Keywords: insult, rivalries, reactors, mw, armistice, massacre abduction, executions, hostages, deportation, kidnapping heiress, mistress, photo, granddaughter, ap, latin GloVe science carbon, emissions, malayalam, dioxide, gases, revised algorithms, computational, anime, manga, renaissance, jens binary, finite, algorithm, algorithms, discrete, circuits car lama, apartment, mg, dalai, cream, milk propeller, tractor, barrel, mounted, rbi, drum championship, champion, championships, cup, debut, tournament breeding, pupil, polytechnic championship, champion, championships, cup, debut, tournament fastText science uavs, badminton, gridcolor, loneos, boldklub, medalists sportspeople, zl njn reductase, västerbotten, pär, åberg, purine

With the advent of Transformer architectures in Natural Language Processing a few years ago, we have observed unprecedented progress in various text classi cation or generation tasks. However, the explosion in the number of parameters, and the complexity of these state-of-theart blackbox models, is making ever more apparent the now urgent need for transparency in machine learning approaches. The ability to explain, interpret, and understand algorithmic decisions will become paramount as computer models start becoming more and more present in our everyday lives. Using eXplainable AI (XAI) methods, we can for example diagnose dataset biases, spurious correlations which can ultimately taint the training process of models, leading them to learn undesirable shortcuts, which could lead to unfair, incomprehensible, or even risky algorithmic decisions. These failure modes of AI, may ultimately erode the trust humans may have otherwise placed in bene cial applications. In this work, we more speci cally explore two major aspects of XAI, in the context of Natural Language Processing tasks and models: in the rst part, we approach the subject of intrinsic interpretability, which encompasses all methods which are inherently easy to produce explanations for. In particular, we focus on word embedding representations, which are an essential component of practically all NLP architectures, allowing these mathematical models to process human language in a more semantically-rich way. Unfortunately, many of the models which generate these representations, produce them in a way which is not interpretable by humans. To address this problem, we experiment with the construction and usage of Interpretable Word Embedding models, which attempt to correct this issue, by using constraints which enforce interpretability on these representations. We then make use of these, in a simple but e ective novel setup, to attempt to detect lexical correlations, spurious or otherwise, in some popular NLP datasets. In the second part, we explore post-hoc explainability methods, which can target already trained models, and attempt to extract various forms of explanations of their decisions. These can range from diagnosing which parts of an input were the most relevant to a particular decision, to generating adversarial examples, which are carefully crafted to help reveal weaknesses in a model. We explore a novel type of approach, in parts allowed by the highly-performant but opaque recent Transformer architectures: instead of using a separate method to produce explanations of a model's decisions, we design and ne-tune an architecture which jointly

Concepts

We will mainly focus here on aspects of these elds which are pertinent to Natural Language Processing. For a more complete and exhaustive overview of the elds of eXplainable AI (XAI) and Interpretable Machine Learning (IML) in general, we refer the reader to the IML book from Molnar [2019], which at the present time, represents one of the most exhaustive but also easy-to-grasp overview and review of these elds.

, in the form of Data Maps, which compile the training dynamics of a model on a dataset, mainly, the con dence (mean) and variability (standard deviation) of its predictions across epochs, allowing to visualize easy-to-learn instances (low variability, high con dence), hard-to-learn instances (low variability, low con dence), and nally ambiguous instances (high variability). By splitting the training dataset into these three parts, and adjusting the quantities of instances in each, the authors showcase how the nal capabilities and performance of a model can be tweaked. They also showcase how this method can be used to detect mislabeled instances.

Inspired by these now famous examples of hidden dataset biases, detected through the use of methods related to explainability, we decided to focus this work on the exploration of more dedicated approaches, which might enable detecting similar issues in other datasets. This remainder of this work is divided into 4 Chapters, divided into two parts: Chapters 2 and 3 rst explore intrinsic interpretability in the context of Natural Language Processing, with a particular focus on Interpretable Word Embedding models; Chapters 4 and 5 then explore post-hoc explainability methods, with a particular focus on Natural Language Explanations. Chapters 2 and 4 discuss and review the state-of-the-art respective to each part, as well as introduce the necessary concepts, models, and datasets, which are then used in the experimental setups showcased in Chapters 3 and 5.

learns to both perform its task, while also producing free-form Natural Language Explanations of its own outputs. We evaluate our approach on a large-scale dataset annotated with human explanations, and qualitatively judge some of our approach's machine-generated explanations.

Résumé

Avec l'avènement des architectures Transformer en Traitement Automatique des Langues il y a quelques années, nous avons observé des progrès sans précédents dans diverses tâches de classi cation ou de génération de textes. Cependant, l'explosion du nombre de paramètres et de la complexité de ces modèles "boîte noire" de l'état de l'art, rendent de plus en plus évident le besoin désormais urgent de transparence dans les approches d'apprentissage automatique. La capacité d'expliquer, d'interpréter et de comprendre les décisions algorithmiques deviendra primordiale à mesure que les modèles informatiques deviennent de plus en plus présents dans notre vie quotidienne. En utilisant les méthodes de l'IA eXplicable (XAI), nous pouvons par exemple diagnostiquer les biais dans des ensembles de données, des corrélations erronées qui peuvent au nal entacher le processus d'apprentissage des modèles, les conduisant à apprendre des raccourcis indésirables, ce qui pourrait conduire à des décisions algorithmiques injustes, incompréhensibles, voire risquées. Ces modes d'échec de l'IA peuvent nalement éroder la con ance que les humains auraient pu placer dans des applications béné ques. Dans ce travail, nous explorons plus spéci quement deux aspects majeurs de l'XAI, dans le contexte des tâches et des modèles de Traitement Automatique des Langues : dans la première partie, nous abordons le sujet de l'interprétabilité intrinsèque, qui englobe toutes les méthodes qui sont naturellement faciles à expliquer. En particulier, nous nous concentrons sur les représentations de plongement de mots, qui sont une composante essentielle de pratiquement toutes les architectures de TAL, permettant à ces modèles mathématiques de manipuler le langage humain d'une manière plus riche sur le plan sémantique. Malheureusement, la plupart des modèles qui génèrent ces représentations les produisent d'une manière qui n'est pas interprétable par les humains. Pour résoudre ce problème, nous expérimentons la construction et l'utilisation de modèles de plongement de mots interprétables, qui tentent de corriger ce problème, en utilisant des contraintes qui imposent l'interprétabilité de ces représentations. Nous utilisons ensuite ces modèles, dans une con guration nouvelle, simple mais e cace, pour tenter de détecter des corrélations lexicales, erronées ou non, dans certains ensembles de données populaires en TAL. Dans la deuxième partie, nous explorons les méthodes d'explicabilité post-hoc, qui peuvent cibler des modèles déjà entraînés, et tenter d'extraire diverses formes d'explications de leurs décisions. Ces méthodes peuvent aller du diagnostic des parties d'une entrée qui étaient les plus pertinentes pour une décision particulière, à la génération d'exemples adversariaux, qui sont soigneusement conçus pour aider à révéler les faiblesses d'un modèle. Nous explorons un nouveau type d'approche, en partie permis par les architectures Transformer récentes, très performantes mais opaques : au lieu d'utiliser une méthode distincte pour produire des explications des décisions d'un modèle, nous concevons et mettons au point une con guration qui apprend de manière jointe à exécuter sa tâche, tout en produisant des explications en langage naturel en forme libre de ses propres résultats. Nous évaluons notre approche sur un ensemble de données de grande taille annoté avec des explications humaines, et nous jugeons qualitativement certaines des explications générées par notre approche.

I would like to express my deepest gratitude to Dr. Aurélie Névéol and Prof. Benoit Favre for the interest they have shown in my work, and agreeing to review this dissertation. I am very thankful for their time, and the attention to detail in their reviews. Their questions and suggestions were followed by rich and stimulating discussions during and after the defense of this thesis. I would also like to extend my sincere thanks to Dr. Leila Amgoud and Dr. Pascal Denis for being part of my dissertation committee and participating in the evaluation of my work.

I am deeply indebted to my supervisors, Dr. Philippe Muller and Dr. Tim Van de Cruys, for their support and guidance all throughout those three years. I could not have undertaken this journey without your assistance and encouragement, particularly in the di cult conditions we all had to go through during the COVID-19 pandemic. Your careful examination of the various drafts of this dissertation was invaluable in its completion. Our various discussions on the topics of explainability and interpretability were (and still are) intellectually stimulating, and I owe a majority of the things I learned about, and the experiments I have been able to perform, to our mutual interest in these subjects.

Many thanks to the members of team MELODI and my labmates at IRIT, for the various exchanges we had about our respective subjects and work, and to my fellow Doctors and PhD students who I spent parts of those three years with, for being able to share about the challenges and di culties of PhD life with you.

Finally, I would like to thank my parents for supporting me and encouraging me through this journey, particularly when I was doubtful or anxious, and for giving me space and calm to write in, when I needed it.

Chapter 1

Setting The Scene

Over the last decade or so, we have observed an accelerating growth in the complexity of state-of-the-art machine learning models, in pretty much all elds of AI, but in particular in NLP, mainly due to the recent development of the Transformer [START_REF] Vaswani | Attention is all you need[END_REF] architecture, illustrated by the famous BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] and GPT-n [START_REF] Radford | Improving Language Understanding by Generative Pre-Training[END_REF][START_REF] Radford | Language Models are Unsupervised Multitask Learners[END_REF][START_REF] Tom | Language Models are Few-Shot Learners[END_REF] series of models.

Practically all popular models actively used in NLP nowadays are so-called black-box models, that is, architectures which are inherently opaque to direct human analysis, usually due to the sheer number of variables and non-linear interactions present in the underlying mathematical models involved (see Table 1.1). These architectures are usually trained in an end-to-end fashion, in which the machine learning practitioners and end-users both e ectively limit their direct interactions to the inputs, outputs, and hyper-parameters of the models, whether at training or inference time. Once the task has been speci ed, usually through the de nition of an objective (or inversely, cost) function to be optimized, the input and target data is fed to the training or inference algorithm, and the necessary intermediate steps of the computation are e ectively left to the model's discretion. This is arguably the main strength of deep learning approaches, as they not only skip over most of the often heavy human requirement of engineering a pipeline appropriate for a given task, but they also seem to do this job signi cantly better, in terms of evaluation metrics, than humans. It is however also a weakness, in that it signi cantly reduces the ability for humans to understand what exactly these architectures have learned and executed in those intermediate steps. Some of these large architectures, usually pre-trained on massive amounts of unannotated text, achieve performance on di cult evaluation benchmarks, like GLUE or SuperGLUE [START_REF] Wang | GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding[END_REF][Wang et al., , 2019]], close to or sometimes surpassing [START_REF] Sun | ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation[END_REF] human performance on those same tasks.

Yet, despite these numeric achievements, some of those same models have been repeatedly shown to display a wide variety of overall undesirable behaviors, whether they be weaknesses Model Parameters Depth I S [START_REF] Conneau | Supervised Learning of Universal Sentence Representations from Natural Language Inference Data[END_REF] " 50M 4 ELM [START_REF] Peters | Deep Contextualized Word Representations[END_REF] " 100M 4 GPT [START_REF] Radford | Improving Language Understanding by Generative Pre-Training[END_REF] " 117M 24 BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] " 336M 24 GPT 2 [START_REF] Radford | Language Models are Unsupervised Multitask Learners[END_REF] " 1.5B 48 GPT 3 [START_REF] Tom | Language Models are Few-Shot Learners[END_REF] " 175B 96

Table 1.1: Evolution of the sizes and depths (for the rst two models, in number of layers, for the remaining Transformer models, in number of Transformer blocks) in recent popular NLP architectures over the years.

to non-semantically-destructive adversarial perturbations [START_REF] Jia | Adversarial Examples for Evaluating Reading Comprehension Systems[END_REF]Ribeiro et al., 2018b;[START_REF] Jin | Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classi cation and Entailment[END_REF][START_REF] Li | BERT-ATTACK: Adversarial Attack Against BERT Using BERT[END_REF], failures in handling basic and common linguistic phenomena, such as negation or antonymy [START_REF] Naik | Stress Test Evaluation for Natural Language Inference[END_REF][START_REF] Mosharaf Hossain | An Analysis of Natural Language Inference Benchmarks through the Lens of Negation[END_REF][START_REF] Kaiser | Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly[END_REF][START_REF] Aspillaga | Stress Test Evaluation of Transformerbased Models in Natural Language Understanding Tasks[END_REF], gender and lexical biases [Vig et al., 2020], and many more. These can ultimately translate into risks or costs at a more societal level, such as negative environmental or nancial impact [START_REF] Bender | On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? 🦜[END_REF]. These shortfalls are particularly worrying when one considers that some of these models are already at this time being used in production environments, facing actual human end-users, such as in translation or text prediction systems: such behaviors, even if they occur infrequently, could ultimately erode the trust humans may have in these systems and the algorithms behind them, even if they could have eventually turned out to be overall bene cial to society. This is compounded by a certain amount of miscommunication and overall over-promotion of state-of-the-art model capabilities, which can lead both end-users and researchers to have an over-estimated impression of the actual abilities of these approaches [START_REF] Bender | Climbing towards NLU: On Meaning, Form, and Understanding in the Age of Data[END_REF].

We can impute many of these issues to the drawbacks of relying on simple metrics like accuracy on benchmark tasks to evaluate actual understanding of natural language in computer models. Indeed, while many of these tasks are crafted under the hypothesis that they each require the learning of some set of logico-linguistic skills and knowledge to be accurately solved, there are usually no strong guarantees that:

1. the distribution of the instances in the dataset(s) associated with a given task actually matches the distribution associated with the system which is intended to be modelled: when this is not the case, it could be classi ed as di erent forms of dataset biases (which are comprehensively explored for Computer Vision in [START_REF] Torralba | Unbiased look at dataset bias[END_REF]), usually either covariate shift (when the distribution of the inputs, ppxq may have shifted, while the conditional distribution of the labels ppy|xq remains xed) or its converse, label shift (ppyq shifted, ppx|yq xed), respectively associated with so-called causal (predicting e ects from their causes) or anticausal (predicting causes from their e ects) learning [START_REF] Schölkopf | Neural Machine Translation of Rare Words with Subword Units[END_REF][START_REF] Lipton | The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF];

2. the speci ed objective function of the task, when optimized, actually guides the trained model towards its intended goal(s): when this is not the case, it could be classi ed as mismatched, con icting or underspeci ed objectives [START_REF] Alexander D'amour | Underspeci cation Presents Challenges for Credibility in Modern Machine Learning[END_REF], the primary symptom of which being found when training similar models on identical tasks, but ending up with completely di erent generalization behaviors on out-of-distribution instances (often both in training and testing sets, as these are unfortunately quite commonly drawn from the same source distributions), despite similar or even identical performance in-distribution [START_REF] Mccoy | BERTs of a feather do not generalize together: Large variability in generalization across models with similar test set performance[END_REF].

With either (or both) of these lacking, one will very probably end up with a model prone to some level of shortcut learning [START_REF] Geirhos | Shortcut learning in deep neural networks[END_REF], in essence, a model which is deceptively well performing on a particular set of tasks and datasets, but which ends up behaving inappropriately, possibly in subtle ways, once presented with real-world data.

In any case, even assuming these issues have been somehow taken into account in a particular application, its end-users will almost always wish for and bene t from explanations being provided, particularly in the case of algorithmic decision-making systems which are bound to become more and more prevalent in society as time and technology progresses. There even already seems to be a growing consensus that this requirement should become a matter of law, as some have argued that the General Data Protection Regulation (GDPR), which has recently become law in Europe, provides some level of "right to explanation" [START_REF] Goodman | European Union Regulations on Algorithmic Decision-Making and a "Right to Explanation[END_REF] concerning decisions taken by automated systems, though this has also been disputed [START_REF] Wachter | Why a Right to Explanation of Automated Decision-Making Does Not Exist in the General Data Protection Regulation[END_REF]. Explainability and interpretability, as these concepts are often referred to, also plays an important role in AI Ethics and Fairness, to better try to ensure machine learning models do not unfairly discriminate on the basis of undesirable biased features, which often can ultimately be recovered and extracted by these approaches, even when some preliminary attempts were made to prevent this from occurring [START_REF] Dodge | Explaining models: An empirical study of how explanations impact fairness judgment[END_REF]Aivodji et al., 2019;[START_REF] Barredo Arrieta | Explainable Arti cial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI[END_REF][START_REF] Sharma | CERTIFAI: A Common Framework to Provide Explanations and Analyse the Fairness and Robustness of Black-box Models[END_REF].

For all these reasons, it is apparent there exists a strong need for methods which would enable more transparency and human understanding of algorithmic decisions, particularly from the very opaque deep learning models which are employed nowadays. While a lot of work and e ort has been deployed to attempt to reach these goals, the whole endeavor is very challenging, in parts due to the number of pre-existing or completely novel concepts which are involved, even just to de ne in more concrete terms what those very goals are: What is an explanation? What form(s) should they take? What makes a good explanation? Even these basic questions have not been fully explored or de nitely answered yet, let alone the more challenging technical aspects of how to actually implement these concepts in practice.

same umbrella when discussing explanations, regardless of their sources, we would have to use both terms together quite often. As such, in the rest of this document, "interpretability" and "interpretable" will always refer to intrinsically interpretable models as described above, whereas "explainability" and "explainable" will refer to explanation producing methods in general, unless used in the phrases "post-hoc explainable" or "post-hoc explainability", in which case they refer only to such methods.

Desiderata for Explainability/Interpretability Methods

Outside of purely de nitional issues, there also exist numerous questions about what is desired out of these methods. In the relevant literature [START_REF] Doshi | Towards A Rigorous Science of Interpretable Machine Learning[END_REF][START_REF] Guidotti | A Survey of Methods for Explaining Black Box Models[END_REF][START_REF] Lipton | The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF]Robnik-Šikonja and Bohanec, 2018;[START_REF] Molnar | Interpretable Machine Learning. A Guide for Making Black Box Models Explainable[END_REF][START_REF] Barredo Arrieta | Explainable Arti cial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI[END_REF], many desiderata have been proposed, often in di erent terms and at di erent levels of analysis, which makes exhaustively listing them in a coherent manner practically impossible. These desired properties can target the explained models, the explanation methods, or the explanations they produce themselves. As the latter concerns the not-yet-discussed point of explanations, here is a non-exhaustive list of desiderata which might directly concern models and explanation methods (largely inspired by [START_REF] Molnar | Interpretable Machine Learning. A Guide for Making Black Box Models Explainable[END_REF]):

• One of the primary, if not the core desiderata of any machine learning model, explainable or not, is accuracy, that is, how good the model is at predicting seen or unseen instances.

In the rst case, this simply indicates how well a model is learning for its training distribution. In the second case, however, it also indicates how well a model is generalizing to Out-of-Distribution (OOD) instances, and by extension, how well it has learned to model the process or system represented by the data, instead of just the data itself. It is especially important to keep in mind, as it is often unfortunately a property which has to be traded o in some capacity to obtain more transparent and thus easier to explain models, though this has been debated [Alvarez-Melis and Jaakkola, 2018;[START_REF] Rothe | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]Aivodji et al., 2019].

• Translucency of an explanation method refers to the degree to which it derives its explanations directly from the explained model's internals, architecture and parameters. On the higher end of this scale, we can nd intrinsically interpretable models, whereas model-agnostic methods would rate lower. This property may be desirable in that it makes the explanation method easier to understand and check with regard to the analyzed model, however it also naturally makes it more architecture-speci c and thus less portable.

• Portability designates the range of architectures an explanation method may be applied to: a model-agnostic method, which makes little to no assumptions about the internals of a given model, and interacts with it purely within the black-box paradigm, would be highly portable and thus useable against a wide range of existing models. In practice, one cannot have both high portability and high translucency at the same time, and so it might be necessary to compromise on either or both of those desiderata in some capacity.

• Complexity, whether it is algorithmic (in processing time and/or memory requirements) or conceptual/architectural (in number of parameters, hyperparameters, depth, or degrees of non-linearity), applies to both explanation methods and the models they might target.

In either case, this is a property one would wish to minimize as much as can be a orded, since lower algorithmic complexity enables faster execution (both in training and at inference time), on smaller and/or more a ordable hardware, and at lower energy costs.

Similarly, lower conceptual complexity allows for easier deployment (mainly due to the fewer number of hyperparameters to ne-tune) and easier debugging/analyzing by humans. For explanation methods more speci cally, it is generally considered undesirable to have similar or greater algorithmic complexity than the models which are to be explained, as this would make their use as diagnostic tools impractical.

The second, possibly even more important, set of desiderata to consider, are those which concern the produced explanations themselves.

Desiderata for Produced Explanations

In the eXplainable AI (XAI) and Interpretable Machine Learning (IML) literature, it is di cult to nd a uni ed de nition of the term "explanation". While most people will intuitively have a practical understanding of this term, guring out a pertinent and more formal de nition is very challenging [START_REF] Doshi | Towards A Rigorous Science of Interpretable Machine Learning[END_REF][START_REF] Barredo Arrieta | Explainable Arti cial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI[END_REF]. Similar to explanation methods, it may be that the easiest way to de ne explanations is through exploring what is desired out of them. Looking back at the previous list of desiderata, we can turn again to [START_REF] Molnar | Interpretable Machine Learning. A Guide for Making Black Box Models Explainable[END_REF] who compiles a fairly exhaustive list of explanationsspeci c desiderata, the following three of which (slightly reformulated) we believe are the most pertinent:

• Faithfulness, or delity, is probably the most important feature of an explanation: it represents how accurate an explanation is, as a model itself, at modeling its target explanandum. In other words, a faithful explanation is one which accurately reformulates the internal behavior of a model, and thus shares the same behaviors it has. It is extremely important to ensure we can trust these explanations: indeed, an unfaithful explanation of a particular prediction may actually look like a perfectly plausible behavior a theoretical model could have, but it will not actually accurately represent what went on internally in the target model we are interested in. A method which produces unfaithful explanation would most likely at some point stop making sense, when exploring parts of the input space for which it diverges with the target model.

• Stability represents how consistent the produced explanations are when making small variations to the input instances fed to the target model and then explained. Ideally, an explanation method should not produce wildly di ering explanations for very minute perturbations of an input. Low stability explanations may cause frustration in end-users, as attempting to exploit them to plan modi cations of the data or models themselves would be made di cult, due to these inconsistencies appearing after every small modi cations.

• Comprehensibility represents how easy it is for the end-users to parse the produced explanations, as well as act on them. This property will be highly dependent on the target audience of the method, though ultimately, a more comprehensible explanation format in an absolute sense will be more helpful to any audience, expert or non-expert. This property also depends on the "size" of the produced explanations: even simple if-this-then-that rules will become di cult to parse if there are hundreds of them to look for each prediction explanation. This also illustrates why even very basic models, such as linear models or Decision Trees, are not interpretable in an absolute sense, as the comprehensibility of the explanations they intrinsically allow to generate directly depends on the number of parameters/nodes in them.

To illustrate these concepts more concretely, let us now discuss one of the main use cases of explanations: detecting and understanding problematic behaviors learned by models. Of course, no architecture is inherently created awed, rather, in the majority of cases, these behaviors stem from issues in the training data that is fed to them.

1.2 Garbage in, garbage out: Dataset Biases and Spurious

Correlations

One of the main use-cases for explainability is to detect undesired behaviors in trained or in-training models, in order to correct, or at least be aware and wary of them. Most often, the behaviors are not inherent to the model architectures employed, but are rather distilled from the training data. The issue of dataset biases [START_REF] Torralba | Unbiased look at dataset bias[END_REF] which plagues machine learning as a whole, whatever the subdomains and types of data manipulated are, can be viewed as an extension of the famous "garbage in, garbage out" principle in computer science: since current machine learning architectures essentially implement automated inductive and/or deductive reasoning using a set of training data as its basis, if the distribution of this data happens to di er in non-random ways from the distribution associated with the process which is to be modelled, these di erences may introduce exploitable biases and spurious correlations with regards to the intended task, and thus lead to shortcut-learning models [Geirhos et [START_REF] Poliak | Hypothesis Only Baselines in Natural Language Inference[END_REF] (Figure 3 in the original publication), for each class: Prob lists the empirical conditional probabilities pplabel|wordq of predicting the given label when the given word is present in the hypothesis sentence; Occ lists the number of occurrences in the dataset of instances that contain the given word. While each of these artifacts independently does not impact a great number of instances, the fact some of them are such strong predictors for their respective class, means a model trained on SNLI may undesirably learn these as shortcuts.

2020].

Many such issues have been discovered over the years in NLP datasets, for instance, in visual question answering [START_REF] Jabri | Revisiting Visual Question Answering Baselines[END_REF][START_REF] Zhang | Yin and Yang: Balancing and Answering Binary Visual Questions[END_REF], reading comprehension [START_REF] Chen | A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task[END_REF][START_REF] Jia | Adversarial Examples for Evaluating Reading Comprehension Systems[END_REF][START_REF] Kaushik | How Much Reading Does Reading Comprehension Require? A Critical Investigation of Popular Benchmarks[END_REF], or paraphrase identi cation [START_REF] Zhang | PAWS: Paraphrase Adversaries from Word Scrambling[END_REF], using various methods: standard error analysis, "stress testing" models on adversarial generated or ltered examples, etc.

A concrete example: the cases of SNLI and MNLI

A famous example of such dataset biases can be found in the Stanford Natural Language Inference (SNLI) corpus [START_REF] Samuel | A large annotated corpus for learning natural language inference[END_REF] and also its multi-genre variant, the Multigenre Natural Language Inference (MNLI) corpus [START_REF] Williams | A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference[END_REF]. The Natural Language Inference task in NLP consists in predicting whether a premise text (e.g. "A soccer game with multiple males playing. ") logically entails a hypothesis text or not (e.g. "Some men are playing a sport. ", which is indeed entailed here, whereas "Some men are sleeping. " would be contradicting the premise).

To illustrate, here are three example instances from the SNLI test-set, one for each of the possible inference labels (entailment, contradiction, or neutral). As all three share the same premise sentence, it is only displayed once. We also add a short comment for each which more explicitly explains the label: : This hypothesis is more speci c than the premise, and is therefore not entailed by it, but it also does not contradict any of its elements. It is therefore neutral.

These large-scale datasets, which were annotated through crowdsourcing (discussed in more details in the dedicated paragraph of Section 2.4), using the Amazon Mechanical Turk platform, are very popular, and have been used to evaluate numerous models, as part of the famous GLUE benchmark [START_REF] Wang | GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding[END_REF] for example, and also to train NLP models. The well-known I S [START_REF] Conneau | Supervised Learning of Universal Sentence Representations from Natural Language Inference Data[END_REF] sentence-encoding architecture, for example, was pre-trained to classify the inference relation between pairs of premises and hypotheses from the SNLI corpus.

Unfortunately, a few years after these datasets were introduced, a number of unwanted statistical annotation artifacts were discovered in them. One would expect such tasks to require a relatively high level of Natural Language Understanding (NLU) capabilities, as the relation between the two sentences to be predicted involves both learning the ability to parse and understand each premise and hypothesis in and of itself, separately, but also learning how two such sentences may relate to each other, in a logical and semantic manner. Compared to just evaluating structural or grammatical similarity, this task requires a lot of implicit worldknowledge and commonsense. However, [START_REF] Mccoy | Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference[END_REF] showed for example that models trained on these datasets tend to pan in on makeshift heuristics, such as the amount of word overlap between the two sentences, which is evidently not a property that should be learned in order to perform proper natural language inference. Perhaps even worse, [START_REF] Gururangan | Annotation Artifacts in Natural Language Inference Data[END_REF] and [START_REF] Poliak | Hypothesis Only Baselines in Natural Language Inference[END_REF] both found that hypothesis-only models, that is, models that only look at the hypothesis sentences as part of their inputs, can correctly predict the labels of signi cant portions of those datasets, at least 67% of SNLI, and 53% of MNLI, according to [START_REF] Gururangan | Annotation Artifacts in Natural Language Inference Data[END_REF]. The main cause for this was attributed to the crowdsourcing process: indeed, for these datasets, crowd workers were tasked with generating three hypotheses sentences, one for each of the possible inference classes, given a premise sentence collected from image captions, which are thus often nominal sentences (with no verbs; e.g., premise example above). While the workers were not presented with the actual images, they were informed that the premises were sampled from image captions, which might have introduced some implicit biases towards writing hypotheses describing situations which may be more likely to nd as a caption for a picture. But more importantly, due to the nature of the crowdsourcing platform, in which workers are ultimately economically rewarded depending on the number of annotations they can produce per unit of time (over multiple annotation campaigns), a form of "least e ort"-bias appears to have tainted the produced premises: mainly, for the contradiction class, a "least e ort" strategy is to simply repeat the premise, with a minimum of one negation of an element added, which in English, can be done very easily in most situation by inserting the words "not" or "no" in the correct position. For instance, in the example shown above, a "least e ort" contradiction of the premise "People waiting in line in a snowstorm" may simply be "People not waiting in line in a snowstorm". Other similar single-word cues were found for each of the three classes, with varying importance, and were reported by [START_REF] Gururangan | Annotation Artifacts in Natural Language Inference Data[END_REF] and [START_REF] Poliak | Hypothesis Only Baselines in Natural Language Inference[END_REF] (see Table 1.2, adapted from Figure 3 in their publication), with a high degree of overlap, using similar methods.

The Need for Explanations

These two datasets, as such, perfectly exemplify the need for explainability in Natural Language Processing, if not in machine learning in general. In particular, the fact such spurious correlations were only detected years after these datasets were made available, and used as part of the training or evaluation of, at the time, state-of-the-art architectures, is quite worrying. Improving the variety of explainability methods available, as well as their ease of implementation and usage, should be paramount to ensuring that, ultimately, end-user-facing machine learning models do not rely on such undesirable biased shortcuts, which may lead to deceptively unfair or even dangerous algorithmic decisions.

