
HAL Id: tel-03770191
https://theses.hal.science/tel-03770191

Submitted on 6 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Text to Trust : A Priori Interpretability Versus
Post Hoc Explainability in Natural Language Processing

Tom Bourgeade

To cite this version:
Tom Bourgeade. From Text to Trust : A Priori Interpretability Versus Post Hoc Explainability in
Natural Language Processing. Artificial Intelligence [cs.AI]. Université Paul Sabatier - Toulouse III,
2022. English. �NNT : 2022TOU30063�. �tel-03770191�

https://theses.hal.science/tel-03770191
https://hal.archives-ouvertes.fr


THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 3 - Paul Sabatier

 

Présentée et soutenue par

Tom BOURGEADE

Le 7 mars 2022

Interprétabilité A Priori et Explicabilité A Posteriori dans le
Traitement Automatique des Langues

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et
Télécommunications de Toulouse

Spécialité : Informatique et Télécommunications 

Unité de recherche :
IRIT : Institut de Recherche en Informatique de Toulouse 

Thèse dirigée par
Philippe MULLER et Tim VAN DE CRUYS

Jury
Mme Aurélie NÉVÉOL, Rapporteure

M. Benoit FAVRE, Rapporteur
M. Pascal DENIS, Examinateur

M. Philippe MULLER, Directeur de thèse
M. Tim VAN DE CRUYS, Co-directeur de thèse

Mme Leila AMGOUD, Présidente



2



Abstract

With the advent of Transformer architectures in Natural Language Processing a few years ago,
we have observed unprecedented progress in various text classi�cation or generation tasks.
However, the explosion in the number of parameters, and the complexity of these state-of-the-
art blackbox models, is making ever more apparent the now urgent need for transparency in
machine learning approaches. The ability to explain, interpret, and understand algorithmic
decisions will become paramount as computer models start becoming more and more present
in our everyday lives. Using eXplainable AI (XAI) methods, we can for example diagnose
dataset biases, spurious correlations which can ultimately taint the training process of models,
leading them to learn undesirable shortcuts, which could lead to unfair, incomprehensible,
or even risky algorithmic decisions. These failure modes of AI, may ultimately erode the
trust humans may have otherwise placed in bene�cial applications. In this work, we more
speci�cally explore two major aspects of XAI, in the context of Natural Language Processing
tasks and models: in the �rst part, we approach the subject of intrinsic interpretability, which
encompasses all methods which are inherently easy to produce explanations for. In particular,
we focus on word embedding representations, which are an essential component of practically
all NLP architectures, allowing these mathematical models to process human language in
a more semantically-rich way. Unfortunately, many of the models which generate these
representations, produce them in a way which is not interpretable by humans. To address this
problem, we experiment with the construction and usage of Interpretable Word Embedding
models, which attempt to correct this issue, by using constraints which enforce interpretability
on these representations. We then make use of these, in a simple but e�ective novel setup, to
attempt to detect lexical correlations, spurious or otherwise, in some popular NLP datasets. In
the second part, we explore post-hoc explainability methods, which can target already trained
models, and attempt to extract various forms of explanations of their decisions. These can
range from diagnosing which parts of an input were the most relevant to a particular decision,
to generating adversarial examples, which are carefully crafted to help reveal weaknesses in
a model. We explore a novel type of approach, in parts allowed by the highly-performant
but opaque recent Transformer architectures: instead of using a separate method to produce
explanations of a model’s decisions, we design and �ne-tune an architecture which jointly
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learns to both perform its task, while also producing free-form Natural Language Explanations
of its own outputs. We evaluate our approach on a large-scale dataset annotated with human
explanations, and qualitatively judge some of our approach’s machine-generated explanations.
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Résumé

Avec l’avènement des architectures Transformer en Traitement Automatique des Langues il y
a quelques années, nous avons observé des progrès sans précédents dans diverses tâches de
classi�cation ou de génération de textes. Cependant, l’explosion du nombre de paramètres et
de la complexité de ces modèles "boîte noire" de l’état de l’art, rendent de plus en plus évident
le besoin désormais urgent de transparence dans les approches d’apprentissage automatique.
La capacité d’expliquer, d’interpréter et de comprendre les décisions algorithmiques deviendra
primordiale à mesure que les modèles informatiques deviennent de plus en plus présents dans
notre vie quotidienne. En utilisant les méthodes de l’IA eXplicable (XAI), nous pouvons par
exemple diagnostiquer les biais dans des ensembles de données, des corrélations erronées qui
peuvent au �nal entacher le processus d’apprentissage des modèles, les conduisant à apprendre
des raccourcis indésirables, ce qui pourrait conduire à des décisions algorithmiques injustes,
incompréhensibles, voire risquées. Ces modes d’échec de l’IA peuvent �nalement éroder la
con�ance que les humains auraient pu placer dans des applications béné�ques. Dans ce travail,
nous explorons plus spéci�quement deux aspects majeurs de l’XAI, dans le contexte des tâches
et des modèles de Traitement Automatique des Langues : dans la première partie, nous abordons
le sujet de l’interprétabilité intrinsèque, qui englobe toutes les méthodes qui sont naturellement
faciles à expliquer. En particulier, nous nous concentrons sur les représentations de plongement
de mots, qui sont une composante essentielle de pratiquement toutes les architectures de TAL,
permettant à ces modèles mathématiques de manipuler le langage humain d’une manière
plus riche sur le plan sémantique. Malheureusement, la plupart des modèles qui génèrent
ces représentations les produisent d’une manière qui n’est pas interprétable par les humains.
Pour résoudre ce problème, nous expérimentons la construction et l’utilisation de modèles
de plongement de mots interprétables, qui tentent de corriger ce problème, en utilisant des
contraintes qui imposent l’interprétabilité de ces représentations. Nous utilisons ensuite ces
modèles, dans une con�guration nouvelle, simple mais e�cace, pour tenter de détecter des
corrélations lexicales, erronées ou non, dans certains ensembles de données populaires en TAL.
Dans la deuxième partie, nous explorons les méthodes d’explicabilité post-hoc, qui peuvent
cibler des modèles déjà entraînés, et tenter d’extraire diverses formes d’explications de leurs
décisions. Ces méthodes peuvent aller du diagnostic des parties d’une entrée qui étaient les
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plus pertinentes pour une décision particulière, à la génération d’exemples adversariaux, qui
sont soigneusement conçus pour aider à révéler les faiblesses d’un modèle. Nous explorons
un nouveau type d’approche, en partie permis par les architectures Transformer récentes,
très performantes mais opaques : au lieu d’utiliser une méthode distincte pour produire des
explications des décisions d’un modèle, nous concevons et mettons au point une con�guration
qui apprend de manière jointe à exécuter sa tâche, tout en produisant des explications en
langage naturel en forme libre de ses propres résultats. Nous évaluons notre approche sur un
ensemble de données de grande taille annoté avec des explications humaines, et nous jugeons
qualitativement certaines des explications générées par notre approche.
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Chapter 1

Setting The Scene

Over the last decade or so, we have observed an accelerating growth in the complexity of
state-of-the-art machine learning models, in pretty much all �elds of AI, but in particular in NLP,
mainly due to the recent development of the Transformer [Vaswani et al., 2017] architecture,
illustrated by the famous BERT [Devlin et al., 2019] and GPT-n [Radford et al., 2018, 2019;
Brown et al., 2020] series of models.

Practically all popular models actively used in NLP nowadays are so-called black-box models,
that is, architectures which are inherently opaque to direct human analysis, usually due to the
sheer number of variables and non-linear interactions present in the underlying mathematical
models involved (see Table 1.1). These architectures are usually trained in an end-to-end fashion,
in which the machine learning practitioners and end-users both e�ectively limit their direct
interactions to the inputs, outputs, and hyper-parameters of the models, whether at training or
inference time. Once the task has been speci�ed, usually through the de�nition of an objective
(or inversely, cost) function to be optimized, the input and target data is fed to the training or
inference algorithm, and the necessary intermediate steps of the computation are e�ectively
left to the model’s discretion. This is arguably the main strength of deep learning approaches,
as they not only skip over most of the often heavy human requirement of engineering a pipeline
appropriate for a given task, but they also seem to do this job signi�cantly better, in terms
of evaluation metrics, than humans. It is however also a weakness, in that it signi�cantly
reduces the ability for humans to understand what exactly these architectures have learned and
executed in those intermediate steps. Some of these large architectures, usually pre-trained on
massive amounts of unannotated text, achieve performance on di�cult evaluation benchmarks,
like GLUE or SuperGLUE [Wang et al., 2018, 2019], close to or sometimes surpassing [Sun et al.,
2021] human performance on those same tasks.

Yet, despite these numeric achievements, some of those same models have been repeatedly
shown to display a wide variety of overall undesirable behaviors, whether they be weaknesses
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Model Parameters Depth

InferSent [Conneau et al., 2017] „ 50M 4
ELMo [Peters et al., 2018] „ 100M 4
GPT [Radford et al., 2018] „ 117M 24
BERT [Devlin et al., 2019] „ 336M 24
GPT-2 [Radford et al., 2019] „ 1.5B 48
GPT-3 [Brown et al., 2020] „ 175B 96

Table 1.1: Evolution of the sizes and depths (for the �rst two models, in number of layers, for
the remaining Transformer models, in number of Transformer blocks) in recent popular NLP
architectures over the years.

to non–semantically-destructive adversarial perturbations [Jia and Liang, 2017; Ribeiro et al.,
2018b; Jin et al., 2020; Li et al., 2020], failures in handling basic and common linguistic phe-
nomena, such as negation or antonymy [Naik et al., 2018; Hossain et al., 2020; Kassner and
Schütze, 2020; Aspillaga et al., 2020], gender and lexical biases [Vig et al., 2020], and many
more. These can ultimately translate into risks or costs at a more societal level, such as nega-
tive environmental or �nancial impact [Bender et al., 2021]. These shortfalls are particularly
worrying when one considers that some of these models are already at this time being used
in production environments, facing actual human end-users, such as in translation or text
prediction systems: such behaviors, even if they occur infrequently, could ultimately erode the
trust humans may have in these systems and the algorithms behind them, even if they could
have eventually turned out to be overall bene�cial to society. This is compounded by a certain
amount of miscommunication and overall over-promotion of state-of-the-art model capabilities,
which can lead both end-users and researchers to have an over-estimated impression of the
actual abilities of these approaches [Bender and Koller, 2020].

We can impute many of these issues to the drawbacks of relying on simple metrics like
accuracy on benchmark tasks to evaluate actual understanding of natural language in computer
models. Indeed, while many of these tasks are crafted under the hypothesis that they each
require the learning of some set of logico-linguistic skills and knowledge to be accurately
solved, there are usually no strong guarantees that:

1. the distribution of the instances in the dataset(s) associated with a given task actually
matches the distribution associated with the system which is intended to be modelled:
when this is not the case, it could be classi�ed as di�erent forms of dataset biases (which
are comprehensively explored for Computer Vision in Torralba and Efros [2011]), usually
either covariate shift (when the distribution of the inputs, ppxq may have shifted, while
the conditional distribution of the labels ppy|xq remains �xed) or its converse, label
shift (ppyq shifted, ppx|yq �xed), respectively associated with so-called causal (predicting
e�ects from their causes) or anticausal (predicting causes from their e�ects) learning



[Schölkopf et al., 2012; Lipton et al., 2018];

2. the speci�ed objective function of the task, when optimized, actually guides the trained
model towards its intended goal(s): when this is not the case, it could be classi�ed as
mismatched, con�icting or underspeci�ed objectives [D’Amour et al., 2020], the primary
symptom of which being found when training similar models on identical tasks, but
ending up with completely di�erent generalization behaviors on out-of-distribution in-
stances (often both in training and testing sets, as these are unfortunately quite commonly
drawn from the same source distributions), despite similar or even identical performance
in-distribution [McCoy et al., 2020].

With either (or both) of these lacking, one will very probably end up with a model prone to some
level of shortcut learning [Geirhos et al., 2020], in essence, a model which is deceptively well
performing on a particular set of tasks and datasets, but which ends up behaving inappropriately,
possibly in subtle ways, once presented with real-world data.

In any case, even assuming these issues have been somehow taken into account in a
particular application, its end-users will almost always wish for and bene�t from explanations
being provided, particularly in the case of algorithmic decision-making systems which are
bound to become more and more prevalent in society as time and technology progresses.
There even already seems to be a growing consensus that this requirement should become a
matter of law, as some have argued that the General Data Protection Regulation (GDPR), which
has recently become law in Europe, provides some level of “right to explanation” [Goodman
and Flaxman, 2017] concerning decisions taken by automated systems, though this has also
been disputed [Wachter et al., 2017]. Explainability and interpretability, as these concepts
are often referred to, also plays an important role in AI Ethics and Fairness, to better try to
ensure machine learning models do not unfairly discriminate on the basis of undesirable biased
features, which often can ultimately be recovered and extracted by these approaches, even
when some preliminary attempts were made to prevent this from occurring [Dodge et al., 2019;
Aivodji et al., 2019; Arrieta et al., 2020; Sharma et al., 2020].

For all these reasons, it is apparent there exists a strong need for methods which would
enable more transparency and human understanding of algorithmic decisions, particularly
from the very opaque deep learning models which are employed nowadays. While a lot of
work and e�ort has been deployed to attempt to reach these goals, the whole endeavor is very
challenging, in parts due to the number of pre-existing or completely novel concepts which
are involved, even just to de�ne in more concrete terms what those very goals are: What is an
explanation? What form(s) should they take? What makes a good explanation? Even these
basic questions have not been fully explored or de�nitely answered yet, let alone the more
challenging technical aspects of how to actually implement these concepts in practice.



1.1 Concepts

We will mainly focus here on aspects of these �elds which are pertinent to Natural Language
Processing. For a more complete and exhaustive overview of the �elds of eXplainable AI (XAI)
and Interpretable Machine Learning (IML) in general, we refer the reader to the IML book
from Molnar [2019], which at the present time, represents one of the most exhaustive but also
easy-to-grasp overview and review of these �elds.

If we look at the relevant literature, terms like explainable, explainability, explanation,
interpretable, interpretability, etc., are often employed in relation to the previously discussed
concepts, without being explicitly de�ned. Unfortunately, whether one looks inside or outside
the �elds of eXplainable AI (XAI) or Interpretable Machine Learning (IML), it is di�cult to �nd
consensus on the de�nition of those terms, and in particular, interpretability and explainability
are often used interchangeably when not precisely de�ned. If we look at the relevant de�nitions
of the verbs explain and interpret in the online Merriam-Webster dictionary for instance, we can
�nd respectively “(a) to make known | (b) to make plain or understandable” and “to explain or tell
the meaning of : present in understandable terms”, which does not help much in di�erentiating
those two terms, outside of highlighting the common meaning of “to make understandable”, and
that this action might be done through the medium of explanations. And indeed, in the context
of machine learning in particular, it appears that the terms explainability and interpretability are
both commonly used to designate essentially “the ability to explain or present in understandable
terms to a human” [Doshi-Velez and Kim, 2017; Guidotti et al., 2018; Lipton, 2018; Molnar,
2019; Arrieta et al., 2020]. However, one important aspect that often accompanies these two
terms, concerns the temporality in which this action of explaining occurs: is the process-to-
be-explained, the explanandum, already understandable in and of itself, and thus a priori its
own source of explanations? or, is the explanandum a system too complex to be grasped in
its entirety, thus requiring the intervention of another process, a post-hoc method, to act as
a more understandable proxy of the �rst? This distinction is usually made explicit by using
the quali�ers a priori or intrinsically, for the former, and post-hoc, for the latter [Rudin, 2019;
Molnar, 2019], though the words “interpretable” and “explainable” also seem to implicitly carry
these notions, and as such we can often �nd together “intrinsically interpretable”, and “post-hoc
explainable”, to refer to the two distinct concepts. More concretely, intrinsic interpretability
seems to refer to an inherent property of a type of architecture, whereas post-hoc explainability
seems to encompass methods which produce explanations as separate processes from the models
in question, either globally, after training, or locally, after a decision. While the particular
use of these terms as such de�nitely does not make consensus at this time in the literature,
it is nonetheless somewhat useful as it avoids the interchanging use of “interpretable” and
“explainable” (and other derived terms). However, if strictly used to refer to distinct concepts,
because both a priori interpretability and post-hoc explainability are often placed under the



same umbrella when discussing explanations, regardless of their sources, we would have to use
both terms together quite often. As such, in the rest of this document, “interpretability” and
“interpretable” will always refer to intrinsically interpretable models as described above,
whereas “explainability” and “explainable” will refer to explanation producing methods in
general, unless used in the phrases “post-hoc explainable” or “post-hoc explainability”,
in which case they refer only to such methods.

1.1.1 Desiderata for Explainability/Interpretability Methods

Outside of purely de�nitional issues, there also exist numerous questions about what is desired
out of these methods. In the relevant literature[Doshi-Velez and Kim, 2017; Guidotti et al.,
2018; Lipton, 2018; Robnik-Šikonja and Bohanec, 2018; Molnar, 2019; Arrieta et al., 2020], many
desiderata have been proposed, often in di�erent terms and at di�erent levels of analysis, which
makes exhaustively listing them in a coherent manner practically impossible. These desired
properties can target the explained models, the explanation methods, or the explanations they
produce themselves. As the latter concerns the not-yet–discussed point of explanations, here
is a non-exhaustive list of desiderata which might directly concern models and explanation
methods (largely inspired by Molnar [2019]):

• One of the primary, if not the core desiderata of any machine learning model, explainable
or not, is accuracy, that is, how good the model is at predicting seen or unseen instances.
In the �rst case, this simply indicates how well a model is learning for its training
distribution. In the second case, however, it also indicates how well a model is generalizing
to Out-of-Distribution (OOD) instances, and by extension, how well it has learned to
model the process or system represented by the data, instead of just the data itself. It is
especially important to keep in mind, as it is often unfortunately a property which has
to be traded o� in some capacity to obtain more transparent and thus easier to explain
models, though this has been debated [Alvarez-Melis and Jaakkola, 2018; Rudin, 2019;
Aivodji et al., 2019].

• Translucency of an explanation method refers to the degree to which it derives its
explanations directly from the explained model’s internals, architecture and parameters.
On the higher end of this scale, we can �nd intrinsically interpretable models, whereas
model-agnostic methods would rate lower. This property may be desirable in that it makes
the explanation method easier to understand and check with regard to the analyzed model,
however it also naturally makes it more architecture-speci�c and thus less portable.

• Portability designates the range of architectures an explanation method may be applied
to: a model-agnostic method, which makes little to no assumptions about the internals
of a given model, and interacts with it purely within the black-box paradigm, would be



highly portable and thus useable against a wide range of existing models. In practice,
one cannot have both high portability and high translucency at the same time, and so it
might be necessary to compromise on either or both of those desiderata in some capacity.

• Complexity, whether it is algorithmic (in processing time and/or memory requirements)
or conceptual/architectural (in number of parameters, hyperparameters, depth, or degrees
of non-linearity), applies to both explanation methods and the models they might target.
In either case, this is a property one would wish to minimize as much as can be a�orded,
since lower algorithmic complexity enables faster execution (both in training and at
inference time), on smaller and/or more a�ordable hardware, and at lower energy costs.
Similarly, lower conceptual complexity allows for easier deployment (mainly due to
the fewer number of hyperparameters to �ne-tune) and easier debugging/analyzing by
humans. For explanation methods more speci�cally, it is generally considered undesirable
to have similar or greater algorithmic complexity than the models which are to be
explained, as this would make their use as diagnostic tools impractical.

The second, possibly even more important, set of desiderata to consider, are those which
concern the produced explanations themselves.

1.1.2 Desiderata for Produced Explanations

In the eXplainable AI (XAI) and Interpretable Machine Learning (IML) literature, it is di�cult
to �nd a uni�ed de�nition of the term “explanation”. While most people will intuitively have
a practical understanding of this term, �guring out a pertinent and more formal de�nition is
very challenging [Doshi-Velez and Kim, 2017; Arrieta et al., 2020].

Similar to explanation methods, it may be that the easiest way to de�ne explanations is
through exploring what is desired out of them. Looking back at the previous list of desiderata,
we can turn again to [Molnar, 2019] who compiles a fairly exhaustive list of explanations-
speci�c desiderata, the following three of which (slightly reformulated) we believe are the most
pertinent:

• Faithfulness, or �delity, is probably the most important feature of an explanation:
it represents how accurate an explanation is, as a model itself, at modeling its target
explanandum. In other words, a faithful explanation is one which accurately reformulates
the internal behavior of a model, and thus shares the same behaviors it has. It is extremely
important to ensure we can trust these explanations: indeed, an unfaithful explanation of
a particular prediction may actually look like a perfectly plausible behavior a theoretical
model could have, but it will not actually accurately represent what went on internally in
the target model we are interested in. A method which produces unfaithful explanation
would most likely at some point stop making sense, when exploring parts of the input



space for which it diverges with the target model.

• Stability represents how consistent the produced explanations are when making small
variations to the input instances fed to the target model and then explained. Ideally, an
explanation method should not produce wildly di�ering explanations for very minute per-
turbations of an input. Low stability explanations may cause frustration in end-users, as
attempting to exploit them to plan modi�cations of the data or models themselves would
be made di�cult, due to these inconsistencies appearing after every small modi�cations.

• Comprehensibility represents how easy it is for the end-users to parse the produced
explanations, as well as act on them. This property will be highly dependent on the
target audience of the method, though ultimately, a more comprehensible explanation
format in an absolute sense will be more helpful to any audience, expert or non-expert.
This property also depends on the “size” of the produced explanations: even simple
if-this-then-that rules will become di�cult to parse if there are hundreds of them to
look for each prediction explanation. This also illustrates why even very basic models,
such as linear models or Decision Trees, are not interpretable in an absolute sense, as
the comprehensibility of the explanations they intrinsically allow to generate directly
depends on the number of parameters/nodes in them.

To illustrate these concepts more concretely, let us now discuss one of the main use cases
of explanations: detecting and understanding problematic behaviors learned by models. Of
course, no architecture is inherently created �awed, rather, in the majority of cases, these
behaviors stem from issues in the training data that is fed to them.

1.2 Garbage in, garbage out: Dataset Biases and Spurious

Correlations

One of the main use-cases for explainability is to detect undesired behaviors in trained or
in-training models, in order to correct, or at least be aware and wary of them. Most often, the
behaviors are not inherent to the model architectures employed, but are rather distilled from
the training data. The issue of dataset biases [Torralba and Efros, 2011] which plagues machine
learning as a whole, whatever the subdomains and types of data manipulated are, can be viewed
as an extension of the famous “garbage in, garbage out” principle in computer science: since
current machine learning architectures essentially implement automated inductive and/or
deductive reasoning using a set of training data as its basis, if the distribution of this data
happens to di�er in non-random ways from the distribution associated with the process which
is to be modelled, these di�erences may introduce exploitable biases and spurious correlations
with regards to the intended task, and thus lead to shortcut-learning models [Geirhos et al.,



Entailment Neutral Contradiction

Word Prob Occ Word Prob Occ Word Prob Occ

instrument 0.90 20 tall 0.93 44 sleeping 0.88 108
touching 0.83 12 competition 0.88 24 driving 0.81 53
least 0.90 10 because 0.83 23 Nobody 1.00 52
Humans 0.88 8 birthday 0.85 20 alone 0.90 50
transportation 0.86 7 mom 0.82 17 cat 0.84 49
speaking 0.86 7 win 0.88 16 asleep 0.91 43
screen 0.86 7 got 0.81 16 no 0.84 31

Table 1.2: Examples of single-word biases in the SNLI dataset, found and reported by Poliak
et al. [2018] (Figure 3 in the original publication), for each class: Prob lists the empirical
conditional probabilities pplabel|wordq of predicting the given label when the given word
is present in the hypothesis sentence; Occ lists the number of occurrences in the dataset of
instances that contain the given word. While each of these artifacts independently does not
impact a great number of instances, the fact some of them are such strong predictors for their
respective class, means a model trained on SNLI may undesirably learn these as shortcuts.

2020].

Many such issues have been discovered over the years in NLP datasets, for instance, in visual
question answering [Jabri et al., 2016; Zhang et al., 2016], reading comprehension [Chen et al.,
2016; Jia and Liang, 2017; Kaushik and Lipton, 2018], or paraphrase identi�cation [Zhang et al.,
2019], using various methods: standard error analysis, “stress testing” models on adversarial
generated or �ltered examples, etc.

1.2.1 A concrete example: the cases of SNLI andMNLI

A famous example of such dataset biases can be found in the Stanford Natural Language

Inference (SNLI) corpus [Bowman et al., 2015] and also its multi-genre variant, the Multi-

genre Natural Language Inference (MNLI) corpus [Williams et al., 2018]. The Natural
Language Inference task in NLP consists in predicting whether a premise text (e.g. “A soccer
game with multiple males playing.” ) logically entails a hypothesis text or not (e.g. “Some men
are playing a sport.”, which is indeed entailed here, whereas “Some men are sleeping.” would be
contradicting the premise).

To illustrate, here are three example instances from the SNLI test-set, one for each of the
possible inference labels (entailment, contradiction, or neutral). As all three share the same
premise sentence, it is only displayed once. We also add a short comment for each which more
explicitly explains the label:



Premise: “People waiting in line in a snowstorm.”
Hypothesis: “People are in a snowstorm.”

Ground-truth Label: Entailment
Comment: This hypothesis is less speci�c than the premise (by re-

moving “waiting in line”), and so is entailed by it.
Hypothesis: “People are waiting in a line during a scorching drought.”

Ground-truth Label: Contradiction
Comment: A scorching drought is not a snow storm, hence the

contradiction.
Hypothesis: “People are waiting in line for food to get through the

snowstorm with.”
Ground-truth Label: Neutral

Comment: This hypothesis is more speci�c than the premise, and is
therefore not entailed by it, but it also does not contradict
any of its elements. It is therefore neutral.

These large-scale datasets, which were annotated through crowdsourcing (discussed in
more details in the dedicated paragraph of Section 2.4), using the Amazon Mechanical Turk
platform, are very popular, and have been used to evaluate numerous models, as part of the
famous GLUE benchmark [Wang et al., 2018] for example, and also to train NLP models. The
well-known InferSent [Conneau et al., 2017] sentence-encoding architecture, for example,
was pre-trained to classify the inference relation between pairs of premises and hypotheses
from the SNLI corpus.

Unfortunately, a few years after these datasets were introduced, a number of unwanted
statistical annotation artifacts were discovered in them. One would expect such tasks to require
a relatively high level of Natural Language Understanding (NLU) capabilities, as the relation
between the two sentences to be predicted involves both learning the ability to parse and
understand each premise and hypothesis in and of itself, separately, but also learning how
two such sentences may relate to each other, in a logical and semantic manner. Compared to
just evaluating structural or grammatical similarity, this task requires a lot of implicit world-
knowledge and commonsense. However, McCoy et al. [2019] showed for example that models
trained on these datasets tend to pan in on makeshift heuristics, such as the amount of word
overlap between the two sentences, which is evidently not a property that should be learned in
order to perform proper natural language inference. Perhaps even worse, Gururangan et al.
[2018] and Poliak et al. [2018] both found that hypothesis-only models, that is, models that
only look at the hypothesis sentences as part of their inputs, can correctly predict the labels of
signi�cant portions of those datasets, at least 67% of SNLI, and 53% of MNLI, according to
Gururangan et al. [2018]. The main cause for this was attributed to the crowdsourcing process:



indeed, for these datasets, crowd workers were tasked with generating three hypotheses
sentences, one for each of the possible inference classes, given a premise sentence collected
from image captions, which are thus often nominal sentences (with no verbs; e.g., premise
example above). While the workers were not presented with the actual images, they were
informed that the premises were sampled from image captions, which might have introduced
some implicit biases towards writing hypotheses describing situations which may be more likely
to �nd as a caption for a picture. But more importantly, due to the nature of the crowdsourcing
platform, in which workers are ultimately economically rewarded depending on the number of
annotations they can produce per unit of time (over multiple annotation campaigns), a form of
“least e�ort”-bias appears to have tainted the produced premises: mainly, for the contradiction
class, a “least e�ort” strategy is to simply repeat the premise, with a minimum of one negation
of an element added, which in English, can be done very easily in most situation by inserting
the words “not” or “no” in the correct position. For instance, in the example shown above, a
“least e�ort” contradiction of the premise “People waiting in line in a snowstorm” may simply be
“People not waiting in line in a snowstorm”. Other similar single-word cues were found for each
of the three classes, with varying importance, and were reported by Gururangan et al. [2018]
and Poliak et al. [2018] (see Table 1.2, adapted from Figure 3 in their publication), with a high
degree of overlap, using similar methods.

1.2.2 The Need for Explanations

These two datasets, as such, perfectly exemplify the need for explainability in Natural Lan-
guage Processing, if not in machine learning in general. In particular, the fact such spurious
correlations were only detected years after these datasets were made available, and used as part
of the training or evaluation of, at the time, state-of-the-art architectures, is quite worrying. Im-
proving the variety of explainability methods available, as well as their ease of implementation
and usage, should be paramount to ensuring that, ultimately, end-user–facing machine learning
models do not rely on such undesirable biased shortcuts, which may lead to deceptively unfair
or even dangerous algorithmic decisions.

