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Spintronics nanodevices, which exploit both the magnetic and electrical properties of electrons, have emerged to bring various exciting characteristics promising for neuromorphic computing. Magnetic textures, such as domain walls and skyrmions, are particularly intriguing as neuromorphic components because they can support different functionalities due to their rich physical mechanisms. How the skyrmion dynamics can be utilized to build energy efficient neuromorphic hardware, and how deep learning can help achieve fast and accurate tests and validations of the proposals form the central topics of this thesis.

Titre : Modélisation et simulations d'applications neuromorphiques skyrmioniques

Mots clés : Dynamique du Skyrmion, micromagnétique, neuromorphique, apprentissage profond Résumé : Les nanodispositifs spintroniques, qui exploitent à la fois les propriétés magnétiques et électriques des électrons, apportent diverses caractéristiques intéressantes et prometteuses pour le calcul neuromorphique. Les textures magnétiques, telles que les parois de domaine et les skyrmions, sont particulièrement intrigantes en tant que composants neuromorphiques, car elles peuvent prendre en charge différentes fonctionnalités grâce à la richesse de leurs mécanismes physiques. La façon dont la dynamique des skyrmions peut être utilisée pour construire du matériel neuromorphique économe en énergie, et comment l'apprentissage profond peut aider à réaliser des tests et des validations rapides et précis des propositions constituent les sujets centraux de cette thèse. Les principales contributions et innovations de cette thèse peuvent être résumées comme suit :

1. Études numériques et théoriques sur la dynamique des skyrmions dans les nanostructures confinées. Nous explorons la dynamique des skyrmions en termes de taille, de vitesse, d'énergie et de stabilité dans une nanopiste dont la largeur varie. Nous avons constaté que des skyrmions de petite taille pouvaient être obtenus en utilisant cette structure asymétrique. Nous obtenons également un compromis entre la largeur de la nanopiste (densité de stockage) et la vitesse de mouvement du skyrmion (vitesse d'accès aux données). Nous étudions la dynamique du skyrmion sous excitation de tension par l'effet d'anisotropie magnétique contrôlé par la tension dans un film mince circulaire. Nous constatons que le skyrmion respirant peut être analogisé comme un modulateur. Ces résultats pourraient nous aider à concevoir des dispositifs neuromorphiques efficaces.

2.

Applications des dispositifs basés sur le skyrmion pour l'informatique neuromorphique. Nous présentons un dispositif compact de neurones de dopage Leaky-Integrate-Fire en exploitant la dynamique du skyrmion entraînée par le courant dans un nanotrack cunéiforme. Nous proposons un générateur de nombres aléatoires véritables basé sur le mouvement brownien thermique continu du skyrmion dans une géométrie confinée à température ambiante. Notre conception est prometteuse pour les systèmes de calcul neuromorphique émergents à faible puissance, tels que les réseaux neuronaux à impulsions et les réseaux neuronaux de calcul stochastique/probabiliste.

3. Une approche axée sur les données pour la modélisation des systèmes physiques dynamiques basée sur les équations différentielles ordinaires (ODE) neuronales. Nous montrons que les formalismes adaptés des ODEs neurales, conçus pour la spintronique, peuvent prédire avec précision le comportement d'un nanodispositif non idéal, y compris le bruit, après entraînement sur un ensemble minimal de simulations micromagnétiques ou de données expérimentales, avec de nouvelles entrées et de nouveaux paramètres matériels n'appartenant pas aux données d'entraînement. Grâce à cette stratégie de modélisation, nous pouvons effectuer des tâches de calcul plus complexes, telles que les prédictions de séries temporelles Mackey-Glass et la reconnaissance de chiffres parlés, en utilisant les modèles entraînés de systèmes spintroniques, avec une précision élevée et une vitesse rapide par rapport aux simulations micromagnétiques conventionnelles.

1. Numerical and theoretical studies on skyrmion dynamics in confined nanostructures. We explore the skyrmion dynamics in terms of size, velocity, energy, and stability in a width-varying nanotrack. We found nanoscale skyrmion with small sizes could be obtained by employing this asymmetric structure. We also obtain a tradeoff between the nanotrack width (storage density) and the skyrmion motion velocity (data access speed). We study the skyrmion dynamics under voltage excitation through the voltagecontrolled magnetic anisotropy effect in a circular thin film. We find that the breathing skyrmion can be analogized as a modulator. These findings could help us design efficient neuromorphic devices.

2.

Skyrmion based device applications for neuromorphic computing. We present a compact Leaky-Integrate-Fire spiking neuron device by exploiting the current-driven skyrmion dynamics in a wedge-shaped nanotrack. We propose a True random number generators based on continuous skyrmion thermal Brownian motion in a confined geometry at room temperature. Our design are promising in emerging low power neuromorphic computing system, such as spiking neural network and stochastic/ probabilistic computing neuron network.

3. A data-driven approach for modeling dynamical physical systems based on the Neural Ordinary Differential Equations (ODEs). We show that the adapted formalisms of Neural ODEs, designed for spintronics, can accurately predict the behavior of a non-ideal nanodevice, including noise, after training on a minimal set of micromagnetic simulations or experimental data, with new inputs and material parameters not belonging to the training data. With this modeling strategy, we can perform more complicated computational tasks, such as Mackey-Glass time-series predictions and spoken digit recognition, using the trained models of spintronic systems, with high accuracy and fast speed compared to conventional micromagnetic simulations.
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INTRODUCTION

R ECENT advances in artificial intelligence (AI) have demonstrated unprecedented success in machine learning, enabling us to perform complicated tasks from vision to natural language and thus transforming the way we work and live. The algorithms behind are based on deep neural networks and are implemented by supercomputers. However, modern computers, which are based on the physical separation of the processing unit and the data storage unit, suffer from high energy consumption transiting data information between the storage and the processor. By contrast, memory, learning, and processing in the brain are all located together in the neurons and synapses, which are two primary elemental units. The brain circuits also use sparse, probabilistic, slow, low-precision components to somehow perform computations instead of relying on high-precision circuits to solve complicated numerical problems as in modern computers.

Neuromorphic computing takes inspiration from the brain to develop energy-efficient hardware that can perform highly sophisticated computational tasks. However, building such systems using CMOS technology is exceptionally complicated because dozens of transistors are needed to emulate the neurons and synapses, which is quite energy-consuming and takes up to hundreds to thousands of square micrometers in area consumption. Therefore, more efforts are needed to explore other physical principles and building blocks to implement neuromorphic chips.

Spintronics nanodevices, which exploit both the magnetic and electrical properties of electrons, have emerged to bring various exciting characteristics for neuromorphic computing in the past few years. Magnetic textures, such as domain walls and skyrmions, are particularly intriguing as neuromorphic components because they can support different functionalities due to their rich physical mechanisms. For example, skyrmions can be extremely small, with diameters in the nanometre range, and behave as particles that can be moved, created and annihilated with a low energy cost. Besides, skyrmions also show rigid-body and particle-like characteristics, allowing multiple nanoscale skyrmions to accumulate within a defined device area without interacting with topographic defects. These properties make magnetic skyrmions suitable for applications in information storage and logic technologies. There have been a few demonstrations of skyrmion based synapses and neuron devices exploring the currentinduced dynamical aspects of skyrmions. More recently, an artificial synapse for neuromorphic computing based on the electrical manipulation of magnetic skyrmions at room temperature was reported. However, these demonstrations are based on single devices emulating the functionality of biological neurons or synapses, and system level experimental realizations of neuromorphic computing tasks are lacking. Another related work is about simple wave pattern recognition by harnessing the complex resistance or magnetization responses exhibited by random magnetic skyrmion textures. Still, the benchmark for processing more complicated pattern recognition tasks is required to show its prominent advantages.

One crucial factor limiting the realization of the system level neuromorphic computing task by utilizing the physical features of spintronics is the restriction of simulation tools. In
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spintronics, the micromagnetic model is a fundamental framework for the theoretical description of magnetization processes on the micron scale. It is primarily used to guide experiments through parameter spaces that would otherwise be difficult and expensive to navigate. Besides, the study of different physical phenomena, like the spin transfer torque (STT), spin-Hall and spin-Seebeck effects, allows for the creation of new, more efficient and faster devices, like spin-torque oscillators, spin-transfer torque magnetoresistive random access memory (STT-MRAM), and more recently, magnetic domain wall and skyrmions, and other novel devices, especially in the areas of storage and sensing technology.

However, micromagnetic simulations can be exceptionally time-consuming when the physical system under study is relatively large (even though it may be less than a few microns), or displays dynamics over longer time scales. Beyond their long simulation time, micromagnetic simulations come with essential limitations. When modeling a system with multiple free parameters, the amount of simulations necessary to investigate the parameter space quickly becomes very large as the simulations have to be re-executed from scratch when the input parameters of the template need to be modified. Also, micromagnetic simulations can almost never fit quantitatively the results of an experiment.

The latest deep learning techniques provide an alternative road to simulate the behavior of spintronic systems for building fast and energy-efficient neuromorphic computing hardware.

In recent years, machine learning has been used increasingly in physics, for example, for discovering new materials and for learning physical dynamics from time-series data. However, the power of artificial neural networks has never been applied to model, fit and forecast the complex experimental behavior of solid-state nanocomponents. The main idea of this thesis is to bridge the gap between the physical modeling of the spintronics dynamics and the machine learning community. I present both the topics of how the skyrmion physical dynamics can be utilized to build neuromorphic hardware and how machine learning can help achieve fast and accurate tests and validations of the proposals.

More specifically, Chapter 1 introduces the theoretical fundamentals inherent to the micromagnetism formalism. Starting from the basic assumptions in the micromagnetism, the dynamic equation that describes the time evolution of the magnetization, and its different energy contributions are covered. More importantly, extensions of the classical micromagnetics to include the impact of the spin-polarized current on the magnetization, i.e., the spin-transfer torque are shown. Finally, the existing modern software for numerical implementation of the micromagnetics are reviewed.

In Chapter 2, it starts by describing the basic principles of neuromorphic computing, followed by the working rules of modern neural networks. It introduces some modern neural network architectures and their learning rules, which are utilized in this work. In particular, I will introduce Neural Ordinary Differential Equations (ODE) as a continuous-depth framework for modeling time series data, Spiking Neural Network with components closely related to biology, Reservoir computing framework as a bio-inspired approach to recurrent neural network
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training, which is promising for hardware realization.

Chapter 3 presents a theoretical and numerical study on the physical properties of magnetic skyrmions. Furthermore, we demonstrate several skyrmionic neuromorphic devices by exploiting these intriguing features. We present a skyrmionic artificial neuron device for spiking neural network, a skyrmion based true random generators for stochastic computing, and a breathing skyrmion system for reservoir computing.

Chapter 4 introduces an efficient modeling framework for spintronics based neuromorphic computers by bridging the gap between the machine learning techniques and physics based scientific computing. We show that the adapted formalisms of Neural ODEs, designed for spintronics, can accurately predict the behavior of a non-ideal nanodevice for reservoir computing, including noise, after training on a minimal set of micromagnetic simulations or experimental data, with new inputs and material parameters not belonging to the training data.

Chapter 1

Micromagnetic model

The computer was born to solve problems that did not exist before.

Bill Gates " T HE Landau-Lifshitz-Gilbert (LLG) equation is a fascinating nonlinear evolu- tion equation both from mathematical and physical points of view. It is related to the dynamics of several important physical systems such as ferromagnets, vortex filaments, moving space curves, etc. and has intimate connections with many of the well known integrable soliton equations, including nonlinear Schrözdinger and sine-Gordon equations. It can model multiple dynamical structures including spin waves, elliptic function waves, solitons, dromions, vortices, spatio-temporal patterns and chaos, etc. depending on the physical and spin dimensions and the nature of interactions.

-Muthusamy Lakshmanan, Indian theoretical physicist "

Introduction to Micromagnetics

The origin of a spontaneous magnetization is quantum mechanics [START_REF] Bertotti | Hysteresis in magnetism: for physicists, materials scientists, and engineers[END_REF][START_REF] Hillebrands | Spin dynamics in confined magnetic structures I[END_REF][START_REF] Shinjo | Nanomagnetism and spintronics[END_REF] in nature. However, it is required to work from the atomic scale by considering a discrete system of spins to describe the magnetic properties starting from a quantum point of view. Although such formalism would be satisfactory, it is impractical due to large number of spins involved. Therefore, several models have been proposed in order to approximately describe ferromagnetic materials on a macroscopic scale. Depending on the simplifications introduced by a particular model, it can describe the system accurately only under certain assumptions and on a certain length scale. For the description of ferromagnetism at the micrometer scale, the theory of micromagnetism has proved to be a fundamental tool. In contrast to domain theory, it is able to resolve the inner structure of domain walls. On the other hand, micromagnetic equations can be solved numerically for relatively large system compared to atomistic approaches.

Micromagnetism can help us to understand key properties of magnetic materials, and explain magnetic phenomena such as magnetic domain wall formation, domain patterns, reversal modes and magnetization dynamics. The main goal of micromagnetics is the calculation of the magnetization distribution as a function of the applied field or the applied current taking into account the structure of the material and the mutual interactions between the different magnetic parts of a device. Micromagnetism is challenging Numerically, mainly because of the
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complexities in calculating the effective magnetic field, which is derived from the different energies contributing to the magnetization dynamics. The calculation of magnetic properties by solving the micromagnetic equations numerically was firstly proposed by Brown [4] in the late 1950s. However, the micromagnetic modeling surged only in the past 20 years thanks to the significant increase of the scientific computational power. In the recent decade, massively-parallel Graphics Processing Unit (GPU) systems have emerged offering ultra-high performance. A single GPU can match the computation power of a middle range CPU cluster, at a much lower cost and power consumption.

Today, micromagnetism posseses significant predictive power and is essential for analyzing and designing magnetic devices and systems. The modeling of magnetic recording systems (magnetic write/read heads, magnetic media in hard-drives) [START_REF] Takagishi | The applicability of cpp-gmr heads for magnetic recording[END_REF][START_REF] Schabes | Micromagnetic theory of non-uniform magnetization processes in magnetic recording particles[END_REF], magnetic random-access memory (MRAM) [START_REF] Zhu | Ultrahigh density vertical magnetoresistive random access memory[END_REF][START_REF] Patrick M Braganca | A threeterminal approach to developing spin-torque written magnetic random access memory cells[END_REF][START_REF] Zhang | Breaking the current density threshold in spin-orbit-torque magnetic random access memory[END_REF], spin-torque nano-oscillator (STNO) [START_REF] Haidar | A single layer spin-orbit torque nano-oscillator[END_REF][START_REF] Hao-Hsuan Chen | Phase locking of spin-torque nano-oscillator pairs with magnetic dipolar coupling[END_REF] and other magnetic systems [START_REF] Chen | A compact skyrmionic leaky-integrate-fire spiking neuron device[END_REF][START_REF] Chen | Skyrmion dynamics in width-varying nanotracks and implications for skyrmionic applications[END_REF][START_REF] Yao | Thermal brownian motion of skyrmion for true random number generation[END_REF][START_REF] Chen | Complementary skyrmion racetrack memory enables voltagecontrolled local data update functionality[END_REF][START_REF] Chen | Sky-ram: Skyrmionic random access memory[END_REF][START_REF] Chen | Magnetic skyrmion spectrum under voltage excitation and its linear modulation[END_REF][START_REF] Chen | Forecasting the outcome of spintronic experiments with neural ordinary differential equations[END_REF] are important applications of micromagnetism.

Assumptions in Micromagnetism

The formalism of Micromagnetism is based on the following two assumptions [START_REF] Bertotti | Hysteresis in magnetism: for physicists, materials scientists, and engineers[END_REF][START_REF] Hillebrands | Spin dynamics in confined magnetic structures I[END_REF]:

• The magnetization M, is a continuous vectorial function r of the position within the material.

• A ferromagnetic material can be idealized as a group of elements of volume dV with a uniform magnetization per unit of volume M s (see Fig. 1

.1).

M s is called the saturation magnetization. The direction of the magnetization is determined by the unit vector m = M/M s , which varies smoothly between each element of volume. Each element of volume has to be large enough to contain a large number of atoms, which are responsible for the magnetic moment. Nonetheless, each element of volume has to be small enough to avoid abrupt variation of the magnetization between each element of volume, in accordance to the continuous nature of the magnetization vectorial function.

This continuous approximation of the discrete system under study is based on the fact that the exchange interaction is dominant at short distances, forcing the magnetic dipoles (or the elements of volume dV in the micromagnetic description) to be parallel to each other. That being said, all other forces can be seen as a small perturbation to the parallel orientation between first neighbors. Therefore, it is reasonable to assume that m is a continuous function of the position, since the magnetization varies slightly between each surrounding element. As the exchange interaction has the shortest range, its strength with respect to other forces determines the typical scale over which the magnetisation can vary.

Two characteristic length scales are usually used in micromagnetics, and although an adequate cell size has to be chosen depending on the problem to solve, these two serve as guide: the exchange length l ex and the wall width l w . The exchange length results from the competition between the exchange interaction and the demagnetization field, and is defined as:

l ex = 2A µ 0 M 2 s , (1.1) 
where A is the exchange constant, and µ 0 is the vacuum magnetic permeability. The wall width determines the width of the transition of the magnetization between two magnetic domains, and is given by

l w = A K , (1.2)
where K is the magneto-crystalline anisotropy constant. Therefore, when numerically solving a problem, it has to be ensured that the size of each computational cell is small enough when compared to the characteristic lengths.

The Landau-Lifshitz-Gilbert Equation

The Landau-Lifshitz-Gilbert (LLG) equation describes the precessional and damping dynamics of the magnetization M. The Gilbert form of the time evolution of the magnetization is

THE LANDAU-LIFSHITZ-GILBERT EQUATION

described as [START_REF] Bertotti | Hysteresis in magnetism: for physicists, materials scientists, and engineers[END_REF][START_REF] Lakshmanan | The fascinating world of the landau-lifshitz-gilbert equation: an overview[END_REF][START_REF] Abert | Micromagnetics and spintronics: models and numerical methods[END_REF] 

d M d t = -γM × H e f f + α M s (M × d M d t ), (1.3) 
where α is the dimensionless phenomenological damping parameter, γ is the Gilbert gyromagnetic ratio, and H e f f is the effective field, defined as functional derivative of the energy density per unit of volume:

H e f f = - 1 µ 0 ∂ε ∂M . (1.4)
The total average energy density ε contains several energy contributions and will be described Solving the Gilbert equation is not simple, as the time derivative of the magnetization is present in both sides of Eq. 1.3. A different way of introducing the phenomenological dissipation term in Eq. 1.3 was proposed by Landau-Lifshitz [START_REF] Lale Landau | On the theory of the dispersion of magnetic permeability in ferromagnetic bodies[END_REF]. In this proposal, the dissipative term is added in such a way that it is perpendicular to both the magnetization vector M and the precession of M × H e f f :

d M d t = -γM × H e f f - γα M s M × (M × H e f f ), (1.5) 
where γ = 1/(1 + γ 2 ) is Landau-Lifshitz gyromagnetic ratio. This equation is formally known as the Landau-Lifshitz-Gilbert (LLG) equation, and it describes the same physical properties as Eq. 1.3. To obtain an equation equal to the one described by Landau-Lifshitz using Eq. 1.3, we can multiply both sides of Eq. 1.3 by M× and using the property a

× (b × c) = (a • c)b-(a • b)c,
and M • M = M 2 s , we obtain the following equation:

d M d t = - γ 1 + α 2 M × H e f f - γ 1 + α 2 α M s M × (M × H e f f ). (1.6)
Eq. 1.6 represents the dynamic equation used to solve the dynamics of magnetization in micromagnetic software. It is also convenient to express the previous expression with the normalized magnetization m = M/M z : 

(1 + α 2 ) d m d t = -γm × H e f f -γαm × (m × H e f f ). (1.7)

Interactions and effective field

The behavior of the magnetization M in LLG Eq. 1.6 is determined by the effective field H e f f , which includes components arising from several interactions. Among these interactions, the exchange interaction, anisotropy interaction, magnetostatic interaction (also called dipolar interation), and the Zeeman interaction are the four typical components. Apart from them, Dzyaloshinskii-Moriya Interactions (DMI) and thermal field effect may also have strong impact on the magnetization behavior. We review these interactions in this subsection.

Exchange interaction

The exchange energy originates from the quantum nature of electrons, and it is the dominant interaction at short distances, it is thus responsible for the parallel alignment between neighboring spins. According to the Heisenberg exchange model, the energy between neighboring spins is written as

H ex = - f N i , j 2J i j Ŝi • Ŝ j , (1.8)
where the sum is over first neighbors f N , Ŝi is the spin operator. J i j is the exchange integral, whose value decreases rapidly with the distance between spins and is thus only noticeable among first neighbors. Therefore, one can simply write J instead of J i j .

By assuming that the angle between the spins is small and using mathematical approximations under this assumption, one can derive the exchange energy E ex in the continuous

INTERACTIONS AND EFFECTIVE FIELD 11

representation of the framework of micromagnetics:

E ex = V ε ex dV = V A(∇m) 2 dV. (1.9)
Finally combining the Eq. 1.4 and Eq. 1.9, the expression for the exchange field H ex can be written as

H ex (r ) = 2A µ 0 M S ∇ 2 m(r ) .
(1.10)

Anisotropy interaction

It is well know from experiments that magnetic materials are in general not isotropic and have preferred directions. These preferred axes are called easy axes. The anisotropy energy is then defined as the the energy cost needed to magnetize a material in a certain direction with respect to an easy direction. Its origin comes from spin-orbit interactions at the atomic level.

A phenomenological approach is used to derive the form of anisotropy, as it is highly complex to obtain an expression for it starting from a microscopic model [START_REF] Bertotti | Hysteresis in magnetism: for physicists, materials scientists, and engineers[END_REF]. For the materials with uniaxial anisotropy considered throughout this work, the uniaxial magneto-crystalline energy is given by

E an,u = V ε an,u dV = V K (1 -(m • u K ) 2 )dV, (1.11) 
where K (J/m 3 ) is the anisotropy constant and u K the unit vector along the anisotropy. The direction of u K is an easy direction if K > 0 and K < 0 for a hard direction,i.e. hard axis. Therefore, when K > 0 and the magnetization is parallel to easy axis u K , the anisotropy energy is at a minimum. On the other hand, when K < 0 and the magnetization is parallel to the hard axis u K , the anisotropy energy is at a maximum.

From Eq. 1.11 and using Eq. 1.4, the uniaxial anisotropy effective field H an,u for each element of volume is derived as

H an,u (r ) = 2K µ 0 M S (m • u K )u K .
(1.12)

Magnetostatic interaction

The magnetostatic interaction, also called magnetic dipole-dipole interaction, refers to the direct interaction between the lattice magnetic dipoles. The field created by the dipoles is called demagnetization or magnetostatic field, which tends to demagnetize the sample inside the material. The demagnetization field is derived from Maxwell equations, whose contribution is essential to the micromagnetic formalism, and it is also the most challenging field to compute [START_REF] Filipe | Spintronic mircomagnetic simulations using parallel computations[END_REF][START_REF] Jacques E Miltat | Numerical micromagnetics: Finite difference methods[END_REF][START_REF] Fidler | Micromagnetic modelling-the current state of the art[END_REF]. Considering the case where only the demagnetization field is present (no electrical fields, electrical currents, or any other magnetic field), Maxwell equations are reduced to:

∇ • B (r ) = 0 ∇ × H (r ) = 0 (1.13) By substituting B = µ 0 (M + H ) = µ 0 (M + H d mg )
, where the magnetic field H represents the demagnetization field H d mg , into Eq. 1.13, the reduced Maxwell equations can be written as:

∇ • H d mg (r ) = -∇ • M(r ) ∇ × H d mg (r ) = 0. (1.14)
To calculate the demagnetization field H d mg (r ), fictitious volume and surface magnetic charge densities are defined as ρ m (r ) and σ m (r ), respectively. Following Eq. 1.14 and the surface boundary conditions that H d mg (r ) must obey, we obtain

ρ m (r ) = -∇ • M(r ) σ m (r ) = M(r ) • n. (1.15)
where n is the unit vector perpendicular to the surface. Therefore, the demagnetization field H d mg (r ) at each point r , of the sample, can be derived as

H d mg (r ) = 1 4π ′ V (r -r ′ )ρ m |r -r ′ | 3 dV ′ + ′ S (r -r ′ )σ m |r -r ′ | 3 d S ′ , (1.16) 
where rr ′ denotes the distance between the point of the field being calculated (r ) and all other field that creat magnetic moments at r ′ . The magnetostatic energy can now be expressed as

E d mg = V ε d mg dV ′ = - 1 2 µ 0 V H d mg • M(r )dV.
(1.17)

The factor 1/2 is added, because the source of the demagnetization field H d mg is the volume magnetization distribution M(r ) of the sample.

Zeeman interaction

The Zeeman interaction is the interaction between the magnetization and the externally applied field. Within the micromagnetic formalism this field is usually uniform throughout the sample under study, (however it can be made variable in both space and time), and can be written as

E Z ee = V ε Z ee dV = -µ 0 V H ext • M(r )dV, (1.18) 
where H ext is the applied magnetic field.
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Dzyaloshinskii-Moriya interaction (DMI)

The DMI is an antisymmetric exchange interaction, which arises from spin-orbit coupling (SOC) [START_REF] Dzyaloshinsky | A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics[END_REF][START_REF] Moriya | Anisotropic superexchange interaction and weak ferromagnetism[END_REF]. It can occur at the interface between a magnetic thin film layer and a heavymetal layer with strong SOC, and may also exists in bulk materials lacking inversion symmetry.

We consider only the interface-induced DMI in the ultra-thin magnetic film throughout this work. At the atomic scale, the interface-induced DMI in the ultra-thin magnetic film placed on the heavy-metal substrate with strong spin-orbit coupling, such as Fe/Ir [START_REF] Heinze | Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions[END_REF] and CoFe/Ta [START_REF] Emori | Current-driven dynamics of chiral ferromagnetic domain walls[END_REF] interfaces, is expressed as [START_REF] Rohart | Skyrmion confinement in ultrathin film nanostructures in the presence of dzyaloshinskii-moriya interaction[END_REF] H

i D M = d i D M <i , j > (u i j × ẑ) • (S i × S j ), (1.19) 
where < i , j > denotes the nearest neighbor sites, S i and S j are the classical spin vectors at sites i and j , respectively. d i D M is the interface-induced DMI coupling energy, u i j is the unit vector between S i and S j , and ẑ is the unit vector normal to the interface (Fig. 1.3). The transition to continuum theory is done similarly to the exchange interaction. In the continuous micromagnetic model, the energy for interface-induced DMI, therefore, reads:

E i D M = V ε i D M dV = V D i D M [m • ∇(ẑ • m) -(∇ • m)(ẑ • m)] dV = V D i D M m x ∂m z ∂x + m y ∂m z ∂y -m z ∂m x ∂x -m z ∂m y ∂y dV, (1.20) 
where D i D M is the continuous effective interface-induced DMI constant (in J/m -2 ), m x , m y and m z are the Cartesian components of the reduced magnetization m.

Figure 1.3: Sketch of DMI at the interface between a ferromagnetic metal (grey) and a metal with a strong SOC (blue). The DMI vector u i j × ẑ related to the triangle composed of two magnetic sites and an atom with a large SOC is perpendicular to the plane of the triangle. Adapted from ref [START_REF] Fert | Skyrmions on the track[END_REF].

The thermal field interaction

Temperature effect is usually included by adding a random noise thermal field H t h to the dynamic equation, which is thus converted into a stochastic one. In 1963, Brown showed that statistical properties [START_REF] Brown | Thermal fluctuations of a single-domain particle[END_REF] correctly reproduce the equilibrium thermodynamics by applying this procedure to single domain particles. In micromagnetic simulations, the thermal random field H t h can be added to the effective field H e f f acting on the magnetization of each discretized cell:

H e f f → H e f f + H t h . (1.21)
The Cartesian components of H t h are independent Gaussian distributed random numbers with the following statistical properties:

H t h,α,i (t ) = 0 (1.22) H t h,α,i (t )H t h,β, j (t ′ ) = 2Dδ i j δ αβ δ(t -t ′ ), (1.23) 
where i and j are the indexes of the cells, α, β = x, y, z indicates the Cartesian components of the field, and the brackets represent time statistical averages. The first δ i j implies that the fluctuating term of different cells are independent from each other, the second one, δ αβ , means that the three Cartesian terms are independent from each other, the last term δ(tt ′ ), indicates that the noise is uncorrelated in time. The coefficient D is obtained to satisfy Maxwell-Boltzmann statistics when thermodynamic equilibrium is reached, which leads to [START_REF] Godfried | Stochastic processes in physics and chemistry[END_REF][START_REF] Coffey | The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering[END_REF]:

D = αk B T (1 + α 2 )γµ 0 M s V , (1.24) 
where k B is the Boltzmann constant, T the temperature and V is the volume of each individual cell. In the micromagnetic formalism framework, the fluctuating thermal field H t h,i added at each cell i is therefore given by

H t h,i = η i (t ) 2αk B T (1 + α 2 )γµ 0 M s V ∆t , ( 1.25) 
where η i (t ) is a stochastic vector with zero-mean and standard normal distributed random components. ∆t is the time step used in the micromagnetic simulations.

Spin-transfer torque (STT)

The phenomenon of spin transfer torque (STT) opens the possibility of manipulating the magnetization of a material by using currents instead of magnetic fields. Therefore, it allows for the possibility to design different new devices, which are not only potentially much faster but

SPIN-TRANSFER TORQUE (STT)

also more energy efficient. The Spin-transfer torque effect arises whenever a spin-current flows through a magnetic material whose magnetic moment is not collinear with that of the spincurrent. The spin-angular momentum flow can also be changed when spin-polarized currents pass through a magnetic domain wall or any other non-uniform magnetization pattern such as vortexes, skyrmions etc. In this process, the spin conducting electrons have their spins rotate towards the direction of the local magnetization, and thus the angular momentum spin vector flow changes as a function of the position. Therefore, the magnetization m of a ferromagnet influences the flow of spin-angular momentum of the conducting electrons due to the exchange interaction between them, by exerting a torque on the incoming spins reorienting them in the process. Due to Newton's third law of motion, the flowing electrons also must exert an equal and opposite torque onto the local magnetization of the ferromagnet. This exerted torque by the non-equilibrium conduction electrons onto the ferromagnet is what is commonly known as the STT. Possible applications of this torque mechanism, which was first investigated by Slonczewski [START_REF] John | Current-driven excitation of magnetic multilayers[END_REF], Berger [START_REF] Berger | Emission of spin waves by a magnetic multilayer traversed by a current[END_REF], Xavier Waintal and coworkers [START_REF] Waintal | Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers[END_REF], are the spin-transfer torque magnetoresistive random access memory (STT-MRAM) [START_REF] Dc Worledge | Spin torque switching of perpendicular ta/cofeb/mgo-based magnetic tunnel junctions[END_REF] and the spin torque oscillators (STO) [START_REF] Houssameddine | Spin-torque oscillator using a perpendicular polarizer and a planar free layer[END_REF][START_REF] Kim | Spin-torque oscillators[END_REF]. A comprehensive theoretical overview of spin-transfer torque is given by Ralph and

Stiles [START_REF] Daniel | Spin transfer torques[END_REF]. The STT that acts on the free layer comes from the reflecting electrons that flow through it. c) Direction of the torques being applied to the magnetization p in the presence of both the H e f f and spin polarized current. Adapted from ref [START_REF] Filipe | Spintronic mircomagnetic simulations using parallel computations[END_REF].
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There are usually two types of STT being used, one for devices in which the Current flow is Perpendicular to Plane (CPP), like in spin-valves or MTJs. The other type is when the Current is

In-Plane (CIP), as is the case in domain wall (DW) dynamics along ferromagnetic nanotracks.

The magnetization dynamics under the STT influence can be described by including additional torques to the LLG dynamic equation, which we will show in the following subsections.

Current Perpendicular to Plane (CPP)

In the case where two magnetic layers are separated by a non-magnetic metal spacer layer, as in a spin-valve (see Fig. 1.4), the motion of the free-layer magnetization m is described by the extended LLG [START_REF] Slonczewski | Currents and torques in metallic magnetic multilayers[END_REF]:

d m d t = -γm × H e f f + α(m × d m d t ) + T , (1.26) 
where the torque T consists of a damping-like and field-like contribution

T = T d amp + T f i el d .
These torques are given by

T d amp = η d amp (ϑ) j e γħ 2eµ 0 M s m × (m × p), (1.27) 
T f i el d = η f i el d (ϑ) j e γħ 2eµ 0 M s m × p, (1.28) 
where j e is the current density, p = M P /M P S is the unit vector magnetization of the assumed thick polarizing layer with saturation magnetization M P S , the dimensionless functions η d amp and η f i el d describe the angular dependence of the torque strength with ϑ being the angle between m and p. By comparing the torque contributions Eq. 1.27 and Eq. 1.28 with the effectivefield term in the LLG of Eq. 1.5, the torque can be expressed by means of an effective field contribution H ST T given by

H ST T = - j e γħ 2eµ 0 M s η d amp (ϑ) m × p + η f i el d (ϑ) p (1.29)
Inserting Eq. 1.29 into the Eq. 1.5 and applying the same procedure described in section 1.3 yields:

d m d t = - γ 1 + α 2 m × H e f f + j e γħ 2eµ 0 M s αη d amp -η f i el d p - αγ 1 + α 2 m × m × H e f f + j e γħ 2eµ 0 M s - 1 α η d amp -η f i el d p , (1.30) 
where the vector identity m × [m × (m × p)] = -m × p was used. From this formulation it is clear that both the damping-like torque and the field-like torque contribute to the precessional motion as well as the damping-like motion.

NUMERICAL MICROMAGNETISM

Current In-Plane (CIP)

To study the magnetization dynamics involving in-plane currents, e.g., in the study of DWs, two sources of torque are required to describe the dynamics: one adiabatic and the other non-

adiabatic. An established model for the description of spin torque in continuous magnets is a model proposed by Zhang and Li [START_REF] Zhang | Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets[END_REF]. In this model, the torque contribution T Z L to the LLG is given as

T Z L = -bm × [m × ( j e • ∇)m] -bξm × ( j e • ∇)m, (1.31) 
where ξ describes the degree of nonadiabacity and b is given by

b = βµ B eM s (1 + ξ 2 ) , (1.32) 
with β being the dimensionless polarization rate of the conducting electrons, µ B the Bohr magneton, and e the elementary charge.

Numerical micromagnetism 1.6.1 Introduction

Numerical micromagnetism is introduced in order to study different interesting phenomena of the magnetization dynamics, from either the point of view of fundamental physics or from experimental devices. As it has been seen in previous sections, the magnetization dynamics is described through the use of non-lineal partial differential equations in space and time, which are significantly complicated to solve and in general do not have analytical solutions.

The main idea of numerical micromagnetism is discretizing the previously obtained continuous expressions including the discretization of the geometry and of the dynamic equation, as well as all the different effective field contributions in order to solve the problem numerically [START_REF] Abert | Micromagnetics and spintronics: models and numerical methods[END_REF].

For the spatial discretization of the geometry, the most popular methods applied in micromagnetic solvers are the finite-difference method (FDM) and the finite-element method (FEM).

In both methods the magnetic region is subdivided into simulation cells resulting in a mesh.

