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In memory of Bernard Jégou (1951-2021), Bernard was a passionate and committed researcher, curious of everything and genuinely interested in people. He contributed greatly to the field of male reproduction, and started to study the influence of environmental factors on human reproduction in the early nineties. From 1995 to 2004, he led Inserm unit 435 GERM (Study group of male reproduction), then Inserm unit 625 (Study group of human and mammalian reproduction) from 2005 to 2012. He was a major actor in the creation in 2012 of Irset (Inserm unit 1085), dedicated to researching the impact of the environment on health, and was its director from 2012 to 2019. He was also the research director of the French school of public health (EHESP) from 2014 to 2020. He believed in the importance of interdisciplinarity in science and in public health, and played a key role in organizing and consolidating the processes of health research in the organizations he directed. He also greatly participated in the visibility gain of environmental health research by being one of the pioneers of the exposome concept.

Throughout the decades, he helped train and mentor generations of scientists. He leaves behind an exceptional legacy of exploring science, sharing knowledge, and acting for the common good.
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 Supervising of Ibrahim Maras during his master's degree internship, « Applications « Si le problème a une solution, il ne sert à rien de s'inquiéter. Mais s'il n'en a pas, alors s'inquiéter ne change rien. » Proverbe tibétain

Introduction

Les maladies chroniques, telles que les cancers, les maladies cardio-vasculaires ou encore les diabètes étaient estimées responsables de 71% de la mortalité mondiale en 2018 1 .

L'origine de la survenue de ces événements de santé multifactoriels a d'abord été investiguée au travers du Human Genome Project (HGP), qui a permis de procéder à un séquençage des 3 milliards de paires de bases du génome humain à la suite d'un effort international pendant 13 ans 2 . Ce projet a permis de mener des études d'association pangénomiques afin d'identifier des facteurs génétiques de susceptibilité à certains événements de santé 3 . Bien que plusieurs variants génétiques aient pu être associés à certains états de santé, il a également été constaté que les maladies considérées ne se déclenchaient que pour une partie des individus présentant ces variants 4 . Ce phénomène, appelé pénétrance, dépend de nombreux facteurs, tels que l'importance de la voie métabolique affectée, l'existence de voies métaboliques alternatives, ou encore les interactions avec l'environnement 4 . Dans ce contexte, Christopher

Wild définit en 2005 le concept d'exposome, marquant le début d'un intérêt croissant de la communauté scientifique pour la caractérisation des liens existant entre les facteurs environnementaux et la survenue d'événements de santé défavorables, incluant les maladies chroniques 5 . L'exposome est alors définit comme étant l'ensemble des expositions environnementales (incluant des facteurs de style de vie), à partir de la période prénatale. En 2012, il étend cette définition pour prendre en compte les réponses biologiques (i.e.

l'exposome interne) à ces facteurs environnementaux 6 . La caractérisation de l'exposome est donc une tâche complexe, puisqu'elle implique de capturer des facteurs de natures très diverses (socioéconomiques, physiques, biologiques, chimiques, etc.) et qui évoluent au cours de la vie. En pratique, il n'existe actuellement pas de moyen dynamique de mesurer l'exposome ; il est donc souvent entrepris de se concentrer sur des périodes particulièrement sensibles, telles que la période prénatale, l'enfance, l'adolescence, ou toute autre période d'intérêt vis-à-vis de l'événement de santé considéré. De plus, la caractérisation de l'exposome est souvent partitionnée en fonction de la nature des facteurs environnementaux considérés. Dans le cadre de cette thèse, c'est l'exposition humaine aux contaminants chimiques (i.e. les molécules exogènes dont des xénobiotiques), ou l'exposome chimique humain interne, qui est considéré, puisque cette exposition est fortement suspectée de contribuer à la survenue d'évènements de santé délétères.

La mesure de l'exposition des humains aux xénobiotiques se fait couramment de manière conventionnelle à l'aide d'approches dites « ciblées », qui permettent de générer des données quantitatives sur des listes préétablies de composés d'intérêts. Bien que ces méthodes soient extrêmement utiles pour évaluer l'exposition humaine à des composés supposés ou avérés toxiques, elles peuvent être complémentées par des méthodes dites « non-ciblées ».

Encouragées par le développement de technologies de pointe telles que la spectrométrie de masse à haute résolution, ces méthodes innovantes commencent à voir le jour pour investiguer l'exposition des humains aux xénobiotiques sans a priori. Ces nouvelles méthodes appliquées à des matrices biologiques permettent de profiler des milliers de molécules endogènes et exogènes simultanément sans avoir préalablement établi de liste de composés d'intérêts. Elles peuvent être utilisées à des fins exploratoires pour détecter et identifier de nouvelles molécules de synthèse qui arrivent nouvellement dans l'environnement en remplacement de celles considérées toxiques et dont l'usage devient restreint, ou qui ont été sous-investiguées jusqu'à présent 7 . Les méthodes non-ciblées reposant sur la spectrométrie de masse haute résolution impliquent dans la plupart des cas une technique séparative en amont pour décomplexifier les échantillons biologiques, telle que la chromatographie liquide.

Ce couplage permet de générer différentes données chimiques caractérisant les signaux détectés, telles que le ratio masse/charge (m/z) auxquels sont associés un temps de rétention (Rt), et une abondance (e.g. aire) qui est propre à chaque échantillon analysé. Ces informations permettent de remonter à une élucidation structurale (i.e. à l'annotation), c'est-àdire de les relier à une identité chimique par différents éléments de preuve. Depuis le début des années 2010, ces méthodes ont permis d'évaluer la présence de composés dans des matrices environnementales 8 et biologiques 9,10 .

Bien que très prometteuses concernant l'évaluation de l'exposition humaine aux contaminants chimiques, les méthodes non-ciblées sont toujours sujettes à plusieurs verrous méthodologiques et techniques. Tout d'abord, la large diversité de contaminants chimiques auxquels les humains sont potentiellement exposés implique que chaque choix méthodologique (e.g. technique analytique, préparation d'échantillons, etc.) imposera une limitation de l'espace chimique visible, qu'il convient de définir. En effet, il y a actuellement 111 millions de composés référencés dans la base de donnée PubChem 11 ; la diversité de leurs caractéristiques physico-chimiques (e.g. masse, polarité) explique l'impossibilité d'une part de les profiler avec une seule méthode, et d'autre part d'évaluer les performances de recouvrement et de sensibilité pour les composés détectables par la méthode considérée. Par ailleurs, la caractérisation de l'exposome chimique au travers de matrices biologiques est complexe, puisque ces matrices sont constituées de composés dans une large gamme de concentrations (du g/L pour certains composés endogènes au pg/L pour certains contaminants exogènes environnementaux). Or, ces différentiels de concentration peuvent induire des phénomènes tels que la suppression ionique, qui mène au masquage des composés peu abondants par des composés largement abondants. Il est donc impératif de développer des méthodes analytiques adaptées pour la détection de ces molécules exogènes dans les matrices biologiques avec des approches non-ciblées (i.e. qui permettent d'éliminer suffisamment de composés matriciels en forte abondance). De plus, les outils bioinformatiques utilisés pour traiter les données non-ciblées ont, pour la plupart, été développés pour la métabolomique, qui s'axe sur l'étude des composés endogènes, qui peuvent être jusqu'à 10 10 fois plus abondants en matrice biologique que les composés environnementaux 12 . Leur application pour l'identification de composés exogènes peu abondants peut donc être limitée.

Enfin, le processus d'annotation est fastidieux et incomplet ; il consiste à rassembler des preuves de différentes natures pour valider une identité chimique pour un signal 13 . Ce processus inclut quasi-systématiquement une vérification manuelle pour éliminer les faux positifs, qui sont souvent nombreux. On estime aujourd'hui que moins de 10% des signaux identifiés sont annotés 14 . Ainsi, ces freins méthodologiques et technologiques doivent être surmontés pour obtenir des méthodes non-ciblées robustes, adaptées aux matrices biologiques, et adaptées aux applications à large échelle.

Dans ce contexte, ce travail de doctorat s'inscrit dans une dynamique visant à apporter, à terme, une réponse opérationnelle au concept d'exposome chimique dans le champ de la santé environnementale. L'objectif final est de pouvoir implémenter ces approches non-ciblées au sein d'études épidémiologiques à large échelle pour contribuer à l'identification de nouveaux mélanges ou de substances émergentes associés à certains évènements de santé.

Ainsi, deux objectifs principaux ont été fixés pour ce travail : i) développer un workflow robuste de méthodes innovantes de production et de traitement de données analytiques non-ciblées, incluant la préparation d'échantillon, la méthode analytique de chromatographie liquide couplée à la spectrométrie de masse haute résolution, le traitement des données, et l'annotation, et ii) appliquer ces méthodes à plus large échelle sur 125 échantillons de sérum afin de permettre une évaluation de l'exposition chimique de 125 adolescents bretons.

2. Acquisition de l'empreinte chimique : optimiser l'équilibre entre sensibilité et sélectivité L'acquisition de l'empreinte chimique a tout d'abord été optimisée. En effet, a caractérisation d'échantillons biologiques tels que le plasma ou le sérum dépend en partie du choix de la méthode de préparation d'échantillon. Ce choix est décisif, puisque les composés éliminés à cette étape initiale ne peuvent pas être récupérés par la suite. De plus, bien que les données chimiques générées pourront être ré-analysées à mesure que de nouveaux outils et algorithmes de traitement des données apparaitront, les échantillons biologiques ne sont disponibles qu'en quantités limitées ; leur préparation doit donc être optimisée initialement.

L'un des freins à l'étude de l'exposome chimique est la présence de certains contaminants à très faible dose dans le corps, et donc dans les échantillons biologiques. De ce fait, de hautes performances en sensibilité sont nécessaires pour caractériser plus exhaustivement l'exposome chimique. Or, les matrices biologiques sont complexes car constituées de composés endogènes en abondance, tels que les protéines et les phospholipides par exemple. Ces composés peuvent, de par leur concentration largement supérieure, limiter la détection des composés exogènes à cause de phénomènes tels que la suppression ionique.

Ainsi, il est nécessaire de procéder à une purification de l'échantillon pour éliminer ces interférents analytiques, tout en conservant tous les analytes d'intérêt. Cet équilibre entre sensibilité et sélectivité doit donc être pris en compte lors de l'optimisation de la méthode de préparation d'échantillons.

Dans le cadre de cette thèse de doctorat, douze méthodes de préparation d'échantillons ont été évaluées pour la caractérisation de l'exposome chimique par des échantillons de plasma ou de sérum. Cette évaluation a reposé sur l'implémentation de critères complémentaires rarement utilisés pour l'évaluation des méthodes non-ciblées, à savoir des critères quantitatifs (e.g. taux de recouvrement, répétabilité, effet de matrice, etc.) systématiquement utilisés dans le domaine des analyses ciblées multirésidus, et qualitatifs (e.g. annotation, facilité et rapidité d'implémentation, etc.). Ces critères ont été définis dans le but de documenter au mieux le périmètre analytique observable de l'exposome chimique profilé avec chacune de ces méthodes. Cette délimitation des limites de ces méthodes est cruciale pour l'interprétation des jeux de données HRMS (e.g. aide à l'annotation). Ces méthodes reposent sur quatre principes de fonctionnement: l'élimination des phospholipides (sept méthodes), l'extraction en phase solide (trois méthodes), l'extraction liquide sur support (une méthode), et la précipitation de protéines (une méthode), classiquement utilisée en métabolomique. L'évaluation systématique de ces méthodes a été effectuée en utilisant un mélange de cinquante molécules sélectionnées pour leur diversité de caractéristiques physico-chimiques (i.e. masse, polarité), et leur appartenance à différentes classes chimiques susceptibles d'être présentes dans des échantillons dérivés de sang (i.e. composés endogènes, composés issus de l'alimentation, médicaments, pesticides, etc.).

L'évaluation systématique de ces méthodes de préparation a été effectuée en trois étapes. Des composés exogènes ayant des caractéristiques physico-chimiques diverses ont été annotés, soulignant dans un premier temps la pertinence de ces deux méthodes de préparation pour caractériser l'exposome chimique. De plus, cette comparaison a permis d'observer la complémentarité de ces deux méthodes ; dans les deux matrices, plus de 40% des composés annotés n'étaient visibles qu'avec l'une des deux méthodes de préparation.

Cette approche d'évaluation systématique des méthodes de préparation d'échantillons pour la caractérisation de l'exposome chimique dans du plasma et du sérum humain a donc permis de documenter le périmètre de l'espace chimique détecté. Elle a également permis de démontrer la complémentarité de deux méthodes de préparation d'échantillons qui peuvent être utilisées conjointement au sein d'un workflow simple pour élargir l'espace chimique visible (jusqu'à 80% des marqueurs sont spécifiques à une méthode), et qui sera ensuite utilisé pour la suite des travaux de thèse. Après l'optimisation de l'acquisition de cette empreinte chimique, il est nécessaire d'évaluer les solutions de traitement des données disponibles. Un protocole de préparation d'échantillons impliquant ces deux méthodes a été proposé afin d'augmenter l'espace chimique visible.

Prétraitement des données et développement d'un logiciel de profilage de suspects

3.1. Adaptation des logiciels de prétraitement des données aux applications en exposomique Suite à l'acquisition de l'empreinte chimique d'un ou de plusieurs échantillons, l'information chromatographique et spectrale générée doit être transformée en une liste de marqueurs caractérisés par un rapport masse/charge, un temps de rétention, et une aire par échantillon.

Bien qu'il existe de nombreux outils de traitement des données non-ciblées, ils ont été, pour la plupart, développés pour des applications en métabolomique. Dans un contexte d'étude en exposomique, les composés d'intérêts sont souvent peu abondants ; il est donc critique de s'assurer que ces outils sont capables de les différencier du bruit. D'autre part, le processus d'annotation, souvent basé sur la liste de marqueurs générés précédemment, doit également être optimisés pour ces signaux peu abondants qui ne déclenchent pas systématiquement un acquisition MS2. L'objectif de ce chapitre est donc de sélectionner et optimiser l'outil adéquat pour améliorer l'efficacité de ce processus de traitement des données, à l'instar de ce qui a été fait pour les applications en métabolomique [15][16][17] , mais qui n'a pour le moment jamais été fait pour des applications exposomiques.

Dans le cadre de ce travail, quatre outils de traitement des données ont été optimisés et comparés pour le traitement de données non-ciblées issues d'une application en exposomique. Deux de ces outils sont des logiciel vendeur (MarkerView de SCIEX et Progenesis QI for metabolomics de Waters), et les deux autres sont des outils open source fréquemment utilisés en métabolomique (MZmine2 18 et XCMS 19 ). Ce travail d'optimisation et de comparaison a été effectué en utilisant les données issues du dopage à 10 ng/mL des échantillons de plasma et de sérum préparés par la précipitation de protéines. Chaque outil de traitement des données a tout d'abord été optimisé individuellement, manuellement et automatiquement si possible (i.e. paramétrage automatisée de XCMS par IPO 16 et Autotuner 15 ), et les données issues du paramétrage optimisé pour chaque outil ont été comparées entre elles. Cette comparaison a été effectuée sur cinq critères : la fréquence de détection, le temps de calcul, la facilité d'implémentation, la répétabilité de l'intégration automatique, et la significativité de la détection (i.e. résultat du t-test comparant les aires associées aux composés dopants entre les échantillons dopés et non-dopés). Dans un premier temps, il a été démontré que l'utilisation d'outils automatisés de paramétrage développés pour la métabolomique n'était pas adaptée aux applications en exposomique.

Ainsi, le paramétrage suggéré par IPO, basé sur les pics jugés « fiables » en fonction de leur rapport 13 C/ 12 C, a résulté en une largeur de pic trop élevée (30.7 s), menant à une détection de moins de 30% des composés dopés dans les deux matrices. A l'inverse, l'outil Autotuner a suggéré une largeur de pic trop faible (<10 s), qui a mené à une mauvaise performance en répétabilité (< 20% des composés avec une répétabilité satisfaisante) due à une scission excessive des pics détectés. L'optimisation manuelle a donc été préférée dans le cadre de l'application considérée. Il a dans un second temps été constaté que l'optimisation individuelle des outils permettait d'augmenter la fréquence de détection des composés de jusqu'à 60% (XCMS). En effet, certains paramètres comme la largeur de pic et le niveau de bruit généralement proposés par défaut ne sont pas applicables aux applications en exposomique, et doivent être réduits pour correspondre aux pics d'intérêt. De plus, bien que les outils open source permettent d'avoir beaucoup plus de libertés sur le choix des algorithmes et des paramètres utilisés, ils nécessitent une meilleure connaissance technique et présentent des temps de calcul 4 à 16 fois plus long que les logiciels vendeurs. Ainsi, tous les logiciels ont permis d'obtenir des performances satisfaisantes en termes de fréquence de détection, de répétabilité et de significativité de détection. Dans le cadre d'applications à large échelle, il peut être approprié de s'appuyer sur les logiciels vendeurs pour obtenir des résultats fiables plus rapidement. Il demeure cependant nécessaire de continuer à optimiser ces outils, car aucun d'entre eux n'a permis de détecter tous les composés dopés identifiés manuellement dans les chromatogrammes bien que ceux-ci présentaient des aires, profils isotopiques et profils MS2 fiables.

Développement d'un logiciel pour assister les approches de profilage de suspects

Les jeux de données obtenus suite au traitement des données chromatographiques et spectrales sont ensuite utilisés pour l'annotation. L'annotation de données HRMS non-ciblées peut être effectuée par à l'aide de deux stratégies majeures : le profilage non-ciblé, qui repose sur l'annotation de marqueurs priorisés car différenciants entre deux groupes, ou le profilage de suspects, qui repose sur l'annotation de marqueurs priorisés pour leur similitude avec des composés listés dans une librairie/base de données de suspects. Cette deuxième méthodologie est aujourd'hui très prometteuse, en partie car elle a un fort potentiel d'automatisation et permet de prioriser très rapidement des signaux d'intérêt. En effet, la comparaison de marqueurs et de suspects sur des éléments caractéristiques tels que leur rapport masse/charge ou leur profil de fragmentation MS2 peut être effectuée partiellement automatiquement, avant d'être validée manuellement dans la majorité des cas. Cependant, les composés d'intérêt généralement peu abondants en exposomique ne déclenchent pas systématiquement d'acquisition MS2, ce qui limite fortement le niveau de confiance de l'annotation effectuée 13 . Dans ce contexte, un outil de profilage de suspects adapté aux données MS1 a été développé, et comparé aux outils de profilage de suspect existants (i.e.

xMSannotator 20 , MS-DIAL 21 , msPurity 22 13 . Cette nouvelle version de la classification prend en compte les développements méthodologiques qui ont été effectués lors de cette thèse, tels que la vérification des ratios d'isotopologues, et ces dernières années, tels que les modèles de prédiction du temps de rétention [23][24][25][26] , ou de prédiction de la fragmentation MS2 

Conclusions et perspectives

La caractérisation de l'exposome chimique interne humain avec des approches non-ciblées offre de nouvelles promesses pour l'identification de nouveaux facteurs de risque chimique mais présente encore des obstacles technologique et méthodologiques qui doivent être surmontés. Ces limites viennent principalement du fait que les molécules exogènes sont

General introduction

General introduction 40 Chronic diseases are the leading cause of worldwide mortality and morbidity, representing an estimated 71% of all deaths globally in 2018 1 . For decades, the impact of genetic factors on the emergence of these diseases was investigated through major conceptual and technological developments in the genomics field. These developments were notably achieved through an international collaborative effort during the Human Genome Project (HGP) conducted between 1990 and 2003 2 . In reaching its goal of mapping the human genome, the HGP paved the way for the first genome-wide association studies (GWAS), aimed to establish associations between genetic variants (typically single nucleotide polymorphisms, SNP) and various traits. Despite the identification of highly prevalent SNP (i.e. presence in >5% of the population), their often low penetrance limited the applicability of GWAS alone to exhaustively elucidate the etiology of non-communicable diseases. In 2005, director of Leeds Institute of Genetics, Health and Therapeutics Christopher Wild underlined the necessity of considering environmental exposures to understand chronic disease etiology at the population level, thus introducing the concept of exposome to complement the genome 3 . The exposome was therefore defined as the totality of human environmental exposures from conception onwards, and was extended in 2012 to account for the biological effects resulting from these exposures 4 .

Investigating the exposome is hence a complex task, as environmental exposures are both extremely variable in nature and through time. Environmental exposures can be classified in three main categories defined by Wild (2012) 4 : the general external exposome (i.e. social capital, stress, urban or rural environment, etc.), the specific external exposome (i.e. radiation, chemical contaminants, lifestyle factors, etc.), and the internal exposome (i.e. metabolism, gut microflora, ageing, etc.) These definitions are still discussed to account for emerging topics of interest, such as the transformation products of environmental chemicals in the body 5 . It is currently unfeasible to exhaustively characterize the exposome, due to the considerable number and diversity of environmental factors. Hence, investigating the exposome is fractioned in various subfields, including the socio-exposome focused on determinants such as socio-economic category and social inequalities 6 , the physical exposome focused on factors such as radiation or noise 7 or the chemical exposome, encompassing chemical exposures that can accumulate in humans through food, medication, pesticides, etc. 5 . Exposure to chemical compounds can occur in various circumstances, counting domestic, industrial or agricultural use of these molecules. Investigating the chemical exposome can therefore be studied both through the analysis of environmental (i.e. water, air, dust, food, etc.) and human biological matrices (i.e. blood, urine, tissue, hair, etc.). However, due to the high diversity of compounds constituting our chemical environment (i.e. tens of thousands), there is still a sore lack of data regarding human exposure. Acquiring broader knowledge on the human chemical exposome is therefore a first necessary step in accurately assessing its effect on human health.

Investigating the human chemical exposome in biological matrices has classically been done using targeted methods, which offer quantitative data on a set list of compounds of interest identified prior to the analysis. While these methods are exceptionally useful and robust to generate exposure data for already known or suspected toxicants, they can now be complemented by non-targeted methods, which allow the characterization of samples through collection of qualitative or semi-quantitative data without an a priori list of investigated compounds. These non-targeted approaches may be used as an exploratory tool to detect and identify new chemicals that might be of emerging concern, whether because they have newly appeared in the environment as a replacement to regulated substances or because they are newly identified or suspected toxicants 8 . They may also be useful to describe more thoroughly chemical mixtures, which are a well-documented challenge in exposure science 9 , and therefore provide relevant data for toxicological tests. Most non-targeted methods rely on the recent technological progress in the field of high-resolution mass spectrometry (HRMS), resulting in the possibility of screening thousands of compounds simultaneously, with a high mass accuracy. Concurrently, significant progress in the bioinformatics field allowed the processing of such complex data. Compounds detected throughout the analysis can thus be isolated, characterized by their mass-to-charge ratio (m/z), their retention time (Rt) and their area, and annotated (i.e. associated to a chemical identity through various elements of proof).

During the first half of the 2010s, these approaches have started to be used to assess the presence of contaminants in environmental matrices [10][11][12] , or exogenous compounds in biological matrices, both animal [13][14][15] and human 16 .

Non-targeted approaches, while valuable and increasingly used, are still subject to a number of technological barriers and methodological issues. Firstly, as there are no predefined analytes, method performances regarding recovery and sensitivity cannot be determined for all potentially detectable compounds. Moreover, it appears unreasonable to expect the exhaustive characterization of a sample, even by such methods; it is therefore necessary to delineate the width of what is observable using any particular workflow. Secondly, existing data processing tools were mostly built for metabolomics applications, i.e. the detection of endogenous (and often rather abundant) compounds, and may not be suitable for exposomics applications aimed to detect exogenous chemicals present at trace levels (below ng/ml).

Thirdly, annotation is an often tedious and incomplete process, as it is estimated that less than 10% of non-targeted datasets are annotated 5 . This is further exacerbated for exposomics applications due the limited availability of compound libraries including or dedicated to exogenous chemicals. This process is time-consuming largely due to the necessity of manual curation to dismiss the usually high number of false positive annotations. All of these technological and methodological bottlenecks must be overcome to create robust non-targeted workflows that may be used for high-throughput applications.

The main aim of this PhD work is to develop an HRMS-based non-targeted workflow applicable to human epidemiological studies, in order to provide an operational solution to assess human exposure to complex chemical mixtures at a large scale. Given the above-mentioned considerations, two specific objectives were defined for this PhD. The first objective is to develop innovative methods to generate and process non-targeted data, including sample preparation, analytical HRMS method(s) coupled to liquid chromatography (LC), data processing, and annotation. These methods must answer the need for sensitivity, robustness, and must be relevant in the case of human blood plasma and serum analysis. The second objective of this work is to apply these developed methods for non-targeted approaches on large-scale epidemiological applications to test the robustness and sensitivity and detect new biomarkers of exposure. This application was performed using samples from a promising local cohort. Blood serum samples from 125 12-year-old boys issued from the Breton mother-child cohort Pélagie were used to implement this large-scale application. This cohort, started in 2002, is a longitudinal study implemented to measure exposure to organic pollutants during the pregnancy. It included approximately 3,500 women pregnant between 2002 and 2005 in Brittany. Follow up was carried out at birth, and then at 2, 6, and 9-16 years old, through the collection of biological samples and clinical data, and answering questionnaires. A questionnaire was provided to 12-year-olds and their families to obtain physical growth data and pubertal stage. A clinical evaluation was performed on a subset of 500 12-year-olds, with the assessment of clinical parameters such as growth, adiposity, visual function and oraldental health. The considered blood samples were collected at this time to evaluate sex hormones and to assess exposure to organic contaminants. This cohort, in its entirety, therefore offers a promising opportunity to study the long-term consequences of early-life exposure to environmental contaminants.

To reach the first objective, each step of the non-targeted workflow was optimized. Indeed, reference protocols for the preparation and high-throughput injection of plasma and serum samples were established and validated using new quantitative and qualitative criteria to define the perimeter of the profiled chemical exposome. Moreover, in-house libraries were constructed to implement suspect screening approaches, consisting of an a posteriori screening of suspected xenobiotics in chromatograms. Concomitantly, a software was developed to partly automatize suspect screening approaches through the implementation of confidence indices, scoring proximity between experimental features and suspects.

Reaching the second objective was achieved by using the previously described methods and tools (initially developed at the batch level) in the case of a high-scale application. Additionally, large-scale quality controls and inter-batch correction were implemented to ensure comparability from first to last sample.

Chapter 1 describes the state-of-the-art regarding the application of HRMS-based exposomics to cohort-based epidemiological studies. Reported technological and methodological challenges regarding the application of such approaches are detailed and discussed.

Chapter 2 relates the instrumental method development, the data processing steps, as well as the annotation tools needed for this work. The suspect screening software developed in the context of this PhD is also thoroughly described.

Chapter 3 presents the systematic evaluation and comparison of sample preparation methods for the purpose of detecting low-abundant chemicals in blood plasma and serum samples. The impact of the two best-performing methods on the visible chemical space is described using cohort plasma and serum samples. Human Genome Research Institute, declared about this near-exhaustive vision of the human genome: "It's a shop manual, with an incredibly detailed blueprint for building every human cell. And it's a transformative textbook of medicine, with insights that will give health care providers immense new powers to treat, prevent and cure disease." 3 . Understandably, such a tremendous advancement in knowledge on human biology held great promises for a better understanding of disease etiology.

This incredible international effort was accompanied by constant methodological and technological progress. Indeed, the appeal of the HGP federated efforts to develop new highthroughput technologies and new computational strategies 1 . This later proved to be a crucial advantage when the knowledge generated by the HGP was used to identify genes affecting susceptibility to specific diseases. Genome-wide association studies (GWAS) were designed to identify variants associated with multifactorial diseases (with frequencies ≥ 5%) 4 . While many variants associated with different diseases have been identified so far, their often-low penetrance (i.e. the fact that only a small proportion of individuals presenting the variant develop the corresponding phenotype) limit the practical applications of GWAS 5 . It should be noted that the investigation of particularly infrequent single nucleotide polymorphisms (<1%) may still uncover valuable results, even though it would require a high number of participants (and therefore important resources) to achieve satisfactory statistical power. Variant penetrance is a complex characteristic that depends on many factors (i.e. interaction with other genes, importance of the affected pathway, existence of alternative pathways substituting for function loss, etc.), one of which is the interaction with the environment 6 .

In this context, Christopher Wild introduced in 2005 the concept of exposome to account for the impact of environmental factors on human health through the genetic-environmental interactions 7 . The conceptualization of an exposome to complement the genome helped to 
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emphasize the need for reliable exposure assessment tools to better understand disease etiology through a more thorough description of the interplays between environmental exposures and genetic susceptibility factors. He defines the exposome as "life-course environmental exposures (including lifestyle factors), from the prenatal period onwards". In his editorial, he underlines the need for the funding and development of reliable exposure assessment tools to "balance the effort going towards characterization of the genome", and for a strong collaboration between scientists of different backgrounds as was done for the HGP 7 .

In 2012, the definition of the exposome concept is expanded to take into account the biological responses to environmental exposures 8 . As of today's most widely accepted definition, the exposome is "an entity that encompasses all life-course environmental exposures and the associated biological responses, including during the prenatal period" [7][8][9][10][11] . One significant aspect of the exposome is the chemical exposome, i.e. the exposure to all chemicals, whether from external or internal sources 12 .

Characterizing the chemical exposome is an arduous challenge. Indeed, it has been estimated that up to 350,000 chemical compounds and mixtures are registered for production and use worldwide, with up to 120,000 of them being either unknown or ambiguously defined 13 . As of 2020, there were close to 23,000 compounds registered by the European Chemical Agency, more than 2,000 of which are produced over the 1,000t/year limit 14 . The organic compounds most frequently registered are mostly registered as synthesis intermediates (e.g. styrene, ethylbenzene). This diversity of compounds, coupled to the diversity of potential sources for each compound present important hindrances to exhaustively characterize one's chemical exposures. Human exposure to some persistent organic compounds, such as organochlorine insecticides (e.g. DDT and its metabolites), polychlorinated biphenyls (e.g. PCB 153), brominated flame retardants (e.g. BDE 47, BDE 99), or polycyclic aromatic hydrocarbons (e.g. naphthalene and metabolites) have already been well reported in large-scale HBM studies 15- 18 . These compounds have historically been studied for their widespread use, their potential or confirmed toxicity, or their persistence in the environment. Non-persistent compounds such as phthalates or bisphenols, however, are more challenging to accurately describe since their half-life in the human body is limited (a few hours to a few days). Moreover, their metabolization and excretion pathways may not be entirely documented, which may affect the ability to detect these compounds in their relevant forms 19 . Overall, the available data on human exposure to chemicals is limited and mostly oriented towards lists of hundreds of "usual suspects" (i.e.

priority substances with already known exposure and toxicity data). This partial view of the human exposure to chemicals (few hundreds as opposed to tens of thousands on the market) undoubtedly leads to an underestimation of the chemical risk evaluation. 
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Exogenously derived chemicals and their biotransformation products accumulating in human will further be referred to as the internal chemical exposome, and will be distinguished from endogenously derived chemicals that constitute the metabolome. Many of these endogenous compounds, while also important to assess the impact of environmental chemical exposures on human health, are usually largely more abundant in biological matrices compared to exogenous compounds 20 , and can be studied using differently optimized present in human biological matrices can be profiled using High Resolution Mass Spectrometry.

Traditionally, exposure assessments to chemicals have been performed through targeted approaches. These approaches rely on pre-established lists of compounds of interest (for their ubiquity, their high toxicity or both) and developing methods to quantify them in any given matrix of interest. Targeted assays result in highly accurate and robust quantitative data, with limits of detection often being as low as the ng-pg/mL range in complex matrices such as urine [21][22][23] and blood serum 24,25 . Together with toxicological and other biological approaches, targeted methods have allowed limiting human exposure to toxic compounds, such as plasticizer bisphenol A 26 or pesticide atrazine 27 through public health measures either limiting or outright banning their use. These approaches were the first to allow the acquisition of HBM data at the massive scale needed to efficiently support policy making, as was started with the Union policy board 28 .

While exceptionally useful, targeted approaches only allow accounting for already established compounds of interest. Indeed, the inclusion of a given compound in a targeted method must be preceded by the expectation that it is either ubiquitous or toxic enough to warrant medium to large-scale biomonitoring, given that there are an estimated >350,000 compounds currently in use in the human population 29,30 . This ever-expanding list of diverse chemicals must be prioritized in order to identify chemicals of emerging concern (CEC) and launch the process of toxicological assays and targeted method development. Hence, the technological advancements of the last few years in high resolution mass spectrometry (HRMS)-based analysis has offered new possibilities to tackle the complexity of the chemical exposome. This may be achieved using new non-targeted approaches (NTA), which are complementary to targeted approaches 31 and do not rely on pre-established chemical lists. Through the technological progress achieved notably in HRMS, it is possible to simultaneously screen tens of thousands of small molecules (between 50-1200 Da) in a single analysis. NTA often uses a separative technique prior to HRMS analysis to decomplexify the sample, such as liquid chromatography (LC). These analyses result in lists of signals, called features, each characterized by a mass-to-charge ratio (m/z), a retention time (Rt), and an area. The data acquired during NTA is used to assign chemical identities to the obtained features, allowing potentially identifying new compounds of interest due to high detection frequencies and/or association to a health event. These approaches have already been successfully applied in proof-of-concept studies 23,[32][33][34] , thus demonstrating the relevance and applicability of environment-wide associated studies (EWAS).

Another challenge inherent to the characterization of the exposome, including the chemical exposome, its dynamic nature. Indeed, the temporal variability of chemical exposures constitutes, along with its vast scope, incredibly challenging features of its characterization (for targeted as well as non-targeted approaches). Firstly, the dynamic nature of the chemical exposome entails that its measurement should be dynamic as well, either through an inherently dynamic measurement method or through a series of snapshots at crucial times in an individual's lifetime. This second approach can be applied at key times of life, such as the prenatal period, childhood, puberty and reproductive years, to allow a vision of presumably radically different exposure patterns throughout an individual's life 35 .

The prenatal period is a well-known time of vulnerability in one's life. The DOHaD (Developmental Origins of Health and Disease) hypothesis, originally formulated by Barker and Osmond (1986) 36 , postulates that nutrition during pregnancy could impact disease 
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outcome during the lifetime. This concept was expanded to take into account exposure to environmental chemical contaminants during the prenatal period, as evidence of their impact on health endpoints such as obesity arose 37 . Chemical exposures are therefore often investigated during this time to improve knowledge on disease etiology [38][39][40] . Another period of vulnerability in an individual's life is the transition into adolescence 41 . Indeed, as it is a transitional stage of development (physical, psychological, etc.) implicating significant hormonal activity, the impact of environmental chemicals (and in particular endocrine disruptors) on teenagers' health has been questioned 42 .

Despite the many promises held by NTA as an exploratory tool to better understand environmental triggers to chronic diseases, several methodological and technological barriers remain to uncover their full potential. Notably, the still vast scope of the chemical exposome entails the need to determine the impact of matrix and analytical platform choice on the visible chemical space when using NTA. Given the complexity of the human chemical exposome, designing a study for its non-targeted characterization raises several questions. Firstly, the human chemical exposome can be characterized through conceptually different approaches. Indeed, direct and indirect measurements are available to this end. Direct measurements consist in screening for chemicals directly in the considered individuals, as for example through biomonitoring 22,43 , while indirect measurements rely on studying the environment, and coupling this data to bioaccessibility studies and/or time of contact data to estimate human exposure 44,[START_REF] Dulio | The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let's cooperate! Environmental Sciences Europe[END_REF] . Indirect measurements allow identifying sources and determinants of exposure. They present the advantages of being less invasive, less costly, suitable for passive sampling (thus being more representative on the dynamic aspect of exposure), and using overall less complex matrices than direct measurements. However, they may only approximate the actual human exposure to chemicals. This may be due to the use of mathematical models with inherent uncertainty, or the inexact accounting for a significant source of exposure (whether under-or overestimated) [START_REF] Wei | Bioaccessibility and bioavailability of environmental semivolatile organic compounds via inhalation: A review of methods and models[END_REF][START_REF] Szabo | Bioaccessibility of microencapsulated carotenoids, recovered from tomato processing industrial by-products, using in vitro digestion model[END_REF] On the other hand, direct measurements allow evaluating the exposure as a whole, regardless of the sources and routes of exposure. Although the implementing of direct measurements is limited by their more limited cost-effectiveness (usually requiring higher funding and more long-term compliant participants) [START_REF] Hoppin | Environmental exposure assessment of pesticides in farmworker homes[END_REF] , biomonitoring is widely recognized as a

Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies: State-of-the-art and challenges 51 useful tool for exposure and risk assessment [START_REF] Louro | Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future[END_REF][START_REF] Zidek | A review of human biomonitoring data used in regulatory risk assessment under Canada's Chemicals Management Program[END_REF] . In this PhD, a biomonitoring approach will be used to contribute to decipher the human internal chemical exposome using HRMS-based methods.

Biomonitoring studies have been widely used as a tool of choice to assess human exposure to environmental chemicals. Overall, direct and indirect approaches are highly complementary and may also be used successively to obtain orthogonal data. For instance, an initial HBM approach may help identify chemicals of interest, and a following indirect measurement approach may allow identifying sources of exposure. Combining the data collected from these approaches may be critical in implementing new relevant public health measures to dampen the health burden of the chemical exposome. 
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As a part of this large scale collective effort to characterize the human internal chemical exposome 5 , this PhD work focuses on implementing direct measures for the non-targeted characterization of the human chemical exposome.

. Choosing the biological matrix

When aiming to directly characterize the human chemical exposome, the choice of biological matrix is the second study design element that should be clarified. Many factors can influence the choice of biological matrix: availability, invasiveness and cost of sampling, possible focus on some chemical classes with specific characteristics (e.g. persistence, accumulation in a specific biological compartment, etc.), etc.

One of the most commonly sampled matrices in HBM and epidemiological studies is urine 28,[START_REF] Remer | Long-term urine biobanking: storage stability of clinical chemical parameters under moderate freezing conditions without use of preservatives[END_REF][START_REF] Elliott | The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine[END_REF][START_REF] Ferland | Detailed Urinary Excretion Time Courses of Biomarkers of Exposure to Permethrin and Estimated Exposure in Workers of a Corn Production Farm in Quebec, Canada[END_REF] . Its sampling is fairly non-invasive and inexpensive, and is easily performed by the participants themselves. Urine is a relevant matrix for exposure assessment as it is the main route of excretion of many non-persistent chemicals, whether in their free form or after phase I and/or phase II metabolization to increase polarity. One of its main drawbacks is fact that only short-term exposure (usually hours or days depending on the chemical's half-life) is visible when using this matrix, with often different forms of the chemical visible at different points in time 19,[START_REF] Hernandez | Biomonitoring of common organophosphate metabolites in hair and urine of children from an agricultural community[END_REF] . The visible window may be widened using pooled repeated measurements, which may be best to capture the dynamic nature of the exposure 11 , as was described in the European projects HELIX and EuroMix for the assessment of exposure to phthalates and phenols in urine samples [START_REF] Husoy | The Norwegian biomonitoring study from the EU project EuroMix: Levels of phenols and phthalates in 24-hour urine samples and exposure sources from food and personal care products[END_REF][START_REF] Haug | In-utero and childhood chemical exposome in six European mother-child cohorts[END_REF] . Another well-known issue when using urine is the need for normalization (often using the creatinine level), as sample volume and chemical concentration may be extremely variable depending on the individual's hydration state [START_REF] Castano | Non-invasive matrices in human biomonitoring: a review[END_REF] . Lastly, this matrix is not the most suitable for the detection of exposures to persistent organic pollutants, which tend to accumulate in other matrices such as blood and hair [START_REF] Hernandez | Biomonitoring of common organophosphate metabolites in hair and urine of children from an agricultural community[END_REF][START_REF] Hardy | Hair versus urine for the biomonitoring of pesticide exposure: Results from a pilot cohort study on pregnant women[END_REF] , although the metabolites of these compounds may be found in urine 28 .

Blood-derived matrices (i.e. total blood, plasma and/or serum) [START_REF] Elliott | The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine[END_REF][START_REF] Coppola | Biobanking in health care: evolution and future directions[END_REF][START_REF] Ronningen | The biobank of the Norwegian Mother and Child Cohort Study: a resource for the next 100 years[END_REF][START_REF] Khmiri | Toxicokinetics of bisphenol-S and its glucuronide in plasma and urine following oral and dermal exposure in volunteers for the interpretation of biomonitoring data[END_REF] are also commonly sampled in HBM and epidemiological studies, and are therefore frequently available in biobanks. Their sampling is more costly and more invasive than urine, but blood-derived matrices are often considered the golden standard to study chemical exposure. One advantage of blood-derived matrices is that the biologically active parent (i.e. non-metabolized) form of chemicals might be in some cases more readily observable than in urine, which can be an advantage considering the sometimes non-specific nature of metabolites [START_REF] Calafat | Contemporary Issues in Exposure Assessment Using Biomonitoring[END_REF] . This was applied in the HBM4EU initiative with, for instance, the biomonitoring of parent halogenated flame retardants in serum, and of four metabolites of organophosphate flame retardants in 
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urine [START_REF] Dvorakova | Interlaboratory comparison investigations (ICIs) and external quality assurance schemes (EQUASs) for flame retardant analysis in biological matrices: Results from the HBM4EU project[END_REF] . However, parent and phase I/II metabolite concentrations in blood are often lower than metabolite concentrations in urine in which they can accumulate over time [START_REF] Engel | Causal inference considerations for endocrine disruptor research in children's health[END_REF] . Another advantage of blood-derived matrices is that blood circulates in the whole body and is in equilibrium with all tissues, and thus provides a more accurate reflection of internal chemical concentration [START_REF] Castano | Non-invasive matrices in human biomonitoring: a review[END_REF] . In the case of a pregnancy, maternal blood is also in contact with the fetus through the placenta, which is why maternal blood may be relevant to evaluate fetal exposure during the prenatal period [START_REF] Paulzen | Pregnancy exposure to quetiapine -Therapeutic drug monitoring in maternal blood, amniotic fluid and cord blood and obstetrical outcomes[END_REF][START_REF] Ostrea | Combined analysis of prenatal (maternal hair and blood) and neonatal (infant hair, cord blood and meconium) matrices to detect fetal exposure to environmental pesticides[END_REF] . Other matrices such as placenta, cord blood or meconium are also well suited for this purpose [START_REF] Ostrea | Combined analysis of prenatal (maternal hair and blood) and neonatal (infant hair, cord blood and meconium) matrices to detect fetal exposure to environmental pesticides[END_REF][START_REF] Fannin | Origin stories from a regional placenta tissue collection[END_REF][START_REF] Makin | The Global Pregnancy Collaboration (CoLab) Biobank of rare placentas[END_REF] , but their limited quantity and availability is an important hindrance. Maternal hair was also reported to be a suitable matrix to assess prenatal exposure especially for persistent organic pollutants (POPs) [START_REF] Ostrea | Combined analysis of prenatal (maternal hair and blood) and neonatal (infant hair, cord blood and meconium) matrices to detect fetal exposure to environmental pesticides[END_REF][START_REF] Concheiro | Assessment of biological matrices for the detection of in utero cannabis exposure[END_REF][START_REF] Concheiro | Drug exposure during pregnancy: analytical methods and toxicological findings[END_REF] , although several concerns regarding external pollution and lack of reference data are often put forward 22,28,[START_REF] Castano | Non-invasive matrices in human biomonitoring: a review[END_REF] .

As no matrix will be ideal in every situation depending on target compound class, availability and ease of sampling, it should be understood that its choice will affect the observable internal chemical exposome. In the context of this work, blood-derived samples (i.e. plasma and serum)

were used due to the advantages presented by these matrices, as well as for their availability in general in biobanks, and more particularly in the considered epidemiological studies (i.e.

Pelagie). This PhD work is one of the first applications of HRMS-based characterizations of the internal chemical exposome in blood 32 .

. Analytical platform choice

Analyzing biological samples to characterize the human internal chemical exposome can be done using many platforms, most of which rely on chromatography (such as gas chromatography (GC) and liquid chromatography (LC)) coupled to HRMS. The breadth of the chemical exposome due to the ever-expanding number of produced chemical compounds (growth estimated at 3.4% each year until 2030 30 ) implies the need to detect compounds with vastly different physical-chemical properties (e.g. polarity). At this time, no single technology allows capturing this diversity; ideally, complementary analytical platforms should be combined to observe the width of the chemical space 5,[START_REF] Pourchet | Non-targeted screening methodology to characterise human internal chemical exposure: Application to halogenated compounds in human milk[END_REF][START_REF] Dubocq | Comprehensive chemical characterization of indoor dust by target, suspect screening and nontarget analysis using LC-HRMS and GC-HRMS[END_REF][START_REF] Boudah | Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry[END_REF][START_REF] Delaporte | Untargeted food chemical safety assessment: A proofof-concept on two analytical platforms and contamination scenarios of tea[END_REF] . This is however challenging, since when aiming for large-scale applications such as epidemiological studies, analysis should be as not too expensive and high-throughput as possible to allow analyzing sufficient numbers of sample for statistical power, which is undeniably more difficult to achieve when multiple analytical platforms are involved. The choice of analytical platform(s) will therefore affect the observable chemical exposome, as represented in Figure I.2.

To date, the most commonly used platforms for NTA are equipped with LC, electrospray ionization (ESI) and coupled with time-of-flight (TOF) or Orbitrap analyzers 5,[START_REF] Pourchet | Development of non-targeted approaches to evidence emerging chemical hazard -Identification of new biomarkers of internal human exposure[END_REF] . Hybrid family) are also frequently used and are important to provide relevant MS2 data [START_REF] Gonzalez-Gaya | Suspect and non-target screening: the last frontier in environmental analysis[END_REF] . LC-ESI-HRMS platforms are highly versatile and provide a soft ionization 5 , which is useful to provide information on the molecular ion and avoid compound fragmentation and obtaining pseudomolecular ion mass [START_REF] Gonzalez-Gaya | Suspect and non-target screening: the last frontier in environmental analysis[END_REF] . However, the ionization process using ESI sources leads to less reproducible fragmentation patterns, making the construction of reference spectral libraries challenging, and in turn affecting the complexity of compound annotation [START_REF] Milman | The chemical space for non-target analysis[END_REF] . LC separations can be performed using a large diversity of stationary and mobile phases, although reversephase (RP) columns are often used for their versatility and for easier comparison and harmonization between laboratories. Indeed, RP columns allow the simultaneous detection of compounds with a wide polarity range, such as the polar nicotine metabolite cotinine and the non-polar insecticide chlorpyrifos. Hydrophilic interaction chromatography (HILIC) is also emerging since it offers better performance for highly polar compounds such as pesticide glyphosate and antiviral acyclovir, thus providing orthogonal data to RP chromatography [START_REF] Jandera | Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. A review[END_REF] .

Two-dimensional chromatography combining HILIC and RP has been used to widen the observable polarity range [START_REF] Beschnitt | Towards comprehensive non-target screening using heart-cut two-dimensional liquid chromatography for the analysis of organic atmospheric tracers in ice cores[END_REF][START_REF] Hemmler | Tandem HILIC-RP liquid chromatography for increased polarity coverage in food analysis[END_REF] . Regarding mobile phases, generic methanol/water or acetonitrile/water gradients are commonly used [START_REF] Gonzalez-Gaya | Suspect and non-target screening: the last frontier in environmental analysis[END_REF][START_REF] Yusa | Analytical methods for human biomonitoring of pesticides. A review[END_REF] to avoid further limiting the range of observable compounds. The main disadvantages of LC-based platforms are the matrix-related issues such as ion suppression [START_REF] Chetwynd | A review of nanoscale LC-ESI for metabolomics and its potential to enhance the metabolome coverage[END_REF] .

GC-HRMS platforms have been increasingly used to detect non-polar semi-volatile to volatile compounds such as POPs 28,[START_REF] Mazur | GC-HRMS with Complementary Ionization Techniques for Target and Non-target Screening for Chemical Exposure: Expanding the Insights of the Air Pollution Markers in Moscow Snow[END_REF][START_REF] Valvi | Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach[END_REF][START_REF] Ruiz-Delgado | Advanced evaluation of landfill leachate treatments by low and high-resolution mass spectrometry focusing on microcontaminant removal[END_REF] , which are not detected using LC-ESI-HRMS. Characterizing the chemical exposure to POPs, which notably include polychlorinated biphenyls and organochlorine pesticides, is particularly relevant, as it has been linked to detrimental health effects such as endocrine disruption, cardiovascular and reproductive diseases, and cancer, in part linked to their bio-accumulative, toxic potential and non-degradable nature [START_REF] Alharbi | Health and environmental effects of persistent organic pollutants[END_REF] . These characteristics also explain their presence in biological and environmental matrices several years or decades after banning. GC-HRMS platforms predominantly use hard ionization sources (i.e. Electron ionization), which often lead to the fragmentation of the molecular ion and the need for large spectral libraries for compound annotation [START_REF] Milman | The chemical space for non-target analysis[END_REF] . The choice of stationary and mobile phases is far more limited in GC-based platforms, with a widespread use of nonpolar capillary column with 5% phenyl methylpolysiloxane and helium as carrier gas. While nitrogen and hydrogen can also be used as mobile phases since they are less expensive than helium, they are usually set aside due to efficiency and safety reasons respectively [START_REF] Pourchet | Development of non-targeted approaches to evidence emerging chemical hazard -Identification of new biomarkers of internal human exposure[END_REF] . While GC-based platforms suffer less matrix effect than LC-based platforms, additional sample preparation steps such as derivatization are often required to improve versatility and avoid premature clogging of the column due to non-volatile compounds. Other analytical platforms such as ion chromatography (IC) and capillary electrophoresis (CE) coupled to HRMS can be used to improve coverage of highly ionic and/or polar compounds [START_REF] Gonzalez-Gaya | Suspect and non-target screening: the last frontier in environmental analysis[END_REF] such as haloacetic acids and antibiotics sulfonamides respectively, although they are not as widespread as LC and GC-based platforms.

The choice of analytical platform is therefore, in itself, a constraint on the observable chemical space of the exposome. Together with the choice of direct or indirect measure and biological matrix, it conditions the structure of the non-target and suspect screening workflow that should be implemented and optimized to characterize the exposome. In the context of this PhD, LCbased approaches were favored for their versatility and their relevance to detect pollutants of emerging concern, which are often non-persistent as opposed to historical contaminants (e.g.

POPs)

. Moreover, the visibility of the pseudomolecular ion due to the soft ionization process, and the substantial availability of MS2 reference data are two important advantages to carry out the annotation process. Once the overarching conceptual and methodological choices are made for the generation of the chemical fingerprints, a non-targeted and/or suspect screening workflow including many steps has to be implemented and optimized to correctly process UHPLC-ESI-HRMS raw data.

These steps include the implementation of bioinformatics tools to extract chemical features, statistics to prioritize relevant features, and the annotation step to assign a chemical identity to features of interest. To date, there is no comprehensive tool to perform raw data interpretation from data processing to annotation, although some online infrastructures such as Workflow4metabolomics built upon the Galaxy web-based platform tend towards it [START_REF] Giacomoni | Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics[END_REF] . Due to the wide variety of available approaches to perform non-targeted and suspect screening, there are also no guidelines to orient the choice of data processing tools, or their parametrization [START_REF] Caballero-Casero | Towards harmonised criteria in quality assurance and quality control of suspect and non-target LC-HRMS analytical workflows for screening of emerging contaminants in human biomonitoring[END_REF] . This is reportedly one of the major bottlenecks of NTA [START_REF] Caballero-Casero | Towards harmonised criteria in quality assurance and quality control of suspect and non-target LC-HRMS analytical workflows for screening of emerging contaminants in human biomonitoring[END_REF][START_REF] Bastos Da Silva | Improving Exposure Assessment Using Non-Targeted and Suspect Screening: The ISO/IEC 17025: 2017 Quality Standard as a Guideline[END_REF] .

The main steps of a workflow to characterize the chemical exposome in blood-derived biological matrices using LC-ESI-HRMS are presented in Figure I.3. Workflows used for exposomics applications are, per their general structure, quite similar to workflows used for metabolomics applications [START_REF] Klavus | notame": Workflow for Non-Targeted LC-MS Metabolic Profiling[END_REF][START_REF] Ribbenstedt | Development, characterization and comparisons of targeted and non-targeted metabolomics methods[END_REF] . However, in metabolomics, the focus is put on endogenous 57 chemicals only, with blood concentrations up to eight orders of magnitude above blood concentrations of exogenous chemicals (e.g. steroids or lipids found at ~1 mg/mL compared to industrial pollutants found at ~10 pg/mL) 5,20 . In exposomics approaches, both are of interest although with a focus on exogenous compounds. This wide range of concentrations implies adaptations to the workflow at every step to ensure that low-abundant compounds are lost neither to ion suppression (first analytical step) nor to inadequate noise levels (first bioinformatics step). The several steps of the workflow are presented in the following sections.

Acquisition of the chemical fingerprint

Optimizing the acquisition of a chemical fingerprint involves two main steps, namely sample preparation and sample analysis. Regarding sample preparation, to date, there are no universal guidelines recommended for exposomics applications on human biological matrices.

Recently, the HBM4EU initiative included for the first time a work package dedicated to suspect and non-target screening in human biological samples. The first steps towards a harmonization of sample preparation practices for suspect and non-targeted screening have been documented [START_REF] Caballero-Casero | Towards harmonised criteria in quality assurance and quality control of suspect and non-target LC-HRMS analytical workflows for screening of emerging contaminants in human biomonitoring[END_REF][START_REF] Pourchet | Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues[END_REF] . These initial advancements allowed identifying crucial points of vigilance that must be carefully considered with NTA. These critical points include the starting volume, which should be minimized while retaining sufficient sensitivity performances, the extraction method, which greatly impacts the sensitivity versus selectivity compromise further described below, and the inclusion (or lack thereof) of a deconjugation step, which is traditionally used in targeted methods applied on urine samples but may lead to added variability [START_REF] Caballero-Casero | Towards harmonised criteria in quality assurance and quality control of suspect and non-target LC-HRMS analytical workflows for screening of emerging contaminants in human biomonitoring[END_REF][START_REF] Pourchet | Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues[END_REF] . However, no consensus has yet been reached considering the complexity of the task and, importantly, the diversity of research objectives (e.g. exposure assessment in blood-derived matrices). This can be explained by several reasons. Firstly, while these matrices all contain high-abundant endogenous compounds which are likely to cause matrix-related troubles, they each have their specificities, thus possibly influencing the choice of the most appropriate sample preparation techniques. These specificities are even visible on matrices that may appear similar initially, such as blood serum and blood plasma, or even blood plasmas obtained with different anticoagulants [START_REF] Barri | UPLC-ESI-QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: Effect of experimental artefacts and anticoagulant[END_REF] . Secondly, as no sample preparation method can comprehensively cover the width of compounds constituting the chemical exposome, it is beneficial to the community as a whole to explore different methods on similar (or even identical) samples. These developments condition the feasibility of implementing operational workflows combining different sample preparation methods, while still meeting the miniaturization requirements encountered in the case of valuable biological samples with limited availability.

The most commonly used sample preparation method (SPM) in metabolomics is protein precipitation (PPT) [START_REF] Rico | Evaluation of human plasma sample preparation protocols for untargeted metabolic profiles analyzed by UHPLC-ESI-TOF-MS[END_REF][START_REF] Tulipani | New and vintage solutions to enhance the plasma metabolome coverage by LC-ESI-MS untargeted metabolomics: the not-so-simple process of method performance evaluation[END_REF][START_REF] Tulipani | Comparative analysis of sample preparation methods to handle the complexity of the blood fluid metabolome: when less is more[END_REF][START_REF] Vuckovic | Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry[END_REF] . As proteins is one of the major classes of compounds in blood-derived

Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies: State-of-the-art and challenges 58 samples, notably regarding abundance, their elimination is the minimum sample purification necessary to reduce matrix effect and preserve the analytical system integrity (e.g. extending column life). This method was historically favored as it is simple, fast and highly non-selective, which is particularly sought after in non-targeted approaches. However, there are other classes of compounds highly abundant in plasma and serum samples that are not eliminated through this process, such as phospholipids and lysophospholipids. The gain in compound detection obtained from the low selectivity may therefore be compensated by the loss of signal due to ion suppression [START_REF] David | A new approach for plasma (xeno)metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry[END_REF] . Moreover, issues with the analytical system such as clogging or poor column life may be exacerbated by the still complex PPT samples [START_REF] David | A new approach for plasma (xeno)metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry[END_REF] . This partly explains the growing interest in solid phase extraction and filtration plates such as protein and phospholipid removal (PLR) methods in HRMS-based exposomics.

PLR methods have gained traction in the last few years as sample delipidation combined with deproteinization as they allow decreasing ion-suppression phenomena and extending LC-MS system life [START_REF] Chetwynd | A review of nanoscale LC-ESI for metabolomics and its potential to enhance the metabolome coverage[END_REF] . These methods specifically retain phospholipids through sometimes undivulged mechanisms, presumably relying on interactions between the packed-bed structure and polar esterified phosphate group found in phospholipids 100 . PLR methods have been shown to enhance analyte detection of non-lipid compounds compared to PPT methods [START_REF] Tulipani | Comparative analysis of sample preparation methods to handle the complexity of the blood fluid metabolome: when less is more[END_REF]101 , and have been described as complementary to PPT in terms of metabolome coverage [START_REF] Rico | Evaluation of human plasma sample preparation protocols for untargeted metabolic profiles analyzed by UHPLC-ESI-TOF-MS[END_REF] .

Other , as they offer a high level of sample purification and hugely limit matrix effects.

However, despite the expected drastic decrease in ion suppression and for preserving UHPLC columns, there is a concern for excessive method selectivity leading to a loss of information.

Moreover, the overall complexity of SPE protocols allow more room for human error. These concerns have however been dampened by previous studies using non-targeted metabolomics approaches, where it was determined that the sometimes-reduced recovery of specific compounds was not necessarily associated with total loss of relevant information, especially when considering the possibility of increased concentration of extracts [START_REF] Tulipani | New and vintage solutions to enhance the plasma metabolome coverage by LC-ESI-MS untargeted metabolomics: the not-so-simple process of method performance evaluation[END_REF][START_REF] David | A new approach for plasma (xeno)metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry[END_REF] .

Other sample preparation methods seem promising despite their limited reported use, such as solid phase micro extraction (SPME), which is reported to allow the recovery of compounds with a wide range of physical-chemical properties and limiting samples handling steps 108,109 .

Sample preparation for NTA are especially challenging to optimize, as there is no set list of compounds of interest on which to rely to ensure adequate performance. Moreover, it is less simple to monitor external contamination compared to targeted approaches. A systematic assessment of sample preparation performance for HRMS-based exposomics applications should therefore be conducted to document its impact on the observed chemical space.

Consequently, a performance assessment of the sample preparation step will be the subject of one of the chapters of this PhD.

Data processing

Data processing for non-targeted approaches is the next decisive step in the workflow. This step involves transforming chromatographic and spectral data to a list of features; each attributed a m/z, a Rt, and an area for each analyzed sample. This step is critical since the rest of the workflow, especially annotation, is based on the feature list generated at this point. Its optimization is therefore paramount to ensure the correct detection and integration of features of interest. In the case of exposomics applications, with low-abundant compounds in complex matrices, it is particularly important to ensure that the data processing allows the disentangling of these signals from the noise. Very few to no studies are available regarding the optimization of this step for HRMS-based exposomics.

Data processing is conducted in four main steps: firstly, the signal is translated to peaks in each analyzed sample (i.e. peak picking while beneficial to allow tailoring data processing to each application's need, also leads to an absence of guidelines regarding the preferential use of a particular software tool for select applications, or even regarding the parameter settings that should be used 114 . This is exacerbated by the lack of consensus regarding reporting data processing parameters in the literature, possibly explained by the fact that highly customizable processing workflows entail a large number of parameters to set and report.

While several data processing workflow optimizations and comparisons are available in the literature [114][115][116][117][118] , they are tailored towards metabolomics applications. However, as compounds of interest in exposomics applications are often low abundant, the suggested optimized parameters may lead to failure to correctly identify peaks of interest. Parameters such as noise threshold, peak width or maximum authorized asymmetry should be adjusted to account for peaks presenting different characteristics to those classically encountered in metabolomics.

As for the sample preparation method, the data processing method should be thoroughly evaluated to ensure that important chemical information is not lost at this stage. 

Interbatch correction

When performing large-scale exposomics applications, the chemical analysis may be performed in several batches during several weeks. The collected data may suffer from systematic variability in Rt and signal 119 due to LC-ESI-HRMS analytical drifts, which may result in loss of data (e.g. sensitivity loss). These analytical issues, alongside data processing problems such as incorrect binning can lead to inaccuracy of further statistical analyses 120 . To correct the analytical drift in terms of retention time and intensity, interbatch correction should be implemented. While interbatch correction is usually considered part of the data processing step (i.e. alignment and normalization steps), the methods commonly used for these steps may not be sufficient to account for low-abundant compounds.

Traditional alignment processes only rely on a Rt tolerance value which is applied across samples, i.e. peaks with the same m/z value (within a m/z tolerance) in different samples will be considered as one feature if their Rt value is identical within this user-set tolerance value.

The issue with this approach is that when a drift phenomenon is observed, the tolerance would have to be set at a high value to account for difference between first and last samples. This could lead to the alignment of peaks that are in fact two distinct compounds with similar although not identical Rt values (i.e. aforementioned binning issue). Moreover, the often nonlinear nature of Rt drift with LC methods puts the relevance of a fixed Rt tolerance value into question. To address this issue, various data processing software provide additional Rt correction algorithms. These algorithms usually rely on peaks present in most or all samples to perform the Rt correction, whether they are user-specified (i.e. internal standards, such as for MS-DIAL), or chosen by the processing tool (i.e. adjustRtime -peakGroups algorithm available with XCMS 121 ).

In targeted approaches, signal drift correction is usually performed by using internal standards 119 . However, in non-targeted approaches, these compounds only represent a fraction of the features, which may not be representative of varying signal fluctuation between chemical classes 122 . Similarly, signal drift correction methods traditionally used for NTA, based on total intensity or intensity of most abundant features, may fail to account for differing variability between metabolite classes 119 . This observation led to the development of quality control (QC)-based methods, where a sample constituted of pooled aliquots of all samples is repeatedly injected throughout the batches and used as a reference point [START_REF] Ribbenstedt | Development, characterization and comparisons of targeted and non-targeted metabolomics methods[END_REF]119,[122][123][124] . Although not often compared in the literature, algorithms relying on all features of QC samples such as batchCorr 119 are reported to outperform internal standard drift correction and other linear sequence corrections [START_REF] Ribbenstedt | Development, characterization and comparisons of targeted and non-targeted metabolomics methods[END_REF]119,125 . Assigning chemical identities to features can be performed through two main approaches, namely non-targeted screening and suspect screening. Both of these approaches aim to identify new and/or infrequently investigated markers of chemical exposure through different methodologies.

Non-targeted screening consists in unambiguously identifying a feature's identity with no prior reference knowledge. This task is incredibly complex, as the number of tentative candidates, even restricted by a chemical formula, can still be extremely high; for example, a saturated alkane such as C10H22 already presents 75 possible isomers and 136 possible stereoisomers.

Moreover, strong knowledge on analytical chemistry and biochemistry are needed to assess the plausibility of a given candidate; precise structure elucidation may require the use of other analytical techniques, such as nuclear magnetic resonance. Another bottleneck of annotation is the large size of non-targeted datasets, which cannot be entirely annotated. This can be managed by using statistical analyses to prioritize features of interest for non-targeted screening.

Suspect screening is performed by using one or more lists of compounds suspected to be present in a sample (e.g. expected dietary or occupational biomarkers), which is compared using several criteria to the feature list generated during the previous steps. This comparison is usually done through the comparison of chemical descriptors (e.g. m/z, Rt, isotopes [START_REF] Pourchet | Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues[END_REF]135 ) and correlation/clustering methods. Several automatized solutions based on this principle have been developed over the last few (e.g. CAMERA, MolNetEnhancer ProbMetab, and MetAssign) [136][137][138][139] . The use of biological matrices has also led to the use of biological correlation compound and a metabolite, compounds from the same chemical class, etc.). However, due to intrinsic analytical variance and model uncertainty, these approaches have been reported

to yield highly variable inaccuracies depending on the considered compound, and seem challenging to apply for predictive purposes 160 .

Since there are several limitations to the surrogate standard assignment approach, models aiming to model compounds' ionization response based on their structure and properties (i.e. hydrophobicity, molecular weight, etc.) have been developed 159,161 . An important consideration for these approaches is that the constructed models will only be usable in their validity domain, which is conditioned by the diversity (or lack thereof) of the training dataset. This implies that quantitative data would have to be acquired for compounds from different chemical classes, with a wide range of physical-chemical properties, functional groups, etc. in both ionization modes and in matrix to yield a robust model. Such an approach was carried out by Liigand et al. (2020) which allowed an rather low prediction error on compound concentration (i.e.

averaging at two-fold) 160 , encouraging further investigations of these approaches using 

Reporting

Reporting NTA data can be challenging as no consensus format exists as of yet. While most reports contain the 1 to 5 confidence levels as described by Schymanski et al. (2014) 130 , there may be some discrepancies between laboratories depending on interpretation. For instance, it may be relevant to add information regarding predicted Rt values, which are not taken into account in the existing annotation and reporting standards 130 , or to document potential deconjugation steps implemented in the sample preparation procedure [START_REF] Pourchet | Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues[END_REF] . Moreover, the everevolving technologies, prediction models and methodological approaches may lead to annotations not fitting in any described categories, as is the case for annotations supported by predicted retention times or biotransformation products 5 . All the elements of proof used to assign the considered chemical identity should therefore be reported, along with any additional information that may support plausibility (e.g. production volume) or justify a further prioritization (e.g. toxicity). A common template for the reporting of non-targeted and suspect screening results is currently developed in the HBM4EU initiative [START_REF] Pourchet | Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues[END_REF] 

Conclusion

While structurally inspired from workflows developed for metabolomics, HRMS-based exposomics workflow must be adapted and optimized for these specific exposure assessment applications. While highly challenging, this workflow optimization allows ensuring that each step's impact on the produced results is thoroughly investigated, and ideally vastly reduced. A systematic evaluation and optimization of the solutions available for every item of this workflow is necessary to implement robust large-scale applications that are minimally biased, and provide a wide view of the chemical exposome. Epidemiological cohort-based studies associating exposomics data and health data can therefore be carried out and shed some light on the complex links between environmental factors and non-communicable diseases. "Emerging chemicals" is specifically dedicated to the harmonization and implementation of NTA [START_REF] Pourchet | Non-targeted screening methodology to characterise human internal chemical exposure: Application to halogenated compounds in human milk[END_REF][START_REF] Pourchet | Development of non-targeted approaches to evidence emerging chemical hazard -Identification of new biomarkers of internal human exposure[END_REF][START_REF] Pourchet | Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues[END_REF] . The work carried out in the context of this work package has contributed to the field of the non-targeted characterization of the exposome on several aspects, notably the establishment of a list of chemicals of emerging concern [START_REF] Pourchet | Development of non-targeted approaches to evidence emerging chemical hazard -Identification of new biomarkers of internal human exposure[END_REF][START_REF] Pourchet | Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues[END_REF]147 , and recommendations on practices harmonization [START_REF] Pourchet | Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues[END_REF] . At a larger scale, this project has allowed, amongst other results, establishing recommendations for the harmonization of the use of HBM data in risk assessment [START_REF] Louro | Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future[END_REF]174 , as well as HBM guidance values for chemicals such as phthalates 175 Non-targeted screenings on 10 000 blood samples will be performed using both LC-and GC-HRMS. Both the ATHLETE and EXPANSE project will integrate multiple omics datasets to uncover exposome-health relationships, and allow expanding knowledge on biological pathways. Moreover, exposome-health associations will be explore with epidemiological approaches, as clinical data is available for individuals in the cohorts.

