9 69.2 14.3 82.5 69.7 2.8 63.7 94.5 91.3 

Nicotine 0.5 21.0 28.1 -5.5 0.0 0.0 32.9 -12.8 5.7 24.9 N/A N/A 

Paracetamol 104.2 7.5 58.2 50.3 97.5 3.1 95.2 79.6 75.5 14.7 50.6 49.9 

Paroxetine 128.8 4.3 92.4 86.6 102.6 9.3 68.3 73.2 96.7 5.0 76.8 67.6 

Piperine 156.9 16.6 75.5 65.0 82.1 59.9 79.4 81.1 76.8 13.3 59.6 33.1 

Pravastatin 108.3 4.3 40.2 41.6 88.6 6.3 13.6 12.2 65.1 18.3 13.7 29.0 

Prochloraz 132.8 11.3 90.2 86.4 149.8 22.5 91.1 93.6 71.1 3.5 49.7 46.5 

Progesterone 99.9 9.8 75.8 70.2 101.1 7.2 83.2 88.4 170.1 9.5 -62.1 -94.8 

Propiconazole 119.2 3.3 78.0 71.7 110.9 2.3 89.2 91.5 100.0 1.7 34.1 32.4 

Sertraline 121.6 33.2 95.2 94.9 123.0 13.7 87.9 91.1 99.5 5.0 80.1 75.4 

Solanidine 132.0 8.6 86.1 84.2 121.5 5.3 89.1 78.3 101.9 2.7 69.3 63.9 

Tebuconazole 115.1 2.7 71.6 64.3 104.9 6.3 76.5 84.4 106.5 2.2 29.2 23.7 

Testosterone 132.1 5.2 56.2 46.0 153.9 6.3 58.1 51.6 110.0 6.5 37.3 25.5 

Thiacloprid 106.3 3.2 63.0 63.9 105.4 5.2 30.6 20.2 99.5 2.2 58.2 62.0 

Thiamethoxam 111.2 2.6 74.8 61.1 112.1 1.2 73.9 53.7 88.3 4.8 71.1 59.9 

Venlafaxine 101.7 5.6 74.4 68.5 112.9 4.9 33.0 12.9 105.1 3.0 74.5 70.7 
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2-Phenylphenol 0.0 0.0 94.7 81.8 0.0 0.0 N/A N/A 0.0 0.0 N/A 95.3 

5-Hydroxyindole-3-acetic acid 127.0 22.2 65.3 80.8 132.6 58.4 40.9 21.3 73.1 33.8 62.8 81.9 

Acetylsalicylic acid 130.9 14.0 N/A N/A 0.0 0.0 45.4 19.4 16.4 48.0 N/A N/A 

Arachidonic acid 0.0 0.0 N/A N/A 0.0 0.0 N/A N/A 153.7 36.8 N/A N/A 

Diclofenac 108.8 2.0 51.8 62.9 99.7 14.4 89.5 93.0 107.9 3.7 21.4 41.7 

Dimethyldithiophosphate 11.1 9.6 12.7 -18.4 26.9 6.0 46.5 16.2 44.6 6.6 32.3 -0.8 

Ibuprofen 115.7 49.1 93.2 93.8 104.2 103.8 N/A N/A 156.8 17.3 90.3 88.1 

Leukotriene B4 114.0 5.7 75.2 80.6 105.9 10.7 66.3 69.1 53.9 48.0 83.2 74.3 

Leukotriene D4 122.1 35.8 85.9 93.0 163.4 30.2 39.6 15.9 107.5 5.7 51.2 76.1 

Prostaglandin D2 112.5 2.8 -37.4 19.0 65.9 68.6 -0.6 3.1 101.2 6.9 -0.9 29.6 

Prostaglandin E2 120.9 9.9 57.3 73.2 74.3 18.2 -8.5 67.7 105.3 3.0 68.2 76.5 

Prostaglandin F2a 116.0 6.4 57.5 70.6 94.8 12.0 50.3 73.6 112.3 2.3 60.9 72.1 

Prostaglandin J2 40.8 134.1 88.8 95.0 135.2 24.3 -77.0 17.6 151.5 79.3 -61.2 -42.8 

Triclosan 160.8 22.8 81.9 95.6 172.8 15.2 94.1 96.2 108.8 3.6 -20.8 62.7 



Appendices 

206  
 

2.4. Table A4a – Comparison to PPT (Serum): Detection, repeatability, S/N and spiking significance of 

preselected preparation methods on individual compounds 

Table A4a – Comparison of sample preparation methods to PPT in serum: median area, repeatability (area coefficient of variation CV), 

signal/noise ratio (S/N), and p-value of areas in four spiked vs. four non-spiked samples 

  PPT Phree StrataX Phree+StrataX 

 Component 
Mean 
area 

Area CV 
(%) S/N p-value  

Mean 
area 

Area CV 
(%) S/N p-value  

Mean 
area 

Area CV 
(%) S/N p-value  

Mean 
area 

Area CV 
(%) S/N 

p-value 
$$ 

P
O

SI
TI

V
E 

IO
N
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A
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2-Aminobenzimidazole 168885 7 789 1.7E-07 152233 7 695 1.5E-07 171971 18 1116 3.1E-05 112054 23 707 1.3E-04 

4-Androstene-3,17-dione 191923 9 2868 5.9E-07 47650 6 1151 3.1E-07 150553 13 2832 5.1E-06 94218 11 1935 2.6E-06 

Acetochlor 10563 3 179 7.7E-10 3509 16 73 1.4E-05 8315 17 166 2.6E-05 N/A N/A N/A N/A 

Aflatoxin B1 7514 18 519 2.8E-05 41863 4 2315 5.8E-09 52222 15 3151 9.7E-06 32722 16 1635 1.4E-05 

Azoxystrobin 248938 8 10312 3.1E-07 54313 5 2699 2.2E-08 178762 14 8872 8.0E-06 121984 9 6779 5.7E-07 

Boscalid 107469 11 3234 1.6E-06 13141 7 884 1.1E-07 66410 18 7401 3.0E-05 39119 17 3339 2.1E-05 

Carbamazepine 157472 9 4397 4.9E-07 78172 1 2118 7.0E-13 136496 13 2820 5.9E-06 90113 15 1774 9.2E-06 

Carbendazim 130835 8 1717 2.0E-07 88661 8 1277 2.5E-07 111303 18 1739 2.9E-05 74097 13 1124 3.8E-06 

Chlorpyrifos 16680 12 3407 3.2E-06 N/A N/A N/A N/A 7120 27 3323 2.8E-04 771 32 24756 1.2E-03 

Clothianidin 8563 7 532 1.2E-07 6952 14 382 6.9E-06 9478 14 557 7.4E-06 5934 21 320 7.7E-05 

Codeine 191972 6 3274 1.0E-07 163579 9 2849 6.9E-07 193676 17 3795 3.0E-05 118877 14 2450 8.8E-06 

Cortisone 151845 23 6019 1.1E-02 170331 7 6167 1.8E-05 227886 3 6822 3.6E-08 136684 12 3879 1.2E-03 

Cotinine 983674 4 18717 1.8E-05 843132 14 11176 2.5E-02 4079 4 28824 2.1E-07 283673 38 5803 5.4E-04 

Cyprodinil 509013 8 7287 3.1E-07 8515 14 155 7.0E-06 195296 33 2879 9.3E-04 57770 22 910 9.4E-05 

Diazinon 455855 3 13720 1.1E-06 9496 20 371 4.1E-03 169970 29 5261 1.0E-02 42403 78 1492 1.7E-01 

Estrone 38956 15 648 1.0E-05 6198 8 144 2.3E-07 22432 12 394 3.6E-06 14510 16 272 1.7E-05 

Fluoxetine 129336 5 2086 1.8E-08 4379 8 88 3.8E-07 71209 25 891 2.0E-04 27871 28 380 3.6E-04 

Hydrocortisone 840557 12 29101 8.6E-04 669610 8 22996 3.2E-03 913228 8 24658 5.3E-05 515564 10 14568 6.9E-01 

Imidacloprid 23078 8 2083 3.6E-07 20014 7 1464 8.5E-08 24441 15 2167 1.3E-05 16801 13 1192 4.5E-06 

Ketoprofen 52925 7 240 1.8E-07 26807 3 105 1.4E-09 57919 13 216 5.3E-06 38584 8 147 2.2E-07 

Malathion N/A N/A N/A N/A 1560 6 89 6.2E-08 8526 12 777 2.7E-06 4522 31 250 6.5E-04 

Nicotine 20945 11 176 4.7E-05 22208 10 170 2.1E-05 N/A N/A N/A N/A 5178 25 48 4.9E-01 

Paracetamol 15072 1 190 7.5E-13 12304 2 152 9.0E-11 N/A N/A N/A N/A N/A N/A N/A N/A 

Paroxetine 317360 9 7914 1.3E-04 10556 8 260 1.7E-04 173573 28 3109 9.2E-03 60558 34 1202 1.8E-02 

Piperine 
343721

4 10 22785 
1.0E-06 173761 

8 1459 
3.6E-01 

877977 23 5335 4.6E-04 476506 21 2943 8.2E-04 

Pravastatin 6312 14 44 8.7E-06 2302 13 29 5.0E-06 3409 31 24 6.5E-04 2179 5 24 1.6E-08 

Prochloraz 62878 8 11665 3.4E-07 1529 15 151 9.5E-06 30254 31 12263 6.2E-04 12973 31 2449 6.7E-04 

Progesterone 261837 10 4083 2.2E-04 7670 11 299 4.7E-04 1141 18 2637 1.9E-03 49446 24 1429 5.7E-03 

Propiconazole 269169 9 9695 6.8E-07 5766 6 235 6.6E-08 136439 27 6427 3.4E-04 56249 22 2284 1.0E-04 
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Table A4a – (continued) Comparison of sample preparation methods to PPT in serum: median area, repeatability (area coefficient of variation 

CV), signal/noise ratio (S/N), and p-value of areas in four spiked vs. four non-spiked samples 

  PPT Phree Strata X Phree + Strata X 

 
Component 

Mean 
area 

Area CV 
(%) S/N p-value  

Mean 
area 

Area CV 
(%) S/N p-value  

Mean 
area 

Area CV 
(%) S/N p-value  

Mean 
area 

Area CV 
(%) S/N p-value  

P
O

SI
TI

V
E 

IO
N

IZ
A

TI
O

N
 

Sertraline 39354 7 1215 1.1E-07 N/A N/A N/A N/A 21629 24 570 1.7E-04 7395 31 203 7.0E-04 

Solanidine 286540 9 17609 5.3E-07 10756 34 1024 1.0E-03 178210 33 45111 9.4E-04 67834 31 38493 6.9E-04 

Tebuconazole 340486 11 6042 1.5E-06 10130 7 225 1.4E-07 180920 21 3197 8.5E-05 82258 20 1526 5.2E-05 

Testosterone 244917 10 5802 1.7E-06 47622 4 1718 6.6E-07 179614 11 4597 3.0E-06 111394 12 3170 4.6E-06 

Thiacloprid 59923 8 5852 1.9E-07 44756 6 3203 4.1E-08 60133 15 6213 9.4E-06 40721 15 3374 9.3E-06 

Thiamethoxam 13063 7 876 1.8E-07 14312 9 757 7.0E-07 16908 15 1422 1.2E-05 12060 15 798 9.2E-06 

Venlafaxine 178703 5 14722 1.3E-08 125662 7 5814 1.3E-07 167243 15 16474 1.3E-05 96171 22 4650 9.6E-05 

N
EG

A
TI

V
E 

IO
N

IS
A

TI
O

N
 

2-Phenylphenol 
291885

6 3 56373 
1.3E-04 

132120
4 7 29157 

5.0E-01 
293827

7 8 57962 2.4E-04 
201447

1 4 44556 5.7E-03 

5-Hydroxyindole-3-acetic 
acid 14004 13 344 

4.6E-06 N/A 
N/A N/A 

N/A 
24015 8 309 2.2E-07 31460 13 588 4.0E-06 

Acetylsalicylic acid 
550637

5 2 54917 
6.2E-06 

376728
7 7 33621 

2.9E-01 
602775

1 6 47136 3.5E-05 
374647

4 7 38863 3.2E-01 

Arachidonic acid 
890980

9 14 
229988

41 
9.4E-06 236642 

143 721170 
9.7E-01 

505016
1 29 

367146
8 7.4E-04 793832 54 218759 9.6E-02 

Diclofenac 16400 8 1071 2.5E-07 1783 6 115 5.6E-08 13792 19 966 3.8E-05 9428 11 600 1.7E-06 

Dimethyldithiophosphate 16609 32 2783 7.7E-04 458 80 70 4.7E-02 N/A N/A N/A N/A N/A N/A N/A N/A 

Ibuprofen N/A N/A N/A N/A 1402 13 78 2.1E-05 N/A N/A N/A N/A N/A N/A N/A N/A 

Leukotriene B4 165375 9 5830 2.7E-06 30321 20 4797 7.7E-01 181828 11 5112 6.6E-06 94865 42 4208 1.6E-02 

Leukotriene D4 17303 10 1150 9.4E-07 N/A N/A N/A N/A 6511 11 411 1.5E-06 N/A N/A N/A N/A 

Prostaglandin D2 135409 6 3467 3.3E-04 90582 18 4818 8.3E-01 205159 6 6306 6.6E-06 118770 8 5289 3.8E-03 

Prostaglandin E2 187066 4 4590 2.3E-05 118566 10 5057 1.9E-03 243065 4 6027 3.3E-06 151570 7 5217 2.0E-04 

Prostaglandin F2a 242325 5 19900 4.6E-08 180703 9 137090 1.3E-06 263279 11 30284 2.9E-06 128622 67 26327 3.6E-02 

Prostaglandin J2 31280 7 2955 4.0E-06 27588 11 3450 2.7E-05 47768 10 4957 5.3E-06 31572 8 3622 5.5E-06 

Triclosan 1308 23 373 3.1E-04 N/A N/A N/A N/A 388 12 208 1.2E-05 N/A N/A N/A N/A                   

 Detection frequency 96 90 92 88             

 Median S/N 3437 1024 3260 2109             

 

Semi-quantification 
performance (% detected 

compounds with CV < 20%) 
94 93 72 55 

            

 Median p-value 1.1E-06 5.0E-06 1.9E-05 1.2E-04             

 Speed of implementation 4 3 2 1             
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2.5. Table A4b – Comparison to PPT (Plasma): Detection, repeatability, S/N and spiking significance of 

preselected preparation methods on individual compounds 

Table A4b – Comparison of sample preparation methods to PPT in plasma: median area, repeatability (area coefficient of variation CV), 

signal/noise ratio (S/N), and p-value of areas in four spiked vs. four non-spiked samples 

  PPT Phree Strata X Phree + Strata X 

 Component 
Mean 
area 

Area 
CV (%) S/N p-value  

Mean 
area 

Area 
CV (%) S/N p-value  

Mean 
area 

Area 
CV (%) S/N p-value   

Mean 
area 

Area 
CV (%) S/N p-value  

P
O

SI
TI

V
E 

IO
N

IS
A

TI
O

N
 

2-Aminobenzimidazole 119925 9 850 7.5E-07 110613 15 693 1.2E-05 198425 6 1302 4.8E-08 98928 18 751 3.1E-05 

4-Androstene-3,17-dione 107968 14 3136 8.0E-06 74565 8 1954 5.0E-07 146575 10 3123 1.2E-06 78070 14 1930 9.6E-06 

Acetochlor 8089 7 148 3.6E-04 6052 15 137 2.8E-03 10158 29 168 2.0E-03 4384 33 44 2.8E-02 

Aflatoxin B1 1794 13 120 3.8E-06 24293 12 1204 2.6E-06 39285 13 2184 5.3E-06 16947 39 809 2.0E-03 

Azoxystrobin 143400 18 12421 3.1E-05 94640 8 5809 2.1E-07 184050 12 16547 2.8E-06 94188 20 6337 5.7E-05 

Boscalid 66505 20 4268 6.0E-05 29388 4 1611 5.8E-09 77270 18 8719 3.2E-05 42040 15 3944 1.2E-05 

Carbamazepine 89048 11 2819 1.6E-06 75585 12 2200 3.3E-06 130975 6 3116 5.4E-08 79290 9 1722 4.2E-07 

Carbendazim 85070 10 1471 1.4E-06 77730 13 1279 5.1E-06 127850 1 1959 2.1E-12 76923 7 1400 1.8E-07 

Chlorpyrifos 7386 36 1569 1.4E-03 909 45 1154 4.5E-03 4077 25 466712 1.9E-04 N/A N/A N/A N/A 

Clothianidin 4952 13 313 4.9E-06 4735 12 291 3.6E-06 8127 6 574 3.7E-08 5093 7 309 1.2E-07 

Codeine 125800 10 4097 1.1E-06 105925 13 3143 4.2E-06 159475 23 4504 1.4E-04 76145 18 2155 3.3E-05 

Cortisone 69430 12 4563 6.4E-02 102163 14 5165 1.2E-03 198250 23 7673 8.5E-04 97038 13 2525 1.2E-03 

Cotinine 68790 8 1959 1.1E-06 62820 11 1579 9.9E-06 142175 12 2803 4.7E-06 98930 26 1526 4.9E-04 

Cyprodinil 330550 19 5794 3.8E-05 36065 16 616 1.6E-05 242600 38 3570 2.0E-03 70283 37 1057 1.6E-03 

Diazinon 269900 8 8686 3.9E-07 81685 19 3302 8.7E-05 101185 20 3722 1.0E-04 2550 146 90 2.6E-02 

Estrone 23205 19 739 4.4E-05 10574 7 249 2.8E-07 24033 19 493 4.6E-05 15145 15 213 1.4E-05 

Fluoxetine 58570 22 1189 9.3E-05 21205 10 372 1.0E-06 75745 26 957 2.5E-04 28685 50 322 7.2E-03 

Hydrocortisone 380800 12 24229 7.9E-01 394750 15 20203 5.5E-01 833225 32 25554 1.4E-02 380450 12 8139 8.0E-01 

Imidacloprid 13615 10 1150 1.2E-06 14173 15 1039 1.2E-05 21910 3 1865 1.1E-09 14698 10 1060 1.1E-06 

Ketoprofen 29941 13 177 5.4E-04 28607 8 124 7.7E-05 46685 10 248 2.0E-04 30280 6 145 2.0E-05 

Malathion N/A N/A N/A N/A 4420 3 189 1.9E-09 8483 6 604 6.9E-08 1598 37 120 1.6E-03 

Nicotine 1070 46 69 7.6E-02 10020 17 419 3.6E-03 2160 120 243 4.5E-01 338 200 99 3.5E-02 

Paracetamol 10091 14 240 9.2E-06 11177 20 249 6.7E-05 63458 22 1065 9.5E-05 63138 14 1272 6.4E-06 

Paroxetine 139875 23 4656 1.3E-04 44115 12 1125 3.3E-06 176000 26 3735 2.4E-04 55408 55 1109 1.1E-02 

Piperine 359650 17 6420 5.1E-04 134550 4 2489 1.3E-01 341500 51 4991 7.0E-02 149503 34 2586 9.4E-01 

Pravastatin 7605 10 787 1.3E-06 5805 14 426 8.0E-06 5859 14 214 6.8E-06 3423 23 83 1.1E-04 

Prochloraz 36083 22 2944 1.0E-04 5510 9 445 7.4E-07 40598 23 17210 1.3E-04 16627 37 5059 1.8E-03 

Progesterone 158625 17 4786 2.2E-05 35210 9 1760 5.8E-07 140875 17 4001 2.6E-05 44060 32 1859 8.0E-04 

Propiconazole 172000 19 7222 4.5E-05 39855 5 1561 3.2E-08 190800 20 8702 6.1E-05 88903 22 3515 1.0E-04 

Sertraline 22738 21 625 8.1E-05 3498 7 81 1.3E-07 24053 22 615 8.8E-05 8318 41 194 2.9E-03 
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Table A4b – (continued) Comparison of sample preparation methods to PPT: median area, repeatability (area coefficient of variation CV), 

signal/noise ratio (S/N), and p-value of areas in four spiked vs. four non-spiked samples 

  PPT Phree Strata X Phree + Strata X 

 
Component 

Mean 
area 

Area 
CV (%) 

S/N p-value 
Mean 
area 

Area 
CV (%) 

S/N p-value 
Mean 
area 

Area 
CV (%) 

S/N p-value 
Mean 
area 

Area 
CV (%) 

S/N p-value 

P
O

SI
TI

V
E 

Solanidine 250825 20 11228 6.2E-05 52193 10 3289 1.8E-06 191195 43 43909 3.4E-03 58968 39 3035 2.3E-03 

Tebuconazole 215950 18 5617 3.7E-05 57930 5 1379 1.5E-08 245375 22 4146 1.0E-04 119800 24 2434 1.7E-04 

Testosterone 122550 16 4621 1.6E-05 76673 8 2827 2.3E-07 156500 11 4553 2.3E-06 88753 8 2856 3.9E-07 

Thiacloprid 35550 12 2586 3.1E-06 33135 13 2243 4.6E-06 55410 5 5378 9.6E-09 34043 9 2766 4.7E-07 

Thiamethoxam 7122 12 545 3.3E-06 8693 18 616 3.0E-05 13413 8 1153 1.9E-07 9197 11 783 1.9E-06 

Venlafaxine 105735 10 13456 1.3E-06 95028 13 4150 5.5E-06 160775 11 23569 1.4E-06 81265 15 3462 1.1E-05 

N
EG

A
TI

V
E 

IO
N

IS
A

TI
O

N
 

2-Phenylphenol 3867 20 101 7.1E-01 3626 8 97 6.5E-01 5014 24 127 7.7E-02 4914 7 135 6.5E-04 

5-Hydroxyindole-3-acetic acid 8032 12 183 1.2E-01 9522 18 195 8.7E-01 16040 29 298 3.1E-02 10653 7 211 9.4E-02 

Acetylsalicylic acid N/A N/A N/A N/A 4580 8 96 1.1E-06 13828 11 135 2.6E-06 5287 39 98 3.9E-03 

Arachidonic acid 
158775

0 5 
282107

5 
2.2E-08 61620 

12 
188839

1 
4.6E-05 

492975 63 365127 5.1E-02 58495 57 19408 1.3E-02 

Diclofenac 18945 10 1129 1.3E-06 4799 10 282 7.7E-07 15553 21 1210 7.1E-05 9951 11 669 1.4E-06 

Dimethyldithiophosphate 28970 4 1381 4.0E-06 10171 22 477 5.1E-03 N/A N/A N/A N/A N/A N/A N/A N/A 

Ibuprofen 8432 6 761 1.5E-05 4377 15 318 2.1E-02 13618 46 918 1.4E-02 1968 25 105 1.8E-01 

Leukotriene B4 88910 8 45976 2.4E-07 23270 8 14083 2.3E-07 49465 42 9744 3.0E-03 6752 83 1463 5.3E-02 

Leukotriene D4 29878 11 3633 1.4E-06 871 53 225 9.1E-03 4598 84 360 5.8E-02 N/A N/A N/A N/A 

Prostaglandin D2 N/A N/A N/A N/A 8626 17 632 2.1E-05 16003 15 906 1.2E-05 7597 46 448 4.7E-03 

Prostaglandin E2 28600 16 2535 1.7E-05 38355 13 3087 4.8E-06 61820 14 4114 6.2E-06 29988 41 1956 2.8E-03 

Prostaglandin F2a 105975 7 181698 1.3E-07 97193 14 90725 7.9E-06 144150 19 57909 4.7E-05 54948 59 15756 1.5E-02 

Prostaglandin J2 11630 9 2290 1.0E-06 9721 9 842 1.6E-06 17138 27 914 4.4E-04 8656 30 416 9.5E-04 

Triclosan 3583 4 485 7.9E-09 571 6 63 3.1E-07 1727 20 390 5.9E-05 N/A N/A N/A N/A 
                                                                        

 Detection frequency 94 100 98 92             

 Median S/N 2535 1082 2803 1190             

 

Semi-quantification performance 
(% detected compounds with CV 

< 20%) 
81 94 47 46 

            

 Median p-value 1.5E-05 5.0E-06 7.1E-05 8.8E-04             

 Speed of implementation 4 3 2 1             
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2.6. Table A5a – Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification 

Table A5a – Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated 

through manual annotation (i.e. without confidence indices-CI values) 

Annotation SMILES 
CI m/z 

CI Rt 
CI isotopic 

fit 
Global CI  

Experimental RTI-predicted 
Retip-

predicted 
logP-

predicted 
CI overall 

(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

1,8-Epoxy-p-menthan-3-ol glucoside * 
CC1(C2CCC(O1)(CC2OC3C(C(C(C(O3
)CO)O)O)O)C)C 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

25-Hydroxyvitamin D3 26,23-lactol * 
CC(CC1CC(C(O1)O)(C)O)C2CCC3C2(
CCCC3=CC=C4CC(CCC4=C)O)C 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

2-naphthylamine Nc1ccc2ccccc2c1 0.94 n.a. n.a. n.a. 0.85 n.a. 0.84 n.a. 0.84 n.a. 0.80 n.a. G3_0.86 n.a. 
3-[2-(5-Methylthiophen-2-yl)-2-
oxoethoxy]benzonitrile * 

CC1=CC=C(S1)C(=O)COC2=CC=CC(=
C2)C#N 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

3-hydroxybenzoic acid OC(=O)c1cccc(O)c1 n.a. 0.85 n.a. n.a. n.a. 0.87 n.a. 0.87 n.a. 0.86 n.a. n.a. n.a. G2_0.86 
4-chlorophenol Oc1ccc(Cl)cc1 n.a. 0.78 n.a. n.a. n.a. 0.83 n.a. 0.78 n.a. 0.83 n.a. 0.91 n.a. G3_0.84 
4-hydroxy-2,5,6-trichloroisophthalonitrile Oc1c(Cl)c(Cl)c(C#N)c(Cl)c1C#N n.a. 0.82 n.a. n.a. n.a. n.a. n.a. 0.80 n.a. 0.76 n.a. 0.78 n.a. G3_0.8 
4-hydroxybenzoic acid OC(=O)c1ccc(O)cc1 n.a. 0.85 n.a. n.a. n.a. 0.85 n.a. 0.83 n.a. 0.81 n.a. n.a. n.a. G2_0.85 
4-Hydroxyquinoline * C1=CC=C2C(=C1)C(=O)C=CN2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
4-Nitrophenol * C1=CC(=CC=C1[N+](=O)[O-])O n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

4-Sulfamoylbenzoic acid * 
CC1=CC=C(S1)C(=O)COC2=CC=CC(=
C2)C#N 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Acetaminophen sulfate 
CC(=O)NC1=CC=C(C=C1)OS(=O)(=O)
O 

n.a. 0.84 n.a. n.a. n.a. 0.82 n.a. 0.99 n.a. n.a. n.a. 0.46 n.a. G3_0.43 

Azelaic acid * C(CCCC(=O)O)CCCC(=O)O n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Benzophenone-4 
COc1cc(O)c(cc1[S](O)(=O)=O)C(=O)c
2ccccc2 

n.a. 0.72 n.a. n.a. n.a. 0.85 n.a. 0.66 n.a. 0.95 n.a. n.a. n.a. G2_0.79 

Caffeic acid OC(=O)\C=C/c1ccc(O)c(O)c1 n.a. 0.91 n.a. n.a. n.a. 0.97 n.a. 0.89 n.a. 0.85 n.a. n.a. n.a. G2_0.94 
Caffeine Cn1cnc2N(C)C(=O)N(C)C(=O)c12 0.97 n.a. 1.00 n.a. 0.94 n.a. 0.77 n.a. 0.61 n.a. n.a. n.a. G2_0.98 n.a. 
Carveol * CC(=C)C1CC=C(C)C(O)C1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Chavicol sulfate C=CCC1=CC=C(C=C1)OS(=O)(=O)O n.a. 0.85 n.a. 0.40 n.a. 0.24 n.a. 0.86 n.a. 0.83 n.a. 0.24 n.a. G3_0.5 
Coumaric acid OC(=O)\C=C\c1cccc(O)c1 1.00 0.98 n.a. n.a. 0.83 0.83 0.83 0.83 0.83 0.83 0.93 n.a. G3_0.92 G2_0.9 
Cresol sulfate CC1=CC=CC=C1OS(=O)(=O)O n.a. 0.99 n.a. 0.90 n.a. 0.95 n.a. 0.77 n.a. 0.84 n.a. 0.85 n.a. G3_0.91 
Diethylphthalate * CCOC(=O)C1=CC=CC=C1C(=O)OCC n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Diphenylsulfone * 
C1=CC=C(C=C1)S(=O)(=O)C2=CC=CC
=C2 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Indole-3-carbinol * C1=CC=C2C(=C1)C(=CN2)CO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Indole-3-carboxaldehyde * C1=CC=C2C(=C1)C(=CN2)C=O n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Indolelactic acid * 
C1=CC=C2C(=C1)C(=CN2)CC(C(=O)O
)O 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
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Table A5a – (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate 

compounds annotated through manual annotation (i.e. without confidence indices-CI values) 

Annotation SMILES 
CI m/z 

CI Rt CI isotopic 
fit 

CI overall 

Global CI 
Experimental RTI-predicted 

Retip-
predicted 

logP-
predicted 

(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

Indoxyl sulfate 
C1=CC=C2C(=C1)C(=CN2)OS(=O)(=O
)O 

n.a. 0.85 n.a. 0.86 n.a. n.a. n.a. n.a. n.a. 0.75 n.a. n.a. n.a. G2_0.85 

Isobutylparaben CC(C)COC(=O)c1ccc(O)cc1 0.97 n.a. n.a. n.a. 0.81 n.a. 0.67 n.a. 0.21 n.a. 0.70 n.a. G3_0.83 n.a. 
Isopropylparaben CC(C)OC(=O)c1ccc(O)cc1 n.a. 0.97 n.a. n.a. n.a. n.a. n.a. 0.86 n.a. 0.91 n.a. n.a. n.a. G2_0.49 
Jasmonic acid * CCC=CCC1C(CCC1=O)CC(=O)O n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Loliolid * CC1(CC(CC2(C1=CC(=O)O2)C)O)C n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
L-Phenylalanine   N[C@@H](Cc1ccccc1)C(O)=O 0.92 n.a. n.a. n.a. 0.82 n.a. n.a. n.a. n.a. n.a. 0.97 n.a. G3_0.9 n.a. 

Naphthalene-2-sulfonic acid * 
C1=CC=C2C=C(C=CC2=C1)S(=O)(=O)
O 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Octaethylene glycol OCCOCCOCCOCCOCCOCCOCCOCCO 0.94 n.a. n.a. n.a. 0.63 n.a. 0.88 n.a. n.a. n.a. 0.94 n.a. G3_0.84 n.a. 
Paraxanthine Cn1cnc2NC(=O)N(C)C(=O)c12 n.a. 0.85 n.a. n.a. n.a. 0.84 n.a. 0.89 n.a. n.a. n.a. n.a. n.a. G2_0.85 

PEG18 
OCCOCCOCCOCCOCCOCCOCCOCCO
CCOCCOCCOCCOCCOCCOCCOCCOC
CO 

0.89 n.a. n.a. n.a. 0.69 n.a. 0.98 n.a. n.a. n.a. 0.85 n.a. G3_0.81 n.a. 

Piperine 
O=C(/C=C/C=C/c1ccc2OCOc2c1)N3
CCCCC3 

0.83 n.a. 0.96 n.a. 0.29 n.a. 0.98 n.a. 0.38 n.a. 0.92 n.a. G3_0.9 n.a. 

Propylparaben sulfate 
CCCOC(=O)C1=CC=C(C=C1)OS(=O)(=
O)O 

n.a. 0.86 n.a. 0.87 n.a. 0.33 n.a. 0.81 n.a. 0.69 n.a. 0.82 n.a. G3_0.85 

Stachydrine (Proline betaine) * C[N+]1(CCCC1C(=O)[O-])C n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Thymol * CC1=CC(=C(C=C1)C(C)C)O n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Triclosan sulfate 
C1=CC(=C(C=C1Cl)OS(=O)(=O)O)OC
2=C(C=C(C=C2)Cl)Cl 

n.a. 0.86 n.a. 0.94 n.a. n.a. n.a. n.a. n.a. 0.93 n.a. 1.00 n.a. G3_0.93 

Tridecalactone * CCCCCCCCC1CCCC(=O)O1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Triethylphosphate CCO[P](=O)(OCC)OCC 0.93 n.a. n.a. n.a. 0.78 n.a. 0.93 n.a. 0.91 n.a. n.a. n.a. G2_0.86 n.a. 

Tris(2-butoxyethyl)phosphate 
CCCCOCCO[P](=O)(OCCOCCCC)OCC
OCCCC 

0.78 n.a. n.a. n.a. 1.00 n.a. 0.89 n.a. n.a. n.a. 0.95 n.a. G3_0.91 n.a. 

Tryptophan * 
N[C@@H](Cc1c[nH]c2ccccc12)C(O)
=O 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
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Table A5a – (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate 

compounds annotated through manual annotation (i.e. without confidence indices-CI values) 

Annotation 

MS/MS  
Confidence 

level 
Theoretical fragments Experimental fragments 

(+) (-) (+) (-) 

1,8-Epoxy-p-menthan-3-ol 
glucoside * 

n.a. 
57.0346, 75.0088, 85.0295, 
113.0244, 153.1286 

n.a. 
57.0345, 75.0089, 85.0295, 
113.0242, 153.1284 

2b 

25-Hydroxyvitamin D3 26,23-
lactol * 

n.a. 411.2906 n.a. 411.2913 2b 

2-naphthylamine 91.0556, 115.0542, 117.0699, 127.0542 n.a. 91.0556, 115.0545, 117.0703, 127.0554 n.a. 2a 
3-[2-(5-Methylthiophen-2-yl)-2-
oxoethoxy]benzonitrile * 

109.9821, 111.9978, 123.9978, 
140.0291 

n.a. 
109.9824, 111.9974, 123.9977, 
140.0291 

n.a. 2b 

3-hydroxybenzoic acid n.a. 93.0343 n.a. 93.0347 2a 
4-chlorophenol n.a. 91.019 n.a. 0 3 
4-hydroxy-2,5,6-
trichloroisophthalonitrile 

n.a. 
146.9765, 174.9704, 181.9447, 
209.9401 

n.a. 
146.9756, 174.9704, 181.9444, 
209.9394 

2a 

4-hydroxybenzoic acid n.a. 93.0343 n.a. 93.0341 2a 
4-Hydroxyquinoline * 77.0415, 91.0555, 104.0494, 128.0476 n.a. 77.0395, 91.0549, 104.0493, 128.0491 n.a. 2a 
4-Nitrophenol * n.a. 92.0260, 108.0229 n.a. 92.0260, 108.0235 2a 
4-Sulfamoylbenzoic acid * 77.0386, 105.0336 n.a. 77.0386, 105.0338 n.a. 2b 
Acetaminophen sulfate n.a. 79.9570, 107.0374, 150.0556 n.a. 79.9572, 107.0372, 150.0560 2a 

Azelaic acid * n.a. 
57.0342, 97.0655, 123.0811, 
125.0970 

n.a. 
57.0345, 97.0652, 123.0810, 
125.0962 

2a 

Benzophenone-4 n.a. 
93.0346, 121.0295, 211.0400, 
227.0714 

n.a. 
93.0346, 121.0295, 211.0398, 
227.0713 

2a 

Caffeic acid n.a. 135.0452 n.a. 135.0449 2a 
Caffeine 83.0601, 110.0719, 123.0435, 138.0668 n.a. 83.0611, 110.0721, 123.0434, 138.0670 n.a. 1 
Carveol * 79.0544, 91.0543, 107.0856, 119.0856 n.a. 79.0547, 91.0545, 107.0858, 119.0858 n.a. 2a 
Chavicol sulfate n.a. 105.0710, 133.0659 n.a. 105.0703, 133.0656 2b 

Coumaric acid 
77.0382, 91.0530, 95.0488, 103.0533, 
123.0423, 147.0425 

93.0348, 119.0503 
77.0391, 91.0547, 95.0498, 103.0542, 
123.0447, 147.0449 

93.0349, 119.0505 2a 

Cresol sulfate n.a. 92.0279, 107.0493 n.a. 92.0268, 107.0499 1 

Diethylphthalate * 
121.0284, 149.0233, 163.0390, 
177.0546 

n.a. 
121.0288, 149.0234, 163.0389, 
177.0549 

n.a. 2a 

Diphenylsulfone * 77.0386, 95.0491, 125.0066, 141.0004 n.a. 77.0388, 95.0491, 125.0063, 141.0009 n.a. 2a 
Indole-3-carbinol * 77.0380, 103.0555, 130.0634 n.a. 77.0383, 103.0545, 130.0643 n.a. 2a 
Indole-3-carboxaldehyde * n.a. 65.9998, 115.0422, 126.0354 n.a. 65.9999, 115.0432, 126.0354 2a 

Indolelactic acid * n.a. 
72.9947, 116.0486, 130.0661, 
142.0633, 158.0625, 186.0553 

n.a. 
72.9937, 116.0491, 130.0677, 
142.0642, 158.0615, 186.0558 

2a 

Indoxyl sulfate n.a. 79.9578, 132.0460 n.a. 79.9573, 132.0457 2a 
Isobutylparaben 95.049, 121.0282, 139.0388 n.a. 95.0498, 121.0293, 139.0397 n.a. 2a 
Isopropylparaben n.a. 121.0297, 137.0239 n.a. 121.0297, 137.0243 2a 
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Table A5a – (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate 

compounds annotated through manual annotation (i.e. without confidence indices-CI values) 

Annotation 

MS/MS 
Confidence 

level 
Theoretical fragments Experimental fragments 

(+) (-) (+) (-) 

Jasmonic acid * 
105.0697, 133.1013, 151.1121, 
165.1263, 193.1225 

n.a. 
105.0706, 133.1019, 151.1107, 
165.1275, 193.1230 

n.a. 2a 

Loliolid * 
79.0529, 91.0544, 105.0690, 117.0708, 
133.1020, 161.0972, 179.1078 

n.a. 
79.0540, 91.0548, 105.0703, 117.0698, 
133.1020, 161.0967, 179.1088 

n.a. 2a 

L-Phenylalanine   
77.0381, 79.0538, 91.0539, 103.0540, 
120.0806 

n.a. 
77.0387, 79.0548, 91.0546, 103.0542, 
120.0808 

n.a. 2a 

Naphthalene-2-sulfonic acid * n.a. 79.9576, 115.0549, 143.0503 n.a. 79.9574, 115.0553, 143.0503 2a 
Octaethylene glycol 89.0603, 133.0864, 177.1127 n.a. 89.0601, 133.0867, 177.1126 n.a. 2b 
Paraxanthine n.a. 122.0365, 164.0341 n.a. 122.0357, 164.0340 2a 
PEG18 89.0597, 133.0860, 177.1122 n.a. 89.0603, 133.0865, 177.1131 n.a. 2b 

Piperine 
115.0553, 135.0446, 143.0495, 
171.0453, 201.0548 

n.a. 
115.0554, 135.0448, 143.0502, 
171.0437, 201.0557 

n.a. 1 

Propylparaben sulfate n.a. 121.0297, 137.0239, 179.0716 n.a. 121.0295, 137.0246, 179.0714 2b 
Stachydrine (Proline betaine) * 58.0650, 72.0805, 84.0810, 98.0962 n.a. 58.0656, 72.0809, 84.0809, 98.0962 n.a. 2a 

Thymol * 
81.0705, 93.0704, 107.0859, 123.0789, 
133.1013 

n.a. 
81.0706, 93.0705, 107.0867, 123.0801, 
133.1020 

n.a. 2a 

Triclosan sulfate n.a. n.a. n.a. n.a. 1 

Tridecalactone * 
83.0850, 95.0871, 121.1006, 135.1164, 
177.1632 

n.a. 
83.0858, 95.0859, 121.1016, 135.1173, 
177.1642 

n.a. 2a 

Triethylphosphate 127.0158, 155.0470 n.a. 127.0154, 155.0467 n.a. 2a 

Tris(2-butoxyethyl)phosphate 
101.0962, 199.0731, 299.1621, 
399.2511 

n.a. 
101.0973, 199.0733, 299.1633, 
399.2499 

n.a. 2a 

Tryptophan * n.a. 74.0234, 116.0494, 142.0652 n.a. 74.0248, 116.0504, 142.0666 2a 
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Table A5a – (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated 

through manual annotation (i.e. without confidence indices-CI values) 

Annotation 

Internal standard-corrected areas in sample prepared with Phree 

(+) (-) 

Blank 
Mean 

1 
Mean 

2 
Mean 

3 
Mean 

4 
Mean 

5 
Mean 

6 
Mean 

7 
Mean 

8 
Mean 

9 
Mean 

10 
Blank 

Mean 
1 

Mean 
2 

Mean 
3 

Mean 
4 

Mean 
5 

Mean 
6 

Mean 
7 

Mean 
8 

Mean 
9 

Mean 
10 

1,8-Epoxy-p-menthan-3-
ol glucoside * 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.01 0.07 0.05 0.11 0.01 0.02 0.10 0.01 0.02 0.02 

25-Hydroxyvitamin D3 
26,23-lactol * 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.09 0.79 0.03 1.77 1.37 0.85 0.89 2.36 0.60 1.72 

2-naphthylamine n.a. 39.35 42.97 192.35 36.83 75.28 118.40 162.66 52.57 107.24 38.49 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

3-[2-(5-Methylthiophen-
2-yl)-2-
oxoethoxy]benzonitrile 
* 

0.03 0.38 0.93 1.83 0.07 0.26 0.49 0.68 0.36 0.73 0.34 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

3-hydroxybenzoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4-chlorophenol n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.02 n.a. n.a. 0.03 n.a. n.a. n.a. n.a. 0.03 n.a. 

