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Résumé Long

Cette thèse se concentre sur deux questions importantes pour les pays en développement

aujourd’hui, la pollution et l’écart entre les sexes, en utilisant les outils analytiques et

empiriques de l’économie spatiale et urbaine.

Le premier chapitre étudie la question de la pollution atmosphérique et l’impact des

politiques maîtrisant le problème, dans le contexte d’un pays en développement, la Chine.

Je construis un modèle d’équilibre spatial avec la pollution atmosphérique endogène

comme sous-produit de la production et de la consommation, où les travailleurs qualifiés

et non qualifiés spatialement mobiles sont affectés négativement mais hétérogène par la

pollution de l’air. L’utilisation d’une version calibrée du modèle sur les données en Chine

en 2010, je montre qu’une réglementation stricte peut être une force centripète qui attire

les travailleurs et la production vers le lieu réglementé tout en réduisant l’émission de

polluants local et national. Ce résultat contraste avec les idées des théories traditionnelles

qui voit la réglementation environnementale comme une force centrifuge pour l’économie

locale. La migration des travailleurs appréhendant la qualité de l’environnement, les

liens de l’entrées-sorties dans les réseaux commerciaux et l’ouverture au commerce

international, influencent dans le mécanisme de ce résultat. J’envisage ensuite une

politique hypothétique de réduction de 10 pour-cent des émissions industrielles nationales

et je compare les stratégies sur la façon de répartir les responsabilités de la réduction

aux villes. Je trouve que concentrer la responsabilité sur un nombre limité de villes

riches peut surperforment une allocation égale en termes de bien-être et de production
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économique.

Dans les pays en développement, les femmes souffrent traditionnellement d’une

mobilité limitée et cela a été souligné comme le principale obstacle pour les femmes

à trouver un emploi sur le marché du travail (ILO 2017). Dans le deuxième chapitre,

co-écrit avec Mai Seki, nous évaluons l’effet d’un système de transport urbain moderne

sur la participation des femmes et des hommes aux activités économiques. Notre cas est

le «Delhi Metro», l’un des principaux exemples d’infrastructures de transport en commun.

Dans ce chapitre, nous analysons les effets du Delhi Metro sur le taux d’activité des

femmes et des hommes, d’après les données du panel des zones au niveau des cantons

dans la ville de Delhi pendant la période de trois ans (1991, 2001 et 2011). Tandis que les

données ont des limites pour comprendre en détail les caractéristiques de chaque résident,

nous utilisons l’estimation de «difference-in-difference» (DID) contrôlant un effet fixe de

localisation, avec un test de tendance parallèle. Les résultats suggèrent que la proximité

du Delhi Metro augmente considérablement le taux de participation des femmes au

travail (WPR), bien que l’effet sur le WPR masculin soit ambigu par la possibilité de

montrer un signe opposé. Alors qu’il existe un certain nombre de mécanismes potentiels

qui peuvent fournir ce résultat, nous développons un modèle théorique de navettage

urbain et soutiennent qu’une réduction plus importante d’un coût de déplacement pour

les femmes (en offrant un mode de transport plus sûr pour les navettes, par exemple),

cela peut générer les motifs d’effets sur le WPR similaire à nos résultats empiriques.

Le troisième chapitre, co-écrit avec Minhaj Mahmud et Yasuyuki Sawada, rend compte

de la première tentative de mesurer la valeur de la vie statistique (VSL) sur le risque de

la mortalité par la pollution d’air dans les zones urbaines du Bangladesh, en utilisant

la méthode de l’évaluation contingente (CV). Nous avons demandé aux individus la

volonté de payer (WTP) pour la réduction du risque de mortalité par un programme

d’amélioration de la qualité de l’air et avons constaté que la volonté de payer est corrélée

avec le caractéristiques socio-économiques, l’état de santé et la perception du risque des
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répondants, conformément aux études existantes. La moyenne d’après le bootstrap de

VSL est comprise entre 17 480 et 22 463 USD en termes de parité de pouvoir d’achat, ce

qui équivaut à 9,78-12,57 fois le PIB par habitant du Bangladesh. Compte tenu de notre

cadre d’étude, les résultats que nous avons obtenus sont peut-être considérés comme une

limite inférieure des estimations de VSL dans le contexte du risque environnemental au

Bangladesh.

Dans ce qui suit, je présente des résumés plus détaillés de chaque chapitre.

Chapitre 1. Une analyse de l’équilibre spatial de la pollution atmosphérique en

Chine

La pollution atmosphérique est l’une des principales causes de décès et de problèmes de

santé dans le monde actuel, en particulier pour les pays à revenu faible et intermédiaire.

La Chine est l’un des pays le plus gravement touchés par la pollution de l’air, qui

représente 25 à 30 pour cent de la mortalité du monde par la pollution de l’air en

2015 (Landrigan et al. 2017). En principe, la pollution de l’air est une externalité

négative, et l’intérioriser par la réglementation améliore le bien-être. Cependant, la

réglementation environnementale est traditionnellement considérée comme un coût pour

l’économie locale et il fonctionne comme une force centrifuge pour chasser les industries

des régions réglementées. A travers par ce chapitre, je démontre que ce n’est pas toujours

le cas et certains les régions peuvent jouir d’une force centripète de réglementation

environnementale.

La contribution de ce chapitre est que je construis un modèle d’équilibre spatial où la

mobilité des travailleurs hétérogènes joue un rôle non négligeable pour déterminer impact

global et distributionnel des politiques environnementales. Au départ de conventionnel

théories dans la littérature de l’environnement et du commerce, nous présentons les
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travailleurs mobiles qui ont des goûts hétérogènes sur la qualité de l’environnement.

Grâce à cette extension, nous obtenir plusieurs résultats qui peuvent contredire les

vues traditionnelles et populaires sur la façon dont la politique environnementale affecte

l’économie régionale et l’environnement. Par exemple, nous constater qu’il existe des

cas où une politique environnementale plus stricte peut être bénéfique non seulement

pour la qualité de l’air local mais aussi pour l’économie locale. De plus, nous montrons

également que la même politique environnementale peut avoir des implications différentes

selon l’endroit où cette politique est mise en œuvre. Dans certains cas, des politiques

spatialement inégales peut avoir un meilleur impact sur le bien-être qu’une politique

uniforme si nous prenons les réponses des gens via la migration.

Mon modèle de l’économie spatiale permet la migration des travailleurs à travers les

villes de Chine. Les travailleurs choisissent les villes dans lesquelles leur bien-être est

maximisé, et donc le bien-être attendu pour chaque type est égalisé à l’équilibre. Les

travailleurs incluent la pollution de l’air comme un équipement local dans leur évaluation

du bien-être. Une littérature grandissante qui révèle la demande des citoyens chinois pour

une meilleure qualité de l’ambiance nous motive à introduire explicitement la pollution

de l’air dans nos spécifications de bien-être.

De plus, notre modèle est nouveau car il introduit des travailleurs hétérogènes, divisés

qualifiés et non qualifiés, confrontés à différentes demandes de entreprises industrielles.

Leurs préférences diffèrent également en termes de goûts sur la qualité de l’environnement,

par conséquent, les travailleurs qualifiés et les travailleurs non qualifiés souffrent dif-

féremment de la pollution atmosphérique. La littérature empirique récente révèle que les

travailleurs qualifiés et non qualifiés ont des goûts différents en matière d’agrément et

cela la différence compte pour déterminer la ville dans laquelle ils choisissent de vivre,

de leurs revenus et du coût d’accès aux commodités locales préférées (c.-à-d. le coût du

logement).

Grâce à ces extensions introduites dans notre modèle, nous obtenons des résultats
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intéressants sur les impacts spatiaux de la politique environnementale locale qui sont

différents de ceux conventionnels vues. Nous constatons qu’une réglementation locale plus

forte n’entraîne pas toujours une pollution havre. Alors qu’une augmentation unilatérale

de la taxe sur les émissions dans une ville augmente définitivement le coût de production

qui réduit la compétitivité de l’industrie locale, cependant, l’amélioration du la qualité de

l’air dans la ville ainsi que les effets de substitution entre les facteurs peuvent entraîner

une délocalisation des travailleurs vers la ville avec des réglementations plus strictes. Cela

améliore la production du secteur des services dans la ville et augmente son PIB réel.

Nous appliquons ensuite le modèle à quelques analyses politiques pertinentes pour

la situation réelle en Chine. En réalité, le gouvernement central de Chine attribue

ampleur différente de la responsabilité de réduction (0-30 pour-cent) selon les régions et

les villes pour atteindre l’objectif national (10 pour cent, pour 2010) au total. Reflétant

ce fait, nous comparons différentes stratégies d’allocation spatiale de la responsabilité

de réduction qui atteint la même réduction de 10 pour-cent au niveau national. Par

rapport à la référence stratégie qui attribue une ampleur de réduction uniforme à tous,

certaines stratégies avec des allocations inégales se révèlent plus propices à l’amélioration

du bien-être.

De plus, nous constatons que la politique nationale de réduction de 10 pour-cent peut

avoir un effet différent sur les travailleurs qualifiés et les travailleurs non qualifiés. En

moyenne, les travailleurs qualifiés reçoivent impact négatif sur leur revenu réel tandis

que les travailleurs non qualifiés bénéficient de gains toutes les stratégies d’allocation

comparées. Pour la plupart des stratégies, les impacts négatifs sur le PIB réel moyen est

atteint par cette politique nationale de réduction, mais leur ampleur est minuscule. Il

n’y a qu’une variation de 0 à -0,2 pour-cent du PIB réel total pour atteindre un 10 pour

cent de réduction des émissions industrielles nationales. Étonnamment, une stratégie

particulière qui concentre la responsabilité de la réduction dans un nombre limité de villes

côtières plus riches présente un retour positif au PIB réel agrégé, ce qui signifie que les
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coûts la réglementation peut générer des avantages économiques grâce à la réaffectation

des ressources espace.

Alors que certains de nos résultats observent des rendements économiques positifs

en raison de réglementation, notre modèle exclut tout mécanisme que la productivité

industrielle bénéficie directement des réglementations. Par exemple, Porter and Linde

(1995) soutiennent qu’une réglementation environnementale stricte peut inciter les en-

treprises industrielles à investir dans la technologie plus productive. En conséquence,

la mise en œuvre de la réglementation augmente la productivité globale. En outre, la

littérature empirique émergente fournit de nombreuses preuves de l’effet direct de la

pollution atmosphérique sur la productivité des travailleurs. Cependant, notre approche

exclut intentionnellement les effets directs de la réglementation sur la productivité et

discuter de l’impact de la réglementation uniquement du point de vue des coûts pour

chaque entreprise, afin que nous puissions nous concentrer sur les implications de la réallo-

cation spatiale pour déterminer les résultats économiques et sociaux de la réglementation

environnementale.

Chapitre 2. Effets hétérogènes de genre des transports publics urbains sur Emploi:

preuves du métro de Delhi

Selon des études antérieures, les femmes des zones urbaines des pays en développement

sortent de chez eux moins fréquemment et dépendent plus des transports publics que les

hommes. La fourniture de transports publics sûrs et accessibles pourrait potentiellement

améliorer la mobilité, condition nécessaire à leur participation active à l’économie.

Cependant, il n’y a pas beaucoup de recherches quantifiant l’impact de transports

publics, en particulier sur la façon dont les femmes et les hommes sont différentiellement

affectés par les transports urbains.
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Dans ce chapitre, nous analysons les effets du Delhi Metro, l’une des systèmes de

transit rapide de masses les plus grandes dans le monde actuel développés depuis le début

des années 2000, sur la participation des femmes et des hommes au travail. Nous nous

concentrons sur le Delhi Metro pour trois raisons. Premièrement, Delhi est l’une des villes

du monde qui luttent contre les graves problèmes de sécurité des femmes dans les espaces

publics et les transports. Deuxièmement, l’Inde est confrontée à des défis participation

et autonomisation des femmes. La participation des femmes au travail non agricole a

été historiquement stagnant en Asie du Sud, et il y a même eu une tendance à la baisse

en Inde au niveau national (Klasen and Pieters 2015; Andres et al. 2017). Pour la ville

de Delhi, même si la participation des femmes au travail n’a pas diminué, sa croissance

stagne par rapport à celle des hommes. Enfin, le Delhi Metro est l’un des meilleurs cas

pour analyser l’impact des infrastructures de transport urbain de haute qualité dans

les pays en développement, grâce à sa réputation de normes de service élevées. Cette

réputation n’est pas seulement pour sa stabilité et la commodité, mais aussi pour la

sécurité et le voyage confortable de ses passagers féminins. Motivés par ces raisons, nous

émettons l’hypothèse que l’introduction d’un mode de transport sûr à Delhi aurait eu

un effet significatif sur l’offre de main-d’œuvre féminine (l’hypothèse de la sécurité des

transports), ainsi que d’autres facteurs, tels que la relocalisation résidentielle, l’évolution

de la composition de la demande de travail et / ou de l’offre conjointe de travail au niveau

des décisions familiales.

Dans cette étude, nous essayons de quantifier les effets hétérogènes de genre de la

Delhi Metro sur les taux de participation au travail. Bien que notre objectif ait une

grande pertinence politique, il est difficile d’obtenir une réponse quantitative rigoureuse

en raison de graves limitations de données. Notre stratégie consiste donc à utiliser les

meilleures données disponibles et à argumenter soigneusement limites. Plus précisément,

nous utilisons le résumé du recensement primaire (PCA) qui fournit divers tableaux à

partir des données du recensement de la population avec une distribution géographique
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finement désagrégée dans le Territoire de la capitale nationale (NCT) de Delhi. Nous

construisons un panel de Zones d’PCA pour trois années de recensement consécutives,

1991, 2001 et 2011. Comme mesure d’intervention, nous calculons une accessibilité de

chaque zone PCA à la gare plus proche du métro, à l’aide de cartes des zones PCA et de

l’alignement du Delhi Metro. Avec la variable de proximité du métro, nous effectuons une

analyse des différences de différences (DID), contrôlant l’effet fixe de la localisation, pour

évaluer si la proximité des stations de métro contribue à la croissance de la participation

aux activités économiques non agricoles par des femmes et des hommes. Puisque nous

construisons ces données de panel au niveau de l’unité géographique au niveau de la zone

PCA pour trois cycles (1991, 2001 et 2011) avec deux périodes de prétraitement, nous

pouvons examiner l’hypothèse de tendance parallèle qui est la condition préalable pour

la DID, par incluant le terme “lead” dans l’équation d’estimation.

On note que l’effet de la proximité du métro de Delhi sur le taux d’activité féminine

est positif, et que cela ne semble pas être le cas pour les hommes (bien au contraire).

Ceci est une preuve suggestive qu’il pourrait y avoir un impact hétérogène entre les sexes.

En d’autres termes, les femmes pourraient répondre plus positivement que les hommes à

la proximité des stations de métro de Delhi à décider de travailler ou non.

Pour comprendre ces résultats empiriques, nous développons un modèle d’équilibre

spatial des transports urbains et des déplacements domicile-travail. Nous modélisons

explicitement le choix de navettage pour les femmes et les hommes urbains qui font face

à des coûts de transport différents (coûts et temps de trajet plus coût du bien-être lié à

la sécurité). Nous étudions la statique comparative du modèle pour voir comment un

hypothétique projet Metro affecterait les taux de participation des femmes et des hommes

au travail. Nous constatons que si le métro réduit les coûts de déplacement des femmes

plus que les hommes, le WPR féminin augmente dans les zones plus proches du métro

malgré le WPR masculin présentant une relation plus ambiguë (ou opposée). Cet exemple

théorique est cohérent avec nos résultats empiriques. Cependant, nos résultats empiriques
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ont une limite en ce que l’identification causale rigoureuse de l’impact et de l’investigation

d’un mécanisme est affectée par la nature et l’étendue de la disponibilité des données.

Mais, notre étude est l’une des premières tentatives pour mesurer quantitativement

l’implication de genre d’un transport public urbain dans le contexte des mégapoles des

pays en développement.

Chapitre 3. Volonté de payer pour la réduction des risques de mortalité dus à la

pollution atmosphérique: Preuve du Bangladesh urbain

Selon Landrigan et al. (2017), 1 décès sur 6 est causé par la pollution dans le

monde. Le Bangladesh, un pays densément peuplé qui a connu une urbanisation rapide

au cours des décennies, a été classée comme la pire (8e pire) en termes de pollution

atmosphérique dans 180 pays. De toute évidence, il existe un besoin urgent d’interventions

publiques fortes pour contrôler la grave pollution atmosphérique actuelle. Quantifier le

coût du bien-être de la pollution atmosphérique est une étape cruciale pour motiver les

décideurs hiérarchiser de manière appropriée le contrôle environnemental. S’il n’est pas

nécessairement facile d’obtenir une estimation fiable de la perte de bien-être résultant

de décès (ou de morbidité) due à la pollution atmosphérique, parmi certaines méthodes

conventionnelles, la méthode d’évaluation contingente (CV), qui utilise des scénarios

hypothétiques et demande la volonté de payer des répondants (réduction des risques),

reste une approche populaire. Dans le contexte du risque de mortalité, le WTP d’un

individu pour le risque de mortalité réduction peut être convertie en valeur de durée de

vie statistique (VSL) en divisant la valeur WTP par l’ampleur de la réduction du risque

en question. Cependant, dans les pays en développement, moins d’études ont été menées

pour mesurer le WTP pour réduction du risque de mortalité au moyen de la méthode

d’évaluation contingente. Études CV sur la mortalité le risque causé par la pollution de
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l’environnement est particulièrement limité dans le contexte des pays en développement.

À notre connaissance, il n’y a pas d’étude suscitant le WTP pour la réduction du

risque mortel par la pollution de l’air dans le contexte du Bangladesh. Pour combler

cette lacune, nous avons mené une enquête CV pour obtenir le WTP individuel pour une

réduction du risque de mortalité par pollution atmosphérique à Dhaka et Chittagong, les

deux plus grandes villes du Bangladesh. Dix grappes d’échantillonnage ont été choisies

parmi deux villes (sept de Dhaka et trois de Chittagong), et un total de 1 000 chefs

de ménages ont été choisis au hasard pour une entrevue en personne. Un scénario

hypothétique sur la réduction du risque de mortalité par pollution atmosphérique a été

expliquée et leur volonté de payer a été obtenus à l’aide de questions ouvertes. Nous avons

obtenu 994 réponses valides pour les questions WTP qui ont été utilisées dans les analyses

de régression révéler les relations entre le WTP et les attributs des répondants tels que

l’âge, le revenu, l’éducation, l’état de santé et la perception des risques de pollution pour

leur santé. La VSL moyenne est variait de 17 480 à 22 463 USD en PPA, ce qui équivaut

à 9,78-12,57 fois le PIB par habitant la même année.

Notre étude peut être sujette à plusieurs types de biais. Par ces biais, notre scénario

est basé sur la construction vers une estimation inférieure pour le VSL. Dans ce contexte,

nous soutenons que l’estimation devrait être soigneusement interprétée comme une

«limite inférieure» potentielle de la VSL dans le contexte de la réduction des risques

environnementaux au Bangladesh.
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Chapter 1

A Spatial Equilibrium Analysis of
Air Pollution in China

Abstract1

We construct a spatial equilibrium model with endogenous air pollution as a by-product
of production and consumption, where spatially mobile skilled and unskilled workers
are affected negatively but heterogeneously by air pollution. Using a calibrated version
of the model based on data for China in 2010, we show that strict regulation can be
a centripetal force that attracts workers and production toward the regulated place
while reducing the local and overall emission of pollutants. This result is in contrast to
the insights of traditional theories that sees environmental regulation as a centrifugal
force for the local economy. The migration of workers who care environmental quality,
input-output linkages in domestic trade networks, and openness to international trade,
work in the mechanism delivering this result. We then consider a hypothetical policy
to reduce national industrial emission by 10 percent and compare strategies on how to
allocate reduction responsibilities across cities. We find that concentrating responsibility
to a limited number of rich cities may outperform an equal allocation in terms of welfare
and economic output.

1. The earlier version of this paper appears as JICA Research Institute Working Paper No.211.
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1.1 Introduction

Air pollution is one of the leading causes of death and health problems in the current

world.2 Low and middle-income countries are substantially more polluted than richer

countries, and the mortality due to air pollution concentrates in those countries. China is

one of the most severely affected countries by air pollution along with India. For example,

it accounts for 25-30 percent of global mortality from air pollution in 2015 (Landrigan

et al. 2017). Thus, as when Chinese Premier Li Keqiang declared “war against pollution”

in his 2014 statement, the leaders of the Chinese government also prioritize this issue.

In principle, air pollution is a negative externality, and internalizing it through regu-

lation is welfare-enhancing. At the same time, environmental regulation is traditionally

viewed as a cost to the local economy and it works as a centrifugal force to drive industries

out from the regulated regions. However, these mechanisms may not necessarily be simple

in an economy with many interconnected regions. China is a large country with a great

regional diversity, where workers and firms move across regions. Also, regions in China

are tied via input-output linkages and a local shock may propagate to other regions.

Since environmental regulations affect local factor prices as well as amenities, the effect

of regulation does not rest only within the regulated place: it may change the prices,

industrial composition, and factor allocations of other regions. Therefore, the net impact

of environmental regulation on the local and nationwide outcomes will depend on many

things, and is not readily obvious.

To understand the impact of environmental regulation in this complex spatial context,

this paper proposes a spatial general equilibrium framework in which air pollution

is endogenous as a by-product of production and consumption. By incorporating a

standard trade economy model plus pollution by Copeland and Taylor (2004) and spatial

equilibrium models similar to those of (Redding and Rossi-Hansberg 2017; Caliendo

et al. 2018; Faber and Gaubert 2019), our model allows analysis of how a local or

2. See https://www.who.int/airpollution/en/.
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aggregate shock from pollution control regulations spatially propagates through trade

and migration linkages. Using the model with an arbitrary number of cities that is

calibrated to the data of China as of 2010, we conduct various policy simulations to

understand the potential effects of local and national environmental policy at aggregated

and disaggregated levels.

The key contribution of this paper is that we demonstrate that the mobility of

heterogeneous workers matters in determining the aggregate and distributional impact

of environmental policies. Departing from the conventional theories in the literature of

environment and trade, we introduce mobile workers who have heterogeneous tastes with

regard to environmental quality. Thanks to this extension, we obtain several results that

may contradict to traditional and popular views on how local environmental policy affect

the regional economy and environment. For example, we find that there are cases where

stricter environmental policies may be beneficial not only for the local air quality but

also for the local economy. In addition, we also show that the same environmental policy

can have different nationwide implications depending on the place where such policy is

implemented. In some cases, spatially uneven policies may have greater welfare benefit

than a uniform policies if we take the people’s responses through migration into account.

The model has three production sectors, namely, agriculture, manufacturing, and

services. Among these, we regard the manufacturing sector as the polluting sector,

respecting the fact that the majority of the anthropogenically contributed air pollution

comes from manufacturing emissions in China. To represent the complex mixture of

regulatory tools used in local environmental control, we introduce a Pigouvian emission

tax for industrial emissions that is set by local government to regulate local firms’

emissions of air pollutants. This setting of endogenous pollution from the production side

echoes the standard analytical framework that decomposes local emissions of pollutants

into the scale (size) of the local economy, the composition of local industries, and the

environmental technology of local producers (Grossman and Krueger 1995; Copeland
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and Taylor 2004). Quite intuitively, the model has the feature that the local emission

increases with any increase in the size of the local economy, the rise of manufacturing

sector’s share in the economy, and the lower that environmental technology is (i.e. more

emissions from a unit of manufacturing value of production).

In contrast to traditional analyses on the spatial distribution of air pollution in an

international economy context (e.g. Copeland and Taylor 1994; Hubbard 2014), our

model of the domestic spatial economy allows for the migration of workers across cities in

China. Workers choose cities in which their welfare is maximised, and thus the expected

welfare for each type is equalised in the equilibrium, following the tradition of Rosen

(1979) and Roback (1982). Workers include air pollution as an local amenity in their

welfare evaluation. A growing literature that reveals the demand from Chinese citizens

for better ambient quality motivates us to explicitly introduce air pollution in our welfare

specification. For example, studies on the hedonic pricing of housing show that people

value air quality in their choice of housing location (Zheng, Fu, and Liu 2009; Zheng,

Kahn, and Liu 2010; Zheng, Cao, and Kahn 2011; Zheng and Kahn 2013). Ito and Zhang

(2016) use indoor air purifier purchase data between 2006 to 2012 to estimate the revealed

willingness to pay (WTP) for reductions in exposure to air pollution as measured by

PM10.3 Freeman et al. (2017) use exogenous variations in PM2.5 generated by the power

plants in distant places in a city’s upwind direction and find that people are willing to

give up substantial amounts of money to breathe clean air.4 Chen, Oliva, and Zhang

(2017) quantify the impact of air pollution on domestic migration in China, using the

strength of thermal inversion as the exogenous source of variations in local air pollution.

Their data also show that migrants head to cities with better air quality, holding other

factors associated with the city’s attractiveness constant.5

3. Their preferred estimates of the WTP to reduce PM10 by one unit for five years range from USD4.40
to USD5.46 per household (in 2005 exchange rate).

4. According to their main estimates, a one-unit decline in PM2.5 in 2005 was worth USD 8.3 billion
for the whole of China.

5. Thermal inversion is a meteorological phenomenon that reverses the normal relationship between
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Furthermore, our model is novel because it introduces heterogeneous workers, divided

into skilled and unskilled, and face different factor demands by firms. Their preferences

also differ in terms of tastes on environmental quality, therefore, the skilled and unskilled

are harmed differently by air pollution. The recent empirical literature reveals that skilled

and unskilled workers have different tastes for amenity and this difference matters in

determining which city they choose to live, through the balancing of their income and

the cost of accessing preferred local amenities (i.e. housing cost). Moretti (2013), for

example, finds that skilled labor in the U.S. will pay higher living costs than the unskilled

to live in cities with superior amenity. In the context of urban air pollution in China,

Chen, Oliva, and Zhang (2017) find that skilled labor more elastically responds to the

level of air pollution. According to their estimates, the magnitude of the effect of a 1

µg/m3 increase in PM2.5 in the air on the net-migration ratio (in percent) for college

graduates or above is 0.9314 while it is 0.4723 for junior-high graduates or below.

Thanks to these extensions introduced in our model, we obtain interesting insights on

the spatial impacts of local environmental policy that are different from the conventional

views. The conventional view on the spatial impact of environmental regulation is the

pollution haven effect (PHE) (Copeland and Taylor 2004), which asserts that strength-

ening local regulations will relocate polluting industries from the regulated region to

other regions with laxer policies. This intuitively straightforward prediction is doubly

undesirable for policy makers because stronger regulation hurts the local economic output,

and because the effectiveness of regulation in reducing pollution is somewhat offset by

increased emissions outside of the regulated region. We examine how this PHE emerges in

our model, and find that a stronger local regulation does not always result in a pollution

haven. While a unilateral increase in emission tax in a city definitely raises the production

costs there that reduces the competitiveness of local industry, however, the improved air

altitude and air temperature. When it happens, air temperature in the upper-altitude is higher than that
at the lower-altitudes. This is known as a typical climatic cause that worsens air pollution and they use
the thermal inversion defined as above as an instrumental variable for the local level of air pollution.
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quality in the city as well as the substitution effects among factors may however result

in a relocation of workers towards the city with stricter regulations. This enhances the

services sector production in the city and raises its real GDP. Moreover, the PHE outside

of the city is substantially weakened.

Another feature that is important in the model is its flexible treatment of openness to

international trade. Trade openness has important implications for how local regulations

affect the spatial distribution of pollution within a country. Specifically, eliminating

international trade tends to exaggerate PHE in the domestic economy, suggesting the

importance of including the foreign market even in the case where the main focus of

analysis is the distribution within a country. With international trade, the increased

production cost from tougher regulation in a city results in an increase in the import of

polluting varieties from foreign countries, which in turn suppresses the positive demand

effect for polluting varieties from domestic suppliers. In other words, the PHE that takes

place in the international arena weakens the PHE within a domestic economy. In short,

more international openness is associated with a less pronounced PHE in the domestic

sphere.

We then apply the model to a few policy analyses relevant to the real situation

in China. Every five years, China sets a national reduction target for the aggregate

industrial emission of pollutants as one of the policy targets in the Five-Year-Plan (FYP).

This target is decomposed into sub-national reduction responsibilities that Provinces and

prefecture-level cities try to achieve. In reality, the central government of China assigns

different magnitudes of reduction responsibility (0-30 percent) across regions and cities

to achieve the national target (10 percent, in 2010) as a sum of these regional reduction

efforts. Reflecting this fact, we compare different spatial allocation strategies of reduction

responsibility that achieve the same 10 percent national level reduction. Overall, our

simulation suggests that a 10 percent reduction of aggregate emissions is likely improve

the welfare of both skilled and unskilled labor. Compared to the reference strategy that
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assigns a uniform reduction magnitude to all, some strategies with uneven allocations

are found to be more welfare-enhancing.

In addition, we find that the national 10 percent reduction policy may have a different

effect on skilled workers and unskilled workers. On average, skilled workers receive a

negative impact on their real income while unskilled workers enjoy economic gains, across

all the allocation strategies compared. For most of the strategies, negative impacts on

average real GDP are achieved by this national reduction policy, but their magnitude

is tiny. There is only a 0 to -0.2 percent change of aggregate real GDP required to

achieve a 10 percent reduction in aggregate industrial emissions. Surprisingly, a particular

strategy that concentrates reduction responsibility in a limited number of richer coastal

cities exhibits a positive return to aggregate real GDP, meaning that economically costly

regulation can generate economic benefits through the reallocation of resources across

space. We repeat the same exercises assuming an autarkic China where no international

trade takes place. The results show that in the absence of international trade, the welfare

effect for skilled worker is larger while that for unskilled workers is lower compared to

the case with international trade.

While some of our results observe positive economic returns as a result of stricter

regulations, our model rules out any direct mechanisms that bring economic benefit

from the regulations suggested by some literature. For example, Porter and Linde

(1995) argue that strict environmental regulation may induce industrial firms to invest in

cleaner technology that is more productive. As a result, the implementation of regulation

boosts aggregate productivity. In addition, the emerging empirical literature provides rich

evidence about the direct effect of air pollution on worker productivity. As one of the latest

examples from China, He, Liu, and Salvo (2019) exploit exogenous variations in exposure

to PM2.5 to find its negative impact on the productivity of industrial workers in Chinese

towns.6 However, our approach intentionally excludes the direct productivity effects of

6. See Zivin and Neidell (2018) for a short summary of global evidence in this regard.
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regulation and discusses the impact of regulations purely from the cost point of view for

each individual firm, so that we could focus on the implications of spatial reallocation in

determining the economic and welfare outcomes of environmental regulation.

Our framework contributes to the literature of economic geography from a number of

perspectives. To the best of our knowledge, this paper is the first to incorporate local air

pollution and a heterogeneous labor force into a quantitative spatial equilibrium model.

Desmet and Rossi-hansberg (2015) are predecessors who incorporate the environmental

issue into spatial general equilibrium framework, but they focus on global warming where

the impact of emissions works globally, without taking into account workers’ heterogeneity.

Balboni (2016) studies the spatial distribution of economic activity affected by road

infrastructure and localized impact of environment (sea level rise on the Vietnamese

coast due to global warming), however the environment (global warming) is exogenous

in her setting. Our approach is novel in that it deals with endogenous environmental

externalities in a spatial equilibrium framework where heterogeneous workers can migrate

across regions and sectors.

The rest of the paper is organized as follows. Section 1.2 introduces the theoretical

model and Section 1.3 summarizes the data and calibration procedures. We explain the

model properties using numerical simulations of unilateral pollution control policy in

Section 1.4. Section 1.5 describes how the model evaluate nationwide reduction target

policies and compares different strategies of spatial responsibility allocation. Finally,

Section 1.6 concludes the paper.

1.2 The Model

Our purpose is to build a quantitative model of the Chinese economy with endogenous air

pollution. As motivated in the previous section, our interest rests in the spatial difference

of economic activity and air pollution within China. Therefore, the model accommodates
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a total of N locations, consisting of N − 1 locations in China and a single consolidated

external location, the rest of the world (RoW). Locations in China, called “cities” in the

rest of the paper, are denoted with index n (or i) ∈ C. For the set of all locations in the

model, including the RoW W is used for the notation.

Preference To understand the heterogeneous impact of environmental policy across

different type of people, we assume that the economy is populated with two types of

labor, skilled and unskilled workers. We take this dichotomous setting for workers’

heterogeneity for the benefit of analytical tractability and calibration of the model to the

data. Specifically, since the skill variable in our data is educational attainment, discrete

categorization of the skill levels fits well in this context.

The number of skilled workers in n is denoted by Lk
n. The unskilled counterpart in n

is Lu
n. The total supply of workers of type t ∈ {k, u} is fixed, denoted by Lt

C
≡
∑

n∈C Lt
n.

A worker ι of type t ∈ {k, u}’s preference

U t
n(ι) = εt

n(ι)at(Dn)Ct
nBt

n (1.1)

where:

at(Dn) = exp(−ξtDn) (1.2)

captures utility loss from ambient pollution in n, Dn > 0. We assume that a skilled

worker is more sensitive to pollution, ξk > ξu, consistent with empirical findings such as

Chen, Oliva, and Zhang (2017). εt
n(ι) is a Fréchet distributed idiosyncratic preference

for city n by a type t worker ι, defined over all n ∈ C for each individual worker. The

distribution function is identical for all locations, with mean 1 and dispersion parameter

ηt. Bt
n is the average valuation of location n’s exogenous amenity other than air pollution

by type t workers.

Workers consume housing CH , traded agricultural goods CF , traded manufacturing
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goods CM , and non-traded services CS . CH is supplied and consumed only within the

same n. For simplicity, CH is the land whose supply is a fixed local endowment. The

preference over goods is assumed to be;

Ct
n =




1
α


 ∑

j=F,M,S

(Ct
j,n)

ρ−1
ρ




ρ
ρ−1




α(
Ct

H,n

1 − α

)1−α

(1.3)

where ρ > 1 and α ∈ (0, 1). Workers of both types spend a constant fraction α

of their income on goods and services other than housing. The expenditure shares

within the non-housing goods are not constant and depend on local relative prices. Let

Pj,n denote the local prices of the j(∈ {F, M, S}) sector goods in n. Then, the CES

preference on manufacturing and traded services (the first parenthesis of (1.3)) ensures

that the expenditure share on j-sector goods becomes αχj,n, where χj,n ≡
P

1−ρ
j,n

P
1−ρ
T,n

and

PT,n =
(
P 1−ρ

F,n + P 1−ρ
M,n + P 1−ρ

S,n

) 1
1−ρ . This assumption allows the expenditure share of non-

traded services varies across locations.7 Note that the preference (1.1) ensures that skilled

workers have a higher willingness to pay to reduce their exposure to air pollution. This

is important for the analysis because we are interested in how environmental regulation

works if there are heterogeneous mobile workers who differently value the environmental

quality.

