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Ce travail a pour but de décrire le comportement d'une bulle placée dans un écoulement de rotation solide d'axe horizontal. Cette situation est intéressante car elle peut nous aider à comprendre comment les bulles se comportent lorsqu'elles rencontrent des régions d'écoulement avec une vorticité localement élevée. Ces régions de tourbillon élevé peuvent être trouvées dans une large gamme de situations d'écoulement.

Afin d'extraire des informations sur la dynamique des bulles dans un écoulement de rotation solide, nous avons utilisé un dispositif expérimental constitué d'une cuve cylindrique en plexiglas tournant autour de son axe horizontal. Pour cette expérience, la plage de vitesse de rotation étudiée est [600-900] rpm, c'està-dire de 63 𝑟𝑎𝑑 𝑠 -1 à 94 𝑟𝑎𝑑 𝑠 -1 . Deux caméras ont été utilisées pour déterminer la forme, et le mouvement de la bulle à l'intérieur du réservoir.

Lorsque la vitesse de rotation du réservoir augmente, la bulle se rapproche de l'axe de la cellule et s'étire le long de l'axe horizontal. Nous étudions d'abord cet étirement de la bulle en fonction de la taille de la bulle et de la vitesse de rotation de la cellule. Nous montrons que le rapport d'aspect de la bulle peut être prédit en fonction du nombre de Weber de la bulle par le modèle de Rosenthal 1962, pourvu qu'une correction due au décentrage de la bulle soit prise en compte. Cette correction tient compte de la plus grande différence de pression entre la périphérie et l'axe de la bulle, lorsque la bulle s'écarte de l'axe en raison de sa flottabilité. Ensuite, nous avons observé que la bulle peut s'étirer jusqu'à des rapports d'aspect de deux, et même se briser à certaines vitesses de rotation pour les grandes tailles de bulles. Nous montrons que cette rupture se produit par un mécanisme de résonance lorsque la fréquence de rotation du réservoir devient v de l'ordre de la fréquence propre de la bulle.

Nous déduisons ensuite les coefficients de traînée et de portance à partir de la position moyenne de la bulle. Pour les grosses bulles chevauchant l'axe de rotation, nous montrons que le coefficient de traînée 𝐶 𝐷 dépend uniquement du nombre de Rossby Ro, avec 𝐶 𝐷 ∼ 1.5/𝑅𝑜. Dans la même limite, nous avons proposé une estimation du coefficient de portance pour le faible nombre de Rossby Ro. En effet, nous montrons que le coefficient de portance 𝐶 𝐿 est contrôlé par le nombre de Reynolds de cisaillement 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 à l'échelle de la bulle.

Finalement, afin de modifier la tension superficielle du liquide et d'explorer les effets des tensioactifs sur la bulle, nous avons introduit un composé chimique tensioactif dans le liquide (TTAB). Nous avons examiné deux solutions de tensioactifs alternatives : une de concentration inférieure à la concentration micellaire critique CMC (0.33 CMC) et une supérieure à la CMC (2 CMC), dans laquelle l'interface de la bulle est a priori saturée de tensioactifs. Nous avons effectué la même analyse de déformation et de force qui a été effectuée avec de l'eau déminéralisée avec les solutions de tensioactifs. Les résultats montrent que comme attendu la déformation de la bulle est plus importante dans les deux solutions de tensioactifs que dans l'eau, et peut toujours être modélisée par le modèle de Rosenthal 1962 dans le cas de la solution 2 CMC. Cependant, dans le cas de la solution 0.33 CMC la bulle se comporte comme si elle voyait une tension superficielle effective égale à celle de la solution à la CMC. Concernant la brisure, nous observons que comme pour l'eau la brisure se produit lorsque la fréquence de rotation du réservoir est de l'ordre de la fréquence propre de la bulle. Enfin, les coefficients de portance et de traînée ont été mesurés en présence de surfactant : les valeurs obtenues sont similaires à celles obtenues avec l'eau déminéralisée.

vi This research study focuses on bubbles released inside a horizontal high-speed solid-body rotating flow. This flow situation is interesting because it can help us to understand how bubbles behave when they meet flow regions with locally high vorticity. These high vorticity regions can be found in a variety of flow situations.

In order to extract information about bubble dynamics in solid-body rotating flow, we have used an experimental apparatus containing a cylindrical Plexiglas tank of diameter 11 cm and length 10 cm which is rotated around its horizontal axis 𝑧. The bubble can be injected into the cell at the rest. For this experiment, the range of rotational velocity investigated is [600-900] rpm, i.e. from 63 𝑟𝑎𝑑 𝑠 -1 to 94 𝑟𝑎𝑑 𝑠 -1 . Two high-speed cameras were used to determine the physical features of the bubble motion inside the tank.

When the rotational velocity of the tank increases, the bubble moves close to the axis of the cell, and stretches along the horizontal axis. We first study this stretching of the bubble as a function of bubble size and of the rotation rate of the cell. We show that the bubble aspect ratio can be predicted as a function of the bubble Weber number by the model of [START_REF] Rosenthal | The shape and stability of a bubble at the axis of a rotating liquid[END_REF] provided an appropriate correction due to the impact of buoyancy is included. This correction accounts for the larger pressure difference between periphery and axis of the bubble, when the bubble is displaced away from the axis because of buoyancy. Then we discovered that the bubble can experience the large aspect ratio up to 2 and breaks up at certain rotational speeds for large bubble sizes. We show this break-up occurs through a resonance mechanism when the rotational velocity of the tank becomes of the order of the eigenfrequency of the bubble.

We next deduce the drag and lift coefficients from the mean bubble position.

vii For large bubbles straddling the axis of rotation we show that the drag coefficient 𝐶 𝐷 is solely dependent on the Rossby number Ro, with 𝐶 𝐷 ∼ 1.5/𝑅𝑜. In the same limit of large bubbles, we have proposed an estimate of the lift coefficient for the low Rossby number 𝑅𝑜. Indeed, we show that the lift coefficient 𝐶 𝐿 is controlled by the shear Reynolds number 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 at the scale of the bubble.

Eventually, in order to change surface tension of the bulk liquid and explore the effects of surfactants on the bubble we have used a chemical compounds called TetradecylTrimethylAmmoniumBromide (TTAB) in the liquid. We have studied two alternative surfactant solutions: one that is lower than the CMC (0.33 CMC) and one that is higher than the CMC (2 CMC), in which the bubble interface is expected to be entirely saturated by surfactants. We have carried out the same deformation and force analysis that were carried out with demineralised water with the surfactant solutions. The results reveal that as expected the deformation of the bubble is larger in both surfactant solutions than in water, and is still modelled by the model of [START_REF] Rosenthal | The shape and stability of a bubble at the axis of a rotating liquid[END_REF] in the case of the 2 CMC solution. In the case of the 0.33 CMC solution, the bubble behaves as if it was seeing an effective surface tension equal to that in the CMC solution. Regarding break-up, we observe that as for water, break-up occurs when the tank frequency is of the order of the bubble eigenfrequency. Furthermore, the lift and drag coefficients were measured in the presence of surfactant, and the values measured were similar to those obtained with demineralised water. 

Bubble Dynamics

Understanding the behavior of gas bubbles in liquid flows is relevant for many industrial and environmental processes, and has been studied for a long time. Bubbles exhibit various dynamical behaviors which have been investigated by experts in physics, fluid dynamics and multi phase flows during past decades. For instance, in environmental phenomena bubbles are present in heat and mass transfer in lakes and rivers, aerosol transfer from the sea, oxygen dissolution in the sea due to rain and electrification of atmosphere by the sea bubbles, river aeration, etc. Moreover, bubbles are of great importance in a wide range of industrial applications such as chemical reactors, thermohydraulics, modeling and prediction of their behavior around the propellers of ships and submerged turbines, etc. Therefore, initial modeling and prediction of bubble dynamics requires deep knowledge of bubble physics. Among these topics it is essential to investigate the dynamics of rising bubbles. [START_REF] Clift | Bubbles, drops, and particles[END_REF] carried out theoretical studies around rising bubble shape in unlimited surrounding flow. They discovered that when the ratio of a dispersed rising bubble to the surrounding flow is low, the bubble tends to form ellipsoidal and spherical caps. [START_REF] Wang | Volume-of-fluid simulations of bubble dynamics in a vertical Hele-Shaw cell[END_REF], performed an experimental and numerical study on the dynamics of a soaring bubble with high Reynolds number in a vertical Hele-shaw. The bubbles have been confined between cell-walls, and forming various shape from spherical, ellipsoidal and complex interface configurations in function of space between the cell-wall. Their studies showed that the bubble shape can be altered depending on the gap between the cell walls, from oblate ellipsoid and spherical to more complex shapes. Furthermore, a dependency of the drag coefficient on the gap thickness of the cell has been derived. Chen et al. 1999 accomplished a numerical study with Volume-of-fluid method to recognize gas bubble deformation, rising and break-up in closed vertical cylinder with a gravitational field. They discovered that depending on the Reynolds and Bond numbers, bubbles can evolve on a variety of shapes, including toroidal, spherical, and elliptical. The density ratio causes certain bubble configurations, which affect the rising velocity of the bubble. The other fundamental question is to understand the spatial heterogeneity in the distribution of bubbles. By the way of example, [START_REF] Serizawa | Turbulence structure of air-water bubbly flow-II. Local properties[END_REF] have performed experimentally an appealing work on bubbly flow ascending in a vertical pipe to characterize interactions between bubbles and the upward flow. The experimental study found that the turbulence intensity decreased first with growing gas flow rate for constant water velocity, then increased again with subsequent gas flow rate increases. [START_REF] Bentley | An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows[END_REF] have done an experimental study investigating the drop deformation and rupturing in two-dimensional linear flows. They proved that drop shape depends on viscosity ratio of surrounding flow and droplet, along with characteristics of the continuous flow around the droplet. [START_REF] Takemura | Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid[END_REF] experimentally studied forces and the shape of a rising bubble near a vertical wall in a viscous fluid. They have been able to determine the drag and lift force components along with bubble interface configuration using a portative optical instrument. They have shown that the wall inevitably causes a drop of rising velocity inducing a repulsive lift force upon the migrating bubble. [START_REF] Legendre | The lift force on a spherical bubble in a viscous linear shear flow[END_REF] have examined other limits with a numerical study, that of linear viscous shear flow, and found the lift force upon the bubble. There have also been some other interesting studies on both aspects of deformation and forces. [START_REF] Perrard | Bubble deformation by a turbulent flow[END_REF] performed a direct numerical simulation for a dispersed spherical bubble in a homogeneous and isotropic turbulent flow. The results have shown that there is a coupling between deduced harmonic equation of different modes of bubble configuration and turbulent velocity variations.

Bubble in a rotating flow

In the case of a bubble in a rotating flow, [START_REF] Bush | Axial drop motion in rotating fluids[END_REF] presented an analytical anticipation of the shape along with rising velocity of a drop translating in a vertical axisymmetric rigid body rotating fluid with a low viscosity. They displayed that as the bubble is in an equilibrium position between centrifugal and interfacial forces, it begins to deform into a plorate ellipsoid. At the end, a set of complementary experiments were performed and experimental results have been qualitatively compatible with a proposed analytical solution. In the similar surrounding flow conditions in the vicinity of droplets (rotating flow around the vertical axis under an accelerating field), numerical study of [START_REF] Maneshian | Bubble dynamics in rotating flow under an accelerating field[END_REF] proved that depending on the Morton number of the bubble along with various value of a dimensionless number which is ratio of centrifugal and buoyancy force, the bubble is subjected to a variety of motions, including spinning, rotation, and translation, as well as various interface shapes. [START_REF] Auton | The lift force on a spherical body in a rotational flow[END_REF] analytically discussed the forces (focused more on the lift) acting on the small spherical bubbles in a rotational flow which shall be quite similar to the case of shear flow [START_REF] Saffman | The lift on a small sphere in a slow shear flow[END_REF] proposed an analytical solution for lift upon the sphere in a viscous shear flow). [START_REF] Kariyasaki | Behavior of a single gas bubble in a liquid flow with a linear velocity profile[END_REF] conducted research on bubbles in a vertical channel with two walls. They calculated the lift force of a deformed bubble and compared it to that of a solid sphere in a uniform shear flow using theoretical contributions. The results confirmed that the lift upon the deformed bubble is opposite to that of a non-deformed one. In the same situation of vertical shear flow, the numerical analysis of [START_REF] Ervin | The rise of bubbles in a vertical shear flow[END_REF] is another fascinating study of the forces acting on the bubble. The effects and variations of the forces on the deformed air bubble were discovered by numerical simulation (finite difference method of full Navier-Stokes equations). [START_REF] Leslie | Measurements of rotating bubble shapes in a low-gravity environment[END_REF] captured the interface reaction of a rotating bubble inside a closed container boundaries in its equilibrium position in conditions of low gravity. They showed the interface shape depends on size, contact angle with the container, and the ratio of the centrifugal force to the surface tension in a way that when this force ratio rises, the bubble tends to be cylindrical and initiate adequate pressure drop for hydro-static contribution. All these aspects of bubble behaviour influence the transfers (momentum, heat and mass) at the gas-liquid interface [START_REF] Risso | The mechanisms of deformation and breakup of drops and bubbles[END_REF] and in doing so, are worthwhile to be investigated. One important factor for bubbles is the degree of "cleanliness" of the interface. Indeed, besides the heat and mass transfers with the bulk, the presence of surfactant or impurities at the surface can modify the forces acting on the bubble in a spectacular way Clift et al. 1978, Takagi and[START_REF] Takagi | Surfactant effects on bubble motion and bubbly flows[END_REF] It can for instance increase the drag force, hence reducing the bubble rising velocity, and modify the lift force that bubbles experience in shear flows, which influences their lateral motion in such flows.

Effect of Surfactant on the Bubble Dynamics

An essential factor for bubble dynamics is the degree of cleanliness of the interface. In other words, impurities mixing in the carrier flow. In bubbly flows, a small quantity of surfactant can provoke extreme variations in the flow structures through the multi-scale effects of the flow. For instance, surfactant effects can be observed for the rising bubbles when a bubble in an aqueous surfactant solution rises slower than in a clean purified water. This phenomena occurs due to nonuniform distribution of surfactant on the bubble surface. This nonuniform concentration distribution can also influence bubble motion, dynamics, bubble-bubble interactions, diminishing the coalescence, minimizing the mass transfer, etc. There have been some research works concentrated on bubbly flows to study the impact on the whole system when surfactant is added and concentration is varied, with the aim to monitor the impact on bubbles and drops.

Majority of studies on bubble dynamics with presence of the surfactant have been focused on rising bubbles. In the case of rising micro bubbles released in a vertical wall bounded flows, Takagi and Matsumoto 2011 accomplished a series of experimental studies to show the configurations of the released bubbles in a vertical tunnel. This experiment has been a complementary study of [START_REF] Takagi | The effects of surfactant on the multiscale structure of bubbly flows[END_REF] and explained bubble motion in presence of surfactant. The results confirm the effects of aqueous surfactant solution on the vertical bubble motion and its lateral migration. On the other hand, the drag force upon the bubble in this case is similar to the case of solid sphere. These conclusions for the rising bubble started assigning new physical features for the bubble and surrounding flow via surfactant. Another fascinating experiment for rising bubble with soluble surfactant was [START_REF] Clift | Bubbles, drops, and particles[END_REF]. Their study outcomes proved that the terminal velocity of a rising bubble with soluble surfactant is two times lower than purified water. Apart from forces and concentration of surfactant on the interface of the inclusion, trajectories of the bubbles in a vertical bubble column ( 0 < 𝑅𝑒 < 400) have been characterized in the case of various solutions of soluble surface active agent by [START_REF] Tagawa | Surfactant effects on single bubble motion and bubbly flow structure[END_REF]. First, they have distinguished the rising bubble path difference in diverse surfactant substances. Their experimental studies show that not only does surfactant reduce rising velocity, but also the trajectory of the rising bubble changes from zigzag to spiral depending on the type of employed impurities. Moreover, their experimental results evidenced a decreasing of the lift and drag coefficient of the soaring bubble in the condition of higher concentration.

Context of present study

Section 1.2

The other outstanding work related to the effects of surfactant on a rising bubble has been done by [START_REF] Pesci | Computational analysis of single rising bubbles influenced by soluble surfactant[END_REF]. They conducted a direct numerical simulation (DNS) to better understand the local quantities of the surfactant on the interface of the rising bubble, and a comparison between the instantaneous rising velocity between direct numerical simulation and experimental data has been done. The authors infer that results of numerical simulation collapse with experimental data. Furthermore, their simulation visualized the surfactant distribution on the interface during the rise (local surface coverage). In the case of linear shear flow, numerical simulation of [START_REF] Fukuta | Numerical study on the shearinduced lift force acting on a spherical bubble in aqueous surfactant solutions[END_REF] validate of lift force value variation upon the gas bubble by modifying the ratio of adsorption to desorption. In other words, by decreasing the desorption factor, large gradients of surface concentration occur and the lift coefficient on a bubble placed in a shear flow becomes much smaller than for a clean bubble.

Context of present study

This PhD project focuses on fairly large bubbles (in terms of volume and Reynolds number compared to previous studies) released into a high-speed solid body rotating flow around a horizontal axis. This flow situation is interesting because it can help us understand the behavior of bubbles when they pass through flow regions with locally high vorticity. These high vorticity regions are particularly interesting because of their existence in several flow situations such as Green 2012 mixing layers, turbulence, recirculating flows and body wakes. They are characterized by low pressure minima at their center. In various cases, a review of the literature shows that bubbles approaching these high vorticity regions are deflected toward the vortex core and trapped inside the minimum pressure region. This habitual bubble tendency has already been investigated by numerous researchers. For instance, measuring the forces on microscopic bubbles entrained by a vortex is done by Sridhar and Katz 1995 with implementing the particle image velocimetry algorithms to find velocity and acceleration of the bubble and liquid. Their results shows that for the tiny bubbles with diameter range 55𝜇𝑚 < 𝑑 < 800𝜇𝑚 and rather low Reynolds number of 20 < 𝑅𝑒 < 80, the drag coefficient is similar to that of a solid sphere. These drag results confirm the independency of the drag and vorticity for these microscopic gas bubbles. In addition, the lift only depends on fourth root of local vorticity. Jha and Govardhan 2015 investigated the interaction between single bubble and vortex ring.

Chapter 1

In other words, the effects of bubble on vortex dynamics and vice versa has been experimentally explored. Other instances include: Cavitating bubbles in the tip vortices of propellers (see chapter XVIII by Chahine in Green 2012, Choi and Chahine n.d.), and still very recently by [START_REF] Cabut | Analysis of the water flow inside tire grooves of a rolling car using refraction particle image velocimetry[END_REF] with air bubbles trapped in counter rotating vortex inside tire groves of a rolling car. Perhaps one of the most amazing examples of bubbles trapped by vortices is that given by videos of captive dolphins at play [START_REF] Marten | Ring bubbles of dolphins[END_REF]. In all these situations the question is to know why and how the bubbles move towards the center of the vortex and are trapped. Answering this question requires to identify the forces acting on the bubbles in these situations. The seminal experiment of [START_REF] Naciri | Contribution à l'étude des forces exercées par un liquide sur une bulle de gaz: portance, masse ajoutée et interactions hydrodynamiques[END_REF] showed that the horizontal solid-body rotating flow, is rather representative of vortex regions and was adapted to measure some of these forces. He found that bubbles released in this type of flow experience, like in shear flows [START_REF] Legendre | The lift force on a spherical bubble in a viscous linear shear flow[END_REF][START_REF] Tomiyama | Transverse migration of single bubbles in simple shear flows[END_REF][START_REF] Takemura | Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid[END_REF][START_REF] Hayashi | Lift coefficients of clean ellipsoidal bubbles in linear shear flows[END_REF], a lift force that, adding to the other radial forces (pressure and added mass), make them spiral towards an equilibrium position located more or less close to the rotation axis, according to the rotation speed. The coordinates of this equilibrium position were used to measure the drag and lift coefficients. Since that experiment, the behavior of bubbles or solid particles in a horizontal solid-body rotation flow has been the object of several studies. Most of these studies address the determination of the drag and lift coefficients, either numerically or experimentally from the equilibrium position. For instance, [START_REF] Van Nierop | Drag and lift forces on bubbles in a rotating flow[END_REF] performed experiments on spherical bubbles with Reynolds number up to 500. In accordance with their investigation, when the bubble is set in its equilibrium position, all the forces shall be modeled to be computed. Their results demonstrate that for the bubbles with Reynolds lower than 5, lift force has robust dependency on viscous effect and is negative. [START_REF] Bluemink | Drag and lift forces on particles in a rotating flow[END_REF][START_REF] Bluemink | A sphere in a uniformly rotating or shearing flow[END_REF] experimentally and numerically investigated the drag and lift forces on freely rotating sphere in this flow situation. In addition, the wake behind spherical drop has been recorded when is positioned close to the axis of rotation. With a similar experimental apparatus [START_REF] Rastello | Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow[END_REF] examined the dynamics of a contaminated bubble in equilibrium position, in a surrounding solid rotating flow. The force balance and measurements depend on the position of the bubble. The authors took care to only study bubbles at a distance larger than six times the radius, in order to avoid interaction of the bubble with its wake. Consequently, the essential condition is being far enough from the axis Objectives Section 1.3 of rotation. They expanded their experimental results in [START_REF] Rastello | Drag and lift forces on clean spherical and ellipsoidal bubbles in a solid-body rotating flow[END_REF] to determine acting forces along with bubble behavior in a situation in which the interface is clean. Silicon was chosen as surrounding liquid to prevent slipping interface. The equilibrium position, lift, drag and ellipsoidal bubble shape have been determined. Eventually, [START_REF] Rastello | Clean versus contaminated bubbles in a solid-body rotating flow[END_REF] enlarged their results with a series of new experiments to present comparisons of the dynamics of clean and contaminated bubbles in a solid-rotating flow. They tested both spherical and deformed bubbles in a series of experiments. They found that when the interface is contaminated, the bubble experiences an extra lift force, whereas when the interface is clean it does not. Furthermore, in the same Reynolds number range (up to 700), the deformation of a bubble with a clean interface (ultra-purified water) is greater than the deformation of a bubble with a contaminated interface. All the mentioned research work for solid body rotating flow has been limited to moderate rotation speeds, which prevents the bubble coming too close to the axis of rotation and thus disturb the solid-body rotating flow. Different situations were investigated, the case where the interface is clean (silicone oils, [START_REF] Rastello | Drag and lift forces on clean spherical and ellipsoidal bubbles in a solid-body rotating flow[END_REF]) and the case where the interface is partially or fully covered by impurities (water, [START_REF] Rastello | Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow[END_REF][START_REF] Rastello | Clean versus contaminated bubbles in a solid-body rotating flow[END_REF]. When the surface is contaminated and only in that case, the bubble was shown to rotate with characteristics that are very similar to those of solid spheres immersed in that kind of flow [START_REF] Bluemink | A sphere in a uniformly rotating or shearing flow[END_REF][START_REF] Bluemink | Drag and lift forces on particles in a rotating flow[END_REF]. This results in an extra "Magnus-like" lift force and a separated wake behind the bubble, whose separation angle (the angle from the bubble rear at which the wake detaches from the bubble) is higher than that observed at the same Reynolds number on a solid non-rotating sphere in a uniform flow Johnson and Patel 1999. Details on this separated wake were recently reported in Rastello and Marié 2020.

