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Résumé

Afin de comprendre les mesures spectroscopiques, il est important de comprendre les pro-
cessus physiques se déroulant à l’échelle microscopique à cause de la relation qui les relie au
comportement des électrons (et noyaux) dans le système. Le traitement des particules simi-
laires exige une description quantique des atomes et des molécules formant le système d’intérêt.
Cela signifie que les simulations théoriques, si le système contient des éléments lourds, sont
des tâches particulièrement difficiles à cause des effets relativistes. Cette situation motive le
dévellopement de plusieurs approches théoriques qui vise à simplifier le traitement d’une partie
du système totale au moins.

Dans cette thèse nous investiguons l’utilisation de l’approche Frozen Density Embedding
(FDE) pour calculer les propriètès des systèmes complexes. La FDE est formellement une
méthode exacte qui nous permet de séparer un système complexe en sous-systèmes et choisir
la méthode théorique appropriée pour chaque sous-système. Avec cette séparation nous con-
centrons l’effort computationel sur un sous-système où plus en le traitant avec les méthodes
de structure électronique relativistes qui incluent le couplage spin-orbit, tant que l’effet des
sous-systèmes restant (environnement) sur le système d’intérêt est traité avec des méthodes
suffisamment précises.

Notre premier système d’intérêt concerne le calcul quantique des énergies d’ionisation pour
des aggrégations moléculaires des halogènures microsolvates. La sensitivité de ces énergies par
rapport aux changements structurels autour les halogènures et dans les molécules d’eau à été
explorée ainsi que l’évolution de ces énergies avec la taille de l’aggrégation. Nos résultats
démontrents que le la combinaison de EOM-CC relativiste pour le système actif et la DFT
pour l’environnement garantie par la FDE donnent des valeurs comparables à ce qui est trouvé
dans les expériences.

De même, nous avons exploré la performance de la FDE pour la description des effets de
solvent sur les ptopriétés magnétiques (Tenseurs de couplage spin-spin indirecte et le shielding
RMN ) pour le complexe PtTl(CN)5 qui contient une liaison métal-métal entre les centres
lourds (Pt, Tl), cette fois-ci avec un traitement DFT relativiste pure. Pour le couplage spin-
spin, comme les résultats th’eoriques précédentes, l’inclusion de la première couche de solvataion
est requise pour arriver á un accord semi-quantitative avec l’expérience. Tandis que pour le
shielding NMR, la FDE nous permet de réduire significativement le nombre de molécules à
inclure dans le sous-système actif. Ceci ouvre la perspective sur l’utilisation de la FDE avec les
méthodes de structure électronique pour ce genre de propriétés dans ces cas compliqués.
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Abstract

In order to understand spectroscopic measurements, it is important to understand the
physical processes taking place at a microscopic scale, since these are related to the behaviour
of the electrons (and nuclei) in the system. The treatment of such particles requires one way
or another a quantum mechanical treatment of the atoms and molecules that make up a given
system of interest. This means that in order to achieve that we must perform theoretical sim-
ulations and, if such systems contain heavy elements, this is a particularly difficult task, since
we not only have to deal with the large number of particles but also include relativistic effects.
These difficulties have motivated the development of several theoretical approaches that sim-
plify the treatment of at least part of the total system.

This thesis investigates the use of the Frozen Density Embedding (FDE) approach to the
calculation of molecular properties of complex systems. FDE is a formally exact method with
which we can separate a complex molecular system into subsystems and choose the most suit-
able electronic structure approach to treat each of these. With this separation, we can focus the
computational effort into one or a few subsystems of interest and treat them very accurately
with relativistic electronic structure methods that include spin-orbit coupling, while the effect
of the remaining subsystems (environment) on the system of interest is treated at a sufficiently
high level of accuracy.

Our first interest was in the quantum mechanical description of ionisation energies for
molecular aggregates of microsolvated halides, such as found in water droplets. We have ex-
plored the sensitivity of these energies to structural changes around the halides and among the
waters, and how these energies evolve with the size of the aggregate, with our results being in
quantitative agreement with experimental data, and we have predicted the ionisation energies
of the heaviest of halides, astatide, which is of interest as a radiotherapeutic agent. Our results
demonstrate that with the combination of relativistic EOM-CC for the active subsystem and
DFT for the environment, afforded by FDE, one can rival with quite sophisticated theoretical
approaches based on periodic quasi-particle calculations which are the current state-of-the-art
for condensed matter simulations.

We have also explored the performance of FDE for the description of solvent effects on
magnetic properties (indirect spin-spin couplings and NMR shielding tensors) for a complex
PtTl(CN)5 containing a metal-metal bond between the heavy centres (Pt, Tl), this time purely
at relativistic DFT level. For spin-spin couplings, we have shown that much like prior theoretical
results, we require an extensive first hydration shell around the complex, but nevertheless arrive
at a semi-quantitative agreement with experiment. For NMR shieldings on the other hand, FDE
allows us to significantly reduce the amount of water molecules explicitly added to the active
subsystem to the first hydration shell around the Tl atom. This might open up the perspective
to employing FDE with more accurate with more accurate electronic structure methods for this
property for this class of compounds.
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Chapter 1

Theoretical chemistry

The tandem of chemistry, as of physics, is towed by theory and experiment. Moreover, with
the advent of high computer resources, the computational chemistry which attempts to model
all aspects of real chemistry as closely as possible by using calculations rather than experiment,
appears as a third tool that provides remarkable advances to chemical problems. It uses the
power of computers combined to approaches based upon classical, quantum, and statistical
mechanics and other aspects of molecular physics, chemical physics, and physical chemistry [1],
to quantitatively model physical and chemical behaviours. This provides insights, that can be
very useful to theory and experiment, participating to their progress. In addition, in many
times, experiments are difficult or infeasible (nuclear applications, astrophysics, ...) or hard to
interpret (insufficient resolution), thus making computational chemistry indispensable.

As a result, a wide variety of models has been developed to obtain information on the structures,
properties and energetics of macroscopic systems. In theoretical chemistry and physics we can
distinguish between quantum chemical and molecular mechanics models. Classical molecular
models which are based, as the name implies, on classical mechanics and, use the concept of force
fields [2], where the building blocks are atoms. The electronic energy is written as a parametric
function of the nuclear coordinates, in which the parameters are fitted to experimental or
higher level computational data. Within this model, structural and dynamical properties can
be obtained easily, even for several thousands of atoms, which makes it, the only realistic
approach for performing simulations where solvent effects or crystal packing can be studied.

On the other hand, and in order to compute electric and magnetic properties, methods that
are based on the solution of Schrödinger or even the Dirac equation, dedicated to deal with
relativistic effects, and that treat molecules as collections of nuclei and electrons without any
reference to chemical bonds are required. However these equations cannot be solved analytically
for systems with more than two particles, and we then need to make approximations. There-
fore, the adopted approximations determine the accuracy of the quantum chemical method, the
less severe the approximation, the closer will be its results to experiment. This comparison to
experiment draws special attention to computed physical observables, but doesn’t overlook the
computation of other quantities that cannot be observed.
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1.1 Schrödinger equation and Born-Oppenheimer approx-

imation

Electrons are very small particles, as such, their behaviour cannot be properly treated by
classical mechanics, but rather requires a quantum mechanical description. The many-body
time-dependent Schrödinger equation for a system composed of N nuclei with positions {R⃗i}
and n electrons with positions {r⃗i} is given as:

ĤψMB = T̂ψMB + V̂ψMB = ih̄
∂ψMB

∂t
, (1.1)

in which T̂ is the sum of the electron kinetic energy operator,

T̂e = −
h̄2

2

n
∑

i=1

∇2
i

me

, (1.2)

where me is the electron mass, and the nuclear kinetic energy:

T̂nuc = −
h̄2

2

N
∑

j=1

∇2
i

Mj

, (1.3)

where Mj is the mass of nucleus j and V̂ is the potential energy operator which sums up the
electron-nuclei Coulomb potentials,

V̂e−nuc = −
N
∑

j=1

Zj

n
∑

i=1

e2

|ri −Rj|
, (1.4)

and the electron-electron Coulomb repulsions:

V̂e−e =
n

∑

i=1

n
∑

j<i

e2

|ri − rj|
, (1.5)

and the nuclear-nuclear Coulomb repulsions:

V̂nuc−nuc =
N
∑

i=1

N
∑

j<i

ZiZj

|Ri −Rj|
. (1.6)

This Hamiltonian may contain additional therms, for example, in the case of presence of
external electric or magnetic fields. For a closed system, the conservation of energy makes a
separation of time and spatial coordinates possible. The time-independent Schrödinger equation
(1.1) can be formulated as an eigenvalue problem:

Ĥ(r⃗, R⃗)ψ(r⃗, R⃗) = Eψ(r⃗, R⃗). (1.7)

Moreover, the large difference in mass and velocity between electrons and heavy nuclei opens
for a further approximation, so that their motions can be decoupled. Thus, the total wave
function ψ(r⃗, R⃗) can be written as a product of separate wave functions that correspond to the
nuclear and the electronic parts :

ψ(r⃗, R⃗) = ψe(r⃗, R⃗)ψnuc(R⃗), (1.8)
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for which the Hamiltonian can be written as a sum of the two parts:

Ĥ = Ĥe + Ĥnuc. (1.9)

That enables us to reduce significantly the complexity of the system by focusing only on the
electronic part by solving Eq.(1.10):

Ĥeψe(r⃗, R⃗) =

{

−
h2

2

n
∑

i=1

∇2
i

me

−
N
∑

j=1

Zj

n
∑

i=1

e2

|ri −Rj|
+

n
∑

i<k=1

e2

|ri − rk|

}

ψe(r⃗, R⃗) = Eeψe(r⃗, R⃗).

(1.10)

Therefore the electronic wave function ψe(r⃗, R⃗) and the corresponding energy eigenvalues,

contain nuclei coordinates {R⃗i} as parameters.

For most purposes, we are only actually interested in the ground state ψ0
e(r⃗, R⃗) of the electronic

system, that corresponds to the electron ground state energy E0. The total energy E0
tot is then

recovered by adding the nuclear-nuclear Coulomb repulsions Vnuc−nuc,

E0
tot = E0 + Vnuc−nuc. (1.11)

Methods involving solutions of Eq.(1.10) are known as electronic structure methods. There
are two major groups of electronic structure methods; those based on the wave function, which
is the mathematical representation of the quantum state of a given quantum system, and the
density functional theory (DFT) based methods, that aim to directly determine the density,
which is associated to the probability of finding a particle at a given point in space.

1.2 Wave function based methods

Even with the approximations that are made, solving the electronic Schrödinger equation
is still challenging due to the

∑n
i<k=1

e2

ri,k
term in Eq(1.10) which complexifies things as soon as

more than two electrons (without accounting for the nuclei) are involved.

1.2.1 Hartree Fock approximation

In order to deal with the difficulty of describing electron-electron interactions, the Hartree-
Fock approximation has been introduced. In it, the true electron-electron interaction is replaced
by a model interaction in which each electron interacts with the mean field of all the other elec-
trons, called the self-consistent field.

In this representation an electron i feels other electrons via the potential (νHF ) [3] that
will be defined in the following:

νHF
i =

∑

b

Jb(i)−Kb(i), (1.12)

where J and K are defined below. Figure (1.1) illustrates a schematic representation of the
Hartree-Fock approach.

The Hartree-Fock method is based on the representation of the many-body wavefunction
on the basis of a product of one electron functions φi(ri). Moreover, in order to respect the
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K̂j |φi(ri)⟩ =

{

⟨φj(rj)|
1

|ri − rj|
|φi(rj)⟩

}

|φj(ri)⟩ , (1.18)

which represent the Coulomb and exchange operators applied on the orbital φi(ri). Moreover, it
is noticeable that the summation of orbitals energy does not equal the HF total energy because
its double counts the Coulomb interaction. The total energy in the HF model is computed as:

EHF =
N
∑

i=1

εi −
1

2

N
∑

i=1

N
∑

j=1

(Jij −Kij). (1.19)

Koopmans’ theorem and the meaning of orbital energies

In the Slater determinant, only occupied orbitals appear. Each orbital has an energy εi.
But there is also another solution of the Hermitian Hamiltonian in the complete basis set called
virtual or unoccupied orbitals. A good thing about HF potential is that the orbital energies εi
give approximate ionisation potentials and electron affinities via the Koopmans’ theorem. Let
us consider the energy of an N-electron system associated with the wave function ψ0:

ψ0 = |φ1φ2φ3.....φn|, (1.20)

and the corresponding system with one electron removed from orbital number n associated to
the wavefunction ψ+:

ψ+ = |φ1φ2φ3.....φn−1|. (1.21)

If we assume that the molecular orbitals (MO) are identical for the two systems i.e. there is no
relaxation effect on MOs, the subtraction the two corresponding energies yields:

∆EI = En − En−1 = ⟨ψ0|H |ψ0⟩ − ⟨ψ+|H |ψ+⟩ = εn. (1.22)

Thus, the ionisation energy is given as the orbital energy εn, a result known as Koopmans’
theorem [4]. In a similar way, the electron affinity can be computed as the energy of the n+ 1
unoccupied orbital of the neutral molecule:

∆EEA = En+1 − En = ⟨ψ−|H |ψ−⟩ − ⟨ψ0|H |ψ0⟩ = εn+1, (1.23)

where ψ− is the wave function of the corresponding anion. However, the lowest unoccupied
eigenvalue usually converges to zero, corresponding to a solution for a free electron, described
by a linear combination of the most diffuse basis functions. This makes taking unoccupied
orbital energies as electron affinities questionable. In contrast approaching ionisation energies
as occupied orbital energies is justified [2].
Moreover, the difference εn+1 − εn is not to be used to approximate an excitation energy from
the n to the n+1 orbital, since that the electron in n+1 orbital has to feel n−1 other electrons,
whereas it feels n electrons in this case.

1.2.2 Electron correlation

The Hartree-Fock approximation assumes that each electron moves in the average field cre-
ated by all of the other electrons. The resulting single-determinantal wavefunction corresponds
to the resulting lowest possible energy [5]. But this representation engenders an error that
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results in a difference between the HF energy and the exact energy ∆E = E −EHF called the
correlation energy, which is mainly due to ignoring the correlated motion of each electron with
every other ones. Thus, we need to go beyond the mean-field description of HF by considering
many more slater determinants up to the full interaction.

When speaking of electron correlation, in general one can distinguish between two kinds. The
first deals with the instantaneous aspect of electron-electron interaction (dynamical correla-
tion), which can be divided, in turn, into two types. The Fermi correlation, already taken
into account in the HF model, which arises from the Pauli antisymmetry principle of the wave
function, and the Coulomb correlation, that is not included into the HF approximation, which
refers to the fact that the probability of finding two electrons at the same point in space is zero
as the repulsion becomes infinite.
Second, we have what is referred to as static or non-dynamic correlation, which arises when we
attempt to represent the many-body wavefunction by just one determinant while, in fact, two
determinants or more are really needed. Such cases are found for nearly degenerate electron
configurations, as in excited states or bond dissociation processes.

