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Résumé 

Avec le vieillissement de la population, préserver la fonction musculaire est important pour 

éviter la perte de mobilité et d'autonomie. De nos jours, la prévention de la maladie 

musculaire, la sarcopénie, est une préoccupation majeure et des facteurs de risque importants 

tels que l'âge avancé ainsi que des facteurs modifiables, notamment une faible activité 

physique et une alimentation déséquilibrée ont été identifiés. Compte tenu de la croissance 

des populations plus âgées et de la diminution de l'activité physique, qui touche également 

les jeunes citoyens, la sensibilisation à la qualité musculaire peut être cruciale pour promouvoir 

un vieillissement en bonne santé dans nos sociétés. Les besoins en évaluations fonctionnelles 

musculaires ont été exprimés par les chercheurs et les cliniciens. Le groupe de travail européen 

sur la sarcopénie chez les personnes âgées (EWGSOP) recommande de définir la sarcopénie 

comme la présence à la fois d'une faible masse musculaire et d'une faible fonction musculaire 

(force et performance physique). 

Pour cela, nous avons développé une méthode d’évaluation du vieillissement 

musculaire, en utilisant une technologie ambulatoire et non invasive, appelée technologie 

d'électromyographie de surface haute densité (HD-sEMG), à travers un projet de recherche 

clinique sur cinq catégories d'âge (25 à 74 ans), actifs et sédentaires. Nous avons réalisé une 

étude comparative avec une analyse complète et multimodale du rectus femoris (RF), muscle 

impliqué dans les mouvements de la vie quotidienne, pour dévoiler le potentiel prometteur 

de la technique HD-sEMG, par rapport aux techniques cliniques classiques, l’objectif étant de 

détecter les changements précoces de la qualité de la fonction musculaire impactée par le 

vieillissement et le niveau d'activité physique. La partie clinique de ce projet de thèse a été 

financée par une subvention européenne, EIT Health. 

En analysant principalement la dynamique de contraction musculaire et l'intensité du 

rectus femoris, nos résultats ont montré que la technique HD-sEMG, était capable de 

discriminer entre les cinq catégories d'âge de sujets sains physiquement actifs. Plus intéressant 

encore, les scores HD-sEMG proposés discriminaient entre les participants actifs et 

sédentaires, de la même catégorie d'âge (45-54 ans), contrairement aux paramètres cliniques 

et aux autres techniques couramment utilisées (absortiométrie biphotonique par rayons X, 

DXA et échographie). De plus, ces scores pour les participants sédentaires de cette catégorie 
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d'âge étaient significativement plus proches de ceux des participants actifs des catégories 

d'âge supérieures (55-64 ans et 65-74 ans). 

Cela suggère fortement qu'un mode de vie sédentaire semble accélérer le processus 

de vieillissement musculaire au niveau anatomique et fonctionnel, et ce processus accéléré 

subtil peut être détecté par la technique HD-sEMG. Ces résultats préliminaires prometteurs 

pourraient contribuer au développement d’un outil intéressant aux cliniciens pour améliorer à 

la fois la précision et la sensibilité de l'évaluation musculaire utile pour les programmes de 

prévention et de réadaptation afin d'éviter ou de retarder la sarcopénie, problème de santé 

publique actuel alerté par l'Organisation Mondiale de la Santé (OMS) et promouvoir un 

vieillissement en bonne santé.  
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Abstract  
With the aging of the population, preserving muscle function is important to prevent 

loss of mobility and autonomy. Nowadays, the prevention of the muscle disease, sarcopenia, 

is a major concern and important risk factors such as older age as well as modifiable factors 

including low physical activity and unhealthy diet have been identified. Considering the growth 

of older populations and the decreased physical activity, which also includes young citizens, 

muscle quality awareness can be crucial in promoting a healthy aging process in our societies. 

Muscle functional assessments needs were expressed by researchers and clinicians, The 

European Working Group on Sarcopenia in Older People (EWGSOP) recommends defining 

sarcopenia as the presence of both low muscle mass and low muscle function (strength, and 

physical performance). 

For this purpose, we have developed a method for muscle aging evaluation, using an 

ambulatory and non-invasive technology, called high-density surface electromyography (HD-

sEMG), through a clinical research project on five age categories (25 to 74 yrs.). We performed 

a comparative study with a complete and multimodal analysis of the rectus femoris, muscle 

involved in daily life motions, in order to reveal the promising potential of the HD-sEMG 

technique, compared to conventional clinical techniques, to detect early changes in the quality 

of muscle function impacted by aging and physical activity level. The clinical part of this thesis 

project was funded by a European grant, EITH Health. 

By analyzing both muscle contraction dynamics and intensity of the rectus femoris, our 

results showed that the HD-sEMG technique, was able to discriminate between the five age 

categories of healthy physically active subjects. More interestingly, the proposed HD-sEMG 

scores discriminated between active and sedentary participants, from the same age category 

(45-54 yrs.), in contrary to clinical parameters and others usual techniques (dual-energy x-ray 

absorptiometry, DXA and ultrasonography). In addition, these scores for sedentary 

participants from this age category were significantly closer to those of active participants from 

higher age categories (55-64 yrs. and 65-74 yrs.).  
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This strongly suggests that sedentary lifestyle seems to accelerate the muscle aging 

process at both anatomical and functional level, and this subtle accelerated process can be 

detected by the HD-sEMG technique. These promising preliminary results can contribute to 

the development of an interesting tool for clinicians to improve both accuracy and sensitivity 

of functional muscle evaluation useful for prevention and rehabilitation to avoid the effects of 

unhealthy lifestyle that can potentially lead to sarcopenia. This can support also the actual 

public health concern alerted by Word Health Organization (WHO) regarding aging and 

sarcopenia, to promote healthy aging. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 9 

 

Publications  

International journal 

• L.Imrani, S.Boudaoud, J.Laforêt, K.Kinugawa. Ageing Effect Evaluation on HD-sEMG 
Signals Using CCA Approach. IRBM 2021. https://doi.org/10.1016/j.irbm.2021.05.002 
 
- Under submission:  

  
• L.Imrani, S.Boudaoud, C.Lahaye, C. Moreau, M. Ghezal, S. Ben Manaa, M. Doulazmi, J. 

Laforêt, F. Marin, K. Kinugawa. High-density surface electromyography as biomarker of 
early muscle aging induced by physical inactivity. Under submission to Journal of 
Gerontology: Biological Sciences.   

International conferences  

• Imrani L., Boudaoud S., Lahaye C., Ghezal M., Ben Manaa S., Doulazmi M., Kinugawa K., 
Does physical inactivity induce muscle ageing? High-density surface electromyography 
study. EUGMS2021. Athens, Greece. 11-13 October, 2021.  
 

• C. Lahaye, L. Imrani, M. Ghezal, S. BenMana, M. Doulazmi, S. Boudaoud, K. Kinugawa. 
Assessment of muscle aging by quadricipital ultrasound. EUGMS2019.Krakow, Poland. 25-
27 September 2019. 
 

• L. Imrani, S. Boudaoud, K. Kinugawa, J. Laforêt. Wireless evaluation of muscle abilities 
with aging using CCA approach. IEEE JETSAN2019. Paris, France. 23-24 Mai 2019. 
 

• S. Banerjee, L. Imrani, K. Kinugawa, J. Laforet, S. Boudaoud. Analysis of HD-sEMG signals 
using Non-Negative Matrix Factorization and Time Domain Features for functional 
assessment with aging. BIOCOM2018. London, United Kingdom,30-31 October 2018. 
 

• L. Imrani, S. Boudaoud, K. Kinugawa, K. Lepetit, J. Laforêt , F. Marin. Evaluation of motor 
abilities with aging using HD-sEMG and IMU data. EUGMS 2018. Berlin, Germany, 10,12 
October 2018. 
 

• L. Imrani, S. Boudaoud, K. Kinugawa, K. Lepetit, J. Laforêt, F. Marin. Étude de l'effet de 
l'âge sur des capacités motrices en utilisant les données HD-sEMG et IMU. JASFGG 
2018.Paris 26-28 November 2018. 
 

• L. Imrani, S. Xeres, K. Lepetit ,M. Al Harrach, S. Boudaoud, K. Kinugawa, F. Marin. 
Evaluation of motor abilities in young and older subjects using HD-sEMG and IMU data. 
EUGMS 2017. Nice, France. 20-22 September 2017 

 



 10 

 
 

 
 
 
 

“To my son Yacine & my husband Mohamed 
thank you for making me the happiest mom on 
earth” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 11 

 

Contents 
LIST OF FIGURES ................................................................................................................... 13 

LIST OF TABLES ……………………………………………………………………………………………….16 

GENERAL INTRODUCTION .................................................................................................... 17 

 

CHAPTER 1 : GENERAL CONTEXT ................................................................................... 20 

1.1 INTRODUCTION ................................................................................................................... 21 
1.2 PROBLEMATIC OF AGING ....................................................................................................... 22 

1.2.1 Aging statistics .......................................................................................................... 22 
1.2.2 Chronological age versus Motor Functional Age ....................................................... 23 

1.3 PHYSIOLOGICAL AND ANATOMICAL BASES OF NEURO MUSCULOSKELETAL SYSTEM ......................... 24 
1.3.1 Anatomy of skeletal muscle ....................................................................................... 24 
1.3.2 Muscle fiber types ..................................................................................................... 30 
1.3.3 Motor units ............................................................................................................... 33 
1.3.4 Muscle contraction .................................................................................................... 35 

1.4 AGING OF MUSCULOSKELETAL SYSTEM .................................................................................... 39 
1.4.1 Effect of age on muscle mass and typology ............................................................... 40 
1.4.2 Effect of age on motor unit recruitment ..................................................................... 43 
1.4.3 Effect of age on muscle contraction (Excitation-contraction coupling) ....................... 43 
1.4.4 Environmental factors responsible of muscle decline during aging ............................ 45 

1.5 SARCOPENIA ....................................................................................................................... 47 
1.6 EVALUATION OF MUSCLE FUNCTIONAL ABILITIES BY USING MULTIMODAL DATA ANALYSIS ................. 48 

1.6.1 Measurements of muscle function in clinical routine .................................................. 48 
1.6.2 Techniques used to evaluate muscle mass ................................................................ 50 
1.6.3 Research state techniques ......................................................................................... 53 
1.6.4 Sit-To-Stand motion .................................................................................................. 56 

1.7 PROBLEMATIC DESCRIPTION AND THESIS WORK ........................................................................ 60 
1.8 CONCLUSION ...................................................................................................................... 62 

 

CHAPTER 2 : HD-SEMG SIGNAL RECORDING AND ANALYSIS FOR THE CLINICAL 
ASSESSMENT OF MUSCLE AGING ......................................................................................... 65 

2.1 INTRODUCTION ................................................................................................................... 66 
2.2 EXPERIMENTAL PROTOCOL AND DATA PROCESSING ................................................................... 67 

2.2.1 General overview ...................................................................................................... 67 
2.2.2 Experimental setup ................................................................................................... 68 
2.2.3 Statistical analysis for multimodal data comparison ................................................... 85 

2.3 CLINICAL STUDY RESULT ........................................................................................................ 86 
2.3.1 Preliminary studies .................................................................................................... 86 
2.3.2 Multimodal clinical comparative study (CHRONOS)................................................... 88 

2.4 DISCUSSION ........................................................................................................................ 97 
2.5 STRENGTHS AND LIMITATIONS .............................................................................................. 100 
2.6 CONCLUSION .................................................................................................................... 102 

 



 12 

 
 

CHAPTER 3 : ANALYSIS AND CLASSIFICATION OF HD-SEMG SIGNALS WITH MUSCLE AGING 
AND SEDENTARY LIFESTYLE ............................................................................................... 104 

3.1 INTRODUCTION ................................................................................................................. 105 
3.2 ANALYSIS OF HD-SEMG SIGNALS ........................................................................................ 106 

3.2.1 Aging effect evaluation on HD-sEMG signals using CCA approach ......................... 106 
3.2.2 Time-Frequency analysis of HD-sEMG signals with aging ........................................ 115 

3.3 PREDICTION OF MUSCLE AGING BASED ON HD-SEMG FEATURES CLASSIFICATION ....................... 121 
3.3.1 Introduction  ........................................................................................................... 121 
3.3.2 Features from HD-sEMG signal ............................................................................... 122 
3.3.3 Classifiers ................................................................................................................ 124 
3.3.4 Experiments & Methodology ................................................................................... 128 
3.3.5 Results and discussion ............................................................................................. 135 

GENERAL CONCLUSION ..................................................................................................... 147 

BIBLIOGRAPHY………………………………………………………………………………………………151 

 

 

 

 

 

 

 

 

 

 
 



 13 

 

List of figures 
 
Figure 1.1: Organization of skeletal muscle ......................................................................... 25 
Figure 1.2: Skeletal muscle shapes photo created by © Benjamin Cummings, Addison Wesley 
Longman, Inc 2001). ............................................................................................................. 26 
Figure 1.3: Skeletal muscle shapes photo created by © Benjamin Cummings, Addison Wesley 
Longman, Inc 2001). ............................................................................................................. 27 
Figure 1.4: Structure of the muscle fiber [15]. ...................................................................... 28 
Figure 1.5: Representation of the sarcoplasmic reticulum and the tubular system transverse 
[16]. ...................................................................................................................................... 29 
Figure 1.6: Classification of muscle fibers on the staining of myofibrillar ATPase after Eriksson 
1982 [19] .............................................................................................................................. 30 
Figure 1.7: Representation of muscle fiber types conforming to their types [20] ................. 31 
Figure 1.8: Action potential (image from © Pearson prentice Hall, Inc 2005). ..................... 33 
Figure 1.9: Representation of Motor unit (image from © Pearson Education, Inc, 2013). .... 34 
Figure 1.10: The theory of sliding filaments: behavior of actin filaments in relation to the myosin 
filaments during relaxation (top), partially contracted (in the middle), and fully contracted (at 
the bottom) After (Huxley, 1956) [23]................................................................................... 35 
Figure 1.11: The component of muscle contraction (image from © Pearson Education, Inc, 
2013). ................................................................................................................................... 36 
Figure 1.12: Types of muscle contraction [26]. ..................................................................... 38 
Figure 1.13: The several factors responsible of age age-related changes. Diagram by Tim 
Goheen, ............................................................................................................................... 39 
Figure 1.14: The potential muscle gain and loss during our lifetime [38] ............................. 40 
Figure 1.15: Histological sections stained for myosin-ATPase obtained from the vast lateral for 
a 25-year-old subject (C) and a 75-year-old subject (D) with type I (dark spots) and type II fibers 
(light spots) [50] ................................................................................................................... 42 
Figure 1.16: Relationship between total number of motor units and age for men aged 18 to 82 
[31] ....................................................................................................................................... 43 
Figure 1.17 : Illustration of DXA technique .......................................................................... 50 
Figure 1.18: Examples of ultrasound images of RF of (A) Young participant. (B) Old participant 
[113]. .................................................................................................................................... 51 
Figure 1.19: Schematic representation of surface EMG signal generation [125]. ................. 53 
Figure1.20: Representation of High-Density Surface Electromyography (HD-sEMG) technique 
(Refa and Mobita devices, TMSi ©). ..................................................................................... 54 
Figure 1.21: Inertial Measurement Unit (IMU) ...................................................................... 55 
Figure 1.22: Number of Pubmed publications per year for “gait analysis” and “Sit To Stand”.
 ............................................................................................................................................. 57 
Figure 1.23: The four phases of the human Sit-Stand-Motion. In phase 1, humans flex their 
upper body to generate momentum and initiate the Sit-To-Stand motion. In phase 2, they raise 
their hip from the chair and transfer momentum. In phase 3, humans extend their whole body 
upward. In phase 4, they move their body backward to stabilize their posture [150].   available 
via license: Creative Commons Attribution 4.0 International ............................................... 58 
Figure 1.24: General overview of the thesis ......................................................................... 62 



 14 

Figure 2.1: The experimental setup up for CHRONOS study. ............................................. 68 
Figure 2.2 : Flow diagram of the participants ...................................................................... 70 
Figure 2.3: Example of ultrasound image recording during CHRONOS study. A: Ultrasound 
image from a young woman aged 25 years with BMI=19kg/m². B: Ultrasound image from older 
woman aged 70 years with BMI=20kg/m. ............................................................................ 71 
Figure 2.4: Acquisition of HD-sEMG signals during CHRONOS clinical study ...................... 72 
Figure 2.5: EMG electrode configurations and the corresponding recorded signal from one 
Motor Unit [157]. .................................................................................................................. 74 
Figure 2.6 : Methodological issues in the processing of surface electromyogram ............... 75 
Figure 2.7: Set up of HD-sEMG score calculation ................................................................ 76 
Figure 2.8: Above: Raw EMG signal, below: EMG signal after band-pass filter with rest period 
to calculate SNR. .................................................................................................................. 77 
Figure 2.9: Acquisition interface using Polybench software by TMSI Netherland. A: Wireless 
connection for Mobita® (TMSi, Oldenzaal, Netherlands). B: high-pass filter with Fc=5 Hz 
(recommended for Mobita device). C: visualization of EMG channels. D: visualization of 
acceleration acquisition........................................................................................................ 77 
Figure 2.10: Automatic segmentation algorithm using Hilbert transform ............................ 80 
Figure 2.11: Automatic segmentation of EMG signal using Hilbert transform ..................... 81 
Figure 2.12: Alarm vector obtained from automatic segmentation ..................................... 81 
Figure 2.13: Averaged MCD heat map (32 channels) for the 5 age categories yrs 
(category1=25-34yrs ,category2=35-44yrs, category3=45-54yrs, category4=55-64yrs, 
category5=65-74yrs.), and sedentary group 45-54 yrs group (up, proximal, down distal, left, 
lateral and right distal part of the grid). ............................................................................... 82 
Figure 2.14 : Averaged HD-sEMG signals for the 5 age categories and sedentary category, 
A=(Category1:25-34yrs),B= (Category2:35-44yrs),C=(Category3:45-54yrs),D=(Category4:55-
64yrs),E= Category5:65-74yrs),and F=(sedentary category:45-54yrs). ................................. 85 
Figure 2.15: Optimization of HD-sEMG acquisition chain from REFA amplifier (A) to Mobita 
ambulatory device (B). ......................................................................................................... 86 
Figure 2.16: Box plot for the maximum amplitude (left) and the maximum acceleration (Right) 
for three age categories (Imrani et al 2018) [191]. See (Annex 4Annex 5)............................ 88 
Figure 2.17: Linear regression with aging of FT score (A) and MT score(B). Where R is 
determinant coefficient R= (0.4,0.52) respectively. .............................................................. 91 
Figure 2.18: A linear regression with aging of MCD score (A) and MCI score (B). Where R is 
determinant coefficient R= (0.8,0.58) respectively. .............................................................. 92 
Figure 2.19 linear model of maximum acceleration with determinant coefficient R=0.6 ..... 96 
Figure 3.1: Representation of canonical components (estimated sources) for one subject during 
STS motion......................................................................................................................... 110 
Figure 3.2 Obtained CCA correlation coefficients for the 31 estimated sources for young (H1) 
“up” and older  (H2) “down” groups. ................................................................................ 112 
Figure 3.3: Boxplot of the mean correlation coefficient of the estimated sources for H1 (young) 
and H2 (older) groups. ....................................................................................................... 113 
Figure 3.4:  Boxplot of standard deviation of CCA correlation coefficients for the estimated 
sources for H1 (young) and H2 (older)groups. ................................................................... 114 
Figure 3.5: Focus for Time-Frequency map for one channel of young subject (up) and senior 
(down) subject during sit to stand motion.......................................................................... 117 
Figure 3.6 : Time-Frequency cartography for representative Young subject 25 yrs. .......... 118 
Figure 3.7 : Time-Frequency cartography for representative Young subject 52 yrs. .......... 119 