Objectives

The novelty of this study compared to previous ones lies in the high rotation speeds which are explored. In that case the bubble stabilizes close to the rotation axis, thus mimicking the bubbles trapped in a vortex core. The problem was analytically formulated by [START_REF] Rosenthal | The shape and stability of a bubble at the axis of a rotating liquid[END_REF], the effect of gravity being neglected. The bubble that is assumed spherical at zero rotating velocity is shown to stretch with its length increasing along the rotation axis as the rotation speed increases.

The author derives a mathematical expression providing the bubble elongation

Chapter 1 as a function of the rotation speed, for a given bubble volume (the corresponding model is detailed in chapter 3). He also performs a stability analysis of these bubbles subjected to small sinusoidal disturbances, and shows that within the axisymmetric assumption considered, increasing the rotation speed stabilizes the bubble. Our objectives for the present research work can be listed as below: I To investigate the interface deformation of an air bubble close to the axis of rotation. To check experimentally if bubbles still behave in a comparable way as predicted by [START_REF] Rosenthal | The shape and stability of a bubble at the axis of a rotating liquid[END_REF] when buoyancy breaks the symmetry of the problem. Practically, we inject bubbles of various given volumes in a cell rotating along a horizontal axis, and study their shape and aspect ratio as a function of the rotation speed (discussed in chapter 3). Furthermore, our objective is to investigate the stability of these bubbles, and determine if they can break-up.

II In chapter 4, we will show that we can use bubble position to determine the forces acting on the bubble. The main goal of this chapter will be to measure the mean drag and lift forces, for conditions of relatively high Reynolds number.

III In chapter 5 we will add surfactant to the rotating tank to analyze dynamics changes of the bubble such as deformation, resulting consequences on the acting forces (lift, drag, etc.) and rupturing. Bibliography demonstrated that contaminant on the interface can modify the effective forces and deformation in several flow configurations. As it has been mentioned in the previous part, [START_REF] Rastello | Clean versus contaminated bubbles in a solid-body rotating flow[END_REF] modified the liquid in their experiments to visualize the air bubble in silicon, but the impact of introducing surfactant and the consequences on particle dynamics and break-up is still an open question.

Experiments

Experimental Set-up

To investigate the behavior of a gas bubble in a highly rotating flow, we use the experimental apparatus shown in figure 2 diameter 11 cm and length 10 cm is rotated around its horizontal axis 𝑧. The tank is fixed in a cylindrical counter bore and the contact is made using ball bearings. The tank is entrained by a motor, via a tooth belt. For this experiment, the range of comparatively high rotational velocity (compared to previous research studies) 𝜔 investigated is [600-900] rpm, i.e. from 63 rad 𝑠 -1 to 94 rad 𝑠 -1 . Three holes on the side of the tank are used to fill the tank with water, or to inject an air bubble illustrated in figure 2.2. The water used here is demineralised water similar to the one previously used in [START_REF] Rastello | Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow[END_REF]. It is characterized by a resistivity of 0.3M𝛺cm. This resistivity is in between the one of ultra purified water of Duineveld 1995 (18 M𝛺cm) and the one of tap water (3 k𝛺cm).

Because of operating constraints (bubble injection, temperature measurements, etc.), it was difficult to keep this water clean, which means it a priori contains contaminants. These few contaminants are mainly solid impurities and/or traces of tensio-actives entering the tank and scattered in the liquid. 

Flow characteristics

For the general form of the flow inside the tank, and by calling continuity equation with a velocity field of 𝑽 = (𝑢 𝑟 , 𝑢 𝜃 , 𝑢 𝑧 ) in cylindrical coordinates we have:

𝜕𝜌 𝜕𝑡 + 1 𝑟 𝜕(𝜌𝑟𝑢 𝑟 ) 𝜕𝑟 + 1 𝑟 𝜕(𝜌𝑢 𝜃 ) 𝜕𝜃 + 𝜕(𝜌𝑢 𝑧 ) 𝜕𝑧 = 0
As the rotating flow is steady ( 𝜕 𝜕𝑡 = 0) for a fixed 𝜔, and because the velocity field can be assumed axisymmetric ( 𝜕 𝜕𝜃 = 0), then we will have

𝑢 𝑟 = 𝐴 𝑟
because of the boundary condition at the wall 𝑢 𝑟 = 0, we have constant 𝐴 = 0. Therefore, 𝑢 𝑟 = 0. Then, we write 𝜃 -component of Navier stokes equation in cylindrical coordinates:

𝜌 𝜕𝑢 𝜃 𝜕𝑡 + 𝑢 𝑟 𝜕𝑢 𝜃 𝜕𝑟 + 𝑢 𝜃 𝑟 𝜕𝑢 𝜃 𝜕𝜃 + 𝑢 𝜃 𝑢 𝑟 𝑟 + 𝑢 𝑧 𝜕𝑢 𝜃 𝜕𝑧 = - 1 𝑟 𝜕𝑃 * 𝜕𝜃 + 𝜇 1 𝑟 𝜕 𝜕𝑟 𝑟 𝜕𝑢 𝜃 𝜕𝑟 - 𝑢 𝜃 𝑟 2 + 1 𝑟 2 𝜕 2 𝑢 𝜃 𝜕𝑧 2 + 2 𝑟 2 𝜕𝑢 𝑟 𝜕𝜃 + 𝜕 2 𝑢 𝜃 𝜕𝑧 2
where 𝑃 * = 𝑃 + 𝜌𝑔𝑦. Under the same assumptions of steady and axisymmetric velocity field, and injecting 𝑢 𝑟 = 0, it can be shown that the solution is of the form:

𝑢 𝜃 = 𝐴𝑟 +
𝐵 𝑟 where 𝐴 and 𝐵 are constants. We know necessarily 𝐵 = 0, because, otherwise velocity diverges at 𝑟 = 0. By using the boundary condition at the outer cylinder at 𝑟 = 𝑅 (𝑅 is radius of the cylinder) where the velocity is fixed at 𝜔, we find 𝐴 = 𝜔. Therefore, 𝑢 𝜃 can be deduced as 𝑢 𝜃 = 𝜔𝑟 . Then by contribution of the r-component of Navier Stokes equation in cylindrical coordinate (incompressible, isothermal Newtonian flow), we write:

𝜌 𝜕𝑢 𝜃 𝜕𝑡 + 𝑢 𝑟 𝜕𝑢 𝑟 𝜕𝑟 + 𝑢 𝜃 𝑟 𝜕𝑢 𝑟 𝜕𝜃 - 𝑢 2 𝜃 𝑟 + 𝑢 𝑧 𝜕𝑢 𝑟 𝜕𝑧 = - 𝜕𝑃 * 𝜕𝑟 + 𝜇 1 𝑟 𝜕 𝜕𝑟 𝑟 𝜕𝑢 𝑟 𝜕𝑟 - 𝑢 𝑟 𝑟 2 + 1 𝑟 2 𝜕 2 𝑢 𝑟 𝜕𝜃 2 - 2 𝑟 2 𝜕𝑢 𝜃 𝜕𝜃 + 𝜕 2 𝑢 𝑟 𝜕𝑧 2
Under the same assumptions as precedingly, we obtain:

𝜕𝑃 * 𝜕𝑟 = 𝜌 𝑢 2 𝜃 𝑟
Therefore, by replacing 𝑢 𝜃 = 𝑟𝜔, the pressure profile will be parabolic:

𝑃 * = 1 2 𝜌 𝑟 2 𝜔 2 + 𝑃 0
There is a constant 𝑃 0 which is the pressure at the center of the tank. In addition, with the experimental set-up exhibited in figure 2.1, the rotating flow without bubble was characterized by particle image velocimetry (PIV) measurements in [START_REF] Rastello | Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow[END_REF] on the present experimental set-up. Averages of 100 flow fields show that the mean flow profiles were linear over the whole section of the tank. Results clearly showed that the mean velocity profile was linear as expected for a solid body rotation and matched the velocity of the tank at the wall. As an evidence, we join a PIV mean velocity map for 900 rpm (figure 2.3) and the mean velocity profiles for 400, 500, 750 and 900 rpm scaled by the tangential velocity of the tank (figure 2.4). This map was obtained by averaging 100 instantaneous maps. It shows that all the profiles remained linear. 

Bubble injection, surface tension measurements and other physical parameters

Bubbles can be injected when the cell is at rest. Because the volume of the injected bubble is an important parameter for our calculations, we have used three different fixed needle Hamilton syringes allowing volumes of injected bubble in the range of ([5-1000] 𝜇𝑙). When the rotating motor is launched at indicated rotational velocity 𝜔 ([600-900] rpm) the observed deformation of the bubble is qualitatively similar to an ellipsoid, and the bubble stretches along the axis of rotation 𝑧 (form of the streched bubble illustrated in figure 2.5). In addition, the volume 𝑉 at a given 𝜔 can be measured via image processing. This measurement will be explained in details in section 2.2, by assuming that the bubble is an ellipsoid and by measuring its axes on the front and side view projections. This measurement of volume has been implemented to increase the accuracy of the volume taken into account for our calculations.

Surface tension was measured with a pendant drop tensiometer (Attension Theta Flex, Biolin Scientic AB) shown in 2.6. This device involves a needle located in front of a high-resolution camera. The software algorithm automatically detects the contour of the drop at the tip of the needle. It retrieves the shape profile and using Young Laplace model provides the corresponding surface tension value.

To maintain the stability of the drop, we make sure not to touch the apparatus or the bench to avoid parasitic vibrations. The surface tension for the demineralised water was close to 71.8 ±1.0 mN/m in average for all experiments. We averaged over decades of seconds, enough to have a converged value and not too long to avoid evaporation effects.

The liquid temperature was measured before each series of experiments, with a digital Testo 106 thermometer. This temperature was comprised between 20 • C and 21 • C for each experiment. A small short term increase of temperature, of at most one degree, was observed in the course of measurements. The corresponding uncertainty on viscosity is expected to be below 5%.

Image Processing

In order to understand the dynamics of our targeted bubble at the center of rotation, we detect and extract its physical features along with its behavior by implementing some image analysis algorithms. To do this, the first principal step is to detect the shape of the bubble to have an overview about the general configuration of the bubble. This step requires high accuracy particle detection algorithms and proper back light imaging. Additionally, in order to have a clean series of images to detect the shape of the bubble, we require a deliberate bubble injection without other small bubbles or extra particles disrupting the images.

As it has been displayed in figure 2.1, two cameras are used to record the bubble shape and position: a Phantom 4.3 V360 is used to record images normal to the axis of rotation (side view, and in particular the stretching of the bubble along this axis of rotation). A second camera, Basler acA800 is positioned perpendicular to the first, along the axis of rotation (front view in figure 2.1). Lightning is achieved with two LED panels, one for each camera. The cameras are synchronized to record simultaneously the bubble at a frame rate of 𝐹 = 200 Hz. The resolution is fixed at 600 × 800 pixels for both cameras. For each injected bubble volume and given 𝜔, a set of 255 synchronized images is recorded. Several images of the deformed bubble for rotational velocity in the range [600-900] rpm, i.e. from 63 rad 𝑠 -1 to 94 rad 𝑠 -1 . The images captured from front view and side view are shown in figure 2.7. The bubble configuration exhibits approximately an ellipsoidal shape.

Particle detection

In order to improve our image analysis techniques, we can zoom in on the region where the bubble fluctuates, and crop the image around the bubble. As an example, the zoomed image recorded by Phantom 4.3 V360 for a bubble of volume 𝑉 = 0.27𝑐𝑚 3 is illustrated in figure 2.8. Afterwards the process of particle detection can be initialized. The initial part of the bubble detection is the conversion of our images to gray- scale. Then, we implement a median filtering of the image in two dimensions. This step is an effective method to reduce noises to preserve the edges. In addition, since the bubble is large and properly detectable at the plane, we imbinarize the image to convert pixel values above a determined threshold to ones and setting

Image Processing

Section 2.2 all other values to zeros. Then, by using the complement image, we will optimize the clearance of the bubble (figure 2.9, left ). Afterwards, we fill entirely the remained object with the strel, imclose and imfill Matlab functions (figure 2.9, right). Eventually the outer boundaries of the holes inside the biggest detected object are traced. In this step, the function regionprops has been used. As it has already been remarked, the configuration of the bubble can be considered approximately ellipsoidal. Thus, we extract all the principal components (major axis, surface area, minor axis, orientation, perimeter, center of the mass, etc.) of the detected ellipse with this regionprops function (figure 2.10). First results from the shape of the bubble as an ellipse confirm that the bubble in such high rotating velocities tends to stretch along the horizontal axis. In addition, it oscillates around 𝑧. As it oscillates, there is not a distinct equilibrium position and the interface fluctuates. This physical phenomena is observed from the oscillations of L and D shown in figure figure 2.11. Accordingly, with this evidence from the behavior of the bubble and its deformation, we can characterize the shape of the bubble with these length scales (𝐿 and 𝐷) in figure 2.12.

Camera synchronization and Calibration Calibration

In order to deduce real length scales for our bubble measurements, calibration for each camera is an essential step. For instance, for the side view the surface of the cell has a finite curvature (because of the shape of the tank). Thus, all the measurements from image processing of the gathered image sequences of Phantom must be converted to the real scale in both 𝑦 (vertical direction) and 𝑧 (horizontal axis direction). To overcome this issue and obtain the real scale of the bubble, we have designed a rectangular metal bar which can be inserted inside the tank from the holes (figure 2.13). This metal bar has been marked vertically via colored points along the 𝑦 direction. The distance between each of the marked signs is 0.5 cm and the horizontal distance between the two corners for the calibration in 𝑧 direction is d = 6.2 cm. When the bubble is positioned close to the axis of rotation, it is trapped in the spot covered by the designed rectangular bar (figure 2.14). Then, we need to measure the scale of 𝑦 (𝑠𝑐𝑎𝑙𝑒 𝑦 ) which depends on the 𝑦 position (because of the tank curvature) for a given experiment. Afterwards, for expressing the output lengths of Matlab scripts in SI unit in 𝑧 and 𝑦 direction, we will have to multiply by 𝑠𝑐𝑎𝑙𝑒 𝑧 and 𝑠𝑐𝑎𝑙𝑒 𝑦 respectively.

Concerning the Basler camera calibration, we observe that the camera superposes the front plane (the plane positioned at 𝑍 0 in figure 2.15) and the back plane (the plane positioned at 𝑍 in figure 2.15). To expand, the parallax for the captured bubble by the Basler camera must be taken into account to get an accurate scale conversion value at the given 𝑧 position of the bubble. Indeed, depending on the position of the bubble along the 𝑧 axis, the scale seen by the front view camera will change. This 𝑧 coordinate of the bubble center of mass can be deduced from the side view images taken by the Phantom camera, for d 0.5 cm each set of images of a specific rotating velocity 𝜔. We therefore account for the parallax effet with the following method: We introduce a linear equation for the scale depending on the position of the bubble along the horizontal axis. We stick a transparent circular plastic with a dashed lines pattern to the front (𝑍 0 ) and back (𝑍 ) planes separately and record each with the front view Basler camera.

We then measure the scale 𝑠𝑐𝑎𝑙𝑒 𝑍 0 on the front view by using the 𝑦 coordinates of two points 𝑂 1 and 𝑂 2 separated by a distance 𝐷 (figure 2.15):

𝑠𝑐𝑎𝑙𝑒 𝑍 0 = 𝑦 ′ 1 -𝑦 ′ 2 𝐷 (𝑐𝑚)
We then stick the pattern to the back plane at 𝑍 , and measure the distance between two points 𝑃 1 and 𝑃 2 from which we similarly deduce:

𝑠𝑐𝑎𝑙𝑒 𝑍 = 𝑦 1 -𝑦 2 𝐷 (𝑐𝑚)
As there is a linear relation for the calibration of plane 𝑍 and 𝑍 0 , a linear function depending on the position of the bubble with slope 𝑚 can be proposed as: In this function 𝑍 𝑏𝑢𝑏𝑏𝑙𝑒 can be determined by finding the center of mass position in 𝑧 from image analysis of the side view recording (see figures 2.16 and 2.17). It is evident that the center of mass oscillates around a fixed point in different omega. The position in 𝑧 can vary in each image acquisition when we change 𝜔. Therefore, 𝑍 𝑏𝑢𝑏𝑏𝑙𝑒 is defined as the mean value of 𝑧 for each rotating velocity. 

𝑚 = 𝑠𝑐𝑎𝑙𝑒 𝑍 -𝑠𝑐𝑎𝑙𝑒 𝑍 0 𝑍 -𝑍 0 𝑠𝑐𝑎𝑙𝑒 𝑏𝑢𝑏𝑏𝑙𝑒 (𝑍 𝑏𝑢𝑏𝑏𝑙𝑒 ) = 𝑠𝑐𝑎𝑙𝑒 𝑍 0 + 𝑚 (𝑍 𝑏𝑢𝑏𝑏𝑙𝑒 -𝑍 0 ) 0.5 cm 0.5 cm P 2 (x ,y ) 2 2 x x x x ' ' P 1 (x ,y ) 1 1 O 1 (x ,y ) 1 1 ' ' O 2 (x ,y ) 2 2 Z 0 Z Centerline of Tank

Cameras synchronization

Image acquisition and synchronization of both cameras are based on the Phantom 4.3 V360. This implies that the Phantom camera is the master to adjust the features of recording such as the frame rate. In fact, the Phantom camera in all the process before recording initialization is storing images in its circular memory buffer and we assigned it in post-trigger mode with capability of storing 1700 images before acquisition instruction. On the other hand, the maximum number of images that the Basler camera can have in its buffer is 255. Consequently, the total number of recorded images of the Phantom camera is 255 (synchronized) + 1700 (before Basler camera). Note that the frame rate of both cameras is fixed at 200 Hz.

When the Phantom camera enters into recording mode, it triggers the recording of the Basler camera. The internal clock of the Phantom camera is used as external clock of the Basler camera. However, it is mandatory to similarly capture images in various experiments (different volumes of the bubbles) to preserve consistency and accuracy of our data. This signifies the images should be captured at the same time interval for each bubble size at different rotational velocity. We use a signal generator to send a TTL signal to the camera, in order to launch the recording process (figure 2.18). The moment that we push the start bottom of the signal generator, it sends a TTL signal to the Phantom camera to record and likewise Phantom camera governs Basler camera acquisition (see figure 2.18 and 2.19).

A verification of the accuracy of our calibration along with consistency of the two cameras can be carried out by checking independently a defined value called 𝑑𝑦 for both cameras. We choose to check the maximum vertical distance of the boundary points in each 𝜔 during bubble sharp undulations (figure 2.20). To obtain this value, in image analysis script, a function measuring the maximum and minimum vertical values of the boundary points over 255 images is composed (see figures 2.21 and 2.22). This function deduces the distance between mentioned maximum and minimum point in each image and store them as a vector. Thus, to have a comparison of 𝑑𝑦 between Phantom and Basler in each 𝜔 we take into account the mean value of this quantity through the 255 synchronized images. So, if the mean values of 𝑑𝑦 (255 images) of each camera are close to each other, the synchronization and precision of our calibration shall be validated (see figure 2.23). 