Production Sectors There are three production sectors in the model; (i) a competitive

agricultural sector with constant returns to scale technology and zero trade cost between

regions in China, (ii) a manufacturing sector under monopolistic competition with

costly domestic trade and spatial heterogeneity of productivity that generates trade (a

Ricardian), and (iii) a competitive services sector which only serves to the local market.

In the model, the manufacturing sector emits air pollutants, while the other two sectors

7. Note that we assume that the parameters governing the preference over goods expressed in (1.3) is
the same between skilled and unskilled workers. This means that the consumption share of each category
of goods is identical between the skilled and the unskilled in the same city n. This is for the sake of
simplicity, but does not seem to affect the qualitative results of the model.
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are assumed to be non-polluting. Traditionally, the literature on pollution and trade has

widely used two-sector models such as that by Copeland and Taylor (2004) to incorporate

the “composition effect” into the analysis. In two-sector models, there are a modern

polluting (industrial) sector and a non-polluting sector. The polluting sector is subject

to environmental regulations, and regulation may affect the industrial composition of the

two sectors through changes in relative factor prices. We assume that the manufacturing

sector is polluting based on the fact that it accounts for the largest share of the emission

of ambient pollutants in China (Zheng and Kahn 2013). However, differently from the

traditional way, we assume two distinctive non-polluting sectors, agriculture and services.

In China, both agriculture and services employ non-negligible shares of the labor force and

they are different in many aspects. Specifically, the agricultural sector mainly employs

unskilled labor while the services sector uses skilled labor more intensively. Given this

difference in skill intensiveness, a two-sector model which aggregates agriculture and

services into one single “non-polluting sector” may oversimplify the reality of the Chinese

economy. In addition, the three-sector setting fits well in our empirical context because

the data (output and employment) we use for calibration report the numbers for these

three sectors.

Agricultural Production We assume that the agricultural sector is traditional and

hires only unskilled labor. For the benefit of simplicity, we further assume that the

agricultural output can be traded without trade cost, so that the price can be normalized

to PF,n = 1, ∀n ∈ W. Specifically, the production is constant returns to scale and has

the following form,

YF,n = AF,nLu
F,n (1.4)

where AF,n is local productivity shifter. Local endowments such as land area and fertility

are considered to be entered in this productivity shifter. Lu
F,n is the employment of

unskilled labor in the agricultural sector in n. Let wu
n denote the wage of the unskilled
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labor, then, in the equilibrium,

wu
n = AF,n (1.5)

Production Technologies in the Manufacturing Sector The production technol-

ogy of the manufacturing sector closely follows the Ricardian trade model proposed by

Eaton and Kortum (2002), which have widely been used to study the domestic economic

geography (see, Donaldson and Hornbeck 2016; Caliendo et al. 2018; Faber and Gaubert

2019). There are quite a few advantages of adopting their model. First, it allows dealing

with an arbitrary number of locations that engage in trade. Second, while the model by

Eaton and Kortum (2002) was originally designed to study international trade where the

factors (such as labors) are immobile across national borders, the model can easily be

extended to accommodate the migration of production factors. Third, the model can

directly incorporate the canonical model of pollutant emission of Copeland and Taylor

(2004).

There are infinitesimal intermediate manufacturing varieties in a fixed interval, indexed

by x ∈ [0, 1]. An x-variety firm uses inputs from manufacturing and local services as well

as two types of labors. A local competitive manufacturing final producer combines all the

intermediate varieties that can be sourced from any cities within China and RoW and

produce a manufacturing composite. This local final producer sells the composite to the

local final consumers and local producers in manufacturing and services. The primary

production unit in the manufacturing sector is the firms that produce manufacturing

intermediates. Each of these firms produces an intermediate variety using a composite of

inputs as specified below. Production by the intermediate firms generates an undesirable

by-product, which is called pollutant. To reduce the emission of pollutant, the firm needs

to divert a fraction of its inputs to abatement activities. Net emissions after abatement

are a fraction of the primary gross emission.

32



Specifically, an intermediate x-variety producer in city n has the following technology.





qM,n(x) = [1 − sn(x)] φn(x)AM,nm̃n(x)

z̃M,n(x) = λM,nφn(x)AM,nm̃n(x)

zM,n(x) = [1 − sn(x)]
1
δ z̃M,n(x)

(1.6)

where qM,n is the output volume, φn(x) is a variety x-specific random variable drawn

from a Fréchet distribution with shape parameter θ̃ and mean 1 whose CDF is given

by F (φ) = exp[φ−θ̃]. As in Eaton and Kortum (2002), φn(x) represents the efficiency of

variety x production in city n. AM,n is a productivity shifter common to all manufacturing

sector firms in n. This shifter is exogenous to individual manufacturing firms. m̃n is the

composite of input in Cobb-Douglass form which is given by

m̃n(x) =
[
lkM,n(x)

]γk
M
[
luM,n(x)

]γu
M
[
mM

M,n(x)
]γM

M
[
mS

M,n(x)
]γS

M (1.7)

where lkM , and luM are skilled labor and unskilled labor inputs, respectively. mM
M,n is the

input of manufactured intermediate goods for manufacturing production, while mS
M,n is

the input from services sector.The technology is constant returns to scale at the firm level

with the input coefficients and satisfies that
∑

j′∈k,u,M γj′

M,n = 1. sn ∈ [0, 1] is the share

of input composite m̃n diverted for the pollution abatement activity. In other words,

(1 − sn) of input is kept for the main production.

The second equation in (1.6) assumes a simple relationship between the inputs and

generated pollution. The gross emission before abatement, z̃M,n(x) is assumed to be

proportional to the total input (m̃M,n) the firm uses for its operation. This is a strong

but common assumption in this type of models for the benefit of analytical tractability.

λM,n > 0 is coefficient that specifies the relationship between the input and emissions.

The third equation in (1.6) is for the end-of-pipe abatement technology. zM,n refers

to net emissions, which is the pollution that is finally emitted to the environment after
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abatement. zM,n depends on the gross emission and the abatement effort as measured

by the share of the diverted input for abatement activity (sn). For a given level of

z̃M,n, the net emission is smaller if more resources are used for abatement (i.e. larger

sn). δ ∈ (0, 1) is an inverse measure of abatement efficiency. A higher δ means that

end-of-pipe technology is less efficient and more final pollution is emitted for given the

potential emission and abatement resources.

Intermediate firms are price takers and perfect competition works in the market. Let

wt
n, t ∈ {k, u}, be the wages of type t worker, PM,n be the price of the final manufacturing

composite, and PS,n be the services price in n, respectively. Since the input bundle m̃M,n

is an output of the technology in (1.7), the cost minimization on the choice of primary

inputs yields the following unit cost for producing a bundle, which is denoted by c̃M,n,

c̃M,n = Ψ
[
wk

n

]γk
M [wu

n]γ
u
M [PM,n]γ

M
M [PS,n]γ

S
M (1.8)

where Ψ is a constant.8 Following studies such as Antweiler, Copeland, and Taylor (2001),

Copeland and Taylor (2004), and Shapiro and Walker (2018), we summarise the set of

environmental regulations into a Pigouvian emission tax on unit emission of pollutant

by the local manufacturing sector, denoted by ζn in n (the assumptions for ζn will be

discussed below). Then, from (1.6) and 0 ≥ sn ≥ 1,the profit maximization problem of a

firm becomes:

max
m̃M,n(x),zM,n(x)

pM,n

(
zM,n(x)

λM,n

)δ

(φn(x)AM,nm̃M,n(x))1−δ − c̃M,nm̃M,n(x) − ζnzM,n(x)

(1.9)

The first order conditions for the problem (1.9) yields the optimal unit cost which is

8. Namely, Ψ ≡

[
(γk

M )γk
M (γu

M )γu
M

∏
j′=M,S

(γj′

M )γ
j′

M

]−1

.
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given by cM,n

φn(x)1−δA1−δ
M,n

, where

cM,n =
(

c̃M,n

1 − δ

)1−δ (λM,nζn

δ

)δ

(1.10)

A final manufacturing good is produced by a competitive local aggregator. The final

good is a composite produced by a CES function that use all the varieties x ∈ [0, 1]. Input

varieties are sourced from the lowest cost region across all the locations n = 1, ..., N ,

including an iceberg trade cost to ship the good from i to n, τni > 1. The aggregation

function is

QM,n =
[∫

qM,n(x)
σM −1

σM dx

] σM
σM −1

(1.11)

where σM is the elasticity of substitution. The price of the input variety x used for final

production in n satisfies pM,n(x) = mini∈1,...,N

{
cM,iτni

A1−δ
M,i

φ̃i(x)

}
. Exploiting the property of

the Fréchet distribution for φi(x), the share of expenditure on varieties from region i in

the total expenditure for manufacturing varieties in n is given by,

πM
ni =

(τnicM,i)−θ(AM,i)θ

∑N
i′=1(τni′cM,i′)−θ(AM,i′)θ

(1.12)

and the price of the final manufacturing good available in n is then given by

PM,n =

[
KM

N∑

i=1

(τnicM,i)−θ(AM,i)θ

]−
1
θ

(1.13)

where, θ ≡ θ̃
1−δ

and KM ≡
(
Γ
(

θ−σM +1
θ

)) 1
1−σM is a constant.

Services Sector Goods Service sector goods are treated as non-traded, in a similar

way to Caliendo et al. (2018) and other studies. We admit that this is a strong assumption.

This is because the overall trade cost required to deliver services to a distant customer
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seems to be substantially higher than that of manufactured goods.9 Therefore, in the

current model, we treat them as non-traded and the services firms only serve local

customers within the city n. A services sector firm combines skilled labor, unskilled labor,

and manufactured goods. The production function is given by:

QS,n = AS,n[Lk
S,n]γ

k
S,n [Lu

S,n]γ
u
S,n [mM

S,n]γ
M
S,n (1.14)

where, mM
S,n is manufacturing inputs of the services sector.10 The technology is constant

returns to scale such that
∑

j′∈k,u,M γj′

S,n = 1 is satisfied. Note that we assume that γj′

S,n

varies across cities. Later we detail how we calibrate these with the data. AS,n is the

productivity shifter of the services sector in n that is exogenous for individual services

firms. Let PS,n denote the local price of the services goods in n. Cost minimization and

free entry ensures that the price should satisfy

PS,n =
ΨS,n

AS,n
(wk

n)γk
S,n(wu

n)γu
S,n(PM,n)γM

S,n (1.15)

where ΨS,n is a constant.11

Goods Market Clearing In the equilibrium, all markets clear. Let Yj,i, ∀j ∈ {F, M, S}

denote the total value of production of sector j in i. Similarly, Ej,n denotes the value of

expenditure on sector j in n. Firstly, the total agricultural supply should be equal to the

demand,
∑

i∈W

YF,i =
∑

n∈W

EF,n (1.16)

9. According to the main estimates by Gervais and Jensen (2019) on U.S. data, trade costs for the
eleven sub-sectors in the services category range from 3.95 times (wholesale trade) to 28.67 times (real
estate and leasing).

10. The services sector of course uses agricultural goods as well as land as inputs, however, we drop
these from the production function for the sake of simplicity. According to China’s input-output tables,
their contribution is very marginal for the services sector, the coefficients for agricultural inputs and land
are 0.016 and 0.039, respectively.

11. ΨS,n = (γk
S,n)−γk

S,n (γu
S,n)−γu

S,n (γM
S,n)−γM

S,n .
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For manufacturing varieties, the total value of production must be equal to the sum of

demand from all the potential destinations, i.e., YM,i =
∑

n∈W EM,nπni. Using (1.12)

and (1.13), this condition can be rewritten as:

YM,i = ÃM,nc−θ
i

∑

n∈W

τ−θ
ni EM,nP θ

M,n (1.17)

where, ÃM,n ≡ KAθ
M,n. Since the services sector goods are non-traded, the local

production should match local demand. Mirroring this equality in the services sector,

the sum of the production values of the two traded sector should be equal to the sum of

the demand for them, in every location. Therefore, we have

YS,n = ES,n, ∀n ∈ W (1.18)

YF,n + YM,n = EF,n + EM,n, ∀n ∈ W (1.19)

Industrial Emission Revenue from emission charge As a means of environmental

control, local government collects emission charges from manufacturing firms. Let ZM,i

be the aggregate amount of pollutant discharged to the environment from manufacturing

firms in i. Given the unit emission charge ζi in i, the i’s government collects ζiZM,i. The

first order condition for (1.9) yields:

ζiZM,i = δYM,i (1.20)

Local government employs skilled workers to implement pollution control. No pro-

duction technology is specified for this control, while the demand for skilled workers of

this environmental control task just has to satisfy a simple resource constraint,

wk
i Lk

Z = ζiZM,i (1.21)
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which means that the wage payment to the skilled employees equals to the revenue from

emission charges collected from the manufacturing firms. This assumption can also be

interpreted as that the local government rebates back the collected emission charges to

skilled workers.

Land Market Local government collects land rent revenue and redistributes it to

residents. For simplicity, we assume that the government redistributes the revenue so

that it augments their wage income by the factor of (1 + µ) where µ > 0. From the utility

function, the total expenditure on land in n is rnHn = (1 − α)(1 + µ)(wk
nLk

n + wu
nLu

n).

At the same time, the revenue should be equal to the total amount redistributed, which

means rnHn = µ(wk
nLk

n + wu
nLu

n). Then, µ = 1−α
α

. This yields the equilibrium land rent

given as

rn =
1 − α

α

wk
nLk

n + wu
nLu

n

Hn
(1.22)

Expenditure on Goods As explained above, the income of a type t worker is wage

income plus rebated land rent, thus wt
n/α. Production of manufacture and services

requires input goods other than labor. Given these, the expenditure for sector j in

location n becomes:

EF,n = χF,n(wk
nLk

n + wu
nLu

n)

EM,n = χM,n(wk
nLk

n + wu
nLu

n) + (1 − δ)γM
M YM,n + γM

S,nYS,n

ES,n = χS,n(wk
nLk

n + wu
nLu

n) + (1 − δ)γS
M YM,n

(1.23)

Labor incomes and labor market clearing According to the assumptions about

production functions, the total wage earnings of skilled and unskilled labors are given as

follows,

wk
i Lk

i =
(
(1 − δ)γk

M + δ
)

YM,i + γk
S,nYS,i

wu
i Lu

i = YF,i + (1 − δ)γu
M YM,i + γu

S,nYS,i

(1.24)
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Note that these equations are the labor market clearing conditions, given that the total

labor supply of type t workers in i is Lt
i, t ∈ {k, u}.

Emissions from Consumption Recent studies reveal that emissions from the con-

sumption side, which arise when consumers use manufacturing products, are becoming

increasingly important (Liu et al. 2016; Li et al. 2017).12 Not only in the advanced

countries, even in several developing countries such as China, emissions from the use of

transportation (for example, vehicles) as well as emissions from housing (cooking and

heating) consists a large share in the emission inventories. Therefore, here we introduce

a simple mechanism of emissions from consumption, ZR,n as follows. Specifically, we

assume that ZR,n is proportional to the real manufacturing expenditure with the fixed

coefficient λR,n. Assume that the use of manufactured goods generates pollution (car,

cooking equipment, air conditioning and heating, processed fuels, etc.). As the total

consumption expenditure on manufacturing in n is given by χM,n(wk
nLk

n + wu
nLu

n) along

with the price PM,n, the residential emissions is given by

ZR,n = λR,n
χM,n(wk

nLk
n + wu

nLu
n)

PM,n
(1.25)

Emission to Pollution The anthropogenic emissions of pollutants such as SO2, NOx,

and the primary emission of PM2.5, contributes to the formulation of air pollution through

various complex chemical reactions. Other than those pollutants from economic activities,

sources such as sand storms from deserts, volcanos, and sea salt, plays an important

role in determining the area’s level of pollution, with climate conditions such as wind,

12. Karagulian et al. (2015) conduct a meta-analysis of local studies across the world and find that
industrial emission constitutes 16-27 percent of the PM 2.5 pollution. The residential emission contributes
15-21 percent, and traffic contributes 15-18 percent, respectively (Aunan, Hansen, and Wang 2018;
Karagulian et al. 2015). Liu et al. (2016) estimate that industry contributed around 50 to 60 percent of
PM 2.5 while residential emission is responsible for 30 to 40 percent of it, respectively in Beijing, Tianjin,
and Hebei area, throughout 2010. Transport and power contributed relatively smaller share. These
findings motivate us to include emissions from non-industrial sources that we summarize as residential
emission.
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precipitation, humidity, and temperature. Thus, the mechanism that determines how

emissions from human activity affects the local ambient quality is very complex, and

a full-scale scientific weather model is needed to make a prediction of air quality for a

given level of emissions. Unfortunately, the predictive models that are commonly used

are designed for a short term prediction within a small geographical area. In our case, we

intend to connect the annual sum of emissions to the annual average level of air quality,

within a relatively large geographical unit.

Given this scientific limitation, a simple empirical relationship between local emission

and local air quality is used for the mapping of emissions into pollution. Let Dn denote

the level of air pollution (PM2.5 concentration) in n observed as concentration in the

air (with the unit of µg/cm3, for example), after the chemical process that transforms

anthropogenic and natural primary pollutants into harmful particulates. Assume that Dn

has the following relationship with the anthropogenic emissions in n; Zn = ZM,n + ZR,n,

the sum of emissions from manufacturing production and residential emissions is then:

Dn = f(X̃n)Zκ
n (1.26)

where κ is a coefficient on emission and f(X̃n) is a function of other local characteristics

denoted by X̃n.

Pollution control policy (emission tax) Local government sets the Pigouvian tax

rate, denoted as ζn, as an emission charge. The literature on China’s local environmental

regulations (Rooij and Lo 2010; Wu et al. 2013; Wang 2013; Zheng et al. 2014; Jin,

Andersson, and Zhang 2016) points out that China’s local leaders compete with each other

in their race for promotion among the hierarchy of the Communist Party. For prefecture

level leaders, getting high performance evaluations from their upper-level officials (i.e.

Provincial government), is thus the priority that determines their policy implementation.

In the past, local GDP was the main indicator used for evaluation. This economy-focused
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incentive system has long been criticized for a lack of consideration of sustainability.

However, since the tenth Five Year Plan (FYP) period was initiated in 2001, the central

government has begun to include environmental targets, such as emission reduction

targets for air pollutants. Since the eleventh FYP (2006-2010), the Chinese government

has introduced the target responsibility system (TRS) for environmental pollution that

binds lower-level officers to accomplish the targets agreed with their upper-level leaders.

Our modelling of the local government problem reflects this Chinese context. In

particular, we assume that the evaluation of the government n, denoted by Vn is defined

by

Vn = −ξg
nZM,n + Gω

n (1.27)

where Gn = wk
nLk

n + wu
nLu

n is city n’s total value added (GDP), and ω ∈ (0, 1). ξg
n > 0

is the city n specific coefficient that reflects how much upper-level governments stress

environmental quality in their evaluation of the government of n. The local government

choose ζn that maximizes Vn. It is assumed that the local government ignores (or cannot

know) the impact of its ζn on population, Lk
n and Lu

n, and the price index PT,n, and

regards them as given.

Under this assumption, a similar derivation for the Samuelson condition as in Antweiler,

Copeland, and Taylor (2001) applies. The first order condition with respect to ζn in

(1.27) yields:

ζn =
ξg

n

ω
G1−ω

n (1.28)

(1.28) tells us that the emission tax is higher where the economic scale is larger. This

is quite a simple specification, however, it reflects the observed relationship between

emission intensity and the city’s economic scale described in Section 1.A.3; which is

that, the larger the city’s economic scale is, the smaller the emission intensity from

manufacturing. Given the pollution supply function (1.28), and the pollution function
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(1.20), the equilibrium industrial emission is:

ZM,n =
δω

ξg
n

Gω
n

YM,n

Gn
(1.29)

Migration It has long been argued that domestic migration, especially rural-to-urban

migration, is severely restricted in China under the “hukou” system. The majority of

econometric research studies on China up to the early 2000s assumed that labor is

immobile due to the hukou restriction (e.g. Au and Henderson 2006b, 2006a). However,

this restriction has been gradually eased during the past two decades and the Chinese

labor force is currently very mobile, although there still remains substantial social and

institutional discrimination against migrants(Song 2014). In terms of volume, rural to

urban migration has been very large and we cannot explain the massive urbanization and

industrialization of China in the past few decades without inter-prefectural and inter-

provincial migration. The urbanization rate (urban population share in total population)

rose from 18 percent in 1978 to 53 percent in 2011 (Chen et al. 2013). In the past 30 years,

urban population has increased by 440 million, and half of that is said to be attributable

to rural to urban migration. Given these facts, it has become more appropriate than

ever before to treat labor as geographically mobile in China. For example, using a

similar approach, Baum-Snow et al. (2015) conducted a simulation study to assess the

impact of road network improvements on population and production, assuming both

perfect labor mobility and immobility.We follow the widely used Fréchet distributed

“mobility frictions” (Baum-Snow et al. 2018) that are also assumed in the studies such

as Baum-Snow et al. (2015), Donaldson and Hornbeck (2016), Redding (2016), Balboni

(2016), and Faber and Gaubert (2019). In line with this strand of literature, we assume

that both skilled and unskilled workers migrate across prefectures in China searching for

the place that offer them the highest utility. For each type, the expected utility should be

equalized across space in the equilibrium. Noting that the real income of type t worker

42



living in n can be written as
(

1
PT,n

)α (
Hn

Gn

)1−α
wt

n, and that the idiosyncratic location

preference ǫ is Fréchet distributed, the spatial distribution of type t workers is then given

by,

Lt
n

Lt
C

=

(
B̃t

n exp(−ξtDn) H1−α
n wt

n

P α
T,n

G1−α
n

)ηt

∑
n′∈C

(
B̃t

n′ exp(−ξtDn′)
H1−α

n′ wt
n′

P α
T,n′ G

1−α

n′

)ηt , ∀n ∈ C (1.30)

For outside of China, the RoW, population is fixed.

Equilibrium The equilibrium of this economy can be defined as follows: Given the pa-

rameters, {θ, δ, α, τb, ηk, ηu, ξk, ξu, ρ, ω, κ, γk
j , γu

j , γM
j , γS

j }, inter-city trade cost matrix {τ},

and exogenous variables {AM,i, AS,i, Bk
i , Bu

i , ζg
i }, the equilibrium is the vectors of quanti-

ties {ZM,i, ZR,i, Di, Lk
i , Lu

i }, prices {wk
i , wu

i , ri, ζi, PM,i, PS,i}, values {YF,i, YM,i, YS,i, EF,i, EMi
, ES,i},

and the manufacturing trade share matrix {πni}, that are given as the solutions to (1.26),

(1.20), (1.25), (1.30), (1.24), (1.22), (1.28), (1.13), (1.15), (1.18), (1.19), (1.23), and

(1.12).

1.3 Quantification of the Model

Since the model cannot be solved analytically, we calibrate it to the observed situation of

China in 2010 to conduct numerical exercises. The data for the observed variables include

the population of skilled and unskilled workers, the value added of three industrial sectors

(primary, secondary, and tertiary), the PM2.5 concentration, the emission of pollutants,

and other variables that are used in the estimation procedure for some of the model

parameters. The details of the data and the calibration strategy are explained in Section

1.A.2 and Section 1.A.4.

We combine multiple data sources to conduct the analysis. We focus on the 296

geographical units (270 prefecture-level cities and 26 counties directly under the Provinces)

in the Eastern half of the mainland China. Four provinces and autonomous regions,
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namely, Inner Mongolia, Xinjiang, Qinghai, Tibet, and islands (such as Hainan Province)

are not included in these 296 units and treated as the RoW. Economic variables, such as

the value added and employment of industries, are taken from the China City Statistical

Yearbook, China Region Economy Statistical Yearbook, as well as the online supplementary

material of Baum-Snow et al. (2017). Our analysis needs the amount of skilled and

unskilled worker in each city. The best available proxy for the people’s skill level is

educational attainment of the residents. Since the data on educational attainment of

workers are not available (only adult population by degrees is available), we assume that

the share of the skilled worker in all the worker in a city is equal to the share of adult

population with at least senior high school degree out of the total adult population in the

city. Environmental variables such as PM2.5 concentration and emissions of air pollutants

are from the sources using satellite images provided by Donkelaar et al. (2016) and the

MEIC database.13

The model requires the estimate of the iceberg trade cost for manufacturing interme-

diates between each pair of cities and between the RoW, τni. Since the model yields a

gravity equation of trade flow between each pair of cities, we can recover τni as Caliendo

et al. (2018) if we have a bilateral trade flow statistics. However, there is no available

data on the bilateral flow of trade among the pairs of prefecture-level cities in China.

Therefore, we have to construct it based on the distance and the quality of transport

infrastructure. Specifically, we closely follow the data and the method by Baum-Snow

et al. (2018) that uses the digitized map of China’s road network as of 2010 which is

provided in their on-line appendix and calculate the shortest paths (shortest travel time)

between each pair of cities by the Dijkstra algorithm (the average travel speed according

to the grade of motorways is reflected). Then, we convert the calculated travel times in

hours between each pair of cities into a matrix of iceberg trade cost.14

13. http://www.meicmodel.org/index.html

14. Specifically, the trade cost between city i and j, τij , is given by τij = 1 +
0.004(hours of travel timeij)0.8. See Baum-Snow et al. (2018) for the detail.
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There is no information available for the wage rates of skilled workers and unskilled

workers at the level of prefecture cities. We impute the skill-based local wages exploiting

the model’s equilibrium conditions and the sector-specific wage rates from the national

level provided in the China Statistical Yearbook. Through the process of recovering the

local wages for the skilled and unskilled workers, we also derive sector-specific input

parameters for skilled and unskilled, γk
j and γu

j , so that the model based national average

wage rates become equal to the observed ones.

We estimate the remaining parameters; goods expenditure share α, international

border effect τb, labor supply elasticity ηt and taste for air pollution ξt for each of t ∈ k, u,

the elasticity of substitution among three category of goods ρ, the emission tax elasticity

to GDP, ω, and the elasticity of city PM2.5 with respect to city’s pollutant emissions

κ. Among them, the most important parameters are ηt and ξt, which are found to

substantially affect the simulation results. To estimate these parameters, we exploit the

equilibrium conditions that pin down the labor incomes (1.24) and migration (1.30).

From (1.24) and (1.30), the population of type t labor in n can be expressed as:

ln Lt
n = β0 − ξt ηt

ηt + 1
Dn +

ηt

ηt + 1
ln W̃ t

n + ǫ̃t
n, ∀n ∈ C (1.31)

where: W̃ k
n ≡

((1−δ)γk
M

+δ)YM,n+γk
S,n

YS,n

P α
T,n

G1−α
n

, W̃ u
n ≡

YF,n+(1−δ)γu
M

YM,n+γu
S,n

YS,n

P α
T,n

G1−α
n

, and Dn is the

level of pollution derived by using the annual average concentration of PM2.5 as a proxy,

respectively. The equation (1.31) gives the relationship between the population of type t

worker in n and the air pollution and the real wage in n. We estimate (1.31) to obtain

the values for ξt and ηt.

This method, of course, could be prone to endogeneity issues. Specifically, the OLS

estimate of ξt can be overestimated (in terms of magnitude) if an unobserved productivity

of the services sector raises both the services sector share in the city as well as the

labor supply to the city. Similarly, the OLS estimates of ηt tend to be underestimated
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by the existence of unobserved amenities that attract workers. On the other hand,

unobserved productivity shocks may cause an overestimation of ηt. We borrow from

existing studies to address these identification concerns. For air pollution terms that are

critical in estimating ξt, we follow Freeman et al. (2017) and instrument air pollution

(measured by PM2.5 concentration) by the SO2 emission from thermal power plants

within the up wind direction from the city (excluding that from their own city). The

identification assumption is that the thermal plant emission from upwind locations affect

the city’s worker population only through its impact on air pollution conditional on the

control variables. For the estimation of ηt, we benefit from Baum-Snow et al. (2018) who

estimated the impact of road infrastructure in 2010 on the employment and economic

outcomes of Chinese cities. They instrument 2010 infrastructure variables with 1962

infrastructure variables. For identification, we assume that the 1962 infrastructure affects

the population of 2010 skilled (unskilled) workers only through the real wage paid to

them conditional on the controls.

Through these estimations, we try to verify that the model’s equilibrium condition

holds in the real world in a meaningful way. Our estimates of labor supply elasticities,

ηt, welfare effects of air pollution, ξt, and the Pigouvian tax parameter, ω, are within

reasonable ranges compared to the existing studies, and are consistent with the model’s

assumptions. The details of the calibration and estimation is explained in Section 1.A.4.

Of course, it should be noted that our verification through estimation addresses a subset

of equilibrium conditions. It is desirable therefore to have a more comprehensive check on

whether the model well replicates the observed endogenous variables, as Tombe and Zhu

(2019) do by exploiting intertemporal changes in the exogenous variables. Unfortunately,

however, the full set of data required for that analysis is available only for 2010, preventing

such an exercise that requires a city-level panel dataset. Minding these limitations, we

examine how the qualitative results of the simulation change by the choice of these

parameters in Section 1.5.
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Table 1.1: Parameter Values

Parameter Value Source
θ 5 Baum-Snow et al. (2018)
δ 0.011 Shapiro and Walker (2018)
α 0.87 Estimated (expenditure share on housing, based on China

Statistical Yearbook 2011 )
τb 1.68 Estimated (applying equation (A.53) in the Appendix to

China’s export and import)
ηk 3.52 Estimated (equation (1.31) )
ηu 1.16 Estimated (equation (1.31) )
ξk 0.013 Estimated (equation (1.31) )
ξu 0.0095 Estimated (equation (1.31) )
ρ 3.45 Estimated (Search the value that minimize observed and

model expenditure share over three goods category, at the
Provincial level))

ω 0.466 Estimated (equation (A.58) in the Appendix)
κ 0.16 Estimated (OLS regressing PM2.5 on industry and consump-

tion emissions)
Source: Author

We calibrate the remaining parameters borrowing the knowledge from existing litera-

ture: the Fréchet dispersion parameter for manufacturing productivity, θ, and the input

share of pollutant emission (equivalent to the inverse of abatement efficiency), δ. Table

1.1 summarizes the calibrated and estimated parameters used in the simulation exercises.

1.4 Simulation Exercises to Study the Model’s Properties

The main purpose of this paper is to understand the impact of pollution control policy

on environmental, economic, and welfare outcomes. In what follows, we study several

theoretical implications of the model using the calibrated model. We specifically focus

on the exogenous change to pollution control policy which is captured by ξ̂g
n. This

parameter represents how much the evaluation of local government n is damaged by an

increase in industrial emissions from its jurisdiction. We first examine how a regulatory
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shock to a particular city n, captured by ξ̂g
n, will have spatial impacts on economic and

environmental variables. An increase in ξg
n for city n affects the outcomes of itself. In

addition, it also have varied impacts on other cities. The signs and the magnitudes of the

own effect and the spillover effects are not readily obvious, as the model accommodates

various channels of impact that mutually interfere with each other.

Given this analysis, we further seek for desirable spatial allocation of responsibility

to reduce emissions. Setting an aggregate emission reduction target to 10 percent, we

compare various weighting strategies that differentiate localized reduction responsibility

across cities, in addition to a uniform allocation that assigns the same magnitude (in

percent) of reduction responsibility to all cities. We find that some strategies are superior

to the uniform strategy. Interestingly, even though the stronger pollution control is costly

for individual firms and we rule out technological mechanisms that cause that stricter

regulation raises productivity, we find that a few strategies may result in an increase in

national real GDP. We discuss in detail how these strategies are different in terms of

environmental, economic and welfare outcomes.

Throughout the analysis, we examine how the key assumptions of the model affect

the derived elasticities with respect to the shocks in the exogenous variables. Specifically,

we compare our baseline model with counterfactual models that shut-out three important

ingredients; the migration of workers, international trade, and preference for air quality.

The counterfactual models give significantly different outcomes from those of the baseline,

meaning that the relevance of these key assumptions as well as the potential sensitivity

to the estimated parameter values.

As shown in the Appendix 1.A.1, the model allows us to employ the “method of

change” proposed by Dekle, Eaton, and Kortum (2008) to solve for the counterfactual

equilibrium without knowing the levels of unobserved variables.
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1.4.1 Impact of Unilateral Policy Change in a City

We first illustrate the spatial propagation of impact from a unilateral policy change in

a single city. As an example, we choose Beijing, Wuhan, and Deyang, and examine

how the impact differs depending on the place the policy shock originates from. Let

i′ ∈ {Beijing, Wuhan, Deyang} denote the city that receives unilateral policy change. We

compute the elasticity of outcome variables in all the 296 cities with respect to ξ̂g, which is

a vector whose i′-th element is ξ̂g
i′ = 1.1 while keeping other elements to ξ̂g

i = 1 for i 6= i′.

This means that the city i′ increases its regulatory parameter by 10 percent, while other

cities keep it unchanged. The choice of magnitude at 10 percent is reasonable considering

the policy context of China around 2010. China has set national level environmental

targets for every Five-Year Plan (FYP), since its 11th FYP for the years 2006-2010.

Under this FYP, a nationwide reduction target of the emission of industrial SO2 was

set to 10 percent of the level in 2005. In the 12th FYP, the SO2 reduction target was

set to 8 percent of the 2010 emission level, while the target of 10 percent reduction for

NOx was added(Aunan, Hansen, and Wang 2018).15 As (1.29) implies, if G and YM

are constant, the elasticity of ZM,n with respect to ξg
n is -1. Therefore, a naive policy

response to the national target to reduce emission by 10 percent is to raise ξg by 10

percent. We thus pick this level for our reference magnitude in conducting simulation

studies. We also experiment with other magnitudes and find that the relationship with

the size of magnitude and the elasticities is linear in general.16

There are several interesting results that contrast the model to conventional predictions.

First, as indicated in panel (a) of Figure 1.1, the elasticity of industrial emission is greater

than -1. This means that if the ξg
Beijing rises by 10 percent, Beijing’s industrial emission

is only reduced by 9.59 percent. As equation (1.29) implies, it is not theoretically obvious

15. The national reduction target was disaggregated into Provincial level targets, which vary from 0
percent to 30 percent.

16. More precisely, the elasticity is weakly concave, with slightly larger elasticity when the policy
magnitude is smaller.
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whether the elasticity of industrial emission is larger or smaller than −1, because it

depends on how aggregate production Gn and manufacturing share YM,n/Gn changes in

response to ξg
n. Note that the nominal GDP (G) of Beijing responds positively to the

stricter environmental regulation as shown in panel (i). In this case, a positive scale

effect offsets the direct effect of increased ξg, and that results in an elasticity of industrial

emission greater than −1. The positive scale effect of the regulation in this case coincides

with the increased employment (thus in-migration) of skilled and unskilled workers to

Beijing as shown in panels (d) and (e). This is an effect that cannot be predicted by the

models without mobility of production factors (Copeland and Taylor 2004).

