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Abstract

Recent technological breakthroughs have led to an abundance of consumer friendly

video recording devices. Nowadays new smart phone models, for instance, are

equipped not only with multiple cameras, but also depth sensors. This means that

any event can easily be captured by several different devices and technologies at

the same time, and it raises questions about how one can process the data in order

to render a meaningful 3D scene. Most current solutions focus on static scenes

only, LiDar scanners produce extremely accurate depth maps, and multi-view stereo

algorithms can reconstruct a scene in 3D based on a handful of images. However,

these ideas are not directly applicable in case of dynamic scenes. Depth sensors

trade accuracy for speed, or vice versa, and color image based methods suffer from

temporal inconsistencies or are too computationally demanding.

In this thesis we aim to provide consumer friendly solutions to fuse multiple, possibly

heterogeneous, technologies to reconstruct and render 3D dynamic scenes.

Firstly, we introduce an algorithm that corrects distortions produced by small motions

in time-of-flight acquisitions and outputs a corrected animated sequence. We do

so by combining a slow but high-resolution time-of-flight LiDAR system and a fast

but low-resolution consumer depth sensor. We cast the problem as a curve-to-

volume registration, by seeing the LiDAR point cloud as a curve in the 4-dimensional

spacetime and the captured low-resolution depth video as a 4-dimensional spacetime

volume. We then advect the details of the high-resolution point cloud to the depth

video using its optical flow.

Second, we tackle the case of the reconstruction and rendering of dynamic scenes

captured by multiple RGB cameras. In casual settings, the two problems are hard to

merge: structure from motion (SfM) produces spatio-temporally unstable and sparse

point clouds, while the rendering algorithms that rely on the reconstruction need to

produce temporally consistent videos. To ease the challenge, we consider the two

steps together. First, for SfM, we recover stable camera poses, then we defer the

requirement for temporally-consistent points across the scene and reconstruct only a

sparse point cloud per timestep that is noisy in space-time. Second, for rendering,

we present a variational diffusion formulation on depths and colors that lets us
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robustly cope with the noise by enforcing spatio-temporal consistency via per-pixel

reprojection weights derived from the input views.

Overall, our work contributes to the understanding of the acquisition and rendering

of casually captured dynamic scenes.
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Resumé

Les récentes percées technologiques ont conduit à une abondance d’appareils

d’enregistrement vidéo conviviaux. De nos jours, les nouveaux modèles de smart-

phones, par exemple, sont équipés non seulement de plusieurs caméras, mais

également de capteurs de profondeur. Cela signifie que tout événement peut facile-

ment être capturé par plusieurs appareils et technologies différents en même temps,

et cela soulève des questions sur la façon dont on peut traiter les données afin de

restituer une scène 3D significative. La plupart des solutions actuelles se concen-

trent uniquement sur les scènes statiques, les scanners LiDaR produisent des cartes

de profondeur extrêmement précises et les algorithmes stéréo multi-vues peuvent

reconstruire une scène en 3D à partir d’une poignée d’images. Cependant, ces idées

ne sont pas directement applicables en cas de scènes dynamiques. Les capteurs de

profondeur échangent la précision contre la vitesse, ou vice versa, et les méthodes

basées sur des images couleur souffrent d’incohérences temporelles ou sont trop

exigeantes en termes de calcul.

Dans cette thèse, nous visons à fournir des solutions conviviales pour fusionner des

technologies multiples, éventuellement hétérogènes, pour reconstruire et rendre des

scènes dynamiques 3D.

Premièrement, nous introduisons un algorithme qui corrige les distorsions produites

par de petits mouvements dans les acquisitions de temps de vol et produit une

séquence animée corrigée. Pour ce faire, nous combinons un système LiDAR à temps

de vol lent mais haute résolution et un capteur de profondeur consommateur rapide

mais basse résolution. Nous avons présenté le problème comme un recalage courbe-

volume, en voyant le nuage de points LiDAR comme une courbe dans l’espace-temps

à 4 dimensions et la vidéo de profondeur à basse résolution capturée comme un

volume d’espace-temps à 4 dimensions. Nous convoyons ensuite les détails du nuage

de points haute résolution à la vidéo de profondeur en utilisant son flux optique.

Deuxièmement, nous abordons le cas de la reconstruction et du rendu de scènes

dynamiques capturées par plusieurs caméras RVB. Dans des contextes occasionnels,

les deux problèmes sont difficiles à fusionner : la structure à partir du mouvement

(SfM) produit des nuages de points spatio-temporellement instables et parcimonieux,
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tandis que les algorithmes de rendu qui reposent sur la reconstruction doivent pro-

duire des vidéos temporellement cohérentes. Pour relever le défi, nous considérons

les deux étapes conjointement. Tout d’abord, pour SfM, nous récupérons des poses

de caméra stables, puis nous différons l’exigence de points cohérents dans le temps

sur la scène et ne reconstruisons qu’un nuage de points épars par pas de temps

qui est bruité dans l’espace-temps. Deuxièmement, pour le rendu, nous présentons

une formulation de diffusion variationnelle sur les profondeurs et les couleurs qui

nous permet de faire face de manière robuste au bruit en appliquant une cohérence

spatio-temporelle via des poids de reprojection par pixel dérivés des vues d’entrée.

Dans l’ensemble, nous montrons que notre travail a contribué à la compréhension

de l’acquisition et du rendu de scènes dynamiques capturées simplement.
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Introduction 1
Capturing and reconstructing scenes in 3 dimensions accurately is a well-studied

subject in the computer graphics community with commercially available low-cost

solutions for almost every possible scenario.

Artists can reconstruct real life objects and even whole environments in 3D using

a couple of photographs instead of spending countless hours on recreating them

virtually, thanks to image based reconstruction and rendering (IBR) techniques. Laser

technologies such as LiDaR let us acquire depth measurements at sub-millimeter

accuracy. They can be used to faithfully capture the shape of single objects such

as historical artifacts and at the same time to reconstruct whole cities. These and

similar methods also make immersive virtual tours, as if we were physically there, in

museums and galleries possible and aid augmented reality tools in sensing the users’

environment.

However, what all these approaches have in common is that they only work if

the captured scene is static. A LiDaR scanner takes several seconds to do a single

acquisition one point at a time, so any slight motion will cause distortions in the final

point cloud. On the other hand, image based techniques rely on correspondences

to triangulate 3D points which are error prone if the scene or an object changed

between the capturing of two images. Even if we try to overcome this issue by

capturing synchronized videos, thus reducing the problem to a sequence of unrelated

IBR instances, the results still would not be satisfactory. Indeed, most approaches

produce results that are not stable across consecutive frames causing a flickering

effect in the output video.

How can one solve the 3D acquisition of dynamic scenes challenge? If we’re

interested in capturing the depth of a scene, depending on the application, one

could resort to using commercial depth sensors like Microsoft Kinect or Creative

Senz3D. These systems are able to capture the entire field of view of the sensor at an

interactive frame rate (30-60 fps), but at a limited resolution and the resulting point

clouds often lack details and are noisy. They are most useful for applications where

accuracy and precision is not of paramount interest. Their most widespread usage

is for interactive game consoles where a rough depth estimation, possibly coupled

with the color video sequence, is enough to track the player.
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For accurate dynamic scene reconstruction no satisfactory simple solution exists yet,

so one must resort to much more complex and expensive solutions. These usually

involve several types of sensors both for capturing depth and color images, as well

as (structured) light sources to aid the correspondence search across the images.

Not only that these setups require heavy calibration, and therefore cannot be used

outside of a laboratory setting, they were also designed for highly specific tasks such

as capturing facial animation and don’t generalize well for other types of scenes.

1.1 Problem Statement

The goal of this thesis is to propose solutions for 3D dynamic scene acquisition and

rendering in casual settings using widely available and user friendly technologies

only. Moreover, we aim for our approach to be applicable for a wide variety of

scenes.

Thus, the set of problems we need to tackle can be loosely divided in the following

two categories.

1.1.1 Camera Pose Estimation

In the case of static scene reconstruction, fusing information captured from several

locations in space is a well understood problem with widely agreed upon solutions.

For technologies that capture the depth of the scene directly, the go-to technique is

to register the resulting point clouds by minimizing some distance function between

them [72]. On the other hand, camera pose estimation from color images in the

wild is a more involved process which is based on matching and triangulating

corresponding points across several images.

Both of these classes of techniques rely heavily on the scene being static and attempts

to directly apply them to dynamic environments is doomed because the assumptions

they were built on are invalidated by the captured motion. Matched correspondences

from color images from different time instances do not necessarily translate to the

same 3D location anymore and high resolution point clouds suffer from motion

distortion.
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1.1.2 Leveraging Motion Information

Even though moving objects raise several challenges for the acquisition process, they

also provide additional information about the scene that must not be overlooked

and instead should be leveraged for a more accurate reconstruction. The challenge

is therefore not only to overcome the difficulties introduced by the motion, but also

to use the additional information provided by it to improve the results.

A straightforward assumption that holds true for most environments is that the scene

does not change considerably between two consecutive time instances captured at

an interactive frame rate. This can be leveraged to initialize the reconstruction or

rendering at a time instance based on neighboring frames which could both result

in efficiency gains and regularize the final solution.

1.2 Contributions

In this thesis we introduce two new methods for two different set ups that enable the

high quality reconstruction and rendering of dynamic scenes requiring no laborious

calibration or expensive equipment.

1.2.1 Correcting Motion Distortions in Time-of-Flight Imaging

Kinect frame 326 frame 442 frame 529 Lidar scan Corrected scan

Fig. 1.1: A consumer depth sensor (e.g. Kinect) acquires dense low-resolution scans at a
high rate while a LiDaR scanner acquires sparse high resolution scans containing
time distorsions. We recover details by undistorting the LiDaR scan.