In order to include electron correlation back into the calculation there is a variety of
methods so-called post-Hartree-Fock methods that could be employed to improve the energetics
and the wave functions. Post-Hartree-Fock methods can be distinguished according to their
ability to include dynamical or static correlation. The Configuration Interaction (CI) model,
which has been successfully applied in quantum chemistry due to its formal and conceptual
simplicity, can incorporate both of them.

Configuration Interaction

The most common way to improve the wave function beyond the single determinant:

ψHF = |φ1φ2φ3.....φn|, (1.24)

is to use trial wave functions of the CI form

ΨCI = c0ψHF + c1ψ1 + c2ψ2 + ... (1.25)

where the coefficients ci reflect the weights of each determinant ψi in the expansion and also
for ensuring normalisation.

In a general expansion, it is not necessary to use the HF wave function in the CI wave
function, but it represents a good starting point for ”single-reference” systems, that means,
systems for which only a single determinant is enough to describe correctly the correspond-
ing state, and therefore only the incorporation of dynamical correlation effects is sought. In
these cases, the ”single reference” CI wave function is generated from the HF reference by the
application of a linear combination of spin-orbital excitation operators.

ΨCI =

(

c0 +
∑

i,m

cmi X̂
m

i +
∑

i,j,m,n

cm,n
i,j X̂

m,n

i,j + ...

)

ψHF , (1.26)

where,
X̂

m

i ψHF = a†maiψHF = ψm
i ,

X̂
m,n

i,j ψHF = a†ma
†
naiajψHF = ψ

m,n
i,j .

(1.27)
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Ndet =

(

M !

N !(M −N)!

)2

, (1.28)

and quickly makes calculations impossible or impractical. This is one reason why we use in
general a truncated CI, in addition to the fact that, in most cases, the lower-order excitations
are more important than those of higher orders [7] that can be evaluated with perturbation
theory (PT). In Table (1.2) we report the energies of truncated CI wave functions relative to
the FCI energy for the water molecule and the weights of CI functions in the FCI one. It is
demonstrated that the CISD wave function is enough to recover more than 98 % of the FCI
energy with a weight (means here the overlap between the used and the exact wavefunctions
⟨Ψused|Ψexact⟩) larger than 99% .

method E − EFCI weight
RHF 0.217822 0.941050
CISD 0.012024 0.998047
CISDT 0.009043 0.998548
CISDTQ 0.000327 0.999964
CISDTQ5 0.000139 0.999985
CISDTQ6 0.000003 1

Table 1.2: H2O energies for different truncated CI wave functions and their weights in the FCI
one. (for more details see Table (5.9) in [7]. )

The FCI which is a variational method, meaning that the energy obtained by minimisation
of the expectation value of the Hamiltonian represents an upper bound to the exact ground
state energy, is very useful when it is applicable. It is used to compare the performance of other
methods for which the aim is to get around the FCI inapplicability using some approximations
as truncated CI expansions.

The FCI has also the possibility via its wave function construction (Eq.(1.25)) to recover
static correlation effects and overcome the limitations of the ”single-reference” CI method.
The ”multi-reference” CI (MRCI) is based on the idea of a reference space that contains all
the necessary determinants needed to describe a given physical process (Figure (1.2b) shows
a case when three determinant are needed in the reference space), in addition to all possible
corresponding excitations, for every determinant obtained in the same way as for a single ref-
erence CI.

Coupled-Cluster

In the Coupled Cluster (CC) theory, the way that the wave function is expressed is in-
trinsically different. This theory uses a single Slater determinant as starting point. So if the
studied problem is not well described by a single determinant, one probably should not use
coupled cluster theory. The CC wave function can be expressed as:

Ψcc = exp
(

T̂
)

ψ0. (1.29)

where Ψ0 is a single determinant used in the SCF process to generate a set of spin-orbitals
(typically a HF determinant). The cluster operator T̂ sums up several excitation operators:

19



T̂ = T̂1 + T̂2 + ... =
∑

i,m

tmi X̂
m

i +
∑

i,j,m,n

tm,n
i,j X̂

m,n

i,j + ..., (1.30)

where the excitation operators (X̂) were defined in the previous section. Moreover one can
include more excitations in the T̂ operator.

Slater determinants excited more than n times contribute to the wave function because of
the non-linear nature of the exponential function. Therefore, a coupled cluster expansion
terminated at T̂n usually recovers more correlation energy than CI truncated at n excitations.
The classification of traditional coupled-cluster methods (like for the CI) rests on the highest
number of excitations allowed in the definition of the operator T̂. The abbreviations for coupled-
cluster methods usually begin with the letters CC (for coupled cluster) followed by S for single
excitations, D for double excitations, T for triple excitations or Q for quadruple excitations.
Thus the operator in CCSDT has the form:

T̂ = T̂1 + T̂2 + T̂3. (1.31)

Terms with round brackets indicate that these terms are calculated based on perturbation
theory. For example, the CCSD(T) approach simply means that it includes singles and doubles
fully while triples are calculated with perturbation theory.
Coupled cluster (CC) method, especially the CCSD(T), by its size-extensivity1, which is not
available in truncated CI methods, has become the gold-standard of quantum chemistry. CC
theory, which describes very well the dynamical correlation, was poised to describe essentially
all the quantities of interest in chemistry, and has now been shown numerically to offer the
most predictive, widely applicable results in the field for ”single-reference” systems. Although
this method is not variational, its computational cost is very high which makes it, in practice,
limited to relatively small systems. In fact application range from small molecular systems with
less than 20 electron, for which large basis set leads to highly accurate results, to systems like
benzene dimers, naphthyne diradicals or nucleic acid bases, and the like.

Equation-of-motion coupled-cluster method (EOM-CC)

CC theory as presented above is a single reference method so it’s primarily dedicated to
ground-state problems. To obtain other states, one can use approaches such as the equation-of-
motion coupled-cluster (EOM-CC) method [8, 9]. This extension which is very similar to the
Configuration Interaction (CI) scheme is particularly useful to compute excited, ionised, and
electron-attached states [10, 11, 12, 13, 14].
The formalism starts by considering the Schrödinger equation for two different states, the
ground state Ψcc defined by:

ĤΨcc = EccΨcc, (1.32)

and the target state which could be an excited, ionised, or electron-attached state,

ĤΨK = EKΨK , (1.33)

where the target state is written as:

1 size-extensivity: is a more mathematically formal characteristic which refers to the correct (linear) scaling
of a method with the number of electrons
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ΨK = R̂KΨcc, (1.34)

where R̂ (R for right-handed) is an excitation operator,

R̂K = r0 +
∑

i,m

rmi a
†
mai +

∑

i,j,m,n

rm,n
i,j a†ma

†
naiaj + ..., (1.35)

for excited states. If we want an ionised state, then the R̂ operator takes the form,

R̂
I
=

∑

i

riai +
∑

i,j,n

rni,ja
†
naiaj + .... (1.36)

In the reverse case, in which an electron is attached, the R̂ operator is written as,

R̂
A
=

∑

m

rma†m +
∑

j,m,n

rm,n
j a†ma

†
naj + .... (1.37)

In the EOM-CC formalism, the problem of solving the electronic Schrödinger equation is re-
formulated in terms of T̂ and R̂ operators which are both excitation operators from the same
reference. The Schrödinger equation is written therefore as:

ĤR̂eT̂ |ΨHF ⟩ = ER̂eT̂ |Ψ0⟩ . (1.38)

Multiplying both sides of this equation by eT̂, and using the commutation property of R̂ and
T̂, we arrive at the following equation:

H̄R̂ |ΨHF ⟩ = ER̂ |Ψ0⟩ , (1.39)

where H̄ = e−T̂ĤeT̂.

The EOM-CC approach is a useful electronic-structure tool that allows one to treat a vari-
ety of multi configurational problems within a single reference formalism. It enables rather than
total energies, the direct calculation of energy differences [15]. It is always energy differences be-
tween the states of the system which are observed experimentally in spectroscopy or chemistry.
Theses energy differences are many orders of magnitude smaller than total energies. This fact
makes their computation a challenge because small errors in total energies may result in very
large errors in energy differences [16]. A good example for the performance of this formalism
can be found in the comparison between CCSD, experimental and ”multi-reference”(MR) CI
excitation values of CH2Cl. In this, the EOM-CCSD value for the first excitation energy (6.33
eV) is closer to the observed maximum in the absorption spectrum (6.20 eV) than the MRCI
value of 6.51 eV [17].

1.3 Density functional based methods

In the previous section, we showed how complicated it is to compute the correlation energy.
In this case we know the Hamiltonian and we struggle to obtain a satisfying wave function. It
turns out that there is another way that does not take into account configurations except a
single one. This is the premise of Density Functional Theory (DFT) based methods that have
as a main goal computing calculations of the total energy of the system and the ground state
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electron density distribution without using the wave function of the system explicitly.

The DFT is based on two important theorems [18] presented in 1964 by Hohenberg and
Kohn who established DFT as a rigorous quantum chemical methodology. The first theorem
demonstrates that we can write the energy of the system as a functional of the electron density
ρ, as same as we can do for a wave function that gives the same density. The second theorem
proves the DFT variational principle analogue. For a given number of electrons (N) and external
potential νn−e (nuclei-electrons attraction potential), the ground-state density ρ0 that minimises
the energy functional as:

EHK
νnuclei

[ρ] ≥ EHK
νnuclei

[ρ0] = E0, (1.40)

where E0 is the minimal value for an unknown functional EHK
νnuclei

[ρ] defined as,

E0 = EHK
νnuclei

[ρ0] = min
ρ

{∫

νn−e(r)ρ(r)d
3r + F [ρ(r)]

}

, (1.41)

with,

F [ρ(r)] = min
Ψ∈EA(ρ)

⟨Ψ| T̂ + V̂ee |Ψ⟩ , (1.42)

is the universal functional containing all the missing terms to the electronic energy, where, εA
is the ensemble of antisymmetric wavefunctions giving ρ

In order to proceed toward the unknown universal functional F[ρ(r)], the Kohn-Sham (KS)
DFT formalism [19] was introduced in 1965.

1.3.1 Kohn-Sham DFT formalism

The universal functional F [ρ(r)] is difficult to approach, notably for the kinetic energy
part. To deal with this, Kohn and Sham proposed to consider a fictitious system of non-
interacting electrons where the ground state density is the same as the density of the real
system. Moreover, the associated Hamiltonian to this fictitious system is a sum of one-electron
operators, where the proper eigenfunctions can be Slater determinants of the individual one-
electron eigenfunctions whereas the eigenvalues sum up the one-electron eigenvalues. Thus, the
non-interacting kinetic energy Ts is written as:

Ts[ρ(r)] = min
Ψ∈EA(ρ)

⟨Ψ| T̂ |Ψ⟩ (1.43)

The universal functional can, therefore, be expressed as:

F [ρ(r)] = Ts[ρ(r)] + EH [ρ(r)] + Exc[ρ(r)], (1.44)

where EH [ρ(r)] is the Hartree energy functional that is written in the form:

EH [ρ(r)] =

∫∫

ρ(r′)ρ(r)

(|r − r′|)
drdr′, (1.45)

and which represents the classical electron-electron repulsion that recovers the majority of the
exact electron-electron repulsion. The last term,
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Exc[ρ(r)] = ∆T +∆Vee, (1.46)

represents the exchange-correlation energy which contains all the missing terms in the energy,
where ∆T = T −Ts is the correction to the kinetic energy due to the instantaneous interaction
of electrons, and∆Vee contains all non classical corrections to electron-electron repulsion energy.

In most cases, DFT implementation rely on Kohn-Sham theory, and boil down to finding trial
densities by determining energies in the same spirit as the SCF procedure for HF. The ground-
state energy E0, given, still without any approximations as:

E0 = min
Ψ∈EA(ρ)

{

⟨Ψ| T̂ |Ψ⟩+

∫

νn−e(r)ρ(r)d
3(r) + EH [ρ(r)] + Exc[ρ(r)]

}

(1.47)

The minimisation is then, performed following the Euler-Lagrange equation (ELE) as:

δE0

δρ
− EKS = 0 ⇒

(

T̂ + V̂KS[ρΨ]
)

|Ψ⟩ = EKS |Ψ⟩ . (1.48)

Here, EKS is a Lagrange multiplier and V̂KS is the Kohn-Sham local external potential, that is
written as:

V̂KS =

∫

{νn−e(r) + νH(r) + νxc(r)} ρ(r)d
3r, (1.49)

including the Hartree potential:

νH(r) =
δEH [ρ]

δρ(r)

∣

∣

∣

∣

ρ=ρΨ

, (1.50)

and the exchange-correlation potential:

νxc =
δExc[ρ]

δρ(r)

∣

∣

∣

∣

ρ=ρΨ

. (1.51)

Coming now to the exchange-and correlation energy functional, that is decomposed into two
parts:

Exc[ρ] = Ex[ρ] + Ec[ρ], (1.52)

where, the correlation can be also seen as the sum of two contributions, ∆T defined above, and
∆Uc which recovers the missing part of the exact electron-electron repulsion energy Ve−e as:

∆Uc[ρ] = Ve−e[ρ]− (Ex[ρ] + EH [ρ]) = Ec −∆T. (1.53)

As a consequence, the νxc can be split into two parts:

νx =
∂Ex[ρ]

δρ(r)
; νc =

δEc[ρ]

∂ρ(r)
. (1.54)

They represent, respectively, the exchange and the correlation potentials, that are needed, in
practice, to be approximated. In the following we present some of the common approaches.
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1.3.2 The meaning of orbital energies in KS-DFT

The counterpart in KS DFT of the Koopmans’ theorem is the so-called Janak’s theo-
rem [20], which states that, the derivative of the total energy with respect to the occupation
number ni of an occupied orbital equals the energy ϵi of this orbital,

∂E

∂ni

= ϵi. (1.55)

Applying this theorem to a HOMO orbital for a fractional number N ′ = N − δ with δ → 0+

leads to,

(

∂EN ′

0

∂N ′

)

N−δ

= ϵN−δ
H = ϵNH . (1.56)

And by knowing that N − 1 < N ′ < N , this variation of energy is:

(

∂EN ′

0

∂N ′

)

N−δ

= −IN , (1.57)

where IN is the ionisation energy of the N electron system. In the limit of an exact exchange-
correlation potential, this theorem leads to the exact ionisation energy. Moreover, it is notice-
able that the KS HOMO-LUMO gap in molecules is very different of the Hartree-Fock one. It
represents the lowest excitation energy, rather than difference between the ionisation energy
and the electron affinity [21].

