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ESFRI: European Strategy Forum on

Research Infrastructures
ESI: ElectroSpray lonization

EWAS: Exposome-Wide Association Study

EXPANSE: EXposome Powered tools for
healthy living in urbAN Settings

FC: Fold change

FDR: False Discovery Rate

FP7: Seventh Framework Programme
GC: Gas Chromatography

GWAS: Genome-Wide Association Study
HBM: Human BioMonitoring

HGP: Human Genome Project

HHEAR: Human Health Exposure Analysis
Resource

HILIC: Hydrophilic Interaction Llquid
Chromatography

HRMS: High Resolution Mass

Spectrometry

IC: lon Chromatography

LC: Liquid Chromatography
LLE: Liguid-Liquid Extraction
MTBE: Methyl Tert-Butyl Ether
m/z: Mass-to-charge ratio

NIEHS: National Institute of Environmental

Health Sciences
NTA: Non-Targeted Approaches

PARC: Partnership for the Assessment of

Risks from Chemicals
PCA: Principal Component Analysis

PCB: Polychlorinated Biphenyls
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PLR: PhosphoLipid Removal
PLS: Partial Least Square

PLS-DA: Partial Least Square-

Discriminant Analysis

POP: Persistent Organic Pollutants
PPT: Protein PrecipiTation

QC: Quality Control

QTOF: Quadrupole Time-Of-Flight
RANSAC: RANdom SAmple Consensus
RP: Reverse Phase

Rt: Retention time

SLE: Supported Liquid Extraction

S/N: Signal-to-noise ratio

SNP: Single Nucleotide Polymorphisms
SPE: Solid Phase Extraction

SPF: Santé Publique France

SPM: Sample Preparation Method
SPME: Solid Phase MicroExtraction
S/N: Signal-to-noise ratio

SWATH: Sequential Window Acquisition of
all THeoretical fragment ion spectra

TOF: Time-Of-Flight

U(H)PLC: Ultra(-High) Performance Liquid
Chromatography
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1. Articles in peer-reviewed journals

1.1. As part of the main research project
1.1.1. Published
Chaker, J., Kristensen, D. M., Halldorsson, T. I., Olsen, S.F., Monfort, C., Chevrier, C.,
Jégou, B., David, A.* (2022). Comprehensive Evaluation of Blood Plasma and Serum

Sample Preparations for HRMS-Based Chemical Exposomics: Overlaps and Specificities.
Anal Chem (IF=6.8), 94(2), 866—874.
This article constitutes the third chapter of this PhD work.

Monteiro Bastos da Silva *, J., Chaker, J. ¥, Martail, A., Costa Moreira, J., David, A."*, &
Le Bot, B.' (2021). Improving Exposure Assessment Using Non-Targeted and Suspect
Screening the ISO/IEC 17025: 2017 Quality Standard as a Guideline. Journal of
Xenobiotics (IF=N/A), 11(1), 1-15.

*,'Both authors contributed equally.

This article is mentioned in the Material and methods (second chapter) of this PhD work.

Chaker, J., Gilles, E., Leger, T., Jegou, B., & David, A.* (2021). From metabolomics to
HRMS-based exposomics: Adapting peak picking and developing scoring for MS1 suspect
screening. Anal Chem (IF=6.8), 93(3), 1792-1800.

This article constitutes the fourth chapter of this PhD work.

1.1.2. In preparation
Chaker, J., Gilles, E., ..., David, A., A new suspect screening software for the rapid

annotation of HRMS-based exposomics datasets. In preparation for submission to

Analytical Chemistry
Chaker, J., Bonvallot, N., Warembourg, C., Chevrier, C., David, A., A suspect screening

method for the comprehensive characterization of the chemical exposome in a Breton pre-

teen population. In preparation for submission to Environment International.

1.2. As part of side projects

David A., Chaker J., Multigner, L., Bessonneau, V.*, Exposome chimique et approches «
non ciblées » : Un changement de paradigme pour évaluer I'exposition des populations
aux contaminants chimiques. Med Sci (Paris) 2021, 37 (10), 895-901.
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David, A.*, Chaker, J., Price, E. J., Bessonneau, V., Chetwynd, A. J., Vitale, C. M.,
Klanova, J., Walker, D.l., Antignac, J.P., Barouki, R., Miller, G. W. (2021). Towards a
comprehensive characterisation of the human internal chemical exposome: Challenges
and perspectives. Environ Int (IF=7.6), 156, 106630.

David, A.*, Chaker, J., Leger, T., Al-Salhi, R., Dalgaard, M.D., Styrishave, B., [...],
Kristensen, D. M. (2021). Acetaminophen metabolism revisited using non-targeted

analyses: Implications for human biomonitoring. Environ Int (IF=7.6), 149, 106388.

Christensen, S. L., Rasmussen, R. H., Ernstsen, C., La Cour, S., David, A., Chaker, J.,
[...], Kristensen, D. M.* (2021). CGRP-dependent signalling pathways involved in mouse
models of GTN- cilostazol- and levcromakalim-induced migraine. Cephalalgia (IF=6.3),
41(14), 1413-1426.

Rehfled, A., Frederiksen, H., Rasmussen, R.H., David, A., Chaker, J., Nielsen, B.S., Juul,
A., Skaakebaek, N.E., Kristensen, D.M.* (2022), Human sperm cells can form paracetamol
metabolite AM404 that directly interferes with sperm calcium signalling and function
through a CatSper-dependent mechanism. Human Reproduction (IF=6.9), DOI
10.1093/humrep/deac042

*corresponding author

2. Oral communications

2.1. International conferences

Chaker, J.*, Léger, T., Gilles, E., Jégou, B., Kristensen, D.M., David, A., Optimizing a
suspect screening annotation workflow for large-scale application in human cohort, SETAC
Europe 30th Annual Meeting, 3-7 May 2020, Online.

2.2. National and regional conferences

Chaker, J.*, Léger, T., Gilles, E., Jégou, B., Kristensen, D.M., David, A., Optimizing peak
picking and development of a suspect screening workflow for a rapid annotation of the
human chemical exposome from LC-HRMS datasets, Annual meeting of the doctoral

school “Biologie-Santé”, 10-11 December 2020, Online.

Chaker, J.*, Léger, T., Gilles, E., Jégou, B., Kristensen, D.M., David, A., Développements

analytiques pour la caractérisation non-ciblée de I'exposome chimique dans le sang
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humain : challenges et perspectives, Junior researcher workshop, Société Francophone
de Santé et Environnement, 04-05 November 2020, Online.

Chaker, J.*, Léger, T., Gilles, E., Jégou, B., Kristensen, D.M., David, A., Analytical
developments for the non-targeted characterization of the human chemical exposome,
Annual meeting of the public health doctoral network “Réseau Doctoral en Santé Publique”,
10-11 June 2021, Rennes.

*presenting author

3. Posters

Chaker, J.*, Kristensen, D.M., Jégou, B., David, A., Développements analytiques pour la
caractérisation non-ciblée de I'exposome chimique dans des matrices biologiques
humaines, 12th Annual meeting of the Réseau Francophone de Métabolomique et

Fluxomique, 21-23 May 2019, Clermont-Ferrand, France.

Chaker, J.*, Kristensen, D.M., Cheuvrier, C., Jégou, B., David, A., Assessing sample
preparation methods for HRMS-based human chemical exposomics: the case of plasma
and serum, 17th Annual Conference of the Metabolomics Society, 22-24 June 2021,

Online.

*presenting author

4. Large-scale collaboration

Participation to the NORMAN Network’s first collaborative trial in biota (i.e. freeze-dried
whole fish homogenate samples from a contaminated and a reference site). The efficiency
of reference and in-house sample preparation methods as well as suspect and non-
targeted screening workflows were compared between 16 labs. Two months of this PhD
were dedicated to this task. A publication titled “What’s in the fish? Harmonization efforts
in sample preparation methods for suspect and non-target screening in biota” summarizing
this collaborative trial’s findings is in preparation. The implementation of the workflow
developed in this PhD (from sample preparation to annotation) resulted in the most
successful identification of spiked compounds for LC-HRMS among 16 participating

laboratories, and was deemed of interest for further harmonization efforts.
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5. Outreach and science popularization activities

Scientific animation of the French School of Public Health (EHESP) stand on the chemical

exposome at the Festival of Science, 05-06 October 2021, Rennes.

Scientific animation of the joint French School of Public Health (EHESP) and Irset stand
on the chemical exposome at the Festival of Science, 13-15 October 2020, Rennes.

Scientific conception of the joint French School of Public Health (EHESP) and Irset stand
on the chemical exposome at the Festival of Science, July-October 2020, Rennes.

Scientific animation of the French School of Public Health (EHESP) stand on urban health

at the Festival of Science, 6 October 2019, Rennes.

Interviewed for the Swiss radio RTS’s program “CQFD” titled “L’exposome ou comment
'environnement agit sur notre santé” regarding the concept of the exposome and its

implementation. Broadcasted 15 May 2019.

6. Supervising and training

Training of all new team members (5 postdoctoral researchers) to sample preparation, LC-

HRMS analysis, data processing and annotation since 2019.

Supervising of |brahim Maras during his master's degree internship, « Applications
d’approches non-ciblées par UHPLC-ESI-HRMS pour caractériser I'exposition prénatale

aux mélanges de xénobiotiques”, March 1, 2020 — August 17, 2020.

Training of Habiba Selmi during her master’s degree apprenticeship, « Identification de
métabolites de paracétamol issus du microbiote intestinal par analyses non-ciblées par
UHPLC-ESI-HRMS et HRMS/MS » to non-targeted approaches (including sample
preparation, LC-HRMS analysis, data processing and annotation), January 1, 2021-August
31, 2021.

Training of Jaroslav Semerad (postdoctoral fellow from the Czech Academy of Science,
Prague) to non-targeted data processing and annotation to characterize water samples.
November 8, 2021 — December 3, 2021.
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« Si le probléeme a une solution, il ne sert a rien de s'inquiéter. Mais s'il n'en a pas, alors

s'inquiéter ne change rien. »

Proverbe tibétain
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Résumé de la these en francgais

1. Introduction

Les maladies chroniques, telles que les cancers, les maladies cardio-vasculaires ou encore
les diabetes étaient estimées responsables de 71% de la mortalité mondiale en 2018
L’origine de la survenue de ces événements de santé multifactoriels a d’abord été investiguée
au travers du Human Genome Project (HGP), qui a permis de procéder a un séquencage des
3 milliards de paires de bases du génome humain a la suite d’un effort international pendant
13 ans?. Ce projet a permis de mener des études d’association pangénomiques afin d’identifier
des facteurs génétiques de susceptibilité a certains événements de santé®. Bien que plusieurs
variants génétiques aient pu étre associés a certains états de santé, il a également été
constaté que les maladies considérées ne se déclenchaient que pour une partie des individus
présentant ces variants?. Ce phénomeéne, appelé pénétrance, dépend de nombreux facteurs,
tels que limportance de la voie métabolique affectée, I'existence de voies métaboliques
alternatives, ou encore les interactions avec I'environnement*. Dans ce contexte, Christopher
Wild définit en 2005 le concept d’exposome, marquant le début d’un intérét croissant de la
communauté scientifique pour la caractérisation des liens existant entre les facteurs
environnementaux et la survenue d’événements de santé défavorables, incluant les maladies
chroniques®. L'exposome est alors définit comme étant I'ensemble des expositions
environnementales (incluant des facteurs de style de vie), a partir de la période prénatale. En
2012, il étend cette définition pour prendre en compte les réponses biologiques (i.e.
I'exposome interne) a ces facteurs environnementaux®. La caractérisation de I'exposome est
donc une tache complexe, puisqu’elle implique de capturer des facteurs de natures trés
diverses (socioéconomiques, physigues, biologigues, chimigues, etc.) et qui évoluent au cours
de la vie. En pratique, il n’existe actuellement pas de moyen dynamique de mesurer
I'exposome ; il est donc souvent entrepris de se concentrer sur des périodes particulierement
sensibles, telles que la période prénatale, 'enfance, I'adolescence, ou toute autre période
d’'intérét vis-a-vis de I'événement de santé considéré. De plus, la caractérisation de
I'exposome est souvent partitionnée en fonction de la nature des facteurs environnementaux
considérés. Dans le cadre de cette thése, c’est I'exposition humaine aux contaminants
chimiques (i.e. les molécules exogenes dont des xénobiotiques), ou I'exposome chimique
humain interne, qui est considéré, puisque cette exposition est fortement suspectée de

contribuer a la survenue d’événements de santé déléteres.

La mesure de I'exposition des humains aux xénobiotiques se fait couramment de maniére
conventionnelle a I'aide d’approches dites « ciblées », qui permettent de générer des données
quantitatives sur des listes préétablies de composés d’intéréts. Bien que ces méthodes soient

extrémement utiles pour évaluer I'exposition humaine a des composés supposes ou averes
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toxiques, elles peuvent étre complémentées par des méthodes dites « non-ciblées ».
Encouragées par le développement de technologies de pointe telles que la spectrométrie de
masse a haute résolution, ces méthodes innovantes commencent a voir le jour pour
investiguer I'exposition des humains aux xénobiotiques sans a priori. Ces nouvelles méthodes
appliguées a des matrices biologiques permettent de profiler des milliers de molécules
endogénes et exogenes simultanément sans avoir préalablement établi de liste de composés
d’intéréts. Elles peuvent étre utilisées a des fins exploratoires pour détecter et identifier de
nouvelles molécules de synthése qui arrivent nouvellement dans I'environnement en
remplacement de celles considérées toxiques et dont 'usage devient restreint, ou qui ont été
sous-investiguées jusqu’a présent’. Les méthodes non-ciblées reposant sur la spectrométrie
de masse haute résolution impliquent dans la plupart des cas une technique séparative en
amont pour décomplexifier les échantillons biologiques, telle que la chromatographie liquide.
Ce couplage permet de générer différentes données chimigues caractérisant les signaux
détectés, telles que le ratio masse/charge (m/z) auxquels sont associés un temps de rétention
(Rt), et une abondance (e.g. aire) qui est propre a chaque échantillon analysé. Ces
informations permettent de remonter a une élucidation structurale (i.e. a 'annotation), c’est-a-
dire de les relier a une identité chimique par différents éléments de preuve. Depuis le début
des années 2010, ces méthodes ont permis d’évaluer la présence de composés dans des

matrices environnementales? et biologiques® °.

Bien que trés prometteuses concernant I'évaluation de I'exposition humaine aux contaminants
chimiques, les méthodes non-ciblées sont toujours sujettes a plusieurs verrous
méthodologiques et techniques. Tout d’abord, la large diversité de contaminants chimiques
auxquels les humains sont potentiellement exposés implique que chaque choix
méthodologique (e.g. technique analytique, préparation d’échantillons, etc.) imposera une
limitation de I'espace chimique visible, qu’il convient de définir. En effet, il y a actuellement 111
millions de composés référencés dans la base de donnée PubChem?!! ; la diversité de leurs
caractéristiques physico-chimiques (e.g. masse, polarité) explique I'impossibilité d’'une part de
les profiler avec une seule méthode, et d’autre part d'évaluer les performances de
recouvrement et de sensibilité pour les composés détectables par la méthode considérée. Par
ailleurs, la caractérisation de I'exposome chimique au travers de matrices biologiques est
complexe, puisque ces matrices sont constituées de composés dans une large gamme de
concentrations (du g/L pour certains composés endogenes au pg/L pour certains contaminants
exogenes environnementaux). Or, ces différentiels de concentration peuvent induire des
phénomeénes tels que la suppression ionique, qui méne au masquage des composés peu
abondants par des composés largement abondants. Il est donc impératif de développer des

méthodes analytiques adaptées pour la détection de ces molécules exogénes dans les

26



Résumé de la these en francgais

matrices biologiques avec des approches non-ciblées (i.e. qui permettent d’éliminer
suffisamment de composés matriciels en forte abondance). De plus, les outils bioinformatiques
utilisés pour traiter les données non-ciblées ont, pour la plupart, été développés pour la
métabolomique, qui s’axe sur I'étude des composés endogénes, qui peuvent étre jusqu’a 10*°
fois plus abondants en matrice biologique que les composés environnementaux!?. Leur
application pour l'identification de composés exogenes peu abondants peut donc étre limitée.
Enfin, le processus d’annotation est fastidieux et incomplet ; il consiste a rassembler des
preuves de différentes natures pour valider une identité chimique pour un signal'®. Ce
processus inclut quasi-systématiquement une vérification manuelle pour éliminer les faux
positifs, qui sont souvent nombreux. On estime aujourd’hui que moins de 10% des signaux
identifiés sont annotés!®. Ainsi, ces freins méthodologiques et technologiques doivent étre
surmontés pour obtenir des méthodes non-ciblées robustes, adaptées aux matrices

biologiques, et adaptées aux applications a large échelle.

Dans ce contexte, ce travail de doctorat s’inscrit dans une dynamique visant a apporter, a
terme, une réponse opérationnelle au concept d’exposome chimique dans le champ de la
santé environnementale. L’objectif final est de pouvoir implémenter ces approches non-ciblées
au sein d’études épidémiologiques a large échelle pour contribuer a lidentification de
nouveaux mélanges ou de substances émergentes associés a certains événements de santé.
Ainsi, deux objectifs principaux ont été fixés pour ce travail : i) développer un workflow robuste
de méthodes innovantes de production et de traitement de données analytiques non-ciblées,
incluant la préparation d’échantillon, la méthode analytique de chromatographie liquide
couplée a la spectrométrie de masse haute résolution, le traitement des données, et
I'annotation, et ii) appliquer ces méthodes a plus large échelle sur 125 échantillons de sérum

afin de permettre une évaluation de I'exposition chimique de 125 adolescents bretons.

2. Acquisition de I’empreinte chimique : optimiser I’équilibre
entre sensibilité et sélectivité

L’acquisition de 'empreinte chimique a tout d’abord été optimisée. En effet, a caractérisation
d’échantillons biologiques tels que le plasma ou le sérum dépend en partie du choix de la
méthode de préparation d’échantillon. Ce choix est décisif, puisque les composés éliminés a
cette étape initiale ne peuvent pas étre récupérés par la suite. De plus, bien que les données
chimiques générées pourront étre ré-analysées a mesure que de nouveaux outils et
algorithmes de traitement des données apparaitront, les échantillons biologiques ne sont

disponibles qu’en quantités limitées ; leur préparation doit donc étre optimisée initialement.
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L’'un des freins a I'étude de I'exposome chimique est la présence de certains contaminants a
trés faible dose dans le corps, et donc dans les échantillons biologiques. De ce fait, de hautes
performances en sensibilité sont nécessaires pour caractériser plus exhaustivement
'exposome chimique. Or, les matrices biologiques sont complexes car constituées de
composés endogénes en abondance, tels que les protéines et les phospholipides par
exemple. Ces composés peuvent, de par leur concentration largement supérieure, limiter la
détection des composés exogénes a cause de phénomenes tels que la suppression ionique.
Ainsi, il est nécessaire de procéder a une purification de I'échantillon pour éliminer ces
interférents analytiques, tout en conservant tous les analytes d’intérét. Cet équilibre entre
sensibilité et sélectivité doit donc étre pris en compte lors de 'optimisation de la méthode de

préparation d’échantillons.

Dans le cadre de cette thése de doctorat, douze méthodes de préparation d’échantillons ont
été évaluées pour la caractérisation de 'exposome chimique par des échantillons de plasma
ou de sérum. Cette évaluation a reposé sur l'implémentation de criteres complémentaires
rarement utilisés pour I'évaluation des méthodes non-ciblées, & savoir des critéres quantitatifs
(e.g. taux de recouvrement, répétabilité, effet de matrice, etc.) systématiquement utilisés dans
le domaine des analyses ciblées multirésidus, et qualitatifs (e.g. annotation, facilité et rapidité
d’'implémentation, etc.). Ces criteres ont été définis dans le but de documenter au mieux le
périmetre analytique observable de I'exposome chimique profilé avec chacune de ces
méthodes. Cette délimitation des limites de ces méthodes est cruciale pour l'interprétation des
jeux de données HRMS (e.g. aide a 'annotation). Ces méthodes reposent sur quatre principes
de fonctionnement: I'élimination des phospholipides (sept méthodes), I'extraction en phase
solide (trois méthodes), I'extraction liquide sur support (une méthode), et la précipitation de
protéines (une méthode), classiquement utilisée en métabolomique. L’évaluation
systématique de ces méthodes a été effectuée en utilisant un mélange de cinquante molécules
sélectionnées pour leur diversité de caractéristiques physico-chimiques (i.e. masse, polarité),
et leur appartenance a différentes classes chimiques susceptibles d’étre présentes dans des
échantillons dérivés de sang (i.e. composés endogénes, composés issus de I'alimentation,

médicaments, pesticides, etc.).

L’évaluation systématique de ces méthodes de préparation a été effectuée en trois étapes.
Tout d’abord, le mélange de molécules a été utilisé pour doper des homogénats de sérum a
une concentration moyenne dans un contexte d’exposition (40 ng/mL). Le recouvrement, la
répétabilité et I'effet de matrice a été évaluée pour les cinquante molécules et les douze
méthodes. Ces premiers résultats ont permis de présélectionner la méthode de précipitation

de protéines, une méthode d’élimination des phospholipides, ainsi qu’'une méthode
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d’extraction en phase solide, qui présentaient toutes des performances satisfaisantes sur tous
les critéres d’évaluation. La deuxiéme étape de I'évaluation a consisté en un dopage
d’homogénats de sérum et de plasma avec le méme mélange de molécules a une
concentration plus faible (10 ng/mL). La fréquence de détection, le rapport signal/bruit, la
répétabilité, la significativité du dopage (i.e. significativité de la différence d’aires entre
échantillons dopés et non-dopés), et la facilité d'implémentation ont été évalués pour les trois
méthodes évoquées, ainsi que pour une combinaison de la méthode d’extraction en phase
solide et la méthode d’élimination des phospholipides. Cette deuxieme étape a permis de
démontrer que la précipitation de protéines et la méthode d’élimination des phospholipides
permettaient toutes deux d’atteindre des performances supérieures aux deux méthodes
impliquant I'extraction en phase solide, nhotamment sur les critéres de répétabilité et facilité
d’'implémentation. Enfin, ces deux méthodes ont été appliquées sur les mémes échantillons
de cohorte (plasma et sérum) afin de les comparer en conditions réelles (i.e. sans dopage).
Des composés exogénes ayant des caractéristiques physico-chimiques diverses ont été
annotés, soulignant dans un premier temps la pertinence de ces deux méthodes de
préparation pour caractériser I'exposome chimique. De plus, cette comparaison a permis
d’observer la complémentarité de ces deux méthodes ; dans les deux matrices, plus de 40%

des composés annotés n’étaient visibles qu’avec 'une des deux méthodes de préparation.

Cette approche d’évaluation systématique des méthodes de préparation d’échantillons pour la
caractérisation de I'exposome chimique dans du plasma et du sérum humain a donc permis
de documenter le périmétre de I'espace chimique détecté. Elle a également permis de
démontrer la complémentarité de deux méthodes de préparation d’échantillons qui peuvent
étre utilisées conjointement au sein d’'un workflow simple pour élargir 'espace chimique visible
(jusqu’a 80% des marqueurs sont spécifiques a une méthode), et qui sera ensuite utilisé pour
la suite des travaux de thése. Aprés I'optimisation de I'acquisition de cette empreinte chimique,
il est nécessaire d’évaluer les solutions de traitement des données disponibles. Un protocole
de préparation d’échantillons impliquant ces deux méthodes a été proposé afin d’augmenter

I'espace chimique visible.
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3. Prétraitement des données et développement d’un logiciel de

profilage de suspects

3.1. Adaptation des logiciels de prétraitement des données aux

applications en exposomique

Suite a l'acquisition de I'empreinte chimique d’un ou de plusieurs échantillons, I'information
chromatographique et spectrale générée doit étre transformée en une liste de marqueurs
caractérisés par un rapport masse/charge, un temps de rétention, et une aire par échantillon.
Bien qu’il existe de nombreux outils de traitement des données non-ciblées, ils ont été, pour
la plupart, développés pour des applications en métabolomique. Dans un contexte d’étude en
exposomique, les composés d’intéréts sont souvent peu abondants ; il est donc critique de
s’assurer que ces outils sont capables de les différencier du bruit. D’autre part, le processus
d’annotation, souvent basé sur la liste de marqueurs générés précédemment, doit également
étre optimisés pour ces signaux peu abondants qui ne déclenchent pas systématiquement un
acquisition MS2. L’objectif de ce chapitre est donc de sélectionner et optimiser I'outil adéquat
pour améliorer I'efficacité de ce processus de traitement des données, a l'instar de ce qui a
été fait pour les applications en métabolomique®*’, mais qui n’a pour le moment jamais été

fait pour des applications exposomiques.

Dans le cadre de ce travail, quatre outils de traitement des données ont été optimisés et
comparés pour le traitement de données non-ciblées issues d’'une application en
exposomique. Deux de ces outils sont des logiciel vendeur (MarkerView de SCIEX et
Progenesis QI for metabolomics de Waters), et les deux autres sont des outils open source
fréquemment utilisés en métabolomique (MZmine2!® et XCMS?°). Ce travail d’optimisation et
de comparaison a été effectué en utilisant les données issues du dopage a 10 ng/mL des
échantillons de plasma et de sérum préparés par la précipitation de protéines. Chaque outil
de traitement des données a tout d’abord été optimisé individuellement, manuellement et
automatiguement si possible (i.e. paramétrage automatisée de XCMS par IPO et
Autotuner?®), et les données issues du paramétrage optimisé pour chaque outil ont été
comparées entre elles. Cette comparaison a été effectuée sur cing criteres : la fréquence de
détection, le temps de calcul, la facilité d’'implémentation, la répétabilité de lintégration
automatique, et la significativité de la détection (i.e. résultat du t-test comparant les aires
associées aux composés dopants entre les échantillons dopés et non-dopés). Dans un
premier temps, il a été démontré que [l'utilisation d’outils automatisés de paramétrage
développés pour la métabolomique n’était pas adaptée aux applications en exposomique.

Ainsi, le paramétrage suggéré par IPO, baseé sur les pics jugés « fiables » en fonction de leur
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rapport 3C/12C, a résulté en une largeur de pic trop élevée (30.7 s), menant a une détection
de moins de 30% des composés dopés dans les deux matrices. A l'inverse, I'outil Autotuner a
suggéré une largeur de pic trop faible (<10 s), qui a mené a une mauvaise performance en
répétabilité (< 20% des composés avec une répétabilité satisfaisante) due a une scission
excessive des pics détectés. L'optimisation manuelle a donc été préférée dans le cadre de
'application considérée. Il a dans un second temps été constaté que I'optimisation individuelle
des outils permettait d’'augmenter la fréquence de détection des composés de jusqu’a 60%
(XCMS). En effet, certains paramétres comme la largeur de pic et le niveau de bruit
généralement proposés par défaut ne sont pas applicables aux applications en exposomique,
et doivent étre réduits pour correspondre aux pics d’intérét. De plus, bien que les outils open
source permettent d’avoir beaucoup plus de libertés sur le choix des algorithmes et des
paramétres utilisés, ils nécessitent une meilleure connaissance technique et présentent des
temps de calcul 4 a 16 fois plus long que les logiciels vendeurs. Ainsi, tous les logiciels ont
permis d’obtenir des performances satisfaisantes en termes de fréquence de détection, de
répétabilité et de significativité de détection. Dans le cadre d’applications a large échelle, il
peut étre approprié de s’appuyer sur les logiciels vendeurs pour obtenir des résultats fiables
plus rapidement. Il demeure cependant nécessaire de continuer a optimiser ces outils, car
aucun d’entre eux n’a permis de détecter tous les composés dopés identifiés manuellement
dans les chromatogrammes bien que ceux-ci présentaient des aires, profils isotopiques et
profils MS2 fiables.

3.2. Développement d'un logiciel pour assister les approches de

profilage de suspects

Les jeux de données obtenus suite au traitement des données chromatographiques et
spectrales sont ensuite utilisés pour 'annotation. L’annotation de données HRMS non-ciblées
peut étre effectuée par a I'aide de deux stratégies majeures : le profilage non-ciblé, qui repose
sur I'annotation de marqueurs priorisés car différenciants entre deux groupes, ou le profilage
de suspects, qui repose sur I'annotation de marqueurs priorisés pour leur similitude avec des
composés listés dans une librairie/base de données de suspects. Cette deuxieme
méthodologie est aujourd’hui trés prometteuse, en partie car elle a un fort potentiel
d’automatisation et permet de prioriser trés rapidement des signaux d’intérét. En effet, la
comparaison de marqueurs et de suspects sur des éléments caractéristiques tels que leur
rapport masse/charge ou leur profil de fragmentation MS2 peut étre effectuée partiellement
automatiquement, avant d’étre validée manuellement dans la majorité des cas. Cependant,
les composés d’intérét généralement peu abondants en exposomique ne déclenchent pas

systématiquement d’acquisition MS2, ce qui limite fortement le niveau de confiance de
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I'annotation effectuée!®. Dans ce contexte, un outil de profilage de suspects adapté aux
données MS1 a été développé, et comparé aux outils de profilage de suspect existants (i.e.
XxMSannotator?®, MS-DIAL?}, msPurity?> et MZmine2!8). Ce nouvel outil repose sur la
comparaison du rapport masse/charge, du profil isotopique, et de temps de rétentions
expérimentaux ou prédits entre marqueurs et suspects, ce dernier prédicteur n’étant
implémenté dans aucun autre outil. Ce logiciel permet aussi d’afficher un score de proximité
appelé indice de confiance entre le marqueur et le suspect pour ces trois prédicteurs, ainsi
gu'un indice de confiance global qui permet d'évaluer efficacement la plausibilité de
I'annotation. Bien que la comparaison de ces outils ait été compliquée par la grande diversité
de leur principe de fonctionnement, I'implémentation de ['utilisation de temps de rétention
expérimentaux et prédits, ainsi que I'affichage des indices de confiance ont permis a notre
logiciel de se démarquer des autres outils notamment en I'absence de données MS2. Une
comparaison plus poussée avec MS-DIAL est proposée dans le chapitre application a large
échelle. Ainsi, cet outil permet de prioriser efficacement les pré-annotations, qui doivent
ensuite étre validées manuellement. Cette priorisation permet d’effectuer un gain de temps
considérable, qui pourrait contribuer a la plus large annotation des jeux de données non-
ciblées existants. La pertinence de cet outil a été mise en avant lors de I'essai collaboratif
NORMAN (meilleure fréquence de détection des composés dopés en matrice par ce logiciel)
qui regroupait 16 laboratoires différents.

4. Application du workflow développé au sein de la cohorte meére-

enfant Pélagie

L’intérét croissant pour I'étude des liens entre expositions environnementales et santé a mené
au développement et a I'optimisation de méthodes non-ciblées et de profilage de suspects
pour caractériser I'exposome chimique interne humain. Les optimisations de méthodes
effectuées dans le cadre de cette thése ont ainsi permis d’améliorer leurs capacités de
sensibilité; leur robustesse a également été vérifiée lors d’'une application a plus large échelle.
Ainsi, 125 échantillons de sérum sanguins issus de pré-adolescents (12 ans) bretons ont été
analysés apres leur préparation par deux méthodes de préparation d’échantillon, et dans les
deux modes d’ionisation (positif et négatif), représentant ainsi 500 échantillons analysés (960
analyses au total en incluant les échantillons composites de controle qualité et les acquisitions
MS2). Ces adolescents font partie de la cohorte Pélagie, qui a inclus environ 3500 femmes
enceintes entre 2002 et 2005, toujours suivies avec leur enfant a I'heure actuelle. L'un des
suivis a été effectué aux 12 ans des enfants, au cours duquel des parameétres cliniques tels
que la croissance ou l'adiposité ont été vérifiés. Des échantillons sanguins ont été collectés

pour, entre autres, évaluer I'exposition de ces adolescents aux contaminants organiques.

32



Résumé de la these en francgais

Quatre objectifs majeurs ont été établis pour ce chapitre : tout d’abord, évaluer la robustesse
des méthodes analytiques et bioinformatiques optimisées dans le cadre de cette these.
Ensuite, I'utilisation de prédicteurs MS1 (logiciel développé au laboratoire) et MS2 (MS-DIAL)
pour I'annotation de xénobiotiques en matrice complexe a été comparée. Les expositions
chimiques des pré-adolescents de la cohorte Pélagie ont subséquemment été caractérisées
(n=92 annotations). Enfin, la complémentarité des deux méthodes de préparation d’échantillon
utilisées conjointement comme recommandé dans un chapitre précédent a été étudiée a plus

large échelle.

Lors de cette application a large échelle, des contréles qualité (i.e. méme échantillon
composite injecté plusieurs fois intra- (n=11, dont 5 initiaux pour équilibrer le systeme) et
interbacth (n=110 par méthode de préparation d’échantillons)) basés sur I'aire des marqueurs
détectés dans les échantillons composites injectés a répétition au cours des séquences, et sur
leur temps de rétention ont été mis en place afin de veiller & la comparabilité des échantillons.
De méme, la stabilité de I'aire et du temps de rétention des 22 standards internes dopés dans
tous les échantillons (n=125 par méthode de préparation d’échantillon) et les échantillons
composites injectés entre les échantillons ont été vérifiées, soit dans 310 échantillons au total.
Ces vérifications ont permis de constater la nécessité de procéder a une normalisation de l'aire
des marqueurs par le courant ionique total, qui présentait une variation batch-dépendante.
Cette normalisation a notamment permis de baisser le coefficient de variation calculé sur les
aires des marqueurs communs a 80% des marqueurs composites d’environ 35% par rapport
a sa valeur brute pour les deux méthodes de préparation des échantillons, démontrant ainsi

sa pertinence pour cette application.

Dans un second temps, les données obtenues ont été annotées par une approche de profilage
de suspects a I'aide du logiciel développé, qui se base sur des prédicteurs MS1, et MS-DIAL,
basé majoritairement sur des prédicteurs MS2. L'utilisation de ces deux outils a permis de
comparer ces deux fonctionnements, et a permis de démontrer que I'utilisation de prédicteurs
MS1 était pertinente et complémentaire a une approche basée sur la MS2 dans une application
exposomique, ou les données MS2 ne sont pas toujours de bonne qualité, voire inexistantes.
Cependant, la curation manuelle nécessaire pour confirmer ces pré-annotations est plus
importante, puisqu’elle implique de rechercher et comparer les motifs de fragmentation
manuellement. Ainsi, certains composés n’ayant pas été fragmentés lors de I'acquisition MS2,
tels que le pentachlorophenol ou le triclosan glucuronide, n’ont pas été annotés par MS-DIAL.
Cependant, ces composés présentent des schémas isotopiques discriminants, ainsi que des
valeurs de Rt prédits cohérentes avec les valeurs de Rt expérimentales (indices de confiance

sur le Rt supérieurs & 0.84). Dans le cas du triclosan glucuronide, une indication
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supplémentaire étayant I'annotation porte sur 'annotation d’un autre métabolite (i.e. triclosan
sulfate) provenant du méme composé parent (i.e. triclosan). Cette étape a donc également
mené a la proposition d’'une nouvelle version de la classification des niveaux de confiance des
annotations proposée par Schymanski et al. (2014)'3. Cette nouvelle version de la
classification prend en compte les développements méthodologiques qui ont été effectués lors
de cette thése, tels que la vérification des ratios d’isotopologues, et ces derniéres années, tels
que les modeles de prédiction du temps de rétention?>26, ou de prédiction de la fragmentation
MS22"- 26 qui permettent de générer des indices forts appuyant ou écartant I'annotation

effectuée. Au total, 92 annotations ont été effectuées.

Les composés annotés se répartissent en quatre grandes classes : les métabolites de la flore
intestinale (7%), les composeés issus de l'alimentation (45%), les composés utilisés pour la
santé et I'hygiéne (18%, incluant 11% de principes actifs pharmaceutiques) et les composés
industriels (30%, incluant 8% de pesticides et 8% de plastifiants). Ces composés présentent
des caractéristiques physico-chimiques variées (-2.7 < logP < 16, et 100.0754 < [M+H]* <
811.4913), et des sources diverses, ce qui démontre qu'il est possible d’observer un large
espace chimique avec les méthodes développées au cours de cette thése. La détection de
ces composés dans chaque échantillon a été évaluée. Il a été établi que les proportions de
métabolites intestinaux et de composés naturels issus de I'alimentation étaient trés peu
variables entre les participants (coefficients de variation CV calculés sur les proportions sous
15% pour chaque classe et chaque méthode de préparation d’échantillons). A linverse, les
expositions aux retardateurs de flammes organophosphorés (CV de 165% et 210% dans les
échantillons PPT et Phree respectivement), aux intermédiaires de synthése (CV de 115% et
27% dans les échantillons PPT et Phree respectivement) et aux pesticides (CV de 65% et 9%
dans les échantillons PPT et Phree respectivement) sont hautement variables d’un individu a
un autre. Ces observations sont cohérentes avec une exposition ubiquitaire aux métabolites
intestinaux et aux composés naturels de l'alimentation, mais dépendante du style de vie
(urbain ou rural, habitudes alimentaires, etc.) en ce qui concerne les polluants
environnementaux. Certains pesticides (et métabolites) annotés, tels que le bromoxynil ou le
fipronil sulfone, avaient déja été détectés en population générale a de faibles niveaux (i.e. état
de trace a 140 ng/mL)? 39, Ces faibles niveaux documentés constituent une premiére
indication (a confirmer avec des essais ciblés quantitatifs) sur les performances de sensibilité
des approches développées au cours de cette thése. Un métabolite du pesticide bromoxynil
tres largement détecté dans cette étude et auparavant jamais décrit dans des études de
biosurveillance a été annoté. Ce métabolite est plus détecté que bromoxynil (97% contre 61%)
et les aires observées dans les échantillons sont 3 a 8 fois plus élevées que celles du

bromoxynil. Ces observations confirment ainsi la faisabilité d’utiliser des approches de
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profilage de suspects pour identifier de nouveaux biomarqueurs d’exposition de composés

d’intérét.

Enfin, les deux méthodes de préparation d’échantillon utilisées dans le cadre de cette
application a large échelle ont été comparées. Les rapports d’aires des composés annotés
ainsi que de I'ensemble des marqueurs ont été calculés, et ont permis de déterminer que plus
de 80% des marqueurs ne sont visibles que par I'une ou 'autre des méthodes de préparation.
A I'échelle des composés annotés, plusieurs tendances observées ont permis d’émettre des
hypothéses sur les facteurs influant sur la bonne détection des composés avec I'une des deux
méthodes de préparation d’échantillons. Tout d’abord, les composés polaires sont
généralement mieux détectés avec la précipitation de protéines, ce qui pourrait s’expliquer par
le mécanisme d’action des plaques d’élimination des phospholipides, qui serait basé sur la
rétention de la téte polaire des phospholipides®. A linverse, les composés plutot apolaires
sont mieux détectés dans les échantillons préparés par Phree. Cette observation est
cohérente avec la présence importante de phospholipides et lysophospholipides dans les
échantillons préparés par PPT, qui peut géner l'ionisation d’autres composés moins abondants
ayant un temps de rétention similaire (i.e. suppression ionique). Ensuite, les retardateurs de
flamme organophosphorés sont mieux détectés dans les échantillons Phree, ce qui pourrait
s’expliquer par le fait que ces plaques ne retiendraient que les groupes phosphates les plus
polaires, tels que ceux qui forment la téte des phospholipides. Enfin, les phthalates semblent
mieux détectés avec Phree, a I'exception d’un téréphthalate encombré stériquement, qui n’est
pas strictement favorisé par une méthode. Cela pourrait s’expliquer par un mauvais

recouvrement de composés encombrés stériquement par les plaques Phree.

Ainsi, ce chapitre a permis d’appliquer les méthodes développées au cours de cette thése a
large échelle, sur 125 échantillons de la cohorte bretonne Pélagie. Cette application a mené a
I'annotation de 92 composés d’une grande diversité physico-chimique, qui contribue a la
documentation du périmetre de l'espace chimique observable en utilisant les méthodes
optimisées décrites. Les données obtenues pourront également étre utilisées en association
avec d’autres données contextuelles, telles que le lieu de vie ou les habitudes alimentaires,

afin de prioriser d’autres marqueurs pour I'annotation avec une approche non-ciblée.

5. Conclusions et perspectives

La caractérisation de I'exposome chimique interne humain avec des approches non-ciblées
offre de nouvelles promesses pour l'identification de nouveaux facteurs de risque chimique
mais présente encore des obstacles technologique et méthodologiques qui doivent étre

surmontés. Ces limites viennent principalement du fait que les molécules exogenes sont
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souvent présentes a I'état de trace dans des matrices biologiques complexes, et que les outils
d’annotation automatisés n’existent pas encore. Ainsi, les méthodes classiquement utilisées
en métabolomique doivent étre adaptées et optimisées pour ces nouvelles applications
nécessitant de meilleures performances en termes de sélectivité, sensibilité et robustesse. Ce
travail de thése présente I'optimisation des étapes méthodologiques les plus critiques pour
implémenter des approches non-ciblées a large échelle basées sur la spectrométrie de masse
a haute résolution. L’efficacité des méthodes optimisées dans le cadre de cette thése pour
caractériser 'exposome chimique interne humain a été démontrée. Ces approches constituent
des atouts importants pour mieux comprendre I'effet de notre environnement chimique sur
I'origine d’événements de santé. Elles générent un intérét croissant aux échelles européenne
et internationale, comme démontré par la création de l'infrastructure EIRENE par exemple. La
mise en place de collaborations a cette échelle permettra de générer des données robustes
et comparables entre les laboratoires pour décrire plus précisément et exhaustivement

I'exposome chimique interne humain.
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General introduction

Chronic diseases are the leading cause of worldwide mortality and morbidity, representing an
estimated 71% of all deaths globally in 2018*. For decades, the impact of genetic factors on
the emergence of these diseases was investigated through major conceptual and
technological developments in the genomics field. These developments were notably achieved
through an international collaborative effort during the Human Genome Project (HGP)
conducted between 1990 and 20032. In reaching its goal of mapping the human genome, the
HGP paved the way for the first genome-wide association studies (GWAS), aimed to establish
associations between genetic variants (typically single nucleotide polymorphisms, SNP) and
various traits. Despite the identification of highly prevalent SNP (i.e. presence in >5% of the
population), their often low penetrance limited the applicability of GWAS alone to exhaustively
elucidate the etiology of non-communicable diseases. In 2005, director of Leeds Institute of
Genetics, Health and Therapeutics Christopher Wild underlined the necessity of considering
environmental exposures to understand chronic disease etiology at the population level, thus
introducing the concept of exposome to complement the genome3. The exposome was
therefore defined as the totality of human environmental exposures from conception onwards,
and was extended in 2012 to account for the biological effects resulting from these exposures*.
Investigating the exposome is hence a complex task, as environmental exposures are both
extremely variable in nature and through time. Environmental exposures can be classified in
three main categories defined by Wild (2012)* the general external exposome (i.e. social
capital, stress, urban or rural environment, etc.), the specific external exposome (i.e. radiation,
chemical contaminants, lifestyle factors, etc.), and the internal exposome (i.e. metabolism, gut
microflora, ageing, etc.) These definitions are still discussed to account for emerging topics of
interest, such as the transformation products of environmental chemicals in the body®. It is
currently unfeasible to exhaustively characterize the exposome, due to the considerable
number and diversity of environmental factors. Hence, investigating the exposome is
fractioned in various subfields, including the socio-exposome focused on determinants such
as socio-economic category and social inequalities®, the physical exposome focused on factors
such as radiation or noise’ or the chemical exposome, encompassing chemical exposures that
can accumulate in humans through food, medication, pesticides, etc.>. Exposure to chemical
compounds can occur in various circumstances, counting domestic, industrial or agricultural
use of these molecules. Investigating the chemical exposome can therefore be studied both
through the analysis of environmental (i.e. water, air, dust, food, etc.) and human biological
matrices (i.e. blood, urine, tissue, hair, etc.). However, due to the high diversity of compounds
constituting our chemical environment (i.e. tens of thousands), there is still a sore lack of data
regarding human exposure. Acquiring broader knowledge on the human chemical exposome

is therefore a first necessary step in accurately assessing its effect on human health.
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Investigating the human chemical exposome in biological matrices has classically been done
using targeted methods, which offer quantitative data on a set list of compounds of interest
identified prior to the analysis. While these methods are exceptionally useful and robust to
generate exposure data for already known or suspected toxicants, they can now be
complemented by non-targeted methods, which allow the characterization of samples through
collection of qualitative or semi-quantitative data without an a priori list of investigated
compounds. These non-targeted approaches may be used as an exploratory tool to detect and
identify new chemicals that might be of emerging concern, whether because they have newly
appeared in the environment as a replacement to regulated substances or because they are
newly identified or suspected toxicants®. They may also be useful to describe more thoroughly
chemical mixtures, which are a well-documented challenge in exposure science®, and
therefore provide relevant data for toxicological tests. Most non-targeted methods rely on the
recent technological progress in the field of high-resolution mass spectrometry (HRMS),
resulting in the possibility of screening thousands of compounds simultaneously, with a high
mass accuracy. Concurrently, significant progress in the bioinformatics field allowed the
processing of such complex data. Compounds detected throughout the analysis can thus be
isolated, characterized by their mass-to-charge ratio (m/z), their retention time (Rt) and their
area, and annotated (i.e. associated to a chemical identity through various elements of proof).
During the first half of the 2010s, these approaches have started to be used to assess the
presence of contaminants in environmental matrices!®!?, or exogenous compounds in

biological matrices, both animal****> and human?®.

Non-targeted approaches, while valuable and increasingly used, are still subject to a number
of technological barriers and methodological issues. Firstly, as there are no predefined
analytes, method performances regarding recovery and sensitivity cannot be determined for
all potentially detectable compounds. Moreover, it appears unreasonable to expect the
exhaustive characterization of a sample, even by such methods; it is therefore necessary to
delineate the width of what is observable using any particular workflow. Secondly, existing data
processing tools were mostly built for metabolomics applications, i.e. the detection of
endogenous (and often rather abundant) compounds, and may not be suitable for exposomics
applications aimed to detect exogenous chemicals present at trace levels (below ng/ml).
Thirdly, annotation is an often tedious and incomplete process, as it is estimated that less than
10% of non-targeted datasets are annotated®. This is further exacerbated for exposomics
applications due the limited availability of compound libraries including or dedicated to
exogenous chemicals. This process is time-consuming largely due to the necessity of manual

curation to dismiss the usually high number of false positive annotations. All of these
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technological and methodological bottlenecks must be overcome to create robust non-targeted
workflows that may be used for high-throughput applications.

The main aim of this PhD work is to develop an HRMS-based non-targeted workflow applicable
to human epidemiological studies, in order to provide an operational solution to assess human
exposure to complex chemical mixtures at a large scale. Given the above-mentioned
considerations, two specific objectives were defined for this PhD. The first objective is to
develop innovative methods to generate and process non-targeted data, including sample
preparation, analytical HRMS method(s) coupled to liquid chromatography (LC), data
processing, and annotation. These methods must answer the need for sensitivity, robustness,
and must be relevant in the case of human blood plasma and serum analysis. The second
objective of this work is to apply these developed methods for non-targeted approaches on
large-scale epidemiological applications to test the robustness and sensitivity and detect new
biomarkers of exposure. This application was performed using samples from a promising local
cohort. Blood serum samples from 125 12-year-old boys issued from the Breton mother-child
cohort Pélagie were used to implement this large-scale application. This cohort, started in
2002, is a longitudinal study implemented to measure exposure to organic pollutants during
the pregnancy. It included approximately 3,500 women pregnant between 2002 and 2005 in
Brittany. Follow up was carried out at birth, and then at 2, 6, and 9-16 years old, through the
collection of biological samples and clinical data, and answering questionnaires. A
questionnaire was provided to 12-year-olds and their families to obtain physical growth data
and pubertal stage. A clinical evaluation was performed on a subset of 500 12-year-olds, with
the assessment of clinical parameters such as growth, adiposity, visual function and oral-
dental health. The considered blood samples were collected at this time to evaluate sex
hormones and to assess exposure to organic contaminants. This cohort, in its entirety,
therefore offers a promising opportunity to study the long-term consequences of early-life

exposure to environmental contaminants.

To reach the first objective, each step of the non-targeted workflow was optimized. Indeed,
reference protocols for the preparation and high-throughput injection of plasma and serum
samples were established and validated using new guantitative and qualitative criteria to define
the perimeter of the profiled chemical exposome. Moreover, in-house libraries were
constructed to implement suspect screening approaches, consisting of an a posteriori
screening of suspected xenobiotics in chromatograms. Concomitantly, a software was
developed to partly automatize suspect screening approaches through the implementation of

confidence indices, scoring proximity between experimental features and suspects.
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Reaching the second objective was achieved by using the previously described methods and
tools (initially developed at the batch level) in the case of a high-scale application. Additionally,
large-scale quality controls and inter-batch correction were implemented to ensure
comparability from first to last sample.

Chapter 1 describes the state-of-the-art regarding the application of HRMS-based exposomics
to cohort-based epidemiological studies. Reported technological and methodological

challenges regarding the application of such approaches are detailed and discussed.

Chapter 2 relates the instrumental method development, the data processing steps, as well as
the annotation tools needed for this work. The suspect screening software developed in the
context of this PhD is also thoroughly described.

Chapter 3 presents the systematic evaluation and comparison of sample preparation methods
for the purpose of detecting low-abundant chemicals in blood plasma and serum samples. The
impact of the two best-performing methods on the visible chemical space is described using

cohort plasma and serum samples.

Chapter 4 details the optimization of the data processing step to accurately transform LC-ESI-
HRMS data to a list of features when compounds of interest are lowly abundant. Suspect

screening tools including the in-house software were compared on cohort samples.

Chapter 5 documents the large-scale application of the optimized non-targeted workflow on
125 serum cohort samples. The use of MS1 and MS2 predictors for annotation is compared
and discussed. The identification of markers of exposure is described, and results are

discussed in light of the use of two sample preparation methods.

The last chapter is dedicated to the conclusion and perspectives of this work.
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Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies:
State-of-the-art and challenges

1. Studying the human internal chemical exposome: context,

definitions and challenges

1.1. The Exposome: from a concept to a call to action

In 1985, chancellor of the University of California Robert Sinsheimer first discussed the
possibility of sequencing the human genome, which led to the first funding of research
dedicated to genome sequencing in 1986. Four years later, the Human Genome Project (HGP)
was launched with the objective of sequencing the entirety of the human genome?!. The
mobilization of over 2,800 researchers from the international scientific community and
approximately 4 billion euros over thirteen years allowed reaching the set goal of sequencing
the 3 billion base pairs of the human genome?. In 2001, Francis Collins, director of the National
Human Genome Research Institute, declared about this near-exhaustive vision of the human
genome: “It's a shop manual, with an incredibly detailed blueprint for building every human
cell. And it's a transformative textbook of medicine, with insights that will give health care
providers immense new powers to treat, prevent and cure disease.”. Understandably, such a
tremendous advancement in knowledge on human biology held great promises for a better

understanding of disease etiology.

This incredible international effort was accompanied by constant methodological and
technological progress. Indeed, the appeal of the HGP federated efforts to develop new high-
throughput technologies and new computational strategies®. This later proved to be a crucial
advantage when the knowledge generated by the HGP was used to identify genes affecting
susceptibility to specific diseases. Genome-wide association studies (GWAS) were designed
to identify variants associated with multifactorial diseases (with frequencies = 5%)*. While
many variants associated with different diseases have been identified so far, their often-low
penetrance (i.e. the fact that only a small proportion of individuals presenting the variant
develop the corresponding phenotype) limit the practical applications of GWAS?. It should be
noted that the investigation of particularly infrequent single nucleotide polymorphisms (<1%)
may still uncover valuable results, even though it would require a high number of participants
(and therefore important resources) to achieve satisfactory statistical power. Variant
penetrance is a complex characteristic that depends on many factors (i.e. interaction with other
genes, importance of the affected pathway, existence of alternative pathways substituting for

function loss, etc.), one of which is the interaction with the environment®.

In this context, Christopher Wild introduced in 2005 the concept of exposome to account for
the impact of environmental factors on human health through the genetic-environmental

interactions’. The conceptualization of an exposome to complement the genome helped to
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emphasize the need for reliable exposure assessment tools to better understand disease
etiology through a more thorough description of the interplays between environmental
exposures and genetic susceptibility factors. He defines the exposome as ‘“life-course
environmental exposures (including lifestyle factors), from the prenatal period onwards”. In his
editorial, he underlines the need for the funding and development of reliable exposure
assessment tools to “balance the effort going towards characterization of the genome”, and for
a strong collaboration between scientists of different backgrounds as was done for the HGP”.
In 2012, the definition of the exposome concept is expanded to take into account the biological
responses to environmental exposures®. As of today’s most widely accepted definition, the
exposome is “an entity that encompasses all life-course environmental exposures and the
associated biological responses, including during the prenatal period””*'. One significant
aspect of the exposome is the chemical exposome, i.e. the exposure to all chemicals, whether

from external or internal sources?*?.

Characterizing the chemical exposome is an arduous challenge. Indeed, it has been estimated
that up to 350,000 chemical compounds and mixtures are registered for production and use
worldwide, with up to 120,000 of them being either unknown or ambiguously defined*®. As of
2020, there were close to 23,000 compounds registered by the European Chemical Agency,
more than 2,000 of which are produced over the 1,000t/year limit**. The organic compounds
most frequently registered are mostly registered as synthesis intermediates (e.g. styrene,
ethylbenzene). This diversity of compounds, coupled to the diversity of potential sources for
each compound present important hindrances to exhaustively characterize one’s chemical
exposures. Human exposure to some persistent organic compounds, such as organochlorine
insecticides (e.g. DDT and its metabolites), polychlorinated biphenyls (e.g. PCB 153),
brominated flame retardants (e.g. BDE 47, BDE 99), or polycyclic aromatic hydrocarbons (e.g.
naphthalene and metabolites) have already been well reported in large-scale HBM studies®>
18, These compounds have historically been studied for their widespread use, their potential or
confirmed toxicity, or their persistence in the environment. Non-persistent compounds such as
phthalates or bisphenols, however, are more challenging to accurately describe since their
half-life in the human body is limited (a few hours to a few days). Moreover, their metabolization
and excretion pathways may not be entirely documented, which may affect the ability to detect
these compounds in their relevant forms*°. Overall, the available data on human exposure to
chemicals is limited and mostly oriented towards lists of hundreds of “usual suspects” (i.e.
priority substances with already known exposure and toxicity data). This partial view of the
human exposure to chemicals (few hundreds as opposed to tens of thousands on the market)

undoubtedly leads to an underestimation of the chemical risk evaluation.
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Exogenously derived chemicals and their biotransformation products accumulating in human
will further be referred to as the internal chemical exposome, and will be distinguished from
endogenously derived chemicals that constitute the metabolome. Many of these endogenous
compounds, while also important to assess the impact of environmental chemical exposures
on human health, are usually largely more abundant in biological matrices compared to
exogenous compounds®, and can be studied using differently optimized
metabolomics/lipidomics workflows. A schematized representation of the human internal
chemical exposome is represented in Figure I.1.
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Figure 1.1 — Schematized representation of the distinction between endogenous metabolites and
exogenous chemicals and related biotransformation products. These small molecules (50-1200 Da)

present in human biological matrices can be profiled using High Resolution Mass Spectrometry.

Traditionally, exposure assessments to chemicals have been performed through targeted
approaches. These approaches rely on pre-established lists of compounds of interest (for their
ubiquity, their high toxicity or both) and developing methods to quantify them in any given
matrix of interest. Targeted assays result in highly accurate and robust quantitative data, with
limits of detection often being as low as the ng-pg/mL range in complex matrices such as
urine?2® and blood serum?* 2, Together with toxicological and other biological approaches,
targeted methods have allowed limiting human exposure to toxic compounds, such as
plasticizer bisphenol A% or pesticide atrazine?’ through public health measures either limiting
or outright banning their use. These approaches were the first to allow the acquisition of HBM

data at the massive scale needed to efficiently support policy making, as was started with the
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priority lists established through the collaboration of the HBM4EU consortium and a European
Union policy board?®.

While exceptionally useful, targeted approaches only allow accounting for already established
compounds of interest. Indeed, the inclusion of a given compound in a targeted method must
be preceded by the expectation that it is either ubiquitous or toxic enough to warrant medium
to large-scale biomonitoring, given that there are an estimated >350,000 compounds currently
in use in the human population?® %, This ever-expanding list of diverse chemicals must be
prioritized in order to identify chemicals of emerging concern (CEC) and launch the process of
toxicological assays and targeted method development. Hence, the technological
advancements of the last few years in high resolution mass spectrometry (HRMS)-based
analysis has offered new possibilities to tackle the complexity of the chemical exposome. This
may be achieved using new non-targeted approaches (NTA), which are complementary to
targeted approaches® and do not rely on pre-established chemical lists. Through the
technological progress achieved notably in HRMS, it is possible to simultaneously screen tens
of thousands of small molecules (between 50-1200 Da) in a single analysis. NTA often uses a
separative technique prior to HRMS analysis to decomplexify the sample, such as liquid
chromatography (LC). These analyses result in lists of signals, called features, each
characterized by a mass-to-charge ratio (m/z), a retention time (Rt), and an area. The data
acquired during NTA is used to assign chemical identities to the obtained features, allowing
potentially identifying new compounds of interest due to high detection frequencies and/or
association to a health event. These approaches have already been successfully applied in
proof-of-concept studies®® 3234 thus demonstrating the relevance and applicability of

environment-wide associated studies (EWAS).

Another challenge inherent to the characterization of the exposome, including the chemical
exposome, its dynamic nature. Indeed, the temporal variability of chemical exposures
constitutes, along with its vast scope, incredibly challenging features of its characterization (for
targeted as well as non-targeted approaches). Firstly, the dynamic nature of the chemical
exposome entails that its measurement should be dynamic as well, either through an inherently
dynamic measurement method or through a series of snapshots at crucial times in an
individual’s lifetime. This second approach can be applied at key times of life, such as the
prenatal period, childhood, puberty and reproductive years, to allow a vision of presumably

radically different exposure patterns throughout an individual’s life®.

The prenatal period is a well-known time of vulnerability in one’s life. The DOHaD
(Developmental Origins of Health and Disease) hypothesis, originally formulated by Barker

and Osmond (1986)%, postulates that nutrition during pregnancy could impact disease
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outcome during the lifetime. This concept was expanded to take into account exposure to
environmental chemical contaminants during the prenatal period, as evidence of their impact
on health endpoints such as obesity arose®. Chemical exposures are therefore often
investigated during this time to improve knowledge on disease etiology*#4°. Another period of
vulnerability in an individual's life is the transition into adolescence*. Indeed, as it is a
transitional stage of development (physical, psychological, etc.) implicating significant
hormonal activity, the impact of environmental chemicals (and in particular endocrine

disruptors) on teenagers’ health has been questioned*2.

Despite the many promises held by NTA as an exploratory tool to better understand
environmental triggers to chronic diseases, several methodological and technological barriers
remain to uncover their full potential. Notably, the still vast scope of the chemical exposome
entails the need to determine the impact of matrix and analytical platform choice on the visible
chemical space when using NTA.

1.2. Main conceptual challenges for the non-targeted characterization

of the human chemical exposome: study design guestionings

1.2.1. Direct and indirect measurements: choosing between environmental and

biological matrices

Given the complexity of the human chemical exposome, designing a study for its non-targeted
characterization raises several questions. Firstly, the human chemical exposome can be
characterized through conceptually different approaches. Indeed, direct and indirect
measurements are available to this end. Direct measurements consist in screening for
chemicals directly in the considered individuals, as for example through biomonitoring?* 43,
while indirect measurements rely on studying the environment, and coupling this data to
bioaccessibility studies and/or time of contact data to estimate human exposure** 4. Indirect
measurements allow identifying sources and determinants of exposure. They present the
advantages of being less invasive, less costly, suitable for passive sampling (thus being more
representative on the dynamic aspect of exposure), and using overall less complex matrices
than direct measurements. However, they may only approximate the actual human exposure
to chemicals. This may be due to the use of mathematical models with inherent uncertainty, or
the inexact accounting for a significant source of exposure (whether under- or over-
estimated)*® ’On the other hand, direct measurements allow evaluating the exposure as a
whole, regardless of the sources and routes of exposure. Although the implementing of direct
measurements is limited by their more limited cost-effectiveness (usually requiring higher

funding and more long-term compliant participants)*®, biomonitoring is widely recognized as a
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useful tool for exposure and risk assessment*®*°, In this PhD, a biomonitoring approach will
be used to contribute to decipher the human internal chemical exposome using HRMS-based
methods.

Biomonitoring studies have been widely used as a tool of choice to assess human exposure
to environmental chemicals. Unprecedented levels of funding at national and EU levels are
currently being implemented to provide novel human exposure data to chemicals through
biomonitoring studies. At the national level, the French agency for public health Santé Publique
France has led the French HBM program since 2010. This initiative aims to paint a
representative image of the French population’s exposure to chemical compounds, through
the analysis of urine, blood and hair samples. This program consists in two surveys: a subset
of the French Elfe cohort (>4100 individuals) as a perinatal component, and the Esteban
project, which in general population-based (18-74 years). The data generated by this program
is made available to research teams, notably those working on establishing exposure-health
associations in the Elfe cohort. Furthermore, this data helps inform the relevant authorities
regarding the determined environmental substances®!. Conjointly with Anses (French Agency
for Food, Environmental and Occupational Health & Safety), Santé publique France (SpF) has
also launched the PestiRiv project in 2021. This initiative is geared towards the assessment of
pesticide exposure for citizens residing in proximity to vineyards. Its main objective is to
determine whether the proximity to agricultural land, particularly vineyards, has an effect on
pesticide exposure. This may lead to the establishment or madification of public health
measures to implement appropriate measures to protect citizen’s health. Multiple sources will
be accounted for (e.g. air, food, domestic use and profession), and both biological (i.e. urine

and hair) and environmental (i.e. air, dust, food) will be collected.

Other sizable HBM studies (detailed in paragraph 1.3.1) have gradually been undertaken in the
last decade. At the European scale, projects such as HELIX, EXPOsOMICs (both started in
2012), HBM4EU (started in 2017), ATHLETE and EXPANSE (both started in 2020) have used
HBM as a key tool to assess individuals’ exposure to environmental chemicals. This growing
implementation of large-scale HBM studies helps informing researchers and policymakers on

the exposure-health relationship.

Overall, direct and indirect approaches are highly complementary and may also be used
successively to obtain orthogonal data. For instance, an initial HBM approach may help identify
chemicals of interest, and a following indirect measurement approach may allow identifying
sources of exposure. Combining the data collected from these approaches may be critical in
implementing new relevant public health measures to dampen the health burden of the

chemical exposome.
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As a part of this large scale collective effort to characterize the human internal chemical
exposome®, this PhD work focuses on implementing direct measures for the non-targeted

characterization of the human chemical exposome.

1.2.2. Choosing the biological matrix

When aiming to directly characterize the human chemical exposome, the choice of biological
matrix is the second study design element that should be clarified. Many factors can influence
the choice of biological matrix: availability, invasiveness and cost of sampling, possible focus
on some chemical classes with specific characteristics (e.g. persistence, accumulation in a

specific biological compartment, etc.), etc.

One of the most commonly sampled matrices in HBM and epidemiological studies is urine?
2% |ts sampling is fairly non-invasive and inexpensive, and is easily performed by the
participants themselves. Urine is a relevant matrix for exposure assessment as it is the main
route of excretion of many non-persistent chemicals, whether in their free form or after phase
| and/or phase Il metabolization to increase polarity. One of its main drawbacks is fact that only
short-term exposure (usually hours or days depending on the chemical’'s half-life) is visible
when using this matrix, with often different forms of the chemical visible at different points in
time!® %5, The visible window may be widened using pooled repeated measurements, which
may be best to capture the dynamic nature of the exposure!!, as was described in the
European projects HELIX and EuroMix for the assessment of exposure to phthalates and
phenols in urine samples® 5. Another well-known issue when using urine is the need for
normalization (often using the creatinine level), as sample volume and chemical concentration
may be extremely variable depending on the individual's hydration state®. Lastly, this matrix
is not the most suitable for the detection of exposures to persistent organic pollutants, which
tend to accumulate in other matrices such as blood and hair® %%, although the metabolites of

these compounds may be found in urine?®.

Blood-derived matrices (i.e. total blood, plasma and/or serum) 5 €062 gre also commonly
sampled in HBM and epidemiological studies, and are therefore frequently available in
biobanks. Their sampling is more costly and more invasive than urine, but blood-derived
matrices are often considered the golden standard to study chemical exposure. One
advantage of blood-derived matrices is that the biologically active parent (i.e. non-metabolized)
form of chemicals might be in some cases more readily observable than in urine, which can
be an advantage considering the sometimes non-specific nature of metabolites®®. This was
applied in the HBMA4EU initiative with, for instance, the biomonitoring of parent halogenated

flame retardants in serum, and of four metabolites of organophosphate flame retardants in
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urine®. However, parent and phase /Il metabolite concentrations in blood are often lower than
metabolite concentrations in urine in which they can accumulate over time®®. Another
advantage of blood-derived matrices is that blood circulates in the whole body and is in
equilibrium with all tissues, and thus provides a more accurate reflection of internal chemical
concentration®®. In the case of a pregnancy, maternal blood is also in contact with the fetus
through the placenta, which is why maternal blood may be relevant to evaluate fetal exposure
during the prenatal period® ¢’. Other matrices such as placenta, cord blood or meconium are
also well suited for this purpose®”-%°, but their limited quantity and availability is an important
hindrance. Maternal hair was also reported to be a suitable matrix to assess prenatal exposure
especially for persistent organic pollutants (POPs) 7 7071 although several concerns regarding

external pollution and lack of reference data are often put forward?? 2858,

As no matrix will be ideal in every situation depending on target compound class, availability
and ease of sampling, it should be understood that its choice will affect the observable internal
chemical exposome. In the context of this work, blood-derived samples (i.e. plasma and serum)
were used due to the advantages presented by these matrices, as well as for their availability
in general in biobanks, and more particularly in the considered epidemiological studies (i.e.
Pelagie). This PhD work is one of the first applications of HRMS-based characterizations of

the internal chemical exposome in blood*?.

1.2.3. Analytical platform choice

Analyzing biological samples to characterize the human internal chemical exposome can be
done using many platforms, most of which rely on chromatography (such as gas
chromatography (GC) and liquid chromatography (LC)) coupled to HRMS. The breadth of the
chemical exposome due to the ever-expanding number of produced chemical compounds
(growth estimated at 3.4% each year until 2030°°) implies the need to detect compounds with
vastly different physical-chemical properties (e.g. polarity). At this time, no single technology
allows capturing this diversity; ideally, complementary analytical platforms should be combined
to observe the width of the chemical space®> >’>. This is however challenging, since when
aiming for large-scale applications such as epidemiological studies, analysis should be as not
too expensive and high-throughput as possible to allow analyzing sufficient numbers of sample
for statistical power, which is undeniably more difficult to achieve when multiple analytical
platforms are involved. The choice of analytical platform(s) will therefore affect the observable

chemical exposome, as represented in Figure |.2.

To date, the most commonly used platforms for NTA are equipped with LC, electrospray

ionization (ESI) and coupled with time-of-flight (TOF) or Orbitrap analyzers® ’®. Hybrid
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analyzers such as quadrupole-time-of-flight (QTOF) or quadrupole-Orbitrap (Q-Exactive
family) are also frequently used and are important to provide relevant MS2 data’’. LC-ESI-
HRMS platforms are highly versatile and provide a soft ionization®, which is useful to provide
information on the molecular ion and avoid compound fragmentation and obtaining
pseudomolecular ion mass’’. However, the ionization process using ESI sources leads to less
reproducible fragmentation patterns, making the construction of reference spectral libraries
challenging, and in turn affecting the complexity of compound annotation®. LC separations
can be performed using a large diversity of stationary and mobile phases, although reverse-
phase (RP) columns are often used for their versatility and for easier comparison and
harmonization between laboratories. Indeed, RP columns allow the simultaneous detection of
compounds with a wide polarity range, such as the polar nicotine metabolite cotinine and the
non-polar insecticide chlorpyrifos. Hydrophilic interaction chromatography (HILIC) is also
emerging since it offers better performance for highly polar compounds such as pesticide
glyphosate and antiviral acyclovir, thus providing orthogonal data to RP chromatography’.
Two-dimensional chromatography combining HILIC and RP has been used to widen the
observable polarity range® 8. Regarding mobile phases, generic methanol/water or
acetonitrile/water gradients are commonly used’” 8 to avoid further limiting the range of
observable compounds. The main disadvantages of LC-based platforms are the matrix-related

issues such as ion suppression®?,

GC-HRMS platforms have been increasingly used to detect non-polar semi-volatile to volatile
compounds such as POPs? 848 which are not detected using LC-ESI-HRMS. Characterizing
the chemical exposure to POPs, which notably include polychlorinated biphenyls and
organochlorine pesticides, is particularly relevant, as it has been linked to detrimental health
effects such as endocrine disruption, cardiovascular and reproductive diseases, and cancer,
in part linked to their bio-accumulative, toxic potential and non-degradable nature®’. These
characteristics also explain their presence in biological and environmental matrices several
years or decades after banning. GC-HRMS platforms predominantly use hard ionization
sources (i.e. Electron ionization), which often lead to the fragmentation of the molecular ion
and the need for large spectral libraries for compound annotation’®. The choice of stationary
and mobile phases is far more limited in GC-based platforms, with a widespread use of
nonpolar capillary column with 5% phenyl methylpolysiloxane and helium as carrier gas. While
nitrogen and hydrogen can also be used as mobile phases since they are less expensive than
helium, they are usually set aside due to efficiency and safety reasons respectively’®. While
GC-based platforms suffer less matrix effect than LC-based platforms, additional sample
preparation steps such as derivatization are often required to improve versatility and avoid

premature clogging of the column due to non-volatile compounds.
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Figure 1.2 - Conceptual visualisation of the impact of overarching methodological choices on the profiled
fraction of the exposome by David et al., Env Int., 2021. Specificities and overlaps of the different HRMS
platforms are schematically represented. Log Kow=octanol/water partition coefficient; GC=gas
chromatography; LC=liquid chromatography; IC=ion chromatography, CE=capillary electrophoresis,
ESI=Electrospray ionisation, HRMS=High Resolution Mass Spectrometry

Other analytical platforms such as ion chromatography (IC) and capillary electrophoresis (CE)
coupled to HRMS can be used to improve coverage of highly ionic and/or polar compounds’’
such as haloacetic acids and antibiotics sulfonamides respectively, although they are not as
widespread as LC and GC-based platforms.

The choice of analytical platform is therefore, in itself, a constraint on the observable chemical
space of the exposome. Together with the choice of direct or indirect measure and biological
matrix, it conditions the structure of the non-target and suspect screening workflow that should
be implemented and optimized to characterize the exposome. In the context of this PhD, LC-
based approaches were favored for their versatility and their relevance to detect pollutants of
emerging concern, which are often non-persistent as opposed to historical contaminants (e.g.
POPs). Moreover, the visibility of the pseudomolecular ion due to the soft ionization process,
and the substantial availability of MS2 reference data are two important advantages to carry

out the annotation process.
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2. Implementing NTA to characterize the exposome: constructing a

non-targeted and suspect screening workflow

Once the overarching conceptual and methodological choices are made for the generation of
the chemical fingerprints, a non-targeted and/or suspect screening workflow including many
steps has to be implemented and optimized to correctly process UHPLC-ESI-HRMS raw data.
These steps include the implementation of bioinformatics tools to extract chemical features,
statistics to prioritize relevant features, and the annotation step to assign a chemical identity
to features of interest. To date, there is no comprehensive tool to perform raw data
interpretation from data processing to annotation, although some online infrastructures such
as Workflow4metabolomics built upon the Galaxy web-based platform tend towards it®. Due
to the wide variety of available approaches to perform non-targeted and suspect screening,
there are also no guidelines to orient the choice of data processing tools, or their
parametrization®. This is reportedly one of the major bottlenecks of NTA8 %0,
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Figure 1.3 — Main steps of a non-targeted and suspect screening workflow implemented to investigate the
chemical exposome in biological matrices

The main steps of a workflow to characterize the chemical exposome in blood-derived

biological matrices using LC-ESI-HRMS are presented in Figure 1.3. Workflows used for

exposomics applications are, per their general structure, quite similar to workflows used for

metabolomics applications®" °2. However, in metabolomics, the focus is put on endogenous
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chemicals only, with blood concentrations up to eight orders of magnitude above blood
concentrations of exogenous chemicals (e.g. steroids or lipids found at ~1 mg/mL compared
to industrial pollutants found at ~10 pg/mL) > 2. In exposomics approaches, both are of interest
although with a focus on exogenous compounds. This wide range of concentrations implies
adaptations to the workflow at every step to ensure that low-abundant compounds are lost
neither to ion suppression (first analytical step) nor to inadequate noise levels (first
bioinformatics step). The several steps of the workflow are presented in the following sections.

2.1. Acquisition of the chemical fingerprint

Optimizing the acquisition of a chemical fingerprint involves two main steps, namely sample
preparation and sample analysis. Regarding sample preparation, to date, there are no
universal guidelines recommended for exposomics applications on human biological matrices.
Recently, the HBM4EU initiative included for the first time a work package dedicated to suspect
and non-target screening in human biological samples. The first steps towards a harmonization
of sample preparation practices for suspect and non-targeted screening have been
documented® %3, These initial advancements allowed identifying crucial points of vigilance that
must be carefully considered with NTA. These critical points include the starting volume, which
should be minimized while retaining sufficient sensitivity performances, the extraction method,
which greatly impacts the sensitivity versus selectivity compromise further described below,
and the inclusion (or lack thereof) of a deconjugation step, which is traditionally used in
targeted methods applied on urine samples but may lead to added variability®® °3. However,
no consensus has yet been reached considering the complexity of the task and, importantly,
the diversity of research objectives (e.g. exposure assessment in blood-derived matrices). This
can be explained by several reasons. Firstly, while these matrices all contain high-abundant
endogenous compounds which are likely to cause matrix-related troubles, they each have their
specificities, thus possibly influencing the choice of the most appropriate sample preparation
techniques. These specificities are even visible on matrices that may appear similar initially,
such as blood serum and blood plasma, or even blood plasmas obtained with different
anticoagulants®. Secondly, as no sample preparation method can comprehensively cover the
width of compounds constituting the chemical exposome, it is beneficial to the community as
a whole to explore different methods on similar (or even identical) samples. These
developments condition the feasibility of implementing operational workflows combining
different sample preparation methods, while still meeting the miniaturization requirements

encountered in the case of valuable biological samples with limited availability.

The most commonly used sample preparation method (SPM) in metabolomics is protein

precipitation (PPT)%, As proteins is one of the major classes of compounds in blood-derived
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samples, notably regarding abundance, their elimination is the minimum sample purification
necessary to reduce matrix effect and preserve the analytical system integrity (e.g. extending
column life). This method was historically favored as it is simple, fast and highly non-selective,
which is particularly sought after in non-targeted approaches. However, there are other classes
of compounds highly abundant in plasma and serum samples that are not eliminated through
this process, such as phospholipids and lysophospholipids. The gain in compound detection
obtained from the low selectivity may therefore be compensated by the loss of signal due to
ion suppression®. Moreover, issues with the analytical system such as clogging or poor
column life may be exacerbated by the still complex PPT samples®. This partly explains the
growing interest in solid phase extraction and filtration plates such as protein and phospholipid

removal (PLR) methods in HRMS-based exposomics.

PLR methods have gained traction in the last few years as sample delipidation combined with
deproteinization as they allow decreasing ion-suppression phenomena and extending LC-MS
system life®3, These methods specifically retain phospholipids through sometimes undivulged
mechanisms, presumably relying on interactions between the packed-bed structure and polar
esterified phosphate group found in phospholipids!®. PLR methods have been shown to
enhance analyte detection of non-lipid compounds compared to PPT methods®” %%, and have
been described as complementary to PPT in terms of metabolome coverage®.

Other sample preparation method such as supported liquid extraction (SLE) also allow further
sample purification. SLE methods aim to purify samples by using the affinity of compounds of
interest for one solvent over another (both solvents being immiscible). These methods are
similar to liquid-liquid extraction (LLE), with the exception that a solid media is used to support
the extraction, replacing the interface traditionally formed between the two immiscible solvent.
SLE methods are favored in the case of blood-derived sample preparation due to often high
emulsification in the case of LLE, as well as an easier miniaturization of the sample volume
needed!®?, LLE methods, such as the Bligh-Dyer'® or the Folch!®* method, have been
successfully used in metabolomics and lipidomics approaches to simultaneously cover non-
polar lipids and polar metabolites® 1%, While primarily aimed at non-polar compounds due to
the natures of the solid media and the extraction solvent, SLE methods have been reported to
perform adequately on more polar compounds?®’. As other mentioned SPM are often more
geared towards polar compounds, the use of SLE may allow the observation of another facet

of the chemical exposome.

Lastly, solid phase extraction (SPE) methods have vastly been used for biological matrices®:
%, 9. 101" 35 they offer a high level of sample purification and hugely limit matrix effects.

However, despite the expected drastic decrease in ion suppression and for preserving UHPLC
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columns, there is a concern for excessive method selectivity leading to a loss of information.
Moreover, the overall complexity of SPE protocols allow more room for human error. These
concerns have however been dampened by previous studies using non-targeted
metabolomics approaches, where it was determined that the sometimes-reduced recovery of
specific compounds was not necessarily associated with total loss of relevant information,

especially when considering the possibility of increased concentration of extracts®: *°,

Other sample preparation methods seem promising despite their limited reported use, such as
solid phase micro extraction (SPME), which is reported to allow the recovery of compounds

with a wide range of physical-chemical properties and limiting samples handling steps 109,

Sample preparation for NTA are especially challenging to optimize, as there is no set list of
compounds of interest on which to rely to ensure adequate performance. Moreover, it is less
simple to monitor external contamination compared to targeted approaches. A systematic
assessment of sample preparation performance for HRMS-based exposomics applications
should therefore be conducted to document its impact on the observed chemical space.
Consequently, a performance assessment of the sample preparation step will be the subject

of one of the chapters of this PhD.

2.2. Data processing

Data processing for non-targeted approaches is the next decisive step in the workflow. This
step involves transforming chromatographic and spectral data to a list of features; each
attributed a m/z, a Rt, and an area for each analyzed sample. This step is critical since the rest
of the workflow, especially annotation, is based on the feature list generated at this point. Its
optimization is therefore paramount to ensure the correct detection and integration of features
of interest. In the case of exposomics applications, with low-abundant compounds in complex
matrices, it is particularly important to ensure that the data processing allows the disentangling
of these signals from the noise. Very few to no studies are available regarding the optimization

of this step for HRMS-based exposomics.

Data processing is conducted in four main steps: firstly, the signal is translated to peaks in
each analyzed sample (i.e. peak picking). Peaks of all included samples are then aligned to
obtain a single peak list. Missing values are filled if peaks were missed in some samples during
the initial step (i.e. gap filling). Lastly, areas are normalized to ensure inter-sample

comparability. A representation of this process is presented in Figure 1.4.
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Figure 1.4 — Main steps of the non-targeted data processing workflow, comprising of peak picking, alignment,

gap filling, and normalization. These steps are presented on quality control (QC) samples. Various strategies
and algorithms are available for the peak picking step, the alignment step and the normalization step, as
detailed in Chapter Il

A number of open source software are available for non-targeted data processing, among
which are the commonly used XCMS operated under an R environment!!® or online!!,
MZmine2!!2, MS-DIAL!3, and XCMS galaxy-based Workflow4Metabolomics®. Vendors also
provide non-targeted data processing software, such as Mass Profiler Professional from
Agilent, MetaboScape from Bruker, Compound Discoverer and TraceFinder from Thermo,
MarkerView and XCMSplus from Sciex, or Progenesis QI from Waters. This multiplicity of tools,
while beneficial to allow tailoring data processing to each application’s need, also leads to an
absence of guidelines regarding the preferential use of a particular software tool for select
applications, or even regarding the parameter settings that should be used!!4. This is
exacerbated by the lack of consensus regarding reporting data processing parameters in the
literature, possibly explained by the fact that highly customizable processing workflows entail

a large number of parameters to set and report.

While several data processing workflow optimizations and comparisons are available in the
literature4118 they are tailored towards metabolomics applications. However, as compounds
of interest in exposomics applications are often low abundant, the suggested optimized
parameters may lead to failure to correctly identify peaks of interest. Parameters such as noise
threshold, peak width or maximum authorized asymmetry should be adjusted to account for
peaks presenting different characteristics to those classically encountered in metabolomics.
As for the sample preparation method, the data processing method should be thoroughly

evaluated to ensure that important chemical information is not lost at this stage.
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2.3. Interbatch correction

When performing large-scale exposomics applications, the chemical analysis may be
performed in several batches during several weeks. The collected data may suffer from
systematic variability in Rt and signal'*® due to LC-ESI-HRMS analytical drifts, which may
result in loss of data (e.g. sensitivity loss). These analytical issues, alongside data processing
problems such as incorrect binning can lead to inaccuracy of further statistical analyses'?. To
correct the analytical drift in terms of retention time and intensity, interbatch correction should
be implemented. While interbatch correction is usually considered part of the data processing
step (i.e. alignment and normalization steps), the methods commonly used for these steps may

not be sufficient to account for low-abundant compounds.

Traditional alignment processes only rely on a Rt tolerance value which is applied across
samples, i.e. peaks with the same m/z value (within a m/z tolerance) in different samples will
be considered as one feature if their Rt value is identical within this user-set tolerance value.
The issue with this approach is that when a drift phenomenon is observed, the tolerance would
have to be set at a high value to account for difference between first and last samples. This
could lead to the alignment of peaks that are in fact two distinct compounds with similar
although not identical Rt values (i.e. aforementioned binning issue). Moreover, the often non-
linear nature of Rt drift with LC methods puts the relevance of a fixed Rt tolerance value into
question. To address this issue, various data processing software provide additional Rt
correction algorithms. These algorithms usually rely on peaks present in most or all samples
to perform the Rt correction, whether they are user-specified (i.e. internal standards, such as
for MS-DIAL), or chosen by the processing tool (i.e. adjustRtime - peakGroups algorithm
available with XCMS*21),

In targeted approaches, signal drift correction is usually performed by using internal
standards!'®. However, in non-targeted approaches, these compounds only represent a
fraction of the features, which may not be representative of varying signal fluctuation between
chemical classes'??. Similarly, signal drift correction methods traditionally used for NTA, based
on total intensity or intensity of most abundant features, may fail to account for differing
variability between metabolite classes!'®. This observation led to the development of quality
control (QC)-based methods, where a sample constituted of pooled aliquots of all samples is
repeatedly injected throughout the batches and used as a reference point® 119122124 Ajthough
not often compared in the literature, algorithms relying on all features of QC samples such as
batchCorr'® are reported to outperform internal standard drift correction and other linear

sequence corrections® 119125,
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This interbatch correction step, while often incorporated into the data processing workflow,
should be carefully considered to ensure that the obtained feature list can be relied on for
statistical analysis, and later non-targeted screening and/or suspect screening.