Regarding the propagated effect to cities outside of Beijing, panel (a) of Figure 1.1

shows an interesting contrast to the standard theoretical prediction of the PHE. If a

pollution haven emerges, strengthening the environmental regulations in Beijing will

cause an increase of emissions somewhere outside of Beijing, through the relocation of

polluting industry to areas with relatively less stringent environmental policies. However,

as shown in panel (a), the elasticity is everywhere negative, which means that the PHE

does not take place here. The reduced emission from Beijing is not offset by increased

emissions in other places. The environmental impact is even amplified by the reduced

emission outside of the city, induced by Beijing’s local policy. The reason for this can

be seen in panels (d) and (e), that depicts the elasticities of the labor supply of skilled

and unskilled workers, respectively. Beijing attracts both types of labor through the

strengthened regulations, with a higher magnitude for skilled labor (0.099 for skilled

compared to 0.073 for unskilled). Policy changes in Beijing therefore slightly attract labor

from almost all over China, and contract the scale of production scale in places other than

Beijing, as panel (i) suggests. Furthermore, as seen in panel (j), the composition effect

which is the share of manufacturing production in total production decreases everywhere

including outside of Beijing. These structural changes in scale and composition ensure

the reduction of emissions everywhere in China, in response to policy changes in Beijing.
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To understand the reasons why these spillover effects in labor supply and production

structure emerge, we need further elaboration. First, a comparison of panel (g) and (h)

reveals that skilled worker real wage respond in a opposite way as unskilled worker real

wage. For the skilled workers, the real wage decreases in Beijing and increases almost

everywhere outside of that city. Conversely, the unskilled worker’s real wage increases in

Beijing but decreases in other cities. The SEE (spatial equilibrium effect) works here.

Skilled workers put more weight on air quality than unskilled workers as our estimated

coefficients satisfy ξk > ξu, consistent with the assumption in (1.1). Due to this, the

improvement in air quality in Beijing is large enough for skilled workers to compensate for

the decline in real wages there. As in panel (l), the influx of skilled workers is associated

with the decline in service price in Beijing which contributes to raise the real wage of

the unskilled worker (note that the nominal unskilled wage is fixed by assumption).

Then, both skilled and unskilled labor partially relocate to Beijing, and drive down

production outside Beijing. Furthermore, the increase in ξg in Beijing raises the unit

production cost of manufacturing there as in (1.10), which has spatial spillover effect on

the manufacturing price index as in panel (k). This affects manufacturing production

costs everywhere in China because the sector uses manufacturing intermediates as its

inputs, making the response of the composition effect negative everywhere in China as

in (j). These complex but rich relationships among the variables all work together to

influence how our environmental variables are determined.

For price indices, note that the magnitude of the manufacturing price change is

slightly smaller in the regions surrounding Guangdong Province and Shanghai, that are

close to the international port. Due to better access to international markets, these

areas trade less (in terms of share) with Beijing in the initial equilibrium. Therefore, the

impact of unit cost increase in Beijing due to stricter regulation is mitigated. Panel (l)

shows the elasticity of services prices, PS . Only ‘own’ elasticity is negative while the

others are positive. This is consistent with the responses of labors in panels (e) and (f).
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The services sector in Beijing benefits from the increased labor supply that drives down

wages, while other cities will be affected by the reduced labor supply, as well as increases

in the manufacturing price index as this is an input in the sector.

In summary, the economic implication of a unilateral policy change in our model

is thus substantially different from the traditional PHE world. Stricter regulations in

Beijing do not raise industrial emissions in other cities. Furthermore, higher ξg
Beijing is

not an economic burden for Beijing, while causing a slight damage to outside cities.

1.4.2 Where the Shock Originates Matters

By comparing the results of the same exercise for other epicenters of the shocks, namely

Wuhan and Deyang, we examine whether these spatial patterns of the impact are universal.

Figure 1.A.4 shows the results for the city of Wuhan, the capital city of Hubei Province

located in the central part of China. Figure 1.A.5 shows the same for Deyang, a city in

Sichuan Province. The spatial patterns of the propagation are fairly contrasting. As

the panel (a) of Figure 1.A.4 depicts, a policy shock in Wuhan reduces the industrial

emission of neighboring cities. However, as the distance from the origin grows, the

magnitude of elasticity shrinks more rapidly than the case of Beijing, reaching close to

zero in the middle distance from Wuhan. Then, the elasticity again declines (magnitude

increases) slightly when going much further. In contrast to Beijing, the emission elasticity

is no longer monotonic with respect to the distance from Wuhan, showing an inverted

V-shaped curve. The example of the shock from Deyang, in Figure 1.A.5, shows a more

exaggerated picture. In panel (a), the policy shock in Deyang exhibits a PHE in cities

relatively closer to Deyang and the color turns red, except for a few direct neighbors.

1.4.3 Sensitivity to the Model’s Key Assumptions

The model is different from the standard approach used to study the impact of local

pollution control policy on national or global economies in three aspects. First, it allows
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Figure 1.1: Illustration of the Spatial Effect of Policy Shocks from Beijing

(a) Industrial Emission (b) total Emission (c) PM2.5

(d) Skilled labor (e) Unskilled labor (f) Exposure

(g) Skilled Real Wage (h) Unskilled Real Wage
(i) Scale Effect (Nominal
GDP)

(j) Composition Effect
(k) Manufacturing Price
(PM ) (l) Services Price (PS)

Source: Author
Note: The maps depict elasticities computed against 10% change in the regulation parameter of Beijing
(ξg

Beijing). Red colour indicates the positive computed elasticities, while the blue indicates the negative
ones. The midpoint of the color palette is set to zero.
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Table 1.2: Counterfactual Models

Feature NMTW NTW NW Benchmark

Domestic Migration x o o o
International Trade x x o o
Preference for Air Quality x x x o

Source: Author
Note: This table compares the features of the four models. “o” indicates
that the model considers the feature as one of model’s key mechanisms.
If “x”, the model treats the feature as restricted to zero.

for the production factor (workers) migration between cities. Second, workers care not

only for their economic welfare but also environmental quality. Finally,it explicitly adds

international trade to a domestic trade model. We ask what are the roles of these

assumptions in determining the observed spatial effects.

To examine how sensitive the results on these assumptions, we compare three counter-

factual models as explained below. Table 1.2 summarizes the features of the models we

compare. Firstly, NMTW is a no-migration, no-trade, and no-welfare effect model. This

counterfactual assumes that workers do not move from their current city, that trade takes

place only within China, and that air pollution does not harm worker’s welfare. Note that

this is equivalent to a domestic trade version of the model of Eaton and Kortum (2002)

with pollution as a regulated production input. The NTW (no-trade and no-welfare

effect) model relaxes NMTW by allowing domestic migration. But, international trade

is still ruled out, meaning that the geographical scope of migration and trade is only

within the domestic arena. The third counterfactual, NW, introduces international trade.

Through this change, goods gain a wider scope of mobility than workers because they

become mobile across international borders.

Figure 1.2 shows the features of the four models using the results of simulation for

a unilateral 10 percent increase in Beijing, by setting ̂ξg
Beijing = 1.1 while keeping it

to 1 for the others. Panel (a) compares the elasticity of Beijing’s industrial emissions

to its own policy change. All elasticities are negative and close to -1. Panel (b) plots
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the relationship between the city’s distance to Beijing and its elasticity for each of four

models. The red is for the NMTW model. Elasticity is negative for the cities near to

Beijing then turns positive as the distance grows. This normal domestic trade model

shows that the pollution haven effect (PHE) occurs in space. The negative elasticity

nearby cities corresponds to the effects on the manufacturing price index captured in the

panel (c). Due to the linkage through costly trade, the price index (i.e. input price) of

the nearby cities increases more than that in the distant cities, pushing the polluting

production to relatively further locations. If domestic migration is allowed, the graph

for the NTW model in blue shows that the curve becomes steeper than the case of the

NMTW. The decline in real income near Beijing due to increases in the price index

and the reallocation of manufacturing make the worker migrate to cities further from

Beijing. Migration flow outward from the Beijing area makes the response of emissions

more elastic than in the case of MNTW. Then, introducing international trade shifts the

MTW curve down, as the graph for the NW model (in green) shows. By introducing

international trade, firms in China face price competition with foreign firms. Stricter

regulation in Beijing increases input costs in China through the increases in the price

index, PM , with a larger magnitude than in the foreign market. This decreases China’s

competitiveness in manufacturing and reduces the production scale of manufacturing in

the cities in China. As a result, the elasticity of emission for the NW model is lower than

for the NTW model, and the area with negative elasticity expands. Finally, adding the

preference for air quality to the NW model delivers our benchmark model. As we can

observe from panel (b), introducing this preference substantially reduces the slope of the

emission elasticity with respect to the distance from Beijing. In the benchmark model,

both skilled and unskilled workers care about air quality when choosing a residential

location. Since Beijing and nearby areas reduce emission and pollution, both skilled and

unskilled labor migrate toward Beijing. This shrinks the scale of production outside the

Beijing area, and offsets the PHE by the increase in the price index.

55



In contrast to the NTW model where tougher environmental regulation works as a

centrifugal force on skilled labor, in the benchmark model it is a centripetal force. On the

other hand, note that tougher regulation is always a centripetal force for unskilled labor.

This happens due to the two substitutions that unskilled labor has between skilled labor

and emissions. A tougher regulation of emission raises the price for emission, thus the

factor demand for production shifts to demand more labor. However, due to the higher

labor supply elasticity of skilled labor (ηk > ηu), skilled labor moves more sensitively

in response to changes in the real wage, under the NW setting where they do not care

about air quality. Unskilled labor is therefore a substitute for both emissions and skilled

labor in the production of manufactured good and services.

In summary, the assumptions on migration and international trade play important

roles in determining the behavior of the model. Allowing for migration or not in the

model, or incorporating the welfare effect of pollution for workers, will significantly affect

the degree of “distance decay” of the elasticity of emissions with respect to a cities’

distance from the epicenter city. Disregarding the migration or welfare effect of air

pollution might lead overstatement of the local impact of stringent pollution control

policies. The migration of workers may work to mitigate such local impacts, especially if

they care about pollution as studied by Chen, Oliva, and Zhang (2017) and Freeman

et al. (2017). Ignoring international trade may also lead to an exaggeration of the local

effects of regulation and the potential of the pollution haven effect by missing the channel

of foreign demand.

1.4.4 Comparing Aggregate Impacts of Local Policy

The spatial impact of local environmental policy differs with the location of any change

that occurs. This suggests that the impact of local policy on aggregate outcomes may

also vary depending on where the policy change happens. To show this, Figure 1.4 depicts

the elasticities of the aggregate variables with respect to a local 10 percent increase in
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Figure 1.2: Model Comparison

NMTW NTW NW Benchmark
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Figure 1.3: Counterfactual Models (Elasticities of Emission and Real GDP w.r.t. Regula-
tion Shock in Beijing)

(a) NMTW:Emission (b) NMTW: Real GDP

(c) NTW: Emission (d) NTW: Real GDP

(e) NW: Emission (f) NW: Real GDP

(g) Benchmark: Emission (h) Benchmark: Real GDP

Source: Author
Note: The maps compares the four different models assuming the same policy shock (10 percent increase
in ξg

n of the city n) happens in Beijing.
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pollution control policy. The color and darkness of each map represent the sign and

the magnitude of the elasticity of the national aggregate of the outcome variables with

respect to this increase in the regulatory parameter ξg
n in each city.17

The elasticity of the aggregate emissions is depicted in panel (a). The elasticity is

in fact highly correlated with the size of emissions from each city, with a correlation

coefficient of -0.999. This is consistent with the previous observation we examined in

the case of local policy in Beijing (and other two cities), where the elasticity of local

emissions to policy in its own city is close to -1, while the magnitude of the elasticity

of the cities outside of the epicenter city is far smaller than one, as shown in panels (a)

and (b) of Figure 1.2. Figure 1.4 panel (b) shows the elasticity of the nationwide average

exposure to air pollution, calculated as the change of population weighted average of

PM2.5 concentration from the baseline. As shown in panel (a) and (b), emission and

exposure elasticities are everywhere negative. There is no case where stricter policy in

a city causes an aggregate increase in emissions or exposure to pollution. Despite the

fact that there are cities such as Wuhan and Deyang where stricter regulation causes an

increase of emissions in other cities, this PHE is not large enough to exceed the direct

effect on the reduction of pollution in the epicenter and nearby cities.

The impact on aggregate economic variables is less straightforward. Panel (c) of

Figure 1.4 illustrates how aggregate nominal GDP changes in response to strengthened

pollution control policy in a city. Interestingly, there are 40 cities out of 296 whose

increases in regulatory strength lead to a positive change in aggregate GDP. These cities

tend to concentrate on the eastern coast where the most densely populated cities in

China locate, such as Beijing, Tianjin, Shanghai, and Guangzhou locate. As confirmed in

panel (i) of Figure 1.1, a unilateral change of regulatory strength in a city will increase

the nominal GDP of its own and nearby cities while slightly reducing that of others. For

those 40 cities with positive elasticities of aggregate nominal GDP, the positive effects on

17. Average exposure to air pollution is average PM2.5 concentration weighted by share of population.
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GDP of its own and nearby cities surpasses the negative effects for the others. Panel

(d) depicts the impact on aggregate real GDP. This elasticity is highly correlated with

that for the nominal GDP. For this case, there are 36 cities whose real GDP elasticity

is positive. If environmental regulation is strengthened in one of these 36 cities, it will

contribute to overall economic growth.

The economic impact of policy tends to favor unskilled workers more than the skilled.

This is shown from the decomposition of the elasticity of real GDP into the effects on

skilled and unskilled real incomes as in panel (e) and (f). Panel (e) and (f) reveal that

skilled and unskilled workers face different consequences in terms of national average real

income. For the skilled workers, national average real wage declines in most cases, except

for 13 cities which are mainly located in the western and northern peripheries. On the

contrary, the average real income of the unskilled increases if policy change takes place

in the majority of coastal cities. There are a total of 108 cities that show the positive

elasticity of average unskilled real wages.

Panels (g), (h), and (i) show the welfare elasticities with respect to the tightening of

policy in each of 296 cities. The average welfare shown in panel (g) is calculated as the

weighted average of skilled and unskilled welfare shown in (h) and (i).

1.5 Quantifying the Impact of National Level Policies

In the previous section, we examined the model’s comparative statics of a unilateral

policy change in a single city. The model also allows us to study the impact of pollution

control policies under more realistic situations. Since the 11th Five-Year Plan (FYP),

the government of China has set national level reduction targets of major pollutants. For

example, in the 11th FYP that covers years from 2006 to 2010, a 10 percent reduction

in aggregate SO2 emissions to the level of 2005 was set as the target. To achieve this

nationwide target, a complex political process is followed to assign the decomposed
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Figure 1.4: Comparing Aggregate Impacts across Epicentres (Benchmark Model)

(a) Industrial Emission
(b) Average Exposure to Pol-
lution

(c) Nominal GDP (Scale Ef-
fect)

(d) Real GDP (e) Agg. Skilled Real Income
(f) Agg. Unskilled Real In-
come

(g) Average Welfare (h) Skilled Welfare (i) Unskilled Welfare

Source: Author
Note: The maps depicts the elasticity of the national aggregate of the variable of interest with respect to
10 percent increase in ξg

n of the city n.
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targets to provincial and prefecture level administrations as their responsibilities for

reduction. These regional targets are not uniform. Richer and populated areas have been

assigned stricter targets, and the provincial targets vary from 0 percent to 30 percent

during the 11th FYP (Stoerk 2017).

In what follows, we examine the impact of control policies at the national scale and

the implications of different strategies on how to allocate reduction responsibilities across

space. More specifically, we focus on the case where China tries to reduce aggregate (the

national sum of) industrial emissions by 10 percent, reflecting the policy context in the

11th and 12th FYP, as discussed in the previous subsection. To reduce aggregate emission

by 10 percent, how should the central government allocate reduction responsibilities

across regions?

To answer this question, we compare the following six hypothetical responsibility

allocations that achieve 10 percent reduction in aggregate emissions. In the model,

our policy variable is ξg
n. As in equation (1.28), this parameter is an exogenous factor

determining the Pigouvian emission tax ζn charged to industrial firms in city n. In the

following policy experiments, we compare different ways to set the reformed policy ξg′

n , ∀n

so that the new equilibrium generates 10 percent less aggregate emission compared to the

original equilibrium. There could be infinitely many options in how to set ξg′

n to achieve

an aggregate 10 percent reduction in emission. To simplify the discussion, we model the

six policy allocation strategies as follows.

Let xn denote the weight assigned to city n with
∑

n∈C xn = 1. Then, the reformed

pollution control policy for the city n, ξg′

n , satisfies:

ξg′

n (x)
ξg

n
= 1 + µxxn (1.32)

where µx is a constant. Equation (1.32) implies that city n’s new regulatory parameter

(ξg′

n ) is 100 × µxxn percent higher than its original, ξg
n. We then call the distribution of
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Table 1.3: Targeting Strategies

Name Weighting variable (x) Constant (µx, mean and CI )**

(1) all Equally weighted (xn = 1/N, ∀n ∈ C)
0.1039

[0.1038, 0.1040]

(2) zm Industrial emission
0.0277

[0.0275, 0.0278]

(3) popden Population density
0.1089

[0.1075, 0.1102]

(4) Rin_u Elasticity of average unskilled real income*
0.0802

[0.0759, 0.0844]

(5) WELF Elasticity of average welfare*
0.0498

[0.0495, 0.0500]

(6) TP Inverse of time to nearest international port
0.1099

[0.1078, 0.1121]
Source: Author
Note: * Weight is zero for cities with negative elasticity.
** “Constant” (µx) for the equation (1.32) in the third column is calculated as a result of simulation.
The square bracket in the third column shows the confidence interval of the estimated µx

xn across n ∈ C the allocation “strategy” of the policy change to achieve the targeted

national reduction in emissions. Table 1.3 summarizes the hypothetical strategies for our

experiment; these are explained below. The simplest reference strategy is to assign the

same magnitude of policy change to all the cities, which is called the “all” strategy. In

this case, xn = 1/N, ∀n. Regarding the constant, µx, we search for the value that achieves

a 10 percent decline in aggregate emissions by iterating the equilibrium calculation until

the aggregate emission reduction converges to the target. For this “all” strategy, the

average of µall equals 0.1039, which means that all cities increase ξg by 10.39 percent to

achieve 10 percent reduction in aggregate emissions.

One possible way to differentiate the allocation of reduction responsibility across

cities is to assign higher weights to those cities where the problem is more serious. The

second and third strategies are examples of this. The second strategy “zm” adjusts

the weight, xn, equal to city n’s industrial emissions in the observed equilibrium, as of

2010 in our exercise. This ensures that large emitters face more stringent tightening of

the regulations. While this strategy intuitively seems to be an efficient way to reduce

aggregate emission, it is not obvious whether it is superior to other strategies in terms
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of welfare and economic outcomes. The third strategy, “popden”, is another example

of a strategy to assign targets according to a current observable conditions. In this

case, we consider that the central government tries to prioritize cities with large affected

populations. Then, it sets xn equal to n’s population density.

Instead of referring to the observed city characteristics, suppose that the central

government knows the elasticity of aggregate outcomes with respect to local unilateral

policy change in each city, as summarized in Figure 1.4. The fourth and fifth strategies

utilize these known elasticities for unilateral policy intervention to cities. Suppose that

the central government wants to achieve reduction targets without reducing the economic

benefits of low income people. The “Rin_u” strategy intuitively aligns to this desire

of the central government. This strategy assigns the weight according to the elasticity

of average real incomes of unskilled workers that is depicted in the panel (f) of Figure

1.4. There are many cities whose tightening of regulations negatively affects the average

real income (those in blue in the map). We set the weight for these cities at zero. In

the “WELF” strategy, we assign a weight equal to the elasticity of the average welfare

as shown in panel (g) of Figure 1.4, because higher welfare gains are expected from the

policy. We also add a strategy, “TP”, that assigns the weight (xn) according to the

inverse of the travel time to the nearest international port from the city.

As revealed in the analyses on the unilateral policy change in a single city in the

previous section, workers’ preferences for air quality play an important role in determining

the spatial impact of policy. Although we use estimated values for these parameters

that are quite similar to an existing study by Chen, Oliva, and Zhang (2017), the

sensitivity of the simulation results to different parameter values should be checked.

We thus conduct a parametric bootstrap using the estimation results for ξt, similar to

Faber and Gaubert (2019). Specifically, we sample the alternative parameter values

from a normal distribution with a mean equal to the point estimate and a standard

deviation equal to the standard error of the estimate (adjusted by the delta method).
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This bootstrap procedure is executed 100 times. For each trial, we calculate the changes

in the equilibrium outcomes for six different strategies and stack the results to obtain

the mean effect and its confidence interval.

Simulation Results The simulation results for the six targeting strategies summarized

in Table 1.3 are shown in Figure 1.5. Panel (a) compares the impact on skilled worker

welfare across the six strategies. Black graphs show the average and the 5 percent

to 95 percent confidence interval as a percentage point change, simulated using the

benchmark model. For all strategies, the impact on the skilled welfare is positive on

average. The lower bound of the confidence interval at 5 percent is negative for all six

strategies, suggesting that the welfare effect of the pollution control policy to reduce

national emissions by 10 percent on the skilled labor is volatile with respect to the choice

of parameter ξk that captures the preference of skilled workers for better air quality.

Among the six strategies we examine, “Rin_u” strategy has a relatively higher average

impact, but its variation is much larger compared to the other five strategies. We assume

that the “Rin_u” strategy increases regulation a lot in a limited number of cities while

keeping other cities from changing their level of environmental control. The result of the

“Rin_u” strategy shown in panel (a) suggests that concentrating control intervention in a

limited number of locations may deliver higher welfare gains on average, but that this

outcome can be more sensitive to the unknown preference parameters.

Panel (b) depicts the impact on the unskilled worker’s welfare. The average impact

is positive for all strategies. What is more, for each of the six strategies, the entire

confidence interval stays on the positive side. Thus, pollution control policy is in general

beneficial for the unskilled, and its sign is less sensitive to the preference parameter than

for the case of the skilled worker.

Panels (c) and (b) show more clear contrasts of outcomes between the skilled and

unskilled. While the average real income of the skilled workers always declines under
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stricter pollution control policy, unskilled workers are always better off from such changes.

For both skilled and unskilled workers, the magnitude of impact is the largest for the

“Rin_u” strategy, while they are the most sensitive to the parameter values. As shown in

panel (e), strengthening pollution control slightly reduces real GDP, but the magnitude

is small and sometimes not substantially different from zero. The “Rin_u” strategy

shows the outstanding sensitivity of this effect with respect to the choice of parameter

values compared with other strategies, with a slightly positive average effect. Exposure

to pollution will surely decline with the policy intervention, as shown in panel (f).

Concentrating intervention to limited locations as in the “Rin_u” strategy will achieve

the largest decline in exposure to pollution.

For all the panels, the red cross mark shows the average impact in the case where

international trade is shut down. By comparing the cases with and without international

trade, we can see that international trade pushes the impacts that favor the unskilled

workers. Without international trade, the benefits for skilled workers shift up while those

for unskilled workers shift down. This is especially so for the average real income of

unskilled workers, as this is negative when international trade is absent while it is positive

with trade.

1.6 Conclusion

This paper develops a spatial equilibrium framework with endogenous air pollution to

quantitatively study the impact of pollution control policies on welfare, economic, and

environmental outcomes at regional and national scales. We calibrate the model to the

Chinese economy’s situation in 2010 at the level of prefecture-level cities. Some of the

important parameters are estimated by exploiting the model’s equilibrium conditions. To

the best of our knowledge, this is the first attempt to explicitly incorporate endogenous

air pollution into a quantitative spatial equilibrium framework. In our model, pollution
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Figure 1.5: Comparing Strategies across the Models
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(c) Skilled Worker’s Real Income
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(d) Unskilled Worker’s Real Income
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(e) Real GDP
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(f) Average Air Pollution Exposure

Source: Author
Note: These graphs depict the bootstrap mean and 5 percent confidence interval of the impact of
nationwide policy to reduce aggregate emissions by 10 percent, as a percentage change of concerned
outcome variables, across the six different targeting strategies. The black circle shows the mean of the
effect and the lines stretching out from the circle shows the confidence interval. The red cross mark shows
the mean of the impact when assuming China is a closed country.
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control regulation is costly for firms as it may cause a reallocation of polluting industries

to regions with more lax regulations, while this PHE can be (partially) offset by migration

of workers who value air quality as a residential amenity.

We conduct a series of hypothetical simulations to study the implications of our

theoretical model in a realistic setting. This approach allows the study of how a unilateral

change of environmental policy in a single city can affect the city itself and other cities

in China. In contrast to conventional trade-environment models, our spatial equilibrium

framework with worker migration exhibits some cases where local environmental regulation

delivers a positive economic benefit, even though regulation imposes additional costs on

firms. Furthermore, in some cities, an increase in the local regulatory level may bring

a positive economic return in terms of aggregate real GDP. These results emerge due

to worker demands for better environmental quality and to let them migrate to an area

where air pollution is reduced. In such cases, stricter regulation works as a centripetal

force that attracts workers to the regulated regions, which coincidentally expands the

scale of economic production.

Our approach is not free from shortcomings. First is that our discussion rests only

within a static framework, ignoring the implication of dynamic changes. While our model

can be regarded as a description of a steady state that will be reached in the long-run,

this does not exclude the possibility that the observed results may not hold if dynamics

are taken into account. Another caveat lies in the simplification of environmental quality

into a single air pollution measure. While environmental quality has many dimensions, in

the present paper we only care about ambient quality. Other important dimensions, such

as water quality, soil quality, noise, radioactive pollution, biodiversity, and scenic beauty,

are not covered. Moreover, within the category of the ambient pollution, the argument

is simplified to where local air pollution can be represented by a single measure, PM2.5

concentration. There are other important forms of air pollution such as nitrogen oxides,

carbon monoxide, sulfur dioxide, and PM10 (which is a fine particulate matter that is
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greater than PM2.5). We also miss the emission of global pollution that destroy the ozone

layers and cause greenhouse gas effects, such as chlorofluorocarbons and carbon dioxide.

However, our primary interest is in that local air pollution that directly affects

people’s health and their economic behavior, including their choice of residential location.

PM2.5 is one of the most commonly known pollutants that directly affects human lung

and cardiovascular systems. Furthermore, its concentration is closely linked to other

pollutants that have similar effects on human health. Therefore, we believe that focusing

on PM2.5 is a reasonable generalization to avoid overcomplexity and to overcome data

limitations, without causing serious biases in our analysis.
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1.A Appendix

1.A.1 An Algorithm to Obtain Counterfactual Equilibrium using Changes

This appendix describes a practical procedure to solve the counterfactual equilibrium of

the model using the “change,” which is the ratio of the counterfactual equilibrium value

of variable x to that of its original (observed, current equilibrium value).18 We denote

the change of variable x as x̂ = x′

x
, where x′ is the counterfactual value of variable x. The

following discussion summarizes the procedure for solving exogenous changes in trade

cost τ̂ni, manufacturing productivity, ÂM,n, services productivity, ÂS,n, and/or strength

of local pollution control ξ̂g,n. Note that we do not have to know the levels of unobserved

exogenous variables consistent with the current equilibrium, AM,n, AS,n, and ξg,n.

1. Initial guess on factor price changes (skilled wage and Pigouvian tax for pollution),

ŵk
n and ζ̂n

2. Solve for P̂M,n and P̂S,n consistent with ŵk
n and ζ̂n using

ĉn =

[
ŵk

n

γk
M

P̂ M,n
γM

M
P̂ S,n

γS
M

]1−δ

ζ̂n
δ

(A.33)

P̂M,n

−θ
=
∑

i

πniτ̂ni
−θ ĉi

−θÂM,i

θ
(A.34)

P̂S,n = ÂS,n
−1

ŵk
n

γk
S,n

P̂M,n

γM
S,n (A.35)

3. Using the price vectors obtained in the previous step, update the trade shares

according to:

π̂ni =
(τ̂niĉi)

−θ ÂM,i

θ

P̂M,n

−θ
(A.36)

4. Using the vectors of price change obtained by the previous step, update the general

18. This approach was first proposed by Dekle, Eaton, and Kortum (2008), and has been widely used in
the literature.
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price index P̂T,n and expenditure share χ̂j,n, j ∈ F, M, S as follows:

P̂T,n
1−ρ

= χF,n + χM,nP̂M,n

1−ρ
+ χS,nP̂S,n

1−ρ
(A.37)

χ̂F,n =
1

P̂T,n
1−ρ

, χ̂M,n =
P̂M,n

1−ρ

P̂T,n
1−ρ

, χ̂S,n =
P̂S,n

1−ρ

P̂T,n
1−ρ

(A.38)

5. The expenditures on manufacturing and services goods, as well as their production

in the counterfactual equilibrium are given by:

E′
M,n = χ̂M,nχM,n

(
ŵk

nwk
nLk

n + wu
nLu

n

)
+ (1 − δ)γM

M YM,n + γM
S,nYS,n (A.39)

Y ′
M,i =

∑

n

E′
nπ′

ni (A.40)

Y ′
S,i = E′

S,i = χ̂S,nχS,n

(
ŵk

nwk
nLk

n + wu
nLu

n

)
+ (1 − δ)γS

M YM,n (A.41)

6. Update land price and emissions:

r̂n
1−ω =

ζ̂n

ξ̂g,n

(A.42)

ẐM,n =
ŶM,n

ζ̂n

(A.43)

ẐR,n = χ̂M,nr̂n (A.44)

7. Then update the level of pollution:

D′
n = f(X̄)

(
ZM,n

′ + ZR,n
′
)κ (A.45)

8. Update labor force distribution for each type t = {k, u}:

L̂t
n =

(
êt

nŵt
nP̂T,n

−α
r̂n

α−1
)η

∑
j

Lt
j

Lt
C

(
êt

jŵt
jP̂T,j

−α
r̂n′

α−1
)η (A.46)
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where

êt
n =

exp(−ξtD′
n)

exp(−ξtDn)
(A.47)

9. The skilled wage and total value added (GDP) are then updated by:

wk′

n =

[
(1 − δ)γk

M + δ
]

Y ′
M,n + γk

S,nY ′
S,n

L̂k
nLk

n

(A.48)

and

G′
n = wk′

n L̂k
nLk

n + wu
nL̂u

nLu
n (A.49)

10. Obtain new values for factor prices ŵk
n and ζ̂n from:

ŵk
n =

wk′

n

wk
n

(A.50)

ζ̂n = Ĝn
1−ω

ξ̂g,n (A.51)

11. Iterate 2 to 10 until values converge.

1.A.2 Details of the Data

Population and value added Our unit of analysis is those prefecture-level cities or

counties that are directly under Provinces plus the four direct-administered municipalities

of China as of 2010, within the Eastern half of the mainland China. This area basically

overlaps with the historical territory of the Han dynasty (B.C. 206 - A.D. 220). Four

provinces/autonomous regions, Inner Mongolia, Xinjiang, Qinghai, Tibet, and islands

(such as Hainan Province) are dropped from the analysis. We make this choice because

the western part of China dropped from the analysis is economically and demographically

very sparse compared to the Eastern half, holding only 4.3 percent of total population

while occupying more than 51 percent of the land area. We thus follow other studies such

as Baum-Snow et al. (2018) in keeping our focus on the Han part of China. The area
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consists of 296 geographical units (270 prefecture-level cities and 26 counties directly

under the Provinces). The Economic variables, such as the value added of primary,

secondary, and tertiary industries, are taken from the China City Statistical Yearbook and

China Region Economy Statistical Yearbook of 2011 that report their values as of 2010.

Employment variables are constructed benefiting from the online supplementary materials

of Baum-Snow et al. (2017) that originally aggregated the 2010 Population Census at the

level of counties. In the county-level aggregate of the census, the employment in primary,

secondary, tertiary industries is provided. These are summed to the level of prefecture

cities as the employment of three industry strata to obtain the aggregate labor force in

the location. Then, we compute the amount of skilled labor by multiplying the total

labor force with the share of population with at least a senior high school degree. The

remaining labor is treated as unskilled.19

PM2.5 Concentration The yearly PM2.5 concentration is computed from raster images

provided by Donkelaar et al. (2016), which are available from fizz.phys.dal.ca/~atmos/

martin/?page_id=140. This is the estimated level of PM2.5 concentration on the surface

using the satellite image of aerosol. Raster images cover all the ground surface of the earth

annually since 2000. A growing number of recent studies use this set of satellite images

of PM2.5 to recover the spatio-temporal variations of China’s air pollution, especially for

obtaining the spatially disaggregated situation before 2014 when China started detailed

and frequent official reporting of air pollution.20 There are a few advantages in using

this satellite data. Until the early 2010s, China had reported situations of local air

pollution for only a limited number of cities (only around 100 cities). Since the satellite

19. Combes et al. (2019) define skilled labor as employees received at least technical or vocational
training after completing senior high school, which may be stricter than our definition of the skilled labor.
The country-level aggregates we use do not report the the number of people enrolled in technical or
vocational schooling after senior high school, while the number of people with college degree is available.
Therefore, we do not know from our data how many of those who completed senior high but not college
received additional education such as technical and vocational training.

20. Examples include Chen, Oliva, and Zhang (2017) and Freeman et al. (2017).
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images by Donkelaar et al. (2016) are the raster information of 0.01◦× 0.01◦ mesh

containing the annual average concentration of PM2.5, covering all over the world sine

1998, the researchers basically calculate the level of pollution of an arbitrary geographical

unit. Secondly, as argued by Chen et al. (2013), the official data on air pollution seem

to be incorrect because of manipulation by the local authorities. Satellite images are

generally considered to be more reliable. The spatial distribution of the annual average

concentration of PM2.5 within each prefecture-level unit is depicted in Figure 1.A.1.

Pollutant Emission Inventory We rely on satellite based data on the emission of

the ambient pollutants that are the primary sources of PM2.5. We use the MIX database

from MEIC21, maintained by the researchers from the leading universities in China. The

database provides the gridded (0.25◦× 0.25◦) emission inventory of major pollutants

such as SO2, NOx, and primary PM2.5. The monthly gridded emission inventory is used

to construct the annual sum of emission in each grid and vectorize the raster data by

calculating the mean level of emission for each prefectural polygon.