While explainability methods may be used to detect these types of issues, other related
approaches have been proposed to attempt to then �x them, in various ways. For example, He
et al. [2019] devise a method to train debiased models on these corpora: to do so, they �rst
train an intentionally biased model which mainly exploits unwanted shortcuts such as those
detected in the contributions discussed above, more speci�cally, by feeding it only incomplete
information, as in the case of hypothesis-only models (see above). They then subsequently
train a new model on the residuals of the previous one, that is, by down-sampling the instances
which were con�dently classi�ed (with low loss function values) by previously obtained biased
classi�er, and which are thus likely to be biased and easy-to-learn themselves. Another way



to “repair” such biases in a dataset was proposed by Swayamdipta et al. [2020], in the form
of Data Maps, which compile the training dynamics of a model on a dataset, mainly, the
con�dence (mean) and variability (standard deviation) of its predictions across epochs, allowing
to visualize easy-to-learn instances (low variability, high con�dence), hard-to-learn instances
(low variability, low con�dence), and �nally ambiguous instances (high variability). By splitting
the training dataset into these three parts, and adjusting the quantities of instances in each, the
authors showcase how the �nal capabilities and performance of a model can be tweaked. They
also showcase how this method can be used to detect mislabeled instances.

Inspired by these now famous examples of hidden dataset biases, detected through the
use of methods related to explainability, we decided to focus this work on the exploration
of more dedicated approaches, which might enable detecting similar issues in other datasets.
This remainder of this work is divided into 4 Chapters, divided into two parts: Chapters 2 and
3 �rst explore intrinsic interpretability in the context of Natural Language Processing, with
a particular focus on Interpretable Word Embedding models; Chapters 4 and 5 then explore
post-hoc explainability methods, with a particular focus on Natural Language Explanations.
Chapters 2 and 4 discuss and review the state-of-the-art respective to each part, as well as
introduce the necessary concepts, models, and datasets, which are then used in the experimental
setups showcased in Chapters 3 and 5.





Chapter 2

Intrinsic Interpretability in NLP

In this �rst part, we explore the speci�cs of intrinsic interpretability in Natural Language
Processing. Beginning with a discussion of interpretability is particularly important when
dealing with natural language as inputs or outputs, because it is in and of itself a challenging
information-carrying medium to tackle: indeed, language can be used in a wide variety of forms,
a lot of which are intended to carry signi�cant amounts of implicit information, for example,
in poetry, humor, or �ction. Even more “formal” uses of natural language, such as scienti�c
publications, technical or administrative reports, etc., require a signi�cant amount of contextual
information, the majority of which is often not present in the documents that are to be parsed,
but implied to be already be a part of the reader or listener, usually referred to as commonsense
or world-knowledge. While not exclusive to human text or speech, these properties are of
particular importance in NLP because the phenomena we want to model, such as the sequential
generation of language, referred to usually as language modeling, very strongly depend on
them, perhaps more so than in other types of data. Tabular or categorical data mostly stand
on their own, by de�nition. Even a picture, though it would be more challenging, could have
semantic information extracted from its internal, spatially-based correlations. But an arbitrary
sentence, taken out of its surrounding explicit or implicit context, is mostly meaningless.

As such, we �rst discuss interpretability and the challenges related to the representation of
language in NLP.

2.1 Context and Problematics

The common �rst step in digitally encoding any type of data, is to �rst decompose it into
smaller, individually meaningful parts. For initially continuous data types, such as signals,
this step is usually referred to as quantization. This can be done in various more or less
systematic ways: images are usually decomposed into equally-sized pixels, whereas audio
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may be similarly decomposed into discrete time-steps, or, if it contains human speech and this
is what we actually wish to encode, into sequences of individual phonemes, the elementary
semantic units of spoken language. Written text is no exception, however, deciding on an
adequate decomposition scheme the outputs of which may then be used with machine learning
models, happens to be quite di�cult.

2.1.1 Elementary Semantic Units in Natural Language

One of the main conceptual di�culties in NLP regarding explainability is the abstractness
of the manipulated data. In machine learning for Computer Vision or audio processing for
instance, the numeric quantities involved usually have a clear link to their respective modelled
real-world systems: whether it is images or sounds, the processes to encode or decode them
to and from their canonical digital representations, usually, multi-channel integer matrices or
vectors, are well established and mostly transparent to use, which allows models that operate
on these representations to exploit as little or as much information about the real-world as is
necessary, often way beyond human sensing capabilities (in terms of modalities or sensor/data
resolution). When generating explanations for these types of media, one can point at and relate
to parts, or even individual components, of a digital representation in a meaningful way with
regard to the real-world source of that representation: even though the encoding process is not
perfectly reversible (mainly due to quantization and sensor limitations), if a particular patch
of pixels was highlighted as an explanation for a particular decision in an image, one could
reasonably associate it with a corresponding visual feature of the represented scene, and draw
conclusions regarding which real-world features might have been the cause of that decision.

When modelling more abstract systems, like those stemming from human behavior, these
encoding/decoding processes are much more di�cult to derive in a way that is equally natural.
In the case of written natural language, once typically digitized using some character encoding
scheme, the �rst available representation format for a piece of text is that of a sequence of
symbols, which can be trivially converted to their corresponding integer ordinal code in the
chosen character encoding table (such as the ASCII or Unicode standards). So-called character-
level (or character-based) models are designed to function at this level of representation, and
while not overall as popular as word or subword level models, they have been and remain
actively explored [Zhang et al., 2015; Lee et al., 2017; Liang et al., 2017], even with more recent
Transformer architectures [Al-Rfou et al., 2019; El Boukkouri et al., 2020].

However, the same way it is di�cult to refer to the semantics of a single decontextualized
pixel in an image (in contrast to a patch of pixels corresponding to a particular visual object),
characters dealt with as separate entities do not seem like the natural minimal semantic unit
for human language, and indeed, the vast majority of models in NLP deal with input texts
as sequences of word-tokens. The two conceptual approaches each have their pros and cons,



mainly, dealing with characters directly bypasses the need to construct a �xed word vocabulary,
which is helpful when one has to work with a large number of terms (such as with domain-
speci�c languages, like medical terminology), at the cost of requiring a larger contextual
window (in number of tokens) to attend to the same span of text compared to a word-based
approach, which in practice limits the lengths of texts which can be handled comprehensively.
Hybrid methods, based on subwords, attempt to compromise between these advantages and
disadvantages, using, for example, the Byte Pair Encoding (BPE) scheme to construct e�cient
representations of frequent word pieces [Sennrich et al., 2016], which are for instance used in
the popular GPT-n [Radford et al., 2018, 2019; Brown et al., 2020] series of models.

Whichever approach is selected to turn a piece of text into a sequence of tokens, these
cannot be passed in directly as input into deep-learning models as they constitute categorical
(non-numeric) features, and they thus have to be vectorized in some way �rst. Fortunately, we
can easily use a one-hot encoding scheme to turn a given sequence of tokens into a sequence of
binary vectors, and this type of representation is often used when a token (or sequence of tokens)
is to be outputted by a model, in so-called “Seq2seq” (lit. “sequence to sequence”) approaches,
such as machine translation, text summarization, etc. However, when considering the inputs
of a model, this process has many disadvantages: �rst, this type of encoding scheme is very
ine�cient and expensive dimensionality-wise, as the size of these vectors will grow linearly
with the number of distinct possible tokens, which, while not necessarily too problematic with
current available computing hardware, may still hinder proper learning due to the much larger
input feature-space to explore. While one could in theory circumvent this issue by instead
using an ordinal encoding scheme, this would require imposing an arbitrary ordering of the
tokens along a single dimension, which is usually undesirable with categorical features, unless
they happen to be naturally mappable onto a single axis in this way. Unlike vision, audio, or
other numeric feature types, words (or any other type of linguistic token) generally cannot
be naturally encoded into a vector space which preserves their original semantics completely,
unfortunately (perhaps with the exception of linguistic numerals, like “two” mapping onto the
integer value 2 for example).

2.1.2 Distributional Semantics and Word Embedding Models

One way this problem was solved, and which was one of the largest factor in enabling the rapid
evolution of deep learning approaches for NLP, was through the development of methods based
on distributional semantics, �rst popularized by Harris [1954] and Firth [1957] as the hypothesis
that one of the best and most fundamental way, absent any prior knowledge, to characterize a
word is “by the company it keeps”, in essence, by the contexts in which this word occurs in
natural language. Based on this hypothesis, using statistical and probabilistic analysis of large
text corpora, and, later on, dimensionality reduction techniques [Bengio et al., 2003, 2006], one



can construct a dense latent semantic space, in which the words in a vocabulary are embedded
as vectors whose positions re�ect the captured distributional properties of the text corpus used.
One big advantage of this approach is that it does not require any human-produced annotations
or supervision of any kind, other than large quantities of reasonably varied natural language
texts, which are easily available nowadays thanks to the massive amounts of content available
on the internet.

Initially, this idea was implemented via global matrix factorization techniques (such as
singular value decomposition), for example in the so-called latent semantic analysis (LSA) (also
known as latent semantic indexing, or LSI, in the �eld of information retrieval) [Deerwester
et al., 1990] method, which, when applied on collected context-term co-occurrence statistics
(where the context can be other terms, or entire documents, which was the initial point of
interest of the method, in the �eld of information retrieval), could be used to construct a low-
rank, thus in theory less sparse and de-noised, matrix approximation of those statistics. The
produced vectors could then be used as numeric representations for their corresponding terms,
with very interesting properties: indeed, the derived relatively low-dimensional (usually a few
hundred dimensions) vector space, by construction, geometrically encodes the distributional
hypothesis, such that terms which occur in similar contexts will have their corresponding
vector representations appear “close” (usually, in terms of cosine similarity, as the magnitude
of those vectors is more closely related to their a priori, uncontextualized probabilities, which
is not of as much interest [Levy et al., 2015]) in the embedding space. This property can thus
be immediately useful as a word similarity metric. It can also then later be extended as a
document-level metric, by the weighted averaging of the relevant term-vectors.

However, in addition to this captured notion of similarity, it was later found that these con-
structed embedding spaces also geometrically encode various syntactic and semantic properties
[Mikolov et al., 2013c]: mainly, when looking at the representations of a pair of words related
in some speci�c way, for instance, pvapple, vapplesq for a singular/plural-based relationship, or
pvman, vwomanq for gender-based relationship (where vword is the vector representation of “word”),
if one takes the o�set between the pair and transposes it onto another term-vector, the result
often happens to be closest to the term-vector one would expect to �nd if this o�set somehow
encoded the given relationship, e.g. here, we could expect to �nd that vapples´vapple`vcar « vcars

or vwoman ´ vman ` vking « vqueen. The reasons behind such linear relations appearing in spaces
produced by non-linear methods, and why these allow these kinds of analogical structures (“A
is to B what C is D”) to be encoded as such, was explored by Arora et al. [2016], by modelling
natural language corpora production as a generative process involving a random walk over a
“discourse” space, which informs what types of word are likely to be generated at each time-
step. The fact that such details can be captured in the dimensions of these embedding matrices
means that downstream neural models can exploit these representations through di�erent



(a)CBOW model architecture: the words in the con-
text window of the target word (“capital” ) are �rst
1-hot encoded (with a vocabulary of size V ), then
individually projected by the learned embedding
matrix WE , added together, before being decoded
by the learned WD matrix (which is discarded after
training) while maximizing the probability of pre-
dicting the target word from output distribution of
the word vocabulary d.

(b) skip-gram model architecture: the target word
(“capital” ) is �rst 1-hot encoded (with a vocabu-
lary of size V ), projected into the word embedding
space by WE , then independently maximized to
be decoded into the words in the target’s context
window.

Figure 2.1: Schematic Illustrations of the two encoder-decoder architecture variants typical of
the word2vec word embedding model.

relatively simple computations (in terms of non-linearity requirements in particular) to extract
rich types of semantic or syntactic information. For example, Kober et al. [2017] show that
even when polysemic and context-dependent terms only have a single vector representation,
it is nonetheless possible to disambiguate their senses contextually through simple vector
composition operations (such as pointwise addition), which can be easily learned by most
neural architectures. Arora et al. [2017] show similar results on di�erent tasks and datasets,
by using a weighted average of word representations to construct sentence embeddings, to
achieve quite decent performance at very little additional costs. Arora et al. [2018], on the other
hand, demonstrate that polysemous term-vectors can be disambiguated in and of themselves,
as they seemingly are linearly composed of multiple sense component vectors, which can be
recovered more or less successfully through sparse coding.

Later on, with the advances in and revival of neural network models, e�cient implementa-
tions of these henceforth called word embedding approaches for very large corpora became
possible [Morin and Bengio, 2005; Mnih and Hinton, 2009], and in 2013 at Google, Mikolov et al.
[2013a; 2013b] introduced the now-famous word2vec model, with its two encoder-decoder
architecture variants (see Figure 2.1): CBOW (Continuous Bag-Of-Words), in which a neural
model is trained to predict a word given a surrounding window (usually of size 5, i.e. two
words on each side) of context words as input, and skip-gram, in which the model is trained



with the opposite objective. In both variants, once trained on large quantities of text, one of
(or potentially, both, combined in some fashion, such as averaging) the learned parameters
matrices is saved and then used as the output word embedding matrix. While the architectures
and implementations for these neural models is fundamentally di�erent from the earlier global
matrix factorization techniques, Levy and Goldberg [2014] have shown that they in theory
e�ectively optimize very similar objectives, and each method only really di�ers by its choice of
defaults for a set of (potentially implicitly de�ned) hyperparameters. After the introduction of
this model almost a decade ago, many variants and improvements were proposed and explored,
whether they be combinations of global statistics factorization techniques with neural local
context-window–based approaches, as found in the GloVe [Pennington et al., 2014] model, or
later on attempts to further enable term disambiguation using a context-aware model, such
as ELMo [Peters et al., 2018]. The general idea was also expanded to construct vector repre-
sentations for other types of linguistic semantic units, such as subwords or character n-grams,
to allow word embedding models to handle out-of-vocabulary tokens by composing already
encoded subword components, as shown in the fastText model [Bojanowski et al., 2017] for
instance. In the other direction, di�erent approaches were proposed to encode and vector-
ize entire sentences through similar means (predicting context sentences given a particular
sentence, or vice versa), producing general-purpose sentence embeddings, such as with the
Skip-Thought [Kiros et al., 2015] or InferSent [Conneau et al., 2017] models, and later on
with the various Transformer-based approaches like BERT or GPT.

2.1.3 Lack of Interpretability

While these approaches have enabled state-of-the-art results in many NLP tasks by providing
e�cient and easy to exploit numeric representations for words, subwords, or whole sentences,
one big limitation is the lack of human interpretability of those vectors: in contrast to a vector-
ized picture, usually encoded as a 3-channel integer matrix, where each 3-tuple component can
be interpreted as the tricolor value of the corresponding pixel in the image, the values in the
dimensions of a word embedding vector usually have no discernible independent meaning to
them. Indeed, in these traditional construction processes, no additional structural constraints
are applied to the produced embedding space (other than very often a normalization of the
word embedding vectors [Levy et al., 2015]), and e�ectively, the vector representations in
most dense approaches can be freely unitary-rotated without losing their e�ectiveness as
inputs in downstream neural models. This poses an issue with regard to explainability and
interpretability in NLP models which make use of these types of representations, as this would
limit the use and capabilities of explanation methods, in the sense that explanations referring
to individual components of vectorized inputs, as they are what a model’s internals ultimately
manipulate, would be more or less meaningless: word embedding vectors would most likely
have to be considered atomic and opaque components of an input sentence, for the purpose of



word2vec

science
insult, rivalries, reactors, mw, armistice, massacre

editing, airplay, cds, professionally, songwriter, screenplay
ss, rbi, viii, 2d, xiii, shortstop

car
cox, colonists, expedition, ibm, usb, abduction

bt, capt, ss, sr, casa, xiii
dec, mw, cartoonist, poker, sketch, rapids

teacher
ore, greens, badminton, hymns, clay, gardener

torture, abduction, executions, hostages, deportation, kidnapping
heiress, mistress, photo, granddaughter, ap, latin

GloVe

science
carbon, emissions, malayalam, dioxide, gases, revised

algorithms, computational, anime, manga, renaissance, jens
binary, finite, algorithm, algorithms, discrete, circuits

car
lama, apartment, mg, dalai, cream, milk

propeller, tractor, barrel, mounted, rbi, drum
championship, champion, championships, cup, debut, tournament

teacher
amateur, practitioner, archaeologist, educator, non-profit, physician

sanskrit, canton, aristotle, breeding, pupil, polytechnic
championship, champion, championships, cup, debut, tournament

fastText

science
uavs, badminton, gridcolor, loneos, boldklub, medalists

sportspeople, zl, gmina, colspan, camogie, njn
romanized, laude, idaea, ploceus, hoseynabad, pygmaea

car
agung, setiawan, sjk, mhk, tenggara, sutil

gunboats, cruisers, eprix, frigates, tramways, autódromo
fsk, stratigraphic, ukr, scalemajor, altai, plesetsk

teacher
sofla, mowtowr, woredas, darreh, pā, plíšková
sportspeople, zl, gmina, colspan, camogie, njn
reductase, västerbotten, pär, åberg, purine

Table 2.1: Illustration of the non-interpretability of dense word embedding models: for three
well-known models, we display the top-6 words with the largest values in the top-3 most
active dimensions for each of three arbitrary words (“science”, “car”, and “teacher”). As can be
qualitatively observed, it is practically impossible to determine any lexical correlations between
the most active words of a dimension.

input feature attribution, or local perturbation methods.

To illustrate this lack of intrinsic interpretability in common dense word embedding models,
we can look at “active” dimensions for particular words, that is, the dimensions with the largest
values (positive, though negative factors could be looked at too, but it would yield similar
results) in the corresponding vector representation. Each of these dimensions can then be
characterized by the most active words in them, which, similarly, are the words whose vectors
have the largest values in these dimensions. As we can clearly see in Table 2.1, this type of
analysis reveals there is little to no interpretable meaning to individual dimensions in these
types of embedding models.

Ideally, it would be useful to �nd a basis for these embedding spaces, such that each
dimension is intrinsically meaningful for the purpose of human analysis, while preserving the
geometric properties which make these representations e�ective at downstream NLP tasks.



We will now see how a signi�cant amount of work has been done to attempt to achieve this
goal of obtaining more interpretable word embeddings.

2.2 Interpretable Embedding Models

To achieve better interpretability in vectorized word representations, di�erent approaches have
been explored, which can be roughly divided into two classes: constraint-based embedding
models, and models enriched with prior information.

The latter essentially consists in attempting to inject a priori semantic information into the
embedding models to improve their interpretability. For example, Hurtado Bodell et al. [2019]
attempt to use information priors in the form of word vocabulary pairs displaying a particular
semantic relationship (e.g. tman, brother, kingu and twoman, sister, queenu, for a gender-based
relationship), to restrict and guide the learning model such that a given speci�ed dimension
discriminates (more or less strictly) these words along its axis. With this type of approach,
one can carefully control and handcraft speci�c meaningful dimensions, while still leaving the
models enough degrees of freedom to learn e�cient representations. However, that is also a
limitation in that it is necessary to construct these vocabularies for each semantic relationship
desired, which may have a high annotation cost. Somewhat similarly, Fyshe et al. [2015] modify
the scheme proposed in the NNSE [Murphy et al., 2012] approach (which we will discuss more
in detail later on), by adding a term to the objective function which enforces a certain vector
representation compositionality with regards to annotated phrases (in this case, adjective-noun
or noun-noun pairs), extracted from dependency parsing features found in an earlier study
on semantic composition of vectors [Fyshe et al., 2013]. The latter study also provides an
evaluation task based on brain activity measurements in participants reading these phrases,
a type of external data which, in Fyshe et al. [2014], is used to create a joint model (with the
same starting word embedding approach, NNSE), thus combining two di�erent data modalities
to attempt to constraint and improve the interpretability of word representations.

The approaches on which we’ve focused on here however are of the �rst variety, constraint-
based interpretable embeddings, as they seem to be the most well-studied and are used as a
conceptual basis or starting point for numerous approaches of the second class. The main two
constraints which are employed by these approaches to enhance interpretability are sparsity
and non-negativity. Indeed, a wide range of contributions [Lee and Seung, 1999; Fyshe et al.,
2014; Faruqui et al., 2015; Dahiya et al., 2016; Trifonov et al., 2018; Subramanian et al., 2018]
have shown that these two properties are essential to produce distributional models where
each dimension is independently semantically meaningful. Sparsity of the representations,
that is, an upper-bound constraint on the number of non-zero (or occasionally relaxed up to
a threshold above zero) dimensions for each word in the model’s vocabulary, is desirable for



many reasons: �rst of all, experiments and evaluations have shown [McRae et al., 2005; Murphy
et al., 2012; Fyshe et al., 2014] that humans have a preference towards describing objects and
concepts with a few speci�c and strongly related words, rather than numerous but more weakly
related associations. Similarly, models exploiting such constrained representations may bene�t
from this sparsity: indeed, for many NLP tasks, only a limited set of semantic features are
actually relevant, for example, in sentiment analysis, while the semantics of an entire sentence
may require a contextualized understanding of its constituting terms, in theory only their
sentiment value should be taken into account, in the spirit of the task. Equivalently, this may
also help produce less biased models, as there are properties of words which should ideally
not be taken into account, say, gender, when performing tasks which do not in theory require
them. Sparsity also lends itself to easier exhaustive analysis of the relevant components of an
input, for the purpose of explanation methods. On the other hand, non-negativity is mainly
useful as it allows to reason about the non-zero components of a representation as a degree
of “participation” of di�erent parts, in this case, abstract senses, in the whole object that is the
word in question. Many have argued [Lee and Seung, 2001, 1999; Hoyer, 2002] that allowing
di�erent features of an object to cancel out through subtraction is generally undesirable, and
indeed, when dealing with words, it is di�cult to imagine what a negative value for a particular
semantic component could mean, in addition to con�icting with the naturally intuitive process
of constructive description which we mentally and verbally employ for most abstract objects.

Such constraints can be applied to word embedding approaches in essentially two di�erent
ways: either by starting from scratch and modifying or creating a new encoding process which
includes these constraints in some fashion, or, by starting from an existing (usually dense)
word embedding model, and transforming its vectors a posteriori, such that they acquire the
desired properties, through matrix factorization or basis rotation, for example. In the next
two sub-sections, we present and discuss di�erent such approaches which can be found in the
relevant literature, with varying levels of complexity, and which have experimented upon here.
We also include our own very simple baseline model (NMF300), which illustrates how even
just using non-negative matrix factorization techniques can already yield decent interpretable
embeddings.

2.2.1 A Priori Constrained Interpretable Embeddings

These �rst type of approaches rely on a construction method which implicitly or explicitly
imposes these constraints, sparsity and/or non-negativity (ideally both), on the produced
embedding space. One relatively simple way to achieve this is by using non-negative matrix
factorization (NMF) techniques, in a setup otherwise similar to the global matrix factorization
approaches as can be found in LSA (see 2.1.2), that is, by applying this factorization on term-
context co-occurrences statistics, collected on large text corpora. Thanks to the work by Lee



and Seung [1996; 1999; 2001] on these techniques, e�cient algorithms exist to compute such
factorizations, using multiplicative update rules which come in two variants, one minimizing
the conventional least squares error, and the other the Kullback-Leibler divergence metric,
with both having been proven to converge. Di�erent approaches found in the literature use
these objective functions as a basis, usually adding some additional term or terms to strengthen
or enforce additional constraints on top of the explicit non-negativity and implicit sparsity,
but, as we have experimented with our own basic model, NMF300 (which is discussed in more
details in Section 3.1), these are not necessarily required to attain interpretable dimensions in
the resulting embedding matrix.

Notation: For reasons of consistency, we have adapted the formulation of each
objective function so that they make use of the same notation, when possible. In the
following, X P RVˆC represents input statistical observation data, usually, the term-
context co-occurrence matrix computed on the model’s training corpus, where V is
the size of the model’s vocabulary and C is the number of context features considered
for the co-occurrences statistics. W P RVˆd

ě0 is the resulting sparse non-negative word
embedding matrix, where d is the chosen embedding dimension size (usually 300, if
not otherwise speci�ed), H P RdˆC the second part of the factorization of X , often
called the “dictionary” or basis matrix, when applicable, or some other learned parameter
(usually discarded at the end either way, as W is intended to be used alone as the output
embedding matrix). For any matrix A, Ai,j corresponds to a single element, and Ai,: and
A:,j to its i-th row and its j-th column as a whole, respectively. Thus, the word embedding
vector for the i-th word in the vocabulary will be found in Wi,:. }A}F is the Frobenius
norm of A : }A}F “

b

p
ř

i,j |Ai,j|
2q. b and c are respectively the element-wise product

and element-wise division operators.

To qualitatively compare these interpretable approaches , both with each other as well
as against the more traditional dense models discussed before, Table 2.2 showcases the most
active dimensions for various words, similar to Table 2.1 (see Section 2.1.3).

NNSC: While not speci�cally intended to be used in NLP, Non-Negative Sparse Coding
(NNSC) [Hoyer, 2002] was one of the �rst methods proposed which explicitly attempts to
enforce both non-negativity and sparsity in the produced representations, by using non-negative
matrix factorization under some additional constraints. The author proposes the following



objective function, CXpW,Hq, for the factorization1:

arg min
W,H

CXpW,Hq “
1
2}X ´HW }2F ` λ

ÿ

i,j

Wi,j

under the non-negativity constraints applied to both matrices @i, j : Wi,j ě 0, Hi,j ě 0, as well
as the unit rescaling constraints applied to the columns of H , @j : }H:,j}2 “ 1, and where λ is
an positive hyperparameter controlling the trade-o� between the accuracy of the factorization
and the sparsity of the output embedding matrix W . The rescaling constraint is necessary to
ensure the second term of the objective, which enforces the sparsity of W , does not lead to
the uncontrolled scaling up of H and scaling down of W by the factorization algorithm to
minimize the objective further and further. The algorithm used to minimize this objective is
inspired by the iterative multiplicative update rules from Lee and Seung [2001] for the least
squares error metric, with mainly one signi�cant variation. Where both W and H could be
updated with the following iterative update rules under the sole non-negativity constraint
(whereÐ is the “update” operator):

W Ð W b pXHJ
q c pWHHJ

q H Ð H b pWJXq c pWJWHq

these cannot be used as is alongside the unit rescaling constraint introduced above. To solve
this issue, the author proposes modifying the update steps for the H matrix (on which the
constraint is applied) into a projected gradient descent setup, where the following free descent
step is �rst applied (where H 1 is a temporary variable, and α the gradient descent step-size):

H 1
Ð H ´ αpHW ´XqWJ

followed by a negative-clipping and a column-rescaling steps on H 1, before �nally setting H Ð

H 1 to continue with the multiplicative update of W as usual. The author experimented with
this approach on image data, showing that while a purely NMF-based method can successfully
and e�ciently extract the base features of arti�cially generated instances, the addition of the
sparsity constraint appears to enable overall more e�cient representations as well as adding
more robustness when the embedding space is overcomplete (when d, the chosen dimensionality
for the output vector representations is larger than is necessary to encode all the given data).

1The author chose to use the second matrix in the product of the factorization as the one to keep as the
encoding of the original data, hence the HW term instead of the more common WH .



NNSE: Inspired by the NNSC approach, Murphy et al. [2012] proposed the Non-Negative
Sparse Embedding (NNSE) model2 for NLP, with a slightly di�erent objective function:

arg min
W,H

CXpW,Hq “
V
ÿ

i“1
p}Xi,: ´Wi,: ˆH}

2
F ` λ}Wi,:}1q

under the single non-negativity constraint @i, j : Wi,j ě 0 (di�erent from NNSC), and the soft
unit rescaling constraint @i : }Hi,:}2 ď 1. Similar to NNSC, this training objective is convex
when doing alternating update steps on W and H while keeping the other matrix �xed, and
the authors use the online dictionary learning algorithm presented in Mairal et al. [2010] to
optimize it. NNSE embeddings were computed on dependency parsing statistics extracted
from a large English web-corpus, the ClueWeb09 [Callan et al., 2009] dataset3, of which 16
billion words and 10 million documents were used, with a vocabulary size of V “ 40 000
(35 560 after frequency cuto� and positive pointwise mutual information �ltering), and a
feature size of C “ 2 000, resulting from the concatenation of two 1 000 dimensional singular
value decomposition (SVD) matrix factorizations on both term-term co-occurrence counts and
term-document co-occurrence counts, which was intended as a way to simplify the complexity
of the optimization problem, by pre�ltering some of the noise in the data.

Word2Sense: Panigrahi et al. [2019] have proposed Word2Sense (lit. “word to sense”), an
LDA-based (Latent Dirichlet Allocation) interpretable word embedding method. Contrary to the
previous methods, based on non-negative matrix factorization, in this approach, the term-term
co-occurrence matrix is assumed to follow a generative model (similar to [Arora et al., 2016]),
where a sense model is inferred (in a somewhat similar fashion to topic modelling), as a set of
d1 Dirichlet distributions over the words which can appear in the context window of any given
word. Any word can then itself be encoded as a sparse d-dimensional Dirichlet distribution
over these learned senses. Because this method was found to be prone to returning a large
number (d1) of redundant senses (and thus leading to a large d number of �nal dimensions
for the produced embeddings), a merging step is applied, using the Jensen-Shannon (JS)
divergence metric (DJSpP ||Qq “

1
2DKLpP ||Mq `

1
2DKLpQ||Mq, where M “ 1

2pP `Qq and
DKLpP ||Qq “

ř

x P pxqlogp
P pxq
Qpxq

q is the Kullback-Leibler divergence) applied on each pair of
sense-distributions to drive an agglomerative clustering algorithm. Starting from an initial
d1 “ 3 000 senses, the authors �nd that merging a quarter of the most redundant senses was
optimal, resulting in a �nal embedding dimension size of d “ 2 250. The original model is
trained on 3.5 billion words from the UKWAC [Ferraresi et al., 2008] and Wackypedia [Baroni
et al., 2009] corpora4, with a vocabulary of 255 434 words.