2.4, Statistical analysis

As non-targeted exposomics applications can generate datasets comprised of tens of
thousands of features, statistical analyses are helpful to identify and prioritize features
significantly altered between samples, either for further characterization (e.g. MS2 acquisition)
or for annotation. Both univariate and multivariate analyses can be used to this end. The choice
of a strategy for statistical analyses highly depends on the study design (e.g. case-control
study, exposed vs non-exposed, etc.) as well as the nature and volume of data collected
alongside the biological samples (e.g. socio-economic, geographical, clinical data).

While the non-targeted chemical exposome characterization is by nature multivariate (i.e.
simultaneous observations of multiple variables), the high dimensionality of the generated
datasets entails a high proportion of sparse information leading possible loss of multivariate
model performance!?. Multivariate data-driven dimension reduction techniques, such as
principal component analysis (PCA) or partial least squares (PLS) can be used to describe the
exposome or to evaluate exposome-health associations'?’. These approaches can describe
the exposome by combining variables (i.e. exposures) that tend to occur simultaneously into
independent components. These components describe the main patterns discriminating
individuals or groups of individuals. However, due to the complex nature of the data, it may be
difficult to summarize it with a reasonable number of patterns?’. Establishing correlations
between exposures and health is also challenging. Indeed, correlations between exposures,
described as the exposome correlation structure, is largely dependent on the study settings
and strongly affect the statistical method’s performance in differentiating between true patterns
predictors and correlated covariates'?”- 12, The low interpretability of generated independent
components and the limited possibility of adjusting for confounders are also challenges for
these multivariate exposome statistical analyses. Overall, despite the lack of guidelines, the
growing implementation of large-scale exposomics studies will allow to better assess the

performance of statistical exposome methods in varying contexts.

Multivariate approaches can be complemented by univariate approaches, which consider each
feature individually. While considerably easier to implement, univariate statistical analyses in
a multivariate context requires several adaptations to correct the dramatically increased false
positive results (type | error). Indeed, as the number of hypotheses tests increases, so does

the probability of wrongly rejecting the null hypothesis. To limit this multiple testing problem, p-
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values generated by parametric or non-parametric tests (depending on whether the data is
normally distributed and homoscedastic?®) can be corrected. The Bonferroni correction, for
instance, aims to strictly limit the amount of type | errors, although sometimes at the expense
of type Il errors (i.e. false negatives, or wrongly accepting the null hypothesis). Since missing
a true significant difference is a concern, other approaches such as the false discovery rate
(FDR) are often preferred®?®. Briefly, FDR correction adjusts p-values based on the initial non-
corrected p-values and on the distribution of p-values among all the considered tests. To do
s0, a critical value is computed as a function of the feature’s significance rank, the total number
of tests and the chosen false discovery rate (usually 5%); the largest p-value that is inferior to
to this critical value, as well as all smaller p-values, are significant. An adjusted p-value that is
a function of the raw p-value, the feature’s significance rank and the total number of tests can
be computed. Both of these corrections can be performed depending on the application,
although FDR corrections such as Benjamini-Hochberg are often preferred for non-targeted
approaches!?® 12 Vinaixa et al. (2012) 1?6 provide a detailed and comprehensive workchart to

help navigate the implementation of univariate analyses for non-targeted data.

While methodological challenges still exist, univariate and multivariate statistical methods can
improve the efficiency and reliability of the non-targeted workflow. These methods allow
prioritizing features of interest for further investigation through various annotation strategies.

2.5. Annotation: non-targeted and suspect screening

Non-targeted HRMS-based methods, while not entirely comprehensive in their coverage of the
chemical exposome, still generate a large amount of data. Exposomics datasets often include
10,000 to 50,000 features, as even low-abundant peaks are of potential interest. The
annotation step aims to assign chemical identities to the detected signals with varying
confidence levels depending on the amount and nature of the gathered elements of proof!=°.
The consensus ranking currently used by the HRMS-based non-targeted community is the one
proposed by Schymanski et al. (2014), where the highest confidence level is achieved by
matching exact mass, MS/MS fragmentation pattern and Rt to a standard compounds, as
schematized in Figure 1.5%°, It should be noted that the development of new methodological
tools in the last few years, such as retention time prediction models'313*, raise the question of
updating this ranking system to account for other predictors. Due to a combination of the high
volume of data generated, time restrictions and limited access to standards (for financial or

availability reasons), it is usually admitted than less than 10% of features are identified®.
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Figure 1.5 — Identification confidence levels in high-resolution mass spectrometry proposed by
Schymanski et al., ES&T, 2014.

Assigning chemical identities to features can be performed through two main approaches,
namely non-targeted screening and suspect screening. Both of these approaches aim to
identify new and/or infrequently investigated markers of chemical exposure through different

methodologies.

Non-targeted screening consists in unambiguously identifying a feature’s identity with no prior
reference knowledge. This task is incredibly complex, as the number of tentative candidates,
even restricted by a chemical formula, can still be extremely high; for example, a saturated
alkane such as CioH2; already presents 75 possible isomers and 136 possible stereoisomers.
Moreover, strong knowledge on analytical chemistry and biochemistry are needed to assess
the plausibility of a given candidate; precise structure elucidation may require the use of other
analytical techniques, such as nuclear magnetic resonance. Another bottleneck of annotation
is the large size of non-targeted datasets, which cannot be entirely annotated. This can be
managed by using statistical analyses to prioritize features of interest for non-targeted

screening.

Suspect screening is performed by using one or more lists of compounds suspected to be
present in a sample (e.g. expected dietary or occupational biomarkers), which is compared
using several criteria to the feature list generated during the previous steps. This comparison
is usually done through the comparison of chemical descriptors (e.g. m/z, Rt, isotopes®: 13°)
and correlation/clustering methods. Several automatized solutions based on this principle have
been developed over the last few (e.g. CAMERA, MolNetEnhancer ProbMetab, and

MetAssign)13¢-139, The use of biological matrices has also led to the use of biological correlation
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(i.e. implication in the same pathways, etc.) to assist automatized suspect screening (e.g.
xMSannotator'“%). Another powerful chemical predictor is the MS2 fragmentation pattern,
which is also widely used to assist suspect screening in some software tools (e.g. MS-DIAL!3,
msPurity!*!, and DecoMetDIA*?). While these annotation tools sometimes allow to directly use
publicly available databases such as HMDB!* or KEGG#4, the suspect screening strategy can
be less time-consuming if the list of suspects is prioritized depending on varying criteria (e.g.
chemical class, toxicity, production volume, etc.). Moreover, these databases were initially
designed for metabolomics. They may therefore only be moderately relevant for exposomics
applications. While these databases are still relevant to monitor a biological reaction to an
exposure (i.e. biomarkers of effect), other databases such as the Blood Exposome Database!#®
, Exposome Explorer'® or CECscreen!’ may be better suited to identify biomarkers of

exposure.

While suspect screening strategies have been greatly improved in the last few years’’, the use
of sufficient and relevant chemical predictors is needed to decrease the rate of false positives
and therefore limit the number of putative annotations that need manual curation. Furthermore,
there is still a high need for the automation of this process, as few tools are available to
implement suspect screening approaches. Most of the existing tools rely on highly
discriminating MS2 fragmentation patterns, which can be difficult to obtain for less commonly
investigated environmental contaminants. The use of in silico fragmentation algorithms, such
MetFrag'*® or CFM-1D9, can help bridge the gap between the number of potential substances
of interest and the available experimental spectra!®. When standards are available, local
reference libraries can also be built, and the acquired spectra can be submitted to large
databases such as MassBank!®l. As MS2 acquisitions may be difficult to trigger in the case of
low-abundant compounds such as xenobiotics, the suspect screening process can rely on
other MS1 predictors. For instance, as for theoretical MS2 fragmentation models, several
algorithms for retention time prediction have been developed and evaluated?3? 133152153 gy ch
as PredRet*4, the retention time index RTI*®4, Retip®, and linear regression models using the
octanol-water partition coefficient'®>. While predicted Rt values are not as reliable as
experimental values, they are still helpful in combination with other chemical predictors to
decrease the rate of false positive annotations. A chapter of this PhD work was dedicated to
the development of a suspect screening tool relying on MS1 predictors to partly automatize

this process and efficiently prioritize features of interest.
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2.6. Semi-quantification

To date, NTA mainly provide qualitative data, i.e. presence/absence of a given biomarker, and
semi-quantitative data, i.e. area fold changes between samples. This is a hindrance for the
application of NTA in epidemiological studies, which heavily rely on quantitative data to perform
statistical exposure-health associations, as well as for risk assessment purposes, which also

consider quantitative data.

Semi-quantification relies on the hypothesis of a linear concentration-response relationship.
Although rarely perfectly accurate over large concentration ranges®®, these relative
comparisons are useful to establish fold change values and investigate statistically significant
features for prioritization. Indeed, semi-quantitative results from univariate statistical analysis
(corrected for multiple comparisons) have been used to compare emerging contaminants
levels in human blood'*’. The same methodology has also been applied to investigate
emerging contaminants in environmental matrices!®®. While normalization approaches can
improve comparability between samples®®®, differing ionization potentials make cross-chemical

comparisons based on estimated concentrations difficult with this approach?® %6 159,

To generate quantitative data using NTA in epidemiological studies, two main types of
approaches can be considered: quantification by surrogate standard or response modeling
from chemical structure'®®. Quantification by surrogate standard consists in constructing
calibration curves with a list of reference standard deemed representative of the chemicals of
interest, and pairing them when similar analytical behaviors are expected (e.g. a parent
compound and a metabolite, compounds from the same chemical class, etc.). However, due
to intrinsic analytical variance and model uncertainty, these approaches have been reported
to yield highly variable inaccuracies depending on the considered compound, and seem
challenging to apply for predictive purposes®.

Since there are several limitations to the surrogate standard assignment approach, models
aiming to model compounds’ ionization response based on their structure and properties (i.e.
hydrophobicity, molecular weight, etc.) have been developed®® 161, An important consideration
for these approaches is that the constructed models will only be usable in their validity domain,
which is conditioned by the diversity (or lack thereof) of the training dataset. This implies that
guantitative data would have to be acquired for compounds from different chemical classes,
with a wide range of physical-chemical properties, functional groups, etc. in both ionization
modes and in matrix to yield a robust model. Such an approach was carried out by Liigand et
al. (2020) which allowed an rather low prediction error on compound concentration (i.e.

averaging at two-fold)'®°, encouraging further investigations of these approaches using
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ionization response predictions to provide reliable quantitative data even with non-targeted
approaches.

2.7. Reporting

Reporting NTA data can be challenging as no consensus format exists as of yet. While most
reports contain the 1 to 5 confidence levels as described by Schymanski et al. (2014)'%, there
may be some discrepancies between laboratories depending on interpretation. For instance,
it may be relevant to add information regarding predicted Rt values, which are not taken into
account in the existing annotation and reporting standards®*°, or to document potential
deconjugation steps implemented in the sample preparation procedure®®. Moreover, the ever-
evolving technologies, prediction models and methodological approaches may lead to
annotations not fitting in any described categories, as is the case for annotations supported by
predicted retention times or biotransformation products®. All the elements of proof used to
assign the considered chemical identity should therefore be reported, along with any additional
information that may support plausibility (e.g. production volume) or justify a further
prioritization (e.g. toxicity). A common template for the reporting of non-targeted and suspect
screening results is currently developed in the HBM4EU initiative®. Other recommendations
are available in the literature, such as those from Dumas et al. (2022) which include providing
m/z, Rt, molecular ion species detected, and fold change values, to ensure providing sufficient
analytical, statistical and biological information to allow a full understanding of results®2,
Additionally, providing raw data and associated metadata through online workflows such as
XCMSOnline!** or Workflow4metabolomics®, on through data repositories such as
MetaboLights'®® or Metabolomics Workbench* helps enhance cooperation and further tool

and database development®.

2.8. Conclusion

While structurally inspired from workflows developed for metabolomics, HRMS-based
exposomics workflow must be adapted and optimized for these specific exposure assessment
applications. While highly challenging, this workflow optimization allows ensuring that each
step’s impact on the produced results is thoroughly investigated, and ideally vastly reduced. A
systematic evaluation and optimization of the solutions available for every item of this workflow
is necessary to implement robust large-scale applications that are minimally biased, and
provide a wide view of the chemical exposome. Epidemiological cohort-based studies
associating exposomics data and health data can therefore be carried out and shed some light

on the complex links between environmental factors and non-communicable diseases.
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3. When non-targeted and suspect screening meet epidemiology:

first

challenges

3.1.

large-scale applications,

achievements and

Large-scale applications and achievements

remaining

To date, there have been no large-scale applications of non-targeted and/or suspect screening

approaches in epidemiological studies. However, several exposomics research initiatives have

appeared in the last decade in Europe and worldwide (even though not all of them implemented

NTA based on HRMS) (

Table 1.1).

European projects (FP7)
(2012-2017)

HELIX

EXPOsOMICs

NIEHS projects (USA)

CHEAR

HHEAR

European projects (H2020)
(2017-2022)

HBM4EU
The European Human Exposome

Network
(2020-2025)

ATHLETE

EXPANSE

Project name

Main objective

The Human Early-Life Exposome

Novel tools for integrating environmental exposures during early
life and child health across Europe

Enhanced exposure assessment and omic profiling

Developing a new approach to assess environmental exposures,
focusing on air and water pollution

Project name

Main objective

The Children’s Health Exposure Analysis Resource
Implementing the exposome concept in children’s health studies
Human Health Exposure Analysis Resource

Capturing the effects of environmental exposures on human
health outcomes across the life course

Project name

Main objective

The European Human Biomonitoring Initiative

Coordinating and advancing human biomonitoring in Europe to
provide evidence for chemical policy making

Project name

Main objective

Advancing tools for human early life-course exposome research
and translation

Developing a human exposome toolbox to evaluate the effects
of environmental exposure

Exposome powered tools for healthy living in urban settings

Maximizing one’s health in a modern urban environment

Funding
(Million euros)

11.3

11.6

Funding
(Million euros)

34

35

Funding
(Million euros)

74.9

Funding

(Million euros)

12.0

12.0
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Table 1.1 — Research initiatives investigating the links between the chemical exposome and health.

NIEHS: National Institute of Environmental Health Sciences. Adapted from David et al., m/s, 2021.

3.1.1. From 2012 to 2017

The emergence of the exposome concept has motivated the funding of several European and
international projects aiming to characterize the exposome at a wide scale. Among the first
large-scale research projects, two European projects funded in part by the European
Commission through the seventh Framework Programme (FP7) were launched in 2012.
Firstly, the HELIX project set out to characterize early-life exposures to multiple environmental
factors and associate them with omics biomarkers and health outcomes. Methodological tools
such as spatial models and exposure monitors were used to evaluate exposure to physical
factors such as surrounding green spaces, noise and radiation. Other tools such as
guestionnaires and chemical analysis were used to assess early-life exposure to a wide range
of environmental chemicals including various persistent organic pollutants (polychlorinated
biphenyls, dichlorodiphenyldichloroethylene, hexachlorobenzene, polybrominated diphenyl
ethers, perfluroalkyl substances), non-persistent pollutants (phtalates, phenols,
organophosphate pesticides), and various metals!®®., These chemical parameters were
measured in blood using GC-MS-based methods (aforementioned persistent pollutants), in
urine using LC-MS-based methods (aforementioned non-persistent pollutants) or hair
(mercury). In addition, the links between indirect measurements conducted on environmental
samples and direct measurements conducted on biological matrices were investigated to give
new insights on future exposure assessments. The HELIX project implicated six European
birth cohorts (more than 30,000 mother-child pairs), with a subcohort of more than 1,300
mother-child pairs for which biomarkers, omics signatures and child health outcomes were
measured at ages 6-117. This project required a total budget of 11.3 million euros (8.6 million
euros from FP7), and allowed to establish several significant environment-health outcomes
associations such as perfluoroalkyl substances and cardiometabolic factors®®, and multiple

exposures (including chemical mixtures) and cognitive function®.

Secondly, the EXPOsOMICs project aimed to characterize exposure to air and water
contaminants for more than 3000 participants (including newborns, children and adults) from
14 European regions, and to establish links with adverse health outcomes such as
cardiovascular diseases, respiratory diseases and type Il diabetes. Real-time monitors
measuring notably fine particulate matter and innovative models were used to assess
exposure to air pollution. Water contamination, on the other hand, was assessed through the
determination of disinfection by-products notably in drinkable water and biological matrices

such as urine. Omics data was also generated from biological samples obtained from the highly
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exposed participants to potentially identify biomarkers of risk and better understand chemical
compounds’ mechanisms of action (“meet in the middle” approach?®®). It was funded for over
11.6 million euros, with a contribution of more than 8.7 million euros from the European

Commission.

These projects, both closed in 2017, undertook the characterization of the chemical exposome
at a large scale. However, while a large number of determinants were investigated, they still

relied on targeted measurements of known toxicants.

During the same period, sizable infrastructures dedicated to the characterization of the
exposome were set up in the United States of America. In 2013, the National Institute of
Environmental Health Sciences (NIEHS, USA) funded HERCULES, an environmental health
sciences center dedicated to supporting environmental health research through the
development of new tools and technologies. This Core center was the first of its kind focused
on the exposome concept. This platform supported many research projects throughout the
years, providing targeted and high-resolution metabolomics analyses (aiming to identify both
biomarkers of effect and exposure), as well as support regarding data analysis® 70, Its funding
was renewed for a second cycle in 2017t In 2015, NIEHS also launched the Children’s
Health Exposure Analysis Resource (CHEAR), a large-scale infrastructure to allow
researchers working specifically on children’s health to incorporate the concept of exposome
to their research'’?. Using targeted and high-resolution metabolomics, this infrastructure
allowed researchers to characterize the chemical exposome of over 50,000 children in over 30
studies investigating the links between environmental exposures and adverse health outcomes
such as asthma, obesity, autism, etc. In 2019, the Human Health Exposure Analysis Resource
(HHEAR) was in turn launched to expand the characterization of the chemical exposome to

other time windows of vulnerability during adulthood*"3.

3.1.2. From 2017 to 2020 (extended to 2022)

The European Human Biomonitoring Initiative (HBM4EU) was launched in 2017 with a
contribution from the European Commission of almost 50 million euros through the Horizon
2020 program (75 million euros of funding in total). This project is a joint effort of 30 countries
to coordinate and harmonize human biomonitoring practices to improve the evaluation of the
actual exposure of citizens to chemicals and to better understand the effect of mixtures on
human health. Its main objectives included the harmonization of procedures for HBM to
improve data comparability for policy makers, establishing links between chemical exposures
and health outcomes, and adapting risk assessment procedures to account for multiple

sources. It was one of the first major projects to include, in addition to targeted approaches

70



Chapter I. Application of HRMS-based exposomics to cohort-based epidemiological studies:
State-of-the-art and challenges

relying on lists of priority substances, non-targeted and suspect screening of biological
matrices to characterize environmental exposures. HBM4EU’s sixteenth work package titled
“‘Emerging chemicals” is specifically dedicated to the harmonization and implementation of
NTA7276.93 The work carried out in the context of this work package has contributed to the
field of the non-targeted characterization of the exposome on several aspects, notably the
establishment of a list of chemicals of emerging concern’® % 147 and recommendations on
practices harmonization®. At a larger scale, this project has allowed, amongst other results,
establishing recommendations for the harmonization of the use of HBM data in risk
assessment*® 174 as well as HBM guidance values for chemicals such as phthalates!’® or

cadmium compoundst’e,

In this context, the European-wide research program PARC (Partnership for the Assessment
of Risks from Chemicals) was developed. This partnership established under Horizon Europe
and co-funded for 400 million euros, will last 7 years. It implicates 200 partners, including 3
European Union agencies. PARC’s main objectives revolve around the consolidation of the
European Union’s research capacity for chemical risk assessment to improve the protection of
human and environmental health. Work package 4 of this program is specifically dedicated to
the exposure and monitoring of chemicals through the development of innovative tools and
methods to perform HBM and environmental monitoring. Non-targeted and suspect screening
methods will be implemented in this work package.

Lastly, in 2018, the European Strategy Forum on Research Infrastructures (ESFRI) identified
a gap in the health and food domain and recommended building an infrastructure dedicated to
research surrounding the human exposome at a European level. This prompted the setup of
Environmental Exposure Assessment Research Infrastructure (EIRENE), which includes more
than 50 partners from 17 countries (including the United Kingdom and the United States of
America). EIRENE was added to ESFRI’'s roadmap in 2021. It aims to bring together
complementary capacities of partners to improve exposome research and achieve the high-
throughput characterization of the human exposome. Another important aim of EIRENE is the

translation of research results towards innovation and policymaking.

3.1.3. From 2020 onwards

In 2020, a large-scale network of projects focused on studying the impact of environmental
exposure on human health, the European Human Exposome Network (EHEN), was launched.
It was funded from Horizon 2020 for over 106 million euros, and aims to protect citizen’s health
and well-being from environmental factors. It consists of 9 research projects implicating 126

research groups from 24 countries. One of its main objectives is to develop a Findable
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Accessible Interoperable Reusable (FAIR) toolbox for exposome research. This toolbox will
notably include innovative tools for the assessment of the exposome, and new methodologies
to associate this data to health data.

The Advancing Tools for Human Early Lifecourse Exposome Research and Translation
(ATHLETE) project, as a part of EHEN, was launched in 2020. ATHLETE’s objectives include
the setting-up of a Europe-wide prospective cohort to cover the first 20 years of life using 17
already existing cohorts, measuring multiple environmental exposures and linking it to
children’s biological responses?’’. A work package dedicated to the non-targeted screening of
emerging chemicals will, amongst other analyses including targeted screening, use LC- and
GC-HRMS to perform non-targeted and suspect screening on the HELIX subcohort (1 300
individuals). Simultaneously launched in 2020, the EXposome Powered tools for healthy living
in urbAN SEttings (EXPANSE) project was also funded for 12 million euros through the Horizon
2020 European program. It involves 20 partners in Europe and in the United States of America
working together to identify factors influencing human health in urban environments!’8,
EXPANSE includes four main study types: administrative cohorts, adult cohorts, matures birth
cohorts, and urban labs with data collected 55 million, 2 million, 30 000 and 5 000 individuals
respectively. Biological data was collected for all study types except administrative cohorts.
Non-targeted screenings on 10 000 blood samples will be performed using both LC- and GC-
HRMS. Both the ATHLETE and EXPANSE project will integrate multiple omics datasets to
uncover exposome-health relationships, and allow expanding knowledge on biological
pathways. Moreover, exposome-health associations will be explore with epidemiological

approaches, as clinical data is available for individuals in the cohorts.

Although these many large-scale EU and international initiatives have been launched to
decipher the impact of the chemical exposome on human health, to date, there are no large-
scale epidemiological applications of non-targeted or suspect screening approaches.
However, there are some studies using non-targeted or suspect screening approaches to
characterize the chemical exposome and establish links with endogenous compounds to
investigate the effect of various exposures on biological pathways®? 17 18 While these studies
constitute the crucial first steps towards conducting epidemiological analyses to investigate
associations between environmental chemical exposures and adverse fetal health outcomes
(e.g. preterm birth, low birth weight, preeclampsia)®?, breast cancer!” or liver diseases'®, they

report several remaining limitations in achieving this goal.
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3.2. Remaining limitations

3.2.1. Statistical power in non-targeted applications

As mentioned above, no large-scale applications of non-targeted and suspect screening are
described to date, and this is explained by many major methodological issues. The major
challenge for the application of NTA in epidemiological studies is statistical power. Indeed,
statistical power in these applications is limited by the large and unknown number of
determinants (i.e. exposures) investigated'?’. This is further exacerbated by the fact that high-
dimensional collinear data is generated through these approaches!?% 127,

It should be noted that this issue is also prevalent for EWAS conducted using targeted
approaches. Indeed, when considering that the association sizes are often low to moderate,
and that a substantial proportion of substance concentrations is below the limit of detection,
high sample sizes are needed to achieve sufficient power?” 181 167.169 - A stydy investigating
the link between 128 environmental contaminants and semen quality found in a post-hoc
power analysis that sample size requirements when using a Bonferroni or a FDR correction
were of at least 1795 and 925 men respectively, thus determining that many existing cohorts

were vastly underpowered to undertake EWAS-like approaches®,

Regardless of whether targeted or non-targeted approaches are undertaken to characterize
the exposome, high sample sizes can be difficult to achieve for various reasons: limited funding
for sample collection and analysis, analytical platform availability, loss of follow-up®”: 169 or
investigation of rare diseases with low frequencies®. Theoretical and methodological studies
are therefore still required to overcome the critical challenge of statistical power for use of NTA

in epidemiological research.

3.2.2. The incomplete annotation process

Despite the many available tools and databases, the annotation process is still tedious and
incomplete. It requires many steps, including searching for mass spectral information in
databases, verifying the potential match to the observed feature, and even in some cases,
such as isotope elucidation, using non-traditional additional approaches such as using other
analytical techniques. While it would not be necessary to annotate the entirety of datasets,
annotating only the statistically significant features can still remain an arduous task. For
instance, Walker et al. (2021) described identifying 54 compounds associated to primary
sclerosing cholangitis, resulting in only one high-confidence match. This can be partly
explained by the fact that, to date, the main annotation approach used is suspect screening,

since it requires fewer resources and has potential for automation. However, a critical aspect
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of suspect screening is the construction of the reference database against which features are
compared.

The Matthew effect is a psychological phenomenon described as maintaining prominence of
items (i.e. compounds) that have been prominent in the past!®3, This bias includes the
prioritization of compounds only based on previously researched compounds and the
interpretation of lack of data as a null concentration. While NTA were specifically designed to
overcome the restriction of set lists of well-researched compounds of interest, the data
generated from these approaches must be made interpretable by expanding knowledge on
compounds not traditionally investigated, including through the acquisition of MS2 spectra.
Indeed, while hundreds of thousands of compounds are known to be in our environment, it is
estimated that only 0.57-3.6% of them have spectral information available*®°. Ongoing efforts
for the harmonized and collaborative acquisition of MS2 spectra must therefore be maintained
and even expanded.

3.2.3. Interpretability of results: toxicology and determinants of exposure

Once an association between an environmental exposure and an adverse health outcome has
been established, additional steps must be taken to understand the nature of this association.
Indeed, in datasets as highly collinear as non-targeted exposomics data, it may be difficult to
disentangle true predictors of health status and correlated covariates. Additional assays such
as high-throughput toxicity screenings models may help to ascertain the effect of an
environmental compound on various biological pathways®2. To this end, the ToxCast program
was launched by the U.S. Environmental Protection Agency (EPA) in 2006 to use
computational chemistry, high-throughput screening and toxicogenomics technologies to
predict toxicity and prioritize chemicals for limited in-vivo tests'®*. The data generated by this
program is freely available and allows having preliminary data on the predicted toxicity of over
4,400 chemicals. As chemical mixtures may have synergic effects, additional developments
must be made to allow these toxicological approaches to integrate multiple compounds. The
implementation of toxicological approaches in exposomics is needed both to improve
mechanistic understanding of chemicals’ effects on human health and to translate these

findings into regulatory measures in risk assessmente®,

Lastly, the detection and identification of new toxicants to which humans are exposed raise the
guestion of the determinants of exposure. Indeed, to implement public health policies and limit
the exposure to such compounds, the major sources of exposure must be identified. This can
be challenging, as there are often multiple sources and confounding factors. To date, this task

is mostly accomplished by using detailed questionnaires? that allow collecting large amounts
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of data regarding socio-demographic features, diet, lifestyle, etc. Although this method is not
ideal due to the data being subject to potential recall and reporting biases'®, it is often the
most cost-effective way to obtain a starting point to establish the determinants of a given

exposure.

Overall, there are still some key conceptual and methodological obstacles to implements NTA
for epidemiological studies, including the unresolved question of statistical power, the tedious
and incomplete annotation process, and the limited interpretability of the generated data. To
address those issues, collaborative efforts must be maintained regarding the generation of
additional knowledge, as well as regarding the development of new data processing and
statistical methodologies needed to uncover the potential of NTA to investigate the etiology of

diseases.

4. Conclusion

This first chapter illustrates the significance of the exposome concept to investigate the etiology
of non-communicable chronic diseases, as genetic factors are not sufficient to explain alone
their emergence. This exposome concept, combined with the advancement of technologies
such as HRMS, paved the way for a change of paradigm for exposure assessment to chemical
mixtures and emerging contaminants. Indeed, the development of new non-targeted
approaches has allowed envisioning a characterization of the chemical exposome without
establishing set lists of prioritized chemicals, but with an (ideally) unbiased vision. However,
many technological barriers that come with the non-targeted characterization of the human
internal chemical exposome remain. The many necessary methodological choices, which
include the choice of matrix, analytical platform, sample preparation and parametrization of
bioinformatics tools used for data processing have a hard-to-discern impact on the observable
chemical space, which in turn may limit the applicability of these novel approaches in
epidemiological studies. Indeed, the diverse and dynamic nature of the chemical exposome
are both considerable obstacles to its exhaustive characterization. The combination of different
biological matrices (i.e. urine, blood, placenta, hair, etc.), analytical platforms (i.e. LC-HRMS,
GC-HRMS, etc.) and sample preparation methods is necessary to encompass the wide range
of chemicals that constitute the chemical exposome. Moreover, the data processing and
annotation algorithms are not yet fully efficient to translate the non-targeted chemical
fingerprints to a list of identified chemical compounds, which is a hindrance to the application
of NTA at a large scale. Lastly, the extensive amount of data generated by NTA is also a
challenge to establish links between the characterized exposures and the considered health

outcomes.
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These many conceptual and methodological challenges for the application of non-targeted
approaches to epidemiological studies are slowly being addressed through the efforts of
independent laboratories and regional and worldwide collaborations. In 2020, the European
Human Exposome Network was launched with the aim to bring together 9 research projects
studying the impact of environmental exposure on human health. It is partly funded by the
European Commission for over 100 million euros, and involves 126 research groups from 24
countries. Closely following in 2021, the Research Infrastructure for EnviRonmental Exposure
assessmeNt in Europe (EIRENE RI) entered in the European Strategy Forum on Research
Infrastructures (ESFRI) roadmap. This European research infrastructure connects 50 research
institutions from 17 countries and aims to support large-scale research on human health and
the environment, way of life, diet, exercise, economic pressures and psychosocial problems.
These initiatives hold great promises for supporting the development and harmonization of
new methodologies aiming to bridge the gaps in knowledge regarding the impact of
environmental exposures on human health, as it is a complex task only achievable through the

collaboration of multiple partners focusing on its different aspects.

In this context of rising global interest, this PhD thesis project was focused on developing and
optimizing a workflow for the non-targeted LC-ESI-HRMS characterization of the chemical
exposome in blood plasma and serum samples. This was conducted by optimizing the
acquisition of the chemical fingerprint and notably the sample preparation step, as well as the
data processing step for the characterization of low-abundant environmental compounds in
complex matrices. Moreover, a suspect screening workflow was developed to improve the
efficiency of the annotation step, which remains an important bottleneck for the implementation
of NTA. Lastly, a proof-of-concept study was conducted on serum samples from Breton
adolescents to demonstrate this workflow’s efficiency to characterize the chemical exposome

at a large scale.
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1. Instrumental method development and optimization

A LC-ESI-HRMS SCIEX ExionLC™ Ultra-High Performance Liquid Chromatography (UHPLC)
system (Framingham, USA) coupled to a high-resolution QTOF mass spectrometer SCIEX
X500R equipped with a Turbo V ion source with a twin-sprayer ESI probe and a hybrid
guadrupole time-of-flight mass spectrometer was used for all experiments. External calibration
was systematically performed by infusion of AB SCIEX calibration mixtures for negative and
positive ionization modes before all injections. The instrument was controlled by SCIEX OS
software version 1.2. LC optimizations and development (e.g. columns, flow rates, solvent of
injection) were made using a mix of standards spiked in solvent and plasma/serum to ensure

a good analytical sensitivity and repeatability.

1.1. Mix of standards used for the optimizations

One of the main challenges of non-targeted method development is the width and depth of the
chemical space intended to be observed. Indeed, compounds constituting the chemical
exposome are extremely varied in both physical-chemical properties and concentrations in
biological matrices. While there are indubitably less constraints in non-targeted methods
regarding quantification performances compared to targeted methods, there is an added
difficulty in ensuring a high coverage of the observable chemical space to characterize the

chemical exposome as thoroughly as possible given the chosen analytical system.

To achieve this goal, a mix of 50 compounds, referred to as the optimization mix, was

designed. These compounds were chosen to meet three main objectives:

(1) Belong to different chemical classes of interest in the context of an exposomics
application in human biological matrices (i.e. endogenous compounds such as
steroids and eicosanoids, and exogenous compounds such as pesticides and
drugs).

(ii) Represent a wide range of physical-chemical properties (i.e. m/z and polarity) to
cover the entire space of the LC method.

(iii) Cover both ESI (+) and ESI (=) ionization modes.

An overview of this compound set is presented in Figure Il., while a detailed list is available in
Appendix 1.1. To summarize, chosen compounds are distributed as follows: 14 endogenous
compounds (1 neurotransmitter, 6 steroids and 7 eicosanoids) and 36 exogenous compounds
(2 food compounds, 13 drugs, 19 pesticides, and 2 environmental pollutants linked to
smoking). These compounds present monoisotopic mass values ranging between 133.0640

and 496.2607 Da and octanol-water partition coefficients (logP) ranging between 0.07 and
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6.99. Overall, 36 compounds are better observed in ESI (+) mode, while 14 are better observed
in ESI (=) mode.

77 @® Neurotransmitter
6 B Steroids
. Eicosanoids
54 @ ® Food
Drugs
o 47 N -
t_05> g . - Pesticides
3'_ - Other pollutants
2_
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1 -
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Monoisotopic mass (Da)

Figure 1.1 — Overview of the physical-chemical properties of the 50-compound optimization mix,
including endogenous compounds (in blue) and exogenous compounds (in orange). The octanol-water

partition coefficient (logP) and the monoisotopic mass (Da) are presented.

This optimization mix was prepared at 1 pg/mL in methanol, and diluted and reconstituted in
the optimized reconstitution phase (see paragraph 1.3.2) as needed for sample spiking or for
injection in solvent. Usually, mix concentration was kept between 0.1 and 100 ng/mL in vial

(whether in solvent or in matrix) to avoid excessive system contamination.

1.2. Quality assurance and quality control procedures

Several quality assurance/quality control procedures were implemented for non-targeted
analyses. One solvent blank (i.e. acetonitrile/ultrapure water 90:10 (v/v)) and one extraction
blank sample (i.e. preparation with UHPLC grade water instead of sample) were systematically
injected with each batch. This allowed ensuring lack of carryover in the UHPLC system and
monitoring the contamination linked to the sample preparation process respectively.
Contamination linked to the sample preparation process for annotated compounds in particular
was taken into account by verifying their presence in the extraction blank, and if so, subtracting
the blank level from samples. Additionally, composite quality control samples were prepared

and injected after blanks to equilibrate the analytical system, and periodically throughout the
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batch (i.e. every 5-7 samples) to monitor the analytical drift and repeatability. In the case of
multiple batches, samples were assigned randomly, and samples were injected randomly in
all cases. Internal standards were systematically used in samples and monitored to assess
analytical drift. MS2 acquisitions were performed at the end of each batch to generate
fragmentation data for the annotation process.

1.3. LC method optimization

In non-targeted approaches, the chromatographic separation is important to optimize to ensure
that sufficient chromatographic separation is achieved. Optimizing the LC method parameters
is a crucial step, since ESI sources are prone to phenomena such as ion suppression,
particularly in complex biological matrix. To limit the impact of ion suppression and maximize
sensitivity performances, the LC method should be optimized to reduce co-elution, which can
be done by increasing chromatographic dilution for instance.

A base gradient was set as follows for a flow rate of 0.1 mL/min: 0-2.5 min, 10-20% B; 2.5-20
min, 20-30% B; 20-38 min, 30-45% B; 38-45 min, 45-100% B; 45-55 min, 100% B; 55-60 min,
10% B, for a total run time of 60 minutes. While run times in metabolomics are typically shorter
(from 15 to 30 minutes®), some studies rely on longer methods (from 45 to 85 minutes* ®) to
increase Rt stability or to ensure sufficient separation between isomers through less steep
gradients. Moreover, the need for high sensitivity often entails lower flow rates® for better
sample decomplexification’, which in turn leads to longer run times. A 60-minute run was
determined adequate as it notably allowed to separate isomers prostaglandins D2 and E2 (Rt
values of 16.25 min and 15.52 min respectively). The test of different flow rates was performed
with comparable gradients, with the adjustment of times to allow the flow of an identical amount

of solvent.

Using the optimization mix, three parameters of the LC method were then optimized; firstly,
two reverse phase columns (both 1.8um, 150mm Acquity HSS T3, Waters, with diameters of
2.1mm and 1.0mm) were tested. These assays were done conjointly with the flow rate
optimization, as two flow rates were tested for each column. Lastly, the organic phase

percentage of the reconstitution solvent was optimized.

1.3.1. Column diameter and flow rate optimization

The optimization mix was spiked post-extraction (protein precipitation) in a serum homogenate
and injected in two quantities (20 and 200 pg) using a 2.1 mm diameter column and a 1.0 mm
diameter column. Each column was tested using two flow rates (0.3 and 0.15 mL/min for the

2.1 mm column, and 0.1 and 0.05 mL/min for the 0.1mm column). Compounds’ areas were
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integrated manually using SCIEX OS, and area coefficient of variation (CV) values were
calculated from four replicate injections. A generic elution gradient of water (A) and acetonitrile
(B) both supplemented with 0.01% of formic acid was used. Oven temperature was maintained
at 40°C for all experiments. The results are summarized in Table Il.1, and detailed results are
available in Appendix 1.2.

2.1 mm @ 1.0mm
0.30 mL/min 0.15 mL/min 0.10 mL/min 0.05 mL/min
20 pg 1.17 e+4 (2.4%) 1.96 e+4 (2.1%) 2.75e+4 (2.0%) 4.42 e+4 (2.0%)
200 pg 1.70 et5(2.1%) 2.50e+5(1.7%) 3.08e+5(1.7%) 3.80 e+5 (2.2%)

Table 1.1 — Median area (and area CV) of compounds from the optimization mix injected in four replicate
depending on the column diameter and flow rate.

Although results were compound-dependent, the overall trend showed that area values
increased as flow rate (and column diameter) decreased. This led to the favoring of the 1.0
mm diameter column, as sufficient pressure could be achieved using lower flow rates.
However, it was also observed that using this column, area repeatability and retention time
stability were significantly improved using the 0.10 mL/min flow rate compared to 0.05 mL/min.
Retention time being a key factor for accurate binning during the data processing, and because
sensitivity was already improved with this flow rate, the 0.10 mL/min flow rate with the 1.0 mm

column were kept as analytical conditions.

1.3.2. Reconstitution phase optimization

Prior to the injection, samples are often evaporated then reconstituted for conservation,
concentration or composition purposes. The reconstitution phase composition’s impact on the
metabolome coverage in non-targeted analyses has been demonstrated, and more precisely
the relevance of using 100% water as a reconstitution phase compared to 100% methanol and
50:50 water:methanol®. For this optimization, acetonitrile was preferred as it is the gradient’s
organic phase. Considering the range of polarities present in the mix, seven compositions were
compared (i.e. from 25:75 to 100:0 water:acetonitrile). The comparison was performed on
serum homogenates prepared by protein precipitation and spiked with the optimization mix at

100 ng/mL. Two parameters were determined:

0] the percentage of compounds which attained the largest area with each

reconstitution phase, and
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(i) the percentage of compounds with areas above the median area for all
reconstitution phases.

The results are summarized in Table 11.2. It was observed that 31% of compounds had the
largest area value using the 70:30 (water:acetonitrile) composition, which was the best
performance for this criterion. However, this condition is moderately distant from the
chromatographic method’s initial conditions (90:10 water:acetonitrile), which significantly
affected peak shapes for some compounds as shown in Figure I.2.A. This would be an issue

for the data processing step, as such an irregular peak shape would lead to poorer integrations.

o Percentage of compounds Percentage of compounds
Reconstitution phase _ . o
o with largest area for each ~ with area for each composition
(water:acetonitrile)

composition (%) above the median area (%)
25:75 13 29
50:50 2 27
60:40 4 35
70:30 31 60
80:20 19 69
90:10 21 54
100:0 10 25

Table 11.2 — Impact of the reconstitution phase composition on areas of 50 compounds spiked in serum
homogenates and injected on UHPLC-ESI-QTOF in positive and negative ionization modes.

A Aminobenzimidazole [M+H]*: 134.0712 + 10 ppm B Arachidonic acid [M-H]: 303.2330 + 10 ppm
1.4e5" 16000 Water:acetonitrile ratio
- 90:10
1.2e5 14000
80:20
1.0e5 12000 70:30
10000 50:50
8.0e4 o
8000 =
6.0e4
6000
4.0e4
4000
2.0e4 2000
0.0e0
53 54 55 56 57 58 59 0 477 47.8 479
Time (min) Time (min)

Figure 1.2 — Extracted ion chromatogram for Aminobenzimidazole (logP = 0.91) in ESI (+) mode (A) and
Arachidonic acid (logP = 6.98) in ESI (-) mode (B) depending on the reconstitution phase composition

(generated with a m/z tolerance of 10 ppm).
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It was then established that 69% of compounds had areas in the 80:20 (water:acetonitrile)
phase above the median area in all reconstitution phases. This composition allowed retaining
a satisfying peak shape as it was closer to the initial chromatographic conditions, and was
therefore kept as the optimized reconstitution phase composition.

It is worthy to note that the 100% water condition was not the best reconstitution phase in this
case, contrary to what was suggested in the literature, although it still presented significantly
better results than the 50:50 composition. This difference with the literature may be explained
by the difference in the organic phase (acetonitrile here versus methanol in the literature), as
well as the fact that in this work, the effects of reconstitution phase composition were evaluated
on a set of compounds, as opposed to being done at the non-targeted scale as presented in

the litterature®.

Overall, optimization of the chromatographic separation was not the main aim of this PhD but
as a critical step in non-targeted LC-HRMS analyses, it was important to ensure that it was
possible to observe a wide range of compounds using this method. Moreover, it was also
important to check the repeatability of the retention time using the mix spiked in blood serum
for this method as it could affects further data processing steps such as compound annotation,

which may rely on such a parameter.

1.4. MS optimization

1.4.1. MS acquisition

Full-scan mass spectra was acquired in both — and + ESI modes for all samples. The mass
range was set between 50-1100 m/z. The MS analysis was performed using original ESI
source settings: temperature 550°C, ionspray voltage 4,5kV (-4,5kV in negative mode),
declustering potential 80V (-80V in negative mode), accumulation time 300 ms, spray N; gas
35 arbitrary units, heat conduction gas 35 arbitrary units, curtain gas 7 arbitrary units,
collisionally activated dissociation gas 7 arbitrary units. Run time was set at 60 min in
coherence with the LC method. For all the experiments in this PhD, injections of samples were
always performed first in full scan to obtain the most comprehensive chemical fingerprint
without affecting the sensitivity as explained below, and then a selection of samples were re-

injected using MS2 for further work on structural elucidation.

1.4.2. MS2 acquisition

MS2 acquisitions were performed in addition to MS acquisitions on randomly selected
samples. The choice to separate these two acquisitions was made to obtain higher

accumulation times for both analyses, thus attaining better sensitivity performances. Sensitivity
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was prioritized over run time, as the aim was to constitute digital archives possibly extensively
re-usable, with accurate chemical information even for low-abundant compounds. MS2
acquisitions were performed either using data dependent acquisition or data independent

acquisitions.

1.4.2.1. Data dependent acquisition

Data dependent acquisition was performed using SCIEX’s Information Dependent Acquisition
(IDA) methods. IDA experiments allow data analysis concomitantly to its acquisition, changing
conditions accordingly; the selection of precursor ions on which dependent scans are
performed is made during the analysis. This results in the acquisition of often high quality
fragmentation spectra on a selected number of precursors. Since the aim was to obtained MS2
data for the highest numbers of chemicals potentially present at low concentrations (e.g.
exogenous chemicals), the number of maximum precursor ions per scan was optimized by
comparing four threshold values (i.e. 10, 20, 50 and 100) for the MS2 analysis of the 50-
compound optimization mix at 10 ng/mL in plasma. Three parameters were compared: firstly,
the percentage of compounds successfully triggering MS2 analysis, secondly, the percentage
of compounds for which a usable MS2 spectra is obtained (i.e. intensity of at least one fragment
over 20 counts per second), and thirdly, the median number of spectra acquired by compound.
The results are summarized in Table 11.3 below.

) ) Compounds Compounds for which a Median number of
Maximum precursor ions ) ) ) _
triggering MS2 usable spectrais acquired spectra by
(per scan) . .
analysis (%) obtained (%) compound
10 52 46 4
20 84 78 4
50 80 60 3
100 80 48 1

Table I1.3 — Results of the Information Dependent Analysis (IDA) method optimization through the
selection of adequate maximum precursor ions per scan for the mix injected at 10ng/ml on QTOF in ESI
(-) and ESI (+) modes

It was observed more than 80% of compounds spiked at 10 ng/ml in plasma triggered MS2
analysis whenever the maximum number of precursor ions per scan was set above 20. On the
other hand, the best performance on number of acquired spectra by compound was achieved
with lower thresholds. Better performance for higher thresholds was expected, as low-
abundant compounds in complex matrices are more likely to be picked when a higher number
of candidate ions are authorized. However, legible spectra for those compounds were mostly

obtained at lower thresholds. This may be explained by the fact that the set MS2 accumulation
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time of 100 ms per scan was divided between fewer acquisitions in the case of lower
thresholds, thus resulting in better sensitivity. This led to the choosing of 20 maximum

precursor ions per scan.

IDA experiments were performed in both ESI (=) and (+) modes, using the following source
settings: MS1 accumulation time 250 ms, MS2 accumulation time 100 ms, collision energy 35

eV) and ESI (+) ionization modes is presented in Table 11.4.

Window index ESI (-) ESI (+)

1 495-59.4 49.5 - 60.5

2 58.4 - 68.9 59.5-745

3 67.9-85.7 73.5-80.0

4 84.7 - 114.0 79.0-99.3

5 113.0 — 149.7 98.3 -109.3
6 148.7 - 177.8 108.3-135.0
7 176.8 — 200.7 134.0-161.8
8 199.7 — 245.7 160.8 — 199.6
9 244.7 - 269.4 198.6 — 240.4
10 268.4 — 310.9 239.4 - 268.9
11 309.0 - 323.5 267.9-324.5
12 322.5-346.1 323.5-367.8
13 345.1 —388.1 366.8 — 395.9
14 387.1-454.2 394.9 -425.6
15 453.2 -515.1 424.6 — 474.7
16 514.1 - 569.7 473.7 — 506.7
17 568.7 — 593.4 505.7 — 533.0
18 592.4 -677.9 532.0-577.1
19 676.9 — 844.6 576.1 - 771.8
20 844.6 —999.9 770.8 -999.9

Table 1.4 - Example of SWATH windows generated by the vendor SWATH windows calculator on

plasma quality control samples in ESI (=) and ESI (+) ionization modes

SWATH experiments were performed in both — and + ESI modes, using the following source
settings: MS1 accumulation time 80 ms, MS2 accumulation time 30 ms, collision energy set

as a ramp evolving from 20 to 50 eV (35x15 eV), cycle time 469 ms, mass range 50-1100 m/z.

2. Sample preparation methods for non-targeted exposomics

This section aims to provide more details on the principle of the different techniques used in
this PhD, however, the thorough investigation of the impact of sample preparation on the

extraction of the components of the chemical exposome using blood plasma and blood serum
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samples will be done in Chapter Ill. As non-targeted methods aim to accurately detect a high
number of unknown compounds in a given sample, the choice of a sample preparation
technique is particularly challenging. Indeed, it is often recommended that non-targeted
approaches rely on minimal sample preparation procedure to avoid loss of potential
compounds of interest. However, when exploring the chemical exposome with complex
biological matrices using LC, issues such as ion suppression may arise, resulting in a need for
efficient sample purification. Moreover, human biological matrices are often only available in
small quantities, meaning that SPM should use minimal matrix amount while allowing sufficient

concentration to keep high sensitivity performances.

Based on the methods used in the literature, the investigation of the chemical exposome using
blood plasma and blood serum samples may be done using, at least, four major types of SPM,
from least to most selective: protein precipitation (PPT), supported liquid extraction (SLE),
protein and phospholipid removal (PLR), and solid phase extraction (SPE). As mentioned
earlier, a systematic evaluation of the impact of the SPM for non-targeted exposomics
analyses is presented in Chapter Ill; the following paragraphs introduce the advantages of
each type of SPM through a generic outline of the associated protocol. They each offer a
different balance between sensitivity and selectivity, thus potentially offering a different vision
of the chemical space.

2.1. Protein precipitation

The use of PPT methods is widespread in both metabolomics and recent exposomics
applications® ® 7. It is the least selective of all the listed SPM types, as it only consists of
precipitation the proteins present in the sample with a solvent (often methanol, acetonitrile, or
a mixture of both) used at a 1:1 to 4:1 ratio compared to the sample volume®*3. The mixtures
are then left for one hour at -20°C to allow precipitation to occur, after which a centrifugation
is performed. The operating principle is schematized in Figure 11.3.The supernatants are then
collected and may be evaporated and reconstituted as needed, usually with a concentration

factor of 1 to 3°18.
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Figure 1.3 — Operating principle of protein precipitation. Samples are mixed with an organic solvent

(usually methanol or acetonitrile) at a solvent:sample ratio of 1:1 to 4:1. After a prolonged contact,

centrifugation allows forming a protein pellet (in orange) and the purified supernatant can be used.

2.2. Protein and Phospholipid removal

PLR methods allow an additional sample purification compared to PPT, as phospholipids and
lysophospholipids elimination is performed in addition to protein removal. PLR methods are
performed by using a solid phase in a cartridge or a plate as a filter through which the sample
(sometimes diluted with an organic solvent) must be passed. Most proteins, phospholipids and
lysophospholipids should be retained on the stationary phase and leave a purified sample.
Vendors often recommend a prior deproteinization of the sample to avoid saturation of the
packed-bed structure. Acidification of the sample (e.g. 1% with formic acid) is also
recommended to help protein precipitation. Moreover, vendors often recommend using a

specific solvent to maximize performance. A schematized protocol is presented in Figure 11.4.
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Figure 1.4 — Operating principle of solid phase extraction. Samples are filtered through a stationary

phase that retains phospholipids (in shades of orange) and leaves other compounds (in green) pass

through.

Following this protocol, the filtrate can be evaporated and reconstituted with a concentration
factor varying between 1 and 5 5, It is usually possible to increase the concentration factor

compared to PPT, as further sample purification is achieved, resulting in less concern for
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clogging, carry-over and matrix effect. The exact retention mechanism of the sorbents is not
known, although some of them are hypothesized to retain the phosphate group inherent with
all phospholipids with zirconia atoms on the stationary phase through Lewis acid-base
interactions?®. However, other mechanisms (such as apolar retention) may affect the retention
of compounds. This will be systematically evaluated in Chapter Ill. Systematic evaluations of
blood-derived sample preparation methods for HRMS-based chemical exposomics

2.3. Supported Liguid Extraction

SLE is also performed using a solid sorbent, which in this case acts as an interface between
two immiscible liquid phases. The whole sample is loaded on the sorbent, which the aqueous
sample soaks. As the entirety of the sample is retained on the sorbent, it is critical to ensure
that a sufficient amount is used to soak the total volume. The sorbent is then washed using the
extraction solvent, selectively eluting the analytes. The extraction solvent is often hexane, ethyl
acetate, or methyl tert-butyl ether (MTBE), as they are immiscible with aqueous matrices. In
the context of this PhD, only the Isolute SLE (Biotage) was used with MTBE, as per the
vendor’s recommendations. Compounds that have a high affinity to the extraction solvent will
be carried, while other compounds will be retained by the solid media. A schematized operating

principle is presented in Figure 11.5.
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Figure 1.5 - Operating principle of supported liquid extraction. The sample is loaded onto a sorbent, which

retains the entire sample. The analytes are then selectively eluted using an immiscible organic solvent.

2.4, Solid Phase Extraction

SPE is a selective SPM that is performed using a multi-step protocol in order to remove
interferents (e.g. proteins, salts) and concentrate potential compounds of interest. It first
requires conditioning the solid phase, followed by sample loading. The solid phase is then
rinsed with an aqueous solvent to eliminate interferents, and dried. Lastly, an extraction solvent
is used to recover compounds of interest previously retained by the solid phase. A schematized

operating principle is presented in
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Figure 11.6. This standard protocol contains significantly more steps than any other mentioned
SPM, which may lead to poorer repeatability. However, it provides significant sample
purification, and is traditionally used in targeted approaches to improve sensitivity. It is
therefore a key type of SPM to evaluate when using human biological matrices. As eluates
have a high purity level, similar concentration ratios to those used for PLR are considered, i.e.
between 1 and 5%,
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Figure 11.6 - Operating principle of solid phase extraction. The solid phase is conditioned, followed by
sample loading. Interferents are washed usually using water, and compounds of interest are eluted

using an elution solvent.

3. Data processing methods for non-targeted exposomics

This section presents how the data processing of a HRMS chemical fingerprint is used to
translate this acquired data to a list of features. As this list is used as a basis for the annotation
and/or suspect screening steps, it is critical to ensure that the data processing steps taken
allow the proper recovery of all the detected signals, including the low-abundant ones. Data
processing is a crucial step as poor parameter optimization may result in the propagation of
errors on the subsequent workflow steps. Moreover, it is a complex step that involves many
substeps, each achievable through various algorithms that are not all implemented in the
chosen data processing software. Therefore, its optimization for the intended application is
critical, especially in the case of an interest in low-abundant compounds in complex matrices,
where data quality may be limited due to sensitivity issues. Like for sample preparation, a
thorough evaluation and optimization of the data processing step for the detection of low-
abundant compounds in complex matrices is presented in Chapter IV. In the next paragraphs,
the used data processing tools along with the four major steps and algorithms implemented
successively during this work’s non-targeted data processing are presented: peak detection,

alignment, gap filling and normalization.
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3.1. Data processing tools

Five data processing tools were used in the frame of this PhD work: MarkerView, Progenesis
QI for Metabolomics, MZmine2, XCMS, and MS-DIAL 4.0. The first four tools were optimized

and compared; detailed results are available in Chapter IV.

MarkerView and Progenesis QI are vendor software provided by AB SCIEX and Waters,
respectively. MZmine2” and MS-DIAL!® are open source solutions with graphical user
interfaces, and XCMS?*® is an open source R-based package. While vendor software are
usually more user-friendly compared to open source software, they often operate in a black
box-like fashion, with little to no information on the algorithms and parameters used to process
the data. The following paragraphs detail the different algorithms available for each major data
processing steps in open source software, as this information is not available for vendor

software.

3.2. Peak picking

The first data processing substep is peak picking, during which features are detected in each

individual sample.

First, MS spectra are individually centroided (i.e. represented by a single value, often the mass
peak apex?). Different algorithms are available depending on the chosen data processing
software, such as centWave and Wavelet transform algorithms in XCMS and MZmine2
respectively or ADAP in MZmine2. The first two cited algorithms are continuous wavelet
transform (CWT) algorithms based on matching m/z peaks to a “Mexican hat” or “Ricker”
wavelet model'’. These algorithms have been reported as particularly well-suited for noisy
datal’. Automated Data Analysis Pipeline (ADAP), on the other hand, is a complete data
processing pipeline as underlined in the name. Although there is little available information on
its specific mechanisms, the peak detection module within this pipeline is described to be
particularly efficient in reducing false positive peak detection compared with CWT algorithms?*.
Several parameters used to perform this step critically affect the data processing results, in
particular the peak width (usually required as a minimum value or as a range) and the noise
threshold.

Then, close-to-identical m/z values observed over consecutive scans are combined into
chromatogram objects. These objects might be either a single peak, or a group of peaks with
similar m/z and Rt. They therefore need to be deconvoluted into individual peaks. Several
algorithms may also be used for deconvolution, relying on finding local minima or using the

chromatogram curve’s second derivative (i.e. Savitzky-Golay algorithm) to establish
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boundaries between peaks!’” 22, MZmine2 offers both of these options, while it is still unclear
on which strategy XCMS'’s refineChromPeaks function relies.

A schematized representation of the peak picking process is available in Figure 11.7.

( Centroidation \ / Peak detection \ / Creation of \ / Deconvolution \
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Figure 11.7 — Representation of the peak picking process, which consists of four steps: centroidation,

peak detection, creation of chromatogram objects and deconvolution.

The most critical parameters for this step are usually the minimum peak width (or range of
peak widths) that should be expected by the software, and the noise threshold. In this PhD
work, these parameters were tested with default values and optimized for the detection of low-
abundant chemicals in complex biological matrices. Given the LC method used in the context
of this PhD, the minimal and maximal peak width values were found to be 6-10 s and 50 s
respectively, depending on the software. Minimizing the noise threshold (i.e. setting it at 0-10

depending on what is allowed by the software) was also found to provide the best results.

3.3. Alignment

Once individual peaks have been detected for each sample, an alignment must be performed
to establish the common features among different samples. In this step, peaks with identical
m/z and Rt (with a user-determined tolerance range) across samples are matched across the
samples. A Rt correction can also be implemented at this stage; indeed, analytical drift on Rt
is a frequent issue, and it is possible to adjust the data by shifting signals to align them between
samples. MZmine2 offers the Join aligner and the RANSAC aligner. The first one only relies
on the tolerance ranges specified by the user, with no additional adjustment. The second one
(RANdom Sample Consensus, RANSAC) is an iterative algorithm which adjusts parameters
from a mathematical model based on random observations, and checks the fit. It was
determined that this algorithm provide a significantly better alignment performance than the

Join aligner'’. XCMS also offers two alignment algorithms called obiwarp and peakGroups.
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Obiwarp relies on a center sample against which all other samples are aligned®. The
peakGroups algorithm is based on peaks present in most or all samples. With this algorithm,
the retention time deviation of peaks is established using a linear or a polynomial model. The
obtained model is then extended to close peaks that are not present in all samples. This
algorithm is presumably similar or identical to the one used in MS-DIAL, considering the
requested parameters. However, in MS-DIAL, only specific user-determined features (often
internal standards) are used to establish the linear or polynomial model.

These different alignment strategies were tested and evaluated for exposomics applications.
In the case of our selected analytical system, the tolerance ranges chosen for m/z and Rt were
of 10 ppm and 2 min respectively. These values were determined based on vendor
recommendation (m/z tolerance are typically set lower with Orbitrap analyzers compared to
QTOF analyzers for instance) and visual examination of the raw data. An in-depth detail of
software parametrization is presented in Chapter IV.

3.4. Gap filling

Following the alignment, the obtained feature matrix might contain missing data (i.e. no peak
detected for a m/z x Rt combination in one or more samples). This may either be due to an
absence of signal, or to a failure of the peak detection algorithm during the first data processing
substep. All data processing software can therefore proceed to the gap filling step, where raw
signal in the m/z x Rt region of interest is extracted, integrated and added to the matrix. This
is usually done by exploring the raw data, but may also be performed with data collected at the
peak picking stage. For the work presented in this manuscript, this step was systematically

performed. As there is no parametrization for this step, it did not require optimization.

3.5. Normalization

Normalization of the feature areas is the last critical substep of data processing. It is often
required to perform statistical analysis or to report any semi-quantitative data, as there is a
need for area comparability between samples. While XCMS does not support normalization at
this time, both MS-DIAL and MZmine2 offer to normalize feature areas through a user-
specified list of reference compounds that should have identical areas in all samples (often
internal standards). MZmine2 also offers linear normalization, where all areas are divided by a
normalization factor (e.g. average intensity or total raw signal). In the context of this PhD,
normalization strategies based on total ion chromatogram were systematically attempted with
software that allowed it (i.e. MarkerView an MZMine2) and compared to raw results to

determine relevance. This is notably demonstrated in Chapter V.
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In the context of this PhD work, a thorough comparison of data processing tools for this
purpose was implemented. This work is presented in Chapter IV. This allowed demonstrating
that adjustments still need to be made to these tools to be suited for exposomics applications,
and that vendor software, while opaque, can be an efficient solution to non-targeted data
processing.

4. Annotation methods and tools

At the end of the data processing step, a feature list each characterized by a m/z, a Rt and
one area per sample is obtained. The last critical step of the non-targeted workflow is to link
these features to chemical identities. This link may be formed in two ways: non-targeted
screening, and suspect screening. Both have been used during this PhD, even though suspect
screening was predominantly used. Non-targeted screening was notably used for the
NORMAN Network’s first collaborative trial in biota, as mentioned in the “Scientific valorization

chapter, paragraph 4.

4.1. Non-targeted screening: statistical analysis

Non-targeted screening aims to assign a chemical identity to an experimental feature with no
pre-existing idea regarding the compound’s structure. This approach is highly challenging, as
unequivocal structural elucidation of a compound requires advanced knowledge and means in
many fields, such as mass spectrometry, nuclear magnetic resonance, organic chemistry,
biochemistry, and bioinformatics. However, it is also very promising as a mean of expanding
knowledge regarding the chemical exposome by uncovering entirely uninvestigated

compounds.

In this work, univariate analyses were performed under an R environment (version 3.6.3).
Individual features were compared between samples by performing unpaired t-tests and
computing p-values with an Adaptive Benjamini-Hochberg (ABH)?* correction for multiple
comparisons. Features presenting lowest adjusted p-values (i.e. < 0.01) were prioritized for
the annotation process. Multivariate analyses were also performed to compare sample groups
and establish whether there was an observable and explainable discrimination between
groups. To this end, unsupervised Principal Component Analysis (PCA) and Partial Least

Square-Discriminant Analysis (PLS-DA) were implemented under an R environment?>,

4.2. Suspect screening tool

As mentioned in Chapter |, suspect screening is an approach that consists in linking
experimental features to compounds that are suspected of being present in the sample a

posteriori. The establishment of this link is a time-consuming task that has the potential to be
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at least partly automatized. An important part of this PhD was devoted to develop a fully
automated software using several chemical descriptors and developing intermediate and
global confidence scoring.

The developed suspect screening software is a Python software tool first developed in 2019 in
LERES to assist suspect screening approaches using MS1 analyses. It aims to perform an
automatized pre-annotation of processed datasets obtained from liquid LC coupled to HRMS
analyses. To this end, confidence indices (Cl) were constructed to score the proximity between
experimental features and suspects. This proximity is established through three chemical
predictors, each scored individually: the classically used m/z, isotopic fit (which combines m/z
and relative abundance fit) and Rt. Pre-annotated features need further manual curation based
on fragmentation patterns found in either MS1 or MS2 acquisitions, isotopic pattern
(particularly in the case of the presence of a bromine and/or chlorine atoms), and plausibility.

4.2.1. Suspect screening predictors

Suspect screening approaches aim to link experimental features to a list of compounds post-
analysis. Linking features to suspects can be done through various indicators, such as the
often-used MS2 fragmentation pattern® 26, In the following paragraph, the three predictors
implemented in the in-house tool and their relevance for MS1 suspect screening are presented.

They will be further developed in Chapter IV.
4.2.1.1. Mass-to-charge ratio

The mass-to-charge ratio (m/z) is the basis of all annotation and suspect screening
approaches. Indeed, the precision of exact masses generated by HRMS analyses allow
significantly restraining the number of chemical formulas that may be associated with a given

signal. This predictor is therefore fundamental to implement a suspect screening approach.
4.2.1.2. Isotopic fit

Another parameter that can be used to elucidate a compound’s chemical formula is its isotopic
pattern. Indeed, the presence of certain atoms such as bromine, chlorine, or sulfur in a
molecule is reflected in the compound’s isotopic pattern due to the 8Br/”®Br, 3'CI/**Cl, and
345323 ratio values of approximately 1.00, 0.32 and 0.05 respectively. This information is
particularly relevant in the case of some compounds classes such as pesticides, which often

include one or more bromine or chlorine atoms.
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4.2.1.3. Retention time

While m/z and isotopic pattern can give a reliable indication of a compound’s chemical formula,
other compound characteristics can be explored. Retention time (Rt) is an indication of a
compound’s affinity to the column’s stationary phase compared to the mobile phase; in the
case of many LC-HRMS systems, this translates to the compound’s polarity (even though
caution must be taken to not overgeneralize). This parameter is represented by a logP value,
which can allow a distinction between two compounds having an identical chemical formula.
Despite the potential of such a predictor, the retention time is not often implemented in
annotation or suspect screening software currently available, except with a user-specified
library containing experimental retention times!” 18, While the experimental retention time is
the ultimate parameter to reach a level 1 annotation according to Schymanski et al.?, it
requires the use of a standard injected on the same system. Yet, acquiring standards for a
large number of compounds is not feasible due to limitations in terms of both financial
resources and commercial availability. Thus, Rt values may also be predicted through various
algorithms such as RTI?, Retip?, or classically-used linear regressions using logP values®.
Although these predicted values are less reliable than experimental values, they can help
prioritize the most likely annotation of a feature and drastically reduce false positives. To date,
no major screening tool implements the use of predicted Rt values to assist this process, which

is why it was implemented in the in-house software.

These suspect screening predictors are used to score the similarity between features and
suspects. Individual scores are then combined to a global confidence index that indicates the
overall similarity between the feature and suspect. The schematized operating principle is
presented in Figure I1.8. To operate, the in-house software is structured in two main
complementary modules: a library that regroups all the suspect compounds’ theoretical
properties, and a suspect screening module that matches experimental features to said
suspects. The next paragraphs detail the last updated version of the in-house software (version
2.0). A presentation of its first version is available in Chapter IV paragraphs 4.4 and 4.5.
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Figure 11.8 — Schematized operating principle of the in-house annotation workflow in four steps:

comparing successively m/z, Rt and isotopic fit, then generating a global scoring.

4.2.2. Library module: generating suspects data

The library module allows indexing and computing the reference data for the list of suspects.
Every compound listed in the library must be linked to a chemical formula, a unique identifier
such as the SMILES, and if available, Rt values (experimental or predicted) and an logP value.
The library then outputs data regarding the compound’s m/z, theoretical isotopic pattern, and
Rt. Indeed, the chemical formula allows calculating nine exact masses: the monoisotopic
mass, the masses of four positively charged adducts ([M+H]*, [M+Na]*, [M+K]*, [M+NH.]*), and
the masses of four negatively charged adducts ([M-H], [M-H2O-H], [M+CI],, [M+FA-H]).
Moreover, the formula allows the computing of theoretical isotopologue probabilities Po, P1,
and P (i.e. first, second, and third isotopologue) as well as their masses Mo, M1 and M. through
a polynomial-based algorithm adapted from the MIDAs software3.. Four parameters are
computed and presented to the user: mass differences M1-Mo and M2-Mo, as well as probability

ratios P1/Po and P2/Po. Lastly, the logP value given by the user can be used to predict a Rt
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value under the condition that the library contains at least 20 compounds that have both an
experimental Rt and a logP value indicated.

The library used for this work contains close to 6000 compounds, which were compiled from

various sources:

(1) Xenobiotics previously reported as detected in blood plasma or serum in the
literature32-35;

(i) Compounds reported in open access databases Human Metabolome Database®,
Exposome Explorer®”, Foodb®, and the Normal Suspect List Exchange®®

The compounds listed in the library can be modified depending on the research question. Once
all the predictors’ data is calculated, the suspect list can be compared to the experimental

features in the suspect screening module through the computing of confidence indices.

4.2.3. Suspect screening module: computing confidence indices

The suspect screening module requires a feature list obtained from any data processing tool,
containing the following columns: m/z, Rt, and areas for all analyzed samples. Each feature is
compared to compounds from the suspect list through confidence indices computed on the
three predictors presented in paragraph 4.2.1. Cl values are computed according to Equation
I.1.

| Ifeature — lsuspect |
lsuspect

Aj

Cllzl—

Equation 1.1 - Expression of Confidence Indices (Cl) for all predictors (i= m/z, Rt, or A./A ratio, where
A, refers to the area of the nt" isotopologue). 4; is a confidence interval and is specifically defined for

each predictor as the maximal acceptable deviation from the reference value.
4.2.3.1. Mass-to-charge ratio

Depending on the ESI mode specified by the user, the software compares the feature’s m/z
with one of the two sets of adducts generated by the library. This predictor acts as a filter, as
suspects with m/z values outside the confidence interval are eliminated as potential
annotations. The confidence interval An, is based on instrumental precision. It takes the value

of 15 or 10 ppm depending if the m/z is strictly lower than 200 Da or over 200 Da respectively.
4.2.3.2. Isotopic fit

The matching between a feature and a suspect’s isotopic fit is evaluated in a stepwise manner.

At first, the software determines which isotopologue should be investigated. As mentioned
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earlier, compounds containing chlorine, bromine, or sulfur atoms present a distinctive isotopic
pattern involving a high abundance of the second isotopologue. If one of these compounds is
the considered suspect, as well as if a [M+CI] adduct is considered, the software will focus on
the second isotopologue. The first isotopologue will be considered for all other compounds and
adducts.

Then, the software will establish whether there is a feature in the dataset that may be the M+n
(n=1 or 2 for first or second isotopologue) of the annotated signal. To do so, it will compare the
mass differences between two features and the suspect’s theoretical M,-Mo value computed
by the library module. A first temporary Cl is computed based on the m/z difference proximity
between suspect and feature, with the same Ay, values as the ones presented in paragraph
3.2.3.2. A second temporary CI is also computed based on the Rt proximity between the
annotated feature and the M+n, with a strict Ar: value of 6 seconds (0.1 min). Indeed,
isotopologues should be detected exactly at the same time; the confidence interval is set to
take the instrument’s and the data processing tool's uncertainties into account. The two
temporary Cl are averaged to obtain a first intermediate Cl, referred to as “M+n identification
Cr.

Once the M+n feature is identified, area ratios are compared under the condition that the area
of the M+0 (i.e. the annotated feature) is superior to 100. This is because low areas are often
poorly integrated, resulting in inaccurate ratio values. If this is not verified, only the intermediate
M+n identification Cl is displayed. Else, the area ratios are compared and a second
intermediate Cl is computed for abundances with a Aazao value of 0.1. The determination of
the confidence interval is based on a regression of experimental area ratio values against
theoretical area ratio values for 98 compounds. The root mean square error (RMSE) was
calculated and the confidence interval was established at 3 RMSE to encompass 99.7% of
projected data points (assuming normal distribution and applying statistics’ empirical rule). A

detailed explanation is presented in Chapter IV, paragraphs 4.4.3 and 5.2.2.

Lastly, an overall ClI for isotopic fit is computed as a weighed sum of the two intermediate Cl
for M+n identification and abundance. For the reason cited earlier regarding limited confidence
in the integration of small areas, the ponderation is determined based on the area of the M+n.
Indeed, the two CI are weighed identically if the M+n area is higher than 20, else the M+n

identification ClI is weighed at 1/3 and the abundance Cl is weighed at 2/3.
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4.2.3.3. Retention time

As previously mentioned, the in-house software supports up to four Rt value per compound in
the library: one experimental Rt, an up to three predicted Rt. All Cl for Rt are computed using

the standard formula presented in Equation Il.1 with the appropriate Ar:values.

In the software’s initial version, the Ar; value for experimental Rt was determined manually
based on analytical Rt variability. Detailed explanations regarding these Rt prediction models
are available Chapter IV, paragraphs 4.4.2 and 5.2.1. Briefly, compounds from the optimization
mix spiked in plasma and serum samples (n=8) as well as isotopically labeled compounds
(listed in Appendix 1.1) spiked in 16 plasma and serum samples were used to determine the
standard deviation (SD) on Rt values. The chromatogram was divided in four sections based
on observable variability as analytical variability in Rt is heterogeneous. The Agr:value was
constructed by selecting the highest compound Rt SD for each section, to avoid excessive
stringency, and multiplying by three. In the software’s current version, the suspect screening
module is able to automatically compute Agr: values based on a user-filled Excel sheet
containing triplicate Rt data for at least 20 known compounds. The user may also specify their
desired way of sectioning the chromatogram, or leave the standard sectioning of the

chromatogram in quarters.

Regarding the three predicted Rt, for this work, they were obtained through an in-house
regression model based on logP, the quantitative structure-retention relationship-based tool
RTI?8, and machine learning-based tool Retip?. These three prediction models were evaluated
and compared based on a set of 134 compounds presented in Appendix 1.3, which allowed
ranking them from most reliable (RTI) to less reliable (logP). Detailed explanations regarding
these Rt prediction models are also available Chapter 1V, paragraphs 4.4.2 and 5.2.1. Briefly,
the Ar values for all predicted retention times were established manually by comparing
experimental Rt and predicted Rt when both values were available. Absolute differences
between these two values were calculated and the standard deviation of each model's
prediction within each predetermined chromatogram section was established. These values
were multiplied by three to obtain the Ar:values, each specific to a model and a chromatogram

section.

The Rt Cl was computed for all available Rt values for a given suspect, whether experimental
or predicted. However, the global Cl combining all predictors was computed using only the CI

associated to the most reliable Rt available (i.e. experimental, then RTI, then Retip, then logP).

The in-house software was designed to compute CI on three chemical predictors to establish

the similarity between features and suspects. The global Cl is then computed as an average
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of all the available CI values. Thus, each suggested annotation generated by the software is
scored between 0 and 1 on all the mentioned predictors, as well as overall. The global Cl is

also preceded by a “G3”, “G2” or “G1” mention, which accounts for the number of predictors

taken into account in its computing.

In the context of exposomics applications, where compounds of interest are often low-
abundant in complex matrices and therefore often do not trigger MS2 acquisition, a tool such
as this software which relies on MS1 predictors is a valuable help in assisting pre-annotation.
Indeed, while manual curation is still required to confirm or infirm the suggested annotations,
its discriminating scoring system allows prioritizing plausible annotations by drastically

reducing false positives.

4.2.4. Manual curation

The in-house software was created to assist suspect screening approaches that provides pre-
annotations. These suggested chemical identities must then be manually curated to rule out
false positives (i.e. incorrectly identified chemical). This manual curation process comprises
four main steps. Firstly, the extraction blank is manually checked to ensure that the
compound’s presence is not linked to contamination during the sample preparation process. If
the compound is present in the blank, the blank area is subtracted from the area in the
samples. Secondly, the feature’s isotopic pattern is verified to ensure coherence with the
suggested chemical formula (i.e. verification of whether the investigated m/z is a
pseudomolecular ion, and of the isotopic ratios in case it was not performed by the software).
Thirdly, the suspect’s fragmentation pattern should be compared to a reference spectra, which
can be obtained through online databases*’, or through in silico fragmentation models** 42,
This pattern is used to partly or entirely confirm molecular structure (e.g. positional isomers or
diastereoisomers may not be distinguishable). Other parameters such as polarity (via logP-
predicted retention time) may help narrow the suggested annotation. Lastly, the plausibility is
verified through a database search of the suggested formula, and a comparison of the pre-
annotation with other possible close structural matches. For instance, if there is a strong
structural resemblance between a well-documented endogenous compound and an
exogenous compound never documented in blood, plausibility would dictate to rule in favor of

the former.

5. Biological samples

The optimized workflow was then applied in a large-scale application. Initially, this application
was to be made using blood plasma samples obtained from a Danish mother-child cohort

dating back to 1988-89. More specifically, 256 blood plasma samples from pregnant women
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linked with their daughter’s clinical data 20 years later were selected through a collaboration
with the Rigshospitalet (Copenhagen, DK) with David Kristensen. Reproductive health data for
the daughters was also collected and available. This cohort would have therefore allowed
linking data for environmental exposures during the prenatal period and reproductive health.
However, due to the unforeseen pandemic circumstances and unresolved ethical procedures
on the epidemiological side, samples from the local Breton Pélagie cohort were used. This
cohort, initially built as a longitudinal study to measure exposure to organic pollutants during
the pregnancy, included 3,500 women pregnant between 2002 and 2005 in Brittany. One of
the follow-ups occurred when the children turned 12, at which time a questionnaire was
provided to obtain physical growth data and pubertal stage. Additional clinical parameters such
as growth, adiposity, visual function and oral-dental health were evaluated on a subset of 500
12-year-olds. Serum samples were collected from 250 12-year-olds at this time to measure
sex hormones and to assess exposure to organic contaminants. Serum samples from 125
boys were used in this PhD work to perform a suspect screening approach to characterize the

human internal chemical exposome.
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1. Context and summary

This chapter was published as an original paper as first author in the journal Analytical
Chemistry: Chaker, J., Kristensen, D. M., Halldorsson, T. I., Olsen, S.F., Monfort, C., Chevrier, C.,
Jégou, B., David, A.* (2022). Comprehensive Evaluation of Blood Plasma and Serum Sample
Preparations for HRMS-Based Chemical Exposomics: Overlaps and Specificities. Anal Chem (IF=6.8),
94(2), 866—-874.

The non-targeted characterization of biological samples strongly depends on the
methodological choices made throughout the workflow. As the first critical step in the workflow,
sample preparation must be diligently chosen and optimized. Indeed, this choice is highly
decisive, as the compounds lost to sample preparation step cannot be recovered through any
optimization of the following steps in the workflow. Since new data processing and annotation
tools are continuously developed, it is crucial to obtain optimized HRMS fingerprints of often
precious samples, that may be reprocessed to broaden the knowledge of the chemical
exposome. When choosing and optimizing the SPM, the right middle ground has to be found
between the sensitivity required to detect often low-abundant exogenous chemical compounds
and the selectivity needed to eliminate highly abundant endogenous compounds responsible
for ion suppression. As described in Chapter |l paragraph 2, there are many categories of SPM
available to prepare plasma or serum samples, with varying degrees of selectivity. The
objectives of this chapter were to systematically evaluate the performance of twelve SPM to
detect low-abundant compounds in complex biological matrices, and to document their effect

on the visible chemical space.

In the following article, twelve SPM (seven PLR methods, three SPE methods, one SLE
method and one PPT method) were systematically evaluated for the characterization of the
chemical exposome through blood plasma and serum samples. This evaluation was performed
based on the implementation of complementary criteria rarely used to evaluate non-targeted
methods, namely quantitative (e.g. recovery, repeatability, matrix effect) systematically used
in targeted approaches, and qualitative (e.g. time and ease of implementation) criteria. This
evaluation process allowed documenting the observable analytical perimeter of the chemical
exposome profiled with each of these SPM. Delineating the observable analytical perimeter of

each SPM is crucial for further interpretation of HRMS datasets.

The SPM were evaluated using a stepwise approach. Firstly, the 50-compound set
(optimization mix described in Chapter II, paragraph 1.1) was spiked at a mid-range level (i.e.
40 ng/mL) in serum samples, and recovery, repeatability and matrix effect were determined.

Secondly, SPM suitable for this application were applied to serum and plasma samples spiked
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with the same 50-compound set at a lower level (i.e. 10 ng/mL). Detection frequency, S/N,
repeatability, spiking significance (i.e. significance of the difference in areas between spiked
and non-spiked samples) and ease of implementation were evaluated, resulting on the further
selection of two appropriate SPM. Lastly, those SPM were applied to cohort plasma and serum
samples. Annotated compounds’ areas were compared for the same samples prepared with
one SPM or the other to assess the impact of the SPM choice on the visible chemical space.
Results of these comparisons are described and discussed throughout this article. A simple
sample preparation workflow involving both SPM was proposed to broaden the visible

chemical space as they appear complementary.
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2. Abstract

Sample preparation of complex biological samples can have a substantial impact on the
coverage of small molecules detectable using liquid chromatography-high-resolution mass
spectrometry (LC-HRMS). This initial step is particularly critical for the detection of externally-
derived chemicals and their metabolites (internal chemical exposome) generally present at
trace levels. Hence, our objective was to investigate how blood sample preparation methods
affect the detection of low-abundant chemicals and to propose alternative methods to improve
the coverage of the human internal chemical exposome. We performed a comprehensive
evaluation of twelve sample preparation methods (SPM) using phospholipid and protein
removal plates (PLR), solid phase extraction plates (SPE), supported liquid extraction cartridge
(SLE), and conventionally used protein precipitation (PPT). We implemented new quantitative
and qualitative criteria for non-targeted analyses (detection frequency, recoveries,
repeatability, matrix effect, low-level spiking significance, method detection limits, throughput
and ease of use) to amply characterize these SPM in a step-by-step-type approach. As a final
step, PPT and one PLR plate were applied to cohort plasma and serum samples injected in
triplicate to monitor batch repeatability, and annotation was performed on the related datasets
to compare the respective impacts of these SPM. We demonstrate that sample preparation
significantly affects both the range of observable compounds and the level at which they can
be observed (more than 40% of total feature only detected using one SPM). We propose to
use PPT and PLR on the same samples by implementing a simple analytical workflow as their

complementarity would allow the broadening of the visible chemical space.