 15 

Figure 3.8: Time-Frequency cartography for representative Young subject 63 yrs. ........... 119 
Figure 3.9 : The overview of classification set up ............................................................... 122 
Figure 3.10: the decision function for a linearly separable problem, with three samples on the 
margin boundaries [242]. ................................................................................................... 126 
Figure 3.11: Random forest setup ...................................................................................... 127 
Figure 3.12 : Neuronal network [248]. ................................................................................ 128 
Figure 3.13: Classification process ..................................................................................... 130 
Figure 3.14: Feature extraction for MFA prediction ........................................................... 132 
Figure 3.15: Grid Search method ....................................................................................... 133 
Figure 3.16: Cross validation (K-fold) method .................................................................... 134 
Figure 3.17: Accuracy percentage of HD-sEMG features from the averaged channels channels 
(Feature Extraction Methodology 1) .................................................................................. 136 
Figure 3.18: Accuracy percentage of HD-sEMG features from 31 channels (Feature extraction 
methodology 2) ................................................................................................................. 137 
Figure 3.19: the three segments of EMG contraction during STS motion.......................... 138 
Figure 3.20: Accuracy percentage of HD-sEMG features from the 1st segment of all channels
 ........................................................................................................................................... 139 
Figure 3.21: Accuracy percentage of HD-sEMG features from the 2nd segment of all channels
 ........................................................................................................................................... 140 
Figure 3.22: Accuracy percentage of HD-sEMG features from the 3rd segment of all channels
 ........................................................................................................................................... 140 
Figure 3.23: Representative confusion matrix for the four classifiers with methodology 1, using 
ARV feature. ....................................................................................................................... 141 
Figure 3.24: MFA Prediction by majority voting of sedentary representative subject 2 using 
logistic regression .............................................................................................................. 144 
Figure 3.26: MFA Prediction by majority voting of sedentary representative subject 2 using 
Knn..................................................................................................................................... 145 

 

 

 

 

 

 

 
 
 
 
 
 



 16 

 

List of tables   
 
Table 1: General description of the CHRONOS active population (n=82) ........................... 89 
Table 2.Statistical testing of clinical scores of the active population with aging (n=82) ....... 90 
Table 3: Statistical testing of the ultrasound scores of the active population with aging (n=82)
 ............................................................................................................................................. 91 
Table 4 Statistical testing of HD-sEMG scores of the active population according to age (n=82)
 ............................................................................................................................................. 92 
Table 5: Correlation coefficients of HD-sEMG scores, ultrasound scores, and age (n=82) .. 93 
Table 6 : multivariate variance analysis (MANOVA) to assess the robustness of the HD-sEMG 
scores to MT, FT, Gender, and BMI parameters .................................................................. 93 
Table 7 Statistical testing for comparing clinical scores between active and sedentary subjects
 ............................................................................................................................................. 94 
Table 8. Statistical testing for comparing HD-sEMG and ultrasound scores between active and 
sedentary subjects ............................................................................................................... 95 
Table 9. Cohort description (BMI: Body Mass Index) ......................................................... 107 
Table 10. t-test results for H1 and H2 groups .................................................................... 111 
Table 11.  Dataset description ........................................................................................... 129 
Table 12. Summary of the best classifiers and features (accuracy performances in %)....... 142 
Table 13. Summary of MFA prediction using Knn and LR methods ................................... 144 

 

 

 

 

 

 

 

 
 
 
 



 17 

 
 

General introduction 
 

The aging of the population is a major public health concern, according to the world 

report on aging and health, from World Health Organization (WHO, 2015), the proportion of 

people aged 60 and over will almost double between 2015 and 2025 [1,2]. There are many 

effects of aging such as the loss of autonomy and increased risk of falling [3]. These generate 

a very important economic, social and psychological costs [4].  

The current clinical examinations are not enough accurate and robust to assess the 

muscle status of older people as mentioned in the recently updated recommendations of the 

European Working Group on Sarcopenia of Older People EWGSOP [5]. Indeed, the way of 

aging is different from one individual to another; it is a function of many factors such as the 

biological and physiological changes of the organs, the environmental conditions as well as 

the lifestyle of the person.  

The consequences of these factors can divide the older population into two categories; 

the first is a population with a healthy aging mode, and the second is a category that suffers 

from a pathological aging with a decrease in autonomy, caused in part by the loss of motor 

capacity of the muscles, which causes discomfort to perform simple physical tasks during daily 

life.  

Consequently, it would be interesting to exploit the new technologies dedicated to the 

functional evaluation of the musculoskeletal system such as the high-density surface 

electromyography technique (HD-sEMG), a recent multichannel recording technique, to 

develop device able to assess motor decline and to serve as an indicator in a prevention 

approach or in functional rehabilitation.  

The work of this thesis is a part of “CHRONOS” project (http://www.chronos-

eithealth.eu), a European project founded by EIT Health. This work will modestly launch a first 

study to evaluate a new innovative technology used in research in order to construct the first 

basis for a portable precise device able to assess motor decline with aging. Indeed, this work 

will be divided into three parts. The first chapter will introduce the musculoskeletal system, 

basic notions about muscle aging, and the problematic treated in this thesis, and the new 

concept of motor functional age (MFA). The second chapter will unveil the materials and 
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methods used for the implementation of the instrumental protocol including clinical 

examination, the HD-sEMG and accelerometer sensors combined in the same portable device. 

It will also cover the preprocessing of the data and statistical analysis to evaluate the sensitivity 

of various parameters from HD-sEMG technique compared to current clinical examinations 

with aging and the variation of physical activity level. The third chapter will be devoted to 

advanced analysis of HD-sEMG signals divided in two subparts: firstly, the evaluation of aging 

effect using blind source separation technique, namely, canonical correlation analysis [6], and 

time frequency analysis using short time Fourier transform to analyze the non-stationarity of 

the signals. The last subpart of the chapter will explore classification possibilities to estimate 

motor functional age from basics features extracted from HD-sEMG signals. Several classifiers 

from machine learning approaches will be evaluated in term of classification accuracy 

according to each feature, segmentation techniques, number of channels, with aging and 

physical activity level. Finally, after discussing the strengths and limitations of the thesis work, 

envisaged perspectives will be exposed concerning clinical application. 
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1.1 Introduction  
 

The aging of the population is a major public health concern, according to the world 

report on aging and health, from World Health Organization (WHO, 2015), the proportion of 

people aged 60 and over will almost double between 2015 and 2025 [1,2]. There are many 

effects of aging such as the loss of autonomy and increased risk of falling [3]. These generate 

a very important economic, social and psychological costs [4]. The current clinical examinations 

are not enough accurate and robust to assess the muscle status of older people as mentioned 

in the recently updated recommendations of the European Working Group on Sarcopenia of 

Older People EWGSOP [5]. Consequently, it would be interesting to exploit the new 

technologies dedicated to the functional evaluation of the musculoskeletal system such as the 

high-density surface electromyography technique (HD-sEMG), to develop device able to 

assess motor decline and to serve as an indicator in a prevention approach or in a functional 

rehabilitation.  

This is why we propose to show at first the aging statistic and the difference between 

chronological age and functional age in order to justify the motivation behind this thesis, then 

we will introduce the physiological and anatomical elements on muscle contraction in order to 

understand muscle aging. We will highlight the characteristics of muscles that seem essential 

to maintain the autonomy and care of the older population, and finally we will discuss the main 

elements to clarify how muscle is implemented in the quality of life from its structure until the 

impact of environmental factors on its performance and quality. The keys elements of this 

chapter are:  firstly, we will introduce the aging statistics, physiological and anatomical bases 

of neuromusculoskeletal system, then age-related changes in muscles, we progress to the 

environmental factors responsible for aging, and the advantages and limitations of recent 

clinical examinations in terms of the accessibility to functional information of muscle.  

Finally, we will illustrate how to explore neuro-musculoskeletal system using High 

Density Surface Electromyography (HD-sEMG) and others new innovative devices such as 

Inertial Measurement Unit (IMU), Motor unit magnetic resonance imaging. Once all the key 

elements have been cited, we will show the general objective of this thesis work and our strong 

motivation to get involved in the improvement of clinical tools to guide aging to a positive, 
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healthy and active way. Keeping in mind during all this work that the objective is to help clinical 

routine being more accurate and well-rounded to assess the muscle quality with aging and 

other factors such as physical activity.  

 

1.2 Problematic of aging 
1.2.1 Aging statistics  
 

According to the Eurostat report, the population of the European on 1 January 2020 

Union (EU) was estimated at 446.8 million people. Young people (0 to 14 years old) made up 

15.2% of the population of the EU, while people considered to be of working age (15 to 64 

years old) represented 64.6% of the population, and the older (65 years and over) 20.3% (i.e. 

0.3 percentage point more than the previous year and 2.9 percentage points more than ten 

years ago) [2]. Among the Member States of the EU-27, the highest proportion of young 

people in the total population in 2019 was observed in Ireland (20.5%), France (18.0%) and 

Sweden (17.8%), while the lowest shares were recorded in Italy (13.2%), Germany (13.6%), 

Malta and Portugal (13.7% each). Regarding the proportion of older people (65 years and over) 

in the total population, Italy (22.8%), Greece (22.0%), Portugal, Finland (21.8% each) and 

France (20,4%) recorded the highest shares, and Ireland (14.1%) and Luxembourg (14.4%) the 

lowest [2]. With aging, the major public health problem is the development of dependence of 

older population. As a result, we can introduce the notion of dependency rates. Age 

dependency ratios can be used to study the level of care for young and / or the older people 

by the working-age population [2].  

These rates are expressed in terms of the relative size of the young and / or old 

populations compared to the working-age population. The old-age dependency ratio of the 

EU stood at 31.4% as of January, 2019. There were therefore just over three people of working 

age for every person aged 65 or over. The old-age dependency ratio varied from one EU 

Member State to another, ranging from 20.7% in Luxembourg to 21.6% in Ireland (See 

Eurostat report for more details), with nearly five people of working age per year for each 

person aged 65 or over. This ratio reached 35.7% in Italy, 35.1% in Finland, 34.6% in Greece, 

and 33.1% in France with less than three people of working age taking care for each person 

aged 65 and over. From this statistical data analysis given by Eurostat the conclusion is that in 
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2020, more than one fifth (20.6 %) of the EU population was aged 65 and over. For these 

reasons, we are interested in the mode of aging of the population with the objective of helping 

the older to live this part of their life in the best conditions while maintaining a healthy aging. 

The benefits of being interested in leading active aging for this population are multiple: first, 

the well-being of the older will reduce their dependencies, and then the costs of the 

consequences of pathological (unhealthy) aging will be  reduced [1]. Finally, the psychological 

and societal impacts are very important; keeping a good mental and psychological health 

during this step can avoid several health complications. Euro statistics show a real need for 

real-time monitoring of the living conditions of the older, particularly the impact of physical 

activity.  

Our main motivation in this thesis work is to provide precise studies based on muscle 

activity from signals using High Density surface Electromyography technology (HD-sEMG) to 

be able to provide a device that allows to monitor muscle conditions based on aging and 

physical activity. This seems very important to us to warn early the citizen about the impact on 

the muscle of the lack of physical activity through life, in order to maintain muscle health. 

 

1.2.2 Chronological age versus Motor Functional Age   
 

The way of aging is different from one individual to another; it is a function of many 

factors such as the biological and physiological changes of the organs, the environmental 

conditions as well as the way of life of the person [7,8]. The consequences of these factors can 

divide the older population into two categories; the first is a population with a healthy aging 

mode, and the second is a category that suffers from a pathological aging with a decrease in 

autonomy, caused partly by the loss of motor capacity of the muscles, which causes difficulty 

to perform physical tasks during the daily life. According to the recent European report 

“Population structure and ageing” [2], difficulties of movement (27%) combined with the loss 

of strength, endurance (27%) represent the main symptoms of aging and the main limitation 

in older population.  

Because the chronological age taken alone is rarely a reliable index of the motor 

efficiency of a person to make a physical effort, the assessment of motor capacity is virtually 

related to the functional age, different from the chronological age. That mean, our 

chronological age does not reflect precisely our muscular abilities, because there may be 
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young people in physical inactivity who also suffer from defined motor loss as early aging [9]. 

Based on that, it is becoming more important to find out solution to slow down the 

pathological or premature aging process by improving the lifestyle, such as diet, activities, life 

choices [9,10]. One proposition is the design of the Motor Functional Age (MFA) concept by 

S. Boudaoud & K. Kinugawa to provide Intuitive metric to evaluate possible early muscle aging 

for preventing sarcopenia.   

 

1.3 Physiological and anatomical bases of neuro 
musculoskeletal system 

 

1.3.1 Anatomy of skeletal muscle 
 

- Architecture of skeletal muscle  
 

The human body has more than 650 muscles attached to the skeleton [6]. They provide 

a pulling force that allows movement. These muscles make up about 40% of the total weight 

of the body. Each end of the muscle is attached by a point called origin or insertion and has a 

contractile fleshy portion called the muscular body (Figure 1.1).  

The origin corresponds to the point of attachment of the muscle to the bone, which 

remains fixed. Insertion is the point attaching the muscle to the bone it sets in motion. These 

muscles are attached to the bones either directly, or indirectly (by tendons), and work to 

produce the movements of the body; the muscles work together to produce the movement of 

a articulation, to stabilize a joint and to prevent any movement in the direction opposite to 

that desired [11].  

The shortening of the muscle during its contraction brings both bones. As a rule, only 

the bone including the insertion is put into action while the bone to which the origin of the 

muscle is attached remains firmly in place. Skeletal muscles always have a fatigability often 

linked to a continuous contraction and therefore require rest phases [11]. 
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Figure 1.1: Organization of skeletal muscle 

Source : https://courses.lumenlearning.com/cuny-csi-ap-1/chapter/muscular-levels-of-organization/ 
 
 

The skeletal muscles in the human body possess a diversity of shapes according to the 

fiber orientation whether it is in the direction of the tendon (fusiform) or at a certain angle from 

the tendon (pennate). In the case of a pennate muscle, the fibers are connected to the 

aponeurosis of the muscle [11]. Thus, the muscle fiber types vary from: fusiform, parallel, 

unipennate, bipennate, multipennate, circular and convergent as illustrated in Figure 1.2 

where every shape has its own conveniences.  
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Figure 1.2: Skeletal muscle shapes photo created by © Benjamin Cummings, Addison Wesley Longman, Inc 

2001). 
 
Skeletal muscles have four essential properties: 
 

• Excitability: is the property of a muscle to respond to stimulation by the production of 

electrical phenomena associated with ionic movements. 

• Contractility: is the property of muscle tissue to be able to shorten following a stimulus 

so as to mobilize the bone elements to which it is attached; the contractions lead to 

shortening, thickening and hardening of the muscle. 

• Elasticity: is the property of muscle tissue to resume its original form when the 

contraction stops. 

• Tonicity: is the property of the muscle to be in a permanent state of tension (Muscle 

tone). 



 27 

All skeletal muscles are attached to two bones by tendons, except for facial muscles. 

Tendons are tough band of fibrous connective tissues whose strong collagen fibers firmly 

attach muscles to bones. Tendons are able to withstand tension. They are put under extreme 

stress when muscles pull on them, so they are strong and are interlaced into the covering of 

both muscles and bones.  

In this thesis, our interest will be focused on the skeletal muscles and more precisely 

the evaluation of Rectus femoris muscle (RF) abilities with aging and physical activities by 

analyzing our designed protocol containing multimodal data from clinical routine and research 

innovative tools.  

 
Figure 1.3: Skeletal muscle shapes photo created by © Benjamin Cummings, Addison Wesley Longman, Inc 

2001). 
 

Rectus femoris (RF) illustrated in Figure 1.3 is part of the quadriceps group. The RF is 

innervated by the femoral nerve. It is a bulk of muscle located in the superior, anterior middle 

compartment of the thigh and is the only muscle in the quadriceps group that crosses the hip 

[12]. It is a biarticulated muscle that contributes to 90° of knee flexion and assists iliopsoas in 

hip flexion, originates from anterior inferior iliac spine (AIIS) and the part of alar of ilium 

superior to the acetabulum. Rectus Femoris together with vastus medialis, vastus lateralis and 

vastus intermedius joins the quadriceps tendon to insert at the patella and tibial tuberosity (via 

patellar ligament). The rectus femoris is also the more superficial muscle of the quadriceps 

group. This helps in providing reliable electrical activity measurements using HD-sEMG 

technique.  
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- Structure of the muscle fiber 
 

The basic unit of skeletal muscle tissue is the muscle fiber. These fibers resemble long 

cylindrical forms containing nuclei, mitochondria, reticulum endoplasmic and myofibrils [11]. 

The fibers are arranged in parallel. They measure from 10 to 100 μm in diameter and can reach 

30 cm in length [13]. Each muscle fiber is located in a membrane transparent thin called 

sarcolemma (Figure 1.4). 

Myofibrils, occupying about 80% of the volume of the muscle fiber, are cylindrical 

elements, with a diameter of 1 to 2 μm [14]. Each myofibril has a regular alternation of dark 

bands (A, anisotropic) and bands clear (I, isotropic), whose perfect correspondence from one 

myofibrilla to another gives muscle its transverse striation (Figure 1.4). In the middle of each 

band A, there is one more band clear: zone H (Figure 1.4). In the middle of this zone H, there 

is a darker streak: the band M (Figure 1.4).  

 

 
Figure 1.4: Structure of the muscle fiber [15]. 
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In the middle of each band I, is a darker band, the line Z. Space cylindrical delimited by 

two consecutive Z lines is called sarcomere: this is the unit anatomo-physiological muscle. 