Although these many large-scale EU and international initiatives have been launched to decipher the impact of the chemical exposome on human health, to date, there are no largescale epidemiological applications of non-targeted or suspect screening approaches.

However, there are some studies using non-targeted or suspect screening approaches to characterize the chemical exposome and establish links with endogenous compounds to investigate the effect of various exposures on biological pathways 32,179,180 . While these studies constitute the crucial first steps towards conducting epidemiological analyses to investigate associations between environmental chemical exposures and adverse fetal health outcomes (e.g. preterm birth, low birth weight, preeclampsia) 32 , breast cancer 179 or liver diseases 180 , they report several remaining limitations in achieving this goal. 

Statistical power in non-targeted applications

As mentioned above, no large-scale applications of non-targeted and suspect screening are described to date, and this is explained by many major methodological issues. The major challenge for the application of NTA in epidemiological studies is statistical power. Indeed, statistical power in these applications is limited by the large and unknown number of determinants (i.e. exposures) investigated 127 . This is further exacerbated by the fact that highdimensional collinear data is generated through these approaches 126,127 .

It should be noted that this issue is also prevalent for EWAS conducted using targeted approaches. Indeed, when considering that the association sizes are often low to moderate, and that a substantial proportion of substance concentrations is below the limit of detection, high sample sizes are needed to achieve sufficient power 127, 181 167, 169 . A study investigating the link between 128 environmental contaminants and semen quality found in a post-hoc power analysis that sample size requirements when using a Bonferroni or a FDR correction were of at least 1795 and 925 men respectively, thus determining that many existing cohorts were vastly underpowered to undertake EWAS-like approaches 181 .

Regardless of whether targeted or non-targeted approaches are undertaken to characterize the exposome, high sample sizes can be difficult to achieve for various reasons: limited funding for sample collection and analysis, analytical platform availability, loss of follow-up 167,169 , or investigation of rare diseases with low frequencies 180 . Theoretical and methodological studies are therefore still required to overcome the critical challenge of statistical power for use of NTA in epidemiological research.

The incomplete annotation process

Despite the many available tools and databases, the annotation process is still tedious and incomplete. It requires many steps, including searching for mass spectral information in databases, verifying the potential match to the observed feature, and even in some cases, such as isotope elucidation, using non-traditional additional approaches such as using other analytical techniques. While it would not be necessary to annotate the entirety of datasets, annotating only the statistically significant features can still remain an arduous task. For instance, Walker et al. (2021) described identifying 54 compounds associated to primary sclerosing cholangitis, resulting in only one high-confidence match. This can be partly explained by the fact that, to date, the main annotation approach used is suspect screening, since it requires fewer resources and has potential for automation. However, a critical aspect The Matthew effect is a psychological phenomenon described as maintaining prominence of items (i.e. compounds) that have been prominent in the past 183 . This bias includes the prioritization of compounds only based on previously researched compounds and the interpretation of lack of data as a null concentration. While NTA were specifically designed to overcome the restriction of set lists of well-researched compounds of interest, the data generated from these approaches must be made interpretable by expanding knowledge on compounds not traditionally investigated, including through the acquisition of MS2 spectra.

Indeed, while hundreds of thousands of compounds are known to be in our environment, it is estimated that only 0.57-3.6% of them have spectral information available 150 . Ongoing efforts for the harmonized and collaborative acquisition of MS2 spectra must therefore be maintained and even expanded.

Interpretability of results: toxicology and determinants of exposure

Once an association between an environmental exposure and an adverse health outcome has been established, additional steps must be taken to understand the nature of this association.

Indeed, in datasets as highly collinear as non-targeted exposomics data, it may be difficult to disentangle true predictors of health status and correlated covariates. Additional assays such as high-throughput toxicity screenings models may help to ascertain the effect of an environmental compound on various biological pathways 32 . To this end, the ToxCast program was launched by the U.S. Environmental Protection Agency (EPA) in 2006 to use computational chemistry, high-throughput screening and toxicogenomics technologies to predict toxicity and prioritize chemicals for limited in-vivo tests 184 . The data generated by this program is freely available and allows having preliminary data on the predicted toxicity of over 4,400 chemicals. As chemical mixtures may have synergic effects, additional developments must be made to allow these toxicological approaches to integrate multiple compounds. The implementation of toxicological approaches in exposomics is needed both to improve mechanistic understanding of chemicals' effects on human health and to translate these findings into regulatory measures in risk assessment 185 .

Lastly, the detection and identification of new toxicants to which humans are exposed raise the question of the determinants of exposure. Indeed, to implement public health policies and limit the exposure to such compounds, the major sources of exposure must be identified. This can be challenging, as there are often multiple sources and confounding factors. To date, this task is mostly accomplished by using detailed questionnaires 23 that allow collecting large amounts of data regarding socio-demographic features, diet, lifestyle, etc. Although this method is not ideal due to the data being subject to potential recall and reporting biases 186 , it is often the most cost-effective way to obtain a starting point to establish the determinants of a given exposure.

Overall, there are still some key conceptual and methodological obstacles to implements NTA for epidemiological studies, including the unresolved question of statistical power, the tedious and incomplete annotation process, and the limited interpretability of the generated data. To address those issues, collaborative efforts must be maintained regarding the generation of additional knowledge, as well as regarding the development of new data processing and statistical methodologies needed to uncover the potential of NTA to investigate the etiology of diseases.

Conclusion

This first chapter illustrates the significance of the exposome concept to investigate the etiology of non-communicable chronic diseases, as genetic factors are not sufficient to explain alone their emergence. This exposome concept, combined with the advancement of technologies such as HRMS, paved the way for a change of paradigm for exposure assessment to chemical mixtures and emerging contaminants. Indeed, the development of new non-targeted approaches has allowed envisioning a characterization of the chemical exposome without establishing set lists of prioritized chemicals, but with an (ideally) unbiased vision. However, many technological barriers that come with the non-targeted characterization of the human internal chemical exposome remain. The many necessary methodological choices, which include the choice of matrix, analytical platform, sample preparation and parametrization of bioinformatics tools used for data processing have a hard-to-discern impact on the observable chemical space, which in turn may limit the applicability of these novel approaches in epidemiological studies. Indeed, the diverse and dynamic nature of the chemical exposome are both considerable obstacles to its exhaustive characterization. The combination of different biological matrices (i.e. urine, blood, placenta, hair, etc.), analytical platforms (i.e. LC-HRMS, GC-HRMS, etc.) and sample preparation methods is necessary to encompass the wide range of chemicals that constitute the chemical exposome. Moreover, the data processing and annotation algorithms are not yet fully efficient to translate the non-targeted chemical fingerprints to a list of identified chemical compounds, which is a hindrance to the application of NTA at a large scale. Lastly, the extensive amount of data generated by NTA is also a challenge to establish links between the characterized exposures and the considered health outcomes. These initiatives hold great promises for supporting the development and harmonization of new methodologies aiming to bridge the gaps in knowledge regarding the impact of environmental exposures on human health, as it is a complex task only achievable through the collaboration of multiple partners focusing on its different aspects.

In this context of rising global interest, this PhD thesis project was focused on developing and optimizing a workflow for the non-targeted LC-ESI-HRMS characterization of the chemical exposome in blood plasma and serum samples. This was conducted by optimizing the acquisition of the chemical fingerprint and notably the sample preparation step, as well as the data processing step for the characterization of low-abundant environmental compounds in complex matrices. Moreover, a suspect screening workflow was developed to improve the efficiency of the annotation step, which remains an important bottleneck for the implementation of NTA. Lastly, a proof-of-concept study was conducted on serum samples from Breton adolescents to demonstrate this workflow's efficiency to characterize the chemical exposome at a large scale.

Instrumental method development and optimization

A LC-ESI-HRMS SCIEX ExionLC TM Ultra-High Performance Liquid Chromatography (UHPLC) system (Framingham, USA) coupled to a high-resolution QTOF mass spectrometer SCIEX X500R equipped with a Turbo V ion source with a twin-sprayer ESI probe and a hybrid quadrupole time-of-flight mass spectrometer was used for all experiments. External calibration was systematically performed by infusion of AB SCIEX calibration mixtures for negative and positive ionization modes before all injections. The instrument was controlled by SCIEX OS software version 1.2. LC optimizations and development (e.g. columns, flow rates, solvent of injection) were made using a mix of standards spiked in solvent and plasma/serum to ensure a good analytical sensitivity and repeatability.

1.1.

Mix of standards used for the optimizations

One of the main challenges of non-targeted method development is the width and depth of the chemical space intended to be observed. Indeed, compounds constituting the chemical exposome are extremely varied in both physical-chemical properties and concentrations in biological matrices. While there are indubitably less constraints in non-targeted methods regarding quantification performances compared to targeted methods, there is an added difficulty in ensuring a high coverage of the observable chemical space to characterize the chemical exposome as thoroughly as possible given the chosen analytical system.

To achieve this goal, a mix of 50 compounds, referred to as the optimization mix, was designed. These compounds were chosen to meet three main objectives: This optimization mix was prepared at 1 µg/mL in methanol, and diluted and reconstituted in the optimized reconstitution phase (see paragraph 1.3.2) as needed for sample spiking or for injection in solvent. Usually, mix concentration was kept between 0.1 and 100 ng/mL in vial (whether in solvent or in matrix) to avoid excessive system contamination.

Quality assurance and quality control procedures

Several quality assurance/quality control procedures were implemented for non-targeted analyses. One solvent blank (i.e. acetonitrile/ultrapure water 90:10 (v/v)) and one extraction blank sample (i.e. preparation with UHPLC grade water instead of sample) were systematically injected with each batch. This allowed ensuring lack of carryover in the UHPLC system and monitoring the contamination linked to the sample preparation process respectively.

Contamination linked to the sample preparation process for annotated compounds in particular was taken into account by verifying their presence in the extraction blank, and if so, subtracting the blank level from samples. Additionally, composite quality control samples were prepared and injected after blanks to equilibrate the analytical system, and periodically throughout the batch (i.e. every 5-7 samples) to monitor the analytical drift and repeatability. In the case of multiple batches, samples were assigned randomly, and samples were injected randomly in all cases. Internal standards were systematically used in samples and monitored to assess analytical drift. MS2 acquisitions were performed at the end of each batch to generate fragmentation data for the annotation process.

LC method optimization

In non-targeted approaches, the chromatographic separation is important to optimize to ensure that sufficient chromatographic separation is achieved. Optimizing the LC method parameters is a crucial step, since ESI sources are prone to phenomena such as ion suppression, particularly in complex biological matrix. To limit the impact of ion suppression and maximize sensitivity performances, the LC method should be optimized to reduce co-elution, which can be done by increasing chromatographic dilution for instance.

A base gradient was set as follows for a flow rate of 0.1 mL/min: 0-2. (from 15 to 30 minutes [1][2][3] ), some studies rely on longer methods (from 45 to 85 minutes 4,5 ) to increase Rt stability or to ensure sufficient separation between isomers through less steep gradients. Moreover, the need for high sensitivity often entails lower flow rates 6 for better sample decomplexification 7 , which in turn leads to longer run times. A 60-minute run was determined adequate as it notably allowed to separate isomers prostaglandins D2 and E2 (Rt values of 16.25 min and 15.52 min respectively). The test of different flow rates was performed with comparable gradients, with the adjustment of times to allow the flow of an identical amount of solvent.

Using the optimization mix, three parameters of the LC method were then optimized; firstly, two reverse phase columns (both 1.8µm, 150mm Acquity HSS T3, Waters, with diameters of 2.1mm and 1.0mm) were tested. These assays were done conjointly with the flow rate optimization, as two flow rates were tested for each column. Lastly, the organic phase percentage of the reconstitution solvent was optimized.

Column diameter and flow rate optimization

The optimization mix was spiked post-extraction (protein precipitation) in a serum homogenate and injected in two quantities (20 and 200 pg) using a 2.1 mm diameter column and a 1.0 mm diameter column. Each column was tested using two flow rates (0.3 and 0.15 mL/min for the 2.1 mm column, and 0.1 and 0.05 mL/min for the 0.1mm column). Compounds' areas were Although results were compound-dependent, the overall trend showed that area values increased as flow rate (and column diameter) decreased. This led to the favoring of the 1.0 mm diameter column, as sufficient pressure could be achieved using lower flow rates.

However, it was also observed that using this column, area repeatability and retention time stability were significantly improved using the 0.10 mL/min flow rate compared to 0.05 mL/min.

Retention time being a key factor for accurate binning during the data processing, and because sensitivity was already improved with this flow rate, the 0.10 mL/min flow rate with the 1.0 mm column were kept as analytical conditions.

Reconstitution phase optimization

Prior to the injection, samples are often evaporated then reconstituted for conservation, concentration or composition purposes. The reconstitution phase composition's impact on the metabolome coverage in non-targeted analyses has been demonstrated, and more precisely the relevance of using 100% water as a reconstitution phase compared to 100% methanol and 50:50 water:methanol 8 . For this optimization, acetonitrile was preferred as it is the gradient's organic phase. Considering the range of polarities present in the mix, seven compositions were compared (i.e. from 25:75 to 100:0 water:acetonitrile). The comparison was performed on serum homogenates prepared by protein precipitation and spiked with the optimization mix at 100 ng/mL. Two parameters were determined:

(i) the percentage of compounds which attained the largest area with each reconstitution phase, and
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(ii) the percentage of compounds with areas above the median area for all reconstitution phases.

The results are summarized in Table II.2. It was observed that 31% of compounds had the largest area value using the 70:30 (water:acetonitrile) composition, which was the best performance for this criterion. However, this condition is moderately distant from the chromatographic method's initial conditions (90:10 water:acetonitrile), which significantly affected peak shapes for some compounds as shown in Figure II.2.A. This would be an issue for the data processing step, as such an irregular peak shape would lead to poorer integrations. Chapter II. Material and methods
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It was then established that 69% of compounds had areas in the 80:20 (water:acetonitrile) phase above the median area in all reconstitution phases. This composition allowed retaining a satisfying peak shape as it was closer to the initial chromatographic conditions, and was therefore kept as the optimized reconstitution phase composition.

It is worthy to note that the 100% water condition was not the best reconstitution phase in this case, contrary to what was suggested in the literature, although it still presented significantly better results than the 50:50 composition. This difference with the literature may be explained by the difference in the organic phase (acetonitrile here versus methanol in the literature), as well as the fact that in this work, the effects of reconstitution phase composition were evaluated on a set of compounds, as opposed to being done at the non-targeted scale as presented in the litterature 8 .

Overall, optimization of the chromatographic separation was not the main aim of this PhD but as a critical step in non-targeted LC-HRMS analyses, it was important to ensure that it was possible to observe a wide range of compounds using this method. Moreover, it was also important to check the repeatability of the retention time using the mix spiked in blood serum for this method as it could affects further data processing steps such as compound annotation, which may rely on such a parameter.

MS optimization 1.4.1. MS acquisition

Full-scan mass spectra was acquired in bothand + ESI modes for all samples. The mass range was set between 50-1100 m/z. The MS analysis was performed using original ESI source settings: temperature 550°C, ionspray voltage 4,5kV (-4,5kV in negative mode), declustering potential 80V (-80V in negative mode), accumulation time 300 ms, spray N2 gas 35 arbitrary units, heat conduction gas 35 arbitrary units, curtain gas 7 arbitrary units, collisionally activated dissociation gas 7 arbitrary units. Run time was set at 60 min in coherence with the LC method. For all the experiments in this PhD, injections of samples were always performed first in full scan to obtain the most comprehensive chemical fingerprint without affecting the sensitivity as explained below, and then a selection of samples were reinjected using MS2 for further work on structural elucidation.

MS2 acquisition

MS2 acquisitions were performed in addition to MS acquisitions on randomly selected samples. The choice to separate these two acquisitions was made to obtain higher accumulation times for both analyses, thus attaining better sensitivity performances. Sensitivity
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was prioritized over run time, as the aim was to constitute digital archives possibly extensively re-usable, with accurate chemical information even for low-abundant compounds. MS2

acquisitions were performed either using data dependent acquisition or data independent acquisitions.

Data dependent acquisition

Data dependent acquisition was performed using SCIEX's Information Dependent Acquisition (IDA) methods. IDA experiments allow data analysis concomitantly to its acquisition, changing conditions accordingly; the selection of precursor ions on which dependent scans are performed is made during the analysis. This results in the acquisition of often high quality fragmentation spectra on a selected number of precursors. Since the aim was to obtained MS2 data for the highest numbers of chemicals potentially present at low concentrations (e.g. exogenous chemicals), the number of maximum precursor ions per scan was optimized by comparing four threshold values (i.e. 10, 20, 50 and 100) for the MS2 analysis of the 50compound optimization mix at 10 ng/mL in plasma. Three parameters were compared: firstly, the percentage of compounds successfully triggering MS2 analysis, secondly, the percentage of compounds for which a usable MS2 spectra is obtained (i.e. intensity of at least one fragment over 20 counts per second), and thirdly, the median number of spectra acquired by compound.

The results are summarized in Table II 

Table II.3 -Results of the Information Dependent Analysis (IDA) method optimization through the selection of adequate maximum precursor ions per scan for the mix injected at 10ng/ml on QTOF in ESI (-) and ESI (+) modes

It was observed more than 80% of compounds spiked at 10 ng/ml in plasma triggered MS2 analysis whenever the maximum number of precursor ions per scan was set above 20. On the other hand, the best performance on number of acquired spectra by compound was achieved with lower thresholds. Better performance for higher thresholds was expected, as lowabundant compounds in complex matrices are more likely to be picked when a higher number of candidate ions are authorized. However, legible spectra for those compounds were mostly obtained at lower thresholds. This may be explained by the fact that the set MS2 accumulation 

Sample preparation methods for non-targeted exposomics

This section aims to provide more details on the principle of the different techniques used in this PhD, however, the thorough investigation of the impact of sample preparation on the extraction of the components of the chemical exposome using blood plasma and blood serum samples will be done in Chapter III. As non-targeted methods aim to accurately detect a high number of unknown compounds in a given sample, the choice of a sample preparation technique is particularly challenging. Indeed, it is often recommended that non-targeted approaches rely on minimal sample preparation procedure to avoid loss of potential compounds of interest. However, when exploring the chemical exposome with complex biological matrices using LC, issues such as ion suppression may arise, resulting in a need for efficient sample purification. Moreover, human biological matrices are often only available in small quantities, meaning that SPM should use minimal matrix amount while allowing sufficient concentration to keep high sensitivity performances.

Based on the methods used in the literature, the investigation of the chemical exposome using blood plasma and blood serum samples may be done using, at least, four major types of SPM, from least to most selective: protein precipitation (PPT), supported liquid extraction (SLE), protein and phospholipid removal (PLR), and solid phase extraction (SPE). As mentioned earlier, a systematic evaluation of the impact of the SPM for non-targeted exposomics analyses is presented in Chapter III; the following paragraphs introduce the advantages of each type of SPM through a generic outline of the associated protocol. They each offer a different balance between sensitivity and selectivity, thus potentially offering a different vision of the chemical space.

Protein precipitation

The use of PPT methods is widespread in both metabolomics and recent exposomics applications 2,3,7 . It is the least selective of all the listed SPM types, as it only consists of precipitation the proteins present in the sample with a solvent (often methanol, acetonitrile, or a mixture of both) used at a 1:1 to 4:1 ratio compared to the sample volume [9][10][11][12][13] . The mixtures are then left for one hour at -20°C to allow precipitation to occur, after which a centrifugation is performed. The operating principle is schematized in Figure II.3.The supernatants are then collected and may be evaporated and reconstituted as needed, usually with a concentration factor of 1 to 3 [9][10][11][12][13] . Following this protocol, the filtrate can be evaporated and reconstituted with a concentration factor varying between 1 and 5 14,15 . It is usually possible to increase the concentration factor compared to PPT, as further sample purification is achieved, resulting in less concern for clogging, carry-over and matrix effect. The exact retention mechanism of the sorbents is not known, although some of them are hypothesized to retain the phosphate group inherent with all phospholipids with zirconia atoms on the stationary phase through Lewis acid-base interactions 16 . However, other mechanisms (such as apolar retention) may affect the retention of compounds. This will be systematically evaluated in Chapter III. Systematic evaluations of blood-derived sample preparation methods for HRMS-based chemical exposomics

Supported Liquid Extraction

SLE is also performed using a solid sorbent, which in this case acts as an interface between two immiscible liquid phases. The whole sample is loaded on the sorbent, which the aqueous sample soaks. As the entirety of the sample is retained on the sorbent, it is critical to ensure 

Solid Phase Extraction

SPE is a selective SPM that is performed using a multi-step protocol in order to remove interferents (e.g. proteins, salts) and concentrate potential compounds of interest. It first requires conditioning the solid phase, followed by sample loading. The solid phase is then rinsed with an aqueous solvent to eliminate interferents, and dried. Lastly, an extraction solvent is used to recover compounds of interest previously retained by the solid phase. A schematized operating principle is presented in Chapter II. Material and methods
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Figure II.6. This standard protocol contains significantly more steps than any other mentioned SPM, which may lead to poorer repeatability. However, it provides significant sample purification, and is traditionally used in targeted approaches to improve sensitivity. It is therefore a key type of SPM to evaluate when using human biological matrices. As eluates have a high purity level, similar concentration ratios to those used for PLR are considered, i.e.

between 1 and 5 [9][10][11] . 

Data processing methods for non-targeted exposomics

This section presents how the data processing of a HRMS chemical fingerprint is used to translate this acquired data to a list of features. As this list is used as a basis for the annotation and/or suspect screening steps, it is critical to ensure that the data processing steps taken allow the proper recovery of all the detected signals, including the low-abundant ones. Data processing is a crucial step as poor parameter optimization may result in the propagation of errors on the subsequent workflow steps. Moreover, it is a complex step that involves many substeps, each achievable through various algorithms that are not all implemented in the chosen data processing software. Therefore, its optimization for the intended application is critical, especially in the case of an interest in low-abundant compounds in complex matrices, where data quality may be limited due to sensitivity issues. Like for sample preparation, a thorough evaluation and optimization of the data processing step for the detection of lowabundant compounds in complex matrices is presented in Chapter IV. In the next paragraphs, the used data processing tools along with the four major steps and algorithms implemented successively during this work's non-targeted data processing are presented: peak detection, alignment, gap filling and normalization. processing steps in open source software, as this information is not available for vendor software.

Data processing tools

Peak picking

The first data processing substep is peak picking, during which features are detected in each individual sample.

First, MS spectra are individually centroided (i.e. represented by a single value, often the mass peak apex 20 ). Different algorithms are available depending on the chosen data processing software, such as centWave and Wavelet transform algorithms in XCMS and MZmine2 respectively or ADAP in MZmine2. The first two cited algorithms are continuous wavelet transform (CWT) algorithms based on matching m/z peaks to a "Mexican hat" or "Ricker" wavelet model 17 . These algorithms have been reported as particularly well-suited for noisy data 17 . Automated Data Analysis Pipeline (ADAP), on the other hand, is a complete data processing pipeline as underlined in the name. Although there is little available information on its specific mechanisms, the peak detection module within this pipeline is described to be particularly efficient in reducing false positive peak detection compared with CWT algorithms 21 .

Several parameters used to perform this step critically affect the data processing results, in particular the peak width (usually required as a minimum value or as a range) and the noise threshold.

Then, close-to-identical m/z values observed over consecutive scans are combined into chromatogram objects. These objects might be either a single peak, or a group of peaks with similar m/z and Rt. They therefore need to be deconvoluted into individual peaks. Several algorithms may also be used for deconvolution, relying on finding local minima or using the chromatogram curve's second derivative (i.e. Savitzky-Golay algorithm) to establish
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A schematized representation of the peak picking process is available in Figure II.7. depending on what is allowed by the software) was also found to provide the best results.

Alignment

Once individual peaks have been detected for each sample, an alignment must be performed to establish the common features among different samples. In this step, peaks with identical m/z and Rt (with a user-determined tolerance range) across samples are matched across the samples. A Rt correction can also be implemented at this stage; indeed, analytical drift on Rt is a frequent issue, and it is possible to adjust the data by shifting signals to align them between samples. MZmine2 offers the Join aligner and the RANSAC aligner. The first one only relies on the tolerance ranges specified by the user, with no additional adjustment. The second one (RANdom Sample Consensus, RANSAC) is an iterative algorithm which adjusts parameters from a mathematical model based on random observations, and checks the fit. It was determined that this algorithm provide a significantly better alignment performance than the Join aligner 17 . XCMS also offers two alignment algorithms called obiwarp and peakGroups.

Obiwarp relies on a center sample against which all other samples are aligned 23 . The peakGroups algorithm is based on peaks present in most or all samples. With this algorithm, the retention time deviation of peaks is established using a linear or a polynomial model. The obtained model is then extended to close peaks that are not present in all samples. This algorithm is presumably similar or identical to the one used in MS-DIAL, considering the requested parameters. However, in MS-DIAL, only specific user-determined features (often internal standards) are used to establish the linear or polynomial model.

These different alignment strategies were tested and evaluated for exposomics applications.

In the case of our selected analytical system, the tolerance ranges chosen for m/z and Rt were of 10 ppm and 2 min respectively. These values were determined based on vendor recommendation (m/z tolerance are typically set lower with Orbitrap analyzers compared to QTOF analyzers for instance) and visual examination of the raw data. An in-depth detail of software parametrization is presented in Chapter IV.

Gap filling

Following the alignment, the obtained feature matrix might contain missing data (i.e. no peak detected for a m/z × Rt combination in one or more samples). This may either be due to an absence of signal, or to a failure of the peak detection algorithm during the first data processing substep. All data processing software can therefore proceed to the gap filling step, where raw signal in the m/z × Rt region of interest is extracted, integrated and added to the matrix. This is usually done by exploring the raw data, but may also be performed with data collected at the peak picking stage. For the work presented in this manuscript, this step was systematically performed. As there is no parametrization for this step, it did not require optimization.

Normalization

Normalization of the feature areas is the last critical substep of data processing. It is often required to perform statistical analysis or to report any semi-quantitative data, as there is a need for area comparability between samples. While XCMS does not support normalization at this time, both MS-DIAL and MZmine2 offer to normalize feature areas through a userspecified list of reference compounds that should have identical areas in all samples (often internal standards). MZmine2 also offers linear normalization, where all areas are divided by a normalization factor (e.g. average intensity or total raw signal). In the context of this PhD, normalization strategies based on total ion chromatogram were systematically attempted with software that allowed it (i.e. MarkerView an MZMine2) and compared to raw results to determine relevance. This is notably demonstrated in Chapter V.
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In the context of this PhD work, a thorough comparison of data processing tools for this purpose was implemented. This work is presented in Chapter IV. This allowed demonstrating that adjustments still need to be made to these tools to be suited for exposomics applications, and that vendor software, while opaque, can be an efficient solution to non-targeted data processing.

Annotation methods and tools

At the end of the data processing step, a feature list each characterized by a m/z, a Rt and one area per sample is obtained. The last critical step of the non-targeted workflow is to link these features to chemical identities. This link may be formed in two ways: non-targeted screening, and suspect screening. Both have been used during this PhD, even though suspect screening was predominantly used. Non-targeted screening was notably used for the NORMAN Network's first collaborative trial in biota, as mentioned in the "Scientific valorization chapter, paragraph 4.

Non-targeted screening: statistical analysis

Non-targeted screening aims to assign a chemical identity to an experimental feature with no pre-existing idea regarding the compound's structure. This approach is highly challenging, as unequivocal structural elucidation of a compound requires advanced knowledge and means in many fields, such as mass spectrometry, nuclear magnetic resonance, organic chemistry, biochemistry, and bioinformatics. However, it is also very promising as a mean of expanding knowledge regarding the chemical exposome by uncovering entirely uninvestigated compounds.

In this work, univariate analyses were performed under an R environment (version 3.6.3).

Individual features were compared between samples by performing unpaired t-tests and computing p-values with an Adaptive Benjamini-Hochberg (ABH) 24 correction for multiple comparisons. Features presenting lowest adjusted p-values (i.e. < 0.01) were prioritized for the annotation process. Multivariate analyses were also performed to compare sample groups and establish whether there was an observable and explainable discrimination between groups. To this end, unsupervised Principal Component Analysis (PCA) and Partial Least Square-Discriminant Analysis (PLS-DA) were implemented under an R environment 25 .

Suspect screening tool

As mentioned in Chapter I, suspect screening is an approach that consists in linking experimental features to compounds that are suspected of being present in the sample a posteriori. The establishment of this link is a time-consuming task that has the potential to be (particularly in the case of the presence of a bromine and/or chlorine atoms), and plausibility.

Suspect screening predictors

Suspect screening approaches aim to link experimental features to a list of compounds postanalysis. Linking features to suspects can be done through various indicators, such as the often-used MS2 fragmentation pattern 18,26 . In the following paragraph, the three predictors implemented in the in-house tool and their relevance for MS1 suspect screening are presented.

They will be further developed in Chapter IV.

Mass-to-charge ratio

The mass-to-charge ratio (m/z) is the basis of all annotation and suspect screening approaches. Indeed, the precision of exact masses generated by HRMS analyses allow significantly restraining the number of chemical formulas that may be associated with a given signal. This predictor is therefore fundamental to implement a suspect screening approach.

Isotopic fit

Another parameter that can be used to elucidate a compound's chemical formula is its isotopic pattern. Indeed, the presence of certain atoms such as bromine, chlorine, or sulfur in a molecule is reflected in the compound's isotopic pattern due to the [START_REF] Hemmler | Tandem HILIC-RP liquid chromatography for increased polarity coverage in food analysis[END_REF] Br/ [START_REF] Jandera | Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. A review[END_REF] Br, 37 Cl/ 35 Cl, and 34 S/ 32 S ratio values of approximately 1.00, 0.32 and 0.05 respectively. This information is particularly relevant in the case of some compounds classes such as pesticides, which often include one or more bromine or chlorine atoms. compound's affinity to the column's stationary phase compared to the mobile phase; in the case of many LC-HRMS systems, this translates to the compound's polarity (even though caution must be taken to not overgeneralize). This parameter is represented by a logP value, which can allow a distinction between two compounds having an identical chemical formula.

Despite the potential of such a predictor, the retention time is not often implemented in annotation or suspect screening software currently available, except with a user-specified library containing experimental retention times 17,18 . While the experimental retention time is the ultimate parameter to reach a level 1 annotation according to Schymanski et al. 27 , it requires the use of a standard injected on the same system. Yet, acquiring standards for a large number of compounds is not feasible due to limitations in terms of both financial resources and commercial availability. Thus, Rt values may also be predicted through various algorithms such as RTI 28 , Retip 29 , or classically-used linear regressions using logP values 30 .

Although these predicted values are less reliable than experimental values, they can help prioritize the most likely annotation of a feature and drastically reduce false positives. To date, no major screening tool implements the use of predicted Rt values to assist this process, which is why it was implemented in the in-house software. 

Library module: generating suspects data

The library module allows indexing and computing the reference data for the list of suspects.

Every compound listed in the library must be linked to a chemical formula, a unique identifier such as the SMILES, and if available, Rt values (experimental or predicted) and an logP value.

The library then outputs data regarding the compound's m/z, theoretical isotopic pattern, and Rt. Indeed, the chemical formula allows calculating nine exact masses: the monoisotopic mass, the masses of four positively charged adducts ([M+H] + , [M+Na] + , [M+K] + , [M+NH4] + ), and the masses of four negatively charged adducts (

[M-H] -, [M-H2O-H] -, [M+Cl] -, [M+FA-H] -).
Moreover, the formula allows the computing of theoretical isotopologue probabilities P0, P1, and P2 (i.e. first, second, and third isotopologue) as well as their masses M0, M1 and M2 through a polynomial-based algorithm adapted from the MIDAs software 31 . Four parameters are computed and presented to the user: mass differences M1-M0 and M2-M0, as well as probability ratios P1/P0 and P2/P0. Lastly, the logP value given by the user can be used to predict a Rt value under the condition that the library contains at least 20 compounds that have both an experimental Rt and a logP value indicated.

The library used for this work contains close to 6000 compounds, which were compiled from various sources:

(i) Xenobiotics previously reported as detected in blood plasma or serum in the literature [32][33][34][35] ;

(ii)

Compounds reported in open access databases Human Metabolome Database 36 , Exposome Explorer 37 , Foodb 38 , and the Normal Suspect List Exchange 39 The compounds listed in the library can be modified depending on the research question. Once all the predictors' data is calculated, the suspect list can be compared to the experimental features in the suspect screening module through the computing of confidence indices.

Suspect screening module: computing confidence indices

The suspect screening module requires a feature list obtained from any data processing tool, containing the following columns: m/z, Rt, and areas for all analyzed samples. Each feature is compared to compounds from the suspect list through confidence indices computed on the three predictors presented in paragraph 4.2.1. CI values are computed according to Equation II.1.

CI i = 1 - | i feature -i suspect i suspect |  i
Equation II.1 -Expression of Confidence Indices (CI) for all predictors (i= m/z, Rt, or An/A0 ratio, where An refers to the area of the n th isotopologue). Δi is a confidence interval and is specifically defined for each predictor as the maximal acceptable deviation from the reference value. 

Isotopic fit

The matching between a feature and a suspect's isotopic fit is evaluated in a stepwise manner.

At first, the software determines which isotopologue should be investigated. As mentioned earlier, compounds containing chlorine, bromine, or sulfur atoms present a distinctive isotopic pattern involving a high abundance of the second isotopologue. If one of these compounds is the considered suspect, as well as if a [M+Cl] -adduct is considered, the software will focus on the second isotopologue. The first isotopologue will be considered for all other compounds and adducts.

Then, the software will establish whether there is a feature in the dataset that may be the M+n (n=1 or 2 for first or second isotopologue) of the annotated signal. To do so, it will compare the mass differences between two features and the suspect's theoretical Mn-M0 value computed by the library module. A first temporary CI is computed based on the m/z difference proximity between suspect and feature, with the same Δm/z values as the ones presented in paragraph The Rt CI was computed for all available Rt values for a given suspect, whether experimental or predicted. However, the global CI combining all predictors was computed using only the CI associated to the most reliable Rt available (i.e. experimental, then RTI, then Retip, then logP).

The in-house software was designed to compute CI on three chemical predictors to establish the similarity between features and suspects. The global CI is then computed as an average of all the available CI values. Thus, each suggested annotation generated by the software is scored between 0 and 1 on all the mentioned predictors, as well as overall. The global CI is also preceded by a "G3", "G2" or "G1" mention, which accounts for the number of predictors taken into account in its computing.

In the context of exposomics applications, where compounds of interest are often lowabundant in complex matrices and therefore often do not trigger MS2 acquisition, a tool such as this software which relies on MS1 predictors is a valuable help in assisting pre-annotation.

Indeed, while manual curation is still required to confirm or infirm the suggested annotations, its discriminating scoring system allows prioritizing plausible annotations by drastically reducing false positives.

Manual curation

The in-house software was created to assist suspect screening approaches that provides preannotations. These suggested chemical identities must then be manually curated to rule out false positives (i.e. incorrectly identified chemical). This manual curation process comprises four main steps. Firstly, the extraction blank is manually checked to ensure that the compound's presence is not linked to contamination during the sample preparation process. If the compound is present in the blank, the blank area is subtracted from the area in the samples. Secondly, the feature's isotopic pattern is verified to ensure coherence with the suggested chemical formula (i.e. verification of whether the investigated m/z is a pseudomolecular ion, and of the isotopic ratios in case it was not performed by the software).

Thirdly, the suspect's fragmentation pattern should be compared to a reference spectra, which can be obtained through online databases 40 , or through in silico fragmentation models 41,42 .

This pattern is used to partly or entirely confirm molecular structure (e.g. positional isomers or diastereoisomers may not be distinguishable). Other parameters such as polarity (via logPpredicted retention time) may help narrow the suggested annotation. Lastly, the plausibility is verified through a database search of the suggested formula, and a comparison of the preannotation with other possible close structural matches. For instance, if there is a strong structural resemblance between a well-documented endogenous compound and an exogenous compound never documented in blood, plausibility would dictate to rule in favor of the former.

Biological samples

The optimized workflow was then applied in a large-scale application. Initially, this application was to be made using blood plasma samples obtained from a Danish mother-child cohort dating back to 1988-89. More specifically, 256 blood plasma samples from pregnant women The non-targeted characterization of biological samples strongly depends on the methodological choices made throughout the workflow. As the first critical step in the workflow, sample preparation must be diligently chosen and optimized. Indeed, this choice is highly decisive, as the compounds lost to sample preparation step cannot be recovered through any optimization of the following steps in the workflow. Since new data processing and annotation tools are continuously developed, it is crucial to obtain optimized HRMS fingerprints of often precious samples, that may be reprocessed to broaden the knowledge of the chemical exposome. When choosing and optimizing the SPM, the right middle ground has to be found between the sensitivity required to detect often low-abundant exogenous chemical compounds and the selectivity needed to eliminate highly abundant endogenous compounds responsible for ion suppression. As described in Chapter II paragraph 2, there are many categories of SPM available to prepare plasma or serum samples, with varying degrees of selectivity. The objectives of this chapter were to systematically evaluate the performance of twelve SPM to detect low-abundant compounds in complex biological matrices, and to document their effect on the visible chemical space.

In the following article, twelve SPM (seven PLR methods, three SPE methods, one SLE method and one PPT method) were systematically evaluated for the characterization of the chemical exposome through blood plasma and serum samples. This evaluation was performed based on the implementation of complementary criteria rarely used to evaluate non-targeted methods, namely quantitative (e.g. recovery, repeatability, matrix effect) systematically used in targeted approaches, and qualitative (e.g. time and ease of implementation) criteria. This evaluation process allowed documenting the observable analytical perimeter of the chemical exposome profiled with each of these SPM. Delineating the observable analytical perimeter of each SPM is crucial for further interpretation of HRMS datasets.

The SPM were evaluated using a stepwise approach. Firstly, the 50-compound set and non-spiked samples) and ease of implementation were evaluated, resulting on the further selection of two appropriate SPM. Lastly, those SPM were applied to cohort plasma and serum samples. Annotated compounds' areas were compared for the same samples prepared with one SPM or the other to assess the impact of the SPM choice on the visible chemical space.

(
Results of these comparisons are described and discussed throughout this article. A simple sample preparation workflow involving both SPM was proposed to broaden the visible chemical space as they appear complementary.

Abstract

Sample preparation of complex biological samples can have a substantial impact on the coverage of small molecules detectable using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). This initial step is particularly critical for the detection of externallyderived chemicals and their metabolites (internal chemical exposome) generally present at trace levels. Hence, our objective was to investigate how blood sample preparation methods affect the detection of low-abundant chemicals and to propose alternative methods to improve the coverage of the human internal chemical exposome. We performed a comprehensive evaluation of twelve sample preparation methods (SPM) using phospholipid and protein removal plates (PLR), solid phase extraction plates (SPE), supported liquid extraction cartridge (SLE), and conventionally used protein precipitation (PPT). We implemented new quantitative and qualitative criteria for non-targeted analyses (detection frequency, recoveries, repeatability, matrix effect, low-level spiking significance, method detection limits, throughput and ease of use) to amply characterize these SPM in a step-by-step-type approach. As a final step, PPT and one PLR plate were applied to cohort plasma and serum samples injected in triplicate to monitor batch repeatability, and annotation was performed on the related datasets to compare the respective impacts of these SPM. We demonstrate that sample preparation significantly affects both the range of observable compounds and the level at which they can be observed (more than 40% of total feature only detected using one SPM). We propose to use PPT and PLR on the same samples by implementing a simple analytical workflow as their complementarity would allow the broadening of the visible chemical space. 

Introduction

As the impact of environmental exposures and particularly chemical exposures to the global burden of chronic disease is uncovered 1,2 , the need for sensitive, robust and comprehensive detection of exogenous chemicals, their biotransformation products and their metabolites present as complex mixtures in human biological matrices grows. During the last few years, the technological progress regarding high-resolution mass spectrometry (HRMS) has allowed to simultaneously and reproducibly profile thousands of compounds (including both endogenous and exogenous chemicals) in biological samples using non-targeted approaches [3][4][5][6] . Concomitantly, significant developments and optimizations have been made on bioinformatics tools to improve their suitability to peak pick and annotate low-abundant chemicals in complex matrices, which are of particular interest for exposomics studies 7,8 .

However, optimizations are still lacking to ensure that the first analytical step of the workflow can profile unbiasedly the internal components of the human chemical exposome (i.e.

exogenously derived chemicals accumulating in humans). A special focus on analytical methods allowing the detection of exogenous chemicals is necessary since concentrations of exogenous chemicals such as pesticides and plasticizers are generally 700 times lower than those of endogenous compounds in blood-derived samples 9,10 . Considering the widespread use of liquid chromatography (LC) for compound separation coupled to HRMS, the presence of exogenous chemicals at trace levels in complex biological matrices (i.e. pg/ml) raises the question of sensitivity issues partially due to ion suppression 11 . Hence, a particular attention must be payed to the sample preparation step for exposomics applications to allow elimination of abundant interfering chemicals while ensuring minimal loss of compounds of interest.

Furthermore, the determination of quantitative/qualitative parameters must be better defined to document the perimeter of the internal chemical exposome profiled with a given method 12- 14 .

The most commonly described sample preparation methods (SPM) for metabolomics applications of plasma or serum samples rely on solvent-based protein precipitation (PPT), and use cold methanol or acetonitrile with ratios of solvent-to-sample ratio between 1 and 4 11,[15][16][17][18] . For mid-range spiking concentrations (i.e. 800-5000 ng/mL), PPT was described as allowing high recovery rates 15 , and producing more information-rich samples with a slight decrease in repeatability when using acetonitrile compared to methanol 11 . Overall, PPT is one of the least selective preparation methods. However, the presence of abundant compounds such as phospholipids in PPT extracted blood sample may be detrimental for the detection of low-abundant compounds 19 and/or method repeatability. Coupled with the need to extend column life and within batch analytical drifts, particularly in the case of high-throughput 11,15,16,[19][20][21][22] . LLE offers sample decomplexification while maintaining good coverage among polar and non-polar compounds 23 . However, due to repeatability issues linked to emulsification and the need for high sample volume, supported liquid extraction (SLE) can be preferred to LLE for blood-derived sample preparation 24 . PLR and SPE allow further sample purification physically and chemically, as their packed-bed structure filter large precipitated proteins and aim to retain phospholipids 25 . When applied on samples with midrange spiking concentrations, these SPM tend to perform better in terms of matrix effect than PPT 15 , and have been described as complementary to PPT in terms of metabolome coverage 16 .

Comparisons of SPM for plasma and serum samples to attain an optimal compromise between sensitivity and selectivity have been published, but have either relied on evaluating method performance at the non-targeted scale 16 , or used only mid-concentration range spiking levels and endogenous spiking compounds (n < 20) 11,15,20 which is not suitable for exposomics applications. One study has however offered a performance evaluation for a SPE plate on exogenous compounds in lower concentrations 19 . To date and to the best of the authors' knowledge, there is no reported large-scale comparison of SPM for both blood plasma and serum oriented towards human chemical exposomics applications. Thus, the objective of this work is to evaluate twelve SPM for the chemical exposomics analysis of plasma and serum samples, with a focus on low-abundant compounds. Considering the complexity of human blood-derived samples in terms of number and concentration of chemicals, a large set of exogenous and endogenous spiking compounds (n=50) with a wide range of physicalchemical properties (0.07 ≤ logP ≤ 6.99 ; 133.0640 ≤ Monoisotopic mass (Da) ≤ 496.2607) was used to cover the chemical space 26 . Quantitative and qualitative criteria (i.e. respectively detection frequency, recoveries, repeatability, matrix effect, low-level spiking significance, method detection limits, and time of implementation, complementarity) were used to amply characterize these SPM in a step-by-step-type approach aiming to compare the reference PPT with alternative SPMs. The best-suited SPM were applied to cohort plasma (n=8) and serum (n=10) samples which were then injected in triplicate to monitor within batch repeatability, and annotation was performed on the related datasets to compare the respective impacts of these SPM on the obtained results at a larger scale. 

Sample preparation methods comparison

The ability of twelve SPMs to detect low-abundant chemicals in biological matrices were evaluated using a step-by-step comparison process. The methodology is presented in Figure A1 andA2. The preparation methods selected through these two experiments were then applied to cohort serum (n=10) and plasma (n=8) samples and compared. SPM that were found adequate on all three criteria (i.e. recovery between 70-120%, repeatability below 20%, and low matrix effect) were preselected and further compared to the conventionally used solvent-based PPT.

Comparison to PPT at real-life concentrations

The preselected PLR plate (Phree -Acetonitrile (ACN)), the preselected SPE plate (StrataX), as well as a combination of these two preparation methods, were compared to PPT, which is a reference method for metabolomics 21,22,28 . For each of these four methods, plasma and serum homogenate samples (n=4 each) were spiked to a real life concentration (10 ng/mL) in plasma and serum. Background contamination was assessed using similar but non-spiked plasma and serum homogenates (n=4 each) and an extracted solvent blank (n=1). Detection frequency of compounds in spiked versus non-spiked samples and repeatability (using CV computations) were determined for each SPM. Signal-to-noise ratio (S/N) was retrieved for each compound and SPM. Spiking significance was assessed by computing p-values (unpaired t-tests) on compound IS-corrected areas in spiked versus non-spiked samples (threshold set at p = 0.05). Lastly, SPM were ranked on speed of implementation. Based on these criteria, two SPM were compared at the non-targeted scale on cohort samples.

Final comparison

The Phree PLR plate and PPT were used to prepare serum and plasma cohort samples (n=10 and 8, respectively). Batches included quality control (QC) samples and each sample was injected in triplicate. Analytical repeatability was assessed at the targeted scale using IS peak areas in QC and sample replicates, and at the non-targeted scale using the criteria proposed by Want et al. 28 , according to which at least 80% of features found in at least 80% of QC should have a CV below 30%. Features varying significantly between the two SPM for each cohort were identified using t-tests (p-value threshold set at 0.01). These two data subsets were screened using an in-house automatized suspect screening tool 8 to characterize the impact of each SPM. Annotated features' S/N and fold changes (FC) between methods were also ). An automatized in-house screening tool scoring proximity of m/z, Rt (experimental and predicted 29,30 ) and isotopic pattern between suspects and features was used 8 . Manual curation on MS/MS data was performed to confirm results obtained through the assisting suspect screening tool. a sample-to-blank area ratio of more than three for at least one sample were prioritized for the annotation process. Annotation was conducted manually, relying on chemical information databases 31,32 , experimental MS/MS databases 33 , and in silico fragmentation prediction tools 34,35 . Confidence levels based on recommendations made by Schymanski et al. (2014) 36 were provided in the SI, Tables A5a andA5b for serum and plasma samples respectively. A3. Median spiked compound recovery varied between 56.3% (PLUltra) and 102.6% (PLD). PL and PLUltra are seemingly the least adequate SPM for the intended application, only allowing a median compound recovery of 61.7% and 56.3% respectively. SPM recovery performances for individual compounds indicated that PL and PLUltra specifically performed less adequately on polar compounds (0.07 ≤ logP ≤ 1.73). This may be explained by the fact that both of these plates retain phospholipids using a Lewis acid-base interaction between the stationary phase and the polar esterified phosphate group found in phospholipids 37 (2016) 15 . StrataX was the best-performing SPE cartridge at both spiking levels (52.0% and 47.9% at 20 and 150 ng/mL).

Results and discussion

Overall, Phree ACN was the best compromise among PLR plates between high compound recovery, high repeatability and low matrix effect in the case of low-level spiking. Similarly, for SPE cartridges, StrataX was identified as the most appropriate given the considered criteria.

Lastly, the SLE cartridge did not allow sufficient homogeneity in compound recovery to be selected for the next SPM comparison step.

Comparison to PPT at real-life concentrations

The preselected SPM Phree ACN and StrataX were compared to the commonly used solventbased PPT on plasma and serum samples. Moreover, as relatively high matrix effects were observed namely for StrataX, a combination of both preselected SPM, further referred to as for individual compounds are available in the SI, Table A4. Some differences were observed between matrices; indeed, median S/N values were lower for plasma for all SPM except Phree, and semi-quantification was poorer for this matrix when using PPT or StrataX. Observed areas are smaller in plasma samples overall (although not for all compounds), which could partly explain both the lower S/N values and area irregularities. This is consistent with prior reports of compound-dependent anticoagulant-caused ion suppression in plasma samples. 38 All SPM allowed adequate spiked compounds detection frequencies in both matrices ( Contrary to this tendency, some compounds, such as chlorpyrifos and tebuconazole in plasma, present a higher MDL for Phree compared to PPT. Similarly, pravastatin is only detected in samples prepared with PPT in both matrices. Overall, these differences in MDL highlight that the chosen SPM has an effect on both the range of visible compounds and the level at which they are reliably observable.

Further comparison of PPT and Phree ACN was performed by using both SPM to prepare serum and plasma cohort samples (n=10 and 8, respectively). Quality control was performed on the injected batches, both at the targeted and non-targeted scales. Detailed results of the quality control criteria are presented in the SI, Figure S1. Repeatability was assessed at the non-targeted scale through area CV of features found in more than 80% of QC samples. For both SPM and both matrices, more than 80% of QC features presented area CV of less than 30%, which validates the criterion suggested by Want et al. (2010) 28 . Median area CV of all QC features was always less than 20% (11-13%). Similarly, median area CV of IS spiked in QC samples and in cohort samples was always less than 10% (respectively 2-6% and 2-8%).

There was little observable difference between SPM or cohorts for these four quality control criteria regardless of the considered scale (i.e. targeted or non-targeted). Lastly, Euclidian distances between analytical replicates were computed. Although all values for median Euclidian distances were satisfactory (<12%), a difference was observed between cohorts, as plasma from the Danish cohort produced more repeatable results compared to serum from Pelagie for both SPM. Moreover, plasma samples prepared using PPT were more repeatable than those prepared using Phree (p-value<0.01), whereas no significant effect of SPM could be observed on serum samples.

Following the validation of quality control criteria, suspect screening was performed on the datasets obtained from both cohorts and both SPM using an in-house automatized suspect screening tool 8 , followed by manual curation using fragmentation data. In total, 44 and 41

xenobiotics were annotated in the Pelagie serum samples and the Danish plasma samples, respectively. Maximum fold changes (FC) were computed between both SPM for all annotated In serum, 93% of annotated xenobiotics presented FC values below 0.5 or above 2, whereas it was the case for only 70% of compounds annotated in plasma, seemingly suggesting a more pronounced effect of SPM on serum than on plasma. As this observation may be skewed by the low amount of annotations compared to the total number of features (>20,000), this tendency was further investigated by computing FC values on QC samples. Results are presented in Table III.1. 38,39 . Importantly, in both matrices, more than 40% of feature are only detected using one SPM (43.2-54.0% in plasma and serum, respectively). This highlights the complementarity of these SPM, as they only partially overlap. The use of both PPT and Phree therefore allow to broaden the visible chemical space.

Xenobiotics of various origin were detected using Phree and PPT SPM, including environmental pollutants (e.g. diethylphthalate and chlorothalonil metabolite 4-hydroxy-2,5, quantitation. Yet, the choice of SPM evidently skews the visible information obtained from a sample by either completely preventing the detection of certain compounds, or conditioning it to higher levels in matrix, which may never be reached due to low exposure and/or lack of bioaccumulation. This is not negligible when considering that low-level exposure may still result in toxicity in the case of chronic exposure or low-level exposure to biologically active compounds. For example, known potent toxicant pentachlorophenol is favored by PPT, as is toxicant metabolite triclosan sulfate. In light of this context, biological sample preparation for non-targeted approaches should ideally include multiple SPM to allow a more holistic view of the exposure. Considering the two retained SPM in the case of plasma and serum, this could be achieved by first performing a PPT, followed by a division of the extract between an injection as is (after proper reconstitution) and a further purification using a Phree PLR plate. As biological sample availability is often limited in volume, this suggested sample preparation workflow requires additional effort in miniaturization throughout the process, from the preparation in itself to the injection step. Nevertheless, the gain in terms of coverage of the human internal exposome in both range and depth makes these improvements in efficiency unmistakably worthwhile.

Conclusion

Twelve SPM were systematically compared for the HRMS-based non-targeted detection of low-abundant chemicals in complex blood-derived matrices using an innovative methodology based on a large and diverse spiking set at exposure-relevant concentrations. We demonstrated that SPM choice must be investigated with an application-appropriate design, as spiking levels and choice of spiking compounds may greatly affect the understanding of the SPM's impact on non-targeted assays results. The blood-derived matrix choice should also be investigated, as it may affect the observed chemical space. Based on the criteria used in this work, we showed that phospholipid and protein removal plate Phree and the classically used protein precipitation are both well suited to investigate the chemical exposome in serum or plasma samples. Moreover, they can both be used on the same samples, as their complementarity allow the broadening of the visible chemical space.
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Once an optimized analytical fingerprint of a sample is acquired, this data must be transformed to a list of features, each characterized by a m/z, an Rt, and an area. Features are then aligned for all samples, and annotation or suspect screening may be performed. While many software tools are available to process non-targeted data, most if not all were developed for metabolomics applications. In the case of exposomics, as compounds of interest are often lowly abundant, it is crucial to ensure that data processing tools are capable of accurately disentangling these signals from the noise. The aligned feature lists generated by the data processing step are then used for annotation. As for data processing, there are many available tools relying on various principles to achieve this step. The appropriate tool must thus be found and optimized (i.e. relying on the suitable parameters, implementing a relevant library, etc.) to improve efficiency and lower the number of false positive annotations. A key step of the exposomics workflow therefore consists in optimizing these tools to process non-targeted data.

This chapter is the result of two separate optimization steps (i.e. data processing and suspect screening) condensed in one manuscript published in Analytical Chemistry.

The first objective of this chapter was to systematically optimize and evaluate four software tools for the processing of non-targeted exposomics data. This was performed by comparing the processing results of data obtained from plasma and serum samples spiked using a 45compound set spiked at 10 ng/mL (see Chapter III, paragraph 4.2.2). Each tool was first optimized individually, manually and with automatized parametrization tools when available (i.e. IPO and Autotuner for XCMS), and the best datasets were compared among the tools.

Evaluated parameters were detection frequency of spiked compounds, computing time, ease of implementation, area integration repeatability, and detection significance (i.e. significance of the difference in areas between spiked and non-spiked samples).

The second objective of this chapter was to describe the newly developed suspect screening tool . It relies on different chemical predictors (i.e. m/z, experimental and/or predicted retention time, as well as isotopic fit) to score the proximity between features and suspects, and therefore provides an easy-to-read indicator of each annotation's reliability. The modelling of these predictors is described, and their relevance and accuracy are illustrated through an application to non-spiked samples.
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Results of these comparisons are described and discussed throughout this article.The inadequacy of existing automatized parametrization tools built for metabolomics applications is discussed. Moreover, the need for tailored and optimized tools for processing HRMS-based exposomics data is underlined. Furthermore, the usefulness of confidence indices for suspect screening implemented in the in-house tool is demonstrated as an efficient way to prioritize annotations for manual curation. 

Introduction

Recently, the technological advances of cutting-edge high-resolution mass spectrometry (HRMS) has set the stage for a new paradigm to assess human exposure to complex mixtures of xenobiotics. 1 Using HRMS platforms coupled to liquid chromatography (LC), it is now possible to profile several thousands of small molecules (<1500 Da) in a biological sample during a single analysis, including both endogenous and exogenous molecules and their transformation products. 2,3 The holistic characterization of exogenous chemical mixtures accumulating in human biological samples (i.e. the internal chemical exposome) using HRMS platforms would be a step forward to investigate the environmental aetiology of many multifactorial chronic diseases with an unprecedented precision. 1,4,5 It is therefore paramount to break down the remaining technological barriers and methodological issues to be able to perform large-scale exposomics studies using HRMS-based methods.

One of the obstacles to overcome is the analytical sensitivity issue which is currently preventing the detection of low-abundant exogenous chemicals in complex biological matrices. 6,7 Concentrations of environmental contaminants can be on average 1,000 times lower than concentrations of endogenous chemicals and food chemicals in human blood. 8 Improving the analytical sensitivity of LC-HRMS platforms is therefore a necessary step to go from metabolomics-oriented studies toward exposomics studies. 2,3 It is also critical to ensure that bioinformatics tools designed to process LC-HRMS data can disentangle chemicals' small signals from the noise. To this aim, optimization of adjustable parameters in software available for processing raw data is a key step to ensure that even the low abundant chemicals of interest will be picked up. 9,10 Software packages such as the IPO 11 or Autotuner 12 have already been developed for automated optimization of XCMS parameters to improve the detection of reliable signals. Studies comparing automated optimization and manual selection criteria for metabolomics applications have already been performed. 13 However, these studies are missing for exposomics applications where the aim is also to include infrequent signals often

close to the noise that can be used to identify unrecognized exposure. 14 Besides sensitivity, another bottleneck preventing comprehensive characterization of exogenous chemical mixtures present in biological samples is the annotation of the thousands of signals present in HRMS datasets. Over the years, many annotation tools (e.g. CAMERA,

ProbMetab, MolNetEnhancer and MetAssign) relying on analytical predictors (e.g. m/z, Rt, isotopes) and correlation/clustering methods have been developed for metabolite annotation. [15][16][17][18] More recently, annotation tools such as xMSannotator 19 have incorporated biological correlations in addition to analytical correlations while other tools are now integrating MS/MS [20][21][22] to improve metabolite annotation. Besides these annotation tools, the qualitative

Chapter IV. Optimizing data processing for exposomics applications: Uncovering the potential of low-abundant peaks and MS1 data 140 suspect screening approach is also being increasingly used to prioritize relevant xenobiotics for human exposure assessment. 23,24 Suspect screening uses exact mass of suspects from in-house libraries/database as a priori information. 25,26 Compared to other annotation tools which often rely on large databases such as HMDB 27 , KEGG 28 or ChemSpider, 29 the suspect screening strategy can be less time-consuming in particular if the list of suspects arises from a systematic prioritization strategy. However, predictors other than exact mass must be added in the suspect screening workflow to decrease the rate of false positives and therefore limit the number of putative annotations that need manual curation.

Here, we first compared the ability of metabolomics software packages developed for automated optimization of XCMS (IPO 11 non-spiked samples (threshold set at p=0.05). The semi-quantification performances were the third parameter implemented; the percentage of spiked compounds with area coefficient of variation (CV) below 30% were compared for all software according to the criteria proposed by Want et al. 33 Independent peak integration of all spiked compounds were carried out using Sciex OS software (v1.2) to validate the accuracy of these 3 parameters. The fourth parameter was computing time (computer configuration available in SI Table A2) and the last one was ease of implementation (based on presence and user-friendliness of GUI, as well as number of customizable parameters). Mass-to-charge ratios were calculated in-house using atomic monoisotopic masses obtained through the MIDAs C++ program (Molecular Isotopic Distribution Analysis) 34 with the Fast Fourier Transform (FFT)-based method (nucleon domain).

Experimental section

Retention time

Four tools were used to attempt modelling Rt. Two models were first constructed using a training set of 134 standards and then evaluated using a set of 30 standards (see SI Table

Chapter IV. Optimizing data processing for exposomics applications: Uncovering the potential of low-abundant peaks and MS1 data 143 A3). Experimental Rt for these standards were acquired from repeated injections (n=4). Simple regression linear models were used; adjusted coefficients of determination R²adj were computed to describe correlation between variables and standard deviation of predictions.

Models were considered validated if a R² value greater than 0.7 was reached.

The first Rt prediction model was constructed using octanol-water partition coefficients (logP).

Although compounds may be ionized in the considered experimental conditions, logP was preferred to logD since experimental logD values are hardly available. LogP values were extracted from PubChem. 35 Prediction bands (99%) were determined to estimate confidence in A2/A0 ratio value.

Suspect screening annotation tools

A two-part Visual Basic program was used to automatize part of the suspect screening annotation step. The two parts of the suspect screening program were created to respectively generate the predictors for a suspect list database and then test the correlations between suspects and markers from HRMS datasets. The database includes 2198 compounds commonly detected in human blood referenced in databases such as HMDB 39 or the Blood Exposome Database. 40 The second part of the program, which performs the pre-annotation, scans individual markers (Mass × Rt), evaluates their proximity to the suspects using Confidence Indices (CI), and prioritizes the best candidate, if any. CI were built for each predictor as shown in Equation IV.1.

A global confidence index (GCI) was also built as the mean of the three CI.

CI i = 1 - | i feature -i suspect i suspect |  i
Equation IV.1 -Expression of Confidence Indices (CI) for all predictors (i= m/z, Rt, or M2/M0 ratio). Δi is a confidence interval and is specifically defined for each predictor as the maximal acceptable deviation from the reference value.

The maximal acceptable deviation for mass Δm/z was defined based on instrumental The ΔA2/A0 value was also set by using the empirical rule: RMSE of A2/A0 error (ratio of integration of experimental signals vs. ratio of theoretical abundances) as presented in 6.3 was multiplied by three. The calculation of the CI for this last predictor is based on a step-wise approach. Indeed, the software tool first provides the likeliness of presence of the M2 isotopologue in the feature table, and then proceeds with the abundance A2/A0 ratio computing.

A more detailed representation of this tool's workflow is available in SI Fig. B1.

This in-house suspect screening tool was compared to four already available annotation and/or suspect screening software tools: xMSannotator, 19 MS-DIAL, 20 msPurity 21 and MZmine2. 30 The following criteria was used for comparison: possible use of in-house libraries or existing databases, possible use of experimental and/or predicted Rt for annotation (as opposed to clustering), use of MS2 predictor, scoring, and prioritization of annotations.

Data availability

The data files and associated metadata are available as .mzML in the MetaboLights repository 41 under the identification number: MTBLS1785.

Results and discussion

5.1.

Optimization of HRMS data processing tools for exposomics studies Independent peak integration of all spiked compounds ensured they provided reliable signals.

In plasma (serum), signal/noise values ranged from 38 to 1.3E+7 (23 to 1.4E+6), median m/z and Rt shifts were 1ppm and 0.1mn (1ppm and 0.1mn), peak asymmetry factors were averaging at 1.47 (1.41) and all below 1.86 (1.76), and area values were above 3.6E+3

(2.7E+2).

XCMS: automated optimization versus manual selection criteria

The ability of two automatized optimization tools IPO and Autotuner, which were both developed for metabolomics applications, were tested for R-implemented open source XCMS (Fig. 2). IPO-optimized parameters allowed detection of only 29% of spiked compounds in plasma (20% in serum), but with a maximal semi-quantification score. Since IPO optimization

Chapter IV. Optimizing data processing for exposomics applications: Uncovering the potential of low-abundant peaks and MS1 data 146 parameters rely on "reliable peaks" which are defined based on the identification of 13 C peaks using 3 criteria relative to the 12 C peak, 11 we can only assume that these criteria were too stringent for many spiked compounds although they produced relevant analytical criteria for both detection (see above) and annotation (including relevant MS/MS spectra). Since low abundant peaks did not necessarily answer the algorithm's criteria, parameter optimization such as "max peakwidth" were too high (30.7s) for most of these signals. Autotuner, on the other hand, allowed the detection of 73% of spiked compounds in both matrices, but less than 20% of them had an area CV lower than 30% on four replicates. The "max peakwidth"

parameter is tuned to a low value (less than 10s), which is not coherent with the width of the considered compounds, leading to a splitting of peaks and thus a less reliable integration value.

These results highlight the necessity to adapt tools built for metabolomics to the needs of chemical exposomics, and underlines the already described efficiency of manual tuning when dealing with less optimal peaks. 13 XCMS was then tested using four sets of parameters (Figure IV.3). Firstly, the set further referred to as "default parameters" was determined by a priori adaptation of suggested parameters for detection of low-abundant chemicals in complex matrices. Secondly, through visual examination of the data (data not depicted), the "peakwidth" parameter from the "centWave" function was determined to be sensitive and was optimized: the minimal time for a peak identification was set at 1 second to account for narrow signals. This allowed to increase the detection percentage of spiked compounds of 18 points in plasma (64 to 82%) and 11

points in serum (60 to 71%). As for the ADAP pipeline for MZmine2, parameters were optimized through data previsualization. Wavelet range parameter was identified as critical, and the bracket 0.10-1.00 was determined to be most appropriate. The two optimized pipelines were compared at the lowest attainable noise level with the available hardware (10 for CWT, 50 for ADAP). ADAP presented better results in terms of spiked compounds detection percentage (82% to 96% in plasma and 84% to 89% in serum).

For MarkerView TM and Progenesis QI vendor software, only few parameters can be modified and the most critical one is the noise threshold. For MarkerView TM , three lower values (e.g. 50, 20 and 10) were tested in addition to the default (100). Intensity threshold value of 10 was determined to be optimal, with a detection of 89% of spiked compounds in plasma and 82% in serum. For Progenesis QI, the automatic sensitivity method was used and sensitivity values "default" and "more" were tested. The "more" value was selected as optimal, as compared to the default, detection of spiked compounds increased 18 points for plasma (62 to 80%) and 11

points for serum (67 to 78%).