Finding the center of the tank

Finding accurately the coordinates of the center of the cell on our images is crucial since the distance of the bubble to the axis of rotation is essential in order to understand the velocity seen by the bubble. The inner and outer walls of the cell are not entirely visible with eyes and there are range of restrictions to measure the center of the cell manually. We have tested different means to precisely find the center of the tank with a high accuracy. For instance, a first method we tried consisted in sticking a colored circular paper label (red disk in figure 2.24) to the approximated position of the cell center. Then we explored the center of this red disk in series of consecutive images, on the back wall of the tank. The mean value of found centers of the red disks represents the coordinate of the center of the tank. Note that in this method we take the center of the circle described when the red disk rotates, we do not rely on the disk being centered.

We finally used a different, and more convenient, method for finding the center of the tank: we use a Matlab function which gives the center of a circle once the user has clicked on three points belonging to the circle. We chose three regularly spaced points belonging to the inner wall of the tank, and the outputs of the function are then the radius and coordinates of the center of the circle. In our case this method works better and is an efficient solution as from the front view image (Basler) parts of the contour of the inner wall are apparent and by clicking on three random points on the interior wall we can obtain the center of the circle around these three points. Figure 2.25 shows the line of inner wall as well as three chosen random points to be clicked. Moreover, figure 2.26 shows a zoomed part of the inner wall and figure 2.27 illustrates the center found by our Matlab function. We carry out this method for each series of the images for a given omega, to improve the accuracy of found centers. Subsequently, we calculate the mean value of the centers for various 𝜔. We define (𝑋 𝐶 , 𝑌 𝐶 ) as the value of the center of the tank for each experiment (𝑋 𝐶 , 𝑌 𝐶 ) = 𝑚𝑒𝑎𝑛(𝑋 1 : 𝑋 7 , 𝑌 1 : 𝑌 7 ) (see table 2.1).

Volume measurement and experimental data

As already explained in section 2.1.2, bubbles can be injected when the cell is at rest, with three different fixed needle Hamilton syringes and the injected volume 𝑉 0 of the bubble is therefore a priori known with a precision of 𝜇𝐿. The value of volume can be read from the Hamilton syringes. In the following, each series of data points, corresponding to a same injected bubble, is labeled by the mean volume 𝑉 measured with this method over the range of 𝜔. Note that for all the series, the volume of the bubble is very small compared to the volume of the cell (the ratio of volumes goes from 10 -7 to 3 • 10 -4 for the biggest bubble). In order to be more explicit on the relevant bubble length scale for each series, we provide in table 2.2 a correspondence between 𝑉 and the mean radius 𝑅 𝑒𝑞 of an equivalent bubble with a spherical shape.

𝜔 (𝑟𝑎𝑑 𝑠 -1 )
However, to filter out uncertainties on the final bubble volume introduced by the simple reading of the sample in the syringe ( refraction effects when level reading; sometimes parasitic micro-bubbles created at the same time as the main bubble), we also measured the volume V at a given omega via image processing. Indeed, by assuming that the bubble is an ellipsoid and by measuring its axes on the front and side view projections (figure 2. Measurements of volume at low 𝜔 are typically within 5% of the injected volume 𝑉 0 . For the larger 𝜔 investigated, a small increase in the volume of the bubble with 𝜔 is typically observed, up to 15% for most series. We interpret this increase as due to the elastic deformation of the plexiglas tank, as detailed below. This phenomenon can be explained by the pressure difference seen by the wall of the cylindrical tank (𝛥𝑃 𝑤𝑎𝑙𝑙 ). We can write Barlow's formula to compute the elastic deformation of the tank wall with thickness of 𝑒 as:

𝜋 × 𝑚𝑒𝑎𝑛 (𝐿 𝐷 2 ) (2.
𝛥𝑃 𝑤𝑎𝑙𝑙 = 𝑃 0 + 1 2 𝜌𝜔 2 𝑅 2 -𝑃 𝑎𝑡𝑚 = 𝑒 𝑅 𝐸 𝛥𝑅 𝑅 (2.2)
where 𝐸 = 3 × 10 9 𝑃𝑎 is the Young modulus of plexiglas and 𝑅 is the radius of the tank. Then by writing the volume conservation relation for the whole tank we have,

𝛥𝑉 𝑏𝑢𝑏𝑏𝑙𝑒 + 𝛥𝑉 𝑤𝑎𝑡𝑒𝑟 = 𝛥𝑉 𝑡𝑎𝑛𝑘 (2.3)
The volume variation of the tank can be estimated as,

𝛥𝑉 𝑡𝑎𝑛𝑘 = 𝛥 (𝜋𝑅 2 𝐿) = 2𝜋𝑅𝐿 𝛥𝑅
The volume variation of the bubble can be related to 𝑃 0 at the center of the tank with compressibility 𝛽 𝑏𝑢𝑏𝑏𝑙𝑒 as:

𝛽 𝑏𝑢𝑏𝑏𝑙𝑒 ≃ 1 𝑃 𝑎𝑡𝑚 = - 1 𝑉 0 𝛥𝑉 𝑏𝑢𝑏𝑏𝑙𝑒 𝛥𝑃
where 𝛽 𝑏𝑢𝑏𝑏𝑙𝑒 is the volume compressibility coefficient and 𝛥𝑃 = 𝑃 0 -𝑃 𝑎𝑡𝑚 . We have assumed that:

𝛥𝑉 𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑉 0 (1 - 𝑃 0 𝑃 𝑎𝑡𝑚 )
The volume fluctuation of the water is defined as below where

𝛽 𝑤𝑎𝑡𝑒𝑟 ≃ 10 -10 𝑃𝑎 -1 , 𝛥𝑉 𝑤𝑎𝑡𝑒𝑟 = 𝛽 𝑤𝑎𝑡𝑒𝑟 𝑉 𝑤𝑎𝑡𝑒𝑟 (𝑃 0 -𝑃 𝑎𝑡𝑚 )
In our experiment the volume of the water filling the cylindrical tank is 𝑉 𝑤𝑎𝑡𝑒𝑟 ≃ 800 cm 3 . This means that the estimate for 𝛥𝑉 𝑤𝑎𝑡𝑒𝑟 ≃ 10 -7 𝑐𝑚 3 . More-over, 𝑉 𝑏𝑢𝑏𝑏𝑙𝑒 in our experiments have been up to 𝑉 𝑏𝑢𝑏𝑏𝑙𝑒 = 0.25 cm 3 . Then, the order of magnitude of 𝛥𝑉 𝑤𝑎𝑡𝑒𝑟 is 10% of bubble volume. Thus, we can neglect the volume variations of water and maintain solely 𝛥𝑉 𝑏𝑢𝑏𝑏𝑙𝑒 in equation 2.3 and rewrite it as :

𝛥𝑉 𝑏𝑢𝑏𝑏𝑙𝑒 = 𝛥𝑉 𝑡𝑎𝑛𝑘 𝑉 0 1 - 𝑃 0 𝑃 𝑎𝑡𝑚 = 2𝜋𝑅𝐿𝛥𝑅 (2.4)
Now, with contribution of equations 2.2 and 2.4, we have two equations and two unknowns (𝛥𝑅 and 𝑃 0 ) leading to a prediction for 𝛥𝑉 𝑏𝑢𝑏𝑏𝑙𝑒 as a function of 𝜔 and 𝑉 0 . The experimental variations of the volume are illustrated in figure 2.29. The data points are the volumes of the experimental data showing for different sizes of the bubble how the volume increased, with 𝛥𝑉 𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑉 𝜔 -𝑉 0 where 𝑉 𝜔 is the measured volume from relation 2.1 in each rotating velocity and 𝑉 0 is the volume of injected bubble into the cell with Hamilton syringes at the beginning of the experiment. Figure 2.29 shows the volume variations predicted by equations 2.2 and 2.4. As it is apparent, there is an increase of volume in our range of rotational velocities for both experimental data and theoretical model. The model predicts that the volume can vary up to ≃ 14 % (figure 2.30). On the other hand, the experimental data shown in figure 2.29 display that the volume variation is up to ≃ 24 %, which is a bit larger but of the same order of magnitude. Note that for the tiny bubbles of volume 𝑉 = 0.0039 𝑐𝑚 3 as well as 𝑉 = 0.0064 𝑐𝑚 3 the increase is much larger up to ≃ 80 % which is huge. The reason of this sudden volume variations of these small bubbles in experimental data compared to the model could be that these bubbles are not seeing 𝑃 0 at the center of the tank as they are not aligned with the axis. In the derivation of equation 2.4, it is assumed that the bubble is always straddling the axis of rotation and pressure 𝑃 0 is pressure at the center of the bubble which is the same as the pressure at the center of the tank. Nevertheless, in our experiments the bubble is not entirely centered and when the bubble is small enough, the interface does not straddle the axis of rotation. Thus, by increasing 𝜔 the pressure seen by the bubble 𝑃 0 decreases because of two distinct reasons: the decrease in 𝑃 0 modeled in figure 2.30, and the fact that the small bubbles moves closer to the axis when omega is increased. The other point in figure 2.29 that should be remarked is the volume variation of the bubble with 𝑉 = 0.028 𝑐𝑚 3 . The volume variation for this bubble is negative at the beginning (figure 2.29). The reason is possibly the precision of noted volume injected by the Hamilton syringe and the noted value may have been underestimated.
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Figure 2.29: Variation of volume (assumption of ellipsoidal shape) via increasing 𝜔 measured with the method presented in section 2.2.3 for all the experimental data shown in table 2.2. 𝛥𝑉 𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑉 𝜔 -𝑉 0 where 𝑉 𝜔 is the volume of the bubble with ellipsoidal shape in related 𝜔 and 𝑉 0 is the volume of injected bubble by syringe. 

Bubble equilibrium position

When the cell is rotated, the bubble migrates towards the axis of rotation. For moderate rotation frequencies, we observe that bubbles oscillate around their mean position with an amplitude large compared to the bubble size. This is illustrated in figure 2.31, with the red curve showing the vertical 𝑦 and horizontal position 𝑧 of the center of a bubble of volume 𝑉 = 0.14 cm 3 along the axis of the cell as a function of time, for 𝜔 = 31 𝑟𝑎𝑑 s -1 . The values of 𝑦 and 𝑧 are made dimensionless with 𝑅 𝑒𝑞 = 3.2 mm, the radius of a spherical bubble of equivalent volume 𝑉 = 0.14 cm 3 . The bubble exhibits strong oscillations around its mean position, of an amplitude comparable with the bubble size. The frequency of the vertical oscillations corresponds to the frequency of the rotating cell. The horizontal position fluctuates with an even larger amplitude (up to 15 mm), and at a lower frequency. When 𝜔 is increased up to 𝜔 = 89 𝑟𝑎𝑑 s -1 , the bubble moves closer to the axis of the cell: for this larger frequency the amplitude of the bubble oscillations is strongly reduced along both directions, and becomes small compared with 𝑅 𝑒𝑞 (blue curve). A closer look at the motion of the bubble shows that bubbles follow a limit cycle around the mean position (figure 2.32). This limit cycle is reminiscent of the behavior observed recently for rigid spheres in the experiments of Sauma-Pérez et al. 2018, even though the latter experiments have been carried out at much lower 𝑅𝑒. Our objective in the following is to focus on the mean position of the bubble as a function of rotation frequency and bubble size: we therefore chose to focus on 𝜔 in the range [63 -94] 𝑠 -1 , for which the amplitude of the bubble oscillations remains moderate compared to the bubble dimensions. The upper value of 94 𝑠 -1 corresponds to the maximum 𝜔 that can be reached with the motor entraining the cell. All the quantities introduced in the following sections related to the bubble size and position are measured for each image, and then averaged over the total number of images recorded by each camera. The standard deviation around these averaged values will be indicated by the error bars.

We will assume in the modeling that the bubble is axisymmetric, of character- istic lengths 𝐿 and 𝐷 (figure 2.12). As illustrated in figure 2.33 and 2.34, for the larger bubbles investigated this assumption is not strictly valid, but the aspect ratio measured on front view projections remains smaller than 1.4 even for the larger bubbles and all 𝜔 investigated. For each image the equivalent bubble diameter 𝐷 for a given injected volume and 𝜔 is then defined from the front view projection as the mean value between minor axis and major axis dimensions (as measured with the Matlab regionprops function). The length 𝐿 is directly measured as the major axis from the side view projection, with the same Matlab function.

Dimensionless Parameters

We now wish to identify the parameters, and corresponding dimensionless numbers, needed to describe the equilibrium position and the shape of a bubble of volume 𝑉 placed in a solid-body cylindrical rotational flow. As mentioned before, we assume the bubble is axisymmetric, and characterize its shape with two length scales: a length scale 𝐿 corresponding to the dimension of the bubble along the axis of rotation 𝑧, and the smaller length scale 𝐷, corresponding to the mean diameter of the bubble projection in a plane normal to the axis of rotation (see figure 2.5). We introduce three dimensionless numbers to describe the shape of the bubble: the aspect ratio 𝑋 = 𝐿/𝐷 which measures the stretching of the bubble, aspect ratio 𝑋 𝐹 defined as the ratio of major to minor axis as measured on the front view and the ratio 𝛼 = 𝑉 /(𝐿𝐷 2 ). The latter characterizes the form of the bubble in a section containing the rotation axis 𝑧: it is for example expected to be equal to 𝜋/6 if the bubble is an ellipsoid, or to 𝜋/4 if the bubble is a cylinder. Note that the cylindrical shape is the limit shape expected for very large 𝜔, as predicted by the model of Rosenthal 1962. We will discuss the values of 𝑋 , 𝑋 𝐹 and 𝛼 in chapter 3.

The physical control parameters characterizing this problem are:

• 𝜌 -→ carrier liquid density

• 𝑔 -→ acceleration of gravity

• 𝜔 -→ rotational velocity of the tank

• 𝜎 -→ gas-liquid surface tension

• 𝜇 -→ dynamic viscosity of the liquid

In addition, we must consider the bubble position in the cross section, which determines the flow around the bubble and hence the force exerted by the liquid upon the bubble: we characterize this position with the coordinates of the bubble centre in polar coordinates, namely the distance 𝑟 𝑒 to the axis of the cell, and the angle 𝜃 with the vertical direction (figure 2.35). The above parameters can be grouped into five additional independent dimensionless numbers as below:

• Rossby number -→ 𝑅𝑜 = 𝑟 𝑒 /𝐷

• Reynolds number -→ 𝑅𝑒 = 𝜌𝜔𝑟 𝑒 𝐷/𝜇 • Froude number -→ 𝐹𝑟 = 𝜔 2 𝑟 𝑒 /𝑔 • Weber number -→ 𝑊 𝑒 = 𝜌𝜔 2 𝐷 3 /8𝜎 • Angle -→ 𝜃
Note that we have chosen to introduce a Reynolds number based upon the mean velocity seen by the bubble. An alternative choice could be to introduce a Reynolds number based upon the shear seen by the particle. This dimensionless number does not depend on 𝑟 𝑒 . This implies that the shear (𝛥𝑈 ) seen by the bubble imposed by the ambient flow velocity of 𝑈 is: We will discuss in chapter 4 the relevance of this choice. The liquid-gas density and viscosity ratios can also be introduced. All experiments are here carried out with air and water, and since these two parameters are constant in the present study we will not discuss them in the following.

𝛥𝑈 = 𝜔 (𝑟 𝑒 + 𝐷 2 ) -𝜔 (𝑟 𝑒 - 𝐷 2 ) = 𝜔𝐷
The main control parameter driving the stretching of the bubble (discussed in chapter 3) is expected to be 𝑊 𝑒, and similarly the forces acting on the bubble (discussed in chapter 4) are expected to be mostly controlled by 𝑅𝑒. We will show in the following chapters that corrections in 𝑅𝑜 have to be introduced when the bubble approaches the axis of rotation of the cell.

In this chapter we present results regarding the position of the gas bubble and its shape when it is close to the axis of rotation. The position of the bubble and its variations when 𝜔 is increased yield precious information regarding the flow around the bubble. Therefore, at first the mean bubble position is discussed and in the following the shape of the bubble interface is explored.

Bubble Position

As it has been explained in section 2.3 the lower rotational velocity investigated is 𝜔 = 63 𝑟𝑎𝑑 𝑠 -1 where the position of the bubble is close to the axis of rotation, but the bubble is not entirely centered. As is shown in figure 3.1, by increasing the rotating velocity of the cell, the bubble is displaced towards the center of the tank. The value of 𝑟 𝑒 is expected to be directly impacted by 𝜔 and 𝑔. We can estimate that the pressure gradient on the periphery of the bubble is equal to the buoyancy force as:

𝐹 𝐵 = 𝛥𝜌𝑔 𝑉 𝑏 ∼ 𝜕𝑃 𝜕𝑟 × 𝑉 𝑏 𝜕𝑃 𝜕𝑟 = 𝜌𝑟 𝑒 𝜔 2 ∼ 𝜌𝑔 -→ 𝑟 𝑒 ∼ 𝑔 𝜔 2
In this simple approximation, the drag and lift forces acting on the bubble are neglected. In chapter 4 we will discuss the values of drag and lift, and explain why this assumption, though a priori strong, works relatively well. We plot on figure 3.2 the dimensionless distance to the axis 𝑟 𝑒 /𝐷, which is exactly the Rossby number 𝑅𝑜 introduced in section 2.4, as a function of 𝑔/(𝐷𝜔 2 ). We see that 𝑟 𝑒 /𝐷 is smaller than 1 for most of our experimental conditions, except for the smallest bubbles investigated. The error bars on this graph correspond to the standard deviation of 𝑟 𝑒 values on the set of 255 images. In addition, figure 3.2 shows that the average 𝑟 𝑒 can indeed be estimated by 𝑔/𝜔 2 . This is equivalent to saying that the Froude number introduced in section 2.4 is close to one for all our data (figure 3.3). The data for the smallest bubble of V=0.69 mm 3 departs from this trend, and for this series 𝑟 𝑒 appears to be significantly smaller than 𝑔/𝜔 2 (and hence 𝐹𝑟 significantly smaller than one). This behavior could be related to the smaller Re for this very small bubble (of order 100): we will show in section 4.2 that this results in a larger drag coefficient for this particular series than for all other (larger) bubbles. Moreover, figure 3.4 exhibits that the bubble always make the minimum angle (𝜃 ) of 50 to 89 degrees with the vertical axis and the angle is diminishing by increasing 𝜔 for all the series. These values of 𝜃 correspond to positions where the bubble lies left of the tank center on a front view, when the rotation is anticlockwise (see figure 3.5). We will come back to the issue of the position of the bubble more detailedly in chapter 4, when discussing the forces acting on the bubble. 

Bubble deformation

Experimental results

We present in this subsection the measurements of the bubble aspect ratio, defined as 𝑋 = 𝐿/𝐷, as a function of 𝜔 and for a large range of bubble volumes 𝑉 (from 0.69 mm 3 to 0.27 cm 3 ). As expected, we observe that when 𝜔 is increased, the bubbles are stretched along the axis of rotation (figures 2.33 and 2.34), and hence that their aspect ratio 𝑋 = 𝐿/𝐷 increases. Figure 3.6 shows the variations of 𝑋 as a function of 𝜔 for a large range of bubble volumes. The aspect ratio increases monotonically when the volume is increased for almost all series, and reaches a value of 2.2 for the largest bubble investigated here and the largest 𝜔.

Additionally, the aspect ratio of the bubble 𝑋 𝐹 in the cross section (as measured on the front view) diminishes for all the series (see figure 3.7), down to values smaller than 1.25 for the largest rotation rate. This shows that the bubble is close to axisymmetric for the larger rotational velocities 𝜔 investigated.

Discussion of ellipsoidal shape assumption

Regarding the shape of the bubble, we define two dimensionless numbers called 𝛼 = 𝑉 𝐿𝐷 2 and 𝛽 = 𝐴 𝑏 𝐿𝐷 : the latter grouping is, similar to 𝛼, a number characterizing the shape of the bubble: 𝛽 = 𝜋/4 for an ellipsoid and 𝛽 = 1 for a cylinder. At any rate, 𝛼 and 𝛽 are not expected to vary much when the deformation of the bubble is moderate. In particular for the range of longitudinal aspect ratio investigated here (1 < 𝑋 < 2.2), the model of [START_REF] Rosenthal | The shape and stability of a bubble at the axis of a rotating liquid[END_REF] predicts that 𝛼 varies between 𝜋/6 ≈ 0.52 and 0.56, and that 𝛽 varies between 𝜋/4 ≈ 0.78 and 0.82, i.e. close to the value for an ellipsoid. In order to check this experimentally, a possibility is to estimate 𝛼 directly from 𝑉 0 , 𝐿 and 𝐷, by assuming that 𝑉 remains relatively close to the injected volume 𝑉 0 , which should be true for lower 𝜔 values (as already seen in subsection 2.2.3). We plot in figure 3.8 the variations of this estimate 𝛼 𝑖𝑛 𝑗 = 𝑉 0 /𝐿𝐷 2 as a function of 𝜔: the values are relatively close to the ellipsoid value 𝜋/6 for all series (red dotted line), in particular for the lower value of 𝜔. It decreases down to 0.4 for the largest 𝜔. We interpret this decrease as caused by the fact that at large 𝜔 the volume 𝑉 0 used for the calculation of 𝛼 𝑖𝑛 𝑗 is an underestimation of the actual volume 𝑉 of the stretched bubble (see section 2.2.3).