The two methods differ in how the structures are discretized. As a result, their formulation, implementation, speed, and numerical accuracy are different.

FDM uses a regular grid of rectangular brick cells, at which the differential operators can be approximated by central differences [START_REF] Jacques E Miltat | Numerical micromagnetics: Finite difference methods[END_REF]. The volume of each brick cells is ∆x × ∆y × ∆z.

Due to the regularity of the discretization grid, the formulation of the micromagnetic modeling with FDM is relatively simple and the implementation is quite straightforward. Moreover, the computational speed of FDM can be good for simple magnetic structures, such as rectangular thin films. Therefore, it is extensively utilized in the micromagnetics community for such cases.
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On the other hand, FDM suffers from certain factors that prevent the universal application of the method. Most importantly, the modeling accuracy for the magnetic samples that come with fine geometrical features can be unsatisfactory. This is due to the fact that regular brick cells are intrinsically unsuited to model curved boundaries.

FEM greatly solves this problem by applying arbitrary shaped finite elements in the mesh.

Each finite element could be a triangle, a quadrilateral, or even a curved triangle in a twodimensional case. As to three-dimensional mesh, the elements could be tetrahedrons, hexahedrons, pyramids and prisms [START_REF] Fidler | Micromagnetic modelling-the current state of the art[END_REF]. The flexibility in the discretization allows for superior geometric modeling accuracy. The modeling flexibility and accuracy come, however, with complexities in formulation and implementation. The computational speed may be slower than that of FDM when handling simple magnetic structures. No matter which method is used, it has to be ensured that the size of each computational cell is small enough when compared to the characteristic length, as has been introduced in sec. 1.2.

For the discretization of the micromagnetic equations, it is essential to find the discrete counterparts to the continuous functions that describe all the contributions to the local effective field H e f f , in each computational cell. In the FD approximation the derivatives are replaced by ratios at the center of each cell of the mesh. Among all the energy contributions, the evaluation of demagnetization energy, which is a long-range interaction, is the most complicated one and is extremely time-consuming. It has a computational complexity of O (n 2 ),

with n being the number of simulation cells. Various methods have been proposed to reduce this complexity, and the widely used fast-Fourier-transform (FFT) based circular convolution method is able to reduce this complexity to O (nlogn) [START_REF] Dv Berkov | Solving micromagnetic problems. towards an optimal numerical method[END_REF].

In order to numerically solve the LLG equation including the spin-torque effect and all effective field components, different ordinary differential solver algorithms, which are based on a number of explicit Runge-Kutta methods such as the Dormand-Prince method (RK45), the Bogacki-Shampine method (RK32), and Heun's method (RK12) can be implemented.

Existing software packages

Various software packages implement the FDM with FFT accelerated demagnetization field computation. The most popular open-source FD micromagnetic software is OOMMF [START_REF] Michael | OOMMF user's guide, version 1.0[END_REF].

OOMMF is a multi platform code running on central processing units (CPUs). Other CPUbased open-source software include Fidimag [START_REF] Bisotti | Fidimag v2.0[END_REF] and the commercial package MicroMagus [START_REF] Berkov | [END_REF]. A very simple CPU implementation of the FD algorithms with the Python library NumPy is presented in [START_REF] Abert | A full-fledged micromagnetic code in fewer than 70 lines of numpy[END_REF]. The recent advent of general-purpose graphics-processing units (GPUs) allowed for the significant acceleration of scientific software. A popular open-source package for finite-difference micromagnetics on GPUs is MuMax3 [START_REF] Leliaert | Fast micromagnetic simulations on gpu-recent advances made with[END_REF][START_REF] Vansteenkiste | The design and verification of mumax3[END_REF].

The implementation of finite-element solvers is a challenging task, as it involves the nontrivial generation of tetrahedral meshes, the numerical computation of integrals for the systemmatrix assembly and the solution of large linear systems. Various software packages and li-
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braries have been developed to solve one or more of these tasks. Open-source libraries for the formulation and solution of finite-element problems are MFEM [START_REF] Anderson | Mfem: A modular finite element methods library[END_REF] and FEniCS [START_REF] Alnaes | The fenics project version 1.5[END_REF]. Other FE codes include the open-source packages Magpar [START_REF] Scholz | Fidimag v2.0[END_REF] and NMag [START_REF] Fischbacher | A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag[END_REF] as well as the closedsource package FEMME [START_REF] Suess | Femme[END_REF].

In this work, all simulations regarding the magnetization dynamics are performed using OOMMF and MuMax3.

Conclusion

Micromagnetic simulations serve as a powerful tool in helping us study various phenomena of the magnetization dynamics from the perspective of fundamental physics, experimental devices and even system-level applications. However, micromagnetic simulations can be exceptionally time-consuming when the physical system under study is relatively larger than a few micrometers, or displays dynamics over long time scales. Beyond their long simulation time, micromagnetic simulations come with essential limitations. When modeling a system with multiple free parameters, the amount of simulations necessary to investigate the parameter space quickly becomes very large as the simulations have to be re-executed from scratch when the input parameters of the template need to be modified. Also, micromagnetic simulations can almost never fit quantitatively the results of an experiment.

In Chapter 4 of this thesis, we will show how we can model the simulated and experimental spintronics systems more efficiently by using modern artificial neural network and machine learning methods, the basics of which is given in Chapter 2.

Chapter 2

Neuromorphic computing and Deep

Learning

Where attention goes, neural firing flows, and neural connection grows.

Daniel J. SIEGEL " A SINGLE neuron in the brain is an incredibly complex machine that even today we don't understand. A single 'neuron' in a neural network is an incredibly simple mathematical function that captures a minuscule fraction of the complexity of a biological neuron.

-Andrew Ng "

H ARDWARE ADVANCES have made computer power increased around a million-fold from 1991 to 2015. Computer programs can therefore be able to perform well at a wide range of complex cognitive tasks, and even outperform human at specific tasks, such as AlphaGo [START_REF] Silver | Mastering the game of go without human knowledge[END_REF].

However, they consume orders of magnitude more energy than living agents to do so. A classic comparison is with the human brain: humans have around 100 W of power with only about 30 W of that available to power their brains. AlphaGo has a higher power consumption than 3000 humans even when counting only the GPUs. That's more power consumption than all professional Go players together (around 1000).

In this chapter, we introduce the concept of neuromrophic computing (or brain-inspired)

with brain as an inspiration. We then introduce the basic principles of neural network, whose component was originally inspired by the biological neurons in brain, and supervised learning method, which has already been well developed and widely used. We also include some deep learning architectures. In this thesis, we will use the latest deep learning techniques to help us design efficient neuromorphic hardware (Chapter 4). We also introduce some bio-inspired neural network architectures. We will show how we explore spintronic phenomena to enable novel neuromorphic devices based on these bio-inspired networks (Chapter 3). We finally review the hardware implementations of neuromorphic system in the end of this Chapter.

The principles of neuromorphic computing

Inspired by the human brain and the functioning of the nervous system, Neuromorphic computing, or brain-inspired computing was a concept introduced in the 1980s [START_REF] Mead | Neuromorphic electronic systems[END_REF][START_REF] Mead | How we created neuromorphic engineering[END_REF][START_REF] Catherine D Schuman | Opportunities for neuromorphic computing algorithms and applications[END_REF]. It has grown to refer to a variety of brain-inspired computers, devices, and models that contrast with the pervasive von-Neumann computer architecture (see Fig. 2.1). This biologically inspired approach aims to create highly connected synthetic neurons and synapses that can be used to model neuroscience theories as well as solve challenging machine learning problems. In recent time, this concept has taken the front seat, as artificial intelligence has led scientists to advance neuromorphic computing to excel in the field of technology. One of the technological advancements that has rekindled the interest of scientists in neuromorphic computing is the development of the Artificial Neural Network (ANN) model.

Though ANNs have demonstrated unprecedented success in machine learning, these algorithms most often run on supercomputers, which, unlike the brain, physically separate core memory and processing units. This slows them down and substantially increases their energy consumption, because the information is shuttled between the storage units and the processor.

Additionally, modern computers have been designed to solve complicated numerical problems with high precision, while the brain uses many low-precision calculations in parallel to perform a task such as recognizing a face.

For that reason, the brain differs vastly from human-made computing systems, both in terms of topology and how it processes information. Therefore, building this new hardware ap- plicable for neuromorphic computing necessitates reinventing electronics. Research in physics and material science will be key for creating artificial neurons and synapses, connecting them together in huge numbers, organizing them in complex systems and computing with them efficiently.

THE PRINCIPLES OF NEUROMORPHIC COMPUTING

In this regard, some researchers choose to take inspiration from artificial intelligence to move forward in this direction, whereas others prefer taking inspiration from neuroscience [START_REF] Marković | Physics for neuromorphic computing[END_REF]. The work present in this thesis draw on both of these ideas as the latest deep learning techniques can play important role in helping us design efficient neuromorphic hardware.

We will firstly introduce the neural network basis, and then present some network architectures that are utilized in this work: they are Neural Ordinary Differential Equations (ODEs) as a continuous-depth framework for time series modeling, Spiking Neural Network with components closely related to biological neurons, Reservoir computing framework as a bio-inspired approach to recurrent neural network training.

Neural networks basics

In this section, we explain the basic principles of neural networks starting from one of the important early networks -the Perceptron. Different types of modern neural networks architectures, and the popular supervised learning methods to train the networks are given. This section is inspired from Ref. [START_REF] Michael A Nielsen | Neural networks and deep learning[END_REF].

Early networks and development

The first study of formal neurons dates back to 1943 with the work of Warren McCulloch and Walter Pitts [START_REF] Warren | A logical calculus of the ideas immanent in nervous activity[END_REF]. They proposed to explain the complex decision processes in the brain using a linear threshold gate by comparing the sum of inputs to a threshold. Later in 1958, Frank Rosenblatt, a psychologist at Cornell University [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF], proposed the idea of a Perceptron, which takes a weighted sum of input and returns '0' if the result is below threshold and '1'

otherwise. The beauty of this Perceptron model laid in the fact that its weights were 'learnt' through successively-presented inputs, while minimizing the difference between desired and actual output (see Fig. More specifically, assuming x 1 , x 2 , ..., x n represent components of the input x, and w 0 , w 1 , ..., w n are the synaptic weights. The output of neuron is generated by the equation:

y =    1 if n i =1 w i x i + w 0 ≥ 0 0 if n i =1 w i x i + w 0 < 0 (2.1)
where w 0 is the threshold of the neuron (sometimes also denoted as b 0 for bias), and can also be viewed as a synaptic weight connecting an input clamped to one. It may take both real and Boolean inputs and associates a set of weights to them, along with a bias. The goal is to find the w vector that can perfectly classify positive inputs ( x ∈ P if x belongs to positive samples) and negative inputs ( x ∈ N if x belongs to negative samples) in the data. The boundary between the two possible outputs is given by the equation n i =1 w i x i + w 0 = 0. To update the weights, we initialize w with a random vector. We then iterate over all the examples in the data, and the update rule follows:

w =    w + ηx if x ∈ P and w x < 0 w -ηx if x ∈ N and w x ≥ 0 (2.2)
where η is the 'learning rate'. Provided that the data points are linearly separable, the perceptron algorithm is guaranteed to converge to a set of weights that effectively separate the data.

However, the condition of linear separability of the data prevents the Perceptron from classifying data produced by even a non linear simple function such as XOR [START_REF] Minsky | An introduction to computational geometry. Cambridge tiass[END_REF]. This limitation caused the field of AI to stagnate for about two decades.

A key trigger for renewed interest in neural networks and learning was Werbos's backpropagation algorithm that enabled practical training of multi-layer networks in 1975. Backpropagation distributed the error term back up through the layers by modifying the weights at each node [START_REF] Werbos | Beyond regression:" new tools for prediction and analysis in the behavioral sciences[END_REF].

However, the vanishing gradient problem affects many-layered feed-forward networks that used backpropagation and also recurrent neural networks (RNNs) [START_REF] John | A field guide to dynamical recurrent networks[END_REF]. As errors propagate from layer to layer, they shrink exponentially with the number of layers, hinders the tuning of neuron weights based on these errors, particularly affecting deep networks. To overcome this problem, Schmidhuber adopted a multi-level hierarchy of networks pre-trained one level at a time by unsupervised learning and fine-tuned by backpropagation [START_REF] Schmidhuber | Learning complex, extended sequences using the principle of history compression[END_REF]. Hinton et al. proposed in 2006 learning a high-level representation using successive layers of binary or real-valued latent variables with a restricted Boltzmann machine to model each layer. Once sufficient layers have been learned, the deep architecture can be used as a generative model to reproduce the data when sampling down from the model activated by the top-level features [START_REF] Hinton | A fast learning algorithm for deep belief nets[END_REF].

The challenges of training deep neural networks early on were successfully addressed by methods such as unsupervised pre-training, residual network [START_REF] He | Deep residual learning for image recognition[END_REF], which we will discuss in later section, or by using other activation functions (such as ReLu). Most importantly, the available computational power was increased around a million-fold through the use of GPUs and distributed computing from 1991 to 2015, this also makes standard backpropagation feasible for networks several layers deeper than when the vanishing gradient problem was recognized.

Neural networks can be deployed on a large scale, particularly in image and visual recognition problems. This became known as "deep learning" [START_REF] Lecun | Deep learning[END_REF].

Overall, backpropagation along with Gradient Descent forms the backbone and powerhouse of neural networks. While Gradient Descent constantly updates and moves the weights and bias towards the minimum of a cost function, backpropagation evaluates the gradient of the cost with regards to weights and biases, the magnitude and direction of which is used by gradient descent to evaluate the size and direction of the corrections to weights and bias pa-rameters. We will therefore introduce them in details in the following.

The architecture of neural networks

Let us suppose we have the network, shown in Fig. 2.3(a). The leftmost layer in this network is called the input layer, and the neurons within this layer are called input neurons. The rightmost or output layer contains the output neurons (in this case, a single output neuron).

The middle layer is called a hidden layer, since the neurons in this layer are neither inputs nor outputs. The network above has a single hidden layer, but some networks have multiple hidden layers. For example, Fig. 2.3(b) shows a four-layer network with two hidden layers.

The output of each single neuron in the hidden layers and the output layer is expressed as

f (w x) = f ( n i =1 w i x i + w 0 )
where f is called activation function. In the case of a perceptron as introduced previously, f is a step function. However, other activation functions such as sigmoid function σ(z) = 1/(1 + e (-z) ) are more commonly used because the differentiability of the function makes it possible for learning the weights of the networks. The output of the neuron in this case is σ(w x). The design of the input and output layers in a network is straightforward. For example, let us suppose we are trying to determine whether a handwritten image depicts a "eight" or not.

A natural way to design the network is to encode the intensities of the image pixels into the input neurons. If the image is a 64 by 64 greyscale image, then we would have 4,096 = 64×64 input neurons, with the intensities scaled appropriately between 0 and 1. The output layer will contain just a single neuron, with output values of less than 0.5 indicating "the input image is not a 'eight'", and values greater than 0.5 indicating "the input image is a 'eight'".

Neural networks researchers have developed many design heuristics for the design of hidden layers, which help practitioners get the behaviour they want out of their networks. For example, such heuristics can be used to help determine how to trade off the number of hidden layers against the time required to train the network.

The neural networks where the output from one layer is used as the input to the next layer are called feedforward neural networks (FNN), as we have described previously: there are no loops in the network -information is always fed forward, never backward. However, there are other models of ANNs in which feedback loops are possible. These models are called recurrent neural networks (RNN) [START_REF] Medsker | Recurrent neural networks: design and applications[END_REF][START_REF] Graves | Generating sequences with recurrent neural networks[END_REF].

Recurrent neural nets have been less influential than feedforward neural networks, in part because the learning algorithms for recurrent nets are (at least to date) less powerful [START_REF] Pascanu | On the difficulty of training recurrent neural networks[END_REF]. But recurrent networks are still extremely intriguing because they are much closer in spirit to how our brains work than feedforward networks. And it's possible that recurrent networks can solve important problems which can only be solved with great difficulty by feedforward networks.

We will talk about the RNN model in more details in the section 2.5.1.

Learning in neural networks

To make a neural network function as we expect, we need to train it, i.e., to optimize the parameters of the networks. Within AI and machine learning, there are two basic approaches:

supervised learning and unsupervised learning [START_REF] Schmidhuber | Deep learning in neural networks: An overview[END_REF]. The main difference is that one uses labeled data to help predict outcomes, while the other does not. The goal of supervised training method is known as generalization of known outcomes. The present thesis is concentrated around tasks solved with the help of supervised learning. There also exists an intermediate approach known as a reinforcement learning (RL) [START_REF] Richard | Reinforcement learning: An introduction[END_REF]. During the RL process, no explicit teacher signal is given. However, the trained system receives a reward upon successful completion of given task or penalty as a consequence of fail.

We will focus on one of the most popular supervised learning methods-Backpropagation, an algorithm for calculating the gradient of a loss function with respect to variables of a model.

Learning with gradient descent

Suppose we want to train the handwritten digits MNIST dataset [START_REF] Lecun | Mnist handwritten digit database[END_REF], one of the most common benchmarks for supervised learning. It contains ten classes of numerals. The task is to classify a given digit into one of the ten classes. We use the notation x to denote a training input, which is a 28×28 = 784 dimensional vector. Each entry in the vector represents the grey value for a single pixel in the image. We denote the corresponding desired output by y = y(x),

where y is a 10-dimensional vector. For example, if a particular training image, x, depicts a 6, then y(x) = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0) T is the desired output from the network. Note that T here is the transpose operation, turning a row vector into an ordinary (column) vector. Our goal is to find weights and biases so that the output from the network approximates y(x) for all training CHAPTER 2: NEUROMOPRHIC COMPUTING AND DEEP LEARNING inputs x. To quantify how well we're achieving this goal we define a cost function

C (w , b) ≡ 1 2n x ∥ y(x) -a ∥ 2 (2.3)
Here, w denotes the collection of all weights in the network, b all the biases, n is the total number of training inputs, a is the vector of outputs from the network when x is input, and the sum is over all training inputs, x. The notation ∥ v ∥ denotes the usual length function for a vector v. C is called the quadratic cost function, known as the mean squared error (MSE).

The idea of gradient descent consists in using the gradient vector of the cost function with respect to each component of w and b (with components w k and b l ). The gradient vector ∇C has corresponding components ∂C /∂w k and ∂C /∂b l . Writing out the gradient descent update rule in terms of components, we have An idea called stochastic gradient descent (SGD) can be used to speed up learning. The idea is to estimate the gradient ∇C by computing ∇C x for a small sample of randomly chosen training inputs. By averaging over this small sample, it turns out that we can quickly get a good estimate of the true gradient ∇C , and this helps speed up gradient descent, and thus learning.

   w k → w ′ k = w k -η ∂C ∂w k b l → b ′ l = b l -η ∂C ∂b l (2.
Then stochastic gradient descent works by picking out a randomly chosen mini-batch of m training inputs, and training with those

   w k → w ′ k = w k - η m j ∂C X j ∂w k b l → b ′ l = b l - η m j ∂C X j ∂b l (2.5)

Backpropagation

The backpropagation equations provide us with a way of computing the gradient of the cost function. To begin with, We use w l j k to denote the weight for the connection from the k t h neuron in the (l -1) t h layer to the j t h neuron in the l t h layer. Similarly, we use b l j for the bias of the j t h neuron in the l t h layer. And we use a l j for the activation of the j t h neuron in the l t h layer. With these notations, the activation a l j of the j t h neuron in the l t h layer is related to the
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activations in the (l -1) t h layer by the equation

a l j = σ( k w l j k a l -1 k + b l j ), (2.6) 
where the sum is over all neurons k in the (l -1) t h layer. And finally, we define an activation vector a l whose components are the activations a l j . Using the chain rule, the explicit procedure of calculating the gradient of the cost function follows:

1. Input x: Set the corresponding activation a 1 for the input layer, 2. Feedforward: For each l = 2, 3, . . . , L compute z l = w l a l -1 + b l and a l = σ(z l ), 3. Output error δ L : Compute the vector δ L = ∇ a C σ ′ (z L ), 4. Backpropagate the error: For each l = L-1, L-2, . . . , 2 compute δ l = ((w l +1 ) T )δ l +1 σ ′ (z l ),

Output error:

The gradient of the cost function is given by ∂C

∂w l j k = a l -1 k δ l j and ∂C ∂b l j = δ l j ,
where ∇ a C is defined to be a vector whose components are the partial derivatives ∂C /∂a L j , δ l j is expressed as

δ l j = ∂C ∂z l j , (2.7) 
which is the error of neuron j in layer l , and δ l is denoted as the vector of errors associated with layer l . The symbol represents the element-wise product of two vectors. Examining the algorithm, we can see why it is called backpropagation. We compute the error vectors δ l backward, starting from the final layer. The backward movement is a consequence of the fact that the cost is a function of outputs from the network. In practice, it is common to combine backpropagation with a learning algorithm such as stochastic gradient descent, in which we compute the gradient for many training examples.

Continuous-depth learning framework

Technically, backpropagation algorithm, as a supervised learning method, can be used to train the weights in most modern neural network architectures, and it is indeed powerful in solving many classification and regression problems [START_REF] Lecun | Deep learning[END_REF]. In this Secondly, residual layers can be stacked, forming very deep networks. Introducing more layers and parameters allows a network to learn a more accurate representations of the data compared to a vanilla neural network. This is because when calculating how the loss function depends on the weights in the network ∂L ∂θ by applying the backpropagation algorithm, we repeatedly apply the chain rule on our intermediate gradients, multiplying them along the way.

These multiplications lead to vanishing or exploding gradients, which simply means that the gradient approaches zero or infinity. A zero gradient gives no path to follow and a massive gradient leads to overshooting the minima and huge instability.

As introduced above, the transformation h t +1 = h t + f (h t , θ t ) may represent variable layer depth, meaning a 38 layer ResNet can perform like a 5 layer network or a 30 layer network.

Thus ResNets can learn their optimal depth, starting the training process with a few layers and adding more as weights converge, mitigating gradient problems. Thus the concept of a ResNet is more general than a conventional neural network, and the added depth and richness of information flow increase both training robustness and deployment accuracy.

However, ResNets still employ many layers of weights and biases requiring massive time and data to train. On top of this, the backpropagation algorithm on such a deep network incurs a high memory cost to store intermediate values. ResNets are thus frustrating to train on moderate machines. However, they have a very fundamental importance to understand the Neural ODEs that we use within this thesis.

Differential Equations and Euler's Method

The rich connection between ResNets and ODEs is best demonstrated by the equation

h t +1 = h t + f (h t , θ t ).
As stated above, this relationship represents the transformation of the hidden state during a single residual block, but as it is recursive, we can expand into the sequence below, in which i is the input:

h 1 = i + f (i , θ 1 )
h 2 = h 1 + f (h 1 , θ 2 )
h 3 = h 2 + f (h 2 , θ 3 ) . . . h t +1 = h t + f (h t , θ t +1 ) (2.8)
ODE is defined by the relationship y ′ = f (y, t ), stating that the derivative of y is a function of y and time. Using Euler's method, we can start from the initial value of y and travel along the tangent line to y (slope given by the ODE) for a small horizontal distance of t , denoted as s (step size). The recursive process is shown below:

y(0) = y(0) y(1) = y(0) + s y ′ (0) y(2) = y(1) + s y ′ (1)
. . .

y(t ) = y(t -1) + s y ′ (t -1) (2.9)
Comparing Eq. 2.8 and Eq. 2.9, the ResNet is analogous to Euler's method with a step size of one. In the structure of Neural ODE, the layer transformation is defined as f (θ), where θ is parameters of the layer and can be determined by a neural network. The primary differences between ResNet block and Neural ODE is that the Neural ODE has shared parameters across all layers. Without time-dependent weights and biases which depend on time, the transformation in the Neural ODE is defined for all t , giving us a continuous expression for the derivative of the function we are approximating. Therefore, there are fewer parameters in an Neural ODE than in an ordinary ResNet. More importantly, the Neural ODE solvers can be expanded to find better numerical solutions beyond the Euler's method. With over 100 years of research in solving ODEs, there exist adaptive solvers which restrict error below predefined thresholds with intelligent trial and error. These methods modify the step size during execution to account for the size of the derivative.

Training Neural ODE

The fantastic part about Neural ODEs is that they can be trained by using machine learning techniques with data [START_REF] Ricky | Neural ordinary differential equations[END_REF]. To start, we parameterize the continuous dynamics of hidden units CHAPTER 2: NEUROMOPRHIC COMPUTING AND DEEP LEARNING using an ODE specified by a neural network:

d z(t ) d t = f (z(t ), t , θ) (2.10)
Starting from the input layer z(t 0 ), we can define the output layer z(T ) to be the solution to this ODE initial value problem at some time T . This value can be computed by a black-box differential equation solver, which evaluates the hidden unit dynamics f wherever necessary to determine the solution with the desired accuracy. The Neural ODE can be trained using backpropagation through the ODE solver. Treating the ODE solver as a black box, the gradients can be computed using the adjoint sensitivity method. This approach computes gradients by solving a second, augmented ODE backwards in time, and is applicable to all ODE solvers. Consider optimizing a scalar-valued loss function L(), whose input is the result of an ODE solver:

L(z(t 1 )) = L(z(t 0 ) + t 1 t 0 f (z(t ), t , θ)) = L(ODE Sol ve(z(t 0 ), f , t 0 , t 1 , θ)) (2.11)
To optimize L, we require gradients with respect to θ. The first step is to determining how the gradient of the loss depends on the hidden state z(t ) at each instant. This quantity is called the adjoint a(t ) = d L/d z(t ). Its dynamics are given by another ODE, which can be thought of as the instantaneous analog of the chain rule:

d a(t ) d t = -a(t ) T ∂ f (z(t ), t , θ) ∂z (2.12)
We can compute ∂L/∂z(t 0 ) by another call to an ODE solver. This solver must run backwards, starting from the initial value of ∂L/∂z(t 1 ). One complication is that solving this ODE requires the knowledge of the value z(t ) along its entire trajectory. However, we can simply recompute z(t ) backwards in time together with the adjoint, starting from its final value z(t 1 ). More specifically, we can firstly combine θ and t with z to form an augmented state with corresponding differential equation and adjoint state:

d d t =     z θ t     = f aug ([z, θ, t ]) =     f ([z, θ, t ]) 0 1     (2.13)
As we did before with a(t ) = d L/d z(t ), we can use the previous notation:

a aug (t ) =     a(t ) a θ (t ) a t (t )     =     d L/d z(t ) d L/d θ(t ) d L/d t (t )     (2.14)
Note this approach formulates the augmented ODE as an autonomous (time-invariant) ODE, but the derivations in the previous section still hold as this is a special case of a time-variant
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ODE. The Jacobian of f has the form

∂ f aug ∂[z(t ), θ, t ] =     ∂ f ∂z ∂ f ∂θ ∂ f ∂t 0 0 0 0 0 0     (t ) (2.15)
where each 0 is a matrix of zeros with the appropriate dimensions. We inject this into Eq. 2.12 to obtain d a aug (t )

d t = -[a(t ) a θ (t ) a t (t )] ∂ f aug ∂[z, θ, t ] = -[a ∂ f ∂z a θ ∂ f ∂θ a t ∂ f ∂t ](t ) (2.16)
The first element is the adjoint differential equation Eq. 2.12, as expected. The second element can be used to obtain the total gradient with respect to the parameters, by integrating over the full interval and setting a θ (t N ) = 0:

d L d θ = a θ (t 0 ) = t 0 t N a(t ) ∂ f (z, θ, t ) ∂θ d t (2.17)
Finally, we also get gradients with respect to t 0 and t N , the start and end of the integration interval.

d L d t N = d L d z(t N ) d z(t N ) d t N = a(t N ) f (z(t N ), θ, t N ) d L d t 0 = a t (t 0 ) = a t (t N ) - t 0 t N a(t ) ∂ f (z, θ, t ) ∂t d t (2.18)
Therefore, we have gradients for all possible inputs to an initial value problem solver. When the loss depends on these intermediate states, the reverse-mode derivative must be broken into a sequence of separate solves, one between each consecutive pair of output times (Fig. 2.4). At each observation, the adjoint must be adjusted in the direction of the corresponding partial derivative ∂L/∂z(t i ). The adjoint sensitivity method solves an augmented ODE backwards in time. The augmented system contains both the original state and the sensitivity of the loss with respect to the state. If the loss depends directly on the state at multiple observation times, the adjoint state must be updated in the direction of the partial derivative of the loss with respect to each observation. Adapted from Ref. [START_REF] Ricky | Neural ordinary differential equations[END_REF] In practice, all derivatives can be implemented by extending the autograd automatic differentiation package scipy.integrate.odeint in python, which also supports all higher-order derivatives. A PyTorch implementation, including GPU-based implementations of several standard ODE solvers is accessible at github.com/rtqichen/torchdiffeq [START_REF] Ricky | Neural ordinary differential equations[END_REF].

Practical usages of Neural ODEs

One of the exciting parts of Neural ODEs is their connection to physics. ODEs are often used to describe the time derivatives of a physical situation, referred to as the dynamics. Knowing the dynamics allows us to model the change of an environment, like a physics simulation, unlocking the ability to take any starting condition and model how it will change. With Neural ODEs, we do not define explicit ODEs to document the dynamics, but learn them via ML. This approach removes the issue of hand-modeling hard-to-interpret data. Ignoring interpretability is an issue, but we can think of many situations in which it is more important to have a strong model of what will happen in the future than to oversimplify by modeling only the variables we know.

Neural ODEs can also be used for supervised learning. An example of the method functioning is on the MNIST dataset. To achieve this, the researchers used a residual network with a few downsampling layers, 6 residual blocks, and a final fully connected layer as a baseline. For the Neural ODE model, they use the same basic setup but replace the six residual layers with an
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ODE block, trained using the mathematics described in the above section. They also ran a test with the complexity of the model. However, the ODE-Net, using the adjoint method, does not have this prohibitive memory cost and consumes constant memory. This is amazing because the lower parameter cost and constant memory drastically increase the compute settings in which this method can be trained compared to other ML techniques. For mobile applications, there is potential to create smaller accurate networks using the Neural ODE architecture that can run on a smartphone or other space and compute restricted devices.

Up to now, Neural ODE are increasingly used in various applied tasks [START_REF] Fernandes | Predicting heart rate variations of deepfake videos using neural ode[END_REF][START_REF] Brouwer | Gru-ode-bayes: Continuous modeling of sporadically-observed time series[END_REF][START_REF] Pepe | Neural ordinary differential equations and recurrent neural networks for predicting the state of health of batteries[END_REF] as well as assisting in fundamental research [START_REF] Kidger | Neural controlled differential equations for irregular time series[END_REF].

Spiking Neural Network (SNN)

In this section, we introduce Spiking Neuron Networks (SNNs), which are sometimes referred to as the third generation of neural networks [START_REF] Paugam-Moisy | Computing with spiking neuron networks[END_REF][START_REF] Tavanaei | Deep learning in spiking neural networks[END_REF][START_REF] Dora | Spiking neural networks for computational intelligence: An overview[END_REF].

Highly inspired from natural computing in the brain and recent advances in neuroscience, SNNs derive their strength and interest from an accurate modeling of synaptic interactions between neurons, taking into account the time of spike firing. Based on dynamic event-driven

processing, they open up new horizons for developing models with an exponential capacity of memorizing and an ability to fast adaptation.

In SNNs, the presence and timing of individual spikes is considered as the means of communication and neural computation. This compares with traditional neuron models where analog values are considered, representing the rate at which spikes would be fired.

In SNNs, new input-output notions have to be developed that assign meaning to the presence and timing of spikes. One example of such coding that easily compares to traditional neural coding, is temporal coding. Temporal coding is a straightforward method for translating a vector of real numbers into a spike train, for example for simulating traditional connectionist models by SNNs, as in [START_REF] Maass | Fast sigmoidal networks via spiking neurons[END_REF]. The basic idea is biologically well-founded: the more intensive the input, the earlier the spike transmission (e.g. in visual system). Hence, a network of spiking neurons can be designed with n input neurons N i whose firing times are determined through some external mechanism. The network is fed by successive n-dimensional input analog patterns x = (x 1 , ..., x n ) with all x i inside a bounded interval, e.g. [0, 1] -that are translated into spike trains through successive temporal windows (comparable to successive steps of traditional NNs computation). In each time window, a pattern x is temporally coded relative to a fixed time T i n by one spike emission of neuron N i at time t i = T i nx i , for all i (Fig. Since the basic principle underlying SNNs is so radically different, it is not surprising that much of the work on traditional neural networks, such as learning rules and theoretical results, has to be adapted, or even has to be fundamentally rethought. The first difficult task is to define the model of neuron, as there exist numerous variants already.

SNN neuron models

A spiking neuron model accounts for the impact of impinging action potentials -spikes -on the targeted neuron in terms of the internal state of the neuron, as well as how this state relates to the spikes the neuron fires. There are many models of spiking neurons, and we will introduce the most commonly used model for an SNN neuron, the Leaky Integrate-and-fire (LIF) threshold model. The mathematical model of the LIF spiking neuron is given as the following equation:

τ mem dV d t = -(V -V r est ) + I , (2.19) 
where τ mem is a decay time constant, V denotes the membrane potential, V r est is the resting potential, and I (t ) is the input current. Eq. 2.19 shows that V acts as a leaky integrator of the input current I . Neurons emit spikes to communicate their output to other neurons when their membrane voltage reaches the firing threshold ϑ. After each spike, the membrane voltage V is reset to the resting potential V r est (Fig. 2.6). Eq. 2.19 only describes the subthreshold dynamics of a LIF neuron, i.e. the dynamics in absence of spiking output of the neuron. In SNN, the input current is typically generated by synaptic currents triggered by the arrival of presynaptic spikes and thus it is convenient to denote I as a sum of Dirac delta functions j δ(tt j )w j , which is the sum of the input weighted spikes from presynaptic neurons. 

SNNs Applications

In principle, SNNs can be used for all the applications that an ANN can be used for. However, the binary nature of spikes renders SNNs more energy efficient and potentionally faster with regards to response latency in comparison to ANNs. Furthermore, the temporal nature of spikes renders SNNs more suitable for the processing of spatiotemporal inputs.

With regards to supervised learning, many studies have reported performance on benchmark datasets such as MNIST and CIFAR-10 for classification tasks [START_REF] Haeng | Training deep spiking neural networks using backpropagation[END_REF][START_REF] Sumit | Slayer: Spike layer error reassignment in time[END_REF][START_REF] Lee | Deep spiking convolutional neural network trained with unsupervised spike-timingdependent plasticity[END_REF]. The most significant applications of SNNs involve directly utilizing the sensor data received from dynamic vision sensors. Dynamic vision sensors are more sensitive to visual changes and have very low power requirements [START_REF] Falanga | Dynamic obstacle avoidance for quadrotors with event cameras[END_REF]. This is particularly useful for development of energy-efficient, endto-end processing pipelines with low response latency.

Recently, many of the applications of SNNs have focused on RL, as it is generally easier to frame real-world problems, such as robot control, as an RL task. The SNN can be trained using STDP-modulated according to the reward received by the agent for its actions [START_REF] Bing | End to end learning of spiking neural network based on r-stdp for a lane keeping vehicle[END_REF].

RESERVOIR COMPUTING FRAMEWORK 39 Reservoir computing framework

In this section, we introduce the concept of Reservoir Computing, originally derived from RNN, and is also recognized as a bio-inspired learning method.