4-hydroxy-2,5,6-
trichloroisophthalonitril
e 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4-hydroxybenzoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4-Hydroxyquinoline * n.a. 0.31 1.09 0.59 0.16 0.98 0.28 0.91 0.01 0.24 0.10 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

4-Nitrophenol * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.16 7.36 10.36 1.32 26.68 1.54 5.78 10.74 1.85 9.37 23.72 

4-Sulfamoylbenzoic acid 
* 

0.54 1.29 3.30 14.09 1.37 3.69 4.48 4.55 4.03 2.34 2.11 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Acetaminophen sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.23 0.25 0.25 0.11 0.03 0.19 0.11 0.21 0.03 

Azelaic acid * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 28.60 5.38 0.80 n.a. 4.49 n.a. n.a. 11.93 n.a. 10.98 7.42 

Benzophenone-4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.03 n.a. 

Caffeic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Caffeine 0.09 6.66 6.94 4.28 6.91 4.73 5.21 5.09 7.15 5.80 0.10 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Carveol * n.a. n.a. 0.02 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Chavicol sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.03 0.14 0.17 1.94 0.10 0.05 0.16 0.22 0.18 0.27 

Coumaric acid 10.06 0.45 2.35 0.91 8.02 3.58 9.81 8.93 10.45 3.81 4.55 n.a. 0.87 1.12 0.05 2.66 0.13 0.38 0.64 0.91 0.38 1.40 

Cresol sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.09 205.86 349.66 15.18 1204.4 79.21 110.20 234.48 311.49 164.21 461.50 

Diethylphthalate * n.a. 0.15 0.96 2.50 0.14 0.24 0.97 0.62 0.53 1.03 0.86 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Diphenylsulfone * 4.14 n.a. n.a. 16.20 4.89 2.27 16.69 0.00 0.27 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
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Table A5a – (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated 

through manual annotation (i.e. without confidence indices-CI values) 

Annotation 

Internal standard-corrected areas in sample prepared with Phree 

(+) (-) 

Blank 
Mean 

1 

Mean 
2 

Mean 
3 

Mean 
4 

Mean 
5 

Mean 
6 

Mean 
7 

Mean 
8 

Mean 
9 

Mean 
10 

Blank 
Mean 

1 

Mean 
2 

Mean 
3 

Mean 
4 

Mean 
5 

Mean 
6 

Mean 
7 

Mean 
8 

Mean 
9 

Mean 
10 

Indole-3-carbinol * 0.07 8.20 8.39 8.61 11.57 9.42 10.57 11.28 17.46 19.52 12.94 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Indole-3-
carboxaldehyde * 

n.a. 2.49 3.26 3.38 3.67 1.29 4.35 3.68 2.60 4.52 3.34 0.11 5.32 4.66 4.96 45.24 9.00 4.32 6.15 9.28 2.96 17.84 

Indolelactic acid * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.72 5.69 0.22 21.65 0.51 2.65 3.97 4.63 2.23 7.49 

Indoxyl sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 16.46 44.92 2.10 147.34 2.21 6.99 18.07 18.74 12.11 48.62 

Isobutylparaben n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Isopropylparaben n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.04 21.93 28.23 13.93 96.32 3.53 22.81 24.36 13.93 12.49 15.11 

Jasmonic acid * n.a. 0.27 0.86 1.46 0.11 0.28 0.38 0.72 0.23 0.60 0.25 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Loliolid * n.a. 0.52 1.65 2.83 0.31 0.55 0.68 1.41 0.39 1.09 0.46 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

L-Phenylalanine   0.17 112.35 69.57 26.31 155.89 123.38 77.64 57.34 49.87 44.91 89.60 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Naphthalene-2-sulfonic 
acid * 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.36 1.42 0.98 0.47 0.72 1.23 0.14 1.00 0.19 0.31 

Octaethylene glycol 1.21 12.52 12.82 15.29 10.89 12.08 22.38 26.47 10.86 23.02 7.23 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Paraxanthine 0.26 62.39 29.70 25.64 63.17 45.42 55.06 49.87 31.55 44.95 2.92 n.a. 0.94 0.20 0.07 1.00 0.47 0.19 0.22 0.71 0.28 1.01 

PEG18 n.a. 0.67 1.26 0.65 0.71 0.93 0.68 0.91 0.92 1.39 1.04 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Piperine n.a. n.a. 0.12 0.18 0.22 0.02 1.77 0.14 2.02 0.08 0.09 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Propylparaben sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.51 1.50 0.33 n.a. 0.15 0.98 0.59 0.30 0.38 0.36 

Stachydrine (Proline 
betaine) * 

1.10 1.43 0.12 0.24 0.31 n.a. 19.25 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Thymol * n.a. 0.24 0.75 1.34 0.13 0.26 0.38 0.66 0.21 0.48 0.23 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Triclosan sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.28 n.a. n.a. n.a. 0.93 0.22 3.23 

Tridecalactone * n.a. 0.41 2.86 6.01 0.51 0.79 1.34 2.53 0.74 2.02 0.81 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Triethylphosphate 0.03 n.a. 0.08 0.28 0.02 0.03 0.19 0.12 0.09 0.09 0.04 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Tris(2-butoxyethyl) 
phosphate 

1.36 n.a. 0.88 5.52 n.a. 15.69 265.09 0.30 n.a. 0.62 0.26 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Tryptophan * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.12 70.10 59.35 9.81 248.85 22.85 47.38 69.01 105.63 46.94 131.19 
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Table A5a – (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated 

through manual annotation (i.e. without confidence indices-CI values) 

Annotation 

Internal standard-corrected areas in sample prepared with PPT 

(+) (-) 

Blank 
Mean 

1 
Mean 

2 
Mean 

3 
Mean 

4 
Mean 

5 
Mean 

6 
Mean 

7 
Mean 

8 
Mean 

9 
Mean 

10 
Blank 

Mean 
1 

Mean 
2 

Mean 
3 

Mean 
4 

Mean 
5 

Mean 
6 

Mean 
7 

Mean 
8 

Mean 
9 

Mean 
10 

1,8-Epoxy-p-menthan-3-
ol glucoside * 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.06 2.81 0.90 2.54 5.70 2.10 0.47 0.08 0.15 2.46 

25-Hydroxyvitamin D3 
26,23-lactol * 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 5.86 5.27 2.96 5.34 7.53 5.51 5.51 5.57 6.16 6.39 

2-naphthylamine n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

3-[2-(5-Methylthiophen-
2-yl)-2-
oxoethoxy]benzonitrile 
* 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

3-hydroxybenzoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4-chlorophenol n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

4-hydroxy-2,5,6-
trichloroisophthalonitril
e 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4-hydroxybenzoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4-Hydroxyquinoline * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

4-Nitrophenol * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.34 0.48 n.a. n.a. 0.10 n.a. 0.09 n.a. 0.25 n.a. 0.01 

4-Sulfamoylbenzoic acid 
* 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Acetaminophen sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.93 2.75 0.36 3.95 0.12 0.89 0.15 0.28 0.10 

Azelaic acid * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 57.47 25.64 13.45 21.42 17.28 26.65 20.48 44.99 13.32 15.89 

Benzophenone-4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.56 0.01 n.a. 4.28 0.04 0.02 0.01 0.10 0.02 

Caffeic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.67 1.20 0.28 0.31 2.03 0.60 0.55 2.09 1.15 1.72 

Caffeine n.a. 6.61 7.85 5.85 8.27 7.28 7.57 7.09 8.70 7.84 0.12 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Carveol * n.a. 0.09 0.25 0.50 0.08 0.08 0.24 0.23 0.25 0.39 0.17 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Chavicol sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.15 2.73 0.51 7.02 410.7 4.54 0.55 0.70 0.34 1.25 

Coumaric acid n.a. 10.88 8.98 5.03 20.11 14.51 9.61 15.98 23.79 17.04 18.80 n.a. 3.59 1.25 0.46 2.76 1.60 1.97 1.69 1.81 1.71 2.23 

Cresol sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.17 790.9 1142 626.1 1030 1769 742.9 1092 1118 1647 1916 

Diethylphthalate * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Diphenylsulfone * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
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Table A5a – (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated 

through manual annotation (i.e. without confidence indices-CI values) 

Annotation 

Internal standard-corrected areas in sample prepared with PPT 

(+) (-) 

Blank 
Mean 

1 
Mean 

2 
Mean 

3 
Mean 

4 
Mean 

5 
Mean 

6 
Mean 

7 
Mean 

8 
Mean 

9 
Mean 

10 
Blank 

Mean 
1 

Mean 
2 

Mean 
3 

Mean 
4 

Mean 
5 

Mean 
6 

Mean 
7 

Mean 
8 

Mean 
9 

Mean 
10 

Indole-3-carbinol * n.a. 11.08 15.47 12.99 21.96 53.80 11.32 14.52 22.29 20.23 17.86 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Indole-3-
carboxaldehyde * 

n.a. 0.44 0.55 0.40 0.13 0.19 0.15 0.85 0.14 0.69 0.14 n.a. 3.77 2.09 1.34 2.27 2.10 1.97 3.73 4.01 2.56 2.78 

Indolelactic acid * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 27.90 16.67 8.51 25.86 22.12 23.99 29.87 24.45 29.72 32.02 

Indoxyl sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 86.98 120.3 88.92 192.6 154.4 136.8 175.5 137.1 170.0 485.9 

Isobutylparaben n.a. 0.37 0.17 0.10 0.21 0.25 0.15 0.36 0.24 0.19 0.29 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Isopropylparaben n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 66.74 127.2 35.56 299.3 11092 219.6 76.19 42.08 71.63 98.71 

Jasmonic acid * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Loliolid * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

L-Phenylalanine   0.03 111.9 55.02 26.00 119.8 101.1 55.75 80.34 61.79 58.81 73.69 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Naphthalene-2-sulfonic 
acid * 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 51.15 1.92 1.36 2.41 2.05 2.01 1.90 1.60 1.71 1.31 

Octaethylene glycol 0.91 13.81 5.61 5.56 4.26 3.98 7.28 23.53 0.34 6.55 3.63 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Paraxanthine 0.01 51.29 33.38 65.39 55.58 46.73 48.69 67.72 12.28 66.33 11.07 n.a. 1.92 3.72 1.27 11.05 2.89 4.44 1.31 3.48 3.93 0.82 

PEG18 n.a. 0.39 0.75 0.12 0.53 0.59 0.54 0.74 0.38 0.44 0.45 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Piperine n.a. n.a. 0.12 0.13 0.20 0.02 1.91 0.16 1.10 0.11 0.11 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Propylparaben sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.81 3.55 1.08 n.a. 438.8 5.71 1.65 0.74 1.07 1.77 

Stachydrine (Proline 
betaine) * 

0.21 35.27 3.37 3.72 10.37 0.04 85.90 0.45 12.21 37.08 1.91 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Thymol * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Triclosan sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Tridecalactone * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Triethylphosphate 0.04 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Tris(2-butoxyethyl) 
phosphate 

0.59 n.a. n.a. n.a. n.a. 0.02 n.a. n.a. 0.04 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Tryptophan * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 467.0 341.9 205.5 411.2 559.2 343.3 479.5 504.8 481.0 519.9 
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Table A5a – (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated 

through manual annotation (i.e. without confidence indices-CI values) 

Annotation 

Fold changes (Area Phree / Area PPT) 

(+) (-) 

Blank 
Mean 

1 
Mean 

2 
Mean 

3 
Mean 

4 
Mean 

5 
Mean 

6 
Mean 

7 
Mean 

8 
Mean 

9 
Mean 

10 
Blank 

Mean 
1 

Mean 
2 

Mean 
3 

Mean 
4 

Mean 
5 

Mean 
6 

Mean 
7 

Mean 
8 

Mean 
9 

Mean 
10 

1,8-Epoxy-p-menthan-3-
ol glucoside * 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 7.9 0.2 Inf 0.1 Inf 0.1 1.4 2.7 6.0 0.0 

25-Hydroxyvitamin D3 
26,23-lactol * 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.4 1.0 0.1 1.0 1.3 1.0 1.0 5.7 0.8 1.2 

2-naphthylamine n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

3-[2-(5-Methylthiophen-
2-yl)-2-
oxoethoxy]benzonitrile 
* 

n.a. 5.4 5.6 44.2 8.6 2.9 3.6 4.9 11.4 9.1 8.5 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

3-hydroxybenzoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

4-chlorophenol n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.7 2.5 n.a. n.a. 156.1 3.2 5.8 65.0 n.a. 19.3 73.2 

4-hydroxy-2,5,6-
trichloroisophthalonitril
e 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. Inf n.a. n.a. n.a. Inf n.a. n.a. n.a. n.a. 

4-hydroxybenzoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.6 2.7 20.5 0.8 0.0 0.8 2.4 6.6 2.6 0.6 

4-Hydroxyquinoline * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 15.6 2.0 23.1 14.4 6.5 31.1 36.0 11.3 27.9 19.7 

4-Nitrophenol * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

4-Sulfamoylbenzoic acid 
* 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Acetaminophen sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Azelaic acid * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.8 Inf 6.9 0.2 Inf 1.4 Inf 5.9 Inf 

Benzophenone-4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Caffeic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Caffeine n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. Inf Inf n.a. Inf Inf Inf Inf 2.7 Inf 

Carveol * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

Chavicol sulfate n.a. 3.1 2.8 6.0 7.4 3.3 1.8 2.8 3.8 2.0 Inf n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Coumaric acid n.a. n.a. 40.3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Cresol sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 10.0 0.4 3.8 0.8 0.0 0.1 1.9 4.3 4.1 0.9 

Diethylphthalate * n.a. 3.1 4.6 31.7 9.9 4.8 5.8 4.8 4.9 2.3 2.8 n.a. 1.1 6.2 1.3 2.8 0.6 1.3 2.4 6.8 1.7 2.8 

Diphenylsulfone * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 11.9 1.1 2.1 0.2 3.4 0.3 1.0 1.4 3.8 0.8 1.0 
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Table A5a – (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated 

through manual annotation (i.e. without confidence indices-CI values) 

Annotation 

Fold changes (Area Phree / Area PPT) 

(+) (-) 

Blank 
Mean 

1 
Mean 

2 
Mean 

3 
Mean 

4 
Mean 

5 
Mean 

6 
Mean 

7 
Mean 

8 
Mean 

9 
Mean 

10 
Blank 

Mean 
1 

Mean 
2 

Mean 
3 

Mean 
4 

Mean 
5 

Mean 
6 

Mean 
7 

Mean 
8 

Mean 
9 

Mean 
10 

Indole-3-carbinol * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Indole-3-
carboxaldehyde * 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Indolelactic acid * n.a. 2.3 1.7 5.5 4.7 0.9 2.6 3.1 3.7 2.7 2.6 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Indoxyl sulfate n.a. 18.1 19.6 70.5 261.1 35.7 81.8 17.3 90.0 18.9 88.5 n.a. 6.0 14.3 3.1 56.7 2.6 13.7 10.1 30.7 8.1 27.2 

Isobutylparaben n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.6 2.4 0.3 2.4 0.2 0.7 0.9 2.6 0.6 1.0 

Isopropylparaben n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.8 2.6 0.3 2.2 0.1 0.3 0.7 1.8 0.6 0.4 

Jasmonic acid * n.a. Inf Inf 36.8 Inf Inf Inf Inf Inf Inf Inf n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Loliolid * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.5 1.5 4.3 0.9 0.0 0.7 2.0 4.5 1.3 0.7 

L-Phenylalanine   n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Naphthalene-2-sulfonic 
acid * 

2.6 0.7 4.2 22.1 5.7 1.4 5.5 2.9 3.9 2.2 4.5 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Octaethylene glycol n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 18.5 Inf Inf Inf 0.2 Inf 42.4 Inf Inf Inf Inf 

Paraxanthine 0.6 n.a. n.a. n.a. n.a. n.a. n.a. 37.1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

PEG18 8.9 3.8 2.9 3.3 10.3 5.0 3.2 2.9 12.4 1.9 0.6 n.a. 2.2 0.4 0.6 0.3 Inf 0.3 1.1 2.8 0.6 5.4 

Piperine n.a. n.a. 3.1 11.9 23.0 5.7 2.6 5.7 8.7 2.2 2.1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Propylparaben sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.8 3.0 3.4 4.2 0.0 1.1 2.3 5.4 2.8 0.9 

Stachydrine (Proline 
betaine) * 

2.5 18.6 n.a. n.a. 155.8 n.a. 0.6 n.a. Inf Inf n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Thymol * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Triclosan sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.4 n.a. n.a. 

Tridecalactone * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Triethylphosphate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Tris(2-butoxyethyl) 
phosphate 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Tryptophan * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.7 1.2 0.5 1.8 0.3 0.9 0.9 2.8 0.8 1.1 
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2.7. Table A5b – Application to cohort samples (Plasma-Danish cohort): Annotations and semi-quantification 

Table A5b – Application to cohort samples (Plasma – Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds annotated through 

manual annotation (i.e. without confidence indices-CI values) 

Annotation SMILES 
CI m/z 

 
CI Rt CI isotopic fit 

Global CI 
Experimental RTI-predicted Retip-predicted logP-predicted CI overall 

(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

2-Hydroxybenzoic Acid OC(=O)c1ccccc1O n.a. 1.00 n.a. n.a. n.a. 0.89 n.a. n.a. n.a. 0.23 n.a. n.a. n.a. G2_0.94 
2-Methoxyacetophenone COCC(=O)c1ccccc1 0.95 n.a. n.a. n.a. 1.00 n.a. 0.90 n.a. 0.99 n.a. 0.85 n.a. G3_0.93 n.a. 
2-naphthylamine Nc1ccc2ccccc2c1 0.94 n.a. n.a. n.a. 0.00 n.a. n.a. n.a. n.a. n.a. 0.75 n.a. G3_0.56 n.a. 
3,4,5-trimethoxycinnamic 
acid 

COc1cc(C=CC(O)=O)cc(OC)c1O
C 

0.77 n.a. n.a. n.a. 0.93 n.a. 0.47 n.a. 0.99 n.a. 0.85 n.a. G3_0.85 n.a. 

3-hydroxybenzoic acid OC(=O)c1cccc(O)c1 n.a. 1.00 n.a. n.a. n.a. 0.42 n.a. n.a. n.a. 0.39 n.a. n.a. n.a. G2_0.7 
4-hydroxy-2,5,6-
trichloroisophthalonitrile 

Oc1c(Cl)c(Cl)c(C#N)c(Cl)c1C#N n.a. 0.98 n.a. n.a. n.a. n.a. n.a. 0.44 n.a. 0.46 n.a. 0.99 n.a. G3_0.8 

4-hydroxybenzoic acid OC(=O)c1ccc(O)cc1 n.a. 0.95 n.a. n.a. n.a. 0.64 n.a. 0.69 n.a. 0.53 n.a. n.a. n.a. G2_0.8 

Acetaminophen glucuronide 
CC(=O)NC1=CC=C(C=C1)OC2C(
C(C(C(O2)C(=O)O)O)O)O 

0.92 0.85 0.92 0.81 0.92 0.94 0.92 0.94 n.a. n.a. 0.73 n.a. G3_0.86 G2_0.83 

Azelaic acid * C(CCCC(=O)O)CCCC(=O)O n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Bourbonal CCOc1cc(C=O)ccc1O 0.98 n.a. n.a. n.a. 0.31 n.a. n.a. n.a. 0.08 n.a. 0.69 n.a. G3_0.66 n.a. 

Bupivacaine 
CCCCN1CCCCC1C(=O)Nc2c(C)cc
cc2C 

0.79 n.a. 0.96 n.a. 0.43 n.a. 0.29 n.a. n.a. n.a. 0.79 n.a. G3_0.85 n.a. 

Caffeine 
Cn1cnc2N(C)C(=O)N(C)C(=O)c1
2 

0.73 n.a. 0.96 n.a. 0.91 n.a. 0.63 n.a. 0.80 n.a. 0.81 n.a. G3_0.83 n.a. 

Carveol CC(=C)C1CC=C(C)C(O)C1 0.88 n.a. n.a. n.a. 0.52 n.a. n.a. n.a. 0.07 n.a. n.a. n.a. G2_0.7 n.a. 

Chavicol sulfate 
C=CCC1=CC=C(C=C1)OS(=O)(=O
)O 

n.a. 0.78 n.a. 0.90 n.a. 0.36 n.a. 0.57 n.a. 0.31 n.a. n.a. n.a. G2_0.84 

Cotinine CN1C(CCC1=O)c2cccnc2 0.95 0.95 0.89 0.66 0.97 0.93 0.81 0.89 0.99 0.97 0.64 n.a. G3_0.83 G2_0.81 
Cresol sulfate CC1=CC=CC=C1OS(=O)(=O)O n.a. 0.74 n.a. 0.93 n.a. 0.95 n.a. 0.59 n.a. 0.74 n.a. 0.82 n.a. G3_0.83 

Curcumenol * 
CC1CCC2C13CC(=C(C)C)C(O3)(C
=C2C)O 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Diazepam 
CN1C(=O)CN=C(c2ccccc2)c3cc(
Cl)ccc13 

0.70  n.a. n.a. 0.99 n.a. 0.54 n.a. 0.91 n.a. 0.95 n.a. G3_0.88 n.a. 

Diethyl phthalate CCOC(=O)c1ccccc1C(=O)OCC 0.88 0.92 n.a. n.a. 0.94 0.96 0.62 0.63 0.80 0.81 0.81 n.a. G3_0.88 G2_0.94 

Docosahexaenoic acid 
CCCCCCCCCC=CC=CC=CC=CC=C
C=CC(O)=O 

0.96 0.76 1.00 1.00 0.79 0.80 0.93 0.94 0.35 0.35 0.92 n.a. G3_0.96 G2_0.88 

Eicosapentaenoic acid 
CCCCCCCCCC=CC=CC=CC=CC=C
C(O)=O 

n.a. 0.81 n.a. n.a. n.a. 0.77 n.a. 0.84 n.a. 0.46 n.a. n.a. n.a. G2_0.79 

Ethyl paraben CCOC(=O)c1ccc(O)cc1 n.a. 0.93 n.a. 1.00 n.a. 0.13 n.a. 0.01 n.a. n.a. n.a. n.a. n.a. G2_0.96 
Ibuprofen CC(C)Cc1ccc(cc1)C(C)C(O)=O n.a. 0.91 n.a. 0.96 n.a. n.a. n.a. 0.59 n.a. 0.81 n.a. n.a. n.a. G2_0.94 
Indole-3-carbinol * C1=CC=C2C(=C1)C(=CN2)CO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Indole-3-carboxaldehyde * C1=CC=C2C(=C1)C(=CN2)C=O n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Indolelactic acid * 
C1=CC=C2C(=C1)C(=CN2)CC(C(
=O)O)O 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Indoxyl sulfate 
C1=CC=C2C(=C1)C(=CN2)OS(=O
)(=O)O 

n.a. 0.73 n.a. 0.82 n.a. n.a. n.a. n.a. n.a. 0.50 n.a. 0.90 n.a. G3_0.82 
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Table A5b – (continued) Application to cohort samples (Plasma – Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds 

annotated through manual annotation (i.e. without confidence indices-CI values) 

Annotation SMILES 
CI m/z 

CI Rt CI isotopic fit 
CI overall 

Global CI 
Experimental RTI-predicted Retip-predicted logP-predicted 

(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

Nordazepam 
Clc1ccc2NC(=O)CN=C(c3ccccc3)
c2c1 

0.89 0.83 n.a. n.a. 0.90 0.87 0.47 0.45 0.89 0.87 0.86 0.72 G3_0.88 G3_0.81 

Octaethylene glycol 
OCCOCCOCCOCCOCCOCCOCCO
CCO 

0.80 n.a. n.a. n.a. n.a. n.a. 0.78 n.a. n.a. n.a. 0.82 n.a. G3_0.80 n.a. 

Oxazepam 
OC1N=C(c2ccccc2)c3cc(Cl)ccc3
NC1=O 

0.70 n.a. 1.00 n.a. 0.45 n.a. 0.29 n.a. 0.88 n.a. n.a. n.a. G2_0.85 n.a. 

Paracetamol CC(=O)Nc1ccc(O)cc1 0.77 1.00 0.78 0.62 0.90 0.89 0.80 0.80 0.93 0.93 n.a. n.a. G2_0.77 G2_0.81 
Paraxanthine Cn1cnc2NC(=O)N(C)C(=O)c12 n.a. 0.93 n.a. n.a. n.a. 0.74 n.a. 0.76 n.a. n.a. n.a. n.a. n.a. G2_0.83 
Pentachlorophenol Oc1c(Cl)c(Cl)c(Cl)c(Cl)c1Cl n.a. 0.73 n.a. n.a. n.a. 0.86 n.a. 0.22 n.a. 0.94 n.a. 0.92 n.a. G3_0.83 
Phenol sulfate C1=CC=C(C=C1)OS(=O)(=O)O n.a. 0.89 n.a. 0.85 n.a. n.a. n.a. 0.79 n.a. 0.78 n.a. 0.78 n.a. G3_0.84 

Piperine 
O=C(/C=C/C=C/c1ccc2OCOc2c1
)N3CCCCC3 

0.93 n.a. 0.96 n.a. 0.26 n.a. 0.71 n.a. 0.64 n.a. 0.91 n.a. G3_0.93 n.a. 

Propylparaben sulfate 
CCCOC(=O)C1=CC=C(C=C1)OS(=
O)(=O)O 

n.a. 0.98 n.a. 0.94 n.a. 0.54 n.a. 0.59 n.a. 0.20 n.a. n.a. n.a. G2_0.96 

Theobromine Cn1cnc2N(C)C(=O)NC(=O)c12 0.79 n.a. n.a. n.a. 0.65 n.a. 0.49 n.a. n.a. n.a. 0.89 n.a. G3_0.78 n.a. 
Trans-3-hydroxycotinine CN1C(CC(O)C1=O)c2cccnc2 0.90 n.a. n.a. n.a. n.a. n.a. 0.84 n.a. 0.98 n.a. n.a. n.a. G2_0.87 n.a. 

Triclosan glucuronide 
C1=CC(=C(C=C1Cl)OC2C(C(C(C(
O2)C(=O)O)O)O)O)OC3=C(C=C(
C=C3)Cl)Cl 

n.a. 0.86 n.a. 0.99 n.a. 0.51 n.a. n.a. n.a. 0.89 n.a. 0.88 n.a. G3_0.91 

Triclosan sulfate 
C1=CC(=C(C=C1Cl)OS(=O)(=O)O
)OC2=C(C=C(C=C2)Cl)Cl 

n.a. 0.84 n.a. 0.96 n.a. n.a. n.a. n.a. n.a. 0.88 n.a. 0.96 n.a. G3_0.92 

Tryptophan 
N[C@@H](Cc1c[nH]c2ccccc12)
C(O)=O 

0.90 0.78 0.65 0.66 n.a. n.a. 0.23 0.23 n.a. n.a. 0.92 n.a. G3_0.82 G2_0.72 
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Table A5b – (continued) Application to cohort samples (Plasma – Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds 

annotated through manual annotation (i.e. without confidence indices-CI values) 

Annotation 

MS/MS 
Confidence 

level 
Theoretical fragments Experimental fragments 

(+) (-) (+) (-) 
2-Hydroxybenzoic Acid   n.a. 93.0343 n.a. 93.0345 2a 
2-Methoxyacetophenone 63.0229, 79.0542, 105.0335, 119.0491, 133.0648 n.a. 63.0226, 79.0537, 105.0333, 119.0491, 133.0647 n.a. 2b 
2-naphthylamine 91.0556, 115.0542, 117.0699, 127.0542 n.a. 91.0547, 115.0541, 117.0690, 127.0542 n.a. 2a 

3,4,5-trimethoxycinnamic acid 
107.0491, 137.0597, 149.0597, 161.0597, 177.0546, 
193.0859, 221.0808 

n.a. 
107.0490, 137.0604, 149.0601, 161.0602, 177.0549, 
193.0862, 221.0810 

n.a. 2a 

3-hydroxybenzoic acid n.a. 93.0343 n.a. 93.0345 2a 
4-hydroxy-2,5,6-
trichloroisophthalonitrile 

n.a. 146.9765, 174.9704, 181.9447, 209.9401 n.a. 146.9769, 174.9708, 181.9449, 209.9407 2a 

4-hydroxybenzoic acid n.a. 93.0343 n.a. 93.0347 2a 
Acetaminophen glucuronide 110.0607, 134.0606, 152.0712 175.0252, 150.0561, 113.0252 110.0607, 134.0606, 152.0712 175.0248, 150.0561, 113.0245 1 
Azelaic acid * n.a. 97.0655, 123.0811, 125.0970 n.a. 97.0660, 123.0816, 125.0972 2a 
Bourbonal   121.0290, 139.0395, 149.0603 n.a. 121.0287, 139.0395, 149.0601 n.a. 2a 
Bupivacaine 140.1445 n.a. 140.1434 n.a. 1 
Caffeine 83.0609, 110.0708, 123.0417, 138.0659, 195.0881 n.a. 83.0602, 110.0707, 123.0421, 138.0653, 195.0871 n.a. 1 
Carveol   107.0855, 119.0855, 135.1168 n.a. 107.0857, 119.0857, 135.1172 n.a. 2a 
Chavicol sulfate n.a. 105.0710, 133.0659 n.a. 105.0710, 133.0656 2b 
Cotinine 106.0633, 118.0646, 120.0794 n.a. 106.0642, 118.0653, 120.0801 n.a. 1 
Cresol sulfate n.a. 92.0279, 107.0493 n.a. 92.0270, 107.0501 2a 
Curcumenol * 93.0698, 105.0698, 119.0855, 133.1010, 175.1116 n.a. 93.0700, 105.0700, 119.0856, 133.1016, 175.1124 n.a. 2a 
Diazepam 154.0408, 193.0879, 222.1146, 228.0569, 257.0837 n.a. 154.0418, 193.0885, 222.1154, 228.0579, 257.0847 n.a. 2a 

Diethyl phthalate 
93.0326, 111.0437, 121.0284, 149.0233, 177.0546 

71.0502, 121.0296, 134.0374, 149.0972, 
177.0921 

93.0334, 111.0444, 121.0282, 149.0245, 177.0553 
71.0501, 121.0292, 134.0365, 149.0970, 
177.0917 

2a 

Docosahexaenoic acid 
119.0848, 131.0847, 145.0989, 161.1313, 175.1434, 
269.2256, 293.2272, 311.2344 

229.1958, 283.2446 
119.0854, 131.0850, 145.0999, 161.1323, 175.1444, 
269.2267, 293.2272, 311.2354 

229.1962, 283.2437 1 

Eicosapentaenoic acid n.a. 203.1802, 229.1957, 257.2274 n.a. 203.1811, 229.1967, 257.2276 2a 
Ethyl paraben n.a. 92.0272, 137.0244 n.a. 92.0269, 137.0242 2a 
Ibuprofen n.a. 161.1332 n.a. 161.1334 1 
Indole-3-carbinol * 77.0380, 103.0555 n.a. 77.0383, 103.0547 n.a. 2a 
Indole-3-carboxaldehyde * n.a. 115.0422, 126.0354 n.a. 115.0421, 126.0345 2a 

Indolelactic acid * 
n.a. 

72.9947, 116.0486, 130.0661, 142.0633, 
158.0625, 186.0553 

n.a. 
72.9932, 116.0491, 130.0661, 142.0642, 
158.0619, 186.0560 

2a 

Indoxyl sulfate n.a. 79.9578, 132.0460 n.a. 79.9572, 132.0452 2a 
Nordazepam 140.0252, 165.0201, 208.0986, 226.0406, 243.0677 241.0299 140.0261, 165.0207, 208.0997, 226.0416, 243.0686 241.0302 2a 
Octaethylene glycol 89.0603, 133.0864, 177.1127 n.a. 89.0601, 133.0861, 177.1128 n.a. 2b 
Oxazepam 231.0668, 241.0516, 269.0464 n.a. 231.0674, 241.0524, 269.0470 n.a. 2a 
Paracetamol 110.0608 107.0366 110.0602 107.0372 1 
Paraxanthine n.a. 122.0365, 164.0341 n.a. 122.0362, 164.0341 2a 
Pentachlorophenol n.a.  n.a. n.a. 3 
Phenol sulfate n.a. 79.9551, 93.0325 n.a. 79.9554, 93.0326 2a 
Piperine 115.0544, 135.0441, 143.0491, 171.0446, 201.0548 n.a. 115.0540, 135.0445, 143.0493, 171.0442, 201.0543 n.a. 1 
Propylparaben sulfate n.a. 179.0715 n.a. 179.0714 2b 
Theobromine 108.0554, 110.0713, 122.0589, 138.0668, 163.0611 n.a. 108.0554, 110.0710, 122.0583, 138.0660, 163.0614 n.a. 2a 

Trans-3-hydroxycotinine 
80.0493, 86.0606, 106.0676, 118.0674, 134.0602, 
149.0714 

n.a. 
80.0495, 86.0600, 106.0666, 118.0664, 134.0601, 
149.0709 

n.a. 2a 

Triclosan glucuronide n.a. 286.9448 n.a. 286.9452 1 
Triclosan sulfate n.a. 286.9448 n.a. 286.9445 1 
Tryptophan 118.0650, 146.0596, 159.0912, 170.0596, 188.0700 116.0500, 142.0655, 159.0915 118.0646, 146.0592, 159.0915, 170.0599, 188.0702 116.0506, 142.0659, 159.0922 1 
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Table A5b – (continued) Application to cohort samples (Plasma – Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds 

annotated through manual annotation (i.e. without confidence indices-CI values) 

Annotation 

Internal standard-corrected areas in sample prepared with Phree 

(+) (-) 

Blank Mean 1 Mean 2 Mean 3 Mean 4 Mean 5 Mean 6 Mean 7 Mean 8 Blank Mean 1 Mean 2 Mean 3 Mean 4 Mean 5 Mean 6 Mean 7 Mean 8 

2-Hydroxybenzoic Acid   n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.03 0.04 0.05 n.a. n.a. 0.04 3.65 0.10 
2-Methoxyacetophenone n.a. 2.14 2.69 2.63 0.70 0.03 2.25 0.03 2.88 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
2-naphthylamine n.a. 4.78 5.54 6.47 6.36 6.58 5.19 4.15 5.95 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
3,4,5-trimethoxycinnamic acid n.a. 14.25 2.09 2.08 2.00 1.72 2.16 5.32 2.70 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
3-hydroxybenzoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.98 0.68 1.12 1.20 0.97 0.78 0.41 110.96 1.08 
4-hydroxy-2,5,6-
trichloroisophthalonitrile n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.11 0.07 0.23 0.13 0.09 0.15 0.06 0.27 
4-hydroxybenzoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.35 2.28 1.84 8.02 5.72 2.78 4.09 2.30 
Acetaminophen glucuronide n.a. n.a. n.a. n.a. n.a. n.a. n.a. 8.93 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 180.77 n.a. 
Azelaic acid * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 158.88 n.a. n.a. n.a. 9.87 6.09 n.a. n.a. n.a. 
Bourbonal   0.02 0.13 0.10 0.00 0.04 0.00 n.a. n.a. 0.01 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Bupivacaine 0.08 n.a. n.a. n.a. n.a. n.a. n.a. 0.82 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Caffeine n.a. 5.63 5.99 0.47 5.05 5.51 5.96 1.45 6.18 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Carveol   n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Chavicol sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 23.23 93.86 118.79 n.a. n.a. n.a. 98.85 2.56 142.35 
Cotinine n.a. 0.00 n.a. 0.00 0.00 0.00 n.a. 0.00 n.a. n.a. 0.00 n.a. 0.00 0.00 0.00 n.a. 0.00 n.a. 
Cresol sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 184.24 217.61 744.70 1230.8 64.53 189.51 408.03 254.03 
Curcumenol * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Diazepam n.a. 46.41 25.50 0.01 n.a. n.a. 30.29 33.26 26.80 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Diethyl phthalate n.a. 17.93 23.91 7.14 5.51 7.69 18.57 9.06 25.28 0.02 0.62 0.76 0.28 0.87 0.37 0.71 0.30 0.86 
Docosahexaenoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 34.06 112.43 50.07 78.96 41.56 45.68 15.56 36.69 
Eicosapentaenoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 11.47 37.61 23.78 15.25 21.03 28.36 3.18 16.92 
Ethyl paraben n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.06 6.09 7.53 3.37 7.88 3.67 6.34 3.96 8.45 
Ibuprofen n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.31 0.71 1.21 n.a. n.a. n.a. 
Indole-3-carbinol * n.a. 0.90 0.45 1.60 2.10 1.46 1.24 0.36 1.18 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Indole-3-carboxaldehyde * n.a. 0.76 0.71 2.43 1.75 1.95 0.63 0.85 0.75 n.a. 4.63 4.96 12.30 10.86 11.27 4.12 5.66 5.23 
Indolelactic acid * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 5.96 6.69 6.67 7.34 4.53 5.86 2.69 3.98 
Indoxyl sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 20.99 5.31 77.15 114.70 112.24 42.36 17.26 28.47 
Nordazepam n.a. 1.33 2.61 0.00 0.00 0.00 1.77 0.00 1.90 n.a. 0.06 0.11 n.a. n.a. n.a. 0.10 0.00 0.07 
Octaethylene glycol 0.00 0.10 0.09 0.21 0.09 0.25 0.10 0.92 0.10 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Oxazepam n.a. 0.00 0.00 n.a. 0.00 n.a. 0.00 0.00 0.00 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Paracetamol n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.77 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 71.53 n.a. 
Paraxanthine n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.01 26.86 35.32 0.99 15.27 14.11 28.57 0.84 36.76 
Pentachlorophenol n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Phenol sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 64.51 85.70 41.83 41.01 23.59 70.35 34.97 91.34 
Piperine n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Propylparaben sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Theobromine n.a. 15.16 24.90 0.95 1.86 15.10 15.74 8.52 19.47 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Trans-3-hydroxycotinine n.a. n.a. 0.00 0.00 0.00 0.00 n.a. 0.00 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Triclosan glucuronide n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.54 0.56 0.01 0.01 0.04 0.53 n.a. 0.70 
Triclosan sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.00 0.00 0.00 n.a. 0.00 0.00 n.a. 0.00 
Tryptophan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A5b – (continued) Application to cohort samples (Plasma – Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds 

annotated through manual annotation (i.e. without confidence indices-CI values) 

Annotation 

Internal standard-corrected areas in sample prepared with PPT 

(+) (-) 

Blank Mean 1 Mean 2 Mean 3 Mean 4 Mean 5 Mean 6 Mean 7 Mean 8 Blank Mean 1 Mean 2 Mean 3 Mean 4 Mean 5 Mean 6 Mean 7 Mean 8 

2-Hydroxybenzoic Acid   n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.02 0.02 0.02 n.a. n.a. 0.02 1.94 0.04 
2-Methoxyacetophenone n.a. 2.11 3.11 2.62 0.75 0.04 2.39 0.03 3.46 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
2-naphthylamine 4.22 1.18 2.73 2.03 2.27 2.44 1.39 2.08 3.48 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
3,4,5-trimethoxycinnamic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
3-hydroxybenzoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.41 0.46 0.40 0.32 0.54 0.35 73.01 0.45 
4-hydroxy-2,5,6-
trichloroisophthalonitrile n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.05 0.05 0.10 0.07 0.05 0.06 0.04 0.08 
4-hydroxybenzoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.32 1.53 0.63 6.81 3.08 1.17 1.06 1.70 
Acetaminophen glucuronide n.a. n.a. n.a. n.a. n.a. n.a. n.a. 34.19 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 489.91 n.a. 
Azelaic acid * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 4.85 32.14 26.29 61.64 166.14 186.75 23.30 23.67 34.51 
Bourbonal   0.14 0.18 0.24 0.31 0.05 0.37 n.a. n.a. 0.20 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Bupivacaine n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.16 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Caffeine 0.00 5.80 6.42 0.38 5.19 5.39 5.82 1.36 6.59 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Carveol   n.a. 0.02 0.03 0.01 0.01 0.01 0.03 0.02 0.03 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Chavicol sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 103.67 138.91 24.29 16.84 19.68 109.84 23.13 152.04 
Cotinine n.a. 0.00 n.a. 0.00 0.00 0.00 n.a. 0.00 n.a. n.a. 0.00 n.a. 0.00 0.00 0.00 n.a. 0.00 n.a. 
Cresol sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 162.10 204.16 828.17 1455.9 78.15 162.02 324.58 230.76 
Curcumenol * n.a. 0.40 0.50 0.36 0.28 0.29 0.50 0.74 0.79 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Diazepam n.a. 41.36 32.66 0.02 n.a. n.a. 33.30 31.73 34.52 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Diethyl phthalate n.a. 14.14 12.42 0.23 1.50 0.89 13.29 2.51 16.69 0.08 0.63 0.48 0.16 0.31 0.31 0.20 0.19 0.81 
Docosahexaenoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 106.06 150.86 71.19 88.20 53.23 109.58 100.40 104.32 
Eicosapentaenoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.01 39.83 52.36 65.33 23.89 22.71 24.47 12.71 60.25 
Ethyl paraben n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.06 4.55 6.28 3.52 10.23 4.68 4.48 2.77 7.04 
Ibuprofen n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.20 0.07 3.70 1.40 2.13 n.a. 0.05 0.05 
Indole-3-carbinol * n.a. 1.85 2.66 1.58 2.43 1.64 2.07 1.98 2.91 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Indole-3-carboxaldehyde * n.a. 0.52 0.69 2.02 1.02 1.19 0.57 0.70 0.70 n.a. 2.76 3.81 12.97 5.75 8.54 3.00 3.52 4.20 
Indolelactic acid * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 13.06 16.41 10.64 11.05 13.21 12.26 6.26 16.86 
Indoxyl sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.07 68.58 81.74 116.61 158.38 162.49 66.32 98.17 87.99 
Nordazepam n.a. 2.35 3.65 0.00 0.01 0.00 2.81 0.00 4.13 n.a. 0.12 0.18 n.a. n.a. n.a. 0.16 0.00 0.20 
Octaethylene glycol n.a. 0.08 0.07 0.04 0.06 0.24 0.06 0.81 0.08 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Oxazepam n.a. 0.00 0.00 n.a. 0.00 n.a. 0.00 0.00 0.00 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Paracetamol n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.03 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 66.36 n.a. 
Paraxanthine n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.01 28.66 36.92 1.20 21.34 19.21 29.21 0.89 39.56 
Pentachlorophenol n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Phenol sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 56.51 82.32 45.92 48.15 27.34 63.58 31.69 85.30 
Piperine n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Propylparaben sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Theobromine n.a. 11.72 15.05 0.62 1.24 11.71 12.16 7.75 17.26 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Trans-3-hydroxycotinine n.a. n.a. 0.00 0.00 0.00 0.00 n.a. 0.00 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Triclosan glucuronide n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.42 0.71 0.01 0.01 0.03 0.53 n.a. 0.71 
Triclosan sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.00 0.00 0.00 n.a. 0.00 0.00 n.a. 0.00 
Tryptophan n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A5b – (continued) Application to cohort samples (Plasma – Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds 

annotated through manual annotation (i.e. without confidence indices-CI values) 