Time-of-flight imaging produces extremely accurate depth measurements, but it

requires several seconds to capture the whole environment making it impractical

1.2 Contributions 3



for the acquisition of dynamic scenes. Conversely, infrared depth sensors, such as

Kinect, capture a low resolution noisy depth maps of its entire field of view at an

interactive frame rate. We provide the insight that using both technologies at the

same time, one can undistort and partly recover a more accurate geometry in the

presence of moderate motions (Fig. 1.1).

We present a method that registers an accurate LiDaR point cloud captured at

a low temporal frame rate to a coarse spatiotemporal depth-sensor point cloud

captured at interactive frame rate, without any preliminary device cross-calibration.

We formulate this problem as a spacetime curve-to-volume rigid correspondence

problem efficiently solved using a Hough transform and Iterative Closest Point

algorithm. Our intuition is that, due to the capture time, a LiDAR point cloud can be

seen as a curve in a 4-dimensional spacetime, in which points are each identified

by a single (x, y, z, t) value, while a real-time depth video camera produces (x, y, z)

dense slices for individual time instances at a high frame-rate, resulting in a sliced

4-dimensional spacetime volume. We then use these correspondences to transfer

details from the LiDaR to the Kinect point cloud, leading to a detailed animated

model.

We validate our method on synthetic data, and demonstrate it by recovering high-

resolution dynamic geometries under moderate motion.

This was published at the ACM Siggraph Conference on Motion, Interaction and

Games in 2018.

1.2.2 Dynamic Scene Novel View Synthesis via Deferred

Spatio-temporal Consistency

Image-based rendering (IBR) creates novel views of a scene by combining existing

pictures taken from different camera positions. This technique is useful for generat-

ing new images, because the captured imagery can ‘fill in’ for complex geometries

and materials even when we can only reconstruct partial structure, such as sparse

depth points, rather than a full scene geometry.

While IBR quality and efficiency has improved over the past two decades of research,

casually captured dynamic scenes are difficult to handle as both the cameras and the

scene objects move. They complicate camera pose and depth estimation, causing

ghosting or bleeding artifacts across the rendered novel views around the moving

objects and in the background.

4 Chapter 1 Introduction



Input camera videos Structure from motion Novel depth and RGB

3D point reconstruction 
without temporal consistency

Efficient pose estimation

robust to dynamic objects

Sparse noisy point clouds

Camera poses

Virtual camera path

Variational optimization

with temporal consistency

Fig. 1.2: Given a small set of video sequences of a performance, our method computes
camera poses and sparse points, then optimizes those points into a novel video
sequence following a user-defined camera path. Our space-time SfM intentionally
does not compute temporal consistency for points on dynamic objects and instead
defers spatio-temporal consistency in both depth and RGB reconstructions to the
novel view synthesis stage via our variational formulation.

We propose a solution to address both these challenges. First, we use a coarse-to-

fine structure from motion (SfM) algorithm to estimate camera poses in spite of

moving objects and without any explicit dynamic object segmentation. We only place

additional temporal constraints on camera parameters, and not the 3D scene points

themselves. Then, using the sparse and noisy depth points reconstructed by the SfM,

we employ a diffusion process to render the final videos. We achieve spatio-temporal

consistency by weighing the influence of each depth and color value based on its

agreement with the reprojected input views, as well as previously rendered views.

An overview of our method is shown in Fig. 1.2.

We demonstrate this approach on real-world sequences with a small numbers of

unstructured cameras capturing video clips over a moderate baseline, with tripod-

mounted and hand held capture. We perform baseline comparisons to recent

proposed approaches. Further, we test both the camera pose computation and the

rendering process using a synthetic scene with known ground truth values, in an

ablation study.

This was submitted to the Computer and Graphics journal and published as a preprint

on arXiv.

1.3 Potential Impact

Casual cinematography In recent years one could observe a significant surge in

affordable and consumer friendly technologies, such as mobile phones equipped

with stereo cameras and structured light sources, geared towards capturing the

world in 3D. While these sensors are crucial in the development of applications that
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let users easily manipulate their own photos and videos, there is a strong need for

software solutions that are capable of handling complex scenes.

Our methods use depth and/or color data from uncalibrated sensors and aim to

reduce the difficulty of handling dynamic scenes in a casual setting. They could

ease the adaptation of high quality visual effects, which highly benefit from reliable

depth information, outside of big budget projects such as Hollywood movies or video

games.

Moreover, the techniques we developed to capture and process dynamic scenes could

aid in the adaptation of methods that previously were available for static scenes only

to dynamic scenes.

Virtual Reality At the same time with the progress of affordable sensors, interde-

pendently, devices capable of displaying and interacting with 3D scenes have also

been developed and perfected. The most straightforward example of such device

are the virtual reality setups that have applications ranging from gaming, to remote

learning, to virtual tours etc.

Yet, creating content efficiently for them in a casual setting still poses numerous

challenges. Capturing real world dynamic scenes using multiple hand-held cameras

and then rendering them from virtual view points would enable users to watch their

own videos in an immersive manner.

Augmented Reality In the context of augmented reality, representing the envi-

ronment of the user in 3D is a powerful tool which allows for more sophisticated

blending of the real and virtual scene. The assumption that this environment is static

doesn’t necessarily hold in most use cases. Our method could be used to generate

depth map videos of the surroundings of the user that can be used to virtually

interact with the scene.

1.4 Overview

• Chapter 2 presents a novel method to capture high resolution point clouds of

animated scenes by coupling a time-of-flight LiDaR system with a consumer

depth sensor.
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• In chapter 3 we introduce a new multi-view novel view synthesis approach for

dynamic scenes.

• Chapter 4 concludes the results of this thesis as well as elaborates on possible

future research directions.
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Correcting Motion Distortions

in Time-of-Flight Imaging

2

Lidar scan Corrected scan Kinect frames

Fig. 2.1: A consumer depth sensor acquires dense low-resolution scans at a high rate (right)
while a LiDaR scanner acquires sparse high resolution scans containing time
distorsions (left). We recover details by undistorting the LiDaR scan (bottom
right).

Capturing accurate 3D geometries is a powerful way for artists to design sceneries, for

historians to reconstruct old monuments, for real-estate agents to communicate their

products or for navigation systems to provide context. It has become a widespread

need, and, when it comes to static environments, is now mostly sucessfully performed

using laser technologies such as LiDaR, that capture environments at sub-millimeter

accuracy. When it comes to slightly moving, let alone fully animated scenes, this

technology breaks. In fact, capturing a single frame can take tens of seconds, which

makes any motion problematic. Even small motions manifest as distortions (Fig. 2.1)

altering the reconstructed point cloud. For dynamic scenes, one often resorts to

much less accurate systems such as infrared sensors (Microsoft Kinect or Creative

Senz3D), or structure-from-motion using multiple video cameras. These systems

allow for capturing rough depth of an entire field of view at 30-60 frames per

9



second, albeit at low resolution, with an accuracy of centimeters and numerous

outliers. These setups gained popularity with interactive console 3D games for which

neither precision nor accuracy is crucial. For accurate dynamic scene reconstruction,

no satisfactory solutions exists and one often resorts to high-resolution templates

deformed to match rough motions. This is particularly the case for facial animation,

but does not generalize well to different geometries.

We provide the insight that using both a LiDaR scanner and a consumer depth

camera at the same time, one can undistort and partly recover a more accurate

geometry in the presence of moderate motions. We design a method that registers an

accurate LiDaR point cloud captured at a low temporal framerate to a coarse spatio-

temporal depth-sensor point cloud captured at interactive framerate, without any

preliminary device cross-calibration. We formulate this problem as a spacetime curve-

to-volume rigid correspondence problem efficiently solved using a Hough transform

and Iterative Closest Point algorithm. Our intuition is that, due to the capture

time, a LiDaR point cloud can be seen as a curve in a 4-dimensional spacetime,

in which points are each identified by a single (x, y, z, t) value, while a real-time

depth video camera produces (x, y, z) dense slices for individual timestamps at a

high frame-rate, resulting in a sliced 4-dimensional spacetime volume. We then

transfer details from the LiDaR to the Kinect1 point cloud and advect them across

frames, leading to a detailed animated model. We validate our method on synthetic

data, and demonstrate it by recovering high-resolution dynamic geometries under

moderate motion.

2.1 Related Work

Acquisition of high resolution dynamic shapes has been tackled using stereo and

active light projection systems [45], such as fringe projection and time shifting

[82]. In the special case of facial motion capture, Zhang et al. [81] propose to

use synchronized video cameras and structured light projector and fit a highly

detailed template to the resulting geometry to get a high resolution facial animation.

Bradley et al. [12] avoids templates by using a high-resolution multi-camera setup

to reconstruct detailed facial geometry. Weise et al. [75] use a consumer depth

sensor to animate a face template. A combination of active light and stereo was

also proposed for capturing scenes in real time with motion compensation [74].

More generally, high spacetime resolution capture can be performed using multiview

1While we employ the term Kinect due to its popularity, in practice we use a similar technology, the

ASUS Xtion sensor.
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stereo techniques [80, 23]. Yet the resolution is often limited, depending on the

number of views and size of captured objects. Sensors also need synchronization

and often, heavy calibration, which can make them difficult to use in practice.

Static point set super-resolution has been tackled by Kil et al. [44] where several

nearby scans are registered and merged together to obtain a high resolution point

cloud. More recently, Hamdi-Cherif et al. [37] nonlocally merge self similar patches

of a LiDaR scan to improve its resolution. In a quite different setting, Haefner et

al. [36] proposed to perform single frame super-resolution from a kinect scan by

using shape from shading to solve this ill-posed problem.