Comparison of optimized data processing tools to detect low abundant compounds

The ability to detect low-abundant chemicals in plasma and serum was assessed for the 4 software tools (Figure IV.4). Detailed results for each spiking compound and all tested parameters is available in SI (Table A5 and Figure B4). For both matrices, MZmine2 offers the best detection frequency of spiked compounds. As for detection significance between spiked samples and non-spiked samples, all tools allowed to reach the 0.05 p-value threshold to describe a significant difference in areas of detected spiking compounds between spiked and non-spiked samples. Median detection significance (t-test p-value) in plasma is lower (i.e.
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Regarding semi-quantification performance, all tools allowed to pass the repeatability criteria from Want et al. 33 (i.e. feature integration such as more than 80% of detected spiked compounds had an area CV lower than 30%). In serum, similar values are achieved for all software programs (between 80% for MZmine2 and 86% for MarkerView TM ). In plasma, value for this parameter was significantly better using MZmine2 compared to the other three tools. As for computing time and ease of implementation, vendor software tools have the best performances. These tools are the fastest and easiest to implement, as they have user-friendly GUIs and require little to no building of the processing pipeline. Progenesis QI also offers visual reviewing of the data which allows the user added control. MZmine2 is the most timeconsuming data processing tool (averaging at 18 hours). XCMS is the most flexible and is constantly evolving but is less user friendly as it uses command-line interface.

In conclusion, the four investigated data processing tools, when optimized, presented Lack of data regarding previous injections of those standards on similar chromatographic systems could explain these results. This highlights the need for community participation to such tools, for a more thorough coverage of chromatographic systems and compounds. Overall, similar values were found within each sector for all four tested conditions (matrix × ionization mode), as lowest SD was always less than 15s from highest SD in a given sector.

Figure IV.5 -Construction (A) of two Rt prediction models using simple linear regression models and validation (B) of all usable Rt prediction models. The logP model uses experimental octanol-water partition coefficients as predictors and the RTI model uses

Therefore, to avoid multiplication of conditions, highest SD was selected for each sector, and multiplied by three to define maximal acceptable deviation for Rt depending on absolute Rt.

The obtained variable is referred to as ΔRt and takes the value of 0.28, 0.21, 1.29 or 0.93 min if the compounds has a Rt of 0-5, 5-15, 15-30, or 30-60 min respectively.

Isotopic pattern

Isotopic pattern distribution was described using the ratio of third to first isotopologue A2/A0.

The linear regression correlating theoretical P2/P0 and experimental A2/A0 ratios (n=98) is Prediction bands were placed at 3 RMSE to establish a limit where more than 99% of future points are expected to be placed. A value for maximal acceptable deviation between P2/P0 and A2/A0 ratio of 0.1 was determined from the width of prediction bands. Given this value, it would be possible to discriminate compounds from different major clusters (i.e. based on Br or Cl content), but not compounds from groups with equal contents in halogens and different contents in sulfur. The maximal acceptable deviation value of 0.1 is identified as Δisotopic fit and is used to assist suspect screening approaches by determination of the CI for isotopic pattern (or CIisotopic fit). This CI is implemented in the suspect screening annotation tool. Results for the in-house suspect screening annotation tool individual compounds are available in SI Table A6, and SI Fig. B5. Overall, 100% of spiked compounds that were picked up could be pre-annotated in plasma and serum samples, with an average of 1.1 suggested markers per compound in both plasma and serum when filtering on CIm/z > 0.7 and CIRt > 0.5. A CIisotopic fit was computed for 31% of detected spiked compounds in plasma, and 36% in serum. Mean CIm/z, CIRt and CIisotopic fit values for detected spiked compounds in plasma (serum) were 0.82 (0.83), 0.98 (0.97), and 0.76 (0.71). Overall, all three mean CI were found to be over 0.70 for spiked compounds, which highlights the relevance of these indicators for pre-annotation. Using our library of 2198 chemicals, the time needed to generate this pre-annotation after data acquisition was less than 2h (50 min for MarkerView data processing and 1 h for the preannotation VBA-based program).

It is important to mention that it is quite difficult to compare all annotation tools since they do not work the same way and have different purposes. Indeed, some tools use specific analytical predictor such as the MS2 for the annotation (MS-DIAL, msPurity, MZmine2) while our inhouse tool is the only one to rely on Rt prediction models. Considering these limitations, we observed that frequency of detection in plasma (and serum) were, respectively, of 100% (100%) for MZmine2, 79% (79%) for MS-DIAL, 79% (79%) for MS-DIAL, 77% (73%) for msPurity, and 66% (66%) for xMSannotator. Since different factors inherent to the tool could be involved in the difference of frequency of detection of this selected list of compounds, we mainly based our comparison on their ability to score and prioritize successful annotations made. MZmine2 is the only tool which does not provide scoring of the suggested annotation, although it offers some parameters such as detection frequency and whether peaks are detected or estimated which can help prioritization. MS-DIAL uses a score as a cutoff, even though it is not displayed to the user. xMSannotator bases its scoring on m/z feature matching with different adducts/isotopes of a candidate, and in-set correlation between features.

msPurity scores precursor purity to establish reliability of spectral matching for all features. Our in-house annotation tool displays four scores based on the three previously described predictors and global fit to pre-annotation. Scores from msPurity and xMSannotator can also be used for prioritization, although they offer mild visibility on the fit between feature and pre- This suspect screening tool was then used on data generated from the four non-spiked plasma and serum samples to evaluate its applicability and relevance when investigating the internal chemical exposome. MS/MS data was used to manually confirm pre-annotations according to Schymanski et al. 44 paraxanthine, theobromine and theophylline (level 2a). The calorie-free sweetener acesulfame (level 1), was also found in both matrices.

Conclusion

HRMS-based methods have a great potential to help characterizing the human internal exposome. We demonstrated here that adjustments of the metabolomics workflow is nevertheless required for exposomics applications to detect low-abundant xenobiotics.

Optimization of specific criteria for open source and vendor software can decrease dramatically the false negative rate. Nevertheless, this false negative rate can still reach up to 29% for some software, highlighting the need for further improvements. Besides detection frequency, automatic suspect screening workflow could help to speed up the annotation of the internal chemical exposome as this approach relies on suspect lists that can be prioritized. We report here an innovative workflow that incorporates for the first time several Rt prediction models.

We also provide a comparison of several recent annotation tools that use specific different analytical criteria for the annotation process. One of the main advantages of this in-house suspect screening tool lie in the development of individual scores for each predictor accompanied by the global confidence index allowing a particularly efficient way to cutoff and prioritize pre-annotations.
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In the recent years, the growing interest in investigating the links between environmental exposures and health has led to the development of new methodologies to study the exposome [1][2][3] . Following the technological advancements based on HRMS, the rise of nontargeted approaches, in particular, hold great promises to expand knowledge on the human chemical exposome 2,4 . However, these approaches require the optimization of each step of the workflow (notably sample preparation, data processing, annotation) to achieve the sensitivity and robustness ideally needed to limit biases in the visible chemical space [5][6][7][8] . The previous chapters presented the optimization steps undertaken to improve the efficiency of the aforementioned steps. Briefly, a dual sample preparation process involving PPT and the Phree PLR plate was recommended based on the complementarity of the image of the chemical exposome they provide. Regarding data processing, several software tools (including both vendor and open source tools) were optimized to detect low-abundant chemicals in bloodderived matrices, and correctly optimized vendor software was found to adequately perform this task with low implementation times. Lastly, an annotation tool adapted to exposomics application was developed. MS1 chemical predictors were chosen and optimized to compare suspects and features, and significantly lower the rate of false positive annotations. These developments allowed constructing a workflow suited to detect low-abundant compounds in plasma and serum samples.

While the presented optimizations allow achieving an adequate sensitivity performance, the workflow's robustness must still be evaluated. To this end, the workflow may be implemented at a larger scale, i.e. move beyond the scale of one batch. Large-scale applications come with specific challenges, mainly revolving around insufficient system stability over the course of multiple batches, sometimes injected over several weeks or months 9,10 . This may be translated by a low repeatability in Rt, and/or in signal, leading to poor comparability between samples.

The optimized workflow was applied to analyze blood serum samples from 125 12-year-old boys issued from the Breton mother-child cohort Pélagie. Given the large amount of data collected and generated for this cohort [11][12][13] , it will offer a rare opportunity to study the links between the chemical exposome and health. The first step in establishing these links is to accurately describe the chemical exposome of this population through the non-targeted analysis of 125 serum samples.

In this chapter, 125 serum samples were analyzed and processed using the non-targeted optimized workflow developed in the context of this PhD work. Quality control criteria based on feature area and Rt repeatability in QC samples and internal standards were established to ensure comparability of the samples. The processed data was then annotated assisted by the in-house tool and MS-DIAL 14 .

Chapter V. Implementing a large-scale suspect screening approach to characterize the human chemical exposome 160 Hence, the objectives of this chapter were: i. To study the robustness of the analytical and bio-informatics workflow implemented during this PhD.

ii. To study the relevance of using the in-house software through the comparison of MS1 and MS2 predictors' accuracy (MS-DIAL) for the annotated compounds.

iii. To characterize chemical exposures in Pélagie through the categorization of annotated compounds. Exposure profiles combining various chemicals of interest were described.

iv. To study the complementarity of the two used SPM at larger scale (as described in Chapter III).

Outgrowing the scale of a batch: quality control

The 125 samples were prepared with two SPM using the pipeline based on PPT and Phree, Chapter V. Implementing a large-scale suspect screening approach to characterize the human chemical exposome 161 Sample analysis was performed over the course of 9 weeks (7.5 weeks of non-stop analysis, and 1.5 weeks of cumulated preventive and curative maintenances between batches). The same composite QC sample was injected throughout all batches for interbatch correction. One large composite QC sample by SPM was prepared (800 µL per SPM), and was injected 11 times per batch (first 5 injections for system equilibration, last 6 to assess analytical drift). To ensure the comparability of data acquired over this extended period, quality control was performed on the injected batches on select analytes (i.e. spiked internal standards) and at the non-targeted scale. This quality control step was performed at the targeted level, using internal standards spiked in all samples (including QC samples), and at the non-targeted level on all features obtained from QC samples. Results of the quality control process are presented in Firstly, the repeatability of the analytical sensitivity of the QTOF was evaluated on all batches at the non-targeted scale (i.e. on all features of all injected QCs) using the criteria proposed by Want et al. (2010) 15 , by verifying that over 80% of QC features common to at least 80% of QC samples (i.e. 5 out of the 6 QCs injected between samples at the batch level) presented area CV values under 30%. This parameter was assessed at 82% and 83% for Phree and PPT, respectively, which indicates a satisfactory repeatability in both cases. Furthermore, the median area CV was computed on all batches for all features, for internal standards in QC samples, and for internal standards in all samples. Median are CV values at the non-targeted scale were of 16.1% and 17.4% in samples prepared by Phree and PPT respectively. When focusing on internal standards, median area CV were of 16.0% and 14.5% in QC samples and in all samples when prepared by Phree, and of 18.2% and 15.1% in QC samples and in all Chapter V. Implementing a large-scale suspect screening approach to characterize the human chemical exposome 162 samples when prepared by PPT. These values, while all under the 20% threshold, were indicative of a general tendency for batch-dependent variability, especially towards the last batches. This was remedied through the implementation of a total ion current normalization on all samples (including QC samples), i.e. a division of each feature's area by the sample's total ion current. This normalization was chosen for its already demonstrated efficiency in other omics approaches 16 , and was performed on all SPM×ESI mode combination (i. Besides analytical sensitivity, the Rt CV on internal standards in QC samples was computed and determined to be satisfactory, i.e. under the 10% threshold for both SPM on all batches (1.5% and 9.6% in PPT and Phree samples respectively). After this normalization, the mean feature area is comparable in samples across all batches. This normalization step was performed to the analytical variations between batches. The effect of normalization on a large scale was verified by performing a PCA before and after normalization. Chapter V. Implementing a large-scale suspect screening approach to characterize the human chemical exposome 164 2. Implementing a suspect screening approach at a large scale

Comparing the use of MS1 and MS2 predictors for annotation in an exposomics context

Two suspect screening approaches were implemented to perform the annotations. Firstly, raw data obtained from the chemical analysis was processed using the optimized MarkerView data processing tool as described in Chapter IV, paragraph 5.1.3. The resulting feature list was then processed by the in-house tool, resulting in pre-annotations prioritized using MS1 predictors.

Secondly, raw MS2 IDA data was processed using MS-DIAL's All public spectral database, resulting in annotations prioritized through an MS2 matching. Manual curation was performed on results from both tools. In the case of the in-house tool, MS2 spectra for suggested preannotations were compared to reference spectra, isotopic patterns were verified, and plausibility was checked. Reference spectra could be spectra acquired in-house (highest confidence), obtained from shared online databases such as MassBank 17 (high confidence), or obtained from in-silico prediction tools such as CFM-ID 18 or MetFrag 19 (medium confidence).

In the case of MS-DIAL, the visual representation of the matching feature and reference MS2 spectra (from online MS2 spectra database) was checked, along with isotopic patterns and plausibility. Results from the manual curation are available in Appendices 4.2 and 4.3.

Generating pre-annotation data was faster with the in-house tool while manual curation was overall faster using MS-DIAL, as spectral data is made available to the user. Table V As expected, the in-house tool generated more suggested annotations. This can be explained by the joint effect of the high selectivity of fragmentation patterns, leading to more elimination of false positive suggested annotations, and the fact that only a limited number of compounds were fragmented during the MS2 analysis, which may lead to some false negatives (i.e.

compounds present in the sample, detected during the analytical step, but not annotated).

Moreover, the total number of annotations suggested by the in-house software could be reduced using threshold values on the implemented confidence indices (CI). A cutoff value of 0.70 was choosen based on previous observations to reduce this number by 74-82%. This also allows prioritizing features that deserved more attention for manual curation. On the other hand, the MS1 annotations suggested by MS-DIAL (without MS2 data) average at around 11,000 per SPM×ESI mode combination, and can hardly be further prioritized due to the lack of additional reliable information such as scoring.

Manual curation allowed to confirm the annotation of 92 compounds with a level of 4 (with global CI ≥ 0.85) or better according to Schymanski et al. (2014) 20 , with the overlap of 57 compounds between the two suspect screening tools. MS-DIAL did not suggest 24 of the total annotated compounds. Firstly, three compounds (i.e. 4-chlorophenol, pentachlorophenol and triclosan glucuronide) were only prioritized by the in-house software since no associated MS2 data was acquired, and attributed a level 4. However, this level does not accurately reflect the confidence that can be put in these annotations. Indeed, it does not account for the verification of the very particular isotopic patterns linked to the presence of one, five and three chlorine atoms respectively, which is a highly discriminating characteristic when looking at the M2/M0 ratio. Moreover, predicted Rt values strongly support these annotations. The current confidence level system also does not account for the annotation of another metabolite of triclosan (i.e. triclosan sulfate, level 1). A visualization of MS1 evidence supporting the pentachlorophenol and triclosan glucuronide annotations is presented in Figure V.6.

Thirteen additional compounds were attributed a 2b level since there is no available MS2 experimental (in-house or from shared databases) reference spectra for these structures (e.g.

1,3,5-tris(2,2-dimethylpropionylamino)benzene or propylparaben sulfate), requiring the use of a fragmentation prediction model such as MetFrag 19 or CFM-ID 18,19 . The remaining eight compounds not annotated by MS-DIAL were not listed in their database and were confirmed with analytical standards available in-house (e.g. triclosan sulfate, acetaminophen glucuronide, etc.). On the other hand, eleven compounds were not prioritized by the in-house software because they were not in the used suspect list (e.g. 10,11-dihydroxy-10,11dihydrocarbamazepine, auraptene, lenticin, etc.). This underlines the need for sustaining the data collection effort in the community to continue expanding suspect lists with relevant compounds.

Chapter V. Implementing a large-scale suspect screening approach to characterize the human chemical exposome 166

Overall, the use of MS2 predictors is extremely powerful but can encounter some critical obstacles in exposomics applications, notably the lack of MS2 acquisition for the feature of interest, and the lack of reference spectra for the hundreds of thousands possible suspects 21 .

When these issues arise, it is crucial to have other predictors based on MS1 to efficiently prioritize the massive number of suggested annotations for manual curation. Predictors such

Figure V.6 -MS1 predictors supporting the pentachlorophenol (A-isotopic pattern, C-retention time) and the triclosan glucuronide (B-isotopic pattern, D-retention time) annotations. Theoretical and experimental isotopic patterns are compared based on coherence between mass/charge ratios and isotopic area ratios. Experimental retention times are compared to values predicted using RTI (orange), Retip (yellow) or a polarity-based linear regression (logP) (green) and their respective confidence intervals (represented by the color gradients). This data was acquired in negative ionization mode on

the UHPLC-ESI-QTOF.

A B C D

Chapter V. Implementing a large-scale suspect screening approach to characterize the human chemical exposome 167 as predicted Rt values and isotopic pattern, associated to confidence indices scoring the proximity between suspect and feature, allow avoiding false negatives and prioritizing features of interest. For instance, the pentachlorophenol and triclosan glucuronide annotations, both standing at a level 4, cumulate distinctive isotopic pattern (confirmed with comparison of therotical M2/M0) and coherence with multiple predicted retention times, as shown in Figure

V.6. This underlines the lack of accounting for some important discriminating predictors in the current confidence level system. In these particular cases, intermediary levels could be considered to distinguish between compounds with no MS2 data but different amounts of MS1 evidence. Other parameters not used with this analytical system, such as the collision cross section (CCS) used in ion mobility systems, may also be considered in this updated classification, as presented in Figure V.7. In this case, using the in-house software was critical in significantly expanding the number of annotated compounds (+26%).The confidence levels attributed to annotated compounds using both classifications are available in Appendix 4.4. 2014) 20 (level MS1-3 or higher according to the suggested updated classification). Exposure to most of these compounds can occur through multiple sources (e.g. 2-hydroxybenzoic acid, or salicylic acid, primarily used as a preservative in industrial foods, but that can also be used as a medication or as a synthesis intermediate).

A non-exhaustive classification of sources for annotated compounds is available in Appendix Four main categories were identified: gut microbiota metabolites, compounds originating from food, compounds used for health and hygiene purposes (e.g. pain management, antiepileptic medication, surfactants used in shower gels), and industrial compounds (e.g. synthesis intermediates used in the manufacturing of dyes, rubbers or pesticides). These categories represented respectively 7%, 45%, 18% and 30% of annotated compounds. Gut microbiota metabolites are included in the internal chemical exposome, as the microbiome operates as an interface between external exposures and the individual; therefore, gut microbiota Chapter V. Implementing a large-scale suspect screening approach to characterize the human chemical exposome 169 metabolites may reflect the external exposome and constitute their own category of substances from the human internal chemical exposome.

The highest contributing subcategory was natural compounds obtained from food and their metabolites (e.g. caffeine and paraxanthine, piperine, flavins, etc.) representing almost a third of annotated compounds. Representing a significant 11%, the medication subcategory (health and personal hygiene category) includes, for instance, non-steroidal anti-inflammatory ibuprofen, as well as antiepileptic carbamazepine and metabolites 10,11-dihydroxy-10,11dihydrocarbamazepine and 2-hydroxycarbamazepine. Food compounds and pharmaceutical products (i.e. medication) represent more than half of annotated compounds (56%). This was expected, as they can be concentrated up to 10 6 times more than some industrial pollutants (e.g. pesticides) in blood 2 . The pesticides subcategory, contributing 9% of all annotated compounds, includes parent compounds such as bromoxynil or tritosulfuron, and metabolites such as chlorothalonil metabolite 4-hydroxy-2,5,6-trichloroisophthalonitrile and bromoxynil metabolite 3,5-dibromo-4-hydroxybenzoic acid. Usual suspects were annotated in the plasticizer subcategory (8%) such as phthalates and perfluoroalkyl substances 4,22 21 . These compounds include 3 phase I and II metabolites (hydroxylated and sulfated forms), which highlights the need to include known or predicted metabolites in suspect lists. It should also be noted that other metabolization pathways should be taken into account when predicting metabolite structures, as they could allow integrating a temporal aspect to the exposure evaluation 23 . Moreover, 10 compounds have a detection frequency over 80% with at least one SPM, and do not have any available toxicological data according to the CompTox dashboard 24 . One of those compounds (Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2hydroxy-5-methylbenzyl)-4-methylphenyl) terephthalate, found in 86% of PPT samples) is a phthalate, some of which are classified as endocrine and metabolic disruptors 25 . This underlines the potential of suspect screening approaches to uncover previously poorly documented exposures to chemical compounds of concern.

Chapter V. Implementing a large-scale suspect screening approach to characterize the human chemical exposome 171 Pesticide and endocrine disruptor bromoxynil, detected in 61% of samples, had previously been reported in the urine of 22% of pregnant women from this cohort 26 . This may suggest a repeated or chronic exposure to this compound for some individuals of this cohort. Moreover, previously reported levels of bromoxynil in plasma samples from rural teenage residents varied from trace levels to 140 ng/mL 27 . Similarly, pesticide metabolite fipronil sulfone, detected in 29% of samples, was previously reported in human blood (general population) at concentration comprised between 0.1 and 4 ng/mL 28 . These documented low levels are a preliminary indication that the implemented workflow presents adequate sensitivity performances, although targeted assays should be performed on the investigated samples to confirm bromoxynil levels.

Previous studies on the Pélagie cohort did not investigate bromoxynil metabolite 3,5-dibromo-4-hydroxybenzoic acid. However, this compound is detected in 97% of samples with higher area values (factor 3-8 depending on sample). Further review of the literature indicated that this metabolite was not reported in HBM studies in blood or urine before. This underlines the potential of using suspect screening approaches to uncover new relevant biotransformation products to better evaluate human exposure to chemicals of concern. Although bromoxynil was banned in France in 2021, identifying this new biomarker of exposure may be useful for retrospective analysis, in the case of persistence in the environment, or in countries where it is not banned.

Overall, a set of compounds with very diverse physical-chemical characteristics (i.e. -2.7 ≤ logP ≤ 16, and 100.0754 ≤ [M+H] + ≤ 811.4913) was annotated in these samples. These compounds also include various chemical functions, and have diverse sources. The most interindividual variability was observed on compounds usually referred to as pollutants, as opposed to food compounds and gut microbiota metabolites, which appears coherent. Lastly, the visible exposure profiles on PPT and Phree samples seem to present differences both in the proportions and variability of chemical classes, which raises a question regarding the relevance of using two SPM in light of the performed annotations.

Exploring the potential of dual sample preparation

The two SPM used to prepare the serum samples were compared according to the methodology described in Chapter There was no visible bias towards either SPM in terms of proportion of favored features, despite the fact that Phree samples were two times more concentrated than PPT samples.

This might be explained by the fact that the sensitivity gain through the concentration factor in Phree samples is compensated by the higher selectivity of this SPM (i.e. loss of signal for phospholipids, etc.). diphenylphosphate) was also favored by Phree (not detectable at all in PPT samples). This was rather unexpected, as PLR plates are hypothesized to retain phospholipids through a Lewis acid-base interaction between the stationary phase and the esterified phosphate group found in phospholipids 29 . However, it is possible that only highly polar phosphate groups such as those found in phospholipids are retained by the plate, since the considered compounds are mid-polar (logP values ranging from 0.8 to 2.8). Lastly, 3 out of 4 annotated phthalates are better detected in samples prepared by the Phree PLR plate (FC varying from 5.28 to +∞). The remaining phthalate is, more precisely, a terephthalate (i.e. substituents are in the paraposition instead of the ortho-position), and is very mildly favored by PPT (FC = 0.86).

Fold change (FC) values

Alongside the fact that the terephthalate substituents are larger than the substituents on the annotated phthalates, it could be hypothesized that sterically hindered phthalates are less likely to pass through the PLR plate, thus being less favored by this SPM compared to less hindered ones.

Chapter V. Implementing a large-scale suspect screening approach to characterize the human chemical exposome 175 Overall, using a dual sample preparation process to prepare complex samples such as serum samples allows significantly increasing the width of the observable chemical space, in this case almost twofold. The relevance of using complementary SPM is very probably exacerbated by the overall low abundance of xenobiotics in the samples. Indeed, low-abundant compounds have an increased probability of being lost to either SPM, and therefore generating an extreme FC value. Therefore, using a dual sample preparation process is a major advantage to increase the accuracy of the characterization of the chemical exposome. However, initial sample volume should account for this fact, which might be limiting in the case of valuable biological samples.

In this chapter, the large-scale application of the previously optimized workflow using 125 samples from the Breton Pélagie cohort was presented. This scaling up process has necessitated using total ion current area normalization to account for the analytical variability that occurred over the course of the multiple-week analysis campaign. The use of a suspect screening strategy involving MS1 and MS2 predictors has led to the annotation of 92 environmental chemical compounds with various uses including pesticides, medication, preservatives and synthesis intermediates. Comparing the detection of these annotated compounds in samples prepared with PPT and the Phree PLR plate demonstrated the relevance of combining SPM to expand the visible chemical space. Indeed, close to 75% of annotated compounds were only visible with one SPM. This comparison also allowed identifying some factors, such as polarity or steric hindrance, that might determine whether a compound is more readily detectable with either SPM. For instance, polar compounds seem to be better detected in samples prepared with PPT, whereas organophosphate flameretardants are favored in samples prepared with Phree PLR plates. This large-scale application is therefore a successful application of the optimized suspect screening workflow developed in this PhD work. Its implementation has allowed expanding knowledge about the chemical exposome of the considered population. As one of the Pélagie cohort's objectives is to investigate the role of the urban-rural context on human health, the chemical fingerprints could be further used in association to this contextual data. This could be useful to prioritize more features for annotation and continue documenting the chemical exposome of Breton 12-yearolds.

Characterizing the human internal chemical exposome using non-targeted approaches presents several methodological and technological challenges. Indeed, existing workflows classically used in metabolomics should be adapted at every step to allow the detection of lowabundant chemicals in complex biological matrices. To address these challenges, the optimization of the most critical steps of an HRMS-based exposomics workflow was performed in this PhD project. The developed HRMS-based non-targeted workflow was then implemented in a larger scale application to assess human exposure to complex chemical mixtures.

Three steps of the non-targeted and suspect screening workflow were investigated, namely sample preparation, data processing, and annotation. Firstly, the preparation of serum and plasma samples with twelve sample preparation methods was investigated. Two SPM, namely protein precipitation and the Phree phospholipid removal plate, presented adequate performance for quantitative (e.g. recovery, repeatability, etc.) and qualitative (e.g. ease of implementation, etc.) criteria. Their application on cohort plasma and serum samples allowed demonstrating their complementarity, as more than 60% of features were at least significantly favored by either SPM, and 40% of features was only visible in with one SPM. As they provided different pictures on the chemical exposome, their combined use is relevant in the context of characterizing a diverse set of compounds. A single sample preparation workflow involving both sample preparation methods was proposed as a way to widen the visible chemical space.

This work demonstrated the necessity to systematically delineate the impact of sample preparation on the perimeter of the observable chemical space.

Data processing in non-targeted exposomics applications is a particularly complex task, as the compounds of interest often present as low-abundant signals that should be properly disentangled from the noise. As the many available data processing software tools were mostly built for metabolomics, they should be optimized and evaluated for exposomics applications.

Four software tools, including vendor (i.e. MarkerView and Progenesis QI) and open source (i.e. MZMine2 and XCMS) software, were therefore optimized and compared for the processing non-targeted exposomics data. This systematic evaluation highlighted the need for manual optimization of non-targeted data processing software for exposomics applications.

This optimization is necessary, as it allowed increasing the detection of spiked samples by as much as 18%.

Lastly, the need for efficient annotation strategies is still salient in HRMS-based exposomics applications. The developed software aimed to partly automatize a suspect screening approach based on three MS1 chemical predictors: m/z, experimental and/or predicted Rt and isotopic fit. Confidence indices were built to score the likeness of suspects and features, and allow the efficient prioritization of suggested pre-annotations. A global confidence index
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180 combines all computed CI to score the overall resemblance between suspect and feature, and can used as a cut-off criterion to limit false positive annotations. This tool was compared to other tools available to assist suspect screening approaches (i.e. xMSannotator, MS-DIAL, msPurity and MZMine2). The use of experimental and predicted Rt as well as the scoring system were major advantages of the in-house software for compound prioritization. However, it does not yet allow the use of MS2 fragmentation patterns, which is a highly discriminant criterion allowing to significantly limit false positive annotation when it is available. The first implementation of the in-house software allowed the annotation of diverse compounds of the internal chemical exposome with high confidence indices, which highlighted the relevance of the scoring system for prioritizing suggested annotations.

The optimized workflow was implemented on a large-scale proof-of-concept application. This study on 125 serum samples from 12-year-old Bretons allowed demonstrating the applicability of this workflow on a multi-batch scale to characterize the human internal chemical exposome.

Indeed, the use of the previously described strategies for sample preparation, data processing and annotation has allowed identifying 92 highly diverse compounds in terms of mass (i.e.

≤ [M+H]

+ ≤ 811.4913), polarity (i.e. -2.7 ≤ logP ≤ 16) and sources (e.g. dietary, medication, industrial, etc.). This application provided valuable information on the chemical exposome in general, and on the impact of different workflow steps on the results of such studies. In particular, the use of MS1 predictors for annotation allowed prioritizing metabolites of known toxicants, which would have otherwise been missed. The generated data will allow to better apprehend the perimeter of the chosen workflow, and to identify the gaps needing additional investigating efforts. Additionally, the chemical fingerprints generated in this largescale application could be reused with different data processing and annotation strategies, such as integrating other types of data collected according to the epidemiological experimental design (i.e. data from targeted assays, clinical data, lifestyle data, etc.), and establishing associations to further investigate.

Overall, non-targeted and suspect screening approaches are highly promising to investigate the environment-health links. However, several challenges remain to be addressed to implement these approaches to their full potential, such as the need for multi-systems approaches when aiming for a wider characterization of the chemical exposome. Indeed, no single analytical platform will allow capturing the wide range of compounds currently in use in our environment. Therefore, combining different technologies, such as LC-HRMS and GC-HRMS, would be helpful in expanding the visible chemical space. Adding a separation to the chromatographic separation (i.e. LC×LC or GC×GC) or using ion mobility spectrometry may also present a valuable addition to characterize the human internal chemical exposome. The
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181 two main limitations to these approaches are the financial burden induced by purchasing and maintaining several pieces of equipment, and the limited availability of software tools and/or databases to process the generated data. Collaborations at the national, European and/or international level may greatly help in overcoming these limitations.

Another challenge that should be addressed is the ongoing need to improve the annotation process. Indeed, despite the many efforts undertaken in the last few years to expand suspect and MS2 libraries, they remain incomplete and/or non-interchangeable between tools.

Pursuing the existing efforts in terms of both data collection and harmonization will be beneficial to the scientific community. Moreover, specific efforts should be dedicated to including known or predicted metabolites of exposome compounds, as they may only be detectable under metabolized forms. Acquiring MS2 data for these compounds is also challenging, as many are not commercialized, and their custom-made synthesis represents a financial burden. At the scale of the laboratory, further developments will be carried out regarding the in-house software, such as adding MS2 predictors to further reduce false positive annotations.

Non-targeted and suspect screening approaches should be used to generate lists of compounds of interest that should be further investigated. Particularly, they should be followed up by large-scale targeted HBM studies, to confirm these compounds' prevalence in the population of interest and to generate quantitative data. This would be crucial in evaluating the need for risk assessment, and regulatory action further down the line. These HBM programs should also go through a harmonization process to ensure inter-comparability of data acquired over several countries and/or continents, as is done in the HBM4EU initiative.

Lastly, these chemicals of interest should be further investigated through toxicological approaches to improve knowledge on their mechanism of action. Regulatory action may be taken in accordance with the results of the risk assessment process. It should also be noted that the developed toxicological approaches should be high-throughput, and ideally consider mixture effects.

To conclude, the workflow optimized in the context of this PhD was demonstrated as efficient for the non-targeted characterization of the human internal chemical exposome. These approaches are highly valuable tools to investigate the effects of environmental chemical exposures on health, and generate a rapidly increasing interest at the European and international scale, as demonstrated by the setting up of the EIRENE infrastructure for instance. Large-scale collaborations at these levels will allow generating robust and intercomparable data to both describe the human chemical exposome and hopefully better
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182 understand the etiology of chronic disease. However, developments and harmonization efforts are still required to reach the full potential of non-targeted and suspect screening approaches, and offer operational solutions to limit the presence of harmful chemicals in our environment.

Appendix Chapter II

1.1. Detailed list of the optimization mix and internal standards LGC Powder

Acetylsalicylic acid CC(=O)OC1=CC=CC=C1C(=O)O

LGC Powder

Androstenedione CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4=O)C

LGC Powder

Carbendazim COC(=O)NC1=NC2=CC=CC=C2N1

LGC Powder

Clothianidin CNC(=N[N+](=O)[O-])NCC1=CN=C(S1)Cl LGC Powder Cortisone CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO) O)C
LGC Powder

Dimethyldithiophosphate COP(=S)(OC)S

LGC Powder

Estrone CC12CCC3C(C1CCC2=O)CCC4=C3C=CC(=C4)O

LGC Powder 

Table A2 -Standard compounds physical-chemical characteristics

(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 1 

Global CI

Experimental RTI-predicted Retip- predicted logP- predicted (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) Indoxyl sulfate C1=CC=C2C(=C1)C(=CN2)OS(=O)(=O )O n.

Appendix Supporting information -Chapter IV

3.1. Table A1 -Standard compounds form and suppliers Use of in-house libraries was rated based on availability (/4), with a bonus given to tools which allow the use of an easily formatted database such as .csv (/1). Use of existing databases was rated based on availability of none, one to three, or more external database (0/5, 4/5, or 5/5). Use of experimental and/or predicted Rt was rated based on availability (/2), use of experimental Rt only through in-house library (/1), and use of experimental and predicted Rt (/2). Use of MS/MS was rated based on availability (/3), and scoring on this predictor (/2). Speed of implementation considers ease of set up (/2) and computational speed (/3). Scoring is rated based on availability (/2), and basis of said score on within-dataset correlation or on correlation with the suspect list (/3). Lastly, prioritization of spiked chemicals is rated based on availability of criteria for prioritization (e.g. detection frequency, or scoring, etc.) (/2), usability of scoring (if available) to estimate fit between suspect and feature (/2), and efficiency of ranking (/1). 

(C(=CC=C1)C(=O)OC)S(=O)(=O)NC(=O)NC2=NC(=NC(=N2)OCC(F)(F)F)N(C)C LGC Powder Trinexapac-ethyl CCOC(=O)C1CC(=O)C(=C(C2CC2)O)C(=O)C1 LGC Powder Triticonazole CC1(CCC(=CC2=CC=C(C=C2)Cl)C1(CN3C=NC=N3)O)C LGC Powder Tritosulfuron COC1=NC(=NC(=N1)NC(=O)NS(=O)(=O)C2=CC=CC=C2C(F)(F)F)C(F)(F)F LGC Powder 17b-Estradiol CC12CCC3C(C1CCC2O)CCC4=C3C=CC(=C4)O LGC Powder Acetylsalicylic acid CC(=O)OC1=CC=CC=C1C(=O)O LGC Powder Aniline C1=CC=C(C=C1)N LGC Powder Dehydroepiandrosterone CC12CCC3C(C1CCC2=O)CC=C4C3(CCC(C4)O)C LGC Powder Estriol CC12CCC3C(C1CC(C2O)O)CCC4=C3C=CC(=C4)O LGC Powder L-thyroxine C1=C(C=C(C(=C1I)OC2=CC(=C(C(=C2)I)O)I)I)CC(C(=O)O)N LGC Powder Pregnenolone CC(=O)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)O)C)C LGC Powder Progesterone-17-hydroxy CC(=O)C1(CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C)O LGC Powder Tryptophan C1=CC=C2C(=C1)C(=CN2)CC(C(=O)O)N LGC Powder Mesotrione CS(=O)(=O)C1=CC(=C(C=C1)C(=O)C2C(=O)CCCC2=O)[N+](=O)[O-] Servilab Powder Caffeine CN1C=NC2=C1C ( 
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

  Scientific animation of the French School of Public Health (EHESP) stand on the chemical exposome at the Festival of Science, 05-06 October 2021, Rennes. Scientific animation of the joint French School of Public Health (EHESP) and Irset stand on the chemical exposome at the Festival of Science, 13-15 October 2020, Rennes. Scientific conception of the joint French School of Public Health (EHESP) and Irset stand on the chemical exposome at the Festival of Science, July-October 2020, Rennes.  Scientific animation of the French School of Public Health (EHESP) stand on urban health at the Festival of Science, 6 October 2019, Rennes.
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  d'approches non-ciblées par UHPLC-ESI-HRMS pour caractériser l'exposition prénatale aux mélanges de xénobiotiques", March 1, 2020 -August 17, 2020. Training of Habiba Selmi during her master's degree apprenticeship, « Identification de métabolites de paracétamol issus du microbiote intestinal par analyses non-ciblées par UHPLC-ESI-HRMS et HRMS/MS » to non-targeted approaches (including sample preparation, LC-HRMS analysis, data processing and annotation), January 1, 2021-August 31, 2021. Training of Jaroslav Semerad (postdoctoral fellow from the Czech Academy of Science, Prague) to non-targeted data processing and annotation to characterize water samples. November 8, 2021 -December 3, 2021.

  Tout d'abord, le mélange de molécules a été utilisé pour doper des homogénats de sérum à une concentration moyenne dans un contexte d'exposition (40 ng/mL). Le recouvrement, la répétabilité et l'effet de matrice a été évaluée pour les cinquante molécules et les douze méthodes. Ces premiers résultats ont permis de présélectionner la méthode de précipitation de protéines, une méthode d'élimination des phospholipides, ainsi qu'une méthode Résumé de la thèse en français 29 d'extraction en phase solide, qui présentaient toutes des performances satisfaisantes sur tous les critères d'évaluation. La deuxième étape de l'évaluation a consisté en un dopage d'homogénats de sérum et de plasma avec le même mélange de molécules à une concentration plus faible (10 ng/mL). La fréquence de détection, le rapport signal/bruit, la répétabilité, la significativité du dopage (i.e. significativité de la différence d'aires entre échantillons dopés et non-dopés), et la facilité d'implémentation ont été évalués pour les trois méthodes évoquées, ainsi que pour une combinaison de la méthode d'extraction en phase solide et la méthode d'élimination des phospholipides. Cette deuxième étape a permis de démontrer que la précipitation de protéines et la méthode d'élimination des phospholipides permettaient toutes deux d'atteindre des performances supérieures aux deux méthodes impliquant l'extraction en phase solide, notamment sur les critères de répétabilité et facilité d'implémentation. Enfin, ces deux méthodes ont été appliquées sur les mêmes échantillons de cohorte (plasma et sérum) afin de les comparer en conditions réelles (i.e. sans dopage).

Chapter 4 1 .

 41 details the optimization of the data processing step to accurately transform LC-ESI-HRMS data to a list of features when compounds of interest are lowly abundant. Suspect screening tools including the in-house software were compared on cohort samples. Chapter 5 documents the large-scale application of the optimized non-targeted workflow on 125 serum cohort samples. The use of MS1 and MS2 predictors for annotation is compared and discussed. The identification of markers of exposure is described, and results are discussed in light of the use of two sample preparation methods. The last chapter is dedicated to the conclusion and perspectives of this work. Studying the human internal chemical exposome: context, definitions and challenges 1.1. The Exposome: from a concept to a call to action In 1985, chancellor of the University of California Robert Sinsheimer first discussed the possibility of sequencing the human genome, which led to the first funding of research dedicated to genome sequencing in 1986. Four years later, the Human Genome Project (HGP) was launched with the objective of sequencing the entirety of the human genome 1 . The mobilization of over 2,800 researchers from the international scientific community and approximately 4 billion euros over thirteen years allowed reaching the set goal of sequencing the 3 billion base pairs of the human genome 2 . In 2001, Francis Collins, director of the National

  metabolomics/lipidomics workflows. A schematized representation of the human internal chemical exposome is represented in Figure I.1.

Figure I. 1 -

 1 Figure I.1 -Schematized representation of the distinction between endogenous metabolites and exogenous chemicals and related biotransformation products. These small molecules(50-1200 Da) 

  Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies:State-of-the-art and challenges 49 priority lists established through the collaboration of the HBM4EU consortium and a European

  Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies:State-of-the-art and challenges 54 analyzers such as quadrupole-time-of-flight (QTOF) or quadrupole-Orbitrap (Q-Exactive

55 Figure I. 2 -

 552 Figure I.2 -Conceptual visualisation of the impact of overarching methodological choices on the profiled fraction of the exposome by David et al., Env Int., 2021. Specificities and overlaps of the different HRMS platforms are schematically represented. Log Kow=octanol/water partition coefficient; GC=gas chromatography; LC=liquid chromatography; IC=ion chromatography, CE=capillary electrophoresis, ESI=Electrospray ionisation, HRMS=High Resolution Mass Spectrometry
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 .2 Application of HRMS-based exposomics to cohort-based epidemiological studies: State-of-the-art and challenges 56 Implementing NTA to characterize the exposome: constructing a non-targeted and suspect screening workflow

Figure I. 3 -

 3 Figure I.3 -Main steps of a non-targeted and suspect screening workflow implemented to investigate the chemical exposome in biological matrices
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 . Application of HRMS-based exposomics to cohort-based epidemiological studies: State-of-the-art and challenges 59

Figure I. 4 -

 4 Figure I.4 -Main steps of the non-targeted data processing workflow, comprising of peak picking, alignment, gap filling, and normalization. These steps are presented on quality control (QC) samples. Various strategies and algorithms are available for the peak picking step, the alignment step and the normalization step, as detailed in Chapter II.
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 5 Figure I.5 -Identification confidence levels in high-resolution mass spectrometry proposed by Schymanski et al., ES&T, 2014.
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 73 Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies:State-of-the-art and challenges

  Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies:State-of-the-art and challenges 74 of suspect screening is the construction of the reference database against which features are compared.

  Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies:State-of-the-art and challenges 75

  (i)Belong to different chemical classes of interest in the context of an exposomics application in human biological matrices (i.e. endogenous compounds such as steroids and eicosanoids, and exogenous compounds such as pesticides and drugs).(ii) Represent a wide range of physical-chemical properties (i.e. m/z and polarity) to cover the entire space of the LC method.(iii) Cover both ESI (+) and ESI (-) ionization modes. An overview of this compound set is presented in Figure II., while a detailed list is available in Appendix 1.1. To summarize, chosen compounds are distributed as follows: 14 endogenous compounds (1 neurotransmitter, 6 steroids and 7 eicosanoids) and 36 exogenous compounds (2 food compounds, 13 drugs, 19 pesticides, and 2 environmental pollutants linked to smoking). These compounds present monoisotopic mass values ranging between 133.0640 and 496.2607 Da and octanol-water partition coefficients (logP) ranging between 0.07 and Chapter II. Material and methods 88 6.99. Overall, 36 compounds are better observed in ESI (+) mode, while 14 are better observed in ESI (-) mode.

Figure II. 1 -

 1 Figure II.1 -Overview of the physical-chemical properties of the 50-compound optimization mix, including endogenous compounds (in blue) and exogenous compounds (in orange). The octanol-water partition coefficient (logP) and the monoisotopic mass (Da) are presented.

  5 min, 10-20% B; 2.5-20 min, 20-30% B; 20-38 min, 30-45% B; 38-45 min, 45-100% B; 45-55 min, 100% B; 55-60 min, 10% B, for a total run time of 60 minutes. While run times in metabolomics are typically shorter

Table II. 2 -

 2 Impact of the reconstitution phase composition on areas of 50 compounds spiked in serumhomogenates and injected on UHPLC-ESI-QTOF in positive and negative ionization modes.

Figure II. 2 -

 2 Figure II.2 -Extracted ion chromatogram for Aminobenzimidazole (logP = 0.91) in ESI (+) mode (A) and Arachidonic acid (logP = 6.98) in ESI (-) mode (B) depending on the reconstitution phase composition (generated with a m/z tolerance of 10 ppm).

Figure II. 3 -

 3 Figure II.3 -Operating principle of protein precipitation. Samples are mixed with an organic solvent (usually methanol or acetonitrile) at a solvent:sample ratio of 1:1 to 4:1. After a prolonged contact, centrifugation allows forming a protein pellet (in orange) and the purified supernatant can be used.

Figure II. 4 -

 4 Figure II.4 -Operating principle of solid phase extraction. Samples are filtered through a stationary phase that retains phospholipids (in shades of orange) and leaves other compounds (in green) pass through.

  that a sufficient amount is used to soak the total volume. The sorbent is then washed using the extraction solvent, selectively eluting the analytes. The extraction solvent is often hexane, ethyl acetate, or methyl tert-butyl ether (MTBE), as they are immiscible with aqueous matrices. In the context of this PhD, only the Isolute SLE (Biotage) was used with MTBE, as per the vendor's recommendations. Compounds that have a high affinity to the extraction solvent will be carried, while other compounds will be retained by the solid media. A schematized operating principle is presented in Figure II.5.

Figure II. 5 -

 5 Figure II.5 -Operating principle of supported liquid extraction. The sample is loaded onto a sorbent, which retains the entire sample. The analytes are then selectively eluted using an immiscible organic solvent.

Figure II. 6 -

 6 Figure II.6 -Operating principle of solid phase extraction. The solid phase is conditioned, followed by sample loading. Interferents are washed usually using water, and compounds of interest are eluted using an elution solvent.

Five data processing tools

  were used in the frame of this PhD work: MarkerView, Progenesis QI for Metabolomics, MZmine2, XCMS, and MS-DIAL 4.0. The first four tools were optimized and compared; detailed results are available in Chapter IV. MarkerView and Progenesis QI are vendor software provided by AB SCIEX and Waters, respectively. MZmine2 17 and MS-DIAL 18 are open source solutions with graphical user interfaces, and XCMS 19 is an open source R-based package. While vendor software are usually more user-friendly compared to open source software, they often operate in a black box-like fashion, with little to no information on the algorithms and parameters used to process the data. The following paragraphs detail the different algorithms available for each major data

Figure II. 7 -

 7 Figure II.7 -Representation of the peak picking process, which consists of four steps: centroidation, peak detection, creation of chromatogram objects and deconvolution.

  Chapter II. Material and methods 103 at least partly automatized. An important part of this PhD was devoted to develop a fully automated software using several chemical descriptors and developing intermediate and global confidence scoring. The developed suspect screening software is a Python software tool first developed in 2019 in LERES to assist suspect screening approaches using MS1 analyses. It aims to perform an automatized pre-annotation of processed datasets obtained from liquid LC coupled to HRMS analyses. To this end, confidence indices (CI) were constructed to score the proximity between experimental features and suspects. This proximity is established through three chemical predictors, each scored individually: the classically used m/z, isotopic fit (which combines m/z and relative abundance fit) and Rt. Pre-annotated features need further manual curation based on fragmentation patterns found in either MS1 or MS2 acquisitions, isotopic pattern

  These suspect screening predictors are used to score the similarity between features and suspects. Individual scores are then combined to a global confidence index that indicates the overall similarity between the feature and suspect. The schematized operating principle is presented in Figure II.8. To operate, the in-house software is structured in two main complementary modules: a library that regroups all the suspect compounds' theoretical properties, and a suspect screening module that matches experimental features to said suspects. The next paragraphs detail the last updated version of the in-house software (version 2.0). A presentation of its first version is available in Chapter IV paragraphs 4.4 and 4.5.

Figure II. 8 -

 8 Figure II.8 -Schematized operating principle of the in-house annotation workflow in four steps: comparing successively m/z, Rt and isotopic fit, then generating a global scoring.

4. 2 . 3 . 1 .

 231 Mass-to-charge ratio Depending on the ESI mode specified by the user, the software compares the feature's m/z with one of the two sets of adducts generated by the library. This predictor acts as a filter, as suspects with m/z values outside the confidence interval are eliminated as potential annotations. The confidence interval Δm/z is based on instrumental precision. It takes the value of 15 or 10 ppm depending if the m/z is strictly lower than 200 Da or over 200 Da respectively.

  stringency, and multiplying by three. In the software's current version, the suspect screening module is able to automatically compute ΔRt values based on a user-filled Excel sheet containing triplicate Rt data for at least 20 known compounds. The user may also specify their desired way of sectioning the chromatogram, or leave the standard sectioning of the chromatogram in quarters. Regarding the three predicted Rt, for this work, they were obtained through an in-house regression model based on logP, the quantitative structure-retention relationship-based tool RTI 28 , and machine learning-based tool Retip 29 . These three prediction models were evaluated and compared based on a set of 134 compounds presented in Appendix 1.3, which allowed ranking them from most reliable (RTI) to less reliable (logP). Detailed explanations regarding these Rt prediction models are also available Chapter IV, paragraphs 4.4.2 and 5.2.1. Briefly, the ΔRt values for all predicted retention times were established manually by comparing experimental Rt and predicted Rt when both values were available. Absolute differences between these two values were calculated and the standard deviation of each model's prediction within each predetermined chromatogram section was established. These values were multiplied by three to obtain the ΔRt values, each specific to a model and a chromatogram section.

  Figure III.1 -Graphical abstract of the research paper titled "Comprehensive evaluation of blood plasma and serum sample preparations for HRMS-based chemical exposomics: overlaps and specificities

III. 2 .

 2 First, a two-step procedure (including a SPM preselection step and then a comparison of preselected SPMs with the reference PPT) was conducted consecutively using sets of spiking experiments on homogenate plasma and serum samples. A mix of 50 spiking compounds was chosen to cover different chemical classes of contaminants (i.e. diet toxins, drugs, and pesticides) and metabolites (i.e. eicosanoids, neurotransmitters, and steroids). Labeled internal standards (IS) (n = 17, 100 ng/mL) were used throughout to monitor analytical variability attributed to UHPLC-ESI-QTOF injections (spiked post-extraction in the preselection phase) or sample preparation (spiked pre-extraction in the following phases). Suppliers and further physical-chemical data can be found in the Supporting Information (SI), Tables

  Figure III.2 -Diagram of the methodology used to compare sample preparation methods. Two low-level spiking experiments were conducted to compare various phospholipid and protein removal plates (PLR), solid phase extraction cartridges (SPE), and supported liquid extraction cartridge (SLE) among themselves, and to the classically used protein precipitation (PPT).The best-suited methods were selected using a set of qualitative and quantitative criteria, then applied to plasma and serum cohort samples to observe the impact of the sample preparation method on the visible chemical space.

4. 5

 5 .2. Annotation Feature tables were uploaded into an R environment (version 3.6.3) to run univariate analyses. Statistical analyses were performed separately for each sample (i.e. individual), considering analytical replicates and two performed SPM. The impact of the SPM was assessed by performing unpaired t-tests and computing p-values with an Adaptive Benjamini-Hochberg (ABH) correction for multiple comparisons. Features presenting lowest adjusted p-values and

5. 1 .

 1 Preselection of most suitable SPM The twelve SPM performances regarding recovery, repeatability and matrix effect on 50 compounds spiked at 40 ng/mL in serum are presented in Figure III.3. Results for individual compounds are available in the SI, Table

Figure III. 3 -

 3 Figure III.3 -Comparison of the recovery (A), repeatability (B), and median matrix effect performances (C) of the eleven considered sample preparation methods using a 50-compound mix spiked in serum (n=4). Preparation methods include protein precipitation (PPT), phospholipid removal (PLR) plates, solid phase extraction (SPE) cartridges, and a supported liquid extraction (SLE) cartridge. For the recovery

  Chapter III. Systematic evaluation of blood-derived sample preparation methods for HRMS-based chemical exposomics 126 Phree+StrataX, was carried out to attempt further purification of the samples. The SPM performances regarding spiked compound detection frequency, S/N, semi-quantification performance, detection significance, and speed of implementation were evaluated following a 10 ng/mL spiking of plasma and serum samples. Results are presented in Figure III.4. Results

Figure III. 4 -

 4 Figure III.4 -Sample preparation methods evaluation for the detection of 50 low-level spiked compounds in (A) serum and (B) plasma samples (n=4 each). Outer edges identify best performances.

  Chapter III. Systematic evaluation of blood-derived sample preparation methods for HRMS-based chemical exposomics 129 compounds, and are reported in Figure III.5. Additional information on individual annotations are available in the SI, Tables A5a and A5b for serum and plasma samples respectively.

Figure III. 5 -

 5 Figure III.5 -Comparison of annotated xenobiotics' areas in samples prepared with protein precipitation (PPT) and protein removal plate Phree in Pelagie serum samples (A) and Danish plasma samples (B).Logged values of fold changes (i.e. area ratio between Phree and PPT) are presented on the x-axis,where -∞ and +∞ values represent the absence of compounds in samples prepared with Phree and PPT, respectively. Bars on the left of the y-axis represent compounds presenting higher areas in PPT samples and vice-versa.

  , compounds used in cosmetic formulations (e.g. octaethylene glycol, benzophenone-4 and various parabens), medication (e.g. paracetamol, diazepam and metabolite nordazepam), and dietary compounds (e.g. caffeine and metabolites, piperine, and flavoring agent bourbonal). This diversity of compounds in terms of polarity (-0.9 ≤ logP ≤6.4), mass (138.0316 ≤ monoisotopic mass ≤ 766.4562) and chemical functions underlines the adequacy of these SPM for a wide chemical exposome coverage. FC values were coherent (i.e. always favored by the same SPM or not favored by any SPM) for compounds detected in both serum and plasma cohort samples, such as tryptophan (FC values of 0.041 and 0.132 in serum and plasma respectively), or caffeine (FC values of 0.65 and 1.25 in serum and plasma respectively). Overall, there is no evident correlation between polarity, mass, or presence of any chemical function and favored detection by either SPM, which does not allow the anticipation of the SPM's effect on other compounds or classes of compounds. This observation underlines the critical need for orthogonal data when aiming for a thorough characterization of a sample, as choice of SPM conditions both the range (i.e. observed compounds) and depth (i.e. observed level) of the visible chemical space. Documenting the perimeter of the profiled internal chemical exposome for each set of analytical conditions is particularly crucial when aiming for large-scale epidemiological applications. Indeed, non-targeted approaches may be used as exploratory work to identify Chapter III. Systematic evaluation of blood-derived sample preparation methods for HRMS-based chemical exposomics 131 previously uninvestigated compounds that are either particularly prevalent or linked to any given health outcomes, potentially resulting in priority lists used in targeted assays focused on

1 .

 1 Chapter IV. Optimizing data processing for exposomics applications: uncovering the potential of low-abundant peaks and MS1 data Chapter IV. Optimizing data processing for exposomics applications: Uncovering the potential of low-abundant peaks and MS1 data 136 Context and summary This chapter was published as an original paper as first author in the journal Analytical Chemistry: Chaker, J., Gilles, E., Leger, T., Jegou, B., & David, A.* (2021). From metabolomics to HRMS-based exposomics: Adapting peak picking and developing scoring for MS1 suspect screening.

From

  Figure IV.1 -Graphical abstract for the research paper titled "From metabolomics to HRMS-based exposomics: adapting peak-picking and developing scoring for MS1 suspect screening"

  and Autotuner12 ) and manual selection criteria to detect low-abundant spiked chemicals. Manual optimization was also extended to another open source software (MZmine2 30 ) and 2 vendor tools (e.g. MarkerView TM and Progenesis QI) to compare their efficiency to detect low-abundant spiked chemicals. We demonstrate the importance of fine-tuning critical parameters for both open source and vendor software to dramatically decrease the rate of false negatives. We next report an MS1 automatized suspect screening workflow. The novelty of this suspect screening workflow is to combine several predictors based on m/z, Rt prediction models and isotope ratio checks to generate intermediate and global scorings using multi-criteria algorithms. Several Rt prediction models were tested and hierarchized, and a non-linear scoring was developed to account for Rt variations observed within individual runs. We show this suspect screening tool's high efficiency for the rapid annotation of low-abundant spiked and non-spiked exogenous chemicals in human plasma and serum (annotation confirmed with MS/MS data). Compared to other existing annotation tools (e.g. xMSannotator,19 MS-DIAL, 20 msPurity 21 ), its main advantages include the use of Rt predictors based on different models, its speed and the use of efficient scoring algorithm to prioritize pre-annotated markers and reduce false positives.

For

  all software, a set of default parameters and a set of optimized parameters were tested to ensure optimal detection of spiked compounds (Figure IV.2).Five criteria were established to compare the four software tools and all possible parameter optimization algorithms. First, the detection frequency of spiked chemicals in blood plasma and serum samples was used to study the efficiency of parameters optimization. Then, mean areas for spiked and non-spiked samples, associated standard deviations, fold changes, and p-Chapter IV. Optimizing data processing for exposomics applications: Uncovering the potential of low-abundant peaks and MS1 data 142 values (unpaired t-tests) were computed to model the detection significance in spiked versus

Figure IV. 2 - 1 .

 21 Figure IV.2 -Data preprocessing flowchart illustrating all tested parameters, including default parameters for the authors' system (*) and optimized parameters (in bold and red) for each data preprocessing software tool.

  uncertainty, and can take two values: 15 ppm for masses strictly lower than 200 Da, and 10 ppm for masses over 200 Da.The ΔRt value was determined based on analytical Rt variability. This variability was estimated by computing Rt standard deviation (SD) for spiking standards in all analyzed spiked sample (8 spiked plasmas and sera) and for all isotopically-labeled compounds spiked in all analyzed sample (16 spiked and unspiked plasmas and sera). As analytical variability in Rt is heterogeneous along the chromatogram, run time was divided in sections based on observable different variability levels. The maximal expected Rt deviation ΔRt was constructed by selecting the highest compound Rt SD for each section, matrix and mode, and multiplying by three Chapter IV. Optimizing data processing for exposomics applications:Uncovering the potential of low-abundant peaks and MS1 data 145 (assuming normal distribution and applying statistics' empirical rule to encompass 99.7% of values). Highest SD was selected in order to avoid excessive stringency and account for untested factors such as long-term analytical drift.
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 3512 Figure IV.3 -Data processing (i.e. peak picking, deconvolution, alignment, gap filling) evaluation using XCMS for detection and semi-quantification of low-level spiked compounds in plasma samples (n=4 each). Four sets of parameters were used: Default (blue squares), manual (green rounds), IPO (purple triangles), and Autotuner (orange diamonds) optimization. Outer edges identify best performances.

Figure IV. 4 -

 4 Figure IV.4 -Data processing (i.e. peak picking, deconvolution, alignment, gap filling) evaluation for detection and semi-quantification of low-level spiked compounds in (A) plasma and (B) serum samples (n=4 each). Four optimized software tools were used: MZmine 2 (blue squares), XCMS (green rounds), MarkerView TM (purple triangles), and Progenesis QI (orange diamonds). Outer edges identify best performances.

  prediction tools, analytical Rt variability was investigated to avoid excessive stringency in the CI calculation by accounting for fluctuations in analytical variability caused by the matrix or conditions of elution over the course of the analysis (see SI Fig.B3). Computed SD for compounds were plotted against run time and allowed the creation of four sections based on visual inspection of the data: 0-5 min, 5-15 min, 15-30 min, and 30-60 min. The third section (15-30 min) showed maximal Rt variability for all matrix×mode combination, whereas the second section (5-15 min) presented lowest Rt variability in all cases except for compounds in serum in ESI (-) mode (where variability was lower in first section).

  Chapter IV. Optimizing data processing for exposomics applications:Uncovering the potential of low-abundant peaks and MS1 data 151 represented in Figure IV.6. A R² value of 0.996 and a RMSE of 0.02 were achieved, suggesting a high similarity between these two ratios and thus confirms a practical feasibility of using this ratio for suspect screening with the applied conditions. The investigated compounds were separated into eleven groups based on contents in Br, Cl and S atoms (and combinations). Compounds constituting these groups formed varyingly distant clusters. Five main clusters are formed based on contents in halogens Br and Cl (no halogens, one Cl, two Cl, three Cl or one Br, and combination of one Br and two Cl), which largely influence A2/A0 value. It is also observed that compounds' content in S atoms dictates their placement within each of these five main clusters, which is coherent with the 34 S/ 32 S ratio value of 0.05.

Figure IV. 6 -5. 3 .

 63 Figure IV.6 -Linear regression analysis of A2/A0 according to P2/P0. Prediction bands placed at 3 RMSE (99%) are depicted in dotted lines. Compounds are separated into 11 groups based on contents in Br, Cl, and S atoms (and combinations)

  Chapter IV. Optimizing data processing for exposomics applications:Uncovering the potential of low-abundant peaks and MS1 data 153 annotation. MS-DIAL offers an efficient form of ranking with an indication of whether the preannotation considers MS/MS or not, and allows a visualization of spectral matching. The individual score for each predictor accompanied by the global confidence index offered for the in-house tool allows a particularly efficient way to cutoff and prioritize pre-annotations. It is important to mention that some of these annotation tools offer specificities that could not be considered (e.g. biological correlations for xMSannotator) in the context of this study but that are definitively worth of interest.
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 7 Figure IV.7 -Comparison of five suspect screening tools: xMSannotator (blue), MS-DIAL (purple), msPurity (green), MZmine2 (yellow) and in-house tool (red). Comparison was made on use of in-house databases, use of predicted or experimental Rt and MS/MS, speed of implementation, scoring and prioritization. Details are available in SI Fig.B6.

  as proposed in Chapter III (Figure V.1). For each SPM, the 125 samples were separated in five 25-sample batches and injected to acquire data in both ESI modes (i.e. 500 injections in total for the samples), and 20% of randomly selected samples were re-injected for MS2 acquisitions in both ESI modes. In total, 20 batches were to be injected (n= 960 injections in total including QCs and MS2). However, due to technical difficulties mainly revolving around the instability of the LC, only the first three batches of Phree samples (as opposed to 5 for PPT) were further processed, i.e. 75 samples. The comparison of the two SPMs (robustness, annotation) were then only performed on the first three batches.

Figure V. 1 -

 1 Figure V.1 -Schematized representation of a dual sample preparation process, where half of the supernatant from protein precipitation is injected as is (after reconstitution), and the other half is used for further protein and phospholipid removal before injection on the UPLC-ESI-QTOF. In total, 960 samples were injected including QCs and MS2 acquisitions.

Figure V. 2 .

 2 Figure V.2.
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 2 Figure V.2 -Quality control parameters for the application of two sample preparation methods to cohort samples (n=75 samples) before correction. Outer edges identify best performances.

  e. PPT in ESI (-) mode, PPT in ESI (+) mode, Phree in ESI (-) mode, Phree in ESI (+) mode). The results of this normalization on the mean feature area in the case of PPT samples injected in ESI (+) mode is illustrated in Figure V.3. Results for other SPM×ESI mode combinations are available in Appendix 4.1.

  Results on PPT samples injected in ESI (+) mode are presented in Figure V.4. Results for other SPM×ESI mode combinations are available in Appendix 4.1. As expected, the normalization step allowed reducing the dispersion of samples initially observed in batch 5 (and at a lesser scale in batch 1) in this case.
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 3 Figure V.3 -Mean feature raw area (A) and mean feature area after total ion current correction (B), shown on samples (including the composite quality control samples) prepared by protein precipitation (PPT) injected in ESI (+) mode on the UHPLC-ESI-QTOF. Blank samples for each batch are identified by orange squares.

Figure V. 4 -

 4 Figure V.4 -PCA using raw area (A) and PCA using area after total ion current correction (B), shown on samples prepared by protein precipitation (PPT) injected in ESI (+) mode on the UHPLC-ESI-QTOF.

Figure V. 5 -

 5 Figure V.5 -Quality control parameters for the application of two sample preparation methods to cohort samples (n=75 samples) after correction. Outer edges identify best performances.

Figure V. 7 - 168 3. 2 .

 71682 Figure V.7 -Updated identification confidence levels accounting for new methodological tools, such as prediction models for retention time (Rt) and biotransformation products. MS2 refers to any form of fragmentation.

4. 5 .

 5 However, for illustrating purposes, only primary uses were considered in the following descriptions. The repartition of the 92 annotated compounds by primary use is presented in Appendix 4.5. The repartition of primary uses is presented in Figure V.8.
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 8 Figure V.8 -Classification of the major source of annotated compounds (n=92), expressed in percentages. Gut microbiota metabolites are shown in yellow, compounds obtained from food in blues, compounds obtained from health and personal hygiene products in greens, and industrial compounds in oranges.

  . The detection of annotated compounds was assessed in each sample. A representation of the detected compounds in each participant is presented in Figure V.9. Proportionately, the most represented chemical class is natural food compounds (49% of annotated compounds in PPT samples, 27% in Phree samples), and the least represented is organophosphate flame retardants (0.6% and 0.4%).

Figure V. 9 -

 9 Figure V.9 -Detection of suspect compounds per class in each participant (separated by batch) in protein precipitated samples (A) and Phree samples (B). Preservatives and other stabilizers found in processed foods, health and personal hygiene products and industrial compounds were combined in a single category for clarity.
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Figure S1 -

 S1 Figure S1 -Quality control parameters for the application of two sample preparation methods to two sets of cohort samples (n=8 plasma samples from the Danish cohort, and n=10 serum samples for Pelagie). Outer edges identify best performances.

Figure S2 -

 S2 Figure S2 -Comparison of fold change values (i.e. area ratio of features in samples prepared with Phree and protein precipitation) for quality control samples in Pelagie serum samples (A) and Danish plasma samples (B). Yellow indicates features only visible in Phree-prepared samples and blue indicates features only visible in protein-precipitated samples. Features are organized by retention time value (from bottom to top). The orange dashed rectangle indicates the range where lysophospholipids and peptides are mostly observed.

Figure B6 -

 B6 Figure B6 -Scoring of five suspect screening tools: xMSannotator, MS-DIAL, msPurity (green), MZmine2 and in-house tool. Comparison was made on use of in-house databases, use of predicted or experimental Rt and MS/MS, speed of implementation, scoring and prioritization.

Figure B2 -

 B2 Figure B2 -Mean feature raw area (A), mean feature area after total ion current correction (B), PCA using raw area (C) and PCA using area after total ion current correction (D) shown on samples (including the composite quality control samples) prepared by phospholipid removal plates Phree injected in ESI (+) mode. Blank samples for each batch are identified by orange squares.
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 B342 Figure B3 -Mean feature raw area (A), mean feature area after total ion current correction (B), PCA using raw area (C) and PCA using area after total ion current correction (D) shown on samples (including the composite quality control samples) prepared by phospholipid removal plates Phree injected in ESI (-) mode. Blank samples for each batch are identified by orange squares.