Annotation 

Fold changes (Area Phree / Area PPT) 

(+) (-) 

Blank Mean 1 Mean 2 Mean 3 Mean 4 Mean 5 Mean 6 Mean 7 Mean 8 Blank Mean 1 Mean 2 Mean 3 Mean 4 Mean 5 Mean 6 Mean 7 Mean 8 

2-Hydroxybenzoic Acid   n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.2 1.7 2.8 n.a. n.a. 2.1 1.9 2.7 
2-Methoxyacetophenone n.a. 1.0 0.9 1.0 0.9 0.7 0.9 1.0 0.8 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
2-naphthylamine n.a. 4.1 2.0 3.2 2.8 2.7 3.7 2.0 1.7 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
3,4,5-trimethoxycinnamic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
3-hydroxybenzoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.7 2.4 3.0 3.0 1.4 1.2 1.5 2.4 
4-hydroxy-2,5,6-
trichloroisophthalonitrile n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.0 1.4 2.2 1.9 1.9 2.4 1.6 3.3 
4-hydroxybenzoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.5 1.5 2.9 1.2 1.9 2.4 3.9 1.3 
Acetaminophen glucuronide n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.4 n.a. 
Azelaic acid * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 32.8 Inf Inf Inf 0.1 0.0 Inf Inf Inf 
Bourbonal   0.1 0.7 0.4 0.0 0.7 0.0 n.a. n.a. 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Bupivacaine n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.7 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Caffeine n.a. 1.0 0.9 1.2 1.0 1.0 1.0 1.1 0.9 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Carveol   n.a. Inf Inf Inf Inf Inf Inf Inf Inf n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Chavicol sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.9 0.9 Inf Inf Inf 0.9 0.1 0.9 
Cotinine n.a. 0.7 n.a. 0.3 0.5 0.4 n.a. 1.0 n.a. n.a. 0.4 n.a. 0.8 0.9 0.8 n.a. 0.4 n.a. 
Cresol sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.1 1.1 0.9 0.8 0.8 1.2 1.3 1.1 
Curcumenol * n.a. Inf Inf Inf Inf Inf Inf Inf Inf n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Diazepam n.a. 1.1 0.8 0.9 n.a. n.a. 0.9 1.0 0.8 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Diethyl phthalate n.a. 1.3 1.9 31.0 3.7 8.6 1.4 3.6 1.5 0.2 1.0 1.6 1.8 2.8 1.2 3.5 1.6 1.1 
Docosahexaenoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.3 0.7 0.7 0.9 0.8 0.4 0.2 0.4 
Eicosapentaenoic acid n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.3 0.7 0.4 0.6 0.9 1.2 0.3 0.3 
Ethyl paraben n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.0 1.3 1.2 1.0 0.8 0.8 1.4 1.4 1.2 
Ibuprofen n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. Inf Inf 0.4 0.5 0.6 n.a. Inf Inf 
Indole-3-carbinol * n.a. 0.5 0.2 1.0 0.9 0.9 0.6 0.2 0.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Indole-3-carboxaldehyde * n.a. 1.5 1.0 1.2 1.7 1.6 1.1 1.2 1.1 n.a. 1.7 1.3 0.9 1.9 1.3 1.4 1.6 1.2 
Indolelactic acid * n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.5 0.4 0.6 0.7 0.3 0.5 0.4 0.2 
Indoxyl sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.3 0.1 0.7 0.7 0.7 0.6 0.2 0.3 
Nordazepam n.a. 0.6 0.7 0.9 0.2 0.2 0.6 0.7 0.5 n.a. 0.5 0.6 n.a. n.a. n.a. 0.6 1.3 0.4 
Octaethylene glycol n.a. 1.2 1.3 5.4 1.7 1.1 1.7 1.1 1.2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Oxazepam n.a. 1.1 1.8 n.a. 15.5 n.a. 2.1 1.6 3.3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Paracetamol n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.6 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.1 n.a. 
Paraxanthine n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.9 0.9 1.0 0.8 0.7 0.7 1.0 0.9 0.9 
Pentachlorophenol n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.3 0.3 0.3 0.3 0.6 0.2 0.3 0.2 
Phenol sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.1 1.0 0.9 0.9 0.9 1.1 1.1 1.1 
Piperine n.a. 1.4 1.8 2.8 3.5 3.1 1.6 2.4 1.3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Propylparaben sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.5 0.6 1.0 0.9 0.9 0.6 0.9 0.6 
Theobromine n.a. 1.3 1.7 1.5 1.5 1.3 1.3 1.1 1.1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Trans-3-hydroxycotinine n.a. n.a. 1346.6 8.4 7.7 7.4 n.a. 1.8 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Triclosan glucuronide n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.3 0.8 0.9 1.1 1.2 1.0 n.a. 1.0 
Triclosan sulfate n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 7.8 4.4 4.4 n.a. 4.5 3.5 n.a. 5.8 
Tryptophan n.a. 0.3 0.7 0.7 0.8 0.6 0.5 0.8 0.9 n.a. 0.8 0.7 0.8 0.7 0.6 0.7 0.1 0.7 
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2.8. Table A6 – Phree and PPT methods detection limits on 30 xenobiotics 

Table A6 – Methods detection limits on 30 xenobiotics for Phree and protein precipitation (PPT) 

 Serum Plasma 

Compounds Phree PPT Phree PPT 

2-Aminobenzimidazole 0.1 0.1 0.1 0.5 

Acetochlor 0.1 0.1 0.1 0.1 

Aflatoxin B1 0.1 0.5 0.1 0.5 

Azoxystrobine 0.1 0.1 0.1 0.1 

Boscalid 0.1 0.1 0.1 1 

Carbamazepine 0.5 0.5 0.1 0.1 

Carbendazim 0.1 0.1 0.1 0.1 

Chlorpyrifos 0.5 0.5 0.5 0.1 

Clothianidin 0.5 0.5 1 0.1 

Cotinine 0.1 0.1 0.1 0.1 

Cyprodinil 0.1 0.5 0.1 1 

Diazinon 0.1 0.1 0.1 0.1 

Diclofenac 0.1 0.5 0.5 0.5 

Fluoxetine 0.1 0.1 0.1 0.1 

Ibuprofen 10 40 20 20 

Imidacloprid 0.1 0.1 0.1 0.5 

Ketoprofen 0.1 0.1 0.5 0.5 

Malathion 0.5 1 0.1 5 

Nicotine 0.1 0.1 0.1 0.1 

Paracetamol 0.1 0.1 0.1 0.1 

Piperine 0.1 0.1 0.1 0.1 

Pravastatin N/A 0.5 N/A 0.5 

Prochloraz 0.1 0.5 0.1 1 

Propiconazole 0.1 0.5 0.1 1 

Sertraline 0.1 1 0.5 1 

Tebuconazole 0.5 0.5 0.5 0.1 

Thiacloprid 0.1 0.1 0.1 0.1 

Thiamethoxam 0.1 0.1 0.5 1 

Triclosan 10 20 10 20 

Venlafaxine 0.1 0.5 0.1 0.1 

     

Mean 0.9 2.3 1.2 1.9 

Median 0.1 0.3 0.1 0.3 
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2.9. Appendix S.1 – Solvents and chemicals 

Native and isotopically labeled standard compounds were purchased from suppliers Bertin, 

LGC, Sigma Aldrich and VWR and were stored at -20°C. Details can be found in Supporting 

Information (SI, Table A1). Ultrapure water was generated using a Millipore Milli-Q Gradient 

system. UPLC-MS-grade acetonitrile and formic acid were purchased from Biosolve (Dieuze, 

France). UPLC-MS-grade methanol was purchased from Carlo Erba (Val-de-Reuil, France). 

HPLC-MS-grade methyl tert-butyl ether (MTBE) and ethyl acetate were purchased from Fisher 

Scientific (Illkirch-Graffenstaden, France). Aqueous ammonia was purchased from VWR 

(Strasbourg, France). 

2.10. Appendix S.2 – Data acquisition 

Samples were analyzed on QTOF-MS (AB Sciex X500R) interfaced with an AB SCIEX 

ExionLC AD UPLC. Compound chromatographic separation was achieved using an Acquity 

UPLC HSS T3 C18 column (1.8µm, 1.0 × 150mm) maintained at 40°C. Injection volume was 

set at 2 µL. Flow rate was set at 100 µL/min with mobile phases of ultrapure water (A) and 

acetonitrile (B) both modified with 0.01% formic acid. The gradient was set as: 0-2.5 min, 10-

20% B; 2.5-20 min, 20-30% B; 20-38 min, 30-45% B; 38-45 min, 45-100% B; 45-55 min, 100% 

B; 55-60 min, 10% B.  Full-scan mass spectra was acquired in both – and + electrospray 

ionization (ESI) modes between 50-1100 m/z using ESI source settings: temperature 550°C, 

ionspray voltage 4,5kV (-4,5kV in negative mode), declustering potential 80V (-80V in negative 

mode), accumulation time 300 ms, spray N2 gas 35 arbitrary units, heat conduction gas 35 

arbitrary units; curtain gas 7 arbitrary units, collisionally activated dissociation gas 7 arbitrary 

units, run time 60min.  MS/MS fragmentation was performed on selected samples using 

sequential window acquisition of the theoretical mass spectrum (SWATH) or data dependent 

acquisition (DDA). SWATH experiments were performed in both – and + ESI modes, using the 

following source settings: MS1 accumulation time 80ms, MS2 accumulation time 30 ms, 

collision energy 35eV, collision energy spread 15eV, cycle time 469ms, mass range 50-1100 

m/z. Acquisition windows were established for each matrix and mode using an vendor-

provided automated SWATH window calculator based on results from full scan injections. DDA 

experiments were performed in both – and + ESI modes, using the following source settings: 

MS1 accumulation time 250ms, MS2 accumulation time 100ms, collision energy 35eV, cycle 

time 2.35s, mass range 50-1100 m/z. Precursor ion selection parameters were as follows: a 

maximum of 20 candidate ions per cycle, intensity threshold 1cps, and dynamic background 

subtraction was enabled (candidate ions only includes ions increasing in intensity). 
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2.11. Appendix S.3 – Quality control procedures  

A solvent blank (i.e. acetonitrile/ultrapure water 90:10 (v/v)) and an extracted ultrapure water 

blank (i.e. extraction performed with ultrapure water in place of sample) were systematically 

injected with each batch to respectively ensure lack of carryover in the UPLC system and 

monitor contamination linked to the sample preparation process. Composite QC samples were 

injected after the blanks to equilibrate the analytical system, and repeatedly throughout the 

batch (every 5 samples). Samples were injected randomly. IS peak areas were monitored to 

assess analytical drift. 

2.12. Appendix S.4 – Sample preparation procedures  

The twelve sample preparation methods used for this work are described below. As the spiking 

level, sample volume and recovery volume vary between experiments; they are not specified 

in each procedure and are recapitulated in Table B1. 

Table B1 – Spiking levels, sample volumes and recovery volumes used for all sample 

preparation procedures for three spiking experiments.   

 Protein precipitation  

Protein precipitation was carried out using a 4:1 (v/v) cold methanol to matrix ratio. Samples 

were left at -20°C for 1h to improve protein removal. Centrifugation was performed at 4°C and 

17,000g for 20 min, after which supernatants were collected and evaporated to dryness under 

vacuum. Samples were recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to 

obtain the desired sample concentration factor.  

 Phospholipid and protein removal  

o Ostro (Waters), Phree (Phenomenex)- Acetonitrile, PL (Supelco), PL Ultra 

(Supelco) 

Experiment Spiking level (ng/mL) Sample volume (μL) Recovery volume (μL) 

Preselection 40 200 100 

Comparison to protein 

precipitation 
10 100 20 

Method detection limit 0.1, 0.5, 1, 5, 10, 20, 40 100 20 
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A 99:1 (v/v) acetonitrile to formic acid mixture was added to the matrix using a 3:1 (v/v) ratio. 

Samples were vortexed then placed on the plate and drawn through it drop by drop under 

vacuum. An additional volume of 100 μL of the 99:1 (v/v) acetonitrile to formic acid mixture 

was drawn through the plate for rinsing. The resulting solutions were evaporated to dryness 

under vacuum, and recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to obtain 

the desired sample concentration factor.  

o Phree (Phenomenex)- Methanol 

A 99:1 (v/v) methanol to formic acid mixture was added to the matrix using a 4:1 (v/v) ratio. 

Samples were vortexed then placed on the plate and drawn through it drop by drop under 

vacuum. An additional volume of 100 μL of the 99:1 (v/v) methanol to formic acid mixture was 

drawn through the plate for rinsing. The resulting solutions were evaporated to dryness under 

vacuum, and recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to obtain the 

desired sample concentration factor. 

o PLD (Biotage) 

A 99:1 (v/v) acetonitrile to formic acid mixture was added to the matrix using a 4:1 (v/v) ratio. 

Samples were vortexed then placed on the plate and drawn through it drop by drop under 

vacuum. An additional volume of 100 μL of the 99:1 (v/v) acetonitrile to formic acid mixture 

was drawn through the plate for rinsing. The resulting solutions were evaporated to dryness 

under vacuum, and recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to obtain 

the desired sample concentration factor. 

o Prime HLB (Waters) 

Samples were placed on the plate and drawn though it drop by drop under vacuum. An 

additional volume of 2 mL of a 95:5 (v/v) ultrapure water to methanol mixture was drawn 

through the plate for rinsing. Elution was performed with 2 mL of a 90:10 (v/v) acetonitrile to 

methanol mixture. The resulting solutions were evaporated to dryness under vacuum, and 

recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to obtain the desired sample 

concentration factor. 

 Solid phase extraction 

o HLB Oasis, Strata X (Phenomenex)  

A 98:2 (v/v) ultrapure water to formic acid mixture was added to the matrix using a 1:1 (v/v) 

ratio. Solid phase was conditioned with 1 mL of methanol followed by 1 mL of ultrapure water. 

Samples were placed on the plate and drawn through it drop by drop under vacuum. An 

additional volume of 2 mL of a 95:5 (v/v) ultrapure water to methanol mixture was drawn 
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through the plate for rinsing. After drying, elution was performed using 1 mL of methanol (first 

extract), then 1 mL of ethyl acetate (second extract). Extracts were separately evaporated to 

dryness under vacuum, and recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as 

to obtain the desired sample concentration factor.  

o Strata XC (Phenomenex) 

A 98:2 (v/v) ultrapure water to formic acid mixture was added to the matrix using a 1:1 (v/v) 

ratio. Solid phase was conditioned with 1 mL of methanol followed by 1 mL of ultrapure water. 

Samples were placed on the plate and drawn through it drop by drop under vacuum. An 

additional volume of 2 mL of a 95:5 (v/v) ultrapure water to methanol mixture was drawn 

through the plate for rinsing. After drying, elution was performed using 1 mL of a 95:5 (v/v) 

methanol to aqueous ammonia ratio (first extract), then 1 mL of methanol (second extract). 

Extracts were separately evaporated to dryness under vacuum, and recovered in 90:10 (v/v) 

ultrapure water to acetonitrile mixture as to obtain the desired sample concentration factor. 

 Supported liquid extraction 

Samples were placed on the plate and drawn though it drop by drop under vacuum. Elution 

was performed with twice 900 μL of methyl tert-butyl ether (MTBE). The resulting solutions 

were evaporated to dryness under vacuum, and recovered in 90:10 (v/v) ultrapure water to 

acetonitrile mixture as to obtain the desired sample concentration factor. 

2.13. Appendix S.5 – Application of PPT and Phree to cohort samples 

Sample preparation methods PPT and Phree (acetonitrile) were applied to serum samples 

from the Pelagie cohort and plasma samples from a Danish birth cohort. Quality control was 

performed on the injected batches, both at the targeted and non-targeted scales. Results are 

presented in Figure S1.  

Suspect screening was performed on the associated datasets, resulting in 44 xenobiotic 

annotations in serum and 41 xenobiotic annotations in plasma. For each annotated compound, 

fold changes (i.e. area ratio of features in samples prepared with Phree and protein 

precipitation) were computed for annotated compounds. Fold change values were also 

computed at the non-targeted level on quality control samples. Results are presented in Figure 

S2. 
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Figure S1 - Quality control parameters for the application of two sample preparation methods 

to two sets of cohort samples (n=8 plasma samples from the Danish cohort, and n=10 serum 

samples for Pelagie). Outer edges identify best performances. 

 

  

Figure S2 – Comparison of fold change values (i.e. area ratio of features in samples prepared 

with Phree and protein precipitation) for quality control samples in Pelagie serum samples (A) 

and Danish plasma samples (B). Yellow indicates features only visible in Phree-prepared 

samples and blue indicates features only visible in protein-precipitated samples. Features are 

organized by retention time value (from bottom to top). The orange dashed rectangle indicates 

the range where lysophospholipids and peptides are mostly observed.
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3. Appendix 3. Supporting information – Chapter IV 

3.1. Table A1 – Standard compounds form and suppliers 

Table A1 – Standard compounds form and suppliers 

Compound name SMILES Supplier Form 

Arachidonic Acid CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(O)=O Bertin Powder 

Leukotriene B4 CCCCCC=CCC(C=CC=CC=CC(CCCC(=O)O)O)O Bertin Powder 

Leukotriene D4 CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)NCC(=O)O)N Bertin Powder 

Prostaglandin D2 CCCCCC(C=CC1C(C(CC1=O)O)CC=CCCCC(=O)O)O Bertin Powder 

Prostaglandin E2 CCCCCC(C=CC1C(CC(=O)C1CC=CCCCC(=O)O)O)O Bertin Powder 

Prostaglandin F2a CCCCCC(C=CC1C(CC(C1CC=CCCCC(=O)O)O)O)O Bertin Powder 

Acetochlor CCC1=CC=CC(=C1N(COCC)C(=O)CCl)C LGC Powder 

Androstenedione CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4=O)C LGC Powder 

Carbendazim COC(=O)NC1=NC2=CC=CC=C2N1 LGC Powder 

Clothianidin CNC(=N[N+](=O)[O-])NCC1=CN=C(S1)Cl LGC Powder 

Cortisone CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C LGC Powder 

Dimethyldithiophosphate COP(=S)(OC)S LGC Powder 

Estrone CC12CCC3C(C1CCC2=O)CCC4=C3C=CC(=C4)O LGC Powder 

Fluoxetine CNCCC(C1=CC=CC=C1)OC2=CC=C(C=C2)C(F)(F)F LGC 1.0 mg/mL in MeOH 

Hydrocortisone CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)O LGC Powder 

Ibuprofen CC(C)CC1=CC=C(C=C1)C(C)C(=O)O LGC Powder 

Paracetamol CC(=O)NC1=CC=C(C=C1)O LGC Powder 

Paroxetine C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4 LGC 1.0 mg/mL in MeOH 

Progesterone CC(=O)C1CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C LGC Powder 

Sertraline CNC1CCC(C2=CC=CC=C12)C3=CC(=C(C=C3)Cl)Cl LGC 1.0 mg/mL in MeOH 

Tebuconazole CC(C)(C)C(CCC1=CC=C(C=C1)Cl)(CN2C=NC=N2)O LGC Powder 

Testosterone CC12CCC3C(C1CCC2O)CCC4=CC(=O)CCC34C LGC Powder 

Thiacloprid C1CSC(=NC#N)N1CC2=CN=C(C=C2)Cl LGC Powder 

Venlafaxine CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O LGC Powder 

2-chloro-4-methylbenzoic acid CC1=CC(=C(C=C1)C(=O)O)Cl LGC Powder 

Acetamiprid CC(=NC#N)N(C)CC1=CN=C(C=C1)Cl LGC Powder 

Amidosulfuron CN(S(=O)(=O)C)S(=O)(=O)NC(=O)NC1=NC(=CC(=N1)OC)OC LGC Powder 

Atrazine CCNC1=NC(=NC(=N1)Cl)NC(C)C LGC Powder 

Atrazine-2-hydroxy CCNC1=NC(=O)NC(=N1)NC(C)C LGC Powder 

Beflubutamid CCC(C(=O)NCC1=CC=CC=C1)OC2=CC(=C(C=C2)F)C(F)(F)F LGC Powder 

Bixafen CN1C=C(C(=N1)C(F)F)C(=O)NC2=C(C=C(C=C2)F)C3=CC(=C(C=C3)Cl)Cl LGC Powder 

Bromacil CCC(C)N1C(=O)NC(=C(Br)C1=O)C LGC Powder 
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Table A1 – (continued) Standard compounds form and suppliers 

Compound name SMILES Supplier Form 

Carbaryl CNC(=O)OC1=CC=CC2=CC=CC=C21 LGC Powder 

Carbetamide CCNC(=O)C(C)OC(=O)NC1=CC=CC=C1 LGC Powder 

Chlorantraniliprole CC1=CC(=CC(=C1NC(=O)C2=CC(=NN2C3=C(C=CC=N3)Cl)Br)C(=O)NC)Cl LGC Powder 

Dimethenamid CC1=CSC(=C1N(C(C)COC)C(=O)CCl)C LGC Powder 

Estradiol-2-hydroxy CC12CCC3C(C1CCC2O)CCC4=CC(=C(C=C34)O)O LGC Powder 

Estrone-2-hydroxy CC12CCC3C(C1CCC2=O)CCC4=CC(=C(C=C34)O)O LGC Powder 

Ethidimuron CCS(=O)(=O)C1=NN=C(S1)N(C)C(=O)NC LGC Powder 

Fenamidone CC1(C(=O)N(C(=N1)SC)NC2=CC=CC=C2)C3=CC=CC=C3 LGC Powder 

Fenpropimorph CC1CN(CC(O1)C)CC(C)CC2=CC=C(C=C2)C(C)(C)C LGC Powder 

Flonicamid C1=CN=CC(=C1C(F)(F)F)C(=O)NCC#N LGC Powder 

Fluroxypyr C(C(=O)O)OC1=NC(=C(C(=C1Cl)N)Cl)F LGC Powder 

Flurtamone CNC1=C(C(=O)C(O1)C2=CC=CC=C2)C3=CC(=CC=C3)C(F)(F)F LGC Powder 

Fosthiazate CCO[P](=O)(SC(C)CC)N1CCSC1=O LGC Powder 

Imazamethabenz-methyl CC1=CC(=C(C=C1)C(=O)OC)C2=NC(C(=O)N2)(C)C(C)C LGC Powder 

Imazamox CC(C)C1(C(=O)NC(=N1)C2=C(C=C(C=N2)COC)C(=O)O)C LGC Powder 

Imazaquin CC(C)C1(C(=O)NC(=N1)C2=NC3=CC=CC=C3C=C2C(=O)O)C LGC Powder 

Iodosulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=C(C=CC(=C2)I)C(=O)OC LGC Powder 

Irgarol CC(C)(C)NC1=NC(=NC(=N1)NC2CC2)SC LGC Powder 

Isoxaben CCC(C)(CC)C1=NOC(=C1)NC(=O)C2=C(C=CC=C2OC)OC LGC Powder 

Isoxaflutole CS(=O)(=O)C1=C(C=CC(=C1)C(F)(F)F)C(=O)C2=C(ON=C2)C3CC3 LGC Powder 

Metamitron CC1=NN=C(C(=O)N1N)C2=CC=CC=C2 LGC Powder 

Metobromuron CN(C(=O)NC1=CC=C(C=C1)Br)OC LGC Powder 

Metolachlor CCC1=CC=CC(=C1N(C(C)COC)C(=O)CCl)C LGC Powder 

Metosulam CC1=C(C(=C(C=C1)Cl)NS(=O)(=O)C2=NN3C(=CC(=NC3=N2)OC)OC)Cl LGC Powder 

Metribuzine CSC1=NN=C(C(=O)N1N)C(C)(C)C LGC Powder 

Metsulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=CC=CC=C2C(=O)OC LGC Powder 

Nicosulfuron CN(C)C(=O)C1=C(N=CC=C1)S(=O)(=O)NC(=O)NC2=NC(=CC(=N2)OC)OC LGC Powder 

Oryzalin CCCN(CCC)C1=C(C=C(C=C1[N+](=O)[O-])S(=O)(=O)N)[N+](=O)[O-] LGC Powder 

Pencycuron C1CCC(C1)N(CC2=CC=C(C=C2)Cl)C(=O)NC3=CC=CC=C3 LGC Powder 

Propachlor CC(C)N(C1=CC=CC=C1)C(=O)CCl LGC Powder 

Propamocarb CCCOC(=O)NCCCN(C)C LGC Powder 

Propoxycarbazone CCCOC1=NN(C(=O)N1C)C(=O)NS(=O)(=O)C2=CC=CC=C2C(=O)OC LGC Powder 

Pymetrozine CC1=NNC(=O)N(C1)N=CC2=CN=CC=C2 LGC Powder 

Pyraclostrobin COC(=O)N(C1=CC=CC=C1COC2=NN(C=C2)C3=CC=C(C=C3)Cl)OC LGC Powder 

Pyroxsulam COC1=CC(=NC2=NC(=NN12)NS(=O)(=O)C3=C(C=CN=C3OC)C(F)(F)F)OC LGC Powder 

Quinmerac CC1=CC2=C(C(=C(C=C2)Cl)C(=O)O)N=C1 LGC Powder 

Spiroxamine CCCN(CC)CC1COC2(CCC(CC2)C(C)(C)C)O1 LGC Powder 

Sulcotrione CS(=O)(=O)C1=CC(=C(C=C1)C(=O)C2C(=O)CCCC2=O)Cl LGC Powder 
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Table A1 – (continued) Standard compounds form and suppliers 

Compound name SMILES Supplier Form 

Terbuthylazine CCNC1=NC(=NC(=N1)Cl)NC(C)(C)C LGC Powder 

Tertbutylazine-2-hydroxy CCNC1=NC(=O)NC(=N1)NC(C)(C)C LGC Powder 

Thifensulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=C(SC=C2)C(=O)OC LGC Powder 

Triazoxide C1=CC2=C(C=C1Cl)[N+](=NC(=N2)N3C=CN=C3)[O-] LGC Powder 

Triclopyr C1=C(C(=NC(=C1Cl)Cl)OCC(=O)O)Cl LGC Powder 

Triflusulfuron-methyl CC1=C(C(=CC=C1)C(=O)OC)S(=O)(=O)NC(=O)NC2=NC(=NC(=N2)OCC(F)(F)F)N(C)C LGC Powder 

Trinexapac-ethyl CCOC(=O)C1CC(=O)C(=C(C2CC2)O)C(=O)C1 LGC Powder 

Triticonazole CC1(CCC(=CC2=CC=C(C=C2)Cl)C1(CN3C=NC=N3)O)C LGC Powder 

Tritosulfuron COC1=NC(=NC(=N1)NC(=O)NS(=O)(=O)C2=CC=CC=C2C(F)(F)F)C(F)(F)F LGC Powder 

17b-Estradiol CC12CCC3C(C1CCC2O)CCC4=C3C=CC(=C4)O LGC Powder 

Acetylsalicylic acid CC(=O)OC1=CC=CC=C1C(=O)O LGC Powder 

Aniline C1=CC=C(C=C1)N LGC Powder 

Dehydroepiandrosterone CC12CCC3C(C1CCC2=O)CC=C4C3(CCC(C4)O)C LGC Powder 

Estriol CC12CCC3C(C1CC(C2O)O)CCC4=C3C=CC(=C4)O LGC Powder 

L-thyroxine C1=C(C=C(C(=C1I)OC2=CC(=C(C(=C2)I)O)I)I)CC(C(=O)O)N LGC Powder 

Pregnenolone CC(=O)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)O)C)C LGC Powder 

Progesterone-17-hydroxy CC(=O)C1(CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C)O LGC Powder 

Tryptophan C1=CC=C2C(=C1)C(=CN2)CC(C(=O)O)N LGC Powder 

Mesotrione CS(=O)(=O)C1=CC(=C(C=C1)C(=O)C2C(=O)CCCC2=O)[N+](=O)[O-] Servilab Powder 

Caffeine CN1C=NC2=C1C(=O)N(C(=O)N2C)C Servilab Powder 

Aflatoxin B1 COC1=C2C3=C(C(=O)CC3)C(=O)OC2=C4C5C=COC5OC4=C1 Sigma Aldrich Powder 

Codeine CN1CCC23C4C1CC5=C2C(=C(C=C5)OC)OC3C(C=C4)O Sigma Aldrich Powder 

Hydroxyindoleacetic acid C1=CC2=C(C=C1O)C(=CN2)CC(=O)O Sigma Aldrich Powder 

Piperine C1CCN(CC1)C(=O)C=CC=CC2=CC3=C(C=C2)OCO3 Sigma Aldrich Powder 

Pravastatin CCC(C)C(=O)OC1CC(C=C2C1C(C(C=C2)C)CCC(CC(CC(=O)O)O)O)O Sigma Aldrich Powder 

Solanidine CC1CCC2C(C3C(N2C1)CC4C3(CCC5C4CC=C6C5(CCC(C6)O)C)C)C Sigma Aldrich Powder 

Foramsulfuron CN(C)C(=O)C1=C(C=C(C=C1)NC=O)S(=O)(=O)NC(=O)NC2=NC(=CC(=N2)OC)OC Sigma Aldrich Powder 

4-Aminophenol C1=CC(=CC=C1N)O Sigma Aldrich Powder 

Acetylcholine CC(=O)OCC[N+](C)(C)C Sigma Aldrich Powder 

Aldosterone CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4C(=O)CO)C=O)O Sigma Aldrich Powder 

Allopregnanolone CC(=O)C1CCC2C1(CCC3C2CCC4C3(CCC(C4)O)C)C Sigma Aldrich Powder 

Amoxicillin CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C Sigma Aldrich Powder 

Dopamine C1=CC(=C(C=C1CCN)O)O Sigma Aldrich Powder 

Epinephrine CNCC(C1=CC(=C(C=C1)O)O)O Sigma Aldrich Powder 

Ethinylestradiol CC12CCC3C(C1CCC2(C#C)O)CCC4=C3C=CC(=C4)O Sigma Aldrich Powder 

Ketoprofen CC(C1=CC(=CC=C1)C(=O)C2=CC=CC=C2)C(=O)O Sigma Aldrich Powder 

Methylparaben COC(=O)C1=CC=C(C=C1)O Sigma Aldrich Powder 

Morphine CN1CCC23C4C1CC5=C2C(=C(C=C5)O)OC3C(C=C4)O Sigma Aldrich Powder 
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Table A1 – (continued) Standard compounds form and suppliers 

Compound name SMILES Supplier Form 

Oxazepam C1=CC=C(C=C1)C2=NC(C(=O)NC3=C2C=C(C=C3)Cl)O Sigma Aldrich Powder 

Oxybenzone COC1=CC(=C(C=C1)C(=O)C2=CC=CC=C2)O Sigma Aldrich Powder 

Pivmecillinam CC1(C(N2C(S1)C(C2=O)N=CN3CCCCCC3)C(=O)OCOC(=O)C(C)(C)C)C Sigma Aldrich Powder 

Propylparaben CCCOC(=O)C1=CC=C(C=C1)O Sigma Aldrich Powder 

Salicylic acid C1=CC=C(C(=C1)C(=O)O)O Sigma Aldrich Powder 

Tryptamine-5-hydroxy C1=CC2=C(C=C1O)C(=CN2)CCN Sigma Aldrich Powder 

2-Phenylphenol C1=CC=C(C=C1)C2=CC=CC=C2O VWR Powder 

Aminobenzimidazole C1=CC=C2C(=C1)NC(=N2)N VWR Powder 

Azoxystrobin COC=C(C1=CC=CC=C1OC2=NC=NC(=C2)OC3=CC=CC=C3C#N)C(=O)OC VWR Powder 

Boscalid C1=CC=C(C(=C1)C2=CC=C(C=C2)Cl)NC(=O)C3=C(N=CC=C3)Cl VWR Powder 

Carbamazepine C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N VWR Powder 

Chlorpyrifos CCOP(=S)(OCC)OC1=NC(=C(C=C1Cl)Cl)Cl VWR Powder 

Cotinine CN1C(CCC1=O)C2=CN=CC=C2 VWR Powder 

Cyprodinil CC1=CC(=NC(=N1)NC2=CC=CC=C2)C3CC3 VWR Powder 

Diazinon CCOP(=S)(OCC)OC1=NC(=NC(=C1)C)C(C)C VWR Powder 

Diclofenac C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl VWR Powder 

Imidacloprid C1CN(C(=N[N+](=O)[O-])N1)CC2=CN=C(C=C2)Cl VWR Powder 

Nicotine CN1CCCC1C2=CN=CC=C2 VWR Powder 

Prochloraz CCCN(CCOC1=C(C=C(C=C1Cl)Cl)Cl)C(=O)N2C=CN=C2 VWR Powder 

Propiconazole CCCC1COC(O1)(CN2C=NC=N2)C3=C(C=C(C=C3)Cl)Cl VWR Powder 

Thiamethoxam CN1COCN(C1=N[N+](=O)[O-])CC2=CN=C(S2)Cl VWR Powder 
1-(3,4-Dichlorophenyl)-3-
methylurea CNC(=O)NC1=CC(=C(C=C1)Cl)Cl VWR Powder 

1-(3,4-Dichlorophenyl)urea C1=CC(=C(C=C1NC(=O)N)Cl)Cl VWR Powder 

1-(4-Isopropylphenyl)urea CC(C)C1=CC=C(C=C1)NC(=O)N VWR Powder 

2,4-mcpa CC1=C(C=CC(=C1)Cl)OCC(=O)O VWR Powder 

Alachlor CCC1=C(C(=CC=C1)CC)N(COC)C(=O)CCl VWR Powder 

Ametryn CCNC1=NC(=NC(=N1)SC)NC(C)C VWR Powder 

Atrazine-deisopropyl CCNC1=NC(=NC(=N1)N)Cl VWR Powder 

Carbofuran CC1(CC2=C(O1)C(=CC=C2)OC(=O)NC)C VWR Powder 

Chloridazon C1=CC=C(C=C1)N2C(=O)C(=C(C=N2)N)Cl VWR Powder 

Chlortoluron CC1=C(C=C(C=C1)NC(=O)N(C)C)Cl VWR Powder 

Dichlorprop CC(C(=O)O)OC1=C(C=C(C=C1)Cl)Cl VWR Powder 

Dimethomorph COC1=C(C=C(C=C1)C(=CC(=O)N2CCOCC2)C3=CC=C(C=C3)Cl)OC VWR Powder 

Diuron CN(C)C(=O)NC1=CC(=C(C=C1)Cl)Cl VWR Powder 

Fenpropidine CC(CC1=CC=C(C=C1)C(C)(C)C)CN2CCCCC2 VWR Powder 

Flufenacet CC(C)N(C1=CC=C(C=C1)F)C(=O)COC2=NN=C(S2)C(F)(F)F VWR Powder 

Iprodione CC(C)NC(=O)N1CC(=O)N(C1=O)C2=CC(=CC(=C2)Cl)Cl VWR Powder 



Appendices 

236  
 

Table A1 – (continued) Standard compounds form and suppliers 

Compound name SMILES Supplier Form 

Isoproturon CC(C)C1=CC=C(C=C1)NC(=O)N(C)C VWR Powder 

Isoproturon-didemethyl CC(C)C1=CC=C(C=C1)NC(=O)N VWR Powder 

Linuron CN(C(=O)NC1=CC(=C(C=C1)Cl)Cl)OC VWR Powder 

Mesosulfuron-methyl COC1=CC(=NC(=N1)NC(=O)NS(=O)(=O)C2=C(C=CC(=C2)CNS(=O)(=O)C)C(=O)OC)OC VWR Powder 

Metalaxyl CC1=C(C(=CC=C1)C)N(C(C)C(=O)OC)C(=O)COC VWR Powder 

Metazachlor CC1=C(C(=CC=C1)C)N(CN2C=CC=N2)C(=O)CCl VWR Powder 

Methabenzthiazuron CNC(=O)N(C)C1=NC2=CC=CC=C2S1 VWR Powder 

Paclobutrazol CC(C)(C)C(C(CC1=CC=C(C=C1)Cl)N2C=NC=N2)O VWR Powder 

Pirimicarb CC1=C(N=C(N=C1OC(=O)N(C)C)N(C)C)C VWR Powder 

Propyzamide CC(C)(C#C)NC(=O)C1=CC(=CC(=C1)Cl)Cl VWR Powder 

Prosulfuron CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=CC=CC=C2CCC(F)(F)F VWR Powder 

Pyrimethanil CC1=CC(=NC(=N1)NC2=CC=CC=C2)C VWR Powder 

Simazine CCNC1=NC(=NC(=N1)Cl)NCC VWR Powder 

Tebutame CC(C)N(CC1=CC=CC=C1)C(=O)C(C)(C)C VWR Powder 

Terbutryne CCNC1=NC(=NC(=N1)SC)NC(C)(C)C VWR Powder 

Triadimenol CC(C)(C)C(C(N1C=NC=N1)OC2=CC=C(C=C2)Cl)O VWR Powder 

Chlorpyrifos-methyl COP(=S)(OC)OC1=NC(=C(C=C1Cl)Cl)Cl VWR Powder 

Malathion CCOC(=O)CC(C(=O)OCC)SP(=S)(OC)OC VWR Powder 

Triclosan C1=CC(=C(C=C1Cl)O)OC2=C(C=C(C=C2)Cl)Cl VWR Powder 

 

3.2. Table A2 – Computer specifications 

Model Dell OptiPlex XE2 

Processor Intel® Core™ i5-4570S CPU @ 2.90 GHz 2.89 GHz 

RAM 32.0 GB 

System type 64-bit operating system, x64-based processor 

Operating system Windows 10 Enterprise 2016 LTSB 
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3.3. Table A3 – Sets of compounds used for spiking samples (n=45), training models (n=134) and evaluating 

them (n=30) 

Table A3 – Sets of compounds used for spiking samples (n=45), training models (n=134) and evaluating them (n=30) 

 Compound name SMILES Chemical formula Monoisotopic mass CAS 

Spiking 
set 

2-Phenylphenol C1=CC=C(C=C1)C2=CC=CC=C2O C12H10O 170.0732 90-43-7 

Acetochlor CCC1=CC=CC(=C1N(COCC)C(=O)CCl)C C14H20ClNO2 269.1183 123113-74-6 

Aflatoxin B1 COC1=C2C3=C(C(=O)CC3)C(=O)OC2=C4C5C=COC5OC4=C1 C17H12O6 312.0634 27261-02-5 

Aminobenzimidazole C1=CC=C2C(=C1)NC(=N2)N C7H7N3 133.0640 934-32-7 

Androstenedione CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4=O)C C19H26O2 286.1933 63-05-8 

Arachidonic Acid CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(O)=O C20H32O2 304.2402 93444-49-6 

Azoxystrobin COC=C(C1=CC=CC=C1OC2=NC=NC(=C2)OC3=CC=CC=C3C#N)C(=O)OC C22H17N3O5 403.1168 215934-32-0 

Boscalid C1=CC=C(C(=C1)C2=CC=C(C=C2)Cl)NC(=O)C3=C(N=CC=C3)Cl C18H12Cl2N2O 342.0327 188425-85-6 

Carbamazepine C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N C15H12N2O 236.0950 298-46-4 

Carbendazim COC(=O)NC1=NC2=CC=CC=C2N1 C9H9N3O2 191.0695 63278-70-6 

Chlorpyrifos CCOP(=S)(OCC)OC1=NC(=C(C=C1Cl)Cl)Cl C9H11Cl3NO3PS 348.9263 39475-55-3 

Clothianidin CNC(=N[N+](=O)[O-])NCC1=CN=C(S1)Cl C6H8ClN5O2S 249.0087 205510-53-8 

Codeine CN1CCC23C4C1CC5=C2C(=C(C=C5)OC)OC3C(C=C4)O C18H21NO3 299.1521 76-57-3 

Cortisone CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C C21H28O5 360.1937 53-06-5 

Cotinine CN1C(CCC1=O)C2=CN=CC=C2 C10H12N2O 176.0950 486-56-6 

Cyprodinil CC1=CC(=NC(=N1)NC2=CC=CC=C2)C3CC3 C14H15N3 225.1266 121552-61-2 

Diazinon CCOP(=S)(OCC)OC1=NC(=NC(=C1)C)C(C)C C12H21N2O3PS 304.1011 30583-38-1 

Diclofenac C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl C14H11Cl2NO2 295.0167 15307-86-5 

Dimethyldithiophosphate COP(=S)(OC)S C2H7O2PS2 157.9625 756-80-9 

Estrone CC12CCC3C(C1CCC2=O)CCC4=C3C=CC(=C4)O C18H22O2 270.1620 53-16-7 

Fluoxetine CNCCC(C1=CC=CC=C1)OC2=CC=C(C=C2)C(F)(F)F C17H18F3NO 309.1340 57226-07-0 