Studied under the electron microscope, the sarcomeres have two types of filaments: thick 

filaments and fine filaments. Filaments thick, consisting of a protein called myosin, are located 

at the center of the sarcomere and correspond to band A. The fine filaments, composed of a 

protein called actin, are attached to each end of the sarcomere at the Z-lines and arranged 

throughout the bands I. Bridges connecting thick filaments to fine filaments, actin-myosin 

bridges, are responsible for changes in muscle length to develop tension (Figure 1.4). 

 

 
Figure 1.5: Representation of the sarcoplasmic reticulum and the tubular system transverse [16]. 

  
A network of cannulas (sarcoplasmic reticulum) travels the fiber in the direction of the 

length. Above each junction between the bands A and I, there is another structure tubular 

positioned transversely to the axis of the fiber (transverse tubule), and in contact with which 

the reticulum transforms into a tube (Figure 1.5). These structures contain calcium that plays 

an inhibitory role at the level of contraction muscular.  

Several layers of connective tissue separate and protect the components of skeletal 

muscles. The endomysium separates each muscle fiber, the perimysium organizes 10 to 100 
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muscle fibers in bundles and epimysium is the outer layer that envelops all the muscle. These 

membranes provide collagen fibers to tissues connective tissue that attaches muscle to other 

structures (muscle, bone, tendons) (Figure 1.2). 

 

1.3.2 Muscle fiber types 
 

- Classification of muscle fibers 
 

Muscles are heterogeneous organs that have great abilities adaptation. They are 

composed of muscular fibers of several types that are classified according to two main 

characteristics: their maximum speed of contraction that mean the speed at which the myosin 

heads are detached from the actin, and their preferential metabolism used to resynthesize ATP 

molecules.  

In humans, the simplest and most widely used classification is that proposed by Engel 

[16] which is based on the staining of myofibrillar ATPase after incubation at a pH of 10.4. Due 

to the basic value of their pH, type I (or S, "Slow") fibers appear clear, while type II (or F, 

"Fast") fibers become dark due to their acidic pH (Figure 1.6).  

 

 
Figure 1.6: Classification of muscle fibers on the staining of myofibrillar ATPase after Eriksson 1982 [19] 
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Fibers II and I are in fact the old name red and white due to the presence in greater or 

lesser amounts of myoglobin in these fibers. Myoglobin is the equivalent of red blood cell 

hemoglobin muscular it allows local storage of oxygen to produce energy to/from aerobic 

metabolism. Type II muscle fibers are themselves subdivided into two large subgroups: the IIa 

(or FR, "Fast Resistable") and the IIb (or FF, "Fast Fatiguable"), always at from their relative 

pH sensitivity [17].The existence of a third subgroup, the IIc fibers, is sometimes established 

through the combination of different pH of incubation. These latter have intermediate 

characteristics between type I fibers and type II fibers. They represent, in any case, only a very 

low quota (2 to 5%) of the fibers.   

 

 
Figure 1.7: Representation of muscle fiber types conforming to their types [20] 

  
 

The different characteristics of muscle fibers can be summarized below (Figure 1.7): 

 
• I fibers are very slow (sarcoplasmic reticulum not very developed, so weaker capacity 

to transmit the action potential), very weak at the force level (weak number of 

myofibrils), but also more enduring (preferential use of metabolism aerobic because 

they have many capillaries, mitochondria and myoglobin). 

• IIa Fibers are intermediate fibers between types I and IIb, therefore moderately 

fatigable, moderately strong and moderately enduring. The muscle, undergoing 

sustained training, undergoes modifications of the fiber type which relate to its 
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structure and its metabolism. Whatever the training modality adopted, the effects 

relate only to the muscular groups in particular need and, for a given muscle, they are 

particularly interested in the fibers that are particularly involved.  

• IIb fibers are extremely fast and strong (large diameter and reticulum highly 

sarcoplasmic, large number of myofibrils) and very fatiguing (because essentially 

glycolytic). 

Moreover, the modifications of muscle fibers typology obtained depend on the 

intensity of the exercise. In addition, with aging, there is a loss of muscle, associated with a 

decrease in the type of fibers II, which may be due partly to less physical activity [10,18]. 

 

- Generation and propagation of fiber action potential  
 

The excitation of muscle fiber can be explained by the model of a semi-permeable 

membrane describing the electrical properties of sarcolemma [19]. The balance ionic between 

the inside and outside of a muscle cell produces a potential, said resting potential, for the 

muscle fiber membrane (approximately -70 to -80 mV). This potential difference, which is 

maintained by physiological processes (ion pump) leads to a negative intracellular charge 

compared to the external medium. The Activation of an alpha motor neuron (induced by the 

central nervous system or by reflex) causes conduction of excitation along the motor nerve. 

After release of transmitters at the motor plate, a motor plate potential is formed on the 

muscle fibers innervated by this motor unit. The diffusion characteristics of the membrane of 

muscle fibers are briefly changed, and Na + ions enter. If a threshold level is exceeded, 

depolarization of the membrane causes an action potential (AP) and the potential difference 

changes rapidly from - 80 mV to +40 mV (Figure 1.8). It is a monopolar electrical burst that is 

immediately followed by a repolarization phase, then a period of hyperpolarization of the 

membrane by return of ions thanks to the active ion pump mechanism. 
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Figure 1.8: Action potential (image from © Pearson prentice Hall, Inc 2005). 
  

 

1.3.3 Motor units  
 

All the muscle fibers of a muscle are innervated by the axons of the nerve motors 

emanating from the anterior part of the spinal cord. Every motor nerve or motor neuron 

innervates several muscle fibers. On the other hand, a muscle fiber is innervated only by a 

single motor neuron. The set formed by a motor neuron and fibers that it innervates is called 

the motor unit (UM) (Figure 1.9). It is the smallest muscular functional unit because the smallest 

muscle contraction result in fact from the activation of a single motor unit. The connections 

between Axonal endings of motoneurons and muscle fibers, called the junctions 

neuromuscular or motor plaques, usually occur in the middle of the muscle, and all these 

junctions form the driving point [20]. MUs vary among themselves by: 

• their fiber type: an UM contains a single type of fiber muscle (I, IIa, IIb); this will have 

an influence on both the speed of contraction of the UM but also on its ability to resist 

fatigue; 

• their number of muscle fibers: more the motor neuron innervates muscular fibers, 

more the strength that UM can develop will be important; 

• the size of the motor neuron that innervates muscle fibers: its diameter is important, 

the faster the conduction velocity of the impulse, but the more sensitive it is to the 

nerve impulse is weak (it will take a higher intensity of discharge to succeed in excite it 

because its sheath of myelin, an insulator made of fat, is thicker). 
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Figure 1.9: Representation of Motor unit (image from © Pearson Education, Inc, 2013). 

  
 

There are therefore several types of motor units which characteristics are related to 

both the number and the quality of the muscle fibers that compose them. Thus, the same 

nomenclature used for muscle fibers can be used as Type I motor units and Type II motor units. 

During the stimulation of a motor neuron, the totality of the fibers of a UM is excited and the 

fibers therefore contract all at the same time ("all or nothing" law) [20,21]. This organization 

allows, instead of the total contraction of a muscle, a progressive and successive activation of 

muscle fibers, motor unit per motor unit, and thus the adjustment of the force necessary for 

the activity. 
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1.3.4 Muscle contraction 
 

- Mechanism of muscle contraction  
 

The mechanism of muscle contraction is based on two theories: the “sliding filament” 

theory and “the cross-bridge theory” to the production and propagation of action potential 

(AP) in the fibers (Figure 1.10).  

 

 
Figure 1.10: The theory of sliding filaments: behavior of actin filaments in relation to the myosin filaments during 
relaxation (top), partially contracted (in the middle), and fully contracted (at the bottom) After (Huxley, 1956) [23]. 
 

The muscle fiber excitation phase begins by the arrival of AP at the axon’s terminal 

which causes the release of Acetylcholine (ACh) following the penetration of Ca2+ ions in the 

axon’s terminal (Figure 1.11). Then, the ACh binds to the sarcolemma receptors which induces 

the opening of ion channels. Then, Sodium (Na2+) ions enters and Potassium (K+) ions exits 

the muscle fiber. This variation in the ions concentrations changes the membrane potential 

(end plate potential) which causes the depolarization of the membrane and the propagation 

of the AP at the sarcolemma. The second phase of muscle contraction, the excitation-
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contraction phase, Following the propagation of the AP along the sarcolemma, the AP travels 

down the T tubule where the voltage sensitive proteins lead to the opening of Ca2+ channels 

and the releasing of Ca2+ in the sarcoplasmic reticulum. Thus, the Ca2+ ions concentration in 

the sarcoplasmic reticulum increases and the Ca2+ ions start to bind to the troponin of the 

actin filaments. When the Ca2+ binds to the troponin, it causes it to change shape exposing 

binding sites for myosin and the sliding filaments phenomenon responsible for muscle 

contraction begins (Figure 1.11) [22]. 

 
Figure 1.11: The component of muscle contraction (image from © Pearson Education, Inc, 2013). 

 
The current theory of how muscles create internal tensions (forces) is the "sliding 

filaments" developed by Huxley, and based on Hanson and Huxley's model [23]. She stipulates 

that, during muscle contraction, the actin filaments slip between the myosin filaments (Figure 

1.11). 
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When a myosin head attaches to an actin filament, forming an actine/myosin bridge, 

and move, the two filaments slide on one another. Myosin heads and bridges thus formed 

undergo a change of spatial configuration, as soon as the heads Myosin binds to the active 

sites of the actin filaments. The bridge arm thus established and the myosin head exert a very 

strong molecular attraction that brings the head of myosin to tilt towards the center of the 

sarcomere, thus causing the actin filament [23]. 

This oscillation is at the origin of the power generation by the muscle. Immediately after 

the oscillation of the myosin head, it leaves the active site, returns to its original position and 

attaches to the next active site on the actin filament. These successive bonding and the 

generated power allow the filaments to slide one on the other, hence the name slippery 

filament theory.  

This process continues until the distal ends of the myosin filaments reach the Z streaks. 

During this phase of sliding and contraction, the opposite actin filaments of the same 

sarcomere come closer together from each other and enter Zone H until they overlap at the 

ultimate stage. When this occurs, zone H is no longer visible.  

When the muscle fibers are at rest, the head of myosin remains near an active site of 

actin but the molecular binding is inhibited by tropomyosin. This sliding is the result of the 

formation of bridges of union between the heads of myosin and some actin filament sites, with 

a chemical reaction (hydrolysis of adenosine triphosphate, ATP) which releases the energy 

necessary for the attachment of the heads of myosin and, therefore, makes it possible to exert 

traction on the fine filaments for slide between the thick filaments. So, it occurs in the muscle 

a transformation from chemical energy to mechanical energy. 

 

- Types of muscle contraction  
 

The muscle contraction type can be divided according to the variation of muscle length 

or the produced force (Figure 1.12). 

Based on muscle length variation the muscle contraction is usually divided into two 

main classes [15]:  
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• Isometric contraction, during which the muscle length does not change when the 

muscle generates tension. However, we can also observe changes in the muscle shape 

due to the shortening of the contractile element.  

• Anisometric contraction also called dynamic contraction, implies that the muscle 

length changes during the contraction causing also a deformation of the muscle shape 

due to both length variation of the contractile element and the tendons. This type can 

be further broken down into two subtypes:  

– Anisometric eccentric contraction: described by a lengthening of the muscle during 

contraction.  

– Anisometric concentric contraction: distinguished by a shortening of the muscle 

during contraction.  

Based on the force produced, we can distingue between:  

• Isotonic contraction: which is the type of contraction obtained when the generated 

force does not change along the contraction time.  

• Anisotonic contraction: which is attained when the generated force changes all along 

the contraction.  

 

Figure 1.12: Types of muscle contraction [26]. 
 

  
In this thesis work, the proposed study will concern dynamic contraction from Rectus Femoris 

muscle during Sit To Stand motion (STS).  
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1.4 Aging of musculoskeletal system  
 

The origins of skeletal muscle aging are multifactorial and common to all mammals, 

especially at the cellular level [24]. Other factors contribute to the loss of muscle tissue, such 

as a decrease in anabolic function and, possibly, a concomitant increase in catabolism [25]. 

Hormonal, metabolic, immunological, genetic, circulatory and nutritional factors all have 

important effects on the inherent alterations of the molecular factors that regulate muscle 

protein balance [26]. A reduction of the muscular mass implies at the same time a decrease in 

the size of the muscular fibers thus an atrophy, and a decrease of their number thus a 

hypoplasia [27,28]. This observed hypoplasia impacts all the muscle fibers. Thus, there is a 

decrease in the overall quality of cells but also in the structure and function of muscle proteins. 

This mainly affects fast fibers, which tends to reduce the quality of muscle tissue [29]. The aging 

in human body can be evaluate in different levels and sites, depending the aim of our 

assessment, the Figure 1.13 below resume the various factors responsible for changes with 

aging. 

 
Figure 1.13: The several factors responsible of age age-related changes. Diagram by Tim Goheen, 

Source : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5803609/figure/jcsm12238-fig-0001/ 
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1.4.1 Effect of age on muscle mass and typology  
 

The aging has been associated with a loss of muscle mass. According to longitudinal 

studies in people aged 75 years or over [30], muscle mass decreased by 0.64–0.70% per year 

in women and 0.80–0.98% per year in men.  

The literature agrees that the decrease in muscle mass would be accentuated from the 

4th decade [31–33]. Some authors suggest that 50% of muscle mass can be lost in 4 decades 

from age 40 [34,35]. It has also been suggested a decrease from the 3rd decade but this 

becomes substantial from the age of 50 [36]. Age-dependent changes in muscle mass have 

been proposed by creating periods for mass increase, maintenance, and decrease (Figure 

1.14). The authors also specify in this figure the interindividual differences in this evolution [37] 

according to diet and lifestyle. The lower line (Figure 1.14) represents the early muscle loss 

that can occur with poor diet, disease, and lack of physical activity. The upper line shows how 

we can maintain the independence and function as you achieve 60 years old and beyond if you 

work at it. Indeed, there may be huge disparities in peak muscle mass in adulthood, around 

25 years of age [38].  

 

 

Figure 1.14: The potential muscle gain and loss during our lifetime [38] 
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The loss of muscle mass does not appear to reach all muscles in the same way [39,40]. 

Indeed, by observing the entire body of 468 people aged 18 to 88 years, the decrease in 

muscle mass is greater in the lower limbs [41]. A 12-year longitudinal follow-up of 9 men aged 

65.4 years at the start of the study shows that the muscle section area of the flexors and 

extensors of the knee and elbow decreased by approximately 15% under effect of time [42]. 

Indeed, the decrease in muscle mass is greater in men compared to women with aging. A 

study comparing 148 women and 136 men shows that skeletal muscle mass is halved for men 

compared to women [43]. However, men generally have a greater muscle mass and a shorter 

life span than women do [2]. This implies that women will be more impacted by aging on their 

muscular mass particularly after menopause and therefore on their quality of life [44]. Men will 

live a constant decline in their muscle mass while women may have a sudden decline after 

menopause [45,46]. 

These remarks are to put into perspective because a recent Australian study shows no 

difference between men and women. In fact, of 8582 adults aged 25 to 91, the percentages 

of muscle loss are about 11 to 15% for both gender [22]. The knee extensors were the main 

affected muscles. Thus, a longitudinal follow-up of 8.9 years involving 12 people aged 71 at 

the beginning of the experiment, shows a significant decrease of 5.7% in the muscular section 

area of the quadriceps [29]. It has nevertheless been observed that the decrease in muscle 

area is the same for the 3 large muscles of the quadriceps [47]. Indeed, during a longitudinal 

follow-up of healthy older people, the sectional area of the lateral vastus muscle had not 

decreased [48]. The study of the decline in muscle mass depends on the population and 

muscles studied and the techniques used.   

The size of the muscular fibers as well as the evolution of the number or the proportion 

by type of fibers that can be observed are parameters evolving with the age [30]. The size of 

muscle fibers appears to be affected by age in cross-sectional studies comparing young and 

old populations, with 10–40% smaller type II fibers observed in the older as compared with 

young adults [49]. In contrast, type I muscle fiber size seems to be largely sustained with aging. 

Many studies have indicated a preferential loss of type II fast-twitch fibers and age-related 

remodeling [27,50,51].  

A recent studies has performed biopsies and histological differences between young 

and older persons [52,53]. An example is shown in Figure 1.15, it is clear that the older person 

has less Type II muscle fibers and more Type I fibers than the young person.  
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Figure 1.15: Histological sections stained for myosin-ATPase obtained from the vast lateral for a 25-year-old 

subject (C) and a 75-year-old subject (D) with type I (dark spots) and type II fibers (light spots) [50] 

 

The primary cause of skeletal muscle loss is the disorder in the regulation of skeletal 

muscle protein turnover, leading to a negative balance between muscle protein synthesis and 

muscle protein breakdown [54]. In addition to changes in the protein turnover processes, there 

are several other physiological contributors to reduced muscle quality such as changes in the 

muscle architectural structure [55], including the change in the elastic fibers system and an 

increase in fat infiltration of skeletal muscle [56]. The intermuscular adipose tissue was 

observed to increase 30% in the mid-thigh for women and nearly 50% for men, in a five-year 

longitudinal study of older adults between 70 and 79 years. it should be noted that large 

variation of standard deviations over time were noted [57]. Interestingly intermuscular adipose 

tissue has been shown to be associated with the loss of physical performance and limited 

mobility in older adults [18,58]. Indeed, the aging changes in the grip strength is a key 

component of the sarcopenia and frailty phenotypes, a study from 60,803 observations from 

49,964 participants (26,687 female) of 12 general population studies in Great Britain 

demonstrated three overall periods: an increase to peak in early adult life, maintenance 

through to midlife, and decline from midlife onwards [59]. Moreover, the loss of muscle mass 

has been related to several chronic affections, including insulin resistance and arthritis, 

osteoporosis [60]. Indeed, the loss of muscle fibers number is the principal cause of sarcopenia, 

although fibers atrophy particularly among type II fibers appears to be more pronounced than 

that of Type I fibers [61,62,49,52]. 
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1.4.2 Effect of age on motor unit recruitment  
 

The reduction in the number of motor units is one of the most cited processes among 

all the processes undergoing the effects of age. A motor unit is defined by a motor neuron 

associated with several muscle fibers. The discharge frequency of a motor neuron is a reflection 

of all the discharges of action potentials that reach it [63–65]. The variation of the number of 

motor units with age is visible in Figure 1.16. There is a decrease beginning in the 5th decade. 

Associated with this decrease in the number of motor units, incomplete re-innervation is 

observed [52,63,64,66]. The decreases in the number of motor neurons and in the number of 

motor units in older people compared with younger adults have a similar magnitude [67]. 

Despite this agreement, no cause effect relationship between the loss in the number of axons 

in motor nerves and the loss in the number of motor units or muscle fibers has been established 

in human [20].  