Bis( 2 -

 2 (tert-butyl)-6-(3-(tert-butyl)-2hydroxy-5-methylbenzyl)-4methylphenyl) terephthalate CC1=CC(=C(C(=C1)C(C)(C)C)O)C C2=C(C(=CC(=C2)C)C(C)(C)C)OC (=O)C3=CC=C(C=C3)C(=O)OC4= C(C=C(C=C4C(C)(C)C)C)CC5=C( C(=CC(=C5)C)C(C)(C)

  (C(=C(C(=C1Cl)Cl)Cl)Cl)Cl) O n

  Perfluoroheptanesulfonic acid C(C(C(C(F)(F)F)(F)F)(F)F)(C(C(C( F)(F)S(=O)(=O)O)(F)F)(F)F)((C(C(F)(F)S(=O)(=O)O)(F)F)( F)F)(C(C(F)(F)F)(F)F)((C(C(C(F)(F)S(=O)(=O)O)(F)F )(F)F)(F)F)(C(C(C(F)(F)F)(F)F)(F) F)(F)F n.a.

  

  

  

  

  

  

  

  

  

  

  et MZmine218 ). Ce nouvel outil repose sur la comparaison du rapport masse/charge, du profil isotopique, et de temps de rétentions expérimentaux ou prédits entre marqueurs et suspects, ce dernier prédicteur n'étant implémenté dans aucun autre outil. Ce logiciel permet aussi d'afficher un score de proximité appelé indice de confiance entre le marqueur et le suspect pour ces trois prédicteurs, ainsi qu'un indice de confiance global qui permet d'évaluer efficacement la plausibilité de l'annotation. Bien que la comparaison de ces outils ait été compliquée par la grande diversité de leur principe de fonctionnement, l'implémentation de l'utilisation de temps de rétention expérimentaux et prédits, ainsi que l'affichage des indices de confiance ont permis à notre

logiciel de se démarquer des autres outils notamment en l'absence de données MS2. Une comparaison plus poussée avec MS-DIAL est proposée dans le chapitre application à large échelle. Ainsi, cet outil permet de prioriser efficacement les pré-annotations, qui doivent ensuite être validées manuellement. Cette priorisation permet d'effectuer un gain de temps considérable, qui pourrait contribuer à la plus large annotation des jeux de données nonciblées existants. La pertinence de cet outil a été mise en avant lors de l'essai collaboratif NORMAN (meilleure fréquence de détection des composés dopés en matrice par ce logiciel) qui regroupait 16 laboratoires différents.

4. Application du workflow développé au sein de la cohorte mère- enfant Pélagie

  Quatre objectifs majeurs ont été établis pour ce chapitre : tout d'abord, évaluer la robustesse des méthodes analytiques et bioinformatiques optimisées dans le cadre de cette thèse.

	Ensuite, l'utilisation de prédicteurs MS1 (logiciel développé au laboratoire) et MS2 (MS-DIAL)
	pour l'annotation de xénobiotiques en matrice complexe a été comparée. Les expositions
	chimiques des pré-adolescents de la cohorte Pélagie ont subséquemment été caractérisées
	(n=92 annotations). Enfin, la complémentarité des deux méthodes de préparation d'échantillon
	utilisées conjointement comme recommandé dans un chapitre précédent a été étudiée à plus
	large échelle.
	Lors de cette application à large échelle, des contrôles qualité (i.e. même échantillon
	composite injecté plusieurs fois intra-(n=11, dont 5 initiaux pour équilibrer le système) et
	deux modes d'ionisation (positif et négatif), représentant ainsi 500 échantillons analysés (960 Cependant, la curation manuelle nécessaire pour confirmer ces pré-annotations est plus
	analyses au total en incluant les échantillons composites de contrôle qualité et les acquisitions importante, puisqu'elle implique de rechercher et comparer les motifs de fragmentation
	MS2). Ces adolescents font partie de la cohorte Pélagie, qui a inclus environ 3500 femmes manuellement. Ainsi, certains composés n'ayant pas été fragmentés lors de l'acquisition MS2,
	enceintes entre 2002 et 2005, toujours suivies avec leur enfant à l'heure actuelle. L'un des tels que le pentachlorophenol ou le triclosan glucuronide, n'ont pas été annotés par MS-DIAL.

L'intérêt croissant pour l'étude des liens entre expositions environnementales et santé a mené au développement et à l'optimisation de méthodes non-ciblées et de profilage de suspects pour caractériser l'exposome chimique interne humain. Les optimisations de méthodes effectuées dans le cadre de cette thèse ont ainsi permis d'améliorer leurs capacités de sensibilité; leur robustesse a également été vérifiée lors d'une application à plus large échelle.

Ainsi, 125 échantillons de sérum sanguins issus de pré-adolescents (12 ans) bretons ont été analysés après leur préparation par deux méthodes de préparation d'échantillon, et dans les suivis a été effectué aux 12 ans des enfants, au cours duquel des paramètres cliniques tels que la croissance ou l'adiposité ont été vérifiés. Des échantillons sanguins ont été collectés pour, entre autres, évaluer l'exposition de ces adolescents aux contaminants organiques. interbacth (n=110 par méthode de préparation d'échantillons)) basés sur l'aire des marqueurs détectés dans les échantillons composites injectés à répétition au cours des séquences, et sur leur temps de rétention ont été mis en place afin de veiller à la comparabilité des échantillons.

De même, la stabilité de l'aire et du temps de rétention des 22 standards internes dopés dans tous les échantillons (n=125 par méthode de préparation d'échantillon) et les échantillons composites injectés entre les échantillons ont été vérifiées, soit dans 310 échantillons au total.

Ces vérifications ont permis de constater la nécessité de procéder à une normalisation de l'aire des marqueurs par le courant ionique total, qui présentait une variation batch-dépendante.

Cette normalisation a notamment permis de baisser le coefficient de variation calculé sur les aires des marqueurs communs à 80% des marqueurs composites d'environ 35% par rapport à sa valeur brute pour les deux méthodes de préparation des échantillons, démontrant ainsi sa pertinence pour cette application.

Dans un second temps, les données obtenues ont été annotées par une approche de profilage de suspects à l'aide du logiciel développé, qui se base sur des prédicteurs MS1, et MS-DIAL, basé majoritairement sur des prédicteurs MS2. L'utilisation de ces deux outils a permis de comparer ces deux fonctionnements, et a permis de démontrer que l'utilisation de prédicteurs MS1 était pertinente et complémentaire à une approche basée sur la MS2 dans une application exposomique, où les données MS2 ne sont pas toujours de bonne qualité, voire inexistantes.

Cependant, ces composés présentent des schémas isotopiques discriminants, ainsi que des valeurs de Rt prédits cohérentes avec les valeurs de Rt expérimentales (indices de confiance sur le Rt supérieurs à 0.84). Dans le cas du triclosan glucuronide, une indication supplémentaire étayant l'annotation porte sur l'annotation d'un autre métabolite (i.e. triclosan sulfate) provenant du même composé parent (i.e. triclosan). Cette étape a donc également mené à la proposition d'une nouvelle version de la classification des niveaux de confiance des annotations proposée par

Schymanski et al. (2014) 

  27, 28 , qui permettent de générer des indices forts appuyant ou écartant l'annotation effectuée. Au total, 92 annotations ont été effectuées.

	Enfin, les deux méthodes de préparation d'échantillon utilisées dans le cadre de cette
	application à large échelle ont été comparées. Les rapports d'aires des composés annotés
	ainsi que de l'ensemble des marqueurs ont été calculés, et ont permis de déterminer que plus
	de 80% des marqueurs ne sont visibles que par l'une ou l'autre des méthodes de préparation.
	A l'échelle des composés annotés, plusieurs tendances observées ont permis d'émettre des
	hypothèses sur les facteurs influant sur la bonne détection des composés avec l'une des deux
	méthodes de préparation d'échantillons. Tout d'abord, les composés polaires sont
	généralement mieux détectés avec la précipitation de protéines, ce qui pourrait s'expliquer par

Les composés annotés se répartissent en quatre grandes classes : les métabolites de la flore intestinale (7%), les composés issus de l'alimentation (45%), les composés utilisés pour la santé et l'hygiène (18%, incluant 11% de principes actifs pharmaceutiques) et les composés industriels (30%, incluant 8% de pesticides et 8% de plastifiants). Ces composés présentent des caractéristiques physico-chimiques variées (-2.7 ≤ logP ≤ 16, et 100.0754 ≤ [M+H] + ≤ 811.4913), et des sources diverses, ce qui démontre qu'il est possible d'observer un large espace chimique avec les méthodes développées au cours de cette thèse. La détection de ces composés dans chaque échantillon a été évaluée. Il a été établi que les proportions de métabolites intestinaux et de composés naturels issus de l'alimentation étaient très peu variables entre les participants (coefficients de variation CV calculés sur les proportions sous 15% pour chaque classe et chaque méthode de préparation d'échantillons). A l'inverse, les expositions aux retardateurs de flammes organophosphorés (CV de 165% et 210% dans les échantillons PPT et Phree respectivement), aux intermédiaires de synthèse (CV de 115% et 27% dans les échantillons PPT et Phree respectivement) et aux pesticides (CV de 65% et 9% dans les échantillons PPT et Phree respectivement) sont hautement variables d'un individu à un autre. Ces observations sont cohérentes avec une exposition ubiquitaire aux métabolites intestinaux et aux composés naturels de l'alimentation, mais dépendante du style de vie (urbain ou rural, habitudes alimentaires, etc.) en ce qui concerne les polluants environnementaux. Certains pesticides (et métabolites) annotés, tels que le bromoxynil ou le fipronil sulfone, avaient déjà été détectés en population générale à de faibles niveaux (i.e. état de trace à 140 ng/mL) 29, 30 . Ces faibles niveaux documentés constituent une première indication (à confirmer avec des essais ciblés quantitatifs) sur les performances de sensibilité des approches développées au cours de cette thèse. Un métabolite du pesticide bromoxynil très largement détecté dans cette étude et auparavant jamais décrit dans des études de biosurveillance a été annoté. Ce métabolite est plus détecté que bromoxynil (97% contre 61%) et les aires observées dans les échantillons sont 3 à 8 fois plus élevées que celles du bromoxynil. Ces observations confirment ainsi la faisabilité d'utiliser des approches de profilage de suspects pour identifier de nouveaux biomarqueurs d'exposition de composés d'intérêt. le mécanisme d'action des plaques d'élimination des phospholipides, qui serait basé sur la rétention de la tête polaire des phospholipides 31 . A l'inverse, les composés plutôt apolaires sont mieux détectés dans les échantillons préparés par Phree. Cette observation est cohérente avec la présence importante de phospholipides et lysophospholipides dans les échantillons préparés par PPT, qui peut gêner l'ionisation d'autres composés moins abondants ayant un temps de rétention similaire (i.e. suppression ionique). Ensuite, les retardateurs de flamme organophosphorés sont mieux détectés dans les échantillons Phree, ce qui pourrait s'expliquer par le fait que ces plaques ne retiendraient que les groupes phosphates les plus polaires, tels que ceux qui forment la tête des phospholipides. Enfin, les phthalates semblent mieux détectés avec Phree, à l'exception d'un téréphthalate encombré stériquement, qui n'est pas strictement favorisé par une méthode. Cela pourrait s'expliquer par un mauvais recouvrement de composés encombrés stériquement par les plaques Phree.

Ainsi, ce chapitre a permis d'appliquer les méthodes développées au cours de cette thèse à large échelle, sur 125 échantillons de la cohorte bretonne Pélagie. Cette application a mené à l'annotation de 92 composés d'une grande diversité physico-chimique, qui contribue à la documentation du périmètre de l'espace chimique observable en utilisant les méthodes optimisées décrites. Les données obtenues pourront également être utilisées en association avec d'autres données contextuelles, telles que le lieu de vie ou les habitudes alimentaires, afin de prioriser d'autres marqueurs pour l'annotation avec une approche non-ciblée.

  Unprecedented levels of funding at national and EU levels are currently being implemented to provide novel human exposure data to chemicals through biomonitoring studies. At the national level, the French agency for public health Santé Publique France has led the French HBM program since 2010. This initiative aims to paint a representative image of the French population's exposure to chemical compounds, through the analysis of urine, blood and hair samples. This program consists in two surveys: a subset

of the French Elfe cohort (>4100 individuals) as a perinatal component, and the Esteban project, which in general population-based

(18-74 years)

. The data generated by this program is made available to research teams, notably those working on establishing exposure-health associations in the Elfe cohort. Furthermore, this data helps inform the relevant authorities regarding the determined environmental substances

[START_REF] Dereumeaux | The French human biomonitoring program: First lessons from the perinatal component and future needs[END_REF] 

. Conjointly with Anses (French Agency for Food, Environmental and Occupational Health & Safety), Santé publique France (SpF) has also launched the PestiRiv project in 2021. This initiative is geared towards the assessment of pesticide exposure for citizens residing in proximity to vineyards. Its main objective is to determine whether the proximity to agricultural land, particularly vineyards, has an effect on pesticide exposure. This may lead to the establishment or modification of public health measures to implement appropriate measures to protect citizen's health. Multiple sources will be accounted for (e.g. air, food, domestic use and profession), and both biological (i.e. urine and hair) and environmental (i.e. air, dust, food) will be collected.

Other sizable HBM studies (detailed in paragraph I.3.1) have gradually been undertaken in the last decade. At the European scale, projects such as HELIX, EXPOsOMICs (both started in 2012), HBM4EU (started in 2017), ATHLETE and EXPANSE (both started in 2020) have used HBM as a key tool to assess individuals' exposure to environmental chemicals. This growing implementation of large-scale HBM studies helps informing researchers and policymakers on the exposure-health relationship.
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	Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies:
		State-of-the-art and challenges
	3.1.	Large-scale applications and achievements
	To date, there have been no large-scale applications of non-targeted and/or suspect screening
	approaches in epidemiological studies. However, several exposomics research initiatives have
	appeared in the last decade in Europe and worldwide (even though not all of them implemented
	NTA based on HRMS) (
	Table I.1).	

European projects (FP7) (2012-2017) Project name Main objective Funding (Million euros) HELIX

  

		The Human Early-Life Exposome
		Novel tools for integrating environmental exposures during early	11.3
		life and child health across Europe
		Enhanced exposure assessment and omic profiling
	EXPOsOMICs	Developing a new approach to assess environmental exposures,
		focusing on air and water pollution

11.6 NIEHS projects (USA) Project name Main objective Funding (Million euros)

  

	CHEAR	The Children's Health Exposure Analysis Resource Implementing the exposome concept in children's health studies	34
		Human Health Exposure Analysis Resource	
	HHEAR	Capturing the effects of environmental exposures on human	
		health outcomes across	

the life course 35 European projects (H2020) (2017-2022) Project name Main objective Funding (Million euros) HBM4EU

  

	The European Human Biomonitoring Initiative
	Coordinating and advancing human biomonitoring in Europe to
	provide evidence for chemical policy making

74.9 The European Human Exposome Network (2020-2025) Project name Main objective Funding (Million euros)

  

	Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies: Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies: Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies:
	State-of-the-art and challenges State-of-the-art and challenges State-of-the-art and challenges
	Table I.1 -Research initiatives investigating the links between the chemical exposome and health. exposed participants to potentially identify biomarkers of risk and better understand chemical relying on lists of priority substances, non-targeted and suspect screening of biological
	NIEHS: National Institute of Environmental Health Sciences. Adapted from David et al., m/s, 2021. compounds' mechanisms of action ("meet in the middle" approach 169 ). It was funded for over matrices to characterize environmental exposures. HBM4EU's sixteenth work package titled
	3.1.1. 11.6 million euros, with a contribution of more than 8.7 million euros from the European From 2012 to 2017
	Commission.
	The emergence of the exposome concept has motivated the funding of several European and
	international projects aiming to characterize the exposome at a wide scale. Among the first These projects, both closed in 2017, undertook the characterization of the chemical exposome
	large-scale research projects, two European projects funded in part by the European at a large scale. However, while a large number of determinants were investigated, they still
	Commission through the seventh Framework Programme (FP7) were launched in 2012. relied on targeted measurements of known toxicants.
	Firstly, the HELIX project set out to characterize early-life exposures to multiple environmental During the same period, sizable infrastructures dedicated to the characterization of the
	factors and associate them with omics biomarkers and health outcomes. Methodological tools exposome were set up in the United States of America. In 2013, the National Institute of
	such as spatial models and exposure monitors were used to evaluate exposure to physical Environmental Health Sciences (NIEHS, USA) funded HERCULES, an environmental health
	factors such as surrounding green spaces, noise and radiation. Other tools such as sciences center dedicated to supporting environmental health research through the
	questionnaires and chemical analysis were used to assess early-life exposure to a wide range development of new tools and technologies. This Core center was the first of its kind focused
	of environmental chemicals including various persistent organic pollutants (polychlorinated on the exposome concept. This platform supported many research projects throughout the
	biphenyls, dichlorodiphenyldichloroethylene, hexachlorobenzene, polybrominated diphenyl years, providing targeted and high-resolution metabolomics analyses (aiming to identify both
	ethers, perfluroalkyl substances), non-persistent pollutants (phtalates, phenols, biomarkers of effect and exposure), as well as support regarding data analysis 38, 170 . Its funding
	organophosphate pesticides), and various metals 166 . These chemical parameters were was renewed for a second cycle in 2017 171 . In 2015, NIEHS also launched the Children's
	measured in blood using GC-MS-based methods (aforementioned persistent pollutants), in Health Exposure Analysis Resource (CHEAR), a large-scale infrastructure to allow
	urine using LC-MS-based methods (aforementioned non-persistent pollutants) or hair researchers working specifically on children's health to incorporate the concept of exposome
	(mercury). In addition, the links between indirect measurements conducted on environmental to their research 172 . Using targeted and high-resolution metabolomics, this infrastructure
	samples and direct measurements conducted on biological matrices were investigated to give allowed researchers to characterize the chemical exposome of over 50,000 children in over 30
	new insights on future exposure assessments. The HELIX project implicated six European studies investigating the links between environmental exposures and adverse health outcomes
	birth cohorts (more than 30,000 mother-child pairs), with a subcohort of more than 1,300 such as asthma, obesity, autism, etc. In 2019, the Human Health Exposure Analysis Resource
	mother-child pairs for which biomarkers, omics signatures and child health outcomes were (HHEAR) was in turn launched to expand the characterization of the chemical exposome to
	measured at ages 6-11 167 . This project required a total budget of 11.3 million euros (8.6 million other time windows of vulnerability during adulthood 173 .
	euros from FP7), and allowed to establish several significant environment-health outcomes
	associations such as perfluoroalkyl substances and cardiometabolic factors 39 , and multiple 3.1.2. From 2017 to 2020 (extended to 2022)
	exposures (including chemical mixtures) and cognitive function 168 . The European Human Biomonitoring Initiative (HBM4EU) was launched in 2017 with a
	ATHLETE EXPANSE contribution from the European Commission of almost 50 million euros through the Horizon Advancing tools for human early life-course exposome research and translation Developing a human exposome toolbox to evaluate the effects of environmental exposure 12.0 Exposome powered tools for healthy living in urban settings Maximizing one's health in a modern urban environment 12.0 Secondly, the EXPOsOMICs project aimed to characterize exposure to air and water 2020 program (75 million euros of funding in total). This project is a joint effort of 30 countries contaminants for more than 3000 participants (including newborns, children and adults) from to coordinate and harmonize human biomonitoring practices to improve the evaluation of the 14 European regions, and to establish links with adverse health outcomes such as actual exposure of citizens to chemicals and to better understand the effect of mixtures on cardiovascular diseases, respiratory diseases and type II diabetes. Real-time monitors human health. Its main objectives included the harmonization of procedures for HBM to measuring notably fine particulate matter and innovative models were used to assess improve data comparability for policy makers, establishing links between chemical exposures exposure to air pollution. Water contamination, on the other hand, was assessed through the and health outcomes, and adapting risk assessment procedures to account for multiple determination of disinfection by-products notably in drinkable water and biological matrices such as urine. Omics data was also generated from biological samples obtained from the highly sources. It was one of the first major projects to include, in addition to targeted approaches
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  and methodological challenges for the application of non-targeted approaches to epidemiological studies are slowly being addressed through the efforts of independent laboratories and regional and worldwide collaborations. In 2020, the European Human Exposome Network was launched with the aim to bring together 9 research projects studying the impact of environmental exposure on human health.It is partly funded by the European Commission for over 100 million euros, and involves 126 research groups from 24 countries. Closely following in 2021, the Research Infrastructure for EnvIRonmental Exposure assessmeNt in Europe (EIRENE RI) entered in the European Strategy Forum on Research Infrastructures (ESFRI) roadmap. This European research infrastructure connects 50 research institutions from 17 countries and aims to support large-scale research on human health and the environment, way of life, diet, exercise, economic pressures and psychosocial problems.
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Table II

 II 

.1 -Median area (and area CV) of compounds from the optimization mix injected in four replicate depending on the column diameter and flow rate.

  .3 below.

	Maximum precursor ions (per scan)	Compounds triggering MS2 analysis (%)	Compounds for which a usable spectra is obtained (%)	Median number of acquired spectra by compound
	10	52	46	4
	20	84	78	4
	50	80	60	3
	100	80	48	1

Table II .

 II 

	Window index	ESI (-)	ESI (+)
	1	49.5 -59.4	49.5 -60.5
	2	58.4 -68.9	59.5 -74.5
	3	67.9 -85.7	73.5 -80.0
	4	84.7 -114.0	79.0 -99.3
	5	113.0 -149.7	98.3 -109.3
	6	148.7 -177.8	108.3 -135.0
	7	176.8 -200.7	134.0 -161.8
	8	199.7 -245.7	160.8 -199.6
	9	244.7 -269.4	198.6 -240.4
	10	268.4 -310.9	239.4 -268.9
	11	309.0 -323.5	267.9 -324.5
	12	322.5 -346.1	323.5 -367.8
	13	345.1 -388.1	366.8 -395.9
	14	387.1 -454.2	394.9 -425.6
	15	453.2 -515.1	424.6 -474.7
	16	514.1 -569.7	473.7 -506.7
	17	568.7 -593.4	505.7 -533.0
	18	592.4 -677.9	532.0 -577.1
	19	676.9 -844.6	576.1 -771.8
	20	844.6 -999.9	770.8 -999.9

Chapter II. Material and methods 94 time of 100 ms per scan was divided between fewer acquisitions in the case of lower thresholds, thus resulting in better sensitivity. This led to the choosing of 20 maximum precursor ions per scan.

IDA experiments were performed in both ESI (-) and (+) modes, using the following source settings: MS1 accumulation time 250 ms, MS2 accumulation time 100 ms, collision energy 35 eV) and ESI (+) ionization modes is presented in Table

II

.

4

. 4 -Example of SWATH windows generated by the vendor SWATH windows calculator on plasma quality control samples in ESI (-) and ESI (+) ionization modes

SWATH experiments were performed in bothand + ESI modes, using the following source settings: MS1 accumulation time 80 ms, MS2 accumulation time 30 ms, collision energy set as a ramp evolving from 20 to 50 eV (35±15 eV), cycle time 469 ms, mass range 50-1100 m/z.

  While m/z and isotopic pattern can give a reliable indication of a compound's chemical formula, other compound characteristics can be explored. Retention time (Rt) is an indication of a

	Chapter II. Material and methods
	4.2.1.3. Retention time
	104

  Lastly, an overall CI for isotopic fit is computed as a weighed sum of the two intermediate CI for M+n identification and abundance. For the reason cited earlier regarding limited confidence in the integration of small areas, the ponderation is determined based on the area of the M+n. Indeed, the two CI are weighed identically if the M+n area is higher than 20, else the M+n identification CI is weighed at 1/3 and the abundance CI is weighed at 2/3.4.2.3.3. Retention timeAs previously mentioned, the in-house software supports up to four Rt value per compound in the library: one experimental Rt, an up to three predicted Rt. All CI for Rt are computed using the standard formula presented in Equation II.1 with the appropriate ΔRt values. In the software's initial version, the ΔRt value for experimental Rt was determined manually based on analytical Rt variability. Detailed explanations regarding these Rt prediction models are available Chapter IV, paragraphs 4.4.2 and 5.2.1. Briefly, compounds from the optimization mix spiked in plasma and serum samples (n=8) as well as isotopically labeled compounds (listed in Appendix 1.1) spiked in 16 plasma and serum samples were used to determine the standard deviation (SD) on Rt values. The chromatogram was divided in four sections based on observable variability as analytical variability in Rt is heterogeneous. The ΔRt value was constructed by selecting the highest compound Rt SD for each section, to avoid excessive

3.2.3.2.

A second temporary CI is also computed based on the Rt proximity between the annotated feature and the M+n, with a strict ΔRt value of 6 seconds (0.1 min). Indeed, isotopologues should be detected exactly at the same time; the confidence interval is set to take the instrument's and the data processing tool's uncertainties into account. The two temporary CI are averaged to obtain a first intermediate CI, referred to as "M+n identification CI".

Once the M+n feature is identified, area ratios are compared under the condition that the area of the M+0 (i.e. the annotated feature) is superior to 100. This is because low areas are often poorly integrated, resulting in inaccurate ratio values. If this is not verified, only the intermediate M+n identification CI is displayed. Else, the area ratios are compared and a second intermediate CI is computed for abundances with a ΔA2/A0 value of 0.1. The determination of the confidence interval is based on a regression of experimental area ratio values against theoretical area ratio values for 98 compounds. The root mean square error (RMSE) was calculated and the confidence interval was established at 3 RMSE to encompass 99.7% of projected data points (assuming normal distribution and applying statistics' empirical rule). A detailed explanation is presented in Chapter IV, paragraphs 4.4.3 and 5.2.2.

Systematic evaluations of blood- derived sample preparation methods for HRMS- based chemical exposomics

  Chapter II. Material and methods 110 linked with their daughter's clinical data 20 years later were selected through a collaboration with the Rigshospitalet (Copenhagen, DK) with David Kristensen. Reproductive health data for the daughters was also collected and available. This cohort would have therefore allowed linking data for environmental exposures during the prenatal period and reproductive health.However, due to the unforeseen pandemic circumstances and unresolved ethical procedures on the epidemiological side, samples from the local Breton Pélagie cohort were used. This cohort, initially built as a longitudinal study to measure exposure to organic pollutants during the pregnancy, included 3,500 women pregnant between 2002 and 2005 in Brittany. One of the follow-ups occurred when the children turned 12, at which time a questionnaire was provided to obtain physical growth data and pubertal stage. Additional clinical parameters such as growth, adiposity, visual function and oral-dental health were evaluated on a subset of 500 This chapter was published as an original paper as first author in the journal Analytical Chemistry: Chaker, J., Kristensen, D. M., Halldorsson, T. I., Olsen, S.F., Monfort, C., Chevrier, C.,

	Chapter III. Systematic evaluation of blood-derived sample preparation methods for HRMS-based
	chemical exposomics
	1. Context and summary
	Jégou, B., David, A.* (2022). Comprehensive Evaluation of Blood Plasma and Serum Sample
	Preparations for HRMS-Based Chemical Exposomics: Overlaps and Specificities. Anal Chem (IF=6.8),
	94(2), 866-874.
	114

12-year-olds. Serum samples were collected from 250 12-year-olds at this time to measure sex hormones and to assess exposure to organic contaminants. Serum samples from 125 boys were used in this PhD work to perform a suspect screening approach to characterize the human internal chemical exposome.

Chapter III.

  Chapter III. Systematic evaluation of blood-derived sample preparation methods for HRMS-based chemical exposomics 121 assessed for each compound using the coefficient of variation (CV) of peak area on four replicates. Matrix effect (ME) was calculated as described in Equation III. for each compound at two concentration levels (lowest and highest points of calibration range).

	𝑀𝐸[𝑋, 𝐶] (%) =	𝐴[𝑋, 𝐶] 𝑠𝑜𝑙𝑣𝑒𝑛𝑡 -𝐴[𝑋, 𝐶] 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴[𝑋, 𝐶] 𝑠𝑜𝑙𝑣𝑒𝑛𝑡	* 100
	Equation III.1-Matrix effect formula, where A is the peak area of a given compound X at a given
	concentration C.		

  . However, due to lack of information on the phospholipid retention mechanism of other PLR plates, this hypothesis

	Chapter III. Systematic evaluation of blood-derived sample preparation methods for HRMS-based
	chemical exposomics
	regardless of the used solvent. Another thiophosphate, i.e. Malathion, was only recovered at
	53.8% when using Phree with methanol. This insecticide, along with its precursor
	dimethyldithiophosphate, were also mildly to strongly disadvantaged by both Strata SPE
	cartridges (2.8-69.2% recovery). This tendency may indicate a need for a particular attention
	to thiophosphates when choosing and optimizing an SPM for non-targeted exposomics
	studies.
	Observed repeatability on compound recovery was suitable for all SPM, with a calculated CV
	below 20% for 80% (HLB Oasis) to 100% (PLD) of spiked compounds. Lower interquartile
	ranges (i.e. difference between the third and first quartiles) were noted for PLR plates (3.4-
	9.2%) compared to SPE cartridges (9.1-13.1%). This suggests that PLR-based methods are
	Overall, five out of eleven methods (i.e. PLR plates Ostro, Phree with both solvents, StrataX
	and StrataXC) in addition to reference SPM PPT presented Q1 and Q3 recovery values
	comprised between 70% and 120%, constituting adequate performance for this criterion.
	125

cannot be further investigated. The SLE cartridge did not seem adequate either for the intended application, as 20% of compounds were not recovered at all. Most of these nonrecovered compounds (90%) were compounds usually favored in -ESI mode notably due to the presence of a common carboxylic acid group, which may suggest a less efficient desorption of such molecules when using this cartridge. Similarly, Prime HLB seemingly disadvantaged the recovery of compounds presenting a carboxylic acid group (100% of non-recovered compounds). This SPM also seemed inadequate for the recovery of selective serotonin reuptake inhibitors fluoxetine and paroxetine (8.8% and 1.5% recovery respectively), which may indicate a particular affinity of the sorbent for this class of compounds. It should be noted that eight compounds (i.e. 2-phenylphenol, acetylsalicylic acid, arachidonic acid, cotinine, nicotine, leukotriene D4, and prostaglandins D2 and J2) were generally poorly recovered (recovery below 70% for at least six SPM). As these compounds span across wide ranges of m/z (162.1167 ≤ Monoisotopic mass (Da) ≤ 496.2607) and Rt (3.76 ≤ Rt (min) ≤ 46.64), and share no common substructure, it appears that recovery in the case of low-level spiking in a complex matrix is partly compound-dependent with no evident generalization hypothesis. A similar observation regarding overall poor compound recovery regardless of the used extraction method was reported by Tulipani et al. (2015)

20 

.

Despite the generally satisfying recovery values obtained with these SPM, Ostro also tended to disadvantage compounds with a carboxylic acid group, although at a lesser level than Isolute or Prime HLB (14% of compounds were not recovered). Phree PLR plates mildly disadvantaged two thiophosphates, i.e. chlorpyrifos and diazinon (42.8-63.6% recovery), more repeatable than SPE-based methods overall, which may be attributable to the higher complexity of SPE protocols (i.e. higher number of steps), as was previously suggested by

Rico et al. (2014) 

16 

.

Median matrix effects were highly variable among SPM, ranging from 31.9-75.0% (Phree ACN and PPT respectively) for the 20 ng/mL spiking level and from 22.6-83.0% (PLD and HLB Oasis respectively) for the 150 ng/mL spiking level. As expected, higher median matrix effect were observed with the lower spiking concentration for most SPM, with the exception of HLB Oasis (69.7-83.0% at 20 and 150 ng/mL). Additionally, PPT showed high matrix effect compared to other SPM, which was expected since it is the least selective. For PLR plates, Phree ACN performed best with a low median matrix effect at both spiking levels (31.9% and 28.0% at 20 and 150 ng/mL). It is to be noted that while Phree MeOH allowed similar performance on the recovery criterion, the use of methanol as a solvent exacerbated the observed matrix effect, in coherence with what was previously reported by

Sitnikov et al. 

  Chapter III. Systematic evaluation of blood-derived sample preparation methods for HRMS-based chemical exposomics 127 the only two SPM that allowed a suitable performance on both serum (94 and 93% respectively) and plasma (81 and 94% respectively). In coherence with the observations presented in the SPM preselection process, StrataX produced less repeatable results compared to Phree ACN, which is further reflected in the Phree+StrataX SPM. Moreover, lower semi-quantification performance values for these two SPM are once again not linked to overall higher CV values for all compounds, but rather to a stronger heterogeneity over the range of compounds. Indeed, CV interquartile ranges are of 4.0%, 6.7%, 13.0% and 18.0% for PPT, Phree, StrataX and Phree+StrataX respectively in serum (8.4%, 6.8%, 14.5% and 26.5% in plasma). High CV values (i.e. CV ≥ 25%) with the use of StrataX and Phree+StrataX SPM in serum were found for compounds that were discussed in the preselection process, such as selective serotonin reuptake inhibitors fluoxetine and paroxetine, as well as triphosphates chlorpyrifos and diazinon. StrataX also seemed to induce low repeatability for triazoles Overall, PPT and Phree ACN both present similar and superior performances for the detection of low-level compounds in complex blood-derived matrices compared to StrataX and Phree+StrataX. The study design based on fifty spiked compounds did not allow to demonstrate any clear advantage on one compared to the other; a final comparison of these two SPM was made through their application to serum and plasma cohort samples to obtain a MDL were determined for PPT and Phree ACN on thirty xenobiotics, in plasma and serum. Results on individual compounds are presented in the SI, Table A6. Median MDL values were 0.1 and 0.3 ng/mL for Phree and PPT respectively in both matrices, which suggests lower matrix effect presumably linked to further sample purification with Phree.

	Chapter III. Systematic evaluation of blood-derived sample preparation methods for HRMS-based
		chemical exposomics
	5.3.	Final comparison with MDL determination and application on cohort
	samples
	First,	
		128

). Outer edges identify best performances.

propiconazole and tebuconazole for this real-life-level spiking (10 ng/mL), which was not visible during the preselection phase (40 ng/mL). This observation, coupled with previous reports of comparable repeatability between PPT and SPE-based SPM at high spiking levels (800-5000 ng/mL)

11, 15 

, suggests the need for application-appropriate evaluations of SPM, as the detection of xenobiotics at real-life concentrations may be further hindered by the choice of an unfitting SPM.

All four SPM allowed the statistical differentiation (p≤0.01) of spiked compounds areas in spiked and non-spiked samples for both matrices for more than 75% of detected compounds.

Overall, PPT and Phree ACN performed best for this criterion, followed by StrataX then Phree+StrataX. This is coherent with the data obtained on repeatability, as significance decreases with repeatability. Indeed, high p-values (p≥0.01) are generally observed on compounds with high CV values (e.g. diazinon in both matrices, paroxetine in serum, nicotine in plasma, etc.). Phree+StrataX also predictably ranked last regarding the speed of implementation criterion, as the multiplication of extraction steps to achieve further sample purification led to a longer sample preparation process. wider point of view on each method's impact on results of a non-targeted exposomics approach.

Table III .

 III obtained in serum samples present more differences between the two considered SPM (i.e. FC values closer to the extremes) compared to what is observed in plasma samples. This may be explained in part by the presence of highly abundant and often multiply charged peptide peaks observed in serum samples prepared using PPT, which seem mostly retained during the sample preparation step for Phree samples. These peptide peaks are mostly observed within a specific Rt range (39-45 minutes), which is also the range where phospholipids and lysophospholipids (which are specifically retained by Phree plates) are observed. A comparative visualization of FC values organized by Rt value in serum and plasma is presented in the SI, Figure S2. These peaks are not as abundant in plasma samples prepared with protein precipitation, and therefore present less polarizing FC values. The differentiating presence of these dominating peptide peaks in serum compared to plasma has already been reported

	Chapter III. Systematic evaluation of blood-derived sample preparation methods for HRMS-based
	chemical exposomics
	Overall, features
	130

1-Percentage of features of quality control samples categorized by fold change value (i.e. area ratio of features in Phree and protein precipitation). Values are computed for Pelagie serum samples

and Danish plasma samples.

  Chapter IV. Optimizing data processing for exposomics applications:Uncovering the potential of low-abundant peaks and MS1 data 141 in matrix. Non-spiked plasma and serum samples (n=4, 100 µL each) from the same homogenates were also used to check for any background contamination. A mix of 21 labeled internal standards (100 ng/mL) was used to monitor analytical variabilities during sample

	preparation and UHPLC-ESI-QTOF injections. Protein precipitation was performed using a 4:1
	(v:v) ratio of cold methanol to matrix. To improve protein removal, samples were allowed to
	stand at -20°C for one hour prior to centrifugation. After centrifugation at 4°C and 17,000g for
	20 min, supernatants were collected and evaporated to dryness under vacuum. Samples were
	recovered in 100 µL of 90:10 (v:v) ultrapure water to acetonitrile ratio.
	4.2.	Data acquisition and quality control
	Samples were analyzed on an AB SCIEX X500R QTOF interfaced with an AB SCIEX ExionLC
	AD UHPLC. Compound chromatographic separation was achieved with an Acquity UHPLC
	HSS T3 C18 column (1.8µm, 1.0 x150mm) maintained at 40°C. Details regarding the injection,
	Analysis Pipeline (ADAP) (with "ADAP Chromatogram Builder" and "Chromatogram
	4.1. Deconvolution -Wavelets (ADAP)" steps), and Continuous Wavelet Transformation (CWT) Spiking experiments and sample preparation
	Spiking experiments were performed on human blood plasma and serum samples to optimize (with "Chromatogram Builder" and "Chromatogram deconvolution -Wavelets (XCMS)" steps).
	and compare the efficiency of data processing software to detect low-abundant signals in
	biological samples. Plasma and serum bags were acquired from the French blood agency
	(Etablissement Français du Sang, EFS). Homogenate plasma and serum samples (n=4, 100

µL each) were spiked with a mix of selected classes of contaminants (i.e. pesticides, pharmaceuticals and diet toxins) and metabolites (i.e. steroids, eicosanoids and neurotransmitters) (n=45, see Supporting Information Table

A1

for suppliers) to give 10 ng/mL chromatographic separation and ESI source parameters can be found in the SI. Samples were analyzed in full scan experiment in bothand + ESI modes. MS/MS fragmentation data for chemical elucidation was obtained by analysis of selected samples in sequential window acquisition of theoretical mass spectrum (SWATH). Quality Control procedures are specified in the SI.

4.3.

Peak picking optimization: data processing tools Mass spectra acquired in full scan were processed (peak picking, deconvolution, alignment, gap filling) using four software programs: instrument-specific software MarkerView

TM 

1.3 (AB SCIEX), vendor software Progenesis QI for Metabolomics (Waters), and open-source solutions MZmine2 30 (v2.51) and XCMS 31 (v3.6.1). Two R packages, IPO 11 and Autotuner 12 , were used to test automatized parameter optimization of XCMS. For Progenesis, XCMS and MZmine2, raw data files (in wiff2 data format) were converted to 64 bit .mzML (full scan) using MSConvert from ProteoWizard. 32 Two pipelines were used within the MZmine2 solution: Automated Data

  Compounds of the training set were only used for model construction if an experimental logP was available (see SI Fig.B2). Experimental Rts were regressed on experimental logP values from compounds of the training set for which this parameter was available (n=101). The resulting equation was used to predict Rts for validation set compounds. Retip 37 relies on five machine learning algorithms, and requires previously acquired experimental Rt values and InChI identifiers. PredRet 38 uses a user-driven database of compounds Rt to return a prediction of a compound's Rt if it hasbeen determined in a similar chromatographic system. To implement this last tool, the in-house chromatographic system was described: column type, column, eluents and additives were specified. Compounds from the training and validation set as well as their InChI identifiers were

	Chapter IV. Optimizing data processing for exposomics applications:
	Uncovering the potential of low-abundant peaks and MS1 data
	regressed on A2/A0 for all standards for which an experimental A2 was detected (n=103).
	inputted.
	4.4.3. Isotopic pattern
	Theoretical isotopologue probabilities P0, P1, and P2 (i.e. first, second, and third isotopologue
	144

A Quantitative Structure-Retention Relationship-based tool, available on the online Retention Time Indices (RTI) platform, was used to construct the second model through correlation of Rt and chemical structure of a compound,

36 

and is calibrated using two sets of nineteen compounds (see SI Table

A4

). Compounds from the training and evaluation sets were submitted through the "Batch mode" pipe, using the "Chemical Space Boundary" uncertainty measurement. Experimental Rt were regressed on RTI values of compounds of the training set for which a RTI value was generated (n=99), as some compounds were out of the model's applicability domain. Rt values for the validation set compounds were predicted using the resulting equation to perform model evaluation.

The third and fourth Rt prediction tools did not require the construction of a model, as a predicted Rt value was directly available. of masses M0, M1 and M2) for all compounds from the training and validation set were computed using the MIDAs 34 software with the FFT-based method. Experimental isotopologue abundances A0, A1 and A2 were determined through targeted data processing. P2/P0 was

  In this database, three predictors (m/z, Rt, and isotopic fit) were generated for each suspect: suspect compounds were associated to a formula, M0, M2, P0 and P2 values, and experimental or predicted Rt values if available. The library computes monoisotopic mass, as well as common adducts masses ([M+H] + , [M+Na] + , [M+K] + , [M+NH4]

+ for positively charged adducts, and [M-H] -, [M-H2O-H] -, [M+Cl] -, [M+FA-H] -for negatively charged).

  Chapter IV. Optimizing data processing for exposomics applications:Uncovering the potential of low-abundant peaks and MS1 data 149 best performance for spiking standard detection, and offers both a GUI and control on the data processing workflow, but its comparatively long computing time can stifle its systematized use.Improvements are nevertheless still required to improve the detection of low-abundant signals close to the baseline for all software to decrease the remaining false negatives.We next developed a suspect screening workflow that incorporate for the first time several Rt prediction models in addition to m/z and isotope ratio checks. Multi-criteria algorithms were then developed to generate intermediate CI for each predictor as well as a global CI built as the mean of the three CI.

	5.2.	Modelling suspect screening predictors

acceptable performance regarding detection frequency, detection significance in spiked versus non-spiked samples and semi-quantitative performance. Vendor tools made a significant difference regarding computing time. MarkerView TM is particularly interesting since it was proven to be effective over the five indicators. Its main disadvantage is its "black-box"-like functioning, with little user input or overview and only accepting wiff2 format. MZmine2 had the

5.2.1. Retention time prediction models

Four tools were used to attempt Rt modelling: an in-house model based on logP, Retip, RTI, and PredRet. However, PredRet could not be retained for further comparison with the other models since predicted Rt were returned for 16 compounds out of 134 submitted (12% response rate) which is significantly lower than what was obtained for RTI (74% response rate).

  Linear regression models construction for logP and RTI models are presented in Figure IV.5A, and results on the validation set for the logP, Retip and RTI models are presented in Figure IV.5B. A coefficient of determination of 0.72 was obtained for the logP model. R² value was higher compared to other models constructed similarly, such as the ones described by

	Chapter IV. Optimizing data processing for exposomics applications:
	Uncovering the potential of low-abundant peaks and MS1 data
	McEachran et al. (2018) 42 (R²=0.66 on 78 compounds) and Bade et al. (2015) 43 (R²=0.67 on
	595 compounds). This was expected as experimental logP values were exclusively used to
	build this model to avoid accumulating error from logP modelling and Rt modelling. The model
	constructed using RTI values presented a R² value of 0.77. This model's performance is
	coherent with the RTI developers' model description 36 namely a R² value around 0.84.
	Both models as well as the Retip model were then validated using a 30-compound validation
	150

Retention Time Indices (RTI) as predictors. PredRet, a fourth Rt prediction tool, was also tested. PredRet predictions are not depicted as the number of responses were significantly lower (n=16), rendering it not statistically comparable. set; both R² values were similar, although with 28 and 19 compounds for Retip and RTI, respectively, since some compounds were not covered by the models. RMSE values were found to be of 13.7%, 12.6% and 11.5% of run time for the logP, Retip, and RTI models, respectively, suggesting a more precise prediction of Rt using the RTI model, then Retip, then the logP model. Based on these results, the four possible Rt values for a given compound were hierarchized for determination of CI as follows: experimental Rt if available, followed by the RTI predicted, Retip predicted, then logP predicted. In addition to evaluation of Rt

  Moreover, more than 74% of annotated compounds were only visible using one SPM, which confirms the critical need for orthogonal methods to widen the visible chemical space. This tendency was further explored at a larger scale by computing FC values on quality control samples. Results are presented in Table V.2.

	Chapter V. Implementing a large-scale suspect screening approach to characterize the human
	chemical exposome
	pilot study presented in Chapter III, for which this condition represented 93% of annotated
	compounds.
	III, paragraph 4.2.3. Briefly, area fold changes (FC) were
	computed between both SPM on compounds annotated in the first three batches (i.e. 89
	172

compounds out of 92 annotated in total). Median fold changes are represented in Figure V.10.

Xenobiotics presenting FC values below 0.5 and over 2 (i.e. favored by one of the SPM) represented 94% of the total annotated compounds. This is coherent to the results from the

Table V.2 -Percentage of features of quality control samples injected in positive and negative ionization modes on the UHPLC-ESI-QTOF, categorized by fold change (FC) values (i.e. area ratio of features in Phree and protein precipitation).

At this scale, 80% of features are visible with only one SPM, and an additional 13% of features are favored by one SPM. Overall, FC values are oriented towards extreme values. This is coherent with what was observed in the serum samples in the pilot study. This was tentatively attributed in part to the observation of abundant and often multiple charged peptide peaks in serum samples prepared with PPT only. This observation was replicated in this assay, which supports this hypothesis.

Table A1 -

 A1 Detailed list of the optimization mix and internal standards, with SMILES identifiers, chemical formulas, monoisotopic mass, observed ion, retention time, octanol-water partition coefficient (logP), and CAS number when available.

		Compound name	SMILES	Chemical formula	Monoisotopic mass (Da)	Observed ion	Retention time (min)	logP	CAS
		2-Phenylphenol	C1=CC=C(C=C1)C2=CC=CC=C2O	C12H10O	170.0732	[M-H] -	30.19	3.28	90-43-7
		Acetochlor	CCC1=CC=CC(=C1N(COCC)C(=O)CCl)C	C14H20ClNO2	269.1183	[M-H] -	40.57	4.14	123113-74-6
		Acetylsalicylic acid	CC(=O)OC1=CC=CC=C1C(=O)O	C9H8O4	180.0423	[M-H] -	8.65	1.24	50-78-2
		Aflatoxin B1	COC1=C2C3=C(C(=O)CC3)C(=O)OC2=C4C5C=COC5OC4=C1	C17H12O6	312.0634	[M+H] +	17.52	1.73	27261-02-5
		Aminobenzimidazole	C1=CC=C2C(=C1)NC(=N2)N	C7H7N3	133.0640	[M+H] +	4.74	0.91	934-32-7
		Androstenedione	CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4=O)C	C19H26O2	286.1933	[M+H] +	31.50	2.75	63-05-8
		Arachidonic Acid	CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(O)=O	C20H32O2	304.2402	[M-H] -	47.00	6.99	93444-49-6
		Azoxystrobin	COC=C(C1=CC=CC=C1OC2=NC=NC(=C2)OC3=CC=CC=C3C#N)C(=O)OC	C22H17N3O5	403.1168	[M+H] +	38.03	2.64	215934-32-0
		Boscalid	C1=CC=C(C(=C1)C2=CC=C(C=C2)Cl)NC(=O)C3=C(N=CC=C3)Cl	C18H12Cl2N2O	342.0327	[M+H] +	38.00	2.96	188425-85-6
	Standard	Carbamazepine	C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N	C15H12N2O	236.0950	[M+H] +	18.01	2.45	298-46-4
	compounds	Carbendazim	COC(=O)NC1=NC2=CC=CC=C2N1	C9H9N3O2	191.0695	[M+H] +	5.69	1.52	63278-70-6
		Chlorpyrifos	CCOP(=S)(OCC)OC1=NC(=C(C=C1Cl)Cl)Cl	C9H11Cl3NO3PS	348.9263	[M+H] +	45.53	4.70	39475-55-3
		Clothianidin	CNC(=N[N+](=O)[O-])NCC1=CN=C(S1)Cl	C6H8ClN5O2S	249.0087	[M+H] +	7.99	0.73	205510-53-8
		Codeine	CN1CCC23C4C1CC5=C2C(=C(C=C5)OC)OC3C(C=C4)O	C18H21NO3	299.1521	[M+H] +	5.12	1.39	76-57-3
		Cortisone	CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C	C21H28O5	360.1937	[M+H] +	16.12	1.47	53-06-5
		Cotinine	CN1C(CCC1=O)C2=CN=CC=C2	C10H12N2O	176.0950	[M+H] +	4.31	0.07	486-56-6
		Cyprodinil	CC1=CC(=NC(=N1)NC2=CC=CC=C2)C3CC3	C14H15N3	225.1266	[M+H] +	33.22	4.00	121552-61-2
		Diazinon	CCOP(=S)(OCC)OC1=NC(=NC(=C1)C)C(C)C	C12H21N2O3PS	304.1011	[M+H] +	43.38	3.81	30583-38-1
		Diclofenac	C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl	C14H11Cl2NO2	295.0167	[M-H] -	39.59	4.51	15307-86-5
		Dimethyldithiophosphate	COP(=S)(OC)S	C2H7O2PS2	157.9625	[M-H] -	2.95	0.63	756-80-9
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 A1 (continued) Detailed list of the optimization mix and internal standards, with SMILES identifiers, chemical formulas, monoisotopic mass, observed ion, retention time, octanol-water partition coefficient (logP), and CAS number when available.

		Compound name	SMILES	Chemical formula	Monoisotopic mass (Da)	Observed ion	Retention time (min)	logP	CAS
		Estrone	CC12CCC3C(C1CCC2=O)CCC4=C3C=CC(=C4)O	C18H22O2	270.1620	[M+H] +	31.60	3.13	53-16-7
		Fluoxetine	CNCCC(C1=CC=CC=C1)OC2=CC=C(C=C2)C(F)(F)F	C17H18F3NO	309.1340	[M+H] +	23.71	4.05	57226-07-0
		Hydrocortisone	CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)O	C21H30O5	362.2093	[M+H] +	15.86	1.61	50-23-7
		Hydroxyindoleacetic acid	C1=CC2=C(C=C1O)C(=CN2)CC(=O)O	C10H9NO3	191.0582	[M-H] -	5.71	1.41	113303-91-6
		Ibuprofen	CC(C)CC1=CC=C(C=C1)C(C)C(=O)O	C13H18O2	206.1307	[M-H] -	39.94	3.97	58560-75-1
		Imidacloprid	C1CN(C(=N[N+](=O)[O-])N1)CC2=CN=C(C=C2)Cl	C9H10ClN5O2	255.0523	[M+H]+	8.57	0.57	138261-41-3
		Ketoprofen	CC(C1=CC(=CC=C1)C(=O)C2=CC=CC=C2)C(=O)O	C16H14O3	254.0943	[M+H] +	28.13	3.12	22071-15-4
		Leukotriene B4	CCCCCC=CCC(C=CC=CC=CC(CCCC(=O)O)O)O	C20H32O4	336.2301	[M-H] -	39.52	4.10	71160-24-2
		Leukotriene D4	CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)NCC(=O)O)N	C25H40N2O6S	496.2607	[M-H] -	33.04	1.40	73836-78-9
		Malathion	CCOC(=O)CC(C(=O)OCC)SP(=S)(OC)OC	C10H19O6PS2	330.0361	[M+H] +	40.81	2.89	121-75-5
	Standard	Nicotine	CN1CCCC1C2=CN=CC=C2	C10H14N2	162.1157	[M+H] +	3.37	1.17	551-13-3
	compounds	Paracetamol	CC(=O)NC1=CC=C(C=C1)O	C8H9NO2	151.0633	[M+H] +	4.98	0.31	8055-08-1
		Paroxetine	C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4	C19H20FNO3	329.1427	[M+H] +	18.34	1.23	63952-24-9
		Piperine	C1CCN(CC1)C(=O)C=CC=CC2=CC3=C(C=C2)OCO3	C17H19NO3	285.1365	[M+H] +	36.42	2.78	147030-08-8
		Pravastatin	CCC(C)C(=O)OC1CC(C=C2C1C(C(C=C2)C)CCC(CC(CC(=O)O)O)O)O	C23H36O7	424.2461	[M+H] +	20.50	1.65	81093-37-0
		Prochloraz	CCCN(CCOC1=C(C=C(C=C1Cl)Cl)Cl)C(=O)N2C=CN=C2	C15H16Cl3N3O2	375.0308	[M+H] +	38.74	3.78	67747-09-5
		Progesterone	CC(=O)C1CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C	C21H30O2	314.2246	[M+H] +	42.10	3.87	257630-50-5
		Propiconazole	CCCC1COC(O1)(CN2C=NC=N2)C3=C(C=C(C=C3)Cl)Cl	C15H17Cl2N3O2	341.0698	[M+H] +	41.73	3.72	75881-82-2
		Prostaglandin D2	CCCCCC(C=CC1C(C(CC1=O)O)CC=CCCCC(=O)O)O	C20H32O5	352.2250	[M-H] -	27.60	3.23	41598-07-6
		Prostaglandin E2	CCCCCC(C=CC1C(CC(=O)C1CC=CCCCC(=O)O)O)O	C20H32O5	352.2250	[M-H] -	26.50	2.82	363-24-6
		Prostaglandin F2a	CCCCCC(C=CC1C(CC(C1CC=CCCCC(=O)O)O)O)O	C20H34O5	354.2406	[M-H] -	25.60	2.61	13535-33-6
		Prostaglandin J2	CCCCCC(C=CC1C(C=CC1=O)CC=CCCCC(=O)O)O	C20H30O4	334.2144	[M-H] -	26.54	3.60	60203-57-8
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 A1 (continued) Detailed list of the optimization mix and internal standards, with SMILES identifiers, chemical formulas, monoisotopic mass, observed ion, retention time, octanol-water partition coefficient (logP), and CAS number when available.

		Compound name	SMILES	Chemical formula	Monoisotopic mass (Da)	Observed ion	Retention time (min)	logP	CAS
		Sertraline	CNC1CCC(C2=CC=CC=C12)C3=CC(=C(C=C3)Cl)Cl	C17H17Cl2N	305.0738	[M+H] +	24.34	5.10	79559-97-0
		Solanidine	CC1CCC2C(C3C(N2C1)CC4C3(CCC5C4CC=C6C5(CCC(C6)O)C)C)C	C27H43NO	397.3345	[M+H] +	24.54	4.88	80-78-4
		Tebuconazole	CC(C)(C)C(CCC1=CC=C(C=C1)Cl)(CN2C=NC=N2)O	C16H22ClN3O	307.1451	[M+H] +	39.36	3.70	80443-41-0
	Standard	Testosterone	CC12CCC3C(C1CCC2O)CCC4=CC(=O)CCC34C	C19H28O2	288.2089	[M+H] +	28.90	3.32	58-22-0
	compounds	Thiacloprid	C1CSC(=NC#N)N1CC2=CN=C(C=C2)Cl	C10H9ClN4S	252.0236	[M+H] +	12.24	1.25	111988-49-9
		Thiamethoxam	CN1COCN(C1=N[N+](=O)[O-])CC2=CN=C(S2)Cl	C8H10ClN5O3S	291.0193	[M+H] +	6.97	1.52	153719-23-4
		Triclosan	C1=CC(=C(C=C1Cl)O)OC2=C(C=C(C=C2)Cl)Cl	C12H7Cl3O2	287.9512	[M-H] -	43.79	4.76	3380-34-5
		Venlafaxine	CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O	C17H27NO2	277.2042	[M+H] +	9.84	0.43	93413-69-5
		2-phenylphenol-13C6	n.a.	[13C]6C6H10O	176.0933	[M-H]-	30.19	n.a.	287389-48-4
		Acetochlor-d11	n.a.	C14D11H9ClNO2	280.1873	[M-H]-	40.57	n.a.	1189897-44-6
		Azoxystrobin-d4	n.a.	C22D4H13N3O5	407.1419	[M+H]+	38.03	n.a.	1346606-39-0
		Carbamazepine-13C6	n.a.	[13C]6C9H12N2O	242.1151	[M+H]+	18.01	n.a.	n.a.
		Carbendazim-d4	n.a.	C9D4H5N3O2	195.0946	[M+H] +	5.69	n.a.	291765-95-2
		Chlorpyrifos-d10	n.a.	C9D10HCl3NO3PS	358.9891	[M+H]+	45.53	n.a.	285138-81-0
		Cotinine-d3	n.a.	C10D3H9N2O	179.1138	[M+H]+	4.31	n.a.	110952-70-0
	Internal	Diazinon-d10	n.a.	C12D10H11N2O3PS	314.1638	[M+H] +	43.38	n.a.	100155-47-3
	standards	Diclofenac-13C6	n.a.	[13C]2C12H11Cl2NO2	297.0234	[M-H] -	39.59	n.a.	n.a.
		Dimethyldithiophosphate-13C2	n.a.	[13C]2H7O2PS2	159.9692	[M-H] -	2.95	n.a.	1329610-82-3
		Estrone-d4	n.a.	C18D4H18O2	274.1871	[M+H] +	31.60	n.a.	53866-34-5
		Fluoxetine-d6	n.a.	C17D6H12F3NO	315.1717	[M+H] +	23.71	n.a.	n.a.
		Hydrocortisone-d4	n.a.	C21D4H26O5	366.2344	[M+H] +	15.86	n.a.	73565-87-4
		Ibuprofen-d3	n.a.	C13D3H15O2	209.1495	[M-H] -	39.94	n.a.	121662-14-4
		Imidacloprid-d4	n.a.	C9D4H6ClN5O2	259.0774	[M+H]+	8.57	n.a.	1015855-75-0
		Ketoprofen-d3	n.a.	C16D3H11O3	257.1131	[M+H] +	28.13	n.a.	159490-55-8
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 A1 (continued) Detailed list of the optimization mix and internal standards, with SMILES identifiers, chemical formulas, monoisotopic mass, observed ion, retention time, octanol-water partition coefficient (logP), and CAS number when available.

