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0Résumé

Mots clés : dynamique de la bulle, brisure, déformation de la bulle, écoulement

en rotation, coefficients de portance et de traînée, tensioactifs solubles.

Ce travail a pour but de décrire le comportement d’une bulle placée dans

un écoulement de rotation solide d’axe horizontal. Cette situation est intéres-

sante car elle peut nous aider à comprendre comment les bulles se comportent

lorsqu’elles rencontrent des régions d’écoulement avec une vorticité localement

élevée. Ces régions de tourbillon élevé peuvent être trouvées dans une large

gamme de situations d’écoulement.

Afin d’extraire des informations sur la dynamique des bulles dans un écoule-

ment de rotation solide, nous avons utilisé un dispositif expérimental constitué

d’une cuve cylindrique en plexiglas tournant autour de son axe horizontal. Pour

cette expérience, la plage de vitesse de rotation étudiée est [600-900] rpm, c’est-

à-dire de 63 𝑟𝑎𝑑 𝑠−1 à 94 𝑟𝑎𝑑 𝑠−1. Deux caméras ont été utilisées pour déterminer

la forme, et le mouvement de la bulle à l’intérieur du réservoir.

Lorsque la vitesse de rotation du réservoir augmente, la bulle se rapproche de

l’axe de la cellule et s’étire le long de l’axe horizontal. Nous étudions d’abord cet

étirement de la bulle en fonction de la taille de la bulle et de la vitesse de rotation

de la cellule. Nous montrons que le rapport d’aspect de la bulle peut être prédit

en fonction du nombre de Weber de la bulle par le modèle de Rosenthal 1962,

pourvu qu’une correction due au décentrage de la bulle soit prise en compte.

Cette correction tient compte de la plus grande différence de pression entre la

périphérie et l’axe de la bulle, lorsque la bulle s’écarte de l’axe en raison de sa

flottabilité. Ensuite, nous avons observé que la bulle peut s’étirer jusqu’à des

rapports d’aspect de deux, et même se briser à certaines vitesses de rotation pour

les grandes tailles de bulles. Nous montrons que cette rupture se produit par un

mécanisme de résonance lorsque la fréquence de rotation du réservoir devient
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de l’ordre de la fréquence propre de la bulle.

Nous déduisons ensuite les coefficients de traînée et de portance à partir de

la position moyenne de la bulle. Pour les grosses bulles chevauchant l’axe de

rotation, nous montrons que le coefficient de traînée 𝐶𝐷 dépend uniquement

du nombre de Rossby Ro, avec 𝐶𝐷 ∼ 1.5/𝑅𝑜 . Dans la même limite, nous avons

proposé une estimation du coefficient de portance pour le faible nombre de

Rossby Ro. En effet, nous montrons que le coefficient de portance𝐶𝐿 est contrôlé

par le nombre de Reynolds de cisaillement 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 à l’échelle de la bulle.

Finalement, afin de modifier la tension superficielle du liquide et d’explorer

les effets des tensioactifs sur la bulle, nous avons introduit un composé chim-

ique tensioactif dans le liquide (TTAB). Nous avons examiné deux solutions de

tensioactifs alternatives : une de concentration inférieure à la concentration

micellaire critique CMC (0.33 CMC) et une supérieure à la CMC (2 CMC), dans

laquelle l’interface de la bulle est a priori saturée de tensioactifs. Nous avons

effectué la même analyse de déformation et de force qui a été effectuée avec de

l’eau déminéralisée avec les solutions de tensioactifs. Les résultats montrent

que comme attendu la déformation de la bulle est plus importante dans les deux

solutions de tensioactifs que dans l’eau, et peut toujours être modélisée par le

modèle de Rosenthal 1962 dans le cas de la solution 2 CMC. Cependant, dans

le cas de la solution 0.33 CMC la bulle se comporte comme si elle voyait une

tension superficielle effective égale à celle de la solution à la CMC. Concernant

la brisure, nous observons que comme pour l’eau la brisure se produit lorsque

la fréquence de rotation du réservoir est de l’ordre de la fréquence propre de

la bulle. Enfin, les coefficients de portance et de traînée ont été mesurés en

présence de surfactant : les valeurs obtenues sont similaires à celles obtenues

avec l’eau déminéralisée.
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0Summary

Keywords: bubble dynamics, break-up, deformation of the bubble, rotating flow,

lift and drag coefficients, surfactant effects.

This research study focuses on bubbles released inside a horizontal high-speed

solid-body rotating flow. This flow situation is interesting because it can help us

to understand how bubbles behave when theymeet flow regions with locally high

vorticity. These high vorticity regions can be found in a variety of flow situations.

In order to extract information about bubble dynamics in solid-body rotating

flow, we have used an experimental apparatus containing a cylindrical Plexiglas

tank of diameter 11 cm and length 10 cm which is rotated around its horizontal

axis 𝑧. The bubble can be injected into the cell at the rest. For this experiment,

the range of rotational velocity investigated is [600-900] rpm, i.e. from 63 𝑟𝑎𝑑 𝑠−1

to 94 𝑟𝑎𝑑 𝑠−1. Two high-speed cameras were used to determine the physical

features of the bubble motion inside the tank.

When the rotational velocity of the tank increases, the bubble moves close to

the axis of the cell, and stretches along the horizontal axis. We first study this

stretching of the bubble as a function of bubble size and of the rotation rate of

the cell. We show that the bubble aspect ratio can be predicted as a function

of the bubble Weber number by the model of Rosenthal 1962 provided an ap-

propriate correction due to the impact of buoyancy is included. This correction

accounts for the larger pressure difference between periphery and axis of the

bubble, when the bubble is displaced away from the axis because of buoyancy.

Then we discovered that the bubble can experience the large aspect ratio up to 2

and breaks up at certain rotational speeds for large bubble sizes. We show this

break-up occurs through a resonance mechanism when the rotational velocity

of the tank becomes of the order of the eigenfrequency of the bubble.

We next deduce the drag and lift coefficients from the mean bubble position.
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For large bubbles straddling the axis of rotation we show that the drag coefficient

𝐶𝐷 is solely dependent on the Rossby number Ro, with𝐶𝐷 ∼ 1.5/𝑅𝑜 . In the same

limit of large bubbles, we have proposed an estimate of the lift coefficient for the

low Rossby number 𝑅𝑜 . Indeed, we show that the lift coefficient 𝐶𝐿 is controlled

by the shear Reynolds number 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 at the scale of the bubble.

Eventually, in order to change surface tension of the bulk liquid and explore the

effects of surfactants on the bubble we have used a chemical compounds called

TetradecylTrimethylAmmoniumBromide (TTAB) in the liquid. We have studied

two alternative surfactant solutions: one that is lower than the CMC (0.33 CMC)

and one that is higher than the CMC (2 CMC), in which the bubble interface is

expected to be entirely saturated by surfactants. We have carried out the same

deformation and force analysis that were carried out with demineralised water

with the surfactant solutions. The results reveal that as expected the deformation

of the bubble is larger in both surfactant solutions than in water, and is still

modelled by the model of Rosenthal 1962 in the case of the 2 CMC solution. In

the case of the 0.33 CMC solution, the bubble behaves as if it was seeing an

effective surface tension equal to that in the CMC solution. Regarding break-up,

we observe that as for water, break-up occurs when the tank frequency is of the

order of the bubble eigenfrequency. Furthermore, the lift and drag coefficients

were measured in the presence of surfactant, and the values measured were

similar to those obtained with demineralised water.
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1 Introduction

1.1 General context

1.1.1 Bubble Dynamics

Understanding the behavior of gas bubbles in liquid flows is relevant for many

industrial and environmental processes, and has been studied for a long time.

Bubbles exhibit various dynamical behaviors which have been investigated by

experts in physics, fluid dynamics and multi phase flows during past decades.

For instance, in environmental phenomena bubbles are present in heat and mass

transfer in lakes and rivers, aerosol transfer from the sea, oxygen dissolution in

the sea due to rain and electrification of atmosphere by the sea bubbles, river

aeration, etc. Moreover, bubbles are of great importance in a wide range of

industrial applications such as chemical reactors, thermohydraulics, modeling

and prediction of their behavior around the propellers of ships and submerged

turbines, etc. Therefore, initial modeling and prediction of bubble dynamics

requires deep knowledge of bubble physics. Among these topics it is essential to

investigate the dynamics of rising bubbles. Clift et al. 1978 carried out theoretical

studies around rising bubble shape in unlimited surrounding flow. They discov-

ered that when the ratio of a dispersed rising bubble to the surrounding flow is

low, the bubble tends to form ellipsoidal and spherical caps. Wang et al. 2016,

performed an experimental and numerical study on the dynamics of a soaring

bubble with high Reynolds number in a vertical Hele-shaw. The bubbles have

been confined between cell-walls, and forming various shape from spherical,

ellipsoidal and complex interface configurations in function of space between the

cell-wall. Their studies showed that the bubble shape can be altered depending

on the gap between the cell walls, from oblate ellipsoid and spherical to more

complex shapes. Furthermore, a dependency of the drag coefficient on the gap

thickness of the cell has been derived. Chen et al. 1999 accomplished a numerical

study with Volume-of-fluid method to recognize gas bubble deformation, rising

and break-up in closed vertical cylinder with a gravitational field. They discov-

ered that depending on the Reynolds and Bond numbers, bubbles can evolve

1



Chapter 1 Introduction

on a variety of shapes, including toroidal, spherical, and elliptical. The density

ratio causes certain bubble configurations, which affect the rising velocity of the

bubble.

The other fundamental question is to understand the spatial heterogeneity in

the distribution of bubbles. By the way of example, Serizawa et al. 1975 have

performed experimentally an appealing work on bubbly flow ascending in a

vertical pipe to characterize interactions between bubbles and the upward flow.

The experimental study found that the turbulence intensity decreased first with

growing gas flow rate for constant water velocity, then increased again with sub-

sequent gas flow rate increases. Bentley and Leal 1986 have done an experimental

study investigating the drop deformation and rupturing in two-dimensional lin-

ear flows. They proved that drop shape depends on viscosity ratio of surrounding

flow and droplet, along with characteristics of the continuous flow around the

droplet.

Takemura et al. 2002 experimentally studied forces and the shape of a rising

bubble near a vertical wall in a viscous fluid. They have been able to determine

the drag and lift force components along with bubble interface configuration

using a portative optical instrument. They have shown that the wall inevitably

causes a drop of rising velocity inducing a repulsive lift force upon the migrat-

ing bubble. Legendre and Magnaudet 1998 have examined other limits with a

numerical study, that of linear viscous shear flow, and found the lift force upon

the bubble. There have also been some other interesting studies on both aspects

of deformation and forces. Perrard et al. 2021 performed a direct numerical

simulation for a dispersed spherical bubble in a homogeneous and isotropic

turbulent flow. The results have shown that there is a coupling between deduced

harmonic equation of different modes of bubble configuration and turbulent

velocity variations.

Bubble in a rotating flow

In the case of a bubble in a rotating flow, Bush et al. 1995 presented an analytical

anticipation of the shape along with rising velocity of a drop translating in a

vertical axisymmetric rigid body rotating fluid with a low viscosity. They dis-

played that as the bubble is in an equilibrium position between centrifugal and

interfacial forces, it begins to deform into a plorate ellipsoid. At the end, a set

of complementary experiments were performed and experimental results have

2



General context Section 1.1

been qualitatively compatible with a proposed analytical solution. In the similar

surrounding flow conditions in the vicinity of droplets (rotating flow around the

vertical axis under an accelerating field), numerical study of Maneshian et al.

2018 proved that depending on the Morton number of the bubble along with

various value of a dimensionless number which is ratio of centrifugal and buoy-

ancy force, the bubble is subjected to a variety of motions, including spinning,

rotation, and translation, as well as various interface shapes.

Auton 1987 analytically discussed the forces (focused more on the lift) acting

on the small spherical bubbles in a rotational flow which shall be quite similar

to the case of shear flow ( Saffman 1965 proposed an analytical solution for lift

upon the sphere in a viscous shear flow). Kariyasaki 1987 conducted research on

bubbles in a vertical channel with two walls. They calculated the lift force of a

deformed bubble and compared it to that of a solid sphere in a uniform shear

flow using theoretical contributions. The results confirmed that the lift upon the

deformed bubble is opposite to that of a non-deformed one. In the same situation

of vertical shear flow, the numerical analysis of Ervin and Tryggvason 1997 is

another fascinating study of the forces acting on the bubble. The effects and

variations of the forces on the deformed air bubble were discovered by numerical

simulation (finite difference method of full Navier-Stokes equations).

Leslie 1985 captured the interface reaction of a rotating bubble inside a closed

container boundaries in its equilibrium position in conditions of low gravity.

They showed the interface shape depends on size, contact angle with the con-

tainer, and the ratio of the centrifugal force to the surface tension in a way

that when this force ratio rises, the bubble tends to be cylindrical and initiate

adequate pressure drop for hydro-static contribution.

All these aspects of bubble behaviour influence the transfers (momentum, heat

and mass) at the gas-liquid interface (Risso 2000) and in doing so, are worthwhile

to be investigated. One important factor for bubbles is the degree of "cleanliness"

of the interface. Indeed, besides the heat and mass transfers with the bulk, the

presence of surfactant or impurities at the surface can modify the forces acting

on the bubble in a spectacular way Clift et al. 1978, Takagi and Matsumoto 2011.

It can for instance increase the drag force, hence reducing the bubble rising

velocity, and modify the lift force that bubbles experience in shear flows, which

influences their lateral motion in such flows.

3



Chapter 1 Introduction

1.1.2 Effect of Surfactant on the Bubble Dynamics

An essential factor for bubble dynamics is the degree of cleanliness of the inter-

face. In other words, impurities mixing in the carrier flow. In bubbly flows, a

small quantity of surfactant can provoke extreme variations in the flow struc-

tures through the multi-scale effects of the flow. For instance, surfactant effects

can be observed for the rising bubbles when a bubble in an aqueous surfactant

solution rises slower than in a clean purified water. This phenomena occurs

due to nonuniform distribution of surfactant on the bubble surface. This non-

uniform concentration distribution can also influence bubble motion, dynamics,

bubble-bubble interactions, diminishing the coalescence, minimizing the mass

transfer, etc. There have been some research works concentrated on bubbly

flows to study the impact on the whole system when surfactant is added and

concentration is varied, with the aim to monitor the impact on bubbles and

drops.

Majority of studies on bubble dynamics with presence of the surfactant have

been focused on rising bubbles. In the case of rising micro bubbles released in a

vertical wall bounded flows, Takagi and Matsumoto 2011 accomplished a series

of experimental studies to show the configurations of the released bubbles in a

vertical tunnel. This experiment has been a complementary study of Takagi et al.

2008 and explained bubble motion in presence of surfactant. The results confirm

the effects of aqueous surfactant solution on the vertical bubble motion and its

lateral migration. On the other hand, the drag force upon the bubble in this case

is similar to the case of solid sphere. These conclusions for the rising bubble

started assigning new physical features for the bubble and surrounding flow

via surfactant. Another fascinating experiment for rising bubble with soluble

surfactant was Clift et al. 1978. Their study outcomes proved that the terminal

velocity of a rising bubble with soluble surfactant is two times lower than purified

water. Apart from forces and concentration of surfactant on the interface of the

inclusion, trajectories of the bubbles in a vertical bubble column ( 0 < 𝑅𝑒 < 400)

have been characterized in the case of various solutions of soluble surface active

agent by Tagawa et al. 2010. First, they have distinguished the rising bubble path

difference in diverse surfactant substances. Their experimental studies show

that not only does surfactant reduce rising velocity, but also the trajectory of the

rising bubble changes from zigzag to spiral depending on the type of employed

impurities. Moreover, their experimental results evidenced a decreasing of the lift

and drag coefficient of the soaring bubble in the condition of higher concentration.
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Context of present study Section 1.2

The other outstanding work related to the effects of surfactant on a rising bubble

has been done by Pesci et al. 2018. They conducted a direct numerical simulation

(DNS) to better understand the local quantities of the surfactant on the interface

of the rising bubble, and a comparison between the instantaneous rising velocity

between direct numerical simulation and experimental data has been done. The

authors infer that results of numerical simulation collapse with experimental

data. Furthermore, their simulation visualized the surfactant distribution on the

interface during the rise (local surface coverage). In the case of linear shear flow,

numerical simulation of Fukuta et al. 2008 validate of lift force value variation

upon the gas bubble by modifying the ratio of adsorption to desorption. In

other words, by decreasing the desorption factor, large gradients of surface

concentration occur and the lift coefficient on a bubble placed in a shear flow

becomes much smaller than for a clean bubble.

1.2 Context of present study

This PhD project focuses on fairly large bubbles (in terms of volume and Reynolds

number compared to previous studies) released into a high-speed solid body

rotating flow around a horizontal axis. This flow situation is interesting because

it can help us understand the behavior of bubbles when they pass through flow

regions with locally high vorticity. These high vorticity regions are particularly

interesting because of their existence in several flow situations such as Green

2012 mixing layers, turbulence, recirculating flows and body wakes. They are

characterized by low pressure minima at their center. In various cases, a review

of the literature shows that bubbles approaching these high vorticity regions

are deflected toward the vortex core and trapped inside the minimum pressure

region. This habitual bubble tendency has already been investigated by numer-

ous researchers. For instance, measuring the forces on microscopic bubbles

entrained by a vortex is done by Sridhar and Katz 1995 with implementing the

particle image velocimetry algorithms to find velocity and acceleration of the

bubble and liquid. Their results shows that for the tiny bubbles with diameter

range 55`𝑚 < 𝑑 < 800`𝑚 and rather low Reynolds number of 20 < 𝑅𝑒 < 80, the

drag coefficient is similar to that of a solid sphere. These drag results confirm

the independency of the drag and vorticity for these microscopic gas bubbles.

In addition, the lift only depends on fourth root of local vorticity. Jha and Go-

vardhan 2015 investigated the interaction between single bubble and vortex ring.
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Chapter 1 Introduction

In other words, the effects of bubble on vortex dynamics and vice versa has

been experimentally explored. Other instances include: Cavitating bubbles in

the tip vortices of propellers (see chapter XVIII by Chahine in Green 2012, Choi

and Chahine n.d.), and still very recently by Cabut et al. 2021 with air bubbles

trapped in counter rotating vortex inside tire groves of a rolling car. Perhaps one

of the most amazing examples of bubbles trapped by vortices is that given by

videos of captive dolphins at play Marten et al. 1996. In all these situations the

question is to know why and how the bubbles move towards the center of the

vortex and are trapped. Answering this question requires to identify the forces

acting on the bubbles in these situations. The seminal experiment of Naciri 1992

showed that the horizontal solid-body rotating flow, is rather representative of

vortex regions and was adapted to measure some of these forces. He found that

bubbles released in this type of flow experience, like in shear flows (Legendre

and Magnaudet 1998, Tomiyama et al. 2002, Takemura et al. 2002, Hayashi et al.

2020), a lift force that, adding to the other radial forces (pressure and added

mass), make them spiral towards an equilibrium position located more or less

close to the rotation axis, according to the rotation speed. The coordinates of

this equilibrium position were used to measure the drag and lift coefficients.

Since that experiment, the behavior of bubbles or solid particles in a horizontal

solid-body rotation flow has been the object of several studies. Most of these

studies address the determination of the drag and lift coefficients, either numeri-

cally or experimentally from the equilibrium position. For instance, Van Nierop

et al. 2007 performed experiments on spherical bubbles with Reynolds number

up to 500. In accordance with their investigation, when the bubble is set in

its equilibrium position, all the forces shall be modeled to be computed. Their

results demonstrate that for the bubbles with Reynolds lower than 5, lift force

has robust dependency on viscous effect and is negative. Bluemink et al. 2010,

Bluemink et al. 2008 experimentally and numerically investigated the drag and

lift forces on freely rotating sphere in this flow situation. In addition, the wake

behind spherical drop has been recorded when is positioned close to the axis of

rotation. With a similar experimental apparatus Rastello et al. 2009 examined

the dynamics of a contaminated bubble in equilibrium position, in a surrounding

solid rotating flow. The force balance and measurements depend on the position

of the bubble. The authors took care to only study bubbles at a distance larger

than six times the radius, in order to avoid interaction of the bubble with its

wake. Consequently, the essential condition is being far enough from the axis

6
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of rotation. They expanded their experimental results in Rastello et al. 2011 to

determine acting forces along with bubble behavior in a situation in which the

interface is clean. Silicon was chosen as surrounding liquid to prevent slipping

interface. The equilibrium position, lift, drag and ellipsoidal bubble shape have

been determined. Eventually, Rastello et al. 2017 enlarged their results with a

series of new experiments to present comparisons of the dynamics of clean and

contaminated bubbles in a solid-rotating flow. They tested both spherical and

deformed bubbles in a series of experiments. They found that when the interface

is contaminated, the bubble experiences an extra lift force, whereas when the

interface is clean it does not. Furthermore, in the same Reynolds number range

(up to 700), the deformation of a bubble with a clean interface (ultra-purified

water) is greater than the deformation of a bubble with a contaminated interface.

All the mentioned research work for solid body rotating flow has been limited

to moderate rotation speeds, which prevents the bubble coming too close to

the axis of rotation and thus disturb the solid-body rotating flow. Different

situations were investigated, the case where the interface is clean (silicone oils,

Rastello et al. 2011) and the case where the interface is partially or fully cov-

ered by impurities (water, Rastello et al. 2009, Rastello et al. 2017). When the

surface is contaminated and only in that case, the bubble was shown to rotate

with characteristics that are very similar to those of solid spheres immersed in

that kind of flow Bluemink et al. 2008; Bluemink et al. 2010. This results in an

extra "Magnus-like" lift force and a separated wake behind the bubble, whose

separation angle (the angle from the bubble rear at which the wake detaches

from the bubble) is higher than that observed at the same Reynolds number on a

solid non-rotating sphere in a uniform flow Johnson and Patel 1999. Details on

this separated wake were recently reported in Rastello and Marié 2020.