 

 
Figure 1.16: Relationship between total number of motor units and age for men aged 18 to 82 [31] 

 

1.4.3 Effect of age on muscle contraction (Excitation-contraction 
coupling) 

 
Excitation–contraction coupling (E-CC) is implicated in the physiological processes that 

convert the neural signal for muscle activation (i.e. the muscle fibers action potential) into 

muscle contraction and therefore into force development. To observe a failure of the 

corticospinal motor pathway with age, electrical stimulation of the corresponding nerve or 
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muscle is used while the subject performs a maximal voluntary contraction to evaluate the 

"added force" [68]. It has been repeatedly found that the level of voluntary activation 

decreases with age and also with the level of frailty of people [69–72]. The measurement of 

motor potentials evoked by transcranial magnetic stimulation (TMS) is a tool for stimulating 

neurons in a specific brain region under the cranial box. This technique quantifies intracortical 

responses via electroencephalography and spinocorticals via electromyography to a stimulus 

[73].  

Studies using this technique suggest that with advancing age intracortical or 

corticospinal communications would be less and less excitable [74–76]. The studies in this area 

suggest that with advanced age the corticospinal pathway is likely to have less ability to 

stimulate motoneurons or optimize synchronization of a motoneuron pool [52,76]. All of this 

information tends to show that there is a reduction of the signal from the main driving path 

from a qualitative or quantitative point of view towards the motor units. This results in a 

decrease in the number of motoneurons recruited in the spinal cord and a reduction in their 

speed of stimulation.  

These findings assume that excitation–contraction uncoupling contributes significantly 

to the reduction in muscle contraction quality observed with advancing age and highlights the 

processes in the E-CC pathway as a potential therapeutic target. In addition to changes in the 

E-CC processes, there are several other physiological contributors to reduced muscle 

contraction quality taking account muscle energetics, the vast majority of studies have focused 

on the effects of aging on mitochondrial function (i.e aerobic metabolism). Mitochondria are 

important cellular organelles that are responsible for the production of energy by both aerobic 

and anaerobic respiration and oxidative phosphorylation.  

Cross-sectional evidence from 74 healthy men and women aged 18–90 years indicates 

that age is negatively correlated with vastus lateralis mitochondrial DNA. There is clear that 

aerobic capacity, measured by the peak treadmill oxygen consumption (peak VO2) [77], which 

is the maximal ability to use oxygen to meet the energy needs of physical activity, may decline 

at an accelerated rate already after the age of 20, with a rate up to >20% per decade in 

community-dwelling men and women over 70 [77]. 

This decline may result in lower mitochondrial muscle protein synthesis rates in older 

adults [78]. Not only the mitochondrial content is important for older skeletal muscle 

performance, the mitochondrial function (i.e. the ability to produce ATP) is important as well 
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[79,80]. Furthermore, almost of these studies were performed in healthy older subjects, 

whereas no data are accessible on frail older. More research is recommended to illustrate the 

impact of aging on the mitochondrial capacity in the older and their impact on muscle 

contraction performance. 

1.4.4 Environmental factors responsible of muscle decline during 
aging  

 
- Physical activity  

 
Functional muscles abilities gradually decline with age, resulting in the decrease ability 

to perform physical activities such as walking or cycling.  

A longitudinal observational study reported a significantly decrease in 6 min walking 

distance (−11%) in healthy older after 3 years of follow up, indicating a decrease in aerobic 

capacity [81]. The practice of physical activity also influences the amount of muscle mass 

[10,18]. A study of 2425 people aged 63 years on average shows that there is a positive 

relationship between the amount of aerobic exercise and the muscle mass index of non-obese 

people [82]. Practice of physical activities across the life course has many advantages, including 

increased longevity. Resistance-type exercise training is currently the most effective 

intervention to initiate muscle hypertrophy and to improve muscle strength and physical 

performance [10,25]. A total of 49 randomized intervention studies showed that after an 

average of 20.5 weeks of resistance-type exercise training, older people gained 1.1 kg of lean 

body mass [83]. Although resistance exercise is effective in maintaining, and in many cases 

improving, muscle mass and strength, aerobic exercise is also important in maintaining optimal 

skeletal muscle performance. 

 Furthermore, physical activity has multiple other benefits in older age. These include 

improving physical and mental capacities (for example, by maintaining muscle strength and 

cognitive function, reducing anxiety and depression, and improving self-esteem); preventing 

disease and reducing risk (for example, of coronary heart disease, diabetes and stroke); and 

improving social outcomes (for example, by increasing community involvement, and 

maintaining social networks and intergenerational links) [1]. In addition, the exercised muscles 

become more sensitive to nutrients, allowing more of the available amino acids to be 

synthesized into muscle protein [82]. In sedentary older subjects, however, the sensitivity of 

skeletal muscle tissue to anabolic stimuli such as physical activity or protein intake might be 
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reduced [84]. It could be speculated that a sedentary lifestyle is responsible for the anabolic 

resistance to physical activity and protein intake in frail older people [85].  

Indeed, during physical inactivity, skeletal muscle atrophy is substantially accelerated. 

It has been demonstrated that the immobilization and bed rest experiments induced a 

substantial muscle mass loss of 1 kg in 10 days [86,87]. This substantial loss of skeletal muscle 

mass is led by a major decline in strength ranged between 0.3% and 4.2% per day [88,89]. As 

a consequence, multiple episodes of prolonged muscle disuse atrophy accelerate the 

degradation of muscle performance and physical performance and, as such, increase the risk 

for physical disability at later life. The common effects observed among the older: decreased 

strength and power contribute to the high incidence of accidental falls and can compromise 

quality of life.  

- Nutritional diet  
 

The aging process is accompanied with a decline in appetite and food intake known as 

anorexia of aging [90]. Anorexia is defined as eating disorder characterized by an abnormally 

low body weight [90]. The progressive loss of vision and hearing, as well as osteoarthritis, may 

limit mobility and affect older people’s ability to shop for food and prepare meals. Along with 

these physiological changes, aging may also be associated with profound psychosocial and 

environmental changes, such as isolation, loneliness, depression and inadequate finances, 

which may also have significant impacts on diet. Malnutrition is strongly related to a decline of 

dietary protein intake and micronutrient intake.  

Adequate dietary protein intake is a key factor for maintaining skeletal muscle mass in 

the older [90]. The amount of protein intake, the distribution, and the source of protein intake 

are all important to maximally stimulate postprandial muscle protein synthetic response and 

muscle mass accretion in the older [91]. Indeed, the Health ABC study showed that older 

people consuming a daily protein intake of 0.8 g/kg-body weight/day lost a dramatic 40% 

more muscle mass compared with older who consumed 1.2 g/kg-bw/day of protein [92].  

Tieland et al [91] observed that habitual dietary protein intake is between 0.8 and 

1.1 g/kg-bw/day in older, demonstrating the lowest intakes in institutionalized and 

hospitalized older people. Recent consensus statements recommended that protein intakes 

between 1.2 and 1.5 g/kg-bw/day may be necessary to slow down the loss of muscle capacities  

in the older [88,93–95]. 
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In addition, several studies suggest that malnutrition was between 11% and 19%, and 

found that it was accompanied by deficiencies of vitamins C and D, and low levels of 

carotenoids [88,94,96]. 

 

1.5 Sarcopenia  
 

Sarcopenia defined progressive and generalized skeletal muscle disorder with 

accelerated muscle mass loss an function, associated with a negative prognostic effect on falls 

and declining physical performance, disability and mortality risk [97]. Sarcopenia is highly 

prevalent among older subjects [37]. Age-related muscle loss is the result of a progressive 

atrophy and loss of type II muscle fibers, motor neurons and muscle lipid infiltration. Further, 

poor diet and reduced physical activity accelerate age-related muscle loss, and the frequency 

and severity of sarcopenia increase dramatically in the presence of several co-morbidities, such 

as osteoporosis, type 2 diabetes, advanced organ failure, and chronic inflammatory states [98]. 

Due to the high risk of serious negative health outcomes, including disability and death, 

sarcopenia is considered a major contributor to healthcare costs and even a small reduction of 

its prevalence might be expected to produce relevant savings in health-care resources [36].  

The European Working Group on Sarcopenia in Older People (EWGSOP) developed a 

clinical definition and consensus criteria for the diagnosis of sarcopenia, relying on specific and 

easily identifiable parameters (EWGSOP2 definition) [97]. The variables to be measured to this 

purpose are muscle mass, strength, and physical performance. The EWGSOP recommends 

defining sarcopenia as the presence of both low muscle mass and low muscle function. 

For these reasons, in the last decade an increasing number of clinical trials have tested 

the ability of a variety of interventions, including physical exercise, dietary supplementation, 

and pharmacological treatments to reduce sarcopenia, with promising but still limited 

evidence of efficacy [97]. One of the major issues that must be faced to obtain stronger 

evidence, to be ultimately translated into clinical practice, is the availability of a consensus on 

sarcopenia definition and case finding, as well as of reliable, valid, non-injurious, and affordable 

measures of muscle mass for the diagnosis of sarcopenia [99]. 
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1.6 Evaluation of muscle functional abilities by using 
multimodal data analysis 

 

1.6.1 Measurements of muscle function in clinical routine 
 

- Handgrip strength  
 

Hand grip strength is the widely used method to evaluate muscle strength in clinical 

practice [100]. The measurement of handgrip is performed with 3 types of dynamometer: 

hydraulic dynamometer (e.g. Jamar®, considered as the best reference of this evaluation) as 

mentioned in Landy study [101], pneumatic [e.g. Martin vigorimeter with units in millimeters of 

mercury (mmHg) or pounds per square inch (psi)] which measure grip pressure, mechanical 

[e.g. Harpenden dynamometer with units in kg or lbf] and strain dynamometer [with units in 

Newtons of force (N)]. Dynamometers have to be calibrated appropriately by manufacturer 

prior using it [100,102]. It is recommended to use standardized measurement protocols such 

the Southampton protocol, proposed by Roberts et al [102], the standardization include 

seating the subject in a standard chair with forearms resting flat on the chair arms. The testing 

nurse or physician should demonstrate the use of the dynamometer and show that gripping 

very tightly registers the best score. Six measures should be taken, 3 with each arm. Ideally, 

the patients should be encouraged to squeeze as hard and as tightly as possible during 3–5 s 

during each of the 6 trials; usually the highest reading of the 6 measurements is reported as 

the final results [100,102]. The measurement is easy to perform, the device is portable, with an 

acceptable cost, and does not require a specialist trained user. Because of the ease of its 

application, grip strength measurement can be used in clinical practice, and thus, can be 

applied in a large sample of older adults, symptomatic or asymptomatic, to identify those with 

low muscle strength [100].  

 

- Gait Speed Time  
 

The gait speed measurement is probably one of the most widely used tools in clinical 

practice for the assessment of physical performance. Two main types of gait speed tests exist; 

the short-distance walk tests (2.4-m distance, 4-m distance, 6-m distance and 10-m distance) 

and the long-distance walk tests (400-m walk test and 6-min walk test). Long-distance walk 



 49 

tests require a corridor of at least 20 m as well as a minimum time for execution of 15 min. 

Gait Speed Time is generally measured in a short distance (2.4-m distance, 4-m distance, 6-m 

and 10-m distance) with the 4-m distance as being the most commonly used short-walk test 

validated in older adults [101,103].  

The short-walk test has been shown to be highly predictive of the ability to perform the 

400-m walk test in older adults [101,104]. Added to measuring physical performance in older 

adults, these tests also evaluate endurance of the subjects a short distance.  

 

- Short Physical Performance Battery (SPPB) 

 
The Short Physical Performance Battery is the most used test to evaluate the physical 

performance in the clinical daily practice and research setting. The SPPB is developed by the 

National Institute on Aging for use in the Established Population for the Epidemiologic Studies 

of the Elderly (EPESE)[3,105].  

The SPPB includes three tests:  

• balance tests: the subject should to keep balance in standing position with three 

different challenges during 10 seconds for each: (1) side by side stand; (2) semi-

tandem stand; (3) tandem stand.  

• Walking speed test: the subject walk at his spontaneous pace over 4-m.the 

timing begins when the starting command is given, in order to record the time 

duration in seconds needed to complete the 4-m distance.  

• Repeated chair stand test: firstly, we evaluate the ability of subject to perform 

STS by asking him/her to stand from sitting position without using arms. Then, 

the subject is asked to stand up and sit down five times successively, as fast as 

possible. The time to perform five stands is recorded. 

The summary score is calculated from the three physical tests, each test is scored from 

0 to 4, where 4 indicates the best performance, and 0 is the bad performance. Then the 

summary score for the 3 tests realized in SPPB ranging from 0 (bad performers) to 12 (best 

performers), calculated by adding the sub scores from each SPPB test.  
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1.6.2 Techniques used to evaluate muscle mass    
 

- Dual energy X-ray absorptiometry (DXA) 
 

DXA allows the body composition assessment using the relative attenuation of two 

different energy X rays by the body (Figure 1.17) [106]. This technique is a clinically applicable 

and greatly tolerated [106]. Radiation exposure is minimal and measurement time is short. It 

derives a three-component model of body composition, comprising fat, bone mineral, and 

lean tissue. It also allows regional analysis, particularly limb lean tissue and body fat 

distribution, thus allowing the measure of both total muscle mass and appendicular muscle 

mass. Recent study shows that the calculation of percentage of skeletal muscle mass (total 

muscle mass/weight ×100) provides a higher estimate of sarcopenia prevalence and is more 

associated with obesity status in comparison with appendicular muscle mass [107]. The main 

advantage of this technique is less costly than CT and MRI, however DXA is still relatively 

expensive, requires patients to visit a center and must be applied by specialized staff: 

therefore, so far it cannot to be considered a routine test in clinical practice, whereas it is highly 

appropriate for a research setting [106,108]. 

 
Figure 1.17 : Illustration of DXA technique 

Source : https://i2.wp.com/humankinetics.me/wp-content/uploads/2019/04/DXA-body-composition-test-
2.png?w=940&ssl=1 

 

- Computer tomography (CT)/Magnetic resonance imaging (MRI) 
 

CT and MRI scanning can be used to assess skeletal muscle volume in particular, and 

provide anatomical details. The main advantage of these techniques is that they are the only 

techniques that can directly assess abdominal visceral fat content. They allow calculation of 
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segmental and total muscle mass, and assessment of fat infiltration in the muscle, which 

impacts on muscle quality and force development [109]. But as limitation, these methods are 

very expensive, are not easily accessible, and are not routinely indicated to study muscle mass. 

But, they have been used mainly for research purposes [106]. They require a highly specialized 

staff, specific software, and a relatively large amount of time. A further major limitation of CT 

includes radiation exposure. CT and MRI are the gold standard imaging modalities to assess 

muscle mass and quality, but no clear cutoff values have been reported to identify sarcopenia, 

limiting the application of these modalities to research purposes.  

 

- Ultrasound imaging  
 

Ultrasound is simple, easily applied in clinical practice or large population surveys. It is 

widely available equipment and useful for bedridden or mobility impaired individuals. 

Ultrasound evaluates muscle mass and also its quality, as enhanced echo intensity represents 

changes caused by increased intramuscular fibrous and adipose tissue (Figure 1.18) [110]. 

Recently, some research groups have used computer-aided gray scale analysis to evaluate the 

quality of skeletal muscle. There is limited experience in sarcopenia studies [106,111]. The 

emerging field of ultrasound assessment of muscle mass only highlights the need for a 

standardization of measurement technique. In this article [111], guidelines are updated and 

broadened to provide standardization instructions for a large number of muscles. 

 

Figure 1.18: Examples of ultrasound images of RF of (A) Young participant. (B) Old participant[112]. 
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- Bio electrical impedance analysis (BIA)  
 

The bioelectrical impedance analysis is widely used in clinical assessment of the muscle, is 

a noninvasive, portable, quick, and inexpensive method for measuring body composition [113]. 

BIA is based on the relation between the volume of a conductor and its electrical resistance.  

The BIA is based on the electrical properties of the tissues, these properties are described 

since 1871 [114]. BIA is defined with 3 parameters: the electrical Resistance (R) of the tissue, 

the length (L) of the tissues and (A) the cross-sectional area [114].  

The body is not a uniform cylinder and its conductivity is not constant, an empirical 

relationship can be established between the impedance quotient (L²/R) and the volume of 

water, which contains electrolytes that conduct the electrical current through the body [115]. 

In practice, it is easier to measure height (H) than the conductive length, which is usually from 

wrist to ankle. Therefore, the empirical relationship is between lean body mass (typically 73% 

water) and (H²/R).  

However, due to the inherent field inhomogeneity in the body, the term H²/R describes an 

equivalent cylinder, which must be matched to the real geometry by an appropriate 

coefficient. This coefficient depends on various factors, among them also the anatomy of the 

segments under investigation, this is still a big limitation of this method. 

- Electromyography technique  
 

This technique consists in sensing the electrical activity generated by muscle fibers 

(MFs) during a voluntary muscle contraction effort. The fundamental principle of 

electromyography is based on measuring the electrical manifestations of muscle cell 

excitability. Indeed, the surface EMG signal corresponds to the sum of the action potentials 

(AP) produced by the active motor units (MUs) and detected on the surface of the skin 

[116,117].  

The action potential of fiber (APF) comes from the propagation of an AP along the 

excitable membrane of a muscle fiber (MF). The APs of an active MU (MUAPs) correspond to 

the spatiotemporal summation of the APs of each MF that compose it (Figure 1.19) [14,116].  
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Figure 1.19: Schematic representation of surface EMG signal generation [125]. 

 
The HD-sEMG is a non-invasive technique with high spatial precision due to the large 

number of electrodes in the grid, making it possible to analyze the muscular contraction over 

a large area. This technique is already used in research studies [116,118–123] to explore 

functional muscle abilities and evaluate several phenomenon related to the quality and 

performance of musculoskeletal muscle. 

 

1.6.3 Research state techniques  
 

- High density surface electromyography (HD-sEMG) technique  
 

HD-sEMG technique is a novel sEMG recording technique, based on a multi-channel 

electrode recording system (Figure1.20). It is composed of a two dimensional array of 

electrodes called a HD-sEMG grid that is characterized by being a spatiotemporal variant of 

the usual single channel sEMG techniques [124]. The HD-sEMG technique exceeds the classical 

electromyography by considering aspects of spatial distribution of electrical potentials [112] 

and by overcoming their basic limitations such as the electrode placement problem, the 

representability of the recorded signal, the auto-cancelation phenomenon and the spatial 
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resolution. The HD-sEMG recording technique has become widespread in the last few years, 

which is due to multiple reasons. This HD-sEMG technology is currently used only for research 

purposes to assess muscle functionality in different applications such as 

electromyography/force relationship analysis [125,126], muscle aging evaluation 

[118,123,127], muscle disease monitoring [27] ,and prosthesis monitoring [128]. However, 

there is no integrated solution using this HD-sEMG technology able to analyze muscle changes 

in routine clinical practice. 