2available at: http://www.cs.cmu.edu/~bmurphy/NNSE/
3available at: https://www.lemurproject.org/clueweb09.php/
4available at: https://wacky.sslmit.unibo.it/doku.php?id=download

http://www.cs.cmu.edu/~bmurphy/NNSE/
https://www.lemurproject.org/clueweb09.php/
https://wacky.sslmit.unibo.it/doku.php?id=download


2.2.2 A Posteriori Constrained Interpretable Embeddings

In this second type of approach, instead of starting from scratch from text corpora statistics, a
method is used to transform an existing dense word embedding matrix into a non-negative
and/or sparser form, in order to increase its interpretability.

One way to achieve this is to consider this task to be a basis rotation problem: for instance,
Park et al. [2017] propose using an algorithm from the Exploratory Factor Analysis literature,
which attempts to minimize the given embedding matrix’s row and column complexity (leading
to fewer large values appearing in each row or column) to induce better interpretability without
fundamentally modifying the structure of the embedding space, which preserves its exploitable
geometric features. Similarly, Dufter and Schütze [2019] explore di�erent rotation methods,
such as linear SVMs and variations of the Densifier algorithm introduced by [Rothe et al.,
2016], in order to impose correlations between chosen linguistic features and a portion of
the embedding matrices’ dimensions. While these rotation-based approaches o�er multiple
advantages, they also more strongly rely on the quality of the initial dense embedding vectors
to produce good representations, as the transformations (and therefore constraints) they apply
on them is by-design more limited. Some other methods have been proposed which do not
follow these restrictions, and which can therefore modify the structure of the starting space as
needed to better enforce new constraints on it.

SPOWV: Faruqui et al. [2015] have proposed the SparseOvercompleteWordVector (SPOWV)
Representations method, based on sparse coding, akin to NNSC and its variants, but applied to
existing dense word vectors instead of corpora statistics, with the following objective function
(in which, as such, x refers to a dense embedding matrix of size V ˆ C):

arg min
W,H

CXpW,Hq “
V
ÿ

i“1
p}Xi,: ´Wi,: ˆH}

2
F ` λ}Wi,:}1 ` τ}H}

2
F q

where λ and τ respectively control the l1-norm sparsity constraint on W and the l2-norm soft
bounding constraint on H . Unlike the previous methods, this method uses a specialized variant
of online adaptive gradient descent (AdaGrad) [Duchi et al., 2011], speci�cally adapted to
handle the l1 regularization term [Xiao, 2009], while also clipping the negative terms in W
to 0 to enforce non-negativity. The authors experiment both with adding or removing the
non-negativity constraint, as well as with the binarization of the non-negative embedding
vectors. Binarization is argued to even further increase the interpretability of the word vectors,
though at the cost of an even higher loss in information density. To partially combat this,
the constructed representations are so-called overcomplete, because the size (d) of the output
vectors are intended to be signi�cantly larger than the input embeddings’ dimension (C), to
account for the information capacity loss due to the various constraints applied. In the original



publication, the authors �nd that a 10-fold increase is the most e�ective (that is, starting from
C “ 300 wide dense vectors, ending with d “ 3 000 wide sparse vectors), when experimenting
with GloVe or word2vec initial embeddings.

SPINE: Subramanian et al. [2018] introduced the Sparse Interpretable Neural Embeddings
(SPINE) model, based on denoising k-sparse auto-encoders (AE) which, similarly to SPOWV,
are applied to existing dense vectors from methods like GloVe or word2vec, trained with a
three-part objective function:

arg min
W,H

CXpW,Hq “
1
V

V
ÿ

i“1

´

}Xi,: ´ Dec
`

EncpXi,:q
˘

}
2
F

¯

loooooooooooooooooooomoooooooooooooooooooon

RL

` λ1

d
ÿ

h“1
max

˜

0,
´ 1
V

V
ÿ

i“1
EncpXi,:q:,h

¯

´ ρ

¸2

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

ASL

` λ2
1
m

V
ÿ

i“1

d
ÿ

h“1

´

EncpXi,:q:,h ˆ
`

1´ EncpXi,:q:,h
˘

¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

PSL

where EncpXi,:q “ fpXi,:ˆPe`beq (where f is the activation function of the encoder, discussed
later) and DecpZi,:q “ Zi,: ˆ Pd ` bd are respectively the encoding and decoding functions of
the auto-encoder, with Pe P RCˆd, be P R1ˆd, Pd P RdˆC , bd P R1ˆC respectively the param-
eters and biases of the encoder and decoder, and λ1, λ2, ρ respectively the hyperparameters
controlling the Average Sparsity Loss (ASL) term, the Partial Sparsity Loss (PSL) term, and the
desired sparsity factor for the columns (h P 1..d) of the encoded vectors. The Reconstruction
Loss (RL) term is similar to those seen previously, except the matrix factorization has been
replaced with the neural encoder-decoder model. At the end of the training, the output sparse
interpretable vectors are found by running the trained encoder module on the input dense vec-
tors, Wi,: “ EncpXi,:q. The Average Sparsity Loss (ASL) term pushes each dimension (column)
in the output representations towards a ρ sparsity factor (or lower). However, alone, this term
is not enough to enforce sparsity in the embedding dimensions, as it is only concerned with
the averages of the columns (which might thus all take low, but non-zero values), so, in order
to further push the close-to-zero values further towards zero, and at the same time attempt to
produce a “soft” binarization (by equivalently pushing the higher values towards 1), the Partial
Sparsity Loss (PSL) term is added. To enforce a non-negativity constraint within this approach,
one only needs to select an appropriate positive activation function f , such as a Recti�ed Linear
Unit

`

ReLUpxq “ maxp0, xq
˘

or sigmoid/logistic function
`

Spxq “ p1` e´xq´1
˘

. The authors
however discard the latter option (because of its asymptotic nature towards 0 values), and
propose a variant to the former, capped ReLU

`

cap-ReLUpxq “ maxp0,minpx, 1qq
˘

, to further



NNSE

science
genetics, biology, physiology, microbiology, ecology, biochemistry

low-budget, time-lapse, live-action, science-fiction, zapruder, art-house
cracks, seams, holes, scratches, bumps, scars

car
nissan, chrysler, volkswagen, mazda, chevrolet, buick

tiers, subgroups, subfamilies, subtypes, genders, subsections
berlin, munich, frankfurt, hamburg, bonn, mannheim

teacher
educator, historian, lecturer, researcher, scientist, essayist

dermatologist, pathologist, veterinarian, psychiatrist, pediatrician, neurologist
first-year, pre-med, vocational, tertiary, after-school, undergrad

SPOWV

science
bone, adult, hans, science, cm, honolulu

bowie, aired, licensed, ncaa, freely, broadcasting
innovation, develops, horsepower, ridge, collaborations, futures

car
card, passport, mechanic, driver, thief, stabbed
ferrari, yamaha, chevrolet, cavalry, fia, caste
angles, curve, speeds, disk, motorsports, sheer

teacher
theatrical, conservatory, attic, painter, fairs, venetian

verde, de, nord, emilio, kashmir, casa
motorsports, old, tourists, waugh, healy, hostage

SPINE

science
graduate, doctorate, phd, bachelor, anthropology, degree

honorary, 1879, 1826, 1893, faculty, sciences
institute, psychiatry, sciences, physics, laboratory, research

car
motor, engine, mazda, chrysler, coupe, chevrolet
lanes, speeding, freeway, drivers, highway, brakes

deck, asphalt, floating, leaf, door, bottles

teacher
diploma, curriculum, students, school, grades, exams

sculptor, inventor, physicist, collector, playwright, businessman
sawyer, jared, writer, cameron, leslie, moe

Word2Sense

science
anthropology, sociology, sciences, humanities, science, geography

ap, calculus, mathematics, placement, classes, excelled
quantum, physics, mechanics, astronomy, einstein, chemistry

car
leasing, hire, car, dealer, rental, dealers

parking, bays, ample, parked, attendants, spaces
auto, insurance, quote, broker, cheap, owner

teacher
teachers, classroom, teacher, teaching, teach, english

portfolio, pupils, stage, lesson, key, teacher
secondary, lea, primary, pupil, pupils, academies

Table 2.2: Illustration of the much better qualitative interpretability of interpretable word
embedding models, compared to dense models (see Table 2.1): with varying degrees, each
model seems to capture di�erent semantics in the active dimensions for each word.

enforce the soft binarization constraint.

2.3 Evaluating Interpretability

While a purely qualitative analysis of the active words in the dimensions of such interpretable
embedding models is su�cient to showcase their di�erences compared to dense models (see
Table 2.1 and Table 2.2), a more quantitative and methodical evaluation of their practical
interpretability is necessary, in particular to compare these models to each other. One of the
main desiderata for such interpretable representations concerns the discriminative power of
their associated embedding spaces’ dimensions: as each of these dimensions seems to encode
a particular semantic attribute or class of the terms in the model’s vocabulary, it would be



desirable if any given single dimension could clearly be used to discriminate between terms
where this dimension is active and those where it is not.

One way this property can be comparatively evaluated is through the Word Intrusion
Detection task, �rst introduced by Chang et al. [2009], and which can be summarized as such:
for a given dimension of a non-negative sparse embedding model, we can select a small shu�ed
sample of words (4 or 5, for example) which are all highly active in this particular dimension.
These should thus share at least one semantic commonality, associated with the dimension
being studied. If one then selects and randomly inserts into this sample an “intruder” word,
which is comparatively not active in this dimension, can a human evaluator accurately identify
this intruder, given no other information than the list of words? This task initially designed to
examine the semantic coherence of topics discovered by latent semantic analysis and other
topic modeling methods, and as word embedding models, especially the interpretable ones,
are conceptually quite similar to these approaches, this type of evaluation �ts the problem
well, so much so that it has seemingly become the de facto standard method over the years
[Murphy et al., 2012; Fyshe et al., 2014; Faruqui et al., 2015; Subramanian et al., 2018]. Usually,
the intruder is drawn from the bottom b% of the words sorted by their corresponding vector’s
value in the given dimension, and also in the top t% words in another di�erent dimension
(presumably to avoid picking overall “low activations” words, which usually correspond to
stop-words or equivalents, such as “the”, “of”, “a”, etc.). Subramanian et al. [2018] for example
suggest picking b “ 50% and t “ 10%.

2.4 Downstream performance Evaluation

Outside of evaluating the interpretability of these models, it is also necessary to ensure they
still perform adequately compared to their denser alternatives when used as part of standard
NLP tasks and architectures. Due to their popularity, few linguistic tasks have not yet seen
a number of neural models being proposed and evaluated to solve them, and most of these
models use some type of word embedding representations as part of the processes to encode
their inputs. In particular, many tasks fall into the sequence classi�cation template, where
each instance is composed of one or multiple pieces of input text, associated to one (or more
rarely, multiple) categorical output label(s). Fit into this template (non-exhaustively): sentiment
analysis, topic labeling, email spam or hate speech detection, closed-ended question answering,
relation classi�cation, etc. In essence, any categorical property or relationship which can be
associated (manually or automatically) with one or multiple pieces of text may constitute a
sequence classi�cation task, as long as enough data can be collected and labelled appropriately.
The principal advantage of using such downstream tasks to evaluate the performance of a
given interpretable word embedding model is that their particular properties, mainly sparsity
and non-negativity, should in theory not only not be detrimental (depending on how much



information loss has been traded o� in the constraints enforcing process, of course), but may
enable simpler models to more easily �nd exploitable correlations between semantic or lexical
features and the tasks’ labels, as those will be represented in individual dimensions of the input
vectors, most likely in the form of sets of sparse linear combinations of speci�c dimensions.

We now succinctly present a few such tasks, with their accompanying datasets, from the
relevant literature.

BoolQ: Introduced by Clark et al. [2019], BoolQ (for “Boolean Questions”) is a yes/no ques-
tion answering (QA) dataset, with the speci�city that these questions are so-called “naturally
occurring”, meaning that they were collected in an unprompted fashion, in this case, from
anonymized Google search engine queries: �rst, aggregated queries which have been heuris-
tically identi�ed to be candidate yes/no questions are gathered, then, for each query which
returns a relevant Wikipedia article within the 5 �rst results, a human annotator is tasked with
�nding a short passage (on average, around 100 words) in the linked article which contains
enough information to correctly answer the question, according to the gold answer which they
also annotate. This pipeline is inspired by the one used for the Natural Questions [Kwiatkowski
et al., 2019] benchmark dataset, which BoolQ incorporates „ 3 000 yes/no questions and
passages from, for a total of „ 16 000 instances, split into a „ 9 400 train set, and both „ 3 200
development set and test set (the latter being not available at this time, unfortunately). The
authors consider this task to be unexpectedly challenging, despite the boolean answers, as
they require looking for potentially complex information in the accompanying passage with
regards to the question, which is akin to the skill-levels required for Textual Entailment (TE, or
Natural Language Inference, NLI) tasks, which the authors empirically con�rm by showing
that transfer learning from TE-trained models leads to better performance than starting from
models trained on paraphrase or extractive question answering tasks.

Emergent: Ferreira and Vlachos [2016] propose the Emergent dataset for stance classi�ca-
tion, in which the task is to classify the journalistic stance with regards to a claim sentence, from
articles’ headlines related to the claim, in which each article can be labelled either for, against,
or simply observing (repeating without taking a position) the claim. This dataset contains
300 claims and 2 595 associated news articles, from the homonymous news rumor-debunking
Emergent Project [Silverman, 2015], created and annotated by journalists as part of their work.
This type of task and data is of particular interest nowadays, with the recent concerns and
upsurge of so-called “fake news”, making apparent the need for better fact-checking tools and
services, which automation in the form of machine-learning may help to provide in a scalable
fashion.



IMDB: Maas et al. [2011] make available a dataset for sentiment analysis, consisting of
collected user movie reviews from the popular Internet Movie Database website (often abbrevi-
ated to IMDb or IMDB), with binary sentiment labels (“positive” or “negative”) automatically
mapped from the user-given review scores (on a 10 “stars” scale, with the following mapping:
score ď 4 Ñ negative; score ě 7 Ñ positive; “neutral” reviews are not included).

SST: The Stanford Sentiment Treebank dataset [Socher et al., 2013] is one of the few fully
labelled large-scale parse trees corpus for sentiment analysis, based on the movie reviews
dataset from Pang and Lee [2005] and parsed by the Stanford Parser [Klein and Manning, 2003]:
it contains 11 855 single sentences, which are broken down into a total of 215 154 unique
phrases constituted into parse trees, which have all been annotated by 3 human judges into
one of �ve polarity classes (“very negative”, “negative”, “neutral”, “positive”, “very positive”).
This level of �ne-grained annotation is necessary to study the compositional aspects of natural
language, in this case, sentiment polarity. To handle this type of structured data, the authors
propose the Recursive Neural Tensor Network (RNTN) architecture, which improves upon the
Recursive Neural Network [Goller and Kuchler, 1996; Socher et al., 2011] (not to be confused
with Recurrent Neural Networks) and Matrix-Vector Recursive Neural Network [Socher et al.,
2012] architectures, by implementing a learnable tensor-based recursive composition operation,
allowing the model to compute the representations for higher-level elements in the hierarchical
parse-trees from lower-level elements.

Sarcasm: Oraby et al. [2016] provide the Sarcasm dataset, constituted of internet forum
posts from the Internet Argument Corpus (IAC) 2.0 [Abbott et al., 2016], which have been
annotated for the presence of sarcasm (as well as the more speci�c class of sarcasm, mainly
either generic sarcasm, rhetorical questions, or hyperbole), in parts automatically, using the
AutoSlog-TS [Rilo�, 1996] weakly-supervised lexico-syntaxic pattern-learner model to identify
the more accurately non-sarcastic instances, with the remainder of them being manually
annotated by workers on the crowdsourcing platform Amazon Mechanical Turk. As sarcasm
is noted to be a somewhat uncommon occurrence in online debates (estimated to represent
approximately 12% of the IAC [Walker et al., 2012]), the authors choose a conservative 20%
ratio for the sarcastic class, representing a 6 out of 9 annotator agreement threshold, resulting
in a total of 3 260 labelled posts for each class (sarcastic, non-sarcastic).

UR-FUNNY: The UR-FUNNY dataset [Hasan et al., 2019] is a multimodal humor detection
(more precisely, punchline detection) dataset, incorporating textual, visual and acoustic modali-
ties, extracted from publically available TED talks videos, which are remarked to be an excellent
source of data for this type of task in particular for multiple reasons: indeed, not only do these
digital talks include very reliably transcriptions, allowing for accurate audio-text alignment,
but these also contain annotated audience markers which re�ect the behavior of the audience,



in particular, laughter, which is here used to detect potential punchlines and their preceding
setup/context (inspired by Chen and Lee [2017]). For the negative class instances, the authors
simply sample an equivalent number of random video, audio and transcript intervals which
are not immediately followed by an audience laughter marker, resulting in a balanced dataset
containing 8 8257 multimodal ppunchline, context, labelq instances for each class (humorous,
non-humorous), spanning over 1 741 speakers, 1 866 videos and 417 topics.

SNLI: [Bowman et al., 2015] provide the Stanford Natural Language Inference corpus for
the Natural Language Inference (NLI) task, often interchangeably referred to as Recognizing
Textual Entailment [Poliak, 2020]. This task consists in predicting whether a hypothesis
sentence (e.g. “There are children present.” ) logically and semantically follows from a premise
sentence (e.g. “Children are smiling and waving at a camera.” ), with three possible classes of
relationships to predict: entailment, if the hypothesis follows from the premise (which is the
case for the given examples previously); contradiction, if the hypothesis contradicts the premise;
neutral, if the hypothesis does not relate directly to the premise. This type of task is considered
particularly di�cult, as it not only requires understanding the semantics of the two propositions
separately (which often require some level of commonsense or world-knowledge), but it also
requires abstract logical reasoning skills to assess the nature of the inference relationship
between them. The data for this very large corpus („ 570 000 instances) originates from the
Flickr30k corpus [Young et al., 2014], which contains „ 160 000 image captions (spanning over
„ 30 000 images), which were used as starting premise sentences. These were then manually
augmented by workers on the crowdsourcing platform Amazon Mechanical Turk, who were
tasked with writing three alternative hypotheses captions for each given premise caption,
appropriately for each of the inference classes (entailment, contradiction, neutral), without
being shown the actual picture associated with the premise caption (which may have caused
the workers to unintentionally exploit non-textual information to craft the hypotheses, see
Section 1.2.1). This dataset, and its multi-genre variant, MNLI [Williams et al., 2018], were
found later on to be tainted with many annotation biases, as discussed previously in Section
1.2.1.

PDTB: The Penn Discourse TreeBank [Prasad et al., 2008] is built upon the same data as
the Penn TreeBank corpus [Marcus et al., 1993], and constitutes a large-scale dataset manually
annotated for discourse relations, on texts collected from the Wall Street Journal (WSJ) corpus.
Discourse relations (also known as rhetorical relations), attempt to more or less formally
characterize the textual relations between two (usually adjacent) segments of a discourse.
These relations can either be realized explicitly, through some type of linking word or phrase,
most often conjunctions (and, or, because, when, although, etc.), in which case the second
argument of the relation is usually a syntactic dependent clause of the �rst, or, they can also
hold implicitly, and must therefore be contextually inferred from the content of the two thus



Corpus Train Test Classes Class balancing

IMDB 25000 22500 2 eq.
BoolQ 9427 2943 2 true=62.3%, false=37.7%
Sarcasm 3754 469 2 eq.
UR-FUNNY 8074 1058 2 eq.

SST 8544 1989 3 positive=42.0%, negative=39.2%,
neutral=18.8%

SNLI 549367 9824 3 entailment=33.4%,
contradiction=33.3%, neutral=33.3%

Emergent 2076 259 3 for=47.7%, observing=37.0%, against=15.3%

PDTB 12907 1085 11 cause=26.5%, conjunction=22.1%,
restatement=19.1%, contrast=12.4%, reste=19.9%

Table 2.3: Statistics about the di�erent corpora used. For the PDTB corpus, only the 4 most
major classes are listed (this corpus presents high class imbalance, especially in the test set,
where some classes are not represented at all).

separate but generally consecutive sentences. In the PDTB, a relation is identi�ed by its type
(Explicit, Implicit, etc.) and by the connective expression linking its two arguments (spans of
text): in the case of Implicit relations, an explicit connective which best expresses the inferred
relation is manually inserted and annotated, as though the two argument sentences were linked
clauses. In addition, a hierarchical sense annotation is provided, which makes more explicit
the exact nature of the relation (within a 3 level hierarchy of tags, 4 coarse-grained classes,
„ 15 intermediate-level types, and „ 40 �ne-grained subtypes). While models �ne-tuned for
the prediction of explicit relations achieve accuracies above and around 95%, detecting and
classifying implicit relations is still a much more di�cult problem, with accuracies under 60%
[Dai and Huang, 2019; Kim et al., 2020].

To fully exploit the interpretable nature of non-negative sparse embedding vectors while
solving such tasks, however, the choice of a machine learning model is very important.

2.5 Intrinsically Interpretable Models

Indeed, while it would be possible in theory to simply replace the dense embeddings from
any state-of-the-art NLP setup with interpretable embeddings, with just a few potential shape
adjustments, the resulting architecture would very likely not become interpretable as a result:
indeed, most machine learning models, in particular neural architectures, make use of a number
of layered non-linearities, which when all combined, can in theory learn and simulate any
mathematical function (depending on the depth and number of parameters available), which
is what gives them their modeling strength, but also their major drawback of being opaque
and di�cult to interpret. By themselves, interpretable word embeddings would behave no



di�erently in such models than any other type of embeddings, i.e., their sparsity and non-
negativity would most likely be “lost”, probably right after passing through the �rst input layer.
While one could consider using post-hoc explainability methods (which will be discussed later,
in Chapter 4) alongside these interpretable representations to generate explanations for such
models, an alternative would be to use models which are themselves intrinsically interpretable.

In practice, only a few types of architectures can be said to be truly intrinsically interpretable,
with mainly two large categories:

• the Generalized Linear Models [GLMs; Nelder and Wedderburn, 1972] family, which
encompasses and generalizes linear or logistic regression models, for which predictions
always depend on the weighted sum of the inputs, making them easily interpretable: the
“importance” of an input feature will always be proportional to the corresponding weight
learned by these models. If the number of input features and thus learned weights is
relatively large however, it may be di�cult to exhaustively analyze all of them.

• Rules-based models, such as Decision Trees, which learn a �nite number of single-feature
branching decision rules, arranged in a tree, recursively dividing a dataset into parts,
until each part can be accurately labelled. Other algorithms exist to extract such rules,
not necessarily using a tree structure, such as Bayesian Rule Lists [Yang et al., 2017].
These rules can be exhaustively listed and are easy to understand, however, if the number
of nodes in a tree becomes too large, it can become di�cult to parse and understand all
the learned rules.

In NLP, the latter rules-based models have fallen out of use, in favor of neural architectures,
which are themselves networks of generalized linear models (a single neuron is a GLM of its
inputs). Simple linear models are still in use in NLP, in parts thanks to word embeddings, which
can enable computing decent quality sentences representations by a simple linear composition
(such as a point-wise addition or mean) of their words’ embedding vectors, as shown by Kober
et al. [2017]. For example, Joulin et al. [2017] exploit this fact, using the fastText [Bojanowski
et al., 2017] embedding model to very cheaply and quickly create a small linear sentence
classi�er, which simply averages the input fastText embeddings, passes them through a single
hidden layer, which then projects them into a softmaxed distribution over the class labels,
achieving close or even surpassing state-of-the-art of results, at the time it was presented, even
beating signi�cantly larger models.

Taking inspiration from this approach, and noticing a lack of concrete usage of interpretable
word embeddings, we decided to explore their use as part of an a priori interpretable machine
learning setup, with the objective of exploiting their interpretable dimensions to attempt to
diagnose potential hidden biases in various NLP datasets, and will present it in the next Chapter.





Chapter 3

Interpretable Word Embeddings for the

Detection of Hidden Biases —

Experiments

While many methods have been proposed and evaluated to construct interpretable word
embedding models, such as showcased in the previous Chapter, we noticed a distinct lack of
experiments actually exploiting their intrinsically interpretable features as part of a concrete
task. We thus propose to use the interpretable dimensions of non-negative sparse word
embedding models to diagnose potential lexical biases in various datasets: by training an
interpretable model, such as a linear classi�er, on a to-be-diagnosed task, whose inputs are
encoded by using an interpretable word embedding model, we could exploit the learned weights
of this model as global explanations for each of the task’s classes, in the form of a numeric
“feature-attribution” associated to each of interpretable dimensions, and thus in theory, to the
lexical family of words it is associated to.

We �rst showcase a baseline interpretable word embedding model we built from scratch,
which we then evaluate alongside the previously discussed (see Section 2.2) existing models,
both in a qualitative interpretability evaluation, using a novel variant of the Word Intrusion
Detection task, and then quantitatively on a set of downstream tasks (discussed in Section 2.4)
using a simple interpretable setup. We �nally analyze some of the trained models weights to
showcase how these embeddings can be used, in the previously described fashion, to potentially
detect hidden lexical dataset biases.
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NMF300

science
neurology, ophthalmology, oncology, radiology, microbiology, cardiology

courses, curriculum, undergraduate, students, vocational, teaching
harvard, phd, doctorate, caltech, yale, swarthmore

car
locomotives, locomotive, wagons, trucks, carriages, cars
sedan, hatchback, coupé, roadster, convertible, coupe
nascar, waltrip, speedway, earnhardt, daytona, racing

teacher
courses, curriculum, undergraduate, students, vocational, teaching
educator, linguist, scientist, writer, educationist, mathematician

assistants, assistant, electrician, clerk, trainee, salaried

Table 3.1: Illustration of the interpretable word embeddings produced by our baseline approach,
NMF300. While very simplistic, the dimensions produced still appear to display comparable
levels of qualitative interpretability (see Tables 2.1 and 2.2 for comparisons).

3.1 A Baseline Interpretable Embedding Model: NMF300

While there is a wide variety of trainable and pre-trained interpretable embedding models
to choose from within the literature (see section 2.2), we felt it necessary to have a common
baseline model to compare them to. For the comparison to be fair, however, this baseline model
still needs to display some level of interpretability, as manifested by the properties of sparsity
and non-negativity. Fortunately, it happens that non-negative matrix factorization techniques,
by their very nature, produce output matrices which display these properties. We therefore
constructed the NMF300 baseline model, as a point of reference to compare more complex
models from the literature against, by directly using the non-negative factorization algorithm
proposed in Lee and Seung [2001] for the Kullback-Leibler divergence (DKL) reconstruction
cost function (as opposed to the more common least squares variant used as a basis in other
models):

arg min
W,H

DKLpX}WHq “
V,C
ÿ

i,j“1,1
pXij log Xij

pWHqij
´Xij ` pWHqijq

under the non-negativity constraints applied to both matrices @i, j : Wi,j ě 0, Hi,j ě 0, as
well as the unit rescaling constraints applied on the columns of W , @j : }W:,j}1 “ 1. This
baseline model is constructed on a term-term co-occurrence statistics matrix (with a sliding
window of size 5), collected on over a 2.2 billion word Wikipedia dump (from May 2017), with
a vocabulary size of V “ 100 000 words (99 763 after frequency cuto�), C “ 20 000 features.
Examples of the produced embeddings can be found in Table 3.1, similar to those discussed in
sections 2.1.3 and 2.2.1 (Tables 2.1 and 2.2).



3.2 Comparing Interpretability

For our experiments, we thus chose to use our baseline interpretable embedding model, NMF300,
alongside four other models from the literature (discussed in the previous Chapter, see Section
2.2): NNSE [Murphy et al., 2012], SPOWV [Faruqui et al., 2015], SPINE [Subramanian et al.,
2018], and Word2Sense [Panigrahi et al., 2019]. Before using those models as part of a machine
learning model in various downstream tasks, we �rst wished to qualitatively compare and
evaluate the interpretability of their dimensions, and as such we chose to use a Word Intrusion
Detection evaluation setup (see Section 2.3), as was commonly in the original publications for
these models. The evaluators were this author and his two supervisors, and were, following a
blind process, given 50 intrusion detection instances per model (for a total of 250 instances
to evaluate), with 5 words per instance (including the intruder). All instances were shu�ed
(both their order of presentation in the task, and the words in each instance), and sampled
according to the following random process: we �rst computed the intersection of all �ve
models’ vocabularies (giving us a common vocabulary of size 12 726), then iteratively selected
50 random words within it, under the constraint that a word can only be picked if it does
not share its most active dimension with another already picked word, for all �ve embedding
models. Finally, the most active dimension for all these words within all �ve models were
chosen as the target dimensions for the intrusion detection task. After a �rst few test runs to
tweak the hyperparameters of the method, mainly the sampling threshold for the selection of
the least active words in a dimension, we made two signi�cant adjustments to our evaluation:
�rst of all, as was done in Subramanian et al. [2018] and Panigrahi et al. [2019], we initially
considered also comparing these models against a dense embedding model, such as GloVe
[Pennington et al., 2014] or word2vec [Mikolov et al., 2013a,b], however, similar to the results
obtained in these publications we found that, as can be expected, it is basically impossible to
tell the intruder apart from the most active words for such dense representations. As such, and
because we did not wish to increase the workload of the evaluators to just con�rm this fact an
n-th time, we only ran this evaluation of the 5 previously mentioned interpretable embedding
models. The second observation we made was that the task was too “easy”: for many of the
models, using the implementation of the task as described in Subramanian et al. [2018], even
when tweaking the threshold hyperparameters b and t (see Section 2.3), we found the task not
challenging enough, to the point where some samplings of dimensions following the original
process lead to almost perfect accuracies. Conceptually, we argue that the act of picking the
intruder in a random dimension (other than the one that is being evaluated) does not allow
to properly test its lexical discriminative power: ideally, we would like to ascertain whether
the particular selected dimension can help di�erentiate between words who otherwise share
similar values in their other dimensions. In other words, an interpretable dimension should
ideally target a speci�c aspect of a lexical or semantic family. Thus, to enable this, we propose



a modi�cation of the sampling process for the intruder, which we found signi�cantly increases
the di�culty of the task: just like in the “classic” process, we �rst select the bottom b% (in
our test runs, we found b “ 10% to be a good value, vs. the 50% proposed by Subramanian
et al. [2018]) least active words in the target dimension. However, instead of then re�ning this
selection by picking from those words that are in the top t% of another random dimension, we
instead speci�cally pick the “second most active common” dimension to the four ground-truth
words in the intrusion detection instance. After experiments, we �nd that picking one word
from the �ve most active in the dimension which has the second-highest median of the four
ground-truth words gave satisfactory results. To better illustrate this process concretely, here
is an example of the steps which might be taken when generating a word intrusion detection
instance for dimension n°110 of the SPINE model:

Example: Looking at the top 10 most active words in SPINE’s 110-th dimension (indexed
starting from 0), we �nd, from most active to least active:

“pius, pope, diocese, bishops, basilica, archdiocese, benedict, vatican, catholic, bishop”.

