
HAL Id: tel-03769543
https://theses.hal.science/tel-03769543

Submitted on 5 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modélisation et mise à jour d’ontologies interactives :
application à la formation par simulation de gestes

médicaux
Shadi Baghernezhad Tabasi

To cite this version:
Shadi Baghernezhad Tabasi. Modélisation et mise à jour d’ontologies interactives : application à la
formation par simulation de gestes médicaux. Interface homme-machine [cs.HC]. Université Grenoble
Alpes [2020-..], 2021. Français. �NNT : 2021GRALM078�. �tel-03769543�

https://theses.hal.science/tel-03769543
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES

Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Shadi BAGHERNEZHAD TABASI

Thèse dirigée par Marie-Christine ROUSSET et
codirigée par Fabrice JOUANOT et Loïc DRUETTE

préparée au sein du Laboratoire Informatique de Grenoble
dans l’École Doctorale Mathématiques, Sciences et
Technologies de l’Information, Informatique

Interactive Ontology Modeling
and Updating: Application to
Simulation-based Training in
Medicine

Thèse soutenue publiquement le « date de soutenance »,
devant le jury composé de :

Mme Danielle ZIEBELIN
Professeur à l’Universite Grenoble Alpes, LIG, Présidente

Mme Nathalie PERNELLE
Professeur à l’Universite Sorbonne Paris Nord, LIPN, Rapporteure

Mr Julien BROISIN
Maître de conférence (HDR) à l’Université Paul Sabatier, IRIT, Rapporteur

Mme Sylvie DESPRÈS
Professeur à l’Universite Sorbonne Paris Nord, LIMICS, Examinatrice

Mme Marie-Christine ROUSSET
Professeur à l’Université Grenoble Alpes, Directrice de thèse

Mr Fabrice JOUANOT
Maître de conférence à l’Université Grenoble Alpes, Co-encadrant de thèse

Mr Loic DRUETTE
Ingénieur d’étude à l’Université Claude Bernard Lyon 1, Co-encadrant de thèse

Résumé

Les ontologies spécialisées servent à capturer le savoir-faire de spécialistes expérimentés

dans le domaine concerné, en vue de partager cette expertise au sein d’une plus large

communauté dans un but de formation ou d’explications auprès d’utilisateurs moins

experimentés. L’objectif principal de cette thèse est la construction d’une ontologie

support à la formation par simulation de gestes médicaux, qui est un domaine nouveau

encore peu formalisé et pour lequel peu de documentation existe. Ce travail de thèse

englobe le cycle de vie complet d’une ontologie: la construction, l’enrichissement, le

peuplement, et la mise à jour.

Dans cette thèse, nous décrivons une méthodologie de construction collaborative d’ontol-

ogies en 4 étapes qui a débouché sur l’ontologie OntoSAMSEI. La première étape

de bootstrap, où un embryon d’ontologie est construite avec l’aide d’un petit nom-

bre d’experts, est suivie par une étape d’élicitation de connaissances auprès d’un plus

large panel d’experts à base d’un questionnaire, dont l’analyse des réponses permet de

compléter l’ontologie initiale et de la mettre à jour en la peuplant et l’enrichissant.

L’ontologie résultante est une hiérarchie de classes et de propriétés, enrichie par un

ensemble de contraintes sémantiques sur les classes et les propriétés.

Comme support à la mise à jour d’ontologies, nous avons conçu et implémenté l’environn-

ement IOPE pour la construction automatique d’une interface graphique sous la forme

de pages Web pré-remplies. La principale idée sous-jacente à IOPE est de transposer

les données et les contraintes de l’ontologie à mettre à jour dans des formulaires pré-

remplis en utilisant un ensemble de règles de mappings. Ces pages Web pré-remplies,

automatiquement générées à partir de l’ontologie d’entrée, fournissent un guide pour

les utilisateurs et facilitent l’exploration et la mise à jour de l’ontologie à l’aide de

widgets graphiques interactifs et de règles de bindings permettant de lier les entrées des

utilisateurs à des triplets RDF à ajouter à l’ontologie.

Nous avons mené une étude expérimentale poussée auprès d’utilisateurs experts dans

le domaine de la formation par la simulation en Médecine pour évaluer l’ontologie On-

toSAMSEI, mais aussi l’environnement intéractif IOPE.

Abstract

Specialized ontologies are constructed to capture the skills of experienced experts in a

particular domain, with the goal of sharing them with a larger community of trainees

and less experienced experts in the domain. The main objective of this thesis is to

construct a specialized ontology for the rising domain of simulation-based medical ed-

ucation, where formal models are lacking, and documentations are scarce. The thesis

focuses on constructing an accurate and complete specialized ontology, and enriching

and populating the constructed ontology.

In this thesis, we have designed a four-staged collaborative ontology engineering method-

ology, which has resulted in the construction of the ontology called OntoSAMSEI. The

first step is ontology bootstrapping (i.e., build a small initial ontology with the help of

domain experts), followed by knowledge elicitation (fill the ontology using a question-

naire disseminated among the domain experts), enhancement (improve the core ontology

by modeling commonalities), and update (enrichment and population). The resulting

ontology is a hierarchy of classes and of properties, enriched by ontological constraints

on the properties and on the classes.

As a support to ontology update, we have designed and implemented a framework called

IOPE for the automatic construction of a Graphical User Interface (GUI) consisting of

pre-filled Web pages. The core idea behind IOPE is to transpose the RDF data and the

ontological constraints into a GUI, using a set of mapping rules. These automatically

generated GUIs provide guidance for domain experts and facilitate the ontology explo-

ration and update through interactive graphical widgets. To finalize ontology updates,

we propose a set of binding rules to specify how to transform user interactions into RDF

graphs.

The two contributions of this thesis are evaluated using an extensive and in-depth expert

study, to show the benefits of IOPE and OntoSAMSEI in real-world use cases of

medical experts.

Contents

Résumé iii

Abstract v

Contents vi

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Our Research Focus . 2

1.2 Our Methodology . 3

1.3 Thesis Contributions . 5

1.4 Thesis Outline . 6

2 Preliminaries 7

2.1 Ontologies and the Semantic Web . 7

2.2 RDF and SPARQL . 9

2.3 Resource Description Framework Schema (RDFS) 11

2.4 Web Ontology Language . 12

2.4.1 Value Constraints . 13

2.4.2 Cardinality Constraints . 16

2.5 Summary . 19

3 Ontology Engineering for Simulation-based Training in Medicine 21

3.1 Introduction . 21

3.2 Related Work . 22

3.3 Our Ontology Design Approach . 27

3.3.1 Ontology Bootstrapping . 27

3.3.2 Knowledge Acquisition by an Online Questionnaire 29

3.3.3 Enhancement . 31

3.3.4 Ontology Update . 35

3.4 Summary . 37

4 Interactive Ontology Population and Enrichment 39

4.1 Introduction . 39

vii

Contents viii

4.2 Related Work . 40

4.2.1 Ontology Editing Tools . 41

4.2.2 Graph-based Ontology Update . 41

4.2.3 Form-based Ontology Update . 42

4.3 IOPE Approach . 42

4.3.1 The IOPEWeb Ontology . 43

4.3.2 Ontology-based GUI Construction 44

4.3.2.1 Initialization . 45

4.3.2.2 Mapping Rules . 47

4.3.3 Transforming Interactions to RDF Graphs 56

4.4 Summary . 63

5 Evaluation 65

5.1 Introduction . 65

5.2 Evaluation Settings . 66

5.3 Evaluation of IOPE Interface . 68

5.3.1 IOPE’s Expert Engagement . 68

5.3.2 IOPE’s Time-to-Insight . 69

5.3.3 IOPE’s Added Value . 69

5.3.4 IOPE’s Expert Satisfaction . 71

5.4 OntoSAMSEI Evaluation . 71

5.5 Generality of IOPE . 74

5.6 Summary . 75

6 Summary and Perspectives 77

6.1 Summary . 77

6.2 Perspectives . 79

A Online Questionnaire 83

B Mapping Rules 91

Bibliography 97

List of Figures

1.1 The overall architecture . 3

2.1 Example of the owl:someValuesFrom RDF graph 14

2.2 Example of the owl:hasValue RDF graph 15

2.3 Example of the owl:minQualifiedCardinality RDF graph 17

3.1 Our ontology engineering method . 28

3.2 Properties and classes in the core OntoSAMSEI ontology 28

3.3 Example of the disseminated questionnaire 30

3.4 Properties and classes in the OntoSAMSEI ontology 32

3.5 OWL constraints in OntoSAMSEI . 33

3.6 RDF Constraints graphs (example 1) . 34

3.7 RDF Constraints graphs (example 2) . 35

3.8 HTML Web page generated from the OntoSAMSEI ontology 36

4.1 IOPE workflow . 42

4.2 IOPEWeb ontology . 43

4.3 Web page template for the rendering of the constraints of a focus class . . 46

4.4 Mapping rule #1 . 48

4.5 Mapping rule #2 . 49

4.6 Mapping rule #3 . 50

4.7 Mapping rule #4 . 50

4.8 Mapping rule #7 . 51

4.9 Mapping rule #8 . 52

4.10 Mapping rule #12 . 53

4.11 Mapping rule #13 . 54

4.12 Mapping rule #16 . 54

4.13 IOPEWeb as the application of mapping rules on constraints 55

4.14 IOPE’s Web page as the application of mapping rules on constraints . . . 56

4.15 Binding rule #1 . 57

4.16 Binding rule #2 . 57

4.17 Binding rule #3 . 58

4.18 Binding rule #4 . 59

4.19 Binding rule #5 . 59

4.20 Binding rule #6 . 60

4.21 Binding rule #7 . 60

4.22 Binding rule #8 . 61

4.23 Binding rule #9 . 61

ix

List of Figures x

4.24 User interaction transformation by binding rules 62

5.1 Time-to-insight results . 69

5.2 Average number of interactions in IOPE and TopBraid. 70

5.3 Experts’ assessment on satisfaction aspects. 72

5.4 Accuracy results for OntoSAMSEI . 73

5.5 Completeness results for OntoSAMSEI 73

5.6 Application of IOPE on PerSCiDO ontology (example 1) 75

5.7 Application of IOPE on PerSCiDO ontology (example 2) 76

A.1 Step 1 in the online questionnaire (general description) 84

A.2 Step 2 in the online questionnaire (target audience) 85

A.3 Step 3 of the online questionnaire (goals) 86

A.4 Step 4 of the online questionnaire (prerequisites) 87

A.5 Step 5 of the online questionnaire (resources) 88

A.6 Step 6 of the online questionnaire (conditions and risks) 89

A.7 Step 7 of the online questionnaire (additional information) 90

B.1 Mapping rule #5 . 91

B.2 Mapping rule #6 . 92

B.3 Mapping rule #9 . 93

B.4 Mapping rule #10 . 94

B.5 Mapping rule #11 . 94

B.6 Mapping rule #14 . 95

B.7 Mapping rule #15 . 95

List of Tables

2.1 RDFS and OWL constraints considered in this thesis 18

3.1 Distribution of domain experts as a function of questionnaire responses . 30

5.1 Distribution of experts in interaction number groups 67

5.2 Distribution of experts in interaction duration groups 67

5.3 Distribution of interaction duration groups in interaction number groups . 67

5.4 Testbed for the comparison between IOPE and TopBraid 70

5.5 User satisfaction aspects . 70

5.6 OntoSAMSEI evaluation measures . 71

xi

Chapter 1

Introduction

Ontologies have been introduced in 1993 by Thomas R. Gruber [Gru93] to formalize

the knowledge of a domain in a conceptual model, shareable by domain experts and

processable by machines. Nowadays, many ontologies are made available in the Semantic

Web [GAVS11], in particular in biology, medicine, and life services, as a result of a

collective effort of whole communities.

Ontology construction has been addressed by varied techniques and methodologies, com-

bining text mining and knowledge elicitation from experts [SA11]. Most of the methods

focus on well-defined domains such as anatomy, genomics, or medical standard termi-

nologies. However, the current approaches are not well adapted for ill-defined domains,

i.e., domains in which formal models do not exist and a little standard documentation

is available.

Pedagogical domains are examples of such domains, as teaching objectives are hard to

formalize, and teaching methods are difficult to share within a common and standardized

referential. This is particularly true for the domain of simulation-based medical train-

ing which is becoming a central need in medical education. For instance, it is shown

in [FBC+17] that simulation-based training in cardiac surgery results in highly efficient

and safe training of junior medical students in various modules, such as cardiopulmonary

bypass and massive air embolism, to name a few.

So far, only a few pioneering educators have developed and documented a specific ex-

pertise for setting up simulation-based training sessions in their speciality. The SAMSEI

project1 (Learning Strategies for Health Professions in Immersive Environment) has been

launched by the French Ministry of Higher Education and Research2 (abbr., MESR) to

promote innovative educational programs of excellence. SAMSEI’s main objective is to

1http://samsei.univ-lyon1.fr
2https://www.enseignementsup-recherche.gouv.fr

1

Chapter 1. Introduction 2

set up a simulation-based educational program for participatory and immersive learn-

ing [FO15] for students from all health sectors in the University of Claude Bernard

Lyon 13 and its partners.

This thesis takes place in the context of a collaborative research project between the

SAMSEI project and Grenoble Informatics Laboratory (abbr., LIG)4, aiming to develop

methods and tools for simulation-based medical training to be integrated within the

SIDES 3.0 platform5. The Intelligent Health Education System 3.0 (abbr., SIDES 3.0)

is a national e-learning platform based on semantic Web technologies for online medical

training in France.

The goal of this thesis is to develop an interactive and incremental ontology modeling and

updating approach for ill-defined domains such as simulation-based medical education.

To achieve this goal, two main challenges have been identified:

1. How can we elicit knowledge for such little formal and documented domains?

2. By their very nature, real world ontologies are dynamic artifacts that evolve both

in their structure (i.e., the data model) and their content (i.e., instances). How

can we support the dynamic evolution of an ontology over time?

In Sections 1.1, 1.2, and 1.3, we introduce our strategy and methodology to tackle the

above challenges for eliciting and updating the knowledge in ill-defined domains.

1.1 Our Research Focus

In this thesis, we focus on the construction of specialized ontologies that capture the skills

of a limited number of experienced experts in a particular domain (such as simulation-

based medical education), with the objective of sharing them with a larger community

of trainees or less experienced experts in the domain. This engenders the two following

research directions:

Direction 1: Knowledge elicitation and formalization of ill-defined domains.

In such domains, formal models are lacking and documentations are scarce. Only a

few medical trainers have experienced and documented how to set up simulation-based

medical training sessions in their medical specialities. In addition, these pioneering

3https://www.univ-lyon1.fr/en
4https://www.liglab.fr/en
5https://sides3.uness.fr

Chapter 1. Introduction 3

Available

documents

Ontology

bootstrapping

Ontology

core

Design and

disseminate

Online

ques.onnaire

Enhancement

Auto
m

aFc

 g
ra

phic
al

 t
ra

nsf
orm

aFon

Improved

ontology

Pre-filled web

forms

Enriched

ontology

Enrichment and

populaFon by

domain expert

O
n

to
lo

g
y

u
p

d
a

te

O
n

to
lo

g
y

e
n

g
in

e
e

ri
n

g

Figure 1.1: The five steps of our incremental ontology engineering and update method.

trainers are very busy and not easily accessible. Hence, the initiatives of knowledge

elicitation and formalization in these domains are momentous.

Direction 2: Design and development of a tool for interactive ontology update

by domain experts. This research direction involves the automatic construction of

a Graphical User Interface (GUI) built from a given ontology, as the support of the

controlled update process of the input ontology. This task is associated with two main

challenges:

1. Ontologies are represented as graphs. The graph structure of ontologies is difficult

to graphically present within the user interface consumed by the experts. While

there exist several methods to visualize a graph [HFM07, PWC+17, HBZC17,

FCL+17], the outcome is often burdensome to digest by domain experts.

2. Moreover, it is challenging to enable the experts to perform ontology updates

without requiring to learn the formal syntax and semantics of ontology languages.

1.2 Our Methodology

Following the research directions discussed in the previous section, we contribute an

interactive and incremental ontology modeling approach. Figure 1.1 illustrates the pro-

posed methodology, which consists of two principled components: (i) incremental ontol-

ogy engineering and (ii) ontology update. It comprises five consecutive steps, mentioned

below:

Chapter 1. Introduction 4

1. Ontology bootstrapping is to initialize the core structure of the ontology by

employing a few available documents provided by a limited number of experts;

2. Designing and disseminating an online questionnaire aims to collect more in-

formation from several groups of experts;

3. Enhancement aims to extend the core ontology using a text mining method on

the results of the online questionnaire;

4. Generation of a graphical user interface (GUI) made of pre-filled Web forms aims

to provide graphical representation of the current ontology;

5. Last, the system enriches and populates the input ontology by interacting with

the graphical representation.

These steps collectively cover the whole pipeline of ontology engineering. In the follow-

ing, we elaborate on these steps in the context of engineering a specialized ontology in

the domain of simulation-based medical education, called OntoSAMSEI [TDJ+21b].

Step 1: Ontology bootstrapping. To construct OntoSAMSEI, first we exploited

some reported expertise of a group of pioneer trainers who have documented simulation

learning units of various types. As a result, we obtained the core structure of On-

toSAMSEI for a few number of simulation-based training sessions, e.g., suture, port

implant, blood transfusion, hygiene, etc. The achieved general structure of OntoSAM-

SEI contains the simplest elements to formalize, e.g., targeted audiences, learning ob-

jectives, necessary prerequisites, required resources, risks incurred during the simulation

session and in real situation, and evaluation of the prerequisites and objectives.

Step 2: Design and dissemination of an online questionnaire. In order to

improve the core ontology, we designed an online questionnaire and disseminated it

among the domain experts (i.e., health trainers in simulation learning), and succeeded

to acquire accurate descriptions of various simulation sessions. We constructed the online

questionnaire using the general structure obtained in the first step of our methodology,

with several sections that represent several extracted elements that need to be filled in

by the experts. These sections expose the targeted audience, the aimed objectives, the

prerequisites, the resources required (human, consumable, simulator, material), risks, as

well as the evaluation mode of prerequisites and objectives. Last, we teamed up with

a pedagogical engineer to create a directory of 1223 health professionals, and provide

face-to-face or remote support for helping them in answering the questionnaire.

Step 3: Enhancement. Next, we improved and refined OntoSAMSEI by grouping

the answers by simulation sessions, and extracting the descriptions for each rubric. Then

Chapter 1. Introduction 5

we employed two simple yet effective text mining approaches, namely “noun phrase

extraction” and “part-of-speech (POS) tagging”, to find commonalities between the

answers. As a result, new sub-classes have been added in the hierarchy of simulation-

based training units with their properties and constraints, and existing classes have been

enriched with constraints on their properties. The ontological constraints are important

to consider in the model, because they can be perceived as a guide for setting up future

or more specific sessions for each type of simulation-based training units.

Step 4: Automatic graphical transformation of the ontology. In order to facil-

itate the exploration of an ontology by domain experts (who can be recognized or less

experienced experts), we designed a tool named IOPE GUI, that takes as input a set

of ontological constraints defining a given ontology, and transforms it into a set of pre-

filled Web forms, where the experts can interact with those pages through interactive

graphical widgets.

Step 5: Interactive ontology enrichment and population. This last step is

supported by the output of the IOPE GUI which enables domain experts to interac-

tively enrich the current ontology by adding new classes and/or constraints, and less

experienced experts to be guided for adding new instances of existing simulation-based

training units. The input (constraints or instance) entered by domain experts through

the IOPE GUI are transformed into RDF triples. These RDF triples must be verified

by an ontology engineer before being permanently added in the domain ontology.

Following the five aforementioned steps, we constructed the OntoSAMSEI ontology

consisting of the model for simulation-based training sessions. We also provided inter-

active means (through IOPE GUI) to update the ontology.

1.3 Thesis Contributions

In this thesis, our main contributions can be summarized as follows:

• The construction of a simulation-based medical education domain vocabulary

called OntoSAMSEI, by designing an incremental ontology modeling approach.

The results of this direction of the thesis have been published in the proceed-

ings of the IEEE International Conference on Semantic Technologies for Smart

Information Sharing and Web Collaboration [TDJ+21b], and in the doctoral con-

sortium of the Conference on Knowledge Engineering and Ontology Development

(KEOD) [BTRD+19].

Chapter 1. Introduction 6

• The automatic construction of a Graphical User Interface (GUI) called IOPE,

built from the ontological constraints of a given ontology, as the support of the

controlled update process of the considered ontology. The results of this direction

of thesis has been published in the demo proceedings of the SEMANTiCS con-

ference [TDJ+21a]. A longer version of our work in this direction is also under

review.

1.4 Thesis Outline

This thesis is organized into the following chapters. Chapter 2 covers the definition of the

relevant notions used in this thesis. Chapter 3 presents the details on the construction of

the OntoSAMSEI ontology that we have developed for the simulation-based medical

education domain. Chapter 4 describes the interactive ontology enrichment and popu-

lation approach that we have developed to update the ontology. Chapter 5 presents an

extensive set of results on the evaluation of our ontology engineering approach and our

ontology update approach. Chapter 6 summarizes the results of our thesis and presents

future research directions.

Chapter 2

Preliminaries

In this chapter, we introduce the semantic Web background on which this thesis relies:

ontologies in Section 2.1, RDF and SPARQL in Section 2.2, RDFS in Section 2.3, and

OWL in Section 2.4. Finally, Section 2.5 summarizes the chapter.

2.1 Ontologies and the Semantic Web

In 1999, Tim Berners-Lee presented for the first time his vision of the Semantic Web:

“The Semantic Web is not a separate Web, but an extension of the current one, in

which information is given well-defined meaning, better enabling computers and people

to work in co-operation” [BLHL01]. Berners-Lee’s goal was to extend the current Web

with metadata by allowing both machines and humans to better manipulate information

and make meaningful interpretations. Therefore, we are no longer talking only about a

Web of documents but a Web of data and knowledge [BHBL11].

With the emergence of the semantic Web, the notion of ontology has experienced a

new rise. Formerly reserved for the field of philosophy, and later for the Artificial

Intelligence (AI) domain, ontologies now represent the backbone of the semantic Web

technology. In the literature, several definitions of ontology have been presented and

evolved over the time. The most quoted is given by Gruber [Gru95]: “an ontology

is an explicit specification of a shared conceptualization” which is, in turn, “the objects,

concepts, and other entities that are presumed to exist in some domain of interest and the

relationships that hold among them which are understandable by humans and processable

by machines”.

Different models of increasing complexity can be distinguished for knowledge conceptu-

alization [Zac07]:

7

Chapter 2. Preliminaries 8

• A taxonomy is a classification of terms or concepts of a domain organized in a

hierarchical structure.

• A thesaurus adds non-hierarchical semantic relationships between terms and con-

cepts such as equivalence relation and association relations, and other properties

to each concept or term, such as its preferred or alternative label(s) in SKOS1. In

addition, concepts and terms can also be organized in collections.

• An ontology is a more complex formalization of a domain of interest in which

ontological constraints are added to refine the semantics of the involved entities

and their relationships.

• A populated ontology adds the description of instances (or individuals) through

class membership assertions and property assertions between instances. The im-

portant point is that these assertions together with the ontological constraints can

be exploited by inference mechanisms to derive new facts or new knowledge.

• A knowledge graph, presented by Google as a new trend in 2012, is a way to

represent big populated ontologies [Krö17, EW16].

In terms of coverage, we can distinguish general and specialized ontologies. A general

ontology is the upper ontology shared by all domains such as SUMO (Suggested Up-

per Merged Ontology) [NP01]. Specialized ontologies represent information for specific

domains, for which specialized schema must be created to make the data useful in mak-

ing real world decisions. In many domains, data and/or knowledge are evolving over

time. (Populated) ontologies are thus intended to be dynamic structures that are to be

updated either periodically or continuously.

Based on the definitions of the semantic Web and ontologies, we can highlight two main

benefits of these technologies:

• Interoperability, which reposes on sharing and exchanging data across Web appli-

cations and agents;

• Inferencing, which means the ability of the system to derive new knowledge and

new facts.

To make the Semantic Web a reality and lift current Web to its full potential, pow-

erful and expressive representation languages and systems are required. Such web on-

tology languages must be able to describe and organize knowledge in the Web via a

1https://www.w3.org/TR/skos-reference/

Chapter 2. Preliminaries 9

standard set of special terms in a machine understandable way. On the Web, we cur-

rently have three such standards, namely RDF, to represent data and metadata, RDF

Schema (RDFS), which defines some basic terms like subClassOf, and the Web Ontol-

ogy Language (OWL), which defines a much broader range of special terms, including

Restrictions, disjointWith, unionOf, and far more. In the following, we describe these

semantic Web languages standards.

2.2 RDF and SPARQL

Resource Description Framework (RDF)2 developed by the World Wide Web Consor-

tium (W3C) is a graph data model for representing and structuring data and metadata.

It is based on the idea of making statements about resources (in particular web re-

sources). Each RDF statement is a three-part structure (subject, predicate, object),

known as triples. For example, one way to represent the notion “Coronavirus disease

2019 (covid-19) has dry cough symptom” in RDF is the following triple: (covid-19

hasSymptom dry cough) a subject denoting “the covid-19”, a predicate denoting

“has symptom”, and an object denoting “dry cough”.