1.3 Objectives

The novelty of this study compared to previous ones lies in the high rotation

speeds which are explored. In that case the bubble stabilizes close to the rotation

axis, thus mimicking the bubbles trapped in a vortex core. The problem was

analytically formulated by Rosenthal 1962, the effect of gravity being neglected.

The bubble that is assumed spherical at zero rotating velocity is shown to stretch

with its length increasing along the rotation axis as the rotation speed increases.

The author derives a mathematical expression providing the bubble elongation

7
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as a function of the rotation speed, for a given bubble volume (the corresponding

model is detailed in chapter 3). He also performs a stability analysis of these

bubbles subjected to small sinusoidal disturbances, and shows that within the

axisymmetric assumption considered, increasing the rotation speed stabilizes

the bubble. Our objectives for the present research work can be listed as below:

I To investigate the interface deformation of an air bubble close to the axis

of rotation. To check experimentally if bubbles still behave in a comparable

way as predicted by Rosenthal 1962 when buoyancy breaks the symmetry

of the problem. Practically, we inject bubbles of various given volumes in a

cell rotating along a horizontal axis, and study their shape and aspect ratio

as a function of the rotation speed (discussed in chapter 3). Furthermore,

our objective is to investigate the stability of these bubbles, and determine

if they can break-up.

II In chapter 4, we will show that we can use bubble position to determine

the forces acting on the bubble. The main goal of this chapter will be to

measure the mean drag and lift forces, for conditions of relatively high

Reynolds number.

III In chapter 5 wewill add surfactant to the rotating tank to analyze dynamics

changes of the bubble such as deformation, resulting consequences on the

acting forces (lift, drag, etc.) and rupturing. Bibliography demonstrated

that contaminant on the interface can modify the effective forces and

deformation in several flow configurations. As it has beenmentioned in the

previous part, Rastello et al. 2017modified the liquid in their experiments to

visualize the air bubble in silicon, but the impact of introducing surfactant

and the consequences on particle dynamics and break-up is still an open

question.

8



2 Experiments

2.1 Experimental Set-up

To investigate the behavior of a gas bubble in a highly rotating flow, we use the

experimental apparatus shown in figure 2.1. A cylindrical Plexiglas tank of inner

Side view

Front view

Camera

Camera

LED

LED

Figure 2.1: Sketch of the experimental set-up showing the positioning of the cameras

relative to the rotating tank

diameter 11 cm and length 10 cm is rotated around its horizontal axis 𝑧. The tank

is fixed in a cylindrical counter bore and the contact is made using ball bearings.

The tank is entrained by a motor, via a tooth belt. For this experiment, the range

of comparatively high rotational velocity (compared to previous research studies)

𝜔 investigated is [600-900] rpm, i.e. from 63 rad 𝑠−1 to 94 rad 𝑠−1. Three holes on
the side of the tank are used to fill the tank with water, or to inject an air bubble

9



Chapter 2 Experiments

illustrated in figure 2.2. The water used here is demineralised water similar to

the one previously used in Rastello et al. 2009. It is characterized by a resistivity

of 0.3M𝛺cm. This resistivity is in between the one of ultra purified water of

Duineveld 1995 (18 M𝛺cm) and the one of tap water (3 k𝛺cm).

Because of operating constraints (bubble injection, temperature measurements,

etc.), it was difficult to keep this water clean, which means it a priori contains
contaminants. These few contaminants are mainly solid impurities and/or traces

of tensio-actives entering the tank and scattered in the liquid.

z

y

Top View

of the Tank

Fill the Tank

Inject Bubble

x

z

Figure 2.2: Position of the holes upon the tank used to fill demineralised water and to

inject gas bubble.

2.1.1 Flow characteristics

For the general form of the flow inside the tank, and by calling continuity

equation with a velocity field of 𝑽 = (𝑢𝑟 , 𝑢\ , 𝑢𝑧) in cylindrical coordinates we

have:

𝜕𝜌

𝜕𝑡
+ 1

𝑟

𝜕(𝜌𝑟𝑢𝑟 )
𝜕𝑟

+ 1

𝑟

𝜕(𝜌𝑢\ )
𝜕\

+ 𝜕(𝜌𝑢𝑧)
𝜕𝑧

= 0
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As the rotating flow is steady (

𝜕

𝜕𝑡
= 0) for a fixed 𝜔 , and because the velocity

field can be assumed axisymmetric (

𝜕

𝜕\
= 0), then we will have

𝑢𝑟 =
𝐴

𝑟

because of the boundary condition at the wall 𝑢𝑟 = 0, we have constant 𝐴 = 0.

Therefore, 𝑢𝑟 = 0. Then, we write \ -component of Navier stokes equation in

cylindrical coordinates:

𝜌

( 𝜕𝑢\
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢\

𝜕𝑟
+ 𝑢\

𝑟

𝜕𝑢\

𝜕\
+ 𝑢\𝑢𝑟

𝑟
+ 𝑢𝑧

𝜕𝑢\

𝜕𝑧

)
= −1

𝑟

𝜕𝑃∗
𝜕\

+ `

[
1

𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑢\

𝜕𝑟

)
− 𝑢\

𝑟 2

+ 1

𝑟 2
𝜕2𝑢\

𝜕𝑧2
+ 2

𝑟 2
𝜕𝑢𝑟

𝜕\
+ 𝜕2𝑢\

𝜕𝑧2

]
where 𝑃∗ = 𝑃 + 𝜌𝑔𝑦. Under the same assumptions of steady and axisymmetric

velocity field, and injecting 𝑢𝑟 = 0, it can be shown that the solution is of the

form:

𝑢\ = 𝐴𝑟 + 𝐵

𝑟

where 𝐴 and 𝐵 are constants. We know necessarily 𝐵 = 0, because, otherwise

velocity diverges at 𝑟 = 0. By using the boundary condition at the outer cylinder

at 𝑟 = 𝑅 (𝑅 is radius of the cylinder) where the velocity is fixed at 𝜔 , we find

𝐴 = 𝜔 . Therefore, 𝑢\ can be deduced as 𝑢\ = 𝜔𝑟 . Then by contribution of the

r-component of Navier Stokes equation in cylindrical coordinate (incompressible,

isothermal Newtonian flow), we write:

𝜌

( 𝜕𝑢\
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑟

𝜕𝑟
+ 𝑢\

𝑟

𝜕𝑢𝑟

𝜕\
−

𝑢2
\

𝑟
+ 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧

)
= − 𝜕𝑃∗

𝜕𝑟
+ `

[
1

𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑢𝑟

𝜕𝑟

)
− 𝑢𝑟

𝑟 2

+ 1

𝑟 2
𝜕2𝑢𝑟

𝜕\ 2
− 2

𝑟 2
𝜕𝑢\

𝜕\
+ 𝜕2𝑢𝑟

𝜕𝑧2

]
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Under the same assumptions as precedingly, we obtain:

𝜕𝑃∗

𝜕𝑟
= 𝜌

𝑢2
\

𝑟

Therefore, by replacing 𝑢\ = 𝑟𝜔 , the pressure profile will be parabolic:

𝑃∗ =
1

2

𝜌 𝑟 2𝜔2 + 𝑃0

There is a constant 𝑃0 which is the pressure at the center of the tank.

Figure 2.3: Mean flow profiles scales by the rotation speed of the tank (𝑋 is radial axis

of front view). Extracted from Rastello et al. 2009

In addition, with the experimental set-up exhibited in figure 2.1, the rotating

flow without bubble was characterized by particle image velocimetry (PIV) mea-

surements in Rastello et al. 2009 on the present experimental set-up. Averages

of 100 flow fields show that the mean flow profiles were linear over the whole

section of the tank. Results clearly showed that the mean velocity profile was

linear as expected for a solid body rotation and matched the velocity of the tank

at the wall. As an evidence, we join a PIV mean velocity map for 900 rpm (figure

12
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2.3) and the mean velocity profiles for 400, 500, 750 and 900 rpm scaled by the

tangential velocity of the tank (figure 2.4). This map was obtained by averaging

100 instantaneous maps. It shows that all the profiles remained linear.

Figure 2.4: PIV Flow map for 900 rpm (𝜔 = 94 𝑟𝑎𝑑 𝑠−1)

2.1.2 Bubble injection, surface tension measurements and other
physical parameters

Bubbles can be injected when the cell is at rest. Because the volume of the in-

jected bubble is an important parameter for our calculations, we have used three

different fixed needle Hamilton syringes allowing volumes of injected bubble

in the range of ([5-1000] `𝑙 ). When the rotating motor is launched at indicated

rotational velocity 𝜔 ([600-900] rpm) the observed deformation of the bubble is

qualitatively similar to an ellipsoid, and the bubble stretches along the axis of

rotation 𝑧 (form of the streched bubble illustrated in figure 2.5). In addition, the

volume𝑉 at a given𝜔 can be measured via image processing. This measurement

will be explained in details in section 2.2, by assuming that the bubble is an

ellipsoid and by measuring its axes on the front and side view projections. This

measurement of volume has been implemented to increase the accuracy of the

volume taken into account for our calculations.

13
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Surface tension was measured with a pendant drop tensiometer (Attension Theta

Figure 2.5: Configuration of the present problem, showing an approximately axisym-

metric bubble lying close to the axis of rotation 𝑧.

Flex, Biolin Scientic AB) shown in 2.6. This device involves a needle located in

front of a high-resolution camera. The software algorithm automatically detects

the contour of the drop at the tip of the needle. It retrieves the shape profile and

using Young Laplace model provides the corresponding surface tension value.

To maintain the stability of the drop, we make sure not to touch the apparatus or

the bench to avoid parasitic vibrations. The surface tension for the demineralised

water was close to 71.8 ±1.0 mN/m in average for all experiments. We averaged

over decades of seconds, enough to have a converged value and not too long to

avoid evaporation effects.

The liquid temperature was measured before each series of experiments, with

a digital Testo 106 thermometer. This temperature was comprised between

20
◦
C and 21

◦
C for each experiment. A small short term increase of tempera-

ture, of at most one degree, was observed in the course of measurements. The

corresponding uncertainty on viscosity is expected to be below 5%.

2.2 Image Processing

In order to understand the dynamics of our targeted bubble at the center of

rotation, we detect and extract its physical features along with its behavior by

implementing some image analysis algorithms. To do this, the first principal

step is to detect the shape of the bubble to have an overview about the general

14



Image Processing Section 2.2

Figure 2.6: Left: Tensiometer used to measure precise surface tension of used liquid.

Right: droplet released from Gauge needle in front of high resolution camera to measure

instantaneous surface tension .

configuration of the bubble. This step requires high accuracy particle detection

algorithms and proper back light imaging. Additionally, in order to have a clean

series of images to detect the shape of the bubble, we require a deliberate bubble

injection without other small bubbles or extra particles disrupting the images.

As it has been displayed in figure 2.1, two cameras are used to record the bubble

shape and position: a Phantom 4.3 V360 is used to record images normal to the

axis of rotation (side view, and in particular the stretching of the bubble along this
axis of rotation). A second camera, Basler acA800 is positioned perpendicular to

the first, along the axis of rotation (front view in figure 2.1). Lightning is achieved

with two LED panels, one for each camera. The cameras are synchronized to

record simultaneously the bubble at a frame rate of 𝐹 = 200 Hz. The resolution

is fixed at 600 × 800 pixels for both cameras. For each injected bubble volume

and given 𝜔 , a set of 255 synchronized images is recorded.

Several images of the deformed bubble for rotational velocity in the range [600-

900] rpm, i.e. from 63 rad 𝑠−1 to 94 rad 𝑠−1. The images captured from front
view and side view are shown in figure 2.7. The bubble configuration exhibits

approximately an ellipsoidal shape.

2.2.1 Particle detection

In order to improve our image analysis techniques, we can zoom in on the

region where the bubble fluctuates, and crop the image around the bubble. As

an example, the zoomed image recorded by Phantom 4.3 V360 for a bubble of

15



Chapter 2 Experiments
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Figure 2.7: Left: Example of image recorded by Phantom camera (side view). Right:
Example of image recorded by Basler camera (front view).

volume𝑉 = 0.27𝑐𝑚3
is illustrated in figure 2.8. Afterwards the process of particle

detection can be initialized.

The initial part of the bubble detection is the conversion of our images to gray-
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Figure 2.8: Zoomed frame in the crop box of bubble displacement Phantom (side view)

scale. Then, we implement a median filtering of the image in two dimensions.

This step is an effectivemethod to reduce noises to preserve the edges. In addition,

since the bubble is large and properly detectable at the plane, we imbinarize the

image to convert pixel values above a determined threshold to ones and setting
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all other values to zeros. Then, by using the complement image, we will optimize

the clearance of the bubble (figure 2.9, left ). Afterwards, we fill entirely the

remained object with the strel, imclose and imfill Matlab functions (figure 2.9,
right). Eventually the outer boundaries of the holes inside the biggest detected

object are traced. In this step, the function regionprops has been used. As it

has already been remarked, the configuration of the bubble can be considered

approximately ellipsoidal. Thus, we extract all the principal components (major

axis, surface area, minor axis, orientation, perimeter, center of the mass, etc.) of

the detected ellipse with this regionprops function (figure 2.10).
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Figure 2.9: Left: Binary image + complementing of figure 2.8, after implementing of the

noise removing algorithms (mat2gray, medfilt Matlab functions). Right: After imposing

strel, imclose and imfill Matlab functions to keep the biggest object.

First results from the shape of the bubble as an ellipse confirm that the bubble

in such high rotating velocities tends to stretch along the horizontal axis. In

addition, it oscillates around 𝑧. As it oscillates, there is not a distinct equilibrium

position and the interface fluctuates. This physical phenomena is observed from

the oscillations of L and D shown in figure figure 2.11. Accordingly, with this

evidence from the behavior of the bubble and its deformation, we can characterize

the shape of the bubble with these length scales (𝐿 and 𝐷) in figure 2.12.

2.2.2 Camera synchronization and Calibration

Calibration

In order to deduce real length scales for our bubble measurements, calibration

for each camera is an essential step. For instance, for the side view the surface
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Figure 2.10: Left: Boundary detection of the biggest object. Phantom (side view). Right:
Boundary detection of the biggest object (same bubble as figure 2.9 with Major (L) and

minor axis (D) of the ellipse).
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Figure 2.11: Variations of 𝐿 and 𝐷 for an example experiment for 𝑉 = 0.25𝑐𝑚3
at

𝜔 = 700𝑟𝑝𝑚

of the cell has a finite curvature (because of the shape of the tank). Thus, all

the measurements from image processing of the gathered image sequences of

Phantom must be converted to the real scale in both 𝑦 (vertical direction) and
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L

D

Figure 2.12: Configuration of the present problem, showing an approximately axisym-

metric bubble lying close to the axis of rotation 𝑧.

𝑧 (horizontal axis direction). To overcome this issue and obtain the real scale

of the bubble, we have designed a rectangular metal bar which can be inserted

inside the tank from the holes (figure 2.13). This metal bar has been marked

vertically via colored points along the 𝑦 direction. The distance between each of

the marked signs is 0.5 cm and the horizontal distance between the two corners

for the calibration in 𝑧 direction is d = 6.2 cm.

When the bubble is positioned close to the axis of rotation, it is trapped in the

spot covered by the designed rectangular bar (figure 2.14).

Then, we need to measure the scale of 𝑦 (𝑠𝑐𝑎𝑙𝑒𝑦) which depends on the 𝑦

position (because of the tank curvature) for a given experiment. Afterwards, for

expressing the output lengths of Matlab scripts in SI unit in 𝑧 and 𝑦 direction,

we will have to multiply by 𝑠𝑐𝑎𝑙𝑒𝑧 and 𝑠𝑐𝑎𝑙𝑒𝑦 respectively.

Concerning the Basler camera calibration, we observe that the camera super-

poses the front plane (the plane positioned at 𝑍0 in figure 2.15) and the back

plane (the plane positioned at 𝑍 in figure 2.15). To expand, the parallax for

the captured bubble by the Basler camera must be taken into account to get an

accurate scale conversion value at the given 𝑧 position of the bubble. Indeed,

depending on the position of the bubble along the 𝑧 axis, the scale seen by the

front view camera will change. This 𝑧 coordinate of the bubble center of mass

can be deduced from the side view images taken by the Phantom camera, for
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d
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Figure 2.13: Designed metal bar with colored marked points for side view calibration
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Figure 2.14: Schematic of the bubble inside the rectangular calibration metal bar.

each set of images of a specific rotating velocity 𝜔 . We therefore account for the

parallax effet with the following method: We introduce a linear equation for the

scale depending on the position of the bubble along the horizontal axis. We stick

a transparent circular plastic with a dashed lines pattern to the front (𝑍0) and

back (𝑍 ) planes separately and record each with the front view Basler camera.

We then measure the scale 𝑠𝑐𝑎𝑙𝑒𝑍0 on the front view by using the 𝑦 coordinates
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of two points 𝑂1 and 𝑂2 separated by a distance 𝐷 (figure 2.15):

𝑠𝑐𝑎𝑙𝑒𝑍0 =
𝑦
′
1
− 𝑦

′
2

𝐷 (𝑐𝑚)

We then stick the pattern to the back plane at 𝑍 , and measure the distance

between two points 𝑃1 and 𝑃2 from which we similarly deduce:

𝑠𝑐𝑎𝑙𝑒𝑍 =
𝑦1 − 𝑦2

𝐷 (𝑐𝑚)

As there is a linear relation for the calibration of plane 𝑍 and 𝑍0, a linear function

depending on the position of the bubble with slope𝑚 can be proposed as:

𝑚 =
𝑠𝑐𝑎𝑙𝑒𝑍 − 𝑠𝑐𝑎𝑙𝑒𝑍0

𝑍 − 𝑍0

𝑠𝑐𝑎𝑙𝑒𝑏𝑢𝑏𝑏𝑙𝑒 (𝑍𝑏𝑢𝑏𝑏𝑙𝑒) = 𝑠𝑐𝑎𝑙𝑒𝑍0 + 𝑚 (𝑍𝑏𝑢𝑏𝑏𝑙𝑒 − 𝑍0)
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Figure 2.15: Stuck dashed pattern to the front plane (at 𝑍0) and background plane (at

𝑍 ) separately.

In this function 𝑍𝑏𝑢𝑏𝑏𝑙𝑒 can be determined by finding the center of mass

position in 𝑧 from image analysis of the side view recording (see figures 2.16

and 2.17). It is evident that the center of mass oscillates around a fixed point in

different omega. The position in 𝑧 can vary in each image acquisition when we
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change 𝜔 . Therefore, 𝑍𝑏𝑢𝑏𝑏𝑙𝑒 is defined as the mean value of 𝑧 for each rotating

velocity.
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Figure 2.16: Configuration of 𝑧 position of the bubble measured with Phantom camera
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Figure 2.17: Center of mass oscillation of a bubble of volume 𝑉 = 0.16 𝑐𝑚3
in diverse

rotational velocities: the average of these values is used to measure 𝑍𝑏𝑢𝑏𝑏𝑙𝑒 position.
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Cameras synchronization

Image acquisition and synchronization of both cameras are based on the Phantom
4.3 V360. This implies that the Phantom camera is the master to adjust the features

of recording such as the frame rate. In fact, the Phantom camera in all the process

before recording initialization is storing images in its circular memory buffer and

we assigned it in post-trigger mode with capability of storing 1700 images before

acquisition instruction. On the other hand, the maximum number of images that

the Basler camera can have in its buffer is 255. Consequently, the total number

of recorded images of the Phantom camera is 255 (synchronized) + 1700 (before

Basler camera). Note that the frame rate of both cameras is fixed at 200 Hz.

When the Phantom camera enters into recording mode, it triggers the recording

of the Basler camera. The internal clock of the Phantom camera is used as external

clock of the Basler camera. However, it is mandatory to similarly capture images

in various experiments (different volumes of the bubbles) to preserve consistency

and accuracy of our data. This signifies the images should be captured at the

same time interval for each bubble size at different rotational velocity. We use

a signal generator to send a TTL signal to the camera, in order to launch the

recording process (figure 2.18). The moment that we push the start bottom of

the signal generator, it sends a TTL signal to the Phantom camera to record and

likewise Phantom camera governs Basler camera acquisition (see figure 2.18 and

2.19).

A verification of the accuracy of our calibration along with consistency of the

two cameras can be carried out by checking independently a defined value called

𝑑𝑦 for both cameras. We choose to check the maximum vertical distance of the

boundary points in each 𝜔 during bubble sharp undulations (figure 2.20). To

obtain this value, in image analysis script, a function measuring the maximum

andminimum vertical values of the boundary points over 255 images is composed

(see figures 2.21 and 2.22). This function deduces the distance betweenmentioned

maximum and minimum point in each image and store them as a vector. Thus,

to have a comparison of 𝑑𝑦 between Phantom and Basler in each 𝜔 we take into

account the mean value of this quantity through the 255 synchronized images.

So, if the mean values of 𝑑𝑦 (255 images) of each camera are close to each other,

the synchronization and precision of our calibration shall be validated (see figure

2.23).
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Phantom Camera

F-sync

Line 1: External Clock of Phantom Camera

Internal clock of the Phantom Camera

External clock of the Basler Camera

Basler Camera

Figure 2.18: Technical assembly of the cameras synchronization.

Image
Acquisition

Phantom Clock (Image Open/Close)

Basler Clock (Image Open/Close)

TTL Signal

255

255

Figure 2.19: Sending TTL signal from the generator to the Basler and Phantom cameras

clock. 255 synchronized images (for each camera separately) recorded after sent TTL

signal of the generator.
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Phantom dy +

Basler Camera
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Figure 2.20: Left: Maximum vertical distance of the bubble recorded by side view.
Right: Maximum vertical distance of the bubble recorded by front view.
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Figure 2.21: Schematic of the two chosen point by program for measuring maximum

vertical distance through the boundary points side view.