All in all, we observe that 𝛼 ≈ 𝜋/6 ≈ 0.52 at the lower 𝜔. For larger 𝜔 we cannot check directly that this holds since the volume 𝑉 cannot be measured reliably from the two projections given the strong bubble deformations, and 𝛼 𝑖𝑛 𝑗 probably underestimates 𝛼. The model of Rosenthal 1962 predicts 𝛼 = 0.56 for 𝜔 = 94 𝑟𝑎𝑑 s -1 , i.e. a modest increase of about 7% from the value at 𝜔 = 63 𝑟𝑎𝑑 s -1 . In order to simplify the discussion, we assume in the following that 𝛼 remains close to its value for an ellipsoid, i.e. 𝜋/6 for all our conditions. Similarly, and in order to be consistent with this choice, we assume 𝛽 = 𝜋/4.

Model of Rosenthal 1962

The stretching of the bubble along the axis of rotation results from the difference in pressure between the region of the bubble straddling the axis of rotation, where pressure is minimal, and the periphery of the bubble: this effect has been modeled by [START_REF] Rosenthal | The shape and stability of a bubble at the axis of a rotating liquid[END_REF] in the limit of zero buoyancy and viscosity: within his model the axisymmetric bubble centered on the cell axis of rotation. The analytical solution is based on the assumption of a bubble surrounded by a liquid body with a rotating adjacent flow. The main assumptions made are:

• The bubble is axisymmetric (figure 3.9).

• The gravitational field is neglected 

• Viscosity is negligible

The equation of the interface in figure 3.9 is 𝑟 = 𝑓 (𝑧). As it is shown in chapter 2.1 section 2.1.1, the pressure distribution in both phases of liquid and gas are :

           𝑃 𝑏 = 1 2 𝜌 𝑏 𝜔 2 𝑟 2 + 𝑃 0𝑏 𝑃 𝑙 = 1 2 𝜌 𝑙 𝜔 2 𝑟 2 + 𝑃 0𝑙
The Laplace law for the bubble is given by:

𝑃 𝑏 -𝑃 𝑙 = 𝜎 𝐽
where 𝜎 and 𝐽 are respectively the surface tension and total curvature. We can write the total curvature as a function of the distance to the axis 𝑓 as (axisymmetric assumption): 

𝐽 = 1 𝑓 𝑑 𝑑 𝑓 𝑓 (1 + 𝑓 ′2 ) 1/2 (3.1)
Then, the Laplace law can be rewritten as:

𝑑 𝑑 𝑓 𝑓 (1 + 𝑓 ′2 ) 1/2 = (𝑃 0𝑏 -𝑃 0𝑙 ) 𝑓 𝜎 - (𝜌 𝑙 -𝜌 𝑏 ) 𝜔 2 𝑓 3 2𝜎 (3.2)
With conditions of :

𝑓 = 0 at 𝑍 = 𝑙 𝑓 ′ = 0 at 𝑍 = 0
Then with integration of equation 3.2 :

(1 + 𝑓 ′2 ) -1/2 = (𝑃 0𝑏 -𝑃 0𝑙 ) 𝑓 2𝜎 - (𝜌 𝑙 -𝜌 𝑏 )𝜔 2 𝑓 3 8𝜎 (3.3)
By knowing the maximum minor axis of the bubble 𝑎, and applying Laplace law this time at the tip of the bubble, the curvature at the tip of the bubble (on the axis) is -

(1 + 𝑒) 𝑎
where 𝑒 is the eccentricity of the deformed ellipsoidal bubble. Then we have:

1 + 𝑒 𝑎 = 𝑑 𝑑 𝑓 (1 + 𝑓 ′2 ) -1/2 𝑓 =0 = (𝑃 0𝑔 -𝑃 0𝑙 ) 2𝜎 (3.4)
Now with condition of 𝑓 ′ = 0 at 𝑓 = 𝑎 and combining 3.3 and 3.4:

𝑒 𝑎 3 = 𝜌 𝑙 𝜔 2 8𝜎 (3.5)
Therefore, the simplified differential equation will be;

(1 + 𝑓 ′2 ) -1/2 = (1 + 𝑒) 𝑓 𝑎 -𝑒 𝑓 3 𝑎 3 (3.6)
From 3.6 the major axis (𝑙) and volume of the bubble can be deduced as:

𝑙 = 𝑎 ∫ 1 0 𝐴 (1 -𝐴 2 ) 1/2 𝑑𝑥, 𝑉 = 2𝜋𝑎 3 ∫ 1 0 𝑥 2 𝐴 (1 -𝐴 2 ) 1/2 𝑑𝑥 (3.7)
where 𝐴 = 𝑥 (1+𝑒 -𝑒𝑥 2 ). On the one hand by replacing 𝑎 with 𝐷/2 (the notation used in our experimental data) in 3.5, the following relation for 𝑒 is obtained:

𝑒 𝐷 3 = (𝜌 𝑙 -𝜌 𝑔 )𝜔 2 8𝜎 -→ 𝑒 = 𝜌 𝑙 𝜔 2 𝐷 3 8𝜎 -→ 𝑒 = We 8 (3.8)
On the other hand from equation 3.6, the aspect ratio 𝑋 can be written as

𝑋 = 𝐿 𝐷 = ∫ 1 0 𝐴 (1 -𝐴 2 ) 1/2 𝑑𝑥.
Then rewriting equation 3.7 with equation 3.8 as a function of the Weber number, and noting r the dimensionless distance to the axis r = 2𝑟 /𝐷, we obtain:

𝑋 = ∫ 1 0 r 1 + (1 -r 2 )𝑊 𝑒/8 (1 -r 2 (1 + (1 -r 2 )𝑊 𝑒/8) 2 ) 1/2 𝑑 r (3.9)
This equation predicts that the aspect ratio 𝑋 is a sole function of the Weber number. Figure 3.10 shows the experimental data of figure 3.6, replotted as a function of the Weber number (same legend as figure 3.6). The solid line corresponds to the prediction of equation 3.9. The aspect ratio of the different series in Figure 3.6 are regrouped along a same curve in the (𝑋,𝑊 𝑒) plane. However, the experimental aspect ratios are larger than the predicted one, and the relative departure to the prediction decreases when Weber is increased. This is directly related to the position of the bubble: the model assumes that the bubble center lies on the axis of rotation, but in the experiment buoyancy causes the bubble center to be at a finite distance 𝑟 𝑒 from this axis: the value of 𝑟 𝑒 decreases (see figure 3.1) when Weber is increased, due to the steeper pressure gradient at larger rotational velocities, which explains the trend observed on figure 3.10. When the bubble is centered, the pressure difference between the bubble periphery and axis due to the parabolic pressure field is

𝛥𝑃 0 = 𝜌 𝑙 𝜔 2 𝐷 2 /8
The fact that the bubble is shifted away from the axis of the cell at a finite 𝑟 𝑒 means that the pressure difference it is submitted to will be larger than if it were centered on the axis. The minimum pressure exerted on the bubble will still be the pressure at the axis of the cell if 𝑅𝑜 < 0.5, which is the case for most of our data except for smaller bubbles, but the average pressure around the periphery will be larger because of the convexity of the pressure profile in the solid body rotational flow. It is easy to show by integration that the pressure difference between the mean pressure at the periphery of the bubble and pressure on the axis of the rotating cell, for a bubble of diameter 𝐷 whose center is displaced at a distance 𝑟 𝑒 from the axis will be given by:

𝛥𝑃 = 𝛥𝑃 0 (1 + 4𝑟 2 𝑒 /𝐷 2 ) = 𝛥𝑃 0 (1 + 4𝑅𝑜 2 )
see figure 3.11. This result can be rapidly recovered by just considering the mean pressure over the diameter represented by the dashed line on figure 3.11:

𝛥𝑃 = 𝑃 + + 𝑃 - 2 -𝑃 𝑎𝑥𝑖𝑠 = 1 4 𝜌 𝑙 𝜔 2 𝑟 𝑒 + 𝐷 2 2 + 𝑟 𝑒 - 𝐷 2 2 = 1 8 𝜌 𝑙 𝜔 2 𝐷 2 1 + 4𝑟 2 𝑒 𝐷 2 + + + pressure field + P axis Figure 3
.11: Sketch of the bubble of radius 𝑅, illustrating pressures 𝑃 + and 𝑃 -at the surface of the bubble and their corresponding values on the parabolic pressure field in the tank. For a bubble shifted of a distance 𝑟 𝑒 from the tank axis, the pressure difference between mean pressure at periphery and pressure on axis of the cell is

𝛥𝑃 = 𝑃 + +𝑃 - 2 -𝑃 𝑎𝑥𝑖𝑠 .
Because of this shift off the axis, the bubble is obviously not axisymmetric anymore, as supposed in the model of [START_REF] Rosenthal | The shape and stability of a bubble at the axis of a rotating liquid[END_REF], and finding a generalization of equation 3.9 for the non axisymmetric problem appears difficult. We propose to avoid this difficulty by considering that the displaced bubble is equivalent to a centered bubble rotating at a larger 𝜔 ′ such that

𝜔 ′ = 𝜔 1 + 4𝑟 2 𝑒 /𝐷 2 1/2 = 𝜔 1 + 4Ro 2 1/2
i.e. one which generates the actual pressure difference 𝛥𝑃 instead of 𝛥𝑃 0 . This is equivalent to introducing a modified Weber number,

We = 𝜌 𝑙 𝜔 2 𝐷 3 /8𝜎
bubble aligned with axis of rotation Rosenthal 1962 3.10

 We ′ = 𝜌 𝑙 𝐷 3 𝜔 2 (1 + 4𝑅 2 𝑜 ) 8𝜎 Bubble shifted from axis  We ′ = 𝜌 𝑙 𝜔 ′2 𝐷 3 /8𝜎 = 𝑊 𝑒 (1 + 4𝑅𝑜 2 )
Based on the results of figure 3.2, we estimate that 𝑅𝑜 ≈ 𝑔/(𝐷𝜔 2 ), which yields,

We ′ = We(1 + 4𝑔 2 /(𝐷 2 𝜔 4 ))
We plot on figure 3.12 the aspect ratio 𝑋 as a function of this modified Weber number: even though there is still a slight underestimation of the aspect ratio for small bubbles, this improved model predicts relatively accurately the aspect ratio, in spite of the strong assumptions made on the shape of the bubble. The correction introduced in the Weber number captures correctly how buoyancy drives bubbles away from the axis of the cell at a finite 𝑟 𝑒 , and therefore exposes them to a steeper pressure gradient than the one they would experience if they were centered. The discrepancy observed for the very small bubbles may be related to the impact of the mean velocity 𝑟 𝑒 𝜔 on the shape of the bubble: for the small bubbles, the Weber number 𝑊 𝑒 𝑟𝑒 = 4𝑊 𝑒𝑅𝑜 2 built with the mean flow seen by the bubble is larger than the Weber number introduced in section 2.4, which points to a possible distinct origin of the deformation for this case. The data for the larger bubbles show a non monotonic behavior for the largest Weber numbers (a behavior already present on figure 3.10): the decrease of the aspect ratio at the larger 𝑊 𝑒 is correlated to a very strong increase in the fluctuations around the mean aspect ratio, as shown by the larger error bars for these points. These shape fluctuations, which will be discussed in the following section 3.3, are in addition associated with a strong increase in the fluctuations of the distance to the axis 𝑟 𝑒 . A simple model based on the mean values of these quantities is probably not sufficient to capture the bubble shape for these non-stationary conditions. A further explanation for the underestimation of the aspect ratio 𝑋 at large 𝑊 𝑒 could reside in the method used for the determination of 𝐷, mean diameter in the cross section: we determine 𝐷 from front view projections, but for strongly distorted bubbles at large 𝑊 𝑒 the size of this projection is certainly larger than the local 𝐷 at a given longitudinal position 𝑧. This will lead to an underestimation of 𝑋 for strongly distorted bubbles.

Break-up

As it has been already mentioned, by increasing 𝜔, the longitudinal aspect ratio of the bubble (𝑋 ) rises. This stretching of the bubble leads to rupturing for volumes larger than 𝑉 = 0.27 𝑐𝑚 3 . Indeed, two types of break-up have been observed during the experiments in this type of flow. One is the situation where the bubble splits into two bubbles from the middle. For this type of break-up, regarding the figure 3.13 the aspect ratio (𝑋 ) of the bubble with volume 𝑉 = 0.3 𝑐𝑚 3 at 𝜔 = 89 𝑟𝑎𝑑 𝑠 -1 fluctuates in time interval [0 , 4.5] seconds. After 𝑇 = 4.5 𝑠 the bubble becomes distorted and experiences its highest value of 𝑋 almost up to 5 (two times the average value until 𝑇 = 4.5 𝑠). Afterwards, rupturing occurs and the bubble splits into nearly two same size bubbles (figure 3.14). We call this configuration of the bubble rupturing (figure 3.14) middle break-up.

Figure 3.12: Bubble aspect ratio as a function of corrected Weber number. The legend is the same as in Figure 3.6. The solid line corresponds to equation 3.9, but integrated with the modified Weber number 𝑊 𝑒 ′ = 𝑊 𝑒 (1 + 4𝑔 2 /(𝐷 2 𝜔 4 )).

Another type of bubble break-up has been observed. In this case the bubble breaks into two unequal size bubbles (figure 3.15). As a matter of fact, the longitudinal bubble aspect ratio (𝑋 ) increases and reaches a peak, but it does not rupture. Then, the aspect ratio decreases and the break-up occurs (see figure 3.16). Figure 3.17 illustrates the broken bubbles in volume range of [0.34, 0.41] 𝑐𝑚 3 . We observe that the bubble breaks above a given 𝜔 and the circle indicates the 𝜔 for which break-up occurs for each volume of the bubble. This means that there is a maximum beyond which the bubble breaks. The smallest bubble ruptures at 𝜔 ≃ 89 𝑟𝑎𝑑 𝑠 -1 and the largest ones break between 𝜔 ≃ 68 𝑟𝑎𝑑 𝑠 -1 and 𝜔 ≃ 74 𝑟𝑎𝑑 𝑠 -1 . As illustrated in figures 3.16 as well as 3.13, the bubble in a specific value of the 𝜔 for which it breaks, has a huge distortion as can be seen from the large values of the longitudinal aspect ratio 𝑋 . Rosenthal 1962 predicted that for an 𝜔 lower than a specific value, the pressure gradient is not large enough to stabilize the bubble. So, the bubble becomes unstable. By verifying Rosenthal 1962 criterion for the instability of the bubble, in our case break-up is above the threshold and our bubbles are always in stable situation which is contrary to the experimental observation (see figure 3.18). In fact, the break-up we observe might be caused by a periodic forcing upon the bubble at the correct frequency through a mechanism of resonance on the interface, where the eigenfrequency of the stretched bubble is equal to the tank frequency (𝜔). The interface of the elongated bubble along the axis of rotation can experience a series of eigenmodes. The results of Rayleigh shows [START_REF] Risso | The mechanisms of deformation and breakup of drops and bubbles[END_REF] that the frequency of an oscillating spherical bubble of radius 𝑅 is:

𝜔 𝑛 = √︄ (𝑛 -1) (𝑛 + 1) (𝑛 + 2) 𝜌 𝑙 𝜎 𝑅 3
where 𝑛 is characterizing the mode of oscillation of the bubble. By assuming that the bubble is entirely centered and using equation 3.6 [START_REF] Rosenthal | The shape and stability of a bubble at the axis of a rotating liquid[END_REF], the theoretical value of 𝜔 𝑛 for diverse volume sizes of the broken bubble can be measured in various interface shape modes ( 𝑛 = 2, 3, 4). Figure 3.19 illustrates the variations of the eigenfrequencies of a bubble of volume 𝑉 ≃ 0.35𝑐𝑚 3 : these frequencies decrease as a function of 𝜔 when omega is increased, due to the stretching of the bubble. This figure shows that a coincidence of the frequency of the tank (red line) with the frequency of the bubble occurs for modes 𝑛 = 2 and 3. On the other hand, images of the bubble at the moment of break-up (figures 3.14 , 3.16) confirm that the shape mode of the bubble is probably in configuration of 𝑛 = 2. This theoretical prediction is approximately consistent with the experimental data. For instance, for the bubble (𝑉 ≃ 0.35 𝑐𝑚 3 ) break-up occurs at 𝜔 ≃ 73 𝑟𝑎𝑑 𝑠 -1 , but the theoretical prediction in figure 3.19 shows the intersection of the 𝜔 𝑐𝑒𝑙𝑙 and calculated eigenfrequency of the bubble (𝜔 0 ) in shape mode 𝑛 = 2 happened at 𝜔 = 66 𝑟𝑎𝑑 𝑠 -1 (rotational velocity of the breakup moment). There is a small difference between the 𝜔 of break-up during the experiment and the theoretical value of 𝜔 in which break-up occurred. Note that the eigenfrequency is estimated from that of a spherical bubble, but the bubble is actually close to a prolate ellipsoid. However, the model is still consistent with a resonance mechanism. Therefore, we can conclude that with respect to
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Figure 3.17: Volume as a function of 𝜔 for the bubbles which experienced break-up.

The circles are marked for the 𝜔 of break-up. figure 3.18, the bubble is supposed to be stable, but the resonance causes huge fluctuations leading to break-up. Supposing that the shape mode of the bubble at the moment of break-up is at 𝑛 = 2, the eigenfrequency of the stretched bubble is estimated as:

𝜔 0 = √︄ 96 𝜌 𝑙 𝜎 𝐿 3 (3.10)
In addition, figure 3.20 left exhibits that the ratio 𝜔/𝜔 0 at break-up is in a range between 1.7 and 2.1 independently from the size of the bubble and the rotational velocity of the tank. We observe that 𝜔/𝜔 0 is of the order of 2, which seems a bit large. This could be caused by the large stretching of the bubble when resonance is approached, which leads to large values of L and hence lower values of 𝜔 0 close to break-up. The particularity of the problem here is that the eigenfrequency of the bubble depends on the forcing itself, as is the case in parametric instabilities. Here 𝜇 is the wave number as 2𝜋/𝜆, where 𝜆 is the wavelength of the considered perturbation. We consider here a perturbation such that 𝜆 = 𝐿/2.

Note that this effect is not taken into account in figure 3.19, which is only based on the model for bubble size with the model of [START_REF] Rosenthal | The shape and stability of a bubble at the axis of a rotating liquid[END_REF], and not on the experimentally measured bubble size. Note also that as mentioned above the bubble is here a prolate ellipsoid of major axis 𝐿, and not a sphere of diameter 𝐿: the estimate of equation 3.10 is therefore probably smaller than the actual eigenfrequency of the prolate bubble, which may also explain the large 𝜔/𝜔 0 ratios at break-up.

We also plot in figure 3.20 right the same graph, but with this time 𝜔 0 estimated from the (constant) characteristic size of the bubble 𝑅 𝑒𝑞 as:

𝜔 0𝑅 = √︄ 12 𝜌 𝑙 𝜎 𝑅 3 𝑒𝑞 Figure 3
.20, right shows that the value 𝜔/𝜔 0𝑅 for the all the series of volumes is in a range between 0.66 to 0.83. We will come back to this question of bubble break-up in chapter 5, where similar break-up experiments in the presence of surfactant are described. 

Modeling of the forces

As it has already been mentioned, in the present work the bubbles move closer to the axis of rotation when 𝜔 is increased. Their average position is characterized by the distance 𝑟 𝑒 and the angle 𝜃 (see figure 2.35). The aim of this section is to deduce the forces acting on the bubble in the limit of large bubble sizes. Following Magnaudet and Eames 2000, we assume that the force exerted by the liquid on the bubble can be written as a superposition of pressure gradient and added mass forces 𝑭 𝑨 , drag force 𝑭 𝑫 , lift force 𝑭 𝑳 , plus of course buoyancy 𝑭 𝑩 (figure 4.2), and write the equation of motion of the bubble of velocity 𝒗 as:

𝜌 𝑉𝐶 𝐴 𝑑𝒗 𝑑𝑡 = 𝜌 𝑉 (𝐶 𝐴 + 1) 𝐷𝑼 𝐷𝑡 + 𝑭 𝑫 + 𝑭 𝑳 -𝜌 𝑉 𝒈 (4.1)
where 𝑼 is the velocity of the undisturbed ambient flow taken at the center of the bubble. The lift and drag forces are defined as respectively the components of the fluid force in the directions parallel and perpendicular to the fluid velocity at the center of the bubble. The force due to the pressure field of the solid body rotating flow (i.e. isotropic normal stress, which is also exerted by the fluid) is in this expression separated from the lift/drag. The added mass force, corresponding to the inertia of the surrounding fluid, and which is also of course transmitted via the stress exerted by the fluid, is also separated from the lift and drag forces.