The subject in a RDF triple represents the resource to be described and it is either

an Internationalized Resource Identifier (IRI) or a blank node. The predicate is an

IRI which also indicates a resource (property), representing a relation between subject

resources and object resources. The object is an IRI of some other resource, blank

node or a literal value. IRIs are standard identifiers used for denoting any Web resource

involved in RDF statements. The IRIs in an RDF vocabulary often begin with a common

substring known as a namespace IRI. Some namespace IRIs are associated by convention

with a short name known as a namespace prefix. In some serialization formats it is

common to abbreviate IRIs that start with namespace IRIs by using a namespace prefix

in order to assist readability. A literal is a string that represents a specific value such as

strings, numbers, and dates for some properties. A blank node represents an anonymous

resource (either a literal or an IRI) that can have a local identifier, such as :b1.

Definition 2.1 (RDF graph). Let I, L and B be countably infinite pairwise disjoint

sets representing respectively IRIs, literals and blank nodes. An RDF graph is a finite

set of RDF triples (s, p, o), where (s, p, o) 2 (I [B)⇥ I ⇥ (I [L [B).

RDF statements are composed of two high-level types of conceptual elements: properties

and classes. Properties are the relationships that hold between pairs of resources. Classes

are groups of resources of the same type with some conceptual similarities. A member

2Resource Description Framework (RDF): https://www.w3.org/RDF/

Chapter 2. Preliminaries 10

of a class is often called an instance of that class. The relationship between instances

and classes in RDF is defined using the property rdf:type.

RDF statements can be represented in a variety of syntax notations and data serial-

ization formats, among which RDF/XML3, Terse RDF Triple Language (Turtle)4, and

N-Triples5.

SPARQL Protocol and RDF Query Language (SPARQL) is the standard query lan-

guage and protocol to retrieve and manipulate RDF graphs.6 SPARQL allows for a

query to consist of triple patterns, conjunctions, disjunctions, and optional patterns.

Each element of a triple pattern (the subject, predicate and object) can be a variable.

SPARQL describes, in the query, variables of a pattern to match and their values to use

for filtering, and extracts the sub-graphs that match the given pattern from an entire

RDF graph. The matching process results in the corresponding values of the specified

variables. The SPARQL language specifies four different query variations for different

purposes.

• SELECT: Returns all, or a subset of, the variables bound in a query pattern match.

• ASK: Returns true if a query pattern matches, false otherwise.

• CONSTRUCT: Returns an RDF graph constructed by substituting variables in a

set of triple templates.

• DESCRIBE: Returns an RDF graph that describes the resources found.

The following is an example of a SPARQL query (SELECT variant) to answer the

following question: What are the top 10 countries in Europe with the most death per

case ratio for the COVID-19 pandemic?

3https://www.w3.org/TR/rdf-syntax-grammar/
4https://www.w3.org/TR/turtle/
5https://www.w3.org/TR/n-triples/
6SPARQL Protocol and RDF Query Language: https://www.w3.org/TR/rdf-sparql-query/

Chapter 2. Preliminaries 11

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX covid19: <http://www.example.fr/covid19#>

SELECT ?country

WHERE

{

?country rdf:type :EuropeanCountries .

?country covid19:confirmedCase ?x .

?country covid19:death ?y .

BIND (100*(?y / ?x) AS ?fatalityRate)

}

ORDER BY DESC(?fatalityRate)

LIMIT 10

Two main standards have been proposed for defining semantics over RDF data: RDF

Schema (RDFS) and the Web Ontology Language (OWL). While RDFS suffices to ex-

press the semantic definitions needed to automate the deductions, more complex defini-

tions are supported by the OWL standard. The following sections first deal with RDFS

then with OWL.

2.3 Resource Description Framework Schema (RDFS)

Resource Description Framework Schema (RDFS)7 is a vocabulary description language

to extends the RDF vocabulary with a set of novel terms that form the RDFS vocabulary.

RDFS describes properties and classes of RDF resources, with a semantics for general-

ization hierarchies of such properties and classes. Classes are identified by IRIs and are

described using the RDF Schema resources rdfs:Class and rdfs:Resource. An

RDF schema (RDFS) provides (i) abstraction mechanisms, such as (multiple) class sub-

sumption rdfs:subClassOf or property subsumption rdfs:subPropertyOf and

(multiple) classification of resources; (ii) rdfs:domain and rdfs:range class specifi-

cations to which properties can apply; (iii) documentation facilities for names defined in

a schema such as rdfs:label property that relates a resource with a human-readable

label giving its name, etc.

RDFS allows for specifying the following ontological constraints on classes and proper-

ties:

• Class specialization constraints denoted by triples of the form,

(C rdfs:subClassOf D) specify that a class C is a subclass of a class D,

7Resource Description Framework Schema (RDFS): https://www.w3.org/TR/rdf-schema

Chapter 2. Preliminaries 12

i.e., that every instance i of C is an instance of D:

8 i ((i rdf:type C)) (i rdf:type D))

• Property specialization constraints denoted by triples of the form,

(p rdfs:subPropertyOf q) specify that a property p is more specific than a

property q, i.e., any pair of resources related by p must also be related by q:

8 i 8 j ((i p j)) (i q j))

• Domain constraints for a property denoted by triples of the form,

(p rdfs:domain C) specify that every subject of a property p is an instance

of the class C, i.e.:

8 i 8 j ((i p j)) (i rdf:type C))

• Range constraints for a property denoted by triples of the form,

(p rdfs:range D) specify that every object of a property p is an instance of

the class D, i.e.:

8 i 8 j ((i p j)) (j rdf:type D))

As an example, the hasSymptom property is sub-property of the hasMedicalIssue

property and it has Disease and Symptom classes as domain and range of this property.

The hasMedicalIssue property has another sub-property hasSign. The Symptom

class have also three sub-classes such as ChronicSymptom, RelapsingSymptom, and

RemittingSymptom [Kin68]. Chronic symptoms tend to recur over a long period of

time. Remitting symptoms are ones that improve or disappear, and relapsing symptoms

are ones that were considered to be resolved but have returned.

2.4 Web Ontology Language

The Web Ontology Language (OWL)8 is a family of knowledge representation languages

for publishing and sharing ontologies on the World Wide Web. OWL extends RDFS

with richer ontological constraints. “OWL 2”9 is an extension and revision of the first

version of OWL (referred as “OWL 1”) developed by the W3C Web Ontology Working

Group, published in 2004.

Features of OWL are a collection of expressive operators for concept description including

intersection, union and complement operators, plus explicit quantifiers for properties and

relationships, and the ability to specify characteristics of properties, such as transitivity

or functionality, etc.

8Web Ontology Language (OWL): https://www.w3.org/OWL/
9Web Ontology Language (OWL 2): https://www.w3.org/TR/owl2-overview/

Chapter 2. Preliminaries 13

OWL ontological constraints: A main feature of OWL is to define new classes from

existing ones by defining restrictions on the members that it may contain. It includes

restrictions on the value that is taken for a given property, on the class to which a value

belongs on a given property, and on the number of values taken for a given property.

Such features enable increasingly complex class definitions.

The language construct in OWL for creating new class descriptions based on descrip-

tions of the prospective members of a class (instances) is called the property restriction.

OWL distinguishes two kinds of property restrictions: value constraints and cardinality

constraints. Property restrictions have the general form shown as follows:

<owl:Restriction>

<owl:onProperty rdf:resource="(some property)" />

(precisely one value or cardinality constraint)

</owl:Restriction>

OWL has its own class construct, owl:Class. The class owl:Restriction is defined

as a subclass of owl:Class. The owl:Restriction class is used in association

with a blank node class, and some specific restriction properties used for defining the

new class. The restriction class should also have exactly one triple that represents the

value constraint or cardinality constraint on the property under consideration. Property

restrictions can be applied both to datatype properties (properties for which the value

is a literal) and object properties (properties for which the value is an individual).

2.4.1 Value Constraints

OWL provides four value constraint properties which are owl:someValuesFrom,

owl:allValuesFrom, owl:hasValue, and owl:oneOf. Each describes how the

new class is constrained by the possible asserted values of properties. In the following,

we will describe their semantics and syntaxes in RDF triples and/or RDF graphs.

OWL:someValuesFrom : The value constraint owl:someValuesFrom is a built-in

OWL property that links a restriction class to a class description or a data range. A

restriction containing an owl:someValuesFrom constraint is used to describe a class

C of all individuals for which at least one value of the property P is an instance of the

class description D or a data value in the data range. The semantic of the restriction

(C: P someValuesFrom D) is as follows:

8i((i rdf:type C)) 9j((j rdf:type D) ^ (i P j)))

This restriction can be written in RDF using several RDF triples shown as follows:

Chapter 2. Preliminaries 14

(C rdfs:subClassOf _:b1)

(_:b1 rdf:type owl:Restriction)

(_:b1 owl:onProperty P)

(_:b1 owl:someValuesFrom D)

As an example, we could define a class for Coronavirus disease (CoronavirusDisease),

that has some values from the class RemmitingSymptom on the property hasSymptom.

Figure 2.1 shows the RDF graph representation of this restriction in the form of

(CoronavirusDisease: hasSymptom someValuesFrom RemmitingSymptom).

owl:Restric4on

hasSymptomowl:onPropertyrdfs:subClassOf

rdf:type owl:someValuesFrom

Coronavirus

Disease

RemiQng

Symptom

_:b1

Figure 2.1: The owl:someValuesFrom RDF graph for CoronavirusDisease
class on the property hasSymptom.

OWL:allValuesFrom : The value constraint owl:allValuesFrom links a restric-

tion class to either a class description or a data range. A restriction containing an

owl:allValuesFrom constraint is used to describe a class C of all individuals for

which all values of the property P are either instances of the class description D or are

data values within the specified data range.

The semantic of the restriction (C: P allValuesFrom D) is as follows:

8i8j((i rdf:type C) ^ (i P j)) (j rdf:type D))

This restriction can be written in RDF using several RDF triples shown as follows:

(C rdfs:subClassOf _:b1)

(_:b1 rdf:type owl:Restriction)

(_:b1 owl:onProperty P)

(_:b1 owl:allValuesFrom D)

OWL:hasValue : The third kind of restriction in OWL is called owl:hasValue.

As in the other two restrictions, it operates on a particular property as specified by

owl:onProperty. This value constraint links a restriction class to a value v, which

can be either an individual or a data value. owl:hasValue is leveraged to produce

a restriction class C whose description is of the form “All individuals for which the

Chapter 2. Preliminaries 15

property P has at least one value semantically equal to v (it may have other values as

well)” and we will denote it by (C: p value v) throughout the thesis. The semantic

of this restriction is as follows:

8i((i rdf:type C)) (i p v))

This restriction can be written in RDF using several RDF triples shown as follows:

(C rdfs:subClassOf _:b1)

(_:b1 rdf:type owl:Restriction)

(_:b1 owl:onProperty P)

(_:b1 owl:hasValue v)

For example, as shown in Figure 2.2, the class CoronavirusDisease has the value

respiratory droplets on the property transmittedBy. The respiratory

droplets is an instance of AerosolTransmission class.

owl:Restric4on respiratory_droplets

transmiRedBy
owl:onPropertyrdfs:subClassOf

rdf:type owl:hasValue

rdf:type

AerosolTransmission

Coronavirus

Disease
_:b1

Figure 2.2: The owl:hasValue RDF graph for CoronavirusDisease class on
the property transmittedBy.

Formally, the hasValue restriction is just a special case of the someValuesFrom

restriction, in which the class D is a singleton (D = {v}). Although it is just a special

case, owl:hasValue has been identified in the OWL standard in its own right, because

it is a very common and useful modeling form.

OWL:oneOf : OWL provides the means to specify a class via a direct enumeration of its

members with the owl:oneOf property. The value of this built-in OWL property must

be a list of individuals which collectively form the instances of a class. The class extension

of a class described with owl:oneOf contains exactly the enumerated individuals. The

semantics of the restriction (C: p oneOf {v1,...,vn}) is as follows:

8i((i rdf:type C))
_

k2[1..n]

(i p vk))

Chapter 2. Preliminaries 16

As an example, we could define the class aerosol transmission (AerosolTransmission)

as equivalent to the class with the following members: {respiratory droplets,

airborne droplets}. The following syntax is the set of RDF triples representing the

(AerosolTransmission) class.

AerosolTransmission owl:equivalentClass

[

owl:oneOf (respiratory_droplets airborne_droplets)

]

The combination of owl:oneOf and owl:someValuesFrom provides a generalization

of owl:hasValue. Whereas owl:hasValue specifies a single value that a property

can take, owl:someValuesFrom combined with owl:oneOf specifies a distinct set of

values that a property can take.

2.4.2 Cardinality Constraints

Up till now, we have seen restrictions that define classes based on the presence of certain

values for given properties. OWL allows another type of ontological constraints, based

on the number of values a property can take. Such a restriction is called a “cardinality

restriction”. In OWL, like in RDF, it is assumed that any instance of a class may

have an arbitrary number (zero or more) of values for a particular property. To make

a property required (at least one), to allow only a specific number of values for that

property, or to insist that a property must not occur, cardinality constraints can be

used. All cardinality constraints can be qualified or unqualified, i.e., in the former case,

the cardinality constraint only applies to individuals that are connected by the property

and are instances of the qualifying class, and in the latter case, the restriction applies

to all individuals that are connected by the property (this is equivalent to the qualified

case with the qualifying class equal to owl:Thing). OWL provides three constructs

MinCardinality, MaxCardinality, ExactCardinality, which constrain those

individuals that are connected by a property to at least, at most, and exactly a given

number of values (individuals or data values) of a specified class expression, respectively.

The semantics of these restrictions are as follows:

• MinCardinality denoted by (C: p min k D)

8i((i rdf:type C)) 9o1, ... , ok(
^

i,j2[1,...,k]

oi 6= oj^
^

j2[1,...,k]

(oj rdf:type D)^(i p oj))

Chapter 2. Preliminaries 17

• MaxCardinality denoted by (C: p max k D)

8i8o1, ... , ok+1((i rdf:type C) ^
^

j2[1,...,k+1]

(i p oj) ^ (oj rdf:type D)))

_

j 6=l,j,l2[1,...,k+1]

(oj = ol)

• ExactCardinality denoted by (C: p exactly k D). Exact cardinality is

the intersection of min cardinality and max cardinality.

The syntax for three different cardinality constraint constructs is similar. Here are the

RDF triples for qualified restrictions:

(C rdfs:subClassOf _:b1)

(_:b1 rdf:type owl:Restriction)

(_:b1 owl:minQualifiedCardinality/owl:maxQualifiedCardinality/owl:

qualifiedCardinality "k"ˆˆxsd:nonNegativeInteger)

(_:b1 owl:onProperty P)

(_:b1 owl:onClass D)

Here are the RDF triples for unqualified restrictions:

(C rdfs:subClassOf _:b1)

(_:b1 rdf:type owl:Restriction)

(_:b1 owl:minCardinality/owl:maxCardinality/owl:Cardinality "k"ˆˆxsd:

nonNegativeInteger)

(_:b1 owl:onProperty P)

As an example shown in Figure 2.3, the class CoronavirusDisease has at least one

value for the property diagnosedWith on the ViralTesting class.

owl:Restric4on

diagnosedWith
owl:onPropertyrdfs:subClassOf

rdf:type

owl:onClass

ViralTest

1

owl:minCardinality

Coronavirus

Disease

Figure 2.3: The owl:minQualifiedCardinality RDF graph for
CoronavirusDisease class on the property iagnosedWith and the class

ViralTesting.

Chapter 2. Preliminaries 18

Table 2.1: RDFS and OWL constraints considered in this thesis.

Type Shortened syntax Semantics

Class specialization (C rdfs:subClassOf D) 8 i ((i rdf:type C)) (i rdf:type D))

Property specialization (p rdfs:subPropertyOf q) 8 i 8 j ((i p j)) (i q j))

Domain restriction (p rdfs:domain C) 8 i 8 j ((i p j)) (i rdf:type C))

Range restriction (p rdfs:range D) 8 i 8 j ((i p j)) (j rdf:type D))

Value restriction (C: p owl:hasValue v) 8 i ((i rdf:type C)) (i p v))

Alternative values restriction (C: p owl:oneOf [v1, ..., vn]) 8 i ((i rdf:type C))
W

k2[1..n] (i p vk))

Cardinality restriction (C: p owl:minCardinality k D) 8 i ((i rdf:type C)) 9o1, ... , ok(
V

i,j2[1,...,k] oi 6= oj

^
V

j2[1,...,k] (oj rdf:type D) ^ (i p oj))

OWL provides the facility to use any natural number as a cardinality. The particular

restrictions of cardinalities to the numbers 0 and 1 have special modeling utility as

follows [AH11]:

• minCardinality 1: The restriction of the minCardinality to 1 indicates the

set of individuals for which some for the specified property is required. The Restric-

tion onProperty consumeTreatment minCardinality 1 explicitly spec-

ifies the set of individuals that consume at least one treatment.

• maxCardinality 1: The restriction of maxCardinalilty to 1 specifies that a

value is unique (but need not exist). The restriction onProperty consumeTrea-

tment maxCardinality 1 explicitly specifies the set of individuals who con-

sume at most one treatment. In other words, they have limited themselves to a

single treatment.

• minCardinality 0: The restriction of the minCardinality to 0 describes a

set of individuals for which the presence of a value for the onProperty is op-

tional. In the semantics of OWL, this is superfluous (since properties are always

optional anyway), but the explicit assertion that something is optional can be

useful for model readability. The restriction onProperty consumeTreatment

minCardinality 0 explicitly specifies the set of individuals for which consum-

ing a treatment is optional.

• maxCardinality 0: The restriction of the maxCardinality to 0 indicates

the set of individuals for which no value for the specified property is allowed.

The Restriction onProperty consumeTreatment maxCardinality 0 ex-

plicitly specifies the set of individuals that consume no treatment.

Chapter 2. Preliminaries 19

2.5 Summary

In this chapter, we provided some background view on the notion of semantic Web,

semantic Web languages and ontological constraints. All these notions are the backbone

of this thesis, since we intend to propose an approach to interactively model and update

ontologies guided by ontological constraints. Table 2.1 summarizes all the ontological

constraints (RDFS and OWL constraints) that we consider in this thesis.

Chapter 3

Ontology Engineering for

Simulation-based Training in

Medicine

3.1 Introduction

The domain of Medicine has traditionally relied on an apprentice-style approach to learn-

ing and experience [Lat10]. This inevitably exposes patients to inexperienced healthcare

practitioners, and the dangers and harm associated with this practice are increasingly

unacceptable [Lat10]. Simulation “is a technique to replace or amplify real-patient

experiences with supervised and guided experiences, artificially contrived to evoke or

replicate substantial aspects of the real world in a fully interactive manner” [Gab04].

Simulation-based medical education enables knowledge, skills, and attitudes to be ac-

quired for all healthcare professionals in a safe, educationally orientated, and efficient

manner. Simulation-based training initially began with life-like manikins and now en-

compasses an entire range of systems, from synthetic models all the way to high fidelity1

simulation suites.

Although the simulation-based training is required as a critical part of healthcare ed-

ucation and training [AMD+10], many healthcare educators are uncertain how best

to integrate simulation training into their programs and curricula. So far, only a few

pioneering healthcare educators have developed and documented a scarce pedagogical

expertise for setting up some training sessions based on simulation. We note that in all

medical fields, loss in accuracy is not expected and tolerated. Ontology modeling for

1In Healthcare Simulation, the manikins that most closely resemble human anatomy are designated
as high-fidelity manikins

21

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 22

simulation-based training domain is indeed an accurate way to design and share simu-

lation teaching units with less experienced educators and trainees, but at the same time

raises difficult issues of knowledge acquisition.

Despite the plethora of available Information Extraction (IE) tools and ontology learning

techniques which facilitate the knowledge acquisition and the transition from unstruc-

tured data to organized knowledge [ea20, NGJ+19], a majority of these approaches are

based on many underlying assumptions, mentioned below:

• First, it is assumed that the raw text is available, i.e., the task of obtaining such

text from diverse sources (Web pages, text documents, PDF documents, etc.) is

ensured;

• It is also assumed that certain loss in accuracy is both expected and tolerated;

• Some agreement is also assumed to exist, i.e., there is a universal truth about what

constitutes correct knowledge;

• Last, it is also assumed that the examples are readily available or easily obtainable

to train the models.

These assumptions are not satisfied in the domain of simulation-based training in Medicine

where expertise is in the hands of few pioneering teachers who have experienced the set-

ting up of simulation-based training sessions in some specific medical specialities.

In this chapter, we focus on the construction of specialized ontologies that capture the

skills of experienced experts in a particular domain, with the objective of sharing them

with a larger community of trainees or less experienced experts in the domain. This is

particularly the case for domains related to pedagogy, because teaching objectives are

hard to formalize and teaching methods are also hard to share within a common and

standardized referential.

This chapter is organized as follows: In Section 3.2, we present the related work on

ontology engineering. Then in Section 3.3, we detail our approach for the construction

of an ontology in the simulation-based medical education domain. We summarize the

chapter in Section 3.4.

3.2 Related Work

Ontology engineering (OE) studies the “activities that concern the ontology develop-

ment process, the ontology life cycle, and the methodologies, tools and languages for

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 23

building ontologies” [GPFLC06]. As Guarino and Oberle emphasize the collaboration

among stakeholders towards engineering commonly agreed ontologies [GOS09], Kotis et

al. [KVS20] assert that, ideally, an ontology engineering methodology (OEM) must sup-

port all involved stakeholders during the ontology life cycle, i.e., from the development

of seed ontologies to the continuous evolution and maintenance, keeping them “live”

to shape knowledge. OEMs can focus on developing ontologies from scratch or offer

support in the identification of ontological (and non-ontological) resources to be reused,

or can highlight some particular aspects of the development process.

Since 1996, several surveys on ontology engineering methodology have been written

[UG+96, FLGP02, CFLGP03, IMM+13, SSD13, SLR14, YNDJ16, KVS20] in order to

represent different aspects of a specific domain. Methodologies differ widely in their

development approach, stakeholders’ participation in the development process, details

in defining the tasks, and the support provided in various stages. According to [KVS20],

OEMs can be divided in three broad categories, depending on the types of actors involved

in the ontology engineering process:

• Non-collaborative OEMs: This category encompasses those OEMs that do

not emphasize the cooperation among stakeholders towards engineering commonly

agreed ontologies. These methodologies provide, in a systematic and formal way,

the set of phases, tasks, and workflows which are necessary to develop an ontol-

ogy. Representative examples are METHONTOLOGY [FLGPJ97], Uschold and

King’s methodology [UK95], On-To-Knowledge Methodology (OTKM) [SSSS01]

and FMCLGO [GDMF12].

• Collaborative OEMs: The methodologies in this category define, also in a sys-

tematic and formal way, the set of steps (phases, tasks, and workflows) necessary

to develop the ontology. Moreover, the methodologies emphasize the active in-

volvement of domain experts as well as knowledge engineers in all phases of OE

(specification, implementation, exploitation, and evaluation). A continuous coop-

eration toward a commonly agreed knowledge (and its formalization) is pivotal for

the success of these OEMs. A collaborative OEM generally comprises three main

phases: (i) ontology specification, (ii) ontology development and (iii) ontology ex-

ploitation and evaluation phase. Representative examples of such methods are Hol-

sapple and Joshi’s methodology [HJ02], HCOME [KV06], DILIGENT [VPTS05],

DOGMA-MESS [DMDLM06], UPON-Lite [DNM16], and NeOn [GPSF09]. These

methodologies will be introduced later in this section.

• Custom OEM: The methodologies in this category do not necessarily define

phases, tasks and workflows in a formal and systematic way. However, they still

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 24

engage the active involvement of communities of practice and the use of tools

(collaborative or not), such as Wiki and GitHub technologies, towards developing

ontologies in an agile, decentralized, and most of the times collaborative manner.

Representative approaches are included in YAGO [RSH+16], MedRed [CDH+17],

Salatino et al. [STM+18], and Arndt et al. [ANR+19].

Our focus in this thesis is on ill-defined domains, i.e., domains where formal models

are lacking, and documentations are scarce. Collaborative OEMs are the greatest fit

for such domains, as they involve different actors to compromise the scarcity of re-

sources. The team developing the shared ontology via a collaborative methodology,

consists of stakeholders with different (and probably divergent) interests and comple-

mentary competencies. The roles involved in the development team are typically the

followings [GPFLC06]:

• Domain experts. These members have the knowledge/expertise of the domain

and/or data sources. Oftentimes, they are practitioners who are not acquainted

with ontology languages, specifications, etc.

• Ontology engineers. These members have the knowledge/expertise to design

and build ontological specifications and coordinate an OE task.

• Pedagogical engineers. The members act as a bridge between the domain

experts and ontology engineers, by ensuring a complete transition of knowledge

from the former group to the latter.

• Knowledge engineers. These members exploit the ontology in “operational”

conditions, to solve problems, or perform data-driven analysis tasks. Knowledge

engineers can be domain experts, but this is not necessarily the case.

In the following, we describe some recent collaborative OEMs which satisfy our basic

requirements for the continuous evolution during their life cycle.

Holsapple and Joshi’s OEM. In [HJ02], Holsapple and Joshi propose the first com-

prehensive methodology for collaborative ontology design based on a Delphi-like ap-

proach [LT+75] to structure the consensus-building process. The main objective of this

work is to support the creation of a static ontology. First, an initial ontology is devel-

oped by merging or integrating existing ontologies. Then the ontology is extended and

modified based on the feedback from a panel of domain experts. The engineering process

is divided into four phases: (i) preparation by defining design criteria and boundaries;

(ii) first ontology production for participants after orientation; (iii) iterative improve-

ment of the first ontology via feedbacks collected from experts; (iv) application of the

ontology in a specific domain.