While explainability methods may be used to detect these types of issues, other related approaches have been proposed to attempt to then x them, in various ways. For example, [START_REF] He | Unlearn Dataset Bias in Natural Language Inference by Fitting the Residual[END_REF] devise a method to train debiased models on these corpora: to do so, they rst train an intentionally biased model which mainly exploits unwanted shortcuts such as those detected in the contributions discussed above, more speci cally, by feeding it only incomplete information, as in the case of hypothesis-only models (see above). They then subsequently train a new model on the residuals of the previous one, that is, by down-sampling the instances which were con dently classi ed (with low loss function values) by previously obtained biased classi er, and which are thus likely to be biased and easy-to-learn themselves. Another way Chapter 2

Intrinsic Interpretability in NLP

In this rst part, we explore the speci cs of intrinsic interpretability in Natural Language Processing. Beginning with a discussion of interpretability is particularly important when dealing with natural language as inputs or outputs, because it is in and of itself a challenging information-carrying medium to tackle: indeed, language can be used in a wide variety of forms, a lot of which are intended to carry signi cant amounts of implicit information, for example, in poetry, humor, or ction. Even more "formal" uses of natural language, such as scienti c publications, technical or administrative reports, etc., require a signi cant amount of contextual information, the majority of which is often not present in the documents that are to be parsed, but implied to be already be a part of the reader or listener, usually referred to as commonsense or world-knowledge. While not exclusive to human text or speech, these properties are of particular importance in NLP because the phenomena we want to model, such as the sequential generation of language, referred to usually as language modeling, very strongly depend on them, perhaps more so than in other types of data. Tabular or categorical data mostly stand on their own, by de nition. Even a picture, though it would be more challenging, could have semantic information extracted from its internal, spatially-based correlations. But an arbitrary sentence, taken out of its surrounding explicit or implicit context, is mostly meaningless.

As such, we rst discuss interpretability and the challenges related to the representation of language in NLP.

Context and Problematics

The common rst step in digitally encoding any type of data, is to rst decompose it into smaller, individually meaningful parts. For initially continuous data types, such as signals, this step is usually referred to as quantization. This can be done in various more or less systematic ways: images are usually decomposed into equally-sized pixels, whereas audio may be similarly decomposed into discrete time-steps, or, if it contains human speech and this is what we actually wish to encode, into sequences of individual phonemes, the elementary semantic units of spoken language. Written text is no exception, however, deciding on an adequate decomposition scheme the outputs of which may then be used with machine learning models, happens to be quite di cult.

Elementary Semantic Units in Natural Language

One of the main conceptual di culties in NLP regarding explainability is the abstractness of the manipulated data. In machine learning for Computer Vision or audio processing for instance, the numeric quantities involved usually have a clear link to their respective modelled real-world systems: whether it is images or sounds, the processes to encode or decode them to and from their canonical digital representations, usually, multi-channel integer matrices or vectors, are well established and mostly transparent to use, which allows models that operate on these representations to exploit as little or as much information about the real-world as is necessary, often way beyond human sensing capabilities (in terms of modalities or sensor/data resolution). When generating explanations for these types of media, one can point at and relate to parts, or even individual components, of a digital representation in a meaningful way with regard to the real-world source of that representation: even though the encoding process is not perfectly reversible (mainly due to quantization and sensor limitations), if a particular patch of pixels was highlighted as an explanation for a particular decision in an image, one could reasonably associate it with a corresponding visual feature of the represented scene, and draw conclusions regarding which real-world features might have been the cause of that decision.

When modelling more abstract systems, like those stemming from human behavior, these encoding/decoding processes are much more di cult to derive in a way that is equally natural. In the case of written natural language, once typically digitized using some character encoding scheme, the rst available representation format for a piece of text is that of a sequence of symbols, which can be trivially converted to their corresponding integer ordinal code in the chosen character encoding table (such as the ASCII or Unicode standards). So-called characterlevel (or character-based) models are designed to function at this level of representation, and while not overall as popular as word or subword level models, they have been and remain actively explored [Zhang et al., 2015;[START_REF] Lee | Fully Character-Level Neural Machine Translation without Explicit Segmentation[END_REF][START_REF] Liang | Combining Word-Level and Character-Level Representations for Relation Classi cation of Informal Text[END_REF], even with more recent Transformer architectures [START_REF] Al-Rfou | Character-Level Language Modeling with Deeper Self-Attention[END_REF]El Boukkouri et al., 2020].

However, the same way it is di cult to refer to the semantics of a single decontextualized pixel in an image (in contrast to a patch of pixels corresponding to a particular visual object), characters dealt with as separate entities do not seem like the natural minimal semantic unit for human language, and indeed, the vast majority of models in NLP deal with input texts as sequences of word-tokens. The two conceptual approaches each have their pros and cons, mainly, dealing with characters directly bypasses the need to construct a xed word vocabulary, which is helpful when one has to work with a large number of terms (such as with domainspeci c languages, like medical terminology), at the cost of requiring a larger contextual window (in number of tokens) to attend to the same span of text compared to a word-based approach, which in practice limits the lengths of texts which can be handled comprehensively. Hybrid methods, based on subwords, attempt to compromise between these advantages and disadvantages, using, for example, the Byte Pair Encoding (BPE) scheme to construct e cient representations of frequent word pieces [Sennrich et al., 2016], which are for instance used in the popular GPT-n [START_REF] Radford | Improving Language Understanding by Generative Pre-Training[END_REF][START_REF] Radford | Language Models are Unsupervised Multitask Learners[END_REF][START_REF] Tom | Language Models are Few-Shot Learners[END_REF] series of models.

Whichever approach is selected to turn a piece of text into a sequence of tokens, these cannot be passed in directly as input into deep-learning models as they constitute categorical (non-numeric) features, and they thus have to be vectorized in some way rst. Fortunately, we can easily use a one-hot encoding scheme to turn a given sequence of tokens into a sequence of binary vectors, and this type of representation is often used when a token (or sequence of tokens) is to be outputted by a model, in so-called "Seq2seq" (lit. "sequence to sequence") approaches, such as machine translation, text summarization, etc. However, when considering the inputs of a model, this process has many disadvantages: rst, this type of encoding scheme is very ine cient and expensive dimensionality-wise, as the size of these vectors will grow linearly with the number of distinct possible tokens, which, while not necessarily too problematic with current available computing hardware, may still hinder proper learning due to the much larger input feature-space to explore. While one could in theory circumvent this issue by instead using an ordinal encoding scheme, this would require imposing an arbitrary ordering of the tokens along a single dimension, which is usually undesirable with categorical features, unless they happen to be naturally mappable onto a single axis in this way. Unlike vision, audio, or other numeric feature types, words (or any other type of linguistic token) generally cannot be naturally encoded into a vector space which preserves their original semantics completely, unfortunately (perhaps with the exception of linguistic numerals, like "two" mapping onto the integer value 2 for example).

Distributional Semantics and Word Embedding Models

One way this problem was solved, and which was one of the largest factor in enabling the rapid evolution of deep learning approaches for NLP, was through the development of methods based on distributional semantics, rst popularized by [START_REF] Zellig | Distributional Structure[END_REF] and [START_REF] Firth | A synopsis of linguistic theory[END_REF] as the hypothesis that one of the best and most fundamental way, absent any prior knowledge, to characterize a word is "by the company it keeps", in essence, by the contexts in which this word occurs in natural language. Based on this hypothesis, using statistical and probabilistic analysis of large text corpora, and, later on, dimensionality reduction techniques [START_REF] Bengio | A neural probabilistic language model[END_REF][START_REF] Bengio | Neural Probabilistic Language Models[END_REF], one can construct a dense latent semantic space, in which the words in a vocabulary are embedded as vectors whose positions re ect the captured distributional properties of the text corpus used. One big advantage of this approach is that it does not require any human-produced annotations or supervision of any kind, other than large quantities of reasonably varied natural language texts, which are easily available nowadays thanks to the massive amounts of content available on the internet.

Initially, this idea was implemented via global matrix factorization techniques (such as singular value decomposition), for example in the so-called latent semantic analysis (LSA) (also known as latent semantic indexing, or LSI, in the eld of information retrieval) [START_REF] Deerwester | Indexing by latent semantic analysis[END_REF]] method, which, when applied on collected context-term co-occurrence statistics (where the context can be other terms, or entire documents, which was the initial point of interest of the method, in the eld of information retrieval), could be used to construct a lowrank, thus in theory less sparse and de-noised, matrix approximation of those statistics. The produced vectors could then be used as numeric representations for their corresponding terms, with very interesting properties: indeed, the derived relatively low-dimensional (usually a few hundred dimensions) vector space, by construction, geometrically encodes the distributional hypothesis, such that terms which occur in similar contexts will have their corresponding vector representations appear "close" (usually, in terms of cosine similarity, as the magnitude of those vectors is more closely related to their a priori, uncontextualized probabilities, which is not of as much interest [START_REF] Levy | Improving Distributional Similarity with Lessons Learned from Word Embeddings[END_REF]) in the embedding space. This property can thus be immediately useful as a word similarity metric. It can also then later be extended as a document-level metric, by the weighted averaging of the relevant term-vectors.

However, in addition to this captured notion of similarity, it was later found that these constructed embedding spaces also geometrically encode various syntactic and semantic properties [START_REF] Mikolov | Linguistic Regularities in Continuous Space Word Representations[END_REF]: mainly, when looking at the representations of a pair of words related in some speci c way, for instance, pv apple , v apples q for a singular/plural-based relationship, or pv man , v woman q for gender-based relationship (where v word is the vector representation of "word"), if one takes the o set between the pair and transposes it onto another term-vector, the result often happens to be closest to the term-vector one would expect to nd if this o set somehow encoded the given relationship, e.g. here, we could expect to nd that v apples ´vapple `vcar « v cars or v woman ´vman `vking « v queen . The reasons behind such linear relations appearing in spaces produced by non-linear methods, and why these allow these kinds of analogical structures ("A is to B what C is D") to be encoded as such, was explored by [START_REF] Arora | A Latent Variable Model Approach to PMI-based Word Embeddings[END_REF], by modelling natural language corpora production as a generative process involving a random walk over a "discourse" space, which informs what types of word are likely to be generated at each timestep. The fact that such details can be captured in the dimensions of these embedding matrices means that downstream neural models can exploit these representations through di erent relatively simple computations (in terms of non-linearity requirements in particular) to extract rich types of semantic or syntactic information. For example, [START_REF] Kober | One Representation per Word -Does it make Sense for Composition[END_REF] show that even when polysemic and context-dependent terms only have a single vector representation, it is nonetheless possible to disambiguate their senses contextually through simple vector composition operations (such as pointwise addition), which can be easily learned by most neural architectures. [START_REF] Arora | A Simple but Tough-to-Beat Baseline for Sentence Embeddings[END_REF] show similar results on di erent tasks and datasets, by using a weighted average of word representations to construct sentence embeddings, to achieve quite decent performance at very little additional costs. [START_REF] Arora | Linear Algebraic Structure of Word Senses, with Applications to Polysemy[END_REF], on the other hand, demonstrate that polysemous term-vectors can be disambiguated in and of themselves, as they seemingly are linearly composed of multiple sense component vectors, which can be recovered more or less successfully through sparse coding.

Later on, with the advances in and revival of neural network models, e cient implementations of these henceforth called word embedding approaches for very large corpora became possible [START_REF] Morin | Hierarchical Probabilistic Neural Network Language Model[END_REF]Mnih and Hinton, 2009], and in 2013 at Google, Mikolov et al. [2013a;2013b] introduced the now-famous 2 model, with its two encoder-decoder architecture variants (see Figure 2.1): CBOW (Continuous Bag-Of-Words), in which a neural model is trained to predict a word given a surrounding window (usually of size 5, i.e. two words on each side) of context words as input, and skip-gram, in which the model is trained with the opposite objective. In both variants, once trained on large quantities of text, one of (or potentially, both, combined in some fashion, such as averaging) the learned parameters matrices is saved and then used as the output word embedding matrix. While the architectures and implementations for these neural models is fundamentally di erent from the earlier global matrix factorization techniques, Levy and Goldberg [2014] have shown that they in theory e ectively optimize very similar objectives, and each method only really di ers by its choice of defaults for a set of (potentially implicitly de ned) hyperparameters. After the introduction of this model almost a decade ago, many variants and improvements were proposed and explored, whether they be combinations of global statistics factorization techniques with neural local context-window-based approaches, as found in the G V [Pennington et al., 2014] model, or later on attempts to further enable term disambiguation using a context-aware model, such as ELM [START_REF] Peters | Deep Contextualized Word Representations[END_REF]. The general idea was also expanded to construct vector representations for other types of linguistic semantic units, such as subwords or character n-grams, to allow word embedding models to handle out-of-vocabulary tokens by composing already encoded subword components, as shown in the T model [START_REF] Bojanowski | Enriching Word Vectors with Subword Information[END_REF] for instance. In the other direction, di erent approaches were proposed to encode and vectorize entire sentences through similar means (predicting context sentences given a particular sentence, or vice versa), producing general-purpose sentence embeddings, such as with the S T [START_REF] Zhu | Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books[END_REF] or I S [START_REF] Conneau | Supervised Learning of Universal Sentence Representations from Natural Language Inference Data[END_REF]] models, and later on with the various Transformer-based approaches like BERT or GPT.

Lack of Interpretability

While these approaches have enabled state-of-the-art results in many NLP tasks by providing e cient and easy to exploit numeric representations for words, subwords, or whole sentences, one big limitation is the lack of human interpretability of those vectors: in contrast to a vectorized picture, usually encoded as a 3-channel integer matrix, where each 3-tuple component can be interpreted as the tricolor value of the corresponding pixel in the image, the values in the dimensions of a word embedding vector usually have no discernible independent meaning to them. Indeed, in these traditional construction processes, no additional structural constraints are applied to the produced embedding space (other than very often a normalization of the word embedding vectors [START_REF] Levy | Improving Distributional Similarity with Lessons Learned from Word Embeddings[END_REF]), and e ectively, the vector representations in most dense approaches can be freely unitary-rotated without losing their e ectiveness as inputs in downstream neural models. This poses an issue with regard to explainability and interpretability in NLP models which make use of these types of representations, as this would limit the use and capabilities of explanation methods, in the sense that explanations referring to individual components of vectorized inputs, as they are what a model's internals ultimately manipulate, would be more or less meaningless: word embedding vectors would most likely have to be considered atomic and opaque components of an input sentence, for the purpose of Table 2.1: Illustration of the non-interpretability of dense word embedding models: for three well-known models, we display the top-6 words with the largest values in the top-3 most active dimensions for each of three arbitrary words ("science", "car", and "teacher"). As can be qualitatively observed, it is practically impossible to determine any lexical correlations between the most active words of a dimension. input feature attribution, or local perturbation methods.

To illustrate this lack of intrinsic interpretability in common dense word embedding models, we can look at "active" dimensions for particular words, that is, the dimensions with the largest values (positive, though negative factors could be looked at too, but it would yield similar results) in the corresponding vector representation. Each of these dimensions can then be characterized by the most active words in them, which, similarly, are the words whose vectors have the largest values in these dimensions. As we can clearly see in Table 2.1, this type of analysis reveals there is little to no interpretable meaning to individual dimensions in these types of embedding models.

Ideally, it would be useful to nd a basis for these embedding spaces, such that each dimension is intrinsically meaningful for the purpose of human analysis, while preserving the geometric properties which make these representations e ective at downstream NLP tasks.

We will now see how a signi cant amount of work has been done to attempt to achieve this goal of obtaining more interpretable word embeddings.

Interpretable Embedding Models

To achieve better interpretability in vectorized word representations, di erent approaches have been explored, which can be roughly divided into two classes: constraint-based embedding models, and models enriched with prior information.

The latter essentially consists in attempting to inject a priori semantic information into the embedding models to improve their interpretability. For example, Hurtado Bodell et al. [2019] attempt to use information priors in the form of word vocabulary pairs displaying a particular semantic relationship (e.g. tman, brother, kingu and twoman, sister, queenu, for a gender-based relationship), to restrict and guide the learning model such that a given speci ed dimension discriminates (more or less strictly) these words along its axis. With this type of approach, one can carefully control and handcraft speci c meaningful dimensions, while still leaving the models enough degrees of freedom to learn e cient representations. However, that is also a limitation in that it is necessary to construct these vocabularies for each semantic relationship desired, which may have a high annotation cost. Somewhat similarly, [START_REF] Fyshe | A Compositional and Interpretable Semantic Space[END_REF] modify the scheme proposed in the NNSE [START_REF] Murphy | Learning E ective and Interpretable Semantic Models using Non-Negative Sparse Embedding[END_REF] approach (which we will discuss more in detail later on), by adding a term to the objective function which enforces a certain vector representation compositionality with regards to annotated phrases (in this case, adjective-noun or noun-noun pairs), extracted from dependency parsing features found in an earlier study on semantic composition of vectors [START_REF] Fyshe | Documents and Dependencies: An Exploration of Vector Space Models for Semantic Composition[END_REF]. The latter study also provides an evaluation task based on brain activity measurements in participants reading these phrases, a type of external data which, in [START_REF] Fyshe | Interpretable Semantic Vectors from a Joint Model of Brain-and Text-Based Meaning[END_REF], is used to create a joint model (with the same starting word embedding approach, NNSE), thus combining two di erent data modalities to attempt to constraint and improve the interpretability of word representations.

The approaches on which we've focused on here however are of the rst variety, constraintbased interpretable embeddings, as they seem to be the most well-studied and are used as a conceptual basis or starting point for numerous approaches of the second class. The main two constraints which are employed by these approaches to enhance interpretability are sparsity and non-negativity. Indeed, a wide range of contributions [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF][START_REF] Fyshe | Interpretable Semantic Vectors from a Joint Model of Brain-and Text-Based Meaning[END_REF][START_REF] Faruqui | Sparse Overcomplete Word Vector Representations[END_REF][START_REF] Dahiya | Discovering response-eliciting factors in social question answering: A reddit inspired study[END_REF][START_REF] Trifonov | Learning and Evaluating Sparse Interpretable Sentence Embeddings[END_REF][START_REF] Subramanian | SPINE: SParse Interpretable Neural Embeddings[END_REF] have shown that these two properties are essential to produce distributional models where each dimension is independently semantically meaningful. Sparsity of the representations, that is, an upper-bound constraint on the number of non-zero (or occasionally relaxed up to a threshold above zero) dimensions for each word in the model's vocabulary, is desirable for many reasons: rst of all, experiments and evaluations have shown [START_REF] Mcrae | Semantic feature production norms for a large set of living and nonliving things[END_REF][START_REF] Murphy | Learning E ective and Interpretable Semantic Models using Non-Negative Sparse Embedding[END_REF][START_REF] Fyshe | Interpretable Semantic Vectors from a Joint Model of Brain-and Text-Based Meaning[END_REF] that humans have a preference towards describing objects and concepts with a few speci c and strongly related words, rather than numerous but more weakly related associations. Similarly, models exploiting such constrained representations may bene t from this sparsity: indeed, for many NLP tasks, only a limited set of semantic features are actually relevant, for example, in sentiment analysis, while the semantics of an entire sentence may require a contextualized understanding of its constituting terms, in theory only their sentiment value should be taken into account, in the spirit of the task. Equivalently, this may also help produce less biased models, as there are properties of words which should ideally not be taken into account, say, gender, when performing tasks which do not in theory require them. Sparsity also lends itself to easier exhaustive analysis of the relevant components of an input, for the purpose of explanation methods. On the other hand, non-negativity is mainly useful as it allows to reason about the non-zero components of a representation as a degree of "participation" of di erent parts, in this case, abstract senses, in the whole object that is the word in question. Many have argued [Lee andSeung, 2001, 1999;[START_REF] Hoyer | Non-negative sparse coding[END_REF] that allowing di erent features of an object to cancel out through subtraction is generally undesirable, and indeed, when dealing with words, it is di cult to imagine what a negative value for a particular semantic component could mean, in addition to con icting with the naturally intuitive process of constructive description which we mentally and verbally employ for most abstract objects.

Such constraints can be applied to word embedding approaches in essentially two di erent ways: either by starting from scratch and modifying or creating a new encoding process which includes these constraints in some fashion, or, by starting from an existing (usually dense) word embedding model, and transforming its vectors a posteriori, such that they acquire the desired properties, through matrix factorization or basis rotation, for example. In the next two sub-sections, we present and discuss di erent such approaches which can be found in the relevant literature, with varying levels of complexity, and which have experimented upon here. We also include our own very simple baseline model (NMF300), which illustrates how even just using non-negative matrix factorization techniques can already yield decent interpretable embeddings.

A Priori Constrained Interpretable Embeddings

These rst type of approaches rely on a construction method which implicitly or explicitly imposes these constraints, sparsity and/or non-negativity (ideally both), on the produced embedding space. One relatively simple way to achieve this is by using non-negative matrix factorization (NMF) techniques, in a setup otherwise similar to the global matrix factorization approaches as can be found in LSA (see 2.1.2), that is, by applying this factorization on termcontext co-occurrences statistics, collected on large text corpora. Thanks to the work by Lee and Seung [1996;[START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF]2001] on these techniques, e cient algorithms exist to compute such factorizations, using multiplicative update rules which come in two variants, one minimizing the conventional least squares error, and the other the Kullback-Leibler divergence metric, with both having been proven to converge. Di erent approaches found in the literature use these objective functions as a basis, usually adding some additional term or terms to strengthen or enforce additional constraints on top of the explicit non-negativity and implicit sparsity, but, as we have experimented with our own basic model, NMF300 (which is discussed in more details in Section 3.1), these are not necessarily required to attain interpretable dimensions in the resulting embedding matrix.

N

: For reasons of consistency, we have adapted the formulation of each objective function so that they make use of the same notation, when possible. In the following, X P R V ˆC represents input statistical observation data, usually, the termcontext co-occurrence matrix computed on the model's training corpus, where V is the size of the model's vocabulary and C is the number of context features considered for the co-occurrences statistics. W P R V ˆd ě0 is the resulting sparse non-negative word embedding matrix, where d is the chosen embedding dimension size (usually 300, if not otherwise speci ed), H P R dˆC the second part of the factorization of X, often called the "dictionary" or basis matrix, when applicable, or some other learned parameter (usually discarded at the end either way, as W is intended to be used alone as the output embedding matrix). For any matrix A, A i,j corresponds to a single element, and A i,: and A :,j to its i-th row and its j-th column as a whole, respectively. Thus, the word embedding vector for the i-th word in the vocabulary will be found in W i,: . }A} F is the Frobenius norm of A : }A} F " b p ř i,j |A i,j | 2 q. b and c are respectively the element-wise product and element-wise division operators.

To qualitatively compare these interpretable approaches , both with each other as well as against the more traditional dense models discussed before, Table 2.2 showcases the most active dimensions for various words, similar to Table 2.1 (see Section 2.1.3).

NNSC:

While not speci cally intended to be used in NLP, Non-Negative Sparse Coding (NNSC) [START_REF] Hoyer | Non-negative sparse coding[END_REF] was one of the rst methods proposed which explicitly attempts to enforce both non-negativity and sparsity in the produced representations, by using non-negative matrix factorization under some additional constraints. The author proposes the following objective function, C X pW, Hq, for the factorization1 :

arg min W,H C X pW, Hq " 1 2 }X ´HW } 2 F `λ ÿ i,j W i,j
under the non-negativity constraints applied to both matrices @i, j : W i,j ě 0, H i,j ě 0, as well as the unit rescaling constraints applied to the columns of H, @j : }H :,j } 2 " 1, and where λ is an positive hyperparameter controlling the trade-o between the accuracy of the factorization and the sparsity of the output embedding matrix W . The rescaling constraint is necessary to ensure the second term of the objective, which enforces the sparsity of W , does not lead to the uncontrolled scaling up of H and scaling down of W by the factorization algorithm to minimize the objective further and further. The algorithm used to minimize this objective is inspired by the iterative multiplicative update rules from [START_REF] Lee | Algorithms for Non-negative Matrix Factorization[END_REF] for the least squares error metric, with mainly one signi cant variation. Where both W and H could be updated with the following iterative update rules under the sole non-negativity constraint (where Ð is the "update" operator):

W Ð W b pXH J q c pW HH J q H Ð H b pW J Xq c pW J W Hq
these cannot be used as is alongside the unit rescaling constraint introduced above. To solve this issue, the author proposes modifying the update steps for the H matrix (on which the constraint is applied) into a projected gradient descent setup, where the following free descent step is rst applied (where H 1 is a temporary variable, and α the gradient descent step-size):

H 1 Ð H ´αpHW ´XqW J
followed by a negative-clipping and a column-rescaling steps on H 1 , before nally setting H Ð H 1 to continue with the multiplicative update of W as usual. The author experimented with this approach on image data, showing that while a purely NMF-based method can successfully and e ciently extract the base features of arti cially generated instances, the addition of the sparsity constraint appears to enable overall more e cient representations as well as adding more robustness when the embedding space is overcomplete (when d, the chosen dimensionality for the output vector representations is larger than is necessary to encode all the given data).

NNSE: Inspired by the NNSC approach, [START_REF] Murphy | Learning E ective and Interpretable Semantic Models using Non-Negative Sparse Embedding[END_REF] proposed the Non-Negative Sparse Embedding (NNSE) model2 for NLP, with a slightly di erent objective function:

arg min W,H C X pW, Hq " V ÿ i"1 p}X i,: ´Wi,: ˆH} 2 F `λ}W i,: } 1 q
under the single non-negativity constraint @i, j : W i,j ě 0 (di erent from NNSC), and the soft unit rescaling constraint @i : }H i,: } 2 ď 1. Similar to NNSC, this training objective is convex when doing alternating update steps on W and H while keeping the other matrix xed, and the authors use the online dictionary learning algorithm presented in [START_REF] Mairal | Online Learning for Matrix Factorization and Sparse Coding[END_REF] to optimize it. NNSE embeddings were computed on dependency parsing statistics extracted from a large English web-corpus, the ClueWeb09 [START_REF] Callan | Clueweb09 data set[END_REF] dataset3 , of which 16 billion words and 10 million documents were used, with a vocabulary size of V " 40 000 (35 560 after frequency cuto and positive pointwise mutual information ltering), and a feature size of C " 2 000, resulting from the concatenation of two 1 000 dimensional singular value decomposition (SVD) matrix factorizations on both term-term co-occurrence counts and term-document co-occurrence counts, which was intended as a way to simplify the complexity of the optimization problem, by pre ltering some of the noise in the data.

W 2S

: [START_REF] Panigrahi | Word2Sense: Sparse Interpretable Word Embeddings[END_REF] have proposed Word2Sense (lit. "word to sense"), an LDA-based (Latent Dirichlet Allocation) interpretable word embedding method. Contrary to the previous methods, based on non-negative matrix factorization, in this approach, the term-term co-occurrence matrix is assumed to follow a generative model (similar to [START_REF] Arora | A Latent Variable Model Approach to PMI-based Word Embeddings[END_REF]), where a sense model is inferred (in a somewhat similar fashion to topic modelling), as a set of d 1 Dirichlet distributions over the words which can appear in the context window of any given word. Any word can then itself be encoded as a sparse d-dimensional Dirichlet distribution over these learned senses. Because this method was found to be prone to returning a large number (d 1) of redundant senses (and thus leading to a large d number of nal dimensions for the produced embeddings), a merging step is applied, using the Jensen-Shannon (JS) divergence metric (D JS pP ||Qq " 1 2 D KL pP ||M q `1 2 D KL pQ||M q, where M " 1 2 pP `Qq and D KL pP ||Qq " ř x P pxqlogp P pxq Qpxq q is the Kullback-Leibler divergence) applied on each pair of sense-distributions to drive an agglomerative clustering algorithm. Starting from an initial d 1 " 3 000 senses, the authors nd that merging a quarter of the most redundant senses was optimal, resulting in a nal embedding dimension size of d " 2 250. The original model is trained on 3.5 billion words from the UKWAC [START_REF] Ferraresi | Introducing and evaluating ukWaC, a very large web-derived corpus of English[END_REF] and Wackypedia [START_REF] Baroni | The WaCky wide web: A collection of very large linguistically processed web-crawled corpora[END_REF]] corpora4 , with a vocabulary of 255 434 words.

A Posteriori Constrained Interpretable Embeddings

In this second type of approach, instead of starting from scratch from text corpora statistics, a method is used to transform an existing dense word embedding matrix into a non-negative and/or sparser form, in order to increase its interpretability.

One way to achieve this is to consider this task to be a basis rotation problem: for instance, [START_REF] Park | Rotated Word Vector Representations and their Interpretability[END_REF] propose using an algorithm from the Exploratory Factor Analysis literature, which attempts to minimize the given embedding matrix's row and column complexity (leading to fewer large values appearing in each row or column) to induce better interpretability without fundamentally modifying the structure of the embedding space, which preserves its exploitable geometric features. Similarly, Dufter and Schütze [2019] explore di erent rotation methods, such as linear SVMs and variations of the D algorithm introduced by [START_REF] Rothe | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF], in order to impose correlations between chosen linguistic features and a portion of the embedding matrices' dimensions. While these rotation-based approaches o er multiple advantages, they also more strongly rely on the quality of the initial dense embedding vectors to produce good representations, as the transformations (and therefore constraints) they apply on them is by-design more limited. Some other methods have been proposed which do not follow these restrictions, and which can therefore modify the structure of the starting space as needed to better enforce new constraints on it.