Finding the center of the tank

Finding accurately the coordinates of the center of the cell on our images is

crucial since the distance of the bubble to the axis of rotation is essential in

order to understand the velocity seen by the bubble. The inner and outer walls
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Figure 2.22: Schematic of the two chosen point by program for measuring maximum

vertical distance through the boundary points front view.

of the cell are not entirely visible with eyes and there are range of restrictions

to measure the center of the cell manually. We have tested different means to

precisely find the center of the tank with a high accuracy. For instance, a first

method we tried consisted in sticking a colored circular paper label (red disk in

figure 2.24) to the approximated position of the cell center. Then we explored

the center of this red disk in series of consecutive images, on the back wall of the

tank. The mean value of found centers of the red disks represents the coordinate

of the center of the tank. Note that in this method we take the center of the circle

described when the red disk rotates, we do not rely on the disk being centered.

We finally used a different, and more convenient, method for finding the center

of the tank: we use a Matlab function which gives the center of a circle once

the user has clicked on three points belonging to the circle. We chose three

regularly spaced points belonging to the inner wall of the tank, and the outputs

of the function are then the radius and coordinates of the center of the circle. In

our case this method works better and is an efficient solution as from the front

view image (Basler) parts of the contour of the inner wall are apparent and by

clicking on three random points on the interior wall we can obtain the center of

the circle around these three points. Figure 2.25 shows the line of inner wall as

well as three chosen random points to be clicked. Moreover, figure 2.26 shows a

zoomed part of the inner wall and figure 2.27 illustrates the center found by our

Matlab function.
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Figure 2.23:Mean vertical distance of the boundary in each omega for both views (front
view and side view) where □ is related to side view and ⃝ is the value of front view for a

bubble with volume of 𝑉 = 0.16 𝑐𝑚3
.

We carry out this method for each series of the images for a given omega, to

improve the accuracy of found centers. Subsequently, we calculate the mean

value of the centers for various 𝜔 . We define (𝑋𝐶 , 𝑌𝐶 ) as the value of the center
of the tank for each experiment (𝑋𝐶 , 𝑌𝐶 ) = 𝑚𝑒𝑎𝑛(𝑋1 : 𝑋7, 𝑌1 : 𝑌7) (see table
2.1).

2.2.3 Volume measurement and experimental data

As already explained in section 2.1.2, bubbles can be injected when the cell is at

rest, with three different fixed needle Hamilton syringes and the injected volume

𝑉0 of the bubble is therefore a priori known with a precision of `𝐿. The value of

volume can be read from the Hamilton syringes.

In the following, each series of data points, corresponding to a same injected
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Figure 2.24: Labeling estimated position of the center with colored circular paper.
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Figure 2.25: Three chosen clicked points on the interior wall of the cell as inputs of the

Matlab function extracting the center of the circle made by these points.
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Figure 2.26: Contour of the interior wall of the tank to be clicked.
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Figure 2.27: Found center of the circle circumscribed by line aligned with three clicked

points.

bubble, is labeled by the mean volume 𝑉 measured with this method over the

range of 𝜔 . Note that for all the series, the volume of the bubble is very small
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𝜔 (𝑟𝑎𝑑 𝑠−1) 𝑋𝑐𝑒𝑛𝑡𝑒𝑟 (𝑝𝑖𝑥𝑒𝑙𝑠) 𝑌𝑐𝑒𝑛𝑡𝑒𝑟 (𝑃𝑖𝑥𝑒𝑙𝑠)
62.83 𝑋1 𝑌1
68.06 𝑋2 𝑌2
73.30 𝑋3 𝑌3
78.53 𝑋4 𝑌4
83.77 𝑋5 𝑌5
89.01 𝑋6 𝑌6
94.24 𝑋7 𝑌7

Table 2.1: Coordinates of tank centers found by three chosen points of interior wall for

various 𝜔 .

compared to the volume of the cell (the ratio of volumes goes from 10
−7

to 3 ·10−4
for the biggest bubble). In order to be more explicit on the relevant bubble length

scale for each series, we provide in table 2.2 a correspondence between 𝑉 and

the mean radius 𝑅𝑒𝑞 of an equivalent bubble with a spherical shape.

However, to filter out uncertainties on the final bubble volume introduced by

the simple reading of the sample in the syringe ( refraction effects when level

reading; sometimes parasitic micro-bubbles created at the same time as the main

bubble), we also measured the volume V at a given omega via image processing.

Indeed, by assuming that the bubble is an ellipsoid and by measuring its axes on

the front and side view projections (figure 2.28):

a

b

c

Figure 2.28: c and b are the major and minor axis of ellipsoidal bubble from side view
images. a is the major axis of front view.
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𝑉 =
4

3

𝜋 𝑎 𝑏 𝑐

↓

For each image frame, 𝑉 =
4

3

𝜋
𝐿

2

× 𝐷

2

× 𝐷

2

↓

Therefore, for 255 synchronized frames for each 𝜔 ,

↓

𝑉 =
1

6

𝜋 × 𝑚𝑒𝑎𝑛 (𝐿 𝐷2) (2.1)

Mean volume 𝑉 [cm
3
] Mean equivalent radius 𝑅𝑒𝑞 [cm]

0.00069 0.055

0.0039 0.098

0.0064 0.115

0.0071 0.119

0.012 0.14

0.020 0.17

0.028 0.19

0.035 0.20

0.038 0.21

0.051 0.23

0.061 0.24

0.089 0.28

0.11 0.30

0.17 0.34

0.22 0.38

0.25 0.39

0.27 0.40

Table 2.2: Characteristics of the bubbles: mean volume 𝑉 and radius 𝑅𝑒𝑞 of a spherical

bubble of equivalent volume.
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Measurements of volume at low 𝜔 are typically within 5% of the injected

volume 𝑉0. For the larger 𝜔 investigated, a small increase in the volume of the

bubble with 𝜔 is typically observed, up to 15% for most series. We interpret this

increase as due to the elastic deformation of the plexiglas tank, as detailed below.

This phenomenon can be explained by the pressure difference seen by the wall

of the cylindrical tank (𝛥𝑃𝑤𝑎𝑙𝑙 ). We can write Barlow’s formula to compute the

elastic deformation of the tank wall with thickness of 𝑒 as:

𝛥𝑃𝑤𝑎𝑙𝑙 = 𝑃0 +
1

2

𝜌𝜔2𝑅2 − 𝑃𝑎𝑡𝑚 =
𝑒

𝑅
𝐸
𝛥𝑅

𝑅
(2.2)

where 𝐸 = 3 × 10
9 𝑃𝑎 is the Young modulus of plexiglas and 𝑅 is the radius of

the tank. Then by writing the volume conservation relation for the whole tank

we have,

𝛥𝑉𝑏𝑢𝑏𝑏𝑙𝑒 + 𝛥𝑉𝑤𝑎𝑡𝑒𝑟 = 𝛥𝑉𝑡𝑎𝑛𝑘 (2.3)

The volume variation of the tank can be estimated as,

𝛥𝑉𝑡𝑎𝑛𝑘 = 𝛥 (𝜋𝑅2𝐿) = 2𝜋𝑅𝐿 𝛥𝑅

The volume variation of the bubble can be related to 𝑃0 at the center of the tank

with compressibility 𝛽𝑏𝑢𝑏𝑏𝑙𝑒 as:

𝛽𝑏𝑢𝑏𝑏𝑙𝑒 ≃
1

𝑃𝑎𝑡𝑚
= − 1

𝑉0

𝛥𝑉𝑏𝑢𝑏𝑏𝑙𝑒

𝛥𝑃

where 𝛽𝑏𝑢𝑏𝑏𝑙𝑒 is the volume compressibility coefficient and 𝛥𝑃 = 𝑃0 − 𝑃𝑎𝑡𝑚 .

We have assumed that:

𝛥𝑉𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑉0 (1 −
𝑃0

𝑃𝑎𝑡𝑚
)

The volume fluctuation of the water is defined as below where 𝛽𝑤𝑎𝑡𝑒𝑟 ≃ 10
−10

𝑃𝑎−1,
𝛥𝑉𝑤𝑎𝑡𝑒𝑟 = 𝛽𝑤𝑎𝑡𝑒𝑟 𝑉𝑤𝑎𝑡𝑒𝑟 (𝑃0 − 𝑃𝑎𝑡𝑚)

In our experiment the volume of the water filling the cylindrical tank is

𝑉𝑤𝑎𝑡𝑒𝑟 ≃ 800 cm
3
. This means that the estimate for 𝛥𝑉𝑤𝑎𝑡𝑒𝑟 ≃ 10

−7 𝑐𝑚3
. More-

32



Image Processing Section 2.2

over, 𝑉𝑏𝑢𝑏𝑏𝑙𝑒 in our experiments have been up to 𝑉𝑏𝑢𝑏𝑏𝑙𝑒 = 0.25 cm3
. Then, the

order of magnitude of 𝛥𝑉𝑤𝑎𝑡𝑒𝑟 is 10% of bubble volume. Thus, we can neglect

the volume variations of water and maintain solely 𝛥𝑉𝑏𝑢𝑏𝑏𝑙𝑒 in equation 2.3 and

rewrite it as :

𝛥𝑉𝑏𝑢𝑏𝑏𝑙𝑒 = 𝛥𝑉𝑡𝑎𝑛𝑘

𝑉0

(
1 − 𝑃0

𝑃𝑎𝑡𝑚

)
= 2𝜋𝑅𝐿𝛥𝑅

(2.4)

Now, with contribution of equations 2.2 and 2.4, we have two equations and

two unknowns (𝛥𝑅 and 𝑃0) leading to a prediction for 𝛥𝑉𝑏𝑢𝑏𝑏𝑙𝑒 as a function of

𝜔 and 𝑉0. The experimental variations of the volume are illustrated in figure

2.29. The data points are the volumes of the experimental data showing for

different sizes of the bubble how the volume increased, with 𝛥𝑉𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑉𝜔 −𝑉0
where𝑉𝜔 is the measured volume from relation 2.1 in each rotating velocity and

𝑉0 is the volume of injected bubble into the cell with Hamilton syringes at the

beginning of the experiment. Figure 2.29 shows the volume variations predicted

by equations 2.2 and 2.4.

As it is apparent, there is an increase of volume in our range of rotational

velocities for both experimental data and theoretical model. The model predicts

that the volume can vary up to ≃ 14% (figure 2.30). On the other hand, the

experimental data shown in figure 2.29 display that the volume variation is up

to ≃ 24%, which is a bit larger but of the same order of magnitude. Note that for

the tiny bubbles of volume𝑉 = 0.0039 𝑐𝑚3
as well as𝑉 = 0.0064 𝑐𝑚3

the increase

is much larger up to ≃ 80% which is huge. The reason of this sudden volume

variations of these small bubbles in experimental data compared to the model

could be that these bubbles are not seeing 𝑃0 at the center of the tank as they are

not aligned with the axis. In the derivation of equation 2.4, it is assumed that the

bubble is always straddling the axis of rotation and pressure 𝑃0 is pressure at the

center of the bubble which is the same as the pressure at the center of the tank.

Nevertheless, in our experiments the bubble is not entirely centered and when

the bubble is small enough, the interface does not straddle the axis of rotation.

Thus, by increasing 𝜔 the pressure seen by the bubble 𝑃0 decreases because of

two distinct reasons: the decrease in 𝑃0 modeled in figure 2.30, and the fact that

the small bubbles moves closer to the axis when omega is increased.

The other point in figure 2.29 that should be remarked is the volume variation of

the bubble with 𝑉 = 0.028 𝑐𝑚3
. The volume variation for this bubble is negative
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at the beginning (figure 2.29). The reason is possibly the precision of noted

volume injected by the Hamilton syringe and the noted value may have been

underestimated.
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Figure 2.29: Variation of volume (assumption of ellipsoidal shape) via increasing 𝜔

measured with the method presented in section 2.2.3 for all the experimental data shown

in table 2.2. 𝛥𝑉𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑉𝜔 −𝑉0 where 𝑉𝜔 is the volume of the bubble with ellipsoidal

shape in related 𝜔 and 𝑉0 is the volume of injected bubble by syringe.
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Figure 2.30: Variation of volume predicted by model discussed in equations 2.2 and

2.4 for the same volume size of experimental data via same legend as figure 2.28 with

assumption of 𝛥𝑉𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑉𝜔 −𝑉0. Same legend as figure 2.29.

2.3 Bubble equilibrium position

When the cell is rotated, the bubble migrates towards the axis of rotation. For

moderate rotation frequencies, we observe that bubbles oscillate around their

mean position with an amplitude large compared to the bubble size. This is

illustrated in figure 2.31, with the red curve showing the vertical𝑦 and horizontal

position 𝑧 of the center of a bubble of volume 𝑉 = 0.14 cm3
along the axis of the

cell as a function of time, for 𝜔 = 31 𝑟𝑎𝑑 s
−1
. The values of 𝑦 and 𝑧 are made

dimensionless with 𝑅𝑒𝑞 = 3.2 mm, the radius of a spherical bubble of equivalent

volume 𝑉 = 0.14 cm3
. The bubble exhibits strong oscillations around its mean

position, of an amplitude comparable with the bubble size. The frequency of

the vertical oscillations corresponds to the frequency of the rotating cell. The

horizontal position fluctuates with an even larger amplitude (up to 15 mm), and

at a lower frequency. When 𝜔 is increased up to 𝜔 = 89 𝑟𝑎𝑑 s
−1
, the bubble

moves closer to the axis of the cell: for this larger frequency the amplitude of the
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bubble oscillations is strongly reduced along both directions, and becomes small

compared with 𝑅𝑒𝑞 (blue curve). A closer look at the motion of the bubble shows

that bubbles follow a limit cycle around the mean position (figure 2.32). This

limit cycle is reminiscent of the behavior observed recently for rigid spheres in

the experiments of Sauma-Pérez et al. 2018, even though the latter experiments

have been carried out at much lower 𝑅𝑒 . Our objective in the following is to

focus on the mean position of the bubble as a function of rotation frequency

and bubble size: we therefore chose to focus on 𝜔 in the range [63 - 94] 𝑠−1, for
which the amplitude of the bubble oscillations remains moderate compared to

the bubble dimensions. The upper value of 94 𝑠−1 corresponds to the maximum

𝜔 that can be reached with the motor entraining the cell.

0 2 4 6
Time (sec)

−0.5

0.0

0.5

1.0

1.5

 y
/R

eq

 y position of bubble at ω=31 s−1

y position of bubble at ω=89 s−1

0 2 4 6
Time (sec)

−4

−2

0

2

 z/
R e

q

 z position of bubble at ω=31 s−1

z position of bubble at ω=89 s−1

Figure 2.31: Left: Variation of dimensionless vertical position 𝑦 of a bubble of volume

𝑉 = 0.14 cm3
(𝑅𝑒𝑞 = 3.2 mm) as a function of time, for two rotation rates. The origin of 𝑦

is taken on the axis of rotating cell, and the vertical position is made dimensionless with

the equivalent spherical bubble size 𝑅𝑒𝑞 . Right: Same plot for dimensionless horizontal

position (𝑧) along the axis of the cell, with origin of 𝑧 taken at the mean position of the

bubble. The fluctuations are much smaller for the larger rotation rate.

All the quantities introduced in the following sections related to the bubble

size and position are measured for each image, and then averaged over the total

number of images recorded by each camera. The standard deviation around

these averaged values will be indicated by the error bars.

We will assume in the modeling that the bubble is axisymmetric, of character-
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Figure 2.32: Left: Path followed by the center of the bubble with𝑉 = 0.14 cm3
and two

experiments at 𝜔 = 31 and 89 𝑟𝑎𝑑 s
−1
. Time goes from dark to light color in the gradient

color line. Right: Zoom on smaller cycle for the case 𝜔 = 89 𝑟𝑎𝑑 s
−1
.

istic lengths 𝐿 and 𝐷 (figure 2.12). As illustrated in figure 2.33 and 2.34, for the

larger bubbles investigated this assumption is not strictly valid, but the aspect

ratio measured on front view projections remains smaller than 1.4 even for the

larger bubbles and all 𝜔 investigated. For each image the equivalent bubble

diameter 𝐷 for a given injected volume and 𝜔 is then defined from the front view
projection as the mean value between minor axis and major axis dimensions

(as measured with the Matlab regionprops function). The length 𝐿 is directly

measured as the major axis from the side view projection, with the same Matlab
function.

2.4 Dimensionless Parameters

We now wish to identify the parameters, and corresponding dimensionless num-

bers, needed to describe the equilibrium position and the shape of a bubble

of volume 𝑉 placed in a solid-body cylindrical rotational flow. As mentioned

before, we assume the bubble is axisymmetric, and characterize its shape with

two length scales: a length scale 𝐿 corresponding to the dimension of the bubble

along the axis of rotation 𝑧, and the smaller length scale 𝐷 , corresponding to the

mean diameter of the bubble projection in a plane normal to the axis of rotation

(see figure 2.5).

We introduce three dimensionless numbers to describe the shape of the bubble:

the aspect ratio 𝑋 = 𝐿/𝐷 which measures the stretching of the bubble, aspect
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Figure 2.33: Left: Front view for a bubble of volume 𝑉 = 0.25 cm3
(𝑅𝑒𝑞 = 3.9 mm), at

𝜔 ≈ 63 s
−1
. Right: Same bubble and same conditions simultaneously recorded from

side view.
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Figure 2.34: Left: Front view for a bubble of volume 𝑉 = 0.25 cm3
(𝑅𝑒𝑞 = 3.9 mm), at

𝜔 = 89 s
−1
. Right: Same bubble and same conditions simultaneously recorded from side

view.

ratio 𝑋𝐹 defined as the ratio of major to minor axis as measured on the front

view and the ratio 𝛼 = 𝑉 /(𝐿𝐷2). The latter characterizes the form of the bubble
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in a section containing the rotation axis 𝑧: it is for example expected to be equal

to 𝜋/6 if the bubble is an ellipsoid, or to 𝜋/4 if the bubble is a cylinder. Note that
the cylindrical shape is the limit shape expected for very large 𝜔 , as predicted

by the model of Rosenthal 1962. We will discuss the values of 𝑋 , 𝑋𝐹 and 𝛼 in

chapter 3.

The physical control parameters characterizing this problem are:

• 𝜌 −→ carrier liquid density

• 𝑔 −→ acceleration of gravity

• 𝜔 −→ rotational velocity of the tank

• 𝜎 −→ gas-liquid surface tension

• ` −→ dynamic viscosity of the liquid

In addition, we must consider the bubble position in the cross section, which

determines the flow around the bubble and hence the force exerted by the liquid

upon the bubble: we characterize this position with the coordinates of the bubble

centre in polar coordinates, namely the distance 𝑟𝑒 to the axis of the cell, and

the angle \ with the vertical direction (figure 2.35). The above parameters can

be grouped into five additional independent dimensionless numbers as below:

• Rossby number −→ 𝑅𝑜 = 𝑟𝑒/𝐷

• Reynolds number −→ 𝑅𝑒 = 𝜌𝜔𝑟𝑒𝐷/`

• Froude number −→ 𝐹𝑟 = 𝜔2𝑟𝑒/𝑔

• Weber number −→ 𝑊𝑒 = 𝜌𝜔2𝐷3/8𝜎

• Angle −→ \

Note that we have chosen to introduce a Reynolds number based upon the

mean velocity seen by the bubble. An alternative choice could be to introduce a

Reynolds number based upon the shear seen by the particle. This dimensionless

number does not depend on 𝑟𝑒 . This implies that the shear (𝛥𝑈 ) seen by the

bubble imposed by the ambient flow velocity of𝑈 is:

𝛥𝑈 = 𝜔 (𝑟𝑒 + 𝐷

2

) − 𝜔 (𝑟𝑒 − 𝐷

2

) = 𝜔𝐷
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Chapter 2 Experiments

Figure 2.35: Bubble position in the cell cross-section: the center position of the bubble

is characterized by 𝑟𝑒 and \

𝑅𝑒𝑠ℎ𝑒𝑎𝑟 =
𝜌𝜔𝐷2

`
= 𝑅𝑒/𝑅𝑜

Wewill discuss in chapter 4 the relevance of this choice. The liquid-gas density

and viscosity ratios can also be introduced. All experiments are here carried out

with air and water, and since these two parameters are constant in the present

study we will not discuss them in the following.

The main control parameter driving the stretching of the bubble (discussed in

chapter 3) is expected to be𝑊𝑒 , and similarly the forces acting on the bubble

(discussed in chapter 4) are expected to be mostly controlled by 𝑅𝑒 . We will show

in the following chapters that corrections in 𝑅𝑜 have to be introduced when the

bubble approaches the axis of rotation of the cell.
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3 Deformation of the bubble

In this chapter we present results regarding the position of the gas bubble and

its shape when it is close to the axis of rotation. The position of the bubble and

its variations when 𝜔 is increased yield precious information regarding the flow

around the bubble. Therefore, at first the mean bubble position is discussed and

in the following the shape of the bubble interface is explored.

3.1 Bubble Position

As it has been explained in section 2.3 the lower rotational velocity investigated

is 𝜔 = 63 𝑟𝑎𝑑 𝑠−1 where the position of the bubble is close to the axis of rotation,

but the bubble is not entirely centered. As is shown in figure 3.1, by increasing

the rotating velocity of the cell, the bubble is displaced towards the center of the

tank. The value of 𝑟𝑒 is expected to be directly impacted by 𝜔 and 𝑔. We can

estimate that the pressure gradient on the periphery of the bubble is equal to

the buoyancy force as:

𝐹𝐵 = 𝛥𝜌𝑔𝑉𝑏 ∼ 𝜕𝑃

𝜕𝑟
× 𝑉𝑏

𝜕𝑃

𝜕𝑟
= 𝜌𝑟𝑒 𝜔

2 ∼ 𝜌𝑔 −→ 𝑟𝑒 ∼ 𝑔

𝜔2

In this simple approximation, the drag and lift forces acting on the bubble are

neglected. In chapter 4 we will discuss the values of drag and lift, and explain

why this assumption, though a priori strong, works relatively well. We plot

on figure 3.2 the dimensionless distance to the axis 𝑟𝑒/𝐷 , which is exactly the

Rossby number 𝑅𝑜 introduced in section 2.4, as a function of 𝑔/(𝐷𝜔2). We see

that 𝑟𝑒/𝐷 is smaller than 1 for most of our experimental conditions, except for

the smallest bubbles investigated. The error bars on this graph correspond to the

standard deviation of 𝑟𝑒 values on the set of 255 images. In addition, figure 3.2
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Chapter 3 Deformation of the bubble

Figure 3.1: Variation of the distance of the center of the mass of the bubble to the center

of the cell 𝑟𝑒 as a function of 𝜔 .

shows that the average 𝑟𝑒 can indeed be estimated by 𝑔/𝜔2
. This is equivalent to

saying that the Froude number introduced in section 2.4 is close to one for all our

data (figure 3.3). The data for the smallest bubble of V=0.69 mm
3
departs from

this trend, and for this series 𝑟𝑒 appears to be significantly smaller than 𝑔/𝜔2

(and hence 𝐹𝑟 significantly smaller than one). This behavior could be related to

the smaller Re for this very small bubble (of order 100): we will show in section

4.2 that this results in a larger drag coefficient for this particular series than for

all other (larger) bubbles.
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Bubble Position Section 3.1

Figure 3.2: 𝑅𝑜 = 𝑟𝑒/𝐷 as a function of 𝑔/𝐷𝜔2
. Same legend as in Figure 3.6. The solid

line indicates 𝑅𝑜 = 𝑔/𝐷𝜔2
.