Hydrocortisone CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)O C21H30O5 362.2093 50-23-7 

Hydroxyindoleacetic acid C1=CC2=C(C=C1O)C(=CN2)CC(=O)O C10H9NO3 191.0582 113303-91-6 

Ibuprofen CC(C)CC1=CC=C(C=C1)C(C)C(=O)O C13H18O2 206.1307 58560-75-1 

Imidacloprid C1CN(C(=N[N+](=O)[O-])N1)CC2=CN=C(C=C2)Cl C9H10ClN5O2 255.0523 138261-41-3 

Leukotriene B4 CCCCCC=CCC(C=CC=CC=CC(CCCC(=O)O)O)O C20H32O4 336.2301 71160-24-2 

Leukotriene D4 CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)NCC(=O)O)N C25H40N2O6S 496.2607 73836-78-9 

Nicotine CN1CCCC1C2=CN=CC=C2 C10H14N2 162.1157 551-13-3 

Paracetamol CC(=O)NC1=CC=C(C=C1)O C8H9NO2 151.0633 8055-08-1 

Paroxetine C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4 C19H20FNO3 329.1427 63952-24-9 

Piperine C1CCN(CC1)C(=O)C=CC=CC2=CC3=C(C=C2)OCO3 C17H19NO3 285.1365 147030-08-8 

Pravastatin CCC(C)C(=O)OC1CC(C=C2C1C(C(C=C2)C)CCC(CC(CC(=O)O)O)O)O C23H36O7 424.2461 81093-37-0 

Prochloraz CCCN(CCOC1=C(C=C(C=C1Cl)Cl)Cl)C(=O)N2C=CN=C2 C15H16Cl3N3O2 375.0308 67747-09-5 

Progesterone CC(=O)C1CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C C21H30O2 314.2246 257630-50-5 

Propiconazole CCCC1COC(O1)(CN2C=NC=N2)C3=C(C=C(C=C3)Cl)Cl C15H17Cl2N3O2 341.0698 75881-82-2 

Prostaglandin D2 CCCCCC(C=CC1C(C(CC1=O)O)CC=CCCCC(=O)O)O C20H32O5 352.2250 41598-07-6 

Prostaglandin E2 CCCCCC(C=CC1C(CC(=O)C1CC=CCCCC(=O)O)O)O C20H32O5 352.2250 363-24-6 
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Table A3 – Sets of compounds used for spiking samples (n=45), training models (n=134) and evaluating them (n=30) 

 Compound name SMILES Chemical formula Monoisotopic mass CAS 

Spiking 
set 

Prostaglandin F2a CCCCCC(C=CC1C(CC(C1CC=CCCCC(=O)O)O)O)O C20H34O5 354.2406 13535-33-6 

Sertraline CNC1CCC(C2=CC=CC=C12)C3=CC(=C(C=C3)Cl)Cl C17H17Cl2N 305.0738 79559-97-0 

Solanidine CC1CCC2C(C3C(N2C1)CC4C3(CCC5C4CC=C6C5(CCC(C6)O)C)C)C C27H43NO 397.3345 80-78-4 

Tebuconazole CC(C)(C)C(CCC1=CC=C(C=C1)Cl)(CN2C=NC=N2)O C16H22ClN3O 307.1451 80443-41-0 

Testosterone CC12CCC3C(C1CCC2O)CCC4=CC(=O)CCC34C C19H28O2 288.2089 58-22-0 

Thiacloprid C1CSC(=NC#N)N1CC2=CN=C(C=C2)Cl C10H9ClN4S 252.0236 111988-49-9 

Thiamethoxam CN1COCN(C1=N[N+](=O)[O-])CC2=CN=C(S2)Cl C8H10ClN5O3S 291.0193 153719-23-4 

Venlafaxine CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O C17H27NO2 277.2042 93413-69-5 

Training 
Set 

1-(3,4-Dichlorophenyl)-3-methylurea CNC(=O)NC1=CC(=C(C=C1)Cl)Cl C8H8Cl2N2O 218.0014 3567-62-2 

1-(3,4-Dichlorophenyl)urea C1=CC(=C(C=C1NC(=O)N)Cl)Cl C7H6Cl2N2O 203.9857 2327-02-8 

1-(4-Isopropylphenyl)urea CC(C)C1=CC=C(C=C1)NC(=O)N C10H14N2O 178.1106 56046-17-4 

2,4-mcpa CC1=C(C=CC(=C1)Cl)OCC(=O)O C9H9ClO3 200.0240 94-74-6 

2-chloro-4-methylbenzoic acid CC1=CC(=C(C=C1)C(=O)O)Cl C8H7ClO2 170.0135 7697-25-8 

Acetamiprid CC(=NC#N)N(C)CC1=CN=C(C=C1)Cl C10H11ClN4 222.0672 135410-20-7 

Alachlor CCC1=C(C(=CC=C1)CC)N(COC)C(=O)CCl C14H20ClNO2 269.1183 15972-60-8 

Ametryn CCNC1=NC(=NC(=N1)SC)NC(C)C C9H17N5S 227.1205 834-12-8 

Amidosulfuron CN(S(=O)(=O)C)S(=O)(=O)NC(=O)NC1=NC(=CC(=N1)OC)OC C9H15N5O7S2 369.0412 120923-37-7 

Atrazine CCNC1=NC(=NC(=N1)Cl)NC(C)C C8H14ClN5 215.0938 1912-24-9 

Atrazine-2-hydroxy CCNC1=NC(=O)NC(=N1)NC(C)C C8H15N5O 197.1277 2163-68-0 

Atrazine-deisopropyl CCNC1=NC(=NC(=N1)N)Cl C5H8ClN5 173.0468 1007-28-9 

Beflubutamid CCC(C(=O)NCC1=CC=CC=C1)OC2=CC(=C(C=C2)F)C(F)(F)F C18H17F4NO2 355.1195 113614-08-7 

Bixafen CN1C=C(C(=N1)C(F)F)C(=O)NC2=C(C=C(C=C2)F)C3=CC(=C(C=C3)Cl)Cl C18H12Cl2F3N3O 413.0310 581809-46-3 

Bromacil CCC(C)N1C(=O)NC(=C(Br)C1=O)C C9H13BrN2O2 260.0160 314-40-9 

Carbaryl CNC(=O)OC1=CC=CC2=CC=CC=C21 C12H11NO2 201.0790 51274-03-4 

Carbetamide CCNC(=O)C(C)OC(=O)NC1=CC=CC=C1 C12H16N2O3 236.1161 16118-49-3 

Carbofuran CC1(CC2=C(O1)C(=CC=C2)OC(=O)NC)C C12H15NO3 221.1052 1563-66-2 

Chlorantraniliprole CC1=CC(=CC(=C1NC(=O)C2=CC(=NN2C3=C(C=CC=N3)Cl)Br)C(=O)NC)Cl C18H14BrCl2N5O2 480.9708 500008-45-7 

Chloridazon C1=CC=C(C=C1)N2C(=O)C(=C(C=N2)N)Cl C10H8ClN3O 221.0356 1698-60-8 

Chlortoluron CC1=C(C=C(C=C1)NC(=O)N(C)C)Cl C10H13ClN2O 212.0716 15545-48-9 

Dichlorprop CC(C(=O)O)OC1=C(C=C(C=C1)Cl)Cl C9H8Cl2O3 233.9851 120-36-5 

Dimethenamid CC1=CSC(=C1N(C(C)COC)C(=O)CCl)C C12H18ClNO2S 275.0747 87674-68-8 

Dimethomorph COC1=C(C=C(C=C1)C(=CC(=O)N2CCOCC2)C3=CC=C(C=C3)Cl)OC C21H22ClNO4 387.1237 110488-70-5 

Diuron CN(C)C(=O)NC1=CC(=C(C=C1)Cl)Cl C9H10Cl2N2O 232.0170 102962-29-8 

Estradiol-2-hydroxy CC12CCC3C(C1CCC2O)CCC4=CC(=C(C=C34)O)O C18H24O3 288.1725 362-05-0 

Estrone-2-hydroxy CC12CCC3C(C1CCC2=O)CCC4=CC(=C(C=C34)O)O C18H22O3 286.1569 362-06-1 

Ethidimuron CCS(=O)(=O)C1=NN=C(S1)N(C)C(=O)NC C7H12N4O3S2 264.0351 30043-49-3 

Fenamidone CC1(C(=O)N(C(=N1)SC)NC2=CC=CC=C2)C3=CC=CC=C3 C17H17N3OS 311.1092 161326-34-7 

Fenpropidine CC(CC1=CC=C(C=C1)C(C)(C)C)CN2CCCCC2 C19H31N 273.2456 67306-00-7 

Fenpropimorph CC1CN(CC(O1)C)CC(C)CC2=CC=C(C=C2)C(C)(C)C C20H33NO 273.2456 67564-91-4 

Flonicamid C1=CN=CC(=C1C(F)(F)F)C(=O)NCC#N C9H6F3N3O 229.0463 158062-67-0 

Flufenacet CC(C)N(C1=CC=C(C=C1)F)C(=O)COC2=NN=C(S2)C(F)(F)F C14H13F4N3O2S 363.0665 142459-58-3 

Fluroxypyr C(C(=O)O)OC1=NC(=C(C(=C1Cl)N)Cl)F C7H5Cl2FN2O3 253.9661 69377-81-7 
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Table A3 – Sets of compounds used for spiking samples (n=45), training models (n=134) and evaluating them (n=30) 

 Compound name SMILES Chemical formula Monoisotopic mass CAS 

Training 
Set 

Flurtamone CNC1=C(C(=O)C(O1)C2=CC=CC=C2)C3=CC(=CC=C3)C(F)(F)F C18H14F3NO2 333.0977 96525-23-4 

Foramsulfuron CN(C)C(=O)C1=C(C=C(C=C1)NC=O)S(=O)(=O)NC(=O)NC2=NC(=CC(=N2)OC)OC C17H20N6O7S 452.1114 173159-57-4 

Fosthiazate CCO[P](=O)(SC(C)CC)N1CCSC1=O C9H18NO3PS2 283.0466 98886-44-3 

Imazamethabenz-methyl CC1=CC(=C(C=C1)C(=O)OC)C2=NC(C(=O)N2)(C)C(C)C C16H20N2O3 288.1474 81405-85-8 

Imazamox CC(C)C1(C(=O)NC(=N1)C2=C(C=C(C=N2)COC)C(=O)O)C C15H19N3O4 305.1376 114311-32-9 

Imazaquin CC(C)C1(C(=O)NC(=N1)C2=NC3=CC=CC=C3C=C2C(=O)O)C C17H17N3O3 311.1270 81335-37-7 

Iodosulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=C(C=CC(=C2)I)C(=O)OC C14H13IN5NaO6S 528.9529 144550-36-7  

Iprodione CC(C)NC(=O)N1CC(=O)N(C1=O)C2=CC(=CC(=C2)Cl)Cl C13H13Cl2N3O3 329.0334 36734-19-7 

Irgarol CC(C)(C)NC1=NC(=NC(=N1)NC2CC2)SC C11H19N5S 253.1361 28159-98-0 

Isoproturon CC(C)C1=CC=C(C=C1)NC(=O)N(C)C C12H18N2O 206.1419 34123-59-6 

Isoproturon-didemethyl CC(C)C1=CC=C(C=C1)NC(=O)N C10H14N2O 178.1106 56046-17-4 

Isoxaben CCC(C)(CC)C1=NOC(=C1)NC(=O)C2=C(C=CC=C2OC)OC C18H24N2O4 332.1736 82558-50-7 

Isoxaflutole CS(=O)(=O)C1=C(C=CC(=C1)C(F)(F)F)C(=O)C2=C(ON=C2)C3CC3 C15H12F3NO4S 359.0439 141112-29-0 

Linuron CN(C(=O)NC1=CC(=C(C=C1)Cl)Cl)OC C9H10Cl2N2O2 248.0119 56645-87-5 

Mesosulfuron-methyl COC1=CC(=NC(=N1)NC(=O)NS(=O)(=O)C2=C(C=CC(=C2)CNS(=O)(=O)C)C(=O)OC)OC C17H21N5O9S2 503.0781 208465-21-8 

Mesotrione CS(=O)(=O)C1=CC(=C(C=C1)C(=O)C2C(=O)CCCC2=O)[N+](=O)[O-] C14H13NO7S 339.0413 104206-82-8 

Metalaxyl CC1=C(C(=CC=C1)C)N(C(C)C(=O)OC)C(=O)COC C15H21NO4 279.1471 57837-19-1 

Metamitron CC1=NN=C(C(=O)N1N)C2=CC=CC=C2 C10H10N4O 202.0855 41394-05-2 

Metazachlor CC1=C(C(=CC=C1)C)N(CN2C=CC=N2)C(=O)CCl C14H16ClN3O 277.0982 67129-08-2 

Methabenzthiazuron CNC(=O)N(C)C1=NC2=CC=CC=C2S1 C10H11N3OS 221.0623 18691-97-9 

Metobromuron CN(C(=O)NC1=CC=C(C=C1)Br)OC C9H11BrN2O2 258.0004 3060-89-7 

Metolachlor CCC1=CC=CC(=C1N(C(C)COC)C(=O)CCl)C C15H22ClNO2 283.1339 55762-76-0 

Metosulam CC1=C(C(=C(C=C1)Cl)NS(=O)(=O)C2=NN3C(=CC(=NC3=N2)OC)OC)Cl C14H13Cl2N5O4S 417.0065 139528-85-1 

Metribuzine CSC1=NN=C(C(=O)N1N)C(C)(C)C C8H14N4OS 214.0888 21087-64-9 

Metsulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=CC=CC=C2C(=O)OC C14H15N5O6S 381.0743 74223-64-6 

Nicosulfuron CN(C)C(=O)C1=C(N=CC=C1)S(=O)(=O)NC(=O)NC2=NC(=CC(=N2)OC)OC C15H18N6O6S 410.1009 111991-09-4 

Oryzalin CCCN(CCC)C1=C(C=C(C=C1[N+](=O)[O-])S(=O)(=O)N)[N+](=O)[O-] C12H18N4O6S 346.0947 19044-88-3 

Paclobutrazol CC(C)(C)C(C(CC1=CC=C(C=C1)Cl)N2C=NC=N2)O C30H40Cl2N6O2 586.2590 76738-62-0 

Pencycuron C1CCC(C1)N(CC2=CC=C(C=C2)Cl)C(=O)NC3=CC=CC=C3 C19H21ClN2O 328.1342 66063-05-6 

Pirimicarb CC1=C(N=C(N=C1OC(=O)N(C)C)N(C)C)C C11H18N4O2 238.1430 23103-98-2 

Propachlor CC(C)N(C1=CC=CC=C1)C(=O)CCl C11H14ClNO 211.0764 1918-16-7 

Propamocarb CCCOC(=O)NCCCN(C)C C9H20N2O2 188.1525 24579-73-5 

Propoxycarbazone CCCOC1=NN(C(=O)N1C)C(=O)NS(=O)(=O)C2=CC=CC=C2C(=O)OC C15H17N4NaO7S 420.0716 181274-15-7 

Propyzamide CC(C)(C#C)NC(=O)C1=CC(=CC(=C1)Cl)Cl C12H11Cl2NO 255.0218 11097-11-3 

Prosulfuron CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=CC=CC=C2CCC(F)(F)F C15H16F3N5O4S 419.0875 94125-34-5 

Pymetrozine CC1=NNC(=O)N(C1)N=CC2=CN=CC=C2 C10H11N5O 217.0964 123312-89-0 

Pyraclostrobin COC(=O)N(C1=CC=CC=C1COC2=NN(C=C2)C3=CC=C(C=C3)Cl)OC C19H18ClN3O4 387.0986 175013-18-0 

Pyrimethanil CC1=CC(=NC(=N1)NC2=CC=CC=C2)C C12H13N3 199.1109 53112-28-0 

Pyroxsulam COC1=CC(=NC2=NC(=NN12)NS(=O)(=O)C3=C(C=CN=C3OC)C(F)(F)F)OC C14H13F3N6O5S 434.0620 422556-08-9 

Quinmerac CC1=CC2=C(C(=C(C=C2)Cl)C(=O)O)N=C1 C11H8ClNO2 221.0244 90717-03-6 

Simazine CCNC1=NC(=NC(=N1)Cl)NCC C7H12ClN5 201.0781 119603-94-0 

Spiroxamine CCCN(CC)CC1COC2(CCC(CC2)C(C)(C)C)O1 C18H35NO2 297.2668 118134-30-8 

Sulcotrione CS(=O)(=O)C1=CC(=C(C=C1)C(=O)C2C(=O)CCCC2=O)Cl C14H13ClO5S 328.0172 99105-77-8 
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Table A3 – Sets of compounds used for spiking samples (n=45), training models (n=134) and evaluating them (n=30) 

 Compound name SMILES Chemical formula Monoisotopic mass CAS 

Training 
Set 
  

Tebutame CC(C)N(CC1=CC=CC=C1)C(=O)C(C)(C)C C15H23NO 233.1780 35256-85-0 

Terbuthylazine CCNC1=NC(=NC(=N1)Cl)NC(C)(C)C C9H16ClN5 229.1094 5915-41-3 

Terbutryne CCNC1=NC(=NC(=N1)SC)NC(C)(C)C C10H19N5S 241.1361 886-50-0 

Tertbutylazine-2-hydroxy CCNC1=NC(=O)NC(=N1)NC(C)(C)C C9H17N5O 211.1433 66753-07-9 

Thifensulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=C(SC=C2)C(=O)OC C12H13N5O6S2 387.0307 79277-27-3 

Triadimenol CC(C)(C)C(C(N1C=NC=N1)OC2=CC=C(C=C2)Cl)O C14H18ClN3O2 295.1088 55219-65-3 

Triazoxide C1=CC2=C(C=C1Cl)[N+](=NC(=N2)N3C=CN=C3)[O-] C10H6ClN5O 247.0261 72459-58-6 

Triclopyr C1=C(C(=NC(=C1Cl)Cl)OCC(=O)O)Cl C7H4Cl3NO3 254.9257 55335-06-3 

Triflusulfuron-methyl CC1=C(C(=CC=C1)C(=O)OC)S(=O)(=O)NC(=O)NC2=NC(=NC(=N2)OCC(F)(F)F)N(C)C C17H19F3N6O6S 492.1039 126535-15-7 

Trinexapac-ethyl CCOC(=O)C1CC(=O)C(=C(C2CC2)O)C(=O)C1 C13H16O5 252.0998 95266-40-3 

Triticonazole CC1(CCC(=CC2=CC=C(C=C2)Cl)C1(CN3C=NC=N3)O)C C17H20ClN3O 317.1295 131983-72-7 

Tritosulfuron COC1=NC(=NC(=N1)NC(=O)NS(=O)(=O)C2=CC=CC=C2C(F)(F)F)C(F)(F)F C13H9F6N5O4S 445.0279 142469-14-5 

Validation 
set 

17b-Estradiol CC12CCC3C(C1CCC2O)CCC4=C3C=CC(=C4)O C18H24O2 272.1776 50-28-2 

4-Aminophenol C1=CC(=CC=C1N)O C6H7NO 109.0528 123-30-8 

Acetylcholine CC(=O)OCC[N+](C)(C)C C7H16NO2 146.1181 51-84-3 

Acetylsalicylic acid CC(=O)OC1=CC=CC=C1C(=O)O C9H8O4 180.0423 50-78-2 

Aldosterone CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4C(=O)CO)C=O)O C21H28O5 360.1937 152-04-5 

Allopregnanolone CC(=O)C1CCC2C1(CCC3C2CCC4C3(CCC(C4)O)C)C C21H34O2 318.2559 516-54-1 

Amoxicillin CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C C16H19N3O5S 365.1045 26787-78-0 

Aniline C1=CC=C(C=C1)N C6H7N 93.0578 62-53-3 

Caffeine CN1C=NC2=C1C(=O)N(C(=O)N2C)C C8H10N4O2 194.0804 58-08-2 

Chlorpyrifos-methyl COP(=S)(OC)OC1=NC(=C(C=C1Cl)Cl)Cl C7H7Cl3NO3PS 320.8950 5598-13-0 

Dehydroepiandrosterone CC12CCC3C(C1CCC2=O)CC=C4C3(CCC(C4)O)C C19H28O2 288.2089 53-43-0 

Dopamine C1=CC(=C(C=C1CCN)O)O C8H11NO2 153.0790 51-61-6 

Epinephrine CNCC(C1=CC(=C(C=C1)O)O)O C9H13NO3 183.0895 51-43-4 

Estriol CC12CCC3C(C1CC(C2O)O)CCC4=C3C=CC(=C4)O C18H24O3 288.1725 50-27-1 

Ethinylestradiol CC12CCC3C(C1CCC2(C#C)O)CCC4=C3C=CC(=C4)O C20H24O2 296.1776 77538-56-8 

Ketoprofen CC(C1=CC(=CC=C1)C(=O)C2=CC=CC=C2)C(=O)O C16H14O3 254.0943 172964-50-0 

L-thyroxine C1=C(C=C(C(=C1I)OC2=CC(=C(C(=C2)I)O)I)I)CC(C(=O)O)N C15H11I4NO4 776.6867 7488-70-2 

Malathion CCOC(=O)CC(C(=O)OCC)SP(=S)(OC)OC C10H19O6PS2 330.0361 121-75-5 

Methylparaben COC(=O)C1=CC=C(C=C1)O C8H8O3 152.0473 99-76-3 

Morphine CN1CCC23C4C1CC5=C2C(=C(C=C5)O)OC3C(C=C4)O C17H19NO3 285.1365 47106-99-0 

Oxazepam C1=CC=C(C=C1)C2=NC(C(=O)NC3=C2C=C(C=C3)Cl)O C15H11ClN2O2 286.0509 35295-88-6 

Oxybenzone COC1=CC(=C(C=C1)C(=O)C2=CC=CC=C2)O C14H12O3 228.0786 58392-22-6 

Pivmecillinam CC1(C(N2C(S1)C(C2=O)N=CN3CCCCCC3)C(=O)OCOC(=O)C(C)(C)C)C C21H33N3O5S 439.2141 32886-97-8 

Pregnenolone CC(=O)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)O)C)C C21H32O2 316.2402 145-13-1 

Progesterone-17-hydroxy CC(=O)C1(CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C)O C21H30O3 330.2195 68-96-2 

Propylparaben CCCOC(=O)C1=CC=C(C=C1)O C10H12O3 180.0786 94-13-3 

Salicylic acid C1=CC=C(C(=C1)C(=O)O)O C7H6O3 138.0317 7681-06-3 

Triclosan C1=CC(=C(C=C1Cl)O)OC2=C(C=C(C=C2)Cl)Cl C12H7Cl3O2 287.9512 3380-34-5 

Tryptamine-5-hydroxy C1=CC2=C(C=C1O)C(=CN2)CCN C10H12N2O 176.0950 50-67-9 
  Tryptophan C1=CC=C2C(=C1)C(=CN2)CC(C(=O)O)N C11H12N2O2 204.0899 73-22-3 
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3.4. Table A4 – Calibrant sets used in positive and negative mode for the RTI platform 

Table A4 – Calibrant sets used in positive and negative ionization modes for the RTI platform 

ESI (+)    ESI (-)   

Compound Name 
Molecular 
formula 

[M+H]+ 
 

Compound Name 
Molecular 
formula 

[M-H]- 

Guanylurea C2H6N4O 103.0614  Amitrole C2H4N4 83.0363 

Amitrole C2H4N4 85.0509  Benzoic acid C7H6O2 121.0295 

Histamine C5H9N3 112.0869  Acephate C4H10NO3PS 182.0046 

Chlormequate C5H13ClN 123.0809  Salicylic acid C7H6O3 137.0244 

Methamidophos C2H8NO2PS 142.0086  Simazine 2-Hydroxy C7H13N5O 182.1047 

Vancomycin C66H75Cl2N9O24 1448.4375  Tepraloxydim C17H24ClNO4 340.1321 

Cefoperazone C25H27N9O8S2 646.1497  Bromoxynil C7H3Br2NO 273.8509 

Trichlorfon (Dylox) C4H8Cl3O4P 256.9299  MCPA C9H9ClO3 199.0167 

Butocarboxim C7H14N2O2S 191.0849  Valproic acid C8H16O2 143.1078 

Dichlorvos C4H7Cl2O4P 220.9532  Phenytoin C15H12N2O2 251.0826 

Tylosin C46H77NO17 916.5264  Flamprop C16H13ClFNO3 320.0495 

TCMTB C9H6N2S3 238.9766  Benodanil C13H10INO 321.9734 

Rifaximin C43H51N3O11 786.3596  Dinoterb C10H12N2O5 239.0673 

Spinosad A  C41H65NO10 732.4681  Inabenfide C19H15ClN2O2 337.0749 

Emamectin B1a C49H75NO13 886.5311  Coumaphos C14H16ClO5PS 361.0072 

Avermectin B1a  C48H72O14 873.4995  Triclosan C12H7Cl3O2 286.9438 

Nigericin C40H68O11 725.4834  AvermectinB1a C48H72O14 871.4849 

Ivermectin B1a  C48H74O14 875.5151  Salinomycin C42H70O11 749.4845 
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3.5. Table A5.1 – Results of data processing workflows on individual 

compounds in serum 

Table A5.1 – Results of data processing workflows on individual compounds in serum 

   XCMS - Default settings - Noise 10 XCMS - Optimized settings - Noise 10 

 

m/z Rt 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.0713 4.74 7971 7489 1.9E-01 1.1 10.2           

Paracetamol 152.0706 4.98 15318 13185 3.4E-03 1.2 11.9 4283 3482 4.4E-01 1.2 22.3 

Nicotine 163.123 3.37                     

Cotinine 177.1022 4.31           1742 1496 8.2E-02 1.2 86.8 

Carbendazim 192.0768 5.69                     

Cyprodinil 226.1339 33.22 132274 234 7.7E-04 565.2 17.9 19141 115 1.7E-03 166.0 18.4 

Carbamazepine 237.1022 18.01                     

Clothianidin 250.016 7.99           298 148 5.1E-02 2.0 17.5 

Thiacloprid 253.0309 12.24           5335 448 4.7E-03 11.9 24.4 

Imidacloprid 256.0596 8.57           287 52 2.8E-04 5.5 14.2 

Acetochlor 270.1255 40.57 3492 141 1.2E-02 24.7 45.4 300 120 1.4E-02 2.5 21.6 

estrone 271.1693 31.60           297 86 4.3E-03 3.4 23.6 

venlafaxine 278.2115 9.84 46103 149 4.5E-03 310.2 32.8 49197 39 1.3E-03 1250.9 16.7 

Piperine 286.1444 36.42 537209 350581 6.1E-03 1.5 14.2 33959 28902 2.1E-01 1.2 4.4 

Androstenedione 287.2006 31.50 55204 2253 4.9E-04 24.5 1.1 15705 619 2.4E-03 25.4 20.1 

Testosterone 289.2168 28.90 61331 5213 4.2E-04 11.8 15.8 18275 7392 2.0E-03 2.5 13.0 

Thiamethoxam 292.0266 6.97                     

Codeine 300.1594 5.12           1463 549 8.8E-03 2.7 12.3 

Diazinon 305.1083 43.38                     

sertraline 306.0811 24.34 13392 372 5.6E-04 36.0 15.7 1733 101 1.5E-04 17.2 11.7 

Tebuconazole 308.1524 39.36 118602 840 7.3E-04 141.1 17.5 107685 246 4.9E-03 437.3 26.5 

fluoxetine 310.1413 23.71                     

Aflatoxin B1 313.0707 17.52 1514 202 2.0E-05 7.5 6.1           

Progesterone 315.2339 42.10 70692 5845 3.8E-02 12.1 69.0 55997 2517 4.1E-05 22.2 9.8 

paroxetine 330.15 18.34 81401 179 1.3E-03 455.5 21.1 6089 24 1.3E-03 258.1 17.0 

Propiconazole 342.0771 41.73 106341 391 7.2E-04 272.0 17.5 54815 732 4.1E-04 74.9 11.5 

Boscalid 343.0399 38.00           15360 852 5.5E-03 18.0 28.7 

Chlorpyrifos 349.9336 45.53 4085 98 5.8E-03 41.5 35.6 4636 96 7.8E-05 48.3 8.2 

Cortisone 361.2006 16.12 46168 22183 5.7E-04 2.1 11.7 20860 10110 3.0E-02 2.1 22.2 

hydrocortisone 363.2166 15.86 232832 179367 9.0E-03 1.3 11.2 155061 65909 3.7E-02 2.4 34.6 

Prochloraz 376.0381 38.74                     

Solanidine 398.342 24.54 177510 2537 1.1E-03 70.0 19.7 73463 326 1.1E-04 225.5 7.3 

Azoxystrobine 404.1241 38.03 108006 170 6.0E-04 636.1 16.4 74841 53 4.7E-03 1399.3 26.3 

Pravastatin 425.2534 20.50                     

Dimethyldithiophosphate 156.9541 2.95 7590 785 2.9E-05 9.7 1.6 2528 16 2.5E-02 155.8 47.4 

2-phenylphenol 169.0659 30.19           531 242 1.7E-04 2.2 8.7 

Hydroxyindoleacetic acid 190.051 5.71                     

Ibuprofen 205.1223 39.94 3184 2425 2.2E-03 1.3 7.9 3119 574 6.4E-04 5.4 13.2 

Diclofenac 294.0094 39.59 11268 704 9.8E-06 16.0 7.7 5139 283 8.5E-03 18.1 31.5 

Arachidonic Acid 303.233 47.00 782488 624374 1.1E-01 1.3 6.8 29062 23443 7.0E-02 1.2 13.9 

Leukotriene B4 335.2228 39.52 664 494 3.8E-02 1.3 19.2 32484 330 6.0E-02 98.4 67.3 

Prostaglandin D2 351.2177 27.60                     

Prostaglandin E2 351.2177 26.50 2928 419 1.4E-02 7.0 44.9 3823 131 3.4E-04 29.3 13.4 

Prostaglandin F2a 353.2333 25.60 69517 152 5.4E-05 458.2 7.3 45657 260 2.6E-02 175.7 48.1 

Leukotriene D4 495.2534 33.04 22927 342 8.4E-03 67.0 40.7           
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Table A5.1 – (continued) Results of data processing workflows on individual compounds in serum 

   XCMS - Optimized settings - Noise 20  XCMS - Optimized settings - Noise 50  

 

m/z Rt 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.0713 4.74                     

Paracetamol 152.0706 4.98 4133 3185 3.2E-01 1.3 19.7 4161 3215 3.2E-01 1.3 20.9 

Nicotine 163.123 3.37                     

Cotinine 177.1022 4.31 1603 1645 6.9E-02 1.0 77.1           

Carbendazim 192.0768 5.69                     

Cyprodinil 226.1339 33.22 20959 121 2.8E-04 173.4 10.1 21173 121 3.1E-04 174.4 10.4 

Carbamazepine 237.1022 18.01                     

Clothianidin 250.016 7.99 300 145 4.8E-02 2.1 11.2 299 144 4.8E-02 2.1 11.0 

Thiacloprid 253.0309 12.24 4907 440 2.1E-03 11.2 19.1 4879 447 2.5E-03 10.9 20.2 

Imidacloprid 256.0596 8.57 312 58 6.1E-04 5.4 16.1           

Acetochlor 270.1255 40.57 334 120 1.8E-02 2.8 30.8 339 120 2.0E-02 2.8 32.3 

estrone 271.1693 31.60 322 96 2.1E-04 3.4 12.3 324 97 1.9E-04 3.4 11.5 

venlafaxine 278.2115 9.84 51685 40 3.1E-04 1307.1 10.5 51527 39 2.6E-04 1314.9 9.8 

Piperine 286.1444 36.42 38129 27607 2.6E-02 1.4 8.4 38231 28098 3.3E-02 1.4 8.8 

Androstenedione 287.2006 31.50 16605 639 1.8E-03 26.0 18.3 16713 631 2.0E-03 26.5 19.2 

Testosterone 289.2168 28.90 16475 7934 8.5E-03 2.1 15.0 16367 7925 8.7E-03 2.1 15.8 

Thiamethoxam 292.0266 6.97                     

Codeine 300.1594 5.12 1602 581 7.0E-03 2.8 9.1 1599 576 6.1E-03 2.8 9.8 

Diazinon 305.1083 43.38                     

sertraline 306.0811 24.34 1603 105 1.6E-06 15.2 6.9 1599 104 1.4E-06 15.3 6.7 

Tebuconazole 308.1524 39.36 106629 263 1.1E-05 405.6 3.4 107178 267 2.2E-05 401.5 4.3 

fluoxetine 310.1413 23.71                     

Aflatoxin B1 313.0707 17.52                     

Progesterone 315.2339 42.10 59068 2575 2.3E-05 22.9 8.9 58660 2610 4.4E-05 22.5 9.9 

paroxetine 330.15 18.34 6212 24 1.4E-03 263.1 17.3 6322 24 1.4E-03 265.9 17.5 

Propiconazole 342.0771 41.73 54964 649 3.9E-05 84.7 5.4 54965 644 4.3E-05 85.3 5.6 

Boscalid 343.0399 38.00 13699 974 8.0E-04 14.1 19.4 13577 979 6.2E-04 13.9 18.6 

Chlorpyrifos 349.9336 45.53 4627 108 8.6E-04 42.9 15.5 4627 110 8.4E-04 42.0 15.4 

Cortisone 361.2006 16.12 21315 9677 1.6E-02 2.2 8.8 21423 17043 1.6E-02 1.3 8.8 

hydrocortisone 363.2166 15.86 150246 69702 2.4E-03 2.2 13.2 154997 74342 3.5E-04 2.1 10.1 

Prochloraz 376.0381 38.74                     

Solanidine 398.342 24.54 70258 319 1.2E-04 220.0 7.5 70272 322 1.6E-04 218.1 8.3 

Azoxystrobine 404.1241 38.03 74106 60 4.0E-03 1233.1 24.7 74117 61 3.5E-03 1222.2 23.8 

Pravastatin 425.2534 20.50                     

Dimethyldithiophosphate 156.9541 2.95 2515 28 2.6E-02 90.9 47.9 2515 28 2.6E-02 90.9 47.9 

2-phenylphenol 169.0659 30.19 479 242 4.6E-03 2.0 17.4 479 242 4.6E-03 2.0 17.4 

Hydroxyindoleacetic acid 190.051 5.71                     

Ibuprofen 205.1223 39.94 3119 596 8.8E-04 5.2 13.2 3119 596 8.8E-04 5.2 13.2 

Diclofenac 294.0094 39.59                     

Arachidonic Acid 303.233 47.00 29020 23443 7.5E-02 1.2 14.1 29020 23443 7.5E-02 1.2 14.1 

Leukotriene B4 335.2228 39.52 36247 284 3.5E-02 127.5 53.9 36247 284 3.5E-02 127.5 53.9 

Prostaglandin D2 351.2177 27.60                     

Prostaglandin E2 351.2177 26.50 3823 121 3.2E-04 31.5 13.4 3823 121 3.2E-04 31.5 13.4 

Prostaglandin F2a 353.2333 25.60 37130 258 3.3E-02 144.1 52.9 37130 258 3.3E-02 144.1 52.9 

Leukotriene D4 495.2534 33.04                     
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Table A5.1 – (continued) Results of data processing workflows on individual compounds in serum 

   XCMS - Optimized settings - Noise 100  Markerview - Noise 10   

 

m/z Rt 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.0713 4.74           787 4 1.1E-04 217.3 9.3 

Paracetamol 152.0706 4.98 3570 3021 5.6E-01 1.2 23.1 109 62 7.1E-02 1.7 17.1 

Nicotine 163.123 3.37                     

Cotinine 177.1022 4.31           373 0 2.7E-04 Infinity 12.6 

Carbendazim 192.0768 5.69           754 0 1.9E-04 Infinity 11.1 

Cyprodinil 226.1339 33.22 21875 110 4.0E-03 198.9 24.7 3802 0 9.0E-04 Infinity 18.9 

Carbamazepine 237.1022 18.01           692 0 5.1E-05 Infinity 7.2 

Clothianidin 250.016 7.99 312 123 1.2E-02 2.5 17.5 20 0 3.7E-02 Infinity 73.8 

Thiacloprid 253.0309 12.24 4903 437 9.0E-03 11.2 30.6 416 0 2.0E-04 Infinity 11.4 

Imidacloprid 256.0596 8.57           140 0 3.7E-04 Infinity 14.0 

Acetochlor 270.1255 40.57 340 117 2.3E-02 2.9 34.5           

estrone 271.1693 31.60 324 95 5.9E-04 3.4 16.1 248 0 2.8E-03 Infinity 27.8 

venlafaxine 278.2115 9.84 52120 35 8.1E-04 1476.3 14.4 1505 0 1.5E-04 Infinity 10.4 

Piperine 286.1444 36.42 35990 29145 2.3E-01 1.2 12.8 17599 11290 1.1E-02 1.5 17.7 

Androstenedione 287.2006 31.50 15786 552 1.6E-03 28.6 17.7 1515 0 4.3E-04 Infinity 14.7 

Testosterone 289.2168 28.90 15303 7209 4.2E-03 2.1 13.2 1683 0 6.5E-04 Infinity 16.9 

Thiamethoxam 292.0266 6.97           63 0 1.4E-04 Infinity 10.2 

Codeine 300.1594 5.12 1536 503 2.8E-03 3.1 19.4 1808 0 1.6E-04 Infinity 10.6 

Diazinon 305.1083 43.38           3956 0 9.8E-05 Infinity 8.9 

sertraline 306.0811 24.34 1525 96 1.8E-04 15.9 12.0 193 0 7.4E-03 Infinity 39.5 

Tebuconazole 308.1524 39.36 96732 253 5.6E-04 382.5 12.7 3298 0 9.7E-04 Infinity 19.4 

fluoxetine 310.1413 23.71           701 0 1.2E-02 Infinity 46.6 

Aflatoxin B1 313.0707 17.52           2462 0 6.8E-04 Infinity 17.1 

Progesterone 315.2339 42.10 59890 2536 6.4E-05 23.6 9.9           

paroxetine 330.15 18.34 5471 23 9.7E-04 240.7 15.3 2289 0 1.6E-03 Infinity 23.0 

Propiconazole 342.0771 41.73 53083 629 9.0E-04 84.5 14.8 2874 0 8.6E-04 Infinity 18.6 

Boscalid 343.0399 38.00 13766 991 1.7E-03 13.9 22.5 1082 0 1.2E-03 Infinity 21.1 

Chlorpyrifos 349.9336 45.53 4583 101 1.5E-03 45.4 18.3           

Cortisone 361.2006 16.12 20361 18119 1.0E-01 1.1 2.7 1251 539 2.4E-03 2.3 15.5 

hydrocortisone 363.2166 15.86 151256 75039 1.3E-03 2.0 12.2 6954 5331 1.1E-02 1.3 11.9 

Prochloraz 376.0381 38.74           467 0 6.5E-03 Infinity 37.2 

Solanidine 398.342 24.54 70308 275 2.0E-04 256.1 9.0 5204 0 1.3E-03 Infinity 21.2 

Azoxystrobine 404.1241 38.03 72797 55 5.4E-03 1315.5 27.6 3039 0 8.1E-04 Infinity 18.2 

Pravastatin 425.2534 20.50                     

Dimethyldithiophosphate 156.9541 2.95 2012 26 8.4E-02 76.6 77.4 63 0 4.6E-03 Infinity 33.4 

2-phenylphenol 169.0659 30.19 355 210 3.3E-02 1.7 23.9           

Hydroxyindoleacetic acid 190.051 5.71                     

Ibuprofen 205.1223 39.94 1426 662 1.7E-01 2.2 59.6 54 33 2.5E-03 1.7 12.5 

Diclofenac 294.0094 39.59           230 0 1.5E-04 Infinity 10.4 

Arachidonic Acid 303.233 47.00 28959 23443 7.6E-02 1.2 14.1 23349 18582 1.1E-01 1.3 6.4 

Leukotriene B4 335.2228 39.52 26531 644 6.5E-02 41.2 68.5 1494 0 1.3E-04 Infinity 9.9 

Prostaglandin D2 351.2177 27.60                     

Prostaglandin E2 351.2177 26.50 8190 36 1.6E-01 225.8 105.7 379 0 1.9E-03 Infinity 24.2 

Prostaglandin F2a 353.2333 25.60 31087 53 9.5E-02 587.6 83.0 1990 0 6.2E-05 Infinity 7.7 

Leukotriene D4 495.2534 33.04           733 0 2.8E-04 Infinity 12.7 

 

 

 



Appendices 

245  
 

Table A5.1 – (continued) Results of data processing workflows on individual compounds in serum 

   Markerview - Noise 20  Markerview - Noise 50  

 

m/z Rt 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.0713 4.74 184 163 6.1E-02 1.1 9.7 642 0 9.5E-05 Infinity 8.9 

Paracetamol 152.0706 4.98 1171 624 1.5E-05 1.9 4.5 523 349 5.8E-02 1.5 30.4 

Nicotine 163.123 3.37                     

Cotinine 177.1022 4.31 206 0 4.4E-03 Infinity 32.7           

Carbendazim 192.0768 5.69 700 0 1.7E-04 Infinity 10.8 586 0 4.2E-04 Infinity 14.6 

Cyprodinil 226.1339 33.22 3644 0 1.0E-03 Infinity 19.7 3371 0 1.2E-03 Infinity 21.1 

Carbamazepine 237.1022 18.01 659 0 7.3E-05 Infinity 8.1 579 0 1.1E-05 Infinity 4.3 

Clothianidin 250.016 7.99 3 0 2.0E-01 Infinity 200.0           

Thiacloprid 253.0309 12.24 371 0 2.5E-04 Infinity 12.2 193 0 3.1E-02 Infinity 69.1 