SPOWV: [START_REF] Faruqui | Sparse Overcomplete Word Vector Representations[END_REF] have proposed the Sparse Overcomplete Word Vector (SPOWV) Representations method, based on sparse coding, akin to NNSC and its variants, but applied to existing dense word vectors instead of corpora statistics, with the following objective function (in which, as such, x refers to a dense embedding matrix of size V ˆC):

arg min W,H C X pW, Hq " V ÿ i"1 p}X i,: ´Wi,: ˆH} 2 F `λ}W i,: } 1 `τ }H} 2 F q
where λ and τ respectively control the l 1 -norm sparsity constraint on W and the l 2 -norm soft bounding constraint on H. Unlike the previous methods, this method uses a specialized variant of online adaptive gradient descent (A G) [START_REF] Duchi | CharacterBERT: Reconciling ELMo and BERT for Word-Level Open-Vocabulary Representations From Characters[END_REF], speci cally adapted to handle the l 1 regularization term [Xiao, 2009], while also clipping the negative terms in W to 0 to enforce non-negativity. The authors experiment both with adding or removing the non-negativity constraint, as well as with the binarization of the non-negative embedding vectors. Binarization is argued to even further increase the interpretability of the word vectors, though at the cost of an even higher loss in information density. To partially combat this, the constructed representations are so-called overcomplete, because the size (d) of the output vectors are intended to be signi cantly larger than the input embeddings' dimension (C), to account for the information capacity loss due to the various constraints applied. In the original publication, the authors nd that a 10-fold increase is the most e ective (that is, starting from C " 300 wide dense vectors, ending with d " 3 000 wide sparse vectors), when experimenting with G V or 2 initial embeddings.

SPINE: [START_REF] Subramanian | SPINE: SParse Interpretable Neural Embeddings[END_REF] introduced the Sparse Interpretable Neural Embeddings (SPINE) model, based on denoising k-sparse auto-encoders (AE) which, similarly to SPOWV, are applied to existing dense vectors from methods like G V or 2 , trained with a three-part objective function:

arg min W,H C X pW, Hq " 1 V V ÿ i"1 ´}X i,: ´Dec `EncpX i,: q ˘}2 F loooooooooooooooooooomoooooooooooooooooooon RL `λ1 d ÿ h"1 max ˜0, ´1 V V ÿ i"1 EncpX i,: q :,h ¯´ρ ¸2 loooooooooooooooooooooooooomoooooooooooooooooooooooooon ASL `λ2 1 m V ÿ i"1 d ÿ h"1
´EncpX i,: q :,h ˆ`1 ´EncpX i,: q :,h ˘looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon PSL where EncpX i,: q " f pX i,: ˆPe `be q (where f is the activation function of the encoder, discussed later) and DecpZ i,: q " Z i,: ˆPd `bd are respectively the encoding and decoding functions of the auto-encoder, with P e P R Cˆd , b e P R 1ˆd , P d P R dˆC , b d P R 1ˆC respectively the parameters and biases of the encoder and decoder, and λ 1 , λ 2 , ρ respectively the hyperparameters controlling the Average Sparsity Loss (ASL) term, the Partial Sparsity Loss (PSL) term, and the desired sparsity factor for the columns (h P 1..d) of the encoded vectors. The Reconstruction Loss (RL) term is similar to those seen previously, except the matrix factorization has been replaced with the neural encoder-decoder model. At the end of the training, the output sparse interpretable vectors are found by running the trained encoder module on the input dense vectors, W i,: " EncpX i,: q. The Average Sparsity Loss (ASL) term pushes each dimension (column) in the output representations towards a ρ sparsity factor (or lower). However, alone, this term is not enough to enforce sparsity in the embedding dimensions, as it is only concerned with the averages of the columns (which might thus all take low, but non-zero values), so, in order to further push the close-to-zero values further towards zero, and at the same time attempt to produce a "soft" binarization (by equivalently pushing the higher values towards 1), the Partial Sparsity Loss (PSL) term is added. To enforce a non-negativity constraint within this approach, one only needs to select an appropriate positive activation function f , such as a Recti ed Linear Unit `ReLUpxq " maxp0, xq ˘or sigmoid/logistic function `Spxq " p1 `e´x q ´1˘.

The authors however discard the latter option (because of its asymptotic nature towards 0 values), and propose a variant to the former, capped ReLU `cap-ReLUpxq " maxp0, minpx, 1qq ˘, to further

Evaluating Interpretability

While a purely qualitative analysis of the active words in the dimensions of such interpretable embedding models is su cient to showcase their di erences compared to dense models (see Table 2.1 andTable 2.2), a more quantitative and methodical evaluation of their practical interpretability is necessary, in particular to compare these models to each other. One of the main desiderata for such interpretable representations concerns the discriminative power of their associated embedding spaces' dimensions: as each of these dimensions seems to encode a particular semantic attribute or class of the terms in the model's vocabulary, it would be desirable if any given single dimension could clearly be used to discriminate between terms where this dimension is active and those where it is not.

One way this property can be comparatively evaluated is through the Word Intrusion Detection task, rst introduced by Chang et al. [2009], and which can be summarized as such: for a given dimension of a non-negative sparse embedding model, we can select a small shu ed sample of words (4 or 5, for example) which are all highly active in this particular dimension. These should thus share at least one semantic commonality, associated with the dimension being studied. If one then selects and randomly inserts into this sample an "intruder" word, which is comparatively not active in this dimension, can a human evaluator accurately identify this intruder, given no other information than the list of words? This task initially designed to examine the semantic coherence of topics discovered by latent semantic analysis and other topic modeling methods, and as word embedding models, especially the interpretable ones, are conceptually quite similar to these approaches, this type of evaluation ts the problem well, so much so that it has seemingly become the de facto standard method over the years [START_REF] Murphy | Learning E ective and Interpretable Semantic Models using Non-Negative Sparse Embedding[END_REF][START_REF] Fyshe | Interpretable Semantic Vectors from a Joint Model of Brain-and Text-Based Meaning[END_REF][START_REF] Faruqui | Sparse Overcomplete Word Vector Representations[END_REF][START_REF] Subramanian | SPINE: SParse Interpretable Neural Embeddings[END_REF]. Usually, the intruder is drawn from the bottom b% of the words sorted by their corresponding vector's value in the given dimension, and also in the top t% words in another di erent dimension (presumably to avoid picking overall "low activations" words, which usually correspond to stop-words or equivalents, such as "the", "of", "a", etc.). [START_REF] Subramanian | SPINE: SParse Interpretable Neural Embeddings[END_REF] for example suggest picking b " 50% and t " 10%.

Downstream performance Evaluation

Outside of evaluating the interpretability of these models, it is also necessary to ensure they still perform adequately compared to their denser alternatives when used as part of standard NLP tasks and architectures. Due to their popularity, few linguistic tasks have not yet seen a number of neural models being proposed and evaluated to solve them, and most of these models use some type of word embedding representations as part of the processes to encode their inputs. In particular, many tasks fall into the sequence classi cation template, where each instance is composed of one or multiple pieces of input text, associated to one (or more rarely, multiple) categorical output label(s). Fit into this template (non-exhaustively): sentiment analysis, topic labeling, email spam or hate speech detection, closed-ended question answering, relation classi cation, etc. In essence, any categorical property or relationship which can be associated (manually or automatically) with one or multiple pieces of text may constitute a sequence classi cation task, as long as enough data can be collected and labelled appropriately. The principal advantage of using such downstream tasks to evaluate the performance of a given interpretable word embedding model is that their particular properties, mainly sparsity and non-negativity, should in theory not only not be detrimental (depending on how much information loss has been traded o in the constraints enforcing process, of course), but may enable simpler models to more easily nd exploitable correlations between semantic or lexical features and the tasks' labels, as those will be represented in individual dimensions of the input vectors, most likely in the form of sets of sparse linear combinations of speci c dimensions.

We now succinctly present a few such tasks, with their accompanying datasets, from the relevant literature.

B

Q: Introduced by [START_REF] Clark | BoolQ: Exploring the Surprising Di culty of Natural Yes/No Questions[END_REF], BoolQ (for "Boolean Questions") is a yes/no question answering (QA) dataset, with the speci city that these questions are so-called "naturally occurring", meaning that they were collected in an unprompted fashion, in this case, from anonymized Google search engine queries: rst, aggregated queries which have been heuristically identi ed to be candidate yes/no questions are gathered, then, for each query which returns a relevant Wikipedia article within the 5 rst results, a human annotator is tasked with nding a short passage (on average, around 100 words) in the linked article which contains enough information to correctly answer the question, according to the gold answer which they also annotate. This pipeline is inspired by the one used for the Natural Questions [START_REF] Kwiatkowski | Natural Questions: A Benchmark for Question Answering Research[END_REF] benchmark dataset, which BoolQ incorporates " 3 000 yes/no questions and passages from, for a total of " 16 000 instances, split into a " 9 400 train set, and both " 3 200 development set and test set (the latter being not available at this time, unfortunately). The authors consider this task to be unexpectedly challenging, despite the boolean answers, as they require looking for potentially complex information in the accompanying passage with regards to the question, which is akin to the skill-levels required for Textual Entailment (TE, or Natural Language Inference, NLI) tasks, which the authors empirically con rm by showing that transfer learning from TE-trained models leads to better performance than starting from models trained on paraphrase or extractive question answering tasks.

E

: [START_REF] Ferreira | Emergent: A novel data-set for stance classi cation[END_REF] propose the Emergent dataset for stance classi cation, in which the task is to classify the journalistic stance with regards to a claim sentence, from articles' headlines related to the claim, in which each article can be labelled either for, against, or simply observing (repeating without taking a position) the claim. This dataset contains 300 claims and 2 595 associated news articles, from the homonymous news rumor-debunking Emergent Project [START_REF] Silverman | Lies, Damn Lies and Viral Content[END_REF], created and annotated by journalists as part of their work. This type of task and data is of particular interest nowadays, with the recent concerns and upsurge of so-called "fake news", making apparent the need for better fact-checking tools and services, which automation in the form of machine-learning may help to provide in a scalable fashion.

IMDB: [START_REF] Maas | Learning Word Vectors for Sentiment Analysis[END_REF] make available a dataset for sentiment analysis, consisting of collected user movie reviews from the popular Internet Movie Database website (often abbreviated to IMDb or IMDB), with binary sentiment labels ("positive" or "negative") automatically mapped from the user-given review scores (on a 10 "stars" scale, with the following mapping: score ď 4 Ñ negative; score ě 7 Ñ positive; "neutral" reviews are not included).

SST:

The Stanford Sentiment Treebank dataset [START_REF] Socher | Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank[END_REF] is one of the few fully labelled large-scale parse trees corpus for sentiment analysis, based on the movie reviews dataset from Pang and [START_REF] Sinno | Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales[END_REF] and parsed by the Stanford Parser [START_REF] Klein | Attention Is (not) All You Need for Commonsense Reasoning[END_REF]: it contains 11 855 single sentences, which are broken down into a total of 215 154 unique phrases constituted into parse trees, which have all been annotated by 3 human judges into one of ve polarity classes ("very negative", "negative", "neutral", "positive", "very positive"). This level of ne-grained annotation is necessary to study the compositional aspects of natural language, in this case, sentiment polarity. To handle this type of structured data, the authors propose the Recursive Neural Tensor Network (RNTN) architecture, which improves upon the Recursive Neural Network [START_REF] Goller | Learning task-dependent distributed representations by backpropagation through structure[END_REF][START_REF] Socher | Parsing natural scenes and natural language with recursive neural networks[END_REF] (not to be confused with Recurrent Neural Networks) and Matrix-Vector Recursive Neural Network [START_REF] Socher | Semantic Compositionality through Recursive Matrix-Vector Spaces[END_REF] architectures, by implementing a learnable tensor-based recursive composition operation, allowing the model to compute the representations for higher-level elements in the hierarchical parse-trees from lower-level elements.

S

: [START_REF] Oraby | Creating and Characterizing a Diverse Corpus of Sarcasm in Dialogue[END_REF] provide the Sarcasm dataset, constituted of internet forum posts from the Internet Argument Corpus (IAC) 2.0 [START_REF] Abbott | Internet Argument Corpus 2.0: An SQL schema for Dialogic Social Media and the Corpora to go with it[END_REF], which have been annotated for the presence of sarcasm (as well as the more speci c class of sarcasm, mainly either generic sarcasm, rhetorical questions, or hyperbole), in parts automatically, using the AutoSlog-TS [Rilo , 1996] weakly-supervised lexico-syntaxic pattern-learner model to identify the more accurately non-sarcastic instances, with the remainder of them being manually annotated by workers on the crowdsourcing platform Amazon Mechanical Turk. As sarcasm is noted to be a somewhat uncommon occurrence in online debates (estimated to represent approximately 12% of the IAC [START_REF] Walker | A Corpus for Research on Deliberation and Debate[END_REF]), the authors choose a conservative 20% ratio for the sarcastic class, representing a 6 out of 9 annotator agreement threshold, resulting in a total of 3 260 labelled posts for each class (sarcastic, non-sarcastic).

UR FUNNY:

The UR-FUNNY dataset [START_REF] Kamrul Hasan | UR-FUNNY: A Multimodal Language Dataset for Understanding Humor[END_REF] is a multimodal humor detection (more precisely, punchline detection) dataset, incorporating textual, visual and acoustic modalities, extracted from publically available TED talks videos, which are remarked to be an excellent source of data for this type of task in particular for multiple reasons: indeed, not only do these digital talks include very reliably transcriptions, allowing for accurate audio-text alignment, but these also contain annotated audience markers which re ect the behavior of the audience, in particular, laughter, which is here used to detect potential punchlines and their preceding setup/context (inspired by [START_REF] Chen | Predicting Audience's Laughter During Presentations Using Convolutional Neural Network[END_REF]). For the negative class instances, the authors simply sample an equivalent number of random video, audio and transcript intervals which are not immediately followed by an audience laughter marker, resulting in a balanced dataset containing 8 8257 multimodal ppunchline, context, labelq instances for each class (humorous, non-humorous), spanning over 1 741 speakers, 1 866 videos and 417 topics.

SNLI: [START_REF] Samuel | A large annotated corpus for learning natural language inference[END_REF] provide the Stanford Natural Language Inference corpus for the Natural Language Inference (NLI) task, often interchangeably referred to as Recognizing Textual Entailment [START_REF] Poliak | A survey on Recognizing Textual Entailment as an NLP Evaluation[END_REF]. This task consists in predicting whether a hypothesis sentence (e.g. "There are children present. ") logically and semantically follows from a premise sentence (e.g. "Children are smiling and waving at a camera."), with three possible classes of relationships to predict: entailment, if the hypothesis follows from the premise (which is the case for the given examples previously); contradiction, if the hypothesis contradicts the premise; neutral, if the hypothesis does not relate directly to the premise. This type of task is considered particularly di cult, as it not only requires understanding the semantics of the two propositions separately (which often require some level of commonsense or world-knowledge), but it also requires abstract logical reasoning skills to assess the nature of the inference relationship between them. The data for this very large corpus (" 570 000 instances) originates from the Flickr30k corpus [START_REF] Young | From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions[END_REF], which contains " 160 000 image captions (spanning over " 30 000 images), which were used as starting premise sentences. These were then manually augmented by workers on the crowdsourcing platform Amazon Mechanical Turk, who were tasked with writing three alternative hypotheses captions for each given premise caption, appropriately for each of the inference classes (entailment, contradiction, neutral), without being shown the actual picture associated with the premise caption (which may have caused the workers to unintentionally exploit non-textual information to craft the hypotheses, see Section 1.2.1). This dataset, and its multi-genre variant, MNLI [START_REF] Williams | A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference[END_REF], were found later on to be tainted with many annotation biases, as discussed previously in Section 1.2.1.

PDTB:

The Penn Discourse TreeBank [START_REF] Prasad | The Penn Discourse TreeBank 2.0[END_REF] is built upon the same data as the Penn TreeBank corpus [START_REF] Marcus | Building a Large Annotated Corpus of English: The Penn Treebank[END_REF], and constitutes a large-scale dataset manually annotated for discourse relations, on texts collected from the Wall Street Journal (WSJ) corpus. Discourse relations (also known as rhetorical relations), attempt to more or less formally characterize the textual relations between two (usually adjacent) segments of a discourse. These relations can either be realized explicitly, through some type of linking word or phrase, most often conjunctions (and, or, because, when, although, etc.), in which case the second argument of the relation is usually a syntactic dependent clause of the rst, or, they can also hold implicitly, and must therefore be contextually inferred from the content of the two thus separate but generally consecutive sentences. In the PDTB, a relation is identi ed by its type (Explicit, Implicit, etc.) and by the connective expression linking its two arguments (spans of text): in the case of Implicit relations, an explicit connective which best expresses the inferred relation is manually inserted and annotated, as though the two argument sentences were linked clauses. In addition, a hierarchical sense annotation is provided, which makes more explicit the exact nature of the relation (within a 3 level hierarchy of tags, 4 coarse-grained classes, " 15 intermediate-level types, and " 40 ne-grained subtypes). While models ne-tuned for the prediction of explicit relations achieve accuracies above and around 95%, detecting and classifying implicit relations is still a much more di cult problem, with accuracies under 60% [START_REF] Dai | A Regularization Approach for Incorporating Event Knowledge and Coreference Relations into Neural Discourse Parsing[END_REF][START_REF] Kim | Implicit Discourse Relation Classi cation: We Need to Talk about Evaluation[END_REF].

To fully exploit the interpretable nature of non-negative sparse embedding vectors while solving such tasks, however, the choice of a machine learning model is very important.

Intrinsically Interpretable Models

Indeed, while it would be possible in theory to simply replace the dense embeddings from any state-of-the-art NLP setup with interpretable embeddings, with just a few potential shape adjustments, the resulting architecture would very likely not become interpretable as a result: indeed, most machine learning models, in particular neural architectures, make use of a number of layered non-linearities, which when all combined, can in theory learn and simulate any mathematical function (depending on the depth and number of parameters available), which is what gives them their modeling strength, but also their major drawback of being opaque and di cult to interpret. By themselves, interpretable word embeddings would behave no di erently in such models than any other type of embeddings, i.e., their sparsity and nonnegativity would most likely be "lost", probably right after passing through the rst input layer. While one could consider using post-hoc explainability methods (which will be discussed later, in Chapter 4) alongside these interpretable representations to generate explanations for such models, an alternative would be to use models which are themselves intrinsically interpretable.

In practice, only a few types of architectures can be said to be truly intrinsically interpretable, with mainly two large categories:

• the Generalized Linear Models [GLMs; [START_REF] Nelder | Generalized Linear Models[END_REF] family, which encompasses and generalizes linear or logistic regression models, for which predictions always depend on the weighted sum of the inputs, making them easily interpretable: the "importance" of an input feature will always be proportional to the corresponding weight learned by these models. If the number of input features and thus learned weights is relatively large however, it may be di cult to exhaustively analyze all of them.

• Rules-based models, such as Decision Trees, which learn a nite number of single-feature branching decision rules, arranged in a tree, recursively dividing a dataset into parts, until each part can be accurately labelled. Other algorithms exist to extract such rules, not necessarily using a tree structure, such as Bayesian Rule Lists [START_REF] Yang | Scalable Bayesian rule lists[END_REF]. These rules can be exhaustively listed and are easy to understand, however, if the number of nodes in a tree becomes too large, it can become di cult to parse and understand all the learned rules.

In NLP, the latter rules-based models have fallen out of use, in favor of neural architectures, which are themselves networks of generalized linear models (a single neuron is a GLM of its inputs). Simple linear models are still in use in NLP, in parts thanks to word embeddings, which can enable computing decent quality sentences representations by a simple linear composition (such as a point-wise addition or mean) of their words' embedding vectors, as shown by [START_REF] Kober | One Representation per Word -Does it make Sense for Composition[END_REF]. For example, [START_REF] Bojanowski | Enriching Word Vectors with Subword Information[END_REF] exploit this fact, using the T [START_REF] Bojanowski | Enriching Word Vectors with Subword Information[END_REF] embedding model to very cheaply and quickly create a small linear sentence classi er, which simply averages the input T embeddings, passes them through a single hidden layer, which then projects them into a softmaxed distribution over the class labels, achieving close or even surpassing state-of-the-art of results, at the time it was presented, even beating signi cantly larger models.

Taking inspiration from this approach, and noticing a lack of concrete usage of interpretable word embeddings, we decided to explore their use as part of an a priori interpretable machine learning setup, with the objective of exploiting their interpretable dimensions to attempt to diagnose potential hidden biases in various NLP datasets, and will present it in the next Chapter.

Chapter 3 Interpretable Word Embeddings for the Detection of Hidden Biases -Experiments

While many methods have been proposed and evaluated to construct interpretable word embedding models, such as showcased in the previous Chapter, we noticed a distinct lack of experiments actually exploiting their intrinsically interpretable features as part of a concrete task. We thus propose to use the interpretable dimensions of non-negative sparse word embedding models to diagnose potential lexical biases in various datasets: by training an interpretable model, such as a linear classi er, on a to-be-diagnosed task, whose inputs are encoded by using an interpretable word embedding model, we could exploit the learned weights of this model as global explanations for each of the task's classes, in the form of a numeric "feature-attribution" associated to each of interpretable dimensions, and thus in theory, to the lexical family of words it is associated to.

We rst showcase a baseline interpretable word embedding model we built from scratch, which we then evaluate alongside the previously discussed (see Section 2.2) existing models, both in a qualitative interpretability evaluation, using a novel variant of the Word Intrusion Detection task, and then quantitatively on a set of downstream tasks (discussed in Section 2.4) using a simple interpretable setup. We nally analyze some of the trained models weights to showcase how these embeddings can be used, in the previously described fashion, to potentially detect hidden lexical dataset biases.

A Baseline Interpretable Embedding Model: NMF300

While there is a wide variety of trainable and pre-trained interpretable embedding models to choose from within the literature (see section 2.2), we felt it necessary to have a common baseline model to compare them to. For the comparison to be fair, however, this baseline model still needs to display some level of interpretability, as manifested by the properties of sparsity and non-negativity. Fortunately, it happens that non-negative matrix factorization techniques, by their very nature, produce output matrices which display these properties. We therefore constructed the NMF300 baseline model, as a point of reference to compare more complex models from the literature against, by directly using the non-negative factorization algorithm proposed in [START_REF] Lee | Algorithms for Non-negative Matrix Factorization[END_REF] for the Kullback-Leibler divergence (D KL) reconstruction cost function (as opposed to the more common least squares variant used as a basis in other models):

arg min W,H D KL pX}W Hq " V,C ÿ i,j"1,1 pX ij log X ij pW Hq ij ´Xij `pW Hq ij q
under the non-negativity constraints applied to both matrices @i, j : W i,j ě 0, H i,j ě 0, as well as the unit rescaling constraints applied on the columns of W , @j : }W :,j } 1 " 1. This baseline model is constructed on a term-term co-occurrence statistics matrix (with a sliding window of size 5), collected on over a 2.2 billion word Wikipedia dump (from May 2017), with a vocabulary size of V " 100 000 words (99 763 after frequency cuto), C " 20 000 features.

Examples of the produced embeddings can be found in Table 3.1, similar to those discussed in sections 2.1.3 and 2.2.1 (Tables 2.1 and 2.2).

Comparing Interpretability

For our experiments, we thus chose to use our baseline interpretable embedding model, NMF300, alongside four other models from the literature (discussed in the previous Chapter, see Section 2.2): NNSE [START_REF] Murphy | Learning E ective and Interpretable Semantic Models using Non-Negative Sparse Embedding[END_REF], SPOWV [START_REF] Faruqui | Sparse Overcomplete Word Vector Representations[END_REF], SPINE [START_REF] Subramanian | SPINE: SParse Interpretable Neural Embeddings[END_REF], and W 2S [START_REF] Panigrahi | Word2Sense: Sparse Interpretable Word Embeddings[END_REF]. Before using those models as part of a machine learning model in various downstream tasks, we rst wished to qualitatively compare and evaluate the interpretability of their dimensions, and as such we chose to use a Word Intrusion Detection evaluation setup (see Section 2.3), as was commonly in the original publications for these models. The evaluators were this author and his two supervisors, and were, following a blind process, given 50 intrusion detection instances per model (for a total of 250 instances to evaluate), with 5 words per instance (including the intruder). All instances were shu ed (both their order of presentation in the task, and the words in each instance), and sampled according to the following random process: we rst computed the intersection of all ve models' vocabularies (giving us a common vocabulary of size 12 726), then iteratively selected 50 random words within it, under the constraint that a word can only be picked if it does not share its most active dimension with another already picked word, for all ve embedding models. Finally, the most active dimension for all these words within all ve models were chosen as the target dimensions for the intrusion detection task. After a rst few test runs to tweak the hyperparameters of the method, mainly the sampling threshold for the selection of the least active words in a dimension, we made two signi cant adjustments to our evaluation: rst of all, as was done in [START_REF] Subramanian | SPINE: SParse Interpretable Neural Embeddings[END_REF] and [START_REF] Panigrahi | Word2Sense: Sparse Interpretable Word Embeddings[END_REF], we initially considered also comparing these models against a dense embedding model, such as G V [Pennington et al., 2014] or 2 [Mikolov et al., 2013a,b], however, similar to the results obtained in these publications we found that, as can be expected, it is basically impossible to tell the intruder apart from the most active words for such dense representations. As such, and because we did not wish to increase the workload of the evaluators to just con rm this fact an n-th time, we only ran this evaluation of the 5 previously mentioned interpretable embedding models. The second observation we made was that the task was too "easy": for many of the models, using the implementation of the task as described in [START_REF] Subramanian | SPINE: SParse Interpretable Neural Embeddings[END_REF], even when tweaking the threshold hyperparameters b and t (see Section 2.3), we found the task not challenging enough, to the point where some samplings of dimensions following the original process lead to almost perfect accuracies. Conceptually, we argue that the act of picking the intruder in a random dimension (other than the one that is being evaluated) does not allow to properly test its lexical discriminative power: ideally, we would like to ascertain whether the particular selected dimension can help di erentiate between words who otherwise share similar values in their other dimensions. In other words, an interpretable dimension should ideally target a speci c aspect of a lexical or semantic family. Thus, to enable this, we propose a modi cation of the sampling process for the intruder, which we found signi cantly increases the di culty of the task: just like in the "classic" process, we rst select the bottom b% (in our test runs, we found b " 10% to be a good value, vs. the 50% proposed by [START_REF] Subramanian | SPINE: SParse Interpretable Neural Embeddings[END_REF]) least active words in the target dimension. However, instead of then re ning this selection by picking from those words that are in the top t% of another random dimension, we instead speci cally pick the "second most active common" dimension to the four ground-truth words in the intrusion detection instance. After experiments, we nd that picking one word from the ve most active in the dimension which has the second-highest median of the four ground-truth words gave satisfactory results. To better illustrate this process concretely, here is an example of the steps which might be taken when generating a word intrusion detection instance for dimension n°110 of the SPINE model:

E

: Looking at the top 10 most active words in SPINE's 110-th dimension (indexed starting from 0), we nd, from most active to least active: "pius, pope, diocese, bishops, basilica, archdiocese, benedict, vatican, catholic, bishop".

After picking the rst four words as our ground-truth words for the instance ("pius, pope, diocese, bishops"), we then compute their second most active common dimension by taking the median of all their components, and picking the second largest, which in this case is the 178-th dimension, with the following top-10 words: "baptist, jesus, christians, holy, lutheran, religious, judaism, believers, prayers, baptism" As can be observed, these qualitatively look quite close to the active words in the 110-th dimension, lexically speaking. In the "classic" variant of the task, we would then pick the intruder within the bottom b% of the 110-th dimension, and from the top t% of another random dimension, which might give us one of the ve following sampled words for example: "baseline, sculptures, feedback, armoured, modeled". We can see that picking one of these words as the intruder alongside our four ground-truth words ("pius, pope, diocese, bishops") would de nitely make for a trivial instance. Instead, in our proposed more di cult variant, sampling ve random words with the same constraint (picking from those that are also in the bottom b " 10% of the 110-th dimension) from the 178-th dimension instead gives us: "judaism, mormon, preacher, buddhism, meditation". We can see that this sample is much closer lexically to the four groundtruth words, making the task signi cantly harder if one were to be picked as an intruder. Yet, they also would better illustrate the di erences between the 110-th and the 178-th dimension: indeed, the former seems more strongly associated with terms speci c to the Catholic religion, whereas the 178-th dimension seems more strongly associated with terms related to religions in general. The agreement is formatted as: majority agreement(2 out of 3) ; unanimity agreement (3 out of 3). Best results in each column are highlighted in bold.

agreement metrics on our variant of the Word Intrusion Detection task. We rst note that our results are relatively similar to those obtained by [START_REF] Subramanian | SPINE: SParse Interpretable Neural Embeddings[END_REF] and [START_REF] Panigrahi | Word2Sense: Sparse Interpretable Word Embeddings[END_REF], taking into account the di erence in evaluation protocols, and the somewhat subjective nature of this task. Surprisingly, our baseline model, NMF300, performs quite decently on this evaluation, despite its simplicity. This seems to showcase once again that the simple addition of the sparsity and non-negativity constraints is very e ective at producing mostly interpretable dimensions. While almost all models on average performed relatively well in this more di cult evaluation task (with the exception of SPOWV), we noted during the evaluation that qualitatively, the interpretability of these models' dimension is very heterogeneous: indeed, while the majority of dimensions were relatively easy to associate to a given lexical aspect, some on the other hand seem to capture pseudo-lexical phenomena, which seem to depend on the corpus they were created from. For example, models trained on Wikipedia articles, such as our own NMF300, seem to have captured a few frequency artifacts, caused by the presence of highly repetitive tabular data. Similarly, some highly speci c families of proper nouns, such as names of sports players, teams, or brands, seem to occupy a disproportionate importance in some models' learned interpretable dimensions, which we believe is also caused by frequency artifacts, due to the number of distinct articles which discuss these aspects at di erent levels (e.g., an article on a particular sport may refer to articles discussing individual teams, which themselves may refer to articles discussing individual players, etc.), and with highly speci c vocabulary overlap between them.

We argue, however, that a better test for the interpretability of these representations is to use them in a concrete setup, as inputs to a machine learning model performing a task. We thus designed an experimental setup that would not only evaluate their e ectiveness on a given task's objective, but in theory also showcase their interpretability, to gain some insights on the task's associated dataset and its potential hidden lexical biases.