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 25

NeOn. In [SF10, GPSF09], a scenario-based methodology is proposed to support the

collaborative aspects of ontology construction. NeOn emphasizes the development of

ontology networks as well as the reuse of existing ontological and non-ontological re-

sources to the development of an ontology [KVS20]. This methodology is based on the

analysis of a set of nine ontology development scenarios: (i) from specification to im-

plementation, encompassing all the core activities related to engineering; (ii) reusing

and re-engineering non-ontological resources; (iii) reusing ontological resources; (iv)

reusing and re-engineering ontological resources; (v) reusing and merging ontological

resources: ontology matching tools enable ontology aligning or merging; (vi) reusing,

merging and re-engineering ontological resources; (vii) reusing ontology design patterns

(ODPs); (viii) restructuring ontological resources; and (ix) localizing ontological re-

sources to translate all the terms of the ontology into another natural language.

HCOME. In [KV06, KP10], Human-Centered Ontology Engineering Methodology

(HCOME) is proposed as a human-centred approach for the collaborative engineering

of ontologies, where the active participation of knowledge engineers in the ontology

life cycle, in close collaboration to domain experts and ontology engineers, is empha-

sized. An iterative approach to the execution of tasks at all three phases (specification,

conceptualization, exploitation/evaluation) is supported, such as the discussion of con-

ceptualizations, and detailed versioning of evolving specifications. A data-driven and

bottom-up conceptualization approach is also proposed in the updated version of the

HCOME methodology [KP10], supported by learning seed ontologies (knowledge in that

case is extracted from query logs).

DILIGENT. Akin to HCOME, DILIGENT method (DIstributed, Loosely-controlled

and evolving Engineering of oNTologies) [VPTS05] focuses on a user-centric ontology

development which is divided into several phases to be carried out in multiple iterations:

(i) build collaboratively the first version of an ontology (seed ontology) through a core

team of domain experts, users, knowledge engineers, and ontology engineers; (ii) adapt

the ontology locally to the specific requirements of each knowledge engineer in his/her

respective environment; (iii) analyze local branches of the shared ontology with respect

to their mutual differences via an ontology engineering board; (iv) introduce a new

version of the shared ontology based on changes agreed in the previous phase; (v) update

local ontologies locally by knowledge engineers via reusing new terms instead of using

their previously defined local terms. As it is obvious, the approach stresses on the

distributed and collaborative construction of ontologies.

DOGMA-MESS. The work in [DMDLM06, DLD08] is an extension of the Dogma

methodology, called DOGMA-MESS, toward inter-organizational support. It is a col-

laborative OEM that supports the modeling of shared ontologies in stakeholders’ own

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 26

terminology and context. To accomplish that, four modes of knowledge conversion are

introduced: socialization, externalization, combination, and internalization. Technically,

at the core of the approach sits an Ontology Server, which is embedded in a central on-

tology evolution support system. There are three types of participants: the core domain

expert, the domain expert, and the ontology engineer. The ontology evolution process

is driven by social knowledge conversion modes. This process is iteratively performed

until an optimum trade-off between differences and commonalities of organizational and

common perspectives is reached.

UPON-Lite. The OEM proposed in [DNM16] fosters the active role of stakeholders

in knowledge identification and definition, through a participative social approach sup-

ported by easy-to-use tools (e.g., diagrams, spreadsheets, etc). The role of the domain

experts is primary in gathering information and defining and conceptualizing the do-

main(s), while the role of ontology engineers is sidelined, as they interfere almost at

the end of the process to produce the formal model. UPON-Lite is composed of six

steps, each of which produces an output that is enriched and refined in the consecutive

step: (i) domain terminology (identification of the main terms of the domains under

investigation), (ii) domain glossary (the definitions of the terms), (iii) taxonomy (the

hierarchical organization) (iv) predication (connect terms representing properties to the

entities they characterize), (v) parthood (meronymy) (identification of complex entities

and their components), and (vi) ontology (generation of the ontology in a formal lan-

guage). The process of ontology building and management is carried out on a social

media platform. Provided examples are based on Google Docs suite2, in particular with

shared Google Sheets for OE, in conjunction with Google Forms and Google+ for other

functions, such as debating and voting. This methodology follows a data-driven and

bottom-up approach to OE.

As discussed in [CFLGP03, KVS20], the aforementioned methodologies focus on different

aspects of ontology engineering, mentioned below:

• Ontology creation/reuse. Some methodologies are designed to build ontolo-

gies from scratch (as in DILIGENT and UPON-Lite), or promote the reuse/merge

of existing ontologies, (as in Holsapple and Joshi’s OEM, NeOn, HCOME, and

DOGMA-MESS). The process of ontology building and management in UPON-

Lite is carried out on a social media platform, while DILIGENT proposes to gener-

ate the seed ontology from the result of a quick agreement between all participants

on the high-level terms.

2https://www.google.com/docs/about/

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 27

• Degree of application dependency. DOGMA-MESS is application-dependent,

because the ontology is built based on a given application. Holsapple and Joshi’s

OEM and HCOME are instances of semi-dependent methods. DILIGENT is an

application-independent method, as its ontology development process is totally

independent of the utilisation of the ontology.

• Strategies for identifying concepts. Holsapple and Joshi’s OEM is a top-

down approach. HCOME, DOGMA-MESS, and UPON-Lite are instances of a

bottom-up approach. Also DILIGENT is a middle-out approach.

It is argued in [ABGRA14] that the choice of an effective methodology for building

ontologies is a difficult task. On one hand, proposed OEMs are not unified, and each

group of experts in different entities applies its own approach [CFLGP03]. On the

other hand, real-world scenarios require customizable methods, while the majority of the

methods propose a pre-defined workflow [ST06]. Thus, it is important to understand the

features guiding the choices of OEM (and its management) which are aligned with the

requirements elicited with the stakeholders, in terms of feasibility, roles and expertise,

and possible scenarios of application and reusability.

3.3 Our Ontology Design Approach

By acknowledging the unavailability of domain-related documentations and require-

ments, the inaccessibility to the community of contributors, the gradual elicitation of

the domain knowledge, the required level of rigor in quality control, and the complex-

ity of the representation, we employ a mixture of DILIGENT and UPON-Lite as our

engineering methodology for the development of the simulation-based medical ontology.

We adapted these methodologies to build OntoSAMSEI ontology based on the partic-

ipation of several geographically dispersed experts, with different and complementary

skills, in all steps of ontology engineering. Our contribution consists of a methodology

with four steps, illustrated in Figure 3.1.

In the following, we describe each step of the OntoSAMSEI process.

3.3.1 Ontology Bootstrapping

The process begins by core domain experts and ontology engineers, where they build an

initial ontology with the outputs elicited from the stakeholders meeting and reported

expertise of a group of pioneer trainers (domain experts). Those domain experts have

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 28

Available

documents

Ontology

bootstrapping

Ontology

core

Design and

disseminate

Online

ques.onnaire

Enhancement

Improved

ontology

Ontology

update

Figure 3.1: The four steps of our incremental ontology engineering method

documented simulation learning units of various types. The team involved in building

the initial ontology was intentionally relatively small, in order to find a manageable and

consensual first version of the ontology, more easily and quickly.

The outcome of the first step is the core structure of OntoSAMSEI for a few number of

simulation learning sessions, i.e., suture, port-a-cath placement, blood transfusion, and

hygiene. We ratify the simplest elements to formalize, e.g., targeted audiences, learning

objectives, necessary prerequisites, required resources (humans, materials, consumables,

and simulators), risks incurred during the simulation session and in real situation, and

evaluation of the prerequisites and objectives. The obtained general structure of On-

toSAMSEI contains 111 classes, 34 properties, and 121 instances. Figure 3.2 illustrates

a part of the hierarchies of properties and classes declared in the core OntoSAMSEI,

where yellow circles denote the classes, blue boxes denote object properties, and green

boxes denote data type properties.

Classes

owl:Thing

samsei:Gesture

samsei:Procedure

samsei:Resource

samsei:Risk

samsei:TeachingUnit

samsei:Simula@onLearningUnit

samsei:Suture

samsei:BloodTransfusion

samsei:PortACathPlacement

samsei:Material

samsei:HumanResources

samsei:Simulator

samsei:simula@onSessionAudience

samsei:evalua@on

samsei:objec@veEvalua@on

samsei:prerequisiteEvalua@on

samsei:objec@ves

samsei:prerequisites

samsei:knowHowToAchieve

samsei:toLearn

samsei:toObserve

samsei:toValidate

samsei:resources

samsei:hasMaterials

samsei:hasHumanResources

samsei:hasSimulatorResources

samsei:risks

samsei:minMaxDura@onOfSimula@onSessi

samsei:minMaxnumberOfLearnerPerSimula

Proper@es

samsei:Training

samsei:NurseTraining

samsei:MedecinTraining

samsei:Hygiene

samsei:Consumable

samsei:hasConsumables

Figure 3.2: A part of the hierarchy of properties and classes in the core OntoSAM-

SEI ontology, visualized in TopBraid Composer.

Several properties assign samsei:SimulationLearningUnit class as their domain.

The property samsei:simulationSessionAudience defines the targeted audience

of the simulation learning units, and links the above class to the samsei:Training

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 29

class. The property samsei:objectives defines the goals and objectives of the learn-

ing units, and links those units to two classes of samsei:Procedure and samsei:

Gestures. The objectives define what need to be learned by performing the actions,

i.e., procedures and gestures. The procedures include different actions in the training,

and the gestures define the physical steps to follow in each procedure. The property

samsei:prerequisites defines what needs to be done before the learning unit be-

gins. It contains four sub-properties: samsei:knowHowToAchive (what knowledge

needs to be achieved), samsei:toLearn (what procedure(s) and/or gesture(s) need to

be learned), samsei:toObserve (what material(s) should be observed, e.g., watching

a pedagogical video), and samsei:toValidate (what other simulation learning units

should be validated). The property samsei:evaluation defines the different types

of assessments for the learning units, including the assessment of their objectives and

prerequisites. The property samsei:resource defines various resources needed for

the learning unit, including samsei:Material, samsei:HumanResource, samsei:

Simulator, and samsei:Consumable.

3.3.2 Knowledge Acquisition by an Online Questionnaire

In contrast to known ontology engineering methodologies available in the literature

[UK95, CDH+17, HJ02], our focus is on the ontology development for ill-defined do-

mains. Hence, we require online ontology engineering support to identify and elicit

domain knowledge. Therefore, we teamed up with a pedagogical engineer to design an

online questionnaire and disseminate it among health educators in the domain of sim-

ulation learning to acquire the most accurate description of various simulation learning

units.

We have designed the online questionnaire, based on the (generic) properties declared for

the specific training sessions described in the bootstrap step, with as many sections in

the questionnaire as properties to be filled for a training session. These sections expose

respectively the targeted audience, the aimed objectives, the prerequisites, the resources

required (human, consumable, simulator, material), the evaluation mode of prerequisites

and objectives, as well as the associated risks. There is also a section to ask experts

whether they are willing to continue their collaboration with our project. Figure 3.3

illustrates the part of the questionnaire corresponding to the required resources. The

full questionnaire is presented in Appendix A.

For the campaign of the questionnaire dissemination, we created a directory listing

1223 health professionals, and provided face-to-face or remote support to help them

in answering the questionnaire. In the course of 7 months, we received 304 responses,

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 30

Figure 3.3: A part of disseminated questionnaire to educe the required resources.

representing a 25% return rate nationwide. Table 3.1 depicts the distribution of answers

in three categories of complete, incomplete, and invalid answers. Experts who answered

more than 40% of the questionnaire count as “complete”, otherwise “incomplete”. Also,

the experts with irrelevant answers count as “invalid”. Moreover, 60.25% of the experts

declared that they want to continue cooperating with the project.

Table 3.1: Distribution of domain experts as a function of questionnaire responses.

Agreed for future collaboration Not agreed for future collaboration

Nb of complete answers 55.00 % 6.00%

Nb of incomplete answers 5.25% 22.25%

Invalid answers 11.50%

To provide ample expressivity for the experts, we let most answers in the subjective

parts of the questionnaire to be of type free text. The advantage of this design choice

is that the experts do not go through the burden of selecting options in large lists, and

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 31

hence they are motivated to enter their knowledge in whatever form they want. The

inconvenience, however, is that the answers are not unified, as the experts may use dif-

ferent terminology or phrasing structure to describe their knowledge. To alleviate this

irregularity, we employ two simple yet effective text mining approaches, namely “noun

phrase extraction” and “part-of-speech (POS) tagging” [Lor18], to find commonalities

between the answers. First, by employing POS tags, we pruned unnecessary and inef-

ficacious parts of the responses, e.g., parts tagged as coordinating conjunctions (“and”,

“or”, “for”, etc.) and modals (“could”, “will”, etc.). Then, the retrieval of noun phrases

allowed us to focus on the most important aspects of the answers.

By employing the aforementioned text mining approaches over the results of the online

questionnaire, we grouped the answers per each simulation unit. As a result, we identified

83 different simulation learning units, within which 30 were described frequently by the

different professionals, and the rest were either entered only once or described partially.

3.3.3 Enhancement

We improved and refined the core OntoSAMSEI by modeling commonalities between

the simulation units described by different professionals in different parts of the ques-

tionnaire. The resulting ontology is a hierarchy of classes and of properties enriched by

ontological constraints on the properties and on the classes that convey the constraints

that will have to be fulfilled by their future subclasses, sub-properties, or instances.

We added these simulation sessions to the hierarchy of simulation learning unit as a

descendant of the principled class. The enhanced structure of OntoSAMSEI using the

results of the online questionnaire reached 470 classes, 49 properties, 550 instances, and

700 constraints. Below, we show several extractions of different parts of the resulting

ontology. The full declaration of OntoSAMSEI ontology is accessible via the following

link: https://data.world/baghersh/ontosamsei.

OntoSAMSEI is modeled using an ontology editor and visual modeling environment

called TopBraid Composer [PCHK20]. It is a tool for creating and managing domain

models and ontologies in the Semantic Web standards, such as RDF, RDFS and OWL.

Each class, property, and instance is identified with a URI (Uniform Resource Identifier)

and has a label in both French and English languages. To increase readability, we employ

the namespace prefix samsei instead of the whole namespace URIs.

Figure 3.4 illustrates a part of the specialization hierarchies of properties and classes re-

sulting from RDFS ontological constraints declared in OntoSAMSEI. We highlight ad-

ditional classes and properties compared to the hierarchy of classes and properties in the

first step (Figure 3.2). We observe there has been ample enhancement to the following

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 32

classes: samsei:Material, samsei:Simulator, and samsei:Training. Also

there exist 26 added classes to the simulation learning units, such as samsei:Echocard-

iography, samsei:Intubation, and samsei:RoboticSurgery. Moreover, the

enhancement process has resulted in the creation of new classes, i.e., samsei:Knowl-

edge (the knowledge bearing the specialities of the learning units) and samsei:Cont-

ent (docimological and pedagogical contents, e.g., courses, medias, MOOCs3, and seri-

ous games).

Classes

owl:Thing

samsei:Knowledge

samsei:Gesture

samsei:Procedure

samsei:Resource

samsei:Risk

samsei:TeachingUnit

samsei:Simula@onLearningUnit

samsei:Echocardiography

samsei:Intuba@on

samsei:PortACathPlacement

samsei:Organ removing

samsei:InfusionSupplies

samsei:Protec@veSupplies

samsei:Material

samsei:HumanResources

samsei:Simulator

samsei:Synthe@cSimulator

samsei:Par@alManikin

samsei:VenousChestSimulatorManikin

samsei:correspondToTraining

samsei:evalua@on

samsei:objec@veEvalua@on

samsei:prerequisiteEvalua@on

samsei:trainingSessionEvalua@on

samsei:cer@fica@onEvalua@on

samsei:hasTutor

samsei:objec@ves

samsei:prerequisites

samsei:knowHowToAchieve

samsei:toLearn

samsei:toObserve

samsei:toValidate

samsei:resources

samsei:equipmentSupplies

samsei:humanResources

samsei:simulatorResources

samsei:risks

samsei:displayable

samsei:dura@on

samsei:dura@onOfSimula@onSession

samsei:numberOfLearner

samsei:numberOfLearnerPerSimula@onSe

samsei:isValida@ng

samsei:immersion degree

samsei:forAcademicYear

Proper@es

samsei:simula@onEquipmentRisk

samsei:physicalRisks

samsei:Training

samsei:NurseTraining

samsei:MedecinTraining

samsei:MidwifeTraining

samsei:Robo@cSurgery

samsei:ArterialPuncture

samsei:Delivery

samsei:Opera@ngRoomHygiene

samsei:Suture

samsei:BloodTransfusion

samsei:Hygiene

samsei:behavioralRisks

samsei:hasSequenceOfGestures

samsei:hasSubProcedure

samsei:simula@onSessionAudience

samsei:Content

Figure 3.4: A part of the hierarchy of properties and classes in the OntoSAMSEI

ontology, visualized in TopBraid Composer.

We also note that there exist properties which specialized several other properties, such

as the property samsei:resources, specialized in samsei:equipmentSupplies,

samsei:simulatorResources, and samsei:humanResources. As an example,

we focus on a samsei:SimulationLearningUnit sub-class called samsei:Suture

to describe the added properties. The properties samsei:simulationEquipment-

Risk, samsei:physicalRisks, and samsei:behavioralRisks are added as new

sub-properties of the samsei:risks. For instance for samsei:Suture, a samsei:

simulationEquipmentRisk could be “injury caused by needle”. The property sam-

sei:trainingSessionEvaluation is added as a new sub-property of the samsei:

evaluation property to define the evaluation of the participants for the learning unit.

3Massive open online course

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 33

The property samsei:certificationEvaluation is another new sub-property of

the samsei:evaluation property which defines the type of the final assessment for

a learning unit. The properties samsei:numberOfLearner and samsei:duration

are also new properties to define the number of learners in the learning unit, and the

duration of the unit, respectively.

samsei:PortACathPlacementName:

Chambre implantable {@fr}

Port-a-Cath placement {@en}

samsei:Simula@onLearningUnit

samsei:objec@ves value samsei:implan@ng_port-a-cath

samsei:simula@onSessionAudience min 1 samsei:Forma@on

samsei:hasBehavioralRisk value samsei:ExcessiveStressOfLearners

samsei:dura@onOfSimula@onSession min 1

samsei:equipmentSupplies min 0 samsei:InfusionSupplies

samsei:equipmentSupplies min 1 samsei:HuberNeedle

samsei:equipmentSupplies min 1 samsei:FixedTape

samsei:equipmentSupplies min 1 samsei:PortACath

samsei:equipmentSupplies min 1 samsei:HydroAlcoholicProduct

samsei:equipmentSupplies min 1 samsei:Protec@veSupplies

samsei:equipmentSupplies min 1 samsei:Syringe

samsei:equipmentSupplies min 1 samsei:KitSuture

samsei:equipmentSupplies value samsei:port_a_cath_implant_checklist

samsei:equipmentSupplies value samsei:sterile_compress

samsei:simulatorResources min 1 samsei:VenousChestSimulatorManikin

samsei:humanResources min 1 samsei:SeniorTrainer

samsei:prerequisiteEvalua@on min 1 samsei:Evalua@onContent

samsei:knowHowToAchieve min 1 samsei:HandDisinfec@onProcedure

samsei:knowHowToAchieve value

samsei:puton_gloves_according_to_opera@ng_room_technique

samsei:numberOfLearnerPerSimula@onSession min 1

samsei:objec@veEvalua@on min 1 samsei:Evalua@onContent

samsei:toLearn min 1 samsei:AcquaintancePortACath

samsei:toObserve min 1 samsei:PortACatTechnicalSheet

samsei:toObserve min 0 samsei:VideoHuberNeedlePose

samsei:toValidate min 0 samsei:Infec@ousDiseaseHygieneTeachingUnit

∋

≥

∋

≥

≥

≥

≥

≥

≥

≥

≥

≥

≥

≥

≥

≥

∋

∋

∋

≥

≥

≥

≥

≥

≥

!

"

AnnotaDons

label

Class Axioms

subClassOF

Class Form

Figure 3.5: A part of the hierarchy of OWL constraints for the class samsei:Port-
ACathPlacement in OntoSAMSEI, visualized in TopBraid Composer.

Figure 3.5 demonstrates a part of the OWL ontological constraints declared in On-

toSAMSEI for the class samsei:PortACathPlacement which is a particular type

of simulation learning unit which educates students for placing a port or a catheter. The

demonstration is in the syntax proposed by TopBraid editor. The OWL ontological

constraints declared for this class are OWL:hasValue and OWL:minCardinality.

Note that among the OWL:minCardinality constraints, the “minCardinality 0” con-

straint is superfluous in the OWL semantics. However, it is beneficial to enforce the

“optional semantics” and enhance the model readability.

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 34

Figures 3.6 and 3.7 provide the RDF graphs corresponding to the following three onto-

logical constraints (highlighted in Figure 3.5):

• samsei:equipmentSupplies value samsei:sterlie compress;

• samsei:equipmentSupplies min 1 samsei:ProtectiveSupplies;

• and samsei:simulatorResources min 1 samsei:VenousChestSimulator-

Manikin.

These constraints are declared for two properties describing the required resources for

conducting this type of simulation-based training session, namely samsei:equipment-

Supplies and samsei:simulatorResources, which are specializations of the prop-

erty samsei:resources.

samsei:ressourcesowl:Restric4on samsei:sterile_compress

samsei:equipment

Supplies

owl:onPropertyrdfs:subClassOf

rdf:type owl:hasValue

Sterile compress

rdf:type rdfs:label

rdfs:label

samsei:PortA

CathPlacement

Bandage material samsei:BandageMaterial

rdfs:subPropertyOf

Equipment and

supplies

Resources

rdfs:label

rdfs:label

samsei:ressources

owl:Restric4on

samsei:equipment

Supplies

owl:onPropertyrdfs:subClassOf

rdf:type

owl:onClass

Protec:ve supplies

rdfs:label

samsei:PortA

CathPlacement

rdfs:subPropertyOf

Equipment and

supplies

Resources

rdfs:label

rdfs:labelsamsei:Protec4veSupplies

1

owl:minCardinality

Simula4on

training session

of Port-a-cath

placement

rdfs:label

rdfs:label

Simula4on

training session

of Port-a-cath

placement

(a) hasValue constraint: samsei:equipmentSupplies value samsei:sterile_compress

(b) Cardinality constraint: samsei:equipmentSupplies min 1 samsei:Protec4veSupplies

_:b2

_:b1

Figure 3.6: Two RDF constraint graphs (a) and (b) on the property
samsei:equipment-Supplies for the class samsei:PortACathPlacement.

Figure 3.6 visualize the RDF graphs associated to two first aforementioned constraints

on the property samsei:equipmentSupplies. The RDF graph in Figure 3.6(a) ex-

presses that samsei:sterilecompress (which is an instance of Bandage material) is

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 35

samsei:ressources

owl:Restric4on

owl:onPropertyrdfs:subClassOf

rdf:type

rdfs:label

samsei:PortA

CathPlacement

rdfs:subPropertyOf

Simulator-type

resources

Resources

rdfs:label

rdfs:label

1

owl:minCardinality

samsei:VenousChest

SimulatorManikin

Venous-access chest simulator manikin

samsei:simulator

Ressources

rdfs:label

owl:onClass

Simula4on

training session

of Port-a-cath

placement

Cardinality constraint: samsei:simulatorRessources min 1 samsei:VenousChestSimulatorManikin

_:b3

Figure 3.7: A RDF constraint graph on the property samsei:simulator

Resources for the class samsei:PortACathPlacement.

declared in the ontology as a mandatory value of the property samsei:equipmentSup-

plies. The RDF graph depicted in Figure 3.6(b) expresses as an additional constraint

that at least one equipment of type samsei:protectiveSupplies is mandatory for

simulating a placement of a port or a catheter.

Figure 3.7 shows the constraint graph associated to the third aforementioned cardinality

constraint for the property samsei:simulatorResources. The constraint expresses

that at least one simulator of type samsei:VenousChestSimulatorManikin is

mandatory to educate students to place a port or a catheter on the right spot of the

patient body.

3.3.4 Ontology Update

Beyond ontology engineering for OntoSAMSEI, our methodology assumes that the

ontology is evolving, and not static. Therefore, we design and implement an interactive

approach for updating ontologies by involving users in the process. We handle up-

dates automatically through a few interactions with the expert, using a Graphical User

Interface, named IOPE. The targeted users are domain experts, who are by default

inexperienced in ontology formalization and engineering. In particular, they may not be

familiar with the RDF format and the machinery underlying the different components of

an ontology. This expert-in-the-loop approach enables the domain experts to enrich the

current ontology interactively, by adding new classes and/or constraints, and also guides

the less experienced experts in adding new instances to the existing simulation-based

training units.

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 36

SimulaDon training session of Arterial puncture

Have acquired:

Other : Provide the label(s) (separated by a comma).

Prerequisite

General rules of hand hygiene (Knowledge of hygiene) (*)

Have seen: (*)

Video “Allen maneuver” (*) Provide item(s):

Enter the new item(s)

(separeted by a comma)

Other : Provide the label(s) (separated by a comma).

Warning! To save the informa/on entered on this page, you must click on "Save".

Save Return to page list

Indica:ons and contraindica:ons for arterial puncture (Knowledge of arterial puncture) (*)

General hygiene rules(Knowledge of hygiene) (*)

Arterial puncture online course (*)
Provide item(s):

Enter the new item(s)

(separeted by a comma)

Have validated: (*)

Other : Provide the label(s) (separated by a comma).

Figure 3.8: HTML Web page generated from the OntoSAMSEI ontology.

As an example of this interactive process, Figure 3.8 illustrates a page which is au-

tomatically constructed from OntoSAMSEI ontology to indicate the prerequisites of

the simulation learning sessions for performing arterial puncture4 on the patient body.

These prerequisites consist of acquiring general rules of hygiene and indications and

contraindications for the process of arterial puncture. They also indicate the contents

that the trainees should observe before attending this training session, i.e., watching

the pedagogical video of “Allen maneuver”5, and validating the arterial puncture online

course. Chapter 4 will provide details about the IOPE framework.