1.3.3 The local density approximation

The simplest approach to calculate the exchange-correlation energy is the so-called local
local density approximation (LDA). This approximation relies on the fact that the local density,
within a small volume, can be assumed as homogeneous, and that the contribution in the total
exchange-correlation energy could be calculated as the product of the small volume and the
exchange-correlation energy density from the homogeneous gas theory that is calculated inside
the small volume [19, 22]. The exchange-correlation energy in this approximation for a closed-
shell system may be written therefore as:

Exc =

∫

d3r{εx[ρ(r)] + εc[ρ(r)]}, (1.58)

with εx is the local exchange potential of homogeneous gas and εc is the local correlation
potential fit to Monte Carlo calculations [23, 24] for homogeneous gas. Thus everything is
decided locally with only density dependency. The LSDA enjoyed early success in physics in
giving bond lengths and thus geometries of molecules and solids typically with an remarkable
accuracy of∼ 1% [25]. However, there are systematic errors in computing molecular atomisation
energies, where the tendency of the LDA is to over bind by 20-30% [26]. Bulk modulus and
vibrational frequencies come out with about19% error [26].

1.3.4 The generalised gradient approximation (GGA)

LDA, as it approximates the energy of the true density by the energy of a local constant
density, fails in situations where the density undergoes rapid changes, such us in molecules and
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solids. An improvement can be made by also considering the gradient of the electron density,
the so-called generalised gradient approximation (GGA):

EGGA = ELSDA
(

1 + µs2 + higher-order
)

, (1.59)

where µ is a sort of theoretical correction term [27] and:

s = constant ∗
|∇ρ|

ρ4/3
, (1.60)

is the reduced or dimensionless density gradient. Most GGA functionals that depend on both
the density and the gradient of the density are constructed with the correction being a term
added to the LDA functional:

εGGA
x/c [ρ(r)] = εLSDA

x/c [ρ(r)] +∆εx/c
|∇ρ(r)|

ρ4/3(r)
. (1.61)

For which x/c means the same functional for either exchange or correlation and the correction
term depends on the dimensionless reduced gradient.

The most popular GGA exchange functional to date (44,000+ citations) is the Becke 1988
(B) [28] which corrects the asymptotic behaviour at long range for the energy density and
incorporates a single empirical parameter for which the value is optimised by fitting to the
exactly known exchange energies of six noble gas atoms (from He to Rn). We can also use
other exchange functionals similar to Becke such us PW [29], FT98 and mPW [30]. Alternative
GGA exchange functionals have been developed based on a rational function expansion of the
reduced gradient. They contain no empirically optimised parameters like B86 [31], or PBE [32].
On the other side, correlation energy was is also subject of many development either to add
corrections to LDA functionals such as P86 [33] and PW91 [34]. Other functionals do not
correct the LDA expression but compute the full correlation energy like the LYP (Lee, Yang,
Parr 1988) correlation [35] which contains four empirical parameters adjusted to helium atom.
It is a correlation functional that provides an exact cancellation of the self-interaction error2 in
one-electron systems. In any case, all of these different functionals are developed from different
viewpoints with the idea to satisfying different constraints. Benchmark tests will have the last
word before deciding which one is most effective in practice.

The next logical step in this Taylor-function-expansion correction is to include second
derivative of the density under the name of Meta-GGA. This idea is concretised by Becke and
Rousell on the exchange functional (BR) and by Proynov, Salahub, and co-workers for the
correlation functional (Lap). In general the Meta-GGA are more accurate than GGA with a
cost comparable to that for GGA [5].

1.3.5 Hybrid functionals

The main idea of hybrid functionals [37] introduced in 1993 by Becke is to mix GGA func-
tionals with Hartree-Fock exchange for the reason that the HF exchange cancels self-interaction

2 The self-interaction error is related to the spurious interaction of an electron with itself. In Hartree-
Fock, self-interaction is explicitly and exactly cancelled, which is why it appears to work. With the LDA,
self-interaction is not cancelled [36]

25







νSAOP
xc (r) = νGLB

xc (r)
N−1
∑

i=1

|φi(r)|
2

ρ(r)
+ νEi

xc (r)
|φN(r)|

2

ρ(r)
. (1.65)

With this interpolation between νEi
xc and νGLB

xc , SAOP allows reproducing good orbital ener-
gies [42, 21] and therefore obtaining ionisation energy more accurate than the Hartree-Fock as
shown in Table (1.3) [45, 46, 47, 48].

Molecules Iexp IHF IMP2
ISAOP

HF 16.00 17.41 17.36 16.30
N2 5.58 17.00 16.41 15.50
F2 15.34 17.73 18.20 14.98
CO 14.00 14.97 15.08 13.20
CH4 13.6 14.91 14.86 14.10
HCl 12.75 13.01 13.01 12.58
H2O 12.62 13.61 13.59 13.02
SO2 12.3 13.39 13.46 12.32
Cl2 11.49 12.30 12.37 11.59
CCl4 11.5 12.68 12.69 11.71
CH3Cl 11.2 11.91 11.90 11.27
CH2O 10.9 11.88 11.98 10.51
CH3CHO 10.2 11.41 11.56 9.91

Table 1.3: Ionisation potentials (in eV) calculated from different ab initio techniques [45] and
SAOPmethods using Koopmans’ and Janack’s theorems, and comparison with the experimental
ionisation (Iexp).

1.3.7 The DFT compared to the WFT

The DFT method is qualitatively different from wave function based method because it
optimises the electron density rather than the wave function. Therefore, molecular properties
are expressed in terms of electron density, making WF based methods of a broader utility since
there are more well characterised operators (to obtain properties) than there are generic prop-
erty functionals of the density. Moreover DFT lacks the systematic improvability, in contrast
of WFT that defines well path to the exact solution (Full CI with infinite basis).
However, by its formulation, and despite of taking correlation energy into account, DFT based
approaches are not expensive. Its cost is comparable to Hartree-Fock (see Table 1.4) method
and therefore the same computer power enables exploring much larger systems than with post
Hartree-Fock methods.

1.4 The molecule in a magnetic field

Molecular properties with or without an external electric or magnetic field change and
a challenge is to determine these changes from isolated molecule properties and with respect
to the applied field. Particularly molecules respond to the application of a magnetic field
(Figure (1.5)) not by changes in the orientations of the nuclear magnetic moments, because
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minimum energy configuration is obtained when both nuclear spins are parallel, meaning that
for the Hamiltonian to be minimal J must be negative (Figure1.7b) [57].

1.4.3 Magnetic properties in the electronic structure theory

Due to the complexity of such systems, theoretical investigations can bring important
insights to the interpretation of experimental results. As discussed before, the (internal or
external) magnetic field yields small effects on the energy. As a consequence, the use of per-
turbation theory in the calculation of NMR parameters is justified. This perturbation results
only in even-order changes in the total energy [58, 59]:

E(ε) = E0 +
1

2!

d2E

dε1dε2
ε1ε2 +

1

4!

d4E

dε1...dε4
ε1...ε4 + ..., (1.73)

where E0 is the energy at zero field and {ε} are the field strengths of the applied perturbations
collected in vector ε. With the perturbed energy expressions at hand, an analogy with the form

of the Hamiltonian ĤCS in eq.(1.67) and Ĥ
AB

SS in eq.(1.72) states that the shielding (σ) of the
nucleus A and the scalar coupling tensor (J) of nuclei A and B are obtained as derivatives of
the perturbed energy terms:

σA =
d2E(µA,B0)

dµAdB0

∣

∣

∣

∣

B0=0

µA=0
, (1.74)

and

JA,B =
h̄

2π
γAγB

d2E(µA,µB)

dµAdµB

∣

∣

∣

∣

µB=0

µA=0
. (1.75)

In the case of static perturbations with strengths ε1 and ε2, and assuming that the energy
is optimised with respect to variational parameters at all field strengths, ∂E

∂κpq
= 0 , the second-

order molecular property can be written as:

d2E

dε1dε2

∣

∣

∣

∣

ε=0

=
∂2E

∂κpq∂ε2

∂κpq

∂ε1

∣

∣

∣

∣

ε=0

+
∂2E

∂ε1∂ε2

∣

∣

∣

∣

ε=0

, (1.76)

The first contribution is determined perturbatively, with the first-order orbital rotation ampli-
tudes, ∂κpq

∂ε1
, obtained from the linear response (LR) equations:

0 =
d

dε1

(

∂E

∂κpq

)∣

∣

∣

∣

ε=0

=

(

∂2E

∂κpq∂ε1
+

∂2E

∂κpq∂κrs

∂κrs

∂ε1

)∣

∣

∣

∣

ε=0

, (1.77)

that can be rewritten, in a matrix form, as follows [60, 58]:

0 = E[1]
ε1

+ E
[2]
0 Xε1

, (1.78)

where E[1]
ε1

is the property gradient, E
[2]
0 is the electronic Hessian andXε1

represents the solution
vector giving {κε1

rs}. After determining Xε1
, the static linear response function can be written

as:

⟨⟨ε1; ε2⟩⟩ = E[1]†
ε1

Xε2
= −E[1]†

ε1

(

E
[2]
0

)−1

E[1]
ε2
. (1.79)

This leads to final forms of the shielding when ε1 = B0 and ε2 = µ and the J-coupling in the
case of ε1 = µA and ε2 = µB.
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1.5 Relativistic effects

The Schrödinger equation, is strictly valid, only for non-relativistic particles. When elec-
trons move at velocities close to the speed of light, relativistic effects come into play. First, due
to the relativistic mass, which increases with the velocity as:

mrel =
me

√

1− (ve
c
)2
, (1.80)

where mrel is the relativistic mass, me is the non relativistic one and ve is the electron velocity.
The effective Bohr radius a0 =

4πε0h̄
2

me2
will decrease for large average speed. For 1s shell, at the

non-relativistic limit this average speed is Z a.u. Thus the 1s electron of At(Z = 85) has a ratio
v
c
(c = 137a.u) of 85

137
leading to a shrinkage of 22% (me = 0.78mrel). This makes the neglect

of relativistic effects not be acceptable unless for electrons with small kinetic energies which is
the case for light atoms up to the early 3rd row of the periodic table. This assumption stops
to be reasonable when heavy elements are present because the relativistic effects on properties
are proportional to Z4 [61]. The direct consequence of the relativistic effect on the electronic
structure are the contraction and stabilisation of s (and p shells) and the splitting of the p, d,
f, and higher shells. These result in, a screening of the nuclear charge for the outer shells which
leads to a decreased effective nuclear charge and expansion and destabilisation of the outer
valence d and f shells. The manifestations of these atomic effects are pronounced on molecular
properties such as for NMR which is sensitive to the electron density near near the nucleus.
Moreover, the changes induced on valence orbitals can affect bond lengths, frequencies, valence
spectra and ionisation energy, etc ... [62].

1.5.1 The Dirac equation

The relativistic energy of a free particle with a mass me and momentum p⃗ is written as:

E = c
√

p⃗2 +m2
ec

2. (1.81)

The passage from a classical equation to a quantum one is done by applying the associated
quantum operators:

E = ih̄(
∂

∂t
) ; p⃗ = −ih̄∇⃗. (1.82)

The direct quantisation of Eq.(1.81) yields to a relativistic Hamiltonian that contains the square
root of operators. This equation also contains the first derivative to time and the second
derivative to space coordinates which does not satisfy the invariance with respect to the space-
time Lorentz transformation.4

To fix this, Dirac assumed that the relativistic Hamiltonian, for one electron, should have
a form that is similar to the one used in the Schrödinger equation,

ĥDψ = Eψ, (1.83)

in which the Dirac Hamiltonian is a linear operator with respect to momentum

ĥD = c(α⃗.p⃗) + βmec
2, (1.84)

4The Lorentz transformations are a one-parameter family of linear transformations from a 4-coordinate
(x,y,z,t) frame in space time to another frame that moves at a constant velocity, the parameter, within the
former.
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where α⃗ = {αx,αy,αz} and β are the quantities that have to be determined, and p = −ih̄{∇x,∇y,∇z}.
Therefore, Eq.(1.81) imposes that:

β2 = I4 ; αkβ + βαk = 0 ; αkαl + αlαk = 2δkl, (1.85)

These conditions are fulfilled only if α and β are at least of dimension four (I4 is the 4x4 identity
matrix), which gives:

αx =

⎛

⎜

⎜

⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟

⎟

⎠

; αy =

⎛

⎜

⎜

⎝

0 0 0 −i
0 0 −i 0
0 −i 0 0
−i 0 0 0

⎞

⎟

⎟

⎠

; αz =

⎛

⎜

⎜

⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞

⎟

⎟

⎠

(1.86)
and

β =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎟

⎠

. (1.87)

Thus, the solution to the Dirac equation (1.83) is a four 4-component vector referred to as a
spinor:

ψp=1,2,3,4 =

⎛

⎜

⎜

⎝

ψL(r, t)
ψL(r, t)
ψS(r, t)
ψS(r, t)

⎞

⎟

⎟

⎠

, (1.88)

associated to Ep=1,2,3,4 and where L and S are respectively the large and the small components of
the wave function. The four solutions, two fold degenerate, E+ and E− energetically separated
by 2mc2 yielding two Dirac equation solution continua for electrons and positrons. However a
free electron has a positive energy which leads to select the two positive values E+ associated
to ψ+:

ψ+ =

(

ψL

ψS

)

=

⎛

⎜

⎜

⎝

ψL
↑

ψL
↓

ψS
↑

ψS
↓

⎞

⎟

⎟

⎠

, (1.89)

where, ↑ and ↓ denote the degree of freedom of the electron spin. Thus makes the relativistic
Dirac formulation a more complete formulation with respect to the non-relativistic Schrödinger
theory in predicting electron spin in lieu of postulating it a posteriori.

The addition of an external potential V̂ to the Dirac Hamiltonian leads to the hydrogen-like
atoms Hamiltonian:

ĥD = c(α⃗.p⃗) + β′mec
2 + V̂I4 ; β′ = β − I4, (1.90)

where the relativistic energy scale is aligned with the non-relativistic one. To extend the Dirac
Hamiltonian to many-electron systems, one needs to add to the previous one-electron operator,
the electron-electron repulsion. However a fully invariant description is not straightforward.
Indeed electrons that propagate at the speed of light interact with a retardation effect. The
quantum electron dynamics, with perturbation theory yields the two body expression:
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ĝij =

[

I4
rij

]

−

[

αiαj

2rij

]

−

[

(αi.rij)(αj.rij)

r2ij

]

= ĝCoulomb
ij + ĝGaunt

ij + ĝgaugeij

= ĝCoulomb
ij + ĝBreit

ij ,

(1.91)

where ĝCoulomb
ij and ĝBreit

ij represent the electrostatic and magnetic interactions between elec-

trons. As cα is identified to the velocity operator, the Gaunt term ĝGaunt
ij account for current-

current interactions, and is thus, gauge-dependent. Taking into account the difficulty to im-
plement it, in practise 4-component calculations will use, either ĝij = ĝCoulomb

ij , defining the

Dirac-Coulomb (DC) Hamiltonian, or ĝij = ĝCoulomb
ij +ĝGaunt

ij defining the Dirac-Coulomb-Gaunt
(DCG) Hamiltonian.