Downstream Tasks Evaluation

In theory, an interpretable word embedding model can be used as part of an NLP machine learning setup just like any other (dense or not) word embedding model, simply as a way to provide vector representations to encode the tokens in a text. However, if one wants to make full use of their intrinsically interpretable dimensions, care must be taken as to the choice of model to use. As noted in Section 2.5, using an intrinsically interpretable model, such as a linear classi er, would allow directly exploiting its learned weights, each associated to an input interpretable dimension, as an explanation for a given predicted class. These may then allow us to detect if any undesired lexical correlations may be present in training datasets, which will be actually helped by the fact we are using a simple classi er, who can be more prone to ne-tune on easy-to-learn, often biased features in datasets.

Thus, for each of the tasks and their datasets presented in Section 2.4, and for each of the interpretable embedding models discussed before, we trained an intentionally elementary Continuous-Bag-Of-Words (CBOW) softmax regression classi er, with a parameters matrix of size H ˆC, where H is the size of the embedding vectors used, and C the number of classes in the task. Taking inspiration from the simple T -based linear classi er presented in [START_REF] Bojanowski | Enriching Word Vectors with Subword Information[END_REF], we simply use the average of the interpretable embeddings of all the words in an instance as an input to our model. For tasks which have two separate input texts in their instances, we take inspiration from the sentence-encoding architecture I S , from [START_REF] Conneau | Supervised Learning of Universal Sentence Representations from Natural Language Inference Data[END_REF], who propose the following composition pattern to combine two separate sentence representations u and v: pu; v; |u ´v|; u ˚vq, where ˚is the element-wise product operator, and pa; bq represents the concatenation of vectors a and b. For each pmodel, corpusq pair, we train one such classi er for a maximum of 200 epochs, using the ADAM optimizer, with 50 preceding epochs of automatic hyperparameters ne-tuning, using the Tree-structured Parzen Estimator algorithm [START_REF] Bergstra | Algorithms for hyperparameter optimization[END_REF][START_REF] Bergstra | Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures[END_REF], via its implementation in the optuna library [START_REF] Akiba | Optuna: A next-generation hyperparameter optimization framework[END_REF].

We then evaluate each produced classi er on its respective task's test set, and display the results in Table 3.3. In addition to the ve interpretable embedding models we used, we also trained and evaluated in the same way described above a classi er using the T dense embedding model (without sub-words), to compare the performance of interpretable embeddings against those of a dense model. We also display the results of a "dummy" classi er, who merely generates predictions at random, weighted by the task's class distribution, as a sanity check.

We notice that, quite surprisingly, considering the simplicity of the approach, the accuracies of the trained classi ers are quite high, and even, for the majority of the tasks, better with some of the interpretable embedding models than with the dense T model. This seems to imply that many NLP tasks have a more or less important purely lexical aspect to them, and this seems to be especially true for sentiment analysis for instance, on which we get the overall highest scores. This may to some degree be problematic, as this means a large proportion of instances are "easy" to label, which may be a source of problem for more capable models training on these datasets, as they might be learning easy lexical shortcuts, instead of skills required for proper natural language understanding. While it is to be expected that some lexical features would be associated to some task-relevant aspects, for example, that certain family of words may have a more or less intrinsic sentiment value, a model relying on these cues may not properly learn to handle more complex structural phenomena, such as negation. Various contributions have shown that even more complex state-of-the-art models can fail at handling negation, when instances are speci cally crafted to test for it [START_REF] Naik | Stress Test Evaluation for Natural Language Inference[END_REF][START_REF] Kaiser | Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly[END_REF][START_REF] Mosharaf Hossain | An Analysis of Natural Language Inference Benchmarks through the Lens of Negation[END_REF]. Even if these results cannot by themselves demonstrate the presence of spurious correlations in those datasets, the fact such a simple approach achieves overall relatively high accuracies may be a sign that some training datasets might not be ideally designed to teach models the NLP skills intended in their task speci cation. Overall, all of the interpretable embedding models perform relatively well, with SPOWV, SPINE, and W 2S being the most performant, while NMF300 and NNSE signi cantly below, especially on some tasks (B Q and SST for NMF300) where some classes were not predicted at all.

For the last step in our experimental setup, with our models now trained, we can then simply analyze their learned weights to produce global lexical explanations.

Explanations Analysis

For each of our trained models, we generate global explanation reports1 , consisting of, for each class in the task: the top-10 most positive and top-10 most negative weights, associated to the interpretable embedding model's dimension index, for which we then list the top-10 most active words. For tasks with multiple input sentences, we specify to which part of the composition pattern pu; v; |u ´v|; u ˚vq the listed weight belongs, as this can also be used to qualitatively judge these learned correlations. We qualitatively review these reports, and showcase a few notable examples in Table 3.4.

IMDB: This is one of the datasets for which the performance of the trained elementary models are the highest. Not too surprisingly, a signi cant portion of the most active dimensions for the "positive" and "negative" classes seem to correspond to lexical families of words containing appropriate sentiment markers, for most models (see the rst and second rows in Table 3.4). However, for the NMF300 model in particular, we noticed several dimensions associated with a large number of surnames and rst names (e.g., 4th row in Table 3.4) that appear to be strong predictors of the "positive" class. To analyze this potential bias, which does not seem intuitively very relevant to sentiment, we used the Named Entity Recognition (NER) module of the spaCy library to count the numbers of Named Entities of type "PERSON" in the movie reviews of the dataset, and we found a weak linear correlation (Pearson coe cient r " 0.124) between these counts and the classes of the instances. Further analysis would be needed to see whether a non-linear model could also exploit this aspect, or possibly an even more speci c one : indeed, it seems that several dimensions created by NMF300 are associated with famous artists' or celebrities' names, in particular, the second most contributing dimension for this task in this case. Taking this into account, one possible explanation for how such a spurious correlation may have occurred may be that review authors could be more inclined to mention the actors of a movie by name when leaving a positive review than when leaving a negative one. We can note that 80.68% of the reviews of the dataset contain at least one named entity of this type, which is also consistent with the high weighting of the parameter corresponding to this dimension. We also illustrate this analysis graphically, in Figure 3.1.

B

Q: On this dataset, the most contributing dimensions seem to focus on particular themes: for the "false" answers, these seem to point towards questions about themes which are often debated (dieting, laws, etc.), often subject to conspiracy theories (intelligence agencies, space exploration, etc.), or emotionally marked language (with adjectives such as "digni ed" or adverbs such as "dramatically"). For the "true" answers, these seem to point more towards questions about science, history, geography, or politics, or to numerical values (dates, ordinals, or miscellaneous numbers). All of this may indicate a slight bias in the data collection (which relies on user queries from a search engine), which is perhaps exploited by the models without the need to analyze the response. Nevertheless, since this is a two-input task (question and passage), we can also observe in which part of the composition vector pu; v; |u ´v|; u ˚vq (see Section 3.3) the most important weights are found: for most models (with the notable exception of NMF300 and W 2S), we observe that these are in the term-to-term product part of the composition, indicating that these elementary models are probably mainly looking at interactions between the question and the passage in the input, which is expected, considering the task. The remaining important weights are on the other hand mostly located in the question part of the composition, which could indicate the presence of more or less "rhetorically" biased questions (that is, questions which more or less strongly imply their own answer, regardless of the passage).

E

: For this dataset, we again notice a number of thematic consistencies in the dimensions that contribute the most towards the best predictions, related to uncontroversial topics. For instance, one dimension in NMF300 which is related to animals is highly correlated to the for stance. An inspection of the dataset con rms that newspapers almost exclusively take a positive stance on stories about animals (mostly, cats and dogs). This kind of bias seems inherent to the way the dataset was constructed from newspaper headlines.

S

UR FUNNY: The NMF300 model reveals some popular subjects in the S dataset, with positive-class dimensions seemingly associated with music and musical artists (dimensions with top words: "burnin, dreamin, rmx, blowin, movin" and "lil, ludacris, rapper, dogg, snoop"). Negative-class dimensions focus more on medical ("neurology, ophthalmology, oncology") or legal themes ("plainti s, plainti , court, appeals"), and a lot of technical-themed dimensions. This should be investigated at the instance level, since it could be an indicator of a lack of diversity in the corpus. The UR FUNNY dataset shows similar important dimensions (with also a lot of proper nouns) for NMF300, but focusing more on the punchline than the context in the inputs. NNSE shows more variety and less important weights, also focusing on the composed representations. Negative-class dimensions still include technical-themed dimensions.

PDTB:

The PDTB implicit relation task is interesting because it is a di cult problem, mixing quite di erent semantic/pragmatic relations. The simplest model, NMF300, predicts only 4-5 relations out of those appearing in the test set, focusing mainly on the most frequent: Cause, Contrast, Conjunction, Restatement and Instantiation. As an example of the kind of information it reveals, we found that the dimension with the largest weight associated with the Instantiation class in the NNSE model is one where the top words are "educator, historian, lecturer, researcher, scientist", in the part of the composition vector corresponding to the second argument of the input relation. Upon inspection in the training set, we found that only three of those words appear with that relation type in about 20 instances. It seems to indicate these are mostly citations illustrating a point made in the rst argument of the relation, something con rmed when looking for other citations cues, and observing that they are in about a third of all Instantiation instances, pointing arguably at a quite speci c journalistic aspect of the PDTB. Similarly, some dimensions important for predicting the other relation types seem speci c enough to warrant a closer inspection of instances in this dataset. SNLI: This dataset seems to be a special case, with many di erent, seemingly unrelated dimensions being top contributors, for all models. This could be partly explained by the large size and thus the larger variety of instances in this dataset. SNLI has known biases (see Section 1.2.1), which are partly associated with syntactical or structural aspects (negation, additional prepositional phrases, etc.). These are obviously more di cult to discover with the interpretable embeddings used here, which are mainly lexical in nature, combined with the elementary classi er architecture we used, which cannot directly model structural aspects, on account of the sentence representations being averages of word embedding vectors. Examples of explanations generated by our approach, where C is the "contribution" of the h-th dimension for the given class, that is, its corresponding weight in the trained linear classi er, normalized by the largest weight (in magnitude) sharing the same sign for that class. A contribution of 1.0 thus indicates the dimensions that were the most in uential. We can notice that with NNSE, the most in uential dimension for each class are not too surprising, being associated with respectively strong positive and negative markers. With NMF300 however, while the most contributing dimension to the positive class is similarly unsurprising, the second one is more questionable, as it appears to be associated with the names of public celebrities.

This approach to generating global explanations for datasets is overall quite interesting:

it is relatively easy to implement, and while it cannot be used alone to de nitely prove the presence of hidden dataset biases, we believe it may be a good starting tool in a more complete suite of explainability methods. It could be used to quickly check for potentially easy-to-miss correlations, and to help direct the focus of more expensive to deploy methods, in terms of compute, time, implementation, or expert costs, towards potentially problematic aspects of a dataset.

An example of follow-up explainability method which one may use in conjunction with this approach are feature-attribution methods, such as gradient-based saliency maps (which will be discussed in more details later in Section 4.2). These methods allow computing a score for each feature of an input, depending on how much it contributed to the overall model's prediction (see Figure 3.2). When used alongside our proposed approach, one may also exploit the interpretable dimensions of the chosen embedding model to perform this type of analysis at a more granular level, which would normally not be relevant to explore with dense embeddings (see Figure 3.3).

Conclusion and Perspectives

We demonstrated here how a simple but e ective method can be used to help detect potential spurious biases in NLP datasets, exploiting interpretable word embeddings to qualitatively diagnose unwanted artifacts which might negatively in uence more complex models on downstream tasks. We intrinsically and extrinsically compared di erent interpretable embedding models for this purpose, and found that the newer and slightly more involved methods perform better on downstream tasks, but that this does not necessarily translate to their dimensions' interpretability. This part was the basis for a paper [START_REF] Bourgeade | Plongements Interprétables pour la Détection de Biais Cachés (Interpretable Embeddings for Hidden Biases Detection)[END_REF] presented at the TALN-2021 conference.

Various improvements and additions to this approach warrant exploration: to be able to better discern which embedding models provide the best insights into how instances of a dataset might be classi ed, a human evaluation of the explanations produced by this approach could be performed, in a manner similar to the evaluation method presented in [START_REF] Strout | Do Human Rationales Improve Machine Explanations?[END_REF]. One important limitation with the type of interpretable embedding models used here is that their dimensions mostly encode lexical information, which means that structure-based biases, for instance, may be more di cult to detect this way. An avenue worth exploring might thus be to use embedding models which encode di erent linguistic features, which would allow detecting a wider range of biases. Negation and discourse markers, for example, are two types of phenomena that have been shown to strongly correlate with other, often unrelated features in datasets. Similarly, the ease of interpretability granted by the use of an elementary CBOW classi er comes at the loss of precious information carried by word order, mainly contextual semantic information. This could potentially be improved without compromising on model complexity, by using contextual word embedding models, such as BERT Devlin et al. [2019] or ELM [START_REF] Peters | Deep Contextualized Word Representations[END_REF], trained in an interpretable fashion. Another improvement would be to combine this approach with example-based interpretability methods: in addition to detecting unwanted overall behavior resulting from biases in datasets, it would be helpful to be able to locate the speci c subsets of instances that are responsible. We brie y showcased in at the end of Section 3.4, how this approach may be combined with post-hoc explainability methods, to open up other modes of analysis, but this could be extended to more complex methods. For example, Layer-wise Relevance Propagation [LRP; [START_REF] Montavon | Methods for interpreting and understanding deep neural networks[END_REF][START_REF] Montavon | Layer-Wise Relevance Propagation: An Overview[END_REF] could allow diagnosing a suspect non-linear model on instances which have been identi ed, through our approach, as potential sources of biases. This could then be used to potentially correct the issue, either in the dataset (by removing or balancing out the o ending instances), or in the model itself (by modifying its architecture and/or hyperparameters until the spurious behaviors have been diminished or eliminated).

Overall, intrinsic interpretability is challenging to implement, and especially so in NLP. The sets of properties required to maintain naturally interpretable processes at all levels of a machine learning pipeline impose strong constraints on both the models, and the data they manipulate. While it is a worthwhile goal, unfortunately, the recent trends in state-of-the-art NLP architectures are not conducive to intrinsic interpretability, on the contrary: models are becoming larger, more complex, and ever more opaque (see Table 1.1). As much as we hope that some of the concepts explored in this rst part may nd their way into future state-of-the-art architectures, it may turn out to be necessary to compromise, at least in the short term, on the desiderata of intrinsic interpretability. In the next part, we will thus explore the other side of the spectrum, with post-hoc explainability methods, and how they apply to Natural Language Processing. 3.2): here, we associate the most relevant dimensions of the feature-attribution vectors for each token, to their corresponding rst few most active words. As can be seen, the values of the loss function's gradient with respect to the inputs are sparse for interpretable word embeddings, and the sign of those values can allow us to gain some insights for individual tokens: for example, we can see that "very" has both a strong "positive" and "negative" component to it, which may accurately indicate it is a potentially polarizing word, for either sentiments. On the other hand, "enjoy" only displays a single strong positive component.

Chapter 4

Post-hoc Explainability in NLP

Context

While intrinsic interpretability is a di cult goal to achieve, especially in NLP, post-hoc explainability methods are much more numerous in the eXplainable AI (XAI) and Interpretable Machine Learning (IML) literature, for multiple reasons: rstly, interpretability and explainability of models are aspects which are unfortunately often considered after-the-fact in machine learning research. As such, there are many established tasks for which high-quality trained black-box models exist, which would bene t from methods that could produce explanations for their decisions, without having to "open the black-box". Indeed, many models are expensive to train, in terms of time and compute, and could thus not realistically be re-trained with modi cations aimed at making them a priori interpretable, assuming those modi cations even exist and are possible to implement for those models. While intrinsic interpretability would in theory o er better guarantees on many of the traditional explanation desiderata (faithfulness, mainly), extracting or generating post-hoc explanations may ultimately be the only feasible option in many cases, though many have argued and shown that post-hoc explainability methods can be easily incorrectly used to provide deceptively rational-looking explanations [Alvarez-Melis and Jaakkola, 2018;Aivodji et al., 2019;[START_REF] Rothe | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]. However, at this point in time in NLP, with the evolution of state-of-the-art architectures towards seemingly ever-growing numbers of parameters (see Table 1.1) and opaqueness, which are in practice antithetical to the concept of intrinsic interpretability, we believe it is necessary to explore post-hoc explainability methods which may, at least in theory, be applicable to them, even if in this process, some compromises have to be made on explanation desiderata.

As such, we showcase below a limited selection of post-hoc explainability methods from the relevant literature, though many more are available, albeit not necessarily all applicable or well-suited to NLP. Please see [START_REF] Molnar | Interpretable Machine Learning. A Guide for Making Black Box Models Explainable[END_REF] for a much more exhaustive overview of post-hoc explainability methods in general, as well as for more detailed illustrations of the approaches discussed below, in addition to the relevant cited publications.

Local Explanations

A rst popular type of post-hoc explainability method are so-called local methods, which attempt to produce explanations for individual instances and predictions, rather than for entire models at once. Most of them are designed to be as model-agnostic and portable as possible, though some methods are more speci cally designed to be used with neural architectures trained with gradient descent. An example of this latter type are gradient-based attribution methods, also referred to as saliency methods.

G B F A :
In these methods, the objective is to determine which components of an input instance were the most relevant to a model's prediction for it. In other words, we use a particular saliency measure, at a speci c granularity level of an input's decomposition, to attribute to each component of an input a value, indicating how much and in which direction it contributed to the model's overall prediction. The form explanations will take will thus generally be saliency maps, which for NLP tasks may look like the di erent examples in Figures 3.2 or 3.3. One method proposed initially by [START_REF] Simonyan | Deep inside convolutional networks: Visualising image classi cation models and saliency maps[END_REF] (for Computer Vision models) to do this is to simply sample the gradient of the training loss function with respect to the inputs at the instance which is to be explained, at the desired granularity level (for example, in Figure 3.2 the magnitudes of the gradient vectors for each token are used, whereas Figure 3.3 presents each vector's dimensions independently). This is usually trivial to compute, since learning via gradient descent already imposes being able to compute this gradient, to enable the back-propagation of prediction errors to all learnable parameters in the network. A few issues were observed with this simple approach, however. The main shortcoming of this approach is that it tends to be sensitive to small, insigni cant perturbations, which can lead to unstable explanations. Similarly, using the simple gradient as saliency fails to correctly model saturation in neural architectures [START_REF] Shrikumar | Learning important features through propagating activation di erences[END_REF], where an output does not change when individual components of the input are perturbed, which can cause inconsistent explanations to be produced. To attempt to x some of those issues, variants of this simple approach were proposed. For example, [START_REF] Smilkov | Smooth-Grad: Removing noise by adding noise[END_REF] propose S G , which as its name implies, attempts to improve the stability of the saliency measure by smoothing out the noise in the computed gradients, by sampling at multiple points around the target instance according to some level of Gaussian noise and averaging the results. Similarly, [START_REF] Sundararajan | Axiomatic attribution for deep networks[END_REF] propose integrated gradients, modifying the basic gradient-as-saliency measure by instead taking the average gradients sampled along a path from a reference instance (e.g. an all-black image in Computer Vision, or the zero embedding vector in NLP) to the target to-be-explained instance. While cheap to compute, other contributions argue that using the gradient of the loss function poses too many issues, and so propose using other functions as saliency measures. For example, [START_REF] Shrikumar | Learning important features through propagating activation di erences[END_REF] propose D LIFT, in which saliency is instead computed by back-propagating the contribution to a prediction of all neurons in a network, where this contribution is de ned as the di erence in a neuron's forward-pass activation and its reference activation, which is itself the activation for a reference instance, depending on the task and type of data (similar to integrated gradients above). [START_REF] Murdoch | Beyond Word Importance: Contextual Decomposition to Extract Interactions from LSTMs[END_REF] instead explore contextual decompositions (CDs) of LSTM architectures, using linearized activation functions to study how each input token in a sequence contributes to a model's ouputs at each timestep, and then for the overall sequence. Finally, [START_REF] Montavon | Methods for interpreting and understanding deep neural networks[END_REF][START_REF] Montavon | Layer-Wise Relevance Propagation: An Overview[END_REF] propose the Layer-wise Relevance Propagation (LRP) method, in which the forward-pass activations of neurons are collected for the target instance, then back-propagated through the network all the way back to the input layer, as a measure of input "relevance", with the possibility of using di erent propagation rules depending on the types and depths of the layers encountered. Overall, saliency methods have been criticized for being often misleading, as many of them have been shown to be, to some degree, independent of the models they are supposed to help explain [Adebayo et al., 2018]. They may also give a false sense of understanding, especially to non-expert users: they may show where a model is looking at, this does not necessarily translate into an accurate display of what the model is doing with these parts of the inputs [START_REF] Rothe | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]Alvarez-Melis and Jaakkola, 2018].

Most popular post-hoc explainability methods which have been proposed on the other hand usually are model-agnostic, that is, they do not directly rely on a model's internals to generate explanations, but rather only require access to these model as black-box, and extract information about their behaviors through the appropriate analysis of predictions on speci c input data.

LIME:

The Local Interpretable Model-agnostic Explanations framework from Ribeiro et al. [2016] is a local post-hoc explainability method which proposes using local surrogate models to explain algorithmic predictions. A local surrogate model in this case is an intrinsically interpretable model, such as a sparse linear classi er (also known as a "Lasso" model), which is trained to imitate the target black-box model, but only locally, in a neighborhood close to the target to-be-explained instance. This is proposed to be done through sampling of the original target model at various data points in the vicinity of the target instance, weighted by their distance to it, which then serve as the training corpus for a simple linear model, whose learned weights will serve as local explanations of the original model's decision for the target instance. The rst step is to rst choose an interpretable representation space into which the original model's input vectors may be projected: for example, for NLP models, it is likely the target models will take as inputs sequences of word embedding vectors, which are not in and of themselves interpretable by humans. In this case, the authors propose using the space of binary vectors, the components of which correspond to the presence or absence of each word in the target input. For images, the authors propose using a similar binary vector, denoting the presence or absence of patches of similar pixels (so-called super-pixels) in the target input. The local surrogate model will be trained in this space rather than on the original one, as otherwise, despite being an intrinsically interpretable model, the learned weights attributed to each input component may likely not be directly understandable, even by expert users. If we denote x the target instance (in original input space X " R d with d dimensions), C the shape of distributions of probabilities over the set of possible labels in the classi cation task, f : R d Ñ C the original black-box model's function, then x 1 P t0, 1u d 1 (with d 1 the number of interpretable dimensions, i.e., for text, the number of words in sequence x) is the interpretable representation of x, and g : R d 1 Ñ C is the surrogate interpretable model's function. g is thus trained by minimizing the weighted square loss function:

Lpf, g, π x q " ÿ z,z 1 PZ π x pzqpf pzq ´gpz 1 qq 2
where z 1 P Z are perturbed instances derived from x 1 (thus, for text, by removing a random quantity of words from the original target instance), z are the recovered corresponding points to z 1 in the original input space, and π x pzq " expp´Dpx, zq 2 {σ 2 q is a proximity measure between x and z (with Dpx, zq being cosine similarity for text, and σ a width factor). See gure 4.1 for a schematic illustration of this process. In addition to providing this framework to generate explanations for individual decisions, the authors also propose the LIME SP (Submodular Pick) algorithm, which, for a set of instances and their accompanying generated explanations, allows selecting the most relevant arbitrarily sized sub-set of instances and explanations which best illustrate a model's overall behavior. This algorithm is based on estimating global feature importance values for that set, which allows iteratively selecting examples which di er in the most important features, while avoiding redundancies in the other already seen features. This method has the advantages of being relatively easy to implement. However, the interpretable perturbation scheme it proposes when working with text is not ideal: indeed, removing words, even just one, from a sentence is a highly signi cant perturbation which may very likely completely change the meaning of the input, but most likely will simply lead to sampling the original target model on nonsensical inputs. This may then lead to surrogate model explanations that are not very informative or robust. This method is notably prone to adversarial attacks [START_REF] Slack | Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods[END_REF], which may put into question how faithful its explanations actually are.

A

: Some time after LIME, the same researchers introduced Anchors [Ribeiro et al., 2018a], a post-hoc explainability method also based on perturbations, but this time to extract a set of if-then rules, the so-called anchors, which almost su ciently (in the mathematical sense) explain a target model's decisions on a subset of instances. In other words, an anchor is a rule over instance features, which, when matched, indicate those instances have a high probability, above a parameterized threshold τ (for example 90%), to be predicted as having a given label by the target model. For example, on a sentiment analysis model and dataset, an extracted anchor rule might look like: t"not", "bad"u Ñ Positive, and would mean that any instance which contains the words "not" and "bad" has an above τ probability to be predicted as the Positive sentiment class by the target model. Unlike LIME, which only attempts to locally approximate the target's model behavior, anchors are much more faithful by design, because they explicitly indicate for which parts of the instance prediction space they are valid, and to which degree of precision, though, just like LIME, it only requires query access to the target model, as a black-box. More formally, an anchor A : R d Ñ t0, 1u is a set of predicates in conjunction, which correspond to the logical rule of the anchor, outputting 1 when an input instance matches the rules and 0 otherwise. Apxq is an anchor of a target model on instance x, if and only if:

E Dxpz|Aq r1 f pxq"f pzq s ě τ, Apxq " 1
where x P R d is the target to-be-explained instance, f : R d Ñ C is the prediction function of the target model (with C the shape of distributions over the possible predicted labels), D x p¨|Aq indicates a distribution of perturbed instances derived from x, also matching A. In simpler terms, A is an anchor if and only if, given a distribution of perturbed instances D x around a target instance x, which all match A's predicates, at least τ percent of those instances match x's predicted label. In practice, because testing every single instance in distribution D x would be di cult in large input spaces, this theoretical de nition is instead relaxed to be probabilistic, and approximated by iteratively generating samples, until a certain statistical con dence threshold is reached. An additional desideratum for these anchors is to have their coverage, that is, the quantity of instances on which they apply, to be as large as possible, as otherwise, the best strategy to maximize precision only may result in the extraction of a huge quantity of highly speci c anchors, which would severely reduce the practicality of this explainability method. For text classi cation tasks, the authors propose using a perturbation scheme where, unlike in LIME, tokens are not removed from the target instance but instead replaced by random words with both the same Part-Of-Speech tag (Noun, Verb, Adjective, etc.) and a high cosine similarity to the original token, as per the word embedding model used. The process for the extraction of anchors begins with the generation of single-feature candidate rules, for example, with text, single word-presence rules, for each word in the target instance. Using these candidates, perturbed neighbors are sampled using the given perturbation function, xing the candidates' a ected tokens in place so that the sampled instances necessarily match their corresponding candidate anchor rule. However, because this would otherwise require numerous calls to the underlying target model, which may be costly in some cases, a pure-exploration Multi-Armed-Bandit (in this case, the KL-LUBC algorithm from [START_REF] Kaufmann | Information complexity in bandit subset selection[END_REF]) is used to more e ciently explore and estimate each candidate's precision. Once the best candidate (with the highest precision, as de ned above) is found, if it passes the τ threshold, then an anchor has been found. Otherwise, the candidate becomes a predicate of the new iteration's generation of rules candidates, thus looking at two-words anchors, then three-words anchors, etc., until a τ precision anchor is found. While this approach has many advantages, especially over LIME, mainly with anchors being very easy to interpret, a number of issues have been raised: the method requires a heavy amount of non-trivial setup and design choices, primarily for the perturbation function, and, as noted above, despite the steps taken to diminish this issue, the approach may still generate too-speci c sets of rules which may not be very informative of a model's overall behavior outside of the associated speci c instances.

S

V : Originally coming from the eld of cooperative game theory, Shapley Values, invented by Shapley [1953], is a method originally proposed to compute an ideal distribution of the total reward among players who cooperated as a coalition to gain this reward, based on how much each player contributed to the coalition. It was proposed to be adapted as a prediction explainability method, where the "players" are constituted by the features of the target instance under investigation, the "cooperative game" by the prediction task, and the "total reward" by the actual predictions/probabilities output, compared to some reference, or set of reference "empty" instances, in which none of the features of the target instance can be considered "present" (e.g. an empty sentence, zero embedding, or equivalent, in NLP), or to a randomly selected instance. In theory, the Shapley value of a feature should be computed by measuring the average marginal contribution of said feature, that is, how much "adding" or "removing", by swapping its value with that of a random or "empty" instance, said feature a ects the prediction score, over all possible coalitions of features, that is, all other combinations of the other target instance's features being similarly added or removed. In practice, computing this value exhaustively is intractable for large numbers of total features, and so approximated methods have been proposed. For example, [START_REF] Štrumbelj | Explaining prediction models and individual predictions with feature contributions[END_REF] have proposed using Monte-Carlo sampling to approximate the Shapley value φpjq of a feature j of an input x, using the following process:

φpjq " 1 M M ÿ m"1 `f px m `j q ´f px m ´j q
where M is the number of Monte-Carlo sampling steps, f px m `j q and f px m ´j q are the target model's predictions for x, but where a random number of random features have had their values replaced by the values of a random (or reference) instance z, respectively with feature j preserved (`j) or also replaced by drawing from z (´j). The advantages of this method is that it is relatively simple to understand and implement, though managing to do so in an e cient fashion is one of the main drawbacks (due to the number of sampling steps required from the original model to obtain decent enough approximations, as the process must be repeated for each and every feature). It is also heavily dependent on how the reference or random instances are selected, as that will a ect the marginal contribution estimation of each feature, which may actually be cleverly used to perform contrastive explanations in some situations. SHAP: SHapley Additive exPlanations, proposed by Lundberg and Lee [2017], is an additive feature attribution method, which proposes combining all the previously discussed methods: indeed, the authors note many of these approaches, in particular LIME, D LIFT, Layer-wise Relevance Propagation, and Shapley Values, all more or less closely t the same additive explanation model, that is, an explainability method applied to a target model, seen as a machine learning model itself, which SHAP formulates as:

gpz 1 q " φ 0 `M ÿ j"1 φ j z 1 j
where g : t0, 1u M Ñ C is the explanation model (with C the shape of distributions over class labels), z 1 P t0, 1u M can be seen as an interpretable representation of an original input z, as in LIME, or a coalition vector, as with Shapley Values, where each of the M interpretable features that is "present" is marked by a 1, or if "absent" by a 0. As in LIME, these interpretable representations will usually depend on the target to-be-explained instance, x, and can be mapped back to the original input space through the mapping function h x , where h x px 1 q " x.