Key words: Non-targeted exposomics, high-resolution mass spectrometry, sample

preparation, plasma, serum

Graphical abstract

Internal chemical
Overlaps exposome/metabolome

space

Figure lll.1 — Graphical abstract of the research paper titled “Comprehensive evaluation of blood plasma

and serum sample preparations for HRMS-based chemical exposomics: overlaps and specificities
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3. Introduction

As the impact of environmental exposures and particularly chemical exposures to the global
burden of chronic disease is uncovered® 2, the need for sensitive, robust and comprehensive
detection of exogenous chemicals, their biotransformation products and their metabolites
present as complex mixtures in human biological matrices grows. During the last few years,
the technological progress regarding high-resolution mass spectrometry (HRMS) has allowed
to simultaneously and reproducibly profile thousands of compounds (including both
endogenous and exogenous chemicals) in biological samples using non-targeted
approaches®®. Concomitantly, significant developments and optimizations have been made on
bioinformatics tools to improve their suitability to peak pick and annotate low-abundant
chemicals in complex matrices, which are of particular interest for exposomics studies’ 8.
However, optimizations are still lacking to ensure that the first analytical step of the workflow
can profile unbiasedly the internal components of the human chemical exposome (i.e.
exogenously derived chemicals accumulating in humans). A special focus on analytical
methods allowing the detection of exogenous chemicals is necessary since concentrations of
exogenous chemicals such as pesticides and plasticizers are generally 700 times lower than
those of endogenous compounds in blood-derived samples® °. Considering the widespread
use of liquid chromatography (LC) for compound separation coupled to HRMS, the presence
of exogenous chemicals at trace levels in complex biological matrices (i.e. pg/ml) raises the
guestion of sensitivity issues partially due to ion suppression!!. Hence, a particular attention
must be payed to the sample preparation step for exposomics applications to allow elimination
of abundant interfering chemicals while ensuring minimal loss of compounds of interest.
Furthermore, the determination of quantitative/qualitative parameters must be better defined

to document the perimeter of the internal chemical exposome profiled with a given method*?*
14

The most commonly described sample preparation methods (SPM) for metabolomics
applications of plasma or serum samples rely on solvent-based protein precipitation (PPT),
and use cold methanol or acetonitrile with ratios of solvent-to-sample ratio between 1 and 4%
1518 For mid-range spiking concentrations (i.e. 800-5000 ng/mL), PPT was described as
allowing high recovery rates?®, and producing more information-rich samples with a slight
decrease in repeatability when using acetonitrile compared to methanol*'. Overall, PPT is one
of the least selective preparation methods. However, the presence of abundant compounds
such as phospholipids in PPT extracted blood sample may be detrimental for the detection of
low-abundant compounds?®® and/or method repeatability. Coupled with the need to extend

column life and within batch analytical drifts, particularly in the case of high-throughput
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applications, this has led to a growing interest in more selective SPM such as liquid-liquid
extraction (LLE), phospholipid and proteins removal (PLR) methods, and solid phase
extraction (SPE) methods!? 15:16.1922 | | E offers sample decomplexification while maintaining
good coverage among polar and non-polar compounds?. However, due to repeatability issues
linked to emulsification and the need for high sample volume, supported liquid extraction (SLE)
can be preferred to LLE for blood-derived sample preparation?. PLR and SPE allow further
sample purification physically and chemically, as their packed-bed structure filter large
precipitated proteins and aim to retain phospholipids?®. When applied on samples with mid-
range spiking concentrations, these SPM tend to perform better in terms of matrix effect than
PPT!®, and have been described as complementary to PPT in terms of metabolome

coverage?®.

Comparisons of SPM for plasma and serum samples to attain an optimal compromise between
sensitivity and selectivity have been published, but have either relied on evaluating method
performance at the non-targeted scale!®, or used only mid-concentration range spiking levels
and endogenous spiking compounds (n < 20) %520 which is not suitable for exposomics
applications. One study has however offered a performance evaluation for a SPE plate on
exogenous compounds in lower concentrations!®. To date and to the best of the authors’
knowledge, there is no reported large-scale comparison of SPM for both blood plasma and
serum oriented towards human chemical exposomics applications. Thus, the objective of this
work is to evaluate twelve SPM for the chemical exposomics analysis of plasma and serum
samples, with a focus on low-abundant compounds. Considering the complexity of human
blood-derived samples in terms of number and concentration of chemicals, a large set of
exogenous and endogenous spiking compounds (n=50) with a wide range of physical-
chemical properties (0.07 < logP < 6.99 ; 133.0640 < Monoisotopic mass (Da) < 496.2607) was
used to cover the chemical space?®. Quantitative and qualitative criteria (i.e. respectively
detection frequency, recoveries, repeatability, matrix effect, low-level spiking significance,
method detection limits, and time of implementation, complementarity) were used to amply
characterize these SPM in a step-by-step-type approach aiming to compare the reference PPT
with alternative SPMs. The best-suited SPM were applied to cohort plasma (n=8) and serum
(n=10) samples which were then injected in triplicate to monitor within batch repeatability, and
annotation was performed on the related datasets to compare the respective impacts of these

SPM on the obtained results at a larger scale.
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4. Experimental section

4.1. Biological samples

Human blood plasma and serum bags used for method development were acquired from the
French blood agency (Etablissement Francais du Sang, EFS). For the final step of method
validation, serum samples (n=10) were obtained from 12-year-old children from the PELAGIE
cohort regrouping 3,421 women from Brittany (France) enrolled by gynecologists from the
general population during early pregnancy between 2002 and 20062’ and plasma samples

(n=8) were obtained from a Danish mother-child cohort.

4.2. Sample preparation methods comparison

The ability of twelve SPMs to detect low-abundant chemicals in biological matrices were
evaluated using a step-by-step comparison process. The methodology is presented in Figure
[11.2. First, a two-step procedure (including a SPM preselection step and then a comparison of
preselected SPMs with the reference PPT) was conducted consecutively using sets of spiking
experiments on homogenate plasma and serum samples. A mix of 50 spiking compounds was
chosen to cover different chemical classes of contaminants (i.e. diet toxins, drugs, and
pesticides) and metabolites (i.e. eicosanoids, neurotransmitters, and steroids). Labeled
internal standards (IS) (n = 17, 100 ng/mL) were used throughout to monitor analytical
variability attributed to UHPLC-ESI-QTOF injections (spiked post-extraction in the preselection
phase) or sample preparation (spiked pre-extraction in the following phases). Suppliers and
further physical-chemical data can be found in the Supporting Information (Sl), Tables A1 and
A2. The preparation methods selected through these two experiments were then applied to

cohort serum (n=10) and plasma (n=8) samples and compared.
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1. Preselection (n=11) and comparison to reference method PPT at mid-range concentrations

PLR SPE SLE
PPT @§ Ostro HLB Oasis Isolute
7T Phree S StrataXC oves
s o A pL el StrataX e P
vs. |Fafl PLUltra ol e 2
E % pD Y O

v é PrimeA(li_lNLaBrMeOH é é 6 @

Criteria: Recovery percentage (%), Repeatability (CV), Matrix effect (%) — 50 molecules at 40 ng/mL (n=4)

2. Comparison to PPT at real life concentrations Serum and Plasma
Reference  Phree (ACN) StrataX Phree + StrataX
PPT PLR SPE PLR + SPE
€S

5 VS.

%

Criteria: Detection frequency (%), S/N, Repeatability (CV), Speed of implementation, Spiking significance
(t-test p-value spiked vs. non-spiked areas) — 50 molecules at 10 ng/mL (n=4)

3. Final comparison Serum and Plasma
Reference Phree (ACN)
PPT E PLR

%

Application on cohort samples

Pregnant women Adolescents
Plasma (n=8x3) Serum (n=10x3)

Criteria: Analytical repeatability, S/N, Fold changes, Method detection limit — 30 molecules at 0.1 to 40 ng/mL (n=3)

Figure 111.2 — Diagram of the methodology used to compare sample preparation methods. Two low-level
spiking experiments were conducted to compare various phospholipid and protein removal plates (PLR),
solid phase extraction cartridges (SPE), and supported liquid extraction cartridge (SLE) among
themselves, and to the classically used protein precipitation (PPT). The best-suited methods were
selected using a set of qualitative and quantitative criteria, then applied to plasma and serum cohort

samples to observe the impact of the sample preparation method on the visible chemical space.

4.2.1. Preselection

Seven procedures using phospholipid and protein removal (PLR) plates, three using solid
phase extraction (SPE) plates, one using supported liquid extraction (SLE) cartridges, and
conventionally used protein precipitation (PPT) (i.e. a total of twelve SPM) were implemented
to prepare serum samples. Details on individual preparation procedures can be found in the
Sl. For each preparation method, homogenate serum samples (n=4) were spiked at 40 ng/mL
using the 50-compound spiking set. Calibration samples (n=5, 20-150 ng/mL spiked after
extraction) as well as an extracted matrix blank (n=1) and an extracted ultrapure water blank
(n=1) were also prepared. Each batch was injected with calibration samples (n=5, 20-150
ng/mL) prepared in solvent. Absolute recovery percentage was calculated as the ratio of peak

area of each compound in samples spiked before and after extraction. Repeatability was
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assessed for each compound using the coefficient of variation (CV) of peak area on four
replicates. Matrix effect (ME) was calculated as described in Equation Ill. for each compound
at two concentration levels (lowest and highest points of calibration range).

A XJC - A X’C .
ME[X, C] (%) — [ ]solvent [ ]matnx «100

A [X' C] solvent

Equation 1ll.1- Matrix effect formula, where A is the peak area of a given compound X at a given
concentration C.

SPM that were found adequate on all three criteria (i.e. recovery between 70-120%,
repeatability below 20%, and low matrix effect) were preselected and further compared to the

conventionally used solvent-based PPT.

4.2.2. Comparison to PPT at real-life concentrations

The preselected PLR plate (Phree — Acetonitrile (ACN)), the preselected SPE plate (StrataX),
as well as a combination of these two preparation methods, were compared to PPT, which is
a reference method for metabolomics?® 22 28, For each of these four methods, plasma and
serum homogenate samples (n=4 each) were spiked to a real life concentration (10 ng/mL) in
plasma and serum. Background contamination was assessed using similar but non-spiked
plasma and serum homogenates (n=4 each) and an extracted solvent blank (n=1). Detection
frequency of compounds in spiked versus non-spiked samples and repeatability (using CV
computations) were determined for each SPM. Signal-to-noise ratio (S/N) was retrieved for
each compound and SPM. Spiking significance was assessed by computing p-values
(unpaired t-tests) on compound IS-corrected areas in spiked versus non-spiked samples
(threshold set at p = 0.05). Lastly, SPM were ranked on speed of implementation. Based on

these criteria, two SPM were compared at the non-targeted scale on cohort samples.

4.2.3. Final comparison

The Phree PLR plate and PPT were used to prepare serum and plasma cohort samples (h=10
and 8, respectively). Batches included quality control (QC) samples and each sample was
injected in triplicate. Analytical repeatability was assessed at the targeted scale using IS peak
areas in QC and sample replicates, and at the non-targeted scale using the criteria proposed
by Want et al.?8, according to which at least 80% of features found in at least 80% of QC should
have a CV below 30%. Features varying significantly between the two SPM for each cohort
were identified using t-tests (p-value threshold set at 0.01). These two data subsets were
screened using an in-house automatized suspect screening tool® to characterize the impact of

each SPM. Annotated features’ S/N and fold changes (FC) between methods were also
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reported. Details are available in Section 6. Further method characterization was achieved by
determining the method detection limits (MDL). To this end, plasma and serum homogenate
sample were spiked post-extraction at 0.1, 0.5, 1, 5, 10, 20, 40 ng/mL and were then injected
in triplicate. MDL was determined as the lowest concentration with area CV lower than 10%
and S/N higher than 100.

4.3. Data acquisition and quality assurance procedures

Samples were analyzed using a QTOF-MS (AB SCIEX X500R) interfaced with a UHPLC
system (AB SCIEX ExionLC AD). Chromatographic separation was performed on injection
volume of 2uL using an Acquity UHPLC HSS T3 C18 column (1.8um, 1.0 x 150 mm)
maintained at 40°C. Additional information regarding the chromatographic separation and
(ESI) source parameters are available in the Sl. Samples were analyzed with full scan
experiments in both — and + ESI modes. MS/ MS fragmentation data were obtained by analysis
of selected samples in sequential window acquisition of the theoretical mass spectrum
(SWATH) or data dependent acquisition (DDA). Quality Control procedures are specified in
the SI.

4.4, Data processing

4.4.1. Non-targeted data processing

Mass spectra acquired in full scan were processed using vendor software MarkerView v.1.3
(AB SCIEX). Main parameter values were set as: noise threshold of 10, minimal intensity of 20
counts, m/z tolerance of 10 ppm, retention time (Rt) tolerance of 2 min, minimum Rt of 1 min,
no isotope filtering. This data processing workflow (i.e. software and parameters) was
previously optimized and validated to detect low-abundant chemicals in blood plasma and
serum samples®. Blank subtraction was performed by subtracting the solvent blank area from

the sample’s area for any given feature.

4.4.2. Targeted data processing

Manual peak integration for all spiked compounds and IS was achieved using vendor software
Sciex OS v.1.6 (AB SCIEX).

4.5. Suspect screening and annotation

4.5.1. Suspect screening tool

Feature tables obtained through non-targeted data processing were screened using an in-
house 6000-compound library mainly comprised of food intake biomarkers, pesticides (and

metabolites), industrial pollutants, cosmetic ingredients, and pharmaceuticals/drugs (and
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metabolites). An automatized in-house screening tool scoring proximity of m/z, Rt
(experimental and predicted?® *) and isotopic pattern between suspects and features was
used®. Manual curation on MS/MS data was performed to confirm results obtained through the

assisting suspect screening tool.

4.5.2. Annotation

Feature tables were uploaded into an R environment (version 3.6.3) to run univariate analyses.
Statistical analyses were performed separately for each sample (i.e. individual), considering
analytical replicates and two performed SPM. The impact of the SPM was assessed by
performing unpaired t-tests and computing p-values with an Adaptive Benjamini-Hochberg
(ABH) correction for multiple comparisons. Features presenting lowest adjusted p-values and
a sample-to-blank area ratio of more than three for at least one sample were prioritized for the
annotation process. Annotation was conducted manually, relying on chemical information
databases®! 32, experimental MS/MS databases®, and in silico fragmentation prediction tools®*
3%, Confidence levels based on recommendations made by Schymanski et al. (2014)% were
provided in the SI, Tables A5a and A5b for serum and plasma samples respectively.

5. Results and discussion

5.1. Preselection of most suitable SPM

The twelve SPM performances regarding recovery, repeatability and matrix effect on 50
compounds spiked at 40 ng/mL in serum are presented in Figure Ill.3. Results for individual

compounds are available in the SI, Table AS.
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Figure 111.3 — Comparison of the recovery (A), repeatability (B), and median matrix effect performances
(C) of the eleven considered sample preparation methods using a 50-compound mix spiked in serum
(n=4). Preparation methods include protein precipitation (PPT), phospholipid removal (PLR) plates, solid

phase extraction (SPE) cartridges, and a supported liquid extraction (SLE) cartridge. For the recovery
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and repeatability criteria, Q1, Q3 and median values are represented with two green lines and one blue
line respectively. Median values for two spiking concentrations are presented for the matrix effect

criterion.

Median spiked compound recovery varied between 56.3% (PLUItra) and 102.6% (PLD). PL
and PLUIltra are seemingly the least adequate SPM for the intended application, only allowing
a median compound recovery of 61.7% and 56.3% respectively. SPM recovery performances
for individual compounds indicated that PL and PLUIltra specifically performed less adequately
on polar compounds (0.07 < logP < 1.73). This may be explained by the fact that both of these
plates retain phospholipids using a Lewis acid-base interaction between the stationary phase
and the polar esterified phosphate group found in phospholipids®’. However, due to lack of
information on the phospholipid retention mechanism of other PLR plates, this hypothesis
cannot be further investigated. The SLE cartridge did not seem adequate either for the
intended application, as 20% of compounds were not recovered at all. Most of these non-
recovered compounds (90%) were compounds usually favored in — ESI mode notably due to
the presence of a common carboxylic acid group, which may suggest a less efficient desorption
of such molecules when using this cartridge. Similarly, Prime HLB seemingly disadvantaged
the recovery of compounds presenting a carboxylic acid group (100% of non-recovered
compounds). This SPM also seemed inadequate for the recovery of selective serotonin
reuptake inhibitors fluoxetine and paroxetine (8.8% and 1.5% recovery respectively), which
may indicate a particular affinity of the sorbent for this class of compounds. It should be noted
that eight compounds (i.e. 2-phenylphenol, acetylsalicylic acid, arachidonic acid, cotinine,
nicotine, leukotriene D4, and prostaglandins D2 and J2) were generally poorly recovered
(recovery below 70% for at least six SPM). As these compounds span across wide ranges of
m/z (162.1167 < Monoisotopic mass (Da) < 496.2607) and Rt (3.76 < Rt (min) < 46.64), and
share no common substructure, it appears that recovery in the case of low-level spiking in a
complex matrix is partly compound-dependent with no evident generalization hypothesis. A
similar observation regarding overall poor compound recovery regardless of the used

extraction method was reported by Tulipani et al. (2015)%.

Overall, five out of eleven methods (i.e. PLR plates Ostro, Phree with both solvents, StrataX
and StrataXC) in addition to reference SPM PPT presented Q1 and Q3 recovery values
comprised between 70% and 120%, constituting adequate performance for this criterion.
Despite the generally satisfying recovery values obtained with these SPM, Ostro also tended
to disadvantage compounds with a carboxylic acid group, although at a lesser level than Isolute
or Prime HLB (14% of compounds were not recovered). Phree PLR plates mildly

disadvantaged two thiophosphates, i.e. chlorpyrifos and diazinon (42.8-63.6% recovery),
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regardless of the used solvent. Another thiophosphate, i.e. Malathion, was only recovered at
53.8% when using Phree with methanol. This insecticide, along with its precursor
dimethyldithiophosphate, were also mildly to strongly disadvantaged by both Strata SPE
cartridges (2.8-69.2% recovery). This tendency may indicate a need for a particular attention
to thiophosphates when choosing and optimizing an SPM for non-targeted exposomics
studies.

Observed repeatability on compound recovery was suitable for all SPM, with a calculated CV
below 20% for 80% (HLB Oasis) to 100% (PLD) of spiked compounds. Lower interquartile
ranges (i.e. difference between the third and first quartiles) were noted for PLR plates (3.4-
9.2%) compared to SPE cartridges (9.1-13.1%). This suggests that PLR-based methods are
more repeatable than SPE-based methods overall, which may be attributable to the higher
complexity of SPE protocols (i.e. higher number of steps), as was previously suggested by
Rico et al. (2014).

Median matrix effects were highly variable among SPM, ranging from 31.9-75.0% (Phree ACN
and PPT respectively) for the 20 ng/mL spiking level and from 22.6-83.0% (PLD and HLB
Oasis respectively) for the 150 ng/mL spiking level. As expected, higher median matrix effect
were observed with the lower spiking concentration for most SPM, with the exception of HLB
Oasis (69.7-83.0% at 20 and 150 ng/mL). Additionally, PPT showed high matrix effect
compared to other SPM, which was expected since it is the least selective. For PLR plates,
Phree ACN performed best with a low median matrix effect at both spiking levels (31.9% and
28.0% at 20 and 150 ng/mL). It is to be noted that while Phree MeOH allowed similar
performance on the recovery criterion, the use of methanol as a solvent exacerbated the
observed matrix effect, in coherence with what was previously reported by Sitnikov et al.
(2016)*°. StrataX was the best-performing SPE cartridge at both spiking levels (52.0% and
47.9% at 20 and 150 ng/mL).

Overall, Phree ACN was the best compromise among PLR plates between high compound
recovery, high repeatability and low matrix effect in the case of low-level spiking. Similarly, for
SPE cartridges, StrataX was identified as the most appropriate given the considered criteria.
Lastly, the SLE cartridge did not allow sufficient homogeneity in compound recovery to be

selected for the next SPM comparison step.

5.2. Comparison to PPT at real-life concentrations

The preselected SPM Phree ACN and StrataX were compared to the commonly used solvent-
based PPT on plasma and serum samples. Moreover, as relatively high matrix effects were

observed namely for StrataX, a combination of both preselected SPM, further referred to as
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Phree+StrataX, was carried out to attempt further purification of the samples. The SPM
performances regarding spiked compound detection frequency, S/N, semi-quantification
performance, detection significance, and speed of implementation were evaluated following a
10 ng/mL spiking of plasma and serum samples. Results are presented in Figure Ill.4. Results
for individual compounds are available in the SlI, Table A4.
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Figure Ill.4 — Sample preparation methods evaluation for the detection of 50 low-level spiked compounds

in (A) serum and (B) plasma samples (n=4 each). Outer edges identify best performances.

Some differences were observed between matrices; indeed, median S/N values were lower
for plasma for all SPM except Phree, and semi-quantification was poorer for this matrix when
using PPT or StrataX. Observed areas are smaller in plasma samples overall (although not for
all compounds), which could partly explain both the lower S/N values and area irregularities.
This is consistent with prior reports of compound-dependent anticoagulant-caused ion

suppression in plasma samples.3®

All SPM allowed adequate spiked compounds detection frequencies in both matrices (88-96%
of low-level spiked compounds detected in serum, 92-100% in plasma), although the
combination of Phree ACN and StrataX systematically ranked last. Similarly, median S/N for
spiked compounds were satisfying in all cases, ranging from 1024-3437 (Phree ACN-PPT
respectively) in serum and 1082-2803 in plasma (Phree ACN-StrataX respectively). Lower S/N
for SPM Phree ACN and Phree+StrataX seem to be partly linked to less detected signal overall
with a more noticeable impact on peaks (compared to noise), presumably attributable to the
common use of Phree ACN. The addition of an additional matrix purification step with the use
of SPE cartridge StrataX allowed a better performance of Phree+StrataX compared to Phree

ACN alone through a lower noise level in the case of serum.

Repeatability was assessed through semi-quantification performance, representing the

percentage of detected compounds with CV < 20% on 4 replicates. PPT and Phree ACN were
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the only two SPM that allowed a suitable performance on both serum (94 and 93%
respectively) and plasma (81 and 94% respectively). In coherence with the observations
presented in the SPM preselection process, StrataX produced less repeatable results
compared to Phree ACN, which is further reflected in the Phree+StrataX SPM. Moreover, lower
semi-quantification performance values for these two SPM are once again not linked to overall
higher CV values for all compounds, but rather to a stronger heterogeneity over the range of
compounds. Indeed, CV interquartile ranges are of 4.0%, 6.7%, 13.0% and 18.0% for PPT,
Phree, StrataX and Phree+StrataX respectively in serum (8.4%, 6.8%, 14.5% and 26.5% in
plasma). High CV values (i.e. CV = 25%) with the use of StrataX and Phree+StrataX SPM in
serum were found for compounds that were discussed in the preselection process, such as
selective serotonin reuptake inhibitors fluoxetine and paroxetine, as well as triphosphates
chlorpyrifos and diazinon. StrataX also seemed to induce low repeatability for triazoles
propiconazole and tebuconazole for this real-life-level spiking (10 ng/mL), which was not visible
during the preselection phase (40 ng/mL). This observation, coupled with previous reports of
comparable repeatability between PPT and SPE-based SPM at high spiking levels (800-5000
ng/mL) 1 15 suggests the need for application-appropriate evaluations of SPM, as the
detection of xenobiotics at real-life concentrations may be further hindered by the choice of an
unfitting SPM.

All four SPM allowed the statistical differentiation (p<0.01) of spiked compounds areas in
spiked and non-spiked samples for both matrices for more than 75% of detected compounds.
Overall, PPT and Phree ACN performed best for this criterion, followed by StrataX then
Phree+StrataX. This is coherent with the data obtained on repeatability, as significance
decreases with repeatability. Indeed, high p-values (p=0.01) are generally observed on
compounds with high CV values (e.g. diazinon in both matrices, paroxetine in serum, nicotine
in plasma, etc.). Phree+StrataX also predictably ranked last regarding the speed of
implementation criterion, as the multiplication of extraction steps to achieve further sample

purification led to a longer sample preparation process.

Overall, PPT and Phree ACN both present similar and superior performances for the detection
of low-level compounds in complex blood-derived matrices compared to StrataX and
Phree+StrataX. The study design based on fifty spiked compounds did not allow to
demonstrate any clear advantage on one compared to the other; a final comparison of these
two SPM was made through their application to serum and plasma cohort samples to obtain a
wider point of view on each method’s impact on results of a non-targeted exposomics

approach.
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5.3. Final comparison with MDL determination and application on cohort

samples

First, MDL were determined for PPT and Phree ACN on thirty xenobiotics, in plasma and
serum. Results on individual compounds are presented in the SI, Table A6. Median MDL
values were 0.1 and 0.3 ng/mL for Phree and PPT respectively in both matrices, which
suggests lower matrix effect presumably linked to further sample purification with Phree.
Contrary to this tendency, some compounds, such as chlorpyrifos and tebuconazole in plasma,
present a higher MDL for Phree compared to PPT. Similarly, pravastatin is only detected in
samples prepared with PPT in both matrices. Overall, these differences in MDL highlight that
the chosen SPM has an effect on both the range of visible compounds and the level at which
they are reliably observable.

Further comparison of PPT and Phree ACN was performed by using both SPM to prepare
serum and plasma cohort samples (n=10 and 8, respectively). Quality control was performed
on the injected batches, both at the targeted and non-targeted scales. Detailed results of the
quality control criteria are presented in the Sl, Figure S1. Repeatability was assessed at the
non-targeted scale through area CV of features found in more than 80% of QC samples. For
both SPM and both matrices, more than 80% of QC features presented area CV of less than
30%, which validates the criterion suggested by Want et al. (2010)?%. Median area CV of all
QC features was always less than 20% (11-13%). Similarly, median area CV of IS spiked in
QC samples and in cohort samples was always less than 10% (respectively 2-6% and 2-8%).
There was little observable difference between SPM or cohorts for these four quality control
criteria regardless of the considered scale (i.e. targeted or non-targeted). Lastly, Euclidian
distances between analytical replicates were computed. Although all values for median
Euclidian distances were satisfactory (<12%), a difference was observed between cohorts, as
plasma from the Danish cohort produced more repeatable results compared to serum from
Pelagie for both SPM. Moreover, plasma samples prepared using PPT were more repeatable
than those prepared using Phree (p-value<0.01), whereas no significant effect of SPM could

be observed on serum samples.

Following the validation of quality control criteria, suspect screening was performed on the
datasets obtained from both cohorts and both SPM using an in-house automatized suspect
screening tool®, followed by manual curation using fragmentation data. In total, 44 and 41
xenobiotics were annotated in the Pelagie serum samples and the Danish plasma samples,

respectively. Maximum fold changes (FC) were computed between both SPM for all annotated

128



Chapter lll. Systematic evaluation of blood-derived sample preparation methods for HRMS-based
chemical exposomics

compounds, and are reported in Figure 111.5. Additional information on individual annotations
are available in the SI, Tables A5a and A5b for serum and plasma samples respectively.
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Figure 111.5 — Comparison of annotated xenobiotics’ areas in samples prepared with protein precipitation
(PPT) and protein removal plate Phree in Pelagie serum samples (A) and Danish plasma samples (B).
Logged values of fold changes (i.e. area ratio between Phree and PPT) are presented on the x-axis,
where —~ and +~ values represent the absence of compounds in samples prepared with Phree and
PPT, respectively. Bars on the left of the y-axis represent compounds presenting higher areas in PPT

samples and vice-versa.

In serum, 93% of annotated xenobiotics presented FC values below 0.5 or above 2, whereas
it was the case for only 70% of compounds annotated in plasma, seemingly suggesting a more
pronounced effect of SPM on serum than on plasma. As this observation may be skewed by
the low amount of annotations compared to the total number of features (>20,000), this
tendency was further investigated by computing FC values on QC samples. Results are

presented in Table Il1.1.

Fold change (FC) value Pelagie serum samples Danish plasma samples
0 (only in PPT) 38.0% 30.6%

D<FC<0.5 9.5% 11.2%

05<FCx2 28.7% 40.2%

2<FC<oo 7.8% 5.3%

oa (only in Phree) 16.0% 12.6%

Table Ill.1- Percentage of features of quality control samples categorized by fold change value (i.e. area
ratio of features in Phree and protein precipitation). Values are computed for Pelagie serum samples

and Danish plasma samples.
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Overall, features obtained in serum samples present more differences between the two
considered SPM (i.e. FC values closer to the extremes) compared to what is observed in
plasma samples. This may be explained in part by the presence of highly abundant and often
multiply charged peptide peaks observed in serum samples prepared using PPT, which seem
mostly retained during the sample preparation step for Phree samples. These peptide peaks
are mostly observed within a specific Rt range (39-45 minutes), which is also the range where
phospholipids and lysophospholipids (which are specifically retained by Phree plates) are
observed. A comparative visualization of FC values organized by Rt value in serum and plasma
is presented in the Sl, Figure S2. These peaks are not as abundant in plasma samples
prepared with protein precipitation, and therefore present less polarizing FC values. The
differentiating presence of these dominating peptide peaks in serum compared to plasma has
already been reported® 3. Importantly, in both matrices, more than 40% of feature are only
detected using one SPM (43.2-54.0% in plasma and serum, respectively). This highlights the
complementarity of these SPM, as they only partially overlap. The use of both PPT and Phree

therefore allow to broaden the visible chemical space.

Xenobiotics of various origin were detected using Phree and PPT SPM, including
environmental pollutants (e.g. diethylphthalate and chlorothalonil metabolite 4-hydroxy-2,5,6-
trichloroisophthalonitrile), compounds used in cosmetic formulations (e.g. octaethylene glycol,
benzophenone-4 and various parabens), medication (e.g. paracetamol, diazepam and
metabolite nordazepam), and dietary compounds (e.g. caffeine and metabolites, piperine, and
flavoring agent bourbonal). This diversity of compounds in terms of polarity (-0.9 < logP <6.4),
mass (138.0316 < monoisotopic mass < 766.4562) and chemical functions underlines the

adequacy of these SPM for a wide chemical exposome coverage.

FC values were coherent (i.e. always favored by the same SPM or not favored by any SPM)
for compounds detected in both serum and plasma cohort samples, such as tryptophan (FC
values of 0.041 and 0.132 in serum and plasma respectively), or caffeine (FC values of 0.65
and 1.25 in serum and plasma respectively). Overall, there is no evident correlation between
polarity, mass, or presence of any chemical function and favored detection by either SPM,
which does not allow the anticipation of the SPM’s effect on other compounds or classes of
compounds. This observation underlines the critical need for orthogonal data when aiming for
a thorough characterization of a sample, as choice of SPM conditions both the range (i.e.

observed compounds) and depth (i.e. observed level) of the visible chemical space.

Documenting the perimeter of the profiled internal chemical exposome for each set of
analytical conditions is particularly crucial when aiming for large-scale epidemiological

applications. Indeed, non-targeted approaches may be used as exploratory work to identify
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previously uninvestigated compounds that are either particularly prevalent or linked to any
given health outcomes, potentially resulting in priority lists used in targeted assays focused on
quantitation. Yet, the choice of SPM evidently skews the visible information obtained from a
sample by either completely preventing the detection of certain compounds, or conditioning it
to higher levels in matrix, which may never be reached due to low exposure and/or lack of
bioaccumulation. This is not negligible when considering that low-level exposure may still result
in toxicity in the case of chronic exposure or low-level exposure to biologically active
compounds. For example, known potent toxicant pentachlorophenol is favored by PPT, as is
toxicant metabolite triclosan sulfate. In light of this context, biological sample preparation for
non-targeted approaches should ideally include multiple SPM to allow a more holistic view of
the exposure. Considering the two retained SPM in the case of plasma and serum, this could
be achieved by first performing a PPT, followed by a division of the extract between an injection
as is (after proper reconstitution) and a further purification using a Phree PLR plate. As
biological sample availability is often limited in volume, this suggested sample preparation
workflow requires additional effort in miniaturization throughout the process, from the
preparation in itself to the injection step. Nevertheless, the gain in terms of coverage of the
human internal exposome in both range and depth makes these improvements in efficiency
unmistakably worthwhile.

6. Conclusion

Twelve SPM were systematically compared for the HRMS-based non-targeted detection of
low-abundant chemicals in complex blood-derived matrices using an innovative methodology
based on a large and diverse spiking set at exposure-relevant concentrations. We
demonstrated that SPM choice must be investigated with an application-appropriate design,
as spiking levels and choice of spiking compounds may greatly affect the understanding of the
SPM'’s impact on non-targeted assays results. The blood-derived matrix choice should also be
investigated, as it may affect the observed chemical space. Based on the criteria used in this
work, we showed that phospholipid and protein removal plate Phree and the classically used
protein precipitation are both well suited to investigate the chemical exposome in serum or
plasma samples. Moreover, they can both be used on the same samples, as their

complementarity allow the broadening of the visible chemical space.
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7. Associated content

7.1. Supporting Information

- “Supporting Information — Tables A* : chemicals and reagents, detailed results of the SPM
preselection, comparison of preselected SPM to protein precipitation, annotations obtained
following the application of selected SPM to cohort samples, and methods detection limits
(Excel).

- “Supporting Information — Figures S” : Solvents and chemicals, data acquisition parameters,
quality control procedures, detailed sample preparation procedures, and quality control data
for the cohort applications (Word).
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Chapter IV. Optimizing data processing for exposomics applications:
Uncovering the potential of low-abundant peaks and MS1 data

1. Context and summary

This chapter was published as an original paper as first author in the journal Analytical
Chemistry: Chaker, J., Gilles, E., Leger, T., Jegou, B., & David, A.* (2021). From metabolomics to

HRMS-based exposomics: Adapting peak picking and developing scoring for MS1 suspect screening.
Anal Chem (IF=6.8), 93(3), 1792-1800.

Once an optimized analytical fingerprint of a sample is acquired, this data must be transformed
to a list of features, each characterized by a m/z, an Rt, and an area. Features are then aligned
for all samples, and annotation or suspect screening may be performed. While many software
tools are available to process non-targeted data, most if not all were developed for
metabolomics applications. In the case of exposomics, as compounds of interest are often
lowly abundant, it is crucial to ensure that data processing tools are capable of accurately
disentangling these signals from the noise. The aligned feature lists generated by the data
processing step are then used for annotation. As for data processing, there are many available
tools relying on various principles to achieve this step. The appropriate tool must thus be found
and optimized (i.e. relying on the suitable parameters, implementing a relevant library, etc.) to
improve efficiency and lower the number of false positive annotations. A key step of the
exposomics workflow therefore consists in optimizing these tools to process non-targeted data.
This chapter is the result of two separate optimization steps (i.e. data processing and suspect

screening) condensed in one manuscript published in Analytical Chemistry.

The first objective of this chapter was to systematically optimize and evaluate four software
tools for the processing of non-targeted exposomics data. This was performed by comparing
the processing results of data obtained from plasma and serum samples spiked using a 45-
compound set spiked at 10 ng/mL (see Chapter lll, paragraph 4.2.2). Each tool was first
optimized individually, manually and with automatized parametrization tools when available
(i.e. IPO and Autotuner for XCMS), and the best datasets were compared among the tools.
Evaluated parameters were detection frequency of spiked compounds, computing time, ease
of implementation, area integration repeatability, and detection significance (i.e. significance

of the difference in areas between spiked and non-spiked samples).

The second objective of this chapter was to describe the newly developed suspect screening
tool . It relies on different chemical predictors (i.e. m/z, experimental and/or predicted retention
time, as well as isotopic fit) to score the proximity between features and suspects, and
therefore provides an easy-to-read indicator of each annotation’s reliability. The modelling of
these predictors is described, and their relevance and accuracy are illustrated through an

application to non-spiked samples.
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Results of these comparisons are described and discussed throughout this article.The
inadequacy of existing automatized parametrization tools built for metabolomics applications
is discussed. Moreover, the need for tailored and optimized tools for processing HRMS-based
exposomics data is underlined. Furthermore, the usefulness of confidence indices for suspect
screening implemented in the in-house tool is demonstrated as an efficient way to prioritize

annotations for manual curation.
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2. Abstract

The technological advances of cutting-edge high-resolution mass spectrometry (HRMS) has
set the stage for a new paradigm for exposure assessment. However, some adjustments of
the metabolomics workflow are needed before HRMS-based methods can detect the low-
abundant xenobiotics in human matrices. It is also essential to provide tools to speed up
marker identifications. Here, we first show that metabolomics software packages developed
for automated optimization of XCMS parameters can lead to a false negative rate of up to 80%
for chemicals spiked at low levels in blood. We then demonstrate that manual selection criteria
in open source (XCMS, MZmine2) and vendor software (MarkerView™, Progenesis Ql) allow
to decrease the rates of false negative up to 2% for these spiked chemicals. We next report
an MS1 automatized suspect screening workflow that allow for a rapid pre-annotation of HRMS
datasets. The novelty of this suspect screening workflow is to combine several predictors
based on m/z, retention time (Rt) prediction models and isotope ratio to generate intermediate
and global scorings. Several Rt prediction models were tested and hierarchized (PredRet,
Retip, RTI and a logP model), and a non-linear scoring was developed to account for Rt
variations observed within individual runs. We then tested the efficiency of this suspect
screening tool to detect spiked and non-spiked chemicals in human blood. Compared to other
existing annotation tools, its main advantages include the use of Rt predictors using different
models, its speed and the use of efficient scoring algorithms to prioritize pre-annotated markers
and reduce false positives.

Key words: Exposomics, high-resolution mass spectrometry, exposure assessment, peak

picking, suspect screening, annotation tool
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Figure IV.1 — Graphical abstract for the research paper titled “From metabolomics to HRMS-based

exposomics: adapting peak-picking and developing scoring for MS1 suspect screening”
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3. Introduction

Recently, the technological advances of cutting-edge high-resolution mass spectrometry
(HRMS) has set the stage for a new paradigm to assess human exposure to complex mixtures
of xenobiotics.! Using HRMS platforms coupled to liquid chromatography (LC), it is now
possible to profile several thousands of small molecules (<1500 Da) in a biological sample
during a single analysis, including both endogenous and exogenous molecules and their
transformation products.> 2 The holistic characterization of exogenous chemical mixtures
accumulating in human biological samples (i.e. the internal chemical exposome) using HRMS
platforms would be a step forward to investigate the environmental aetiology of many
multifactorial chronic diseases with an unprecedented precision.t # ° It is therefore paramount
to break down the remaining technological barriers and methodological issues to be able to
perform large-scale exposomics studies using HRMS-based methods.

One of the obstacles to overcome is the analytical sensitivity issue which is currently preventing
the detection of low-abundant exogenous chemicals in complex biological matrices.® ’
Concentrations of environmental contaminants can be on average 1,000 times lower than
concentrations of endogenous chemicals and food chemicals in human blood.® Improving the
analytical sensitivity of LC-HRMS platforms is therefore a necessary step to go from
metabolomics-oriented studies toward exposomics studies.? 2 It is also critical to ensure that
bioinformatics tools designed to process LC-HRMS data can disentangle chemicals’ small
signals from the noise. To this aim, optimization of adjustable parameters in software available
for processing raw data is a key step to ensure that even the low abundant chemicals of interest
will be picked up.® 1° Software packages such as the IPO!! or Autotuner!? have already been
developed for automated optimization of XCMS parameters to improve the detection of reliable
signals. Studies comparing automated optimization and manual selection criteria for
metabolomics applications have already been performed.®* However, these studies are
missing for exposomics applications where the aim is also to include infrequent signals often

close to the noise that can be used to identify unrecognized exposure.*

Besides sensitivity, another bottleneck preventing comprehensive characterization of
exogenous chemical mixtures present in biological samples is the annotation of the thousands
of signals present in HRMS datasets. Over the years, many annotation tools (e.g. CAMERA,
ProbMetab, MolNetEnhancer and MetAssign) relying on analytical predictors (e.g. m/z, Rt,
isotopes) and correlation/clustering methods have been developed for metabolite
annotation.'®>*® More recently, annotation tools such as xMSannotator!® have incorporated
biological correlations in addition to analytical correlations while other tools are now integrating

MS/MS2°-22 to improve metabolite annotation. Besides these annotation tools, the qualitative
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suspect screening approach is also being increasingly used to prioritize relevant xenobiotics
for human exposure assessment.?® 24 Suspect screening uses exact mass of suspects from
in-house libraries/database as a priori information.?® 26 Compared to other annotation tools
which often rely on large databases such as HMDB?’, KEGG? or ChemSpider,? the suspect
screening strategy can be less time-consuming in particular if the list of suspects arises from
a systematic prioritization strategy. However, predictors other than exact mass must be added
in the suspect screening workflow to decrease the rate of false positives and therefore limit the

number of putative annotations that need manual curation.

Here, we first compared the ability of metabolomics software packages developed for
automated optimization of XCMS (IPO" and Autotuner'?) and manual selection criteria to
detect low-abundant spiked chemicals. Manual optimization was also extended to another
open source software (MZmine2*) and 2 vendor tools (e.g. MarkerView™ and Progenesis QI)
to compare their efficiency to detect low-abundant spiked chemicals. We demonstrate the
importance of fine-tuning critical parameters for both open source and vendor software to
dramatically decrease the rate of false negatives. We next report an MS1 automatized suspect
screening workflow. The novelty of this suspect screening workflow is to combine several
predictors based on m/z, Rt prediction models and isotope ratio checks to generate
intermediate and global scorings using multi-criteria algorithms. Several Rt prediction models
were tested and hierarchized, and a non-linear scoring was developed to account for Rt
variations observed within individual runs. We show this suspect screening tool’s high
efficiency for the rapid annotation of low-abundant spiked and non-spiked exogenous
chemicals in human plasma and serum (annotation confirmed with MS/MS data). Compared
to other existing annotation tools (e.g. xMSannotator,' MS-DIAL,2° msPurity?"), its main
advantages include the use of Rt predictors based on different models, its speed and the use

of efficient scoring algorithm to prioritize pre-annotated markers and reduce false positives.

4. Experimental section

4.1. Spiking experiments and sample preparation

Spiking experiments were performed on human blood plasma and serum samples to optimize
and compare the efficiency of data processing software to detect low-abundant signals in
biological samples. Plasma and serum bags were acquired from the French blood agency
(Etablissement Francais du Sang, EFS). Homogenate plasma and serum samples (n=4, 100
pL each) were spiked with a mix of selected classes of contaminants (i.e. pesticides,
pharmaceuticals and diet toxins) and metabolites (i.e. steroids, eicosanoids and

neurotransmitters) (n=45, see Supporting Information Table Al for suppliers) to give 10 ng/mL
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in matrix. Non-spiked plasma and serum samples (n=4, 100 pL each) from the same
homogenates were also used to check for any background contamination. A mix of 21 labeled
internal standards (100 ng/mL) was used to monitor analytical variabilities during sample
preparation and UHPLC-ESI-QTOF injections. Protein precipitation was performed using a 4:1
(v:v) ratio of cold methanol to matrix. To improve protein removal, samples were allowed to
stand at -20°C for one hour prior to centrifugation. After centrifugation at 4°C and 17,0009 for
20 min, supernatants were collected and evaporated to dryness under vacuum. Samples were

recovered in 100 pL of 90:10 (v:v) ultrapure water to acetonitrile ratio.

4.2. Data acquisition and quality control

Samples were analyzed on an AB SCIEX X500R QTOF interfaced with an AB SCIEX ExionLC
AD UHPLC. Compound chromatographic separation was achieved with an Acquity UHPLC
HSS T3 C18 column (1.8um, 1.0 x150mm) maintained at 40°C. Details regarding the injection,
chromatographic separation and ESI source parameters can be found in the SI. Samples were
analyzed in full scan experiment in both — and + ESI modes. MS/MS fragmentation data for
chemical elucidation was obtained by analysis of selected samples in sequential window
acquisition of theoretical mass spectrum (SWATH). Quality Control procedures are specified
in the SI.

4.3. Peak picking optimization: data processing tools

Mass spectra acquired in full scan were processed (peak picking, deconvolution, alignment,
gap filling) using four software programs: instrument-specific software MarkerView™1.3 (AB
SCIEX), vendor software Progenesis QI for Metabolomics (Waters), and open-source solutions
MZmine2% (v2.51) and XCMS?! (v3.6.1). Two R packages, IPO*! and Autotuner!?, were used
to test automatized parameter optimization of XCMS. For Progenesis, XCMS and MZmine2,
raw data files (in wiff2 data format) were converted to 64 bit . mzML (full scan) using MSConvert
from ProteoWizard.®? Two pipelines were used within the MZmine2 solution: Automated Data
Analysis Pipeline (ADAP) (with “ADAP Chromatogram Builder” and “Chromatogram
Deconvolution — Wavelets (ADAP)” steps), and Continuous Wavelet Transformation (CWT)
(with “Chromatogram Builder” and “Chromatogram deconvolution — Wavelets (XCMS)” steps).
For all software, a set of default parameters and a set of optimized parameters were tested to

ensure optimal detection of spiked compounds (Figure IV.2).

Five criteria were established to compare the four software tools and all possible parameter
optimization algorithms. First, the detection frequency of spiked chemicals in blood plasma and
serum samples was used to study the efficiency of parameters optimization. Then, mean areas

for spiked and non-spiked samples, associated standard deviations, fold changes, and p-
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values (unpaired t-tests) were computed to model the detection significance in spiked versus
non-spiked samples (threshold set at p=0.05). The semi-quantification performances were the
third parameter implemented; the percentage of spiked compounds with area coefficient of
variation (CV) below 30% were compared for all software according to the criteria proposed by
Want et al.*® Independent peak integration of all spiked compounds were carried out using
Sciex OS software (v1.2) to validate the accuracy of these 3 parameters. The fourth parameter
was computing time (computer configuration available in SI Table A2) and the last one was
ease of implementation (based on presence and user-friendliness of GUI, as well as number

of customizable parameters).
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Figure 1IV.2 - Data preprocessing flowchart illustrating all tested parameters, including default
parameters for the authors’ system (*) and optimized parameters (in bold and red) for each data

preprocessing software tool.

4.4, Suspect screening predictors

4.4.1. Mass-to-charge ratio (m/z)

Mass-to-charge ratios were calculated in-house using atomic monoisotopic masses obtained
through the MIDAs C++ program (Molecular Isotopic Distribution Analysis)** with the Fast

Fourier Transform (FFT)-based method (nucleon domain).

4.4.2. Retention time

Four tools were used to attempt modelling Rt. Two models were first constructed using a

training set of 134 standards and then evaluated using a set of 30 standards (see Sl Table
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A3). Experimental Rt for these standards were acquired from repeated injections (n=4). Simple
regression linear models were used; adjusted coefficients of determination R2,5 were
computed to describe correlation between variables and standard deviation of predictions.
Models were considered validated if a R? value greater than 0.7 was reached.

The first Rt prediction model was constructed using octanol-water partition coefficients (logP).
Although compounds may be ionized in the considered experimental conditions, logP was
preferred to logD since experimental logD values are hardly available. LogP values were
extracted from PubChem.® Compounds of the training set were only used for model
construction if an experimental logP was available (see Sl Fig.B2). Experimental Rts were
regressed on experimental logP values from compounds of the training set for which this
parameter was available (n=101). The resulting equation was used to predict Rts for validation
set compounds.

A Quantitative Structure-Retention Relationship-based tool, available on the online Retention
Time Indices (RTI) platform, was used to construct the second model through correlation of Rt
and chemical structure of a compound,®® and is calibrated using two sets of nineteen
compounds (see S| Table A4). Compounds from the training and evaluation sets were
submitted through the “Batch mode” pipe, using the “Chemical Space Boundary” uncertainty
measurement. Experimental Rt were regressed on RTI values of compounds of the training
set for which a RTI value was generated (n=99), as some compounds were out of the model’s
applicability domain. Rt values for the validation set compounds were predicted using the

resulting equation to perform model evaluation.

The third and fourth Rt prediction tools did not require the construction of a model, as a
predicted Rt value was directly available. Retip®’ relies on five machine learning algorithms,
and requires previously acquired experimental Rt values and InChl identifiers. PredRet*® uses
a user-driven database of compounds Rt to return a prediction of a compound’s Rt if it has
been determined in a similar chromatographic system. To implement this last tool, the in-house
chromatographic system was described: column type, column, eluents and additives were
specified. Compounds from the training and validation set as well as their InChl identifiers were

inputted.

4.4.3. Isotopic pattern

Theoretical isotopologue probabilities Po, P1, and P; (i.e. first, second, and third isotopologue
of masses Mo, M1 and M) for all compounds from the training and validation set were
computed using the MIDAs3* software with the FFT-based method. Experimental isotopologue

abundances Ao, A1 and A; were determined through targeted data processing. P./Po was
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regressed on A/Ao for all standards for which an experimental A, was detected (n=103).
Prediction bands (99%) were determined to estimate confidence in Ax/Ao ratio value.

4.5, Suspect screening annotation tools

A two-part Visual Basic program was used to automatize part of the suspect screening
annotation step. The two parts of the suspect screening program were created to respectively
generate the predictors for a suspect list database and then test the correlations between
suspects and markers from HRMS datasets. The database includes 2198 compounds
commonly detected in human blood referenced in databases such as HMDB®*® or the Blood
Exposome Database.”® In this database, three predictors (m/z, Rt, and isotopic fit) were
generated for each suspect: suspect compounds were associated to a formula, Mo, M2, Po and
P, values, and experimental or predicted Rt values if available. The library computes
monoisotopic mass, as well as common adducts masses ([M+H]*, [M+Na]*, [M+K]", [M+NH4]*
for positively charged adducts, and [M-H], [M-HO-H], [M+CI];, [M+FA-H] for negatively
charged).

The second part of the program, which performs the pre-annotation, scans individual markers
(Mass x Rt), evaluates their proximity to the suspects using Confidence Indices (Cl), and
prioritizes the best candidate, if any. Cl were built for each predictor as shown in Equation IV.1.
A global confidence index (GCI) was also built as the mean of the three CI.

| Ifeature — Isuspect |
lsuspect

Clij=1-
i A;

Equation IV.1 — Expression of Confidence Indices (CI) for all predictors (i= m/z, Rt, or M2/Mo ratio). Ai is
a confidence interval and is specifically defined for each predictor as the maximal acceptable deviation
from the reference value.

The maximal acceptable deviation for mass Am; was defined based on instrumental
uncertainty, and can take two values: 15 ppm for masses strictly lower than 200 Da, and 10

ppm for masses over 200 Da.

The Ar:value was determined based on analytical Rt variability. This variability was estimated
by computing Rt standard deviation (SD) for spiking standards in all analyzed spiked sample
(8 spiked plasmas and sera) and for all isotopically-labeled compounds spiked in all analyzed
sample (16 spiked and unspiked plasmas and sera). As analytical variability in Rt is
heterogeneous along the chromatogram, run time was divided in sections based on observable
different variability levels. The maximal expected Rt deviation Ar;was constructed by selecting

the highest compound Rt SD for each section, matrix and mode, and multiplying by three
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(assuming normal distribution and applying statistics’ empirical rule to encompass 99.7% of
values). Highest SD was selected in order to avoid excessive stringency and account for
untested factors such as long-term analytical drift.

The Aazao value was also set by using the empirical rule: RMSE of Ax/Ao error (ratio of
integration of experimental signals vs. ratio of theoretical abundances) as presented in 6.3 was
multiplied by three. The calculation of the CI for this last predictor is based on a step-wise
approach. Indeed, the software tool first provides the likeliness of presence of the M
isotopologue in the feature table, and then proceeds with the abundance A,/Aq ratio computing.

A more detailed representation of this tool’'s workflow is available in SI Fig.B1.

This in-house suspect screening tool was compared to four already available annotation and/or
suspect screening software tools: xMSannotator,*® MS-DIAL,?° msPurity?* and MZmine2.%° The
following criteria was used for comparison: possible use of in-house libraries or existing
databases, possible use of experimental and/or predicted Rt for annotation (as opposed to

clustering), use of MS2 predictor, scoring, and prioritization of annotations.

4.6. Data availability

The data files and associated metadata are available as .mzML in the MetaboLights
repository* under the identification number: MTBLS1785.

5. Results and discussion

5.1. Optimization of HRMS data processing tools for exposomics

studies

Independent peak integration of all spiked compounds ensured they provided reliable signals.
In plasma (serum), signal/noise values ranged from 38 to 1.3E+7 (23 to 1.4E+6), median m/z
and Rt shifts were 1ppm and 0.1mn (1ppm and 0.1mn), peak asymmetry factors were
averaging at 1.47 (1.41) and all below 1.86 (1.76), and area values were above 3.6E+3
(2.7E+2).

5.1.1. XCMS: automated optimization versus manual selection criteria

The ability of two automatized optimization tools IPO and Autotuner, which were both
developed for metabolomics applications, were tested for R-implemented open source XCMS
(Fig.2). IPO-optimized parameters allowed detection of only 29% of spiked compounds in

plasma (20% in serum), but with a maximal semi-quantification score. Since IPO optimization
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parameters rely on “reliable peaks” which are defined based on the identification of *C peaks
using 3 criteria relative to the 2C peak,* we can only assume that these criteria were too
stringent for many spiked compounds although they produced relevant analytical criteria for
both detection (see above) and annotation (including relevant MS/MS spectra). Since low
abundant peaks did not necessarily answer the algorithm’s criteria, parameter optimization
such as “max peakwidth” were too high (30.7s) for most of these signals. Autotuner, on the
other hand, allowed the detection of 73% of spiked compounds in both matrices, but less than
20% of them had an area CV lower than 30% on four replicates. The “max peakwidth”
parameter is tuned to a low value (less than 10s), which is not coherent with the width of the
considered compounds, leading to a splitting of peaks and thus a less reliable integration value.
These results highlight the necessity to adapt tools built for metabolomics to the needs of
chemical exposomics, and underlines the already described efficiency of manual tuning when

dealing with less optimal peaks.*?

XCMS was then tested using four sets of parameters (Figure IV.3). Firstly, the set further
referred to as “default parameters” was determined by a priori adaptation of suggested
parameters for detection of low-abundant chemicals in complex matrices. Secondly, through
visual examination of the data (data not depicted), the “peakwidth” parameter from the
“‘centWave” function was determined to be sensitive and was optimized: the minimal time for
a peak identification was set at 1 second to account for narrow signals. This allowed to increase
the detection percentage of spiked compounds of 18 points in plasma (64 to 82%) and 11

points in serum (60 to 71%).
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Figure 1V.3 - Data processing (i.e. peak picking, deconvolution, alignment, gap filling) evaluation using
XCMS for detection and semi-quantification of low-level spiked compounds in plasma samples (n=4
each). Four sets of parameters were used: Default (blue squares), manual (green rounds), IPO (purple

triangles), and Autotuner (orange diamonds) optimization. Outer edges identify best performances.
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5.1.2. Manual optimization of MZmine 2 and vendor software

As for XCMS, individual optimization of each tool was mandatory to decrease the rate of false

negatives and determine relevant parameters to detect low-abundant compounds.

For MZmine2, the CWT and the ADAP pipelines were both optimized and compared. Default
CWT parameters refer to values used by Myers et al. (2017) for plasma samples.° Within this
pipeline, the “wavelet scales” parameter was identified as critical through GUI data
visualization. The optimized bracket (0.10-1.00) showed a 9-point increase in detection
frequency of spiked compounds in plasma and a 6-point increase in serum compared with the
default bracket (0.02-1.20). This comes at the cost of computing time, which almost doubles

for plasma samples and increases about 15% for serum samples.

As for the ADAP pipeline for MZmine2, parameters were optimized through data
previsualization. Wavelet range parameter was identified as critical, and the bracket 0.10-1.00
was determined to be most appropriate. The two optimized pipelines were compared at the
lowest attainable noise level with the available hardware (10 for CWT, 50 for ADAP). ADAP
presented better results in terms of spiked compounds detection percentage (82% to 96% in

plasma and 84% to 89% in serum).

For MarkerView™ and Progenesis QI vendor software, only few parameters can be modified
and the most critical one is the noise threshold. For MarkerView™, three lower values (e.g. 50,
20 and 10) were tested in addition to the default (100). Intensity threshold value of 10 was
determined to be optimal, with a detection of 89% of spiked compounds in plasma and 82% in
serum. For Progenesis QI, the automatic sensitivity method was used and sensitivity values
“default” and “more” were tested. The “more” value was selected as optimal, as compared to
the default, detection of spiked compounds increased 18 points for plasma (62 to 80%) and 11
points for serum (67 to 78%).

5.1.3. Comparison of optimized data processing tools to detect low abundant

compounds

The ability to detect low-abundant chemicals in plasma and serum was assessed for the 4
software tools (Figure 1V.4). Detailed results for each spiking compound and all tested
parameters is available in SI (Table A5 and Figure B4). For both matrices, MZmine2 offers the
best detection frequency of spiked compounds. As for detection significance between spiked
samples and non-spiked samples, all tools allowed to reach the 0.05 p-value threshold to
describe a significant difference in areas of detected spiking compounds between spiked and

non-spiked samples. Median detection significance (t-test p-value) in plasma is lower (i.e.
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higher p-value) for Progenesis QI compared to the other three tools. In serum, XCMS gives
the lowest detection significance.

Regarding semi-quantification performance, all tools allowed to pass the repeatability criteria
from Want et al.*® (i.e. feature integration such as more than 80% of detected spiked
compounds had an area CV lower than 30%). In serum, similar values are achieved for all
software programs (between 80% for MZmine2 and 86% for MarkerView™). In plasma, value

for this parameter was significantly better using MZmine2 compared to the other three tools.
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Figure IV.4 - Data processing (i.e. peak picking, deconvolution, alignment, gap filling) evaluation for
detection and semi-quantification of low-level spiked compounds in (A) plasma and (B) serum samples
(n=4 each). Four optimized software tools were used: MZmine 2 (blue squares), XCMS (green rounds),
MarkerView™ (purple triangles), and Progenesis QI (orange diamonds). Outer edges identify best
performances.

As for computing time and ease of implementation, vendor software tools have the best
performances. These tools are the fastest and easiest to implement, as they have user-friendly
GUIs and require little to no building of the processing pipeline. Progenesis QI also offers visual
reviewing of the data which allows the user added control. MZmine2 is the most time-
consuming data processing tool (averaging at 18 hours). XCMS is the most flexible and is

constantly evolving but is less user friendly as it uses command-line interface.

In conclusion, the four investigated data processing tools, when optimized, presented
acceptable performance regarding detection frequency, detection significance in spiked versus
non-spiked samples and semi-quantitative performance. Vendor tools made a significant
difference regarding computing time. MarkerView™ is particularly interesting since it was
proven to be effective over the five indicators. Its main disadvantage is its “black-box’-like

functioning, with little user input or overview and only accepting wiff2 format. MZmine2 had the
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best performance for spiking standard detection, and offers both a GUI and control on the data
processing workflow, but its comparatively long computing time can stifle its systematized use.
Improvements are nevertheless still required to improve the detection of low-abundant signals
close to the baseline for all software to decrease the remaining false negatives.

5.2. Modelling suspect screening predictors

We next developed a suspect screening workflow that incorporate for the first time several Rt
prediction models in addition to m/z and isotope ratio checks. Multi-criteria algorithms were
then developed to generate intermediate ClI for each predictor as well as a global CI built as
the mean of the three CI.

5.2.1. Retention time prediction models

Four tools were used to attempt Rt modelling: an in-house model based on logP, Retip, RTI,
and PredRet. However, PredRet could not be retained for further comparison with the other
models since predicted Rt were returned for 16 compounds out of 134 submitted (12%
response rate) which is significantly lower than what was obtained for RTI (74% response rate).
Lack of data regarding previous injections of those standards on similar chromatographic
systems could explain these results. This highlights the need for community participation to
such tools, for a more thorough coverage of chromatographic systems and compounds.

A + logP (n=101) RTI (n=99) -e- logP (n=30) -+ Retip (n=28) RTI (n=19)
104 |R?=0.7192 R? = 0.7668 ~1000 60+ [R?=0.7636| |R?=0.7420] R2—0758?‘
8- L 800 < /!
- ] o = 40-
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o 1 § *® D i i) “ i [
3 47 AR, c400 5 320
2 ¢ g‘;v"m, °® - 200 S
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Figure IV.5 - Construction (A) of two Rt prediction models using simple linear regression

models and validation (B) of all usable Rt prediction models. The logP model uses

experimental octanol-water partition coefficients as predictors and the RTI model uses

Retention Time Indices (RTI) as predictors. PredRet, a fourth Rt prediction tool, was also

tested. PredRet predictions are not depicted as the number of responses were significantly

lower (n=16), rendering it not statistically comparable.
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Linear regression models construction for logP and RTI models are presented in Figure IV.5A,
and results on the validation set for the logP, Retip and RTI models are presented in Figure
IV.5B. A coefficient of determination of 0.72 was obtained for the logP model. R? value was
higher compared to other models constructed similarly, such as the ones described by
McEachran et al. (2018)** (R2=0.66 on 78 compounds) and Bade et al. (2015)** (R2=0.67 on
595 compounds). This was expected as experimental logP values were exclusively used to
build this model to avoid accumulating error from logP modelling and Rt modelling. The model
constructed using RTI values presented a R? value of 0.77. This model’s performance is

coherent with the RTI developers’ model description® namely a R2 value around 0.84.

Both models as well as the Retip model were then validated using a 30-compound validation
set; both R? values were similar, although with 28 and 19 compounds for Retip and RTI,
respectively, since some compounds were not covered by the models. RMSE values were
found to be of 13.7%, 12.6% and 11.5% of run time for the logP, Retip, and RTI models,
respectively, suggesting a more precise prediction of Rt using the RTI model, then Retip, then
the logP model. Based on these results, the four possible Rt values for a given compound
were hierarchized for determination of Cl as follows: experimental Rt if available, followed by
the RTI predicted, Retip predicted, then logP predicted. In addition to evaluation of Rt
prediction tools, analytical Rt variability was investigated to avoid excessive stringency in the
ClI calculation by accounting for fluctuations in analytical variability caused by the matrix or
conditions of elution over the course of the analysis (see Sl Fig.B3). Computed SD for
compounds were plotted against run time and allowed the creation of four sections based on
visual inspection of the data: 0-5 min, 5-15 min, 15-30 min, and 30-60 min. The third section
(15-30 min) showed maximal Rt variability for all matrixxmode combination, whereas the
second section (5-15 min) presented lowest Rt variability in all cases except for compounds in

serum in ESI (-) mode (where variability was lower in first section).

Overall, similar values were found within each sector for all four tested conditions (matrix x
ionization mode), as lowest SD was always less than 15s from highest SD in a given sector.
Therefore, to avoid multiplication of conditions, highest SD was selected for each sector, and
multiplied by three to define maximal acceptable deviation for Rt depending on absolute Rt.
The obtained variable is referred to as Ar; and takes the value of 0.28, 0.21, 1.29 or 0.93 min

if the compounds has a Rt of 0-5, 5-15, 15-30, or 30-60 min respectively.

5.2.2. |sotopic pattern

Isotopic pattern distribution was described using the ratio of third to first isotopologue A/A..

The linear regression correlating theoretical P,/Po and experimental Ax/Ao ratios (n=98) is
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represented in Figure IV.6. A R? value of 0.996 and a RMSE of 0.02 were achieved, suggesting
a high similarity between these two ratios and thus confirms a practical feasibility of using this
ratio for suspect screening with the applied conditions.

The investigated compounds were separated into eleven groups based on contents in Br, Cl
and S atoms (and combinations). Compounds constituting these groups formed varyingly

distant clusters. Five main clusters are formed based on contents in halogens Br and Cl (no

R?* = 0.9964
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Figure 1V.6 - Linear regression analysis of A2/A, according to P2/Po. Prediction bands placed at
3 RMSE (99%) are depicted in dotted lines. Compounds are separated into 11 groups based
on contents in Br, Cl, and S atoms (and combinations)

halogens, one Cl, two ClI, three Cl or one Br, and combination of one Br and two Cl), which
largely influence Ax/Aq value. It is also observed that compounds’ content in S atoms dictates
their placement within each of these five main clusters, which is coherent with the 34S/3S ratio

value of 0.05.

Prediction bands were placed at 3 RMSE to establish a limit where more than 99% of future
points are expected to be placed. A value for maximal acceptable deviation between P,/Py and
A2/Ao ratio of 0.1 was determined from the width of prediction bands. Given this value, it would
be possible to discriminate compounds from different major clusters (i.e. based on Br or ClI
content), but not compounds from groups with equal contents in halogens and different
contents in sulfur. The maximal acceptable deviation value of 0.1 is identified as Aisotopic it and
is used to assist suspect screening approaches by determination of the ClI for isotopic pattern

(or Clisotopic iit)- This Cl is implemented in the suspect screening annotation tool.
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5.3. Efficiency of the suspect screening tool and comparison with other

annotation tools

The in-house automatized suspect screening annotation tool was applied to the eight spiked
plasma and serum samples to assess its performance. In addition, four other annotation and

suspect screening tools were used for comparison (Figure IV.7).

Results for the in-house suspect screening annotation tool individual compounds are available
in SI Table A6, and Sl Fig.B5. Overall, 100% of spiked compounds that were picked up could
be pre-annotated in plasma and serum samples, with an average of 1.1 suggested markers
per compound in both plasma and serum when filtering on Clyn;z> 0.7 and Clg: > 0.5. A Clisotopic
itwas computed for 31% of detected spiked compounds in plasma, and 36% in serum. Mean
Clmsz, Clre and Clisowopic it Values for detected spiked compounds in plasma (serum) were 0.82
(0.83), 0.98 (0.97), and 0.76 (0.71). Overall, all three mean CI were found to be over 0.70 for
spiked compounds, which highlights the relevance of these indicators for pre-annotation. Using
our library of 2198 chemicals, the time needed to generate this pre-annotation after data
acquisition was less than 2h (50 min for MarkerView data processing and 1 h for the pre-

annotation VBA-based program).

It is important to mention that it is quite difficult to compare all annotation tools since they do
not work the same way and have different purposes. Indeed, some tools use specific analytical
predictor such as the MS2 for the annotation (MS-DIAL, msPurity, MZmine2) while our in-
house tool is the only one to rely on Rt prediction models. Considering these limitations, we
observed that frequency of detection in plasma (and serum) were, respectively, of 100%
(100%) for MZmine2, 79% (79%) for MS-DIAL, 79% (79%) for MS-DIAL, 77% (73%) for
msPurity, and 66% (66%) for xMSannotator. Since different factors inherent to the tool could
be involved in the difference of frequency of detection of this selected list of compounds, we
mainly based our comparison on their ability to score and prioritize successful annotations
made. MZmine2 is the only tool which does not provide scoring of the suggested annotation,
although it offers some parameters such as detection frequency and whether peaks are
detected or estimated which can help prioritization. MS-DIAL uses a score as a cutoff, even
though it is not displayed to the user. xMSannotator bases its scoring on m/z feature matching
with different adducts/isotopes of a candidate, and in-set correlation between features.
msPurity scores precursor purity to establish reliability of spectral matching for all features. Our
in-house annotation tool displays four scores based on the three previously described
predictors and global fit to pre-annotation. Scores from msPurity and xMSannotator can also

be used for prioritization, although they offer mild visibility on the fit between feature and pre-
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annotation. MS-DIAL offers an efficient form of ranking with an indication of whether the pre-
annotation considers MS/MS or not, and allows a visualization of spectral matching. The
individual score for each predictor accompanied by the global confidence index offered for the
in-house tool allows a particularly efficient way to cutoff and prioritize pre-annotations. It is
important to mention that some of these annotation tools offer specificities that could not be
considered (e.g. biological correlations for xMSannotator) in the context of this study but that
are definitively worth of interest.

[ xMsannotator [l MSDial [0 msPurity | Mzmine2 [ In-house tool|

Using in-house _ﬁ

libraries | ]

Using existing {%

databases | ]
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Figure IV.7 - Comparison of five suspect screening tools: xMSannotator (blue), MS-DIAL
(purple), msPurity (green), MZmine2 (yellow) and in-house tool (red). Comparison was made
on use of in-house databases, use of predicted or experimental Rt and MS/MS, speed of
implementation, scoring and prioritization. Details are available in Sl Fig.B6.

This suspect screening tool was then used on data generated from the four non-spiked plasma
and serum samples to evaluate its applicability and relevance when investigating the internal
chemical exposome. MS/MS data was used to manually confirm pre-annotations according to
Schymanski et al.** Both over-the-counter medication such as ibuprofen (level 1, both
matrices) or paracetamol (level 1, plasma), and prescription drugs such as the diuretic
medication hydrochlorothiazide (level 2a, serum) were annotated. Markers indicative of
lifestyle were confirmed in plasma, such as nicotine metabolites cotinine (level 1) and 3-
hydroxycotinine (level 2a), or tetrahydrocannabinol (level 2a) and cannabidiol (level 2a). Other
exposition markers were annotated, such as plasticizer bisphenol F (level 2a, serum), mono(2-
ethylhexyl) phthalate (level 2a, plasma), organophosphate flame-retardant tris(1-chloro-2-
propyl) phosphate (level 2a, serum) or antifungals ethyl- and butyl- paraben and metabolite 4-
hydroxybenzoic acid (level 2a, serum). Dietary biomarkers were found in both plasma and

serum, such as a-tocopherol (level 2a) or caffeine (level 1) and its three metabolites
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paraxanthine, theobromine and theophylline (level 2a). The calorie-free sweetener acesulfame
(level 1), was also found in both matrices.

6. Conclusion

HRMS-based methods have a great potential to help characterizing the human internal
exposome. We demonstrated here that adjustments of the metabolomics workflow is
nevertheless required for exposomics applications to detect low-abundant xenobiotics.
Optimization of specific criteria for open source and vendor software can decrease dramatically
the false negative rate. Nevertheless, this false negative rate can still reach up to 29% for some
software, highlighting the need for further improvements. Besides detection frequency,
automatic suspect screening workflow could help to speed up the annotation of the internal
chemical exposome as this approach relies on suspect lists that can be prioritized. We report
here an innovative workflow that incorporates for the first time several Rt prediction models.
We also provide a comparison of several recent annotation tools that use specific different
analytical criteria for the annotation process. One of the main advantages of this in-house
suspect screening tool lie in the development of individual scores for each predictor
accompanied by the global confidence index allowing a particularly efficient way to cutoff and

prioritize pre-annotations.
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In the recent years, the growing interest in investigating the links between environmental
exposures and health has led to the development of new methodologies to study the
exposome!?. Following the technological advancements based on HRMS, the rise of non-
targeted approaches, in particular, hold great promises to expand knowledge on the human
chemical exposome? #. However, these approaches require the optimization of each step of
the workflow (notably sample preparation, data processing, annotation) to achieve the
sensitivity and robustness ideally needed to limit biases in the visible chemical space®®. The
previous chapters presented the optimization steps undertaken to improve the efficiency of the
aforementioned steps. Briefly, a dual sample preparation process involving PPT and the Phree
PLR plate was recommended based on the complementarity of the image of the chemical
exposome they provide. Regarding data processing, several software tools (including both
vendor and open source tools) were optimized to detect low-abundant chemicals in blood-
derived matrices, and correctly optimized vendor software was found to adequately perform
this task with low implementation times. Lastly, an annotation tool adapted to exposomics
application was developed. MS1 chemical predictors were chosen and optimized to compare
suspects and features, and significantly lower the rate of false positive annotations. These
developments allowed constructing a workflow suited to detect low-abundant compounds in

plasma and serum samples.

While the presented optimizations allow achieving an adequate sensitivity performance, the
workflow’s robustness must still be evaluated. To this end, the workflow may be implemented
at a larger scale, i.e. move beyond the scale of one batch. Large-scale applications come with
specific challenges, mainly revolving around insufficient system stability over the course of
multiple batches, sometimes injected over several weeks or months® 1%, This may be translated

by a low repeatability in Rt, and/or in signal, leading to poor comparability between samples.

The optimized workflow was applied to analyze blood serum samples from 125 12-year-old
boys issued from the Breton mother-child cohort Pélagie. Given the large amount of data
collected and generated for this cohort!**3, it will offer a rare opportunity to study the links
between the chemical exposome and health. The first step in establishing these links is to
accurately describe the chemical exposome of this population through the non-targeted

analysis of 125 serum samples.

In this chapter, 125 serum samples were analyzed and processed using the non-targeted
optimized workflow developed in the context of this PhD work. Quality control criteria based
on feature area and Rt repeatability in QC samples and internal standards were established to
ensure comparability of the samples. The processed data was then annotated assisted by the
in-house tool and MS-DIAL,
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Hence, the objectives of this chapter were:

i. To study the robustness of the analytical and bio-informatics workflow
implemented during this PhD.

ii. To study the relevance of using the in-house software through the comparison of
MS1 and MS2 predictors’ accuracy (MS-DIAL) for the annotated compounds.

iii. To characterize chemical exposures in Pélagie through the categorization of
annotated compounds. Exposure profiles combining various chemicals of interest
were described.

iv. To study the complementarity of the two used SPM at larger scale (as described
in Chapter III).

1. Outgrowing the scale of a batch: quality control

The 125 samples were prepared with two SPM using the pipeline based on PPT and Phree,
as proposed in Chapter Il (Figure V.1). For each SPM, the 125 samples were separated in
five 25-sample batches and injected to acquire data in both ESI modes (i.e. 500 injections in
total for the samples), and 20% of randomly selected samples were re-injected for MS2
acquisitions in both ESI modes. In total, 20 batches were to be injected (n= 960 injections in
total including QCs and MS2). However, due to technical difficulties mainly revolving around
the instability of the LC, only the first three batches of Phree samples (as opposed to 5 for
PPT) were further processed, i.e. 75 samples. The comparison of the two SPMs (robustness,

annotation) were then only performed on the first three batches.
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Figure V.1 — Schematized representation of a dual sample preparation process, where half of the
supernatant from protein precipitation is injected as is (after reconstitution), and the other half is used for
further protein and phospholipid removal before injection on the UPLC-ESI-QTOF. In total, 960 samples

were injected including QCs and MS2 acquisitions.
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Sample analysis was performed over the course of 9 weeks (7.5 weeks of non-stop analysis,
and 1.5 weeks of cumulated preventive and curative maintenances between batches). The
same composite QC sample was injected throughout all batches for interbatch correction. One
large composite QC sample by SPM was prepared (800 yuL per SPM), and was injected 11
times per batch (first 5 injections for system equilibration, last 6 to assess analytical drift). To
ensure the comparability of data acquired over this extended period, quality control was
performed on the injected batches on select analytes (i.e. spiked internal standards) and at the
non-targeted scale. This quality control step was performed at the targeted level, using internal
standards spiked in all samples (including QC samples), and at the non-targeted level on all
features obtained from QC samples. Results of the quality control process are presented in
Figure V.2.
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Figure V.2 — Quality control parameters for the application of two sample preparation methods to cohort

samples (n=75 samples) before correction. Outer edges identify best performances.

Firstly, the repeatability of the analytical sensitivity of the QTOF was evaluated on all batches
at the non-targeted scale (i.e. on all features of all injected QCs) using the criteria proposed by
Want et al. (2010)*®°, by verifying that over 80% of QC features common to at least 80% of QC
samples (i.e. 5 out of the 6 QCs injected between samples at the batch level) presented area
CV values under 30%. This parameter was assessed at 82% and 83% for Phree and PPT,
respectively, which indicates a satisfactory repeatability in both cases. Furthermore, the
median area CV was computed on all batches for all features, for internal standards in QC
samples, and for internal standards in all samples. Median are CV values at the non-targeted
scale were of 16.1% and 17.4% in samples prepared by Phree and PPT respectively. When
focusing on internal standards, median area CV were of 16.0% and 14.5% in QC samples and

in all samples when prepared by Phree, and of 18.2% and 15.1% in QC samples and in all
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samples when prepared by PPT. These values, while all under the 20% threshold, were
indicative of a general tendency for batch-dependent variability, especially towards the last
batches. This was remedied through the implementation of a total ion current normalization on
all samples (including QC samples), i.e. a division of each feature’s area by the sample’s total
ion current. This normalization was chosen for its already demonstrated efficiency in other
omics approaches'®, and was performed on all SPMxESI mode combination (i.e. PPT in ESI
(-) mode, PPT in ESI (+) mode, Phree in ESI (-) mode, Phree in ESI (+) mode). The results
of this normalization on the mean feature area in the case of PPT samples injected in ESI (+)
mode is illustrated in Figure V.3. Results for other SPMxESI mode combinations are available
in Appendix 4.1.
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Figure V.3 — Mean feature raw area (A) and mean feature area after total ion current correction (B), shown on

ESI (+) mode on the UHPLC-ESI-QTOF. Blank samples for each batch are identified by orange squares.

Besides analytical sensitivity, the Rt CV on internal standards in QC samples was computed
and determined to be satisfactory, i.e. under the 10% threshold for both SPM on all batches
(1.5% and 9.6% in PPT and Phree samples respectively). After this normalization, the mean
feature area is comparable in samples across all batches. This normalization step was
performed to the analytical variations between batches. The effect of normalization on a large
scale was verified by performing a PCA before and after normalization. Results on PPT
samples injected in ESI (+) mode are presented in Figure V.4. Results for other SPMxESI
mode combinations are available in Appendix 4.1. As expected, the normalization step allowed
reducing the dispersion of samples initially observed in batch 5 (and at a lesser scale in batch

1) in this case.
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Figure V.4 — PCA using raw area (A) and PCA using area after total ion current correction (B), shown on

samples prepared by protein precipitation (PPT) injected in ESI (+) mode on the UHPLC-ESI-QTOF.

Quality control parameters were computed again using normalized data. Results are presented
in Figure V.5. The normalization step resulted in a decrease of median area CV values at the
non-targeted scale 35% for both SPM (CV values of 10.5% and 11.2% for Phree and PPT
respectively). Similarly, when focusing on internal standards in QC samples and in all samples
for both SPM, a 31-48% decrease in median area CV was observed. This significant reduction
in area variability underlines the relevance of the total ion current normalization. Overall,
median area CV values were always under 12%, which is a satisfactory value in regards to the
scale of this application. It should also be noted that there is no observed difference in median

area CV between both SPM, thus confirming their equal adequacy for large-scale applications.
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Figure V.5 — Quality control parameters for the application of two sample preparation methods to

cohort samples (=75 samples) after correction. Outer edges identify best performances.
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2. Implementing a suspect screening approach at a large scale

3.1. Comparing the use of MS1 and MS?2 predictors for annotation in an

exposomics context

Two suspect screening approaches were implemented to perform the annotations. Firstly, raw
data obtained from the chemical analysis was processed using the optimized MarkerView data
processing tool as described in Chapter 1V, paragraph 5.1.3. The resulting feature list was then
processed by the in-house tool, resulting in pre-annotations prioritized using MS1 predictors.
Secondly, raw MS2 IDA data was processed using MS-DIAL’s All public spectral database,
resulting in annotations prioritized through an MS2 matching. Manual curation was performed
on results from both tools. In the case of the in-house tool, MS2 spectra for suggested pre-
annotations were compared to reference spectra, isotopic patterns were verified, and
plausibility was checked. Reference spectra could be spectra acquired in-house (highest
confidence), obtained from shared online databases such as MassBank!’ (high confidence),
or obtained from in-silico prediction tools such as CFM-ID*® or MetFrag?® (medium confidence).
In the case of MS-DIAL, the visual representation of the matching feature and reference MS2
spectra (from online MS2 spectra database) was checked, along with isotopic patterns and
plausibility. Results from the manual curation are available in Appendices 4.2 and 4.3.
Generating pre-annotation data was faster with the in-house tool while manual curation was
overall faster using MS-DIAL, as spectral data is made available to the user. Table V.1 provides
an overview of the data generated by both tools and the results of manual curation. Annotated

compounds are available in Appendix 4.2, and MS2 data is available in Appendix 4.3.

In-house software MS-DIAL
Number of suspects >898 (ES1 ) 13,303 (ESI+)
5,898 (ESI -) 12,879 (ESI -)
Median number of unique suggested annotations 2,422 418
Median number of total suggested annotations 8,354 (raw) 730
1,928 (global Cl > 0.70)
Cumulated number of confirmed annotations 81 68
Estimated manual curation time (effective days) ~ 35 ~15

Table V.1 — Overview of the data generated by two suspect screening tools based on either MS1 or
MS2 predictors (In-house software and MS-DIAL respectively). Median and cumulated values are
determined based on the four sample preparation method x ionization mode possible combinations (i.e.

protein precipitation and Phree phospholipid removal plate in positive and negative ionization modes).
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As expected, the in-house tool generated more suggested annotations. This can be explained
by the joint effect of the high selectivity of fragmentation patterns, leading to more elimination
of false positive suggested annotations, and the fact that only a limited number of compounds
were fragmented during the MS2 analysis, which may lead to some false negatives (i.e.
compounds present in the sample, detected during the analytical step, but not annotated).
Moreover, the total number of annotations suggested by the in-house software could be
reduced using threshold values on the implemented confidence indices (Cl). A cutoff value of
0.70 was choosen based on previous observations to reduce this number by 74-82%. This
also allows prioritizing features that deserved more attention for manual curation. On the other
hand, the MS1 annotations suggested by MS-DIAL (without MS2 data) average at around
11,000 per SPMxESI mode combination, and can hardly be further prioritized due to the lack
of additional reliable information such as scoring.

Manual curation allowed to confirm the annotation of 92 compounds with a level of 4 (with
global CI = 0.85) or better according to Schymanski et al. (2014)?°, with the overlap of 57
compounds between the two suspect screening tools. MS-DIAL did not suggest 24 of the total
annotated compounds. Firstly, three compounds (i.e. 4-chlorophenol, pentachlorophenol and
triclosan glucuronide) were only prioritized by the in-house software since no associated MS2
data was acquired, and attributed a level 4. However, this level does not accurately reflect the
confidence that can be put in these annotations. Indeed, it does not account for the verification
of the very particular isotopic patterns linked to the presence of one, five and three chlorine
atoms respectively, which is a highly discriminating characteristic when looking at the M2/M0
ratio. Moreover, predicted Rt values strongly support these annotations. The current
confidence level system also does not account for the annotation of another metabolite of
triclosan (i.e. triclosan sulfate, level 1). A visualization of MS1 evidence supporting the

pentachlorophenol and triclosan glucuronide annotations is presented in Figure V.6.

Thirteen additional compounds were attributed a 2b level since there is no available MS2
experimental (in-house or from shared databases) reference spectra for these structures (e.g.
1,3,5-tris(2,2-dimethylpropionylamino)benzene or propylparaben sulfate), requiring the use of
a fragmentation prediction model such as MetFrag'® or CFM-ID*® °, The remaining eight
compounds not annotated by MS-DIAL were not listed in their database and were confirmed
with analytical standards available in-house (e.g. triclosan sulfate, acetaminophen
glucuronide, etc.). On the other hand, eleven compounds were not prioritized by the in-house
software because they were not in the used suspect list (e.g. 10,11-dihydroxy-10,11-
dihydrocarbamazepine, auraptene, lenticin, etc.). This underlines the need for sustaining the
data collection effort in the community to continue expanding suspect lists with relevant

compounds.
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Figure V.6 — MS1 predictors supporting the pentachlorophenol (A- isotopic pattern, C- retention time)
and the triclosan glucuronide (B- isotopic pattern, D- retention time) annotations. Theoretical and
experimental isotopic patterns are compared based on coherence between mass/charge ratios and
isotopic area ratios. Experimental retention times are compared to values predicted using RTI (orange),
Retip (yellow) or a polarity-based linear regression (logP) (green) and their respective confidence
intervals (represented by the color gradients). This data was acquired in negative ionization mode on
the UHPLC-ESI-QTOF.