Imidacloprid 256.0596 8.57 100 0 3.9E-03 Infinity 31.4 19 0 2.0E-01 Infinity 200.0 

Acetochlor 270.1255 40.57                     

estrone 271.1693 31.60 169 0 1.4E-02 Infinity 49.4 10 0 2.0E-01 Infinity 200.0 

venlafaxine 278.2115 9.84 1408 0 2.3E-04 Infinity 12.0 1230 0 2.2E-04 Infinity 11.7 

Piperine 286.1444 36.42 17262 10940 1.0E-02 1.6 17.9 16342 10025 9.9E-03 1.6 19.0 

Androstenedione 287.2006 31.50 1414 0 5.3E-04 Infinity 15.8 1185 0 6.8E-04 Infinity 17.2 

Testosterone 289.2168 28.90 1594 0 8.5E-04 Infinity 18.5 1389 0 1.1E-03 Infinity 19.9 

Thiamethoxam 292.0266 6.97 8 0 2.0E-01 Infinity 200.0           

Codeine 300.1594 5.12 1690 0 1.1E-04 Infinity 9.3 1523 0 1.3E-04 Infinity 9.8 

Diazinon 305.1083 43.38 3746 0 1.2E-04 Infinity 9.6 3078 0 1.5E-04 Infinity 10.3 

sertraline 306.0811 24.34 57 0 1.1E-02 Infinity 45.3           

Tebuconazole 308.1524 39.36 3172 0 1.0E-03 Infinity 19.9 2842 0 1.6E-03 Infinity 22.8 

fluoxetine 310.1413 23.71 682 0 4.3E-03 Infinity 32.3 308 0 7.2E-02 Infinity 101.8 

Aflatoxin B1 313.0707 17.52 2339 0 8.0E-04 Infinity 18.2 2028 0 7.4E-04 Infinity 17.6 

Progesterone 315.2339 42.10                     

paroxetine 330.15 18.34 2141 0 1.9E-03 Infinity 24.3 1811 0 1.7E-03 Infinity 23.7 

Propiconazole 342.0771 41.73 2731 0 8.4E-04 Infinity 18.5 2428 0 1.2E-03 Infinity 21.0 

Boscalid 343.0399 38.00 972 0 2.1E-03 Infinity 25.1 587 0 2.3E-02 Infinity 61.1 

Chlorpyrifos 349.9336 45.53                     

Cortisone 361.2006 16.12 1153 478 2.2E-03 2.4 16.1 1004 315 1.1E-03 3.2 16.1 

hydrocortisone 363.2166 15.86 6819 5196 9.8E-03 1.3 11.9 6532 4978 1.2E-02 1.3 12.6 

Prochloraz 376.0381 38.74 418 0 7.8E-03 Infinity 40.2 86 0 2.0E-01 Infinity 200.0 

Solanidine 398.342 24.54 4981 0 1.4E-03 Infinity 22.2 4491 0 1.5E-03 Infinity 22.6 

Azoxystrobine 404.1241 38.03 2859 0 1.2E-03 Infinity 20.6 2441 0 2.6E-03 Infinity 27.3 

Pravastatin 425.2534 20.50                     

Dimethyldithiophosphate 156.9541 2.95                     

2-phenylphenol 169.0659 30.19                     

Hydroxyindoleacetic acid 190.051 5.71                     

Ibuprofen 205.1223 39.94 10 0 1.1E-01 Infinity 125.9           

Diclofenac 294.0094 39.59 187 0 2.1E-04 Infinity 11.5 27 0 2.1E-01 Infinity 173.2 

Arachidonic Acid 303.233 47.00 23091 18397 1.1E-01 1.3 6.3 23123 18542 1.2E-01 1.2 5.9 

Leukotriene B4 335.2228 39.52 1432 0 1.6E-04 Infinity 10.6 1295 302 2.0E-02 4.3 15.0 

Prostaglandin D2 351.2177 27.60                     

Prostaglandin E2 351.2177 26.50 329 0 2.0E-03 Infinity 24.9 85 0 2.1E-01 Infinity 173.2 

Prostaglandin F2a 353.2333 25.60 1909 0 7.1E-05 Infinity 8.0 55 0 9.3E-02 Infinity 87.5 

Leukotriene D4 495.2534 33.04 617 0 4.3E-04 Infinity 14.7 311 0 5.1E-02 Infinity 60.2 
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Table A5.1 – (continued) Results of data processing workflows on individual compounds in serum 

   Markerview - Noise 100 
MzMine - CWT pipeline - Default settings - 
Noise 10 

 

m/z Rt 

Averag
e area 

in 
spiked 
sample

s 

Averag
e area 
in non-
spiked 
sample

s 

p-value 
(area in 
spiked 

vs. non-
spiked 
sample

s) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area 
CV in 

spiked 
sample

s 

Averag
e area 

in 
spiked 
sample

s 

Averag
e area 
in non-
spiked 
sample

s 

p-value 
(area in 
spiked 

vs. non-
spiked 
sample

s) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area 
CV in 

spiked 
sample

s 

AminoBenzimidazole 134.0713 4.74 219 0 9.1E-02 Infinity 115.5           

Paracetamol 152.0706 4.98           16252 12257 6.0E-02 1.3 4.2 

Nicotine 163.123 3.37                     

Cotinine 177.1022 4.31           20628 1308 7.7E-06 15.8 6.4 

Carbendazim 192.0768 5.69 286 0 5.6E-02 Infinity 90.1 31313 1953 1.5E-04 16.0 9.7 

Cyprodinil 226.1339 33.22 2929 0 1.9E-03 Infinity 24.4 140937 5962 6.5E-04 23.6 16.8 

Carbamazepine 237.1022 18.01 277 0 4.8E-03 Infinity 33.8 37137 2381 6.8E-04 15.6 17.7 

Clothianidin 250.016 7.99           2797 632 2.6E-04 4.4 12.5 

Thiacloprid 253.0309 12.24           17484 3017 2.9E-04 5.8 10.9 

Imidacloprid 256.0596 8.57           7009 703 1.8E-04 10.0 10.0 

Acetochlor 270.1255 40.57           2324 1712 1.7E-02 1.4 14.8 

estrone 271.1693 31.60           14105 2602 1.1E-03 5.4 16.7 

venlafaxine 278.2115 9.84 916 0 9.8E-04 Infinity 19.5 52957 49 1.1E-04 1085.8 9.3 

Piperine 286.1444 36.42 3206 0 1.1E-03 Infinity 20.2 170988 115806 3.2E-02 1.5 22.2 

Androstenedione 287.2006 31.50 690 0 6.9E-03 Infinity 38.5 55350 3405 3.0E-04 16.3 12.5 

Testosterone 289.2168 28.90 1016 0 1.8E-03 Infinity 23.9 61448 1840 7.4E-04 33.4 17.3 

Thiamethoxam 292.0266 6.97           4074 532 3.6E-04 7.7 12.4 

Codeine 300.1594 5.12 1280 0 1.9E-04 Infinity 11.3 66600 9622 1.6E-05 6.9 11.4 

Diazinon 305.1083 43.38 2017 0 7.4E-04 Infinity 17.7 148106 513 7.9E-05 288.9 8.3 

sertraline 306.0811 24.34           12814 1635 5.1E-05 7.8 6.4 

Tebuconazole 308.1524 39.36 2352 0 3.2E-03 Infinity 29.3 121191 3791 7.6E-04 32.0 17.3 

fluoxetine 310.1413 23.71           34625 3606 2.7E-03 9.6 26.4 

Aflatoxin B1 313.0707 17.52 1720 0 1.2E-03 Infinity 21.0           

Progesterone 315.2339 42.10           92174 5124 7.2E-04 18.0 16.8 

paroxetine 330.15 18.34 1399 0 4.9E-03 Infinity 34.0 63835 1690 4.8E-03 37.8 32.8 

Propiconazole 342.0771 41.73 1877 0 3.4E-03 Infinity 30.0 106056 1606 7.7E-04 66.1 17.6 

Boscalid 343.0399 38.00 245 0 1.4E-01 Infinity 148.7 42716 1367 8.8E-04 31.2 18.1 

Chlorpyrifos 349.9336 45.53                     

Cortisone 361.2006 16.12 715 19 3.4E-04 37.7 16.9 48932 19052 3.4E-03 2.6 11.7 

hydrocortisone 363.2166 15.86 6141 4607 1.2E-02 1.3 13.3 3232 43681 2.0E-01 0.1 30.6 

Prochloraz 376.0381 38.74           26450 880 1.1E-03 30.1 19.3 

Solanidine 398.342 24.54 3759 0 3.1E-03 Infinity 28.8           

Azoxystrobine 404.1241 38.03 1773 0 1.1E-02 Infinity 45.1 109048 1310 6.3E-04 83.2 16.5 

Pravastatin 425.2534 20.50                     

Dimethyldithiophosphate 156.9541 2.95           5745 490 4.1E-07 11.7 4.4 

2-phenylphenol 169.0659 30.19                     

Hydroxyindoleacetic acid 190.051 5.71                     

Ibuprofen 205.1223 39.94           2803 2578 2.9E-01 1.1 26.2 

Diclofenac 294.0094 39.59           8796 2055 1.6E-02 4.3 40.7 

Arachidonic Acid 303.233 47.00 22072 17499 1.1E-01 1.3 6.7 795212 637697 1.2E-01 1.2 6.2 

Leukotriene B4 335.2228 39.52 1059 0 4.6E-04 Infinity 15.1 38523 5277 2.9E-02 7.3 57.7 

Prostaglandin D2 351.2177 27.60                     

Prostaglandin E2 351.2177 26.50           14764 761 1.3E-02 19.4 46.0 

Prostaglandin F2a 353.2333 25.60 1451 0 1.6E-04 Infinity 10.6           

Leukotriene D4 495.2534 33.04           18084 1338 2.9E-02 13.5 61.8 
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Table A5.1 – (continued) Results of data processing workflows on individual compounds in serum 

   

MzMine - CWT pipeline - Optimized settings - 
Noise 10 

MzMine - ADAP pipeline - Optimized settings - 
Noise 50  

 

m/z Rt 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.0713 4.74 149671 106487 5.6E-03 1.4 11.8 30266 3167 9.5E-05 9.6 9.2 

Paracetamol 152.0706 4.98 17027 13473 5.5E-04 1.3 5.4 17195 10666 9.6E-02 1.6 37.6 

Nicotine 163.123 3.37                     

Cotinine 177.1022 4.31 22347 974 4.2E-05 23.0 6.6 19515 716 7.5E-05 27.3 8.5 

Carbendazim 192.0768 5.69 34511 1712 1.2E-04 20.2 9.0 25071 1075 6.0E-03 23.3 35.1 

Cyprodinil 226.1339 33.22 134023 7031 3.7E-12 19.1 0.8 131783 4385 9.2E-04 30.1 18.4 

Carbamazepine 237.1022 18.01 32584 3369 5.7E-04 9.7 14.5 32150 2662 2.8E-03 12.1 29.2 

Clothianidin 250.016 7.99 2216 870 3.1E-06 2.5 5.9 2140 470 1.9E-03 4.6 19.4 

Thiacloprid 253.0309 12.24 12799 3475 3.4E-04 3.7 11.2 16508 578 1.6E-04 28.6 10.1 

Imidacloprid 256.0596 8.57 7543 616 2.6E-04 12.2 12.0 6729 538 2.4E-04 12.5 11.3 

Acetochlor 270.1255 40.57 2431 1492 4.2E-04 1.6 9.4 4152 3282 2.0E-01 1.3 41.7 

estrone 271.1693 31.60 14276 2834 8.7E-06 5.0 4.2 12909 2009 1.1E-03 6.4 17.3 

venlafaxine 278.2115 9.84 51775 57 3.3E-05 907.3 6.2 51850 43 1.4E-04 1202.1 10.2 

Piperine 286.1444 36.42 162513 80321 5.2E-04 2.0 11.0 664947 426816 8.4E-03 1.6 16.6 

Androstenedione 287.2006 31.50 50608 3262 3.8E-05 15.5 6.3 54171 2028 4.3E-04 26.7 14.2 

Testosterone 289.2168 28.90 69964 2129 2.4E-04 32.9 11.8 60408 1479 6.7E-04 40.8 16.8 

Thiamethoxam 292.0266 6.97 3061 401 6.1E-05 7.6 7.2 3993 504 5.6E-04 7.9 14.4 

Codeine 300.1594 5.12 55856 6481 3.2E-04 8.6 12.0 64510 1368 1.4E-04 47.1 10.0 

Diazinon 305.1083 43.38 153302 786 1.2E-04 195.0 9.7 144666 161 8.8E-05 898.8 8.6 

sertraline 306.0811 24.34 12301 2347 3.7E-05 5.2 8.2 11976 1534 1.3E-03 7.8 18.7 

Tebuconazole 308.1524 39.36 116564 3123 1.4E-04 37.3 9.8 118487 3212 7.4E-04 36.9 17.2 

fluoxetine 310.1413 23.71 23954 5180 3.2E-04 4.6 12.1 32463 2950 1.2E-03 11.0 19.1 

Aflatoxin B1 313.0707 17.52 1524 562 1.2E-03 2.7 14.5 1273 635 2.9E-03 2.0 15.3 

Progesterone 315.2339 42.10 88544 3667 5.4E-04 24.1 15.3 89845 5074 7.6E-04 17.7 17.0 

paroxetine 330.15 18.34 66077 1666 7.1E-06 39.7 3.6 56070 1210 1.6E-02 46.3 51.0 

Propiconazole 342.0771 41.73 88793 1712 4.7E-05 51.9 6.9 105646 1540 7.6E-04 68.6 17.6 

Boscalid 343.0399 38.00 33419 1398 2.5E-04 23.9 11.7 41300 906 8.9E-04 45.6 18.4 

Chlorpyrifos 349.9336 45.53                     

Cortisone 361.2006 16.12 42547 2016 4.9E-05 21.1 7.0 44318 16248 1.9E-03 2.7 13.5 

hydrocortisone 363.2166 15.86 3134 139721 1.1E-03 0.0 16.0 232703 138042 6.5E-02 1.7 11.5 

Prochloraz 376.0381 38.74 26004 886 7.2E-05 29.4 7.8 25631 694 1.2E-03 36.9 20.5 

Solanidine 398.342 24.54           161031 2162 7.1E-05 74.5 8.1 

Azoxystrobine 404.1241 38.03 80322 1151 1.4E-04 69.8 10.0 106729 762 5.7E-04 140.1 16.1 

Pravastatin 425.2534 20.50                     

Dimethyldithiophosphate 156.9541 2.95 7281 811 3.7E-05 9.0 6.1 6531 736 1.2E-06 8.9 5.4 

2-phenylphenol 169.0659 30.19                     

Hydroxyindoleacetic acid 190.051 5.71 5233 184 2.0E-04 28.5 11.0           

Ibuprofen 205.1223 39.94 2440 1703 6.3E-04 1.4 6.8 3048 2302 2.6E-03 1.3 8.1 

Diclofenac 294.0094 39.59 12338 2027 2.5E-08 6.1 2.4 11031 2034 7.1E-05 5.4 7.4 

Arachidonic Acid 303.233 47.00 
139532

1 747617 4.2E-05 1.9 5.4           

Leukotriene B4 335.2228 39.52 11630 388 4.3E-05 30.0 6.6 54961 937 1.0E-04 58.6 9.1 

Prostaglandin D2 351.2177 27.60           1930 355 4.2E-02 5.4 64.0 

Prostaglandin E2 351.2177 26.50 4864 974 2.8E-05 5.0 4.9 10200 685 2.3E-02 14.9 56.4 

Prostaglandin F2a 353.2333 25.60           50282 181 2.8E-02 277.7 65.9 

Leukotriene D4 495.2534 33.04 2212 1833 2.5E-03 1.2 3.1 21981 1460 2.6E-02 15.1 60.1 
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Table A5.1 – (continued) Results of data processing workflows on individual compounds in serum 

   

MzMine - ADAP pipeline - Optimized settings - 
Noise 100  

Progenesis - More sensitivity 
  

 

m/z Rt 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.0713 4.74 30406 7306 6.7E-06 4.2 8.7 91516 234 6.5E-05 391.3 6.3 

Paracetamol 152.0706 4.98                     

Nicotine 163.123 3.37                     

Cotinine 177.1022 4.31 19498 669 7.3E-05 29.2 8.4           

Carbendazim 192.0768 5.69 25071 1075 6.0E-03 23.3 35.1 96635 2714 6.9E-05 35.6 8.6 

Cyprodinil 226.1339 33.22 131783 4385 9.2E-04 30.1 18.4 481950 1674 6.9E-04 287.9 13.6 

Carbamazepine 237.1022 18.01 31518 2923 5.1E-03 10.8 33.8 145456 2125 3.0E-06 68.4 5.2 

Clothianidin 250.016 7.99 2048 364 2.3E-03 5.6 21.7           

Thiacloprid 253.0309 12.24 16418 538 1.7E-04 30.5 10.4 47488 9 1.9E-04 5304.4 8.9 

Imidacloprid 256.0596 8.57 6625 447 2.5E-04 14.8 11.5 16865 20 1.1E-03 831.8 16.0 

Acetochlor 270.1255 40.57 4629 3074 6.6E-02 1.5 32.8           

estrone 271.1693 31.60 13050 2084 1.4E-03 6.3 18.4 1623 0 3.9E-01 Infinity 200.0 

venlafaxine 278.2115 9.84 52088 43 1.3E-04 1207.6 9.7 161418 0 2.1E-04 Infinity 9.2 

Piperine 286.1444 36.42 664947 426816 8.4E-03 1.6 16.6 
252659

2 
180492

6 3.6E-02 1.4 12.3 

Androstenedione 287.2006 31.50 54171 2025 4.1E-04 26.7 14.2 177679 118 5.2E-04 1511.7 12.4 

Testosterone 289.2168 28.90 60408 2091 7.0E-04 28.9 16.8 182774 0 6.5E-05 Infinity 6.2 

Thiamethoxam 292.0266 6.97 3917 485 5.0E-04 8.1 13.9 5345 38 8.0E-02 139.0 76.2 

Codeine 300.1594 5.12 64510 1368 1.4E-04 47.1 10.0 224949 303 1.9E-04 742.9 8.9 

Diazinon 305.1083 43.38 144666 161 8.8E-05 898.8 8.6 478989 0 7.5E-05 Infinity 6.5 

sertraline 306.0811 24.34 11976 1534 1.3E-03 7.8 18.7 7957 0 4.3E-03 Infinity 25.5 

Tebuconazole 308.1524 39.36 118487 3212 7.4E-04 36.9 17.2 424554 792 9.5E-04 535.8 15.2 

fluoxetine 310.1413 23.71 32463 2950 1.2E-03 11.0 19.1 75793 92 1.6E-03 823.9 18.3 

Aflatoxin B1 313.0707 17.52 1167 513 1.3E-03 2.3 15.0           

Progesterone 315.2339 42.10 89818 5005 7.6E-04 17.9 17.0 302956 0 6.3E-04 Infinity 13.2 

paroxetine 330.15 18.34 56070 1210 1.6E-02 46.3 51.0 271775 1 1.9E-03 
187919.

2 19.2 

Propiconazole 342.0771 41.73 105642 1540 7.6E-04 68.6 17.6 339380 0 1.0E-03 Infinity 15.6 

Boscalid 343.0399 38.00 41300 906 8.9E-04 45.6 18.4 109280 0 2.4E-03 Infinity 20.9 

Chlorpyrifos 349.9336 45.53                     

Cortisone 361.2006 16.12 44424 16453 2.1E-03 2.7 13.4 156782 52025 4.3E-03 3.0 11.2 

hydrocortisone 363.2166 15.86 233117 138264 6.5E-02 1.7 11.4 887099 575399 2.0E-01 1.5 8.1 

Prochloraz 376.0381 38.74 25627 694 1.2E-03 36.9 20.5 43336 0 3.0E-02 Infinity 51.5 

Solanidine 398.342 24.54 172137 2347 9.2E-04 73.3 18.8 713233 0 1.2E-03 Infinity 16.6 

Azoxystrobine 404.1241 38.03 106729 762 5.7E-04 140.1 16.1 392714 0 7.9E-04 Infinity 14.3 

Pravastatin 425.2534 20.50                     

Dimethyldithiophosphate 156.9541 2.95 6476 736 1.1E-06 8.8 5.8 1056 0 1.9E-03 Infinity 19.3 

2-phenylphenol 169.0659 30.19           963 415 6.2E-02 2.3 37.9 

Hydroxyindoleacetic acid 190.051 5.71           1821 3397 2.5E-01 0.5 73.4 

Ibuprofen 205.1223 39.94 2751 1971 2.4E-03 1.4 10.1 780 443 2.8E-02 1.8 5.0 

Diclofenac 294.0094 39.59 10908 1961 1.2E-04 5.6 8.4           

Arachidonic Acid 303.233 47.00           1712 212 1.5E-01 8.1 90.2 

Leukotriene B4 335.2228 39.52 39778 937 2.8E-02 42.4 64.3 197740 0 3.7E-04 Infinity 11.1 

Prostaglandin D2 351.2177 27.60 10186 675 2.3E-02 15.1 56.6           

Prostaglandin E2 351.2177 26.50           57441 0 6.0E-03 Infinity 28.5 

Prostaglandin F2a 353.2333 25.60 50173 155 2.9E-02 324.2 66.3 252221 0 1.5E-04 Infinity 8.1 

Leukotriene D4 495.2534 33.04 21981 1460 2.6E-02 15.1 60.1 62552 0 4.6E-05 Infinity 5.5 
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Table A5.1 – (continued) Results of data processing workflows on individual compounds in serum 

   Progenesis - Default sensitivity Manual integration 

 

m/z Rt 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.0713 4.74 88520 251 2.3E-05 352.6 4.5 119919 683 2.3E-04 175.6 9.4 

Paracetamol 152.0706 4.98           8401 0 7.4E-05 Infinity 6.5 

Nicotine 163.123 3.37           6605 0 2.7E-05 Infinity 4.6 

Cotinine 177.1022 4.31           68792 2808 3.8E-05 24.5 7.5 

Carbendazim 192.0768 5.69 93406 2769 5.4E-06 33.7 6.0 85070 0 3.1E-04 Infinity 10.5 

Cyprodinil 226.1339 33.22 465799 1740 4.5E-04 267.6 11.8 383042 0 9.5E-05 Infinity 7.0 

Carbamazepine 237.1022 18.01 130723 2226 5.4E-09 58.7 2.8 89375 10357 8.0E-05 8.6 6.7 

Clothianidin 250.016 7.99           4952 0 6.1E-04 Infinity 13.1 

Thiacloprid 253.0309 12.24 45899 10 6.8E-05 4619.8 6.3 35550 0 4.8E-04 Infinity 12.1 

Imidacloprid 256.0596 8.57 16282 23 6.8E-04 723.6 13.6 13617 0 2.9E-04 Infinity 10.2 

Acetochlor 270.1255 40.57           7102 0 3.7E-04 Infinity 11.0 

estrone 271.1693 31.60           21456 0 2.2E-05 Infinity 4.3 

venlafaxine 278.2115 9.84 156056 0 9.6E-05 Infinity 7.1 105740 0 3.1E-04 Infinity 10.4 

Piperine 286.1444 36.42 
244194

6 
184804

3 3.5E-02 1.3 10.4 
132225

9 908440 2.3E-02 1.5 4.9 

Androstenedione 287.2006 31.50 171669 122 2.8E-04 1407.8 10.0 107952 4105 8.0E-04 26.3 13.9 

Testosterone 289.2168 28.90 176907 0 6.2E-05 Infinity 6.1 112541 687 1.1E-06 163.9 1.7 

Thiamethoxam 292.0266 6.97           7596 0 4.1E-05 Infinity 5.3 

Codeine 300.1594 5.12 217503 316 9.5E-05 688.7 7.0 125800 0 2.8E-04 Infinity 10.1 

Diazinon 305.1083 43.38 463596 0 6.8E-05 Infinity 6.3 269902 435 1.5E-04 621.2 8.2 

sertraline 306.0811 24.34 7696 0 4.0E-03 Infinity 24.9 19824 0 1.2E-05 Infinity 3.5 

Tebuconazole 308.1524 39.36 410252 809 6.4E-04 506.9 13.3 195928 0 1.2E-05 Infinity 3.5 

fluoxetine 310.1413 23.71 73224 95 1.2E-03 769.1 16.5 53370 0 3.6E-05 Infinity 5.1 

Aflatoxin B1 313.0707 17.52           1807 0 2.5E-05 Infinity 4.5 

Progesterone 315.2339 42.10 292783 0 3.9E-04 Infinity 11.3 146106 6952 3.2E-06 21.0 4.0 

paroxetine 330.15 18.34 262447 2 1.3E-03 
163519.

1 17.1 124854 0 2.9E-05 Infinity 4.8 

Propiconazole 342.0771 41.73 327888 0 6.9E-04 Infinity 13.6 75859 0 2.0E-05 Infinity 4.2 

Boscalid 343.0399 38.00 105598 0 2.0E-03 Infinity 19.5 61505 0 6.9E-05 Infinity 6.3 

Chlorpyrifos 349.9336 45.53           8636 499 1.5E-04 17.3 8.8 

Cortisone 361.2006 16.12 151477 52494 7.1E-03 2.9 8.8 68182 25248 8.7E-03 2.7 4.1 

hydrocortisone 363.2166 15.86 857573 580596 2.5E-01 1.5 5.5 380787 287326 1.8E-02 1.3 11.9 

Prochloraz 376.0381 38.74 41713 0 2.7E-02 Infinity 49.2 31082 0 8.7E-05 Infinity 6.8 

Solanidine 398.342 24.54 689074 0 8.6E-04 Infinity 14.7 225831 2242 2.6E-05 100.7 4.7 

Azoxystrobine 404.1241 38.03 379428 0 4.9E-04 Infinity 12.2 133413 0 2.4E-05 Infinity 4.4 

Pravastatin 425.2534 20.50           7801 0 4.4E-04 Infinity 11.8 

Dimethyldithiophosphate 156.9541 2.95 942 0 1.2E-01 Infinity 93.0 28970 9888 2.3E-03 2.9 3.7 

2-phenylphenol 169.0659 30.19           3857 0 8.3E-04 Infinity 14.5 

Hydroxyindoleacetic acid 190.051 5.71           8032 6099 2.2E-02 1.3 12.4 

Ibuprofen 205.1223 39.94           8387 6704 1.6E-03 1.3 5.4 

Diclofenac 294.0094 39.59           18942 0 3.1E-04 Infinity 10.5 

Arachidonic Acid 303.233 47.00 12097 149 1.1E-01 81.3 86.0 
158761

4 131346 2.0E-05 12.1 4.8 

Leukotriene B4 335.2228 39.52 197740 0 3.7E-04 Infinity 11.1 88909 0 1.3E-04 Infinity 7.8 

Prostaglandin D2 351.2177 27.60           12086 0 4.8E-04 Infinity 12.1 

Prostaglandin E2 351.2177 26.50 57441 0 6.0E-03 Infinity 28.5 1882 0 3.7E-04 Infinity 11.1 

Prostaglandin F2a 353.2333 25.60 252221 0 1.5E-04 Infinity 8.1 105160 0 4.9E-05 Infinity 5.6 

Leukotriene D4 495.2534 33.04 62552 0 4.6E-05 Infinity 5.5 29833 0 3.3E-04 Infinity 10.6 
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3.6. Table A5.2 – Results of data processing workflows on individual 

compounds in plasma 

Table A5.2 – Results of data processing workflows on individual compounds in plasma 

   XCMS - Default settings - Noise 10 XCMS - Optimized settings - Noise 10 

 

m/z Rt 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.07127 4.74 24543 13475 1.1E-01 1.8 57.7 24157 13338 1.0E-01 1.8 53.6 

Paracetamol 152.0706 4.98           1350 879 1.1E-01 1.5 46.2 

Nicotine 163.12297 3.37                     

Cotinine 177.1022 4.31 293545 240626 6.2E-03 1.2 6.1 290574 234814 3.4E-03 1.2 3.9 

Carbendazim 192.07675 5.69           2528 1885 3.7E-01 1.3 12.4 

Cyprodinil 226.1339 33.22 210386 236 1.1E-04 893.1 9.3 201405 223 1.0E-04 901.5 9.0 

Carbamazepine 237.10224 18.01 67930 2485 4.0E-05 27.3 6.6 69301 2474 9.0E-05 28.0 8.4 

Clothianidin 250.016 7.99                     

Thiacloprid 253.0309 12.24 27972 40 1.2E-05 707.4 4.4 27753 41 3.7E-05 684.4 6.5 

Imidacloprid 256.0596 8.57           4943 1748 1.2E-01 2.8 86.7 

Acetochlor 270.12553 40.57 5887 183 8.5E-04 32.1 18.1 5937 184 6.3E-04 32.3 16.3 

estrone 271.1693 31.60 21645 630 4.0E-04 34.4 14.0 21309 651 3.2E-04 32.7 13.0 

venlafaxine 278.2115 9.84 89788 211 2.3E-05 425.3 5.5 91286 204 3.7E-05 447.3 6.4 

Piperine 286.1444 36.42 
128164

1 669526 6.3E-04 1.9 12.2 
126949

7 646795 9.9E-05 2.0 8.9 

Androstenedione 287.20056 31.50 96867 9151 1.2E-04 10.6 1.0 97193 9059 1.5E-04 10.7 9.5 

Testosterone 289.2168 28.90 26191 21073 4.6E-02 1.2 14.2 27328 21677 5.1E-03 1.3 8.4 

Thiamethoxam 292.0266 6.97                     

Codeine 300.15942 5.12 26223 19148 1.2E-01 1.4 9.0 26951 18998 9.2E-02 1.4 10.0 

Diazinon 305.1083 43.38 234369 1222 1.4E-05 191.8 4.8 249394 1248 6.1E-06 199.8 3.7 

sertraline 306.0811 24.34 21377 263 1.8E-04 81.3 10.8 22073 273 7.9E-05 80.7 8.3 

Tebuconazole 308.1524 39.36 188846 2331 3.4E-04 81.0 13.6 186567 2287 1.7E-04 81.6 10.8 

fluoxetine 310.1413 23.71 2686 1902 1.1E-01 1.4 26.4 2827 1889 6.7E-02 1.5 24.9 

Aflatoxin B1 313.07066 17.52           4705 295 1.8E-04 15.9 14.1 

Progesterone 315.2339 42.10 72116 207713 1.4E-01 0.3 7.7 74161 214529 1.4E-01 0.3 7.4 

paroxetine 330.15 18.34 175779 1452 6.0E-04 121.1 16.3 178127 1506 8.1E-05 118.3 8.3 

Propiconazole 342.0771 41.73 172892 143 7.7E-05 1208.9 8.2 167926 139 8.8E-05 1210.9 8.6 

Boscalid 343.03994 38.00 65762 125 3.4E-06 527.4 2.9 66875 124 1.5E-04 541.0 10.3 

Chlorpyrifos 349.93356 45.53 10068 917 2.0E-04 11.0 12.2 9976 928 7.4E-05 10.8 9.7 

Cortisone 361.2006 16.12 97777 50971 1.1E-02 1.9 22.4 97319 48908 8.7E-03 2.0 21.6 

hydrocortisone 363.2166 15.86 482937 319086 5.6E-03 1.5 12.9 489548 319592 2.3E-03 1.5 10.6 

Prochloraz 376.0381 38.74                     

Solanidine 398.342 24.54           203185 1849 1.2E-04 109.9 9.5 

Azoxystrobine 404.1241 38.03 194361 502 4.5E-05 386.9 6.9 188971 535 9.6E-05 353.4 8.9 

Pravastatin 425.25337 20.50                     

Dimethyldithiophosphate 156.95413 2.95 4080 80 7.4E-03 51.3 30.2 1618 14 1.2E-02 111.6 35.9 

2-phenylphenol 169.0659 30.19 2161 206 4.7E-06 10.5 7.1 209598 128152 1.2E-01 1.6 36.4 

Hydroxyindoleacetic acid 190.051 5.71           3066 818 3.7E-04 3.7 14.6 

Ibuprofen 205.1223 39.94 23182 20502 7.0E-02 1.1 0.9 23118 3832 1.6E-05 6.0 6.4 

Diclofenac 294.0094 39.59           5809 348 2.7E-04 16.7 12.0 

Arachidonic Acid 303.233 47.00           39163 5529 1.9E-04 7.1 8.7 

Leukotriene B4 335.2228 39.52           
348410

3 44646 1.3E-01 78.0 96.1 

Prostaglandin D2 351.2177 27.60                     

Prostaglandin E2 351.2177 26.50 137290 120533 2.2E-01 1.1 14.5           

Prostaglandin F2a 353.2333 25.60 159424 58088 1.2E-06 2.7 4.8           

Leukotriene D4 495.2534 33.04           1895 246 3.6E-04 7.7 14.9 
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Table A5.2 – (continued) Results of data processing workflows on individual compounds in plasma 

   XCMS - Optimized settings - Noise 20 XCMS - Optimized settings - Noise 50  

 

m/z Rt 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.07127 4.74 24068 13397 1.1E-01 1.8 54.0 23425 13030 1.0E-01 1.8 52.5 

Paracetamol 152.0706 4.98 1338 880 1.1E-01 1.5 45.1 1356 877 1.1E-01 1.5 46.3 

Nicotine 163.12297 3.37                     

Cotinine 177.1022 4.31 291392 233803 4.3E-03 1.2 5.1 293027 233855 2.3E-03 1.3 7.0 

Carbendazim 192.07675 5.69 2533 1921 3.8E-01 1.3 14.5 2487 1958 4.0E-01 1.3 11.5 

Cyprodinil 226.1339 33.22 203882 223 9.4E-05 915.5 8.8 199907 217 3.1E-05 920.0 6.1 

Carbamazepine 237.10224 18.01 68613 2509 9.9E-05 27.3 8.7 65646 2505 6.8E-05 26.2 7.7 

Clothianidin 250.016 7.99                     

Thiacloprid 253.0309 12.24 27532 41 2.5E-05 673.1 5.6 26724 42 9.5E-05 643.4 8.9 

Imidacloprid 256.0596 8.57 4961 1738 1.2E-01 2.9 87.6 4695 1716 1.2E-01 2.7 84.9 

Acetochlor 270.12553 40.57 5982 186 6.8E-04 32.2 16.7 5923 185 5.0E-04 32.0 15.2 

estrone 271.1693 31.60 21286 650 4.6E-04 32.7 14.7 20467 633 3.9E-04 32.3 13.8 

venlafaxine 278.2115 9.84 91732 202 3.4E-05 453.2 6.3 89631 198 2.8E-05 452.1 5.9 

Piperine 286.1444 36.42 
125921

4 646378 1.5E-04 1.9 9.3 
125497

7 638026 2.2E-04 2.0 10.3 

Androstenedione 287.20056 31.50 97464 8986 1.7E-04 10.8 9.9 99169 8777 1.8E-04 11.3 10.1 

Testosterone 289.2168 28.90 27333 21486 4.5E-03 1.3 8.8 26419 21220 5.3E-03 1.2 8.3 

Thiamethoxam 292.0266 6.97                     

Codeine 300.15942 5.12 26955 18961 8.9E-02 1.4 10.3 27203 18574 7.4E-02 1.5 12.5 

Diazinon 305.1083 43.38 248197 1260 1.3E-05 197.0 4.7 239035 1185 4.4E-05 201.7 6.9 

sertraline 306.0811 24.34 22080 274 9.6E-05 80.7 8.8 21459 270 6.8E-05 79.6 7.9 

Tebuconazole 308.1524 39.36 185318 2275 2.2E-04 81.5 11.9 181429 2163 1.7E-04 83.9 10.9 

fluoxetine 310.1413 23.71 2803 1912 7.7E-02 1.5 24.4 2711 1884 8.3E-02 1.4 21.3 

Aflatoxin B1 313.07066 17.52 4723 299 2.7E-04 15.8 15.4 4703 290 5.8E-04 16.2 18.0 

Progesterone 315.2339 42.10 73964 214775 1.4E-01 0.3 7.2 70844 221714 1.4E-01 0.3 3.2 

paroxetine 330.15 18.34 177275 1500 9.2E-05 118.2 8.7 172978 1465 1.4E-04 118.1 9.9 

Propiconazole 342.0771 41.73 165661 139 4.9E-05 1196.1 7.1 164355 136 3.7E-05 1205.4 6.4 

Boscalid 343.03994 38.00 66875 126 1.5E-04 532.0 10.3 66993 122 3.2E-04 547.4 13.3 

Chlorpyrifos 349.93356 45.53 10047 921 6.1E-05 10.9 9.2 9842 917 4.7E-05 10.7 8.6 

Cortisone 361.2006 16.12 96765 48400 8.3E-03 2.0 21.3 96542 46268 1.0E-02 2.1 23.8 

hydrocortisone 363.2166 15.86 488910 318801 1.1E-03 1.5 9.0 475084 316969 4.2E-03 1.5 11.5 

Prochloraz 376.0381 38.74                     

Solanidine 398.342 24.54 205844 1843 1.6E-04 111.7 10.4 206665 1831 1.1E-04 112.9 9.2 

Azoxystrobine 404.1241 38.03 187016 529 8.5E-05 353.5 8.5 186885 522 7.3E-05 358.1 8.1 

Pravastatin 425.25337 20.50                     

Dimethyldithiophosphate 156.95413 2.95 1613 15 1.2E-02 110.5 36.5 1649 20 1.3E-02 80.7 37.4 

2-phenylphenol 169.0659 30.19 209782 127694 1.2E-01 1.6 35.9 211072 129358 1.3E-01 1.6 36.4 

Hydroxyindoleacetic acid 190.051 5.71 3092 814 5.2E-04 3.8 15.4 3125 797 7.1E-04 3.9 16.0 

Ibuprofen 205.1223 39.94 23052 3815 6.0E-06 6.0 5.8 22934 3833 6.0E-06 6.0 5.8 

Diclofenac 294.0094 39.59 5780 348 2.7E-04 16.6 12.0 5776 346 2.2E-04 16.7 11.4 

Arachidonic Acid 303.233 47.00 39055 5516 1.6E-04 7.1 8.2 39046 5608 1.5E-04 7.0 8.0 

Leukotriene B4 335.2228 39.52 
615144

6 44540 1.3E-04 138.1 7.8 
615508

3 39540 2.0E-04 155.7 8.9 

Prostaglandin D2 351.2177 27.60                     

Prostaglandin E2 351.2177 26.50                     

Prostaglandin F2a 353.2333 25.60                     

Leukotriene D4 495.2534 33.04 1915 248 4.6E-04 7.7 15.5 1914 247 8.3E-04 7.7 17.3 
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Table A5.2 – (continued) Results of data processing workflows on individual compounds in plasma 

   XCMS - Optimized settings - Noise 100  Markerview - Noise 10   

 

m/z Rt 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.07127 4.74 22686 12593 9.9E-02 1.8 51.9 1005 0 6.9E-05 Infinity 8.0 

Paracetamol 152.0706 4.98 1348 867 1.2E-01 1.6 47.5 2026 2117 4.0E-01 1.0 25.0 

Nicotine 163.12297 3.37           39 0 4.2E-02 159.0 78.4 

Cotinine 177.1022 4.31 288850 226940 4.1E-03 1.3 8.5 8438 6702 2.7E-03 1.3 4.3 

Carbendazim 192.07675 5.69 2411 1920 4.0E-01 1.3 7.9 1089 0 1.1E-04 Infinity 9.3 

Cyprodinil 226.1339 33.22 200997 210 1.2E-05 955.9 4.4 5717 0 7.4E-05 Infinity 8.2 

Carbamazepine 237.10224 18.01 65995 2488 1.0E-04 26.5 8.8 1928 0 1.3E-04 Infinity 9.8 

Clothianidin 250.016 7.99           37 0 2.3E-02 Infinity 61.0 

Thiacloprid 253.0309 12.24 25687 40 9.1E-05 639.2 8.7 738 0 5.8E-05 Infinity 7.5 

Imidacloprid 256.0596 8.57 4670 1703 1.2E-01 2.7 86.6 235 0 1.2E-04 Infinity 9.5 

Acetochlor 270.12553 40.57 5903 184 5.1E-04 32.1 15.3           

estrone 271.1693 31.60 20239 623 6.9E-04 32.5 16.8 386 0 2.8E-03 Infinity 27.9 

venlafaxine 278.2115 9.84 88317 190 7.0E-05 465.2 8.0 2591 0 5.3E-05 Infinity 7.3 

Piperine 286.1444 36.42 
123458

8 624278 3.7E-04 2.0 10.5 42728 20665 8.0E-05 2.1 8.8 

Androstenedione 287.20056 31.50 95354 8524 3.7E-04 11.2 12.8 2564 0 1.8E-04 Infinity 10.9 

Testosterone 289.2168 28.90 26181 20993 9.7E-03 1.2 9.2 3465 292 2.2E-04 11.9 11.1 

Thiamethoxam 292.0266 6.97           121 0 2.9E-04 Infinity 12.9 

Codeine 300.15942 5.12 26222 18313 8.4E-02 1.4 10.7 679 0 1.1E-03 Infinity 20.4 

Diazinon 305.1083 43.38 238500 1198 4.7E-05 199.2 7.1 6870 0 1.0E-05 Infinity 4.2 

sertraline 306.0811 24.34 21464 265 4.9E-05 80.9 7.0 455 0 1.4E-04 Infinity 10.2 

Tebuconazole 308.1524 39.36 174956 2158 1.8E-04 81.1 11.1 5268 0 1.7E-04 Infinity 10.7 

fluoxetine 310.1413 23.71 2681 1848 7.7E-02 1.5 24.3 1920 0 3.3E-05 Infinity 6.2 

Aflatoxin B1 313.07066 17.52 4683 284 9.8E-04 16.5 20.4 38 0 2.5E-02 Infinity 62.5 