After picking the �rst four words as our ground-truth words for the instance (“pius, pope,
diocese, bishops” ), we then compute their second most active common dimension by taking the
median of all their components, and picking the second largest, which in this case is the 178-th
dimension, with the following top-10 words:

“baptist, jesus, christians, holy, lutheran, religious, judaism, believers, prayers, baptism”

As can be observed, these qualitatively look quite close to the active words in the 110-th
dimension, lexically speaking. In the “classic” variant of the task, we would then pick the
intruder within the bottom b% of the 110-th dimension, and from the top t% of another random
dimension, which might give us one of the �ve following sampled words for example: “baseline,
sculptures, feedback, armoured, modeled”. We can see that picking one of these words as the
intruder alongside our four ground-truth words (“pius, pope, diocese, bishops” ) would de�nitely
make for a trivial instance. Instead, in our proposed more di�cult variant, sampling �ve random
words with the same constraint (picking from those that are also in the bottom b “ 10% of
the 110-th dimension) from the 178-th dimension instead gives us: “judaism, mormon, preacher,
buddhism, meditation”. We can see that this sample is much closer lexically to the four ground-
truth words, making the task signi�cantly harder if one were to be picked as an intruder. Yet,
they also would better illustrate the di�erences between the 110-th and the 178-th dimension:
indeed, the former seems more strongly associated with terms speci�c to the Catholic religion,
whereas the 178-th dimension seems more strongly associated with terms related to religions
in general.

Table 3.2 displays both the evaluators’ average accuracy as well as the inter-evaluator



Model Average Evaluator Accuracy Inter-evaluator Agreement Fleiss’ Kappa

NMF300 76% 94%; 72% 0.74
NNSE 79% 90%; 74% 0.76

SPOWV 38% 84%; 34% 0.43
SPINE 79% 92%; 60% 0.63
Word2Sense 65% 88%; 56% 0.61

Table 3.2: Results of our variant of the Word Intrusion Detection task on the
�ve interpretable embedding models compared here. The agreement is format-
ted as: majority agreement(2 out of 3) ; unanimity agreement (3
out of 3). Best results in each column are highlighted in bold.

agreement metrics on our variant of the Word Intrusion Detection task. We �rst note that our
results are relatively similar to those obtained by Subramanian et al. [2018] and Panigrahi et al.
[2019], taking into account the di�erence in evaluation protocols, and the somewhat subjective
nature of this task. Surprisingly, our baseline model, NMF300, performs quite decently on
this evaluation, despite its simplicity. This seems to showcase once again that the simple
addition of the sparsity and non-negativity constraints is very e�ective at producing mostly
interpretable dimensions. While almost all models on average performed relatively well in this
more di�cult evaluation task (with the exception of SPOWV), we noted during the evaluation
that qualitatively, the interpretability of these models’ dimension is very heterogeneous: indeed,
while the majority of dimensions were relatively easy to associate to a given lexical aspect,
some on the other hand seem to capture pseudo-lexical phenomena, which seem to depend on
the corpus they were created from. For example, models trained on Wikipedia articles, such as
our own NMF300, seem to have captured a few frequency artifacts, caused by the presence of
highly repetitive tabular data. Similarly, some highly speci�c families of proper nouns, such as
names of sports players, teams, or brands, seem to occupy a disproportionate importance in
some models’ learned interpretable dimensions, which we believe is also caused by frequency
artifacts, due to the number of distinct articles which discuss these aspects at di�erent levels
(e.g., an article on a particular sport may refer to articles discussing individual teams, which
themselves may refer to articles discussing individual players, etc.), and with highly speci�c
vocabulary overlap between them.

We argue, however, that a better test for the interpretability of these representations is to
use them in a concrete setup, as inputs to a machine learning model performing a task. We thus
designed an experimental setup that would not only evaluate their e�ectiveness on a given
task’s objective, but in theory also showcase their interpretability, to gain some insights on the
task’s associated dataset and its potential hidden lexical biases.



3.3 Downstream Tasks Evaluation

In theory, an interpretable word embedding model can be used as part of an NLP machine
learning setup just like any other (dense or not) word embedding model, simply as a way to
provide vector representations to encode the tokens in a text. However, if one wants to make
full use of their intrinsically interpretable dimensions, care must be taken as to the choice of
model to use. As noted in Section 2.5, using an intrinsically interpretable model, such as a
linear classi�er, would allow directly exploiting its learned weights, each associated to an input
interpretable dimension, as an explanation for a given predicted class. These may then allow
us to detect if any undesired lexical correlations may be present in training datasets, which
will be actually helped by the fact we are using a simple classi�er, who can be more prone to
�ne-tune on easy-to-learn, often biased features in datasets.

Thus, for each of the tasks and their datasets presented in Section 2.4, and for each of
the interpretable embedding models discussed before, we trained an intentionally elementary
Continuous-Bag-Of-Words (CBOW) softmax regression classi�er, with a parameters matrix of
size H ˆ C , where H is the size of the embedding vectors used, and C the number of classes
in the task. Taking inspiration from the simple fastText-based linear classi�er presented
in Joulin et al. [2017], we simply use the average of the interpretable embeddings of all the
words in an instance as an input to our model. For tasks which have two separate input texts in
their instances, we take inspiration from the sentence-encoding architecture InferSent, from
Conneau et al. [2017], who propose the following composition pattern to combine two separate
sentence representations u and v: pu; v; |u ´ v|;u ˚ vq, where ˚ is the element-wise product
operator, and pa; bq represents the concatenation of vectors a and b. For each pmodel, corpusq
pair, we train one such classi�er for a maximum of 200 epochs, using the ADAM optimizer,
with 50 preceding epochs of automatic hyperparameters �ne-tuning, using the Tree-structured
Parzen Estimator algorithm [Bergstra et al., 2011, 2013], via its implementation in the optuna
library [Akiba et al., 2019].

We then evaluate each produced classi�er on its respective task’s test set, and display
the results in Table 3.3. In addition to the �ve interpretable embedding models we used, we
also trained and evaluated in the same way described above a classi�er using the fastText
dense embedding model (without sub-words), to compare the performance of interpretable
embeddings against those of a dense model. We also display the results of a “dummy” classi�er,
who merely generates predictions at random, weighted by the task’s class distribution, as a
sanity check.

We notice that, quite surprisingly, considering the simplicity of the approach, the accuracies
of the trained classi�ers are quite high, and even, for the majority of the tasks, better with
some of the interpretable embedding models than with the dense fastText model. This seems



Model
Corpus IMDB BoolQ Sarcasm UR-FUNNY SST SNLI Emergent PDTB

NMF300 67.8 62.6 60.5 57.7 54.6 58.6 50.9 33.2
NNSE 78.7 63.6 63.9 59.9 60.6 56.3 66.8 31.1
SPOWV 81.9 66.9 70.5 65.0 62.9 62.9 72.2 36.6

SPINE 81.3 65.9 67.8 63.6 59.9 64.1 72.2 34.5
Word2Sense 82.2 66.2 67.3 63.9 61.4 65.5 69.8 34.2

Dummy (baseline) 50.5 53.5 53.0 52.5 39.5 33.6 41.3 19.3
fastText 82.0 63.7 70.1 64.5 64.4 61.3 69.5 33.4
Dedicated models˚ 96.8 76.9 74† 64.4 96 91.5 73 48

Table 3.3: Results of the approach on the downstream classi�cation tasks evaluated. Accuracy
scores for each model-corpus pair are reported in percentages (best scores in bold). ˚We
additionally list results for popular task-dedicated models found in the literature which achieve
(or come close to) state-of-the-art performance, as a comparison (IMDB, SST: Yang et al. [2019];
BoolQ: Clark et al. [2019]; Sarcasm: Oraby et al. [2016]; UR-FUNNY: Hasan et al. [2019];
SNLI: Liu et al. [2019b]; Emergent: Ferreira and Vlachos [2016]; PDTB: Dai and Huang [2019]).
These are only indicative as the conditions in the cited papers di�er: SST is reported for two
classes with a larger training set; PDTB is trained on the 11 classes only present in the test set.
†F1 score for the positive class (accuracy not available).

to imply that many NLP tasks have a more or less important purely lexical aspect to them, and
this seems to be especially true for sentiment analysis for instance, on which we get the overall
highest scores. This may to some degree be problematic, as this means a large proportion
of instances are “easy” to label, which may be a source of problem for more capable models
training on these datasets, as they might be learning easy lexical shortcuts, instead of skills
required for proper natural language understanding. While it is to be expected that some
lexical features would be associated to some task-relevant aspects, for example, that certain
family of words may have a more or less intrinsic sentiment value, a model relying on these
cues may not properly learn to handle more complex structural phenomena, such as negation.
Various contributions have shown that even more complex state-of-the-art models can fail
at handling negation, when instances are speci�cally crafted to test for it [Naik et al., 2018;
Kassner and Schütze, 2020; Hossain et al., 2020]. Even if these results cannot by themselves
demonstrate the presence of spurious correlations in those datasets, the fact such a simple
approach achieves overall relatively high accuracies may be a sign that some training datasets
might not be ideally designed to teach models the NLP skills intended in their task speci�cation.
Overall, all of the interpretable embedding models perform relatively well, with SPOWV, SPINE,
and Word2Sense being the most performant, while NMF300 and NNSE signi�cantly below,
especially on some tasks (BoolQ and SST for NMF300) where some classes were not predicted
at all.



For the last step in our experimental setup, with our models now trained, we can then
simply analyze their learned weights to produce global lexical explanations.

3.4 Explanations Analysis

For each of our trained models, we generate global explanation reports1, consisting of, for
each class in the task: the top-10 most positive and top-10 most negative weights, associated
to the interpretable embedding model’s dimension index, for which we then list the top-10
most active words. For tasks with multiple input sentences, we specify to which part of the
composition pattern pu; v; |u ´ v|;u ˚ vq the listed weight belongs, as this can also be used
to qualitatively judge these learned correlations. We qualitatively review these reports, and
showcase a few notable examples in Table 3.4.

IMDB: This is one of the datasets for which the performance of the trained elementary models
are the highest. Not too surprisingly, a signi�cant portion of the most active dimensions for
the “positive” and “negative” classes seem to correspond to lexical families of words containing
appropriate sentiment markers, for most models (see the �rst and second rows in Table 3.4).
However, for the NMF300 model in particular, we noticed several dimensions associated with a
large number of surnames and �rst names (e.g., 4th row in Table 3.4) that appear to be strong
predictors of the “positive” class. To analyze this potential bias, which does not seem intuitively
very relevant to sentiment, we used the Named Entity Recognition (NER) module of the spaCy
library to count the numbers of Named Entities of type “PERSON” in the movie reviews of the
dataset, and we found a weak linear correlation (Pearson coe�cient r “ 0.124) between these
counts and the classes of the instances. Further analysis would be needed to see whether a
non-linear model could also exploit this aspect, or possibly an even more speci�c one : indeed,
it seems that several dimensions created by NMF300 are associated with famous artists’ or
celebrities’ names, in particular, the second most contributing dimension for this task in this
case. Taking this into account, one possible explanation for how such a spurious correlation
may have occurred may be that review authors could be more inclined to mention the actors
of a movie by name when leaving a positive review than when leaving a negative one. We
can note that 80.68% of the reviews of the dataset contain at least one named entity of this
type, which is also consistent with the high weighting of the parameter corresponding to this
dimension. We also illustrate this analysis graphically, in Figure 3.1.

BoolQ: On this dataset, the most contributing dimensions seem to focus on particular
themes: for the “false” answers, these seem to point towards questions about themes which are

1These reports are publically available and can be found at: https://github.com/TomBourgeade/
InterpEmbsForBiasDetection/tree/main/experiments_results

https://github.com/TomBourgeade/InterpEmbsForBiasDetection/tree/main/experiments_results
https://github.com/TomBourgeade/InterpEmbsForBiasDetection/tree/main/experiments_results


often debated (dieting, laws, etc.), often subject to conspiracy theories (intelligence agencies,
space exploration, etc.), or emotionally marked language (with adjectives such as “digni�ed”
or adverbs such as “dramatically”). For the “true” answers, these seem to point more towards
questions about science, history, geography, or politics, or to numerical values (dates, ordinals,
or miscellaneous numbers). All of this may indicate a slight bias in the data collection (which
relies on user queries from a search engine), which is perhaps exploited by the models without
the need to analyze the response. Nevertheless, since this is a two-input task (question and
passage), we can also observe in which part of the composition vector pu; v; |u´ v|;u ˚ vq (see
Section 3.3) the most important weights are found: for most models (with the notable exception
of NMF300 and Word2Sense), we observe that these are in the term-to-term product part
of the composition, indicating that these elementary models are probably mainly looking at
interactions between the question and the passage in the input, which is expected, considering
the task. The remaining important weights are on the other hand mostly located in the question
part of the composition, which could indicate the presence of more or less “rhetorically” biased
questions (that is, questions which more or less strongly imply their own answer, regardless of
the passage).

Emergent: For this dataset, we again notice a number of thematic consistencies in the
dimensions that contribute the most towards the best predictions, related to uncontroversial
topics. For instance, one dimension in NMF300 which is related to animals is highly correlated
to the for stance. An inspection of the dataset con�rms that newspapers almost exclusively
take a positive stance on stories about animals (mostly, cats and dogs). This kind of bias seems
inherent to the way the dataset was constructed from newspaper headlines.

Sarcasm and UR-FUNNY: The NMF300 model reveals some popular subjects in the Sar-
casm dataset, with positive-class dimensions seemingly associated with music and musical
artists (dimensions with top words: “burnin, dreamin, rmx, blowin, movin” and “lil, ludacris, rap-
per, dogg, snoop”). Negative-class dimensions focus more on medical (“neurology, ophthalmology,
oncology”) or legal themes (“plainti�s, plainti�, court, appeals”), and a lot of technical-themed
dimensions. This should be investigated at the instance level, since it could be an indicator of a
lack of diversity in the corpus. The UR-FUNNY dataset shows similar important dimensions
(with also a lot of proper nouns) for NMF300, but focusing more on the punchline than the
context in the inputs. NNSE shows more variety and less important weights, also focusing
on the composed representations. Negative-class dimensions still include technical-themed
dimensions.

PDTB: The PDTB implicit relation task is interesting because it is a di�cult problem, mixing
quite di�erent semantic/pragmatic relations. The simplest model, NMF300, predicts only 4-5
relations out of those appearing in the test set, focusing mainly on the most frequent: Cause,



Contrast, Conjunction, Restatement and Instantiation. As an example of the kind of information
it reveals, we found that the dimension with the largest weight associated with the Instantiation
class in the NNSE model is one where the top words are “educator, historian, lecturer, researcher,
scientist”, in the part of the composition vector corresponding to the second argument of the
input relation. Upon inspection in the training set, we found that only three of those words
appear with that relation type in about 20 instances. It seems to indicate these are mostly
citations illustrating a point made in the �rst argument of the relation, something con�rmed
when looking for other citations cues, and observing that they are in about a third of all
Instantiation instances, pointing arguably at a quite speci�c journalistic aspect of the PDTB.
Similarly, some dimensions important for predicting the other relation types seem speci�c
enough to warrant a closer inspection of instances in this dataset.

SNLI: This dataset seems to be a special case, with many di�erent, seemingly unrelated
dimensions being top contributors, for all models. This could be partly explained by the large
size and thus the larger variety of instances in this dataset. SNLI has known biases (see
Section 1.2.1), which are partly associated with syntactical or structural aspects (negation,
additional prepositional phrases, etc.). These are obviously more di�cult to discover with the
interpretable embeddings used here, which are mainly lexical in nature, combined with the
elementary classi�er architecture we used, which cannot directly model structural aspects, on
account of the sentence representations being averages of word embedding vectors.

Dataset Model Class h C Most active words in h-th dimension

IMDB NNSE pos 192 1.0 utmost, sheer, immense, tremendous, newfound, unparalleled, ...
IMDB NNSE neg 217 1.0 debris, trash, garbage, lint, rubbish, sludge, dust, dirt, manure, ...

IMDB NMF300 pos 100 1.0 imaginative, vivid, lyrical, poetic, realistic, imagery, subtle, ...
IMDB NMF300 pos 131 0.76 shakira, lauper, mcentire, yearwood, parton, estefan, streisand, ...

BoolQ SPINE false 575 1.0 leaked, con�dential, libby, fbi, classi�ed, memo, leak, intelligence, ...
BoolQ SPINE false 841 0.79 astronaut, soyuz, spacecraft, iss, nasa, astronauts, shuttle, mir, ...
BoolQ SPOWV true 758 1.0 cyclone, katrina, hurricane, disaster, ike, �ooded, shear, dolly, ...
BoolQ SPOWV true 173 0.83 tong, lumpur, myanmar, singaporean, kuala, chung, penang, ...

Table 3.4: Examples of explanations generated by our approach, where C is the “contribution”
of the h-th dimension for the given class, that is, its corresponding weight in the trained linear
classi�er, normalized by the largest weight (in magnitude) sharing the same sign for that class. A
contribution of 1.0 thus indicates the dimensions that were the most in�uential. We can notice
that with NNSE, the most in�uential dimension for each class are not too surprising, being
associated with respectively strong positive and negative markers. With NMF300 however,
while the most contributing dimension to the positive class is similarly unsurprising, the second
one is more questionable, as it appears to be associated with the names of public celebrities.

This approach to generating global explanations for datasets is overall quite interesting:



it is relatively easy to implement, and while it cannot be used alone to de�nitely prove the
presence of hidden dataset biases, we believe it may be a good starting tool in a more complete
suite of explainability methods. It could be used to quickly check for potentially easy-to-miss
correlations, and to help direct the focus of more expensive to deploy methods, in terms of
compute, time, implementation, or expert costs, towards potentially problematic aspects of a
dataset.

An example of follow-up explainability method which one may use in conjunction with
this approach are feature-attribution methods, such as gradient-based saliency maps (which
will be discussed in more details later in Section 4.2). These methods allow computing a score
for each feature of an input, depending on how much it contributed to the overall model’s
prediction (see Figure 3.2). When used alongside our proposed approach, one may also exploit
the interpretable dimensions of the chosen embedding model to perform this type of analysis at
a more granular level, which would normally not be relevant to explore with dense embeddings
(see Figure 3.3).

3.5 Conclusion and Perspectives

We demonstrated here how a simple but e�ective method can be used to help detect potential
spurious biases in NLP datasets, exploiting interpretable word embeddings to qualitatively
diagnose unwanted artifacts which might negatively in�uence more complex models on down-
stream tasks. We intrinsically and extrinsically compared di�erent interpretable embedding
models for this purpose, and found that the newer and slightly more involved methods perform
better on downstream tasks, but that this does not necessarily translate to their dimensions’
interpretability. This part was the basis for a paper [Bourgeade et al., 2021] presented at the
TALN-2021 conference.

Various improvements and additions to this approach warrant exploration: to be able to
better discern which embedding models provide the best insights into how instances of a
dataset might be classi�ed, a human evaluation of the explanations produced by this approach
could be performed, in a manner similar to the evaluation method presented in Strout et al.
[2019]. One important limitation with the type of interpretable embedding models used here is
that their dimensions mostly encode lexical information, which means that structure-based
biases, for instance, may be more di�cult to detect this way. An avenue worth exploring might
thus be to use embedding models which encode di�erent linguistic features, which would allow
detecting a wider range of biases. Negation and discourse markers, for example, are two types
of phenomena that have been shown to strongly correlate with other, often unrelated features
in datasets. Similarly, the ease of interpretability granted by the use of an elementary CBOW
classi�er comes at the loss of precious information carried by word order, mainly contextual



semantic information. This could potentially be improved without compromising on model
complexity, by using contextual word embedding models, such as BERT Devlin et al. [2019] or
ELMo Peters et al. [2018], trained in an interpretable fashion. Another improvement would be
to combine this approach with example-based interpretability methods: in addition to detecting
unwanted overall behavior resulting from biases in datasets, it would be helpful to be able to
locate the speci�c subsets of instances that are responsible. We brie�y showcased in at the end
of Section 3.4, how this approach may be combined with post-hoc explainability methods, to
open up other modes of analysis, but this could be extended to more complex methods. For
example, Layer-wise Relevance Propagation [LRP; Montavon et al., 2018, 2019] could allow
diagnosing a suspect non-linear model on instances which have been identi�ed, through our
approach, as potential sources of biases. This could then be used to potentially correct the issue,
either in the dataset (by removing or balancing out the o�ending instances), or in the model
itself (by modifying its architecture and/or hyperparameters until the spurious behaviors have
been diminished or eliminated).

Overall, intrinsic interpretability is challenging to implement, and especially so in NLP.
The sets of properties required to maintain naturally interpretable processes at all levels of a
machine learning pipeline impose strong constraints on both the models, and the data they
manipulate. While it is a worthwhile goal, unfortunately, the recent trends in state-of-the-art
NLP architectures are not conducive to intrinsic interpretability, on the contrary: models are
becoming larger, more complex, and ever more opaque (see Table 1.1). As much as we hope that
some of the concepts explored in this �rst part may �nd their way into future state-of-the-art
architectures, it may turn out to be necessary to compromise, at least in the short term, on the
desiderata of intrinsic interpretability. In the next part, we will thus explore the other side of
the spectrum, with post-hoc explainability methods, and how they apply to Natural Language
Processing.



Figure 3.1: Histograms for the NMF300 model used on the IMDB dataset, showing (a) the
distributions of values in the 131-th dimension of the embeddings of the words present in
the dataset, (b) the distribution of the number of PERSON-type Named Entities found in the
dataset, and (c) the distribution of the number of top-1000 most active words in the 131-th
dimension found in the dataset, all in log-scales. As we can observe, there seems to be a slight
bias towards the positive class, associated to proper names, seemingly of celebrities, represented
by the 131-th dimension of NMF300.

(a) (b)

(c)



Figure 3.2: Example of a saliency maps obtained by using a simple gradient-based feature-
attribution method on a trained elementary linear classi�er with SPINE interpretable embed-
dings, trained on the IMDB dataset. The ground-truth (“true”) labels, the model’s predicted
labels (alongside the output probability), and a saliency map over each input’s tokens are
displayed. The saliency map are color-coded: the more red a token is highlighted in, the most
bene�cial to the model attempting to predict the correct (ground-truth) label, and inversely
for blue tokens. These four instances were handcrafted to demonstrate how such a model
trained with this data cannot learn to correctly handle negation: the �rst two instances inten-
tionally make use of antonymic verb and adjectives, which the model has no trouble correctly
classifying. The last two instances make use of multiple inserted “not” negation markers to
confuse the model: as can be seen from the saliency maps (note again that the “direction” of
the colors depends on what the true label for the instance is, not the predicted one), the word
“not” appears to have been simply associated with the Negative sentiment class, regardless of
the context.



Figure 3.3: Example of a detailed saliency map, corresponding to the �rst example instance in
Figure 3.2): here, we associate the most relevant dimensions of the feature-attribution vectors
for each token, to their corresponding �rst few most active words. As can be seen, the values
of the loss function’s gradient with respect to the inputs are sparse for interpretable word
embeddings, and the sign of those values can allow us to gain some insights for individual tokens:
for example, we can see that “very” has both a strong “positive” and “negative” component to
it, which may accurately indicate it is a potentially polarizing word, for either sentiments. On
the other hand, “enjoy” only displays a single strong positive component.





Chapter 4

Post-hoc Explainability in NLP

4.1 Context

While intrinsic interpretability is a di�cult goal to achieve, especially in NLP, post-hoc ex-
plainability methods are much more numerous in the eXplainable AI (XAI) and Interpretable
Machine Learning (IML) literature, for multiple reasons: �rstly, interpretability and explainabil-
ity of models are aspects which are unfortunately often considered after-the-fact in machine
learning research. As such, there are many established tasks for which high-quality trained
black-box models exist, which would bene�t from methods that could produce explanations for
their decisions, without having to “open the black-box”. Indeed, many models are expensive to
train, in terms of time and compute, and could thus not realistically be re-trained with modi�ca-
tions aimed at making them a priori interpretable, assuming those modi�cations even exist and
are possible to implement for those models. While intrinsic interpretability would in theory
o�er better guarantees on many of the traditional explanation desiderata (faithfulness, mainly),
extracting or generating post-hoc explanations may ultimately be the only feasible option in
many cases, though many have argued and shown that post-hoc explainability methods can be
easily incorrectly used to provide deceptively rational-looking explanations [Alvarez-Melis and
Jaakkola, 2018; Aivodji et al., 2019; Rudin, 2019]. However, at this point in time in NLP, with
the evolution of state-of-the-art architectures towards seemingly ever-growing numbers of
parameters (see Table 1.1) and opaqueness, which are in practice antithetical to the concept of
intrinsic interpretability, we believe it is necessary to explore post-hoc explainability methods
which may, at least in theory, be applicable to them, even if in this process, some compromises
have to be made on explanation desiderata.

As such, we showcase below a limited selection of post-hoc explainability methods from
the relevant literature, though many more are available, albeit not necessarily all applicable or
well-suited to NLP. Please see Molnar [2019] for a much more exhaustive overview of post-hoc

61



explainability methods in general, as well as for more detailed illustrations of the approaches
discussed below, in addition to the relevant cited publications.

4.2 Local Explanations

A �rst popular type of post-hoc explainability method are so-called local methods, which
attempt to produce explanations for individual instances and predictions, rather than for entire
models at once. Most of them are designed to be as model-agnostic and portable as possible,
though some methods are more speci�cally designed to be used with neural architectures
trained with gradient descent. An example of this latter type are gradient-based attribution
methods, also referred to as saliency methods.

Gradient-Based Feature-Attribution: In these methods, the objective is to deter-
mine which components of an input instance were the most relevant to a model’s prediction
for it. In other words, we use a particular saliency measure, at a speci�c granularity level
of an input’s decomposition, to attribute to each component of an input a value, indicating
how much and in which direction it contributed to the model’s overall prediction. The form
explanations will take will thus generally be saliency maps, which for NLP tasks may look like
the di�erent examples in Figures 3.2 or 3.3. One method proposed initially by Simonyan et al.
[2014] (for Computer Vision models) to do this is to simply sample the gradient of the training
loss function with respect to the inputs at the instance which is to be explained, at the desired
granularity level (for example, in Figure 3.2 the magnitudes of the gradient vectors for each
token are used, whereas Figure 3.3 presents each vector’s dimensions independently). This
is usually trivial to compute, since learning via gradient descent already imposes being able
to compute this gradient, to enable the back-propagation of prediction errors to all learnable
parameters in the network. A few issues were observed with this simple approach, however.
The main shortcoming of this approach is that it tends to be sensitive to small, insigni�cant
perturbations, which can lead to unstable explanations. Similarly, using the simple gradient
as saliency fails to correctly model saturation in neural architectures [Shrikumar et al., 2017],
where an output does not change when individual components of the input are perturbed,
which can cause inconsistent explanations to be produced. To attempt to �x some of those
issues, variants of this simple approach were proposed. For example, Smilkov et al. [2017]
propose SmoothGrad, which as its name implies, attempts to improve the stability of the
saliency measure by smoothing out the noise in the computed gradients, by sampling at multi-
ple points around the target instance according to some level of Gaussian noise and averaging
the results. Similarly, Sundararajan et al. [2017] propose integrated gradients, modifying the
basic gradient-as-saliency measure by instead taking the average gradients sampled along
a path from a reference instance (e.g. an all-black image in Computer Vision, or the zero



embedding vector in NLP) to the target to-be-explained instance. While cheap to compute,
other contributions argue that using the gradient of the loss function poses too many issues,
and so propose using other functions as saliency measures. For example, Shrikumar et al.
[2017] propose DeepLIFT, in which saliency is instead computed by back-propagating the
contribution to a prediction of all neurons in a network, where this contribution is de�ned as the
di�erence in a neuron’s forward-pass activation and its reference activation, which is itself the
activation for a reference instance, depending on the task and type of data (similar to integrated
gradients above). Murdoch et al. [2018] instead explore contextual decompositions (CDs) of
LSTM architectures, using linearized activation functions to study how each input token in a
sequence contributes to a model’s ouputs at each timestep, and then for the overall sequence.
Finally, Montavon et al. [2018, 2019] propose the Layer-wise Relevance Propagation (LRP)
method, in which the forward-pass activations of neurons are collected for the target instance,
then back-propagated through the network all the way back to the input layer, as a measure of
input “relevance”, with the possibility of using di�erent propagation rules depending on the
types and depths of the layers encountered. Overall, saliency methods have been criticized for
being often misleading, as many of them have been shown to be, to some degree, independent
of the models they are supposed to help explain [Adebayo et al., 2018]. They may also give a
false sense of understanding, especially to non-expert users: they may show where a model is
looking at, this does not necessarily translate into an accurate display of what the model is
doing with these parts of the inputs [Rudin, 2019; Alvarez-Melis and Jaakkola, 2018].