Particulate matter is formed primarily through combustion of fuels as well as natural

sources. In addition, secondary particulates emerge from other pollutants such as SO2

and NOx, then finally form the particulate matter observed in the air. When we estimate

(1.26) to obtain coefficient κ and f(X̃n), we follow Sun et al. (2017) who assume that the

PM2.5 concentration in n consists of the local emission of primary PM2.5 as well as SO2

and NOx emissions that contribute as secondary sources. For this purpose, therefore, we

exploit the emission inventory data of these important pollutants. Importantly, the MEIC

emission inventory provides the local emission of those pollutants from four different

sources; industry, power generation, traffic, and residences. This allows us to disentangle

the emissions from the production side and the residential side, denoted by ZM and ZR

in the model, respectively. In practice, we calibrate ZM by the sum of the emissions of

21. http://www.meicmodel.org/index.html

74



Table 1.A.1: Emission of Major Pollutants from Sources (unit: kilotonne)

Power Industry Residential Transport

SO2 (sum) 7,079.0 19,134.7 3044.9 202.1
(mean) 247.5 66.9 10.6 0.7

NOx (sum) 7,753.8 9,954.0 990.0 6,158.2
(mean) 27.1 34.8 3.5 21.5

Primary PM2.5 (sum) 746.4 5,430.0 4,138.0 442.9
(mean) 2.6 19.0 14.5 1.5

Based on gridded emission inventory dataset from MEIC (http://www.

meicmodel.org/index.html)

SO2, NOx, and primary PM2.5 from industry and power generation. For ZR, we use the

sum of the same set of pollutants from the traffic and residential sources. Table 1.A.1

summarizes the emissions of each pollutants from the four different sources.

Other variables As detailed below, we use a set of control variables in the estimation of

labor supply elasticity, ηt, and parameter of disutility from pollution ξt. Our identification

strategy use the same instrumental variables and control variables as Baum-Snow et

al. (2018), such as population as well as the share of high school graduates in 1982, and

so on. We thus benefit again from their online appendix. In addition, we also add climate

control variables such as precipitation and temperature since these can simultaneously

affect the level of pollution and people’s residential choice, which is equivalent to the

labor supply in the model. For these climate variables, we use the satellite images

from “TerraClimate” database (Abatzoglou et al. 2018). 22 From the raster files of

monthly records, we calculate the annual average precipitation and temperature within

the boundary of each prefecture-level unit.

1.A.3 Spatial Distribution of Pollution in China

Figure 1.A.1 illustrates the spatial distribution of PM2.5 (particulate matters smaller than

2.5 micrometers) concentration in the populated Eastern half of China (“Han” China) in

22. The data can be downloaded from http://www.climatologylab.org/terraclimate.html
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Figure 1.A.1: PM2.5 Concentration (µ/m3) in 2010

Source: Author
Note: Based on Donkelaar et al. (2016), the mean level of PM2.5

within the boundary of each city is depicted.
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2010. PM2.5 is small particle that is one of the most harmful to the human body. In the

area around Zhongyuan (Central Plain) in the South of Beijing, and including Tianjin,

Hebei, Henan, and Shandong Provinces, the level of pollution is collectively very high.

In this area, the long-term population-weighted exposure to PM2.5 concentration exceeds

64µg/m3.23 This area also contains China’s major megalopolises where densely populated

cities are clustered across a large space to accommodate more than 300 million people.

By this overlap of pollution and population, huge numbers of people face significant

health risks. The welfare consequences of this unhealthy spatial distribution are seriously

undesirable.

As seen in the introduction, the spatial distribution of PM2.5 concentration is not uni-

form across space. Spatially uneven distribution can also be found for the anthropogenic

emission of major ambient pollutants. The maps in Figure 1.A.3 display the spatial

patterns of anthropogenic emission for the three major ambient pollutants, sulfur-dioxide

(SO2), nitrogen-oxides (NOx), and the primary emission of PM2.5, produced from human

activities.24 From a visual examination, the spatial patterns are highly correlated between

that of emissions and that of the PM2.5 concentration level.

The spatial distributions of pollution and emission shown above are highly associated

with the distribution of economic activities across space. In short, the agglomerated

regions generate a lot more pollutants and are significantly severely polluted. To see this,

we follow the decomposition proposed by Grossman and Krueger (1995) that separates

amount of emissions into (i) scale effect, (ii) composition effect, and (iii) technique effect.

Scale effect is the amount of total economic production (per area) from a region of a city.

Composition is the share of output value from polluting industry. In our case, this refers

to the output share from the secondary sector (manufacturing and power generation). The

23. Long-term population-weighted exposure is the average of annual average PM2.5 concentration
weighted by residential population. For reference, the U.S. standard for the long-term population-weighted
exposure is 12µg/m3.

24. Primary PM2.5 refers to the emission of particulate matters with a diameter of less than 2.5 micron
that is generated directly from the combustion of fuels and other materials. This is different from the
concentration of PM2.5 within a given mass of outdoor air.
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Figure 1.A.2: Decomposition of Industrial Emission

(a) Emission per km2 (b) Scale Effect

(c) Composition Effect (d) Technique Effect

Source: Author
Note: The emission amount is the sum of SO2, NOx, and primary PM2.5 from industrial
and power generation sources. See Section 1.A.2 for the details of the data definition.
Scale effect is in 10,000 RMB per km2 and technique effect is in kilo-tonnes per km2. All
the data are from 2010. See Section 1.A.2 for the details of data used.
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technique effect equals to the emission intensity of that polluting industry, which is the

amount of emissions per unit of output value. This reflects the environmental efficiency

of the polluting industries in the region. Furthermore, in models like this paper presents,

the technique effect is proportional to the inverse of the Pigouvian emission tax imposed

on a unit emission, as will be discussed later. More specifically, the decomposition is

expressed as an identity for the total industrial emission from region i as follows:

Zi︸︷︷︸
emission

= Yi︸︷︷︸
scale

×
YM,i

Yi︸ ︷︷ ︸
composition

×
ZM,i

YM,i︸ ︷︷ ︸
technique

(A.52)

where ZM,i is the total emission from polluting sectors (say, manufacturing) in i, Yi is the

total economic output in i including sectors other than polluting sector (such as services).

YM,i is the polluting sector’s output. This decomposition helps us to capture which of

the factors of economic scale, composition of production, or environmental efficiency

(regulation) is more relevant than others in explaining the spatial distribution of pollution

and emission.

Figure 1.A.2 collects the maps showing the decomposition of the industrial emissions

that make up the major part of China’s anthropogenic pollutant emissions. Panel (a)

illustrates the industrial emissions, the sum of SO2, NO2, and primary PM2.5 emissions

from manufacturing and power generation. Panels (b), (c), and (d) show the decompo-

sition of Panel (a), based on the identity (A.52). Panel (B) shows the scale effect. Its

spatial distribution overlaps with (a), suggesting that scale matters for these emissions.

Cities with denser economic activity tend to emit larger amount of pollutants. Panel

(c) is for the composition. Composition is also positively correlated with the emission.

Emissions are likely in large cities with higher secondary sector shares. On the contrary,

the distribution of technique effect shown in panel (d) does not overlap with that of

emissions. Correlations of each of the three factors with emission are 0.775 (scale), 0.536

(composition), and 0.032 (technique), respectively, which supports the visual observation

79



from Figure 1.A.2 on the relevance of the scale followed by the composition, as well as the

irrelevance of the technique effect. This is in contrast to the evidence on the development

of U.S. manufacturing firms during recent decades, as illustrated by Shapiro and Walker

(2018). They argue that in the U.S., the technique effect has dominated the overall

trend in the emissions of air pollutants. However, note that the correlation between

scale effect and technique effect is -0.606, meaning that emission intensity is lower where

economic density is higher. This can also be confirmed from panel (b) and (d) of Figure

1.A.2, where the scale shows a east-high west-low distribution, while the technique one

is west-high east-low. In summary, the geographical distribution of pollutant emission

and pollution in China largely overlaps with the distribution of economic density. Thus,

economic agglomeration, especially industrial agglomeration, means agglomeration of

pollution as well. While the environmental efficiency is expressed as the level to which

the technique effect partially offsets the scale effect, it is not large enough to perfectly

cancel out the scale and composition effect.

1.A.4 Calibration and Estimation

Bilateral trade cost between cities Bilateral trade cost between locations is not

directly observable in our data. In general, there are two approaches to estimate bilateral

trade cost from available data in the trade and geography literature. The first and

traditional approach that has been mainly used in the international trade literature is to

recover it by using the gravity equation with bilateral trade flow data (Head and Mayer

2004). The theory employed in this paper also yields a gravity equation that allows

the implementation of this method. However, the key limitation of this method is data

availability. While bilateral trade data between every pair of locations are required, these

are largely unavailable for domestic trade. For China, Poncet (2003, 2005) and Tombe

and Zhu (2019) are among the researchers using this approach. As the Chinese domestic

trade flow matrices are provided only at the level of Provinces and for a limited number
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of years, their analyses are restricted to the Provincial level. The second method is to

impute the trade cost using the travel time (or distance) between the pair of locations, as

employed by Donaldson and Hornbeck (2016) and Baum-Snow et al. (2018). Typically, a

shortest path algorithm (e.g. the Dijkstra Algorithm) is used to calculate travel time to

reach from one place to another based on digital maps of transportation infrastructure

networks. The calculated travel time matrix are converted into a bilateral iceberg trade

cost matrix using the known parameters that pin down the relationships between the

freight shipment time and the cost. Our focus on the prefecture-level analysis naturally

rules out the first approach because there is no bilateral trade data at this level of

granularity in China. Therefore, it is necessary to closely follow the data and methods

employed by Baum-Snow et al. (2018) to recover the trade cost matrix.25 Particularly,

we benefit from the online appendix of Baum-Snow et al. (2018) and use the historical

highway network digital maps as of 2010. The Dijkstra Algorithm is used to compute

the shortest paths between each pair of cities.

International Trade Cost For international trade in the M sector goods, we assume

that the trade cost for city i is the trade cost to reach its closest international port

multiplied by the border effect. Let τ j
Xi denote the trade cost between i and the RoW.

Then, assume that τXi = τbτport(i)i, where, τb a common border effect and τport(i)i is the

transportation cost to the closest port from i. τb can be recovered by applying the gravity

equation as explained in Head and Mayer (2004), by using China’s national exports

E , national imports I,26 total production of manufacturing goods in RoW, YM,X , and

25. Another novel approach, which has recently emerged, is to use the freight cost quotations provided
by logistics companies. The advantages of using this approach to two other conventional approaches is
detailed in Yang (2018).

26. According to the China Statistical Yearbook 2011, China’s manufacturing exports in 2010 were
10,047 billion RMB and imports were 6,129 billion RMB. We implicitly assume the trade imbalance
(positive net export) in manufacturing goods is offset by the net import of agricultural goods.
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China’s total expenditure on manufacturing goods EC , as follows:

(τb)−2θ =
EI

(YX − E)(EC − I)
(A.53)

With θ = 5 as will be explained below, we obtain τb = 1.68.27

Input shares and Wages Data on local skilled and unskilled wages are not available.

However, the average wage in each sector at the national level is provided in China

Statistical Yearbook. Average wage in a sector j, wj is given by wj =
wkLk

j +wuLu
j

Lk
j

+Lu
j

. Noting

that the production function in both the manufacturing and services sectors is Cobb-

Douglass, wkLk
j = γ̃k

j Vj and wkLu
j = γ̃u

j Vj follow, where Vj is the value added of sector j

and γ̃t
j =

γt
j

γk
j

+γu
j

, t ∈ k, u is the type t share in the value added. Using these relationships,

we can compute the skilled labor share using:

γ̃k
j =

wk(wj − wu)
wj(wk − wu)

(A.54)

It is assumed that the agricultural sector employs only unskilled labor, hence the national

agricultural wage is equal to the national unskilled wage wu. Similarly, it is assumed

that the financial intermediation sector employs only skilled labor and that the national

skilled wage wk equalises to the national wage rate in the financial intermediation

sector. With these wu and wk, in addition to the wage rates in the sub-sectors shown

in Table 1.A.5, we can obtain the skilled labor share for each j. Among the sub-sectors

whose average wage rates are available in the China Statistical Yearbook, one sub-sector

(“Agriculture, Forestry, Animal Husbandry and Fishery”) can be categorized as primary

industry (F in the model), four sub-sectors (“mining,” “Manufacturing,” “Electricity,”

and “Construction”) into secondary industry (M), and the remaining fourteen sectors into

27. Baum-Snow et al. (2018) instead set τb = 1.15 based on the review by Anderson and Wincoop
(2004). This number could be too old to be consistent with the data in 2010, and does not necessarily
reflect the situation of developing countries such as China.
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the tertiary (S) industry. Then, we compute the skilled labor share of the J ∈ F, M, S

industry is:

γ̃k
J =

∑
j∈J wjLj γ̃k

j∑
j∈J wjLj

(A.55)

Given the input shares of intermediate goods in production of the M and S industries,

namely, γM
M , γS

M , and γM
S,n in (1.7) and (1.14), the input shares of skilled and unskilled

labor in these industries are given by γt
M = γ̃t

M (1 − γM
M − γS

M ) and γt
S,n = γ̃t

S(1 − γM
S,n).28

At the prefecture-city level, we have neither sectoral wages nor skilled/unskilled wages.

Instead, the value added in each of three industries, denoted here by VJ , ∀J ∈ F, M, S, is

used. We then use the obtained labor shares and value added to recover the skilled and

unskilled wages in city n by:

wk
n =

(1−δ)γk
M

+δ

(1−δ)(1−γM
M

−γS
M

)
VM,n +

γk
S,n

1−γM
S,n

VS,n

Lk
n

(A.56)

wu
n =

VF,n + (1−δ)γu
M

(1−δ)(1−γM
M

−γS
M

)
VM,n +

γu
S,n

1−γM
S,n

VS,n

Lu
n

(A.57)

Expenditure share (α) We calibrate α using the expenditure shares of consumers

provided in the China Statistical Yearbook 2011. On average, households in China spend

13% of their total expenditure on housing, thus we set α = 0.87.29

The elasticity of trade with respect to trade cost (dispersion parameter θ)

There are several studies that estimate trade elasticity θ. While the majority of these

are in the context of international trade, it is possible to find a number of examples on

how to apply these estimates in the study of domestic trade. Baum-Snow et al. (2018)

set θ = 5 while experimenting θ ∈ [3, 10]. Tombe and Zhu (2019) sets θ = 4. Bryan

and Morten (2019) use the range 4 to 8 in the context of domestic trade in Indonesia,

28. From China’s input-output table as of 2007 provided in China Statistical Yearbook 2011, we set
γM

M = 0.6859 and γS
M = 0.1004, respectively.

29. This value is the same as Tombe and Zhu (2019) who also study the equilibrium in 2010.
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referring to Allen and Arkolakis (2014) who use the value of 8 and Bernard et al. (2003)

who found that θ = 4. Caliendo et al. (2018) analyze the heterogeneous impact of local

productivity shocks to aggregate the U.S. economy using the Ricardian model of trade

with disaggregated sectors. They employ the estimates of the trade elasticity of detailed

sectors by Caliendo and Parro (2015) that study the welfare effects of NAFTA on the U.S.

economy. While the elasticity varies a lot across sub-sectors, their main estimates of the

aggregate level elasticity (including agriculture, mining, and manufacturing sub-sectors)

range from 3.29 to 4.55. Gervais and Jensen (2019) estimate θ in the context of the

U.S. domestic trade incorporating services sector trade, finding that the mean value

of θ for manufacturing goods is 8.14. Faber and Gaubert (2019) choose θ = 6.1 based

on the estimates by Adao, Arkolakis, and Esposito (2018) as well as Head and Mayer

(2014). In summary, there seems to be no consensus on the value of θ for domestic trade,

but previous studies tend to choose values between 4 and 8. We take θ = 5 following

Baum-Snow et al. (2018).

Input share of pollutant emission (δ) Little is known about the value of δ, the input

share of pollutant emission which is also the inverse efficiency of abatement technology.

To the best of our knowledge, Shapiro and Walker (2018) is the only study that provides

an estimate for δ consistently with a general equilibrium model with trade like ours. They

estimate δs for detailed U.S. manufacturing sub-sectors using factory level abatement

investment data covering a long period of time (1990s to 2008). While their estimates

of δ greatly vary across the sub-sectors, they report an average for the manufacturing

sector as a whole is δ = 0.011. Since estimating δ for China is difficult with the currently

available data as explained below, we use this value for the simulation analysis.

Data on abatement expenditure of Chinese manufacturing firms is not available

at prefecture-level granularity. Therefore, it is impossible to choose and estimation

strategy similar to that of Shapiro and Walker (2018). Another possible way to estimate
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δ for China is to use the ratio of emission levy revenue to manufacturing output, as

equation (1.20), which is a way Shapiro and Walker (2018) actually avoid. If we assume

that δ is constant across space, we can technically recover it only with nationwide

total emission levy revenue and the value of industrial output. While official statistics

of the emission levy revenue are available from the China Environment Yearbook, it

should be noted that the levy revenue may cover only a fraction of the wide range of

expenditure that the term ζiZM,i in (1.20) represents. In fact, the ratio of the total

emission levy to industrial output in China is less than 0.00001. If the estimate of Shapiro

and Walker (2018) for U.S. manufacturing firms is correct, this means that abatement

efficiency of Chinese manufacturing firms is 100 times superior to that of the U.S.

firms, which is simply incredible.30 According to a dataset for international comparison

by the OECD (https://stats.oecd.org/Index.aspx?DataSetCode=ENV_ENVPOLICY),

the ratio of environment related tax to industrial output is around 1 percent which can

also support our choice of δ, even if the assumptions leading to this number are not clear.

Elasticity of substitution among three category of goods (ρ) There is only lim-

ited guidance in the literature on the appropriate value of ρ, the elasticity of substitution

among the three categories of goods. As pointed out by Faber and Gaubert (2019), ρ

should be smaller than the elasticity of substitution between the varieties within the same

category of goods. In our case, this means that ρ ≤ θ + 1 should be satisfied. We search

for the value of ρ in this range such that the model derived consumption expenditure

share of manufacturing goods at the national level is equal to the observed data. This

exercise gives the value ρ = 3.45 that is used throughout the analyses in this paper.

30. The system of environmental control is complicated. In China, along with emission levies on
designated pollutants, the government sets the targets for reducing the aggregate emissions of selected
pollutants. For achieving the target, local governments in China uses variety of policy instruments. For
example, local governments sometimes order polluting plants to shut down or relocate. Polluting firms
implicitly pay substantial costs for lobbying (or even bribing officials as reported by Rooij (2006)) in order
to avoid such sanctions. Therefore, it seems appropriate to assume there is more implicit expenditure
than actually observed as emission levies that the manufacturing firms in China spend for realising the
observed combination of emission and production.
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labor supply elasticity (ηt) and disutility from pollution (ξt) We estimate the

elasticity of labor supply of each type of worker (ηt) as well as the parameters of the

welfare impact of pollution (ξt) that are consistent with our model. Equation (1.31) is

estimated to recover ηt and ξt consistent with the model. The existing literature provides

guidance on the identification concerns and possible solutions.31 As discussed in Faber

and Gaubert (2019), OLS estimation of labor supply elasticity, the coefficient on the

real wage term, or aggregate real factor income ln W̃ t
n in our case, can be downward

biased due to unobserved confounding factors in labor demand and supply. In addition,

estimates for ξt can also be biased because there is the possibility of omitted variable bias

and reverse causality. For example, as the same as the estimate of the real wage term,

unobserved labor demand shock can be either positively or negatively correlated with

pollution, Dn, because that can cause more emission as well as strengthen regulations

through the local government’s endogenous response (1.28). Furthermore, local amenities

consisting Bt
n, such as climate characteristics, may simultaneously affect Dn and Lt

n.

To address these identification concerns, we use the set of instruments and controls

that Baum-Snow et al. (2018) use to estimate the causal impact of 2010 road infrastruc-

ture on prefecture’s demographic and economic outcomes. They instrument 2010 road

infrastructure measures by those of 1962. More specifically, in their main specification,

their variables of interests are the log efficiency road unit and the log time to nearest

international port, both reflecting infrastructure quality in 2010. The efficiency road unit

is the length of road infrastructure weighted by average travel speed within a 450km

radius of each prefecture minus the weighed road length within own prefecture. The time

to the nearest international port is the shortest travel time to the closest international

port out of nine candidates. They instruments these 2010 infrastructure variables by their

1962 counterparts, arguing that these instruments are exogenous to 2010 demographic

and economic variables conditional on several historical and geophysical controls.32 Based

31. See Faber and Gaubert (2019), Fajgelbaum et al. (2019), and Fajgelbaum and Gaubert (2019).
32. Baum-Snow et al. (2018) justify that 1962 variables are exogenous to the contemporaneous shocks
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on Baum-Snow et al. (2018)’s argument, we instrument ln W̃ t
n and Dn by these 1962

variables and an exogenous climate variable. The rationale for instrumenting ln W̃ t
n is

straightforward. 1962 infrastructure variables predict current employment, wages, and

industrial composition well but they are not correlated with unobservable contempo-

raneous productivity and amenity shocks. The unobserved shocks that simultaneously

affect 1962 infrastructure placement and contemporaneous productivity are assumed

to be eliminated by the set of historical and geographical controls. For pollution, we

instrument this with the SO2 emission from power plants located in the upper-wind

direction of the city. The constructed instruments are similar to the IV2 of Freeman

et al. (2017). Instead of coal consumption by upper-wind thermal electricity plant, we

use the emission of SO2 by power plants, due to data availability. Our IV is the sum of

SO2 emission from power plants with in the 90 degree-sector of 500 km radius from the

city, minus the emissions within own city.

The first stage results are shown in Table 1.A.3. The three variables of interest, the

level of PM2.5 concentration, the log of W̃ t for t = {k, u} are regressed on the same set

of the instruments and control variables. The three variables on the top of the table are

the instruments.33 Table 1.A.4 shows the second stage results. The first two columns are

for the OLS estimates, while the column (3) and (4) show the results of IV estimations.

As expected, the OLS estimates on the real wage terms (ln W̃ t) are downward biased

compared to the IV estimates. The implied values of ηt from our IV estimates are

ηk = 3.52 and ηu = 1.16, respectively. Interestingly, our IV estimates on PM2.5 are

determining 2010 demographic and economic outcomes based on the historical context of China’s road
development during the pre-economic reform period. In 1962 when China was under the socialist
planning economy before economic liberalisation in the 1980s, the roads were primarily designed to move
agricultural goods between villages using non-motorised vehicles. Therefore, the road development then
did not concerned the production and logistics for the manufacturing goods using late 20th century
technologies. At the same time, despite not being designed for the motorised vehicles, the existence of 1962
roads provided the right-of-the-way for the alignment of the highways whose planning and construction
started in 1990s.

33. Given that the 1962 log road efficiency unit is not significant for ln W̃ k and ln W̃ u as shown in
Table 1.A.3, we also estimate the version without this instrumental variable. The second stage results are
qualitatively the same.
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very close to the estimates of the impact of PM2.5 level on the migration of skilled and

unskilled labor by Chen, Oliva, and Zhang (2017) which are -0.0093 for skilled labor and

-0.0047 for unskilled labor. Given these estimates, the implied values are ξk = 0.013 and

ξu = 0.0095.

Coefficient of policy elasticity to GDP (ω) As in (1.28), the elasticity of pollution

control policy with respect to GDP is 1 − ω. Taking the log of (1.28) and noting that

ζn = δ
YM,n

ZM,n
, we have

ln ζn = β0 + (1 − ω) ln Gn + ln ξg
n (A.58)

We estimate ω by OLS estimation of (A.58). Endogeneity concerns come with any

omitted variables that are simultaneously related to ζn and Gn. Specifically, the model

implies two reverse causalities that flow from ζn to Gn. First, the lowered pollution that

is induced by higher ζn will increase labor supply from the migration equation (1.30),

then positively affect Gn. In contrast, high ζn increases the production costs in the

manufacturing sector (1.10) and may contract total value added Gn. To address these

concerns, we instrument ln Gn by the historical market access that is proxied by the

1962 road efficiency unit and the 1962 time to nearest port. Additionally, to control for

any shocks that might be simultaneously correlated with 1962 infrastructure variables

and ln ξg
n, we include a Province capital dummy, an environmental priority city dummy,

the historical level of pollution that is proxied by the level of PM2.5 annual average

concentration in 1999, the log of the distance to coast, and four variables that capture

1982 demography, as shown in Table 1.A.2. Provincial capital has specific political and

economic importance and it is reasonable to assume that their status as Provincial capitals

simultaneously affected the 1962 infrastructure placement as well as the unobserved

shocks to the current environmental regulations captured in ξg. In our sample cities,

there are 105 environmental priority cities whose environmental performance are reported

in the annual China Environment Yearbook. Again, priority cities should have a specific

88



shock in ξg which might be also correlated with the 1962 infrastructure variables if

economic development after 1962 affected the probability of them being chosen as a

priority city.

The results are shown in Table 1.A.2. Our IV estimate on the log of GDP is 0.544

which implies that ω = 0.466.

Table 1.A.2: Estimation of the Environmental Regulation Equation

OLS IV

(1) (2)

log of GDP, [1 − ω] 0.645∗∗∗ 0.544∗∗

(0.096) (0.270)
Provincial Capital −0.110 −0.073

(0.170) (0.207)
Priority City −0.243∗∗∗ −0.207

(0.093) (0.132)
log of PM2.5, 1999 0.103 0.129

(0.100) (0.125)
Log km to coast −0.167∗∗∗ −0.182∗∗∗

(0.029) (0.052)
Log prefecture population, 1982 −0.468∗∗∗ −0.384

(0.137) (0.245)
Log city centre population, 1982 −0.099 −0.119

(0.085) (0.099)
Share of population with high school, 1982 0.174 0.249

(0.366) (0.395)
Share of population in manufacturing, 1982 0.507 0.811

(0.501) (0.852)
Constant 4.043∗∗∗ 4.591∗∗

(1.064) (1.881)

Observations 283 283
R2 0.523 0.520
Adjusted R2 0.507 0.504

Source: Author
Note: Heteroskedasticity robust standard errors are given in the paren-
theses. In the IV estimation, the log of GDP is instrumented by log 1962
road efficiency unit and log 1962 time to nearest port as in Baum-Snow
et al. (2018). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Elasticity of PM2.5 to emission (κ) The relationship is specified as in (1.26). We

estimate the logarithm of the equation by proxying Dn using the aerial concentration of

PM2.5(µg/cm3) and Zn using the total emission of SO2, NOx, and the primary PM2.5

emissions from both production and consumption sources (ZM and ZR). In turn, κ is

estimated by OLS and the value obtained is κ = 0.16. The exponential of the constant

term plus the residual recovers ξg
n.
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Table 1.A.3: First Stage Estimates for the Labor Supply Equation

Dependent variable:

PM2.5 ln W̃ k ln W̃ u

(1) (2) (3)

Log road efficiency unit, 1962 7.514∗∗∗ −0.057 −0.115
(2.363) (0.141) (0.126)

Log time to nearest port, 1962 −2.715∗∗∗ −0.292∗∗∗ −0.222∗∗∗

(1.002) (0.060) (0.053)
Log power plant emission in upwind 0.329∗∗ −0.003 −0.002

(0.141) (0.008) (0.008)
Provincial Capital 4.586∗∗ 0.615∗∗∗ 0.452∗∗∗

(2.253) (0.135) (0.120)
Log prefecture population, 1982 6.823∗∗∗ 0.575∗∗∗ 0.644∗∗∗

(1.899) (0.114) (0.101)
Log city centre population, 1982 −2.048 −0.105 −0.131

(1.493) (0.089) (0.080)
Share prefecture population with high school, 1982 1.253 0.833∗∗ 0.750∗∗∗

(5.420) (0.324) (0.289)
Share prefecture population in manufacturing, 1982 −22.326∗∗ 3.175∗∗∗ 2.273∗∗∗

(8.841) (0.529) (0.471)
Log prefecture area −9.017∗∗∗ 0.117 0.080

(1.431) (0.086) (0.076)
Log prefecture area 0.520 −0.085∗ −0.062

(0.783) (0.047) (0.042)
Log km to coast 1.407∗∗∗ −0.016 −0.013

(0.495) (0.030) (0.026)
West Region −0.283 −0.185∗ −0.179∗∗

(1.668) (0.100) (0.089)
East Region 2.973∗ 0.070 0.071

(1.653) (0.099) (0.088)
Log city centre roughness −3.233∗∗∗ −0.002 −0.016

(0.591) (0.035) (0.031)
Log prefecture roughness −2.298∗∗∗ −0.035 −0.041

(0.496) (0.030) (0.026)
Log precipitation −0.007∗∗∗ −0.0004∗∗∗ −0.0003∗∗∗

(0.002) (0.0001) (0.0001)
Log mean temperature 0.001 0.032∗∗∗ 0.026∗∗∗

(0.118) (0.007) (0.006)
Constant 15.944 −0.832 0.874

(37.515) (2.243) (1.998)

Observations 283 283 283
R2 0.772 0.742 0.740
Adjusted R2 0.757 0.726 0.723
Residual Std. Error (df = 265) 8.072 0.483 0.430
F Statistic (df = 17; 265) 52.646∗∗∗ 44.874∗∗∗ 44.285∗∗∗

Source: Author
Note: Heteroskedasticity robust standard errors are in the parentheses. ∗p<0.1; ∗∗p<0.05;

∗∗∗p<0.01
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Table 1.A.4: Estimating the Labor Supply Equation

Dependent variable:

ln Lk
n ln Lu

n ln Lk
n ln Lu

n

OLS OLS IV IV

(1) (2) (3) (4)

PM2.5, [−ξtηt/(ηt + 1)] 0.002 −0.001 −0.010∗∗ −0.005
(0.002) (0.002) (0.004) (0.003)

ln W̃ k, [ηk/(ηk + 1)] 0.706∗∗∗ 0.779∗∗∗

(0.075) (0.141)
ln W̃ u, [ηu/(ηu + 1)] 0.521∗∗∗ 0.537∗∗∗

(0.133) (0.138)
Provincial capital 0.242∗∗∗ −0.102 0.258∗∗∗ −0.092

(0.055) (0.063) (0.084) (0.063)
Log prefecture population, 1982 0.370∗∗∗ 0.551∗∗∗ 0.458∗∗∗ 0.580∗∗∗

(0.069) (0.100) (0.096) (0.100)
Log city centre population, 1982 −0.113∗∗∗ −0.039 −0.142∗∗∗ −0.047

(0.041) (0.036) (0.045) (0.036)
Share prefecture population, with high school, 1982 0.332∗∗ −0.044 0.339∗ −0.036

(0.158) (0.172) (0.181) (0.170)
Share prefecture population, in manufacturing, 1982 0.294 −1.091∗∗∗ −0.415 −1.265∗∗∗

(0.332) (0.386) (0.590) (0.424)
Log prefecture area 0.092∗∗ 0.004 −0.060 −0.040

(0.042) (0.042) (0.066) (0.055)
Log city centre area 0.029 0.011 0.042 0.014

(0.022) (0.021) (0.026) (0.021)
Log km to coast −0.014 −0.007 0.018 0.002

(0.013) (0.014) (0.021) (0.014)
West Region −0.134∗∗∗ 0.096∗ −0.139∗∗ 0.093∗

(0.049) (0.055) (0.062) (0.056)
East Region −0.210∗∗∗ −0.052 −0.169∗∗∗ −0.038

(0.039) (0.039) (0.047) (0.040)
Log city centre roughness 0.031 0.042 −0.010 0.031

(0.027) (0.039) (0.030) (0.038)
Log prefecture roughness 0.022 −0.013 −0.005 −0.021

(0.014) (0.018) (0.020) (0.021)
Log precipitation −0.0001∗∗∗ −0.0001 −0.0002∗∗∗ −0.0001∗

(0.00004) (0.00005) (0.0001) (0.0001)
Log mean temperature 0.006∗ 0.005 0.004 0.005

(0.003) (0.003) (0.004) (0.003)
Constant −3.062∗∗∗ −1.473∗ −2.324∗∗ −1.284

(0.863) (0.817) (0.981) (0.824)

Observations 283 283 283 283
R2 0.923 0.885 0.907 0.883
Adjusted R2 0.918 0.878 0.902 0.876
Residual Std. Error (df = 266) 0.237 0.248 0.260 0.249
F Statistic (df = 16; 266) 199.438∗∗∗ 127.470∗∗∗

Source: Author
Note: Heteroskedasticity robust standard errors are in the parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.A.5: Imputed Skilled Share in the Labor Income Across Sectors

Detailed Sector Categorization Average Wage Employment Imputed Skilled

(Yuan) (10,000 people) Share (
γk

j

γk
j

+γu
j

)

Agriculture, Forestry, Animal Husbandry and Fishery F 16717 375.7 0.000
Mining M 44196 562.0 0.706
Manufacturing M 30916 3637.2 0.366
Production and Distribution of Electricity etc. M 47309 310.5 0.759
Construction M 27529 1267.5 0.226
Traffic, Transport, Storage and Post S 40466 631.1 0.633
Information Transmission, Computer Services S 64436 185.8 0.956
Wholesale and Retail Trades S 33635 535.1 0.457
Hotels and Catering Services S 23382 209.2 0.000
Financial Intermediation S 70146 470.1 1.000
Real Estate S 35870 211.6 0.522
Leasing and Business Services S 39566 310.1 0.614
Scientific Research, Technical Service S 56376 292.3 0.878
Management of Water Conservancy, Environment S 25544 218.9 0.127
Services to Households and Other Services S 28206 60.2 0.257
Education S 38968 1581.8 0.600
Health, Social Security and Social Welfare S 40232 632.5 0.628
Culture, Sports and Entertainment S 41428 131.4 0.653
Public Management and Social Organization S 38242 1428.5 0.583

Source: Author
Based on China Statistical Yearbook 2011 (Table E0405 and E0415)
Categorization: F = Agriculture, M = Manufacture, S = Traded Services, H = Housing Services.
Agriculture assumed to employ 100% unskilled labor. We assume hotel and catering sector is the entry point sector for rural agricultural
unskilled worker whose wage rate is at the indifferent level compared with agricultural wages taking urban living cost into account.
We assume that wu = wagriculture and wk = wfinance, where wu is unskilled wage and wk is skilled wage, respectively. Then, for given

sector wage, wj , the skilled workers share in labor income in the sector is imputed by
γk

j

γk
j

+γu
j

= wk(wj−wu)
wj(wk

−wu)
.
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Figure 1.A.3: Emission of Pollutants from Production and Consumption Sources

(a) SO2 from production (kilo-tonne/km2)
(b) SO2 from consumption (kilo-
tonne/km2)

(c) NO2 from production (kilo-tonne/km2)
(d) NO2 from consumption (kilo-
tonne/km2)

(e) Primary PM2.5 from production
(kilo-tonne/km2)

(f) Primary PM2.5 from consumption
(kilo-tonne/km2)

Source: Author
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Figure 1.A.4: Illustration of the Spatial Effect of Policy Shock from Wuhan

(a) Industrial Emission (b) total Emission (c) PM2.5

(d) Skilled labor (e) Unskilled labor (f) Exposure

(g) Skilled Real Wage (h) Unskilled Real Wage (i) Scale Effect

(j) Composition Effect
(k) Manufacturing Price
(PM ) (l) Services Price (PS)

Source: Author
Note: The maps depict elasticities computed against a 10 percent change in the regulation parameter
of Wuhan (ξg

W uhan). The red color indicates the positive computed elasticities, while the blues indicate
negative ones. The midpoint of the colour palette is set to zero.
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Figure 1.A.5: Illustration of the Spatial Effect of Policy Shock from Deyang

(a) Industrial Emission (b) total Emission (c) PM2.5

(d) Skilled labor (e) Unskilled labor (f) Exposure

(g) Skilled Real Wage (h) Unskilled Real Wage (i) Scale Effect

(j) Composition Effect
(k) Manufacturing Price
(PM ) (l) Services Price (PS)

Source: Author
Note: The maps depict elasticities computed against a 10 percent change in the regulation parameter of
Deyang (ξg

Deyang). The red color indicates the positive computed elasticities, while the blues indicate
negative ones. The midpoint of the colour palette is set to zero.
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Chapter 2

Gender Heterogeneous Effects of
Urban Public Transportation on
Employment: Evidence from the
Delhi Metro

This chapter is a joint work with Mai Seki 1

Abstract
The Delhi Metro is one of the leading examples of a recent urban mass transit in-
frastructure project in a developing country where women have traditionally suffered
from constrained mobility. In this paper, we analyze the effects of the Delhi Metro
on the work participation rate of women and men, using a three-period (1991, 2001,
and 2011) panel data of township-level zones within the city of Delhi. While the data
has limitations in understanding the characteristics of individual residents in detail, we
employ a difference-in-differences estimation controlling for a location fixed-effect, with a
parallel trend test. The results suggest that the proximity to the Delhi Metro stations
significantly increases the female work participation rate (WPR), whereas its effect on
the male WPR is ambiguous with the potential to have an opposite sign. While there
are number of potential mechanisms that can deliver this result, we develop a theoretical
urban commuting model and argue that a larger reduction in the commuting cost for
females (by offering a safer commuting mode of transportation, for example) can generate
the quantified patterns of the effects on the WPR. Overall, our results relate to the
literature on the quantification of the contribution of urban transport infrastructure
towards inclusive growth and poverty reduction.