1.5.2 Approximations to the Dirac equation

Working with 4-component wave functions in lieu of one for non relativistic representa-
tions makes these methods very demanding in terms of computing time and required mem-
ory [63, 64, 65] Thus, in order to push the domain of application of the Dirac equation, approx-
imations can be done. Most methods aim at obtaining 2-components wave functions based on
the eliminations of the small components which yields not only to simplify the 4-component for-
malism but also to reduce the computational costs [66, 67, 68]. The 2-component wave function
can be obtained by applying a unitary block diagonalisation to the (usually the one-electron)
Dirac Hamiltonian [69, 70, 68].

U †

(

hD;LL hD;LS

hD;SL hD;LL

)

U =

(

h++ 0
0 h−−

)

, (1.92)

where U depends on the decoupling operators R unique to each approximate method,

U †

(

1 −R†

R 1

)(

(1 +R†R)−1/2 0
0 (1 +RR†)1/2

)

, (1.93)

and where R is written in function of energy E:

R(E) =
c(σ⃗.p⃗)

E + 2mc2 − V
=

c(σ⃗.p⃗)

2mc2
K(E), (1.94)

which is the solution of the equation:

Ψ
S = RΨ

L, (1.95)

and with K(E) having the form:

K(E) =

(

1 +
E − V

2mc2

)−1

. (1.96)

This term is subject of different approximations that yield different approximate Hamilto-
nians.
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Pauli Hamiltonian

The Pauli Hamiltonian is based on the approximation of the coupling R by a Taylor
expansion of the K(E) term to the zero order and keeping only the terms with Θ(c−2) :

R(E) ∼
(σ.p)

2mc
; K ∼ 1. (1.97)

Thus, the Pauli Hamiltonian has the following form:

ĥ
Pauli

i =
p2i
2me

+ V −
p4i

8m3c2

mass-velocity

+
1

4m2c2
σ⃗.[(∇⃗V ) ∧ p⃗]

SO

+
1

8m2c2
(∇2V ).

Darwin

This Hamiltonian [61] is of little use in practice, but it is useful to identify the different
relativistic contributions. The mass-velocity and Darwin terms represent the scalar relativistic
corrections, while the SO term is the spin-orbit one.

ZORA Hamiltonians

Singularity problems encountered with Pauli Hamiltonian (in particular in the mass-
velocity term) [71] lead to reviewing the approximation made with the coupling R. A second
possibility consist in writing K(E) differently as:

K(E) =

(

1 +
E − V

2mc2

)−1

=
2mc2

2mc2 − V

(

1 +
E

2mc2 − V

)−1

(1.98)

The Taylor expansion of (1+ E
2mc2−V

)−1 to the zero and the first order yields to approximations
known respectively as the zeroth order regular approximation (ZORA) and the first order
regular approximation (FORA). In ZORA [71, 72] which is considered as one of the most
important approximation to Dirac Hamiltonian in electronic spectroscopy of heavy elements,
the Hamiltonian is written as:

ĥ
ZORA

= V̂ + (σ⃗.p⃗)
c2

2mc2 − V
(σ⃗.p⃗)

= V̂ + p⃗
c2

2mc2 − V
p⃗+ iσ.

[

p⃗
c2

2mc2 − V
× p⃗

]

.

(1.99)

This Hamiltonian includes no mass-velocity term, parts of the Darwin term and the full SO
Hamiltonian leading to a two-component ZORA wave function. It is also possible to reduce the
computational cost by neglecting spin-orbit effects, when we use the scalar relativistic ZORA
Hamiltonian [73] which has the form (obtained by neglecting SO coupling):

ĥ
SR

= V + p
c2

2mc2 − V
p. (1.100)

Exact Two-Component Relativistic Hamiltonians

The eXact 2-Component (X2C) relativistic Hamiltonian [74] is based on the idea that it is
easy to construct and diagonalise a matrix representation of a one-electron operator. The result-
ing eigenvectors are used, therefore, in a transformation that decouples exactly electrons ener-
gies from positrons ones. In the X2C approach based on molecular mean-field (X2Cmmf) [75],
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the transformation is performed after a mean-field SCF four-component procedure (HF or
DFT).

The X2C Hamiltonians are popular, in the computational chemistry communities [70], due
to their particularity in treating spin-orbit interaction which makes them as exact 2-components
Hamiltonians, in comparison with the Douglas-Kroll-Hess type [76], that requires more deriva-
tion. It is shown also that the X2Cmmf in the framework of the equation-of-motion for ioni-
sation potentials (EOM-IP) yield results nearly indistinguishable from those obtained with the
DC Hamiltonian [77].

It is noticeable that, while the transformations of Dirac Hamiltonian can be seen as
straightforward for one-electron, it becomes of much more complexity for realistic systems
for realistic systems creating the so-called picture-change errors that require also transforming
properties Hamiltonians in order to prevent unreliable results [78, 70].
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Chapter 2

Embedding methods

In the majority of cases, the quantum mechanical description of large molecular systems,
for which experiments are made [79, 3]. is still challenging [80]. Some properties such as NMR
parameters require high-level correlated methods in a relativistic framework. Wave function
based methods which are the most accurate ones, are very demanding in terms of memory and
computing time especially when heavy elements are present. The big challenge here is what we
call the curse of dimension [81, 5], yielding to the unfavourable scaling with the system-size as
shown in Table (1.4). On the other hand, density functional based methods known for their
success for relatively extended systems offer in many cases an exit way to bypass the bottleneck.
However, in many other cases, they fail in yielding good results since there is no systematic way
to improve the functionals of the density and there is no reason that a successful functional for
a given problem will succeed for another.

A compromise between the accuracy of the used theory and the size of the studied system
must to be done. However in many cases, the desired information relates to a small part of the
whole system and the surrounding medium is considered as a source of a small perturbation,
therefore, applying a quantum mechanical description to the entire system may be inefficient.
This fact pushes theoreticians to look for approaches that overcome this obstacle.

Early works were developed over the years in order to reconcile QM methods for large
and very large systems by introducing possible simplifications and approximations that should
be employed to make the QM approaches more practical. The idea behind these methods is
to represent the environment with less accuracy. One can describe it either implicitly, (e.g.
by electric charges, polarisabilities or atomic potentials) a polarisable continuum dielectric as
PCM [82] or COSMO [83], or representing it by an embedding operator.

2.1 Implicit and QM/MM models

Modelling environmental effects and in particular solvent effects is not trivial. As one
desire to model a condensed-phase system, many questions come to mind. The first step is
to surround the solute with solvent molecules, but there are many critical questions. How
many molecules shall one take into account? How many solvation shells are necessary? How
large is the effect of solute charge on distant solvent molecules? Are there any hydrogen bonds
and how many? The trivial answer is that we need an enormous system for which a quantum
mechanical description is expensive or even impossible. Adding to this, the statistical nature
of the interaction between solute and solvent molecules, requires an averaging over the phase

38





ions or a double layer due to the thermal motion of ions. Thus, we obtain two regions or
more in our solvent which means that the dielectric constant ϵ is no more uniform. Eq(2.3) is
then written as in Eq(2.4) called the Poisson-Boltzmann (PB) equation for which the Poisson
equation is a special case:

∇ε(r).∇2φ(r) = −4πρ(r). (2.4)

This expansion is the base of the widely used Polarisable Continuum Model (PCM) which is by
its turn, the origin of many variants [85]. The COSMO solvation model [86] is another popular
implicit solvation model, in which scaled conductor boundary condition is used, which is a fast
and robust approximation to the exact dielectric equations and reduces the outlying charge
errors [87] as compared to the PCM model. Its efficiency lead to develop the COSMO-RS
extension of COSMO which is designed to predict various thermodynamic quantities, including
the free energy of solvation, for uncharged solutes in any organic solvent as well as solvent
mixtures [88, 89].

Implicit continuum models are justified in liquids where the potential energy present sev-
eral minima and therefore, the required properties need an averaging over hundreds of solvent
conformations. These models are mostly used in biological applications such us folding or con-
formational transitions of proteins, DNA and RNA [90]. They are also used in studies aiming
evaluating solvent effect on NMR parameters [85] especially for capturing long-range effects.
But they cannot be used when trying to learn about solving dynamics or kinetics, which are
obviously influenced by the discrete nature of solvents and possible existing hydrogen bonds.
It is also to notice that implicit solvent models can have a difficult time with charged systems
which are arguably more complicated to model and which interpellate some researchers, in
many cases, to combine implicit descriptions with explicit simulation of ions [90] to remedy
some encountered issues.

Understanding the solvent structural properties is one of the situations where an explicit
representation is required. In fact, for relatively large systems neither quantum nor classical
methods, applied separately to the whole system, can solve the problem. A priori, QM can
solve any problem, but with increasing numbers of atoms it becomes impractical and combined
QM/MM methods are unavoidable. The idea behind such methods, is that the whole system is
split into two regions or more, a region where a quantum description is necessary while the other
regions could be treated by classical methods. Thus, the hybrid QM/MM methods presented
in 1976 by Warshel and Levitt [91] propose a compromise between the accuracy of quantum
methods and the speed of classical ones in order to boost applications on systems with chemical
processes in solution and in proteins.

Before proceeding to calculations, one should keep in mind some requirements. When
dividing the whole system there should be a theoretical background behind it, in order to
avoid loosing main electronic features by the adopted fragmentation scheme. Moreover, as one
obtains a QM/MM interface, a smooth transition has to be guaranteed in the description of near
neighbour fragments zone which can raise significant difficulties. An equivalent Hamiltonian
can be written in an hybrid way as in:

Ĥ
full

= Ĥ
QM

+ Ĥ
MM

+ Ĥ
QM/MM

, (2.5)

where the Ĥ
QM

represents the description of the important quantum part while the second
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With the condition that the partial densities integrate to the total number of electrons and
their sum equals the total density over the whole space. It enables us to choose exactly the size
of the system to be studied. Thus we can make the best compromise between the size of the
interesting part and the needed cost to perform a calculation. In the following, we will restrict
ourselves to two subsystems only, with the environment being treated as one subsystem.

Interaction energy and embedding potential

Within the DFT framework, partitioning the whole density into two subsystem densities
leads us to write the DFT total energy as a bifunctional of ρI and ρII :

E[ρtot] = E[ρI , ρII ] = ENN + Ts[ρtot] + J [ρtot] + VNe[ρtot] + Exc[ρtot]

= ENN + Ts[ρI ] + Ts[ρII ] + T na
s [ρI , ρII ] +

1

2

∫

(ρI(r) + ρII(r))(ρI(r
′) + ρII(r

′))

|r − r′|
d3rd3r′

+

∫

(ρI(r) + ρII(r))(ν
I
nuc(r) + νII

nuc(r))d
3r + Exc[ρI ] + Exc[ρII ] + Ena

xc [ρI , ρII ],

(2.12)

where ENN is the nuclear repulsion energy, νI
nuc and νII

nuc are the electrostatic potentials of the
nuclei in subsystems I and II, respectively, Exc is the exchange-correlation energy functional,
and Ts is the kinetic energy of a reference system of noninteracting electrons with density ρtot.
The non-additive terms are defined as follows:

T na
s [ρI , ρII ] = Ts[ρ1 + ρII ]− Ts[ρI ]− Ts[ρII ], (2.13)

and:

Ena
xc [ρI , ρII ] = Exc[ρ1 + ρII ]− Exc[ρI ]− Exc[ρII ]. (2.14)

The total energy as expressed in Eq (2.12) can be decomposed as the sum of the energies
of two subsystems and an interaction energy:

Etot = EI + EII + Eint, (2.15)

where:

EI = EI
NN + Ts[ρI ] +

1

2

∫

ρI(r)ρI(r
′)

|r − r′|
d3rd3r′ +

∫

ρI(r)ν
I
nuc(r)d

3r + Exc[ρI ], (2.16)

and:

EII = EII
NN + Ts[ρII ] +

1

2

∫

ρII(r)ρII(r
′)

|r − r′|
d3rd3r′ +

∫

ρII(r)ν
II
nuc(r)d

3r + Exc[ρII ]. (2.17)

This allows us to use well suited functionals for each subsystems in order to obtain the best
accuracy. The interaction energy that is written as:

Eint[ρI , ρII ] = EI,II
nuc + T na

s [ρI , ρII ] +

∫ ∫

ρI(r)ρII(r
′)

|r − r′|
drdr′

+

∫

ρI(r)ν
II
nuc(r)dr +

∫

ρII(r)ν
I
nuc(r)dr + Ena

xc [ρI , ρII ].

(2.18)
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represents the exact interaction between the two subsystems. It contains repulsion terms be-
tween the two individual electron densities and the two nuclear distributions. It also contains
attraction terms between the electron density of one subsystem and the nuclear potential of
the other subsystem. Other terms are here to recover the non-additive parts of the energy.

Since we are not going to do direct calculations for the whole system, there is no available
representation of ρtot in the canonical Kohn-Sham orbitals. Thus, the determination of non-
additive terms of both kinetic and exchange-correlation energy, as expressed in eq.(2.13) and
(2.14) respectively, necessitates in practical implementations, a numerical calculation using ap-
proximated functionals. The accuracy of the resulting energies and properties will depend on
the way that we treat these non-additive terms.

At the beginning, the density of non-interacting isolated subsystems is different from the inter-
acting subsystems density mainly at the boundaries. Each subsystem will change its electron
density in the presence of the second one. This presence will be manifested by the addition
of an embedding potential and each part of a given subsystem will be affected by the other
subsystems.
In the case of Kohn-Sham formalism, the one-electron Kohn-Sham-like equation will be modi-
fied as follow:

[

T̂i + νKS
eff [ρI ](r) + νemb

eff [ρ1, ρII ](r)
]

,φ
(I)
i (r) = ϵiφ

(I)
i (r) ; i = 1, ..., NI/2, (2.19)

where νemb
eff [ρ1, ρII ](r) is the effective embedding potential which collects all the other terms

arising from the interaction of the first subsystem with the frozen electron density and nuclei of
the second subsystem. We can obtain the form of the embedding potential from the derivative
of the interaction energy over the density of the influenced subsystem(I).

νemb
eff [ρ1, ρII ](r) = νI

int(r) =
δEint[ρI , ρII ]

δρI
=

δT na
s

δρI

∣

∣

∣

∣

ρtot

−
δT na

s

δρI

∣

∣

∣

∣

ρI

+

∫

ρII(r
′)

|r − r′|
d3r′

+νII
nuc(r) +

δEna
xc

δρI

∣

∣

∣

∣

ρtot

−
δEna

xc

δρI

∣

∣

∣

∣

ρI

.

(2.20)

Thanks to this potential, the interaction energy is exact with the assumption that the used
functionals are exact. Therefore, we can obtain the exact density of the subsystem of interest at
a minimal cost. This embedding potential can be calculated in a first step and then exported
to perform more accurate DFT calculations, including relativity, or highly demanding wave
function based calculations.