Basics of Recurrent Neural Network (RNN)

Conventional feedforward neural network architecture provides a one-directional information processing flow. RNNs, on the other hand, represent a class of neural networks, the connection topology of which allows cycles. A schematic illustration and comparison is given in In RNNs, the middle hidden layer is typically referred to as the recurrent layer. The recurrent layer has internal connections which include recurrent loops. The presence of recurrent loops in RNNs of Fig. 2.7(b) has a distant analogy with the biological brain [START_REF] Rodney | Recurrent neuronal circuits in the neocortex[END_REF]. Mathematically, RNNs can be expressed as:

x(n) = f (W I u(n) + W x(n -1)), n = 1, ..., T, (2.20) 
where matrix W I ∈ R N ×M is the input map, W ∈ R N ×N is the map of the previous state of the recurrent layer, and x(n) is the internal state of a network at discrete time n. The result of computation y(n) is obtained as:

y(n) = W R x(n), ( 2.21) 
where matrix W R ∈ R K ×M is a readout map. As it can be seen from Eq. 2.20, the internal state of the RNN x(n) depends not only on current inputs, but also on the previous inputs. By unfolding the RNN in time, one is able to obtain a FNN representation. To train such unfolded 

Reservoir computing approaches to RNN training

Why "reservoir"?

The term reservoir computing (RC) stems from one of the earliest examples of such devices that was a proof-of-concept reservoir of liquid performing simple arithmetic [START_REF] Adamatzky | Experimental logical gates in a reaction-diffusion medium: The xor gate and beyond[END_REF] and speech recognition [START_REF] Fernando | Pattern recognition in a bucket[END_REF]. The idea was that the external information inputs were perturbing the surface of that liquid, while the nonlinear transient response in the form of ripples was the computation. For the purpose of information processing, we also utilize dynamical systems generating a nonlinear response to the external stimuli before settling back into a steady state. That nonlinear effect is the mean of computation.

The general framework of RC was first developed in early 2000-s independently by several research groups: bearing a name of LSMs (liquid state machines) by the group of Maass [START_REF] Maass | Real-time computing without stable states: A new framework for neural computation based on perturbations[END_REF],

the name of ESNs (echo state networks) by the team of Jaeger [START_REF] Jaeger | The "echo state" approach to analysing and training recurrent neural networks-with an erratum note[END_REF], and of backpropagationdecorrelation (BPDC) by Steil [START_REF] Jochen | Backpropagation-decorrelation: online recurrent learning with o (n) complexity[END_REF]. The name reservoir computing serves as an umbrella term emcompassing those approaches by illustrating the idea where the "reservoir" part of the processing system is preexisting (even randomly generated) and remains unchanged, and only the readout component is trained.

The computational approach of RC stands out as a brain-inspired framework to produce hardware neural networks and perform on-chip computation [START_REF] Jaeger | Adaptive nonlinear system identification with echo state networks[END_REF]. Neural networks used for RC consist of a reservoir of randomly ordered nonlinear neurons, whose connections are not subject to training; this group of disordered, recurrent connected neurons behaves similarly to a cortical column in a biological neural system [START_REF] Natschläger | The" liquid computer": A novel strategy for real-time computing on time series[END_REF]. An analogy is that the brain serves as a general-purpose "device" allowing to quickly adapt to new and unexpected situations. One of the possible explanations how such adaptability is possible could be the brain is a complex network. If it is very complex, some of the solution trajectories must already exist [START_REF] Enel | Reservoir computing properties of neural dynamics in prefrontal cortex[END_REF] in the high-dimensional dynamics of such a system. The remaining learning procedure is rewiring the brain connections so that useful trajectories are amplified and not useful ones are suppressed.

Another notable analogy between RC and the brain is their underlying memory hierarchy.

Unlike conventional computers, the human brain has memory inseparable from computing units (neurons) [START_REF] Indiveri | Memory and information processing in neuromorphic systems[END_REF]. RC tries to alleviate this discrepancy by including memory in the computation procedure.

Architecture

A reservoir computer consists of the three principal functional blocks (Fig. 2.8):

1. The input data masking layer , which randomly maps the inputs to the internal nodes of the reservoir. In general, a linear data masking is performed.

2. The recurrent layer (reservoir), which performs a nonlinear transformation of the masked data.

3. The readout layer, or readout map, which, after training, linearly recombines the internal states of the reservoir.

The first two blocks (the masking block and the reservoir) comprise the preexisting part. They are typically generated with the use of coefficients drawn from a random distribution with zero mean. The preexisting part of reservoir can be described as a discrete evolution equation:

x(n) = f (W I u(n) + W x(n -1)), n = 1, ..., T. (2.22)
Here W I matrix is the input mask and vector u(n) is the input data vector. Vector x(n) is a network of "neurons". The network's recurrent connections are determined by the matrix W .

Coefficients in W I and W are generated randomly. Finally, f is a nonlinear transformation, e.g. 

Learning procedure

RC is a supervised learning approach. The learning procedure we perform in this work is so-called offline learning where all the training data are available ahead.

To train the readout layer, the internal states of the reservoir x(n) have to be recorded. A two-dimensional matrix M x consists of vectors x(n) corresponding to reservoir's response to each of inputs u(n). The goal of learning procedure is to obtain a matrix W R , such that W R = argmin ∥ W R A -B ∥ where A is the reservoir's response and B is the teaching matrix containing the desired outputs. That can be achieved by linear regression. Often, a less computationally expensive method called a ridge regression is employed:

W R = (A A T + µI ) -1 (AB T ), (2.24) 
where µ = 10 -4 is a regularization parameter. Matrix A is the reservoir's nonlinear response constructed from the internal x(n), B is a desired outcome, or teaching matrix.

After the readout matrix W R is obtained, an RC system can be actually exploited. First, a new, unseen input has to be masked and processed by a reservoir, resulting in a reservoir's response matrix M x . The result of computation M y is given by a linear weighting of M x :

M y = W R M x , (2.25) 
Here, M y may or may not be post-processed depending on the task.

Reservoir computing implemented by dynamical systems

The RC network defined by Eq. 2.22 is a recurrent neural network (RNN). However, the RC approach can be generalized to any complex dynamical system if the following requirements can be satisfied. First, high dimensionality ensures the mapping from inputs signal into a high-dimensional space through a nonlinear transformation, so that the originally inseparable inputs can be separated in classification tasks, and the spatiotemporal dependencies of inputs can be extracted in prediction tasks. Second, the fading memory (or short-term memory)

property is necessary so that the reservoir state is dependent on the current inputs and recent
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past inputs. Such a property is particularly important for processing temporal sequential data in which the history of the states is essential.

Any nonlinear system that obeys the mentioned axioms can be considered a reservoir. Generalization to the dynamical systems satisfying the above properties allows to exploit physically existent dynamical systems. Physical realizations of RC models have attracted considerable attention. A straightforward method is to implement RNNs using neural network hardware or neuromorphic computing techniques. Another method is to employ other dynamical systems instead of RNNs. Any dynamical system has the potential to serve as a reservoir if it can exhibit dynamical responses to inputs. The number of studies on physical RC has been rapidly increasing. Various physical reservoirs have been proposed using different types of physical systems, substrates, and devices, such as analog circuits [START_REF] Appeltant | Information processing using a single dynamical node as complex system[END_REF][START_REF] Miguel | Delay-based reservoir computing: noise effects in a combined analog and digital implementation[END_REF][START_REF] Li | A deep learning based approach for analog hardware implementation of delayed feedback reservoir computing system[END_REF], FPGAs [START_REF] Antonik | Application of FPGA to Real-Time Machine Learning: Hardware Reservoir Computers and Software Image Processing[END_REF] and memristors [START_REF] Manjari | Memristor-based reservoir computing[END_REF] in electronic, optical node arrays [START_REF] Vandoorne | Experimental demonstration of reservoir computing on a silicon photonics chip[END_REF] and optical feedback delay system [START_REF] Larger | Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing[END_REF] in photonics, and spin-torque-nano-oscillators [START_REF] Torrejon | Neuromorphic computing with nanoscale spintronic oscillators[END_REF] in spintronics.

Current neuromorphic hardware

We have introduced some neuromrophic computing algorithms. In this section, we review the existing architectures for neuromorphic hardware using emerging technologies. Based on the algorithm implementations, there are two main streams to implement neuromorphic hardware. One is to map the conventional deep learning algorithms to dedicated physical system by building hardware that can transform the neural output information from the previous layer into the synaptic input of the next layer in a neural network. Another approach is to reach beyond such algorithms and take inspiration from computational neuroscience for more efficient computations. This type of method aims at mimicking real neurons and synapses to study the similarity with the brain, such as emulating the spiking based networks [START_REF] Marković | Physics for neuromorphic computing[END_REF].

Practical AI algorithms based neuromorphic hardware

AI algorithms are the algorithms that rely on ANNs, such as feed-forward neural networks, recurrent neural networks and other deep networks [START_REF] Lecun | Deep learning[END_REF]. The development of these algorithms has made tremendous progress since 2012. Current AI can now beat humans in cognitive tasks and complicated games such as Poker or Go [START_REF] Silver | Mastering the game of go without human knowledge[END_REF]. However, the current way of running deep neural networks relies on the use of GPU or tensor processing units (TPU). Their development outside large and energy-intensive data centres are limited. Therefore, more advanced designs and hardware are needed.

To build AI-algorithms based neuromorphic chips, it is essential to build the hierarchical layered structure of neural networks. The main challenge is to implement the functionality of transforming the neuron output of previous layer into the synaptic input of the next layer.

Emerging technologies for neuromorphic computing mainly include memristive systems and photonic systems. Memristor is a short name for 'memory-resistor', and is also known as a resistive-switching device. These devices are non-volatile, programmable and can be tightly integrated into the CMOS process. The analogue conductance states are usually tunable by an applied voltage. The dimensions of a memristor can be reduced to the nanometer scale.

Memristive features can be obtained through different physical effects within a wide range of materials. Main types of memristors are depicted in Fig. 2.9(b) with the top row showing the states of low resistance and the bottom row showing the states of high resistance. The resistive random access memory (RRAM) in Fig. 2.9(b) relies on the electric-field induced creation and control of conductive filaments between two metallic electrodes separated by an insulating oxide such as hafnium or tantalum oxide [START_REF] Ielmini | Resistive switching: from fundamentals of nanoionic redox processes to memristive device applications[END_REF]. In a ferroelectric tunnel junction (FTJ), the resistance is changed through voltage-induced control of the ferroelectric configuration in the insulating barrier. In a magnetic tunnel junction (MTJ), the relative orientation of the magnetic layers determines the resistance.

When these memristors are arranged in a crossbar array configuration, they can be used to fully connect a layer of neurons to the next one (Fig. 2.9(a)). The current going out of each of the electrodes at the bottom of the array is the sum of the input voltages (applied at each row of the array), each weighted by the conductance of the memristor in the column. Therefore, memristors directly implement the multiply-and-accumulate operation through Kirchhoff 's and Ohm's laws. This is appealing because the data corresponding to the parameters, which are encoded as the conductances of the memristors, do not need to be moved from a cache memory to a computing unit, thereby saving energy. This principle has been demonstrated in 2015 [START_REF] Prezioso | Training and operation of an integrated neuromorphic network based on metal-oxide memristors[END_REF] for the classification of 3 × 3 black-and-white pixel images. Bayat et al. demonstrated a multi-layer perceptron with one hidden layer on a simple task by using one crossbar array for each layer [START_REF] Merrikh Bayat | Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits[END_REF]. Ambrogio et al. demonstrated a crossbar architecture capable of equivalent accuracy with software implementation on MNIST and features extracted from CIFAR-10 and CIFAR-100 [START_REF] Krizhevsky | Forecasting the outcome of spintronic experiments with neural ordinary differential equations[END_REF] by a pre-trained ResNet [START_REF] Ambrogio | Equivalent-accuracy accelerated neural-network training using analogue memory[END_REF]. They report a power consumption of 50 mW, which is a 100 fold power reduction with respect to GPUs.

There remains challenges to expand the current resistive arrays into large scales. One challenge is the non-linear current-voltage characteristic of memristors, which prevent weight updates from being accurately applied. Ref [START_REF] Ambrogio | Equivalent-accuracy accelerated neural-network training using analogue memory[END_REF] addressed this issue by applying weight updates computed in software to capacitors with linear but volatile behaviors before encoding the weights to the crossbar arrays. Another challenge is the need for a selection device together with the memristor to prevent the current from leaking in other branches of the crossbar. Finally, memristors operating in the analog domain are subject to device imprecision and variability. Binarized neural networks, a low precision counterpart of regular deep neural network [START_REF] Courbariaux | Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1[END_REF] are outstanding candidates for crossbar implementation because the parameters assume binarized value. The memristors can thus be programmed to encode binarized weights, thereby reducing the device variability issue [START_REF] Hirtzlin | Digital biologically plausible implementation of binarized neural networks with differential hafnium oxide resistive memory arrays[END_REF][START_REF] Hirtzlin | Outstanding bit error tolerance of resistive ram-based binarized neural networks[END_REF].

Another neuromorphic computing approach that is scalable to deep networks is based on photonic neural networks. These networks can be made with solely optical components or mix optics with electronics using optoelectronic devices. The nonlinearity needed for implementing neurons can be provided by the Kerr effect or by carrier heating in semiconducting lasers.

The synaptic multiply-and-accumulate function can be implemented by combining multiple interferometers or by modifying the transmission of optical waveguides with optically active phase-change materials deposited on top. Simple tasks have been demonstrated with these systems, such as vowel recognition [START_REF] Shen | Deep learning with coherent nanophotonic circuits[END_REF]. The advantages of using optics for computing are the possibilities of conveying large amounts of information in parallel within a single fibre [START_REF] Larger | Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing[END_REF] or waveguide through massive wavelength multiplexing. It is also possible to build purely passive neural networks with an extremely low energy consumption. We refer the readers to Ref. [START_REF] Marković | Physics for neuromorphic computing[END_REF] for more details. In RRAM, the size of the filament between the top and bottom electrodes determines the resistance. In a ferroelectric tunnel junction (FTJ), the resistance is given by the fraction of ferroelectric domains pointing downwards. In a magnetic tunnel junction (MTJ), the relative orientation of the magnetic layers determines the resistance.

Neuroscience-inspired neuromorphic hardware

As has been introduced in the previous sections, the brain is far more complex than presentday AI algorithms. Biological neurons cannot be simply reduced to a nonlinear function be-tween their input and output. Instead, they rely on spikes to transmit information. Spiking neurons are thought to provide the brain with energy efficiency and increased functionality, as information can be encoded both in their rate and in the timing between them. Important neuromorphic hardware research is, therefore, focusing on implementing neural networks that spike. However, biological neurons have many other characteristics besides spikes. They exhibit memory function, they behave as leaky integrators, they also show inherently stochastic behavior. They are spatially scalable, with different functional areas integrating signals from different regions. Groups of neurons with feedback connections between the neurons can exhibit oscillatory activity and result in the synchronization of their firing patterns.

As far as synapses are concerned, biological synapses are also more than analogue weights.

They are leaky memories, and they have different timescales and different state parameters ruling their modifications, which is also known as 'synaptic plasticity'. When synaptic plasticity is implemented, it often takes the form of short term plasticity or long term plasticity rules such as spike-timing dependent plasticity [START_REF] Bi | Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type[END_REF] or spike-driven synaptic plasticity [START_REF] Joseph M Brader | Learning real-world stimuli in a neural network with spike-driven synaptic dynamics[END_REF], which are inspired by experimental observation of specific types of synaptic plasticity in the brain. These ideas are especially promising if they can be implemented at low energy through the intrinsic properties of materials and related physical effects. Initial research of this field mainly focused on exploiting the fact that the leakage current of a transistor has exponential dependence on voltage [START_REF] Vittoz | Analog vlsi implementation of neural networks[END_REF][START_REF] John | Silicon-neuron design: A dynamical systems approach[END_REF]. Since the late 2000s, a wide range of physical phenomena have been used to mimic interesting properties of synapses and neurons.

For instance, oxide electronics can imitate the multifunctionality of synapses and neurons.

Conductive bridge devices, like RRAM, not only act as analogue weights, as discussed above, but also can emulate this dual long-and short-term memory nature of synapses [START_REF] Ohno | Short-term plasticity and long-term potentiation mimicked in single inorganic synapses[END_REF][START_REF] La | Filamentary switching: synaptic plasticity through device volatility[END_REF].

Low-amplitude voltage pulses applied to the device trigger metallic filament growth between the electrodes. If the pulses are infrequent, the filament shrinks back, giving rise to short-term, leaky memory. However, if the pulses are frequently repeated, the filament does not have time to relax and grows until it strongly bridges the two electrodes, giving rise to long-term memory.

Phase change memories (PCM) are another important lead for providing devices for neuromorphic computing, and stand out with regards to memristive oxides due to their technological maturity [START_REF] Arnaud | Truly innovative 28nm fdsoi technology for automotive micro-controller applications embedding 16mb phase change memory[END_REF]. Besides, Spintronic devices, organic materials, 2D materials, and optical devices can all provide building blocks for neuromorphic computing.

Spintronics for neuromorphic computing

Spintronic devices can also emulate the functions of neurons and synapses. MTJ can be used to store the synaptic weights of neural networks, as introduced in the previous section.

They can also be explored to implement the learning rule of a spiking neural network by harnessing the stochastic switching of binary MTJ, which are based on the natural encoding of binary information in magnetic material through the direction of their magnetization (pointing up or down) [START_REF] Vincent | Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems[END_REF]. Spintronics devices that allow the implementation of nonlinear magne-tization dynamics and stochastic processes can also provide new opportunities. Single spintorque nano-oscillator [START_REF] Torrejon | Neuromorphic computing with nanoscale spintronic oscillators[END_REF], emulating a full neural network of 400 neurons using time multiplexing could recognize spoken digits with a precision up to 99.6%. Magnetic solitons such as domain walls and skyrmions can be manipulated and moved through electric current and voltage. Chanthbouala et al. [START_REF] Chanthbouala | Vertical-current-induced domain-wall motion in mgo-based magnetic tunnel junctions with low current densities[END_REF] and Lequeux et al. [START_REF] Lequeux | A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy[END_REF] experimentally demonstrated this memristive functionality through domain wall motion in magnetic tunnel junctions. Huang et al. [START_REF] Huang | Magnetic skyrmion-based synaptic devices[END_REF] simulated the spintronic synapse based on representing analogue information in the number of magnetic skyrmions.

Extending beyond single devices, they can also be assembled in systems to perform more complex tasks. Romera et al. [START_REF] Romera | Vowel recognition with four coupled spin-torque nano-oscillators[END_REF] demonstrate the training of a neural network with four coupled spin-torque nano-oscillators to classify seven American vowels. Mizrahi et al. [START_REF] Mizrahi | Neural-like computing with populations of superparamagnetic basis functions[END_REF] showed that assemblies of superparamagnetic tunnel junctions can implement neural population coding and perform complex cascaded nonlinear operations on their inputs -the basic principles of deep learning. More recently, Song et al. [START_REF] Song | Skyrmion-based artificial synapses for neuromorphic computing[END_REF] demonstrate experimentally artificial synapses that based on accumulation and dissipation of magnetic skyrmions in ferrimagnetic multilayers could be used for neuromorphic computing tasks such as pattern recognition.

Conclusion

In conclusion, we have shown different types of neural networks and how some of them are related to or inspired from the brain. We have also reviewed the current development of neuromorphic hardware and spintronics for neuromorphic computing. The work presented in this thesis is a step forward exploring the emerging physical effects based on magnetic skyrmions, which is regarded as one of the most promising information carriers in low-power spintronic devices, for neuromphic computing. We will show in the Chapter 3 how the magnetic skyrmion motion dynamics in a nanotrack can be analogized to the behavior of a spiking neuron, how the continuous thermal Brownian motion of a skyrmion in a confined structure can function as a true random number generator, which is an essential component for stochastic neuromphic applications, and how the breathing skyrmion dynamical system can be explored for a reservoir computer. We will also show in Chapter 4 how the power of AI learning can assist in the scientific computing during the implementation of the spintronic neuromorphic system.

Chapter 3

Skyrmion dynamics and its

Neuromorphic applications

Our intelligence is what makes us human, and AI is an extension of that quality.

Yann LeCun, Professor at New York University " T HE SKYRMIONS can be extremely small with diameters in the nanometer range and, importantly, they behave as particles that can be moved, created or annihilated, making them suitable for abacus-type applications in information storage, logic or neuro-inspired technologies.

-Albert Fert "

T HIS CHAPTER presents a theoretical and numerical study on the physical properties of magnetic skyrmions. Furthermore, demonstrations of skyrmion based neuromorphic devices by exploiting these intriguing features are presented and evaluated.

Topology of a Skyrmion

The skyrmion is a topological soliton or a topological defect in condensed-matter systems [START_REF] Casola | Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond[END_REF][START_REF] Fert | Magnetic skyrmions: advances in physics and potential applications[END_REF][START_REF] Wiesendanger | Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics[END_REF][START_REF] Dupé | Tailoring magnetic skyrmions in ultra-thin transition metal films[END_REF][START_REF] Romming | Writing and deleting single magnetic skyrmions[END_REF][START_REF] Nagaosa | Topological properties and dynamics of magnetic skyrmions[END_REF][START_REF] Mühlbauer | Skyrmion lattice in a chiral magnet[END_REF][START_REF] Ulrich K Roessler | Spontaneous skyrmion ground states in magnetic metals[END_REF][START_REF] Bogdanov | Chiral symmetry breaking in magnetic thin films and multilayers[END_REF]. Originally, it was proposed by British nuclear physicist Tony Skyrme in the 1960's as a quasi-particle-like topological excitation in certain field theories for the description of the interactions of pions [START_REF] Hilton | A non-linear field theory[END_REF]. Later in the 1990's, Bogdanov et al. for the first time theoretically suggested that the topologically protected skyrmion can exisit as a stable or metastable state in magnetic materials with Dzyaloshinskii-Moriya interactions (DMIs) [START_REF] Bogdanov | Thermodynamically stable magnetic vortex states in magnetic crystals[END_REF]. In 2001, Bogdanov and Rößler theoretically predicted and described the skyrmion in magnetic thin films [START_REF] Bogdanov | Chiral symmetry breaking in magnetic thin films and multilayers[END_REF].

Then, in 2009, Mühlbauer et al. first experimentally observed the magnetic skyrmion lattice in B20-type bulk chiral magnet MnSi with broken inversion symmetry [START_REF] Mühlbauer | Skyrmion lattice in a chiral magnet[END_REF]. Subsequently, skyrmions have been experimentally observed, created, and manipulated in a number of material systems, including magnetic materials [START_REF] Heinze | Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions[END_REF][START_REF] Romming | Field-dependent size and shape of single magnetic skyrmions[END_REF][START_REF] Yu | Real-space observation of a two-dimensional skyrmion crystal[END_REF], and multiferroic materials [START_REF] Seki | Observation of skyrmions in a multiferroic material[END_REF].

Due to the properties of the topologically protected stability as well as their efficient mobility when driven by external forces, magnetic skyrmions are anticipated to be predominantly employed as information carriers in future data storage and information processing devices [START_REF] Fert | Skyrmions on the track[END_REF][START_REF] Romming | Writing and deleting single magnetic skyrmions[END_REF][START_REF] Nagaosa | Topological properties and dynamics of magnetic skyrmions[END_REF], logic computing devices [START_REF] Zhang | Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions[END_REF], microwave devices [START_REF] Wang | Driving magnetic skyrmions with microwave fields[END_REF], and transistor-like functional devices [START_REF] Zhang | Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack[END_REF]. For most common cases, the magnetic skyrmion is referred to the twodimensional spin texture with a nanometer-scale size (i.e., typically between 1 and 1000 nm), as shown in Fig. 3.1.

Figure 3.1: Illustration of a 2D magnetic skyrmion. The arrows denote the spin direction and the out-of-plane spin component is represented by the color: red is out of the plane, white is in-plane, and blue is into the plane.
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The full structure and topological information of a magnetic skyrmion in the planar space can be characterized by three quantum numbers, i.e., the skyrmion number Q s , the vorticity number Q v , and the helicity number Q h . In the following, we discuss these three quantum numbers in details. The spin configuration of a magnetic skyrmion is swirling in the planar space and would wrap a unit 3D spherical surface with spins n(r ) pointing in all directions in the compactification of the planar space [START_REF] Nagaosa | Topological properties and dynamics of magnetic skyrmions[END_REF]. The number of times n(r ) winds around the sphere can be calculated by integrating over the solid angle:

Q s = 1 4π d 2 r • n(r ) • (∂ x n(r ) × ∂ y n(r )), (3.1) 
which is also usually referred to as the skyrmion number. By considering its circular symmetry, the local magnetization n(r ) of a skyrmion can be mapped with polar coordinates, r = (r cosψ, r si nψ)

n(r ) =     si nΘ(r )cosΦ(ψ) si nΘ(r )si nΦ(ψ) cosΦ(ψ)     (3.2)
By substituting Eq. 3.2 into Eq. 3.1, we obtain

Q s = 1 4π cosΘ(r ) r =∞ r =0 Φ(ψ) ψ=0 ψ=2π , (3.3) 
Here, the topological number is determined by both the out-of-plane Θ and in-plane ψ magnetisation. Considering that far from the skyrmion, r → ∞, the magnetisation points up, while at the centre of the skyrmion, at r = 0, it points down, then [cosΘ(r )] r =∞ r =0 = 2. Evaluating Φ(ψ) requires the introduction of two important integers: the vorticity Q v and helicity Q h of the skyrmion. The vorticity concerns the in-plane magnetisation component, and is defined by the winding number of the in-plane spin texture:

Q v = 1 2π [Φ(ψ)] ψ=0 ψ=2π .
The helicity Q h is the phase difference which appears in the expression for Φ(ψ), and essentially models the chirality of the skyrmion spin texture:

Φ(ψ) = Q v ψ +Q h . (3.4)
Chirality of skyrmions can be detected experimentally [START_REF] Chauleau | Chirality in magnetic multilayers probed by the symmetry and the amplitude of dichroism in x-ray resonant magnetic scattering[END_REF]. Utilising these topological quantities, Eq. 3.2 can be rewritten in terms of

Q v and Q h n(r ) =     si nΘ(r )cos(Q v ψ +Q h ) si nΘ(r )si n(Q v ψ +Q h ) cosΦ(ψ)     (3.5)
Clearly, it can be seen that the skyrmion number Q s is a function of the vorticity number Q v .

Specifically, for the system of the magnetic film with spin-up ↑ background, we have 

Q s = -Q v and Q s = Q v for

Skyrmion dynamics in a width-varying nanotrack

A comprehensive study of the skyrmion dynamics in terms of size, velocity, energy, and stability in wedge-shaped nanotracks is reported by micromagnetic simulations. We find that the diameter of a skyrmion reduces with the decrease of the nanotrack width under the spin Hall effect (SHE)-induced skyrmion motion process. Accordingly, the skyrmion energy increases giving rise to the growing instability of the skyrmion. It is also numerically demonstrated that the velocity of the skyrmion varies in the motion process, since the repulsive force of the nanotrack edges acting on the skyrimion as well as the driving force from the SHE current associated with the size of the skyrmion have a joint impact on the skyrmion motion dynamics along the wedge-shaped nanotracks. In addition, one interesting finding reveals that skyrmions with small sizes, that may be inaccessible to typical approaches by means of directly injecting a spin-polarized current, could be obtained by utilizing this structure. This finding offers the potential for generating nanoscale skyrmions in ultra-dense applications. Finally, inspired by the skyrmion dynamics in the wedge-shaped nanotracks, a general summary on the tradeoff between the nanotrack width (storage density) and the skyrmion motion velocity (data access speed) is given by further analyzing the skyrmion dynamics in parallel nanotracks with different widths, which may provide guidelines in designing skyrmion racetrack memory and other skyrmionic neuromorphic applications. The results of this section are adapted from Ref. [START_REF] Chen | Skyrmion dynamics in width-varying nanotracks and implications for skyrmionic applications[END_REF].

Introduction

Magnetic skyrmions have been regarded as promising information carriers candidate in information storage and logic technologies for their topological stability, nanoscale size, and ultralow threshold current density for motion. Recent experiments have confirmed the existence, stability, as well as current-induced motion of skyrmions at room temperature [START_REF] Yu | Room-temperature skyrmion shift device for memory application[END_REF][START_REF] Jiang | Blowing magnetic skyrmion bubbles[END_REF][START_REF] Moreau-Luchaire | Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature[END_REF][START_REF] Soumyanarayanan | Tunable room-temperature magnetic skyrmions in ir/fe/co/pt multilayers[END_REF][START_REF] Legrand | Room-temperature current-induced generation and motion of sub-100 nm skyrmions[END_REF][START_REF] Woo | Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets[END_REF], which is a major milestone for realizing skyrmion-based spintronic devices. One of the most promising applications of skyrmions is to design racetrack memory (RM), which was first demonstrated by Parkin et al., in 2008 [159]. Skyrmion-based RM (Sk-RM) [START_REF] Fert | Skyrmions on the track[END_REF][START_REF] Sampaio | Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures[END_REF][START_REF] Tomasello | A strategy for the design of skyrmion racetrack memories[END_REF], with principle being similar to that of the domain wall-based RM (DW-RM) [START_REF] Stuart Sp Parkin | Magnetic domain-wall racetrack memory[END_REF][START_REF] Parkin | Memory on the racetrack[END_REF] however, outperforms DW-RM in terms of superior stability against defects, higher density and lower depinning current density. Some strategies have been proposed to create and manipulate skyrmions in nanotracks [START_REF] Zhang | Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions[END_REF][START_REF] Yu | Room-temperature skyrmion shift device for memory application[END_REF][START_REF] Tomasello | A strategy for the design of skyrmion racetrack memories[END_REF][START_REF] Kang | Complementary skyrmion racetrack memory with voltage manipulation[END_REF][START_REF] Shi-Zeng Lin | Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep[END_REF], and it has been found that the Neel skyrmion driven by the SHE is a promising strategy for technological implementation of Sk-RM (with zero magnetic field, high thermal stability, and high density etc.). Although many numerical studies and experiments have been performed to control the morphology and formation of highly geometrical magnetic skyrmions in constricted geometry [START_REF] Jin | Control of morphology and formation of highly geometrically confined magnetic skyrmions[END_REF][START_REF] Iwasaki | Current-induced skyrmion dynamics in constricted geometries[END_REF][START_REF] Du | Edge-mediated skyrmion chain and its collective dynamics in a confined geometry[END_REF] the motion of very small skyrmions in narrow nanotracks has not been thoroughly investigated yet, which is still a pending question for skyrmionic applications.

In this work, we consider a width-varying nanotrack and study the skyrmion dynamics in terms of size, velocity, energy, and stability in this width-varying nanotrack. Both theoretical analyses and numerical simulations are performed. Our results may provide useful design implications for skyrmionic applications.

Methods

Our work was performed by micromagnetic simulations using the Object-Oriented Micro-Magnetic Framework (OOMMF) software [START_REF] Michael | OOMMF user's guide, version 1.0[END_REF] that contains the code for the interfacial DMI [START_REF] Rohart | Skyrmion confinement in ultrathin film nanostructures in the presence of dzyaloshinskii-moriya interaction[END_REF][START_REF] Sampaio | Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures[END_REF] Our research into the skyrmion dynamics in the width-varying nanotrack is based on an antiferromagnetically exchange-coupled bilayer system [START_REF] Zhang | Magnetic bilayer-skyrmions without skyrmion hall effect[END_REF], where the top ferromagnetic (FM) layer and the bottom FM layer are antiferromagnetically coupled with each other via a spacer, as illustrated in Fig. 3.3, which is superior to the typical FM systems in overcoming the skyrmion Hall effect [START_REF] Jiang | Blowing magnetic skyrmion bubbles[END_REF][START_REF] Sampaio | Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures[END_REF][START_REF] Zhang | Magnetic bilayer-skyrmions without skyrmion hall effect[END_REF][START_REF] Jiang | Direct observation of the skyrmion hall effect[END_REF]. We include the exchange energy, the DMI energy, the uniaxial magnetocrystalline anisotropy energy, the demagnetization energy, and the Skyrmions can move along the nanotrack under a driving current ( j s ) flowing through the heavy metal (omitted in the graph for simplification) under the nanotrack via the spin Hall effect (SHE). Note here that some shunted currents may flow through the ferromagnetic layers when the driving current flows through the heavy metal. However, as the thickness of the ferromagnetic layer (1 nm) is far less than that of the heavy metal (>10 nm), the amount of electrons flowing through the ferromagnetic layers is far less than that flowing through the heavy metal. In addition, the physical theory has shown that the spin torque efficiency of the current perpendicular-to-plane (CPP) case is several times higher than that of the current-in-plane (CIP) case [START_REF] Sampaio | Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures[END_REF][START_REF] Tomasello | A strategy for the design of skyrmion racetrack memories[END_REF]. Thereby, the spin torque contribution of the CIP case is reasonably neglected in our simulations. The main part of the structure is the tapering part connected by two segments of parallel track on each end (100 nm wide, 50 nm long on the left side and 30 nm wide, 50 nm long on the right side, respectively). A discretization size of 2 nm× 2 nm×1 nm was used in our simulations. A skyrmion is initially nucleated at the left side of the track (at x = 30 nm) and is driven to the right end and a uniform current is applied to drive the skyrmion motion along the width-varying nanotrack. More importantly, we have also studied the skyrmion dynamics in different slopes of the tapering part by varying the nanotrack length.

Results

First, we measured the diameter dynamics of skyrmions during the motion process along the width-varying nanotrack. It reveals that skyrmions can be compressed in a track to be well adapted to the variation of the track width, w, leading to reduction of their radius, R, which is defined as the radius of the skyrmion circle with zero out-of-plane magnetization [START_REF] Fert | Magnetic skyrmions: advances in physics and potential applications[END_REF], as demonstrated in Fig. 3.4(a). The reduction rate of the skyrmion size during the motion process increases slightly as the slope of track, k, increases, indicating that the diameter of a skyrmion in this structure depends mainly on the width of the track rather than the slope. Note that by utilizing the tapering structure, a skyrmion can be pushed into the right side of the narrow parallel track with width w equaling 30 nm, in which the skyrmion diameter is measured to be about 10 nm. Such a small skyrmion diameter in such nanotrack dimensions may be inaccessible to typical approaches by means of directly injecting a spin-polarized current. This finding is rather potential for generating nanoscale skyrmions in ultra-dense applications. Accordingly, changes of the energy profile of a skyrmion along the width-varying nanotrack, which is calculated as the integration of the energy density inside the circle of skyrmion's radius, are presented in Fig. 3.4(b), as an evaluation of its stability. In combination with Fig. 3.4(a), it can be clearly seen that the energy of the skyrmion increases as its size reduces, thus contributing to its instability. 
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Then, we studied the SHE-driven skyrmion motion dynamics along the width-varying nanotrack. As can be seen from Fig. 3.5(a), the velocity of the skyrmion driven by a uniform current decreases obviously along the width-varying nanotrack. The total force acting on the skyrmion (F t ot al ) includes the joint repulsive force from the two nanotrack edges and the driving force of the SHE current (F SH E ), expressed as

F t ot al = F SH E + F r e . ( 3.7) 
On the other hand, the current-induced skyrmion motion in a bilayer system can be analytically described via the Thiele equation as [START_REF] Tomasello | A strategy for the design of skyrmion racetrack memories[END_REF]:

G × v -αD • v + F t ot al = 0, (3.8) 
where v denotes the velocity of skyrmion, α is the damping constant, D is the dissipative force tensor, where the elements D i j are D xx = D y y = D:

D = M s γ 0 ( ∂m ∂x ) 2 dV = πM s t γ 0 [( d θ d r ) 2 + ( si nθ r ) 2 ]r d r, ( 3.9) 
Otherwise, all elements are zero and therefore D can be treated as a scalar. M s is the saturation magnetization, t is the thickness of the ferromagnetic layer, γ 0 is the gyromagnetic ratio, θ is the angle between the direction (z direction) perpendicular to the ferromagnetic plane and the direction of the magnetization. G is the gyromagnetic coupling vector which can be expressed as

G = G t op +G bot t om , (3.10) 
where G t op = (0, 0, 4πQ st ) and G bot t om = (0, 0, 4πQ sb ) with Q st = 1 and Q sb = -1, resulting in G = 0. Since the velocity of the skyrmion is along the x axis, we can obtain

|F t ot al | = |v | • αD = v x • αD, ( 3.11) 
To precisely evaluate the force, we use the following expression describing a standard 360 • domain wall profile to fit cos(θ) [START_REF] Romming | Field-dependent size and shape of single magnetic skyrmions[END_REF][START_REF] Kubetzka | Spin-polarized scanning tunneling microscopy study of 360 walls in an external magnetic field[END_REF], which stands for the normalized magnetization in the

z direction m z = cos(θ) = -cos( +,- arcsin(tanh r ± P ∆ )), (3.12) 
where P and ∆ denote the position and the half width of two overlapping 180 • domain walls, respectively.