1. The earlier version of this paper appears as JICA Research Institute Working Paper No.207.
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2.1 Introduction

In the past seventy years, the share of urban dwellers has steadily increased in developing

countries, and this trend will continue in the coming decades (United Natations 2019).

India is one of the main contributors to the global urban population growth, which is

projected to add 416 million urban residents by 2050. To mitigate traffic congestion

accompanied by the continuing urbanization, many countries including India are investing

in urban public transportation systems. While the overall mobility of residents improves

and city production capacities expand, gender inequality of mobility in urban areas

remains an unresolved issue (Peters 2013; Uteng 2011; Hyodo et al. 2005). According to

previous studies, women in the urban areas of the developing countries go out of home

less frequently, and depend more on public transportation than men. The provision of

safe and accessible public transportation could potentially improve female mobility, a

necessary conditoin for their further active participation in the economy.

In fact, a gender mainstreaming in the infrastructure projects of developing countries

has gained attention from policy makers over the past decade (Asian Development Bank

2013; African Development Bank Group 2009; UN Women 2014; World Bank 2010).

However, there is still only a limited amount of research quantifying the development

impact, especially on how women and men are differentially affected by urban transport

development. 2 There are studies that have discussed gender heterogeneity in commuting

time to work and its impact on labor supply (Gutiérrez-i-Puigarnau and Ommeren

2010; Gimenez-nadal and Molina 2014; Gimenez-Nadal and Molina 2016; Zax 1991;

Black, Kolesnikova, and Taylor 2014); however, they do not necessarily focus on public

transportations in a given country context, except the ones by Kawabata and Abe (2018)

and Gaduh, Gracner, and Rothenberg (2018). Kawabata and Abe (2018) analyze the

2. There is a large literature on the effect of subways on employment density in the developed countries
such as that by Redding and Turner (2015). However, very few impact evaluations of urban transportation
exist in the developing countries. Majority features rural roads and some major studies discuss inter-city
highways or railroads (Seki, 2016).
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commuting and labor supply patterns of married couples, resident in the greater Tokyo

metropolitan area using GIS. Gaduh, Gracner, and Rothenberg (2018) estimate an

equilibrium model of commuting choices with endogenous commuting time to assess the

impact of counterfactual transportation policies, using the data collected for the detailed

urban transport plannings in Jakarta before and after the Bus Rapid Transit (BRT)

system was commissioned. Each of these studies on gender-heterogeneous commuting time

suggest the importance of examining the heterogeneous impact of public transportation

on employment by gender, rather than simply an overall effect. More closely related

studies have documented the correlations between the access to transportation and

labor market outcomes such as income or employment in developing countries (Hyodo

et al. 2005; Goel and Tiwari 2016; Glick 1999). These studies use cross-sectional data, so

we decide to further extend this line of research by utilizing panel data. A similar line of

research using panel data from Lima, Peru on BRT and light rail system is summarized

in a working paper by Martínez et al. (2018). But the most relevant analysis, which is

ongoing, can be found in the field-experiments being conducted in Lahore, Pakistan for

assessing the impact of providing women-only-wagons (a safety measure) to feed into a

BRT system on female employment (Majid, Malik, and Vyborny 2018).3

In this paper, we analyze the effects of the Delhi Metro, one of the largest mass rapid

transit systems in the current world that has been developed since the early 2000s, on

the work participation of women and men, to provide quantitative evidence on whether a

high quality urban public transportation system contributes to an improvement in female

economic participation. We focus on the Delhi Metro for three reasons. Firstly, Delhi is

one of the cities in the world fighting against severe concerns for female safety in public

spaces and transportations (Jogori and UN Women 2011; Safetipin 2016). According to a

Thomson Reuters Foundation Annual Poll in 2017, “New Delhi, the world’s second most

3. Majid, Malik, and Vyborny (2018) reports the effects of BRT on congestion, and a progress
of the RCT based impact analysis of safe commuting for female is available in the J-PAL’s website:
https://www.povertyactionlab.org/evaluation/impact-public-transport-labor-market-outcomes-pakistan
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populous city with an estimated 26.5 million people, was ranked as the worst megacity

for sexual violence and harassment of women alongside Brazil’s Sao Paulo.”4 Also, an UN

Women supported survey in Delhi shows that 95 per cent of women and girls feel unsafe

in public spaces in their 2013 report. Even after the introduction of the Delhi Metro, the

situation is still severe but it was even worse before. Recent studies reveal that safety

matters to females that have choices in their lives. For example, Borker (2017) finds that

safety of school-commuting route has a direct impact on the university choice among

the female students in the city of Delhi. In her study, she finds that the willingness to

pay for women for a school-commuting route that is one standard deviation safer is an

additional 18,800 rupees (290 USD) per year, relative to men, which is an amount equal

to double the average annual college tuition. Secondly, India faces challenges over female

economic participation and empowerment. Female non-agricultural labor participation

has been historically stagnant in South Asia, and there has even been a declining trend

in India at the national level (Klasen and Pieters 2015; Andres et al. 2017). For the

city of Delhi, while the labor participation of women has not declined, its growth has

been stagnating compared to that of men. Lastly, Delhi Metro is one of the best cases to

analyze the impact of high quality urban transport infrastructure in developing countries,

given its reputations for high service standards. This reputation is not only for its

stability and convenience, but also for the safety and comfortable travel of its female

passengers. Based on the interviews with users, the introduction of Delhi Metro is shown

to have drastically changed transportation choice for women, due to the high standard

of safety in the Metro system (Takaki and Hayashi 2012; Onishi 2017). Motivated by

these factors, the existence of the female mobility issue, concerns for female labor supply,

and a suitable treatment, we hypothesize the introduction of a safe mode of public

transportation in Delhi would have had a non-negligible effect on the supply of female

labor (the commuting-safety hypothesis), along with other factors, such as residential

4. https://poll2017.trust.org/
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relocation, compositional change in labour demand and/or family-level joint labor supply

decisions. In this study, we try to quantify the gender-heterogeneous effects of the Delhi

Metro system on work-participation rates as the first step in our analysis, solely due to

the data limitation.

While our aim has a great policy relevance, it is a difficult research question to

obtain a rigorous quantitative answer on because of severe data limitations. First, the

standard identification concerns from the non-random location of physical infrastructure

are inevitably applicable. This fundamental identification challenge cannot be resolved

even if there will be more detailed data available except when there is a suitable natural

experiment. Moreover, other impeding facts, like the lack of appropriate individual-level

data that covers the period before and after the commission of the Metro as well as the

fact that a long time has past since the initial commission of the Metro in 2002, keep us

away from making a rigorous causal arguments in an ideal empirical setting.

Our strategy is therefore to use the best-available data and carefully argue its empirical

limitations. More specifically, we use the Primary Census Abstract (PCA) which provides

various tabulations from the Population Census data for finely disaggregated geographical

areas within the National Capital Territory (NCT) of Delhi. We construct a panel of

PCA zones for three consecutive census years, 1991, 2001, and 2011. As the measure

of intervention, we calculate an accessibility from each PCA zone to the nearest metro

station, using maps of PCA zones and the alignment of the Delhi Metro. With the

calculated treatment variable, proximity to the Delhi metro, we conduct a difference-in-

differences (DID) analysis, controlling for location fixed effect (time-invariant unobserved

heterogeneity), to assess whether the proximity to metro stations contributes to the

area’s growth in female and male participation in non-agricultural economic activities.

Since we construct these panel data at the level of the PCA zone-level geographical unit

for three rounds (1991, 2001, and 2011) with two pre-treatment periods, we can examine

the parallel trend hypothesis which is the prerequisite for DID, by including the “lead”
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term in the estimation equation.

We find that the effect of the proximity to the Delhi Metro on female work participation

rate is positive, and that the same does not seem to hold for men (rather the opposite).

This is suggestive evidence that there could be a gender-heterogeneous impact from the

Delhi Metro system on the decision of economic participation. In other words, women

might respond more positively than men to the proximity to the Delhi Metro stations in

deciding whether or not to work.

To understand these empirical findings, we develop a spatial model of urban trans-

portation and commuting. We explicitly model the commuting choice of female and

male urban residents who face different commuting costs (fees and travel time plus

safety-related welfare cost). We study the model’s comparative statics to see how a

hypothetical Metro project would affect female and male work participation rates across

different zones in a city. We find that if the Metro reduces female commuting costs

more than men’s, female WPR increases in zones closer to the Metro despite male WPR

exhibiting a more ambiguous (or opposite) relationship. This theoretical example shows

consistent patterns with our empirical results.

Our empirical findings have a limitation, however, in that the rigorous causal iden-

tification of the impact or investigation of a mechanism is affected by the nature and

extent of the available data. For example, the gender wage gap or gender-heterogenous

comparative advantage in specific skills may result in higher demand for female workers

rather than male workers near the metro. However, we do not have gender-specific wage

data or skill-level employment information by gender at such a fine geographical unit,

so these hypotheses are currently unable to be separated from the commuting-safety

hypothesis. Nevertheless, our study is one of the first attempts to quantitatively measure

the gendered implication of a large scale urban public transport development in the

context of megacities in developing countries.

The rest of the paper is organized as follows. In Section 2.2, we briefly go over the
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background of the Delhi Metro project. Section 2.3 describes the data and Section 2.4

discusses empirical specifications. Section 2.5 reports the results. In Section 2.6, we

develop a spatial urban model that shows that the commuting-safety hypothesis has

an equilibrium that is consistent with our empirical findings. Section 2.7 discusses the

limitation of our method and potential directions for future research.

2.2 Background of Delhi Metro

As the country’s third urban mass rapid transit system (MRT) and the first of its kind in

the capital city, the Delhi metro project has been developed over the past seventeen years.

The first phase of Delhi Metro project consisted of the 58 stations and lines covering

65km and commissioned during 2002-2006. Following the Phase I, Phase II built 85

stations and lines covering 125km, which were commissioned during 2008-2011. As of

the end of 2011, Phase III and Phase IV were in the planning stage. The geographical

alignments of the Delhi Metro lines in the different phases are shown in Figure 2.1.

The novelty of the Delhi Metro project is the fact that it focused on the safety and

inclusiveness from its planning stage. Adaptation of women-only car, barrier-free design,

rubbish control for keeping train clean, and security check at the entry have contributed

towards providing safe public mass urban transportation for the citizens of Delhi. Overall,

the Delhi Metro has gained a reputation for high standard of facility and operation that

ensures safety and comfort for female passengers (Takaki and Hayashi 2012; Onishi 2017).

Prior to the introduction of the Delhi Metro, safety concerns in the public transporta-

tion system had been severe for women in Delhi (Jogori and UN Women 2011; Safetipin

2016). While affordable and reliable urban transportation plays a vital role in engaging in

either income-generating activities and schooling in optimal locations, or other activities

such as household chores, family visits, or leisure, it is not difficult to hypothesize that

the limitation of safe modes of transportation was taxing for women in trying to get
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of 2001 and 2011 based on area size so that the boundary is consistent with that of 1991.

We carry out spatial interpolation as follows. To simplify the explanation, we consider

the case of two period, period 0 and period 1. Suppose there are a total of J0 zones in

the period 0, indexed as j0 = 1, ..., J0. In period 1, suppose there are a total of K1 zones

indexed as k1 = 1, ..., K1. The boundaries of zones are not in general consistent between

the two periods, which means that a zone in period 0 intersects with multiple zones in

period 1. Consider a particular zone j0 of the period 0 which intersects with multiple

period 1 zones. Let S1
j0

denote the set of these period 1 zones intersecting with j0. For

each of these period 1 zones k1 ∈ S1
j0

, the area can be divided into a part intersecting

with j0, denoted as aj0

k1
, and the remaining part, a−j0

k1
which does not intersect with j0.

Our spatial interpolation calculates the period 1 value of zone j0 statistics by taking

a weighted average of the statistics of the intersecting period 1 zones in S1
j0

. More

specifically, the interpolated value of variable x for zone j0 in period 1 is given by:

x̃1
j0

=
∑

k1∈S1
j0

aj0

k1

aj0

k1
+ a−j0

k1

xk1 (2.1)

This interpolation only applies to the variables in levels, such as population and the

number of workers. For the variables in rates, we calculate them using the interpolated

level variables. For example, a rate variable r which is defined as the ratio of two level

variables x and y, or r = y
x
, we obtain the period 1 interpolated value by r̃1

j0
=

ỹ1
j0

x̃1
j0

. To

check the robustness of the key results of this interpolation, we add the analyses using

only those zones with consistent boundaries over time in Section 2.A.3 of the appendix.

To represent the economic participation of each gender group from the available

statistics, we calculate “(non-agricultural) work participation rate” (“WPR” hereafter).

The work participation rate is measured by the ratio of the number of “main workers”

(works more than 6 months per year) in “other sectors” (other than cultivators, agricultural

107



labourers, or household industry workers)6 divided by the adult population7, for each

gender. This indicator is different from the labor force participation rate (LFPR). While

the denominator of LFPR is usually the working-age population above the age of 15, the

denominator of WPR is the (imputed) adult population. Moreover, the numerator is also

different because the definition of being a labor force includes those who are employed

and unemployed, while that of work participation rate does not include those who are

seeking for a job. These definitional differences make WPR either smaller or larger

than LFPR, which is an empirical question because the difference in the denominators

depends on how all-ages population minus two times the 0-6 population differs from the

population over 15. In fact, the urban areas’ LFPR during these periods has increased

from 14.7 percent to 15.5 percent, while Delhi’s WPR increased from 7.06 percent to

7.91 percent. Though the levels are different due to the definitional difference discussed

above, the trend is consistent across the two measures.

Our treatment variable is the proximity of a zone (a town, a village, or a charge based

on the 1991 administrative boundaries) to its nearest Metro Phase I and II stations. To

represent the proximity to Metro stations, we measure the average distance using the

coordinates of boundaries of towns and villages, as well as the alignment of the Metro

stations. The average distance measure is constructed as follows: (i) A large number of

equally spaced points (about 0.5 million) are generated and plotted over the entire area

of Delhi; (ii) From each point, the nearest Metro station is searched and the distance

from the point to the nearest Metro station is calculated. For a point k located within

the boundary of zone i, this distance is denoted as dk(i); and (iii) The average distance

6. The “Other Sector”: All workers, i.e., those who have been engaged in some economic activity during
the last one year, but are not cultivators or agricultural labourers or in the Household Industry, are ‘Other
Workers(OW)’. The type of workers that come under this category of ’OW’ include all government servants,
municipal employees, teachers, factory workers, plantation workers, those engaged in trade, commerce,
business, transport banking, mining, construction, political or social work, priests, entertainment artists,
etc. In effect, all those workers other than cultivators or agricultural labourers or household industry
workers, are “Other Workers”.

7. Since the adult population is not given in PCA, we impute it by “total population - 2 x (population
of 0 to 6 ages)”, base on the population pyramid of India.
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to the nearest Metro station(s) of the zone i, Di, is then calculated as

Di =

∑
k(i) dk(i)

Ni
(2.2)

where, Ni is the number of points in zone i. Di is smaller (i.e. the treatment intensity

is larger) if i is closely located to Metro stations opened during 2002-2011, after the

commission of the Phase I and II Metro network. Average distance measures to the the

Metro Phase III and IV (only under the planning phase in 2011) are also calculated in

the same manner to better define the comparison group that is more likely to share the

similar unobserved characteristics regardless of the assigned treatment. In addition, we

use the total population, the number of children, the number of households, the number

of literal residents, and the number of residents scheduled caste (each by gender) from

the PCA tables as control variables in the main analysis (the analysis without these

controls are available in the robustness check).8

The descriptive statistics is shown in the Table 2.1. The upper table summarises

our time-invariant variables, and the lower one is for time-variant variables. Our time-

invariant variables are the distances to the Phase I and II metro stations that had

commissioned by 2011, and those of the Phase III and IV which had not yet opened. On

average, distance to the nearest Phase I or Phase II metro station is 5.2 km. Since the

location of the planned metro stations, those of Phase III and IV, are more stretched out

to the suburbs, the average distance to the Metro station is shorter 3.3km.

The time-variant variables are the outcome variables and control variables used in the

estimation. Female WPR has been substantially lower than that of males throughout two

decades since 1991. However, their average WPR has increased from 5.3 percent in 1991

to 7.9 percent in 2011, while men’s WPR has grown from 40.4% to 45.3% during the same

8. Under the constitution of India, scheduled caste is defined as follows. http://socialjustice.

nic.in/writereaddata/UploadFile/Compendium-2016.pdf. India’s Census follows this definition. See
http://censusindia.gov.in/Census_And_You/scheduled_castes_and_sceduled_tribes.aspx.
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period. In contrast to the national level decline in labor force participation of women,

the small increase of their WPR in Delhi might be partially due to the contribution of

the Delhi Metro.

Figure 2.2 depicts kernel density estimates for the distribution of female and male

WPRs for years 1991, 2001, and 2011. First, we can observe that the WPR distributions

are distinctly different between the two gender groups in each year. That of females

are clustered at lower rate of WPR with smaller variance, in contrast to that of males.

Secondly, there is a subtle, but universal shifts of female WPR distribution towards the

right. This suggests that the rate was improving almost everywhere in the distribution

for women. Male WPR initially had a flat distribution in 1991 while it had evolved into

a single peaked one in 2001. We do not observe a distinct shift in the distribution from

2001 to 2011.9

Figure 2.3 shows the spatial distribution of WPR of females and males for the two

census years, 2001 and 2011. The dark-red zones are places with the highest WPR and

the dark-blue zones are with the lowest WPR. The top two panels, 2.3a and 2.3b show

women’s WPR. The bottom two, 2.3c and 2.3d are those for men.

9. The T-test comparing the means of WPR across different years show that the mean WPR has
significantly increased over time for both genders. We also conduct the Kormogolov-Smirnov test to
statistically assess whether the WPR distribution changes across years. The results indicate that women’s
WPR has different distribution across three census years, while the men’s distribution between 2001 and
2011 are not statistically distinguishable. The results are reported in Table 2.A.1 in the Appendix
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Table 2.1: Summary Statistics

(1) (2) (3)
Time-invariant variables N mean sd

Dist. to Phae I or II Metro St. (km) 342 5.239 4.763
Dist. to Phae III or IV Metro St. (km, used for
sub-sample selection)

342 3.274 3.145

1991 2001 2011
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Time-variant variables N mean sd N mean sd N mean sd

Female WPR 332 0.0531 0.0599 342 0.0706 0.0369 342 0.0791 0.0371
Male WPR 332 0.404 0.131 342 0.439 0.0812 342 0.453 0.0674
Female to male WPR ratio 332 0.118 0.0993 342 0.161 0.0864 342 0.171 0.0644
Household Size 332 5.562 0.982 342 5.283 0.478 342 5.038 0.396
Children Share 332 0.184 0.0369 342 0.150 0.0235 342 0.124 0.0171
Female to male literacy ratio 332 0.698 0.163 342 0.817 0.0679 342 0.865 0.0485
Female to male SC ratio 327 1.007 0.155 342 1.042 0.0574 342 1.027 0.0362

Note: The upper table summarizes the time-invariant variables. The lower one is for the
time-variant variables.

2.4 Empirical Strategy

As described in Section 2.3, our data is neither experimental nor quasi-experimental. The

unit of observation is aggregated at the level of zones (town or ward), which divide the

NCT (National Capital Territory) of Delhi into 342 geographical units. Using a panel

data of zones in Delhi for 1991, 2001 and 2011, we employ the difference-in-difference

(DID) method with two pre-treatment periods (1991, 2001). In estimation, we check for

parallel pre-trend by exploiting these two pre-treatment periods. Specifically, we estimate

the following equation:

Yit = β0 + β−1(Di × Pret) + β(Di × Postt) + δXit + θt + αi + ǫit, (2.3)

Where, Yit is the outcome variable of zone i at year t; Di is the treatment variable, the

log of average distance to nearest Phase I or II metro station, Pret is a time dummy
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Figure 2.2: Kernel Distribution of Female and Male WPR, 2001 and 2011

Source: Authors

taking 1 when t = 1991 and 0 otherwise. Postt is another time dummy taking 1 if

t = 2011 and 0 otherwise. Coefficient β is our central interest. This is the post-treatment

effect of the distance to the metro station on the outcome. β−1 captures the correlation

between a zone’s distance to the metro station and the outcome variables in 1991. If

β−1 is insignificant, we will not reject the hypothesis that pre-trend is not associated

with the distance to a metro station, suggesting that the parallel pre-trend hypothesis

holds. The same strategy has been used in studies such as Autor (2003) and Kearney and

Levine (2015). Xit is a vector including other time-variant location specific characteristics

such as average household size, share of children (under 6 years old) in the population,

female literacy rate relative to male, and ratio of share of scheduled caste between female

and male.10. The first two variables are introduced to control for the variations in the

10. For clarity, variables are given by; average household size = Population
Number of Household

; share of chil-

dren (under 6 years old) in the population = Number of Children (under 6)
Population

; female literacy rate rela-
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Figure 2.3: Spatial Distribution of WPR for females and males, in 2001 and 2011

(a) 2001 Female WPR (b) 2011 Female WPR

(c) 2001 Male WPR (d) 2011 Male WPR

Source: Authors

presence of dependents in household (i.e. elderly and children) which are not directly

measured in the PCA. The latter two control for the variation in the gender inequality.11

Lastly, θt is year fixed effect, αi is a zone-level fixed effect, and ǫit is the error term.

tive to male = female literacy rate
male literacy rate

; and ratio of share of scheduled caste between female and male

= share of scheduled caste in female population
share of scheduled caste in male population

11. In the separate regression, we check that these variables do not seem to be the consequences of the
treatment Di × P ostt, allowing us to included them as controls in the equation.
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Figure 2.4: Distance to Commissioned and Planned Metro Stations

(a) Distance to Commissioned (PH I & II)
Metro Stations

(b) Distance to Planned (PH III & IV)
Metro Stations

Source: Authors

The goal of this paper is to empirically assess how the Delhi Metro differently

affects the economic participation of women and men. More specifically, we investigate

whether the zones closer to the Delhi Metro station have observed more increase in

work participation of the residents than those in zones further away from metro stations,

separately for women and men. In the empirical analyses below, we focus on four measures

of work participation, female WPR, male WPR, a ratio of a zone’s female WPR to male

WPR (= WPR(women)/WPR(men)), or “WPR ratio” in short; and WPR for total

residents (sum of females and males).

For the treatment variable, Dj , we define the (log) distance to the nearest Phase I

or II Delhi Metro station. The reason for this choice of continuous treatment variable

is twofold. Firstly, we would like to avoid a discretionary construction of a treatment

variable, which is unavoidable when using discrete variables (i.e., we do not know from

which kilometer it is “proximate” to the metro). Secondly, it is rather easier to interpret

the results.

We estimate this equation 2.3 with a standard fixed effects estimator. The coefficient
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β will capture the treatment effect, and the sign and the magnitude of this coefficient is

our central concern. β−1 is the coefficient on the “lead” term. We expect that β−1 is

insignificant under the common trend assumption. Please note that the insignificance

of β−1, is only suggestive evidence that the two sets of zones (in this case near and

far from the new metro stations) would have evolved similarly in the absence of the

intervention. It is not decisive as to whether there is unobserved heterogeneity across

regions affecting the change in outcome variables or not. In fact, recent studies such as

Kahn-Lang and Lang (2019) as well as Jaeger, Joyce, and Kaestner (2018) note that the

parallel pre-trends do not necessarily imply parallel trends.

We conducted the estimation across various sub-samples to see how the results are

sensitive to the selection of the comparison group. We compare five sub-sample defined

as follows; (1) All the zones in Delhi (Figure 2.5a); (2) includes only the zones within

10km reach from the nearest commissioned (Phase I or II) station or the nearest planned

(Phase III or IV) Metro station (Figure 2.5b); (3) includes only the zones within 5km

reach from the nearest commissioned (Phase I or II) station or the nearest planned

(Phase III or IV) Metro station (Figure 2.5c); (4) trims the zones in the subset (2) so

that it include only zones at least 10km further from the CBD of Delhi, Connaught Place

(Figure 2.5d); and (5) trims the zones in the subset (3) so that it include only zones at

least 10km further from the CBD of Delhi, Connaught Place (Figure 2.5e).

2.5 Results

Tables 2.2-2.5, report the results of the estimations across different specifications. Table

2.2 reports the estimation results of equation (2.3) taking the female WPR as the outcome.

For all the five subset analyses, our treatment variable, Dit, is significant at the 1 percent

significance level with negative sings, except for column (5) where significance is at

the 5 percent significance level. Negative coefficient indicates that being close to the
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Figure 2.5: Subsample Definition and “WPR ratio” in 2011

(a) All zones in Delhi (1)
(b) Within 10km reach from commissioned and
planned Metro Stations (2)

(c) Within 5km reach from commissioned and
planned Metro Stations (3)

(d) Within 10km reach from commissioned and
planned Metro Stations and at least 10km further
from the CBD (4)

(e) Within 5km reach from commissioned and
planned Metro Stations and at least 10km further
from the CBD (5)

Source: Authors
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commissioned Metro station makes female work participation rate higher. For example,

for the full sample case, shown in column (1) of the Table 2.2, if the distance to the

nearest Phase I or II station becomes doubles, female WPR decreases by 0.558 percentage

points. Given that the mean of female WPR in 2011 was 7.91 percent, this implies that

doubling the distance around the mean distance of 5.239km will reduce WPR of females

to 7.35 percent.

Columns (2) and column (3) of Table 2.2 limit the sample zones to within 10km

and 5km access to any Metro station regardless of whether they had already been

commissioned as of 2011 (i.e., “control group” is restricted to the areas near Phase III

or IV). We regard that the zones closer to the planned network are “selected” for Delhi

Metro intervention, but the metro service is not yet available at that point in time, so they

may share the similar unobserved heterogeneity with zones close to the commissioned

stations, which affect the change in outcomes.12 By estimating the model of columns (2)

and (3), we compare the outcomes in zones for those who got access to metro stations

earlier with those who would get it later. Therefore, by estimating the model only in

those areas close to either the commissioned or planned metro stations, we compare

outcomes in zones between the areas gaining access to the metro stations earlier (before

2011) and those would gain access later (post 2011).

We also note that the effect seems to be stronger outside the central area. The

magnitude of the coefficient is greater for column (4), the outer area subsample, than

that of column (2) (the cut-off at 10 km). The same argument applies to the comparison

between columns (3) and (5), where the cut-off is 5km.

The results shown in the Table 2.2 suggest that a positive effect of the accessibility

to the Delhi Metro for females exists throughout all the specifications. Furthermore, for

12. To identify the causal impact of transport system, it is common to use planned but never developed
routes as control group; however, there is no such locations in Delhi Metro’s case. Instead, we adopt an
idea close to the phase-in approach for improving our identification. The phase-in approach in our context
(or in transportation infrastructure projects in general) still suffers from the remaining endogeneity bias
due to the non-random construction timing/order of projects.
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all columns, the coefficients on the “lead” term are insignificant, which means that the

common pre-trend assumption holds for these sets of analyses.

Table 2.3 shows the results for the effects on male WPR. Contrary to the case for

females, all the coefficients on the distance to a commissioned Metro station are positive

and significant at the 1 or 5 percent significance level. The parallel pre-treatment trend

assumption is overall satisfied except for column (3) whose coefficient β−1 term is negative

and statistically significant at the 10 percent level. Furthermore, the magnitude of the

effect does not vary across subsamples, ranging from 0.00801 to 0.00975, compared to

the case for females as shown in Table 2.2. From the results in Table 2.2 and Table 2.3,

it turns out that the proximity to the Delhi Metro station affects positively for female

WPR while its effects is negative for that of male. Given that the mean of WPR for

males in 2011 is 45.3%, this implies that doubling the distance around the mean distance

of 5.239km will increase the WPR of males to 46.2%.

Table 2.4 reports the results when the outcome variable is the WPR ratio between

female and male. Consistent with the results in Table 2.2 and Table 2.3, the coefficients

on the distance to commissioned station are negative and significant at the 1 percent

level. The results implies that the gap of WPR between females and males becomes

slightly smaller (i.e. WPR ratio increases) in zones closer to commissioned Metro station.

The key identifying assumption is again the common trend, and it seems to be satisfied

for the trend between 1991 and 2001 as the coefficient β−1 is insignificant.

Finally, Table 2.5 reports the results when the total WPR is used as the outcome.

Total WPR is the sum of female and male main workers in the non-agricultural sector

divided by total adult population. For the first three columns show significantly positive

coefficients on the distance to the nearest commissioned Metro station, meaning that

proximity to a Metro station has a negative effect on total work participation. However,

as shown in columns (4) and (5), the effect becomes no longer significant in suburban

subsamples. This is mainly due to the imprecision in smaller sample sizes as the point
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estimates do not change in magnitude comparing to columns (1)-(3), whiles the standard

errors are larger. In the area outside of the CBD premises, proximity to the Metro does

not change the overall work participation.

We add several robustness checks to address a series of technical concerns. The first

relates to the control variables we included in the estimation equation. If the control

variables are endogenous to the treatment variable, the inclusion of the controls in the

equation is problematic (Angrist and Pischke 2009). Therefore, we conduct the same

estimations without the control variables, as reported in Tables 2.A.2-2.A.5 of Section

2.A.2 of the Appendix. For women, the results are qualitatively the same as our main

estimation. For men, we have qualitatively similar results for our variable of interest

(“Dist. to Metro (2011)“) without control variables compared with the case of our main

model reported in Table 2.3. However, the β−1 term becomes highly significant in this

case. This implies that the control variables we include in the main analyses capture the

pre-trend heterogeneity for the case of male WPR well.

We also check the sensitivity of the results against our method of interpolating the

data so that the boundary definition of the “zones” would be consistent with that of 1991.

In Appendix 2.A.3, we introduce an illustrative explanation of our interpolation method

and its potential effects on the statistical outcomes. We also report the estimation results

only using the data of zones with consistent boundaries. Again, the female results are

stable, while the male ones are sensitive to the choice of sample zones.

From the empirical findings above, we can summarize the effects of the Delhi Metro

on the work participation as follows. Firstly, female WPR in 2011 is higher in zones

close to the Delhi Metro station, while it is lower in the more distant zones whereas male

WPR is instead higher in these zones. From the results of robustness checks, estimating

the equation without controls and using only the 1991-boundary consistent subsample,

we find that the results for male WPR are sensitive to the settings while female ones

are stable overall. Therefore, it is safe to conclude that in the areas closer to Metro, the
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economic participation of women expanded more intensively than that of men. Secondly,

for women, the magnitude of the effects is larger in the suburban subsamples. This means

that the heterogeneous responses by gender caused by the access to the Delhi Metro

might be more pronounced in the suburban area than in the CBD. Thirdly, partially

reflecting the fact that women are positively affected by proximity and men are negatively

affected, the total WPR is negatively affected, because the effects on men surpass those

on women. The last point suggests that it is important to separately analyze the effects

of transportation between females and males without averaging out the overall effects.

What is the mechanism that delivers this gender differentiated outcomes? One

potential story could be an additional mobility benefit that the Delhi Metro may provide

for women. The Delhi Metro is a mass rapid transit system which did not exist before

in that city, where road vehicles such as buses, three-wheelers, and rickshaws, are the

major mode of the transportation. The Delhi Metro has given citizens a faster and more

reliable (predictable) method for travel in the city. The time-saving effect of the Metro

system contributes to a reduction of the travel cost of both males and females who use

the system. Before the introduction of the Metro, it is a plausible conjecture that female

mobility was substantially more constrained than men, considering the safety issues

including sexual violence on public transport. If the Delhi Metro secures a mode that

allows females to travel more safely than on other traditional modes, the effective travel

cost for might be reduced by more than just the time-saving effect. If this additional

benefit is large, then whether to live in the neighbourhood of the Metro station should

matters more to the mobility of females than to that of males. To argue this implication

more formally, Section 2.6 introduces a theoretical model that explains this potential

mechanism.

Other than that, there are a couple of other mechanisms that could generate gender-

heterogeneous effects. Firstly, labor demand might change by the introduction of the

Metro and that could be gender-heterogenous. For example, the manufacturing sector
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might relocate its factories and offices outside of the downtown core, while service sector

jobs might flourish downtown. Each sector might attract workers of a different gender.