Nonadditive terms approximations

The main idea in embedding is to avoid supermolecule calculations, i.e. calculations for
which the whole system is treated globally a unique uniform level of theory. Thus it is of great
importance to treat with high attention all the components of the interaction energy. Nonad-
ditive terms of equations (2.13) and (2.14) represent well-defined examples. In conventional
KSDFT, as explained in chapter 1, the exchange and correlation energy is approximated and
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it contains a part representing the complement of the non-interacting kinetic energy Ts which
is obtained from a minimisation over orbitals.

Ts[ρn] = −2

i=N/2
∑

i=1

⟨φn
i |A|φ

n
i ⟩ (2.21)

The nonadditive kinetic energy as described in eq.(2.13) requires the Ts[ρ1+ρII ] term which, in
turn, necessitates canonical KS orbitals representing the total density ρtot, which are in general
no available and need to be numerically approximated [102]. Many approximations are already
presents in the context of dealing with exchange-correlation energy (see section 1.3.1 ) such as
the Thomas-Fermi used in the local density approximation (LDA).
There are many investigations aiming at finding the best functional approximating the kinetic
energy [102, 103, 104]. These works show that the PW91k functional, also known under the
name of GGA97, yields the most accurate description of the interaction energy. It reads:

Ts[ρ] = 22/3CF

∫

ρ5/3(r)F (s(r))dr (2.22)

where CF = 3
10
(3π2)2/3 is the Thomas-Fermi constant and F (s(r)) is written as:

F (s(r)) =
1 + A1s(r) sinh

−1(As(r)) + (A2 − A3 exp(−A4s
2(r))s2(r)

1 + A1s(r) sinh
−1(As(r)) + B1s4(r)

(2.23)

where A,A1, A2, A3, A4, B1 are constants and s(r) has been already defined in section (1.3.4).

The FDE scheme derives from an exact theoretical development and its accuracy mostly de-
pends, as for DFT, on used functionals. However the interaction energy could be an additional
source of errors since subsystem densities are sometimes poorly described with functionals.
Therefore, subsystem density relaxations could be important in particular for charged system.

2.2.2 Subsystem DFT

In most cases, the approximate determination of environment can result in complementary
ρI density that is not ν − represenstable1 and not positive everywhere. To remedy this defi-
ciency, the so-called Freeze-and-Thaw (FnT) cycles procedure,in which the role of the frozen
subsystem is interchanged between the subsystem of interest and the environment, is used. The
new element here is that the total energy is calculated by a minimisation over all subsystems
densities ρi. Thus the total energy has to satisfy, in the case of two subsystems, the following
condition:

dE =

(

δE

δρ1

)

δρ1 +

(

δE

δρ2

)

δρ2 = 0, ∀δρ1, δρ2. (2.24)

Therefore eq.(2.19) will be transformed into a set of two coupled equations:

1
ν − representable density is the ground state density of a system of N-electrons in the presence of some

νext and n− representable is the density of a system of N-electrons (thats can be ground state or not. It’s more
general).
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As said, there is no condition on ρf which can be integrated to a non integer number since a
meaningful fragment could posses a non integer charge. Once isolated fragments are defined,
the total energy can be calculated using the formula:

Etot(r) =
∑

f

minρfEf [ρf ] || ρtot(r) =
∑

f

ρf . (2.28)

Then, for each isolated fragment, on have to solve KS equation:

{

−
1

2
∇2 + να[nα, nα](r)

}

φj(r) = ϵφj(r), (2.29)

where να is the effective KS potential of the α− th fragment and nα = n− nα and generating
their self-consistent KS potentials, densities n

(0)
α (r), and overlapped sum n(0)(r). These quan-

tities are reintroduced in Eq. (2.29) to produce new quantities. The procedure is iterated until
convergence is reached. Thus PDFT maps a problem of interacting fragments into an effective
isolated fragment problem, just as the KS scheme does for a system of interacting electrons
into noninteracting electron system. By its formulation, PDFT has many advantages, namely
the total energy of the system never needs to be calculated directly and the dissociation energy
for a given fragment is computed from the difference between its energies in the first isolated
calculation E

(0)
f and the final iteration Ef . Furthermore, it ensures correct dissociation ener-

gies for molecules with simply constraining occupations to be those of the isolated fragments.
Moreover, there are no formal difficulties arising from taking density variations within a fixed
density, as the trial molecular density is simply the sum of the fragment densities, which are
varied freely [106]. However, the fact that there is no constraint on the subsystem charge num-
bers could be less appealing and useful since most correlated wave function methods require an
integer number in calculation [111]. Moreover, potential inversion techniques are known to be
expensive [112].

2.2.4 FDE extension to wave function/DFT embedding

In FDE and subsystem DFT, all subsystems are described using DFT. However, in many
cases, as discussed before, DFT presents some problems in computing some properties[add ci-
tation]. Thus the use of highly accurate wave function based methods is recommended. By
its formulation, FDE enables us the use of wave function methods for selected subsystems
and that is due to its use of electron density which is accessible at every quantum chemical
level [113, 114]. For this purpose, one can replace the subsystem of interest (subsystem I, for
example) terms in the energy expression as in Eqs (2.15), (2.16) initially expressed in the DFT
framework by the target wave function descriptor.

The subsystem of interest with the density ρI is then described by the embedded wave
function via the embedded Schrödinger equation [113, 115] as in:

[Ĥ
wf

+ V̂
emb

]ψI = EIψI , (2.30)

where V̂
emb

is the embedding potential and Ĥ
wf

is a wave function based method Hamiltonian.
The interaction energy and the embedding potential are still expressed in the KSDFT formal-
ism and the only trace of the wave function method trace is the subsystem I density ρI . This
scheme could be also seen as a hybrid approach as two different quantum levels are used to
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describe the part of interest and the surrounding medium.

The WFT-in-DFT embedding schemes in the framework of FDE and subsystem DFT are
usually used when we first need to improve results coming generally from DFT-in-DFT em-
bedding calculations, or wherever DFT performs poorly or not accurately in computing the
desired properties especially for time-dependent one’s. The area of applicability encompasses
molecules adsorbed on surfaces, impurities in solids, of solvated molecules, mainly when the
desired property is localised.

2.2.5 FDE for second-order magnetic properties

In order to evaluate shielding parameters, the FDE was extended in 2006 [116]. How-
ever, the use of FDE for calculating second-order magnetic properties is not straightforward,
since they depend on the total paramagnetic current which is neglected in nonadditive kinetic
energy functionals. It was shown [116] that the FDE can yield good induced chemical shift
results, within 2 ppm to the KSDFT supermolecule calculations. Moreover, this approach was
generalised to formulate the calculation of nuclear spin-spin coupling constants [117] with the
additional approximation of neglecting the contribution of environment to the spin magneti-
sation density. The FDE performs differently in describing the effect of the environment. It
reproduce 94% of the effect of solvent on NH3-H2O compared to KSDFT calculation on the
whole system [118]. This ratio decreases to less than 80% for strongly interacting complexes,
where the underestimation is mainly due to the failure of the approximations used in FDE in
accurately describing the solvent-to-metal charge donation [118].

In practice FDE, the electronic Hessian E
[2]
0 and the property gradient E[1]

ε1
previously

presented in the section (1.4.3) take a subsystem shape:

E
[2]
0 =

[

E
[2];M,M
0 0

0 E
[2];N,N
0

]

+

[

E
[2];M,M
0,int E

[2];M,N
0,int

E
[2];N,M
0,int E

[2];N,N
0,int

]

, (2.31)

and:

E[1]
ε1

=
[

E[1];M
ε1

E[1];N
ε1

]†
+
[

E
[1];M
ε1;int

E
[1];N
ε1;int

]†

, (2.32)

where M,N ∈ {subsystemsI, II} and M ̸= N and lead to a system of LR equations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

E
[2];M,M
0 + E

[2];M,M
0,int

)

XM
ε1

+ E
[2];M,N
0,int XN

ε1
= −

(

E[1];M
ε1

+ E
[1];M
ε1;int

)

E
[2];N,M
0,int XN

ε1
+
(

E
[2];N,N
0 + E

[2];N,N
0,int

)

XN
ε1

= −
(

E[1];N
ε1

+ E
[1];N
ε1;int

)

(2.33)

where the response vector has also been split into blocks pertaining to each subsystem,

Xε1
=

[

XM
ε1
XN

ε1

]†
. (2.34)

2.2.6 Challenges

The FDE represents a very defined and exact framework to deal with large systems. How-
ever, there are some difficulties, especially with the nonadditive kinetic energy T na

s and the
corresponding potential in describing some situations such as for system were the embedded
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species and the environment are linked by covalent bonds. Approximating T na
s can be bypassed

in the projector-based embedding method which uses localised occupied orbitals to divide the
system at the price of new challenges coming from approximating Ena

xc [119].
The failure of the approximations used in FDE to describe the solvent-to-metal charge donation
is also challenging making the FDE suffering in reproducing the effect of solvent on properties
compared firstly to the whole system calculations and secondly to experimental results [118].

However, it is noticeable as mentioned before, despite that the used approximations can
engender some errors, the FDE approach lies on exact formalism, opening the way to improve
its performance.
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Chapter 3

Ionisation energies of solvated halide
Ions with relativistic embedded
equation of motion coupled cluster
theory

In this work we describe a general computational approach capable of obtaining binding
energies for valence states of solvated ionic species in the current example, halide ions from
fluoride to astatide in water.

The approach is based on electronic structure calculations accounting for electron corre-
lation (with the equation of motion coupled-cluster method for electron detachment method,
EOM-IP-CCSD) relativistic effects (with four-component Dirac-Coulomb Hamiltonian) and the
interaction between the anions and the water environment (with the frozen density embedding
method, FDE). Furthermore, we incorporate temperature and statistical effects by coupling
the electronic structure calculations with classical molecular dynamics with sophisticated po-
larisable force fields devised to faithfully represent the interaction between water molecules
themselves and with ionic species, simulating the solvent as a discrete droplet model.

200,000 hours of computing time (PhLAM cluster and GENCI supercomputers) lead to
interesting results. First, it has shown that we can use embedding approaches to couple molec-
ular electronic structure methods (coupled cluster and DFT), and those to molecular dynamics,
to obtain very accurate binding energies for the whole system (solute and solvent). This is in
contrast to state-of-the-art electronic structure methods based on periodic boundary conditions,
which obtain results of similar accuracy than ours only if sophisticated (and computationally
very demanding) density functionals and Green’s function based methods such as G0W0 are
used.
Second, our investigation shows the reliability of the SAOP model potential for obtaining very
good first approximations to electron binding energies. This method is still not very popular in
molecular electronic structure applications, and is largely unexplored by the condensed matter
community in spite of the obvious performance gains it could bring about if combined, for
instance, to the G0W0. We expect that our work draws attention to its potential for the two
communities.
Third, our embedding approach makes it extremely easy to employ different electronic Hamil-
tonians for different parts of the system. This allows for the rigorous inclusion of spin-orbit
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treatment of the nuclear polarisation, which also rationalises the poor performance of adiabatic
continuum models.

In the next, we discuss the mutual effect of halide and water on their binding energies.
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A subsystem approach for obtaining electron binding energies in the valence region is presented and

applied to the case of halide ions ðX−; X ¼ F − AtÞ in water. This approach is based on electronic structure

calculations combining the relativistic equation-of-motion coupled cluster method for electron detachment

and density functional theory via the frozen density embedding approach, using structures from classical

molecular dynamics with polarizable force fields for discrete systems (in our study, droplets containing the

anion and 50 water molecules). Our results indicate that one can accurately capture both

the large solvent effect observed for the halides and the splitting of their ionization signals due to the

increasingly large spin-orbit coupling of the p3=2-p1=2 manifold across the series, at an affordable

computational cost. Furthermore, owing to the quantum mechanical treatment of both solute and solvent

electron binding energies of semiquantitative quality are also obtained for (bulk) water as by-products of

the calculations for the halogens (in droplets).

DOI: 10.1103/PhysRevLett.121.266001

Photoelectron (PE) spectroscopy [1] is a particularly

powerful technique (now often complemented by electronic

structure calculations) to investigate bound states at the

valence or inner regions, either to obtain information on the

nature of bonding for species in the gas phase [2–4], in

solution [5,6], or at interfaces [7–9] or to follow and

identify chemical changes in complex media [10–12]. Such

techniques have been extensively used to investigate

species such as halogens and halogen-containing species

[13–15], which are of great importance in atmospheric

processes [16,17] such as photochemical reactions leading

to ozone depletion, or aerosol formation [18].

The simplest halogenated systems of relevance are the

halides, originating mostly from marine aerosols [19], and

understanding how these species interact with water is, apart

from its intrinsic interest, of importance for better under-

standing their effects in the environment. Experimental

studies on clusters [20] and bulk [21] aqueous solutions

have established that there are very large shifts in the PE

spectrum of the halides upon solvation, highlighting strong

interactions between the anions and the water solvent. Early

theoretical studies determined the halides’ electron binding

energies (BEs) by employing ab initio calculations [22–24]

or combining these with classical molecular dynamics

simulations with periodic boundary conditions [21]. These

studies indicate that not including specific interactions

(hydrogen bond, etc.) between the halogens and the solvent

water molecules leads to a poor description of the halide

BEs [21,25], apart from the fact that quantum-classical

approaches cannot yield the electronic structure of the

solvent.

Currently the most sophisticated theoretical approaches

to obtain PE spectra for the whole system quantum

mechanically (“full QM”) rely upon density functional

theory (DFT) to obtain the ground state for the solvent-

solute system (as in Car-Parrinello molecular dynamics

(CPMD) [26]), followed by the use of many-body Green’s

function (MBGF)-based perturbation theories (e.g., GW
and variants such as G0W0 [6,27–31]). MBGF approaches

are not without downsides: The first is their high computa-

tional cost for fully self-consistent variants, especially if the

calculations employ periodic boundary conditions and

require large (super)cells. A second, and more serious,

issue is the lack of exchange diagrams in self-energy

beyond first order. This is particularly a shortcoming in

the treatment of molecular systems.

GW-based approaches have been shown to introduce

relatively large errors for the calculation of BEs [32,33]

compared to reference single-reference coupled cluster

[CCSD(T)] or equation-of-motion coupled cluster for

electron detachment (EOM-IP-CCSD) [34,35] calcula-

tions. Recent benchmarking studies suggest that even

lower-scaling, approximate variants to the EOM-CCSD

method [36,37] can be competitive in accuracy with GW
calculations of ionizations and electron affinities, and

especially so for G0W0 [33].

This Letter presents a full-QM electronic structure

approach for obtaining BEs of discrete systems such as

water-halide ion (X−; X ¼ F − At) aggregates, as a cost-

effective yet accurate alternative to GW-based calculations,

by coupling relativistic EOM-IP-CCSD calculations for

the halides (since relativistic effects, and in particular
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Editors' Suggestion

0031-9007=18=121(26)=266001(7) 266001-1 © 2018 American Physical Society

56



spin-orbit coupling (SOC) [38], on the BEs are increasingly

important along the halogen series) and scalar relativistic

DFT calculations for the water molecules through the

frozen density embedding (FDE) method [39–41].