As illustrated in figure 2.31 we study relatively large 𝜔 such that the amplitude of oscillations around the bubble mean position remain small compared to the bubble size. We therefore neglect the variations of the velocity of the bubble, and the balance of forces on the bubble can be written (as in [START_REF] Rastello | Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow[END_REF]):

0 = 𝑉 (𝐶 𝐴 + 1) 𝐷𝑼 𝐷𝑡 + 1 2 𝐶 𝐷 𝐴 𝑏 |𝑼 |𝑼 + 𝑉 𝐶 𝐿 𝑼 × (∇ × 𝑼 ) -𝑉 𝒈 (4.2)
where we have introduced the drag and lift coefficients 𝐶 𝐷 and 𝐶 𝐿 , and 𝐴 𝑏 which is the projection of the bubble area normal to the θ direction. For an axisymmetric ellipsoidal bubble of axis 𝐿 and 𝐷 (figure 2.12), 𝐴 𝑏 = 𝜋𝐿𝐷/4. For small bubbles, the usual expression for the lift is: here the base flow is a solid-body rotation, therefore, 𝒓 𝒐𝒕𝑼 = 2𝜔𝒛. The lift force is then:

𝑭 𝑳 = 𝜌𝑉𝐶 𝐿 𝑼 × 𝒓 𝒐𝒕 𝑼 θ R F L F D
𝑭 𝑳 = 𝐶 𝐿 2𝜌𝑉 𝜔 2 𝑟 𝑒 r (4.3)
The added mass and pressure forces both scale with the pressure gradient caused by the base flow 𝑼 :

𝑭 𝑨𝑴+𝑷 = 𝜌𝑉 (𝐶 𝐴 + 1) 𝐷𝑼 𝐷𝑡 = -𝑉 (𝐶 𝐴 + 1)∇ 𝑃 = -𝜌𝑉 (𝐶 𝐴 + 1)𝜔 2 𝑟 𝑒 r (4.4)
This contribution is of the same form as the lift contribution. The added mass coefficient can be computed as a function of the shape of the bubble, as will be shown further. The drag contribution can be written:

𝑭 𝑫 = 𝜌𝐶 𝐷 𝐴 𝑏 1 2 𝑈 (𝑟 𝑒 ) 2 θ = 𝜌𝐶 𝐷 𝐴 𝑏 1 2 𝑟 2 𝑒 𝜔 2 θ (4.5)
By projections of equation ( 4.2) along r and θ :

-→ r :

𝐹 𝐵 𝑐𝑜𝑠𝜃 + 𝐹 𝐿 -𝐹 𝐴 = 0  𝑔𝑐𝑜𝑠𝜃 + 2𝐶 𝐿 𝜔 2 𝑟 𝑒 -(𝐶 𝐴 + 1)𝜔 2 𝑟 𝑒 = 0  (𝐶 𝐴 + 1) -2𝐶 𝐿 = 𝑔𝑐𝑜𝑠𝜃 𝜔 2 𝑟 𝑒 = 1 𝐹 𝑟 𝑐𝑜𝑠𝜃 -→ θ : -𝑉 𝑔𝑠𝑖𝑛𝜃 + 1 2 𝜌𝐶 𝐷 𝐴 𝑏 𝑟 2 𝑒 𝜔 2  By recalling 𝛼 = 𝑉 /(𝐿𝐷 2 ) and 𝛽 = 𝐴 𝑏 /(𝐿𝐷)  𝐶 𝐷 2 = 𝑉 𝑔 𝐴 𝑏 𝑟 2 𝑒 𝜔 2 𝑠𝑖𝑛𝜃 = 𝛼 𝑅 𝑜 𝐹 𝑟 𝛽 𝑠𝑖𝑛𝜃
From the projections of equation (4.2) along r and θ

           (𝐶 𝐴 + 1) -2𝐶 𝐿 = 𝑔 𝑟 𝑒 𝜔 2 cos 𝜃 = 1 𝐹 𝑟 cos 𝜃 𝐶 𝐷 2 = 𝑉 𝑔 𝐴 𝑏 𝑟 2 𝑒 𝜔 2 sin 𝜃 = 𝛼 𝑅𝑜𝐹 𝑟 𝛽 sin 𝜃 (4.6a) (4.6b)
This system shows that 𝐶 𝐿 is a function of 𝑟 𝑒 via the Froude number 𝐹𝑟 , and also of 𝜃 and 𝑋 via the added mass coefficient. The drag coefficient is a function of 𝐹𝑟 , 𝜃 , 𝑅𝑜, 𝛼 = 𝑉 /(𝐿𝐷 2 ) and 𝛽 = 𝐴 𝑏 𝐿𝐷 : we recall that the latter dimensionless number is, similar to 𝛼, a number characterizing the shape of the bubble: 𝛽 = 𝜋/4 for an ellipsoid and 𝛽 = 1 for a cylinder (discussed in chapter 3).

In order to simplify the discussion and regarding to chapter 3, we assume in the following that 𝛼 remains close to its value for an ellipsoid, i.e. 𝜋/6 for all our conditions. Similarly, and in order to be consistent with this choice, we assume 𝛽 = 𝜋/4. This assumption may lead to a slight underestimation of the drag coefficient at large 𝜔, of at most 10%. We then use system (4.6) to deduce 𝐶 𝐿 and 𝐶 𝐷 from the measurements of the bubble average position and shape. Note that previous studies for air bubbles in water have been concerned with the values of 𝐶 𝐿 and 𝐶 𝐷 as a function of 𝑅𝑒 and for large 𝑅𝑜 [START_REF] Rastello | Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow[END_REF][START_REF] Van Nierop | Drag and lift forces on bubbles in a rotating flow[END_REF]). The main difference for the large bubbles considered here is that we will consider low 𝑅𝑜, down to 𝑅𝑜 ≈ 0.15, when the bubble is close to the center of the rotating cell.

As mentioned above, 𝛼 and 𝛽 are almost constant for the conditions of our experiments. We will show in the following sections that 𝐶 𝐿 and 𝐶 𝐷 are not significantly impacted by 𝑋 and 𝑊 𝑒, and can be predicted as a function of 𝑅𝑒 and 𝑅𝑜 only. We illustrate in figure 4.3 the values of 𝑅𝑒 and 𝑅𝑜 for all the measurements presented here.

Drag coefficient

We plot in figure 4 (4.5) does not capture correctly the order of magnitude of the drag force at low 𝑅𝑜.

A spinning wake is expected to envelop the bubble at this low 𝑅𝑜, and therefore the configuration is different from that at large 𝑅𝑜 where different orders of magnitude of the fluid force are expected to coexist perpendicular or along the wake direction (namely equations 4.3 and 4.5). It seems reasonable to expect that in the present vortex-like low 𝑅𝑜 limit, both lift and drag will be of similar orders of magnitude.

In order to model the impact of 𝑅𝑜, we account for the fact that the bubble is placed in a rotating flow, whose direction is changing on a scale much smaller than the bubble scale itself at low 𝑅𝑜. The shear Reynolds number 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 is large, in the range [500-5000] for most conditions, and wakes will therefore develop around the bubble.

Another way to put it, is to consider that the drag caused by the spinning wake around the bubble will be dominated by the dynamic pressure difference around the bubble: the order of magnitude of this difference is the difference between the (maximum) dynamic pressure at the point farthest from the origin and the (minimum) dynamic pressure at the point closest to the origin (see 𝑃 + and 𝑃 -in figure 3.11), namely:

𝛥𝑃 𝑑 ≈ 𝑃 + -𝑃 -= 1 2 𝜌𝜔 2 (𝑅 + 𝑟 𝑒 ) 2 -𝜌𝜔 2 (𝑅 -𝑟 𝑒 ) 2 = 2𝜌𝜔 2 𝑅𝑟 𝑒 (4.7)
instead of 𝜌𝑈 (𝑟 𝑒 ) 2 /2 for the uniform flow limit. Instead of the classical form of the drag force in uniform flow (4.5), the proposed expression for the drag force is then:

𝐹 𝐷 = 𝐶 𝐷𝛥 𝐴 𝑏 𝜌𝜔 2 𝐷𝑟 𝑒 θ (4.8)
where we have introduced a new drag coefficient:

𝐶 𝐷𝛥 = 𝐶 𝐷 𝑅𝑜/2
Note again that the order of magnitude introduced by equation (4.8) is larger than that of equation (4.5), since 𝑟 𝑒 is smaller than 𝑅 for almost all our conditions (low 𝑅𝑜 limit). The scaling law for the drag force is then similar to that introduced for the other forces exerted by the fluid (added mass, pressure and lift force), in equation ( 4.3).

We plot in figure 4.5 the variations of 𝐶 𝐷𝛥 as a function of 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 . The values of 𝐶 𝐷𝛥 are mostly in the range [0.6 -0.9] which shows that the chosen definition captures the correct order of magnitude of the drag force. In addition, the data of figure 4.4 appears much better collapsed: for 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 varying in the range [500-4000] we find an approximately constant 𝐶 𝐷𝛥 with 𝐶 𝐷𝛥 ≈ 0.75. This means that the classical drag coefficient can be estimated as 𝐶 𝐷 ≈ 2𝐶 𝐷𝛥 /𝑅𝑜 ≈ 1.5/𝑅𝑜 at low 𝑅𝑜. An even simpler estimate for 𝐶 𝐷 can then be built from this expression, by further assuming that 𝑟 𝑒 ≈ 𝑔/𝜔 2 (valid for all series except the smaller Lift Section 4.3 𝑉 = 0.69 mm 3 bubble, see figure 3.2), which yields 𝐶 𝐷 ≈ 1.5𝐷𝜔 2 /𝑔. We plot in figure 4.6 the measured 𝐶 𝐷 as a function of this simple prediction: the proposed expression manages to provide a relatively good estimate of the drag coefficient for the large range of conditions we investigate here. We believe the larger dispersion observed for large bubbles and large rotation rates is caused by larger fluctuations for these conditions. These fluctuations are probably due to the fact that omega becomes closer to 𝜔 0 for these conditions (see section 3.3).

We have defined the standard deviation (error bars) of 𝐶 𝐷𝛥 and 𝐶 𝐷 in figure 4.5 and 4.6 as:

𝑑𝐶 𝐷𝛥 = √︄ 𝜕𝐶 𝐷𝛥 𝜕𝐶 𝐷 𝑑𝐶 𝐷 2 + 𝜕𝐶 𝐷𝛥 𝜕𝑅 𝑜 𝑑𝑅 𝑜 2 𝑑𝐶 𝐷 = √︄ 𝜕𝐶 𝐷 𝜕𝐷 𝑑𝐷 2 + 𝜕𝐶 𝐷 𝜕𝑟 𝑒 𝑑𝑟 𝑒 2 + 𝜕𝐶 𝐷 𝜕𝜃 𝑑𝜃 2
The data for the smaller bubble (black cross points) show much larger values of the drag coefficient 𝐶 𝐷𝛥 in figure 4.5. This results from the fact that the measured 𝑟 𝑒 𝜔 2 /𝑔 for this series of points is smaller than for the other bubbles investigated, as mentioned above (figure 3.2). Indeed, for such a small bubble (𝑉 = 0.69 mm 3 , 𝑅 𝑒𝑞 = 0.55 mm), the values of 𝑅𝑒 are significantly smaller: the reasoning behind the expression of equation (4.8) is not expected to be valid. Finally, we come back to the issue of the a priori surprising relevance of the simplified force balance presented in section 3.1, namely "buoyancy =pressure gradient", which correctly predicts 𝑟 𝑒 ≈ 𝑔/𝜔 2 (figure 3.2). The fact that 𝐶 𝐷𝛥 is constant for the data presented here implies that the drag force actually scales similarly as the pressure gradient itself: buoyancy is actually mostly balanced by drag, and not pressure gradient, and this explains the relevance of the simple 𝑟 𝑒 ∼ 𝑔/𝜔 2 scaling.

Lift

We can measure the lift coefficient through the value of 2𝐶 𝐿 -𝐶 𝐴 , obtained from equation (4.6a) as: In order to isolate the lift coefficient, and compare it to the results of the literature, we need to estimate the added mass coefficient. This coefficient can be computed analytically based on the measured shape of the bubble, provided the bubbles are assumed to be ellipsoidal. As mentioned above, the model of Rosenthal 1962 predicts a small departure from the ellipsoidal shape, but this is assumed to be negligible here given the moderate deformation of the bubbles (coefficient 𝛼 expected to increase from 0.52 to at most 0.56). The stretching of aspect ratio 𝑋 along the axis of the cell, which has been discussed in chapter 3, tends to increase the value of the added mass coefficient along the r direction. However, the bubbles also tend to flatten slightly along θ due to the rotational 

Variations of the added mass coefficient (𝑪 𝑨 )

The added mass coefficients of an ellipsoid moving in an infinite fluid can be found in Lamb 1993. They are obtained by calculating the motion of a liquid, at rest at infinity, produced by the translation of a solid ellipsoid through it. The ellipsoid is characterized by the half lengths 𝑎, 𝑏, 𝑐 (figure 2.28) of its principal axes. We suppose that the half length 𝑐 is aligned with the axis of rotation of the cell 𝑧, and that directions 𝑎 and 𝑏 make an angle 𝛾 with r and θ respectively (see figure 4.8). We wish here to calculate the added mass coefficient relevant for equation (4.6a) which is the added mass coefficient along r. This coefficient, which is simply noted 𝐶 𝐴 in the rest of our calculations, will be noted more precisely 𝐶 𝐴𝑟 in this section to avoid any ambiguity. The solution of motion with the use of special orthogonal curvilinear coordinates yields for added mass coefficients along axes 𝑎 and 𝑏:

𝐶 𝐴𝑎 = 𝛼 0 2 -𝛼 0 where 𝛼 0 = 𝑎𝑏𝑐 ∫ ∞ 0 𝑑𝜆 (𝑎 2 + 𝜆)𝛥 𝐶 𝐴𝑏 = 𝛽 0 2 -𝛽 0 where 𝛽 0 = 𝑎𝑏𝑐 ∫ ∞ 0 𝑑𝜆 (𝑏 2 + 𝜆)𝛥 (4.9) with 𝛥 = (𝑎 2 + 𝜆) (𝑏 2 + 𝜆) (𝑐 2 + 𝜆) 1 2 .
If we assume that the bubble is axisymmetric with 𝑎 = 𝑏 = 𝐷/2 in the 𝑟 -𝜃 plane, and stretched by pressure effects along 𝑧 (with therefore 𝑐 > 𝑎 = 𝑏), coefficient 𝛼 0 and 𝛽 0 are equal and can be expressed as a function of the aspect ratio 𝑋 = 𝐿/𝐷 = 𝑐/𝑎:

𝛼 0 = 𝛽 0 = 𝑋 ∫ ∞ 0 𝑑𝜆 (1 + 𝜆)𝛥 𝑋 (4.10)
where

𝛥 𝑋 = (1 + 𝜆) 𝑋 2 + 𝜆 1 2 .
Values of 𝑋 larger than one (corresponding to prolate ellipsoids) yield added mass coefficients 𝐶 𝐴𝑟 = 𝐶 𝐴𝑎 = 𝐶 𝐴𝑏 larger than 0.5, since the stretching along 𝑧 tends to increase inertia in the radial direction. If we now drop the axisymmetric assumption, we are in a situation where a priori 𝑐 > 𝑎 > 𝑏. Let the two aspect ratio be 𝑋 = 𝑐/𝑏 and 𝑋 𝐹 = 𝑎/𝑏. Coefficients 𝛼 0 and 𝛽 0 are given by:

𝛼 0 = 𝑋𝑋 𝐹 ∫ ∞ 0 𝑑𝜆 (𝑋 2 𝐹 + 𝜆)𝛥 ′ and 𝛽 0 = 𝑋𝑋 𝐹 ∫ ∞ 0 𝑑𝜆 (1 + 𝜆)𝛥 ′ (4.11) with -→ 𝛥 ′ = (𝑋 2 𝐹 + 𝜆) (𝑋 2 + 𝜆) (1 + 𝜆) 1 2
. Therefore, the values of 𝐶 𝐴𝑎 and 𝐶 𝐴𝑏 can be calculated from system 4.9. However, for computing 𝐶 𝐴𝑟 first we need to account for the orientation of the bubble. Then we write the general form of the added mass of an object imposing an inertia to the multiple phase flow system:

𝐶 𝐴 𝑑𝒖 𝑑𝑡 = 𝑭
We know that in the basis of the ellipsoidal bubble (a,b,c) this matrix is diagonal:

              𝐶 𝐴𝑎 0 0 0 𝐶 𝐴𝑏 0 0 0 𝐶 𝐴𝑐               𝐴𝑑𝑑𝑒𝑑 𝑚𝑎𝑠𝑠 𝐶 𝐴 𝑑𝒖 𝑑𝑡 = 𝑭
In addition, if we introduce the angle of the bubble with the 𝑥 axis as 𝑂, we have 𝛾 = 𝜋 2 + 𝑂 -𝜃 . We now express matrix 𝐶 𝐴 in basis (𝑟, 𝜃 ) with the help of the rotation matrix 𝑅 𝜃 as:

Lift Section 4.3 𝑅 𝑇 𝛾 𝐶 𝐴 𝑅 𝛾 =             𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝛾 0 -𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 0 0 0 1                         𝐶 𝐴𝑎 𝑐𝑜𝑠𝛾 -𝐶 𝐴𝑎 𝑠𝑖𝑛𝛾 0 𝐶 𝐴𝑏 𝑠𝑖𝑛𝛾 𝐶 𝐴𝑏 𝑐𝑜𝑠𝛾 0 0 0 𝐶 𝐴𝑐             𝑅 𝑇 𝛾 𝐶 𝐴 𝑅 𝛾 =                  𝐶 𝐴𝑟 𝐶 𝐴𝑎 𝑐𝑜𝑠 2 𝛾 + 𝐶 𝐴𝑏 𝑠𝑖𝑛 2 𝛾 𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝛾 (𝐶 𝐴𝑏 -𝐶 𝐴𝑎 ) 0 𝐶 𝐴𝑟𝜃 𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝛾 (𝐶 𝐴𝑏 -𝐶 𝐴𝑎 ) 𝐶 𝐴𝑎 𝑠𝑖𝑛 2 𝛾 + 𝐶 𝐴𝑏 𝑐𝑜𝑠 2 𝛾 0 0 0 𝐶 𝐴𝑐                  (4.12)
 Since here we have

𝑑𝒖 𝑑𝑡

parallel to r , we are just interested in the first column of the matrix. Therefore, we have:

𝐶 𝐴𝑟 = 𝐶 𝐴 = 𝐶 𝐴𝑎 𝑐𝑜𝑠 2 𝛾 + 𝐶 𝐴𝑏 𝑠𝑖𝑛 2 𝛾
Regarding the matrix above, when 𝛾 ≠ 0 and because of the non-diagonality of the added mass matrix, an additional added mass term (𝐶 𝐴𝑟𝜃 ) should be introduced in 4.6b (projection along θ ) and subsequently in the expression for the drag coefficient discussed in the previous section.

𝐶 𝐷 2 = 𝑉 𝑔 𝐴 𝑏 𝑟 2 𝑒 𝜔 2 sin 𝜃 A - 𝐶 𝐴𝑟𝜃 𝑉 𝐴 𝑏 𝑟 𝑒 B (4.13)
Figure 4.10, left shows that the value 𝐶 𝐴𝑟𝜃 varies between -0.05 up to 0.2 for all experimental data. Moreover, figure 4.9 illustrates that the drag coefficient approximately holds the same value if we take into account the contribution of 𝐶 𝐴𝑟𝜃 . Furthermore, figure 4.10, right justifies that the relative contribution of the non-diagonal added mass term (term B in equation 4.13) is small compared to the diagonal term (term A in equation 4.13) and reaches at most 0.22 for largest bubbles. This justifies that the contribution of 𝐶 𝐴𝑟𝜃 is small and we can neglect this value when the carrier flow inside the tank is demineralised water. We will detailedly discuss the effect of 𝐶 𝐴𝑟𝜃 in the presence of surfactant in chapter 5. We show in figure 4.11 the variations of the added mass coefficient 𝐶 𝐴𝑟 as a function of Weber number 𝑊 𝑒, which compares the pressure difference between periphery and axis to capillary pressure (see chapter 3): 𝐶 𝐴𝑟 increases with 𝑊 𝑒, due to the increase in 𝑋 when 𝑊 𝑒 is increased. The values of 𝑋 𝐹 , which also impacts 𝐶 𝐴𝑟 , are on the contrary expected to increase with

𝑊 𝑒 𝑟𝑒 = 𝜌 (𝑟 𝑒 𝜔) 2 𝑅/𝜎 = 4𝑊 𝑒𝑅𝑜 2
, built with the mean velocity 𝑟 𝑒 𝜔 seen by the bubble. As expected, the added mass 𝐶 𝐴𝑟 decreases when 𝑊 𝑒 𝑟𝑒 is increased (figure 4.12) for a given series (i.e. given range of 𝑋 ). .12: 𝐶 𝐴𝑟 as a function of 𝑊 𝑒 𝑟𝑒 , which measures the impact of mean velocity 𝑟 𝑒 𝜔 on the shape of the bubble. For a given series, the added mass decreases when 𝑊 𝑒 𝑟𝑒 is increased due the increase in 𝑋 𝐹 .