Progesterone 315.2339 42.10 69600 214479 1.4E-01 0.3 5.2 4237 189 1.4E-04 22.4 10.5 

paroxetine 330.15 18.34 171803 1481 1.3E-04 116.0 9.7 5296 0 1.2E-04 Infinity 9.5 

Propiconazole 342.0771 41.73 163040 134 1.2E-04 1217.6 9.5 4576 0 1.3E-04 Infinity 9.8 

Boscalid 343.03994 38.00 65753 124 1.9E-04 531.5 11.2 1716 0 1.7E-04 Infinity 10.8 

Chlorpyrifos 349.93356 45.53 9643 870 8.4E-05 11.1 9.6           

Cortisone 361.2006 16.12 98736 44932 8.9E-03 2.2 23.8 2867 1248 8.9E-03 2.3 24.3 

hydrocortisone 363.2166 15.86 468688 308739 2.0E-03 1.5 9.7 14911 9674 2.2E-03 1.5 10.6 

Prochloraz 376.0381 38.74           976 0 4.3E-04 Infinity 14.8 

Solanidine 398.342 24.54 206530 1820 8.4E-05 113.5 8.4 5987 0 1.1E-04 Infinity 9.4 

Azoxystrobine 404.1241 38.03 182890 507 1.4E-04 360.6 9.9 5265 0 1.3E-04 Infinity 9.9 

Pravastatin 425.25337 20.50                     

Dimethyldithiophosphate 156.95413 2.95 1658 18 1.3E-02 94.0 37.5           

2-phenylphenol 169.0659 30.19 209467 130364 1.3E-01 1.6 35.2 26177 23327 1.1E-02 1.1 2.9 

Hydroxyindoleacetic acid 190.051 5.71 3110 795 7.3E-04 3.9 16.1           

Ibuprofen 205.1223 39.94 23267 3898 1.4E-06 6.0 4.9 539 494 4.9E-02 1.3 2.3 

Diclofenac 294.0094 39.59           138 0 5.0E-04 Infinity 15.5 

Arachidonic Acid 303.233 47.00 39363 5631 2.6E-04 7.0 9.2 132395 94574 5.7E-03 1.4 12.1 

Leukotriene B4 335.2228 39.52 
620630

5 39347 2.9E-04 157.7 10.1 37259 30145 3.5E-03 1.2 6.8 

Prostaglandin D2 351.2177 27.60           4366 3388 6.5E-02 1.3 21.9 

Prostaglandin E2 351.2177 26.50           3012 1333 1.9E-02 2.3 32.0 

Prostaglandin F2a 353.2333 25.60           3851 579 3.0E-05 6.7 10.1 

Leukotriene D4 495.2534 33.04           324 0 2.5E-04 Infinity 12.3 
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Table A5.2 – (continued) Results of data processing workflows on individual compounds in plasma 

   Markerview - Noise 20   Markerview - Noise 50  

 

m/z Rt 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.07127 4.74 847 0 1.5E-04 Infinity 10.3 568 0 7.7E-05 Infinity 8.3 

Paracetamol 152.0706 4.98 1601 1761 3.2E-01 0.9 25.8           

Nicotine 163.12297 3.37                     

Cotinine 177.1022 4.31 7947 6246 2.6E-03 1.3 3.7 6927 5229 2.1E-03 1.3 4.4 

Carbendazim 192.07675 5.69 957 0 1.7E-04 Infinity 10.8 468 0 2.9E-02 Infinity 66.9 

Cyprodinil 226.1339 33.22 5400 0 8.5E-05 Infinity 8.5 4645 0 1.3E-04 Infinity 9.8 

Carbamazepine 237.10224 18.01 1813 0 1.7E-04 Infinity 10.8 1616 0 2.9E-04 Infinity 12.8 

Clothianidin 250.016 7.99 8 0 2.0E-01 Infinity 200.0           

Thiacloprid 253.0309 12.24 655 0 6.5E-05 Infinity 7.8 443 0 8.9E-04 Infinity 18.8 

Imidacloprid 256.0596 8.57 141 0 3.0E-02 Infinity 67.6           

Acetochlor 270.12553 40.57                     

estrone 271.1693 31.60 250 0 2.0E-02 Infinity 57.4           

venlafaxine 278.2115 9.84 2427 0 5.5E-05 Infinity 7.4 1972 0 3.4E-05 Infinity 6.3 

Piperine 286.1444 36.42 42053 20214 8.7E-05 2.1 9.1 40599 19154 1.2E-04 2.1 9.6 

Androstenedione 287.20056 31.50 2323 0 2.7E-04 Infinity 12.6 1857 0 5.3E-04 Infinity 15.8 

Testosterone 289.2168 28.90 2375 226 3.0E-02 10.5 61.8 2984 0 3.3E-04 Infinity 13.5 

Thiamethoxam 292.0266 6.97 65 0 3.1E-03 Infinity 29.0           

Codeine 300.15942 5.12 427 0 7.9E-03 Infinity 21.3 371 0 4.5E-03 Infinity 33.0 

Diazinon 305.1083 43.38 6405 0 1.0E-05 Infinity 4.2 5519 0 6.8E-06 Infinity 3.7 

sertraline 306.0811 24.34 288 0 2.7E-03 Infinity 27.4           

Tebuconazole 308.1524 39.36 5026 0 1.6E-04 Infinity 10.6 4434 0 3.1E-04 Infinity 13.2 

fluoxetine 310.1413 23.71 1733 0 7.7E-05 Infinity 8.3 1255 0 4.5E-04 Infinity 14.9 

Aflatoxin B1 313.07066 17.52 4002 36 1.8E-04 111.0 11.8 3556 0 2.1E-04 Infinity 11.5 

Progesterone 315.2339 42.10                     

paroxetine 330.15 18.34 5110 0 1.5E-04 Infinity 10.4 4606 0 2.4E-04 Infinity 12.1 

Propiconazole 342.0771 41.73 4305 0 1.2E-04 Infinity 9.6 3808 0 1.6E-04 Infinity 10.6 

Boscalid 343.03994 38.00 1475 0 4.0E-04 Infinity 14.4 696 0 1.8E-02 Infinity 54.7 

Chlorpyrifos 349.93356 45.53                     

Cortisone 361.2006 16.12 2743 1136 6.6E-03 2.4 22.8 2417 934 9.5E-03 2.6 27.1 

hydrocortisone 363.2166 15.86 14718 9522 2.3E-03 1.5 10.7 14319 9127 2.2E-03 1.6 10.8 

Prochloraz 376.0381 38.74 794 0 1.0E-03 Infinity 19.6 49 0 2.0E-01 Infinity 200.0 

Solanidine 398.342 24.54 5747 0 1.2E-04 Infinity 9.6 5187 0 1.9E-04 Infinity 11.2 

Azoxystrobine 404.1241 38.03 4969 0 1.3E-04 Infinity 9.9 4175 0 4.2E-04 Infinity 14.6 

Pravastatin 425.25337 20.50                     

Dimethyldithiophosphate 156.95413 2.95                     

2-phenylphenol 169.0659 30.19                     

Hydroxyindoleacetic acid 190.051 5.71                     

Ibuprofen 205.1223 39.94                     

Diclofenac 294.0094 39.59 31 0 9.2E-02 Infinity 116.4           

Arachidonic Acid 303.233 47.00 131178 93675 5.7E-03 1.4 12.1 128771 91344 5.8E-03 1.4 12.3 

Leukotriene B4 335.2228 39.52 205473 170313 1.9E-03 1.2 5.1 202795 168089 1.9E-03 1.2 5.1 

Prostaglandin D2 351.2177 27.60 4056 3191 7.7E-02 1.3 22.6 3163 2630 1.8E-01 1.2 29.8 

Prostaglandin E2 351.2177 26.50 2791 1264 2.2E-02 2.2 32.8 2595 1153 1.0E-02 2.3 25.9 

Prostaglandin F2a 353.2333 25.60 3645 398 6.0E-05 9.2 9.2 3122 137 5.4E-07 22.7 5.6 

Leukotriene D4 495.2534 33.04 250 0 9.3E-04 Infinity 19.1           
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Table A5.2 – (continued) Results of data processing workflows on individual compounds in plasma 

   Markerview - Noise 100 
MzMine - CWT pipeline - Default settings - 
Noise 10  

 

m/z Rt 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.07127 4.74 409 0 8.5E-04 Infinity 18.6 46798 11100 1.7E-10 4.2 1.4 

Paracetamol 152.0706 4.98                     

Nicotine 163.12297 3.37                     

Cotinine 177.1022 4.31 5561 4117 3.7E-03 1.4 4.9 276117 239480 2.2E-02 1.2 4.2 

Carbendazim 192.07675 5.69 302 0 2.9E-02 Infinity 66.8 41332 1237 2.7E-06 33.4 2.6 

Cyprodinil 226.1339 33.22 3593 0 4.6E-04 Infinity 15.1 245350 5732 2.7E-05 42.8 5.7 

Carbamazepine 237.10224 18.01 1333 0 5.6E-04 Infinity 16.1 91642 1500 1.7E-04 61.1 10.7 

Clothianidin 250.016 7.99                     

Thiacloprid 253.0309 12.24 241 0 3.1E-04 Infinity 13.2 29841 2957 1.9E-05 10.1 4.7 

Imidacloprid 256.0596 8.57           10173 1262 1.1E-06 8.1 2.7 

Acetochlor 270.12553 40.57                     

estrone 271.1693 31.60           973 147 5.0E-05 6.6 6.2 

venlafaxine 278.2115 9.84 182 0 1.1E-01 Infinity 129.4 139721 12 1.0E-04 
11515.

6 9.1 

Piperine 286.1444 36.42 422 0 1.8E-02 Infinity 54.8 
440604

7 
170409

8 3.2E-05 2.6 4.7 

Androstenedione 287.20056 31.50 922 0 3.9E-02 Infinity 75.7 96238 8676 2.0E-06 11.1 2.4 

Testosterone 289.2168 28.90 2511 0 6.1E-04 Infinity 16.5 138408 26293 1.6E-05 5.3 4.8 

Thiamethoxam 292.0266 6.97           6365 1369 7.7E-06 4.6 4.8 

Codeine 300.15942 5.12           109818 5720 6.0E-05 19.2 7.3 

Diazinon 305.1083 43.38 4074 0 1.0E-04 Infinity 9.0 162555 167 1.1E-04 972.4 9.2 

sertraline 306.0811 24.34           17251 909 2.2E-04 19.0 11.1 

Tebuconazole 308.1524 39.36 3639 0 6.5E-04 Infinity 16.9 234650 4118 2.0E-05 57.0 5.2 

fluoxetine 310.1413 23.71 186 0 1.2E-01 Infinity 137.5           

Aflatoxin B1 313.07066 17.52 2996 0 5.6E-04 Infinity 16.1           

Progesterone 315.2339 42.10           446253 116368 1.3E-04 3.8 8.6 

paroxetine 330.15 18.34 3968 0 4.3E-04 Infinity 14.6 192911 1905 3.8E-05 101.3 6.5 

Propiconazole 342.0771 41.73 2876 0 2.0E-03 Infinity 24.9 179728 1177 7.7E-05 152.7 8.2 

Boscalid 343.03994 38.00 49 0 2.0E-01 Infinity 200.0 82166 804 1.0E-04 102.2 9.1 

Chlorpyrifos 349.93356 45.53           10670 1046 2.5E-05 10.2 6.0 

Cortisone 361.2006 16.12 2113 632 5.6E-03 3.3 25.9 156124 40550 1.7E-09 3.9 2.0 

hydrocortisone 363.2166 15.86 13784 8678 2.1E-03 1.6 11.0 21337 5200 1.0E-04 4.1 7.0 

Prochloraz 376.0381 38.74           39028 183 4.5E-05 213.5 6.9 

Solanidine 398.342 24.54 4355 0 3.5E-04 Infinity 13.7 257646 2556 4.6E-05 100.8 6.9 

Azoxystrobine 404.1241 38.03 2602 0 1.7E-02 Infinity 53.5 169010 2330 6.0E-05 72.5 7.5 

Pravastatin 425.25337 20.50                     

Dimethyldithiophosphate 156.95413 2.95           1313 0 1.2E-02 Infinity 46.8 

2-phenylphenol 169.0659 30.19           2216 1048 3.2E-05 2.1 7.3 

Hydroxyindoleacetic acid 190.051 5.71           5083 3841 3.5E-03 1.3 7.6 

Ibuprofen 205.1223 39.94           23787 21018 2.3E-02 1.1 1.7 

Diclofenac 294.0094 39.59                     

Arachidonic Acid 303.233 47.00 124323 88239 6.0E-03 1.4 12.5 
441941

9 
316612

8 5.5E-03 1.4 11.7 

Leukotriene B4 335.2228 39.52 197903 164449 1.9E-03 1.2 4.7           

Prostaglandin D2 351.2177 27.60 2441 1871 1.0E-01 1.3 29.2           

Prostaglandin E2 351.2177 26.50 1825 932 4.7E-03 2.0 18.9           

Prostaglandin F2a 353.2333 25.60                     

Leukotriene D4 495.2534 33.04           17857 5283 5.6E-02 3.4 64.0 
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Table A5.2 – (continued) Results of data processing workflows on individual compounds in plasma 

   

MzMine - CWT pipeline - Optimized settings - 
Noise 10 

MzMine - ADAP pipeline - Optimized settings - 
Noise 50  

 

m/z Rt 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Averag
e area 

in 
spiked 

samples 

Averag
e area 
in non-
spiked 

samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.07127 4.74 40703 10406 1.4E-04 3.9 10.5 40816 11746 1.1E-03 3.5 5.8 

Paracetamol 152.0706 4.98           67239 61337 4.3E-02 1.1 4.3 

Nicotine 163.12297 3.37           5283 2339 1.5E-04 2.3 11.1 

Cotinine 177.1022 4.31 297014 235009 6.3E-04 1.3 3.5 270705 214652 6.0E-04 1.3 5.4 

Carbendazim 192.07675 5.69 46631 1376 5.4E-05 33.9 7.1 41481 1135 9.1E-05 36.5 8.5 

Cyprodinil 226.1339 33.22 204458 4650 4.1E-05 44.0 6.6 199963 4372 5.7E-05 45.7 7.3 

Carbamazepine 237.10224 18.01 72041 2886 6.3E-05 25.0 8.2 68529 1855 6.7E-05 36.9 8.6 

Clothianidin 250.016 7.99 4505 695 2.2E-06 6.5 6.1 3667 542 2.2E-03 6.8 22.9 

Thiacloprid 253.0309 12.24 28701 3619 2.1E-05 7.9 5.2 27179 376 3.3E-05 72.3 6.2 

Imidacloprid 256.0596 8.57 9773 1427 2.5E-03 6.8 23.6 10684 1270 1.3E-05 8.4 6.9 

Acetochlor 270.12553 40.57           6140 2956 6.9E-03 2.1 21.4 

estrone 271.1693 31.60 653 197 1.8E-02 3.3 38.8 20921 1972 4.4E-04 10.6 13.6 

venlafaxine 278.2115 9.84 92716 15 4.1E-05 6241.2 6.7 91129 11 3.1E-05 8596.6 6.1 

Piperine 286.1444 36.42 
378008

3 
175484

1 6.7E-04 2.2 9.3 
156292

6 794563 5.6E-05 2.0 8.2 

Androstenedione 287.20056 31.50 94800 9075 4.1E-04 10.4 13.1 96810 8791 1.7E-04 11.0 9.9 

Testosterone 289.2168 28.90 138283 26205 1.9E-04 5.3 10.1 121077 14884 1.9E-04 8.1 10.2 

Thiamethoxam 292.0266 6.97 7731 994 3.2E-05 7.8 8.9 7106 719 2.6E-04 9.9 13.8 

Codeine 300.15942 5.12 107700 6095 3.3E-05 17.7 6.2 97785 3066 4.8E-05 31.9 6.8 

Diazinon 305.1083 43.38 249838 394 6.8E-06 633.7 3.7 244116 244 7.0E-06 1000.1 3.7 

sertraline 306.0811 24.34 20290 792 7.9E-06 25.6 4.0 18273 861 4.9E-04 21.2 14.7 

Tebuconazole 308.1524 39.36 190027 4596 1.2E-04 41.4 9.2 186338 4098 1.4E-04 45.5 9.9 

fluoxetine 310.1413 23.71           68304 2146 2.0E-05 31.8 5.2 

Aflatoxin B1 313.07066 17.52 4484 463 3.7E-04 9.7 12.8 4025 574 4.1E-03 7.0 27.4 

Progesterone 315.2339 42.10 378931 105247 3.6E-04 3.6 7.3 9805 5070 8.8E-05 1.9 8.4 

paroxetine 330.15 18.34 178001 2346 1.3E-05 75.9 4.6 162493 1853 1.1E-05 87.7 4.4 

Propiconazole 342.0771 41.73 168372 1023 1.0E-04 164.5 9.0 165249 853 1.3E-04 193.6 9.7 

Boscalid 343.03994 38.00 67507 656 1.5E-04 103.0 10.2 66427 547 1.7E-04 121.4 10.8 

Chlorpyrifos 349.93356 45.53 9590 1411 7.5E-08 6.8 4.5 9824 1536 3.9E-05 6.4 10.1 

Cortisone 361.2006 16.12 107298 50275 6.5E-03 2.1 20.3 95632 42923 7.1E-03 2.2 21.7 

hydrocortisone 363.2166 15.86 9805 7016 2.2E-01 1.4 40.7 491592 321024 2.5E-03 1.5 11.0 

Prochloraz 376.0381 38.74 43944 169 5.8E-05 260.7 7.5 42666 164 7.6E-05 260.8 8.2 

Solanidine 398.342 24.54 208957 2507 9.6E-05 83.4 8.9 196761 1569 1.1E-04 125.4 9.3 

Azoxystrobine 404.1241 38.03 190862 2004 8.7E-05 95.2 8.6 185360 2002 1.1E-04 92.6 9.3 

Pravastatin 425.25337 20.50                     

Dimethyldithiophosphate 156.95413 2.95 1612  3.5E-06 Infinity 2.9 4024  5.7E-03 Infinity 35.9 

2-phenylphenol 169.0659 30.19 2335 612 5.5E-08 3.8 2.1           

Hydroxyindoleacetic acid 190.051 5.71 2972 6167 1.2E-04 0.5 2.8 4599 3819 1.7E-02 1.2 5.2 

Ibuprofen 205.1223 39.94 14918 16688 5.0E-03 0.9 4.7 22762 20063 2.0E-02 1.1 1.6 

Diclofenac 294.0094 39.59           9333 772 1.2E-04 12.1 9.0 

Arachidonic Acid 303.233 47.00 
551766

1 
394539

6 9.7E-05 1.4 3.1 
433335

9 
310383

8 6.1E-03 1.4 12.2 

Leukotriene B4 335.2228 39.52           
190462

8 
159478

5 5.1E-03 1.2 5.5 

Prostaglandin D2 351.2177 27.60 139935 76818 5.2E-04 1.8 9.8 107203 77593 1.8E-04 1.4 5.4 

Prostaglandin E2 351.2177 26.50 10713 4947 6.3E-05 2.2 5.9 117304 94156 5.9E-04 1.2 4.3 

Prostaglandin F2a 353.2333 25.60           163841 45785 1.5E-04 3.6 3.1 

Leukotriene D4 495.2534 33.04 13385 10192 6.5E-04 1.3 5.8 19957 4147 5.3E-04 4.8 12.9 
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Table A5.2 – (continued) Results of data processing workflows on individual compounds in plasma 

   

MzMine - ADAP pipeline - Optimized settings - 
Noise 100 

Progenesis - More sensitivity 

 

m/z Rt 

Average 
area in 
spiked 

samples 

Average 
area in 
non-

spiked 
samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Average 
area in 
spiked 

samples 

Average 
area in 
non-

spiked 
samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.07127 4.74           102487 0 6.8E-05 Infinity 6.3 

Paracetamol 152.0706 4.98 69118 61809 3.6E-02 1.1 4.5           

Nicotine 163.12297 3.37 5571 2688 1.6E-04 2.1 9.7 5691 1940 1.2E-02 2.9 26.8 

Cotinine 177.1022 4.31 270697 214652 6.0E-04 1.3 5.4 905382 844804 2.2E-01 1.1 5.0 

Carbendazim 192.07675 5.69 41481 1135 9.1E-05 36.5 8.5 117558 311 1.1E-04 377.7 7.4 

Cyprodinil 226.1339 33.22 199963 4372 5.7E-05 45.7 7.3 683047 601 1.8E-04 1137.0 8.6 

Carbamazepine 237.10224 18.01 68529 2604 7.6E-05 26.3 8.6 239090 496 2.0E-04 482.5 9.0 

Clothianidin 250.016 7.99 4064 480 4.2E-05 8.5 8.7 4526 87 9.6E-03 52.0 33.5 

Thiacloprid 253.0309 12.24 27162 376 3.4E-05 72.2 6.2 57978 0 2.2E-04 Infinity 9.3 

Imidacloprid 256.0596 8.57 10475 775 2.0E-05 13.5 7.2 29370 19 8.7E-05 1583.7 6.8 

Acetochlor 270.12553 40.57 6103 2956 7.3E-03 2.1 21.7           

estrone 271.1693 31.60 20919 1958 4.4E-04 10.7 13.6 4088 0 1.8E-01 Infinity 115.7 

venlafaxine 278.2115 9.84 91126 8 3.1E-05 11065.0 6.1 294443 0 8.2E-05 Infinity 6.7 

Piperine 286.1444 36.42 
156292

6 794563 5.6E-05 2.0 8.2 
594256

8 
356234

7 7.9E-04 1.7 8.9 

Androstenedione 287.20056 31.50 96810 8836 1.7E-04 11.0 9.9 185469 1931 9.7E-04 96.1 15.3 

Testosterone 289.2168 28.90 121077 15347 2.0E-04 7.9 10.2 427755 45085 3.6E-04 9.5 10.4 

Thiamethoxam 292.0266 6.97 7102 698 2.4E-04 10.2 13.4 9031 0 3.6E-04 Infinity 10.9 

Codeine 300.15942 5.12 97033 2932 3.7E-05 33.1 6.3 7768 5176 6.0E-02 1.5 6.8 

Diazinon 305.1083 43.38 244116 244 7.0E-06 1000.1 3.7 758426 0 4.2E-05 Infinity 5.4 

sertraline 306.0811 24.34 18273 861 4.9E-04 21.2 14.7 1563 0 9.3E-02 Infinity 82.0 

Tebuconazole 308.1524 39.36 186338 4098 1.4E-04 45.5 9.9 639730 374 2.0E-04 1711.5 9.1 

fluoxetine 310.1413 23.71 68304 2146 2.0E-05 31.8 5.2 160537 0 5.0E-02 Infinity 63.0 

Aflatoxin B1 313.07066 17.52 3764 505 4.4E-03 7.5 28.3           

Progesterone 315.2339 42.10 147146 15555 1.2E-04 9.5 9.9 529065 28913 9.2E-05 18.3 10.4 

paroxetine 330.15 18.34 162493 1853 1.1E-05 87.7 4.4 664387 842 2.3E-04 789.2 9.5 

Propiconazole 342.0771 41.73 165249 853 1.3E-04 193.6 9.7 507268 0 3.6E-04 Infinity 11.0 

Boscalid 343.03994 38.00 66427 547 1.7E-04 121.4 10.8 166437 82 1.3E-02 2033.9 37.4 

Chlorpyrifos 349.93356 45.53 9821 1536 3.9E-05 6.4 10.1           

Cortisone 361.2006 16.12 95632 42923 7.1E-03 2.2 21.7 365823 182153 1.3E-02 2.0 20.0 

hydrocortisone 363.2166 15.86 491556 321012 2.5E-03 1.5 11.0 
184763

7 
143647

7 1.2E-02 1.3 9.9 

Prochloraz 376.0381 38.74 42662 164 7.7E-05 260.8 8.2 13918 0 1.7E-01 Infinity 111.3 

Solanidine 398.342 24.54 196761 2085 1.1E-04 94.4 9.3 799204 2669 8.6E-05 299.4 6.8 

Azoxystrobine 404.1241 38.03 185360 1642 1.1E-04 112.9 9.3 666771 0 2.4E-04 Infinity 9.6 

Pravastatin 425.25337 20.50                     

Dimethyldithiophosphate 156.95413 2.95 3929 0 5.6E-03 Infinity 35.8           

2-phenylphenol 169.0659 30.19           
263624

9 
258541

5 6.2E-01 1.0 2.9 

Hydroxyindoleacetic acid 190.051 5.71 4642 3657 4.8E-03 1.3 3.9           

Ibuprofen 205.1223 39.94 22758 20041 2.1E-02 1.1 1.6 15374 13955 2.4E-01 1.1 9.0 

Diclofenac 294.0094 39.59 9198 701 1.3E-04 13.1 9.2 2020 0 3.4E-02 Infinity 54.0 

Arachidonic Acid 303.233 47.00 
433335

9 
310383

8 6.1E-03 1.4 12.2 
162655

10 
128833

05 6.6E-02 1.3 8.8 

Leukotriene B4 335.2228 39.52 
190462

8 
159478

5 5.1E-03 1.2 5.5 
804011

5 
719574

9 3.3E-03 1.1 2.3 

Prostaglandin D2 351.2177 27.60 107203 77593 1.8E-04 1.4 5.4           

Prostaglandin E2 351.2177 26.50 117304 94156 5.9E-04 1.2 4.3           

Prostaglandin F2a 353.2333 25.60 163841 45785 1.5E-04 3.6 3.1 628830 193899 2.6E-06 3.2 4.4 

Leukotriene D4 495.2534 33.04 19957 4147 5.3E-04 4.8 12.9 14051 1549 7.3E-04 9.1 14.9 
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Table A5.2 – (continued) Results of data processing workflows on individual compounds in plasma 

   Progenesis - Default sensitivity  Manual integration  

 

m/z Rt 

Average 
area in 
spiked 

samples 

Average 
area in 
non-

spiked 
samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

Average 
area in 
spiked 

samples 

Average 
area in 
non-

spiked 
samples 

p-value 
(area in 
spiked 

vs. non-
spiked 

samples
) 

Fold 
change 
(area in 
spiked/
area in 
non-

spiked) 

Area CV 
in 

spiked 
samples 

AminoBenzimidazole 134.07127 4.74 102578 0 5.5E-05 Infinity 5.9 168885 557 1.0E-04 303.3 7.2 

Paracetamol 152.0706 4.98           273862 238390 2.6E-02 1.1 3.7 

Nicotine 163.12297 3.37           20083 6951 7.5E-04 2.9 14.7 

Cotinine 177.1022 4.31           983674 790861 5.2E-03 1.2 4.1 

Carbendazim 192.07675 5.69 2286 0 1.9E-04 Infinity 8.9 130835 306 1.2E-04 427.6 7.6 

Cyprodinil 226.1339 33.22 680866 625 6.2E-05 1088.8 6.1 509013 499 1.5E-04 1021.1 8.2 

Carbamazepine 237.10224 18.01 239099 510 1.0E-04 468.9 7.2 157472 0 1.9E-04 Infinity 8.8 

Clothianidin 250.016 7.99 2880 1409 3.6E-01 2.0 65.6 8563 0 9.5E-05 Infinity 7.0 

Thiacloprid 253.0309 12.24 57490 0 3.6E-04 Infinity 10.9 59923 0 1.2E-04 Infinity 7.5 

Imidacloprid 256.0596 8.57 29385 20 4.5E-05 1501.1 5.5 23078 0 1.6E-04 Infinity 8.4 

Acetochlor 270.12553 40.57           10563 0 7.4E-06 Infinity 3.0 

estrone 271.1693 31.60 4009 0 1.8E-01 Infinity 113.6 38956 381 9.0E-04 102.2 14.8 

venlafaxine 278.2115 9.84 294553 0 3.5E-05 Infinity 5.0 178786 0 3.0E-05 Infinity 4.8 

Piperine 286.1444 36.42 
593977

6 
371299

0 4.6E-04 1.6 5.9 
343721

4 
168044

1 2.7E-04 2.0 9.6 

Androstenedione 287.20056 31.50 186084 1984 1.3E-03 93.8 16.9 191923 13135 1.3E-04 14.6 8.8 

Testosterone 289.2168 28.90 427530 47020 1.4E-04 9.1 7.7 244917 29170 4.3E-04 8.4 10.4 

Thiamethoxam 292.0266 6.97           13063 0 1.1E-04 Infinity 7.5 

Codeine 300.15942 5.12 311096 571 1.4E-05 544.5 3.7 191972 1094 7.1E-05 175.5 6.4 

Diazinon 305.1083 43.38 760174 0 1.2E-04 Infinity 7.7 455855 0 5.6E-06 Infinity 2.7 

sertraline 306.0811 24.34           38839 0 1.3E-04 Infinity 7.8 

Tebuconazole 308.1524 39.36 639461 388 6.9E-05 1650.0 6.3 340486 1956 3.3E-04 174.1 10.6 

fluoxetine 310.1413 23.71 159002 0 4.9E-02 Infinity 62.5 129336 0 3.6E-05 Infinity 5.1 

Aflatoxin B1 313.07066 17.52           7761 0 3.8E-04 Infinity 11.2 

Progesterone 315.2339 42.10 528710 29641 8.6E-06 17.8 7.6 261837 21243 3.2E-04 12.3 10.4 

paroxetine 330.15 18.34 664026 875 8.1E-05 759.0 6.6 317360 982 2.1E-04 323.3 9.1 

Propiconazole 342.0771 41.73 506899 0 1.6E-04 Infinity 8.3 269169 0 2.2E-04 Infinity 9.3 

Boscalid 343.03994 38.00 165524 84 1.1E-02 1967.2 35.8 107469 0 3.5E-04 Infinity 10.8 

Chlorpyrifos 349.93356 45.53           16680 2896 5.0E-04 5.8 12.2 

Cortisone 361.2006 16.12 354122 187779 1.7E-02 1.9 20.0 161845 68332 8.2E-04 2.4 9.5 

hydrocortisone 363.2166 15.86 
184237

7 
149666

9 1.1E-02 1.2 7.9 840557 533829 5.9E-03 1.6 11.9 

Prochloraz 376.0381 38.74 4695 0 1.5E-01 Infinity 103.0 62878 0 1.6E-04 Infinity 8.3 

Solanidine 398.342 24.54 799653 2779 4.7E-05 287.8 5.6 286540 2448 2.0E-04 117.0 9.0 

Azoxystrobine 404.1241 38.03 666551 0 1.0E-04 Infinity 7.2 248938 0 1.5E-04 Infinity 8.2 

Pravastatin 425.25337 20.50           6312 0 8.1E-04 Infinity 14.4 

Dimethyldithiophosphate 156.95413 2.95           10242 0 1.7E-04 Infinity 8.6 

2-phenylphenol 169.0659 30.19           
291957

9 
258491

5 2.5E-02 1.1 2.9 

Hydroxyindoleacetic acid 190.051 5.71           51022 45338 4.4E-02 1.1 1.8 

Ibuprofen 205.1223 39.94           62302 54968 5.0E-02 1.1 2.6 

Diclofenac 294.0094 39.59           17233 0 2.4E-04 Infinity 9.6 

Arachidonic Acid 303.233 47.00 
164556

87 
133994

67 1.2E-01 1.2 9.2 
890980

9 
627628

3 1.5E-02 1.4 13.6 

Leukotriene B4 335.2228 39.52 
813328

5 
746747

3 3.0E-02 1.1 3.2 165375 72612 4.1E-04 2.3 9.1 

Prostaglandin D2 351.2177 27.60           31655 10877 4.2E-06 2.9 5.9 

Prostaglandin E2 351.2177 26.50           20553 7560 2.6E-05 2.7 1.6 

Prostaglandin F2a 353.2333 25.60 636070 201102 5.5E-06 3.2 4.7 242325 22049 1.3E-06 11.0 5.0 

Leukotriene D4 495.2534 33.04           17607 0 4.5E-04 Infinity 11.8 
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3.7. Table A5.3 – Summary of results of data processing workflows on 

individual compounds in plasma and serum 

Table A5.3a – Summary of results of data processing workflows on individual compounds in plasma 

Plasma Noise threshold 
Detection 
frequency 

(%) 

Median p-
value 

Computing 
time 

Median 
CV 

(spiked) 

Compounds 
with CV < 
30% (%) 

XCMS DEF 10 64 3.98E-04 4 10 90 

XCMS OPT 10 82 2.70E-04 3.5 10 84 

  20 82 2.67E-04 3 10 86 

  50 82 3.21E-04 3 10 86 

  100 78 3.74E-04 3 10 86 

Markerview 10 89 1.97E-04 0.5 10 90 

  20 80 6.65E-04 0.5 11 83 

  50 62 4.38E-04 0.5 13 86 

  100 56 2.06E-03 0.5 17 72 

Mzmine CWT 10 73 5.04E-05 14 7 94 

MzMine CWT 
OPT 10 82 9.68E-05 25 7 95 

MzMine ADAP 50 96 1.66E-04 18 9 98 

  100 93 1.52E-04 17 9 98 

Progenesis More sensitivity 80 7.63E-04 1.5 9 81 

  
Default 

sensitivity 62 1.47E-04 1 8 82 

       
Table A5.3b – Summary of results of data processing workflows on individual compounds in serum 

Serum Noise threshold 
Detection 
frequency 

(%) 

Median p-
value 

Computing 
time 

Median 
CV 

(spiked) 

Compounds 
with CV < 
30% (%) 

XCMS DEF 10 60 1.26E-03 4.5 16 74 

XCMS OPT 10 71 4.68E-03 4 18 81 

  20 69 2.07E-03 3 14 84 

  50 64 2.05E-03 3 13 86 

  100 64 4.16E-03 3 18 76 

Markerview 10 82 8.62E-04 0.5 15 86 

  20 80 1.30E-03 0.5 18 75 

  50 69 2.63E-03 0.5 21 65 

  100 49 3.13E-03 0.5 24 68 

Mzmine CWT 10 78 3.13E-03 12 17 83 

MzMine CWT 
OPT 10 84 7.61E-04 14 8 100 

MzMine ADAP 50 87 9.19E-04 18 17 79 

  100 82 9.19E-04 18 17 78 

Progenesis More sensitivity 78 1.10E-03 1.5 14 83 

  
Default 

sensitivity 67 5.65E-04 1 11 90 
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3.8. Table A6.1 – Results of annotation after manual curation in serum 

Table A6.1 – Results of annotation after manual curation in serum 

Annotation SMILES 
CI m/z 

CI Rt CI isotopic fit 
Global CI  

Experimental RTI-predicted logP-predicted CI overall 

(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

MEHP* CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)O 0.86     0.83  0.89   0.95   G3_0.88  
Acesulfame CC1=CC(=O)NS(=O)(=O)O1   0.93   0.97  0.66         G2_0.95 

Alpha-tocopherol CC1=C(C2=C(CCC(O2)(C)CCCC(C)CCCC(C)CCCC(C)C)C(=C1O)C)C 0.93     0.90      G2_0.91  
Eicosapentaenoic acid CCC=CCC=CCC=CCC=CCC=CCCCC(=O)O 0.97 0.91    0.90 0.95 0.65 0.71  0.57 G2_0.94 G3_0.81 

Piperine C1CCN(CC1)C(=O)C=CC=CC2=CC3=C(C=C2)OCO3 0.82  0.96  0.43  0.54   0.50   G3_0.76  
Tryptophan C1=CC=C2C(=C1)C(=CN2)CC(C(=O)O)N 0.95 0.98 0.71 0.69      0.83 0.81 G3_0.83 G3_0.83 

4-indolecarbaldehyde C1=CC(=C2C=CNC2=C1)C=O 0.86 0.93    0.89 0.89 0.85 0.85 0.63   G3_0.79 G2_0.91 

Indoxyl sulfate C1=CC=C2C(=C1)C(=CN2)OS(=O)(=O)O   0.94     0.81  0.77  0.80   G3_0.85 

Ibuprofen CC(C)CC1=CC=C(C=C1)C(C)C(=O)O   0.91   1.00    0.91      G2_0.96 

Mesterolone CC1CC(=O)CC2C1(C3CCC4(C(C3CC2)CCC4O)C)C 0.92     0.87  1.00   0.87   G3_0.93  
Paracetamol CC(=O)NC1=CC=C(C=C1)O 0.94 0.96 0.77 0.80 0.93 0.94 0.94 0.94    G2_0.85 G2_0.76 

Caffeine CN1C=NC2=C1C(=O)N(C(=O)N2C)C 0.93  0.99  0.93  0.61  0.63  G3_0.85  
Paraxanthine CN1C=NC2=C1C(=O)N(C(=O)N2)C 0.94 0.96    0.79 0.41    0.39   G3_0.71 G2_0.69 

Theobromine CN1C=NC2=C1C(=O)NC(=O)N2C 0.94     0.86     0.39   G3_0.73  
Theophylline CN1C2=C(C(=O)N(C1=O)C)NC=N2 0.94     0.84     0.39   G3_0.73  
Coumaric acid C1=CC(=CC(=C1)O)C=CC(=O)O 0.92 0.98    0.83 0.83 0.83 0.83    G2_0.87 G2_0.91 

Cannabidiol CCCCCC1=CC(=C(C(=C1)O)C2C=C(CCC2C(=C)C)C)O 0.82 0.96    0.85 0.92 0.81 0.90   G2_0.83 G2_0.94 

Δ9-THC* CCCCCC1=CC(=C2C3C=C(CCC3C(OC2=C1)(C)C)C)O 0.82 0.96    0.97 0.95 0.56 0.58    G2_0.89 G2_0.96 

Cotinine CN1C(CCC1=O)C2=CN=CC=C2 0.95  0.99  1.00  1.00    G2_0.97  
3-hydroxycotinine CN1C(CC(C1=O)O)C2=CN=CC=C2 1.00       0.98    G2_0.99  
Allopregnanolone CC(=O)C1CCC2C1(CCC3C2CCC4C3(CCC(C4)O)C)C 0.66 0.92 0.94 0.98 0.89 0.94 0.98 0.92 0.37  G3_0.66 G2_0.99 

Androstanediol CC12CCC(CC1CCC3C2CCC4(C3CCC4O)C)O 0.92     0.65  -0.09  0.82  G3_0.8  
Androstenedione CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4=O)C 0.81 0.90 0.98 0.99 0.87 0.83 0.70 0.76    G2_0.89 G2_0.94 

Arachidonic acid CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(O)=O 0.92 0.92 1.00 0.72 1.00 0.67   0.87  G3_0.93 G2_0.82 

Cortisol CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)O 0.91 0.98 1.00 0.99 0.70 0.70 0.13 0.14 0.78  G3_0.9 G2_0.98 

Cortisone CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C 0.82 0.98 1.00 0.97 0.68 0.70 1.00 0.97   G2_0.91 G2_0.97 

DHA* CCC=CCC=CCC=CCC=CCC=CCC=CCCC(=O)O 0.90 0.94    0.92 0.92 0.63 0.63  0.88 G2_0.95 G3_0.94 

Leukotriene B4 CCCCCC=CCC(C=CC=CC=CC(CCCC(=O)O)O)O 0.73 0.99 0.99 0.97 0.98 0.97 0.99 0.92  0.61 G2_0.86 G3_0.86 

Leukotriene D4 CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)NCC(=O)O)N   0.73   0.92  0.45  0.18      G2_0.82 

Progesterone CC(=O)C1CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C 0.82 0.93 0.97 0.99 0.86 0.91 0.69 0.76    G2_0.89 G2_0.96 

Testosterone CC12CCC3C(C1CCC2O)CCC4=CC(=O)CCC34C 0.61 0.94 0.99 0.98 0.89 0.88 0.92 0.90 0.46   G3_0.69 G2_0.96 

*              
Δ9-THC Delta9-tetrahydrocannabinol             
DHA Docosahexaenoic acid             
MEHP 2-(2-ethylhexoxycarbonyl)benzoic acid             
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Table A6.1 – (continued) Results of annotation after manual curation in serum 

Annotation 

MS/MS  

Confidence level Theoretical fragments Experimental fragments 

(+) (-) (+) (-) 