Texture synthesis and transfer. High resolution and detailed animations synthesis

is a hot topic in computer generated animation research. Rohmer et al. [65] generate

detailed wrinkles on an animated mesh to make it look more realistic, Bertiken et

al. [9] propose a way to transfer details from similar areas of one shape to another,

using metric learning.

Enhancing Videos with stills. Our method share similarities with the problem of

enhancing a low-quality video with high resolution stills. The main difference is

that no motion-induced geometric distorsions appear in still photography whereas

rolling-shutter-like distorsions are accounted for in our LiDaR point cloud. The video

enhancement problem bas been tackled by considering a spacetime volume of (x, y, t)

pixel coordinates. In that space, a video is a subvolume, while a still photography

is a plane. By aligning videos and stills in that volume [16], Shechtman et al. [68]

merge the information from these two sources and increase spacetime resolution.

Liu et al. [49] improve the spacetime resolution using a sparse decomposition on a

pre-learned dictionary. When the scene is static, Bhat et al. [11] use structure-from-

motion to reconstruct a 3D proxy from the video. Then for each frame, the best still

photograph is selected and used to improve the video using image-based rendering

and Markov Random Fields. Similarly Gupta et al. [35] enhance a video by selecting

pixels from neighboring high-resolution stills using a graph-cut formulation. Ancuti

et al. [2] proposed a Maximum a Posteriori-based modeling of this problem that is

also limited to static scenes.

2.2 Overview 11
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Fig. 2.2: Overview of our high resolution dynamic point set acquisition and processing
algorithm

2.2 Overview

As input, our method takes two 3D point clouds of the same dynamic scene, under

small to moderate motion: a set of low-resolution point clouds obtained at 30fps

from a structured-light infrared depth sensor (such as Kinect) during the motion,

and a single accurate but distorted time-of-flight laser LiDaR point cloud taken

during the same period of time. While the former provides a low-resolution point

set at regular time intervals, the latter provides a highly accurate point set but at a

single time stamp t for each point. We will refer to the structured-light frames as LR

frames, and similarly, to the time-of-flight data as HR data. In practice, both setups

capture depth values of the scene with respect to the device. Due to motion in the

captured scene, the HR point cloud appears distorted (Figure 2.1) but each point

is precisely captured. The LR frames do not suffer from such time-distortion but

exhibit a poor quality: spatially inaccurate and quantized depth values with large

noise at a low 0.3 mega-pixel resolution. Our core idea is thus to un-distort the HR

data that is accurate in space based on the motion captured by the LR data that is

accurate in time. The process if summarized in Figure 2.2.

Our goal is to resample HR points in time to obtain a high-resolution point set for

each time frame. This is achieved through three steps. First, we estimate a motion

field between the depth sensor LR frames using an off-the-shelf RGB-D optical flow

technique. Second, we observe that, up to missing data and noise, the HR point cloud

can be exactly registered to the LR data via a rigid transform. In the 4D spacetime

continuum, we see the LR frames as a set of 3D spatial “slices” taken at regular

time intervals, while the HR point cloud is seen as a time-parameterized curve

in the 4D volume as each captured 3D point corresponds to a unique time stamp

(Figure 2.2). This registration step hence amounts to finding a curve pattern within

a 4D volume. We robustly perform this step using a global Iterative Closest Point

algorithm initialized via an adaptation of a coarse generalized Hough transform.
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Finally, we use the motion field to advect details from the registered HR data across

depth sensor frames.

2.3 Scene Flow estimation

To be able to transfer details from the time-of-flight HR acquisition to the LR depth

video frames, it is necessary to track 3D points of the LR depth frames through

time. A solution to this problem would be to work solely on the depth information

and use an algorithm to register Dynamic Point Sets without computing point

to point correspondences [54]. However, in our case, the depth sensor provides

color information which, if properly registered to the depth frames, gives valuable

information. The flow obtained from RGBD images is called scene flow. It is a

variant of the more common optical flow between color images (e.g. [29]), with the

additional challenge that the flow should also account for depth information, and

not only the color. In recent years, several approaches have been proposed to solve

this problem (e.g. [42, 40, 63]). We use the approach of Quiroga et al. [63] that

extends variational optical flow estimation from color image sequences to RGBD

videos. This method favors a piecewise smooth scene flow by modeling motions as

twists and introducing a total variation regularization.

The computed scene flow provides a way to track a point across all frames until the

end of the sequence or until it becomes occluded. It will later be used to advect

details from the HR dataset.

2.4 Registration in the 4D space

In the 4-dimensional spacetime volume, the LR data provides a set of regularly

spaced 3D hyperplanes while HR data provides a single curve parameterized by the

time t (see Section 2.2). We adopt a two-step procedure to align the curve to the 3D

hyperplanes. We see this operation as the problem of searching for a pattern within

a point cloud. We initialize this search using a coarse, discretized, Hough transform,

which we fine-tune in a second step using an ICP. Because of efficiency concerns,

we first register the data in the 3D space only, disregarding the time component

completely, where we interpret the two point clouds as their projections along the

time axis to the 3D space. Then, we perform both the coarse and fine registration

2.3 Scene Flow estimation 13



steps again, this time on 4-dimensional point sets. This section describes these steps

in more details.

2.4.1 Problem formulation

If both the LR and HR sensors are located at the same place, share the exact same

field of view and the capture starts at the same time t0, then all captured points are

completely aligned in spacetime and share the same spacetime coordinate frame.

However, this is never the case as both cameras capture different portions of the

scene and are hard to synchronize. In addition, the raw HR data do not directly

include a time-stamp for each captured 3D point, instead we roughly estimate the

time-stamp using the total acquisition time and the scanline pattern of the acquisition.

The first operation we perform is thus a registration procedure that brings both

datasets to the same space. This amounts to estimating a rotation and translation

in space, together with some translation and possible scale in time, to match one

dataset to the other. Moreover, due to the inaccuracy of the LR frames, adjusting a

scale in space is also necessary for a good alignment. The whole registration thus

corresponds to the search for a single global 3D spatial rotation R = (θx, θy, θz), a

4D spacetime translation T = (Ts, tt) and a 4D spacetime scale s = (ss, st).

We parameterize R by three Euler angles, the translation Ts by three coordinates,

and tt, ss and st are three scalars. This registration procedure amounts to estimating

9 parameters. We will denote the entire 9-d transformation T. Denoting H the HR

point set (resp. L the low-resolution structured light data) in 4D, we formulate the

registration problem as the minimization:

min
T

∑

p

‖Tp − q‖2,

where p ∈ H and q ∈ L is the closest LR point to p.

2.4.2 Coarse initialization

Rough estimates of these parameters can be obtained using a voting scheme akin to

the generalized Hough transform traditionally used for detecting shapes in images,

by discretizing a well-chosen parameter space, and computing the scores of each

set of parameters. Historically, the Hough transform was first introduced to detect

straight lines on images by discretizing line parameters and scoring them [28]. It

14 Chapter 2 Correcting Motion Distortions in Time-of-Flight Imaging



was later extended to more general shapes by discretizing a space of shape template

transforms [5].

In our case, we detect our HR curve on the LR volume by discretizing the 9-

dimensional space of transformation parameters described in Sec. 2.4.1. How-

ever, given the sheer amount of data and the curse of dimensionality affecting our

9-dimensional space, some adaptations are needed.

First, it’s easy to see that by placing both the consumer depth sensor and the LiDaR

system in an upright position facing the scene θx and θz become negligibly small

for the purpose of the coarse registration step, so they can be safely omitted. Then,

scaling in space is only included to make up for the inaccuracy of the LR data and

thus it should be close enough to 1 not to alter the results of the Hough Transform

applied at such a low resolution. Considering these observations the 9-dimensional

parameter space P is first safely reduced to a 6-dimensional space P′.

As mentioned previously, the registration procedure is divided into an initial phase

computing only the transformation Ts in space and a final one computing the

translation tt and scale st in time. In the context of the Hough Transform this means

that P′ can be further divided into two separate parameter spaces Ps(θy, tx, ty, tz)

and Pt(tt, st) which are discretized at a given resolution.

For each set of parameters of the form Ts = (θy, tx, ty, tz) and Tt = (tt, st), corre-

sponding to a bin in Ps and Pt respectively, we compute a score which represents

how well the transformed point cloud TsH in space and TtH in 4D spacetime

are registered to L and seek to maximize it. When working on Ps, the LR data

is converted, at a given rough resolution L̃, to a voxel grid VL̃ with each voxel v

storing the number of points lying in it. Then the HR data is transformed using

Ts and discretized into a grid V
T̃sH

using the same resolution as L̃. The score

of Ts is computed as
∑

v
min(VL̃(v), V

T̃sH
(v)). The final solution is found as the

transformation Ts with the highest score.

In the case of time registration, 4-dimensional voxels would not allow a high enough

resolution neither in the parameter space Pt nor for the voxel box. Our alternative

solution is to search for a transformation Tt that minimizes the point-wise distance

between TtH and L.