Figure 3.3: Froude number as a function of 𝜔 : the Froude number is close to one for

most series, except for the smaller bubble investigated for which Fr ≈ 0.5.
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Chapter 3 Deformation of the bubble

Moreover, figure 3.4 exhibits that the bubble always make the minimum angle

(\ ) of 50 to 89 degrees with the vertical axis and the angle is diminishing by

increasing 𝜔 for all the series.

These values of \ correspond to positions where the bubble lies left of the tank

center on a front view, when the rotation is anticlockwise (see figure 3.5). We will

come back to the issue of the position of the bubble more detailedly in chapter 4,

when discussing the forces acting on the bubble.

Figure 3.4: Variation of \ in degrees, ranging between 50 < \ < 89 as a function of 𝜔 .

3.2 Bubble deformation

3.2.1 Experimental results

We present in this subsection the measurements of the bubble aspect ratio,

defined as𝑋 = 𝐿/𝐷 , as a function of𝜔 and for a large range of bubble volumes𝑉

(from 0.69 mm
3
to 0.27 cm

3
). As expected, we observe that when 𝜔 is increased,

the bubbles are stretched along the axis of rotation (figures 2.33 and 2.34), and

hence that their aspect ratio 𝑋 = 𝐿/𝐷 increases. Figure 3.6 shows the variations
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Bubble deformation Section 3.2
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Figure 3.5: Bubble position respect to the center of the cell for a bubble of volume

𝑉 = 12 𝑐𝑚3
.

of 𝑋 as a function of 𝜔 for a large range of bubble volumes. The aspect ratio

increases monotonically when the volume is increased for almost all series, and

reaches a value of 2.2 for the largest bubble investigated here and the largest 𝜔 .

Additionally, the aspect ratio of the bubble 𝑋𝐹 in the cross section (as measured

on the front view) diminishes for all the series (see figure 3.7), down to values

smaller than 1.25 for the largest rotation rate. This shows that the bubble is close

to axisymmetric for the larger rotational velocities 𝜔 investigated.

3.2.2 Discussion of ellipsoidal shape assumption

Regarding the shape of the bubble, we define two dimensionless numbers called

𝛼 = 𝑉
𝐿𝐷2

and 𝛽 =
𝐴𝑏

𝐿𝐷
: the latter grouping is, similar to 𝛼 , a number characterizing

the shape of the bubble: 𝛽 = 𝜋/4 for an ellipsoid and 𝛽 = 1 for a cylinder. At any

rate, 𝛼 and 𝛽 are not expected to vary much when the deformation of the bubble

is moderate. In particular for the range of longitudinal aspect ratio investigated

here (1 < 𝑋 < 2.2), the model of Rosenthal 1962 predicts that 𝛼 varies between

𝜋/6 ≈ 0.52 and 0.56, and that 𝛽 varies between 𝜋/4 ≈ 0.78 and 0.82, i.e. close to

the value for an ellipsoid.

In order to check this experimentally, a possibility is to estimate 𝛼 directly from

𝑉0, 𝐿 and 𝐷 , by assuming that 𝑉 remains relatively close to the injected volume

𝑉0, which should be true for lower 𝜔 values (as already seen in subsection 2.2.3).

We plot in figure 3.8 the variations of this estimate 𝛼𝑖𝑛 𝑗 = 𝑉0/𝐿𝐷2
as a function

of 𝜔 : the values are relatively close to the ellipsoid value 𝜋/6 for all series (red
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Chapter 3 Deformation of the bubble

Figure 3.6: Variation of the aspect ratio 𝑋 = 𝐿/𝐷 as a function of 𝜔 .

dotted line), in particular for the lower value of 𝜔 . It decreases down to 0.4 for

the largest 𝜔 . We interpret this decrease as caused by the fact that at large 𝜔 the

volume 𝑉0 used for the calculation of 𝛼𝑖𝑛 𝑗 is an underestimation of the actual

volume 𝑉 of the stretched bubble (see section 2.2.3).

All in all, we observe that 𝛼 ≈ 𝜋/6 ≈ 0.52 at the lower 𝜔 . For larger 𝜔 we

cannot check directly that this holds since the volume 𝑉 cannot be measured

reliably from the two projections given the strong bubble deformations, and 𝛼𝑖𝑛 𝑗
probably underestimates 𝛼 . The model of Rosenthal 1962 predicts 𝛼 = 0.56 for

𝜔 = 94 𝑟𝑎𝑑 s−1, i.e. a modest increase of about 7% from the value at𝜔 = 63 𝑟𝑎𝑑 s−1.
In order to simplify the discussion, we assume in the following that 𝛼 remains

close to its value for an ellipsoid, i.e. 𝜋/6 for all our conditions. Similarly, and in

46



Bubble deformation Section 3.2


	 �� �	 �� �	 � 	
ω������s −1�

���

���

���

���

��	

X F

Figure 3.7: Variations of the aspect ratio 𝑋𝐹 (aspect ratio of front view) as a function of

the rotation speed 𝜔 Same legend as figure 3.6.

order to be consistent with this choice, we assume 𝛽 = 𝜋/4.

3.2.3 Model of Rosenthal 1962

The stretching of the bubble along the axis of rotation results from the difference

in pressure between the region of the bubble straddling the axis of rotation,

where pressure is minimal, and the periphery of the bubble: this effect has been

modeled by Rosenthal 1962 in the limit of zero buoyancy and viscosity: within

his model the axisymmetric bubble centered on the cell axis of rotation. The

analytical solution is based on the assumption of a bubble surrounded by a liquid

body with a rotating adjacent flow. The main assumptions made are:

• The bubble is axisymmetric (figure 3.9).

• The gravitational field is neglected
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Figure 3.8: Coefficient 𝛼𝑖𝑛 𝑗 = 𝑉0/(𝐿𝐷2) as a function of 𝜔 . The red line indicates the

value for an ellipsoid 𝜋/6. The blue dashed line shows the value for a cylinder, 𝜋/4.

• Viscosity is negligible

The equation of the interface in figure 3.9 is 𝑟 = 𝑓 (𝑧). As it is shown in

chapter 2.1 section 2.1.1, the pressure distribution in both phases of liquid and

gas are : 
𝑃𝑏 =

1

2

𝜌𝑏 𝜔
2 𝑟 2 + 𝑃0𝑏

𝑃𝑙 =
1

2

𝜌𝑙 𝜔
2 𝑟 2 + 𝑃0𝑙

The Laplace law for the bubble is given by:

𝑃𝑏 − 𝑃𝑙 = 𝜎 𝐽

where 𝜎 and 𝐽 are respectively the surface tension and total curvature. We

can write the total curvature as a function of the distance to the axis 𝑓 as

(axisymmetric assumption):
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Figure 3.9: Schematic of rotating bubble around the horizontal axis of 𝑧, Rosenthal

1962.

𝐽 =
1

𝑓

𝑑

𝑑 𝑓

(
𝑓

(1 + 𝑓 ′2)1/2

)
(3.1)

Then, the Laplace law can be rewritten as:

𝑑

𝑑 𝑓

(
𝑓

(1 + 𝑓 ′2)1/2

)
=

(𝑃0𝑏 − 𝑃0𝑙 ) 𝑓
𝜎

− (𝜌𝑙 − 𝜌𝑏)𝜔2 𝑓 3

2𝜎
(3.2)

With conditions of : {
𝑓 = 0 at 𝑍 = 𝑙

𝑓 ′ = 0 at 𝑍 = 0

Then with integration of equation 3.2 :

(1 + 𝑓 ′2)−1/2 =
(𝑃0𝑏 − 𝑃0𝑙 ) 𝑓

2𝜎
− (𝜌𝑙 − 𝜌𝑏)𝜔2 𝑓 3

8𝜎
(3.3)

By knowing the maximum minor axis of the bubble 𝑎, and applying Laplace

law this time at the tip of the bubble, the curvature at the tip of the bubble (on the

axis) is − (1 + 𝑒)
𝑎

where 𝑒 is the eccentricity of the deformed ellipsoidal bubble.

Then we have:
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1 + 𝑒

𝑎
=

( 𝑑
𝑑 𝑓

(1 + 𝑓 ′2)−1/2
)
𝑓 =0

=
(𝑃0𝑔 − 𝑃0𝑙 )

2𝜎
(3.4)

Now with condition of 𝑓 ′ = 0 at 𝑓 = 𝑎 and combining 3.3 and 3.4:

𝑒

𝑎3
=

𝜌𝑙𝜔
2

8𝜎
(3.5)

Therefore, the simplified differential equation will be;

(1 + 𝑓 ′2)−1/2 = (1 + 𝑒) 𝑓
𝑎

− 𝑒
𝑓 3

𝑎3
(3.6)

From 3.6 the major axis (𝑙 ) and volume of the bubble can be deduced as:

𝑙 = 𝑎

∫
1

0

𝐴

(1 −𝐴2)1/2
𝑑𝑥, 𝑉 = 2𝜋𝑎3

∫
1

0

𝑥2𝐴

(1 −𝐴2)1/2
𝑑𝑥 (3.7)

where𝐴 = 𝑥 (1+𝑒−𝑒𝑥2). On the one hand by replacing 𝑎 with𝐷/2 (the notation
used in our experimental data) in 3.5, the following relation for 𝑒 is obtained:

𝑒

𝐷3
=

(𝜌𝑙 − 𝜌𝑔)𝜔2

8𝜎
−→ 𝑒 =

𝜌𝑙𝜔
2𝐷3

8𝜎
−→ 𝑒 =

We

8

(3.8)

On the other hand from equation 3.6, the aspect ratio 𝑋 can be written as

𝑋 =
𝐿

𝐷
=

∫
1

0

𝐴

(1 −𝐴2)1/2
𝑑𝑥 . Then rewriting equation 3.7 with equation 3.8 as

a function of the Weber number, and noting 𝑟 the dimensionless distance to the

axis 𝑟 = 2𝑟/𝐷 , we obtain:

𝑋 =

∫
1

0

𝑟
(
1 + (1 − 𝑟 2)𝑊𝑒/8

)
(1 − 𝑟 2(1 + (1 − 𝑟 2)𝑊𝑒/8)2)1/2

𝑑𝑟 (3.9)

This equation predicts that the aspect ratio 𝑋 is a sole function of the Weber

number. Figure 3.10 shows the experimental data of figure 3.6, replotted as a

function of the Weber number (same legend as figure 3.6). The solid line corre-

sponds to the prediction of equation 3.9.

The aspect ratio of the different series in Figure 3.6 are regrouped along a same
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curve in the (𝑋,𝑊𝑒) plane. However, the experimental aspect ratios are larger

than the predicted one, and the relative departure to the prediction decreases

when Weber is increased. This is directly related to the position of the bubble:

the model assumes that the bubble center lies on the axis of rotation, but in the

experiment buoyancy causes the bubble center to be at a finite distance 𝑟𝑒 from

this axis: the value of 𝑟𝑒 decreases (see figure 3.1) when Weber is increased, due

to the steeper pressure gradient at larger rotational velocities, which explains

the trend observed on figure 3.10.

Figure 3.10: Bubble aspect ratio as a function of Weber number. Same as in Figure 3.6.

The solid line corresponds to the model of Rosenthal 1962.

When the bubble is centered, the pressure difference between the bubble periph-

ery and axis due to the parabolic pressure field is

𝛥𝑃0 = 𝜌𝑙𝜔
2𝐷2/8

The fact that the bubble is shifted away from the axis of the cell at a finite 𝑟𝑒
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Chapter 3 Deformation of the bubble

means that the pressure difference it is submitted to will be larger than if it were

centered on the axis. The minimum pressure exerted on the bubble will still be

the pressure at the axis of the cell if 𝑅𝑜 < 0.5, which is the case for most of our

data except for smaller bubbles, but the average pressure around the periphery

will be larger because of the convexity of the pressure profile in the solid body

rotational flow. It is easy to show by integration that the pressure difference

between the mean pressure at the periphery of the bubble and pressure on the

axis of the rotating cell, for a bubble of diameter 𝐷 whose center is displaced at

a distance 𝑟𝑒 from the axis will be given by:

𝛥𝑃 = 𝛥𝑃0(1 + 4𝑟 2𝑒 /𝐷2) = 𝛥𝑃0(1 + 4𝑅𝑜2)

see figure 3.11. This result can be rapidly recovered by just considering the mean

pressure over the diameter represented by the dashed line on figure 3.11:

𝛥𝑃 =
𝑃+ + 𝑃−

2

− 𝑃𝑎𝑥𝑖𝑠 =
1

4

𝜌𝑙𝜔
2

((
𝑟𝑒 +

𝐷

2

)
2

+
(
𝑟𝑒 −

𝐷

2

)
2

)
=
1

8

𝜌𝑙𝜔
2𝐷2

(
1 + 4𝑟 2𝑒

𝐷2

)

+

+ +

pressure field

+

Paxis

Figure 3.11: Sketch of the bubble of radius 𝑅, illustrating pressures 𝑃+
and 𝑃−

at the

surface of the bubble and their corresponding values on the parabolic pressure field in

the tank. For a bubble shifted of a distance 𝑟𝑒 from the tank axis, the pressure difference

betweenmean pressure at periphery and pressure on axis of the cell is𝛥𝑃 = 𝑃++𝑃−

2
−𝑃𝑎𝑥𝑖𝑠 .
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Because of this shift off the axis, the bubble is obviously not axisymmetric any-

more, as supposed in the model of Rosenthal 1962, and finding a generalization

of equation 3.9 for the non axisymmetric problem appears difficult. We propose

to avoid this difficulty by considering that the displaced bubble is equivalent to

a centered bubble rotating at a larger 𝜔 ′
such that

𝜔 ′ = 𝜔
(
1 + 4𝑟 2𝑒 /𝐷2

)
1/2

= 𝜔
(
1 + 4Ro

2
)
1/2

i.e. one which generates the actual pressure difference 𝛥𝑃 instead of 𝛥𝑃0. This

is equivalent to introducing a modified Weber number,

We = 𝜌𝑙𝜔
2𝐷3/8𝜎

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bubble aligned with axis of rotation Rosenthal 1962 3.10y

We
′ =

𝜌𝑙𝐷
3𝜔2(1 + 4𝑅2

𝑜 )
8𝜎´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bubble shifted from axisy
We

′ = 𝜌𝑙𝜔
′2𝐷3/8𝜎 =𝑊𝑒 (1 + 4𝑅𝑜2)

Based on the results of figure 3.2, we estimate that 𝑅𝑜 ≈ 𝑔/(𝐷𝜔2), which yields,

We
′ = We(1 + 4𝑔2/(𝐷2𝜔4))

We plot on figure 3.12 the aspect ratio 𝑋 as a function of this modified Weber

number: even though there is still a slight underestimation of the aspect ratio

for small bubbles, this improved model predicts relatively accurately the aspect

ratio, in spite of the strong assumptions made on the shape of the bubble. The

correction introduced in the Weber number captures correctly how buoyancy

drives bubbles away from the axis of the cell at a finite 𝑟𝑒 , and therefore exposes

them to a steeper pressure gradient than the one they would experience if they
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were centered. The discrepancy observed for the very small bubbles may be

related to the impact of the mean velocity 𝑟𝑒𝜔 on the shape of the bubble: for

the small bubbles, the Weber number𝑊𝑒𝑟𝑒 = 4𝑊𝑒𝑅𝑜2 built with the mean flow

seen by the bubble is larger than the Weber number introduced in section 2.4,

which points to a possible distinct origin of the deformation for this case.

The data for the larger bubbles show a non monotonic behavior for the largest

Weber numbers (a behavior already present on figure 3.10): the decrease of

the aspect ratio at the larger𝑊𝑒 is correlated to a very strong increase in the

fluctuations around the mean aspect ratio, as shown by the larger error bars for

these points. These shape fluctuations, which will be discussed in the following

section 3.3, are in addition associated with a strong increase in the fluctuations

of the distance to the axis 𝑟𝑒 . A simple model based on the mean values of

these quantities is probably not sufficient to capture the bubble shape for these

non-stationary conditions.

A further explanation for the underestimation of the aspect ratio 𝑋 at large𝑊𝑒

could reside in the method used for the determination of 𝐷 , mean diameter in

the cross section: we determine 𝐷 from front view projections, but for strongly

distorted bubbles at large𝑊𝑒 the size of this projection is certainly larger than

the local𝐷 at a given longitudinal position 𝑧. This will lead to an underestimation

of 𝑋 for strongly distorted bubbles.

3.3 Break-up

As it has been alreadymentioned, by increasing𝜔 , the longitudinal aspect ratio of

the bubble (𝑋 ) rises. This stretching of the bubble leads to rupturing for volumes

larger than 𝑉 = 0.27 𝑐𝑚3
. Indeed, two types of break-up have been observed

during the experiments in this type of flow. One is the situation where the bubble

splits into two bubbles from the middle. For this type of break-up, regarding

the figure 3.13 the aspect ratio (𝑋 ) of the bubble with volume 𝑉 = 0.3 𝑐𝑚3
at

𝜔 = 89 𝑟𝑎𝑑 𝑠−1 fluctuates in time interval [0 , 4.5] seconds. After 𝑇 = 4.5 𝑠 the

bubble becomes distorted and experiences its highest value of 𝑋 almost up to 5

(two times the average value until 𝑇 = 4.5 𝑠). Afterwards, rupturing occurs and

the bubble splits into nearly two same size bubbles (figure 3.14). We call this

configuration of the bubble rupturing (figure 3.14) middle break-up.
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Figure 3.12: Bubble aspect ratio as a function of corrected Weber number. The legend

is the same as in Figure 3.6. The solid line corresponds to equation 3.9, but integrated

with the modified Weber number𝑊𝑒 ′ =𝑊𝑒 (1 + 4𝑔2/(𝐷2𝜔4)).

Another type of bubble break-up has been observed. In this case the bubble

breaks into two unequal size bubbles (figure 3.15). As a matter of fact, the

longitudinal bubble aspect ratio (𝑋 ) increases and reaches a peak, but it does not

rupture. Then, the aspect ratio decreases and the break-up occurs (see figure

3.16). Figure 3.17 illustrates the broken bubbles in volume range of [0.34, 0.41]

𝑐𝑚3
. We observe that the bubble breaks above a given 𝜔 and the circle indicates

the 𝜔 for which break-up occurs for each volume of the bubble. This means

that there is a maximum beyond which the bubble breaks. The smallest bubble

ruptures at 𝜔 ≃ 89 𝑟𝑎𝑑 𝑠−1 and the largest ones break between 𝜔 ≃ 68 𝑟𝑎𝑑 𝑠−1

and 𝜔 ≃ 74 𝑟𝑎𝑑 𝑠−1.
As illustrated in figures 3.16 as well as 3.13, the bubble in a specific value of the

𝜔 for which it breaks, has a huge distortion as can be seen from the large values

of the longitudinal aspect ratio 𝑋 . Rosenthal 1962 predicted that for an 𝜔 lower
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Figure 3.13: Aspect ratio 𝑋 as a function of time (𝑠) for the bubble 𝑉 = 0.3 𝑐𝑚3
in

𝜔 = 89 𝑟𝑎𝑑 𝑠−1. The red highlighted part of the graph is when the bubble is distorted

and the value 𝑋 sharply rises and then break-up of the bubble occurs.

than a specific value, the pressure gradient is not large enough to stabilize the

bubble. So, the bubble becomes unstable. By verifying Rosenthal 1962 criterion

for the instability of the bubble, in our case break-up is above the threshold and

our bubbles are always in stable situation which is contrary to the experimental

observation (see figure 3.18). In fact, the break-up we observe might be caused by

a periodic forcing upon the bubble at the correct frequency through a mechanism

of resonance on the interface, where the eigenfrequency of the stretched bubble

is equal to the tank frequency (𝜔).