 

 
Figure1.20: Representation of High-Density Surface Electromyography (HD-sEMG) technique (Refa and Mobita 

devices, TMSi ©).  
 
 

- Inertial Measurement Unit (IMU)  
 

An Inertial Measurement Unit, also known as IMU (Figure 1.21), is an electronic device 

that measures and reports acceleration, orientation, angular rates, and other gravitational 

forces. There are different types of IMU sensors: the one based on FOG (Fiber Optic 

Gyroscope), the RLG IMUs (Ring Laser Gyroscope), and lastly, IMU based on MEMS 

technology (Micro Electro-Mechanical Systems) [129]. This technology allows lower costs and 

low power requirements while ensuring performance. MEMS-based systems therefore 

combine high performance and ultra-low power consumption in a smaller unit. 
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Figure 1.21: Inertial Measurement Unit (IMU) 

Source: usgs.gov/media/images/inertial-measurement-unit-imu 
 

Inertial units offer the opportunity to quantify clinical testing in older population. They 

are light, ambulatory and non-invasive tools. The kinematic data evaluated by this type of unit 

during tests such as Sit To Stand (STS) test were recently evaluated in K. Lepetit et al. (2019) 

study [130] in order to differentiate between healthy young and healthy senior subjects as well 

as healthy senior and frail subjects. The recent development of magneto-inertial sensors has 

made it possible new opportunities for clinical measurement of STS [131,132]. For example, 

quantifications of the rising of chair from inertial unit data have already been investigated to 

diagnose frailty [133], or the risk of falls [131]. However, in the context of aging population, 

the effects of the loss of muscle tone or sedentary lifestyle impact should be monitored to 

identify the first signs in order to prevent pathology such as frailty, sarcopenia and adverse 

outcomes such as falls. These specifications require a simple tool and specific protocol. For 

this purpose, an accelerometer is embedded in the proposed HD-sEMG device used in this 

thesis work. 

- Diffusion Weighted Magnetic Resonance Imaging  
 

Diffusion MRI is a magnetic resonance imaging (MRI) method allowing the mapping of 

the process of molecules, mainly water, in biological tissues, in vivo non-invasively. Molecular 
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diffusion in tissues is not free, and is impacted by obstacles, such as macromolecules, fibers, 

and cell membranes. This technique is usually used to study brain diseases; a recent study 

presents this technique in order to understand the changes of neuromuscular system 

associated with aging, sarcopenia and other neuromuscular diseases. In this context the 

technique based on diffusion weighted magnetic resonance imaging (DWMRI) is called “motor 

unit magnetic resonance imaging (MUMRI) [134]. 

Diffusion-weighted MRI sequences can be designed to be sensitive to diffusion in a 

single direction or many. It is not yet known how the choice of diffusion sensitivity direction 

affects the contrast observed in MUMRI images. It’s suggested that when the direction of the 

fiber and diffusion sensitivity are the same, then the observed contrast will be greatest. We 

therefore propose that MUMRI can be extended to a diffusion tensor imaging approach. 

Diffusion tensor imaging exploits the anisotropy of diffusion in tissue and can provide 

information about the orientation of muscle fibers, and on spatio-temporal patterns of motor 

unit activity in multiple muscles simultaneously. It also suggests that MUMRI may provide 

useful biomarkers in the detection of neuromuscular disease.   

 

1.6.4 Sit-To-Stand motion 
 
       In this thesis work, the “Sit-To-Stand” (STS) motion was chosen to assess muscle 

aging using HD-sEMG. This motion was chosen because it is a daily life gesture and a good 

indicator of autonomy/frailty [130,135,136]. It consists of rising from a chair without help. This 

motion is also already included in some geriatric clinical tests as Short Physical Performance 

Battery (SPPB) [137].  

The STS motion is defined as the function frequently used to change from 

a sitting position to a standing position [138]. The STS motion can be described using 

kinematic or kinetic variables, with definitions supplied for phases and events during this 

motion [138]. Among the indication that led us to choose the STS in this protocol (in addition 

to its simplicity because it is a daily life gesture) is that the amount of research on STS has been 

more recent and smaller than research on gait (Figure 1.22). Recent studies have suggested 

that reducing prolonged sitting demonstrates the importance of maintaining the ability to 

stand up from a sitting position, it’s may improve glucose metabolism and could represent an 
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important public health and clinical intervention strategy for reducing cardiovascular risk 

[139,140] and mortality [141] with aging.  

 

 

 
Figure 1.22: Number of Pubmed publications per year for “gait analysis” and “Sit To Stand”. 

source: http://www.ncbi.nlm.nih.gov/ pubmed/?term=gait+analysis and term=sit+to+stand) (28-08-2016).  
 
 

Secondly, another important STS justification is related to aging, risk of falling and fear 

of falling, those are common causes of becoming inactive at older age. A German study on 

more than 70,000 falls from residents of Bavarian nursing homes, demonstrates a severe fall 

resulting from walking and standing up, in particular during the morning hours. An important 

cause of falls in the morning might find its origin in dizziness. Actually, dizziness is a potential 

side effect of blood pressure control medication leading to lower blood pressure in the 

morning with orthostatic hypotension. Further, unsuccessful transfers from sitting to standing 

accounted for 41% of all falls [142]. 

Thirdly, the relationship between strength and STS is crucial in the modifications of STS 

with aging. The rates of decline in isokinetic strength in older adults averaged 14% per decade 

for knee extensors [143]. This decline in muscle strength is faster than the loss of muscle mass, 

advancing decline in muscle quality [144]. Consequently, improving muscle strength is a 

vigorous means to improve STS capacity in older adults by training, such as resistance exercise 

training, effective to improve strength among older adults, particularly with higher intensity 

training [145]. Therefore, the resistance exercise may be considered a viable strategy to 

prevent generalized muscular weakness associated with aging. However, strength decline of 
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the lower limbs is not the only responsible of STS performance decrease in older adults, as is 

evident from the fact that strength parameters only explain part of the variance of the duration 

of the STS task [146]. STS performance is influenced by multiple physiological and functional 

processes, and represents a specific skill, rather than a proxy measure of lower limb strength 

[135,147]. For these reasons, we suggested in our experimental protocol, the use of STS test 

to evaluate more precisely the functional abilities of the lower extremity (Rectus Femoris 

muscle) using HD-sEMG technique for a better understanding of the relationship between 

aging, strength and functional abilities. 

Finally, the chair rise strategies are important criterion in STS modifications with aging. 

Several strategies of standing up have been analyzed using camera systems, inertial 

measurement unit (IMU) and force platform [130,135,136,138,146]. However, there are 4 main 

STS phases in STS rise strategies (Figure 1.23):  

 
Figure 1.23: The four phases of the human Sit-Stand-Motion. In phase 1, humans flex their upper body to 

generate momentum and initiate the Sit-To-Stand motion. In phase 2, they raise their hip from the chair and 
transfer momentum. In phase 3, humans extend their whole body upward. In phase 4, they move their body 

backward to stabilize their posture [148].   available via license: Creative Commons Attribution 4.0 International 
 

• Flexion momentum: begins at the initiation of the movement of flexion of the trunk and 

ends with loss of contact with the seat. During this phase, the authors notice a flexion 

movement of the trunk, which has an increasing angular speed. 

• The momentum transfer: the second phase corresponds to a short period of unloading 

the seat; it is detected by a rapid change in the level of the component vertical reaction 

force of the soil. During this phase, the flexion of the trunk reaches its maximum and 

the movement of extension of the trunk appears. 

• Extension: this phase begins when dorsiflexion of the ankle is at its maximum and ends 

when the hip has completed its extension. The main movements during this phase are 
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hip extension and knee extension. The angular velocities of hip and knee extension 

reach their maximum during this phase, then they decrease and become zero. 

• Stabilization: this phase begins at the end of the previous phase, that is, at the end of 

the hip extension. According to the authors, the end of this phase, which is the end of 

the action, is difficult to determine [138,148,149]. 

In the STS strategies, the balance control is crucial. For young healthy people standing up 

is current and automatic motion, which does not need a lot of mental attention. For older 

adults with a failing vestibular system, less muscle strength, pain, impaired vision, 

comorbidities, restrictions in the joints or a combination of these difficulties, the momentum 

transfer strategy becomes less suitable or even impossible. With the flexion strategy, the 

horizontal and the vertical phase of the STS are more separated in time.  

The horizontal displacement of the center of mass is realized by bending the trunk more 

forward during the flexion phase [135]. Consequently, the center of mass approaches the base 

of support. During the extension phase, trunk angular velocity is increased to support vertical 

displacement. Because the upper body is much more massive than the thigh, the upper body 

must contribute more to center of mass vertical momentum than the thigh [150]. In healthy 

older, at the momentum transfer, hip flexion angular velocity was shown to increase with 

decreased seat height [149].  

The motion transmission in STS strategy suggests that functionally impaired older person 

attempts to increase their momentum while rising by increasing their hip flexion velocity [151]. 

It is not evident to what extent this knowledge has helped to improve clinical practice, the 

measurement methods as used in the lab are not applicable in clinical routine practice. The 

set-up, the data collection and the data analysis of most laboratory studies are intricate and 

time consuming [135].  

The instrumentation is expensive and there is a need for engineering expertise. Moreover, 

the patient has to visit the lab, which is also costly and time consuming. For the clinical 

applications of functional and motion assessment, these methods have to be easy to use, 

efficient and has to yield useful and relevant data. As we propose in this thesis, we thought 

that HD-sEMG technique used in portable device including an accelerometer could be more 

useful in clinical practices to evaluate STS strategies changes with aging.  
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1.7 Problematic description and thesis work  
 

As illustrated in this chapter, there are several effects of aging such as the loss of 

autonomy and increased risk of falling. This generates very important economic, social and 

psychological costs. The way of aging is different from one individual to another; it is a function 

of many factors such as the biological and physiological changes of the organs, the 

environmental conditions as well as the lifestyle of the person. 

 The consequences of these factors can divide the older population into two categories; 

the first is a population with a healthy aging mode, and the second is a category that suffers 

from a pathological aging with a decrease in autonomy, caused in part by the loss of motor 

capacity of the muscles, which causes discomfort to perform physical tasks during daily life. 

This is why we introduce the concept of Motor Functional Age (MFA). The assessment 

of motor capacity is related to motor functional age, this age being different from 

chronological age. The MFA assesses the motor skills of a person, because the chronological 

age taken alone is rarely a reliable index of the motor efficiency of a person to make a physical 

effort. That mean, our chronological age does not reflect precisely our muscular capacity, 

because there may be young people in physical inactivity who also suffer from defined motor 

loss as early aging. 

The current clinical examinations are not accurate and robust enough to assess the 

muscle status of older people. Unfortunately, there are no specific methods for assessing 

functional age, which is associated with muscular strength and part of the musculoskeletal 

system. Therefore, it would be interesting to exploit the new technologies dedicated to the 

functional evaluation of the musculoskeletal system such as the high-density surface 

electromyography technique (HD-sEMG) and the kinematic motion for the motor functional 

age evaluation. 

The work of this thesis is a part of “CHRONOS” project, a European project funded by 

EIT Health. This work will modestly build a first knowledge to exploit a new innovative 

technology used in research in order to elucidate the first basis for a tool able to assess motor 

decline and to serve as an indicator in a prevention approach or in a functional rehabilitation. 

We are interested in studying the contraction of Rectus Femoris (RF) muscle during Sit 

To Stand test (STS), recorded using the HD-sEMG technique. We start on the assumption that: 

the MFA might be different from the Chronological Age (CA), depending on lifestyle, physical 
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activity, and medical condition.  Therefore, the difference between CA and MFA should give 

indication on the motor functional status. The aim of this study is to introduce the motor 

functional age by developing a precise quantitative device measuring the “Motor Functional 

Age” (MFA) of young, middle-aged and old people, thus preventing future functional motor 

loss for healthy aging. 

The main objective of this work is the development of a tool able to evaluate functional 

age based on the muscular activity data from the HD-sEMG technique, and the kinematic data 

obtained from the accelerometer, combined in the same device called Mobita from TMSI 

Company (Netherland).  

This work will be divided into three parts; we have described in this first chapter the 

musculoskeletal system and basic notions about aging. The second chapter will unveil the 

materials and methods used for the implementation of the experimental protocol. The first 

part includes clinical examination and experimental protocol design, for obtaining reliable data 

(HD-sEMG and accelerometer signals) combined in the same ambulatory device, the second 

part contains the preprocessing of the data and statistical analysis to evaluate the sensitivity 

of various parameters from HD-sEMG technique and current clinical examinations with aging 

and the variation of physical activity levels. The third chapter will contain the features 

extractions or parameters extracted from HD-sEMG signals to test classification approach 

using classifiers from machine learning approaches to evaluate the power of discrimination for 

each feature with aging and physical activity level, for MFA estimation, and finally the 

perspectives envisaged following the presented work. 

The main elements of this work are illustrated in Figure 1.24; namely the standard goal 

which is the study of the motor efficiency, that could support in the future the prevention and 

the reduction of the motor decline. In this thesis work, the technique which will be used is 

represented mainly in the technique of the high-density surface electromyography (HD-sEMG), 

the experimental protocol will be defined to acquire multimodal data, the preprocessing steps 

and the multimodal data analysis will be detailed in the next chapters as illustrated in the figure 

below. 
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Figure 1.24: General overview of the thesis 
 

1.8 Conclusion  
 

After recalling the anatomy and physiology of neuromuscular system related to aging, 

this chapter exposed the state of the art about musculoskeletal system and age-related 

changes. Indeed, a new concept of motor functional age different from chronological age has 

been introduced to intuitively monitoring of functional muscle abilities with aging.  

This allowed us to unveil the potential of our research approach on the change of 

muscular abilities with age, starting from the idea of helping prevention and treatment of 

sarcopenia, thus preventing its adverse outcomes in the older population. However, the 

amount of information directly related at the muscular aging is still insufficient, because the 

studies are based on clinical scores and physical tests not enough sensitive at early stage as 

shown in the last section. In order to concretize the concept of the functional evaluation of 

muscles through aging, we are interested in using the technique of high-density surface 

electromyography (HD-sEMG) to detect the electrical activity of rectus femoris muscle during 

Sit to Stand test (STS). The assessment of muscle quality/abilities with aging will be presented 
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in the next chapters, not solely in the older population but also young and middle age 

categories, to analyze aging through life and evaluate the impact of physical activities, then 

giving more efficiency to the keys of the sarcopenia prevention. During next chapters, we will 

analyze deeply the data from the CHRONOS project that proposed a complete and 

multimodal analysis of the muscle (using techniques mentioned in section V.2), in view to 

evaluate possible promising potential of the HD-sEMG technique to monitor early changes in 

muscle function affected with aging and physical activity level. 
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2.1 Introduction  
 

As previously mentioned in the first chapter, the aging process is a combination of 

many factors such as the biological and physiological changes of the organs, the environmental 

conditions as well as the lifestyle of the person; especially a sedentary lifestyle and unhealthy 

diet that can affect muscle quality [152]. There is as yet no method that evaluates 

simultaneously muscle mass, muscle strength, and physical performance, while diagnosis of 

sarcopenia calls for the measurement of a combination of these 3 muscle parameters [153]. 

Various clinical scores and tools evaluate separately these different muscle parameters i.e.-

imaging techniques including dual-energy X-ray absorptiometry (DXA) or magnetic resonance 

imaging (MRI). In addition, these techniques are laborious and painstaking to perform in 

everyday clinical practice. In this context, specifications must include providing an ambulatory, 

precise and non-invasive device to monitor muscle quality and functionality. Recent non-

invasive technologies dedicated to the functional evaluation of the musculoskeletal system 

such as the high-density surface electromyography technology (HD-sEMG) offers new 

applications [154] as described in the previous chapter. This HD-sEMG technology is currently 

used only for research purposes to assess muscle functionality in different applications such as 

electromyography/force relationship analysis [155,156], muscle aging evaluation [157,158], 

muscle disease monitoring [159] and prosthesis monitoring [128]. However, there is no 

integrated solution with this HD-sEMG technology able to analyze muscle changes in routine 

clinical practice. 

This chapter is focused mainly on the "CHRONOS" project (http://www.chronos-eithealth.eu/), 

funded by the European Institute of Innovation and Technology (EIT) Health, aimed to develop 

such a non-invasive, wireless portable medical device using this innovative approach based on 

the HD-sEMG technique combined with an embedded accelometer to get more precision 

about the orientation of Sit To Stand gesture (STS), and finally to develop muscle aging 

assessment.  This chapter aims to carry out a multimodal analysis of muscle aging assessment 

in healthy individuals, both physically active and sedentary, in order to demonstrate the ability 

of the HD-sEMG technique to detect both healthy muscle aging and accelerated muscle aging 

related to sedentary lifestyle in clinical environment.  
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 The objective is to compare HD-sEMG data with methods of muscle measurement currently 

used in clinical practice: muscle mass using dual-energy X-ray absorptiometry (DXA), muscle 

thickness using ultrasonography, handgrip strength, and physical performance.  

 

2.2 Experimental protocol and data processing 
2.2.1 General overview   
 
 

According to the bibliography study, the change in muscle capacity is evident with age 

[31,152,160]; different methods and protocols were discussed to evaluate the evolution of 

motor functions. However, the amount of information directly related to the muscular aging is 

still insufficient since the studies are mainly based on not enough precise clinical scores and 

physical tests such as (autonomy in daily life (ADL), SPPB, grip strength…etc.). In order to 

concretize the concept of the functional evaluation of physical performance from young to 

older people, we are interested in using the technique of HD-sEMG to detect the electrical 

activity of rectus femoris muscle during STS test. The recorded data set obtained from HD-

sEMG signals and clinical modalities is used to extract relevant information from multimodal 

data analysis of each subject of a cohort with different age categories. The parameters from 

HD-sEMG signals will be evaluated and compared to others techniques throughout the 

chapter, in order to evaluate their power of discrimination in term of functional aspect of the 

muscle according to aging (5 age categories divided in decade from 25 yrs. to 74 yrs.) and 

physical activity levels (i.e. active vs sedentary). 

The aim of the study was two-fold:  

1) To assess the ability of the HD-sEMG technique to detect age-related muscle 

changes (anatomical and functional) among physically active people, divided into five age 

categories (25-34 years., 35-44 years., 45-54 years., 55-64 years., and 65-74 years.); we 

advance the hypothesis that we will observe a modification with aging. 

2) To assess the ability of the HD-sEMG technique to detect muscle changes related to 

sedentary lifestyle, by comparing a group of sedentary individuals, aged 45-54 years old with 

the active ones in the same age category. In addition, by comparing this group of sedentary 

45-54 years old individuals with older active individuals (55-64 yrs. and 65-74 yrs.), we advance 

the hypothesis that we will observe a modification with sedentary lifestyle. 
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The  Figure 2.1 below explains the whole process realized in this experimental study:  

 

 
 

Figure 2.1: The experimental setup up for CHRONOS study.  
 