2.4.3 Fine registration

The solution of the coarse registration step is only known up to the precision of

the parameter space discretization. This is insufficient as we aim at transferring
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millimeter-scale details. Hence, in a second step, we refine the rough estimate both

in the 3D case first and then in the 4D spacetime. As the coarse solution is assumed

to be close to the optimal solution, we can now resort to a local optimization, namely

an ICP [10], to refine T. Let H′ = TH, the new transformation T
′ is found by

iterating the classical two steps: 1) assign to each point pi ∈ H′ its closest point

qi ∈ L (if no point is found closer to a given threshold then the point is simply

omitted). 2) Find the transform T
′ minimizing:

∑

i

‖T
′pi − qi‖

2,

which is solved using Kabsch algorithm for the translation in 4D and rotation in

space. The scale in time is solved by computing the standard deviation of the time

stamps of the matched points σp and σq of H′ and L and deriving the scale as

ss =
σq

σp
. Conversely, the scale in space is computed by averaging the ratios of the 3D

Euclidean distances between HR point pairs and their LR counterparts as follows:

ss =
1

|H′|2

∑

i,j

‖pi − pj‖

‖qi − qj‖
.

At the end of the iterations the HR points pi with no sufficiently close LR counter-

part qi are considered occluded from the point of view of the LR sensor and are

discarded.

The result of the spacetime registration can be seen in Figure 2.3: for different time

values t, we display the LR and HR points that lie in a small temporal neighborhood

around t, showing that our spacetime registration matches well the datasets despite

the difference in resolution.
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Fig. 2.3: Registration result. For 5 different time values t, we select LR and HR points that
lie in a small temporal neighborhood after the spacetime registration. The LR
points are oriented and displayed in grayscale values while the HR points are
shown in red. The LiDAR scanline acquisition process results in vertical lines.

2.5 Detail Transfer

Now that both the high and low resolution point clouds share the same spacetime

coordinate frame, the last step of our algorithm advects the HR point cloud to

enrich all frames of the LR point cloud. To do so, we rely on our estimate of the

scene flow between consecutive LR frames (see Section 2.3), and advect HR points

accordingly.

Let us consider a point p ∈ H and F t its closest LR frame in time. A search in the

3D space finds Qt
p ⊂ F t as the set of its nearest neighbors in frame t. The motion

estimated at each point qt
i ∈ Qt

p is then interpolated in space and time to bring p to

the exact timestamp t of F t. Next p is advanced by one frame in time based on the

scene flow of the points Qt
p. This process is performed iteratively until no sufficiently

close nearest neighbor can be found which means p is occluded.

2.6 Results

We validate our approach using two datasets. First, using synthetic data, we make

sure our method allows to transfer details with sufficient accuracy, and evaluate any

reconstruction error. Second, we showcase our method on real data and show it to

be of sufficient accuracy to be used to undistort small to moderate motions.
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LiDaR scan LR frame (1) (2) (3) (4) Ground truth

Fig. 2.4: Synthetic dataset along with reconstructed frames for validating various steps of
our method as described in Table 2.1

2.6.1 Simulated Data

Our simulated data consists of a single character undergoing a rigid transformation

T = (Ts, Rs), raytraced from different viewpoints using parameters similar to LR

and HR devices. This synthetic data allows us to synthesize a distortion-free dynamic

point set, serving as a groundtruth, and compare our result to it.

To simulate the noise introduced by the commercial depth sensor we generated depth-

bins increasing in size proportionally to the distance from the camera mimicking

the quantization errors introduced by the sensor and matched the computed depth

values to the depth-bins. However we do not simulate any depth sensor calibration

error.

Table 2.1 shows the accuracy of the different steps of our method. By using the

known values of the parameters of the 4D registration and the precomputed motion

field we assess separately the noise introduced only by the detail transfer. On the

contrary, by using no prior knowledge of the scene the average distances indicate

the accumulated error introduced throughout the steps of our method.

Figure 2.4 shows the reconstructed frames along with the ground truth of a dataset.

2.6.2 Real Data

We now turn to the more difficult case of real data. Our experimental setup is the

following. A LiDaR and an ASUS Xtion sensor acquire the same animated scene

yielding respectively a high resolution depth data (corresponding to H) and a low-

resolution dense depth video (corresponding to L). Our system does not require

any manual calibration: both acquisition systems are only roughly synchronized and
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Tab. 2.1: Average point-wise distances between reconstructed and generated ground truth
point clouds using either known (GT) registration parameters and motion field
or computing them using our method (E). All errors are below 2% of the shape
height (2.5 units)

Used methods Distance

GT registration and GT motion field (1) 0.01271

E registration and GT motion field (2) 0.01463

GT registration and E motion field (3) 0.04368

E registration and E motion field (4) 0.04479

Fig. 2.5: Our experimental setup: a Kinect and a LiDaR acquire the same scene from
different viewpoints. No calibration is required.

we only need them to start roughly at the same time (in practice, the Asus depth

sensor capture often starts several seconds before the LiDaR as the LiDaR performs

an automatic self-calibration procedure at the start of each capture). A picture of

the acquisition system is shown on Figure 2.5.

The Xtion sensor captures 30 depth and color frames per second with a resolution

of 640 × 480, the capture is performed using the OpenNi 2 library [59], removing

distortion and yielding the final 4D point cloud in millimeters and seconds. In

practice, we observed an accuracy of roughly ±5cm at 1.5m, which corresponds to

our capture distance. To compensate for noisy depth values in the LR sequence,

we filter depth values using a bilateral filter with standard deviations in space and

values : σs = 1.16 and σv = 64.
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LiDaR scan frame A frame B frame C frame A frame B frame C

Fig. 2.6: Undistorting LiDaR scans (left) from consumer depth camera sequences (center).
Our result (right) show higher spatial accuracy than the consumer depth camera
while respecting the global motion. Video results can be seen in supplemental
materials.

The LiDaR scanner is a FARO Laser Scanner FocusS X 330. It was set to capture

one point every 50mm at a 2m distance. A laser ray is emitted and reflected by a

mirror that directs the beam towards the scene and controls the angle of the ray. By

rotating around its axis, this mirror allows for a complete rotation of the laser ray,

however it only measures the time of flight on a given angular range (set here to

150◦). Furthermore the device itself rotates around the vertical axis, as illustrated

in Fig. 2.7. A full scan at this resolution takes around 14s. To prevent large static

objects giving too much weight to the spatial registration compared to temporal

variables, we cropped out the walls and ground of the HR scan.
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Fig. 2.7: Functional schematic of the LiDaR Scanner.

We organized two acquisition sessions in total. Our first trial highlighted several

possible points of improvement. First, our original implementation to capture

the depth videos was slow and caused significant drops in the frame rate. This

hindered our efforts both to register the point clouds, especially in the case of the

fine registration which relies heavily on the distances between corresponding points

in the spacetime, and to track the motion across the scene. We improved the speed

of the acquisition by optimizing the data streaming process, although random small

delays of 2-3 frames at a time still persisted.

Second, diverging from our original plan to solely use the depth videos, we decided

to leverage the color information captured by the Xtion device, to compute a much

more robust scene flow. In order to do so, we needed to account for the small

displacement between the two sensors on the device. We used the OpenNI 2 library

at capture time to register the two streams.

Figure 2.6 shows the results of our method applied on several real datasets. By com-

paring the reconstructed frames to the LiDaR scan, one can see the high frequency

details transferred across the frames. The accuracy of the overall motion of our

reconstructed sequence can be assessed by observing the corresponding LR frames

and the accompanying video.

2.6.3 Limitations

Our method has some limitations. First it can only handle small motions. Large

motion over a long time will generate too much occlusions in the LiDAR data, and

the spacetime registration and point tracking will fail, creating artefacts illustrated in

Figure 2.8. Missing regions can appear due to points being occluded or unobserved

in the HR scan during the motion or abnormal time delays between consecutive LR
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LiDaR scan Kinect frames Reconstructed frames

Fig. 2.8: Failure case: large motion are not handled well by our method. Left: Lidar Scan.
Depth sensor frames (top row) and corresponding corrected frames (bottom row).

frames that cause whole slices of the HR data not corresponding to any LR frame to

be lost during the ICP. This produces vertical stripes of missing points in the results

(see the last row of figure 2.6). In this case, merging the LR and HR data would

allow for filling in holes.

Calibration The consumer depth sensor further suffers from heavy distortions. This

issue has been identified and investigated by Clarkson et al. [20] and Herrera

et al. [15], who both propose calibration procedures. We tested the approach

proposed by Herrera et al. [15], which jointly optimizes for color and depth camera

calibration parameters using a standard checkers board setup akin to the one in

Fig. 2.9. We found that it did not substantially improve our depth videos and

much of the distortion remained unchanged. Seeing these results, and our desire to

remain calibration-free, we did not investigate this issue any further. However, our

reconstructions are of limited accuracy, exhibiting spatially low-frequency artifacts,

that can be attributed to these distortions.

Aside from a calibration procedure, our registration process and hence the final

reconstruction could be improved by swapping out the ICP algorithm for a non-rigid

registration step. We hope even better results could be achieved in the future using

this approach.
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Fig. 2.9: Sample color (top row) and disparity (bottom row) images used to calibrate
consumer depth sensors. Image taken from Herrera et al. [15].

2.7 Discussion

We introduced a way to capture animated scenes and produce high resolution point

sets by combining a consumer depth sensor and a high precision Time-of-Flight

scanner. We showed that by formulating the problem in spacetime we were able

to register the datasets and advect details across the frames to undistort moderate

motion sequences.
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Dynamic Scene Novel View

Synthesis via Deferred

Spatio-temporal Consistency

3

Input camera videos Structure from motion Novel depth and RGB

3D point reconstruction 
without temporal consistency

Efficient pose estimation

robust to dynamic objects

Sparse noisy point clouds

Camera poses

Virtual camera path

Variational optimization

with temporal consistency

Fig. 3.1: Given a small set of video sequences of a performance, our method computes
camera poses and sparse points, then optimizes those points into a novel video
sequence following a user-defined camera path. Our space-time SfM intentionally
does not compute temporal consistency for points on dynamic objects and instead
defers spatio-temporal consistency in both depth and RGB reconstructions to the
novel view synthesis stage via our variational formulation.