One possibility is that males are mainly in manufacturing, and this causes their residences

to move further away from the metro, which is rather concentrated near the downtown

core, as the factories relocate to the suburbs. An alternative possibility is that women

tend to take job openings in service sector, and residents near the metro start working

as it stimulates demand for service sector jobs. Secondly, a reduction of congestion and

travel time that can plausibly benefit both females and males but in different magnitudes,

encourages the residents to commute further. Nevertheless, it also induces in-migration of

workers into areas near the Metro stations, and this results in higher work participation

rates and housing prices in those areas.13 The resulting residential relocation itself is

hard to analyze due to the data limitations, but the imapct through this channel could

be gender-heterogenous as well. Thirdly, it is also important to note that the family level

decision process can complicate male and female labor supply decisions. For example,

if a family (couple) faces a reduction of travel time by the Metro and a high paid job

becomes available to the husband, one of the possible responses is the wife’s withdrawal

from labor market activity (increase home production), substituting for this an increase

in the male labor supply (i.e., intensification of division of labor). When all of these

effects are combined, it is possible that the family with a male-bread winner moved away

from the metro into more reasonably priced residential areas and his wife resigns job

or does not seek employment. This story, however, cannot fully explain a subtle but

statistically significant gain in female WPR closer to the metro stations, so we still think

our safe-commuting hypothesis will survive the further tests in future research. The

remaining challenge would be to separately identify the safe-commuting hypothesis versus

gender-heterogeneous shifts in labor demand (with crowd-out and/or location segregation

13. How WPR and housing price react also depends on the elasticity of housing supply, the spatial
allocation of industries within cities, and wage and many other things, making the actual signs and
magnitude of the impact ambiguous.
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by industry-gender combination) because both stories can explain the current empirical

findings on females.

Table 2.2: Effects of Proximity to the Delhi Metro on the Female Work Participation
Rate (Difference-in-Differences)

(1) (2) (3) (4) (5)
ALL d < 10km d < 5km d < 10km d < 5km

VARIABLES & CBD > 10km & CBD > 10km

Dist. to Metro(2011, β) -0.00558*** -0.00688*** -0.00418*** -0.00906*** -0.00453**
(0.00146) (0.00166) (0.00152) (0.00230) (0.00207)

Dist. to Metro(1991, β−1) 0.00186 0.00173 0.00505 0.00152 0.00479
(0.00316) (0.00355) (0.00376) (0.00362) (0.00430)

Household Size -0.0855*** -0.0852** -0.0810** -0.0898* -0.0797*
(0.0317) (0.0344) (0.0317) (0.0463) (0.0439)

Children Share -0.124*** -0.131*** -0.136*** -0.113*** -0.129***
(0.0215) (0.0226) (0.0256) (0.0222) (0.0263)

Female to male literacy ratio -0.0923** -0.0938** -0.0589 -0.123*** -0.0911**
(0.0396) (0.0397) (0.0419) (0.0330) (0.0376)

Female to male SC ratio -0.0629*** -0.0727*** -0.0454* -0.0831*** -0.0553*
(0.0214) (0.0256) (0.0261) (0.0295) (0.0295)

Constant -0.0402 -0.0519 -0.0636 -0.0192 -0.0593
(0.0650) (0.0690) (0.0758) (0.0739) (0.0804)

Year Dummy YES YES YES YES YES

Observations 1,006 948 801 654 507
R-squared 0.443 0.449 0.431 0.529 0.470
Number of id 342 322 271 224 173
Adj-R 0.438 0.444 0.426 0.523 0.462

Note: Standard errors are clustered at the individual zone
*** p<0.01, ** p<0.05, * p<0.1
“d < km” if sample zones with distance to Phase I - IV stations within x km
“CBD < km” if sample zones locate further than x km from the CBD

2.6 Theoretical Explanation with a Spatial Commuting Model

The empirical results indicate that the commission of the Delhi Metro raises the work

participation rate of women living nearby the Metro stations, while its effect is ambiguous

for men (this is the opposite of women in our main specification, but it is highly sensitive

to the inclusion of control variables).

In what follows, we try to argue that the observed results in WPR for women and
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Table 2.3: Effects of Proximity to the Delhi Metro on the Male Work Participation Rate
(Difference-in-Differences)

(1) (2) (3) (4) (5)
ALL d < 10km d < 5km d < 10km d < 5km

VARIABLES & CBD > 10km & CBD > 10km

Dist. to Metro(2011, β) 0.00862*** 0.00993*** 0.00975*** 0.00801** 0.00829**
(0.00217) (0.00225) (0.00237) (0.00327) (0.00329)

Dist. to Metro(1991, β−1) -0.00638 -0.00829 -0.0102* 0.00160 -0.00281
(0.00493) (0.00525) (0.00609) (0.00428) (0.00485)

Household Size -0.347*** -0.332*** -0.334*** -0.360*** -0.359***
(0.0334) (0.0333) (0.0330) (0.0404) (0.0410)

Children Share -0.0362 -0.0432 -0.0719* -0.00120 -0.0471
(0.0412) (0.0427) (0.0368) (0.0460) (0.0308)

Female to male literacy ratio 0.0268 0.0191 0.0522 -0.0329 -0.0140
(0.0525) (0.0522) (0.0649) (0.0202) (0.0263)

Female to male SC ratio 0.0353 0.0163 0.0451 0.0510 0.0742
(0.0433) (0.0450) (0.0477) (0.0460) (0.0506)

Constant 0.951*** 0.918*** 0.883*** 1.011*** 0.943***
(0.103) (0.104) (0.0986) (0.106) (0.0808)

Year Dummy YES YES YES YES YES

Observations 1,006 948 801 654 507
R-squared 0.462 0.456 0.455 0.609 0.600
Number of id 342 322 271 224 173
Adj-R 0.457 0.451 0.449 0.604 0.594

Note: Standard errors are clustered at the individual zone
*** p<0.01, ** p<0.05, * p<0.1
“d < km” if sample zones with distance to Phase I - IV stations within x km
“CBD < km” if sample zones locate further than x km from the CBD

men can be caused by the heterogeneous reduction of commuting cost by gender, owing

to the Metro. Here, the commuting cost includes not only fees and opportunity cost, but

also a safety-related welfare cost. Especially, using a simple theoretical model of urban

spatial economy, we find that women’s WPR is positively associated with proximity to

the Metro while men’s response is opposite (or ambiguous), if the reduction of commuting

cost by the metro is much larger for women than men.

Our theoretical model basically follows the modelling strategy by Ahlfeldt et al. (2015)

and Monte, Redding, and Rossi-Hansberg (2018), who study the residence-commuting

choice of households within an urban area. Like their approach, we model the heterogeneity
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Table 2.4: Effects of Proximity to the Delhi Metro on a ratio of the Work Participation
Rate of Females over that of Males (Difference-in-Differences)

(1) (2) (3) (4) (5)
ALL d < 10km d < 5km d < 10km d < 5km

VARIABLES & CBD > 10km & CBD > 10km

Dist. to Metro(2011, β) -0.0166*** -0.0210*** -0.0120*** -0.0278*** -0.0160***
(0.00438) (0.00476) (0.00395) (0.00676) (0.00542)

Dist. to Metro(1991, β−1) 0.000604 0.00132 0.0120 -0.00377 0.0101
(0.00674) (0.00748) (0.00760) (0.00919) (0.00969)

Household Size -0.138** -0.145** -0.131** -0.164** -0.134*
(0.0556) (0.0598) (0.0546) (0.0809) (0.0753)

Children Share -0.265*** -0.279*** -0.230*** -0.280*** -0.219***
(0.0412) (0.0411) (0.0410) (0.0532) (0.0459)

Female to male literacy ratio -0.130** -0.128** -0.0700 -0.172*** -0.117**
(0.0567) (0.0569) (0.0614) (0.0466) (0.0541)

Female to male SC ratio -0.153** -0.131** -0.0770* -0.164** -0.0952*
(0.0614) (0.0563) (0.0460) (0.0730) (0.0539)

Constant -0.136 -0.151 -0.0805 -0.120 -0.0575
(0.117) (0.120) (0.120) (0.149) (0.135)

Year Dummy YES YES YES YES YES

Observations 1,006 948 801 654 507
R-squared 0.348 0.361 0.387 0.379 0.365
Number of id 342 322 271 224 173
Adj-R 0.343 0.356 0.381 0.372 0.355

Note: Standard errors are clustered at the individual zone
*** p<0.01, ** p<0.05, * p<0.1
“d < km” if sample zones with distance to Phase I - IV stations within x km
“CBD < km” if sample zones locate further than x km from the CBD

of individual choice following Eaton and Kortum (2002), and introduce an Fréchet

distributed idiosyncratic welfare shock across destination and employment status that

gives a convenient functional form for the destination choice in the equilibrium.

2.6.1 The Spatial Commuting Model

Let us assume a square-shaped city which consists of J equally sized zones. In each zone

j, Mj number of men and Fj number of women live for all j for 1, 2, ..., J . They don’t

move to other zones in the city, for the sake of simplicity. Thus, the residential population

in each zone is fixed in the model. We denote gender as G, which takes F or M in what
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Table 2.5: Effects of Proximity to the Delhi Metro on the Work Participation Rate of
the Sum of Females and Males (Difference-in-Differences)

(1) (2) (3) (4) (5)
ALL d < 10km d < 5km d < 10km d < 5km

VARIABLES & CBD > 10km & CBD > 10km

Dist. to Metro(2011, β) 0.00326** 0.00326** 0.00406** 0.00131 0.00289
(0.00152) (0.00163) (0.00160) (0.00233) (0.00218)

Dist. to Metro(1991, β−1) -0.00233 -0.00328 -0.00299 0.00170 0.000285
(0.00381) (0.00419) (0.00475) (0.00321) (0.00364)

Household Size -0.254*** -0.248*** -0.249*** -0.266*** -0.263***
(0.0264) (0.0278) (0.0261) (0.0359) (0.0351)

Children Share -0.0787*** -0.0859*** -0.103*** -0.0578* -0.0900***
(0.0295) (0.0309) (0.0284) (0.0317) (0.0232)

Female to male literacy ratio -0.0296 -0.0339 -0.000773 -0.0773*** -0.0543**
(0.0444) (0.0443) (0.0518) (0.0210) (0.0229)

Female to male SC ratio 0.0118 0.00323 0.0314 0.0116 0.0355
(0.0295) (0.0296) (0.0315) (0.0281) (0.0297)

Constant 0.539*** 0.519*** 0.499*** 0.582*** 0.531***
(0.0757) (0.0785) (0.0778) (0.0779) (0.0648)

Year Dummy YES YES YES YES YES

Observations 1,006 948 801 654 507
R-squared 0.474 0.466 0.467 0.642 0.634
Number of id 342 322 271 224 173
Adj-R 0.469 0.461 0.461 0.638 0.629

Note: Standard errors are clustered at the individual zone
*** p<0.01, ** p<0.05, * p<0.1
“d < km” if sample zones with distance to Phase I - IV stations within x km
“CBD < km” if sample zones locate further than x km from the CBD

follows. For each region and gender, a fixed reservation wage rG
j is assured for every

residents if an individual does not receive labour wage. Each person can work anywhere

in the city and will be compensated with a zone j specific wage wj . If a resident in j

works in j′, she or he has to incur an iceberg type commuting cost τG
jj′ ≥ 1.14 Therefore,

effective wage that a zone j resident of gender G working in j′ receives wj′/τG
jj′ .

An individual consumes a homogeneous variety (numeràire) at an unity price. In

addition, he or she draws an idiosyncratic utility shock for all the potential employment

status, denoted by ǫjm(i). This is a shock of individual i living in j, whose employment

14. Within the same zone, we do not assume no commuting cost, meaning that τG
jj = 1.
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status is m. The employment status m takes H if i chooses not to work and m takes j′

if she commutes to j′ for work. ǫjm(i) follows Fréchet distribution with mean Bm, which

corresponds to the average amenity level of m, and dispersion parameter η with the CDF

given by F (ǫjm) = exp[−Bmǫ−η]. Given these idiosyncratic shocks (ǫjm), the effective

wage rates in all destination zones (w′
j/τG

jj′), and the reservation wage level in the own

residential zone (rG
j ), the individual i chooses whether he or she works and where to

commute so that his or her welfare is maximized. Thus the welfare of individual i can be

defined as

VG,j(i) = max{ǫjHrG
j , ǫj1

w1

τG
j1

, ..., ǫjJ
wJ

τG
jJ

}. (2.4)

Each zone produces a homogeneous product using labor and land. Land is a fixed

endowment to zones. Let Nj denote the supply of labor to city j and Dj is the land

endowment. We assume a simple Cobb-Douglass production function;

Yj = AjNβ
j D1−β

j . (2.5)

where Aj is j’s productivity shifter and β ∈ (0, 1). The goods market is perfectly

competitive, and workers regardless of their gender receives wage, wj , which is equal to

the marginal productivity of labor.

In the equilibrium, the residents choose whether to work (m = H if they do not

work) and the destination of commuting if they work (m = j′). Labor and land are

fully employed in each zone in the city, and the goods market clears. Therefore, the

equilibrium of the urban economy can be defined by the equations below. Firstly, thanks

to the property of Fréchet distribution of individual’s idiosyncratic utility shock ǫ, the

probability that a gender G resident in j decides to commute to zone j′ is equivalent to

the share of gender G residents in j commuting to j′ as follows

πG
jj′ =

Bj′(wj′/τG
jj′)η

BH(rG
j )η +

∑
k Bk(wk/τG

jk)η
, ∀G = {F, M}. (2.6)
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Given the above shares and the fixed population of men and women in each zone, the

total labour supply to zone j is then given by

Nj =
∑

j′

πM
j′jMj′ +

∑

j′

πM
j′jFj′ . (2.7)

Finally, the equilibrium wage is equal to the marginal product of labour,

wj = βAjD1−β
j Nβ−1

j . (2.8)

The equilibrium work participation rate (WPR) of gender G in j is 1 minus the inactive

rate. From equation (2.6), this is given as

WPRG,j = 1 −
BH(rG

j )η

BH(rG
j )η +

∑
k Bk(wk/τG

jk)η
, ∀G = {F, M}. (2.9)

2.6.2 Comparative Statics of Transportation on WPR by Gender

Our main concern is how a heterogeneous change in commuting cost across gender

(tG
jj′) induced by the development of urban transportation network would affect the

work participation rates of men and women in each zone (WPRG,j). Especially, we are

interested in whether there are cases where the decline in commuting cost has opposite

WPR results for men and women.

Since the model is not analytically solvable, we conduct numerical simulations to

examine its properties. We consider a square-shaped model economy consisted with total

J = J̃ × J̃ tiles. For simplicity, we assume that the productivity (Aj), land (Dj), and

average amenity level (Bj) take the value of 1 for every zone. Each zone is populated with

a normalised population of men and women, namely Mj = 1 and Fj = 1, ∀j = 1, ..., J .

There are two universal parameters in the model, the share of labour in production, β,

and the shape parameter for the Fréchet distribution of destination preference, η. We set
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β = 0.8 and η = 4 following the literature.15

The transportation network is defined as the set of gender differentiated iceberg

commuting cost between any pair of adjacent zones. For any pair of adjacent zones j

and j′, the link (node) between the two zones has either “traditional” or “metro” transit

mode, denoted by t(jj′) which takes value 0 if the link jj′ has “traditional” transit or 1

if it has “metro” transit. Let pG
t denote a per unit distance traveling cost for a particular

gender G by a specific mode of transportation t. Traditional mode of transportation

incurs pG
0 > 1 of wage per unit distance for a gender G commuter. Here, we are trying

to replicate the situation before the Delhi Metro is commissioned. With the “metro”,

travelling one unit distance costs pG
1 > 1, while we assume that the metro is cheaper in

terms of the welfare cost of travelling than the traditional mode and that means pG
0 > pG

1 .

The reduction of welfare cost is trying to represent an improved safety due to the Metro.

In general, we denote the gender G commuting cost between these two adjacent zones j

and j′ as τG
jj′ = pG

t(jj′)djj′ , where t(jj′) = {0, 1} and djj′ is the distance between j and j′.

The commuting cost between the non-adjacent pairs of zones is defined as the least cost

path to reach from j to j′.

Figure 2.6 schematically depicts the city zones, its transport network, and the

commuter’s routing for the case of J̃ = 11. The square tiles with black border lines are

the zones. The centroids of adjacent zones are connected with blue lines that represent

the nodes of the transportation network. For adjacency, we adopt the “queen” adjacency

criteria which admits the two zones are adjacent even if only the corner is shared.

Therefore, lines of diagonal directions are also included in the network. In panel (2.6a),

we assume that the entire transportation network is served by the “traditional” mode

and thus the entire network is colored in blue. It incurs p0 = 2 of commuting cost per

15. β = 0.8 refers to the choice by Ahlfeldt et al. (2015) in their calibration of the model which has a
similar production assumption. Both Ahlfeldt et al. (2015) and Monte, Redding, and Rossi-Hansberg
(2018) estimate the parameters corresponding to our η for Berlin and the U.S. cities, respectively, and
obtain the values between 3 to 5. Thus, we pick 4 for our analysis. Note that their shape parameters
for the shock govern people’s simultaneous choice of residence and commuting. Instead, in our model,
residence is fixed.
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Figure 2.6: City Zones, Transport Network, and Commuters’ Routing

(a) Route without Metro (b) Route with Metro

Source: Authors
Note: In the panel (a), all the nodes on the network (in blue) requires p0 = 2 commuting cost to travel.
One of the least cost path between the two grey shaded zones is depicted as the orange thick line. Instead,
in the panel (b), the travel cost on the East-West corridor in the middle which is depicted as a red line
reduces to p1 = 1.5, while the remaining nodes in blue stay at the level of p0. The resulting least cost
paths to travel between the two grey shaded zones changes to the green thick line.

a unit distance. Let us consider the case of commuter’s routing between the two grey

colored zones. Under this environment without “metro”, (an example of) the commuter’s

routing becomes the thick orange line, which realises the least cost. Instead, in panel

(2.6b), we introduce a East-West “metro” line depicted in red. In this example, the unit

distance cost is reduced to p1 = 1.5 only on this red line. Travelling along the red line

incurs fewer costs for commuters than passing through the blue traditional nodes. This

will divert the least cost path between the two zones from that in the panel (2.6a) to the

one like the green thick line in the panel (2.6b).

In the simulation analysis, we differentiate the traditional commuting cost of females

and males. Reflecting the anecdotal context, we assume that the traditional welfare cost

of commuting is higher for females than that for males. Specifically, we set pF
0 = 2 for

females, while pM
0 = 1.5 for males. Figure 2.7 show the model’s equilibrium WPRs for
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Figure 2.7: WPR of Females and Males in the Initial Equilibrium (No Metro)

(a) Women’s Initial WPR (pF
0 = 2) (b) Men’s Initial WPR (pM

0 = 1.5)

Source: Authors
Note: Spatial distributions of women’s and men’s WPR across zones, assuming that the entire urban
transport network is traditional. To express women’s disadvantage in the mobility in the initial equilibrium,
commuting cost per unit distance is 2 for women and 1.5 for men on every node of the network.

females and males given by equation (2.9), when the entire urban transport network is

traditional as shown in Figure 2.6a. For both women and men, the WPR is higher in the

central zones in the city, while it gradually reduces in the peripheral zones. Female WPR

is much lower than for males. For females, the WPR ranges from 0.5218 to 0.5488. For

males, the range shifts up to 0.5925 to 0.6788. These figures imply two things. Even on a

featureless plain with equally distributed population and a featureless transport network,

the residents of central location are more likely to work than those living in the periphery.

In general, the higher the commuting cost is, the lower is the work participation rate.

These results partially explain the situation of Delhi in 2001 that is depicted in Figure

2.3.

Figures 2.8, 2.9, and 2.10 depict the simulated changes in female and male WPR in

response to the introduction of the Metro from East to West in the middle of the city,

just as the red line in Figure 2.6b indicates. Figure 2.8 illustrates the impact of the Metro
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development when it reduces the commuting cost along the Metro corridor by 5% for

both females and males. Namely, women’s commuting cost reduces to 1.9 on the corridor

(along the thick black line), while for men it becomes 1.425. For females as in the panel

(a), the effect on the WPRs ranges from 0.0004 to 0.6019 percent, which are all positive

but very marginal. And a clear “distance decay” pattern can be observed. Increasing

the magnitude of commuting cost reduction for women will change not only the female

WPR but also the male one. The male WPR shown in panel (b) responds in a more

complicated way. While the positive impact is large in the immediate neighbourhood of

the Metro alignment, the WPR interestingly reduces in a few spots locating relatively

close to the Metro. In the majority of zones, the increase in the female WPR surpasses

that of males. For the same magnitude of benefit (5 percent reduction in commuting

cost), the group with severer initial deprivation will on average achieve larger gains. As

in panel (c), the aggregate impact on the zonal employment is everywhere positive. In

this case, the negative impact on male WPR in some zones is perfectly offset by the

positive impact on female WPR.

In Figure 2.9 and Figure 2.10, we compare the cases of the Metro development that

reduces female commuting costs more than that of males. Figure 2.9 illustrates the

response of the WPRs when the Metro reduces female commuting cost along the Metro

alignment to 1.425, which is the same level as the male metro commuting cost. With

this relatively huge decline in female commuting cost on the Metro (28.75% reduction

from the original), female WPR and male WPR show different responses. We observe

an overall increase of female WPR, while male WPR declines in a large number of

zones except for some specific places. Female WPR increases more in the central area

where metro development happens. On the other hand, male WPR exhibits a more

complicated response. Even in locations that are close enough to the Metro line, male

WPR can decline (blue to grey shades in panel (b)). This shows a complex interdependent

mechanism that the Metro development may deliver for women and men. For males
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in the immediate neighbourhood of the Metro alignment, the greater convenience for

commuting leads more of them to seek employment. However, males in zones which are

the second closest to the Metro line are crowded out from work due to the increased work

participation of female residents and incoming commuters. In this case, the relationship

between the distance to Metro and male work participation rates becomes ambiguous.

Interestingly, the decline in male work participation slightly exceeds the female increase

in a few locations. This is shown in panel (c) of Figure 2.9. Four zones near the both

ends of the metro line exhibit an aggregate decline in overall WPR.

Figure 2.10 is a far more stringent case where the Metro serves much better for women

than men and the female commuting cost reduces to 1.2 against the male cost of 1.425.

In this case, while the results for females are qualitatively the same as that of Figure

2.9, the male WPR reduces almost everywhere in the city. The crowd out in the labor

market contributes to reduce male work participation, especially within the central zones

that the Metro most serves. The area with total employment decline expands in this

case compared to the case in Figure 2.9, as shown in panel (c).

In summary, our empirical results can be at least partially explained by the mechanisms

of this model - the gender differentiated commuting cost and interdependent relationship

through the labor market. If the commuting cost reduction by the Metro is larger

for females (who would be more constrained for mobility without it) than males, the

adjustment through the local labor market will results in a positive effect of proximity to

the Metro station on female WPR and an ambiguous effect on male WPR. Of course, we

do not argue that the model describes the decisive mechanism that delivers our empirical

results. There could be a number of other mechanisms that are consistent with these

results. This simulated model is the display of one possible mechanism. Especially, in

the current analysis our model rules out endogenous residential choice of agent within

the city. If people move in the city to maximize their utility, the effect of metro on

female and male WPR can either be mitigated or amplified. Furthermore, we assume a
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Figure 2.8: The Change of WPR after the Commission of an East-West Metro:
Case with 5 percent Reduction for both Females and Males on the East-West Corridor

(a) Women’s WPR Change (b) Men’s WPR Change (c) Total WPR Change

Source: Authors
Note: Panels depicts changes in female and male WPR when the commuting costs of the East-West
corridor reduces to pF

1 = 1.9 (by 5%) and pM
1 = 1.425 (by 5%) reduction, from the initial pG

0 by the
introduction of the Metro. Panel (a) is for females, panel (b) for males, and panel (c) for the total
(females plus males), respectively.

single employment sector where both female and male workers compete. We can instead

introduce multiple employment sectors so that gender sorting of working sector can be

observed. In such a model, the key mechanism of our current results, the crowding out of

male workers by the influx of female workers in the local labor market, may not happen.

2.7 Conclusion

In this study, we analyze the effect of the proximity to the Delhi Metro station which

have opened up during the Phase I and Phase II of the project, from 2002 to 2011, on

the work participation rate of females and males, using the Indian census that provides

various demographic information of more than 300 geographical zones within Delhi.

Thanks to the data structure with two pre-treatment period observations, we employ the

Difference-in-Differences estimation controlling for a zone fixed effect, and jointly verify

the common trend assumption during the pre-treatment periods. The overall results

suggest that the proximity to the Metro station is positively related to female work
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Figure 2.9: The Change of WPR after the Commission of an East-West Metro:
Case where females and males achieve the same commuting cost on the Metro

(a) Women’s WPR Change (b) Men’s WPR Change (c) Total WPR Change

Source: Authors
Note: Panels depicts change in female and male WPR when the commuting costs on the East-West
corridor reduces to pF

1 = 1.425 (by 28.75%) and pM
1 = 1.425 (by 5%) reduction, from the initial pG

0 . Panel
(a) is for females, panel (b) for males, and panel (c) for the total (females plus males), respectively.

Figure 2.10: The Change of WPR after the Commission of an East-West Metro:
Case where female commuting costs on the Metro become cheaper than male commuting
costs

(a) Women’s WPR Change (b) Men’s WPR Change (c) Total WPR Change

Source: Authors
Note: Panels depicts change in female and male WPR when the commuting costs on the East-West
corridor reduces to pF

1 = 1.2 (by 40%) and pM
1 = 1.425 (by 5%) reduction, from the initial pG

0 . Panel (a)
is for females, panel (b) for males, and panel (c) for the total (females plus males), respectively.
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participation, while the relationship between proximity to the Metro and male WPR is

ambiguous, possibly having an opposite relationship to the case of females.

These findings provide suggestive evidence that the Metro encouraged females to

participate in economic activities more than it did for males. This could be realized

by, according to our conjecture, that the Delhi Metro might provide a safer mode of

transportation that would benefit females who have suffered from safety problems more

than males. With an parsimonious spatial urban model with commuting choice, we show

that the larger reduction of commuting cost for females than males along with the Metro

alignment can deliver important spatial patterns of this change in female and male WPRs

that are similar to the ones empirically quantified.

However, we still need further investigation to know the causal link and the precise

mechanisms behind it. More specifically, with the current dataset we cannot tell exactly

why the positive effect on female rather than male economic participation is observed.

At this stage, we only succeed in documenting the gender-heterogeneous correlation

between proximity to the Metro and employment outcome. It is unclear whether the

improved safety of commuting path has encouraged women to take a job outside of their

home, since we do not directly observe their commuting choices. Alternative stories

driven by labor demand can generate the same pattern of work participation rate. For

instance, the Delhi Metro could have stimulated commercial activities around the Metro

stations, such as retail shops, restaurants, offices, and so on. If some female oriented

services (either by gender-wage gap or stakeholders’ preference/discrimination) flourish

in areas near stations, this would create more female employment opportunities than

those for males. In this case, it would not be the safety of the Metro facility itself but the

type of industries attracted to the premises of the Metro stations that would generate

the observed pattern of female and male work participation rates. We leave remaining

questions for future research with more detailed data.
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2.A Appendix

2.A.1 Additional Information for Descriptive Statistics

Table 2.A.1: statistical test for the difference of distribution

(1) (2) (3) (4)
female female male male

(91 vs 01) (01 vs 11) (91 vs 01) (01 vs 11)
p-values

T-test (mean) 0.000 0.0013 0.000 0.0056
K-S test 0.000 0.007 0.000 0.120

Note: “T-test” reports the p-values the T-test to compare means of
the WPR across years. “K-S test” reports the results (p-values) of the
Komogorov-Smirnov test for comparing two distributions of WPR across
years. Column (1) is for female WPR between 1991 and 2001. Column
(2) is for male WPR between 2001 and 2010. Column (3) and (4) report
the same for men.

2.A.2 Estimates without Controls

This section provides the estimation results without control variables as a robustness

check to our main results in Section 2.5. If our control variables (household size, children

share, female to male literacy ratio, and female to male ratio of scheduled caste) are also

the outcome of the development of the Delhi Metro, this may bias the estimates for our

variable of interest. We only keep our variables of interest, the distance to the Metro

station (2011) and its lead term, then perform a fixed effect estimation. Table 2.A.2 and

Table 2.A.3 show the estimation results for female and male WPR, respectively.
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Table 2.A.2: Female WPR, without Controls

(1) (2) (3) (4) (5)
OLS OLS OLS OLS OLS
ALL d < 10km d < 5km d < 10km d < 5km

VARIABLES & CBD > 10km & CBD > 10km

Dist. to Metro(2011, β) -0.00782*** -0.00945*** -0.00617*** -0.0107*** -0.00642***
(0.00149) (0.00167) (0.00149) (0.00236) (0.00205)

Dist. to Metro(1991, β−1) -0.00204 -0.00155 0.000932 -0.00115 0.00312
(0.00234) (0.00284) (0.00302) (0.00368) (0.00409)

Constant 0.0708*** 0.0725*** 0.0738*** 0.0661*** 0.0663***
(0.00123) (0.00128) (0.00112) (0.00179) (0.00164)

Observations 1,016 957 808 663 514
R-squared 0.157 0.151 0.220 0.101 0.152
Number of id 342 322 271 224 173
Year Dummy YES YES YES YES YES
Adj-R 0.153 0.147 0.217 0.0957 0.146

Note: Standard errors are clustered at the individual zone
*** p<0.01, ** p<0.05, * p<0.1
“d < km” if sample zones with distance to Phase I - IV stations within x km
“CBD < km” if sample zones locate further than x km from the CBD

Table 2.A.3: Male WPR, without Controls

(1) (2) (3) (4) (5)
OLS OLS OLS OLS OLS
ALL d < 10km d < 5km d < 10km d < 5km

VARIABLES & CBD > 10km & CBD > 10km

Dist. to Metro(2011, β) 0.00697*** 0.00839*** 0.00727*** 0.0143*** 0.0135***
(0.00243) (0.00234) (0.00274) (0.00332) (0.00400)

Dist. to Metro(1991, β−1) -0.0273*** -0.0285*** -0.0315*** -0.0190*** -0.0232***
(0.00451) (0.00480) (0.00628) (0.00650) (0.00843)

Constant 0.439*** 0.447*** 0.465*** 0.424*** 0.446***
(0.00197) (0.00197) (0.00207) (0.00261) (0.00291)

Observations 1,016 957 808 663 514
R-squared 0.248 0.251 0.218 0.289 0.259
Number of id 342 322 271 224 173
Year Dummy YES YES YES YES YES
Adj-R 0.245 0.248 0.214 0.285 0.254

Note: Standard errors are clustered at the individual zone
*** p<0.01, ** p<0.05, * p<0.1
“d < km” if sample zones with distance to Phase I - IV stations within x km
“CBD < km” if sample zones locate further than x km from the CBD
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Table 2.A.4: WPR gap (female to male), without Controls

(1) (2) (3) (4) (5)
OLS OLS OLS OLS OLS
ALL d < 10km d < 5km d < 10km d < 5km

VARIABLES & CBD > 10km & CBD > 10km

Dist. to Metro(2011, β) -0.0207*** -0.0257*** -0.0151*** -0.0330*** -0.0193***
(0.00449) (0.00491) (0.00396) (0.00692) (0.00550)

Dist. to Metro(1991, β−1) -0.00882 -0.00738 0.00342 -0.00972 0.00685
(0.00573) (0.00666) (0.00651) (0.00899) (0.00914)

Constant 0.161*** 0.163*** 0.157*** 0.158*** 0.148***
(0.00290) (0.00295) (0.00228) (0.00415) (0.00338)

Observations 1,016 957 808 663 514
R-squared 0.177 0.177 0.256 0.132 0.185
Number of id 342 322 271 224 173
Year Dummy YES YES YES YES YES
Adj-R 0.174 0.173 0.253 0.127 0.179

Note: Standard errors are clustered at the individual zone
*** p<0.01, ** p<0.05, * p<0.1
“d < km” if sample zones with distance to Phase I - IV stations within x km
“CBD < km” if sample zones locate further than x km from the CBD

Table 2.A.5: WPR for total adult population, without Controls

(1) (2) (3) (4) (5)
OLS OLS OLS OLS OLS
ALL d < 10km d < 5km d < 10km d < 5km

VARIABLES & CBD > 10km & CBD > 10km

Dist. to Metro(2011, β) 0.00115 0.00104 0.00146 0.00431* 0.00525*
(0.00168) (0.00169) (0.00189) (0.00242) (0.00273)

Dist. to Metro(1991, β−1) -0.0170*** -0.0173*** -0.0180*** -0.0139** -0.0153**
(0.00340) (0.00374) (0.00466) (0.00606) (0.00756)

Constant 0.274*** 0.279*** 0.290*** 0.265*** 0.278***
(0.00148) (0.00150) (0.00155) (0.00203) (0.00222)

Observations 1,016 957 808 663 514
R-squared 0.195 0.182 0.168 0.198 0.186
Number of id 342 322 271 224 173
Year Dummy YES YES YES YES YES
Adj-R 0.192 0.179 0.163 0.193 0.180

Note: Standard errors are clustered at the individual zone
*** p<0.01, ** p<0.05, * p<0.1
“d < km” if sample zones with distance to Phase I - IV stations within x km
“CBD < km” if sample zones locate further than x km from the CBD
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2.A.3 Discussion on Data Interpolation

As argued in Section 2.3, the geographical boundaries of zones in Delhi have not stayed

constant during the three rounds of the census, thus we have to interpolate the observed

statistics in 2001 and 2011 so that the boundaries are consistent with those of 1991.

We therefore examine the sensitivity of our results to the interpolation method by

comparing our main results in Section2.5 with the case where we limit the estimation

sample only to the zones with consistent boundaries throughout 1991 to 2011. Out of

342 sample zones, 222 keep their boundaries constant across three periods. We repeat

the same estimations for the WPR of females and males with this constant boundary

subset. The results are shown in Table 2.A.6 and Table 2.A.7. The results generally

support the prediction on the direction of bias.

Firstly, compared to the main estimates for female WPR shown in Table 2.2, the

estimates with the boundary consistent subsets show the qualitatively similar results

(Table 2.A.6). For all the five specifications, the effect of the distance to metro station is

negative, and the magnitude is about twice as large as that in Table 2.2. This implies

that using the interpolated data gives to smaller estimates for the positive effect of

the proximity to the Metro station, which is consistent with the explanation with the

illustrated example in the Appendix 2.A.3.