φ j corresponds to the feature attribution for feature j P r1..M s, essentially a generalization of the Shapley Value of j (with φ 0 the original model's output for an "empty" reference instance, where none of the M interpretable features are present). For a target model f and a target instance x, local explainability methods that t this type of explanation model usually try to ensure that, for samples z 1 drawn close to x 1 , gpz 1 q predicts the same output as f ph x pz 1 qq. In particular, the explanation model must match the original model exactly on the target instance

x, that is gpx 1 q " f pxq, which the authors denote as the local accuracy property. They argue for two other desirable properties for such explainability methods: missingness, which states that an "absent" interpretable feature x 1 j " 0 should have an associated feature attribution φ i of 0; and nally, consistency, which states that if the marginal contribution (see Shapley Values above) of a feature j increases or stays the same, so should its associated feature contribution φ j . The authors then show that the only solution that satisfy these three properties are Shapley values, and propose a novel algorithm to approximate them, K SHAP. This proposed method combines steps from the LIME and the Monte-Carlo sampling Shapley values algorithms, but using a novel way to weight the samples, the SHAP kernel: rst, random coalition/interpretable features vectors z 1 P t0, 1u M are sampled, using the same replacing of "absent" feature values with values from either a randomly selected, or a speci cally chosen reference "empty" instance. Then, the predictions by the original model f ph x pz 1 qq are queried, which are then combined with a weight attributed to each vector by using the SHAP kernel π x :

π x pz 1 q " pM ´1q `M |z 1 | ˘|z 1 |pM ´|z 1 |q
where |z 1 | is the number of non-zero values in z 1 (corresponding to the number of "present" interpretable features in the vector), and M is the total number of possible interpretable features. This weighting function is derived from the weighting factor used in computing Shapley values for regression models [START_REF] Ling | Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic Word Problems[END_REF]. Then, similar to LIME, a linear model is tted onto these weighted samples with the collected labels produced by the original model as targets, whose trained weights then contain the approximated feature attribution values φ. These steps are repeated iteratively, as in Monte-Carlo sampling (see above), with a sampling strategy which prioritizes selecting "extreme" values of |z i | (that is, which have a high number of "present", or a high number of "absent" interpretable features), which are weighted higher by the SHAP kernel. The authors propose di erent variants of this algorithm, better adapted to di erent types of target models. In [START_REF] Scott | Consistent Individualized Feature Attribution for Tree Ensembles[END_REF], the authors adapt the SHAP to Tree Ensembles models. In theory, SHAP is the culmination and uni cation of many of the previously discussed approaches, and thus combines many of their advantages. It also unfortunately combines many of their disadvantages, mainly the high compute overhead necessary to obtain good approximations of Shapley values, especially for large target models which are costly to sample predictions for. Just as with Shapley values, the choice of reference (or non-choice of a random) instance has a great impact on the explanations which are generated, and this may be a disadvantage as it adds an important hyperparameter to tweak which non-expert users may have di culty with. Finally, it is also prone to the same type of adversarial attacks as LIME [START_REF] Slack | Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods[END_REF], which puts into question the faithfulness of explanations produced by using it.

While most of these methods usually produce explanations with a relatively easy to parse format, that is, a set of numeric score associated to each interpretable feature in an explained instance, corresponding to how much each particular feature "contributed" to the model's decision, there has been some debate as to whether this type of explanations are actually useful to end-users, particularly to non-experts. Indeed, a number of contributions [Miller, 2017;[START_REF] Dodge | Explaining models: An empirical study of how explanations impact fairness judgment[END_REF][START_REF] Verma | Counterfactual Explanations for Machine Learning: A Review[END_REF][START_REF] Kaur | Interpreting Interpretability: Understanding Data Scientists' Use of Interpretability Tools for Machine Learning[END_REF]Kumar et al., 2020;[START_REF] Sharma | CERTIFAI: A Common Framework to Provide Explanations and Analyse the Fairness and Robustness of Black-box Models[END_REF] seem to point towards the fact that human users prefer example-based explanations, and in particular, counterfactual explanations.

Example-Based Explanations

Contrary to local feature-attribution-based explanations, which may potentially present a user with a large number of features all contributing in a limited way to the algorithmic decision, a counterfactual presents a causal explanation of a prediction: "Had feature j not been present in this input instance, this decision would not have been taken by the model." is more directly actionable for end-users, as it presents an example of how to " x" an undesired prediction, either by modifying the input, if the model's decision is judged to be acceptable, or by attempting to "repair" the model if it was not, potentially by using corrected or modi ed versions of this example as new training instances.

C

: Counterfactual explanations and adversarial attack methods are fairly similar in overall concept: in either case, the goal is to nd a minimal modi cation which can be applied to a particular target instance to cause a change in the target model's prediction. However, where an adversarial attack method attempts to nd modi cations which are not perceptible as such to human evaluators and annotators, a counterfactual explanation method should instead try to produce modi ed instances in a way that is as naturally contrastive with regard to the target instance as possible. While considered in the category of example-based explainability methods, note that a counterfactual may not necessarily be an actual instance drawn from the target model's training dataset. A wide variety of approaches have been proposed to generate counterfactuals x 1 with changed label y 1 , given a target model f and instance x. For example, [START_REF] Wachter | Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR[END_REF] propose minimizing the following loss function:

arg min

x 1 max λ Lpx, x 1 , y 1 , λq " λpf px 1 q ´y1 q 2 `dpx, x 1 q where λ represents a "closeness" factor between the desired counterfactual output prediction y 1 and the actual model prediction f px 1 q for the counterfactual, and dpx, x 1 q represents some distance function between the target instance and the generated counterfactual. In the original contribution, the authors propose using a Manhattan distance weighted by the inverse median absolute deviation over the entire dataset (X) for each feature:

dpx, x 1 q " p ÿ j"1 |x j ´x1 j | median aPX p|a j ´median bPX pb j q|q
To allow users to set their preference with regard to the trade-o of generated counterfactuals

x 1 between being closer to x, and the counterfactuals outputs f px 1 q being closer to the desired output y 1 , λ instead starts at a low value, and is then maximized until constraint |f px 1 q ´y1 | ď is matched, with a user de ned hyperparameter. Any suitable optimization algorithm can be used with this objective, depending on the type of target module used. With neural architectures, the authors suggest using the ADAM optimizer, a popular gradient descent algorithm used in machine learning. One limitation of this approach is that the suggested distance measure does not enforce creating counterfactuals with few feature changes (due to the Manhattan distance), which is desirable to avoid overloading the end-users of such explanations. As an improvement, [START_REF] Dandl | Multi-Objective Counterfactual Explanations[END_REF] propose a more complex multi-objective loss function, which, in addition to enabling taking into account categorical features (via Gower's distance [START_REF] Gower | Re-evaluating Automatic Summarization with BLEU and 192 Shades of ROUGE[END_REF]), also enforces sparsity in feature changes, as well as a higher similarity of the generated counterfactual to the target model's training data distribution, leading to more "realistic" counterfactuals in theory. The main limitation of counterfactual explanations are that, unlike local feature-attribution explanations, they are not exhaustive, that is, one could in theory create an in nite number of counterfactuals which may all distinctly explain one aspect of the target model's behavior on the target instance. In practice, similar to too numerous feature-attribution scores, users will only be able to focus on at most a few counterfactuals at once for each diagnosed instance, and the ones presented may not necessarily end up being the most actionable for them.

Another way to use examples to explain a model's behavior, is to nd the most in uential instances in the training dataset, that is, instances which, if removed from the training corpus of a model and then retrained, would impact the new learned parameters of the model the most, either in a positive direction (improving the total loss metric), or a negative direction (worsening the total loss metric). These are often referred to as deletion diagnostics. Unfortunately, for obvious reasons, actually retraining an entire model for each instance to diagnose would be in practice too costly. As such, one proposed solution is to approximate the in uence of an instance, without actually retraining the model.

I

F : Koh and Liang [2017] proposed using a well-known tool of robust statistics called in uence functions [Cook and [START_REF] Cook | Characterizations of an Empirical In uence Function for Detecting In uential Cases in Regression[END_REF], in which, instead of simulating the e ects of the actual removal of target instance x, the same e ects are approximated by upweighting the loss value associated with x in the training process of a model with parameters θ and training dataset X: θx, " arg min

θ p1 ´ q 1 |X| ÿ xPX L θ pxq ` L θ pxq
where θx, represents the approximated new parameters after the upweighting of x, represents an in nitesimally small up/down-weighting factor, and L θ is the target model's loss function.

To compute this, we can thus use the in uence function I up,params of the learned parameters θ to nd how they will be impacted when the instance x is unweighted:

I up,params pxq " d θx, d ˇˇ "0 " ´H´1 θ ∇ θ L θpxq
where ∇ θ L θpxq is the gradient of the loss function with respect to the model parameters, and

H θ " 1 |X| ř xPX ∇ 2 θ L
I up,loss px, x test q " dL θx, px test q d ˇˇ "0 " ∇ θ L θpx test q J d θx, d ˇˇ "0 " ´∇θ L θpx test q J H ´1 θ ∇ θ L θpxq
The best way to interpret and then actually approximate the computation of this function is to split it into two parts (highlighted in blue and red): ∇ θ L θpx test q J essentially represents how much the loss value for instance x test is a ected by the changes in the learned parameters post-upweighting of instance x; H ´1 θ ∇ θ L θpxq on the other hand approximates the changes the target model's learned parameters if the model was retrained with instance x upweighted (see I up,params pxq above). By cleverly rearranging this formula into two new parts (in green and orange) in the following fashion:

I up,loss px, x test q " ´∇θ L θpx test q J H ´1 θ ∇ θ L θpxq " ´H´1 θ ∇ θ L θpx test q∇ θ L θpxq " ´pIHVPq∇ θ L θpxq
we can divide the problem into two distinct sub-problems: the rst allows bypassing the computation of the inverse Hessian, by using implicit Inverse Hessian Vector Products (IHVP) techniques [START_REF] Barak | Glove: Global Vectors for Word Representation[END_REF]. The authors discuss two algorithms from the literature, one based on conjugate gradients [Martens, 2010], the other on stochastic estimation [START_REF] Agarwal | Second-order stochastic optimization for machine learning in linear time[END_REF]. In either cases, this part of the in uence function need only be estimated once for a model, and thanks to the automatic di erentiation capabilities of most machine learning programming libraries (TensorFlow, PyTorch, etc.), it is not too di cult to implement for most models. The second part, for similar reasons, can also be obtained cheaply, as indeed, ∇ θ L θpxq is nothing more than a prediction of x by the trained model, with the loss function and its gradient with respect to the learned parameters instrumented. However, to implement this method, two properties must be respected by the model: rstly, its loss function must be convex (otherwise H may not be positive-de nite, and as much possibly not invertible). This can in practice be enforced by using a l 2 (or weight-decay) regularization step on the learned parameters. The second constraint is that the loss function must be twice di erentiable, which is slightly more problematic, as many modules used in modern architectures are not, for example, ReLU `ReLUpxq " maxp0, xq ˘and other similar piece-wise activation functions. One solution proposed by the authors to this problem is to use smoothed variants of these functions for the purpose of approximating in uence values. While more complicated to implement than most of the other methods presented above, this particular post-hoc explainability method is very powerful. Its most obvious application is to explain a model's prediction of a target instance, by nding and presenting the most in uential (positively or negatively) training instances that led the model to learn this particular behavior, which may not only help to diagnose the source of mispredictions for example (mislabeled instances or ambiguous training instances possibly), but also potentially x the issue, by actually removing/relabelling the negatively in uential instances from the dataset, and/or by adding more variations of bene cial instances to the data set. The authors also show how in uence functions can be used to construct training-set attacks, a human-imperceptible adversarial modi cations of a single training instance, which causes the model to mislabel a speci c selection of test instances, once retrained with the tampered with instance. Feature-attribution and example-based explainability methods have many interesting properties, but also a few important drawbacks. Mainly, most of them do not scale well with especially large models, such as those that are becoming more and more common in stateof-the art NLP (see Table 1.1). On the other hand, alongside their increase in complexity comes an increase in capabilities, in particular, to generate natural-looking texts which often appropriately t a given set of contextual information. Taking inspiration from how humans generally communicate explanations or justi cations of their own behaviors, that is, through verbal or written natural language explanations, we could imagine a class of models which may be trained to explain their own decisions, in a clear and easy to understand manner, not with numeric feature-attribution scores or example relevant instances, but with free-form natural language explanations directly.

Natural Language Explanations

With the increasing size and complexity of modern state-of-the-art neural models1 , exempli ed with the advent of Transformer-based [START_REF] Vaswani | Attention is all you need[END_REF] architectures in NLP, such as BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF], and more recently Large Language Models (LLMs) such as GPT-3 [Brown et al., 2020], explanation methods based on pure model internals analysis may become less and less viable, due to the very large number of parameters and depth, which poses explanation size and computational tractability issues. As discussed previously, while a wide variety of contributions have explored di erent, mostly indirect methods to showcase the presence of, and/or attempts to extract, particular forms of learned knowledge and behaviors from these types of models, one popular example being the informal sub eld of "BERTology" (see [START_REF] Tulio Ribeiro | Semantically Equivalent Adversarial Rules for Debugging NLP models[END_REF] for an overview), there is still a lot of debate as to the ability to accurately and faithfully directly interpret the behavior of components of these models, such as attention layers [START_REF] Jain | Learning to Explain: Datasets and Models for Identifying Valid Reasoning Chains in Multihop Question-Answering[END_REF][START_REF] Wiegre | Attention is not not Explanation[END_REF][START_REF] Klein | Attention Is (not) All You Need for Commonsense Reasoning[END_REF][START_REF] Serrano | Is Attention Interpretable?[END_REF][START_REF] Pruthi | Learning to Deceive with Attention-Based Explanations[END_REF].

Another limitation of most interpretability or explainability methods is that they are not necessarily directly exploitable by non-expert users: indeed, while methods such as LIME [START_REF] Tulio Ribeiro | Why Should I Trust You?": Explaining the Predictions of Any Classi er[END_REF] or SHAP [Lundberg and Lee, 2017] claim to be usable by non-expert users (which, in the former, is evaluated by having human subjects use the method's feature importance outputs to select the qualitatively best performing model out of two, or, to perform feature engineering to improve a model's performance), they in practice require some level of expert knowledge to initially set up, as well as to know their limitations, in particular on the types of data and models they are best suited to, and further on to interpret their explanatory outputs [START_REF] Horne | Rating Reliability and Bias in News Articles: Does AI Assistance Help Everyone[END_REF][START_REF] Hase | Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior[END_REF]. In the context of the increasing need for a "right to explanation" [START_REF] Goodman | European Union Regulations on Algorithmic Decision-Making and a "Right to Explanation[END_REF] of algorithmic decisions, it would feel a little counterproductive for interpretability or explainability methods to themselves require experts-produced explanations, to be understood by the average, not necessarily tech-savvy end-users (or targets) of these algorithms.

As such, an alternative which has been proposed is to generate explanations which are closer in form and content to the common usage of the word, that is, more or less free-form natural language text, acting in a sense as human-understandable "justi cations" of an algorithm's decisions. These would have many advantages: rst of all, as mentioned before (and argued by Camburu et al. [2018] for instance), natural language explanations would be more easily directly understandable, and thus in theory actionable, by non-expert users. Secondly, being easier to parse by humans, for the same underlying reasons, also makes them equally easier to get human annotations for, either manually, as a task-speci c annotation process (where explanations might also be requested alongside the actual task's gold labels, for instance), or automatically, from already existing adequate natural language content which could be construed as explanations (such from as internet forums discussions or arguments, for instance). Because of this theoretical easier access to annotated data pertaining to explained decisions, it is possible to consider methods which may automatically extract, or more appropriately, generate these forms of explanations, as supervised NLP tasks in and of themselves. In particular, to that end, one could then exploit the advances in natural language generation capabilities provided by the now popular large opaque architectures, such as Transformers, those very same architectures which may have been otherwise di cult to explain through more formal methods.

We thus chose to mostly focus our exploration of explainability methods, at this other end of the spectrum, from mostly fully-transparent intrinsically interpretable but less powerful models discussed in Chapter 2, to "self-justifying" more performant, but more opaque by nature as a tradeo , explanation-generating models. More speci cally, we chose to focus on approaches which are as generic and non-domain-speci c as possible, in the interest of attempting to deploy such systems in as many domains and tasks as they can be found to work well in.

NLE Datasets

In practice, we can nd various speci c forms these natural language explanations (NLE) can take (see Wiegre e and Marasović [2021] 2 for a review and overview of various NLE datasets), on a spectrum from relatively structured explanations, usually speci c to the task or the type of data at hand, all the way to completely free-form text. Somewhere on that spectrum, we could also place textual highlights, that is, explanations that take the form of a set of potentially non-contiguous spans of text (usually individual words or pieces of sentences) from the input texts, which, while not necessarily as clear and explicit as a separate explanatory text, can be considered a form of implicit explanation through referencing of the relevant parts of the input (something which is often done explicitly in separate natural language explanations).

If we look at the relevant literature, for the more structured NLE category, we can nd for example formal reasoning chains, found in the QASC multihop question answering dataset [Jhamtani and [START_REF] Tom | Language Models are Few-Shot Learners[END_REF], based on the QASC [Khot et al., 2020] dataset, in which each multiple-choice question instance has been augmented with a set of valid or invalid reasoning chains (for example, of the form: "A is a B AND B has C IMPLIES A has C"), for each of the possible answers, along with a gold valid reasoning chain corresponding to the correct answer. Text highlights can be found in many datasets, often referred to as "human rationales" in the more speci c literature [START_REF] Strout | Do Human Rationales Improve Machine Explanations?[END_REF][START_REF] Bastings | Interpretable Neural Predictions with Differentiable Binary Variables[END_REF], but also as an additional type of data in other types of NLE datasets [Camburu et al., 2018;[START_REF] Fatema Rajani | Explain Yourself! Leveraging Language Models for Commonsense Reasoning[END_REF], or even can be a posteriori extracted from more traditional datasets, such as the Stanford Sentiment Treebank (SST) [START_REF] Socher | Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank[END_REF], as was done in [START_REF] Samuel Carton | Evaluating and Characterizing Human Rationales[END_REF]. Finally, we can nd fully free-form natural language explanations, where the annotators are left mostly free to formulate instances' explanations as they see t (though quality controls are of course implemented to lter out undesirable annotated explanations). It is this latter type which we've mainly focused on in this exploration of explainability methods.

To illustrate the di erent types of natural language explanations discussed previously, we propose an SNLI [START_REF] Samuel | A large annotated corpus for learning natural language inference[END_REF] : "playing" is not "washing" AND "a violin" is not "a load of laundry" IMPLIES "A girl playing a violin" is not "A girl is washing a load of laundry". T

[H]: "A girl [playing a violin] along with a group of people."; "A girl is [washing a load of laundry]." F : "One cannot be playing a violin while washing a load of laundry."

Within the free-form category of NLE datasets, we can nd various contexts and tasks, which in uences the content and general form the accompanying explanations will take. For example, we can nd some relatively domain-speci c datasets, such as the algebraic word problems presented in [START_REF] Ling | Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic Word Problems[END_REF], and their associated answer rationales, made up of natural text interspersed with algebraic expressions detailing the precise steps one may take to solve each particular mathematical problem, which the authors use to automatically derive formal and executable programs which algorithmically produce the problem's answer. We can also nd both categorical and free-form annotations of possible o ensive implications in [START_REF] Sap | Social Bias Frames: Reasoning about Social and Power Implications of Language[END_REF], or explanations of internet arguments' persuasiveness in [START_REF] Atkinson | What Gets Echoed? Understanding the "Pointers" in Explanations of Persuasive Arguments[END_REF], in the context of social media posts. While a lot of NLE datasets unfortunately do not necessarily have enough instances to use more data-intensive deep NLP architectures, often due to the requirements and costs associated with the crowdsourcing of annotations (which is in practice usually the only way to obtain the large quantities of data required by deep learning methods), these few example corpora do contain a signi cant amount of exploitable instances (in the order of magnitude of tens of thousands of instances, where other datasets are often more in the order of a few hundreds). However, because their explanations were on the more domain-speci c end of the spectrum, we chose not to explore them further for our experiments. On the other end of this spectrum, we can nd more domain-generic datasets, associated with more broadly applicable tasks such as general question answering or classifying semantic relations such as inference/entailment. We also only considered purely-textual tasks, so we did not explore in details visual-language datasets for instance, such as those found in the V L benchmark [START_REF] Kayser | E-ViL: A Dataset and Benchmark for Natural Language Explanations in Vision-Language Tasks[END_REF].

As such, we focused mainly on two NLE datasets which we thought were most representative of the general idea of this approach to explainability: SNLI provided by Camburu et al. [2018], which, as its name implies, is a variant of SNLI [START_REF] Samuel | A large annotated corpus for learning natural language inference[END_REF] augmented with both free-form text and highlighted text spans that serve as human-annotated explanations; and C S E, provided by [START_REF] Fatema Rajani | Explain Yourself! Leveraging Language Models for Commonsense Reasoning[END_REF], an NLE dataset for commonsense (that is, where "commonsense" world-knowledge and implicit semantic relation rules are required) question answering, derived from the C QA dataset [START_REF] Talmor | CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge[END_REF], augmented with human-annotated explanations, in the form of free-form explanations and highlighted text spans. In particular, we mostly focused on the former, SNLI, as it is the largest of the two (being on based on the large-scale SNLI, which contains more than 500 000 instances, vs. approximately 10 000 in C S E), and because it also was a better t, conceptually and in its intended usage/evaluations, where C S E's explanations are more intended as an intermediate augmentation step in order to improve downstream performance. SNLI: Camburu et al. [2018] introduce SNLI, a variant of the SNLI dataset (see the relevant paragraph in Section 2.4 for more details), augmented with natural language explanations. More precisely, annotations were crowdsourced using the Amazon Mechanical Turk platform, where annotators were presented with SNLI instances (premise, hypothesis, and gold label of the inference relation), and then asked to provide natural, non-obvious (that is, ideally avoiding referring to elements which are verbatim overlapping between the premise and hypothesis), selfcontained (that is, which stand on their own as sentences and do not necessarily require reading the premise and hypothesis) explanations, in two steps (to attempt to lter out inadequate annotations): rst, for each instance, annotators were tasked with highlighting relevant words from the premise and/or hypothesis which help to explain and justify the gold inference relation; then, they were tasked with writing a free-form explanation, which referenced at least a part of the previously highlighted words. Speci c instructions were designed at each step for each of the possible inference labels (entailment, neutral, contradiction), to guide the non-expert annotators, as well as to further attempt to lter out low-quality annotations. A single explanation per instance was collected for the training set, whereas three were kept for the test and development sets. The authors note that numerous annotations unfortunately fell into "template-like" patterns, in which the entire hypothesis and premise are inserted into an almost static sentence template, dependent on the inference label, for instance, for neutral ppremise, hypothesisq pairs: "Just because <premise> does not mean <hypothesis>. " The authors attempted to lter out and re-annotated explanations which fell into such patterns, but subtle variations in the templates used appear to have left quite a few of them in the data. The authors also then provide di erent architectures and setups which, using this collected NLE data, learn to both generate an explanation given the regular SNLI inputs, alongside predicting the correct inference relation for that instance. We will discuss these architectures in the next section.

C S E: [START_REF] Fatema Rajani | Explain Yourself! Leveraging Language Models for Commonsense Reasoning[END_REF] propose the C S E dataset, which expands upon the C QA (CQA) question answering dataset [START_REF] Talmor | CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge[END_REF], adding human-annotated explanations alongside the original input questions and answers. The CQA dataset originally contains so-called "commonsense" questions, which have been speci cally designed to require background world-knowledge to answer, in contrast to most other work on question answering, in which questions are usually framed within an explicit context, often an accompanying text passage in which the answer can be found. Each instance, made up of a question, and three (ve in the v1.11 of the dataset) possible answers, only one of which is the correct one, were themselves crowdsourced, using associated concepts extracted from C N [START_REF] Speer | ConceptNet 5.5: An open multilingual graph of general knowledge[END_REF] to guide crowd-workers. These natural language explanations were also collected through crowdsourcing using the Amazon Mechanical Turk platform. Annotators were, similarly to SNLI, asked to rst highlight relevant parts of instances' questions which justify the gold answer, then to provide a short free-form explanation text to the same e ect. Similarly, the authors also performed various ltering steps to improve the quality of the annotations, including checking for template-like explanations (e.g. "<answer> is the only option that is correct/obvious"). The authors then propose using these collected NLEs in a Commonsense Auto-Generated Explanations (CAGE) framework, training a language model (GPT, from [START_REF] Radford | Improving Language Understanding by Generative Pre-Training[END_REF]) to predict these explanations, conditioned on the input questions and answer choices, in either one of two ways: an explain-then-predict (also called "reasoning") setup, where the explanations only depend on the inputs and not the predicted answers, which may themselves be derived from the questions, answer choices and just-produced explanations, in a later step, by a classi cation model (in this case, a BERT model); or, a predict-then-explain (also called "rationalization") setup, in which the language model which produces the explanations is conditioned on the predicted (or ground-truth during training) answer. Thus, similar to [Camburu et al., 2018], the authors also propose architectures which both learn to perform the main task as well as produce natural language explanations. An example of a C S E instance with its human-annotated explanation (drawn from the development set) is:

: "Where is one likely to nd a fan for their stove?" P A (C): "appliance store", "sports stadium", "hot room" E : "stove and other appliances are bought in the appliance store"

To work with these datasets, di erent types of architectures, which we will refer to informally from here on as "Explainer" models, have been proposed, with a lot of conceptual similarities, which enables us to regroup them into a few di erent categories.

Explainer Models

As succinctly explored in the previous section, most NLE datasets can be viewed as a more traditional NLP dataset, which has been augmented with accompanying explanations. As such, if one considers these explanations as an additional output sequence to be predicted alongside the traditional task output, a naive type of architecture which could be proposed may simply consist in separately performing the two sub-tasks, using two separate models. This type of approach quite apparently and obviously sounds unsatisfactory in the context of any chosen desiderata for explainability: indeed, even in the best case scenario, where there would be no limitations in learning capabilities, one could expect the explanation generating sub-model to internally learn to solve the main task in order to better produce the corresponding explanation, in which case the second sub-model solving the main task would feel somewhat redundant. In the general case, not allowing the two obviously linked parts of the task (the explanation and its target, the explanandum) to be re ected into a similarly linked architecture would almost invariably lead to suboptimal performance, for both sub-tasks.

Both learning to solve a task and learning to explain one's reasoning to solve this task can be expected to be more bene cial than doing either separately, and this is somewhat con rmed by the results from [START_REF] Fatema Rajani | Explain Yourself! Leveraging Language Models for Commonsense Reasoning[END_REF] on the C S E dataset, where learning to intermediately generate explanations appears to have signi cantly improved the performance when solving the main task, compared to directly attempting to solve the task alone. As such, if we consider architectures which link both of these sub-tasks, there are various ways one may proceed to join them, with the main distinguishing factor being the order of operations: should the architecture rst produce an explanation, and then attempt to solve the main task, conditioned on this explanation, or, should the explanation be generated post-hoc, once a prediction has been produced for the main task? This distinction could be seen more as a spectrum than a set of strict categories, but still, as it appears to be a common factor approaches are di erentiated on in the relevant literature, we can try to more or less strictly categorize methods depending on whether they t one of the following two temporal orderings between prediction and explanation:

• the rst type of approach, which are often referred to as variations of "explain-thenpredict" architectures, consider that the explanations to be generated should behave somewhat like reasoning steps, expressed as natural language. In Rajani et al. [2019], this corresponds to the CAGE architecture, where an autoregressive language model (GPT) is trained using the C S E dataset to generate explanations conditioned on the inputs (questions and answer choices, concatenated), which are then themselves concatenated to the inputs and used by a question answering (ne-tuned BERT) model to learn to nd the correct answer. Somewhat similarly, though the tasks are di erent, Camburu et al. [2018] propose a E T P model, based on an I S [START_REF] Conneau | Supervised Learning of Universal Sentence Representations from Natural Language Inference Data[END_REF] universal sentence-pair encoder architecture, coupled to a Multilayer Perceptron classi er, to predict the inference relation. A similar architecture, with a LSTM decoder instead of the classi er (with two variants, a bare one, while the other has had two attention modules added to it) is used to rst generate the explanations which are then fed into this predictor. Compared to the previous approach, the predictor here is only allowed to look at the explanation and not the rest of the input, though that is justi able considering the di erences between the tasks and the forms the collected NLEs take: the authors of SNLI indeed note that in their dataset, the forms of the explanations (mainly, the linking words or expressions used to connect related elements in the premise and hypothesis) are highly correlated with the inference labels, and thus should be su cient input for the predictor. This type of approach is in theory more desirable with regard to common desiderata for explanations, particularly, faithfulness: indeed, in this case, since the explanation/reasoning has to be generated prior to the solving of the main task, it is less likely that the model will be able to confabulate a valid-sounding justi cation for the prediction which would be completely unrelated to the actual internal reasoning of the model, though this is of course no strong guarantee that it will not be the case. One could for instance imagine the explanation generator "sneaking in" hidden, or at least not clearly apparent information within the explanatory text, to the predictor, by subtly toying with the distributional characteristics of the text, through obscure lexical cues for example.