In this chapter we tackle the problem of novel-view synthesis (NVS), which creates a

new view of a scene by combining existing images captured from different viewpoints.

Much progress in NVS has been made over the past two decades to tackle its two

core problems: 1) how to build a proxy scene geometry to aid in rendering, such as

constructing simplified sparse depth points or a piecewise planar mesh via structure

from motion (SfM), and 2) how to interpolate or extrapolate an image via the

reprojected proxy given the existing captured imagery. NVS increases in difficulty

across many axes: as the cameras become farther apart (wide baseline), as their

number decreases (few camera), as they become handheld (casual capture), as

the scene itself contains motion (dynamic scene), as the scene phenomena become

more visually complex (geometry, materials, and motion), and as the time given to

generate the result decreases (compute cost).

We consider dynamic scenes captured by a small number of cameras (5–12) over

baselines of around 60◦, as might occur with a crowd of people capturing an event

(Figure 3.1). Within this scenario, we include sequences with casual handheld

cameras. This is a relatively rare and challenging setting because both the cameras
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and the scene objects move simultaneously, and because sequences with only a

small number of casual cameras make robustness hard to obtain. This complicates

camera pose estimation and depth estimation in SfM and, if the proxy geometry is

not perfect, causes ghosting, bleeding, and flickering artifacts across views and time

during NVS in both moving objects and the background. Thus, one key component

of any algorithm is a way to enforce spatio-temporal consistency in both the SfM

and the NVS to reduce these artifacts.

We propose to address these challenges by deferring the difficult problem of recon-

structing dynamic objects in time via SfM, and instead using a NVS approach to

enforce temporal consistency. To ease the task of reconstructing dynamic scenes

via SfM, many approaches first segment out moving objects or feature points and

process the static background and the dynamic foreground separately [73, 57, 58].

Instead, we first recover camera poses for all views without any explicit dynamic

object segmentation. Then, we recover scene points on both static and dynamic ob-

jects without temporal consistency and performing per-frame SfM across views only.

This is easier to solve, but leads to significantly noisy reconstructions temporally.

Next, we turn our sparse (and noisy) reconstructed point clouds into novel views.

This is commonly completed by densifying points into a depth map [41] for each view

in a consistent way, and using the depths to reproject and merge input RGB views

into a virtual view. We present a formulation which only densifies a depth map in the

virtual camera’s view, rather than for all input views, which leads to a more efficient

solve. For this, we take a coarse-to-fine variational approach and solve a diffusion-

based formulation. Importantly, this formulation lets us enforce robust temporal

consistency in the output depth to overcome the initial noisy reconstructions from

the SfM. To determine our final RGB values, we also solve for the output color within

the coarse-to-fine variational formulation.

We perform comparisons to recently-proposed approaches in point densification and

view interpolation, using both optimization and learning-based approaches. Further,

we show results on a synthetic dataset in an ablation study. In a nutshell, we show

that considering SfM and NVS together allows us to ease the difficult temporally-

consistent reconstruction problem and instead cope with it at the rendering stage.

Overall, our work takes another step forward in improving digital content creation

for scenes captured by multiple video cameras.
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3.1 Related Work

Rendering a novel viewpoint of a real-world scene captured with photographs is a

problem that has received much attention over the past 30 years [79].

3.1.1 Static scene IBR

Image-based rendering (IBR) has initially attempted to render static scenes either

from set of images or videos. This can be achieved either via warping input views

using optical flow [18], using coarse geometric proxies [33] or via deep learning

approaches [30]. In complex environments, IBR techniques often need some 3D

proxy reconstruction. For example, the Lumigraph [33, 14] uses planar or coarse

geometric proxies; Shade et al. [67] used multiple planar sprites; and Debevec et

al. [25] employed photogrammetric reconstructions of buildings. Others have used

3D meshes from multi-view stereo reconstructions [69, 39]. For instance, Chaurasia

et al. [17] proposed a depth-based synthesis using planar superpixel patches [1].

Matzen et al. [51] used two spherical cameras to synthesize an omni-directional

stereo panorama. Recently, Riegler and Koltun [64] synthesized new views via

neural textures atop a Delaunay reconstruction of sparse points obtained from

video of static scenes. Beyond surface geometry, NeRF [53] performs an expensive

optimization to create a volumetric function that is then rendered to synthesize new

views.

Solving problems in the gradient domain can help too; for instance, to achieve

smoother interpolations [46] or to densify sparse scene points. Holynski and Kopf

spatio-temporally propagate sparse depth samples in a single view by solving a

Poisson problem [41]. This method relies on camera motion to detect depth edges,

which limits it to static scenes. Inspired by gradient domain approaches, we formu-

late a variational approach that jointly enforces depth smoothness and consistency,

color smoothness and consistency, as well as temporal consistency. Our approach

additionally works with multiple potentially-dynamic cameras, and introduces a

view-consistency term to ensure geometric consistency between views.

Deep learning can also be employed for static scene IBR. This includes plane sweep

volumes [31] and multi-plane images to interpolate between two static narrow-

baseline views [83] or between multiple views at once [52, 30], appearance flows to

generate novel views from a single image of isolated objects [84], and light-field view

interpolation [43]. Hedman et al. [38] use a geometric proxy and learn blending

weights between view reprojections using a CNN. To improve the quality around
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depth discontinuities, Choi et al. [19] use a 3D uncertainty volume as a proxy and

neural network-based patch refinement. Srinivasa et al. [71] train a CNN to predict

a light field from a single image for small-baseline view synthesis. Similarly, Song

et al. [70] synthesize new views from a single image of a static scene using deep

learning.

While these techniques were not designed for videos and so neither explicitly main-

tain temporal consistency nor are constrained by speed, we nevertheless compare

our approach to relevant methods for static scenes taken frame by frame.

3.1.2 Dynamic scene VBR

For dynamic scenes, please see dos Anjos et al. [3] for an exhaustive survey on

video-based rendering (VBR) techniques. The need for controlled capture setting

is shared by many methods. Zitnick et al [85] use a specific system of 8 cameras

combined with segmentation based stereo to extract the geometry. Similarly Wilburn

et al. [76] use an array of 100 tightly-packed cameras. Broxton et al. [13] describe

a custom camera array of 46 synchronized cameras mounted on a dome used to

capture 6DoF wide-baseline light field videos. Guo et al. [34] relight video with a set

up of 331 light sources and 90 cameras, while Collet et al. [21] require 106 cameras.

In a less constrained way, Pozo et al. [62] create a 16-camera rig to reconstruct

360 panoramic videos and synthesize new views. Penner and Zhang [61] use a soft

volumetric representation for narrow baseline IBR to enforce smooth reconstructions.

This method can handle motion, but has trouble handling unstructured data and

works best from camera arrays. Our method also works with handheld cameras.

Casually-captured videos have also been considered. Ballan et al. [4] allow for

quick transitions between handheld video sequences. Their method segments a

single dynamic foreground subject approximated by a planar proxy, and creates

a 3D reconstructed static background. To cope with dynamic background objects

reprojecting incorrectly, the method blurs background transitions between captured

viewpoints. Our method assumes no segmentation nor planarity assumptions for

dynamic objects. Lipski et al. [48] use dense correspondence fields to interpolate

views between videos. They disambiguate matches in difficult cases by manually

drawing correspondence lines on image pairs to use as priors in their matching algo-

rithm. Mustafa et al. [57, 58] reconstruct isolated moving objects after segmenting

them out from the initial video. These methods focus on specific object meshes, and

so do not provide re-rendering of an entire scene from a novel viewpoint.
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Recently, Luo et al. [50] introduced a consistency term by fine tuning a neural

network to improve the estimated depth per point. This works for a single camera

with no or limited dynamic motion. Bansal et al. [6] use foreground and background

extraction together with a self-supervised CNN based composition operator, and

Yoon et al. [78] use deep learning to extrapolate new views from a single monocular

video camera; we compare our approach to this method.

Outside of NVS, other video reconstruction tasks raise consistency questions. Vo et

al. [73] used a spatio-temporal bundle adjustment technique and human motion

priors to reconstruct actor performances by temporally aligning videos at sub-frame

precision. Bao et al. [7] using deep learning for consistent video super resolution.

Finally, Davis et al. [24] recovered depth in dynamic scenes by unifying structured

light and laser scanning into a space-time stereo framework.

3.2 Method

Our algorithm takes as input a set of casually-captured synchronized videos. We

also provide the focal lengths for a pair of cameras (required by OpenMVG [56]),

while the remaining focal lengths are estimated automatically by our algorithm. Our

method proceeds in two steps (Figure 3.1):

1. Camera pose estimation and 3D scene points. We perform a three-step

structure from motion reconstruction to provide both the set of camera poses

and a set of sparse 3D points for each time step (Section 3.2.1).

2. Novel depth and novel view rendering. We densify the sparse points into

a depth map and render a new virtual camera frame by optimizing a coarse-

to-fine variational formulation while enforcing spatio-temporal consistency

(Section 3.2.2).

3.2.1 Camera pose estimation and 3D scene points.

Let us consider a set of S synchronized video views of a dynamic scene, each

composed of T frames. We call I = {Is,t|s = 1, ..., S; t = 1, ..., T} the set of all

frames indexed by s (camera index) and t (time step). At each frame, via SfM, we

recover the camera parameters Cs,t consisting of the intrinsic matrix and extrinsic

rotation and translation matrices, and a set of sparse 3D points for each time step.