Table 2.A.7 shows the results for male WPR with the same subset. While the

coefficients on the “Distance to Metro (2011)” are all positive for our main estimation,

the results with the subset are neither positive nor significant. For males, the results are

less stable across different specifications. The estimates for male WPR are sensitive to

the sample choice as well as interpolation method for inconsistent zone boundaries.
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Table 2.A.6: Female WPR only with consistent boundary zones

(1) (2) (3) (4) (5)
OLS OLS OLS OLS OLS
ALL d < 10km d < 5km d < 10km d < 5km

VARIABLES & CBD > 10km & CBD > 10km

Dist. to Metro(2011, β) -0.0123*** -0.0148*** -0.0134*** -0.0131*** -0.0119***
(0.00212) (0.00233) (0.00255) (0.00219) (0.00223)

Dist. to Metro(1991, β−1) 0.000202 0.000573 0.00517 -0.00377 0.000738
(0.00362) (0.00416) (0.00429) (0.00347) (0.00365)

Household Size -0.0881** -0.0892** -0.0725* -0.101** -0.0808*
(0.0393) (0.0435) (0.0411) (0.0500) (0.0478)

Children Share -0.156*** -0.166*** -0.161*** -0.153*** -0.154***
(0.0252) (0.0262) (0.0295) (0.0213) (0.0232)

Female to male literacy ratio -0.0966** -0.0989** -0.0672 -0.124*** -0.0946**
(0.0397) (0.0397) (0.0424) (0.0335) (0.0379)

Female to male SC ratio -0.0556** -0.0674** -0.0389 -0.0800** -0.0480
(0.0247) (0.0314) (0.0305) (0.0309) (0.0293)

Constant -0.102 -0.116 -0.130 -0.0786 -0.109
(0.0881) (0.0954) (0.101) (0.0932) (0.0934)

Observations 646 588 441 552 405
R-squared 0.417 0.428 0.388 0.524 0.464
Number of id 222 202 151 190 139
Year Dummy YES YES YES YES YES
Adj-R 0.412 0.422 0.379 0.519 0.456

Note: Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
d< xkm if sample zones with distance to Phase I - IV stations within x km
CBD< x km if sample zones locate further than x km from the CBD
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Table 2.A.7: Male WPR only with consistent boundary zones

(1) (2) (3) (4) (5)
OLS OLS OLS OLS OLS
ALL d < 10km d < 5km d < 10km d < 5km

VARIABLES & CBD > 10km & CBD > 10km

Dist. to Metro(2011, β) -0.00394 -0.00367 -0.00603 -0.00120 -0.00416
(0.00313) (0.00336) (0.00394) (0.00304) (0.00300)

Dist. to Metro(1991, β−1) -0.00255 -0.00479 -0.00454 -0.0109** -0.0115***
(0.00583) (0.00643) (0.00728) (0.00466) (0.00426)

Household Size -0.378*** -0.360*** -0.349*** -0.374*** -0.358***
(0.0424) (0.0427) (0.0410) (0.0456) (0.0440)

Children Share -0.0709* -0.0783** -0.0847** -0.0635* -0.0830***
(0.0368) (0.0378) (0.0403) (0.0323) (0.0202)

Female to male literacy ratio 0.0198 0.0116 0.0388 -0.0337 -0.0210
(0.0512) (0.0507) (0.0639) (0.0208) (0.0244)

Female to male SC ratio 0.0543 0.0371 0.0590 0.0452 0.0702
(0.0504) (0.0525) (0.0570) (0.0513) (0.0526)

Constant 0.909*** 0.871*** 0.864*** 0.908*** 0.866***
(0.115) (0.118) (0.119) (0.109) (0.0834)

Observations 646 588 441 552 405
R-squared 0.504 0.503 0.512 0.610 0.622
Number of id 222 202 151 190 139
Year Dummy YES YES YES YES YES
Adj-R 0.500 0.497 0.505 0.606 0.616

Note: Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
d< xkm if sample zones with distance to Phase I - IV stations within x km
CBD< x km if sample zones locate further than x km from the CBD
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Chapter 3

Willingness to Pay for Mortality
Risk Reduction from Air
Pollution: Evidence from Urban
Bangladesh

This chapter is a joint work with Minhaj Mahmud and Yasuyuki Sawada 1

Abstract
This paper reports on the first attempt to measure the value of statistical life (VSL) in
the context of mortality risk from air pollution in urban Bangladesh, using the contingent
valuation (CV) method. We asked individuals willingness to pay (WTP) for mortality
risk reduction from air quality improvement program and found that willingness to pay
is correlated with the socio-economic characteristics, health status, and risk perception
of the respondents, consistently with existing studies. The bootstrapped mean of VSL is
ranged from 17,480-22,463 USD in purchasing power parity terms, which is equivalent to
9.78-12.57 times of GDP per capita of Bangladesh. Considering our study setting, the
results we obtained may be regarded as a lower bound of VSL estimates in the context
of environmental risk reductions in Bangladesh.

1. The earlier version of this paper appears as JICA Research Institute Working Paper No.190.
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3.1 Introduction

Rapid urbanization in developing countries has been causing serious environmental and

health risks from various sources that requires urgent policy attention. Overpopulation

and a lack of regulation over industrial activities is creating major environmental problems

such as air pollution in developing country cities and exposing their people to serious

health risks. According to Landrigan et al. (2017), 1 in 6 deaths is caused by pollution

worldwide. For example, Bangladesh a densely populated country witnessing rapid

urbanization in the last decades2 has been ranked as the worst (8th worst) in terms of

air pollution(environmental performance index) amongst 180 countries3. Recent World

Health Organization data reveal that the air quality in Dhaka reaches a yearly average

of 90 µg/m3 of PM2.5, which is 9 times as high as the WHO’s safety standard level.4

Obviously, there is an urgent need for strong public interventions to control current severe

air pollution.

Quantifying the welfare cost of air pollution is a crucial step in motivating policymakers

to appropriately prioritize environmental control. While it is not necessarily easy to

obtain reliable estimate for the welfare loss from fatalities (or morbidity) due to air

pollution, among a few popular methods, the contingent valuation (CV) method, which

employs hypothetical scenarios and asks the respondents’ willingness-to-pay (WTP) for a

risk reduction scheme, remains a popular approach for quantifying the benefits from such

risk reduction.5 In the context of mortality risk, an individual’s WTP for mortality risk

2. From 1996 to 2016, Bangladesh’s urban population has grown by 113%, from 27 million to 57
million, while total population add 34% during the same period. The urbanisation rate reached to 35% in
2016 from 22% in 1996 (https://data.worldbank.org/indicator/SP.POP.TOTL?end=2016&locations=

BD&start=1995).
3. http://epi.yale.edu/country/bangladesh

4. http://breathelife2030.org/city-data-page/?city=110

5. There is a emerging literature that exploits exogenous shocks to assess the cost of air pollution
or benefit of reducing air pollution. For example, Chang et al. (2016) use an exogenous fluctuation in
PM2.5 monitoring records to estimate the impact of air pollution on worker’s productivity. They find
that the benefit of reducing pollution is sizeable; the decline of PM2.5 concentration happened during
1999 and 2008 resulted in generating nearly 20 billion USD in benefit. Reviewing the recent evidence
on the negative impact of air pollution on labour market performance and human capital accumulation,
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reduction can be converted to the value of a statistical life (VSL) by dividing the stated

WTP by the magnitude of risk reduction in question (see Hammitt and Graham 1999).

CV studies on fatal risk reduction has been mainly conducted in developed countries.6

Environmental hazards including ambient pollution are among the popular scenarios

of the cause of death in existing studies in developed countries, among others, such as

traffic accidents and diseases (OECD 2012). However, in developing countries regardless

of the cause of fatal risk, fewer studies have been conducted for measuring the WTP for

mortality risk reduction using the contingent valuation method. CV studies on mortality

risk caused by environmental pollution is especially limited in the context of developing

countries. China is the most studied country in the developing world, with relatively large

number of published researches (e.g. Wang and Mullahy 2006; Hammitt and Zhou 2006;

Guo, Haab, and Hammitt 2007).7 Other countries include India (Bhattacharya, Alberini,

and Cropper 2007), Turkey (Tekesin and Ara 2014), Thailand (Vassanadumrongdee and

Matsuoka 2005; Gibson et al. 2007), Mongolia (Hoffmann et al. 2012), and Brazil (Arigoni

Ortiz, Markandya, and Hunt 2009). Consequently, estimates of VSL in emerging and

developing countries is scarce. In Table 3.1, we summarize the findings from the above

mentioned studies.8

Zivin and Neidell (2018) argue the importance of a huge economy-wide benefit of clean air that reduces
less-severe health hazards to normal and healthy people.

6. A few reviews and meta-analysis papers have been published on contingent valuation for pollution
related mortality risk, such as OECD (2012), Kochi, Hubbell, and Kramer (2006), Desaigues et al. (2011),
Dekker et al. (2011), and World Bank and Institute for Health Metrics and Evaluation (2016), which rely
on studies conducted in developed countries. On VSL studies including those using revealed preference
approach, there are several meta-analysis papers, such as Robinson (2017), Masterman and Viscusi
(2018), Narain and Sall (2016), Viscusi and Masterman (2017a, 2017b), Lindhjem et al. (2011), Hoffmann,
Krupnick, and Qin (2018), and W. Kip Viscusi (2017), that discuss the extension of the scope to the
context of developing countries.

7. More studies are found for China regarding WTP for air quality improved policies, as summarised
in Wang and Zhang (2009). However, in those studies, life saving scenario is not explicit and the VSL is
not reported (except for Wang and Mullahy (2006) and Guo, Haab, and Hammitt (2007)). Wang and
Zhang (2009) conducted survey in April 2006 in 5 urban districts in Ji’nan city, China. Their scenario
was an improvement in the city’s air quality from Class III status (at the time of survey) to Class II in
the Chinese standard. There was no life-saving implication in the scenario and they obtained 100 Chinese
yuan of WTP to this pollution reduction problem (with 49.3% zero−WTP).

8. See also Figure A2 and Table C1 in Robinson, Hammitt, and O ’Keeffe (2017) for the list of studies
on VSL in developing countries (not limited to environmental context).
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There exists a handful of studies focusing on VSL in the context of Bangladesh using

different methodological approaches. One approach is using the benefit transfer method,

by extrapolating the estimates obtained from meta-analysis of surveys conducted in

developed countries. For example, Miller (2000) suggests that a Bangladeshi VSL lies in

the range between USD30,000 and USD1,000,000, or 131 - 2,762 times of per capita GDP.

Robinson, Hammitt, and O ’Keeffe (2017)’s benefit transfer estimate for Bangladesh is

142,709 USD (in 2015 international dollar), based on the international research using

stated preference method. Viscusi and Masterman (2017b) instead provides a benefit

transfer estimate from the revealed preference studies in the U.S. that gives 205,000 USD.

To our knowledge, there is no study eliciting WTP for fatal risk reduction from

air pollution in the context of Bangladesh.9 To bridge this gap, we conducted a CV

survey to elicit individuals WTP for a reduction of mortality risk from air pollution in

Dhaka and Chittagong, the two largest cities in Bangladesh.10 Ten sampling clusters

were chosen from two cities (seven from Dhaka and three from Chittagong), and a

total of 1,000 household heads were randomly selected for a face-to-face interview. A

hypothetical scenario on reducing mortality risk from air pollution was explained and

their willingness-to-pay was obtained using open-ended questions. We prefer open-ended

questions to closed-ended ones because they provide more information, and are less prone

to overestimation.We obtained 994 valid answers for the WTP questions which were

used in regression analyses to reveal the relationships between WTP and respondents’

attributes such as age, income, education, health condition, and perception of pollution

risks to their health. The measured WTP are associated with individual characteristics in

9. Khan, Brouwer, and Yang (2014) estimate WTP of Bangladeshi households for arsenic safe drinking
water, by applying a double discrete choice value elicitation approach. On average, households are willing
to pay about 5 percent of their disposable household income for getting access to arsenic safe drinking
water.Their purpose is to measure WTP for practical alternatives to reduce risk of arsenic exposure, and
mortality risk reduction is not directly taken into the scope of study.

10. These large cities severely suffer from environmental pollutions, mainly due to the emissions from
vehicles. For example, according to Bangladesh Statistical Pocket Book 2007 published by the Bangladesh
Bureau of Statistics, it is estimated that air pollution causes 15,000 premature deaths in Dhaka per year,
implying that 125 people out of 10,000 die from air pollution in Dhaka every year.
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similar ways as in past studies. Based on the regression analysis, we employed bootstrap

resampling to estimate the mean and median WTP as well as those confidence intervals.

The mean VSL is ranged from 17,480 to 22,463 USD in PPP, which is equivalent to

9.78-12.57 times GDP per capita in the same year.

Our study may be subject to several types of bias. The first concern is scope bias as we

do not explicitly test for the sensitivity of stated values to the magnitude of risk reduction

assumed. Given that the magnitude of risk reduction we set (5 in 10,000) is relatively

larger than what is used in the existing international examples, VSL in our case is likely to

be underestimated. Furthermore, in our hypothetical scenario, fatal risk originates from

“environmental” source and it is reduced by a “public” intervention by the government. As

revealed by OECD (2012), “environmental” and “public” provisions in the risk scenario

significantly reduce the stated VSLs. Therefore, our scenario is by construction leaned

towards having lowered estimates for the VSL. Taking this background into account, we

argue that the estimate should be carefully interpreted as a potential “lower bound” of

VSL in the context of environmental risk reduction in Bangladesh.

The remaining part of this paper is structured as follows. In Section 3.2, we introduce

the study design including the details of data collection and description of data. Section

3.3 explains the empirical strategies to estimate the determinants of WTP then describes

the results, followed by the estimation of the average and confidence interval of the mean

and median VSL by using sample bootstrapping. In Section 3.4, we discuss the validity

of our estimates. The final section concludes the paper.

3.2 Study Design

This study benefits from a household survey conducted by the JICA Research Institute

in the selected areas in Dhaka and Chittagong, from June 6 to July 17 in 2013.11 Total

11. The survey was implemented by the Economic Research Group (ERG) based in Dhaka.
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Table 3.1: Existing Studies on VSL in Developing Countries

Authors Cities/Survey
Year/Sample Size

Mortality Risk Context Implied VSL Ratio of VSL to
Annual Income

Wang and Mullahy
(2006)

Chongqing (China) /
March 1998 / 500 resi-
dents (482 valid ans.)

5/100,000 reduction of mortality risk by
air pollution

286,000 CNY (102,509 USD in PPP) 80 times

Hammitt and Zhou
(2006)

Beijing, Anqing, rural
Anqing (China) / July
1999 / 3,700 adults

Mortality risk reduction by air pollution
from 70/10,000 to 10/10,000 or 20/10,000
(Double-bounded, dichotomous-choice)

4,220 USD (Lowest estimated me-
dian for Anqing) to 16,900 USD
(Highest estimated median for Bei-
jing)

2.5 times (An-
qing), 6.3 times
(Beijing)

Bhattacharya, Alberini,
and Cropper (2007)

Delhi (India) / Oct-Dec
2005 / 1,200 adults

Multiple scenarios in the context of traffic
accident risk: Risk reduction ranging from
4/100,000 to 30/100,000.

1.3 million Rupees (150,000 USD in
PPP) for the most exposed respon-
dents

9.6 times

Tekesin and Ara (2014) 4 cities in Turkey in
June-July 2012/ 1,248
adults

Discrete choice experiment across 4 fatal
risks (lung cancer, other cancers, respira-
tory diseases, and traffic accident): Risk re-
duction ranging from 1/10,000 to 8/10,000,
per year.

0.74 mil TL (0.49 mil USL in PPP) 39 times

Mahmud (2009) 30 villages in rural
Bangladesh in 2003. 780
household heads

reductions in mortality risk by a vaccina-
tion program: Reduction of risk either by
25% or 50%.

103,074 Taka to 168,905 Taka From 3.55 times
to 5.82 times

Vassanadumrongdee
and Matsuoka (2005)

Bangkok (Thailand) Mortality risks from air pollution and traf-
fic accidents

0.74-1.32 mil. USD (Air Pollution)
0.87-1.48 mil. USD (Traffic)

314 times (for
lower estimate for
air pollution)

Gibson et al. (2007) Rural villages in Thai-
land / Sept 2003 /

Comparison of two scenario villages with
different mortality risks from landmine ex-
plosion (comparing risk of 4/10,000 and
2/10,000 per year)

0.25 mil. USD 397 times

Hoffmann et al. (2012) Ulaanbaatar (Mongolia)
/ Winter 2010 / 629 peo-
ple aged over 40 years
old.

5/10,000 and 10/10,000 mortality risk re-
duction by policies to mitigate air pollu-
tion (various scenarios for checking scope
validity are included)

0.50 mil USD for latent (cancer) risk
0.57 mil. USD for contemporaneous
(resp. Disease) risk

257 times and
293 times, respec-
tively

Arigoni Ortiz,
Markandya, and
Hunt (2009)

Sao Paulo (Brazil) /
March 2003 / 283 liter-
ate employees in middle
or higher social class

5/1,000 mortality risk reduction from air
pollution over 10 years

0.77 mil. USD (median estimate),
1.31 mil. USD (mean estimate)

258 times (for me-
dian estimate)

Note: Annual income used in the last column is the average income of survey respondents.
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11 enumerators trained by ERG conducted face-to-face interview by visiting the house of

each respondents randomly sampled as described below. The main purpose of the survey

was to collect the data on people’s stated preferences for hypothetical risk reduction

programs implemented by the government. The total number of surveyed households

was 1,000, with 700 from Dhaka and 300 from Chittagong.

3.2.1 Questionnaires

Stated preferences for mortality risk reductions were elicited through the two sections

in the survey questionnaire. The first section conducted a choice experiments among

multiple risk reduction programmes that were hypothetically designed to reduce mortality

caused by several type of risks (namely, traffic accidents, air pollution, water pollution,

and maternity). In the second part, the respondents were asked their willingness to

pay for a government scheme to reduce air pollution in Dhaka (or Chittagong) that will

reduce the risk of dying from air pollution. The program was framed as a government

intervention to control vehicle maintenance to reduce pollutant emission from motorized

vehicles, which can reduce the mortality rate in each city from 125 per 10,000 persons

to 120 per 10,000.12 In this paper, we analyze the second part of the stated preference

survey focusing on WTP for mortality risk reduction from air pollution.

The enumerators explained to the respondents that the annual death caused by air

pollution in Dhaka counts 15,000, and that this number means that 125 people out

of 10,000 dies from air pollution per year given the population of Dhaka (12 million).

Then, we gave a hypothetical policy scenario that could reduce the mortality risk from

125/10,000 to 120/10,000, though government intervention to control vehicle pollutant

emission. The WTP is directly measured through the following two questions:

12. The government of Bangladesh has already carried out reforms in the auto-rickshaw (three-wheeler)
sector in Dhaka to reduce air pollutant emissions. In 2003, it forced the owners to replace petrol engines
to CNG (compressed natural gas) engines. This transformation was well implemented and Bangladeshi
citizens are quite aware of that success.
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Q1 : “If you are told that the death risk in Dhaka due to air pollution can be reduced

by a government initiative from 125 out of 10000 to 120, would you then spend for

it?”

Q2 : (For the respondent who answered “yes” to Q1) “What is the maximum amount

which you would be willing to pay annually to decrease your yearly death risk from

125 out of 10000 to 120?”

For the respondent who answers “No” to the first question, the enumerator asks why he

or she does not want to pay for the program. 13

Before the respondents stated their preference on risk reduction programs, they

were asked to answer around 70 questions on their socio-economic characteristics and

preferences, such as; household demographics, income and expenditure, asset holdings,

incidence of death and sickness, victimization experiences from accidents and other

misfortunes, health conditions (current condition as well as chronic disease history),

smoking behaviour, and perception about the health risk caused by environmental

pollution of their residential areas. Just before they entered the stated preference part,

we provided training on the concept of probability and risk reduction, followed by a

test for ensuring the respondents’ understanding. The language of implementation was

Bangla and the questionnaire was field tested and revised to facilitate understanding

before the survey was conducted. To motivate their responses, a small gift was offered

to the respondents.14. The full questionnaire is provided in the Appendix of Mahmud,

Sawada, and Yamada (2019).

13. Note that the magnitude of mortality risk reduction was a change of 0.05 percentage points. This is
ten times larger than the scenario used by Wang and Mullahy (2006) for Chongqing, China, but much
smaller than Mahmud (2009) used for rural Bangladesh.

14. The Gift is worth of 100 Taka either in cash or equivalent in kind, depending on the respondent’s
choice. 75% received cash, 20% received a gift, 1.5% were indifferent, and 1.5% declined to accept cash or
a gift
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3.2.2 Sampling Design

We conducted a stratified-cluster sampling for the two largest cities in Bangladesh, Dhaka

and Chittagong. Each city had three strata, based on the situation in surface water

pollution level. Out of six strata, two strata in Dhaka had three sampling clusters in

each. Therefore, the total number of clusters was ten. 100 households were selected at

random from each stratum, to construct the 1,000 sample households.

Selection of Strata and Clusters

As we focused only on major urban areas where people are more exposed to environmental

risks compared to rural areas, the selection of survey clusters in Dhaka and Chittagong was

based on actual level of environmental pollution to understand urban dwellers’ preferences

for risk reduction. At the time the survey was conducted, there was no information

available for the spatial variation of air pollution within these cities. However, for

water pollution, geographically detailed information was available both for Dhaka and

Chittagong. For Dhaka, World Bank (2006) identified water pollution level in different

areas in Dhaka based on Biochemical oxygen demand (BOD). BOD is the amount of

dissolved oxygen needed by aerobic biological organisms in a body of water to break

down organic material present in a given water sample at certain temperature over a

specific time period. BOD exceeding 6 mg/l implies that the water is polluted and

not acceptable as pure drinking water. Depending on the level of BOD, the areas were

categorized as Red, Orange, Yellow and Blue.

The regions marked as Red represent the areas that have the most polluted water

sources in Dhaka. The Red regions denote the presence of BOD, 500% beyond the

standard (6 mg/l). Areas near the Buri ganga river, including Fatulla, Kutubpur,

Shyampur, Sutrapur, Kotwali, Lalbag, Kamrangirchar, Hazaribag, Adabar, Gabtali;

areas near Tongi bridge, including Machimpur, Abdullapur, Tongi bazar, Natun Bazar,

Rajabari, and areas near the Balu river, including Kayetpara, Balurpar, Baburjayga,

151



Tejgaon, Kahelpara, Sarulia, Kanchpur, Siddhirganj, Sona mia bazaar are marked as

Red. Out of these areas, three, Kamrangirchar, Tongi bazar, and Hazaribag, were

randomly selected for the survey. This is our first sampling stratum and we refer this

as “Dhaka-Most Polluted” stratum in what follows. From this stratum, three sampling

clusters were randomly selected, giving 300 respondents in total.

The Orange regions represent mildly polluted areas attached to water bodies and

correspond to 200-500% beyond the standard level of BOD. Areas near the Turag river

including Shah Ali, Solahati, Mhimaghar, Diabari, Nalbhog; areas near the Sitalakhya

river, including Sombaria bazar, Nabigonj bazar, Dankunda bazar, Hajiganj, Nabinagar,

Kashipur, Baktabali bazar, Bhabaniganj; other areas near the Sitalakhya river including

Noapara bazar, Rupsi bazar, Purbagaon, Chhatian, Ulaba, and Kayetpara; and areas

near the Balu river including Gobindapur, Talia, Rayer dia bazar, Palashia, Bhaturia,

and Purbachal are marked as Orange. Three of these regions, Shah Ali, Diabari and

Nabinagar were randomly selected for the survey. We label this stratum with three

clusters (300 respondents) as “Dhaka-Medium Polluted” stratum.

The yellow regions correspond to less polluted water bodies containing 100-200%

BOD beyond the standard BOD level. This region was skipped due to the fact that

pollution variation is captured in Red and Orange regions. The blue regions have the

least polluted water sources within the BOD standard which are acceptable as sources of

drinking water after conventional treatment. Maniknagar is randomly chosen from the

Blue stratum. This stratum is a singleton cluster.

For Chittagong, the selection of the sampling cluster is based on the information

provided by a previous study of surface water quality in Chittagong (Zuthi, Biswas, and

Bahar 2009). Chittagong Water Supply and Sewerage Authority (CWASA) has divided

its water supply network into four routes. Zuthi, Biswas, and Bahar (2009) conducted

an assessment of the water quality in all the four routes. All the water samples collected

from the different routes of CWASA distribution had BOD5 concentrations greater than
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the permissible value of 0.20 parts per million (ppm). Among the four routes, the Route

2 was found to be most severely polluted with average BOD5 level of 5.2 ppm. From the

Route 2, Shershah Colony is randomely selected for our survey cluster.

Route 1 was the second most severely polluted water route in Chittagong. The BOD5

concentration level was 3.6 ppm. From this route, Garibullah Shah Majar Road area

was randomly selected for the survey. The Route 4 was the least polluted among the

four routes, and an area consisting of Riazuddin Bazar and Enayet Bazar was randomly

chosen from this route.

In summary, we set six strata based on city and water pollution levels, with three

strata in each city corresponding to the most-polluted, medium-polluted, and the least-

polluted sections of the city. We draw ten sampling clusters from these strata. For

the first two strata, Dhaka-Most Polluted and Dhaka-Medium Polluted, we have three

clusters in each stratum. However, the remaining four, we have only one cluster in each

stratum, making these “singleton” strata.

Both World Bank (2006) and Zuthi, Biswas, and Bahar (2009) cover only the areas

nearby water route such as river, canal, and lakes. Since the random selection of clusters

are made from the list of areas found in these two environmental studies, our cluster

sampling frame does not correspond to either administrative or statistical area in Dhaka

and Chittagong. In addition, the areas are not strictly defined, which means that the

basic information necessary to construct a sampling frame such as area size, boundary,

and population were missing. Therefore, our sample only roughly represents the urban

and suburban population living nearby surface water, and it is impossible to put sampling

weights to produce strict representativeness.

Random Selection of Respondents

From each of the selected clusters in Dhaka and Chittagong, 100 households were drawn

randomly. As explained above, we did not have the documentation of sampling frame
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such as total population in each area. In practice, randomization was carried out by a

“random walk” of enumerators, starting from a randomly chosen house and selecting the

next household at a fixed X-th interval. Depending on the approximate total number of

households in these areas, the randomization criteria such as choosing every 3rd or 5th or

7th or X-th household was selected on the spot. In the case of rejection, the enumerator

was asked to move to the next household and follow the randomization accordingly.

Basically, the interval X set by enumerators for their random visits of household

was larger for the areas with more households. This implies that the probability of

being selected for a sample was smaller (i.e. weight should be high) for the populated

area. This sampling method roughly ensures that the total area is equally covered

within each cluster. However, we unfortunately do not have sufficient information on the

population of our sampling clusters. Furthermore, we cannot identify in which cluster

the enumerator chose which skip rule (i.e. the interval X) for selection of households.

Under such condition, it is impossible to calculate the sampling weight to recover the

national or city-level representativeness, and our estimate may therefore be biased from

the population statistics at the national level or city level.

3.2.3 Description of the Data

Table 3.2 summarizes basic statistics of the variables used in the analysis. Out of

total 1,000 respondents, 271 answered “No” to Q1, the question whether they have a

willingness to pay for the hypothetical government program to reduce mortality caused

by air pollution either in Dhaka or Chittagong (framed depending on the place of survey).

However, among the 729 who said “yes” to Q1, there are 16 respondents who failed to

appropriately answer Q2 which asked them to specify the amount they would be willing

to pay. Out of those 16, 10 are revealed to have been miscoded as “yes” for Q1 despite

the true answer was “no”. The remaining 6 respondents seem to have answered “yes”,

but that was not successfully recorded to Q2. Thus, by dropping these 6 unsuccessful
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observations, the number of observations appropriate for analysing the WTP became

994. The number of respondents who said they were willing to pay (Q1) and specified

the amount (Q2) was 713 out of 994 (71.7 %). The mean value of log WTP is 5.465,

corresponding to 236.3 Taka by taking exponential.

The average log per capita expenditure was 8.384 (its exponential value is 4376.5

Taka).15 This is equivalent to 168.6 USD in PPP of 2011 price, 50 % higher than the

national average of 112.2 USD according to the PovcalNet of the World Bank. This is

reasonable because we only sample from the urban population. The mean log age is

3.51 (its exponential is 33.4). About 61% of respondents were male. More than 60% of

respondents completed at least primary school and were literate. Among them, 22.1%

had tertiary or higher degrees.

The main monetary cost item associated with the damage from air pollution is medical

care. Therefore, the level of household’s medical expenditure might be related to its

willingness to pay for pollution reduction measures. The average share of medical care in

total monthly expenditure was 8.7 percent. As many as 29.0% regularly or sometimes

smoked.

We also collected respondents’ perceptions regarding a few urban health risk factors,

such as water quality and air quality. For water quality, the average score on the health

risk they perceived from the neighbourhood water was 2.03, almost around the second

lowest ranking where the score is scaled from 1= very low risk to 5 = very high risk, and

2 is put a description as “some risk”. Regarding air quality, perceived risk on health is

higher than that for water with the average score was 2.39, which is in between “some

risk” and “moderate risk”. The perception of own health condition as well as disease

experiences were also recorded. The average self-reported health score was 3.4, lying

15. In terms of income earned, 64% falls in the middle-income class with their earnings being greater
than 10,000 Taka but less than 30,000 Taka monthly. More than a quarter of sample households earned
incomes greater than 30,000 Taka. Since income data is collected only by asking in which income bracket
the respondent’s household falls, we use monthly expenditure per capita as a proxy for the household’
monetary earning in what follows.

155



in between “fair” and “good”. A bit surprisingly, many has had suffered from chronic

diseases; 57.4% answered that they experienced undesirable health conditions such as

asthma, respiratory disease, bronchitis, chronic cough, diabetes, heart disease, of high or

low blood pressure.

Since air pollution mitigation policy to reduce fatal risk is basically a public policy

with strong externality, social capital of individual citizen might be relevant in determining

whether and how much he or she wants to contribute. For the proxy of social capital, we

adopted a popular GSS Trust question by asking respondents’ degree of agreement with

the statement “Most people can be trusted”, which measures the level of interpersonal

trust.16 The score is scaled from 1 = “strongly disagree” to 6 = “strongly agree”. The

average score was 3.59, which means that people are almost neutral about this statement.

Column (6) of Table 3.2 shows the design effect for each variable, which is the ratio

of the variance when our complex sampling design is taken into account, to the variance

assuming simple random sampling. Design effect varies across variables, ranging from 0.17

to 13.52. In general, design effects gets larger as intra-cluster correlation grows. While

there are several variables for which our sampling design outperform random sampling,

it should be noted that variables which is likely to be geographically correlated tend to

have large design effect, such as expenditure, highway travel frequency, and perception

to health risk by environmental hazards.

3.3 Estimating Determinants of WTP

Using the data presented in the preceding section, we first estimate the determinants of

WTP consisting of the determinants of probability to agree to pay for pollution reduction

policy and the determinants to the amount of WTP conditional on having any willingness.

We employ the commonly used “Two-part model” estimation. This approach (Duan

16. The detail of this variable is explained in Mahmud and Sawada (2018).
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Table 3.2: Descriptive Statistics

(1) (2) (3) (4) (5) (6)
VARIABLES VARIABLES Description N mean sd min max DEFF

Dependent variables
Yes Have Positive Willingness to Pay 1,000 0.713 0.453 0 1 2.28
l_WTP Willingness to Pay (log) 713 5.465 1.589 1.609 10.60 0.50
Explanatory Variables
l_pc_exp Per capita expenditure (log) 995 8.384 0.550 6.695 10.36 3.98
l_Age Age (log) 991 3.513 0.318 2.890 4.369 0.55
Male Male 1,000 0.609 0.488 0 1 2.15
l_HHsize Household Size (log) 998 1.500 0.397 0 3.611 0.93
Nchild Number of Children under 5 999 0.514 0.682 0 4 0.36
mededuc Medium Education Attainment 1,000 0.386 0.487 0 1 1.95
higheduc High Education Attainment 996 0.221 0.415 0 1 0.40
Trust Most people can be trusted (6 scales; 6 = strongly agree) 997 3.587 1.577 1 6 2.73
lifesat Degree of life satisfaction (10 grads; 10=very satisfied) 999 7.388 2.146 0 10 1.13
religious degree of religiousness 1,000 0.639 0.481 0 1 0.96
toilet_share sharing toilet with other HH 1,000 0.495 0.500 0 1 2.20
mob_adult mobile per head 997 0.585 0.334 0 3 1.64
TV Having TV 1,000 0.853 0.354 0 1 1.56
agLand Havig agricultural land 1,000 0.326 0.469 0 1 0.58
l_highwayFreq highway travel frequency (times per year, log) 999 2.279 1.862 0 5.481 5.21
meanTransp having means of transportation 1,000 0.197 0.398 0 1 1.15
medishare Medical expenditure share 997 0.0868 0.114 0 0.775 0.61
smoking Smoking (Regularly or Sometimes) 1,000 0.291 0.454 0 1 1.98
health1 Self-reported Health (5 grades; 5=very healthy) 996 3.405 0.782 1 5 0.63
health2 Health Condition (Chronic Disease) 1,000 0.574 0.495 0 1 1.16
AfDW Affected by Drinking Water 1,000 0.187 0.390 0 1 0.57
AfResp Affected by Resp. Disease 1,000 0.189 0.392 0 1 0.63
victAcc victimized by traffic accidents (self/hh/friends) 1,000 0.293 0.455 0 1 0.21
witnessAcc witnessed traffic accidents last year 1,000 0.354 0.478 0 1 1.11
sickold Sick elderly in hh 1,000 0.232 0.422 0 1 0.41
lostchild having lost child 1,000 0.196 0.397 0 1 1.84
matdeath any maternal death in HH 1,000 0.237 0.425 0 1 0.49
misfortune victimised by misfortune (theft, disaster, etc.) 1,000 0.259 0.438 0 1 0.64
pRwater Perceived Health Risk from Neighbourhood Water Quality 995 2.033 1.228 1 5 13.52
pRair Perceived Health Risk from Neighbourhood Air Quality 996 2.387 1.296 1 5 4.98
pRroad Perceived Risk of Road Safety 991 2.886 1.371 1 5 3.82
diff_choice Feeling difficult to answer (Fatigue) 1,000 0.469 0.499 0 1 2.07
negative negatie feeling to the interview 1,000 0.266 0.442 0 1 0.19
rec_cash Prefer cash 1,000 0.751 0.433 0 1 0.54
rec_gift Prefer gift 1,000 0.192 0.394 0 1 0.17
suv_dur survey duration (minutes) 1,000 120.0 11.27 87 151 0.55

Mesurement units are in the parentheses of the second column. Variables without measurement units are binary variables.
DEFF refers to the design effect: the variance when taking the sampling design into account divided by the variance
when simple random sampling is assumed.
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et al. 1983; Wang and Mullahy 2006; Hammitt and Zhou 2006) is used to separately

estimate (i) the probability of “yes” to the question of whether the respondent has a

willingness to pay, and (ii) the amount of WTP conditional on positive WTP. The first

part, we estimate the following equation by Probit.