The key idea of FDE (see Refs. [42–45] for further

details and its relationship to other embedding methods) is

the partitioning of a system’s electron density nðrÞ into a

number of fragments [for simplicity two such fragments are

considered here, so nðrÞ ¼ nIðrÞ þ nIIðrÞ] and total energy

E½nðrÞ&, which can be rewritten as a sum of subsystem

energies (Ei½niðrÞ&; i ¼ I; II) plus an interaction energy

(EðintÞ):

E½n& ¼ EI½nI& þ EII½nII& þ EðintÞ½nI; nII&: ð1Þ

The latter collects the intersubsystem interaction terms,

EðintÞ½nI; nII& ¼

Z
½nIðrÞv

II
nucðrÞ þ nIIðrÞv

I
nucðrÞ&dr

þ

ZZ
nIðrÞnIIðr

0Þ

jr − r
0j

drdr0

þ Enadd
xck ½nI; nII& þ EI;II

nuc; ð2Þ

where vinuc is the nuclear potential (i ¼ I; II), EI;II
nuc the

nuclear repulsion energy between subsystems, and Enadd
xck

accounts for nonadditive contributions due to the exchange-

correlation (xc) and kinetic energy (k) contribution. Enadd
xck is

defined as

Enadd
xck ½nI; nII& ¼ Enadd

xc ½nI; nII& þ Tnadd
s ½nI; nII&

¼ Exc½n
I þ nII& − Exc½n

I& − Exc½n
II&

þ Ts½n
I þ nII& − Ts½n

I& − Ts½n
II&: ð3Þ

The nonadditive kinetic energy contribution provides a

repulsive interaction that offsets the attractive interaction

between the nuclear framework of one subsystem and the

density of the other [46], which, if not properly matched,

can lead to spurious delocalization of the electron density

of one subsystem over the region of the other [47] (as seen,

for instance, in point-charge or QM–molecular mechanics

embedding [48]). For reasons of computational efficiency,

the FDE calculations in this Letter employ approximate

kinetic energy density functionals [49] which provide good

but nevertheless limited accuracy [50] for systems such as

those discussed here, which are not covalently bound.

In a purely DFT framework, the density for a subsystem

of interest nI is obtained by minimizing the total energy

[Eq. (1)] with respect to variations on nI while keeping nII
frozen, yielding Kohn-Sham-like equations,

½TsðiÞ þ vKS½nI& þ vIint½nI; nII& − εi&ϕ
I
iðrÞ ¼ 0; ð4Þ

where vKS½nI& and TsðiÞ are the usual Kohn-Sham potential

and kinetic energy (from δEI½nI&=δnI), and

vIintðrÞ ¼ vnaddxc ðrÞ þ
δTnadd

s

δn

!

!

!

!

nI

þ vIInucðrÞ þ

Z
nIIðr

0Þ

jr − r
0j
dr0

ð5Þ

is the embedding potential (from δEðintÞ½nI; nII&=δnI), which

describes the interaction between subsystems.

FDE provides a formally exact framework that allows

DFT to be replaced by wave function theory (WFT)-based

treatments for one [51–54] (WFT-in-DFT) or all subsys-

tems [55] (WFT-in-WFT), with the embedding potential

being calculated from Eq. (5) irrespective of the level of

electronic structure employed, though using the electron

densities from the respective methods. Obtaining electron

densities for WFT methods in general and coupled cluster

in particular is computationally expensive (the latter requir-

ing the solution of the ground state CC Λ-equations [34]),

and it has been found that an approximate scheme—where

vIint is obtained from preparatory DFT-in-DFT calculations

[53,56] and treated as a (local) one-electron operator

added to the Fock matrix in the WFT calculations—works

very well in practice. This latter prescription is the one

followed here.

In the EOM-IP-CCSD method, BEs are obtained from

the solution of the eigenvalue equation [35,57]

ðH̄RIP
k Þc ¼ ΔEkR

IP
k ð6Þ

where ΔEk is the kth ionization energy for the system,

H̄ ¼ e−TĤeT is the (CCSD) similarity transformed

Hamiltonian [here including vIintðrÞ] and

RIP ¼
X
i

rifigþ
X
i>j;a

raijfa
†jig ð7Þ

the wave operator that transforms the CC ground state to

the electron detachment states.

In the preparatory DFT-in-DFT calculations, the statis-

tical average of model orbital potentials (SAOP) [58] has

been used. This potential is constructed to yield Kohn-

Sham potentials showing proper atomic shell structure and

correct asymptotic behavior, and with it calculations have a

computational cost equivalent to Kohn-Sham DFT using

generalized gradient approximations. The SAOP orbital

energies have been shown to provide BEs that are in very

good agreement with coupled cluster calculations [59].

Given the evidence in the literature that Kohn-Sham

densities obtained with functionals yielding accurate BEs

compare quite well to densities obtained with coupled

cluster methods [60,61], a vIint obtained with SAOP

densities should provide a good approximation to one

obtained with coupled cluster densities, with the advantage

that one obtains a representation for the PE spectrum of

water at no additional cost.
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The FDE calculations were performed on structures

obtained with classical molecular dynamics (CMD) simu-

lations on water-halide droplets containing 50 water mole-

cules and constraining the halogen to be fixed at the droplet’s

center of mass, using the POLARIS (MD) code [62–65] and

many-body force fields [66] accounting for both polarization

effects and the bonding effects within the water molecules

(hydrogen bonds), and between the halide and first-hydra-

tion shell water units (strong hydrogen bond). From these,

after equilibration of the system, were extracted 200 snap-

shots, which were verified as uncorrelated for the BEs (see

the Supplemental Material [67]). A particular feature of the

droplet structures for all halogen species, such as that shown

in Fig. 1 for a snapshot of solvated I−, is that the water

distribution around the anion is not spherical but elongated

due to strong polarization effects that favor disymmetrized

structures, with about six to eight water molecules making

up the first solvation shell.

The total system was partitioned into two subsystems, the

halide (subsystem I) and the 50 water molecules (subsystem

II), corresponding to the simplest partition to calculate the

halide BEs (referred to as ½X−@ðH2OÞ50&). This choice is

supported by benchmark tests (see the Supplemental

Material [67]) as well as prior calculations on small

halide-water clusters [23], which show that for Cl−, the

valence ionizations are mostly coming from the halide. For

F−, on the other hand, there are important contributions from

both the halogen and the waters (with ionization from the

latter being lower in energy than from the halide), and

because of this a second model was considered in which the

nearest eight water molecules are also included in subsystem

I [referred to as (½FðH2OÞ8&
−@ðH2OÞ42Þ].

The DFT-in-DFT vint were obtained over 200 CMD

snapshots with the PYADF scripting environment [69],

which used the subsystem DFT implementation in the

ADF code [70] and employed the scalar relativistic (SR)

zero-order regular approximation (ZORA) Hamiltonian

[71] and triple-zeta quality basis sets [72] with two

polarization functions for all atoms. The nonadditive

kinetic energy and exchange-correlation contributions

to vint were calculated with the Lembarki-Chermette

(PW91k) [49] and Perdew-Burke-Ernzerhof (PBE) [73]

density functionals, respectively. Unless otherwise noted,

all SR-ZORA DFT-in-DFT calculations reported use the

same computational setup. The embedded EOM-IP-

CCSD (EOM) calculations were performed over a subset

of 100 CMD snapshots from the originally selected 200

snapshots (see the Supplemental Material [67]) with a

development version (revisions e25ea49 and 7c8174a)

[57] of the DIRAC electronic structure code [74], using the

Dirac-Coulomb (DC) Hamiltonian [38,75] and uncon-

tracted augmented triple-zeta quality [76–78] with two

additional diffuse functions for the halogens, and the

Dunning aug-cc-pVTZ sets [79] for oxygen and hydro-

gen. Because of constraints in computational resources for

the (½FðH2OÞ8&
−@ðH2OÞ42) partition, DFT-in-DFT calcu-

lations were performed exclusively using the DC

Hamiltonian for F−. In order to estimate the energies at

the complete basis set (CBS) limit calculations with

augmented quadruple-zeta basis sets were also performed:

for F− and Cl−, it was computationally feasible to do so

for all snapshots. For the other halides, this was not the

case, and estimates for the CBS energies were obtained

based on quadruple-zeta calculation on the bare halides.

The data set comprising the DFT-in-DFT and CC-in-DFT

calculation is available in the Zenodo repository [80].

We start by discussing the trends along the series for the

BEs over the 100 snapshots, presented in Fig. 2 as histo-

grams plots, with the area under each rectangle being

proportional to the number of BEs found at each energy

interval. There is very little variation on the BEs of the

water subsystems (the yellow and brown rectangles) upon

changing the halogen. For the halogens, one finds, first, the

displacement of the first ionization energy peak, which in

the presence of SOC corresponds to the 2P3=2 halogen atom

ground electronic states, towards lower energies as the

halogen gets heavier. This results in a clear separation

between the halogen and water peaks from Br− onwards.

One can also see, as expected from experiments and prior

calculations, that irrespective of the treatment of the first

solvation shell of F− (here carried out only with DC SAOP

calculations, as explained above), its electron BEs remain

entangled with those of the water cluster. Second, the

increasing separation between the 2P1=2 and
2P3=2 compo-

nents of the halogen ground state is clearly seen, and for I−

the two peaks are clearly distinguishable from those of

the water. It is interesting to note, however, that for At− the

SOC effect is so large (with a 2P3=2 −
2P1=2 splitting of

≃3.0 eV) that the 2P1=2 peak ends up overlapping with

that of water.

Table I summarizes the average BEs for the DFT-in-DFT

and CC-in-DFT calculations of Fig. 2 (corresponding to

peak maxima), while the experimental results are shown in

Table II. By their comparison, one sees that, apart from

the F− case, the EOM results agree rather well with the

experimental peak maxima for the halides, with differences

of about 0.2 eV for Cl−, and about 0.1 eV for Br− and I−.

We attribute this relative improvement along the series to a

FIG. 1. Views along the (x, y, z) axes for a sample configuration

of the CMD simulation for I−. The (frozen) density for the water

subsystem (nII) is superimposed onto the structures [68].
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decrease in entanglement between the halide and the

surrounding water molecules as the halide gets heavier

[66], which would make our simple embedding model

better represent the physical system. For I−, the only system

for which Kurahashi et al. [81] provide the spin-orbit

splitting of the 2P state, there is also very good agreement

with the experiment for the ionization from the 2P1=2 state.

Table I presents results for the halides obtained with

triple-zeta base and CBS energy (for F− and Cl−) estimates

(for Br− to At−). A comparison of EOM triple-zeta and

CBS results indicates that the latter show a discrete

improvement over the former, and in general make our

results closer to the experiment. Furthermore, the SAOP

results are in rather good agreement with the EOM values,

with rather systematic differences on the order of 0.4 eV.

This underscored the good performance of SAOP for BEs,

especially in view of its modest computational cost, and

validates our choice of employing SAOP for the DFT-in-

DFT calculations. Additionally, as seen from Table III,

SAOP and EOM yield good gas-phase BEs, meaning that

the experimental halide BE shifts upon solvation are well

reproduced. That said, our embedding model shows what

appears to be a systematic underestimation of the water

spectra, by roughly 1 eV for the b1 and a1 peaks. Part of

this discrepancy should originate from using SAOP rather

than EOM energies (if errors follow those for the halides

discussed above, up to 0.4–0.5 eV). We believe that the

other major source of errors is the discrete size of the

droplets used since the experimental results are for bulk

water, and we intend to investigate this issue in a sub-

sequent publication.

For Cl−, a comparison to prior theoretical results can be

made to the G0W0 calculations (without SOC) of Gaiduk

et al. [28], shown in Table IV, for which the most

sophisticated calculation using the self-consistent hybrid

(sc-hybrid) density functional places the peak position at

9.89 eV. This is higher than the experimental results by a

FIG. 2. Electron binding energies spectra for the [X−
@ðH2OÞ50]

systems over the 100 snapshots. Halides BEs obtained with triple-

zeta basis sets from DC EOM [except for (½FðH2OÞ8&
−
@ðH2OÞ42Þ

obtained with DC SAOP] [68].

TABLE I. Average electron binding energies (BE, in eV) for the

spin-orbit coupled components of the P states of the hydrated

halogens from EOM and SAOP (DC) calculations on the

embedded halides with triple-zeta basis sets and the CBS values;

and water droplet valence bands from SAOP (SR-ZORA)

calculations for the ðH2OÞ50 and ðH2OÞ42 subsystems.

Halogen Water

BE3=2 BE1=2 BE1b1
BE3a1

Species EOM SAOP EOM SAOP SAOP

Triple-zeta bases
F− 11.8(5) 11.4(5) 12.0(5) 11.5(4) 10.4(5) 12.4(7)
FðH2OÞ8

− 10.3(4) 10.5(3) 10.4(5) 12.4(7)
Cl− 9.7(3) 9.4(4) 9.9(3) 9.5(4) 10.4(5) 12.5(4)
Br− 9.0(4) 8.7(3) 9.5(4) 9.2(4) 10.4(5) 12.5(4)
I− 7.9(3) 7.8(3) 8.9(3) 8.6(3) 10.4(5) 12.5(4)
At− 7.1(3) 7.0(3) 10.0(3) 9.5(3) 10.4(5) 12.5(4)

CBS (F−, Cl−) and CBS
a
(Br−–At−)

F− 11.9(5) 11.4(5) 12.1(5) 11.5(4)
FðH2OÞ8

− 10.3(4) 10.5(3)
Cl− 9.9(3) 9.4(4) 10.1(3) 9.5(4)
Br− 9.0(4) 8.7(3) 9.5(4) 9.2(4)
I− 8.0(3) 7.8(3) 9.0(3) 8.6(3)
At− 7.1(3) 7.0(3) 10.1(3) 9.5(3)

a
Estimates from single quadruple-zeta calculations.

TABLE II. Experimental electron binding energies (BE, in eV)

for the spin-orbit coupled components of the P states of the

solvated halide and bulk water valence bands from (a) Kurahashi

et al. [81], and (b) Winter et al. [21].

Halogen Water

BEp BE1b1
BE3a1

Species (a) (b) (a) (b) (a) (b)

F− 9.8
Cl− 9.5(2) 9.60(7)
Br− 9.00(7) 8.80(6)

8.1(1)
I− 8.03(6)

a
7.7(2)

a
11.31(4) 11.16(4) 13.78(7)

b
13.50(10)

8.96(7)
c
8.8(2)

c

a
Ω ¼ 3=2.
b
Average value of the 3a1 H and 3a1 L bands.
c
Ω ¼ 1=2.
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little over 0.3 eV. It is also higher than the EOM

calculations, even if it is compared to our 2P term value

of 9.76 eV. The G0W0–sc-hybrid calculations show very

good agreement with experiment for the water peaks,

though a comparison to our results would be somewhat

biased since the G0W0 ones are made for a bulk liquid,

and ours are not. It is important to note that the G0W0

results do not show very good agreement with the

experimental BEs if less sophisticated functionals such

as PBE and PBE0 are used—in fact, the DC SAOP results

are of slightly better quality than those.