	1.2.	Column diameter and flow rate optimization						
		Compound name	SMILES	Chemical formula	Monoisotopic mass (Da)	Observed ion	Retention time (min)	logP	CAS
		Leukotriene B4-d4	n.a.	C20D4H28O4	340.2552	[M-H] -	39.52	n.a.	93951-88-3
		Paracetamol-d4	n.a.	C8D4H5NO2	155.0884	[M+H] +	4.98	n.a.	64315-36-2
	Internal	Prostaglandin E2-d4	n.a.	C20D4H28O5	356.2501	[M-H] -	26.50	n.a.	34210-10-1
	standards	Tebuconazole-d6	n.a.	C16D6H16ClN3O	313.1828	[M+H] +	39.36	n.a.	1246818-83-6
		Testosterone-d3	n.a.	C19D3H25O2	291.2278	[M+H] +	28.90	n.a.	77546-39-5
		Thiamethoxam-d4	n.a.	C8D4H6ClN5O3S	295.0444	[M+H] +	6.97	n.a.	1331642-98-8
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 A2a (continued) Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization with 50 standards spiked at 20 ng/mL

	Table A2a -Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization with 50 standards spiked at 20 ng/mL 20 pg
			0.30 mL/min	Ø 2.1 mm	0.15 mL/min	20 pg	0.10 mL/min	Ø 1.0 mm	0.05 mL/min
	Compound name	Mean	Ø 2.1 mm CV (%)	Mean	CV (%)		Mean	Ø 1.0 mm CV (%)	Mean	CV (%)
	Hydroxyindoleacetic acid	0	0.30 mL/min 0.0		0.15 mL/min 2694 4.2		0.10 mL/min 1875 2.9	0.05 mL/min 3388 2.8
	Compound name Ibuprofen	Mean 0	CV (%) 0.0	Mean 0	CV (%) 0.0		Mean 214	CV (%) 1.7	Mean 660	CV (%) 1.8
	2-Phenylphenol Acetochlor Imidacloprid Acetylsalicylic acid Ketoprofen Aflatoxin B1 Leukotriene B4	0 4475 11776 3808 598052 7860 1917	0.0 0.9 2.1 11.9 1.0 2.1 3.3	0 9755 15929 1175 942528 14889 2783	0.0 3.6 1.4 20.7 1.2 1.6 6.4		849 7597 9504 0 109328 27507 6625	4.4 4.5 1.8 0.0 1.1 4.4 1.3	1711 14321 1522 173304 48357 9609	2.6 1.2 1.1 1.2 10.5 1.6 2.9
	Aminobenzimidazole Leukotriene D4	42778 2623	1.9 18.4	66388 3548	1.3 12.3		106609 8816	0.7 8.4	109914	2.6 0.5
	Androstenedione Arachidonic Acid Malathion Azoxystrobin Nicotine Boscalid Paracetamol	22545 0 6006 27111 4192 9724 6660	1.0 0.0 2.5 1.4 3.2 2.4 2.9	43711 0 11565 50413 6936 19987 14481	2.2 0.0 1.8 1.9 3.3 2.7 3.6		63325 10608 8529 74847 6392 30977 15879	3.9 1.5 3.4 1.5 4.9 1.7 2.0	116688 2145 138630 59087	2.7 0.3 2.9 2.8 1.2 1.7 2.5
	Carbamazepine Paroxetine	40813 64379	2.9 2.5	69130 80067	1.6 2.8		56790 111047	3.1 2.2	92419 186423	1.5 0.3
	Carbendazim Chlorpyrifos Piperine Clothianidin Pravastatin Codeine Prochloraz	26851 9160 22541 3967 2006 29568 11770	2.8 2.9 1.4 1.8 2.7 2.3 8.1	50107 8375 38849 7293 2444 51887 19850	1.3 4.9 3.4 2.1 4.0 1.3 5.7		58931 26006 49507 3512 2201 84592 16390	1.7 4.2 1.6 3.3 2.7 1.0 7.0	98122 17375 6277 2201 125101	2.2 1.3 2.4 3.1 1.9 0.8 2.2
	Cortisone Progesterone	11580 28426	1.8 0.3	18896 71350	1.8 3.0		36473 98298	2.3 7.9	61874 161313	1.2 1.5
	Cotinine Propiconazole	17447 32615	1.8 3.4	24134 80152	2.3 5.7		43291 88708	0.6 4.6	44092 137210	3.8 2.0
	Cyprodinil Diazinon Prostaglandin D2 Diclofenac Prostaglandin E2 Dimethyldithiophosphate Prostaglandin F2a	220019 353679 2493 5852 1808 0 2448	3.5 1.8 7.9 1.8 8.2 0.0 6.7	304236 670435 3345 11670 2983 0 3355	2.0 1.8 8.9 2.4 6.9 0.0 2.2		154113 431259 9217 14361 7654 552 8857	3.3 1.1 3.0 1.3 1.3 1.9 0.9	271592 646828 26631 894	2.6 4.3 1.6 2.8 1.2 1.9 2.2
	Estrone Prostaglandin J2	9883 2854	2.0 6.6	20255 3149	1.9 2.1		27555 7569	1.4 0.5	54243	1.8 2.2
	Fluoxetine Hydrocortisone Sertraline Solanidine	34612 15075 13444 64689	3.2 1.7 3.0 0.8	47031 24010 19287 85483	1.8 1.2 1.5 1.8		48521 47430 13848 100975	1.1 2.3 2.3 1.0	73356 79301 158675	0.9 0.7 2.0 2.5
	Tebuconazole	49740	4.3	79713	4.3		98595	6.2	166400	1.9
	Testosterone	27084	3.2	47005	1.9		72103	1.9	126546	1.3
	Thiacloprid	19908	3.3	28586	1.6		27747	4.1	2.5
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 A2a (continued) Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization with 50 standards spiked at 20 ng/mL

					20 pg				
			Ø 2.1 mm			Ø 1.0 mm	
		0.30 mL/min	0.15 mL/min	0.10 mL/min	0.05 mL/min
	Compound name	Mean	CV (%)	Mean	CV (%)	Mean	CV (%)	Mean	CV (%)
	Thiamethoxam	3969	6.2	6867	2.7	8244	5.0	11818	2.2
	Triclosan	17442	2.4	20114	3.0	27857	1.2	44355	2.0
	Venlafaxine	118494	2.2	133888	1.4	143819	1.6	235916	2.4
	Median	11675	2.4	19569	2.1	27531	2.0	44224	2.0
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 A2b Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization with 50 standards spiked at 200 ng/mL

					200 pg			
			Ø 2.1 mm			Ø 1.0 mm	
		0.30 mL/min	0.15 mL/min	0.10 mL/min	0.05 mL/min
	Compound name	Mean	CV (%)	Mean	CV (%)	Mean	CV (%)	Mean	CV (%)
	2-Phenylphenol	1258	7.5	2523	0.7	6053	3.9	14740	2.6
	Acetochlor	44920	0.7	101742	1.0	72798	0.3	150161	2.6
	Acetylsalicylic acid	3511	5.4	1904	17.5	2541	6.0	5506	8.1
	Aflatoxin B1	92085	7.3	175374	2.1	278845	2.8	530533	2.1
	Aminobenzimidazole		1.7	660167	2.2	1004025	0.9	1059186	1.2
	Androstenedione		0.9	569012	2.8	728528	2.1	1391952	2.2
	Arachidonic Acid	11696	5.8	16799	3.7	76929	12.8	23384	9.4
	Azoxystrobin		2.1	700821	1.8	839750	2.8	1579550	2.8
	Boscalid		1.6	260687	1.9	365343	0.8	737820	0.5
	Carbamazepine		1.6	794147	1.2	562533	1.2	1009330	3.3
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 A2b (continued) Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization with 50 standards spiked at 200 ng/mL

					200 pg			
			Ø 2.1 mm			Ø 1.0 mm	
		0.30 mL/min	0.15 mL/min	0.10 mL/min	0.05 mL/min
	Compound name	Mean	CV (%)	Mean	CV (%)	Mean	CV (%)	Mean	CV (%)
	Carbendazim	303001	1.4	529255	0.2	584976	2.3	1038643	0.9
	Chlorpyrifos	143384	7.2	132435	7.0	323684	0.5	232045	4.5
	Clothianidin	44093	0.8	77368	1.3	33979	1.7	61958	1.7
	Codeine	374122	2.4	596108	1.7	845795	1.6	1342160	1.6
	Cortisone	179839	0.9	251319	1.2	422111	1.6	717505	1.2
	Cotinine	189159	2.8	249964	0.5	424143	0.9	180963	4.5
	Cyprodinil	2408536	1.1	3459616	1.0	1716890	2.1	3191239	2.2
	Diazinon	3445514	1.5	6974612	2.0	4164532	1.1	6849338	1.0
	Diclofenac	66823	1.4	131355	1.6	158232	1.5	302371	2.6
	Dimethyldithiophosphate	16549	2.7	18745	2.5	19885	2.2	24558	2.2
	Estrone	123256	3.2	250416	2.2	307707	2.3	496308	3.1
	Fluoxetine	499044	2.5	639329	3.4	566846	1.2	887694	3.1
	Hydrocortisone	218973	5.1	321839	2.5	526415	0.8	910547	0.7
	Hydroxyindoleacetic acid	5521	2.8	25046	3.5	14672	4.0	26215	3.0
	Ibuprofen	22198	3.3	27854	3.1	27820	2.2	37854	2.5
	Imidacloprid	163270	1.2	177924	1.7	308757	2.9	382121	1.6
	Ketoprofen	601779	1.6	928294	0.5	114289	1.4	186576	2.4
	Leukotriene B4	17460	1.8	27102	1.2	69337	1.5	102238	2.7
	Leukotriene D4	26004	3.6	34823	2.8	117829	1.7	164339	2.0
	Malathion	75799	1.1	149175	5.4	96160	2.5	179783	4.5
	Nicotine	41136	2.3	60698	1.6	20386	9.6	48066	1.9
	Paracetamol	71826	2.6	149189	1.6	147647	1.0	239774	1.5
	Paroxetine	817603	2.5	1033107	1.1	1169024	6.1	2124497	1.2
	Piperine	313665	1.0	504088	1.2	586547	1.2	1098772	1.7
	Pravastatin	24687	2.3	27128	1.7	24320	4.1	22995	2.9
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 A2b (continued) Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization with 50 standards spiked at 200 ng/mL

	1.3.	Detailed list of the retention time prediction set				
						200 pg		
				Ø 2.1 mm			Ø 1.0 mm
			0.30 mL/min	0.15 mL/min	0.10 mL/min	0.05 mL/min
	Compound name	Mean	CV (%)	Mean	CV (%)	Mean	CV (%)	Mean	CV (%)
	Prochloraz			1.5	238416	1.2	199840	2.6	380390	2.0
	Progesterone			2.1	971167	0.6	1057300	1.1	1883434	3.9
	Propiconazole			1.4	1099382	1.0	1046343	1.9	1614942	0.6
	Prostaglandin D2	18030	2.9	30089	3.5	100645	2.2	129757	2.2
	Prostaglandin E2	15201	2.5	26502	4.0	84631	1.0	149932	5.7
	Prostaglandin F2a	12235	2.0	18597	1.7	19742	1.8	29545	2.0
	Prostaglandin J2	19452	2.0	24560	2.0	22457	1.7	31247	1.8
	Sertraline			3.7	256606	1.1	150102	1.1	233249	1.7
	Solanidine			2.8	1092428	3.4	1114014	3.7	1851604	2.9
	Tebuconazole			2.0	1042733	2.2	1128292	2.1	1495029	4.1
	Testosterone			1.5	599287	1.5	796827	1.2	1454106	1.6
	Thiacloprid			1.3	338182	0.8	321764	0.9	380140	1.5
	Thiamethoxam	41008	2.9	73229	3.4	71889	3.9	110050	4.3
	Triclosan			1.9	265478	1.4	345788	1.7	387750	1.5
	Venlafaxine		1836079	2.3	1964486	2.6	1365043	1.4	2392643	1.6
	Median			2.1	250190	1.7	308232	1.7	380265	2.2
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 A3 Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic mass, and CAS number

	Compound name	SMILES	Chemical formula	Monoisotopic mass	CAS
	1-(3,4-Dichlorophenyl)-3-methylurea CNC(=O)NC1=CC(=C(C=C1)Cl)Cl	C8H8Cl2N2O	218.0014	3567-62-2
	1-(3,4-Dichlorophenyl)urea	C1=CC(=C(C=C1NC(=O)N)Cl)Cl	C7H6Cl2N2O	203.9857	2327-02-8
	1-(4-Isopropylphenyl)urea	CC(C)C1=CC=C(C=C1)NC(=O)N	C10H14N2O	178.1106	56046-17-4
	2,4-mcpa	CC1=C(C=CC(=C1)Cl)OCC(=O)O	C9H9ClO3	200.0240	94-74-6
	2-chloro-4-methylbenzoic acid	CC1=CC(=C(C=C1)C(=O)O)Cl	C8H7ClO2	170.0135	7697-25-8
	2-Phenylphenol	C1=CC=C(C=C1)C2=CC=CC=C2O	C12H10O	170.0732	90-43-7
	Acetamiprid	CC(=NC#N)N(C)CC1=CN=C(C=C1)Cl	C10H11ClN4	222.0672	135410-20-7
	Acetochlor	CCC1=CC=CC(=C1N(COCC)C(=O)CCl)C	C14H20ClNO2	269.1183	123113-74-6
	Aflatoxin B1	COC1=C2C3=C(C(=O)CC3)C(=O)OC2=C4C5C=COC5OC4=C1	C17H12O6	312.0634	27261-02-5
	Alachlor	CCC1=C(C(=CC=C1)CC)N(COC)C(=O)CCl	C14H20ClNO2	269.1183	15972-60-8
	Ametryn	CCNC1=NC(=NC(=N1)SC)NC(C)C	C9H17N5S	227.1205	834-12-8
	Amidosulfuron	CN(S(=O)(=O)C)S(=O)(=O)NC(=O)NC1=NC(=CC(=N1)OC)OC	C9H15N5O7S2	369.0412	120923-37-7
	Aminobenzimidazole	C1=CC=C2C(=C1)NC(=N2)N	C7H7N3	133.0640	934-32-7
	Androstenedione	CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4=O)C	C19H26O2	286.1933	63-05-8
	Arachidonic Acid	CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(O)=O	C20H32O2	304.2402	93444-49-6
	Atrazine	CCNC1=NC(=NC(=N1)Cl)NC(C)C	C8H14ClN5	215.0938	1912-24-9
	Atrazine-2-hydroxy	CCNC1=NC(=O)NC(=N1)NC(C)C	C8H15N5O	197.1277	2163-68-0
	Atrazine-deisopropyl	CCNC1=NC(=NC(=N1)N)Cl	C5H8ClN5	173.0468	1007-28-9
	Azoxystrobin	COC=C(C1=CC=CC=C1OC2=NC=NC(=C2)OC3=CC=CC=C3C#N)C(=O)OC	C22H17N3O5	403.1168	215934-32-0
	Beflubutamid	CCC(C(=O)NCC1=CC=CC=C1)OC2=CC(=C(C=C2)F)C(F)(F)F	C18H17F4NO2	355.1195	113614-08-7
	Bixafen	CN1C=C(C(=N1)C(F)F)C(=O)NC2=C(C=C(C=C2)F)C3=CC(=C(C=C3)Cl)Cl	C18H12Cl2F3N3O	413.0310	581809-46-3
	Boscalid	C1=CC=C(C(=C1)C2=CC=C(C=C2)Cl)NC(=O)C3=C(N=CC=C3)Cl	C18H12Cl2N2O	342.0327	188425-85-6
	Bromacil	CCC(C)N1C(=O)NC(=C(Br)C1=O)C	C9H13BrN2O2	260.0160	314-40-9
	Carbamazepine	C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N	C15H12N2O	236.0950	298-46-4
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 A3 (continued) Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic mass, and CAS number

	Compound name	SMILES	Chemical formula	Monoisotopic mass CAS
	Carbaryl	CNC(=O)OC1=CC=CC2=CC=CC=C21	C12H11NO2	201.0790	51274-03-4
	Carbendazim	COC(=O)NC1=NC2=CC=CC=C2N1	C9H9N3O2	191.0695	63278-70-6
	Carbetamide	CCNC(=O)C(C)OC(=O)NC1=CC=CC=C1	C12H16N2O3	236.1161	16118-49-3
	Carbofuran	CC1(CC2=C(O1)C(=CC=C2)OC(=O)NC)C	C12H15NO3	221.1052	1563-66-2
	Chlorantraniliprole	CC1=CC(=CC(=C1NC(=O)C2=CC(=NN2C3=C(C=CC=N3)Cl)Br)C(=O)NC)Cl	C18H14BrCl2N5O2 480.9708	500008-45-7
	Chloridazon	C1=CC=C(C=C1)N2C(=O)C(=C(C=N2)N)Cl	C10H8ClN3O	221.0356	1698-60-8
	Chlorpyrifos	CCOP(=S)(OCC)OC1=NC(=C(C=C1Cl)Cl)Cl	C9H11Cl3NO3PS	348.9263	39475-55-3
	Chlortoluron	CC1=C(C=C(C=C1)NC(=O)N(C)C)Cl	C10H13ClN2O	212.0716	15545-48-9
	Clothianidin	CNC(=N[N+](=O)[O-])NCC1=CN=C(S1)Cl	C6H8ClN5O2S	249.0087	205510-53-8
	Codeine	CN1CCC23C4C1CC5=C2C(=C(C=C5)OC)OC3C(C=C4)O	C18H21NO3	299.1521	76-57-3
	Cortisone	CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C	C21H28O5	360.1937	53-06-5
	Cotinine	CN1C(CCC1=O)C2=CN=CC=C2	C10H12N2O	176.0950	486-56-6
	Cyprodinil	CC1=CC(=NC(=N1)NC2=CC=CC=C2)C3CC3	C14H15N3	225.1266	121552-61-2
	Diazinon	CCOP(=S)(OCC)OC1=NC(=NC(=C1)C)C(C)C	C12H21N2O3PS	304.1011	30583-38-1
	Dichlorprop	CC(C(=O)O)OC1=C(C=C(C=C1)Cl)Cl	C9H8Cl2O3	233.9851	120-36-5
	Diclofenac	C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl	C14H11Cl2NO2	295.0167	15307-86-5
	Dimethenamid	CC1=CSC(=C1N(C(C)COC)C(=O)CCl)C	C12H18ClNO2S	275.0747	87674-68-8
	Dimethomorph	COC1=C(C=C(C=C1)C(=CC(=O)N2CCOCC2)C3=CC=C(C=C3)Cl)OC	C21H22ClNO4	387.1237	110488-70-5
	Dimethyldithiophosphate	COP(=S)(OC)S	C2H7O2PS2	157.9625	756-80-9
	Diuron	CN(C)C(=O)NC1=CC(=C(C=C1)Cl)Cl	C9H10Cl2N2O	232.0170	102962-29-8
	Estradiol-2-hydroxy	CC12CCC3C(C1CCC2O)CCC4=CC(=C(C=C34)O)O	C18H24O3	288.1725	362-05-0
	Estrone	CC12CCC3C(C1CCC2=O)CCC4=C3C=CC(=C4)O	C18H22O2	270.1620	53-16-7
	Estrone-2-hydroxy	CC12CCC3C(C1CCC2=O)CCC4=CC(=C(C=C34)O)O	C18H22O3	286.1569	362-06-1
	Ethidimuron	CCS(=O)(=O)C1=NN=C(S1)N(C)C(=O)NC	C7H12N4O3S2	264.0351	30043-49-3
	Fenamidone	CC1(C(=O)N(C(=N1)SC)NC2=CC=CC=C2)C3=CC=CC=C3	C17H17N3OS	311.1092	161326-34-7
	Fenpropidine	CC(CC1=CC=C(C=C1)C(C)(C)C)CN2CCCCC2	C19H31N	273.2456	67306-00-7
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 A3 (continued) Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic mass, and CAS number

	Compound name	SMILES	Chemical formula	Monoisotopic mass CAS
	Fenpropimorph	CC1CN(CC(O1)C)CC(C)CC2=CC=C(C=C2)C(C)(C)C	C20H33NO	273.2456	67564-91-4
	Flonicamid	C1=CN=CC(=C1C(F)(F)F)C(=O)NCC#N	C9H6F3N3O	229.0463	158062-67-0
	Flufenacet	CC(C)N(C1=CC=C(C=C1)F)C(=O)COC2=NN=C(S2)C(F)(F)F	C14H13F4N3O2S	363.0665	142459-58-3
	Fluoxetine	CNCCC(C1=CC=CC=C1)OC2=CC=C(C=C2)C(F)(F)F	C17H18F3NO	309.1340	57226-07-0
	Fluroxypyr	C(C(=O)O)OC1=NC(=C(C(=C1Cl)N)Cl)F	C7H5Cl2FN2O3	253.9661	69377-81-7
	Flurtamone	CNC1=C(C(=O)C(O1)C2=CC=CC=C2)C3=CC(=CC=C3)C(F)(F)F	C18H14F3NO2	333.0977	96525-23-4
	Foramsulfuron	CN(C)C(=O)C1=C(C=C(C=C1)NC=O)S(=O)(=O)NC(=O)NC2=NC(=CC(=N2)OC)OC	C17H20N6O7S	452.1114	173159-57-4
	Fosthiazate	CCO[P](=O)(SC(C)CC)N1CCSC1=O	C9H18NO3PS2	283.0466	98886-44-3
	Hydrocortisone	CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)O	C21H30O5	362.2093	50-23-7
	Hydroxyindoleacetic acid	C1=CC2=C(C=C1O)C(=CN2)CC(=O)O	C10H9NO3	191.0582	113303-91-6
	Ibuprofen	CC(C)CC1=CC=C(C=C1)C(C)C(=O)O	C13H18O2	206.1307	58560-75-1
	Imazamethabenz-methyl	CC1=CC(=C(C=C1)C(=O)OC)C2=NC(C(=O)N2)(C)C(C)C	C16H20N2O3	288.1474	81405-85-8
	Imazamox	CC(C)C1(C(=O)NC(=N1)C2=C(C=C(C=N2)COC)C(=O)O)C	C15H19N3O4	305.1376	114311-32-9
	Imazaquin	CC(C)C1(C(=O)NC(=N1)C2=NC3=CC=CC=C3C=C2C(=O)O)C	C17H17N3O3	311.1270	81335-37-7
	Imidacloprid	C1CN(C(=N[N+](=O)[O-])N1)CC2=CN=C(C=C2)Cl	C9H10ClN5O2	255.0523	138261-41-3
	Iodosulfuron-methyl	CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=C(C=CC(=C2)I)C(=O)OC	C14H13IN5NaO6S	528.9529	144550-36-7
	Iprodione	CC(C)NC(=O)N1CC(=O)N(C1=O)C2=CC(=CC(=C2)Cl)Cl	C13H13Cl2N3O3	329.0334	36734-19-7
	Irgarol	CC(C)(C)NC1=NC(=NC(=N1)NC2CC2)SC	C11H19N5S	253.1361	28159-98-0
	Isoproturon	CC(C)C1=CC=C(C=C1)NC(=O)N(C)C	C12H18N2O	206.1419	34123-59-6
	Isoproturon-didemethyl	CC(C)C1=CC=C(C=C1)NC(=O)N	C10H14N2O	178.1106	56046-17-4
	Isoxaben	CCC(C)(CC)C1=NOC(=C1)NC(=O)C2=C(C=CC=C2OC)OC	C18H24N2O4	332.1736	82558-50-7
	Isoxaflutole	CS(=O)(=O)C1=C(C=CC(=C1)C(F)(F)F)C(=O)C2=C(ON=C2)C3CC3	C15H12F3NO4S	359.0439	141112-29-0
	Leukotriene B4	CCCCCC=CCC(C=CC=CC=CC(CCCC(=O)O)O)O	C20H32O4	336.2301	71160-24-2
	Leukotriene D4	CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)NCC(=O)O)N	C25H40N2O6S	496.2607	73836-78-9
	Linuron	CN(C(=O)NC1=CC(=C(C=C1)Cl)Cl)OC	C9H10Cl2N2O2	248.0119	56645-87-5
	Mesosulfuron-methyl	COC1=CC(=NC(=N1)NC(=O)NS(=O)(=O)C2=C(C=CC(=C2)CNS(=O)(=O)C)C(=O)OC)OC C17H21N5O9S2	503.0781	208465-21-8
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	Compound name	SMILES	Chemical formula	Monoisotopic mass CAS
	Mesotrione	CS(=O)(=O)C1=CC(=C(C=C1)C(=O)C2C(=O)CCCC2=O)[N+](=O)[O-]	C14H13NO7S	339.0413	104206-82-8
	Metalaxyl	CC1=C(C(=CC=C1)C)N(C(C)C(=O)OC)C(=O)COC	C15H21NO4	279.1471	57837-19-1
	Metamitron	CC1=NN=C(C(=O)N1N)C2=CC=CC=C2	C10H10N4O	202.0855	41394-05-2
	Metazachlor	CC1=C(C(=CC=C1)C)N(CN2C=CC=N2)C(=O)CCl	C14H16ClN3O	277.0982	67129-08-2
	Methabenzthiazuron	CNC(=O)N(C)C1=NC2=CC=CC=C2S1	C10H11N3OS	221.0623	18691-97-9
	Metobromuron	CN(C(=O)NC1=CC=C(C=C1)Br)OC	C9H11BrN2O2	258.0004	3060-89-7
	Metolachlor	CCC1=CC=CC(=C1N(C(C)COC)C(=O)CCl)C	C15H22ClNO2	283.1339	55762-76-0
	Metosulam	CC1=C(C(=C(C=C1)Cl)NS(=O)(=O)C2=NN3C(=CC(=NC3=N2)OC)OC)Cl	C14H13Cl2N5O4S	417.0065	139528-85-1
	Metribuzine	CSC1=NN=C(C(=O)N1N)C(C)(C)C	C8H14N4OS	214.0888	21087-64-9
	Metsulfuron-methyl	CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=CC=CC=C2C(=O)OC	C14H15N5O6S	381.0743	74223-64-6
	Nicosulfuron	CN(C)C(=O)C1=C(N=CC=C1)S(=O)(=O)NC(=O)NC2=NC(=CC(=N2)OC)OC	C15H18N6O6S	410.1009	111991-09-4
	Nicotine	CN1CCCC1C2=CN=CC=C2	C10H14N2	162.1157	551-13-3
	Oryzalin	CCCN(CCC)C1=C(C=C(C=C1[N+](=O)[O-])S(=O)(=O)N)[N+](=O)[O-]	C12H18N4O6S	346.0947	19044-88-3
	Paclobutrazol	CC(C)(C)C(C(CC1=CC=C(C=C1)Cl)N2C=NC=N2)O	C30H40Cl2N6O2	586.2590	76738-62-0
	Paracetamol	CC(=O)NC1=CC=C(C=C1)O	C8H9NO2	151.0633	8055-08-1
	Paroxetine	C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4	C19H20FNO3	329.1427	63952-24-9
	Pencycuron	C1CCC(C1)N(CC2=CC=C(C=C2)Cl)C(=O)NC3=CC=CC=C3	C19H21ClN2O	328.1342	66063-05-6
	Piperine	C1CCN(CC1)C(=O)C=CC=CC2=CC3=C(C=C2)OCO3	C17H19NO3	285.1365	147030-08-8
	Pirimicarb	CC1=C(N=C(N=C1OC(=O)N(C)C)N(C)C)C	C11H18N4O2	238.1430	23103-98-2
	Pravastatin	CCC(C)C(=O)OC1CC(C=C2C1C(C(C=C2)C)CCC(CC(CC(=O)O)O)O)O	C23H36O7	424.2461	81093-37-0
	Prochloraz	CCCN(CCOC1=C(C=C(C=C1Cl)Cl)Cl)C(=O)N2C=CN=C2	C15H16Cl3N3O2	375.0308	67747-09-5
	Progesterone	CC(=O)C1CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C	C21H30O2	314.2246	257630-50-5
	Propachlor	CC(C)N(C1=CC=CC=C1)C(=O)CCl	C11H14ClNO	211.0764	1918-16-7
	Propamocarb	CCCOC(=O)NCCCN(C)C	C9H20N2O2	188.1525	24579-73-5
	Propiconazole	CCCC1COC(O1)(CN2C=NC=N2)C3=C(C=C(C=C3)Cl)Cl	C15H17Cl2N3O2	341.0698	75881-82-2
	Propoxycarbazone	CCCOC1=NN(C(=O)N1C)C(=O)NS(=O)(=O)C2=CC=CC=C2C(=O)OC	C15H17N4NaO7S	420.0716	181274-15-7
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	Compound name	SMILES	Chemical formula	Monoisotopic mass CAS
	Propyzamide	CC(C)(C#C)NC(=O)C1=CC(=CC(=C1)Cl)Cl	C12H11Cl2NO	255.0218	11097-11-3
	Prostaglandin D2	CCCCCC(C=CC1C(C(CC1=O)O)CC=CCCCC(=O)O)O	C20H32O5	352.2250	41598-07-6
	Prostaglandin E2	CCCCCC(C=CC1C(CC(=O)C1CC=CCCCC(=O)O)O)O	C20H32O5	352.2250	363-24-6
	Prostaglandin F2a	CCCCCC(C=CC1C(CC(C1CC=CCCCC(=O)O)O)O)O	C20H34O5	354.2406	13535-33-6
	Prosulfuron	CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=CC=CC=C2CCC(F)(F)F	C15H16F3N5O4S	419.0875	94125-34-5
	Pymetrozine	CC1=NNC(=O)N(C1)N=CC2=CN=CC=C2	C10H11N5O	217.0964	123312-89-0
	Pyraclostrobin	COC(=O)N(C1=CC=CC=C1COC2=NN(C=C2)C3=CC=C(C=C3)Cl)OC	C19H18ClN3O4	387.0986	175013-18-0
	Pyrimethanil	CC1=CC(=NC(=N1)NC2=CC=CC=C2)C	C12H13N3	199.1109	53112-28-0
	Pyroxsulam	COC1=CC(=NC2=NC(=NN12)NS(=O)(=O)C3=C(C=CN=C3OC)C(F)(F)F)OC	C14H13F3N6O5S	434.0620	422556-08-9
	Quinmerac	CC1=CC2=C(C(=C(C=C2)Cl)C(=O)O)N=C1	C11H8ClNO2	221.0244	90717-03-6
	Sertraline	CNC1CCC(C2=CC=CC=C12)C3=CC(=C(C=C3)Cl)Cl	C17H17Cl2N	305.0738	79559-97-0
	Simazine	CCNC1=NC(=NC(=N1)Cl)NCC	C7H12ClN5	201.0781	119603-94-0
	Solanidine	CC1CCC2C(C3C(N2C1)CC4C3(CCC5C4CC=C6C5(CCC(C6)O)C)C)C	C27H43NO	397.3345	80-78-4
	Spiroxamine	CCCN(CC)CC1COC2(CCC(CC2)C(C)(C)C)O1	C18H35NO2	297.2668	118134-30-8
	Sulcotrione	CS(=O)(=O)C1=CC(=C(C=C1)C(=O)C2C(=O)CCCC2=O)Cl	C14H13ClO5S	328.0172	99105-77-8
	Tebuconazole	CC(C)(C)C(CCC1=CC=C(C=C1)Cl)(CN2C=NC=N2)O	C16H22ClN3O	307.1451	80443-41-0
	Tebutame	CC(C)N(CC1=CC=CC=C1)C(=O)C(C)(C)C	C15H23NO	233.1780	35256-85-0
	Terbuthylazine	CCNC1=NC(=NC(=N1)Cl)NC(C)(C)C	C9H16ClN5	229.1094	5915-41-3
	Terbutryne	CCNC1=NC(=NC(=N1)SC)NC(C)(C)C	C10H19N5S	241.1361	886-50-0
	Tertbutylazine-2-hydroxy	CCNC1=NC(=O)NC(=N1)NC(C)(C)C	C9H17N5O	211.1433	66753-07-9
	Testosterone	CC12CCC3C(C1CCC2O)CCC4=CC(=O)CCC34C	C19H28O2	288.2089	58-22-0
	Thiacloprid	C1CSC(=NC#N)N1CC2=CN=C(C=C2)Cl	C10H9ClN4S	252.0236	111988-49-9
	Thiamethoxam	CN1COCN(C1=N[N+](=O)[O-])CC2=CN=C(S2)Cl	C8H10ClN5O3S	291.0193	153719-23-4
	Thifensulfuron-methyl	CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=C(SC=C2)C(=O)OC	C12H13N5O6S2	387.0307	79277-27-3
	Triadimenol	CC(C)(C)C(C(N1C=NC=N1)OC2=CC=C(C=C2)Cl)O	C14H18ClN3O2	295.1088	55219-65-3
	Triazoxide	C1=CC2=C(C=C1Cl)[N+](=NC(=N2)N3C=CN=C3)[O-]	C10H6ClN5O	247.0261	72459-58-6
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	2. Appendix 2. Supporting information -Chapter III		
	Compound name Triclopyr 2.1.	SMILES C1=C(C(=NC(=C1Cl)Cl)OCC(=O)O)Cl Table A1 -Standard compounds form and suppliers	Chemical formula C7H4Cl3NO3	Monoisotopic mass CAS 254.9257 55335-06-3
	Triflusulfuron-methyl	CC1=C(C(=CC=C1)C(=O)OC)S(=O)(=O)NC(=O)NC2=NC(=NC(=N2)OCC(F)(F)F)N(C)C	C17H19F3N6O6S	492.1039	126535-15-7
	Trinexapac-ethyl	CCOC(=O)C1CC(=O)C(=C(C2CC2)O)C(=O)C1	C13H16O5	252.0998	95266-40-3
	Triticonazole		CC1(CCC(=CC2=CC=C(C=C2)Cl)C1(CN3C=NC=N3)O)C	C17H20ClN3O	317.1295	131983-72-7
	Tritosulfuron		COC1=NC(=NC(=N1)NC(=O)NS(=O)(=O)C2=CC=CC=C2C(F)(F)F)C(F)(F)F	C13H9F6N5O4S	445.0279	142469-14-5
	Venlafaxine		CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O	C17H27NO2	277.2042	93413-69-5

Table A1 -

 A1 Standard compounds form and suppliers

	Compound name	SMILES	Supplier	Form
	Arachidonic Acid	CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(O)=O	Bertin	Powder
	Leukotriene B4	CCCCCC=CCC(C=CC=CC=CC(CCCC(=O)O)O)O	Bertin	Powder
		CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)N		
	Leukotriene D4	CC(=O)O)N	Bertin	Powder
	Prostaglandin D2	CCCCCC(C=CC1C(C(CC1=O)O)CC=CCCCC(=O)O)O	Bertin	Powder
	Prostaglandin E2	CCCCCC(C=CC1C(CC(=O)C1CC=CCCCC(=O)O)O)O	Bertin	Powder
	Prostaglandin F2a	CCCCCC(C=CC1C(CC(C1CC=CCCCC(=O)O)O)O)O	Bertin	Powder
	Prostaglandin J2	CCCCCC(C=CC1C(C=CC1=O)CC=CCCCC(=O)O)O	Bertin	Powder
	Acetochlor	CCC1=CC=CC(=C1N(COCC)C(=O)CCl)C		

Table A1 -

 A1 (continued) Standard compounds form and suppliers

	Compound name	SMILES	Supplier	Form
		COC=C(C1=CC=CC=C1OC2=NC=NC(=C2)OC3=CC=CC=C3		
	Azoxystrobin	C#N)C(=O)OC	VWR	Powder
		C1=CC=C(C(=C1)C2=CC=C(C=C2)Cl)NC(=O)C3=C(N=CC=C		
	Boscalid	3)Cl	VWR	Powder
	Carbamazepine	C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N	VWR	Powder
	Chlorpyrifos	CCOP(=S)(OCC)OC1=NC(=C(C=C1Cl)Cl)Cl	VWR	Powder
	Cotinine	CN1C(CCC1=O)C2=CN=CC=C2	VWR	Powder
	Cyprodinil	CC1=CC(=NC(=N1)NC2=CC=CC=C2)C3CC3	VWR	Powder
	Diazinon	CCOP(=S)(OCC)OC1=NC(=NC(=C1)C)C(C)C	VWR	Powder
	Diclofenac	C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl	VWR	Powder
	Imidacloprid	C1CN(C(=N[N+](=O)[O-])N1)CC2=CN=C(C=C2)Cl	VWR	Powder
	Malathion	CCOC(=O)CC(C(=O)OCC)SP(=S)(OC)OC	VWR	Powder
	Nicotine	CN1CCCC1C2=CN=CC=C2	VWR	Powder
	Prochloraz	CCCN(CCOC1=C(C=C(C=C1Cl)Cl)Cl)C(=O)N2C=CN=C2	VWR	Powder
	Propiconazole	CCCC1COC(O1)(CN2C=NC=N2)C3=C(C=C(C=C3)Cl)Cl	VWR	Powder
	Thiamethoxam	CN1COCN(C1=N[N+](=O)[O-])CC2=CN=C(S2)Cl	VWR	Powder
	Triclosan	C1=CC(=C(C=C1Cl)O)OC2=C(C=C(C=C2)Cl)Cl	VWR	Powder

Table A2 -

 A2 Standard compounds identifiers and physical-chemical characteristics (monoisotopic mass, retention time (Rt), octanol-water partition coefficient (logP))

	2.3.	Table A3 -Preselection: Recovery, repeatability and matrix effect
	of all sample preparation methods on individual compounds	
	Table A3 -Preselection: Recovery, repeatability (recovery coefficient of variation CV) and
	Compound name matrix effect (ME) at 20 and 150 ng/mL of all sample preparation methods on individual Chemical formula Monoisotopic mass (Da) Observed Rt (min) logP CAS ion 2-Phenylphenol C12H10O 170.0732 [M-H] -30.19 3.28 90-43-7 compounds
	Acetochlor		C14H20ClNO2 PROTEIN PRECIPITATION	269.1183	[M-H] -PHOSPHOLIPID AND PROTEIN REMOVAL PLATES 40.57 4.14 123113-74-6
	Acetylsalicylic acid Aflatoxin B1 Aminobenzimidazole Androstenedione Component	C9H8O4 C17H12O6 PPT C7H7N3 C19H26O2 Mean recov. (%) Recovery CV (%)	Low-level ME (%)	180.0423 312.0634 133.0640 286.1933 High-level ME (%) Mean recov. (%)	[M-H] -Phree ACN [M+H] + [M+H] + [M+H] + Recovery CV (%) Low-level ME (%)	High-level ME (%)	8.65 17.52 4.74 31.50 Mean recov. (%)	Phree MeOH 1.24 50-78-2 1.73 27261-02-5 0.91 934-32-7 2.75 63-05-8 Recovery CV (%) Low-High-level level ME (%) ME (%)
	Arachidonic Acid 2-Aminobenzimidazole Azoxystrobin 4-Androstene-3,17-dione Boscalid Acetochlor Carbamazepine Aflatoxin B1 Carbendazim Azoxystrobin Boscalid	C20H32O2 103.6 13.2 C22H17N3O5 107.1 6.0 C18H12Cl2N2O 73.6 60.8 106.8 2.1 78.1 C15H12N2O 55.5 5.5 92.4 C9H9N3O2 108.2 2.8 75.0 105.7 4.6 61.0	304.2402 77.0 113.1 403.1168 58.9 123.7 342.0327 75.7 69.3 236.0950 95.9 111.4 191.0695 72.5 106.1 61.4 102.9	6.3 2.6 3.1 4.5 3.9 3.7	[M-H] -3.2 [M+H] + 31.9 [M+H] + 0.8 [M+H] + 16.5 [M+H] + -25.3 25.0	-95.3 26.2 12.2 28.0 14.7 30.7	47.00 115.4 38.03 106.8 38.00 45.1 18.01 95.4 5.69 118.0 111.0	3.0 6.99 93444-49-6 41.6 -32.0 3.8 29.0 41.2 2.64 215934-32-0 7.9 76.9 32.2 2.96 188425-85-6 9.3 72.6 45.3 2.45 298-46-4 2.9 82.2 34.8 1.52 63278-70-6 5.5 78.2 45.3
	Chlorpyrifos Carbamazepine	C9H11Cl3NO3PS 107.5 2.5 37.8	348.9263 47.0 106.7	2.2	[M+H] + 18.5	-56.6	45.53 112.2	4.70 39475-55-3 5.1 51.0 -13.2
	Clothianidin Carbendazim	C6H8ClN5O2S 110.4 1.8	58.9	249.0087 74.1 112.4	1.3	[M+H] + -1.4	-48.4	7.99 111.6	0.73 205510-53-8 5.4 31.3 -18.5
	Codeine Cortisone Cotinine Cyprodinil	Chlorpyrifos Clothianidin Codeine Cortisone Cotinine	C18H21NO3 109.0 2.7 C21H28O5 100.8 0.6 C10H12N2O 129.0 10.9 C14H15N3 105.1 3.6 110.4 9.9	92.9 55.8 57.8 86.5 45.2	299.1521 92.4 63.6 360.1937 61.6 107.0 176.0950 57.8 87.8 225.1266 85.0 107.6 42.3 85.0	3.8 3.0 16.0 3.0 0.9	[M+H] + 91.8 [M+H] + 49.3 [M+H] + 53.6 [M+H] + 85.1 19.4	76.6 -16.1 -13.8 21.6 13.0	5.12 42.8 16.12 121.1 4.31 112.5 33.22 101.4 94.1	3.6 1.39 76-57-3 96.5 6.7 67.0 1.47 53-06-5 18.2 70.6 0.07 486-56-6 89.8 18.2 4.6 7.0 92.1 46.3 4.00 121552-61-2 24.5 65.4 28.0
	Diazinon	Cyprodinil	C12H21N2O3PS 106.0 3.2 38.7	304.1011 34.2 139.7	41.3	[M+H] + 75.3	2.3	43.38 56.6	3.81 30583-38-1 7.3 63.7 -31.1
	Diclofenac Dimethyldithiophosphate Estrone Fluoxetine Hydrocortisone Hydroxyindoleacetic acid Ibuprofen Diazinon Estrone Fluoxetine Hydrocortisone Imidacloprid Ketoprofen Malathion POSITIVE IONISATION Nicotine	C14H11Cl2NO2 C2H7O2PS2 C18H22O2 C17H18F3NO C21H30O5 C10H9NO3 C13H18O2 106.2 11.8 87.2 112.5 4.9 61.8 104.8 2.7 94.3 107.2 8.1 90.8 107.8 2.2 49.1 107.0 2.7 94.7 93.7 42.5 96.2 0.0 N/A	295.0167 157.9625 270.1620 309.1340 362.2093 191.0582 206.1307 80.8 49.8 59.6 119.5 87.7 117.0 90.7 104.5 53.0 109.5 95.7 118.9 95.0 79.4 N/A 84.7	10.8 3.7 11.8 3.4 2.2 3.2 0.6 3.0	[M-H] -[M-H] -[M+H] + [M+H] + [M+H] + [M-H] -[M+H] + 38.7 45.8 24.4 80.8 10.8 22.3 14.6 80.5	44.8 32.6 19.0 55.3 -9.1 -61.3 0.8 55.9	39.59 2.95 31.60 23.71 15.86 5.71 39.94 51.4 119.2 75.2 93.4 115.8 107.5 53.8 61.6	4.51 15307-86-5 0.63 756-80-9 3.13 53-16-7 4.05 57226-07-0 1.61 50-23-7 1.41 113303-91-6 3.97 58560-75-1 3.3 92.0 74.9 6.5 80.4 58.6 10.4 80.3 28.4 16.7 53.4 25.2 6.2 67.3 18.7 6.3 65.4 -14.2 8.4 74.9 9.4 45.9 94.9 89.4
	Imidacloprid Paracetamol	C9H10ClN5O2 100.7 8.6	80.5	255.0523 81.3 131.3	2.7	[M+H]+ 83.4	33.9	8.57 107.0	0.57 138261-41-3 8.4 81.6 56.8
	Ketoprofen Leukotriene B4 Paroxetine Piperine Leukotriene D4 Pravastatin Malathion Prochloraz Nicotine Progesterone Propiconazole	C16H14O3 132.4 22.1 C20H32O4 156.2 12.4 C25H40N2O6S 0.0 C10H19O6PS2 100.5 2.2 C10H14N2 132.5 33.5 107.3 5.1	93.6 93.4 N/A 65.5 61.1 62.4	254.0943 85.8 131.8 336.2301 91.1 114.9 496.2607 N/A 83.9 330.0361 66.9 115.2 162.1157 57.1 125.4 60.2 113.0	34.8 20.0 16.1 13.0 2.6 4.7	[M+H] + 25.5 [M-H] -55.1 [M-H] -23.5 [M+H] + 55.6 63.0 [M+H] + 7.5	23.9 67.4 29.9 37.6 40.5 42.7	28.13 90.6 39.52 107.5 33.04 110.3 40.81 100.1 97.8 3.37 108.7	6.7 3.12 22071-15-4 82.0 34.8 15.0 88.7 82.0 4.10 71160-24-2 18.9 76.1 41.0 1.40 73836-78-9 16.1 62.7 37.8 2.89 121-75-5 9.7 50.7 55.5 1.17 551-13-3 5.1 80.7 50.2
	Paracetamol Sertraline	C8H9NO2 79.5 15.8	89.5	151.0633 83.4 119.9	5.9	[M+H] + 45.7	29.4	4.98 84.7	0.31 8055-08-1 9.8 4.4 20.5
	Paroxetine	Solanidine	C19H20FNO3 195.0 30.3	86.6	329.1427 80.0 112.6	7.6	[M+H] + 45.5	42.1	18.34 104.2	1.23 63952-24-9 10.2 15.1 39.8
	Piperine Pravastatin Tebuconazole Testosterone Prochloraz Thiacloprid Progesterone Thiamethoxam Venlafaxine	C17H19NO3 108.5 1.8 C23H36O7 95.4 47.7 C15H16Cl3N3O2 60.4 65.1 115.6 5.0 66.0 C21H30O2 111.8 2.2 77.6 110.9 5.8 60.8	285.1365 59.8 103.0 424.2461 60.3 115.3 375.0308 69.4 108.6 314.2246 77.8 109.5 55.0 104.7	1.1 4.7 9.2 0.5 9.6	[M+H] + 16.9 [M+H] + 49.1 [M+H] + 27.8 [M+H] + 60.6 21.5	21.7 17.1 29.4 34.1 20.9	36.42 110.0 20.50 100.7 38.74 111.5 42.10 114.0 84.1	5.3 2.78 147030-08-8 42.8 46.3 3.0 72.4 27.2 1.65 81093-37-0 7.7 37.1 40.2 3.78 67747-09-5 6.6 83.5 56.6 3.87 257630-50-5 9.1 81.2 31.0
	Propiconazole 2-Phenylphenol	C15H17Cl2N3O2 0.0 N/A	341.0698 N/A 0.0	0.0	[M+H] + 13.1	28.3	41.73 0.0	3.72 75881-82-2 0.0 95.3 44.4
	Prostaglandin D2 5-Hydroxyindole-3-acetic acid	C20H32O5 0.0	100.0	352.2250 98.9 110.3	19.6	[M-H] -36.1	47.9	27.60 96.1	3.23 41598-07-6 29.7 -0.5 46.4
	Prostaglandin E2 Acetylsalicylic acid Prostaglandin F2a Prostaglandin J2 Sertraline Solanidine Tebuconazole Testosterone Thiacloprid Arachidonic acid Diclofenac Dimethyldithiophosphate Ibuprofen Leukotriene B4 Leukotriene D4 Prostaglandin D2 NEGATIVE IONISATION Prostaglandin E2 Thiamethoxam Prostaglandin F2a Triclosan Prostaglandin J2 Venlafaxine Triclosan	C20H32O5 0.0 C20H34O5 C20H30O4 C17H17Cl2N C27H43NO C16H22ClN3O C19H28O2 C10H9ClN4S 0.0 102.8 5.4 118.3 3.5 0.0 0.0 0.0 0.0 160.6 67.5 C8H10ClN5O3S 73.2 N/A 96.3 -2.6 100.0 96.6 99.2 N/A 99.0 57.5 45.5 99.0 C12H7Cl3O2 0.0 N/A C17H27NO2 0.0 -9.7	352.2250 N/A 0.0 354.2406 334.2144 305.0738 397.3345 307.1451 288.2089 252.0236 59.9 0.0 97.1 109.7 -3.2 73.2 98.9 89.4 98.1 137.9 99.7 101.9 N/A 81.7 99.4 87.8 291.0193 99.5 109.8 287.9512 N/A 81.5 277.2042 81.7 137.3	0.0 0.0 2.8 12.6 19.6 19.8 4.9 16.7 6.4 4.8 11.2 32.8	[M-H] -16.8 [M-H] -[M-H] -[M+H] + [M+H] + [M+H] + [M+H] + [M+H] + N/A 39.9 43.8 21.3 31.4 76.0 65.8 78.8 [M+H] + 79.8 [M-H] -19.1 [M+H] + 27.7	27.7 N/A 26.6 27.3 5.3 20.8 85.4 62.4 74.0 79.1 32.8 50.5	26.50 0.0 25.60 26.54 24.34 24.54 39.36 28.90 12.24 0.0 114.8 85.9 0.0 160.2 0.0 0.0 101.9 6.97 83.8 43.79 71.1 9.84 87.5	0.0 2.82 363-24-6 39.9 11.5 2.61 13535-33-6 3.60 60203-57-8 5.10 79559-97-0 4.88 80-78-4 3.70 80443-41-0 3.32 58-22-0 0.0 N/A N/A 5.5 47.2 10.2 11.6 15.1 40.3 0.0 -4.8 24.9 5.3 69.7 76.2 0.0 65.2 82.2 0.0 42.9 54.5 17.0 70.9 71.6 1.25 111988-49-9 12.5 71.1 79.8 1.52 153719-23-4 9.5 -78.0 -7.7 4.76 3380-34-5 0.43 93413-69-5 19.2 61.7 68.1
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	-(continued) Preselection: Recovery, repeatability (recovery coefficient of variation Table A3 -(continued) Preselection: Recovery, repeatability (recovery coefficient of variation
	CV) and matrix effect (ME) at 20 and 150 ng/mL of all sample preparation methods on CV) and matrix effect (ME) at 20 and 150 ng/mL of all sample preparation methods on
	individual compounds individual compounds												
						PHOSPHOLIPID AND PROTEIN REMOVAL PLATES	SUPPORTED LIQUID EXTRACTION
				PLD PHOSPHOLIPID AND PROTEIN REMOVAL PLATES Ostro					Prime HLB CARTRIDGE
		Component 2-Aminobenzimidazole Component	Mean recov. (%) 104.0 Mean recov. (%)	Recovery CV (%) PL 4.7 Recovery CV (%)	Low-level ME (%) 35.4 Low-level ME (%)	High-level ME (%) -0.3 High-level ME (%)	Mean recov. (%) 95.5 Mean recov. (%)	Recovery CV (%) PLUltra 14.2 Recovery CV (%)	Low-level ME (%) 66.1 Low-level ME (%)	High-level ME (%) 70.6 High-level ME (%)	Mean recov. (%) 121.3 Mean recov. (%)	Recovery CV (%) Isolute Low-level ME (%) 4.7 -32.9 Recovery CV (%) Low-level ME (%)	High-level ME (%) -4.3 High-level ME (%)
		4-Androstene-3,17-dione 2-Aminobenzimidazole	114.5 57.6	3.9 10.9	58.7 -39.2	28.1 -33.1	93.6 45.3	12.0 10.7	48.4 -46.8	29.1 -27.0	97.4 69.2	6.7 2.6	69.0 47.9	25.8	26.1
		Acetochlor 4-Androstene-3,17-dione	104.4 87.2	3.5 4.1	72.6 19.1	39.0 4.7	100.7 87.4	8.3 7.9	78.3 17.8	58.4 9.8	70.8 100.5	7.0 4.6	46.0 59.1	31.4	36.2
		Aflatoxin B1 Acetochlor	137.4 80.7	2.8 6.3	50.8 37.8	38.8 11.9	97.0 81.7	14.6 8.9	64.9 32.3	75.6 19.4	88.8 103.8	7.4 2.4	20.9 63.2	33.0	39.9
		Azoxystrobin Aflatoxin B1	127.8 60.5	2.3 8.9	63.8 4.5	8.2 5.1	100.9 46.4	8.7 3.3	54.6 -14.0	29.5 2.7	103.9 90.8	4.6 4.1	29.4 36.3	13.1	35.9
		Boscalid Azoxystrobin	136.7 92.2	1.1 6.4	65.9 16.9	25.1 -16.0	86.7 88.5	8.5 7.4	57.5 7.1	27.2 -16.3	83.8 102.2	6.3 1.7	45.7 48.9	35.1	23.5
		Carbamazepine Boscalid	124.2 106.5	1.4 5.5	N/A 35.6	N/A 16.6	97.6 82.9	7.7 8.9	7.6 37.9	1.9 27.5	106.2 93.2	3.1 3.6	-43.3 55.9	-46.7	29.8
		Carbendazim Carbamazepine	124.1 79.5	3.1 3.6	27.2 -72.8	15.0 -98.1	98.9 77.6	8.6 7.3	57.9 -86.4	65.4 -96.3	101.5 106.4	3.1 2.9	-21.6	-4.4	17.6 -23.4
		Chlorpyrifos Carbendazim	98.8 67.7	7.4 5.4	94.7 -45.1	93.0 -8.1	109.3 56.3	6.5 9.9	99.2 -54.1	99.1 -2.8	62.4 106.9	11.7 3.5	88.0 39.4	88.5	34.4
		Clothianidin Chlorpyrifos	120.7 82.7	1.5 9.1	44.0 88.8	-2.8 91.2	100.1 79.7	4.1 7.7	62.6 90.5	67.6 91.7	121.9 79.9	4.7 2.4	0.8 91.8	0.6	90.7
		Codeine Clothianidin	107.5 51.2	19.0 8.2	36.5 -27.4	-34.0 -33.7	102.6 43.7	14.4 9.7	80.5 -29.6	79.3 -19.7	49.5 101.4	4.7 4.1	7.5 34.0	-19.9	2.2
		Cortisone Codeine	126.5 35.9	4.3 3.2	46.9 -14.0	15.5 -57.6	92.1 29.6	12.5 4.3	64.3 -22.3	72.8 -47.9	99.3 91.4	2.7 4.9	41.4 47.7	10.9	3.6
		Cotinine Cortisone	90.4 48.4	9.9 6.5	52.7 12.8	48.9 -18.7	83.3 41.0	13.6 6.9	N/A 12.7	N/A -15.0	146.1 99.3	8.5 5.2	28.2 -67.1	-4.2	2.2
		Cyprodinil Cotinine	126.5 36.8	7.0 12.7	52.4 62.9	-7.6 -25.2	184.2 26.7	10.3 25.0	96.2 37.9	93.2 -34.5	182.9 16.1	9.6 29.5	67.1 81.6	56.2	60.0
	POSITIVE IONISATION POSITIVE IONISATION	Diazinon Cyprodinil Estrone Fluoxetine Hydrocortisone Imidacloprid Ketoprofen Malathion Nicotine Paracetamol Diazinon Estrone Fluoxetine Hydrocortisone Imidacloprid	90.0 137.3 108.0 123.5 115.9 122.1 131.5 120.9 60.7 130.3 64.2 85.7 86.3 48.7 53.4	1.0 8.5 12.3 0.6 10.4 2.5 5.0 0.4 11.8 7.7 9.1 6.0 2.9 10.9	95.5 66.0 61.4 59.8 44.1 44.6 33.2 76.1 83.8 79.5 42.8 18.6 43.7 46.6	88.7 62.6 47.2 15.3 14.7 -2.3 -17.3 37.7 66.3 56.9 39.0 32.8 22.2 -33.1	104.8 96.8 101.6 100.4 81.1 99.6 96.6 120.1 0.0 96.8 52.9 94.7 78.8 37.7	8.3 10.9 11.2 10.1 10.0 4.7 10.5 4.9 0.0 9.7 28.8 7.9 7.8 13.4	93.4 65.5 38.9 95.9 71.5 64.1 13.1 78.5 N/A 82.0 40.6 26.8 45.2 27.1	87.2 62.3 19.2 94.9 74.3 66.6 -5.4 52.1 N/A 85.4 46.6 43.0 43.0 -26.5	46.0 105.7 106.7 8.8 71.0 115.2 73.8 67.9 26.3 74.1 97.2 98.1 98.3 106.3	4.2 11.9 8.6 12.6 30.4 2.7 13.9 4.4 15.6 5.1 12.9 6.8 2.7 18.9	51.6 87.1 36.3 48.7 24.9 8.1 -13.1 50.9 N/A N/A 53.8 44.4 33.7 -13.2 -9.1 -21.2 32.7 47.4 64.6 74.2 29.8 86.4 85.8	81.4 61.4 5.9 78.3 88.9
		Paroxetine	118.8	3.7	55.6	9.2	99.9	9.0	97.3	95.7	1.5	35.7	37.6	28.3
		Piperine	102.5	13.3	56.7	14.9	124.7	17.7	79.3	78.1	153.1	13.7	66.7	73.4
		Pravastatin	98.2	2.5	-24.2	-84.1	87.2	9.1	88.1	91.5	84.4	7.5	-20.8	-33.1
		Prochloraz	120.7	2.1	66.3	25.3	93.7	22.7	93.8	93.6	124.1	3.6	64.2	60.7
		Progesterone	117.7	2.3	72.4	48.8	165.6	26.2	78.2	68.2	113.0	9.0	61.6	55.9
		Propiconazole	121.2	0.8	65.8	21.8	107.9	7.9	85.1	72.3	113.3	4.2	59.0	48.8
		Sertraline	100.6	5.6	70.3	61.5	90.7	12.0	97.8	96.9	82.1	11.2	61.7	51.9
		Solanidine	104.9	4.4	50.9	8.0	106.3	14.2	93.6	85.2	99.3	23.0	44.3	33.6
		Tebuconazole	122.3	2.2	59.4	11.0	101.2	8.5	73.8	64.5	105.3	4.4	45.8	37.7
		Testosterone	124.2	6.1	58.3	21.4	100.5	9.7	42.7	24.5	114.5	8.1	27.3	19.4
		Thiacloprid	136.7	3.1	49.7	27.4	94.0	7.0	60.0	66.3	121.1	4.8	15.9	24.8
		Thiamethoxam	121.3	1.8	72.5	46.3	99.7	7.3	87.3	85.1	101.1	6.3	53.6	39.0
		Venlafaxine	122.5	3.4	42.2	3.4	96.0	6.3	58.0	54.8	108.4	21.6	8.7	13.9
		2-Phenylphenol	0.0	0.0	N/A	N/A	0.0	0.0	N/A	N/A	0.0	0.0	32.3	6.0
		5-Hydroxyindole-3-acetic acid	93.8	20.0	59.2	79.1	82.2	28.2	97.0	98.7	0.0	0.0	-8.3	62.2
		Acetylsalicylic acid	0.0	0.0	N/A	N/A	0.0	0.0	N/A	N/A	0.0	0.0	78.6	-5.3
	NEGATIVE IONISATION	Arachidonic acid Diclofenac Dimethyldithiophosphate Ibuprofen Leukotriene B4 Leukotriene D4 Prostaglandin D2 Prostaglandin E2	0.0 134.7 60.7 0.0 144.5 125.8 104.1 92.9	0.0 3.2 16.4 0.0 17.7 10.1 13.7 13.8	N/A 33.6 34.3 N/A 76.9 93.0 65.2 86.9	N/A 31.8 -37.9 N/A 81.7 88.1 64.2 81.4	0.0 98.8 79.7 62.2 0.0 0.0 0.0 101.0	0.0 8.1 12.3 46.9 0.0 0.0 0.0 19.7	67.9 36.4 74.2 16.8 N/A 99.4 N/A 72.0	24.7 48.1 70.0 49.2 N/A 99.7 N/A 84.0	0.0 81.4 0.0 0.0 103.5 47.4 65.0 97.7	0.0 12.1 0.0 0.0 15.6 31.6 26.9 87.1	N/A -16.0 -16.6 -10.4 65.3 95.6 35.5 63.6	N/A 24.0 -87.4 43.0 77.2 86.7 46.7 72.8
		Prostaglandin F2a	102.3	9.6	84.1	75.4	91.4	13.9	76.8	84.5	41.7	13.4	58.2	73.6
		Prostaglandin J2	0.0	0.0	N/A	N/A	0.0	0.0	15.1	56.0	0.0	0.0	N/A	N/A
		Triclosan	112.4	7.4	-92.8	39.1	109.7	12.1	35.7	73.0	74.7	15.0	54.7	43.5
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 A4a Comparison to PPT (Serum): Detection, repeatability, S/N and spiking significance of preselected preparation methods on individual compounds

		2.4.													
	Table A3 -(continued) Preselection: Recovery, repeatability (recovery coefficient of variation
	CV) and matrix effect (ME) at 20 and 150 ng/mL of all sample preparation methods on
	individual compounds													
							SOLID PHASE EXTRACTION CARTRIDGES					
				HLB				Strata X				Strata XC		
		Component	Mean recov. (%)	Recovery CV (%)	Low-level ME (%)	High-level ME (%)	Mean recov. (%)	Recovery CV (%)	Low-level ME (%)	High-level ME (%)	Mean recov. (%)	Recovery CV (%)	Low-level ME (%)	High-level ME (%)
		2-Aminobenzimidazole	78.4	10.9	77.9	75.5	66.1	12.9	-4.8	22.9	0.0	0.0	11.4	16.0
		4-Androstene-3,17-dione	111.6	2.9	-68.8	-86.4	85.1	9.5	49.1	42.0	97.2	3.4	25.0	21.5
		Acetochlor	26.0	86.0	-11.8	-16.5	109.4	5.6	86.8	79.9	126.0	3.4	89.3	87.1
		Aflatoxin B1	112.8	3.9	27.3	35.7	73.4	19.3	49.7	44.3	134.5	20.0	55.0	60.9
		Azoxystrobin	119.8	2.1	64.3	49.0	87.7	13.1	57.7	41.2	97.6	2.6	45.6	25.9
		Boscalid	108.6	7.7	61.6	55.4	81.8	9.7	73.8	71.8	107.1	1.8	26.5	19.8
		Carbamazepine	0.0	0.0	-32.5	-36.0	97.9	5.6	N/A	N/A	90.1	5.8	-38.8	-37.8
		Carbendazim	110.6	3.1	11.1	32.0	114.5	2.2	2.8	23.2	105.2	6.1	-6.8	27.3
		Chlorpyrifos	94.3	6.4	99.6	99.3	71.7	13.3	N/A	N/A	109.4	22.3	99.4	98.5
		Clothianidin	110.2	4.2	46.5	36.8	107.9	4.5	28.8	8.8	102.0	1.9	41.7	38.5
		Codeine	98.9	22.3	29.4	11.7	110.5	3.2	21.5	-5.7	114.8	15.2	11.9	2.6
		Cortisone	124.9	2.6	25.2	17.9	107.8	4.3	31.5	7.4	86.9	17.0	33.5	23.7
		Cotinine	0.0	0.0	47.2	26.1	66.8	7.8	-25.6	16.6	0.0	0.0	65.7	47.1
		Cyprodinil	128.9	21.0	94.4	91.6	62.9	6.9	N/A	N/A	88.8	4.2	67.2	60.1
	POSITIVE IONISATION	Malathion Diazinon Estrone Fluoxetine Hydrocortisone Imidacloprid Ketoprofen Malathion Nicotine	94.0 90.7 130.2 116.9 126.4 113.6 117.8 113.7 0.5	5.7 7.8 1.5 8.5 7.8 1.6 0.9 3.9 21.0	87.8 67.5 93.7 22.7 52.6 59.1 82.1 28.1	18.8 84.8 67.0 89.2 24.5 40.8 49.5 73.9 -5.5	86.9 86.8 70.2 110.0 109.1 111.0 106.2 69.2 0.0	8.5 18.5 14.4 8.7 11.2 2.0 6.8 14.3 0.0	43.0 98.9 57.4 76.9 53.8 34.1 26.8 82.5 32.9	17.7 97.2 58.6 78.7 19.5 6.6 2.2 69.7 -12.8	34.8 110.1 89.4 103.1 103.9 98.4 109.1 2.8 5.7	4.3 6.6 4.1 1.6 8.8 2.7 2.9 63.7 24.9	61.0 96.3 -74.3 80.8 44.5 46.4 44.5 94.5 N/A	90.5 -49.6 76.0 25.9 35.0 37.5 91.3 N/A	7 32.3
		Nicotine Paracetamol	26.9 104.2	9.8 7.5	44.6 58.2	65.9 50.3	21.2 97.5	9.1 3.1	N/A 95.2	N/A 79.6	96.3 75.5	2.5 14.7	48.1 50.6	49.9	30.0
		Paracetamol Paroxetine	35.2 128.8	10.4 4.3	29.7 92.4	47.2 86.6	28.6 102.6	10.2 9.3	33.1 68.3	52.3 73.2	84.1 96.7	3.8 5.0	39.7 76.8	67.6	18.2
		Paroxetine Piperine	74.1 156.9	7.4 16.6	29.3 75.5	17.3 65.0	64.9 82.1	13.6 59.9	31.3 79.4	11.4 81.1	106.8 76.8	2.0 13.3	N/A 59.6	33.1	79.5
		Piperine Pravastatin	0.0 108.3	0.0 4.3	69.7 40.2	68.5 41.6	0.0 88.6	0.0 6.3	64.6 13.6	74.4 12.2	87.7 65.1	11.1 18.3	47.3 13.7	29.0	23.5
		Pravastatin Prochloraz	48.6 132.8	6.6 11.3	-76.9 90.2	-91.3 86.4	46.6 149.8	6.5 22.5	-82.7 91.1	-88.7 93.6	0.0 71.1	0.0 3.5	61.4 49.7	46.5	56.1
		Prochloraz Progesterone	90.2 99.9	8.4 9.8	60.9 75.8	63.1 70.2	98.0 101.1	9.5 7.2	65.3 83.2	76.9 88.4	110.6 170.1	6.0 9.5	73.8 -62.1	-94.8	69.8
		Progesterone Propiconazole	109.0 119.2	1.5 3.3	56.4 78.0	48.7 71.7	113.9 110.9	4.2 2.3	55.3 89.2	57.9 91.5	95.7 100.0	2.5 1.7	61.3 34.1	32.4	48.3
		Propiconazole Sertraline	118.9 121.6	3.4 33.2	53.3 95.2	44.4 94.9	118.1 123.0	6.5 13.7	55.6 87.9	56.2 91.1	104.4 99.5	1.5 5.0	66.8 80.1	75.4	54.4
		Sertraline Solanidine	84.3 132.0	15.6 8.6	61.3 86.1	55.3 84.2	104.3 121.5	2.4 5.3	65.2 89.1	71.3 78.3	83.1 101.9	9.1 2.7	92.6 69.3	63.9	89.3
		Solanidine Tebuconazole	125.9 115.1	5.7 2.7	38.5 71.6	28.6 64.3	140.1 104.9	8.2 6.3	39.4 76.5	41.4 84.4	88.9 106.5	5.0 2.2	78.4 29.2	23.7	70.5
		Tebuconazole Testosterone	107.5 132.1	2.9 5.2	37.9 56.2	23.0 46.0	99.3 153.9	5.9 6.3	40.7 58.1	38.6 51.6	102.9 110.0	1.1 6.5	65.1 37.3	25.5	43.3
		Testosterone Thiacloprid	91.7 106.3	1.9 3.2	22.5 63.0	-1.5 63.9	93.8 105.4	7.0 5.2	16.1 30.6	1.6 20.2	102.3 99.5	2.0 2.2	30.3 58.2	62.0	21.9
		Thiacloprid Thiamethoxam	63.3 111.2	4.6 2.6	-5.7 74.8	-3.6 61.1	55.2 112.1	10.1 1.2	-13.4 73.9	0.6 53.7	98.3 88.3	5.5 4.8	60.0 71.1	59.9	31.4
		Thiamethoxam Venlafaxine	48.8 101.7	9.9 5.6	37.8 74.4	16.1 68.5	39.1 112.9	8.8 4.9	34.5 33.0	23.0 12.9	30.7 105.1	8.1 3.0	51.0 74.5	70.7	28.2
		Venlafaxine 2-Phenylphenol	67.3 0.0	5.2 0.0	48.0 94.7	-18.6 81.8	56.3 0.0	9.9 0.0	-25.4 N/A	-23.1 N/A	108.5 0.0	1.4 0.0	N/A	49.8	95.3	26.7
		2-Phenylphenol 5-Hydroxyindole-3-acetic acid	10.1 127.0	31.7 22.2	88.0 65.3	54.3 80.8	11.1 132.6	14.0 58.4	86.7 40.9	53.4 21.3	0.0 73.1	0.0 33.8	96.3 62.8	81.9	84.1
		5-Hydroxyindole-3-acetic acid Acetylsalicylic acid	12.3 130.9	25.0 14.0	-0.4 N/A	49.4 N/A	9.3 0.0	48.2 0.0	19.6 45.4	54.1 19.4	0.0 16.4	0.0 48.0	N/A	75.4	N/A	82.7
	NEGATIVE IONISATION NEGATIVE IONISATION	Acetylsalicylic acid Arachidonic acid Diclofenac Dimethyldithiophosphate Ibuprofen Leukotriene B4 Leukotriene D4 Prostaglandin D2 Arachidonic acid Diclofenac Dimethyldithiophosphate Ibuprofen Leukotriene B4 Leukotriene D4 Prostaglandin D2 Prostaglandin E2 Prostaglandin E2 Prostaglandin F2a	0.0 0.0 112.4 52.8 150.5 11.4 15.0 15.7 0.0 108.8 11.1 115.7 114.0 122.1 112.5 120.9 65.2 116.0	0.0 0.0 2.2 10.2 15.6 10.2 0.6 19.0 0.0 2.0 9.6 49.1 5.7 35.8 2.8 9.9 8.9 6.4	N/A N/A 51.2 15.4 19.1 65.0 73.5 93.9 N/A 51.8 12.7 93.2 75.2 85.9 -37.4 57.3 43.3 57.5	N/A N/A 27.4 -69.2 36.0 72.4 83.9 63.6 N/A 62.9 -18.4 93.8 80.6 93.0 19.0 73.2 59.3 70.6	0.0 0.0 106.7 44.5 144.0 11.4 16.0 16.8 0.0 99.7 26.9 104.2 105.9 163.4 65.9 74.3 64.1 94.8	0.0 0.0 3.7 8.2 28.7 6.8 6.7 63.1 0.0 14.4 6.0 103.8 10.7 30.2 68.6 18.2 5.1 12.0	N/A N/A 53.3 49.1 31.1 66.1 75.7 44.2 N/A 89.5 46.5 N/A 66.3 39.6 -0.6 -8.5 97.0 50.3	N/A N/A 30.7 -54.9 39.0 73.6 85.1 58.4 N/A 93.0 16.2 N/A 69.1 15.9 3.1 67.7 64.2 73.6	0.0 85.0 18.6 0.0 0.0 0.0 0.0 0.0 153.7 107.9 44.6 156.8 53.9 107.5 101.2 105.3 2.7 112.3	0.0 20.0 10.3 0.0 0.0 0.0 0.0 0.0 36.8 3.7 6.6 17.3 48.0 5.7 6.9 3.0 15.7 2.3	52.2 31.4 0.1 85.4 39.6 N/A 68.1 2.9 N/A 21.4 32.3 90.3 83.2 51.2 -0.9 68.2 42.6 60.9	59.3 -17.3 5.2 70.9 65.3 N/A 77.9 36.5 N/A 41.7 -0.8 88.1 74.3 76.1 29.6 76.5 51.2 72.1
		Prostaglandin F2a Prostaglandin J2	70.8 40.8	5.9 134.1	69.2 88.8	62.1 95.0	70.3 135.2	4.1 24.3	70.7 -77.0	63.3 17.6	2.9 151.5	4.9 79.3	50.8 -61.2	-42.8	56.0
		Prostaglandin J2 Triclosan	0.0 160.8	0.0 22.8	71.0 81.9	78.2 95.6	0.0 172.8	0.0 15.2	57.8 94.1	74.9 96.2	0.0 108.8	0.0 3.6	N/A -20.8	N/A 62.7
		Triclosan	142.0	50.6	63.6	68.0	150.2	28.8	62.9	74.9	80.0	8.0	-86.9		41.6
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 A4a Comparison of sample preparation methods to PPT in serum: median area, repeatability (area coefficient of variation CV),

		signal/noise ratio (S/N), and p-value of areas in four spiked vs. four non-spiked samples						
				PPT				Phree			StrataX			Phree+StrataX
			Mean	Area CV			Mean	Area CV			Mean	Area CV			Mean	Area CV		p-value
		Component	area	(%)	S/N	p-value	area	(%)	S/N	p-value	area	(%)	S/N	p-value	area	(%)	S/N	$$
		2-Aminobenzimidazole	168885	7	789	1.7E-07	152233	7	695	1.5E-07	171971	18	1116	3.1E-05	112054		707	1.3E-04
		4-Androstene-3,17-dione	191923	9	2868	5.9E-07	47650	6	1151	3.1E-07	150553	13	2832	5.1E-06	94218		1935	2.6E-06
		Acetochlor	10563	3	179	7.7E-10	3509	16	73	1.4E-05	8315	17	166	2.6E-05	N/A	N/A	N/A	N/A
		Aflatoxin B1	7514	18	519	2.8E-05	41863	4	2315	5.8E-09	52222	15	3151	9.7E-06	32722		1635	1.4E-05
		Azoxystrobin	248938	8	10312	3.1E-07	54313	5	2699	2.2E-08	178762	14	8872	8.0E-06	121984	9	6779	5.7E-07
		Boscalid	107469	11	3234	1.6E-06	13141	7	884	1.1E-07	66410	18	7401	3.0E-05	39119		3339	2.1E-05
		Carbamazepine	157472	9	4397	4.9E-07	78172	1	2118	7.0E-13	136496	13	2820	5.9E-06	90113		1774	9.2E-06
		Carbendazim	130835	8	1717	2.0E-07	88661	8	1277	2.5E-07	111303	18	1739	2.9E-05	74097		1124	3.8E-06
		Chlorpyrifos	16680	12	3407	3.2E-06	N/A	N/A	N/A	N/A	7120	27	3323	2.8E-04	771		24756	1.2E-03
		Clothianidin	8563	7	532	1.2E-07	6952	14	382	6.9E-06	9478	14	557	7.4E-06	5934		320	7.7E-05
		Codeine	191972	6	3274	1.0E-07	163579	9	2849	6.9E-07	193676	17	3795	3.0E-05	118877		2450	8.8E-06
	POSITIVE IONISATION	Cortisone Cotinine Cyprodinil Diazinon Estrone Fluoxetine Hydrocortisone Imidacloprid	151845 983674 509013 455855 38956 129336 840557 23078	23 4 8 3 15 5 12 8	6019 18717 7287 13720 648 2086 29101 2083	1.1E-02 1.8E-05 3.1E-07 1.1E-06 1.0E-05 1.8E-08 8.6E-04 3.6E-07	170331 843132 8515 9496 6198 4379 669610 20014	7 14 14 20 8 8 8 7	6167 11176 155 371 144 88 22996 1464	1.8E-05 2.5E-02 7.0E-06 4.1E-03 2.3E-07 3.8E-07 3.2E-03 8.5E-08	227886 4079 195296 169970 22432 71209 913228 24441	3 4 33 29 12 25 8 15	6822 28824 2879 5261 394 891 24658 2167	3.6E-08 2.1E-07 9.3E-04 1.0E-02 3.6E-06 2.0E-04 5.3E-05 1.3E-05	136684 283673 57770 42403 14510 27871 515564 16801		3879 5803 910 1492 272 380 14568 1192	1.2E-03 5.4E-04 9.4E-05 1.7E-01 1.7E-05 3.6E-04 6.9E-01 4.5E-06
		Ketoprofen	52925	7	240	1.8E-07	26807	3	105	1.4E-09	57919	13	216	5.3E-06	38584	8	147	2.2E-07
		Malathion	N/A	N/A	N/A	N/A	1560	6	89	6.2E-08	8526	12	777	2.7E-06	4522		250	6.5E-04
		Nicotine	20945	11	176	4.7E-05	22208	10	170	2.1E-05	N/A	N/A	N/A	N/A	5178		48	4.9E-01
		Paracetamol	15072	1	190	7.5E-13	12304	2	152	9.0E-11	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Paroxetine	317360	9	7914	1.3E-04	10556	8	260	1.7E-04	173573	28	3109	9.2E-03	60558		1202	1.8E-02
		Piperine	343721 4	10	22785	1.0E-06	173761	8	1459	3.6E-01	877977	23	5335	4.6E-04	476506		2943	8.2E-04
		Pravastatin	6312	14	44	8.7E-06	2302	13	29	5.0E-06	3409	31	24	6.5E-04	2179	5	24	1.6E-08
		Prochloraz	62878	8	11665	3.4E-07	1529	15	151	9.5E-06	30254	31	12263	6.2E-04	12973		2449	6.7E-04
		Progesterone	261837	10	4083	2.2E-04	7670	11	299	4.7E-04	1141	18	2637	1.9E-03	49446		1429	5.7E-03
		Propiconazole	269169	9	9695	6.8E-07	5766	6	235	6.6E-08	136439	27	6427	3.4E-04	56249		2284	1.0E-04