First, we efficiently recover a set of camera poses for all frames. In contrast to
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other methods [4, 57, 58], we estimate poses without an explicit dynamic object

segmentation step. Second, we recover 3D points by solving a per-timestep SfM

problem without a complex temporal reconstruction. We solve each SfM problem

with an a contrario algorithm [55]. This automatically adapts thresholds to the input

data instead of using global thresholds, which is more flexible to different inputs.

Efficient camera pose estimation A straightforward approach for accurate SfM

is to solve a problem across all frames simultaneously, but this can be expensive

and memory prohibitive. A second approach might consider solving only between

consecutive time steps, but this is known to produce camera position drift [22].

Instead, we take a coarse-to-fine approach.

We begin by computing SfM across keyframes at every κ time steps of each video.

We detect and match SIFT keypoints within this subset and then simultaneously

solve for all camera poses and 3D points. Then, we refine our estimate with a second

SfM that only matches keypoints between successive frames of the same camera

view, with previously-estimated camera poses held fixed. This considers every frame

of every video, but we only match Is,t to Is,t+1, and not to Is+1,t or Is+1,t+1. To

recover smooth camera paths per view, we add two additional penalty terms to the

bundle adjustment:

w(t − t′) ‖Cs,t − Cs,t′‖2, t − 3 ≤ t′ ≤ t + 3 (3.1)

and

w(t − t′) ‖As,t − As,t′‖2, t − 3 ≤ t′ ≤ t + 3, (3.2)

where w(t − t′) is a Gaussian weight function, Cs,t is the center of each camera pose,

and As,t is the angle-axis representation of the rotation matrix Rs,t. This second

SfM reduces computation time over all-pairs matching while still reducing drift by

constraining the frame-to-frame pose estimates by the keyframe pose estimates.

For hyperparameters, smaller κ will increase processing time, while larger κ may

make it more difficult to match fast camera motion. We found κ = 20 to be a good

compromise in our test sequences.

3D scene points To recover 3D points across the scene, we solve a keypoint recon-

struction problem that is independent per time step. Taking as fixed the recovered

camera poses for each video frame, we match 2D keypoints between frames with

the same timestamp, then reconstruct a set of sparse 3D points per time step. This
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is our key to handling dynamic scenes: as 2D keypoints are not matched in time,

moving objects are correctly recovered in space even if their motion makes matching

over time difficult. However, this knowingly produces temporal inconsistencies; we

will recover from these errors in novel view synthesis where it is easier to enforce

consistency (Sec. 3.2.2).

Post processing Finally, we increase the density of our point matches using Patch-

Match [8], as proposed in the OpenMVS1 and COLMAP2 [66] frameworks. This

process splats points to each view and assigns colors to the 3-D point cloud.

3.2.2 Novel depth and novel view rendering

Our SfM recovers a set of camera poses and an RGB 3D point cloud per time step.

However, at this stage of our algorithm, projecting these points to a novel view still

leaves large regions of empty space. To synthesize more realistic views, we diffuse

these points in depth and RGB in the new view in image space while enforcing

spatio-temporal constraints.

Notation We will often warp the content of a frame I∗ into the domain of the novel

view It: this reprojection is computed using the extrinsic and intrinsic parameters of

both reprojected frames and virtual camera, as well as the depth map D with values

d associated to each pixel. We will denote it Iproj
∗ (x) = I∗(C∗C

−1
t (xt, dt)), where

C
−1(x, d) is the image plane to world coordinate system transformation of the pixel

location x given its depth value d. We also denote by ·̂ a sparse map. The sparse

depth map obtained by projecting the sparse point cloud into frame t of the new

virtual camera path is then D̂t and its corresponding sparse color image Ît.

Algorithm progression We wish to warp a frame Is,t to the novel view It to be

blended into a final novel view. For this, we need both the estimated camera poses

and the dense depth maps Dt, which are yet to be computed. But, to properly

constrain the diffusion of the sparse depth values D̂t, recovered in Sec. 3.2.1, we

need RGB information from the virtual camera’s point of view. Thus, we jointly solve

for the depth maps Dt and color images It by minimizing the energy functional:

E = ED + EI . (3.3)

1https://github.com/cdcseacave/openMVS
2https://colmap.github.io/
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Fig. 3.2: Top row: Sparse reconstructed 3D points (left) and their weights w
D̂

(right)
projected into the virtual view. Red indicates areas of empty space; depth map is
bright green in far depth regions. Bottom row: Points diffused into a full depth
map D (left) according to the weight map wD (right). Note how the how the
color edges are correctly identified via Eq. 3.5, and how the occluded points from
behind the head of the character on the left are given no weight by Eq. 3.6 (top
right) and so do not corrupt the depth.

The functional relates terms constraining the depth map (ED) to terms constraining

the color image (EI) by weights that guide the diffusion process. We solve E

iteratively: we first solve for the depth map Dt while fixing the color values It, and

then conversely we fix the depth values and solve for color. This avoids having to

solve a nonlinear system of equations, and lets us use slightly-improved depth values

to warp the input frames at each step. This betters the estimate of the rendered RGB

image, which in turn constrains the diffusion of the depth.

Depth diffusion We project the sparse point cloud into the novel view, creating the

sparse depth map D̂t as an initialization. Then, we densify it by minimizing the

following energy:

ED =

∫

x∈Ω
wD(x, t)‖∇Dt(x)‖2dx

+λP C

∫

x∈Ω
w

D̂
(x, t) ‖Dt(x) − D̂t(x)‖2dx.

(3.4)

The first integral is a smoothness term controlled by weight wD. We wish diffusion

to decrease around color edges to produce sharp results. We also wish diffusion of
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Fig. 3.3: Four closest input images Is,t projected onto the virtual camera’s view point
alongside their corresponding weight maps wP (Eq. 3.8).

Fig. 3.4: Top row: Color image It−1 and depth map Dt−1 of a previous time step. Bottom left:

It−1 reprojected to the camera view by Dt−1 of the current time step. Bottom right:

Weight map wT (Eq. 3.11) modulates consistency, notably around the moving
mouth of the character on the left.
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depth values to increase when the colors from reprojected input views are similar.

As such, we define wD as:

wD(x, t) =
1

‖∇It‖2
∑n

s=1 σs
vis(x, t)

n
∑

s=1

ws
P (x, t), (3.5)

where 1/‖∇It‖2 modulates depth diffusion around color edges, and 1/
∑n

s=1
σs

vis
(x,t) is a

normalization factor that accounts for each pixel’s visibility in the novel view. As

both the visibility term σvis and the projection weight ws
P pertain more to the color

diffusion process, we will defined them later on in Eq. 3.8.

The second integral reduces the weight of sparse 3D points that are occluded from

the point of view of the virtual camera or are erroneously reconstructed. For this,

we relax the constraint of Dt where it exactly matches the projected sparse point

cloud:

w
D̂

(x, t) = exp

(

−
‖Ît(x) − It(x)‖2

2σ2

)

. (3.6)

In Figure 3.2, we show example weight maps w
D̂

and wD that govern the depth

diffusion process, as defined in Eqs. 3.5 and 3.6.

There are three parameters in this diffusion process: σ controls the soft occlusion

tolerance, and we set σ = 0.075 in all our experiments; the sparse point cloud

attachment weight λP C , which we set in the range λP C = 0.25–2; and the temporal

consistency term set in the range λT = 0.01–0.1.

Color diffusion Given depth map Dt, we initialize the RGB image to a projection of

the color in the input point cloud. Then, we densify it by minimizing the following

diffusion energy:

EI =

∫

x∈Ω
‖∇It‖

2

+
n
∑

s=1

∫

x∈Ω
λP ws

P (x, t)‖It(x) − Iproj
s,t (x)‖2dx

+
n
∑

s=1

∫

x∈Ω
λGws

P (x, t)‖∇It(x) − ∇Iproj
s,t (x)‖2dx

(3.7)

The first integral encourages smooth gradients over the intensity of the novel view,

which aids blending of the projected input images especially along their borders. The

second integral constrains the RGB intensities and It to be close to the intensities of
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Iproj
s,t , and the third integral constrains the RGB gradients similarly. They are both

modulated by the weight

ws
P (x, t) = σs

vis(x, t) exp

(

−
‖Iproj

s,t (x) − It(x)‖2

2σ2

)

, (3.8)

which measures the agreement of each warped input frame with the novel view.

Figure 3.3 shows a set of warped input frames along with their weight maps ws
P .

wP incorporates visibility term σs
vis(x, t) that is 1 for a given

pixel x of the novel view It only if, out of every pixel that is

projected to the same pixel location in an input image Is,t, x

has the smallest depth value d in the input image’s coordinate

frame.

The color diffusion relies on two new parameters: λP and λG

balance the weight over the data and the gradient equality constraints. We set them

both in the range 5–20. σ and λT serve the same function and values as in the depth

map diffusion.

3.2.3 Temporal consistency

We enforce temporal consistency within novel views by additional terms in ED and

EI . With slight abuse of notation:

ED = · · · + λT

∫

x∈Ω
wT (x, t) ‖Dt(x) − Dproj

t−1 (x)‖2dx, (3.9)

EI = · · · + λT

∫

x∈Ω
wT (x, t) ‖It(x) − Iproj

t−1 (x)‖2dx. (3.10)

These terms constrain depth Dt to remain similar to the warped previous depth dt−1,

and for color It similarly. This constraint is relaxed by a weight

wT (x, t) =
1

n

n
∑

s=1

exp

(

−
‖Iproj

t−1 (x) − Iproj
s,t (x)‖2

2σ2

)

(3.11)

for pixels for which an agreement in color was not reached. This is expected in

regions containing motion because the depth values of frame t − 1 may be invalid,
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as is the case around the mouth of the character on the left in Figure 3.4. wT allows

the computation of depth and color values of these pixels to rely more freely on the

other terms of the functional, like the data term of the depth or the color of the

warped input images.