 

2.2.2 Experimental setup 
 

- Clinical setup of the “CHRONOS” study.  
 

During the CHRONOS study, we recruited, with the help of Dr. K. Kinugawa and her 

team, healthy volunteers from July 2018 to January 2019. The recruitment was done through 

various advertising means: posters / ads and online mailing list through associations, 

universities, hospitals (AP-HP) and on social networks (Facebook, Twitter). The pre-screening 

phone interview enabled us to check the inclusion criteria (25 to 74 years old, walking without 
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help,) and non-inclusion criteria, and to evaluate their physical activity level (active population 

or sedentary category) according to the International Physical Activity Questionnaire (IPAQ, 

long version) [161], affiliation to a social security scheme (excluding AME). Non-inclusion 

criteria were:  body mass index (BMI) <18.5 or ≥30 kg/m2, professional or elite 

sportsman/woman, any history of neurological, endocrinal (including diabetes), 

rheumatological and recent cancer pathologies, heart failure, severe broncho pneumopathy, 

myopathy, fracture or trauma affecting the hip and lower limb, active smoking, pregnancy, 

taking medication affecting muscle function (corticosteroids, statin, fibrate, insulin...), 

dermatological pathology and allergy to adhesive dressings. Subjects under guardianship or 

curatorship, imaging examination with or without the use of contrast media in the 7 days 

preceding inclusion, contraindication to performing DXA, and pacemaker.  

A total of 325 volunteers were interested in participating in the study and contacted 

the CHRONOS team. Among these volunteers, 46 were excluded relating to exclusion criteria 

and 188 were qualified for the study but were kept on a waiting list for a future extension of 

this pilot study. Finally, a total of 91 volunteers aged 25 to 74 years old were included in the 

pilot clinical study with experimental data recording sessions (Figure 2.2), on a nearly 50/50 

basis of women and men, evenly distributed across age groups. The participants were divided 

into two distinct groups according to their level of physical activity from IPAQ: "active 

subjects" group = "high" or "moderate" physical activity (n=82) in five age categories from 

25 to 74 divided into 5 decades, and "sedentary subjects" group = "low" physical activity 

(n=9, age group 45-54 years old) see Annex 1. Physical activity levels were estimated through 

energy expenditure in MET-minutes per week (Metabolic equivalent task = MET level x 

number of minutes of activity/day x number of days/week) in accordance with IPAQ guidelines: 

low physical activity if < 600 MET-min/week, moderate activity if between 600 and 3000 MET-

min/week, and high activity if ≥ 3000 MET-min/week. The MET level was weighted according 

to the type of activity (walking, cycling, gardening etc.).  

The inclusion of participants took place at the Charles Foix Hospital (Ivry-sur-Seine, 

France, AP-HP) for half a day, where their clinical and para-clinical data were collected. After 

their hospital visit, participants were asked to complete a nutritional questionnaire on 3 

weekdays to estimate their mean daily energy and protein/carbohydrate/lipid intake. All 

participants provided written informed consent. Institutional review boards approved the 

CHRONOS study (Patient Protection Committee, project number 2018/31). The study was 
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registered in ClinicalTrials.gov ID: NCT03560648. The database was declared to the French 

National Commission for Data Protection and Liberty (CNIL, France). 

 

 

 

Figure 2.2 : Flow diagram of the participants 
 
 

- Clinical evaluations  
 

All clinical data collected during the CHRONOS project were entered into an electronic 

case report (Cleanweb®, Telemedicine technologies S.A.S, France) to guarantee the 

accessibility and quality of the collected data. The following information for each participant 

was collected:  age, gender, physical activity level scored by IPAQ, BMI, medical history, 

medications and their number, comorbidities assessed using the Charlson score, frailty using 

the Rockwood score, cognition (Mini mental State Examination MMSE), depression (Geriatric 

Depression Scale GDS), handgrip strength using Jamar® hydraulic hand dynamometer 

(dominant hand, averaging over 3 trials), physical performance assessed using the Short 

Physical Performance Battery (SPPB) used for both research and clinical practice [3,97,98], and 

distance of 6-minute walk test (reflecting also muscle strength of the lower limbs) [162].  
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- Dual-energy X-ray absorptiometry  
 

Muscle mass was assessed using dual-energy X-ray absorptiometry (DXA, GE Lunar 

Prodigy), a widely used device in both research and clinical practice. This well-established, low-

radiation technique is recommended by the European Working Group on Sarcopenia on Older 

People EWGSOP [97]. We collected skeletal muscle index SMI (kg/m²), appendicular muscle 

mass AMM (kg), total lean mass LM (%) and total fat mass FM (%). 

 

- Muscle Ultrasonography 
 

We analyzed muscle thickness MT (mm) and fat thickness FT (mm) of the rectus femoris 

muscle on the dominant side (Figure 2.3). A B-mode ultrasound (Siemens, Acuson Antares 5.0, 

Ultrasound System) with 40mm linear array probe (5-13MHZ) was used to evaluate MT and FT. 

Cross-sectional images of the rectus femoris were obtained at 30% proximal zone of the rectus 

femoris in the iliac spine line located between the iliac crest and the middle of the patella. 

Participants were lying on the examination table with their thigh relaxed. The MT was measured 

at the midpoint of the rectus femoris. The FT was defined as the distance between the dermis 

and fascia of the rectus femoris muscle [163]. These parameters were measured in millimeters. 

The probe was coated with water-soluble transmission gel to provide acoustic contact and 

reduce pressure. The pressure was reduced while scanning by suspending the linear probe on 

the skin surface and keeping it perpendicular to the bed to achieve a clear image [163]. To 

obtain precise measurements of muscle parameters, the same sonographer was performed all 

measurements.  

 
Figure 2.3: Example of ultrasound image recording during CHRONOS study. A: Ultrasound image from a young 

woman aged 25 years with BMI=19kg/m². B: Ultrasound image from older woman aged 70 years with 
BMI=20kg/m. 
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- HD-sEMG signals recording 
 

Let recall that HD-sEMG is a non-invasive technique with high spatial precision due to 

the large number of electrodes in the grid, making it possible to analyze the muscular 

contraction over a large area.  

In this protocol (see Figure 2.4), the 3-times sit to stand (STS, chair rising) motion was 

analyzed. This daily life motion is already employed in clinical routine as mentioned in the “STS 

justification” section, as in SPPB test. The rectus femoris muscle was studied, because of its 

superficial positioning in the quadricep muscle group, and moreover, being the muscle the 

most involved in the STS motion [1]. The positioning of the HD-sEMG grid on the rectus femoris 

after skin preparation by cleaning the surface of muscle with alcohol is done according to 

anatomical considerations [166]. In fact, the grid was positioned in the proximal region of the 

rectus femoris (precisely at 30% proximal zone of the rectus femoris in the iliac spine line 

located between the iliac crest and the middle of the patella). The choice of the proximal zone 

were motivated by recent studies showing the sensitivity of the proximal region to aging 

[157,158,160]. 

 

 

 
Figure 2.4: Acquisition of HD-sEMG signals during CHRONOS clinical study 

 

To reduce background noise during sEMG  recording, it is important to know the 

possible sources of noise [124,167], and to try to minimize it. The electrode-skin interface is the 

potentially cause of the source of noise. When the impedance is high the signal to noise Ratio 

(SNR) is greater [167]. Then, the contact surface from one gate to the other changes and 

therefore the impedance of the electrodes also changes. However, this difference in impedance 
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can be neglected because of the large input impedance of the device (of the order of 100 MΩ). 

This contributes to obtaining a good Signal-to-Noise Ratio (mean SNR (dB)=21.35 ±4.38). It is 

not necessary to perform impedance measurements, which facilitates the clinical use of the 

device. The SNR was calculated using the following formula [168]:  

 

𝑺𝑵𝑹𝒋 = 𝟐𝟎 𝒍𝒐𝒈𝟏𝟎 -
∑ /𝑬𝑴𝑮𝒋(𝒊)/𝑵
𝒊6𝟏

𝑵
× 𝑷
∑ /𝒃𝒋(𝒊)/𝑷
𝒊6𝟏

:               Eq. 1 

 
Where EMGj(i) represents the ith sample of the jth sEMG channel, bj(i) the 

corresponding noise obtained from the first 0.5 s rest period without muscle contraction (N, P 

are sample numbers for EMG signal during contraction and without muscle contraction 

respectively with sampling frequency Fs= 1kHz).  

The HD-sEMG system includes the TMSi Polybench® processing software for 

customizing the configuration of the measurement interface. The sampling frequency is 1000 

Hz on a 12-bit resolution. The device is CE marked and belongs to the Class II. 

In order to make a conventional sEMG recording, three electrodes are needed: two of 

them will take charge of the differential measurement as such, and a third will connect the 

patient to the mass of the system (patient ground). There are two main modes of reception: 

monopolar reception and bipolar reception.  

The monopolar reception (Figure 2.5) involves an electrode located in an electrically 

active zone containing the signal to be measured and a reference electrode located in an 

electrically inert zone (bone, lobe of the ear, etc.). The differential calculus will be realized 

between the wanted signal and an artificial "zero". The monopolar configuration has the largest 

detection volume compared to the others electrode configurations.  

The bipolar configuration (Figure 2.5) corresponds to two electrodes connected to the 

differential amplifier and placed on the skin over the muscle (Figure 2.5). The bipolar installation 

of the acquisition system has a high pass filtering effect on the obtained sEMG signals [169]. 

This filtering effect causes a reduction of the detection volume by altering the spatial selectivity 

of the electrode system [170,171].  

Other electrodes configurations are used such as double differential and Laplacian 

configurations. Laplacian configuration has the advantage to better filter the signal and the 

Non-Propagating Component (NPC) of the motor unit action potential (MUAPs) than the 

bipolar arrangement. This NPC arises from the extinction of the action potential of fiber (APF) 
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it the myotendinous junction.  Its principal limitation is a reduced detection volume. It is 

important to remark that the detection volume of the electrode arrangement is dependent to 

the electrode setup. In fact, increasing the filtering order reduces the detection volume as well 

as the signal amplitude. In the CHRONOS study, monopolar recording is applied to maximize 

the detection volume and capture the maximum muscle activity from the rectus femoris during 

the short duration of the STS motion. This electrode arrangement will guarantee the best 

quality and representability of the recorded signal [172].  

 

 

Figure 2.5: EMG electrode configurations and the corresponding recorded signal from one Motor Unit [155]. 

All used electrode cables are shielded with the electrode signal itself (active shielding). 

The active shielding ensures that disturbances such as cable movement artefacts and mains 

interference (50/60 Hz) are reduced to a minimum. The transmission of the signals during the 

acquisition is done by WIFI protocol. 

The high-density surface electromyography HD-sEMG signals were acquired with a 

semi-disposable square adhesive grid (32 electrodes, 4x8) characterized by 4 mm diameter 

electrodes and an inter-electrode distance of 8.57 mm, with a wireless connected ambulatory 

system Mobita® (TMSi, Oldenzaal, Netherlands).  
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 Half of a (8x8) grid is currently used to make 32 channel acquisitions since the final 

design of the grid (with 32 channels) is being finalized. This technique consists in sensing the 

electrical activity generated by muscle fibers (MFs) during a voluntary muscle contraction 

effort. The acceleration of the trunk was measured thanks to the combined accelerometer in 

the device Mobita® (TMSi, Oldenzaal, Netherlands). 

 

- Processing of HD-sEMG signals  
 

The muscle activity was quantified in the clinical study using two specific scores from 

HD-sEMG signal analysis and related to the contraction dynamics and intensity of the rectus 

femoris: Muscular Contraction Intensity MCI score (μV), and Muscle Contraction Dynamics 

MCD score (Sec) related to contraction duration. These scores were obtained after 

preprocessing steps (Figure 2.6) such as: signal denoising by using a band pass filter in (4-

400Hz) range [173], segmentation of muscle contractions from the HD-sEMG signal then signal 

averaging over channels and trials (3 trials to assess the reproducibility, See Annex 2Annex 3).  

 

Figure 2.6 : Methodological issues in the processing of surface electromyogram 
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Finally, the MCI and MCD scores are computed (see Figure 2.7) and compared 

statistically between the age categories, physical activity level, and ultrasound scores. Both 

scores exhibited acceptable reproducibility among the three trials for all the age categories. 

 

 

Figure 2.7: Set up of HD-sEMG score calculation 
 

Band-pass filter  
 

The surface HD-sEMG signals has a spectral content from 4 Hz to 400 Hz [173]. When 

analog signals are sampled at rates smaller than twice of their highest frequency (for example 

less than 800 samples/s for the surface EMG signals), sinusoids with frequencies above this 

threshold are superimposed on the low frequency sinusoids. This phenomenon, known 

as aliasing, is suppressed with the use of low-pass analog filters [173].  

Removing undesired components from the HD-sEMG signals is also possible after its 

digitization, with the use of digital filters. The power line interference, for example, is not 

attenuated with digital notch filters, that create a hole in the Power Spectral Density, but it’s 

can be done with spectral interpolation techniques or blind source separation approaches 

[174,175]. 



 77 

 
Figure 2.8: Above: Raw EMG signal, below: EMG signal after band-pass filter with rest period to calculate SNR. 

 
 Similarly, the movement artifacts appearing can be removed from the surface EMGs 

with a high-pass filter (included in the Mobita® device). Usually, band-pass filters with cutoff 

frequencies set at 4 Hz and 400 Hz are recommended for the filtering of surface EMG signals 

[176] (Figure 2.8). These pre-processing and data visualization steps can be done using 

Polybench® software provided with the Mobita® device (see Figure 2.9). 

 

 

Figure 2.9: Acquisition interface using Polybench software by TMSI Netherland. A: Wireless connection for 
Mobita® (TMSi, Oldenzaal, Netherlands). B: high-pass filter with Fc=5 Hz (recommended for Mobita device). C: 

visualization of EMG channels. D: visualization of acceleration acquisition. 
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Manual segmentation  
 
After having carried out the filtering block, we dealt with visual check and a manual 

segmentation to avoid the part which does not concern the signal of interest, we recall that 

the acquisitions of these data during the “CHRONOS” study concerned 91 participants 

including 82 active and 9 sedentary according to IPAQ. In fact, we set up the preprocessing 

approach at the same time as the acquisition sessions are done, so to be sure about the quality 

of the data that is entered into the automatic segmentation algorithm. Indeed, it was essential 

for us to carry out a visual checking as well as a manual segmentation. Now, with this hindsight 

that we have on these acquisitions we will be able to offer recommendations at the end of this 

manuscript in order to avoid this step, namely that manual segmentation done by an expert is 

always recommended by clinicians. One strength of our study is that all the steps (protocol, 

interface development, acquisition, pretreatment, analysis) were carried out by the same 

person, with help of supervisors. Communicating with the experts in the field of all related 

challenges, and recommendations deducted from this study (particularly manual 

segmentation) have strongly helped in designing automatic procedure (see next section). 

Automatic segmentation using Hilbert envelope  
 
We processed the automatic segmentation using Hilbert transform. This method of 

segmentation is recommended for non-stationary and dynamic signals such as HD-sEMG 

signals during STS test [177]. The Hilbert transform overcomes the difficulties like choosing 

basic function for wavelet transform [178]. Empirical Mode Decomposition (EMD) has into its 

advantages that with a low level of SNR of the processed signal [179], it provides the best 

surface EMG de-noising performance compared to other methods. This offers the most 

successful results for attenuation of specific noises of sEMG signals, especially in cases of 

power-line noises, white Gaussian noise, baseline wandering and artifacts [179,180]. In case of 

short and clean signals such as our clinical database, EMD can lead to the loss of useful 

information in the contraction [179]. The Canonical Correlation Analysis (CCA) is also a relevant 

method for denoising signals. It has been already used to denoise HD-sEMG signals during 

isometric contraction [174,181,182].  This method will be evaluated in the next chapter for 

extracting meaningful features to discriminate age categories as we will show later.   
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In 1996, Norden E. Huang proposed the Hilbert Huang Transform (HHT), that can be 

used for processing non-stationary and non-linear signals, such as noise filtering and 

segmentation [183]. Is an empirically based data-analysis method. We can extract important 

features from this method such as contraction duration related to MCD score; extracted from 

the Hilbert envelope. Its basis of expansion is adaptive, so that it can produce physically 

meaningful representations of the data from non-linear and non-stationary processes 

[177,180]. In our project, we have chosen the Hilbert transform, the choice of Hilbert transform 

for automatic segmentation is made because it is the method which segments better both the 

nonstationary and dynamic signals (the case of ours signals). The other methods are relevant 

for isometric signals as well as the signals with long duration, in our case we will have a loss of 

information as a disadvantage using these methods.  

The Hilbert transform theory is defined with these equations [177,180]: 

We consider the signal 𝑧(𝑡)as an analytic signal, where 𝑥(𝑡) is the real part and 𝑦(𝑡) is the 
imaginary component.  

 

𝒛(𝒕) = 𝒙(𝒕) + 𝒊𝒚(𝒕) = 𝒂(𝒕)𝒆𝒋𝜽𝒕		 	 	 	 	 	 Eq. 2	
 

Then we obtain the amplitude and phase:  

Amplitude:	

𝒂(𝒕) = H𝒙𝟐(𝒕) + 𝒚𝟐(𝒕)		 	 	 	 	 	 	 	Eq. 3	
 
Phase: 

𝒂𝒓𝒄𝒕𝒈(𝒚(𝒕)
𝒙(𝒕)

)		 	 	 	 	 	 	 					 	 	Eq. 4	
 

Whit this 𝜃(𝑡) function, we obtain the instantaneous frequency, by applying the 

derivation to it:   

𝒘 = 𝒅𝜽
𝒅𝒕
			          Eq. 5	

 
The original data can be expressed as the real part Re in the following form:  

𝒙(𝒕) = 𝑹𝒆∑ 𝒂𝒋(𝒕)𝒆𝒋 ∫𝒘𝒋𝒅𝒕𝒏
𝒋P𝟏 	 	 	 	 	 	 	 Eq. 6 

	

Equation above shows that HHT (Hilbert-Huang Transform) is an extended form of 

Fourier Transform.   
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𝒙(𝒕) = 𝑹𝒆∑ 𝒂𝒋(𝒕)𝒆𝒊𝒘𝒋(𝒕)𝒕𝒏
𝒋P𝟏        Eq. 7 

 
The contrast between equations 6 and 7 represents a generalized Fourier expansion. 

The variable amplitude and the instantaneous frequency have not only greatly improved the 

efficiency of the expansion, but also enabled the expansion to accommodate nonlinear and 

non-stationary data [177].  