4http://www.lumen.luc.edu/lumen/MedEd/medicine/pulmonar/procedur/artstep1.htm
5https://www.physio-pedia.com/The Allen Test for Blood Flow

Chapter 3. Ontology Engineering for Simulation-based Training in Medicine 37

3.4 Summary

In this chapter, we presented the first contribution of this thesis, i.e., a methodology

for designing and engineering a simulation-based medical training ontology, called On-

toSAMSEI ontology. We categorized the related work on ontology engineering method-

ology (OEM) into three groups of non-collaborative, collaborative, and custom OEMs.

We detailed the literature on collaborative OEMs, as they are more adapted to ill-

defined domains (domains where formal models are lacking, and documentations are

scarce), and proposed our own approach as a mixture of DILIGENT [VPTS05] and

UPON-Lite [DNM16], two collaborative OEMs.

Our approach is a 4-step process. First, it begins by ontology bootstrapping (i.e., build a

small initial ontology with the help of domain experts), followed by knowledge elicitation

using online questionnaires to fill in the ontology. The third step is enhancement, where

we improve and refine the core ontology by modeling commonalities between the units

described by different professionals in different parts of the questionnaire. The resulting

ontology is a hierarchy of classes and of properties, enriched by ontological constraints

on the properties and on the classes. In the last step, ontology update, our approach

goes beyond ontology engineering to account for the evolving nature of the ontology. For

this aim, we design an interactive expert-in-the-loop approach for updating ontologies by

involving experts in the process. This approach is the subject of our second contribution,

detailed in Chapter 4.

Chapter 4

Interactive Ontology Population

and Enrichment

4.1 Introduction

“The only constant in life is change”1, and ontologies are not exceptions. By their

very nature, real world ontologies are dynamic artifacts that evolve copiously both in

their structure (i.e., data model) and their content (i.e., instances). Keeping them up-

to-date is hence a critical operation for most applications which rely on semantic Web

technologies. Ontology updates encompass both enrichment and population. Ontology

enrichment is the task of extending an existing data model of an ontology with addi-

tional concepts and semantic relations, while ontology population is the task of adding

new instances of concepts to the ontology, using domain documentations. Ontology

updates are typically performed in an exploratory and manual fashion, as the non-

documented knowledge of the domain expert is required to be taken into consideration.

However, these manual updates put burden on the experts and render the whole onto-

logical ecosystem inefficient. A major source of inefficiency is that “schema modeling”

and “data creation” are often inseparable (and indistinguishable by most novice experts)

in the process of ontology updates, hence smooth and lightweight updates attenuate.

In this chapter, we advocate for an alternative and more effective data publishing ap-

proach, and propose to handle updates automatically through a few interactions with

the expert, using a Graphical User Interface (GUI). This GUI operates on top of the

enhancement layer discussed in Chapter 3 to complete the loop of ontology engineering

and enable fruitful interactions with the user.

1Famous quote by Heraclitus, ancient Greek philosopher

39

Chapter 4. Interactive Ontology Population and Enrichment 40

The challenges associated to interaction-based automatic updates are two-fold:

• While ontologies are typically represented in the form of graphs, it is inherently

difficult and counterintuitive to provide a graphical graph-based representation of

ontologies (which presumably consist of thousands of entities and millions of facts)

for the consumption of experts. While there exist several methods to visualize a

graph structure [BBDW17, HFM07, FCL+17], the outcome is often hard to digest

by domain experts.

• It is unclear how experts should perform ontology updates through the interactions,

without the prior knowledge of the formal syntax and the semantics of ontology

languages.

We have designed IOPE (Interactive Ontology Population and Enrichment), a frame-

work for the automatic construction of a Graphical User Interface (GUI) consisting of

a set of Web pages that are pre-filled based on the ontological constraints present in

an input ontology. We leverage Web pages as a natural interaction means to tackle the

challenge of counter-intuitive ontology representations. IOPE generates and pre-fills the

Web pages from ontological constraints, which supports the controlled update process

of a given ontology. We illustrate the generation process of IOPE using some examples

on the OntoSAMSEI ontology. However, as IOPE is generic and can be applied to

ontologies from a variety of domains, Chapter 5 contains evaluations of the effectiveness

of our approach on other specialized ontologies as well.

This chapter is organized as follows: Section 4.2 presents the literature on ontology

update and automatic construction of forms. In Section 4.3, we present our methodology

for the automatic construction of a GUI from an input ontology, and its application for

guiding the ontology updates (population and enrichment). Last, we summarize this

chapter in Section 4.4.

4.2 Related Work

To the best of our knowledge, no approach in the literature has proposed and/or for-

malized an interactive system for enrichment and population of specialized ontologies

using ontological constraints. However, our work does relate to a number of others

in functionality and applicability. We discuss the related work about ontology editing

tools (Section 4.2.1) and graph-based and form-based ontology update (Sections 4.2.2

and 4.2.3, respectively).

Chapter 4. Interactive Ontology Population and Enrichment 41

4.2.1 Ontology Editing Tools

Various methods are proposed in the literature to update the structure (i.e., enrich-

ment) and the content (i.e., population), via interactions with domain experts [NSD+01,

PCHK20, MPE+15]. A vast majority of these methods offer solely one of the enrichment

or population updates.

In the literature, ontological updates are often performed using ontology editing tools,

such as Stanford’s Protégé [NSD+01], TopQuadrant’s TopBraid [PCHK20], and

Metaphacts’ Ontodia [MPE+15]. However, these systems require a basic understand-

ing of the RDF notation and of the OWL semantics to edit the ontology consistently.

Moreover, users must be able to recognize and correctly encode the expected property

relationships for each new class instance according to RDF(S)/OWL semantics. Second,

the list-based organization of the ontology (e.g., see Figure 3.5 for TopBraid) does

not represent the relations in data intuitively. Last, as the schema and the data are

presented in the same place, the experts have often difficulties distinguishing between

the two, and are consequently prone to make unintentional erroneous edits.

4.2.2 Graph-based Ontology Update

Graph-based editing approaches alleviate some of the limitations in the status quo

of ontology editing tools, by leveraging shapes graphs in the form of SHACL stan-

dard2 [WMH+20, VPCAR20]. While shapes graphs are well adapted for editing com-

plex data, they require the definition of such graphs for each ontology, independently.

In contrast, IOPE abstracts all RDF/OWL technicalities and seamlessly enforces the

ontological constraints as a strong guidance for the experts to update the ontology, using

the pre-filled forms.

WebVOWL [WLA18] is a web application for the interactive graph-based visualization

of ontologies which employs the Visual Notation for OWL Ontologies (abbr., VOWL)

[LNHE16]. While VOWL contributes to standardizing and generalizing OWL visualiza-

tion, WebVOWL does not visualize the instances but only the OWL part of a (possibly

populated) ontology. Also, the graphs displayed by the tool tend to become quickly il-

legible when their size increases. In IOPE, we employ Web pages as a more widespread

medium for visualizing information. IOPE has also an extended support for the update

of instances and of ontological constraints.

2Shapes Constraint Language (SHACL): https://www.w3.org/TR/shacl/

Chapter 4. Interactive Ontology Population and Enrichment 42

4.2.3 Form-based Ontology Update

Forms are used in [MFC+17] in a nested structure to capture relational aspects of knowl-

edge graphs and update RDF data. The experts are also guided with dynamic sug-

gestions based on existing data. However, the nested structure introduces increasing

complexity and hence lacks intuitiveness. Moreover, the focus in [MFC+17] is solely on

the population part and the approach does not extend to OWL constraints.

In [BHLX13], Web forms are generated from ontologies (using a User Interface ontology,

called RaUL) by interpreting ontology assertions as rules. While the approach only

incorporates individual assertions (ontology population), IOPE serves both ontology

enrichment and population, through interactions with the experts. IOPE stresses on

ontological constraints as first-class citizens and renders pre-filled forms to provide a

more aggregated view for the experts, which is, to the best of our knowledge, nonexistent

in the literature.

4.3 IOPE Approach

Our approach consists of transposing the RDF data and the ontological constraints of

a given domain ontology into a graphical user interface (GUI) named IOPE GUI. It

functions as a guidance for domain experts to easily explore the ontology and update it

through interactive graphical widgets. The input entered by domain experts through the

IOPE GUI are then transformed into RDF triples that must be verified by an ontology

engineer before being permanently added in the domain ontology. Figure 4.1 provides

an overview of IOPE’s workflow.

INPUT

RDF Data Ontological Constraints Updated RDF

Data

Updated Ontological

 Constraints

(1) Decode

User Interface Interac.ons

(4) Encode

D
o

m
a

in
 e

x
p

e
rt

(2) Guide (3) Fill

IOPE GUI

Updates

O
n

to
lo

g
y

e
x
p

e
rt

(5) Validate

OUTPUT

(6) Enrich
 and

populate

Figure 4.1: The overview of IOPE’s workflow.

The IOPE GUI is made of Web pages that are automatically generated and pre-filled to

reflect the domain ontological constraints. For the generation of the pre-filled Web pages,

we follow a declarative approach based on a set of mapping rules from RDF constraint

graphs to Web form templates. The Web form templates are described using a Web form

Chapter 4. Interactive Ontology Population and Enrichment 43

IOPE:Page

IOPE:Container

IOPE:Widget

IOPE:contain IOPE:partOf

IOPE:hasWidget

IOPE:LABEL IOPE:TREE VIEW IOPE:CHECKBOXIOPE:LISTBOX IOPE:TEXTBOX

rdfs:subClassOf

xsd:boolean

IOPE:hidden

IOPE:mul7ple

xsd:string

IOPE:name

xsd:boolean

IOPE:required

IOPE:onClick

xsd:string

IOPE:placeholder

xsd:boolean

IOPE:readonly

xsd:string IOPE:list

 owl:Thing

�

�

xsd:string xsd:int �

IOPE:value

IOPE:label
IOPE:dataSource

xsd:string

IOPE:PageLayout IOPE:has

xsd:boolean

xsd:boolean

IOPE:HasValue

InstanceContainer

IOPE:HasValue

ClassContainer

IOPE:Cardinality

ClassContainer

IOPE:Cardinality

InstanceContainer

IOPE:Range

ClassContainer

IOPE:Range

InstanceContainer

IOPE:FreeEntry

Container

IOPE:Alterna:ve

ValuesContainer

rd
fs
:s
u
b
C
la
ss
O
f

Figure 4.2: The IOPEWeb form ontology

ontology called IOPEWeb, which we developed by adapting RaUL ontology [HUH10]

to our context. We explain the IOPEWeb ontology in Section 4.3.1, followed by a

discussion over the mapping rules in Section 4.3.2. The input of the expert on the pre-

filled Web pages needs to be bound to RDF data using a set of binding rules. We also

explain the data binding mechanism in Section 4.3.3.

4.3.1 The IOPEWeb Ontology

The IOPEWeb ontology is shown in Figure 4.2. The ontology is organized around four

main classes, i.e., IOPE:Page, IOPE:PageLayout, IOPE:Container, and IOPE:

Widget. These classes are related by properties for modeling Web pages. The Web

pages themselves are structured in the form of containers filled with widgets. Each Web

page is also associated to a page layout.

The widgets are the direct point of user interaction, which are associated to the un-

derlying RDF graph for the input ontology. The visualization and the user interaction

are done using several types of widgets, such as label, tree view, list box, text box, and

check box. These widgets constitute the subclasses of the main class IOPE:Widget,

and inherit the standard widget properties described in IOPEWeb.

IOPEWeb describes how the input and output of widgets are modeled. We employ

the IOPE:dataSource property for the assignment of an input data (from a domain

Chapter 4. Interactive Ontology Population and Enrichment 44

ontology) of type xsd:string, simple or nested list IOPE:list, or owl:Thing, to

their corresponding widgets. The IOPE:value property is filled by the value, entered

by the user through the widget.

Moreover, IOPEWeb considers some additional properties to describe the functionality

of widgets, as mentioned below.

• Data type properties: IOPE:label (a description attached to the widget), IOPE:

name (identifier of the widget), IOPE:placeholder (a by-default string value

which provides a hint for the value to fill the widget with);

• Boolean properties: IOPE:hidden (whether the widget is invisible to the user or

not), IOPE:multiple (whether the widget can accept multiple values), IOPE:

readonly (whether the widget is modifiable) and IOPE:onclick (whether the

widget is clickable), IOPE:required (if set to True, the widget will be rendered

by a red asterisk, to specify that it must be filled in by the user.)

Widgets can be grouped in a Web page within containers. The containers themselves

can be nested using the IOPE:partOf property. In our setting, different types of

specific containers are considered as subclasses of IOPE:Container to express that

the different types of ontological constraints will be rendered differently in IOPE GUI.

Examples are IOPE:RangeClassContainer, IOPE:RangeInstanceContainer,

IOPE:HasValueClassContainer, and others expressed on the right side of Fig-

ure 4.2. In Section 4.3.2, we explain the relation between the container sub-classes and

the ontological constraints.

The ordering of the widget elements in the containers and in the Web pages are defined

within a page layout. Figure 4.3 shows the empty page layout that is generated at the

initialization process of building the IOPE GUI for a given focus class F , i.e., the class

chosen by the user as her class of interest.

4.3.2 Ontology-based GUI Construction

In a declarative approach, we employ a set of mapping rules to generate pre-filled Web

pages, in an automated fashion. The input required for GUI construction is a domain

ontology in which the ontological constraints are automatically saturated by a reasoning

algorithm. In this section, first we discuss the initialization and saturation process

(Section 4.3.2.1), and then present the mapping rules to construct the ontology-based

GUI (Section 4.3.2.2).

Chapter 4. Interactive Ontology Population and Enrichment 45

4.3.2.1 Initialization

Given the ontological constraints that we covered in Chapter 2, the saturation of the

constraints can be done iteratively through a breadth-first traversal of the class hierarchy,

as explained below:

• For each class D, compute the set Constraints(D) of all constraints holding for D,

by adding the ontological constraints declared for D’s super-classes to the set of

ontological constraints declared for the class.

• Simplify the resulting set of ontological constraints by removing the redundant

ones. A constraint (p min k c) in Constraints(D) is considered redundant if

there exists a constraint (sp min k’ sc) in Constraints(D) such that (sp = p

or sp is a sub-property of p) and (k0 � k) and (sc = c or sc is a sub-class of c).

For example, the (inherited) constraint (samsei:equipmentSupplies min 1

samsei:Material) is redundant vis-à-vis the (declared) constraint (samsei:

equipmentSupplies min 2 samsei:Syringe) within a given set of con-

straints.

Once the redundant-free set Constraints(D) is computed, the GUI construction is ini-

tiated with the selection of one class of interest in the ontology by the user, called the

focus class F . The set Constraints(F) of the ontological constraints associated to F

is decomposed in groups Group(P, F), where P is a property involved in at least one

constraint of Constraints(F), defined as follows:

• If there is no constraint in Constraints(F) involving sub-properties of P , then

Group(P, F) is simply the subset of all the constraints involving P in Constraints(F).

• Otherwise, Group(P, F) is the subset of all the constraints involving the sub-

properties of P .

In the following, we focus on the more general case, i.e., the “otherwise” condition. For

each group of properties Group(P, F), an instance of a Web page is created with the

page layout depicted in Figure 4.3. The page layout defines the organization of the

Web page with a set of specific containers dedicated to different ontological constraints.

Given Group(P, F), the constraints on sub-properties p of P will be positioned in their

dedicated containers. We will now explain the connection between the containers and

the ontological constraints.

Chapter 4. Interactive Ontology Population and Enrichment 46

ConstraintsContainer p

Group(P,F) Container

Focus class F Container

LABEL

LABEL

LABEL

FreeEntryContainer p

TEXT BOXOther :

RangeClassContainer

RangeContainer p,C

TREE VIEW

Or

LABEL

RangeInstanceContainer

LIST BOX

TEXT BOX

CardinalityInstanceContainer
CardinalityClass

Container

CardinalityContainer p,C

TEXT BOX

LIST BOX

HasValueInstanceContainer HasValueClassContainer

HasValueContainer p

LABEL LABEL

AlternaDveValuesContainer p
CHECKBOX

TREE VIEW

Or

LABEL

Figure 4.3: Web page template prepared for the rendering of constraints of the focus
class F for each property p which is a specialization of a same property P .

The following instances of the IOPE:Container class are created, with their pre-

allocated positions in the Web page template shown in Figure 4.3, which is initialized

as empty.

• “IOPE:FocusClass F Container” denotes the main container of the created

Web page for the focus class F ;

• “IOPE:Group(P, F) Container” denotes the container that groups all the other

containers corresponding to the constraints holding for the class F on the sub-

properties of P ;

• “IOPE:ConstraintContainer p” denotes the container which contains restric-

tions of F on the property p, where p is a sub-property of P ;

• “IOPE:HasValueContainer p” denotes the container which contains the Has-

Value restrictions of F on the property p;

Chapter 4. Interactive Ontology Population and Enrichment 47

• “IOPE:AlternativeValuesContainer p” denotes the container which con-

tains the AlternativeValues restrictions of F on the property p;

• “IOPE:CardinalityContainter p, C” denotes the container which contains

the cardinality restrictions of F on the property p and the class C;

• “IOPE:RangeContainter p, C” denotes the container which contains the range

restrictions of F on the property p, where the range of p is the class C;

• “IOPE:FreeEntryContainer p” denotes the container which enables the user

to add new classes involved in the cardinality restrictions for the property p.

Next, we explain how the mapping rules are triggered to map components of each onto-

logical constraint to the widgets inside the aforementioned containers, and fill each Web

page guided by the ontology.

4.3.2.2 Mapping Rules

Each mapping rule has a constraint graph pattern in its left-hand side, and an IOPEWeb

graph pattern in its right-hand side. The constraint graph pattern in the left-hand side

expresses a particular ontological constraint on a property and a (focus) class, and the

IOPEWeb graph pattern in the right-hand side specifies how to pre-fill the correspond-

ing container to render this ontological constraint. Each rule is instantiated by mapping

the constraint graph pattern in its left-hand side to the constraints graphs present in

the input ontology and involving the chosen focus class.

The mapping rules can be triggered in a forward-chaining manner and in any order.

The resulting IOPEWeb graph provides the full RDF specification of the pre-filled

Web pages that have to be created for the focus class F chosen by the user. The

implementation of the mapping rules is implemented using RDFLib3 and JSON4 libraries

in Python 2.7.16. Our implementation is publicly available in [BT21].

For clarity purposes, we describe the mapping rules in their instantiated form. There

are 16 mapping rules. To avoid redundancy, we describe 9 mapping rules in this section,

and present the rest in Appendix B. To distinguish between individual and grouped

mapping rules, we mark the former with a “⌅” symbol, and the latter with a “I”.

⌅ Mapping rule #1 for a focus class F on the sub-properties p of a prop-

erty P . This mapping rule is presented in Figure 4.4. The rule applies for each group

Group(P, F) of properties, and each property p in Group(P, F) as follows:

3https://rdflib.readthedocs.io/en/stable/
4https://docs.python.org/3/library/json.html

Chapter 4. Interactive Ontology Population and Enrichment 48

P_label

IOPE:Group(P,F)Container

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:data

Source

F_label

IOPE:FocusClass F Container

IOPE:has

widget

IOPE:LABEL

IOPE:data

Source

rdf:type

p_label

IOPE:ConstraintContainer p

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:data

Source

IOPE:Container

IOPE:CardinalityContainer p,C

IOPE:FreeEntryContainer p

IOPE:TEXTBOXrdf:type

Provide the label(s)

(separated by a comma)
IOPE:has

widget

Other

IOPE:label

IOPE:placeholder

rdf:type

rdf:type

rdf:type

rdf:type rdf:type

rdf:type

rdf:type

owl:Restric:on

rdf:type

rdfs:subClassOf

F_label

p

P

rdfs:label

rdfs:label

owl:on

Property

rdfs:subPropertyOf

rdfs:label

p_label

P_label

F

IOPE:RangeContainer p,C

IOPE:Alterna:veValues

Container p

rdf:type

IOPE:HasValueContainer p

_:b1

_:b1

_:b2

_:b3

_:b4

Figure 4.4: Mapping rule #1, employed for a focus class F on the sub-properties p

of a property P .

• The specific containers “IOPE:FocusClass F Container”, “IOPE:Group(P, F)

Container”, and “IOPE:ConstraintContainer p” are declared as instances

of the IOPE:Container class, and widgets of type IOPE:LABEL are created as

blank nodes with the property IOPE:dataSource filled by the corresponding

label of F , P , and p, in the domain ontology.

• The specific container “IOPE:FreeEntryContainer p” is declared as an in-

stance of the IOPE:Container class, where p is an object property. The asso-

ciated widget of type IOPE:TEXTBOX is created as a blank node, to collect user

future inputs over the property p (in the form of user interactions on p), i.e., an

ontology enrichment task.

• The four specific containers “IOPE:HasValueContainer p”, “IOPE:Alterna-

tiveValuesContainer p”, “IOPE:RangeContainer p, C”, and “IOPE:Car-

dinalityContainter p, C” are declared as instances of the IOPE:Container

class. The widgets associated to them are created by other mapping rules, which

we describe next.

⌅ Mapping rule #2 for a value restriction (p value v) for F such that

(v rdf:type C). This mapping rule is presented in Figure 4.5. The specific con-

tainer “IOPE:HasValueContainer p” is decomposed into two sub-containers de-

fined as blank nodes, whose types are IOPE:HasValueInstanceContainer and

IOPE:Has-ValueClassContainer. For the two sub-containers, widgets of type

IOPE:LABEL are created as blank nodes with the property IOPE:dataSource filled

Chapter 4. Interactive Ontology Population and Enrichment 49

owl:Restric:on v

p
owl:onPropertyrdfs:subClassOf

rdf:type
owl:hasValue

v_label

rdf:type rdfs:label

C_label rdfs:label

F

C

IOPE:HasValueContainer p

IOPE:partOf

v_label

C_label

True

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:LABELrdf:type

IOPE:HasValue

InstanceContainer

IOPE:HasValue

ClassContainer

rdf:type

rdf:type

IOPE:dataSourceIOPE:required

IOPE:dataSource

_:b1

_:b1

_:b2

_:b3

_:b4

Figure 4.5: Mapping rule #2, employed for a value restriction (p value v) for F

such that (v rdf:type C).

by the corresponding labels of v and its class C from the domain ontology. The prop-

erty IOPE:required is set to True for the first widget, to show that the value v is

mandatory for the property p.

I Mapping rules #3 to #7 for a cardinality restriction (p min n C) for F

such that n > 0. This group consists of five rules where each counts as an independent

mapping rule.

⌅Mapping rule #3 corresponds to the case where C has a hierarchy of sub-classes and

a list of instances in the domain ontology. This mapping rule is presented in Figure 4.6.

The specific container “IOPE:CardinalyContainer p, C” is decomposed into two

sub-containers defined as blank nodes, with types “IOPE:CardinalityClassContai-

ner” and “IOPE:CardinalityInstanceContainer”.

For the first sub-container, a widget of type IOPE:TREEVIEW is created as a blank

node with the property IOPE:dataSource filled by the tree view of subClasses(C),

i.e., the hierarchy of C’s sub-classes in the domain ontology, enriched with an additional

item Other C. The property IOPE:required and IOPE:onClick are also set to

True for this widget to indicate that (i) entering at least one value is mandatory for

the property p, and (ii) this widget supports the interaction with users to display the

sub-class hierarchy, interactively.

For the second sub-container, a widget of type IOPE:LISTBOX is created as a blank

node with the property IOPE:dataSource filled by the list instances(C) of instances

of the class C. The IOPE:label property is set to “select existing item(s) or enter new

item(s)” and the IOPE:hidden property is set to True to make the widget invisible

until the first interaction of the user through the widget of type IOPE:TREEVIEW. A

widget of type IOPE:TEXTBOX is also created with the IOPE:placeholder property,

whose value is set to “enter the new item(s) (separated by a comma)”, in order to enable

the user to enter new instances (if any).

Chapter 4. Interactive Ontology Population and Enrichment 50

IOPE:partOf

True

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

instances(C)True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has

widget

IOPE:CardinalityContainer p,C

True

IOPE:requiredIOPE:onClick

n>0,

subClasses(C) = list of all subclasses of class C and its other C,

instances(C) = list of all instances of class C.

IOPE:Cardinality

ClassContainer

IOPE:Cardinality

InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

IOPE:dataSource

Enter the new item(s)

(separated by a comma).

IOPE:placeholder

Select exis:ng item(s)

or enter new item(s)

IOPE:label

_:b1

_:b2

_:b3

_:b4

_:b5

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality

F _:b1

Figure 4.6: Mapping rule #3, employed for a cardinality constraint where
subClasses(C) and instances(C) are not empty, and n > 0.

⌅ Mapping rule #4 corresponds to the case where C does not have either a hierar-

chy of sub-classes or a list of instances in the domain ontology. This mapping rule is

presented in Figure 4.7. For IOPE:CardinalityClassContainer, a widget of type

IOPE:LABEL is created as a blank node with the property IOPE:dataSource filled

by the label of class C, i.e., “C label”. The property IOPE:required is set to True for

this widget to indicate that this value is mandatory for the property p. As the class C

does not have any instances for IOPE:CardinalityInstanceContainer, a widget

of the type IOPE:TEXTBOX is created with the IOPE:placeholder property set to

the value “enter the new item(s) (separated by a comma) or provide a minimal number of

items” in order to enable users to enter new instances, or provide a minimum number of

requirements.

n>0,

C, without subclasses and instances.