3.2.4 Implementation details

To avoid using input frames that are far away from the novel camera’s view, we rank

each input camera based on its distance from the novel camera according to the

following formula:

rF (s) =
1

‖Ct − Cs,t‖2
exp

(

−
arccos ((tr(RtR

T
s,t) − 1)/2)

2πσ2

)

(3.12)

This penalizes frames that are either far in center or in viewing direction from the

novel view. Then, we use the first n = 4 ranked input frames to minimize the

functional Eq. 3.3.

For efficiency, we also proceed in a multiscale fashion: we solve for depth and color

at a coarse resolution, and then use these to initialize a finer resolution—our lowest

level is 1/64 of the original frame size. Finally, we also proceed in a streaming

manner: we reproject the previous frame’s depth and color (denoted as Dproj
t−1 and

Iproj
t−1 ) into the current virtual camera pose for use within the temporal consistency

constraint.

3.3 Experiments and Results

3.3.1 Dataset Sequences

Real-world existing dataset We exploit existing datasets used in the context of

novel view synthesis, all of them captured using camera arrays:

• Jumping [78]: A group of four people jump (12 cameras).

• Skating [78]: A person rides a skateboard (12 cameras).

• Playground [78]: A person flies a dinosaur balloon (12 cameras).

• Umbrella [78]: A person opens and rotates an umbrella (12 cameras).
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Fig. 3.5: Color and depth results for Cat&dog and Elephant-wiggle scenes.

• DynamicFace [78]: A person of making faces (12 cameras).

• Breakdancers [85]: A person break dancing in front of 4 people (8 cameras).

Custom dataset We test our algorithm on three 100-frame real world sequences

that we acquired each with five cameras at 1920×1080 resolution. The cameras

were hand held or set on tripods (Canon Rebel EOS T7i). We additionally generate

a synthetic sequence using 11 input cameras to compare to ground truth RGB and

depth estimation from a 12th camera. Our sequences are:

• Cat and dog: Two pet animatronics,

• Minions (synthetic): a rendering of two characters laughing behind a table,

• Elephant wiggle: A puppet hanging by a wire, and

• Drone: A drone hanging by a wire.

Figure 3.5 shows rendered frames from novel views and corresponding depth maps

for the Cat and dog, and the Elephant wiggle sequences. While some artifacts remain

in the depth video, the generation of the final novel view RGB rendered sequence is

robust to these and has fewer artifacts. Note that the borders of the view partially

appear blurry when there is insufficient field of view overlap between input videos.
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Method PE (mm) OE (◦) Median Mean RE (pix)

Naive SfM 0.045 2.181 0.080 0.148

Static objects only 0.044 2.149 0.079 0.141

No path smoothing 0.045 2.187 0.074 0.144

Our SfM 0.045 2.180 0.074 0.144

Ground Truth Poses 0 0 0.079 0.149

Tab. 3.1: Ablation Study. We compare estimated camera pose accuracy for naive SfM,
naive SfM using a ground truth mask for the static parts of the scene, and
an ablated version of our space time SfM without camera smoothing. While
adding smoothing slightly has little effect on the positional error (PE), it reduces
orientation error (OE). Our approach also minimizes the median reprojection
error (RE) of the feature points. SfM minimizes reprojection errors by construction
which explains why using ground truth camera poses increases reprojection errors,
but results in perfect camera poses by construction.

3.3.2 Ablation study

We ablate our SfM method using the synthetic dataset with moving objects, where

points are known to be either static or dynamic (Table 3.1). We compared the

recovered pose over 30 timestamps and 11 cameras. First, we compare against a

naive SfM approach that solves for all frames simultaneously without consideration

of dynamic objects. Next, some methods rely on segmenting out moving objects

to cope with dynamic scenes [57, 58]. To compare to this idea, we created a

segmentation-based SfM baseline from the naive SfM by performing reconstruction

only from points that are known to be static using perfect ground truth masks. While

the segmentation slightly aids the recovery of camera positions, its positive effect is

not clear on the 3D reconstruction, even though the dynamic object segmentation is

a pixel accurate ground truth. Against both baselines, our method can make better

use of dynamic points to more accurately recover scene points. Finally, we compare

against the non-smoothed camera path version of our approach. While the rotation

error decreases, the positional error slightly increases. Overall, we found smoothing

to provide better final results.

3.3.3 Novel depth and view comparisons

We compare our method to four recent methods, including deep-learning-based

methods requiring external training databases: Deep Blending [38], Local Light

Field Fusion [52], Extreme View Synthesis [19], and MonoCam [78]. Furthermore,

we use the Breakdancers scene to compare to the results provided by two older
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No Temp. Cons. No PC Weights No Depth Weights No Image Grads.

No Proj. Weights All Terms Ground Truth

Fig. 3.6: Rendering Ablation Study. We show our rendered result without temporal con-
sistency (1st column), without weights on the projected sparse 3D points (2nd
column), without depth weights and inverse image gradients (3rd column), only
without inverse image gradients (4th column), without weights on the projected
input images (5th column), together with the full result (6th column) and the
groundtruth (7th column), for both the depth (first row) and the color view (2nd
row).
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Method Scenes Min.

Views

Training

Time

Preprocess

time per

frame

Render

time

Figure #

DB [38] Static 4 37 h 8 h real time 3.7

LLFF [52] Static 6 ? 10 min real time 3.9

EVS [19] Static 2 ? 10 min 98 sec 3.8

MonoCam [78] Dynamic 1 Authors’ results, no timing info 3.10

VI [85] Dynamic 8 no info real time 3.11

VVC [48] Dynamic 5 partially

manual

real time 3.11

Ours Dynamic 4 2 min 6.8 sec 3.7–11

Tab. 3.2: Comparisons regarding scene type, minimum number of input views, and speed.
LLFF and EVS use pre-trained networks, so we did not re-train them.

methods [85, 48] that best match our intended setup. Each of these methods work

with different numbers of input views and require different amounts of processing

time. Some of these methods are only intended for static scenes, and so we would

expect them to produce temporally inconsistent results. Table 3.2 summarizes these

properties. In this paper, we extract frames to illustrate the comparisons; please see

the accompanying video to better evaluate the differences.

Static—Deep Blending [38]. We compare our rendering method with Deep

Blending(DB) [38] which learns optimized weights for blending 4 layers of mosaic

images where the first layer is composed of the best fitting pixels, the second the

second best etc. based on a heuristic. For the comparison, we first reconstructed

each scene separately for each time step as described in their method. Afterwards,

to be able to use the same camera path as for our results, we registered each time

step to our full space-time reconstruction based on the camera positions. Finally, we

used the pre-trained network provided by the authors to render each frame. Figure

3.7 shows DB not always being able to reconstruct marginal parts of the scenes,

moreover our results appear sharper.

Static—Extreme View Synthesis [19]. Figure 3.8 shows a comparisons with

Extreme View Synthesis (EVS) [19]. As input, EVS receives our SfM results. As

expected, it exhibits flickering since this method is designed for static scenes and does

not enforce temporal consistency. In addition, EVS cannot handle high resolution

input because of its intense memory usage; we had to lower the resolution of the

input video from 1920×1080 to 1280×720. For the same reason we also could not

increase the depth resolution of its scene reconstruction step, which leads inaccurate

depth maps and thus severe ghosting in the effected areas.
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Ours DB [38]

Fig. 3.7: Comparison with Deep Blending [38] on the Cat-Dog and Elephant-wiggle se-
quences.

Static—Local Light Field Fusion [52]. Figure 3.9 shows a comparison with Local

Light Field Fusion (LLFF) [52]. As input, LLFF receives our SfM results. Since our

3D reconstruction is left noisy by design, which is not expected by this method, we

fixed the minimum and maximum depths to known correct values LLFF can use for

its Multi-Plane Image computations. This reduces the flickering in their video, but

it does not eliminate it completely. Our result also appears sharper and with less

ghosting artifacts. Since LLFF requires at least 6 cameras to work, we could only

compare on the 12-camera dataset sequences.

Dynamic—Monocam [78]. Figure 3.10 shows a comparison with Monocam [78].

Here we use the results given by the authors directly for the comparison. It is

important to note that the sequences provided by the authors differ slightly from the

ones used in the corresponding paper [78] and for which we have the results. For

instance in the skating sequence, the skater is doing hand gestures in the provided

input sequence contrary to the published processed result. This nevertheless allows

qualitative comparisons. This figure shows that dynamic background objects like

the plants in the umbrella sequence appear static if the virtual camera is static and

are not consistent if the virtual camera is dynamic. Monocam results also exhibit

temporal coherence artifacts. For instance, the reflections in the jumping and skating

sequences jump back and forth based on which view was used to render them.

Please see these in the accompanying video.

Dynamic—View Interpolation, Virtual Video Camera [85, 48]. Figure 3.11
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shows a comparison with View Interpolation (VI) [85] and Virtual Video Camera

(VVC) [48] methods. We approximately reproduced the camera path of the video

provided by the authors for the Breakdancers scene for this comparison. While VI re-

quires a fixed and calibrated camera grid, our method can handle hand-held devices.

VVC eliminates these restrictions, but relies on user input to correct correspondence

matches.

3.3.4 Challenging Sequence—Drone

This sequence shows a quadrocopter drone (Figure 3.12). The drone has many

thin features: the chassis, the fan blades, and exposed wires between battery and

motors. Here, if our stereo reconstruction fails to find feature points on or nearby

thin features at the correct depth, then our consistent propagation cannot provide

the correct depth. As such, we see ghosting effects.