Meanwhile, the driving force from the SHE current can be written as [START_REF] Sampaio | Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures[END_REF][START_REF] Hrabec | Current-induced skyrmion generation and dynamics in symmetric bilayers[END_REF]]

F SH E = ħ 2e π j s θ SH bz × m p (3.13)
in which ħ is the reduced Planck Constant, e is the absolute value of an electron charge, j s is the driving current density, and θ SH is the Hall angle. The SHE-induced spin accumulation is along the vector m p = n× j s , with n being the direction normal to the SHE layer at the interface, and its sign is provided by the SHE angle θ SH (positive for Pt). Here, b denotes the skyrmion characteristic length (half of its perimeter when the skyrmion radius R is much larger than the DW width) and is derived as follows:

b = (sinθcosθ + r d θ d r )d r (3.14)
Therefore, by extracting the distribution of the magnetization and measuring the velocity, the F t ot al and F SH E can be calculated, thus obtaining the F r e . Figure 3.5(b) shows the calculation result, and it can be seen that the repulsive force gradually goes up as the skyrmion size becomes smaller giving rise to the decrease in the velocity. On the other hand, the sharper the curve goes down, the larger the F r e becomes gradually.
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Afterwards, inspired by the skyrmion dynamics in the width-varying nanotracks, we also investigated the skyrmion motion dynamics in parallel nanotracks with different widths. In a parallel nanotrack, there is no net repulsive force imposed on the direction of skyrmion motion, as the repulsive forces from the two nanotrack edges are symmetric and canceled out. From Eq. 3.11, the velocity of a skyrmion along the parallel nanotrack can be expressed as

|v | = v x = |F t ot al | αD , (3.15) 
where F t ot al = F SH E without net repulsive force from the nanotrack edges. As mentioned above, the specific expression of the angle θ could be written by fitting the formula of Eq. 3.12, and then, F SH E and D can be computed to get the velocity. When the radius of the skyrmion is larger than the DW width ∆, the velocity could be simplified as

v x ≈ ħθ SH j s 4παmM s t ∆ 1 + ∆ 2 /R 2 , ( 3.16) 
where m is the electron mass. As demonstrated in Fig. 3.6, the theoretically calculated skyrmion motion velocity in the parallel nanotrack (red curves) is highly consistent with the numerically simulated results (black curves).

Finally, a general tradeoff between the nanotrack width (storage density) and the skyrmion motion velocity (data access speed) was summarized based on the above results, as illustrated in Fig. 3.7(a). Here, we use the reciprocal of the nanotrack width to denote the storage density and the skyrmion motion velocity to stand for the data access speed. Furthermore, regarding the nanoscale skyrmion generation with this width-varying nanotrack as discussed in Fig. 3.4(a), we further studied the thermal stability of the skyrmion at different temperatures by measuring its lifetime, as shown in Fig. 3.4(b). Here, the lifetime is calculated as the duration until the skyrmion is destroyed [START_REF] Pavel F Bessarab | Lifetime of racetrack skyrmions[END_REF]. We can observe that skyrmions can exist stably when w is greater than 50 nm at 200 K and 300 K, however, be destroyed at the nanotrack edge when w is less than 40 nm, and may be facilitated by the boundary, which is a pending problem remaining to be solved for practical applications. 

Conclusion

In summary, the skyrmion dynamics in width-varying nanotracks have been investigated via micromagnetic simulations. Our results show that a skyrmion can be compressed in a nanotrack owing to the repulsive forces of the edges as well as its topological protection. However, the increase in the skyrmion energy with the decrease in the size indicates its growing instability. By employing this kind of structure, skyrmions with small sizes could be obtained, which may be potential for applications to enhance storage density. Meanwhile, the skyrmion motion velocity decreases owing to the reduction in the size of the skyrmion and the increase in the repulsive force of the nanotrack edges. Finally, we have also investigated the skyrmion dynam-ics in parallel nanotracks and obtained a design tradeoff between the storage density and the data access speed. Theoretical calculations have also been performed to elaborate these findings, which are highly consistent with our numerical results. This work may provide guidelines in designing skyrmion racetrack memory and other related skyrmionic applications. Beyond that, such a wedge-shaped nanostructure can also be explored as a neuromorphic computing element in spiking neural network, details are shown in sec. 3.4.

Skyrmion breathing dynamics under voltage excitations

In this work, we systematically study the dynamics of an isolated skyrmion under voltage excitation through the voltage-controlled magnetic anisotropy effect in a circular thin film. A theoretical model considering the demagnetization energy, which has often been neglected or treated superficially in previous skyrmion research but is demonstrated to have importance in determining the skyrmion dynamic state, is developed. With our model, the periodic oscillation of the skyrmion radius can be solved numerically with similar precision compared to micromgnetic simulations, and the characteristic frequency of the skyrmion breathing can be determined analytically with greater precision than previous studies. Furthermore, we find that the breathing skyrmion can be seen as a modulator, and function as a reservoir computer. Our findings can provide useful guidance for both theoretical and experimental skyrmions research as well as the development of skyrmion-based magnonic devices with significant potential applicability in future communication and neuromorphic system.

Introduction

Detailed fundamental research is necessary for the development of devices that can exploit all these beneficial properties of skyrmions. An important component is the understanding of their dynamical excitations to utilize their characteristic properties and to manipulate them more efficiently [START_REF] Schütte | Magnon-skyrmion scattering in chiral magnets[END_REF][START_REF] Shi-Zeng Lin | Internal modes of a skyrmion in the ferromagnetic state of chiral magnets[END_REF][START_REF] Mruczkiewicz | Spin excitation spectrum in a magnetic nanodot with continuous transitions between the vortex, bloch-type skyrmion, and néel-type skyrmion states[END_REF][START_REF] Zhou | Dynamically stabilized magnetic skyrmions[END_REF][START_REF] Kim | Breathing modes of confined skyrmions in ultrathin magnetic dots[END_REF][START_REF] Finocchio | Skyrmion based microwave detectors and harvesting[END_REF]. Skyrmion breathing modes, in which the core of the swirling spin structure expands and compresses periodically over time, were first studied by micromagnetic simulations (MS) in skyrmion lattices [START_REF] Mochizuki | Spin-wave modes and their intense excitation effects in skyrmion crystals[END_REF] and then investigated experimentally in helimagnetic insulators [START_REF] Onose | Observation of magnetic excitations of skyrmion crystal in a helimagnetic insulator cu 2 oseo 3[END_REF]. However, theoretical study of skyrmion breathing is rare. For example, the properties of magnon modes localized on a ferromagnetic skyrmion were studied in Ref.

[181], but the analytical result for the breathing-mode frequency of an isolated skyrmion was not validated. Ref. [START_REF] Zhou | Dynamically stabilized magnetic skyrmions[END_REF] derived and identified the precession frequency of a skyrmion but the DMI energy contribution was excluded. These studies neglected or imprecisely treated one of the most important energy contributions, the demagnetization energy (DE), or the stray field energy [START_REF] Zhou | Dynamically stabilized magnetic skyrmions[END_REF][START_REF] Volodymyr P Kravchuk | Spin eigenmodes of magnetic skyrmions and the problem of the effective skyrmion mass[END_REF][START_REF] Bf Mckeever | Characterizing breathing dynamics of magnetic skyrmions and antiskyrmions within the hamiltonian formalism[END_REF], as this energy term is difficult to treat analytically because of its nonlocal nature. Recently, pure electric field or voltage application has been proposed as an
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energy-efficient method to manipulate magnetism; it is very promising for the development of skyrmion-based devices. Extensive research on the voltage-controlled magnetic anisotropy (VCMA) effect has promoted deeper understanding of the underlying physical mechanisms as well as realizations of related skyrmionic device applications [START_REF] Schott | The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field[END_REF][START_REF] Hsu | Electric-field-driven switching of individual magnetic skyrmions[END_REF][START_REF] Liu | Voltage-driven high-speed skyrmion motion in a skyrmion-shift device[END_REF][START_REF] Ma | Electric field-induced creation and directional motion of domain walls and skyrmion bubbles[END_REF].

In this work, we study the dynamics of an isolated skyrmion under voltage excitation in a thin film with a large radius by MS and develop a theoretical model for determining the periodic oscillation of the skyrmion radius and the characteristic frequency ( f c ) of the skyrmion breathing mode. We compare the corresponding results in the absence and presence of the DE, which is demonstrated to have importance in determining the dynamic state of a skyrmion.

Our analytical result demonstrates greater accuracy and robustness compared to those from previous studies [START_REF] Zhou | Dynamically stabilized magnetic skyrmions[END_REF][START_REF] Volodymyr P Kravchuk | Spin eigenmodes of magnetic skyrmions and the problem of the effective skyrmion mass[END_REF]. Moreover, we find that the oscillatory skyrmion embraces the properties of the linear modulation, i.e., amplitude modulation (AM) function, similar to a conventional modulator but with higher efficiency and convenience. Our results could offer evidence and guidance for skyrmion-related theories and experiments as well as for the development of skyrmionic devices in future communication system.

Theoretical Model

We consider the case of a chiral magnetic skyrmion in the center of a circular ferromagnetic (FM) thin film with a large radius and perpendicular magnetic anisotropy (PMA). The skyrmion can be excited to the radially symmetrical magnon mode, or the so-called breathing mode, via the VCMA effect under an applied time-varying voltage, e.g., a sinc pulse voltage on the electrode gate, as illustrated in Fig. 3.8(a).

In our configuration, we consider four contributions to the total energy of the system E :

E = t f [Aε ex + Dε DM + K u (1 -m 2 z ) + ε d ] (3.17) 
where ε ex = |∇m| 2 with an exchange constant A, and ε DM = m z ∇ • mm • ∇m z with an interfacial DMI coefficient D . The third term of the integrand is the PMA energy with constant K u .

The last term ε d is the DE density. Here, m is the unit magnetization vector, m z = m • ẑ is the magnetization component normal to the surface of the film, t f is the thickness of the FM layer, and the integration is performed over the whole area of the FM layer. In the spherical angular parametrization, where m = (si nθ cos φ, si nθsi nφ, cos θ), the magnetization dynamics are well described by the Landau-Lifshitz equation:

sin θθ ′ = - γ M s ∂ε ∂φ -αsin 2 θφ ′ , sin θφ ′ = γ M s ∂ε ∂θ + αθ ′ , (3.18) 
where prime denotes the derivation of the indicated variable with respect to time. ε, γ, and α represent the total energy density, the gyromagnetic constant, and the Gilbert damping parameter, respectively. In our theoretical model, the breathing mode of a skyrmion is described by considering the time-dependent skyrmion radius R(t ) and angle ϕ(t ), which is the azimuthal angle of the magnetization m relative to the radial direction [see Fig. 3.8(b)], near their equilibrium positions R(t ) = R s and ϕ(t ) = 0 . Here, ϕ(t ) = 0 is assumed to remain consistent along the radial direction of the skyrmion. In our simulations, a Néel-type skyrmion is adopted. For a free skyrmion in a nanostructure, the skyrmion profile is described by the circular domain wall ansatz [START_REF] Rohart | Skyrmion confinement in ultrathin film nanostructures in the presence of dzyaloshinskii-moriya interaction[END_REF][START_REF] Bogdanov | Thermodynamically stable magnetic vortex states in magnetic crystals[END_REF][START_REF] Romming | Field-dependent size and shape of single magnetic skyrmions[END_REF][START_REF] Kubetzka | Spin-polarized scanning tunneling microscopy study of 360 walls in an external magnetic field[END_REF][see Fig. 3.8(d)]

cos θ = tanh r -R s ∆ , φ = χ + ϕ, ( 3.19) 
which has been experimentally used to determine the skyrmion profile. Here, R s , φ and ∆ denote the equlibrium skyrmion radius, the azimuthal angle of the magnetization relative to the x direction and domain wall width, respectively. Inserting the time-varying ansatz of Eq.

3.19 into Eq. 3.18, we consequently obtain the following coupled differential equations after a
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2D integration over the whole FM layer:

ϕ ′ = α/∆R ′ + γ∆ M s ∂σ ∂R ∞ 0 si n 2 θd S R ′ = -α∆ϕ ′ - γ∆ M s ∂σ ∂ϕ ∞ 0 si n 2 θd S , (3.20) where σ = σ(R, ϕ) = ∞ 0 εd S = E ex + E D M + E an + E d and ∞ 0 si n 2 θd S = 4π∆R.
Integrating the total energy density ε over the system is a difficult task, however, it is possible to approximate it by separate integration of each energy contribution in the case of R ≫ ∆ [START_REF] Wang | A theory on skyrmion size[END_REF][START_REF] Büttner | Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications[END_REF]:

E ex = t f A ε ex d S ≈ 4πA(R/∆ + ∆/R), E DM = t f D ε D M d S ≈ 4πD(-πR cos ϕ 2), E an = t f K u (1 -m 2 z )d S ≈ 4πK u ∆R, E d = E d ,s + E d ,v ≈ -2πµ 0 M 2 s t f ∆ 2 (k 1 R/∆ -k 2 ∆ R).
(3.21)

Note that the stray field energy E d consists of surface stray field energy ( E d ,s ) and volume stray field energy (E d ,v ). In our case, only E d ,s is taken into consideration for simplicity. Specifically, E d ,s = -2πµ 0 M 2 s t f ∆ 2 I s involves highly non-trivial integrals in I s , which relies on skyrmion radius R and film thickness t f . By substituting Eq. 3.21 into Eq. 3.20, we obtain the the energy terms of G 1 (ϕ, R) and G 2 (ϕ, R):

G 1 ϕ, R = ∂σ ∂R ∞ 0 si n 2 θr d r = A 1 ∆ 2 R - 1 R 3 - πD 2∆ cos ϕ R + K u R -µ 0 M 2 s ∆ 2 k 1 2∆ 2 R + k 2 2R 3 , G 2 ϕ, R = ∂σ ∂ϕ ∞ 0 si n 2 θr d r = πD ∆ sin ϕ. (3.22)
Therefore, Eq. 3.20 becomes:

ϕ ′ = α/∆R ′ + γ∆ M s G 1 (ϕ, R) R ′ = -α∆ϕ ′ - γ∆ M s G 2 (ϕ, R) (3.23)
Eq. 3.23 captures the properties of skyrmion breathing behavior more concisely and clearly than micromagnetic modeling can. In the following, the breathing dynamics of a skyrmion is studied by MS and analyzed by using our theoretical model.

Characteristics of breathing dynamics of a skyrmion.

Based on the modeling above, MS are performed in a circular thin film with thickness t f = 1 nm and radius R d = 500 nm, which is sufficiently large to avoid boundary effects. By applying a sinc pulse voltage to the electrode gate with radius R e = 40 nm, the increment of the PMA of the FM layer beneath the electrode gate varies accordingly, as,

∆K u = K 0 sin[2π f 0 (t -t 0 )]/[2π(t -t 0 )]
with f 0 = 100 GHz, t 0 = 1 ns, and K 0 being the amplitude of the excitation [see Fig. This breathing mode of the skyrmion closely relies on the material properties. For instance, MS results of f c and R s under different D and K u are respectively shown in Fig. 3.9(c) and Fig.

3.9(d).

Significantly, f c is negatively correlated with R s . For quantitative analysis, we numerically solved our theoretical model by endowing the initial values of ϕ(t ) and R(t ) for Eq. 3.23, the results of which validate the accuracy of our model [see Fig. 3.9(c) and Fig. 3.9(d)].

To determine the analytical solution of Eq. 3.23, we consider an approximate solution with the form of R(t ) = R s + a 0 sin(2π f t ) based on the oscillation behaviour of skyrmion. Taking this form of R(t ) and the Eq. 3.22 into the Eq. 3.23, the corresponding static equilibrium solution for R s and the linear dynamics near the equilibrium position for f c when a 0 ≪ R s can be characterized by

R s = C 3 C 2 , f c = 1 2π 2 R 4 s C 2 2 a 4 0 + R 4 s C 2 1 C 2 2 -C 2 2 a 2 0 ,
where

C 1 = πγD (2M s ), C 2 = γ M s (A/∆ + K u ∆ -πD/2 -k 1 µ 0 M 2 s ∆)
and

C 3 = γA∆ M s + k 2 γµ 0 M s ∆ 3
with k 1 = 0.576 and k 2 = 0.158. If the oscillation amplitude a 0 → 0, we are able to determine R s and f c after the first order of approximation as

R s = C 3 C 2 , f c = 2C 1 C 2 (2πR s ), (3.24) 
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where

C 1 = πγD (2M s ), C 2 = γ M s (A/∆+K u ∆-πD/2-k 1 µ 0 M 2 s ∆) and C 3 = γA∆/M s +k 2 γµ 0 M s ∆ 3 with ∆ = A K e f f , K e f f = K u -µ 0 M 2 s 2
, k 1 = 0.576 and k 2 = 0.158. Here, the coefficients k 1 and k 2 are derived from the modified DE term [START_REF] Büttner | Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications[END_REF][START_REF] Siemens | Minimal radius of magnetic skyrmions: statics and dynamics[END_REF] and the values depend on the film thickness (t f = 1 nm in our case). The formula results [Eq. 3.24] in relation with D and K u are also shown in Fig. 3.9(c) and Fig. 3.9(d) and demonstrate good agreement with the MS results, especially for a large R s . More importantly, our results are more accurate in comparison with formulas from some previous studies [see Discussion in sec. 3.3.6].

As noted in the introduction, DE has often been excluded or crudely approximated by correcting the anisotropy constant K u as an effective anisotropy K e f f , which is satisfactory in cases of ultrathin films, especially for t f → 0 . In practical situations, we find that this treatment induces some errors, especially in characterizing the dynamic properties of a skyrmion. To clarify, we compare the numerical results of R s and f c obtained by substituting the anisotropy constant with K e f f to solve Eq. 3.23 with those obtained by separately calculating the DE contributions. Fig. 3.9 reveals that approximating the DE term by using K e f f is sufficiently precise to evaluate the static state of a skyrmion, e.g., its R s , which may be why this method has been extensively adopted in previous studies. In contrast, the approximation is not as suitable in determining the dynamical characteristics of the skyrmion, e.g., f c , using this modification.

Our model is also verified when DE is excluded [see Appendix A.1.2]. Fig. 3.9(e) and Fig. 3.9(f ) display the results of f c and R s as a function of D and K u in the absence of the DE. In this case, formula approximations for f c and R s can be readily expressed by setting the coefficients k 1 and k 2 equal to zero in Eq. 3.24. The numerical results of Eq. 3.23 using functions G 1 (ϕ, R) and G 2 (ϕ, R) in Eq. 3.22 are also obtained, which show very good agreement with the formula results. However, the errors of the formula approximations for f c compared to the MS results are caused by the imprecise estimation of energy contributions related to G 1 (ϕ, R) and G 2 (ϕ, R), as opposed to the first order of approximation. In specific, the ansatz to describe the skyrmion profile, i.e., the circular domain wall ansatz, is well represented for large skyrmion sizes (R ≫ ∆), but exists some errors for a skyrmion with a size comparable to ∆, thus yielding imprecise approximations for G 1 (ϕ, R) and G 2 (ϕ, R). Nevertheless, our formula expressions still show higher accuracy than previous studies [see Discussion in sec. 3.3.6].

Additionally, the skyrmion can stabilize with a relatively lower D value in the presence of DE. This is easily observed by the reality that C 2 > 0, from which we can determine the upper limit of D, i.e., the critical value for D: 

D c = 2 π A/∆ + K u ∆ -k 1 µ 0 M 2 s ∆ . ( 3 

Breathing skyrmion as a modulator

We have demonstrated that the breathing frequency f c of a skyrmion is an intrinsic characteristic closely associated with the material properties. To further investigate and utilize this
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property, it is also important to explore the skyrmion dynamics under various forms of excitation, such as single-frequency excitation. According to the solutions to skyrmion radius of our theoretical model, the skyrmion breathes in hybrid frequencies of the external sine frequency [see Fig. 3.10] under sine wave voltage excitation. Moreover, the relative amplitude of f e and f c in the spectrum depends on the value of f e . Specifically, if f e < f c , the skyrmion breathing typically synchronizes with f e , because the external driving frequency f e is dominant. Conversely, if f e > f c , the skyrmion is more likely to breath at f c . This phenomenon is very similar to the forced oscillation of a harmonic oscillator: for a periodic force applied to a harmonic oscillator, the output signal is a superposition of two sine waves with the external forced frequency and the eigen frequency respectively, according to the solution of the well-known resonance differential equation. In this respect, skyrmion is similar to a conventional "oscillator" with tunable eigen frequency. However, differently in the skyrmion "oscillator", other prominent frequencies can also be discovered in addition to the two main peaks in the frequency spectrum, which reveals the "resonant skyrmion" also functions as a "modulator." In conventional AM technology, the frequency spectrum of message signal is shifted to a higher frequency band via a radio carrier wave for transmitting information. Typically, the frequency of message signal is much lower than the carrier frequency. In We also investigate the skyrmion dynamics under sine excitation with frequency close to the skyrmion characteristic frequency. In this case, the resonant oscillation of the skyrmion is expected to be seen. Here, the amplitude of the excitation sine wave is set to a very small value compared to those in Fig. 3. The skyrmion also shows a type of "swing" behavior. Specifically, the symmetry axis of the magnetization projecting in the x y plane rotates back and forth during the breathing process [see Fig. 3.11(d)]. This phenomenon arises from the magnetization variations along the radial direction, i.e., the angles ϕ are inconsistent because of the drastic changes in the skyrmion radius. Through the analysis above, the resonant skyrmion functions as an oscillator as well as a modulator, thus is expected to achieve device miniaturization for the promising prospect in future communication system.

Breathing skyrmion as a reservoir computer.

We have studied the strong breathing dynamics of magnetic skyrmion under external excitation in the previous section. Apart from its usage as a tunable oscillator, this intriguing phenomena is also promising in reservoir computing, the concept of which has been introduced in sec.2.5.2 of Chapter 2.

Magnetic skyrmion for reservoir computing has been explored by utilizing their intrinsic nonlinear physical properties, such as the nonlinear anisotropic magnetoresistive response under the voltage pulses [START_REF] Pinna | Reservoir computing with random skyrmion textures[END_REF], the nonlinear behavior of skyrmion motion under current pulses in an unsymmetrical nano-track [START_REF] Jiang | Physical reservoir computing using magnetic skyrmion memristor and spin torque nano-oscillator[END_REF], as shown in Fig. 3.12. In this thesis, we delve into breathing dynamical behavior and current-induced motion dynamics of skyrmion for benchmarking a more complex reservoir computing application -Macky-Glass chaotic time series prediction task. The specific implementations are presented at sec.4.3.2 of chapter 4.

Figure 3.12: Magnetic skyrmion system/devices for reservoir computing. Previous work about using the nonlinear anisotropic magnetoresistive response under the voltage pulses [START_REF] Pinna | Reservoir computing with random skyrmion textures[END_REF] (left), the nonlinear behavior of skyrmion motion under current pulses in an unsymmetrical nano-track [START_REF] Jiang | Physical reservoir computing using magnetic skyrmion memristor and spin torque nano-oscillator[END_REF] (middle) and our system (right) for reservoir computing.

Discussion

Up to now, we have discussed the formula approximation for the characteristic frequency f c of the skyrmion breathing mode. For greater clarification, we further compare the results from our formula approximations with those from previous research. In Ref. [START_REF] Zhou | Dynamically stabilized magnetic skyrmions[END_REF], the normalized characteristic frequency f * c and the skyrmion radius R * s obey the simple relation 2π f * c R * s = 1, where we obtain f c ∝ 1/R * s . This result is obtained when the DMI energy contribution is excluded and the skyrmion radius is tuned by the drive current. In Ref. [START_REF] Volodymyr P Kravchuk | Spin eigenmodes of magnetic skyrmions and the problem of the effective skyrmion mass[END_REF], the normal-

ized frequency f * c is characterized by f * c = 1 (2π • R * s 1 + R * s ) ∝ 1 R * s 2
with R s being normalized. Meanwhile, in our studies, derived from Eq. 3.24, the relation between f c and R s is expressed as 6 ). If the skyrmion radius is assumed to be sufficiently large, we obtain

f c = γA (π∆ 2 M s ) 1/(R s ∆) 4 -0.5 (R s ∆) 6 , from which we determine f c ∝ 1/R * s 4 -1/(2R * s 
f c ∝ 1/R * s 2
, which is the same with that in Ref. [START_REF] Volodymyr P Kravchuk | Spin eigenmodes of magnetic skyrmions and the problem of the effective skyrmion mass[END_REF]. Note that the normalizations used in different studies are different. A comparison for the case of DE inclusion is also shown in Fig. 3.13(b). In brief, the results in Fig. 3.13 demonstrate the relatively higher accuracy and generality of our formula approximation. 24, where DE is considered using K e f f . Note that R s is varied by changing the DMI constant, corresponding to Fig. 3.9(c) and Fig. 3.9(e).

Conclusion

To conclude, we have studied skyrmion dynamics under voltage excitation by using the VCMA effect. The skyrmion breathing behaviors were systematically investigated via both MS and our theoretical model. Our model not only provides very exact numerical solutions for the time-dependent skyrmion radius regardless of the form of excitation, but also yields corresponding analytical solutions, which are more accurate and robust than those from previous studies. In addition, breathing skyrmion can also be explored as a tunable oscillator and a reservoir computer for future neuromoprhic hardware implementation.

Skyrmion based artificial neuron device

This section presents a compact LIF spiking neuron device by exploiting the current-driven skyrmion dynamics in a wedge-shaped nanotrack. We first describe the mechanism and behavior of the skyrmion motion in this wedge-shaped nanotrack especially in the presence of the repulsion force provided by the nanotrack edge. Then, we will show that such a mechanism can be explored to implement an LIF spiking neuron device with the tunable temporary location of the skyrmion behaving like the analog membrane potential of a biological neuron.

The neuronal behaviors and the related physical interpretations of the proposed skyrmionic LIF spiking neuron device are carefully analyzed via micromagnetic and theoretical methods.

Such a compact artificial neuron opens up a new way for energy-efficient and high-density implementation of neuromorphic computing hardware.

Background

Neuromorphic computing paradigm has attracted intensive research interests owing to its potential capability in the realization of energy-efficient, intelligent and highly adaptable computing systems [START_REF] Marković | Physics for neuromorphic computing[END_REF][START_REF] Prezioso | Training and operation of an integrated neuromorphic network based on metal-oxide memristors[END_REF][START_REF] Burr | Neuromorphic computing using non-volatile memory[END_REF][START_REF] Kuzum | Synaptic electronics: materials, devices and applications[END_REF][START_REF] Grollier | Neuromorphic spintronics[END_REF]. Hardware implementation of such a paradigm relies on the efficient imitation of the behaviors of the underlying building blocks: artificial neurons and synapses, which require careful design and thus have attracted considerable attention in both academy and industry. In comparison with the advancement of artificial synapse [START_REF] Grollier | Spintronic nanodevices for bioinspired computing[END_REF][START_REF] Kuzum | Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing[END_REF][START_REF] Wright | Beyond von-neumann computing with nanoscale phase-change memory devices[END_REF][START_REF] Hyun | Nanoscale memristor device as synapse in neuromorphic systems[END_REF][START_REF] Chang | Demonstration of synaptic behaviors and resistive switching characterizations by proton exchange reactions in silicon oxide[END_REF],

the implementation of artificial neuron, which still mostly relies on conventional CMOS circuits, however, suffers from low level of integration as well as high leakage power dissipation [START_REF] Merolla | A digital neurosynaptic core using embedded crossbar memory with 45pj per spike in 45nm[END_REF][START_REF] Wu | A cmos spiking neuron for brain-inspired neural networks with resistive synapses and in situ learning[END_REF]. For artificial neurons, the leaky-integrate-fire (LIF) spiking model [START_REF] Stoliar | A leaky-integrate-and-fire neuron analog realized with a mott insulator[END_REF][START_REF] Jaiswal | Proposal for a leaky-integrate-fire spiking neuron based on magnetoelectric switching of ferromagnets[END_REF] has been widely adopted in literature. Recently, some single-device artificial neuron concepts have been proposed based on, e.g., phase change device [START_REF] Tuma | Stochastic phase-change neurons[END_REF] and domain wall (DW), to mimic the LIF neuronal function; however, their behaviors and performances may demand further improvements. For example, phase change devices have shown to mimic the integrate-fire dynamics rather than the full LIF behaviors of biological neurons. On the other hand, DW devices can imitate the leaky behavior of biological neurons only by applying a negative current to keep leaking at all times, which, is not energy-efficient.

Methodology

Our micromagnetic simulations are performed by using the Object-Oriented MicroMagnetic Framework (OOMMF) software [START_REF] Michael | OOMMF user's guide, version 1.0[END_REF]. A width-varying nanotrack, based on an antiferromagnetically (AFM) exchange-coupled bilayer system, where the top ferromagnetic (FM) layer and the bottom FM layer is AFM-coupled with each other via a spacer aiming to suppress the skyrmion Hall effect [START_REF] Jiang | Direct observation of the skyrmion hall effect[END_REF][START_REF] Gilbert | Realization of ground-state artificial skyrmion lattices at room temperature[END_REF], is schematically illustrated in Fig. 3.14 [START_REF] Zhang | Magnetic bilayer-skyrmions without skyrmion hall effect[END_REF]. Skyrmions can move straight along the nanotrack under a driving current ( j d ) flowing through the heavy metal (HM) layer generated by the electrode under the nanotrack via the spin Hall effect (SHE). To investigate the skyrmion dynamics only under the drive of the repulsive force exerted by the nanotrack edge [START_REF] Du | Edge-mediated skyrmion chain and its collective dynamics in a confined geometry[END_REF][START_REF] Hagemeister | Skyrmions at the edge: Confinement effects in fe/ir (111)[END_REF], the skyrmion is initially nucleated at the left end of the arc area in the nanotrack (X c ≈40 nm) and is then relaxed and driven to the right side. When it moves to a distance where X c is about 120 nm, the current is removed so that the skyrmion will move back to the initial position (minus x direction) because of the repulsive force applied by the nanotrack edge. First, we focus on the backward process. In order to explore the relationship between the slope of the nanotrack and the backward velocity of the skyrmion, the width b varies from 20 nm to 40 nm (5 nm for a step) while the length L is fixed as 100 nm. Then, in absence of any driving currents, periodic current signals in terms of the square wave, sinusoidal wave and triangular wave forms as input spikes are applied by the electrode to mimic the behaviors of a biological neuron. Note here that the current density distribution is calculated by the COMSOL software [START_REF] Dickinson | Comsol multiphysics®: Finite element software for electrochemical analysis. a mini-review[END_REF] and then is imported to the OOMMF software considering the asymmetrical ge- The slope of the nanotrack is defined as k =tan(β). The magnetization direction is color coded: orange is into the plane, white is in-plane, green is out of the plane.

Results and Discussions

The performance of the skyrmion in the backward process (in minus x direction) with respect to different slopes of the nanotrack is given in Fig. 3.15.

It can be seen from Fig. 3.15(a) that a greater slope leads to a faster skyrmion reverse motion to the initial position. The relationship between the skyrmion position and time can be fitted as

X c = exp(-b(k) • t + b 0 ), (3.27)
It reveals that the distance X c reduces exponentially, indicating that a larger force is applied on skyrmion at a narrower region in the same k. In addition, the variable b(k) increases as the slope k increases (see sec. A.2 for detailed values). We also measured the reverse velocity with respect to the distance d from the core of the skyrmion to the closest boundary side. The observed data can be fitted as the equation given below

|v c | = exp( a 1 (k) d -d 0 (k) + a 2 (k)) (3.28)
where a 1 (k), a 2 (k), d 0 (k) depend on the value of k (see sec. A.2 for detailed values). It is demonstrated that the skyrmion dynamics is closely related to the width and slope of the nanotrack.

We can find from Fig. 3.15 that the metrical data (colored symbols) from the simulations and the fitting data (black curves) are in good agreement with each other. Note here that the radius of the skyrmion also varies, which indicates the adaptability of skyrmion in the constricted geometry.

To investigate the origin of the repulsive force from the nanotrack edge, the energy of the
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system is further analyzed. Fig. 3.15(c) displays the composition of the total energy E t ot al with the position of the skyrmion in the backward process. In our system, the total energy is composed of the exchange energy E ex , DMI energy E D M I , uniaxial magnetocrystalline anisotropy energy E k , demagnetization energy E Demag , and antiferromagnetic AFM exchange coupling energy E i nt er between the top and bottom FM layers: 

E t ot al = E ex + E D M I + E k + E Demag + E i nt er . ( 3 
G × v -αD • v + F t ot al = 0 (3.31)
the edge-induced skyrmion motion can be theoretically derived as

v = F t ot al αD (3.32)
It is worth mentioning that the skyrmion motion velocity simply directs in the x direction, that means |v x | = |v |, because of the AFM coupling system used in our simulations.