• the second type of approach, often referred to as variations of "predict-then-explain", invert the order of the steps described previously: instead of the explanations being treated as natural language reasoning towards a prediction, they rather behave like post-hoc rationalizations of an already taken decision, their generation being conditioned on the predicted (or, at training time, the ground-truth) label, in the case of classi cation tasks. In [START_REF] Fatema Rajani | Explain Yourself! Leveraging Language Models for Commonsense Reasoning[END_REF], this corresponds to the CAGE architecture, which is identical to the previous one, except the prediction of the correct answer is done rst, and this output is concatenated to the rest of the input normally fed to the language model. Camburu et al. [2018] correspondingly propose a P A E model, where the same I S architecture is used to produce an encoding vector for the input sentences pair, which is then rst fed into an MLP classi er predicting the inference label, that is then used to condition, alongside the same input encoding vector, an LSTM decoder, trained to produce the explanation. As its name would imply, this model could be seen as jointly performing both objectives at once (with two di erent "head" modules), however conditioning the explanation generator on the predicted label we argue puts it more in the post-hoc rationalization category, though this distinction is again somewhat subjective. This second type of approach seems conversely less desirable with regard to the faithfulness of produced explanations, as they are generated after the decision has already been taken, so to speak, and may thus be more likely to resemble the human behavioral sense of "rationalization", that is, a plausible and/or convincing justi cation for a decision, which may not correspond in any way, shape, or form, to the actual reasoning process which led to the decision, which would be problematic. Similarly to the previous type however, there is no strong guarantee of this, and indeed qualitative analyses performed in Camburu et al. [2018] and [START_REF] Fatema Rajani | Explain Yourself! Leveraging Language Models for Commonsense Reasoning[END_REF] did not seem to showcase signi cant di erences relevant to this criterion between output explanations from these two types of approaches.

Various other contributions have proposed approaches for generating natural language explanations, a lot of them tting more or less closely within these two categories.

For example, Liu et al. [2019a] propose a model-agnostic generative explanation framework for datasets with ne-grained explanatory elements, such as detailed evaluation criteria in products or services reviews, for example "price", "quality", or "practicality". Their generic Generative Explanation Framework proposes a middle-ground joint prediction-and-explanation approach, with a common input encoder model, feeding into both a direct predictor, and an explanation generator, which itself feeds into a classi er. In addition to both of the chains' standard loss functions, the authors propose an additional explanation factor term, which combines distributional distances between ground-truth and generated explanations, and also between generated explanations and the original text. [START_REF] Atanasova | Generating Fact Checking Explanations[END_REF] propose an approach based on a transformer architecture which jointly predicts the veracity of claims and extracts relevant explanatory sentences from the associated ruling comments, akin to an extractive summarization task. They similarly propose a more joint approach, however the explanations take the form of a binary selection of a number of "ruling sentences" accompanying each claim, provided by the LIAR PLUS [START_REF] Tariq Alhindi | Where is Your Evidence: Improving Fact-checking by Justi cation Modeling[END_REF] dataset. [START_REF] Kumar | NILE : Natural Language Inference with Faithful Natural Language Explanations[END_REF] propose NILE, an NLI (also trained and evaluated on the SNLI dataset) multi-Explainer system, which independently generates three explanations (using three GPT 2 architectures), one for each of the inference-relations' labels in the task (entailment, neutral, contradiction), which are then processed together and used to classify the instance (using a R BERT [Liu et al., 2019c] architecture). The explanation corresponding to the predicted label is then selected and passed-through as the instance's output explanation, alongside the predicted label. The authors argue that this approach has advantages over methods which sequentially generate a single explanation and derive a label prediction from it (or vice-versa), as it allows better probing of the explanations' faithfulness to the model's actual internal reasoning process, since one can look at what each of the three label-speci c explanation generators outputs for a given instance. Though it uses similar concepts, this approach intentionally di ers signi cantly from the explain-then-predict and predict-then-explain categories presented above: indeed, while the overall architecture rst generates explanations then makes a prediction based on them, each of the three individual explanation generators is ne-tuned to generate explanations for a speci c label, hence one could argue they should be in the predict-then-explain category. While this allows for a sort of counterfactual probing of the generated explanations, these have in theory little basis on the actual content of the instance, as the individual generators are ne-tuned assuming every instance encountered is of their speci c label.

Ultimately, the two Explainer models categories used here, as stated above, may be more accurately considered a spectrum, depending on what proportion of an Explainer architecture attends to either explaining or predicting. At the same time, one could also consider approaches where both objectives are in large parts attended to by the same base model, which is especially common for multi-objective training setups, particularly those using modern pre-trained Transformers [START_REF] Vaswani | Attention is all you need[END_REF]. Indeed, with these architectures, one can use and ne-tune the same "core" model for various tasks, potentially at once, in multitask learning setups [START_REF] Kaiser | Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly[END_REF]. The core may thus learn to encode inputs into general-purpose information-rich representations, which can then be used by di erent adequately designed "head" modules, who only need to learn relatively simple task-speci c mappings from those representations to the required output format, extracting from them only the necessary information to solve their associated sub-task. It is this latter avenue which we decided to explore experimentally, which will be discussed in the next Chapter.

Chapter 5 Explanation Generating Classi ers -Experiments

Taking inspiration from the various contributions discussed previously, we have chosen to focus our experiments on the SNLI [Camburu et al., 2018] and C S E [START_REF] Fatema Rajani | Explain Yourself! Leveraging Language Models for Commonsense Reasoning[END_REF] datasets, and on Transformer-based [START_REF] Vaswani | Attention is all you need[END_REF] architectures, which we argue are a good t for this objective of jointly solving a task and generating explanations: indeed, these architectures have been successfully used in various tasks, such as summarization [START_REF] Liu | Text Summarization with Pretrained Encoders[END_REF], question answering [START_REF] Talmor | CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge[END_REF], and reading comprehension [START_REF] Xu | BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis[END_REF], all of which require learning skills which would be essential to producing good explanations. Moreover, most of these pre-trained models can be adapted and ne-tuned to accomplish these tasks simply by adding one or multiple appropriate task-speci c "head" modules. With the correct con guration, such a model may be able to jointly learn the skills required to predict and to explain, each aspect hopefully helping to improve the other.

As these notions will be important to understand the experimental setups used here, the next section may serve as a short summary or refresher on Transformers, and the architectures that preceded them.

A Few Words on Transformers

Natural Language Processing is a particularly challenging eld of AI and machine-learning research, because a "canonical" conceptual architecture to deal with natural language as an information medium has not yet been found. In Computer Vision for example, deep Convolutional Neural Networks (CNNs) [LeCun et al., 1990[START_REF] Lecun | Learning methods for generic object recognition with invariance to pose and lighting[END_REF][START_REF] Lecun | Convolutional networks and applications in vision[END_REF] have proved to have the ideal set of properties to solve most vision tasks (the ability to detect local patterns, initially at the scale of pixel neighborhoods, followed by larger scale and more abstract patterns with each additional pooling and convolution layers), being themselves a rough approximation of how the natural visual perception mechanisms function in animal brains [START_REF] Gu | Recent advances in convolutional neural networks[END_REF]. For natural language however, so far, nding a similarly suitable conceptual architecture has proven to be more di cult: rst of all, there is no single self-evident decomposition into semantic units for language, like there is with pixels for image data. Furthermore, given some decomposition scheme, for example, tokenization of texts into sequences of individual words, there is no trivial or self-evident way to encode these tokens into numerical representations, though thankfully, over the years, state-of-the-art results were achieved using various word embedding models (see Chapter 2 for a quick overview). Finally, assuming all these previous decisions have been addressed, no single conceptual architecture evidently presents itself to deal with encoding entire sequences of tokens. Instead, various types of approaches have been experimented with over the years: initially, Bag-Of-Words (BOW) and related representations were used [START_REF] Zellig | Distributional Structure[END_REF], in which a text or document was represented by the aggregation (sum or average usually) of one-hot encoded words (or n-grams) contained in it, irrespective of the order or structure of the text. These types of representations have many disadvantages, mainly linked to this last fact, as well as the ine cient number of dimensions required for the produced vectors (scaling with the size of the vocabulary), and the absence of geometrically encoded semantic aspects (such as can instead be found in word embeddings, with distance-as-similarity metrics). To tackle this problem of taking the order words and the general structure of documents, a rst family of models was proposed to be used: Recurrent Neural Networks [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF] (see Figure 5.1), which were intended to model, and also were roughly inspired by various phenomena or systems with time-persistent features, including the functioning of short and long-term memory in the brain [START_REF] Little | The existence of persistent states in the brain[END_REF][START_REF] Hop | Neural networks and physical systems with emergent collective computational abilities[END_REF]. In addition to learning a mapping of numerically encoded inputs to outputs, this family of models are able to do so in the context of an ordered sequence of inputs and outputs, possessing one or multiple connections through time, allowing such models to "remember" past inputs/outputs when iteratively processing a sequence. This in theory makes them particularly suited to dealing with natural languages, which have strong sequential and time-based components to them. The two most popular implementations in the RNN family are the Long Short-Term Memory (LSTM) [START_REF] Hochreiter | Long Short-Term Memory[END_REF], and Gated Recurrent Unit (GRU) [START_REF] Cho | Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[END_REF] architectures, and these have enabled achieving, at the time they were presented, state-of-the-art performance on numerous NLP tasks. The most successful architectures make use of bidirectional variants of these two architectures, where at least two layers of such RNN cells are used in parallel, each running in opposite directions on the input/output sequences (with their nal outputs usually concatenated), allowing for the capture of both left-to-right and right-to-left temporal information.

In particular, Neural Machine Translation models, and other so-called sequence-to-sequence models (often abbreviated as "seq2seq") [Sutskever et al., 2014], in which both the inputs and outputs are textual documents decomposed as sequences of tokens, often employ a particular dual RNN encoder-decoder setup (see Figure 5.2), in which an input sentence is rst iterated upon and encoded into the hidden state of an encoder RNN module, that is then used to condition a decoder RNN, tasked with producing the expected output sequence, in an autoregressive fashion, predicting the pi `1q-th token in the output, based on the i-th token and the encoded representation of the input (usually initializing, and then being combined with the regular decoder's hidden state forward-ow in the following iterations). With the successes of these types of approaches when ne-tuned on speci c tasks, such as Machine Translation, an idea rapidly emerged, generalizing from the then popular pre-trained word embedding models, and their ability to be used "universally" out-of-the-box, as input encoding modules in a wide variety of tasks and setups: could similarly "universal" phrase, sentence, or document representations be generated by such encoding models, pre-trained (ideally in an unsupervised fashion) on large quantities of textual data, capturing a variety of semantic information which could then be exploited in a variety of setups downstream? To attempt to answer this question various approaches were proposed: [START_REF] Zhu | Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books[END_REF] for example propose the S T unsupervised approach, abstracting the skip-gram [Mikolov et al., 2013b,a] word embedding model to the sentence level, where an RNN encoder-decoder setup learns to encode sentences inside a text by conditioning two decoders, each respectively tasked with predicting the sentences directly preceding and following the encoded sentence; [START_REF] Palangi | Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval[END_REF]] employ a similar approach with an LSTM encoder model, trained on weakly supervised data from a commercial search engine, learning to produce sentence embeddings for user search engine queries and their associated clicked document with a high cosine similarity, in the context of Information Retrieval. Other similar methods were also proposed which did not necessarily use RNN-based encoder-decoder setups, or even neural networks at all: the I S model from [START_REF] Conneau | Supervised Learning of Universal Sentence Representations from Natural Language Inference Data[END_REF] for example is also intended to produce such "universal" representations, though it does not use an unsupervised encoder-decoder setup, but rather an encoder-classi er trained on the SNLI dataset; [START_REF] Hill | The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions[END_REF] propose an overview and evaluation of a variety of these approaches which were available at the time, as well as a surprisingly simple yet performant F S method, not based on RNNs but on Bag-Of-Words and a simple logbilinear additive model, learning word embeddings which are summed to produce a sentence's representation, with the objective of predicting the words from adjacent sentences. However, while RNNs presented many interesting features for NLP tasks, a few major intrinsic issues were quickly noticed: rst of all, while not speci c to RNNs, the unrolling process used in training (see Figure 5.1) caused vanishing gradient problems [START_REF] Hill | The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions[END_REF], due to the depths of the e ective networks being dependent on the desired unrolled size, which, to allow the proper processing of sentences and texts, ideally needs to be as long as the longest sequence in the dataset. While the LSTM [START_REF] Hochreiter | Long Short-Term Memory[END_REF] architecture was designed to try to circumvent this issue, by implementing mechanisms akin to long and short term memory in animal brains, it was still noticed that for particularly long sequences, and especially in encoder-decoder setups such as were used in Neural Machine Translation, even LSTM-based models had issues "remembering" early parts of input sentences. In translation tasks, this meant that for natural languages with di ering word orders for instance (the order in which the di erent syntactic elements are arranged, for example, subjectobject-verb vs. subject-verb-object), mistranslations would occur frequently for somewhat long sentences, as the semantic information from earlier parts of the input sentences would be overwritten or forgotten by the time the encoder had parsing all tokens. While bidirectional models could somewhat mitigate these issues, another mechanism was proposed to better allow decoders to refer to speci c parts of the input, which was referred to as attention [START_REF] Luong | E ective Approaches to Attentionbased Neural Machine Translation[END_REF][START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF]: instead of using the nal hidden state produced by iterating the encoder as the input sequence's vector representation, all intermediate hidden states, in theory containing information relevant to their respective position in the sequence, are kept. The decoder is then augmented with a so-called attention module, which, at each decoder iteration, assigns a score to each of the previous encoder hidden states, using some kind of scoring function (either static or itself a learning neural network), usually taking as input the decoder's current input hidden state (outputted from the previous iteration) and each respective encoder hidden state. These attention scores (once passed through softmax), can be interpreted to be a sort of soft (non-binary) alignment or mapping of the output tokens to the input tokens, and are used as weights to compute (for instance, through a weighted sum) a custom input sentence encoding vector for each decoding step. Using this mechanism, a decoder can therefore learn to attend di erently to each element of the input, at each time step, no matter how long the temporal distance between the two. This is in theory also more advantageous compared to using Convolutional Neural Networks, which are also a common alternative to RNNs (for classi cation tasks, or as sentence encoders), as CNNs can only capture long-distance relations with higher numbers of layers. Using this attention mechanism, state-of-the-art results were obtained for a variety of NLP tasks, such as Machine Translation [START_REF] Luong | E ective Approaches to Attentionbased Neural Machine Translation[END_REF][START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF] or Natural Language Inference [START_REF] Wang | Learning Natural Language Inference with LSTM[END_REF], and many others, usually outperforming non-attention-based models.

Noticing how well this attention mechanism was performing, and especially how it seemed to circumvent many of the issues of RNNs, especially in their encoder-decoder con gurations, [START_REF] Vaswani | Attention is all you need[END_REF] proposed an innovative idea: what if attention alone could be used as a basis for a sequence-to-sequence architecture? In their now very famous "Attention Is All You Need" publication, they propose the Transformer architecture as an alternative to recurrent (or convolutional) architectures, which it departs from in a few important ways: rst of all, unlike RNNs, Transformers have no sequential or iterative components to them, which eliminates all issues related to unrolling, and allows for better parallelization of computations (especially on GPUs or other related dedicated hardware). This also means that a Transformer has a xed cell is iteratively fed pairs of inputs (x i) and outputs (y i) from a sequence. To enable the learning of temporal patterns, information is allowed to ow between iterations, through the hidden state (h i), which is passed "forward" (though one can also have a cell attend to a sequence in reverse order if needed, such as in bidirectional RNNs [START_REF] Graves | Framewise phoneme classi cation with bidirectional LSTM and other neural network architectures[END_REF][START_REF] Taylor | Bidirectional Long Short-Term Memory Networks for Predicting the Subcellular Localization of Eukaryotic Proteins[END_REF]) in time. In practice, a RNN cell is usually "unrolled" (see diagram) for a given number of iterations, behaving as a sliding window on the input/output sequences, to optimize computation and parameters ne-tuning.

Figure 5.2: Illustration of a typical encoder-decoder setup using a Recurrent Neural Network architecture, such as can be found in Neural Machine Translation: a rst RNN Cell module acts as an input sequence encoder (in green), iteratively feeding on each element of the input ("Attention is all you need"), while propagating forward through time a hidden state (h i), until the end of the sequence is reached. At this point, the nal hidden state (h e) is considered to be an encoded representation of the rst input sequence, and it is fed as part of the hidden state of a second RNN Cell module, acting as a decoder. This decoder is trained to generate the expected output (in this example, a translation of the input from English to French), in an autoregressive fashion, being iteratively fed as input the previous predicted output token, with the rst iteration receiving a Beginning-Of-Sentence ([BOS]) marker. Usually, the input sequence encoding (h e) is kept as-is as a part of every subsequent iteration's decoder hidden state, to help prevent the decoder from "forgetting" the input after many decoding iterations.

sequence length it can use as input and output, though in practice one may try to circumvent this by "compressing" text that falls out of the current window into a special token's embedding vector (such as the [CLS] token in BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF]; see Figure 5.3). The Transformer architecture is based around a conceptually simple but generic and very powerful family of components which we can refer to as Transformer blocks, which are usually arranged in stacks, each block feeding its output as the input to the next in the stack, like in a regular neural architecture, where a complete model usually contains between one or two stacks. This stacking is made easier by the fact that a standard Transformer block intentionally uses the same dimensionality for its main input and output: as input, a block receives a matrix of a xed width corresponding to a xed-size sequence of embedding vectors, and outputs a similarly sized matrix, where each embedding vectors has been transformed and projected into a new embedding space, through an attention mechanism that spans the entire sequence (see Figures 5.6a and 5.6b).

Before a sentence can be presented as input to the stack however, a few important steps must be taken to turn it into a sequence of embedding vectors. First of all, while not absolutely mandatory, most popular Transformer architectures make use of particular tokenization schemes (transforming a contiguous string of characters into a sequence of separate linguistic tokens), usually based on n-grams or word-pieces: instead of splitting sentences into sequences of whitespace-separated word and punctuation tokens, which can require very large vocabulary sizes if one wishes to be able to handle rarely used words, rarer and harder to exhaustively include proper nouns, or even numerals, dates, and other miscellaneous elements, using sub-word tokens allows for a more e cient encoding of out-of-vocabulary elements, at the cost of slightly longer tokenized sequences compared to whitespace-based tokenization.The two most popular sub-word tokenization schemes in use currently are W P [START_REF] Wu | Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation[END_REF], notably used in BERT, and Byte Pair Encoding [BPE;Gage, 1994;Sennrich et al., 2016], notably used in the GPT model family as well as many other Transformer architectures. Once the text is tokenized, each token can be projected into an initial embedding space, usually through a simple lookup matrix whose entries will be learned as part of the Transformer's training process. However, one issue that is essential to address at this stage is the encoding of positional information: indeed, due to their design, unlike RNNs, Transformer blocks do not have the intrinsic ability to model temporal information, since the attention modules used span indiscriminately over the entirety of their input sequences. Thus, a solution proposed by [START_REF] Vaswani | Attention is all you need[END_REF] is to assign to each position in the sequence a positional embedding vector, which will be summed to the corresponding token embedding vectors, to add this positional information back into the input. These positional embeddings are usually constructed using multidimensional sinusoids, where each dimension corresponds to a di erent wavelength, allowing models to more easily learn relative positioning (which can be computed through simple linear transformations), also being a pattern that is easy to extrapolate for sequences length which may not have been encountered

during training. Some architectures also further add more miscellaneous information in this fashion, such as "segment embeddings", which encode which of a pair of two concatenated sentences a token is a part of (usually in addition to having a special separation marker, e.g.

[SEP] in BERT).

At the end of a Transformer stack, one is left with a sequence of embedding vectors that have been repeatedly transformed through each block, and which can then be used in various ways, the rst main one being to be decoded as another sequence of tokens, by simply projecting the embedding vectors (using a small linear model) into probability distributions over a token vocabulary, which is what is done as part of unsupervised Language Modeling (LM) tasks. Alternatively, one can project one of the output embedding vectors, or the entire output matrix, into any other type of distribution, over a set of labels for instance, to perform classi cation tasks. One can even perform multiple of these at once, using the same underlying Transformer model with a di erent set of "head" module(s) depending on the speci c task to be solved, all taking as input the same Transformer-output embedding matrix, which would hopefully have captured enough semantic information from the input sentence(s), and encoded it in such a way that a simple shallow linear model may be ne-tuned to extract the parts relevant to its objective. Realizing this, two major implementations of the Transformer architecture, BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] and GPT [START_REF] Radford | Improving Language Understanding by Generative Pre-Training[END_REF], proposed a somewhat novel approach: pre-training large (compared to the comparable models of the time, see Table 1.1) Transformer models jointly on various unsupervised language modeling or classi cation tasks, using large quantities of unannotated (and thus more readily available) text data, in order to teach them to extract general purpose semantic information from arbitrary sentences. These pre-trained models may then be later ne-tuned on smaller datasets, alongside the appropriate smaller head modules, e ectively performing transfer learning (see Pan and [START_REF] Sinno | Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales[END_REF] for a general overview) or domain adaptation to speci c tasks, without having to completely re-train a large model from scratch. [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] thus proposed the now very famous pre-trained general-purpose Transformer model, called BERT (which stands for "Bidirectional Encoder Representations from Transformers"). Using a single stack of Transformer blocks to form their model, the authors propose pre-training it using a novel Language Modeling objective, inspired by the Cloze task proposed initially by [START_REF] Taylor | Bidirectional Long Short-Term Memory Networks for Predicting the Subcellular Localization of Eukaryotic Proteins[END_REF], a language teaching or assessment tool, in which a student (human or, in NLP, machine) is presented with a piece of natural language text where a number of words have been erased or masked, and which must be lled back in with the help of the contextual information still present in the text: the authors thus propose a similar Masked Language Modeling (MLM) task (see Figure 5.3), in which an input sentence is perturbed with a number of tokens being masked (replaced by a [MASK] special token, or more rarely, with another randomly selected token), with the objective of predicting back the original tokens at the masked positions. Additionally, as this model is intended to be used in various types of NLP tasks, and because many of these require understanding the semantic relations between two or more separate (but related) sentences, the authors propose adding another objective which will be learned jointly with the MLM one: given a pair of sentences, which are either following each other in a document of the training dataset (positive class), or two random unrelated sentences (negative class), the model is tasked with predicting which of these two classes the pair is from, which is called the Next Sentence Prediction objective. To do so, both sentences are rst concatenated, with a special separator token ([SEP]) in between. Then, a special [CLS] ("Classi cation") token is prepended to the input sequence, and it is dealt with di erently than the others on the Transformer's output side: where the rest of the output embedding matrix will be fed through the language modeling part of the joint task, the output vector corresponding to the [CLS] token (in the very rst position) will instead be fed to a classi cation module training on the Next Sentence Prediction objective, as though it was an embedding vector for the entire input sequence. Combining these two objectives as part of the unsupervised pre-training process allows the BERT model to both learn intrinsically bidirectional language modeling (since masked tokens can occur anywhere, and in variable quantities in the MLM objective) as well as how to perform whole-sequence (potentially containing multiple [SEP]-separated sentences) classi cation tasks, through the [CLS] special token. Once pre-trained on a large quantity of unsupervised text, the authors showcase how the model can be ne-tuned to perform a more speci c NLP task, such as Natural Language Inference for example, by concatenating the premise and hypothesis sentences, and using the [CLS] token to predict the inference label for each pair. They evaluate this model on the various tasks contained in the GLUE benchmark [START_REF] Wang | GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding[END_REF], and improve, at the time, on state-of-art approaches by a relatively wide margin on all tasks, using their largest model variant, BERT LARGE , with approximately 345 million parameters. While pre-training such a large model requires a large amount of time and/or compute (BERT LARGE was reported to have taken 4 days to pre-train on 800 million words from the BooksCorpus [START_REF] Zhu | Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books[END_REF] and 2500 million words from English Wikipedia, using 16 Cloud TPUs simultaneously), once pre-trained, it can be ne-tuned for a speci c task in a much more reasonable amount of time and compute (approximately a few hours on a GPU, depending on the dataset size and hyperparameters). [START_REF] Radford | Improving Language Understanding by Generative Pre-Training[END_REF] on the other hand proposed the Generative Pre-Training approach, with a similar overarching set of principles, but a few major di erences, mainly in the pretraining setup: indeed, GPT uses a left-to-right autoregressive language modeling objective (see Figure 5.4), where, closer to RNN decoders than BERT's MLM objective, the Transformer is tasked with predicting the following tokens in a sentence, given all the previously predicted tokens. Due to the Transformer's non-recurrent nature, this is e ectively implemented by modifying the attention modules (see Figures 5.6) to prevent any position from attending to positions to its right (which, in an iterative decoder, would not have been generated yet), and then shifting the input sequence to the right, by usually, prepending a starting position Beginning-of-Sentence marker ([BOS]). At inference time however, once the model has been ne-tuned, such autoregressive models are actually iterated, initially feeding a starting input sequences (which may be at a minimum, a single [BOS] token), which will be run through the Transformer to predict the next token. The new expanded sequence is then fed back recursively, until some stopping condition is met, usually when the End-of-Sentence ([EOS]) token is generated, or once the maximum sequence length has been hit, whichever happens rst. While simply picking the most probable predicted token at each decoding step is a possibility (usually referred to as "greedy" decoding), various other methods have been proposed which in practice produce much higher quality results, such as beam-search [START_REF] Shao | Generating High-Quality and Informative Conversation Responses with Sequence-to-Sequence Models[END_REF][START_REF] Vijayakumar | Diverse beam search for improved description of complex scenes[END_REF], in which multiple paths are explored in parallel in the probability-weighted decoding tree, selecting only the most likely complete path, as a whole product of all the decoding steps' weights. Unlike BERT, this is the only objective that GPT is pre-trained on. When ne-tuning on a speci c whole-sequence (which may also be a sentence pair, using a similar separator special token) classi cation task, an appropriately sized linear classi cation head module is added, taking as input the entire Transformer output embedding matrix, instead of just a single dedicated position's vector, like in BERT. The autoregressive objective is also kept during ne-tuning as well, to prevent the ne-tuned Transformer from "forgetting" too much its pre-trained language modeling capabilities. This approach was also evaluated on downstream tasks from the GLUE benchmark [START_REF] Wang | GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding[END_REF], also beating the state-of-art performance of the time (though it was then beaten by BERT when it came out a year later).

In actuality, these two approaches can be viewed as two di erent specializations of the original Transformer encoder-decoder architecture initially proposed by [START_REF] Vaswani | Attention is all you need[END_REF] (see Figure 5.5), each using one of the two Transformer stacks originally described (BERT, the encoder sub-Transformer, and GPT, the decoder sub-Transformer). This original architecture was itself tested and evaluated for Neural Machine Translation, where the original language sentence was rst encoded by the encoder Transformer, whose output embedding matrix was then used in the cross-attention modules of the decoder Transformer, to condition the autoregressive generation of the target language sentence. In our own experiments, we generate explanations based on an input instance, for which we also need to condition the generation of a sequence on the representation of another; we therefore chose to use this more generic architecture. Speci cally, we make use of the BART model [START_REF] Lewis | BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension[END_REF], which combines a Transformer-based encoder-decoder architecture with a speci c denoising objective suitable for monolingual text. [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] for instance: an input sentence ("Attention is all you need") is perturbed by masking one of the words (here "need") at any position in the sequence, replacing it with a special [MASK] marker. Each input token is then projected into an embedding space, however, because Transformers have no innate temporality modeling, the entire sequence being processed at once, with interactions between positions only taking place inside the attention mechanism of the Transformer blocks (see Figure 5.6), positional embeddings are added to form the nal input embeddings. These are then processed by a given number N of Transformer blocks, with the nal layer outputting a vector representation (t i) corresponding to each input token. For the MLM task, these are decoded back into words, with the objective of restoring the unperturbed sentence, by correctly recovering the masked token. Usually, an additional [CLS] ("Classi cation") special token is prepended to the input: this token is intended to represent the input sequence in its entirety, by jointly being used on the output side to perform a whole-sentence classi cation task for example, such as predicting if a pair of (concatenated) sentences are following each other directly in a text or not. [START_REF] Radford | Improving Language Understanding by Generative Pre-Training[END_REF][START_REF] Radford | Language Models are Unsupervised Multitask Learners[END_REF][START_REF] Tom | Language Models are Few-Shot Learners[END_REF]: this setup uses a modi ed Transformer block, in which the attention mechanism (see Figure 5.6) is blocked (indicated by the red lines) from attending to "future" (rightward) positions. Combined with shifting the input sequence to the right, by prepending a Beginning-Of-Sentence marker for example ([BOS]), this setup emulates an autoregressive decoder, in which the model conditions the prediction of the next token in the sentence on the previously predicted tokens only, until a terminating End-Of-Sentence ([EOS]) marker is produced. At inference time, such a model needs to be actually iterated according to some decoding algorithm, feeding the predicted sequence back in as the next input recursively. [START_REF] Vaswani | Attention is all you need[END_REF], and as can be found in BART [START_REF] Lewis | BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension[END_REF]: this setup emulates the most closely the typical RNN encoder-decoder architecture, as used in Neural Machine Translation tasks. It combines two Transformer block stacks, one acting as the encoder, whose role is to produce a matrix representation (T enc) of the input sentence, which is then fed to the cross-attention modules (see Figure 5.6b) of a second decoder Transformer, which will then be able to condition its sequence decoding on this input sentence, in addition to the regular autoregressive process (see Figure 5.4), in this example, to perform an English to French translation.

(a) Schematic illustration of a single Transformer attention head module: an input sentence ("Attention is all you need") is rst tokenized, embedded (see Figure 5.3 or 5.4) and nally packed into a single matrix X of token embedding vectors. Then, a query (Q), a key (K), and a value (V) matrix are computed by multiplying X with each corresponding learned parameter (W Q ,W K ,W V). Q and K are used to compute attention scores which then weight the values V (which roughly correspond to the attended to hidden states in an RNN encoderdecoder setup) to obtain the intermediate output Z. Alternatively, for an attention head deeper in a Transformer block stack, the input will be the previous block's output T i´1 . In either case, these are referred to as "self-attention", as opposed to cross-attention module (see Figure 5.5), in which K and V will instead by computed from the output of an encoder Transformer stack, T enc .