Most popular post-hoc explainability methods which have been proposed on the other
hand usually are model-agnostic, that is, they do not directly rely on a model’s internals to
generate explanations, but rather only require access to these model as black-box, and extract
information about their behaviors through the appropriate analysis of predictions on speci�c
input data.

LIME: The Local Interpretable Model-agnostic Explanations framework from Ribeiro
et al. [2016] is a local post-hoc explainability method which proposes using local surrogate
models to explain algorithmic predictions. A local surrogate model in this case is an intrinsically
interpretable model, such as a sparse linear classi�er (also known as a “Lasso” model), which
is trained to imitate the target black-box model, but only locally, in a neighborhood close
to the target to-be-explained instance. This is proposed to be done through sampling of the
original target model at various data points in the vicinity of the target instance, weighted by
their distance to it, which then serve as the training corpus for a simple linear model, whose
learned weights will serve as local explanations of the original model’s decision for the target
instance. The �rst step is to �rst choose an interpretable representation space into which the
original model’s input vectors may be projected: for example, for NLP models, it is likely the
target models will take as inputs sequences of word embedding vectors, which are not in and



of themselves interpretable by humans. In this case, the authors propose using the space of
binary vectors, the components of which correspond to the presence or absence of each word
in the target input. For images, the authors propose using a similar binary vector, denoting
the presence or absence of patches of similar pixels (so-called super-pixels) in the target input.
The local surrogate model will be trained in this space rather than on the original one, as
otherwise, despite being an intrinsically interpretable model, the learned weights attributed
to each input component may likely not be directly understandable, even by expert users. If
we denote x the target instance (in original input space X “ Rd with d dimensions), C the
shape of distributions of probabilities over the set of possible labels in the classi�cation task,
f : Rd Ñ C the original black-box model’s function, then x1 P t0, 1ud1 (with d1 the number of
interpretable dimensions, i.e., for text, the number of words in sequence x) is the interpretable
representation of x, and g : Rd1

Ñ C is the surrogate interpretable model’s function. g is thus
trained by minimizing the weighted square loss function:

Lpf, g, πxq “
ÿ

z,z1PZ

πxpzqpfpzq ´ gpz
1
qq

2

where z1 P Z are perturbed instances derived from x1 (thus, for text, by removing a random
quantity of words from the original target instance), z are the recovered corresponding points to
z1 in the original input space, and πxpzq “ expp´Dpx, zq2{σ2q is a proximity measure between
x and z (with Dpx, zq being cosine similarity for text, and σ a width factor). See �gure 4.1 for
a schematic illustration of this process. In addition to providing this framework to generate
explanations for individual decisions, the authors also propose the LIME-SP (Submodular Pick)
algorithm, which, for a set of instances and their accompanying generated explanations, allows
selecting the most relevant arbitrarily sized sub-set of instances and explanations which best
illustrate a model’s overall behavior. This algorithm is based on estimating global feature
importance values for that set, which allows iteratively selecting examples which di�er in the
most important features, while avoiding redundancies in the other already seen features. This
method has the advantages of being relatively easy to implement. However, the interpretable
perturbation scheme it proposes when working with text is not ideal: indeed, removing words,
even just one, from a sentence is a highly signi�cant perturbation which may very likely
completely change the meaning of the input, but most likely will simply lead to sampling the
original target model on nonsensical inputs. This may then lead to surrogate model explanations
that are not very informative or robust. This method is notably prone to adversarial attacks
[Slack et al., 2020], which may put into question how faithful its explanations actually are.

Anchors: Some time after LIME, the same researchers introduced Anchors [Ribeiro et al.,
2018a], a post-hoc explainability method also based on perturbations, but this time to extract
a set of if-then rules, the so-called anchors, which almost su�ciently (in the mathematical



Figure 4.1: Illustration of how the LIME method creates a local linear surrogate model for a
particular target instance (green cross). The approach does not have complete access to the
original model’s input prediction space (with the two classes shown in blue and red, separated
by their decision boundaries), but the target instance is perturbed in order to sample various
points (blue dots and red crosses), weighted by their distance to the target instance (shown
by the size of the markers). These samples are then used to train a linear surrogate classi�er
(green dashed line), whose learned weights will serve as an explanation for the original model’s
behavior on the target instance.
(Figure adapted from Figure 3 in Ribeiro et al. [2016])



sense) explain a target model’s decisions on a subset of instances. In other words, an anchor
is a rule over instance features, which, when matched, indicate those instances have a high
probability, above a parameterized threshold τ (for example 90%), to be predicted as having
a given label by the target model. For example, on a sentiment analysis model and dataset,
an extracted anchor rule might look like: t“not”, “bad”u Ñ Positive, and would mean that any
instance which contains the words “not” and “bad” has an above τ probability to be predicted
as the Positive sentiment class by the target model. Unlike LIME, which only attempts to locally
approximate the target’s model behavior, anchors are much more faithful by design, because
they explicitly indicate for which parts of the instance prediction space they are valid, and to
which degree of precision, though, just like LIME, it only requires query access to the target
model, as a black-box. More formally, an anchor A : Rd Ñ t0, 1u is a set of predicates in
conjunction, which correspond to the logical rule of the anchor, outputting 1 when an input
instance matches the rules and 0 otherwise. Apxq is an anchor of a target model on instance x,
if and only if:

EDxpz|Aqr1fpxq“fpzqs ě τ, Apxq “ 1

where x P Rd is the target to-be-explained instance, f : Rd Ñ C is the prediction function of
the target model (with C the shape of distributions over the possible predicted labels), Dxp¨|Aq

indicates a distribution of perturbed instances derived from x, also matching A. In simpler
terms, A is an anchor if and only if, given a distribution of perturbed instances Dx around a
target instance x, which all matchA’s predicates, at least τ percent of those instances match x’s
predicted label. In practice, because testing every single instance in distribution Dx would be
di�cult in large input spaces, this theoretical de�nition is instead relaxed to be probabilistic, and
approximated by iteratively generating samples, until a certain statistical con�dence threshold
is reached. An additional desideratum for these anchors is to have their coverage, that is, the
quantity of instances on which they apply, to be as large as possible, as otherwise, the best
strategy to maximize precision only may result in the extraction of a huge quantity of highly
speci�c anchors, which would severely reduce the practicality of this explainability method.
For text classi�cation tasks, the authors propose using a perturbation scheme where, unlike in
LIME, tokens are not removed from the target instance but instead replaced by random words
with both the same Part-Of-Speech tag (Noun, Verb, Adjective, etc.) and a high cosine similarity
to the original token, as per the word embedding model used. The process for the extraction
of anchors begins with the generation of single-feature candidate rules, for example, with
text, single word-presence rules, for each word in the target instance. Using these candidates,
perturbed neighbors are sampled using the given perturbation function, �xing the candidates’
a�ected tokens in place so that the sampled instances necessarily match their corresponding
candidate anchor rule. However, because this would otherwise require numerous calls to the
underlying target model, which may be costly in some cases, a pure-exploration Multi-Armed-
Bandit (in this case, the KL-LUBC algorithm from Kaufmann and Kalyanakrishnan [2013])



is used to more e�ciently explore and estimate each candidate’s precision. Once the best
candidate (with the highest precision, as de�ned above) is found, if it passes the τ threshold,
then an anchor has been found. Otherwise, the candidate becomes a predicate of the new
iteration’s generation of rules candidates, thus looking at two-words anchors, then three-words
anchors, etc., until a τ precision anchor is found. While this approach has many advantages,
especially over LIME, mainly with anchors being very easy to interpret, a number of issues
have been raised: the method requires a heavy amount of non-trivial setup and design choices,
primarily for the perturbation function, and, as noted above, despite the steps taken to diminish
this issue, the approach may still generate too-speci�c sets of rules which may not be very
informative of a model’s overall behavior outside of the associated speci�c instances.

Shapley Values: Originally coming from the �eld of cooperative game theory, Shapley
Values, invented by Shapley [1953], is a method originally proposed to compute an ideal
distribution of the total reward among players who cooperated as a coalition to gain this
reward, based on how much each player contributed to the coalition. It was proposed to be
adapted as a prediction explainability method, where the “players” are constituted by the
features of the target instance under investigation, the “cooperative game” by the prediction
task, and the “total reward” by the actual predictions/probabilities output, compared to some
reference, or set of reference “empty” instances, in which none of the features of the target
instance can be considered “present” (e.g. an empty sentence, zero embedding, or equivalent,
in NLP), or to a randomly selected instance. In theory, the Shapley value of a feature should be
computed by measuring the average marginal contribution of said feature, that is, how much
“adding” or “removing”, by swapping its value with that of a random or “empty” instance, said
feature a�ects the prediction score, over all possible coalitions of features, that is, all other
combinations of the other target instance’s features being similarly added or removed. In
practice, computing this value exhaustively is intractable for large numbers of total features,
and so approximated methods have been proposed. For example, Štrumbelj and Kononenko
[2014] have proposed using Monte-Carlo sampling to approximate the Shapley value φ̂pjq of a
feature j of an input x, using the following process:

φ̂pjq “
1
M

M
ÿ

m“1

`

fpxm`jq ´ fpx
m
´jq

˘

where M is the number of Monte-Carlo sampling steps, fpxm`jq and fpxm´jq are the target
model’s predictions for x, but where a random number of random features have had their
values replaced by the values of a random (or reference) instance z, respectively with feature j
preserved (`j) or also replaced by drawing from z (´j). The advantages of this method is that
it is relatively simple to understand and implement, though managing to do so in an e�cient
fashion is one of the main drawbacks (due to the number of sampling steps required from the



original model to obtain decent enough approximations, as the process must be repeated for
each and every feature). It is also heavily dependent on how the reference or random instances
are selected, as that will a�ect the marginal contribution estimation of each feature, which may
actually be cleverly used to perform contrastive explanations in some situations.

SHAP: SHapley Additive exPlanations, proposed by Lundberg and Lee [2017], is an ad-
ditive feature attribution method, which proposes combining all the previously discussed
methods: indeed, the authors note many of these approaches, in particular LIME, DeepLIFT,
Layer-wise Relevance Propagation, and Shapley Values, all more or less closely �t the same
additive explanation model, that is, an explainability method applied to a target model, seen as
a machine learning model itself, which SHAP formulates as:

gpz1q “ φ0 `

M
ÿ

j“1
φjz

1
j

where g : t0, 1uM Ñ C is the explanation model (with C the shape of distributions over
class labels), z1 P t0, 1uM can be seen as an interpretable representation of an original input z,
as in LIME, or a coalition vector, as with Shapley Values, where each of the M interpretable
features that is “present” is marked by a 1, or if “absent” by a 0. As in LIME, these interpretable
representations will usually depend on the target to-be-explained instance, x, and can be
mapped back to the original input space through the mapping function hx, where hxpx1q “ x.
φj corresponds to the feature attribution for feature j P r1..M s, essentially a generalization of
the Shapley Value of j (with φ0 the original model’s output for an “empty” reference instance,
where none of the M interpretable features are present). For a target model f and a target
instance x, local explainability methods that �t this type of explanation model usually try to
ensure that, for samples z1 drawn close to x1, gpz1q predicts the same output as fphxpz1qq. In
particular, the explanation model must match the original model exactly on the target instance
x, that is gpx1q “ fpxq, which the authors denote as the local accuracy property. They argue for
two other desirable properties for such explainability methods: missingness, which states that an
“absent” interpretable feature x1j “ 0 should have an associated feature attribution φi of 0; and
�nally, consistency, which states that if the marginal contribution (see Shapley Values above) of
a feature j increases or stays the same, so should its associated feature contribution φj . The
authors then show that the only solution that satisfy these three properties are Shapley values,
and propose a novel algorithm to approximate them, KernelSHAP. This proposed method
combines steps from the LIME and the Monte-Carlo sampling Shapley values algorithms, but
using a novel way to weight the samples, the SHAP kernel: �rst, random coalition/interpretable
features vectors z1 P t0, 1uM are sampled, using the same replacing of “absent” feature values
with values from either a randomly selected, or a speci�cally chosen reference “empty” instance.
Then, the predictions by the original model fphxpz1qq are queried, which are then combined



with a weight attributed to each vector by using the SHAP kernel πx:

πxpz
1
q “

pM ´ 1q
`

M
|z1|

˘

|z1|pM ´ |z1|q

where |z1| is the number of non-zero values in z1 (corresponding to the number of “present”
interpretable features in the vector), and M is the total number of possible interpretable
features. This weighting function is derived from the weighting factor used in computing
Shapley values for regression models [Lipovetsky and Conklin, 2001]. Then, similar to LIME,
a linear model is �tted onto these weighted samples with the collected labels produced by
the original model as targets, whose trained weights then contain the approximated feature
attribution values φ. These steps are repeated iteratively, as in Monte-Carlo sampling (see
above), with a sampling strategy which prioritizes selecting “extreme” values of |zi| (that is,
which have a high number of “present”, or a high number of “absent” interpretable features),
which are weighted higher by the SHAP kernel. The authors propose di�erent variants of
this algorithm, better adapted to di�erent types of target models. In Lundberg et al. [2019],
the authors adapt the SHAP to Tree Ensembles models. In theory, SHAP is the culmination
and uni�cation of many of the previously discussed approaches, and thus combines many of
their advantages. It also unfortunately combines many of their disadvantages, mainly the high
compute overhead necessary to obtain good approximations of Shapley values, especially for
large target models which are costly to sample predictions for. Just as with Shapley values, the
choice of reference (or non-choice of a random) instance has a great impact on the explanations
which are generated, and this may be a disadvantage as it adds an important hyperparameter
to tweak which non-expert users may have di�culty with. Finally, it is also prone to the same
type of adversarial attacks as LIME [Slack et al., 2020], which puts into question the faithfulness
of explanations produced by using it.

While most of these methods usually produce explanations with a relatively easy to parse
format, that is, a set of numeric score associated to each interpretable feature in an explained
instance, corresponding to how much each particular feature “contributed” to the model’s
decision, there has been some debate as to whether this type of explanations are actually useful
to end-users, particularly to non-experts. Indeed, a number of contributions [Miller, 2017;
Dodge et al., 2019; Verma et al., 2020; Kaur et al., 2020; Kumar et al., 2020; Sharma et al., 2020]
seem to point towards the fact that human users prefer example-based explanations, and in
particular, counterfactual explanations.



4.3 Example-Based Explanations

Contrary to local feature-attribution–based explanations, which may potentially present a user
with a large number of features all contributing in a limited way to the algorithmic decision, a
counterfactual presents a causal explanation of a prediction: “Had feature j not been present in
this input instance, this decision would not have been taken by the model.” is more directly
actionable for end-users, as it presents an example of how to “�x” an undesired prediction, either
by modifying the input, if the model’s decision is judged to be acceptable, or by attempting
to “repair” the model if it was not, potentially by using corrected or modi�ed versions of this
example as new training instances.

Counterfactuals: Counterfactual explanations and adversarial attack methods are fairly
similar in overall concept: in either case, the goal is to �nd a minimal modi�cation which can
be applied to a particular target instance to cause a change in the target model’s prediction.
However, where an adversarial attack method attempts to �nd modi�cations which are not
perceptible as such to human evaluators and annotators, a counterfactual explanation method
should instead try to produce modi�ed instances in a way that is as naturally contrastive with
regard to the target instance as possible. While considered in the category of example-based
explainability methods, note that a counterfactual may not necessarily be an actual instance
drawn from the target model’s training dataset. A wide variety of approaches have been
proposed to generate counterfactuals x1 with changed label y1, given a target model f and
instance x. For example, Wachter et al. [2018] propose minimizing the following loss function:

arg min
x1

max
λ

Lpx, x1, y1, λq “ λpfpx1q ´ y1q2 ` dpx, x1q

where λ represents a “closeness” factor between the desired counterfactual output prediction
y1 and the actual model prediction fpx1q for the counterfactual, and dpx, x1q represents some
distance function between the target instance and the generated counterfactual. In the original
contribution, the authors propose using a Manhattan distance weighted by the inverse median
absolute deviation over the entire dataset (X) for each feature:

dpx, x1q “
p
ÿ

j“1

|xj ´ x
1
j|

medianaPX p|aj ´medianbPXpbjq|q

To allow users to set their preference with regard to the trade-o� of generated counterfactuals
x1 between being closer to x, and the counterfactuals outputs fpx1q being closer to the desired
output y1, λ instead starts at a low value, and is then maximized until constraint |fpx1q´y1| ď ε

is matched, with ε a user de�ned hyperparameter. Any suitable optimization algorithm can be
used with this objective, depending on the type of target module used. With neural architectures,



the authors suggest using the ADAM optimizer, a popular gradient descent algorithm used
in machine learning. One limitation of this approach is that the suggested distance measure
does not enforce creating counterfactuals with few feature changes (due to the Manhattan
distance), which is desirable to avoid overloading the end-users of such explanations. As
an improvement, Dandl et al. [2020] propose a more complex multi-objective loss function,
which, in addition to enabling taking into account categorical features (via Gower’s distance
[Gower, 1971]), also enforces sparsity in feature changes, as well as a higher similarity of
the generated counterfactual to the target model’s training data distribution, leading to more
“realistic” counterfactuals in theory. The main limitation of counterfactual explanations are
that, unlike local feature-attribution explanations, they are not exhaustive, that is, one could in
theory create an in�nite number of counterfactuals which may all distinctly explain one aspect
of the target model’s behavior on the target instance. In practice, similar to too numerous
feature-attribution scores, users will only be able to focus on at most a few counterfactuals at
once for each diagnosed instance, and the ones presented may not necessarily end up being
the most actionable for them.

Another way to use examples to explain a model’s behavior, is to �nd the most in�uential
instances in the training dataset, that is, instances which, if removed from the training corpus
of a model and then retrained, would impact the new learned parameters of the model the most,
either in a positive direction (improving the total loss metric), or a negative direction (worsening
the total loss metric). These are often referred to as deletion diagnostics. Unfortunately, for
obvious reasons, actually retraining an entire model for each instance to diagnose would be
in practice too costly. As such, one proposed solution is to approximate the in�uence of an
instance, without actually retraining the model.

Influence Functions: Koh and Liang [2017] proposed using a well-known tool of robust
statistics called in�uence functions [Cook and Weisberg, 1980], in which, instead of simulating
the e�ects of the actual removal of target instance x̄, the same e�ects are approximated by
upweighting the loss value associated with x̄ in the training process of a model with parameters
θ and training dataset X :

θ̂x̄,ε “ arg min
θ
p1´ εq 1

|X|

ÿ

xPX

Lθpxq ` εLθpx̄q

where θ̂x̄,ε represents the approximated new parameters after the upweighting of x̄, ε represents
an in�nitesimally small up/down-weighting factor, and Lθ is the target model’s loss function.
To compute this, we can thus use the in�uence function Iup,params of the learned parameters θ̂ to



�nd how they will be impacted when the instance x̄ is unweighted:

Iup,paramspx̄q “
dθ̂x̄,ε
dε

ˇ

ˇ

ˇ

ε“0
“ ´H´1

θ̂
∇θLθ̂px̄q

where ∇θLθ̂px̄q is the gradient of the loss function with respect to the model parameters, and
Hθ̂ “

1
|X|

ř

xPX ∇2
θLθ̂pxq is the Hessian matrix (second derivative) of the loss function with

respect to the model parameters. Using this in�uence function, we could approximate the
new post-upweighting parameters θ̂x̄,ε without actually retraining the model, starting from the
learned parameters θ̂:

θ̂x̄,ε « θ̂ ´
1
|X|

Iup,paramspx̄q

These new parameters however need not actually be computed, as we can use a similar in�uence
function, this time of the loss function directly, to estimate what e�ects on the predictions of a
model the deletion of instance x̄would have had. Given an instance xtest we wish to evaluate the
imparted changes in loss value on, we can use the chain rule to obtain the following in�uence
function:

Iup,losspx̄, xtestq “
dLθ̂x̄,ε

pxtestq

dε

ˇ

ˇ

ˇ

ε“0

“ ∇θLθ̂pxtestq
Jdθ̂x̄,ε
dε

ˇ

ˇ

ˇ

ε“0

“ ´∇θLθ̂pxtestq
JH´1

θ̂
∇θLθ̂px̄q

The best way to interpret and then actually approximate the computation of this function
is to split it into two parts (highlighted in blue and red): ∇θLθ̂pxtestq

J essentially represents
how much the loss value for instance xtest is a�ected by the changes in the learned parameters
post-upweighting of instance x̄; H´1

θ̂
∇θLθ̂px̄q on the other hand approximates the changes

the target model’s learned parameters if the model was retrained with instance x̄ upweighted
(see Iup,paramspx̄q above). By cleverly rearranging this formula into two new parts (in green and
orange) in the following fashion:

Iup,losspx̄, xtestq “ ´∇θLθ̂pxtestq
JH´1

θ̂
∇θLθ̂px̄q

“ ´H´1
θ̂

∇θLθ̂pxtestq∇θLθ̂px̄q

“ ´pIHVPq∇θLθ̂px̄q

we can divide the problem into two distinct sub-problems: the �rst allows bypassing the
computation of the inverse Hessian, by using implicit Inverse Hessian Vector Products (IHVP)
techniques [Pearlmutter, 1994]. The authors discuss two algorithms from the literature, one
based on conjugate gradients [Martens, 2010], the other on stochastic estimation [Agarwal



et al., 2017]. In either cases, this part of the in�uence function need only be estimated once
for a model, and thanks to the automatic di�erentiation capabilities of most machine learning
programming libraries (TensorFlow, PyTorch, etc.), it is not too di�cult to implement for most
models. The second part, for similar reasons, can also be obtained cheaply, as indeed, ∇θLθ̂px̄q

is nothing more than a prediction of x̄ by the trained model, with the loss function and its
gradient with respect to the learned parameters instrumented. However, to implement this
method, two properties must be respected by the model: �rstly, its loss function must be
convex (otherwise H may not be positive-de�nite, and as much possibly not invertible). This
can in practice be enforced by using a l2 (or weight-decay) regularization step on the learned
parameters. The second constraint is that the loss function must be twice di�erentiable, which is
slightly more problematic, as many modules used in modern architectures are not, for example,
ReLU

`

ReLUpxq “ maxp0, xq
˘

and other similar piece-wise activation functions. One solution
proposed by the authors to this problem is to use smoothed variants of these functions for the
purpose of approximating in�uence values. While more complicated to implement than most
of the other methods presented above, this particular post-hoc explainability method is very
powerful. Its most obvious application is to explain a model’s prediction of a target instance,
by �nding and presenting the most in�uential (positively or negatively) training instances that
led the model to learn this particular behavior, which may not only help to diagnose the source
of mispredictions for example (mislabeled instances or ambiguous training instances possibly),
but also potentially �x the issue, by actually removing/relabelling the negatively in�uential
instances from the dataset, and/or by adding more variations of bene�cial instances to the data
set. The authors also show how in�uence functions can be used to construct training-set attacks,
a human-imperceptible adversarial modi�cations of a single training instance, which causes
the model to mislabel a speci�c selection of test instances, once retrained with the tampered
with instance.

Feature-attribution and example-based explainability methods have many interesting prop-
erties, but also a few important drawbacks. Mainly, most of them do not scale well with
especially large models, such as those that are becoming more and more common in state-
of-the art NLP (see Table 1.1). On the other hand, alongside their increase in complexity
comes an increase in capabilities, in particular, to generate natural-looking texts which often
appropriately �t a given set of contextual information. Taking inspiration from how humans
generally communicate explanations or justi�cations of their own behaviors, that is, through
verbal or written natural language explanations, we could imagine a class of models which may
be trained to explain their own decisions, in a clear and easy to understand manner, not with
numeric feature-attribution scores or example relevant instances, but with free-form natural
language explanations directly.



4.4 Natural Language Explanations

With the increasing size and complexity of modern state-of-the-art neural models1, exempli�ed
with the advent of Transformer-based [Vaswani et al., 2017] architectures in NLP, such as BERT
[Devlin et al., 2019], and more recently Large Language Models (LLMs) such as GPT-3 [Brown
et al., 2020], explanation methods based on pure model internals analysis may become less and
less viable, due to the very large number of parameters and depth, which poses explanation
size and computational tractability issues. As discussed previously, while a wide variety of
contributions have explored di�erent, mostly indirect methods to showcase the presence of,
and/or attempts to extract, particular forms of learned knowledge and behaviors from these
types of models, one popular example being the informal sub�eld of “BERTology” (see Rogers
et al. [2020] for an overview), there is still a lot of debate as to the ability to accurately and
faithfully directly interpret the behavior of components of these models, such as attention
layers [Jain and Wallace, 2019; Wiegre�e and Pinter, 2019; Klein and Nabi, 2019; Serrano and
Smith, 2019; Pruthi et al., 2020].

Another limitation of most interpretability or explainability methods is that they are not
necessarily directly exploitable by non-expert users: indeed, while methods such as LIME
[Ribeiro et al., 2016] or SHAP [Lundberg and Lee, 2017] claim to be usable by non-expert
users (which, in the former, is evaluated by having human subjects use the method’s feature
importance outputs to select the qualitatively best performing model out of two, or, to perform
feature engineering to improve a model’s performance), they in practice require some level of
expert knowledge to initially set up, as well as to know their limitations, in particular on the
types of data and models they are best suited to, and further on to interpret their explanatory
outputs [Horne et al., 2019; Hase and Bansal, 2020]. In the context of the increasing need for a
“right to explanation” [Goodman and Flaxman, 2017] of algorithmic decisions, it would feel a
little counterproductive for interpretability or explainability methods to themselves require
experts-produced explanations, to be understood by the average, not necessarily tech-savvy
end-users (or targets) of these algorithms.

As such, an alternative which has been proposed is to generate explanations which are closer
in form and content to the common usage of the word, that is, more or less free-form natural
language text, acting in a sense as human-understandable “justi�cations” of an algorithm’s
decisions. These would have many advantages: �rst of all, as mentioned before (and argued
by Camburu et al. [2018] for instance), natural language explanations would be more easily
directly understandable, and thus in theory actionable, by non-expert users. Secondly, being
easier to parse by humans, for the same underlying reasons, also makes them equally easier

1For more details on the Natural Language Processing architectures discussed below, such as Recurrent Neural
Networks (RNNs), Transformers, etc., see Section 5.1 in the following Chapter.



to get human annotations for, either manually, as a task-speci�c annotation process (where
explanations might also be requested alongside the actual task’s gold labels, for instance),
or automatically, from already existing adequate natural language content which could be
construed as explanations (such from as internet forums discussions or arguments, for instance).
Because of this theoretical easier access to annotated data pertaining to explained decisions, it is
possible to consider methods which may automatically extract, or more appropriately, generate
these forms of explanations, as supervised NLP tasks in and of themselves. In particular, to
that end, one could then exploit the advances in natural language generation capabilities
provided by the now popular large opaque architectures, such as Transformers, those very
same architectures which may have been otherwise di�cult to explain through more formal
methods.

We thus chose to mostly focus our exploration of explainability methods, at this other end of
the spectrum, from mostly fully-transparent intrinsically interpretable but less powerful models
discussed in Chapter 2, to “self-justifying” more performant, but more opaque by nature as a
tradeo�, explanation-generating models. More speci�cally, we chose to focus on approaches
which are as generic and non–domain-speci�c as possible, in the interest of attempting to
deploy such systems in as many domains and tasks as they can be found to work well in.

4.4.1 NLE Datasets

In practice, we can �nd various speci�c forms these natural language explanations (NLE) can
take (see Wiegre�e and Marasović [2021]2 for a review and overview of various NLE datasets),
on a spectrum from relatively structured explanations, usually speci�c to the task or the type
of data at hand, all the way to completely free-form text. Somewhere on that spectrum, we
could also place textual highlights, that is, explanations that take the form of a set of potentially
non-contiguous spans of text (usually individual words or pieces of sentences) from the input
texts, which, while not necessarily as clear and explicit as a separate explanatory text, can
be considered a form of implicit explanation through referencing of the relevant parts of the
input (something which is often done explicitly in separate natural language explanations).
If we look at the relevant literature, for the more structured NLE category, we can �nd for
example formal reasoning chains, found in the eQASC multihop question answering dataset
[Jhamtani and Clark, 2020], based on the QASC [Khot et al., 2020] dataset, in which each
multiple-choice question instance has been augmented with a set of valid or invalid reasoning
chains (for example, of the form: “A is a B AND B has C IMPLIES A has C” ), for each of the
possible answers, along with a gold valid reasoning chain corresponding to the correct answer.
Text highlights can be found in many datasets, often referred to as “human rationales” in the
more speci�c literature [Strout et al., 2019; Bastings et al., 2019], but also as an additional

2See also the https://exnlpdatasets.github.io/ accompanying website.

https://exnlpdatasets.github.io/


type of data in other types of NLE datasets [Camburu et al., 2018; Rajani et al., 2019], or even
can be a posteriori extracted from more traditional datasets, such as the Stanford Sentiment
Treebank (SST) [Socher et al., 2013], as was done in Carton et al. [2020]. Finally, we can �nd fully
free-form natural language explanations, where the annotators are left mostly free to formulate
instances’ explanations as they see �t (though quality controls are of course implemented to
�lter out undesirable annotated explanations). It is this latter type which we’ve mainly focused
on in this exploration of explainability methods.