The interface of the elongated bubble along the axis of rotation can experience

a series of eigenmodes. The results of Rayleigh shows (Risso 2000) that the

frequency of an oscillating spherical bubble of radius 𝑅 is:

𝜔𝑛 =

√︄
(𝑛 − 1) (𝑛 + 1) (𝑛 + 2)

𝜌𝑙

𝜎

𝑅3

where 𝑛 is characterizing the mode of oscillation of the bubble. By assuming

that the bubble is entirely centered and using equation 3.6 (Rosenthal 1962), the
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Figure 3.14: Six consecutive frames of the bubble before break-up moment showing

how the bubble splits into two nearly equal size bubbles.
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Figure 3.15: Six consecutive frames of the bubble before break-up moment showing

how the bubble splits into a tiny and a large bubble.
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Figure 3.16: Six consecutive frames of the bubble before break-up moment showing

the split bubble into a tiny and large bubble.

theoretical value of 𝜔𝑛 for diverse volume sizes of the broken bubble can be

measured in various interface shape modes ( 𝑛 = 2, 3, 4). Figure 3.19 illustrates

the variations of the eigenfrequencies of a bubble of volume𝑉 ≃ 0.35𝑐𝑚3
: these

frequencies decrease as a function of 𝜔 when omega is increased, due to the

stretching of the bubble. This figure shows that a coincidence of the frequency

of the tank (red line) with the frequency of the bubble occurs for modes 𝑛 = 2

and 3. On the other hand, images of the bubble at the moment of break-up

(figures 3.14 , 3.16) confirm that the shape mode of the bubble is probably in

configuration of 𝑛 = 2. This theoretical prediction is approximately consistent

with the experimental data. For instance, for the bubble (𝑉 ≃ 0.35 𝑐𝑚3
) break-up

occurs at 𝜔 ≃ 73 𝑟𝑎𝑑 𝑠−1, but the theoretical prediction in figure 3.19 shows the

intersection of the 𝜔𝑐𝑒𝑙𝑙 and calculated eigenfrequency of the bubble (𝜔0) in

shape mode 𝑛 = 2 happened at 𝜔 = 66 𝑟𝑎𝑑 𝑠−1 (rotational velocity of the break-

up moment). There is a small difference between the 𝜔 of break-up during the

experiment and the theoretical value of 𝜔 in which break-up occurred. Note that

the eigenfrequency is estimated from that of a spherical bubble, but the bubble

is actually close to a prolate ellipsoid. However, the model is still consistent

with a resonance mechanism. Therefore, we can conclude that with respect to
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Figure 3.17: Volume as a function of 𝜔 for the bubbles which experienced break-up.

The circles are marked for the 𝜔 of break-up.

figure 3.18, the bubble is supposed to be stable, but the resonance causes huge

fluctuations leading to break-up.

Supposing that the shape mode of the bubble at the moment of break-up is at

𝑛 = 2, the eigenfrequency of the stretched bubble is estimated as:

𝜔0 =

√︄
96

𝜌𝑙

𝜎

𝐿3
(3.10)

In addition, figure 3.20 left exhibits that the ratio 𝜔/𝜔0 at break-up is in a range

between 1.7 and 2.1 independently from the size of the bubble and the rotational

velocity of the tank. We observe that 𝜔/𝜔0 is of the order of 2, which seems a bit

large. This could be caused by the large stretching of the bubble when resonance

is approached, which leads to large values of L and hence lower values of𝜔0 close

to break-up. The particularity of the problem here is that the eigenfrequency of

the bubble depends on the forcing itself, as is the case in parametric instabilities.
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Figure 3.18: Stability criterion of the bubble aligned with the center of rotation proposed
by Rosenthal 1962 for all the experimental data in demineralised water. Here ` is the

wave number as 2𝜋/_, where _ is the wavelength of the considered perturbation. We

consider here a perturbation such that _ = 𝐿/2.

Note that this effect is not taken into account in figure 3.19, which is only based

on the model for bubble size with the model of Rosenthal 1962, and not on the

experimentally measured bubble size. Note also that as mentioned above the

bubble is here a prolate ellipsoid of major axis 𝐿, and not a sphere of diameter

𝐿: the estimate of equation 3.10 is therefore probably smaller than the actual

eigenfrequency of the prolate bubble, which may also explain the large 𝜔/𝜔0

ratios at break-up.

We also plot in figure 3.20 right the same graph, but with this time𝜔0 estimated
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Figure 3.19: Eigenfrequencies of a bubble of 𝑉 ≃ 0.35𝑐𝑚3
as a function of 𝜔𝑐𝑒𝑙𝑙 . The

red line is the rotational velocity of the tank (𝜔𝑐𝑒𝑙𝑙 ). The dashed magenta line is the

theoretical value of the oscillated bubble frequency at shape mode 𝑛 = 2 (interface

configuration of the bubble when break-up occurs). Black and blue line are the calculated

frequency of the oscillated bubble in other shape modes 𝑛 = 3 and 4. The marked point

(break-up) is the moment that the frequency of the bubble coincides with the frequency

of the tank at shape mode 𝑛 = 2 (𝜔 = 66 𝑟𝑎𝑑 𝑠−1).

from the (constant) characteristic size of the bubble 𝑅𝑒𝑞 as:

𝜔0𝑅 =

√︄
12

𝜌𝑙

𝜎

𝑅3

𝑒𝑞

Figure 3.20, right shows that the value 𝜔/𝜔0𝑅 for the all the series of volumes is

in a range between 0.66 to 0.83. We will come back to this question of bubble

break-up in chapter 5, where similar break-up experiments in the presence of

surfactant are described.
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Figure 3.20: Volume of the broken bubble as a function of ratio 𝜔/𝜔0 (ratio between

tank rotation frequency, and frequency of the stretched bubble 𝜔0) for all experimental

series experiencing break-up. Circles identify the rotation speed 𝜔 for which rupturing

occurred. Same legend as figure 3.17. Left: the value of 𝜔0 =

√︂
96

𝜌

𝜎

𝐿3
. Right:

𝜔0𝑅 =

√︄
12

𝜌

𝜎

𝑅3

𝑒𝑞

.
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4 Forces acting on the bubble

In this chapter our objective is to deduce the forces upon the bubble (drag and

lift), based on measurements of the particle position. Previous studies for a

spinning air bubble in water with a contaminated interface have been concerned

with the values of 𝐶𝐿 and 𝐶𝐷 (lift and drag coefficient) as a function of 𝑅𝑒 and

for large 𝑅𝑜 (Rastello et al. 2009; Van Nierop et al. 2007 ), i.e. bubbles located far

from the axis of rotation. In other words, forces upon much smaller bubbles, and

for lower 𝑅𝑒 (see figure 4.1).

Figure 4.1: Acting forces upon the bubble at equilibrium position with 𝑅𝑜 ≥ 6, Rastello

et al. 2009
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4.1 Modeling of the forces

As it has already been mentioned, in the present work the bubbles move closer to

the axis of rotation when 𝜔 is increased. Their average position is characterized

by the distance 𝑟𝑒 and the angle \ (see figure 2.35). The aim of this section is to

deduce the forces acting on the bubble in the limit of large bubble sizes.

Following Magnaudet and Eames 2000, we assume that the force exerted by the

liquid on the bubble can be written as a superposition of pressure gradient and

added mass forces 𝑭𝑨, drag force 𝑭𝑫 , lift force 𝑭𝑳 , plus of course buoyancy 𝑭𝑩
(figure 4.2), and write the equation of motion of the bubble of velocity 𝒗 as:

𝜌 𝑉𝐶𝐴

𝑑𝒗

𝑑𝑡
= 𝜌 𝑉 (𝐶𝐴 + 1)𝐷𝑼

𝐷𝑡
+ 𝑭𝑫 + 𝑭𝑳 − 𝜌 𝑉𝒈 (4.1)

where 𝑼 is the velocity of the undisturbed ambient flow taken at the center of the

bubble. The lift and drag forces are defined as respectively the components of the

fluid force in the directions parallel and perpendicular to the fluid velocity at the

center of the bubble. The force due to the pressure field of the solid body rotating

flow (i.e. isotropic normal stress, which is also exerted by the fluid) is in this

expression separated from the lift/drag. The added mass force, corresponding to

the inertia of the surrounding fluid, and which is also of course transmitted via

the stress exerted by the fluid, is also separated from the lift and drag forces.

As illustrated in figure 2.31 we study relatively large𝜔 such that the amplitude

of oscillations around the bubble mean position remain small compared to the

bubble size. We therefore neglect the variations of the velocity of the bubble,

and the balance of forces on the bubble can be written (as in Rastello et al. 2009):

0 = 𝑉 (𝐶𝐴 + 1)𝐷𝑼
𝐷𝑡

+ 1

2

𝐶𝐷 𝐴𝑏 |𝑼 |𝑼 +𝑉 𝐶𝐿𝑼 × (∇ × 𝑼 ) −𝑉𝒈 (4.2)

where we have introduced the drag and lift coefficients 𝐶𝐷 and 𝐶𝐿 , and 𝐴𝑏

which is the projection of the bubble area normal to the 𝜽 direction. For an

axisymmetric ellipsoidal bubble of axis 𝐿 and 𝐷 (figure 2.12), 𝐴𝑏 = 𝜋𝐿𝐷/4.
For small bubbles, the usual expression for the lift is:

𝑭𝑳 = 𝜌𝑉𝐶𝐿𝑼 × 𝒓𝒐𝒕 𝑼
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Figure 4.2: Bubble position in the cell cross-section: the center of the bubble is char-

acterized by 𝑟𝑒 and \ . The action of the liquid on the bubble is modelled as the sum of

drag 𝑭𝑫 , lift 𝑭𝑳 , pressure and added mass contributions 𝑭𝑨.

here the base flow is a solid-body rotation, therefore, 𝒓𝒐𝒕𝑼 = 2𝜔𝒛.
The lift force is then:

𝑭𝑳 = 𝐶𝐿2𝜌𝑉𝜔
2𝑟𝑒𝒓 (4.3)

The added mass and pressure forces both scale with the pressure gradient caused

by the base flow 𝑼 :

𝑭𝑨𝑴+𝑷 = 𝜌𝑉 (𝐶𝐴 + 1)𝐷𝑼
𝐷𝑡

= −𝑉 (𝐶𝐴 + 1)∇ 𝑃 = −𝜌𝑉 (𝐶𝐴 + 1)𝜔2𝑟𝑒𝒓 (4.4)

This contribution is of the same form as the lift contribution. The added mass

coefficient can be computed as a function of the shape of the bubble, as will be

shown further.

The drag contribution can be written:
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𝑭𝑫 = 𝜌𝐶𝐷𝐴𝑏

1

2

𝑈 (𝑟𝑒)2𝜽 = 𝜌𝐶𝐷𝐴𝑏

1

2

𝑟 2𝑒𝜔
2𝜽 (4.5)

By projections of equation (4.2) along 𝒓 and 𝜽 :

−→ 𝒓 : 𝐹𝐵𝑐𝑜𝑠\ + 𝐹𝐿 − 𝐹𝐴 = 0

y
𝑔𝑐𝑜𝑠\ + 2𝐶𝐿𝜔

2𝑟𝑒 − (𝐶𝐴 + 1)𝜔2𝑟𝑒 = 0

y
(𝐶𝐴 + 1) − 2𝐶𝐿 =

𝑔𝑐𝑜𝑠\

𝜔2𝑟𝑒
=

1

𝐹𝑟
𝑐𝑜𝑠\

−→ 𝜽 : −𝑉𝑔𝑠𝑖𝑛\ + 1

2

𝜌𝐶𝐷𝐴𝑏𝑟
2

𝑒𝜔
2

y
By recalling 𝛼 = 𝑉 /(𝐿𝐷2) and 𝛽 = 𝐴𝑏/(𝐿𝐷)

y
𝐶𝐷

2

=
𝑉𝑔

𝐴𝑏𝑟
2

𝑒𝜔
2

𝑠𝑖𝑛\ =
𝛼

𝑅𝑜𝐹𝑟𝛽
𝑠𝑖𝑛\
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From the projections of equation (4.2) along 𝒓 and 𝜽
(𝐶𝐴 + 1) − 2𝐶𝐿 =

𝑔

𝑟𝑒𝜔
2
cos\ =

1

𝐹𝑟
cos\

𝐶𝐷

2

=
𝑉𝑔

𝐴𝑏𝑟
2

𝑒𝜔
2

sin\ =
𝛼

𝑅𝑜𝐹𝑟𝛽
sin\

(4.6a)

(4.6b)

This system shows that𝐶𝐿 is a function of 𝑟𝑒 via the Froude number 𝐹𝑟 , and also

of \ and𝑋 via the added mass coefficient. The drag coefficient is a function of 𝐹𝑟 ,

\ , 𝑅𝑜 , 𝛼 = 𝑉 /(𝐿𝐷2) and 𝛽 =
𝐴𝑏

𝐿𝐷
: we recall that the latter dimensionless number

is, similar to 𝛼 , a number characterizing the shape of the bubble: 𝛽 = 𝜋/4 for an
ellipsoid and 𝛽 = 1 for a cylinder (discussed in chapter 3).

In order to simplify the discussion and regarding to chapter 3, we assume

in the following that 𝛼 remains close to its value for an ellipsoid, i.e. 𝜋/6 for
all our conditions. Similarly, and in order to be consistent with this choice, we

assume 𝛽 = 𝜋/4. This assumption may lead to a slight underestimation of the

drag coefficient at large 𝜔 , of at most 10%. We then use system (4.6) to deduce

𝐶𝐿 and 𝐶𝐷 from the measurements of the bubble average position and shape.

Note that previous studies for air bubbles in water have been concerned with

the values of 𝐶𝐿 and 𝐶𝐷 as a function of 𝑅𝑒 and for large 𝑅𝑜 (Rastello et al. 2009;

Van Nierop et al. 2007). The main difference for the large bubbles considered

here is that we will consider low 𝑅𝑜 , down to 𝑅𝑜 ≈ 0.15, when the bubble is close

to the center of the rotating cell.

As mentioned above, 𝛼 and 𝛽 are almost constant for the conditions of our

experiments. We will show in the following sections that 𝐶𝐿 and 𝐶𝐷 are not

significantly impacted by 𝑋 and 𝑊𝑒 , and can be predicted as a function of

𝑅𝑒 and 𝑅𝑜 only. We illustrate in figure 4.3 the values of 𝑅𝑒 and 𝑅𝑜 for all the

measurements presented here.

4.2 Drag coefficient

We plot in figure 4.4 the drag coefficient, deduced from equation (4.6b) via mea-

surements of the mean values of 𝑟𝑒 and \ , as a function of 𝑅𝑒 . The red solid line

indicates the prediction of Schiller and Naumann 1933 for a solid sphere in a
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Figure 4.3: Cartography of the conditions covered by the present experiments in the

𝑅𝑒 − 𝑅𝑜 plane. Same legend as in Figure 3.6.

uniform flow. We have included in this graph the results of an additional measure-

ment for a smaller bubble (gray asterisk, 𝑉 = 0.50 mm
3
, 𝑅𝑒𝑞 = 0.5𝑚𝑚). For this

particular bubble, 𝜔 is varied between 10 s
−1

and 30 s
−1
, and 𝑅𝑜 varies between

respectively 10 and 3 in this interval, i.e. this bubble remains relatively far from

the cell axis. We recover in this particular case previous results also obtained

with demineralised water (Rastello et al. 2009; Rastello et al. 2017): the points of

this series fall close to the curve for solid spherical particles due to the inevitable

presence of contaminants on the bubble interface. On the contrary, for larger

bubbles closer to the cell center, and which for most of them straddle the axis

of rotation (𝑅𝑜 < 0.5, see figure 4.3), we measure much larger drag coefficients,

reaching values of up to 10. In addition, the scatter of the different series shows

a strong influence of 𝑅𝑜 on 𝐶𝐷 : for a given 𝑅𝑒 , 𝐶𝐷 is larger for a larger bubble,

i.e. for smaller 𝑅𝑜 . The large values of 𝐶𝐷 (up to 8 and 10) show that expression
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Figure 4.4: Drag coefficient 𝐶𝐷 as a function of 𝑅𝑒 .

(4.5) does not capture correctly the order of magnitude of the drag force at low𝑅𝑜 .

A spinning wake is expected to envelop the bubble at this low 𝑅𝑜 , and there-

fore the configuration is different from that at large 𝑅𝑜 where different orders

of magnitude of the fluid force are expected to coexist perpendicular or along

the wake direction (namely equations 4.3 and 4.5). It seems reasonable to expect

that in the present vortex-like low 𝑅𝑜 limit, both lift and drag will be of similar

orders of magnitude.

In order to model the impact of 𝑅𝑜 , we account for the fact that the bub-

ble is placed in a rotating flow, whose direction is changing on a scale much

smaller than the bubble scale itself at low 𝑅𝑜 . The shear Reynolds number

𝑅𝑒𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 is large, in the range [500-5000] for most conditions, and wakes

will therefore develop around the bubble.
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Another way to put it, is to consider that the drag caused by the spinning

wake around the bubble will be dominated by the dynamic pressure difference

around the bubble: the order of magnitude of this difference is the difference

between the (maximum) dynamic pressure at the point farthest from the origin

and the (minimum) dynamic pressure at the point closest to the origin (see 𝑃+

and 𝑃−
in figure 3.11), namely:

𝛥𝑃𝑑 ≈ 𝑃+ − 𝑃− =
1

2

(
𝜌𝜔2(𝑅 + 𝑟𝑒)2 − 𝜌𝜔2(𝑅 − 𝑟𝑒)2

)
= 2𝜌𝜔2𝑅𝑟𝑒 (4.7)

instead of 𝜌𝑈 (𝑟𝑒)2/2 for the uniform flow limit. Instead of the classical form of

the drag force in uniform flow (4.5), the proposed expression for the drag force

is then:

𝐹𝐷 = 𝐶𝐷𝛥𝐴𝑏𝜌𝜔
2𝐷𝑟𝑒𝜽 (4.8)

where we have introduced a new drag coefficient:

𝐶𝐷𝛥 = 𝐶𝐷𝑅𝑜/2

Note again that the order of magnitude introduced by equation (4.8) is larger than

that of equation (4.5), since 𝑟𝑒 is smaller than 𝑅 for almost all our conditions (low

𝑅𝑜 limit). The scaling law for the drag force is then similar to that introduced

for the other forces exerted by the fluid (added mass, pressure and lift force), in

equation (4.3).

We plot in figure 4.5 the variations of𝐶𝐷𝛥 as a function of 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 . The values of

𝐶𝐷𝛥 are mostly in the range [0.6 - 0.9] which shows that the chosen definition

captures the correct order of magnitude of the drag force. In addition, the data

of figure 4.4 appears much better collapsed: for 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 varying in the range

[500-4000] we find an approximately constant𝐶𝐷𝛥 with𝐶𝐷𝛥 ≈ 0.75. This means

that the classical drag coefficient can be estimated as 𝐶𝐷 ≈ 2𝐶𝐷𝛥/𝑅𝑜 ≈ 1.5/𝑅𝑜
at low 𝑅𝑜 . An even simpler estimate for 𝐶𝐷 can then be built from this expres-

sion, by further assuming that 𝑟𝑒 ≈ 𝑔/𝜔2
(valid for all series except the smaller
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𝑉 = 0.69 mm
3
bubble, see figure 3.2), which yields 𝐶𝐷 ≈ 1.5𝐷𝜔2/𝑔. We plot in

figure 4.6 the measured 𝐶𝐷 as a function of this simple prediction: the proposed

expression manages to provide a relatively good estimate of the drag coefficient

for the large range of conditions we investigate here. We believe the larger

dispersion observed for large bubbles and large rotation rates is caused by larger

fluctuations for these conditions. These fluctuations are probably due to the fact

that omega becomes closer to 𝜔0 for these conditions (see section 3.3).

We have defined the standard deviation (error bars) of 𝐶𝐷𝛥 and 𝐶𝐷 in figure 4.5

and 4.6 as:

𝑑𝐶𝐷𝛥 =

√︄���� 𝜕𝐶𝐷𝛥

𝜕𝐶𝐷

𝑑𝐶𝐷

����2 +
���� 𝜕𝐶𝐷𝛥

𝜕𝑅𝑜
𝑑𝑅𝑜

����2

𝑑𝐶𝐷 =

√︄���� 𝜕𝐶𝐷

𝜕𝐷
𝑑𝐷

����2 +
���� 𝜕𝐶𝐷

𝜕𝑟𝑒
𝑑𝑟𝑒

����2 +
���� 𝜕𝐶𝐷

𝜕\
𝑑\

����2
The data for the smaller bubble (black cross points) show much larger values of

the drag coefficient𝐶𝐷𝛥 in figure 4.5. This results from the fact that the measured

𝑟𝑒𝜔
2/𝑔 for this series of points is smaller than for the other bubbles investigated,

as mentioned above (figure 3.2). Indeed, for such a small bubble (𝑉 = 0.69 mm
3
,

𝑅𝑒𝑞 = 0.55 mm), the values of 𝑅𝑒 are significantly smaller: the reasoning behind

the expression of equation (4.8) is not expected to be valid.

Finally, we come back to the issue of the a priori surprising relevance of the

simplified force balance presented in section 3.1, namely "buoyancy =pressure

gradient", which correctly predicts 𝑟𝑒 ≈ 𝑔/𝜔2
(figure 3.2). The fact that 𝐶𝐷𝛥 is

constant for the data presented here implies that the drag force actually scales

similarly as the pressure gradient itself: buoyancy is actually mostly balanced

by drag, and not pressure gradient, and this explains the relevance of the simple

𝑟𝑒 ∼ 𝑔/𝜔2
scaling.

4.3 Lift

We can measure the lift coefficient through the value of 2𝐶𝐿 −𝐶𝐴, obtained from

equation (4.6a) as:
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Figure 4.5: Drag coefficient 𝐶𝐷𝛥 as a function of the shear Reynolds number 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 .

2𝐶𝐿 −𝐶𝐴 = 1 − 𝑔

𝑟𝑒 𝜔
2
𝑐𝑜𝑠\

We show the variations of 2𝐶𝐿 −𝐶𝐴 as a function of 𝑅𝑒 in figure 4.7.

In order to isolate the lift coefficient, and compare it to the results of the lit-

erature, we need to estimate the added mass coefficient. This coefficient can

be computed analytically based on the measured shape of the bubble, provided

the bubbles are assumed to be ellipsoidal. As mentioned above, the model of

Rosenthal 1962 predicts a small departure from the ellipsoidal shape, but this is

assumed to be negligible here given the moderate deformation of the bubbles

(coefficient 𝛼 expected to increase from 0.52 to at most 0.56). The stretching of

aspect ratio 𝑋 along the axis of the cell, which has been discussed in chapter 3,

tends to increase the value of the added mass coefficient along the 𝒓 direction.
However, the bubbles also tend to flatten slightly along 𝜽 due to the rotational
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Figure 4.6: Drag coefficient measured from bubble position, plotted as a function of

proposed simplified model 1.5𝐷𝜔2/𝑔: this prediction provides a good estimate of𝐶𝐷 for

the large range of conditions investigated here.

flow when 𝑅𝑜 is not too small (figure 2.33-left), and are therefore not strictly

axisymmetric. The aspect ratio in the (𝒓, 𝜽 ) plane can reach values up to 1.4

(figure 3.7) for the largest bubbles and largest values of𝑊𝑒𝑟𝑒 , Weber number

based on the mean velocity 𝑟𝑒𝜔 : this flattening, even at moderate aspect ratios,

is expected to decrease the added mass coefficient along 𝒓 compared with the

axisymmetric assumption. We chose here to compute 𝐶𝐴 numerically from the

mean bubble dimensions deduced from the visualizations: we assume that the

bubbles are ellipsoidal, and integrate the expressions proposed by Lamb 1993 as

detailed in the following subsection.
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Figure 4.7: Variations of 2𝐶𝐿-𝐶𝐴 as a function of 𝑅𝑒 , from equation (4.6a).