Overall, the use of MS2 predictors is extremely powerful but can encounter some critical
obstacles in exposomics applications, notably the lack of MS2 acquisition for the feature of
interest, and the lack of reference spectra for the hundreds of thousands possible suspects?:.
When these issues arise, it is crucial to have other predictors based on MS1 to efficiently

prioritize the massive number of suggested annotations for manual curation. Predictors such
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as predicted Rt values and isotopic pattern, associated to confidence indices scoring the
proximity between suspect and feature, allow avoiding false negatives and prioritizing features
of interest. For instance, the pentachlorophenol and triclosan glucuronide annotations, both
standing at a level 4, cumulate distinctive isotopic pattern (confirmed with comparison of
therotical M2/M0) and coherence with multiple predicted retention times, as shown in Figure
V.6. This underlines the lack of accounting for some important discriminating predictors in the
current confidence level system. In these particular cases, intermediary levels could be
considered to distinguish between compounds with no MS2 data but different amounts of MS1
evidence. Other parameters not used with this analytical system, such as the collision cross
section (CCS) used in ion mobility systems, may also be considered in this updated
classification, as presented in Figure V.7. In this case, using the in-house software was critical
in significantly expanding the number of annotated compounds (+26%).The confidence levels
attributed to annotated compounds using both classifications are available in Appendix 4.4.

MS1 and MS2 MS1 only

Identification confidence Minimum data requirements Identification confidence Minimum data requirements

Level 1: Confirmed structure
by reference standard MS1, MS2, Rt, Reference std.

Level M51-1: Near confirmed structure
by reference standard MS1, Rt, biotransformation products

Level MS1-2 : Credible structure
converging contextual MS1, isotopic ratio, predicted Rt,
and biological evidence biotransfermation products

Level 2: Probable structure

EV N ETR A LM TN EL O MS1, MS2, Library MS2

b) by diagnostic evidence MS1, MS2, Exp. data

MS1, isotopic ratio, predicted Rt

Level 3: Tentative candidate(s)
structure, substituents, class

MS1, MS2, Exp. data

Level 4: Unequivocal molecular

formula Ms1 isotope/adduct
[ |
Level 5: Exact mass of interest Ms1
|

Figure V.7 — Updated identification confidence levels accounting for new methodological tools, such as
prediction models for retention time (Rt) and biotransformation products. MS2 refers to any form of
fragmentation.
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3.2. Describing the environmental chemical exposures in the Pélagie

cohort

The data collected on PPT samples and Phree samples injected in both ESI (=) and ESI (+)
modes allowed annotating 92 compounds from the internal chemical exposome with a level of
4 or higher according to Schymanski et al. (2014)% (level MS1-3 or higher according to the
suggested updated classification). Exposure to most of these compounds can occur through
multiple sources (e.g. 2-hydroxybenzoic acid, or salicylic acid, primarily used as a preservative
in industrial foods, but that can also be used as a medication or as a synthesis intermediate).
A non-exhaustive classification of sources for annotated compounds is available in Appendix
4.5. However, for illustrating purposes, only primary uses were considered in the following
descriptions. The repartition of the 92 annotated compounds by primary use is presented in
Appendix 4.5. The repartition of primary uses is presented in Figure V.8.

4 7 Gut microbiota metabolites
Natural compound

Flavoring agent
Food compounds

\

m Preservatives and other stabilizers
| ® Indirect food additive
32 B Medication
Health and personal hygiene — m Personal care and cosmetics products
B Preservatives and other stabilizers

[ = Pesticides

Plasticizers

— Organophosphate flame retardant

m Synthesis intermediate

11 9 m Preservatives and other stabilizers

Figure V.8 — Classification of the major source of annotated compounds (n=92), expressed in
percentages. Gut microbiota metabolites are shown in yellow, compounds obtained from food in blues,
compounds obtained from health and personal hygiene products in greens, and industrial compounds

in oranges.

Four main categories were identified: gut microbiota metabolites, compounds originating from
food, compounds used for health and hygiene purposes (e.g. pain management, antiepileptic
medication, surfactants used in shower gels), and industrial compounds (e.g. synthesis
intermediates used in the manufacturing of dyes, rubbers or pesticides). These categories
represented respectively 7%, 45%, 18% and 30% of annotated compounds. Gut microbiota
metabolites are included in the internal chemical exposome, as the microbiome operates as

an interface between external exposures and the individual; therefore, gut microbiota
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metabolites may reflect the external exposome and constitute their own category of

substances from the human internal chemical exposome.

Batch 1

W Gut microbiota metabolites

B Natural compound

W Flavoring agent

O Medication

O Personal care and cosmetics products
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@ Organophosphate flame retardant
B Synthesis intermediate
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Figure V.9 — Detection of suspect compounds per class in each participant (separated by batch) in protein
precipitated samples (A) and Phree samples (B). Preservatives and other stabilizers found in processed
foods, health and personal hygiene products and industrial compounds were combined in a single

category for clarity.

The highest contributing subcategory was natural compounds obtained from food and their
metabolites (e.g. caffeine and paraxanthine, piperine, flavins, etc.) representing almost a third
of annotated compounds. Representing a significant 11%, the medication subcategory (health
and personal hygiene category) includes, for instance, non-steroidal anti-inflammatory
ibuprofen, as well as antiepileptic carbamazepine and metabolites 10,11-dihydroxy-10,11-
dihydrocarbamazepine and 2-hydroxycarbamazepine. Food compounds and pharmaceutical
products (i.e. medication) represent more than half of annotated compounds (56%). This was
expected, as they can be concentrated up to 10° times more than some industrial pollutants
(e.g. pesticides) in blood?. The pesticides subcategory, contributing 9% of all annotated
compounds, includes parent compounds such as bromoxynil or tritosulfuron, and metabolites
such as chlorothalonil metabolite 4-hydroxy-2,5,6-trichloroisophthalonitrile and bromoxynil
metabolite 3,5-dibromo-4-hydroxybenzoic acid. Usual suspects were annotated in the
plasticizer subcategory (8%) such as phthalates and perfluoroalkyl substances* #2. The
detection of annotated compounds was assessed in each sample. A representation of the
detected compounds in each participant is presented in Figure V.9. Proportionately, the most
represented chemical class is natural food compounds (49% of annotated compounds in PPT
samples, 27% in Phree samples), and the least represented is organophosphate flame
retardants (0.6% and 0.4%).
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For both SPM, gut microbiota metabolites and natural food compounds showed little variation
in proportions among participants. CV were computed on proportions of these two classes
were under 15% for both SPM (14% and 7% respectively in PPT samples, and 14% and 8%
in Phree samples). The highest inter-individual variability was observed for the proportions of
organophosphate flame retardants (CV values of 165% and 210% in PPT and Phree samples
respectively), synthesis intermediates (CV values of 115% and 27% in PPT and Phree
samples respectively) and pesticides and their metabolites (CV values of 65% and 9% in PPT
and Phree samples respectively). This is coherent with the fact that most individuals would be
exposed to ubiquitous food compounds and well-known gut microbiota metabolites, but their
exposure to industrial compounds are more susceptible to vary depending on their lifestyle
(e.g. living in an urban or rural area, dietary habits, etc.). It should be noted that some
combinations of compounds may be indicative of a given individual’s lifestyle. For instance, as
the case of 48 participants, co-exposure to pesticides ioxynil, bromoxynil and transformation
product 3,5-dibromo-4-hydroxybenzoic acid, which are mostly used in agriculture, may indicate
living in arural area. Similarly, co-exposure to artificial sweeteners acesulfame, aspartame and
sucralose, as is the case for 12 participants, may be an indication of a more industrial
processed diet. However, given that the number of annotated compounds is high compared to
the number of participants, establishing such profiles is challenging in terms of statistical
power. Moreover, finding the determinants of those exposures would require additional indirect

measurements (i.e. analyzing environmental samples) and/or the use of questionnaires.

Detection frequencies for all compounds and both SPM were computed. Detailed results are
available in Appendix 4.4. Overall, out of 92 annotated compounds, 54 have a detection
frequency over 80% in either or both SPM. As shown in Appendix 4.6, almost 15% of those
ubiquitous compounds (i.e. 8 compounds) are not documented in the NORMAN Network’s
extensive SUSDAT list, which combines more than 111,000 structures from 94 community-
shared suspect lists?!. These compounds include 3 phase | and Il metabolites (hydroxylated
and sulfated forms), which highlights the need to include known or predicted metabolites in
suspect lists. It should also be noted that other metabolization pathways should be taken into
account when predicting metabolite structures, as they could allow integrating a temporal
aspect to the exposure evaluation?. Moreover, 10 compounds have a detection frequency
over 80% with at least one SPM, and do not have any available toxicological data according
to the CompTox dashboard?*. One of those compounds (Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2-
hydroxy-5-methylbenzyl)-4-methylphenyl) terephthalate, found in 86% of PPT samples) is a
phthalate, some of which are classified as endocrine and metabolic disruptors®. This
underlines the potential of suspect screening approaches to uncover previously poorly

documented exposures to chemical compounds of concern.
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Pesticide and endocrine disruptor bromoxynil, detected in 61% of samples, had previously
been reported in the urine of 22% of pregnant women from this cohort?®. This may suggest a
repeated or chronic exposure to this compound for some individuals of this cohort. Moreover,
previously reported levels of bromoxynil in plasma samples from rural teenage residents varied
from trace levels to 140 ng/mL?’. Similarly, pesticide metabolite fipronil sulfone, detected in
29% of samples, was previously reported in human blood (general population) at concentration
comprised between 0.1 and 4 ng/mL?8. These documented low levels are a preliminary
indication that the implemented workflow presents adequate sensitivity performances,
although targeted assays should be performed on the investigated samples to confirm

bromoxynil levels.

Previous studies on the Pélagie cohort did not investigate bromoxynil metabolite 3,5-dibromo-
4-hydroxybenzoic acid. However, this compound is detected in 97% of samples with higher
area values (factor 3-8 depending on sample). Further review of the literature indicated that
this metabolite was not reported in HBM studies in blood or urine before. This underlines the
potential of using suspect screening approaches to uncover new relevant biotransformation
products to better evaluate human exposure to chemicals of concern. Although bromoxynil
was banned in France in 2021, identifying this new biomarker of exposure may be useful for
retrospective analysis, in the case of persistence in the environment, or in countries where it

is not banned.

Overall, a set of compounds with very diverse physical-chemical characteristics (i.e. -2.7 <
logP < 16, and 100.0754 < [M+H]" < 811.4913) was annotated in these samples. These
compounds also include various chemical functions, and have diverse sources. The most inter-
individual variability was observed on compounds usually referred to as pollutants, as opposed
to food compounds and gut microbiota metabolites, which appears coherent. Lastly, the visible
exposure profiles on PPT and Phree samples seem to present differences both in the
proportions and variability of chemical classes, which raises a question regarding the

relevance of using two SPM in light of the performed annotations.

3.3. Exploring the potential of dual sample preparation

The two SPM used to prepare the serum samples were compared according to the
methodology described in Chapter Ill, paragraph 4.2.3. Briefly, area fold changes (FC) were
computed between both SPM on compounds annotated in the first three batches (i.e. 89

compounds out of 92 annotated in total). Median fold changes are represented in Figure V.10.

Xenobiotics presenting FC values below 0.5 and over 2 (i.e. favored by one of the SPM)

represented 94% of the total annotated compounds. This is coherent to the results from the
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pilot study presented in Chapter Ill, for which this condition represented 93% of annotated
compounds. Moreover, more than 74% of annotated compounds were only visible using one
SPM, which confirms the critical need for orthogonal methods to widen the visible chemical
space. This tendency was further explored at a larger scale by computing FC values on quality

control samples. Results are presented in Table V.2.

Fold change (FC) values Features (%)
0 (only in PPT) 43.0
0<FC=<05 5.3
05<FC=s2 7.2
2<FC<w 7.3

« (only in Phree) 37.2

Table V.2 — Percentage of features of quality control samples injected in positive and negative ionization
modes on the UHPLC-ESI-QTOF, categorized by fold change (FC) values (i.e. area ratio of features in
Phree and protein precipitation).

At this scale, 80% of features are visible with only one SPM, and an additional 13% of features
are favored by one SPM. Overall, FC values are oriented towards extreme values. This is
coherent with what was observed in the serum samples in the pilot study. This was tentatively
attributed in part to the observation of abundant and often multiple charged peptide peaks in
serum samples prepared with PPT only. This observation was replicated in this assay, which

supports this hypothesis.

There was no visible bias towards either SPM in terms of proportion of favored features,
despite the fact that Phree samples were two times more concentrated than PPT samples.
This might be explained by the fact that the sensitivity gain through the concentration factor in
Phree samples is compensated by the higher selectivity of this SPM (i.e. loss of signal for

phospholipids, etc.).
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PPT Phree

(2-0x0-2,3-dihydro-1H-indol-3-yi )acetic acid
2-((3-dodecanamidopropyl)dimethylammonio)acetate

2-hydroxybenzoic acid
2-Naphthalenesulfonic acid
2-naphthylamine
3-Formylindole
3-hydroxybenzoic acid
4-hydroxybenzoic acid
5-acetylsalicylamide
5-hydroxytryptophan
Acetaminophen sulfate
Aminoacetophenone
Arabinosylhypoxanthine
Aspartame
Chavicol sulfate
Cinnamaldehyde
CMPF
Coumaraldehyde
Dodecylbenzenesulfonic acid
Eicosapentaenoic acid
Fipronil sulfone
Indole-3-acetaldehyde
Indole-3-carbinol
Indoxyl sulfate
loxynil
Isobutylparaben
Lenticin
Lidocaine
Lumichrome
Mercaptobenzothiazole
Paraxanthine
Perfluorohexanesulfonic acid
Piperidone
Piperine
Sucralose
Thymol
Triphenylphosphine oxide
Cresol sulfate
Reserpine
Propylparaben
Phenol sulfate
Theobromine
Caffeine
13-Hydroxy-7,14-labdadien-6-one
Tryptophan
Triclosan sulfate
1,3,5-tris(2,2-dimethylpropionylamino)benzene
Docosahexaenoic acid
Bis(R-4-methyiphenyl) terephthalate
4-hydroxy-2,5,6-trichloroisophthalonitrile
Azelaic acid
Propylparaben sulfate
Methionine
4-hydroxyquinoline
3-(4-Hydroxyphenyl)lactic acid
Di(ethylhexyl) phthalate
Perfluorooctanesulfonic acid
Triethylphosphate
Cinchonidine
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Figure V.10 -Comparison of annotated xenobiotics’ areas in samples prepared with protein precipitation (PPT) and
protein removal plate Phree in Pelagie serum samples. Logged values of fold changes (i.e. area ratio between
Phree and PPT) are presented on the x-axis, where —~ and +«~ values represent the absence of compounds in
samples prepared with Phree and PPT, respectively. Bars on the left of the central vertical axis represent
compounds presenting higher areas in PPT samples and vice-versa.
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Given the relatively small number of annotations, identifying with certainty the driving factors
of the enhanced detection of compounds with one SPM or the other is challenging. However,
some tendencies were identified. Overall, polar compounds (i.e. low Rt) seemed favored by
PPT. For instance, 2/3 of compounds with Rt values under 10 minutes had FC values under
1. This might be explained by the hypothesized capability of the Phree plate to retain highly
polar compounds (i.e. polar heads of phospholipids)?®, thus leading to the lower detection of
these compounds when using this SPM. On the contrary, 2/3 of compounds with Rt values
over 40 minutes had FC values over 1 (i.e. favored by Phree). This was expected, since
samples prepared by PPT presumably contain more phospholipids notably, which are usually
detected between 40 and 45 minutes. Phenomena such as ion suppression may therefore
explain why other compounds eluting at this time are proportionately less ionized, and
therefore less detected.

Regarding compounds favored by PPT, gut microbiota metabolites seem to be more readily
detectable when using this SPM, with 5 compounds out of 6 presenting a FC value lower than
0.021, i.e. detected more than 476 times more in samples prepared with PPT than with Phree,
and the 3 indole derivatives out of those 5 were only detected with PPT. Similarly, phase I
sulfate metabolites seem to be more detectable in PPT samples, with 6 out of 7 compounds
(including 3 also classified at gut microbiota metabolites) presenting a FC value between 0.428
and O (i.e. over 2.3 times in PPT samples compared to Phree to only detected in PPT samples).

On the other hand, both organophosphate flame retardants are detected almost 20 times and
2300 times more in Phree samples compared to PPT samples (Triethylphosphate and Tris(2-
butoxyethyl)phosphate respectively). The only other compound with a phosphate group (i.e.
diphenylphosphate) was also favored by Phree (not detectable at all in PPT samples). This
was rather unexpected, as PLR plates are hypothesized to retain phospholipids through a
Lewis acid-base interaction between the stationary phase and the esterified phosphate group
found in phospholipids?®. However, it is possible that only highly polar phosphate groups such
as those found in phospholipids are retained by the plate, since the considered compounds
are mid-polar (logP values ranging from 0.8 to 2.8). Lastly, 3 out of 4 annotated phthalates are
better detected in samples prepared by the Phree PLR plate (FC varying from 5.28 to +«). The
remaining phthalate is, more precisely, a terephthalate (i.e. substituents are in the para-
position instead of the ortho- position), and is very mildly favored by PPT (FC = 0.86).
Alongside the fact that the terephthalate substituents are larger than the substituents on the
annotated phthalates, it could be hypothesized that sterically hindered phthalates are less
likely to pass through the PLR plate, thus being less favored by this SPM compared to less

hindered ones.
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Overall, using a dual sample preparation process to prepare complex samples such as serum
samples allows significantly increasing the width of the observable chemical space, in this case
almost twofold. The relevance of using complementary SPM is very probably exacerbated by
the overall low abundance of xenobiotics in the samples. Indeed, low-abundant compounds
have an increased probability of being lost to either SPM, and therefore generating an extreme
FC value. Therefore, using a dual sample preparation process is a major advantage to increase
the accuracy of the characterization of the chemical exposome. However, initial sample volume

should account for this fact, which might be limiting in the case of valuable biological samples.

In this chapter, the large-scale application of the previously optimized workflow using 125
samples from the Breton Pélagie cohort was presented. This scaling up process has
necessitated using total ion current area normalization to account for the analytical variability
that occurred over the course of the multiple-week analysis campaign. The use of a suspect
screening strategy involving MS1 and MS2 predictors has led to the annotation of 92
environmental chemical compounds with various uses including pesticides, medication,
preservatives and synthesis intermediates. Comparing the detection of these annotated
compounds in samples prepared with PPT and the Phree PLR plate demonstrated the
relevance of combining SPM to expand the visible chemical space. Indeed, close to 75% of
annotated compounds were only visible with one SPM. This comparison also allowed
identifying some factors, such as polarity or steric hindrance, that might determine whether a
compound is more readily detectable with either SPM. For instance, polar compounds seem
to be better detected in samples prepared with PPT, whereas organophosphate flame-
retardants are favored in samples prepared with Phree PLR plates. This large-scale application
is therefore a successful application of the optimized suspect screening workflow developed
in this PhD work. Its implementation has allowed expanding knowledge about the chemical
exposome of the considered population. As one of the Pélagie cohort’s objectives is to
investigate the role of the urban-rural context on human health, the chemical fingerprints could
be further used in association to this contextual data. This could be useful to prioritize more
features for annotation and continue documenting the chemical exposome of Breton 12-year-

olds.
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Characterizing the human internal chemical exposome using non-targeted approaches
presents several methodological and technological challenges. Indeed, existing workflows
classically used in metabolomics should be adapted at every step to allow the detection of low-
abundant chemicals in complex biological matrices. To address these challenges, the
optimization of the most critical steps of an HRMS-based exposomics workflow was performed
in this PhD project. The developed HRMS-based non-targeted workflow was then implemented

in a larger scale application to assess human exposure to complex chemical mixtures.

Three steps of the non-targeted and suspect screening workflow were investigated, namely
sample preparation, data processing, and annotation. Firstly, the preparation of serum and
plasma samples with twelve sample preparation methods was investigated. Two SPM, namely
protein precipitation and the Phree phospholipid removal plate, presented adequate
performance for quantitative (e.g. recovery, repeatability, etc.) and qualitative (e.g. ease of
implementation, etc.) criteria. Their application on cohort plasma and serum samples allowed
demonstrating their complementarity, as more than 60% of features were at least significantly
favored by either SPM, and 40% of features was only visible in with one SPM. As they provided
different pictures on the chemical exposome, their combined use is relevant in the context of
characterizing a diverse set of compounds. A single sample preparation workflow involving
both sample preparation methods was proposed as a way to widen the visible chemical space.
This work demonstrated the necessity to systematically delineate the impact of sample

preparation on the perimeter of the observable chemical space.

Data processing in non-targeted exposomics applications is a particularly complex task, as the
compounds of interest often present as low-abundant signals that should be properly
disentangled from the noise. As the many available data processing software tools were mostly
built for metabolomics, they should be optimized and evaluated for exposomics applications.
Four software tools, including vendor (i.e. MarkerView and Progenesis Ql) and open source
(i.,e. MZMine2 and XCMS) software, were therefore optimized and compared for the
processing non-targeted exposomics data. This systematic evaluation highlighted the need for
manual optimization of non-targeted data processing software for exposomics applications.
This optimization is necessary, as it allowed increasing the detection of spiked samples by as

much as 18%.

Lastly, the need for efficient annotation strategies is still salient in HRMS-based exposomics
applications. The developed software aimed to partly automatize a suspect screening
approach based on three MS1 chemical predictors: m/z, experimental and/or predicted Rt and
isotopic fit. Confidence indices were built to score the likeness of suspects and features, and

allow the efficient prioritization of suggested pre-annotations. A global confidence index
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combines all computed CI to score the overall resemblance between suspect and feature, and
can used as a cut-off criterion to limit false positive annotations. This tool was compared to
other tools available to assist suspect screening approaches (i.e. xMSannotator, MS-DIAL,
msPurity and MZMine2). The use of experimental and predicted Rt as well as the scoring
system were major advantages of the in-house software for compound prioritization. However,
it does not yet allow the use of MS2 fragmentation patterns, which is a highly discriminant
criterion allowing to significantly limit false positive annotation when it is available. The first
implementation of the in-house software allowed the annotation of diverse compounds of the
internal chemical exposome with high confidence indices, which highlighted the relevance of

the scoring system for prioritizing suggested annotations.

The optimized workflow was implemented on a large-scale proof-of-concept application. This
study on 125 serum samples from 12-year-old Bretons allowed demonstrating the applicability
of this workflow on a multi-batch scale to characterize the human internal chemical exposome.
Indeed, the use of the previously described strategies for sample preparation, data processing
and annotation has allowed identifying 92 highly diverse compounds in terms of mass (i.e.
100.0754 < [M+H]" = 811.4913), polarity (i.e. -2.7 < logP < 16) and sources (e.g. dietary,
medication, industrial, etc.). This application provided valuable information on the chemical
exposome in general, and on the impact of different workflow steps on the results of such
studies. In particular, the use of MS1 predictors for annotation allowed prioritizing metabolites
of known toxicants, which would have otherwise been missed. The generated data will allow
to better apprehend the perimeter of the chosen workflow, and to identify the gaps needing
additional investigating efforts. Additionally, the chemical fingerprints generated in this large-
scale application could be reused with different data processing and annotation strategies,
such as integrating other types of data collected according to the epidemiological experimental
design (i.e. data from targeted assays, clinical data, lifestyle data, etc.), and establishing

associations to further investigate.

Overall, non-targeted and suspect screening approaches are highly promising to investigate
the environment-health links. However, several challenges remain to be addressed to
implement these approaches to their full potential, such as the need for multi-systems
approaches when aiming for a wider characterization of the chemical exposome. Indeed, no
single analytical platform will allow capturing the wide range of compounds currently in use in
our environment. Therefore, combining different technologies, such as LC-HRMS and GC-
HRMS, would be helpful in expanding the visible chemical space. Adding a separation to the
chromatographic separation (i.e. LCxLC or GCxGC) or using ion mobility spectrometry may

also present a valuable addition to characterize the human internal chemical exposome. The
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two main limitations to these approaches are the financial burden induced by purchasing and
maintaining several pieces of equipment, and the limited availability of software tools and/or
databases to process the generated data. Collaborations at the national, European and/or
international level may greatly help in overcoming these limitations.

Another challenge that should be addressed is the ongoing need to improve the annotation
process. Indeed, despite the many efforts undertaken in the last few years to expand suspect
and MS2 libraries, they remain incomplete and/or non-interchangeable between tools.
Pursuing the existing efforts in terms of both data collection and harmonization will be
beneficial to the scientific community. Moreover, specific efforts should be dedicated to
including known or predicted metabolites of exposome compounds, as they may only be
detectable under metabolized forms. Acquiring MS2 data for these compounds is also
challenging, as many are not commercialized, and their custom-made synthesis represents a
financial burden. At the scale of the laboratory, further developments will be carried out
regarding the in-house software, such as adding MS2 predictors to further reduce false positive

annotations.

Non-targeted and suspect screening approaches should be used to generate lists of
compounds of interest that should be further investigated. Particularly, they should be followed
up by large-scale targeted HBM studies, to confirm these compounds’ prevalence in the
population of interest and to generate quantitative data. This would be crucial in evaluating the
need for risk assessment, and regulatory action further down the line. These HBM programs
should also go through a harmonization process to ensure inter-comparability of data acquired

over several countries and/or continents, as is done in the HBM4EU initiative.

Lastly, these chemicals of interest should be further investigated through toxicological
approaches to improve knowledge on their mechanism of action. Regulatory action may be
taken in accordance with the results of the risk assessment process. It should also be noted
that the developed toxicological approaches should be high-throughput, and ideally consider

mixture effects.

To conclude, the workflow optimized in the context of this PhD was demonstrated as efficient
for the non-targeted characterization of the human internal chemical exposome. These
approaches are highly valuable tools to investigate the effects of environmental chemical
exposures on health, and generate a rapidly increasing interest at the European and
international scale, as demonstrated by the setting up of the EIRENE infrastructure for
instance. Large-scale collaborations at these levels will allow generating robust and inter-

comparable data to both describe the human chemical exposome and hopefully better
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understand the etiology of chronic disease. However, developments and harmonization efforts
are still required to reach the full potential of non-targeted and suspect screening approaches,

and offer operational solutions to limit the presence of harmful chemicals in our environment.
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1. Appendix 1. Chapter Il

1.1.

Detailed list of the optimization mix and internal standards

Table A1 — Detailed list of the optimization mix and internal standards, with SMILES identifiers, chemical formulas, monoisotopic mass,

observed ion, retention time, octanol-water partition coefficient (logP), and CAS number when available.

Monoisotopic  Observed

Retention

Compound name SMILES Chemical formula mass (Da) ion time (min) logP CAS
2-Phenylphenol C1=CC=C(C=C1)C2=CC=CC=C20 C12H100 170.0732 [M-H]- 30.19 3.28  90-43-7
Acetochlor CCC1=CC=CC(=C1N(COCC)C(=0)CCI)C C14H20CINO2 269.1183 [M-H]- 40.57 414  123113-74-6
Acetylsalicylic acid CC(=0)0C1=CC=CC=C1C(=0)0 C9H804 180.0423 [M-H]- 8.65 1.24  50-78-2
Aflatoxin B1 COC1=C2C3=C(C(=0)CC3)C(=0)0C2=C4C5C=COC50C4=C1 C17H1206 312.0634 [M+H]* 17.52 1.73  27261-02-5
Aminobenzimidazole C1=CC=C2C(=C1)NC(=N2)N C7H7N3 133.0640 [M+H]* 4.74 0.91  934-32-7
Androstenedione CC12CCC(=0)C=C1CCC3C2CCC4(C3CCC4=0)C C19H2602 286.1933 [M+H]* 31.50 2.75  63-05-8
Arachidonic Acid CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(0)=0 C20H3202 304.2402 [M-H] 47.00 6.99  93444-49-6
Azoxystrobin COC=C(C1=CC=CC=C10C2=NC=NC(=C2)0C3=CC=CC=C3C#N)C(=0)OC  C22H17N305 403.1168 [M+H]* 38.03 2.64  215934-32-0
Boscalid C1=CC=C(C(=C1)C2=CC=C(C=C2)CI)NC(=0)C3=C(N=CC=C3)Cl C18H12CI2N20 342.0327 [M+H]* 38.00 296  188425-85-6
standard Carbamazepine C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N C15H12N20 236.0950 [M+H]* 18.01 245  298-46-4
compounds  Carbendazim COC(=0)NC1=NC2=CC=CC=C2N1 C9HIN302 191.0695 [M+H]* 5.69 1.52  63278-70-6
Chlorpyrifos CCOP(=S)(OCC)OC1=NC(=C(C=C1CI)CI)Cl C9H11CI3NO3PS 348.9263 [M+H]* 45.53 470  39475-55-3
Clothianidin CNC(=N[N+](=0)[0-])NCC1=CN=C(S1)CI C6H8CIN502S 249.0087 [M+H]* 7.99 0.73  205510-53-8
Codeine CN1CCC23C4C1CC5=C2C(=C(C=C5)0C)OC3C(C=C4)O C18H21NO3 299.1521 [M+H]* 5.12 1.39  76-57-3
Cortisone CC12CCC(=0)C=C1CCC3C2C(=0)CC4(C3CCC4(C(=0)CO)0)C C21H2805 360.1937 [M+H]* 16.12 1.47  53-06-5
Cotinine CN1C(CCC1=0)C2=CN=CC=C2 C10H12N20 176.0950 [M+H]* 431 0.07  486-56-6
Cyprodinil CC1=CC(=NC(=N1)NC2=CC=CC=C2)C3CC3 C14H15N3 225.1266 [M+H]* 33.22 400  121552-61-2
Diazinon CCOP(=S)(OCC)OC1=NC(=NC(=C1)C)C(C)C C12H21N203PS 304.1011 [M+H]* 43.38 3.81  30583-38-1
Diclofenac C1=CC=C(C(=C1)CC(=0)0)NC2=C(C=CC=C2CI)CI C14H11CI2NO2 295.0167 [M-H] 39.59 451  15307-86-5
Dimethyldithiophosphate COP(=S)(0C)S C2H702PS2 157.9625 [M-H] 2.95 0.63  756-80-9
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Table Al — (continued) Detailed list of the optimization mix and internal standards, with SMILES identifiers, chemical formulas, monoisotopic

mass, observed ion, retention time, octanol-water partition coefficient (logP), and CAS number when available.

Monoisotopic

Observed

Retention

Compound name SMILES Chemical formula mass (Da) ion time (min) logP CAS
Estrone CC12CCC3C(C1CCC2=0)CCC4=C3C=CC(=C4)0 C18H2202 270.1620 [M+H]* 31.60 313 53-16-7
Fluoxetine CNCCC(C1=CC=CC=C1)0C2=CC=C(C=C2)C(F)(F)F C17H18F3NO 309.1340 [M+H]* 23.71 4.05  57226-07-0
Hydrocortisone CC12CCC(=0)C=C1CCC3C2C(CCA(C3CCCA(C(=0)CO)0)C)0 C21H3005 362.2093 [M+H]* 15.86 161  50-23-7
Hydroxyindoleacetic acid ~ C1=CC2=C(C=C10)C(=CN2)CC(=0)O C10HINO3 191.0582 [IM-H]" 5.71 1.41  113303-91-6
Ibuprofen CC(C)CC1=CC=C(C=C1)C(C)C(=0)O C13H1802 206.1307 [IM-H]" 39.94 3.97  58560-75-1
Imidacloprid C1CN(C(=N[N+](=0)[0-])N1)CC2=CN=C(C=C2)Cl C9H10CIN502 255.0523 [M+H]+  8.57 0.57  138261-41-3
Ketoprofen CC(C1=CC(=CC=C1)C(=0)C2=CC=CC=C2)C(=0)0 C16H1403 254.0943 [M+H]* 28.13 312 22071-15-4
Leukotriene B4 CCCCCC=CCC(C=CC=CC=CC(CCCC(=0)0)0)0 C20H3204 336.2301 [IM-H]" 39.52 410  71160-24-2
Leukotriene D4 CCCCCC=CCC=CC=CC=CC(C(CCCC(=0)0)0)SCC(C(=0)NCC(=0)O)N C25H40N206S 496.2607 [IM-H]" 33.04 1.40  73836-78-9
Malathion CCOC(=0)CC(C(=0)0CC)SP(=S)(0C)0C C10H1906PS2 330.0361 [M+H]* 40.81 2.89  121-75-5
Standard Nicotine CN1CCCC1C2=CN=CC=C2 C10H14N2 162.1157 [M+H]* 3.37 117  551-13-3
compounds Paracetamol CC(=0)NC1=CC=C(C=C1)0 C8HINO2 151.0633 [M+H]* 498 0.31  8055-08-1
Paroxetine C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)0CO4 C19H20FNO3 329.1427 [M+H]* 18.34 123 63952-24-9
Piperine C1CCN(CC1)C(=0)C=CC=CC2=CC3=C(C=C2)0CO3 C17H19NO3 285.1365 [M+H]* 36.42 2.78  147030-08-8
Pravastatin CCC(C)C(=0)0C1CC(C=C2C1C(C(C=C2)C)CCC(CC(CC(=0)0)0)0)0 C23H3607 424.2461 [M+H]* 20.50 1.65  81093-37-0
Prochloraz CCCN(CCOC1=C(C=C(C=C1CI)CI)CI)C(=0)N2C=CN=C2 C15H16CI3N302 375.0308 [M+H]* 38.74 3.78  67747-09-5
Progesterone CC(=0)C1CCC2C1(CCC3C2CCCA=CC(=0)CCC34C)C C21H3002 314.2246 [M+H]* 42.10 3.87  257630-50-5
Propiconazole CCCC1COC(01)(CN2C=NC=N2)C3=C(C=C(C=C3)CI)CI C15H17CI2N302 341.0698 [M+H]* 41.73 372 75881-82-2
Prostaglandin D2 CCCCCC(C=CC1C(C(CC1=0)0)CC=CCCCC(=0)0)0 C20H3205 352.2250 [IM-H] 27.60 323 41598-07-6
Prostaglandin E2 CCCCCC(C=CC1C(CC(=0)C1CC=CCCCC(=0)0)0)0 C20H3205 352.2250 [IM-H] 26.50 282 363-24-6
Prostaglandin F2a CCCCCC(C=CC1C(CC(C1CC=CCCCC(=0)0)0)0)0 C20H3405 354.2406 [IM-H] 25.60 261 13535-33-6
Prostaglandin J2 CCCCCC(C=CC1C(C=CC1=0)CC=CCCCC(=0)0)0 C20H3004 334.2144 [IM-H] 26.54 3.60  60203-57-8
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Table Al — (continued) Detailed list of the optimization mix and internal standards, with SMILES identifiers, chemical formulas, monoisotopic

mass, observed ion, retention time, octanol-water partition coefficient (logP), and CAS number when available.

Monoisotopic

Observed

Retention

Compound name SMILES Chemical formula mass (Da) ion time (min) logP CAS
Sertraline CNC1CCC(C2=CC=CC=C12)C3=CC(=C(C=C3)CI)CI C17H17CI2N 305.0738 [M+H]* 24.34 510  79559-97-0
Solanidine CC1CCC2C(C3C(N2C1)CCAC3(CCCECACC=C6C5(CCC(CH)0)C)C)C C27H43NO 397.3345 [M+H]* 24.54 488  80-78-4
Tebuconazole CC(C)(C)C(CCC1=CC=C(C=C1)CI)(CN2C=NC=N2)O C16H22CIN30 307.1451 [M+H]* 39.36 370  80443-41-0
Standard  Testosterone CC12CCC3C(C1CCC20)CCCA=CC(=0)CCC34C C19H2802 288.2089 [M+H]* 28.90 332 58220
compounds  Thiacloprid C1CSC(=NC#N)N1CC2=CN=C(C=C2)Cl C10HICIN4S 252.0236 [M+H]* 12.24 125  111988-49-9
Thiamethoxam CN1COCN(C1=N[N+](=0)[0-])CC2=CN=C(S2)CI C8H10CIN503S 291.0193 [M+H]* 6.97 152 153719-23-4
Triclosan C1=CC(=C(C=C1Cl)0)0C2=C(C=C(C=C2)CI)CI C12H7C1302 287.9512 [M-H] 43.79 476  3380-34-5
Venlafaxine CN(C)CC(C1=CC=C(C=C1)0C)C2(CCCCC2)0 C17H27NO2 277.2042 [M+H]* 9.84 043  93413-69-5
2-phenylphenol-13C6 n.a. [13C]6C6H100 176.0933 [M-H]- 30.19 na.  287389-48-4
Acetochlor-d11 na. C14D11H9CINO2 280.1873 [M-H]- 40.57 na.  1189897-44-6
Azoxystrobin-d4 n.a. C22D4H13N305 407.1419 [M+H]+ 3803 na.  1346606-39-0
Carbamazepine-13C6 n.a. [13C]6C9H12N20 242.1151 M+H]+ 1801 na.  na.
Carbendazim-d4 n.a. C9DAH5N302 195.0946 [IM+H]* 5.69 na.  291765-95-2
Chlorpyrifos-d10 n.a. C9D10HCI3NO3PS 358.9891 IM+H]+ 4553 na.  285138-81-0
Cotinine-d3 n.a. C10D3HIN20 179.1138 IM+H]+ 431 na.  110952-70-0
Internal Diazinon-d10 n.a. C12D10H11N203PS 314.1638 [IM+H]* 43.38 na.  100155-47-3
standards  Diclofenac-13C6 n.a. [13CJ2C12H11CI2NO2  297.0234 [M-H] 39.59 na.  na.
?é”é;thy'd”hi(’phosr’hate' a [13C]2H702PS2 159.9692 [M-H] 2.95 na.  1329610-82-3
Estrone-d4 n.a. C18D4H1802 274.1871 [M+H]* 31.60 na.  53866-34-5
Fluoxetine-d6 n.a. C17D6H12F3NO 315.1717 [M+H]* 23.71 na. na.
Hydrocortisone-d4 n.a. C21D4H2605 366.2344 [M+H]* 15.86 na.  73565-87-4
Ibuprofen-d3 n.a. C13D3H1502 209.1495 [M-H] 39.94 na.  121662-14-4
Imidacloprid-d4 n.a. C9DAH6CINS02 259.0774 [M+H]+ 857 na.  1015855-75-0
Ketoprofen-d3 n.a. C16D3H1103 257.1131 [M+H]* 28.13 na.  159490-55-8
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Table Al — (continued) Detailed list of the optimization mix and internal standards, with SMILES identifiers, chemical formulas, monoisotopic
mass, observed ion, retention time, octanol-water partition coefficient (logP), and CAS number when available.

Monoisotopic Observed  Retention

Compound name SMILES Chemical formula mass (Da) ion time (min) logP CAS
Leukotriene B4-d4 n.a. C20D4H2804 340.2552 [M-H]- 39.52 n.a. 93951-88-3
Paracetamol-d4 n.a. C8D4H5NO2 155.0884 [M+H]* 4.98 n.a. 64315-36-2
Internal Prostaglandin E2-d4 n.a. C20D4H2805 356.2501 [M-H]- 26.50 n.a. 34210-10-1
standards  Tebuconazole-d6 n.a. C16D6H16CIN30 313.1828 [M+H]* 39.36 na.  1246818-83-6
Testosterone-d3 n.a. C19D3H2502 291.2278 [M+H]* 28.90 n.a. 77546-39-5
Thiamethoxam-d4 n.a. C8D4H6CIN503S 295.0444 [M+H]* 6.97 n.a. 1331642-98-8
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1.2. Column diameter and flow rate optimization

Appendices

Table A2a — Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization with 50

standards spiked at 20 ng/mL

?2.1mm ? 1.0 mm
0.30 mL/min 0.15 mL/min 0.10 mL/min 0.05 mL/min
Compound name Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%)
2-Phenylphenol 0 0.0 0 0.0 849 4.4 1711 2.6
Acetochlor 4475 0.9 9755 3.6 7597 4.5 14321 11
Acetylsalicylic acid 3808 11.9 1175 20.7 0 0.0 1522 10.5
Aflatoxin B1 7860 2.1 14889 1.6 27507 4.4 48357 1.6
Aminobenzimidazole 42778 1.9 66388 1.3 106609 0.7 109914 2.6
Androstenedione 22545 1.0 43711 2.2 63325 3.9 116688 2.7
Arachidonic Acid 0 0.0 0 0.0 10608 15 2145 2.9
Azoxystrobin 27111 1.4 50413 1.9 74847 15 138630 1.2
Boscalid 9724 2.4 19987 2.7 30977 1.7 59087 1.7
Carbamazepine 40813 2.9 69130 1.6 56790 3.1 92419 15
Carbendazim 26851 2.8 50107 1.3 58931 1.7 98122 2.2
Chlorpyrifos 9160 2.9 8375 4.9 26006 4.2 17375 2.4
Clothianidin 3967 1.8 7293 2.1 3512 3.3 6277 1.9
Codeine 29568 2.3 51887 1.3 84592 1.0 125101 0.8
Cortisone 11580 1.8 18896 1.8 36473 2.3 61874 1.2
Cotinine 17447 1.8 24134 2.3 43291 0.6 44092 3.8
Cyprodinil 220019 3.5 304236 2.0 154113 3.3 271592 2.6
Diazinon 353679 1.8 670435 1.8 431259 11 646828 1.6
Diclofenac 5852 1.8 11670 2.4 14361 1.3 26631 1.2
Dimethyldithiophosphate 0 0.0 0 0.0 552 1.9 894 1.9
Estrone 9883 2.0 20255 1.9 27555 1.4 54243 1.8
Fluoxetine 34612 3.2 47031 1.8 48521 1.1 73356 0.9
Hydrocortisone 15075 1.7 24010 1.2 47430 2.3 79301 2.0
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Table A2a — (continued) Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization
with 50 standards spiked at 20 ng/mL

20 pg
@ 2.1 mm ? 1.0 mm
0.30 mL/min 0.15 mL/min 0.10 mL/min 0.05 mL/min
Compound name Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%)
Hydroxyindoleacetic acid 0 0.0 2694 4.2 1875 2.9 3388 2.8
Ibuprofen 0 0.0 0 0.0 214 1.7 660 1.8
Imidacloprid 11776 2.1 15929 1.4 9504 1.8 16735 1.2
Ketoprofen 598052 1.0 942528 1.2 109328 1.1 173304 1.2
Leukotriene B4 1917 3.3 2783 6.4 6625 1.3 9609 2.9
Leukotriene D4 2623 184 3548 12.3 8816 8.4 13882 0.5
Malathion 6006 2.5 11565 1.8 8529 3.4 15602 0.3
Nicotine 4192 3.2 6936 3.3 6392 4.9 11201 2.8
Paracetamol 6660 2.9 14481 3.6 15879 2.0 25567 2.5
Paroxetine 64379 25 80067 2.8 111047 2.2 186423 0.3
Piperine 22541 14 38849 3.4 49507 1.6 90501 1.3
Pravastatin 2006 2.7 2444 4.0 2201 2.7 2201 3.1
Prochloraz 11770 8.1 19850 57 16390 7.0 29451 2.2
Progesterone 28426 0.3 71350 3.0 98298 7.9 161313 15
Propiconazole 32615 3.4 80152 57 88708 4.6 137210 2.0
Prostaglandin D2 2493 7.9 3345 8.9 9217 3.0 11703 4.3
Prostaglandin E2 1808 8.2 2983 6.9 7654 1.3 13791 2.8
Prostaglandin F2a 2448 6.7 3355 2.2 8857 0.9 16552 2.2
Prostaglandin J2 2854 6.6 3149 2.1 7569 0.5 14228 2.2
Sertraline 13444 3.0 19287 1.5 13848 2.3 21028 0.7
Solanidine 64689 0.8 85483 1.8 100975 1.0 158675 2.5
Tebuconazole 49740 4.3 79713 4.3 98595 6.2 166400 1.9
Testosterone 27084 3.2 47005 1.9 72103 1.9 126546 1.3
Thiacloprid 19908 3.3 28586 1.6 27747 4.1 54234 2.5

189



Appendices

Table A2a — (continued) Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization
with 50 standards spiked at 20 ng/mL

20 pg
@2.1mm @ 1.0 mm
0.30 mL/min 0.15 mL/min 0.10 mL/min 0.05 mL/min
Compound name Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%)
Thiamethoxam 3969 6.2 6867 2.7 8244 5.0 11818 2.2
Triclosan 17442 2.4 20114 3.0 27857 1.2 44355 2.0
Venlafaxine 118494 2.2 133888 1.4 143819 1.6 235916 2.4
Median 11675 2.4 19569 2.1 27531 2.0 44224 2.0

Table A2b — Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization with 50
standards spiked at 200 ng/mL

200 pg
?2.1mm ? 1.0 mm
0.30 mL/min 0.15 mL/min 0.10 mL/min 0.05 mL/min
Compound name Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%)
2-Phenylphenol 1258 7.5 2523 0.7 6053 3.9 14740 2.6
Acetochlor 44920 0.7 101742 1.0 72798 0.3 150161 2.6
Acetylsalicylic acid 3511 54 1904 17.5 2541 6.0 5506 8.1
Aflatoxin B1 92085 7.3 175374 2.1 278845 2.8 530533 2.1
Aminobenzimidazole 482920 1.7 660167 2.2 1004025 0.9 1059186 1.2
Androstenedione 314943 0.9 569012 2.8 728528 2.1 1391952 2.2
Arachidonic Acid 11696 5.8 16799 3.7 76929 12.8 23384 9.4
Azoxystrobin 416255 2.1 700821 1.8 839750 2.8 1579550 2.8
Boscalid 136846 1.6 260687 1.9 365343 0.8 737820 0.5
Carbamazepine 486607 1.6 794147 1.2 562533 1.2 1009330 3.3
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Table A2b — (continued) Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization

with 50 standards spiked at 200 ng/mL

200 pg
@ 2.1mm ? 1.0 mm
0.30 mL/min 0.15 mL/min 0.10 mL/min 0.05 mL/min
Compound name Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%)
Carbendazim 303001 14 529255 0.2 584976 2.3 1038643 0.9
Chlorpyrifos 143384 7.2 132435 7.0 323684 0.5 232045 4.5
Clothianidin 44093 0.8 77368 1.3 33979 1.7 61958 1.7
Codeine 374122 2.4 596108 1.7 845795 1.6 1342160 1.6
Cortisone 179839 0.9 251319 1.2 422111 1.6 717505 1.2
Cotinine 189159 2.8 249964 0.5 424143 0.9 180963 4.5
Cyprodinil 2408536 1.1 3459616 1.0 1716890 2.1 3191239 2.2
Diazinon 3445514 15 6974612 2.0 4164532 1.1 6849338 1.0
Diclofenac 66823 14 131355 1.6 158232 1.5 302371 2.6
Dimethyldithiophosphate 16549 2.7 18745 25 19885 2.2 24558 2.2
Estrone 123256 3.2 250416 2.2 307707 2.3 496308 3.1
Fluoxetine 499044 25 639329 3.4 566846 1.2 887694 3.1
Hydrocortisone 218973 51 321839 25 526415 0.8 910547 0.7
Hydroxyindoleacetic acid 5521 2.8 25046 3.5 14672 4.0 26215 3.0
Ibuprofen 22198 3.3 27854 3.1 27820 2.2 37854 2.5
Imidacloprid 163270 1.2 177924 1.7 308757 2.9 382121 1.6
Ketoprofen 601779 1.6 928294 0.5 114289 14 186576 2.4
Leukotriene B4 17460 1.8 27102 1.2 69337 15 102238 2.7
Leukotriene D4 26004 3.6 34823 2.8 117829 1.7 164339 2.0
Malathion 75799 1.1 149175 54 96160 25 179783 4.5
Nicotine 41136 2.3 60698 1.6 20386 9.6 48066 1.9
Paracetamol 71826 2.6 149189 1.6 147647 1.0 239774 15
Paroxetine 817603 25 1033107 1.1 1169024 6.1 2124497 1.2
Piperine 313665 1.0 504088 1.2 586547 1.2 1098772 1.7
Pravastatin 24687 2.3 27128 1.7 24320 4.1 22995 2.9

191



Appendices

Table A2b — (continued) Detailed mean area and coefficient of variation (CV) on 3 replicates for column diameter and flow rate optimization

with 50 standards spiked at 200 ng/mL

200 pg
@ 2.1mm ? 1.0 mm
0.30 mL/min 0.15 mL/min 0.10 mL/min 0.05 mL/min
Compound name Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%)
Prochloraz 177023 15 238416 1.2 199840 2.6 380390 2.0
Progesterone 420824 2.1 971167 0.6 1057300 11 1883434 3.9
Propiconazole 488615 14 1099382 1.0 1046343 1.9 1614942 0.6
Prostaglandin D2 18030 29 30089 3.5 100645 2.2 129757 2.2
Prostaglandin E2 15201 25 26502 4.0 84631 1.0 149932 5.7
Prostaglandin F2a 12235 2.0 18597 1.7 19742 1.8 29545 2.0
Prostaglandin J2 19452 2.0 24560 2.0 22457 1.7 31247 1.8
Sertraline 189844 3.7 256606 1.1 150102 1.1 233249 1.7
Solanidine 860779 2.8 1092428 3.4 1114014 3.7 1851604 2.9
Tebuconazole 684637 2.0 1042733 2.2 1128292 2.1 1495029 4.1
Testosterone 375611 1.5 599287 1.5 796827 1.2 1454106 1.6
Thiacloprid 228117 1.3 338182 0.8 321764 0.9 380140 1.5
Thiamethoxam 41008 2.9 73229 3.4 71889 3.9 110050 4.3
Triclosan 178456 1.9 265478 14 345788 1.7 387750 1.5
Venlafaxine 1836079 2.3 1964486 2.6 1365043 14 2392643 1.6
Median 170146 2.1 250190 1.7 308232 1.7 380265 2.2
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1.3. Detailed list of the retention time prediction set

Table A3 — Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic mass, and

CAS number

Monoisotopic

Compound name SMILES Chemical formula mass CAS
1-(3,4-Dichlorophenyl)-3-methylurea CNC(=O)NC1=CC(=C(C=C1)CI)CI C8HB8CI2N20 218.0014 3567-62-2
1-(3,4-Dichlorophenyl)urea C1=CC(=C(C=C1INC(=0O)N)CICI C7HBCI2N20 203.9857 2327-02-8
1-(4-Isopropylphenyljurea CC(C)C1=CC=C(C=C1)NC(=O)N C10H14N20 178.1106 56046-17-4
2,4-mcpa CC1=C(C=CC(=C1)Cl)0oCC(=0)O C9H9CIO3 200.0240 94-74-6
2-chloro-4-methylbenzoic acid CC1=CC(=C(C=C1)C(=0)O)CI C8H7CIO2 170.0135 7697-25-8
2-Phenylphenol C1=CC=C(C=C1)C2=CC=CC=C20 C12H100 170.0732 90-43-7
Acetamiprid CC(=NC#N)N(C)CC1=CN=C(C=C1)CI C10H11CIN4 222.0672 135410-20-7
Acetochlor CCC1=CC=CC(=C1IN(COCC)C(=0)CCI)C C14H20CINO2 269.1183 123113-74-6
Aflatoxin B1 COC1=C2C3=C(C(=0)CC3)C(=0)0C2=C4C5C=COC50C4=C1 C17H1206 312.0634 27261-02-5
Alachlor CCC1=C(C(=CC=C1)CC)N(CcOoC)Cc(=0)CClI C14H20CINO2 269.1183 15972-60-8
Ametryn CCNC1=NC(=NC(=N1)SC)NC(C)C C9H17N5S 227.1205 834-12-8
Amidosulfuron CN(S(=0)(=0)C)S(=0)(=0O)NC(=0O)NC1=NC(=CC(=N1)OC)0OC C9H15N507S2 369.0412 120923-37-7
Aminobenzimidazole C1=CC=C2C(=C1)NC(=N2)N C7H7N3 133.0640 934-32-7
Androstenedione CC12CCC(=0)C=C1CCC3C2CCcr4(C3cccec4=0)C C19H2602 286.1933 63-05-8
Arachidonic Acid CCCCCI/C=C\C\C=C/C/C=C\C\C=C/CCCC(0)=0 C20H3202 304.2402 93444-49-6
Atrazine CCNC1=NC(=NC(=N1)CI)NC(C)C C8H14CIN5 215.0938 1912-24-9
Atrazine-2-hydroxy CCNC1=NC(=0)NC(=N1)NC(C)C C8H15N50 197.1277 2163-68-0
Atrazine-deisopropyl CCNC1=NC(=NC(=N1)N)CI C5HB8CINS 173.0468 1007-28-9
Azoxystrobin COC=C(C1=CC=CC=C10C2=NC=NC(=C2)OC3=CC=CC=C3C#N)C(=0)0C C22H17N305 403.1168 215934-32-0
Beflubutamid CCC(C(=O)NCC1=CC=CC=C1)0OC2=CC(=C(C=C2)F)C(F)(F)F C18H17F4NO2 355.1195 113614-08-7
Bixafen CN1C=C(C(=N1)C(F)F)C(=O)NC2=C(C=C(C=C2)F)C3=CC(=C(C=C3)CI)CI C18H12CI2F3N30  413.0310 581809-46-3
Boscalid C1=CC=C(C(=C1)C2=CC=C(C=C2)CI)NC(=0)C3=C(N=CC=C3)CI C18H12CI2N20 342.0327 188425-85-6
Bromacil CCC(C)N1C(=O)NC(=C(Br)C1=0)C C9H13BrN202 260.0160 314-40-9
Carbamazepine C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=0O)N C15H12N20 236.0950 298-46-4
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Table A3 — (continued) Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic

mass, and CAS number

Compound name
Carbaryl
Carbendazim
Carbetamide
Carbofuran
Chlorantraniliprole
Chloridazon
Chlorpyrifos
Chlortoluron
Clothianidin
Codeine
Cortisone

Cotinine
Cyprodinil
Diazinon
Dichlorprop
Diclofenac
Dimethenamid
Dimethomorph
Dimethyldithiophosphate
Diuron
Estradiol-2-hydroxy
Estrone
Estrone-2-hydroxy
Ethidimuron
Fenamidone

Fenpropidine

SMILES

CNC(=0)0C1=CC=CC2=CC=CC=C21
COC(=0)NC1=NC2=CC=CC=C2N1
CCNC(=0)C(C)OC(=0)NC1=CC=CC=C1
CC1(CC2=C(01)C(=CC=C2)OC(=0)NC)C
CC1=CC(=CC(=C1NC(=0)C2=CC(=NN2C3=C(C=CC=N3)CI)Br)C(=O)NC)ClI
C1=CC=C(C=C1)N2C(=0)C(=C(C=N2)N)Cl
CCOP(=S)(OCC)OC1=NC(=C(C=C1CI)Cl)CI
CC1=C(C=C(C=C1)NC(=0)N(C)C)Cl
CNC(=N[N+](=0)[0-])NCC1=CN=C(S1)Cl
CN1CCC23C4C1CC5=C2C(=C(C=C5)0C)0OC3C(C=C4)0
CC12CCC(=0)C=C1CCC3C2C(=0)CC4(C3CCCA4(C(=0)CO)0)C
CN1C(CCC1=0)C2=CN=CC=C2
CC1=CC(=NC(=N1)NC2=CC=CC=C2)C3CC3
CCOP(=S)(0OCC)OC1=NC(=NC(=C1)C)C(C)C
CC(C(=0)0)0C1=C(C=C(C=C1)CI)Cl
C1=CC=C(C(=C1)CC(=0)0)NC2=C(C=CC=C2Cl)Cl
CC1=CSC(=C1N(C(C)COC)C(=0)CCl)C
COC1=C(C=C(C=C1)C(=CC(=0)N2CCOCC2)C3=CC=C(C=C3)C)OC
COP(=S)(0C)S

CN(C)C(=0)NC1=CC(=C(C=C1)CI)Cl
CC12CCC3C(C1CCC20)CCC4=CC(=C(C=C34)0)0
CC12CCC3C(C1CCC2=0)CCC4=C3C=CC(=C4)O
CC12CCC3C(C1CCC2=0)CCC4=CC(=C(C=C34)0)0
CCS(=0)(=0)C1=NN=C(S1)N(C)C(=O)NC
CC1(C(=0)N(C(=N1)SC)NC2=CC=CC=C2)C3=CC=CC=C3
CC(CC1=CC=C(C=C1)C(C)(C)C)CN2CCCCC2

Chemical formula
C12H11NO2
C9HIN302
C12H16N203
C12H15NO3

C18H14BrCI2N502

C10H8CIN30
C9H11CI3NO3PS
C10H13CIN20
C6H8CIN502S
C18H21NO3
C21H2805
C10H12N20
C14H15N3
C12H21N203PS
C9H8CI203
C14H11CI2NO2
C12H18CINO2S
C21H22CINO4
C2H702PS2
C9H10CI2N20
C18H2403
C18H2202
C18H2203
C7H12N403S2
C17H17N30S
C19H31N

Monoisotopic mass
201.0790
191.0695
236.1161
221.1052
480.9708
221.0356
348.9263
212.0716
249.0087
299.1521
360.1937
176.0950
225.1266
304.1011
233.9851
295.0167
275.0747
387.1237
157.9625
232.0170
288.1725
270.1620
286.1569
264.0351
311.1092
273.2456

CAS
51274-03-4
63278-70-6
16118-49-3
1563-66-2
500008-45-7
1698-60-8
39475-55-3
15545-48-9
205510-53-8
76-57-3
53-06-5
486-56-6
121552-61-2
30583-38-1
120-36-5
15307-86-5
87674-68-8
110488-70-5
756-80-9
102962-29-8
362-05-0
53-16-7
362-06-1
30043-49-3
161326-34-7
67306-00-7
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Table A3 — (continued) Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic

mass, and CAS number

Compound name SMILES Chemical formula Monoisotopic mass  CAS
Fenpropimorph CC1CN(CC(0O1)C)Cc(c)cee=Cce=Cc(c=Cc2)c(c)(c)C C20H33NO 273.2456 67564-91-4
Flonicamid C1=CN=CC(=C1C(F)(F)F)C(=O)NCC#N C9H6F3N30 229.0463 158062-67-0
Flufenacet CC(C)N(C1=CC=C(C=C1)F)C(=0)COC2=NN=C(S2)C(F)(F)F C14H13F4N302S 363.0665 142459-58-3
Fluoxetine CNCCC(C1=CC=CC=C1)0OC2=CC=C(C=C2)C(F)(F)F C17H18F3NO 309.1340 57226-07-0
Fluroxypyr C(C(=0)0O)OC1=NC(=C(C(=C1CI)N)CIHF C7H5CI2FN203 253.9661 69377-81-7
Flurtamone CNC1=C(C(=0)C(01)C2=CC=CC=C2)C3=CC(=CC=C3)C(F)(F)F C18H14F3NO2 333.0977 96525-23-4
Foramsulfuron CN(C)C(=0)C1=C(C=C(C=C1)NC=0)S(=0)(=0O)NC(=0O)NC2=NC(=CC(=N2)0C)0OC C17H20N60O7S 452.1114 173159-57-4
Fosthiazate CCOI[P](=0O)(SC(C)CC)N1CCSC1=0 C9H18NO3PS2 283.0466 98886-44-3
Hydrocortisone CC12CCC(=0)C=C1CCC3C2C(Cc4(C3Ccccr4(c(=0)co)o)Cc)o C21H3005 362.2093 50-23-7
Hydroxyindoleacetic acid C1=CC2=C(C=C10)C(=CN2)CC(=0)0O C10H9NO3 191.0582 113303-91-6
Ibuprofen CC(C)CC1=CC=C(C=C1)C(C)C(=0)O C13H1802 206.1307 58560-75-1
Imazamethabenz-methyl CC1=CC(=C(C=C1)C(=0)OC)C2=NC(C(=O)N2)(C)C(C)C C16H20N203 288.1474 81405-85-8
Imazamox CC(C)C1(C(=0O)NC(=N1)C2=C(C=C(C=N2)COC)C(=0)0O)C C15H19N304 305.1376 114311-32-9
Imazaquin CC(C)C1(C(=0O)NC(=N1)C2=NC3=CC=CC=C3C=C2C(=0)0)C C17H17N303 311.1270 81335-37-7
Imidacloprid C1CN(C(=N[N+](=0)[O-])N1)CC2=CN=C(C=C2)CI C9H10CIN502 255.0523 138261-41-3
lodosulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=O)NS(=0)(=0)C2=C(C=CC(=C2)l)C(=0)0C C14H13IN5NaO6S 528.9529 144550-36-7
Iprodione CC(C)NC(=O)N1CC(=O)N(C1=0)C2=CC(=CC(=C2)CI)CI C13H13CI2N303 329.0334 36734-19-7
Irgarol CC(C)(C)NC1=NC(=NC(=N1)NC2CC2)SC C11H19N5S 253.1361 28159-98-0
Isoproturon CC(C)C1=CC=C(C=C1)NC(=O)N(C)C C12H18N20 206.1419 34123-59-6
Isoproturon-didemethyl CC(C)C1=CC=C(C=C1)NC(=O)N C10H14N20 178.1106 56046-17-4
Isoxaben CCC(C)(CC)C1=NOC(=C1)NC(=0)C2=C(C=CC=C20C)0C C18H24N204 332.1736 82558-50-7
Isoxaflutole CS(=0)(=0)C1=C(C=CC(=C1)C(F)(F)F)C(=0)C2=C(ON=C2)C3CC3 C15H12F3N0O4S 359.0439 141112-29-0
Leukotriene B4 CCCCCC=CCC(C=CC=CC=CCc(CCcCC(=0)0)0)0 C20H3204 336.2301 71160-24-2
Leukotriene D4 CCCCCC=CCC=CC=CC=CC(C(CCCC(=0)0O)0)SCC(C(=0O)NCC(=0)O)N C25H40N206S 496.2607 73836-78-9
Linuron CN(C(=0O)NC1=CC(=C(C=C1)ChCclhoC C9H10CI2N202 248.0119 56645-87-5
Mesosulfuron-methyl COC1=CC(=NC(=N1)NC(=O)NS(=0)(=0)C2=C(C=CC(=C2)CNS(=0)(=0)C)C(=0)0OC)OC C17H21N509S2 503.0781 208465-21-8
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Table A3 — (continued) Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic
mass, and CAS number

Compound name SMILES Chemical formula Monoisotopic mass  CAS
Mesotrione CS(=0)(=0)C1=CC(=C(C=C1)C(=0)C2C(=0)CCCC2=0)[N+](=0)[O-] C14H13NO7S 339.0413 104206-82-8
Metalaxyl CC1=C(C(=CC=C1)C)N(C(C)C(=0O)OC)C(=0)CcoC C15H21NO4 279.1471 57837-19-1
Metamitron CC1=NN=C(C(=O)N1N)C2=CC=CC=C2 C10H10N40 202.0855 41394-05-2
Metazachlor CC1=C(C(=CC=C1)C)N(CN2C=CC=N2)C(=0)CClI C14H16CIN30 277.0982 67129-08-2
Methabenzthiazuron CNC(=O)N(C)C1=NC2=CC=CC=C2S1 C10H11N30S 221.0623 18691-97-9
Metobromuron CN(C(=0O)NC1=CC=C(C=C1)Br)OC C9H11BrN202 258.0004 3060-89-7
Metolachlor CCC1=CC=CC(=C1IN(C(C)COC)C(=0)CCI)C C15H22CINO2 283.1339 55762-76-0
Metosulam CC1=C(C(=C(C=C1)CI)NS(=0)(=0)C2=NN3C(=CC(=NC3=N2)OC)OC)CI C14H13CI2N504S 417.0065 139528-85-1
Metribuzine CSC1=NN=C(C(=O)N1IN)C(C)(C)C C8H14N40S 214.0888 21087-64-9
Metsulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=O)NS(=0)(=0)C2=CC=CC=C2C(=0)0C C14H15N506S 381.0743 74223-64-6
Nicosulfuron CN(C)C(=0)C1=C(N=CC=C1)S(=0)(=O)NC(=0O)NC2=NC(=CC(=N2)OC)OC C15H18N606S 410.1009 111991-09-4
Nicotine CN1CCCC1C2=CN=CC=C2 C10H14N2 162.1157 551-13-3
Oryzalin CCCN(CCC)C1=C(C=C(C=C1[N+](=0)[O-])S(=0)(=0O)N)[N+](=0)[O-] C12H18N406S 346.0947 19044-88-3
Paclobutrazol CC(C)(C)C(C(CC1=CC=C(C=C1)CI)N2C=NC=N2)O C30H40CI2N602 586.2590 76738-62-0
Paracetamol CC(=0O)NC1=CC=C(C=C1)O C8HINO2 151.0633 8055-08-1
Paroxetine C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)0C04 C19H20FNO3 329.1427 63952-24-9
Pencycuron C1CCC(C1)N(CC2=CC=C(C=C2)Cl)C(=0O)NC3=CC=CC=C3 C19H21CIN20 328.1342 66063-05-6
Piperine C1CCN(CC1)C(=0)C=CC=CC2=CC3=C(C=C2)0CO3 C17H19NO3 285.1365 147030-08-8
Pirimicarb CC1=C(N=C(N=C10C(=0O)N(C)C)N(C)C)C C11H18N402 238.1430 23103-98-2
Pravastatin CCC(C)C(=0)OC1CC(C=C2C1Cc(C(C=C2)C)CCC(CCc(CCc(=0)0)0)0)O C23H3607 424.2461 81093-37-0
Prochloraz CCCN(CCOC1=C(C=C(C=C1CI)CI)CI)C(=0O)N2C=CN=C2 C15H16CI3N302 375.0308 67747-09-5
Progesterone CC(=0)C1CCC2C1(CCcc3c2ccc4=CC(=0)Ccces4c)c C21H3002 314.2246 257630-50-5
Propachlor CC(C)N(C1=CcC=CcC=C1l)C(=0)CClI C11H14CINO 211.0764 1918-16-7
Propamocarb CCCOC(=0O)NCCCN(C)C C9H20N202 188.1525 24579-73-5
Propiconazole CCCC1COC(01)(CN2C=NC=N2)C3=C(C=C(C=C3)CICI C15H17CI2N302 341.0698 75881-82-2
Propoxycarbazone CCCOC1=NN(C(=0O)N1C)C(=O)NS(=0)(=0)C2=CC=CC=C2C(=0)0C C15H17N4NaQ7S 420.0716 181274-15-7
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Table A3 — (continued) Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic

mass, and CAS number

Compound name

SMILES

Chemical formula

Monoisotopic mass CAS

Propyzamide
Prostaglandin D2
Prostaglandin E2
Prostaglandin F2a
Prosulfuron
Pymetrozine
Pyraclostrobin
Pyrimethanil
Pyroxsulam
Quinmerac
Sertraline
Simazine
Solanidine
Spiroxamine
Sulcotrione
Tebuconazole
Tebutame
Terbuthylazine
Terbutryne
Tertbutylazine-2-hydroxy
Testosterone
Thiacloprid
Thiamethoxam
Thifensulfuron-methyl
Triadimenol
Triazoxide

CC(C)(C#C)NC(=0)C1=CC(=CC(=C1)CI\Cl
CCCCCC(C=CC1C(C(CC1=0)0)CC=CCCCC(=0)0)O
CCCCCC(C=CC1C(CC(=0)C1CC=CCCCC(=0)0)0)0
CCCCCC(C=CC1C(CC(C1CC=CCCCC(=0)0)0)0)0

CC1=NC(=NC(=N1)OC)NC(=0)NS(=0)(=0)C2=CC=CC=C2CCC(F)(F)F

CC1=NNC(=0)N(C1)N=CC2=CN=CC=C2

COC(=0)N(C1=CC=CC=C1COC2=NN(C=C2)C3=CC=C(C=C3)Cl)OC

CC1=CC(=NC(=N1)NC2=CC=CC=C2)C

COC1=CC(=NC2=NC(=NN12)NS(=0)(=0)C3=C(C=CN=C30C)C(F)(F)F)OC

CC1=CC2=C(C(=C(C=C2)CI)C(=0)0)N=C1
CNC1CCC(C2=CC=CC=C12)C3=CC(=C(C=C3)Cl)CI
CCNC1=NC(=NC(=N1)C)NCC

CC1CCC2C(C3C(N2C1)CCAC3(CCC5C4CC=C6C5(CCC(C6)0)C)C)C

CCCN(CC)CC1COC2(CCC(CC2)C(C)(C)C)01
CS(=0)(=0)C1=CC(=C(C=C1)C(=0)C2C(=0)CCCC2=0)Cl
CC(C)(C)C(CCC1=CC=C(C=C1)CI)(CN2C=NC=N2)O
CC(C)N(CC1=CC=CC=C1)C(=0)C(C)(C)C
CCNC1=NC(=NC(=N1)CI)NC(C)(C)C
CCNC1=NC(=NC(=N1)SC)NC(C)(C)C
CCNC1=NC(=0)NC(=N1)NC(C)(C)C
CC12CCC3C(C1CCC20)CCC4=CC(=0)CCC34C
C1CSC(=NC#N)N1CC2=CN=C(C=C2)Cl
CN1COCN(C1=N[N+](=0)[0-])CC2=CN=C(S2)CI
CC1=NC(=NC(=N1)OC)NC(=0)NS(=0)(=0)C2=C(SC=C2)C(=0)0C
CC(C)(C)C(C(N1C=NC=N1)0C2=CC=C(C=C2)Cl)O
C1=CC2=C(C=C1CN[N+](=NC(=N2)N3C=CN=C3)[O-]

C12H11CI2NO
C20H3205
C20H3205
C20H3405

C15H16F3N504S

C10H11N50
C19H18CIN304
C12H13N3

C14H13F3N605S

C11H8CINO2
C17H17CI2N
C7H12CIN5
C27H43NO
C18H35N02
C14H13CIO5S
C16H22CIN30O
C15H23NO
C9H16CIN5
C10H19N5S
C9H17N50
C19H2802
C10H9CIN4S
C8H10CIN503S
C12H13N506S2
C14H18CIN302
C10H6CIN50

255.0218
352.2250
352.2250
354.2406
419.0875
217.0964
387.0986
199.1109
434.0620
221.0244
305.0738
201.0781
397.3345
297.2668
328.0172
307.1451
233.1780
229.1094
241.1361
211.1433
288.2089
252.0236
291.0193
387.0307
295.1088
247.0261

11097-11-3
41598-07-6
363-24-6
13535-33-6
94125-34-5
123312-89-0
175013-18-0
53112-28-0
422556-08-9
90717-03-6
79559-97-0
119603-94-0
80-78-4
118134-30-8
99105-77-8
80443-41-0
35256-85-0
5915-41-3
886-50-0
66753-07-9
58-22-0
111988-49-9
153719-23-4
79277-27-3
55219-65-3
72459-58-6
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Table A3 — (continued) Detailed list of compound from the retention time prediction set, with SMILES identifier, chemical formula, monoisotopic
mass, and CAS number

Appendices

Compound name SMILES Chemical formula Monoisotopic mass  CAS
Triclopyr C1=C(C(=NC(=C1Cl)Cl)OCCc(=0)0O)CI C7HACI3NO3 254.9257 55335-06-3
Triflusulfuron-methyl CC1=C(C(=CC=C1)C(=0)OC)S(=0)(=O)NC(=O)NC2=NC(=NC(=N2)OCC(F)(F)F)N(C)C C17H19F3N606S 492.1039 126535-15-7
Trinexapac-ethyl CCOC(=0)C1CC(=0)C(=C(C2CcC2)0)C(=0)C1 C13H1605 252.0998 95266-40-3
Triticonazole CC1(CCC(=CC2=CC=C(C=C2)CI)C1(CN3C=NC=N3)0O)C C17H20CIN30O 317.1295 131983-72-7
Tritosulfuron COC1=NC(=NC(=N1)NC(=O)NS(=0)(=0)C2=CC=CC=C2C(F)(F)F)C(F)(F)F C13H9F6N504S 445.0279 142469-14-5
Venlafaxine CN(C)CC(C1=CC=C(C=C1)0C)Cc2(CCcccec2)o C17H27NO2 277.2042 93413-69-5
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2. Appendix 2. Supporting information — Chapter Il

2.1.