Measuring the value of the lift coefficient (𝑪 𝑳 )

These computed added mass coefficients are then used to deduce 𝐶 𝐿 : figure 4.13 shows the variations of the lift coefficient 𝐶 𝐿 as a function of 𝑅𝑒, and the comparison to some of the correlations introduced in Rastello et al. 2017 for much larger 𝑅𝑜. The lift coefficient appears smaller than that measured by [START_REF] Bluemink | Drag and lift forces on particles in a rotating flow[END_REF][START_REF] Rastello | Clean versus contaminated bubbles in a solid-body rotating flow[END_REF]. The fact that 𝐶 𝐿 is overestimated by these correlations could be caused by the smaller 𝑅𝑜 in our experiments. A decrease of the lift coefficient when 𝑅𝑜 is reduced has been observed by [START_REF] Rastello | Clean versus contaminated bubbles in a solid-body rotating flow[END_REF] (see figure 20 of their paper). Note however that this decrease has been observed for 𝑅𝑜 > 6 i.e. bubbles located much farther from the axis. [START_REF] Bluemink | Drag and lift forces on particles in a rotating flow[END_REF] observed similar trends for spheres and investigated a few locations closer to the axis. They noted that 𝐶 𝐿 decreased with the shear rate 𝑆𝑟 𝜔 = 𝑅𝑜 -1 up to 𝑆𝑟 𝜔 = 0.4 (𝑅𝑜 = 2.5) and that afterwards, the decrease stopped and 𝐶 𝐿 became constant. This suggests that the influence of 𝑅𝑜 could also be limited in our case. The question of the limit of 𝐶 𝐿 when 𝑅𝑜 becomes small remains an open question.

Besides the effect of 𝑅𝑜, we know from the literature [START_REF] Kariyasaki | Behavior of a single gas bubble in a liquid flow with a linear velocity profile[END_REF][START_REF] Hayashi | Lift coefficients of clean ellipsoidal bubbles in linear shear flows[END_REF][START_REF] Rastello | Clean versus contaminated bubbles in a solid-body rotating flow[END_REF][START_REF] Magnaudet | The motion of high-Reynolds-number bubbles in inhomogeneous flows[END_REF] that bubble deformation can yield a decrease of the lift force and can even make this force change sign from positive to negative. Even though the main bubble stretching is aligned with the rotation axis, larger bubbles are actually also deformed in the (𝑟, 𝜃 ) plane, see figure 2.33 and figure 3.7 at low 𝜔 for example: for these non axisymmetric cases bubble deformation certainly affects the value of the lift coefficient. Note finally that the motion of the bubble around its equilibrium position may increase the inertia of the surrounding fluid, and hence lead to an increase in the effective added mass: the data of figure 4.13, which does not take this effect into account, is therefore expected to represent an underestimation of 𝐶 𝐿 .

When the bubble moves closer to the axis of rotation at low 𝑅𝑜, and in particular when it straddles the axis of rotation of the cell, the flow configuration changes: the relative importance of the shear increases, and the relevant Reynolds number is expected to become at some point the shear Reynolds number 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 introduced in sections 2.4 and 4.2. We plot in figure 4.14 the variations of the lift coefficient 𝐶 𝐿 as a function of 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 : the data of figure 4.13 appear better collapsed. The decrease of 𝐶 𝐿 as a function of 𝑅𝑒/𝑅𝑜 observed in the range 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 = 500 -2500 is consistent with the decrease observed by [START_REF] Rastello | Clean versus contaminated bubbles in a solid-body rotating flow[END_REF] when 𝑅𝑜 -1 is increased, and when the Reynolds dependence is accounted for.

A sharp transition seems to occur for large bubbles when 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 becomes larger than 2800 (greyed region in figure 4.14). This corresponds to the conditions for which we approach the resonance described in section 3.3. We show in figure 4.15 how the increase in the lift coefficient appears correlated with the strong increase of the variance of the longitudinal aspect ratio 𝑋 . The strong increase of these fluctuations appears related the forcing of the bubble stretching discussed in section 3.3. We introduced in chapter 3, section 3.3 𝜔 0 = √︁ 96𝜎/𝜌𝐿 3 as an estimate of the eigenfrequency of the stretched bubble [START_REF] Risso | The mechanisms of deformation and breakup of drops and bubbles[END_REF]: as explained in this section, when 𝜔 is increased, 𝜔 0 decreases due to the stretching of the bubble and 𝜔 and 𝜔 0 will be the same order of magnitude (see section 3.3 where the values of 𝜔 0 close to break-up were discussed). Figure 4.16 shows that the transition observed around 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 = 3000 in figure 4.14 corresponds to 𝜔 approaching 𝜔 0 . The resonance expected for these conditions may explain the strong increase observed in the fluctuations of the aspect ratio.

The question is then why the resonance provokes this steep apparent variation in the lift coefficient. A possibility could be that this apparent increase is caused by the much larger fluctuations in the position for these larger bubbles. Relative variations of 𝑟 𝑒 can reach up to 30-40% when resonance occurs, compared to less than 10% for all series of bubbles with 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 < 2500. These fluctuations in position are probably themselves triggered by the strong fluctuations in the shape of the bubbles. At any rate, because of these large fluctuations in 𝑟 𝑒 , mean values of 𝐶 𝐿 for 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 > 2500 deduced from the mean position result in fact from the averaging of a strongly non-stationary dynamics, something which is not accounted for in the equations leading to system (4.6).

Spinning

The other rather essential feature of our experiments compared to previous works is the question of bubble spinning. When experiments are performed in demineralized water like the one used here, the surface of the bubble is contaminated and in this case the bubble is expected to "spin". This has been shown for small bubbles at equilibrium far from the axis of rotation (𝑅𝑜 ≥ 6) by tagging the flow near their surface with small fluorescent particles, in [START_REF] Rastello | Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow[END_REF]. Some of these particles stuck on the surface are clearly rotating around the bubble (see for example fig 14 in this reference). Their motion has more recently been characterized in detail from numerous visualizations in [START_REF] Rastello | Clean versus contaminated bubbles in a solid-body rotating flow[END_REF]. Visualizations suggest that the fluorescent particles rotate with the same velocity as that of the fluid at the surface, as imposed by the boundary conditions on the contaminated surface of the bubble. [START_REF] Rastello | Clean versus contaminated bubbles in a solid-body rotating flow[END_REF] assimilate their motion to the rotation of the surface and speak of a "spinning" surface. For bubbles with 𝑅𝑜 ≥ 6, the mean spinning rate is higher than the rotation rate: up to 1.6, depending on 𝑅𝑒 (figure 10 Rastello et al. 2017). This results in an extra Magnus-like lift force and a separated wake behind the bubble whose description can be found in Rastello and Marié 2020. Knowing whether the bubbles still spin in the present flow situation would of course be interesting. Front view images show that when bubbles are non axisymmetric, the axisymmetry remains in average oriented along the same direction (see figure 4.17). However, the orientation of the bubble oscillates around this mean value at a frequency equal to the tank rotation frequency. This can be seen in figure 4.17, where the peaks in the orientation angle occur every 0.1 s, in agreement with the rotation frequency of 10 Hz. A sequence of images shows that even though the orientation remains approximately constant, the shape of the bubble fluctuates (see figure 4.18 below): we suspect that the bubble rotates, but the deformation which occurs at the same time prevents from measuring this rotation by simple visualization, as would be possible with a solid particle. A direct measurement of the spinning such as that carried out in [START_REF] Rastello | Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow[END_REF] could in principle be attempted to check if this rotation is indeed present, but this would be somewhat difficult to perform in the present case. In particular, it would be difficult to get a uniform seeding at the high rotation speeds we investigate here, with expected centrifugal effects and shorter exposure times (hence a need for a more powerful laser). Now, given that these bubbles on average stabilize upon, or very close to the rotation axis (𝑅𝑜 < 1), it is probable that if spinning, they will spin at maximum with the rotation rate of the tank and not faster [START_REF] Bluemink | A sphere in a uniformly rotating or shearing flow[END_REF]. 
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Effect of surfactants on bub- ble deformation and dynamics

In this chapter we will focus on the impact of the introduction of surfactant in the tank on bubble dynamics. As it has already been debated in 1.1.2, the surfactants distribution or small amount of impurities on the interface of the bubble alter the bubble dynamics. Surface tension of the surrounding water flow around the bubble has been constant (𝜎 ≃ 71𝑚𝑁 /𝑚) throughout all the results obtained in the previous chapters 3 and 4. In this chapter, the goal is adding soluble surfactant to the carrier flow inside the tank and investigate the behavior of the deformable bubble close to the axis of rotation. We will show that adding surfactants to the demineralised water leads to modifications of the bulk surface tension and of the dispersed phase (gas bubble) behavior.

We have used a chemical compound called TetradecylTrimethylAmmoniumBromide (TTAB) displayed in figure 5.1 to alter the surface tension of the bulk liquid. The critical micelle concentration (CMC) of TTAB is 𝐶 𝐶𝑀𝐶 = 1.5𝑔𝑟 /𝐿 (1.5𝑔𝑟 of TTAB in 1𝐿 of demineralised water). At and above the 𝐶 𝐶𝑀𝐶 the surfactant distribution on the interface is saturated and there is no place on the interface to be permeated and filled by surfactants. Below the CMC value, the bubble interface is not entirely saturated by added soluble substance. To explore the effects of TTAB on the bubble dynamics, we have tested two separate TTAB concentrations in demineralised water. One solution of TTAB surfactant lower than 𝐶 𝐶𝑀𝐶 and the other higher than 𝐶 𝐶𝑀𝐶 . 

Solution with lower and higher concentration of TTAB in comparison with CMC

We have used two various recipes of TTAB in demineralised water. First, the solution below the CMC condition has been investigated. We have dissolved an amount of TTAB lower than 1.5𝑔𝑟 in demineralised water. The process for making the solution is as below:

•

Step 1: 0.5gr of TTAB (lower than CMC condition) dissolved in 100𝑚𝑙 of demineralised water in a beaker of volume 100𝑚𝑙. Then, with use of magnetic laboratory agitator the solution was blended for 30 𝑚𝑖𝑛 at a temperature of 70 • .

•

Step 2: The solution prepared in the preceding step is poured into a beaker of 1𝐿 volume filled with 900 ml of demineralised water. Eventually, we have 1𝐿 solution which has been called 𝐶 ′ (0.33 CMC) in the following sections of the manuscript.

The same scenario of solution preparation has been done for the amount of surfactant higher that the CMC concentration. For the second solution (higher concentration of TTAB), the value of TTAB added to the 100𝑚𝑙 beaker filled via demineralised water is 3𝑔𝑟 which is two times the CMC. We call this solution 𝐶" (2 CMC). The objective is to test the effect of surfactants for both the unsaturated (lower than CMC, 𝐶 ′ solution) and saturated (higher than CMC, 𝐶" solution) interface. A summary of our solutions (𝐶 ′ and 𝐶") preparation is illustrated in table 5.1.

Solution Name TTAB (𝑔𝑟 ) in 1 L 𝐶 ′ 0.5 gr

𝐶" 3gr

Table 5.1: Prepared surfactant solutions with TTAB. 𝐶 ′ = 0.33 CMC and 𝐶" = 2 CMC.

The surface tension of the mentioned solutions in table 5.1 has been measured with a tensiometer (Attension Theta Flex, Biolin Scientic AB) similar to the process of surface tension measurement for demineralised water explained in subsection 2.1.2. The measured surface tension is displayed as an output of the Attension Theta Flex, Biolin Scientic AB software. The surface tension for 𝐶 ′ (0.33 CMC) solution as a function of time presents variations when the drop is issued, but surface tension converges to a plateau of 52 𝑚𝑁 /𝑚 (figure 5.2). The variations of the surface tension value shown by the tensiometer are normal since we are in the condition of a lower concentration compared to the CMC, and there might be displacement of surfactant on the interface of the bubble released from the gauge needle.

In order to increase the accuracy of the surface tension measurement and verify the precision of the value found for 𝐶 ′ (0.33 CMC) solution, we have used another pendant drop tensiometer named Tracker Standard drop tensiometer (located at Institut Lumière Matière, ILM) shown in 5.3. It measures the surface tension by a released drop from the gauge needle in front of a high resolution camera identical to the Attension Theta Flex, Biolin Scientic AB. Then, the Tracker software implements the algorithms to determine the surface tension of the drop based on Young-Laplace equation. The difference of this tensiometer with the Attension Theta Flex, Biolin Scientic AB is the automatic control over the vibrations of the released drop from the gauge needle. This characteristic of the dispensing system facilitates the process of removing interface vibrations for the camera (to have an image acquisition without interface vibrations to measure surface tension with a higher precision). In addition, the dispensing system can oscillate sinusoidally and alter the volume of the released bubble from the gauge. This feature of the Tracker Standard drop tensiometer can also vary the volume of the bubble and therefore the area of the drop captured by the camera as a function of time which is consistent with our experimental condition (bubble volume variations, explained in subsection 2.2.3). As it has been clarified, the value of the surface tension measured by two different tensiometers have been consistent (same values) in both cases of either with volume variations or fixed released volume of the needle gauges. Conse- quently we have assigned the surface tension values of our solutions (𝐶 ′ and 𝐶") as below:

• For 𝐶 ′ (0.33 CMC), 𝜎 0.33𝐶𝑀𝐶 = 51.5 ±1.0 mN/m • For 𝐶" (2 CMC), 𝜎 2𝐶𝑀𝐶 = 37 ±1.0 mN/m For performing experiments to analyze the bubble dynamics in these two TTAB solutions (𝐶 ′ and 𝐶"), we have explicitly chosen the bubble volumes that do not encounter rupturing during the experiments. Since the surface tension has been reduced in comparison with demineralised water, we have not been able to investigate the dynamics of the bubble with volumes larger than 𝑉 = 0.16 𝑐𝑚 3 for 𝜔 in the range [63, 94] 𝑟𝑎𝑑 𝑠 -1 . Therefore, in order to understand the dynamics of the bubble with presence of TTAB surfactant (𝐶 ′ and 𝐶 " ) and compare them with the case of demineralised water, we are limited to a range of volumes not larger than 𝑉 = 0.16 𝑐𝑚 3 (see tables 5.2 and 5.3). 

Bubble interface configuration

In order to study the deformation of the bubble in the two different discussed solutions (𝐶 ′ and 𝐶"), we first plot the variations of the longitudinal aspect ratio 𝑋 as a function of the rotational speed. As illustrated in figures 5.9, 5.10 and 5.11, the aspect ratio 𝑋 for the case of surfactant solutions are higher than for
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; interface. In respect of the chapter 2.1, it has been explained that there are constraints to maintain the water inside the tank perfectly clean. Moreover, in water we have impurities the nature and concentration of which is unknown and 𝜎 is about 71𝑚𝑁 /𝑚. Thus, if we zoom on the part of our experimental data in figure 5.14, b, we observe the prediction of the Rosenthal 1962 for fully saturated interface (2 CMC) fits better with experimental data compared with the partially contaminated interface (demineralised water).

As it has been discussed in chapter 3, the other dimensionless number representing the shape of the bubble is the front view aspect ratio 𝑋 𝐹 (aspect ratio in (r, θ ) plane). Figure 5.15 illustrates that for our two surfactant solutions the values of the front view aspect ratio are higher than that for demineralised water for the same volume range. The values of 𝑋 𝐹 reach up to 1.6 (except for smaller bubbles that do not straddle the axis of the rotation) for 𝐶 ′ and 𝐶", while for water the maximum value of 𝑋 𝐹 (for the largest bubble of 𝑉 ≃ 0.12 𝑐𝑚 3 ) is around 1.4. Indeed, the deformation of the bubble in the cross section depends on 𝑅𝑜. More precisely, for the bubbles with 𝑅𝑜 > 0.5 (those which do not straddle the axis of the rotation), the deformation in the cross section is controlled by the mean velocity seen by the bubble (𝜔𝑟 𝑒 ). Therefore, as already discussed in chapter 4, the relevant dimensionless number controlling this deformation should be the Weber number built with the mean velocity seen by the bubble

We( 1 𝑊 𝑒 𝑟𝑒 = 𝜌 (𝑟 𝑒 𝜔) 2 𝑅/𝜎 = 4𝑊 𝑒𝑅𝑜 2 . Figure 5.16 shows the variations of 𝑋 𝐹 as a function 𝑊 𝑒 𝑟𝑒 for 𝐶 ′ , 𝐶" and demineralised water data. The figure illustrates that the front view aspect ratio for the smaller bubbles depends on this Weber number seen by the bubble. However, for the larger ones the data are scattered and do not have the same behavior. Therefore, we divide our data (for water and both TTAB surfactant solutions) into two series of bubbles. First series, those which straddle the axis of rotation (𝑅𝑜 < 0.5) and the second series having 𝑅𝑜 > 0.5. Figure 5.17, left, justifies that for both surfactant solutions (𝐶 ′ and 𝐶") and demineralised water, the values of 𝑋 𝐹 follow the same trend as a function of 𝑊 𝑒 𝑟𝑒 . However, the front view aspect ratio of the bubbles with 𝑅𝑜 < 0.5, i.e. bubbles sitting on the axis of rotation, appear rather controlled by the Rossby number 𝑅𝑜 itself (see figure 5.17, right).

Forces

Drag

In order to deduce the drag coefficient, we use equation 4.6b. We plot the standard drag coefficient 𝐶 𝐷 as a function of 𝑅𝑒 to investigate the value of the drag coefficient when surfactant TTAB is dissolved in the tank. It is apparent from figure 5.18 that the value of 𝐶 𝐷 as a function of 𝑅𝑒 reaches up to 9 for both surfactant solutions. Note that similar to the demineralised water case, the contribution of the non-diagonal added mass term (𝐶 𝐴𝑟𝜃 ) is small for all the series in 𝐶 ′ and 𝐶" solutions (figures 5.19 and 5.20). Figure 5.18, left related to the 𝐶 ′ (0.33 CMC) case shows the values of 𝐶 𝐷 are still large. We introduce the drag coefficient 𝐶𝐷 𝛥 clarified in chapter 4, and plot its variations as a function of 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 to correctly capture the effects of low 𝑅𝑜. Therefore, we use equation 4.5 as well as 4.8 (see figure 5.21).
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Figure 5.21 shows that the values of 𝐶 𝐷𝛥 in the 𝐶 ′ and 𝐶" (2 CMC) solutions are close to the values in water and can be approximated as 𝐶 𝐷𝛥 ≃ 0.75

In order to inspect more closely the impact of surfactants on bubble shape, we now look at the variation of the angle 𝛾 of the bubble. In the case of the bubble in demineralized water, the angle 𝛾 varies between -20 and 20 degreees, whereas in the case of 𝐶 ′ and C" solutions, this angle is in the range of 10 to 60 degrees (see figure 5.23). This corresponds to a different inclination of the bubble, as illustrated in figure 5.22. This figure shows the superposed boundaries of two bubbles with a same volume of 𝑉 = 0.12 cm 3 , at 𝜔 = 94 𝑟𝑎𝑑 𝑠 -1 . The points represent the pixels pertaining to the contour of the bubbles in 10 consecutive recorded images. We can clearly visualize the shape of the interface for the water (black symbols) and 𝐶 ′ (0.33 CMC) solution (blue symbols), for these two bubbles of identical volume. A change in shape can be observed. It points to the bubble being more streamlined in the case of the 𝐶 ′ (0.33 CMC) solution for a solid body rotation flow around the cell center (red cross).

The variations of 𝛾 coupled to the variations in the position of the bubble (variations in 𝑅𝑜 and 𝜃 ) may have an impact on the chord (see figure 5.24) of the cross section. The chord corresponds here to the length cut across the bubble in the (𝑟, 𝜃 ) plane, normal to the solid body rotation flow. This length will directly affect the projected area of the bubble. For water, we have supposed that 𝛾 is zero, as observed experimentally (5.23, c) for most of the series. Therefore, the .25 displays the ratio of the 𝐶ℎ𝑜𝑟𝑑/𝐷 for the three solutions investigated here. The dimensionless number 𝐶ℎ𝑜𝑟𝑑/𝐷 for the 𝐶 ′ (0.33 CMC) solution is in average slightly lower than that for 𝐶" (2 CMC) and especially demineralised water. Therefore, this confirms that the bubble is slightly more streamlined for this case, as illustrated in figure 5.22.