 

We calculate the analytical signal with the help of Hilbert transform function in Matlab 

[184] (Figure 2.10 & Figure 2.11), taking the envelope and smoothing the signal (smooth 

window=50ms, correlated to Fs=1KHz, this is the window length used for smoothing HD-

sEMG signal).  

 

 
Figure 2.10: Automatic segmentation algorithm using Hilbert transform 

 
Then, with the help of an adaptive threshold algorithm, we detect the muscle activity 

in the signal where at least a minimum number of samples with the length of duration samples 

(250ms) should stay above the noise threshold. This threshold is obtained from computation 

of signal noise and sEMG activity level and updated online (Figure 2.11).  
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Figure 2.11: Automatic segmentation of EMG signal using Hilbert transform 

The outputs obtained from the segmentation process are: the alarm vector (see Figure 

2.12) containing the muscle activity window, the start and the end of contraction from the Alarm 

vector and the calculated contraction duration. 

 

Figure 2.12: Alarm vector obtained from automatic segmentation 

Finally, we match the alarm vector (Figure 2.12) with the active part in original signal in 

order to recover the contraction part, the beginning of contraction, the end of contraction serve 

as to compute the contraction duration defined as MCD score.  
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- HD-sEMG score analysis  
 

Muscle Contraction Dynamics (MCD) score :  
 

From the contraction duration matrix, we obtained the following averaged heat maps 

of the MCD scores (see Figure 2.13) for the 5 age categories and the sedentary group.  For 

the younger category (25-34 yrs.), the blue color indicates small MCD values related to short 

contraction duration and fast STS motion. As the age increases, the color becomes warmer 

indicating longer contraction duration and slower STS motion.  

The sedentary heat map is particularly interesting. One can observe two regions. One 

dominated by slow contraction dynamics and the other with faster ones. The sedentary 

category seems to share both behavior of the same active age (45-54 yrs.; i.e. category 3) and 

the one of older ones (categories 4 and 5). These observations are useful for discrimination 

purposes as exposed in the next chapter. The averaged MCD score from the 32 channels will 

show also a good discrimination in statistical analysis in CHRONOS study results (see next 

sections).  

 

 
Figure 2.13: Averaged MCD heat map (32 channels) for the 5 age categories yrs (category1=25-34yrs 

,category2=35-44yrs, category3=45-54yrs, category4=55-64yrs, category5=65-74yrs.), and sedentary group 45-

54 yrs group (up, proximal, down distal, left, lateral and right distal part of the grid). 

 

Sedentary category 
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Muscle Contraction Intensity (MCI) score:   
 
The MCI score refers to the maximum amplitude from the Averaged Rectified Value 

(ARV) that corresponds as its name reveals to the average of the rectified values of a sEMG 

signal x during a segment of time corresponding to total number of samples in the signal (Ntot). 

It is expressed by the following equation, where i is the sample index:  

 

𝑨𝑹𝑽 = 𝟏
𝑵𝒕𝒐𝒕

	∑ 𝒙²𝒊
𝑵𝒕𝒐𝒕
𝒊P𝟏        Eq. 8 

 
We obtain the following shapes of ARV signals and smoothed envelope for the 5 age 

categories and sedentary group (chosen from one channel of the grid and one representative 

subject for each category, exposed on Figure 2.14).  We can observe, in this figure, the rise 

strategy changes with aging (up to down: the 5 age categories 25-34 yrs., 35-44yrs, 45-54yrs, 

55-64yrs, 65-74yrs, and finally the sedentary group 45-54 yrs.). In fact, the muscle activity 

seems to be more compact in time for younger category (with one peak in the signal envelope 

corresponding to one compact sEMG activity) and begins to enlarge with age, increase to 

reach a double peak (corresponding to two separated sEMG activity) in the older category 

(65-74 yrs.). It is interesting to observe that the sedentary category exhibits an envelope shape 

(Figure 2.14 F) that is closer to higher age categories (Figure 2.14 D,E) than its active age 

category  (Figure 2.14 C). However, these results are preliminary and should be confirmed in 

term of reproducibility (channel and subject) in further work. Indeed, one can notice that these 

preliminary results agree with the multimodal clinical study CHRONOS, presented in the next 

sections. 
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Figure 2.14 : Averaged HD-sEMG signals for the 5 age categories and sedentary category, A=(Category1:25-
34yrs),B= (Category2:35-44yrs),C=(Category3:45-54yrs),D=(Category4:55-64yrs),E= Category5:65-74yrs),and 

F=(sedentary category:45-54yrs).  
        

2.2.3 Statistical analysis for multimodal data comparison  
 

The clinical data obtained in the presented studies were analyzed and statistically 

compared to the HD-sEMG scores, to age and to physical activity level using statistical 

hypothesis tests with Matlab software (R2014, Mathworks©). In addition, correlation coefficient 

between pairs of scores and multivariate analysis (MANOVA) was computed according to age, 
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sex, and BMI of the subjects. The quantitative variables were analyzed using parametric tests 

(ANOVA analysis of variance followed by post hoc Tukey HSD tests when there were more than 

two groups). Variables that do not meet the validity conditions for parametric tests (normality 

of the distribution, equality of variances) were analyzed with non-parametric tests (Kruskal-

Wallis test followed by post hoc Nemenyi test) [185]. The results are considered to be 

statistically significant at a critical threshold of 1% (p <0.01) [185–187].  

 

2.3 Clinical study result  
2.3.1 Preliminary studies 

 
Before starting the recording campaign for CHRONOS study, we did some previous 

preliminary studies in order to optimize the experimental protocol (Figure 2.15).  
 

 

Figure 2.15: Optimization of HD-sEMG acquisition chain from REFA amplifier (A) to Mobita ambulatory device (B). 
 

The aim of our first preliminary study [188] was to characterize the motor abilities of 

young compared to older subjects by combining a recent electromyography technique, the 

HD-sEMG (high density surface electromyography), and the Inertial Measurement Unit (IMU) to 

estimate muscle activation and motion efficiency during the Sit-to-stand test (STS). Twelve 

subjects participated in the STS test. Seven of which were healthy young subjects (25 ±5.7 
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years), and five were older subjects (80 ±7.8 years). All subjects performed sit-to-stand (STS) 

motion 5 times at spontaneous pace.  

The muscle activity was quantified using specific descriptors such as contraction timing 

and intensity. Two 8 x 8 HD-sEMG grids were placed on the right and left femoral muscles. 

Simultaneously, the trunk maximum acceleration during STS test was measured using an IMU. 

The results showed that the HD-sEMG descriptors related to muscular activity, and the trunk 

maximum acceleration were discriminant with the age (p<0.001***) [189]. Also, this study 

demonstrated the potential of the combination of HD-sEMG signals and IMU data for 

evaluating functional motor abilities.  

However, our acquisition chain was based on the Refa (TMSi) equipment (Figure 2.15) 

and this acquisition chain was not suitable for clinical use. Then, we thought about optimizing 

the acquisition chain by using another innovative device (Mobita®, TMSi), notably 

advantageous in terms of combination of acceleration data and HD-sEMG signals. The wireless 

facilities and also its low weight and the easiness of setting up the acquisition chain was a strong 

and motivating point for testing this new device in the muscle aging monitoring task.  

So, the aim of the second preliminary study is to characterize the motor abilities with 

aging, including middle-aged subjects and using new descriptors, by combining both 

techniques, embedded in a recent ambulatory portable device (Mobita®). Nine subjects 

participated in this study [189]. Three were aged 25 ±2 years, four were aged 34.75 ±3.09 

years, and two were aged 57 ±7.07 years. All of them performed sit-to-stand motion 3 times at 

spontaneous pace. New features from HD-sEMG signals such as Skewness and Kurtosis were 

also tested in addition to previous descriptors such as contraction timing and intensity, in order 

to check their efficiency. 

 For this purpose, 4 x 8 HD-sEMG grids were placed on the quadriceps muscle. 

Simultaneously, the trunk maximum acceleration was also measured [189]. Thus, the results for 

the three age categories were statistically evaluated. The results showed that the statistical 

descriptors have a significant sensitivity to the motor efficiency with aging in the STS test 

(p<0.001***) [189].  

Contraction timing and intensity related to muscular activity, and the trunk maximum 

acceleration are also discriminant with the age (p<0.001**), in agreement with the previous 

obtained results in [188].  
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Figure 2.16: Box plot for the maximum amplitude (left) and the maximum acceleration (Right) for three age 
categories (Imrani et al 2018) [189]. See (Annex 4Annex 5) 

 
In fact, the obtained results (Figure 2.16) demonstrated the potential of statistical and 

previous descriptors from HD-sEMG signals and IMU data recorded by an ambulatory device 

for evaluating functional motor abilities with aging. Consequently, we decided to use Mobita® 

device in the CHRONOS clinical study taking account the several advantages regarding clinical 

use. Other preliminary results were obtained during the CHRONOS study, with intermediate 

data, before obtaining the final database (see the next section). These results also 

demonstrated that HD-sEMG signals descriptors have a significant sensitivity to the motor 

efficiency with aging (posters presented in congresses JASFGG 2018, ICSFR 2019)  

 

2.3.2 Multimodal clinical comparative study (CHRONOS)   
 

The 91 recruited healthy volunteers were 49% females, with a mean age of 49 ± 14 

years and a mean body mass index (BMI) of 23.7 ± 2.7 kg/m2.  Firstly, a comparative study 

between classical clinical and imaging scores was performed to show the ability of the HD-

sEMG technique to detect muscle manifestations of healthy aging in a precise manner. 

Secondly, a specific age category (45-54 years old) was scrutinized to evaluate the effect of 

sedentary lifestyle on muscle aging. For this purpose, the active group was compared to the 

sedentary group. 
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- Results of the aging effect on clinical, ultrasound and HD-sEMG scores 
 

Among the 91 volunteers included, 82 were physically active according to the IPAQ. 

The scores evaluating muscle changes were compared according to age group (five 

categories, from 25 to 74 years old divided into 5 decades). It is important to note that the 82 

physically active volunteers did not show any significant difference in BMI, food ratio in 

kilocalories/kg/day and protein intake (g/kg/day), level of physical activity, comorbidities 

assessed using the Charlson score, frailty using the Rockwood score, cognition (MMSE), 

depression (GDS), and number of medications (Table 1) 

 

Table 1: General description of the CHRONOS active population (n=82) 

BMI: body mass index; IPAQ: International physical Activity Questionnaire, MMSE: Mini Mental Sate 

Examination; GDS: Geriatric Depression Scale.  

 

Variables 

          25-34 yrs. 

        (n=16) 

        Mean (±SD) 

                 35-44 yrs. 

                 (n=16) 

 Mean (±SD)) 

              45-54 yrs. 

               (n=17) 

Mean (±SD)) 

                  55-64 yrs. 

                  (n=17) 

Mean (±SD) 

                65-74 yrs. 

              (n=16) 

Mean (±SD) 

    P-value 

          Females (%) 50 50 47 47 50  

         BMI (kg/m2) 23.88 

(±2.80) 

23.63 

(±2.90) 

23.53 

(±2.32) 

24.0 

(±3.24) 

23.63 

(±2.83) 

0.987 

IPAQ  

        (Met-min/week) 

3986.55 

(±2651.45) 

4544.83 

(±3339.39) 

4433.61 

(±3244.17) 

5004.07 

(±4128.19) 

3107.31 

(±1792.13) 

0.559 

   Charlson  

score 

0.00 

(±0.00) 

0.00 

(±0.00) 

0.12 

(±0.49) 

0.00 

(±0.00) 

0.3 

(±0.34) 

0.241 

    Rockwood  

score 

1.25 

(±0.45) 

1.31 

(±0.70) 

1.12 

(±0.33) 

1.12 

(±0.33) 

1.25 

(±0.68) 

0.824 

MMSE 29.44 

(±0.89) 

29.31 

(±1.49) 

29.65 

(±0.49) 

29.06 

(±1.03) 

28.69 

(±1.35) 

0.076 

     Mini GDS 0.1875 

(±0.40) 

0.19 

(±0.54) 

0.41 

(±1.00) 

0.18 

(±0.39) 

0.13 

(±0.50) 

0.868 

    Number of  

      medications 

0.62 

(±0.62) 

0.38 

(±0.50) 

0.24 

(±0.44) 

0.59 

(±0.87) 

0.31 

(±0.87) 

0.149 

     Food ratio 

       (kcal/kg/day) 

26.67 

(±7.40) 

27.48 

(±7.13) 

28.35 

(±5.21) 

27.48 

(±7.13) 

25.53 

(±7.38) 

0.719 

        Protein intake 

  (g/kg/day) 

1.07 

(±0.36) 

1.19 

(±0.38) 

0.99 

(±0.16) 

1.19 

(±0.38) 

1.04 

(±0.23) 

0.823 
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 According to the results obtained (see table 2), the classical clinical muscle 

parameters (handgrip strength, distance of 6-minute walk test, SPPB, and DXA) did not 

significantly differ across age categories. These clinical parameters were not able to 

discriminate, in a significant manner, between young, middle-aged or old healthy active 

volunteers.  

 
Table 2.Statistical testing of clinical scores of the active population with aging (n=82) 

AMM: appendicular muscle mass; LM: lean mass; FM: fat mass; SMI: skeletal muscle index; SPPB: 

Short Physical Performance Battery 

 

 Muscle thickness evaluated using ultrasonography showed discriminant results 

(p<0.001***) with aging: the muscle thickness decreased with age from 19.97 ± 2.38 mm 

between 25–34 years to 15.86 ± 1.13 mm between 65–74 years (p <0.001). In contrast, fat 

thickness increased between 25–34 years and 65–74 years (3.99 ± 1.15 vs. 6.22 ± 1.44, p 

<0.001) (Table 3, Figure 2.17). 

 

 

Variables 

25-34 yrs. 

       (n=16) 

Mean (±SD) 

 35-44 yrs. 

              (n=16) 

Mean (±SD) 

45-54 yrs. 

              (n=17) 

Mean (±SD) 

55-64 yrs. 

               (n=17) 

               Mean (±SD) 

65-74 yrs. 

           (n=16) 

                Mean (±SD) 

    P-value 

Handgrip 

Strength(kg) 

38.06 

(±10.74) 

41.69 

(±11.81) 

40.53 

(±11.88) 

35.29 

(±8.18) 

36.06 

(±10.29) 

0.398 

Distance of 6 

minute walk (m) 

528.94 

(±56.74) 

540.00 

(±88.17) 

513.53 

(±50.28) 

494.47 

(±56.56) 

488.31 

(±88.14) 

0.179 

SPPB 11.69 

(±1.01) 

12.00 

(±0.00) 

11.88 

(±0.33) 

12.00 

(±0.00) 

11.81 

(±0.40) 

0.228 

SMI (kg/m²) 7.36 

(±1.02) 

7.90 

(±1.14) 

7.48 

(±1.45) 

7.29 

(±1.38) 

7.09 

(±1.22) 

0.465 

AMM (kg) 22.51 

(±4.91) 

23.7 

4(±5.12) 

21.89 

(±5.77) 

21.73 

(±5.54) 

20.56 

(±4.99) 

0.424 

Total LM (%) 66.54 

(±8.77) 

70.81 

(±8.45) 

70.28 

(±7.63) 

67.89 

(±9.51) 

66.93 

(±7.51) 

0.484 

Total FM (%) 30.57 

(±9.28) 

26.06 

(±8.99) 

26.76 

(±8.13) 

29.39 

(±10.08) 

30.46 

(±7.84) 

0.464 
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Table 3: Statistical testing of the ultrasound scores of the active population with aging (n=82) 

FT: fat thickness; MT: muscle thickness. *** p<0.001 

 

 

Figure 2.17: Linear regression with aging of FT score (A) and MT score(B). Where R is determinant coefficient R= 
(0.4,0.52) respectively. 

 
 The HD-sEMG scores (MCD, MCI) demonstrated a significant discrimination 

(respectively p<0.001***, P<0.01**) between the age categories of the active subjects (Table 

4). There was a monotonic increase for MCD scores indicating different muscle activation 

strategies with aging. A linear regression analysis was performed and depicted in Figure 2.18. 

A high correlation value of MCD was obtained indicating this clear monotonic and linear 

behavior. This increase was also observable on MCI scores for some decades but with a 

decrease for the last decade indicating decrease in strength and muscle contraction intensity. 

Variables 25-34 yrs. 

(n=16) 

Mean (±SD) 

35-44 yrs. 

(n=16) 

Mean (±SD) 

     45-54yrs. 

(n=17) 

Mean (±SD) 

    55-64yrs. 

      (n=17) 

Mean(±SD) 

65-74yrs. 

(n=16) 

Mean (±SD) 

P-value 

MT (mm) 19.97 

(±2.38) 

18.87 

(±2.41) 

17.43 

(±2.03) 

17.76 

(±3.12) 

15.86 

(±1.13) 

P<0.001 

*** 

FT (mm) 3.99  

(±1.15) 

4.62 

(±1.38) 

 

4.21 

(±1.08) 

5.66 

(± 1.65) 

6.22 

(±1.44) 

P<0.001 

*** 
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However, the age relationship of the MCI score was not as clear at this level as for the MCD 

score (see Table 4, Figure 2.18 for details). 

 
 
Table 4 Statistical testing of HD-sEMG scores of the active population according to age (n=82) 

MCD: Muscle Contraction Dynamic score; MCI: Muscular Contraction Intensity score.  

** p<0.01; *** p<0.001 

 

 

Figure 2.18: A linear regression with aging of MCD score (A) and MCI score (B). Where R is determinant 
coefficient R= (0.8,0.58) respectively. 

 
 Interestingly, a significant correlation coefficient was observed between HD-

sEMG scores and muscle thickness evaluated using ultrasonography (Table 5). Adipose tissue 

thickness was significantly different with aging (p<0.001***) but not significantly different with 

Variables 25-34 yrs. 

(n=16) 

Mean (±SD) 

35-44 yrs. 

(n=16) 

Mean (±SD) 

45-54 yrs. 

(n=17) 

Mean (±SD) 

55-64 yrs. 

(n=17) 

Mean (±SD) 

65-74 yrs. 

(n=16) 

Mean (±SD) 

P-value 

MCI (uV) 199.32  

(±224.60) 

155.75 

(±81.54) 

183.30 

(±136.51) 

291.95 

(±164.63) 

260.15 

(±119.43) 

P<0.01 ** 

MCD (Sec) 1.60 

(±0.63) 

1.64 

(±0.43) 

1.84 

(±0.35) 

2.00 

(± 0.34) 

2.13 

(±0.71) 

P<0.001 

*** 
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HD-sEMG scores (Tables 3 and 6). Furthermore, both HD-sEMG scores were correlated to age 

with a correlation coefficient of 0.58 and 0.81 for MCI and MCD score respectively (Table 5). 