Table A1 — Standard compounds form and suppliers

Table Al — Standard compounds form and suppliers

Compound name SMILES Supplier Form
Arachidonic Acid CCCcCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(0)=0 Bertin Powder
Leukotriene B4 CCCCCC=CCcC(C=CC=CC=CCc(CCcCC(=0)0)0)O Bertin Powder
CCCCCC=CCC=CC=CC=CC(C(CCCC(=0)0)0O)SCC(C(=O)N
Leukotriene D4 CC(=O)O)N Bertin Powder
Prostaglandin D2 CCCCCC(C=CC1C(C(CC1=0)O)CC=CCCCC(=0)0)O Bertin Powder
Prostaglandin E2 CCCCCC(C=CcClc(CCc(=0)c1ice=Cccreec(=0)0)0)o Bertin Powder
Prostaglandin F2a CCCCCC(C=CcClc(Cc(c1ce=Ccrecee(=0)0)0)0)o Bertin Powder
Prostaglandin J2 CCCCCC(C=Cc1c(c=CCc1=0)Cc=Ccccc(=0)0)o Bertin Powder
Acetochlor CCC1=CC=CC(=C1N(COCC)C(=0)CcCI)C LGC Powder
Acetylsalicylic acid CC(=0)0OC1=CC=CC=C1C(=0)0O LGC Powder
Androstenedione CC12CCC(=0)C=C1CCC3C2CCrC4(C3cccr4=0)C LGC Powder
Carbendazim COC(=O)NC1=NC2=CC=CC=C2N1 LGC Powder
Clothianidin CNC(=N[N+](=O)[O-])NCC1=CN=C(S1)CI LGC Powder
CC12CCC(=0)C=C1CCC3C2C(=0)CC4(C3CCC4(C(=0)C0O)
Cortisone o)C LGC Powder
Dimethyldithiophosphate = COP(=S)(0OC)S LGC Powder
Estrone CC12CCC3C(C1CCC2=0)CCC4=C3C=CC(=C4)0O LGC Powder
1.0 mg/mL
Fluoxetine CNCCC(C1=CC=CC=C1)0C2=CC=C(C=C2)C(F)(F)F LGC in MeOH
CC12CCC(=0)C=C1CCC3C2C(CC4(C3CCC4(C(=0)C0O)0)C)
Hydrocortisone (0] LGC Powder
Ibuprofen CC(C)CC1=CC=C(C=C1)C(C)C(=0)O LGC Powder
Paracetamol CC(=0O)NC1=CC=C(C=C1)0O LGC Powder
1.0 mg/mL
Paroxetine C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)0C04 LGC in MeOH
Progesterone CC(=0)C1lCCcC2C1(Ccr3cacer4=Ccc(=0)cces4c)c LGC Powder
1.0 mg/mL
Sertraline CNC1CCC(C2=CC=CC=C12)C3=CC(=C(C=C3)CICI LGC in MeOH
Tebuconazole CC(C)(C)C(CCC1=CC=C(C=C1)CI)(CN2C=NC=N2)O LGC Powder
Testosterone CC12CCC3C(C1CCC20)CCcC4=CC(=0)CCC34C LGC Powder
Thiacloprid C1CSC(=NC#N)N1CC2=CN=C(C=C2)ClI LGC Powder
Venlafaxine CN(C)CC(C1=CC=C(C=C1)0C)C2(CCCCC2)0 LGC Powder
COC1=C2C3=C(C(=0)CC3)C(=0)0OC2=C4C5C=COC50C4=
Aflatoxin B1 C1 Sigma Aldrich ~ Powder
Codeine CN1CCC23C4C1CC5=C2C(=C(C=C5)OC)OC3C(C=C4)0 Sigma Aldrich ~ Powder
Hydroxyindoleacetic acid C1=CC2=C(C=C10)C(=CN2)CC(=0)O Sigma Aldrich ~ Powder
Ketoprofen CC(C1=CC(=CC=C1)C(=0)C2=CC=CC=C2)C(=0)0O Sigma Aldrich ~ Powder
Piperine C1CCN(CC1)C(=0)C=CC=CC2=CC3=C(C=C2)0C03 Sigma Aldrich ~ Powder
CCC(C)C(=0)OC1CC(C=C2C1C(C(C=C2)C)CCC(CC(CC(=0)
Pravastatin 0)0)0)0 Sigma Aldrich ~ Powder
CC1CCC2C(C3C(N2C1)Ccr4c3(ccehrace=CceC5(CCce(Co)
Solanidine 0)C)C)C Sigma Aldrich ~ Powder
2-Phenylphenol C1=CC=C(C=C1)C2=CC=CC=C20 VWR Powder
Aminobenzimidazole C1=CC=C2C(=C1)NC(=N2)N VWR Powder
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Table Al — (continued) Standard compounds form and suppliers

Compound name SMILES Supplier Form
COC=C(C1=CC=CC=C10C2=NC=NC(=C2)0OC3=CC=CC=C3
Azoxystrobin C#N)C(=0)0C VWR Powder
C1=CC=C(C(=C1)C2=CC=C(C=C2)CI)NC(=0)C3=C(N=CC=C
Boscalid 3)ClI VWR Powder
Carbamazepine C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N VWR Powder
Chlorpyrifos CCOP(=S)(0OCC)OC1=NC(=C(C=C1CclhChClI VWR Powder
Cotinine CN1C(CCC1=0)C2=CN=CC=C2 VWR Powder
Cyprodinil CC1=CC(=NC(=N1)NC2=CC=CC=C2)C3CC3 VWR Powder
Diazinon CCOP(=S)(0OCC)OC1=NC(=NC(=C1)C)C(C)C VWR Powder
Diclofenac C1=CC=C(C(=C1)CC(=0)O)NC2=C(C=CC=C2Cl)ClI VWR Powder
Imidacloprid C1CN(C(=N[N+](=O)[O-])N1)CC2=CN=C(C=C2)CI VWR Powder
Malathion CCOC(=0O)CC(C(=0)OCC)SP(=S)(OC)OC VWR Powder
Nicotine CN1CCCC1C2=CN=CC=C2 VWR Powder
Prochloraz CCCN(CCOC1=C(C=C(C=C1CNCI)CI)C(=O)N2C=CN=C2 VWR Powder
Propiconazole CCCC1COC(01)(CN2C=NC=N2)C3=C(C=C(C=C3)CI)CI VWR Powder
Thiamethoxam CN1COCN(C1=N[N+](=0O)[O-])CC2=CN=C(S2)CI VWR Powder
Triclosan C1=CC(=C(C=C1ChO)OC2=C(C=C(C=C2)ChCI VWR Powder
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2.2. Table A2 — Standard compounds physical-chemical characteristics
Table A2 - Standard compounds identifiers and physical-chemical characteristics
(monoisotopic mass, retention time (Rt), octanol-water partition coefficient (logP))

Compound name Chemical formula Monoisotopic pbserved Rt (min) logP CAS

mass (Da) ion
2-Phenylphenol C12H100 170.0732 [M-H]- 30.19 3.28  90-43-7
Acetochlor C14H20CINO2 269.1183 [M-H]- 40.57 414  123113-74-6
Acetylsalicylic acid C9H804 180.0423 [M-H]- 8.65 1.24  50-78-2
Aflatoxin B1 C17H1206 312.0634 [IM+H]* 17.52 1.73  27261-02-5
Aminobenzimidazole C7H7N3 133.0640 [M+H]* 4,74 0.91 934-32-7
Androstenedione C19H2602 286.1933 [M+H]* 31.50 2.75 63-05-8
Arachidonic Acid C20H3202 304.2402 [M-H]- 47.00 6.99  93444-49-6
Azoxystrobin C22H17N305 403.1168 [IM+H]* 38.03 2.64 215934-32-0
Boscalid C18H12CI2N20 342.0327 [IM+H]* 38.00 2.96 188425-85-6
Carbamazepine C15H12N20 236.0950 IM+H]* 18.01 2.45  298-46-4
Carbendazim C9HIN302 191.0695 IM+H]* 5.69 1.52  63278-70-6
Chlorpyrifos C9H11CI3NO3PS 348.9263 [M+H]* 45.53 470  39475-55-3
Clothianidin C6H8CIN502S 249.0087 [IM+H]* 7.99 0.73  205510-53-8
Codeine C18H21NO3 299.1521 IM+H]* 5.12 139  76-57-3
Cortisone C21H2805 360.1937 IM+H]* 16.12 147 53-06-5
Cotinine C10H12N20 176.0950 [IM+H]* 4.31 0.07 486-56-6
Cyprodinil C14H15N3 225.1266 [IM+H]* 33.22 4.00 121552-61-2
Diazinon C12H21N203PS 304.1011 [IM+H]* 43.38 3.81 30583-38-1
Diclofenac C14H11CI2NO2 295.0167 [M-H]- 39.59 451 15307-86-5
Dimethyldithiophosphate C2H702PS2 157.9625 [M-H]- 2.95 0.63  756-80-9
Estrone C18H2202 270.1620 [IM+H]* 31.60 3.13  53-16-7
Fluoxetine C17H18F3NO 309.1340 [M+H]* 23.71 4.05 57226-07-0
Hydrocortisone C21H3005 362.2093 IM+H]* 15.86 1.61 50-23-7
Hydroxyindoleacetic acid C10HINO3 191.0582 [M-H]- 5.71 1.41  113303-91-6
Ibuprofen C13H1802 206.1307 IM+H]* 39.94 3.97 58560-75-1
Imidacloprid C9H10CIN502 255.0523 IM+H]+ 8.57 0.57 138261-41-3
Ketoprofen C16H1403 2540943 [M+H]* 28.13 312 22071-15-4
Leukotriene B4 C20H3204 336.2301 [M-H]- 39.52 410 71160-24-2
Leukotriene D4 C25H40N206S 496.2607 [M-H]- 33.04 1.40 73836-78-9
Malathion C10H1906PS2 330.0361 [M+H]* 40.81 2.89  121-75-5
Nicotine C10H14N2 162.1157 IM+H]* 3.37 1.17  551-13-3
Paracetamol C8HINO2 151.0633 [IM+H]* 4.98 0.31 8055-08-1
Paroxetine C19H20FNO3 329.1427 [IM+H]* 18.34 1.23  63952-24-9
Piperine C17H19NO3 285.1365 IM+H]* 36.42 2.78  147030-08-8
Pravastatin C23H3607 424.2461 IM+H]* 20.50 1.65 81093-37-0
Prochloraz C15H16CI3N302 375.0308 IM+H]* 38.74 3.78  67747-09-5
Progesterone C21H3002 314.2246 [IM+H]* 42.10 3.87 257630-50-5
Propiconazole C15H17CI2N302 341.0698 [IM+H]* 41.73 3.72  75881-82-2
Prostaglandin D2 C20H3205 352.2250 [M-H]- 27.60 3.23  41598-07-6
Prostaglandin E2 C20H3205 352.2250 [M-H]- 26.50 2.82  363-24-6
Prostaglandin F2a C20H3405 354.2406 [M-H]- 25.60 2.61 13535-33-6
Prostaglandin J2 C20H3004 334.2144 [M-H]- 26.54 3.60 60203-57-8
Sertraline C17H17CI2N 305.0738 IM+H]* 24.34 5.10 79559-97-0
Solanidine C27H43NO 397.3345 IM+H]* 24.54 4.88 80-78-4
Tebuconazole C16H22CIN30 307.1451 IM+H]* 39.36 3.70  80443-41-0
Testosterone C19H2802 288.2089 IM+H]* 28.90 332 58-22-0
Thiacloprid C10HICIN4S 252.0236 IM+H]* 12.24 1.25 111988-49-9
Thiamethoxam C8H10CIN503S 291.0193 IM+H]* 6.97 1.52  153719-23-4
Triclosan C12H7CI302 287.9512 [M-H]- 43.79 476 3380-34-5
Venlafaxine C17H27NO2 277.2042 [M+H]* 9.84 0.43  93413-69-5
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2.3.

of all sample preparation methods on individual compounds

Appendices

Table A3 — Preselection: Recovery, repeatability and matrix effect

Table A3 — Preselection: Recovery, repeatability (recovery coefficient of variation CV) and

matrix effect (ME) at 20 and 150 ng/mL of all sample preparation methods on individual

compounds
PROTEIN PRECIPITATION PHOSPHOLIPID AND PROTEIN REMOVAL PLATES
PPT Phree ACN Phree MeOH
Mean Low-  High- | \\on Low-  High- | \\ fec High-
Component recov. Recovery level level recov. Recovery level level recov. Recovery level level
(%) CV (%) ME ME %) CV (%) ME ME %) CV (%) ME o %)
(%) (%) (%) (%) (%)
2-Aminobenzimidazole 103.6 13.2 73.6 77.0 113.1 6.3 3.2 -95.3 115.4 3.0 41.6 -32.0
4-Androstene-3,17-dione 107.1 6.0 60.8 58.9 123.7 2.6 31.9 26.2 106.8 3.8 29.0 41.2
Acetochlor 106.8 2.1 78.1 75.7 69.3 3.1 0.8 12.2 45.1 7.9 76.9 32.2
Aflatoxin B1 55.5 5.5 924 95.9 111.4 4.5 16.5 28.0 95.4 9.3 72.6 45.3
Azoxystrobin 108.2 2.8 75.0 72.5 106.1 3.9 -25.3 14.7 118.0 2.9 82.2 34.8
Boscalid 105.7 4.6 61.0 61.4 102.9 3.7 25.0 30.7 111.0 5.5 78.2 453
Carbamazepine 107.5 2.5 37.8 47.0 106.7 2.2 18.5 -56.6 112.2 5.1 51.0 -13.2
Carbendazim 110.4 1.8 58.9 74.1 112.4 1.3 -1.4 -48.4 111.6 5.4 313 -18.5
Chlorpyrifos 109.0 2.7 92.9 924 63.6 3.8 91.8 76.6 42.8 3.6 96.5 89.8
Clothianidin 100.8 0.6 55.8 61.6 107.0 3.0 49.3 -16.1 | 1211 6.7 67.0 18.2
Codeine 129.0 10.9 57.8 57.8 87.8 16.0 536 -13.8 112.5 18.2 70.6 4.6
Cortisone 105.1 3.6 86.5 85.0 107.6 3.0 85.1 21.6 101.4 7.0 92.1 46.3
Cotinine 110.4 9.9 45.2 423 85.0 0.9 19.4 13.0 94.1 24.5 65.4 28.0
Cyprodinil 106.0 3.2 38.7 34.2 139.7 413 75.3 2.3 56.6 7.3 63.7 -31.1
= Diazinon 106.2 11.8 87.2 80.8 49.8 10.8 38.7 44.8 51.4 3.3 92.0 74.9
o Estrone 112.5 4.9 61.8 59.6 119.5 3.7 45.8 32.6 119.2 6.5 80.4 58.6
E Fluoxetine 104.8 2.7 94.3 87.7 117.0 11.8 24.4 19.0 75.2 10.4 80.3 284
g Hydrocortisone 107.2 8.1 90.8 90.7 104.5 3.4 80.8 55.3 93.4 16.7 534 25.2
o Imidacloprid 107.8 2.2 49.1 53.0 109.5 2.2 10.8 -9.1 115.8 6.2 67.3 18.7
E Ketoprofen 107.0 2.7 94.7 95.7 118.9 3.2 22.3 -61.3 | 107.5 6.3 65.4 -14.2
8 Malathion 93.7 42.5 96.2 95.0 79.4 0.6 14.6 0.8 53.8 8.4 74.9 9.4
& Nicotine 84.7 3.0 80.5 55.9 61.6 45.9 94.9 89.4
Paracetamol 100.7 8.6 80.5 81.3 131.3 2.7 83.4 33.9 107.0 8.4 81.6 56.8
Paroxetine 132.4 221 93.6 85.8 131.8 34.8 25.5 23.9 90.6 6.7 82.0 34.8
Piperine 156.2 12.4 93.4 91.1 114.9 20.0 55.1 67.4 107.5 15.0 88.7 82.0
Pravastatin 83.9 16.1 235 29.9 110.3 18.9 76.1 41.0
Prochloraz 100.5 2.2 65.5 66.9 115.2 13.0 55.6 37.6 100.1 16.1 62.7 37.8
Progesterone 132.5 33.5 61.1 57.1 125.4 2.6 63.0 40.5 97.8 9.7 50.7 55.5
Propiconazole 107.3 5.1 62.4 60.2 113.0 4.7 7.5 42.7 108.7 5.1 80.7 50.2
Sertraline 79.5 15.8 89.5 83.4 119.9 5.9 45.7 29.4 84.7 9.8 4.4 20.5
Solanidine 195.0 30.3 86.6 80.0 112.6 7.6 45.5 42.1 104.2 10.2 15.1 39.8
Tebuconazole 108.5 1.8 60.4 59.8 103.0 1.1 16.9 21.7 110.0 5.3 42.8 46.3
Testosterone 95.4 47.7 65.1 60.3 115.3 4.7 49.1 17.1 100.7 3.0 72.4 27.2
Thiacloprid 115.6 5.0 66.0 69.4 108.6 9.2 27.8 29.4 111.5 7.7 371 40.2
Thiamethoxam 111.8 2.2 77.6 77.8 109.5 0.5 60.6 34.1 114.0 6.6 83.5 56.6
Venlafaxine 60.8 55.0 104.7 9.6 21.5 20.9 84.1 9.1 81.2 31.0
2-Phenylphenol
5-Hydroxyindole-3-acetic acid 100.0 98.9
Acetylsalicylic acid
= Arachidonic acid
g Diclofenac
b Dimethyldithiophosphate
S Ibuprofen
w Leukotriene B4
E Leukotriene D4
Q Prostaglandin D2
z Prostaglandin E2
Prostaglandin F2a
Prostaglandin J2
Triclosan
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Table A3 — (continued) Preselection: Recovery, repeatability (recovery coefficient of variation
CV) and matrix effect (ME) at 20 and 150 ng/mL of all sample preparation methods on

individual compounds

PHOSPHOLIPID AND PROTEIN REMOVAL PLATES
PLD Ostro Prime HLB
Mean Low-  High- |\ n Low-  High- | W n e High-
Component recov. Recovery level level recov. Recovery level level recov. Recovery level level
%) CV (%) ME ME (%) CV (%) ME ME %) CV (%) ME ME (%)
(%) (%) (%) (%) (%)
2-Aminobenzimidazole 104.0 4.7 35.4 -0.3 95.5 14.2 66.1 70.6 121.3 4.7 -32.9 -4.3
4-Androstene-3,17-dione 114.5 3.9 58.7 28.1 93.6 12.0 48.4 29.1 97.4 6.7 69.0 25.8
Acetochlor 104.4 3.5 72.6 39.0 100.7 8.3 78.3 58.4 70.8 7.0 46.0 31.4
Aflatoxin B1 137.4 2.8 50.8 38.8 97.0 14.6 64.9 75.6 88.8 7.4 20.9 33.0
Azoxystrobin 127.8 2.3 63.8 8.2 100.9 8.7 54.6 29.5 103.9 4.6 29.4 13.1
Boscalid 136.7 1.1 65.9 25.1 86.7 8.5 57.5 27.2 83.8 6.3 45.7 35.1
Carbamazepine 124.2 1o | 976 77 76 19 | 1062 31 -433 -46.7
Carbendazim 124.1 3.1 27.2 15.0 98.9 8.6 57.9 65.4 101.5 3.1 -21.6 17.6
Chlorpyrifos 98.8 7.4 94.7 93.0 109.3 6.5 99.2 99.1 62.4 11.7 88.0 88.5
Clothianidin 120.7 1.5 44.0 -2.8 100.1 4.1 62.6 67.6 121.9 4.7 0.8 0.6
Codeine 107.5 19.0 36.5 -34.0 102.6 14.4 80.5 79.3 49.5 4.7 7.5 -19.9
Cortisone 126.5 43 46.9 15.5 92.1 12.5 64.3 72.8 99.3 2.7 41.4 10.9
Cotinine 90.4 99 527 489 | 833 136 I 1461 85 282 4.2
Cyprodinil 126.5 7.0 52.4 -7.6 184.2 10.3 96.2 93.2 182.9 9.6 67.1 56.2
= Diazinon 90.0 1.0 95.5 88.7 104.8 8.3 93.4 87.2 46.0 4.2 51.6 53.8
8 Estrone 108.0 12.3 61.4 47.2 101.6 11.2 38.9 19.2 106.7 8.6 36.3 44.4
g Fluoxetine 123.5 0.6 59.8 15.3 100.4 10.1 95.9 94.9 8.8 12.6 48.7 33.7
g Hydrocortisone 115.9 10.4 44.1 14.7 81.1 10.0 71.5 74.3 71.0 30.4 24.9 -13.2
w Imidacloprid 122.1 2.5 44.6 -2.3 99.6 4.7 64.1 66.6 115.2 2.7 8.1 9.1
E Ketoprofen 131.5 5.0 33.2 -17.3 96.6 10.5 13.1 5.4 73.8 139 -131 -21.2
8 Malathion 120.9 0.4 76.1 37.7 120.1 4.9 78.5 52.1 67.9 4.4 50.9 32.7
& Nicotine 60.7 11.8 838 663 [ 263 15.6
Paracetamol 130.3 7.7 79.5 56.9 96.8 9.7 82.0 85.4 74.1 5.1 47.4 64.6
Paroxetine 118.8 3.7 55.6 9.2 99.9 9.0 97.3 95.7 1.5 35.7 37.6 283
Piperine 102.5 133 56.7 14.9 124.7 17.7 79.3 78.1 153.1 13.7 66.7 73.4
Pravastatin 98.2 2.5 -24.2 -84.1 87.2 9.1 88.1 91.5 84.4 7.5 -20.8 -33.1
Prochloraz 120.7 2.1 66.3 25.3 93.7 22.7 93.8 93.6 1241 3.6 64.2 60.7
Progesterone 117.7 23 72.4 48.8 165.6 26.2 78.2 68.2 113.0 9.0 61.6 55.9
Propiconazole 121.2 0.8 65.8 21.8 107.9 7.9 85.1 72.3 113.3 4.2 59.0 48.8
Sertraline 100.6 5.6 70.3 61.5 90.7 12.0 97.8 96.9 82.1 11.2 61.7 51.9
Solanidine 104.9 4.4 50.9 8.0 106.3 14.2 93.6 85.2 99.3 23.0 44.3 33.6
Tebuconazole 122.3 2.2 59.4 11.0 101.2 8.5 73.8 64.5 105.3 4.4 45.8 37.7
Testosterone 124.2 6.1 58.3 214 100.5 9.7 42.7 24.5 114.5 8.1 27.3 19.4
Thiacloprid 136.7 3.1 49.7 27.4 94.0 7.0 60.0 66.3 121.1 4.8 15.9 24.8
Thiamethoxam 121.3 1.8 72.5 46.3 99.7 7.3 87.3 85.1 101.1 6.3 53.6 39.0
Venlafaxine 3.4 42.2 3.4 b 58.0 54.8
2-Phenylphenol
5-Hydroxyindole-3-acetic acid
Acetylsalicylic acid
= Arachidonic acid
2 Diclofenac 32 336 318
b Dimethyldithiophosphate 16.4 343 -37.9
S Ibuprofen
w Leukotriene B4
E Leukotriene D4
Q Prostaglandin D2
z Prostaglandin E2
Prostaglandin F2a
Prostaglandin J2
Triclosan
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Table A3 — (continued) Preselection: Recovery, repeatability (recovery coefficient of variation
CV) and matrix effect (ME) at 20 and 150 ng/mL of all sample preparation methods on

individual compounds

SUPPORTED LIQUID EXTRACTION
PHOSPHOLIPID AND PROTEIN REMOVAL PLATES CARTRIDGE
PL PLUltra Isolute
Mean Low-  High- | \\ Low-  High- |\, 0o fer High-
Component recov. Recovery level level recov. Recovery level level recov. Recovery level level ME
P V(%) ME  ME ) oV (%) ME  ME ) v (%) ME )
(%) (%) (%) (%) (%)
2-Aminobenzimidazole 57.6 109 -39.2 -33.1 453 10.7 -46.8 -27.0 69.2 2.6 47.9 26.1
4-Androstene-3,17-dione 87.2 4.1 19.1 4.7 87.4 7.9 17.8 9.8 100.5 4.6 59.1 36.2
Acetochlor 80.7 6.3 37.8 11.9 81.7 8.9 323 19.4 103.8 2.4 63.2 39.9
Aflatoxin B1 60.5 8.9 4.5 5.1 46.4 3.3 -14.0 2.7 90.8 4.1 36.3 35.9
Azoxystrobin 92.2 6.4 16.9 -16.0 88.5 7.4 7.1 -16.3 102.2 1.7 48.9 23.5
Boscalid 106.5 5.5 35.6 16.6 82.9 8.9 37.9 27.5 93.2 3.6 55.9 29.8
Carbamazepine 79.5 36 -728 -98.1 77.6 7.3 -86.4 -96.3 106.4 2.9 -4.4 -23.4
Carbendazim 67.7 54 -45.1 -8.1 56.3 9.9 -54.1 -2.8 106.9 3.5 39.4 34.4
Chlorpyrifos 82.7 9.1 88.8 91.2 79.7 7.7 90.5 91.7 79.9 2.4 91.8 90.7
Clothianidin 51.2 82 -274 -33.7 43.7 9.7 -29.6 -19.7 101.4 4.1 34.0 2.2
Codeine 35.9 3.2 -140 -57.6 29.6 4.3 -22.3 -47.9 91.4 4.9 47.7 3.6
Cortisone 48.4 6.5 12.8 -18.7 41.0 6.9 12.7 -15.0 99.3 5.2 -67.1 2.2
Cotinine 36.8 12.7 62.9 -25.2 26.7 25.0 37.9 -34.5 16.1 29.5 81.6 60.0
Cyprodinil 137.3 8.5 66.0 62.6 96.8 10.9 65.5 62.3 105.7 11.9 87.1 81.4
> Diazinon 64.2 9.1 42.8 39.0 52.9 28.8 40.6 46.6 97.2 12.9 74.2 61.4
g Estrone 85.7 6.0 18.6 32.8 94.7 7.9 26.8 43.0 98.1 6.8 29.8 5.9
g Fluoxetine 86.3 2.9 43.7 22.2 78.8 7.8 45.2 43.0 98.3 2.7 86.4 78.3
g Hydrocortisone 48.7 10.9 46.6 -33.1 37.7 13.4 27.1 -26.5 106.3 18.9 85.8 88.9
w Imidacloprid 53.4 7.5 -309 -41.8 44.5 9.4 -29.2 -40.4 96.5 2.4 36.0 5.9
E Ketoprofen 83.8 23 -332 -55.2 84.4 6.8 -34.6 -50.3 1.5 5.5 45.2 -18.7
8 Malathion 94.0 5.7 18.8 86.9 8.5 43.0 17.7 34.8 4.3 61.0 323
& Nicotine 26.9 98 446 659 | 212 o1 | 963 25 481 30.0
Paracetamol 35.2 10.4 29.7 47.2 28.6 10.2 33.1 52.3 84.1 3.8 39.7 18.2
Paroxetine 74.1 74 293 173 | 649 136 313 114 | 1068 20 N 795
Piperine P 697 ess [ 646 744 87.7 111 473 235
Pravastatin 8.6 66 -769 -913 | 466 65 -827 -ss7 [N 61a 56.1
Prochloraz 90.2 8.4 60.9 63.1 98.0 9.5 65.3 76.9 110.6 6.0 73.8 69.8
Progesterone 109.0 1.5 56.4 48.7 113.9 4.2 55.3 57.9 95.7 2.5 61.3 48.3
Propiconazole 118.9 3.4 53.3 44.4 118.1 6.5 55.6 56.2 104.4 1.5 66.8 54.4
Sertraline 84.3 15.6 61.3 55.3 104.3 2.4 65.2 713 83.1 9.1 92.6 89.3
Solanidine 125.9 5.7 38.5 28.6 140.1 8.2 39.4 41.4 88.9 5.0 78.4 70.5
Tebuconazole 107.5 2.9 37.9 23.0 99.3 5.9 40.7 38.6 102.9 1.1 65.1 433
Testosterone 91.7 1.9 22.5 -1.5 93.8 7.0 16.1 1.6 102.3 2.0 30.3 219
Thiacloprid 63.3 4.6 -5.7 -3.6 55.2 10.1 -13.4 0.6 98.3 5.5 60.0 314
Thiamethoxam 48.8 9.9 37.8 16.1 39.1 8.8 34.5 23.0 30.7 8.1 51.0 28.2
Venlafaxine 5.2 48.0 -18.6 9.9 108.5 1.4 49.8 26.7
2-Phenylphenol 31.7 88.0 54.3
5-Hydroxyindole-3-acetic acid 25.0 -0.4 49.4
Acetylsalicylic acid
= Arachidonic acid
g Diclofenac
; Dimethyldithiophosphate
3 Ibuprofen
E Leukotriene B4
E Leukotriene D4
Q Prostaglandin D2
z Prostaglandin E2
Prostaglandin F2a
Prostaglandin J2
Triclosan
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Table A3 — (continued) Preselection: Recovery, repeatability (recovery coefficient of variation

CV) and matrix effect (ME) at 20 and 150 ng/mL of all sample preparation methods on

individual compounds

SOLID PHASE EXTRACTION CARTRIDGES

HLB Strata X Strata XC
Mean b IR Mean e (Rl Mean e High-
Component recov. Recovery level level recov. Recovery level level recov. Recovery level level
%) CV (%) ME ME %) CV (%) ME ME %) CV (%) ME o %)
(%) (%) (%) (%) (%)
2-Aminobenzimidazole 78.4 109 779 755 | 661 129 48 229 [ 114 160 |
4-Androstene-3,17-dione 111.6 29 -68.38 -86.4 85.1 9.5 49.1 42.0 97.2 3.4 25.0 21.5
Acetochlor 26.0 86.0 -11.8 -16.5 109.4 5.6 86.8 79.9 126.0 3.4 89.3 87.1
Aflatoxin B1 112.8 3.9 27.3 35.7 73.4 19.3 49.7 443 134.5 20.0 55.0 60.9
Azoxystrobin 119.8 2.1 64.3 49.0 87.7 13.1 57.7 41.2 97.6 2.6 45.6 25.9
Boscalid 108.6 7.7 61.6 55.4 81.8 9.7 73.8 71.8 107.1 1.8 26.5 19.8
Carbamazepine -32.5 -36.0 97.9 5.6 90.1 5.8 -38.8 -37.8
Carbendazim 110.6 31 111 32.0 114.5 2.2 2.8 23.2 105.2 6.1 -6.8 27.3
Chlorpyrifos 94.3 6.4 99.6 99.3 71.7 133 109.4 223 99.4 98.5
Clothianidin 110.2 4.2 46.5 36.8 107.9 4.5 28.8 8.8 102.0 1.9 41.7 38.5
Codeine 98.9 223 29.4 11.7 110.5 3.2 215 -5.7 114.8 15.2 11.9 2.6
Cortisone 124.9 2.6 25.2 17.9 107.8 4.3 315 7.4 86.9 17.0 335 23.7
Cotinine 47.2 26.1 66.8 78 -25.6 16.6 65.7 47.1
Cyprodinil 128.9 21.0 94.4 91.6 62.9 6.9 88.8 4.2 67.2 60.1
= Diazinon 90.7 7.8 87.8 84.8 86.8 18.5 98.9 97.2 110.1 6.6 96.3 90.5
[=] Estrone 130.2 1.5 67.5 67.0 70.2 14.4 57.4 58.6 89.4 4.1 -74.3 -49.6
E Fluoxetine 116.9 8.5 93.7 89.2 110.0 8.7 76.9 78.7 103.1 1.6 80.8 76.0
g Hydrocortisone 126.4 7.8 22.7 245 109.1 11.2 53.8 19.5 103.9 8.8 44.5 25.9
w Imidacloprid 113.6 1.6 52.6 40.8 111.0 2.0 34.1 6.6 98.4 2.7 46.4 35.0
E Ketoprofen 117.8 0.9 59.1 49.5 106.2 6.8 26.8 2.2 109.1 2.9 44.5 37.5
8 Malathion 113.7 3.9 82.1 73.9 69.2 14.3 82.5 69.7 2.8 63.7 94.5 91.3
& Nicotine 05 200 281 55 [ 329 1238 5.7 20 N
Paracetamol 104.2 7.5 58.2 50.3 97.5 3.1 95.2 79.6 75.5 14.7 50.6 49.9
Paroxetine 128.8 4.3 92.4 86.6 102.6 9.3 68.3 73.2 96.7 5.0 76.8 67.6
Piperine 156.9 16.6 75.5 65.0 82.1 59.9 79.4 81.1 76.8 133 59.6 33.1
Pravastatin 108.3 4.3 40.2 41.6 88.6 6.3 13.6 12.2 65.1 18.3 13.7 29.0
Prochloraz 132.8 113 90.2 86.4 149.8 22,5 91.1 93.6 71.1 3.5 49.7 46.5
Progesterone 99.9 9.8 75.8 70.2 101.1 7.2 83.2 88.4 170.1 95 -62.1 -94.8
Propiconazole 119.2 33 78.0 71.7 110.9 2.3 89.2 91.5 100.0 1.7 34.1 324
Sertraline 121.6 33.2 95.2 94.9 123.0 13.7 87.9 91.1 99.5 5.0 80.1 75.4
Solanidine 132.0 8.6 86.1 84.2 121.5 5.3 89.1 78.3 101.9 2.7 69.3 63.9
Tebuconazole 115.1 2.7 71.6 64.3 104.9 6.3 76.5 84.4 106.5 2.2 29.2 23.7
Testosterone 132.1 5.2 56.2 46.0 153.9 6.3 58.1 51.6 110.0 6.5 373 25.5
Thiacloprid 106.3 3.2 63.0 63.9 105.4 5.2 30.6 20.2 99.5 2.2 58.2 62.0
Thiamethoxam 111.2 2.6 74.8 61.1 112.1 1.2 73.9 53.7 88.3 4.8 71.1 59.9
Venlafaxine 112.9 4.9 33.0 12.9 3.0 74.5 70.7
2-Phenylphenol
5-Hydroxyindole-3-acetic acid
Acetylsalicylic acid
= Arachidonic acid
g Diclofenac 108.8 2.0 51.8 62.9 99.7 14.4 89.5 93.0 107.9 3.7 21.4 41.7
; Dimethyldithiophosphate 11.1 9.6 12.7 -18.4 26.9 6.0 46.5 16.2 44.6 6.6 323 -0.8
g Ibuprofen 115.7 49.1 93.2 93.8 104.2 103.8 156.8 17.3 90.3 88.1
E Leukotriene B4 114.0 5.7 75.2 80.6 105.9 10.7 66.3 69.1 53.9 48.0 83.2 74.3
E Leukotriene D4 122.1 35.8 85.9 93.0 163.4 30.2 39.6 15.9 107.5 5.7 51.2 76.1
Q Prostaglandin D2 112.5 28 -374 19.0 65.9 68.6 -0.6 2l 101.2 6.9 -0.9 29.6
z Prostaglandin E2 120.9 9.9 57.3 73.2 74.3 18.2 -8.5 67.7 105.3 3.0 68.2 76.5
Prostaglandin F2a 116.0 6.4 57.5 70.6 94.8 12.0 50.3 73.6 112.3 23 60.9 72.1
Prostaglandin J2 40.8 134.1 88.8 95.0 135.2 243 -77.0 17.6 151.5 793 -61.2 -42.8
Triclosan 160.8 22.8 81.9 95.6 172.8 15.2 94.1 96.2 108.8 3.6 -20.8 62.7
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Appendices

Table Ada — Comparison to PPT (Serum): Detection, repeatability, S/IN and spiking significance of

preselected preparation methods on individual compounds

Table Ad4a — Comparison of sample preparation methods to PPT in serum: median area, repeatability (area coefficient of variation CV),

signal/noise ratio (S/N), and p-value of areas in four spiked vs. four non-spiked samples

PPT Phree StrataX Phree+StrataX
Mean Area CV Mean Area CV Mean Area CV Mean Area CV p-value
Component area (%) S/N p-value area (%) S/N p-value area (%) S/N p-value area (%) S/N 3
2-Aminobenzimidazole 168885 7 789  1.7E-07 | 152233 7 695  15E07 | 171971 18 1116  3.1E-05 | 112054 23 707  1.3E-04
4-Androstene-3,17-dione | 191923 9 2868  5.9E-07 | 47650 6 1151  3.1E-07 | 150553 13 2832 5.1E-06 | 94218 11 1935  2.6E-06
Acetochlor 10563 3 179 77610 | 3509 16 73 1.4€:05 | 8315 17 166 2.6E-05
Aflatoxin B1 7514 18 519  2.8E05 | 41863 4 2315 58609 | 52222 15 3151 9.7E:06 | 32722 16 1635  1.4E-05
Azoxystrobin 248938 8 10312  3.1E-07 | 54313 5 2699 22608 | 178762 14 8872  8.0E-06 | 121984 9 6779  5.7E-07
Boscalid 107469 11 3234  16E06 | 13141 7 884  1.1E07 | 66410 18 7401  3.0E05 | 39119 17 3339 2.1E05
Carbamazepine 157472 9 4397  49E07 | 78172 1 2118 7.0E-13 | 136496 13 2820  5.96-06 | 90113 15 1774  9.2E-06
Carbendazim 130835 8 1717  2.0E07 | 88661 8 1277  2.56-07 | 111303 18 1739 2.9E-05 | 74097 13 1124  3.8E-06
Chlorpyrifos 16680 12 3407  3.2E06 7120 27 3323 28t04 | 771 32 24756  1.2E-03
Clothianidin 8563 7 532 12607 | 6952 14 382 6.9E06 | 9478 14 557  7.4E-06 | 5934 21 320 7.7E05
Codeine 191972 6 3274  10E-07 | 163579 9 2849  6.96-07 | 193676 17 3795  3.0E05 | 118877 14 2450  8.8E-06
Z Cortisone 151845 23 6019  1.1E-02 | 170331 7 6167  1.8E-05 | 227886 3 6822  3.6E-08 | 136684 12 3879  1.2E-03
= Cotinine 983674 4 18717  1.8E-05 | 843132 14 11176  2.56:02 | 4079 4 28824  2.1E-07 | 283673 38 5803  5.4E-04
| Cyprodinil 509013 8 7287  3.1E07 | 8515 14 155  7.0E06 | 195296 33 2879  9.3E-04 | 57770 22 910  9.4E-05
Z Diazinon 455855 3 13720 1.1E-06 | 949 20 371 4.1E-03 | 169970 29 5261  1.0E02 | 42403 78 1492  1.7E-01
" Estrone 38956 15 648  1.0E-05 | 6198 8 144 23607 | 22432 12 394  3.6E-06 | 14510 16 272 1.7E05
2 Fluoxetine 129336 5 2086  1.8E08 | 4379 8 88 3.86-07 | 71209 25 891  2.0E-04 | 27871 28 380  3.6E-04
7 Hydrocortisone 840557 12 29101  8.6E-04 | 669610 8 22996  3.2E:03 | 913228 8 24658  5.3E-05 | 515564 10 14568  6.9€-01
gl Imidacloprid 23078 8 2083  3.6E-07 | 20014 7 1464  8.5E-08 | 24441 15 2167  1.3E-05 | 16801 13 1192  4.5E-06
Ketoprofen 52925 7 240  1.8607 | 26807 3 105  1.4E-09 | 57919 13 216  5.3E-06 | 38584 8 147 2.2E-07
Malathion [ 1560 6 89 6.2E08 | 8526 12 777 27606 | 4522 31 250  6.56-04
Nicotine 20945 11 176  4.7E-05 | 22208 10 170  2.1E-05 5178 25 48 4.9E-01
Paracetamol 15072 1 190  7.5E-13 | 12304 2 152 9.0E-11
Paroxetine 317360 9 7914  13E-04 | 10556 8 260 1704 | 173573 28 3109  9.2£-03 | 60558 34 1202 1.8E-02
o 343721
Piperine 4 10 22785 LOE06 | 173761 8 1459 SOE0L | 877977 23 5335  4.6E-04 | 476506 21 2943 8.2E-04
Pravastatin 6312 14 44 8.7E-06 | 2302 13 29 5.0E-06 | 3409 31 24 6.56:04 | 2179 5 24 1.6E-08
Prochloraz 62878 8 11665  3.4E-07 | 1529 15 151  9.5E-06 | 30254 31 12263 6.26-04 | 12973 31 2449  6.7E-04
Progesterone 261837 10 4083 22604 | 7670 11 299 47e04 | 1141 18 2637 19603 | 49446 24 1429  5.7E-03
Propiconazole 269169 9 9695  6.8E-07 | 5766 6 235  6.6E-08 | 136439 27 6427  3.4E-04 | 56249 2 2284  1.0E-04

206



Appendices

Table Ada — (continued) Comparison of sample preparation methods to PPT in serum: median area, repeatability (area coefficient of variation

CV), signal/noise ratio (S/N), and p-value of areas in four spiked vs. four non-spiked samples

PPT Phree Strata X Phree + Strata X
Mean Area CV Mean Area CV Mean Area CV Mean Area CV
Component area (%) S/N p-value area (%) S/N p-value area (%) S/N p-value area (%) S/N p-value
Sertraline 39354 7 1215 1.1E-07 21629 24 570 1.7E-04 7395 31 203 7.0E-04
Solanidine 286540 9 17609 5.3E-07 10756 34 1024 1.0E-03 178210 33 45111 9.4E-04 67834 31 38493 6.9E-04
g Tebuconazole 340486 11 6042 1.5E-06 10130 7 225 1.4E-07 180920 21 3197 8.5E-05 82258 20 1526 5.2E-05
E Testosterone 244917 10 5802 1.7E-06 47622 4 1718 6.6E-07 179614 11 4597 3.0E-06 111394 12 3170 4.6E-06
E Thiacloprid 59923 8 5852 1.9E-07 44756 6 3203 4.1E-08 60133 15 6213 9.4E-06 40721 15 3374 9.3E-06
Thiamethoxam 13063 7 876 1.8E-07 14312 9 757 7.0E-07 16908 15 1422 1.2E-05 12060 15 798 9.2E-06
Venlafaxine 178703 5 14722 1.3E-08 125662 7 5814 1.3E-07 167243 15 16474 1.3E-05 96171 22 4650 9.6E-05
291885 1.3E-04 132120 5 0E-01 293827 201447
2-Phenylphenol 6 3 56373 4 7 29157 7 8 57962 2.4E-04 1 4 44556 5.7E-03
acid 14004 13 344 24015 8 309 2.2E-07 31460 13 588 4.0E-06
- o . 550637 6.2E-06 376728 2.9E-01 602775 374647
8 Acetylsalicylic acid 5 2 54917 7 7 33621 1 6 47136 3.5E-05 4 7 38863 3.2E-01
= 890980 229988 505016 367146
E Arachidonic acid €l 14 41 9.4E-06 236642 143 721170 97801 1 29 8 7.4E-04 793832 54 218759 9.6E-02
% Diclofenac 16400 8 1071 2.5E-07 1783 6 115 5.6E-08 13792 19 966 3.8E-05 9428 11 600 1.7E-06
" Dimethyldithiophosphate 16609 32 2783 7.7E-04 458 80 70 4.7E-02
E Ibuprofen 1402 13 78 2.1E-05
é Leukotriene B4 165375 9 5830 2.7E-06 30321 20 4797 7.7E-01 181828 11 5112 6.6E-06 94865 42 4208 1.6E-02
E Leukotriene D4 17303 10 1150 9.4E-07 6511 11 411 1.5E-06
Prostaglandin D2 135409 6 3467 3.3E-04 90582 18 4818 8.3E-01 205159 6 6306 6.6E-06 118770 8 5289 3.8E-03
Prostaglandin E2 187066 4 4590 2.3E-05 118566 10 5057 1.9E-03 243065 4 6027 3.3E-06 151570 7 5217 2.0E-04
Prostaglandin F2a 242325 5 19900 4.6E-08 180703 9 137090 1.3E-06 263279 11 30284 2.9E-06 128622 67 26327 3.6E-02
Prostaglandin J2 31280 7 2955 4.0E-06 27588 11 3450 2.7E-05 47768 10 4957 5.3E-06 31572 8 3622 5.5E-06
Triclosan 1308 23 373 3.1E-04 388 12 208 1.2E-05
Detection frequency 96 90 92 88
Median S/N 3437 1024 3260 2109
Semi-quantification
performance (% detected 94 93 72 55
compounds with CV < 20%)
Median p-value 1.1E-06 | 5.0E-06 | 1.9E-05 | 1.2E-04
Speed of implementation 4 3 2 1

207



2.5.

Appendices

Table A4b — Comparison to PPT (Plasma): Detection, repeatability, S/IN and spiking significance of

preselected preparation methods on individual compounds

Table Ad4b — Comparison of sample preparation methods to PPT in plasma: median area, repeatability (area coefficient of variation CV),

signal/noise ratio (S/N), and p-value of areas in four spiked vs. four non-spiked samples

PPT Phree Strata X Phree + Strata X
Mean Area Mean Area Mean Area Mean Area
Component area CV (%) S/N p-value area CV (%) S/N p-value area CV (%) S/N p-value area CV (%) S/N p-value
2-Aminobenzimidazole 119925 9 850  7.5E-07 | 110613 15 693  1.2E-05 | 198425 6 1302  4.8E-08 | 98928 18 751  3.1E-05
4-Androstene-3,17-dione 107968 14 3136 8.0E-06 | 74565 8 1954  5.0E-07 | 146575 10 3123 1.26-06 | 78070 14 1930  9.6E-06
Acetochlor 8089 7 148 3.6E-04 | 6052 15 137 2.86-03 | 10158 29 168  2.0E-03 | 4384 33 44 2.8E-02
Aflatoxin B1 1794 13 120  3.86-06 | 24293 12 1204 2.6E-06 | 39285 13 2184  53E-06 | 16947 39 809  2.0E-03
Azoxystrobin 143400 18 12421  3.1E-05 | 94640 8 5809  2.1E-07 | 184050 12 16547  2.8E-06 | 94188 20 6337  5.7E-05
Boscalid 66505 20 4268  6.0E-05 | 29388 4 1611  5.86-09 | 77270 18 8719  3.26-05 | 42040 15 3944 1.2E-05
Carbamazepine 89048 11 2819  1.6E-06 | 75585 12 2200  3.36-06 | 130975 3116  5.4E-08 | 79290 9 1722 4.2E-07
Carbendazim 85070 10 1471 1.4E-06 | 77730 13 1279  5.1E-06 | 127850 1959  2.1E-12 | 76923 7 1400  1.8E-07
Chlorpyrifos 7386 36 1569  1.4E-03 | 909 45 1154  4.56-03 | 4077 25 466712 19604 [
Clothianidin 4952 13 313 49606 | 4735 12 291  3.6E-06 | 8127 6 574 37608 | 5093 7 309 1.26-07
Codeine 125800 10 4097  1.1E-06 | 105925 13 3143 4.2E-06 | 159475 23 4504  1.4€-04 | 76145 18 2155  3.3E-05
> Cortisone 69430 12 4563 6.4E-02 | 102163 14 5165  1.26-03 | 198250 23 7673  8.5E-04 | 97038 13 2525  1.2E-03
o Cotinine 68790 8 1959  1.1E-06 | 62820 11 1579 9.96-06 | 142175 12 2803  4.7E-06 | 98930 26 1526  4.9E-04
< Cyprodinil 330550 19 5794  3.8E-05 | 36065 16 616  1.6E-05 | 242600 38 3570  2.0E-03 | 70283 37 1057  1.6E-03
z Diazinon 269900 8 8686  3.96-07 | 81685 19 3302 8.7E-05 | 101185 20 3722 1.06-04 | 2550 146 90  2.6E-02
oy Estrone 23205 19 739 4.4E-05 | 10574 7 249 2.86-07 | 24033 19 493 46E-05 | 15145 15 213 1.4E-05
2 Fluoxetine 58570 22 1189  9.3E-05 | 21205 10 372 1.0E-06 | 75745 26 957 25604 | 28685 50 322 7.26-03
] Hydrocortisone 380800 12 24229  7.9€-01 | 394750 15 20203  5.5E-01 | 833225 32 25554 1.4E-02 | 380450 12 8139  8.0E-01
& Imidacloprid 13615 10 1150  1.2E-06 | 14173 15 1039 1.26-05 | 21910 3 1865  1.1E-09 | 14698 10 1060  1.1E-06
Ketoprofen 29941 13 177  5.4E-04 | 28607 8 124 7.76-05 | 46685 10 248 2.0£-04 | 30280 6 145 2.0E-05
Malathion (e 4420 3 189 19E-09 | 8483 6 604  6.9E-08 | 1598 37 120 1.6E-03
Nicotine 1070 46 69  7.6E-02 | 10020 17 419 3.6E03 | 2160 120 243 45601 | 338 200 99  3.5E-02
Paracetamol 10091 14 240 92606 | 11177 20 249 6.7E-05 | 63458 22 1065  9.56-05 | 63138 14 1272 6.4E-06
Paroxetine 139875 23 4656 1.3E-04 | 44115 12 1125  3.3E-06 | 176000 26 3735  2.4E-04 | 55408 55 1109  1.1E-02
Piperine 359650 17 6420  5.1E-04 | 134550 4 2489  13E-01 | 341500 51 4991  7.0E-02 | 149503 34 2586 9.4E-01
Pravastatin 7605 10 787  13E-06 | 5805 14 426 B8.0E-06 | 5859 14 214 6.86-06 | 3423 23 83 1.1E-04
Prochloraz 36083 22 2944  10E-04 | 5510 9 445 74607 | 40598 23 17210  1.36-04 | 16627 37 5059  1.8E-03
Progesterone 158625 17 4786 2.28-05 | 35210 9 1760  5.8E-07 | 140875 17 4001  2.6E-05 | 44060 32 1859  8.0E-04
Propiconazole 172000 19 7222 45605 | 39855 5 1561  3.26-08 | 190800 20 8702  6.1E-05 | 88903 2 3515  1.0E-04
Sertraline 22738 21 625  8.1E-05 | 3498 7 81 1.36-07 | 24053 22 615  8.8E-05 | 8318 2 194 2.9E-03
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Table A4b — (continued) Comparison of sample preparation methods to PPT: median area, repeatability (area coefficient of variation CV),

signal/noise ratio (S/N), and p-value of areas in four spiked vs. four non-spiked samples

PPT Phree Strata X Phree + Strata X
Component l\:::an C?Ir:;) S/N p-value I\:::an cl;\,r;e;) S/N p-value I\:::an cl;\,r(e;) S/N p-value l\:reeaan Cl;\lrr‘;; ) S/N p-value
Solanidine 250825 20 11228 6.2E-05 52193 10 3289 1.8E-06 | 191195 43 43909 3.4E-03 58968 39 3035 2.3E-03
w Tebuconazole 215950 18 5617 3.7E-05 57930 5 1379 1.5E-08 | 245375 22 4146 1.0E-04 | 119800 24 2434 1.7E-04
E Testosterone 122550 16 4621 1.6E-05 76673 8 2827 2.3E-07 | 156500 11 4553 2.3E-06 88753 8 2856 3.9E-07
g Thiacloprid 35550 12 2586 3.1E-06 33135 13 2243 4.6E-06 55410 5 5378 9.6E-09 34043 9 2766 4.7E-07
& Thiamethoxam 7122 12 545 3.3E-06 8693 18 616 3.0E-05 13413 8 1153 1.9€-07 9197 11 783 1.9E-06
Venlafaxine 105735 10 13456 1.3E-06 95028 13 4150 5.5E-06 | 160775 11 23569 1.4E-06 81265 15 3462 1.1E-05
2-Phenylphenol 3867 20 101 7.1E-01 3626 8 97 6.5E-01 5014 24 127 7.7E-02 4914 7 135 6.5E-04
5-Hydroxyindole-3-acetic acid 8032 12 183 1.2E-01 9522 18 195 8.7E-01 16040 29 298 3.1E-02 10653 7 211 9.4E-02
Acetylsalicylic acid 4580 8 96 1.1E-06 13828 11 135 2.6E-06 5287 39 98 3.9E-03
158775 282107 188839
g Arachidonic acid 0 5 5 A0 61620 12 1 4.6E-05 492975 63 365127  5.1E-02 58495 57 19408 1.3E-02
E Diclofenac 18945 10 1129 1.3E-06 4799 10 282 7.7E-07 15553 21 1210 7.1E-05 9951 11 669 1.4E-06
g Dimethyldithiophosphate 28970 4 1381 4.0E-06 10171 22 477 5.1E-03
] Ibuprofen 8432 6 761 1.5E-05 4377 15 318 2.1E-02 13618 46 918 1.4E-02 1968 25 105 1.8E-01
E Leukotriene B4 88910 8 45976 2.4E-07 23270 8 14083 2.3E-07 49465 42 9744 3.0E-03 6752 83 1463 5.3E-02
5 Leukotriene D4 29878 11 3633 1.4E-06 871 53 225 9.1E-03 4598 84 360 5.8E-02
5 Prostaglandin D2 8626 17 632 2.1E-05 16003 15 906 1.2E-05 7597 46 448 4.7E-03
Prostaglandin E2 28600 16 2535 1.7E-05 38355 13 3087 4.8E-06 61820 14 4114 6.2E-06 29988 41 1956 2.8E-03
Prostaglandin F2a 105975 7 181698  1.3E-07 97193 14 90725 7.9E-06 | 144150 19 57909 4.7E-05 54948 59 15756 1.5E-02
Prostaglandin J2 11630 € 2290 1.0E-06 9721 9 842 1.6E-06 17138 27 914 4.4E-04 8656 30 416 9.5E-04
Triclosan 3583 4 485 7.98-09 | 571 6 63 3.1E07 | 1727 20 300  soe0s [
Detection frequency 94 100 98 92
Median S/N 2535 1082 2803 1190
Semi-quantification performance
(% detected compounds with CV 81 94 47 46
< 20%)
Median p-value 1.5E-05 | 5.0E-06 | 7.1E-05 | 8.8E-04
Speed of implementation 4 3 2 1
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Table A5a — Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification

Table A5a — Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated

through manual annotation (i.e. without confidence indices-ClI values)

Diethylphthalate
Diphenylsulfone

Indole-3-carbinol
Indole-3-carboxaldehyde

Indolelactic acid

CCOC(=0)C1=CC=CC=C1C(=0)0CC
€1=CC=C(C=C1)$(=0)(=0)C2=CC=CC
=C2

C1=CC=C2C(=C1)C(=CN2)CO
€1=CC=C2C(=C1)C(=CN2)C=0
C1=CC=C2C(=C1)C(=CN2)CC(C(=0)0
)O

li i
CIRt C s?i:op c
. z |
Annotation SMILES iy . Ty o Retip- logP- @ I Slebae
xperimenta -predicte P i overa
(+) () (+) () (+) () (+) () (+) () (+) () (+) ()
. CC1(C2CccCc(01)(cc2oc3c(c(c(c(o3
1,8-Epoxy-p-menthan-3-ol glucoside 1C0)0)0)0)C)C
. . CC(cc1cc(c(o1)o)(c)o)cacec3c(
25-Hydroxyvitamin D3 26,23-lactol CCCC3=CC=CACC(CCCA=C)O)C
2-naphthylamine Nclcec2ccecc2cl 0.94 0.85 0.84 0.84 0.80 G3_0.86
3-[2-(5-Methylthiophen-2-yl)-2- CC1=CC=C(S1)C(=0)COC2=CC=CC(=
oxoethoxy]benzonitrile C2)C#N
3-hydroxybenzoic acid 0OC(=0)clccec(0)cl 0.85 0.87 0.87 0.86 G2_0.86
4-chlorophenol Oclccc(Cl)ccl 0.78 0.83 0.78 0.83 0.91 G3_0.84
4-hydroxy-2,5,6-trichloroisophthalonitrile | Oc1c(Cl)c(Cl)c(C#N)c(Cl)c1C#N 0.82 0.80 0.76 0.78 G3_0.8
4-hydroxybenzoic acid 0OC(=0)clccc(O)ccl 0.85 0.85 0.83 0.81 G2_0.85
4-Hydroxyquinoline C1=CC=C2C(=C1)C(=0)C=CN2
4-Nitrophenol C1=CC(=CC=C1[N+](=0)[O-])O
. . CC1=CC=C(S1)C(=0)CcOoC2=CC=CC(=
4-Sulfamoylbenzoic acid C2)CHN
Acetaminophen sulfate gc(=o)Nc1=cc=c(c=c1)os(=o)(=o) 0.84 0.82 0.99 0.46 G3_0.43
Azelaic acid C(CCcc(=0)0o)ccec(=0)o
Benzophenone-4 COclcc(0)c(ccl[S)(0)(=0)=0)C(=0)c 0.72 0.85 0.66 0.95 G2_0.79
2ccecc2
Caffeic acid 0C(=0)\C=C/clccc(0)c(0)cl 0.91 0.97 0.89 0.85 G2_0.94
Caffeine Cnlcnc2N(C)C(=0)N(C)C(=0)c12 0.97 1.00 0.94 0.77 0.61 G2_0.98
Carveol CC(=C)c1cc=Cc(C)c(o)c1
Chavicol sulfate C=CCC1=CC=C(C=C1)0S(=0)(=0)0 0.85 0.40 0.24 0.86 0.83 0.24 G3.0.5
Coumaric acid 0C(=0)\C=C\clcccc(O)c1 1.00 0.98 0.83 0.83 0.83 0.83 0.83 0.83 0.93 G3_0.92 G2_0.9
Cresol sulfate CC1=CC=CC=C105(=0)(=0)0 0.99 0.90 0.95 0.77 0.84 0.85 G3_0.91
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Table A5a — (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate

compounds annotated through manual annotation (i.e. without confidence indices-ClI values)

Tryptophan

occcce
N[C@@H](Cclc[nH]c2ccecec12)C(O)
=0

CIRt Cl isotopic
. Clm/z ) . Retip- logP- fit Global CI
Annotation SMILES Experimental  RTl-predicted s S~ Cloverall
(+) () (+) () (+) () (+) () (+) () (+) () (+) ()

Indoxyl sulfate )cg:cc:czc(:cnc(:mz)os(=0)(=o 0.85 0.86 0.75 G2_0.85
Isobutylparaben CC(C)COC(=0)c1cec(O)ccl 0.97 0.81 0.67 0.21 0.70 G3_0.83
Isopropylparaben CC(C)OC(=0)clcce(O)ccl 0.97 0.86 0.91 G2_0.49
Jasmonic acid CCC=CCC1C(Cccc1=0)Ccc(=0)0
Loliolid CC1(Cc(cc2(c1=CCc(=0)02)C)o)C
L-Phenylalanine N[C@@H](Cclccececl)C(0)=0 0.92 0.82 0.97 G3_0.9
Naphthalene-2-sulfonic acid 81=CC=C2C=C(C=CC2=C1)S(=O)(=O)
Octaethylene glycol 0OCCOoccoccoccoccoccoccocco 0.94 0.63 0.88 0.94 G3_0.84
Paraxanthine Cnlcnc2NC(=0)N(C)C(=0)c12 0.85 0.84 0.89 G2_0.85

0OCCoccoccoccoccoccoccocco
PEG18 CCOccoccoccoccoccoccoccoc 0.89 0.69 0.98 0.85 G3_0.81

Cco
Piperine 0=Cl/C=C/C=C/c1ccc20COc2cN3 | gq 0.96 0.29 0.98 0.38 0.92 G3_0.9

CCcce3
Propylparaben sulfate gﬁgOC(:O)c1=cc=C(c=c1)05(=0)(= 0.86 0.87 0.33 0.81 0.69 0.82 G3_0.85
Stachydrine (Proline betaine) C[N+]1(CCCC1C(=0)[O-])C
Thymol CC1=CC(=C(C=C1)C(C)C)O0

. C1=CC(=C(C=C1Cl)0s(=0)(=0)0)oC

Triclosan sulfate 2=c(C=C(C=C2)cl)Cl 0.86 0.94 0.93 1.00 G3_0.93
Tridecalactone CCcccececcciccecc(=0)o1
Triethylphosphate CCO[P](=0)(0CC)OCC 0.93 0.78 0.93 0.91 G2_0.86
Tris(2-butoxyethyl)phosphate cHodudee]Relredoeaat ot 0.78 1.00 0.89 0.95 G3_0.91
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Table A5a — (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate

compounds annotated through manual annotation (i.e. without confidence indices-ClI values)

MS/MS

Annotation Theoretical fragments Experimental fragments Cor:::eelnce
(+) () (+) ()

1,8-Epoxy-p-menthan-3-ol 57.0346, 75.0088, 85.0295, 57.0345, 75.0089, 85.0295, s

glucoside 113.0244, 153.1286 113.0242, 153.1284

25-Hydroxyvitamin D3 26,23- 2112906 411.2913 %

lactol

2-naphthylamine 91.0556, 115.0542, 117.0699, 127.0542 91.0556, 115.0545, 117.0703, 127.0554 2a

3-[2-(5-Methylthiophen-2-yl)-2- 109.9821, 111.9978, 123.9978, 109.9824, 111.9974, 123.9977, b

oxoethoxy]benzonitrile 140.0291 140.0291

3-hydroxybenzoic acid 93.0343 93.0347 2a

4-chlorophenol 91.019 0 3

4-hydroxy-2,5,6- 146.9765, 174.9704, 181.9447, 146.9756, 174.9704, 181.9444, ’

trichloroisophthalonitrile 209.9401 209.9394

4-hydroxybenzoic acid 93.0343 93.0341 2a

4-Hydroxyquinoline 77.0415, 91.0555, 104.0494, 128.0476 77.0395, 91.0549, 104.0493, 128.0491 2a

4-Nitrophenol 92.0260, 108.0229 92.0260, 108.0235 2a

4-Sulfamoylbenzoic acid 77.0386, 105.0336 77.0386, 105.0338 2b

Acetaminophen sulfate 79.9570, 107.0374, 150.0556 79.9572, 107.0372, 150.0560 2a

Azelaic acid 57.0342, 97.0655, 123.0811, 57.0345, 97.0652, 123.0810, ’a
125.0970 125.0962

Benzophenone-4 93.0346, 121.0295, 211.0400, 93.0346, 121.0295, 211.0398, ’a
227.0714 227.0713

Caffeic acid 135.0452 135.0449 2a

Caffeine 83.0601, 110.0719, 123.0435, 138.0668 83.0611, 110.0721, 123.0434, 138.0670 1

Carveol 79.0544, 91.0543, 107.0856, 119.0856 79.0547, 91.0545, 107.0858, 119.0858 2a

Chavicol sulfate 105.0710, 133.0659 105.0703, 133.0656 2b

L 77.0382, 91.0530, 95.0488, 103.0533, 77.0391, 91.0547, 95.0498, 103.0542,

Coumaric acid 123.0423, 147.0425 93.0348, 119.0503 123.0447, 147.0449 93.0349, 119.0505 2a

Cresol sulfate 92.0279, 107.0493 92.0268, 107.0499 1

B Dy it 121.0284, 149.0233, 163.0390, 121.0288, 149.0234, 163.0389, ’a

177.0546 177.0549

Diphenylsulfone 77.0386, 95.0491, 125.0066, 141.0004 77.0388, 95.0491, 125.0063, 141.0009 2a

Indole-3-carbinol 77.0380, 103.0555, 130.0634 77.0383, 103.0545, 130.0643 2a

Indole-3-carboxaldehyde 65.9998, 115.0422, 126.0354 65.9999, 115.0432, 126.0354 2a

Indolelactic acid 72.9947, 116.0486, 130.0661, 72.9937, 116.0491, 130.0677, ’a
142.0633, 158.0625, 186.0553 142.0642, 158.0615, 186.0558

Indoxyl sulfate 79.9578, 132.0460 79.9573, 132.0457 2a

Isobutylparaben 95.049, 121.0282, 139.0388 95.0498, 121.0293, 139.0397 2a

Isopropylparaben 121.0297, 137.0239 121.0297, 137.0243 2a
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Table A5a — (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate

compounds annotated through manual annotation (i.e. without confidence indices-ClI values)

MS/MS .
Annotation Theoretical fragments Experimental fragments Cor:::eelnce
(+) () (+) ()

Jasmonic acid 105.0697, 133.1013, 151.1121, 105.0706, 133.1019, 151.1107, 2a
165.1263, 193.1225 165.1275, 193.1230

Loliolid 79.0529, 91.0544, 105.0690, 117.0708, 79.0540, 91.0548, 105.0703, 117.0698, 2a
133.1020, 161.0972, 179.1078 133.1020, 161.0967, 179.1088

ek ARt 77.0381, 79.0538, 91.0539, 103.0540, 77.0387, 79.0548, 91.0546, 103.0542, 72
120.0806 120.0808

Naphthalene-2-sulfonic acid 79.9576, 115.0549, 143.0503 79.9574, 115.0553, 143.0503 2a

Octaethylene glycol 89.0603, 133.0864, 177.1127 89.0601, 133.0867, 177.1126 2b

Paraxanthine 122.0365, 164.0341 122.0357, 164.0340 2a

PEG18 89.0597, 133.0860, 177.1122 89.0603, 133.0865, 177.1131 2b

Piperine 115.0553, 135.0446, 143.0495, 115.0554, 135.0448, 143.0502, 1
171.0453, 201.0548 171.0437, 201.0557

Propylparaben sulfate 121.0297, 137.0239, 179.0716 121.0295, 137.0246, 179.0714 2b

Stachydrine (Proline betaine) 58.0650, 72.0805, 84.0810, 98.0962 58.0656, 72.0809, 84.0809, 98.0962 2a

Tl 81.0705, 93.0704, 107.0859, 123.0789, 81.0706, 93.0705, 107.0867, 123.0801, 72
133.1013 133.1020

Triclosan sulfate 1

Tridecalactone 83.0850, 95.0871, 121.1006, 135.1164, 83.0858, 95.0859, 121.1016, 135.1173, 7a
177.1632 177.1642

Triethylphosphate 127.0158, 155.0470 127.0154, 155.0467 2a

e e e 101.0962, 199.0731, 299.1621, 101.0973, 199.0733, 299.1633, 7a
399.2511 399.2499

Tryptophan 74.0234, 116.0494, 142.0652 74.0248, 116.0504, 142.0666 2a
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Table Aba — (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated

through manual annotation (i.e. without confidence indices-Cl values)

Internal standard-corrected areas in sample prepared with Phree

Annotation (+) (-)
Blank Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Blank Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1,8-Epoxy-p-menthan-3-
Oi glui):oszis 0.01 0.07 0.05 0.11 0.01 0.02 0.10 0.01 0.02 0.02
25-Hydroxyvitamin D3
2% 2;/ Iactc\:I 3.09 0.79 0.03 1.77 1.37 0.85 0.89 2.36 0.60 1.72
2-naphthylamine 39.35 42.97 19235  36.83 75.28 11840  162.66  52.57 107.24  38.49
3-[2-(5-Methylthiophen-
2-yl)-2-

V) . 0.03 0.38 0.93 1.83 0.07 0.26 0.49 0.68 0.36 0.73 0.34
oxoethoxy]benzonitrile
3-hydroxybenzoic acid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4-chlorophenol 0.02 0.03 0.03
4-hydroxy-2,5,6-
trichloroisophthalonitril 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
e
4-hydroxybenzoic acid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4-Hydroxyquinoline 0.31 1.09 0.59 0.16 0.98 0.28 0.91 0.01 0.24 0.10
4-Nitrophenol 0.16 7.36 10.36 1.32 26.68 1.54 5.78 10.74 1.85 9.37 23.72
4-Sulfamoylbenzoic acid

Y 0.54 1.29 3.30 14.09 1.37 3.69 4.48 4.55 4.03 2.34 2.11
Acetaminophen sulfate 0.23 0.25 0.25 0.11 0.03 0.19 0.11 0.21 0.03
Azelaic acid 28.60 5.38 0.80 4.49 11.93 10.98 7.42
Benzophenone-4 0.03
Caffeic acid
Caffeine 0.09 6.66 6.94 4.28 6.91 4.73 5.21 5.09 7.15 5.80 0.10
Carveol 0.02
Chavicol sulfate 0.03 0.14 0.17 1.94 0.10 0.05 0.16 0.22 0.18 0.27
Coumaric acid 10.06 0.45 2.35 0.91 8.02 3.58 9.81 8.93 10.45 3.81 4.55 0.87 1.12 0.05 2.66 0.13 0.38 0.64 0.91 0.38 1.40
Cresol sulfate 1.09 205.86 349.66 15.18 1204.4 79.21 110.20 234.48 311.49 164.21 461.50
Diethylphthalate 0.15 0.96 2.50 0.14 0.24 0.97 0.62 0.53 1.03 0.86
4.14 16.20 4.39 2.27 16.69 0.00 0.27

Diphenylsulfone
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Table Aba — (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated

through manual annotation (i.e. without confidence indices-Cl values)

Internal standard-corrected areas in sample prepared with Phree

Annotation (+) (-)
Blank Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Blank Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean
2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Indole-3-carbinol 0.07 8.20 8.39 8.61 11.57 9.42 10.57 11.28 17.46 19.52 12.94
Indole-3-
carboxaldehyde 2.49 3.26 3.38 3.67 1.29 4.35 3.68 2.60 4.52 3.34 0.11 5.32 4.66 4.96 45.24 9.00 4.32 6.15 9.28 2.96 17.84
Inaolelneticlacid 3.72 5.69 0.22 21.65 0.51 2.65 3.97 4.63 2.23 7.49
Indoxyl sulfate 16.46 44.92 2.10 147.34 2.21 6.99 18.07 18.74 12.11 48.62
Isobutylparaben
Isopropylparaben 0.04 21.93 28.23 13.93 96.32 3.53 22.81 24.36 13.93 12.49 15.11
asmenichcd 0.27 0.86 1.46 0.11 0.28 0.38 0.72 0.23 0.60 0.25
Loliolid 0.52 1.65 2.83 0.31 0.55 0.68 1.41 0.39 1.09 0.46
L-Phenylalanine 0.17 112.35  69.57 26.31 155.89 12338  77.64 57.34 49.87 44.91 89.60
Naphthalene-2-sulfoni
acaiz thalene-2-sulfonic 1.36 1.42 0.98 0.47 0.72 1.23 0.14 1.00 0.19 0.31
Octaethylene glycol 1.21 12.52 12.82 15.29 10.89 12.08 22.38 26.47 10.86 23.02 7.23
Paraxanthine 0.26 62.39 29.70 25.64 63.17 45.42 55.06 49.87 31.55 44.95 2.92 0.94 0.20 0.07 1.00 0.47 0.19 0.22 0.71 0.28 1.01
PEG18 0.67 1.26 0.65 0.71 0.93 0.68 0.91 0.92 1.39 1.04
Piperine 0.12 0.18 0.22 0.02 1.77 0.14 2.02 0.08 0.09
Propylparaben sulfate 0.51 1.50 0.33 0.15 0.98 0.59 0.30 0.38 0.36
Stachydrine (Proline
betai:e) ( 1.10 1.43 0.12 0.24 0.31 19.25
Thymol 0.24 0.75 1.34 0.13 0.26 0.38 0.66 0.21 0.48 0.23
Triclosan sulfate 128 0.93 0.22 3.23
Tridecalactone 0.41 2.86 6.01 0.51 0.79 1.34 2.53 0.74 2.02 0.81
Triethylphosphate 0.03 0.08 0.28 0.02 0.03 0.19 0.12 0.09 0.09 0.04
Tris(2-butoxyethyl
( yethyl} 1.36 0.88 5.52 15.69 265.09 0.30 0.62 0.26
phosphate
Tryptophan 0.12 70.10 59.35 9.81 248.85 22.85 47.38 69.01 105.63 46.94 131.19
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Table Aba — (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated

through manual annotation (i.e. without confidence indices-Cl values)

Internal standard-corrected areas in sample prepared with PPT

Annotation (+) ()
Blank Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Blank Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
1,8-Epoxy-p-menthan-3- 006 281 090 254 570 210 047 008 015 246
ol glucoside
25-Hydroxyvitamin b3 58 527 296 534 753 551 551 557 616  6.39
26,23-lactol
2-naphthylamine
3-[2-(5-Methylthiophen-
2-yl)-2-
oxoethoxy]benzonitrile
3-hydroxybenzoic acid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4-chlorophenol
4-hydroxy-2,5,6-
trichloroisophthalonitril 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
e
4-hydroxybenzoic acid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4-Hydroxyquinoline
4-Nitrophenol 0.34 0.48 0.10 0.09 0.25 0.01
4-Sulfamoylbenzoic acid
Acetaminophen sulfate 1.93 2.75 0.36 3.95 0.12 0.89 0.15 0.28 0.10
Azelaic acid 57.47 2564 1345 2142 17.28 26.65 20.48 4499 1332 15.89
Benzophenone-4 0.56 0.01 4.28 0.04 0.02 0.01 0.10 0.02
Caffeic acid 0.67 1.20 0.28 0.31 2.03 0.60 0.55 2.09 1.15 1.72
Caffeine 6.61 7.85 5.85 8.27 7.28 7.57 7.09 8.70 7.84 0.12
Carveol 0.09 0.25 0.50 0.08 0.08 0.24 0.23 0.25 0.39 0.17
Chavicol sulfate 0.15 2.73 0.51 7.02 410.7 4.54 0.55 0.70 0.34 1.25
Coumaric acid 10.88  8.98 5.03 20.11 1451 961 1598 23.79 17.04 18.80 3.59 1.25 0.46 2.76 1.60 1.97 1.69 1.81 1.71 2.23
Cresol sulfate 0.17 7909 1142 626.1 1030 1769 7429 1092 1118 1647 1916
Diethylphthalate
Diphenylsulfone
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Table Aba — (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated

through manual annotation (i.e. without confidence indices-Cl values)

Internal standard-corrected areas in sample prepared with PPT

(+)

Annotation
Blank Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Blank Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean
1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

Indole-3-carbinol 11.08 15.47 12.99 21.96 53.80 11.32 14.52 22.29 20.23 17.86
lcr;(:ggiasl-dehyde 0.44 0.55 0.40 0.13 0.19 0.15 0.85 0.14 0.69 0.14 3.77 2.09 1.34 2.27 2.10 1.97 3.73 4.01 2.56 2.78
Indolelactic acid 27.90 16.67 8.51 25.86 22.12 23.99 29.87 24.45 29.72 32.02
Indoxyl sulfate 86.98 120.3 88.92 192.6 154.4 136.8 175.5 137.1 170.0  485.9
Isobutylparaben 0.37 0.17 0.10 0.21 0.25 0.15 0.36 0.24 0.19 0.29
Isopropylparaben 66.74 127.2 35.56 299.3 11092 219.6 76.19 42.08 71.63 98.71
Jasmonic acid
Loliolid
L-Phenylalanine 0.03 111.9 55.02 26.00 119.8 101.1 55.75 80.34  61.79 58.81 73.69
aN;zhtha'e”e'z's“'fomc 5115 192 136 241 205 201 190 160 171 131
Octaethylene glycol 0.91 13.81 5.61 5.56 4.26 3.98 7.28 23.53 0.34 6.55 3.63
Paraxanthine 0.01 51.29 33.38 65.39 55.58 46.73  48.69 67.72 12.28 66.33 11.07 1.92 3.72 1.27 11.05 2.89 4.44 1.31 3.48 3.93 0.82
PEG18 0.39 0.75 0.12 0.53 0.59 0.54 0.74 0.38 0.44 0.45
Piperine 0.12 0.13 0.20 0.02 191 0.16 1.10 0.11 0.11
Propylparaben sulfate 2.81 3.55 1.08 4388 5.71 1.65 0.74 1.07 1.77
Z?t;?::)””e (Proline 021 3527 337 372 1037 004 8590 045 1221 3708 191
Thymol
Triclosan sulfate
Tridecalactone
Triethylphosphate 0.04
;:Zg:::gxyethy') 0.59 0.02 0.04
Tryptophan 467.0 3419 205.5 411.2 559.2 343.3 479.5 504.8 481.0 519.9
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Table Aba — (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated

through manual annotation (i.e. without confidence indices-Cl values)

Fold changes (Area Phree / Area PPT)

Annotation (+) ()
Blank Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Blank Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
1,8-Epoxy-p-menthan-3- 7.9 0.2 Inf 0.1 Inf 0.1 1.4 2.7 6.0 0.0
ol glucoside
25-Hydroxyvitamin b3 24 1.0 0.1 1.0 13 1.0 1.0 5.7 0.8 12
26,23-lactol
2-naphthylamine
3-[2-(5-Methylthiophen-
2-yl)-2- . 5.4 5.6 44.2 8.6 2.9 3.6 4.9 11.4 9.1 8.5
oxoethoxy]benzonitrile
3-hydroxybenzoic acid
4-chlorophenol 0.7 2.5 156.1 3.2 5.8 65.0 19.3 73.2
4-hydroxy-2,5,6-
trichloroisophthalonitril Inf Inf
e
4-hydroxybenzoic acid 2.6 2.7 20.5 0.8 0.0 0.8 2.4 6.6 2.6 0.6
4-Hydroxyquinoline 15.6 2.0 23.1 14.4 6.5 31.1 36.0 11.3 27.9 19.7
4-Nitrophenol
4-Sulfamoylbenzoic acid
Acetaminophen sulfate
Azelaic acid 0.8 Inf 6.9 0.2 Inf 1.4 Inf 5.9 Inf
Benzophenone-4
Caffeic acid
Caffeine Inf Inf Inf Inf Inf Inf 2.7 Inf
Carveol Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
Chavicol sulfate 3.1 2.8 6.0 7.4 3.3 1.8 2.8 3.8 2.0 Inf
Coumaric acid 403
Cresol sulfate 10.0 0.4 3.8 0.8 0.0 0.1 1.9 4.3 4.1 0.9
Diethylphthalate 31 4.6 31.7 9.9 4.8 5.8 4.8 4.9 2.3 2.8 1.1 6.2 1.3 2.8 0.6 1.3 2.4 6.8 1.7 2.8
Diphenylsulfone 11.9 1.1 2.1 0.2 3.4 0.3 1.0 1.4 3.8 0.8 1.0
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Table Aba — (continued) Application to cohort samples (Serum-Pelagie): Annotations and semi-quantification. Red asterisks indicate compounds annotated

through manual annotation (i.e. without confidence indices-Cl values)

Annotation

Fold changes (Area Phree / Area PPT)

(+)

()

Blank

Mean

Mean

Mean

Mean

Mean

Mean

Mean

Mean Mean
8 9

Mean
10

Blank

Mean

Mean

Mean

Mean

Mean

Mean

Mean

Mean

Mean

Mean
10

Indole-3-carbinol
Indole-3-
carboxaldehyde

Indolelactic acid
Indoxyl sulfate
Isobutylparaben
Isopropylparaben
Jasmonic acid
Loliolid

L-Phenylalanine
Naphthalene-2-sulfonic
acid

Octaethylene glycol
Paraxanthine
PEG18

Piperine

Propylparaben sulfate
Stachydrine (Proline
betaine)

Thymol
Triclosan sulfate
Tridecalactone

Triethylphosphate
Tris(2-butoxyethyl)
phosphate

Tryptophan

2.6

0.6
8.9

2.5

2.3
18.1

Inf

0.7

3.8

18.6

1.7
19.6

Inf

4.2

2.9
3.1

5.5
70.5

36.8

22.1

3.3
11.9

4.7
261.1

Inf

5.7

10.3

23.0

155.8

0.9
35.7

Inf

1.4

5.0
5.7

2.6
81.8

Inf

5.5

3.2

2.6

0.6

3.1
17.3

Inf

2.9

37.1
2.9
5.7

3.7 2.7

90.0 18.9

Inf Inf

3.9 2.2

12.4 1.9

8.7 2.2

Inf Inf

2.6
88.5

Inf

4.5

0.6
2.1

6.0
0.6
0.8

15

Inf

2.2

0.8

0.7

14.3
24
2.6

1.5

Inf

0.4

3.0

1.2

31
0.3
0.3

43

Inf

0.6

3.4

0.5

56.7
24
2.2

0.9

0.2

0.3

4.2

1.8

2.6
0.2
0.1

0.0

Inf

Inf

0.0

0.3

13.7
0.7
0.3

0.7

42.4

0.3

11

0.9

10.1
0.9
0.7

2.0

Inf

11

2.3

0.9

30.7
2.6
1.8

4.5

Inf

2.8

5.4

14

2.8

8.1
0.6
0.6

13

Inf

0.6

2.8

0.8

27.2
1.0
0.4

0.7

Inf

5.4

0.9

11
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2.7. Table A5b — Application to cohort samples (Plasma-Danish cohort): Annotations and semi-quantification

Table A5b — Application to cohort samples (Plasma — Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds annotated through

manual annotation (i.e. without confidence indices-Cl values)

)(=0)0

Clm/z CI Rt Cl isotopic fit Global CI
Annotation SMILES Experimental RTl-predicted | Retip-predicted | logP-predicted Cl overall
(+) () (+) () (+) () (+) () (+) () (+) () (+) ()
2-Hydroxybenzoic Acid 0C(=0)clccceclO 1.00 0.89 0.23 G2_0.94
2-Methoxyacetophenone COCC(=0)clcccecl 0.95 1.00 0.90 0.99 0.85 G3_0.93
2-naphthylamine Nclccc2ccecc2cl 0.94 0.00 0.75 G3_0.56
z,ctilés-trlmethoxycmnamlc gOclcc(C=CC(O)=O)cc(OC)clO 0.77 0.93 0.47 0.99 0.85 63.0.85
3-hydroxybenzoic acid 0OC(=0)clccec(O)cl 1.00 0.42 0.39 G2_0.7
4-hydroxy-2,5,6-
el rsieoplitE s Oclc(Cl)c(Cl)c(CH#N)c(Cl)c1CHN 0.98 0.44 0.46 0.99 G3_0.8
4-hydroxybenzoic acid 0C(=0)clcec(O)ccl 0.95 0.64 0.69 0.53 G2_0.8
. . CC(=0)NC1=CC=C(C=C1)0C2C(

Acetaminophen glucuronide C(C(C(02)C(=0)0)0)0)0 0.92 0.85 0.92 0.81 0.92 0.94 0.92 0.94 0.73 G3_0.86 G2_0.83
Azelaic acid C(CCCc(=0)0o)ccec(=0)o
Bourbonal CCOclcc(C=0)ccclO 0.98 0.31 0.08 0.69 G3_0.66
Bupivacaine SccchN1CCCCC1C(=O)NCZC(C)°° 0.79 0.96 0.43 0.29 0.79 G3_0.85
Caffeine gnlcncZN(C)C(=O)N(C)C(=O)c1 0.73 0.96 0.91 0.63 0.80 0.81 G3.0.83
Carveol CC(=C)C1Ccc=C(C)c(0)c1 0.88 0.52 0.07 G2_0.7
Chavicol sulfate )c; CCCL=CC=C(C=CL)0S(=0)(=0 0.78 0.90 0.36 0.57 0.31 G2_0.84
Cotinine CN1C(CCC1=0)c2ccecnc2 0.95 0.95 0.89 0.66 0.97 0.93 0.81 0.89 0.99 0.97 0.64 G3_0.83 G2_0.81
Cresol sulfate CC1=CC=CC=C10S5(=0)(=0)0 0.74 0.93 0.95 0.59 0.74 0.82 G3_0.83
Curcumenol CC1CCC2C13CC(=C(c)c)c(o3)(c

=C2C)0
Diazepam GE O] A S eleenen) e 0.70 0.99 0.54 0.91 0.95 G3.0.88

Cl)ccc13
Diethyl phthalate CCOC(=0)clccecc1C(=0)0CC 0.88 0.92 0.94 0.96 0.62 0.63 0.80 0.81 0.81 G3_0.88 G2_0.94
Docosahexaenoic acid gfgg(cg)(icocc=cc=cc=cc=cc=c 0.96 0.76 1.00 1.00 0.79 0.80 0.93 0.94 0.35 0.35 0.92 G3.0.96 G2_0.88
Eicosapentaenoic acid E(cg)c_c()ccccc:cc:cc:cc:cc:c 0.81 0.77 0.84 0.46 G2_0.79
Ethyl paraben CCOC(=0)clcec(O)ccl 0.93 1.00 0.13 0.01 G2_0.96
Ibuprofen CC(C)Cclcec(ccl)C(C)C(0)=0 0.91 0.96 0.59 0.81 G2_0.94
Indole-3-carbinol C1=CC=C2C(=C1)C(=CN2)CO
Indole-3-carboxaldehyde C1=CC=C2C(=C1)C(=CN2)C=0

. . C1=CC=C2C(=C1)C(=CN2)CC(C(

Indolelactic acid -0)0)0
Indoxyl sulfate €1=CC=C2C(=C1)C(=CN2)0S(=0 0.73 0.82 0.50 0.90 G3_0.82
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Table A5b — (continued) Application to cohort samples (Plasma — Danish cohort): Annotations and semi-quantification. Red
annotated through manual annotation (i.e. without confidence indices-Cl values)

Appendices

asterisks indicate compounds

CI Rt

Cl isotopic fit

C(0)=0

Annotation SMILES Elinic Experimental RTl-predicted | Retip-predicted I logP-predicted Cl overall Slobalcl
(+) () (+) () (+) () (+) () (+) () (+) () (+) ()
Nordazepam gccllccczNC(=O)CN=C(°3°°°°°3) 0.89 0.83 0.90 0.87 0.47 0.45 0.89 0.87 0.86 072 | G3.088 G30.81
Octaethylene glycol ggcC)OCCOCCOCCOCCOCCOCCO 0.80 0.78 0.82 G3_0.80
Oxazepam ggxc(acccca)acc(cl)ccc3 0.70 1.00 0.45 0.29 0.88 G2.0.85
Paracetamol CC(=0)Nclcce(O)ecl 0.77 1.00 0.78 0.62 0.90 0.89 0.80 0.80 0.93 0.93 G2_0.77 G2_0.81
Paraxanthine Cnlcnc2NC(=0)N(C)C(=0)c12 0.93 0.74 0.76 G2_0.83
Pentachlorophenol Oclc(Cl)c(Cl)c(Cl)c(Cl)cacl 0.73 0.86 0.22 0.94 0.92 G3_0.83
Phenol sulfate €1=CC=C(C=C1)05(=0)(=0)0 0.89 0.85 0.79 0.78 0.78 G3_0.84
L 0=C(/C=C/C=C/clccc20COc2cl
Piperine IN3CCCCC3 0.93 0.96 0.26 0.71 0.64 0.91 G3_0.93
Propylparaben sulfate 8§(c_<(3)g(()=o)c1=cc=c(c=c1)os(= 0.98 0.94 0.54 0.59 0.20 G2_0.96
Theobromine Cnlenc2N(C)C(=0)NC(=0)c12 0.79 0.65 0.49 0.89 G3.0.78
Trans-3-hydroxycotinine CN1C(CC(0)C1=0)c2ccenc2 0.90 0.84 0.98 G2_0.87
C1=CC(=C(C=C1Cl)0c2¢(c(C(C(
Triclosan glucuronide 02)C(=0)0)0)0)0)0C3=C(C=C( 0.86 0.99 0.51 0.89 0.88 G3_0.91
c=c3)cl)cl
. C1=CC(=C(C=C1Cl)0S(=0)(=0)0
Triclosan sulfate JOC2=C(C=C(C=C2)CI)Cl 0.84 0.96 0.88 0.96 G3_0.92
Tryptophan N[C@@H](Cclc[nH]c2ceeec12) 0.90 0.78 0.65 0.66 0.23 0.23 0.92 G3.082 G2.0.72
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Table A5b — (continued) Application to cohort samples (Plasma — Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds

annotated through manual annotation (i.e. without confidence indices-Cl values)

MS/MS o
. - . Confidence
Annotation Theoretical fragments Experimental fragments level
(+) () (+) ()

2-Hydroxybenzoic Acid 93.0343 93.0345 2a
2-Methoxyacetophenone 63.0229, 79.0542, 105.0335, 119.0491, 133.0648 63.0226, 79.0537, 105.0333, 119.0491, 133.0647 2b
2-naphthylamine 91.0556, 115.0542, 117.0699, 127.0542 91.0547, 115.0541, 117.0690, 127.0542 2a

107.0491, 137.0597, 149.0597, 161.0597, 177.0546, 107.0490, 137.0604, 149.0601, 161.0602, 177.0549, 2a
3,4,5-trimethoxycinnamic acid 193.0859, 221.0808 193.0862, 221.0810
3-hydroxybenzoic acid 93.0343 93.0345 2a
4—'hydrox'y—2,5,6— L 146.9765, 174.9704, 181.9447, 209.9401 146.9769, 174.9708, 181.9449, 209.9407 2a
trichloroisophthalonitrile
4-hydroxybenzoic acid 93.0343 93.0347 2a
Acetaminophen glucuronide 110.0607, 134.0606, 152.0712 175.0252, 150.0561, 113.0252 110.0607, 134.0606, 152.0712 175.0248, 150.0561, 113.0245 1
Azelaic acid 97.0655, 123.0811, 125.0970 97.0660, 123.0816, 125.0972 2a
Bourbonal 121.0290, 139.0395, 149.0603 121.0287, 139.0395, 149.0601 2a
Bupivacaine 140.1445 140.1434 1
Caffeine 83.0609, 110.0708, 123.0417, 138.0659, 195.0881 83.0602, 110.0707, 123.0421, 138.0653, 195.0871 1
Carveol 107.0855, 119.0855, 135.1168 107.0857, 119.0857, 135.1172 2a
Chavicol sulfate 105.0710, 133.0659 105.0710, 133.0656 2b
Cotinine 106.0633, 118.0646, 120.0794 106.0642, 118.0653, 120.0801 1
Cresol sulfate 92.0279, 107.0493 92.0270, 107.0501 2a
Curcumenol 93.0698, 105.0698, 119.0855, 133.1010, 175.1116 93.0700, 105.0700, 119.0856, 133.1016, 175.1124 2a
Diazepam 154.0408, 193.0879, 222.1146, 228.0569, 257.0837 154.0418, 193.0885, 222.1154, 228.0579, 257.0847 2a

71.0502, 121.0296, 134.0374, 149.0972, 71.0501, 121.0292, 134.0365, 149.0970,

Diethyl phthalate 93.0326, 111.0437, 121.0284, 149.0233, 177.0546 177.0921 93.0334, 111.0444, 121.0282, 149.0245, 177.0553 177.0917 2a

119.0848, 131.0847, 145.0989, 161.1313, 175.1434, 119.0854, 131.0850, 145.0999, 161.1323, 175.1444,
Docosahexaenoic acid 269.2256, 293.2272,311.2344 ZRLIEEE, HBAAS 269.2267, 293.2272,311.2354 ZRIEI, AEALEY o
Eicosapentaenoic acid 203.1802, 229.1957, 257.2274 203.1811, 229.1967, 257.2276 2a
Ethyl paraben 92.0272,137.0244 92.0269, 137.0242 2a
Ibuprofen 161.1332 161.1334 1
Indole-3-carbinol 77.0380, 103.0555 77.0383, 103.0547 2a
Indole-3-carboxaldehyde 115.0422, 126.0354 115.0421, 126.0345 2a

72.9947, 116.0486, 130.0661, 142.0633, 72.9932, 116.0491, 130.0661, 142.0642, 2a

Indolelactic acid 158.0625, 186.0553 158.0619, 186.0560
Indoxyl sulfate 79.9578, 132.0460 79.9572,132.0452 2a
Nordazepam 140.0252, 165.0201, 208.0986, 226.0406, 243.0677 241.0299 140.0261, 165.0207, 208.0997, 226.0416, 243.0686 241.0302 2a
Octaethylene glycol 89.0603, 133.0864, 177.1127 89.0601, 133.0861, 177.1128 2b
Oxazepam 231.0668, 241.0516, 269.0464 231.0674, 241.0524, 269.0470 2a
Paracetamol 110.0608 107.0366 110.0602 107.0372 1
Paraxanthine 122.0365, 164.0341 122.0362, 164.0341 2a
Pentachlorophenol 3
Phenol sulfate 79.9551, 93.0325 79.9554, 93.0326 2a
Piperine 115.0544, 135.0441, 143.0491, 171.0446, 201.0548 115.0540, 135.0445, 143.0493, 171.0442, 201.0543 1
Propylparaben sulfate 179.0715 179.0714 2b
Theobromine 108.0554, 110.0713, 122.0589, 138.0668, 163.0611 108.0554, 110.0710, 122.0583, 138.0660, 163.0614 2a