Lift

For computing the lift coefficient, we use equation 4.6a. As discussed in chapter 4, the measurement of the lift coefficient is made through the computation of the added mass coefficient. The simplified form of equation 4.6a can be written as: where concerning the method clarified in subsection 4.3.1, the added mass coefficient along 𝑟 (namely 𝐶 𝐴𝑟 ) can be computed knowing the shape of the bubble and its orientation. In chapter 4, we discussed the relation between 𝐶 𝐴𝑟 and the deformation of the bubble where the value of the added mass is controlled by the Weber number. This indicates that when the bubble stretches along the horizontal axis the value of 𝐶 𝐴𝑟 increases. We show in figure 5.26 the variation of 𝐶 𝐴𝑟 as a function of the Weber number for all the experimental data for the three solutions. The figure displays that the value of 𝐶 𝐴𝑟 for solution 𝐶 ′ (0.33 CMC) is a little higher than that for 𝐶" (2 CMC) and demineralised water. The value of 𝐶 𝐴𝑟 for water is in a range between 0.45 and 0.6, but in the case of the surfactant solution it rises up to 0.85 in 𝐶" (2 CMC) and close to 1 for the case of 𝐶 ′ (0.33 CMC). The reason for the mentioned difference in value of 𝐶 𝐴𝑟 is due to fact that the bubble in 𝐶 ′ (0.33 CMC) is more deformed along 𝑧 (comparison of figures 5.9, 5.10, and 5.11) compared to the 𝐶" (2 CMC) and demineralised water. 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 (figure 5.28). Results obtained with surfactant are similar to those obtained with water.
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Break-up

We now study how break-up of the bubble is impacted by the addition of surfactant to the solution. Figure 5.29 shows the bubble volume as a function of 𝜔, and as in chapter 3, section 3.3 a circle indicates the conditions for which break-up occurs. This figure shows that bubble break-up occurs for smaller bubble volume (𝑉 < 0.2 𝑐𝑚 3 ) in the TTAB solution than in the solution without surfactant. The figure shows that the bubbles for which break-up was observed are in the volume range of [0.1, 0.17] 𝑐𝑚 3 . This has been expected that with adding surfactants to the tank and decreasing the value of the liquid surface tension, the bubble experiences larger longitudinal stretching, and therefore breaks at smaller volume for a constant 𝜔 range. Indeed, we have observed the same configurations of break-up as for water, namely middle break-up, and also breaking in two unequal size bubbles in presence of surfactants.

In chapter 3, section 3.3, we showed that the break-up of the bubble occurs through a resonance mechanism between the eigenfrequency of the stretched oscillated bubble 𝜔 and the tank rotation frequency 𝜔 0 . In addition, the shape mode of the bubble seems to be in configuration of n=2 in the moment of breakup. Figure 5.30 shows that the range of 𝜔/𝜔 0 is independent of the size and the rotation velocity of the break-up in a range between 1.5 and 2.2 for the bubble ωUDGs -1
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Figure 5.29: Color circles represent for each series of data the conditions for which the break-up happens (red circles-→ 𝐶 ′ solution; blue circles-→ 𝐶"; black circles-→ water). Data with surfactant: the break-up occurs for bubbles with a volume V lower than 0.2 𝑐𝑚 3 . Data without surfactant (demineralised water): the break-up occurs for bubbles with a volume V higher than 𝑉 = 0.31 𝑐𝑚 3 . ⃝: 𝐶 ′ solution; : 𝐶" solution; the other symbols are the data of the demineralised water same as figure 3.17

frequency 𝜔 0 = √︂ 96 𝜌 𝜎 𝐿 3 (left). It is also similar to the results in water when the eigenfrequency is estimated as 𝜔 0𝑅 = √︄ 12 𝜌 𝜎 𝑅 3 𝑒𝑞 (right), with 𝜔/𝜔 0𝑅 in a range between 0.62 and 0.83. This is consistent with the idea that break-up is driven by a resonance mechanism.

In order to strengthen the theory of the resonance, we carried out some other experiments in which the starting rotation speed is 94 𝑟𝑎𝑑 𝑠 -1 and is decreased down to 𝜔 = 62 𝑟𝑎𝑑 𝑠 -1 . This reverse 𝜔 experiment has been performed for the 𝐶" (2 CMC) solution in a range of volumes V=[0.14, 0.21] 𝑐𝑚 3 (the same range

ω/ω0 V(Cm 3 ) ω/ω0R V(Cm 3 ) Figure 5
.30: Volume of the broken bubble as a function of ratio 𝜔/𝜔 0 (ratio between tank rotation frequency and eigenfrequency of the stretched bubble 𝜔 0 of the stretched bubble 𝜔 0 ) for all experimental series experiencing break-up. Circles identify the rotation speed 𝜔 for which rupturing occurred. Same legend as figure 3.17. Left: eigenfrequency 𝜔 0 estimated with length 𝐿. Right: eigenfrequency 𝜔 0𝑅 estimated with length 𝑅 𝑒𝑞 . ⃝: 𝐶 ′ solution; : 𝐶" solution; the other symbols are the data of the demineralised water same as figure 5.29 of volume for which the break-up occurred by increasing 𝜔 in the previous experiments). Figure 5.31 represents the bubble break-up when we reversely vary the rotational velocity of the tank (circles are the conditions for which break-up occurred). We see the break-up of the bubbles with similar volume sizes as the bubbles in previous experiments when we performed experiment in a condition of increasing 𝜔, but this time happening below the given rotational velocities.

The interesting point validating the hypothesis of the resonance is that in the case of reverse break-up the value of 𝜔/𝜔 0 is approximately in the same range [1.6, 2.5], which a bit larger (see figure 5.32, left) in comparison with the increasing 𝜔 break-up shown in figure 5.30, left. Note that the ratio 𝜔/𝜔 0 increases even in this reverse break-up experiment: the reason is that the bubble stretches when approaching the resonance, and as a result its eigenfrequency 𝜔 0 decreases faster than 𝜔 when 𝜔 is reduced.

However, the value of the ratio 𝜔/𝜔 0𝑅 when we choose the length of the bubble as 𝑅 𝑒𝑞 , is still between 0.62 and 0.83 ( see figure 5.32) which is consistent with our previous experiments. This is another indicator that resonance is the probable reason of bubble break-up in this flow situation. We have discussed in chapter 3 that the Weber number is a dimensionless parameter which controls the deformation of a deformable droplet or bubble in a high Reynolds number flows. Regarding the deformation of the bubble when break-up occurs (figures 3.13 nad 3.16), the types of observed break-up, and the huge distortion of the bubble when it breaks (high amplitude of the front view and side view aspect ratio), we can expect that the Weber number becomes large at break-up. As our bubble is close to the axis of rotation and regarding chapter 3 where a corrected Weber number with effect of low 𝑅𝑜 introduced, we plot the data of break-up as a function of this corrected Weber number 𝑊 𝑒 ′ = 𝑊 𝑒 (1 + 4𝑔 2 /(𝐷 2 𝜔 4 )). Figures 5.33, 5.34 and 5.35 left, illustrate the corrected Weber number as a function of volume for the three considered solutions. To expand, for instance, for water (figure 5.33, left) the break-up moment does not happen in highest Weber number. To modify the Weber number which controls the deformation of the bubble in this situation (distorted bubble before break-up), we write definition of the Weber number for the bubble stretched along the horizontal axis as: 

𝑊 𝑒 𝐿 = 𝜌 𝜔 2 𝐿 3 𝜎 Moreover,

Conclusion and perspectives

Conclusion

This chapter will wrap up the results presented in this manuscript by summarizing the major findings in connection to the research objectives and questions, as well as discussing their contribution. It will also go through the limitations of this study and make recommendations for further research.

This study aimed to investigate the behavior of a bubble in a horizontal highspeed solid body rotating flow. In chapter 2, the experimental apparatus and conditions for extracting information about the bubble in this type of flow were discussed. The experimental set-up is a cylindrical Plexiglass tank rotating around its horizontal axis. Two cameras have been used to extract bubble shape, position and interface movements along two directions. The bubble stretches along the axis of rotation in the recorded images, and its shape is similar to an ellipse. Then, using image analysis techniques, we were able to determine some key characteristics of the deformed bubble, such as its length (along vertical and horizontal axes), position, boundary contour, orientation, etc. We then used image processing and implemented image analysis techniques to determine the bubble volume, assuming the bubble has an ellipsoidal shape. According to the findings, increasing the rotation speed of the tank causes the bubble to stretch further and the volume to increase by up to 15% for most series. The elastic deformation of the Plexiglass tank has been proven to be the cause of this increase. Finally, we discussed why we chose a rotation speed range of 63 to 94 𝑟𝑎𝑑 𝑠 -1 for our experiments. We demonstrated that in this range of tank rotation speed, the amplitude of the bubble oscillation remains moderate in comparison to the bubble dimension.

We discussed the bubble shape, position, and its rupture in Chapter 3 using the tools and methods from Chapter 2. Except for the smallest bubbles investi-gated, we showed that the Rossby number 𝑅𝑜 = 𝑟 𝑒 /𝐷, where 𝑟 𝑒 is the distance to the axis of rotation and D the bubble diameter, is less than one for most of our experimental conditions. In other words, the bubble center of mass is not perfectly centered with the axis of rotation, but it is close to it and gets closer as the rotation speed increases. Our experimental results showed that as the rotational velocity 𝜔 of the tank increases, the longitudinal aspect ratio 𝑋 of the bubble increases up to 2. We used the model proposed by [START_REF] Rosenthal | The shape and stability of a bubble at the axis of a rotating liquid[END_REF] for our experimental data since this model predicts the shape of the bubble in a solid body rotating flow. The model is inviscid, and assumes that the bubble is perfectly centered on the axis of rotation. We have shown that this model adequately captures the stretching of the bubble when its Weber number is increased, provided a correction accounting for the finite distance to the cell axis and the impact this has on the mean pressure field around the bubble is included. This model relies on the assumption that the bubble is axisymmetric: this is not the case when buoyancy breaks the symmetry. The correction we have proposed for the Weber number is nonetheless sufficient to capture the aspect ratio 𝑋 of the bubble in a wide range of conditions. Eventually, we concluded Chapter 3 by looking at how the stretched bubble breaks up along the axis of rotation for particular values of the tank rotation. We have shown that the bubble could break into two equal-sized bubbles or two unequal-sized bubbles as a result of a massive distortion in which the bubble experiences very large longitudinal aspect ratio before breaking. We interpret this break-up as caused by a resonance mechanism between the driving frequency (𝜔) and the eigenfrequency of the bubble (𝜔 0 ). More precisely, the break-up phenomenon is caused by periodic forcing at the correct frequency through a resonance, where the eigenfrequency of the elongated bubble (𝜔 0 ) at mode 𝑛 = 2 equals the tank frequency (𝜔). We have proposed two definitions for the bubble's eigenfrequency. One is based on the characteristic size of the undeformed bubble (𝜔 0𝑅 ), and the other, 𝜔 0 is based on the length of the stretched bubble (𝐿). It is shown that independent of size and rotation speed the value of 𝜔/𝜔 0𝑅 has been found to be between 0.66 to 0.83 for 𝜔 0𝑅 and in a range between 1.7 and 2.1 for 𝜔/𝜔 0 for all break-up events, which is a strong argument in favor of this resonance mechanism being responsible for the rupture.

We modeled the forces acting on the bubble near the axis of rotation in our flow situation in Chapter 4. Then we calculated the drag and lift coefficients and compared them to previous research works focused on bubbles in a condition of 𝑅𝑜 ≥ 6 in [START_REF] Rastello | Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow[END_REF][START_REF] Rastello | Clean versus contaminated bubbles in a solid-body rotating flow[END_REF][START_REF] Bluemink | A sphere in a uniformly rotating or shearing flow[END_REF]. We have shown in section 4.2 values for the drag coefficient of the bubble, deduced from measurements of the bubble position: these results show that, as 𝑅𝑜 becomes smaller than 1, the drag coefficient increases and the impact of 𝑅𝑜 becomes more pronounced. We have shown that for bubbles straddling the axis of the cell, the drag coefficient could be simply approximated by 𝐶 𝐷 ∼ 1.5/𝑅𝑜. If we further consider that, for the large bubbles considered here 𝑟 𝑒 ∼ 𝑔/𝜔 2 , this is equivalent to predicting 𝐶 𝐷 ∼ 1.5𝐷𝜔 2 /𝑔 for such bubbles in this regime, a simple expression which captures well the order of magnitude of 𝐶 𝐷 for almost all our experimental conditions. Finally, we have proposed in section 4.3 an estimate of the lift coefficient for the low 𝑅𝑜 limit. This lift coefficient seems to be controlled by the shear Reynolds number when 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 is in the range , conditions for which one may expect an inertial wake to surround the bubble. In this range, 𝐶 𝐿 is of the order of 0.5, and decreases slightly when the Rossby number is reduced (i.e. 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 is increased). We observe a transition above 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 = 3000, above which the bubble exhibits strong oscillations in shape and position. This transition probably occurs when the bubble approaches the conditions of its resonance.

The impact of adding surfactant within the tank on bubble dynamics was the focus of Chapter 5. To change the surface tension of the bulk liquid, we used the chemical compound TetradecylTrimethylAmmoniumBromide (TTAB). The critical micelle concentration (CMC) of TTAB is 1.5𝑔𝑟 /𝐿. As a result, we investigated two TTAB solutions, one lower than CMC (0.33 CMC) introduced as 𝐶 ′ , in which the interface is not completely saturated, and the other higher than CMC (2 CMC) introduced as 𝐶", in which the bubble interface is expected to be completely saturated with surfactants. Afterwards, we have compared the behavior of the bubble in these TTAB solutions with demineralised water (previously discussed in chapters 3 and 4). Two different tensiometers were used to measure the surface tension of both solutions. We used the first, Attension Theta Flex, Biolin Scientic AB, and the second, Tracker Standard drop tensiometer, to improve the accuracy of our measurements. The surface tension of 0.33 CMC converges to 𝜎 0.33𝐶𝑀𝐶 = 52 ±1.0 mN/m, while that of 2 CMC converges to 𝜎 2𝐶𝑀𝐶 = 37 ±1.0 mN/m, according to the findings.

In the same range of volume sizes, we found that the longitudinal aspect ratio of the bubble in both solutions is higher (the bubble stretched more along the axis of rotation) than in the demineralised water case. Furthermore, we found that our experimental data fits well with Rosenthal 1962 prediction for the case of 2 CMC in terms of aspect ratio 𝑋 (fully saturated interface). However, the experimental data are shifted above the Rosenthal 1962 prediction at 0.33 CMC (not entirely saturated interface) and in this case the experimental aspect ratio is underestimated by the model. In general, we have found that bubbles in presence of surfactant behave similarly to bubbles in demineralised water. The shape of the bubble interface is nonetheless slightly different when surfactant is present, and bubbles appear more streamlined in this case. In addition, the bubbles get slightly closer to the rotation axis as a result of this interface shape (lower Rossby numbers). Finally, we saw in this chapter that the bubble breaks at a smaller volume size in surfactant solutions, but the ratio 𝜔/𝜔 0 is still in the same range as for breakup in demineralised water. This is a further argument in favor of a resonance mechanism. Moreover, we reversely changed the rotation speeds of the tank (from 900 𝑟𝑝𝑚 to 600 𝑟𝑝𝑚) and managed to break-up the bubble by decreasing the rotation frequency. The values of 𝜔/𝜔 0 at break-up are in the same range as for the previous series (where 𝜔 was increased). This is another strong argument in favor of a resonance mechanism.

Perspectives

Until now, we have investigated the bubble dynamics close to the axis of rotation in a solid body rotating flow without, and with one type of soluble surfactant (TTAB). However, further experiments are needed to broaden the results about bubble behavior in this type of flow. Our findings suggest that we still have a long way to go in fully grasping all the aspects of the bubble dynamics in a rotating flow. In the following we have listed the future studies that can be aligned with the present work.

Investigating the behavior of bubbles over a wider range of rotation speeds

According to chapter 2, the maximum rotation speed of the tank provided by the motor is 900 𝑟𝑝𝑚 (94 𝑟𝑎𝑑 𝑠 -1 ). We showed in Chapter 3 how the bubble goes closer to the axis of rotation and becomes more stable as the rotational velocity of the tank increases. The interesting point for the future research work is to improve the capability of the motor to effectively increase the range of rotation speeds up to 1500 𝑟𝑝𝑚 (157 𝑟𝑎𝑑 𝑠 -1 ) in order to investigate deformation, drag and lift coefficient, instability, and break-up in another range of 𝜔. For instance, doing experiments in a range of [800-1500] 𝑟𝑝𝑚. Furthermore, examining the instability of the bubble and the surrounding flow that leads to break-up at a lower range of rotational velocity of the tank is a fascinating project. Figure 2.31, for example, demonstrates that in a lower range of rotation speeds, the amplitude of the bubble oscillation is tremendous, the velocity is perturbed and the unknown wakes behind the bubbles appeared which lead to encounter the unknown surrounding flow. Investigating this complex flow around the bubble will expand the results of the bubble dynamics and break-up in a solid body rotating flow.

Using another type of surfactant

The use of TTAB surfactants to modify the surface tension of the carrier flow has been discussed. Future research should focus on the effects of the other chemical compounds as surfactants with another molecular structure, and compare the behavior of the bubble in their solutions. To summarize, adopting different types of surfactants (with different adsorption and disorption characteristic times in comparison with TTAB), and comparing them to our current findings would broaden our understanding of bubble dynamics and break-up.

Numerical simulation

As we saw in Chapter 5, the shape of the bubble with surfactant slightly differs from demineralized water without surfactant. It might be worthwhile to explore surfactant dispersion along the contact, particularly in the situation of a partially saturated interface. A promising future project is to explore surfactant distribution on the interface in this type of flow using the code developed by the late Peter Spelt a level set code where surfactant inhomogeneities can be taken into account Titta 2017.

Investigating the bubble dynamics in presence of other surrounding bubbles

All of the studies were carried out using a single bubble in the tank. Another perspective of this experimental work would be to conduct experiments in which multiple bubbles are positioned close to the axis of rotation and the deformation, break-up and forces of each bubble will be investigated in the presence of numerous other bubbles.

In addition, how will the balance between break-up and coalescence depend on the rotation rate? And how will it be impacted by surfactants? The results obtained in this manuscript for a single bubble should help clarify this situation, which is common in appplications related to mixing in rotating flows.
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 21 Figure 2.1: Sketch of the experimental set-up showing the positioning of the cameras relative to the rotating tank
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 22 Figure 2.2: Position of the holes upon the tank used to fill demineralised water and to inject gas bubble.

Figure 2 . 3 :

 23 Figure2.3: Mean flow profiles scales by the rotation speed of the tank (𝑋 is radial axis of front view). Extracted from[START_REF] Rastello | Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow[END_REF] 
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 24 Figure 2.4: PIV Flow map for 900 rpm (𝜔 = 94 𝑟𝑎𝑑 𝑠 -1 )
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 25 Figure 2.5: Configuration of the present problem, showing an approximately axisymmetric bubble lying close to the axis of rotation 𝑧.

  Figure 2.6: Left: Tensiometer used to measure precise surface tension of used liquid. Right: droplet released from Gauge needle in front of high resolution camera to measure instantaneous surface tension .
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 2 Figure 2.7: Left: Example of image recorded by Phantom camera (side view). Right: Example of image recorded by Basler camera (front view).
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 28 Figure 2.8: Zoomed frame in the crop box of bubble displacement Phantom (side view)

Figure 2 . 9 :

 29 Figure 2.9: Left: Binary image + complementing of figure 2.8, after implementing of the noise removing algorithms (mat2gray, medfilt Matlab functions). Right: After imposing strel, imclose and imfill Matlab functions to keep the biggest object.
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 2211 Figure 2.10: Left: Boundary detection of the biggest object. Phantom (side view). Right: Boundary detection of the biggest object (same bubble as figure 2.9 with Major (L) and minor axis (D) of the ellipse).

  Figure 2.12: Configuration of the present problem, showing an approximately axisymmetric bubble lying close to the axis of rotation 𝑧.
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 2214 Figure 2.13: Designed metal bar with colored marked points for side view calibration
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 215 Figure 2.15: Stuck dashed pattern to the front plane (at 𝑍 0 ) and background plane (at 𝑍 ) separately.
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 217 Figure 2.16: Configuration of 𝑧 position of the bubble measured with Phantom camera
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 2 Figure 2.18: Technical assembly of the cameras synchronization.
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 221 Figure 2.20: Left: Maximum vertical distance of the bubble recorded by side view. Right: Maximum vertical distance of the bubble recorded by front view.
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 222 Figure 2.22: Schematic of the two chosen point by program for measuring maximum vertical distance through the boundary points front view.
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 223 Figure 2.23: Mean vertical distance of the boundary in each omega for both views (front view and side view) where □ is related to side view and ⃝ is the value of front view for a bubble with volume of 𝑉 = 0.16 𝑐𝑚 3 .
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 2 Figure 2.24: Labeling estimated position of the center with colored circular paper.
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 2227 Figure 2.26: Contour of the interior wall of the tank to be clicked.
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 2 Figure 2.28: c and b are the major and minor axis of ellipsoidal bubble from side view images. a is the major axis of front view.
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 2 Figure 2.30: Variation of volume predicted by model discussed in equations 2.2 and 2.4 for the same volume size of experimental data via same legend as figure 2.28 with assumption of 𝛥𝑉 𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑉 𝜔 -𝑉 0 . Same legend as figure 2.29.
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 12 Figure2.31: Left: Variation of dimensionless vertical position 𝑦 of a bubble of volume 𝑉 = 0.14 cm 3 (𝑅 𝑒𝑞 = 3.2 mm) as a function of time, for two rotation rates. The origin of 𝑦 is taken on the axis of rotating cell, and the vertical position is made dimensionless with the equivalent spherical bubble size 𝑅 𝑒𝑞 . Right: Same plot for dimensionless horizontal position (𝑧) along the axis of the cell, with origin of 𝑧 taken at the mean position of the bubble. The fluctuations are much smaller for the larger rotation rate.