To illustrate the di�erent types of natural language explanations discussed previously, we
propose an SNLI [Bowman et al., 2015] instance, alongside an example of what could be one of
each type of NLE generated each by a dedicated model:

Premise: “A girl playing a violin along with a group of people.”
Hypothesis: “A girl is washing a load of laundry.”

Ground-truth Label: Contradiction
Predicted Label: Contradiction

Reasoning Chain: “playing” is not “washing” AND “a violin” is not “a load
of laundry” IMPLIES “A girl playing a violin” is not “A
girl is washing a load of laundry”.

Text [Highlights]: “A girl [playing a violin] along with a group of people.”;
“A girl is [washing a load of laundry].”

Free-form: “One cannot be playing a violin while washing a load of
laundry.”

Within the free-form category of NLE datasets, we can �nd various contexts and tasks,
which in�uences the content and general form the accompanying explanations will take. For
example, we can �nd some relatively domain-speci�c datasets, such as the algebraic word
problems presented in Ling et al. [2017], and their associated answer rationales, made up of
natural text interspersed with algebraic expressions detailing the precise steps one may take to
solve each particular mathematical problem, which the authors use to automatically derive
formal and executable programs which algorithmically produce the problem’s answer. We
can also �nd both categorical and free-form annotations of possible o�ensive implications
in Sap et al. [2020], or explanations of internet arguments’ persuasiveness in Atkinson et al.
[2019], in the context of social media posts. While a lot of NLE datasets unfortunately do not
necessarily have enough instances to use more data-intensive deep NLP architectures, often
due to the requirements and costs associated with the crowdsourcing of annotations (which is
in practice usually the only way to obtain the large quantities of data required by deep learning
methods), these few example corpora do contain a signi�cant amount of exploitable instances
(in the order of magnitude of tens of thousands of instances, where other datasets are often
more in the order of a few hundreds). However, because their explanations were on the more



domain-speci�c end of the spectrum, we chose not to explore them further for our experiments.
On the other end of this spectrum, we can �nd more domain-generic datasets, associated with
more broadly applicable tasks such as general question answering or classifying semantic
relations such as inference/entailment. We also only considered purely-textual tasks, so we did
not explore in details visual-language datasets for instance, such as those found in the e-ViL
benchmark [Kayser et al., 2021].

As such, we focused mainly on two NLE datasets which we thought were most representative
of the general idea of this approach to explainability: e-SNLI provided by Camburu et al. [2018],
which, as its name implies, is a variant of SNLI [Bowman et al., 2015] augmented with both
free-form text and highlighted text spans that serve as human-annotated explanations; and
CoS-E, provided by [Rajani et al., 2019], an NLE dataset for commonsense (that is, where
“commonsense” world-knowledge and implicit semantic relation rules are required) question
answering, derived from the CommonsenseQA dataset [Talmor et al., 2019], augmented with
human-annotated explanations, in the form of free-form explanations and highlighted text
spans. In particular, we mostly focused on the former, e-SNLI, as it is the largest of the two
(being on based on the large-scale SNLI, which contains more than 500 000 instances, vs.
approximately 10 000 in CoS-E), and because it also was a better �t, conceptually and in its
intended usage/evaluations, where CoS-E’s explanations are more intended as an intermediate
augmentation step in order to improve downstream performance.

e-SNLI: Camburu et al. [2018] introduce e-SNLI, a variant of the SNLI dataset (see the relevant
paragraph in Section 2.4 for more details), augmented with natural language explanations.
More precisely, annotations were crowdsourced using the Amazon Mechanical Turk platform,
where annotators were presented with SNLI instances (premise, hypothesis, and gold label of
the inference relation), and then asked to provide natural, non-obvious (that is, ideally avoiding
referring to elements which are verbatim overlapping between the premise and hypothesis), self-
contained (that is, which stand on their own as sentences and do not necessarily require reading
the premise and hypothesis) explanations, in two steps (to attempt to �lter out inadequate
annotations): �rst, for each instance, annotators were tasked with highlighting relevant words
from the premise and/or hypothesis which help to explain and justify the gold inference
relation; then, they were tasked with writing a free-form explanation, which referenced at
least a part of the previously highlighted words. Speci�c instructions were designed at each
step for each of the possible inference labels (entailment, neutral, contradiction), to guide the
non-expert annotators, as well as to further attempt to �lter out low-quality annotations. A
single explanation per instance was collected for the training set, whereas three were kept
for the test and development sets. The authors note that numerous annotations unfortunately
fell into “template-like” patterns, in which the entire hypothesis and premise are inserted into
an almost static sentence template, dependent on the inference label, for instance, for neutral



ppremise, hypothesisq pairs: “Just because <premise> does not mean <hypothesis>.” The authors
attempted to �lter out and re-annotated explanations which fell into such patterns, but subtle
variations in the templates used appear to have left quite a few of them in the data. The authors
also then provide di�erent architectures and setups which, using this collected NLE data, learn
to both generate an explanation given the regular SNLI inputs, alongside predicting the correct
inference relation for that instance. We will discuss these architectures in the next section.

CoS-E: [Rajani et al., 2019] propose the CoS-E dataset, which expands upon the Common-
senseQA (CQA) question answering dataset [Talmor et al., 2019], adding human-annotated
explanations alongside the original input questions and answers. The CQA dataset originally
contains so-called “commonsense” questions, which have been speci�cally designed to require
background world-knowledge to answer, in contrast to most other work on question answering,
in which questions are usually framed within an explicit context, often an accompanying
text passage in which the answer can be found. Each instance, made up of a question, and
three (�ve in the v1.11 of the dataset) possible answers, only one of which is the correct one,
were themselves crowdsourced, using associated concepts extracted from ConceptNet [Speer
et al., 2017] to guide crowd-workers. These natural language explanations were also collected
through crowdsourcing using the Amazon Mechanical Turk platform. Annotators were, simi-
larly to e-SNLI, asked to �rst highlight relevant parts of instances’ questions which justify the
gold answer, then to provide a short free-form explanation text to the same e�ect. Similarly,
the authors also performed various �ltering steps to improve the quality of the annotations,
including checking for template-like explanations (e.g. “<answer> is the only option that is
correct/obvious” ). The authors then propose using these collected NLEs in a Commonsense
Auto-Generated Explanations (CAGE) framework, training a language model (GPT, from Rad-
ford et al. [2018]) to predict these explanations, conditioned on the input questions and answer
choices, in either one of two ways: an explain-then-predict (also called “reasoning”) setup,
where the explanations only depend on the inputs and not the predicted answers, which may
themselves be derived from the questions, answer choices and just-produced explanations, in a
later step, by a classi�cation model (in this case, a BERT model); or, a predict-then-explain (also
called “rationalization”) setup, in which the language model which produces the explanations
is conditioned on the predicted (or ground-truth during training) answer. Thus, similar to
[Camburu et al., 2018], the authors also propose architectures which both learn to perform the
main task as well as produce natural language explanations. An example of a CoS-E instance
with its human-annotated explanation (drawn from the development set) is:

�estion: “Where is one likely to �nd a fan for their stove?”
Possible Answers (Correct): “appliance store”, “sports stadium”, “hot room”

Explanation: “stove and other appliances are bought in the ap-
pliance store”



To work with these datasets, di�erent types of architectures, which we will refer to in-
formally from here on as “Explainer” models, have been proposed, with a lot of conceptual
similarities, which enables us to regroup them into a few di�erent categories.

4.4.2 Explainer Models

As succinctly explored in the previous section, most NLE datasets can be viewed as a more
traditional NLP dataset, which has been augmented with accompanying explanations. As such,
if one considers these explanations as an additional output sequence to be predicted alongside
the traditional task output, a naive type of architecture which could be proposed may simply
consist in separately performing the two sub-tasks, using two separate models. This type of
approach quite apparently and obviously sounds unsatisfactory in the context of any chosen
desiderata for explainability: indeed, even in the best case scenario, where there would be no
limitations in learning capabilities, one could expect the explanation generating sub-model to
internally learn to solve the main task in order to better produce the corresponding explanation,
in which case the second sub-model solving the main task would feel somewhat redundant. In
the general case, not allowing the two obviously linked parts of the task (the explanation and
its target, the explanandum) to be re�ected into a similarly linked architecture would almost
invariably lead to suboptimal performance, for both sub-tasks.

Both learning to solve a task and learning to explain one’s reasoning to solve this task can
be expected to be more bene�cial than doing either separately, and this is somewhat con�rmed
by the results from Rajani et al. [2019] on the CoS-E dataset, where learning to intermediately
generate explanations appears to have signi�cantly improved the performance when solving
the main task, compared to directly attempting to solve the task alone. As such, if we consider
architectures which link both of these sub-tasks, there are various ways one may proceed
to join them, with the main distinguishing factor being the order of operations: should the
architecture �rst produce an explanation, and then attempt to solve the main task, conditioned
on this explanation, or, should the explanation be generated post-hoc, once a prediction has
been produced for the main task? This distinction could be seen more as a spectrum than a set
of strict categories, but still, as it appears to be a common factor approaches are di�erentiated
on in the relevant literature, we can try to more or less strictly categorize methods depending
on whether they �t one of the following two temporal orderings between prediction and
explanation:

• the �rst type of approach, which are often referred to as variations of “explain-then-
predict” architectures, consider that the explanations to be generated should behave
somewhat like reasoning steps, expressed as natural language. In Rajani et al. [2019], this
corresponds to the CAGE-reasoning architecture, where an autoregressive language
model (GPT) is trained using the CoS-E dataset to generate explanations conditioned



on the inputs (questions and answer choices, concatenated), which are then themselves
concatenated to the inputs and used by a question answering (�ne-tuned BERT) model
to learn to �nd the correct answer. Somewhat similarly, though the tasks are di�erent,
Camburu et al. [2018] propose a ExplainThenPredict model, based on an InferSent
[Conneau et al., 2017] universal sentence-pair encoder architecture, coupled to a Multi-
layer Perceptron classi�er, to predict the inference relation. A similar architecture, with
a LSTM decoder instead of the classi�er (with two variants, a bare one, while the other
has had two attention modules added to it) is used to �rst generate the explanations
which are then fed into this predictor. Compared to the previous approach, the predictor
here is only allowed to look at the explanation and not the rest of the input, though that
is justi�able considering the di�erences between the tasks and the forms the collected
NLEs take: the authors of e-SNLI indeed note that in their dataset, the forms of the
explanations (mainly, the linking words or expressions used to connect related elements
in the premise and hypothesis) are highly correlated with the inference labels, and thus
should be su�cient input for the predictor. This type of approach is in theory more
desirable with regard to common desiderata for explanations, particularly, faithfulness:
indeed, in this case, since the explanation/reasoning has to be generated prior to the
solving of the main task, it is less likely that the model will be able to confabulate a
valid-sounding justi�cation for the prediction which would be completely unrelated to
the actual internal reasoning of the model, though this is of course no strong guarantee
that it will not be the case. One could for instance imagine the explanation generator
“sneaking in” hidden, or at least not clearly apparent information within the explanatory
text, to the predictor, by subtly toying with the distributional characteristics of the text,
through obscure lexical cues for example.

• the second type of approach, often referred to as variations of “predict-then-explain”,
invert the order of the steps described previously: instead of the explanations being
treated as natural language reasoning towards a prediction, they rather behave like
post-hoc rationalizations of an already taken decision, their generation being conditioned
on the predicted (or, at training time, the ground-truth) label, in the case of classi�cation
tasks. In Rajani et al. [2019], this corresponds to the CAGE-rationalization architecture,
which is identical to the previous one, except the prediction of the correct answer is
done �rst, and this output is concatenated to the rest of the input normally fed to the
language model. Camburu et al. [2018] correspondingly propose a PredictAndExplain
model, where the same InferSent architecture is used to produce an encoding vector
for the input sentences pair, which is then �rst fed into an MLP classi�er predicting the
inference label, that is then used to condition, alongside the same input encoding vector,
an LSTM decoder, trained to produce the explanation. As its name would imply, this
model could be seen as jointly performing both objectives at once (with two di�erent



“head” modules), however conditioning the explanation generator on the predicted label
we argue puts it more in the post-hoc rationalization category, though this distinction is
again somewhat subjective. This second type of approach seems conversely less desirable
with regard to the faithfulness of produced explanations, as they are generated after the
decision has already been taken, so to speak, and may thus be more likely to resemble
the human behavioral sense of “rationalization”, that is, a plausible and/or convincing
justi�cation for a decision, which may not correspond in any way, shape, or form, to
the actual reasoning process which led to the decision, which would be problematic.
Similarly to the previous type however, there is no strong guarantee of this, and indeed
qualitative analyses performed in Camburu et al. [2018] and Rajani et al. [2019] did
not seem to showcase signi�cant di�erences relevant to this criterion between output
explanations from these two types of approaches.

Various other contributions have proposed approaches for generating natural language
explanations, a lot of them �tting more or less closely within these two categories.

For example, Liu et al. [2019a] propose a model-agnostic generative explanation framework
for datasets with �ne-grained explanatory elements, such as detailed evaluation criteria in
products or services reviews, for example “price”, “quality”, or “practicality”. Their generic
Generative Explanation Framework proposes a middle-ground joint prediction-and-explanation
approach, with a common input encoder model, feeding into both a direct predictor, and an
explanation generator, which itself feeds into a classi�er. In addition to both of the chains’
standard loss functions, the authors propose an additional explanation factor term, which
combines distributional distances between ground-truth and generated explanations, and also
between generated explanations and the original text.

Atanasova et al. [2020] propose an approach based on a transformer architecture which
jointly predicts the veracity of claims and extracts relevant explanatory sentences from the
associated ruling comments, akin to an extractive summarization task. They similarly propose a
more joint approach, however the explanations take the form of a binary selection of a number
of “ruling sentences” accompanying each claim, provided by the LIAR-PLUS [Alhindi et al.,
2018] dataset.

Kumar and Talukdar [2020] propose NILE, an NLI (also trained and evaluated on the e-SNLI
dataset) multi-Explainer system, which independently generates three explanations (using
three GPT-2 architectures), one for each of the inference-relations’ labels in the task (entailment,
neutral, contradiction), which are then processed together and used to classify the instance (using
a RoBERTa [Liu et al., 2019c] architecture). The explanation corresponding to the predicted
label is then selected and passed-through as the instance’s output explanation, alongside the
predicted label. The authors argue that this approach has advantages over methods which



sequentially generate a single explanation and derive a label prediction from it (or vice-versa), as
it allows better probing of the explanations’ faithfulness to the model’s actual internal reasoning
process, since one can look at what each of the three label-speci�c explanation generators
outputs for a given instance. Though it uses similar concepts, this approach intentionally di�ers
signi�cantly from the explain-then-predict and predict-then-explain categories presented above:
indeed, while the overall architecture �rst generates explanations then makes a prediction
based on them, each of the three individual explanation generators is �ne-tuned to generate
explanations for a speci�c label, hence one could argue they should be in the predict-then-explain
category. While this allows for a sort of counterfactual probing of the generated explanations,
these have in theory little basis on the actual content of the instance, as the individual generators
are �ne-tuned assuming every instance encountered is of their speci�c label.

Ultimately, the two Explainer models categories used here, as stated above, may be more
accurately considered a spectrum, depending on what proportion of an Explainer architecture
attends to either explaining or predicting. At the same time, one could also consider approaches
where both objectives are in large parts attended to by the same base model, which is especially
common for multi-objective training setups, particularly those using modern pre-trained
Transformers [Vaswani et al., 2017]. Indeed, with these architectures, one can use and �ne-tune
the same “core” model for various tasks, potentially at once, in multitask learning setups [Kaiser
et al., 2017]. The core may thus learn to encode inputs into general-purpose information-rich
representations, which can then be used by di�erent adequately designed “head” modules, who
only need to learn relatively simple task-speci�c mappings from those representations to the
required output format, extracting from them only the necessary information to solve their
associated sub-task. It is this latter avenue which we decided to explore experimentally, which
will be discussed in the next Chapter.



Chapter 5

Explanation Generating Classi�ers —

Experiments

Taking inspiration from the various contributions discussed previously, we have chosen to focus
our experiments on the e-SNLI [Camburu et al., 2018] and CoS-E [Rajani et al., 2019] datasets,
and on Transformer-based [Vaswani et al., 2017] architectures, which we argue are a good �t for
this objective of jointly solving a task and generating explanations: indeed, these architectures
have been successfully used in various tasks, such as summarization [Liu and Lapata, 2019],
question answering [Talmor et al., 2019], and reading comprehension [Xu et al., 2019], all
of which require learning skills which would be essential to producing good explanations.
Moreover, most of these pre-trained models can be adapted and �ne-tuned to accomplish these
tasks simply by adding one or multiple appropriate task-speci�c “head” modules. With the
correct con�guration, such a model may be able to jointly learn the skills required to predict
and to explain, each aspect hopefully helping to improve the other.

As these notions will be important to understand the experimental setups used here, the
next section may serve as a short summary or refresher on Transformers, and the architectures
that preceded them.

5.1 A FewWords on Transformers

Natural Language Processing is a particularly challenging �eld of AI and machine-learning
research, because a “canonical” conceptual architecture to deal with natural language as
an information medium has not yet been found. In Computer Vision for example, deep
Convolutional Neural Networks (CNNs) [LeCun et al., 1990, 2004, 2010] have proved to have
the ideal set of properties to solve most vision tasks (the ability to detect local patterns, initially
at the scale of pixel neighborhoods, followed by larger scale and more abstract patterns with
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each additional pooling and convolution layers), being themselves a rough approximation of
how the natural visual perception mechanisms function in animal brains [Gu et al., 2018]. For
natural language however, so far, �nding a similarly suitable conceptual architecture has proven
to be more di�cult: �rst of all, there is no single self-evident decomposition into semantic units
for language, like there is with pixels for image data. Furthermore, given some decomposition
scheme, for example, tokenization of texts into sequences of individual words, there is no trivial
or self-evident way to encode these tokens into numerical representations, though thankfully,
over the years, state-of-the-art results were achieved using various word embedding models
(see Chapter 2 for a quick overview). Finally, assuming all these previous decisions have been
addressed, no single conceptual architecture evidently presents itself to deal with encoding
entire sequences of tokens. Instead, various types of approaches have been experimented with
over the years: initially, Bag-Of-Words (BOW) and related representations were used [Harris,
1954], in which a text or document was represented by the aggregation (sum or average usually)
of one-hot encoded words (or n-grams) contained in it, irrespective of the order or structure of
the text. These types of representations have many disadvantages, mainly linked to this last
fact, as well as the ine�cient number of dimensions required for the produced vectors (scaling
with the size of the vocabulary), and the absence of geometrically encoded semantic aspects
(such as can instead be found in word embeddings, with distance-as-similarity metrics). To
tackle this problem of taking the order words and the general structure of documents, a �rst
family of models was proposed to be used: Recurrent Neural Networks [Rumelhart et al., 1986]
(see Figure 5.1), which were intended to model, and also were roughly inspired by various
phenomena or systems with time-persistent features, including the functioning of short and
long-term memory in the brain [Little, 1974; Hop�eld, 1982]. In addition to learning a mapping
of numerically encoded inputs to outputs, this family of models are able to do so in the context
of an ordered sequence of inputs and outputs, possessing one or multiple connections through
time, allowing such models to “remember” past inputs/outputs when iteratively processing a
sequence. This in theory makes them particularly suited to dealing with natural languages,
which have strong sequential and time-based components to them. The two most popular
implementations in the RNN family are the Long Short-Term Memory (LSTM) [Hochreiter
and Schmidhuber, 1997], and Gated Recurrent Unit (GRU) [Cho et al., 2014] architectures, and
these have enabled achieving, at the time they were presented, state-of-the-art performance
on numerous NLP tasks. The most successful architectures make use of bidirectional variants
of these two architectures, where at least two layers of such RNN cells are used in parallel,
each running in opposite directions on the input/output sequences (with their �nal outputs
usually concatenated), allowing for the capture of both left-to-right and right-to-left temporal
information.

In particular, Neural Machine Translation models, and other so-called sequence-to-sequence
models (often abbreviated as “seq2seq” ) [Sutskever et al., 2014], in which both the inputs and



outputs are textual documents decomposed as sequences of tokens, often employ a particular
dual RNN encoder-decoder setup (see Figure 5.2), in which an input sentence is �rst iterated
upon and encoded into the hidden state of an encoder RNN module, that is then used to condition
a decoder RNN, tasked with producing the expected output sequence, in an autoregressive
fashion, predicting the pi` 1q-th token in the output, based on the i-th token and the encoded
representation of the input (usually initializing, and then being combined with the regular
decoder’s hidden state forward-�ow in the following iterations). With the successes of these
types of approaches when �ne-tuned on speci�c tasks, such as Machine Translation, an idea
rapidly emerged, generalizing from the then popular pre-trained word embedding models,
and their ability to be used “universally” out-of-the-box, as input encoding modules in a
wide variety of tasks and setups: could similarly “universal” phrase, sentence, or document
representations be generated by such encoding models, pre-trained (ideally in an unsupervised
fashion) on large quantities of textual data, capturing a variety of semantic information which
could then be exploited in a variety of setups downstream? To attempt to answer this question
various approaches were proposed: Kiros et al. [2015] for example propose the Skip-Thought
unsupervised approach, abstracting the skip-gram [Mikolov et al., 2013b,a] word embedding
model to the sentence level, where an RNN encoder-decoder setup learns to encode sentences
inside a text by conditioning two decoders, each respectively tasked with predicting the
sentences directly preceding and following the encoded sentence; [Palangi et al., 2016] employ
a similar approach with an LSTM encoder model, trained on weakly supervised data from a
commercial search engine, learning to produce sentence embeddings for user search engine
queries and their associated clicked document with a high cosine similarity, in the context of
Information Retrieval. Other similar methods were also proposed which did not necessarily use
RNN-based encoder-decoder setups, or even neural networks at all: the InferSent model from
Conneau et al. [2017] for example is also intended to produce such “universal” representations,
though it does not use an unsupervised encoder-decoder setup, but rather an encoder-classi�er
trained on the SNLI dataset; Hill et al. [2016] propose an overview and evaluation of a variety
of these approaches which were available at the time, as well as a surprisingly simple yet
performant FastSent method, not based on RNNs but on Bag-Of-Words and a simple log-
bilinear additive model, learning word embeddings which are summed to produce a sentence’s
representation, with the objective of predicting the words from adjacent sentences.

However, while RNNs presented many interesting features for NLP tasks, a few major
intrinsic issues were quickly noticed: �rst of all, while not speci�c to RNNs, the unrolling
process used in training (see Figure 5.1) caused vanishing gradient problems [Hochreiter, 1998],
due to the depths of the e�ective networks being dependent on the desired unrolled size,
which, to allow the proper processing of sentences and texts, ideally needs to be as long as
the longest sequence in the dataset. While the LSTM [Hochreiter and Schmidhuber, 1997]
architecture was designed to try to circumvent this issue, by implementing mechanisms akin



to long and short term memory in animal brains, it was still noticed that for particularly long
sequences, and especially in encoder-decoder setups such as were used in Neural Machine
Translation, even LSTM-based models had issues “remembering” early parts of input sentences.
In translation tasks, this meant that for natural languages with di�ering word orders for
instance (the order in which the di�erent syntactic elements are arranged, for example, subject-
object-verb vs. subject-verb-object), mistranslations would occur frequently for somewhat
long sentences, as the semantic information from earlier parts of the input sentences would be
overwritten or forgotten by the time the encoder had parsing all tokens. While bidirectional
models could somewhat mitigate these issues, another mechanism was proposed to better allow
decoders to refer to speci�c parts of the input, which was referred to as attention [Luong et al.,
2015; Bahdanau et al., 2016]: instead of using the �nal hidden state produced by iterating the
encoder as the input sequence’s vector representation, all intermediate hidden states, in theory
containing information relevant to their respective position in the sequence, are kept. The
decoder is then augmented with a so-called attention module, which, at each decoder iteration,
assigns a score to each of the previous encoder hidden states, using some kind of scoring
function (either static or itself a learning neural network), usually taking as input the decoder’s
current input hidden state (outputted from the previous iteration) and each respective encoder
hidden state. These attention scores (once passed through softmax), can be interpreted to be a
sort of soft (non-binary) alignment or mapping of the output tokens to the input tokens, and
are used as weights to compute (for instance, through a weighted sum) a custom input sentence
encoding vector for each decoding step. Using this mechanism, a decoder can therefore learn
to attend di�erently to each element of the input, at each time step, no matter how long the
temporal distance between the two. This is in theory also more advantageous compared to
using Convolutional Neural Networks, which are also a common alternative to RNNs (for
classi�cation tasks, or as sentence encoders), as CNNs can only capture long-distance relations
with higher numbers of layers. Using this attention mechanism, state-of-the-art results were
obtained for a variety of NLP tasks, such as Machine Translation [Luong et al., 2015; Bahdanau
et al., 2016] or Natural Language Inference [Wang and Jiang, 2016], and many others, usually
outperforming non–attention-based models.

Noticing how well this attention mechanism was performing, and especially how it seemed
to circumvent many of the issues of RNNs, especially in their encoder-decoder con�gurations,
Vaswani et al. [2017] proposed an innovative idea: what if attention alone could be used as a
basis for a sequence-to-sequence architecture? In their now very famous “Attention Is All You
Need” publication, they propose the Transformer architecture as an alternative to recurrent (or
convolutional) architectures, which it departs from in a few important ways: �rst of all, unlike
RNNs, Transformers have no sequential or iterative components to them, which eliminates all
issues related to unrolling, and allows for better parallelization of computations (especially on
GPUs or other related dedicated hardware). This also means that a Transformer has a �xed



Figure 5.1: Illustration of a schematic Recurrent Neural Network architecture (RNN): an RNN
cell is iteratively fed pairs of inputs (xi) and outputs (yi) from a sequence. To enable the learning
of temporal patterns, information is allowed to �ow between iterations, through the hidden
state (hi), which is passed “forward” (though one can also have a cell attend to a sequence in
reverse order if needed, such as in bidirectional RNNs [Graves and Schmidhuber, 2005; Thireou
and Reczko, 2007]) in time. In practice, a RNN cell is usually “unrolled” (see diagram) for a
given number of iterations, behaving as a sliding window on the input/output sequences, to
optimize computation and parameters �ne-tuning.

Figure 5.2: Illustration of a typical encoder-decoder setup using a Recurrent Neural Network
architecture, such as can be found in Neural Machine Translation: a �rst RNN Cell module
acts as an input sequence encoder (in green), iteratively feeding on each element of the input
(“Attention is all you need” ), while propagating forward through time a hidden state (hi), until
the end of the sequence is reached. At this point, the �nal hidden state (he) is considered to
be an encoded representation of the �rst input sequence, and it is fed as part of the hidden
state of a second RNN Cell module, acting as a decoder. This decoder is trained to generate
the expected output (in this example, a translation of the input from English to French), in
an autoregressive fashion, being iteratively fed as input the previous predicted output token,
with the �rst iteration receiving a Beginning-Of-Sentence ([BOS]) marker. Usually, the input
sequence encoding (he) is kept as-is as a part of every subsequent iteration’s decoder hidden
state, to help prevent the decoder from “forgetting” the input after many decoding iterations.



sequence length it can use as input and output, though in practice one may try to circumvent
this by “compressing” text that falls out of the current window into a special token’s embedding
vector (such as the [CLS] token in BERT [Devlin et al., 2019]; see Figure 5.3). The Transformer
architecture is based around a conceptually simple but generic and very powerful family of
components which we can refer to as Transformer blocks, which are usually arranged in
stacks, each block feeding its output as the input to the next in the stack, like in a regular
neural architecture, where a complete model usually contains between one or two stacks. This
stacking is made easier by the fact that a standard Transformer block intentionally uses the
same dimensionality for its main input and output: as input, a block receives a matrix of a �xed
width corresponding to a �xed-size sequence of embedding vectors, and outputs a similarly
sized matrix, where each embedding vectors has been transformed and projected into a new
embedding space, through an attention mechanism that spans the entire sequence (see Figures
5.6a and 5.6b).

Before a sentence can be presented as input to the stack however, a few important steps
must be taken to turn it into a sequence of embedding vectors. First of all, while not abso-
lutely mandatory, most popular Transformer architectures make use of particular tokenization
schemes (transforming a contiguous string of characters into a sequence of separate linguistic
tokens), usually based on n-grams or word-pieces: instead of splitting sentences into sequences
of whitespace-separated word and punctuation tokens, which can require very large vocabulary
sizes if one wishes to be able to handle rarely used words, rarer and harder to exhaustively in-
clude proper nouns, or even numerals, dates, and other miscellaneous elements, using sub-word
tokens allows for a more e�cient encoding of out-of-vocabulary elements, at the cost of slightly
longer tokenized sequences compared to whitespace-based tokenization.The two most popular
sub-word tokenization schemes in use currently are WordPiece [Wu et al., 2016], notably used
in BERT, and Byte Pair Encoding [BPE; Gage, 1994; Sennrich et al., 2016], notably used in the
GPT model family as well as many other Transformer architectures. Once the text is tokenized,
each token can be projected into an initial embedding space, usually through a simple lookup
matrix whose entries will be learned as part of the Transformer’s training process. However,
one issue that is essential to address at this stage is the encoding of positional information:
indeed, due to their design, unlike RNNs, Transformer blocks do not have the intrinsic ability to
model temporal information, since the attention modules used span indiscriminately over the
entirety of their input sequences. Thus, a solution proposed by Vaswani et al. [2017] is to assign
to each position in the sequence a positional embedding vector, which will be summed to the
corresponding token embedding vectors, to add this positional information back into the input.
These positional embeddings are usually constructed using multidimensional sinusoids, where
each dimension corresponds to a di�erent wavelength, allowing models to more easily learn
relative positioning (which can be computed through simple linear transformations), also being
a pattern that is easy to extrapolate for sequences length which may not have been encountered



during training. Some architectures also further add more miscellaneous information in this
fashion, such as “segment embeddings”, which encode which of a pair of two concatenated
sentences a token is a part of (usually in addition to having a special separation marker, e.g.
[SEP] in BERT).