80.0493, 86.0606, 106.0676, 118.0674, 134.0602, 80.0495, 86.0600, 106.0666, 118.0664, 134.0601, 7a
Trans-3-hydroxycotinine 149.0714 149.0709
Triclosan glucuronide 286.9448 286.9452 1
Triclosan sulfate 286.9448 286.9445 1
Tryptophan 118.0650, 146.0596, 159.0912, 170.0596, 188.0700 116.0500, 142.0655, 159.0915 118.0646, 146.0592, 159.0915, 170.0599, 188.0702 116.0506, 142.0659, 159.0922 1
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Table A5b — (continued) Application to cohort samples (Plasma — Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds

annotated through manual annotation (i.e. without confidence indices-Cl values)

Internal standard-corrected areas in sample prepared with Phree

Annotation (+) (-)

Blank Meanl Mean2 Mean3 Mean4 Mean5 Mean6 Mean7 Mean8 | Blank Meanl Mean2 Mean3 Mean4 Mean5 Mean6 Mean7 Mean8
2-Hydroxybenzoic Acid 0.03 0.04 0.05 0.04 3.65 0.10
2-Methoxyacetophenone 2.14 2.69 2.63 0.70 0.03 2.25 0.03 2.88
2-naphthylamine 4.78 5.54 6.47 6.36 6.58 5.19 4.15 5.95
3,4,5-trimethoxycinnamic acid 14.25 2.09 2.08 2.00 1.72 2.16 5.32 2.70
3-hydroxybenzoic acid 0.98 0.68 1.12 1.20 0.97 0.78 0.41 110.96 1.08
4-hydroxy-2,5,6-
trichloroisophthalonitrile 0.11 0.07 0.23 0.13 0.09 0.15 0.06 0.27
4-hydroxybenzoic acid 3.35 2.28 1.84 8.02 5.72 2.78 4.09 2.30
Acetaminophen glucuronide 8.93 180.77
Azelaic acid 158.88 9.87 6.09
Bourbonal 0.02 0.13 0.10 0.00 0.04 0.00 0.01
Bupivacaine 0.08 0.82
Caffeine 5.63 5.99 0.47 5.05 5.51 5.96 1.45 6.18
Carveol
Chavicol sulfate 23.23 93.86 118.79 98.85 2.56 142.35
Cotinine 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cresol sulfate 184.24 217.61 744.70 1230.8 64.53 189.51 408.03 254.03
Curcumenol
Diazepam 46.41 25.50 0.01 30.29 33.26 26.80
Diethyl phthalate 17.93 23.91 7.14 5.51 7.69 18.57 9.06 25.28 0.02 0.62 0.76 0.28 0.87 0.37 0.71 0.30 0.86
Docosahexaenoic acid 34.06 112.43 50.07 78.96 41.56 45.68 15.56 36.69
Eicosapentaenoic acid 11.47 37.61 23.78 15.25 21.03 28.36 3.18 16.92
Ethyl paraben 0.06 6.09 7.53 3.37 7.88 3.67 6.34 3.96 8.45
lbuprofen 1.31 0.71 1.21
Indole-3-carbinol 0.90 0.45 1.60 2.10 1.46 1.24 0.36 1.18
Indole-3-carboxaldehyde 0.76 0.71 2.43 1.75 1.95 0.63 0.85 0.75 4.63 4.96 12.30 10.86 11.27 4.12 5.66 5.23
Indolelactic acid 5.96 6.69 6.67 7.34 4.53 5.86 2.69 3.98
Indoxyl sulfate 20.99 5.31 77.15 114.70 112.24 42.36 17.26 28.47
Nordazepam 1.33 2.61 0.00 0.00 0.00 1.77 0.00 1.90 0.06 0.11 0.10 0.00 0.07
Octaethylene glycol 0.00 0.10 0.09 0.21 0.09 0.25 0.10 0.92 0.10
Oxazepam 0.00 0.00 0.00 0.00 0.00 0.00
Paracetamol 1.77 71.53
Paraxanthine 0.01 26.86 35.32 0.99 15.27 14.11 28.57 0.84 36.76
Pentachlorophenol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Phenol sulfate 64.51 85.70 41.83 41.01 23.59 70.35 34.97 91.34
Piperine 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Propylparaben sulfate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Theobromine 15.16 24.90 0.95 1.86 15.10 15.74 8.52 19.47
Trans-3-hydroxycotinine 0.00 0.00 0.00 0.00 0.00
Triclosan glucuronide 0.54 0.56 0.01 0.01 0.04 0.53 0.70
Triclosan sulfate 0.00 0.00 0.00 0.00 0.00 0.00
Tryptophan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table A5b — (continued) Application to cohort samples (Plasma — Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds

annotated through manual annotation (i.e. without confidence indices-Cl values)

Internal standard-corrected areas in sample prepared with PPT

Annotation (+) (-)

Blank Meanl Mean2 Mean3 Mean4 Mean5 Mean6 Mean7 Mean8 | Blank Meanl Mean2 Mean3 Mean4 Mean5 Mean6 Mean7 Mean8
2-Hydroxybenzoic Acid 0.02 0.02 0.02 0.02 1.94 0.04
2-Methoxyacetophenone 2.11 3.11 2.62 0.75 0.04 2.39 0.03 3.46
2-naphthylamine 4.22 1.18 2.73 2.03 2.27 2.44 1.39 2.08 3.48
3,4,5-trimethoxycinnamic acid
3-hydroxybenzoic acid 0.41 0.46 0.40 0.32 0.54 0.35 73.01 0.45
4-hydroxy-2,5,6-
trichloroisophthalonitrile 0.05 0.05 0.10 0.07 0.05 0.06 0.04 0.08
4-hydroxybenzoic acid 1.32 1.53 0.63 6.81 3.08 1.17 1.06 1.70
Acetaminophen glucuronide 34.19 489.91
Azelaic acid 4.85 32.14 26.29 61.64 166.14 186.75 23.30 23.67 34.51
Bourbonal 0.14 0.18 0.24 0.31 0.05 0.37 0.20
Bupivacaine 1.16
Caffeine 0.00 5.80 6.42 0.38 5.19 5.39 5.82 1.36 6.59
Carveol 0.02 0.03 0.01 0.01 0.01 0.03 0.02 0.03
Chavicol sulfate 103.67 138.91 24.29 16.84 19.68 109.84 23.13 152.04
Cotinine 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cresol sulfate 162.10 204.16 828.17 1455.9 78.15 162.02 324.58 230.76
Curcumenol 0.40 0.50 0.36 0.28 0.29 0.50 0.74 0.79
Diazepam 41.36 32.66 0.02 33.30 31.73 34.52
Diethyl phthalate 14.14 12.42 0.23 1.50 0.89 13.29 2.51 16.69 0.08 0.63 0.48 0.16 0.31 0.31 0.20 0.19 0.81
Docosahexaenoic acid 106.06 150.86 71.19 88.20 53.23 109.58 100.40 104.32
Eicosapentaenoic acid 0.01 39.83 52.36 65.33 23.89 22.71 24.47 12.71 60.25
Ethyl paraben 0.06 4.55 6.28 3.52 10.23 4.68 4.48 2.77 7.04
Ibuprofen 0.20 0.07 3.70 1.40 2.13 0.05 0.05
Indole-3-carbinol 1.85 2.66 1.58 2.43 1.64 2.07 1.98 291
Indole-3-carboxaldehyde 0.52 0.69 2.02 1.02 1.19 0.57 0.70 0.70 2.76 3.81 12.97 5.75 8.54 3.00 3.52 4.20
Indolelactic acid 13.06 16.41 10.64 11.05 13.21 12.26 6.26 16.86
Indoxyl sulfate 0.07 68.58 81.74 116.61 158.38 162.49 66.32 98.17 87.99
Nordazepam 2.35 3.65 0.00 0.01 0.00 2.81 0.00 4.13 0.12 0.18 0.16 0.00 0.20
Octaethylene glycol 0.08 0.07 0.04 0.06 0.24 0.06 0.81 0.08
Oxazepam 0.00 0.00 0.00 0.00 0.00 0.00
Paracetamol 3.03 66.36
Paraxanthine 0.01 28.66 36.92 1.20 21.34 19.21 29.21 0.89 39.56
Pentachlorophenol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Phenol sulfate 56.51 82.32 45.92 48.15 27.34 63.58 31.69 85.30
Piperine 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Propylparaben sulfate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Theobromine 11.72 15.05 0.62 1.24 11.71 12.16 7.75 17.26
Trans-3-hydroxycotinine 0.00 0.00 0.00 0.00 0.00
Triclosan glucuronide 0.42 0.71 0.01 0.01 0.03 0.53 0.71
Triclosan sulfate 0.00 0.00 0.00 0.00 0.00 0.00
Tryptophan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table A5b — (continued) Application to cohort samples (Plasma — Danish cohort): Annotations and semi-quantification. Red asterisks indicate compounds

annotated through manual annotation (i.e. without confidence indices-Cl values)

Fold changes (Area Phree / Area PPT)

Annotation (+) (-)

Blank Meanl Mean2 Mean3 Mean4 Mean5 Mean6 Mean7 Mean8 | Blank Meanl Mean2 Mean3 Mean4 Mean5 Mean6 Mean7 Mean8
2-Hydroxybenzoic Acid 2.2 1.7 2.8 2.1 19 2.7
2-Methoxyacetophenone 1.0 0.9 1.0 0.9 0.7 0.9 1.0 0.8
2-naphthylamine 4.1 2.0 3.2 2.8 2.7 3.7 2.0 1.7
3,4,5-trimethoxycinnamic acid
3-hydroxybenzoic acid 1.7 2.4 3.0 3.0 1.4 1.2 1.5 2.4
4-hydroxy-2,5,6-
trichloroisophthalonitrile 2.0 14 2.2 19 19 2.4 1.6 33
4-hydroxybenzoic acid 2.5 1.5 2.9 1.2 1.9 2.4 3.9 1.3
Acetaminophen glucuronide 0.3 0.4
Azelaic acid 32.8 Inf Inf Inf 0.1 0.0 Inf Inf Inf
Bourbonal 0.1 0.7 0.4 0.0 0.7 0.0 0.0
Bupivacaine 0.7
Caffeine 1.0 0.9 1.2 1.0 1.0 1.0 1.1 0.9
Carveol Inf Inf Inf Inf Inf Inf Inf Inf
Chavicol sulfate 0.9 0.9 Inf Inf Inf 0.9 0.1 0.9
Cotinine 0.7 0.3 0.5 0.4 1.0 0.4 0.8 0.9 0.8 0.4
Cresol sulfate 11 11 0.9 0.8 0.8 1.2 13 11
Curcumenol Inf Inf Inf Inf Inf Inf Inf Inf
Diazepam 1.1 0.8 0.9 0.9 1.0 0.8
Diethyl phthalate 1.3 1.9 31.0 3.7 8.6 1.4 3.6 15 0.2 1.0 1.6 1.8 2.8 1.2 3.5 1.6 11
Docosahexaenoic acid 0.3 0.7 0.7 0.9 0.8 0.4 0.2 0.4
Eicosapentaenoic acid 0.3 0.7 0.4 0.6 0.9 1.2 0.3 0.3
Ethyl paraben 1.0 13 1.2 1.0 0.8 0.8 14 14 1.2
lbuprofen Inf Inf 0.4 0.5 0.6 Inf Inf
Indole-3-carbinol 0.5 0.2 1.0 0.9 0.9 0.6 0.2 0.4
Indole-3-carboxaldehyde 15 1.0 1.2 1.7 1.6 1.1 1.2 11 1.7 13 0.9 19 13 14 1.6 1.2
Indolelactic acid 0.5 0.4 0.6 0.7 0.3 0.5 0.4 0.2
Indoxyl sulfate 0.3 0.1 0.7 0.7 0.7 0.6 0.2 0.3
Nordazepam 0.6 0.7 0.9 0.2 0.2 0.6 0.7 0.5 0.5 0.6 0.6 13 0.4
Octaethylene glycol 1.2 1.3 5.4 1.7 11 1.7 1.1 1.2
Oxazepam 1.1 1.8 15.5 2.1 1.6 33
Paracetamol 0.6 1.1
Paraxanthine 0.9 0.9 1.0 0.8 0.7 0.7 1.0 0.9 0.9
Pentachlorophenol 0.3 0.3 0.3 0.3 0.6 0.2 0.3 0.2
Phenol sulfate 11 1.0 0.9 0.9 0.9 1.1 1.1 1.1
Piperine 14 1.8 2.8 3.5 3.1 1.6 2.4 13
Propylparaben sulfate 0.5 0.6 1.0 0.9 0.9 0.6 0.9 0.6
Theobromine 13 1.7 1.5 1.5 1.3 1.3 1.1 1.1
Trans-3-hydroxycotinine 1346.6 8.4 7.7 7.4 1.8
Triclosan glucuronide 13 0.8 0.9 11 1.2 1.0 1.0
Triclosan sulfate 7.8 4.4 4.4 4.5 3.5 5.8
Tryptophan 0.3 0.7 0.7 0.8 0.6 0.5 0.8 0.9 0.8 0.7 0.8 0.7 0.6 0.7 0.1 0.7
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2.8. Table A6 — Phree and PPT methods detection limits on 30 xenobiotics

Table A6 — Methods detection limits on 30 xenobiotics for Phree and protein precipitation (PPT)

Serum Plasma

Compounds Phree PPT Phree PPT

2-Aminobenzimidazole 0.1 0.1 0.1 0.5
Acetochlor 0.1 0.1 0.1 0.1
Aflatoxin B1 0.1 0.5 0.1 0.5
Azoxystrobine 0.1 0.1 0.1 0.1
Boscalid 0.1 0.1 0.1 1
Carbamazepine 0.5 0.5 0.1 0.1
Carbendazim 0.1 0.1 0.1 0.1
Chlorpyrifos 0.5 0.5 0.5 0.1
Clothianidin 0.5 0.5 1 0.1
Cotinine 0.1 0.1 0.1 0.1
Cyprodinil 0.1 0.5 0.1 1
Diazinon 0.1 0.1 0.1 0.1
Diclofenac 0.1 0.5 0.5 0.5
Fluoxetine 0.1 0.1 0.1 0.1
Ibuprofen 10 40 20 20
Imidacloprid 0.1 0.1 0.1 0.5
Ketoprofen 0.1 0.1 0.5 0.5
Malathion 0.5 1 0.1 5
Nicotine 0.1 0.1 0.1 0.1
Paracetamol 0.1 0.1 0.1 0.1
Piperine 0.1 0.1 0.1 0.1
Pravastatin N/A 0.5 | N/A 0.5
Prochloraz 0.1 0.5 0.1 1
Propiconazole 0.1 0.5 0.1 1
Sertraline 0.1 1 0.5 1
Tebuconazole 0.5 0.5 0.5 0.1
Thiacloprid 0.1 0.1 0.1 0.1
Thiamethoxam 0.1 0.1 0.5 1
Triclosan 10 20 10 20
Venlafaxine 0.1 0.5 0.1 0.1
Mean 0.9 2.3 1.2 1.9
Median 0.1 0.3 0.1 0.3
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2.9. Appendix S.1 — Solvents and chemicals

Native and isotopically labeled standard compounds were purchased from suppliers Bertin,
LGC, Sigma Aldrich and VWR and were stored at -20°C. Details can be found in Supporting
Information (SI, Table Al). Ultrapure water was generated using a Millipore Milli-Q Gradient
system. UPLC-MS-grade acetonitrile and formic acid were purchased from Biosolve (Dieuze,
France). UPLC-MS-grade methanol was purchased from Carlo Erba (Val-de-Reuil, France).
HPLC-MS-grade methyl tert-butyl ether (MTBE) and ethyl acetate were purchased from Fisher
Scientific (lllkirch-Graffenstaden, France). Aqueous ammonia was purchased from VWR

(Strasbourg, France).

2.10. Appendix S.2 — Data acquisition

Samples were analyzed on QTOF-MS (AB Sciex X500R) interfaced with an AB SCIEX
ExionLC AD UPLC. Compound chromatographic separation was achieved using an Acquity
UPLC HSS T3 C18 column (1.8um, 1.0 x 150mm) maintained at 40°C. Injection volume was
set at 2 yL. Flow rate was set at 100 puL/min with mobile phases of ultrapure water (A) and
acetonitrile (B) both modified with 0.01% formic acid. The gradient was set as: 0-2.5 min, 10-
20% B; 2.5-20 min, 20-30% B; 20-38 min, 30-45% B; 38-45 min, 45-100% B; 45-55 min, 100%
B; 55-60 min, 10% B. Full-scan mass spectra was acquired in both — and + electrospray
ionization (ESI) modes between 50-1100 m/z using ESI source settings: temperature 550°C,
ionspray voltage 4,5kV (-4,5kV in negative mode), declustering potential 80V (-80V in negative
mode), accumulation time 300 ms, spray N2 gas 35 arbitrary units, heat conduction gas 35
arbitrary units; curtain gas 7 arbitrary units, collisionally activated dissociation gas 7 arbitrary
units, run time 60min. MS/MS fragmentation was performed on selected samples using
sequential window acquisition of the theoretical mass spectrum (SWATH) or data dependent
acquisition (DDA). SWATH experiments were performed in both —and + ESI modes, using the
following source settings: MS1 accumulation time 80ms, MS2 accumulation time 30 ms,
collision energy 35eV, collision energy spread 15eV, cycle time 469ms, mass range 50-1100
m/z. Acquisition windows were established for each matrix and mode using an vendor-
provided automated SWATH window calculator based on results from full scan injections. DDA
experiments were performed in both — and + ESI modes, using the following source settings:
MS1 accumulation time 250ms, MS2 accumulation time 100ms, collision energy 35eV, cycle
time 2.35s, mass range 50-1100 m/z. Precursor ion selection parameters were as follows: a
maximum of 20 candidate ions per cycle, intensity threshold 1cps, and dynamic background

subtraction was enabled (candidate ions only includes ions increasing in intensity).
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2.11. Appendix S.3 — Quality control procedures

A solvent blank (i.e. acetonitrile/ultrapure water 90:10 (v/v)) and an extracted ultrapure water
blank (i.e. extraction performed with ultrapure water in place of sample) were systematically
injected with each batch to respectively ensure lack of carryover in the UPLC system and
monitor contamination linked to the sample preparation process. Composite QC samples were
injected after the blanks to equilibrate the analytical system, and repeatedly throughout the
batch (every 5 samples). Samples were injected randomly. IS peak areas were monitored to

assess analytical drift.

2.12. Appendix S.4 — Sample preparation procedures

The twelve sample preparation methods used for this work are described below. As the spiking
level, sample volume and recovery volume vary between experiments; they are not specified

in each procedure and are recapitulated in Table B1.

Experiment Spiking level (ng/mL) Sample volume (uL) Recovery volume (pL)

Preselection 40 200 100

Comparison to protein
10 100 20
precipitation

Method detection limit 0.1,0.5, 1, 5, 10, 20, 40 100 20

Table B1 — Spiking levels, sample volumes and recovery volumes used for all sample

preparation procedures for three spiking experiments.
e Protein precipitation

Protein precipitation was carried out using a 4:1 (v/v) cold methanol to matrix ratio. Samples
were left at -20°C for 1h to improve protein removal. Centrifugation was performed at 4°C and
17,0009 for 20 min, after which supernatants were collected and evaporated to dryness under
vacuum. Samples were recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to

obtain the desired sample concentration factor.

e Phospholipid and protein removal
o Ostro (Waters), Phree (Phenomenex)- Acetonitrile, PL (Supelco), PL Ultra
(Supelco)
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A 99:1 (v/v) acetonitrile to formic acid mixture was added to the matrix using a 3:1 (v/v) ratio.
Samples were vortexed then placed on the plate and drawn through it drop by drop under
vacuum. An additional volume of 100 uL of the 99:1 (v/v) acetonitrile to formic acid mixture
was drawn through the plate for rinsing. The resulting solutions were evaporated to dryness
under vacuum, and recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to obtain

the desired sample concentration factor.
o Phree (Phenomenex)- Methanol

A 99:1 (v/v) methanol to formic acid mixture was added to the matrix using a 4:1 (v/v) ratio.
Samples were vortexed then placed on the plate and drawn through it drop by drop under
vacuum. An additional volume of 100 uL of the 99:1 (v/v) methanol to formic acid mixture was
drawn through the plate for rinsing. The resulting solutions were evaporated to dryness under
vacuum, and recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to obtain the

desired sample concentration factor.
o PLD (Biotage)

A 99:1 (v/v) acetonitrile to formic acid mixture was added to the matrix using a 4:1 (v/v) ratio.
Samples were vortexed then placed on the plate and drawn through it drop by drop under
vacuum. An additional volume of 100 uL of the 99:1 (v/v) acetonitrile to formic acid mixture
was drawn through the plate for rinsing. The resulting solutions were evaporated to dryness
under vacuum, and recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to obtain

the desired sample concentration factor.
o Prime HLB (Waters)

Samples were placed on the plate and drawn though it drop by drop under vacuum. An
additional volume of 2 mL of a 95:5 (v/v) ultrapure water to methanol mixture was drawn
through the plate for rinsing. Elution was performed with 2 mL of a 90:10 (v/v) acetonitrile to
methanol mixture. The resulting solutions were evaporated to dryness under vacuum, and
recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as to obtain the desired sample

concentration factor.

e Solid phase extraction

o HLB Oasis, Strata X (Phenomenex)

A 98:2 (v/v) ultrapure water to formic acid mixture was added to the matrix using a 1:1 (v/v)
ratio. Solid phase was conditioned with 1 mL of methanol followed by 1 mL of ultrapure water.
Samples were placed on the plate and drawn through it drop by drop under vacuum. An

additional volume of 2 mL of a 95:5 (v/v) ultrapure water to methanol mixture was drawn
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through the plate for rinsing. After drying, elution was performed using 1 mL of methanol (first
extract), then 1 mL of ethyl acetate (second extract). Extracts were separately evaporated to
dryness under vacuum, and recovered in 90:10 (v/v) ultrapure water to acetonitrile mixture as

to obtain the desired sample concentration factor.
o Strata XC (Phenomenex)

A 98:2 (v/v) ultrapure water to formic acid mixture was added to the matrix using a 1:1 (v/v)
ratio. Solid phase was conditioned with 1 mL of methanol followed by 1 mL of ultrapure water.
Samples were placed on the plate and drawn through it drop by drop under vacuum. An
additional volume of 2 mL of a 95:5 (v/v) ultrapure water to methanol mixture was drawn
through the plate for rinsing. After drying, elution was performed using 1 mL of a 95:5 (v/v)
methanol to agueous ammonia ratio (first extract), then 1 mL of methanol (second extract).
Extracts were separately evaporated to dryness under vacuum, and recovered in 90:10 (v/v)

ultrapure water to acetonitrile mixture as to obtain the desired sample concentration factor.
e Supported liquid extraction

Samples were placed on the plate and drawn though it drop by drop under vacuum. Elution
was performed with twice 900 uL of methyl tert-butyl ether (MTBE). The resulting solutions
were evaporated to dryness under vacuum, and recovered in 90:10 (v/v) ultrapure water to

acetonitrile mixture as to obtain the desired sample concentration factor.

2.13. Appendix S.5 — Application of PPT and Phree to cohort samples

Sample preparation methods PPT and Phree (acetonitrile) were applied to serum samples
from the Pelagie cohort and plasma samples from a Danish birth cohort. Quality control was
performed on the injected batches, both at the targeted and non-targeted scales. Results are
presented in Figure S1.

Suspect screening was performed on the associated datasets, resulting in 44 xenobiotic
annotations in serum and 41 xenobiotic annotations in plasma. For each annotated compound,
fold changes (i.e. area ratio of features in samples prepared with Phree and protein
precipitation) were computed for annotated compounds. Fold change values were also
computed at the non-targeted level on quality control samples. Results are presented in Figure
S2.
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Figure S1 - Quality control parameters for the application of two sample preparation methods
to two sets of cohort samples (n=8 plasma samples from the Danish cohort, and h=10 serum
samples for Pelagie). Outer edges identify best performances.
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Figure S2 — Comparison of fold change values (i.e. area ratio of features in samples prepared
with Phree and protein precipitation) for quality control samples in Pelagie serum samples (A)
and Danish plasma samples (B). Yellow indicates features only visible in Phree-prepared
samples and blue indicates features only visible in protein-precipitated samples. Features are
organized by retention time value (from bottom to top). The orange dashed rectangle indicates
the range where lysophospholipids and peptides are mostly observed.
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3. Appendix 3. Supporting information — Chapter IV

3.1. Table A1 — Standard compounds form and suppliers

Table Al — Standard compounds form and suppliers

Compound name SMILES Supplier Form
Arachidonic Acid CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(0)=0 Bertin Powder
Leukotriene B4 CCCCCC=CCc(C=CcC=CCc=Cc(cccc(=0)0)0)o Bertin Powder
Leukotriene D4 CCCCCC=CCC=CC=CC=CC(C(CCCC(=0)0)0)SCC(C(=O)NCC(=0)O)N Bertin Powder
Prostaglandin D2 CCCCCC(C=CC1C(C(CC1=0)O)CC=CCCCC(=0)0)0 Bertin Powder
Prostaglandin E2 CCCCCC(C=CC1C(CC(=0)C1CC=CCCCC(=0)0)0)O Bertin Powder
Prostaglandin F2a CCCCCC(C=CC1C(CC(C1CC=CCCCC(=0)0)0)0)0 Bertin Powder
Acetochlor CCC1=CC=CC(=C1N(COCC)C(=0)CCI)C LGC Powder
Androstenedione CC12CCC(=0)C=C1CCC3C2CCC4(C3CCC4=0)C LGC Powder
Carbendazim COC(=0O)NC1=NC2=CC=CC=C2N1 LGC Powder
Clothianidin CNC(=N[N+](=0)[O-]))NCC1=CN=C(S1)CI LGC Powder
Cortisone CC12CCC(=0)C=C1CCC3C2C(=0)CC4(C3CCC4(C(=0)CO)0)C LGC Powder
Dimethyldithiophosphate COP(=S)(0C)s LGC Powder
Estrone CC12CCC3C(C1CCC2=0)CCC4=C3C=CC(=C4)O LGC Powder
Fluoxetine CNCCC(C1=CC=CC=C1)0C2=CC=C(C=C2)C(F)(F)F LGC 1.0 mg/mL in MeOH
Hydrocortisone CC12CCC(=0)C=C1CCC3C2C(CC4(C3CCC4(C(=0)CO)0)C)O LGC Powder
Ibuprofen CC(C)CC1=CC=C(C=C1)C(C)C(=0)O LGC Powder
Paracetamol CC(=O)NC1=CC=C(C=C1)0O LGC Powder
Paroxetine C1CNCC(C1C2=CC=C(C=C2)F)C0OC3=CC4=C(C=C3)0C04 LGC 1.0 mg/mL in MeOH
Progesterone CC(=0)C1CCC2C1(CCr3c2ceer4=Cc(=0)cees4e)c LGC Powder
Sertraline CNC1CCC(C2=CC=CC=C12)C3=CC(=C(C=C3)CI)CI LGC 1.0 mg/mL in MeOH
Tebuconazole CC(C)(C)C(CCC1=CC=C(C=C1)CI)(CN2C=NC=N2)O LGC Powder
Testosterone CC12CCC3C(C1CCC20)CCC4=CC(=0)CCC34C LGC Powder
Thiacloprid C1CSC(=NC#N)N1CC2=CN=C(C=C2)ClI LGC Powder
Venlafaxine CN(C)CC(C1=CC=C(C=C1)0OC)C2(CCCCC2)0 LGC Powder
2-chloro-4-methylbenzoic acid CC1=CC(=C(C=C1)C(=0)0O)CI LGC Powder
Acetamiprid CC(=NC#N)N(C)CC1=CN=C(C=C1)CI LGC Powder
Amidosulfuron CN(S(=0)(=0)C)S(=0)(=0)NC(=0)NC1=NC(=CC(=N1)OC)OC LGC Powder
Atrazine CCNC1=NC(=NC(=N1)CI)NC(C)C LGC Powder
Atrazine-2-hydroxy CCNC1=NC(=O)NC(=N1)NC(C)C LGC Powder
Beflubutamid CCC(C(=0)NCC1=CC=CC=C1)OC2=CC(=C(C=C2)F)C(F)(F)F LGC Powder
Bixafen CN1C=C(C(=N1)C(F)F)C(=0)NC2=C(C=C(C=C2)F)C3=CC(=C(C=C3)CI)Cl LGC Powder
Bromacil CCC(C)N1C(=0)NC(=C(Br)C1=0)C LGC Powder
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Table Al — (continued) Standard compounds form and suppliers

Compound name SMILES Supplier Form

Carbaryl CNC(=0)0OC1=CC=CC2=CC=CC=C21 LGC Powder
Carbetamide CCNC(=0)C(C)OC(=0O)NC1=CC=CC=C1 LGC Powder
Chlorantraniliprole CC1=CC(=CC(=C1NC(=0)C2=CC(=NN2C3=C(C=CC=N3)CI)Br)C(=O)NC)CI LGC Powder
Dimethenamid CC1=CSC(=C1IN(C(C)cOC)C(=0)CcCI)C LGC Powder
Estradiol-2-hydroxy CC12CCC3C(C1CCC20)CCC4=CC(=C(C=C34)0)O LGC Powder
Estrone-2-hydroxy CC12CCC3C(C1CCC2=0)CCC4=CC(=C(C=C34)0)0O LGC Powder
Ethidimuron CCS(=0)(=0)C1=NN=C(S1)N(C)C(=O)NC LGC Powder
Fenamidone CC1(C(=O)N(C(=N1)SC)NC2=CC=CC=C2)C3=CC=CC=C3 LGC Powder
Fenpropimorph CCI1CN(CC(0O1)C)CcCc(C)cee=Cc=C(C=C2)C(C)(C)C LGC Powder
Flonicamid C1=CN=CC(=C1C(F)(F)F)C(=O)NCC#N LGC Powder
Fluroxypyr C(C(=0)0)OC1=NC(=C(C(=C1CI)N)CI)F LGC Powder
Flurtamone CNC1=C(C(=0)C(01)C2=CC=CC=C2)C3=CC(=CC=C3)C(F)(F)F LGC Powder
Fosthiazate CCOI[P](=0O)(SC(C)CC)N1CCSC1=0 LGC Powder
Imazamethabenz-methyl CC1=CC(=C(C=C1)C(=0)OC)C2=NC(C(=0O)N2)(C)C(C)C LGC Powder
Imazamox CC(C)C1(C(=0O)NC(=N1)C2=C(C=C(C=N2)COC)C(=0)0O)C LGC Powder
Imazaquin CC(C)C1(C(=O)NC(=N1)C2=NC3=CC=CC=C3C=C2C(=0)0O)C LGC Powder
lodosulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=0O)NS(=0)(=0)C2=C(C=CC(=C2)I)C(=0)0OC LGC Powder
Irgarol CC(C)(C)NC1=NC(=NC(=N1)NC2CC2)SsC LGC Powder
Isoxaben CCC(C)(CC)C1=NOC(=C1)NC(=0)C2=C(C=CC=C20C)0C LGC Powder
Isoxaflutole CS(=0)(=0)C1=C(C=CC(=C1)C(F)(F)F)C(=0)C2=C(ON=C2)C3CC3 LGC Powder
Metamitron CC1=NN=C(C(=O)N1N)C2=CC=CC=C2 LGC Powder
Metobromuron CN(C(=O)NC1=CC=C(C=C1)Br)OC LGC Powder
Metolachlor CCC1=CC=CC(=CIN(C(C)COoC)Cc(=0)CCI)C LGC Powder
Metosulam CC1=C(C(=C(C=C1)CI)NS(=0)(=0)C2=NN3C(=CC(=NC3=N2)OC)OC)CI LGC Powder
Metribuzine CSC1=NN=C(C(=O)N1IN)C(C)(C)C LGC Powder
Metsulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=0)NS(=0)(=0)C2=CC=CC=C2C(=0)0C LGC Powder
Nicosulfuron CN(C)C(=0)C1=C(N=CC=C1)S(=0)(=O)NC(=0)NC2=NC(=CC(=N2)OC)OC LGC Powder
Oryzalin CCCN(CCC)C1=C(C=C(C=C1[N+](=0)[O-])S(=0)(=0O)N)[N+](=0)[O-] LGC Powder
Pencycuron C1CCC(C1)N(CC2=CC=C(C=C2)CI)C(=O)NC3=CC=CC=C3 LGC Powder
Propachlor CC(C)N(C1=CcC=CC=C1)C(=0O)CCI LGC Powder
Propamocarb CCCOC(=0O)NCCCN(C)C LGC Powder
Propoxycarbazone CCCOC1=NN(C(=0O)N1C)C(=0O)NS(=0)(=0)C2=CC=CC=C2C(=0)0C LGC Powder
Pymetrozine CC1=NNC(=O)N(C1)N=CC2=CN=CC=C2 LGC Powder
Pyraclostrobin COC(=0O)N(C1=CC=CC=C1C0OC2=NN(C=C2)C3=CC=C(C=C3)Cl)OC LGC Powder
Pyroxsulam COC1=CC(=NC2=NC(=NN12)NS(=0)(=0)C3=C(C=CN=C30C)C(F)(F)F)OC LGC Powder
Quinmerac CC1=CC2=C(C(=C(C=C2)CI)C(=0)O)N=C1 LGC Powder
Spiroxamine CCCN(CC)ccri1coc2(cece(cez)c(c)cye)or LGC Powder
Sulcotrione CS(=0)(=0)C1=CC(=C(C=C1)C(=0)C2C(=0)CCccC2=0)CI LGC Powder
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Table Al — (continued) Standard compounds form and suppliers

Compound name SMILES Supplier Form

Terbuthylazine CCNC1=NC(=NC(=N1)CI)NC(C)(C)C LGC Powder
Tertbutylazine-2-hydroxy CCNC1=NC(=O)NC(=N1)NC(C)(C)C LGC Powder
Thifensulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=0O)NS(=0)(=0)C2=C(SC=C2)C(=0)0C LGC Powder
Triazoxide C1=CC2=C(C=C1CI)[N+](=NC(=N2)N3C=CN=C3)[O-] LGC Powder
Triclopyr C1=C(C(=NC(=C1ChCl)OCC(=0)O)CI LGC Powder
Triflusulfuron-methyl CC1=C(C(=CC=C1)C(=0)OC)S(=0)(=O)NC(=0O)NC2=NC(=NC(=N2)OCC(F)(F)F)N(C)C LGC Powder
Trinexapac-ethyl CCOC(=0)C1CC(=0)C(=C(C2CC2)0)C(=0)C1 LGC Powder
Triticonazole CC1(CCC(=CC2=CC=C(C=C2)CI)C1(CN3C=NC=N3)O)C LGC Powder
Tritosulfuron COC1=NC(=NC(=N1)NC(=O)NS(=0)(=0)C2=CC=CC=C2C(F)(F)F)C(F)(F)F LGC Powder
17b-Estradiol CC12CCC3C(C1CCC20)CCC4=C3C=CC(=C4)0 LGC Powder
Acetylsalicylic acid CC(=0)0OC1=CC=CC=C1C(=0)0O LGC Powder
Aniline C1=CC=C(C=C1)N LGC Powder
Dehydroepiandrosterone CC12CCC3C(C1CCccC2=0)CC=C4C3(Ccc(c4)0)C LGC Powder
Estriol CC12CCC3C(C1CC(C20)0O)CCC4=C3C=CC(=C4)O LGC Powder
L-thyroxine C1=C(C=C(C(=C11)OC2=CC(=C(C(=C2))O))l)CC(C(=0O)O)N LGC Powder
Pregnenolone CC(=0O)ClCcc2c1(cce3cace=c4cs(cece(c4)o)e)e LGC Powder
Progesterone-17-hydroxy CC(=0)C1(CCcC2C1(Ccr3cacece4=Ccc(=0)cees4c)c)o LGC Powder
Tryptophan C1=CC=C2C(=C1)C(=CN2)CC(C(=0O)O)N LGC Powder
Mesotrione CS(=0)(=0)C1=CC(=C(C=C1)C(=0)C2C(=0)CCCC2=0)[N+](=0)[O-] Servilab Powder
Caffeine CN1C=NC2=C1C(=O)N(C(=O)N2C)C Servilab Powder
Aflatoxin B1 COC1=C2C3=C(C(=0)CC3)C(=0)0C2=C4C5C=C0OC50C4=C1 Sigma Aldrich Powder
Codeine CN1CCC23C4C1CC5=C2C(=C(C=C5)OC)OC3C(C=C4)0 Sigma Aldrich Powder
Hydroxyindoleacetic acid C1=CC2=C(C=C10)C(=CN2)CC(=0)O Sigma Aldrich Powder
Piperine C1CCN(CC1)C(=0)C=CC=CC2=CC3=C(C=C2)0OCO3 Sigma Aldrich Powder
Pravastatin CCC(C)C(=0)OC1CC(C=C2C1C(C(C=C2)C)CCcc(cc(cc(=0)0)0)0)0 Sigma Aldrich Powder
Solanidine CCI1CCC2C(C3C(N2C1)Cr4c3(ceesr4ce=cel5(cce(ce)o)c)e)e Sigma Aldrich Powder
Foramsulfuron CN(C)C(=0)C1=C(C=C(C=C1)NC=0)S(=0O)(=0O)NC(=0O)NC2=NC(=CC(=N2)0C)0OC Sigma Aldrich Powder
4-Aminophenol C1=CC(=CC=C1IN)O Sigma Aldrich Powder
Acetylcholine CC(=0)OCCIN+](C)(C)C Sigma Aldrich Powder
Aldosterone CC12CCC(=0)C=C1CCC3C2C(Cc4(Cc3Ccrer4c(=0)co)c=0)0 Sigma Aldrich Powder
Allopregnanolone CC(=0)C1CCcC2C1(Cccr3cacee4cs(cee(ca)o)e)e Sigma Aldrich Powder
Amoxicillin CC1(C(N2C(S1)C(C2=0)NC(=0)C(C3=CC=C(C=C3)0O)N)C(=0)0)C Sigma Aldrich Powder
Dopamine C1=CC(=C(C=C1CCN)0O)O Sigma Aldrich Powder
Epinephrine CNCC(C1=CC(=C(C=C1)0)0)O Sigma Aldrich Powder
Ethinylestradiol CC12CCC3C(C1CCC2(C#C)O)CLCC4=C3C=CC(=C4)0O Sigma Aldrich Powder
Ketoprofen CC(C1=CC(=CC=C1)C(=0)C2=CC=CC=C2)C(=0)0 Sigma Aldrich Powder
Methylparaben COC(=0)C1=CC=C(C=C1)O Sigma Aldrich Powder
Morphine CN1CCC23C4C1CC5=C2C(=C(C=C5)0)OC3C(C=C4)0 Sigma Aldrich Powder
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Table Al — (continued) Standard compounds form and suppliers

Compound name SMILES Supplier Form
Oxazepam C1=CC=C(C=C1)C2=NC(C(=0O)NC3=C2C=C(C=C3)CI)O Sigma Aldrich Powder
Oxybenzone COC1=CC(=C(C=C1)C(=0)C2=CC=CC=C2)0 Sigma Aldrich Powder
Pivmecillinam CC1(C(N2C(S1)C(C2=0)N=CN3CCCCCC3)C(=0)OCOC(=0)C(C)(C)C)C Sigma Aldrich Powder
Propylparaben CCCOC(=0)C1=CC=C(C=C1)0 Sigma Aldrich Powder
Salicylic acid C1=CC=C(C(=C1)C(=0)0)0O Sigma Aldrich Powder
Tryptamine-5-hydroxy C1=CC2=C(C=C10)C(=CN2)CCN Sigma Aldrich Powder
2-Phenylphenol C1=CC=C(C=C1)C2=CC=CC=C20 VWR Powder
Aminobenzimidazole C1=CC=C2C(=C1)NC(=N2)N VWR Powder
Azoxystrobin COC=C(C1=CC=CC=C10C2=NC=NC(=C2)OC3=CC=CC=C3C#N)C(=0)0C VWR Powder
Boscalid C1=CC=C(C(=C1)C2=CC=C(C=C2)CI)NC(=0)C3=C(N=CC=C3)CI VWR Powder
Carbamazepine C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=0O)N VWR Powder
Chlorpyrifos CCOP(=S)(0OCC)OC1=NC(=C(C=C1Cl)ChCI VWR Powder
Cotinine CN1C(CCC1=0)C2=CN=CC=C2 VWR Powder
Cyprodinil CC1=CC(=NC(=N1)NC2=CC=CC=C2)C3CC3 VWR Powder
Diazinon CCOP(=S)(0OCC)OC1=NC(=NC(=C1)C)C(C)C VWR Powder
Diclofenac C1=CC=C(C(=C1)CC(=0)O)NC2=C(C=CC=C2CI)CI VWR Powder
Imidacloprid C1CN(C(=N[N+](=0)[O-])N1)CC2=CN=C(C=C2)CI VWR Powder
Nicotine CN1CCCC1C2=CN=CC=C2 VWR Powder
Prochloraz CCCN(CCOC1=C(C=C(C=C1ChCICC(=O)N2C=CN=C2 VWR Powder
Propiconazole CCCC1COC(01)(CN2C=NC=N2)C3=C(C=C(C=C3)CI)CI VWR Powder
Thiamethoxam CN1COCN(C1=N[N+](=0)[O-])CC2=CN=C(S2)CI VWR Powder
1-(3,4-Dichlorophenyl)-3-

methylurea CNC(=O)NC1=CC(=C(C=C1)CI)CI VWR Powder
1-(3,4-Dichlorophenyl)urea C1=CC(=C(C=C1NC(=0O)N)ChCI VWR Powder
1-(4-Isopropylphenyl)urea CC(C)C1=CC=C(C=C1)NC(=O)N VWR Powder
2,4-mcpa CC1=C(C=CC(=C1)Cl)OCC(=0)0O VWR Powder
Alachlor CCC1=C(C(=CC=C1)CC)N(COoC)C(=0)CcClI VWR Powder
Ametryn CCNC1=NC(=NC(=N1)SC)NC(C)C VWR Powder
Atrazine-deisopropyl CCNC1=NC(=NC(=N1)N)CI VWR Powder
Carbofuran CC1(CC2=C(01)C(=CC=C2)OC(=0)NC)C VWR Powder
Chloridazon C1=CC=C(C=C1)N2C(=0O)C(=C(C=N2)N)CI VWR Powder
Chlortoluron CC1=C(C=C(C=C1)NC(=O)N(C)C)ClI VWR Powder
Dichlorprop CC(C(=0)0)0C1=C(C=C(C=C1)CICI VWR Powder
Dimethomorph COC1=C(C=C(C=C1)C(=CC(=0)N2CCOCC2)C3=CC=C(C=C3)Cl)0C VWR Powder
Diuron CN(C)C(=O)NC1=CC(=C(C=C1)Cl)CI VWR Powder
Fenpropidine CC(CC1=CC=C(C=Cl)C(C)(C)C)CN2CcCccee2 VWR Powder
Flufenacet CC(C)N(C1=CC=C(C=C1)F)C(=0)COC2=NN=C(S2)C(F)(F)F VWR Powder
Iprodione CC(C)NC(=0O)N1CC(=0)N(C1=0)C2=CC(=CC(=C2)ChCI VWR Powder
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Table Al — (continued) Standard compounds form and suppliers

Compound name SMILES Supplier Form
Isoproturon CC(C)C1=CC=C(C=C1)NC(=O)N(C)C VWR Powder
Isoproturon-didemethyl CC(C)C1=CC=C(C=C1)NC(=O)N VWR Powder
Linuron CN(C(=0)NC1=CC(=C(C=C1)CI)Cl)OC VWR Powder
Mesosulfuron-methyl COC1=CC(=NC(=N1)NC(=0)NS(=0)(=0)C2=C(C=CC(=C2)CNS(=0)(=0)C)C(=0)OC)OC VWR Powder
Metalaxyl CC1=C(C(=CC=C1)C)N(C(C)C(=0)OC)C(=0)COC VWR Powder
Metazachlor CC1=C(C(=CC=C1)C)N(CN2C=CC=N2)C(=0)CClI VWR Powder
Methabenzthiazuron CNC(=O)N(C)C1=NC2=CC=CC=C2S1 VWR Powder
Paclobutrazol CC(C)(C)C(C(CC1=CC=C(C=C1)CI)N2C=NC=N2)O VWR Powder
Pirimicarb CC1=C(N=C(N=C10C(=0)N(C)C)N(C)C)C VWR Powder
Propyzamide CC(C)(C#C)NC(=0)C1=CC(=CC(=C1)CI)Cl VWR Powder
Prosulfuron CC1=NC(=NC(=N1)OC)NC(=0)NS(=0)(=0)C2=CC=CC=C2CCC(F)(F)F VWR Powder
Pyrimethanil CC1=CC(=NC(=N1)NC2=CC=CC=C2)C VWR Powder
Simazine CCNC1=NC(=NC(=N1)CI)NCC VWR Powder
Tebutame CC(C)N(CC1=CC=CC=C1)C(=0)C(C)(C)C VWR Powder
Terbutryne CCNC1=NC(=NC(=N1)SC)NC(C)(C)C VWR Powder
Triadimenol CC(C)(C)C(C(N1C=NC=N1)OC2=CC=C(C=C2)Cl)O VWR Powder
Chlorpyrifos-methyl COP(=S)(0OC)OC1=NC(=C(C=C1Cl)CClI VWR Powder
Malathion CCOC(=0)CC(C(=0)OCC)SP(=S)(0C)OC VWR Powder
Triclosan C1=CC(=C(C=C1Cl)0)0C2=C(C=C(C=C2)CI)CI VWR Powder
3.2. Table A2 — Computer specifications

Model Dell OptiPlex XE2

Processor Intel® Core™ i5-4570S CPU @ 2.90 GHz 2.89 GHz

RAM 32.0GB

System type 64-bit operating system, x64-based processor

Operating system

Windows 10 Enterprise 2016 LTSB
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Table A3 — Sets of compounds used for spiking samples (n=45), training models (n=134) and evaluating

Table A3 — Sets of compounds used for spiking samples (n=45), training models (n=134) and evaluating them (n=30)

Compound name SMILES Chemical formula Monoisotopic mass  CAS
2-Phenylphenol C1=CC=C(C=C1)C2=CC=CC=C20 C12H100 170.0732 90-43-7
Acetochlor CCC1=CC=CC(=C1N(COCC)C(=0O)CCIl)C C14H20CINO2 269.1183 123113-74-6
Aflatoxin B1 COC1=C2C3=C(C(=0)CC3)C(=0)OC2=C4C5C=COC50C4=C1 C17H1206 312.0634 27261-02-5
Aminobenzimidazole C1=CC=C2C(=C1)NC(=N2)N C7H7N3 133.0640 934-32-7
Androstenedione CC12CCC(=0)C=C1CCC3C2CCC4(C3CCC4=0)C C19H2602 286.1933 63-05-8
Arachidonic Acid CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(0)=0 C20H3202 304.2402 93444-49-6
Azoxystrobin COC=C(C1=CC=CC=C10C2=NC=NC(=C2)OC3=CC=CC=C3C#N)C(=0)0C C22H17N305 403.1168 215934-32-0
Boscalid C1=CC=C(C(=C1)C2=CC=C(C=C2)CI)NC(=0)C3=C(N=CC=C3)CI C18H12CI2N20 342.0327 188425-85-6
Carbamazepine C1=CC=C2C(=C1)C=CC3=CC=CC=C3N2C(=O)N C15H12N20 236.0950 298-46-4
Carbendazim COC(=0O)NC1=NC2=CC=CC=C2N1 C9HIN302 191.0695 63278-70-6
Chlorpyrifos CCOP(=S)(OCC)OC1=NC(=C(C=C1Cl)ChClI C9H11CI3NO3PS 348.9263 39475-55-3
Clothianidin CNC(=N[N+](=0)[O-])NCC1=CN=C(S1)CI C6H8CIN502S 249.0087 205510-53-8
Codeine CN1CCC23C4C1CC5=C2C(=C(C=C5)OC)0C3C(C=C4)O C18H21NO3 299.1521 76-57-3
Cortisone CC12CCC(=0)C=C1CCC3C2C(=0)CC4(C3CCC4(C(=0)C0)0)C C21H2805 360.1937 53-06-5
Cotinine CN1C(CCC1=0)C2=CN=CC=C2 C10H12N20 176.0950 486-56-6
Cyprodinil CC1=CC(=NC(=N1)NC2=CC=CC=C2)C3CC3 C14H15N3 225.1266 121552-61-2
Diazinon CCOP(=S)(OCC)OC1=NC(=NC(=C1)C)C(C)C C12H21N203PS 304.1011 30583-38-1
Spiking D?Clofenac C1=CC=C(C(=C1)CC(=0)O)NC2=C(C=CC=C2CI)CI C14H11CI2NO2 295.0167 15307-86-5
set Dimethyldithiophosphate COP(=S)(0C)Ss C2H702PS2 157.9625 756-80-9
Estrone CC12CCC3C(C1CCC2=0)CCC4=C3C=CC(=C4)0 C18H2202 270.1620 53-16-7
Fluoxetine CNCCC(C1=CC=CC=C1)0C2=CC=C(C=C2)C(F)(F)F C17H18F3NO 309.1340 57226-07-0
Hydrocortisone CC12CCC(=0)C=C1CCC3C2C(CC4(C3CCC4(C(=0)C0)0)C)O C21H3005 362.2093 50-23-7
Hydroxyindoleacetic acid C1=CC2=C(C=C10)C(=CN2)CC(=0)O C10H9NO3 191.0582 113303-91-6
Ibuprofen CC(C)CC1=CC=C(C=C1)C(C)C(=0)O C13H1802 206.1307 58560-75-1
Imidacloprid C1CN(C(=N[N+](=0)[O-])N1)CC2=CN=C(C=C2)CI C9H10CIN502 255.0523 138261-41-3
Leukotriene B4 CCCCCC=CCC(C=CC=CC=CC(CCCC(=0)0)0)O C20H3204 336.2301 71160-24-2
Leukotriene D4 CCCCCC=CCC=CC=CC=CC(C(CCCC(=0)0O)0O)SCC(C(=O)NCC(=0)O)N C25H40N206S 496.2607 73836-78-9
Nicotine CN1CCCC1C2=CN=CC=C2 C10H14N2 162.1157 551-13-3
Paracetamol CC(=O)NC1=CC=C(C=C1)O C8HINO2 151.0633 8055-08-1
Paroxetine C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)0C04 C19H20FNO3 329.1427 63952-24-9
Piperine C1CCN(CC1)C(=0)C=CC=CC2=CC3=C(C=C2)0C03 C17H19NO3 285.1365 147030-08-8
Pravastatin CCC(C)C(=0)0OC1CC(C=C2C1C(C(C=C2)C)CCC(CC(CC(=0)0)0)O)O C23H3607 424.2461 81093-37-0
Prochloraz CCCN(CCOC1=C(C=C(C=C1CI)CI)CI)C(=O)N2C=CN=C2 C15H16CI3N302 375.0308 67747-09-5
Progesterone CC(=0)C1CCC2C1(CCC3C2Cccr4=CC(=0)Ccces4C)C C21H3002 314.2246 257630-50-5
Propiconazole CCCC1COC(01)(CN2C=NC=N2)C3=C(C=C(C=C3)CI)CI C15H17CI2N302 341.0698 75881-82-2
Prostaglandin D2 CCCCCC(C=CC1cC(C(CC1=0)0)CC=CCCCC(=0)0)O C20H3205 352.2250 41598-07-6
Prostaglandin E2 CCCCCC(C=CC1C(CC(=0)C1CC=CCCCC(=0)0)0)O C20H3205 352.2250 363-24-6
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Table A3 — Sets of compounds used for spiking samples (n=45), training models (n=134) and evaluating them (n=30)

Compound name SMILES Chemical formula Monoisotopic mass  CAS
Prostaglandin F2a CCCCCC(C=CC1C(CC(C1CcC=CCCCC(=0)0)0)0)0 C20H3405 354.2406 13535-33-6
Sertraline CNC1CCC(C2=CC=CC=C12)C3=CC(=C(C=C3)CI)CI C17H17CI2N 305.0738 79559-97-0
Solanidine CC1CCC2C(C3C(N2C1)CC4C3(CCC5C4CC=C6C5(CCC(C6)0)C)C)C C27H43NO 397.3345 80-78-4
Spiking Tebuconazole CC(C)(C)C(CCC1=CC=C(C=C1)CI)(CN2C=NC=N2)O C16H22CIN30 307.1451 80443-41-0
set Testosterone CC12CCC3C(C1CCC20)CCC4=CC(=0O)CCC34C C19H2802 288.2089 58-22-0
Thiacloprid C1CSC(=NC#N)N1CC2=CN=C(C=C2)CI C10H9CIN4S 252.0236 111988-49-9
Thiamethoxam CN1COCN(C1=N[N+](=0)[O-])CC2=CN=C(S2)CI C8H10CIN503s 291.0193 153719-23-4
Venlafaxine CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)0 C17H27NO2 277.2042 93413-69-5
1-(3,4-Dichlorophenyl)-3-methylurea  CNC(=O)NC1=CC(=C(C=C1)CI)CI C8H8CI2N20 218.0014 3567-62-2
1-(3,4-Dichlorophenyl)urea C1=CC(=C(C=C1NC(=0O)N)CICI C7HBCI2N20 203.9857 2327-02-8
1-(4-1sopropylphenyl)urea CC(C)C1=CC=C(C=C1)NC(=O)N C10H14N20 178.1106 56046-17-4
2,4-mcpa CC1=C(C=CC(=C1)Cl)OCC(=0)O C9H9CIO3 200.0240 94-74-6
2-chloro-4-methylbenzoic acid CC1=CC(=C(C=C1)C(=0)O)CI C8H7CIO2 170.0135 7697-25-8
Acetamiprid CC(=NC#N)N(C)CC1=CN=C(C=C1)Cl C10H11CIN4 222.0672 135410-20-7
Alachlor CCC1=C(C(=CC=C1)CC)N(COC)C(=0O)CClI C14H20CINO2 269.1183 15972-60-8
Ametryn CCNC1=NC(=NC(=N1)SC)NC(C)C C9H17N5S 227.1205 834-12-8
Amidosulfuron CN(S(=0)(=0)C)S(=0)(=O)NC(=0O)NC1=NC(=CC(=N1)OC)OC C9H15N507S2 369.0412 120923-37-7
Atrazine CCNC1=NC(=NC(=N1)CI)NC(C)C C8H14CIN5 215.0938 1912-24-9
Atrazine-2-hydroxy CCNC1=NC(=O)NC(=N1)NC(C)C C8H15N50 197.1277 2163-68-0
Atrazine-deisopropyl CCNC1=NC(=NC(=N1)N)CI C5HB8CINS 173.0468 1007-28-9
Beflubutamid CCC(C(=0O)NCC1=CC=CC=C1)0OC2=CC(=C(C=C2)F)C(F)(F)F C18H17F4NO2 355.1195 113614-08-7
Bixafen CN1C=C(C(=N1)C(F)F)C(=0O)NC2=C(C=C(C=C2)F)C3=CC(=C(C=C3)CI)CI C18H12CI2F3N30 413.0310 581809-46-3
Bromacil CCC(C)N1C(=O)NC(=C(Br)C1=0)C C9H13BrN202 260.0160 314-40-9
Carbaryl CNC(=0)0OC1=CC=CC2=CC=CC=C21 C12H11INO2 201.0790 51274-03-4
Training Carbetamide CCNC(=0)C(C)OC(=O)NC1=CC=CC=C1 C12H16N203 236.1161 16118-49-3
Set Carbofuran CC1(CC2=C(01)C(=CC=C2)OC(=0O)NC)C C12H15NO3 221.1052 1563-66-2
Chlorantraniliprole CC1=CC(=CC(=C1NC(=0)C2=CC(=NN2C3=C(C=CC=N3)CI)Br)C(=O)NC)CI C18H14BrCI2N502 480.9708 500008-45-7
Chloridazon C1=CC=C(C=C1)N2C(=0)C(=C(C=N2)N)CI C10H8CIN30 221.0356 1698-60-8
Chlortoluron CC1=C(C=C(C=C1)NC(=O)N(C)C)CI C10H13CIN20 212.0716 15545-48-9
Dichlorprop CC(C(=0)0)0C1=C(C=C(C=C1)ChCI C9H8CI203 233.9851 120-36-5
Dimethenamid CC1=CSC(=C1N(C(C)COC)C(=0)CCIl)C C12H18CINO2S 275.0747 87674-68-8
Dimethomorph COC1=C(C=C(C=C1)C(=CC(=0O)N2CCOCC2)C3=CC=C(C=C3)Cl)OC C21H22CINO4 387.1237 110488-70-5
Diuron CN(C)C(=O)NC1=CC(=C(C=C1)CICI C9H10CI2N20 232.0170 102962-29-8
Estradiol-2-hydroxy CC12CCC3C(C1CCC20)CCC4=CC(=C(C=C34)0)0 C18H2403 288.1725 362-05-0
Estrone-2-hydroxy CC12CCC3C(C1CCC2=0)CCC4=CC(=C(C=C34)0)0 C18H2203 286.1569 362-06-1
Ethidimuron CCS(=0)(=0)C1=NN=C(S1)N(C)C(=O)NC C7H12N403S2 264.0351 30043-49-3
Fenamidone CC1(C(=0O)N(C(=N1)SC)NC2=CC=CC=C2)C3=CC=CC=C3 C17H17N30S 311.1092 161326-34-7
Fenpropidine CC(CC1=CC=C(C=C1)C(C)(C)C)CN2Cccccc2 C19H31N 273.2456 67306-00-7
Fenpropimorph CC1CN(CC(01)C)CCc(C)CcCc2=CC=C(C=C2)C(C)(C)C C20H33NO 273.2456 67564-91-4
Flonicamid C1=CN=CC(=C1C(F)(F)F)C(=O)NCC#N C9H6F3N30 229.0463 158062-67-0
Flufenacet CC(C)N(C1=CC=C(C=C1)F)C(=0)COC2=NN=C(S2)C(F)(F)F C14H13F4N302S 363.0665 142459-58-3
Fluroxypyr C(C(=0)0)OC1=NC(=C(C(=C1CI)N)CHF C7H5CI2FN203 253.9661 69377-81-7
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Table A3 — Sets of compounds used for spiking samples (n=45), training models (n=134) and evaluating them (n=30)

Compound name SMILES Chemical formula Monoisotopic mass  CAS
Flurtamone CNC1=C(C(=0)C(01)C2=CC=CC=C2)C3=CC(=CC=C3)C(F)(F)F C18H14F3NO2 333.0977 96525-23-4
Foramsulfuron CN(C)C(=0)C1=C(C=C(C=C1)NC=0)S(=0)(=0)NC(=0)NC2=NC(=CC(=N2)OC)OC C17H20N607S 452.1114 173159-57-4
Fosthiazate CCOIP](=0)(SC(C)CC)N1CCSC1=0 C9H18NO3PS2 283.0466 98886-44-3
Imazamethabenz-methyl CC1=CC(=C(C=C1)C(=0)OC)C2=NC(C(=0O)N2)(C)C(C)C C16H20N203 288.1474 81405-85-8
Imazamox CC(C)C1(C(=0)NC(=N1)C2=C(C=C(C=N2)COC)C(=0)0O)C C15H19N304 305.1376 114311-32-9
Imazaquin CC(C)C1(C(=0)NC(=N1)C2=NC3=CC=CC=C3C=C2C(=0)0)C C17H17N303 311.1270 81335-37-7
lodosulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=0O)NS(=0)(=0)C2=C(C=CC(=C2)I)C(=0)0OC C14H13IN5NaO6S 528.9529 144550-36-7
Iprodione CC(C)NC(=O)N1CC(=O)N(C1=0)C2=CC(=CC(=C2)CI)CI C13H13CI2N303 329.0334 36734-19-7
Irgarol CC(C)(C)NC1=NC(=NC(=N1)NC2CC2)SC C11H19N5S 253.1361 28159-98-0
Isoproturon CC(C)C1=CC=C(C=C1)NC(=O)N(C)C C12H18N20 206.1419 34123-59-6
Isoproturon-didemethyl CC(C)C1=CC=C(C=C1)NC(=O)N C10H14N20 178.1106 56046-17-4
Isoxaben CCC(C)(CC)C1=NOC(=C1)NC(=0O)C2=C(C=CC=C20C)0C C18H24N204 332.1736 82558-50-7
Isoxaflutole CS(=0)(=0)C1=C(C=CC(=C1)C(F)(F)F)C(=0)C2=C(ON=C2)C3CC3 C15H12F3NO4S 359.0439 141112-29-0
Linuron CN(C(=0O)NC1=CC(=C(C=C1)Cl)Cl)OC C9H10CI2N202 248.0119 56645-87-5
Mesosulfuron-methyl COC1=CC(=NC(=N1)NC(=O)NS(=0)(=0)C2=C(C=CC(=C2)CNS(=0)(=0)C)C(=0)OC)OC C17H21N509S2 503.0781 208465-21-8
Mesotrione CS(=0)(=0)C1=CC(=C(C=C1)C(=0)C2C(=0)CCCC2=0)[N+](=0)[O-] C14H13NO7S 339.0413 104206-82-8
Metalaxyl CC1=C(C(=CC=C1)C)N(C(C)C(=0O)OC)C(=0)CcoC C15H21INO4 279.1471 57837-19-1
Metamitron CC1=NN=C(C(=0)N1N)C2=CC=CC=C2 C10H10N40 202.0855 41394-05-2
Metazachlor CC1=C(C(=CC=C1)C)N(CN2C=CC=N2)C(=0)CClI C14H16CIN30O 277.0982 67129-08-2
Methabenzthiazuron CNC(=0O)N(C)C1=NC2=CC=CC=C2S1 C10H11N30S 221.0623 18691-97-9
Training Metobromuron CN(C(=0O)NC1=CC=C(C=C1)Br)OC C9H11BrN202 258.0004 3060-89-7
Set Metolachlor CCC1=CC=CC(=CIN(C(C)COC)C(=0)CCI)C C15H22CINO2 283.1339 55762-76-0
Metosulam CC1=C(C(=C(C=C1)CI)NS(=0)(=0)C2=NN3C(=CC(=NC3=N2)OC)OC)CI C14H13CI2N504S 417.0065 139528-85-1
Metribuzine CSC1=NN=C(C(=O)NIN)C(C)(C)C C8H14N40S 214.0888 21087-64-9
Metsulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=O)NS(=0)(=0)C2=CC=CC=C2C(=0)0C C14H15N506S 381.0743 74223-64-6
Nicosulfuron CN(C)C(=0)C1=C(N=CC=C1)S(=0)(=0O)NC(=0)NC2=NC(=CC(=N2)OC)OC C15H18N606S 410.1009 111991-09-4
Oryzalin CCCN(CCC)C1=C(C=C(C=C1[N+](=0)[O-])S(=0)(=0)N)[N+](=0)[O-] C12H18N406S 346.0947 19044-88-3
Paclobutrazol CC(C)(C)C(C(CC1=CC=C(C=C1)CI)N2C=NC=N2)O C30H40CI2N602 586.2590 76738-62-0
Pencycuron C1CCC(C1)N(CC2=CC=C(C=C2)CIl)C(=O)NC3=CC=CC=C3 C19H21CIN20 328.1342 66063-05-6
Pirimicarb CC1=C(N=C(N=C10OC(=0O)N(C)C)N(C)C)C C11H18N402 238.1430 23103-98-2
Propachlor CC(C)N(C1=CC=CC=C1)C(=0)CCI C11H14CINO 211.0764 1918-16-7
Propamocarb CCCOC(=0O)NCCCN(C)C C9H20N202 188.1525 24579-73-5
Propoxycarbazone CCCOC1=NN(C(=0O)N1C)C(=O)NS(=0)(=0)C2=CC=CC=C2C(=0)0C C15H17N4NaO7S 420.0716 181274-15-7
Propyzamide CC(C)(CH#C)NC(=0)C1=CC(=CC(=C1)CI)CI C12H11CI2NO 255.0218 11097-11-3
Prosulfuron CC1=NC(=NC(=N1)OC)NC(=O)NS(=0)(=0)C2=CC=CC=C2CCC(F)(F)F C15H16F3N504S 419.0875 94125-34-5
Pymetrozine CC1=NNC(=0O)N(C1)N=CC2=CN=CC=C2 C10H11IN50 217.0964 123312-89-0
Pyraclostrobin COC(=0O)N(C1=CC=CC=C1COC2=NN(C=C2)C3=CC=C(C=C3)Cl)OC C19H18CIN304 387.0986 175013-18-0
Pyrimethanil CC1=CC(=NC(=N1)NC2=CC=CC=C2)C C12H13N3 199.1109 53112-28-0
Pyroxsulam COC1=CC(=NC2=NC(=NN12)NS(=0)(=0)C3=C(C=CN=C30C)C(F)(F)F)OC C14H13F3N605S 434.0620 422556-08-9
Quinmerac CC1=CC2=C(C(=C(C=C2)CI)C(=0)O)N=C1 C11H8CINO2 221.0244 90717-03-6
Simazine CCNC1=NC(=NC(=N1)CI)NCC C7H12CIN5 201.0781 119603-94-0
Spiroxamine CCCN(CC)cc1cocz(cce(cea)c(cye)e)ol C18H35N0O2 297.2668 118134-30-8
Sulcotrione CS(=0)(=0)C1=CC(=C(C=C1)C(=0)C2C(=0)CCCC2=0)Cl C14H13CIO5S 328.0172 99105-77-8
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Table A3 — Sets of compounds used for spiking samples (n=45), training models (n=134) and evaluating them (n=30)

Compound name SMILES Chemical formula Monoisotopic mass  CAS
Tebutame CC(C)N(CC1=CC=CC=C1)C(=0)C(C)(C)C C15H23NO 233.1780 35256-85-0
Terbuthylazine CCNC1=NC(=NC(=N1)CI)NC(C)(C)C C9H16CIN5 229.1094 5915-41-3
Terbutryne CCNC1=NC(=NC(=N1)SC)NC(C)(C)C C10H19N5S 241.1361 886-50-0
Tertbutylazine-2-hydroxy CCNC1=NC(=0O)NC(=N1)NC(C)(C)C C9H17N50 211.1433 66753-07-9
Training Thife_nsulfuron-methyl CC1=NC(=NC(=N1)OC)NC(=0O)NS(=0)(=0)C2=C(SC=C2)C(=0)0OC C12H13N506S2 387.0307 79277-27-3
Set Triadimenol CC(C)(C)C(C(N1C=NC=N1)0OC2=CC=C(C=C2)Cl)O C14H18CIN302 295.1088 55219-65-3
Triazoxide C1=CC2=C(C=C1CI)[N+](=NC(=N2)N3C=CN=C3)[O-] C10H6CIN50 247.0261 72459-58-6
Triclopyr C1=C(C(=NC(=C1CI)Cl)OCC(=0)0O)ClI C7H4CI3NO3 254.9257 55335-06-3
Triflusulfuron-methyl CC1=C(C(=CC=C1)C(=0)OC)S(=0)(=O)NC(=O)NC2=NC(=NC(=N2)OCC(F)(F)F)N(C)C C17H19F3N606S 492.1039 126535-15-7
Trinexapac-ethyl CCOC(=0)C1CC(=0)C(=C(C2CC2)0)C(=0)C1 C13H1605 252.0998 95266-40-3
Triticonazole CC1(CCC(=CC2=CC=C(C=C2)CI)C1(CN3C=NC=N3)0O)C C17H20CIN30 317.1295 131983-72-7
Tritosulfuron COC1=NC(=NC(=N1)NC(=O)NS(=0)(=0)C2=CC=CC=C2C(F)(F)F)C(F)(F)F C13H9F6N504S 445.0279 142469-14-5
17b-Estradiol CC12CCC3C(C1CCC20)CCC4=C3C=CC(=C4)0 C18H2402 272.1776 50-28-2
4-Aminophenol C1=CC(=CC=C1N)O C6H7NO 109.0528 123-30-8
Acetylcholine CC(=0)OCC[N+](C)(C)C C7H16NO2 146.1181 51-84-3
Acetylsalicylic acid CC(=0)OC1=CC=CC=C1C(=0)O C9HB804 180.0423 50-78-2
Aldosterone CC12CCC(=0)C=C1CCC3C2C(CC4(C3Cccr4c(=0)Cco)C=0)0 C21H2805 360.1937 152-04-5
Allopregnanolone CC(=0O)C1CCC2C1(CCC3C2CCr4C3(Ccc(ca)o)e)c C21H3402 318.2559 516-54-1
Amoxicillin CC1(C(N2C(S1)C(C2=0)NC(=0)C(C3=CC=C(C=C3)O)N)C(=0)0O)C C16H19N305S 365.1045 26787-78-0
Aniline C1=CC=C(C=C1)N C6H7N 93.0578 62-53-3
Caffeine CN1C=NC2=C1C(=0O)N(C(=0)N2C)C C8H10N402 194.0804 58-08-2
Chlorpyrifos-methyl COP(=S)(0OC)OC1=NC(=C(C=C1CICI)CI C7H7CI3NO3PS 320.8950 5598-13-0
Dehydroepiandrosterone CC12CCC3C(C1CCC2=0)CC=C4C3(CCC(C4)0)C C19H2802 288.2089 53-43-0
Dopamine C1=CC(=C(C=C1CCN)0O)O C8H11NO2 153.0790 51-61-6
Epinephrine CNCC(C1=CC(=C(C=C1)0)0)0O C9H13NO3 183.0895 51-43-4
Validation Estriol _ CC12CCC3C(C1CC(C20)0)CCC4=C3C=CC(=C4)0 C18H2403 288.1725 50-27-1
set Ethinylestradiol CC12CCC3C(C1CCC2(C#C)0O)CCC4=C3C=CC(=C4)O C20H2402 296.1776 77538-56-8
Ketoprofen CC(C1=CC(=CC=C1)C(=0)C2=CC=CC=C2)C(=0)O C16H1403 254.0943 172964-50-0
L-thyroxine C1=C(C=C(C(=C11)OC2=CC(=C(C(=C2)I)O))I)CC(C(=O)O)N C15H1114NO4 776.6867 7488-70-2
Malathion CCOC(=0)CC(C(=0)OCC)SP(=S)(0OC)OC C10H1906PS2 330.0361 121-75-5
Methylparaben COC(=0)C1=CC=C(C=C1)0 C8H803 152.0473 99-76-3
Morphine CN1CCC23C4C1CC5=C2C(=C(C=C5)0)0C3C(C=C4)O C17H19NO3 285.1365 47106-99-0
Oxazepam C1=CC=C(C=C1)C2=NC(C(=0O)NC3=C2C=C(C=C3)CI)O C15H11CIN202 286.0509 35295-88-6
Oxybenzone COC1=CC(=C(C=C1)C(=0)C2=CC=CC=C2)0 C14H1203 228.0786 58392-22-6
Pivmecillinam CC1(C(N2C(S1)C(C2=0)N=CN3CCCCCC3)C(=0)OCOC(=0)C(C)(C)C)C C21H33N305S 439.2141 32886-97-8
Pregnenolone CC(=0O)C1CCcC2C1(CcC3c2ce=C4cs3(cce(ca)o)e)e C21H3202 316.2402 145-13-1
Progesterone-17-hydroxy CC(=0)C1(CCC2C1(CCC3Cc2Cccc4=CC(=0)Ccr34Cc)C)0 C21H3003 330.2195 68-96-2
Propylparaben CCCOC(=0)C1=CC=C(C=C1)O C10H1203 180.0786 94-13-3
Salicylic acid C1=CC=C(C(=C1)C(=0)0O)O C7H603 138.0317 7681-06-3
Triclosan C1=CC(=C(C=C1Cl)0)0C2=C(C=C(C=C2)CI)CI C12H7CI302 287.9512 3380-34-5
Tryptamine-5-hydroxy C1=CC2=C(C=C10)C(=CN2)CCN C10H12N20 176.0950 50-67-9
Tryptophan C1=CC=C2C(=C1)C(=CN2)CC(C(=0)O)N C11H12N202 204.0899 73-22-3
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3.4. Table A4 — Calibrant sets used in positive and negative mode for the RTI platform

Table A4 — Calibrant sets used in positive and negative ionization modes for the RTI platform

ESI (+)
Compound Name Molecular [M+H]*
formula

Guanylurea C2H6N40 103.0614
Amitrole C2HAN4 85.0509
Histamine C5H9N3 112.0869
Chlormequate C5H13CIN 123.0809
Methamidophos C2H8NO2PS 142.0086
Vancomycin C66H75CI2N9024 1448.4375
Cefoperazone C25H27N908S2 646.1497
Trichlorfon (Dylox) C4H8CI304P 256.9299
Butocarboxim C7H14N202S 191.0849
Dichlorvos C4H7CI204P 220.9532
Tylosin C46H77N0O17 916.5264
TCMTB C9H6N2S3 238.9766
Rifaximin C43H51N3011 786.3596
Spinosad A C41H65NO10 732.4681
Emamectin Bla C49H75N013 886.5311
Avermectin Bla C48H72014 873.4995
Nigericin C40H68011 725.4834
Ivermectin Bla C48H74014 875.5151

ESI (-)
Compound Name Molecular [M-H]
formula

Amitrole C2HAN4 83.0363
Benzoic acid C7H602 121.0295
Acephate C4H10NO3PS 182.0046
Salicylic acid C7H603 137.0244
Simazine 2-Hydroxy C7H13N50 182.1047
Tepraloxydim C17H24CINO4 340.1321
Bromoxynil C7H3Br2NO 273.8509
MCPA C9H9CIO3 199.0167
Valproic acid C8H1602 143.1078
Phenytoin C15H12N202 251.0826
Flamprop C16H13CIFNO3 320.0495
Benodanil C13H10INO 321.9734
Dinoterb C10H12N205 239.0673
Inabenfide C19H15CIN202 337.0749
Coumaphos C14H16CIO5PS 361.0072
Triclosan C12H7CI302 286.9438
AvermectinBla C48H72014 871.4849
Salinomycin C42H70011 749.4845
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individual

compounds in serum

Table A5.1 — Results of data processing workflows on individual compounds in serum

XCMS - Default settings - Noise 10

XCMS - Optimized settings - Noise 10

p-value Fold p-value Fold
ores | emen | e | (ream | AoV L Sy | s | Soed | (renm | M2V
m/z Rt .in in rwn- vs..non- spike(.i/ sp;:ed -in in T\on- Vs. -non- spikefi/ spiI:ed
spiked spiked spiked area in spiked spiked spiked areain
samples | samples | samples non- SELES samples | samples | samples non- SR
) spiked) ) spiked)
AminoBenzimidazole 134.0713 4.74 7971 7489 | 1.9E-01 1.1 10.2
Paracetamol 152.0706 4.98 15318 13185 | 3.4E-03 1.2 11.9 4283 3482 | 4.4E-01 1.2 22.3
Nicotine 163.123 3.37
Cotinine 177.1022 4.31 1742 1496 8.2E-02 1.2 86.8
Carbendazim 192.0768 5.69
Cyprodinil 226.1339 33.22 132274 234 7.7E-04 565.2 17.9 19141 115 1.7E-03 166.0 18.4
Carbamazepine 237.1022 | 18.01
Clothianidin 250.016 7.99 298 148 | 5.1E-02 2.0 17.5
Thiacloprid 253.0309 12.24 5335 448 4.7E-03 11.9 24.4
Imidacloprid 256.0596 8.57 287 52 | 2.8E-04 5.5 14.2
Acetochlor 270.1255 40.57 3492 141 1.2E-02 24.7 45.4 300 120 1.4E-02 2.5 21.6
estrone 271.1693 | 31.60 297 86 | 4.3E-03 3.4 23.6
venlafaxine 278.2115 9.84 46103 149 | 4.5E-03 310.2 32.8 49197 39 | 1.3E-03 1250.9 16.7
Piperine 286.1444 36.42 537209 350581 6.1E-03 1.5 14.2 33959 28902 2.1E-01 1.2 4.4
Androstenedione 287.2006 | 31.50 55204 2253 | 4.9E-04 24.5 1.1 15705 619 | 2.4E-03 25.4 20.1
Testosterone 289.2168 28.90 61331 5213 4.2E-04 11.8 15.8 18275 7392 2.0E-03 2.5 13.0
Thiamethoxam 292.0266 6.97
Codeine 300.1594 5.12 1463 549 | 8.8E-03 2.7 12.3
Diazinon 305.1083 | 43.38
sertraline 306.0811 | 24.34 13392 372 | 5.6E-04 36.0 15.7 1733 101 | 1.5E-04 17.2 11.7
Tebuconazole 308.1524 | 39.36 | 118602 840 | 7.3E-04 141.1 17.5 | 107685 246 | 4.9€-03 437.3 26.5
fluoxetine 310.1413 | 23.71
Aflatoxin B1 313.0707 | 17.52 1514 202 | 2.0E-05 7.5 6.1
Progesterone 315.2339 42.10 70692 5845 3.8E-02 12.1 69.0 55997 2517 4.1E-05 22.2 9.8
paroxetine 330.15 18.34 81401 179 1.3E-03 455.5 21.1 6089 24 1.3E-03 258.1 17.0
Propiconazole 342.0771 | 41.73 | 106341 391 | 7.2E-04 272.0 17.5 54815 732 | 4.1E-04 74.9 11.5
Boscalid 343.0399 38.00 15360 852 5.5E-03 18.0 28.7
Chlorpyrifos 349.9336 | 45.53 4085 98 | 5.8E-03 41.5 35.6 4636 96 | 7.8E-05 48.3 8.2
Cortisone 361.2006 | 16.12 46168 22183 | 5.7E-04 2.1 11.7 20860 10110 | 3.0E-02 2.1 22.2
hydrocortisone 363.2166 15.86 232832 179367 9.0E-03 1.3 11.2 155061 65909 3.7E-02 2.4 34.6
Prochloraz 376.0381 | 38.74
Solanidine 398.342 24.54 177510 2537 1.1E-03 70.0 19.7 73463 326 1.1E-04 225.5 /23]
Azoxystrobine 404.1241 38.03 108006 170 6.0E-04 636.1 16.4 74841 53 4.7E-03 1399.3 26.3
Pravastatin 425.2534 | 20.50
Dimethyldithiophosphate 156.9541 2.95 7590 785 2.9E-05 9.7 1.6 2528 16 2.5E-02 155.8 47.4
2-phenylphenol 169.0659 | 30.19 531 242 1.7E-04 2.2 8.7
Hydroxyindoleacetic acid 190.051 5.71
Ibuprofen 205.1223 39.94 3184 2425 2.2E-03 1.3 7.9 3119 574 6.4E-04 5.4 13.2
Diclofenac 294.0094 39.59 11268 704 9.8E-06 16.0 7.7 5139 283 8.5E-03 18.1 31.5
Arachidonic Acid 303.233 47.00 782488 624374 1.1E-01 1.3 6.8 29062 23443 7.0E-02 1.2 13.9
Leukotriene B4 335.2228 39.52 664 494 3.8E-02 1.3 19.2 32484 330 6.0E-02 98.4 67.3
Prostaglandin D2 351.2177 | 27.60
Prostaglandin E2 351.2177 26.50 2928 419 1.4E-02 7.0 44.9 3823 131 3.4E-04 29.3 13.4
Prostaglandin F2a 353.2333 25.60 69517 152 5.4E-05 458.2 7.3 45657 260 2.6E-02 175.7 48.1
Leukotriene D4 495.2534 33.04 22927 342 8.4E-03 67.0 40.7
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Table A5.1 — (continued) Results of data processing workflows on individual compounds in serum

XCMS - Optimized settings - Noise 20

XCMS - Optimized settings - Noise 50

p-value Fold p-value Fold
ores | omen | e | (ream | AV | Smen | ares | Sowed | (renn | M2V
m/z Rt .in in r\on- vs..non- spike(.i/ sp;lr:ed -in in T\on- Vs. -non- spikefi/ spiI:ed
spiked spiked spiked area in spiked spiked spiked areain
samples | samples | samples non- SELES samples | samples | samples non- EEEs
) spiked) ) spiked)
AminoBenzimidazole 134.0713 4.74
Paracetamol 152.0706 4.98 4133 3185 | 3.2E-01 1.3 19.7 4161 3215 | 3.2E-01 1.3 20.9
Nicotine 163.123 3.37
Cotinine 177.1022 4.31 1603 1645 | 6.9E-02 1.0 77.1
Carbendazim 192.0768 5.69
Cyprodinil 226.1339 33.22 20959 121 2.8E-04 173.4 10.1 21173 121 3.1E-04 174.4 10.4
Carbamazepine 237.1022 | 18.01
Clothianidin 250.016 7.99 300 145 4.8E-02 2.1 11.2 299 144 4.8E-02 2.1 11.0
Thiacloprid 253.0309 | 12.24 4907 440 | 2.1E-03 11.2 19.1 4879 447 | 2.5E-03 10.9 20.2
Imidacloprid 256.0596 8.57 312 58 | 6.1E-04 5.4 16.1
Acetochlor 270.1255 40.57 334 120 1.8E-02 2.8 30.8 339 120 2.0E-02 2.8 8218
estrone 271.1693 | 31.60 322 96 | 2.1E-04 3.4 12.3 324 97 | 1.9€-04 3.4 11.5
venlafaxine 278.2115 9.84 51685 40 3.1E-04 1307.1 10.5 51527 39 2.6E-04 1314.9 9.8
Piperine 286.1444 36.42 38129 27607 2.6E-02 1.4 8.4 38231 28098 3.3E-02 1.4 8.8
Androstenedione 287.2006 | 31.50 16605 639 | 1.8E-03 26.0 18.3 16713 631 | 2.0E-03 26.5 19.2
Testosterone 289.2168 28.90 16475 7934 8.5E-03 2.1 15.0 16367 7925 8.7E-03 2.1 15.8
Thiamethoxam 292.0266 6.97
Codeine 300.1594 5.12 1602 581 | 7.0E-03 2.8 9.1 1599 576 | 6.1E-03 2.8 9.8
Diazinon 305.1083 | 43.38
sertraline 306.0811 | 24.34 1603 105 | 1.6E-06 15.2 6.9 1599 104 | 1.4E-06 15.3 6.7
Tebuconazole 308.1524 39.36 106629 263 1.1E-05 405.6 3.4 107178 267 2.2E-05 401.5 4.3
fluoxetine 310.1413 | 23.71
Aflatoxin B1 313.0707 | 17.52
Progesterone 315.2339 42.10 59068 2575 2.3E-05 22.9 8.9 58660 2610 4.4E-05 22.5 Sie)
paroxetine 330.15 | 18.34 6212 24 | 1.4E-03 263.1 17.3 6322 24 | 1.4E-03 265.9 17.5
Propiconazole 342.0771 | 41.73 54964 649 | 3.9E-05 84.7 5.4 54965 644 | 4.3E-05 85.3 5.6
Boscalid 343.0399 38.00 13699 974 8.0E-04 14.1 19.4 13577 979 6.2E-04 13.9 18.6
Chlorpyrifos 349.9336 | 45.53 4627 108 | 8.6E-04 42.9 15.5 4627 110 | 8.4E-04 42.0 15.4
Cortisone 361.2006 16.12 21315 9677 1.6E-02 2.2 8.8 21423 17043 1.6E-02 1.3 8.8
hydrocortisone 363.2166 15.86 150246 69702 2.4E-03 2.2 13.2 154997 74342 3.5E-04 2.1 10.1
Prochloraz 376.0381 | 38.74
Solanidine 398.342 24.54 70258 319 1.2E-04 220.0 7.5 70272 322 1.6E-04 218.1 8.3
Azoxystrobine 404.1241 | 38.03 74106 60 | 4.0E-03 1233.1 24.7 74117 61 | 3.5E-03 1222.2 23.8
Pravastatin 425.2534 | 20.50
Dimethyldithiophosphate 156.9541 2.95 2515 28 2.6E-02 90.9 47.9 2515 28 2.6E-02 90.9 47.9
2-phenylphenol 169.0659 | 30.19 479 242 | 4.6E-03 2.0 17.4 479 242 | 4.6E-03 2.0 17.4
Hydroxyindoleacetic acid 190.051 5.71
Ibuprofen 205.1223 | 39.94 3119 596 | 8.8E-04 5.2 13.2 3119 596 | 8.8E-04 5.2 13.2
Diclofenac 294.0094 | 39.59
Arachidonic Acid 303.233 47.00 29020 23443 7.5E-02 1.2 14.1 29020 23443 7.5E-02 1.2 14.1
Leukotriene B4 335.2228 39.52 36247 284 3.5E-02 127.5 5310 36247 284 3.5E-02 127.5 5280
Prostaglandin D2 351.2177 | 27.60
Prostaglandin E2 351.2177 26.50 3823 121 3.2E-04 31.5 13.4 3823 121 3.2E-04 31.5 13.4
Prostaglandin F2a 353.2333 25.60 37130 258 3.3E-02 144.1 5220 37130 258 3.3E-02 144.1 52.9
Leukotriene D4 495.2534 | 33.04
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Table A5.1 — (continued) Results of data processing workflows on individual compounds in serum
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XCMS - Optimized settings - Noise 100