Another relevant comparison is with the electron propa-

gator calculations of Dolgounitcheva et al. [23], performed

for microsolvated clusters of F− and Cl− and including

the effect of outer solvation shells via the PCM. For Cl−, the

propagator results agree well with each other but are

nevertheless 0.7–1 eV higher than the experiment, whereas

our results are not more than 0.2 eV higher. For the first

ionization of F− to which there are significant contributions

from Dyson orbitals on F, the propagator results are closer

to each other but again quite far from the experiment. If part

of the discrepancy comes from differences in treatment of

electron correlation between the propagators and EOM (or

SAOP) and basis set effects (bases smaller than ours were

used), the most significant contribution should be due to the

explicit inclusion of the outer solvation shells in our

calculations. The importance of this effect is seen in the

P3 calculations of Canuto et al. [91], which, when con-

sidering outer-shell effects via point-charge embedding,

recover nearly 2.5 eV with respect to the microsolvated ion,

showing an agreement to experiment similar to SAOP.

In conclusion, our results show that FDE is a viable

method for obtaining quantitatively accurate electron bind-

ing energies (and with that simulate PE spectra) in the

valence region for species in solution. For systems not

undergoing chemical changes, the combination of CC-in-

DFT calculations with CMD simulations with polarizable

force fields can yield results which rival much more

sophisticated simulation approaches, but at a much smaller

computational cost (the embedded EOM calculations take

about a day per snapshot on four cores for At−, the most

expensive calculations). In this sense, the SAOP model

potential appears to be a rather interesting alternative to

more computationally expensive functionals by itself or,

eventually, being combined with many-body treatments

based on the GW method. Finally, our work was based on

droplet simulations, which can be interesting to investigate

systems made up by a relatively small amount of water

molecules, though monitoring droplet size effects on such

properties and their convergence towards the bulk requires

further investigation. The FDE calculations are, however,

completely agnostic to the nature of the procedure

employed to obtain the structures, and they can be equally

applied to snapshots from standard (or FDE-based [92])

CPMD calculations (whenever DFT-based interaction

potentials are sufficiently accurate [93]) or static band-

structure FDE calculations [94] that naturally describe

long-range interactions in extended systems.
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[93] M. J. Gillan, D. Alfè, and A. Michaelides, J. Chem. Phys.

144, 130901 (2016).

[94] J. Tölle, A. S. P. Gomes, P. Ramos, and M. Pavanello, Int. J.

Quantum Chem. 119, e25801 (2018).

PHYSICAL REVIEW LETTERS 121, 266001 (2018)

266001-7

62



Supplementary Information

Predictive simulations of ionization energies of solvated halide ions with relativistic

embedded Equation of Motion Coupled-Cluster Theory

Yassine Bouchafra
Université de Lille, CNRS, UMR 8523 – PhLAM – Physique des Lasers,

Atomes et Molécules, F-59000 Lille, France Tel: +33-3-2043-4163

Avijit Shee
Department of Chemistry, University of Michigan,

930 N. University, Ann Arbor, MI 48109-1055, USA∗

Florent Réal, Valérie Vallet, and André Severo Pereira Gomes†

Université de Lille, CNRS, UMR 8523 – PhLAM – Physique des Lasers,

Atomes et Molécules, F-59000 Lille, France; Tel: +33-3-2043-4163

(Dated: December 4, 2018; Revised December 4, 2018)

63



2

TABLE I: Gas-phase atomic binding energies (BE, in eV) computed at the SAOP and EOM (DC) levels for
triple-zeta, quadruple-zeta basis sets and at the CBS levels.

Species SAOP EOM
TA QZ CBS TZ QZ CBS

F– BE3/2 3.16 3.16 3.16 3.32 3.39 3.45

BE1/2 3.21 3.21 3.21 3.37 3.45 3.51

Cl– BE3/2 3.41 3.41 3.41 3.59 3.69 3.77

BE1/2 3.51 3.51 3.50 3.70 3.81 3.89

Br– BE3/2 3.23 3.23 3.23 3.40 3.45 3.48

BE1/2 3.65 3.65 3.65 3.89 3.93 3.96

I– BE3/2 3.02 3.02 3.02 3.12 3.16 3.19

BE1/2 3.87 3.87 3.87 4.09 4.14 4.18

At– BE3/2 2.48 2.48 2.48 2.41 2.49 2.55

BE1/2 5.05 5.05 5.05 5.35 5.44 5.51

ATOMIC CALCULATIONS

Complete Basis Set (CBS) values are calculated using the following formula, in which n is the basis set cardinal
number:

E = Ecbs +
A

n3
(1)

Thus for two cardinal numbers n1 = 3 (triple-zeta) and n2 = 4 (quadruple-zeta), one can write

E(n1) = Ecbs +
A

n3

1

(2)

E(n2) = Ecbs +
A

n3

2

(3)

leading to the CBS extrapolated energy Ecbs:

Ecbs =
E(n1)n

3

1
− E(n2)n

3

2

n3

1
− n3

2

(4)

CHOICE OF THE EMBEDDING MODEL FOR THE DFT-IN-DFT FNT CALCULATIONS

Molecular orbitals compositions in the [X(H2O)50]
– calculations

From the scalar-relativistic ZORA SAOP calculations on the [X(H2O)50]
– supermolecular systems we have drawn

in Figure 1 the percentage contribution of the halide valence p orbitals into each molecular orbital. For all halides
heavier than fluoride, the three highest occupied molecular orbitals correspond to the valence p halide orbitals, while
for fluoride its 2p orbitals are immersed into the water valence manifold.

Influence of the embedding model on binding energies

The subsystem DFT approach [2–4] invokes calculation of the effective embedding potential, in order to take into
account the effect of the environment on the embedded system. The simplest implementation of subsystem DFT is
frozen density embedding (FDE) [4], in which the environment subsystem density nII(r) is kept frozen while the total
energy is minimized with respect to changes in the other subsystem density nI(r). The minimization of the total
energy with respect to the supermolecular density can be achieved through freeze-and-thaw (FnT) cycles (typically
less than 20), where the roles of the subsystems I and II are iteratively interchanged. The relaxation steps are needed
to account for the deformation/polarization of the subsystem’s densities, in the presence of charges.

For this study, we have explored several density partitioning for the case of iodide hydrated by 50 water molecules,
referred to as the supermolecule (cf. Figure 2a). The simplest embedded model includes the halide anion as the
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Chapter 4

Further investigations on the electronic
structure of halides in water

The results presented in chapter 3 yield interesting insights. The binding energies (BE)
of the water valence orbitals are found to be insensitive to the halide (TABLE I) type which
confirms the previously observed results [132, 131] However, the resulting water bands peaks
tend to underestimate the experimental values [131, 133] by 0.7 to 1.3 eV for 1b1 and 3a1
binding energies (BEs). For the hydrated iodide, our multilevel model I–@(H2O)50 based on
droplet snapshots prepared using a polarisable force field (FF) developed in our group by Réal
et al. [134], yield the results presented in Table (4.1):

Iodide Water
BE3/2 BE1/2 BE1b1 BE3a1

This work EOM SAOP EOM SAOP SAOP SAOP
7.9(3) 7.8(3) 8.9(3) 8.6(3) 10.4(5) 12.5(4)

Experiment (a) (b) (a) (b) (a) (b) (a) (b)
8.03(6) 7.7(2) 8.96(7) 8.8(2) 11.31(4) 11.16(4) 13.78(7) 13.50(10))

Table 4.1: Electron binding energies (BE, in eV); This work : spin-orbit coupled components of
the P states of the hydrated iodide, from EOM and SAOP (DC) calculations on the embedded
iodide with triple-zeta basis sets, and water droplet valence bands from SAOP (SR-ZORA) cal-
culations for the I–@(H2O)50 system averaged over MD snapshots from Ref. [134]; Experiment
: spin-orbit coupled components of the P states of the solvated iodide and bulk water valence
bands from (a) Kurahashi et al. [133], and (b) Winter et al. [131].

The underestimation of SAOP (SR-ZORA) calculations for water droplet valence bands
may have several origins. It could be due to the use of SAOP model functional to describe
a large system, as it could come also from the droplet structures generated by the FF. But,
given that we compare our (H2O)50 droplet results directly to experimental values deducted
from bulk, the limited water droplet size can be a too small model. Moreover, Markovich
et al. [135] recorded the photoelectron spectra of I– solvated in water cluster (H2O)n, with
n varying from 1 to 60. The vertical BE of the solvated I– are used to extract the solvent
electrostatic stabilisation energies (SEn) of I– defined as the difference between I– BE in a
water cluster and that of the isolated anion:
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binding energy/eV
orbital Cl–@(H2O)200 Difference/eV

Ave SD to Cl–@(H2O)50
chloride 3p 10.63 0.38 0.99

3s 22.21 0.38 0.99
2p 190.18 0.37 0.99
2s 251.11 0.32 0.98
1s 2752.03 0.32 0.97

water 1b1 11.68 0.55 0.85
3a1 13.60 0.56 0.93
1b2 16.92 0.54 0.79
2a1 29.34 0.54 0.81

Table 4.3: Average (Ave) BE (eV) of the hydrated chloride Cl–@(H2O)200 from SAOP (SR-
ZORA) calculations over 100 snapshots with triple-zeta basis and effect of the water droplet
size from [H2O]50 to [H2O]200.

potential computed for Cl– in bulk water, as recently implemented in the embedding Quantum
Espresso (eQE) package.

The results shows also that the chloride BEs are also tremendously shifted by (1 eV) making
the droplets with 50 water molecules insufficient to capture the bulk SE( 8). This overestimation
of chloride BE opens the question of the correctness of chloride-water interaction description
within the FF [134] used in this study.

4.2 Force Field effects on the water and Halide bands

The molecular dynamics trajectories run by Réal et al. [134] (PCMT group) and used to
generate conformations for results in chapter 3 showed that the first solvation shell consists of
nine water molecules against six observed experimentally. This difference, of the anion apart
from being due to the fact that a true sample contains conterions while the droplet MD do not,
may results in considerable changes in water structures in the vicinity of the anion. molecular
structure. Local structure is behind many species behaviours. For example small anions with
a higher charge density have a tightly bond first solvation shell, form hydrogen-bonds to local
water molecules and are structure makers. However larger but more diffuse anions without
a strong solvation shell are structure breakers as in the case of large ions which tend to be
gathered at the air-water interface [137, 138].

In the case of the chloride solution, it is possible to distinguish between two types of water
molecules within the first solvation shell, those that hydrogen bond to the chloride, and those
that remain local within the first solvation shell but which form hydrogen-bonds to other wa-
ter molecules [137]. The used FF [134] (denoted FF16) shows artefacts in describing pairwise
interactions between anions and surrounding water molecules and water-water interactions in
the first solvation shell. To remediate this, an improvement to the FF [139] was proposed
by adding a three-body correction that models more accurately water-water interactions in
the first hydration shells of large-sized halide clusters and to improve in an averaged way the
description of anion-water interactions.
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over 100 snapshots of Cl–@(H2O)tog50 . These changes can be considered as corrections that we
add to our FF18-SAOP (SR-ZORA) to presumed CC-EOM-IP values.

chloride calculated binding energy/eV experiment
SAOP (SR-ZORA) SAOP (DC) CC-EOM-IP (a) (b)

orbital P3/2 9.5(3) 9.4(4) 9.7(3) 9.5(2) 9.60(7)
P1/2 9.5(4) 9.9(3) - -

shift -0.1 0.2
-0.0 0.4

Table 4.6: Changes undergone by the chloride 3p orbital of Cl–@(H2O)50 for different level of
computation over FF16 100 snapshots; (a) from Kurahashi et al. [133] and (b) from Winter et
al. [131]

In order to predict CC-EOM-IP of P3/2 and P1/2 values, Table (4.6), shows that we have
to add 0.2 eV and 0.4 to the SAOP (SR-ZORA) value respectively. Moreover the correction
due to the use of separated representation of the environment, as mentioned before (see Table
(4.2)), consist in subtracting 0.17 eV from the 3p orbital BE value. The FF18 Cl–@(H2O)sep200

bands are then calculated over 100 snapshot at the SAOP (SR-ZORA) level (see Tab.(4.7)).

binding energy/eV
orbital Cl−@(H2O)sep200 experiment

Ave (corrected) SD (a) (b)
chloride 3p 9.40 (9.43, 9.63) 0.36 9.5(2) 9.60(7)

3s 20.98 0.36
2p 88.97 0.35
2s 249.91 0.35
1s 2750.84 0.35

water 1b1 11.54 0.49
3a1 13.42 0.50
1b2 16.75 0.47
2a1 29.17 0.48

Table 4.7: FF18 Average (Ave (corrected) subtracting 0.17 eV and adding 0.2 eV and 0.4
eV respectively for P3/2 and P1/2 EOM values) electron BE (eV) of the hydrated chloride from
SAOP (SR-ZORA) calculations over 100 snapshots with triple-zeta basis; SD refers to standard
deviation. (a) from Kurahashi et al. [133] and (b) from Winter et al. [131].

The results show that the predicted EOM-IP results agree in better way with experiment.
For the 3p orbital, the applied correction leads to an average of the two estimated CC-EOM-IP
P3/2 and P1/2 values of 9.53 eV. This value lies, as plotted in Figure (4.7) between the two
provided experimental values. It is shown that we achieve a good agreement with experiment
for water and also for chloride.
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be taken into account when spin-spin coupling constants involve heavy elements. [155] In the
case of thallium and due to the presence of s valence orbitals, the relativistic contraction of the
6s shell leads to an increase of 6s electron density on the nucleus which results in large values
of JT l−X as it is the case of 2JT l−CA with 12746 Hz.

Due to the diamagnetic nature of the complex in solution (198 electrons), the bonding
situation in the system can be interpreted as a donation of electrons between thallium(III) and
platinum(II), leading to thallium(I) and platinum(IV) as final products. [148] Moreover, it is
believed that this heavy metal-metal bond is strong and stable both in solution and in solid,
for which the quantum mechanical calculations are complicated, but clearly needed to under-
stand the different details of the bonding situation between the two metals, especially when
the detailed mechanisms which determine the experimental data are not understood. [156]

At the level of theoretical calculations, Autschbach and Le Guennic [157, 158] have demon-
strated that, it is necessary, at a scalar relativistic level, to take into account both the explicit
water molecules (The first solvation water shell is represented by adding water molecules (max-
imum (5H2O) to surround the Tl atom) and additional implicit (COSMO) solvent effects in
order to reproduce the Pt–Tl spin-spin coupling constants and the 205Tl and 195Pt chemical
shifts. It was observed also that, there is no obvious either with correlation between JPt−Tl

and the Pt–Tl bond lengths or with the inverse of the HOMO-LUMO gap. Moreover, they
showed that, as the experimentally observed trends are largely caused by solvent coordination
of the complexes, the calculated spin-spin coupling constants are improved systematically upon
introducing more realistic computational models for the treatment of the solvent. This study
showed, relatively, good agreement with experiment (due to errors cancelation), but the static
solvent coordination is not very significant statistically for a dynamic complex in a solvent.
Hence, the results are not very representative.