Table A4a -

 A4a (continued) Comparison of sample preparation methods to PPT in serum: median area, repeatability (area coefficient of variation CV), signal/noise ratio (S/N), and p-value of areas in four spiked vs. four non-spiked samples

										Appendices							
			2.5.															
					PPT			Phree			Strata X			Phree + Strata X
				Mean	Area CV			Mean	Area CV			Mean	Area CV			Mean	Area CV	
			Component	area	(%)	S/N	p-value	area	(%)	S/N	p-value	area	(%)	S/N	p-value	area	(%)	S/N	p-value
			Sertraline	39354		1215	1.1E-07	N/A	N/A	N/A	N/A	21629	24	570	1.7E-04	7395	31	203	7.0E-04
	POSITIVE IONIZATION	Solanidine Tebuconazole Testosterone Thiacloprid Thiamethoxam	286540 340486 244917 59923 13063	11 10	17609 6042 5802 5852 876	5.3E-07 1.5E-06 1.7E-06 1.9E-07 1.8E-07	10756 10130 47622 44756 14312	34 7 4 6 9	1024 225 1718 3203 757	1.0E-03 1.4E-07 6.6E-07 4.1E-08 7.0E-07	178210 180920 179614 60133 16908	33 21 11 15 15	45111 3197 4597 6213 1422	9.4E-04 8.5E-05 3.0E-06 9.4E-06 1.2E-05	67834 82258 111394 40721 12060	31 20 12 15 15	38493 1526 3170 3374 798	6.9E-04 5.2E-05 4.6E-06 9.3E-06 9.2E-06
			Venlafaxine	178703		14722	1.3E-08	125662	7	5814	1.3E-07	167243	15	16474	1.3E-05	96171	22	4650	9.6E-05
			2-Phenylphenol	291885 6		56373	1.3E-04	132120 4	7	29157	5.0E-01	293827 7	8	57962	2.4E-04	201447 1	4	44556	5.7E-03
		5-Hydroxyindole-3-acetic acid	14004	13	344	4.6E-06	N/A	N/A	N/A	N/A	24015	8	309	2.2E-07	31460	13	588	4.0E-06
	NEGATIVE IONISATION	Acetylsalicylic acid Arachidonic acid Diclofenac Dimethyldithiophosphate Ibuprofen Leukotriene B4 Leukotriene D4	550637 5 890980 9 16400 16609 N/A 165375 17303	14 32 N/A 10	54917 229988 41 1071 2783 N/A 5830 1150	6.2E-06 9.4E-06 2.5E-07 7.7E-04 N/A 2.7E-06 9.4E-07	376728 7 236642 1783 458 1402 30321 N/A	7 143 6 80 13 20 N/A	33621 721170 115 70 78 4797 N/A	2.9E-01 9.7E-01 5.6E-08 4.7E-02 2.1E-05 7.7E-01 N/A	602775 1 505016 1 13792 N/A N/A 181828 6511	6 29 19 N/A N/A 11 11	47136 367146 8 966 N/A N/A 5112 411	3.5E-05 7.4E-04 3.8E-05 N/A N/A 6.6E-06 1.5E-06	374647 4 793832 9428 N/A N/A 94865 N/A	7 54 11 N/A N/A 42 N/A	38863 218759 600 N/A N/A 4208 N/A	3.2E-01 9.6E-02 1.7E-06 N/A N/A 1.6E-02 N/A
			Prostaglandin D2	135409		3467	3.3E-04	90582	18	4818	8.3E-01	205159	6	6306	6.6E-06	118770	8	5289	3.8E-03
			Prostaglandin E2	187066		4590	2.3E-05	118566	10	5057	1.9E-03	243065	4	6027	3.3E-06	151570	7	5217	2.0E-04
			Prostaglandin F2a	242325		19900	4.6E-08	180703	9	137090	1.3E-06	263279	11	30284	2.9E-06	128622	67	26327	3.6E-02
			Prostaglandin J2	31280		2955	4.0E-06	27588	11	3450	2.7E-05	47768	10	4957	5.3E-06	31572	8	3622	5.5E-06
			Triclosan	1308	23	373	3.1E-04	N/A	N/A	N/A	N/A	388	12	208	1.2E-05	N/A	N/A	N/A	N/A
			Detection frequency	96	90	92	88											
			Median S/N	3437	1024	3260	2109											
			Semi-quantification															
		performance (% detected	94	93	72	55											
		compounds with CV < 20%)															
			Median p-value	1.1E-06	5.0E-06	1.9E-05	1.2E-04											
		Speed of implementation	4		2	1											
																			208

Table A4b -

 A4b Comparison to PPT (Plasma): Detection, repeatability, S/N and spiking significance of preselected preparation methods on individual compounds

Table A4b -

 A4b Comparison of sample preparation methods to PPT in plasma: median area, repeatability (area coefficient of variation CV),

		signal/noise ratio (S/N), and p-value of areas in four spiked vs. four non-spiked samples						
				PPT				Phree			Strata X			Phree + Strata X
			Mean	Area			Mean	Area			Mean	Area			Mean	Area	
		Component	area	CV (%)	S/N	p-value	area	CV (%)	S/N	p-value	area	CV (%)	S/N	p-value	area	CV (%)	S/N	p-value
		2-Aminobenzimidazole	119925	9	850	7.5E-07 110613	15	693	1.2E-05 198425	6	1302	4.8E-08	98928	18	751	3.1E-05
		4-Androstene-3,17-dione	107968	14	3136	8.0E-06	74565	8	1954	5.0E-07 146575	10	3123	1.2E-06	78070	14	1930	9.6E-06
		Acetochlor	8089	7	148	3.6E-04	6052	15	137	2.8E-03	10158	29	168	2.0E-03	4384	33	44	2.8E-02
		Aflatoxin B1	1794	13	120	3.8E-06	24293	12	1204	2.6E-06	39285	13	2184	5.3E-06	16947	39	809	2.0E-03
		Azoxystrobin	143400	18	12421	3.1E-05	94640	8	5809	2.1E-07 184050	12	16547	2.8E-06	94188	20	6337	5.7E-05
		Boscalid	66505	20	4268	6.0E-05	29388	4	1611	5.8E-09	77270	18	8719	3.2E-05	42040	15	3944	1.2E-05
		Carbamazepine	89048	11	2819	1.6E-06	75585	12	2200	3.3E-06 130975	6	3116	5.4E-08	79290	9	1722	4.2E-07
		Carbendazim	85070	10	1471	1.4E-06	77730	13	1279	5.1E-06 127850	1	1959	2.1E-12	76923	7	1400	1.8E-07
		Chlorpyrifos	7386	36	1569	1.4E-03	909	45	1154	4.5E-03	4077	25	466712 1.9E-04	N/A	N/A	N/A	N/A
		Clothianidin	4952	13	313	4.9E-06	4735	12	291	3.6E-06	8127	6	574	3.7E-08	5093	7	309	1.2E-07
		Codeine	125800	10	4097	1.1E-06 105925	13	3143	4.2E-06 159475	23	4504	1.4E-04	76145	18	2155	3.3E-05
	POSITIVE IONISATION	Cortisone Cotinine Cyprodinil Diazinon Estrone Fluoxetine Hydrocortisone Imidacloprid	69430 68790 330550 269900 23205 58570 380800 13615	12 8 19 8 19 22 12 10	4563 1959 5794 8686 739 1189 24229 1150	6.4E-02 102163 1.1E-06 62820 3.8E-05 36065 3.9E-07 81685 4.4E-05 10574 9.3E-05 21205 7.9E-01 394750 1.2E-06 14173	14 11 16 19 7 10 15 15	5165 1579 616 3302 249 372 20203 1039	1.2E-03 198250 9.9E-06 142175 1.6E-05 242600 8.7E-05 101185 2.8E-07 24033 1.0E-06 75745 5.5E-01 833225 1.2E-05 21910	23 12 38 20 19 26 32 3	7673 2803 3570 3722 493 957 25554 1865	8.5E-04 4.7E-06 2.0E-03 1.0E-04 4.6E-05 2.5E-04 1.4E-02 380450 97038 98930 70283 2550 15145 28685 1.1E-09 14698	13 26 37 146 15 50 12 10	2525 1526 1057 90 213 322 8139 1060	1.2E-03 4.9E-04 1.6E-03 2.6E-02 1.4E-05 7.2E-03 8.0E-01 1.1E-06
		Ketoprofen	29941	13	177	5.4E-04	28607	8	124	7.7E-05	46685	10	248	2.0E-04	30280	6	145	2.0E-05
		Malathion	N/A	N/A	N/A	N/A	4420	3	189	1.9E-09	8483	6	604	6.9E-08	1598	37	120	1.6E-03
		Nicotine	1070	46	69	7.6E-02	10020	17	419	3.6E-03	2160	120	243	4.5E-01	338	200	99	3.5E-02
		Paracetamol	10091	14	240	9.2E-06	11177	20	249	6.7E-05	63458	22	1065	9.5E-05	63138	14	1272	6.4E-06
		Paroxetine	139875	23	4656	1.3E-04	44115	12	1125	3.3E-06 176000	26	3735	2.4E-04	55408	55	1109	1.1E-02
		Piperine	359650	17	6420	5.1E-04 134550	4	2489	1.3E-01 341500	51	4991	7.0E-02 149503	34	2586	9.4E-01
		Pravastatin	7605	10	787	1.3E-06	5805	14	426	8.0E-06	5859	14	214	6.8E-06	3423	23	83	1.1E-04
		Prochloraz	36083	22	2944	1.0E-04	5510	9	445	7.4E-07	40598	23	17210	1.3E-04	16627	37	5059	1.8E-03
		Progesterone	158625	17	4786	2.2E-05	35210	9	1760	5.8E-07 140875	17	4001	2.6E-05	44060	32	1859	8.0E-04
		Propiconazole	172000	19	7222	4.5E-05	39855	5	1561	3.2E-08 190800	20	8702	6.1E-05	88903	22	3515	1.0E-04
		Sertraline	22738	21	625	8.1E-05	3498	7	81	1.3E-07	24053	22	615	8.8E-05	8318	41	194	2.9E-03

Table A4b -

 A4b (continued) Comparison of sample preparation methods to PPT: median area, repeatability (area coefficient of variation CV), signal/noise ratio (S/N), and p-value of areas in four spiked vs. four non-spiked samples

		2.6.															
					PPT			Phree			Strata X			Phree + Strata X
		Component	Mean area	Area CV (%)	S/N	p-value	Mean area	Area CV (%)	S/N	p-value	Mean area	Area CV (%)	S/N	p-value	Mean area	Area CV (%)	S/N	p-value
		Solanidine	250825	20	11228	6.2E-05	52193	10	3289	1.8E-06 191195	43	43909	3.4E-03	58968	39	3035	2.3E-03
	POSITIVE	Tebuconazole Testosterone Thiacloprid Thiamethoxam	215950 122550 35550 7122	18 16 12 12	5617 4621 2586 545	3.7E-05 1.6E-05 3.1E-06 3.3E-06	57930 76673 33135 8693	5 8 13 18	1379 2827 2243 616	1.5E-08 245375 2.3E-07 156500 4.6E-06 55410 3.0E-05 13413	22 11 5 8	4146 4553 5378 1153	1.0E-04 119800 2.3E-06 88753 9.6E-09 34043 1.9E-07 9197	24 8 9 11	2434 2856 2766 783	1.7E-04 3.9E-07 4.7E-07 1.9E-06
		Venlafaxine	105735	10	13456	1.3E-06	95028	13	4150	5.5E-06 160775	11	23569	1.4E-06	81265	15	3462	1.1E-05
		2-Phenylphenol	3867	20	101	7.1E-01	3626	8	97	6.5E-01	5014	24	127	7.7E-02	4914	7	135	6.5E-04
		5-Hydroxyindole-3-acetic acid	8032	12	183	1.2E-01	9522	18	195	8.7E-01	16040	29	298	3.1E-02	10653	7	211	9.4E-02
		Acetylsalicylic acid	N/A	N/A	N/A	N/A	4580	8	96	1.1E-06	13828	11	135	2.6E-06	5287	39	98	3.9E-03
	NEGATIVE IONISATION	Arachidonic acid Diclofenac Dimethyldithiophosphate Ibuprofen Leukotriene B4 Leukotriene D4 Prostaglandin D2	158775 0 18945 28970 8432 88910 29878 N/A	5 10 4 6 8 11 N/A	282107 5 1129 1381 761 45976 3633 N/A	2.2E-08 1.3E-06 4.0E-06 1.5E-05 2.4E-07 1.4E-06 N/A	61620 4799 10171 4377 23270 871 8626	12 10 22 15 8 53 17	188839 1 282 477 318 14083 225 632	4.6E-05 492975 7.7E-07 15553 5.1E-03 N/A 2.1E-02 13618 2.3E-07 49465 9.1E-03 4598 2.1E-05 16003	63 21 N/A 46 42 84 15	365127 5.1E-02 1210 7.1E-05 N/A N/A 918 1.4E-02 9744 3.0E-03 360 5.8E-02 906 1.2E-05	58495 9951 N/A 1968 6752 N/A 7597	57 11 N/A 25 83 N/A 46	19408 669 N/A 105 1463 N/A 448	1.3E-02 1.4E-06 N/A 1.8E-01 5.3E-02 N/A 4.7E-03
		Prostaglandin E2	28600	16	2535	1.7E-05	38355	13	3087	4.8E-06	61820	14	4114	6.2E-06	29988	41	1956	2.8E-03
		Prostaglandin F2a	105975	7	181698 1.3E-07	97193	14	90725	7.9E-06 144150	19	57909	4.7E-05	54948	59	15756	1.5E-02
		Prostaglandin J2	11630	9	2290	1.0E-06	9721	9	842	1.6E-06	17138	27	914	4.4E-04	8656	30	416	9.5E-04
		Triclosan	3583	4	485	7.9E-09	571	6	63	3.1E-07	1727	20	390	5.9E-05	N/A	N/A	N/A	N/A
		Detection frequency	94	100	98	92											
		Median S/N	2535	1082	2803	1190											
		Semi-quantification performance															
		(% detected compounds with CV	81	94	47	46											
		< 20%)															
		Median p-value	1.5E-05 5.0E-06 7.1E-05 8.8E-04											
		Speed of implementation	4	3	2	1											
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 A5a Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification

	Table A5a -Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated
	through manual annotation (i.e. without confidence indices-CI values)						
	Annotation	SMILES	CI m/z	Experimental	CI Rt RTI-predicted	Retip-predicted	logP-predicted	CI isotopic fit CI overall	Global CI
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 A5a (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

			CI Rt	CI isotopic
	Annotation	SMILES	CI m/z	fit CI overall
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 A5a (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

	Annotation	(+)	Theoretical fragments	(-)	MS/MS	(+)	Experimental fragments	(-)	Confidence level
	1,8-Epoxy-p-menthan-3-ol glucoside *	n.a.		57.0346, 75.0088, 85.0295, 113.0244, 153.1286		n.a.			57.0345, 75.0089, 85.0295, 113.0242, 153.1284	2b
	25-Hydroxyvitamin D3 26,23-lactol *	n.a.		411.2906			n.a.			411.2913	2b
	2-naphthylamine	91.0556, 115.0542, 117.0699, 127.0542	n.a.			91.0556, 115.0545, 117.0703, 127.0554	n.a.	2a
	3-[2-(5-Methylthiophen-2-yl)-2-oxoethoxy]benzonitrile *	109.9821, 111.9978, 123.9978, 140.0291	n.a.			109.9824, 111.9974, 123.9977, 140.0291	n.a.	2b
	3-hydroxybenzoic acid	n.a.		93.0343			n.a.			93.0347	2a
	4-chlorophenol	n.a.		91.019			n.a.			0	3
	4-hydroxy-2,5,6-trichloroisophthalonitrile	n.a.		146.9765, 174.9704, 181.9447, 209.9401	n.a.			146.9756, 174.9704, 181.9444, 209.9394	2a
	4-hydroxybenzoic acid	n.a.		93.0343			n.a.			93.0341	2a
	4-Hydroxyquinoline *	77.0415, 91.0555, 104.0494, 128.0476	n.a.			77.0395, 91.0549, 104.0493, 128.0491	n.a.	2a
	4-Nitrophenol *	n.a.		92.0260, 108.0229		n.a.			92.0260, 108.0235	2a
	4-Sulfamoylbenzoic acid *	77.0386, 105.0336		n.a.			77.0386, 105.0338			n.a.	2b
	Acetaminophen sulfate	n.a.		79.9570, 107.0374, 150.0556		n.a.			79.9572, 107.0372, 150.0560	2a
	Azelaic acid *	n.a.		57.0342, 97.0655, 123.0811, 125.0970		n.a.			57.0345, 97.0652, 123.0810, 125.0962	2a
	Benzophenone-4	n.a.		93.0346, 121.0295, 211.0400, 227.0714	n.a.			93.0346, 121.0295, 211.0398, 227.0713	2a
	Caffeic acid	n.a.		135.0452			n.a.			135.0449	2a
	Caffeine	83.0601, 110.0719, 123.0435, 138.0668	n.a.			83.0611, 110.0721, 123.0434, 138.0670	n.a.	1
	Carveol *	79.0544, 91.0543, 107.0856, 119.0856	n.a.			79.0547, 91.0545, 107.0858, 119.0858	n.a.	2a
	Chavicol sulfate	n.a.		105.0710, 133.0659		n.a.			105.0703, 133.0656	2b
	Coumaric acid	77.0382, 91.0530, 95.0488, 103.0533, 123.0423, 147.0425	93.0348, 119.0503		77.0391, 91.0547, 95.0498, 103.0542, 123.0447, 147.0449	93.0349, 119.0505	2a
	Cresol sulfate	n.a.		92.0279, 107.0493		n.a.			92.0268, 107.0499	1
	Diethylphthalate *	121.0284, 149.0233, 163.0390, 177.0546	n.a.			121.0288, 149.0234, 163.0389, 177.0549	n.a.	2a
	Diphenylsulfone *	77.0386, 95.0491, 125.0066, 141.0004	n.a.			77.0388, 95.0491, 125.0063, 141.0009	n.a.	2a
	Indole-3-carbinol *	77.0380, 103.0555, 130.0634	n.a.			77.0383, 103.0545, 130.0643	n.a.	2a
	Indole-3-carboxaldehyde *	n.a.		65.9998, 115.0422, 126.0354		n.a.			65.9999, 115.0432, 126.0354	2a
	Indolelactic acid *	n.a.		72.9947, 116.0486, 130.0661, 142.0633, 158.0625, 186.0553	n.a.			72.9937, 116.0491, 130.0677, 142.0642, 158.0615, 186.0558	2a
	Indoxyl sulfate	n.a.		79.9578, 132.0460		n.a.			79.9573, 132.0457	2a
	Isobutylparaben	95.049, 121.0282, 139.0388	n.a.			95.0498, 121.0293, 139.0397	n.a.	2a
	Isopropylparaben	n.a.		121.0297, 137.0239		n.a.			121.0297, 137.0243	2a
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 A5a (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

	Annotation	(+)	Theoretical fragments	(-)	MS/MS	(+)	Experimental fragments	(-)	Confidence level
	Jasmonic acid *	105.0697, 133.1013, 151.1121, 165.1263, 193.1225	n.a.			105.0706, 133.1019, 151.1107, 165.1275, 193.1230	n.a.	2a
	Loliolid *	79.0529, 91.0544, 105.0690, 117.0708, 133.1020, 161.0972, 179.1078	n.a.			79.0540, 91.0548, 105.0703, 117.0698, 133.1020, 161.0967, 179.1088	n.a.	2a
	L-Phenylalanine	77.0381, 79.0538, 91.0539, 103.0540, 120.0806	n.a.			77.0387, 79.0548, 91.0546, 103.0542, 120.0808	n.a.	2a
	Naphthalene-2-sulfonic acid *	n.a.		79.9576, 115.0549, 143.0503		n.a.			79.9574, 115.0553, 143.0503	2a
	Octaethylene glycol	89.0603, 133.0864, 177.1127	n.a.			89.0601, 133.0867, 177.1126	n.a.	2b
	Paraxanthine	n.a.		122.0365, 164.0341		n.a.			122.0357, 164.0340	2a
	PEG18	89.0597, 133.0860, 177.1122	n.a.			89.0603, 133.0865, 177.1131	n.a.	2b
	Piperine	115.0553, 135.0446, 143.0495, 171.0453, 201.0548	n.a.			115.0554, 135.0448, 143.0502, 171.0437, 201.0557	n.a.	1
	Propylparaben sulfate	n.a.		121.0297, 137.0239, 179.0716	n.a.			121.0295, 137.0246, 179.0714	2b
	Stachydrine (Proline betaine) *	58.0650, 72.0805, 84.0810, 98.0962	n.a.			58.0656, 72.0809, 84.0809, 98.0962	n.a.	2a
	Thymol *	81.0705, 93.0704, 107.0859, 123.0789, 133.1013	n.a.			81.0706, 93.0705, 107.0867, 123.0801, 133.1020	n.a.	2a
	Triclosan sulfate	n.a.		n.a.			n.a.			n.a.	1
	Tridecalactone *	83.0850, 95.0871, 121.1006, 135.1164, 177.1632	n.a.			83.0858, 95.0859, 121.1016, 135.1173, 177.1642	n.a.	2a
	Triethylphosphate	127.0158, 155.0470		n.a.			127.0154, 155.0467		n.a.	2a
	Tris(2-butoxyethyl)phosphate	101.0962, 199.0731, 299.1621, 399.2511	n.a.			101.0973, 199.0733, 299.1633, 399.2499	n.a.	2a
	Tryptophan *	n.a.		74.0234, 116.0494, 142.0652		n.a.			74.0248, 116.0504, 142.0666	2a
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 A5a (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

									Internal standard-corrected areas in sample prepared with Phree							
	Annotation						(+)											(-)					
		Blank	Mean 1	Mean 2	Mean 3	Mean 4	Mean 5	Mean 6	Mean 7	Mean 8	Mean 9	Mean 10	Blank	Mean 1	Mean 2	Mean 3	Mean 4	Mean 5	Mean 6	Mean 7	Mean 8	Mean 9	Mean 10
	1,8-Epoxy-p-menthan-3-ol glucoside *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.01	0.07	0.05	0.11	0.01	0.02	0.10	0.01	0.02	0.02
	25-Hydroxyvitamin D3 26,23-lactol *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	3.09	0.79	0.03	1.77	1.37	0.85	0.89	2.36	0.60	1.72
	2-naphthylamine	n.a.	39.35	42.97	192.35	36.83	75.28	118.40	162.66	52.57	107.24	38.49	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	3-[2-(5-Methylthiophen-																						
	2-yl)-2-oxoethoxy]benzonitrile	0.03	0.38	0.93	1.83	0.07	0.26	0.49	0.68	0.36	0.73	0.34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	*																						
	3-hydroxybenzoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
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 A5a (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

									Internal standard-corrected areas in sample prepared with Phree							
	Annotation						(+)											(-)					
		Blank	Mean 1	Mean 2	Mean 3	Mean 4	Mean 5	Mean 6	Mean 7	Mean 8	Mean 9	Mean 10	Blank	Mean 1	Mean 2	Mean 3	Mean 4	Mean 5	Mean 6	Mean 7	Mean 8	Mean 9	Mean 10
	Indole-3-carbinol *	0.07	8.20	8.39	8.61	11.57	9.42	10.57	11.28	17.46	19.52	12.94	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Indole-3-carboxaldehyde *	n.a.	2.49	3.26	3.38	3.67	1.29	4.35	3.68	2.60	4.52	3.34	0.11	5.32	4.66	4.96	45.24	9.00	4.32	6.15	9.28	2.96	17.84
	Indolelactic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	3.72	5.69	0.22	21.65	0.51	2.65	3.97	4.63	2.23	7.49
	Indoxyl sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	16.46	44.92	2.10	147.34	2.21	6.99	18.07	18.74	12.11	48.62
	Isobutylparaben	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Isopropylparaben	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.04	21.93	28.23	13.93	96.32	3.53	22.81	24.36	13.93	12.49	15.11
	Jasmonic acid *	n.a.	0.27	0.86	1.46	0.11	0.28	0.38	0.72	0.23	0.60	0.25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Loliolid *	n.a.	0.52	1.65	2.83	0.31	0.55	0.68	1.41	0.39	1.09	0.46	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	L-Phenylalanine	0.17	112.35	69.57	26.31	155.89	123.38	77.64	57.34	49.87	44.91	89.60	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Naphthalene-2-sulfonic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.36	1.42	0.98	0.47	0.72	1.23	0.14	1.00	0.19	0.31
	Octaethylene glycol	1.21	12.52	12.82	15.29	10.89	12.08	22.38	26.47	10.86	23.02	7.23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Paraxanthine	0.26	62.39	29.70	25.64	63.17	45.42	55.06	49.87	31.55	44.95	2.92	n.a.	0.94	0.20	0.07	1.00	0.47	0.19	0.22	0.71	0.28	1.01
	PEG18	n.a.	0.67	1.26	0.65	0.71	0.93	0.68	0.91	0.92	1.39	1.04	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Piperine	n.a.	n.a.	0.12	0.18	0.22	0.02	1.77	0.14	2.02	0.08	0.09	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Propylparaben sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.51	1.50	0.33	n.a.	0.15	0.98	0.59	0.30	0.38	0.36
	Stachydrine (Proline betaine) *	1.10	1.43	0.12	0.24	0.31	n.a.	19.25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Thymol *	n.a.	0.24	0.75	1.34	0.13	0.26	0.38	0.66	0.21	0.48	0.23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Triclosan sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.28	n.a.	n.a.	n.a.	0.93	0.22	3.23
	Tridecalactone *	n.a.	0.41	2.86	6.01	0.51	0.79	1.34	2.53	0.74	2.02	0.81	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Triethylphosphate	0.03	n.a.	0.08	0.28	0.02	0.03	0.19	0.12	0.09	0.09	0.04	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Tris(2-butoxyethyl) phosphate	1.36	n.a.	0.88	5.52	n.a.	15.69	265.09	0.30	n.a.	0.62	0.26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Tryptophan *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.12	70.10	59.35	9.81	248.85	22.85	47.38	69.01	105.63	46.94	131.19

Table A5a -

 A5a (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

									Internal standard-corrected areas in sample prepared with PPT							
	Annotation						(+)											(-)					
		Blank	Mean 1	Mean 2	Mean 3	Mean 4	Mean 5	Mean 6	Mean 7	Mean 8	Mean 9	Mean 10	Blank	Mean 1	Mean 2	Mean 3	Mean 4	Mean 5	Mean 6	Mean 7	Mean 8	Mean 9	Mean 10
	1,8-Epoxy-p-menthan-3-ol glucoside *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.06	2.81	0.90	2.54	5.70	2.10	0.47	0.08	0.15	2.46
	25-Hydroxyvitamin D3 26,23-lactol *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	5.86	5.27	2.96	5.34	7.53	5.51	5.51	5.57	6.16	6.39
	2-naphthylamine	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	3-[2-(5-Methylthiophen-																						
	2-yl)-2-oxoethoxy]benzonitrile	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	*																						
	3-hydroxybenzoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4-chlorophenol	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	4-hydroxy-2,5,6-																						
	trichloroisophthalonitril	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	e																						
	4-hydroxybenzoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4-Hydroxyquinoline *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	4-Nitrophenol *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.34	0.48	n.a.	n.a.	0.10	n.a.	0.09	n.a.	0.25	n.a.	0.01
	4-Sulfamoylbenzoic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Acetaminophen sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.93	2.75	0.36	3.95	0.12	0.89	0.15	0.28	0.10
	Azelaic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	57.47	25.64	13.45	21.42	17.28	26.65	20.48	44.99	13.32	15.89
	Benzophenone-4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.56	0.01	n.a.	4.28	0.04	0.02	0.01	0.10	0.02
	Caffeic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.67	1.20	0.28	0.31	2.03	0.60	0.55	2.09	1.15	1.72
	Caffeine	n.a.	6.61	7.85	5.85	8.27	7.28	7.57	7.09	8.70	7.84	0.12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Carveol *	n.a.	0.09	0.25	0.50	0.08	0.08	0.24	0.23	0.25	0.39	0.17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Chavicol sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.15	2.73	0.51	7.02	410.7	4.54	0.55	0.70	0.34	1.25
	Coumaric acid	n.a.	10.88	8.98	5.03	20.11	14.51	9.61	15.98	23.79	17.04	18.80	n.a.	3.59	1.25	0.46	2.76	1.60	1.97	1.69	1.81	1.71	2.23
	Cresol sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.17	790.9	1142	626.1	1030	1769	742.9	1092	1118	1647	1916
	Diethylphthalate *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Diphenylsulfone *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

Table A5a -

 A5a (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

									Internal standard-corrected areas in sample prepared with PPT							
	Annotation						(+)											(-)					
		Blank	Mean 1	Mean 2	Mean 3	Mean 4	Mean 5	Mean 6	Mean 7	Mean 8	Mean 9	Mean 10	Blank	Mean 1	Mean 2	Mean 3	Mean 4	Mean 5	Mean 6	Mean 7	Mean 8	Mean 9	Mean 10
	Indole-3-carbinol *	n.a.	11.08	15.47	12.99	21.96	53.80	11.32	14.52	22.29	20.23	17.86	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Indole-3-carboxaldehyde *	n.a.	0.44	0.55	0.40	0.13	0.19	0.15	0.85	0.14	0.69	0.14	n.a.	3.77	2.09	1.34	2.27	2.10	1.97	3.73	4.01	2.56	2.78
	Indolelactic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	27.90	16.67	8.51	25.86	22.12	23.99	29.87	24.45	29.72	32.02
	Indoxyl sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	86.98	120.3	88.92	192.6	154.4	136.8	175.5	137.1	170.0	485.9
	Isobutylparaben	n.a.	0.37	0.17	0.10	0.21	0.25	0.15	0.36	0.24	0.19	0.29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Isopropylparaben	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	66.74	127.2	35.56	299.3	11092 219.6	76.19	42.08	71.63	98.71
	Jasmonic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Loliolid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	L-Phenylalanine	0.03	111.9	55.02	26.00	119.8	101.1	55.75	80.34	61.79	58.81	73.69	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Naphthalene-2-sulfonic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	51.15	1.92	1.36	2.41	2.05	2.01	1.90	1.60	1.71	1.31
	Octaethylene glycol	0.91	13.81	5.61	5.56	4.26	3.98	7.28	23.53	0.34	6.55	3.63	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Paraxanthine	0.01	51.29	33.38	65.39	55.58	46.73	48.69	67.72	12.28	66.33	11.07	n.a.	1.92	3.72	1.27	11.05	2.89	4.44	1.31	3.48	3.93	0.82
	PEG18	n.a.	0.39	0.75	0.12	0.53	0.59	0.54	0.74	0.38	0.44	0.45	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Piperine	n.a.	n.a.	0.12	0.13	0.20	0.02	1.91	0.16	1.10	0.11	0.11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Propylparaben sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2.81	3.55	1.08	n.a.	438.8	5.71	1.65	0.74	1.07	1.77
	Stachydrine (Proline betaine) *	0.21	35.27	3.37	3.72	10.37	0.04	85.90	0.45	12.21	37.08	1.91	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Thymol *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Triclosan sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Tridecalactone *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Triethylphosphate	0.04	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Tris(2-butoxyethyl) phosphate	0.59	n.a.	n.a.	n.a.	n.a.	0.02	n.a.	n.a.	0.04	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Tryptophan *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	467.0	341.9	205.5	411.2	559.2	343.3	479.5	504.8	481.0	519.9

Table A5a -

 A5a (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

											Fold changes (Area Phree / Area PPT)									
	Annotation						(+)											(-)					
		Blank	Mean 1	Mean 2	Mean 3	Mean 4	Mean 5	Mean 6	Mean 7	Mean 8	Mean 9	Mean 10	Blank	Mean 1	Mean 2	Mean 3	Mean 4	Mean 5	Mean 6	Mean 7	Mean 8	Mean 9	Mean 10
	1,8-Epoxy-p-menthan-3-ol glucoside *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	7.9	0.2	Inf	0.1	Inf	0.1	1.4	2.7	6.0	0.0
	25-Hydroxyvitamin D3 26,23-lactol *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2.4	1.0	0.1	1.0	1.3	1.0	1.0	5.7	0.8	1.2
	2-naphthylamine	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	3-[2-(5-Methylthiophen-																						
	2-yl)-2-oxoethoxy]benzonitrile	n.a.	5.4	5.6	44.2	8.6	2.9	3.6	4.9	11.4	9.1	8.5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	*																						
	3-hydroxybenzoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	4-chlorophenol	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.7	2.5	n.a.	n.a.	156.1	3.2	5.8	65.0	n.a.	19.3	73.2
	4-hydroxy-2,5,6-																						
	trichloroisophthalonitril	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Inf	n.a.	n.a.	n.a.	Inf	n.a.	n.a.	n.a.	n.a.
	e																						
	4-hydroxybenzoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2.6	2.7	20.5	0.8	0.0	0.8	2.4	6.6	2.6	0.6
	4-Hydroxyquinoline *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	15.6	2.0	23.1	14.4	6.5	31.1	36.0	11.3	27.9	19.7
	4-Nitrophenol *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	4-Sulfamoylbenzoic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Acetaminophen sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Azelaic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.8	Inf	6.9	0.2	Inf	1.4	Inf	5.9	Inf
	Benzophenone-4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Caffeic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Caffeine	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Inf	Inf	n.a.	Inf	Inf	Inf	Inf	2.7	Inf
	Carveol *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf
	Chavicol sulfate	n.a.	3.1	2.8	6.0	7.4	3.3	1.8	2.8	3.8	2.0	Inf	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Coumaric acid	n.a.	n.a.	40.3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Cresol sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	10.0	0.4	3.8	0.8	0.0	0.1	1.9	4.3	4.1	0.9
	Diethylphthalate *	n.a.	3.1	4.6	31.7	9.9	4.8	5.8	4.8	4.9	2.3	2.8	n.a.	1.1	6.2	1.3	2.8	0.6	1.3	2.4	6.8	1.7	2.8
	Diphenylsulfone *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	11.9	1.1	2.1	0.2	3.4	0.3	1.0	1.4	3.8	0.8	1.0
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 A5a (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

	2.7.																						
											Fold changes (Area Phree / Area PPT)									
	Annotation						(+)											(-)					
		Blank	Mean 1	Mean 2	Mean 3	Mean 4	Mean 5	Mean 6	Mean 7	Mean 8	Mean 9	Mean 10	Blank	Mean 1	Mean 2	Mean 3	Mean 4	Mean 5	Mean 6	Mean 7	Mean 8	Mean 9	Mean 10
	Indole-3-carbinol *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Indole-3-carboxaldehyde *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Indolelactic acid *	n.a.	2.3	1.7	5.5	4.7	0.9	2.6	3.1	3.7	2.7	2.6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Indoxyl sulfate	n.a.	18.1	19.6	70.5	261.1	35.7	81.8	17.3	90.0	18.9	88.5	n.a.	6.0	14.3	3.1	56.7	2.6	13.7	10.1	30.7	8.1	27.2
	Isobutylparaben	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.6	2.4	0.3	2.4	0.2	0.7	0.9	2.6	0.6	1.0
	Isopropylparaben	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.8	2.6	0.3	2.2	0.1	0.3	0.7	1.8	0.6	0.4
	Jasmonic acid *	n.a.	Inf	Inf	36.8	Inf	Inf	Inf	Inf	Inf	Inf	Inf	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Loliolid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.5	1.5	4.3	0.9	0.0	0.7	2.0	4.5	1.3	0.7
	L-Phenylalanine	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Naphthalene-2-sulfonic acid *	2.6	0.7	4.2	22.1	5.7	1.4	5.5	2.9	3.9	2.2	4.5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Octaethylene glycol	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	18.5	Inf	Inf	Inf	0.2	Inf	42.4	Inf	Inf	Inf	Inf
	Paraxanthine	0.6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	37.1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	PEG18	8.9	3.8	2.9	3.3	10.3	5.0	3.2	2.9	12.4	1.9	0.6	n.a.	2.2	0.4	0.6	0.3	Inf	0.3	1.1	2.8	0.6	5.4
	Piperine	n.a.	n.a.	3.1	11.9	23.0	5.7	2.6	5.7	8.7	2.2	2.1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Propylparaben sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.8	3.0	3.4	4.2	0.0	1.1	2.3	5.4	2.8	0.9
	Stachydrine (Proline betaine) *	2.5	18.6	n.a.	n.a.	155.8	n.a.	0.6	n.a.	Inf	Inf	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Thymol *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Triclosan sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.4	n.a.	n.a.
	Tridecalactone *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Triethylphosphate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Tris(2-butoxyethyl) phosphate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Tryptophan *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.7	1.2	0.5	1.8	0.3	0.9	0.9	2.8	0.8	1.1
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Table A5b -

 A5b Application to cohort samples (Plasma -Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

	Annotation	SMILES	CI m/z		Experimental	RTI-predicted	CI Rt	Retip-predicted	logP-predicted	CI isotopic fit CI overall	Global CI
			(+)	(-)	(+)	(-)	(+)	(-)		(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
	2-Hydroxybenzoic Acid	OC(=O)c1ccccc1O	n.a.	1.00	n.a.	n.a.	n.a.	0.89		n.a.	n.a.	n.a.	0.23	n.a.	n.a.	n.a.	G2_0.94
	2-Methoxyacetophenone	COCC(=O)c1ccccc1	0.95	n.a.	n.a.	n.a.	1.00	n.a.		0.90	n.a.	0.99	n.a.	0.85	n.a.	G3_0.93	n.a.
	2-naphthylamine	Nc1ccc2ccccc2c1	0.94	n.a.	n.a.	n.a.	0.00	n.a.		n.a.	n.a.	n.a.	n.a.	0.75	n.a.	G3_0.56	n.a.
	3,4,5-trimethoxycinnamic acid	COc1cc(C=CC(O)=O)cc(OC)c1O C	0.77	n.a.	n.a.	n.a.	0.93	n.a.		0.47	n.a.	0.99	n.a.	0.85	n.a.	G3_0.85	n.a.
	3-hydroxybenzoic acid	OC(=O)c1cccc(O)c1	n.a.	1.00	n.a.	n.a.	n.a.	0.42		n.a.	n.a.	n.a.	0.39	n.a.	n.a.	n.a.	G2_0.7
	4-hydroxy-2,5,6-trichloroisophthalonitrile	Oc1c(Cl)c(Cl)c(C#N)c(Cl)c1C#N	n.a.	0.98	n.a.	n.a.	n.a.	n.a.		n.a.	0.44	n.a.	0.46	n.a.	0.99	n.a.	G3_0.8
	4-hydroxybenzoic acid	OC(=O)c1ccc(O)cc1	n.a.	0.95	n.a.	n.a.	n.a.	0.64		n.a.	0.69	n.a.	0.53	n.a.	n.a.	n.a.	G2_0.8
	Acetaminophen glucuronide	CC(=O)NC1=CC=C(C=C1)OC2C( C(C(C(O2)C(=O)O)O)O)O	0.92	0.85	0.92	0.81	0.92	0.94		0.92	0.94	n.a.	n.a.	0.73	n.a.	G3_0.86 G2_0.83
	Azelaic acid *	C(CCCC(=O)O)CCCC(=O)O	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Bourbonal	CCOc1cc(C=O)ccc1O	0.98	n.a.	n.a.	n.a.	0.31	n.a.		n.a.	n.a.	0.08	n.a.	0.69	n.a.	G3_0.66	n.a.
	Bupivacaine	CCCCN1CCCCC1C(=O)Nc2c(C)cc cc2C	0.79	n.a.	0.96	n.a.	0.43	n.a.		0.29	n.a.	n.a.	n.a.	0.79	n.a.	G3_0.85	n.a.
	Caffeine	Cn1cnc2N(C)C(=O)N(C)C(=O)c1 2	0.73	n.a.	0.96	n.a.	0.91	n.a.		0.63	n.a.	0.80	n.a.	0.81	n.a.	G3_0.83	n.a.
	Carveol	CC(=C)C1CC=C(C)C(O)C1	0.88	n.a.	n.a.	n.a.	0.52	n.a.		n.a.	n.a.	0.07	n.a.	n.a.	n.a.	G2_0.7	n.a.
	Chavicol sulfate	C=CCC1=CC=C(C=C1)OS(=O)(=O )O	n.a.	0.78	n.a.	0.90	n.a.	0.36		n.a.	0.57	n.a.	0.31	n.a.	n.a.	n.a.	G2_0.84
	Cotinine	CN1C(CCC1=O)c2cccnc2	0.95	0.95	0.89	0.66	0.97	0.93		0.81	0.89	0.99	0.97	0.64	n.a.	G3_0.83 G2_0.81
	Cresol sulfate	CC1=CC=CC=C1OS(=O)(=O)O	n.a.	0.74	n.a.	0.93	n.a.	0.95		n.a.	0.59	n.a.	0.74	n.a.	0.82	n.a.	G3_0.83
	Curcumenol *	CC1CCC2C13CC(=C(C)C)C(O3)(C =C2C)O	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Diazepam	CN1C(=O)CN=C(c2ccccc2)c3cc( Cl)ccc13	0.70		n.a.	n.a.	0.99	n.a.		0.54	n.a.	0.91	n.a.	0.95	n.a.	G3_0.88	n.a.
	Diethyl phthalate	CCOC(=O)c1ccccc1C(=O)OCC	0.88	0.92	n.a.	n.a.	0.94	0.96		0.62	0.63	0.80	0.81	0.81	n.a.	G3_0.88 G2_0.94
	Docosahexaenoic acid	CCCCCCCCCC=CC=CC=CC=CC=C C=CC(O)=O	0.96	0.76	1.00	1.00	0.79	0.80		0.93	0.94	0.35	0.35	0.92	n.a.	G3_0.96 G2_0.88
	Eicosapentaenoic acid	CCCCCCCCCC=CC=CC=CC=CC=C C(O)=O	n.a.	0.81	n.a.	n.a.	n.a.	0.77		n.a.	0.84	n.a.	0.46	n.a.	n.a.	n.a.	G2_0.79
	Ethyl paraben	CCOC(=O)c1ccc(O)cc1	n.a.	0.93	n.a.	1.00	n.a.	0.13		n.a.	0.01	n.a.	n.a.	n.a.	n.a.	n.a.	G2_0.96
	Ibuprofen	CC(C)Cc1ccc(cc1)C(C)C(O)=O	n.a.	0.91	n.a.	0.96	n.a.	n.a.		n.a.	0.59	n.a.	0.81	n.a.	n.a.	n.a.	G2_0.94
	Indole-3-carbinol *	C1=CC=C2C(=C1)C(=CN2)CO	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Indole-3-carboxaldehyde *	C1=CC=C2C(=C1)C(=CN2)C=O	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Indolelactic acid *	C1=CC=C2C(=C1)C(=CN2)CC(C( =O)O)O	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Indoxyl sulfate	C1=CC=C2C(=C1)C(=CN2)OS(=O )(=O)O	n.a.	0.73	n.a.	0.82	n.a.	n.a.		n.a.	n.a.	n.a.	0.50	n.a.	0.90	n.a.	G3_0.82

Table A5b -

 A5b (continued) Application to cohort samples (Plasma -Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

	Annotation	SMILES	CI m/z		Experimental	RTI-predicted	CI Rt	Retip-predicted	logP-predicted	CI isotopic fit CI overall	Global CI
			(+)	(-)	(+)	(-)	(+)	(-)		(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
	Nordazepam	Clc1ccc2NC(=O)CN=C(c3ccccc3) c2c1	0.89	0.83	n.a.	n.a.	0.90	0.87		0.47	0.45	0.89	0.87	0.86	0.72	G3_0.88 G3_0.81
	Octaethylene glycol	OCCOCCOCCOCCOCCOCCOCCO CCO	0.80	n.a.	n.a.	n.a.	n.a.	n.a.		0.78	n.a.	n.a.	n.a.	0.82	n.a.	G3_0.80	n.a.
	Oxazepam	OC1N=C(c2ccccc2)c3cc(Cl)ccc3 NC1=O	0.70	n.a.	1.00	n.a.	0.45	n.a.		0.29	n.a.	0.88	n.a.	n.a.	n.a.	G2_0.85	n.a.
	Paracetamol	CC(=O)Nc1ccc(O)cc1	0.77	1.00	0.78	0.62	0.90	0.89		0.80	0.80	0.93	0.93	n.a.	n.a.	G2_0.77 G2_0.81
	Paraxanthine	Cn1cnc2NC(=O)N(C)C(=O)c12	n.a.	0.93	n.a.	n.a.	n.a.	0.74		n.a.	0.76	n.a.	n.a.	n.a.	n.a.	n.a.	G2_0.83
	Pentachlorophenol	Oc1c(Cl)c(Cl)c(Cl)c(Cl)c1Cl	n.a.	0.73	n.a.	n.a.	n.a.	0.86		n.a.	0.22	n.a.	0.94	n.a.	0.92	n.a.	G3_0.83
	Phenol sulfate	C1=CC=C(C=C1)OS(=O)(=O)O	n.a.	0.89	n.a.	0.85	n.a.	n.a.		n.a.	0.79	n.a.	0.78	n.a.	0.78	n.a.	G3_0.84
	Piperine	O=C(/C=C/C=C/c1ccc2OCOc2c1 )N3CCCCC3	0.93	n.a.	0.96	n.a.	0.26	n.a.		0.71	n.a.	0.64	n.a.	0.91	n.a.	G3_0.93	n.a.
	Propylparaben sulfate	CCCOC(=O)C1=CC=C(C=C1)OS(= O)(=O)O	n.a.	0.98	n.a.	0.94	n.a.	0.54		n.a.	0.59	n.a.	0.20	n.a.	n.a.	n.a.	G2_0.96
	Theobromine	Cn1cnc2N(C)C(=O)NC(=O)c12	0.79	n.a.	n.a.	n.a.	0.65	n.a.		0.49	n.a.	n.a.	n.a.	0.89	n.a.	G3_0.78	n.a.
	Trans-3-hydroxycotinine	CN1C(CC(O)C1=O)c2cccnc2	0.90	n.a.	n.a.	n.a.	n.a.	n.a.		0.84	n.a.	0.98	n.a.	n.a.	n.a.	G2_0.87	n.a.
		C1=CC(=C(C=C1Cl)OC2C(C(C(C(														
	Triclosan glucuronide	O2)C(=O)O)O)O)O)OC3=C(C=C(	n.a.	0.86	n.a.	0.99	n.a.	0.51		n.a.	n.a.	n.a.	0.89	n.a.	0.88	n.a.	G3_0.91
		C=C3)Cl)Cl														
	Triclosan sulfate	C1=CC(=C(C=C1Cl)OS(=O)(=O)O )OC2=C(C=C(C=C2)Cl)Cl	n.a.	0.84	n.a.	0.96	n.a.	n.a.		n.a.	n.a.	n.a.	0.88	n.a.	0.96	n.a.	G3_0.92
	Tryptophan	N[C@@H](Cc1c[nH]c2ccccc12) C(O)=O	0.90	0.78	0.65	0.66	n.a.	n.a.		0.23	0.23	n.a.	n.a.	0.92	n.a.	G3_0.82 G2_0.72
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 A5b (continued) Application to cohort samples (Plasma -Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

	Annotation	(+)	Theoretical fragments	(-)	MS/MS	(+)	Experimental fragments	(-)	Confidence level
	2-Hydroxybenzoic Acid	n.a.		93.0343		n.a.			93.0345	2a
	2-Methoxyacetophenone	63.0229, 79.0542, 105.0335, 119.0491, 133.0648	n.a.		63.0226, 79.0537, 105.0333, 119.0491, 133.0647	n.a.	2b
	2-naphthylamine	91.0556, 115.0542, 117.0699, 127.0542	n.a.		91.0547, 115.0541, 117.0690, 127.0542	n.a.	2a
	3,4,5-trimethoxycinnamic acid	107.0491, 137.0597, 149.0597, 161.0597, 177.0546, 193.0859, 221.0808	n.a.		107.0490, 137.0604, 149.0601, 161.0602, 177.0549, 193.0862, 221.0810	n.a.	2a
	3-hydroxybenzoic acid	n.a.		93.0343		n.a.			93.0345	2a
	4-hydroxy-2,5,6-trichloroisophthalonitrile	n.a.		146.9765, 174.9704, 181.9447, 209.9401	n.a.			146.9769, 174.9708, 181.9449, 209.9407	2a
	4-hydroxybenzoic acid	n.a.		93.0343		n.a.			93.0347	2a
	Acetaminophen glucuronide	110.0607, 134.0606, 152.0712		175.0252, 150.0561, 113.0252	110.0607, 134.0606, 152.0712		175.0248, 150.0561, 113.0245	1
	Azelaic acid *	n.a.		97.0655, 123.0811, 125.0970	n.a.			97.0660, 123.0816, 125.0972	2a
	Bourbonal	121.0290, 139.0395, 149.0603		n.a.		121.0287, 139.0395, 149.0601		n.a.	2a
	Bupivacaine	140.1445		n.a.		140.1434			n.a.	1
	Caffeine	83.0609, 110.0708, 123.0417, 138.0659, 195.0881	n.a.		83.0602, 110.0707, 123.0421, 138.0653, 195.0871	n.a.	1
	Carveol	107.0855, 119.0855, 135.1168		n.a.		107.0857, 119.0857, 135.1172		n.a.	2a
	Chavicol sulfate	n.a.		105.0710, 133.0659		n.a.			105.0710, 133.0656	2b
	Cotinine	106.0633, 118.0646, 120.0794		n.a.		106.0642, 118.0653, 120.0801		n.a.	1
	Cresol sulfate	n.a.		92.0279, 107.0493		n.a.			92.0270, 107.0501	2a
	Curcumenol *	93.0698, 105.0698, 119.0855, 133.1010, 175.1116	n.a.		93.0700, 105.0700, 119.0856, 133.1016, 175.1124	n.a.	2a
	Diazepam	154.0408, 193.0879, 222.1146, 228.0569, 257.0837	n.a.		154.0418, 193.0885, 222.1154, 228.0579, 257.0847	n.a.	2a
	Diethyl phthalate	93.0326, 111.0437, 121.0284, 149.0233, 177.0546	71.0502, 121.0296, 134.0374, 149.0972, 177.0921	93.0334, 111.0444, 121.0282, 149.0245, 177.0553	71.0501, 121.0292, 134.0365, 149.0970, 177.0917	2a
	Docosahexaenoic acid	119.0848, 131.0847, 145.0989, 161.1313, 175.1434, 269.2256, 293.2272, 311.2344	229.1958, 283.2446		119.0854, 131.0850, 145.0999, 161.1323, 175.1444, 269.2267, 293.2272, 311.2354	229.1962, 283.2437	1
	Eicosapentaenoic acid	n.a.		203.1802, 229.1957, 257.2274	n.a.			203.1811, 229.1967, 257.2276	2a
	Ethyl paraben	n.a.		92.0272, 137.0244		n.a.			92.0269, 137.0242	2a
	Ibuprofen	n.a.		161.1332		n.a.			161.1334	1
	Indole-3-carbinol *	77.0380, 103.0555		n.a.		77.0383, 103.0547			n.a.	2a
	Indole-3-carboxaldehyde *	n.a.		115.0422, 126.0354		n.a.			115.0421, 126.0345	2a
	Indolelactic acid *	n.a.		72.9947, 116.0486, 130.0661, 142.0633, 158.0625, 186.0553	n.a.			72.9932, 116.0491, 130.0661, 142.0642, 158.0619, 186.0560	2a
	Indoxyl sulfate	n.a.		79.9578, 132.0460		n.a.			79.9572, 132.0452	2a
	Nordazepam	140.0252, 165.0201, 208.0986, 226.0406, 243.0677	241.0299		140.0261, 165.0207, 208.0997, 226.0416, 243.0686	241.0302	2a
	Octaethylene glycol	89.0603, 133.0864, 177.1127		n.a.		89.0601, 133.0861, 177.1128		n.a.	2b
	Oxazepam	231.0668, 241.0516, 269.0464		n.a.		231.0674, 241.0524, 269.0470		n.a.	2a
	Paracetamol	110.0608		107.0366		110.0602			107.0372	1
	Paraxanthine	n.a.		122.0365, 164.0341		n.a.			122.0362, 164.0341	2a
	Pentachlorophenol	n.a.				n.a.			n.a.	3
	Phenol sulfate	n.a.		79.9551, 93.0325		n.a.			79.9554, 93.0326	2a
	Piperine	115.0544, 135.0441, 143.0491, 171.0446, 201.0548	n.a.		115.0540, 135.0445, 143.0493, 171.0442, 201.0543	n.a.	1
	Propylparaben sulfate	n.a.		179.0715		n.a.			179.0714	2b
	Theobromine	108.0554, 110.0713, 122.0589, 138.0668, 163.0611	n.a.		108.0554, 110.0710, 122.0583, 138.0660, 163.0614	n.a.	2a
	Trans-3-hydroxycotinine	80.0493, 86.0606, 106.0676, 118.0674, 134.0602, 149.0714	n.a.		80.0495, 86.0600, 106.0666, 118.0664, 134.0601, 149.0709	n.a.	2a
	Triclosan glucuronide	n.a.		286.9448		n.a.			286.9452	1
	Triclosan sulfate	n.a.		286.9448		n.a.			286.9445	1
	Tryptophan	118.0650, 146.0596, 159.0912, 170.0596, 188.0700	116.0500, 142.0655, 159.0915	118.0646, 146.0592, 159.0915, 170.0599, 188.0702	116.0506, 142.0659, 159.0922	1
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 A5b (continued) Application to cohort samples (Plasma -Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

								Internal standard-corrected areas in sample prepared with Phree						
	Annotation					(+)									(-)				
		Blank	Mean 1 Mean 2 Mean 3 Mean 4 Mean 5 Mean 6 Mean 7 Mean 8 Blank	Mean 1 Mean 2 Mean 3 Mean 4 Mean 5 Mean 6 Mean 7 Mean 8
	2-Hydroxybenzoic Acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.03	0.04	0.05 n.a.	n.a.	0.04	3.65	0.10
	2-Methoxyacetophenone	n.a.	2.14	2.69	2.63	0.70	0.03	2.25	0.03	2.88 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	2-naphthylamine	n.a.	4.78	5.54	6.47	6.36	6.58	5.19	4.15	5.95 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	3,4,5-trimethoxycinnamic acid	n.a.	14.25	2.09	2.08	2.00	1.72	2.16	5.32	2.70 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	3-hydroxybenzoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.98	0.68	1.12	1.20	0.97	0.78	0.41	110.96	1.08
	4-hydroxy-2,5,6-																		
	trichloroisophthalonitrile	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.11	0.07	0.23	0.13	0.09	0.15	0.06	0.27
	4-hydroxybenzoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	3.35	2.28	1.84	8.02	5.72	2.78	4.09	2.30
	Acetaminophen glucuronide	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	8.93 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	180.77 n.a.
	Azelaic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	158.88 n.a.	n.a.	n.a.	9.87	6.09 n.a.	n.a.	n.a.
	Bourbonal	0.02	0.13	0.10	0.00	0.04	0.00 n.a.	n.a.	0.01 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Bupivacaine	0.08 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.82 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Caffeine	n.a.	5.63	5.99	0.47	5.05	5.51	5.96	1.45	6.18 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Carveol	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Chavicol sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	23.23	93.86	118.79 n.a.	n.a.	n.a.	98.85	2.56	142.35
	Cotinine	n.a.	0.00 n.a.	0.00	0.00	0.00 n.a.	0.00 n.a.	n.a.	0.00 n.a.	0.00	0.00	0.00 n.a.	0.00 n.a.
	Cresol sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	184.24	217.61	744.70	1230.8	64.53	189.51	408.03	254.03
	Curcumenol *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Diazepam	n.a.	46.41	25.50	0.01 n.a.	n.a.	30.29	33.26	26.80 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Diethyl phthalate	n.a.	17.93	23.91	7.14	5.51	7.69	18.57	9.06	25.28	0.02	0.62	0.76	0.28	0.87	0.37	0.71	0.30	0.86
	Docosahexaenoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	34.06	112.43	50.07	78.96	41.56	45.68	15.56	36.69
	Eicosapentaenoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	11.47	37.61	23.78	15.25	21.03	28.36	3.18	16.92
	Ethyl paraben	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.06	6.09	7.53	3.37	7.88	3.67	6.34	3.96	8.45
	Ibuprofen	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.31	0.71	1.21 n.a.	n.a.	n.a.
	Indole-3-carbinol *	n.a.	0.90	0.45	1.60	2.10	1.46	1.24	0.36	1.18 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Indole-3-carboxaldehyde *	n.a.	0.76	0.71	2.43	1.75	1.95	0.63	0.85	0.75 n.a.	4.63	4.96	12.30	10.86	11.27	4.12	5.66	5.23
	Indolelactic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	5.96	6.69	6.67	7.34	4.53	5.86	2.69	3.98
	Indoxyl sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	20.99	5.31	77.15	114.70	112.24	42.36	17.26	28.47
	Nordazepam	n.a.	1.33	2.61	0.00	0.00	0.00	1.77	0.00	1.90 n.a.	0.06	0.11 n.a.	n.a.	n.a.	0.10	0.00	0.07
	Octaethylene glycol	0.00	0.10	0.09	0.21	0.09	0.25	0.10	0.92	0.10 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Oxazepam	n.a.	0.00	0.00 n.a.	0.00 n.a.	0.00	0.00	0.00 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Paracetamol	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.77 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	71.53 n.a.
	Paraxanthine	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.01	26.86	35.32	0.99	15.27	14.11	28.57	0.84	36.76
	Pentachlorophenol	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Phenol sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	64.51	85.70	41.83	41.01	23.59	70.35	34.97	91.34
	Piperine	n.a.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Propylparaben sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Theobromine	n.a.	15.16	24.90	0.95	1.86	15.10	15.74	8.52	19.47 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Trans-3-hydroxycotinine	n.a.	n.a.	0.00	0.00	0.00	0.00 n.a.	0.00 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Triclosan glucuronide	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.54	0.56	0.01	0.01	0.04	0.53 n.a.	0.70
	Triclosan sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.00	0.00	0.00 n.a.	0.00	0.00 n.a.	0.00
	Tryptophan	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
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 A5b (continued) Application to cohort samples (Plasma -Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

								Internal standard-corrected areas in sample prepared with PPT						
	Annotation					(+)									(-)				
		Blank	Mean 1 Mean 2 Mean 3 Mean 4 Mean 5 Mean 6 Mean 7 Mean 8 Blank	Mean 1 Mean 2 Mean 3 Mean 4 Mean 5 Mean 6 Mean 7 Mean 8
	2-Hydroxybenzoic Acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.02	0.02	0.02 n.a.	n.a.	0.02	1.94	0.04
	2-Methoxyacetophenone	n.a.	2.11	3.11	2.62	0.75	0.04	2.39	0.03	3.46 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	2-naphthylamine	4.22	1.18	2.73	2.03	2.27	2.44	1.39	2.08	3.48 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	3,4,5-trimethoxycinnamic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	3-hydroxybenzoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.41	0.46	0.40	0.32	0.54	0.35	73.01	0.45
	4-hydroxy-2,5,6-																		
	trichloroisophthalonitrile	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.05	0.05	0.10	0.07	0.05	0.06	0.04	0.08
	4-hydroxybenzoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.32	1.53	0.63	6.81	3.08	1.17	1.06	1.70
	Acetaminophen glucuronide	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	34.19 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	489.91 n.a.
	Azelaic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	4.85	32.14	26.29	61.64	166.14	186.75	23.30	23.67	34.51
	Bourbonal	0.14	0.18	0.24	0.31	0.05	0.37 n.a.	n.a.	0.20 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Bupivacaine	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.16 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Caffeine	0.00	5.80	6.42	0.38	5.19	5.39	5.82	1.36	6.59 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Carveol	n.a.	0.02	0.03	0.01	0.01	0.01	0.03	0.02	0.03 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Chavicol sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	103.67	138.91	24.29	16.84	19.68	109.84	23.13	152.04
	Cotinine	n.a.	0.00 n.a.	0.00	0.00	0.00 n.a.	0.00 n.a.	n.a.	0.00 n.a.	0.00	0.00	0.00 n.a.	0.00 n.a.
	Cresol sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	162.10	204.16	828.17	1455.9	78.15	162.02	324.58	230.76
	Curcumenol *	n.a.	0.40	0.50	0.36	0.28	0.29	0.50	0.74	0.79 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Diazepam	n.a.	41.36	32.66	0.02 n.a.	n.a.	33.30	31.73	34.52 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Diethyl phthalate	n.a.	14.14	12.42	0.23	1.50	0.89	13.29	2.51	16.69	0.08	0.63	0.48	0.16	0.31	0.31	0.20	0.19	0.81
	Docosahexaenoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	106.06	150.86	71.19	88.20	53.23	109.58	100.40	104.32
	Eicosapentaenoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.01	39.83	52.36	65.33	23.89	22.71	24.47	12.71	60.25
	Ethyl paraben	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.06	4.55	6.28	3.52	10.23	4.68	4.48	2.77	7.04
	Ibuprofen	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.20	0.07	3.70	1.40	2.13 n.a.	0.05	0.05
	Indole-3-carbinol *	n.a.	1.85	2.66	1.58	2.43	1.64	2.07	1.98	2.91 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Indole-3-carboxaldehyde *	n.a.	0.52	0.69	2.02	1.02	1.19	0.57	0.70	0.70 n.a.	2.76	3.81	12.97	5.75	8.54	3.00	3.52	4.20
	Indolelactic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	13.06	16.41	10.64	11.05	13.21	12.26	6.26	16.86
	Indoxyl sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.07	68.58	81.74	116.61	158.38	162.49	66.32	98.17	87.99
	Nordazepam	n.a.	2.35	3.65	0.00	0.01	0.00	2.81	0.00	4.13 n.a.	0.12	0.18 n.a.	n.a.	n.a.	0.16	0.00	0.20
	Octaethylene glycol	n.a.	0.08	0.07	0.04	0.06	0.24	0.06	0.81	0.08 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Oxazepam	n.a.	0.00	0.00 n.a.	0.00 n.a.	0.00	0.00	0.00 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Paracetamol	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	3.03 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	66.36 n.a.
	Paraxanthine	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.01	28.66	36.92	1.20	21.34	19.21	29.21	0.89	39.56
	Pentachlorophenol	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Phenol sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	56.51	82.32	45.92	48.15	27.34	63.58	31.69	85.30
	Piperine	n.a.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Propylparaben sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Theobromine	n.a.	11.72	15.05	0.62	1.24	11.71	12.16	7.75	17.26 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Trans-3-hydroxycotinine	n.a.	n.a.	0.00	0.00	0.00	0.00 n.a.	0.00 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Triclosan glucuronide	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.42	0.71	0.01	0.01	0.03	0.53 n.a.	0.71
	Triclosan sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.00	0.00	0.00 n.a.	0.00	0.00 n.a.	0.00
	Tryptophan	n.a.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 n.a.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table A5b -

 A5b (continued) Application to cohort samples (Plasma -Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds annotated through manual annotation (i.e. without confidence indices-CI values)