IOPE:partOf

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:TEXTBOXrdf:type

IOPE:CardinalityContainer p,C

True

IOPE:required

IOPE:Cardinality

ClassContainer

IOPE:Cardinality

InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

C_label

Enter the new item(s) (separated by

a comma) or give a minimal number

of items

IOPE:placeholder

_:b1

_:b2

_:b3

_:b4

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality

C_label

rdfs:label

F _:b1

Figure 4.7: Mapping rule #4, employed for a cardinality constraint where both
subClasses(C) and instances(C) are empty, and n > 0.

⌅ Mapping rule #5 corresponds to the case where C does not have a hierarchy of

sub-classes, but has a list of instances in the domain ontology, and Mapping rule #6

corresponds to the case where C has a hierarchy of sub-classes but does not have a list

Chapter 4. Interactive Ontology Population and Enrichment 51

of instances in the domain ontology. These two mapping rules are variants of the two

previous rules, and are described in Appendix B.

⌅Mapping rule #7 corresponds to the case where p is a datatype property. This map-

ping rule is described in Figure 4.8. For IOPE:CardinalityInstanceContainer,

a widget of type IOPE:TEXTBOX is created with the IOPE:placeholder property set

to the value “enter a value” in order to enable users to enter the numerical value they

need for the property p.

IOPE:partOf

IOPE:has

widget
rdf:type

IOPE:CardinalityContainer p

True

IOPE:required
rdf:type

IOPE:TEXTBOX

IOPE:placeholder

Enter a value
IOPE:Cardinality

InstanceContainer

_:b1 _:b2
owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

n

owl:minCardinality

F _:b1

Figure 4.8: Mapping rule #7, employed for a cardinality constraint where p is a
datatype property, and n > 0.

I Mapping rules #8 to #11 for a cardinality restriction (p min n C) for F

such that n = 0. This group consists of four rules, where each counts as an independent

mapping rule.

⌅Mapping rule #8 corresponds to the case where C has a hierarchy of sub-classes and

a list of instances in the domain ontology. This mapping rule is presented in Figure 4.6.

The specific container “IOPE:CardinalyContainer p, C” is decomposed into two

sub-containers defined as blank nodes, with types “IOPE:CardinalityClassContai-

ner” and “IOPE:CardinalityInstanceContainer”.

For the first sub-container, a widget of type IOPE:TREEVIEW is created as a blank node

with the property IOPE:dataSource filled by the tree view of subClasses(C), i.e., the

hierarchy of C’s sub-classes in the domain ontology, enriched with an additional item

Other C. Given n = 0, the property IOPE:required is set to False for this widget,

to indicate that it is up to the user to select a choice from this widget. The property

IOPE:onClick is set to True for this widget to indicate that, this widget supports the

interaction with users to display the sub-class hierarchy, interactively.

For the second sub-container, a widget of type IOPE:LISTBOX is created as a blank

node with the property IOPE:dataSource filled by the list instances(C) of instances

of the class C. The IOPE:label property is set to “select existing item(s) or enter new

item(s)” and the IOPE:hidden property is set to True to make the widget invisible

until the first interaction of the user through the widget of type IOPE:TREEVIEW. A

widget of type IOPE:TEXTBOX is also created with the IOPE:placeholder property,

Chapter 4. Interactive Ontology Population and Enrichment 52

IOPE:partOf

True

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

instances(C)True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has

widget

IOPE:CardinalityContainer p,C

False

IOPE:requiredIOPE:onClick

n=0,

subClasses(C) = list of all subclasses of class C and its other C,

instances(C) = list of all instances of class C.

IOPE:Cardinality

ClassContainer

IOPE:Cardinality

InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

IOPE:dataSource

Enter the new item(s)

(separated by a comma).

IOPE:placeholder

Select exis:ng item(s)

or enter new item(s)

IOPE:label

_:b1

_:b2

_:b3

_:b4

_:b5

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality

F _:b1

Figure 4.9: Mapping rule #8, employed for a cardinality constraint where
subClasses(C) and instances(C) are not empty, and n = 0.

whose value is set to “enter the new item(s) (separated by a comma)”, in order to enable

the user to enter new instances (if any).

⌅ Mapping rule #9 corresponds to the case where C does not have either a hierar-

chy of sub-classes or a list of instances in the domain ontology, Mapping rule #10

corresponds to the case where C does not have a hierarchy of sub-classes, but has a

list of instances in the domain ontology, and Mapping rule #11 corresponds to the

case where C has a hierarchy of sub-classes but does not have a list of instances in the

domain ontology. These three mapping rules are variants of the previous rules, and are

described in Appendix B.

I Mapping rules #12 to #15 for “domain and range” constraints for F on

property p such that (p rdfs:domain F) and (p rdfs:range C). This group

consists of four rules where each counts as an independent mapping rule.

⌅ Mapping rule #12 corresponds to the case where the class range of the property p

has sub-classes and instances. Figure 4.10 presents this mapping rule. In this case,

the specific container “IOPE:RangeContainer p, C” is decomposed into two sub-

containers defined as blank nodes, with types “IOPE: RangeClassContainer” and

“IOPE:RangeInstanceContainer”.

For the first sub-container, a widget of type IOPE:TREEVIEW is created as a blank

node with the property IOPE:dataSource filled by the tree view of subClasses(C),

i.e., the hierarchy of C’s sub-classes in the domain ontology, enriched with an additional

item Other C. The property IOPE:onClick are set to True for this widget to indicate

that this widget supports the interaction with users to display the sub-class hierarchy,

interactively.

Chapter 4. Interactive Ontology Population and Enrichment 53

For the second sub-container, a widget of type IOPE:LISTBOX is created as a blank

node with the property IOPE:dataSource filled by the list instances(C) of instances

of the class C. The IOPE:label property is set to “select existing item(s) or enter new

item(s)” and the IOPE:hidden property is set to True to make the widget invisible

until the first interaction of the user through the widget of type IOPE:TREEVIEW. A

widget of type IOPE:TEXTBOX is also created with the IOPE:placeholder property,

whose value is set to “enter the new item(s) (separated by a comma)” in order to enable

the user to enter new instances (if any).

rdfs:domain
C IOPE:partOf

True

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

instances(C)True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has

widget

IOPE:RangeContainer p,C

IOPE:onClick

subClasses(C) = list of all subclasses of class C and its other C

instances(C) = list of all instances of class C

IOPE:Range

ClassContainer

IOPE:Range

InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

IOPE:dataSource

F

Enter the new item(s)

(separated by a comma).

IOPE:placeholder

Select exis:ng item(s)

or enter new item(s)

IOPE:label

rdfs:range
p

_:b1

_:b2

_:b3

_:b4

_:b5

Figure 4.10: Mapping rule #12, employed for “domain and range” constraints, where
subClasses(C) and instances(C) are not empty.

⌅ Mapping rule #13 corresponds to the case where the class range of the property p is

without sub-classes and instances. Figure 4.11 presents this mapping rule. In this case, a

widget of type IOPE:LABEL is created for IOPE:RangeClassContainer. The widget

is a blank node with the property IOPE:dataSource filled by the label of class C, i.e.,

“C label”. As the class C does not have any instances for IOPE:RangeInstanceCont-

ainer, a widget of the type IOPE:TEXTBOX is created with the IOPE:placeholder

property set to the value “enter the new item(s) (separated by a comma) or provide a

minimal number of items” in order to enable users to enter new instances, or provide a

minimum number of requirements.

⌅ Mapping rule #14 corresponds to the case where the class range of the property p

does not have a hierarchy of sub-classes, but has a list of instances in the domain

ontology, and Mapping rule #15 corresponds to the case where the class range of the

property p has a hierarchy of sub-classes but does not have a list of instances in the

domain ontology. These two mapping rules are variants of the two previous rules, and

are described in Appendix B.

⌅ Mapping rule #16 for an alternative values constraint (C owl:oneOf

[v1 . . . vn]). This mapping rule is presented in Figure 4.12. For the specific container

Chapter 4. Interactive Ontology Population and Enrichment 54

 C, without subclasses and instances

IOPE:partOf

IOPE:partOf

IOPE:has

widget
IOPE:LABELrdf:type

IOPE:RangeContainer p,C

IOPE:Range

ClassContainer

rdf:type
IOPE:dataSource

C_label
rdfs:domain

CF
rdfs:range

p

IOPE:has

widget
IOPE:TEXTBOXrdf:type

IOPE:Range

InstanceContainer

rdf:type

Enter the new item(s) (separated by

a comma) or give a minimal number

of items

IOPE:placeholder

_:b1

_:b2

_:b3

_:b4

Figure 4.11: Mapping rule #13, employed for “domain and range” constraints, where
both subClasses(C) and instances(C) are empty.

“IOPE:Free-EntryContainer p”, n widgets of type IOPE:CHECKBOX are created

as blank nodes with the property IOPE:dataSource filled by the corresponding labels

of v1 . . . vn from the domain ontology. The property IOPE:onClick is set to True for

these widgets to indicate that they support the interaction with users.

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type
owl:allValuesFrom

F

v1 v2 vn. . . .

owl:oneOf

IOPE:CHECKBOXrdf:type

True

IOPE:Alterna:veValuesContainer p

IOPE:dataSource

v1_label

IOPE:onClick

IOPE:CHECKBOXrdf:type

True

IOPE:dataSource

vn_label

IOPE:onClick

 .
 .
 .

 .
 .
 .

IOPE:has

widget

IOPE:has

widget

_:b1

_:b2

_:b1

_:b2

Figure 4.12: Mapping rule #16, employed for alternative values constraint.

We proceed with our illustrative example from Section 3.3.3 to elaborate on the afore-

mentioned mapping rules. Figure 4.13 shows the IOPEWeb graph as the outcome of

triggering the mapping rules which are applicable to the three constraint graphs dis-

played in Figure 3.6 (depicting the HasValue and Cardinality constraint graphs on

the property samsei:equipmentSupplies) and Figure 3.7 (depicting the cardinality

constraint graph on the property samsei:simulatorResources), both for the focus

class PortACathPlacement.

In Figure 4.13, the blue color represents the part of IOPEWeb graph which is generated

by triggering the mapping rule #1 (Figure 4.4) instantiated appropriately. The violet

section in the figure represents the result of triggering the mapping rule #2 (Figure 4.5)

for the value restriction (samsei:equipmentSupplies value samsei:sterile

compress). The red color represents the results of applying the mapping rule #3

Chapter 4. Interactive Ontology Population and Enrichment 55

Resources

IOPE:Group(samsei:resources, samsei:PortACathPlacement)Container

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:data

Source

Simula:on training session of

Port-a-cath placement

IOPE:FocusClass samsei:PortACathPlacement Container

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:Container

rdf:type

rdf:type

IOPE:data

Source

Simulator-type resources

IOPE:ConstraintContainer samsei:simulatorRessources

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:data

Source

rdf:type

rdf:type
IOPE:FreeEntryContainer samsei:simulatorRessources

IOPE:has

widget

IOPE:TEXTBOXrdf:type

Provide the label(s)

(separated by a comma)IOPE:placeholder

IOPE:partOf

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:TEXTBOXrdf:type

True

IOPE:required

IOPE:Cardinality

ClassContainer

IOPE:Cardinality

InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

Venous-access chest

simulator manikin

Enter the new item(s) (separated by

a comma) or give a minimal number

of items

IOPE:placeholder

IOPE:CardinalityContainer samsei:simulatorRessources,

samsei:VenousChestSimulatorManikin

rdf:type

Equipment and supplies

IOPE:ConstraintContainer samsei:equipmentSupplies

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:data

Source

rdf:type

rdf:type

rdf:type

IOPE:FreeEntryContainer samsei:equipmentSupplies

IOPE:HasValueContainer samsei:equipmentSupplies

IOPE:has

widget

IOPE:TEXTBOXrdf:type

Provide the label(s)

(separated by a comma)IOPE:placeholder

IOPE:partOf

Sterile compress

Bandage material

True

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:LABELrdf:type

IOPE:HasValue

InstanceContainer

IOPE:HasValue

ClassContainer

rdf:type

rdf:type

IOPE:dataSourceIOPE:required

IOPE:dataSource

IOPE:CardinalityContainer samsei:equipmentSupplies, samsei:Protec:veSupplies
rdf:type

IOPE:partOf

True

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(samsei:

Protec:veSupplies)

instances(samsei:

Protec:veSupplies)
True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has

widget

True

IOPE:requiredIOPE:onClick

IOPE:Cardinality

ClassContainer

IOPE:Cardinality

InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

IOPE:dataSource

Select exis:ng

item(s) or enter

new item(s)

IOPE:label

Enter the new item(s)

(separated by a comma).

IOPE:placeholder

_:b1

_:b2

_:b3

_:b4

_:b5

_:b6

_:b7

_:b8

_:b9

_:b10

_:b11

_:b12

_:b13

_:b14

_:b15

_:b16

_:b17

_:b18

_:b19

Figure 4.13: Illustration of IOPEWeb graph as the outcome of applying the mapping
rules on the following example constraints: (samsei:simulatorResources min

1 samsei:VenousChestSimulatorManikin), (samsei:equipmentSupplies
min 1 samsei:ProtectiveSupplies), and (samsei:equipmentSupplies

value samsei:sterile compress).

(Figure 4.6) for the cardinality restriction (min 1 samsei:equipment-Supplies

samsei:ProtectiveSupplies). The green section corresponds to the application

of the mapping rule #4 (Figure 4.7) on the class samsei:VenousChestSimulator-

Manikin for the following cardinality restriction: (min 1 samsei:simulatorRes-

ources samsei:VenousChestSimulatorManikin).

Figure 4.14 left shows the resulting pre-filled Web page generated by the HTML im-

plementation of the IOPEWeb specification. Figure 4.14 right shows the effect of a

user interaction through the widget of type the IOPE:TREEVIEW to select the sub-class

samsei:DisposableDrape from samsei:ProtectiveSupplies sub-class hierar-

chy. Note that the instance container corresponding to the selected sub-class becomes

visible in order to allow the user to select an instance, or to enter a new one.

Chapter 4. Interactive Ontology Population and Enrichment 56

SimulaFon training session of Port-a-cath placement

Equipment and supplies: (*)

Other : Provide the label(s) (separated by a comma).

Simple disposal drape

Fenestrated disposal drape

Select exis@ng item(s) or enter

new item(s):

Enter the new item(s) (separeted by

a comma).

Resources

Sterile compress (Bandage material) (*)

Protec@ve supplies (*)

Disposable drape

Simulator-type resources: (*)

Venous-access chest simulator manikin (*) Provide item(s):

Enter the new item(s)

(separeted by a comma) or give

a minimal number of items.

Other : Provide the label(s) (separated by a comma).

Warning! To save the informa/on entered on this page, you must click on "Save".

Save Return to page list

Reusable drape

Other drape

Surgical clothing/shoes

Other protec@ve supplies

Surgical drape

Glove

Surgical mask

Safety glasse

Disposable drape

Reusable drape

Non-sterile glove

Other drape

Other protec@ve supplies

SimulaFon training session of Port-a-cath placement

Equipment and supplies: (*)

Other : Provide the label(s) (separated by a comma).

Simple disposal drape

Fenestrated disposal drape

Select exis@ng item(s) or enter

new item(s):

Enter the new item(s) (separeted by

a comma).

Resources

Sterile compress (Bandage material) (*)

Protec@ve supplies (*)

Disposable drape

Simulator-type resources: (*)

Venous-access chest simulator manikin (*)

Other : Provide the label(s) (separated by a comma).

Warning! To save the informa/on entered on this page, you must click on "Save".

Save Return to page list

Reusable drape

Other drape

Surgical clothing/shoes

Other protec@ve supplies

Surgical drape

Glove

Surgical mask

Safety glasse

Provide item(s):

Enter the new item(s)

(separeted by a comma) or give

a minimal number of items.

Interac.ons =

Figure 4.14: HTML Web page generated from the application of the mapping rules
on the three constraints presented in Figures 3.6 and 3.7 (left), and the evolution of

the page after a user interaction through the widget IOPE:TREEVIEW (right).

The input entered through user interactions must then be bound to RDF data cor-

responding to new instances or new constraints submitted to populate or enrich the

domain ontology. This binding mechanism is based on a set of binding rules which are

triggered on the IOPEWeb graph to generate RDF graphs. Next, we will discuss these

binding rules.

4.3.3 Transforming Interactions to RDF Graphs

The role of binding rules is to transform user interactions into RDF graphs. A binding

rule has an IOPEWeb graph pattern in its left-hand side, and a RDF graph pattern in

its right-hand side. The binding rule is triggered when an input is entered by a user in a

IOPEWeb form instantiating the left-hand side of the binding rule. The corresponding

instantiation of the right-hand side provides RDF triples that have to be added in the

output RDF graph. We define two categories of binding rules:

• Creation. The binding rule in this category creates an instance of a focus class

in the RDF graph.

• Value filling. The second category consists of binding rules which are triggered

when the IOPE:value property of an input is filled by the user through a widget.

Once triggered, the rule enriches the description of the instance already created

Chapter 4. Interactive Ontology Population and Enrichment 57

using the first-category binding rule. These binding rules can also result in adding

new constraints to the focus class.

In the following, we provide the full set of 9 binding rules. The first rule belongs to the

first category of binding rules, and the others belong to the second category.

⌅ Binding rule #1 (focus class selection). Figure 4.15 presents this binding rule.

The rule is triggered when a focus class F is chosen by the user. Once triggered, the

rule creates an instance new f of the focus class F in the output RDF graph.

F_label

IOPE:FocusClass F Container

IOPE:has

widget

IOPE:LABEL

IOPE:data

Source

rdf:type

IOPE:Container

rdf:type

rdf:typenew_f F

_:b1

Figure 4.15: Binding rule #1, for creating an instance new f of a focus class F .

⌅ Binding rule #2 (textbox filling in free entry container). Figure 4.16 shows

the binding rule for the IOPE:TEXTBOX widget in the free entry container of a property p

for the focus class F . Once this binding rule is triggered, a new constraint graph will be

generated which expresses a new or existing class u and a new cardinality constraint

for F on the property p. The class u is located as a sub-class of the class D, which is

the range of property p. In Figure 4.16 and the rest of the figures for the other binding

rules, user interactions are highlighted in red.

Other

IOPE:FreeEntryContainer p

IOPE:has

widget

rdf:type

IOPE:Container

rdf:type

IOPE:label

IOPE:TEXTBOX

IOPE:value

u_label

owl:Restric4on

owl:onPropertyRdfs:subClassOf

rdf:type

rdfs:label

F

owl:minCardinality

u

u_label

p

owl:onClass
1

_:b1

_:b1

D

rdfs:Range

rdfs:subClassOf

Figure 4.16: Binding rule #2, for free entry container on property p and a focus
class F .

⌅Binding rule #3 (listbox filling). Figure 4.17 shows the binding rule for the chosen

instance(s) from an IOPE:LISTBOX widget related to a selected class in IOPE:TREEVIEW

Chapter 4. Interactive Ontology Population and Enrichment 58

widget. For each class D selected by the user from the IOPE:TREEVIEW widget, the

user will also select an instance L from the IOPE:LISTBOX widget. Given D and its

instance L, the binding rule creates RDF triples to convey, first, the instance new f (al-

ready created using the binding rule #1) has the instance L via the property p, second,

the instance L has the label L label, and third, L is an instance of D.

IOPE:partOf

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

Instances(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality

ClassContainer

IOPE:Cardinality

InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

L

IOPE:value IOPE:dataSource

D is a chosen class from subClasses of C in treeview

L is a chosen instance from instances of C in listbox

p

D

rdf:type

Lnew_f

_:b1

_:b2

_:b3

_:b4

L_label

rdfs:label

Figure 4.17: Binding rule #3, for a selected class D in a IOPE:TREEVIEW and the
selected instance(s) L from an IOPE:LISTBOX widget.

⌅ Binding rule #4 (textbox filling for a selected class). Figure 4.18 shows

the binding rule for an IOPE:TEXTBOX widget filled by a value of type string related

to a selected class in an IOPE:TREEVIEW widget. Given the chosen class D (i.e., a

subclass of the class C) in the IOPE:TREEVIEW widget, and the entered item(s) u

in the IOPE:TEXTBOX widget, the triggering of this binding rule will generate RDF

triples to convey, first, the instance new f has the value u via the property p, second,

the human-readable label of value u is the entered string u label by the user, and third,

the value u is an instance of the chosen class D.

⌅ Binding rule #5 (textbox label filling). Figure 4.19 shows the binding rule for an

IOPE:TEXTBOX widget filled by a value of type string related to a IOPE:LABEL widget.

Given the property p of the class C filled with value u of type string, the triggering of

this binding rule will generate RDF triples to convey, first, the instance new f has the

value u via the property p, second, the human-readable label of value u is the entered

string u label by the user, and third, the value u is an instance of the class C.

⌅ Binding rule #6 (textbox integer filling). Figure 4.20 shows the binding rule for

an IOPE:TEXTBOX widget filled by a value of type integer related to an IOPE:LABEL

widget. Given the integer value k, triggering this rule will create RDF triples which

connect k instances of the class C (i.e., c1 . . . ck) to the instance new f via the property p.

Chapter 4. Interactive Ontology Population and Enrichment 59

IOPE:partOf

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:TREE VIEWrdf:type

IOPE:TEXTBOXrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality

ClassContainer

IOPE:Cardinality

InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

IOPE:value

D is a chosen class from subClasses of C in treeview

p

D

rdf:type

new_f

u_label

_:b1

_:b2

_:b3

_:b4

u

rdfs:label

u_label

Figure 4.18: Binding rule #4, for a selected class D in an IOPE:TREEVIEW and its
entered item(s) in an IOPE:TEXTBOX widget.

IOPE:partOf

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:TEXTBOXrdf:type

IOPE:CardinalityContainer p,C

IOPE:Cardinality

ClassContainer

IOPE:Cardinality

InstanceContainer

rdf:type

rdf:type

C_label

IOPE:value

u_label

IOPE:dataSource

C

p

rdf:type

new_f

_:b1

_:b2

_:b3

_:b4

rdfs:label

u_label

u

Figure 4.19: Binding rule #5, for the value of type string in an IOPE:TEXTBOX

widget related to an IOPE:LABEL widget.

⌅ Binding rule #7 (textbox treeview filling). Figure 4.21 shows the binding rule

for an IOPE:TEXTBOX widget filled by a value of type string related to an Other C in

an IOPE:TREEVIEW widget. For each chosen class Other C (subclass of the class C) in

IOPE:TREEVIEW widget, and the entered item(s) u in the IOPE:TEXTBOX widget, the

binding rule generates RDF triples to convey, first, the instance new f has the value u

via property p, second, the human-readable label of value u is the entered string u label

by the user, third, the value u is an instance of the chosen class Other C, and forth,

the class Other C is a sub-class of class C.

⌅ Binding rule #8 (checkbox filling). Figure 4.22 shows the binding rule for an

IOPE:CHECKBOX widget filled by a value u1 selected by the user. Once triggered, the

rule will create an RDF triple which conveys that the instance new f has the value u1

via the property p.

Chapter 4. Interactive Ontology Population and Enrichment 60

IOPE:partOf

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:TEXTBOXrdf:type

IOPE:CardinalityContainer p,C

IOPE:Cardinality

ClassContainer

IOPE:Cardinality

InstanceContainer

rdf:type

rdf:type

C_label

IOPE:value

K

K is an integer

IOPE:dataSource

owl:Restric4on

owl:onPropertyRdfs:subClassOf

rdf:type

rdfs:label

F

owl:minCardinality

C

p

owl:onClass

K

C_label

_:b1

_:b2

_:b3

_:b4

_:b1

Figure 4.20: Binding rule #6, for a value of type integer in an IOPE:TEXTBOX widget
related to an IOPE:LABEL widget.

new_f

rdf:type

p

Other c

C

rdfs:subClassOf

IOPE:partOf

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:TREE VIEWrdf:type

IOPE:TEXTBOXrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality

ClassContainer

IOPE:Cardinality

InstanceContainer

rdf:type

rdf:type

IOPE:dataSourceIOPE:value

u_label

IOPE:value

Other c

Other c is a chosen class from subClasses of C in treeview without any instances

_:b1

_:b2

_:b3

_:b4

rdfs:label

u_label

u

Figure 4.21: Binding rule #7, for an IOPE:TEXTBOX widget filled by a value of type
string related to a class Other C.

⌅ Binding rule #9 (textbox integer filling where p is a datatype property.

Figure 4.23 shows the binding rule for an IOPE:TEXTBOX widget filled by a numerical

value related to the datatype property p. Once triggered, the rule will create an RDF

triple which conveys that the instance new f has the numerical value k via the property p.

The set of all aforementioned binding rules contributes to the enrichment and population

of the ontology. The resulting RDF graphs of the binding rules are first verified by

ontology engineers, before being appended to the ontology.

To elaborate on the aforementioned binding rules, we proceed with our illustrative ex-

ample from Section 4.3.2.2. Figure 4.24 left shows the resulting pre-filled Web page

generated by the HTML implementation of the IOPEWeb specification. Some user in-

teractions through the widgets are highlighted in this figure. Figure 4.24 right shows the

transformation of those user interactions into RDF graphs as the outcome of triggering

Chapter 4. Interactive Ontology Population and Enrichment 61

IOPE:CHECKBOXrdf:type

True

IOPE:Alterna:veValuesContainer p

IOPE:dataSource

v1_label

IOPE:onClick

IOPE:CHECKBOXrdf:type

True

IOPE:dataSource

vn_label

IOPE:onClick

 .
 .
 .

 .
 .
 .

IOPE:has

widget

IOPE:has

widget
v1pnew_f

v1

IOPE:value

v1 is a chosen value from the values in container

_:b1

_:bn

Figure 4.22: Binding rule #8, for an IOPE:CHECKBOX widget filled by selected
value u1.