Markerview - Noise 10

p-value Fold p-value Fold
ares | eores | ved | ream | A2V | Tares | eores | Soved | (oon | Areac
m/z Rt .in in r\on- vs..non- spike(.i/ sp;lr(]ed -in in T\on- Vs. -non- spikefi/ spillr:ed
spiked spiked spiked area in spiked spiked spiked areain
samples | samples | samples non- SELES samples | samples | samples non- L2z
) spiked) ) spiked)
AminoBenzimidazole 134.0713 4.74 787 4 | 1.1E-04 217.3 9.3
Paracetamol 152.0706 4.98 3570 3021 | 5.6E-01 1.2 23.1 109 62 | 7.1E-02 1.7 17.1
Nicotine 163.123 3.37
Cotinine 177.1022 4.31 373 0 | 2.7E-04 | Infinity 12.6
Carbendazim 192.0768 5.69 754 0 | 1.96-04 | Infinity 11.1
Cyprodinil 226.1339 | 33.22 21875 110 | 4.0E-03 198.9 24.7 3802 0 | 9.0E-04 | Infinity 18.9
Carbamazepine 237.1022 | 18.01 692 0 | 5.1E-05 | Infinity 7.2
Clothianidin 250.016 7.99 312 123 | 1.2E-02 2.5 17.5 20 0 | 3.7E-02 | Infinity 73.8
Thiacloprid 253.0309 | 12.24 4903 437 | 9.0E-03 11.2 30.6 416 0 | 2.0E-04 | Infinity 11.4
Imidacloprid 256.0596 8.57 140 0 | 3.7E-04 | Infinity 14.0
Acetochlor 270.1255 | 40.57 340 117 | 2.3E-02 2.9 34.5
estrone 271.1693 | 31.60 324 95 | 5.9E-04 3.4 16.1 248 0 | 2.8E-03 | Infinity 27.8
venlafaxine 278.2115 9.84 52120 35 | 8.1E-04 1476.3 14.4 1505 0 | 1.5E-04 | Infinity 10.4
Piperine 286.1444 | 36.42 35990 29145 | 2.3E-01 1.2 12.8 17599 11290 | 1.1E-02 1.5 17.7
Androstenedione 287.2006 | 31.50 15786 552 | 1.6E-03 28.6 17.7 1515 0 | 4.3E-04 | Infinity 14.7
Testosterone 289.2168 | 28.90 15303 7209 | 4.2E-03 2.1 13.2 1683 0 | 6.5E-04 | Infinity 16.9
Thiamethoxam 292.0266 6.97 63 0 | 1.4E-04 | Infinity 10.2
Codeine 300.1594 5.12 1536 503 | 2.8E-03 3.1 19.4 1808 0 | 1.6E-04 | Infinity 10.6
Diazinon 305.1083 | 43.38 3956 0 | 9.8E-05 | Infinity 8.9
sertraline 306.0811 | 24.34 1525 96 | 1.8E-04 15.9 12.0 193 0 | 7.4E-03 | Infinity 39.5
Tebuconazole 308.1524 | 39.36 96732 253 | 5.6E-04 382.5 12.7 3298 0 | 9.7E-04 | Infinity 19.4
fluoxetine 310.1413 | 23.71 701 0 | 1.2E-02 | Infinity 46.6
Aflatoxin B1 313.0707 | 17.52 2462 0 | 6.8E-04 | Infinity 17.1
Progesterone 315.2339 | 42.10 59890 2536 | 6.4E-05 23.6 9.9
paroxetine 330.15 | 18.34 5471 23 | 9.7E-04 240.7 15.3 2289 0 | 1.6E-03 | Infinity 23.0
Propiconazole 342.0771 | 41.73 53083 629 | 9.0E-04 84.5 14.8 2874 8.6E-04 | Infinity 18.6
Boscalid 343.0399 | 38.00 13766 991 | 1.7E-03 13.9 22.5 1082 1.2E-03 | Infinity 21.1
Chlorpyrifos 349.9336 | 45.53 4583 101 1.5E-03 45.4 18.3
Cortisone 361.2006 | 16.12 20361 18119 | 1.0E-01 1.1 2.7 1251 539 | 2.4E-03 2.3 15.5
hydrocortisone 363.2166 | 15.86 | 151256 75039 | 1.3E-03 2.0 12.2 6954 5331 | 1.1E-02 1.3 11.9
Prochloraz 376.0381 | 38.74 467 0 | 6.5E-03 | Infinity 37.2
Solanidine 398.342 | 24.54 70308 275 | 2.0E-04 256.1 9.0 5204 0 | 1.3E-03 | Infinity 21.2
Azoxystrobine 404.1241 | 38.03 72797 55 | 5.4E-03 1315.5 27.6 3039 0 | 8.1E-04 | Infinity 18.2
Pravastatin 425.2534 | 20.50
Dimethyldithiophosphate 156.9541 2.95 2012 26 | 8.4E-02 76.6 77.4 63 0 | 4.6E-03 | Infinity 33.4
2-phenylphenol 169.0659 | 30.19 355 210 | 3.3E-02 1.7 23.9
Hydroxyindoleacetic acid 190.051 5.71
Ibuprofen 205.1223 | 39.94 1426 662 | 1.7E-01 2.2 59.6 54 33 | 2.5E-03 1.7 12.5
Diclofenac 294.0094 | 39.59 230 0 | 1.5E-04 | Infinity 10.4
Arachidonic Acid 303.233 | 47.00 28959 23443 | 7.6E-02 1.2 14.1 23349 18582 | 1.1E-01 1.3 6.4
Leukotriene B4 335.2228 | 39.52 26531 644 | 6.5E-02 41.2 68.5 1494 0 | 1.3E-04 | Infinity 9.9
Prostaglandin D2 351.2177 | 27.60
Prostaglandin E2 351.2177 | 26.50 8190 36 | 1.6E-01 225.8 105.7 379 0 | 1.9E-03 | Infinity 24.2
Prostaglandin F2a 353.2333 | 25.60 31087 53 | 9.5E-02 587.6 83.0 1990 6.2E-05 | Infinity 7.7
Leukotriene D4 495.2534 33.04 733 0 2.8E-04 | Infinity 12.7
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Table A5.1 — (continued) Results of data processing workflows on individual compounds in serum

Markerview - Noise 20 Markerview - Noise 50
p-value Fold p-value Fold
ores | omen | e | (ream | AV Sres | es | Soved | (rem | AoV
m/z Rt .in in r\on- vs.‘non- spikefi/ sp;lr:ed -in in T\on- Vs. -non- spikefi/ spillr:ed
spiked spiked spiked area in spiked spiked spiked areain
samples | samples | samples non- SEE samples | samples | samples non- L2z
) spiked) ) spiked)
AminoBenzimidazole 134.0713 4.74 184 163 | 6.1E-02 1.1 9.7 642 0 | 9.5E-05 | Infinity 8.9
Paracetamol 152.0706 4.98 1171 624 1.5E-05 1.9 4.5 523 349 5.8E-02 1.5 30.4
Nicotine 163.123 3.37
Cotinine 177.1022 431 206 0 4.4E-03 Infinity 32.7
Carbendazim 192.0768 5.69 700 0 1.7E-04 | Infinity 10.8 586 0 4.2E-04 | Infinity 14.6
Cyprodinil 226.1339 33.22 3644 0 1.0E-03 Infinity 19.7 3371 0 1.2E-03 Infinity 21.1
Carbamazepine 237.1022 18.01 659 0 7.3E-05 Infinity 8.1 579 0 1.1E-05 Infinity 4.3
Clothianidin 250.016 7.99 3 0 2.0E-01 Infinity 200.0
Thiacloprid 253.0309 | 12.24 371 0 | 2.5E-04 | Infinity 12.2 193 0 | 3.1E-02 | Infinity 69.1
Imidacloprid 256.0596 8.57 100 0 3.9E-03 Infinity 31.4 19 0 2.0E-01 Infinity 200.0
Acetochlor 270.1255 | 40.57
estrone 271.1693 31.60 169 0 1.4E-02 Infinity 49.4 10 0 2.0E-01 Infinity 200.0
venlafaxine 278.2115 9.84 1408 0 2.3E-04 | Infinity 12.0 1230 0 2.2E-04 | Infinity 11.7
Piperine 286.1444 36.42 17262 10940 1.0E-02 1.6 17.9 16342 10025 9.9E-03 1.6 19.0
Androstenedione 287.2006 31.50 1414 0 5.3E-04 Infinity 15.8 1185 0 6.8E-04 Infinity 17.2
Testosterone 289.2168 28.90 1594 0 8.5E-04 | Infinity 18.5 1389 0 1.1E-03 Infinity 19.9
Thiamethoxam 292.0266 6.97 8 0 | 2.0E-01 | Infinity 200.0
Codeine 300.1594 5.12 1690 0 1.1E-04 Infinity 9.3 1523 0 1.3E-04 Infinity 9.8
Diazinon 305.1083 43.38 3746 0 1.2E-04 | Infinity 9.6 3078 0 1.5E-04 | Infinity 10.3
sertraline 306.0811 24.34 57 0 1.1E-02 Infinity 45.3
Tebuconazole 308.1524 39.36 3172 0 1.0E-03 Infinity 19.9 2842 0 1.6E-03 Infinity 22.8
fluoxetine 310.1413 23.71 682 0 4.3E-03 Infinity B288) 308 0 7.2E-02 Infinity 101.8
Aflatoxin B1 313.0707 17.52 2339 0 8.0E-04 Infinity 18.2 2028 0 7.4E-04 Infinity 17.6
Progesterone 315.2339 | 42.10
paroxetine 330.15 18.34 2141 0 1.9E-03 Infinity 24.3 1811 0 1.7E-03 Infinity 23.7
Propiconazole 342.0771 41.73 2731 0 8.4E-04 Infinity 18.5 2428 0 1.2E-03 Infinity 21.0
Boscalid 343.0399 38.00 972 0 2.1E-03 Infinity 25.1 587 0 2.3E-02 Infinity 61.1
Chlorpyrifos 349.9336 | 45.53
Cortisone 361.2006 16.12 1153 478 2.2E-03 2.4 16.1 1004 315 1.1E-03 3.2 16.1
hydrocortisone 363.2166 15.86 6819 5196 9.8E-03 1.3 11.9 6532 4978 1.2E-02 1.3 12.6
Prochloraz 376.0381 38.74 418 0 7.8E-03 Infinity 40.2 86 0 2.0E-01 Infinity 200.0
Solanidine 398.342 24.54 4981 0 1.4E-03 Infinity 22.2 4491 0 1.5E-03 Infinity 22.6
Azoxystrobine 404.1241 38.03 2859 0 1.2E-03 Infinity 20.6 2441 0 2.6E-03 Infinity 27.3
Pravastatin 425.2534 | 20.50
Dimethyldithiophosphate 156.9541 2.95
2-phenylphenol 169.0659 | 30.19
Hydroxyindoleacetic acid 190.051 5.71
lbuprofen 205.1223 39.94 10 0 1.1E-01 Infinity 125.9
Diclofenac 294.0094 39.59 187 0 2.1E-04 Infinity 11.5 27 0 2.1E-01 Infinity 173.2
Arachidonic Acid 303.233 47.00 23091 18397 1.1E-01 1.3 6.3 23123 18542 1.2E-01 1.2 5.9
Leukotriene B4 335.2228 39.52 1432 0 1.6E-04 | Infinity 10.6 1295 302 2.0E-02 4.3 15.0
Prostaglandin D2 351.2177 | 27.60
Prostaglandin E2 351.2177 26.50 329 0 2.0E-03 Infinity 24.9 85 0 2.1E-01 Infinity 173.2
Prostaglandin F2a 353.2333 25.60 1909 0 7.1E-05 Infinity 8.0 55 0 9.3E-02 Infinity 87.5
Leukotriene D4 495.2534 33.04 617 0 4.3E-04 | Infinity 14.7 311 0 5.1E-02 Infinity 60.2
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MzMine - CWT pipeline - Default settings -

Markerview - Noise 100 Noise 10
R s (pa_l\:;uii cr:::;e Area s e g:::: c::r:(;e Area
€ ;?;ea ii i‘::_ spiked (areain CVin € Ei:r:ea ii a;r::_ spiked (areain CVin
m/z Rt spiked spiked Vs. 'non- spikefi/ spiked spiked spiked vs. .non- spikel.i/ spiked
- — spiked areain sample B sl spiked areain sample
s s sample non- s s s sample non- s
s) spiked) s) spiked)
AminoBenzimidazole 134.0713 4.74 219 0 | 9.1E-02 | Infinity 115.5
Paracetamol 152.0706 4.98 16252 12257 6.0E-02 1.3 4.2
Nicotine 163.123 3.37
Cotinine 177.1022 4.31 20628 1308 | 7.7E-06 15.8 6.4
Carbendazim 192.0768 5.69 286 0 5.6E-02 Infinity 90.1 31313 1953 1.5E-04 16.0 9.7
Cyprodinil 226.1339 33.22 2929 0 1.9E-03 Infinity 24.4 140937 5962 6.5E-04 23.6 16.8
Carbamazepine 237.1022 | 18.01 277 0 | 4.8E-03 | Infinity 33.8 37137 2381 | 6.8E-04 15.6 17.7
Clothianidin 250.016 7.99 2797 632 2.6E-04 4.4 12.5
Thiacloprid 253.0309 | 12.24 17484 3017 | 2.9E-04 5.8 10.9
Imidacloprid 256.0596 8.57 7009 703 | 1.8E-04 10.0 10.0
Acetochlor 270.1255 40.57 2324 1712 1.7E-02 1.4 14.8
estrone 271.1693 | 31.60 14105 2602 | 1.1E-03 5.4 16.7
venlafaxine 278.2115 9.84 916 0 9.8E-04 | Infinity 19.5 52957 49 1.1E-04 1085.8 )3
Piperine 286.1444 36.42 3206 0 1.1E-03 Infinity 20.2 170988 115806 3.2E-02 1.5 22.2
Androstenedione 287.2006 | 31.50 690 0 | 6.96-03 | Infinity 38.5 55350 3405 | 3.0E-04 16.3 12.5
Testosterone 289.2168 28.90 1016 0 1.8E-03 Infinity 23.9 61448 1840 7.4E-04 33.4 17/.3)
Thiamethoxam 292.0266 6.97 4074 532 | 3.6E-04 7.7 12.4
Codeine 300.1594 5.12 1280 0 | 1.96-04 | Infinity 11.3 66600 9622 | 1.6E-05 6.9 11.4
Diazinon 305.1083 43.38 2017 0 7.4E-04 | Infinity 17.7 148106 513 7.9E-05 288.9 8.3
sertraline 306.0811 | 24.34 12814 1635 | 5.1E-05 7.8 6.4
Tebuconazole 308.1524 39.36 2352 0 3.2E-03 Infinity 29.3 121191 3791 7.6E-04 32.0 17/.3)
fluoxetine 310.1413 23.71 34625 3606 2.7E-03 9.6 26.4
Aflatoxin B1 313.0707 | 17.52 1720 0 | 1.2E-03 | Infinity 21.0
Progesterone 315.2339 42.10 92174 5124 7.2E-04 18.0 16.8
paroxetine 330.15 | 18.34 1399 0 | 4.96-03 | Infinity 34.0 63835 1690 | 4.8E-03 37.8 32.8
Propiconazole 342.0771 | 41.73 1877 0 | 3.4E-03 | Infinity 30.0 | 106056 1606 | 7.7E-04 66.1 17.6
Boscalid 343.0399 38.00 245 0 1.4E-01 Infinity 148.7 42716 1367 8.8E-04 31.2 18.1
Chlorpyrifos 349.9336 | 45.53
Cortisone 361.2006 16.12 715 19 3.4E-04 37.7 16.9 48932 19052 3.4E-03 2.6 11.7
hydrocortisone 363.2166 15.86 6141 4607 1.2E-02 13 133 3232 43681 2.0E-01 0.1 30.6
Prochloraz 376.0381 | 38.74 26450 880 | 1.1E-03 30.1 19.3
Solanidine 398.342 24.54 3759 0 3.1E-03 Infinity 28.8
Azoxystrobine 404.1241 | 38.03 1773 0 | 1.1E-02 | Infinity 45.1 | 109048 1310 | 6.3E-04 83.2 16.5
Pravastatin 425.2534 | 20.50
Dimethyldithiophosphate 156.9541 2.95 5745 490 | 4.1E-07 11.7 4.4
2-phenylphenol 169.0659 | 30.19
Hydroxyindoleacetic acid 190.051 5.71
Ibuprofen 205.1223 | 39.94 2803 2578 | 2.9E-01 1.1 26.2
Diclofenac 294.0094 39.59 8796 2055 1.6E-02 4.3 40.7
Arachidonic Acid 303.233 47.00 22072 17499 1.1E-01 13 6.7 795212 637697 1.2E-01 1.2 6.2
Leukotriene B4 335.2228 39.52 1059 0 4.6E-04 | Infinity 15.1 38523 5277 2.9E-02 7.3 57.7
Prostaglandin D2 351.2177 | 27.60
Prostaglandin E2 351.2177 26.50 14764 761 1.3E-02 19.4 46.0
Prostaglandin F2a 353.2333 25.60 1451 0 1.6E-04 | Infinity 10.6
Leukotriene D4 495.2534 33.04 18084 1338 2.9E-02 13.5 61.8
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Table A5.1 — (continued) Results of data processing workflows on individual compounds in serum

MzMine - CWT pipeline - Optimized settings -

MzMine - ADAP pipeline - Optimized settings -

Noise 10 Noise 50
p-value Fold p-value Fold
s | s | G | e | ey | A | A | e | e | sy
m/z Rt .in in r\on- vs..non- spikefi/ sp:lr:ed .in in r\on- Vs. .non- spike(.:l/ spillr:ed
spiked spiked spiked areain spiked spiked spiked area in
samples | samples | samples non- S samples | samples | samples non- SElHE
) spiked) ) spiked)
AminoBenzimidazole 134.0713 4.74 149671 106487 5.6E-03 1.4 11.8 30266 3167 9.5E-05 9.6 9.2
Paracetamol 152.0706 4.98 17027 13473 5.5E-04 1.3 5.4 17195 10666 9.6E-02 1.6 37.6
Nicotine 163.123 3.37
Cotinine 177.1022 431 22347 974 4.2E-05 23.0 6.6 19515 716 7.5E-05 27.3 8.5
Carbendazim 192.0768 5.69 34511 1712 1.2E-04 20.2 9.0 25071 1075 6.0E-03 23.3 35.1
Cyprodinil 226.1339 33.22 134023 7031 3.7E-12 19.1 0.8 131783 4385 9.2E-04 30.1 18.4
Carbamazepine 237.1022 18.01 32584 3369 5.7E-04 9.7 14.5 32150 2662 2.8E-03 12.1 29.2
Clothianidin 250.016 7.99 2216 870 3.1E-06 2.5 5.9 2140 470 1.9E-03 4.6 19.4
Thiacloprid 253.0309 12.24 12799 3475 3.4E-04 3.7 11.2 16508 578 1.6E-04 28.6 10.1
Imidacloprid 256.0596 8.57 7543 616 2.6E-04 12.2 12.0 6729 538 2.4E-04 12.5 11.3
Acetochlor 270.1255 40.57 2431 1492 4.2E-04 1.6 9.4 4152 3282 2.0E-01 1.3 41.7
estrone 271.1693 31.60 14276 2834 8.7E-06 5.0 4.2 12909 2009 1.1E-03 6.4 17.3
venlafaxine 278.2115 9.84 51775 57 3.3E-05 907.3 6.2 51850 43 1.4E-04 1202.1 10.2
Piperine 286.1444 36.42 162513 80321 5.2E-04 2.0 11.0 664947 426816 8.4E-03 1.6 16.6
Androstenedione 287.2006 31.50 50608 3262 3.8E-05 15.5 6.3 54171 2028 4.3E-04 26.7 14.2
Testosterone 289.2168 28.90 69964 2129 2.4E-04 32.9 11.8 60408 1479 6.7E-04 40.8 16.8
Thiamethoxam 292.0266 6.97 3061 401 6.1E-05 7.6 7.2 3993 504 5.6E-04 7.9 14.4
Codeine 300.1594 5.12 55856 6481 3.2E-04 8.6 12.0 64510 1368 1.4E-04 47.1 10.0
Diazinon 305.1083 43.38 153302 786 1.2E-04 195.0 9.7 144666 161 8.8E-05 898.8 8.6
sertraline 306.0811 24.34 12301 2347 3.7E-05 5.2 8.2 11976 1534 1.3E-03 7.8 18.7
Tebuconazole 308.1524 39.36 116564 3123 1.4E-04 37.3 9.8 118487 3212 7.4E-04 36.9 17.2
fluoxetine 310.1413 23.71 23954 5180 3.2E-04 4.6 12.1 32463 2950 1.2E-03 11.0 19.1
Aflatoxin B1 313.0707 17.52 1524 562 1.2E-03 2.7 14.5 1273 635 2.9E-03 2.0 15.3
Progesterone 315.2339 42.10 88544 3667 5.4E-04 24.1 15.3 89845 5074 7.6E-04 17.7 17.0
paroxetine 330.15 18.34 66077 1666 7.1E-06 39.7 3.6 56070 1210 1.6E-02 46.3 51.0
Propiconazole 342.0771 41.73 88793 1712 4.7E-05 51.9 6.9 105646 1540 7.6E-04 68.6 17.6
Boscalid 343.0399 38.00 33419 1398 2.5E-04 23.9 11.7 41300 906 8.9E-04 45.6 18.4
Chlorpyrifos 349.9336 | 45.53
Cortisone 361.2006 16.12 42547 2016 4.9E-05 21.1 7.0 44318 16248 1.9E-03 2.7 13.5
hydrocortisone 363.2166 15.86 3134 139721 1.1E-03 0.0 16.0 232703 138042 6.5E-02 1.7 11.5
Prochloraz 376.0381 38.74 26004 886 7.2E-05 29.4 7.8 25631 694 1.2E-03 36.9 20.5
Solanidine 398.342 24.54 161031 2162 7.1E-05 74.5 8.1
Azoxystrobine 404.1241 38.03 80322 1151 1.4E-04 69.8 10.0 106729 762 5.7E-04 140.1 16.1
Pravastatin 425.2534 | 20.50
Dimethyldithiophosphate 156.9541 2.95 7281 811 3.7E-05 9.0 6.1 6531 736 1.2E-06 8.9 5.4
2-phenylphenol 169.0659 | 30.19
Hydroxyindoleacetic acid 190.051 5.71 5233 184 | 2.0E-04 28.5 11.0
lbuprofen 205.1223 39.94 2440 1703 6.3E-04 1.4 6.8 3048 2302 2.6E-03 1.3 8.1
Diclofenac 294.0094 39.59 12338 2027 2.5E-08 6.1 2.4 11031 2034 7.1E-05 5.4 7.4
139532
Arachidonic Acid 303.233 | 47.00 1 | 747617 | 4.2E-05 1.9 5.4
Leukotriene B4 335.2228 39.52 11630 388 4.3E-05 30.0 6.6 54961 937 1.0E-04 58.6 ON()
Prostaglandin D2 351.2177 27.60 1930 355 4.2E-02 5.4 64.0
Prostaglandin E2 351.2177 26.50 4864 974 2.8E-05 5.0 4.9 10200 685 2.3E-02 14.9 56.4
Prostaglandin F2a 353.2333 25.60 50282 181 2.8E-02 277.7 65.9
Leukotriene D4 495.2534 33.04 2212 1833 2.5E-03 1.2 3.1 21981 1460 2.6E-02 15.1 60.1
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Table A5.1 — (continued) Results of data processing workflows on individual compounds in serum

MzMine - ADAP pipeline - Optimized settings - Progenesis - More sensitivity
Noise 100
p-value Fold p-value Fold
orer | s | Goien | (eam | A0 | Do | Soen | ed | arerm | A0S
m/z Rt .in in r\on- vs..non- spikefi/ sp:lr:ed 'in in T\on- Vs. 'non- spike(}l/ spillr:ed
spiked spiked spiked area in spiked spiked spiked areain
samples | samples | samples non- S samples | samples | samples non- SElHE
) spiked) ) spiked)
AminoBenzimidazole 134.0713 4.74 30406 7306 6.7E-06 4.2 8.7 91516 234 6.5E-05 391.3 6.3
Paracetamol 152.0706 4.98
Nicotine 163.123 3.37
Cotinine 177.1022 431 19498 669 7.3E-05 29.2 8.4
Carbendazim 192.0768 5.69 25071 1075 6.0E-03 23.3 35.1 96635 2714 6.9E-05 35.6 8.6
Cyprodinil 226.1339 | 33.22 | 131783 4385 | 9.2E-04 30.1 18.4 | 481950 1674 | 6.9E-04 287.9 13.6
Carbamazepine 237.1022 18.01 31518 2923 5.1E-03 10.8 33.8 145456 2125 3.0E-06 68.4 5.2
Clothianidin 250.016 7.99 2048 364 2.3E-03 5.6 21.7
Thiacloprid 253.0309 12.24 16418 538 1.7E-04 30.5 10.4 47488 9 1.9E-04 5304.4 8.9
Imidacloprid 256.0596 8.57 6625 447 2.5E-04 14.8 11.5 16865 20 1.1E-03 831.8 16.0
Acetochlor 270.1255 40.57 4629 3074 6.6E-02 1.5 32.8
estrone 271.1693 31.60 13050 2084 1.4E-03 6.3 18.4 1623 0 3.9E-01 Infinity 200.0
venlafaxine 278.2115 9.84 52088 43 1.3E-04 1207.6 9.7 161418 0 2.1E-04 | Infinity 9.2
252659 180492
Piperine 286.1444 36.42 664947 426816 8.4E-03 1.6 16.6 2 6 3.6E-02 1.4 12.3
Androstenedione 287.2006 31.50 54171 2025 4.1E-04 26.7 14.2 177679 118 5.2E-04 1511.7 12.4
Testosterone 289.2168 28.90 60408 2091 7.0E-04 28.9 16.8 182774 0 6.5E-05 Infinity 6.2
Thiamethoxam 292.0266 6.97 3917 485 5.0E-04 8.1 13.9 5345 38 8.0E-02 139.0 76.2
Codeine 300.1594 5.12 64510 1368 1.4E-04 47.1 10.0 224949 303 1.9E-04 742.9 8.9
Diazinon 305.1083 43.38 144666 161 8.8E-05 898.8 8.6 478989 0 7.5E-05 Infinity 6.5
sertraline 306.0811 24.34 11976 1534 1.3E-03 7.8 18.7 7957 0 4.3E-03 Infinity 25.5
Tebuconazole 308.1524 39.36 118487 3212 7.4E-04 36.9 17.2 424554 792 9.5E-04 535.8 15.2
fluoxetine 310.1413 23.71 32463 2950 1.2E-03 11.0 19.1 75793 92 1.6E-03 823.9 18.3
Aflatoxin B1 313.0707 17.52 1167 513 1.3E-03 2.3 15.0
Progesterone 315.2339 42.10 89818 5005 7.6E-04 17.9 17.0 302956 0 6.3E-04 | Infinity 13.2
187919.
paroxetine 330.15 18.34 56070 1210 1.6E-02 46.3 51.0 271775 1 1.9E-03 2 19.2
Propiconazole 342.0771 41.73 105642 1540 7.6E-04 68.6 17.6 339380 0 1.0E-03 Infinity 15.6
Boscalid 343.0399 38.00 41300 906 8.9E-04 45.6 18.4 109280 0 2.4E-03 Infinity 20.9
Chlorpyrifos 349.9336 | 45.53
Cortisone 361.2006 16.12 44424 16453 2.1E-03 2.7 13.4 156782 52025 4.3E-03 3.0 11.2
hydrocortisone 363.2166 15.86 233117 138264 6.5E-02 1.7 11.4 887099 575399 2.0E-01 1.5 8.1
Prochloraz 376.0381 38.74 25627 694 1.2E-03 36.9 20.5 43336 0 3.0E-02 Infinity 51.5
Solanidine 398.342 24.54 172137 2347 9.2E-04 73.3 18.8 713233 0 1.2E-03 Infinity 16.6
Azoxystrobine 404.1241 38.03 106729 762 5.7E-04 140.1 16.1 392714 0 7.9E-04 Infinity 14.3
Pravastatin 425.2534 | 20.50
Dimethyldithiophosphate 156.9541 2.95 6476 736 1.1E-06 8.8 5.8 1056 0 1.9E-03 Infinity 15).3
2-phenylphenol 169.0659 | 30.19 963 415 | 6.2E-02 2.3 37.9
Hydroxyindoleacetic acid 190.051 5.71 1821 3397 | 2.5E-01 0.5 73.4
Ibuprofen 205.1223 39.94 2751 1971 2.4E-03 1.4 10.1 780 443 2.8E-02 1.8 5.0
Diclofenac 294.0094 39.59 10908 1961 1.2E-04 5.6 8.4
Arachidonic Acid 303.233 | 47.00 1712 212 | 1.5E-01 8.1 90.2
Leukotriene B4 335.2228 39.52 39778 937 2.8E-02 42.4 64.3 197740 0 3.7E-04 | Infinity 11.1
Prostaglandin D2 351.2177 27.60 10186 675 2.3E-02 15.1 56.6
Prostaglandin E2 351.2177 | 26.50 57441 0 | 6.0E-03 | Infinity 28.5
Prostaglandin F2a 353.2333 25.60 50173 155 2.9E-02 324.2 66.3 252221 0 1.5E-04 | Infinity 8.1
Leukotriene D4 495.2534 33.04 21981 1460 2.6E-02 15.1 60.1 62552 0 4.6E-05 Infinity 5.5
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Table A5.1 — (continued) Results of data processing workflows on individual compounds in serum
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Progenesis - Default sensitivity

Manual integration

p-value Fold p-value Fold

ares | cores | sphed | (ream | AV | e | Sores | Sved | (oonn | Areac
m/z Rt .in in r\on- vs..non- spikefi/ sp;lr(]ed -in in T\on- Vs. -non- spikefi/ spillr:ed

spiked spiked spiked areain spiked spiked spiked area in
samples | samples | samples non- SELES samples | samples | samples non- L2z

) spiked) ) spiked)
AminoBenzimidazole 134.0713 4.74 88520 251 2.3E-05 352.6 4.5 119919 683 2.3E-04 175.6 9.4
Paracetamol 152.0706 4.98 8401 0 7.4E-05 Infinity 6.5
Nicotine 163.123 3.37 6605 0 2.7E-05 Infinity 4.6
Cotinine 177.1022 431 68792 2808 3.8E-05 24.5 7.5
Carbendazim 192.0768 5.69 93406 2769 5.4E-06 33.7 6.0 85070 0 3.1E-04 Infinity 10.5
Cyprodinil 226.1339 33.22 465799 1740 4.5E-04 267.6 11.8 383042 0 9.5E-05 Infinity 7.0
Carbamazepine 237.1022 18.01 130723 2226 5.4E-09 58.7 2.8 89375 10357 8.0E-05 8.6 6.7
Clothianidin 250.016 7.99 4952 0 6.1E-04 Infinity 13.1
Thiacloprid 253.0309 | 12.24 45899 10 | 6.8E-05 4619.8 6.3 35550 0 | 4.8E-04 | Infinity 12.1
Imidacloprid 256.0596 8.57 16282 23 6.8E-04 723.6 13.6 13617 0 2.9E-04 Infinity 10.2
Acetochlor 270.1255 40.57 7102 0 3.7E-04 Infinity 11.0
estrone 271.1693 31.60 21456 0 2.2E-05 Infinity 4.3
venlafaxine 278.2115 9.84 156056 0 9.6E-05 Infinity 7.1 105740 0 3.1E-04 Infinity 10.4

244194 184804 132225
Piperine 286.1444 36.42 6 3 3.5E-02 1.3 10.4 9 908440 2.3E-02 1.5 4.9
Androstenedione 287.2006 31.50 171669 122 2.8E-04 1407.8 10.0 107952 4105 8.0E-04 26.3 13.9
Testosterone 289.2168 28.90 176907 0 6.2E-05 Infinity 6.1 112541 687 1.1E-06 163.9 1.7
Thiamethoxam 292.0266 6.97 7596 0 4.1E-05 Infinity 5.3
Codeine 300.1594 5.12 217503 316 9.5E-05 688.7 7.0 125800 0 2.8E-04 Infinity 10.1
Diazinon 305.1083 43.38 463596 0 6.8E-05 Infinity 6.3 269902 435 1.5E-04 621.2 8.2
sertraline 306.0811 24.34 7696 0 4.0E-03 Infinity 24.9 19824 0 1.2E-05 Infinity 3.5
Tebuconazole 308.1524 39.36 410252 809 6.4E-04 506.9 183 195928 0 1.2E-05 Infinity 3.5
fluoxetine 310.1413 23.71 73224 95 1.2E-03 769.1 16.5 53370 0 3.6E-05 Infinity 5.1
Aflatoxin B1 313.0707 | 17.52 1807 0 | 2.5E-05 | Infinity 4.5
Progesterone 315.2339 42.10 292783 0 3.9E-04 Infinity 11.3 146106 6952 3.2E-06 21.0 4.0
163519.
paroxetine 330.15 18.34 262447 2 1.3E-03 1 17.1 124854 0 2.9E-05 Infinity 4.8
Propiconazole 342.0771 41.73 327888 0 6.9E-04 Infinity 13.6 75859 2.0E-05 Infinity 4.2
Boscalid 343.0399 38.00 105598 0 2.0E-03 Infinity 19.5 61505 6.9E-05 Infinity 6.3
Chlorpyrifos 349.9336 45.53 8636 499 1.5E-04 17.3 8.8
Cortisone 361.2006 16.12 151477 52494 7.1E-03 2.9 8.8 68182 25248 8.7E-03 2.7 4.1
hydrocortisone 363.2166 15.86 857573 580596 2.5E-01 1.5 5.5 380787 287326 1.8E-02 1.3 11.9
Prochloraz 376.0381 38.74 41713 0 2.7E-02 Infinity 49.2 31082 0 8.7E-05 Infinity 6.8
Solanidine 398.342 24.54 689074 0 8.6E-04 Infinity 14.7 225831 2242 2.6E-05 100.7 4.7
Azoxystrobine 404.1241 38.03 379428 0 4.9E-04 Infinity 12.2 133413 0 2.4E-05 Infinity 4.4
Pravastatin 425.2534 20.50 7801 0 4.4E-04 Infinity 11.8
Dimethyldithiophosphate 156.9541 2.95 942 0 1.2E-01 Infinity 93.0 28970 9888 2.3E-03 2.9 3.7
2-phenylphenol 169.0659 | 30.19 3857 0 | 8.3E-04 | Infinity 14.5
Hydroxyindoleacetic acid 190.051 5.71 8032 6099 | 2.2E-02 1.3 12.4
Ibuprofen 205.1223 39.94 8387 6704 1.6E-03 1.3 5.4
Diclofenac 294.0094 39.59 18942 0 3.1E-04 Infinity 10.5
158761

Arachidonic Acid 303.233 | 47.00 12097 149 | 1.1E-01 81.3 86.0 4 | 131346 | 2.0E-05 12.1 4.8
Leukotriene B4 335.2228 39.52 197740 0 3.7E-04 Infinity 11.1 88909 0 1.3E-04 Infinity 7.8
Prostaglandin D2 351.2177 27.60 12086 0 4.8E-04 Infinity 12.1
Prostaglandin E2 351.2177 26.50 57441 0 6.0E-03 Infinity 28.5 1882 0 3.7E-04 Infinity 11.1
Prostaglandin F2a 353.2333 25.60 252221 0 1.5E-04 Infinity 8.1 105160 0 4.9E-05 Infinity 5.6
Leukotriene D4 495.2534 33.04 62552 0 4.6E-05 Infinity 5.5 29833 0 3.3E-04 Infinity 10.6
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Appendices

3.6. Table A5.2 — Results of data processing workflows on individual

compounds in plasma

Table A5.2 — Results of data processing workflows on individual compounds in plasma

XCMS - Default settings - Noise 10

XCMS - Optimized settings - Noise 10

p-value Fold p-value Fold
ores | emen | e | (ream | AoV L Sy | s | Soed | (renm | M2V
m/z Rt .in in rwn- vs..non- spike(.i/ sp;:ed -in in T\on- Vs. -non- spikefi/ spiI:ed
spiked spiked spiked area in spiked spiked spiked areain
samples | samples | samples non- SELES samples | samples | samples non- SR
) spiked) ) spiked)
AminoBenzimidazole 134.07127 4.74 24543 13475 1.1E-01 1.8 57.7 24157 13338 1.0E-01 1.8 53.6
Paracetamol 152.0706 4.98 1350 879 1.1E-01 1.5 46.2
Nicotine 163.12297 3.37
Cotinine 177.1022 4.31 293545 240626 6.2E-03 1.2 6.1 290574 234814 3.4E-03 1.2 3.9
Carbendazim 192.07675 5.69 2528 1885 | 3.7E-01 1.3 124
Cyprodinil 226.1339 33.22 210386 236 1.1E-04 893.1 )3 201405 223 1.0E-04 901.5 9.0
Carbamazepine 237.10224 18.01 67930 2485 4.0E-05 27.3 6.6 69301 2474 9.0E-05 28.0 8.4
Clothianidin 250.016 7.99
Thiacloprid 253.0309 12.24 27972 40 1.2E-05 707.4 4.4 27753 41 3.7E-05 684.4 6.5
Imidacloprid 256.0596 8.57 4943 1748 | 1.2E-01 2.8 86.7
Acetochlor 270.12553 40.57 5887 183 8.5E-04 32.1 18.1 5937 184 6.3E-04 32.3 16.3
estrone 271.1693 31.60 21645 630 4.0E-04 34.4 14.0 21309 651 3.2E-04 32.7 13.0
venlafaxine 278.2115 9.84 89788 211 2.3E-05 425.3 5.5 91286 204 3.7E-05 447.3 6.4
128164 126949
Piperine 286.1444 36.42 1 669526 6.3E-04 1.9 12.2 7 646795 9.9E-05 2.0 8.9
Androstenedione 287.20056 31.50 96867 9151 1.2E-04 10.6 1.0 97193 9059 1.5E-04 10.7 9.5
Testosterone 289.2168 28.90 26191 21073 4.6E-02 1.2 14.2 27328 21677 5.1E-03 1.3 8.4
Thiamethoxam 292.0266 6.97
Codeine 300.15942 5.12 26223 19148 1.2E-01 1.4 9.0 26951 18998 9.2E-02 1.4 10.0
Diazinon 305.1083 43.38 234369 1222 1.4E-05 191.8 4.8 249394 1248 6.1E-06 199.8 3.7
sertraline 306.0811 24.34 21377 263 1.8E-04 81.3 10.8 22073 273 7.9E-05 80.7 8.3
Tebuconazole 308.1524 39.36 188846 2331 3.4E-04 81.0 13.6 186567 2287 1.7E-04 81.6 10.8
fluoxetine 310.1413 23.71 2686 1902 1.1E-01 1.4 26.4 2827 1889 6.7E-02 1.5 24.9
Aflatoxin B1 313.07066 17.52 4705 295 1.8E-04 15.9 14.1
Progesterone 315.2339 42.10 72116 207713 1.4E-01 0.3 7.7 74161 214529 1.4E-01 0.3 7.4
paroxetine 330.15 18.34 175779 1452 6.0E-04 121.1 16.3 178127 1506 8.1E-05 118.3 8.3
Propiconazole 342.0771 41.73 172892 143 7.7E-05 1208.9 8.2 167926 139 8.8E-05 1210.9 8.6
Boscalid 343.03994 38.00 65762 125 3.4E-06 527.4 220 66875 124 1.5E-04 541.0 10.3
Chlorpyrifos 349.93356 45.53 10068 917 2.0E-04 11.0 12.2 9976 928 7.4E-05 10.8 9.7
Cortisone 361.2006 16.12 97777 50971 1.1E-02 1.9 22.4 97319 48908 8.7E-03 2.0 21.6
hydrocortisone 363.2166 15.86 482937 319086 5.6E-03 1.5 12.9 489548 319592 2.3E-03 1.5 10.6
Prochloraz 376.0381 | 38.74
Solanidine 398.342 24.54 203185 1849 1.2E-04 109.9 9.5
Azoxystrobine 404.1241 38.03 194361 502 4.5E-05 386.9 6.9 188971 535 9.6E-05 353.4 8.9
Pravastatin 425.25337 | 20.50
Dimethyldithiophosphate 156.95413 2.95 4080 80 7.4E-03 51.3 30.2 1618 14 1.2E-02 111.6 35.9
2-phenylphenol 169.0659 | 30.19 2161 206 | 4.7E-06 10.5 7.1 | 209598 128152 1.2E-01 1.6 36.4
Hydroxyindoleacetic acid 190.051 5.71 3066 818 | 3.7E-04 3.7 14.6
Ibuprofen 205.1223 39.94 23182 20502 7.0E-02 1.1 0.9 23118 3832 1.6E-05 6.0 6.4
Diclofenac 294.0094 39.59 5809 348 2.7E-04 16.7 12.0
Arachidonic Acid 303.233 | 47.00 39163 5529 | 1.9E-04 7.1 8.7
348410
Leukotriene B4 335.2228 39.52 3 44646 1.3E-01 78.0 96.1
Prostaglandin D2 351.2177 | 27.60
Prostaglandin E2 351.2177 | 26.50 | 137290 | 120533 | 2.2E-01 1.1 14.5
Prostaglandin F2a 353.2333 25.60 159424 58088 1.2E-06 2.7 4.8
Leukotriene D4 495.2534 33.04 1895 246 3.6E-04 7.7 14.9
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Table A5.2 — (continued) Results of data processing workflows on individual compounds in plasma

XCMS - Optimized settings - Noise 20

XCMS - Optimized settings - Noise 50

p-value Fold p-value Fold
orer | s | Goien | (eam | A0 | Do | e | e | arenm | A2
m/z Rt .in in r\on- vs..non- spike(.i/ sp;lr(]ed -in in T\on- Vs. -non- spikefi/ spiI:ed
spiked spiked spiked area in spiked spiked spiked areain
samples | samples | samples non- SELES samples | samples | samples non- SR
) spiked) ) spiked)
AminoBenzimidazole 134.07127 4.74 24068 13397 | 1.1E-01 1.8 54.0 23425 13030 | 1.0E-01 1.8 52.5
Paracetamol 152.0706 4.98 1338 880 1.1E-01 1.5 45.1 1356 877 1.1E-01 1.5 46.3
Nicotine 163.12297 3.37
Cotinine 177.1022 4.31 291392 233803 4.3E-03 1.2 5.1 293027 233855 2.3E-03 1.3 7.0
Carbendazim 192.07675 5.69 2533 1921 3.8E-01 1.3 14.5 2487 1958 4.0E-01 1.3 11.5
Cyprodinil 226.1339 33.22 203882 223 9.4E-05 915.5 8.8 199907 217 3.1E-05 920.0 6.1
Carbamazepine 237.10224 18.01 68613 2509 9.9E-05 27.3 8.7 65646 2505 6.8E-05 26.2 7.7
Clothianidin 250.016 7.99
Thiacloprid 253.0309 | 12.24 27532 41 | 2.5E-05 673.1 5.6 26724 42 | 9.5E-05 643.4 8.9
Imidacloprid 256.0596 8.57 4961 1738 1.2E-01 2.9 87.6 4695 1716 1.2E-01 2.7 84.9
Acetochlor 270.12553 40.57 5982 186 6.8E-04 32.2 16.7 5923 185 5.0E-04 32.0 15.2
estrone 271.1693 31.60 21286 650 4.6E-04 32.7 14.7 20467 633 3.9E-04 32.3 13.8
venlafaxine 278.2115 9.84 91732 202 3.4E-05 453.2 6.3 89631 198 2.8E-05 452.1 5.9
125921 125497
Piperine 286.1444 36.42 4 646378 1.5E-04 1.9 )3 7 638026 2.2E-04 2.0 10.3
Androstenedione 287.20056 31.50 97464 8986 1.7E-04 10.8 9.9 99169 8777 1.8E-04 11.3 10.1
Testosterone 289.2168 28.90 27333 21486 4.5E-03 1.3 8.8 26419 21220 5.3E-03 1.2 8.3
Thiamethoxam 292.0266 6.97
Codeine 300.15942 5.12 26955 18961 8.9E-02 1.4 10.3 27203 18574 7.4E-02 1.5 12.5
Diazinon 305.1083 43.38 248197 1260 1.3E-05 197.0 4.7 239035 1185 4.4E-05 201.7 6.9
sertraline 306.0811 24.34 22080 274 9.6E-05 80.7 8.8 21459 270 6.8E-05 79.6 7.9
Tebuconazole 308.1524 39.36 185318 2275 2.2E-04 81.5 11.9 181429 2163 1.7E-04 83.9 10.9
fluoxetine 310.1413 23.71 2803 1912 7.7E-02 1.5 24.4 2711 1884 8.3E-02 1.4 21.3
Aflatoxin B1 313.07066 17.52 4723 299 2.7E-04 15.8 15.4 4703 290 5.8E-04 16.2 18.0
Progesterone 315.2339 42.10 73964 214775 1.4E-01 0.3 7.2 70844 221714 1.4E-01 0.3 3.2
paroxetine 330.15 18.34 177275 1500 9.2E-05 118.2 8.7 172978 1465 1.4E-04 118.1 S1S)
Propiconazole 342.0771 41.73 165661 139 4.9E-05 1196.1 7.1 164355 136 3.7E-05 1205.4 6.4
Boscalid 343.03994 38.00 66875 126 1.5E-04 532.0 10.3 66993 122 3.2E-04 547.4 1333
Chlorpyrifos 349.93356 45.53 10047 921 6.1E-05 10.9 9.2 9842 917 4.7E-05 10.7 8.6
Cortisone 361.2006 16.12 96765 48400 8.3E-03 2.0 21.3 96542 46268 1.0E-02 2.1 23.8
hydrocortisone 363.2166 15.86 488910 318801 1.1E-03 1.5 9.0 475084 316969 4.2E-03 1.5 11.5
Prochloraz 376.0381 | 38.74
Solanidine 398.342 24.54 205844 1843 1.6E-04 111.7 10.4 206665 1831 1.1E-04 112.9 9.2
Azoxystrobine 404.1241 38.03 187016 529 8.5E-05 353.5 8.5 186885 522 7.3E-05 358.1 8.1
Pravastatin 425.25337 | 20.50
Dimethyldithiophosphate 156.95413 2.95 1613 15 1.2E-02 110.5 36.5 1649 20 1.3E-02 80.7 37.4
2-phenylphenol 169.0659 30.19 209782 127694 1.2E-01 1.6 35.9 211072 129358 1.3E-01 1.6 36.4
Hydroxyindoleacetic acid 190.051 5.71 3092 814 5.2E-04 3.8 15.4 3125 797 7.1E-04 3.9 16.0
Ibuprofen 205.1223 39.94 23052 3815 6.0E-06 6.0 5.8 22934 3833 6.0E-06 6.0 5.8
Diclofenac 294.0094 39.59 5780 348 2.7E-04 16.6 12.0 5776 346 2.2E-04 16.7 11.4
Arachidonic Acid 303.233 | 47.00 39055 5516 | 1.6E-04 7.1 8.2 39046 5608 | 1.5E-04 7.0 8.0
615144 615508
Leukotriene B4 335.2228 39.52 6 44540 1.3E-04 138.1 7.8 3 39540 2.0E-04 155.7 8.9
Prostaglandin D2 351.2177 | 27.60
Prostaglandin E2 351.2177 | 26.50
Prostaglandin F2a 353.2333 | 25.60
Leukotriene D4 495.2534 33.04 1915 248 4.6E-04 7.7 15.5 1914 247 8.3E-04 7.7 17,33
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Table A5.2 — (continued) Results of data processing workflows on individual compounds in plasma

Appendices

XCMS - Optimized settings - Noise 100

Markerview - Noise 10

p-value Fold p-value Fold
ares | eores | ved | ream | A2V | Tares | eores | Soved | (oon | Areac
m/z Rt .in in r\on- vs..non- spike(.i/ sp;lr(]ed -in in T\on- Vs. -non- spikefi/ spillr:ed
spiked spiked spiked area in spiked spiked spiked areain
samples | samples | samples non- SELES samples | samples | samples non- L2z
) spiked) ) spiked)
AminoBenzimidazole 134.07127 4.74 22686 12593 | 9.9E-02 1.8 51.9 1005 0 | 6.9E-05 | Infinity 8.0
Paracetamol 152.0706 4.98 1348 867 | 1.2E-01 1.6 47.5 2026 2117 | 4.0E-01 1.0 25.0
Nicotine 163.12297 3.37 39 0 | 4.2E-02 159.0 78.4
Cotinine 177.1022 4.31 | 288850 | 226940 | 4.1E-03 1.3 8.5 8438 6702 | 2.7E-03 13 4.3
Carbendazim 192.07675 5.69 2411 1920 | 4.0E-01 1.3 7.9 1089 0 | 1.1E-04 | Infinity 9.3
Cyprodinil 226.1339 | 33.22 | 200997 210 | 1.2E-05 955.9 4.4 5717 0 | 7.4E-05 | Infinity 8.2
Carbamazepine 237.10224 | 18.01 65995 2488 | 1.0E-04 26.5 8.8 1928 0 | 1.3E-04 | Infinity 9.8
Clothianidin 250.016 7.99 37 0 | 2.3E-02 | Infinity 61.0
Thiacloprid 253.0309 | 12.24 25687 40 | 9.1E-05 639.2 8.7 738 0 | 5.8E-05 | Infinity 7.5
Imidacloprid 256.0596 8.57 4670 1703 | 1.2E-01 2.7 86.6 235 0 | 1.2E-04 | Infinity 9.5
Acetochlor 270.12553 | 40.57 5903 184 | 5.1E-04 32.1 15.3
estrone 271.1693 | 31.60 20239 623 | 6.9E-04 32.5 16.8 386 0 | 2.8E-03 | Infinity 27.9
venlafaxine 278.2115 9.84 88317 190 | 7.0E-05 465.2 8.0 2591 0 | 5.3E-05 | Infinity 7.3
123458
Piperine 286.1444 | 36.42 8 | 624278 | 3.7E-04 2.0 10.5 42728 20665 | 8.0E-05 2.1 8.8
Androstenedione 287.20056 | 31.50 95354 8524 | 3.7E-04 11.2 12.8 2564 0 | 1.8E-04 | Infinity 10.9
Testosterone 289.2168 | 28.90 26181 20993 | 9.7E-03 1.2 9.2 3465 292 | 2.2E-04 11.9 11.1
Thiamethoxam 292.0266 6.97 121 0 | 2.9E-04 | Infinity 12.9
Codeine 300.15942 5.12 26222 18313 | 8.4E-02 1.4 10.7 679 0 | 1.1E-03 | Infinity 20.4
Diazinon 305.1083 | 43.38 | 238500 1198 | 4.7E-05 199.2 7.1 6870 0 | 1.0E-05 | Infinity 4.2
sertraline 306.0811 | 24.34 21464 265 | 4.9€-05 80.9 7.0 455 0 | 1.4E-04 | Infinity 10.2
Tebuconazole 308.1524 | 39.36 | 174956 2158 | 1.8E-04 81.1 11.1 5268 0 | 1.7E-04 | Infinity 10.7
fluoxetine 310.1413 | 23.71 2681 1848 | 7.7E-02 1.5 24.3 1920 0 | 3.3E-05 | Infinity 6.2
Aflatoxin B1 313.07066 | 17.52 4683 284 | 9.8E-04 16.5 20.4 38 0 | 2.5E-02 | Infinity 62.5
Progesterone 315.2339 | 42.10 69600 | 214479 | 1.4E-01 0.3 5.2 4237 189 | 1.4E-04 22.4 10.5
paroxetine 330.15 | 18.34 | 171803 1481 | 1.3E-04 116.0 9.7 5296 0 | 1.2E-04 | Infinity 9.5
Propiconazole 342.0771 | 41.73 | 163040 134 | 1.2E-04 1217.6 9.5 4576 1.3E-04 | Infinity 9.8
Boscalid 343.03994 | 38.00 65753 124 | 1.9E-04 531.5 11.2 1716 1.7E-04 | Infinity 10.8
Chlorpyrifos 349.93356 | 45.53 9643 870 | 8.4E-05 11.1 9.6
Cortisone 361.2006 | 16.12 98736 44932 | 8.9E-03 2.2 23.8 2867 1248 | 8.9E-03 2.3 24.3
hydrocortisone 363.2166 | 15.86 | 468688 | 308739 | 2.0E-03 1.5 9.7 14911 9674 | 2.2E-03 1.5 10.6
Prochloraz 376.0381 | 38.74 976 0 | 4.3E-04 | Infinity 14.8
Solanidine 398.342 | 24.54 | 206530 1820 | 8.4E-05 113.5 8.4 5987 0 | 1.1E-04 | Infinity 9.4
Azoxystrobine 404.1241 | 38.03 | 182890 507 | 1.4E-04 360.6 9.9 5265 0 | 1.3E-04 | Infinity 9.9
Pravastatin 425.25337 | 20.50
Dimethyldithiophosphate 156.95413 2.95 1658 18 | 1.3E-02 94.0 37.5
2-phenylphenol 169.0659 | 30.19 | 209467 130364 1.3E-01 1.6 35.2 26177 23327 1.1E-02 1.1 2.9
Hydroxyindoleacetic acid 190.051 5.71 3110 795 | 7.3E-04 3.9 16.1
Ibuprofen 205.1223 | 39.94 23267 3898 | 1.4E-06 6.0 4.9 539 494 | 4.9E-02 1.3 2.3
Diclofenac 294.0094 | 39.59 138 0 | 5.0E-04 | Infinity 15.5
Arachidonic Acid 303.233 | 47.00 39363 5631 | 2.6E-04 7.0 9.2 | 132395 94574 | 5.7E-03 1.4 12.1
620630
Leukotriene B4 335.2228 | 39.52 5 39347 | 2.9E-04 157.7 10.1 37259 30145 | 3.5E-03 1.2 6.8
Prostaglandin D2 351.2177 | 27.60 4366 3388 | 6.5E-02 1.3 21.9
Prostaglandin E2 351.2177 | 26.50 3012 1333 | 1.9-02 2.3 32.0
Prostaglandin F2a 353.2333 | 25.60 3851 579 | 3.0E-05 6.7 10.1
Leukotriene D4 495.2534 | 33.04 324 0 | 2.5E-04 | Infinity 12.3
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Table A5.2 — (continued) Results of data processing workflows on individual compounds in plasma
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Markerview - Noise 20

Markerview - Noise 50

p-value Fold p-value Fold
ores | omen | e | (ream | AV Sres | es | Soved | (rem | AoV
m/z Rt .in in pon- vs.‘non- spikefi/ sp;lr:ed -in in T\on- Vs. -non- spikefi/ spillr:ed
spiked spiked spiked area in spiked spiked spiked areain
samples | samples | samples non- SEE samples | samples | samples non- L2z
) spiked) ) spiked)
AminoBenzimidazole 134.07127 4.74 847 0 1.5E-04 Infinity 10.3 568 0 7.7E-05 Infinity 8.3
Paracetamol 152.0706 4.98 1601 1761 3.2E-01 0.9 25.8
Nicotine 163.12297 3.37
Cotinine 177.1022 431 7947 6246 2.6E-03 1.3 3.7 6927 5229 2.1E-03 1.3 4.4
Carbendazim 192.07675 5.69 957 0 1.7E-04 | Infinity 10.8 468 0 2.9E-02 Infinity 66.9
Cyprodinil 226.1339 33.22 5400 0 8.5E-05 Infinity 8.5 4645 0 1.3E-04 | Infinity 9.8
Carbamazepine 237.10224 18.01 1813 0 1.7E-04 Infinity 10.8 1616 0 2.9E-04 Infinity 12.8
Clothianidin 250.016 7.99 8 0 2.0E-01 Infinity 200.0
Thiacloprid 253.0309 | 12.24 655 0 | 6.5E-05 | Infinity 7.8 443 0 | 8.9E-04 | Infinity 18.8
Imidacloprid 256.0596 8.57 141 0 | 3.0E-02 | Infinity 67.6
Acetochlor 270.12553 | 40.57
estrone 271.1693 31.60 250 0 2.0E-02 Infinity 57.4
venlafaxine 278.2115 9.84 2427 0 5.5E-05 Infinity 7.4 1972 0 3.4E-05 Infinity 6.3
Piperine 286.1444 36.42 42053 20214 8.7E-05 2.1 9.1 40599 19154 1.2E-04 2.1 9.6
Androstenedione 287.20056 31.50 2323 0 2.7E-04 Infinity 12.6 1857 0 5.3E-04 Infinity 15.8
Testosterone 289.2168 28.90 2375 226 3.0E-02 10.5 61.8 2984 0 3.3E-04 | Infinity 13.5
Thiamethoxam 292.0266 6.97 65 0 | 3.1E-03 | Infinity 29.0
Codeine 300.15942 5.12 427 0 7.9E-03 Infinity 21.3 371 0 4.5E-03 Infinity 33.0
Diazinon 305.1083 43.38 6405 0 1.0E-05 Infinity 4.2 5519 6.8E-06 Infinity 3.7
sertraline 306.0811 24.34 288 0 2.7E-03 Infinity 27.4
Tebuconazole 308.1524 39.36 5026 0 1.6E-04 | Infinity 10.6 4434 3.1E-04 | Infinity 13.2
fluoxetine 310.1413 23.71 1733 0 7.7E-05 Infinity 8.3 1255 0 4.5E-04 | Infinity 14.9
Aflatoxin B1 313.07066 17.52 4002 36 1.8E-04 111.0 11.8 3556 2.1E-04 Infinity 11.5
Progesterone 315.2339 | 42.10
paroxetine 330.15 18.34 5110 0 1.5E-04 Infinity 10.4 4606 2.4E-04 Infinity 12.1
Propiconazole 342.0771 41.73 4305 0 1.2E-04 Infinity 9.6 3808 1.6E-04 Infinity 10.6
Boscalid 343.03994 38.00 1475 0 4.0E-04 | Infinity 14.4 696 0 1.8E-02 Infinity 54.7
Chlorpyrifos 349.93356 | 45.53
Cortisone 361.2006 16.12 2743 1136 6.6E-03 2.4 22.8 2417 934 9.5E-03 2.6 27.1
hydrocortisone 363.2166 15.86 14718 9522 2.3E-03 1.5 10.7 14319 9127 2.2E-03 1.6 10.8
Prochloraz 376.0381 38.74 794 0 1.0E-03 Infinity 19.6 49 0 2.0E-01 Infinity 200.0
Solanidine 398.342 24.54 5747 0 1.2E-04 | Infinity 9.6 5187 0 1.9E-04 | Infinity 11.2
Azoxystrobine 404.1241 38.03 4969 0 1.3E-04 Infinity 9.9 4175 0 4.2E-04 Infinity 14.6
Pravastatin 425.25337 | 20.50
Dimethyldithiophosphate 156.95413 2.95
2-phenylphenol 169.0659 | 30.19
Hydroxyindoleacetic acid 190.051 5.71
Ibuprofen 205.1223 | 39.94
Diclofenac 294.0094 39.59 31 0 9.2E-02 Infinity 116.4
Arachidonic Acid 303.233 47.00 131178 93675 5.7E-03 1.4 12.1 128771 91344 5.8E-03 1.4 12.3
Leukotriene B4 335.2228 39.52 205473 170313 1.9E-03 1.2 5.1 202795 168089 1.9E-03 1.2 5.1
Prostaglandin D2 351.2177 27.60 4056 3191 7.7E-02 1.3 22.6 3163 2630 1.8E-01 1.2 29.8
Prostaglandin E2 351.2177 26.50 2791 1264 2.2E-02 2.2 32.8 2595 1153 1.0E-02 2.3 25.9
Prostaglandin F2a 353.2333 25.60 3645 398 6.0E-05 9.2 92 3122 137 5.4E-07 22.7 5.6
Leukotriene D4 495.2534 33.04 250 0 9.3E-04 | Infinity 19.1
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Table A5.2 — (continued) Results of data processing workflows on individual compounds in plasma

Appendices

MzMine - CWT pipeline - Default settings -

Markerview - Noise 100 Noise 10
p-value Fold p-value Fold
s | s | b | e | wescy | A8 | A | GRS | ey
m/z Rt .in in pon- vs.‘non- spikefi/ sp;lr:ed .in in r\on- Vs. .non- spikel.i/ spillr(‘ed
spiked spiked spiked area in spiked spiked spiked area in
samples | samples | samples non- D samples | samples | samples non- S
) spiked) ) spiked)
AminoBenzimidazole 134.07127 4.74 409 0 | 85E-04 | Infinity 18.6 46798 11100 | 1.7E-10 4.2 1.4
Paracetamol 152.0706 4.98
Nicotine 163.12297 3.37
Cotinine 177.1022 4.31 5561 4117 | 3.7E-03 1.4 49 | 276117 | 239480 | 2.2E-02 1.2 4.2
Carbendazim 192.07675 5.69 302 0 | 2.9E-02 | Infinity 66.8 41332 1237 | 2.7E-06 33.4 2.6
Cyprodinil 226.1339 | 33.22 3593 0 | 4.6E-04 | Infinity 15.1 | 245350 5732 | 2.7E-05 42.8 5.7
Carbamazepine 237.10224 | 18.01 1333 0 | 5.6E-04 | Infinity 16.1 91642 1500 | 1.7E-04 61.1 10.7
Clothianidin 250.016 7.99
Thiacloprid 253.0309 | 12.24 241 0 | 3.1E-04 | Infinity 13.2 29841 2957 | 1.9€-05 10.1 4.7
Imidacloprid 256.0596 8.57 10173 1262 | 1.1E-06 8.1 2.7
Acetochlor 270.12553 | 40.57
estrone 271.1693 | 31.60 973 147 | 5.0E-05 6.6 6.2
11515.
venlafaxine 278.2115 9.84 182 0 | 1.1E-01 | Infinity 129.4 | 139721 12 | 1.0E-04 6 9.1
440604 | 170409
Piperine 286.1444 | 36.42 422 0 | 1.8E-02 | Infinity 54.8 7 8 | 3.2E-05 2.6 4.7
Androstenedione 287.20056 | 31.50 922 0 | 3.9-02 | Infinity 75.7 96238 8676 | 2.0E-06 11.1 2.4
Testosterone 289.2168 | 28.90 2511 0 | 6.1E-04 | Infinity 16.5 | 138408 26293 | 1.6E-05 5.3 4.8
Thiamethoxam 292.0266 6.97 6365 1369 | 7.7E-06 4.6 4.8
Codeine 300.15942 5.12 109818 5720 | 6.0E-05 19.2 7.3
Diazinon 305.1083 | 43.38 4074 0 | 1.0E-04 | Infinity 9.0 | 162555 167 | 1.1E-04 972.4 9.2
sertraline 306.0811 | 24.34 17251 909 | 2.2E-04 19.0 11.1
Tebuconazole 308.1524 | 39.36 3639 0 | 6.5E-04 | Infinity 16.9 | 234650 4118 | 2.0E-05 57.0 5.2
fluoxetine 310.1413 | 23.71 186 0 | 1.2E-01 | Infinity 137.5
Aflatoxin B1 313.07066 | 17.52 2996 0 | 5.6E-04 | Infinity 16.1
Progesterone 315.2339 | 42.10 446253 | 116368 | 1.3E-04 3.8 8.6
paroxetine 330.15 | 18.34 3968 0 | 4.3E-04 | Infinity 14.6 | 192911 1905 | 3.8E-05 101.3 6.5
Propiconazole 342.0771 | 41.73 2876 0 | 2.0E-03 | Infinity 24.9 | 179728 1177 | 7.7E-05 152.7 8.2
Boscalid 343.03994 | 38.00 49 0 | 2.0E-01 | Infinity 200.0 82166 804 | 1.0E-04 102.2 9.1
Chlorpyrifos 349.93356 | 45.53 10670 1046 | 2.5E-05 10.2 6.0
Cortisone 361.2006 | 16.12 2113 632 | 5.6E-03 3.3 259 | 156124 40550 | 1.7E-09 3.9 2.0
hydrocortisone 363.2166 | 15.86 13784 8678 | 2.1E-03 1.6 11.0 21337 5200 | 1.0E-04 4.1 7.0
Prochloraz 376.0381 | 38.74 39028 183 | 4.5E-05 213.5 6.9
Solanidine 398.342 | 24.54 4355 0 | 3.5E-04 | Infinity 13.7 | 257646 2556 | 4.6E-05 100.8 6.9
Azoxystrobine 404.1241 | 38.03 2602 0 | 1.7E-02 | Infinity 53.5 | 169010 2330 | 6.0E-05 72.5 7.5
Pravastatin 425.25337 | 20.50
Dimethyldithiophosphate 156.95413 2.95 1313 0 | 1.2E-02 | Infinity 46.8
2-phenylphenol 169.0659 | 30.19 2216 1048 | 3.2E-05 2.1 7.3
Hydroxyindoleacetic acid 190.051 5.71 5083 3841 | 3.5E-03 13 7.6
Ibuprofen 205.1223 | 39.94 23787 21018 | 2.3E-02 1.1 1.7
Diclofenac 294.0094 | 39.59
441941 | 316612
Arachidonic Acid 303.233 | 47.00 | 124323 88239 | 6.0E-03 1.4 12.5 9 8 | 5.5E-03 1.4 11.7
Leukotriene B4 335.2228 | 39.52 | 197903 | 164449 | 1.9E-03 1.2 4.7
Prostaglandin D2 351.2177 | 27.60 2441 1871 1.0E-01 1.3 29.2
Prostaglandin E2 351.2177 | 26.50 1825 932 | 4.7E-03 2.0 18.9
Prostaglandin F2a 353.2333 | 25.60
Leukotriene D4 495.2534 | 33.04 17857 5283 | 5.6E-02 3.4 64.0
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Table A5.2 — (continued) Results of data processing workflows on individual compounds in plasma

MzMine - CWT pipeline - Optimized settings -

MzMine - ADAP pipeline - Optimized settings -

Noise 10 Noise 50
p-value Fold p-value Fold
orer | omes | e | aream | Ao | Soin | Cmen | Goved | (remn | e
m/z Rt .in in rlon- vs..non- spikefi/ spiI:ed .in in rlon- Vs. .non- spike(.:l/ spillr:ed
spiked spiked spiked areain spiked spiked spiked area in
samples | samples | samples non- SEILICE samples | samples | samples non- SElHE
) spiked) ) spiked)
AminoBenzimidazole 134.07127 4.74 40703 10406 1.4E-04 3.9 10.5 40816 11746 1.1E-03 3.5 5.8
Paracetamol 152.0706 4.98 67239 61337 4.3E-02 1.1 4.3
Nicotine 163.12297 3.37 5283 2339 1.5E-04 2.3 11.1
Cotinine 177.1022 4.31 297014 235009 6.3E-04 1.3 3.5 270705 214652 6.0E-04 1.3 5.4
Carbendazim 192.07675 5.69 46631 1376 5.4E-05 33.9 7.1 41481 1135 9.1E-05 36.5 8.5
Cyprodinil 226.1339 33.22 204458 4650 4.1E-05 44.0 6.6 199963 4372 5.7E-05 45.7 7
Carbamazepine 237.10224 18.01 72041 2886 6.3E-05 25.0 8.2 68529 1855 6.7E-05 36.9 8.6
Clothianidin 250.016 7.99 4505 695 2.2E-06 6.5 6.1 3667 542 2.2E-03 6.8 22.9
Thiacloprid 253.0309 12.24 28701 3619 2.1E-05 7.9 5.2 27179 376 3.3E-05 72.3 6.2
Imidacloprid 256.0596 8.57 9773 1427 2.5E-03 6.8 23.6 10684 1270 1.3E-05 8.4 6.9
Acetochlor 270.12553 40.57 6140 2956 6.9E-03 2.1 21.4
estrone 271.1693 31.60 653 197 1.8E-02 3.3 38.8 20921 1972 4.4E-04 10.6 13.6
venlafaxine 278.2115 9.84 92716 15 4.1E-05 6241.2 6.7 91129 11 3.1E-05 8596.6 6.1
378008 175484 156292
Piperine 286.1444 36.42 3 1 6.7E-04 2.2 )3 6 794563 5.6E-05 2.0 8.2
Androstenedione 287.20056 31.50 94800 9075 4.1E-04 10.4 13.1 96810 8791 1.7E-04 11.0 9.9
Testosterone 289.2168 28.90 138283 26205 1.9E-04 5.3 10.1 121077 14884 1.9E-04 8.1 10.2
Thiamethoxam 292.0266 6.97 7731 994 3.2E-05 7.8 8.9 7106 719 2.6E-04 9.9 13.8
Codeine 300.15942 5.12 107700 6095 3.3E-05 17.7 6.2 97785 3066 4.8E-05 31.9 6.8
Diazinon 305.1083 43.38 249838 394 6.8E-06 633.7 3.7 244116 244 7.0E-06 1000.1 3.7
sertraline 306.0811 24.34 20290 792 7.9E-06 25.6 4.0 18273 861 4.9E-04 21.2 14.7
Tebuconazole 308.1524 39.36 190027 4596 1.2E-04 41.4 9.2 186338 4098 1.4E-04 45.5 Sie)
fluoxetine 310.1413 23.71 68304 2146 2.0E-05 31.8 5.2
Aflatoxin B1 313.07066 17.52 4484 463 3.7E-04 9.7 12.8 4025 574 4.1E-03 7.0 27.4
Progesterone 315.2339 42.10 378931 105247 3.6E-04 3.6 73 9805 5070 8.8E-05 1.9 8.4
paroxetine 330.15 18.34 178001 2346 1.3E-05 75.9 4.6 162493 1853 1.1E-05 87.7 4.4
Propiconazole 342.0771 41.73 168372 1023 1.0E-04 164.5 9.0 165249 853 1.3E-04 193.6 9.7
Boscalid 343.03994 38.00 67507 656 1.5E-04 103.0 10.2 66427 547 1.7E-04 121.4 10.8
Chlorpyrifos 349.93356 45.53 9590 1411 7.5E-08 6.8 4.5 9824 1536 3.9E-05 6.4 10.1
Cortisone 361.2006 16.12 107298 50275 6.5E-03 2.1 20.3 95632 42923 7.1E-03 2.2 21.7
hydrocortisone 363.2166 15.86 9805 7016 2.2E-01 1.4 40.7 491592 321024 2.5E-03 1.5 11.0
Prochloraz 376.0381 38.74 43944 169 5.8E-05 260.7 7.5 42666 164 7.6E-05 260.8 8.2
Solanidine 398.342 24.54 208957 2507 9.6E-05 83.4 8.9 196761 1569 1.1E-04 125.4 8.3
Azoxystrobine 404.1241 38.03 190862 2004 8.7E-05 95.2 8.6 185360 2002 1.1E-04 92.6 9.3
Pravastatin 425.25337 | 20.50
Dimethyldithiophosphate 156.95413 2.95 1612 3.5E-06 | Infinity 229 4024 5.7E-03 | Infinity 35.9
2-phenylphenol 169.0659 | 30.19 2335 612 | 5.5E-08 3.8 2.1
Hydroxyindoleacetic acid 190.051 5.71 2972 6167 1.2E-04 0.5 2.8 4599 3819 1.7E-02 1.2 5.2
Ibuprofen 205.1223 39.94 14918 16688 5.0E-03 0.9 4.7 22762 20063 2.0E-02 1.1 1.6
Diclofenac 294.0094 | 39.59 9333 772 | 1.2E-04 12.1 9.0
551766 394539 433335 310383
Arachidonic Acid 303.233 47.00 1 6 9.7E-05 1.4 3.1 9 8 6.1E-03 1.4 12.2
190462 159478
Leukotriene B4 335.2228 | 39.52 8 5 | 5.1E-03 1.2 5.5
Prostaglandin D2 351.2177 27.60 139935 76818 5.2E-04 1.8 9.8 107203 77593 1.8E-04 1.4 5.4
Prostaglandin E2 351.2177 26.50 10713 4947 6.3E-05 2.2 5.9 117304 94156 5.9E-04 1.2 4.3
Prostaglandin F2a 353.2333 25.60 163841 45785 1.5E-04 3.6 gl
Leukotriene D4 495.2534 33.04 13385 10192 6.5E-04 1.3 5.8 19957 4147 5.3E-04 4.8 28
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Table A5.2 — (continued) Results of data processing workflows on individual compounds in plasma

MzMine - ADAP pipeline - Optimized settings -
Noise 100

Progenesis - More sensitivity

p-value Fold p-value Fold
AN Average (arga in chang.e AreacV | Average Average (ar.ea in change Area CV
" area in spiked (areain : N area in spiked (areain :
m/z Rt areain non- vs.non- | spiked/ n areain non- vs.non- | spiked/ n
spiked ) " X spiked spiked ) " X spiked
spiked spiked areain spiked spiked area in
samples samples | samples samples
samples | samples non- samples | samples non-
) spiked) ) spiked)
AminoBenzimidazole 134.07127 4.74 102487 0 | 6.8E-05 | Infinity 6.3
Paracetamol 152.0706 4.98 69118 61809 3.6E-02 1.1 4.5
Nicotine 163.12297 3.37 5571 2688 1.6E-04 2.1 9.7 5691 1940 1.2E-02 2.9 26.8
Cotinine 177.1022 4.31 270697 214652 6.0E-04 1.3 5.4 905382 844804 2.2E-01 1.1 5.0
Carbendazim 192.07675 5.69 41481 1135 9.1E-05 36.5 8.5 117558 311 1.1E-04 377.7 7.4
Cyprodinil 226.1339 33.22 199963 4372 5.7E-05 45.7 7.3 683047 601 1.8E-04 1137.0 8.6
Carbamazepine 237.10224 18.01 68529 2604 7.6E-05 26.3 8.6 239090 496 2.0E-04 482.5 9.0
Clothianidin 250.016 7.99 4064 480 4.2E-05 8.5 8.7 4526 87 9.6E-03 52.0 33.5
Thiacloprid 253.0309 12.24 27162 376 3.4E-05 72.2 6.2 57978 0 2.2E-04 Infinity s
Imidacloprid 256.0596 8.57 10475 775 2.0E-05 13.5 7.2 29370 19 8.7E-05 1583.7 6.8
Acetochlor 270.12553 40.57 6103 2956 7.3E-03 2.1 21.7
estrone 271.1693 31.60 20919 1958 4.4E-04 10.7 13.6 4088 0 1.8E-01 Infinity 115.7
venlafaxine 278.2115 9.84 91126 8 3.1E-05 11065.0 6.1 294443 0 8.2E-05 Infinity 6.7
156292 594256 356234
Piperine 286.1444 36.42 6 794563 5.6E-05 2.0 8.2 8 7 7.9E-04 1.7 8.9
Androstenedione 287.20056 31.50 96810 8836 1.7E-04 11.0 Gle) 185469 1931 9.7E-04 96.1 15.3
Testosterone 289.2168 28.90 121077 15347 2.0E-04 7.9 10.2 427755 45085 3.6E-04 9.5 10.4
Thiamethoxam 292.0266 6.97 7102 698 2.4E-04 10.2 13.4 9031 0 3.6E-04 Infinity 10.9
Codeine 300.15942 5.12 97033 2932 3.7E-05 33.1 6.3 7768 5176 6.0E-02 1.5 6.8
Diazinon 305.1083 43.38 244116 244 7.0E-06 1000.1 3.7 758426 0 4.2E-05 Infinity 5.4
sertraline 306.0811 24.34 18273 861 4.9E-04 21.2 14.7 1563 0 9.3E-02 Infinity 82.0
Tebuconazole 308.1524 39.36 186338 4098 1.4E-04 45.5 9.9 639730 374 2.0E-04 1711.5 9.1
fluoxetine 310.1413 23.71 68304 2146 2.0E-05 31.8 5.2 160537 0 5.0E-02 Infinity 63.0
Aflatoxin B1 313.07066 | 17.52 3764 505 | 4.4E-03 7.5 28.3
Progesterone 315.2339 42.10 147146 15555 1.2E-04 9.5 9.9 529065 28913 9.2E-05 18.3 10.4
paroxetine 330.15 18.34 162493 1853 1.1E-05 87.7 4.4 664387 842 2.3E-04 789.2 9.5
Propiconazole 342.0771 41.73 165249 853 1.3E-04 193.6 9.7 507268 0 3.6E-04 Infinity 11.0
Boscalid 343.03994 38.00 66427 547 1.7E-04 121.4 10.8 166437 82 1.3E-02 2033.9 37.4
Chlorpyrifos 349.93356 | 45.53 9821 1536 | 3.9E-05 6.4 10.1
Cortisone 361.2006 16.12 95632 42923 7.1E-03 2.2 21.7 365823 182153 1.3E-02 2.0 20.0
184763 143647
hydrocortisone 363.2166 15.86 491556 321012 2.5E-03 1.5 11.0 7 7 1.2E-02 1.3 S1S)
Prochloraz 376.0381 38.74 42662 164 7.7E-05 260.8 8.2 13918 0 1.7E-01 Infinity 111.3
Solanidine 398.342 24.54 196761 2085 1.1E-04 94.4 9.3 799204 2669 8.6E-05 299.4 6.8
Azoxystrobine 404.1241 38.03 185360 1642 1.1E-04 112.9 9.3 666771 0 2.4E-04 Infinity 9.6
Pravastatin 425.25337 | 20.50
Dimethyldithiophosphate 156.95413 2.95 3929 0 | 5.6E-03 | Infinity 35.8
263624 258541
2-phenylphenol 169.0659 | 30.19 9 5 | 6.2E-01 1.0 2.9
Hydroxyindoleacetic acid 190.051 5.71 4642 3657 | 4.8E-03 1.3 3.9
Ibuprofen 205.1223 39.94 22758 20041 2.1E-02 1.1 1.6 15374 13955 2.4E-01 1.1 9.0
Diclofenac 294.0094 39.59 9198 701 1.3E-04 13.1 9.2 2020 0 3.4E-02 Infinity 54.0
433335 310383 162655 128833
Arachidonic Acid 303.233 | 47.00 9 8 | 6.1E-03 1.4 12.2 10 05 | 6.6E-02 1.3 8.8
190462 159478 804011 719574
Leukotriene B4 335.2228 39.52 8 5 5.1E-03 1.2 5.5 5 9 3.3E-03 1.1 2.3
Prostaglandin D2 351.2177 | 27.60 | 107203 77593 | 1.8E-04 1.4 5.4
Prostaglandin E2 351.2177 | 26.50 | 117304 94156 | 5.9E-04 1.2 4.3
Prostaglandin F2a 353.2333 25.60 163841 45785 1.5E-04 3.6 3.1 628830 193899 2.6E-06 3.2 4.4
Leukotriene D4 495.2534 33.04 19957 4147 5.3E-04 4.8 12.9 14051 1549 7.3E-04 9.1 14.9
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Table A5.2 — (continued) Results of data processing workflows on individual compounds in plasma

Appendices

Progenesis - Default sensitivity

Manual integration

p-value Fold p-value Fold
e Average (ar.ea in change AreacV | Average Average (arga in change Area CV
N areain spiked (areain ; . areain spiked (areain R
m/z Rt areain non- vs. non- spiked/ n areain non- Vs. non- spiked/ n
spiked X » . spiked spiked . . . spiked
spiked spiked areain spiked spiked areain
samples samples | samples samples
samples samples non- samples samples non-
) spiked) ) spiked)

AminoBenzimidazole 134.07127 4.74 102578 0 5.5E-05 Infinity 5.9 168885 557 1.0E-04 303.3 7.2

Paracetamol 152.0706 4.98 273862 238390 2.6E-02 1.1 3.7

Nicotine 163.12297 3.37 20083 6951 7.5E-04 2.9 14.7

Cotinine 177.1022 431 983674 790861 5.2E-03 1.2 4.1

Carbendazim 192.07675 5.69 2286 0 1.9E-04 Infinity 8.9 130835 306 1.2E-04 427.6 7.6