3.3.5 Computational Resources

We implemented our system in C++ on a Intel(R) Xeon(R) CPU ES-2630 v3

@2.4GHz computer. We used the OpenMVG library to compute Structure from

Motion and sparse depth maps; and both OpenMVS and COLMAP to compute the

PatchMatch-based sparse depth map post processing (Section 3.2.1). We parallelize

the code using OpenMP and run on 32 cores; the rendering algorithm loads up

to 2GBs of data per frame. As an example of wall-clock time, it took 2.2 hours to

process the elephant-wiggle sequence (5 cameras, 100 frames per camera). The

computation time breaks down to camera and sparse depth estimation (2 hours),

and the rendering itself (6.8s per frame, 11.3 minutes for the whole video).
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Ours EVS [19]

Fig. 3.8: Comparison with Extreme View Synthesis [19] on the Cat-Dog, Jumping and
Elephant-wiggle sequences. Our method produces fewer artifacts than EVS.
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Ours LLFF[52]

Fig. 3.9: Our method (left) in comparison with Local Light Field Fusion [52] (right) on the
Jumping, Playground, Umbrella and Skating sequences.
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Ours Monocam [78]

Fig. 3.10: Comparison with Monocam [78] on the Jumping, Playground, Umbrella and
Skating sequences. Stronger temporal inconsistencies in results computed with
Monocam can be seen in the accompanying video.
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VI [85] VCC [48] Ours

Fig. 3.11: Comparison with [85] and [48] on the Breakdancers sequence.

Fig. 3.12: Limitations: In the drone sequence, the scene has thin features which makes
geometry reconstruction difficult. Here, our consistent propagation has trouble
correcting for missing sparse feature points.
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3.4 Limitations

Our method has several limitations. First, our choice of the OpenMVG library [56]

for computing the SfM has the drawback that we must provide focal lengths for a

pair of cameras to initiate the reconstruction process. Second, our method requires

that the video sequences should have enough texture on the objects and in the

background such that enough SIFT keypoints can be detected and matched. Another

limitation lies in the amount of motion in the frame: conceptually, if SIFT keypoints

are only detected on moving objects, then camera pose estimation will fail. In

practice, we did not find this to be a problem. Furthermore, if the baseline is too

wide, then not enough points will be obtained on moving objects and the depth

propagation will fail. Finally, our optimization has parameters that can be tuned for

each sequences; we provide reasonable initial values (Sec. 3.2.2), but tweaking can

improve quality.

Finally, our current implementation is unoptimized C++ running on a CPU. Even

if we optimize the implementation, one bottleneck is that keypoints from several

images must be matched, and this is time consuming. If we consider SfM as an

offline task to be performed once per scene, then the view rendering part currently

takes 7 seconds per frame. Given the fixed grid, GPU-based diffusion optimizers are

possible, which would produce a much more application-friendly render time.

3.5 Summary

We introduce a novel view synthesis method which can handle dynamic scenes. It is

based around the key insight that reconstructing temporally-consistent 3D points on

dynamic objects is hard, yet a structure-from-motion reconstruction method need not

be temporally consistent if temporal consistency can be enforced in the rendering

algorithm. We show that this can be accomplished by deferring consistency to

a variational screen-space formulation, which makes it easy to robustly enforce

spatio-temporal consistency via reprojection constraints weighted by confidences.

While our setting has some restrictions, we show competitive results against existing

baselines for video-based rendering without using any learning-based approaches.

In the future, we hope to reduce constraints in camera motions and temporally with

asynchronous videos.
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Conclusions 4
In this thesis we tackled the problem of capturing and reconstructing dynamic scenes

using only everyday equipment in casual settings and applying no prior calibration.

We did so in order to make high quality 3D videos more readily available to the

end users. With the rise of virtual and augmented reality platforms, it is crucial to

provide easy solutions for the creation of 3D content. Hardware technologies able

to capture 3D scenes are also becoming prolific. Several newer smart phones are

equipped with stereo cameras and even depth sensors.

However, the processing of the dynamic sequences captured by these technologies

still poses challenging problems on multiple fronts. Firstly, in the case of depth

sensors, there’s no widespread hardware technology yet that is able to accurately

capture depth maps at high enough frequency to be reasonably applicable for

dynamic scenes. Secondly, even though the capturing of RGB videos is elementary,

their processing poses several questions that are yet to be satisfyingly solved. For

instance, the sheer volume of data provided by videos renders most algorithms

devised for single images unreasonable in face of dynamic scenes. Camera and scene

motion also need to be specifically handled, and the solution needs to be consistent

across all frames of the video.

The insight that we gained was that one can combine multiple technologies or

devices to effectively overcome the issues caused by the scene motion. Specifically,

we introduced two novel algorithms that provide solutions to the above mentioned

problems.

We combined a consumer depth sensor and a LiDaR scanner (Chapter 2) to capture

high resolution moderately dynamic sequences. By formulating the problem in

spacetime, we were able to register the point clouds acquired by the heterogeneous

setup and transfer the details of the high precision Time-of-Flight scan to the noisy

depth video captured by the consumer depth sensor.

We also employed several hand-held and tripod-mounted cameras capture video

sequences of dynamic scenes for novel view synthesis (Chapter 3). Our key insight

was that one can avoid the difficult problem of generating temporally consistent
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reconstructions of the scene by deferring the enforcement of consistency to render

time.

We thoroughly tested our methods on self-captured real world datasets, as well as

generated synthetic scenes to quantify our results.

4.0.1 Machine Learning Methods

Concurrently with out work, several machine learning based methods tackling the

problem of dynamic 3D acquisition have been published. First came Bansal et

al.[6] by employing unstructured multi-view capture to render novel view videos by

employing a scene specific neural network to composite a dynamic foreground with

a static background. Consequently, Yoon et al.[78] used monocular acquisition to

render novel views by correcting depths computed for standalone frames using an

incomplete multiview reconstruction with the help of a self-supervised network.

More recently, the advent of neural radiance fields[53] (NeRF) ensued a boom in

dynamic scene 3D novel view synthesis. Using monocular capture, Li et al.[47]

rerender dynamic scenes with the help of neural scene flow fields, while Xian et

al.[77] constrain the dynamic 3D geometry using video depth estimation methods.

Gao et al.[32] combine a static and a dynamic NeRF with regularization losses to

render physically plausible novel views. Du et al.[27] apply NeRF in a multi-view

setting to learn a 4D spacetime representation of a dynamic scene, while Peng et

al.[60] reconstruct single human performers in the same vein.

All these methods produce impressive results outperforming previous approaches in

their quality and wide applicability. However, they are computationally extremely

expensive, usually requiring state of the art hardware and several hours, if not days

to reconstruct a single scene. The original NeRF [53] implementation converged in

approximately two days for a scene of average complexity, and newer approaches

[26] promise up to six-fold speed-up at the scene specific training time.

In contrast, our method needs around two minutes to compute the 3D reconstruction

of a time step of the video, and seconds to render a novel view. Additionally, it runs

on a current average personal computer.
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4.1 Future Work

While in this thesis we have demonstrated that our methods offer solutions to

dynamic 3D scene acquisition, the limitations of our approaches provide immediate

guidance to specific improvements.

Correcting Motion Distortions in Time-of-Flight Imaging The most severe limitation

that we have identified working on this project was related to the poor quality of the

depth videos captured by the consumer depth sensor. Hence, a sane fist step would

be to swap out the depth camera to a newer model. Indeed, in the years since we’ve

concluded our experiments, new technologies became widely available that promise

a less noisy acquisition.

Following another route to tackle the same problem, we could mine the information

provided by the color videos, captured at the same time, akin to Haefner et al. [36],

to improve the quality of the depth maps.

Finally, our current registration process assumes rigid transformations only. One

way to bypass the manual calibration of the consumer depth sensor would be to use

the accurate knowledge of the scene provided by the LiDaR point cloud. One can

imagine doing so using a non-rigid ICP algorithm, or one could explicitly model the

distortion parameters and solve for them based on the LiDar scan.

Dynamic Scene Novel View Synthesis via Deferred Spatio-temporal Consistency Our

current approach is aware of the captured scene being dynamic to the extent that it

allows consequent frames to differ in areas where the input frames also differ. An

idea to further leverage the motion in the scene would be to incorporate the optical

flow in the rendering process. One can imagine doing so, more traditionally, by com-

puting it beforehand and using the provided information to guide the optimization.

More interestingly, one could solve for it in the screen space, using the same energy

functional as for the novel depth and color images.

From another point of view, our current approach is somewhat restrictive regarding

the acquisition setup and virtual camera path. For instance, we use synchronized

video sequences. Incorporating the scene flow into our approach would also alleviate

this constraint, possibly even lead to temporal super-resolution. Moreover, we could

use it to fill in areas of the novel view not covered by frames from the same time

step, which would allow the virtual camera greater freedom of movement around

the scene.
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4.1.1 Next Steps

As a broader perspective, we believe the casual capture of 3D dynamic scenes

needs to be further addressed. Both acquisition devices, such as smart phones

equipped with depth sensors and several cameras, and visualization technologies

for virtual and augmented reality have become widely available in the recent years.

Technologies to process temporal 3D data are in high demand.

For this reason, it is important not only to reconstruct and visualize dynamic scenes,

but also to research ways to interact with them. One could take pointers from

already existing applications working on static scenes, to inspire novel approaches

that let end users create, edit, visualize, and interact with their own acquisitions.

Both scene motion, and the size of temporal data make adapting existing methods

nontrivial.
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