IOPE:partOf

IOPE:has

widget
rdf:type

IOPE:CardinalityContainer p

True

IOPE:required

rdf:type

IOPE:TEXTBOX

IOPE:placeholder

Enter a value
IOPE:Cardinality

InstanceContainer

K

IOPE:value

kpnew_f

_:b1 _:b2

Figure 4.23: Binding rule #9, for an IOPE:TEXTBOX widget filled by a value of type
integer related to the datatype property p.

the binding rules which are applicable to the widgets. We explain the four binding rules

employed for transforming the interactions, i.e., the binding rules #1, #2, #3, and #6.

The binding rule #1 is triggered when the expert chose to create and explore the port-

a-cath simulation training session (the first green arrow from the top). The generated

RDF triple consists of a created instance samsei:port a cath placement n3 of

type samsei:PortACathPlacement class.

The binding rule #3 is triggered when two following user interactions are performed con-

secutively (the second green arrow from the top): (i) select the sub-class samsei:Dispo-

sableDrape from samsei:ProtectiveSupplies sub-class hierarchy, and (ii) se-

lect the samsei:simple disposable drape instance from the list of instances for

the samsei:DisposableDrape class. Two RDF triples will be generated. The first

Chapter 4. Interactive Ontology Population and Enrichment 62

triple declares that the instance samsei:port a cath placement n3 has the in-

stance samsei:simple disposable drape via the property samsei:equipment-

Supplies. The second one mentions that samsei:simple disposable drape is

an instance of samsei:DisposableDrape.

SimulaDon training session of Port-a-cath placement

Equipment and supplies: (*)

Other :

Fenestrated disposal drape

Select exis@ng item(s) or enter

new item(s):

Enter the new item(s) (separeted by

a comma).

Resources

Sterile compress (Bandage material) (*)

Protec@ve supplies (*)

Disposable drape

Simulator-type resources: (*)

Venous-access chest simulator manikin (*)

Other : Provide the label(s) (separated by a comma).

Warning! To save the informa/on entered on this page, you must click on "Save".

Save Return to page list

Reusable drape

Other drape

Surgical clothing/shoes

Other protec@ve supplies

Surgical drape

Glove

Surgical mask

Safety glasse

Provide item(s):

rdf:type

samsei:equipment

Supplies

rdf:type

owl:Restric4on

owl:onPropertyRdfs:subClassOf

rdf:type owl:minCardinality

owl:onClass

2

_:b1

samsei:PortA

CathPlacement

samsei:port_a_cath

_placement_n3

samsei:simple_

disposal_drape

samsei:Disposable

Drape

samsei:port_a_cath

_placement_n3

 Simple disposal drape

samsei:PortA

CathPlacement

rdfs:label

samsei:VenousChest

SimulatorManikin

Venous-access chest simulator manikin

samsei:simulator

Resources

2

Binding rule #3

 An@bio@c

owl:Restric4on

owl:onPropertyRdfs:subClassOf

rdf:type owl:minCardinality

owl:onClass

1

_:b1
samsei:PortA

CathPlacement

rdfs:label

samsei:An4bio4c

An4bio4c

samsei:equipment

Supplies

Binding rule #1 is triggered when the focus class “samsei:PortACathPlacement” is

chosen by the user

Binding rule #2

Binding rule #6

rdfs:label

Simple disposal

drape

samsei:Resource

rdfs:Range

rdfs:subClassOf

Figure 4.24: The IOPE resulting pre-filled Web page and the user interactions via
the widgets (left), and the resulting RDF graphs by applying the binding rules (right).

In case the expert does not find the required resource, he/she is able to enter the name

of the resource in the text box dedicated to a specific type of resource requested by

the expert. The binding rule #2 is triggered when such new information (i.e., “Antibi-

otics” in our example) is added by the expert via IOPE:TEXTBOX widget in the free

entry container of the property samsei:equipmentSupplies (the third green arrow

from the top). The generated RDF triples express a new class samsei:Antibiotic

and a new cardinality constraint for this simulation training session on the prop-

erty samsei:equipmentSupplies. The new class samsei:Antibiotic is lo-

cated as a sub-class of the class samsei:Resource, which is the range of prop-

erty samsei:equipmentSupplies.

The binding rule #6 is triggered when the expert specifies the numerical value “2”, con-

veying that his/her simulation training session requires two venous-access chest simulator

manikins (the first green arrow from the bottom). The generated RDF triples connect 2

instances of the class samsei:VenousChestSimulatorManikin to the instance

Chapter 4. Interactive Ontology Population and Enrichment 63

samsei:port a cath placement n3 via the property samsei:simulatorResou-

rces.

4.4 Summary

In this chapter, we presented the second contribution of this thesis, i.e., a framework

called IOPE for the automatic construction of a Graphical User Interface (GUI) con-

sisting of pre-filled Web pages. This contribution is in the sequel with the contributions

presented in Chapter 3, where the constructed GUI operates on top of the ontology en-

hancement layer to complete the loop of the ontology engineering approach and enable

fruitful interactions with the user for ontology updates. We mentioned how the litera-

ture addresses data publishing in ontology updates, by reviewing ontology editing tools,

as well as graph-based and form-based approaches. Two common challenges among the

related work are the followings: (i) lack of usability and intuitiveness of the updating

interfaces, and (ii) high complexity where experts with no the prior knowledge of the

formal syntax and the semantics of ontology languages are often left alone.

We presented the core idea behind our approach as “transposing the RDF data and the

ontological constraints of a given domain ontology into a GUI” to enable an interactive

data publishing approach for ontology updates. The resulting GUI functions as a guid-

ance for domain experts to easily explore the ontology and update it through interactive

graphical widgets. The resulting GUI is a set of web pages that are automatically gener-

ated and pre-filled in a declarative approach based on a set of mapping rules, which map

RDF constraint graphs to Web form templates. The Web form templates are described

using a Web form ontology called IOPEWeb. We presented different components of the

IOPEWeb ontology to model widgets, containers, and page layouts. We then provided

the different mapping rules to map components of each ontological constraint to the

widgets inside the containers modeled by IOPEWeb.

The input entered through user interactions in the GUI are then be bound to RDF

data to update the ontology. We presented the different binding rules whose role is to

specify how to transform user interactions into RDF graphs. The resulting RDF graphs

of the binding rules are first verified by ontology engineers, and then will be added to

the ontology, in the form of ontology enrichment and population.

Chapter 5

Evaluation

5.1 Introduction

In this chapter, we evaluate the contributions of this thesis on ontology construction

(detailed in Chapter 3) and ontology update (detailed in Chapter 4). We consider the

three following objectives for our evaluation:

• First, we measure the usefulness of IOPE interface in enabling experts to populate

and enrich the OntoSAMSEI ontology;

• Second, we measure the quality of the OntoSAMSEI ontology through its pre-

sentation by the IOPE GUI;

• Third, we shed light on the generality aspects of our approach, and verify whether

IOPE can be easily adapted to ontologies in other domains as well.

This chapter is organized as follows. In Section 5.2, we present the evaluation method-

ology that we employed to measure the quality of our framework through an in-depth

expert study. Then we discuss the results of our study for the first evaluation objec-

tive (i.e., evaluating IOPE) in Section 5.3. Next, we present the experts’ viewpoints

on the quality of OntoSAMSEI (i.e., the second evaluation objective) in Section 5.4.

Section 5.5 covers the third evaluation objective, where we adapt IOPE to an ontology

in another domain, and discuss its applicability. Last, we summarize this chapter in

Section 5.6.

65

Chapter 5. Evaluation 66

5.2 Evaluation Settings

Given the interactive nature of our framework, user studies are an indispensable part of

our evaluation protocol, where the utility of the system is not necessarily measured based

on typical objective measures, but based on the user feedback. However, as we deal with

specialized ontologies in this thesis, it is infeasible to deploy our user study campaign

over crowdsourcing marketplaces such as Amazon Mechanical Turk1 and Prolific2, whose

participants are average information consumers [Ipe10], and not necessarily the experts

of the given specialized ontology. This is why we designed our own protocol for an

in-depth expert study. While an expert study has often fewer participants than large-

scale user studies (because experts are scarce and unavailable), the former gains richer

and deeper insights by employing participants who are highly knowledgeable about the

domain under investigation.

For our study, we employed a group of 22 medical experts in the domain of simulation-

based training in Medicine. These experts are a subset of the population we solicited

one year prior to the expert study, to perform the bootstrapping for the OntoSAM-

SEI ontology (see Section 3.3.1). The general assumption about these experts is that

they have a deep understanding of their own domain, but lack familiarity with RDF

and OWL. The hypothesis is that IOPE helps these experts interact with their ontol-

ogy, i.e., OntoSAMSEI, in an intuitive and user-friendly fashion, with the objective of

enriching and populating the ontology.

The protocol of our expert study consists of two consecutive steps: interaction step and

evaluation step.

Interaction step. In this first step, the expert logs into IOPE with the credentials

communicated to him/her before the study, selects a simulation training session of in-

terest, and begins to observe and update the information presented in the pre-filled Web

pages. In this step, not only we record the interactions, we also keep track of some

meta-data, such as the total time spent on updating a training session, and the total

number of interactions. Once the expert is done with updating the Web pages of one

training session, he/she is free to come back to the list of all training sessions, and

choose another session to observe and update. Alternatively, the expert can terminate

the update process and move to the second step of the study.

Evaluation step. In the second step, the expert responds to a survey which evaluates

some qualitative aspects of IOPE and its underlying ontology (i.e., OntoSAMSEI).

1https://www.mturk.com
2https://www.prolific.co

Chapter 5. Evaluation 67

The survey captures the expert’s viewpoint regarding his/her interaction experience with

the pre-filled Web pages.

Our user study data contains interaction logs (from the interaction step) and survey

responses (from the evaluation step). For a more granular analysis of the results, we

propose to group the experts based on the intensity and duration of their activity. Note

that to respect the privacy of the experts, we build groups based on the behavior and

not the identity of the participants, where “expert behavior” is captured by the variables

number of interactions and interaction duration.

Expert groups based on the number of interactions. We define the groups of

prolific, active, and moderate experts. Members of the first group performed more than

6 interactions with IOPE, while the number of interactions is between 3 and 6 for the

second group, and less than 3 interactions for the third group. Table 5.1 shows the

distribution of experts in these groups.

Table 5.1: Distribution of experts in interaction number groups.

Moderate experts Active experts Prolific experts

Expert

population
22.73% 50% 27.27%

Expert groups based on the interaction duration. We define groups of short-

time, medium-time, and long-time experts. The average interaction duration for the

members of these groups is less than 2 minutes, between 2 and 4 minutes, and more

than 4 minutes, respectively. Table 5.2 shows the distribution of experts in these groups.

Table 5.2: Distribution of experts in interaction duration groups.

Short-time experts Medium-time experts Long-time experts

Expert

population
50% 31.82% 18.18%

Table 5.3 reports the distribution of the interaction duration groups for each interaction

number group, where each column sums up to 1.0. We observe that more interactions

do not necessary yield to more time spent to interact. This shows that IOPE helps

experts fulfill their task in a reasonable amount of time, even for prolific experts.

Table 5.3: Distribution of interaction duration groups in interaction number groups.

Interaction number groups

Moderate experts Active experts Prolific experts

Interaction

duration

groups

Short-time experts 0.80 0.46 0.33

Medium-time experts 0.00 0.27 0.67

Long-time experts 0.20 0.27 0.00

Chapter 5. Evaluation 68

In Sections 5.3 and 5.4, we elaborate on the results of our expert study for IOPE and

OntoSAMSEI, respectively, and compare different expert groups together.

5.3 Evaluation of IOPE Interface

Our aim in this section is to evaluate different aspects of IOPE by providing an an-

swer for the following questions regarding the efficiency and effectiveness of the IOPE

interface.

• Q1: Engagement. Do the experts engage with the IOPE interface and the

interactions therein?

• Q2: Time-to-insight. How does IOPE impact the “time-to-insight” for the

experts?

• Q3: Added value. What is the added value of IOPE compared to a standard

ontology editor?

• Q4: Satisfaction. Are the experts satisfied with the IOPE interface for observing

and updating their specialized ontology?

Sections 5.3.1 to 5.3.4 provide answers for the above questions.

5.3.1 IOPE’s Expert Engagement

To elaborate on Q1 (engagement), we provide a summary of the experts’ experience

in our study, as a proof of concept. By aggregating the collected meta-data for the 22

experts, we observe that the average time that an expert spent on updating training

sessions using the IOPE interface is 163 seconds (i.e., 2.72 minutes). After detecting

and removing outlier data (i.e., meta-data which correspond to experts with absolute

zero spent time, or with an extremely long spent time due to quiescence), we recorded

320 seconds (i.e., 5.33 minutes) as the maximum time spent on updating, and 67 seconds

(i.e., 1.12 minutes) as the minimum. Moreover, the experts performed 5.78 interactions

with IOPE interface, on average. We also recorded a maximum of 14 and a minimum

3 interactions. The majority of interactions are with the IOPE:CHECKBOX widget (i.e.,

56.15% of the interactions) followed by IOPE:TEXTBOX widget (32.30% of the interac-

tions) and IOPE:LISTBOX widget (11.53% of interactions). Compared to pilot studies

and in-person interactions with the experts, these results collectively show a reasonable

engagement of the experts with the IOPE platform and its interaction model.

Chapter 5. Evaluation 69

5.3.2 IOPE’s Time-to-Insight

Next, we focus on Q2. “Time-to-insight” is a typical evaluation criteria in interactive

systems [RJN20] which measures the expected amount of time (in seconds) for the

experts to fulfil their task. The notion of “task” here refers to ontology updating. Given

the interactions with IOPE as a training step, we asked the experts, in the evaluation

part of our study, about their prediction on the estimated time-to-insight for a future

utilization of the system: “how much time do you expect to take for setting up a new

simulation training session with IOPE?”. The response is in the form of a Likert scale

from 1 to 5, where the choice “1” means “very short time”, and the choice “5” means

“very long time”.

Figure 5.1 shows the results. We observe that on average the majority of experts chose

either “short time” or “average time”, i.e., options 2 and 3 in the Likert scale. Moreover,

it turns out that the prolific experts and long-time experts perceive shorter expected

time compared to the active and moderate experts. A possible interpretation is that

more interactions and more time spent interacting with the system boosts the perception

of faster delivery of required information.

1 2 3 4 5
0

20

40

60

P
ro
li
fi
c
(%

)

1 2 3 4 5
0

20

40

60

A
ct
iv
e
(%

)

1 2 3 4 5
0

20

40

60

M
o
d
er
at
e
(%

)

1 2 3 4 5
0

20

40

60

L
on

g-
ti
m
e
(%

)

1 2 3 4 5
0

20

40

60

M
ed

iu
m
-t
im

e
(%

)

1 2 3 4 5
0

20

40

60

S
h
or
t-
ti
m
e
(%

)

Figure 5.1: Prediction of experts about time-to-insight for their next utilization of
the IOPE interface. Dashed bars show the average values of time-to-insights for all

the experts.

5.3.3 IOPE’s Added Value

To elaborate on Q3 (added value), we compare IOPE with a standard state-of-the-art

ontology editor, i.e., TopBraid [PCHK20]. The comparison is built on the test bed

illustrated in Table 5.4, i.e., we measure the number of interactions required to fulfill

ontology editing tasks. The tasks are categorized into three levels of difficulty, based on

the “cognitive bias” task taxonomy proposed in [DFP+20]. Given the assumption about

the experts’ competence discussed in Section 5.2 (i.e., experts do not necessarily have

Chapter 5. Evaluation 70

Table 5.4: Testbed for the comparison between IOPE and TopBraid.

Task Description (Given the simulation training session X ...)

Easy Fill the number of trainees for X

Medium Fill the target audience of X

Difficult Fill the required resources for X

the basic knowledge to work with ontology editing tools), this comparative study was

performed by 5 collaborators of this thesis, who have the knowledge of both the domain

and the tools (IOPE and TopBraid).

Easy task Medium task Difficult task
0

10

20

3 3.6
5.725

7.5

21.37

#
in
te
ra
ct
io
n
s

IOPE

TopBraid

Figure 5.2: Average number of interactions in IOPE and TopBraid.

Figure 5.2 shows the results of the comparison between IOPE and TopBraid. We

observe that for both tools, the number of interaction steps increases with the difficulty

of the tasks. However, the IOPE’s trend grows from average 3 steps for an easy task

to average 5.72 steps for a difficult task, while using TopBraid grows from average 5

steps for an easy task to average 21 steps for a difficult task. This shows that IOPE

enables the experts to fulfill their tasks more rapidly by weaving relevant information

together using ontological constraints. This is also in conformance with the time-to-

insight experiment, as it depicts that IOPE is able to help experts achieve difficult

tasks in a reasonable number of interaction steps.

Table 5.5: User satisfaction aspects.

Measures Definition Question asked in the survey

Utility [Tho05, AT13]
The usefulness of the method

to fulfil a given task.

How do you evaluate the utility

of IOPE for setting up

simulation training sessions?

Usability [RJN20, AT13]
The easiness of interactions

with the method

To which degree do you find IOPE

easy-to-use?

Adoption [Tho05]
The usefulness of the method

for future similar tasks

How often will you employ IOPE for

setting up and describing a new

simulation training session in the future?

Chapter 5. Evaluation 71

5.3.4 IOPE’s Expert Satisfaction

To elaborate on Q4 (satisfaction), we define the notion of user satisfaction as a combina-

tion of “utility”, “usability”, and “adoption” [Tho05]. Table 5.5 provides a definition for

these user satisfaction aspects. In the evaluation part of our expert study, we measure

these aspects on a Likert scale from 1 to 5, which captures the assessment of experts on

their satisfaction when interacting with IOPE. For instance, as assessment of 4 for “us-

ability” means that the expert finds IOPE useful for most ontology update tasks. The

last column in Table 5.5 mentions the questions asked from the experts in the survey.

The results are shown in Figure 5.3. We observe that 82.35% of the participants have a

positive view on the utility of IOPE. However, the prolific experts appreciate the utility

more than active experts. This shows that more interactions smooth the learning curve

and increases the perception of utility, which is also confirmed by long-time experts who

are entirely on the positive spectrum.

Also, the experts perceived usability positively. However, there is a vivid contrast be-

tween moderate experts versus active and prolific experts, where the former group seems

to not enjoy the usability of IOPE. We conjecture that moderate experts got lost early

in the process, and abandoned their task. There is also a subset of long-time experts

who assessed low usability. They probably spent too much time to fulfill their tasks and

eventually got lost in the process.

The choice over adoption is from 1 to 5, where 1 means “never” and 5 means “always”.

Most of the experts voted to adopt IOPE in the future. The semantics of adoption is

perpendicular to the interaction volume and interaction time, hence no obvious correla-

tion was observed in expert groups.

Table 5.6: OntoSAMSEI evaluation measures.

Measures Definition Question asked in the survey

accuracy [OA19, RJN20]

The precision of

information based on

expert’s prior knowledge.

How do you evaluate the accuracy of

IOPE’s pre-filled information for

describing simulation training sessions?

completeness [RJN20]

The retrieval exhaustiveness

of the necessary

and required information.

How do you evaluate the sufficiency of

IOPE’s pre-filled information for

describing simulation training sessions?

5.4 OntoSAMSEI Evaluation

The experts in our study interacted with the IOPE interface to ultimately perform

ontology updates on the domain ontology. OntoSAMSEI is the domain ontology that

Chapter 5. Evaluation 72

1 2 3 4 5
0

20

40
A
ll
ex
p
er
ts

(%
)

Utility

1 2 3 4 5
0

20

40

A
ll
ex
p
er
ts

(%
)

Usability

1 2 3 4 5
0

20

40

A
ll
ex
p
er
ts

(%
)

Adoption

1 2 3 4 5
0

20

40

P
ro
li
fi
c
(%

)

1 2 3 4 5
0

10

20

30

P
ro
li
fi
c
(%

)
1 2 3 4 5

0

20

40

P
ro
li
fi
c
(%

)

1 2 3 4 5
0

10

20

30

40

A
ct
iv
e
(%

)

1 2 3 4 5
0

20

40

60

A
ct
iv
e
(%

)

1 2 3 4 5
0

20

40

A
ct
iv
e
(%

)
1 2 3 4 5

0

20

40

60

M
o
d
er
at
e
(%

)

1 2 3 4 5
0

10

20

30

M
o
d
er
at
e
(%

)

1 2 3 4 5
0

20

40

60

M
o
d
er
at
e
(%

)

1 2 3 4 5
0

20

40

60

L
on

g-
ti
m
e
(%

)

1 2 3 4 5
0

10

20

30

L
on

g-
ti
m
e
(%

)

1 2 3 4 5
0

20

40

60

L
on

g-
ti
m
e
(%

)

1 2 3 4 5
0

20

40

M
ed

iu
m
-t
im

e
(%

)

1 2 3 4 5
0

20

40

M
ed

iu
m
-t
im

e
(%

)

1 2 3 4 5
0

20

40

M
ed

iu
m
-t
im

e
(%

)

1 2 3 4 5
0

20

40

S
h
or
t-
ti
m
e
(%

)

1 2 3 4 5
0

20

40

60

S
h
or
t-
ti
m
e
(%

)

1 2 3 4 5
0

20

40

60

S
h
or
t-
ti
m
e
(%

)

Figure 5.3: Experts’ assessment on satisfaction aspects.

we developed in Chapter 3 of this thesis as the outcome of our 4-step ontology engineering

process. In this part of the experiment, our goal is to evaluate the OntoSAMSEI

ontology itself.

We measure the experts’ assessment of accuracy and completeness for the OntoSAM-

SEI ontology through its presentation to the experts by IOPE GUI. Table 5.6 defines

these measures.

Chapter 5. Evaluation 73

1 2 3 4 5
0

20

40

60

80

P
ro
li
fi
c
(%

)

1 2 3 4 5
0

20

40

60

80

A
ct
iv
e
(%

)

1 2 3 4 5
0

20

40

60

80

M
o
d
er
a
te

(%
)

1 2 3 4 5
0

20

40

60

80

L
on

g-
ti
m
e
(%

)

1 2 3 4 5
0

20

40

60

80

M
ed

iu
m
-t
im

e
(%

)

1 2 3 4 5
0

20

40

60

80

S
h
or
t-
ti
m
e
(%

)

Figure 5.4: Experts’ assessment of OntoSAMSEI’s accuracy. Dashed bars show the
average accuracy for all the experts.

1 2 3 4 5
0

20

40

60

80

P
ro
li
fi
c
(%

)

1 2 3 4 5
0

20

40

60

80

A
ct
iv
e
(%

)

1 2 3 4 5
0

20

40

60

80

M
o
d
er
at
e
(%

)

1 2 3 4 5
0

20

40

60

80

L
on

g-
ti
m
e
(%

)

1 2 3 4 5
0

20

40

60

80

M
ed

iu
m
-t
im

e
(%

)

1 2 3 4 5
0

20

40

60

80

S
h
or
t-
ti
m
e
(%

)

Figure 5.5: Experts’ assessment of OntoSAMSEI’s completeness. Dashed bars show
the average scores of completeness for all the experts.

The last column in Table 5.6 mentions the questions that we asked in the evaluation part

of our expert study. For both accuracy and completeness, we receive the expert feedback

using a Likert scale from 1 to 5, where 5 means high accuracy and high completeness,

respectively.

Figures 5.4 and 5.5 show the results. We observe in Figure 5.4 that the majority of

the participants are positive on accuracy, while 11.76% are negative. Short-time and

moderate experts express more negative votes on accuracy compared to long-time and

prolific experts, respectively. This is presumably because less investigations in the former

groups did not enable them a precise view of the ontology. Regarding completeness, we

observe in Figure 5.5 that 76.46% of the participants find OntoSAMSEI “adequately

complete”. However, prolific experts appreciate completeness less than the overall popu-

lation. We found out that they prominently interact with text-boxes, which shows that

they use IOPE to effectively enrich the ontology. The entire long-time expert group

votes positively, which means that spending more time to go into the details of the

simulation training sessions convinces them of their completeness.

Chapter 5. Evaluation 74

5.5 Generality of IOPE

Sections 5.3 and 5.4 present evaluations of IOPE when OntoSAMSEI is employed

as the underlying ontology. In this section, our goal is to shed light on the generality

aspects of IOPE by showing its applicability on another domain. Given an ontology

from another domain, we verify whether IOPE is able to automatically generate pre-

filled Web pages which are meaningful in that domain.

We employ an ontology called PerSCiDO which contains the structure and information

of a dataset publishing and sharing web portal3. While the portal has the same func-

tionality as Harvard’s Dataverse4 and Google Dataset Search5, it is among the

few services that enables experts to employ SPARQL queries to explore the datasets.6

The ontology is organized around a main class perscido:Dataset with properties de-

scribing the datasets, such as title, description, scientific fields, and keywords. The two

main differences between OntoSAMSEI and PerSCiDO are as follows: (i) there exist

several focus classes in the former, while there exist a single one in the latter (i.e., the

dataset), (ii) The PerSCiDO ontology is entirely described with “domain and range”

ontological constraints. However, some properties are indicated as mandatory in the

interface of PerSCiDO, in which it is hard-coded by a red asterisk. For these proper-

ties, we have added the ontological constraints “minCardinality 1” in the PerSCiDO

ontology.

We apply IOPE to the “dataset submission” functionality of PerSCiDO. A series

of HTML forms are manually crafted in the web portal, where the expert enters the

desired values in the widgets for submitting a new dataset, and the values will be fed

to the ontology upon clicking the “validate” button. Figures 5.6 and 5.7 show two

example forms of the data submission process, for entering information about “content

description” and “data processing”, respectively. The left side of the figures show the

pre-filled Web forms automatically generated by IOPE, and the right side illustrates

the same forms, manually crafted in the web portal.