At the end of a Transformer stack, one is left with a sequence of embedding vectors that
have been repeatedly transformed through each block, and which can then be used in various
ways, the �rst main one being to be decoded as another sequence of tokens, by simply projecting
the embedding vectors (using a small linear model) into probability distributions over a token
vocabulary, which is what is done as part of unsupervised Language Modeling (LM) tasks.
Alternatively, one can project one of the output embedding vectors, or the entire output matrix,
into any other type of distribution, over a set of labels for instance, to perform classi�cation
tasks. One can even perform multiple of these at once, using the same underlying Transformer
model with a di�erent set of “head” module(s) depending on the speci�c task to be solved, all
taking as input the same Transformer-output embedding matrix, which would hopefully have
captured enough semantic information from the input sentence(s), and encoded it in such a
way that a simple shallow linear model may be �ne-tuned to extract the parts relevant to its
objective. Realizing this, two major implementations of the Transformer architecture, BERT
[Devlin et al., 2019] and GPT [Radford et al., 2018], proposed a somewhat novel approach:
pre-training large (compared to the comparable models of the time, see Table 1.1) Transformer
models jointly on various unsupervised language modeling or classi�cation tasks, using large
quantities of unannotated (and thus more readily available) text data, in order to teach them
to extract general purpose semantic information from arbitrary sentences. These pre-trained
models may then be later �ne-tuned on smaller datasets, alongside the appropriate smaller
head modules, e�ectively performing transfer learning (see Pan and Yang [2010] for a general
overview) or domain adaptation to speci�c tasks, without having to completely re-train a large
model from scratch.

Devlin et al. [2019] thus proposed the now very famous pre-trained general-purpose Trans-
former model, called BERT (which stands for “Bidirectional Encoder Representations from
Transformers”). Using a single stack of Transformer blocks to form their model, the authors
propose pre-training it using a novel Language Modeling objective, inspired by the Cloze task
proposed initially by Taylor [1953], a language teaching or assessment tool, in which a student
(human or, in NLP, machine) is presented with a piece of natural language text where a number
of words have been erased or masked, and which must be �lled back in with the help of the
contextual information still present in the text: the authors thus propose a similar Masked
Language Modeling (MLM) task (see Figure 5.3), in which an input sentence is perturbed with
a number of tokens being masked (replaced by a [MASK] special token, or more rarely, with
another randomly selected token), with the objective of predicting back the original tokens at



the masked positions. Additionally, as this model is intended to be used in various types of
NLP tasks, and because many of these require understanding the semantic relations between
two or more separate (but related) sentences, the authors propose adding another objective
which will be learned jointly with the MLM one: given a pair of sentences, which are either
following each other in a document of the training dataset (positive class), or two random
unrelated sentences (negative class), the model is tasked with predicting which of these two
classes the pair is from, which is called the Next Sentence Prediction objective. To do so, both
sentences are �rst concatenated, with a special separator token ([SEP]) in between. Then,
a special [CLS] (“Classi�cation”) token is prepended to the input sequence, and it is dealt
with di�erently than the others on the Transformer’s output side: where the rest of the output
embedding matrix will be fed through the language modeling part of the joint task, the output
vector corresponding to the [CLS] token (in the very �rst position) will instead be fed to
a classi�cation module training on the Next Sentence Prediction objective, as though it was
an embedding vector for the entire input sequence. Combining these two objectives as part
of the unsupervised pre-training process allows the BERT model to both learn intrinsically
bidirectional language modeling (since masked tokens can occur anywhere, and in variable
quantities in the MLM objective) as well as how to perform whole-sequence (potentially con-
taining multiple [SEP]-separated sentences) classi�cation tasks, through the [CLS] special
token. Once pre-trained on a large quantity of unsupervised text, the authors showcase how
the model can be �ne-tuned to perform a more speci�c NLP task, such as Natural Language
Inference for example, by concatenating the premise and hypothesis sentences, and using the
[CLS] token to predict the inference label for each pair. They evaluate this model on the
various tasks contained in the GLUE benchmark [Wang et al., 2018], and improve, at the time,
on state-of-art approaches by a relatively wide margin on all tasks, using their largest model
variant, BERTLARGE, with approximately 345 million parameters. While pre-training such a
large model requires a large amount of time and/or compute (BERTLARGE was reported to have
taken 4 days to pre-train on 800 million words from the BooksCorpus [Zhu et al., 2015] and 2500
million words from English Wikipedia, using 16 Cloud TPUs simultaneously), once pre-trained,
it can be �ne-tuned for a speci�c task in a much more reasonable amount of time and compute
(approximately a few hours on a GPU, depending on the dataset size and hyperparameters).

Radford et al. [2018] on the other hand proposed the Generative Pre-Training approach,
with a similar overarching set of principles, but a few major di�erences, mainly in the pre-
training setup: indeed, GPT uses a left-to-right autoregressive language modeling objective
(see Figure 5.4), where, closer to RNN decoders than BERT’s MLM objective, the Transformer
is tasked with predicting the following tokens in a sentence, given all the previously predicted
tokens. Due to the Transformer’s non-recurrent nature, this is e�ectively implemented by
modifying the attention modules (see Figures 5.6) to prevent any position from attending
to positions to its right (which, in an iterative decoder, would not have been generated yet),



and then shifting the input sequence to the right, by usually, prepending a starting position
Beginning-of-Sentence marker ([BOS]). At inference time however, once the model has been
�ne-tuned, such autoregressive models are actually iterated, initially feeding a starting input
sequences (which may be at a minimum, a single [BOS] token), which will be run through the
Transformer to predict the next token. The new expanded sequence is then fed back recursively,
until some stopping condition is met, usually when the End-of-Sentence ([EOS]) token is
generated, or once the maximum sequence length has been hit, whichever happens �rst. While
simply picking the most probable predicted token at each decoding step is a possibility (usually
referred to as “greedy” decoding), various other methods have been proposed which in practice
produce much higher quality results, such as beam-search [Shao et al., 2017; Vijayakumar et al.,
2018], in which multiple paths are explored in parallel in the probability-weighted decoding
tree, selecting only the most likely complete path, as a whole product of all the decoding steps’
weights. Unlike BERT, this is the only objective that GPT is pre-trained on. When �ne-tuning
on a speci�c whole-sequence (which may also be a sentence pair, using a similar separator
special token) classi�cation task, an appropriately sized linear classi�cation head module is
added, taking as input the entire Transformer output embedding matrix, instead of just a single
dedicated position’s vector, like in BERT. The autoregressive objective is also kept during
�ne-tuning as well, to prevent the �ne-tuned Transformer from “forgetting” too much its
pre-trained language modeling capabilities. This approach was also evaluated on downstream
tasks from the GLUE benchmark [Wang et al., 2018], also beating the state-of-art performance
of the time (though it was then beaten by BERT when it came out a year later).

In actuality, these two approaches can be viewed as two di�erent specializations of the
original Transformer encoder-decoder architecture initially proposed by Vaswani et al. [2017]
(see Figure 5.5), each using one of the two Transformer stacks originally described (BERT, the
encoder sub-Transformer, and GPT, the decoder sub-Transformer). This original architecture
was itself tested and evaluated for Neural Machine Translation, where the original language
sentence was �rst encoded by the encoder Transformer, whose output embedding matrix
was then used in the cross-attention modules of the decoder Transformer, to condition the
autoregressive generation of the target language sentence. In our own experiments, we generate
explanations based on an input instance, for which we also need to condition the generation
of a sequence on the representation of another; we therefore chose to use this more generic
architecture. Speci�cally, we make use of the BART model [Lewis et al., 2020], which combines
a Transformer-based encoder-decoder architecture with a speci�c denoising objective suitable
for monolingual text.



Figure 5.3: Schematic illustration of a typical Masked Language Modeling (MLM) training
setup for a Transformer model, as can be found in BERT [Devlin et al., 2019] for instance: an
input sentence (“Attention is all you need” ) is perturbed by masking one of the words (here
“need” ) at any position in the sequence, replacing it with a special [MASK] marker. Each input
token is then projected into an embedding space, however, because Transformers have no
innate temporality modeling, the entire sequence being processed at once, with interactions
between positions only taking place inside the attention mechanism of the Transformer blocks
(see Figure 5.6), positional embeddings are added to form the �nal input embeddings. These
are then processed by a given number N of Transformer blocks, with the �nal layer outputting
a vector representation (ti) corresponding to each input token. For the MLM task, these are
decoded back into words, with the objective of restoring the unperturbed sentence, by correctly
recovering the masked token. Usually, an additional [CLS] (“Classi�cation”) special token is
prepended to the input: this token is intended to represent the input sequence in its entirety,
by jointly being used on the output side to perform a whole-sentence classi�cation task for
example, such as predicting if a pair of (concatenated) sentences are following each other
directly in a text or not.



Figure 5.4: Schematic illustration of a typical autoregressive language modeling training
setup for a Transformer model, as can be found in the GPT models [Radford et al., 2018, 2019;
Brown et al., 2020]: this setup uses a modi�ed Transformer block, in which the attention
mechanism (see Figure 5.6) is blocked (indicated by the red lines) from attending to “future”
(rightward) positions. Combined with shifting the input sequence to the right, by prepending a
Beginning-Of-Sentence marker for example ([BOS]), this setup emulates an autoregressive
decoder, in which the model conditions the prediction of the next token in the sentence on
the previously predicted tokens only, until a terminating End-Of-Sentence ([EOS]) marker
is produced. At inference time, such a model needs to be actually iterated according to some
decoding algorithm, feeding the predicted sequence back in as the next input recursively.



Figure 5.5: Schematic illustration of the canonical encoder-decoder Transformer architecture
from Vaswani et al. [2017], and as can be found in BART [Lewis et al., 2020]: this setup emulates
the most closely the typical RNN encoder-decoder architecture, as used in Neural Machine
Translation tasks. It combines two Transformer block stacks, one acting as the encoder, whose
role is to produce a matrix representation (Tenc) of the input sentence, which is then fed to
the cross-attention modules (see Figure 5.6b) of a second decoder Transformer, which will
then be able to condition its sequence decoding on this input sentence, in addition to the
regular autoregressive process (see Figure 5.4), in this example, to perform an English to French
translation.



(a) Schematic illustration of a single Transformer
attention head module: an input sentence (“Atten-
tion is all you need”) is �rst tokenized, embedded
(see Figure 5.3 or 5.4) and �nally packed into a sin-
gle matrix X of token embedding vectors. Then, a
query (Q), a key (K), and a value (V ) matrix are
computed by multiplying X with each correspond-
ing learned parameter (WQ,WK ,WV ). Q and K
are used to compute attention scores which then
weight the values V (which roughly correspond to
the attended to hidden states in an RNN encoder-
decoder setup) to obtain the intermediate output
Z . Alternatively, for an attention head deeper in
a Transformer block stack, the input will be the
previous block’s output Ti´1. In either case, these
are referred to as “self-attention”, as opposed to
cross-attention module (see Figure 5.5), in which
K and V will instead by computed from the output
of an encoder Transformer stack, Tenc.

(b) Schematic illustration of a Transformer block
module: multiple attention heads are used in par-
allel (each with their own parameters) to compute
individual intermediate outputs. These are then
concatenated, and fed through a linear layer, before
going through a two-layer fully-connected layer
with a non-linearity (ReLU). In between each sub-
module, residual connections [He et al., 2016] and
layer normalization [Ba et al., 2016], which improve
stability and overall help reduce the training time of
the model. These blocks will usually be stacked on
top of each other a given number of times to form
a single model. Alternatively, in a decoder Trans-
former, a multi-head cross-attention module will
be inserted in between the regular (or left-to-right
masked) multi-head self-attention and the fully-
connected module. It is identical to the preceding
multi-head self-attention block (residual connec-
tion and layer normalization included), except it
receives part of its input (see Figure 5.6a) from an
encoder Transformer.

Figure 5.6



5.2 A Joint Classi�er-Explainer using BART

For our experiments, we oriented ourselves towards the BART Transformer model [Lewis
et al., 2020], because it possesses many relevant features and advantages for the purpose of
jointly performing a classi�cation task while also generating explanations. BART is a denoising
sequence-to-sequence pre-trained auto-encoder, which essentially combines the capabilities
of BERT [Devlin et al., 2019] and GPT [Radford et al., 2018], with a bidirectional “noisy” text
encoder transformer, whose last hidden state is fed into the cross-attention layers (following
the encoder-decoder setup initially proposed in Vaswani et al. [2017]) of an autoregressive
left-to-right decoder transformer. This architecture can be pre-trained for any type of denoising
task: indeed, while bidirectional models like BERT are designed and trained for token masking,
where a certain number of words in an input text are replaced with [MASK] tokens which
must then be �lled back in contextually, and autoregressive models such as GPT for left-to-right
language modeling, BART can be pre-trained with a variety of text corruption schemes, such
as arbitrary span masking/deletion (where any span of text, including zero-length ones, can
be masked by a single [MASK], or completely deleted), or arbitrary permutations of tokens
or sentences. During pre-training, the noisy input is usually fed into the encoder, while the
decoder is fed the original intact input in an autoregressive fashion. However, this need not be
the case when �ne-tuning for speci�c tasks: indeed, by using di�erent “head” modules at the
end of the decoder, and by feeding the input instances in the appropriate fashion to the encoder
and decoder modules, this architecture has been used to perform various tasks, ranging in
type from classi�cation (using a classi�cation head layer which is fed the last hidden state of
the decoder for the �nal token of the output), to text generation (using a language modeling
head layer), and even machine translation (by adding an intermediate small encoder network
before the primary encoder, to allow the learning of a mapping to the target language’s word
embedding space), which was also expanded upon in a multilingual variant of BART, called
mBART [Liu et al., 2020].

Taking inspiration from the conceptual frameworks showcased in the work discussed in
Section 4.4, in particular the setups presented in Camburu et al. [2018] for the e-SNLI dataset,
we propose �ne-tuning a pre-trained BART architecture as a base to construct a joint natural
language explanation generator and classi�er model. We thus experimented with three di�erent
joint classi�cation-explanation setup variants, using a common underlying BART architecture
(see Figure 5.7):

• the BART encoder, which is fed the base SNLI ppremise; hypothesisq-pair instances,
tokenized, indexed, and concatenated as a single sequence, augmented with the appro-
priate beginning/end of sentence markers ([BOS]/[EOS]), in the following fashion:
“[BOS] <premise> [EOS] [EOS] <hypothesis> [EOS]”, following the scheme from



Figure 5.7: Schematic illustrations of our three BART-based classi�er model variants. In all
three cases, a BART encoder is tasked with producing an embedding matrix for the input
instance (in this example, from e-SNLI), which is then used by the cross-attention modules in
the BART decoder to condition the explanation generation and classi�cation sub-tasks.

(a) The JointSmpl variant: in this Explainer model, the BART decoder is equipped with a language
modeling head, tasked with learning to produce explanations autoregressively, conditioned on the
input instance, and also a simple one-layer linear classi�cation head, which takes as input the very last
produced output embedding vector, corresponding to the End-of-Sentence ([EOS]) special token. This
is similar to the way the [CLS] token is used in the BERT architecture (see Figure 5.3), except here
the token used must be the very last one generated, so that it may have attended to the entirety of the
sequence, due to the left-to-right masking present in the BART autoregressive decoder.

(b) The JointAux variant: this variant is similar to the JointSmpl one, except the classi�cation task
is performed by an auxiliary smaller Transformer model (DistilRoBERTa), which takes as input the
entire decoder output embedding matrix.



(c) The ExplAsGen variant: in this �nal variant, no classi�cation head module is present. Instead, the
classi�cation sub-task is merged with the explanation generation, by prepending the input explanations
during �ne-tuning with the pattern “<Label> because,”, where <Label> corresponds to the ground-truth
label of the instance (in this example, the NLI inference class). The only objective function is the
one associated to the conditional language modeling sub-task, however we still need to compute the
classi�cation accuracy metrics, so the same pattern is used to extract the generated label out of the
decoded output, which is then matched to the task’s possible labels by name.

the RoBERTa [Liu et al., 2019c] tokenizer-indexer as implemented in the Hugging Face
transformers library [Wolf et al., 2020]. For CoS-E, we use the following scheme instead:
“[BOS] <question> [EOS] [EOS] <answer choice n°1> ; <answer choice n°2> ; <answer
choice n°3> [...] [EOS]”. We use semicolons as separators as they never otherwise appear
in question or answer choices and thus may be exploited as a task-speci�c separation
marker.

• the BART decoder with its pre-trained language-modelling head module, which is by
default fed the corresponding explanation for the current instance, as input and output
(during training), autoregressively, inspired by the suggested text-summarization setup
from Lewis et al. [2020].

Unlike some of these approaches however, we speci�cally then design each of our three
variants such that there are no interruptions of losses’ gradients �ow in the entire architecture
(for the �rst two two-headed models, the two loss functions are simply added together), such
that the underlying core BART model is forced to learn both the classi�cation and explanation
aspects truly jointly:

• the JointSmpl variant performs both the inference-relation classi�cation task and the



production of the accompanying explanation using the same common BART encoder-
decoder, with a simple one-layer linear softmax classi�cation head added, as suggested by
Lewis et al. [2020], which is fed the decoder’s �nal layer hidden state vector corresponding
to the last End-of-Sentence ([EOS]) token output (which is roughly related to the similar
approach used with the BERT architecture’s [CLS] token, except BART’s is located at
the end and not the beginning, due to the decoder’s autoregressive left-to-right nature).
This setup is roughly inspired by the PredictAndExplain approach from Camburu
et al. [2018], though unlike them, we do not condition the generated explanation on the
predicted label by adding it to the initial decoder input. In fact, due to the autoregressive
nature of the BART decoder, with the classi�cation head module attending only to the
last generated token’s position in the hidden state, this variant, and the next one, could
be more accurately placed into the explain-then-predict category. In the case of CoS-E (in
both this variant and the next one), the classi�er predicts a numeric label corresponding
to the correct answer’s position in the answer choices semicolon-separated list.

• the JointAux variant, employs an auxiliary transformer model to help perform the
classi�cation task, on top of the explanation-generation common architecture. We chose
to use the pre-trained DistilRoBERTa model from the Hugging Face transformers
library [Wolf et al., 2020] (inspired by the distillation method shown in Sanh et al. [2020]),
which here is fed the last layer’s hidden state produced by the common BART decoder,
bypassing the transformer’s input embedding layer. We chose this approach to in theory
allow the BART decoder not to have to learn to potentially fully encode prediction
related information in each generated token position: indeed, as the decoder does not
directly know when the sequence of tokens will end (especially at inference time, since a
step-by-step decoding algorithm is used to iteratively generate each encoding vector), it
is in theory forced to either pack the relevant label-related information in every output
embedding vector, or to more carefully learn to “expect” when the end of the generated
sequence may occur (or partially both).

• the ExplAsGen variant reformulates the task as a purely generative one, where the input
and output of the common decoder module combines both the label (as a single word
corresponding to the inference relation for e-SNLI, or a group of words corresponding
to the content of the predicted answer) and the explanation associated to each instance,
using the following pattern: “<Label/Answer> because, <Explanation>”. As this variant
will thus generate the prediction �rst, autoregressively, it could be unlike the previous
two considered a predict-then-explain approach.



5.3 Downstream Task Evaluation

For our experiments, we used the �ltered training, development and test splits provided in the e-
SNLI dataset1 [Camburu et al., 2018], and the processed (�ltered) training and development sets
from the CommonsenseQA v1.0 version of CoS-E2 (as the publically available CommonsenseQA
test set does not provide ground-truth answers and was thus not annotated with explanations).

For the JointSmpl and ExplAsGen variants, we used the facebook/bart-large
pre-trained model from the Hugging Face transformers library, which contains 12 encoder
and 12 decoder layers, with a hidden unit size of 1024, for a total of approximately 406 million
trainable parameters. For the JointAux variant, due to memory constraints caused by having to
�t the distilroberta-base pre-trained classi�er (6 layers, 768 hidden units, 82 million
parameters), as well as to �t the di�erently sized hidden unit dimensions, we instead used the
smaller facebook/bart-base pre-trained model (12 total layers, 768 hidden units, 139
million parameters). After initial experimentation, we found that freezing the pre-trained word
embedding modules either slightly improved or at the very least did not harm the di�erent
models’ performance, while producing a signi�cant speed-up and reduction in memory usage.
These experiments were performed on a 48-cores CPU, 250 GB of RAM local server, equipped
with 3 GPUs (2ˆNvidia GTX 1080 Ti, 1ˆNvidia RTX 2080 Ti) with„ 12 GB of VRAM each. We
used the AllenNLP [Wallace et al., 2019] framework3 and PyTorch for all our experiments. All
variants were trained with the Hugging Face AdamW [Loshchilov and Hutter, 2019] optimizer
implementation, with a polynomial learning rate decay scheduler. For the decoding algorithm
at inference time, we tried both beam-search (with 4 beams) as well as sampling with various
hyperparameters, but found that sampling is much harder to get good subjective-quality outputs
with (especially as there are more hyperparameters to tune), and thus chose to default to beam-
search. As done by Lewis et al. [2020], we use label smoothing [Pereyra et al., 2017] with a
parameter of ε “ 0.1 for the conditional language modeling objective during training, which
smooths out the target 1-hot encoded tokens, replacing the value 1 by 1´ ε and all the 0 by
ε

V´1 , where V is the token vocabulary size.

We �ne-tuned each of our variants on the e-SNLI train set for 10 epochs (or fewer, with
early stopping), and 30 epochs (or fewer) on CoS-E. We evaluated our models using the
simple classi�cation accuracy (as is done in the respective original contributions) for the
classi�cation part of the task. To evaluate the explanation generation sub-task, we initially
consider using perplexity, as is traditional in natural language generation tasks using language
models. Perplexity is usually de�ned by the normalized inverse probability of a language model
predicting the entirety of the test set. In practice, it is computed by taking the exponential

1available at: https://github.com/OanaMariaCamburu/e-SNLI
2available at: https://github.com/salesforce/cos-e
3available at: https://github.com/allenai/allennlp

https://github.com/OanaMariaCamburu/e-SNLI
https://github.com/salesforce/cos-e
https://github.com/allenai/allennlp


of the average sequence cross-entropy loss on the test set. This metric can be interpreted as
measuring how surprised a model is on average when having to predict the next word in a
sentence of the test set, or in other words, it indicates the average weighted number of tokens
the model considers likely to be the one appearing next in the test set, at each decoding step.
A lower perplexity model is thus in theory “better” than a higher one, as it is more “sure”
on average of the next word it should generate at each decoding step. While this metric is
frequently used in language generation tasks, we had multiple issues with it. Firstly, due to the
signi�cant implementation di�erences between training time and inference time, caused in
parts by the presence of the decoding algorithm (in our case, beam-search) as well as the label
smoothing, our inference time loss calculations appear to behave inconsistently, reporting very
high average losses at inference time (on either the dev or test set) for all three of our models:
at training time we obtain losses in the range of approximately 2 to 2.5, and thus training
perplexities in the range of „ 7.3 to „ 12.1, however, the calculated average losses on the test
and dev sets are all close to approximately „ 10.7, leading to perplexities of approximately
„ 44355.8, which is orders of magnitude higher than what would be expected of a model that
ends up behaving subjectively comparably to those of Camburu et al. [2018] for instance. As
we do not believe this measure we implemented to be accurate, further investigation would be
required to determine where exactly the potential issues are located.

But more importantly, as a comparative metric, we �nd perplexity is not very informative
of the quality of the produced explanations, as it is too dependent on the exact formulation
of the human-annotated explanations. In summarization or machine translation, as well as
other work similar related to language generation, the automated metrics BLEU [Papineni et al.,
2002] and/or ROUGE [Lin, 2004] are often used in complement or as alternatives to perplexity.

Both of these metrics are based on comparing n-grams statistics between candidate gen-
erated texts and reference human-annotated texts. BLEU (BiLingual Evaluation Understudy)
is a metric function originally proposed by Papineni et al. [2002] to evaluate the quality of a
machine-translated text by comparing them to one or more reference human translations, is
computed using the following formula:

BLEU “ BP ˆ expp
N
ÿ

n“1

1
N

log pnq

pn “

ř

cPcandidates
ř

n-gramPc countclippn-gramq
ř

c1Pcandidates
ř

n-gram1Pc1 countpn-gram1q

BP “

$

&

%

1 if CL ą RL

expp1´ RL
CLq if CL ď RL

where: N is the maximum size of n-grams considered (usually, if unspeci�ed, N “ 4);



pn is the modi�ed n-gram precision metric, which is computed by taking the sum across all
candidate texts of the maximum counts of n-grams appearing in both the candidate text and
any one reference text, clipped by the maximum number of times this n-gram occurs in any
reference text, divided by the total number of n-grams in the entire candidates corpus;
BP is the Brevity Penalty, which is argued to serve as a better alternative to recall in this case,
since this metric was intended to be used alongside multiple varied reference translations, and
recalling more words from across multiple di�erent translations would very likely diminish
the translation quality while increasing the metric. It is computed using RL, the best-match
References Length, which is the sum of the lengths of the best matching (closest) length-wise
references for candidate (or shortest length on ties), and CL, the Candidates Length, which
is just the total length of the candidates corpus. ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) on the other hand is a text summarization metric which was proposed
later by Lin [2004], with similarities and di�erences to BLEU: both measures are intended to
be usable with a number of di�erent reference texts for each one candidate, however, where
BLEU is a precision-based metric, ROUGE by default favors recall instead, arguing that it is
more important in summarization to be exhaustive than to be accurate. However, in practice,
both recall and precision are often computed as part of this metric, and may then be combined
into a single F1-measure (the harmonic mean between precision and recall) as follows:

ROUGE-n-R “
ř

rPreferences
ř

n-gramPr countoverlappingpn-gramq
ř

r1Preferences
ř

n-gram1Pr1 countpn-gram1q

ROUGE-n-P “
ř

rPcandidates
ř

n-gramPr countoverlappingpn-gramq
ř

r1Pcandidates
ř

n-gram1Pr1 countpn-gram1q

ROUGE-n-F1 “ 2
ROUGE-n-R´1 ` ROUGE-n-P´1

where these scores are generally computed for n “ 1 and n “ 2. ROUGE also proposes
additional measures, for example, ROUGE-L which is based on Longest Common Subsequence
(LCS) of tokens between a candidate sequence c and any reference sequence r:

ROUGE-L-Rpc, rq “ LCSpc, rq

|c|

ROUGE-L-Ppc, rq “ LCSpc, rq

|r|

ROUGE-Lpc, rq “ 2
ROUGE-L-Rpc, rq´1 ` ROUGE-L-Ppc, rq´1

where the global metrics are obtained by average over the entire candidates and references
corpora.

These metrics are often debated not to be ideal [Callison-Burch et al., 2006; Graham, 2015;



e-SNLI

Model Accuracy BLEU ROUGE-1-F1 ROUGE-2-F1 ROUGE-L

JointSmpl 83.03 17.8 42.87 22.15 38.51
JointAux 70.27 18.66 43.82 23.21 39.51
ExplAsGen 91.03 28.05 58.67 38.46 54.9

Camburu et al. 81.71 27.58 - -

Table 5.1: performance (ROUGE-1/2-F1: ROUGE overlap F1-score for 1/2-grams; ROUGE-L:
ROUGE of the longest common subsequence) of our approach’s variants on the e-SNLI test set,
and those of the ExplainThenPredictAttention model from Camburu et al. [2018].

Wieting et al., 2019], both for Machine Translation, Automatic Summarization, and other
types of language generation tasks, as they are somewhat shallow, ignoring aspects such as
synonymy or di�erences in formulations. On the other hand, they are also very commonly
used, relatively cheap to compute, and in theory suited to cross-architecture comparisons
(unlike perplexity), but further research and experiments with di�erent automated metrics
better suited speci�cally to NLEs generation may be required: for example, METEOR [Banerjee
and Lavie, 2005], proposes expending upon the principles of BLEU and ROUGE, allowing to
count non-exact matches between tokens, by running di�erent alignment (1-to-1 or 1-to-0
mappings between two sequences) modules sequentially, which may match tokens if they share
the same lemma or stem, or if they are recorded to be synonyms, for example, in addition to
exact matching.

Table 5.1 thus shows a comparison of our three setups with respect to (a) classi�cation
accuracy and (b) automatic measures for the evaluation of generated explanations (BLEU and
ROUGE) on the e-SNLI dataset. We can see accuracy is good in all cases, with two setups
(JointSmpl and ExplAsGen) being better than existing work on the same data. The second one
is even 10% higher than the best performing model from Camburu et al. [2018], ExplainThen-
PredictAttention. Their “best” model is here considered with respect to all all metrics and
criteria, including perplexity, BLEU, and subjective explanation quality. Their best perform-
ing model on accuracy alone is instead 2% better than ExplainThenPredictAttention, at
83.96%, however, it is signi�cantly worse on all other aspects, with a BLEU of 22.4, and only
approximately half as many (34.68% vs. 64.27%) of the �rst 100 produced explanations judged
correct by human evaluators.