Inspired by the skyrmion dynamics in this wedge-shaped nanotrack, we propose that skyrmions can be used to emulate the behavior of a neuron in this width-varying nanotrack, which can be analogously characterized through the current-induced skyrmion motion with the location of the skyrmion X c indicating the membrane potential of a biological neuron. In Fig. 3.14(a), we show a schematic illustration of the operation of a biological neuron along with the interconnecting synapses based on the LIF neuronal model. Here, a large amount of input spikes V j ( j = 1, 2, ..., N ) with their specific weights w j are connected to one neuron soma by means of its dendritic connections. With the arrival of the summation of the excitatory and inhibitory postsynaptic potentials through the dendrites of the neuron, the membrane-potential V of the associated neuron rises by a certain amount and then decays exponentially until the next spike is received. The neuron would "fire" an output spike and resets when a specific threshold is reached. The mathematical model of the LIF spiking neuron is given as the following equation [START_REF] Burr | Neuromorphic computing using non-volatile memory[END_REF] 

τ mem dV d t = -(V -V r est ) + j δ(t -t j )w j (3.33)
where τ mem decay time constant, V denotes the membrane potential (location of the skyrmion
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X c ), V r est is the resting potential, j δ(tt j )w j is the sum of the input weighted spikes from presynaptic neurons. It is apparent that -(V -V r est ) corresponds to the leakage item and j δ(tt j )w j represents the integral item. Here, we focus on demonstrating the LIF behaviors of the proposed skyrmion-based artificial neuron since the elementary functions of skyrmion, involving generation, motion, manipulation and detection [START_REF] Shi-Zeng Lin | Ac current generation in chiral magnetic insulators and skyrmion motion induced by the spin seebeck effect[END_REF][START_REF] Rp Loreto | Creation, transport and detection of imprinted magnetic solitons stabilized by spinpolarized current[END_REF], have been widely studied in literature and thus are omitted here.

The skyrmion is initially nucleated at an origin site (X c ≈40 nm) and then move forward along the nanotrack under the drive of the accumulated spike current (if one or several preneurons spike) as long as the current density exceeds the skyrmion depinning current density. During the move, the skyrmion motion dynamics depends on the competition between the repulsive force from the nanotrack edge and the driving force of the accumulated input spike current, which depends then on the effective value of the driving current. In particular, the skyrmion will move forward under the condition that the driving current is large enough to overcome the repulsive force or else step backward, which corresponds with the "leakyintegrate" process of the LIF neuron model. With the continuous arrival of the excitation signals, the skyrmion would soon reach the threshold distance (X c ≈ 120 nm) and will be detected by the detector (either an MTJ or a spin-valve based detector through the magnetoresistive effect [START_REF] Hanneken | Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance[END_REF][START_REF] Dax | Perpendicular reading of single confined magnetic skyrmions[END_REF]), after which the skyrmion "fires" an output spike signal and is reset to the initial position. It is noteworthy that skyrmion reverses to the original point with the action of the repulsive force in our simulation. Besides, a reset current (a negative current in minus x direction) can also be used for a faster reset operation, in particular, if the threshold distance is set in the circular region, the skyrmion can be conveniently collected and detected, and then be reset to the initial position. Considering that the practical input current may not be perfect, Fig. 3.16(a) displays the location of the skyrmion under the drive of the periodic input spike current in terms of the square, sinusoidal, and triangular waveforms, which exhibit the "leakyintegrate-fire" process of a neuron. Here, the size of the structure is set as b= 40 nm and L = 100 nm.

To give a detailed analysis of this process, a case study of the behavior of the skyrmion with square wave excitation (T =0.1 ns, r =0.6) is given. Fig. 3.17(d) displays the current distribution of the profile with colored map when the electrode is switched on to let out an input spike and the black curve in Fig. 3.17(c) shows the current density in the x axis while y=0. The black line in Fig. 3.17(a) exhibits the location of the skyrmion as a function of time and the blue line gives the exact current density at the corresponding location. In Fig. 3.17(b), we calculate the velocity of the skyrmion during motion. Unlike the condition in absence of the driving current discussed above, the total force exerted on skyrmion is determined by

F t ot al = F SH E + F r e (3. 34 
)
where F SH E , which represents the driving force from the SHE current, is proportional to the current density [START_REF] Hrabec | Current-induced skyrmion generation and dynamics in symmetric bilayers[END_REF][START_REF] Gilbert | Realization of ground-state artificial skyrmion lattices at room temperature[END_REF] and F r e represents the repulsive force from the nanotrack edge. In Two frequencies are used in simulations: 10 GHz (period T =0.1 ns, duty ratio r =0.6) and 2.5 GHz (period T =0.4 ns, duty ratio r =0.5). The duty ratio is defined as the ratio of the duration when current density is greater than zero and one period. Note that the amplitude of the current density here is represented by the left end of the nanotrack, indicated as point O in Fig. 3.17(d) for the uneven distribution of the current intensity.

Fig. 3.17(c), the repulsive force is also presented, from which it can be observed that the competition between the driving force F SH E and the repulsion force F r e at different positions of the nanotrack in condition that there is an input spike current.

The performance of this skyrmion-based neuron device is also elucidated. As it has been illustrated before, there exists a competition between the current-induced force and the repulsive force from the nanotrack edge. Thus, the skyrmion will move slightly back and forth at a specific equilibrium position and fail to reach the detection region if the amplitude of the current is not high enough or the duration of the current pulse is not long enough to overcome the repulsive force. Fig. 3.18 presents working windows for a stable skyrmion moving in the nanotrack with various slopes and a sequence of current density with different amplitudes (represent as point O) and duty ratios, in which the green ball is on behalf of successful access to the given threshold distance (successful "fire") while the red ball stands for failure of reaching the threshold position (unsuccessful "fire"). It reveals that this skyrmion-based neuron device can work under a wide range of supply current and more importantly, the performance of the behavior of the skyrmion is tunable via varying the slope of the nanotrack, which is the key of our LIF spiking neuron model. In addition, with an input spike current density of 12.5 MA/cm 2 at point O and the corresponding current profile, the current amplitude is estimated as 80 µA. Meanwhile, the process time is about 2 ns and we assumed the volume resistivity of the HM is 1800 nΩ•m. Thus, estimation of energy consumption per spike is about 0.003 pJ, which is far less than that ( 9.3 pJ/spike) of a silicon-based spiking neuron. These advantageous features of the proposed skyrmion-based artificial neuron may benefit advanced neuromorphic computing systems in terms of power consumption. 

Conclusions

In conclusion, we propose a compact neuron device by exploiting the current-driven and edge-controlled skyrmion dynamics in a wedge-shaped nanotrack through micromagnetic simulations. We first investigate the motion of a skyrmion encouraged by the nanotrack edge. The edge-controlled skyrmion motion, which originates from the energy gradient and relaxation, can be harnessed to construct a LIF based compact neuron device. Furthermore, we perform a numerical analysis of the behavior of the skyrmion in the motion and conclude that the state of the back and forward behavior is determined by the competition between the current-induced force and the edge-induced repulsive force. By varying the slope of the nanotrack, the amplitude and the duty ratios of the input spiking current, this skyrmion-based neuron device is tunable and can achieve high processing speed as well as low energy consumption, which are promising for future skyrmionic devices in advanced neuromorphic computing systems.

Skyrmion based True Random Number Generation for

Stochastic Computing (SC)

True random number generators (TRNGs) are under extensive research owing to their wide applications in information processing, transmission and encryption. Recently, TRNGs have also been employed in emerging stochastic/ probabilistic computing paradigms. TRNGs can be designed based on, for example, oscillator sampling, noise amplifying and quantum physical effect with the aid of peripheral post-processing circuitry. With the rapid development of emerging nanoscale devices, such as resistive devices [START_REF] Jiang | A novel true random number generator based on a stochastic diffusive memristor[END_REF], spintronic devices [START_REF] Fukushima | Spin dice: A scalable truly random number generator based on spintronics[END_REF] and photonic devices [START_REF] Bai | 18.8 gbps real-time quantum random number generator with a photonic integrated chip[END_REF], a rich variety of TRNG prototypes have been proposed in the literature.

In this work, we propose a TRNG based on continuous skyrmion thermal Brownian motion in a confined geometry at room temperature. Random bit stream (with equal probability of 50% for bit "0" and "1") can be obtained by periodically detecting the relative position of the skyrmion without the need for any additional activations. Further, we implemented a probability-adjustable TRNG, in which a desired probability for bit "0" and bit "1" can be acquired by adding an anisotropy gradient in the device through voltage-controlled magnetic anisotropy (VCMA) effect. The behaviors of the proposed skyrmion-based TRNGs were studied by using micromagnetic simulations and the generated random bit stream was tested by the National Institute of Standards and Technology (NIST) suites. Our results demonstrated that the proposed skyrmion-based TRNGs can achieve good randomness with high frequency (>1 GHz) and energy-efficiency (< 10 fJ/bit). The results presented in this section is adapted from Ref. [START_REF] Yao | Thermal brownian motion of skyrmion for true random number generation[END_REF].

Theoretical Model

The proposed skyrmion-based TRNG appears like a chamber, consisting of a ferromagnetic (FM) layer, a heavy metal (HM) layer and two MTJs (see Fig. 3.

19). A skyrmion is nucleated at

the center of the FM layer and performs random motion in the chamber under thermal noise [START_REF] Zhao | Spin-topology dependent brownian diffusion of skyrmions[END_REF][START_REF] Miltat | Brownian motion of magnetic domain walls and skyrmions, and their diffusion constants[END_REF][START_REF] Nozaki | Brownian motion of skyrmion bubbles and its control by voltage applications[END_REF][START_REF] Zázvorka | Thermal skyrmion diffusion used in a reshuffler device[END_REF]. These two MTJs are used to detect the position of the skyrmion (left side or right side of the chamber) with a differential method by a sensing circuit. Please note that as the MTJ on top may affect the skyrmion dynamics, other novel methods such as Topological Hall Resistivity [START_REF] Hanneken | Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance[END_REF][START_REF] Hamamoto | Purely electrical detection of a skyrmion in constricted geometry[END_REF], which has no impact on the device, can be used for skyrmion detection without affecting the core idea of this paper. The magnetization dynamics of the skyrmion can be modeled by a modified LLG equation with a thermal/stochastic field containing within the effective field, as described in section 1.4.6. The simulation parameters are adopted from the Ref [START_REF] Sampaio | Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures[END_REF] for CoPt material.

The simulation region is an approximately elliptical chamber consisting of a rectangular region of 101 nm × 74 nm and two semicircular regions with a radius of 37 nm, as show in Fig.

3.19(b)

. Magnetization dynamics of the skyrmion can be strongly influenced by the random thermal fluctuations. In practical situations, the output bits are assigned depending on the differential voltage ∆V (∆V = V l e f t -V r i g ht ) of the two MTJs, as shown in Fig. 3.19(c). Specifically, if ∆V is positive, corresponding to the presence of the skyrmion on the left side of the chamber, denoting as a bit of "0"; otherwise, a bit "1" is indicated, or vice versa.

The skyrmion Brownian motion has been studied in [START_REF] Zhao | Spin-topology dependent brownian diffusion of skyrmions[END_REF][START_REF] Miltat | Brownian motion of magnetic domain walls and skyrmions, and their diffusion constants[END_REF][START_REF] Nozaki | Brownian motion of skyrmion bubbles and its control by voltage applications[END_REF][START_REF] Zázvorka | Thermal skyrmion diffusion used in a reshuffler device[END_REF]. Please note that process variations (in the ferromagnetic layer, boundary and the MTJ detector) as well as material de- It is assigned a bit of "0" if the skyrmion is on the left; otherwise, a bit of "1" is indicated or vice versa.

fects/imperfections etc., may disturb the randomness of skyrmion motion. However, prior experiments have proved that thermal induced skyrmion Brownian motion is dominant if the quality of the sample can be well controlled [START_REF] Zhao | Spin-topology dependent brownian diffusion of skyrmions[END_REF][START_REF] Zázvorka | Thermal skyrmion diffusion used in a reshuffler device[END_REF]. So, in this work, only the thermalinduced skyrmion Brownian motion is considered in the simulation to highlight the core idea of TRNG design. For a non-confined two-dimensional system, the thermal diffusion of a skyrmion can be simply expressed as [START_REF] Nozaki | Brownian motion of skyrmion bubbles and its control by voltage applications[END_REF] 〈[r x,y (t

+ t * ) -r x,y (t )] 2 〉 = 〈∆r 2 x,y 〉 = 4D d c t * . (3.35)
Here, r x,y is the position of the skyrmion center (x, y), t * is the time interval between two selected data points. The left side of the equation expresses the mean squared displacement (MSD) of a skyrmion. The diffusion constant D d c is established as

D d c = k B T αD (G 2 + (αD) 2 (3.36)
where G ∝ 4πQ s is the gyro-coupling strength that is related to the skyrmion topological number Q s (see sec. linearly increases as t * increases due to the boundary effect. More specifically, as t * increases, the distance of skyrmion motion increases while the displacement may decrease as the skyrmion is constrained inside the chamber, which also indicates that the MSD will not grow indefinitely with the increment of time.

In the linear region, it is difficult for a skyrmion to move from one side to the other side at a small interval. Accordingly, a fairly long continuous bit "0" or "1" will appear in the sequence, and its randomness will be very poor. In the nonlinear region, a small MSD may represent a large moving distance, i.e., the skyrmion may move from one side of the chamber to the other and then move back and forth repeatedly.

Similarly, Fig. 3.21(a) displays that the MSD is also linearly dependent on the temperature in the case of small t * , which is consistent with Eq. 3.36. Here, the thermal effect induced by temperature plays a dominant role on the displacement of the skyrmion. In contrast, the boundary effect has a greater impact on the skyrmion if t * is larger than 3 ns, leading to the nonlinearity [see Fig. tively large MSD is necessary. Further, the interval will affect the randomness. If the interval between two observations is long enough, the randomness caused by thermal disturbance will make the generated random numbers independent of each other. In our simulations, we find that the average distance of the skyrmion motion in every 20 ps is about 1.4 nm by focusing in the x-axis direction. Correspondingly, the distance of the skyrmion motion in 10 ns is about 700 nm. Meanwhile, the maximum displacement of skyrmion in the chamber is about 120 nm [see Fig. 3. 22(a)]. Therefore in this case of 10 ns, the skyrmion can move several times back and forth in the chamber, denoting that every two adjacent bits can be considered independent of each other if the interval t * is long enough. Thus, a high temperature or (and) a long interval t * is preferred to keep good randomness of the generated bits. On the other hand, increasing t * however will influence the frequency. In our simulations, we detect the position of the skyrmion in every 10 ns at room temperature (300 K). As indicated, higher frequency can be obtained by raising the temperature without increasing t * , e.g., t * =1 ns with T = 320 K.

Skyrmion based TRNG

As discussed above, an isolated skyrmion will randomly diffuse in the chamber under the combined effect of the thermal disturbance and the boundary effect. Random bit sequence can then be obtained by locating the position of the skyrmion. Fig. 3.22(a) shows the trajectory of the skyrmion within 5.7 µs (570 stages). As can be seen, the skyrmion is located 286 times on the left side of the chamber and 284 times on the right side of the chamber, resulting in about equal probability (50%) of bit "0" and "1". Fig. 3.22(b) shows the positions of the skyrmion in the x-axis in order to clearly observe the arrangement of "0" and "1" in the sequence. Fig. 3.22(c) presents 50 output samples selected from our random bit sequence.

The quality of the random numbers is evaluated by the NIST suite [START_REF] Rukhin | A statistical test suite for random and pseudorandom number generators for cryptographic applications[END_REF], which is a statistical package focusing on the non-randomness possibly existing in the tested data. The test can only be performed normally if the "0" and "1" in the ASCII sequence are evenly distributed, 
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More importantly, our proposed skyrmion-based TRNG can generate unbalanced bit stream simply by a PMA gradient, which can be generated either by the VCMA effect through employing multiple electrodes [START_REF] Liu | Voltage-driven high-speed skyrmion motion in a skyrmion-shift device[END_REF] to form a probability-adjustable TRNG. Here the PMA value follows a linear increase with respect to the position of the chamber, i.e., K u (l x ) = K u0 + ∆K u lx , in which K u0 is the initial PMA value at the origin (i.e., l x = 0), ∆K u is the PMA increasing rate and l x is the relative distance from the origin (see Fig. 3.23(a)). As discussed above, regardless of the influence of the thermal disturbance, the average stabilized position of the skyrmion is the center of chamber. With the combination of the anisotropy gradient and the boundary effect, the average stabilized position of the skyrmion will move a distance d away from the center to the low PMA region, depending on the PMA difference ∆K u = K uv -K u0 , where K uv is the maximum value and K u0 is the minimum value of PMA. Considering the thermal disturbance, the skyrmion moves around the new average stabilized position, so the probability of skyrmion appearing on the left or the right side of the chamber will be different. The uneven distribution of the skyrmion positions for 1000 intervals (t * = 1 ns) is displayed in Fig. 3.23(b, c, d), in which the skyrmion position locating in left side of the chamber is much denser than that in the right side.

The probability of bit "0" or "1" in the output bitstream can be precisely controlled by a negative feedback circuit which includes a counter, a probability calculator, a comparator and a decoder, as shown in Fig. 3.24(e). The counter is used to count the number of "0" or "1" in the random sequence. The probability of "0" is obtained by a division operation in the probability calculator. The comparator transmits a signal which is the result from comparing the calculated real-time probability and the target probability to the decoder. The core of the decoder is a CMOS transistor array which converts the signal into a voltage generating the PMA gradient.

A bigger (smaller) voltage is supplied when the calculated probability is smaller (bigger) than the target probability to generate a bigger (smaller) anisotropy gradient, thereby the probability can be adaptively configured according to the application requirement.

Skyrmion based TRNG for SC

A basic feature of SC is that numbers are represented by stochastic bit streams that can be processed by very simple circuits, while the numbers themselves are interpreted as probabilities under both normal and faulty conditions. For example, a bit stream S containing 25% 1s and 75% 0s denotes the number p = 0.25, reflecting the fact that the probability of observing a 1 at an arbitrary bit position is p. (1,0,0,0), (0,1,0,0), and (0,1,0,0,0,1,0,0) are all possible representations of 0.25. Note that p depends on the ratio of 1s to the length of the bit stream. Bit streams of this type and the probabilities they represent are referred to as stochastic numbers. In a SC based neural network, the SC neuron can be implemented by multipliers, adders and activation circuits. As one of the fundamental arithmetic circuits in a neuron, the SC multiplier can be implemented by an AND gate for the unipolar representation, as shown in Fig. 3.24 [START_REF] Alaghi | Survey of stochastic computing[END_REF].

Skyrmion based stochastic computing structure, by using the thermal Brownian of skyrmions
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in a skyrmion gas reshuffler [START_REF] Zázvorka | Thermal skyrmion diffusion used in a reshuffler device[END_REF], or by using unsymmetrical nanotracks with designed etches along the edge [START_REF] Zhang | Stochastic computing implemented by skyrmionic logic devices[END_REF] have been implemented.

These previous work focus on the implementations of the basic AND or MUX logic operations in SC, future work may explore the activation circuits exploring skyrmion dynamics to achieve full skyrmion-based SC system. 

Conclusion

We implement a skyrmion-based TRNG utilizing the thermal induced skyrmion Brownian motion property. Random number sequence with a 50% distribution can be obtained, without additional excitations, which is more energy-efficient than other TRNG designs. The NIST test results indicate that the random numbers from our TRNG have fairly good randomness. Furthermore, our proposed TRNG can be adjusted to produce an output sequence with the desired probability of "0" and "1" using the anisotropy gradient. This work provides a new perspective to implement efficient TRNG for information processing and non-von Neumann computing paradigms. This design can be applied into the skyrmion based stochastic computing applications.

Chapter 4

Building spintronics neuromorphic systems with Neural ODEs

Artificial intelligence refers to a machine's ability to learn, adapt, and solve complex problems automatically that benefit society.

Amit Ray

CHAPTER 4: BUILDING SPINTRONICS NEUROMORPHIC SYSTEMS WITH NODES

T HIS CHAPTER presents a modeling frame for dynamical physical system based on the Neu- ral Ordinary Differential Equations (ODEs). We show that a dynamical neural network, trained on a minimal amount of data, can predict the behavior of spintronic devices with high accuracy and an extremely efficient simulation time, compared to the micromagnetic simulations that are usually employed to model them. For this purpose, we re-frame the formalism of Neural ODEs to the constraints of spintronics: few measured outputs, multiple inputs and internal parameters. We demonstrate with Neural ODEs an acceleration factor over 200 compared to micromagnetic simulations for a complex problem -the simulation of a reservoir computer made of magnetic skyrmions (20 minutes compared to three days). In a second realization, we show that we can predict the noisy response of experimental spintronic nanooscillators to varying inputs after training Neural Ordinary Differential Equations on five milliseconds of their measured response to a different set of inputs. Neural ODEs can therefore constitute a disruptive tool for developing spintronic applications in complement to micromagnetic simulations, which are time-consuming and cannot fit experiments when noise or imperfections are present. Our approach can also be generalized to other electronic devices involving dynamics.

Background

Spintronics offers multiple functionalities that are exploited in industrial applications for sensing and memory storage [START_REF] Bhatti | Spintronics based random access memory: a review[END_REF][START_REF] Sato | Two-terminal spinorbit torque magnetoresistive random access memory[END_REF][START_REF] Hirohata | Review on spintronics: Principles and device applications[END_REF][START_REF] Dieny | Opportunities and challenges for spintronics in the microelectronics industry[END_REF], and are currently being studied for communications [START_REF] Ebels | Spintronic based rf components[END_REF] and information processing [START_REF] Marković | Physics for neuromorphic computing[END_REF][START_REF] Grollier | Neuromorphic spintronics[END_REF][START_REF] Zázvorka | Thermal skyrmion diffusion used in a reshuffler device[END_REF][START_REF] Borders | Integer factorization using stochastic magnetic tunnel junctions[END_REF][START_REF] Leroux | Radio-frequency multiply-and-accumulate operations with spintronic synapses[END_REF][START_REF] Jungwirth | The multiple directions of antiferromagnetic spintronics[END_REF]. The rich functionality of spintronic devices stems from the intricate magnetic textures from which they are formed, and the complex dynamical modes that can be excited in these textures. Spintronic systems, which have typical dimensions of a few nanometers to a few micrometers, cannot indeed be considered as formed by a single spin and have a large number of hidden variables: all the local magnetizations in the device. These spin textures can be dynamically excited by a wealth of physical quantities: magnetic fields, electrical currents or voltages, temperature, and pressure, all of which giving rise to different responses.

The dominant approach to predicting the complex behavior of spintronic devices are micromagnetic simulations. They divide the structures into nanometer-sized cells, and simulate the spin dynamics of each cell using the Landau-Lifshitz-Gilbert equation, taking into account local and non-local interactions between the micromagnetic cells [START_REF] Abert | Micromagnetics and spintronics: models and numerical methods[END_REF][START_REF] Leliaert | Fast micromagnetic simulations on gpu-recent advances made with[END_REF][START_REF]Micromagnetism applied to magnetic nanostructures. Introduction to Magnetic Random-Access Memory[END_REF][START_REF] Leliaert | Tomorrow's micromagnetic simulations[END_REF][START_REF] Chang | Fastmag: Fast micromagnetic simulator for complex magnetic structures[END_REF]. This technique, therefore, involves a considerable number of coupled differential equations and requires very long simulation times, easily reaching weeks in time-dependent experiments or in micrometer-scale devices. Beyond their long simulation time, micromagnetic simulations come with essential limitations. The simulations have to be re-executed from scratch when the input parameters of the template need to be modified. Also, micromagnetic simulations can almost never fit quantitatively the results of an experiment. In a real experiment, the geometry of
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a nanostructure is indeed always approximate, the material parameters can never be perfectly controlled and may possess specific structural inhomogeneities. Experimental results are also easily affected by the injection of noise, the details of the measurement setups, and unknown external factors, which are challenging to consider in the micromagnetic modeling process.

A new tool that could accurately predict experiments, even when all these non-idealities are present, would be invaluable. For example, experiments in the field of neuromorphic spintronics [START_REF] Torrejon | Neuromorphic computing with nanoscale spintronic oscillators[END_REF][START_REF] Romera | Vowel recognition with four coupled spin-torque nano-oscillators[END_REF][START_REF] Grollier | Neuromorphic spintronics[END_REF] currently involve months-long experimental campaigns to optimize all the inputs of the systems, a development time that could be reduced radically with an appropriate modeling tool. In industry, the development of spin-torque magnetoresistive memory (ST-MRAM) also involves a considerable amount of micromagnetic simulations and experiments to optimize device parameters [START_REF] Park | A novel integration of stt-mram for on-chip hybrid memory by utilizing non-volatility modulation[END_REF].

The progress of artificial neural networks provides an alternative road to simulate the behavior of spintronic systems and predict the results of experiments. In recent years, machine learning has been increasingly used in physics, for example, for discovering new materials and learning physical dynamics from time-series data [START_REF] Kristof T Schütt | Quantum-chemical insights from deep tensor neural networks[END_REF][START_REF] Daniel P Tabor | Accelerating the discovery of materials for clean energy in the era of smart automation[END_REF][START_REF] Garcon | Deep neural networks to recover unknown physical parameters from oscillating time series[END_REF][START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF][START_REF] Chmiela | Machine learning of accurate energy-conserving molecular force fields[END_REF][START_REF] Chmiela | Machine learning of accurate energy-conserving molecular force fields[END_REF][START_REF] Lutter | Deep lagrangian networks: Using physics as model prior for deep learning[END_REF][START_REF] Tsai | Learning molecular dynamics with simple language model built upon long short-term memory neural network[END_REF][START_REF] Yao Qin | A dual-stage attention-based recurrent neural network for time series prediction[END_REF][START_REF] Ziat | Spatio-temporal neural networks for space-time series forecasting and relations discovery[END_REF][START_REF] Papp | Nanoscale neural network using nonlinear spin-wave interference[END_REF][START_REF] Hy Kwon | Magnetic hamiltonian parameter estimation using deep learning techniques[END_REF]. In the field of nanomagnetism and micromagnetics, deep neural networks are used to extract microstructural features in magnetic thin film elements [START_REF] Gusenbauer | Extracting local nucleation fields in permanent magnets using machine learning[END_REF][START_REF] Hy Kwon | Searching magnetic states using an unsupervised machine learning algorithm with the heisenberg model[END_REF][START_REF] Wang | Machine learning magnetic parameters from spin configurations[END_REF][START_REF] Corte | Exploring neural network training strategies to determine phase transitions in frustrated magnetic models[END_REF], and to explore materials with ease [START_REF] Katsikas | Machine learning in magnetic materials[END_REF]. Refs. [START_REF] Kovacs | Learning magnetization dynamics[END_REF][START_REF] Schaffer | Machine learning methods for the prediction of micromagnetic magnetization dynamics[END_REF][START_REF] Exl | Prediction of magnetization dynamics in a reduced dimensional feature space setting utilizing a low-rank kernel method[END_REF] use a sophisticated combination of machine learning techniques to predict the magnetization dynamics of magnetic thin film elements over one nanosecond. However, the power of artificial neural networks has never been used to model, fit and forecast the long-term experimental behavior of solid-state nanocomponents. In this context, a recent type of neural network, Neural Ordinary Differential Equations (ODE), has great potential for modeling physical nanodevices, as it is specialized in predicting the trajectories of dynamical systems (Fig. 4.1c).

Neural ODEs, initially introduced in [START_REF] Ricky Tq Chen | Neural ordinary differential equations[END_REF], are ODE models ẏ = f θ (y, t ), where the function f is expressed by a neural network with parameters θ, which, instead of being explicitly defined, can be learned in a supervised manner. The machine learning process identifies the θ val- Unfortunately, in their original form, Neural ODEs cannot be applied to the simulation of spintronic systems and solid-state devices in general, due to two major challenges:

• Neural ODEs require measuring the evolution of all the system variables, whereas in experiments and most applications, a single physical quantity is typically measured.

• Neural ODEs are not designed for dealing with external time-varying inputs.

In this work, we solve both issues and show that Neural ODEs can accurately predict the behavior of a non-ideal nanodevice, including noise, after training on a minimal set of mi-cromagnetic simulations or experimental data, with new inputs and material parameters, not belonging to the training data.

In this work, we first explain how we modified Neural ODE in order to be able to train the whole set of parameters based on the temporal evolution of a single physical variable of the nanodevice under the effect of fluctuating inputs. For this purpose, we have integrated in the Neural ODE framework the idea of the embedding theorem for the reconstruction of the state space from a time series. We then compare in detail the results obtained by this method with micromagnetic simulations. We demonstrate that Neural ODEs can accurately predict the complex evolution of a skyrmion-based reservoir computer, in a significantly reduced time compared to micromagnetic simulations (20 minutes versus three days). Finally, we demonstrate that this state-of-the-art deep learning technique for time series modeling can be applied to complex real-world physical processes. We train Neural ODEs to predict the results of real experiments on spin-torque nano-oscillators. These experiments would be impossible to model with micromagnetic simulations, as they would require hundreds of years of simulation. Our results show that, on the other hand, Neural ODEs quickly and accurately predict the outcome of experiments, including the associated noise. 

Extension of the Neural ODEs formalism to deal with incomplete information of dynamics

Neural ODEs take the conventional form of ordinary differential equations ẏ = f θ (y, t ), but where the function f θ is a neural network (Fig. 4.1d). The vector θ contains the parameters of this neural network, i.e., its synaptic weights and neuron thresholds. The vector y(t ) describes the different state variables of the system: the function f θ is therefore a neural network that takes y as input and provides the derivative ẏ as output. Once an initial value of y is given, the system dynamics is computed automatically by calling an ODE solver. Training a Neural ODE model, i.e., optimizing the θ parameters, normally requires the knowledge of the evolution of all these state variables over a collection of demonstrative examples [START_REF] Ricky Tq Chen | Neural ordinary differential equations[END_REF]. After the training process has been completed, the Neural ODEs can be used to predict unseen data.

This conventional technique for training Neural ODEs has strong limitations for predicting the behavior of physical systems. It is often impossible to know all the state variables relevant to the dynamics of a physical system. For example, in the spintronic structure of Fig. 4.1b, only the mean magnetization ∆m z is known. It can be considered the "output" of our nanodevice and used as parameter y 1 within the Neural ODE. However, y 1 = ∆m z results from complex magnetic configurations and dynamics that cannot all be determined experimentally. Additional parameters are necessary to describe this underlying dynamics, which may be represented by unknown internal variables: ỹ2 to ỹm .

Here we develop a new scheme to train Neural ODEs in this context of real experiments where, in practice, the knowledge of the system is always limited. Our idea originates from the insight that it is possible to convert a set of first-order differential equations in multiple variables into a single higher-order differential equation in one variable. For example, let us consider the case with a single hidden variable ỹ2 ,

ẏ1 ẏ2 = a y 1 + b ỹ2 c y 1 + d ỹ2 . ( 4.1) 
By substituting ỹ2 and its derivative ẏ2 calculated from the first ODE into the second one, a second-order ODE with variable y 1 can be derived as ÿ1 = (a + d ) ẏ1 + (bcad )y 1 , where ỹ2 no longer appears. This equation is equivalent to the following ODE in terms of y 1 and

y 2 = ẏ1 ẏ1 ẏ2 = y 2 (a + d )y 2 + (bc -ad )y 1 . ( 4.2) 
This simple derivation suggests that an appropriate way for training a Neural ODE of m internal variables where only one variable y 1 is accessible is to train a Neural ODE where the state vector y is composed of y 1 and its (m -1) th -order derivatives (see Appendix B.7 for a discussion in arbitrary dimension). The drawback of using higher-order derivatives (Time-Derivative Figure 4.2: Extending the Neural ODE formalism to predict spintronic results. A wide range of dynamical systems can be modeled using ODEs, such as the simple pendulum motion, skyrmion-based devices, and spintronic oscillator dynamics. However, in real-world applications, the underlying physical dynamics are not always fully measurable, or accessible, which means that the dynamics of some hidden parameters in ODEs models are unknown. Our goal is to model a Neural ODE, ẏ = f θ (y, e(t ), t ), where f is defined by a neural network and e(t ) is the time-dependent input into the system, using the incomplete information of the system dynamics. method) is the sensitivity to noise of derivatives, resulting in a relative noise level much larger than in the original signal (see Appendix B.7). To make the best use of the original informa-tion and to avoid any preprocessing procedures, in this work, we employ several successive time-delayed states as an alternative to derivatives: we consider the input vector

y(t ) = (y 1 (t ), y 1 (t + ∆t d ), y 1 (t + 2∆t d ), . . . , y 1 (t + (k -1)∆t d )), (4.3) 
where k is the dimension of the new vector and ∆t d denotes a single delay time. Here we chose a positive ∆t d value in our work. Using a negative ∆t d value, as is usually done in the time-delay embedding literature, leads to equivalent results. These time-delayed variables contain all the information provided by the high-order derivatives, but are less prone to noise.

This scheme, which we introduced here in a qualitative manner, can also be justified mathematically by using a formalism known as the embedding theorem (see Appendix B.8). More specifically, theorems by Takens [START_REF] Takens | Detecting strange attractors in turbulence[END_REF] and by Sauer et al. [START_REF] Sauer | Embedology[END_REF] state that if the sequence y(t ) consists of scalar measurements of the state vector of a dynamical system, then under certain genericity assumptions, the time delay embedding provides a one-to-one image of the original set, provided k is large enough. The prevalent application of employing delay embedding is to make short term predictions of nonlinear time series [START_REF] Sugihara | Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series[END_REF][START_REF] Norman H Packard | Geometry from a time series[END_REF]. The combination of Neural ODE with the delay embedding theorem enables making predictions for nonlinear time series with arbitrary lengths in a precise way, because the neural network provides a strong language to describe the system non-linearity and thus the physical pattern can be captured through training with a large number of observed data.

The use of delayed variables may seem equivalent to the use of time derivatives, as the latter are typically calculated by taking linear combinations of discrete samples of the data. 

Extension of the Neural ODEs formalism to deal with time-varying external inputs

The second challenge for employing Neural ODEs for predicting the behavior of physical systems is to include time-varying external inputs, such as the anisotropy and the DMI changes in Figs. 4.1b-d. In this case, the time derivative of the y variable is not only dependent on its current state, but also related to the input at the current step, a situation that cannot be described in the traditional form of Neural ODE.

Appendix B.7 details how such inputs can be included in our approach. This note shows that, mathematically, an ODE system ẏ = f θ (y, e(t ), t ) with the state vector y and the input e(t ) of dimension m can be converted into an m th -order ODE in the first variable y 1 , depending on e(t ) and the first to (m -1) th -order derivatives of e(t ). Accordingly, a system with time-varying input can be modeled by augmenting the delay vector of equation 

Benchmark test for Reservoir Computing

We now show that the Neural ODEs trained in the previous section can be used without any change of parameters to predict the response of the spintronic system in a different setting, and with inputs that vary in a very different way, with computation time considerably reduced compared to micromagnetic simulations. We focus on a neuromorphic task called reservoir computing that exploits the intrinsic memory of complex dynamical systems, and apply it to the case of reservoirs made of single and multiple skyrmion textures [START_REF] Huang | Magnetic skyrmion-based synaptic devices[END_REF][START_REF] Song | Skyrmion-based artificial synapses for neuromorphic computing[END_REF][START_REF] Pinna | Reservoir computing with random skyrmion textures[END_REF]. The reservoir input corresponds to a chaotic time series (Mackey-Glass chaotic series, see Methods), and the goal of the task is to predict the next steps in the time series (Fig. 4.3a). The response of spintronic devices to such time series is particularly long to simulate with micromagnetic simulations. We simulated a reservoir computing experiment using the Neural ODEs trained in the previous section (which required 20 minutes of simulation time), as well as using micromagnetic simulations, as a control (requiring four days of simulation time). magnetic simulations for the one-skyrmion system and multi-skyrmions system).