In Figure 5.6, we observe that all the elements in the manual form are well presented

in the IOPE’s output. Moreover, the dynamic structure of the auto-generated forms

facilitates changes in the future, while the manual form is fixed and needs to be re-

engineered. For example, a new “scientific field” can be easily integrated in the IOPE’s

generation process, while it requires tedious manual work in the status quo.

3https://perscido.univ-grenoble-alpes.fr
4https://dataverse.harvard.edu
5https://datasetsearch.research.google.com
6https://perscido.univ-grenoble-alpes.fr/sparql query

Chapter 5. Evaluation 75

Dataset submission

Title: (*)

Other : Provide the label(s) (separated by a comma).

Content descripDon

Warning! To save the informa/on entered on this page, you must click on "Save".

Save Return to page list

Enter a value

DescripDon: (*)

Enter a value

Keyword(s): (*)

Enter a value

ScienDfic field(s): (*)

Field area (*)

Agriculture

Architecture

Select exis@ng item(s) or enter

new item(s):

Enter the new item(s) (separeted by

a comma).

Behavioural science

Related publicaDon(s):

Enter a value

Figure 5.6: Content description step for submitting a new dataset in PerSCiDO.

In Figure 5.7, beyond the complete presentation of the entire manual form, IOPE ren-

ders a more homogeneous output, as the same rules are applied for the same type. For

instance, the manual form represents the options of “data type” as a list, and the options

of “automatic tasks” as check boxes. While this inconsistency originates from typical

arbitrarily decisions of front-end engineers, auto-generated forms in IOPE ensures the

maximal consistency, and hence provide more intuitiveness and easy-friendliness to ex-

perts, for updating their ontologies.

5.6 Summary

In this chapter, we reported the results of our experiments on ontology construction and

ontology update. Given the interactive nature of our framework, we built an expert

study where the participants interact with IOPE’s automatically generated Web forms

and respond to a survey about their experience. We showed that the experts are engaged

to the Web forms, as they need a short time-to-insight to update their ontology in IOPE.

We also discussed the added value of our approach in comparison with a state-of-the-art

ontology editing tool, in decreasing the number of interactions to fulfill the task.

In terms of user satisfaction, we mentioned that high values of utility, usability, and

adoption are perceived for our framework. We also illustrated the positive assessment

Chapter 5. Evaluation 76

Dataset submission

Other : Provide the label(s) (separated by a comma).

Data processing

Warning! To save the informa/on entered on this page, you must click on "Save".

Save Return to page list

Dataset type: (*)

Different data types (*)

Experimental data

Graph data

Select exis@ng item(s) or enter

new item(s):

Enter the new item(s) (separeted by

a comma).

Image data

Associated code:

Enter a value

Processing task(s) performed on the dataset: (*)

task (*)

Ac@vity recogni@on

Anomaly detec@on

Select exis@ng item(s) or enter

new item(s):

Enter the new item(s) (separeted by

a comma).

Classifica@on

Other : Provide the label(s) (separated by a comma).

Figure 5.7: Data processing step for submitting a new dataset in PerSCiDO.

of experts on the accuracy and completeness of the OntoSAMSEI ontology, when

presented by IOPE GUI.

Last, we shed light on the generality aspects of our approach and showed how IOPE

contributes to domains other than Medicine by providing more dynamicity and consis-

tency.

Chapter 6

Summary and Perspectives

6.1 Summary

The focus of this thesis is on constructing specialized ontologies to capture the skills of

experienced experts in a particular domain (i.e., simulation-based medical education),

with the goal of sharing those skills with a larger community of trainees and less ex-

perienced experts in the domain. To achieve this objective, we followed two distinct

directions: (i) knowledge elicitation and formalization of the simulation-based medical

education, and (ii) development of an interactive ontology update approach. The com-

bination of the two directions constitute the full pipeline of ontology engineering for

specialized domains, from ontology construction to ontology enrichment and population

(i.e., ontology update).

Chapters 1 and 2 of this thesis presented the introductory and preliminary concepts used

in our contributions to realize the two above directions. We discussed the challenges of

ontology construction for ill-defined domains, and mentioned pedagogical domains as a

mainstream, where simulation-based medical training is an example. We also provided

formal definitions of some fundamental notions in this thesis, such as semantic Web,

semantic Web languages, and ontological constraints.

In Chapter 3, we presented the first contribution of this thesis, i.e., a methodology

for designing and engineering a simulation-based medical training ontology, called On-

toSAMSEI. We discussed the challenges associated to this objective, i.e., the scarcity

of formal models and documentations in ill-defined domains including simulation-based

medical education. We discussed three groups of ontology engineering methods (OEMs),

i.e., non-collaborative, collaborative, and custom OEMs, and concluded that collabo-

rative OEMS are more expressive and powerful for building ill-defined domains. We

77

Chapter 6. Summary and Perspectives 78

presented our 4-step collaborative OEM, which begins by ontology bootstrapping, fol-

lowed by knowledge elicitation and enhancement. The resulting ontology is a hierarchy

of classes and of properties, enriched by ontological constraints on the properties and on

the classes. Last, we presented the fourth step of our approach, i.e., interactive ontology

update, to account for the evolving nature of ontologies.

In Chapter 4, we presented the second contribution of this thesis, i.e., a framework called

IOPE for the automatic construction of a Graphical User Interface (GUI) consisting of

pre-filled Web pages. IOPE controls the update process of the input ontology, and

hence completes the engineering pipeline of Chapter 3. We discussed the challenges as-

sociated to automatic GUI construction for ontologies, i.e., the difficulty of graphically

presenting the graph-based nature of ontologies, and making those GUIs intuitive and

easy-to-use for the experts without the knowledge of the formal syntax and semantics

of ontology languages. We mentioned how the literature addresses ontology updates,

by reviewing ontology editing tools, as well as graph-based and form-based approaches.

We presented the main idea behind IOPE as transposing the RDF data and the on-

tological constraints into a GUI, using mapping rules. These automatically generated

GUIs provide guidance for domain experts and facilitate the ontology exploration and

update through interactive graphical widgets. We also discussed binding rules, to bind

the input entered through user interactions in the GUI to RDF data, and consequently

perform ontology updates.

In Chapter 5, we evaluated our contributions on ontology construction and ontology

update. We defined three distinct objectives for our evaluation scheme: (i) the benefit

of the IOPE interface for enabling experts to populate and enrich the OntoSAMSEI

ontology, (ii) the quality of the OntoSAMSEI ontology through its presentation by the

IOPE GUI, and (iii) the extent of IOPE’s generality in domains other than Medicine.

Given the interactive nature of our framework, we motivated the construction of an

in-depth expert study, where the participants interact with IOPE’s automatically gen-

erated Web forms and respond to a survey about their experience. For the first direction

of our evaluation, we measured different aspects of IOPE functionality using the survey

responses, such as engagement, time-to-insight, added value, and expert satisfaction. We

showed that the experts are engaged to the Web forms, as they need a short time-to-

insight to update their ontology. We also mentioned that high values of utility, usability,

and adoption are perceived for our framework, hence high expert satisfaction. For the

second direction, we illustrated the assessment of experts on the accuracy and com-

pleteness of the OntoSAMSEI ontology, when presented by IOPE GUI. For the third

direction, we depicted the applicability of our approach to domains other than Medicine,

by adapting IOPE to PerSCiDO, a dataset sharing and publishing web portal.

Chapter 6. Summary and Perspectives 79

6.2 Perspectives

Among several future directions that we envision we focus on the following three per-

spectives.

Direction 1: Learning mapping rules. We discussed in Section 5.5 that IOPE

can be applied to ontologies from different domains. These domains can be described

by different ontological constraints such as “cardinality”, “hasValue”, and “domain and

range”. However, it may be the case that an ontology is described only with “domain

and range” ontological constraints. PerSCiDO is an example of such domains, where

the ontology is entirely constructed using RDFS ontological constraints. In such cases,

it is beneficial to devise an automatic way to extend the list of mapping rules using the

resources which are already available for the domain under investigation, such as Web

pages and Intelligent Tutoring Systems (ITS) [PMMB88, SKS+16]. Our first direction

of future work is to employ supervised learning methods to automatically learn a set of

mapping rules from the ontology and the resources of a given domain.

To learn mapping rules, the learning method receives as input different RDF triples of

the ontology paired with their corresponding resources, and learns the relation between

those triples and the resources, hence the mapping rules. To decrease the learning

bias [NFG+20], the resources should be collected from diverse sources. For instance, in

the case of the PerSCiDO ontology, one can obtain Web pages from different services

following the same goal, e.g., Dataverse and Google Dataset Search. Also in the

case of the OntoSAMSEI ontology, various ITSs such as CIRCSIM-Tutor [EM06]

and Cardiac-Tutor [EW95] can be employed. The learned mapping rules will be

able to generate optimal Web pages (i.e., ones which exactly capture the content of the

ontology) and expand the list of mappings beyond “domain and range” constraints.

Direction 2: Explainability. In the Artificial Intelligence (AI) community, there exist

a growing demand for explaining models which assist users in the process of decision

making [NJ17, AB18], which is often called XAI. IOPE is an AI system whose guidance

is rendered in a rule-based fashion. An advantage of rule-based systems is that they are

transparent-by-design, hence naturally explainable. For instance, if an expert wonders

why a Web page is generated in a particular form, IOPE can easily reveal the mapping

rule responsible for that generation, as an explanation. The XAI in IOPE can be

improved by providing on-screen and widget-level hints for the experts who are less

familiar with the technicality of the widgets.

Beyond the natural transparency in IOPE, we observed in our expert study (Section 5.3)

that some domain experts experienced difficulties in interacting with the generated Web

pages, due to their lack of knowledge about the technicality of the widgets. For instance,

Chapter 6. Summary and Perspectives 80

they might not be aware a-priori that more than one option can be selected in a list,

or no characters should be entered in a text box whose placeholder is “enter a number”.

This is a classical problem in the HCI domain, where widget hints are proposed to

explain to the user the way that he/she should employ that widget. A seminal work is

Scented Widgets [WHA07] where each widget is enhanced with embedded visualizations

to facilitate the exploration in the Web pages. Our second future direction is to integrate

widget hints into the IOPEWeb ontology and enable widget-level explanations. This

enhanced XAI feature will increase the experts’ engagement to the platform and prevents

them from jump shipping and abandoning the interface.

In IOPE, widget-level explanations should be based on both the ontology and the map-

ping rules. IOPE interface can be enriched with clickable question mark icons next to

each widget, which the expert can refer to, if needed. A natural form of explainability

is a “question answer” pair [ZCA+18], where clicking a question mark icon reveals such

pair to clarify the interaction. A set of question templates can be prepared (e.g., “intel-

ligibility type questions” [ZMA19]) whose answers will be dynamically assigned based

on the content of the ontology and the mapping rules.

Direction 3: Automatic validation of ontology updates. In our setting, each

ontology update should be first validated by an ontology engineer before being perma-

nently added to the ontology. This is an essential step in the context of engineering a

specialized ontology such as OntoSAMSEI, as the information are sensitive and the

penetration of erroneous and/or redundant entries is strictly forbidden. In more general

ontologies, however, the process can be more robust by leveraging group consensus meth-

ods [AORS15] (majority voting, least misery, pairwise disagreement, etc.) among the

experts interacting with the IOPE interface. Our third future direction is to automate

the validation process for general ontologies by leveraging the wisdom of the crowd, i.e.,

the experts are scrutinized about the updates that other experts had already performed,

and if the consensus on an update reached some certain level, it can be automatically

added to the ontology, without the need of an approval from an ontology engineer. Given

a threshold of experts vote to approve an ontology update, it will be ultimately added

to the ontology.

As the ontology updates can be abundant, an auto-validation method should be able to

select a subset of those updates to present to the expert. The strategy to query such

subset of the ontology updates should be based on maximizing the validation votes (both

approvals and rejections). In other words, there is more necessity in voting for validating

an ontology update which has never been validated before, compared to another one

which has already received some votes. Hence the updates with fewer validation votes

should have more chances to be queried. In long term, such query strategy ensures

Chapter 6. Summary and Perspectives 81

that almost all ontology updates get enough validation votes. This query strategy can

be modeled in the framework of Active Learning (AL) [DPD16, Set09], whose main

objective is to find the best set of unlabeled data to be labeled by data annotators,

using a query strategy. In AL, the strategies are typically entropy-based to ensure that

the selected subset has the largest impact on label completion. Our future work is

inspired by these efforts to come up with query strategies in the context of ontology

updates.

Appendix A

Online Questionnaire

In Chapter 3, we presented a 4-staged collaborative ontology engineering approach for

the specialized domain of simulation-based medical training. The four consecutive steps

of the process are ontology bootstrapping, knowledge elicitation, enhancement, and up-

date. Once the initial ontology is bootstrapped, we disseminate an online questionnaire

among the domain experts to elicit the domain knowledge.

As instructed in Section 3.3.2, we teamed up with a pedagogical engineer to design the

online questionnaire with 7 consecutive sections to be filled by the experts. These steps

will collectively guide the expert in building a new simulation-based training session.

The steps of the questionnaire are as follows: general description (Figure A.1), target

audience (Figure A.2), goals (Figure A.3), prerequisites (Figure A.4), resources (Fig-

ure A.5), conditions and risks (Figure A.6), and additional information (Figure A.7).

In each step of the questionnaire, the expert can save the training session until that

point, and complete the remaining parts later. It is also possible for the expert to come

back to previous steps and change already entered information.

Moreover, to address the privacy concerns of the experts and respect the GDPR context1,

we enable the experts to have full access to their data, and remove the entries if they

desire. We also guarantee that the collected data is only used in the context of this

thesis.

1General Data Protection Regulation (GDPR): https://www.gdpr-info.eu

83

Online Questionnaire 84

Figure A.1 shows the first step of the online questionnaire. This step deals with the

aspects of data lineage and data ownership, where the information about the health

educator (i.e., the session author) is captured. As discussed in Section 4.3.2.2, a red

asterisk in front of a widget shows that the widget is mandatory and must be filled by

the expert.

Figure A.1: Step 1 in the online questionnaire (general description)

Online Questionnaire 85

Figure A.2 shows the second step of the online questionnaire. In this step, the educator

defines the audience that the training session should target. Most options in this step

are based on the French education system in the domain of Medicine [SJH+07, PJN+19].

Figure A.2: Step 2 in the online questionnaire (target audience)

Online Questionnaire 86

The third step of the questionnaire is shown in Figure A.3, where the health educator

describes the objectives of the training session. The objectives of a session are defined

in the context of the two following components: procedures, and assessments.

In the top part of the form, the expert fills in the “procedures”, i.e., different actions in

the training. A training session may have many procedures. Each procedure is described

by a name, an objective (what needs to be learned by performing the action), description,

and an optional resource (e.g., an explanatory image). In case the expert has second

thoughts on a procedure and does not want to add it to the session after all, he/she will

uncheck the “register” check box.

In the bottom part of the form, the expert provides information about the “assessment

methods” of the training session. Each assessment method is identified with a type (e.g,

multiple choice question, abbr., MCQ) and a link to the content of the assessment.

Figure A.3: Step 3 of the online questionnaire (goals)

Online Questionnaire 87

Figure A.4 shows the fourth step of the online questionnaire, where the educator defines

the prerequisites of the training session, i.e., what needs to be done before starting the

training. Each prerequisite is described with a type, description, and an optional link

for more explanation about the prerequisite. In case the expert has second thoughts on

a prerequisite and does not want to add it to the session after all, he/she will uncheck

the “register” check box.

The type of the prerequisite identifies its nature. For instance, it could be a video that

has to be watched, another session to be validated, or a rule to know, before starting

this session.

In the bottom part of the form, the expert describes the nature of assessments for the

prerequisites. Similar to the previous step, each assessment is identified with a type and

a link to its content.

Figure A.4: Step 4 of the online questionnaire (prerequisites)

Online Questionnaire 88

Figure A.5 shows the fifth step of the online questionnaire where the educator describes

the resources required for the training session in four different categories: time, trainees,

trainers, and material. First, the expert defines the time aspect of the resources as the

minimum and maximum duration of the session in minutes. Second, he/she determines

the minimum and maximum number of learners in the session. Third, the required

human resources are defined, where each resource is described with a type (e.g., tech-

nician, assistant, etc.), a description, and the minimum and maximum number of the

required resource. Last, materialistic resources are also described, such as consumables,

simulation devices, etc.

Figure A.5: Step 5 of the online questionnaire (resources)

Online Questionnaire 89

Beyond preliminary information about a training session, it is also necessary to describe

its associated terms and conditions, as well as its potential risks. Figure A.6 shows the

sixth step of the questionnaire which captures this information.

Figure A.6: Step 6 of the online questionnaire (conditions and risks)

Online Questionnaire 90

In the last step of the questionnaire (Step 7 shown in Figure A.7), the expert can

provide any other information about the training session that could not be fit in the

previous steps. We also ask the educator if he/she is willing to be contacted for the next

iterations of our study. The experts who participated in our expert study (Chapter 5)

had all answered “yes” to this question.

Once the expert clicks the “finish” button in this form, a summary of all entered infor-

mation will be shown, where he/she can verify the entries, and correct them if necessary.

Figure A.7: Step 7 of the online questionnaire (additional information)

Appendix B

Mapping Rules

In Section 4.3.2.2, we introduced mapping rules as providers of the full RDF specification

of the pre-filled Web pages that have to be created for a focus class. Among 16 mapping

rules proposed in this thesis, 9 are already presented in Chapter 4. In this part of the

appendix, we present the remaining mapping rules.

IOPE:partOf

IOPE:partOf

IOPE:has

widget IOPE:LISTBOXrdf:type

instances(C)True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has

widget

IOPE:CardinalityContainer p,C

instances(C) = list of all instances of class C

IOPE:Cardinality

InstanceContainer

rdf:type

IOPE:dataSource

IOPE:has

widget
IOPE:LABELrdf:type

True

IOPE:required

IOPE:Cardinality

ClassContainer
IOPE:dataSource

C_label

Enter the new item(s)

(separated by a comma).

IOPE:placeholder

Select exis:ng item(s)

or enter new item(s)

IOPE:label

rdf:type

_:b1

_:b2

_:b3

_:b4

_:b5

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality

F _:b1

Figure B.1: Mapping rule #5, employed for a cardinality constraint where
subClasses(C) is empty, but instances(C) is not empty, and n > 0.

⌅ Mapping rule #5 for a cardinality restriction (p min n C) for F such

that n > 0, corresponds to the case where C does not have a hierarchy of sub-

classes, but has a list of instances in the domain ontology. This mapping rule is pre-

sented in Figure B.1. For the IOPE:CardinalityClassContainer, a widget of

type IOPE:LABEL is created as a blank node with the property IOPE:dataSource

filled by the label of class C, i.e., C label . The property IOPE:required is set to

True for this widget to indicate that this value is mandatory for the property p. For

the IOPE:Cardinality-InstanceContainer, a widget of type IOPE:LISTBOX

is created as a blank node with the property IOPE:dataSource filled with the list

91

Mapping rules 92

instances(C), the IOPE:label property set to “select existing item(s) or enter new

item(s)” and the IOPE:hidden property set to False to make the widget visible and

intractable to the user. A widget of type IOPE:TEXTBOX is also created with the

IOPE:placeholder property set to the value “Enter the new item(s) (separated by a

comma)” to enable the experts to enter new instances.

⌅ Mapping rule #6 for a cardinality restriction (p min n C) for F such that

n > 0, corresponds to the case where C has a hierarchy of sub-classes but does not have

a list of instances in the domain ontology. This mapping rule is presented in Figure B.2.

For the IOPE:CardinalityClassContainer, a widget of type IOPE:TREEVIEW

is created as a blank node with the property IOPE:dataSource filled with the tree

view of subClasses(C), which denotes the hierarchy of the sub-classes of C in the domain

ontology enriched with an additional itemOther C . The property IOPE:required and

IOPE:onClick are set to True for this widget to indicate that entering at least one value

is mandatory for the property p and that this widget supports the interaction with the

experts to display the sub-class hierarchy, interactively. For the IOPE:Cardinality-

InstanceContainer, a widget of type IOPE:TEXTBOX is created with the IOPE:

placeholder property set to the value “enter the new item(s) (separated by a comma)

or give a minimal number of items” in order to enable the experts to enter new instances

or provide a minimum required number.

IOPE:partOf

True

IOPE:has

widget
IOPE:TREE VIEWrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

True

IOPE:requiredIOPE:onClick

IOPE:Cardinality

ClassContainer

rdf:type

IOPE:dataSource

IOPE:has

widget
IOPE:TEXTBOXrdf:type

IOPE:Cardinality

InstanceContainer

rdf:type

Enter the new item(s) (separated by

a comma) or give a minimal number

of items

IOPE:placeholder

IOPE:partOf

subClasses(C) = list of all subclasses of class C and its other C

_:b1

_:b2

_:b3

_:b4

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality

F _:b1

Figure B.2: Mapping rule #6, employed for a cardinality constraint where
subClasses(C) is not empty, but instances(C) is empty, and n > 0.

⌅ Mapping rule #9 for a cardinality restriction (p min n C) for F such that

n = 0, corresponds to the case where C does not have either a hierarchy of sub-classes or

a list of instances in the domain ontology. This mapping rule is presented in Figure B.3.

For IOPE:CardinalityClassContainer, a widget of type IOPE:LABEL is created

as a blank node with the property IOPE:dataSource filled by the label of class C, i.e.,

“C label”. Given n = 0, the property IOPE:required is set to False for this widget,

to indicate that it is up to the user to select a choice from this widget. As the class C

does not have any instances for IOPE:CardinalityInstanceContainer, a widget

Mapping rules 93

n=0,

C, without subclasses and instances.

IOPE:partOf

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:TEXTBOXrdf:type

IOPE:CardinalityContainer p,C

False

IOPE:required

IOPE:Cardinality

ClassContainer

IOPE:Cardinality

InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

C_label

Enter the new item(s) (separated by

a comma) or give a minimal number

of items

IOPE:placeholder

_:b1

_:b2

_:b3

_:b4

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality

C_label

rdfs:label

F _:b1

Figure B.3: Mapping rule #9, employed for a cardinality constraint where
subClasses(C) and instances(C) are empty, and n = 0.

of the type IOPE:TEXTBOX is created with the IOPE:placeholder property set to

the value “enter the new item(s) (separated by a comma) or provide a minimal number of

items” in order to enable users to enter new instances, or provide a minimum number of

requirements.

⌅ Mapping rule #10 for a cardinality restriction (p min n C) for F such

that n = 0, corresponds to the case where C does not have a hierarchy of sub-classes,

but has a list of instances in the domain ontology. This mapping rule is presented

in Figure B.4. For the IOPE:CardinalityClassContainer, a widget of type

IOPE:LABEL is created as a blank node with the property IOPE:dataSource filled

by the label of class C, i.e., C label . The property IOPE:required is set to False

for this widget to indicate that it is up to the user to select a choice from this widget.

For the IOPE:CardinalityInstanceContainer, a widget of type IOPE:LISTBOX

is created as a blank node with the property IOPE:dataSource filled with the list

instances(C), the IOPE:label property set to “select existing item(s) or enter new

item(s)” and the IOPE:hidden property set to False to make the widget visible and

intractable to the user. A widget of type IOPE:TEXTBOX is also created with the

IOPE:placeholder property set to the value “enter the new item(s) (separated by a

comma)” to enable the experts to enter new instances.

⌅ Mapping rule #11 for a cardinality restriction (p min n C) for F such

that n = 0, corresponds to the case where C has a hierarchy of sub-classes but does

not have a list of instances in the domain ontology and is presented in Figure B.5.

For the IOPE:CardinalityClassContainer, a widget of type IOPE:TREEVIEW is

created as a blank node with the property IOPE:dataSource filled with the tree view

of subClasses(C), which denotes the hierarchy of the sub-classes of C in the domain

ontology enriched with an additional item Other C . The property IOPE:required

is set to False for this widget to indicate that it is up to the user to select a choice

Mapping rules 94

IOPE:partOf

IOPE:partOf

IOPE:has

widget IOPE:LISTBOXrdf:type

instances(C)True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has

widget

IOPE:CardinalityContainer p,C

n=0,

instances(C) = list of all instances of class C.
IOPE:Cardinality

InstanceContainer

rdf:type

IOPE:dataSource

IOPE:has

widget
IOPE:LABELrdf:type

False

IOPE:required

IOPE:Cardinality

ClassContainer
IOPE:dataSource

C_label

Enter the new item(s)

(separated by a comma).

IOPE:placeholder

Select exis:ng item(s)

or enter new item(s)

IOPE:label

rdf:type

_:b1

_:b2

_:b3

_:b4

_:b5

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality

F _:b1

Figure B.4: Mapping rule #10, employed for a cardinality constraint where
subClasses(C) is empty, but instances(C) is not empty, and n = 0.

IOPE:partOf

True

IOPE:has

widget
IOPE:TREE VIEWrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

False

IOPE:requiredIOPE:onClick

IOPE:Cardinality

ClassContainer

rdf:type

IOPE:dataSource

IOPE:has

widget
IOPE:TEXTBOXrdf:type

IOPE:Cardinality

InstanceContainer

rdf:type

Enter the new item(s) (separated by

a comma) or give a minimal number

of items

IOPE:placeholder

IOPE:partOf

n=0,

subClasses(C) = list of all subclasses of class C and its other C.