  Figure 2.32: Left: Path followed by the center of the bubble with 𝑉 = 0.14 cm 3 and two experiments at 𝜔 = 31 and 89 𝑟𝑎𝑑 s -1 . Time goes from dark to light color in the gradient color line. Right: Zoom on smaller cycle for the case 𝜔 = 89 𝑟𝑎𝑑 s -1 .
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 2 Figure 2.33: Left: Front view for a bubble of volume 𝑉 = 0.25 cm 3 (𝑅 𝑒𝑞 = 3.9 mm), at 𝜔 ≈ 63 s -1 . Right: Same bubble and same conditions simultaneously recorded from side view.
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 2 Figure 2.35: Bubble position in the cell cross-section: the center position of the bubble is characterized by 𝑟 𝑒 and 𝜃
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 31 Figure 3.1: Variation of the distance of the center of the mass of the bubble to the center of the cell 𝑟 𝑒 as a function of 𝜔.

Figure 3 . 2 :

 32 Figure 3.2: 𝑅𝑜 = 𝑟 𝑒 /𝐷 as a function of 𝑔/𝐷𝜔 2 . Same legend as in Figure 3.6. The solid line indicates 𝑅𝑜 = 𝑔/𝐷𝜔 2 .
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 33 Figure 3.3: Froude number as a function of 𝜔: the Froude number is close to one for most series, except for the smaller bubble investigated for which Fr ≈ 0.5.
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 34 Figure 3.4: Variation of 𝜃 in degrees, ranging between 50 < 𝜃 < 89 as a function of 𝜔.
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  Figure 3.5: Bubble position respect to the center of the cell for a bubble of volume 𝑉 = 12 𝑐𝑚 3 .
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 36 Figure 3.6: Variation of the aspect ratio 𝑋 = 𝐿/𝐷 as a function of 𝜔.
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 37 Figure 3.7: Variations of the aspect ratio 𝑋 𝐹 (aspect ratio of front view) as a function of the rotation speed 𝜔 Same legend as figure 3.6.
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 3 Figure 3.8: Coefficient 𝛼 𝑖𝑛 𝑗 = 𝑉 0 /(𝐿𝐷 2 ) as a function of 𝜔. The red line indicates the value for an ellipsoid 𝜋/6. The blue dashed line shows the value for a cylinder, 𝜋/4.

  Figure 3.9: Schematic of rotating bubble around the horizontal axis of 𝑧, Rosenthal 1962.
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 3 Figure 3.10: Bubble aspect ratio as a function of Weber number. Same as in Figure 3.6. The solid line corresponds to the model of Rosenthal 1962.
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 313 Figure3.13: Aspect ratio 𝑋 as a function of time (𝑠) for the bubble 𝑉 = 0.3 𝑐𝑚 3 in 𝜔 = 89 𝑟𝑎𝑑 𝑠 -1 . The red highlighted part of the graph is when the bubble is distorted and the value 𝑋 sharply rises and then break-up of the bubble occurs.
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 3315316 Figure 3.14: Six consecutive frames of the bubble before break-up moment showing how the bubble splits into two nearly equal size bubbles.
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 318 Figure 3.18: Stability criterion of the bubble aligned with the center of rotation proposed by Rosenthal 1962 for all the experimental data in demineralised water.Here 𝜇 is the wave number as 2𝜋/𝜆, where 𝜆 is the wavelength of the considered perturbation. We consider here a perturbation such that 𝜆 = 𝐿/2.
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 319 Figure3.19: Eigenfrequencies of a bubble of 𝑉 ≃ 0.35𝑐𝑚 3 as a function of 𝜔 𝑐𝑒𝑙𝑙 . The red line is the rotational velocity of the tank (𝜔 𝑐𝑒𝑙𝑙 ). The dashed magenta line is the theoretical value of the oscillated bubble frequency at shape mode 𝑛 = 2 (interface configuration of the bubble when break-up occurs). Black and blue line are the calculated frequency of the oscillated bubble in other shape modes 𝑛 = 3 and 4. The marked point (break-up) is the moment that the frequency of the bubble coincides with the frequency of the tank at shape mode 𝑛 = 2 (𝜔 = 66 𝑟𝑎𝑑 𝑠 -1 ).
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  Figure 3.20: Volume of the broken bubble as a function of ratio 𝜔/𝜔 0 (ratio between tank rotation frequency, and frequency of the stretched bubble 𝜔 0 ) for all experimental series experiencing break-up. Circles identify the rotation speed 𝜔 for which rupturing occurred. Same legend as figure 3.17. Left: the value of 𝜔 0 = √︂ 96 𝜌 𝜎 𝐿 3 . Right:
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 41 Figure 4.1: Acting forces upon the bubble at equilibrium position with 𝑅 𝑜 ≥ 6, Rastello et al. 2009

  Figure 4.2: Bubble position in the cell cross-section: the center of the bubble is characterized by 𝑟 𝑒 and 𝜃 . The action of the liquid on the bubble is modelled as the sum of drag 𝑭 𝑫 , lift 𝑭 𝑳 , pressure and added mass contributions 𝑭 𝑨 .

  .4 the drag coefficient, deduced from equation (4.6b) via measurements of the mean values of 𝑟 𝑒 and 𝜃 , as a function of 𝑅𝑒. The red solid line indicates the prediction of Schiller and Naumann 1933 for a solid sphere in a
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 44 Figure 4.4: Drag coefficient 𝐶 𝐷 as a function of 𝑅𝑒.

  Figure 4.5: Drag coefficient 𝐶 𝐷𝛥 as a function of the shear Reynolds number 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 .
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 47 Figure 4.7: Variations of 2𝐶 𝐿 -𝐶 𝐴 as a function of 𝑅𝑒, from equation (4.6a).
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 48 Figure 4.8: Sketch showing the cross section for an ellipsoidal bubble inclined of an angle 𝛾 relative to the cylindrical frame.
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 49 Figure 4.9: Left: Variations of the drag coefficient without consideration of 𝐶 𝐴𝑟𝜃 same figure as 4.4. Right: Same as figure left with consideration of 𝐶 𝐴𝑟𝜃 (term B in equation 4.13).
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 4 Figure 4.10: Left: Variations of 𝐶 𝐴𝑟𝜃 as a function of 𝑅𝑒. Right: Ratio of the nondiagonal term B to diagonal term A in equation 4.13 to verify the effect of 𝐶 𝐴𝑟𝜃 in our drag coefficient measurement.
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 411 Figure 4.11: Added mass coefficient 𝐶 𝐴𝑟 as a function of We.𝐶𝐴 𝑟 increases with We for most series.
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 4 Figure4.12: 𝐶 𝐴𝑟 as a function of 𝑊 𝑒 𝑟𝑒 , which measures the impact of mean velocity 𝑟 𝑒 𝜔 on the shape of the bubble. For a given series, the added mass decreases when 𝑊 𝑒 𝑟𝑒 is increased due the increase in 𝑋 𝐹 .
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 4 Figure 4.13: Lift coefficient as a function or Reynolds number. The dashed and solid lines correspond to equations (B1)-(B2)-(B5) in Rastello et al. 2017: Black line: the bubble does not spin. The lift is only induced by the rotation flow, equations (B2)-(B5). Red line: the bubble is supposed to spin with the same rotation speed as the tank. This scenario is possible as the bubble is contaminated and located on the rotation axis. Rotation adds a contribution equal to 3/16, equation (B1). Equation (B2) is the correlation of the numerical results of Bluemink et al. 2010 for non-spinning sphere (Code Physalis, 𝑅𝑒 ≤ 200, 𝑆𝑟 𝜔 = 𝑅𝑜 -1 ≤ 0.1); equation (B5) is the correlation of the experimental data of these authors for non-spinning sphere (𝑅𝑒 > 274, 𝑆𝑟 𝜔 = 𝑅𝑜 -1 ≤ 0.4), with a different additional constant: 1.82 against 1.99 in Bluemink et al. 2010.

  Figure 4.14: Lift coefficient as a function of shear Reynolds number, 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜. The greyed region corresponds to conditions where the bubble experiences strong shape fluctuations.

  Figure 4.15: Lift coefficient as a function of the variance of the longitudinal aspect ratio 𝑋 .

Figure 4 . 16 :

 416 Figure 4.16: Lift coefficient as a function of the ratio between the tank rotation frequency and the eigenfrequency of the stretched bubble 𝜔 0 .

Figure 4 .

 4 Figure4.17: Bubble orientation relative to the horizontal direction, in degrees, for 𝑉 = 0.20 cm 3 and 𝜔 = 63 s -1 : the bubble orientation remains aligned towards the same mean direction of 17 • , but oscillates around this value with a frequency equal to the tank rotation frequency, namely 10 Hz.

  Figure 4.18: Sequence of images showing how the bubble deformation propagates along the perimeter for bubble of volume 𝑉 = 0.25 cm 3 at 𝜔 = 63 s -1 .

Figure 5 . 1 :

 51 Figure 5.1: Structure of the TTAB surfactant. The chain of carbons is the hydrophobic side of the surfactant while the 𝑁 + side is the hydrophilic head.

Figure 5 . 2 :

 52 Figure 5.2: The measured surface tension of 𝐶 ′ solution as a function of time shown by Attension Theta Flex, Biolin Scientic AB.

Figure 5

 5 Figure 5.3: Tracker Standard drop tensiometer device.

  Figures 5.4 and 5.5 display the values and error bars of the surface tension measured by Tracker Standard drop tensiometer when the volume of the released bubble changes sinusoidally as a function of time.

Figure 5 . 4 :

 54 Figure 5.4: Red square points are the value of the surface tension measured by (51.5 ±1.0 mN/m) Tracker Standard drop tensiometer when the volume of the bubble released from the gauge needle varies sinusoidally. The green sinusoïdal signal is the area of the bubble captured by the high resolution camera when the volume varies.

Figure 5 . 5 :

 55 Figure 5.5: Zoom on variation of the surface tension when the volume of the released drop varies which justifies the chosen value of the 52 ±1.0 mN/m.
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 5657 Figure5.6: Variation of the Rossby number 𝑅 𝑜 as a function of 𝑔/(𝐷 𝜔 2 ). Left: bubbles in solution 𝐶 ′ ; right: bubbles in solution 𝐶". The black line corresponds to equation 3.9. Same legend as figures 5.10 and 5.9.

Figure 5 . 8 :

 58 Figure 5.8: The angle 𝜃 (in figure 4.2) as a function of the rotation speed. a) bubbles in 𝐶" solution ( ); b) bubbles in 𝐶 ′ solution (⃝); c) bubbles in demineralised water (×).

Figure 5 . 12 :

 512 Figure5.12: Bubble aspect ratio 𝑋 = 𝐿/𝐷 as a function of the corrected Weber number. Left: bubbles in 𝐶 ′ solution; right: bubbles in 𝐶" solution. The model works well for the 𝐶" case.

  Figure 5.13: Bubble aspect ratio 𝑋 = 𝐿/𝐷 as a function of the corrected Weber number for the case of the 𝐶 ′ solution. Left: Weber number computed with a surface tension 𝜎 = 52𝑚𝑁 /𝑚; right: Weber number computed with effective surface tension 𝜎 = 37𝑚𝑁 /𝑚.

Figure 5 . 15 :

 515 Figure 5.15: Variations of the aspect ratio 𝑋 𝐹 (aspect ratio of front view) as a function of the rotation speed 𝜔. a) bubbles in 𝐶" solution ( ); b) bubbles in 𝐶 ′ solution (⃝); c) bubbles in demineralised water (×).

Figure 5

 5 Figure 5.18: Standard drag coefficent 𝐶 𝐷 as a function of the Reynolds number. Left: bubbles in 𝐶 ′ (0.33 CMC) solution; Right: bubbles in 𝐶" (2 CMC).

Figure 5

 5 Figure 5.19: Standard drag coefficent 𝐶 𝐷 as a function of the Reynolds number for 𝐶 ′ (0.33 CMC) solution. Left: without consideration of non-diagonal added mass term 𝐶 𝐴𝑟𝜃 ; Right: with consideration of non-diagonal added mass term 𝐶 𝐴𝑟𝜃 .
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 5 Figure 5.20: Standard drag coefficent 𝐶 𝐷 as a function of the Reynolds number for 𝐶" (2 CMC) solution. Left: without consideration of non-diagonal added mass term 𝐶 𝐴𝑟𝜃 ; Right: with consideration of non-diagonal added mass term 𝐶 𝐴𝑟𝜃 .

  Figure 5.21: Drag coefficient 𝐶 𝐷𝛥 as a function of 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 . a) bubbles in 𝐶" solution ( ); b) bubbles in 𝐶 ′ solution (⃝); c) bubbles in demineralised water (×).

  Figure 5.23: The angle 𝛾 (in figure 4.8) as a function of the rotation speed. a) bubbles in 𝐶" solution ( ); b) bubbles in 𝐶 ′ solution (⃝); c) bubbles in demineralised water (×).

  Figure 5.24: Schematic of the bubble configuration in 𝐶 ′ (0.33 CMC) solution when the value of the angle 𝛾 increases and consequently the chord becomes close to the minor axis of the front view.

ArFigure 5 . 26 :

 526 Figure 5.25: Dimensionless parameter 𝐶ℎ𝑜𝑟𝑑/𝐷 (in figure 4.8) as a function of 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 . a) bubbles in 𝐶" solution ( ); b) bubbles in 𝐶 ′ solution (⃝); c) bubbles in demineralised water (×).

  Figure 5.27: Lift coefficient 𝐶 𝐿 as a function of 𝑅𝑒. a) bubbles in 𝐶" solution ( ); b) bubbles in 𝐶 ′ solution (⃝); c) bubbles in demineralised water (×).

  Figure 5.28: Lift coefficient 𝐶 𝐿 as a function of 𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜. a) bubbles in 𝐶" solution ( ); b) bubbles in 𝐶 ′ solution (⃝); c) bubbles in demineralised water (×).

  Figure 5.31: Volume of the bubble as a function of rotation speed for which reverse break-up is observed in 𝐶" (2 CMC) solution.

Figure 5

 5 Figure5.32: Volume of the broken bubble as a function of ratio 𝜔/𝜔 0 (ratio between tank rotation frequency and eigenfrequency of the stretched bubble 𝜔 0 of the stretched bubble 𝜔 0 ) for all experimental series experiencing break-up. Circles identify the rotation speed 𝜔 for which rupturing occurred for the reverse break-up. Left: eigenfrequency 𝜔 0 estimated with length 𝐿. Right: eigenfrequency 𝜔 0𝑅 estimated with length 𝑅 𝑒𝑞 . Same legend as figure 5.31.

Figure 5

 5 Figure 5.33: Left: Corrected Weber number presented in chapter 3 in a function of volume for the bubbles experiencing break-up in demineralised water. Right: 𝑊 𝑒 𝐿 as a function of volume in demineralised water.

  

Table 2 . 1 :

 21 𝑋 𝑐𝑒𝑛𝑡𝑒𝑟 (𝑝𝑖𝑥𝑒𝑙𝑠) 𝑌 𝑐𝑒𝑛𝑡𝑒𝑟 (𝑃𝑖𝑥𝑒𝑙𝑠) Coordinates of tank centers found by three chosen points of interior wall for various 𝜔.

	62.83	𝑋 1	𝑌 1
	68.06	𝑋 2	𝑌 2
	73.30	𝑋 3	𝑌 3
	78.53	𝑋 4	𝑌 4
	83.77	𝑋 5	𝑌 5
	89.01	𝑋 6	𝑌 6
	94.24	𝑋 7	𝑌 7

  Mean volume 𝑉 [cm 3 ] Mean equivalent radius 𝑅 𝑒𝑞[cm] 

	0.001	0.072
	0.004	0.098
	0.05	0.228
	0.069	0.254
	0.078	0.266
	0.013	0.146
	0.117	0.303
	0.127	0.311

Table 5 . 2 :

 52 Characteristics of the bubbles in solution C ′ (0.33 CMC): mean volume 𝑉 and radius 𝑅 𝑒𝑞 of a spherical bubble of equivalent volume.Figure 5.6 shows 𝑟 𝑒 /𝐷 as a function of 𝑔/𝐷𝜔 2 for the 𝐶 ′ and 𝐶" solutions. This Mean volume 𝑉 [cm 3 ] Mean equivalent radius 𝑅 𝑒𝑞 [cm]Table 5.3: Characteristics of the bubbles in solution C" (2 CMC): mean volume 𝑉 and radius 𝑅 𝑒𝑞 of a spherical bubble of equivalent volume.
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uniform flow. We have included in this graph the results of an additional measurement for a smaller bubble (gray asterisk, 𝑉 = 0.50 mm 3 , 𝑅 𝑒𝑞 = 0.5𝑚𝑚). For this particular bubble, 𝜔 is varied between 10 s -1 and 30 s -1 , and 𝑅𝑜 varies between respectively 10 and 3 in this interval, i.e. this bubble remains relatively far from the cell axis. We recover in this particular case previous results also obtained with demineralised water [START_REF] Rastello | Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow[END_REF][START_REF] Rastello | Clean versus contaminated bubbles in a solid-body rotating flow[END_REF]: the points of this series fall close to the curve for solid spherical particles due to the inevitable presence of contaminants on the bubble interface. On the contrary, for larger bubbles closer to the cell center, and which for most of them straddle the axis of rotation (𝑅𝑜 < 0.5, see figure 4.3), we measure much larger drag coefficients, reaching values of up to 10. In addition, the scatter of the different series shows a strong influence of 𝑅𝑜 on 𝐶 𝐷 : for a given 𝑅𝑒, 𝐶 𝐷 is larger for a larger bubble, i.e. for smaller 𝑅𝑜. The large values of 𝐶 𝐷 (up to 8 and 10) show that expression Lift Section 4.3 Figure 4.6: Drag coefficient measured from bubble position, plotted as a function of proposed simplified model 1.5𝐷𝜔 2 /𝑔: this prediction provides a good estimate of 𝐶 𝐷 for the large range of conditions investigated here. flow when 𝑅𝑜 is not too small (figure 2.33-left), and are therefore not strictly axisymmetric. The aspect ratio in the (r, θ ) plane can reach values up to 1.4 (figure 3.7) for the largest bubbles and largest values of 𝑊 𝑒 𝑟𝑒 , Weber number based on the mean velocity 𝑟 𝑒 𝜔: this flattening, even at moderate aspect ratios, is expected to decrease the added mass coefficient along r compared with the axisymmetric assumption. We chose here to compute 𝐶 𝐴 numerically from the mean bubble dimensions deduced from the visualizations: we assume that the bubbles are ellipsoidal, and integrate the expressions proposed by Lamb 1993 as detailed in the following subsection. demineralised water for given volume and 𝜔 values. The symbols ⃝ (data of 𝐶 ′ solution) and (data of 𝐶" solution) have been shifted up in comparison with symbols × (data of demineralised water) for the same range of volumes (0.004 𝑐𝑚 3 < 𝑉 < 0.13 𝑐𝑚 3 ) which shows that the bubble is much more stretched along the horizontal axis in presence of surfactants. Since the bubble is close to

Figure 5.9: The aspect ratio of the bubble 𝑋 = 𝐿/𝐷 as a function of rotation speed 𝜔 for 𝐶 ′ solution (0.33 CMC). the axis of rotation (similar to condition of demineralised water), the aspect ratio of the bubble should be predicted by the model of Rosenthal 1962 as in figure 3.12 for demineralised water. Moreover, we plot the aspect ratio as a function of the corrected Weber number introduced in chapter 3, taking into account the corrected values of the surface tension measured by the tensiometers. As it is represented in 5.12, left, the data for the 𝐶 ′ (0.33 CMC) solution (surface tension lower than CMC) are not perfectly collapsed with the Rosenthal 1962 prediction and the deformation of the experimental data are larger. However, the data for the 𝐶" (2 CMC) have been very well fitted with the solid line of the model. These two physical phenomena can be interpreted via two concepts. On the one hand, concerning 𝐶 ′ solution, the interface may not be comprehensively saturated with surfactant. Thus, there might be accumulation or inhomogenous distribution of the surfactant on the different regions of the bubble interface in particular close to the center of rotation of the tank. This displacement of the surfactants may lead to surface tension variations across the bubble. Therefore, the determined surface tension (52 mN/m) might not correspond to the effective value for the present 𝜔 range (rotational speeds in a range [62,94] 𝑟𝑎𝑑 𝑠 -1 ). In order to test this hypothesis, we alter in the Weber number the surface tension to the lower value 𝜎 = 37 mN/m which is the surface tension of the CMC condition, and we observe that in that case the data for 𝐶 ′ (0.33 CMC) follows the model (figure 5.13 right). This means that the effective surface tension seen by the bubble is the CMC concentration even though we are at 0.33 CMC. On the other hand, regarding the 𝐶" (2 CMC) solution (figure 5.12, left), the data is more properly aligned with the solid line of the model as was the case for demineralised water (figure 5.14, b). We interpret this as the fact that for 𝐶" (2 CMC) solution the distribution of the surfactants on the bubble interface is saturated, and therefore more homogeneous than for the 𝐶 ′ case. For the case of demineralised water, the bubble interface is not comprehensively clean and the bubble has a contaminated