Modeling the experimental spintronic oscillators for reservoir computers

We now apply our approach to modeling real experimental data, obtained using the setup of [START_REF] Torrejon | Neuromorphic computing with nanoscale spintronic oscillators[END_REF]. This work showed experimentally that a nanoscale spintronic oscillator can be used as a reservoir computer to achieve a spoken digit recognition task (based on a principle similar to what we implemented in the skyrmion system). In this regime, the nano-oscillator is functioning as a nonlinear node to map the input signal into a higher dimensional space in which the input can be linearly separable (see Fig. ranging from one to four (a smaller MSE means a higher accuracy). The models with dimension two or greater reach a much smaller loss than a model of dimension one. This result is consistent with the conventional modeling of these devices through coupled amplitude and phase equations, requiring therefore at least a two-dimension ODE [START_REF] Romera | Vowel recognition with four coupled spin-torque nano-oscillators[END_REF]. It is also remarkable that the losses can be extremely close to zero, but not arbitrarily close. The impossibility of reaching zero loss can be attributed to the existence of noise in the experimental data, whereas the Neural ODE is entirely deterministic.

Next, the trained model can be utilized to predict the results of the spoken digit recognition experiment. Fig. 4.5 reports results obtained using the Neural ODE of dimension k = 2.

The aim of the task, described in Methods, is to classify the ten digits spoken by five different female speakers. Realizing this task experimentally involves a week-long experimental campaign, while it can be simulated in two hours using a trained Neural ODE. This task can also not be simulated by micromagnetic simulations, as it would require 716 years of simulation time on our reference GPU (this number was extrapolated based on the simulation of the dy- We can now see how these results translate in terms of spoken digits recognition rate. Fig. 4.5c

shows the recognition rate on spoken digits as a function of the number of utterances used. We see that the results obtained by a Neural ODE without noise do not match those of experiments.

Incorporating noise within the Neural ODE is essential to predict the experimental data (this is particularly the case here, as reservoir computing is very susceptible to the disturbance of noise). To do this, we can rely on the five-millisecond training data. We extract the error distribution by computing the difference between the output trajectory predicted by Neural ODE and the experimental measurement and fit this error to a Gaussian law (Fig. Interestingly, the noise plays a role of suppressing the over-fitting of the output states from reservoir, actually improving the recognition rate. Conversely, we saw that task performance deteriorates with the injection of noise if the data has been preprocessed with the spectrogram filtering method, indicating that the output states from reservoir is under-fitted. This difference arises because the preprocessing procedure also contributes to the nonlinear transformation of
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input signal, and the cochlear method of preprocessing provides more nonlinearity than that of the spectrogram method [START_REF] Torrejon | Neuromorphic computing with nanoscale spintronic oscillators[END_REF] (more information about the impact of noise, and in particular in the spectrogram situation, is provided in Appendix B.6). It is remarkable that the Neural ODE augmented with noise is able to predict so subtle behaviors, which we were not able to realize from experimental data only.

Modeling abrupt changes of a spin-valve nanopillar

In this Note, we apply our method into modeling a situation, where significantly different behavior types may occur in the same system, depending on the input parameters. We have simulated a situation where a nanostructure may switch or generate sustained oscillations according to the value of the applied external magnetic field.

The training data is obtained from micromagnetic simulations of a spin-valve nanopillar, under the influence of a spin current polarized out-of-plane, and an out-of-plane mag- For this purpose, we use a three-dimensional vector containing the information (m x , m y , m z ). A total length of 500-nanoseconds of dynamics is used to train the system. The trained results of m z (dashed orange curve) and m x (dashed olive curve), shown in Fig. 4.6a, demonstrate excellent agreement with the micromagnetic simulations.

In the test dataset, we apply a time-varying magnetic field at three different initial conditions of magnetization, covering a wide range of situations where the system is expected to exhibit either switching or sustained oscillations.

• Firstly, the magnetization is aligned in the positive z direction by applying an external field of µ 0 H = 0.65 T initially. A subsequent decreasing field is applied till a constant value to switch the magnetization (e.g., µ 0 H = -0. • Secondly, the magnetization is aligned in the negative z direction by applying an external field of µ 0 H = -0.5 T initially, a subsequent decreasing field is applied till a constant value to switch the magnetization (e.g., µ 0 H = 0.7 T) or to generate a sustained oscillation (e.g., • In the third scenario, no external field and only the constant electric current is applied initially. In this situation, the system exhibits self-sustained magnetization oscillations.

A subsequent decreasing or increasing field is applied till a constant value to switch the magnetization (e.g., µ 0 H = -0.5, 0. 

Discussion

Our approach allows learning the underlying dynamics of a physical system from timedependent data samples. Many works today seek to use deep neural networks to predict results in physics. They are used to find abstract data representations [START_REF] Kristof T Schütt | Quantum-chemical insights from deep tensor neural networks[END_REF], recover unknown

CHAPTER 4: BUILDING SPINTRONICS NEUROMORPHIC SYSTEMS WITH NODES

physical parameters [START_REF] Garcon | Deep neural networks to recover unknown physical parameters from oscillating time series[END_REF], or discover the specific terms of functions [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF][START_REF] Chmiela | Machine learning of accurate energy-conserving molecular force fields[END_REF][START_REF] Lutter | Deep lagrangian networks: Using physics as model prior for deep learning[END_REF]. Other research uses recurrent neural network-based models [START_REF] Tsai | Learning molecular dynamics with simple language model built upon long short-term memory neural network[END_REF][START_REF] Yao Qin | A dual-stage attention-based recurrent neural network for time series prediction[END_REF][START_REF] Ziat | Spatio-temporal neural networks for space-time series forecasting and relations discovery[END_REF] to learn and make predictions. These methods usually incorporate prior knowledge on the physical system under consideration, such as molecular dynamics [START_REF] Chmiela | Machine learning of accurate energy-conserving molecular force fields[END_REF][START_REF] Tsai | Learning molecular dynamics with simple language model built upon long short-term memory neural network[END_REF], quantum mechanics [START_REF] Kristof T Schütt | Quantum-chemical insights from deep tensor neural networks[END_REF], geospatial statistics [START_REF] Ziat | Spatio-temporal neural networks for space-time series forecasting and relations discovery[END_REF], or kinematics [START_REF] Lutter | Deep lagrangian networks: Using physics as model prior for deep learning[END_REF] to help their models train faster or generalize. Few of these discrete models manage to include the relevant driving series to make predictions. Neural ODEs hold many advantages over the conventional neural networks used in these works: backpropagation occurs naturally by solving a second, augmented ODE backward in time; stability is improved with the use of adaptive numerical integration methods for ODEs; constant memory cost can be achieved by not storing any intermediate quantities of the forward pass; continuously-defined dynamics can naturally incorporate data which arrives at arbitrary times. However, until our work, two challenges remained to apply Neural ODEs to the prediction of the behavior of physical systems: the impossibility, in most practical cases, to acquire the dynamics of the set of state variables of the system, but also the need to take into account the external inputs that affect their dynamics.

Our work addresses both issues, and before ours, other works have attempted to solve the first issue. One way is to introduce the inductive bias via the choice of computation graphs in a neural network [START_REF] Lutter | Deep lagrangian networks: Using physics as model prior for deep learning[END_REF][START_REF] Ayed | Learning dynamical systems from partial observations[END_REF][START_REF] Tuor | Constrained neural ordinary differential equations with stability guarantees[END_REF][START_REF] Cranmer | Lagrangian neural networks[END_REF][START_REF] Finzi | Simplifying hamiltonian and lagrangian neural networks via explicit constraints[END_REF][START_REF] Manuel A Roehrl | Modeling system dynamics with physics-informed neural networks based on lagrangian mechanics[END_REF][START_REF] Greydanus | Hamiltonian neural networks[END_REF][START_REF] Desmond Zhong | Symplectic ode-net: Learning hamiltonian dynamics with control[END_REF]. For example, by incorporating the prior knowledge of Hamiltonian mechanics [START_REF] Greydanus | Hamiltonian neural networks[END_REF][START_REF] Desmond Zhong | Symplectic ode-net: Learning hamiltonian dynamics with control[END_REF] or Lagrangian Mechanics [START_REF] Cranmer | Lagrangian neural networks[END_REF][START_REF] Finzi | Simplifying hamiltonian and lagrangian neural networks via explicit constraints[END_REF][START_REF] Manuel A Roehrl | Modeling system dynamics with physics-informed neural networks based on lagrangian mechanics[END_REF] into a deep learning framework, it is possible to train models that learn and respect exact conservation laws. These models were usually evaluated on systems where the conservation of energy is important. Similarly, another strategy to deal with a dataset with incomplete information is through augmentation of original dynamics [START_REF] Norcliffe | On second order behaviour in augmented neural odes[END_REF][START_REF] Massaroli | Dissecting neural odes[END_REF]: extensions of Neural ODEs at the second-order [START_REF] Norcliffe | On second order behaviour in augmented neural odes[END_REF] or higherorder [START_REF] Massaroli | Dissecting neural odes[END_REF], can learn the low-dimensional physical dynamics of the original system. However, nearly all the proposals mentioned above require the knowledge of additional dynamical information, such as higher-order derivatives, or extra processing of the original low-dimensional dynamics, which is not appropriate for dealing with noisy time series. Neural ODE integrated with external inputs has also been studied in some previous literature [START_REF] Golany | Ecg ode-gan: Learning ordinary differential equations of ecg dynamics via generative adversarial learning[END_REF][START_REF] Dupont | Augmented neural odes[END_REF][START_REF] Lee | Parameterized neural ordinary differential equations: Applications to computational physics problems[END_REF]. Augmented

Neural ODEs [START_REF] Dupont | Augmented neural odes[END_REF] solve the initial value problem in a higher-dimensional space, by concatenating each data point with a vector of zeros to lift points into the additional dimensions. This strategy avoids trajectories intersecting each other, and thus allows modeling more complex functions using simpler flows, while achieving lower losses, reducing computational cost, and improving stability, and generalization. Parameterized Neural ODE [START_REF] Lee | Parameterized neural ordinary differential equations: Applications to computational physics problems[END_REF] extends Neural ODEs to have a set of input parameters that specify the dynamics of the Neural ODEs model such that the dynamics of each trajectory are characterized by the input parameter instance.

We emphasize here that our idea is closely related to the classical theorem of time delay embedding for state space reconstruction, where the past and future of a time series containing the information about unobserved state variables can be used to define a state at the present time. The theorem was widely applied for forecasting in many real-world engineer- Our method also provides a significant improvement in time efficiency compared to conventional simulation platforms. For example, the Mackey-Glass prediction task with a reservoir of skyrmions takes only 20 minutes for the trained neural ODE, while the micromagnetic simulations need three days (five days) to run it on the one-skyrmion system (multi-skyrmion system). To model the dynamics of the spintronic oscillator using real experimental data, output in room-temperature switching of magnetic tunnel junction [START_REF] Devolder | Single-shot time-resolved measurements of nanosecond-scale spin-transfer induced switching: Stochastic versus deterministic aspects[END_REF] or domain wall motion in some regimes [START_REF] Meier | Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses[END_REF]. Neural ODEs are adapted for systems obeying deterministic equations.

Future work regarding the modeling of stochastic behaviors of a physical system using Neural ODE remains to be explored, which could rely on recent developments of stochastic Neural ODE theory [START_REF] Volokhova | Stochasticity in neural odes: An empirical study[END_REF][START_REF] Salvi | Neural stochastic partial differential equations[END_REF].

In conclusion, we have presented an efficient modeling approach for physical ODE-based systems, and highlighted its excellent performance on modeling real-world physical dynamics. The training data can be a single observed variable, even if the system features higherdimensional dynamics. We have shown that the method can not only be applied to model ideal data from simulations, but that it is also remarkably accurate for modeling real experi- Mackey-Glass prediction task In a chaotic system, small perturbations can result in radically different outcomes. The prediction of a chaotic system is thus a problematic task. As a chaotic system, the Mackey-Glass equation is generated from a delay differential equation

(DDE), d x(t ) d t = βx(t -τ) 1 + x 10 (t -τ) -γx(t ), (4.4) 
where x(t ) is a dynamical variable, β and γ are constants. Chaotic time series can be achieved with β = 0.2, γ = 0.1 and τ = 17 [START_REF] Penkovsky | Theory and modeling of complex nonlinear delay dynamics applied to neuromorphic computing[END_REF].

In the main paper, our goal is to predict the Mackey-Glass time series at a future time step:

the preprocessed input signal at the current time is fed into the reservoir, which maps it nonlinearly into higher-dimensional computational spaces (see Fig. More precisely, the dataset for the prediction task is prepared in the following way. First, Eq.4.4 is solved for 100, 000 integration time steps with d t = 0.1. Before the data are processed by the reservoir, they are downsampled with a downsampling rate of 10 to remove the possible redundancy in the input data [START_REF] Penkovsky | Theory and modeling of complex nonlinear delay dynamics applied to neuromorphic computing[END_REF]. Thus, we obtain 10, 000 data points in total. The first 

= W i n • M o ∈ R N r ×L .
Then M e is column-wise flattened into a vector e ∈ R L•N r and then fed into the reservoir of skyrmion systems.

Each of the value from e, multiplied by a voltage of 1.6 V (∆K u = 0.16MJ/m 3 ) for the one skyrmion system and a voltage of 1 V (∆K u = 0.1MJ/m 3 ) for the multi-skyrmions system, is provided as preprocessed input into the reservoir (modeled by a trained Neural ODE or Mumax)

for t st ep = 4p = 10 ps to make sure there is an effect of the input on the reservoir dynamics. In the following, the reservoir dynamics is recorded for every t st ep to form a vector of M y ∈ R L•N r , which is then unflattened into a response matrix M x ∈ R N r ×L for output reconstruction. We use 

W out = (A • A T + µI ) -1 (A • B T ), (4.5) 
where µ = 10 -4 is used as regularization parameter. This frequency signal is then processed by multiplying a mask matrix W i n containing N f × N θ random binary values for each interval to obtain N θ × N f values in total as input to the oscillator. The number of virtual neurons is N θ = 400. Each preprocessed input value is consecutively applied to the oscillator as a constant current for a time interval θ = 100 ns. For the classification task, the response matrix S consisting of the output of all neuron responses for all of the N τ intervals from N utterances of ten digits of five speakers is used for training. The target matrix Y contains the targets for each interval, which is a vector of 10 with the appropriate digit equaling to 1 and the rest equaling to 0. The output matrix W out is constructed by using the linear Moore-Penrose method,

W out = Y S † , (4.7) 
where † denotes the pseudo-inverse operator. For the evaluation on the testing set of the remaining (10-N ) utterances, the ten reconstructed outputs corresponding to one digit are averaged over all of the time intervals of τ of one word, and the digit is identified by taking the maximum value of the ten averaged reconstructed outputs. The recognition rate is obtained by calculating the word success rate. For the recognition rate of each N , there is 10!/(N !(10 -N )!) different ways to pick the N training set; therefore, we average the results from all the different ways to obtain the final recognition rate (cross-validation). The experimental details, the preprocessing and post-processing procedures for the spoken digit recognition task can be found in [START_REF] Torrejon | Neuromorphic computing with nanoscale spintronic oscillators[END_REF].

Experimental measurements on spintronic oscillator

The experimental implementation for the spoken digit recognition task is illustrated in Fig. 4.4a. The preprocessed input signal is generated by a high-frequency arbitrary-waveform generator and injected as a current through the magnetic nano-oscillator. The sampling rate of the source is set to 200 MHz (20 points per interval of time θ). The bias conditions of the oscillator are set by a direct current source (I DC )

and an electromagnet applying a field (µ 0 H ) perpendicular to the plane of the magnetic layers.

For the cochlear method, I DC = 7mA, µ 0 H = 448 mT. For the spectrogram method, I DC = 6mA, µ 0 H = 430 mT. See [START_REF] Torrejon | Neuromorphic computing with nanoscale spintronic oscillators[END_REF] for more details. 

Prediction of experimental data

Simulation machine specifications

For micromagnetic simulations, we used an Nvidia GeForce GTX 1080 graphics processor unit. For Neural ODE simulations, we used an Intel Xeon E5-2640 CPU with 2.5 GHz base clock frequency and 3.0 GHz maximum turbo frequency.

Conclusions and future work

tude Modulation functionality of a skyrmion has also been studied, which shows great applicability potential in future communication systems, and may provide guidance for the design of skyrmion-based high-frequency magnonic neuromorphic devices.

• We have presented a compact LIF spiking neuron device by exploiting the current-driven skyrmion dynamics in a wedge-shaped nanotrack. We show that the mechanism and behavior of the skyrmion motion can be explored to implement an LIF spiking neuron device with the tunable temporary location of the skyrmion behaving like the analog membrane potential of a biological neuron. Such a compact artificial neuron opens up a new way for energy-efficient and high-density implementation of neuromorphic computing hardware.

• We have demonstrated a skyrmion based TRNG for energy efficient stochastic Computing applications. We implement a probability-adjustable TRNG based on continuous skyrmion thermal Brownian motion in a confined geometry at room temperature. A desired probability for bit "0" and bit "1" can be acquired by adding an anisotropy gradient in the device through VCMA effect.

The works of chapter 3 have shown us the potential of micromagnetic simulations, but also their long simulation times, which limits their use beyond small devices and short time scales.

In Chapter 

Perspectives

To exploit the full potential of skyrmion devices for neuromorphic computing, some practical issues are yet to be addressed.

First, from an experiment perspective, although skyrmions have been observed or proposed to exist in various magnets due to different mechanisms, such as magnetic dipolar interaction, DM interaction, frustrated exchange interaction, the compatibility of existing system hosting magnetic skyrmions with large-scale CMOS integration technologies are yet to be investigated experimentally because most current demonstration experiments are focused on the realization of single-device level functionalities.

Second, from a simulation perspective, hybrid simulation framework that integrates the underlying physics of the device, circuit, architectures, and algorithms needs to be explored. It is critical to perform the device-circuit co-design so as to facilitate designers to meet systemlevel optimization goals and design requirements. Algorithm-architecture co-design allows system architects to analyze the performance such as energy cost, and reliability characteristics of skyrmionic neuromorphic computing system prior to integration into electronic systems. In this regard, the approach proposed in Chapter 4 may provide new ideas in designing the simulation framework by harnessing the latest deep learning methods.

From a broader perspective regarding experimental demonstrations of neuromrophic computing with spintronics systems, there are still challenges in scaling up spintronic systems for useful applications such as pattern recognition tasks. Firstly, hardware implementation of neural network requires rapid and precise readout of the signal variations. However, the current design usually relies on magnetic tunnel junctions to read out the resistance changes, which are very small and difficult to read quickly compared to other memory technologies.

For skyrmion-based devices, this is particular true as skyrmions are usually highly unstable to thermal fluctuations so that mechanisms to trap the individual skyrmions are needed. On the other hand, implementing neural network that can be trained by the backpropagation algorithms require highly linear and symmetric weight variations. Ref. [START_REF] Song | Skyrmion-based artificial synapses for neuromorphic computing[END_REF] has demonstrated a three-layer fully connected neural network system composed of experimental skyrmion based synapses device capable of performing a handwritten recognition benchmark test. Though the skyrmion-based synapse may present a good linear weight distribution, as the weight depends directly on the number of accumulated skyrmions, the potentiation and depression processes did not show complete symmetry between each other and linear relation with respect to the number of pulses, thus further material optimization may be needed to achieve a complete linearity depending on the number of skyrmions. The skyrmion-based neuron device for spiking neural networks may also be promising if device geometry engineering and material optimization techniques can mature enough to shrink the skyrmions size down to a few nanometers to decrease granularity.

As discussed before, the initial idea of neuromorphic computing is to achieve energy effi-ciency compared to traditional approaches. Therefore, it is vital to minimize the energy consumption of individual devices at the device level. In this context, stochastic computing has been proposed to achieve a tradeoff between hardware efficiency and computing performance.

With recent developments in SC techniques, however, the performance of SC neural network has substantially been improved, making it comparable with conventional binary designs yet by utilizing less hardware [START_REF] Liu | A survey of stochastic computing neural networks for machine learning applications[END_REF]. Based on the demonstration of the skyrmion-based TRNG, which serves as a fundamental element for generating stable random sequence, the next step could be building a fully skyrmion-based stochastic computing neural network.

By and large, neuromorphic computing is a complex topic and is a rapidly evolving field involving material science, physical science, neuroscience, computer science and machine learning. Many approaches based on different technologies, ranging from traditional CMOS to emerging new technologies such as resistive switching synapses with CMOS neurons, photonic synapses and neurons, are currently being tested. The specific material and physical principles for future neuromorphic hardware are still pending to decide.

Ultimately, spintronics could be advantageous in the development of neuromorphic computing and promises to lead to profound applications of artificial intelligence. It has shown great potential in integrating computation and memory. It also offers rich physical mechanisms for various computational modalities to be explored. With the recent progress in demonstrating proof-of-concept neuromorphic computing implementations, developing large scale brain-inspired spintronic systems is highly desirable. 

B.2 Training Neural ODE using incomplete noisy data

This note investigates the training of Neural ODEs over noisy data. The strategy for treating noisy dynamical system comes from the idea, present in the time-delay embedding for state space reconstruction, that increasing the dimension of the reconstructed space can typically decrease the distortion of noise distribution and reduce the amplification of noise level when the delay embedding is transformed to the original state space [START_REF] Casdagli | State space reconstruction in the presence of noise[END_REF]. Normally, the prediction errors depend on both the noise amplification and the estimation error, which depends on the method of approximation, i.e., the model itself. For most good approximation schemes, the estimation error can be close to zero in the limit of a large number of data points. The prediction errors in this limit are entirely due to the noise. Therefore, by increasing the dimension of the delay vector, a more precise model can be learned.

We use the simulation data of the one-skyrmion system as a demonstration. We obtain is the MSE between the testing trajectory and the true trajectory without noise. The MSE approaches zero, which justifies a good training system, as k increases especially for the low noise system (e.g., for σ noi = 0.1). However, as the noise level grows, increasing the k value still helps in making more precise prediction with smaller MSE value, it becomes more difficult to lower the error to zero compared to the true trajectory even with a relatively large k value. A total number of data points n = 15, 000 are used for training and testing, respectively. The Neural ODEs used in this note featured N h = 50 units per hidden layer.

Still, the effect of noise is very complicated in many real world applications, the demonstration presented here provides a perspective of the possibility of making better prediction when only limited information of the noise is known. There are still many other ways to help distinguish the real system dynamics from the dynamics contaminated with noise, for example, by conjoining different filters with the reconstruction scheme. 
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B.3 Comparisons between the time-delayed method and the time-derivative method

This note compares the training performance of the time-delayed method and the timederivative method to model the Neural ODE. The training data y(t ) is taken from the oneskyrmion system as a demonstration. We consider the observed data s(t ) as a superposition of a noise n(t ) and the clean data y(t ), so that s(t ) = y(t ) + n(t ). The noise is assumed to be generated from a Gaussian distribution with zero mean and standard deviation σ noi = 0.5. Now, at the second step, we have n+4 equations and 2n+1 unknowns (x 1 , x 2 , . . . , x n , ẋ1 , ẋ2 , . . . , ẋn , ẍ j ).

So, for n > 2, the number of unknowns is greater than or equal to the number of equations.

Next, at step three, we take an additional derivative of the output equation, which causes the third derivative of the state variable to appear. Thus, we take the corresponding derivative of the state variable x j and add the following equations to the system: ... y = ... In doing this, we add 2 + n -1 = n + 1 equations and 1 + (n -1) = n unknowns; so, we have 2n + 5 equations and 3n + 1 unknowns. So, for n > 3, the number of unknowns is greater than or equal to the number of equations. Differentiation of the output equation and corresponding state variable equations is continued until the number of equations is greater than the number of unknowns.

Lemma 1 Let the system consist of n state variables. There is always an equal number of equations and unknowns when there are n -1 derivatives of the output equation.

Proof : Initially, there are n + 1 equations and 2n unknowns. After one step derivative on the output, there are always n + 2 equations and 2n unknowns. Thus, there are n -2 more unknowns than equations. In each step thereafter, we add one more equation than unknown, so at the (n -1)th step ((n -1)th-order derivatives to the output), there are zero more unknowns than equations. Thus, the Lemma is proven.

B.7 MATHEMATICAL DERIVATIONS 143

Corollary to Lemma 1 At the n-th step, there is one more equation than unknown.

This suggests that an ODE of the same (or possibly lower) differential order as the number of state variables can always be obtained. In other words, since there is one more equation than unknown at step n, an ODE of differential order n, or lower, can be obtained. 

Remark

B Noise level for higher-order derivatives

We now suppose the observed data s(t ) = y(t ) + n(t ) is a stationary random process [START_REF] Kantz | Nonlinear time series analysis[END_REF],

recorded with measurement noise n(t ), identically distributed with variance σ 2 noi , zero mean, and a normalized autocorrelation function c noi (τ) = E [n(t )n(t -τ)]/σ 2 noi . Let y(t ) be the clean variable with variance σ 2 si g = E [y(t ) 2 ]-E [y(t )] 2 and normalized autocorrelation function c si g (τ) = E [(y(t )-E [y(t )])(y(t -τ)-E [y(t )])]/σ 2 si g . We assume that the data is recorded with a high sampling rate ∆t , such that the successive observations are strongly correlated. If we take the first derivative through the following form ṡ(t ) = 
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Figure 1 . 1 :

 11 Figure 1.1: Scales in micromagnetism. a) Atomic scale representation of individual magnetic moments µ i . b) Micromagnetic scale representation of the magnetization vector M defining as the sum of all magnetic moments µ i inside the volume dV : M = i µ i /dV . Adapted from ref [19].

  in the next section. The first term of Eq. 1.3 is the precessional torque resulting in the processional motion of M around H e f f (Fig. 1.2(a)). The second term of Eq. 1.3 is a dissipative term leading to the damping motion of M toward H e f f (Fig. 1.2(b)).

Figure 1 . 2 :

 12 Figure 1.2: Magnetization M dynamics in the presence of a magnetic field. a) Magnetization processing around the effective field without damping effect (α = 0). b) Magnetization processing around the effective field with damping effect (α > 0).

Figure 1 . 4 :

 14 Figure 1.4: Schematic illustration of the STT acting on a spin-valve device. a) Antiparallel magnetization configuration of Pinned layer and Free layer. The STT that acts on the free layer m, comes from the transmitted electrons that have been polarized by the pinned layer p. b) Parallel magnetization configuration of the Pinned layer and Free layer. The STT that acts on the free layer comes from the reflecting electrons that flow through it. c) Direction of the torques being applied to the magnetization p in the presence of both the H e f f and spin polarized current. Adapted from ref [19].
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 21 Figure 2.1: Comparison of conventional von-Neumann and neuromorphic architectures. a) Schematic of von-Neumann architecture. b) Schematic of a basic concept of a neuromorphic architecture. c) Logical operations of Boolean AND gate with truth table implemented by transistors. d) Graphical representation of the operation of an artificial neuron. Adapted from [59].

  2.2).
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 22 Figure 2.2: Schematic representation of a perceptron. It takes a weighted sum of input and returns '0' if the result is below threshold and '1' otherwise.

Figure 2 . 3 :

 23 Figure 2.3: The architecture of Neural Networks. a) A single hidden layer neural network. b) A four-layer network with two hidden layers.

Figure 2 . 4 :

 24 Figure 2.4: Backpropogation of an ODE solution.The adjoint sensitivity method solves an augmented ODE backwards in time. The augmented system contains both the original state and the sensitivity of the loss with respect to the state. If the loss depends directly on the state at multiple observation times, the adjoint state must be updated in the direction of the partial derivative of the loss with respect to each observation. Adapted from Ref.[START_REF] Ricky | Neural ordinary differential equations[END_REF] 

  using the same Neural ODE setup (this metrhod is called RK-Net), but trained the network by directly backpropagating through the operations in the ODE solver. Along with these modern results, they pulled an traditional classification technique from a paper by Yann LeCun called 1-Layer MLP. The results are very exciting: disregarding the dated 1-Layer MLP, the test errors for the remaining three methods are quite similar, hovering between 0.5 and 0.4 percent. The big difference to notice is the parameters used by the ODE based methods versus the ResNet. The ResNet uses three times as many parameters yet achieves similar accuracy. This tells us that the ODE-based methods are much more parameter efficient, taking less effort to train and execute yet achieving similar results. The next major difference is between the RK-Net and the ODE-Net. The RK-Net, backpropagating through operations as in a standard neural network training uses memory proportional to L, the number of operations in the ODESolver. This scales quickly

  2.5). It is straightforward to show that with such temporal coding, and some mild assumptions, any traditional neural network can be emulated by an SNN. However, temporal coding obviously does not apply readily to more continuous computing where neurons fire multiple spikes, in spike trains.

Figure 2 . 5 :

 25 Figure 2.5: Illustration of the temporal coding principle for encoding and decoding real vectors in spike trains. Adapted from Ref. [82].
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 26 Figure 2.6: A LIF neuraon dynamics. (a)Schematic of network setup. Four input neurons connect to one postsynaptic neuron. (b) Input and output activity over time. Bottom panel: Raster plot showing the activity of the four input neurons. Middle panel: The synaptic current I . Top panel: The membrane potential V of the output neuron as a function of time. Output spikes are shown as points at the top. During the first 0.4 s the dynamics are strictly "sub-threshold" and individual postsynaptic potentials (PSPs) are clearly discernible. Only when multiple PSPs start to sum up, the neuronal firing threshold (dashed) is reached and output spikes are generated. Adapted from [86].
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 27 Figure 2.7: Comparison of Feedforward Neural Networks in (a) and Recurrent Neural Networks in (b).

40 CHAPTER 2 :

 402 NEUROMOPRHIC COMPUTING AND DEEP LEARNINGnetwork, a gradient descent method can be used. This technique is called back-propagation through time (BPTT). During backpropagation training, gradients either increase or decrease at each time step. A consequence of the highly increased network's depth, is the creation of socalled exploding and, in other cases, vanishing gradients[START_REF] Hochreiter | The vanishing gradient problem during learning recurrent neural nets and problem solutions[END_REF]. The BPTT procedure drastically increases computational costs for RNNs training, compared to FNNs with the same number of real layers.
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 28 Figure 2.8: Typical architecture of a reservoir computer: data are masked with a randomly generated mask W I , then nonlinearly transformed in a recurrent layer called reservoir, and finally, linearly recombined by multiplying a readout matrix W R to give the final result.

Figure 2 . 9 :

 29 Figure 2.9: (a) Memristive crossbar array connecting two adiacent layers of N neurons. Such crossbars can be stacked to form deep neural networks. The inset represents a single memristor cell, vertically connecting a row and a column. The pre-synaptic CMOS neurons (omitted) apply voltages to the rows. The output current I j at each column j is the sum of all input voltages V i from rows i , weighted by the memristor conductances G i j . An amplifier at each column drives the post-synaptic CMOS neuron (omitted). (b) Different physical implementations of synapses. The top row depicts the high-conductivity (low resistance) synaptic states, and the bottom row depicts the low conductivity (high resistance) synaptic states.In RRAM, the size of the filament between the top and bottom electrodes determines the resistance. In a ferroelectric tunnel junction (FTJ), the resistance is given by the fraction of ferroelectric domains pointing downwards. In a magnetic tunnel junction (MTJ), the relative orientation of the magnetic layers determines the resistance.
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 523 the system of the magnetic film with spin-down ↓ background. That is to say, when the initial spin configuration of the magnetic film is established, either spin-up ↑ or SKYRMION DYNAMICS AND ITS NEUROMORPHIC APPLICATIONS spin-down ↓, the skyrmion number Q s of the magnetic skyrmion is determined by its vorticity number Q v . In a word, the vorticity number Q v and the helicity number Q h determine the in-plane spin texture of the magnetic skyrmion.Each combination of Q v and Q h , and each value of the topological charge Q s gives rise to a different skyrmion configuration, allowing representation of Néel and Bloch skyrmions, and antiskyrmions, with different chiralities. Fig.3.2 depicts typical examples of the magnetic skyrmion with different Q s , Q v and Q h . For the sake of simplicity, we only consider the basic cases where the absolute value of the skyrmion number Q s is equal to one. In conventional FM materials, the most stable states of the magnetic skyrmion in the presence of the positive interface-induced DMI are the states with (1, 1, π) and (-1, 1, 0), while the most stable states in the presence of the negative interface-induced DMI are the states with (1, 1, 0) and (-1, 1, π).The most stable states of the magnetic skyrmion in the presence of the positive bulk DMI are the states with (1, 1, π/2) and (-1, 1, -π/2), while the most stable states in the presence of the negative bulk DMI are the states with (1, 1, -π/2) and (-1, 1, π/2).Bloch skyrmions are typically stabilized by the relativistic Dzyaloshinskii-Moriya exchange interaction (DMI) in the bulk non-centrosymmetric crystals with B20 structure (like MnSi, FeGe, etc.) in the form of two-dimensional hexagonal lattices. Whereas, the Néel-type magnetic skyrmions can be stabilized as individual objects in ultrathin multilayer flms, stripes and dots with DMI originating from the interfaces between transition metals (e.g. Co) and heavy metals with large spin-orbit coupling (Pt, Ir, Pd). From an application point of view, the individual Néel-type skyrmions are more promising for technological applications than Blochtype skyrmions because only individual nanoscale skyrmions can be used in any devices. In addition, in contrast to ferromagnetic skyrmions, antiferromagnetic skyrmions are also very promising. Due to the compensated topological charge, the great advantage of the antiferromagnetic skyrmion is that it can be driven by spin-polarised currents without being affected by the skyrmion Hall effect. However, because the net magnetic moment is zero, one of the difficulties of the antiferromagnetic skyrmions is detection, which also poses challenges for practical applications.

Figure 3 . 2 :

 32 Figure 3.2: Illustrations of typical magnetic skyrmions with different topological quantum numbers(Q s , Q v , Q h ).The arrows denote the spin direction and the out-of-plane spin component is represented by the color: red is out of the plane, white is in-plane, and blue is into the plane. Adapted from[START_REF] Zhang | Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications[END_REF] 
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 2 SKYRMION DYNAMICS IN A WIDTH-VARYING NANOTRACK 55 AFM exchange coupling energy between the top and bottom FM layers. Key parameters used in our simulations are as follows: M s = 580 × 10 3 A/m, A = 15 × 10 12 J/m, K u = 8 × 10 5 J/m 3 , D = 3.5 × 10 -3 J/m 3 , α = 0.3, and the interlayer exchange coefficient of the two FM layers is-2 × 10 -3 J/m 2 . These parameters are adopted from Refs.[START_REF] Sampaio | Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures[END_REF][START_REF] Zhang | Magnetic bilayer-skyrmions without skyrmion hall effect[END_REF].
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 33 Figure 3.3: Schematic of the width-varying nanotrack. The length of the tapering part in the middle varies from 100 nm to 300 nm, leading to different slopes, which is defined as k = tan(β). The two segments of the parallel tracks are 100 nm wide, 50 nm long on the left side and 30 nm wide, 50 nm long on the right side, respectively.
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 34 Figure 3.4: Skyrmion shape dynamics in a width-varying nanotrack. (a) Diameter of the skyrmion as a function of the track width and slope (w and k), when flowing along the width-varying nanotrack. Note that the diameter of the skyrmion is about 10 nm when w equals 30 nm by pushing the skyrmion into the parallel track on the right side, denoted by the red cycle. (b) Energy of skyrmion in the tapering part as a function of w and k.
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 35 Figure 3.5: Skyrmion motion dynamics in a width-varying nanotrack. (a)Velocity of a skyrmion driven by a uniform current along the width-varying nanotrack as a function of w and k. The current density j s is equal to 5 × 10 11 A/m 2 ; (b) The total repulsive force F r e from the two nanotrack edges as a function of the track width and the slope. The inset presents the force analysis on the skyrmion in the motion process.