MEHP* 57.0699, 121.0284, 149.0239, 184.0731  57.0701, 121.0289, 149.023, 184.0741   2a 
Acesulfame   77.9657, 82.0302  77.9660, 82.0300 1 
Alpha-tocopherol 137.0981, 169.0922, 205.1194  137.0967, 169.0915, 205.1221   2a 
Eicosapentaenoic acid 91.0534, 105.0703 149.1340, 203.1782, 257.2254 91.0543, 105.0704 149.1333, 203.1790, 257.2261 2a 
Piperine 135.0450, 143.0499, 201.0551  135.0441,  143.0491, 201.0554   1 
Tryptophan 130.0652, 142.0652, 170.0601, 188.0706 116.0507, 142.0651 130.0646, 142.0651, 170.0601, 188.0706 116.0509, 142.0657 1 
4-indolecarbaldehyde 91.0553, 118.0669, 128.0614 90.0351, 116.0506 91.0547, 118.0675, 128.0621 90.0355, 116.0506 2b 
Indoxyl sulfate   80.9665,  132.0460  80.9662, 132.0453 2a 
Ibuprofen   154.9716, 161.1332  154.9722, 161.1333 1 
Mesterolone 187.1486, 269.2269, 287.2364  187.1487, 269.2263, 287.2375   2a 
Paracetamol 110.0598, 134.0587 107.0375 110.0600, 134.0588 107.0386 1 
Caffeine 110.0715, 138.0659  110.0718, 138.0664   1 
Paraxanthine 96.0572, 124.0522 108.0198, 122.0365, 164.0341 96.0572, 124.0515 108.0208, 122.0360, 164.0344 2a 
Theobromine 108.0554, 122.0589, 163.0611  108.0559, 122.0590, 163.0618   2a 
Theophylline 124.0497  124.0501   2a 
Coumaric acid 91.0538, 119.0486, 147.0431 93.0349, 119.0505 91.0542, 119.0492, 147.0447 93.0343, 119.0498 2a 
Cannabidiol 193.1223, 259.1686 179.1066, 229.1228, 245.1541 193.1229, 259.1684 179.1066, 229.1218, 245.1534 2a 
Δ9-THC* 109.0648, 121.1012, 131.0856, 297.2214 191.1050, 245.1521 109.0648, 121.1019, 131.0861, 297.2205 191.1055, 245.1527 2a 
Cotinine 118.0649, 146.0588  118.0656, 146.0592   1 
3-hydroxycotinine 119.0603, 175.0665  119.0604, 175.0668   2a 
Allopregnanolone 263.2007, 271.2058, 275.2009, 287.2371 297.1529, 311.1687, 325.1842 263.1996, 271.2058, 275.2010, 287.2371 297.1519, 311.1690, 325.1847 1 
Androstanediol 109.0648, 121.1012, 131.0856, 297.2214  109.0648, 121.1019, 131.0861, 297.2205   2a 
Androstenedione 173.1310, 211.1451, 269.1910 183.1128 173.1319, 211.1446, 269.1916 183.1126 1 
Arachidonic acid 121.1025, 221.1559, 269.2300, 287.2397 205.1965, 231.2106, 259.2419 121.1021, 221.1550, 269.2289, 287.2389 205.1970, 231.2115, 259.2428 1 
Cortisol 121.0647, 309.1858 297.1497, 315.1616, 331.1910 121.0651, 309.1859 297.1503,  315.1606, 331.1917 1 
Cortisone 163.1115, 267.1729 301.1795,  329.1750 163.1125, 267.1728 301.1801,  329.1757 1 
DHA* 119.08556, 159,1176, 173.1326, 329.25 229.1958, 284.2446 119.0863, 159.1169, 173.1334, 329.2482 229.1956, 284.2439 2a 
Leukotriene B4 149.0966, 259.2066 71.0136, 195.1011, 317.2125 149.0968, 259.2072 71.0134, 195.1021, 317.2129 1 
Leukotriene D4   177.0334, 477.2423  177.0329, 477.2431 1 
Progesterone 109.0652, 123.0804, 297.2214 255.2323,  311.1689 109.0650, 123.0809, 297.2229 255.2321,  311.1680 1 
Testosterone 253.1946, 271.2054 283.2640, 297.1529 253.1951, 271.2056 283.2642, 297.1525 1 

*  
Δ9-THC Delta9-tetrahydrocannabinol 
DHA Docosahexaenoic acid 
MEHP 2-(2-ethylhexoxycarbonyl)benzoic acid 
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3.9. Table A6.2 – Results of annotation after manual curation in plasma 

Table A6.2 – Results of annotation after manual curation in plasma 

Annotation SMILES 
CI m/z 

CI Rt CI isotopic fit 
Global CI  

Experimental RTI-predicted logP-predicted CI overall 

(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

TDMPAB* CC(C)(C)C(=O)NC1=CC(=CC(=C1)NC(=O)C(C)(C)C)NC(=O)C(C)(C)C 0.94 0.93   0.79 0.79 -0.22 -0.22 0.81   G3_0.85 G2_0.86 

2-naphthylamine C1=CC=C2C=C(C=CC2=C1)N 0.97 0.94   0.64 0.85 0.64 0.84    G2_0.8 G2_0.89 

Bisphenol F C1=CC(=CC=C1CC2=CC=C(C=C2)O)O  0.90    0.98  0.90     G2_0.94 

Butylparaben CCCCOC(=O)C1=CC=C(C=C1)O 0.90 0.93   0.98 0.99 0.83 0.82    G2_0.94 G2_0.96 

Ethyl paraben CCOC(=O)C1=CC=C(C=C1)O 0.82 0.89   0.93 0.96 0.75 0.87    G2_0.87 G2_0.44 

Propylparaben CCCOC(=O)C1=CC=C(C=C1)O 0.99   0.96  0.76  0.80   0.61   G3_0.85   

4-hydroxybenzoic acid C1=CC(=CC=C1C(=O)O)O 0.88 0.95   0.85 0.84 0.84 0.84    G2_0.87 G2_0.9 

TCPP* CC(CCl)OP(=O)(OC(C)CCl)OC(C)CCl 0.67 0.81   0.90 0.72 0.67 0.72 0.92   G3_0.83 G2_0.76 

Acesulfame CC1=CC(=O)NS(=O)(=O)O1  0.98  0.99  0.66        G2_0.99 

Caffeic acid C1=CC(=C(C=C1C=CC(=O)O)O)O 0.86 0.94   0.85 0.84 0.83 0.83    G2_0.86 G2_0.89 

Coumaric acid C1=CC(=CC(=C1)O)C=CC(=O)O 1.00 0.98   0.82 0.82 0.82 0.82    G2_0.91 G2_0.9 

Tryptophan C1=CC=C2C(=C1)C(=CN2)CC(C(=O)O)N 0.95 0.93 0.68 0.73      0.60 0.61 G3_0.74 G3_0.76 

4-indolecarbaldehyde C1=CC(=C2C=CNC2=C1)C=O 0.95 0.93   0.72 0.89 0.66 0.85    G2_0.83 G2_0.91 

Chlortalidone C1=CC=C2C(=C1)C(=O)NC2(C3=CC(=C(C=C3)Cl)S(=O)(=O)N)O  0.82    0.93  0.84  0.71  G3_0.82 

Hydrochlorothiazide C1NC2=CC(=C(C=C2S(=O)(=O)N1)S(=O)(=O)N)Cl  0.85    0.76     0.92  G3_0.84 

Ibuprofen CC(C)CC1=CC=C(C=C1)C(C)C(=O)O  0.99  1.00    0.90     G2_1 

Caffeine CN1C=NC2=C1C(=O)N(C(=O)N2C)C 1.00   0.95  0.94  0.60      G2_0.97   

Paraxanthine CN1C=NC2=C1C(=O)N(C(=O)N2)C 0.94 0.96   0.78 0.39       G2_0.86 G2_0.68 

Theobromine CN1C=NC2=C1C(=O)NC(=O)N2C 0.94     0.85        G2_0.9   

Allopregnanolone CC(=O)C1CCC2C1(CCC3C2CCC4C3(CCC(C4)O)C)C 0.97 0.92 0.89 0.98 0.83 0.94 0.95 0.92 0.87   G3_0.91 G2_0.95 

Androstenedione CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4=O)C 0.81 0.84 0.90 0.92 0.79 0.80 0.99 0.97    G2_0.85 G2_0.88 

Arachidonic acid CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(O)=O 0.89 0.84 1.00 1.00 1.00 1.00     0.80 G2_0.85 G3_0.88 

Cortisol CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)O 0.83 0.92 1.00 0.99 0.70 0.70 0.13 0.14    G2_0.91 G2_0.96 

Cortisone CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C 0.91 0.84 1.00 1.00 0.67 0.67 0.99 0.99    G2_0.85 G2_0.92 

DHA* CCC=CCC=CCC=CCC=CCC=CCC=CCCC(=O)O 0.78 0.91   0.92 0.92 0.63 0.63 0.66 0.88 G3_0.81 G3_0.81 

Leukotriene B4 CCCCCC=CCC(C=CC=CC=CC(CCCC(=O)O)O)O  0.89  0.97  0.97  0.92  0.57  G3_0.81 

Leukotriene D4 CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)NCC(=O)O)N   0.93   1.00   0.00   -0.86       G2_0.96 

*              
DHA Docosahexaenoic acid             
TCPP Tris(1-chloro-2-propyl)phosphate             

TDMPAB 1,3,5-tris(2,2-dimethylpropionylamino)benzene             
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Table A6.2 – (continued) Results of annotation after manual curation in plasma 

 

Annotation 

MS/MS  

Confidence level Theoretical fragments Experimental fragments 

(+) (-) (+) (-) 

TDMPAB* 191.1178, 275.1754, 292.2020 206.1299, 290.1874, 316.1667 191.1175, 275.1758, 292.2025 206.1297, 290.1875, 316.1666 2b 

2-naphthylamine 77.0386, 117.0704, 127.0541 101.0391, 116.0500 77.0387, 117.0704, 127.0541 101.0391, 116.0498 2a 

Bisphenol F   157.0649, 171.0815  157.0645, 171.0446 2a 

Butylparaben 121.0290, 139.0395, 177.0916 121.0306, 137.0239 121.0287, 139.0390, 177.0913 121.0303, 137.0238 2a 

Ethyl paraben 121.0290, 149.0603 136.0158, 137.0244 121.0285, 149.0598 136.0157, 137.0240 2a 

Propylparaben 121.0283, 139.0384  121.0285, 139.0390   1 

4-hydroxybenzoic acid 95.0488, 121.0293 93.0340, 119.0133 95.0491, 121.0291 93.0338, 119.0132 2a 

TCPP* 174.9909, 250.9995 159.0645, 256.0313 174.9913, 251.0002 159.0644, 256.0311 2a 

Acesulfame   77.9657, 82.0302  77.9653, 82.0305 1 

Caffeic acid 135.0436, 163.0389 89.0391, 108.0230, 135.0429  135.0439, 163.0387 89.0388, 108.0229, 135.0426 2a 

Coumaric acid 91.0538, 103.0540, 147.0431 93.0349, 119.0505 91.0542, 103.0544, 147.0447 93.0347, 119.0501 2a 

Tryptophan 118.0644, 130.0653, 146.0597, 170.0575  116.0507, 142.0651 118.0647, 130.0658, 146.0598, 170.0578  116.0501, 142.0647 1 

4-indolecarbaldehyde 91.0553, 118.0669, 128.0614 90.0351, 116.0506 91.0546, 118.0664, 128.0620 90.0351, 116.0506 2b 

Chlortalidone   146.0247, 189.9739  146.0247, 189.9733 2a 

Hydrochlorothiazide   126.0118, 204.9835, 268.9465  126.0111, 204.9837, 268.9456 2a 

Ibuprofen   154.9722, 161.1333  154.9720, 161.1332 1 

Caffeine 135.0436, 163.0389  135.0439, 163.0387   1 

Paraxanthine 96.0572, 124.0522 108.0198, 122.0365, 164.0341 96.0579, 124.0525 108.0197, 122.0363, 164.0340 2a 

Theobromine 108.0554, 122.0589, 163.0611  108.0551, 122.0580, 163.0612   2a 

Allopregnanolone 263.2007, 271.2058, 275.2009, 287.2371 297.1529, 311.1687, 325.1842 263.2005, 271.2057, 275.2004, 287.2368 297.1527, 311.1688, 325.1840 1 

Androstenedione 173.1310, 211.1451, 269.1910 183.1128 173.1308, 211.1449, 269.1908 183.1125 1 

Arachidonic acid 121.1025, 221.1559, 269.2300, 287.2397 205.1965, 231.2106, 259.2419 121.1021, 221.1555, 269.2296, 287.2395 205.1964, 231.2102, 259.2419 1 

Cortisol 121.0647, 309.1858 297.1497, 315.1616, 331.1910 121.0644, 309.1857 297.1494, 315.1614, 331.1905 1 

Cortisone 163.1115, 267.1729 301.1795,  329.1750 163.1113, 267.1727 301.1797,  329.1749 1 

DHA* 119.08556, 159,1176, 173.1326, 329.25 229.1958, 284.2446 119.08554, 159,1173, 173.1325, 329.2499 229.1957, 284.2445 2a 

Leukotriene B4   71.0136, 195.1011, 317.2125  71.0136, 195.1010, 317.2126 1 

Leukotriene D4   177.0334, 477.2423   177.0332, 477.2421 1 

*  
DHA Docosahexaenoic acid 

TCPP Tris(1-chloro-2-propyl)phosphate 

TDMPAB 1,3,5-tris(2,2-dimethylpropionylamino)benzene 



Appendices 

263  
 

3.10. Appendix S.1 – Chemicals and solvents  

Standard compounds (native and isotopically labeled) were purchased from LGC, VWR, 

Sigma Aldrich, or Bertin and were stored at -20°C. Details can be found in Supporting 

Information (SI, Table A1). UHPLC-MS-grade acetonitrile and formic acid were purchased from 

Biosolve (Dieuze, France) while UHPLC-MS-grade methanol was purchased from Carlo Erba 

(Val-de-Reuil, France). Ultrapure water was obtained with a Millipore Milli-Q Gradient system. 

3.11. Appendix S.2 – Data acquisition 

    Samples were analyzed on AB SCIEX X500R QTOF interfaced with an AB SCIEX ExionLC 

AD UPLC. Compound chromatographic separation was achieved using an Acquity UPLC HSS 

T3 C18 column (1.8µm, 1.0 x150mm) maintained at 40°C. Injection volume was set at 2 µL. 

Flow rate was set at 100 µL/min with mobile phases of ultrapure water/0.01% formic acid (A) 

and acetonitrile/0.01% formic acid (B). The gradient was as follows: 0-2.5 min, 10-20% B ; 2.5-

20 min, 20-30% B ; 20-38 min, 30-45% B ; 38-45 min, 45-100% B ; 45-55 min, 100% B ; 55-

60 min, 10% B. Full-scan mass spectra was acquired between 50-1100 m/z using ESI source 

settings: temperature 550°C, ionspray voltage 4,5kV (-4,5kV in negative mode), declustering 

potential 80V (-80V in negative mode), accumulation time 300 ms, spray N2 gas 35 arbitrary 

units, heat conduction gas 35 arbitrary units; curtain gas 7 arbitrary units, collisionally activated 

dissociation gas 7 arbitrary units, run time 60min. Samples were analyzed in full scan 

experiment in both – and + ESI modes. MS/MS mass fragmentation information for chemical 

elucidation was obtained by further analysis of selected samples in sequential window 

acquisition of theoretical mass spectrum (SWATH). 

3.12. Appendix S.3 – Quality control 

One workup sample (i.e. extraction with HPLC grade water instead of sample) per analytical 

batch was prepared to monitor background contaminants. Quality control (QC) samples 

comprising a composite sample were prepared in order to monitor for UHPLC-ESI-TOFMS 

repeatability and sensitivity during analysis of a sample run. Solvent samples (acetonitrile/H2O 

(10:90)) were also injected to ensure that there was no carryover in the UHPLC system that 

might affect adjacent results in analytical runs. Each run commenced with the injection of blank 

samples (workup and solvent) followed by injection of a QC sample. The samples were injected 

randomly with QC samples analyzed after every 7 samples. 

 



Appendices 

264  
 

3.13. Appendix S.4 – In-house annotation workflow 

 

 

 

 

 

 

 

 

Figure B1 -  In-house annotation workflow in four steps: comparing successively m/z, Rt and 

isotopic fit, then generating a global scoring. Calculation of CI for m/z and Rt is fairly simple 

and is only based on a comparison between the feature’s and suspect’s predictors. For isotopic 

fit, a multi-step approach is needed, involving first a detection of M+2, then a ratio abundance 

comparison. More specifically, as a first step for a given pre-annotated feature, the software 

computes a temporary CI based on m/z for the M+2. Then, another temporary CI is computed 

based on M0 and M2 Rts proximity. The two temporary CI values are averaged to give an 

intermediate M+2 identification CI. The second step is the M+0 abundance check. Since data 

processing software might generate less accurate integrations for low-abundant compounds, 

abundance ratios are only compared if the pre-annotated feature’s area is higher than a 

threshold value of 100 (linked to the experimental data). If this is not verified, only the 

intermediate M+2 identification CI is displayed. Else, the area ratios are compared and a 

second intermediate CI is computed for abundances with a ΔA2/A0 value of 0.1. The last step is 

to compute an overall CI value for isotopic fit, which is calculated as a weighed sum of the 

intermediate CIs for M+2 identification and abundance, with a ponderation linked to the M+0 

area. Finally, global CI is computed as a mean of the three predictors’ CI.  
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3.14. Appendix S.5 – Modelling the retention time predictor  

 

Figure B2 – Modelling retention time using modelled (n=134) or exclusively experimental 

(n=101) octanol-water partition coefficients as predictors.  

 

Figure B3 - Determination of experimental retention time tolerance ΔRt. Standard deviation on 

Rt were determined for compounds from the spiking set on the four spiked plasma and four 

spiked serum samples, and for internal standards (ISTD) on the eight plasma and eight serum 

samples. This value was multiplied by three as to theoretically obtain 99.7% of values under 

the curve. 
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3.15. Appendix S.6 – Optimization of individual data processing tools 

 

Figure B4 - Data processing (i.e. peak picking, deconvolution, alignment, gap filling) evaluation 

for detection and semi-quantification of environmental-level spiked compounds with different 

sets of parameters using MZmine2 in plasma (A) and serum (B), and using XCMS in plasma 

(C) and serum (D) (n=4 samples each). 
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3.16. Appendix S.7 – Application of the in-house software in real-life 

conditions 

 

Figure B5 - Projection of spiking compounds for which all three CI were available in plasma 

and serum, as well as a barycenter. 

 In-house tool MZmine2 msPurity MS-DIAL xMSannotator 

Using in-house 

libraries 

5 (4+1) 5 (4+1) 4 (4+0) 4 (4+0) 5 (4+1) 

Using existing  

databases 

0 5 4 4 5 

Using experimental  

and/or predicted Rt 

5 (2+1+2) 3 (2+1+0) 0 3 (2+1+0) 0 

Using MS/MS  0 3 (3+0) 5 (3+2) 3 (3+0) 0 

Speed of  

implementation 

5 (2+3) 4 (2+2) 3 (1+2) 4 (2+2) 2 (1+1) 

Scoring 5 (2+3) 0 5 (2+3) 2 (2+0) 3 (2+1) 

Prioritization 

of spiked chemicals 

5 (2+2+1) 2 (2+0+0) 4 (2+1+1) 5 (2+2+1) 3 (2+1+0) 
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Figure B6 - Scoring of five suspect screening tools: xMSannotator, MS-DIAL, msPurity (green), 

MZmine2 and in-house tool. Comparison was made on use of in-house databases, use of 

predicted or experimental Rt and MS/MS, speed of implementation, scoring and prioritization. 

Use of in-house libraries was rated based on availability (/4), with a bonus given to tools 

which allow the use of an easily formatted database such as .csv (/1). Use of existing 

databases was rated based on availability of none, one to three, or more external database 

(0/5, 4/5, or 5/5). Use of experimental and/or predicted Rt was rated based on availability 

(/2), use of experimental Rt only through in-house library (/1), and use of experimental and 

predicted Rt (/2). Use of MS/MS was rated based on availability (/3), and scoring on this 

predictor (/2). Speed of implementation considers ease of set up (/2) and computational 

speed (/3). Scoring is rated based on availability (/2), and basis of said score on within-dataset 

correlation or on correlation with the suspect list (/3). Lastly, prioritization of spiked 

chemicals is rated based on availability of criteria for prioritization (e.g. detection frequency, 

or scoring, etc.) (/2), usability of scoring (if available) to estimate fit between suspect and 

feature (/2), and efficiency of ranking (/1). 
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4. Appendix 4. Chapter V 

4.1. Effect of total ion current correction on mean feature area and 

principal component analysis results 

Figure B1 – Mean feature raw area (A), mean feature area after total ion current correction (B), 

PCA using raw area (C) and PCA using area after total ion current correction (D) shown on 

samples (including the composite quality control samples) prepared by protein precipitation 

(PPT) injected in ESI (−) mode. Blank samples for each batch are identified by orange squares. 
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Figure B2 – Mean feature raw area (A), mean feature area after total ion current correction (B), 

PCA using raw area (C) and PCA using area after total ion current correction (D) shown on 

samples (including the composite quality control samples) prepared by phospholipid removal 

plates Phree injected in ESI (+) mode. Blank samples for each batch are identified by orange 

squares. 
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Figure B3 – Mean feature raw area (A), mean feature area after total ion current correction (B), 

PCA using raw area (C) and PCA using area after total ion current correction (D) shown on 

samples (including the composite quality control samples) prepared by phospholipid removal 

plates Phree injected in ESI (−) mode. Blank samples for each batch are identified by orange 

squares. 
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4.2. Annotations on Pélagie samples  

Table A1 – Annotated compounds in Pélagie samples, with confidence indices (CI) on mass-to-charge (m/z) ratio, retention time (Rt), isotopic 

fit, and global confidence index. Compounds are either detected in the [M+H]+ form ( “(+)” columns) or the [M-H]- form ( “(-)” columns) 

Annotation SMILES 

m/z 
Rt 

(min) 

CI m/z 

CI Rt CI isotopic fit 

Global CI 
Experimental RTI-predicted Retip-predicted 

logP-
predicted 

Considered 
Mn 

CI overall 

(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

(2-oxo-2,3-dihydro-1H-indol-3-
yl)acetic acid 

C1=CC=C2C(=C1)C(C(=O)N2)CC
(=O)O 

192.0640 n.a. 2.7 0.95 n.a. n.a. n.a. n.a. n.a. 0.99 n.a. n.a. n.a. n.a. n.a. n.a. n.a. G2_0.97 n.a. 

1,3,5-tris(2,2-
dimethylpropionylamino)benzene 

CC(C)(C)C(=O)NC1=CC(=CC(=C1
)NC(=O)C(C)(C)C)NC(=O)C(C)(C
)C 

n.a. 410.2220 34.11 n.a. 0.86 n.a. n.a. n.a. 0.66 n.a. 0.66 n.a. 0 n.a. M2 n.a. 0.54 n.a. G3_0.76 

10,11-trans-Dihydroxy-10,11-
dihydrocarbamazepine 

C1=CC=C2C(=C1)C(C(C3=CC=C
C=C3N2C(=O)N)O)O 

271.1100 n.a. 8.06 0.99 n.a. n.a. n.a. n.a. n.a. 0.93 n.a. n.a. n.a. M2 n.a. 0.75 n.a. G3_0.89 n.a. 

13-Hydroxy-7,14-labdadien-6-one 
CC1=CC(=O)C2C(CCCC2(C1CCC
(C)(C=C)O)C)(C)C 

305.2456 n.a. 46.63 0.87 n.a. n.a. n.a. n.a. n.a. 0.67 n.a. 0.42 n.a. n.a. n.a. n.a. n.a. G2_0.77 n.a. 

2-((3-
dodecanamidopropyl)dimethylamm
onio)acetate 

CCCCCCCCCCCC(=O)NCCC[N+](
C)(C)CC(=O)[O-] 

n.a. 377.2579 29.19 n.a. 0.88 n.a. n.a. n.a. 0.77 n.a. 0.65 n.a. n.a. n.a. M2 n.a. 0.61 n.a. G3_0.75 

2-chlorophenol C1=CC=C(C(=C1)O)Cl n.a. 126.9957 14.01 n.a. 0.92 n.a. n.a. n.a. 0.5 n.a. 0.19 n.a. 0.5 n.a. M2 n.a. 0.91 n.a. G3_0.78 
2-hydroxybenzoic acid C1=CC=C(C(=C1)C(=O)O)O n.a. 137.0243 21.9 n.a. 0.95 n.a. n.a. n.a. 0.6 n.a. n.a. n.a. 0.97 n.a. n.a. n.a. n.a. n.a. G2_0.78 

2-hydroxycarbamazepine 
C1=CC=C2C(=C1)C=CC3=C(N2C
(=O)N)C=CC(=C3)O 

253.0966 n.a. 12.72 0.96 n.a. 0.67 n.a. n.a. n.a. 0.46 n.a. 0.55 n.a. M1 n.a. 0.88 n.a. G3_0.84 n.a. 

2-Naphthalenesulfonic acid 
C1=CC=C2C=C(C=CC2=C1)S(=O
)(=O)O 

n.a. 207.0124 7.25 n.a. 0.95 n.a. n.a. n.a. 0.69 n.a. 0.35 n.a. 0.37 n.a. n.a. n.a. n.a. n.a. G2_0.82 

2-Naphthol C1=CC=C2C=C(C=CC2=C1)O n.a. 143.0503 22.93 n.a. 0.94 n.a. n.a. n.a. 0.87 n.a. 0.4 n.a. 0.81 n.a. M1 n.a. 0.65 n.a. G3_0.82 
2-naphthylamine C1=CC=C2C=C(C=CC2=C1)N 144.0808 n.a. 14.41 0.97 n.a. n.a. n.a. 0.75 n.a. 0.23 n.a. 0.41 n.a. n.a. n.a. n.a. n.a. G2_0.86 n.a. 
3-(4-Hydroxyphenyl)lactic acid C1=CC(=CC=C1CC(C(=O)O)O)O n.a. 181.0499 4.07 n.a. 0.91 n.a. n.a. n.a. 0.55 n.a. 0.83 n.a. 0.63 n.a. n.a. n.a. n.a. n.a. G2_0.73 

3,5-dibromo-4-hydroxybenzoic acid 
C1=C(C=C(C(=C1Br)O)Br)C(=O)
O 

n.a. 292.8458 19.22 n.a. 0.88 n.a. n.a. n.a. 0.96 n.a. 0 n.a. 0.59 n.a. M2 n.a. 0.78 n.a. G3_0.87 

3-Formylindole C1=CC=C2C(=C1)C(=CN2)C=O 146.0596 n.a. 4.24 0.95 n.a. n.a. n.a. 0.68 n.a. 0.11 n.a. 0.14 n.a. M1 n.a. 0.76 n.a. G3_0.8 n.a. 
3-hydroxybenzoic acid C1=CC(=CC(=C1)O)C(=O)O n.a. 137.0245 5.38 n.a. 0.95 n.a. n.a. n.a. 0.55 n.a. 0.55 n.a. 0.41 n.a. n.a. n.a. n.a. n.a. G2_0.75 
4-chlorophenol C1=CC(=CC=C1O)Cl n.a. 126.9958 11.81 n.a. 0.94 n.a. n.a. n.a. 0.76 n.a. 0.05 n.a. 0.35 n.a. n.a. n.a. n.a. n.a. G2_0.85 
4-hydroxy-2,5,6-
trichloroisophthalonitrile 

C(#N)C1=C(C(=C(C(=C1Cl)C#N)
Cl)Cl)O 

n.a. 244.9085 27.74 n.a. 0.86 n.a. n.a. n.a. n.a. n.a. 0.92 n.a. 0.88 n.a. M2 n.a. 0.96 n.a. G3_0.91 

4-hydroxybenzoic acid C1=CC(=CC=C1C(=O)O)O n.a. 137.0244 8.69 n.a. 1 n.a. n.a. n.a. 0.8 n.a. 0.72 n.a. 0.64 n.a. M1 n.a. 0.88 n.a. G3_0.89 
4-hydroxyquinoline C1=CC=C2C(=C1)C(=O)C=CN2 146.0599 n.a. 6.27 0.95 n.a. n.a. n.a. 0.71 n.a. 0.29 n.a. 0.22 n.a. M1 n.a. 0.76 n.a. G3_0.81 n.a. 

5-acetylsalicylamide 
CC(=O)C1=CC(=C(C=C1)O)C(=O
)N 

180.0657 n.a. 6.21 0.76 n.a. 0.93 n.a. 0.5 n.a. 0 n.a. 0.81 n.a. M1 n.a. 0.94 n.a. G3_0.88 n.a. 

5-hydroxytryptophan 
C1=CC2=C(C=C1O)C(=CN2)CC(
C(=O)O)N 

n.a. 219.0788 4.52 n.a. 0.91 n.a. n.a. n.a. 0.89 n.a. 0.27 n.a. 0.16 n.a. n.a. n.a. n.a. n.a. G2_0.9 

Acesulfame CC1=CC(=O)NS(=O)(=O)O1 n.a. 161.9863 3.12 n.a. 0.90 n.a. 0.96 n.a. 0.28 n.a. 0.97 n.a. 0.64 n.a. n.a. n.a. n.a. n.a. G2_0.95 

Acetaminophen glucuronide 
CC(=O)NC1=CC=C(C=C1)OC2C(
C(C(C(O2)C(=O)O)O)O)O 

n.a. 362.0640 4.09 n.a. 0.79 n.a. 0.61 n.a. 0.99 n.a. 0.97 n.a. n.a. n.a. n.a. n.a. n.a. n.a. G2_0.7 
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Table A1 – (continued) Annotated compounds in Pélagie samples, with confidence indices (CI) on mass-to-charge (m/z) ratio, retention time 

(Rt), isotopic fit, and global confidence index. Compounds are detected in the [M+H]+ form ( “(+)” columns) or the [M-H]- form ( “(-)” columns) 

 

SMILES 
m/z Rt 

(min) 

CI m/z 

CI Rt CI Isotopic fit 

Global CI 
Annotation Experimental RTI-predicted Retip-predicted 

logP-
predicted 

Considered 
Mn 

CI overall 

 (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

Acetaminophen sulfate 
CC(=O)NC1=CC=C(C=C1)OS(=O
)(=O)O 

n.a. 230.0127 3.61 n.a. 0.97 n.a. 0.91 n.a. 0.84 n.a. 0.7 n.a. 0.8 n.a. n.a. n.a. n.a. n.a. G2_0.94 

Aminoacetophenone C1=CC=C(C=C1)C(=O)CN 136.0752 n.a. 2.07 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Arabinosylhypoxanthine 
C1=NC2=C(C(=O)N1)N=CN2C3
C(C(C(O3)CO)O)O 

n.a. 303.0501 2.98 n.a. 0.99 n.a. n.a. n.a. n.a. n.a. 0.77 n.a. n.a. n.a. M2 n.a. 0.31 n.a. G3_0.69 

Aspartame 
COC(=O)C(CC1=CC=CC=C1)NC(
=O)C(CC(=O)O)N 

295.13 n.a. 5.8 0.97 n.a. 0.96 n.a. 0.22 n.a. 0.95 n.a. 0.28 n.a. M1 n.a. 0.94 n.a. G3_0.96 n.a. 

Auraptene 
CC(=CCCC(=CCOC1=CC2=C(C=C
1)C=CC(=O)O2)C)C 

n.a. 297.1523 44.08 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Azelaic acid C(CCCC(=O)O)CCCC(=O)O n.a. 187.0977 9.41 n.a. 0.94 n.a. n.a. n.a. 0.91 n.a. 0.79 n.a. 0.78 n.a. M1 n.a. 0.91 n.a. G3_0.92 
Benzothiazole C1=CC=C2C(=C1)N=CS2 n.a. 136.0204 46.77 n.a. 0.91 n.a. n.a. n.a. 0.83 n.a. n.a. n.a. 0.68 n.a. n.a. n.a. n.a. n.a. G2_0.87 

Benzothiazole sulfonic acid 
C1=CC=C2C(=C1)N=C(S2)S(=O)(
=O)O 

n.a. 213.9639 6.68 n.a. 0.99 n.a. n.a. n.a. 0.83 n.a. 0.62 n.a. 0.89 n.a. n.a. n.a. n.a. n.a. G2_0.91 

Benzylbutylphthalate 
CCCCOC(=O)C1=CC=CC=C1C(=
O)OCC2=CC=CC=C2 

313.1439 n.a. 44.94 0.87 n.a. 0.95 n.a. 0.36 n.a. 0.72 n.a. 0.04 n.a. M1 n.a. 0.77 n.a. G3_0.86 n.a. 

Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2-
hydroxy-5-methylbenzyl)-4-
methylphenyl) terephthalate 

CC1=CC(=C(C(=C1)C(C)(C)C)O)C
C2=C(C(=CC(=C2)C)C(C)(C)C)OC
(=O)C3=CC=C(C=C3)C(=O)OC4=
C(C=C(C=C4C(C)(C)C)C)CC5=C(
C(=CC(=C5)C)C(C)(C)C)O 

811.4913 n.a. 12.55 0.85 n.a. n.a. n.a. 0.78 n.a. 0.32 n.a. n.a. n.a. n.a. n.a. n.a. n.a. G2_0.82 n.a. 

Bromoxynil C1=C(C=C(C(=C1Br)O)Br)C#N n.a. 275.9043 20.2 n.a. 0.84 n.a. n.a. n.a. 0.42 n.a. 0 n.a. 0.6 n.a. M2 n.a. 0.79 n.a. G3_0.68 

Caffeine 
CN1C=NC2=C1C(=O)N(C(=O)N
2C)C 

195.09 n.a. 5.53 0.95 n.a. n.a. n.a. 0.67 n.a. 0.53 n.a. 0.77 n.a. n.a. n.a. n.a. n.a. G2_0.81 n.a. 

Carbamazepine 
C1=CC=C2C(=C1)C=CC3=CC=CC
=C3N2C(=O)N 

237.1016 n.a. 19.7 0.99 n.a. n.a. n.a. 0.66 n.a. 0 n.a. 0 n.a. M1 n.a. 0.82 n.a. G3_0.82 n.a. 

Carveol CC1=CCC(CC1O)C(=C)C 153.1272 n.a. 38.1 0.79 n.a. n.a. n.a. 0.81 n.a. 0 n.a. n.a. n.a. M1 n.a. 0.77 n.a. G3_0.79 n.a. 

Carylophyllene oxide 
CC1(CC2C1CCC3(C(O3)CC2=C)
C)C 

207.1735 n.a. 44.42 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Chavicol sulfate 
C=CCC1=CC=C(C=C1)OS(=O)(=
O)O 

n.a. 213.0226 11.38 n.a. 0.97 n.a. 0.88 n.a. 0.61 n.a. 0.54 n.a. 0.44 n.a. M2 n.a. 0.91 n.a. G3_0.92 

Cinchonidine 
C=CC1CN2CCC1CC2C(C3=CC=N
C4=CC=CC=C34)O 

n.a. 293.1752 32.49 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Cinnamaldehyde C1=CC=C(C=C1)C=CC=O 133.0645 n.a. 14.33 0.82 n.a. n.a. n.a. n.a. n.a. 0.68 n.a. 0.76 n.a. n.a. n.a. n.a. n.a. G2_0.75 n.a. 

CMPF 
CCCC1=C(C(=C(O1)CCC(=O)O)C
(=O)O)C 

n.a. 239.0925 22.08 n.a. 0.98 n.a. n.a. n.a. 0.97 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. G2_0.98 

Cocamidopropyl Betaine 
CCCCCCCCCCCC(=O)NCCC[N+](
C)(C)CC(=O)[O-] 

343.2939 n.a. 35.78 0.79 n.a. n.a. n.a. 0.9 n.a. 0.47 n.a. n.a. n.a. M1 n.a. 0.9 n.a. G3_0.86 n.a. 

Coumaraldehyde C1=CC(=CC=C1C=CC=O)O 149.0597 n.a. 3.36 0.92 n.a. n.a. n.a. 0.96 n.a. 0.86 n.a. 0.59 n.a. M1 n.a. 0.91 n.a. G3_0.93 n.a. 
Coumaric acid C1=CC(=CC=C1C=CC(=O)O)O n.a. 163.0398 5.1 n.a. 0.9 n.a. n.a. n.a. 0.74 n.a. 0.23 n.a. 0.25 n.a. n.a. n.a. n.a. n.a. G2_0.82 
Cresol sulfate CC1=CC=CC=C1OS(=O)(=O)O n.a. 187.0066 7.35 n.a. 0.85 n.a. 0.63 n.a. 1 n.a. 0.62 n.a. 0.26 n.a. M2 n.a. 0.86 n.a. G3_0.78 

Di(ethylhexyl) phthalate 
CCCCC(CC)COC(=O)C1=CC=CC=
C1C(=O)OCC(CC)CCCC 

391.28 n.a. 45.67 0.91 n.a. n.a. n.a. 0.79 n.a. 0.69 n.a. n.a. n.a. n.a. n.a. n.a. n.a. G2_0.85 n.a. 
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Table A1 – (continued) Annotated compounds in Pélagie samples, with confidence indices (CI) on mass-to-charge (m/z) ratio, retention time 

(Rt), isotopic fit, and global confidence index. Compounds are detected in the [M+H]+ form ( “(+)” columns) or the [M-H]- form ( “(-)” columns) 

Annotation SMILES 
m/z Rt 

(min) 
CI m/z 

CI Rt CI Isotopic fit 
Global CI 

Experimental RTI-predicted Retip-predicted 
logP-

predicted 
Considered 

Mn 
CI overall 

(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

Dioctyl phthalate 
CCCCCCCCOC(=O)C1=CC=CC=C
1C(=O)OCCCCCCCC 

391.2846 n.a. 49.09 0.95 n.a. n.a. n.a. 0.86 n.a. 0.78 n.a. n.a. n.a. n.a. n.a. n.a. n.a. G2_0.91 n.a. 

Diphenylphosphate 
C1=CC=C(C=C1)OP(=O)([O-
])OC2=CC=CC=C2 

251.0466 n.a. 46.2 0.99 n.a. 0.94 n.a. 0.8 n.a. 0.02 n.a. 0.01 n.a. M1 n.a. 0.93 n.a. G3_0.95 n.a. 

Diphenylsulfone 
C1=CC=C(C=C1)S(=O)(=O)C2=C
C=CC=C2 

219.0473 n.a. 26.77 0.89 n.a. n.a. n.a. 0.74 n.a. n.a. n.a. 0.87 n.a. M1 n.a. 0.82 n.a. G3_0.82 n.a. 

Docosahexaenoic acid 
CCC=CCC=CCC=CCC=CCC=CCC=
CCCC(=O)O 

n.a. 327.2327 46.43 n.a. 0.97 n.a. 1 n.a. 0.79 n.a. 0.89 n.a. 0.6 n.a. M1 n.a. 0.98 n.a. G3_0.98 

Dodecylbenzenesulfonic acid 
CCCCCCCCCCCCC1=CC=CC=C1S
(=O)(=O)O 

n.a. 325.1851 48.41 n.a. 0.93 n.a. n.a. n.a. 0.98 n.a. 0.22 n.a. 0.69 n.a. M1 n.a. 0.9 n.a. G3_0.94 

Eicosapentaenoic acid 
CCC=CCC=CCC=CCC=CCC=CCCC
C(=O)O 

n.a. 301.2169 45.99 n.a. 0.91 n.a. n.a. n.a. 0.88 n.a. 0.96 n.a. 0.82 n.a. M1 n.a. 0.92 n.a. G3a_0.9 

Ferulic acid 
COC1=C(C=CC(=C1)C=CC(=O)O
)O 

n.a. 193.0505 6.5 n.a. 0.97 n.a. n.a. n.a. 0.63 n.a. 0.4 n.a. 0.39 n.a. n.a. n.a. n.a. n.a. G2_0.8 

Fipronil sulfone 
C1=C(C=C(C(=C1Cl)N2C(=C(C(=
N2)C#N)S(=O)(=O)C(F)(F)F)N)Cl
)C(F)(F)F 

n.a. 450.9301 44.56 n.a. 0.89 n.a. n.a. n.a. 0.73 n.a. 0.79 n.a. n.a. n.a. M2 n.a. 0.95 n.a. G3_0.86 

Ibuprofen 
CC(C)CC1=CC=C(C=C1)C(C)C(=
O)O 

n.a. 205.1233 41.19 n.a. 0.99 n.a. 0.97 n.a. n.a. n.a. 0.36 n.a. 0.46 n.a. n.a. n.a. n.a. n.a. G2_0.98 

Indole-3-acetaldehyde C1=CC=C2C(=C1)C(=CN2)CC=O 160.0746 n.a. 9.52 0.86 n.a. n.a. n.a. 0.94 n.a. 0.62 n.a. 0.91 n.a. M1 n.a. 0.89 n.a. G3_0.90 n.a. 
Indole-3-carbinol C1=CC=C2C(=C1)C(=CN2)CO 130.0648 n.a. 10.5 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Indoxyl sulfate 
C1=CC=C2C(=C1)C(=CN2)OS(=
O)(=O)O 

n.a. 212.0022 5.92 n.a. 0.96 n.a. 0.86 n.a. n.a. n.a. n.a. n.a. 0.41 n.a. M2 n.a. 0.85 n.a. G3_0.89 

Ioxynil C1=C(C=C(C(=C1I)O)I)C#N n.a. 369.8217 28.48 n.a. 0.95 n.a. n.a. n.a. 0.6 n.a. 0.43 n.a. 0.33 n.a. M1 n.a. 0.9 n.a. G3_0.82 

Isobutylparaben 
CC(C)COC(=O)C1=CC=C(C=C1)
O 

195.1015 n.a. 40.82 0.88 n.a. n.a. n.a. 0.72 n.a. 0.38 n.a. n.a. n.a. n.a. n.a. n.a. n.a. G2_0.8 n.a. 

Isopropylparaben CC(C)OC(=O)C1=CC=C(C=C1)O 181.0857 n.a. 8.43 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Lenticin 
C[N+](C)(C)C(CC1=CNC2=CC=C
C=C21)C(=O)[O-] 

247.15 n.a. 5.26 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Lidocaine 
CCN(CC)CC(=O)NC1=C(C=CC=C
1C)C 

235.1804 n.a. 5.94 0.93 n.a. n.a. n.a. 0.81 n.a. 0.72 n.a. 0.8 n.a. M1 n.a. 0.87 n.a. G3_0.87 n.a. 

Lumichrome 
CC1=CC2=C(C=C1C)N=C3C(=N2
)C(=O)NC(=O)N3 

243.0877 n.a. 10.08 0.93 n.a. n.a. n.a. 0.52 n.a. 0 n.a. 0.01 n.a. n.a. n.a. n.a. n.a. G2_0.73 n.a. 

Mercaptobenzothiazole C1=CC=C2C(=C1)NC(=S)S2 n.a. 165.9795 15.22 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Methionine CSCCC(C(=O)O)N 150.06 n.a. 1.53 0.78 n.a. n.a. n.a. 0.78 n.a. 0.51 n.a. 0.1 n.a. M1 n.a. 0.87 n.a. G3_0.81 n.a. 

Methylperfluorooctanesulfonamido
)acetic acid 

CN(CC(=O)O)S(=O)(=O)C(C(C(C(
C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)
F)(F)F)(F)F)(F)F 

n.a. 569.9673 44.87 n.a. 0.95 n.a. n.a. n.a. n.a. n.a. 0.79 n.a. 0.8 n.a. M2 n.a. 0.70 n.a. G3_0.81 

Paracetamol CC(=O)NC1=CC=C(C=C1)O 152.071 n.a. 4.24 0.83 n.a. n.a. n.a. n.a. n.a. 0.74 n.a. 0.69 n.a. M1 n.a. 0.95 n.a. G3_0.84 n.a. 