Prob(WTP > 0) = f1(X1β1) (3.1)

In (3.1), X1 summarizes the vector of determinants. The second step is the estimation of

WTP amount conditional on WTP > 0. Our estimation equation is the OLS as below:

ln(WTP|WTP > 0) = f2(X2β2) (3.2)

The vector of determinates, X2 can be different from X1. In the following analysis, we

use a common variable set, X = X1 = X2.17

As explained above, our sampling is stratified and clustered. Therefore, estimation

should respect the complexity of the sampling design. Since the sampling weight attached

to each cluster is not recoverable, we compare the results across different sub-samples,

to grasp potential bias from unweighted aggregation. Furthermore, another technical

difficulty arises from the small number of clusters, where we have only three clusters

in two strata in Dhaka, and remaining six strata are singleton with only one cluster.

As pointed out by Cameron and Cameron (2015), when the number of cluster is very

few (below 30), standard bias correction methods for the standard errors, such as White

heteroskedasticity robust variance-covariance matrix estimator, cannot always mitigate

the over-rejection problem. For the estimation of standard errors, we use the “wild cluster

bootstrap” procedures according to the recommendation in Cameron and Cameron (2015).

17. As a robustness check, we estimate the “Type-II Tobit” specification so that we can verify whether
the endogenous selection to answer the second part of the questionnaire (the amount) matters for the
results. The estimation Results were very similar to the Two-Part model results presented in the paper,
and are therefore not shown in this text for the sake of space.
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More specifically, “score wild bootstrap” by Kline and Santos (2012) is used for the probit

estimation, and “wild bootstrap procedure” of six-point version proposed by Webb (2014)

is used for the linear estimation of WTP amount.18

3.3.1 Regression Results

Table 3.3 and Table 3.4 summarise the results of estimating equation (3.1) and equation

(3.2), across different sub-samples. Each column corresponds to a sub-sample we analyse.

The standard errors or p-values are not shown for the sake of space, while the star

indicates the level of significance calculated using wild cluster bootstrap methods as

explained above. Column (1) is for all the sample when ignoring the strata and treating

the clusters as 10 independently and randomly chosen ones. Column (2) restricts the

analyses to the seven clusters from Dhaka, ignoring the strata within them. Column (3) is

the same for Chittagong. Two strata in Dhaka, Dhaka-Most Polluted and Dhaka-Medium

Polluted, have three clusters in each, enabling us to use the wild bootstrap methods. The

results for the Dhaka-Most Polluted stratum are shown in Column (4), and those for the

Dhaka-Medium Polluted stratum are in Column (5).

In general, we find a consistent pattern of estimates on expenditure, age, and educa-

tional attainment. These three variables are the basic ones which are usually included in

the existing studies in other countries. The signs of our estimates are in line with those

past studies; positive coefficient on the expenditure, negative on age, and positive for the

educational attainment. The significance of the coefficients varies across the sub-sample.

We included some unique variables and examine their relationship with the respon-

dent’s WTP. The first set of variables are related to the respondents’ attitude towards

life and social relationship, measured as trust, life satisfaction, and religiousness. Trust is

negatively associated with the probability of having a willingness to pay as in Table 3.3.

Its coefficients are significant when estimated overall the samples as in column (1), only

18. In estimation, we benefit from a STATA command “boottest” (Roodman et al. 2018) for bootstrap-
ping.
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for Dhaka (column (2)), and for Chittagong (column (3)) in Table 3.3. For the amount

of WTP conditional on having any willingness to pay, trust does not show consistent

results across different sub-samples. Life satisfaction seems to have positive relationship

both in the selection and level equations, while results are not conclusive because they

are insignificant for most of the sub-samples.

Variables related to the respondents’ asset holding are also included, namely, the

number of mobile phones per adult, possession of TV, agricultural land, and means of

transport such as motorbike and car. Asset holding is in general related positively to

WTP. Especially, in the level equation estimates shown in Table 3.4, number of mobile

phones and possession of means of transport consistently and positively significant across

different sub-sample specifications. This implies that the asset variables can improve the

model’s explanatory power, while these asset holding variable are correlated with income

variables alone.

We asked the respondents’ frequency of using highway. This is the log of the number

of travels the respondent has made during past one year. Interestingly, this variable

consistently has a positive coefficient for both the selection equation and the level equation,

with significance for multiple cases. Potentially, this might happen because the variable

is capturing the respondent’s type of job or wealth which cannot be fully captured by

the expenditure and asset variables.

Since mortality risk from air pollution is closely related with health, we examine

the association between WTP and a series of health related variables, including health

related activities such as medica expenditure share and smoking, self-reported health

status, and objective health status as the incidence of chronic illness and air/water-borne

diseases. There is no outstanding variable with a strong relationship to WTP, either in

the selection or in the level equation.

We include variable related to the respondents’ experience on misfortunes so that we

can capture the potential impact of such experiences on WTP through affecting their risk
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preferences. In general, none of the variables is very distinct in explaining the relationship

both in the selection and level equations. Being a victim of an accident is positively

(but insignificantly) related to the probability of having positive WTP in the selection

equation. Contrarily, having a sick elder member in household is consistently negatively

related.

Regarding the respondents’ risk perception on the residential environment, high

perception of water and air pollution may be positively related to the amount of WTP

conditional on having any willingness to pay.

These three sets of variables, related to health, misfortunes, or environment, can

capture the respondents’ perception on probability of dying which is positively associated

with the VSL in theory, as described in Hammitt (2017). The results indicate that the

first two category of variables does not seem to strongly support this hypothesis, while it

could apply to the third category which is directly related to environmental pollution,

the issues the mortality risk in the survey is framed.

3.3.2 Bootstrap Estimation of Mean (Median) WTP and VSL

Using the results of estimation of the selection and level equations in the previous section,

we now calculate the mean and median of WTP and their confidence intervals using

bootstrap resampling. The estimation results give the functional forms for the probability

of “yes” for Q1, Prob(y1 = 1) = f1(x′
1
β1), and the log of the WTP amount that is given

as an answer to Q2, ln(y2|y1 = 1) = f2(x′
2
β2). Using the obtained functional forms, we

calculate the predicted value of WTP of individual i, ŷ2i, conditional on observed x′
1i

and x′
2i:

ŷ2i = f1(x′
1iβ̂1) × exp

(
f2(x′

2iβ̂2)
)

(3.3)

The individual predicted values calculated by (3.3) is used to construct the mean or

median of WTP. Furthermore, we repeat the same procedure for the bootstrapped samples
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Table 3.3: Selection Equation Estimates (Probit)

Dependent Variable = Yes

(1) (2) (3) (4) (5)
VARIABLES All Dhaka Chittagong S1 S2

l_pc_exp 0.258 * 0.175 0.464 0.217 0.255
l_Age -0.409 ** -0.201 -0.922 ** -0.147 -0.0278
Male 0.307 *** 0.317 *** 0.188 0.167 0.389 *
l_HHsize 0.127 0.0580 0.294 0.272 0.133
Nchild 0.0184 0.00331 0.0570 -0.0369 0.167
mededuc 0.318 *** 0.238 *** 0.515 * 0.232 0.354
higheduc 0.193 0.153 0.215 0.337 -0.0498
Trust -0.0772 *** -0.0476 * -0.183 -0.0386 -0.0654
lifesat 0.0467 ** 0.0415 0.0459 0.0268 0.122
religious 0.0476 -0.0268 -0.00503 -0.209 0.136
toilet_share 0.173 0.291 ** -0.140 * 0.267 0.363
mob_adult 0.114 0.296 -0.189 0.151 0.189
TV 0.0246 -0.0538 0.160 * -0.185 * 0.110
agLand 0.124 0.294 ** -0.292 0.280 0.237
meanTransp 0.0144 0.188 -0.458 * 0.416 -0.0817
l_highwayFreq 0.0676 * 0.0648 0.0948 0.0907 -0.0234
medishare 0.373 -0.0324 1.283 0.201 -0.195
smoking 0.0324 0.0918 0.00706 0.145 0.187 *
health1 -0.0434 -0.0200 -0.0703 0.000156 -0.0798
health2 0.131 0.0878 0.377 0.393 * -0.117
AfDW -0.0146 0.0521 -0.300 -0.0322 -0.122
AfResp -0.164 -0.160 -0.285 -0.168 -0.0585
victAcc 0.295 0.226 0.395 0.235 0.0313
witnessAcc 0.0226 -0.0579 0.250 -0.149 0.131 *
sickold -0.309 * -0.231 -0.518 -0.187 -0.889
lostchild 0.0565 0.152 -0.248 0.0430 0.198
matdeath -0.0274 0.0714 -0.130 -0.153 -0.00299
misfortune 0.00941 0.0833 -0.207 -0.00538 0.375 *
pRwater -0.0509 -0.0391 0.0116 -0.0267 0.134
pRair -0.0683 -0.0984 0.116 * 0.0208 -0.301
pRroad -0.0354 -0.0161 -0.0925 -0.0390 0.262
diff_choice -0.0936 -0.202 * 0.275 -0.0767 -0.431 *
negative -0.224 ** -0.317 ** -0.112 -0.478 -0.219
rec_cash 0.295 0.261 0.255 -0.400 0.837 *
rec_gift 0.527 * 0.510 0.684 -0.154 1.017 **
suv_dur 0.000978 0.00154 -0.00125 -0.000846 -0.00230
Constant -1.042 -1.178 -0.568 -1.343 -3.116

Observations 957 672 285 289 287
Pseudo-R 0.113 0.130 0.209 0.103 0.238

Column (4) for the Dhaka-Most Polluted Stratum (S1) only
Column (5) for the Dhaka-Medium Polluted Stratum (S2) only
*** p<0.01, ** p<0.05, * p<0.1. S.E. is not shown for space
p-values are calculated using Score Wild Cluster Bootstrap
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Table 3.4: Level Equation Estimates (OLS)

Dependent Variable = l_WTP

(1) (2) (3) (4) (5)
VARIABLES All Dhaka Chittagong S1 S2

l_pc_exp 0.841 *** 0.568 ** 1.443 0.458 0.675 *
l_Age -0.0976 -0.0122 -0.00840 0.180 -0.511
Male 0.0404 -0.313 ** 0.717 -0.438 -0.177
l_HHsize 0.750 *** 0.830 *** 0.734 0.606 1.033 *
Nchild 0.0342 0.143 -0.309 0.0449 0.168
mededuc 0.129 0.106 0.282 0.0401 0.124
higheduc 0.119 0.300 -0.195 0.540 0.228
Trust 0.0355 -0.00139 0.160 0.00608 0.0383
lifesat 0.0225 0.0127 -0.0572 -0.0439 0.0288
religious -0.126 -0.252 * 0.219 -0.180 -0.413 *
toilet_share -0.00915 0.00610 -0.0648 -0.273 0.184
mob_adult 0.342 ** 0.492 * 0.169 * 0.603 * 0.388
TV 0.0630 0.00862 0.390 -0.397 0.304
agLand 0.0437 0.146 -0.352 -0.0435 0.221
meanTransp 0.312 ** 0.352 *** 0.495 * 0.258 0.565 *
l_highwayFreq 0.0814 0.0911 * 0.0364 0.0639 * 0.104
medishare -0.690 -0.140 -0.838 0.565 -0.427
smoking 0.466 ** 0.494 *** -0.0519 0.643 0.482
health1 0.256 0.284 0.426 0.183 0.335
health2 0.0663 0.0720 0.0911 -0.0574 0.420 *
AfDW -0.00185 0.0157 -0.0557 0.266 -0.334
AfResp 0.00864 0.00619 -0.323 0.0290 0.0854
victAcc 0.0664 0.239 0.00177 -0.0853 0.532 *
witnessAcc -0.278 * -0.269 -0.540 0.280 -0.500 *
sickold 0.108 0.338 ** -0.248 0.0168 0.681 *
lostchild -0.0785 -0.168 0.280 -0.489 -0.255
matdeath -0.127 -0.0396 -0.309 -0.143 0.125
misfortune -0.0793 -0.0396 0.00187 -0.403 * 0.226
pRwater 0.136 ** 0.0723 * 0.296 0.0275 0.125
pRair 0.0341 0.0599 *** -0.199 * 0.0811 0.0650 *
pRroad -0.0206 -0.0237 0.0912 0.0449 -0.154
diff_choice -0.0142 -0.104 0.479 -0.201 -0.0321
negative -0.449 ** -0.427 -0.404 0.111 -0.801 *
rec_cash 0.218 0.293 2.054 0.190 0.110
rec_gift 0.249 0.165 2.458 -0.0605 0.176
suv_dur -0.00317 -0.00329 -0.00270 -0.0124 0.0161 *
Constant -4.168 -2.033 -12.71 1.061 -4.513

Observations 685 477 208 185 229
R-Squared 0.216 0.221 0.460 0.303 0.326
Adj R-Sq. 0.173 0.157 0.346 0.133 0.199

Column (4) for the Dhaka-Most Polluted Stratum (S1) only
Column (5) for the Dhaka-Medium Polluted Stratum (S2) only
*** p<0.01, ** p<0.05, * p<0.1. S.E. is not shown for space
p-values are calculated using Wild Cluster Bootstrap with Six-Points
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for 4,000 times to obtain the confidence intervals for the mean (median) estimates using

the results of the previous section.

The VSL is obtained by dividing WTP by the magnitude of risk reduction in the

scenario (5/10,000). In order to construct confidence intervals for the mean (median)

WTP, we use the bootstrap re-sampling method.19 The estimation procedure is as follows:

the bootstrap resampling is made at the cluster level. For each round of re-sampling, we

estimate selection equation and level equation on the bootstrapped samples, and calculate

the predicted WTP using (3.3) for each re-sampled observation. Mean (or median) WTP

over this predicted WTP across bootstrapped observations are then calculated. This

process is repeated for 4,000 times to obtain the bootstrapped average and confidence

intervals for the mean WTP.

Table 3.5 summarises the estimation results, across different sub-samples. The average

VSL in PPP USD ranges from 17,480 to 22,463. The average VSL is the smallest for

the case of all the sample is used, and it is the largest for the strata 2 (Dhaka-Medium

Polluted). The confidence interval is the narrowest for strata 2 with only 1,234 USD,

while it becomes very large for the case of Chittagong (16,632 USD). To understand

the large variability of the estimated VSLs, Table 3.7 show key descriptive statistics

and predicted values of mean WTP and VSL of each of 10 clusters. Chittagon’s wide

confidence interval compared to other subgroup seems to be caused by the ShehShah

cluster (Column (8) of Table 3.7) whose average amount of willingness to pay conditional

on having any willingness to pay is very low (195.4 Taka) compared to other clusters.

DEFF (Design Effect) of each mean estimate is also reported in the table. Here, DEFF

is defined as the ratio of the variance of mean VSL by bootstrapping accounting for our

complex sampling design, to the variance of mean VSL calculated when the bootstrapping

is carried out by a simple random resampling from the pool of all 1,000 observations.

Table 3.6 shows the bootstrap estimation results of the median VSL. Compared with

19. The procedure is similar to Wang and Mullahy (2006).
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the mean VSL, there is no systematic relationship between the estimated average median

VSL and the sample size. And the estimated values are all significantly smaller than

those for mean VSL.

Bangladesh’s nominal GDP per capita in 2013 was 46,322 Taka.20 Therefore, the

estimated mean VSL is about 9.78-12.57 times of GDP per capita (5.03-7.61 times for

median VSL estimate). This is much higher than the estimate of mean VSL by Mahmud

(2009) at between 3.55 times and 5.82 times GDP per capita at the time of survey21.

However, in terms of a multiple of GDP per capita, our estimated VSL is much smaller

than CV studies in other countries. For example, Wang and Mullahy (2006)’s result

implies that the median VSL is 70.32 times average nominal income, calculated from

WTP for reducing mortality risk from air pollution in Chongqing, China. Miller (2000)

conducts a meta-analysis of 68 VSL studies in developed countries and found that stated

VSL is typically about 120 times of GDP per capita. In Section 3.4, we will further discuss

on the validity of our estimates and how we can position it among the international

examples.

3.4 Discussion on the Validity of Results

CV method is a widely used methodology to evaluate the monetary value of goods whose

market values cannot be observed directly. However, it has long been criticised for its

reliability and practical usefulness for policy making. Hausman (2012) summarises the

methodological limitations of contingent valuation method. He categorises the problems

which are commonly observed in the existing contingent valuation studies into three; (i)

Hypothetical bias, (ii) Discrepancy between willingness to pay (WTP) and willingness to

20. https://data.worldbank.org/indicator/NY.GDP.PCAP.KN?locations=BD

21. The survey was done in 2003 and nominal GDP per capita then was 29,010 Taka. His mean VSL
estimates ranged from 103,074 Taka to 168,905 Taka, depending on different settings. However, the study
deals with very large risk reduction and VSL is inversely proportional to the size of the risk reduction
offered.

165



Table 3.5: Estimates of Mean VSL

(1) (2) (3)
Average Confidence Interval (5%) Confidence Interval (95%)

All sample (N=1,000, DEFF = 2.51)
mean WTP (Taka) 226.6 198.0 256.5
VSL (Taka) 453,200 396,000 513,000
VSL (PPP USD) 17,480 15,274 19,786

Dhaka (N=700, DEFF=1.54)
mean WTP (Taka) 248.5 225.3 274.7
VSL (Taka) 497,000 450,600 549,400
VSL (PPP USD) 19,169 17,380 21,190

Chittagong (N=300, DEFF=3.03)
mean WTP (Taka) 271.2 164.2 379.8
VSL (Taka) 542,400 328,400 759,600
VSL (PPP USD) 20,920 12,666 29,298

Only Dhaka-Most Polluted Stratum (N=300, DEFF = 1.24)
mean WTP (Taka) 260.2 228.1 291.8
VSL (Taka) 520,400 456,200 583,600
VSL (PPP USD) 20,072 17,596 22,509

Only Dhaka-Medium Polluted Stratum (N=300, DEFF = 0.36)
mean WTP (Taka) 291.2 283.1 299.1
VSL (Taka) 582,400 566,200 598,200
VSL (PPP USD) 22,463 21,838 23,072

The conversion rate between US dollar and Bangladesh Taka, 1USD=78.2049 BDT, as of June 30, 2013
(Bangladesh Bank) is used for calculating US dollar values. The PPP conversion factor of Bangladesh
Taka into international dollar (at 2011 price) was 1USD = 25.927BDT.
(See https://data.worldbank.org/indicator/PA.NUS.PPP?locations=BD).
DEFF refers to the design effect the variance when taking the sampling design into account divided by
the variance when simple random sampling is assumed.
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Table 3.6: Estimates of Median VSL

(1) (2) (3)
Average Confidence Interval (5%) Confidence Interval (95%)

All sample (N=1,000, DEFF=2.42)
median WTP (Taka) 153.6 133.3 177.0
VSL (Taka) 307,200 266,600 354,000
VSL (PPP USD) 11,849 10,283 13,654

Dhaka (N=700, DEFF=2.09)
median WTP (Taka) 176.2 161.1 197.6
VSL (Taka) 352,400 322,200 395,200
VSL (PPP USD) 13,592 12,427 15,243

Chittagong (N=300, DEFF=3.76)
median WTP (Taka) 116.5 80.92 168.5
VSL (Taka) 233,000 161,840 337,000
VSL (PPP USD) 8,987 6,242 12,998

Only Dhaka-Most Polluted Stratum (N=300, DEFF=0.78)
median WTP (Taka) 167.0 162.2 173.6
VSL (Taka) 334,000 324,400 347,200
VSL (PPP USD) 12,882 12,512 13,391

Only Dhaka-Medium Polluted Stratum (N=300, DEFF=0.37)
median WTP (Taka) 162.3 151.2 171.1
VSL (Taka) 324,600 302,400 342,200
VSL (PPP USD) 12,520 11,664 13,199

The conversion rate between US dollar and Bangladesh Taka, 1USD=78.2049 BDT, as of June 30, 2013
(Bangladesh Bank) is used for calculating US dollar values. The PPP conversion factor of Bangladesh
Taka into international dollar (at 2011 price) was 1USD = 25.927BDT.
(See https://data.worldbank.org/indicator/PA.NUS.PPP?locations=BD).
DEFF refers to the design effect the variance when taking the sampling design into account divided by
the variance when simple random sampling is assumed.
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Table 3.7: Descriptive Statistics and Predicted Value of WTP at Each Cluster

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Dhaka Chittagong

strata= 1 strata= 2 strata= 3 strata= 4 strata=5 strata= 6
VARIABLES Hazaribag Kamrangir Tongi Diabari ShahAli Nobinagar Maniknagar ShehShah GoribullahShah Riaz Uddin & Enayet

Have Positive Willing-
ness to Pay

0.770 0.590 0.540 0.814 0.765 0.850 0.660 0.717 0.680 0.790

Amount of Willingness
to Pay

816.6 835.7 574.4 764.1 1,216 741.1 953.0 195.4 1,099 1,045

Per Capita Expenditure
(Taka/Month)

4,395 4,510 5,677 4,526 5,920 4,336 6,223 4,846 6,315 4,860

Age 36.65 35.15 35.56 34.43 36.86 34.17 34.37 34.60 34.90 36.18
Male 0.560 0.560 0.490 0.598 0.735 0.860 0.540 0.596 0.590 0.560
Household Size 5.410 4.710 4.939 4.443 4.546 4.610 4.720 5.202 5.300 4.950
Medium Education At-
tainment

0.420 0.340 0.450 0.320 0.367 0.550 0.380 0.354 0.340 0.340

High Education Attain-
ment

0.140 0.153 0.180 0.124 0.235 0.130 0.340 0.354 0.398 0.160

Perceived Health Risk
from Neighbourhood Air
Quality

3.570 3.450 2.960 2.093 2.299 1.455 2.450 1.980 1.808 1.778

Predicted mean WTP 399.5 369.2 494.8 313.0 682.1 354.5 360.2 99.42 698.0 272.8
(Impllied VSL, PPP
USD)

30,817 28,480 38,169 24,145 52,617 27,346 27,786 7,669 53,843 21,044
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accept (WTA), and (iii) Scope bias.

The first problem, the hypothetical bias, stems from the fact that the contingent

valuation method relies on hypothetical questions about the non-market goods that are

unfamiliar to the people in their daily life. Since hypothetical questions may not always

be associated with people’s actual experience, a substantial discrepancy between what

they say and what they do (if they actually face the situation) can emerge. Hausman

(2012) reports hypothetical bias usually overestimates the true price of a non-market good.

Viscusi and Masterman (2017b) assert that revealed preference studies using the Census

of Fatal Occupational Injuries (CFOI) of the U.S. are relatively favourable because they

are not subject to biases introduced by hypotheticals, instead of using stated preference

results. In addition, they suggest that the best way to calculate a VSL for a country with

insufficient data is to “transfer a base VSL from the United States calculated using the

labor market estimates”, by extrapolating the country’s value from the US base value

and the income elasticity of the VSL.

Despite this universal scepticism to the stated preference approach, global evidence

does not always discourage the use of the method. By a parametric meta-regression

analysis on the studies in the U.S, U.S. Environmental Protection Agency’s Office of

Policy (2016) revealed that there is no distinct differences in the estimated VSL between

the revealed preference studies and the stated preference studies.22 This is a counter-

evidence to the common concern that the stated preference method is highly susceptible

to hypothetical bias (which is often supposed to be a larger VSL estimate with the stated

preference to the revealed preference).

We believe that our estimates are not significantly affected by the hypothetical bias.

Firstly, while the argument by Hausman (2012) focuses mainly on the cases of goods

which are distant from the need of fatal risk reduction, our scenario (fatal risk reduction)

22. See Table 9. of U.S. Environmental Protection Agency’s Office of Policy (2016) for the detail. It
argues that the stated preference studies are about 15 percent lower on average than those from the
revealed preference studies, but this is not a statistically significant difference.
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is more closely tied to their daily decision making. Studies using revealed preference

methods support that the risk reduction is people’s daily issue and that they are willing

to trade off money to reduce this. For example, Viscusi and Aldy (2003) provide market

evidence using revealed preference that shows that people are willing to spend money to

reduce their mortality risk in their daily life. Since hypothetical questions work better

for issues closely related to the daily life risk reduction that are common and familiar

than for unfamiliar public goods provision, it is reasonable to assume that hypothetical

bias is less of a concern in our case.

In addition, our questionnaire design helps respondents to think more realistically.

In existing studies, it is common to ask about WTP first followed by questions related

to their socio-economic characteristics of the respondents. In our case, we introduce

respondents to various risks people face in their daily life in Bangladesh, train and elicit

their understanding of risk concepts, their own risk perceptions. Also, we asked questions

related to socio-economic situation including income and consumption expenditures,

cultural background, record of individual health problems, etc. After these questions,

the WTP questions were asked in the final section of the questionnaire. This two-step

structure encourages the respondents to consciously reflect their own socio-economic as

well as physical status, and provides the respondent a very good setting in answering the

valuation question more thoughtfully and credibly.23

The discrepancy between WTP and WTA is not a major concern in the context of

fatal risk reduction, as in our case. First of all, NOAA panel report (Arrow et al. 1993)

recommended WTP instead of WTA in the context of contingent valuation studies. In

addition, WTP seems more appropriate regarding values for reducing mortality risk from

air pollution, because the policy implications of WTA values are not obvious in the

context of improving air quality. 24

23. As far as we know, there is no study examining the impact of the style of questionnaires, especially
about when the WTP questions are asked during the survey.

24. Due to this theoretical concern, most of the existing studies on mortality risk reduction have focused
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Scope bias challenges two assumptions of VSL: that respondents correctly understand

the probability of death (e.g. the fatal risk of 1/1000 is ten times more dangerous than

the risk of 1/10000), and the willingness to pay is approximately linear with respect to

the risk reduction magnitude (which is called near-proportionality). In the literature of

contingent valuation, a “scope test” with multiple questions of different risk reduction

magnitude is often conducted to deal with this problem. Since we did not conduct a scope

test with multiple questions of different risk reduction magnitudes, our estimates of VSL

potentially suffer from this problem. However, while the lack of scope test could limit the

reliability of our VSL estimate to some extent, we still believe our analysis delivers useful

information because the survey respondents received enough training to understand the

probability concept and the urban air pollution situation in Dhaka (Chittagong). We

provided examples and tested the respondents on their understanding of probability, and

they generally got high scores, as seen below. As Mahmud (2009) shows, facilitating

respondents’ better comprehension through training prior to the questioning WTP is

crucial in the mitigation of scope bias.

3.4.1 Respondents’ Understanding of Risk and Risk Reduction

In the following two subsections, we discuss the plausibility of our estimates from

various perspectives. Firstly, as we argued above, one of the important prerequisites

for conducting contingent valuation studies is the good understanding of the concept of

risk and risk reduction held by the respondents. Given generally low education profile

of respondents where about 40% of the respondents have only primary or lower-level

education, we paid special attention in training and examining their ability to correctly

answer risk and risk reduction problems.

Before introducing our hypothetical risk reduction scenario and asking about their

on WTP. Gibson et al. (2007) measured both WTP and WTA for landmines removal programs in
Thailand, and it is the only previous case that compares the values from the two methods, to the best of
our knowledge. They find no significant difference between the two methods. Given these, we find that
our approach to use only WTP is appropriate.
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Table 3.8: Respondents’ Understanding of Risk and Risk Reduction

Question Correct Respondent
(N = 1000)

The risk of dying in Road A is 1 in 10,000 and the risk of
dying in Road B is 3 in 10,000. Which road is more risky?
(Correct Answer = B)

987 (98.7%)

Which of the three risk reductions is preferable? (Correct
Answer = 3)

1. 40 in 100,000 to 30 in 100,000

2. 40 in 100,000 to 20 in 100,000

3. 40 in 100,000 to 10 in 100,000

991 (99.1%)

willingness to pay for it, we explained the concepts of risk reduction in detail followed by

an examination. The exam checks that respondents correctly compare the level of risk

and the magnitude of risk reduction. The results are summarised in Table 3.8. Almost

all the respondents understood the concept of risk and risk reduction correctly. 98.7% of

the respondents answered correctly when they asked to compare the level of mortality

risk between two roads. Furthermore, 99.1 % of them correctly chose the option among

three hypothetical risk reductions. Out of total 1,000 respondents, 980 respondents (98%)

answered the both question correctly. The 20 respondents who could not answer either

of questions correctly received follow-up training until they finally understood.25

3.4.2 Assessment with Theory and Past Studies

We further argue the validity of our estimate from theoretical perspective. Hammitt

(2017) theoretically argues how income, mortality risk, health, life expectancy, and social

norms, affect the amount of VSL. According to the standard theory, income or expenditure

25. In a regression analysis, we include dummy of making incorrect answers. However, this is not
significant (the result is not reported in Table 3.3 and Table 3.4)
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is positively associated with VSL, as expected. Instead, higher survival probability (due

to healthier life, etc.) can be negatively associated because of the “dead-anyway effect”

(Pratt and Zeckhauser, 1996), reflecting that if current probability of death is high, the

VSL is large because the expected opportunity cost of current spending decreases. The

impact of life expectancy at the time of survey is ambiguous as is the expected future

health status. The impact of framing risk reduction as government programmes is also

theoretically ambiguous.26

OECD (2012) (or Lindhjem et al. (2011))27, conducts a comprehensive meta-regression

of VSL on various stated preference studies in OECD countries, aiming at pinning

down relationships between VSL amount and characteristics of population and survey

material. They conclude that income and risk reduction size are positively and negatively

associated with VSL, with strongly significant coefficients. If the risk context is related

to environmental issues, there is also a strong indication that the stated VSL tends to

be lower. If the risk reduction is framed as a public good, the VSL is again likely to be

lower compared to when it is being considered as a private issue.28

As a precious example of a non-OECD country which is comparable to ours, Guo,

Haab, and Hammitt (2007) used a stated preference survey in Chengdu, China, on the

WTP for reducing the risk of asthma and death from air pollution problem. Their survey

was designed to analyse the impact of design choice, which is relevant to our case: (1)

whether the risk reduction measure is contextualised as a public/governmental provision

or as a private good, (2) in case it is a public provision, how respondents’ belief in the

effectiveness of government programs matters. According to their analysis, framing the

26. Hammitt (2017) does not support simply transferring the VSL of one country to another, because the
theory suggests that VSL value can be affected by many factors not only income, such as life expectancies
and social norms, which are greatly diverse across nations.

27. Specifically, chapter named “Meta-regression analysis of value of statistical life estimates”.
28. According to one of the estimated results that is most relevant to our setting (Table 3.4 in OECD

(2012)), elasticity of VSL with respect to income is 0.783, with respect to the magnitude of risk reduction
is -0.577, respectively. If the cause of fatality is framed as an environmental issue, the value of VSL
declines by 0.606 (60.6%). If risk reduction program is framed as an public goods, it reduces the stated
VSL by 91.3%.
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risk reduction as a public provision significantly reduces the stated VSL, compared to the

case where it is explained as a private good. Furthermore, they found that respondent

confidence in the effectiveness of government programs significantly increase the VSL.

Our study context in Dhaka and Chittagong, Bangladesh, is a case of a very low

income country, with a scenario with relatively large magnitude of risk reduction (1/2000),

and framed as a environmental public goods. According to OECD (2012), this feature is

strongly leaned to smaller VSL estimates. If our VSL is perfectly align with the model

of OECD (2012), the VSL should be 30,930 USD 29 Our mean estimates, ranging from

17,480 to 22,463 USD, are not seriously far from this value based on OECD (2012)’s

model. Our estimates is therefore largely in line with past stated preference studies in

OECD countries, with potentially hitting the lower bound of VSL.30

3.5 Conclusion

Our study is the first attempt to provide estimates of monetary value of air pollution

risk reduction using the contingent valuation method in two major cities in Bangladesh.

Based on the collected data and regression results for selected individual characteristics,

29. Using the regression coefficient from the meta-analysis (see footnote 28 for detail), the VSL from
our survey consistent with their model can be calculated by,

30, 930USD = 3mil.USD ×

(
2023

30601

)0.783

×

(
1/2000

1/10000

)−0.577

× exp(−0.606) × exp(−0.913) (3.4)

where, the mean VSL , the mean income (in GDP per capita), and risk reduction magnitude of OECD
(2012)’s study samples, were 3 million USD, 30,601 USD, and 1/10000, respectively. The annualized
average expenditure from our survey is 2,023 USD. The coefficients were taken from the Model V of
Table 3.4 of OECD (2012). If we use the coefficients of model IV of the same table, the value further
drops to 24,733 USD. Bangladesh is a country where people may attach especially lower value when
the risk reduction program is designed as a “government” program. In Bangladesh, the government can
collect fewer tax per GDP compared to other countries and only 1.2% of population pay income tax. It
is probable that many people do not think they are responsible for financing public policies and therefore
framing the hypothetical program as a governmental one could have a large negative impact.

30. We calculate the elasticity of VSL to expenditure by regressing log of predicted VSL on log of per
capita expenditure. For all the sample, the elasticity is .955. Only for Dhaka, it is .652, while it rises
to 1.661 for Chittagong. For the Stratum 1 and the Stratum 2, it is .643 and .581, respectively. These
values are within the range found from past studies (e.g. Robinson, Hammitt, and O ’Keeffe 2017; Viscusi
and Masterman 2017b; OECD 2012; Hammitt and Robinson 2011).
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we calculated the bootstrapped average of mean and median WTPs as well as those of a

VSL. The estimated mean VSL is ranged from 17,480 to 22,463 USD in PPP of or 9.78

to 12.57 times GDP per capita in 2013. While this could be interpreted as a substantial

private contribution to the risk reduction program with large externality, the estimated

VSL is much smaller compared to studies conducted in other countries. This might be

related to scope bias, as suggested in earlier literature in economics and psychology that

argue that people tend to overestimate small risks and underestimate large risks (e.g.

Tversky and Kahneman 1992; W. K. Viscusi 1992; Kahneman and Tversky 2000). In

addition to this scope bias, our estimate could also be prone to bias due to aggregation

of unweighted observations. However, as examined in Section 3.4, our estimates are not

out of the range of the existing studies summarised in Robinson, Hammitt, and O ’Keeffe

(2017). Moreover, ours are not very far from the value obtained from a benefit transfer

exercise using the result of OECD (2012).

Given these potential issues surrounding the valuation exercise, it is important to

carefully interpret the estimates and we should not treat them as generic (context free)

VSL in Bangladesh. Rather these may be regarded as a lower bound of benefit estimates

for environmental policies or programs aiming at fatal risk reductions.
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