ExplAsGen also has a better BLEU and ROUGE scores than the other compared systems, by
a very wide margin, though this may be very likely partially explained by addition of the �xed
“<Label> because, ...” pattern to the explanations. In addition, as mentioned above, BLEU and
ROUGE are somewhat non-ideal, especially in the case of generating explanations, as there can
be a large overlap of tokens between compared sentences, but subtle and small di�erences can



change the nature of explanations (negation, word order, etc.). This is in addition particularly
true for NLI, which tries to logically relate parts of two di�erent sentences.

Table 5.2 shows a similar comparison of our variants on the CoS-E dataset, alongside the
accuracy of the best performing model from Rajani et al. [2019], CAGE-reasoning. Compared to
our setups, CAGE-reasoning was trained with automatically generated explanations, produced
by a model itself �ne-tuned only on the CoS-E human-annotated explanations, without the
Question Answering objective. This may explain the lower performance of our variants, as
we trained only on the “raw” human-annotated explanations. This may also further validate
the results and observations from the authors, the CAGE framework allowing for a sort of
“denoising” of the admittedly (by the authors, and our own qualitative judgement) very noisy
human explanations. Again, we obtain the best automated text generation metrics with the
ExplAsGen variant, which also seems to con�rm that the static pattern inserted in the decoder
inputs as part of the reformulation of the task as a purely generative one, may at least partially
arti�cially in�ate those metrics. performance on the main task still remain quite low, compared
to best models Rajani et al. [2019], though ExplAsGen does slightly beat their non-CAGE
experiment, where they simply feed the same BERT classi�er directly with the noisy CoS-E
explanations, similarly to our variants, obtaining an accuracy of 65.5%, compared to our 67.79%.
For some reason, the JointAux is unable to learn to solve the main task, despite seemingly being
able to produce explanations somewhat successfully. After a subjective qualitative analysis of
the task, we chose to focus the rest of our work on the e-SNLI dataset only. Indeed, we thought
this task might be perhaps too complicated for our approach: as advertised in its abstract, the
CommonsenseQA [Talmor et al., 2019] dataset is overall very challenging, as it requires a vast
amount of world-knowledge, due to the conciseness and lack of contextual information present
in most of the questions. We found that a lot of instances seem to require employing a strategy
of “eliminating” the two most incorrect, or even incoherent answers, rather than selecting the
best or most appropriate one, which is often non-trivial even for humans (which may explain
the current human accuracy of “only” 88.9%, on the version 1.11 of the dataset). Moreover, we
found through qualitative analysis that both the underlying CommonsenseQA questions and
sets of answers, as well as the human-annotated explanations added in CoS-E are overall quite
noisy: for example, in Table 5.3 we showcase a few such problematic instances, from the �rst
250 instances of the dev set (out of 950). In many instances, whether in the question, answers,
or explanation, we can �nd typos, ungrammatical structures or ordering of words, ambiguous
or even mislabeled answers, and in general just poor text �uency, which may negatively a�ect
models which are not as performant at dealing with such types of noise in addition to the
capabilities required to deal with the speci�ed Question Answering task and the generation of
accompanying explanations.

While downstream performance on the main classi�cation (or question answering) tasks



CoS-E

Model Accuracy BLEU ROUGE-1-F1 ROUGE-2-F1 ROUGE-L

JointSmpl 61.9 5.92 18.26 7.51 16.29
JointAux 33.16 8.13 20.54 9.82 18.52
ExplAsGen 67.79 17.98 40.75 25.92 38.19

Rajani et al. 72.6 4.1 - -

Table 5.2: performance (ROUGE-1/2-F1: ROUGE overlap F1-score for 1/2-grams; ROUGE-
L: ROUGE of the longest common subsequence) of our approach’s variants on the CoS-E
development set (the test set ground-truth answers are not publically available), and those of
the CAGE-reasoning model from Rajani et al. [2019].

are relatively easy to analyze, as we feared, the automated text generation metrics were not
su�cient to judge the quality of the produced explanations. Therefore, we chose to also
manually qualitatively evaluate some of the produced explanations, for the variants trained on
e-SNLI, as was done in other similar work.



Question Answers (correct) Human Explanation Type of issues

What island country is fer-
ret popular?

great britain,
hutch,
own home

great britain having the
largest area

Q: Fluency,
E: Relevance

The teens were trying to
hide that they get drink,
but when they walked in
the door their what gave it
away?

stagger,
vomit,
fall down

walk or move unsteadily, as
if about to fall.

Q: Fluency,
E: Utility

She feared that she had
cancer, but upon discover-
ing truth that she hadn’t,
what was her attitude to-
ward life?

conclusion,
happiness,
relief

happiness explains the feel-
ing that she has at the mo-
ment

A: Ambiguity,
E: Utility

Bob’s only light source was
a small bulb. There were
four walls, if there was
a door he couldn’t see it.
What was Bob in?

closed room,
dard,
sky

closed room in the bub Q: Coherence,
A: Noise,
E: Noise

What must happen for an
animal to and it’s o�spring
to continue livng?

reproducing,
eventually die,
food consumed

food consumed by anmimal Q: Fluency,
Q: Noise,
A: Mislabeled,
E: Noise

If somebody buys some-
thing and gives it to me as
a free gift, what is the cost
status of the gift?

imprisoned,
paid for,
expensive

most presents to friends
and family will fall below
the annual threshold for
taxable gifts. in 2016 and
2017, a taxpayer could give
up to $14,000 per person per
year without being taxed
on the gift

Q: Fluency,
E: Utility

Table 5.3: A few examples of noisy or problematic instances from the CoS-E dataset. In
the fourth column, we list the location of each problem (Q = Question, A = Answers, E =
Explanation) followed by its nature, and then highlight the issue in the instance with the
associated color.



5.4 Explanation Quality Evaluation

Since an overall natural language explanation quality is hard to formalize and describe [Miller,
2017], we decided to implement a multi-criterion evaluation scheme which seemed easier
to judge than a single encompassing score, and could lead to a better separation of human
perceptions and subjectivity of produced explanations. Evaluators were asked to assess the
three following criteria:

1. the �uency of the produced explanation, that is, how syntactically, grammatically, and
semantically (in a limited sense) close to natural human language it is judged to be,
without necessarily taking into account the actual “explanatory content”. Informally, the
criterion was put as: Ignoring the rest of the instance, does this output “sound” or “read”
like natural English?
For example, a low �uency NLI instance might look like this (with the relevant issues
highlighted in bold):

Premise: “Two dogs are playing catch in a �eld.”
Hypothesis: “Two dogs are outside.”

Label & Explanation: “Entailment, because feld outside.”

Here, �uency is poor because a spelling error is present, and a word is missing from the
explanation. A higher �uency version might instead look like:

Premise: “Two dogs are playing catch in a �eld.”
Hypothesis: “Two dogs are outside.”

Label & Explanation: “Entailment, because a �eld is outside.”

2. relevance and coverage, which encompass the quantity and quality of references in
the produced explanation, to the relevant elements of the two input sentences in the
e-SNLI instance. Informally, the criterion was put as: Were each relevant elements of the
premise and hypothesis mentioned adequately in the explanation?
For example, a low relevance and coverage NLI instance might look like this (with the
relevant issues highlighted in bold):

Premise: “A Land Rover is being driven across a river.”
Hypothesis: “A vehicle is driving through water.”

Label & Explanation: “Entailment, because a Land Rover is a vehicle and the
sun is bright.”

Here, the relevance is low because of the last second part of the explanation which
does not refer to an element that is present in either the premise or hypothesis, and the
coverage is low because a relevant element is missing from the explanation. A higher
relevance & coverage version might instead look like:



Premise: “A Land Rover is being driven across a river.”
Hypothesis: “A vehicle is driving through water.”

Label & Explanation: “Entailment, because a Land Rover is a vehicle and a river
is �owing water.”

3. the overall perceived utility of the produced explanation. Informally, this was put as:
Subjectively, is the explanation useful in understanding why this speci�c inference label
was selected by the model? For example, a low utility NLI instance might look like this:

Premise: “A man playing an electric guitar on stage.”
Hypothesis: “A man playing banjo on the �oor.”

Label & Explanation: “Contradiction, because a man playing an electric guitar
on stage cannot be playing banjo on the �oor.”

Here, the utility is low because the explanation is both overly verbose and not speci�c
enough, copying large portions of the input verbatim. A higher utility version might
instead look like:

Premise: “A man playing an electric guitar on stage.”
Hypothesis: “A man playing banjo on the �oor.”

Label & Explanation: “Contradiction, because a banjo is not an electric guitar
and the �oor is not a stage.”

In addition to using three criteria instead of a single subjective rating, contrary to Camburu
et al. [2018], and inspired by the manual evaluation protocol on fact-checking explanations
found in Atanasova et al. [2020], we also did not associate a score to each criterion. Instead, we
asked them to perform pairwise comparisons for a set of anonymized system outputs, generated
for a number of instances of the e-SNLI test set (10 instances for a three-way comparison in
Table 5.4, and 30 instances for a two-way comparison in Table 5.5, for a total of 30 comparisons
per annotator for each criterion), where for each of the three criteria, they had to vote for the
output they considered the best in that criterion, with an option for ties (“Indecision” in the
Tables). This evaluation was performed on the test set, similar to the human evaluation in
Camburu et al. [2018].

We �rst performed this evaluation on the outputs of our three variants, whose results are
shown in Table 5.4. In addition to the total votes for each model and criterion (as well as the
ties, marked as “Indecision”, we also computed the inter-evaluator agreement using Fleiss’
Kappa [Fleiss et al., 2003]. We can observe a moderate level of agreement, which, from post-hoc
analysis, we found we could mainly attribute to a discrepancy between one judge and the
other two, as well as a lot of variations between votes and ties for speci�c pairs of systems and
criteria. For example, �uency was very often judged too similar in each pair of outputs to take
a decision, for almost half of the comparisons. We �nd striking that the best system regarding



Model Fluency Relevance & Coverage Utility

JointSmpl 12 22 26

JointAux 14 26 16
ExplAsGen 24 13 21
Indecision 40 29 27
Fleiss’ Kappa 0.44 0.59 0.49

Table 5.4: Total pair-wise comparison votes and inter-evaluator agreement for our three model
variants, for each of our three chosen criteria.

Model Fluency R&C Utility

JointSmpl 26 43 49

Camburu et al. 23 10 12
Indecision 41 37 29
Fleiss’ Kappa 0.17 0.15 0.47

Table 5.5: Total votes and inter-evaluator agreement for our JointSmpl model against the
ExplainThenPredictAttention model from Camburu et al. [2018], for each of our
three chosen criterion.

accuracy and BLEU/ROUGE scores on the automated task evaluation (ExplAsGen) seems to
be weakest by far on the relevance & coverage criterion, and much lower than JointSmpl on
utility, while seemingly being the most �uent. This contributes to show how automated metrics
like BLEU or ROUGE can be misleading when judging the quality of explanations. While the
other two criteria still have quite a high number of indecisions, �uency appears to be the most
subjective criteria overall, as can be seen from the lowest agreement measure as well, though
from a more qualitative analysis, we believe this to be because all three models are surprisingly
�uent, considering the amount of noise in the training data.

Based on this �rst evaluation, we thus decided that JointSmpl was a good compromise
model, as it has the most overall utility votes, decent relevance & coverage, and a good
classi�cation accuracy on the main prediction task. The fact it is the least �uent could also be
seen as bene�cial, since it is reasonable to expect that low �uency would normally negatively
impact the evaluators’ votes in its utility, yet it is still the best rated of the three in that regard.
We thus performed a second similar human evaluation, comparing the outputs of this model to
those of the ExplainThenPredictAttention model from Camburu et al. [2018], against which
we previously evaluated our models, on the e-SNLI task. We followed the same protocol, but
used di�erent instances from the previous human evaluation, waiting a few weeks between the
two, such that evaluators were less able to remember and re-indentify the previously selected
model. Results from this second evaluation are shown in Table 5.5. Compared to the previous



results, we can see that inter-evaluator agreement is much lower for �uency and relevance &
coverage this time, to the point where we can question whether evaluators could di�erentiate
the two systems, at least on these two criteria, whereas for the utility criterion, the results
are much closer to those of the previous evaluation, showing a clear preference in favor of
our model compared to the previous work from Camburu et al. [2018]. As a sanity check, we
performed a sign test for this evaluation, combining the votes from all three evaluators, for
which we obtain the following p-values: 0.7754, 5.55ˆ10´6, 1.97ˆ10´6 for �uency, relevance
& coverage, and utility, respectively. These seem to con�rm that �uency was again the most
subjective, and probably the least pertinent criterion overall to discriminate between both our
three variants, and JointSmpl against ExplainThenPredictAttention, as most generated
explanation seem to be written in well-structured and grammatically correct, if perhaps often
a little verbose English (which is not necessarily a drawback).

After these two evaluations, we also did a short qualitative analysis of some of the outputs
from all four systems. We note that, all things considered, the quality of generated explanations
is surprisingly good, especially when considering the noisiness of the training human-annotated
explanations. Indeed, if we look at a few example instances with their respective outputs in
Table 5.6, we can see that the di�erent model-generated explanations di�er signi�cantly from
their human-annotated counterparts, at least in their form. Interestingly, we note that quite
often, when a model misclassi�es an instance, the explanation it provides can be viewed as
an acceptable justi�cation for its label prediction, which can lead one to question whether
the underlying NLI task, or at the very least its particular incarnation in the SNLI dataset, is
perhaps not a little too subjective with regard to the closed entailment classes which are to be
predicted. For example, in sub-Table 5.6a, the JointAux model mispredicts the neutral label
when the ground-truth is supposedly entailment. Looking at the generated explanation, while
this is not made explicit by the model itself, one could consider the justi�cation and thus the
prediction also acceptable for this particular instance: indeed, while the most likely human
extrapolation of the premise is that the mentioned children are playing in some kind of pool
and would therefore very likely be exposed directly to water, this is actually not speci�ed in
the premise text itself, and one may therefore equally not make this assumption. The children
could be playing in a shallow puddle while fully clothed in rain-gear, for example, which
one may then not necessarily consider as equivalent to being directly wet. A lot of this we
believe has to do with how the SNLI dataset was constructed [Bowman et al., 2015]: indeed, the
premises in this corpus are originally image captions, and, while the crowd-workers who then
produced di�erent hypotheses for each inference label did not have access to these images,
simply having the knowledge that they were dealing with descriptions of photographs (which
was explicitly speci�ed in the data collection instructions presented to the annotators) will
invariably bias humans when mentally “�lling the gaps” left out of the caption. To test whether
our models may perhaps be able to correct their prediction if presented with additional more



explicit situational information, we tried modifying some instances which some of our models
had technically misclassi�ed but still produced an acceptable label and explanation for. In Table
5.7 we show one such example pertaining to the previously mentioned instance from Table
5.6a: as we can observe, specifying that the children are unambiguously playing in a pool while
wearing swimsuits, which should indeed entail that they would be directly wet, does not lead
the JointAux model to revise its decision, and it persists with roughly the same explanation
form and content as with the o�cial instance. While trying other variations, we also �nd cases
where this particular model gives an adequate explanation for the entailment label, and yet
still predicts neutral. This may be a sign that the auxiliary classi�cation module is occasionally
misaligned with the explanation generation module, but this is de�nitely not something that
is speci�c to this model, though we were not able to ascertain if it was a more prevalent
phenomenon with this particular variant or not. More work will be required to properly study
these aspects, which will most likely require some degree of automation, as manually altering
instances and subjectively evaluating the new outputs is not really feasible. Camburu et al.
[2020] for example, followed-up on their work on e-SNLI by developing a form of adversarial
attacking scheme, to reveal inconsistencies in automatically generated explanations.

Following this, we also took a look at de�nitely misclassi�ed and/or wrongly explained
instances, such as the example shown in Table 5.8, for which we noticed various types of
“failure modes”: �rstly, and as mentioned above, we found quite a number of instances where
the predicted label and explanation were not in accord with each other, whether the predicted
label was correct or not. These unfortunately were to be expected, as no machine learning
architecture currently is able to perform either classi�cation or text generation perfectly
on these types of datasets, and there are no reasons to expect this to be di�erent for an
architecture which does both of these at once. However, it is even more problematic with this
type of explanation-explanandum mismatch, as it is fundamentally di�erent from traditional
misclassi�cation/misprediction errors: indeed, outside of a model’s underperformance, the
latter can also often in more or less great parts be explained by label noise introduced mainly
by human annotators, and for which various techniques have been and are being worked on
(see Frenay and Verleysen [2014]; Frénay and Kaban [2014] for general overviews) to deal with
this type of issue, mainly through the automated identi�cation of mislabelled instances, using
some type of con�dence metric [Hovy et al., 2013; Chang et al., 2017; Swayamdipta et al., 2020],
followed by generally either reweighing or straight-up removal of those instances from the
a�ected datasets. Unfortunately, with explanation-explanandum mismatches, label noise cannot
be pointed at as a direct culprit: ideally, even if such a model were to predict the incorrect label
for a particular instance, it would still be strongly desirable for the produced explanation to help
make sense of the wrong decision which was taken. Similarly, if the correct label is predicted,
but the explanation for it does not make sense, it reduces the trust one may have in the model’s
ability to actually explain its reasoning. A second type of “failure mode” which we found to be



qualitatively more pervasive and less trivial to notice at a glance however could be labelled as
“miscomprehension errors”: if we look at Table 5.8 for example, we can see examples of what
we consider to be varying degrees of low-quality produced explanations, which seem to betray
that the di�erent models did not manage to properly parse and refer to elements of the input
sentences. On this particular instance, both JointAux and ExplAsGen did predict the correct
label, however, and in particular for JointAux, the produced explanations feel unsatisfactory
as they heavily paraphrase the input premise, without actually focusing speci�cally on the
elements which prove the entailment relation (in this case, that a large American �ag is an
American �ag). On the other hand, JointSmpl and ExplainThenPredictAttention [Camburu
et al., 2018] misclassify the instance, and seem to do, according to their produced explanations,
because they did not manage to fully (for the former) or accurately (for the latter) parse the
entire premise sentence. In both cases, we believe a probable cause of this type of issue is
due to the length and number of elements contained to potentially attend to in the input,
which may be acting unintentionally as distractors for the di�erent models. In the former two
cases in particular, this may also be in parts explained due to the numerous human-annotated
explanations in the dataset which follow simplistic templates, as remarked by Camburu et al.
[2018], where the premises and hypotheses sentences were included in as is, often verbatim.
While the original dataset was �ltered for and re-annotated for the latter, we note that a large
number of human annotations still seem to follow such templates, only with partial inclusions
of the two input sentences in the explanations, or heavy paraphrasing, which may still lead
models trained on this dataset to learn this type of behavior.



Table 5.6: Three examples of instances from e-SNLI and their corresponding combined (follow-
ing the “<Label> because, <Explanation>” pattern) outputs from our three model variants, and
also from the ExplainThenPredictAttention [Camburu et al., 2018] model, and the three
human-annotated gold explanations for these instances. As can be observed, models often
use similar explanation “templates”, mostly dependent on the type of inference-relation, with
variations in overall relevance and usefulness of explanations and/or accuracy of predicted
labels.

(a) Example of outputs for an Entailment instance.

Premise Four children are playing in some water.
Hypothesis The children are wet.
Gold label Entailment

JointSmpl Entailment, because children are playing in some water is same as
children are wet.

JointAux Neutral, because playing in some water does not imply being wet.
ExplAsGen Entailment, because the children are playing in water so they must be

wet.
Camburu et al. Entailment, because children playing in water are wet.
Gold Explanation 1 Entailment, because playing in water means you are wet.
Gold Explanation 2 Entailment, because the children became wet as they are playing in

water.
Gold Explanation 3 Entailment, because four children are children, and playing in water

implies wet.

(b) Example of outputs for a Contradiction instance.

Premise Two dogs are playing catch in a �eld.
Hypothesis The two dogs are resting in the �eld.
Gold label Contradiction

JointSmpl Contradiction, because playing and resting are not the same.
JointAux Contradiction, because the dogs cannot be playing catch and resting at

the same time.
ExplAsGen Contradiction, because the dogs cannot be playing catch and resting

simultaneously.
Camburu et al. Contradiction, because the dogs are either playing catch or resting.
Gold Explanation 1 Contradiction, because if the two dogs are playing, they can not be

resting.
Gold Explanation 2 Contradiction, because one cannot be playing with resting simultane-

ously.
Gold Explanation 3 Contradiction, because “ playing ” and “ resting ” contradict one another

in that playing shows movement while resting shows non-movement.



(c) Example of outputs for a Neutral instance.

Premise Four young girls playing in the water.
Hypothesis Four girls are swimming.
Gold label Neutral

JointSmpl Neutral, because girls playing in the water are not necessarily swim-
ming.

JointAux Neutral, because playing in the water does not imply swimming.
ExplAsGen Entailment, because girls playing in the water are swimming.
Camburu et al. Neutral, because playing in the water does not imply swimming.
Gold Explanation 1 Neutral, because playing in the water does not mean they are necessar-

ily swimming.
Gold Explanation 2 Neutral, because not all playing ones in water are swimming.
Gold Explanation 3 Neutral, because the girls can be playing in the water without swim-

ming in it.

Table 5.7: Example of a modi�ed e-SNLI instance and the outputs of our models on it. The
modi�ed part from the original (see Table 5.6a) are highlighted is bold. In spite of the additional
information, the JointAux model persists in predicting the neutral label, with an explanation
that is this time less believable due to the additional situational information given in the modi�ed
premise. The other two models however were not perturbed by this particular modi�cation.

Premise Four children are playing in a pool in swimsuits.

Hypothesis The children are wet.
Gold label Entailment

JointSmpl Entailment, because the children are playing in a pool so they must be wet.
JointAux Neutral, because just because children are playing in a pool in swimsuits does

not mean they are wet.
ExplAsGen Entailment, because children playing in a pool are wet.



Table 5.8: Example of a di�cult instance for the various models. Both JointAux and Ex-
plAsGen correctly classify the relation, but provide not very useful explanations (heavily
paraphrasing the inputs), whereas JointSmpl and ExplainThenPredictAttention from
Camburu et al. [2018] respectively skip over or completely misunderstand an important aspect
of the input, and thus have also bad relevance & coverage.

Premise A man in a hard hat, gray t-shirt and holding a cordless drill saluting
in front of a large American �ag.

Hypothesis A man saluting the American Flag.
Gold label Entailment

JointSmpl Neutral, because a man in a hard hat, gray t-shirt is a man.
JointAux Entailment, because man in a hard hat, gray t-shirt and holding a

cordless drill saluting in front of a large american �ag simply means
man saluting the american �ag.

ExplAsGen Entailment, because saluting in front of a large american �ag is the
same as saluting the american �ag.

Camburu et al. Contradiction, because a man is either holding a power drill or a �ag.
Gold Explanation 1 Entailment, because a man saluting in front of a large american �ag is

saluting the american �ag.
Gold Explanation 2 Entailment, because a man is saluting an american �ag in both sen-

tences.
Gold Explanation 3 Entailment, because he is saluting the �ag because he is saluting in

front of a large american �ag.



5.5 Conclusion and Perspectives

In this second part, we demonstrated how a Transformer architecture could be �ne-tuned to
jointly generate predictions, and explanations for those predictions. If this type of approach
can be successfully generalized, this would enable such models to communicate a variety
of useful information alongside their usual predictions, which would otherwise have to be
manually extracted through the use of an appropriate explainability method, which often
requires expert-knowledge to be correctly implemented and used. This part was the basis for a
paper submitted to the ACL Rolling Review initiative in November 2021, and is currently under
review.

Overall, as was somewhat initially expected, while the results are relatively impressive,
especially considering how the base BART model we used in these experiments was not
initially designed or pre-trained for the production of natural language explanations, the main
disadvantage of this type of approach is that we rely on a black-box models to hopefully provide
us with insights as to their own decision-making abilities. This implies that this process itself
may su�er from the same issues associated with black-box models when performing other
tasks, that is, lack of intrinsic interpretability. In particular, the faithfulness of automatically
produced explanations should be put into question, as NLE models should have no reasons
to be any more robust to adversarial attacks than any other similar machine learning models,
such as shown by Camburu et al. [2020] who designed a relatively simple attack scheme on
the NLI hypothesis, which, without changing its overall meaning, causes not just an incorrect
�ipping of the predicted label, but also causes the Explainer model to produce an incoherent
explanation to justify its error. Even if an Explainer model were to be designed and trained to
be more robust to these types of attacks, it would not be a proof that its output explanations
are faithful: on the contrary, a more “powerful” and robust-seeming model may deceptively
learn to appear to be faithful, but may in actuality just produce post-hoc realistic-looking
rationalizations in order to fool its evaluators. On the other hand, we argue that this is not
exclusive to these models: indeed, even more formal and external explainability methods, such
as LIME [Ribeiro et al., 2016] or SHAP [Lundberg and Lee, 2017], may be attacked in such
a way as to allow a biased classi�er to “hide” its biased nature behind innocuous-seeming
explanations produced by these methods [Slack et al., 2020], especially when performed on a
“remote” model one does not control [Le Merrer and Trédan, 2020]. Additionally, these more
formal methods usually require domain-experts to setup and properly analyze the results,
which further complicates the generation of end-user comprehensible access to algorithmic
decisions explanations. With the moving trend towards larger and larger architectures, both in
and out of NLP domains, as can be seen with the growing popularity models like GPT-3 [Brown
et al., 2020], intrinsic interpretability methods, such as Interpretable Word Embeddings, do not
seem to be a promising avenue to get useful explanations: indeed, these methods, which already



had complicated applicability in non-intrinsically interpretable models like RNNs, have been
made even less e�ective with deeper Transformer-based architectures, and as the trend towards
larger, less easily decomposable models continues, this will most likely not improve. While not
necessarily a dead-end, as the general ideas such as sparsity of the learned representations may
possibly be adapted to function in more recent architectures, most of the bene�ts of normally
using these intrinsically interpretable representations will be di�cult to maintain after so
many re-projections through a number of Transformer blocks, without severely modifying
the underlying architectures. Similarly, more formal post-hoc explainability methods may
have troubles dealing with the inherent complexity associated to deeply non-linear models
with growing number of layers, from dozens to hundreds, and growing number of trainable
parameters, from millions to billions (and possibly more). As such, it may be that end-to-end
black-box production of Natural Language Explanations, especially exploiting the increasing
abilities of large architectures to produce higher and higher quality texts automatically, could
end up being the only feasible avenue to reach satisfactory explainability in Natural Language
Processing, though care should be taken not to compromise so much on explanation desiderata,
like faithfulness, that the whole enterprise loses its initial meaning and objectives.

Numerous perspectives are open in this area of research on Natural Language Explanations:
�rst and foremost, better, ideally automatic evaluation tools should be sought, as currently
used automated metrics from Machine Translation and Automatic Summarization are not
well adapted to this task. Additionally, testing and improving robustness and faithfulness of
such Explainer models is paramount if these are ever to be used to inform real end-users: the
attack scheme presented in Camburu et al. [2020] and the overall design of the approach in
Kumar and Talukdar [2020] (allowing to abductively diagnose how a model may have behaved,
had some features of an instance changed) may be good starting points as both diagnostic
tools as well as potential ways to improve the learning setups for Explainer models. More
generally, a study of how well this kind of Transformer-based joint classi�cation-explanation
generalizes to Out-of-Distribution or out-of-Domain data is necessary, as high-quality large-
scale explanations-annotated datasets are di�cult to construct: one possibility could be to try
to use multitask learning, possibly combining both various tasks and datasets, but also maybe
various distant supervision signals, for example, only partially and/or noisy human-annotated
data, or even automatically annotated data, taking inspiration from the CAGE framework
proposed by Rajani et al. [2019]. To relieve human-annotators from having to produce vast
quantities of carefully explained instances, another avenue of research may be into Deep Active
Learning techniques (see Ren et al. [2021] for a general review), which aim to empower deep-
learning models to actively solicit help on instances which they �nd di�cult, in theory reducing
the amount of annotated instances required, as well as adding an interactive component to the
training process, which may allow correcting issues as they occur during the learning process
instead of after the fact.





General Conclusion

Properly explaining and understanding algorithmic decisions is a challenging task: whether
one uses intrinsically interpretable models/components, or post-hoc explainability methods,
a variety of issues stand in the way of the various desiderata one may focus on for produced
explanations. In particular, models in Natural Language Processing pose their own unique
challenges in regard to these aspects: in contrast to more “physical” systems, such as vision
or audio, or tabular data, which usually is easy to parse by construction, natural language
as a signal is highly abstract and tightly linked to the functioning of the human brain, of
which we so far do not have a good grasp of. While it is possible to attempt to inject some
intrinsic interpretability into commonly used linguistic representations, such as through the
use of Interpretable Word Embeddings, these processes are de�nitely not perfect, and may
not be adapted to the evolutions we are currently seeing in the �eld, towards larger and more
complex pre-trained models. On the other hand, these very evolutions towards ever more
opaque models mean there is an increasingly urgent need for explainability, if algorithms are
to take part more and more in important decisions. While a number of post-hoc explainability
methods currently exist, they are not perfect either, and care must be taken not to put too
much faith into any single one method, as each have their quirks and limitations, which often
require expert-knowledge to properly take into account. We proposed in a second part here
to look at the very extreme of post-hoc explainability methods, in the form of having NLP
models themselves produce Natural Language Explanations for their own decisions. While the
overall approach poses big challenges, in particular to ensure that the produced explanations
are faithful and not deceptive with regard to the models’ decision processes, it is also an
opportunity to exploit the growing capabilities of modern Transformer-based architectures to
generate natural language. More speci�cally, this may be done in end-to-end setups, where,
in addition to the task to be explained, the main costs are only obtaining human-annotated
natural explanations, potentially by non-experts, which, while not necessarily easy, may be
a good compromise to otherwise needing experts to formalize a speci�c set of desiderata for
explanations, followed by methods to extract them from model decisions.
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