4.3.1 Variations of the added mass coefficient (𝑪𝑨)

The added mass coefficients of an ellipsoid moving in an infinite fluid can be

found in Lamb 1993. They are obtained by calculating the motion of a liquid, at

rest at infinity, produced by the translation of a solid ellipsoid through it. The

ellipsoid is characterized by the half lengths 𝑎, 𝑏, 𝑐 (figure 2.28) of its principal

axes. We suppose that the half length 𝑐 is aligned with the axis of rotation of the

cell 𝑧, and that directions 𝑎 and 𝑏 make an angle 𝛾 with 𝒓 and 𝜽 respectively (see

figure 4.8).

We wish here to calculate the added mass coefficient relevant for equation (4.6a)

which is the added mass coefficient along 𝒓 . This coefficient, which is simply

noted 𝐶𝐴 in the rest of our calculations, will be noted more precisely 𝐶𝐴𝑟 in this

section to avoid any ambiguity. The solution of motion with the use of special

orthogonal curvilinear coordinates yields for added mass coefficients along axes
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Figure 4.8: Sketch showing the cross section for an ellipsoidal bubble inclined of an

angle 𝛾 relative to the cylindrical frame.

𝑎 and 𝑏:

𝐶𝐴𝑎 =
𝛼0

2 − 𝛼0
where 𝛼0 = 𝑎𝑏𝑐

∫ ∞

0

𝑑_

(𝑎2 + _)𝛥

𝐶𝐴𝑏 =
𝛽0

2 − 𝛽0
where 𝛽0 = 𝑎𝑏𝑐

∫ ∞

0

𝑑_

(𝑏2 + _)𝛥

(4.9)

with 𝛥 =
(
(𝑎2 + _) (𝑏2 + _) (𝑐2 + _)

) 1

2
.

If we assume that the bubble is axisymmetric with 𝑎 = 𝑏 = 𝐷/2 in the 𝑟 − \

plane, and stretched by pressure effects along 𝑧 (with therefore 𝑐 > 𝑎 = 𝑏),

coefficient 𝛼0 and 𝛽0 are equal and can be expressed as a function of the aspect

ratio 𝑋 = 𝐿/𝐷 = 𝑐/𝑎:

𝛼0 = 𝛽0 = 𝑋

∫ ∞

0

𝑑_

(1 + _)𝛥𝑋

(4.10)
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where 𝛥𝑋 = (1 + _)
(
𝑋 2 + _

) 1

2
. Values of 𝑋 larger than one (corresponding to

prolate ellipsoids) yield added mass coefficients𝐶𝐴𝑟 = 𝐶𝐴𝑎 = 𝐶𝐴𝑏 larger than 0.5,

since the stretching along 𝑧 tends to increase inertia in the radial direction.

If we now drop the axisymmetric assumption, we are in a situation where a

priori 𝑐 > 𝑎 > 𝑏. Let the two aspect ratio be 𝑋 = 𝑐/𝑏 and 𝑋𝐹 = 𝑎/𝑏. Coefficients

𝛼0 and 𝛽0 are given by:

𝛼0 = 𝑋𝑋𝐹

∫ ∞

0

𝑑_

(𝑋 2

𝐹
+ _)𝛥 ′ and 𝛽0 = 𝑋𝑋𝐹

∫ ∞

0

𝑑_

(1 + _)𝛥 ′ (4.11)

with −→ 𝛥 ′ =
(
(𝑋 2

𝐹
+ _) (𝑋 2 + _) (1 + _)

) 1

2
.

Therefore, the values of𝐶𝐴𝑎 and𝐶𝐴𝑏 can be calculated from system 4.9. However,

for computing 𝐶𝐴𝑟 first we need to account for the orientation of the bubble.

Then we write the general form of the added mass of an object imposing an

inertia to the multiple phase flow system:

𝐶𝐴

𝑑𝒖

𝑑𝑡
= 𝑭

We know that in the basis of the ellipsoidal bubble (a,b,c) this matrix is diagonal:

𝐶𝐴𝑎 0 0

0 𝐶𝐴𝑏 0

0 0 𝐶𝐴𝑐


´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

𝐴𝑑𝑑𝑒𝑑 𝑚𝑎𝑠𝑠 𝐶𝐴

𝑑𝒖

𝑑𝑡
= 𝑭

In addition, if we introduce the angle of the bubble with the 𝑥 axis as𝑂 , we have

𝛾 =
𝜋

2

+ 𝑂 − \ . We now express matrix 𝐶𝐴 in basis (𝑟, \ ) with the help of the

rotation matrix 𝑅\ as:
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𝑅𝑇𝛾 𝐶𝐴 𝑅𝛾 =



𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝛾 0

−𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 0

0 0 1





𝐶𝐴𝑎𝑐𝑜𝑠𝛾 −𝐶𝐴𝑎𝑠𝑖𝑛𝛾 0

𝐶𝐴𝑏𝑠𝑖𝑛𝛾 𝐶𝐴𝑏𝑐𝑜𝑠𝛾 0

0 0 𝐶𝐴𝑐



𝑅𝑇𝛾 𝐶𝐴 𝑅𝛾 =



𝐶𝐴𝑟³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
𝐶𝐴𝑎𝑐𝑜𝑠

2𝛾 +𝐶𝐴𝑏𝑠𝑖𝑛
2𝛾 𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝛾 (𝐶𝐴𝑏 −𝐶𝐴𝑎) 0

𝐶𝐴𝑟\³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝛾 (𝐶𝐴𝑏 −𝐶𝐴𝑎) 𝐶𝐴𝑎𝑠𝑖𝑛

2𝛾 +𝐶𝐴𝑏𝑐𝑜𝑠
2𝛾 0

0 0 𝐶𝐴𝑐


(4.12)

y
Since here we have

𝑑𝒖

𝑑𝑡
parallel to 𝑟 , we are just interested in the first column of

the matrix. Therefore, we have:

𝐶𝐴𝑟 = 𝐶𝐴 = 𝐶𝐴𝑎𝑐𝑜𝑠
2𝛾 +𝐶𝐴𝑏𝑠𝑖𝑛

2𝛾

Regarding the matrix above, when 𝛾 ≠ 0 and because of the non-diagonality

of the added mass matrix, an additional added mass term (𝐶𝐴𝑟\ ) should be

introduced in 4.6b (projection along 𝜽 ) and subsequently in the expression for

the drag coefficient discussed in the previous section.

𝐶𝐷

2

=
𝑉𝑔

𝐴𝑏𝑟
2

𝑒𝜔
2

sin\

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

− 𝐶𝐴𝑟\ 𝑉

𝐴𝑏𝑟𝑒´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
B

(4.13)

Figure 4.10, left shows that the value 𝐶𝐴𝑟\ varies between −0.05 up to 0.2 for

all experimental data. Moreover, figure 4.9 illustrates that the drag coefficient
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approximately holds the same value if we take into account the contribution of

𝐶𝐴𝑟\ . Furthermore, figure 4.10, right justifies that the relative contribution of the

non-diagonal added mass term (term B in equation 4.13) is small compared to

the diagonal term (term A in equation 4.13) and reaches at most 0.22 for largest

bubbles. This justifies that the contribution of 𝐶𝐴𝑟\ is small and we can neglect

this value when the carrier flow inside the tank is demineralised water. We will

detailedly discuss the effect of 𝐶𝐴𝑟\ in the presence of surfactant in chapter 5.
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Figure 4.9: Left: Variations of the drag coefficient without consideration of 𝐶𝐴𝑟\ same

figure as 4.4. Right: Same as figure left with consideration of 𝐶𝐴𝑟\ (term B in equation

4.13).

We show in figure 4.11 the variations of the added mass coefficient 𝐶𝐴𝑟 as a

function of Weber number𝑊𝑒 , which compares the pressure difference between

periphery and axis to capillary pressure (see chapter 3): 𝐶𝐴𝑟 increases with𝑊𝑒 ,

due to the increase in 𝑋 when𝑊𝑒 is increased. The values of 𝑋𝐹 , which also

impacts 𝐶𝐴𝑟 , are on the contrary expected to increase with

𝑊𝑒𝑟𝑒 = 𝜌 (𝑟𝑒𝜔)2𝑅/𝜎 = 4𝑊𝑒𝑅𝑜2

, built with the mean velocity 𝑟𝑒𝜔 seen by the bubble. As expected, the added

mass 𝐶𝐴𝑟 decreases when𝑊𝑒𝑟𝑒 is increased (figure 4.12) for a given series (i.e.

given range of 𝑋 ).
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Figure 4.10: Left: Variations of 𝐶𝐴𝑟\ as a function of 𝑅𝑒 . Right: Ratio of the non-

diagonal term B to diagonal term A in equation 4.13 to verify the effect of 𝐶𝐴𝑟\ in our

drag coefficient measurement.

Figure 4.11: Added mass coefficient 𝐶𝐴𝑟 as a function of We.𝐶𝐴𝑟 increases with We for

most series.
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Figure 4.12: 𝐶𝐴𝑟 as a function of𝑊𝑒𝑟𝑒 , which measures the impact of mean velocity

𝑟𝑒𝜔 on the shape of the bubble. For a given series, the added mass decreases when𝑊𝑒𝑟𝑒
is increased due the increase in 𝑋𝐹 .

4.3.2 Measuring the value of the lift coefficient (𝑪𝑳)

These computed added mass coefficients are then used to deduce 𝐶𝐿 : figure 4.13

shows the variations of the lift coefficient 𝐶𝐿 as a function of 𝑅𝑒 , and the com-

parison to some of the correlations introduced in Rastello et al. 2017 for much

larger 𝑅𝑜 . The lift coefficient appears smaller than that measured by Bluemink

et al. 2010 or Rastello et al. 2017. The fact that 𝐶𝐿 is overestimated by these

correlations could be caused by the smaller 𝑅𝑜 in our experiments.

A decrease of the lift coefficient when𝑅𝑜 is reduced has been observed by Rastello

et al. 2017 (see figure 20 of their paper). Note however that this decrease has been

observed for 𝑅𝑜 > 6 i.e. bubbles located much farther from the axis. Bluemink

et al. 2010 observed similar trends for spheres and investigated a few locations

closer to the axis. They noted that𝐶𝐿 decreasedwith the shear rate 𝑆𝑟𝜔 = 𝑅𝑜−1 up
to 𝑆𝑟𝜔 = 0.4 (𝑅𝑜 = 2.5) and that afterwards, the decrease stopped and𝐶𝐿 became

constant. This suggests that the influence of 𝑅𝑜 could also be limited in our case.

The question of the limit of𝐶𝐿 when 𝑅𝑜 becomes small remains an open question.
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Besides the effect of 𝑅𝑜 , we know from the literature (Kariyasaki 1987, Hayashi

et al. 2020, Rastello et al. 2017, Magnaudet and Eames 2000) that bubble deforma-

tion can yield a decrease of the lift force and can even make this force change

sign from positive to negative. Even though the main bubble stretching is aligned

with the rotation axis, larger bubbles are actually also deformed in the (𝑟, \ )
plane, see figure 2.33 and figure 3.7 at low 𝜔 for example: for these non axisym-

metric cases bubble deformation certainly affects the value of the lift coefficient.

Note finally that the motion of the bubble around its equilibrium position may

increase the inertia of the surrounding fluid, and hence lead to an increase in

the effective added mass: the data of figure 4.13, which does not take this effect

into account, is therefore expected to represent an underestimation of 𝐶𝐿 .

When the bubble moves closer to the axis of rotation at low 𝑅𝑜 , and in par-

ticular when it straddles the axis of rotation of the cell, the flow configura-

tion changes: the relative importance of the shear increases, and the relevant

Reynolds number is expected to become at some point the shear Reynolds num-

ber 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 introduced in sections 2.4 and 4.2. We plot in figure 4.14

the variations of the lift coefficient 𝐶𝐿 as a function of 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 : the data of figure

4.13 appear better collapsed. The decrease of𝐶𝐿 as a function of 𝑅𝑒/𝑅𝑜 observed

in the range 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 = 500 − 2500 is consistent with the decrease observed by

Rastello et al. 2017 when 𝑅𝑜−1 is increased, and when the Reynolds dependence

is accounted for.

A sharp transition seems to occur for large bubbles when 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 becomes

larger than 2800 (greyed region in figure 4.14). This corresponds to the condi-

tions for which we approach the resonance described in section 3.3. We show in

figure 4.15 how the increase in the lift coefficient appears correlated with the

strong increase of the variance of the longitudinal aspect ratio 𝑋 . The strong

increase of these fluctuations appears related the forcing of the bubble stretching

discussed in section 3.3. We introduced in chapter 3, section 3.3 𝜔0 =
√︁
96𝜎/𝜌𝐿3

as an estimate of the eigenfrequency of the stretched bubble (Risso 2000): as

explained in this section, when 𝜔 is increased, 𝜔0 decreases due to the stretching

of the bubble and 𝜔 and 𝜔0 will be the same order of magnitude (see section 3.3

where the values of 𝜔0 close to break-up were discussed). Figure 4.16 shows that

the transition observed around 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 = 3000 in figure 4.14 corresponds to 𝜔

approaching 𝜔0. The resonance expected for these conditions may explain the
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Chapter 4 Forces acting on the bubble

Figure 4.13: Lift coefficient as a function or Reynolds number. The dashed and solid

lines correspond to equations (B1)-(B2)-(B5) in Rastello et al. 2017: Black line: the bubble

does not spin. The lift is only induced by the rotation flow, equations (B2)-(B5). Red line:

the bubble is supposed to spin with the same rotation speed as the tank. This scenario

is possible as the bubble is contaminated and located on the rotation axis. Rotation

adds a contribution equal to 3/16, equation (B1). Equation (B2) is the correlation of

the numerical results of Bluemink et al. 2010 for non-spinning sphere (Code Physalis,

𝑅𝑒 ≤ 200, 𝑆𝑟𝜔 = 𝑅𝑜−1 ≤ 0.1); equation (B5) is the correlation of the experimental data of

these authors for non-spinning sphere (𝑅𝑒 > 274, 𝑆𝑟𝜔 = 𝑅𝑜−1 ≤ 0.4), with a different

additional constant: 1.82 against 1.99 in Bluemink et al. 2010.

strong increase observed in the fluctuations of the aspect ratio.

The question is then why the resonance provokes this steep apparent variation

in the lift coefficient. A possibility could be that this apparent increase is caused

by the much larger fluctuations in the position for these larger bubbles. Relative

variations of 𝑟𝑒 can reach up to 30-40% when resonance occurs, compared to
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Figure 4.14: Lift coefficient as a function of shear Reynolds number, 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 .
The greyed region corresponds to conditions where the bubble experiences strong shape

fluctuations.

less than 10% for all series of bubbles with 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 < 2500. These fluctuations

in position are probably themselves triggered by the strong fluctuations in the

shape of the bubbles. At any rate, because of these large fluctuations in 𝑟𝑒 , mean

values of 𝐶𝐿 for 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 > 2500 deduced from the mean position result in fact

from the averaging of a strongly non-stationary dynamics, something which is

not accounted for in the equations leading to system (4.6).

4.3.3 Spinning

The other rather essential feature of our experiments compared to previous

works is the question of bubble spinning. When experiments are performed

in demineralized water like the one used here, the surface of the bubble is

contaminated and in this case the bubble is expected to "spin". This has been

shown for small bubbles at equilibrium far from the axis of rotation (𝑅𝑜 ≥ 6) by

tagging the flow near their surface with small fluorescent particles, in Rastello et

al. 2009. Some of these particles stuck on the surface are clearly rotating around
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Figure 4.15: Lift coefficient as a function of the variance of the longitudinal aspect ratio

𝑋 .
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Figure 4.16: Lift coefficient as a function of the ratio between the tank rotation frequency

and the eigenfrequency of the stretched bubble 𝜔0.
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the bubble (see for example fig 14 in this reference). Their motion has more

recently been characterized in detail from numerous visualizations in Rastello et

al. 2017. Visualizations suggest that the fluorescent particles rotate with the same

velocity as that of the fluid at the surface, as imposed by the boundary conditions

on the contaminated surface of the bubble.Rastello et al. 2017 assimilate their

motion to the rotation of the surface and speak of a "spinning" surface. For

bubbles with 𝑅𝑜 ≥ 6, the mean spinning rate is higher than the rotation rate: up

to 1.6, depending on 𝑅𝑒 (figure 10 Rastello et al. 2017). This results in an extra

Magnus-like lift force and a separated wake behind the bubble whose description

can be found in Rastello and Marié 2020.

Knowing whether the bubbles still spin in the present flow situation would

of course be interesting. Front view images show that when bubbles are non

axisymmetric, the axisymmetry remains in average oriented along the same

direction (see figure 4.17). However, the orientation of the bubble oscillates

around this mean value at a frequency equal to the tank rotation frequency.

This can be seen in figure 4.17, where the peaks in the orientation angle occur

every 0.1 s, in agreement with the rotation frequency of 10 Hz. A sequence of

images shows that even though the orientation remains approximately constant,

the shape of the bubble fluctuates (see figure 4.18 below): we suspect that the

bubble rotates, but the deformation which occurs at the same time prevents from

measuring this rotation by simple visualization, as would be possible with a solid

particle.

A direct measurement of the spinning such as that carried out in Rastello et al.

2009 could in principle be attempted to check if this rotation is indeed present,

but this would be somewhat difficult to perform in the present case. In particular,

it would be difficult to get a uniform seeding at the high rotation speeds we

investigate here, with expected centrifugal effects and shorter exposure times

(hence a need for a more powerful laser).

Now, given that these bubbles on average stabilize upon, or very close to the

rotation axis (𝑅𝑜 < 1), it is probable that if spinning, they will spin at maximum

with the rotation rate of the tank and not faster (Bluemink et al. 2008).
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Chapter 4 Forces acting on the bubble

Figure 4.17: Bubble orientation relative to the horizontal direction, in degrees, for

𝑉 = 0.20 cm3
and 𝜔 = 63 s

−1
: the bubble orientation remains aligned towards the same

mean direction of 17
◦
, but oscillates around this value with a frequency equal to the

tank rotation frequency, namely 10 Hz.
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Figure 4.18: Sequence of images showing how the bubble deformation propagates along

the perimeter for bubble of volume 𝑉 = 0.25 cm3
at 𝜔 = 63 s

−1
.
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5 Effect of surfactants on bub-
ble deformation and dynamics

In this chapter we will focus on the impact of the introduction of surfactant

in the tank on bubble dynamics. As it has already been debated in 1.1.2, the

surfactants distribution or small amount of impurities on the interface of the

bubble alter the bubble dynamics. Surface tension of the surrounding water flow

around the bubble has been constant (𝜎 ≃ 71𝑚𝑁 /𝑚) throughout all the results

obtained in the previous chapters 3 and 4. In this chapter, the goal is adding

soluble surfactant to the carrier flow inside the tank and investigate the behavior

of the deformable bubble close to the axis of rotation. We will show that adding

surfactants to the demineralised water leads to modifications of the bulk surface

tension and of the dispersed phase (gas bubble) behavior.

We have used a chemical compound called TetradecylTrimethylAmmoniumBro-
mide (TTAB) displayed in figure 5.1 to alter the surface tension of the bulk liquid.

The critical micelle concentration (CMC) of TTAB is 𝐶𝐶𝑀𝐶 = 1.5𝑔𝑟/𝐿 (1.5𝑔𝑟

of TTAB in 1𝐿 of demineralised water). At and above the 𝐶𝐶𝑀𝐶 the surfactant

distribution on the interface is saturated and there is no place on the interface

to be permeated and filled by surfactants. Below the CMC value, the bubble

interface is not entirely saturated by added soluble substance. To explore the

effects of TTAB on the bubble dynamics, we have tested two separate TTAB
concentrations in demineralised water. One solution of TTAB surfactant lower

than 𝐶𝐶𝑀𝐶 and the other higher than 𝐶𝐶𝑀𝐶 .

Figure 5.1: Structure of the TTAB surfactant. The chain of carbons is the hydrophobic

side of the surfactant while the 𝑁 +
side is the hydrophilic head.
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Chapter 5 Effect of surfactants on bubble deformation and dynamics

5.1 Solution with lower and higher concentration of
TTAB in comparison with CMC

We have used two various recipes of TTAB in demineralised water. First, the

solution below the CMC condition has been investigated. We have dissolved

an amount of TTAB lower than 1.5𝑔𝑟 in demineralised water. The process for

making the solution is as below:

• Step 1: 0.5gr of TTAB (lower than CMC condition) dissolved in 100𝑚𝑙

of demineralised water in a beaker of volume 100𝑚𝑙 . Then, with use of

magnetic laboratory agitator the solution was blended for 30𝑚𝑖𝑛 at a

temperature of 70
◦
.

• Step 2: The solution prepared in the preceding step is poured into a beaker
of 1𝐿 volume filled with 900 ml of demineralised water. Eventually, we

have 1𝐿 solution which has been called 𝐶 ′
(0.33 CMC) in the following

sections of the manuscript.

The same scenario of solution preparation has been done for the amount of

surfactant higher that the CMC concentration. For the second solution (higher

concentration of TTAB), the value of TTAB added to the 100𝑚𝑙 beaker filled via

demineralised water is 3𝑔𝑟 which is two times the CMC. We call this solution 𝐶”

(2 CMC). The objective is to test the effect of surfactants for both the unsaturated

(lower than CMC, 𝐶 ′
solution) and saturated (higher than CMC, 𝐶” solution)

interface. A summary of our solutions (𝐶 ′
and 𝐶”) preparation is illustrated in

table 5.1.