_:b1

_:b2

_:b3

_:b4

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality

F _:b1

Figure B.5: Mapping rule #11, employed for a cardinality constraint where
subClasses(C) is not empty, but instances(C) is empty, and n = 0.

from this widget. For the IOPE:CardinalityInstanceContainer, a widget of

type IOPE:TEXTBOX is created with the IOPE: placeholder property set to the

value “enter the new item(s) (separated by a comma) or give a minimal number of items”

in order to enable the experts to enter new instances or provide a minimum required

number.

⌅ Mapping rule #14 for “domain and range” constraints for F on property p

such that (p rdfs:domain F) and (p rdfs:range C), corresponds to the case

where the class range of the property p does not have a hierarchy of sub-classes, but has

a list of instances in the domain ontology. Figure B.6 presents this mapping rule. In

this case, the specific container “IOPE:RangeContainer p, C” is decomposed into two

sub-containers defined as blank nodes, with types “IOPE: RangeClassContainer”

and “IOPE:RangeInstanceContainer”. For the IOPE: RangeClassContainer,

a widget of type IOPE:LABEL is created as a blank node with the property IOPE:data-

Source filled by the label of class C, i.e., C label . The property IOPE:required is set

to True for this widget to indicate that this value is mandatory for the property p. For

Mapping rules 95

the IOPE:RangeInstanceContainer, a widget of type IOPE:LISTBOX is created

as a blank node with the property IOPE:dataSource filled with the list instances(C),

the IOPE:label property set to “select existing item(s) or enter new item(s)” and the

IOPE:hidden property set to False to make the widget visible and intractable to the

user. A widget of type IOPE:TEXTBOX is also created with the IOPE:placeholder

property set to the value “enter the new item(s) (separated by a comma)” to enable the

experts to enter new instances.

rdfs:domain
CF

rdfs:range
p

IOPE:partOf

IOPE:partOf

IOPE:has

widget IOPE:LISTBOXrdf:type

instances(C)True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has

widget

IOPE:RangeContainer p,C

instances(C) = list of all instances of class C

IOPE:Range

InstanceContainer

rdf:type

IOPE:dataSource

IOPE:has

widget
IOPE:LABELrdf:type

True

IOPE:required

IOPE:Range

ClassContainer
IOPE:dataSource

C_label

Enter the new item(s)

(separated by a comma).

IOPE:placeholder

Select exis:ng item(s)

or enter new item(s)

IOPE:label

rdf:type

_:b1

_:b2

_:b3

_:b4

_:b5

Figure B.6: Mapping rule #14, employed for “domain and range” constraints, where
subClasses(C) is empty, but instances(C) is not empty.

rdfs:domain
CF

rdfs:range
p

IOPE:partOf

True

IOPE:has

widget
IOPE:TREE VIEWrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

True

IOPE:requiredIOPE:onClick

IOPE:Range

ClassContainer

rdf:type

IOPE:dataSource

IOPE:has

widget
IOPE:TEXTBOXrdf:type

IOPE:Range

InstanceContainer

rdf:type

Enter the new item(s) (separated by

a comma) or give a minimal number

of items

IOPE:placeholder

IOPE:partOf

subClasses(C) = list of all subclasses of class C and its other C

_:b1

_:b2

_:b3

_:b4

Figure B.7: Mapping rule #15, employed for “domain and range” constraints, where
subClasses(C) is not empty, but instances(C) is empty.

⌅ Mapping rule #15 for “domain and range” constraints for F on property p

such that (p rdfs:domain F) and (p rdfs:range C), corresponds to the case

where the class range of the property p has a hierarchy of sub-classes but does not have

a list of instances in the domain ontology. This mapping rule is presented in Figure B.7.

For the IOPE:RangeClassContainer, a widget of type IOPE:TREEVIEW is created

as a blank node with the property IOPE:dataSource filled with the tree view of

subClasses(C), which denotes the hierarchy of the sub-classes of C in the domain on-

tology enriched with an additional item Other C . The property IOPE:required and

Mapping rules 96

IOPE:onClick are set to True for this widget to indicate that entering at least one value

is mandatory for the property p and that this widget supports the interaction with the ex-

perts to display the sub-class hierarchy, interactively. For the IOPE:RangeInstance-

Container, a widget of type IOPE:TEXTBOX is created with the IOPE:placeholder

property set to the value “enter the new item(s) (separated by a comma) or give a minimal

number of items” in order to enable the experts to enter new instances or provide a

minimum required number.

Bibliography

[AB18] Amina Adadi and Mohammed Berrada. Peeking inside the black-box: a

survey on explainable artificial intelligence (xai). IEEE access, 6:52138–

52160, 2018.

[ABGRA14] Ibrahim Ahmed Al-Baltah, Abdul Azim Abdul Ghani, Wan Nurhayati

Wan Ab Rahman, and Rodziah Atan. A comparative study on ontology

development methodologies towards building semantic conflicts detection

ontology for heterogeneous web services. Research Journal of Applied Sci-

ences, Engineering and Technology, 7(13):2674–2679, 2014.

[AH11] Dean Allemang and James Hendler. Semantic web for the working ontol-

ogist: effective modeling in RDFS and OWL. Elsevier, 2011.

[AMD+10] Rajesh Aggarwal, Oliver T Mytton, Milliard Derbrew, David Hananel,

Mark Heydenburg, Barry Issenberg, Catherine MacAulay, Mary Eliza-

beth Mancini, Takeshi Morimoto, Nathaniel Soper, et al. Training and

simulation for patient safety. BMJ Quality & Safety, 19(Suppl 2):i34–i43,

2010.

[ANR+19] Natanael Arndt, Patrick Naumann, Norman Radtke, Michael Martin, and

Edgard Marx. Decentralized collaborative knowledge management using

git. Journal of Web Semantics, 54:29–47, 2019.

[AORS15] Sihem Amer-Yahia, Behrooz Omidvar-Tehrani, Senjuti Basu Roy, and

Nafiseh Shabib. Group recommendation with temporal affinities. In Pro-

ceedings of the 18th International Conference on Extending Database Tech-

nology, EDBT 2015, Brussels, Belgium, March 23-27, 2015, pages 421–

432. OpenProceedings.org, 2015.

[AT13] William Albert and Thomas Tullis. Measuring the user experience: col-

lecting, analyzing, and presenting usability metrics. Newnes, 2013.

97

Bibliography 98

[BBDW17] Fabian Beck, Michael Burch, Stephan Diehl, and Daniel Weiskopf. A tax-

onomy and survey of dynamic graph visualization. In Computer Graphics

Forum, pages 133–159. Wiley Online Library, 2017.

[BHBL11] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data: The

story so far. In Semantic services, interoperability and web applications:

emerging concepts, pages 205–227. IGI global, 2011.

[BHLX13] AS Butt, A Haller, S Liu, and L Xie. Activeraul: Automatically generated

web interfaces for creating rdf data. Semantic Web, 2013, 2013.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.

Scientific american, 284(5):34–43, 2001.

[BT21] Shadi Baghernezhad Tabasi. IOPE implementation. https://github.

com/shadi-tabasi/IOPE.git, 2021.

[BTRD+19] Shadi Baghernezhad-Tabasi, Marie-Christine Rousset, Löıc Druette, Fab-

rice Jouanot, and Celine Meurger. OntoSAMSEI: Interactive ontology

modeling for supporting simulation-based training in Medicine. In IC3K,

2019. KEOD Doctoral Consortium.

[CDH+17] Jean-Paul Calbimonte, Fabien Dubosson, Roger Hilfiker, Alexandre Cot-

ting, and Michael Schumacher. The medred ontology for representing

clinical data acquisition metadata. In International Semantic Web Con-

ference, pages 38–47. Springer, 2017.

[CFLGP03] Oscar Corcho, Mariano Fernández-López, and Asunción Gómez-Pérez.

Methodologies, tools and languages for building ontologies. where is their

meeting point? Data & knowledge engineering, 46(1):41–64, 2003.

[DFP+20] Evanthia Dimara, Steven Franconeri, Catherine Plaisant, Anastasia Beze-

rianos, and Pierre Dragicevic. A task-based taxonomy of cognitive biases

for information visualization. IEEE Trans. Vis. Comput. Graph., 26:1413–

1432, 2020.

[DLD08] Pieter De Leenheer and Christophe Debruyne. Dogma-mess: A tool for

fact-oriented collaborative ontology evolution. In OTM Confederated In-

ternational Conferences” On the Move to Meaningful Internet Systems”,

pages 797–806. Springer, 2008.

[DMDLM06] Aldo De Moor, Pieter De Leenheer, and Robert Meersman. Dogma-mess:

A meaning evolution support system for interorganizational ontology en-

gineering. In International Conference on Conceptual Structures, pages

189–202. Springer, 2006.

https://github.com/shadi-tabasi/IOPE.git
https://github.com/shadi-tabasi/IOPE.git

Bibliography 99

[DNM16] Antonio De Nicola and Michele Missikoff. A lightweight methodology for

rapid ontology engineering. Communications of the ACM, 59(3):79–86,

2016.

[DPD16] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. Aide: an ac-

tive learning-based approach for interactive data exploration. IEEE Trans-

actions on Knowledge and Data Engineering, 28(11):2842–2856, 2016.

[ea20] Xin Luna Dong et al. Autoknow: Self-driving knowledge collection for

products of thousands of types. In KDD, pages 2724–2734. ACM, 2020.

[EM06] Martha Evens and Joel Michael. One-on-one tutoring by humans and

computers. Psychology Press, 2006.

[EW95] Chris Eliot and Beverly Park Woolf. An adaptive student centered curricu-

lum for an intelligent training system. User Modeling and User-Adapted

Interaction, 5(1):67–86, 1995.

[EW16] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge

graphs. SEMANTiCS (Posters, Demos, SuCCESS), 48:1–4, 2016.

[FBC+17] Richard H Feins, Harold M Burkhart, John V Conte, Daniel N Coore,

James I Fann, George L Hicks Jr, Jonathan C Nesbitt, Paul S Ramphal,

Sharon E Schiro, K Robert Shen, et al. Simulation-based training in

cardiac surgery. The Annals of thoracic surgery, 103(1):312–321, 2017.

[FCL+17] Yixiang Fang, Reynold Cheng, Siqiang Luo, Jiafeng Hu, and Kai Huang.

C-explorer: Browsing communities in large graphs. Proc. VLDB Endow.,

10(12):1885–1888, 2017.

[FLGP02] Mariano Fernández-López and Asunción Gómez-Pérez. Overview and

analysis of methodologies for building ontologies. The knowledge engi-

neering review, 17(2):129, 2002.

[FLGPJ97] Mariano Fernández-López, Asunción Gómez-Pérez, and Natalia Juristo.

Methontology: from ontological art towards ontological engineering.

American Association for Artificial Intelligence, 1997.

[FO15] Laura Freina and Michela Ott. A literature review on immersive virtual

reality in education: state of the art and perspectives. In The international

scientific conference elearning and software for education, 2015.

[Gab04] David M Gaba. The future vision of simulation in health care. BMJ

Quality & Safety, 13(suppl 1):i2–i10, 2004.

Bibliography 100

[GAVS11] Stephan Grimm, Andreas Abecker, Johanna Völker, and Rudi Studer. On-

tologies and the semantic web. Handbook of Semantic Web Technologies,

pages 507–579, 2011.

[GDMF12] Fausto Giunchiglia, Biswanath Dutta, Vincenzo Maltese, and Feroz Farazi.

A facet-based methodology for the construction of a large-scale geospatial

ontology. Journal on data semantics, 1(1):57–73, 2012.

[GOS09] Nicola Guarino, Daniel Oberle, and Steffen Staab. What is an ontology?

In Handbook on ontologies, pages 1–17. Springer, 2009.

[GPFLC06] Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Corcho.

Ontological Engineering: with examples from the areas of Knowledge Man-

agement, e-Commerce and the Semantic Web. Springer, 2006.

[GPSF09] Asunción Gómez-Pérez and Mari Carmen Suárez-Figueroa. Neon method-

ology for building ontology networks: a scenario-based methodology.

Demetra EOOD, 2009.

[Gru93] Thomas R Gruber. A translation approach to portable ontology specifi-

cations. Knowledge acquisition, 5(2):199–220, 1993.

[Gru95] Thomas R Gruber. Toward principles for the design of ontologies used

for knowledge sharing? International journal of human-computer studies,

43(5-6):907–928, 1995.

[HBZC17] Kai Huang, Sourav S. Bhowmick, Shuigeng Zhou, and Byron Choi. PI-

CASSO: exploratory search of connected subgraph substructures in graph

databases. Proc. VLDB Endow., 10(12):1861–1864, 2017.

[HFM07] Nathalie Henry, Jean-Daniel Fekete, and Michael J. McGuffin. Nodetrix: a

hybrid visualization of social networks. IEEE Trans. Vis. Comput. Graph.,

13(6):1302–1309, 2007.

[HJ02] Clyde W Holsapple and Kshiti D Joshi. A collaborative approach to on-

tology design. Communications of the ACM, 45(2):42–47, 2002.

[HUH10] Armin Haller, Jürgen Umbrich, and Michael Hausenblas. Raul: Rdfa user

interface language - A data processing model for web applications. In

WISE, volume 6488, pages 400–410. Springer, 2010.

[IMM+13] Rizwan Iqbal, Masrah Azrifah Azmi Murad, Aida Mustapha, Nur-

fadhlina Mohd Sharef, et al. An analysis of ontology engineering method-

ologies: A literature review. Research journal of applied sciences, engi-

neering and technology, 6(16):2993–3000, 2013.

Bibliography 101

[Ipe10] Panagiotis G Ipeirotis. Demographics of mechanical turk. NYU working

paper, 2010.

[Kin68] Lester S. King. Signs and Symptoms. JAMA, 206, 1968.

[KP10] Konstantinos Kotis and Andreas Papasalouros. Learning useful kick-off

ontologies from query logs: Hcome revised. In 2010 International Con-

ference on Complex, Intelligent and Software Intensive Systems, pages

345–351. IEEE, 2010.

[Krö17] Markus Krötzsch. Ontologies for knowledge graphs? InDescription Logics,

2017.

[KV06] Konstantinos Kotis and George A Vouros. Human-centered ontology en-

gineering: The hcome methodology. Knowledge and Information Systems,

10(1):109–131, 2006.

[KVS20] Konstantinos I Kotis, George A Vouros, and Dimitris Spiliotopoulos. On-

tology engineering methodologies for the evolution of living and reused

ontologies: status, trends, findings and recommendations. The Knowledge

Engineering Review, 35, 2020.

[Lat10] Fatimah Lateef. Simulation-based learning: Just like the real thing. Jour-

nal of Emergencies, Trauma and Shock, 3(4):348, 2010.

[LNHE16] Steffen Lohmann, Stefan Negru, Florian Haag, and Thomas Ertl. Visual-

izing ontologies with VOWL. Semantic Web, 7(4):399–419, 2016.

[Lor18] Steven Loria. textblob documentation. Release 0.15, 2, 2018.

[LT+75] Harold A Linstone, Murray Turoff, et al. The delphi method. Addison-

Wesley Reading, MA, 1975.

[MFC+17] Pierre Maillot, Sébastien Ferré, Peggy Cellier, Mireille Ducassé, and

Franck Partouche. Nested forms with dynamic suggestions for quality

RDF authoring. In DEXA, volume 10438, pages 35–45. Springer, 2017.

[MPE+15] D. Mouromtsev, D. Pavlov, Yury Emelyanov, A. Morozov, Daniil

Razdyakonov, and M. Galkin. The simple web-based tool for visualization

and sharing of semantic data and ontologies. In International Semantic

Web Conference, 2015.

[NFG+20] Eirini Ntoutsi, Pavlos Fafalios, Ujwal Gadiraju, Vasileios Iosifidis, Wolf-

gang Nejdl, Maria-Esther Vidal, Salvatore Ruggieri, Franco Turini,

Symeon Papadopoulos, Emmanouil Krasanakis, et al. Bias in data-driven

Bibliography 102

artificial intelligence systems—an introductory survey. Wiley Interdis-

ciplinary Reviews: Data Mining and Knowledge Discovery, 10(3):e1356,

2020.

[NGJ+19] Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patter-

son, and Jamie Taylor. Industry-scale knowledge graphs: Lessons and

challenges. Communications of the ACM, 62 (8):36–43, 2019.

[NJ17] Ingrid Nunes and Dietmar Jannach. A systematic review and taxonomy of

explanations in decision support and recommender systems. User Modeling

and User-Adapted Interaction, 27(3):393–444, 2017.

[NP01] Ian Niles and Adam Pease. Towards a standard upper ontology. In Pro-

ceedings of the international conference on Formal Ontology in Informa-

tion Systems-Volume 2001, pages 2–9, 2001.

[NSD+01] Natalya Fridman Noy, Michael Sintek, Stefan Decker, Monica Crubézy,

Ray W. Fergerson, and Mark A. Musen. Creating semantic web contents

with protégé-2000. IEEE Intell. Syst., 16(2):60–71, 2001.

[OA19] Behrooz Omidvar-Tehrani and Sihem Amer-Yahia. Data pipelines for user

group analytics. In SIGMOD Conference, pages 2048–2053. ACM, 2019.

[PCHK20] Irene Polikoff, Robert Coyne, Ralph Hodgson, and Holger Knublauch.

Topquadrant topbraid composer. https://www.topquadrant.com/

products/topbraid-composer/, 2020. Accessed: 2021-01-15.

[PJN+19] Olivier Palombi, Fabrice Jouanot, Nafissetou Nziengam, Behrooz

Omidvar-Tehrani, Marie-Christine Rousset, and Adam Sanchez. Onto-

sides: Ontology-based student progress monitoring on the national evalu-

ation system of french medical schools. Artif. Intell. Medicine, 96:59–67,

2019.

[PMMB88] Joseph Psotka, Leonard Daniel Massey, Sharon A Mutter, and John Seely

Brown. Intelligent tutoring systems: Lessons learned. Psychology Press,

1988.

[PWC+17] Zhifei Pang, Sai Wu, Gang Chen, Ke Chen, and Lidan Shou. Flashview:

An interactive visual explorer for raw data. Proc. VLDB Endow.,

10(12):1869–1872, 2017.

[RJN20] Protiva Rahman, Lilong Jiang, and Arnab Nandi. Evaluating interactive

data systems. VLDB J., 29(1):119–146, 2020.

https://www.topquadrant.com/products/topbraid-composer/
https://www.topquadrant.com/products/topbraid-composer/

Bibliography 103

[RSH+16] Thomas Rebele, Fabian Suchanek, Johannes Hoffart, Joanna Biega, Erdal

Kuzey, and Gerhard Weikum. Yago: A multilingual knowledge base from

wikipedia, wordnet, and geonames. In International semantic web confer-

ence, pages 177–185. Springer, 2016.

[SA11] R Subhashini and J Akilandeswari. A survey on ontology construction

methodologies. International Journal of Enterprise Computing and Busi-

ness Systems, 1(1):60–72, 2011.

[Set09] Burr Settles. Active learning literature survey. University of Wisconsin-

Madison Department of Computer Sciences, 2009.

[SF10] Mari Carmen Suárez-Figueroa. NeOn Methodology for building ontology

networks: specification, scheduling and reuse. PhD thesis, Informatica,

2010.

[SJH+07] Christophe Segouin, Jean Jouquan, Brian Hodges, Pierre-Henri Bréchat,

Stéphane David, Dominique Maillard, Benoit Schlemmer, and Dominique

Bertrand. Country report: medical education in france. Medical Educa-

tion, 41(3):295–301, 2007.

[SKS+16] Anjali Sehrawat, Robert Keelan, Kenji Shimada, Dona M Wilfong,

James T McCormick, and Yoed Rabin. Simulation-based cryosurgery

intelligent tutoring system prototype. Technology in cancer research &

treatment, 15(2):396–407, 2016.

[SLR14] Elena Simperl and Markus Luczak-Rösch. Collaborative ontology engi-

neering: a survey. The Knowledge Engineering Review, 2014.

[SSD13] Bernd Stadlhofer, Peter Salhofer, and Augustin Durlacher. An overview

of ontology engineering methodologies in the context of public adminis-

tration. In Proceedings of the 7th International Conference on Advances

in Semantic Processing, IARIA, Porto, Portugal, volume 29, pages 36–42,

2013.

[SSSS01] Steffen Staab, Rudi Studer, H-P Schnurr, and York Sure. Knowledge

processes and ontologies. IEEE Intelligent systems, 16(1):26–34, 2001.

[ST06] Elena Paslaru Bontas Simperl and Christoph Tempich. Ontology engineer-

ing: A reality check. In OTM Confederated International Conferences” On

the Move to Meaningful Internet Systems”, pages 836–854. Springer, 2006.

[STM+18] Angelo A Salatino, Thiviyan Thanapalasingam, Andrea Mannocci,

Francesco Osborne, and Enrico Motta. The computer science ontology:

Bibliography 104

a large-scale taxonomy of research areas. In International Semantic Web

Conference, pages 187–205. Springer, 2018.

[TDJ+21a] Shadi Baghernezhad Tabasi, Loic Druette, Fabrice Jouanot, Celine

Meurger, and Marie-Christine Rousset. Iope: Interactive ontology pop-

ulation and enrichment. SEMANTiCS, 2021.

[TDJ+21b] Shadi Baghernezhad Tabasi, Loic Druette, Fabrice Jouanot, Celine

Meurger, and Marie-Christine Rousset. Ontosamsei: Interactive ontol-

ogy engineering for supporting simulation-based training in medicine. In

30th IEEE International Conference on Enabling Technologies: Infrastruc-

ture for Collaborative Enterprises, WETICE 2021, Virtual Event, France,

October 27-29, 2021. IEEE, 2021.

[Tho05] James J Thomas. Illuminating the Path: The Research and Development

Agenda for Visual Analytics. IEEE Computer Society, 2005.

[UG+96] Michael Uschold, Michael Gruninger, et al. Ontologies: Principles, meth-

ods and applications. University of Edinburgh Artificial Institute Applica-

tions Institute, 1996.

[UK95] Michael Uschold and Martin King. Towards a methodology for building

ontologies. Citeseer, 1995.

[VPCAR20] Andre Valdestilhas, Gustavo Publio, Andrea Cimmino Arriaga, and

Thomas Riechert. Voceditor: An integrated environment to visually edit,

validate and versioning rdf vocabularies. In International Conference on

Semantic Computing (ICSC), 12 2020.

[VPTS05] Denny Vrandečić, Sofia Pinto, Christoph Tempich, and York Sure. The

diligent knowledge processes. Journal of Knowledge Management, 2005.

[WHA07] Wesley Willett, Jeffrey Heer, and Maneesh Agrawala. Scented widgets:

Improving navigation cues with embedded visualizations. IEEE Transac-

tions on Visualization and Computer Graphics, 13(6):1129–1136, 2007.

[WLA18] Vitalis Wiens, Steffen Lohmann, and Sören Auer. Webvowl editor: Device-

independent visual ontology modeling. In ISWC 2018 Posters & Demon-

strations, volume 2180 of CEUR Workshop Proceedings, 2018.

[WMH+20] Jesse Wright, Sergio José Rodŕıguez Méndez, Armin Haller, Kerry Taylor,

and Pouya Ghiasnezhad Omran. Sch́ımatos: A shacl-based web-form gen-

erator for knowledge graph editing. In ISWC, volume 12507, pages 65–80.

Springer, 2020.

Bibliography 105

[YNDJ16] Usha Yadav, Gagandeep Singh Narula, Neelam Duhan, and Vishal Jain.

Ontology engineering and development aspects: a survey. International

Journal of Education and Management Engineering, 6(3):9–19, 2016.

[Zac07] Manuel Zacklad. Classification, thésaurus, ontologies, folksonomies: com-

paraisons du point de vue de la recherche ouverte d’information (roi). In

CAIS/ACSI 2007, 35e Congrès annuel de l’Association Canadienne des

Sciences de l’Information. Partage de l’information dans un monde frag-

menté: Franchir les frontières, sous la dir. de C. Arsenault et K. Dalkir.

Montréal: CAIS/ACSI, 2007, 2007.

[ZCA+18] Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and W Bruce Croft.

Towards conversational search and recommendation: System ask, user

respond. In Proceedings of the 27th acm international conference on in-

formation and knowledge management, pages 177–186, 2018.

[ZMA19] Yongfeng Zhang, Jiaxin Mao, and Qingyao Ai. Sigir 2019 tutorial on

explainable recommendation and search. In Proceedings of the 42nd In-

ternational ACM SIGIR Conference on Research and Development in In-

formation Retrieval, pages 1417–1418, 2019.

	Résumé
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Our Research Focus
	Our Methodology
	Thesis Contributions
	Thesis Outline

	Preliminaries
	Ontologies and the Semantic Web
	RDF and SPARQL
	Resource Description Framework Schema (RDFS)
	Web Ontology Language
	Value Constraints
	Cardinality Constraints

	Summary

	Ontology Engineering for Simulation-based Training in Medicine
	Introduction
	Related Work
	Our Ontology Design Approach
	Ontology Bootstrapping
	Knowledge Acquisition by an Online Questionnaire
	Enhancement
	Ontology Update

	Summary

	Interactive Ontology Population and Enrichment
	Introduction
	Related Work
	Ontology Editing Tools
	Graph-based Ontology Update
	Form-based Ontology Update

	IOPE Approach
	The IOPEWeb Ontology
	Ontology-based GUI Construction
	Initialization
	Mapping Rules

	Transforming Interactions to RDF Graphs

	Summary

	Evaluation
	Introduction
	Evaluation Settings
	Evaluation of IOPE Interface
	IOPE's Expert Engagement
	IOPE's Time-to-Insight
	IOPE's Added Value
	IOPE's Expert Satisfaction

	OntoSAMSEI Evaluation
	Generality of IOPE
	Summary

	Summary and Perspectives
	Summary
	Perspectives

	Online Questionnaire
	Mapping Rules
	Bibliography