									Fold changes (Area Phree / Area PPT)							
	Annotation					(+)									(-)				
		Blank	Mean 1 Mean 2 Mean 3 Mean 4 Mean 5 Mean 6 Mean 7 Mean 8 Blank	Mean 1 Mean 2 Mean 3 Mean 4 Mean 5 Mean 6 Mean 7 Mean 8
	2-Hydroxybenzoic Acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2.2	1.7	2.8 n.a.	n.a.	2.1	1.9	2.7
	2-Methoxyacetophenone	n.a.	1.0	0.9	1.0	0.9	0.7	0.9	1.0	0.8 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	2-naphthylamine	n.a.	4.1	2.0	3.2	2.8	2.7	3.7	2.0	1.7 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	3,4,5-trimethoxycinnamic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	3-hydroxybenzoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.7	2.4	3.0	3.0	1.4	1.2	1.5	2.4
	4-hydroxy-2,5,6-																		
	trichloroisophthalonitrile	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2.0	1.4	2.2	1.9	1.9	2.4	1.6	3.3
	4-hydroxybenzoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2.5	1.5	2.9	1.2	1.9	2.4	3.9	1.3
	Acetaminophen glucuronide	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.3 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.4 n.a.
	Azelaic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	32.8 Inf	Inf	Inf	0.1	0.0 Inf	Inf	Inf
	Bourbonal	0.1	0.7	0.4	0.0	0.7	0.0 n.a.	n.a.	0.0 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Bupivacaine	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.7 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Caffeine	n.a.	1.0	0.9	1.2	1.0	1.0	1.0	1.1	0.9 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Carveol	n.a.	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Chavicol sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.9	0.9 Inf	Inf	Inf	0.9	0.1	0.9
	Cotinine	n.a.	0.7 n.a.	0.3	0.5	0.4 n.a.	1.0 n.a.	n.a.	0.4 n.a.	0.8	0.9	0.8 n.a.	0.4 n.a.
	Cresol sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.1	1.1	0.9	0.8	0.8	1.2	1.3	1.1
	Curcumenol *	n.a.	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Diazepam	n.a.	1.1	0.8	0.9 n.a.	n.a.	0.9	1.0	0.8 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Diethyl phthalate	n.a.	1.3	1.9	31.0	3.7	8.6	1.4	3.6	1.5	0.2	1.0	1.6	1.8	2.8	1.2	3.5	1.6	1.1
	Docosahexaenoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.3	0.7	0.7	0.9	0.8	0.4	0.2	0.4
	Eicosapentaenoic acid	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.3	0.7	0.4	0.6	0.9	1.2	0.3	0.3
	Ethyl paraben	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.0	1.3	1.2	1.0	0.8	0.8	1.4	1.4	1.2
	Ibuprofen	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Inf	Inf	0.4	0.5	0.6 n.a.	Inf	Inf
	Indole-3-carbinol *	n.a.	0.5	0.2	1.0	0.9	0.9	0.6	0.2	0.4 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Indole-3-carboxaldehyde *	n.a.	1.5	1.0	1.2	1.7	1.6	1.1	1.2	1.1 n.a.	1.7	1.3	0.9	1.9	1.3	1.4	1.6	1.2
	Indolelactic acid *	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.5	0.4	0.6	0.7	0.3	0.5	0.4	0.2
	Indoxyl sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.3	0.1	0.7	0.7	0.7	0.6	0.2	0.3
	Nordazepam	n.a.	0.6	0.7	0.9	0.2	0.2	0.6	0.7	0.5 n.a.	0.5	0.6 n.a.	n.a.	n.a.	0.6	1.3	0.4
	Octaethylene glycol	n.a.	1.2	1.3	5.4	1.7	1.1	1.7	1.1	1.2 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Oxazepam	n.a.	1.1	1.8 n.a.	15.5 n.a.	2.1	1.6	3.3 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Paracetamol	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.6 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.1 n.a.
	Paraxanthine	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.9	0.9	1.0	0.8	0.7	0.7	1.0	0.9	0.9
	Pentachlorophenol	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.3	0.3	0.3	0.3	0.6	0.2	0.3	0.2
	Phenol sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.1	1.0	0.9	0.9	0.9	1.1	1.1	1.1
	Piperine	n.a.	1.4	1.8	2.8	3.5	3.1	1.6	2.4	1.3 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Propylparaben sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.5	0.6	1.0	0.9	0.9	0.6	0.9	0.6
	Theobromine	n.a.	1.3	1.7	1.5	1.5	1.3	1.3	1.1	1.1 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Trans-3-hydroxycotinine	n.a.	n.a.	1346.6	8.4	7.7	7.4 n.a.	1.8 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Triclosan glucuronide	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.3	0.8	0.9	1.1	1.2	1.0 n.a.	1.0
	Triclosan sulfate	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	7.8	4.4	4.4 n.a.	4.5	3.5 n.a.	5.8
	Tryptophan	n.a.	0.3	0.7	0.7	0.8	0.6	0.5	0.8	0.9 n.a.	0.8	0.7	0.8	0.7	0.6	0.7	0.1	0.7

Table A1 -

 A1 Standard compounds form and suppliers

	Compound name	SMILES	Supplier	Form
	Arachidonic Acid	CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(O)=O	Bertin	Powder
	Leukotriene B4	CCCCCC=CCC(C=CC=CC=CC(CCCC(=O)O)O)O	Bertin	Powder
	Leukotriene D4	CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)NCC(=O)O)N	Bertin	Powder
	Prostaglandin D2	CCCCCC(C=CC1C(C(CC1=O)O)CC=CCCCC(=O)O)O	Bertin	Powder
	Prostaglandin E2	CCCCCC(C=CC1C(CC(=O)C1CC=CCCCC(=O)O)O)O	Bertin	Powder
	Prostaglandin F2a	CCCCCC(C=CC1C(CC(C1CC=CCCCC(=O)O)O)O)O	Bertin	Powder
	Acetochlor	CCC1=CC=CC(=C1N(COCC)C(=O)CCl)C	LGC	Powder
	Androstenedione	CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4=O)C	LGC	Powder
	Carbendazim	COC(=O)NC1=NC2=CC=CC=C2N1	LGC	Powder
	Clothianidin	CNC(=N[N+](=O)[O-])NCC1=CN=C(S1)Cl	LGC	Powder
	Cortisone	CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C	LGC	Powder
	Dimethyldithiophosphate	COP(=S)(OC)S	LGC	Powder
	Estrone	CC12CCC3C(C1CCC2=O)CCC4=C3C=CC(=C4)O	LGC	Powder
	Fluoxetine	CNCCC(C1=CC=CC=C1)OC2=CC=C(C=C2)C(F)(F)F	LGC	1.0 mg/mL in MeOH
	Hydrocortisone	CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)O	LGC	Powder
	Ibuprofen	CC(C)CC1=CC=C(C=C1)C(C)C(=O)O	LGC	Powder
	Paracetamol	CC(=O)NC1=CC=C(C=C1)O	LGC	Powder
	Paroxetine	C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4	LGC	1.0 mg/mL in MeOH
	Progesterone	CC(=O)C1CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C	LGC	Powder
	Sertraline	CNC1CCC(C2=CC=CC=C12)C3=CC(=C(C=C3)Cl)Cl	LGC	1.0 mg/mL in MeOH
	Tebuconazole	CC(C)(C)C(CCC1=CC=C(C=C1)Cl)(CN2C=NC=N2)O	LGC	Powder
	Testosterone	CC12CCC3C(C1CCC2O)CCC4=CC(=O)CCC34C	LGC	Powder
	Thiacloprid	C1CSC(=NC#N)N1CC2=CN=C(C=C2)Cl	LGC	Powder
	Venlafaxine	CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O	LGC	Powder
	2-chloro-4-methylbenzoic acid	CC1=CC(=C(C=C1)C(=O)O)Cl	LGC	Powder
	Acetamiprid	CC(=NC#N)N(C)CC1=CN=C(C=C1)Cl	LGC	Powder
	Amidosulfuron	CN(S(=O)(=O)C)S(=O)(=O)NC(=O)NC1=NC(=CC(=N1)OC)OC	LGC	Powder
	Atrazine	CCNC1=NC(=NC(=N1)Cl)NC(C)C	LGC	Powder
	Atrazine-2-hydroxy	CCNC1=NC(=O)NC(=N1)NC(C)C	LGC	Powder
	Beflubutamid	CCC(C(=O)NCC1=CC=CC=C1)OC2=CC(=C(C=C2)F)C(F)(F)F	LGC	Powder
	Bixafen	CN1C=C(C(=N1)C(F)F)C(=O)NC2=C(C=C(C=C2)F)C3=CC(=C(C=C3)Cl)Cl	LGC	Powder
	Bromacil	CCC(C)N1C(=O)NC(=C(Br)C1=O)C	LGC	Powder
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 A1 (continued) Standard compounds form and suppliers

	Compound name	SMILES	Supplier	Form
	Terbuthylazine	CCNC1=NC(=NC(=N1)Cl)NC(C)(C)C	LGC	Powder
	Tertbutylazine-2-hydroxy	CCNC1=NC(=O)NC(=N1)NC(C)(C)C	LGC	Powder
	Thifensulfuron-methyl	CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=C(SC=C2)C(=O)OC	LGC	Powder
	Triazoxide	C1=CC2=C(C=C1Cl)[N+](=NC(=N2)N3C=CN=C3)[O-]	LGC	Powder
	Triclopyr	C1=C(C(=NC(=C1Cl)Cl)OCC(=O)O)Cl	LGC	Powder
	Triflusulfuron-methyl	CC1=C		
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 A3 Sets of compounds used for spiking samples (n=45), training models (n=134) and evaluating them (n=30)

		Compound name	SMILES	Chemical formula	Monoisotopic mass	CAS
		2-Phenylphenol	C1=CC=C(C=C1)C2=CC=CC=C2O	C12H10O	170.0732	90-43-7
		Acetochlor	CCC1=CC=CC(=C1N(COCC)C(=O)CCl)C	C14H20ClNO2	269.1183	123113-74-6
		Aflatoxin B1	COC1=C2C3=C(C(=O)CC3)C(=O)OC2=C4C5C=COC5OC4=C1	C17H12O6	312.0634	27261-02-5
		Aminobenzimidazole	C1=CC=C2C(=C1)NC(=N2)N	C7H7N3	133.0640	934-32-7
		Androstenedione	CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4=O)C	C19H26O2	286.1933	63-05-8
		Arachidonic Acid	CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(O)=O	C20H32O2	304.2402	93444-49-6
		Azoxystrobin	COC=C(C1=CC=CC=C1OC2=NC=NC(=C2)OC3=CC=CC=C3C#N)C(=O)OC	C22H17N3O5	403.1168	215934-32-0
		Boscalid	C1=CC=C(C(=C1)C2=CC=C(C=C2)Cl)NC(=O)C3=C(N=CC=C3)Cl	C18H12Cl2N2O	342.0327	188425-85-6
		Carbamazepine	C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N	C15H12N2O	236.0950	298-46-4
		Carbendazim	COC(=O)NC1=NC2=CC=CC=C2N1	C9H9N3O2	191.0695	63278-70-6
		Chlorpyrifos	CCOP(=S)(OCC)OC1=NC(=C(C=C1Cl)Cl)Cl	C9H11Cl3NO3PS	348.9263	39475-55-3
		Clothianidin	CNC(=N[N+](=O)[O-])NCC1=CN=C(S1)Cl	C6H8ClN5O2S	249.0087	205510-53-8
		Codeine	CN1CCC23C4C1CC5=C2C(=C(C=C5)OC)OC3C(C=C4)O	C18H21NO3	299.1521	76-57-3
		Cortisone	CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C	C21H28O5	360.1937	53-06-5
		Cotinine	CN1C(CCC1=O)C2=CN=CC=C2	C10H12N2O	176.0950	486-56-6
		Cyprodinil	CC1=CC(=NC(=N1)NC2=CC=CC=C2)C3CC3	C14H15N3	225.1266	121552-61-2
		Diazinon	CCOP(=S)(OCC)OC1=NC(=NC(=C1)C)C(C)C	C12H21N2O3PS	304.1011	30583-38-1
	Spiking set	Diclofenac Dimethyldithiophosphate Estrone	C1=CC=C(C(=C1)CC(=O)O)NC2=C(C=CC=C2Cl)Cl COP(=S)(OC)S CC12CCC3C(C1CCC2=O)CCC4=C3C=CC(=C4)O	C14H11Cl2NO2 C2H7O2PS2 C18H22O2	295.0167 157.9625 270.1620	15307-86-5 756-80-9 53-16-7
		Fluoxetine	CNCCC(C1=CC=CC=C1)OC2=CC=C(C=C2)C(F)(F)F	C17H18F3NO	309.1340	57226-07-0
		Hydrocortisone	CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)O	C21H30O5	362.2093	50-23-7
		Hydroxyindoleacetic acid	C1=CC2=C(C=C1O)C(=CN2)CC(=O)O	C10H9NO3	191.0582	113303-91-6
		Ibuprofen	CC(C)CC1=CC=C(C=C1)C(C)C(=O)O	C13H18O2	206.1307	58560-75-1
		Imidacloprid	C1CN(C(=N[N+](=O)[O-])N1)CC2=CN=C(C=C2)Cl	C9H10ClN5O2	255.0523	138261-41-3
		Leukotriene B4	CCCCCC=CCC(C=CC=CC=CC(CCCC(=O)O)O)O	C20H32O4	336.2301	71160-24-2
		Leukotriene D4	CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)NCC(=O)O)N	C25H40N2O6S	496.2607	73836-78-9
		Nicotine	CN1CCCC1C2=CN=CC=C2	C10H14N2	162.1157	551-13-3
		Paracetamol	CC(=O)NC1=CC=C(C=C1)O	C8H9NO2	151.0633	8055-08-1
		Paroxetine	C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4	C19H20FNO3	329.1427	63952-24-9
		Piperine	C1CCN(CC1)C(=O)C=CC=CC2=CC3=C(C=C2)OCO3	C17H19NO3	285.1365	147030-08-8
		Pravastatin	CCC(C)C(=O)OC1CC(C=C2C1C(C(C=C2)C)CCC(CC(CC(=O)O)O)O)O	C23H36O7	424.2461	81093-37-0
		Prochloraz	CCCN(CCOC1=C(C=C(C=C1Cl)Cl)Cl)C(=O)N2C=CN=C2	C15H16Cl3N3O2	375.0308	67747-09-5
		Progesterone	CC(=O)C1CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C	C21H30O2	314.2246	257630-50-5
		Propiconazole	CCCC1COC(O1)(CN2C=NC=N2)C3=C(C=C(C=C3)Cl)Cl	C15H17Cl2N3O2	341.0698	75881-82-2
		Prostaglandin D2	CCCCCC(C=CC1C(C(CC1=O)O)CC=CCCCC(=O)O)O	C20H32O5	352.2250	41598-07-6
		Prostaglandin E2	CCCCCC(C=CC1C(CC(=O)C1CC=CCCCC(=O)O)O)O	C20H32O5	352.2250	363-24-6
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 A3 Sets of compounds used for spiking samples (n=45), training models (n=134) and evaluating them (n=30)Table A5.1 -(continued) Results of data processing workflows on individual compounds in serum Table A5.1 -(continued) Results of data processing workflows on individual compounds in serum Table A5.1 -(continued) Results of data processing workflows on individual compounds in serum

	3.5. Table A5.1 -(continued) Results of data processing workflows on individual compounds in serum Table A5.1 -Results of data processing workflows on individual Table A5.1 -(continued) Results of data processing workflows on individual compounds in serum
	Compound name compounds in serum Training Set Tebutame Terbuthylazine Terbutryne Tertbutylazine-2-hydroxy Thifensulfuron-methyl Triadimenol Triazoxide Triclopyr Triflusulfuron-methyl Trinexapac-ethyl Triticonazole Tritosulfuron 17b-Estradiol 4-Aminophenol Acetylcholine Acetylsalicylic acid Table A5.1 -Results of data processing workflows on individual compounds in serum SMILES XCMS -Optimized settings -Noise 100 Markerview -Noise 10 Markerview -Noise 20 Markerview -Noise 50 MzMine -CWT pipeline -Default settings -MzMine -CWT pipeline -Optimized settings -MzMine -ADAP pipeline -Optimized settings -MzMine -ADAP pipeline -Optimized settings -Progenesis -More sensitivity CC(C)N(CC1=CC=CC=C1)C(=O)C(C)(C)C p-value Fold p-value Fold p-value Fold p-value Fold Markerview -Noise 100 Noise 10 Noise 10 Noise 50 Noise 100 CCNC1=NC(=NC(=N1)Cl)NC(C)(C)C CCNC1=NC(=NC(=N1)SC)NC(C)(C)C CCNC1=NC(=O)NC(=N1)NC(C)(C)C CC1=NC(=NC(=N1)OC)NC(=O)NS(=O)(=O)C2=C(SC=C2)C(=O)OC CC(C)(C)C(C(N1C=NC=N1)OC2=CC=C(C=C2)Cl)O C1=CC2=C(C=C1Cl)[N+](=NC(=N2)N3C=CN=C3)[O-] C1=C(C(=NC(=C1Cl)Cl)OCC(=O)O)Cl CC1=C(C(=CC=C1)C(=O)OC)S(=O)(=O)NC(=O)NC2=NC(=NC(=N2)OCC(F)(F)F)N(C)C CCOC(=O)C1CC(=O)C(=C(C2CC2)O)C(=O)C1 CC1(CCC(=CC2=CC=C(C=C2)Cl)C1(CN3C=NC=N3)O)C COC1=NC(=NC(=N1)NC(=O)NS(=O)(=O)C2=CC=CC=C2C(F)(F)F)C(F)(F)F CC12CCC3C(C1CCC2O)CCC4=C3C=CC(=C4)O C1=CC(=CC=C1N)O CC(=O)OCC[N+](C)(C)C CC(=O)OC1=CC=CC=C1C(=O)O XCMS -Default settings -Noise 10 XCMS -Optimized settings -Noise 10 m/z Rt Averag e area in spiked samples Averag e area in non-spiked samples p-value (area in spiked vs. non-spiked samples ) Fold change (area in spiked/ area in non-spiked) Area CV in spiked samples Averag e area in spiked samples Averag e area in non-spiked samples p-value (area in spiked vs. non-spiked samples ) Fold change Area CV m/z Rt Averag e area in spiked samples Averag e area in non-spiked samples (area in spiked vs. non-spiked samples ) change (area in spiked/ area in non-spiked) Area CV in spiked samples Averag e area in spiked samples Averag e area in non-spiked samples (area in spiked vs. non-spiked samples ) change (area in spiked/ area in non-spiked) Area CV in spiked samples AminoBenzimidazole 134.0713 4.74 787 1.1E-04 217.3 9.3 m/z Rt Averag e area in spiked samples Averag e area in non-spiked samples (area in spiked vs. non-spiked samples ) change (area in spiked/ area in non-spiked) Area CV in spiked samples Averag e area in spiked samples Averag e area in non-spiked samples (area in spiked vs. non-spiked samples ) change (area in spiked/ area in non-spiked) Area CV in spiked samples AminoBenzimidazole 134.0713 4.74 184 163 6.1E-02 1.1 9.7 642 0 9.5E-05 Infinity m/z Rt Averag e area in spiked sample s Averag e area in non-spiked sample s p-value (area in spiked vs. non-spiked sample s) Fold change (area in spiked/ area in non-spiked) Area CV in spiked sample s Averag e area in spiked sample s p-value Fold p-value Fold p-value Fold p-value Fold p-value Fold Averag e area in non-spiked sample (area in spiked vs. non-spiked sample change (area in spiked/ area in non-Area CV in spiked sample s m/z Rt Averag e area in spiked samples Averag e area in non-spiked samples (area in spiked vs. non-spiked samples change (area in spiked/ area in non-Area CV in spiked samples Averag e area in spiked samples Averag e area in non-spiked samples (area in spiked vs. non-spiked samples change (area in spiked/ area in non-Area CV in spiked samples m/z Rt Averag e area in spiked samples Averag e area in non-spiked samples (area in spiked vs. non-spiked samples change (area in spiked/ area in non-Area CV in spiked samples Averag e area in spiked samples Averag e area in non-spiked samples (area in spiked vs. non-spiked samples change Area CV (area in in spiked/ spiked area in samples non-s s) spiked) ) spiked) ) spiked) ) spiked) ) spiked) 8.9 (area in spiked/ area in non-in Paracetamol 152.0706 4.98 3570 3021 5.6E-01 1.2 23.1 109 7.1E-02 1.7 17.1 Paracetamol 152.0706 4.98 1171 624 1.5E-05 1.9 4.5 523 349 5.8E-02 1.5 AminoBenzimidazole 134.0713 4.74 219 0 9.1E-02 Infinity 115.5 AminoBenzimidazole 134.0713 4.74 149671 106487 5.6E-03 1.4 11.8 30266 9.5E-05 9.6 9.2 AminoBenzimidazole 134.0713 4.74 30406 7306 6.7E-06 4.2 8.7 91516 234 6.5E-05 391.3 6.3 30.4 spiked Nicotine 163.123 3.37 Nicotine 163.123 3.37 Paracetamol 152.0706 4.98 16252 6.0E-02 1.3 4.2 Paracetamol 152.0706 4.98 17027 13473 5.5E-04 1.3 5.4 17195 9.6E-02 1.6 37.6 Paracetamol 152.0706 4.98 samples Cotinine 177.1022 4.31 373 2.7E-04 Infinity 12.6 Cotinine 177.1022 4.31 206 0 4.4E-03 Infinity 32.7 Nicotine 163.123 3.37 Nicotine Nicotine 163.123 3.37 spiked) AminoBenzimidazole 134.0713 4.74 7971 7489 1.9E-01 1.1 Carbendazim 192.0768 5.69 754 1.9E-04 Infinity 11.1 Carbendazim 192.0768 5.69 700 0 1.7E-04 Infinity 10.8 586 0 4.2E-04 Infinity 14.6 Cotinine 177.1022 4.31 20628 7.7E-06 15.8 6.4 Cotinine 10.2 Paracetamol 152.0706 4.98 15318 13185 3.4E-03 1.2 11.9 4283 3482 4.4E-01 1.2 Cyprodinil 226.1339 33.22 21875 110 4.0E-03 198.9 24.7 3802 9.0E-04 Infinity 18.9 Cyprodinil 226.1339 33.22 3644 0 1.0E-03 Infinity 19.7 3371 0 1.2E-03 Infinity Carbendazim 192.0768 5.69 286 0 5.6E-02 Infinity 90.1 31313 1.5E-04 16.0 9.7 21.1 22.3 Carbamazepine 237.1022 18.01 692 5.1E-05 Infinity 7.2 Carbamazepine 237.1022 18.01 659 0 7.3E-05 Infinity 8.1 579 0 1.1E-05 Infinity 4.3 Cyprodinil 226.1339 33.22 2929 0 1.9E-03 Infinity 24.4 140937 6.5E-04 23.6 16.8 Nicotine Clothianidin 250.016 7.99 312 123 1.2E-02 2.5 17.5 20 3.7E-02 Infinity 73.8 Clothianidin 250.016 7.99 3 0 2.0E-01 Infinity Carbamazepine 237.1022 18.01 277 0 4.8E-03 Infinity 33.8 37137 6.8E-04 15.6 17.7 200.0 Aldosterone CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4C(=O)CO)C=O)O Thiacloprid 253.0309 12.24 4903 437 9.0E-03 11.2 30.6 416 2.0E-04 Infinity 11.4 Thiacloprid 253.0309 12.24 371 0 2.5E-04 Infinity 12.2 193 0 3.1E-02 Infinity 69.1 Clothianidin 250.016 7.99 2797 2.6E-04 4.4 12.5 Allopregnanolone CC(=O)C1CCC2C1(CCC3C2CCC4C3(CCC(C4)O)C)C Imidacloprid 256.0596 8.57 140 3.7E-04 Infinity 14.0 Imidacloprid 256.0596 8.57 100 0 3.9E-03 Infinity 31.4 19 0 2.0E-01 Infinity 200.0 Thiacloprid 253.0309 12.24 17484 2.9E-04 5.8 10.9 Amoxicillin CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C Acetochlor 270.1255 40.57 340 117 2.3E-02 2.9 34.5 Acetochlor 270.1255 40.57 Imidacloprid 256.0596 8.57 7009 1.8E-04 10.0 10.0 Imidacloprid 256.0596 8.57 6625 447 2.5E-04 14.8 11.5 16865 20 1.1E-03 831.8 16.0	Chemical formula C15H23NO C9H16ClN5 C10H19N5S C9H17N5O C12H13N5O6S2 C14H18ClN3O2 C10H6ClN5O C7H4Cl3NO3 C17H19F3N6O6S C13H16O5 C17H20ClN3O C13H9F6N5O4S C18H24O2 C6H7NO C7H16NO2 C9H8O4 C21H28O5 C21H34O2 C16H19N3O5S	Monoisotopic mass 233.1780 229.1094 241.1361 211.1433 387.0307 295.1088 247.0261 254.9257 492.1039 252.0998 317.1295 445.0279 272.1776 109.0528 146.1181 180.0423 360.1937 318.2559 365.1045	CAS 35256-85-0 5915-41-3 886-50-0 66753-07-9 79277-27-3 55219-65-3 72459-58-6 55335-06-3 126535-15-7 95266-40-3 131983-72-7 142469-14-5 50-28-2 123-30-8 51-84-3 50-78-2 152-04-5 516-54-1 26787-78-0
	Validation set estrone estrone Acetochlor Aniline Caffeine Acetochlor Chlorpyrifos-methyl 271.1693 271.1693 270.1255 270.1255 venlafaxine 278.2115 venlafaxine 278.2115 estrone 271.1693 estrone 271.1693 Dehydroepiandrosterone 31.60 31.60 40.57 40.57 9.84 9.84 31.60 31.60 Dopamine Epinephrine Estriol Ethinylestradiol Ketoprofen L-thyroxine Malathion Methylparaben Morphine Oxazepam Oxybenzone Pivmecillinam Pregnenolone Progesterone-17-hydroxy Propylparaben Piperine 286.1444 36.42 Androstenedione 287.2006 31.50 Testosterone 289.2168 28.90 Thiamethoxam 292.0266 6.97 Codeine 300.1594 5.12 Diazinon 305.1083 43.38 sertraline 306.0811 24.34 Tebuconazole 308.1524 39.36 fluoxetine 310.1413 23.71 Aflatoxin B1 313.0707 17.52 Progesterone 315.2339 42.10 paroxetine 330.15 18.34 Propiconazole 342.0771 41.73 Piperine 286.1444 36.42 venlafaxine 278.2115 9.84 venlafaxine 278.2115 9.84 Androstenedione 287.2006 31.50 Testosterone 289.2168 28.90 Thiamethoxam 292.0266 6.97 Codeine 300.1594 5.12 Diazinon 305.1083 43.38 sertraline 306.0811 24.34 Tebuconazole 308.1524 39.36 fluoxetine 310.1413 23.71 Aflatoxin B1 313.0707 17.52 Progesterone 315.2339 42.10 paroxetine 330.15 18.34 Propiconazole 342.0771 41.73 Piperine 286.1444 36.42 Androstenedione 287.2006 31.50 Piperine 286.1444 36.42 Testosterone 289.2168 28.90 Androstenedione 287.2006 31.50 Thiamethoxam 292.0266 6.97 Testosterone 289.2168 28.90 Codeine 300.1594 5.12 Thiamethoxam 292.0266 6.97 Diazinon 305.1083 43.38 Codeine 300.1594 5.12 sertraline 306.0811 24.34 Diazinon 305.1083 43.38 Tebuconazole 308.1524 39.36 sertraline 306.0811 24.34 fluoxetine 310.1413 23.71 Tebuconazole 308.1524 39.36 Aflatoxin B1 313.0707 17.52 fluoxetine 310.1413 23.71 Progesterone 315.2339 42.10 Aflatoxin B1 313.0707 17.52 paroxetine 330.15 18.34 Progesterone 315.2339 42.10 Salicylic acid Boscalid 343.0399 38.00 Boscalid 343.0399 38.00 Propiconazole 342.0771 41.73 paroxetine 330.15 18.34 Triclosan Chlorpyrifos 349.9336 45.53 Chlorpyrifos 349.9336 45.53 Boscalid 343.0399 38.00 Propiconazole 342.0771 41.73 Tryptamine-5-hydroxy Cortisone 361.2006 16.12 Cortisone 361.2006 16.12 Chlorpyrifos 349.9336 45.53 Boscalid 343.0399 38.00 Tryptophan hydrocortisone 363.2166 15.86 hydrocortisone 363.2166 15.86 Cortisone 361.2006 16.12 Chlorpyrifos 349.9336 45.53	324 169 4629 52120 1408 13050 35990 15786 15303 1536 1525 96732 59890 5471 53083 17262 916 52088 1414 1594 8 1690 3746 57 3172 682 2339 2141 2731 3206 690 664947 1016 54171 60408 1280 3917 2017 64510 144666 2352 11976 118487 1720 32463 1167 1399 89818 13766 972 1877 56070 4583 245 105642 20361 1153 41300 151256 6819 715	C1=CC=C(C=C1)N CN1C=NC2=C1C(=O)N(C(=O)N2C)C 95 5.9E-04 3.4 16.1 0 1.4E-02 Infinity 49.4 3074 6.6E-02 1.5 32.8 COP(=S)(OC)OC1=NC(=C(C=C1Cl)Cl)Cl 2324 248 10 35 8.1E-04 1476.3 14.4 1505 0 2.3E-04 Infinity 12.0 1230 14105 2084 1.4E-03 6.3 18.4 1623 CC12CCC3C(C1CCC2=O)CC=C4C3(CCC(C4)O)C C1=CC(=C(C=C1CCN)O)O CNCC(C1=CC(=C(C=C1)O)O)O CC12CCC3C(C1CC(C2O)O)CCC4=C3C=CC(=C4)O CC12CCC3C(C1CCC2(C#C)O)CCC4=C3C=CC(=C4)O 0 0 0 CC(C1=CC(=CC=C1)C(=O)C2=CC=CC=C2)C(=O)O C1=C(C=C(C(=C1I)OC2=CC(=C(C(=C2)I)O)I)I)CC(C(=O)O)N 2.8E-03 2.0E-01 1.7E-02 1.5E-04 2.2E-04 1.1E-03 3.9E-01 CCOC(=O)CC(C(=O)OCC)SP(=S)(OC)OC COC(=O)C1=CC=C(C=C1)O CN1CCC23C4C1CC5=C2C(=C(C=C5)O)OC3C(C=C4)O C1=CC=C(C=C1)C2=NC(C(=O)NC3=C2C=C(C=C3)Cl)O COC1=CC(=C(C=C1)C(=O)C2=CC=CC=C2)O CC1(C(N2C(S1)C(C2=O)N=CN3CCCCCC3)C(=O)OCOC(=O)C(C)(C)C)C Infinity Infinity 1.4 Infinity Infinity 5.4 Infinity CC(=O)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)O)C)C CC(=O)C1(CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C)O CCCOC(=O)C1=CC=C(C=C1)O 29145 2.3E-01 1.2 12.8 17599 1.1E-02 1.5 552 1.6E-03 28.6 17.7 1515 4.3E-04 Infinity 7209 4.2E-03 2.1 13.2 1683 6.5E-04 Infinity 63 1.4E-04 Infinity 503 2.8E-03 3.1 19.4 1808 1.6E-04 Infinity 3956 9.8E-05 Infinity 96 1.8E-04 15.9 12.0 193 7.4E-03 Infinity 253 5.6E-04 382.5 12.7 3298 9.7E-04 Infinity 701 1.2E-02 Infinity 2462 6.8E-04 Infinity 2536 6.4E-05 23.6 9.9 23 9.7E-04 240.7 15.3 2289 1.6E-03 Infinity 629 9.0E-04 84.5 14.8 2874 8.6E-04 Infinity 10940 1.0E-02 1.6 17.9 16342 10025 9.9E-03 1.6 0 9.8E-04 Infinity 19.5 52957 1.1E-04 1085.8 43 1.3E-04 1207.6 9.7 161418 0 2.1E-04 Infinity 0 5.3E-04 Infinity 15.8 1185 0 6.8E-04 Infinity 0 8.5E-04 Infinity 18.5 1389 0 1.1E-03 Infinity 0 2.0E-01 Infinity 200.0 0 1.1E-04 Infinity 9.3 1523 0 1.3E-04 Infinity 0 1.2E-04 Infinity 9.6 3078 0 1.5E-04 Infinity 0 1.1E-02 Infinity 45.3 0 1.0E-03 Infinity 19.9 2842 0 1.6E-03 Infinity 0 4.3E-03 Infinity 32.3 308 0 7.2E-02 Infinity 0 8.0E-04 Infinity 18.2 2028 0 7.4E-04 Infinity 0 1.9E-03 Infinity 24.3 1811 0 1.7E-03 Infinity 0 8.4E-04 Infinity 18.5 2428 0 1.2E-03 Infinity 0 1.1E-03 Infinity 20.2 170988 3.2E-02 1.5 252659 180492 0 6.9E-03 Infinity 38.5 55350 3.0E-04 16.3 426816 8.4E-03 1.6 16.6 2 6 3.6E-02 1.4 0 1.8E-03 Infinity 23.9 61448 7.4E-04 33.4 2025 4.1E-04 26.7 14.2 177679 118 5.2E-04 1511.7 4074 3.6E-04 7.7 2091 7.0E-04 28.9 16.8 182774 0 6.5E-05 Infinity 0 1.9E-04 Infinity 11.3 66600 1.6E-05 6.9 485 5.0E-04 8.1 13.9 5345 38 8.0E-02 139.0 0 7.4E-04 Infinity 17.7 148106 7.9E-05 288.9 1368 1.4E-04 47.1 10.0 224949 303 1.9E-04 742.9 12814 5.1E-05 7.8 161 8.8E-05 898.8 8.6 478989 0 7.5E-05 Infinity 0 3.2E-03 Infinity 29.3 121191 7.6E-04 32.0 1534 1.3E-03 7.8 18.7 7957 0 4.3E-03 Infinity 34625 2.7E-03 9.6 3212 7.4E-04 36.9 17.2 424554 792 9.5E-04 535.8 0 1.2E-03 Infinity 2950 1.2E-03 11.0 19.1 75793 92 1.6E-03 823.9 21.0 92174 7.2E-04 18.0 513 1.3E-03 2.3 15.0 0 4.9E-03 Infinity 34.0 63835 4.8E-03 37.8 5005 7.6E-04 17.9 17.0 302956 0 6.3E-04 Infinity 187919. C1=CC=C(C(=C1)C(=O)O)O 991 1.7E-03 13.9 22.5 1082 1.2E-03 Infinity 0 2.1E-03 Infinity 25.1 587 0 2.3E-02 Infinity 0 3.4E-03 Infinity 30.0 106056 7.7E-04 66.1 1210 1.6E-02 46.3 51.0 271775 1 1.9E-03 2 C1=CC(=C(C=C1Cl)O)OC2=C(C=C(C=C2)Cl)Cl 101 1.5E-03 45.4 18.3 0 1.4E-01 Infinity 148.7 42716 8.8E-04 31.2 1540 7.6E-04 68.6 17.6 339380 0 1.0E-03 Infinity C1=CC2=C(C=C1O)C(=CN2)CCN 18119 1.0E-01 1.1 2.7 1251 2.4E-03 2.3 478 2.2E-03 2.4 16.1 1004 315 1.1E-03 3.2 906 8.9E-04 45.6 18.4 109280 0 2.4E-03 Infinity C1=CC=C2C(=C1)C(=CN2)CC(C(=O)O)N 75039 1.3E-03 2.0 12.2 6954 1.1E-02 1.3 5196 9.8E-03 1.3 11.9 6532 4978 1.2E-02 1.3 19 3.4E-04 37.7 16.9 48932 3.4E-03 2.6	27.8 14.8 200.0 10.4 16.7 200.0 11.7 17.7 14.7 16.9 10.2 10.6 8.9 39.5 19.4 46.6 17.1 23.0 18.6 9.3 9.2 19.0 17.2 19.9 9.8 10.3 22.8 101.8 17.6 23.7 21.0 22.2 12.3 12.5 12.4 17.3 6.2 12.4 76.2 11.4 8.9 8.3 6.5 6.4 25.5 17.3 15.2 26.4 18.3 16.8 13.2 32.8 21.1 17.6 19.2 61.1 18.1 15.6 15.5 16.1 20.9 11.9 12.6 11.7	C6H7N C8H10N4O2 C7H7Cl3NO3PS C19H28O2 C8H11NO2 C9H13NO3 C18H24O3 C20H24O2 C16H14O3 C15H11I4NO4 C10H19O6PS2 C8H8O3 C17H19NO3 C15H11ClN2O2 C14H12O3 C21H33N3O5S C21H32O2 C21H30O3 C10H12O3 C7H6O3 C12H7Cl3O2 C10H12N2O C11H12N2O2	93.0578 194.0804 320.8950 288.2089 153.0790 183.0895 288.1725 296.1776 254.0943 776.6867 330.0361 152.0473 285.1365 286.0509 228.0786 439.2141 316.2402 330.2195 180.0786 138.0317 287.9512 176.0950 204.0899	62-53-3 58-08-2 5598-13-0 53-43-0 51-61-6 51-43-4 50-27-1 77538-56-8 172964-50-0 7488-70-2 121-75-5 99-76-3 47106-99-0 35295-88-6 58392-22-6 32886-97-8 145-13-1 68-96-2 94-13-3 7681-06-3 3380-34-5 50-67-9 73-22-3
	Prochloraz Prochloraz hydrocortisone Cortisone	376.0381 376.0381 363.2166 361.2006	38.74 38.74 15.86 16.12	418 6141 44424	0 4607 16453	7.8E-03 1.2E-02 2.1E-03	Infinity 1.3 2.7	40.2 13.3 13.4	467 86 3232 156782	0 52025	6.5E-03 2.0E-01 2.0E-01 4.3E-03	Infinity Infinity 0.1 3.0	37.2 200.0 30.6 11.2
	Solanidine Solanidine Prochloraz hydrocortisone	398.342 398.342 376.0381 363.2166	24.54 24.54 38.74 15.86	70308 4981 233117	275 0 138264	2.0E-04 1.4E-03 6.5E-02	256.1 Infinity 1.7	9.0 22.2 11.4	5204 4491 26450 887099	0 575399	1.3E-03 1.5E-03 1.1E-03 2.0E-01	Infinity Infinity 30.1 1.5	21.2 22.6 19.3 8.1
	Azoxystrobine Azoxystrobine Solanidine Prochloraz	404.1241 404.1241 398.342 376.0381	38.03 38.03 24.54 38.74	72797 2859 3759 25627	55 0 0 694	5.4E-03 1.2E-03 3.1E-03 1.2E-03	1315.5 Infinity Infinity 36.9	27.6 20.6 28.8 20.5	3039 2441 43336	0 0	8.1E-04 2.6E-03 3.0E-02	Infinity Infinity Infinity	18.2 27.3 51.5
	Pravastatin Pravastatin Azoxystrobine Solanidine	425.2534 425.2534 404.1241 398.342	20.50 20.50 38.03 24.54	1773 172137	0 2347	1.1E-02 9.2E-04	Infinity 73.3	45.1 18.8	109048 713233	0	6.3E-04 1.2E-03	83.2 Infinity	16.5 16.6
	Dimethyldithiophosphate 2-phenylphenol Dimethyldithiophosphate Pravastatin Azoxystrobine 2-phenylphenol Dimethyldithiophosphate Pravastatin	156.9541 169.0659 156.9541 425.2534 404.1241 169.0659 156.9541 425.2534	2.95 30.19 20.50 38.03 2.95 30.19 2.95 20.50	2012 355 106729	26 210 762	8.4E-02 3.3E-02 5.7E-04	76.6 1.7 140.1	77.4 23.9 16.1	63 392714 5745	0	4.6E-03 7.9E-04 4.1E-07	Infinity Infinity 11.7	33.4 14.3 4.4
	Hydroxyindoleacetic acid Hydroxyindoleacetic acid 2-phenylphenol Dimethyldithiophosphate	190.051 190.051 169.0659 156.9541	5.71 5.71 30.19 2.95	6476	736	1.1E-06	8.8	5.8	1056	0	1.9E-03	Infinity	19.3
	Ibuprofen Ibuprofen Hydroxyindoleacetic acid 2-phenylphenol	205.1223 205.1223 190.051 169.0659	39.94 39.94 5.71 30.19	1426 10	662 0	1.7E-01 1.1E-01	2.2 Infinity	59.6 125.9	54 963	415	2.5E-03 6.2E-02	1.7 2.3	12.5 37.9
	Diclofenac Diclofenac Ibuprofen Hydroxyindoleacetic acid	294.0094 294.0094 205.1223 190.051	39.59 39.59 39.94 5.71	187	0	2.1E-04	Infinity	11.5	230 27 2803 1821	0 3397	1.5E-04 2.1E-01 2.9E-01 2.5E-01	Infinity Infinity 1.1 0.5	10.4 173.2 26.2 73.4
	Arachidonic Acid Arachidonic Acid Diclofenac Ibuprofen	303.233 303.233 294.0094 205.1223	47.00 47.00 39.59 39.94	28959 23091 2751	23443 18397 1971	7.6E-02 1.1E-01 2.4E-03	1.2 1.3 1.4	14.1 6.3 10.1	23349 23123 8796 780	18542 443	1.1E-01 1.2E-01 1.6E-02 2.8E-02	1.3 1.2 4.3 1.8	6.4 5.9 40.7 5.0
	Leukotriene B4 Leukotriene B4 Arachidonic Acid Diclofenac	335.2228 335.2228 303.233 294.0094	39.52 39.52 47.00 39.59	26531 1432 22072 10908	644 0 17499 1961	6.5E-02 1.6E-04 1.1E-01 1.2E-04	41.2 Infinity 1.3 5.6	68.5 10.6 6.7 8.4	1494 1295 795212	302	1.3E-04 2.0E-02 1.2E-01	Infinity 4.3 1.2	9.9 15.0 6.2
	Prostaglandin D2 Prostaglandin D2 Leukotriene B4 Arachidonic Acid	351.2177 351.2177 335.2228 303.233	27.60 27.60 39.52 47.00	1059	0	4.6E-04	Infinity	15.1	38523 1712	212	2.9E-02 1.5E-01	7.3 8.1	57.7 90.2
	Prostaglandin E2 Prostaglandin E2 Prostaglandin D2 Leukotriene B4	351.2177 351.2177 351.2177 335.2228	26.50 26.50 27.60 39.52	8190 329 39778	36 0 937	1.6E-01 2.0E-03 2.8E-02	225.8 Infinity 42.4	105.7 24.9 64.3	379 85 197740	0 0	1.9E-03 2.1E-01 3.7E-04	Infinity Infinity Infinity	24.2 173.2 11.1
	Prostaglandin F2a Prostaglandin F2a Prostaglandin E2 Prostaglandin D2	353.2333 353.2333 351.2177 351.2177	25.60 25.60 26.50 27.60	31087 1909 10186	53 0 675	9.5E-02 7.1E-05 2.3E-02	587.6 Infinity 15.1	83.0 8.0 56.6	1990 55 14764	0	6.2E-05 9.3E-02 1.3E-02	Infinity Infinity 19.4	7.7 87.5 46.0
	Leukotriene D4 Leukotriene D4 Prostaglandin F2a Prostaglandin E2	495.2534 495.2534 353.2333 351.2177	33.04 33.04 25.60 26.50	617 1451	0 0	4.3E-04 1.6E-04	Infinity Infinity	14.7 10.6	733 311 57441	0 0	2.8E-04 5.1E-02 6.0E-03	Infinity Infinity Infinity	12.7 60.2 28.5
	Leukotriene D4 Prostaglandin F2a	495.2534 353.2333	33.04 25.60	50173	155	2.9E-02	324.2	66.3	18084 252221	0	2.9E-02 1.5E-04	13.5 Infinity	61.8 8.1
	Leukotriene D4	495.2534	33.04	21981	1460	2.6E-02	15.1	60.1	62552	0	4.6E-05	Infinity	5.5
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	3.6. Table A5.2 -(continued) Results of data processing workflows on individual compounds in plasma Table A5.2 -Results of data processing workflows on individual 3.7. 3.8.	
	compounds in plasma	Progenesis -Default sensitivity XCMS -Optimized settings -Noise 100 Markerview -Noise 20 MzMine -CWT pipeline -Optimized settings -Progenesis -Default sensitivity	Manual integration Markerview -Noise 10 Markerview -Noise 50 MzMine -CWT pipeline -Default settings -MzMine -ADAP pipeline -Optimized settings -Manual integration
				p-value p-value p-value Markerview -Noise 100 Noise 10 p-value	Fold Fold Fold Fold		Noise 10 Noise 50		p-value p-value p-value p-value	Fold Fold Fold Fold	
	m/z 134.0713 152.0706 163.123 177.1022 192.0768 226.1339 237.1022 250.016 253.0309 256.0596 270.1255 271.1693 278.2115 286.1444 287.2006 289.2168 292.0266 300.1594 305.1083 306.0811 308.1524 310.1413 313.0707 315.2339 330.15 342.0771 343.0399 349.9336 361.2006 363.2166 376.0381 398.342 404.1241 425.2534 156.9541 169.0659 190.051 205.1223 294.0094 303.233 335.2228 351.2177 351.2177 353.2333 495.2534 351.2177 495.2534 495.2534 353.2333 495.2534 Table A5.2 -Results of data processing workflows on individual compounds in plasma Rt Averag e area in spiked samples Averag e area in non-spiked samples (area in spiked vs. non-spiked samples ) change (area in spiked/ area in non-spiked) Area CV in spiked samples Averag e area in spiked samples Averag e area in non-spiked samples (area in spiked vs. non-spiked samples ) AminoBenzimidazole 4.74 88520 251 2.3E-05 352.6 4.5 119919 2.3E-04 Paracetamol 4.98 8401 7.4E-05 Nicotine 3.37 6605 2.7E-05 Cotinine 4.31 68792 3.8E-05 Carbendazim 5.69 93406 2769 5.4E-06 33.7 6.0 85070 3.1E-04 Cyprodinil 33.22 465799 1740 4.5E-04 267.6 11.8 383042 9.5E-05 Carbamazepine 18.01 130723 2226 5.4E-09 58.7 2.8 89375 8.0E-05 Clothianidin 7.99 4952 6.1E-04 Thiacloprid 12.24 45899 10 6.8E-05 4619.8 6.3 35550 4.8E-04 Imidacloprid 8.57 16282 23 6.8E-04 723.6 13.6 13617 2.9E-04 Acetochlor 40.57 7102 3.7E-04 estrone 31.60 21456 2.2E-05 venlafaxine 9.84 156056 0 9.6E-05 Infinity 7.1 105740 3.1E-04 Piperine 36.42 244194 6 184804 3 3.5E-02 1.3 10.4 132225 9 2.3E-02 Androstenedione 31.50 171669 122 2.8E-04 1407.8 10.0 107952 8.0E-04 Testosterone 28.90 176907 0 6.2E-05 Infinity 6.1 112541 1.1E-06 Thiamethoxam 6.97 7596 4.1E-05 Codeine 5.12 217503 316 9.5E-05 688.7 7.0 125800 2.8E-04 Diazinon 43.38 463596 0 6.8E-05 Infinity 6.3 269902 1.5E-04 sertraline 24.34 7696 0 4.0E-03 Infinity 24.9 19824 1.2E-05 Tebuconazole 39.36 410252 809 6.4E-04 506.9 13.3 195928 1.2E-05 fluoxetine 23.71 73224 95 1.2E-03 769.1 16.5 53370 3.6E-05 Aflatoxin B1 17.52 1807 2.5E-05 Progesterone 42.10 292783 0 3.9E-04 Infinity 11.3 146106 3.2E-06 paroxetine 18.34 262447 2 1.3E-03 163519. 1 17.1 124854 2.9E-05 Propiconazole 41.73 327888 0 6.9E-04 Infinity 13.6 75859 2.0E-05 Boscalid 38.00 105598 0 2.0E-03 Infinity 19.5 61505 6.9E-05 Chlorpyrifos 45.53 8636 1.5E-04 Cortisone 16.12 151477 52494 7.1E-03 2.9 8.8 68182 8.7E-03 hydrocortisone 15.86 857573 580596 2.5E-01 1.5 5.5 380787 1.8E-02 Prochloraz 38.74 41713 0 2.7E-02 Infinity 49.2 31082 8.7E-05 Solanidine 24.54 689074 0 8.6E-04 Infinity 14.7 225831 2.6E-05 Azoxystrobine 38.03 379428 0 4.9E-04 Infinity 12.2 133413 2.4E-05 Pravastatin 20.50 7801 4.4E-04 Dimethyldithiophosphate 2.95 942 0 1.2E-01 Infinity 93.0 28970 2.3E-03 2-phenylphenol 30.19 3857 8.3E-04 Hydroxyindoleacetic acid 5.71 8032 2.2E-02 Ibuprofen 39.94 8387 1.6E-03 Diclofenac 39.59 18942 3.1E-04 Arachidonic Acid 47.00 12097 149 1.1E-01 81.3 86.0 158761 4 2.0E-05 Leukotriene B4 39.52 197740 0 3.7E-04 Infinity 11.1 88909 1.3E-04 Prostaglandin D2 27.60 12086 4.8E-04 Prostaglandin E2 26.50 57441 0 6.0E-03 Infinity 28.5 1882 3.7E-04 Prostaglandin F2a 25.60 252221 0 1.5E-04 Infinity 8.1 105160 4.9E-05 Leukotriene D4 33.04 62552 0 4.6E-05 Infinity 5.5 29833 3.3E-04 Prostaglandin D2 27.60 Leukotriene D4 33.04 17857 5.6E-02 Leukotriene D4 33.04 13385 10192 6.5E-04 1.3 5.8 19957 5.3E-04 25.60 163841 45785 1.5E-04 3.6 3.1 628830 193899 2.6E-06 Leukotriene D4 33.04 17607 4.5E-04 Prostaglandin F2a XCMS -Default settings -Noise 10 XCMS -Optimized settings -Noise 10 change (area in spiked/ area in non-spiked) 175.6 Infinity Infinity 24.5 Infinity Infinity 8.6 Infinity Infinity Infinity Infinity Infinity Infinity 1.5 26.3 163.9 Infinity Infinity 621.2 Infinity Infinity Infinity Infinity 21.0 Infinity Infinity Infinity 17.3 2.7 1.3 Infinity 100.7 Infinity Infinity 2.9 Infinity 1.3 1.3 Infinity 12.1 Infinity Infinity Infinity Infinity Infinity 3.4 4.8 3.2 Infinity m/z Rt Averag e area in spiked samples Averag e area in non-spiked samples p-value (area in spiked vs. non-spiked samples ) Fold change (area in spiked/ area in non-spiked) Area CV in spiked samples Averag e area in spiked samples Averag e area in non-spiked samples p-value (area in spiked vs. non-spiked samples ) Fold change (area in spiked/ area in non-spiked) AminoBenzimidazole 134.07127 4.74 24543 13475 1.1E-01 1.8 57.7 24157 13338 1.0E-01 1.8 Paracetamol 152.0706 4.98 1350 879 1.1E-01 1.5 Nicotine 163.12297 3.37 Cotinine 177.1022 4.31 293545 240626 6.2E-03 1.2 6.1 290574 234814 3.4E-03 1.2 m/z Rt Averag e area in spiked samples Averag e area in non-spiked samples (area in spiked vs. non-spiked samples ) change (area in spiked/ area in non-spiked) Area CV in spiked samples Averag e area in spiked samples Averag e area in non-spiked samples (area in spiked vs. non-spiked samples ) change (area in spiked/ area in non-spiked) AminoBenzimidazole 134.07127 4.74 22686 12593 9.9E-02 1.8 51.9 1005 6.9E-05 Infinity Paracetamol 152.0706 4.98 1348 867 1.2E-01 1.6 47.5 2026 4.0E-01 1.0 Nicotine 163.12297 3.37 39 4.2E-02 159.0 Cotinine 177.1022 4.31 288850 226940 4.1E-03 1.3 8.5 8438 2.7E-03 1.3 Carbendazim 192.07675 5.69 2411 1920 4.0E-01 1.3 7.9 1089 1.1E-04 Infinity Cyprodinil 226.1339 33.22 200997 210 1.2E-05 955.9 4.4 5717 7.4E-05 Infinity Carbamazepine 237.10224 18.01 65995 2488 1.0E-04 26.5 8.8 1928 1.3E-04 Infinity Clothianidin 250.016 7.99 37 2.3E-02 Infinity m/z Rt Averag e area in spiked samples Averag e area in non-spiked samples (area in spiked vs. non-spiked samples ) change (area in spiked/ area in non-spiked) Area CV in spiked samples Averag e area in spiked samples Averag e area in non-spiked samples (area in spiked vs. non-spiked samples ) change (area in spiked/ area in non-spiked) AminoBenzimidazole 134.07127 4.74 847 0 1.5E-04 Infinity 10.3 568 0 7.7E-05 Infinity Paracetamol 152.0706 4.98 1601 1761 3.2E-01 0.9 25.8 Nicotine 163.12297 3.37 Cotinine 177.1022 4.31 7947 6246 2.6E-03 1.3 3.7 6927 5229 2.1E-03 1.3 Carbendazim 192.07675 5.69 957 0 1.7E-04 Infinity 10.8 468 0 2.9E-02 Infinity Cyprodinil 226.1339 33.22 5400 0 8.5E-05 Infinity 8.5 4645 0 1.3E-04 Infinity Carbamazepine 237.10224 18.01 1813 0 1.7E-04 Infinity 10.8 1616 0 2.9E-04 Infinity Clothianidin 250.016 7.99 8 0 2.0E-01 Infinity 200.0 m/z Rt Averag e area in spiked samples Averag e area in non-spiked samples p-value (area in spiked vs. non-spiked samples ) Fold change (area in spiked/ area in non-spiked) Area CV in spiked samples Averag e area in spiked samples Averag e area in non-spiked samples p-value (area in spiked vs. non-spiked samples ) Fold change (area in spiked/ area in non-spiked) AminoBenzimidazole 134.07127 4.74 409 0 8.5E-04 Infinity 18.6 46798 1.7E-10 4.2 Paracetamol 152.0706 4.98 Nicotine 163.12297 3.37 Cotinine 177.1022 4.31 5561 4117 3.7E-03 1.4 4.9 276117 2.2E-02 1.2 Carbendazim 192.07675 5.69 302 0 2.9E-02 Infinity 66.8 41332 2.7E-06 33.4 Cyprodinil 226.1339 33.22 3593 0 4.6E-04 Infinity 15.1 245350 2.7E-05 42.8 Carbamazepine 237.10224 18.01 1333 0 5.6E-04 Infinity 16.1 91642 1.7E-04 61.1 m/z Rt Averag e area in spiked samples Averag e area in non-spiked samples p-value (area in spiked vs. non-spiked samples ) Fold change (area in spiked/ area in non-spiked) Area CV in spiked samples Averag e area in spiked samples Averag e area in non-spiked samples p-value (area in spiked vs. non-spiked samples ) Fold change (area in spiked/ area in non-spiked) AminoBenzimidazole 134.07127 4.74 40703 10406 1.4E-04 3.9 10.5 40816 1.1E-03 3.5 m/z Rt Average area in spiked samples Average area in non-spiked samples (area in spiked vs. non-spiked samples ) change (area in spiked/ area in non-spiked) Area CV in spiked samples Average area in spiked samples Average area in non-spiked samples (area in spiked vs. non-spiked samples ) change (area in Annotation SMILES CI m/z CI Rt Experimental RTI-predicted logP-predicted Area CV in spiked samples 9.4 6.5 4.6 7.5 10.5 7.0 6.7 13.1 12.1 10.2 11.0 4.3 10.4 4.9 13.9 1.7 5.3 10.1 8.2 3.5 3.5 5.1 4.5 4.0 4.8 4.2 6.3 8.8 4.1 11.9 6.8 4.7 4.4 11.8 3.7 14.5 12.4 5.4 10.5 4.8 7.8 12.1 11.1 5.6 64.0 12.9 4.4 11.8 10.6 Area CV in spiked samples 53.6 46.2 Area CV in spiked samples 8.0 25.0 78.4 4.3 9.3 8.2 9.8 61.0 Area CV in spiked samples 8.3 4.4 66.9 9.8 12.8 Area CV in spiked samples 1.4 4.2 2.6 5.7 10.7 Area CV in spiked samples Area CV in spiked/ spiked (+) (-) (+) (-) (+) (-) (+) (-) area in non-spiked) samples AminoBenzimidazole 134.07127 4.74 102578 0 5.5E-05 Infinity 5.9 168885 1.0E-04 303.3 7.2 Plasma Noise threshold Detection frequency (%) Median p-value Median Compounds MEHP* CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)O 0.86 0.83 0.89 Computing CV with CV < Acesulfame CC1=CC(=O)NS(=O)(=O)O1 0.93 0.97 0.66 time (spiked) Alpha-tocopherol CC1=C(C2=C(CCC(O2)(C)CCCC(C)CCCC(C)CCCC(C)C)C(=C1O)C)C 0.93 0.90 30% (%) 5.8 Paracetamol Paracetamol 152.0706 4.98 273862 2.6E-02 1.1 3.7 Nicotine 163.12297 3.37 20083 7.5E-04 2.9 14.7 Cotinine 177.1022 4.31 983674 5.2E-03 1.2 4.1 Carbendazim 192.07675 5.69 2286 0 1.9E-04 Infinity 8.9 130835 1.2E-04 427.6 7.6 Cyprodinil 226.1339 33.22 680866 625 6.2E-05 1088.8 6.1 509013 1.5E-04 1021.1 8.2 Carbamazepine 237.10224 18.01 239099 510 1.0E-04 468.9 7.2 157472 1.9E-04 Infinity XCMS DEF 10 64 3.98E-04 4 Eicosapentaenoic acid CCC=CCC=CCC=CCC=CCC=CCCCC(=O)O 0.97 0.91 0.90 0.95 0.65 0.71 10 XCMS OPT 10 82 2.70E-04 3.5 Piperine C1CCN(CC1)C(=O)C=CC=CC2=CC3=C(C=C2)OCO3 0.82 0.96 0.43 0.54 10 20 82 2.67E-04 3 Tryptophan C1=CC=C2C(=C1)C(=CN2)CC(C(=O)O)N 0.95 0.98 0.71 0.69 10 50 82 3.21E-04 3 4-indolecarbaldehyde C1=CC(=C2C=CNC2=C1)C=O 0.86 0.93 0.89 0.89 0.85 0.85 10 100 78 3.74E-04 3 Indoxyl sulfate C1=CC=C2C(=C1)C(=CN2)OS(=O)(=O)O 0.94 0.81 0.77 10 Ibuprofen CC(C)CC1=CC=C(C=C1)C(C)C(=O)O 0.91 1.00 0.91 8.8 Clothianidin 250.016 7.99 2880 1409 3.6E-01 2.0 65.6 8563 9.5E-05 Infinity 7.0 Markerview 10 89 1.97E-04 0.5 10 Mesterolone CC1CC(=O)CC2C1(C3CCC4(C(C3CC2)CCC4O)C)C 0.92 0.87 1.00 3.9 Carbendazim 192.07675 5.69 2528 1885 3.7E-01 1.3 Thiacloprid 253.0309 12.24 25687 40 9.1E-05 639.2 8.7 738 5.8E-05 Infinity 7.5 Thiacloprid 253.0309 12.24 655 0 6.5E-05 Infinity 7.8 443 0 8.9E-04 Infinity 18.8 Clothianidin 250.016 7.99 Thiacloprid 253.0309 12.24 57490 0 3.6E-04 Infinity 10.9 59923 1.2E-04 Infinity 7.5 20 80 6.65E-04 0.5 11 Paracetamol CC(=O)NC1=CC=C(C=C1)O 0.94 0.96 0.77 0.80 0.93 0.94 0.94 0.94 12.4 Cyprodinil 226.1339 33.22 210386 236 1.1E-04 893.1 9.3 201405 223 1.0E-04 901.5 9.0 Carbamazepine 237.10224 18.01 67930 2485 4.0E-05 27.3 6.6 69301 2474 9.0E-05 28.0 8.4 Clothianidin 250.016 7.99 Thiacloprid 253.0309 12.24 27972 40 1.2E-05 707.4 4.4 27753 41 3.7E-05 684.4 6.5 Imidacloprid 256.0596 8.57 4943 1748 1.2E-01 2.8 86.7 Acetochlor 270.12553 40.57 5887 183 8.5E-04 32.1 18.1 5937 184 6.3E-04 32.3 16.3 estrone 271.1693 31.60 21645 630 4.0E-04 34.4 14.0 21309 651 3.2E-04 32.7 13.0 venlafaxine 278.2115 9.84 89788 211 2.3E-05 425.3 5.5 91286 204 3.7E-05 447.3 6.4 Piperine 286.1444 36.42 128164 1 669526 6.3E-04 1.9 12.2 126949 7 646795 9.9E-05 2.0 8.9 Androstenedione 287.20056 31.50 96867 9151 1.2E-04 10.6 1.0 97193 9059 1.5E-04 10.7 9.5 Testosterone 289.2168 28.90 26191 21073 4.6E-02 1.2 14.2 27328 21677 5.1E-03 1.3 8.4 Thiamethoxam 292.0266 6.97 Codeine 300.15942 5.12 26223 19148 1.2E-01 1.4 9.0 26951 18998 9.2E-02 1.4 10.0 Diazinon 305.1083 43.38 234369 1222 1.4E-05 191.8 4.8 249394 1248 6.1E-06 199.8 3.7 sertraline 306.0811 24.34 21377 263 1.8E-04 81.3 10.8 22073 273 7.9E-05 80.7 8.3 Tebuconazole 308.1524 39.36 188846 2331 3.4E-04 81.0 13.6 186567 2287 1.7E-04 81.6 10.8 fluoxetine 310.1413 23.71 2686 1902 1.1E-01 1.4 26.4 2827 1889 6.7E-02 1.5 24.9 Aflatoxin B1 313.07066 17.52 4705 295 1.8E-04 15.9 14.1 Progesterone 315.2339 42.10 72116 207713 1.4E-01 0.3 7.7 74161 214529 1.4E-01 0.3 7.4 paroxetine 330.15 18.34 175779 1452 6.0E-04 121.1 16.3 178127 1506 8.1E-05 118.3 8.3 Propiconazole 342.0771 41.73 172892 143 7.7E-05 1208.9 8.2 167926 139 8.8E-05 1210.9 8.6 Boscalid 343.03994 38.00 65762 125 3.4E-06 527.4 2.9 66875 124 1.5E-04 541.0 10.3 Chlorpyrifos 349.93356 45.53 10068 917 2.0E-04 11.0 12.2 9976 928 7.4E-05 10.8 9.7 Cortisone 361.2006 16.12 97777 50971 1.1E-02 1.9 22.4 97319 48908 8.7E-03 2.0 21.6 hydrocortisone 363.2166 15.86 482937 319086 5.6E-03 1.5 12.9 489548 319592 2.3E-03 1.5 10.6 Prochloraz 376.0381 38.74 Solanidine 398.342 24.54 203185 1849 1.2E-04 109.9 9.5 Azoxystrobine 404.1241 38.03 194361 502 4.5E-05 386.9 6.9 188971 535 9.6E-05 353.4 8.9 Pravastatin 425.25337 20.50 Dimethyldithiophosphate 156.95413 2.95 4080 80 7.4E-03 51.3 30.2 1618 14 1.2E-02 111.6 35.9 2-phenylphenol 169.0659 30.19 2161 206 4.7E-06 10.5 7.1 209598 128152 1.2E-01 1.6 36.4 Hydroxyindoleacetic acid 190.051 5.71 3066 818 3.7E-04 3.7 14.6 Ibuprofen 205.1223 39.94 23182 20502 7.0E-02 1.1 0.9 23118 3832 1.6E-05 6.0 6.4 Diclofenac 294.0094 39.59 5809 348 2.7E-04 16.7 12.0 Arachidonic Acid 303.233 47.00 39163 5529 1.9E-04 7.1 8.7 Leukotriene B4 335.2228 39.52 348410 3 44646 1.3E-01 78.0 96.1 Dimethyldithiophosphate 156.95413 2.95 1613 15 1.2E-02 110.5 36.5 1649 20 1.3E-02 80.7 37.4 2-phenylphenol 169.0659 30.19 209782 127694 1.2E-01 1.6 35.9 211072 129358 1.3E-01 1.6 36.4 Hydroxyindoleacetic acid 190.051 5.71 3092 814 5.2E-04 3.8 15.4 3125 797 7.1E-04 3.9 16.0 Ibuprofen 205.1223 39.94 23052 3815 6.0E-06 6.0 5.8 22934 3833 6.0E-06 6.0 5.8 Diclofenac 294.0094 39.59 5780 348 2.7E-04 16.6 12.0 5776 346 2.2E-04 16.7 11.4 Arachidonic Acid 303.233 47.00 39055 5516 1.6E-04 7.1 8.2 39046 5608 1.5E-04 7.0 8.0 Leukotriene B4 335.2228 39.52 615144 6 44540 1.3E-04 138.1 7.8 615508 3 39540 2.0E-04 155.7 8.9 Prostaglandin D2 351.2177 27.60 Prostaglandin E2 351.2177 26.50 Prostaglandin F2a 353.2333 25.60 Leukotriene D4 495.2534 33.04 1915 248 4.6E-04 7.7 15.5 1914 247 8.3E-04 7.7 17.3 Imidacloprid 256.0596 8.57 4670 1703 1.2E-01 2.7 86.6 235 1.2E-04 Infinity 9.5 Acetochlor 270.12553 40.57 5903 184 5.1E-04 32.1 15.3 estrone 271.1693 31.60 20239 623 6.9E-04 32.5 16.8 386 2.8E-03 Infinity 27.9 venlafaxine 278.2115 9.84 88317 190 7.0E-05 465.2 8.0 2591 5.3E-05 Infinity 7.3 Piperine 286.1444 36.42 123458 8 624278 3.7E-04 2.0 10.5 42728 8.0E-05 2.1 8.8 Androstenedione 287.20056 31.50 95354 8524 3.7E-04 11.2 12.8 2564 1.8E-04 Infinity 10.9 Testosterone 289.2168 28.90 26181 20993 9.7E-03 1.2 9.2 3465 2.2E-04 11.9 11.1 Thiamethoxam 292.0266 6.97 121 2.9E-04 Infinity 12.9 Codeine 300.15942 5.12 26222 18313 8.4E-02 1.4 10.7 679 1.1E-03 Infinity 20.4 Diazinon 305.1083 43.38 238500 1198 4.7E-05 199.2 7.1 6870 1.0E-05 Infinity 4.2 sertraline 306.0811 24.34 21464 265 4.9E-05 80.9 7.0 455 1.4E-04 Infinity 10.2 Tebuconazole 308.1524 39.36 174956 2158 1.8E-04 81.1 11.1 5268 1.7E-04 Infinity 10.7 fluoxetine 310.1413 23.71 2681 1848 7.7E-02 1.5 24.3 1920 3.3E-05 Infinity 6.2 Aflatoxin B1 313.07066 17.52 4683 284 9.8E-04 16.5 20.4 38 2.5E-02 Infinity 62.5 Progesterone 315.2339 42.10 69600 214479 1.4E-01 0.3 5.2 4237 1.4E-04 22.4 10.5 paroxetine 330.15 18.34 171803 1481 1.3E-04 116.0 9.7 5296 1.2E-04 Infinity 9.5 Propiconazole 342.0771 41.73 163040 134 1.2E-04 1217.6 9.5 4576 1.3E-04 Infinity 9.8 Boscalid 343.03994 38.00 65753 124 1.9E-04 531.5 11.2 1716 1.7E-04 Infinity 10.8 Chlorpyrifos 349.93356 45.53 9643 870 8.4E-05 11.1 9.6 Cortisone 361.2006 16.12 98736 44932 8.9E-03 2.2 23.8 2867 8.9E-03 2.3 24.3 hydrocortisone 363.2166 15.86 468688 308739 2.0E-03 1.5 9.7 14911 2.2E-03 1.5 10.6 Prochloraz 376.0381 38.74 976 4.3E-04 Infinity 14.8 Solanidine 398.342 24.54 206530 1820 8.4E-05 113.5 8.4 5987 1.1E-04 Infinity 9.4 Azoxystrobine 404.1241 38.03 182890 507 1.4E-04 360.6 9.9 5265 1.3E-04 Infinity 9.9 Pravastatin 425.25337 20.50 Dimethyldithiophosphate 156.95413 2.95 1658 18 1.3E-02 94.0 37.5 2-phenylphenol 169.0659 30.19 209467 130364 1.3E-01 1.6 35.2 26177 1.1E-02 1.1 2.9 Hydroxyindoleacetic acid 190.051 5.71 3110 795 7.3E-04 3.9 16.1 Ibuprofen 205.1223 39.94 23267 3898 1.4E-06 6.0 4.9 539 4.9E-02 1.3 2.3 Diclofenac 294.0094 39.59 138 5.0E-04 Infinity 15.5 Arachidonic Acid 303.233 47.00 39363 5631 2.6E-04 7.0 9.2 132395 5.7E-03 1.4 12.1 Leukotriene B4 335.2228 39.52 620630 5 39347 2.9E-04 157.7 10.1 37259 3.5E-03 1.2 6.8 Prostaglandin D2 351.2177 27.60 4366 6.5E-02 1.3 21.9 Prostaglandin E2 351.2177 26.50 3012 1.9E-02 2.3 32.0 Prostaglandin F2a 353.2333 25.60 3851 3.0E-05 6.7 10.1 Leukotriene D4 495.2534 33.04 324 2.5E-04 Infinity Prostaglandin F2a 353.2333 25.60 Prostaglandin F2a 353.2333 25.60 163841 1.5E-04 3.6 3.1 Prostaglandin E2 351.2177 26.50 117304 94156 5.9E-04 1.2 4.3 Prostaglandin F2a 353.2333 25.60 636070 201102 5.5E-06 3.2 4.7 242325 1.3E-06 11.0 5.0 12.3 Imidacloprid 256.0596 8.57 141 0 3.0E-02 Infinity 67.6 Acetochlor 270.12553 40.57 estrone 271.1693 31.60 250 0 2.0E-02 Infinity 57.4 venlafaxine 278.2115 9.84 2427 0 5.5E-05 Infinity 7.4 1972 0 3.4E-05 Infinity 6.3 Piperine 286.1444 36.42 42053 20214 8.7E-05 2.1 9.1 40599 19154 1.2E-04 2.1 9.6 Androstenedione 287.20056 31.50 2323 0 2.7E-04 Infinity 12.6 1857 0 5.3E-04 Infinity 15.8 Testosterone 289.2168 28.90 2375 226 3.0E-02 10.5 61.8 2984 0 3.3E-04 Infinity 13.5 Thiamethoxam 292.0266 6.97 65 0 3.1E-03 Infinity 29.0 Codeine 300.15942 5.12 427 0 7.9E-03 Infinity 21.3 371 0 4.5E-03 Infinity 33.0 Diazinon 305.1083 43.38 6405 0 1.0E-05 Infinity 4.2 5519 0 6.8E-06 Infinity 3.7 sertraline 306.0811 24.34 288 0 2.7E-03 Infinity 27.4 Tebuconazole 308.1524 39.36 5026 0 1.6E-04 Infinity 10.6 4434 0 3.1E-04 Infinity 13.2 fluoxetine 310.1413 23.71 1733 0 7.7E-05 Infinity 8.3 1255 0 4.5E-04 Infinity 14.9 Aflatoxin B1 313.07066 17.52 4002 36 1.8E-04 111.0 11.8 3556 0 2.1E-04 Infinity 11.5 Progesterone 315.2339 42.10 paroxetine 330.15 18.34 5110 0 1.5E-04 Infinity 10.4 4606 0 2.4E-04 Infinity 12.1 Propiconazole 342.0771 41.73 4305 0 1.2E-04 Infinity 9.6 3808 0 1.6E-04 Infinity 10.6 Boscalid 343.03994 38.00 1475 0 4.0E-04 Infinity 14.4 696 0 1.8E-02 Infinity 54.7 Chlorpyrifos 349.93356 45.53 Cortisone 361.2006 16.12 2743 1136 6.6E-03 2.4 22.8 2417 934 9.5E-03 2.6 27.1 hydrocortisone 363.2166 15.86 14718 9522 2.3E-03 1.5 10.7 14319 9127 2.2E-03 1.6 10.8 Prochloraz 376.0381 38.74 794 0 1.0E-03 Infinity 19.6 49 0 2.0E-01 Infinity 200.0 Solanidine 398.342 24.54 5747 0 1.2E-04 Infinity 9.6 5187 0 1.9E-04 Infinity Azoxystrobine 404.1241 38.03 4969 0 1.3E-04 Infinity 9.9 4175 0 4.2E-04 Infinity Pravastatin 425.25337 20.50 Dimethyldithiophosphate 156.95413 2.95 2-phenylphenol 169.0659 30.19 Hydroxyindoleacetic acid 190.051 5.71 Ibuprofen 205.1223 39.94 Diclofenac 294.0094 39.59 31 0 9.2E-02 Infinity 116.4 Arachidonic Acid 303.233 47.00 131178 93675 5.7E-03 1.4 12.1 128771 91344 5.8E-03 1.4 12.3 Leukotriene B4 335.2228 39.52 205473 170313 1.9E-03 1.2 5.1 202795 168089 1.9E-03 1.2 5.1 Prostaglandin D2 351.2177 27.60 4056 3191 7.7E-02 1.3 22.6 3163 2630 1.8E-01 1.2 29.8 Prostaglandin E2 351.2177 26.50 2791 1264 2.2E-02 2.2 32.8 2595 1153 1.0E-02 2.3 25.9 Prostaglandin F2a 353.2333 25.60 3645 398 6.0E-05 9.2 9.2 3122 137 5.4E-07 22.7 5.6 Leukotriene D4 495.2534 33.04 250 0 9.3E-04 Infinity 19.1 Solanidine 398.342 24.54 4355 0 3.5E-04 Infinity 13.7 257646 4.6E-05 100.8 6.9 Azoxystrobine 404.1241 38.03 2602 0 1.7E-02 Infinity 53.5 169010 6.0E-05 72.5 7.5 Pravastatin 425.25337 20.50 Dimethyldithiophosphate 156.95413 2.95 1313 1.2E-02 Infinity 46.8 2-phenylphenol 169.0659 30.19 2216 3.2E-05 2.1 7.3 Hydroxyindoleacetic acid 190.051 5.71 5083 3.5E-03 1.3 Ibuprofen 205.1223 39.94 23787 2.3E-02 1.1 Diclofenac 294.0094 39.59 Arachidonic Acid 303.233 47.00 124323 88239 6.0E-03 1.4 12.5 441941 9 5.5E-03 1.4 11.7 Leukotriene B4 335.2228 39.52 197903 164449 1.9E-03 1.2 4.7 Prostaglandin D2 351.2177 27.60 2441 1871 1.0E-01 1.3 29.2 Prostaglandin E2 351.2177 26.50 1825 932 4.7E-03 2.0 18.9 Diclofenac 294.0094 39.59 9333 1.2E-04 12.1 9.0 Arachidonic Acid 303.233 47.00 551766 1 394539 6 9.7E-05 1.4 3.1 9 6.1E-03 1.4 12.2 Leukotriene B4 335.2228 39.52 190462 8 5.1E-03 1.2 Prostaglandin D2 351.2177 27.60 139935 76818 5.2E-04 1.8 9.8 107203 1.8E-04 1.4 5.4 Prostaglandin E2 351.2177 26.50 10713 4947 6.3E-05 2.2 5.9 117304 5.9E-04 1.2 4.3 Leukotriene B4 335.2228 39.52 190462 8 159478 5 5.1E-03 1.2 5.5 804011 5 719574 9 3.3E-03 1.1 Prostaglandin D2 351.2177 27.60 107203 77593 1.8E-04 1.4 Prostaglandin E2 351.2177 26.50 20553 2.6E-05 2.7 1.6 5.4 Prostaglandin D2 351.2177 27.60 31655 4.2E-06 2.9 5.9 sensitivity 67 5.65E-04 1 11 2.3 Leukotriene B4 335.2228 39.52 5 3 3.0E-02 1.1 3.2 165375 4.1E-04 2.3 9.1 Default 5.5 Diclofenac 294.0094 39.59 9198 701 1.3E-04 13.1 9.2 2020 0 3.4E-02 Infinity 54.0 Arachidonic Acid 303.233 47.00 433335 9 310383 8 6.1E-03 1.4 12.2 162655 10 128833 05 6.6E-02 1.3 8.8 Arachidonic Acid 303.233 47.00 164556 87 133994 67 1.2E-01 1.2 9.2 890980 9 1.5E-02 1.4 813328 746747 Progenesis More sensitivity 78 1.10E-03 1.5 14 13.6 100 82 9.19E-04 18 17 433335 Ibuprofen 205.1223 39.94 22758 20041 2.1E-02 1.1 1.6 15374 13955 2.4E-01 1.1 9.0 Diclofenac 294.0094 39.59 17233 2.4E-04 Infinity 9.6 MzMine ADAP 50 87 9.19E-04 18 17 1.7 Ibuprofen 205.1223 39.94 14918 16688 5.0E-03 0.9 4.7 22762 2.0E-02 1.1 1.6 Hydroxyindoleacetic acid 190.051 5.71 4642 3657 4.8E-03 1.3 3.9 Ibuprofen 205.1223 39.94 62302 5.0E-02 1.1 2.6 OPT 10 84 7.61E-04 14 8 7.6 Dimethyldithiophosphate 156.95413 2.95 1612 3.5E-06 Infinity 2.9 4024 5.7E-03 Infinity 35.9 2-phenylphenol 169.0659 30.19 2335 612 5.5E-08 3.8 2.1 Hydroxyindoleacetic acid 190.051 5.71 2972 6167 1.2E-04 0.5 2.8 4599 1.7E-02 1.2 5.2 398.342 24.54 196761 2085 1.1E-04 94.4 9.3 799204 2669 8.6E-05 299.4 6.8 404.1241 38.03 185360 1642 1.1E-04 112.9 9.3 666771 0 2.4E-04 Infinity 9.6 Pravastatin 425.25337 Dimethyldithiophosphate 156.95413 2.95 3929 0 5.6E-03 Infinity 2-phenylphenol 169.0659 30.19 263624 9 258541 5 6.2E-01 1.0 2.9 Hydroxyindoleacetic acid 190.051 5.71 51022 4.4E-02 1.1 1.8 MzMine CWT 2-phenylphenol 169.0659 30.19 291957 9 2.5E-02 1.1 2.9 Mzmine CWT 10 78 3.13E-03 12 17 35.8 Dimethyldithiophosphate 156.95413 2.95 10242 1.7E-04 Infinity 8.6 100 49 3.13E-03 0.5 24 20.50 Pravastatin 425.25337 20.50 6312 8.1E-04 Infinity 14.4 50 69 2.63E-03 0.5 21 Azoxystrobine Azoxystrobine 404.1241 38.03 666551 0 1.0E-04 Infinity 7.2 248938 1.5E-04 Infinity 8.2 20 80 1.30E-03 0.5 18 Solanidine 14.6 Prochloraz 376.0381 38.74 39028 4.5E-05 213.5 6.9 376.0381 38.74 42662 164 7.7E-05 260.8 8.2 13918 0 1.7E-01 Infinity 111.3 Solanidine 398.342 24.54 799653 2779 4.7E-05 287.8 5.6 286540 2.0E-04 117.0 9.0 Markerview 10 82 8.62E-04 0.5 15 Prochloraz 11.2 Thiacloprid 253.0309 12.24 241 0 3.1E-04 Infinity 13.2 29841 1.9E-05 10.1 4.7 Imidacloprid 256.0596 8.57 10173 1.1E-06 8.1 2.7 Acetochlor 270.12553 40.57 estrone 271.1693 31.60 973 5.0E-05 6.6 6.2 venlafaxine 278.2115 9.84 182 0 1.1E-01 Infinity 129.4 139721 1.0E-04 11515. 6 9.1 Piperine 286.1444 36.42 422 0 1.8E-02 Infinity 54.8 440604 7 3.2E-05 2.6 Thiacloprid 253.0309 12.24 27162 376 3.4E-05 72.2 6.2 57978 0 2.2E-04 Infinity 9.3 Imidacloprid 256.0596 8.57 10475 775 2.0E-05 13.5 7.2 29370 19 8.7E-05 1583.7 6.8 Acetochlor 270.12553 40.57 6103 2956 7.3E-03 2.1 21.7 estrone 271.1693 31.60 20919 1958 4.4E-04 10.7 13.6 4088 0 1.8E-01 Infinity 115.7 venlafaxine 278.2115 9.84 91126 8 3.1E-05 11065.0 6.1 294443 0 8.2E-05 Infinity 6.7 Piperine 286.1444 36.42 156292 6 794563 5.6E-05 2.0 8.2 594256 8 356234 7 7.9E-04 1.7 8.9 Imidacloprid 256.0596 8.57 29385 20 4.5E-05 1501.1 5.5 23078 1.6E-04 Infinity 50 62 4.38E-04 0.5 13 Caffeine CN1C=NC2=C1C(=O)N(C(=O)N2C)C 0.93 0.99 0.93 0.61 8.4 Acetochlor 270.12553 40.57 10563 7.4E-06 Infinity 3.0 estrone 271.1693 31.60 4009 0 1.8E-01 Infinity 113.6 38956 9.0E-04 102.2 14.8 venlafaxine 278.2115 9.84 294553 0 3.5E-05 Infinity 5.0 178786 3.0E-05 Infinity 4.8 Piperine 286.1444 36.42 593977 6 371299 0 4.6E-04 1.6 5.9 343721 4 2.7E-04 2.0 9.6 Androstenedione 287.20056 31.50 186084 1984 1.3E-03 93.8 16.9 191923 1.3E-04 14.6 8.8 100 56 2.06E-03 0.5 Paraxanthine CN1C=NC2=C1C(=O)N(C(=O)N2)C 0.94 0.96 0.79 0.41 17 Mzmine CWT 10 73 5.04E-05 14 Theobromine CN1C=NC2=C1C(=O)NC(=O)N2C 0.94 0.86 7 Theophylline CN1C2=C(C(=O)N(C1=O)C)NC=N2 0.94 0.84 MzMine CWT OPT 10 82 9.68E-05 25 Coumaric acid C1=CC(=CC(=C1)O)C=CC(=O)O 0.92 0.98 0.83 0.83 0.83 0.83 7 MzMine ADAP 50 96 1.66E-04 18 Cannabidiol CCCCCC1=CC(=C(C(=C1)O)C2C=C(CCC2C(=C)C)C)O 0.82 0.96 0.85 0.92 0.81 0.90 9 Δ9-THC* CCCCCC1=CC(=C2C3C=C(CCC3C(OC2=C1)(C)C)C)O 0.82 0.96 0.97 0.95 0.56 0.58 4.7 Androstenedione 287.20056 31.50 922 0 3.9E-02 Infinity 75.7 96238 2.0E-06 11.1 Androstenedione 287.20056 31.50 96810 8836 1.7E-04 11.0 9.9 185469 1931 9.7E-04 96.1 15.3 Testosterone 289.2168 28.90 427530 47020 1.4E-04 9.1 7.7 244917 4.3E-04 8.4 10.4 100 93 1.52E-04 17 9 Cotinine CN1C(CCC1=O)C2=CN=CC=C2 0.95 0.99 1.00 1.00 2.4 Testosterone 289.2168 28.90 2511 0 6.1E-04 Infinity 16.5 138408 1.6E-05 5.3 4.8 Thiamethoxam 292.0266 6.97 6365 7.7E-06 4.6 4.8 Codeine 300.15942 5.12 109818 6.0E-05 19.2 7.3 Diazinon 305.1083 43.38 4074 0 1.0E-04 Infinity 9.0 162555 1.1E-04 972.4 Testosterone 289.2168 28.90 121077 15347 2.0E-04 7.9 10.2 427755 45085 3.6E-04 9.5 10.4 Thiamethoxam 292.0266 6.97 13063 1.1E-04 Infinity 7.5 Progenesis More sensitivity 80 7.63E-04 1.5 3-hydroxycotinine CN1C(CC(C1=O)O)C2=CN=CC=C2 1.00 0.98 9 Thiamethoxam 292.0266 6.97 7102 698 2.4E-04 10.2 13.4 9031 0 3.6E-04 Infinity 10.9 Codeine 300.15942 5.12 311096 571 1.4E-05 544.5 3.7 191972 7.1E-05 175.5 6.4 Allopregnanolone CC(=O)C1CCC2C1(CCC3C2CCC4C3(CCC(C4)O)C)C 0.66 0.92 0.94 0.98 0.89 0.94 0.98 0.92 Default Codeine 300.15942 5.12 97033 2932 3.7E-05 33.1 6.3 7768 5176 6.0E-02 1.5 6.8 Diazinon 305.1083 43.38 244116 244 7.0E-06 1000.1 3.7 758426 0 4.2E-05 Infinity 5.4 Diazinon 305.1083 43.38 760174 0 1.2E-04 Infinity 7.7 455855 5.6E-06 Infinity 2.7 sertraline 306.0811 24.34 38839 1.3E-04 Infinity 7.8 sensitivity 62 1.47E-04 1 Androstanediol CC12CCC(CC1CCC3C2CCC4(C3CCC4O)C)O 0.92 0.65 -0.09 8 Androstenedione CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4=O)C 0.81 0.90 0.98 0.99 0.87 0.83 0.70 0.76 9.2 sertraline 306.0811 24.34 17251 2.2E-04 19.0 11.1 Tebuconazole 308.1524 39.36 3639 0 6.5E-04 Infinity 16.9 234650 2.0E-05 57.0 5.2 fluoxetine 310.1413 23.71 186 0 1.2E-01 Infinity 137.5 Aflatoxin B1 313.07066 17.52 2996 0 5.6E-04 Infinity 16.1 Progesterone 315.2339 42.10 446253 1.3E-04 3.8 8.6 paroxetine 330.15 18.34 3968 0 4.3E-04 Infinity 14.6 192911 3.8E-05 101.3 6.5 Propiconazole 342.0771 41.73 2876 0 2.0E-03 Infinity 24.9 179728 7.7E-05 152.7 8.2 Boscalid 343.03994 38.00 49 0 2.0E-01 Infinity 200.0 82166 1.0E-04 102.2 9.1 Chlorpyrifos 349.93356 45.53 10670 2.5E-05 10.2 6.0 Cortisone 361.2006 16.12 2113 632 5.6E-03 3.3 25.9 156124 1.7E-09 3.9 2.0 hydrocortisone 363.2166 15.86 13784 8678 2.1E-03 1.6 11.0 21337 1.0E-04 4.1 7.0 sertraline 306.0811 24.34 18273 861 4.9E-04 21.2 14.7 1563 0 9.3E-02 Infinity 82.0 Tebuconazole 308.1524 39.36 186338 4098 1.4E-04 45.5 9.9 639730 374 2.0E-04 1711.5 9.1 fluoxetine 310.1413 23.71 68304 2146 2.0E-05 31.8 5.2 160537 0 5.0E-02 Infinity 63.0 Aflatoxin B1 313.07066 17.52 3764 505 4.4E-03 7.5 28.3 Progesterone 315.2339 42.10 147146 15555 1.2E-04 9.5 9.9 529065 28913 9.2E-05 18.3 10.4 paroxetine 330.15 18.34 162493 1853 1.1E-05 87.7 4.4 664387 842 2.3E-04 789.2 9.5 Propiconazole 342.0771 41.73 165249 853 1.3E-04 193.6 9.7 507268 0 3.6E-04 Infinity 11.0 Boscalid 343.03994 38.00 66427 547 1.7E-04 121.4 10.8 166437 82 1.3E-02 2033.9 37.4 Chlorpyrifos 349.93356 45.53 9821 1536 3.9E-05 6.4 Tebuconazole 308.1524 39.36 639461 388 6.9E-05 1650.0 6.3 340486 3.3E-04 174.1 Arachidonic acid CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(O)=O 0.92 0.92 1.00 0.72 1.00 0.67 10.6 fluoxetine 310.1413 23.71 159002 0 4.9E-02 Infinity 62.5 129336 3.6E-05 Infinity Cortisol CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)O 0.91 0.98 1.00 0.99 0.70 0.70 0.13 0.14 5.1 Aflatoxin B1 313.07066 17.52 7761 3.8E-04 Infinity Cortisone CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C 0.82 0.98 1.00 0.97 0.68 0.70 1.00 0.97 11.2 Progesterone 315.2339 42.10 528710 29641 8.6E-06 17.8 7.6 261837 3.2E-04 12.3 10.4 paroxetine 330.15 18.34 664026 875 8.1E-05 759.0 6.6 317360 2.1E-04 323.3 9.1 Propiconazole 342.0771 41.73 506899 0 1.6E-04 Infinity 8.3 269169 2.2E-04 Infinity 9.3 Boscalid 343.03994 38.00 165524 84 1.1E-02 1967.2 35.8 107469 3.5E-04 Infinity 10.8 Chlorpyrifos 349.93356 45.53 16680 5.0E-04 5.8 12.2 Serum Noise threshold Detection frequency (%) Median p-value Computing time Median CV (spiked) DHA* CCC=CCC=CCC=CCC=CCC=CCC=CCCC(=O)O 0.90 0.94 0.92 0.92 0.63 0.63 Compounds Leukotriene B4 CCCCCC=CCC(C=CC=CC=CC(CCCC(=O)O)O)O 0.73 0.99 0.99 0.97 0.98 0.97 0.99 0.92 with CV < Leukotriene D4 CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)NCC(=O)O)N 0.73 0.92 0.45 0.18 30% (%) XCMS DEF 10 60 1.26E-03 4.5 Progesterone CC(=O)C1CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C 0.82 0.93 0.97 0.99 0.86 0.91 0.69 0.76 16 XCMS OPT 10 71 4.68E-03 4 Testosterone CC12CCC3C(C1CCC2O)CCC4=CC(=O)CCC34C 0.61 0.94 0.99 0.98 0.89 0.88 0.92 0.90 18 * 10.1 Cortisone 361.2006 16.12 95632 42923 7.1E-03 2.2 21.7 365823 182153 1.3E-02 2.0 20.0 hydrocortisone 363.2166 15.86 491556 321012 2.5E-03 1.5 11.0 184763 7 143647 7 1.2E-02 1.3 9.9 Cortisone 361.2006 16.12 354122 187779 1.7E-02 1.9 20.0 161845 8.2E-04 2.4 9.5 hydrocortisone 363.2166 15.86 184237 7 20 69 2.07E-03 3 Δ9-THC Delta9-tetrahydrocannabinol 14 149666 9 1.1E-02 1.2 7.9 840557 5.9E-03 1.6 11.9 Prochloraz 376.0381 38.74 4695 0 1.5E-01 Infinity 103.0 62878 1.6E-04 Infinity 8.3 50 64 2.05E-03 3 DHA Docosahexaenoic acid 13 100 64 4.16E-03 3 18 MEHP 2-(2-ethylhexoxycarbonyl)benzoic acid	CI isotopic fit CI overall (+) (-) 0.95 0.57 0.50 0.83 0.81 0.63 0.80 0.87 0.63 0.39 0.39 0.39 0.37 0.82 0.87 0.78 0.88 0.61 0.46	Global CI (+) G3_0.88 G2_0.95 (-) G2_0.91 G2_0.94 G3_0.81 G3_0.76 G3_0.83 G3_0.83 G3_0.79 G2_0.91 G3_0.85 G2_0.96 G3_0.93 G2_0.85 G2_0.76 G3_0.85 G3_0.71 G2_0.69 G3_0.73 G3_0.73 G2_0.87 G2_0.91 G2_0.83 G2_0.94 G2_0.89 G2_0.96 G2_0.97 G2_0.99 G3_0.66 G2_0.99 G3_0.8 G2_0.89 G2_0.94 G3_0.93 G2_0.82 G3_0.9 G2_0.98 G2_0.91 G2_0.97 G2_0.95 G3_0.94 G2_0.86 G3_0.86 G2_0.82 G2_0.89 G2_0.96 G3_0.69 G2_0.96
	Prostaglandin E2 Leukotriene D4	351.2177 495.2534	26.50 33.04	137290 19957	120533 4147	2.2E-01 5.3E-04	1.1 4.8	14.5 12.9	14051	1549	7.3E-04	9.1	14.9
	Prostaglandin F2a	353.2333	25.60	159424	58088	1.2E-06	2.7	4.8					
	Leukotriene D4	495.2534	33.04						1895	246	3.6E-04	7.7	14.9