Solution Name TTAB (𝑔𝑟 ) in 1 L

𝐶 ′
0.5 gr

𝐶” 3gr

Table 5.1: Prepared surfactant solutions with TTAB. 𝐶 ′
= 0.33 CMC and 𝐶” = 2 CMC.

The surface tension of the mentioned solutions in table 5.1 has been measured

with a tensiometer (Attension Theta Flex, Biolin Scientic AB) similar to the process
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Solution with lower and higher concentration of TTAB in comparison with CMC Section 5.1

of surface tension measurement for demineralised water explained in subsection

2.1.2. The measured surface tension is displayed as an output of the Attension
Theta Flex, Biolin Scientic AB software. The surface tension for 𝐶 ′

(0.33 CMC)

solution as a function of time presents variations when the drop is issued, but

surface tension converges to a plateau of 52𝑚𝑁 /𝑚 (figure 5.2).
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Figure 5.2: The measured surface tension of𝐶 ′
solution as a function of time shown by

Attension Theta Flex, Biolin Scientic AB.

The variations of the surface tension value shown by the tensiometer are

normal since we are in the condition of a lower concentration compared to the

CMC, and there might be displacement of surfactant on the interface of the

bubble released from the gauge needle.

In order to increase the accuracy of the surface tension measurement and

verify the precision of the value found for 𝐶 ′
(0.33 CMC) solution, we have used

another pendant drop tensiometer named Tracker Standard drop tensiometer
(located at Institut Lumière Matière, ILM) shown in 5.3. It measures the surface

tension by a released drop from the gauge needle in front of a high resolution
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Chapter 5 Effect of surfactants on bubble deformation and dynamics

Figure 5.3: Tracker Standard drop tensiometer device.

camera identical to the Attension Theta Flex, Biolin Scientic AB. Then, the Tracker
software implements the algorithms to determine the surface tension of the

drop based on Young-Laplace equation. The difference of this tensiometer with

the Attension Theta Flex, Biolin Scientic AB is the automatic control over the

vibrations of the released drop from the gauge needle. This characteristic of the

dispensing system facilitates the process of removing interface vibrations for the

camera (to have an image acquisition without interface vibrations to measure

surface tension with a higher precision). In addition, the dispensing system can

oscillate sinusoidally and alter the volume of the released bubble from the gauge.

This feature of the Tracker Standard drop tensiometer can also vary the volume

of the bubble and therefore the area of the drop captured by the camera as a

function of time which is consistent with our experimental condition (bubble

volume variations, explained in subsection 2.2.3). Figures 5.4 and 5.5 display the

values and error bars of the surface tension measured by Tracker Standard drop
tensiometer when the volume of the released bubble changes sinusoidally as a

function of time.

As it has been clarified, the value of the surface tension measured by two

different tensiometers have been consistent (same values) in both cases of either

with volume variations or fixed released volume of the needle gauges. Conse-

90



Solution with lower and higher concentration of TTAB in comparison with CMC Section 5.2

Figure 5.4: Red square points are the value of the surface tension measured by (51.5

±1.0 mN/m) Tracker Standard drop tensiometer when the volume of the bubble released

from the gauge needle varies sinusoidally. The green sinusoïdal signal is the area of the

bubble captured by the high resolution camera when the volume varies.

quently we have assigned the surface tension values of our solutions (𝐶 ′
and𝐶”)

as below:

• For 𝐶 ′
(0.33 CMC), 𝜎0.33𝐶𝑀𝐶 = 51.5 ±1.0 mN/m

• For 𝐶” (2 CMC), 𝜎2𝐶𝑀𝐶 = 37 ±1.0 mN/m

For performing experiments to analyze the bubble dynamics in these two

TTAB solutions (𝐶 ′
and 𝐶”), we have explicitly chosen the bubble volumes that

do not encounter rupturing during the experiments. Since the surface tension has

been reduced in comparison with demineralised water, we have not been able to

investigate the dynamics of the bubble with volumes larger than𝑉 = 0.16 𝑐𝑚3
for

𝜔 in the range [63, 94] 𝑟𝑎𝑑 𝑠−1. Therefore, in order to understand the dynamics

of the bubble with presence of TTAB surfactant (𝐶 ′
and 𝐶”

) and compare them

with the case of demineralised water, we are limited to a range of volumes not

larger than 𝑉 = 0.16 𝑐𝑚3
(see tables 5.2 and 5.3).
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Figure 5.5: Zoom on variation of the surface tension when the volume of the released

drop varies which justifies the chosen value of the 52 ±1.0 mN/m.

Mean volume 𝑉 [cm
3
] Mean equivalent radius 𝑅𝑒𝑞 [cm]

0.001 0.072

0.004 0.098

0.05 0.228

0.069 0.254

0.078 0.266

0.013 0.146

0.117 0.303

0.127 0.311

Table 5.2: Characteristics of the bubbles in solution C′
(0.33 CMC): mean volume𝑉 and

radius 𝑅𝑒𝑞 of a spherical bubble of equivalent volume.

5.2 Bubble deformation in presence of surfactants

5.2.1 Position of the bubble

Figure 5.6 shows 𝑟𝑒/𝐷 as a function of 𝑔/𝐷𝜔2
for the 𝐶 ′

and 𝐶” solutions. This
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Mean volume 𝑉 [cm
3
] Mean equivalent radius 𝑅𝑒𝑞 [cm]

0.003 0.09

0.014 0.15

0.025 0.183

0.04 0.21

0.055 0.23

0.083 0.27

0.123 0.308

0.138 0.32

0.141 0.322

Table 5.3: Characteristics of the bubbles in solution C” (2 CMC): mean volume 𝑉 and

radius 𝑅𝑒𝑞 of a spherical bubble of equivalent volume.
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Figure 5.6: Variation of the Rossby number 𝑅𝑜 as a function of 𝑔/(𝐷 𝜔2). Left: bubbles
in solution 𝐶 ′

; right: bubbles in solution 𝐶”. The black line corresponds to equation 3.9.

Same legend as figures 5.10 and 5.9.

figure displays a little difference in Rossby number (𝑅𝑜) in case of 𝐶 ′
(0.33 CMC)

solution where the concentration is lower than CMC. On the contrary of the 𝐶”

(2 CMC) solution, the data of𝐶 ′
(0.33 CMC) solution are shifted slightly closer to
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Chapter 5 Effect of surfactants on bubble deformation and dynamics

the axis of rotation and do not exactly follow the approximation of the 𝑟𝑒 = 𝑔/𝜔2
.

The data follows the estimate of 𝑅𝑜 ∼ 0.8𝑔/𝐷𝜔2
. Nevertheless, simultaneously

to the section 4.2, we are still in condition of 𝑅𝑜 ≤ 1 (see figure 5.7) and the

bubble crosses the center of rotation. Moreover, with increasing the rotating

��� ��� ��� ��� ��� 	��
Re

���

���

��	

��


���

���

R o

����������

��� ��� ��� ��� 	�� 
��
Re

���

���

��	

���

���

���

R o

����������

Figure 5.7: Rossby number as a function of the Reynolds number for bubbles in solutions

𝐶 ′
(0.33 CMC) and𝐶” (2 CMC). ⃝: 𝐶 ′

solution (left); ^: 𝐶” solution (right). Same legend

as figures 5.10 and 5.9.

velocity 𝜔 , the larger bubbles of 𝐶 ′
(0.33 CMC) experienced a drop of 𝑅𝑜 (figure

5.7, left) proving that the bubbles with volumes larger than 𝑉 = 0.005𝑐𝑚3
in

case of 𝐶 ′
(0.33 CMC) solution are positioned closer to the axis of rotation in

comparison with the data for water (figure 4.3) and for 𝐶” (2 CMC) (figure 5.7

right). The other interesting point about the position of the bubble is the angle \

(polar coordinate of the center of the bubble) with the vertical axis of 𝑦 (same as

figure 4.2). Figure 5.8 shows that the angle \ with the 𝑦 axis is around 80
◦
for

water, 𝐶” (2 CMC) solution and 𝐶 ′
(0.33 CMC) solution. This indicates that the

bubble maintains a similar position in the presence of surfactants.
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Figure 5.8: The angle \ (in figure 4.2) as a function of the rotation speed. a) bubbles in
𝐶” solution (^); b) bubbles in 𝐶 ′

solution (⃝); c) bubbles in demineralised water (×).

5.2.2 Bubble interface configuration

In order to study the deformation of the bubble in the two different discussed

solutions (𝐶 ′
and 𝐶”), we first plot the variations of the longitudinal aspect ratio

𝑋 as a function of the rotational speed. As illustrated in figures 5.9, 5.10 and

5.11, the aspect ratio 𝑋 for the case of surfactant solutions are higher than for
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Chapter 5 Effect of surfactants on bubble deformation and dynamics

demineralised water for given volume and 𝜔 values. The symbols ⃝ (data of

𝐶 ′
solution) and ^ (data of 𝐶” solution) have been shifted up in comparison

with symbols × (data of demineralised water) for the same range of volumes

(0.004 𝑐𝑚3 < 𝑉 < 0.13 𝑐𝑚3
) which shows that the bubble is much more stretched

along the horizontal axis in presence of surfactants. Since the bubble is close to
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Figure 5.9: The aspect ratio of the bubble 𝑋 = 𝐿/𝐷 as a function of rotation speed 𝜔

for 𝐶 ′
solution (0.33 CMC).

the axis of rotation (similar to condition of demineralised water), the aspect ratio

of the bubble should be predicted by the model of Rosenthal 1962 as in figure

3.12 for demineralised water. Moreover, we plot the aspect ratio as a function of

the corrected Weber number introduced in chapter 3, taking into account the

corrected values of the surface tension measured by the tensiometers. As it is

represented in 5.12, left, the data for the 𝐶 ′
(0.33 CMC) solution (surface tension
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Figure 5.10: The aspect ratio of the bubble 𝑋 = 𝐿/𝐷 as a function of rotation speed 𝜔

for 𝐶” solution (2CMC).

lower than CMC) are not perfectly collapsed with the Rosenthal 1962 prediction

and the deformation of the experimental data are larger. However, the data for

the𝐶” (2 CMC) have been very well fitted with the solid line of the model. These

two physical phenomena can be interpreted via two concepts. On the one hand,

concerning𝐶 ′
solution, the interface may not be comprehensively saturated with

surfactant. Thus, there might be accumulation or inhomogenous distribution of

the surfactant on the different regions of the bubble interface in particular close

to the center of rotation of the tank. This displacement of the surfactants may

lead to surface tension variations across the bubble. Therefore, the determined

surface tension (52 mN/m) might not correspond to the effective value for the

present 𝜔 range (rotational speeds in a range [62, 94] 𝑟𝑎𝑑 𝑠−1). In order to test
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Figure 5.11: The aspect ratio of the bubble 𝑋 = 𝐿/𝐷 as a function of rotation speed 𝜔

for demineralised water.

this hypothesis, we alter in the Weber number the surface tension to the lower

value 𝜎 = 37 mN/m which is the surface tension of the CMC condition, and we

observe that in that case the data for 𝐶 ′
(0.33 CMC) follows the model (figure

5.13 right). This means that the effective surface tension seen by the bubble is

the CMC concentration even though we are at 0.33 CMC. On the other hand,

regarding the 𝐶” (2 CMC) solution (figure 5.12, left), the data is more properly

aligned with the solid line of the model as was the case for demineralised water

(figure 5.14, b). We interpret this as the fact that for 𝐶” (2 CMC) solution the

distribution of the surfactants on the bubble interface is saturated, and therefore

more homogeneous than for the𝐶 ′
case. For the case of demineralised water, the

bubble interface is not comprehensively clean and the bubble has a contaminated
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Figure 5.12: Bubble aspect ratio 𝑋 = 𝐿/𝐷 as a function of the corrected Weber number.

Left: bubbles in 𝐶 ′
solution; right: bubbles in 𝐶” solution. The model works well for

the 𝐶” case.

interface. In respect of the chapter 2.1, it has been explained that there are

constraints to maintain the water inside the tank perfectly clean. Moreover, in

water we have impurities the nature and concentration of which is unknown and

𝜎 is about 71𝑚𝑁 /𝑚. Thus, if we zoom on the part of our experimental data in

figure 5.14, b, we observe the prediction of the Rosenthal 1962 for fully saturated

interface (2 CMC) fits better with experimental data compared with the partially

contaminated interface (demineralised water).

As it has been discussed in chapter 3, the other dimensionless number rep-

resenting the shape of the bubble is the front view aspect ratio 𝑋𝐹 (aspect ratio

in (𝑟, ˆ\ ) plane). Figure 5.15 illustrates that for our two surfactant solutions the

values of the front view aspect ratio are higher than that for demineralised water

for the same volume range. The values of 𝑋𝐹 reach up to 1.6 (except for smaller

bubbles that do not straddle the axis of the rotation) for 𝐶 ′
and 𝐶”, while for

water the maximum value of 𝑋𝐹 (for the largest bubble of 𝑉 ≃ 0.12 𝑐𝑚3
) is

around 1.4. Indeed, the deformation of the bubble in the cross section depends

on 𝑅𝑜 . More precisely, for the bubbles with 𝑅𝑜 > 0.5 (those which do not straddle

the axis of the rotation), the deformation in the cross section is controlled by

the mean velocity seen by the bubble (𝜔𝑟𝑒 ). Therefore, as already discussed

in chapter 4, the relevant dimensionless number controlling this deformation

should be the Weber number built with the mean velocity seen by the bubble
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Figure 5.13: Bubble aspect ratio 𝑋 = 𝐿/𝐷 as a function of the corrected Weber number

for the case of the𝐶 ′
solution. Left: Weber number computed with a surface tension 𝜎 =

52𝑚𝑁 /𝑚; right: Weber number computed with effective surface tension 𝜎 = 37𝑚𝑁 /𝑚.

𝑊𝑒𝑟𝑒 = 𝜌 (𝑟𝑒𝜔)2𝑅/𝜎 = 4𝑊𝑒𝑅𝑜2. Figure 5.16 shows the variations of 𝑋𝐹 as a

function𝑊𝑒𝑟𝑒 for 𝐶
′
, 𝐶” and demineralised water data. The figure illustrates

that the front view aspect ratio for the smaller bubbles depends on this Weber

number seen by the bubble. However, for the larger ones the data are scattered

and do not have the same behavior. Therefore, we divide our data (for water

and both TTAB surfactant solutions) into two series of bubbles. First series,

those which straddle the axis of rotation (𝑅𝑜 < 0.5) and the second series having

𝑅𝑜 > 0.5. Figure 5.17, left, justifies that for both surfactant solutions (𝐶 ′
and 𝐶”)

and demineralised water, the values of 𝑋𝐹 follow the same trend as a function

of𝑊𝑒𝑟𝑒 . However, the front view aspect ratio of the bubbles with 𝑅𝑜 < 0.5, i.e.

bubbles sitting on the axis of rotation, appear rather controlled by the Rossby

number 𝑅𝑜 itself (see figure 5.17, right).

5.3 Forces

5.3.1 Drag

In order to deduce the drag coefficient, we use equation 4.6b. We plot the

standard drag coefficient 𝐶𝐷 as a function of 𝑅𝑒 to investigate the value of the

drag coefficient when surfactant TTAB is dissolved in the tank. It is apparent

from figure 5.18 that the value of 𝐶𝐷 as a function of 𝑅𝑒 reaches up to 9 for
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Figure 5.14: Bubble aspect ratio 𝑋 = 𝐿/𝐷 as a function of the corrected Weber number.

a): bubbles in 𝐶” solution; b) bubbles in demineralised water; c) zoomed on the data

points of b for demineralised water.

101



Chapter 5 Effect of surfactants on bubble deformation and dynamics


	 �� �	 �� �	 � 	
ω������s −1�

��

���

���

���

���

���

��	

��


X F

(a)


	 �� �	 �� �	 � 	
ω������s −1�

��

���

���

���

���

���

��	

��


X F

(b)


	 �� �	 �� �	 � 	
ω������s −1�

��

���

���

���

���

���

��	

��


X F

(c)

Figure 5.15: Variations of the aspect ratio 𝑋𝐹 (aspect ratio of front view) as a function
of the rotation speed 𝜔 . a) bubbles in 𝐶” solution (^); b) bubbles in 𝐶 ′

solution (⃝); c)
bubbles in demineralised water (×).

both surfactant solutions. Note that similar to the demineralised water case,

the contribution of the non-diagonal added mass term (𝐶𝐴𝑟\ ) is small for all the

series in 𝐶 ′
and 𝐶” solutions (figures 5.19 and 5.20). Figure 5.18, left related to

the 𝐶 ′
(0.33 CMC) case shows the values of 𝐶𝐷 are still large. We introduce the

drag coefficient 𝐶𝐷𝛥 clarified in chapter 4, and plot its variations as a function
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solution; ^: 𝐶”

solution; ×: demineralised water.
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Figure 5.17: Aspect ratio of front view 𝑋𝐹 as a function of 𝑅𝑜 and𝑊𝑒𝑟𝑒 . Left: Bubbles
with 𝑅𝑜 > 0.5. Right: Bubbles with 𝑅𝑜 < 0.5. Bubbles in 𝐶” solution (^); bubbles in 𝐶 ′

solution (⃝); bubbles in demineralised water (×).
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Figure 5.18: Standard drag coefficent 𝐶𝐷 as a function of the Reynolds number. Left:
bubbles in 𝐶 ′

(0.33 CMC) solution; Right: bubbles in 𝐶” (2 CMC).
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Figure 5.19: Standard drag coefficent 𝐶𝐷 as a function of the Reynolds number for 𝐶 ′

(0.33 CMC) solution. Left: without consideration of non-diagonal added mass term

𝐶𝐴𝑟\ ; Right: with consideration of non-diagonal added mass term 𝐶𝐴𝑟\ .

of 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 to correctly capture the effects of low 𝑅𝑜 . Therefore, we use

equation 4.5 as well as 4.8 (see figure 5.21).

Figure 5.21 shows that the values of 𝐶𝐷𝛥 in the 𝐶 ′
and 𝐶” (2 CMC) solutions

are close to the values in water and can be approximated as 𝐶𝐷𝛥 ≃ 0.75

In order to inspect more closely the impact of surfactants on bubble shape, we
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Figure 5.20: Standard drag coefficent 𝐶𝐷 as a function of the Reynolds number for 𝐶”

(2 CMC) solution. Left: without consideration of non-diagonal added mass term 𝐶𝐴𝑟\ ;

Right: with consideration of non-diagonal added mass term 𝐶𝐴𝑟\ .

now look at the variation of the angle 𝛾 of the bubble. In the case of the bubble

in demineralized water, the angle 𝛾 varies between -20 and 20 degreees, whereas

in the case of 𝐶 ′
and C” solutions, this angle is in the range of 10 to 60 degrees

(see figure 5.23). This corresponds to a different inclination of the bubble, as

illustrated in figure 5.22.

This figure shows the superposed boundaries of two bubbles with a same

volume of 𝑉 = 0.12 cm
3
, at 𝜔 = 94 𝑟𝑎𝑑 𝑠−1. The points represent the pixels

pertaining to the contour of the bubbles in 10 consecutive recorded images. We

can clearly visualize the shape of the interface for the water (black symbols)

and 𝐶 ′
(0.33 CMC) solution (blue symbols), for these two bubbles of identical

volume. A change in shape can be observed. It points to the bubble being more

streamlined in the case of the 𝐶 ′
(0.33 CMC) solution for a solid body rotation

flow around the cell center (red cross).

The variations of 𝛾 coupled to the variations in the position of the bubble

(variations in 𝑅𝑜 and \ ) may have an impact on the chord (see figure 5.24) of the

cross section. The chord corresponds here to the length cut across the bubble in

the (𝑟, \ ) plane, normal to the solid body rotation flow. This length will directly

affect the projected area of the bubble. For water, we have supposed that 𝛾 is

zero, as observed experimentally (5.23, c) for most of the series. Therefore, the
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Figure 5.21: Drag coefficient 𝐶𝐷𝛥 as a function of 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 . a) bubbles in 𝐶” solution

(^); b) bubbles in 𝐶 ′
solution (⃝); c) bubbles in demineralised water (×).
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Figure 5.22: Average shape of a bubble of volume 𝑉 = 0.12 cm3
, obtained by superim-

posing 10 consecutive images. Black is for water, blue is for𝐶 ′
(0.33 CMC) solution. Red

plus is the center of the cell.

chord of the cross section is defined as 𝐶ℎ𝑜𝑟𝑑 = 2𝑎 in figure 4.8, while in the

case of 𝐶 ′
and 𝐶 ′′

solutions the chord is modified as:

𝐶ℎ𝑜𝑟𝑑 = 2

√︁
𝑎2 𝑐𝑜𝑠2𝛾 + 𝑏2 𝑠𝑖𝑛2𝛾

Figure 5.25 displays the ratio of the𝐶ℎ𝑜𝑟𝑑/𝐷 for the three solutions investigated

here. The dimensionless number 𝐶ℎ𝑜𝑟𝑑/𝐷 for the 𝐶 ′
(0.33 CMC) solution is in

average slightly lower than that for 𝐶” (2 CMC) and especially demineralised

water. Therefore, this confirms that the bubble is slightly more streamlined for

this case, as illustrated in figure 5.22.