Figure 3 .

 3 [START_REF] Schabes | Micromagnetic theory of non-uniform magnetization processes in magnetic recording particles[END_REF] shows the skyrmion motion velocity as a function of the parallel nanotrack width. The blue curve with star marks displays the variation of the skyrmion radius with respect to the nanotrack width, which leads the overall regular pattern as elaborated in the case of the widthvarying nanotrack. The red curves with left-triangle marks present the theoretical calculation of the skyrmion motion velocity (which will be analyzed in details below). The black curves with right-triangle marks give the simulation results of the skyrmion motion velocity, which increases with the nanotrack width. It should be noted that the skyrmion velocity will gradually saturate when the nanotrack width gets large enough. In this case, the skyrmion motion can be treated as in a free space and is no longer confined by the geometry of the nanotrack.
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 36 Figure 3.6: Comparison of the skyrmion motion velocity between the simulation and calculation in parallel nanotracks. The results are compared in two cases with j s = 5 × 10 11 A/m 2 and j s = 7 × 10 11 A/m 2 , which reveals high consistency between the simulations and the calculations.
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 37 Figure 3.7: (a) Tradeoff between the nanotrack width (storage density) and the skyrmion motion velocity (data access speed) in parallel tracks. Here, we use the reciprocal of the nanotrack width to denote the memory density and the skyrmion motion velocity to indicate the data access speed; (b) Thermal stability of a skyrmion with respect to the nanotrack width by measuring its lifetime.
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 38 Figure 3.8: Schematic of the model. (a) Schematic structure of the model. A voltage is applied on the electrode gate through an insulating layer to change the PMA of the FM layer. (b) The coordinates used in the theory. R s , ϕ, and χ denote the equilibrium skyrmion radius, the azimuthal angle of the magnetization m relative to the radial direction, and the (real space) polar angle, respectively. Here, φ = χ + ϕ. (c) Variation of the PMA in the form of the sinc function in the FM layer. (d) Illustration of the circular domain wall ansatz. The plot shows the normalized perpendicular magnetization m z as a function of position x along the diameter of the skyrmion and defines the skyrmion radius R s .

  3.8(c)], because of the VCMA effect[START_REF] Li | Enhancement of voltagecontrolled magnetic anisotropy through precise control of mg insertion thickness at cofeb| mgo interface[END_REF][START_REF] Nozaki | BIBLIOGRAPHY 169 Large voltage-induced changes in the perpendicular magnetic anisotropy of an mgobased tunnel junction with an ultrathin fe layer[END_REF][START_REF] Kozioł-Rachwał | Enhancement of perpendicular magnetic anisotropy and its electric field-induced change through interface engineering in cr/fe/mgo[END_REF] [see Appendix A.1.1 for the simulation details]. The breathing mode is clearly observed under the excitation [see Fig. 3.9(a)]. Thus, we can determine f c of the breathing mode by performing the fast Fourier transform (FFT) on the skyrmion radius R t [see Appendix A.1.1 for FFT calculations]. Normally, a greater strength causes more prominent oscillation of R t , which also suppresses f c slightly [see Fig. 3.9(b)] because of the increased relaxation distance ( a 0 = |R(t ) max -R s |, defined as the maximum derivation from the equilibrium radius R s ). In the MS study, we focus on the case of small oscillations, where a 0 is within 4 nm.

. 25 )

 25 Therefore, we can obtain the restriction of D < 4.41 mJ/m 2 when DE is excluded from the system and D < 3.78 mJ/m 2 when DE is included in the system for K u = 0.8 MJ/m 3 in our simulations.

Figure 3 . 9 :

 39 Figure 3.9: Comparative analysis between the results from MS and our theoretical model. (a), (b): Comparison between the MS results (blue) and the numerical solutions (yellow) of Eq. 3.23 for the normalized skyrmion radius R(t )/∆ with respect to time in (a) and for f c as a function of a 0 in (b). Here, D = 3.4 mJ/m 2 andK u = 0.8 MJ/m 3 . The inset in (b) defines the amplitude of the oscillation a 0 . (c), (d): MS results (black), numerical solutions of Eq. 3.23 including the precise DE term (blue), numerical solutions of Eq. 3.23 using K e f f (red) and formula results (dashed lines) of f c and R s as a function of D in (c) and K u in (d) when DE is present. Here, K u = 0.8MJ/m 3 for (c) and D = 3.4 mJ/m 2 for (d). (e), (f): MS results (black), numerical solutions of Eq. 3.23 (dashed lines), numerical solutions of Eq. 3.23 using simplified G 1 (ϕ, R) and G 2 (ϕ, R) (orange), and formula results (dashed lines) of f c and R s as a function of D in (e) and of K u in (f) when DE is absent. Here, K u = 0.8 MJ/m/ 3 for (e) and D = 3.8 mJ/m 2 andK u = 0.8 MJ/m 3 for (f).
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 310 Figure 3.10: Theoretical solutions of Fourier transform spectra of the skyrmion radius under single-frequency excitations. (a) The amplitude of the Fourier transform spectrum under each excitation frequency is normalized by the corresponding amplitude at the position of f c , indicated by the red dashed line. The results are obtained by numerically solving equation (5). PSD of skyrmion radius at f e = 12 GHz and f e = 3 GHz are shown in (b) and (c), respectively. The two circles in (c) correspond to the amplitude modulated signal.
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 33 Fig.3.10(c) are harmonic frequencies of message signal, which can be depressed or eliminated by a harmonic filter. In comparison with conventional AM where the modulation of message signal is realized by using a multiplier via integrated CMOS circuits, and the carrier wave is generated by crystal oscillator, this skyrmion "modulator" integrates with the modulation and carrier wave generation functionality, thus is more convenient and efficient in applications. For more information about the time-domain behaviors of skyrmion and comparisons between the theoretical results and the MS results, see Appendix A.1.4. 

  10(a) to avoid the wild oscillation or destruction of the skyrmion [see Appendix A.1.1]. Both the numerical solutions of equation (3) and MS results are discussed in the following. Interestingly, instead of showing the resonant oscillation phenomenon, the variation of R(t )/∆ is packaged by a periodic wave with a lower frequency [see Fig. 3.11(a)]. The fluctuant range of the radius R(t ) is around 6 nm, despite the very low strength of the excitation signal. The fluctuations of the average perpendicular component of the magnetization δm z (t ) = 〈m z 〉 (t )-〈m z 〉 (0), where 〈m z 〉 (0) is the equilibrium state and the angular bracket denotes the spatial average of the magnetization, is also shown in Fig. 3.11(b). It is apparent that δm z (t ) and R(t )/∆ show consistent patterns, which are also identified from the corresponding PSD in Fig. 3.11(c). In the middle of the PSD, a peak exists very near the position of the frequency f e , indicating that the exact characteristic frequency f c has shifted slightly towards a smaller value because of the relatively large oscillation [see relation between f c and a 0 in Fig. 3.9(b)]. Two additional distinct peaks appearing on both sides, corresponding to the values of f cf e and f c + f e , is the modulated signal, similar to the case in Fig. 3.10(c). The package frequency in Fig. 3.11(a) and Fig. 3.11(b) is actually related to f cf e . This phenomenon demonstrates vividly that the skyrmion itself is able to carry information by linear superposition of input signal and the excited eigen signal.
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 311 Figure 3.11: Skyrmion dynamics in excitation by sine-wave voltage. ( f e = f c = 7.342 GHz) (a) MS results (black) and numerical solutions of Eq. 3.23 (yellow) for R(t )/∆. (b) MS results of δm z (t ) . (c) PSD for R(t ) from MS (black) and numerical solutions of Eq. 3.23 (orange), as well as for δm z (t ). (d) Variation of skyrmion profile (magnetization in x direction) from time t 0 to time t 1 [indicated in (a)] and from time t 1 to time t 2 [indicated in (a)] in the breathing process. The red dashed line indicates the symmetry axis of the skyrmion profile, which rotates slightly compared to the equilibrium state.

Figure 3 . 13 :

 313 Figure 3.13: Comparisons of f c between the results from our formula approximations and those from previous literatures. (a) Calculations of f c as a function of R s by using our formula approximations (green) from Eq. 3.24, formulas from Ref. [176] (blue), and formulas from Ref. [181] (orange) in the absence of DE in (a) and in the presence of DE in (b), respectively. The black curves show the MS results. The dashed line in (b) indicates the formula results of Eq. 3.24, where DE is considered using K e f f . Note that R s is varied by changing the DMI constant, corresponding to Fig. 3.9(c) and Fig. 3.9(e).

3. 4

 4 SKYRMION BASED ARTIFICIAL NEURON DEVICE 75 ometry of the nanotrack, which results in an uneven current density distribution. See Appendix A.2 for parameters used in our simulations.

Figure 3 . 14 :

 314 Figure 3.14: Schematic of the skyrmionic LIF spiking neuron device. In the green box region, the accumulation process of the membrane potential (lipid bilayer) in the neuron soma can be implemented by our proposed device in the dashed blue box. Here, the parameter X c refers to the distance from the core of skyrmion to the base point O. L indicates the region of linear variation in width. The circular region at the right end of this structure can be used to collect and detect skyrmion if necessary.The slope of the nanotrack is defined as k =tan(β). The magnetization direction is color coded: orange is into the plane, white is in-plane, green is out of the plane.
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 315 Figure 3.15: Reverse motion of the skyrmion in the presence of the repulsive force from the nanotrack edge. (a) Distance from the left edge of the nanotrack to the core of the skyrmion X c as a function of time for different values of k. (b) Absolute value of the backward velocity of the skyrmion with respect to the distance d (indicated as the inserted graph) from the core of the skyrmion to the closest boundary side providing the repulsive force. (c) The composition of the total energy E t ot al with respect to the temporary position of the skyrmion in the backward process. (d) The gradient of the total energy along the x-axis with respect to various k. In (a) and (b), the colored symbols represent the metrical data from the simulations and the black curves indicate the fitting data as the inserted equation.
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 316 Figure 3.16: Skyrmion motion with periodic current signals in terms of the square (wave 1), sinusoidal (wave 2) and triangular waveforms (wave 3). (a) Location of the skyrmion in excitations with different amplitudes and frequencies of input spike current forms as a function of time. (b) The specific forms of the input spike current j d .Two frequencies are used in simulations: 10 GHz (period T =0.1 ns, duty ratio r =0.6) and 2.5 GHz (period T =0.4 ns, duty ratio r =0.5). The duty ratio is defined as the ratio of the duration when current density is greater than zero and one period. Note that the amplitude of the current density here is represented by the left end of the nanotrack, indicated as point O in Fig.3.17(d) for the uneven distribution of the current intensity.
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 317 Figure 3.17: Analysis of the behavior of the skyrmion with square wave excitation: T =0.1 ns, r =0.6, k=0.15. (a) The black symbol exhibits the location of the skyrmion as a function of time and the blue symbol shows the exact current density j d at the corresponding location. (b) Velocity of the skyrmion during the motion process. (c) The black curve presents the trend of current density in x axis while y = 0 indicating as black dashed line in (d). The red curve gives the combined repulsive force from both edges, which is the same as the light blue one in Fig. 3.15(d). (d) The current distribution of the profile with colored map in this case.
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 318 Figure 3.18: Working windows of the skyrmion-based neuron device in which the skyrmion is stimulated by the square wave forms of the current pulse.(a) With various amplitude of current density (at point O), the slopes of the nanotrack and a fixed value of the duty ratio r as 0.6. (b) With various duty ratios, the slopes of the nanotrack and a fixed value of the current density (represented as point O).

Figure 3 .

 3 Figure 3.19: (a) Schematic structure of the skyrmion-based TRNG: the FM layer is used for skyrmion Brownian motion and the two MTJs are used to detect the skyrmion. (b) The top view of the chamber with a rectangular region of 101 nm × 74 nm and two semicircular regions with a radius of 37 nm. (c) The schematic of the comparator.It is assigned a bit of "0" if the skyrmion is on the left; otherwise, a bit of "1" is indicated or vice versa.

  3.1), D is the dissipative factor that depends on the skyrmion profile (see sec.

3. 2 )

 2 Eq. 3.35 indicates that D d c can be evaluated from the linear matching of the MSD as a function of t * . Meanwhile, Eq. 3.36 reveals a linear dependence of D d c on T . Therefore, we can measure D d c based on the linear fitting of the MSD with respect to T and t * .

Figure 3 .

 3 Figure 3.20: (a) The mean squared displacements (MSDs) and their linear fits at selected temperatures with small intervals t * . (b) Nonlinear relation between the MSDs and t * at large intervals. The MSDs still increases as t * increases and there is a weaker linearity between the MSDs and t * at lower temperatures. The MSDs and t * are completely nonlinear dependency at higher temperatures.

Fig. 3 .

 3 Fig. 3.20(a) shows that the MSD is linearly related to the time interval t * when t * is smaller than 2 ns. However, as t * increases, the results [see Fig. 3.20(b)] show that the MSD no longer

Figure 3 . 21 :

 321 Figure 3.21: The MSD as a function of temperature T for skyrmion with a step of (a) 20 ps, and (b) relatively large intervals.

Figure 3 . 22 :

 322 Figure 3.22: Random sequence generated by the skyrmion Brownian motion under thermal disturbance. (a) The left panel shows the trajectory of the skyrmion, the right panel shows the corresponding position of the skyrmion. (b) A bit sequence of length 580 obtained by detecting the position of skyrmion in the x-axis direction. (c) Theoretical outputs from 3.9 µs to 4.39 µs.

Figure 3 .

 3 Figure 3.23: (a)The schematic of the anisotropy gradient when K uv = 0.82 MJ/m 3 . (b, c, d) The skyrmion position distribution when K uv = 0.81 MJ/m 3 , K uv = 0.85 MJ/m 3 , and K uv = 0.89 MJ/m 3 , respectively. (e) The probability of "0" in the output bitstream as a function of K uv .

Figure 3 . 24 :

 324 Figure 3.24: Random sequence for stochastic computing. (a) The flow chart used to control the distribution of the output bit stream. (b) AND gate used as a stochastic multiplier: exact (up) and approximate computation of 4/8 × 6/8 (down).

  ues that allow the Neural ODE to reproduce presented trajectory examples (training dataset), through the stochastic gradient descent algorithm. Once the Neural ODE has been properly trained on the training data, the corresponding equation becomes an appropriate model of the system dynamics and can be used to predict its behavior in novel situations not included in the training dataset.

Figure 4 . 1 : 94 CHAPTER 4 :

 41944 Figure 4.1: Modeling a skyrmion-based device with micromagnetic simulation and Neural ODEs. (a) Magnetic skyrmion configurations in a nano-disk. The color scale represents the out-of-plane component magnetization, and arrows denote the spin orientation. (b) Sketch of a device where a single skyrmion exists in the ferromagnetic layer. The behavior of the device depends on the Perpendicular Magnetic Anisotropy (PMA) constant (e.g., through VCMA effect) K u and the Dzyaloshinskii-Moriya Interaction (DMI) strength D. The output signal is the variation of perpendicular component of the mean magnetization ∆m z . (c) Sketch of a Neural ODE structure ẏ = f θ (y, K u , D, t ) with ∆K u and ∆D as external inputs into the neural network. y is a vector of system dynamics and f is defined by a neural network (see Fig. 4.2 for details of the modeling method). (d) Time-dependent random sine variation ∆K u ranging from -0.05 MJ/m 3 to 0.05 MJ/m 3 as an input (Input 1) and random sine variation ∆D ranging from -0.4 mJ/m 2 to 0.4 mJ/m 2 as another input (Input 2) applied to the skyrmion system. Equilibrium values of K u =0.8 MJ/m 3 and D = 3 mJ/m 2 are used. (e) Predicted training output of ∆m z by a Neural ODE in comparison with micromagnetic simulation (Mumax) results as a function of time. (f ), (g) Test results of the trained Neural ODE. The intrinsic response frequency of the skyrmion system for different values of K u in (f) and of D in (g) calculated by using the trained Neural ODE (orange star) and by micromagnetic simulations (blue). 'Neural ODE' is abbreviated to 'NeurODE' in the legends of the figures.

  Figure 4.2: Extending the Neural ODE formalism to predict spintronic results. A wide rangeof dynamical systems can be modeled using ODEs, such as the simple pendulum motion, skyrmion-based devices, and spintronic oscillator dynamics. However, in real-world applications, the underlying physical dynamics are not always fully measurable, or accessible, which means that the dynamics of some hidden parameters in ODEs models are unknown. Our goal is to model a Neural ODE, ẏ = f θ (y, e(t ), t ), where f is defined by a neural network and e(t ) is the time-dependent input into the system, using the incomplete information of the system dynamics. (a) Schematic graph of the neural network ( f θ ) in a Neural ODE. The input to the neural network consists of two parts, one is the k dimensional vector related to the observed system dynamics, where y 1 is the observed dynamics and y 2 to y k are the time delayed dynamics of y 1 (as shown in (b)), another part comprises the time-dependent external inputs, in which e 1 is the original input and e 2 to e k are the time delayed versions of e 1 . The output of the neural network is a vector of time derivatives of the corresponding input system dynamics (y 1 , y 2 , . . . , y k , t ). Here, the derivative of the time variable t is 1, which is determined as a prior knowledge. (b) Illustration of the time-domain system dynamics and external time-dependent input dynamics used for modeling the Neural ODEs. The blue curves are the system dynamics, where y 1 is the original observed trajectory, y 2 = y 1 (t + ∆t d ) is one time step shifted of y 1 , y 3 = y 1 (t +2∆t d ) is two time steps shifted of y 1 , etc. Here, ∆t d denotes the single time delay interval. The green curves are the external inputs, where e 1 = e(t ) is the original input dynamics, e 2 = e(t + ∆t d ) is one time step shifted of e 1 , e 3 = e(t + 2∆t d ) is two time steps shifted of e 1 , etc. Through the augmentation, the reconstructed system dynamics (y 1 , y 2 , y 3 , ..., y k ) containing the information of the unknown state variables can be used to train the Neural ODEs and then the trained Neural ODEs can be applied to make predictions for other inputs. (c, d) Training error (Mean Square error, MSE) as a function of iterations for k = 1 and k = 2 for a one-skyrmion system (c) and a multi-skyrmions system with grain inhomogeneity (d) with electric voltage as input through the VCMA effect.

  However, as mentioned earlier, numerical derivatives amplify the noise present in the training data, making the Neural ODE training process much more difficult with time derivatives than with delayed variables. Appendix B.3 discusses this issue in detail and provides an example comparing these two training techniques.
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 343431984 Update θ by taking an ADAM step on the mini-batch loss, which is defined as Mean Square Error (MSE) of y pred compared to y true .end Predicting the physical properties of skyrmion systemWe now test the validity of our approach with the single-skyrmion system of Fig. 4.1. We train a Neural ODE with dimension k = 2 by employing a three-layer neural network f θ , with 50 neurons in each hidden layer, using Algorithm 1 (see Methods) and the 50-nanosecond trajectory of Fig. 4.1d as training set. Fig. 4.1e shows an outstanding agreement between the pre-BUILDING SPINTRONICS NEUROMORPHIC SYSTEMS WITH NODES dicted training output of ∆m z by Neural ODE and micromagnetic simulations. To evaluate the performance of the trained Neural ODE at extracting interesting physical quantities, we next use it to predict the intrinsic breathing frequency of the skyrmion system for different values of K u or D. In that case, the test inputs are composed of a pulse signal of ∆K u (or ∆D) and a constant value of D (or K u ) to induce an oscillating magnetic response ∆m z and thus to predict the corresponding frequency for specific material parameters D and K u . They are thus different from the sinusoidal waveforms of ∆D and ∆K u used for training (Fig. 4.1d), which is important to test the ability of the neural network to generalize (see Methods). The results, shown in Figs. 4.1f-g, again show excellent agreement with the predictions of micromagnetic simulations. We then investigate the impact of the dimension of the Neural ODE on the prediction accuracy. Figs. 4.2c compares the training process of a Neural ODE of dimension k = 2 with a Neural ODE of k = 1, i.e., without augmentation of delayed state (in this Figure, the anisotropy was used as sole input). The training error (mean square error, MSE) converges rapidly to zero for k = 2 but not for k = 1, for which it remains finite.

Figs. 4 .

 4 3b and cshow the time series predicted by a one-skyrmion system modeled by micromagnetic simulations and Neural ODEs, respectively, in comparison with the true trajectory (blue) of the Mackey-Glass time series. This data is presented in a situation where the skyrmion reservoir has to predict the next value in the Mackey-Glass time series (H = 1), and in a situation where it has to predict the value happening 25 steps later (H = 25), a much more difficult task due to the chaotic nature of the Mackey-Glass time series. In the H = 1 situation, the predictions of micromagnetic simulations and the Neural ODE match the true series perfectly, while for H = 25, a small prediction error happens, which appears consistent in both cases. To verify if the Neural ODE and micromagnetic simulations give equivalent predictions, Fig.4.3d presents the accuracy of the prediction of the Mackey-Glass series, expressed in terms of Normalized
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 431004 Figure 4.3: Modeling of a sophisticated spintronic task, Mackey-Glass time series prediction with skyrmion systems, using Neural ODEs. (a) Schematic graph of the procedure for doing the prediction task. The purpose is to predict the Mackey-Glass time series at a future time. The input signal, preprocessed through a read-in matrix W i n , is fed into the reservoir, which is a skyrmion system modeled by the trained Neural ODE or micromagnetic simulations. A trained output matrix W out is used for reading out the reservoir states and providing the predicted signal. (b-c) Selected testing (green dashed) results for prediction horizontal step H = 1 (for short term prediction) and H = 25 (for long term prediction), predicted by the one-skyrmion system modeled by micromagnetic simulations in (b) and the Neural ODE in (c), in comparison with the true trajectory (blue) of Mackey-Glass time series. The red curves show the prediction error compared to the true trajectory. (d-e) Normalized root mean square error (NRMSE) as a function of prediction horizontal step H , in log scale, for the testing set by using the trained Neural ODE (orange) and micromagnetic simulations (blue) for the one-skyrmion system in (d) and the multi-skyrmions system in (e).

  4.4a). Modeling this experiment is a difficult challenge. Until now, analytical models of spintronic oscillators could reproduce experiments only qualitatively: it is challenging to construct a reliable model due to the high non-linearity of the devices as well as the impact of noise appearing in the experiments. Here, we firstly train a Neural ODE model of the oscillator dynamics by using only five milliseconds of experimental data (see Methods and Fig. 4.4), then we use the trained model to predict the whole spoken digit recognition experiment of [110] (Fig. 4.5). The results reported in Figs. 4.4 and. 4.5 use cochlear preprocessing (see Methods).

Fig. 4 .

 4 Fig. 4.4b shows the five-millisecond trajectories used for training, as well as the result of trained Neural ODE of dimension k = 2, showing remarkable agreement. For a more quantitative assessment, Fig. 4.4c shows the training loss (MSE) of Neural ODEs with dimension k

4. 4 101 Figure 4 . 4 :Fig. 4 .

 4101444 Figure 4.4: Prediction of experimental results using Neural ODEs (train results). (a) Principle of the experiment. The original spoken digit in the audio waveform is preprocessed, by cochlear or spectrogram filtering, to form the preprocessed input into the oscillator. The output of the digit is reconstructed by reading out the recorded oscillator output through a trained matrix W out (see Methods). The purpose of modeling is to predict the experimental oscillator output given any preprocessed input ∆V i n . This Figure shows the results obtained using cochlear filtering (results using spectrogram filtering are reported in Suppl. Fig. 8). (b) Training output trajectory of voltage ∆V out predicted by Neural ODE (dashed orange) with corresponding preprocessed input ∆V i n , in comparison with the experimental measurement (blue) for k = 2. A training set of 5-ms dynamics is adopted from the first utterance of the first speaker. A threelayer neural network f θ with each hidden layer of 100 units is trained. (c) Training loss (MSE) of Neural ODE with k = 1, 2, 3, 4 as a function of iterations.
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 1024 4.5b). We then inject Gaussian noise in the Neural ODE, as an additional input, with an amplitude chosen so that the output noise (σ out ) of the Neural ODE matches the standard deviation of the data BUILDING SPINTRONICS NEUROMORPHIC SYSTEMS WITH NODES (σ er r ) of Fig.4.5b (see Methods). When using the Neural ODE augmented with noise to simulate the spoken digits experiments, the digit recognition rates now match the experimental data very closely (Fig.4.5c), making the Neural ODE augmented with noise a powerful tool to predict long and complex spintronic experiments.

Figure 4 . 5 :

 45 Figure 4.5: Prediction of experimental results using Neural ODEs (test results). (a) Selected response output signals predicted by the trained Neural ODE with corresponding preprocessed input, in comparison with the experimental output for digit eight of the third utterance of the third speaker. (b) Left to right: Error distribution (green shadow) and fitted Gaussian distribution (dashed curve) extracted by computing the difference between the output predicted by Neural ODE and the experimental measurement, a Gaussian noise (purple shadow) added in the preprocessed input into the Neural ODE and the corresponding noise distribution (green shadow) with fitted probability density function (pdf ) (black dashed curve) in the predicted output trajectory solved by Neural ODE. σ i n was adjusted so that σ out = 1.76 mV is close to (≈) σ er r = 1.83 mV. (c) Spoken digit recognition rate in the testing set as a function of utterances N used for training. Because there are many ways to pick the N utterances, the recognition rate is an average over all 10!/[(10 -N )!N !] combinations of N utterances out of the 10 in the dataset. The solid curve, blue dashed curve, orange dashed curve are the experimental result, Neural ODE result with noise considered, Neural ODE result without any noise, respectively.

  netic field H (t ) applied in the z direction. The magnetization of the pinned layer is fixed along the negative z axis. The diameter and the thickness of the nanopillar are 80 nm and 2 nm, respectively. The key parameters used in the simulations are: saturation magnetization M s = 1.2 MA/m, exchange stiffness A = 20 pJ/m, K u = 0.5 MJ/m 3 and damping constant α = 0.1. In the simulations, a constant electric direct current is applied with a current density of 10 11 A/m 2 . In the training dataset, artificial sinusoidal waveform of magnetic field with a variety of random amplitudes are applied sequentially as input, as shown below in Fig.4.6a. In these artificial training conditions, the structures exhibits relatively complex and difficult-tointerpret behaviors, but which allow training a Neural ODE that is valid in all regimes.

  5 T) or to generate a sustained oscillation (e.g., µ 0 H = -0.1, 0.2, 0.3 T), as shown in the left column of Fig.4.7a for different constant values.
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 1044 BUILDING SPINTRONICS NEUROMORPHIC SYSTEMS WITH NODESµ 0 H = 0.5, 0.2, -0.2 T), as shown in the middle column of Fig.4.7a for different constant values.

  Fig. 4.7b. This example demonstrates that the Neural ODE is able to describe different dynamical behaviors (switching and sustained oscillations) under different input parameters.

Figure 4 . 6 :

 46 Figure 4.6: Abrupt switching and oscillations of a spin-valve nanopillar modeled by Neural ODE (train dataset). (a) Input and output dynamics in the training dataset. The green curve shows the random sinusoidal input waveform of magnetic field with a variety of amplitudes applied in the z direction. The blue and red curves show the mean output magnetization of x component (m x ) and z component (m z ), respectively, obtained from micromagnetic simulations. The dashed orange (m x ) and dashed olive curves (m x ) are the corresponding trained results of Neural ODE.

Figure 4 . 7 :

 47 Figure 4.7: Abrupt switching and oscillations of a spin-valve nanopillar modeled by Neural ODE (test dataset). (a) Neural ODE test results under different input parameters of the external magnetic field and at three different initial conditions of magnetization (from left to right). In the left column, the magnetization is aligned in the positive z direction by applying an external field of µ 0 H = 0.65 T initially, a subsequent decreasing field is applied till a constant value to switch the magnetization (µ 0 H = -0.5 T) or to generate a sustained oscillation (µ 0 H = -0.1, 0.2, 0.3 T). In the middle column, the magnetization is aligned in the negative z direction by applying an external field of µ 0 H = -0.5 T initially, a subsequent increasing field is applied till a constant value to switch the magnetization (µ 0 H = 0.7 T) or to generate a sustained oscillation (µ 0 H = 0.5, 0.2, -0.2 T). In the right column, no external field and only the constant electric current is applied initially, the system exhibits self-sustained magnetization oscillations. A subsequent decreasing or increasing field is applied till a constant value to switch the magnetization (µ 0 H = -0.5, 0.7 T). The blue and red curves show the mean output magnetization of x component (m x ) and z component (m z ), respectively, from micromagnetic simulations. The dashed orange (m x ) and dashed olive curves (m x ) are the corresponding trained results of Neural ODE. (b) Oscillation frequency F at different magnetic fields obtained by using the results from Neural ODE (orange star) and the micromagnetic simulations (blue curve). The red cross symbols represent the switching behavior at the specific amplitude of magnetic fields obtained by both Neural ODE and the micromagnetic simulations.

  mental measurements including noise. The trained model shows a remarkable improvement based model, the normalized input is shown in Fig. 4.1d: the variation of magnetization output ∆m z is multiplied by ten for training. For modeling the experimental data of oscillator, both ∆V i n and ∆V out are multiplied by ten for training. The prediction is made by specifying an initial value of y and applying the time-varying inputs e(t ) into the trained Neural ODE. The test set is used for the evaluation of the prediction performance of the trained Neural ODE. The total number of testing points is n = 800 for each of the 37 different values of D and K u in Fig. 4.1, n = 500, 000 for the Mackey-Glass time series, n = 522, 8800 for the experimental oscillator with the cochlear method, and n = 850, 7200 for the experimental oscillator with the spectrogram method.

  4.3a), and a trained output matrix W out is used for reading out the reservoir states. The number of steps between the future time step and the current step is defined as prediction horizontal step H . W out is different for the different H values.

4. 7 METHOD 111 the

 7111 matrix A ∈ R N r ×T r consisting the first T r = L -H columns of M x for training the read out Matrix. The teaching matrix B ∈ R 1×T r consisting the last T r of the original signal M o is the time series to be predicted. A read out matrix W out is therefore constructed through the method of ridge regression,

  We use the output signal recorded for every p = θ = 100 ns from the oscillator. The first 50,000 output data points, which corresponds to a time length of 5 milliseconds, from the oscillator of the first utterance of the first speaker and corresponding preprocessed signal as input is used as training set to train a three-layer neural network f θ with each hidden layer of 100 units. The trained model is then utilized to predict the response output of the oscillator of all other speakers. The trained f θ function is a deterministic function without noise. We therefore evaluate the effect of the noise on the task performance by adding the noise drawn from a Gaussian distribution into the preprocessed input, so that the standard deviation of noise in the output trajectory predicted by Neural ODE (σ out ) is close to the standard deviation of error between experiments and the results of the noiseless trained ODE (σ er r ), over the 5 millisecond training dataset, as shown in Fig. 4.5(b) for the cochlear method. See Appendix B.6 for the spectrogram method.

Figure B. 2 :

 2 Figure B.2: Training performance of Neural ODE. Training loss (MSE) of the one-skyrmion system without grain inhomogeneity as a function of iterations, for different numbers of units N h in hidden layers (a), sampling intervals ∆t of the initially observed trajectory y 1 (b), dimensions of the Neural ODE k (with k -1 being the number of delays) (c), and optimization algorithms of training (d).

  Fig. B.3c presents the training loss (MSE) as a function of iterations, obtained when training Neural ODEs of dimension k = 2, 4, 8, 12 over these noisy data with different standard deviations. These results differ from the training results obtained in the noiseless system (see Fig.

B

  .2c), where k ≥ 2 guarantees a sufficiently good model to be trained. Here, the larger the k, the better the model is. On the other hand, training Neural ODE with a large k value (e.g., for k = 12) does not always ensure stable convergence, as seen in the low noise system, because the delayed system dynamics becomes a stiff problem to be solved in the high dimensional space, therefore, it is necessary to choose an appropriate k for training. Further, we remark that the fitted standard deviations of the training error distribution σ er r of the trained Neural ODEs, compared to the true trajectories (without noise), gradually approach the standard deviation of the added noise σ noi when k is increased (see Fig. B.3b for σ noi = 0.1). Fig. B.3d shows the testing results of the Neural ODE for k = 2 and k = 12 under different standard deviations of the added noise. Here, the Mean Square Error (MSE) showed in the title of each graph in Fig. B.3d

Figure B. 3 :

 3 Figure B.3: Training performance of Neural ODE model using incomplete noisy data. a Schematic graph of the procedure to obtain training time series with noise, by artificially adding random values drawn from a Gaussian distribution with mean µ = 0 and standard variance σ noi = 0.1, 0.5 and 1 respectively into the output time series of the normalized ∆m z . b Training error distribution of the trained Neural ODE compared to the true trajectory without noise for different k values where σ noi = 0.1. c Training loss (MSE) as a function of iterations for σ noi = 0.1, 0.5 and 1, respectively. d Final predicted testing results of Neural ODE for k = 2 and k = 12 under different standard deviation of the added noise. The Mean Square Error (MSE) showed in the title of each graph is the MSE between the testing trajectory and the true trajectory without noise.

Figure B. 6 :

 6 Figure B.6: Modeling of the skyrmion system with electric current as input. a Schematic of the nanodisk where skyrmion exists in the magnetic layer (blue), and electric current applied through the heavy metal layer (grey) is used as an external input. b Topology of the neural network used for obtaining the mean perpendicular magnetization ∆m z from the skyrmion core position (x c , y c ). c Random sine electric current input, with amplitude ranging from -1×10 11 to 1×10 11 A/m 2 and frequency f = 0.5 GHz, into the skyrmion system, and corresponding output trajectory of skyrmion position (x c , y c ) calculated by Mumax and by the trained Neural ODE, as well as m z , obtained from Neural ODE results and from Mumax.

Figure B. 7 :

 7 Figure B.7: Performance of Mackey-Glass time-series prediction, using Neural ODE and Mumax, for the skyrmion system with electric current input. a Selected reservoir output states, continuously in time, computed using Mumax and the trained Neural ODE with preprocessed Mackey-Glass time series as input. b Mackey-Glass timeseries prediction error (NRMSE) as a function of predicted horizontal step by Mumax and Neural ODE. c Selected training set (orange) and testing set (green dashed) trajectories for Mackey-Glass predictions for H = 1 (short term prediction) and H = 25 (long term prediction) (red dots in b), compared to the true trajectory (blue) of Mackey-Glass time series, using the one-skyrmion system as reservoir by Mumax and Neural ODE.

  ∂x i ẋi , for k = 1, . . . , n and k ̸ = j. (B.9)

:

  If there is a time-dependent input e added into the system, we use the same elimination procedure. Then, after taking the second derivative of the output y, we have the followingn + 4 equations ẋ1 = f 1 (x 1 , x 2 , . . . , x n , e) ẋ2 = f 2 (x 1 , x 2 , . . . , x n , e) . . . ẋn = f n (x 1 , x 2 , . . . , x n , e) y = x j ẏ = ẋ j ÿ = ẍ j j ∈ (1, . . . , n), (B.10)in which the first derivative of e is included. Thus, after taking nth-order derivatives to the output y at n-th step, the first to (n -1)th-order derivative of e are included, and a single nthorder ODE in variable y can be obtained, which explains why the time-delayed state of input e(t ) should be included when training the neural network.