Table A6 .

 A6 1 -(continued) Results of annotation after manual curation in serum Table A6.2 -Results of annotation after manual curation in plasmaTable A6.2 -Results of annotation after manual curation in plasma

	3.9.										
				MS/MS						
	Annotation	Theoretical fragments				Experimental fragments		Confidence level
		(+)	(-)			(+)					(-)
	MEHP* Acesulfame Alpha-tocopherol Annotation	57.0699, 121.0284, 149.0239, 184.0731 137.0981, 169.0922, 205.1194 SMILES	77.9657, 82.0302	CI m/z	57.0701, 121.0289, 149.023, 184.0741 137.0967, 169.0915, 205.1221 CI Rt Experimental RTI-predicted logP-predicted 77.9660, 82.0300 CI isotopic fit CI overall	2a 1 2a Global CI
	Eicosapentaenoic acid 91.0534, 105.0703	149.1340, 203.1782, 257.2254 91.0543, 105.0704 (+) (-) (+) (-)	(+)	(-)	(+)	149.1333, 203.1790, 257.2261 (-) (+) (-)	(+)	2a	(-)
	Piperine Tryptophan TDMPAB* 4-indolecarbaldehyde 91.0553, 118.0669, 128.0614 135.0450, 143.0499, 201.0551 130.0652, 142.0652, 170.0601, 188.0706 116.0507, 142.0651 CC(C)(C)C(=O)NC1=CC(=CC(=C1)NC(=O)C(C)(C)C)NC(=O)C(C)(C)C 90.0351, 116.0506 2-naphthylamine C1=CC=C2C=C(C=CC2=C1)N Indoxyl sulfate 80.9665, 132.0460 Bisphenol F C1=CC(=CC=C1CC2=CC=C(C=C2)O)O	135.0441, 143.0491, 201.0554 130.0646, 142.0651, 170.0601, 188.0706 116.0509, 142.0657 0.94 0.93 0.79 0.79 -0.22 -0.22 0.81 91.0547, 118.0675, 128.0621 90.0355, 116.0506 0.97 0.94 0.64 0.85 0.64 0.84 80.9662, 132.0453 0.90 0.98 0.90	1 G3_0.85 G2_0.86 1 G2_0.8 G2_0.89 2b 2a G2_0.94
	Ibuprofen Butylparaben	CCCCOC(=O)C1=CC=C(C=C1)O	154.9716, 161.1332	0.90 0.93		0.98	0.99	0.83	154.9722, 161.1333 0.82	1 G2_0.94 G2_0.96
	Mesterolone Ethyl paraben	187.1486, 269.2269, 287.2364 CCOC(=O)C1=CC=C(C=C1)O		187.1487, 269.2263, 287.2375 0.82 0.89 0.93 0.96	0.75	0.87		2a G2_0.87 G2_0.44
	Paracetamol Caffeine Propylparaben Paraxanthine 4-hydroxybenzoic acid C1=CC(=CC=C1C(=O)O)O 110.0598, 134.0587 110.0715, 138.0659 CCCOC(=O)C1=CC=C(C=C1)O 96.0572, 124.0522 Theobromine 108.0554, 122.0589, 163.0611 TCPP* CC(CCl)OP(=O)(OC(C)CCl)OC(C)CCl Theophylline 124.0497 Acesulfame CC1=CC(=O)NS(=O)(=O)O1	107.0375 108.0198, 122.0365, 164.0341 96.0572, 124.0515 110.0600, 134.0588 110.0718, 138.0664 0.99 0.96 0.88 0.95 108.0559, 122.0590, 163.0618 0.76 0.85 0.84 0.67 0.81 0.90 0.72 124.0501 0.98 0.99 0.66	0.80 0.84 0.67	107.0386 108.0208, 122.0360, 164.0344 0.61 G3_0.85 0.84 G2_0.87 G2_0.9 1 1 2a 0.72 0.92 G3_0.83 G2_0.76 2a 2a G2_0.99
	Coumaric acid Caffeic acid	91.0538, 119.0486, 147.0431 C1=CC(=C(C=C1C=CC(=O)O)O)O	93.0349, 119.0505	91.0542, 119.0492, 147.0447 0.86 0.94 0.85	0.84	0.83	93.0343, 119.0498 0.83	2a G2_0.86 G2_0.89
	Cannabidiol Coumaric acid	193.1223, 259.1686 C1=CC(=CC(=C1)O)C=CC(=O)O	179.1066, 229.1228, 245.1541 193.1229, 259.1684 1.00 0.98	0.82	0.82	0.82	179.1066, 229.1218, 245.1534 0.82 G2_0.91 G2_0.9 2a
	Δ9-THC* Tryptophan	109.0648, 121.1012, 131.0856, 297.2214 191.1050, 245.1521 C1=CC=C2C(=C1)C(=CN2)CC(C(=O)O)N	109.0648, 121.1019, 131.0861, 297.2205 191.1055, 245.1527 0.95 0.93 0.68 0.73 0.60	0.61	2a G3_0.74 G3_0.76
	Cotinine 3-hydroxycotinine 4-indolecarbaldehyde Allopregnanolone Chlortalidone Androstanediol Hydrochlorothiazide Androstenedione Ibuprofen	118.0649, 146.0588 119.0603, 175.0665 C1=CC(=C2C=CNC2=C1)C=O 263.2007, 271.2058, 275.2009, 287.2371 297.1529, 311.1687, 325.1842 263.1996, 271.2058, 275.2010, 287.2371 297.1519, 311.1690, 325.1847 118.0656, 146.0592 119.0604, 175.0668 0.95 0.93 0.72 0.89 0.66 0.85 G2_0.83 G2_0.91 1 2a C1=CC=C2C(=C1)C(=O)NC2(C3=CC(=C(C=C3)Cl)S(=O)(=O)N)O 0.82 0.93 0.84 0.71 G3_0.82 1 109.0648, 121.1012, 131.0856, 297.2214 109.0648, 121.1019, 131.0861, 297.2205 C1NC2=CC(=C(C=C2S(=O)(=O)N1)S(=O)(=O)N)Cl 0.85 0.76 0.92 G3_0.84 2a 173.1310, 211.1451, 269.1910 183.1128 173.1319, 211.1446, 269.1916 183.1126 1 CC(C)CC1=CC=C(C=C1)C(C)C(=O)O 0.99 1.00 0.90 G2_1
	Arachidonic acid Caffeine	121.1025, 221.1559, 269.2300, 287.2397 205.1965, 231.2106, 259.2419 121.1021, 221.1550, 269.2289, 287.2389 205.1970, 231.2115, 259.2428 CN1C=NC2=C1C(=O)N(C(=O)N2C)C 1.00 0.95 0.94 0.60 G2_0.97	1
	Cortisol Paraxanthine	121.0647, 309.1858 CN1C=NC2=C1C(=O)N(C(=O)N2)C	297.1497, 315.1616, 331.1910 121.0651, 309.1859 0.94 0.96	0.78	0.39		297.1503, 315.1606, 331.1917 G2_0.86 G2_0.68 1
	Cortisone DHA* Theobromine Leukotriene B4 Allopregnanolone Leukotriene D4 Androstenedione Progesterone Arachidonic acid	163.1115, 267.1729 119.08556, 159,1176, 173.1326, 329.25 CN1C=NC2=C1C(=O)NC(=O)N2C 149.0966, 259.2066 CC(=O)C1CCC2C1(CCC3C2CCC4C3(CCC(C4)O)C)C 301.1795, 329.1750 229.1958, 284.2446 71.0136, 195.1011, 317.2125 0.94 0.97 0.92 0.89 163.1125, 267.1728 119.0863, 159.1169, 173.1334, 329.2482 229.1956, 284.2439 301.1801, 329.1757 0.85 149.0968, 259.2072 71.0134, 195.1021, 317.2129 0.98 0.83 0.94 0.95 0.92 0.87 177.0334, 477.2423 177.0329, 477.2431 CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4=O)C 0.81 0.84 0.90 0.92 0.79 0.80 0.99 0.97 109.0652, 123.0804, 297.2214 255.2323, 311.1689 109.0650, 123.0809, 297.2229 255.2321, 311.1680 CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(O)=O 0.89 0.84 1.00 1.00 1.00 1.00 0.80	1 2a G3_0.91 G2_0.95 G2_0.9 1 G2_0.85 G2_0.88 1 1 G2_0.85 G3_0.88
	Testosterone Cortisol	253.1946, 271.2054 CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)O 283.2640, 297.1529	253.1951, 271.2056 0.83 0.92 1.00 0.99	0.70	0.70	0.13	283.2642, 297.1525 0.14	1 G2_0.91 G2_0.96
	* Cortisone	CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C	0.91 0.84 1.00	1.00	0.67	0.67	0.99	0.99		G2_0.85 G2_0.92
	Δ9-THC DHA DHA* MEHP Leukotriene B4 Leukotriene D4	Delta9-tetrahydrocannabinol CCC=CCC=CCC=CCC=CCC=CCC=CCCC(=O)O Docosahexaenoic acid CCCCCC=CCC(C=CC=CC=CC(CCCC(=O)O)O)O 2-(2-ethylhexoxycarbonyl)benzoic acid CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)NCC(=O)O)N	0.78 0.91 0.89 0.93	0.97 1.00	0.92	0.92 0.97 0.00	0.63	0.63 0.92 -0.86	0.66	0.88 0.57	G3_0.81 G3_0.81 G3_0.81 G2_0.96
	*										
	DHA	Docosahexaenoic acid									
	TCPP	Tris(1-chloro-2-propyl)phosphate									
	TDMPAB	1,3,5-tris(2,2-dimethylpropionylamino)benzene								

Table A1 -

 A1 Annotated compounds in Pélagie samples, with confidence indices (CI) on mass-to-charge (m/z) ratio, retention time (Rt), isotopic fit, and global confidence index. Compounds are either detected in the [M+H] + form ( "(+)" columns) or the [M-H] -form ( "(-)" columns)Table A1 -(continued) Annotated compounds in Pélagie samples, with confidence indices (CI) on mass-to-charge (m/z) ratio, retention time (Rt), isotopic fit, and global confidence index. Compounds are detected in the [M+H] + form ( "(+)" columns) or the [M-H] -form ( "(-)" columns)

											CI Rt					CI Isotopic fit			
	Annotation	SMILES		m/z	Rt (min)	CI m/z	Experimental	RTI-predicted	Retip-predicted	logP-predicted	Considered Mn	CI overall	Global CI
	Annotation Acetaminophen sulfate Aminoacetophenone Arabinosylhypoxanthine (2-oxo-2,3-dihydro-1H-indol-3-yl)acetic acid Aspartame 1,3,5-tris(2,2-dimethylpropionylamino)benzene Auraptene Azelaic acid Benzothiazole 10,11-trans-Dihydroxy-10,11-dihydrocarbamazepine Benzothiazole sulfonic acid 13-Hydroxy-7,14-labdadien-6-one Benzylbutylphthalate	SMILES CC(=O)NC1=CC=C(C=C1)OS(=O )(=O)O C1=CC=C(C=C1)C(=O)CN C1=NC2=C(C(=O)N1)N=CN2C3 C(C(C(O3)CO)O)O C1=CC=C2C(=C1)C(C(=O)N2)CC (=O)O COC(=O)C(CC1=CC=CC=C1)NC( =O)C(CC(=O)O)N CC(=CCCC(=CCOC1=CC2=C(C=C 1)C=CC(=O)O2)C)C CC(C)(C)C(=O)NC1=CC(=CC(=C1 )NC(=O)C(C)(C)C)NC(=O)C(C)(C C(CCCC(=O)O)CCCC(=O)O C1=CC=C2C(=C1)N=CS2 )C C1=CC=C2C(=C1)C(C(C3=CC=C C1=CC=C2C(=C1)N=C(S2)S(=O)( =O)O C=C3N2C(=O)N)O)O CC1=CC(=O)C2C(CCCC2(C1CCC (C)(C=C)O)C)(C)C CCCCOC(=O)C1=CC=CC=C1C(= O)OCC2=CC=CC=C2	(+) 136.0752 n.a. (+) n.a. 192.0640 295.13 n.a. n.a. n.a. n.a. 271.1100 n.a. 305.2456 313.1439	m/z 230.0127 (-) n.a. (-) 303.0501 n.a. n.a. 297.1523 410.2220 187.0977 136.0204 n.a. 213.9639 n.a. n.a.	Rt (min) 3.61 2.07 2.98 2.7 5.8 44.08 34.11 9.41 46.77 8.06 6.68 46.63 44.94	CI m/z (+) n.a. 0.97 (-) n.a. n.a. (+) (-) n.a. 0.99 0.95 n.a. 0.97 n.a. n.a. n.a. n.a. 0.86 n.a. 0.94 n.a. 0.91 0.99 n.a. n.a. 0.99 0.87 n.a. 0.87 n.a.	(+) Experimental (-) n.a. 0.91 n.a. n.a. (+) (-) n.a. n.a. n.a. n.a. 0.96 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.95 n.a.	CI Rt RTI-predicted (+) (-) n.a. 0.84 n.a. (+) Retip-predicted (-) 0.7 n.a. n.a. n.a. n.a. (+) (-) (+) (-) n.a. n.a. n.a. 0.77 n.a. n.a. 0.99 n.a. 0.22 n.a. 0.95 n.a. n.a. n.a. n.a. n.a. n.a. 0.66 n.a. 0.66 n.a. 0.91 n.a. 0.79 n.a. 0.83 n.a. n.a. n.a. n.a. 0.93 n.a. n.a. 0.83 n.a. 0.62 n.a. n.a. 0.67 n.a. 0.36 n.a. 0.72 n.a.	(+) predicted (-) logP-n.a. 0.8 n.a. n.a. (+) (-) n.a. n.a. n.a. n.a. 0.28 n.a. n.a. n.a. n.a. 0 n.a. 0.78 n.a. 0.68 n.a. n.a. n.a. 0.89 0.42 n.a. 0.04 n.a.	(+) n.a. Considered (-) CI isotopic fit (+) n.a. n.a. CI overall (-) n.a. n.a. n.a. n.a. n.a. Mn (+) (-) (+) (-) n.a. M2 n.a. 0.31 n.a. n.a. n.a. n.a. M1 n.a. 0.94 n.a. n.a. n.a. n.a. n.a. n.a. M2 n.a. 0.54 n.a. M1 n.a. 0.91 n.a. n.a. n.a. n.a. M2 n.a. 0.75 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. M1 n.a. 0.77 n.a.	(+) Global CI (-) n.a. G2_0.94 n.a. n.a. (+) n.a. G3_0.69 (-) G2_0.97 G3_0.96 n.a. n.a. n.a. n.a. n.a. n.a. G3_0.92 G3_0.76 n.a. G2_0.87 G3_0.89 n.a. n.a. G2_0.91 G2_0.77 n.a. G3_0.86 n.a.
	2-((3-dodecanamidopropyl)dimethylamm onio)acetate	CCCCCCCCCCCC(=O)NCCC[N+]( C)(C)CC(=O)[O-]	n.a.	377.2579	29.19	n.a.	0.88	n.a.	n.a.	n.a.	0.77	n.a.	0.65	n.a.	n.a.	n.a.	M2	n.a.	0.61	n.a.	G3_0.75
	2-chlorophenol	C1=CC=C(C(=C1)O)Cl	n.a.	126.9957	14.01	n.a.	0.92	n.a.	n.a.	n.a.	0.5	n.a.	0.19	n.a.	0.5	n.a.	M2	n.a.	0.91	n.a.	G3_0.78
	2-hydroxybenzoic acid	C1=CC=C(C(=C1)C(=O)O)O	n.a.	137.0243	21.9	n.a.	0.95	n.a.	n.a.	n.a.	0.6	n.a.	n.a.	n.a.	0.97	n.a.	n.a.	n.a.	n.a.	n.a.	G2_0.78
	2-hydroxycarbamazepine	C1=CC=C2C(=C1)C=CC3=C(N2C (=O)N)C=CC(=C3)O	253.0966	n.a.	12.72	0.96	n.a.	0.67	n.a.	n.a.	n.a.	0.46	n.a.	0.55	n.a.	M1	n.a.	0.88	n.a.	G3_0.84	n.a.
	2-Naphthalenesulfonic acid	C1=CC=C2C=C(C=CC2=C1)S(=O )(=O)O	n.a.	207.0124	7.25	n.a.	0.95	n.a.	n.a.	n.a.	0.69	n.a.	0.35	n.a.	0.37	n.a.	n.a.	n.a.	n.a.	n.a.	G2_0.82
	2-Naphthol	C1=CC=C2C=C(C=CC2=C1)O	n.a.	143.0503	22.93	n.a.	0.94	n.a.	n.a.	n.a.	0.87	n.a.	0.4	n.a.	0.81	n.a.	M1	n.a.	0.65	n.a.	G3_0.82
	2-naphthylamine	C1=CC=C2C=C(C=CC2=C1)N	144.0808	n.a.	14.41	0.97	n.a.	n.a.	n.a.	0.75	n.a.	0.23	n.a.	0.41	n.a.	n.a.	n.a.	n.a.	n.a.	G2_0.86	n.a.
	3-(4-Hydroxyphenyl)lactic acid	C1=CC(=CC=C1CC(C(=O)O)O)O	n.a.	181.0499	4.07	n.a.	0.91	n.a.	n.a.	n.a.	0.55	n.a.	0.83	n.a.	0.63	n.a.	n.a.	n.a.	n.a.	n.a.	G2_0.73
	3,5-dibromo-4-hydroxybenzoic acid	C1=C(C=C(C(=C1Br)O)Br)C(=O) O	n.a.	292.8458	19.22	n.a.	0.88	n.a.	n.a.	n.a.	0.96	n.a.	0	n.a.	0.59	n.a.	M2	n.a.	0.78	n.a.	G3_0.87
	3-Formylindole	C1=CC=C2C(=C1)C(=CN2)C=O	146.0596	n.a.	4.24	0.95	n.a.	n.a.	n.a.	0.68	n.a.	0.11	n.a.	0.14	n.a.	M1	n.a.	0.76	n.a.	G3_0.8	n.a.
	3-hydroxybenzoic acid	C1=CC(=CC(=C1)O)C(=O)O	n.a.	137.0245	5.38	n.a.	0.95	n.a.	n.a.	n.a.	0.55	n.a.	0.55	n.a.	0.41	n.a.	n.a.	n.a.	n.a.	n.a.	G2_0.75
	4-chlorophenol	C1=CC(=CC=C1O)Cl	n.a.	126.9958	11.81	n.a.	0.94	n.a.	n.a.	n.a.	0.76	n.a.	0.05	n.a.	0.35	n.a.	n.a.	n.a.	n.a.	n.a.	G2_0.85
	4-hydroxy-2,5,6-trichloroisophthalonitrile	C(#N)C1=C(C(=C(C(=C1Cl)C#N) Cl)Cl)O	n.a.	244.9085	27.74	n.a.	0.86	n.a.	n.a.	n.a.	n.a.	n.a.	0.92	n.a.	0.88	n.a.	M2	n.a.	0.96	n.a.	G3_0.91
	4-hydroxybenzoic acid	C1=CC(=CC=C1C(=O)O)O	n.a.	137.0244	8.69	n.a.	1	n.a.	n.a.	n.a.	0.8	n.a.	0.72	n.a.	0.64	n.a.	M1	n.a.	0.88	n.a.	G3_0.89
	4-hydroxyquinoline	C1=CC=C2C(=C1)C(=O)C=CN2	146.0599	n.a.	6.27	0.95	n.a.	n.a.	n.a.	0.71	n.a.	0.29	n.a.	0.22	n.a.	M1	n.a.	0.76	n.a.	G3_0.81	n.a.
	5-acetylsalicylamide	CC(=O)C1=CC(=C(C=C1)O)C(=O )N	180.0657	n.a.	6.21	0.76	n.a.	0.93	n.a.	0.5	n.a.	0	n.a.	0.81	n.a.	M1	n.a.	0.94	n.a.	G3_0.88	n.a.
	5-hydroxytryptophan	C1=CC2=C(C=C1O)C(=CN2)CC( C(=O)O)N	n.a.	219.0788	4.52	n.a.	0.91	n.a.	n.a.	n.a.	0.89	n.a.	0.27	n.a.	0.16	n.a.	n.a.	n.a.	n.a.	n.a.	G2_0.9
	Acesulfame	CC1=CC(=O)NS(=O)(=O)O1	n.a.	161.9863	3.12	n.a.	0.90	n.a.	0.96	n.a.	0.28	n.a.	0.97	n.a.	0.64	n.a.	n.a.	n.a.	n.a.	n.a.	G2_0.95
	Acetaminophen glucuronide	CC(=O)NC1=CC=C(C=C1)OC2C( C(C(C(O2)C(=O)O)O)O)O	n.a.	362.0640	4.09	n.a.	0.79	n.a.	0.61	n.a.	0.99	n.a.	0.97	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	G2_0.7

Table A1 -

 A1 (continued) Annotated compounds in Pélagie samples, with confidence indices (CI) on mass-to-charge (m/z) ratio, retention time (Rt), isotopic fit, and global confidence index. Compounds are detected in the [M+H] + form ( "(+)" columns) or the [M-H] -form ( "(-)" columns)

											CI Rt					CI Isotopic fit			
	Annotation	SMILES		m/z	Rt (min)	CI m/z	Experimental	RTI-predicted	Retip-predicted	logP-predicted	Considered Mn	CI overall	Global CI
			(+)	(-)		(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
	Dioctyl phthalate	CCCCCCCCOC(=O)C1=CC=CC=C 1C(=O)OCCCCCCCC	391.2846	n.a.	49.09	0.95	n.a.	n.a.	n.a.	0.86	n.a.	0.78	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	G2_0.91	n.a.
	Diphenylphosphate	C1=CC=C(C=C1)OP(=O)([O-])OC2=CC=CC=C2	251.0466	n.a.	46.2	0.99	n.a.	0.94	n.a.	0.8	n.a.	0.02	n.a.	0.01	n.a.	M1	n.a.	0.93	n.a.	G3_0.95	n.a.
	Diphenylsulfone	C1=CC=C(C=C1)S(=O)(=O)C2=C C=CC=C2	219.0473	n.a.	26.77	0.89	n.a.	n.a.	n.a.	0.74	n.a.	n.a.	n.a.	0.87	n.a.	M1	n.a.	0.82	n.a.	G3_0.82	n.a.
	Docosahexaenoic acid	CCC=CCC=CCC=CCC=CCC=CCC= CCCC(=O)O	n.a.	327.2327	46.43	n.a.	0.97	n.a.	1	n.a.	0.79	n.a.	0.89	n.a.	0.6	n.a.	M1	n.a.	0.98	n.a.	G3_0.98
	Dodecylbenzenesulfonic acid	CCCCCCCCCCCCC1=CC=CC=C1S (=O)(=O)O	n.a.	325.1851	48.41	n.a.	0.93	n.a.	n.a.	n.a.	0.98	n.a.	0.22	n.a.	0.69	n.a.	M1	n.a.	0.9	n.a.	G3_0.94
	Eicosapentaenoic acid	CCC=CCC=CCC=CCC=CCC=CCCC C(=O)O	n.a.	301.2169	45.99	n.a.	0.91	n.a.	n.a.	n.a.	0.88	n.a.	0.96	n.a.	0.82	n.a.	M1	n.a.	0.92	n.a.	G3a_0.9

Table A1 -

 A1 (continued) Annotated compounds in Pélagie samples, with confidence indices (CI) on mass-to-charge (m/z) ratio, retention time (Rt), isotopic fit, and global confidence index. Compounds are detected in the [M+H] + form ( "(+)" columns) or the [M-H] -form ( "(-)" columns)

										CI Rt						CI Isotopic fit	
	Annotation	SMILES	m/z	Rt (min)	CI m/z		Experimental	RTI-predicted	Retip-predicted	logP-predicted	Considered Mn	CI overall	Global CI
		(+)	(-)		(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)

Table A2 -

 A2 (continued) MS2 theoretical and experimental fragmentation data for annotated compounds

			MS/MS	
	Annotation	Theoretical fragments	Experimental fragments
		(+)	(-)	(+)	(-)
	Arabinosylhypoxanthine	n.a.	92.0241, 108.0190, 135.0301	n.a.	92.0247, 108.0199, 135.0305
	Aspartame	115.0543, 135.0446, 143.0485, 171.0453, 201.0548	n.a.	115.0551, 135.0450, 143.0495, 171.0454, 201.0556	n.a.
	Auraptene	n.a.	170.0038, 183.0014, 197.0272 n.a.	170.0040, 183.0114, 197.0244
	Azelaic acid	n.a.	57.0331, 95.0488, 97.0645, 123.0803, 125.0959	n.a.	57.0339, 95.0486, 97.0652, 123.0806, 125.0963
	Benzothiazole	n.a.	65.0382, 105.0448, 109.0108	n.a.	65.0382, 105.0448, 109.0109
	Benzothiazole sulfonic acid	n.a.	57.9751, 134.0069, 150.0019	n.a.	57.9749, 134.0071, 150.0023
	Benzylbutylphthalate	380.332	n.a.	380.3319	n.a.
	Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2-hydroxy-5-methylbenzyl)-4-methylphenyl) terephthalate	91.0546, 115.0548,130.0655, 159.0921, 170.0600 143.0727, 146.0592,	n.a.	91.0543, 115.0543,130.0654, 159.0925, 170.0605 143.0728, 146.0598,	n.a.
	Bromoxynil	n.a.	78.92	n.a.	78.92
	Caffeine	149.02	n.a.	149.02	n.a.
	Carbamazepine	95.049, 121.0282, 139.0388	n.a.	95.0491, 121.0283, 139.0384	n.a.
	Carveol	283.1693, 431.1844, 589.2939 n.a.	283.1700, 431.1849, 589.2947 n.a.
		51.0233, 53.0389, 77.0382,		51.0229, 53.0388, 77.0375,	
	Carylophyllene oxide	95.0493, 105.0447, 125.0055,	n.a.	95.0491, 105.0445, 125.0060,	n.a.
		141.0004		140.9999	
	Chavicol sulfate	n.a.	105.0710, 133.0659	n.a.	105.0710, 133.0657
	Cinchonidine	n.a.	96.9588, 221.1544, 236.1056	n.a.	96.9590, 221.1546, 236.1055
		79.0548, 81.0701, 91.0546,		79.0539, 81.0705, 91.0537,	
	Cinnamaldehyde	95.0854, 105.0702, 107.0849,	n.a.	95.0844, 105.0699, 107.0848,	n.a.
		133.1028, 147.1185, 161.1331		133.1017, 147.1179, 161.1330	
	CMPF	n.a.	96.9588, 135.0810, 151.1119, 177.0913, 195.1021	n.a.	96.9584, 135.0818, 151.1121, 177.0925, 195.1027
	Cocamidopropyl Betaine	67.0282, 108.0554, 110.0713, 122.0589, 138.0668, 163.0611	n.a.	67.0288, 108.0556, 110.0711, 122.0594, 138.0661, 163.0613	n.a.
	Coumaraldehyde	77.0386, 105.0335	n.a.	77.0388, 105.0337	n.a.
	Coumaric acid	n.a.	145.9019	n.a.	145.9011
	Cresol sulfate	n.a.	92.0279, 107.0493	n.a.	92.0275, 107.0500
	Di(ethylhexyl) phthalate	69.0454, ,96.0561, 124.0507, 142.0611	n.a.	69.0451, 96.0563, 124.0502, 142.0612	n.a.
		77.0380, 79.0550, 9.0540,		77.0386, 79.0552, 9.0544,	
	Dioctyl phthalate	95.0490, 108.0200, 121.0650,	n.a.	95.0485, 108.0199, 121.0651,	n.a.
		123.0440		123.0441	

Table A2 -

 A2 (continued) MS2 theoretical and experimental fragmentation data for annotated compounds

			MS/MS	
	Annotation	Theoretical fragments	Experimental fragments
		(+)	(-)	(+)	(-)
	Diphenylphosphate	58.0652, 86.0968	n.a.	58.0655, 86.0965	n.a.
	Diphenylsulfone	91.0553, 117.0564, 118.0657, 130.0648	n.a.	91.0549, 117.0568, 118.0658, 130.0655	n.a.
	Docosahexaenoic acid	n.a.	229.1958, 283.2446	n.a.	229.1953, 283.2439
	Dodecylbenzenesulfonic acid	n.a.	170.0042, 183.0121, 197.0277, 255.1376	n.a.	170.0041, 183.0128, 197.0287, 255.1377
	Eicosapentaenoic acid	n.a.	203.1802, 229.1957, 257.2274 n.a.	203.1807, 229.1951, 257.2275
	Ferulic acid	n.a.	133.0299, 149.0608	n.a.	133.0305, 149.0609
	Fipronil sulfone	n.a.	246.0120, 281.9913, 414.9496 n.a.	246.0117, 281.9920, 414.9500
	Ibuprofen	n.a.	91.0549, 105.0701, 119.0855	n.a.	91.0555, 105.0708, 119.0848
	Indole-3-acetaldehyde	69.0442, 83.0606, 110.0718, 123.0425, 138.0659	n.a.	69.0448, 83.0603, 110.0712, 123.0427, 138.0662	n.a.
	Indole-3-carbinol	167.0730, 180.0808, 182.0964, 210.0914	n.a.	167.0721, 180.0812, 182.0966, 210.0920	n.a.
	Indoxyl sulfate	n.a.	79.9578, 132.0460	n.a.	79.9570, 132.0457
	Ioxynil	n.a.	126.9051, 230.9182	n.a.	126.9041, 230.9178
	Isobutylparaben	71.0851, 149.0232, 261.1485	n.a.	71.0858, 149.0234, 261.1490	n.a.
	Isopropylparaben	55.0195, 77.0392, 91.0541, 103.0549, 105.0707, 115.0545	n.a.	55.0199, 77.0386, 91.0544, 103.0550, 105.0707, 115.0541	n.a.
	Lenticin	60.0815, 118.0653, 146.0600, 170.0599, 188.0705	n.a.	60.0810, 118.0651, 146.0597, 170.0596, 188.0713	n.a.
	Lidocaine	77.0380, 103.0560, 128.0500, 130.0638	n.a.	77.0388, 103.0555, 128.0501, 130.0642	n.a.
	Lumichrome	121.0284, 139.0389, 163.0754 n.a.	121.0282, 139.0393, 163.0751 n.a.
	Mercaptobenzothiazole	n.a.	57.9752, 134.0069	n.a.	57.9750, 134.0063
	Methionine	51.0237, 65.0364, 91.0539, 117.0576, 118.0646	n.a.	51.0236, 65.0365, 91.0541, 117.0570, 118.0651	n.a.
	Methylperfluorooctanesulfonamido)acetic acid	n.a.	418.9773, 482.9356, 511.9607 n.a.	418.9771, 482.9356, 511.9617
	Paracetamol	91.0543, 149.02335, 239.0708 n.a.	91.0542, 149.0234, 239.0707	n.a.
	Paraxanthine	n.a.	122.0365, 164.0341	n.a.	122.0361, 164.0341
	Pentachlorophenol	n.a.	n.a.	n.a.	n.a.
	Perfluoroheptanesulfonic acid	n.a.	168.9892	n.a.	168.9903
	Perfluorohexanesulfonic acid	n.a.	98.9538, 118.9930, 168.9892	n.a.	98.9535, 118.9937, 168.9882
	Perfluorooctanesulfonic acid	n.a.	98.9538, 118.9930, 168.9892	n.a.	98.9533, 118.9931, 168.9985
	Phenol sulfate	n.a.	79.9551, 93.0325	n.a.	79.9558, 93.0331

Table A2 -

 A2 (continued) MS2 theoretical and experimental fragmentation data for annotated compounds

			MS/MS	
	Annotation	Theoretical fragments	Experimental fragments
		(+)	(-)	(+)	(-)
	Piperidone	91.0543, 118.0662, 128.0511, 132.0424, 146.0614	n.a.	91.0546, 118.0660, 128.0519, 132.0429, 146.0607	n.a.
	Piperine	56.0493, 72.0444, 82.0651, 94.0650	n.a.	56.0494, 72.0451, 82.0651, 94.0649	n.a.
	Propylparaben	n.a.	92.0266, 121.0300, 136.0167	n.a.	92.0263, 121.0302, 136.0166
	Propylparaben sulfate	n.a.	121.0297, 137.0239, 179.0716 n.a.	121.0296, 137.0244, 179.0712
	Reserpine	57.0701, 83.0855, 101.0971, 143.0104, 199.0730, 299.1618	n.a.	57.0702, 83.0850, 101.0972, 143.0102, 199.0738, 299.1623	n.a.
	Solanidine	127.0164, 155.0480	n.a.	127.0155, 155.0472	n.a.
	Sucralose	n.a.	146.9399, 359.0325	n.a.	146.9391, 359.0319
	Theobromine	79.0544, 91.0543, 107.0856, 119.0856	n.a.	79.0551, 91.0544, 107.0853, 119.0859	n.a.
	Theophylline	67.0544, 81.0699, 91.0543, 105.0714, 119.0847	n.a.	67.0545, 81.0701, 91.0547, 105.0721, 119.0841	n.a.
	Thymol	103.0542, 120.0808, 130.0651, 131.0497	n.a.	103.0542, 120.0811, 130.0655, 131.0499	n.a.
	Triclosan glucuronide	n.a.	n.a.	n.a.	n.a.
	Triclosan sulfate	n.a.	286.9448	n.a.	286.9448
	Triethylphosphate	183.1745, 240.2315	n.a.	183.1751, 240.2326	n.a.
	Triphenylphosphine oxide	110.0598, 134.0593	n.a.	110.0602, 134.0596	n.a.
	Tris(2-butoxyethyl)phosphate	149.0219, 173.0513, 201.0465, 219.0570	n.a.	149.0220, 173.0515, 201.0472, 219.0568	n.a.
	Tritosulfuron	n.a.	193.0347, 223.9999	n.a.	193.0344, 223.9998
	Tryptophan	77.0386, 95.0492, 152.0633, 175.0156, 215.0257	n.a.	77.0387, 95.0484, 152.0627, 175.0165, 215.0252	n.a.
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souvent présentes à l'état de trace dans des matrices biologiques complexes, et que les outils d'annotation automatisés n'existent pas encore. Ainsi, les méthodes classiquement utilisées en métabolomique doivent être adaptées et optimisées pour ces nouvelles applications nécessitant de meilleures performances en termes de sélectivité, sensibilité et robustesse. Ce travail de thèse présente l'optimisation des étapes méthodologiques les plus critiques pour implémenter des approches non-ciblées à large échelle basées sur la spectrométrie de masse à haute résolution. L'efficacité des méthodes optimisées dans le cadre de cette thèse pour caractériser l'exposome chimique interne humain a été démontrée. Ces approches constituent des atouts importants pour mieux comprendre l'effet de notre environnement chimique sur l'origine d'événements de santé. Elles génèrent un intérêt croissant aux échelles européenne et internationale, comme démontré par la création de l'infrastructure EIRENE par exemple. La mise en place de collaborations à cette échelle permettra de générer des données robustes et comparables entre les laboratoires pour décrire plus précisément et exhaustivement l'exposome chimique interne humain.
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Table A6 -Phree and PPT methods detection limits on 30 xenobiotics 

Appendix S.1 -Solvents and chemicals

Native and isotopically labeled standard compounds were purchased from suppliers Bertin,

LGC, Sigma Aldrich and VWR and were stored at -20°C. Details can be found in Supporting Information (SI, Table A1). Ultrapure water was generated using a Millipore Milli-Q Gradient system. UPLC-MS-grade acetonitrile and formic acid were purchased from Biosolve (Dieuze, France). UPLC-MS-grade methanol was purchased from Carlo Erba (Val-de-Reuil, France).

HPLC-MS-grade methyl tert-butyl ether (MTBE) and ethyl acetate were purchased from Fisher Scientific (Illkirch-Graffenstaden, France). Aqueous ammonia was purchased from VWR (Strasbourg, France). injected with each batch to respectively ensure lack of carryover in the UPLC system and monitor contamination linked to the sample preparation process. Composite QC samples were injected after the blanks to equilibrate the analytical system, and repeatedly throughout the batch (every 5 samples). Samples were injected randomly. IS peak areas were monitored to assess analytical drift.

Appendix S.4 -Sample preparation procedures

The twelve sample preparation methods used for this work are described below. As the spiking level, sample volume and recovery volume vary between experiments; they are not specified in each procedure and are recapitulated in Table B1.

Table B1 -Spiking levels, sample volumes and recovery volumes used for all sample preparation procedures for three spiking experiments.

 Protein precipitation

Protein precipitation was carried out using a 4:1 (v/v) cold methanol to matrix ratio. Samples were left at -20°C for 1h to improve protein removal. Centrifugation was performed at 4°C and 17,000g for 20 min, after which supernatants were collected and evaporated to dryness under A 99:1 (v/v) acetonitrile to formic acid mixture was added to the matrix using a 3:1 (v/v) ratio.

Samples were vortexed then placed on the plate and drawn through it drop by drop under vacuum. An additional volume of 100 μL of the 99:1 (v/v) acetonitrile to formic acid mixture was drawn through the plate for rinsing. The resulting solutions were evaporated to dryness under vacuum, and recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to obtain the desired sample concentration factor.

o Phree (Phenomenex)-Methanol A 99:1 (v/v) methanol to formic acid mixture was added to the matrix using a 4:1 (v/v) ratio.

Samples were vortexed then placed on the plate and drawn through it drop by drop under

vacuum. An additional volume of 100 μL of the 99:1 (v/v) methanol to formic acid mixture was drawn through the plate for rinsing. The resulting solutions were evaporated to dryness under vacuum, and recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to obtain the desired sample concentration factor.

o PLD (Biotage)

A 99:1 (v/v) acetonitrile to formic acid mixture was added to the matrix using a 4:1 (v/v) ratio.

Samples were vortexed then placed on the plate and drawn through it drop by drop under A 98:2 (v/v) ultrapure water to formic acid mixture was added to the matrix using a 1:1 (v/v) ratio. Solid phase was conditioned with 1 mL of methanol followed by 1 mL of ultrapure water.

Samples were placed on the plate and drawn through it drop by drop under vacuum. An additional volume of 2 mL of a 95:5 (v/v) ultrapure water to methanol mixture was drawn Appendices 230 through the plate for rinsing. After drying, elution was performed using 1 mL of methanol (first extract), then 1 mL of ethyl acetate (second extract). Extracts were separately evaporated to dryness under vacuum, and recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to obtain the desired sample concentration factor.

o Strata XC (Phenomenex)

A 98:2 (v/v) ultrapure water to formic acid mixture was added to the matrix using a 1:1 (v/v) ratio. Solid phase was conditioned with 1 mL of methanol followed by 1 mL of ultrapure water.

Samples were placed on the plate and drawn through it drop by drop under vacuum. An additional volume of 2 mL of a 95:5 (v/v) ultrapure water to methanol mixture was drawn through the plate for rinsing. After drying, elution was performed using 1 mL of a 95:5 (v/v) methanol to aqueous ammonia ratio (first extract), then 1 mL of methanol (second extract).

Extracts were separately evaporated to dryness under vacuum, and recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to obtain the desired sample concentration factor.

 Supported liquid extraction

Samples were placed on the plate and drawn though it drop by drop under vacuum. Elution was performed with twice 900 μL of methyl tert-butyl ether (MTBE). The resulting solutions were evaporated to dryness under vacuum, and recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to obtain the desired sample concentration factor. 

LGC Powder (10:90)) were also injected to ensure that there was no carryover in the UHPLC system that might affect adjacent results in analytical runs. Each run commenced with the injection of blank samples (workup and solvent) followed by injection of a QC sample. The samples were injected randomly with QC samples analyzed after every 7 samples. Title : Methodological developments for the non-targeted characterization of the human internal chemical exposome in epidemiological studies Keywords : Exposome, Non-targeted screening, Suspect screening, High-resolution mass spectrometry Abstract: Chronic exposure to complex mixtures of chemical contaminants (xenobiotics) is suspected to contribute to the onset of chronic diseases. The technological advances high-resolution mass spectrometry (HRMS), as well as the concept of exposome, have set the stage for the development of new non-targeted methods to characterize human exposure to xenobiotics without a priori. These innovative approaches may therefore allow changing scale to identify chemical risk factors in epidemiological studies. However, non-targeted approaches are still subject to a number of barriers, partly linked to the presence of these xenobiotics at trace levels in biological matrices. An optimization of every analytical (i.e. sample preparation) and bioinformatical (i.e. data processing, annotation) step of the workflow is thus required. The main objective of this work is to implement an HRMS-based non-targeted workflow applicable to epidemiological studies, to provide an operational solution to characterize the internal chemical exposome at a large scale. The undertaken developments allowed proposing a simple sample preparation workflow based on two complementary methods to expand the visible chemical space (up to 80% of features specific to one method). The optimization of various data processing tools, performed for the first time in an exposomics context, allowed demonstrating the necessity to adjust key parameters to accurately detect xenobiotics. Moreover, the development of a software to automatize suspect screening approaches using MS1 predictors, and of algorithms to compute confidence indices, allowed efficiently prioritizing features for manual curation. A large-scale application of this optimized workflow on 125 serum samples from the Pélagie cohort allowed demonstrating the robustness and sensitivity of this new workflow, and enriching the documented chemical exposome with the uncovering of new biomarkers of exposure.

Table A1 -(continued) Standard compounds form and suppliers

Table A1 -(continued) Standard compounds form and suppliers

Appendix S.4 -In-house annotation workflow

Confidence levels, detection frequency and toxicological data