5.3.2 Lift

For computing the lift coefficient, we use equation 4.6a. As discussed in chapter

4, the measurement of the lift coefficient is made through the computation of the
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Figure 5.23: The angle 𝛾 (in figure 4.8) as a function of the rotation speed. a) bubbles in
𝐶” solution (^); b) bubbles in 𝐶 ′

solution (⃝); c) bubbles in demineralised water (×).

added mass coefficient. The simplified form of equation 4.6a can be written as:

2𝐶𝐿 −𝐶𝐴𝑟 = 1 − 𝑔

𝑟𝑒𝜔
2
𝑐𝑜𝑠\

𝐶𝐿 =
1

2

− 𝑔

2𝑟𝑒𝜔
2
𝑐𝑜𝑠\ + 𝐶𝐴𝑟

2

(5.1)
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Figure 5.24: Schematic of the bubble configuration in 𝐶 ′
(0.33 CMC) solution when the

value of the angle 𝛾 increases and consequently the chord becomes close to the minor

axis of the front view.

where concerning the method clarified in subsection 4.3.1, the added mass

coefficient along 𝑟 (namely 𝐶𝐴𝑟 ) can be computed knowing the shape of the

bubble and its orientation. In chapter 4, we discussed the relation between

𝐶𝐴𝑟 and the deformation of the bubble where the value of the added mass is

controlled by the Weber number. This indicates that when the bubble stretches

along the horizontal axis the value of 𝐶𝐴𝑟 increases. We show in figure 5.26 the

variation of𝐶𝐴𝑟 as a function of the Weber number for all the experimental data

for the three solutions. The figure displays that the value of 𝐶𝐴𝑟 for solution 𝐶
′

(0.33 CMC) is a little higher than that for 𝐶” (2 CMC) and demineralised water.

The value of 𝐶𝐴𝑟 for water is in a range between 0.45 and 0.6, but in the case of

the surfactant solution it rises up to 0.85 in𝐶” (2 CMC) and close to 1 for the case

of𝐶 ′
(0.33 CMC). The reason for the mentioned difference in value of𝐶𝐴𝑟 is due

to fact that the bubble in𝐶 ′
(0.33 CMC) is more deformed along 𝑧 (comparison of

figures 5.9, 5.10, and 5.11) compared to the 𝐶” (2 CMC) and demineralised water.

Using equation 5.1 and by computing the value of 𝐶𝐴𝑟 , we can now compute
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Figure 5.25: Dimensionless parameter 𝐶ℎ𝑜𝑟𝑑/𝐷 (in figure 4.8) as a function of 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 .

a) bubbles in 𝐶” solution (^); b) bubbles in 𝐶 ′
solution (⃝); c) bubbles in demineralised

water (×).

the lift coefficient 𝐶𝐿 . Figure 5.27 shows the variations of the lift coefficient as a

function of 𝑅𝑒 . The results obtained in the presence of surfactant are similar to

those obtained with demineralised water. As it has been discussed in chapter 4,

section 4.3, since we are at low 𝑅𝑜 and the bubble straddles the axis of rotation,

the flow configuration changes. Thus, we plot the value of 𝐶𝐿 as a function of
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Figure 5.26: Added mass coefficient along r (𝐶𝐴𝑟 ) as a function of 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 for

three solutions. ^: 𝐶” 52 CMC) solution; ⃝ 𝐶 ′
(0.33 CMC) solution; × demineralised

water.

𝑅𝑒𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 (figure 5.28). Results obtained with surfactant are similar to

those obtained with water.

5.4 Break-up

We now study how break-up of the bubble is impacted by the addition of sur-

factant to the solution. Figure 5.29 shows the bubble volume as a function of

𝜔 , and as in chapter 3, section 3.3 a circle indicates the conditions for which

break-up occurs. This figure shows that bubble break-up occurs for smaller

bubble volume (𝑉 < 0.2 𝑐𝑚3
) in the TTAB solution than in the solution without

surfactant. The figure shows that the bubbles for which break-up was observed

are in the volume range of [0.1, 0.17] 𝑐𝑚3
. This has been expected that with

adding surfactants to the tank and decreasing the value of the liquid surface
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Figure 5.27: Lift coefficient 𝐶𝐿 as a function of 𝑅𝑒 . a) bubbles in 𝐶” solution (^); b)
bubbles in 𝐶 ′

solution (⃝); c) bubbles in demineralised water (×).

tension, the bubble experiences larger longitudinal stretching, and therefore

breaks at smaller volume for a constant 𝜔 range.

Indeed, we have observed the same configurations of break-up as for wa-

ter, namely middle break-up, and also breaking in two unequal size bubbles in

presence of surfactants.

In chapter 3, section 3.3, we showed that the break-up of the bubble occurs
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Figure 5.28: Lift coefficient 𝐶𝐿 as a function of 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 . a) bubbles in 𝐶”

solution (^); b) bubbles in 𝐶 ′
solution (⃝); c) bubbles in demineralised water (×).

through a resonance mechanism between the eigenfrequency of the stretched

oscillated bubble 𝜔 and the tank rotation frequency 𝜔0. In addition, the shape

mode of the bubble seems to be in configuration of n=2 in the moment of break-

up. Figure 5.30 shows that the range of 𝜔/𝜔0 is independent of the size and the

rotation velocity of the break-up in a range between 1.5 and 2.2 for the bubble
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Figure 5.29: Color circles represent for each series of data the conditions for which

the break-up happens (red circles−→ 𝐶 ′
solution; blue circles−→ 𝐶”; black circles−→

water). Data with surfactant: the break-up occurs for bubbles with a volume V lower

than 0.2 𝑐𝑚3
. Data without surfactant (demineralised water): the break-up occurs for

bubbles with a volume V higher than 𝑉 = 0.31 𝑐𝑚3
. ⃝: 𝐶 ′

solution; ^: 𝐶” solution; the
other symbols are the data of the demineralised water same as figure 3.17

frequency 𝜔0 =

√︂
96

𝜌

𝜎

𝐿3
(left). It is also similar to the results in water when the

eigenfrequency is estimated as 𝜔0𝑅 =

√︄
12

𝜌

𝜎

𝑅3

𝑒𝑞

(right), with 𝜔/𝜔0𝑅 in a range

between 0.62 and 0.83. This is consistent with the idea that break-up is driven

by a resonance mechanism.

In order to strengthen the theory of the resonance, we carried out some other

experiments in which the starting rotation speed is 94 𝑟𝑎𝑑 𝑠−1 and is decreased

down to 𝜔 = 62 𝑟𝑎𝑑 𝑠−1. This reverse 𝜔 experiment has been performed for the

𝐶” (2 CMC) solution in a range of volumes V=[0.14, 0.21] 𝑐𝑚3
(the same range
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Figure 5.30: Volume of the broken bubble as a function of ratio 𝜔/𝜔0 (ratio between

tank rotation frequency and eigenfrequency of the stretched bubble 𝜔0 of the stretched

bubble𝜔0) for all experimental series experiencing break-up. Circles identify the rotation

speed 𝜔 for which rupturing occurred. Same legend as figure 3.17. Left: eigenfrequency
𝜔0 estimated with length 𝐿. Right: eigenfrequency 𝜔0𝑅 estimated with length 𝑅𝑒𝑞 . ⃝:

𝐶 ′
solution; ^: 𝐶” solution; the other symbols are the data of the demineralised water

same as figure 5.29

of volume for which the break-up occurred by increasing 𝜔 in the previous

experiments). Figure 5.31 represents the bubble break-up when we reversely

vary the rotational velocity of the tank (circles are the conditions for which

break-up occurred). We see the break-up of the bubbles with similar volume

sizes as the bubbles in previous experiments when we performed experiment in

a condition of increasing 𝜔 , but this time happening below the given rotational

velocities.

The interesting point validating the hypothesis of the resonance is that in

the case of reverse break-up the value of 𝜔/𝜔0 is approximately in the same

range [1.6, 2.5], which a bit larger (see figure 5.32, left) in comparison with

the increasing 𝜔 break-up shown in figure 5.30, left. Note that the ratio 𝜔/𝜔0

increases even in this reverse break-up experiment: the reason is that the bubble

stretches when approaching the resonance, and as a result its eigenfrequency

𝜔0 decreases faster than 𝜔 when 𝜔 is reduced.

However, the value of the ratio 𝜔/𝜔0𝑅 when we choose the length of the

bubble as 𝑅𝑒𝑞 , is still between 0.62 and 0.83 ( see figure 5.32) which is consistent

with our previous experiments. This is another indicator that resonance is the

probable reason of bubble break-up in this flow situation.
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Figure 5.31: Volume of the bubble as a function of rotation speed for which reverse
break-up is observed in 𝐶” (2 CMC) solution.
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Figure 5.32: Volume of the broken bubble as a function of ratio 𝜔/𝜔0 (ratio between

tank rotation frequency and eigenfrequency of the stretched bubble 𝜔0 of the stretched

bubble𝜔0) for all experimental series experiencing break-up. Circles identify the rotation

speed 𝜔 for which rupturing occurred for the reverse break-up. Left: eigenfrequency 𝜔0

estimated with length 𝐿. Right: eigenfrequency 𝜔0𝑅 estimated with length 𝑅𝑒𝑞 . Same

legend as figure 5.31.
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We have discussed in chapter 3 that the Weber number is a dimensionless

parameter which controls the deformation of a deformable droplet or bubble

in a high Reynolds number flows. Regarding the deformation of the bubble

when break-up occurs (figures 3.13 nad 3.16), the types of observed break-up,

and the huge distortion of the bubble when it breaks (high amplitude of the

front view and side view aspect ratio), we can expect that the Weber number

becomes large at break-up. As our bubble is close to the axis of rotation and

regarding chapter 3 where a corrected Weber number with effect of low 𝑅𝑜

introduced, we plot the data of break-up as a function of this corrected Weber

number𝑊𝑒 ′ =𝑊𝑒 (1 + 4𝑔2/(𝐷2𝜔4)). Figures 5.33, 5.34 and 5.35 left, illustrate

the corrected Weber number as a function of volume for the three considered

solutions. To expand, for instance, for water (figure 5.33, left) the break-up

moment does not happen in highest Weber number. To modify the Weber

number which controls the deformation of the bubble in this situation (distorted

bubble before break-up), we write definition of the Weber number for the bubble

stretched along the horizontal axis as:

𝑊𝑒𝐿 =
𝜌 𝜔2 𝐿3

𝜎

Moreover, we know that𝜔0 =

√︂
96

𝜌

𝜎

𝐿3
. Then, we can express this newWeber

number as a function of 𝜔/𝜔0 as:

𝑊𝑒𝐿 = 96 (𝜔/𝜔0)2

If we now plot𝑊𝑒𝐿 as a function of bubble volume, we see that the break-up

occurs in the highest Weber for each series of the data in different solutions

(demineralised water, 𝐶 ′
(0.33 CMC) and 𝐶” (2 CMC)) (see the right figure of

each solution in figures 5.33, 5.34 and 5.35).
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Figure 5.33: Left: Corrected Weber number presented in chapter 3 in a function of

volume for the bubbles experiencing break-up in demineralised water. Right:𝑊𝑒𝐿 as a

function of volume in demineralised water.
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Figure 5.34: Left: Corrected Weber number presented in chapter 3 as a function of

volume for the bubbles experiencing break-up in 𝐶 ′
(0.33 CMC) solution. Right:𝑊𝑒𝐿

as a function of volume in the same solution (𝐶 ′
).
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Figure 5.35: Left: Corrected Weber number presented in chapter 3 as a function of

volume for the bubbles experiencing break-up in 𝐶” (2 CMC) solution. Right:𝑊𝑒𝐿 as a

function of volume in the same solution (𝐶”).

119
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6.1 Conclusion

This chapter will wrap up the results presented in this manuscript by summariz-

ing the major findings in connection to the research objectives and questions, as

well as discussing their contribution. It will also go through the limitations of

this study and make recommendations for further research.

This study aimed to investigate the behavior of a bubble in a horizontal high-

speed solid body rotating flow. In chapter 2, the experimental apparatus and

conditions for extracting information about the bubble in this type of flow were

discussed. The experimental set-up is a cylindrical Plexiglass tank rotating

around its horizontal axis. Two cameras have been used to extract bubble shape,

position and interface movements along two directions. The bubble stretches

along the axis of rotation in the recorded images, and its shape is similar to an

ellipse. Then, using image analysis techniques, we were able to determine some

key characteristics of the deformed bubble, such as its length (along vertical

and horizontal axes), position, boundary contour, orientation, etc. We then used

image processing and implemented image analysis techniques to determine

the bubble volume, assuming the bubble has an ellipsoidal shape. According

to the findings, increasing the rotation speed of the tank causes the bubble to

stretch further and the volume to increase by up to 15% for most series. The

elastic deformation of the Plexiglass tank has been proven to be the cause of this

increase.

Finally, we discussed why we chose a rotation speed range of 63 to 94 𝑟𝑎𝑑 𝑠−1

for our experiments. We demonstrated that in this range of tank rotation speed,

the amplitude of the bubble oscillation remains moderate in comparison to the

bubble dimension.

We discussed the bubble shape, position, and its rupture in Chapter 3 using

the tools and methods from Chapter 2. Except for the smallest bubbles investi-
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gated, we showed that the Rossby number 𝑅𝑜 = 𝑟𝑒/𝐷 , where 𝑟𝑒 is the distance
to the axis of rotation and D the bubble diameter, is less than one for most of

our experimental conditions. In other words, the bubble center of mass is not

perfectly centered with the axis of rotation, but it is close to it and gets closer as

the rotation speed increases.

Our experimental results showed that as the rotational velocity 𝜔 of the tank

increases, the longitudinal aspect ratio 𝑋 of the bubble increases up to 2.

We used the model proposed by Rosenthal 1962 for our experimental data since

this model predicts the shape of the bubble in a solid body rotating flow. The

model is inviscid, and assumes that the bubble is perfectly centered on the axis

of rotation. We have shown that this model adequately captures the stretching

of the bubble when its Weber number is increased, provided a correction ac-

counting for the finite distance to the cell axis and the impact this has on the

mean pressure field around the bubble is included. This model relies on the

assumption that the bubble is axisymmetric: this is not the case when buoyancy

breaks the symmetry. The correction we have proposed for the Weber number

is nonetheless sufficient to capture the aspect ratio 𝑋 of the bubble in a wide

range of conditions.

Eventually, we concluded Chapter 3 by looking at how the stretched bubble

breaks up along the axis of rotation for particular values of the tank rotation.

We have shown that the bubble could break into two equal-sized bubbles or two

unequal-sized bubbles as a result of a massive distortion in which the bubble

experiences very large longitudinal aspect ratio before breaking.

We interpret this break-up as caused by a resonance mechanism between the

driving frequency (𝜔) and the eigenfrequency of the bubble (𝜔0). More precisely,

the break-up phenomenon is caused by periodic forcing at the correct frequency

through a resonance, where the eigenfrequency of the elongated bubble (𝜔0)

at mode 𝑛 = 2 equals the tank frequency (𝜔). We have proposed two defini-

tions for the bubble’s eigenfrequency. One is based on the characteristic size

of the undeformed bubble (𝜔0𝑅), and the other, 𝜔0 is based on the length of the

stretched bubble (𝐿). It is shown that independent of size and rotation speed

the value of 𝜔/𝜔0𝑅 has been found to be between 0.66 to 0.83 for 𝜔0𝑅 and in a

range between 1.7 and 2.1 for 𝜔/𝜔0 for all break-up events, which is a strong

argument in favor of this resonancemechanism being responsible for the rupture.

We modeled the forces acting on the bubble near the axis of rotation in our
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flow situation in Chapter 4. Then we calculated the drag and lift coefficients and

compared them to previous research works focused on bubbles in a condition of

𝑅𝑜 ≥ 6 in Rastello et al. 2009, Rastello et al. 2017 and Bluemink et al. 2008.

We have shown in section 4.2 values for the drag coefficient of the bubble, de-

duced from measurements of the bubble position: these results show that, as

𝑅𝑜 becomes smaller than 1, the drag coefficient increases and the impact of 𝑅𝑜

becomes more pronounced. We have shown that for bubbles straddling the axis

of the cell, the drag coefficient could be simply approximated by𝐶𝐷 ∼ 1.5/𝑅𝑜 . If
we further consider that, for the large bubbles considered here 𝑟𝑒 ∼ 𝑔/𝜔2

, this

is equivalent to predicting 𝐶𝐷 ∼ 1.5𝐷𝜔2/𝑔 for such bubbles in this regime, a

simple expression which captures well the order of magnitude of 𝐶𝐷 for almost

all our experimental conditions.

Finally, we have proposed in section 4.3 an estimate of the lift coefficient for the

low 𝑅𝑜 limit. This lift coefficient seems to be controlled by the shear Reynolds

number when 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑒/𝑅𝑜 is in the range [500–3000], conditions for which

one may expect an inertial wake to surround the bubble. In this range, 𝐶𝐿 is

of the order of 0.5, and decreases slightly when the Rossby number is reduced

(i.e. 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 is increased). We observe a transition above 𝑅𝑒𝑠ℎ𝑒𝑎𝑟 = 3000, above

which the bubble exhibits strong oscillations in shape and position. This transi-

tion probably occurs when the bubble approaches the conditions of its resonance.

The impact of adding surfactant within the tank on bubble dynamics was

the focus of Chapter 5. To change the surface tension of the bulk liquid, we

used the chemical compound TetradecylTrimethylAmmoniumBromide (TTAB).
The critical micelle concentration (CMC) of TTAB is 1.5𝑔𝑟/𝐿. As a result, we
investigated two TTAB solutions, one lower than CMC (0.33 CMC) introduced

as 𝐶 ′
, in which the interface is not completely saturated, and the other higher

than CMC (2 CMC) introduced as 𝐶”, in which the bubble interface is expected

to be completely saturated with surfactants. Afterwards, we have compared

the behavior of the bubble in these TTAB solutions with demineralised water

(previously discussed in chapters 3 and 4).

Two different tensiometers were used to measure the surface tension of both so-

lutions. We used the first, Attension Theta Flex, Biolin Scientic AB, and the second,
Tracker Standard drop tensiometer, to improve the accuracy of our measurements.

The surface tension of 0.33 CMC converges to 𝜎0.33𝐶𝑀𝐶 = 52 ±1.0 mN/m, while

that of 2 CMC converges to 𝜎2𝐶𝑀𝐶 = 37 ±1.0 mN/m, according to the findings.
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In the same range of volume sizes, we found that the longitudinal aspect ratio

of the bubble in both solutions is higher (the bubble stretched more along the

axis of rotation) than in the demineralised water case. Furthermore, we found

that our experimental data fits well with Rosenthal 1962 prediction for the case

of 2 CMC in terms of aspect ratio 𝑋 (fully saturated interface). However, the

experimental data are shifted above the Rosenthal 1962 prediction at 0.33 CMC

(not entirely saturated interface) and in this case the experimental aspect ratio is

underestimated by the model. In general, we have found that bubbles in presence

of surfactant behave similarly to bubbles in demineralised water. The shape of

the bubble interface is nonetheless slightly different when surfactant is present,

and bubbles appear more streamlined in this case. In addition, the bubbles get

slightly closer to the rotation axis as a result of this interface shape (lower Rossby

numbers).

Finally, we saw in this chapter that the bubble breaks at a smaller volume size in

surfactant solutions, but the ratio 𝜔/𝜔0 is still in the same range as for break-

up in demineralised water. This is a further argument in favor of a resonance

mechanism. Moreover, we reversely changed the rotation speeds of the tank

(from 900 𝑟𝑝𝑚 to 600 𝑟𝑝𝑚) and managed to break-up the bubble by decreasing
the rotation frequency. The values of 𝜔/𝜔0 at break-up are in the same range as

for the previous series (where𝜔 was increased). This is another strong argument

in favor of a resonance mechanism.

6.2 Perspectives

Until now, we have investigated the bubble dynamics close to the axis of rotation

in a solid body rotating flow without, and with one type of soluble surfactant

(TTAB). However, further experiments are needed to broaden the results about

bubble behavior in this type of flow. Our findings suggest that we still have

a long way to go in fully grasping all the aspects of the bubble dynamics in

a rotating flow. In the following we have listed the future studies that can be

aligned with the present work.
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Perspectives Section 6.2

6.2.1 Investigating the behavior of bubbles over a wider range of
rotation speeds

According to chapter 2, the maximum rotation speed of the tank provided by

the motor is 900 𝑟𝑝𝑚 (94 𝑟𝑎𝑑 𝑠−1). We showed in Chapter 3 how the bubble goes

closer to the axis of rotation and becomes more stable as the rotational velocity

of the tank increases. The interesting point for the future research work is to

improve the capability of the motor to effectively increase the range of rotation

speeds up to 1500 𝑟𝑝𝑚 (157 𝑟𝑎𝑑 𝑠−1) in order to investigate deformation, drag

and lift coefficient, instability, and break-up in another range of 𝜔 . For instance,

doing experiments in a range of [800-1500] 𝑟𝑝𝑚. Furthermore, examining the

instability of the bubble and the surrounding flow that leads to break-up at a

lower range of rotational velocity of the tank is a fascinating project. Figure

2.31, for example, demonstrates that in a lower range of rotation speeds, the

amplitude of the bubble oscillation is tremendous, the velocity is perturbed and

the unknown wakes behind the bubbles appeared which lead to encounter the

unknown surrounding flow. Investigating this complex flow around the bubble

will expand the results of the bubble dynamics and break-up in a solid body

rotating flow.

6.2.2 Using another type of surfactant

The use of TTAB surfactants to modify the surface tension of the carrier flow has

been discussed. Future research should focus on the effects of the other chemical

compounds as surfactants with another molecular structure, and compare the

behavior of the bubble in their solutions. To summarize, adopting different types

of surfactants (with different adsorption and disorption characteristic times in

comparison with TTAB), and comparing them to our current findings would

broaden our understanding of bubble dynamics and break-up.

6.2.3 Numerical simulation

As we saw in Chapter 5, the shape of the bubble with surfactant slightly differs

from demineralized water without surfactant. It might be worthwhile to explore

surfactant dispersion along the contact, particularly in the situation of a par-

tially saturated interface. A promising future project is to explore surfactant

distribution on the interface in this type of flow using the code developed by the
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late Peter Spelt a level set code where surfactant inhomogeneities can be taken

into account Titta 2017.

6.2.4 Investigating the bubble dynamics in presence of other
surrounding bubbles

All of the studies were carried out using a single bubble in the tank. Another

perspective of this experimental work would be to conduct experiments in

which multiple bubbles are positioned close to the axis of rotation and the

deformation, break-up and forces of each bubble will be investigated in the

presence of numerous other bubbles.

In addition, how will the balance between break-up and coalescence depend

on the rotation rate? And how will it be impacted by surfactants? The results

obtained in this manuscript for a single bubble should help clarify this situation,

which is common in appplications related to mixing in rotating flows.
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