Recently, Ducati et al. [159] have performed a more realistic study that models the con-
cerned system, in addition of the complex, by more water molecules (20), complemented by
an implicit model (COSMO) to take into account long-range effects. Using PBE-based Car-
Parrinello molecular dynamics [160] (CPMD) to generate a set of snapshot geometries (256)
and PBE0 relativistic hybrid KS NMR calculations, they have confirmed that the J-coupling
constants of such system, mainly for Tl–Pt one, to have a strong dependence on the coordi-
nation of water at the Tl site. Moreover, the computational model gave reasonable agreement
with the experimental data (within over 10% deviation from experiment for the JPt−Tl value).
They suggest, beyond the impracticability of using relativistic correlated wave function level
of theory, that it might deem necessary to use hybrid functionals in the MD simulations to
better describe the particular three-centre-four-electron bonding CA –Pt–Tl moiety, which is
expected to be sensitive to the presence of water since that such improvement may minimise the
KS delocalisation error. [161] However, this study is restricted to spin-spin couplings without
any mention of shieldings or chemical shift and their sensitivity to solvent molecules.

5.2 FDE for the (NC)5–Pt–Tl complex

Taking in consideration all the impracticalities to treat the system with correlated wave-
function methods (there isn’t yet a code that can do NMR properties with coupled-cluster
method and 4-components relativity level), as well as the high cost of describing electronic
structure for the NMR properties for such systems even with DFT, we want to investigate
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SR-ZORA SO-ZORA
(H2O)35 (H2O)64 (H2O)35 (H2O)64

Tl 7869 7829 12682 12719
Pt 2143 2216 5631 5705
CA 70 67 117 111
CC 49 48 83 83

Table 5.2: Size and SO coupling effects on calculated shieldings (ppm) for 1 snapshot for the
chemical models (CN)5Pt–Tl (H2O)n (n=35,64).

As a result, whether or not use spin-orbit coupling going from a 35 water molecules repre-
sentation to a 64 one, the calculated shieldings are found to be insensitive in the contrast of the
spin-spin couplings that undergo considerable shifts (more than 7 KHz) which demonstrates the
J-coupling-dependance to long-range solvation effects. For the shieldings, the weak sensitivity
to the number of explicit water molecules can be related to the fact that after a certain number
of surrounding molecules, the atomic sites may be totally shielded and therefore adding more
molecules does change anything. The spin-orbit coupling significantly impacts shielding, while
the effects on J-couplings is smaller in relative smaller terms.

SR-ZORA SO-ZORA
P R 35 64 35 64
Tl Pt 48482 55979 47387 55297

CA 15995 16575 14997 15523
CC -712 -698 -723 -712

Pt CA 1260 1216 1288 1240
CC 923 920 917 915

Table 5.3: Size and SO coupling effects on calculated spin-spin couplings (Hz) between per-
turbing (P) and responding (R) element for 1 snapshot for the chemical models (CN)5Pt–Tl
(H2O)n (n=35,64).

In the light of results obtained from this comparison and to optimise the computational
time, we will include SOC in all further coming calculations, and we will select a chemical
hydration model encompassing 64 water molecules.

5.2.2 Computational protocol

The determination of the computational protocol mainly depends on the answer of how
the FDE reproduce the NMR parameters in comparison with supermolecule (SM) calculations.
To envision the beginnings of an answer, we proceed to perform our tests on the target system
of 35 water molecules to speed up the calculations. In the tests, the whole system is divided
into two parts, a subsystem I, containing the compound I and a number of water molecules
going from 0 to 30 selected on the criterion of their proximity to the Tl-site (NMR parameters,
mainly JTl−Pt converge faster when we add water molecules to Tl-site), and a subsystem II
which contains the rest of water molecules that varies between 35 and 5. The subsystem II is
treated in the tests as one unity (we denote it as together representation). Moreover, we do
not relax the embedding potential with the Freeze-and-Thaw (FnT) procedure. This choice
is motivated by the fact that in the case of a neutral subsystem, resorting to the FnT is not
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5.4 Final results

The final results of our computations are presented here. We compare the average J-
coupling values mainly the [(NC)5Pt–Tl(H2O)4]@(H2O)60 and [(NC)5Pt–Tl(H2O)15]@(H2O)49
models to Ducati et al. [159] theoretical calculations and to available experimental results. [148]
However, the chemical shifts are calculated relative to the available reference data.

5.4.1 Spin-spin couplings

Table (5.4) sumarise all the J−coupling constants, obtained from averaging over 256 snap-
shots. The [(NC)5Pt–Tl(H2O)15]@(H2O)49 model improves the JTl−Pt by more than 12000 Hz
in comparison with [(NC)5Pt–Tl(H2O)4]@(H2O)60 relative to the previous theoretical values
that used the same dynamics. This trend is observed also for JTl−CC and JPt−CA . The JTl−CA

also converge to the previous theoretical calculations but overestimates by about 2500 Hz the
experimental results. This may confirm that there might be issues with the PBE-based dynam-
ics and its common delocalisation errors with DFT-GGA functionals. The remaining JPt−CC

values do not undergo large shifts.

J(Hz) [(H2O)4]@(H2O)31 [(H2O)4]@(H2O)60 [(H2O)15]@(H2O)49 Ref [159] Expt [148]
Tl–Pt 32632 ± 17100 37003 ± 17884 49032 ± 19173 63350 71060
Tl–CA 14224 ± 2521 14678 ± 2424 15356 ± 2533 16718 12746
Tl–CC -857 ± 583 -880 ± 486 -870 ± 509 -713 592
Pt–CA 1493 ± 122 1474 ± 117 1372 ± 173 1089 909
Pt–CC 923 ± 147 922 ± 147 932 ± 149 867 820

Table 5.4: Effects of different models on J−coupling constants obtained from averaging over
256 snapshots.

On the other hand, the reported [(NC)5Pt–Tl(H2O)4]@(H2O)31 model values come to es-
timate the effects of adding around 30 water molecules on the J−coupling constants. The
comparison to the [(NC)5Pt–Tl(H2O)4]@(H2O)60 model results in a difference around 4400 Hz
for the JTl−Pt. That makes, in the assumption of considering that adding water molecules keeps
the same effect even for outer shells, the JTl−Pt at 125 water molecules and within the FDE
approach, to reach something around 49032 + 2 ∗ 4600 = 58000Hz. This places our results
very close to the result of the study by Ducati et al. [159], in which the effect, as mentioned
before, of COSMO combined to 20 explicit water molecules is found, for one geometry, to be
equivalent to 125 water molecules. Moreover, the comparison to experiment depends mainly
on the used dynamics and tests with hybrid functionals based dynamics are really needed to
explore further the reasons behind the difference to experiment.

The last, but may be the most important remark is related to the signs of these constants.
While the experimental results are unsigned, theoretical investigations provide signed values.
The sign of a J−coupling constant is related to the order of the linking bond explained in
subsection (1.4.2). As expected, the bonds involving platinum are positive which means in
general the presence of odd bond, here of order one. However the bonds involving thallium with
carbons are expected to be negative. This is true in the case of CC , but not for CA for which the
situation is more complicated. In fact the Tl–Pt–CA bond can be seen as a 3-center 4-electron
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(3c-4e) bond model, derived from concepts developed for electron-deficient bonding2. [163, 164,
165, 166] More detailed investigations are highly recommended to understand what happens
locally in order to explain the variation of bon orders.

5.4.2 Shieldings and chemical shifts

The calculated shieldings are presented in Table (5.5). It is shown that the main changes
occur when we adopt the [(NC)5Pt–Tl(H2O)15]@(H2O)49 model except for the CC that maintain
relatively a constant value.

σ(ppm) [(H2O)4]@(H2O)31 [(H2O)4]@(H2O)60 [(H2O)15]@(H2O)49
Tl 13127 ± 456 13123 ± 465 12972 ± 507
Pt 5061 ± 356 5113 ± 350 5331 ± 348
CA 128 ± 8 125 ± 8 117 ± 9
CC 89 ± 8 89 ± 8 87 ± 9

Table 5.5: Effects of different models on the calculated atomic shiledings (σ) obtained from
averaging over 256 snapshots.

Due to the difficulties encountered in determining the absolute shieldings values experi-
mentally, the comparison to the experiment requires the calculation of chemical shifts which
implies to know the used reference data. However, the reference values are not provided in the
experimental paper [148], but we know that the carbons chemical shifts are measured relatively
to the TMS carbon 13 shieldings which are measured directly for pure liquid in Ref. [167]. This
value of 183.94 ppm is used here to calculate the chemical shifts of the CA and CC as :

δC = 183.94− σC (5.1)

In addition to the previous models, carbons chemical shifts are also computed for the
[(NC)5Pt–Tl] model with out any water molecules.

δ(ppm) [(NC)5Pt–Tl] [(H2O)4]@(H2O)31 [(H2O)4]@(H2O)60 [(H2O)15]@(H2O)49 Expt [148]
CA 6 ±6 56 ± 8 59 ± 8 67 ± 9 93.4
CC 111 ±13 95 ± 8 95 ± 8 97 ± 9 90.3

Table 5.6: Effects of different models on the chemical shifts (δ) obtained from averaging over
256 snapshots compared to experimental results [148].

First as shown in Table (5.6), it is revealed that the inclusion of water molecules is neces-
sary. The CA chemical shift depends tremendously on its coordination to water which confirms
previous observations. [159] The inclusion of water molecules in the active subsystem improves
considerably the results but still places it far from the experiment value. Hence, as mentioned
before, testing hybrid functionals based dynamics appears to be decisive before trying to com-
puting NMR parameters with large water environment. For the CC , the obtained chemical

2Electron deficiency is a term describing atoms or molecules having fewer than the number of electrons
required for maximum stability. At the atomic level, main group atoms having less than 8 electrons or transition
metal atoms having less than 18 electrons are described as electron-deficient. At the molecular level, molecules
which have an incompletely filled set of bonding molecular orbitals are considered to be electron-deficient.
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shifts agree much better with experiment within the FDE models and the [(H2O)4]@(H2O)31
model can be considered to be large enough in terms of hydration to reach agreement with
experiment. The comparison of chemical shifts for thallium and platinum could bring further
perspectives and orient the next investigations, but at the price of computing the shieldings
for the used references. This necessitates to perform new dynamics since the used references
(TlClO4 and Na2PtCl6) values are measured in liquid water.
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Conclusions and perspectives

The current challenges of theoretical modelling target developments and improvements of
the efficiency of theoretical approaches to treat increasingly large systems at an optimal level
of accuracy. In this context, the Frozen Density Embedding (FDE) approach provides a very
powerful tool for the quantum chemical treatment of large systems. It is based on a partitioning
of the electron density into the density of an active subsystem and a frozen environment. In
the calculation of the density of the active subsystem, the effect of the frozen environment is
represented by an effective embedding potential, that contains the electrostatic potential of the
environment, an exchange-correlation component and a kinetic-energy component. In contrast
to most other embedding schemes used in theoretical chemistry, the FDE scheme provides a
formulation that is in principle exact.

This thesis focusses on discussing the performance of FDE for the calculation and pre-
diction of molecular properties for heavy-element based complexes in the presence of a water
solvent. The first chapter of this thesis introduces the methods of theoretical chemistry, in
particular the two quantum chemical families of approaches, namely correlated wave function
theory (WFT) and density functional theory (DFT). Relativistic effects and relativistic Hamil-
tonians are also presented as relativistic quantum chemistry is the framework to be used for
chemically and physically relevant simulations of heavy element containing molecules.

The second chapter presents the various strategies designed to model large-scale molecular
systems, all within the family of quantum embedding methods. This lead us to introduce the
FDE scheme, which allows to partition a molecular systems into interacting subsystems and
to choose the most suitable electronic structure approach to treat each of these. In the FDE
framework, the whole system can be described with several accuracy of DFT (DFT-in-DFT)
or by a merge of more computationally demanding WFT for the subsystem of interest coupled
to a DFT embedding potential.

In the next three chapter, we have analysed the performance of the FDE scheme for the
simulations to account for hydration effects on two classes of properties, namely electron bind-
ing energies (Chapters 3 and 4) and magnetic (J−J coupling and NMR shieldings) in Chapter
5, all done in the context of relativistic quantum modelling as we target mostly heavy elements.

We first discussed how FDE can account for the large hydration shift on valence electron
binding energies of halides for the whole series starting with fluoride up to astatide, taking as a
chemical model water droplets encompassing 50 water molecules, in a first chemical model. In
the study published in Physical Review Letters, we have demonstrated that with the combina-
tion of relativistic EOM-CC for the active subsystem and DFT for the environment, afforded
by FDE, one can rival with quite sophisticated theoretical approaches based on periodic quasi-
particle calculations which are the current state-of-the-art for condensed matter simulations.
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We have also explored, in a follow-up study, the sensitivity of the electron binding energies to
structural changes around the halides and among these water, and how these energies (that
of the halide and of water) evolve with the size of the water droplet. Our results have proven
that long-range effects contribute to the computed photo-electron spectra. It remains to com-
plete simulations at the relativistic EOM-CC level for larger droplets, to reach full quantitative
agreement with experimental data, with a competitive computational cost.

The last chapter explores the performance of FDE for the description of solvent effects on
magnetic properties (indirect spin-spin couplings and NMR shielding tensors) for a complex
PtTl(CN)5 containing a metal-metal bond between the heavy centers (Pt, Tl), this time purely
at relativistic DFT level. This complex was chosen as it so far exhibits the largest reported
spin-spin coupling constant between two metals. FDE allows us to capture semi-quantitatively
hydration effects beyond the first hydration shell thereby reducing the computational cost with
respect to supermolecular calculations. For spin-spin couplings, we have shown that much like
prior theoretical results, we require an extensive first hydration shell around the complex, but
nevertheless arrive at a semi-quantitative agreement with experiment. For NMR shieldings on
the other hand, FDE allows us to significantly reduce the amount of water molecules explicitly
added to the active subsystem to the first hydration shell around the Tl atom. Ideally longer-
range solvation effects might be introduced with an implicit solvation model such as COSMO.
This might open up the perspective to employing FDE with more accurate electronic structure
methods for this property for this class of compounds.

Finally, the established computational and workflow protocols could be transferred to the
computation of different surrounded species properties. Particularly, they are already used,
with small adaptations, for the calculation of inner shells ionisation potentials for the chloride
adsorbed on ice surface in the master thesis of R. Opoku. Moreover, investigating molecular
properties for heavy element species in surfaces and especially in solid environments is very
interesting outlook, since additional complications are necessarily present. Systems for which
a first challenge may consists in dividing the whole electron density across chemical bonds
without loosing a good representation of the target system electronic structure.
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