Paraxanthine 
CN1C=NC2=C1C(=O)N(C(=O)N
2)C 

n.a. 179.0575 5.23 n.a. 0.96 n.a. n.a. n.a. 0.82 n.a. 0.78 n.a. n.a. n.a. M1 n.a. 0.83 n.a. G3_0.87 

Pentachlorophenol 
C1(=C(C(=C(C(=C1Cl)Cl)Cl)Cl)Cl)
O 

n.a. 262.8401 43.01 n.a. 0.85 n.a. n.a. n.a. 0.84 n.a. 0 n.a. 0.72 n.a. M2 n.a. 0.91 n.a. G3_0.87 
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Table A1 – (continued) Annotated compounds in Pélagie samples, with confidence indices (CI) on mass-to-charge (m/z) ratio, retention time 

(Rt), isotopic fit, and global confidence index. Compounds are detected in the [M+H]+ form ( “(+)” columns) or the [M-H]- form ( “(-)” columns) 

Annotation SMILES 
m/z Rt 

(min) 
CI m/z 

CI Rt CI Isotopic fit 
Global CI 

Experimental RTI-predicted Retip-predicted 
logP-

predicted 
Considered 

Mn 
CI overall 

(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

Perfluoroheptanesulfonic acid 
C(C(C(C(F)(F)F)(F)F)(F)F)(C(C(C(
F)(F)S(=O)(=O)O)(F)F)(F)F)(F)F 

n.a. 448.9334 33.49 n.a. 0.84 n.a. n.a. n.a. 0.73 n.a. 0.13 n.a. 0.93 n.a. n.a. n.a. n.a. n.a. G2_0.78 

Perfluorohexanesulfonic acid 
C(C(C(C(F)(F)S(=O)(=O)O)(F)F)(
F)F)(C(C(F)(F)F)(F)F)(F)F 

n.a. 398.9366 35.31 n.a. 0.89 n.a. n.a. n.a. n.a. n.a. 0.84 n.a. 0.84 n.a. n.a. n.a. n.a. n.a. G2_0.87 

Perfluorooctanesulfonic acid 
C(C(C(C(C(F)(F)S(=O)(=O)O)(F)F
)(F)F)(F)F)(C(C(C(F)(F)F)(F)F)(F)
F)(F)F 

n.a. 498.9305 43.18 n.a. 0.93 n.a. n.a. n.a. n.a. n.a. 0.76 n.a. 0.79 n.a. M2 n.a. 0.77 n.a. G3_0.82 

Phenol sulfate C1=CC=C(C=C1)OS(=O)(=O)O n.a. 172.9913 4.74 n.a. 0.97 n.a. 0.62 n.a. n.a. n.a. 0.55 n.a. 0.36 n.a. M2 n.a. 0.87 n.a. G3_0.82 
Piperidone C1CCNC(=O)C1 100.0751 n.a. 3.78 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Piperine 
C1CCN(CC1)C(=O)C=CC=CC2=C
C3=C(C=C2)OCO3 

286.1436 n.a. 37.81 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Propylparaben CCCOC(=O)C1=CC=C(C=C1)O n.a. 179.0711 21.58 n.a. 0.95 n.a. 0.76 n.a. 0.46 n.a. 0.04 n.a. 0.19 n.a. n.a. n.a. n.a. n.a. G2_0.86 

Propylparaben sulfate 
CCCOC(=O)C1=CC=C(C=C1)OS(
=O)(=O)O 

n.a. 259.0282 17.12 n.a. 0.98 n.a. 0.81 n.a. 0.23 n.a. 0.73 n.a. 0.65 n.a. M2 n.a. 0.9 n.a. G3_0.9 

Reserpine 

COC1C(CC2CN3CCC4=C(C3CC2
C1C(=O)OC)NC5=C4C=CC(=C5)
OC)OC(=O)C6=CC(=C(C(=C6)OC
)OC)OC 

609.2801 n.a. 15.39 0.96 n.a. n.a. n.a. 0.99 n.a. 0.48 n.a. 0 n.a. M1 n.a. 0.9 n.a. G3_0.95 n.a. 

Solanidine 
CC1CCC2C(C3C(N2C1)CC4C3(C
CC5C4CC=C6C5(CCC(C6)O)C)C)
C 

398.34 n.a. 26.15 0.91 n.a. n.a. n.a. 0.63 n.a. 0.78 n.a. 0.75 n.a. n.a. n.a. n.a. n.a. G2_0.77 n.a. 

Sucralose 
C(C1C(C(C(C(O1)OC2(C(C(C(O2
)CCl)O)O)CCl)O)O)Cl)O 

n.a. 430.9843 6.78 n.a. 0.90 n.a. n.a. n.a. 0.59 n.a. 0.97 n.a. n.a. n.a. M2 n.a. 0.98 n.a. G3_0.82 

Theobromine 
CN1C=NC2=C1C(=O)NC(=O)N2
C 

181.07 n.a. 3.86 0.95 n.a. n.a. n.a. 0.45 n.a. n.a. n.a. 0 n.a. n.a. n.a. n.a. n.a. G2_0.7 n.a. 

Theophylline 
CN1C2=C(C(=O)N(C1=O)C)NC=
N2 

181.07 n.a. 5.91 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Thymol CC1=CC(=C(C=C1)C(C)C)O 151.1111 n.a. 19.52 0.93 n.a. n.a. n.a. n.a. n.a. 0.93 n.a. 0.91 n.a. M1 n.a. 0.98 n.a. G3_0.95 n.a. 

Triclosan glucuronide 
C1=CC(=C(C=C1Cl)OC2C(C(C(C(
O2)C(=O)O)O)O)O)OC3=C(C=C(
C=C3)Cl)Cl 

n.a. 462.9753 27.17 n.a. 0.86 n.a. n.a. n.a. 0.91 n.a. n.a. n.a. 0.85 n.a. M2 n.a. 1 n.a. G3_0.92 

Triclosan sulfate 
C1=CC(=C(C=C1Cl)OS(=O)(=O)
O)OC2=C(C=C(C=C2)Cl)Cl 

n.a. 366.9009 36.32 n.a. 0.94 n.a. 0.97 n.a. 0 n.a. n.a. n.a. 0.98 n.a. M2 n.a. 0.88 n.a. G3_0.93 

Triethylphosphate CCOP(=O)(OCC)OCC 183.0783 n.a. 12.57 0.89 n.a. n.a. n.a. 0.77 n.a. 0.82 n.a. 0.92 n.a. n.a. n.a. n.a. n.a. G2_0.83 n.a. 

Triphenylphosphine oxide 
C1=CC=C(C=C1)P(=O)(C2=CC=C
C=C2)C3=CC=CC=C3 

279.0925 n.a. 2.76 0.8 n.a. n.a. n.a. 0.55 n.a. 0.7 n.a. 0.59 n.a. n.a. n.a. n.a. n.a. G2_0.72 n.a. 

Tris(2-butoxyethyl)phosphate 
CCCCOCCOP(=O)(OCCOCCCC)O
CCOCCCC 

399.25 n.a. 44.69 0.93 n.a. n.a. n.a. n.a. n.a. 0.66 n.a. 0.82 n.a. n.a. n.a. n.a. n.a. G2_0.8 n.a. 

Tritosulfuron 
COC1=NC(=NC(=N1)NC(=O)NS(
=O)(=O)C2=CC=CC=C2C(F)(F)F)
C(F)(F)F 

n.a. 444.0210 34.47 n.a. 0.91 n.a. 0.96 n.a. 0.86 n.a. 0.69 n.a. 0.33 n.a. n.a. n.a. n.a. n.a. G2_0.94 

Tryptophan 
C1=CC=C2C(=C1)C(=CN2)CC(C(
=O)O)N 

205.0968 n.a. 4.61 0.83 n.a. n.a. n.a. 0.9 n.a. 0.83 n.a. 0.51 n.a. n.a. n.a. n.a. n.a. G2_0.87 n.a. 
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4.3. MS2 data for annotated compounds 

Table A2 – MS2 theoretical and experimental fragmentation data for annotated compounds 

Annotation 

MS/MS  

Theoretical fragments Experimental fragments 

(+) (-) (+) (-) 

(2-oxo-2,3-dihydro-1H-indol-3-yl)acetic acid 77.0391, 91.0555, 103.0545 n.a. 77.0390, 91.0554, 103.0548 n.a. 
1,3,5-tris(2,2-dimethylpropionylamino)benzene n.a. 232.1091, 290.1874, 316.1667 n.a. 232.1089, 290.1875, 316.1671 
10,11-trans-Dihydroxy-10,11-dihydrocarbamazepine 87.0256, 104.0529, 133.0318 n.a. 87.0256, 104.0536, 133.0318 n.a. 
13-Hydroxy-7,14-labdadien-6-one 195.0648, 397.2115 n.a. 195.0655, 397.2110 n.a. 
2-((3-dodecanamidopropyl)dimethylammonio)acetate n.a. 102.0561, 238.2177, 283.2756 n.a. 102.0558, 238.2182, 283.2751 
2-chlorophenol n.a. 91.02 n.a. 91.02 
2-hydroxybenzoic acid   n.a. 93.03 n.a. 93.03 
2-hydroxycarbamazepine 145.0764, 172.0870, 198.0663 n.a. 145.0768, 172.0864, 198.0659 n.a. 
2-Naphthalenesulfonic acid n.a. 79.9574, 114.0553, 143.0503 n.a. 79.9577, 115.0546, 143.0500 
2-Naphthol n.a. 98.9055, 115.0553 n.a. 98.9057, 115.0557 

2-naphthylamine 
91.0556, 115.0542, 117.0699, 
127.0542 

n.a. 
91.0549, 115.0543, 117.0690, 
127.0545 

n.a. 

3-(4-Hydroxyphenyl)lactic acid n.a. 
72.9921, 93.0301, 107.0480, 
119.0489, 134.0377, 135.0456 

n.a. 
72.9922, 93.0304, 107.0482, 
119.0488, 134.0372, 135.0455 

3,5-dibromo-4-hydroxybenzoic acid n.a. 248.86 n.a. 248.85 

3-Formylindole 
65.0400, 77.0389, 91.0560, 
117.0590 

n.a. 
65.0396, 77.0384, 91.0551, 
117.0583 

n.a. 

3-hydroxybenzoic acid n.a. 93.03 n.a. 93.03 
4-chlorophenol n.a. n.a. n.a. n.a. 

4-hydroxy-2,5,6-trichloroisophthalonitrile n.a. 
146.9765, 174.9704, 
181.9447, 209.9401 

n.a. 
146.9765, 174.9710, 
181.9447, 209.9406 

4-hydroxybenzoic acid n.a. 93.0343 n.a. 93.0346 

4-hydroxyquinoline 
77.0415, 91.0555, 104.0494, 
128.0476 

n.a. 
77.0415, 91.0548, 104.0490, 
128.0479 

n.a. 

5-acetylsalicylamide 165.0694, 179.0726, 194.0958 n.a. 165.0697, 179.0720, 194.0963 n.a. 
5-hydroxytryptophan n.a. 132.0447, 144.0456, 158.0622 n.a. 132.0453, 144.0450, 158.0630 
Acesulfame n.a. 67.0065, 77.9655, 82.0298 n.a. 67.0063, 77.9654, 82.0299 
Acetaminophen glucuronide n.a. 113.0252, 150.0561, 175.0252 n.a. 113.0245, 150.0562, 175.0247 
Acetaminophen sulfate n.a. 107.0365, 108.0445, 150.0551 n.a. 107.0367, 108.0452, 150.0556 

Aminoacetophenone 
167.0729, 180.0807, 
182.0963, 193.0886, 210.0914 

n.a. 
167.0730, 180.0803, 
182.0966, 193.0885, 210.0917 

n.a. 
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Table A2 – (continued) MS2 theoretical and experimental fragmentation data for annotated compounds 

Annotation 

MS/MS 

Theoretical fragments Experimental fragments 

(+) (-) (+) (-) 

Arabinosylhypoxanthine n.a. 92.0241, 108.0190, 135.0301 n.a. 92.0247, 108.0199, 135.0305 

Aspartame 
115.0543, 135.0446, 
143.0485, 171.0453, 201.0548 

n.a. 
115.0551, 135.0450, 
143.0495, 171.0454, 201.0556 

n.a. 

Auraptene n.a. 170.0038, 183.0014, 197.0272 n.a. 170.0040, 183.0114, 197.0244 

Azelaic acid n.a. 
57.0331, 95.0488, 97.0645, 
123.0803, 125.0959 

n.a. 
57.0339, 95.0486, 97.0652, 
123.0806, 125.0963 

Benzothiazole n.a. 65.0382, 105.0448, 109.0108 n.a. 65.0382, 105.0448, 109.0109 
Benzothiazole sulfonic acid n.a. 57.9751, 134.0069, 150.0019 n.a. 57.9749, 134.0071, 150.0023 
Benzylbutylphthalate 380.332 n.a. 380.3319 n.a. 

Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2-hydroxy-5-methylbenzyl)-4-
methylphenyl) terephthalate 

91.0546, 115.0548,130.0655, 
143.0727, 146.0592, 
159.0921, 170.0600 

n.a. 
91.0543, 115.0543,130.0654, 
143.0728, 146.0598, 
159.0925, 170.0605 

n.a. 

Bromoxynil n.a. 78.92 n.a. 78.92 
Caffeine 149.02 n.a. 149.02 n.a. 
Carbamazepine 95.049, 121.0282, 139.0388 n.a. 95.0491, 121.0283, 139.0384 n.a. 
Carveol   283.1693, 431.1844, 589.2939 n.a. 283.1700, 431.1849, 589.2947 n.a. 

Carylophyllene oxide 
51.0233, 53.0389, 77.0382, 
95.0493, 105.0447, 125.0055, 
141.0004 

n.a. 
51.0229, 53.0388, 77.0375, 
95.0491, 105.0445, 125.0060, 
140.9999 

n.a. 

Chavicol sulfate n.a. 105.0710, 133.0659 n.a. 105.0710, 133.0657 
Cinchonidine n.a. 96.9588, 221.1544, 236.1056 n.a. 96.9590, 221.1546, 236.1055 

Cinnamaldehyde 
79.0548, 81.0701, 91.0546, 
95.0854, 105.0702, 107.0849, 
133.1028, 147.1185, 161.1331 

n.a. 
79.0539, 81.0705, 91.0537, 
95.0844, 105.0699, 107.0848, 
133.1017, 147.1179, 161.1330 

n.a. 

CMPF n.a. 
96.9588, 135.0810, 151.1119, 
177.0913, 195.1021 

n.a. 
96.9584, 135.0818, 151.1121, 
177.0925, 195.1027 

Cocamidopropyl Betaine 
67.0282, 108.0554, 110.0713, 
122.0589, 138.0668, 163.0611 

n.a. 
67.0288, 108.0556, 110.0711, 
122.0594, 138.0661, 163.0613 

n.a. 

Coumaraldehyde 77.0386, 105.0335 n.a. 77.0388, 105.0337 n.a. 
Coumaric acid n.a. 145.9019 n.a. 145.9011 
Cresol sulfate n.a. 92.0279, 107.0493 n.a. 92.0275, 107.0500 

Di(ethylhexyl) phthalate 
69.0454, ,96.0561, 124.0507, 
142.0611 

n.a. 
69.0451, 96.0563, 124.0502, 
142.0612 

n.a. 

Dioctyl phthalate 
77.0380, 79.0550, 9.0540, 
95.0490, 108.0200, 121.0650, 
123.0440 

n.a. 
77.0386, 79.0552, 9.0544, 
95.0485, 108.0199, 121.0651, 
123.0441 

n.a. 
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Table A2 – (continued) MS2 theoretical and experimental fragmentation data for annotated compounds 

Annotation 

MS/MS 

Theoretical fragments Experimental fragments 

(+) (-) (+) (-) 

Diphenylphosphate 58.0652, 86.0968 n.a. 58.0655, 86.0965 n.a. 

Diphenylsulfone 
91.0553, 117.0564, 118.0657, 
130.0648 

n.a. 
91.0549, 117.0568, 118.0658, 
130.0655 

n.a. 

Docosahexaenoic acid n.a. 229.1958, 283.2446 n.a. 229.1953, 283.2439 

Dodecylbenzenesulfonic acid n.a. 
170.0042, 183.0121, 
197.0277, 255.1376 

n.a. 
170.0041, 183.0128, 
197.0287, 255.1377 

Eicosapentaenoic acid n.a. 203.1802, 229.1957, 257.2274 n.a. 203.1807, 229.1951, 257.2275 
Ferulic acid n.a. 133.0299, 149.0608 n.a. 133.0305, 149.0609 
Fipronil sulfone n.a. 246.0120, 281.9913, 414.9496 n.a. 246.0117, 281.9920, 414.9500 
Ibuprofen n.a. 91.0549, 105.0701, 119.0855 n.a. 91.0555, 105.0708, 119.0848 

Indole-3-acetaldehyde 
69.0442, 83.0606, 110.0718, 
123.0425, 138.0659 

n.a. 
69.0448, 83.0603, 110.0712, 
123.0427, 138.0662 

n.a. 

Indole-3-carbinol 
167.0730, 180.0808, 
182.0964, 210.0914 

n.a. 
167.0721, 180.0812, 
182.0966, 210.0920 

n.a. 

Indoxyl sulfate n.a. 79.9578, 132.0460 n.a. 79.9570, 132.0457 
Ioxynil n.a. 126.9051, 230.9182 n.a. 126.9041, 230.9178 
Isobutylparaben 71.0851, 149.0232, 261.1485 n.a. 71.0858, 149.0234, 261.1490 n.a. 

Isopropylparaben 
55.0195, 77.0392, 91.0541, 
103.0549, 105.0707, 115.0545 

n.a. 
55.0199, 77.0386, 91.0544, 
103.0550, 105.0707, 115.0541 

n.a. 

Lenticin 
60.0815, 118.0653, 146.0600, 
170.0599, 188.0705 

n.a. 
60.0810, 118.0651, 146.0597, 
170.0596, 188.0713 

n.a. 

Lidocaine 
77.0380, 103.0560, 128.0500, 
130.0638 

n.a. 
77.0388, 103.0555, 128.0501, 
130.0642 

n.a. 

Lumichrome 121.0284, 139.0389, 163.0754 n.a. 121.0282, 139.0393, 163.0751 n.a. 
Mercaptobenzothiazole n.a. 57.9752, 134.0069 n.a. 57.9750, 134.0063 

Methionine 
51.0237, 65.0364, 91.0539, 
117.0576, 118.0646 

n.a. 
51.0236, 65.0365, 91.0541, 
117.0570, 118.0651 

n.a. 

Methylperfluorooctanesulfonamido)acetic acid n.a. 418.9773, 482.9356, 511.9607 n.a. 418.9771, 482.9356, 511.9617 
Paracetamol 91.0543, 149.02335, 239.0708 n.a. 91.0542, 149.0234, 239.0707 n.a. 
Paraxanthine n.a. 122.0365, 164.0341 n.a. 122.0361, 164.0341 
Pentachlorophenol n.a. n.a. n.a. n.a. 
Perfluoroheptanesulfonic acid n.a. 168.9892 n.a. 168.9903 
Perfluorohexanesulfonic acid n.a. 98.9538, 118.9930, 168.9892 n.a. 98.9535, 118.9937, 168.9882 
Perfluorooctanesulfonic acid n.a. 98.9538, 118.9930, 168.9892 n.a. 98.9533, 118.9931, 168.9985 
Phenol sulfate n.a. 79.9551, 93.0325 n.a. 79.9558, 93.0331 
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Table A2 – (continued) MS2 theoretical and experimental fragmentation data for annotated compounds 

Annotation 

MS/MS 

Theoretical fragments Experimental fragments 

(+) (-) (+) (-) 

Piperidone 
91.0543, 118.0662, 128.0511, 
132.0424, 146.0614 

n.a. 
91.0546, 118.0660, 128.0519, 
132.0429, 146.0607 

n.a. 

Piperine 
56.0493, 72.0444, 82.0651, 
94.0650 

n.a. 
56.0494, 72.0451, 82.0651, 
94.0649 

n.a. 

Propylparaben n.a. 92.0266, 121.0300, 136.0167 n.a. 92.0263, 121.0302, 136.0166 
Propylparaben sulfate n.a. 121.0297, 137.0239, 179.0716 n.a. 121.0296, 137.0244, 179.0712 

Reserpine 
57.0701, 83.0855, 101.0971, 
143.0104, 199.0730, 299.1618 

n.a. 
57.0702, 83.0850, 101.0972, 
143.0102, 199.0738, 299.1623 

n.a. 

Solanidine 127.0164, 155.0480 n.a. 127.0155, 155.0472 n.a. 
Sucralose n.a. 146.9399, 359.0325 n.a. 146.9391, 359.0319 

Theobromine 
79.0544, 91.0543, 107.0856, 
119.0856 

n.a. 
79.0551, 91.0544, 107.0853, 
119.0859 

n.a. 

Theophylline 
67.0544, 81.0699, 91.0543, 
105.0714, 119.0847 

n.a. 
67.0545, 81.0701, 91.0547, 
105.0721, 119.0841 

n.a. 

Thymol 
103.0542, 120.0808, 
130.0651, 131.0497 

n.a. 
103.0542, 120.0811, 
130.0655, 131.0499 

n.a. 

Triclosan glucuronide n.a. n.a. n.a. n.a. 
Triclosan sulfate n.a. 286.9448 n.a. 286.9448 
Triethylphosphate 183.1745, 240.2315 n.a. 183.1751, 240.2326 n.a. 
Triphenylphosphine oxide 110.0598, 134.0593 n.a. 110.0602, 134.0596 n.a. 

Tris(2-butoxyethyl)phosphate 
149.0219, 173.0513, 
201.0465, 219.0570 

n.a. 
149.0220, 173.0515, 
201.0472, 219.0568 

n.a. 

Tritosulfuron n.a. 193.0347, 223.9999 n.a. 193.0344,  223.9998 

Tryptophan 
77.0386, 95.0492, 152.0633, 
175.0156, 215.0257 

n.a. 
77.0387, 95.0484, 152.0627, 
175.0165, 215.0252 

n.a. 
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4.4. Confidence levels, detection frequency and toxicological data 

Table A3 – Confidence levels according to Schymanski et al. (2014) and to the updated 

classification, detection frequency, and availability of toxicological data from the CompTox 

dashboard. 

Annotation 
Confidence level  

(Schymanski 2014) 
Confidence level  

(Updated) 

Detection 
frequency (%) 

Available 
toxicological 

data Phree PPT 

(2-oxo-2,3-dihydro-1H-indol-3-yl)acetic acid 2a 2a 0 100   
1,3,5-tris(2,2-dimethylpropionylamino)benzene 2b 2b 45 45   
10,11-trans-Dihydroxy-10,11-dihydrocarbamazepine 2a 2a 0 1   
13-Hydroxy-7,14-labdadien-6-one 2a 2a 0 68   
2-((3-dodecanamidopropyl)dimethylammonio)acetate 2b 2b 0 1   
2-chlorophenol 2a 2a 8 7 X 
2-hydroxybenzoic acid   2a 2a 0 88   
2-hydroxycarbamazepine 2a 2a 84 1   
2-Naphthalenesulfonic acid 2a 2a 0 39   
2-Naphthol 2a 2a 85 2 X 
2-naphthylamine 2a 2a 0 8 X 
3-(4-Hydroxyphenyl)lactic acid 2a 2a 87 85 X 
3,5-dibromo-4-hydroxybenzoic acid 2a 2a 97 0 X 
3-Formylindole 2a 2a 3 100 X 
3-hydroxybenzoic acid 2a 2a 50 50 X 
4-chlorophenol 4 MS1-3 80 2 X 
4-hydroxy-2,5,6-trichloroisophthalonitrile 2a 2a 74 68 X 
4-hydroxybenzoic acid 2a 2a 0 88 X 
4-hydroxyquinoline 2a 2a 84 88 X 
5-acetylsalicylamide 1 1 42 95 X 
5-hydroxytryptophan 2a 2a 43 96 X 
Acesulfame 2a 2a 97 15 X 
Acetaminophen glucuronide 1 1 20 1 X 
Acetaminophen sulfate 1 1 0 14   
Aminoacetophenone 2a 2a 45 100   
Arabinosylhypoxanthine 2a 2a 30 98 X 
Aspartame 1 1 35 100 X 
Auraptene 2a 2a 100 1 X 
Azelaic acid 2a 2a 35 28 X 
Benzothiazole 2a 2a 97 6 X 
Benzothiazole sulfonic acid 2a 2a 3 2   
Benzylbutylphthalate 1 1 3 0 X 
Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2-hydroxy-5-
methylbenzyl)-4-methylphenyl) terephthalate 

2b 2b 23 86   

Bromoxynil 2a 2a 61 2 X 
Caffeine 2a 2a 1 94 X 
Carbamazepine 2a 2a 95 1 X 
Carveol   2a 2a 20 2 X 
Carylophyllene oxide 2a 2a 91 14   
Chavicol sulfate 2b 2b 28 100   
Cinchonidine 2a 2a 81 99 X 
Cinnamaldehyde 2a 2a 33 75   
CMPF 2a 2a 20 59 X 
Cocamidopropyl Betaine 2a 2a 97 29 X 
Coumaraldehyde 2b 2b 64 100   
Coumaric acid 2a 2a 100 3   
Cresol sulfate 1 1 16 100 X 
Di(ethylhexyl) phthalate 2a 2a 97 56 X 
Dioctyl phthalate 2a 2a 10 10 X 
Diphenylphosphate 2a 2a 17 0   
Diphenylsulfone 2a 2a 45 9 X 
Docosahexaenoic acid 1 1 85 100 X 
Dodecylbenzenesulfonic acid 2a 2a 23 81 X 
Eicosapentaenoic acid 2a 2a 5 100 X 
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Table A3 – (continued) Confidence levels according to Schymanski et al. (2014) and to the 

updated classification, detection frequency, and availability of toxicological data from the 

CompTox dashboard. 

Annotation 
Confidence level  

(Schymanski 2014) 
Confidence level  

(Updated) 

Detection 
frequency (%) 

Available 
toxicological 

data Phree PPT 

Ferulic acid 2b 2b 65 1 X 
Fipronil sulfone 2a 2a 12 29 X 
Ibuprofen 1 1 25 1 X 
Indole-3-acetaldehyde 2a 2a 0 98 X 
Indole-3-carbinol 2a 2a 20 100 X 
Indoxyl sulfate 1 1 16 100 X 
Ioxynil 2a 2a 17 92 X 
Isobutylparaben 2a 2a 0 72 X 
Isopropylparaben 2a 2a 96 2 X 
Lenticin 2a 2a 3 94   
Lidocaine 2a 2a 29 93 X 
Lumichrome 2b 2b 15 95 X 
Mercaptobenzothiazole 2a 2a 38 98 X 
Methionine 2a 2a 97 49 X 
Methylperfluorooctanesulfonamido)acetic acid 2a 2a 100 3 X 
Paracetamol 2a 2a 5 5 X 
Paraxanthine 2a 2a 7 91 X 
Pentachlorophenol 4 MS1-3 92 5 X 
Perfluoroheptanesulfonic acid 2a 2a 1 2 X 
Perfluorohexanesulfonic acid 2a 2a 0 57 X 
Perfluorooctanesulfonic acid 2a 2a 97 98 X 
Phenol sulfate 2a 2a 97 100 X 
Piperidone 2a 2a 27 82 X 
Piperine 2a 2a 13 86 X 
Propylparaben 2a 2a 97 99 X 
Propylparaben sulfate 1 1 95 90   
Reserpine 2a 2a 67 50 X 
Solanidine 2a 2a 8 7 X 
Sucralose 2a 2a 13 12 X 
Theobromine 2a 2a 13 100 X 
Theophylline 2a 2a 100 6 X 
Thymol 2a 2a 0 2 X 
Triclosan glucuronide 4 MS1-2 25 10 X 
Triclosan sulfate 1 1 13 10   
Triethylphosphate 2a 2a 16 10 X 
Triphenylphosphine oxide 2a 2a 45 77 X 
Tris(2-butoxyethyl)phosphate 2a 2a 26 26 X 
Tritosulfuron 1 1 91 2 X 
Tryptophan 2a 2a 81 100 X 
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4.5. Classification of compounds annotated in Pélagie samples 

Table A4 – Classification of compounds annotated in the Pélagie samples. P refer to primary uses, and S to secondary uses 

 Gut-derived Food Health and personal care Environmental pollutants 

Molecule 
Gut 

microbiota 
metabolites 

Natural 
compound 

Flavoring 
agent 

Preservatives 
and other 
stabilizers 

Indirect 
food 

additive 
Medication 

Personal 
care and 

cosmetics 
products 

Preservatives 
and other 
stabilizers 

Pesticides Plasticizers 
Organophosphate 

flame retardant 
Synthesis 

intermediate 

Preservatives 
and other 
stabilizers 

(2-oxo-2,3-dihydro-1H-indol-3-yl)acetic acid  P            

1,3,5-tris(2,2-dimethylpropionylamino)benzene     P         

10,11-trans-Dihydroxy-10,11-
dihydrocarbamazepine 

     P        

13-Hydroxy-7,14-labdadien-6-one  P S           

2-((3-
dodecanamidopropyl)dimethylammonio)acetate 

 S     P       

2-chlorophenol            P  

2-hydroxybenzoic acid    P  S      S  

2-hydroxycarbamazepine      P        

2-Naphthalenesulfonic acid            P  

2-Naphthol      S   S   P  

2-naphthylamine            P  

3-(4-Hydroxyphenyl)lactic acid P S            

3,5-dibromo-4-hydroxybenzoic acid         P     

3-Formylindole P S            

3-hydroxybenzoic acid   P           

4-chlorophenol      S   S   P  

4-hydroxy-2,5,6-trichloroisophthalonitrile         P     

4-hydroxybenzoic acid    S    P      

4-quinolone  P            

5-acetylsalicylamide      P      S  

5-hydroxytryptophan P             

Acesulfame   P    S       

Acetaminophen glucuronide      P        

Acetaminophen sulfate      P        

Aminoacetophenone  P            

Arabinosylhypoxanthine  P            

Aspartame   P           

Auraptene  P            

Azelaic acid  P    S S      S 

Benzothiazole   P           

Benzothiazole sulfonic acid   P           

Benzylbutylphthalate     S  S   P    

Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2-hydroxy-5-
methylbenzyl)-4-methylphenyl) terephthalate 

    P         

Bromoxynil         P     

Caffeine  P     S       

Carbamazepine      P        
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Table A4 – (continued) Classification of compounds annotated in the Pélagie samples. P refer to primary uses, and S to secondary uses 

 Gut-derived Food Health and personal care Environmental pollutants 

Molecule 
Gut 

microbiota 
metabolites 

Natural 
compound 

Flavoring 
agent 

Preservatives 
and other 
stabilizers 

Indirect food 
additive 

Medication 

Personal care 
and cosmetics 

products 

Preservatives 
and other 
stabilizers 

Pesticides Plasticizers 
Organophosphate 

flame retardant 

Synthesis 
intermediate 

Preservatives 
and other 
stabilizers 

Carveol  P S    S       

Carylophyllene oxide  S P    S       

Chavicol sulfate  P S           

Cinchonidine  P            

Cinnamaldehyde  P     S       

CMPF  P            

Cocamidopropyl Betaine       P       

Coumaraldehyde  P            

Coumaric acid       P       

Cresol sulfate P S            

Di(ethylhexyl) phthalate     S     P    

Dioctyl phthalate     S     P    

Diphenylphosphate            P S 

Diphenylsulfone            P  

Docosahexaenoic acid  P            

Dodecylbenzenesulfonic 
acid 

      P       

Eicosapentaenoic acid  P            

Ferulic acid   S P          

Fipronil sulfone         P     

Ibuprofen      P        

Indole-3-acetaldehyde  P            

Indole-3-carbinol  P            

Indoxyl sulfate P             

Ioxynil         P     

Isobutylparaben    S    P      

Isopropylparaben        P      

Lenticin  P            

Lidocaine      P        

Lumichrome  P            

Mercaptobenzothiazole   P           

Methionine  P            

Methylperfluorooctanesu
lfonamidoacetic acid 

    S     P  S  

Paracetamol      P        

Paraxanthine  P            

Pentachlorophenol         P    S 

Perfluoroheptanesulfonic 
acid 

    S     P  S  

Perfluorohexanesulfonic 
acid 

    S     P  S  

Perfluorooctanesulfonic 
acid 

    S     P  S  

Phenol sulfate P             
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Table A4 – (continued) Classification of compounds annotated in the Pélagie samples. P refer to primary uses, and S to secondary uses 

 Gut-derived Food Health and personal care Environmental pollutants 

Molecule 
Gut 

microbiota 
metabolites 

Natural 
compound 

Flavoring 
agent 

Preservatives 
and other 
stabilizers 

Indirect food 
additive 

Medication 

Personal care 
and cosmetics 

products 

Preservatives 
and other 
stabilizers 

Pesticides Plasticizers 
Organophosphate 

flame retardant 

Synthesis 
intermediate 

Preservatives 
and other 
stabilizers 

Piperidone  P          S  

Piperine  P            

Propylparaben     S        P 

Propylparaben sulfate     S        P 

Reserpine      P        

Solanidine  P            

Sucralose   P           

Theobromine  P            

Theophylline  P            

Thymol  P      S      

Triclosan glucuronide        S     P 

Triclosan sulfate        S     P 

Triethylphosphate          S P S  

Triphenylphosphine oxide            P  

Tris(2-
butoxyethyl)phosphate 

          P   

Tritosulfuron         P     

Tryptophan  P            
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4.6. Presence of annotated compounds on shared suspect lists 

Table A5 – Presence of annotated compounds on shared suspect lists 

 Present on shared suspect lists 

Molecule 
CECscreen 
(HBM4EU) 

Exposome 
Explorer 

NORMAN's 
SUSDat list 

(2-oxo-2,3-dihydro-1H-indol-3-yl)acetic acid   X 

1,3,5-tris(2,2-dimethylpropionylamino)benzene X  X 

10,11-trans-Dihydroxy-10,11-dihydrocarbamazepine    

13-Hydroxy-7,14-labdadien-6-one   X 

2-((3-dodecanamidopropyl)dimethylammonio)acetate   X 

2-chlorophenol    

2-hydroxybenzoic acid    X X 

2-hydroxycarbamazepine    

2-Naphthalenesulfonic acid    

2-Naphthol  X X 

2-naphthylamine   X 

3-(4-Hydroxyphenyl)lactic acid X  X 

3,5-dibromo-4-hydroxybenzoic acid   X 

3-Formylindole X  X 

3-hydroxybenzoic acid    

4-chlorophenol  X X 

4-hydroxy-2,5,6-trichloroisophthalonitrile   X 

4-hydroxybenzoic acid    

4-quinolone   X 

5-acetylsalicylamide X  X 

5-hydroxytryptophan   X 

Acesulfame    

Acetaminophen glucuronide X  X 

Acetaminophen sulfate X  X 

Aminoacetophenone X   

Arabinosylhypoxanthine   X 

Aspartame    

Auraptene   X 

Azelaic acid   X 

Benzothiazole   X 

Benzothiazole sulfonic acid   X 

Benzylbutylphthalate  X X 

Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2-hydroxy-5-methylbenzyl)-4-
methylphenyl) terephthalate 

  X 

Bromoxynil   X 

Caffeine  X X 

Carbamazepine    

Carveol     X 

Carylophyllene oxide   X 

Chavicol sulfate   X 

Cinchonidine X  X 

Cinnamaldehyde    

CMPF X  X 

Cocamidopropyl Betaine   X 

Coumaraldehyde   X 

Coumaric acid   X 

Cresol sulfate   X 

Di(ethylhexyl) phthalate   X 

Dioctyl phthalate  X X 

Diphenylphosphate   X 

Diphenylsulfone   X 

Docosahexaenoic acid  X X 

Dodecylbenzenesulfonic acid   X 

Eicosapentaenoic acid  X X 

Ferulic acid   X 

Fipronil sulfone   X 

Ibuprofen   X 

Indole-3-acetaldehyde   X 
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Table A5 – (continued) Presence of annotated compounds on shared suspect lists 

 Present on shared suspect lists 

Molecule 
CECscreen 
(HBM4EU) 

Exposome 
Explorer 

NORMAN's 
SUSDat list 

Indole-3-carbinol   X 

Indoxyl sulfate X  X 

Ioxynil   X 

Isobutylparaben    

Isopropylparaben   X 

Lenticin   X 

Lidocaine   X 

Lumichrome    

Mercaptobenzothiazole   X 

Methionine   X 

Methylperfluorooctanesulfonamidoacetic acid    

Paracetamol   X 

Paraxanthine  X X 

Pentachlorophenol    

Perfluoroheptanesulfonic acid    

Perfluorohexanesulfonic acid   X 

Perfluorooctanesulfonic acid   X 

Phenol sulfate   X 

Piperidone   X 

Piperine   X 

Propylparaben  X X 

Propylparaben sulfate   X 

Reserpine   X 

Solanidine   X 

Sucralose   X 

Theobromine   X 

Theophylline   X 

Thymol   X 

Triclosan glucuronide   X 

Triclosan sulfate   X 

Triethylphosphate   X 

Triphenylphosphine oxide   X 

Tris(2-butoxyethyl)phosphate   X 

Tritosulfuron   X 

Tryptophan   X 

 

 

 

 

 



 

 

Titre : Développements méthodologiques pour la caractérisation non-ciblée de l’exposome chimique interne 
humain dans des études épidémiologiques 

Mots clés : Exposome, Analyse non-ciblée, Profilage de suspects, Spectrométrie de masse à haute résolution 

Résumé :    L’exposition chronique à des mélanges 
complexes de contaminants chimiques (xénobiotiques) 
est suspectée de contribuer à la survenue de certaines 
maladies chroniques. Encouragées par le 
développement de la spectrométrie de masse à haute 
résolution (SMHR) et l’émergence du concept 
d’exposome, des méthodes analytiques non-ciblées 
commencent à voir le jour pour caractériser l’exposition 
humaine aux xénobiotiques sans a priori. Ces méthodes 
innovantes pourraient ainsi permettre un changement 
d’échelle pour identifier de nouveaux facteurs de risque 
chimiques dans des études épidémiologiques. Ces 
approches présentent néanmoins plusieurs verrous, en 
lien, entre autres, avec la présence des contaminants à 
l’état de trace dans des matrices biologiques. Une 
optimisation de chaque étape analytique (préparation 
d’échantillon) et bio-informatique (prétraitement des 
données, annotation) est donc indispensable pour 
surmonter ces limites. L’objectif principal de ce travail est 
d’implémenter un workflow non-ciblé applicable aux 
études épidémiologiques pour apporter une solution 
opérationnelle à la caractérisation de l’exposome   

chimique interne à large échelle. Les développements 
effectués ont permis de proposer un workflow de 
préparation d’échantillon simple à mettre en œuvre et 
s’appuyant sur deux méthodes complémentaires pour 
élargir significativement l’espace chimique visible 
(jusqu’à 80% de marqueurs spécifiques à une 
méthode). L’optimisation de logiciels de prétraitement 
des données, réalisée pour la première fois dans un 
contexte exposomique, a permis de démontrer la 
nécessité d’ajuster certains paramètres pour assurer 
la détection des xénobiotiques à l’état de trace. Le 
développement d’un logiciel pour automatiser les 
approches de profilage de suspects avec des 
prédicteurs MS1, ainsi que le développement 
d’indices de confiance a permis de prioriser les 
marqueurs pertinents pour la curation manuelle. Une 
application à large échelle sur 125 échantillons de 
sérum de la cohorte Pélagie a permis de démontrer la 
robustesse et la sensibilité de ce nouveau workflow, 
ainsi que d’enrichir l’exposome chimique documenté 
avec la mise en évidence de nouveaux biomarqueurs 
d’exposition. 

 

Title :  Methodological developments for the non-targeted characterization of the human internal chemical 
exposome in epidemiological studies 

Keywords : Exposome, Non-targeted screening, Suspect screening, High-resolution mass spectrometry 

Abstract:  Chronic exposure to complex mixtures of 
chemical contaminants (xenobiotics) is suspected to 
contribute to the onset of chronic diseases. The 
technological advances high-resolution mass 
spectrometry (HRMS), as well as the concept of 
exposome, have set the stage for the development of 
new non-targeted methods to characterize human 
exposure to xenobiotics without a priori. These innovative 
approaches may therefore allow changing scale to 
identify chemical risk factors in epidemiological studies.  
However, non-targeted approaches are still subject to a 
number of barriers, partly linked to the presence of these 
xenobiotics at trace levels in biological matrices. An 
optimization of every analytical (i.e. sample preparation) 
and bioinformatical (i.e. data processing, annotation) step 
of the workflow is thus required. The main objective of 
this work is to implement an HRMS-based non-targeted 
workflow applicable to epidemiological studies, to provide 
an operational solution to  characterize the internal 

chemical exposome at a large scale. The undertaken 
developments allowed proposing a simple sample 
preparation workflow based on two complementary 
methods to expand the visible chemical space (up to 
80% of features specific to one method). The 
optimization of various data processing tools, 
performed for the first time in an exposomics context, 
allowed demonstrating the necessity to adjust key 
parameters to accurately detect xenobiotics. 
Moreover, the development of a software to 
automatize suspect screening approaches using MS1 
predictors, and of algorithms to compute confidence 
indices, allowed efficiently prioritizing features for 
manual curation. A large-scale application of this 
optimized workflow on 125 serum samples from the 
Pélagie cohort allowed demonstrating the robustness 
and sensitivity of this new workflow, and enriching the 
documented chemical exposome with the uncovering 
of new biomarkers of exposure. 

 