RésultatsChapitre 3

 3 1 2∆t (s(t + ∆t )s(t -∆t )) (B.11) rigide et de particule, ce qui permet à de multiples skyrmions nanométriques de s'accumuler dans une zone de dispositif définie sans interagir avec les défauts topographiques. Ces propriétés font que les skyrmions magnétiques conviennent à des applications dans le stockage d'informations et les technologies logiques. Jusqu'à présent, il y a eu quelques démonstrations de synapses et de dispositifs neuronaux basés sur les skyrmions, explorant les aspects dynamiques induits par le courant des skyrmions. Plus récemment, une synapse artificielle pour l'informatique neuromorphique basée sur la manipulation électrique de skyrmions magnétiques à température ambiante a été signalée. Cependant, ces démonstrations sont basées sur des dispositifs uniques émulant la fonctionnalité des neurones ou des synapses biologiques, et les réalisations expérimentales au niveau du système des tâches de calcul neuromorphique font défaut. Un autre travail connexe concerne la reconnaissance de modèles d'ondes simples en exploitant les réponses complexes de résistance ou de magnétisation présentées par les textures magnétiques aléatoires des skyrmions. Cependant, il faut une véritable référence pour le traitement de tâches de reconnaissance de formes plus complexes afin de démontrer ses avantages importants. Un facteur crucial limitant la réalisation de la tâche de calcul neuromorphique au niveau du système en utilisant les caractéristiques physiques de la spintronique est la restriction des outils de simulation. En spintronique, le modèle micromagnétique sert de cadre fondamental pour la description théorique des processus de magnétisation à l'échelle du micron. Il est principalement utilisé pour guider les expériences dans des espaces de paramètres dans lesquels il serait autrement difficile et coûteux de naviguer. D'autre part, l'étude de différents phénomènes physiques, comme le couple de transfert de spin (STT), les effets spin-Hall et spin-Seebeck, permet de créer de nouveaux dispositifs plus efficaces et plus rapides, comme les oscillateurs à couple de spin, les mémoires magnétorésistives à accès aléatoire à couple de transfert de spin (STT-MRAM) et d'autres dispositifs novateurs, notamment dans les domaines des technologies de stockage et de détection. Cependant, les simulations micromagnétiques peuvent être exceptionnellement longues lorsque le système physique étudié est relativement grand (même s'il peut être inférieur à quelques microns), ou présente une dynamique sur des échelles de temps plus longues. Audelà de leur long temps de simulation, les simulations micromagnétiques présentent des limitations essentielles. Lors de la modélisation d'un système avec de multiples paramètres libres, le nombre de simulations nécessaires pour étudier l'espace des paramètres devient rapidement très important car les simulations doivent être réexécutées à partir de zéro lorsque les paramètres d'entrée du modèle doivent être modifiés. De plus, les simulations micromagnétiques ne peuvent presque jamais s'adapter quantitativement aux résultats d'une expérience. Les dernières techniques d'apprentissage profond offrent une voie alternative pour simuler le comportement des systèmes spintroniques afin de construire du matériel rapide et économe en énergie pour l'informatique neuromorphique. Ces dernières années, l'apprentissage automatique a été de plus en plus utilisé en physique, par exemple pour la découverte de nou-veaux matériaux et pour l'apprentissage de la dynamique physique à partir de séries de données temporelles. Cependant, la puissance des réseaux de neurones artificiels n'a jamais été appliquée pour modéliser, ajuster et prévoir le comportement expérimental complexe des nanocomposants à l'état solide. L'idée principale de cette thèse est de combler le fossé entre la modélisation physique de la dynamique de la spintronique et la communauté de l'apprentissage automatique. Je présente à la fois la façon dont la dynamique physique du skyrmion peut être utilisée pour construire du matériel neuromorphique et comment l'apprentissage automatique peut aider à réaliser des tests et des validations rapides et précis des propositions. Ce chapitre présente une étude théorique et numérique sur les propriétés physiques des skyrmions magnétiques. En outre, nous démontrons plusieurs dispositifs neuromorphiques skyrmioniques en exploitant ces caractéristiques intrigantes. • Nous avons étudié la dynamique des skyrmions en termes de taille, de vitesse et de stabilité dans des nanotraces de largeur variable. Nous montrons qu'un skyrmion peut être compressé dans une nanotrack grâce aux forces répulsives des bords. En modifiant la géométrie de la nanotrack, des skyrmions de petite taille peuvent être obtenus, ce qui peut être un potentiel pour des applications visant à améliorer la densité de stockage. Nous examinons également le compromis de conception entre la densité de stockage et la vitesse d'accès aux données. Des calculs théoriques ont également été effectués pour approfondir ces conclusions, qui sont très cohérentes avec les résultats numériques. Ce travail peut fournir des lignes directrices pour la conception de la mémoire à piste skyrmion et d'autres applications skyrmioniques connexes. • Nous avons étudié la dynamique du skyrmion sous excitation de tension en utilisant l'effet VCMA. Nous développons un modèle pour déterminer la fréquence caractéristique de la dynamique de respiration du skyrmion de manière plus précise par rapport aux études précédentes. La fonctionnalité AM d'un skyrmion a également été étudiée, ce qui montre un grand potentiel d'application dans les futurs systèmes de communication, et peut fournir des indications pour la conception de dispositifs magnoniques haute fréquence à base de skyrmion. • Nous avons présenté un dispositif compact de neurones à dopage LIF en exploitant la dynamique des skyrmions entraînés par le courant dans une nanotrack cunéiforme. Nous montrons que le mécanisme et le comportement du mouvement du skyrmion peuvent être explorés pour mettre en oeuvre un dispositif de neurones à pointes LIF, l'emplacement temporaire accordable du skyrmion se comportant comme le potentiel de membrane analogue d'un neurone biologique. Un tel neurone artificiel compact ouvre une nou-existants hébergeant des skyrmions magnétiques avec les technologies d'intégration CMOS. Deuxièmement, des cadres de co-conception dispositif-circuit et de simulation hybride sont nécessaires. Actuellement, l'exploration de l'espace de conception a été limitée au niveau du dispositif pour démontrer la fonctionnalité et analyser l'impact de divers paramètres (par exemple, PMA, DMI et dimension du dispositif) sur les performances requises du dispositif. Cependant, il existe un fossé entre la conception du dispositif et celle du circuit. La nécessité d'effectuer une co-conception dispositif-circuit est essentielle et aidera le concepteur à atteindre les objectifs d'optimisation au niveau du système et les exigences de conception. En outre, un cadre/outil de simulation hybride est essentiel. Il permet aux architectes de systèmes d'analyser les problèmes et l'impact de l'informatique neuromorphique skyrmionique en termes de performances, d'énergie et de fiabilité avant de l'intégrer dans les systèmes électroniques. À cet égard, l'approche proposée au chapitre 4 peut fournir de nouvelles idées pour la conception du cadre de simulation en exploitant les dernières méthodes d'apprentissage profond. D'un point de vue plus général concernant les démonstrations expérimentales de calcul neuromorphique avec des systèmes spintroniques, il reste des défis à relever pour mettre à l'échelle les systèmes spintroniques pour des applications utiles telles que les tâches de reconnaissance des formes. Tout d'abord, la mise en oeuvre matérielle d'un réseau neuronal nécessite une lecture rapide et précise des variations du signal. Cependant, la conception actuelle repose généralement sur les jonctions tunnel magnétiques pour lire les variations de résistance, qui sont très petites et difficiles à lire rapidement par rapport aux autres technologies de mémoire. Pour les dispositifs à base de skyrmion, c'est particulièrement vrai car le skyrmion est généralement très instable aux fluctuations thermiques, ce qui nécessite des mécanismes pour piéger les skyrmions individuels. D'autre part, la mise en oeuvre d'un réseau neuronal qui peut être entraîné par les algorithmes de rétropropagation nécessite des variations de poids hautement linéaires et symétriques. Réf. [133] a démontré un système de réseau neuronal entièrement connecté à trois couches composé d'un dispositif expérimental de synapses à base de skyrmions capable d'effectuer un test de référence de reconnaissance de l'écriture manuscrite. Bien que la synapse à base de skyrmion puisse présenter une bonne distribution linéaire du poids, puisque le poids dépend directement du nombre de skyrmions accumulés, les processus de potentialisation et de dépression n'ont pas montré une symétrie complète entre eux et une relation linéaire par rapport au nombre d'impulsions, donc une optimisation supplémentaire du matériau peut être nécessaire pour atteindre une linéarité complète en fonction du nombre de skyrmions. Le dispositif de neurones à base de skyrmions pour les réseaux de neurones à pointes peut également être prometteur si l'ingénierie de la géométrie du dispositif et les techniques d'optimisation des matériaux peuvent mûrir suffisamment pour réduire la taille des skyrmions à quelques nanomètres afin de diminuer la granularité. De manière générale, l'informatique neuromorphique est un sujet très complexe et un domaine qui progresse rapidement, faisant intervenir les sciences des matériaux, les sciences

  

  

  

  

  

  

  

  

  

  

CHAPTER 2: NEUROMOPRHIC COMPUTING AND DEEP LEARNING 2.3.1 Residual Networks (ResNet)

  Residual layers can naturally be used within very deep neural networks. Firstly, the nature of residual network helps information flow through the network by sending the hidden state, h t h , along with the transformation by the layer, f (h

	To explain and contextualize Neural ODEs, we first look at their progenitor: the residual
	network (ResNet). In a conventional neural network, the transformation of the hidden state
	through a network is h t +1 = f (h t , θ t ) , where f represents the network, h t is the hidden state
	at layer t (a vector), and θ t are the weights at layer t . The hidden state transformation within a
	residual network is similar and can be formalized as h t +1 = h t + f (h t , θ t ). The difference is that
	we add the input to the output of the layer.
	section, we introduce Neu-
	ral Ordinary Differential Equations (ODEs), as a continuous-depth learning framework. Neu-
	ral ODEs are neural network models which generalize standard layer-to-layer propagation to
	continuous-depth models. On top of standing out as a novel family of architectures for contin-
	uous time series modeling, Neural ODEs also provide a memory efficiency gain in supervised
	learning tasks.

t ), to layer t +1, preventing important information from being discarded by f . As each residual block starts out as an identity function with only the transformation sending information through, depth can be incrementally introduced to the network via training f after other weights in the network have stabilized. If the network achieves a high enough accuracy without salient weights in f , training can terminate without f influencing the output, demonstrating the emergent property of variable layers.

  (2.23) where W R is the readout matrix. Eq. 2.23 is equivalent to Eq. 2.21, which makes clear that reservoir computer is an RNN. The difference between RC and RNN is only in training. Unlike RNNs, in RC only the linear readout map W R is trained, while the other matrices W I and W are generated randomly. That not only solves the RNN training convergence problem, but also makes training procedure much more efficient. The RC approach drastically reduces time and computational power in comparison to the full RNN training methods, such as BPTT.

sigmoid, tanh, sinusoid, etc. The internal state of the reservoir x(n) described by Eq. 2.22 is evolving in discrete time n. Nonlinear transformation of the masked inputs via the reservoir's dynamics in Eq. 2.22 allows projecting the information input into a much higher dimensional space. The computation is finalized in the last block, called a readout layer. This layer is typically a linear recombination of the outputs coming from the reservoir. The computation result, CHAPTER 2: NEUROMOPRHIC COMPUTING AND DEEP LEARNING vector y(n) is expressed as:

y(n) = W R x(n),

  .29) From Fig.3.15(c), we can find that the decrease of E D M I and E Demag in the skyrmion motion process makes predominant contribution to the decrease of the total energy E t ot al . Therefore, the gradient of E t ot al in the x axis, as the source of skyrmion motion, generates a propulsion

	force on the skyrmion, derived as			
	F t ot al = -∇E t ot al = -	∂E t ot al ∂X c	• x	(3.30)

which is presented in Fig.

3

.15(d). Combining with the Thiele equation

[START_REF] Tomasello | A strategy for the design of skyrmion racetrack memories[END_REF] 

  + ∆t d ), . . . , e(t + (k -1)∆t d )), and used as input the f θ function.A system with multiple inputs can then be modeled by incorporating time-delayed versions of all inputs. As illustrated in Figs.[START_REF] Fuller | Micromagnetics, domains, and resonance[END_REF].2a-b, we treat the time t as an extended element of vector y(t ) into the neural network and concatenate its time derivative, which is a constant one value, as a known output of the neural network . In this way, the external inputs at any moment can be chosen deterministically and given to the neural network. For a clearer visualization, the whole procedure of our technique is provided in Algorithm 1. Time intervals T = {t 0 , t 1 , . . . , t n-1 } with uniformly spaced step ∆t , time-dependent input E = {e(t 0 ), e(t 1 ), . . . , e(t n-1 )}, observed scalar output trajectory Y = {y(t 0 ), y(t 1 ), . . . , y(t n-1 )}, mini-batch time length bt , mini-batch size bs, iterations N , dimension of the new vector k (number of delays k -1), a single time delay interval ∆t d = ∆t , and Neural ODE parameters θ with forward Randomly select mini-batch with the initial timet b = {t b 0 , t b 1 , . . . , t b bs-1 } (b i ∈ [0, nbt ], i ∈ [0, bs -1],i is an integer), mini-batch targets y true = {(y(t b ), y(t b+1 ), . . . , y(t b+k-1 ),t t t b ), . . . , (y(t b+bt -1 ), y(t b+bt ), . . . , y(t b+bt +k-2 ), t b+bt -1 )}, initial points y 0 = (y(t b ), y(t b+1 ), . . . , y(t b+k-1 ), t b ), external input (at time step t b+i , i ∈ [0, bt -1], i is an integer) e(t b+i ) = (e(t b+i ), e(t b+i +1 ), . . . , e(t b+i +k-1 )).
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	(e(t ), e(t Algorithm 1: Training Neural ODEs using incomplete system dynamics and external
	input	
	input : function:
	function forward (y):
	t ← y[k]	▷ Extract the last dimension of vector y.
	return	ẏ
	output: Updated θ
	for i t er = 1, . . . , N i do
	1. 2. Call the Neural ODE solver and compute the predicted output trajectory y pred
	using current θ.
			4.3 with the extra variables

ẏ ← ( f θ (y[0 : k -1], e(t)), 1)

▷ The derivative of time t is constant 1.

4.6 DISCUSSION 107 ing

  problems[START_REF] Sugihara | Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series[END_REF][START_REF] Norman H Packard | Geometry from a time series[END_REF][START_REF] Kantz | Nonlinear time series analysis[END_REF], but was largely restricted into making very short term predictions for lack of modeling frame specifically designed for time series. The advent of Neural ODEs, whose formalism naturally incorporates time series, allows predictions of arbitrary length and high accuracy to be made by training a system equivalent to the original physical system. Additionally, until our work, Neural ODEs-based methods for modeling time series had only been tested in a few classical physical systems, such as the ideal Mass-Spring system, Pendulum and Harmonic oscillators. Our work is the first one to apply Neural ODEs to predict the behavior of nanodevices, by resolving the above issues.

  5, 000 + H data points are used for the training, and the rest 5, 000 -H are for testing. The first stage of the masking procedure is a matrix multiplicationW i n • M o , where W i n ∈ R N r×1 is the mask matrix with data values drawn from a standard normal distribution and M o ∈ R 1×L is the original input data. Here L = 5, 000 + H is the number of the scalar input data points and N r is the reservoir size. We adopt N r = 50 in the main text. As a consequence of the masking, we obtain the data matrix M e

  To evaluate the performance of the trained matrix W out , NRMSE is calculated on the prediction results of the testing set y pr e compared to the true trajectory of MG series y t ar , Spoken digit recognition task In the task of spoken digits recognition, the inputs are taken from the NIST TI-46 data corpus. The input consists of isolated spoken digits said by five different female speakers. Each speaker pronounces each digit ten times. The original input signals

	NRMSE =	1 t ar n s σ 2	n s i =0	(y t ar (i ) -y pr e (i )) 2 .	(4.6)

of the spoken digits are preprocessed using two different filtering methods: spectrogram and cochlear models. In both methods, firstly, each word is broken into N τ time intervals of duration τ. Here, N τ can be different for different speakers. Then in each interval τ, a frequency transformation is performed to convert the signal into the frequency domain with N f channels.
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CHAPTER 4: BUILDING SPINTRONICS NEUROMORPHIC SYSTEMS WITH NODES

(hundreds of times faster) in computational efficiency compared to standard micromagnetic simulations. We have shown that Neural ODE is a strong support for making experimental predictions and dealing with complex computation tasks, such as the task of Mackey-Glass time-series predictions and spoken digit recognition in reservoir computing. In particular, we demonstrate its use in modeling complex physical processes in the field of spintronics, which is considered one of the most promising future technologies for memory and computing. The proposed method is a promising tool for bridging the gap between modern machine learning and traditional research methods in experimental physics, and could be applied to a variety of physical systems.

method

Micromagnetic simulations Our micromagnetic simulations are performed in the MuMax3 platform (abbreviated to Mumax in the main text) [START_REF] Vansteenkiste | The design and verification of mumax3[END_REF], an open-source GPU-accelerated micromagnetic simulation program. The default mesh size of 1 nm × 1 nm × 1 nm is used in our simulations. The following material parameters are adopted: exchange stiffness A = 15 pJ/m, saturation magnetization M s = 580 kA/m, damping constant α = 0.01, interfacial DMI strength D = 3.5 mJ/m 2 , and default PMA constant of the ferromagnetic layer K u = 0.8 MJ/m 3 . In addition, we set the VCMA coefficient ξ as 100 fJ • V -1 m -1 based on some recent experiments [START_REF] Li | Enhancement of voltagecontrolled magnetic anisotropy through precise control of mg insertion thickness at cofeb| mgo interface[END_REF][START_REF] Kozioł-Rachwał | Enhancement of perpendicular magnetic anisotropy and its electric field-induced change through interface engineering in cr/fe/mgo[END_REF]. Here, the typical thickness of the insulating layer is 1 nm. Under these conditions, with an applied voltage of 0.1 V (an electric field of 0.1 V/nm), the PMA constant in the ferromagnetic layer will change by 10 kJ/m 3 .

For the simulation of single-skyrmion dynamics with voltage input (system used in Fig. 4.2 and Fig. 4.3), a nanodisk with a diameter of 80 nm is used. For the training set, the external input voltage to the system is random sine voltage with a frequency of 4 GHz and with amplitude ranging from -2 V to 2 V (corresponding to variation of PMA value ∆K u from -0.2 to 0.2 MJ/m 3 , see Suppl. Fig 1). For the multi-skyrmions system with grain inhomogeneity, the diameter of the nanodisk is 120 nm, and the grain size is 10 nm. Random 20% PMA variation, random 20% DMI strength variation, and 5% random cubic anisotropy direction variation are applied. The external input voltage to the system is a random sine voltage with a frequency of 4 GHz and with amplitude ranging from -2 V to 2 V (corresponding to variation of the PMA value ∆K u from -0.2 to 0.2 MJ/m 3 ). For the testing set of Mackey-Glass prediction task (results in Fig. 4.3), the input is a time varying ∆K u in the form of preprocessed MG time series with a time interval of 10 ps (as shown in Suppl. Fig 5).

For the parameters-based simulations in Fig. 4.1, the diameter of the nanodisk is 100 nm.

For the training set, the external input ∆K u is a random sine with a frequency of 4 GHz and with amplitude ranging from -0.05 to 0.05 MJ/m 3 , fluctuated around 0.8 MJ/m 3 . The external input ∆D is a random sine with a frequency of 0.4 GHz and with amplitude ranging from -0.4 to 0.4 mJ/m 2 , fluctuated around 3.0 mJ/m 2 (see Fig. 4.1d). The perpendicular average mag-4.7 METHOD 109 netization variation ∆m z of the system is recorded every p = 2.5 ps as output. For the testing set, to get the response frequency of each material value of K u (D), we firstly supply a pulse with amplitude ∆K u = 0.04 MJ/m 3 (∆D = 0.1 mJ/m 2 ) lasting for 1 ns, then the magnetization variation ∆m z is recorded. Finally, a Fourier transform is conducted on the output trajectory of ∆m z to obtain the frequency. Simulation time of 37 mins, 41 mins, and 43 mins for 50 ns dynamics are needed for the training set of the one skyrmion system, multi-skyrmions system, and parameters-based system simulations.

Training method of Neural ODE To train the Neural ODE, we build a single-trajectory training set y true consisting of n data points sampled from the output trajectory ∆m z for the skyrmion system and from ∆V out for the experimental oscillator with a time interval ∆t . We use the mean squared error (MSE) between these points and the corresponding trajectories predicted by the Neural ODE y pred over all time steps as the "loss function", i.e., the value that the training process aims at minimizing. To achieve the minimization of the loss, the gradients of the loss with respect to the parameters θ are computed through a technique called adjoint sensitivity method [START_REF] Ricky Tq Chen | Neural ordinary differential equations[END_REF], then the θ parameters can be updated by using gradient descent optimization algorithms (usually stochastic gradient descent or Adaptive Moment Estimation [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF]), until the MSE approaches zero. In this work, we train a Neural ODE in the

The number of training data points n = 10,000, 15,000, 10,000, and 50,000 and validation data points of 5,000, 5,000, 5,000, 10,000 are used for the one skyrmion system, the multiskyrmions system, the parameter-based system and experimental data of oscillator, respectively. A sampling interval ∆t for training is determined according to the original recorded output period p. Specifically, p = 2.5 ps, 100 ns are used for Mumax simulations and experimental measurements, respectively. In principle, a Neural ODE system can be properly modeled as 

Summary

The main goal of the work described by this thesis, is to explore the possibility of using spintronic nanodevices for building energy efficient neuromorphic computation hardware, thus to offer a potential pathway for resolving the high energy consumption problem that the modern computers met.

In Chapter 1, we start with providing the theoretical fundamentals of the essential modeling framework of micromagnetics, which has been employed throughout this work. Because of this powerful tool and the advancement of the modern computers, especially the recent advent of general-purpose GPU for the significant acceleration of scientific software, deep understanding of various physical phenomena in ferromagnetics, like Spin-transfer torque, and the creation of new, more efficient and faster spintronics devices become possible. We apply this robust consolidation tool into simulating dynamics of quasiparticles called magnetic skyrmions, which provide important new clues into how microscopic spin textures will enable spintronics. While device-level demonstrations via micromagnetic simulations show skyrmions are promising for building fast and energy-efficient neuromorphic hardware, system-level implementation of neuromorphic computing benchmark is required. We overcome the limitations of micromagnetic simulations in dealing with large amount of input data, which is commonly required in neuromorphic compuating tasks, by harnessing the considerable power of modern deep learning techniques.

In Chapter 2, we give a brief introduction of the principles of neuromorphic computing, followed by the working rules and the basic learning methods of the neural networks. We further present some modern neural network architectures, that are utilized in this work. The theoretical and numerical study on the physical properties of magnetic skyrmions, as well as demonstrations of skyrmion based neuromorphic devices via micromagnetic simulations form the central topics of Chapter 3:

• We have studied skyrmion dynamics in terms of size, velocity, and stability in widthvarying nanotracks. We show that a skyrmion can be compressed in a nanotrack owing to the repulsive forces of the edges. By engineering the geometry of the nanotrack, skyrmions with small sizes could be obtained, which may be potential for applications to enhance storage density. We further examine the design tradeoff between the storage density and the data access speed. Theoretical calculations have also been performed to elaborate these findings, which are highly consistent with the numerical results. This work may provide guidelines in designing skyrmion racetrack memory and other related skyrmionic applications.

• We have investigated skyrmion dynamics under voltage excitation by using the VCMA effect. We develop a model for determining the characteristic frequency of the skyrmion breathing dynamics in a more accurate way compared to previous studies. The Ampli- 
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Appendix A A.1 Skyrmion breathing dynamics under voltage excitations A.1.1 Simulation methods

Micromagnetic simulations (MS) are performed by using the graphics-processing-unit-based tool MuMax3 [START_REF] Vansteenkiste | The design and verification of mumax3[END_REF]. The default mesh size of 1.5625 nm × 1.5625 nm × 1 nm is used in our simulations. We adopted the following material parameters in our simulations: the exchange stiff- based on recent experiments [START_REF] Li | Enhancement of voltagecontrolled magnetic anisotropy through precise control of mg insertion thickness at cofeb| mgo interface[END_REF][START_REF] Nozaki | BIBLIOGRAPHY 169 Large voltage-induced changes in the perpendicular magnetic anisotropy of an mgobased tunnel junction with an ultrathin fe layer[END_REF][START_REF] Kozioł-Rachwał | Enhancement of perpendicular magnetic anisotropy and its electric field-induced change through interface engineering in cr/fe/mgo[END_REF]. Here the typical thickness of the insulating layer is 1 nm. Under these conditions, with an applied voltage of 0.1 V (an electric field of 0.1 V/nm), PMA constant in FM layer will change 10 kJ • m -3 , which is about 1.25% of the PMA change. In the case where the DE is not included, the maximum amplitude of the variation of the PMA of the FM layer in excitation with the sinc voltage is K 0 = 0.1 MJ/m 3 , which corresponds to an applied voltage of 1 V. Considering the effect of the demagnetization field in decreasing the degree of varying the magnetization in the axis, the maximum amplitude of the excitation pulse K 0 = 0.08 MJ/m 3 (corresponding to 0.8 V) is consequently used to ensure the small oscillations of the skyrmion in the case where DE is included. In terms of the single frequency excitation case, based on our analytical model, we firstly calculated the variations of the skyrmion radius in excitation with voltages with different f e by solving the Eq. 3.24, where K u is set as 

A.1.3 Analytical solution of Equation 3.23

To determine the analytical solution of Eq. 3.23, we consider an approximate solution with the form of R(t ) = R s + a 0 sin(2π f t ) based on the oscillation behaviour of skyrmion. Taking this form of R(t ) and the Eq. 3.22 into the Eq. 3.23, we are able to determine R s and f c after the first order of approximation as,

where

and 

A.1.4 Skyrmion dynamics under sine wave excitation

In the main text, we have discussed in detail the skyrmion dynamics under a voltage with frequency f e = f c = 7.342GHz. Here, we examine the behaviours of skyrmion when f e is set as 3GHz(< f c ) and 12GHz(> f c ) respectively. In 

A.2 Skyrmion based artificial neuron device

A.2.1 Simulation details

Our work is performed by micromagnetic simulations using the Object Oriented Micro-Magnetic Framework (OOMMF) software that contains the extension module for the interfa-
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cial Dzyaloshinskii-Moriya interaction (DMI). We include the exchange energy, the DMI energy, the perpendicular magnetic anisotropy energy, the demagnetization energy, and the AFM exchange coupling energy between the top and bottom FM layers. The magnetic material parameters used in our simulations are: saturation magnetization M s = 580 × 10 3 A/m, exchange stiffness A = 15×10 -12 J/m, the perpendicular magnetic anisotropy K u = 8×10 5 J/m 3 , the continuous effective DMI constant D = 3.5 × 10 -3 J/m 2 , Gilbert damping α=0.3 and the interlayer exchange coefficient of the two FM layers equals -2 × 10 -3 J/m 2 in our simulated structure, both the thickness of the FM layer and the spacer are 1 nm [START_REF] Zhang | Magnetic bilayer-skyrmions without skyrmion hall effect[END_REF][START_REF] Zhou | A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry[END_REF]. A discretization size of 2 nm × 2 nm × 1 nm is used in our simulations. Note here that some shunted currents may flow through the FM layers when the driving current flows through the heavy metal. However, as the thickness of the FM layer (~1 nm) is far less than that of the heavy metal (>10 nm), the number of electrons flowing through the FM layers is far less than that flowing through the heavy metal. In addition, the physical theory has shown that the spin torque efficiency of the currentperpendicular-to-plane (CPP) case is almost ten times higher than that of the current-in-plane (CIP) case [START_REF] Sampaio | Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures[END_REF]. Thereby, the spin torque contribution of the CIP case is reasonably neglected in our simulations.

A.2.2 Detailed fitting values

The position of skyrmion X c as a function of time in the backward process is fitted as equation Eq. 

Appendix B

Appendix B B.1 Training performance for the skyrmion systems, using voltage as input

This note provides additional results on the training process of Neural ODEs on the oneskyrmion system without grain inhomogeneity and the multi-skyrmions system with grain inhomogeneity, using voltage as input. Here, the variation of the PMA (∆K u ) is linearly dependent on the voltage applied, because of the VCMA effect. Comparisons of the predicted training output of ∆m z by Neural ODE (orange dashed curve) and micromagnetic simulation output (blue curve) for the one-skyrmion system without grain inhomogeneity (b) and the multiskyrmions system with grain inhomogeneity in (c).

APPENDIX B: APPENDIX B

We adopt the information at three continuous time points of (t -∆t , t , t + ∆t ). For the timedelay method, we consider a vector of variables s(t ) = (s(t -∆t ), s(t ), s(t + ∆t )). For the timederivative method, the vector s(t ) = (s(t ), ṡ(t )) with ṡ(t ) = (s(t + ∆t )s(t -∆t ))/(2∆t )) is employed as the training variables. The variance of the signal y(t ) extracted from simulations

22; the noise-to-signal ratio is therefore σ noi /σ si g = 0.45. By contrast, if we consider the real signal derivative as ẏ(t ) = (y(t + ∆t )y(t -∆t ))/(2∆t )), the noise-to-signal ratio of the first order derivative ṡ(t )) is σ noi ,d er /σ si g ,d er = 3.22, which is much larger than that of the original signal s(t ).

Figs. B.4a and b show the training loss (mean square error, MSE) as a function of iterations

for σ noi = 0 (without noise) and σ noi = 0.5, respectively. It is observed that both methods show similar training performance w.r.t accuracy when noise is absent from the system, however, the time derivative method performs worse than the time delay method when noise exists. This is reasonable because the noise is amplified during the calculation of the first-order derivative, and thus the convergence becomes difficult. 

B.4 Mackey-Glass time-series prediction task evaluation

This note provides additional results on the skyrmion-based Mackey-Glass time series prediction task. To perform this task, we send the preprocessed input data into the reservoir, simulated with the trained Neural ODE or Mumax (as a control). With N r = 50 virtual nodes in the reservoir, the total number of input values, including both training and testing set is 50×10, 000.

Each value is fed into the reservoir for a duration of t st ep = 2p (p = 2.5 ps). The output trajectory comparison is shown in Fig. B.5a and b for the one-skyrmion system without grain inhomogeneity and multi-skyrmions system with grain inhomogeneity, respectively.
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Using the trained model, we evaluated the reservoir performance with different N r values, as shown in Fig. B.5c. These results show that the prediction capability of the reservoir is not improved by increasing the number of virtual nodes of the reservoir. On the other hand, Fig.

B.5d shows that the prediction accuracy can be relatively improved by increasing the step time

To improve the reservoir performance further, we also proposed a new method for output reconstruction. Instead of using only the reservoir's output from the current step, we concatenate the response matrix A at each column with output states from previous steps to form a 

B.5 Modeling of the skyrmion system with electric current as input

The main article focuses on the voltage control of skyrmion-based devices. Skyrmions can also be moved by an electric current through current-induced spin-orbit torques (see Fig. A surprising result is that, with the addition of noise, the spoken digit task performance degrades for the spectrogram method, while the task performance improved for the cochlear method (see Fig. 4, main body text). These results suggest that the output states from the reservoir are highly over-fitted in the noiseless cochlear case; noise suppresses this over-fitting effect. Conversely, in the spectrogram case, the reservoir computer operates in a non-over-fitted regime; noise then plays a more conventional detrimental role. The capability of Neural ODEs to capture such subtle behaviors showcases their impressive predictive power. This simple derivation suggests that an appropriate way for training a Neural ODE of m internal variables where only one variable y 1 is accessible is to train a Neural ODE where the state vector y is composed of y 1 and its (m -1) th -order derivatives.

B.6 SPOKEN DIGIT RECOGNITION PERFORMANCE OF NEURAL ODE BASED ON THE EXPERIMENTAL MEASUREMENT OF SPINTRONIC OSCILLATOR 139

Theorem 1 (for linear system) Let A be an n × n matrix, and let p A (λ) be the characteristic polynomial of A. Let y(t ) = (y 1 (t ), . . . , y n (t )) T be a solution to the system of ODEs Differential elimination procedure (for nonlinear system). The procedures of converting systems of ODEs to a single-higher order ODE in one variable was mathematically proved for nonlinear systems, we refer readers to refs [START_REF] Meshkat | Alternative to ritt's pseudodivision for finding the input-output equations of multi-output models[END_REF][START_REF] Jirstrand | Algebraic methods for modeling and design in control[END_REF][START_REF] Forsman | Constructive commutative algebra in nonlinear control theory[END_REF] for further details. Here, we are giving the general ideas of the procedures followed in these references. We consider a system of nonlinear ODEs of the form (ẋ = f (x)):

(B.7)

Here x = (x 1 , x 2 , . . . , x n ) is an n-dimensional state variable, and y is considered as an output vector, which could be any component of the state variable. We assume that f (x) is rational polynomial functions of the state variables, a reasonable assumption in most applications. Our aim is to obtain a single ODE in the variable y.

The procedure can be implemented by taking a sufficient number of derivatives of the system, followed by computation of a Gröbner Basis of the new system [START_REF] Meshkat | Alternative to ritt's pseudodivision for finding the input-output equations of multi-output models[END_REF][START_REF] Jirstrand | Algebraic methods for modeling and design in control[END_REF][START_REF] Forsman | Constructive commutative algebra in nonlinear control theory[END_REF]. In general, for elimination to work, the number of equations must be strictly greater than the number of unknowns [START_REF] Meshkat | Alternative to ritt's pseudodivision for finding the input-output equations of multi-output models[END_REF][START_REF] Jirstrand | Algebraic methods for modeling and design in control[END_REF]. Firstly, from the output equation, we can obtain ẏ = ẋ j and ÿ = ẍ j . This, however, introduces the second derivative of x j , and thus differentiation of the corresponding

APPENDIX B: APPENDIX B

The real signal derivative is, neglecting terms higher than the second order in ∆t ,

Therefore the corresponding (derivative) signal variance is

The corresponding noise of the derivative signal ṡ(t ) -ẏ(t ) is

Thus, the noise to signal ratio of the second derivative is

For white noise, the autocorrelation function is an impulse at lag 0, thus c noi (2∆t ) is close to zero. Therefore, the noise-to-signal ratio of the derivative (σ noi ,d er /σ si g ,d er ) can be much larger than the original signal (σ noi /σ si g ) if the sampled adjacent signal is strongly correlated, which is a common situation in most applications. This consideration explains our choice, in the main paper, to use delayed signals instead of derivates as state variables for Neural ODEs for systems with incomplete information of dynamics.

B.8 Alternative interpretation based on the embedding theorem

An alternative interpretation for our method can also be obtained through the "embedding theorem" for state-space reconstruction of dynamical systems. It provides additional insight into our technique. Let us assume the system can be described by an ensemble of physical 

Perspectives

Afin d'exploiter le plein potentiel des skyrmions pour l'informatique neuromorphique, certaines questions pratiques doivent encore être abordées. Tout d'abord, bien que l'on ait observé ou proposé l'existence de skyrmions dans divers aimants en raison de différents mécanismes, tels que l'interaction dipolaire magnétique, l'interaction DM, l'interaction d'échange