(b) Schematic illustration of a Transformer block module: multiple attention heads are used in parallel (each with their own parameters) to compute individual intermediate outputs. These are then concatenated, and fed through a linear layer, before going through a two-layer fully-connected layer with a non-linearity (ReLU). In between each submodule, residual connections [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] and layer normalization [START_REF] Lei Ba | Layer Normalization[END_REF], which improve stability and overall help reduce the training time of the model. These blocks will usually be stacked on top of each other a given number of times to form a single model. Alternatively, in a decoder Transformer, a multi-head cross-attention module will be inserted in between the regular (or left-to-right masked) multi-head self-attention and the fullyconnected module. It is identical to the preceding multi-head self-attention block (residual connection and layer normalization included), except it receives part of its input (see Figure 5.6a) from an encoder Transformer. For our experiments, we oriented ourselves towards the BART Transformer model [START_REF] Lewis | BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension[END_REF], because it possesses many relevant features and advantages for the purpose of jointly performing a classi cation task while also generating explanations. BART is a denoising sequence-to-sequence pre-trained auto-encoder, which essentially combines the capabilities of BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] and GPT [START_REF] Radford | Improving Language Understanding by Generative Pre-Training[END_REF], with a bidirectional "noisy" text encoder transformer, whose last hidden state is fed into the cross-attention layers (following the encoder-decoder setup initially proposed in [START_REF] Vaswani | Attention is all you need[END_REF]) of an autoregressive left-to-right decoder transformer. This architecture can be pre-trained for any type of denoising task: indeed, while bidirectional models like BERT are designed and trained for token masking, where a certain number of words in an input text are replaced with [MASK] tokens which must then be lled back in contextually, and autoregressive models such as GPT for left-to-right language modeling, BART can be pre-trained with a variety of text corruption schemes, such as arbitrary span masking/deletion (where any span of text, including zero-length ones, can be masked by a single [MASK], or completely deleted), or arbitrary permutations of tokens or sentences. During pre-training, the noisy input is usually fed into the encoder, while the decoder is fed the original intact input in an autoregressive fashion. However, this need not be the case when ne-tuning for speci c tasks: indeed, by using di erent "head" modules at the end of the decoder, and by feeding the input instances in the appropriate fashion to the encoder and decoder modules, this architecture has been used to perform various tasks, ranging in type from classi cation (using a classi cation head layer which is fed the last hidden state of the decoder for the nal token of the output), to text generation (using a language modeling head layer), and even machine translation (by adding an intermediate small encoder network before the primary encoder, to allow the learning of a mapping to the target language's word embedding space), which was also expanded upon in a multilingual variant of BART, called BART [START_REF] Liu | Multilingual Denoising Pre-training for Neural Machine Translation[END_REF].

Taking inspiration from the conceptual frameworks showcased in the work discussed in Section 4.4, in particular the setups presented in Camburu et al. [2018] for the SNLI dataset, we propose ne-tuning a pre-trained BART architecture as a base to construct a joint natural language explanation generator and classi er model. We thus experimented with three di erent joint classi cation-explanation setup variants, using a common underlying BART architecture (see Figure 5. In all three cases, a BART encoder is tasked with producing an embedding matrix for the input instance (in this example, from SNLI), which is then used by the cross-attention modules in the BART decoder to condition the explanation generation and classi cation sub-tasks.

(a) The J S variant: in this Explainer model, the BART decoder is equipped with a language modeling head, tasked with learning to produce explanations autoregressively, conditioned on the input instance, and also a simple one-layer linear classi cation head, which takes as input the very last produced output embedding vector, corresponding to the End-of-Sentence ([EOS]) special token. This is similar to the way the [CLS] token is used in the BERT architecture (see Figure 5.3), except here the token used must be the very last one generated, so that it may have attended to the entirety of the sequence, due to the left-to-right masking present in the BART autoregressive decoder.

(b) The J A variant: this variant is similar to the J S one, except the classi cation task is performed by an auxiliary smaller Transformer model (D R BERT), which takes as input the entire decoder output embedding matrix.

(c) The E A G variant: in this nal variant, no classi cation head module is present. Instead, the classi cation sub-task is merged with the explanation generation, by prepending the input explanations during ne-tuning with the pattern "<Label> because, ", where <Label> corresponds to the ground-truth label of the instance (in this example, the NLI inference class). The only objective function is the one associated to the conditional language modeling sub-task, however we still need to compute the classi cation accuracy metrics, so the same pattern is used to extract the generated label out of the decoded output, which is then matched to the task's possible labels by name. the R BERT [Liu et al., 2019c] tokenizer-indexer as implemented in the Hugging Face library [START_REF] Wolf | Transformers: State-of-the-Art Natural Language Processing[END_REF]. For C S E, we use the following scheme instead: "[BOS] <question> [EOS] [EOS] <answer choice n°1> ; <answer choice n°2> ; <answer choice n°3> [...] [EOS]". We use semicolons as separators as they never otherwise appear in question or answer choices and thus may be exploited as a task-speci c separation marker.

• the BART decoder with its pre-trained language-modelling head module, which is by default fed the corresponding explanation for the current instance, as input and output (during training), autoregressively, inspired by the suggested text-summarization setup from [START_REF] Lewis | BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension[END_REF].

Unlike some of these approaches however, we speci cally then design each of our three variants such that there are no interruptions of losses' gradients ow in the entire architecture (for the rst two two-headed models, the two loss functions are simply added together), such that the underlying core BART model is forced to learn both the classi cation and explanation aspects truly jointly:

• the J S variant performs both the inference-relation classi cation task and the production of the accompanying explanation using the same common BART encoderdecoder, with a simple one-layer linear softmax classi cation head added, as suggested by [START_REF] Lewis | BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension[END_REF], which is fed the decoder's nal layer hidden state vector corresponding to the last End-of-Sentence ([EOS]) token output (which is roughly related to the similar approach used with the BERT architecture's [CLS] token, except BART's is located at the end and not the beginning, due to the decoder's autoregressive left-to-right nature). This setup is roughly inspired by the P A E approach from Camburu et al. [2018], though unlike them, we do not condition the generated explanation on the predicted label by adding it to the initial decoder input. In fact, due to the autoregressive nature of the BART decoder, with the classi cation head module attending only to the last generated token's position in the hidden state, this variant, and the next one, could be more accurately placed into the explain-then-predict category. In the case of C S E (in both this variant and the next one), the classi er predicts a numeric label corresponding to the correct answer's position in the answer choices semicolon-separated list.

• the J A variant, employs an auxiliary transformer model to help perform the classi cation task, on top of the explanation-generation common architecture. We chose to use the pre-trained D R BERT model from the Hugging Face library [START_REF] Wolf | Transformers: State-of-the-Art Natural Language Processing[END_REF] (inspired by the distillation method shown in [START_REF] Sanh | DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter[END_REF]), which here is fed the last layer's hidden state produced by the common BART decoder, bypassing the transformer's input embedding layer. We chose this approach to in theory allow the BART decoder not to have to learn to potentially fully encode prediction related information in each generated token position: indeed, as the decoder does not directly know when the sequence of tokens will end (especially at inference time, since a step-by-step decoding algorithm is used to iteratively generate each encoding vector), it is in theory forced to either pack the relevant label-related information in every output embedding vector, or to more carefully learn to "expect" when the end of the generated sequence may occur (or partially both).

• the E A G variant reformulates the task as a purely generative one, where the input and output of the common decoder module combines both the label (as a single word corresponding to the inference relation for SNLI, or a group of words corresponding to the content of the predicted answer) and the explanation associated to each instance, using the following pattern: "<Label/Answer> because, <Explanation>". As this variant will thus generate the prediction rst, autoregressively, it could be unlike the previous two considered a predict-then-explain approach.

Downstream Task Evaluation

For our experiments, we used the ltered training, development and test splits provided in the SNLI dataset1 [Camburu et al., 2018], and the processed (ltered) training and development sets from the C QA 1.0 version of C S E2 (as the publically available C QA test set does not provide ground-truth answers and was thus not annotated with explanations).

For the J S and E A G variants, we used the facebook/bart-large pre-trained model from the Hugging Face library, which contains 12 encoder and 12 decoder layers, with a hidden unit size of 1024, for a total of approximately 406 million trainable parameters. For the J A variant, due to memory constraints caused by having to t the distilroberta-base pre-trained classi er (6 layers, 768 hidden units, 82 million parameters), as well as to t the di erently sized hidden unit dimensions, we instead used the smaller facebook/bart-base pre-trained model (12 total layers, 768 hidden units, 139 million parameters). After initial experimentation, we found that freezing the pre-trained word embedding modules either slightly improved or at the very least did not harm the di erent models' performance, while producing a signi cant speed-up and reduction in memory usage. These experiments were performed on a 48-cores CPU, 250 GB of RAM local server, equipped with 3 GPUs (2 ˆNvidia GTX 1080 Ti, 1 ˆNvidia RTX 2080 Ti) with " 12 GB of VRAM each. We used the A NLP [START_REF] Wallace | AllenNLP Interpret: A Framework for Explaining Predictions of NLP Models[END_REF]] framework3 and PyTorch for all our experiments. All variants were trained with the Hugging Face A W [START_REF] Loshchilov | Decoupled Weight Decay Regularization[END_REF]] optimizer implementation, with a polynomial learning rate decay scheduler. For the decoding algorithm at inference time, we tried both beam-search (with 4 beams) as well as sampling with various hyperparameters, but found that sampling is much harder to get good subjective-quality outputs with (especially as there are more hyperparameters to tune), and thus chose to default to beamsearch. As done by [START_REF] Lewis | BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension[END_REF], we use label smoothing [START_REF] Pereyra | Regularizing Neural Networks by Penalizing Con dent Output Distributions[END_REF] with a parameter of " 0.1 for the conditional language modeling objective during training, which smooths out the target 1-hot encoded tokens, replacing the value 1 by 1 ´ and all the 0 by V ´1 , where V is the token vocabulary size.

We ne-tuned each of our variants on the SNLI train set for 10 epochs (or fewer, with early stopping), and 30 epochs (or fewer) on C S E. We evaluated our models using the simple classi cation accuracy (as is done in the respective original contributions) for the classi cation part of the task. To evaluate the explanation generation sub-task, we initially consider using perplexity, as is traditional in natural language generation tasks using language models. Perplexity is usually de ned by the normalized inverse probability of a language model predicting the entirety of the test set. In practice, it is computed by taking the exponential of the average sequence cross-entropy loss on the test set. This metric can be interpreted as measuring how surprised a model is on average when having to predict the next word in a sentence of the test set, or in other words, it indicates the average weighted number of tokens the model considers likely to be the one appearing next in the test set, at each decoding step. A lower perplexity model is thus in theory "better" than a higher one, as it is more "sure" on average of the next word it should generate at each decoding step. While this metric is frequently used in language generation tasks, we had multiple issues with it. Firstly, due to the signi cant implementation di erences between training time and inference time, caused in parts by the presence of the decoding algorithm (in our case, beam-search) as well as the label smoothing, our inference time loss calculations appear to behave inconsistently, reporting very high average losses at inference time (on either the dev or test set) for all three of our models: at training time we obtain losses in the range of approximately 2 to 2.5, and thus training perplexities in the range of " 7.3 to " 12.1, however, the calculated average losses on the test and dev sets are all close to approximately " 10.7, leading to perplexities of approximately " 44355.8, which is orders of magnitude higher than what would be expected of a model that ends up behaving subjectively comparably to those of Camburu et al. [2018] for instance. As we do not believe this measure we implemented to be accurate, further investigation would be required to determine where exactly the potential issues are located.

But more importantly, as a comparative metric, we nd perplexity is not very informative of the quality of the produced explanations, as it is too dependent on the exact formulation of the human-annotated explanations. In summarization or machine translation, as well as other work similar related to language generation, the automated metrics BLEU [START_REF] Papineni | Bleu: A Method for Automatic Evaluation of Machine Translation[END_REF] and/or ROUGE [Lin, 2004] are often used in complement or as alternatives to perplexity.

Both of these metrics are based on comparing n-grams statistics between candidate generated texts and reference human-annotated texts. BLEU (BiLingual Evaluation Understudy) is a metric function originally proposed by [START_REF] Papineni | Bleu: A Method for Automatic Evaluation of Machine Translation[END_REF] to evaluate the quality of a machine-translated text by comparing them to one or more reference human translations, is computed using the following formula:

BLEU " BP ˆexpp N ÿ n"1 1 N log p n q p n " ř cPcandidates ř n-gramPc count clip pn-gramq ř c 1 Pcandidates ř n-gram 1 Pc 1 countpn-gram 1 q BP " $ & % 1 if CL ą RL expp1 ´RL CL q if CL ď RL
where: N is the maximum size of n-grams considered (usually, if unspeci ed, N " 4);

p n is the modi ed n-gram precision metric, which is computed by taking the sum across all candidate texts of the maximum counts of n-grams appearing in both the candidate text and any one reference text, clipped by the maximum number of times this n-gram occurs in any reference text, divided by the total number of n-grams in the entire candidates corpus; BP is the Brevity Penalty, which is argued to serve as a better alternative to recall in this case, since this metric was intended to be used alongside multiple varied reference translations, and recalling more words from across multiple di erent translations would very likely diminish the translation quality while increasing the metric. It is computed using RL, the best-match References Length, which is the sum of the lengths of the best matching (closest) length-wise references for candidate (or shortest length on ties), and CL, the Candidates Length, which is just the total length of the candidates corpus. ROUGE (Recall-Oriented Understudy for

Gisting Evaluation) on the other hand is a text summarization metric which was proposed later by Lin [2004], with similarities and di erences to BLEU: both measures are intended to be usable with a number of di erent reference texts for each one candidate, however, where BLEU is a precision-based metric, ROUGE by default favors recall instead, arguing that it is more important in summarization to be exhaustive than to be accurate. However, in practice, both recall and precision are often computed as part of this metric, and may then be combined into a single F1-measure (the harmonic mean between precision and recall) as follows:

ROUGE n-R " ř rPreferences ř n-gramPr count overlapping pn-gramq ř r 1 Preferences ř n-gram 1 Pr 1 countpn-gram 1 q ROUGE n-P " ř rPcandidates ř n-gramPr count overlapping pn-gramq ř r 1 Pcandidates ř n-gram 1 Pr 1 countpn-gram 1 q ROUGE n-F1 " 2 ROUGE n-R ´1 `ROUGE n-P ´1
where these scores are generally computed for n " 1 and n " 2. ROUGE also proposes additional measures, for example, ROUGE L which is based on Longest Common Subsequence (LCS) of tokens between a candidate sequence c and any reference sequence r:

ROUGE L Rpc, rq " LCSpc, rq |c| ROUGE L Ppc, rq " LCSpc, rq |r| ROUGE Lpc, rq " 2 ROUGE L Rpc, rq ´1 `ROUGE L Ppc, rq ´1
where the global metrics are obtained by average over the entire candidates and references corpora.

These metrics are often debated not to be ideal [START_REF] Callison-Burch | Re-evaluating the Role of Bleu in Machine Translation Research[END_REF]Graham, 2015 [START_REF] Banerjee | METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments[END_REF], proposes expending upon the principles of BLEU and ROUGE, allowing to count non-exact matches between tokens, by running di erent alignment (1-to-1 or 1-to-0 mappings between two sequences) modules sequentially, which may match tokens if they share the same lemma or stem, or if they are recorded to be synonyms, for example, in addition to exact matching.

Table 5.1 thus shows a comparison of our three setups with respect to (a) classi cation accuracy and (b) automatic measures for the evaluation of generated explanations (BLEU and ROUGE) on the SNLI dataset. We can see accuracy is good in all cases, with two setups (J S and E A G) being better than existing work on the same data. The second one is even 10% higher than the best performing model from Camburu et al. [2018], E T P A . Their "best" model is here considered with respect to all all metrics and criteria, including perplexity, BLEU, and subjective explanation quality. Their best performing model on accuracy alone is instead 2% better than E T P A , at 83.96%, however, it is signi cantly worse on all other aspects, with a BLEU of 22.4, and only approximately half as many (34.68% vs. 64.27%) of the rst 100 produced explanations judged correct by human evaluators.

E A G also has a better BLEU and ROUGE scores than the other compared systems, by a very wide margin, though this may be very likely partially explained by addition of the xed "<Label> because, ..." pattern to the explanations. In addition, as mentioned above, BLEU and ROUGE are somewhat non-ideal, especially in the case of generating explanations, as there can be a large overlap of tokens between compared sentences, but subtle and small di erences can change the nature of explanations (negation, word order, etc.). This is in addition particularly true for NLI, which tries to logically relate parts of two di erent sentences. was trained with automatically generated explanations, produced by a model itself ne-tuned only on the C S E human-annotated explanations, without the Question Answering objective. This may explain the lower performance of our variants, as we trained only on the "raw" human-annotated explanations. This may also further validate the results and observations from the authors, the CAGE framework allowing for a sort of "denoising" of the admittedly (by the authors, and our own qualitative judgement) very noisy human explanations. Again, we obtain the best automated text generation metrics with the E A G variant, which also seems to con rm that the static pattern inserted in the decoder inputs as part of the reformulation of the task as a purely generative one, may at least partially arti cially in ate those metrics. performance on the main task still remain quite low, compared to best models Rajani et al. [2019], though E A G does slightly beat their non-CAGE experiment, where they simply feed the same BERT classi er directly with the noisy C S E explanations, similarly to our variants, obtaining an accuracy of 65.5%, compared to our 67.79%. For some reason, the J A is unable to learn to solve the main task, despite seemingly being able to produce explanations somewhat successfully. After a subjective qualitative analysis of the task, we chose to focus the rest of our work on the SNLI dataset only. Indeed, we thought this task might be perhaps too complicated for our approach: as advertised in its abstract, the C QA [START_REF] Talmor | CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge[END_REF] dataset is overall very challenging, as it requires a vast amount of world-knowledge, due to the conciseness and lack of contextual information present in most of the questions. We found that a lot of instances seem to require employing a strategy of "eliminating" the two most incorrect, or even incoherent answers, rather than selecting the best or most appropriate one, which is often non-trivial even for humans (which may explain the current human accuracy of "only" 88.9%, on the version 1.11 of the dataset). Moreover, we found through qualitative analysis that both the underlying C QA questions and sets of answers, as well as the human-annotated explanations added in C S E are overall quite noisy: for example, in Table 5.3 we showcase a few such problematic instances, from the rst 250 instances of the dev set (out of 950). In many instances, whether in the question, answers, or explanation, we can nd typos, ungrammatical structures or ordering of words, ambiguous or even mislabeled answers, and in general just poor text uency, which may negatively a ect models which are not as performant at dealing with such types of noise in addition to the capabilities required to deal with the speci ed Question Answering task and the generation of accompanying explanations.

While downstream performance on the main classi cation (or question answering) tasks In the fourth column, we list the location of each problem (Q = Question, A = Answers, E = Explanation) followed by its nature, and then highlight the issue in the instance with the associated color.

C S E

Explanation Quality Evaluation

Since an overall natural language explanation quality is hard to formalize and describe [Miller, 2017], we decided to implement a multi-criterion evaluation scheme which seemed easier to judge than a single encompassing score, and could lead to a better separation of human perceptions and subjectivity of produced explanations. Evaluators were asked to assess the three following criteria:

1. the uency of the produced explanation, that is, how syntactically, grammatically, and semantically (in a limited sense) close to natural human language it is judged to be, without necessarily taking into account the actual "explanatory content". Informally, the criterion was put as: Ignoring the rest of the instance, does this output "sound" or "read" like natural English? For example, a low uency NLI instance might look like this (with the relevant issues highlighted in bold): P : "Two dogs are playing catch in a eld." H : "Two dogs are outside." L E : "Entailment, because feld outside."

Here, uency is poor because a spelling error is present, and a word is missing from the explanation. A higher uency version might instead look like: P : "Two dogs are playing catch in a eld." H : "Two dogs are outside." L E : "Entailment, because a eld is outside."

2. relevance and coverage, which encompass the quantity and quality of references in the produced explanation, to the relevant elements of the two input sentences in the SNLI instance. Informally, the criterion was put as: Were each relevant elements of the premise and hypothesis mentioned adequately in the explanation? For example, a low relevance and coverage NLI instance might look like this (with the relevant issues highlighted in bold):

P

: "A Land Rover is being driven across a river." H : "A vehicle is driving through water." L E : "Entailment, because a Land Rover is a vehicle and the sun is bright."

Here, the relevance is low because of the last second part of the explanation which does not refer to an element that is present in either the premise or hypothesis, and the coverage is low because a relevant element is missing from the explanation. A higher relevance & coverage version might instead look like: P : "A Land Rover is being driven across a river." H : "A vehicle is driving through water." L E : "Entailment, because a Land Rover is a vehicle and a river is owing water."

3. the overall perceived utility of the produced explanation. Informally, this was put as: Subjectively, is the explanation useful in understanding why this speci c inference label was selected by the model? For example, a low utility NLI instance might look like this: P : "A man playing an electric guitar on stage." H : "A man playing banjo on the oor." L E : "Contradiction, because a man playing an electric guitar on stage cannot be playing banjo on the oor."

Here, the utility is low because the explanation is both overly verbose and not speci c enough, copying large portions of the input verbatim. A higher utility version might instead look like: P : "A man playing an electric guitar on stage." H : "A man playing banjo on the oor." L E : "Contradiction, because a banjo is not an electric guitar and the oor is not a stage."

In addition to using three criteria instead of a single subjective rating, contrary to Camburu et al. [2018], and inspired by the manual evaluation protocol on fact-checking explanations found in [START_REF] Atanasova | Generating Fact Checking Explanations[END_REF], we also did not associate a score to each criterion. Instead, we asked them to perform pairwise comparisons for a set of anonymized system outputs, generated for a number of instances of the e-SNLI test set (10 instances for a three-way comparison in Table 5.4, and 30 instances for a two-way comparison in Table 5.5, for a total of 30 comparisons per annotator for each criterion), where for each of the three criteria, they had to vote for the output they considered the best in that criterion, with an option for ties ("Indecision" in the Tables). This evaluation was performed on the test set, similar to the human evaluation in Camburu et al. [2018].

We rst performed this evaluation on the outputs of our three variants, whose results are shown in Table 5.4. In addition to the total votes for each model and criterion (as well as the ties, marked as "Indecision", we also computed the inter-evaluator agreement using Fleiss' Kappa [Fleiss et al., 2003]. We can observe a moderate level of agreement, which, from post-hoc analysis, we found we could mainly attribute to a discrepancy between one judge and the other two, as well as a lot of variations between votes and ties for speci c pairs of systems and criteria. For example, uency was very often judged too similar in each pair of outputs to take a decision, for almost half of the comparisons. We nd striking that the best system regarding accuracy and BLEU/ROUGE scores on the automated task evaluation (E A G) seems to be weakest by far on the relevance & coverage criterion, and much lower than J S on utility, while seemingly being the most uent. This contributes to show how automated metrics like BLEU or ROUGE can be misleading when judging the quality of explanations. While the other two criteria still have quite a high number of indecisions, uency appears to be the most subjective criteria overall, as can be seen from the lowest agreement measure as well, though from a more qualitative analysis, we believe this to be because all three models are surprisingly uent, considering the amount of noise in the training data.

Based on this rst evaluation, we thus decided that J S was a good compromise model, as it has the most overall utility votes, decent relevance & coverage, and a good classi cation accuracy on the main prediction task. The fact it is the least uent could also be seen as bene cial, since it is reasonable to expect that low uency would normally negatively impact the evaluators' votes in its utility, yet it is still the best rated of the three in that regard. We thus performed a second similar human evaluation, comparing the outputs of this model to those of the E T P A model from Camburu et al. [2018], against which we previously evaluated our models, on the SNLI task. We followed the same protocol, but used di erent instances from the previous human evaluation, waiting a few weeks between the two, such that evaluators were less able to remember and re-indentify the previously selected model. Results from this second evaluation are shown in Table 5.5. Compared to the previous results, we can see that inter-evaluator agreement is much lower for uency and relevance & coverage this time, to the point where we can question whether evaluators could di erentiate the two systems, at least on these two criteria, whereas for the utility criterion, the results are much closer to those of the previous evaluation, showing a clear preference in favor of our model compared to the previous work from Camburu et al. [2018]. As a sanity check, we performed a sign test for this evaluation, combining the votes from all three evaluators, for which we obtain the following p-values: 0.7754, 5.55 ˆ10 ´6, 1.97 ˆ10 ´6 for uency, relevance & coverage, and utility, respectively. These seem to con rm that uency was again the most subjective, and probably the least pertinent criterion overall to discriminate between both our three variants, and J S against E T P A , as most generated explanation seem to be written in well-structured and grammatically correct, if perhaps often a little verbose English (which is not necessarily a drawback).

After these two evaluations, we also did a short qualitative analysis of some of the outputs from all four systems. We note that, all things considered, the quality of generated explanations is surprisingly good, especially when considering the noisiness of the training human-annotated explanations. Indeed, if we look at a few example instances with their respective outputs in Table 5.6, we can see that the di erent model-generated explanations di er signi cantly from their human-annotated counterparts, at least in their form. Interestingly, we note that quite often, when a model misclassi es an instance, the explanation it provides can be viewed as an acceptable justi cation for its label prediction, which can lead one to question whether the underlying NLI task, or at the very least its particular incarnation in the SNLI dataset, is perhaps not a little too subjective with regard to the closed entailment classes which are to be predicted. For example, in sub-Table 5.6a, the J A model mispredicts the neutral label when the ground-truth is supposedly entailment. Looking at the generated explanation, while this is not made explicit by the model itself, one could consider the justi cation and thus the prediction also acceptable for this particular instance: indeed, while the most likely human extrapolation of the premise is that the mentioned children are playing in some kind of pool and would therefore very likely be exposed directly to water, this is actually not speci ed in the premise text itself, and one may therefore equally not make this assumption. The children could be playing in a shallow puddle while fully clothed in rain-gear, for example, which one may then not necessarily consider as equivalent to being directly wet. A lot of this we believe has to do with how the SNLI dataset was constructed [START_REF] Samuel | A large annotated corpus for learning natural language inference[END_REF]: indeed, the premises in this corpus are originally image captions, and, while the crowd-workers who then produced di erent hypotheses for each inference label did not have access to these images, simply having the knowledge that they were dealing with descriptions of photographs (which was explicitly speci ed in the data collection instructions presented to the annotators) will invariably bias humans when mentally " lling the gaps" left out of the caption. To test whether our models may perhaps be able to correct their prediction if presented with additional more explicit situational information, we tried modifying some instances which some of our models had technically misclassi ed but still produced an acceptable label and explanation for. In Table 5.7 we show one such example pertaining to the previously mentioned instance from Table 5.6a: as we can observe, specifying that the children are unambiguously playing in a pool while wearing swimsuits, which should indeed entail that they would be directly wet, does not lead the J A model to revise its decision, and it persists with roughly the same explanation form and content as with the o cial instance. While trying other variations, we also nd cases where this particular model gives an adequate explanation for the entailment label, and yet still predicts neutral. This may be a sign that the auxiliary classi cation module is occasionally misaligned with the explanation generation module, but this is de nitely not something that is speci c to this model, though we were not able to ascertain if it was a more prevalent phenomenon with this particular variant or not. More work will be required to properly study these aspects, which will most likely require some degree of automation, as manually altering instances and subjectively evaluating the new outputs is not really feasible. [START_REF] Camburu | Make Up Your Mind! Adversarial Generation of Inconsistent Natural Language Explanations[END_REF] for example, followed-up on their work on SNLI by developing a form of adversarial attacking scheme, to reveal inconsistencies in automatically generated explanations.

Following this, we also took a look at de nitely misclassi ed and/or wrongly explained instances, such as the example shown in Table 5.8, for which we noticed various types of "failure modes": rstly, and as mentioned above, we found quite a number of instances where the predicted label and explanation were not in accord with each other, whether the predicted label was correct or not. These unfortunately were to be expected, as no machine learning architecture currently is able to perform either classi cation or text generation perfectly on these types of datasets, and there are no reasons to expect this to be di erent for an architecture which does both of these at once. However, it is even more problematic with this type of explanation-explanandum mismatch, as it is fundamentally di erent from traditional misclassi cation/misprediction errors: indeed, outside of a model's underperformance, the latter can also often in more or less great parts be explained by label noise introduced mainly by human annotators, and for which various techniques have been and are being worked on (see [START_REF] Frenay | Classi cation in the Presence of Label Noise: A Survey[END_REF]; [START_REF] Frénay | A Comprehensive Introduction to Label Noise[END_REF] for general overviews) to deal with this type of issue, mainly through the automated identi cation of mislabelled instances, using some type of con dence metric [START_REF] Hovy | Learning Whom to Trust with MACE[END_REF]Chang et al., 2017;[START_REF] Swayamdipta | Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics[END_REF], followed by generally either reweighing or straight-up removal of those instances from the a ected datasets. Unfortunately, with explanation-explanandum mismatches, label noise cannot be pointed at as a direct culprit: ideally, even if such a model were to predict the incorrect label for a particular instance, it would still be strongly desirable for the produced explanation to help make sense of the wrong decision which was taken. Similarly, if the correct label is predicted, but the explanation for it does not make sense, it reduces the trust one may have in the model's ability to actually explain its reasoning. A second type of "failure mode" which we found to be qualitatively more pervasive and less trivial to notice at a glance however could be labelled as "miscomprehension errors": if we look at Table 5.8 for example, we can see examples of what we consider to be varying degrees of low-quality produced explanations, which seem to betray that the di erent models did not manage to properly parse and refer to elements of the input sentences. On this particular instance, both J

A and E A G did predict the correct label, however, and in particular for J A , the produced explanations feel unsatisfactory as they heavily paraphrase the input premise, without actually focusing speci cally on the elements which prove the entailment relation (in this case, that a large American ag is an American ag). On the other hand, J

S and E T P A [Camburu et al., 2018] misclassify the instance, and seem to do, according to their produced explanations, because they did not manage to fully (for the former) or accurately (for the latter) parse the entire premise sentence. In both cases, we believe a probable cause of this type of issue is due to the length and number of elements contained to potentially attend to in the input, which may be acting unintentionally as distractors for the di erent models. In the former two cases in particular, this may also be in parts explained due to the numerous human-annotated explanations in the dataset which follow simplistic templates, as remarked by Camburu et al. [2018], where the premises and hypotheses sentences were included in as is, often verbatim. While the original dataset was ltered for and re-annotated for the latter, we note that a large number of human annotations still seem to follow such templates, only with partial inclusions of the two input sentences in the explanations, or heavy paraphrasing, which may still lead models trained on this dataset to learn this type of behavior.