Cyprodinil 226.1339 33.22 680866 625 6.2E-05 1088.8 6.1 509013 499 1.5E-04 1021.1 8.2

Carbamazepine 237.10224 18.01 239099 510 1.0E-04 468.9 7.2 157472 0 1.9E-04 Infinity 8.8

Clothianidin 250.016 7.99 2880 1409 3.6E-01 2.0 65.6 8563 0 9.5E-05 Infinity 7.0

Thiacloprid 253.0309 | 12.24 57490 0 3.6E-04 | Infinity 10.9 59923 0 1.2E-04 | Infinity 7.5

Imidacloprid 256.0596 8.57 29385 20 4.5E-05 1501.1 5.5 23078 0 1.6E-04 Infinity 8.4

Acetochlor 270.12553 40.57 10563 0 7.4E-06 Infinity 3.0

estrone 271.1693 31.60 4009 0 1.8E-01 Infinity 113.6 38956 381 9.0E-04 102.2 14.8

venlafaxine 278.2115 9.84 294553 0 3.5E-05 Infinity 5.0 178786 0 3.0E-05 Infinity 4.8
593977 371299 343721 168044

Piperine 286.1444 36.42 6 0 4.6E-04 1.6 5.9 4 1 2.7E-04 2.0 9.6

Androstenedione 287.20056 31.50 186084 1984 1.3E-03 93.8 16.9 191923 13135 1.3E-04 14.6 8.8

Testosterone 289.2168 28.90 427530 47020 1.4E-04 9.1 7.7 244917 29170 4.3E-04 8.4 10.4

Thiamethoxam 292.0266 6.97 13063 0 1.1E-04 Infinity 7.5

Codeine 300.15942 5.12 311096 571 1.4E-05 544.5 3.7 191972 1094 7.1E-05 175.5 6.4

Diazinon 305.1083 43.38 760174 0 1.2E-04 Infinity 7.7 455855 0 5.6E-06 Infinity 2.7

sertraline 306.0811 24.34 38839 0 1.3E-04 Infinity 7.8

Tebuconazole 308.1524 39.36 639461 388 6.9E-05 1650.0 6.3 340486 1956 3.3E-04 174.1 10.6

fluoxetine 310.1413 23.71 159002 0 4.9E-02 Infinity 62.5 129336 0 3.6E-05 Infinity 5.1

Aflatoxin B1 313.07066 | 17.52 7761 0 | 3.8E-04 | Infinity 11.2

Progesterone 315.2339 42.10 528710 29641 8.6E-06 17.8 7.6 261837 21243 3.2E-04 12.3 10.4

paroxetine 330.15 18.34 664026 875 8.1E-05 759.0 6.6 317360 982 2.1E-04 323.3 9.1

Propiconazole 342.0771 41.73 506899 0 1.6E-04 Infinity 8.3 269169 0 2.2E-04 Infinity 9.3

Boscalid 343.03994 38.00 165524 84 1.1E-02 1967.2 35.8 107469 0 3.5E-04 Infinity 10.8

Chlorpyrifos 349.93356 | 45.53 16680 2896 | 5.0E-04 5.8 12.2

Cortisone 361.2006 16.12 354122 187779 1.7E-02 1.9 20.0 161845 68332 8.2E-04 2.4 9.5

184237 149666

hydrocortisone 363.2166 15.86 7 9 1.1E-02 1.2 7.9 840557 533829 5.9E-03 1.6 11.9

Prochloraz 376.0381 38.74 4695 0 1.5E-01 Infinity 103.0 62878 0 1.6E-04 Infinity 8.3

Solanidine 398.342 24.54 799653 2779 4.7E-05 287.8 5.6 286540 2448 2.0E-04 117.0 9.0

Azoxystrobine 404.1241 38.03 666551 0 1.0E-04 Infinity 7.2 248938 0 1.5E-04 Infinity 8.2

Pravastatin 425.25337 20.50 6312 0 8.1E-04 Infinity 14.4

Dimethyldithiophosphate 156.95413 2.95 10242 0 | 1.7E-04 | Infinity 8.6
291957 258491

2-phenylphenol 169.0659 | 30.19 9 5 2.5E-02 1.1 2.9

Hydroxyindoleacetic acid 190.051 5.71 51022 45338 | 4.4E-02 1.1 1.8

Ibuprofen 205.1223 39.94 62302 54968 5.0E-02 1.1 2.6

Diclofenac 294.0094 39.59 17233 0 2.4E-04 Infinity 9.6
164556 133994 890980 627628

Arachidonic Acid 303.233 | 47.00 87 67 | 1.2E-01 1.2 9.2 9 3 | 1.5E-02 1.4 13.6

813328 746747

Leukotriene B4 335.2228 39.52 5 3 3.0E-02 1.1 3.2 165375 72612 4.1E-04 2.3 9.1

Prostaglandin D2 351.2177 27.60 31655 10877 4.2E-06 2.9 5.9

Prostaglandin E2 351.2177 26.50 20553 7560 2.6E-05 2.7 1.6

Prostaglandin F2a 353.2333 25.60 636070 201102 5.5E-06 3.2 4.7 242325 22049 1.3E-06 11.0 5.0

Leukotriene D4 495.2534 33.04 17607 0 4.5E-04 Infinity 11.8
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Table A5.3 — Summary of results of data processing workflows on

individual compounds in plasma and serum

Table A5.3a — Summary of results of data processing workflows on individual compounds in plasma

Detection Median p- oY Median Compounds
Plasma Noise threshold frequency . cv with CV <
(%) EI time (spiked) |  30% (%)

XCMS DEF 10 64 3.98E-04 4 10 90

XCMS OPT 10 82 2.70E-04 3.5 10 84

20 82 2.67E-04 3 10 86

50 82 3.21E-04 3 10 86

100 78 3.74E-04 3 10 86

Markerview 10 89 1.97E-04 0.5 10 90

20 80 6.65E-04 0.5 11 83

50 62 4.38E-04 0.5 13 86

100 56 2.06E-03 0.5 17 72

Mzmine CWT 10 73 5.04E-05 14 7 94
MzMine CWT

OPT 10 82 9.68E-05 25 7 95

MzMine ADAP 50 96 1.66E-04 18 9 98

100 93 1.52E-04 17 9 98

Progenesis More sensitivity 80 7.63E-04 1.5 9 81

Default
sensitivity 62 1.47E-04 1 8 82

Table A5.3b — Summary of results of data processing workflows on individual compounds in serum

Detection Median p- G Median Compounds
Serum Noise threshold frequency . cv with CV <
(%) value time (spiked) |  30% (%)

XCMS DEF 10 60 1.26E-03 4.5 16 74

XCMS OPT 10 71 4.68E-03 4 18 81

20 69 2.07E-03 3 14 84

50 64 2.05E-03 3 13 86

100 64 4.16E-03 3 18 76

Markerview 10 82 8.62E-04 0.5 15 86

20 80 1.30E-03 0.5 18 75

50 69 2.63E-03 0.5 21 65

100 49 3.13E-03 0.5 24 68

Mzmine CWT 10 78 3.13E-03 12 17 83
MzMine CWT

OPT 10 84 7.61E-04 14 8 100

MzMine ADAP 50 87 9.19E-04 18 17 79

100 82 9.19E-04 18 17 78

Progenesis More sensitivity 78 1.10E-03 1.5 14 83

Default
sensitivity 67 5.65E-04 1 11 90
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3.8. Table A6.1 — Results of annotation after manual curation in serum
Table A6.1 — Results of annotation after manual curation in serum
Cl Rt Cl isotopic fit
Annotation SMILES Cim/z Experimental  RTl-predicted logP-predicted Cl ove’:all Global I
(+) () (+) (-) (+) (-) (+) (-) (+) () (+) ()
MEHP* CCCCC(CC)COC(=0)C1=CC=CC=C1C(=0)0 0.86 0.83 0.89 0.95 G3_0.88
Acesulfame CC1=CC(=0)NS(=0)(=0)01 0.93 0.97 0.66 G2_0.95
Alpha-tocopherol CC1=C(C2=C(CCC(0O2)(c)ccee(c)ceece(c)cecc(c)c)c(=cio)c)c 0.93 0.90 G2_0.91
Eicosapentaenoic acid | CCC=CCC=CCC=CCC=CCC=CCCCC(=0)0 0.97 0091 0.90 0.95 0.65 0.71 0.57 G2_0.94 G3_0.81
Piperine C1CCN(CC1)C(=0)C=CC=CC2=CC3=C(C=C2)0CO3 0.82 0.96 0.43 0.54 0.50 G3_0.76
Tryptophan C1=CC=C2C(=C1)C(=CN2)CC(C(=0)O)N 095 098 | 0.71 0.69 0.83 0.81 G3_0.83 G3_0.83
4-indolecarbaldehyde | C1=CC(=C2C=CNC2=C1)C=0 0.86 0.93 0.89 0.89 0.85 0.85 0.63 G3_0.79 G2_0.91
Indoxyl sulfate C1=CC=C2C(=C1)C(=CN2)0S(=0)(=0)0 0.94 0.81 0.77 0.80 G3_0.85
Ibuprofen CC(C)CC1=CC=C(C=C1)C(C)C(=0)0O 0.91 1.00 0.91 G2_0.96
Mesterolone CC1CC(=0)Ccc2c1(c3cee4a(c(c3cez)cceao)e)c 0.92 0.87 1.00 0.87 G3_0.93
Paracetamol CC(=0)NC1=CC=C(C=C1)0 0.94 0.96 | 0.77 0.80 0.93 0.94 0.94 0.94 G2_0.85 G2_0.76
Caffeine CN1C=NC2=C1C(=0)N(C(=0)N2C)C 0.93 0.99 0.93 0.61 0.63 G3_0.85
Paraxanthine CN1C=NC2=C1C(=0)N(C(=0)N2)C 0.94 0.96 0.79 0.41 0.39 G3_0.71 G2_0.69
Theobromine CN1C=NC2=C1C(=0)NC(=0)N2C 0.94 0.86 0.39 G3_0.73
Theophylline CN1C2=C(C(=0)N(C1=0)C)NC=N2 0.94 0.84 0.39 G3_0.73
Coumaric acid C1=CC(=CC(=C1)0)C=CC(=0)0 092 0.98 0.83 0.83 0.83 0.83 G2_0.87 G2_0.91
Cannabidiol CCCCCC1=CC(=C(C(=C1)0O)C2C=C(CcCcc2c(=C)C)C)o 0.82 0.96 0.85 0.92 0.81 0.90 G2_0.83 G2_0.94
A9-THC* CCCCCC1=CC(=C2C3C=C(Cccc3c(0c2=C1)(c)c)c)o 0.82 0.96 0.97 0.95 0.56 0.58 G2_0.89 G2_0.96
Cotinine CN1C(CCC1=0)C2=CN=CC=C2 0.95 0.99 1.00 1.00 G2_0.97
3-hydroxycotinine CN1C(CC(C1=0)0)C2=CN=CC=C2 1.00 0.98 G2_0.99
Allopregnanolone CC(=0)C1cceeaci(cee3cacceeacs(cec(ca)o)c)c 0.66 092 | 0,94 0.98 0.89 0.94 0.98 0.92 0.37 G3_0.66 G2_0.99
Androstanediol CCl12Ccc(cciccee3caccecea(c3cecao)c)o 0.92 0.65 -0.09 0.82 G3_0.8
Androstenedione CC12CCC(=0)C=C1cce3c2cceea(c3ccca=0)C 0.81 0.90 | 0.98 0.99 0.87 0.83 0.70 0.76 G2_0.89 G2_0.94
Arachidonic acid CCCCC/C=C\C\C=C/C/Cc=C\C\C=Cc/cccc(0)=0 092 092 | 1.00 0.72 1.00 0.67 0.87 G3_0.93 G2_0.82
Cortisol CC12CCC(=0)C=C1CCC3C2C(CCA(C3CCCA(C(=0)CO)0)C)O 091 098 |1.00 099 070 070 013 014 | 0.78 G309 G2.0.98
Cortisone CC12CCC(=0)C=C1CCC3C2C(=0)CCA(C3CCCA(C(=0)CO)0)C 082 098 |1.00 097 068 070 1.00 097 G2.091 G2_0.97
DHA* CCC=CCC=CCC=CCC=CCC=CCcc=Cccc(=0)o 0.90 0.94 0.92 0.92 0.63 0.63 0.88 G2_0.95 G3_0.94
Leukotriene B4 CCCCCC=CCC(C=CC=CC=Cc(cccec(=0)o)o)o 0.73 0.99 | 0.99 0.97 0.98 0.97 0.99 0.92 0.61 G2_0.86 G3_0.86
Leukotriene D4 CCCCCC=CCC=CC=CC=CC(C(CCCC(=0)0)0)SCC(C(=0)NCC(=0)O)N 0.73 0.92 0.45 0.18 G2_0.82
Progesterone CC(=0)C1cce2c1(cee3cacceca=Ccc(=0)cees4ac)c 0.82 0.93 | 0.97 0.99 0.86 0.91 0.69 0.76 G2_0.89 G2_0.96
Testosterone CC12CCC3C(C1CCC20)CCCa=CC(=0)cce3ac 0.61 0.94 | 0.99 0.98 0.89 0.88 0.92 0.90 0.46 G3_0.69 G2_0.96
*
A9-THC Delta9-tetrahydrocannabinol
DHA Docosahexaenoic acid
MEHP 2-(2-ethylhexoxycarbonyl)benzoic acid
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Table A6.1 — (continued) Results of annotation after manual curation in serum

MS/MS
Annotation Theoretical fragments Experimental fragments Confidence level
(+) () (+) (-)
MEHP* 57.0699, 121.0284, 149.0239, 184.0731 57.0701, 121.0289, 149.023, 184.0741 2a
Acesulfame 77.9657, 82.0302 77.9660, 82.0300 1
Alpha-tocopherol 137.0981, 169.0922, 205.1194 137.0967, 169.0915, 205.1221 2a
Eicosapentaenoic acid | 91.0534, 105.0703 149.1340, 203.1782, 257.2254  91.0543, 105.0704 149.1333, 203.1790, 257.2261 2a
Piperine 135.0450, 143.0499, 201.0551 135.0441, 143.0491, 201.0554 1
Tryptophan 130.0652, 142.0652, 170.0601, 188.0706  116.0507, 142.0651 130.0646, 142.0651, 170.0601, 188.0706  116.0509, 142.0657 1
4-indolecarbaldehyde | 91.0553, 118.0669, 128.0614 90.0351, 116.0506 91.0547, 118.0675, 128.0621 90.0355, 116.0506 2b
Indoxyl sulfate 80.9665, 132.0460 80.9662, 132.0453 2a
Ibuprofen 154.9716, 161.1332 154.9722,161.1333 1
Mesterolone 187.1486, 269.2269, 287.2364 187.1487, 269.2263, 287.2375 2a
Paracetamol 110.0598, 134.0587 107.0375 110.0600, 134.0588 107.0386 1
Caffeine 110.0715, 138.0659 110.0718, 138.0664 1
Paraxanthine 96.0572, 124.0522 108.0198, 122.0365, 164.0341  96.0572, 124.0515 108.0208, 122.0360, 164.0344 2a
Theobromine 108.0554, 122.0589, 163.0611 108.0559, 122.0590, 163.0618 2a
Theophylline 124.0497 124.0501 2a
Coumaric acid 91.0538, 119.0486, 147.0431 93.0349, 119.0505 91.0542, 119.0492, 147.0447 93.0343, 119.0498 2a
Cannabidiol 193.1223, 259.1686 179.1066, 229.1228, 245.1541  193.1229, 259.1684 179.1066, 229.1218, 245.1534 2a
A9-THC* 109.0648,121.1012, 131.0856, 297.2214  191.1050, 245.1521 109.0648, 121.1019, 131.0861, 297.2205 191.1055, 245.1527 2a
Cotinine 118.0649, 146.0588 118.0656, 146.0592 1
3-hydroxycotinine 119.0603, 175.0665 119.0604, 175.0668 2a
Allopregnanolone 263.2007, 271.2058, 275.2009, 287.2371  297.1529, 311.1687, 325.1842  263.1996, 271.2058, 275.2010, 287.2371  297.1519, 311.1690, 325.1847 1
Androstanediol 109.0648, 121.1012, 131.0856, 297.2214 109.0648, 121.1019, 131.0861, 297.2205 2a
Androstenedione 173.1310, 211.1451, 269.1910 183.1128 173.1319, 211.1446, 269.1916 183.1126 1
Arachidonic acid 121.1025, 221.1559, 269.2300, 287.2397  205.1965, 231.2106, 259.2419  121.1021, 221.1550, 269.2289, 287.2389  205.1970, 231.2115, 259.2428 1
Cortisol 121.0647, 309.1858 297.1497, 315.1616, 331.1910  121.0651, 309.1859 297.1503, 315.1606, 331.1917 1
Cortisone 163.1115, 267.1729 301.1795, 329.1750 163.1125, 267.1728 301.1801, 329.1757 1
DHA* 119.08556, 159,1176, 173.1326, 329.25 229.1958, 284.2446 119.0863, 159.1169, 173.1334, 329.2482  229.1956, 284.2439 2a
Leukotriene B4 149.0966, 259.2066 71.0136, 195.1011, 317.2125 149.0968, 259.2072 71.0134, 195.1021, 317.2129 1
Leukotriene D4 177.0334, 477.2423 177.0329, 477.2431 1
Progesterone 109.0652, 123.0804, 297.2214 255.2323, 311.1689 109.0650, 123.0809, 297.2229 255.2321, 311.1680 1
Testosterone 253.1946, 271.2054 283.2640, 297.1529 253.1951, 271.2056 283.2642,297.1525 1
*
A9-THC Delta9-tetrahydrocannabinol
DHA Docosahexaenoic acid
MEHP 2-(2-ethylhexoxycarbonyl)benzoic acid
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Table A6.2 — Results of annotation after manual curation in plasma

Table A6.2 — Results of annotation after manual curation in plasma

CIRt Cl isotopic fit
Cim/z - - - Global CI
Annotation SMILES Experimental  RTl-predicted logP-predicted Cl overall
(+) () (+) () (+) () (+) () (+) () (+) ()
TDMPAB* CC(C)(C)C(=0)NC1=CC(=CC(=C1)NC(=0)C(C)(C)C)NC(=0)C(C)(C)C 0.94 0.93 0.79 0.79 -0.22 -0.22 | 0.81 G3_0.85 G2_0.86
2-naphthylamine C1=CC=C2C=C(C=CC2=C1)N 0.97 0.94 0.64 0.85 0.64 0.84 G2_0.8 G2_0.89
Bisphenol F C1=CC(=CC=C1CC2=CC=C(C=C2)0)0 0.90 0.98 0.90 G2_0.94
Butylparaben CCCCOC(=0)C1=CC=C(C=C1)0 0.90 0.93 098 099 0.83 0.82 G2_0.94 G2_0.96
Ethyl paraben CCOC(=0)C1=CC=C(C=C1)0 0.82 0.89 093 096 0.75 0.87 G2_0.87 G2_0.44
Propylparaben CCCOC(=0)C1=CC=C(C=C1)0 0.99 0.96 0.76 0.80 0.61 G3_0.85
4-hydroxybenzoic acid | C1=CC(=CC=C1C(=0)0)O 0.88 0.95 0.85 0.84 0.84 0.84 G2_0.87 G2_0.9
TCPP* CC(CCl)OP(=0)(0c(c)cchoc(c)cal 0.67 0.81 090 0.72 0.67 0.72 0.92 G3_0.83 G2_0.76
Acesulfame CC1=CC(=0)NS(=0)(=0)01 0.98 0.99 0.66 G2_0.99
Caffeic acid C1=CC(=C(C=C1C=CC(=0)0)0)0 0.86 0.94 0.85 0.84 0.83 0.83 G2_0.86 G2_0.89
Coumaric acid C1=CC(=CC(=C1)0)C=CC(=0)0 1.00 0.98 0.82 0.82 0.82 0.82 G2_091 G2_0.9
Tryptophan C1=CC=C2C(=C1)C(=CN2)CC(C(=0)O)N 0.95 093 | 0.68 0.73 0.60 061 | G3_0.74 G3_0.76
4-indolecarbaldehyde | C1=CC(=C2C=CNC2=C1)C=0 0.95 0.93 0.72 0.89 0.66 0.85 G2_0.83 G2_0.91
Chlortalidone C1=CC=C2C(=C1)C(=0)NC2(C3=CC(=C(C=C3)Cl)S(=0)(=0)N)O 0.82 0.93 0.84 0.71 G3_0.82
Hydrochlorothiazide C1NC2=CC(=C(C=C25(=0)(=0)N1)S(=0)(=O)N)ClI 0.85 0.76 0.92 G3_0.84
Ibuprofen CC(C)CcC1=CC=C(C=C1)C(C)C(=0)0O 0.99 1.00 0.90 G2_1
Caffeine CN1C=NC2=C1C(=0)N(C(=0)N2C)C 1.00 0.95 0.94 0.60 G2_0.97
Paraxanthine CN1C=NC2=C1C(=0)N(C(=0)N2)C 0.94 0.96 0.78 0.39 G2_0.86 G2_0.68
Theobromine CN1C=NC2=C1C(=0)NC(=0)N2C 0.94 0.85 G2_0.9
Allopregnanolone CC(=0)C1cce2ci(cec3caceceacs(ccc(ca)o)e)c 097 092 | 089 098 083 094 0.9 0.92 0.87 G3_091 G2_0.95
Androstenedione CC12CCC(=0)C=C1CCC3C2Ccc4(c3ccca=0)C 0.81 084|090 092 079 0.80 0.99 0.97 G2_0.85 G2_0.88
Arachidonic acid CCCCC/C=C\C\C=C/C/C=C\C\C=C/CCCC(0)=0 0.89 0.84 | 1.00 1.00 1.00 1.00 0.80 | G2_0.85 G3_0.88
Cortisol CC12CCC(=0)C=C1CCC3C2C(CC4(C3Cccca(c(=0)co)o)c)o 0.83 092|100 099 070 0.70 0.13 0.14 G2_091 G2_0.96
Cortisone CC12CCC(=0)C=C1CCC3C2C(=0)Ccc4a(c3ccca(c(=0)co)o)c 091 084|100 100 0.67 0.67 0.99 0.99 G2_0.85 G2_0.92
DHA* CCC=CCC=CCC=CCC=CCC=CCC=CCcCcc(=0)o0 0.78 0.91 092 092 0.63 0.63 0.66 0.88 | G3_0.81 G3_0.81
Leukotriene B4 CCCCCC=CCC(C=CC=CC=CC(CCCC(=0)0)0)0 0.89 0.97 0.97 0.92 0.57 G3_0.81
Leukotriene D4 CCCCCC=CCC=CC=CC=CC(C(CCCC(=0)0)0)SCC(C(=0)NCC(=0)O)N 0.93 1.00 0.00 -0.86 G2_0.96

*

DHA
TCPP
TDMPAB

Docosahexaenoic acid
Tris(1-chloro-2-propyl)phosphate
1,3,5-tris(2,2-dimethylpropionylamino)benzene
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Table A6.2 — (continued) Results of annotation after manual curation in plasma

MS/MS
Annotation Theoretical fragments Experimental fragments Confidence level
(+) () (+) ()
TDMPAB* 191.1178, 275.1754, 292.2020 206.1299, 290.1874, 316.1667  191.1175, 275.1758, 292.2025 206.1297, 290.1875, 316.1666 2b
2-naphthylamine 77.0386, 117.0704, 127.0541 101.0391, 116.0500 77.0387, 117.0704, 127.0541 101.0391, 116.0498 2a
Bisphenol F 157.0649, 171.0815 157.0645, 171.0446 2a
Butylparaben 121.0290, 139.0395, 177.0916 121.0306, 137.0239 121.0287, 139.0390, 177.0913 121.0303, 137.0238 2a
Ethyl paraben 121.0290, 149.0603 136.0158, 137.0244 121.0285, 149.0598 136.0157, 137.0240 2a
Propylparaben 121.0283, 139.0384 121.0285, 139.0390 1
4-hydroxybenzoic acid | 95.0488, 121.0293 93.0340, 119.0133 95.0491, 121.0291 93.0338, 119.0132 2a
TCPP* 174.9909, 250.9995 159.0645, 256.0313 174.9913, 251.0002 159.0644, 256.0311 2a
Acesulfame 77.9657, 82.0302 77.9653, 82.0305 1
Caffeic acid 135.0436, 163.0389 89.0391, 108.0230, 135.0429 135.0439, 163.0387 89.0388, 108.0229, 135.0426 2a
Coumaric acid 91.0538, 103.0540, 147.0431 93.0349, 119.0505 91.0542, 103.0544, 147.0447 93.0347, 119.0501 2a
Tryptophan 118.0644, 130.0653, 146.0597, 170.0575  116.0507, 142.0651 118.0647, 130.0658, 146.0598, 170.0578 116.0501, 142.0647 1
4-indolecarbaldehyde | 91.0553, 118.0669, 128.0614 90.0351, 116.0506 91.0546, 118.0664, 128.0620 90.0351, 116.0506 2b
Chlortalidone 146.0247, 189.9739 146.0247, 189.9733 2a
Hydrochlorothiazide 126.0118, 204.9835, 268.9465 126.0111, 204.9837, 268.9456 2a
Ibuprofen 154.9722, 161.1333 154.9720, 161.1332 1
Caffeine 135.0436, 163.0389 135.0439, 163.0387 1
Paraxanthine 96.0572, 124.0522 108.0198, 122.0365, 164.0341  96.0579, 124.0525 108.0197, 122.0363, 164.0340 2a
Theobromine 108.0554, 122.0589, 163.0611 108.0551, 122.0580, 163.0612 2a
Allopregnanolone 263.2007, 271.2058, 275.2009, 287.2371  297.1529, 311.1687, 325.1842  263.2005, 271.2057, 275.2004, 287.2368 297.1527,311.1688, 325.1840 1
Androstenedione 173.1310, 211.1451, 269.1910 183.1128 173.1308, 211.1449, 269.1908 183.1125 1
Arachidonic acid 121.1025, 221.1559, 269.2300, 287.2397  205.1965, 231.2106, 259.2419  121.1021, 221.1555, 269.2296, 287.2395 205.1964, 231.2102, 259.2419 1
Cortisol 121.0647, 309.1858 297.1497, 315.1616, 331.1910  121.0644, 309.1857 297.1494, 315.1614, 331.1905 1
Cortisone 163.1115, 267.1729 301.1795, 329.1750 163.1113, 267.1727 301.1797, 329.1749 1
DHA* 119.08556, 159,1176, 173.1326, 329.25 229.1958, 284.2446 119.08554, 159,1173, 173.1325, 329.2499  229.1957, 284.2445 2a
Leukotriene B4 71.0136, 195.1011, 317.2125 71.0136, 195.1010, 317.2126 1
Leukotriene D4 177.0334, 477.2423 177.0332, 477.2421 1

*

DHA
TCPP
TDMPAB

Docosahexaenoic acid
Tris(1-chloro-2-propyl)phosphate

1,3,5-tris(2,2-dimethylpropionylamino)benzene
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3.10. Appendix S.1 — Chemicals and solvents

Standard compounds (native and isotopically labeled) were purchased from LGC, VWR,
Sigma Aldrich, or Bertin and were stored at -20°C. Details can be found in Supporting
Information (SI, Table Al1). UHPLC-MS-grade acetonitrile and formic acid were purchased from
Biosolve (Dieuze, France) while UHPLC-MS-grade methanol was purchased from Carlo Erba

(Val-de-Reuil, France). Ultrapure water was obtained with a Millipore Milli-Q Gradient system.

3.11. Appendix S.2 — Data acquisition

Samples were analyzed on AB SCIEX X500R QTOF interfaced with an AB SCIEX ExionLC
AD UPLC. Compound chromatographic separation was achieved using an Acquity UPLC HSS
T3 C18 column (1.8um, 1.0 x150mm) maintained at 40°C. Injection volume was set at 2 L.
Flow rate was set at 100 puL/min with mobile phases of ultrapure water/0.01% formic acid (A)
and acetonitrile/0.01% formic acid (B). The gradient was as follows: 0-2.5 min, 10-20% B ; 2.5-
20 min, 20-30% B ; 20-38 min, 30-45% B ; 38-45 min, 45-100% B ; 45-55 min, 100% B ; 55-
60 min, 10% B. Full-scan mass spectra was acquired between 50-1100 m/z using ESI source
settings: temperature 550°C, ionspray voltage 4,5kV (-4,5kV in negative mode), declustering
potential 80V (-80V in negative mode), accumulation time 300 ms, spray N2 gas 35 arbitrary
units, heat conduction gas 35 arbitrary units; curtain gas 7 arbitrary units, collisionally activated
dissociation gas 7 arbitrary units, run time 60min. Samples were analyzed in full scan
experiment in both — and + ESI modes. MS/MS mass fragmentation information for chemical
elucidation was obtained by further analysis of selected samples in sequential window

acquisition of theoretical mass spectrum (SWATH).

3.12. Appendix S.3 — Quality control

One workup sample (i.e. extraction with HPLC grade water instead of sample) per analytical
batch was prepared to monitor background contaminants. Quality control (QC) samples
comprising a composite sample were prepared in order to monitor for UHPLC-ESI-TOFMS
repeatability and sensitivity during analysis of a sample run. Solvent samples (acetonitrile/H20
(10:90)) were also injected to ensure that there was no carryover in the UHPLC system that
might affect adjacent results in analytical runs. Each run commenced with the injection of blank
samples (workup and solvent) followed by injection of a QC sample. The samples were injected

randomly with QC samples analyzed after every 7 samples.
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3.13. Appendix S.4 — In-house annotation workflow
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)
Step 4 : Confidence ‘Cg.n fldenc:t Confidence index Global
Calculating Global Confidence Index indexonm/z | s | (.I,:isk::) & | onisotopicfit ===) | Confidence index
Cl_m/z e CI_IF CcL_G

Figure B1 - In-house annotation workflow in four steps: comparing successively m/z, Rt and
isotopic fit, then generating a global scoring. Calculation of ClI for m/z and Rt is fairly simple
and is only based on a comparison between the feature’s and suspect’s predictors. For isotopic
fit, a multi-step approach is needed, involving first a detection of M+2, then a ratio abundance
comparison. More specifically, as a first step for a given pre-annotated feature, the software
computes a temporary Cl based on m/z for the M+2. Then, another temporary Cl is computed
based on My and M Rts proximity. The two temporary Cl values are averaged to give an
intermediate M+2 identification Cl. The second step is the M+0 abundance check. Since data
processing software might generate less accurate integrations for low-abundant compounds,
abundance ratios are only compared if the pre-annotated feature’s area is higher than a
threshold value of 100 (linked to the experimental data). If this is not verified, only the
intermediate M+2 identification ClI is displayed. Else, the area ratios are compared and a
second intermediate Cl is computed for abundances with a Aazao value of 0.1. The last step is
to compute an overall Cl value for isotopic fit, which is calculated as a weighed sum of the
intermediate Cls for M+2 identification and abundance, with a ponderation linked to the M+0

area. Finally, global Cl is computed as a mean of the three predictors’ CI.
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3.14. Appendix S.5 — Modelling the retention time predictor
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Figure B2 — Modelling retention time using modelled (n=134) or exclusively experimental
(n=101) octanol-water partition coefficients as predictors.

Plasma ESI+
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Figure B3 - Determination of experimental retention time tolerance Ag:. Standard deviation on
Rt were determined for compounds from the spiking set on the four spiked plasma and four
spiked serum samples, and for internal standards (ISTD) on the eight plasma and eight serum
samples. This value was multiplied by three as to theoretically obtain 99.7% of values under

the curve.
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3.15. Appendix S.6 — Optimization of individual data processing tools
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Figure B4 - Data processing (i.e. peak picking, deconvolution, alignment, gap filling) evaluation

for detection and semi-quantification of environmental-level spiked compounds with different

sets of parameters using MZmine2 in plasma (A) and serum (B), and using XCMS in plasma

(C) and serum (D) (n=4 samples each).
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3.16. Appendix S.7 — Application of the in-house software in real-life

conditions

Figure B5 - Projection of spiking compounds for which all three CI were available in plasma

and serum, as well as a barycenter.

In-house tool MZmine2 msPurity MS-DIAL xMSannotator
Using in-house 5 (4+1) 5 (4+1) 4 (4+0) 4 (4+0) 5 (4+1)
libraries
Using existing 0 5 4 4 5
databases
Using experimental 5 (2+1+2) 3(2+1+0) O 3 (2+1+0) 0
and/or predicted Rt
Using MS/MS 0 3 (3+0) 5 (3+2) 3 (3+0) 0
Speed of 5 (2+3) 4 (2+2) 3(1+2) 4 (2+2) 2 (1+1)
implementation
Scoring 5 (2+3) 0 5 (2+3) 2 (2+0) 3 (2+1)
Prioritization 5 (2+2+1) 2 (2+0+0) 4 (2+1+1) 5 (2+2+1) 3 (2+1+0)

of spiked chemicals
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Figure B6 - Scoring of five suspect screening tools: xMSannotator, MS-DIAL, msPurity (green),
MZmine2 and in-house tool. Comparison was made on use of in-house databases, use of
predicted or experimental Rt and MS/MS, speed of implementation, scoring and prioritization.
Use of in-house libraries was rated based on availability (/4), with a bonus given to tools
which allow the use of an easily formatted database such as .csv (/1). Use of existing
databases was rated based on availability of none, one to three, or more external database
(0/5, 4/5, or 5/5). Use of experimental and/or predicted Rt was rated based on availability
(/2), use of experimental Rt only through in-house library (/1), and use of experimental and
predicted Rt (/2). Use of MS/MS was rated based on availability (/3), and scoring on this
predictor (/2). Speed of implementation considers ease of set up (/2) and computational
speed (/3). Scoring is rated based on availability (/2), and basis of said score on within-dataset
correlation or on correlation with the suspect list (/3). Lastly, prioritization of spiked
chemicals is rated based on availability of criteria for prioritization (e.g. detection frequency,
or scoring, etc.) (/2), usability of scoring (if available) to estimate fit between suspect and

feature (/2), and efficiency of ranking (/1).

268



L&) ha
B ®
= S

b=

M ean feature raw area
2 2
e
=

1000 -

Appendices

4. Appendix 4. Chapter V

4.1. Effect of total ion current correction on mean feature area and

principal component analysis results
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Figure B1 — Mean feature raw area (A), mean feature area after total ion current correction (B),

PCA using raw area (C) and PCA using area after total ion current correction (D) shown on
samples (including the composite quality control samples) prepared by protein precipitation

(PPT) injected in ESI (-) mode. Blank samples for each batch are identified by orange squares.
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Figure B2 — Mean feature raw area (A), mean feature area after total ion current correction (B),

PCA using raw area (C) and PCA using area after total ion current correction (D) shown on

samples (including the composite quality control samples) prepared by phospholipid removal

plates Phree injected in ESI (+) mode. Blank samples for each batch are identified by orange

squares.
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Figure B3 — Mean feature raw area (A), mean feature area after total ion current correction (B),
PCA using raw area (C) and PCA using area after total ion current correction (D) shown on
samples (including the composite quality control samples) prepared by phospholipid removal

plates Phree injected in ESI (-) mode. Blank samples for each batch are identified by orange
squares.
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4.2.

Annotations on Pélagie samples

Table Al — Annotated compounds in Pélagie samples, with confidence indices (Cl) on mass-to-charge (m/z) ratio, retention time (Rt), isotopic

Appendices

fit, and global confidence index. Compounds are either detected in the [M+H]" form ( “(+)” columns) or the [M-H] form ( “(-)” columns)

CI Rt Cl isotopic fit
m/z - Clm/z 0P Considered Global CI
. X Lo T - . ogP- onsidere
Annotation SMILES (min) Experimental RTl-predicted Retip-predicted predicted Mn Cl overall
(+) () (+) () (+) () (+) () (+) () (+) () (+) () (+) () (+) ()
(2—oxoi2,3-fi|hydro-lH-|ndoI-3- C1=CC=C2C(=C1)C(C(=0)N2)CC 192.0640 27 0.95 0.99 62 097
yl)acetic acid (=0)0
13,5 -ris(2,2- CC(C)(C)C(=0)NC1=CC(=CC(=C1
= - ) )NC(=0)C(C)(C)C)NC(=0)C(C)(C 410.2220 34.11 0.86 0.66 0.66 0 M2 0.54 G3_0.76
dimethylpropionylamino)benzene )
10,11-trans-Dihydroxy-10,11- €1=CC=C2C(=C1)C(C(C3=CC=C
271.11 4 b H M2 .7 b
dihydrocarbamazepine C=C3N2C(=0)N)0)O o S0 OEE OEE 0z SELOE
) CC1=CC(=0)C2C(CCCC2(C1CCC
13-Hydroxy-7,14-labdadien-6-one 305.2456 46.63 0.87 0.67 0.42 G2_0.77
veroxy ()(c=C)o)e)(C)C -
2-((3- _
dodecanamidopropyl)dimethylamm Gdegdagdad=ENaE 377.2579 29.19 0.88 0.77 0.65 M2 0.61 G3_0.75
; C)(C)cc(=0)[0-]
onio)acetate
2-chlorophenol C1=CC=C(C(=C1)0)CI 126.9957 14.01 0.92 0.5 0.19 0.5 M2 0.91 G3_0.78
2-hydroxybenzoic acid C1=CC=C(C(=C1)C(=0)0)0 137.0243 219 0.95 0.6 0.97 G2_0.78
. C1=CC=C2C(=C1)C=CC3=C(N2C
2-hydroxycarbamazepine (=0)N)C=CC(=C3)0 253.0966 12.72 0.96 0.67 0.46 0.55 M1 0.88 G3_0.84
2-Naphthalenesulfonic acid )c(i;c)(c):c2c:c(c:cc2:c1)s(:o 207.0124 | 7.25 0.95 0.69 035 0.37 G2.0.82
2-Naphthol C1=CC=C2C=C(C=CC2=C1)0 143.0503 22.93 0.94 0.87 0.4 0.81 M1 0.65 G3_0.82
2-naphthylamine C1=CC=C2C=C(C=CC2=C1)N 144.0808 14.41 0.97 0.75 0.23 0.41 G2_0.86
3-(4-Hydroxyphenyl)lactic acid €1=CC(=CC=C1CC(C(=0)0)0)0 181.0499 4.07 0.91 0.55 0.83 0.63 G2.0.73
1= = =C1B B =
3,5-dibromo-4-hydroxybenzoic acid g ARl E ) 292.8458 19.22 0.88 0.96 0 0.59 M2 0.78 G3_0.87
3-Formylindole C1=CC=C2C(=C1)C(=CN2)C=0 146.0596 4.24 0.95 0.68 0.11 0.14 M1 0.76 G3_0.8
3-hydroxybenzoic acid C1=CC(=CC(=C1)0)C(=0)0 137.0245 5.38 0.95 0.55 0.55 0.41 G2_0.75
4-chlorophenol C1=CC(=CC=C10)Cl 126.9958 11.81 0.94 0.76 0.05 0.35 G2_0.85
4-hydroxy-2,5,6- C(#N)C1=C(C(=C(C(=C1CI)C#N)
trichloroisophthalonitrile ancho 244.9085 27.74 0.86 0.92 0.88 M2 0.96 G3_0.91
4-hydroxybenzoic acid €1=CC(=CC=C1C(=0)0)0 137.0244 8.69 1 0.8 0.72 0.64 M1 0.88 G3_0.89
4-hydroxyquinoline C1=CC=C2C(=C1)C(=0)C=CN2 146.0599 6.27 0.95 0.71 0.29 0.22 M1 0.76 G3_0.81
5-acetylsalicylamide )CNC(=O)C1=CC(=C(C=C1)O)C(=O 180.0657 621 | 0.76 0.93 0.5 0 0.81 M1 0.94 G3_0.88
5-hydroxytryptophan g(lfg)coz;qqC=C10)C(=CN2)CC( 219.0788 | 4.52 0.91 0.89 0.27 0.16 G2_0.9
Acesulfame CC1=CC(=0)NS(=0)(=0)01 161.9863 3.12 0.90 0.96 0.28 0.97 0.64 G2_0.95
Acetaminophen glucuronide R e Cacl OC2C 362.0640 | 4.09 0.79 0.61 0.99 0.97 G2.0.7

C(C(C(02)C(=0)0)0)0)0
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Table Al — (continued) Annotated compounds in Pélagie samples, with confidence indices (Cl) on mass-to-charge (m/z) ratio, retention time

(Rt), isotopic fit, and global confidence index. Compounds are detected in the [M+H]* form ( “(+)” columns) or the [M-H] form ( “(-)” columns)

CI Rt Cl Isotopic fit
) m/z Rt Clm/z logP- Consi Global CI
Annotation SMILES / ) / Experimental RTl-predicted Retip-predicted og. Cpeceed Cl overall
(min) predicted Mn
(+) () (+) () (+) (=) (+) () (+) () (+) () (+) () (+) () (+) ()
Acetaminophen sulfate ;2((5(0:)00)NC1:CC:C(C:C1)OS(:O 230.0127 | 3.61 0.97 0.91 0.84 0.7 0.8 G2_0.94
Aminoacetophenone C1=CC=C(C=C1)C(=0)CN 136.0752 2.07
) . €1=NC2=C(C(=0)N1)N=CN2C3
Arabinosylhypoxanthine C(C(C(03)cO)0)0 303.0501 2.98 0.99 0.77 M2 0.31 G3_0.69
€OC(=0)C(CC1=CC=CC=C1)NC(
Aspart 295.1 . .97 ! 22 2 M1 94 !
spartame S 95.13 5.8 0.9 0.96 0 0.95 0.28 0.9 G3.0.96
CC(=CCCC(=CCOC1=CC2=C(C=C
Auraptene 1)C=CC(=0)02)C)C 297.1523 44.08
Azelaic acid C(CCCC(=0)0)CCCC(=0)0 187.0977 | 9.41 0.94 0.91 0.79 0.78 M1 0.91 G3_0.92
Benzothiazole €1=CC=C2C(=C1)N=C52 136.0204 | 46.77 0.91 0.83 0.68 G2_0.87
Benzothiazole sulfonic acid S(l);(c)c:czc(:cnN:c(sz)s(:o)( 213.9639 | 6.68 0.99 0.83 0.62 0.89 G2_0.91
€CCCOC(=0)C1=CC=CC=C1C(=
Benzylbutylphthalate 0)0CC2-CoseonC 313.1439 44.94 | 0.87 0.95 0.36 0.72 0.04 M1 0.77 G3.0.86
C€C1=CC(=C(C(=C1)C(C)(C)C)0)C
Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2- | C2=C(C(=CC(=C2)C)C(C)(C)C)OC
hydroxy-5-methylbenzyl)-4- (=0)C3=CC=C(C=C3)C(=0)0C4= | 811.4913 1255 | 0.85 0.78 0.32 G2_0.82
methylphenyl) terephthalate C(C=C(C=C4C(C)(C)C)C)CC5=C(
C(=CC(=C5)C)C(C)(C)C)O
Bromoxynil €1=C(C=C(C(=C1Br)O)Br)C#N 2759043 | 20.2 0.84 0.42 0 0.6 M2 0.79 G3_0.68
Caffeine (2:2)16C=NCZ:ClC(:O)N(C(:O)N 195.09 553 | 0.95 0.67 0.53 0.77 G2_0.81
) €1=CC=C2C(=C1)C=CC3=CC=CC
Carbamazepine —CaN2C(OIN 237.1016 19.7 | 0.99 0.66 0 0 M1 0.82 G3_0.82
Carveol €C1=CCC(CC10)C(=C)C 153.1272 381 | 0.79 0.81 0 M1 0.77 G3.0.79
Carylophyllene oxide gicl(CCZC1CCC3(C(O3)CC2=C) 207.1735 44.42
Chavicol sulfate (c;(c)ca:cc:c(c=c1)os(=o)(= 213.0226 | 11.38 0.97 0.88 0.61 0.54 0.44 M2 0.91 G3.0.92
! . C=CC1CN2CCCICC2C(C3=CC=N
Cinchonidine C4=CC=CC=C34)0 293.1752 32.49
Cinnamaldehyde €1=CC=C(C=C1)C=CC=0 133.0645 1433 | 0.82 0.68 0.76 G2.0.75
CMPF (c_coc)c01)=cc(c(=c(01)ccc(=o)o)c 239.0925 | 22.08 0.98 0.97 G2_0.98
) ) CCCCCCCCCCCC(=0)NCCCIN+|(
Cocamidopropyl Betaine 343.2939 35.78 0.79 0.9 0.47 M1 0.9 G3_0.86
R C)(C)CC(=0)[0-] H
Coumaraldehyde €1=CC(=CC=C1C=CC=0)0 149.0597 336 | 0.92 0.96 0.86 0.59 M1 0.91 G3.0.93
Coumaric acid €1=CC(=CC=C1C=CC(=0)0)0 163.0398 | 5.1 0.9 0.74 0.23 0.25 G2_0.82
Cresol sulfate €C1=CC=CC=C105(=0)(=0)0 187.0066 | 7.35 0.85 0.63 1 0.62 0.26 M2 0.86 G3_0.78
) €CCCC(CC)COC(=0)C1=CC=CC=
Di(ethylhexyl) phthalate C1C(=0)0CC(CC)CCCC 391.28 45.67 0.91 0.79 0.69 G2_0.85
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Table Al — (continued) Annotated compounds in Pélagie samples, with confidence indices (Cl) on mass-to-charge (m/z) ratio, retention time
(Rt), isotopic fit, and global confidence index. Compounds are detected in the [M+H]* form ( “(+)” columns) or the [M-H] form ( “(-)” columns)

CI Rt Cl Isotopic fit
. m/z R Clm/z = i Global CI
Annotation SMILES / t / Experimental RTI-predicted Retip-predicted IOE.P Considered Cl overall
(min) predicted Mn
(+) () (+) () (+) (=) (+) () (+) () (+) () (+) () (+) () (+) ()
. CCCCCCCCOC(=0)C1=CC=CC=C
Dioctyl phthalate 1C[=0)OCCELeCCe 391.2846 49.09 | 0.95 0.86 0.78 G2_0.91
. €1=CC=C(C=C1)OP(=0)([O-
Diphenylphosphate i gy 251.0466 462 | 0.99 0.94 038 0.02 0.01 M1 0.93 G3_0.95
Diphenylsulfone g}zﬁgg(c=61)5(=0)(=0)c2=c 219.0473 26.77 | 0.89 0.74 0.87 M1 0.82 G3_0.82
Docosahexaenoic acid SR CEaCEEaREEaCEEy 327.2327 | 46.43 0.97 1 0.79 0.89 0.6 M1 0.98 G3_0.98
€CCe(=0)0
Dodecylbenzenesulfonic acid (c_coc)ffg)cgccccu:cc:cc:c1s 3251851 | 48.41 0.93 0.98 0.22 0.69 M1 0.9 G3_0.94
€CC=CCC=CCC=CCC=CCC=CCCC
Eicosapentaenoic acid C(=0)0 301.2169 45.99 0.91 0.88 0.96 0.82 M1 0.92 G3a_0.9
Ferulic acid )CC? C1=C{C=CC(=C1)C=CC(=0)0 193.0505 6.5 0.97 0.63 0.4 0.39 G2_0.8
€1=C(C=C(C(=C1Cl)N2C(=C(C(=
Fipronil sulfone N2)C#N)S(=0)(=0)C(F)(F)F)N)CI 4509301 | 44.56 0.89 0.73 0.79 M2 0.95 G3_0.86
)C(F)(F)F
Ibuprofen g?éc)CCl:CCzC(C:Cl)C(C)C(: 205.1233 | 41.19 0.99 0.97 0.36 0.46 G2_0.98
Indole-3-acetaldehyde €1=CC=C2C(=C1)C(=CN2)CC=0 | 160.0746 952 | 0.86 0.94 0.62 0.91 M1 0.89 G3_0.90
Indole-3-carbinol €1=CC=C2C(=C1)C(=CN2)CO 130.0648 10.5
Indoxyl sulfate g}(:_coc)zczc(:cnc(:CNz)os(: 212.0022 | 5.92 0.96 0.86 0.41 M2 0.85 G3_0.89
loxynil C1=C(C=C(C(=C11)O)I)CHN 369.8217 | 28.48 0.95 0.6 0.43 0.33 M1 0.9 G3_0.82
Isobutylparaben gC(C)COC(=O)Cl=CC=C(C=C1) 195.1015 40.82 | 0.88 0.72 0.38 G2_0.8
Isopropylparaben CC(C)OC(=0)C1=CC=C(C=C1)0 181.0857 8.43
- CIN+](C)(C)C(CC1=CNC2=CC=C
Lenticin C=C21)C(=0)[0-] 247.15 5.26
Lidocaine (;E;VéCC)CC(:O)NCl:C(C:CC:C 235.1804 594 | 0.93 0.81 0.72 0.8 M1 0.87 G3_0.87
) €C1=CC2=C(C=C1C)N=C3C(=N2
Lumichrome ELOEoE 243.0877 10.08 | 0.93 0.52 0 0.01 G2.0.73
Mercaptobenzothiazole C1=CC=C2C(=C1)NC(=S)S2 165.9795 15.22
Methionine €SCCC(C(=0)O)N 150.06 153 | 078 0.78 0.51 0.1 M1 0.87 G3.0.81
) CN(CC(=0)0)S(=0)(=0)C(C(C(C(
;\2221'2;:'“°'°°°ta"eS“'f°"am'd° C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F) 569.9673 | 44.87 0.95 0.79 08 M2 0.70 G3_0.81
F)(F)F)(F)F)(F)F
Paracetamol CC(=0)NC1=CC=C(C=C1)0 152.071 424 | 083 0.74 0.69 M1 0.95 G3_0.84
Paraxanthine (2:;\IC1C=NC2=C1C(=O)N(C(=O)N 179.0575 | 5.23 0.96 0.82 0.78 M1 0.83 G3_0.87
Pentachlorophenol gl(zc(c(=C(C(=C1C')C')C”C')C” 262.8401 | 43.01 0.85 0.84 0 0.72 M2 0.91 G3_0.87
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Table Al — (continued) Annotated compounds in Pélagie samples, with confidence indices (Cl) on mass-to-charge (m/z) ratio, retention time

(Rt), isotopic fit, and global confidence index. Compounds are detected in the [M+H]* form ( “(+)” columns) or the [M-H] form ( “(-)” columns)

CI Rt Cl Isotopic fit
. m/z Rt Clm/z i Global CI
Annotation SMILES / X / Experimental RTI-predicted Retip-predicted > Considered Cl overall
(min) predicted Mn
(+) () (+) () (+) () (+) () (+) () (+) () (+) () (+) (=) (+) ()
N C(C(C(C(R)(F)F)(F)F)(F)F)(C(C(C(
Perfluoroheptanesulfonic acid 448.9334 33.49 0.84 0.73 0.13 0.93 G2_0.78
P F)(F)S(=0)(=0)O)(F)F)(F)F)(F)F -
o pref C(C(C(C(F)(F)S(=0)(=0)O)(F)F)(
Perfluorohexanesulfonic acid 398.9366 35.31 0.89 0.84 0.84 G2_0.87
F)F)(C(C(F)(F)F)(F)F)(F)F -
C(C(C(C(C(F)(F)s(=0)(=0)O)(F)F
Perfluorooctanesulfonic acid )(F)F)(F)F)(C(C(C(F)(F)F)(F)F)(F) 498.9305 43.18 0.93 0.76 0.79 M2 0.77 G3_0.82
F)(F)F
Phenol sulfate C1=CC=C(C=C1)0S(=0)(=0)0 172.9913 4.74 0.97 0.62 0.55 0.36 M2 0.87 G3_0.82
Piperidone C1CCNC(=0)C1 100.0751 3.78
o C1CCN(CC1)C(=0)C=CC=CC2=C
Piperine C3=C(C=C2)0C03 286.1436 37.81
Propylparaben CCCOC(=0)C1=CC=C(C=C1)0 179.0711 21.58 0.95 0.76 0.46 0.04 0.19 G2_0.86
Propylparaben sulfate Sg?((zg()zom1=cc=C(c=61)os( 259.0282 17.12 0.98 0.81 0.23 0.73 0.65 M2 0.9 G3_0.9
COC1C(CC2CN3CCC4=C(Cc3CcC2
) C1C(=0)OC)NC5=C4C=CC(=C5)
R .2801 15. 3 . .4 M1 . A
eserpine 0C)0C(=0)C6=CC(=C(C(=C6)0C 609.280 5.39 0.96 0.99 0.48 0 0.9 G3_0.95
)oc)oc
CC1CCC2C(C3C(N2C1)CCacs(C
Solanidine CC5C4CC=C6C5(CCC(C6)O)C)C) 398.34 26.15 0.91 0.63 0.78 0.75 G2_0.77
C
C(c1c(c(c(c(o1)oc2(c(c(c(02
Sucralose )Ccl)0)0)Ccl)0)0)Cl)o 430.9843 6.78 0.90 0.59 0.97 M2 0.98 G3_0.82
Theobromine gNlCzNCZZClC(:O)NC(:O)NZ 181.07 38 | 0.95 0.45 0 G2.0.7
Theophylline Eglcz:c(q:o)N(C1=O)C)NC= 181.07 5.91
Thymol €C1=CC(=C(C=C1)C(C)C)O 151.1111 1952 | 0.93 0.93 0.91 M1 0.98 G3_0.95
C1=CC(=C(C=C1cl)oc2c(c(c(c(
Triclosan glucuronide 02)¢(=0)0)0)0)0)0C3=C(C=C( 462.9753 27.17 0.86 0.91 0.85 M2 1 G3_0.92
c=c3)al)cl
. C1=CC(=C(C=C1Cl)0S(=0)(=0)
Triclosan sulfate e e 366.9009 36.32 0.94 0.97 0 0.98 M2 0.88 G3_0.93
Triethylphosphate CCOP(=0)(0cCc)occ 183.0783 12.57 0.89 0.77 0.82 0.92 G2_0.83
) o €1=CC=C(C=C1)P(=0)(C2=CC=C
Triphenylphosphine oxide C=C2)C3=CC=CC=C3 279.0925 2.76 0.8 0.55 0.7 0.59 G2_0.72
Tris(2-butoxyethyl)phosphate ccccoccop(=o)occoccccio 399.25 44.69 0.93 0.66 0.82 G2_0.8
Cccocccc
COC1=NC(=NC(=N1)NC(=O)NS(
Tritosulfuron =0)(=0)C2=CC=CC=C2C(F)(F)F) 444.0210 34.47 0.91 0.96 0.86 0.69 0.33 G2_0.94
C(F)(F)F
Tryptophan fg;g)C':CZC(:Cl)C(=CN2)CC(C( 205.0968 461 | 0.83 0.9 0.83 0.51 G2_0.87
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4.3. MS2 data for annotated compounds

Table A2 — MS2 theoretical and experimental fragmentation data for annotated compounds

Annotation

MS/MS

Theoretical fragments

Experimental fragments

(+)

()

(+)

()

(2-ox0-2,3-dihydro-1H-indol-3-yl)acetic acid
1,3,5-tris(2,2-dimethylpropionylamino)benzene
10,11-trans-Dihydroxy-10,11-dihydrocarbamazepine
13-Hydroxy-7,14-labdadien-6-one
2-((3-dodecanamidopropyl)dimethylammonio)acetate
2-chlorophenol

2-hydroxybenzoic acid

2-hydroxycarbamazepine

2-Naphthalenesulfonic acid

2-Naphthol

2-naphthylamine

3-(4-Hydroxyphenyl)lactic acid
3,5-dibromo-4-hydroxybenzoic acid
3-Formylindole

3-hydroxybenzoic acid
4-chlorophenol

4-hydroxy-2,5,6-trichloroisophthalonitrile
4-hydroxybenzoic acid
4-hydroxyquinoline

5-acetylsalicylamide
5-hydroxytryptophan
Acesulfame

Acetaminophen glucuronide
Acetaminophen sulfate

Aminoacetophenone

77.0391, 91.0555, 103.0545

87.0256, 104.0529, 133.0318
195.0648, 397.2115

145.0764, 172.0870, 198.0663

91.0556, 115.0542, 117.0699,
127.0542

65.0400, 77.0389, 91.0560,
117.0590

77.0415, 91.0555, 104.0494,
128.0476
165.0694, 179.0726, 194.0958

167.0729, 180.0807,
182.0963, 193.0886, 210.0914

232.1091, 290.1874, 316.1667

102.0561, 238.2177, 283.2756
91.02
93.03

79.9574, 114.0553, 143.0503
98.9055, 115.0553

72.9921, 93.0301, 107.0480,
119.04809, 134.0377, 135.0456
248.86

93.03

146.9765, 174.9704,
181.9447, 209.9401
93.0343

132.0447, 144.0456, 158.0622
67.0065, 77.9655, 82.0298

113.0252, 150.0561, 175.0252
107.0365, 108.0445, 150.0551

77.0390, 91.0554, 103.0548

87.0256, 104.0536, 133.0318
195.0655, 397.2110

145.0768, 172.0864, 198.0659

91.0549, 115.0543, 117.0690,
127.0545

65.0396, 77.0384, 91.0551,
117.0583

77.0415, 91.0548, 104.0490,
128.0479
165.0697, 179.0720, 194.0963

167.0730, 180.0803,
182.0966, 193.0885, 210.0917

232.1089, 290.1875, 316.1671

102.0558, 238.2182, 283.2751
91.02
93.03

79.9577, 115.0546, 143.0500
98.9057, 115.0557

72.9922, 93.0304, 107.0482,
119.0488, 134.0372, 135.0455
248.85

93.03

146.9765, 174.9710,
181.9447, 209.9406
93.0346

132.0453, 144.0450, 158.0630
67.0063, 77.9654, 82.0299

113.0245, 150.0562, 175.0247
107.0367, 108.0452, 150.0556
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Table A2 — (continued) MS2 theoretical and experimental fragmentation data for annotated compounds

Annotation

MS/MS

Theoretical fragments

Experimental fragments

(+) ()

(+)

()

Arabinosylhypoxanthine
Aspartame

Auraptene

Azelaic acid

Benzothiazole
Benzothiazole sulfonic acid
Benzylbutylphthalate

Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2-hydroxy-5-methylbenzyl)-4-
methylphenyl) terephthalate

Bromoxynil
Caffeine
Carbamazepine
Carveol

Carylophyllene oxide

Chavicol sulfate
Cinchonidine

Cinnamaldehyde

CMPF

Cocamidopropyl Betaine

Coumaraldehyde
Coumaric acid
Cresol sulfate

Di(ethylhexyl) phthalate

Dioctyl phthalate

92.0241, 108.0190, 135.0301
115.0543, 135.0446,
143.0485, 171.0453, 201.0548
170.0038, 183.0014, 197.0272
57.0331, 95.0488, 97.0645,
123.0803, 125.0959
65.0382, 105.0448, 109.0108
57.9751, 134.0069, 150.0019
380.332
91.0546, 115.0548,130.0655,
143.0727, 146.0592,
159.0921, 170.0600
78.92
149.02
95.049, 121.0282, 139.0388
283.1693, 431.1844, 589.2939
51.0233, 53.0389, 77.0382,
95.0493, 105.0447, 125.0055,
141.0004
105.0710, 133.0659
96.9588, 221.1544, 236.1056
79.0548, 81.0701, 91.0546,
95.0854, 105.0702, 107.0849,
133.1028, 147.1185, 161.1331
96.9588, 135.0810, 151.1119,
177.0913, 195.1021
67.0282, 108.0554, 110.0713,
122.0589, 138.0668, 163.0611
77.0386, 105.0335
145.9019
92.0279, 107.0493
69.0454, ,96.0561, 124.0507,
142.0611
77.0380, 79.0550, 9.0540,
95.0490, 108.0200, 121.0650,
123.0440

115.0551, 135.0450,
143.0495, 171.0454, 201.0556

380.3319

91.0543, 115.0543,130.0654,
143.0728, 146.0598,
159.0925, 170.0605

149.02

95.0491, 121.0283, 139.0384
283.1700, 431.1849, 589.2947
51.0229, 53.0388, 77.0375,
95.0491, 105.0445, 125.0060,
140.9999

79.0539, 81.0705, 91.0537,
95.0844, 105.0699, 107.0848,
133.1017, 147.1179, 161.1330

67.0288, 108.0556, 110.0711,
122.0594, 138.0661, 163.0613
77.0388, 105.0337

69.0451, 96.0563, 124.0502,
142.0612

77.0386, 79.0552, 9.0544,
95.0485, 108.0199, 121.0651,
123.0441

92.0247, 108.0199, 135.0305

170.0040, 183.0114, 197.0244
57.0339, 95.0486, 97.0652,
123.0806, 125.0963

65.0382, 105.0448, 109.0109
57.9749, 134.0071, 150.0023

78.92

105.0710, 133.0657

96.9590, 221.1546, 236.1055

96.9584, 135.0818, 151.1121,
177.0925, 195.1027

145.9011
92.0275, 107.0500
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Table A2 — (continued) MS2 theoretical and experimental fragmentation data for annotated compounds

Annotation

MS/MS

Theoretical fragments

Experimental fragments

(+)

()

(+)

()

Diphenylphosphate
Diphenylsulfone
Docosahexaenoic acid
Dodecylbenzenesulfonic acid

Eicosapentaenoic acid
Ferulic acid

Fipronil sulfone
Ibuprofen

Indole-3-acetaldehyde

Indole-3-carbinol

Indoxyl sulfate
loxynil
Isobutylparaben

Isopropylparaben
Lenticin

Lidocaine

Lumichrome
Mercaptobenzothiazole

Methionine

Methylperfluorooctanesulfonamido)acetic acid
Paracetamol

Paraxanthine

Pentachlorophenol

Perfluoroheptanesulfonic acid
Perfluorohexanesulfonic acid
Perfluorooctanesulfonic acid

Phenol sulfate

58.0652, 86.0968
91.0553, 117.0564, 118.0657,
130.0648

69.0442, 83.0606, 110.0718,
123.0425, 138.0659
167.0730, 180.0808,
182.0964, 210.0914

71.0851, 149.0232, 261.1485
55.0195, 77.0392, 91.0541,
103.0549, 105.0707, 115.0545
60.0815, 118.0653, 146.0600,
170.0599, 188.0705

77.0380, 103.0560, 128.0500,
130.0638

121.0284, 139.0389, 163.0754

51.0237, 65.0364, 91.0539,
117.0576, 118.0646

91.0543, 149.02335, 239.0708

229.1958, 283.2446
170.0042, 183.0121,
197.0277, 255.1376
203.1802, 229.1957, 257.2274
133.0299, 149.0608
246.0120, 281.9913, 414.9496
91.0549, 105.0701, 119.0855

79.9578, 132.0460
126.9051, 230.9182

57.9752, 134.0069

418.9773, 482.9356, 511.9607

122.0365, 164.0341

168.9892

98.9538, 118.9930, 168.9892
98.9538, 118.9930, 168.9892
79.9551, 93.0325

58.0655, 86.0965
91.0549, 117.0568, 118.0658,
130.0655

69.0448, 83.0603, 110.0712,
123.0427, 138.0662
167.0721, 180.0812,
182.0966, 210.0920

71.0858, 149.0234, 261.1490
55.0199, 77.0386, 91.0544,
103.0550, 105.0707, 115.0541
60.0810, 118.0651, 146.0597,
170.0596, 188.0713

77.0388, 103.0555, 128.0501,
130.0642

121.0282, 139.0393, 163.0751

51.0236, 65.0365, 91.0541,
117.0570, 118.0651

91.0542, 149.0234, 239.0707

229.1953, 283.2439

170.0041, 183.0128,
197.0287, 255.1377
203.1807, 229.1951, 257.2275
133.0305, 149.0609
246.0117, 281.9920, 414.9500
91.0555, 105.0708, 119.0848

79.9570, 132.0457
126.9041, 230.9178

57.9750, 134.0063

418.9771, 482.9356, 511.9617
122.0361, 164.0341

168.9903

98.9535, 118.9937, 168.9882
98.9533, 118.9931, 168.9985
79.9558, 93.0331
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Table A2 — (continued) MS2 theoretical and experimental fragmentation data for annotated compounds

Annotation

MS/MS

Theoretical fragments

Experimental fragments

(+)

()

(+) ()

Piperidone

Piperine

Propylparaben
Propylparaben sulfate

Reserpine

Solanidine
Sucralose

Theobromine
Theophylline

Thymol

Triclosan glucuronide
Triclosan sulfate
Triethylphosphate

Triphenylphosphine oxide

Tris(2-butoxyethyl)phosphate

Tritosulfuron

Tryptophan

91.0543, 118.0662, 128.0511,

132.0424, 146.0614

56.0493, 72.0444, 82.0651,

94.0650

92.0266, 121.0300, 136.0167
121.0297, 137.0239, 179.0716

57.0701, 83.0855, 101.0971,
143.0104, 199.0730, 299.1618

127.0164, 155.0480

146.9399, 359.0325

79.0544, 91.0543, 107.0856,

119.0856

67.0544, 81.0699, 91.0543,

105.0714, 119.0847
103.0542, 120.0808,
130.0651, 131.0497

183.1745, 240.2315
110.0598, 134.0593
149.0219, 173.0513,
201.0465, 219.0570

286.9448

193.0347, 223.9999

77.0386, 95.0492, 152.0633,

175.0156, 215.0257

91.0546, 118.0660, 128.0519,
132.0429, 146.0607
56.0494, 72.0451, 82.0651,
94.0649
92.0263, 121.0302, 136.0166
121.0296, 137.0244, 179.0712
57.0702, 83.0850, 101.0972,
143.0102, 199.0738, 299.1623
127.0155, 155.0472
146.9391, 359.0319
79.0551, 91.0544, 107.0853,
119.0859
67.0545, 81.0701, 91.0547,
105.0721, 119.0841
103.0542, 120.0811,
130.0655, 131.0499

286.9448
183.1751, 240.2326
110.0602, 134.0596
149.0220, 173.0515,
201.0472, 219.0568
193.0344, 223.9998
77.0387,95.0484, 152.0627,
175.0165, 215.0252
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4.4. Confidence levels, detection frequency and toxicological data

Table A3 — Confidence levels according to Schymanski et al. (2014) and to the updated

classification, detection frequency, and availability of toxicological data from the CompTox

dashboard.
Detection
frequency (%) .
Annotation Confidence' level Confidence level to?(‘ilf:lzz:ial
(Schymanski 2014) (Updated) Phree | PPT e

(2-ox0-2,3-dihydro-1H-indol-3-yl)acetic acid 0 100
1,3,5-tris(2,2-dimethylpropionylamino)benzene 45 45
10,11-trans-Dihydroxy-10,11-dihydrocarbamazepine 0 1
13-Hydroxy-7,14-labdadien-6-one 0 68
2-((3-dodecanamidopropyl)dimethylammonio)acetate 0 1
2-chlorophenol 8 7 X
2-hydroxybenzoic acid 0 88
2-hydroxycarbamazepine 84 1
2-Naphthalenesulfonic acid 0 39
2-Naphthol 85 2 X
2-naphthylamine 0 8 X
3-(4-Hydroxyphenyl)lactic acid 87 85 X
3,5-dibromo-4-hydroxybenzoic acid 97 0 X
3-Formylindole 3 100 X
3-hydroxybenzoic acid 50 50 X
4-chlorophenol 4 MS1-3 80 2 X
4-hydroxy-2,5,6-trichloroisophthalonitrile 74 68 X
4-hydroxybenzoic acid 0 88 X
4-hydroxyquinoline 84 88 X
5-acetylsalicylamide 1 1 42 95 X
5-hydroxytryptophan 43 96 X
Acesulfame 97 15 X
Acetaminophen glucuronide 1 1 20 1 X
Acetaminophen sulfate 1 1 0 14
Aminoacetophenone 45 100
Arabinosylhypoxanthine 30 98 X
Aspartame 1 1 35 100 X
Auraptene 100 1 X
Azelaic acid 35 28 X
Benzothiazole 97 6 X
Benzothiazole sulfonic acid 3 2
Benzylbutylphthalate 1 1 3 0 X
Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2-hydroxy-5- 23 36
methylbenzyl)-4-methylphenyl) terephthalate
Bromoxynil 61 2 X
Caffeine 1 94 X
Carbamazepine 95 1 X
Carveol 20 2 X
Carylophyllene oxide 91 14
Chavicol sulfate 28 100
Cinchonidine 81 99 X
Cinnamaldehyde 33 75
CMPF 20 59 X
Cocamidopropyl Betaine 97 29 X
Coumaraldehyde 64 100
Coumaric acid 100 3
Cresol sulfate 1 1 16 100 X
Di(ethylhexyl) phthalate 97 56 X
Dioctyl phthalate 10 10 X
Diphenylphosphate 17 0
Diphenylsulfone 45 9 X
Docosahexaenoic acid 1 1 85 100 X
Dodecylbenzenesulfonic acid 23 81 X
Eicosapentaenoic acid 5 100 X
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Table A3 — (continued) Confidence levels according to Schymanski et al. (2014) and to the

updated classification, detection frequency, and availability of toxicological data from the

CompTox dashboard.
X X Detection Available
Annotation Cc;:fndenc; level Confldznce;evel frequency (%) | toxicological
(Schymanski 2014) (Updated) Phree | PPT e

Ferulic acid 65 1 X
Fipronil sulfone 12 29 X
Ibuprofen 1 1 25 1 X
Indole-3-acetaldehyde 0 98 X
Indole-3-carbinol 20 100 X
Indoxyl sulfate 1 1 16 100 X
loxynil 17 92 X
Isobutylparaben 0 72 X
Isopropylparaben 96 2 X
Lenticin 3 94

Lidocaine 29 93 X
Lumichrome 15 95 X
Mercaptobenzothiazole 38 98 X
Methionine 97 49 X
Methylperfluorooctanesulfonamido)acetic acid 100 3 X
Paracetamol 5 5 X
Paraxanthine 7 91 X
Pentachlorophenol 4 MS1-3 92 5 X
Perfluoroheptanesulfonic acid 1 2 X
Perfluorohexanesulfonic acid 0 57 X
Perfluorooctanesulfonic acid 97 98 X
Phenol sulfate 97 100 X
Piperidone 27 82 X
Piperine 13 86 X
Propylparaben 97 99 X
Propylparaben sulfate 1 1 95 90

Reserpine 67 50 X
Solanidine 8 7 X
Sucralose 13 12 X
Theobromine 13 100 X
Theophylline 100 6 X
Thymol 0 2 X
Triclosan glucuronide 4 MS1-2 25 10 X
Triclosan sulfate 1 1 13 10

Triethylphosphate 16 10 X
Triphenylphosphine oxide 45 77 X
Tris(2-butoxyethyl)phosphate 26 26 X
Tritosulfuron 1 1 91 2 X
Tryptophan 81 100 X
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Appendices

Classification of compounds annotated in Pélagie samples

Table A4 — Classification of compounds annotated in the Pélagie samples. P refer to primary uses, and S to secondary uses

Gut-derived

Food

Health and personal care

Environmental pollutants

Molecule

Gut
microbiota
metabolites

Natural
compound

Flavoring
agent

Preservatives
and other
stabilizers

Indirect
food
additive

Medication

Personal
care and
cosmetics
products

Preservatives
and other
stabilizers

Pesticides

Plasticizers

Organophosphate
flame retardant

Synthesis
intermediate

Preservatives
and other
stabilizers

(2-ox0-2,3-dihydro-1H-indol-3-yl)acetic acid

P

1,3,5-tris(2,2-dimethylpropionylamino)benzene

10,11-trans-Dihydroxy-10,11-
dihydrocarbamazepine

13-Hydroxy-7,14-labdadien-6-one

2-((3-
dodecanamidopropyl)dimethylammonio)acetate

2-chlorophenol

2-hydroxybenzoic acid

2-hydroxycarbamazepine

2-Naphthalenesulfonic acid

2-Naphthol

o

2-naphthylamine

3-(4-Hydroxyphenyl)lactic acid

3,5-dibromo-4-hydroxybenzoic acid

3-Formylindole

3-hydroxybenzoic acid

4-chlorophenol

4-hydroxy-2,5,6-trichloroisophthalonitrile

4-hydroxybenzoic acid

4-quinolone

5-acetylsalicylamide

5-hydroxytryptophan

Acesulfame

Acetaminophen glucuronide

Acetaminophen sulfate

Aminoacetophenone

Arabinosylhypoxanthine

Aspartame

Auraptene

Azelaic acid

Benzothiazole

Benzothiazole sulfonic acid

Benzylbutylphthalate

Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2-hydroxy-5-
methylbenzyl)-4-methylphenyl) terephthalate

Bromoxynil

Caffeine

Carbamazepine
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Appendices

Table A4 — (continued) Classification of compounds annotated in the Pélagie samples. P refer to primary uses, and S to secondary uses

Gut-derived

Food

Health and personal care

Environmental pollutants

Molecule

Gut
microbiota
metabolites

Natural
compound

Flavoring
agent

Preservatives
and other
stabilizers

Indirect food
additive

Medication

Personal care
and cosmetics
products

Preservatives
and other
stabilizers

Pesticides

Plasticizers

Organophosphate
flame retardant

Synthesis
intermediate

Preservatives
and other
stabilizers

Carveol

P

S

S

Carylophyllene oxide

P

S

Chavicol sulfate

S

Cinchonidine

Cinnamaldehyde

CMPF

O |V|(O|O|n

Cocamidopropyl Betaine

Coumaraldehyde

Coumaric acid

Cresol sulfate

Di(ethylhexyl) phthalate

Dioctyl phthalate

Diphenylphosphate

Diphenylsulfone

Docosahexaenoic acid

Dodecylbenzenesulfonic
acid

Eicosapentaenoic acid

Ferulic acid

Fipronil sulfone

Ibuprofen

Indole-3-acetaldehyde

Indole-3-carbinol

Indoxyl sulfate

loxynil

Isobutylparaben

Isopropylparaben

Lenticin

Lidocaine

Lumichrome

Mercaptobenzothiazole

Methionine

Methylperfluorooctanesu
Ifonamidoacetic acid

Paracetamol

Paraxanthine

Pentachlorophenol

Perfluoroheptanesulfonic
acid

Perfluorohexanesulfonic
acid

Perfluorooctanesulfonic
acid

Phenol sulfate
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Appendices

Table A4 — (continued) Classification of compounds annotated in the Pélagie samples. P refer to primary uses, and S to secondary uses

Gut-derived Food Health and personal care Environmental pollutants
. GUt. Natural Flavoring TR Indirect food — Personal ca.r € Preservatives - - Organophosphate Synthesis TSRS
Molecule microbiota and other L Medication and cosmetics and other Pesticides Plasticizers . . and other
N compound agent o additive . flame retardant intermediate o
metabolites stabilizers products stabilizers stabilizers
Piperidone P S
Piperine P
Propylparaben S P
Propylparaben sulfate S P
Reserpine P
Solanidine P
Sucralose P
Theobromine P
Theophylline P
Thymol P S
Triclosan glucuronide S P
Triclosan sulfate S P
Triethylphosphate S P S
Triphenylphosphine oxide P
Tris(2- p
butoxyethyl)phosphate
Tritosulfuron P
Tryptophan P
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4.6.

List of abbreviations

Presence of annotated compounds on shared suspect lists

Table A5 — Presence of annotated compounds on shared suspect lists

Present on shared suspect lists

Molecule

CECscreen
(HBMA4EU)

Exposome NORMAN's
Explorer SUSDat list

(2-ox0-2,3-dihydro-1H-indol-3-yl)acetic acid

X

1,3,5-tris(2,2-dimethylpropionylamino)benzene

X

X

10,11-trans-Dihydroxy-10,11-dihydrocarbamazepine

13-Hydroxy-7,14-labdadien-6-one

X

2-((3-dodecanamidopropyl)dimethylammonio)acetate

2-chlorophenol

2-hydroxybenzoic acid

2-hydroxycarbamazepine

2-Naphthalenesulfonic acid

2-Naphthol

2-naphthylamine

3-(4-Hydroxyphenyl)lactic acid

3,5-dibromo-4-hydroxybenzoic acid

3-Formylindole

X|X|X|X|X

3-hydroxybenzoic acid

4-chlorophenol

x
x

4-hydroxy-2,5,6-trichloroisophthalonitrile

x

4-hydroxybenzoic acid

4-quinolone

5-acetylsalicylamide

x

5-hydroxytryptophan

Acesulfame

Acetaminophen glucuronide

Acetaminophen sulfate

x

Aminoacetophenone

Arabinosylhypoxanthine

Aspartame

Auraptene

Azelaic acid

Benzothiazole

Benzothiazole sulfonic acid

Benzylbutylphthalate

Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2-hydroxy-5-methylbenzyl)-4-

methylphenyl) terephthalate

Bromoxynil

Caffeine

X|X| X |X[X|X|X|[X

Carbamazepine

Carveol

Carylophyllene oxide

Chavicol sulfate

Cinchonidine

X|X|[X|X

Cinnamaldehyde

CMPF

Cocamidopropyl Betaine

Coumaraldehyde

Coumaric acid

Cresol sulfate

Di(ethylhexyl) phthalate

Dioctyl phthalate

Diphenylphosphate

Diphenylsulfone

Docosahexaenoic acid

Dodecylbenzenesulfonic acid

Eicosapentaenoic acid

Ferulic acid

Fipronil sulfone

Ibuprofen

Indole-3-acetaldehyde

XX XXX 3| XXX [ XXX [X XXX |[X|X
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List of abbreviations

Table A5 — (continued) Presence of annotated compounds on shared suspect lists

Present on shared suspect lists

Molecule

CECscreen

(HBMA4EU)

Exposome NORMAN's
Explorer SUSDat list

Indole-3-carbinol

X

Indoxyl sulfate

X

X

loxynil

X

Isobutylparaben

Isopropylparaben

Lenticin

x

Lidocaine

Lumichrome

Mercaptobenzothiazole

Methionine

Methylperfluorooctanesulfonamidoacetic acid

Paracetamol

Paraxanthine

Pentachlorophenol

Perfluoroheptanesulfonic acid

Perfluorohexanesulfonic acid

Perfluorooctanesulfonic acid

Phenol sulfate

Piperidone

Piperine

Propylparaben

Propylparaben sulfate

Reserpine

Solanidine

Sucralose

Theobromine

Theophylline

Thymol

Triclosan glucuronide

Triclosan sulfate

Triethylphosphate

Triphenylphosphine oxide

Tris(2-butoxyethyl)phosphate

Tritosulfuron

Tryptophan

XXX XXX X[ XXX XX XX |[X|X|[X|X|X|X
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Développements méthodologiques pour la caractérisation non-ciblée de I'exposome chimique interne

humain dans des études épidémiologiques

Mots clés : Exposome, Analyse non-ciblée, Profilage de suspects, Spectrométrie de masse a haute résolution

Résumé : L’exposition chronique a des mélanges
complexes de contaminants chimiques (xénobiotiques)
est suspectée de contribuer a la survenue de certaines

maladies chroniques. Encouragées par le
développement de la spectrométrie de masse a haute
résolution (SMHR) et [I'émergence du concept

d'exposome, des méthodes analytiques non-ciblées
commencent a voir le jour pour caractériser I'exposition
humaine aux xénobiotiques sans a priori. Ces méthodes
innovantes pourraient ainsi permettre un changement
d’échelle pour identifier de nouveaux facteurs de risque
chimiques dans des études épidémiologiques. Ces
approches présentent néanmoins plusieurs verrous, en
lien, entre autres, avec la présence des contaminants a
'état de trace dans des matrices biologiques. Une
optimisation de chaque étape analytiqgue (préparation
d’échantillon) et bio-informatique (prétraitement des
données, annotation) est donc indispensable pour
surmonter ces limites. L'objectif principal de ce travail est
d'implémenter un workflow non-ciblé applicable aux
études épidémiologiques pour apporter une solution
opérationnelle a la caractérisation de I'exposome

chimique interne a large échelle. Les développements
effectués ont permis de proposer un workflow de
préparation d’échantillon simple a mettre en ceuvre et
s’appuyant sur deux méthodes complémentaires pour
élargir significativement I'espace chimique Vvisible
(usqu’a 80% de marqueurs spécifiques a une
méthode). L’optimisation de logiciels de prétraitement
des données, réalisée pour la premiére fois dans un
contexte exposomique, a permis de démontrer la
nécessité d’ajuster certains paramétres pour assurer
la détection des xénobiotiques a I'état de trace. Le
développement d’'un logiciel pour automatiser les
approches de profilage de suspects avec des
prédicteurs MS1, ainsi que le développement
d'indices de confiance a permis de prioriser les
marqueurs pertinents pour la curation manuelle. Une
application a large échelle sur 125 échantillons de
sérum de la cohorte Pélagie a permis de démontrer la
robustesse et la sensibilité de ce nouveau workflow,
ainsi que d’enrichir I'exposome chimique documenté
avec la mise en évidence de nouveaux biomarqueurs
d’exposition.

Methodological developments for the non-targeted characterization of the human internal chemical

exposome in epidemiological studies

Keywords : Exposome, Non-targeted screening, Suspect screening, High-resolution mass spectrometry

Abstract: Chronic exposure to complex mixtures of
chemical contaminants (xenobiotics) is suspected to
contribute to the onset of chronic diseases. The
technological advances high-resolution mass
spectrometry (HRMS), as well as the concept of
exposome, have set the stage for the development of
new non-targeted methods to characterize human
exposure to xenobiotics without a priori. These innovative
approaches may therefore allow changing scale to
identify chemical risk factors in epidemiological studies.
However, non-targeted approaches are still subject to a
number of barriers, partly linked to the presence of these
xenobiotics at trace levels in biological matrices. An
optimization of every analytical (i.e. sample preparation)
and bioinformatical (i.e. data processing, annotation) step
of the workflow is thus required. The main objective of
this work is to implement an HRMS-based non-targeted
workflow applicable to epidemiological studies, to provide
an operational solution to characterize the internal

chemical exposome at a large scale. The undertaken
developments allowed proposing a simple sample
preparation workflow based on two complementary
methods to expand the visible chemical space (up to
80% of features specific to one method). The
optimization of various data processing tools,
performed for the first time in an exposomics context,
allowed demonstrating the necessity to adjust key
parameters to accurately detect xenobiotics.
Moreover, the development of a software to
automatize suspect screening approaches using MS1
predictors, and of algorithms to compute confidence
indices, allowed efficiently prioritizing features for
manual curation. A large-scale application of this
optimized workflow on 125 serum samples from the
Pélagie cohort allowed demonstrating the robustness
and sensitivity of this new workflow, and enriching the
documented chemical exposome with the uncovering
of new biomarkers of exposure.