Table 5.6: Three examples of instances from SNLI and their corresponding combined (following the "<Label> because, <Explanation>" pattern) outputs from our three model variants, and also from the E T P A [Camburu et al., 2018] model, and the three human-annotated gold explanations for these instances. As can be observed, models often use similar explanation "templates", mostly dependent on the type of inference-relation, with variations in overall relevance and usefulness of explanations and/or accuracy of predicted labels. Gold Explanation 1 Contradiction, because if the two dogs are playing, they can not be resting. Gold Explanation 2 Contradiction, because one cannot be playing with resting simultaneously. Gold Explanation 3 Contradiction, because " playing " and " resting " contradict one another in that playing shows movement while resting shows non-movement. Neutral, because playing in the water does not imply swimming.

Gold Explanation 1 Neutral, because playing in the water does not mean they are necessarily swimming. Gold Explanation 2 Neutral, because not all playing ones in water are swimming. Gold Explanation 3 Neutral, because the girls can be playing in the water without swimming in it.

Table 5.7: Example of a modi ed SNLI instance and the outputs of our models on it. The modi ed part from the original (see Table 5.6a) are highlighted is bold. In spite of the additional information, the J A model persists in predicting the neutral label, with an explanation that is this time less believable due to the additional situational information given in the modi ed premise. The other two models however were not perturbed by this particular modi cation.

Premise

Four children are playing in a pool in swimsuits.

Hypothesis

The children are wet. Contradiction, because a man is either holding a power drill or a ag.

Gold Explanation 1 Entailment, because a man saluting in front of a large american ag is saluting the american ag. Gold Explanation 2 Entailment, because a man is saluting an american ag in both sentences. Gold Explanation 3 Entailment, because he is saluting the ag because he is saluting in front of a large american ag.

Conclusion and Perspectives

In this second part, we demonstrated how a Transformer architecture could be ne-tuned to jointly generate predictions, and explanations for those predictions. If this type of approach can be successfully generalized, this would enable such models to communicate a variety of useful information alongside their usual predictions, which would otherwise have to be manually extracted through the use of an appropriate explainability method, which often requires expert-knowledge to be correctly implemented and used. This part was the basis for a paper submitted to the ACL Rolling Review initiative in November 2021, and is currently under review.

Overall, as was somewhat initially expected, while the results are relatively impressive, especially considering how the base BART model we used in these experiments was not initially designed or pre-trained for the production of natural language explanations, the main disadvantage of this type of approach is that we rely on a black-box models to hopefully provide us with insights as to their own decision-making abilities. This implies that this process itself may su er from the same issues associated with black-box models when performing other tasks, that is, lack of intrinsic interpretability. In particular, the faithfulness of automatically produced explanations should be put into question, as NLE models should have no reasons to be any more robust to adversarial attacks than any other similar machine learning models, such as shown by [START_REF] Camburu | Make Up Your Mind! Adversarial Generation of Inconsistent Natural Language Explanations[END_REF] who designed a relatively simple attack scheme on the NLI hypothesis, which, without changing its overall meaning, causes not just an incorrect ipping of the predicted label, but also causes the Explainer model to produce an incoherent explanation to justify its error. Even if an Explainer model were to be designed and trained to be more robust to these types of attacks, it would not be a proof that its output explanations are faithful: on the contrary, a more "powerful" and robust-seeming model may deceptively learn to appear to be faithful, but may in actuality just produce post-hoc realistic-looking rationalizations in order to fool its evaluators. On the other hand, we argue that this is not exclusive to these models: indeed, even more formal and external explainability methods, such as LIME [START_REF] Tulio Ribeiro | Why Should I Trust You?": Explaining the Predictions of Any Classi er[END_REF] or SHAP [Lundberg and Lee, 2017], may be attacked in such a way as to allow a biased classi er to "hide" its biased nature behind innocuous-seeming explanations produced by these methods [START_REF] Slack | Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods[END_REF], especially when performed on a "remote" model one does not control [START_REF] Kwiatkowski | Natural Questions: A Benchmark for Question Answering Research[END_REF]. Additionally, these more formal methods usually require domain-experts to setup and properly analyze the results, which further complicates the generation of end-user comprehensible access to algorithmic decisions explanations. With the moving trend towards larger and larger architectures, both in and out of NLP domains, as can be seen with the growing popularity models like GPT 3 [START_REF] Tom | Language Models are Few-Shot Learners[END_REF], intrinsic interpretability methods, such as Interpretable Word Embeddings, do not seem to be a promising avenue to get useful explanations: indeed, these methods, which already had complicated applicability in non-intrinsically interpretable models like RNNs, have been made even less e ective with deeper Transformer-based architectures, and as the trend towards larger, less easily decomposable models continues, this will most likely not improve. While not necessarily a dead-end, as the general ideas such as sparsity of the learned representations may possibly be adapted to function in more recent architectures, most of the bene ts of normally using these intrinsically interpretable representations will be di cult to maintain after so many re-projections through a number of Transformer blocks, without severely modifying the underlying architectures. Similarly, more formal post-hoc explainability methods may have troubles dealing with the inherent complexity associated to deeply non-linear models with growing number of layers, from dozens to hundreds, and growing number of trainable parameters, from millions to billions (and possibly more). As such, it may be that end-to-end black-box production of Natural Language Explanations, especially exploiting the increasing abilities of large architectures to produce higher and higher quality texts automatically, could end up being the only feasible avenue to reach satisfactory explainability in Natural Language Processing, though care should be taken not to compromise so much on explanation desiderata, like faithfulness, that the whole enterprise loses its initial meaning and objectives.

Numerous perspectives are open in this area of research on Natural Language Explanations: rst and foremost, better, ideally automatic evaluation tools should be sought, as currently used automated metrics from Machine Translation and Automatic Summarization are not well adapted to this task. Additionally, testing and improving robustness and faithfulness of such Explainer models is paramount if these are ever to be used to inform real end-users: the attack scheme presented in [START_REF] Camburu | Make Up Your Mind! Adversarial Generation of Inconsistent Natural Language Explanations[END_REF] and the overall design of the approach in [START_REF] Kumar | NILE : Natural Language Inference with Faithful Natural Language Explanations[END_REF] (allowing to abductively diagnose how a model may have behaved, had some features of an instance changed) may be good starting points as both diagnostic tools as well as potential ways to improve the learning setups for Explainer models. More generally, a study of how well this kind of Transformer-based joint classi cation-explanation generalizes to Out-of-Distribution or out-of-Domain data is necessary, as high-quality largescale explanations-annotated datasets are di cult to construct: one possibility could be to try to use multitask learning, possibly combining both various tasks and datasets, but also maybe various distant supervision signals, for example, only partially and/or noisy human-annotated data, or even automatically annotated data, taking inspiration from the CAGE framework proposed by [START_REF] Fatema Rajani | Explain Yourself! Leveraging Language Models for Commonsense Reasoning[END_REF]. To relieve human-annotators from having to produce vast quantities of carefully explained instances, another avenue of research may be into Deep Active Learning techniques (see [START_REF] Ren | A Survey of Deep Active Learning[END_REF] for a general review), which aim to empower deeplearning models to actively solicit help on instances which they nd di cult, in theory reducing the amount of annotated instances required, as well as adding an interactive component to the training process, which may allow correcting issues as they occur during the learning process instead of after the fact.

General Conclusion

Properly explaining and understanding algorithmic decisions is a challenging task: whether one uses intrinsically interpretable models/components, or post-hoc explainability methods, a variety of issues stand in the way of the various desiderata one may focus on for produced explanations. In particular, models in Natural Language Processing pose their own unique challenges in regard to these aspects: in contrast to more "physical" systems, such as vision or audio, or tabular data, which usually is easy to parse by construction, natural language as a signal is highly abstract and tightly linked to the functioning of the human brain, of which we so far do not have a good grasp of. While it is possible to attempt to inject some intrinsic interpretability into commonly used linguistic representations, such as through the use of Interpretable Word Embeddings, these processes are de nitely not perfect, and may not be adapted to the evolutions we are currently seeing in the eld, towards larger and more complex pre-trained models. On the other hand, these very evolutions towards ever more opaque models mean there is an increasingly urgent need for explainability, if algorithms are to take part more and more in important decisions. While a number of post-hoc explainability methods currently exist, they are not perfect either, and care must be taken not to put too much faith into any single one method, as each have their quirks and limitations, which often require expert-knowledge to properly take into account. We proposed in a second part here to look at the very extreme of post-hoc explainability methods, in the form of having NLP models themselves produce Natural Language Explanations for their own decisions. While the overall approach poses big challenges, in particular to ensure that the produced explanations are faithful and not deceptive with regard to the models' decision processes, it is also an opportunity to exploit the growing capabilities of modern Transformer-based architectures to generate natural language. More speci cally, this may be done in end-to-end setups, where, in addition to the task to be explained, the main costs are only obtaining human-annotated natural explanations, potentially by non-experts, which, while not necessarily easy, may be a good compromise to otherwise needing experts to formalize a speci c set of desiderata for explanations, followed by methods to extract them from model decisions.

 (a) CBOW model architecture: the words in the context window of the target word ("capital") are rst 1-hot encoded (with a vocabulary of size V), then individually projected by the learned embedding matrix W E , added together, before being decoded by the learned W D matrix (which is discarded after training) while maximizing the probability of predicting the target word from output distribution of the word vocabulary d. (b) skip-gram model architecture: the target word ("capital") is rst 1-hot encoded (with a vocabulary of size V), projected into the word embedding space by W E , then independently maximized to be decoded into the words in the target's context window.

Figure 2 . 1 :

 21 Figure 2.1: Schematic Illustrations of the two encoder-decoder architecture variants typical of the 2 word embedding model.

Figure 3 . 1 :

 31 Figure 3.1: Histograms for the NMF300 model used on the IMDB dataset, showing (a) the distributions of values in the 131-th dimension of the embeddings of the words present in the dataset, (b) the distribution of the number of PERSON-type Named Entities found in the dataset, and (c) the distribution of the number of top-1000 most active words in the 131-th dimension found in the dataset, all in log-scales. As we can observe, there seems to be a slight bias towards the positive class, associated to proper names, seemingly of celebrities, represented by the 131-th dimension of NMF300.

 Figure3.2: Example of a saliency maps obtained by using a simple gradient-based featureattribution method on a trained elementary linear classi er with SPINE interpretable embeddings, trained on the IMDB dataset. The ground-truth ("true") labels, the model's predicted labels (alongside the output probability), and a saliency map over each input's tokens are displayed. The saliency map are color-coded: the more red a token is highlighted in, the most bene cial to the model attempting to predict the correct (ground-truth) label, and inversely for blue tokens. These four instances were handcrafted to demonstrate how such a model trained with this data cannot learn to correctly handle negation: the rst two instances intentionally make use of antonymic verb and adjectives, which the model has no trouble correctly classifying. The last two instances make use of multiple inserted "not" negation markers to confuse the model: as can be seen from the saliency maps (note again that the "direction" of the colors depends on what the true label for the instance is, not the predicted one), the word "not" appears to have been simply associated with the Negative sentiment class, regardless of the context.

Figure 3 . 3 :

 33 Figure 3.3: Example of a detailed saliency map, corresponding to the rst example instance in Figure3.2): here, we associate the most relevant dimensions of the feature-attribution vectors for each token, to their corresponding rst few most active words. As can be seen, the values of the loss function's gradient with respect to the inputs are sparse for interpretable word embeddings, and the sign of those values can allow us to gain some insights for individual tokens: for example, we can see that "very" has both a strong "positive" and "negative" component to it, which may accurately indicate it is a potentially polarizing word, for either sentiments. On the other hand, "enjoy" only displays a single strong positive component.

Figure 4 . 1 :

 41 Figure 4.1: Illustration of how the LIME method creates a local linear surrogate model for a particular target instance (green cross). The approach does not have complete access to the original model's input prediction space (with the two classes shown in blue and red, separated by their decision boundaries), but the target instance is perturbed in order to sample various points (blue dots and red crosses), weighted by their distance to the target instance (shown by the size of the markers). These samples are then used to train a linear surrogate classi er (green dashed line), whose learned weights will serve as an explanation for the original model's behavior on the target instance. (Figure adapted from Figure 3 in Ribeiro et al. [2016])

 instance, alongside an example of what could be one of each type of NLE generated each by a dedicated model: P: "A girl playing a violin along with a group of people." H : "A girl is washing a load of laundry."

Figure 5 . 1 :

 51 Figure5.1: Illustration of a schematic Recurrent Neural Network architecture (RNN): an RNN cell is iteratively fed pairs of inputs (x i) and outputs (y i) from a sequence. To enable the learning of temporal patterns, information is allowed to ow between iterations, through the hidden state (h i), which is passed "forward" (though one can also have a cell attend to a sequence in reverse order if needed, such as in bidirectional RNNs[START_REF] Graves | Framewise phoneme classi cation with bidirectional LSTM and other neural network architectures[END_REF][START_REF] Taylor | Bidirectional Long Short-Term Memory Networks for Predicting the Subcellular Localization of Eukaryotic Proteins[END_REF]) in time. In practice, a RNN cell is usually "unrolled" (see diagram) for a given number of iterations, behaving as a sliding window on the input/output sequences, to optimize computation and parameters ne-tuning.

Figure 5 . 3 :

 53 Figure 5.3: Schematic illustration of a typical Masked Language Modeling (MLM) training setup for a Transformer model, as can be found in BERT[START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] for instance: an input sentence ("Attention is all you need") is perturbed by masking one of the words (here "need") at any position in the sequence, replacing it with a special [MASK] marker. Each input token is then projected into an embedding space, however, because Transformers have no innate temporality modeling, the entire sequence being processed at once, with interactions between positions only taking place inside the attention mechanism of the Transformer blocks (see Figure5.6), positional embeddings are added to form the nal input embeddings. These are then processed by a given number N of Transformer blocks, with the nal layer outputting a vector representation (t i) corresponding to each input token. For the MLM task, these are decoded back into words, with the objective of restoring the unperturbed sentence, by correctly recovering the masked token. Usually, an additional [CLS] ("Classi cation") special token is prepended to the input: this token is intended to represent the input sequence in its entirety, by jointly being used on the output side to perform a whole-sentence classi cation task for example, such as predicting if a pair of (concatenated) sentences are following each other directly in a text or not.

Figure 5 . 4 :

 54 Figure5.4: Schematic illustration of a typical autoregressive language modeling training setup for a Transformer model, as can be found in the GPT models[START_REF] Radford | Improving Language Understanding by Generative Pre-Training[END_REF][START_REF] Radford | Language Models are Unsupervised Multitask Learners[END_REF][START_REF] Tom | Language Models are Few-Shot Learners[END_REF]: this setup uses a modi ed Transformer block, in which the attention mechanism (see Figure5.6) is blocked (indicated by the red lines) from attending to "future" (rightward) positions. Combined with shifting the input sequence to the right, by prepending a Beginning-Of-Sentence marker for example ([BOS]), this setup emulates an autoregressive decoder, in which the model conditions the prediction of the next token in the sentence on the previously predicted tokens only, until a terminating End-Of-Sentence ([EOS]) marker is produced. At inference time, such a model needs to be actually iterated according to some decoding algorithm, feeding the predicted sequence back in as the next input recursively.

Figure 5 . 5 :

 55 Figure 5.5: Schematic illustration of the canonical encoder-decoder Transformer architecture from[START_REF] Vaswani | Attention is all you need[END_REF], and as can be found in BART[START_REF] Lewis | BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension[END_REF]: this setup emulates the most closely the typical RNN encoder-decoder architecture, as used in Neural Machine Translation tasks. It combines two Transformer block stacks, one acting as the encoder, whose role is to produce a matrix representation (T enc) of the input sentence, which is then fed to the cross-attention modules (see Figure5.6b) of a second decoder Transformer, which will then be able to condition its sequence decoding on this input sentence, in addition to the regular autoregressive process (see Figure5.4), in this example, to perform an English to French translation.

Figure

 Figure 5.6

 7): • the BART encoder, which is fed the base SNLI ppremise; hypothesisq-pair instances, tokenized, indexed, and concatenated as a single sequence, augmented with the appropriate beginning/end of sentence markers ([BOS]/[EOS]), in the following fashion: "[BOS] <premise> [EOS] [EOS] <hypothesis> [EOS]", following the scheme from

Figure 5 . 7 :

 57 Figure5.7: Schematic illustrations of our three BART-based classi er model variants. In all three cases, a BART encoder is tasked with producing an embedding matrix for the input instance (in this example, from SNLI), which is then used by the cross-attention modules in the BART decoder to condition the explanation generation and classi cation sub-tasks.

 children are playing in some water is same as children are wet. J A Neutral, because playing in some water does not imply being wet. E A G Entailment, because the children are playing in water so they must be wet. Camburu et al. Entailment, because children playing in water are wet. Gold Explanation 1 Entailment, because playing in water means you are wet. Gold Explanation 2 Entailment, because the children became wet as they are playing in water. Gold Explanation 3 Entailment, because four children are children, and playing in water implies wet. (b) Example of outputs for a Contradiction instance. Premise Two dogs are playing catch in a eld. Hypothesis The two dogs are resting in the eld. playing and resting are not the same. J A Contradiction, because the dogs cannot be playing catch and resting at the same time. E A G Contradiction, because the dogs cannot be playing catch and resting simultaneously. Camburu et al. Contradiction, because the dogs are either playing catch or resting.

 playing in the water does not imply swimming. E A G Entailment, because girls playing in the water are swimming. Camburu et al.

 the children are playing in a pool so they must be wet. J A Neutral, because just because children are playing in a pool in swimsuits does not mean they are wet. E A G Entailment, because children playing in a pool are wet.

 al., Table 1.2: Examples of single-word biases in the SNLI dataset, found and reported by

	Entailment	Neutral	Contradiction
	Word	Prob Occ Word	Prob Occ Word	Prob Occ
	instrument	0.90 20 tall	0.93 44 sleeping 0.88 108
	touching	0.83 12 competition 0.88 24 driving 0.81 53
	least	0.90 10 because	0.83 23 Nobody 1.00 52
	Humans	0.88	8 birthday	0.85 20 alone	0.90 50
	transportation 0.86	7 mom	0.82 17 cat		0.84 49
	speaking	0.86	7 win	0.88 16 asleep	0.91 43
	screen	0.86	7 got	0.81 16 no		0.84 31

 NNSE science genetics, biology, physiology, microbiology, ecology, biochemistry low-budget, time-lapse, live-action, science-fiction, zapruder, art-house cracks, seams, holes, scratches, bumps, scars car nissan, chrysler, volkswagen, mazda, chevrolet, buick tiers, subgroups, subfamilies, subtypes, genders, subsections berlin, munich, frankfurt, hamburg, bonn, mannheim teacher educator, historian, lecturer, researcher, scientist, essayist dermatologist, pathologist, veterinarian, psychiatrist, pediatrician, neurologist first-year, pre-med, vocational, tertiary, after-school, undergrad

		SPOWV
		bone, adult, hans, science, cm, honolulu
	science	bowie, aired, licensed, ncaa, freely, broadcasting
		innovation, develops, horsepower, ridge, collaborations, futures
		card, passport, mechanic, driver, thief, stabbed
	car	ferrari, yamaha, chevrolet, cavalry, fia, caste
		angles, curve, speeds, disk, motorsports, sheer
		theatrical, conservatory, attic, painter, fairs, venetian
	teacher	verde, de, nord, emilio, kashmir, casa
		motorsports, old, tourists, waugh, healy, hostage
		SPINE
		graduate, doctorate, phd, bachelor, anthropology, degree
	science	honorary, 1879, 1826, 1893, faculty, sciences
		institute, psychiatry, sciences, physics, laboratory, research

car motor, engine, mazda, chrysler, coupe, chevrolet lanes, speeding, freeway, drivers, highway, brakes deck, asphalt, floating, leaf, door, bottles teacher diploma, curriculum, students, school, grades, exams sculptor, inventor, physicist, collector, playwright, businessman sawyer, jared, writer, cameron, leslie, moe Word2Sense science anthropology, sociology, sciences, humanities, science, geography ap, calculus, mathematics, placement, classes, excelled quantum, physics, mechanics, astronomy, einstein, chemistry car leasing, hire, car, dealer, rental, dealers parking, bays, ample, parked, attendants, spaces auto, insurance, quote, broker, cheap, owner teacher teachers, classroom, teacher, teaching, teach, english portfolio, pupils, stage, lesson, key, teacher secondary, lea, primary, pupil, pupils, academies

Table 2 . 2 :

 22 Illustration of the much better qualitative interpretability of interpretable word embedding models, compared to dense models (see Table2.1): with varying degrees, each model seems to capture di erent semantics in the active dimensions for each word.

enforce the soft binarization constraint.

Table 2 . 3 :

 23 Statistics about the di erent corpora used. For the PDTB corpus, only the 4 most major classes are listed (this corpus presents high class imbalance, especially in the test set, where some classes are not represented at all).

 NMF300 science neurology, ophthalmology, oncology, radiology, microbiology, cardiology courses, curriculum, undergraduate, students, vocational, teaching harvard, phd, doctorate, caltech, yale, swarthmore car locomotives, locomotive, wagons, trucks, carriages, cars sedan, hatchback, coupé, roadster, convertible, coupe nascar, waltrip, speedway, earnhardt, daytona, racing

		courses, curriculum, undergraduate, students, vocational, teaching
	teacher	educator, linguist, scientist, writer, educationist, mathematician
		assistants, assistant, electrician, clerk, trainee, salaried

Table 3 . 1 :

 31 Illustration of the interpretable word embeddings produced by our baseline approach, NMF300. While very simplistic, the dimensions produced still appear to display comparable levels of qualitative interpretability (see Tables 2.1 and 2.2 for comparisons).

Table 3 .

 3 2 displays both the evaluators' average accuracy as well as the inter-evaluator Results of our variant of the Word Intrusion Detection task on the ve interpretable embedding models compared here.

	Model		Average Evaluator Accuracy Inter-evaluator Agreement Fleiss' Kappa
	NMF300	76%	94%; 72%	0.74
	NNSE		79%	90%; 74%	0.76
	SPOWV	38%	84%; 34%	0.43
	SPINE	79%	92%; 60%	0.63
	W	2S	65%	88%; 56%	0.61
	Table 3.2:				

 Results of the approach on the downstream classi cation tasks evaluated. Accuracy scores for each model-corpus pair are reported in percentages (best scores in bold). ˚We additionally list results for popular task-dedicated models found in the literature which achieve (or come close to) state-of-the-art performance, as a comparison (IMDB, SST:[START_REF] Liu | Text Summarization with Pretrained Encoders[END_REF]; These are only indicative as the conditions in the cited papers di er: SST is reported for two classes with a larger training set; PDTB is trained on the 11 classes only present in the test set.

	Model	Corpus IMDB B	Q S		UR FUNNY SST SNLI E		PDTB
	NMF300	67.8 62.6	60.5	57.7	54.6 58.6	50.9	33.2
	NNSE		78.7 63.6	63.9	59.9	60.6 56.3	66.8	31.1
	SPOWV	81.9 66.9 70.5	65.0	62.9 62.9	72.2	36.6
	SPINE	81.3 65.9	67.8	63.6	59.9 64.1	72.2	34.5
	W	2S	82.2 66.2	67.3	63.9	61.4 65.5	69.8	34.2
	D	(baseline) 50.5 53.5	53.0	52.5	39.5 33.6	41.3	19.3
	T		82.0 63.7	70.1	64.5	64.4 61.3	69.5	33.4
	Dedicated models ˚96.8 76.9	74 †	64.4	96 91.5	73	48
	Table 3.3:							

B Q: Clark et al. [2019]; S : Oraby et al. [2016]; UR FUNNY: Hasan et al. [2019]; SNLI: Liu et al. [2019b]; E : Ferreira and Vlachos [2016]; PDTB: Dai and Huang [2019]). † F1 score for the positive class (accuracy not available).

Table 3

 3

.4:

 θpxq is the Hessian matrix (second derivative) of the loss function with respect to the model parameters. Using this in uence function, we could approximate the new post-upweighting parameters θx, without actually retraining the model, starting from the These new parameters however need not actually be computed, as we can use a similar in uence function, this time of the loss function directly, to estimate what e ects on the predictions of a model the deletion of instance x would have had. Given an instance x test we wish to evaluate the imparted changes in loss value on, we can use the chain rule to obtain the following in uence function:

	learned parameters θ:		
	θx, « θ	´1 |X|	I up,params pxq

 ;[START_REF] Wieting | Beyond BLEU:Training Neural Machine Translation with Semantic Similarity[END_REF], both for Machine Translation, Automatic Summarization, and other types of language generation tasks, as they are somewhat shallow, ignoring aspects such as synonymy or di erences in formulations. On the other hand, they are also very commonly used, relatively cheap to compute, and in theory suited to cross-architecture comparisons (unlike perplexity), but further research and experiments with di erent automated metrics better suited speci cally to NLEs generation may be required: for example, METEOR[Banerjee

					SNLI
	Model		Accuracy BLEU ROUGE-1-F1 ROUGE-2-F1 ROUGE-L
	JointSmpl 83.03 17.8	42.87	22.15	38.51
	JointAux	70.27 18.66	43.82	23.21	39.51
	ExplAsGen 91.03 28.05	58.67	38.46	54.9
	Camburu et al. 81.71 27.58	-	-
	Table 5.1: performance (ROUGE-1/2-F1: ROUGE overlap F1-score for 1/2-grams; ROUGE-L:
	ROUGE of the longest common subsequence) of our approach's variants on the SNLI test set,
	and those of the E	T	P	A	model from Camburu et al. [2018].

Table 5 .

 5 2 shows a similar comparison of our variants on the C S E dataset, alongside the accuracy of the best performing model from Rajani et al. [2019], CAGE . Compared to our setups, CAGE

Table 5 .

 5 relatively easy to analyze, as we feared, the automated text generation metrics were not su cient to judge the quality of the produced explanations. Therefore, we chose to also manually qualitatively evaluate some of the produced explanations, for the variants trained on SNLI, as was done in other similar work. 3: A few examples of noisy or problematic instances from the C S E dataset.

	Model		Accuracy BLEU ROUGE-1-F1 ROUGE-2-F1 ROUGE-L
	JointSmpl 61.9	5.92	18.26	7.51	16.29
	JointAux	33.16 8.13	20.54	9.82	18.52
	ExplAsGen 67.79 17.98	40.75	25.92	38.19
	Rajani et al.	72.6	4.1	-	-
	Table 5.2: performance (ROUGE-1/2-F1: ROUGE overlap F1-score for 1/2-grams; ROUGE-
	L: ROUGE of the longest common subsequence) of our approach's variants on the C S E
	development set (the test set ground-truth answers are not publically available), and those of
	the CAGE	model from Rajani et al. [2019].

are

 Table5.5: Total votes and inter-evaluator agreement for our JointSmpl model against the ExplainThenPredictAttention model fromCamburu et al. [2018], for each of our three chosen criterion.

	Model	Fluency Relevance & Coverage Utility
	JointSmpl	12			22	26
	JointAux	14			26	16
	ExplAsGen	24			13	21
	Indecision	40			29	27
	Fleiss' Kappa	0.44			0.59	0.49
	Table 5.4: Total pair-wise comparison votes and inter-evaluator agreement for our three model
	variants, for each of our three chosen criteria.		
	Model	Fluency R&C Utility
	JointSmpl	26	43	49
	Camburu et al.	23	10	12
	Indecision	41	37	29
	Fleiss' Kappa	0.17 0.15	0.47

 Table5.8: Example of a di cult instance for the various models. Both J .[2018] respectively skip over or completely misunderstand an important aspect of the input, and thus have also bad relevance & coverage.A man in a hard hat, gray t-shirt and holding a cordless drill saluting in front of a large American ag. a man in a hard hat, gray t-shirt is a man. J A Entailment, because man in a hard hat, gray t-shirt and holding a cordless drill saluting in front of a large american ag simply means man saluting the american ag. E A G Entailment, because saluting in front of a large american ag is the same as saluting the american ag. Camburu et al.

								A and E
		A G correctly classify the relation, but provide not very useful explanations (heavily
	paraphrasing the inputs), whereas J	S	and E	T	P	A	from
	Camburu et alHypothesis	A man saluting the American Flag.		
	Gold label	Entailment				
	J	S	Neutral, because				

Premise

The author chose to use the second matrix in the product of the factorization as the one to keep as the encoding of the original data, hence the HW term instead of the more common W H.

available at: http://www.cs.cmu.edu/~bmurphy/NNSE/

available at: https://www.lemurproject.org/clueweb09.php/

available at: https://wacky.sslmit.unibo.it/doku.php?id=download

These reports are publically available and can be found at: https://github.com/TomBourgeade/ InterpEmbsForBiasDetection/tree/main/experiments_results

For more details on the Natural Language Processing architectures discussed below, such as Recurrent Neural Networks (RNNs), Transformers, etc., see Section 5.1 in the following Chapter.

See also the https://exnlpdatasets.github.io/ accompanying website.

available at: https://github.com/OanaMariaCamburu/e-SNLI

available at: https://github.com/salesforce/cos-e

available at: https://github.com/allenai/allennlp

Acknowledgements

I would like to acknowledge the support and guidance of a number of people, without whom the completion of this dissertation would not have been possible.