 

Table 5: Correlation coefficients of HD-sEMG scores, ultrasound scores, and age (n=82) 

FT: fat thickness; MCD:  Muscle Contraction Dynamic score; MCI: Muscular Contraction Intensity 

score; MT: muscle thickness. 

A MANOVA analysis was performed to assess the robustness of the HD-sEMG scores 

of several parameters (Table 6). In this study, the HD-sEMG score sensitivity to muscle aging 

manifestations were significantly independent of BMI, gender or fat thickness effects (P>0.02) 

in the five active age categories. These observations further demonstrated the reliability of the 

results related to HD-sEMG technique. 

 

Table 6 : multivariate variance analysis (MANOVA) to assess the robustness of the HD-sEMG scores to MT, FT, 
Gender, and BMI parameters  

MCI (uV) MCD (Sec) MT (mm) FT (mm) 

Age (yrs.) P>0.05 P<0.001 
*** 

P<0.001 
*** 

P<0.001 
*** 

Gender P=0.025 P>0.05 P>0.05 P>0.05 

BMI (kg.m-2) P>0.05 P>0.05 P>0.05 P>0.05 

FT (mm) P>0.05 P>0.05   

BMI: Body Mass Index; FT: fat thickness; MCD:  Muscle Contraction Dynamic score; MCI: Muscular 

Contraction Intensity score; MT: muscle thickness. 

- Results of the physical activity level effect on clinical, ultrasound and HD-sEMG scores 
 
The clinical muscle parameters (handgrip strength, distance of 6-minute walk test, SPPB, and 

DXA) did not significantly differ across physical activity level (Table 7): in healthy subjects, these 

clinical parameters were not able to discriminate, in a significant manner, between sedentary 

and active subjects of the same decade (45-54 yrs.) 

 
Age 

 
MCI (uV) MCD (S) MT (mm) FT (mm) 

Age 1 0.59 0.81 -0.40 0.52 

MCI (uV) 0.59 1 0.18 -0.22 0.09 

MCD (Sec) 0.81 0.18 1 -0.58 0.40 

MT (mm) -0.40 -0.22 -0.58 1 -0.47 

FT (mm) 0.52 0.09 0.40 -0.47 1 
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Table 7 Statistical testing for comparing clinical scores between active and sedentary subjects 
 Sedentary Active Sedentary vs active 

P-value 
 
 

45-54 yrs. 
(n=9) 

Mean(±SD) 
 

45-54 yrs. 
(n=17) 

Mean (±SD) 
 

55-64 yrs. 
(n=17) 

Mean (±SD) 
 

65-74 yrs. 
(n=16) 

Mean (±SD) 
 

45-54 yrs. 
vs 

45-54 yrs. 

45-54 
yrs. 
vs 

55-64 
yrs. 

45-54 yrs 
vs 
65-74 
yrs. 

Females (%) 55 47 47 50    

BMI (kg/m2) 24.33 
(±2.60) 

23.53 
(±2.32) 

24.0 
(±3.24) 

23.63 
(±2.83) 

0.53 0.40 0.64 

IPAQ (MET-
min/week) 

333.97 
(±183.81) 

4433.61 
(±3244.17) 

5004.07 
(±4128.19) 

3107.31 
(±1792.13) 

0.001* 
 

0.002* 
 

0.0001* 
 
 

Charlson 
score 

0.0 
(±0.00) 

0.12 
(±0.49) 

0.00 
(±0.00) 

0.3 
(±0.34) 

0.86 - 0.73 

Rockwood 
score 

2 
(±0.00) 

1.12 
(±0.33) 

1.12 
(±0.33) 

1.25 
(±0.68) 

0.96 0.001 0.003 

MMSE 28.88 
(±1.16) 

29.65 
(±0.49) 

29.06 
(±1.03) 

28.69 
(±1.35) 

0.81 0.92 0.16 

Mini GDS 0.33 
(±0.70) 

0.41 
(±1.00) 

0.18 
(±0.39) 

0.13 
(±0.50) 

0.43 0.65 0.54 

Number of 
medications 

0.11 
(0.33) 

0.24 
(±0.44) 

0.59 
(±0.87) 

0.31 
(±0.87) 

0.89 0.59 0.44 

Food ratio 
(kcal/kg/day

) 

22.88 
(±6.52) 

28.35 
(±5.21) 

26.58 
(±7.13) 

25.53 
(±7.38) 

0.08 0.78 0.16 

Protein 
intake 

(g/kg/day) 

0.90 
(±0.20) 

0.99 
(±0.16) 

1.17 
(±0.31) 

1.04 
(±0.23) 

0.16 0.50 0.11 

Muscle strength and physical performance 
Handgrip 
strength 

(kg) 

30.58 
(±6.31) 

40.53 
(±11.88) 

35.29 
(±8.18) 

36.06 
(±10.29) 

0.3341 0.925 0.641 

Distance of 
6 minute 
walk (m) 

545.78 
(±85.53) 

513.53 
(±50.28) 

494.47 
(±56.56) 

488.31 
(±88.14) 

0.235 0.1951 0.127 

SPPB 12.00 
(±0.00) 

11.88 
(±0.33) 

12.00 
(±0.00) 

11.81 
(±0.40) 

0.2936 -  0.488 

DXA parameters 

SMI (kg/m²) 7.07 
(±1.03) 

7.48 
(±1.45) 

7.29 
(±1.38) 

7.09 
(±1.22) 

0.4187 0.850 0.954 

AMM (kg) 21.21 
(±4.82) 

21.89 
(±5.77) 

21.73 
(±5.54) 

20.56 
(±4.99) 

0.517 0.726 0.496 

Total LM 
(%) 

63.19 
(±5.16) 

70.28 
(±7.63) 

67.89 
(±9.51) 

66.93 
(±7.51) 

0.02 0.183 0.199 

Total FM 
(%) 

34.2 
(±5.53) 

26.76 
(±8.13) 

29.39 
(±10.08) 

30.46 
(±7.84) 

0.022 0.1987 0.219 
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AMM: appendicular muscle mass; IPAQ: International physical Activity Questionnaire; LM: lean 

mass; FM: fat mass; SMI: skeletal muscle index; SPPB: Short Physical Performance Battery ** p<0.01; 

*** p<0.001; **** p<0.0001 

 

Muscle thickness evaluated by ultrasonography showed discriminant results 

(p<0.001***) with aging but not a significant difference with physical activity level (Table 8). 

However, the HD-sEMG scores significantly discriminate sedentary subjects from active ones 

of the same decade under study (p<0.0001****, p<0.01**). Indeed, the sedentary subjects HD-

sEMG scores were not significantly different from to those of older active subjects (two last 

decades: 55-64 years old or 65-74 years old) (Table 8).  

 
Table 8. Statistical testing for comparing HD-sEMG and ultrasound scores between active and sedentary subjects 

- FT: fat thickness; MCD:  Muscle Contraction Dynamic score; MCI: Muscular Contraction Intensity 

score; MT: muscle thickness 

 

- Maximum Trunk acceleration  
 
During this thesis work the analysis of trunk acceleration will not be approached in 

depth because this thesis is focused on HD-sEMG technique, the acceleration will be detailed 

in the future research works. In fact, in this preliminary study, we only used the maximum value 

of the acceleration during STS provided by the Mobita® Device. Then, we evaluated the 

maximum acceleration with aging and sedentary lifestyle. The aim was to clarify the Sit To 

Stand strategies by analyzing the relationship between the trunk motion (maximum 

acceleration) and rectus femoris activation during Sit To Stand motion (MCI, MCD). The 

 Sedentary Active Sedentary vs Active P-value 

 

Variables 

45-54 yrs. 
(n=9) 

Mean(±SD) 
 

45-54 yrs. 
(n=17) 

Mean (±SD) 
 

55-64 yrs. 
(n=17) 

Mean (±SD) 
 

65-74 yrs. 
(n=16) 

Mean (±SD) 
 

45-54 yrs. 
vs 

45-54 yrs. 

45-54 yrs. 
vs 

55-64 yrs. 

45-54 yrs 
vs 

65-74 yrs. 

MCI (uV) 323.69 

(±144.47) 

183.30 

(±136.50) 

291.95 

(±164.63) 

260.15 

(±119.43) 

P<0.01** 0.242 0.634 

MCD (Sec) 1.91 

(±0.58) 

1.84 

(±0.35) 

2.00 

(± 0.34) 

2.13 

(±0.71) 

P<0.0001 

**** 

0.423 0.601 

MT (mm) 16.38 

(±2.71) 

17.43 

(±2.06) 

17.76 

(±3.12) 

15.86 

(±1.13) 

0.244 0.318 0.266 

FT (mm) 5.41 

(±1.57) 

4.22 

(±1.08) 

5.66 

(± 1.65) 

6.22 

(±1.44) 

0.449 0.714 0.173 
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acceleration of trunk decreased clearly with the age with a correlation coefficient equal to -

0.62 (Figure 2.19).  

 
Figure 2.19 linear model of maximum acceleration with determinant coefficient R=0.6 

 

Inversely the maximum acceleration of trunk was decreased when the contraction 

duration increased with a correlation coefficient (-0,37). The acceleration reduced during aging 

probably because, the lower limb (Rectus femoris muscle) request more time to execute the 

STS exercise to maintain the balance, consequently the MCD increased. The MCI score showed 

a negative correlation (-0.41) with the maximum acceleration. With this present study we 

cannot analyze deeply these relationship between MCI/MCD and trunck acceleration. 

Because, finding a relationship between duration based on an averaged electrode grid and a 

single acceleration value from an on-board system is not very consistent. But, it can probably 

be linked to the aging related changes of STS strategy to maintain the balance posture during 

daily motion in healthy subjects [135,147]. Indeed, the maximum acceleration of trunk showed 

significant results for the sedentary category comparing to the same active category 

(P<0.001**). The maximum acceleration did not differ between the two last actives categories 

(55-64 yrs, 65-74 yrs.) and the sedentary category (p>0.05). The maximum acceleration was 

significantly independent of BMI, gender or fat thickness effects (P>0.05) in the five active age 

categories.  

 

 



 97 

2.4 Discussion 
 

Firstly, results from preliminary studies and especially from CHRONOS study showed 

that the HD-sEMG and ultrasound scores were able to evaluate healthy muscle aging, unlike 

clinical parameters (handgrip strength, DXA, SPPB, 6 min walking test). These clinical 

parameters used routinely to monitor the motor decline or sarcopenia in older patients, failed 

to discriminate between the five age categories of healthy physically active subjects.  It 

confirmed the lack of sensitivity of these clinical parameters to detect subtle changes in motor 

functional abilities and muscle anatomy of healthy and active subjects from 25 to 74 years old 

[97]. The HD-sEMG scores were able to discriminate between the 5 age decades regarding 

healthy muscle aging, and similarly muscle and fat thicknesses assessed by ultrasonography of 

the rectus femoris, from a structural point of view. It attested a good sensitivity of this imaging 

approach to structural muscle changes even during healthy aging. Secondly, the HD-sEMG 

scores were not only able to discriminate this healthy muscle aging but also to discriminate 

between active and sedentary participants. Thirdly, the HD-sEMG scores of sedentary 

participants were significantly closer to those of older active subjects (two last decades: 55-64 

yrs. or 65-74 yrs.), suggesting that the sedentary lifestyle would tend to accelerate the muscle 

aging process, according to the proximity of the MCD and MCI scores of the sedentary 

category with those of the two last decades of the active category. 

Data throughout the life course showed the underlying concept of a life course 

approach to sarcopenia [153]. Muscle mass and strength generally increase with growth in 

youth and young adulthood (maximal levels reached up to ~40 years of age), are maintained 

in midlife and then decrease with aging. Beyond the age of 50 years, loss of leg muscle mass 

(1–2% per year) and loss of strength (1.5–5% per year) have been reported [190]. Also, it has 

been shown that the lower limbs are more seriously affected by aging than the upper limbs 

[191,192]. The HD-sEMG results obtained suggest that, the increase in the signal intensity is 

related to the decrease of muscle strength or an increased muscle solicitation, and that the 

slowing of contraction dynamics is associated with a strategy for rising from a chair with aging. 

In our study, the HD-sEMG signal intensity decreased in the 65 -74 years age group. 

This can be explained maybe by the muscle atrophy linked to the modification of the muscular 

typology. Adding the decrease in the strength with aging generates the disability to perform 

the contraction level (MCI) requested even the contraction duration (MCD) increased. Indeed, 
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DXA were not able to detect the subtle muscle atrophy. This change can be due to the 

modification of muscle composition and structure, and more generally muscle plasticity, 

related also to muscle control, which could explain the modifications with aging only observed 

by the HD-sEMG technique. Moreover, reducing the number of motor units is one of the 

processes most cited among all the processes undergoing the effects of age [31] and the 

muscular typology modifications with aging. Plasticity is a reorganization of the remaining 

motoneuron function towards damaged muscle fibers [193–195]. This leads to a qualitative 

decrease in motor function [192,196–200]. It is often stated that type II muscle fibers are de-

innervated by fast, large diameter motoneurons and re-innervated by slow small diameter 

motoneurons [165,200–204]. These type II motor units are highly involved in the muscle 

explosiveness abilities during short and intense motions such as STS [31,165]. 

 According to the results of the present study and considering the type of sit to stand 

motion which is a dynamic test, it would be interesting to discuss the effect of aging on motion 

efficiency. In other terms, the strategy of rising from a seated position without using arms 

during STS tests is modified with aging. Indeed, the reduced motor abilities would indicate 

incapacity to generate, as observed on MCI and MCD scores, an efficient muscle contraction 

(intensity and temporal dynamics) for faster rising and consequently slowing down the 

generation of the STS movement. This could be also explained by a possible balance disorder 

when the center of mass is outside the support polygon combined with muscular deficit of the 

extensors making the extension of the knees and hips difficult [204,205]. In fact, the angular 

velocity profiles of the trunk and the knee differ between young and old people: in young 

people, the profile is regular while in old people oscillations appear at different times of rising 

to ensure the maintenance of posture [37,205].  Recent observations have shown the 

discriminative power of scores relating to STS kinematics comparing young healthy subjects 

with old healthy subjects using a magneto-inertial measurement unit [130]. Furthermore, these 

scores were able to discriminate between young healthy subjects and older and frailer 

subjects. In agreement with the CHRONOS project, this confirms the usefulness of STS analysis 

for precise monitoring of the effect of muscle aging on lower limbs. 

The CHRONOS study demonstrated that the rising strategy from a chair is modified 

with aging and impacted by the level of physical activity as demonstrated by the proposed 

HD-sEMG scores. Physical activity influences muscle condition [71]. Therefore, knowing how 

to earlier quantify and characterize its impact on muscle function, throughout life, is a primary 
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need and is indeed the interest of our study. An interesting observation from the results 

obtained is the effect of a sedentary lifestyle. To date, few studies [9,10,191] have compared 

functional and anatomical performances of different age categories including active and 

sedentary lifestyle. These previous studies have demonstrated that regular physical activity is 

safe for healthy and for frail older people and the risks of developing major cardiovascular and 

metabolic diseases, obesity, falls, cognitive impairments, osteoporosis and muscular weakness 

are decreased by regularly completing activities ranging from low intensity walking through to 

more vigorous sports and resistance exercises, in consistent with our perspectives. The 

proposed study demonstrated a clear and adverse effect of a sedentary lifestyle on muscle 

function even in healthy participants, detected earlier and more precisely with HD-sEMG 

scores than classical clinical scores. In fact, the 45-54 years-old sedentary participants differed 

significantly from the active participants of the same age category. Subtle differences related 

to both muscle structure and function were detected only by the HD-sEMG technique, 

according to muscle contraction intensity and dynamics scores.  

Moreover, the HD-sEMG scores sensitivity to muscle aging manifestations were 

independent from BMI, gender or fat thickness. Furthermore, both scores were correlated to 

aging with a correlation coefficient of 0.58 and 0.81 for MCI and MCD scores respectively. 

These observations confirm the reliability and the robustness of our results relating to muscle 

aging. 

In this study, the classical and widely used clinical parameters (grip strength, 6-minute 

walking distance, muscle mass using DXA and SPPB) were not discriminant between the five 

age groups of healthy active individuals. However, according to the literature, there has been 

a decline in muscle strength [206,207], and physical performance [207] from the age of 40 in 

the general population. Indeed, according to the previously reported normative data [59], in 

men, the grip strength varied from 48.8 ± 8.7 kg to 51.6 ± 10.1 kg between 25-35 years and 

from 48.8 ± 10.3 kg to 46.2 ± 9.8 kg between 45 -55 years old then decreased from 42.3 ± 

8.6 kg to 35.6 ± 7.6 kg between 65-74 years. For women, the grip strength ranged from 30.6 

± 5.6 kg to 31.3 ± 6.2 kg between 25-35 years, then from 29.9 ± 6.4 kg to 27.5 ± 6.4 kg 

between 45-55 years and declined from 25.3 ± 6.0 kg to 21.4 ± 5.4 kg between 65-74 years 

[59]. In our study, grip strength declined after 45 years, but not in a significant way in healthy 

participants as reported previously [206]. Also, a linear decrease was observed in the 

performance of STS test from SPPB (6.2 vs 9.4 seconds between 18-19 years and 80 years and 
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over respectively) in both genders [206].  This can be partly explained by the small size of the 

CHRONOS database. The database size justified the women and men mixing for the statistical 

studies in order to strengthen the statistical power of the CHRONOS results. For these clinical 

scores, the CHRONOS study results differ from those of the literature mainly because the 

participants were homogeneously selected according to strict inclusion criteria (without 

particular comorbidities, physically active according to the IPAQ and a maximum age of 72 

years), contrary to the previously reported data found in the general population. It seems that 

the physical activity level and the consideration of gender mixed population are the principal 

factors justifying these differences. 

The MT evaluated by ultrasonography exhibited significant correlation with HD-sEMG 

scores. Indeed, the scores of these two modalities are negatively correlated with age, 

demonstrating also the sensitivity of the HD-sEMG scores to muscle anatomical modifications 

in addition to functional ones. The study of Zhu et al. [208] showed, in limb muscles, the interest 

of choosing muscle thickness as a discriminant parameter between young and older 

populations rather than the pennation angle and echogenicity parameters. In the CHRONOS 

study, the MT decreased with age from 20.0 ± 2.4 mm at 25–34 years to 15.9 ± 1.1 mm at 65–

74 years. In contrast, fat thickness increased between 25–34 years and 65–74 years (4.0 ± 

1.1mm vs 6.2 ± 1.4mm). These values are consistent with the literature [191,209,210]. 

However, it is important to note that the impact of physical activity or its lack was detected 

only by HD-sEMG scores whereas ultrasonography could not. 

2.5 Strengths and limitations 
 

 Sarcopenia has long been associated with aging and older people, but the onset 

of sarcopenia is now recognized as being earlier in life [37]. Because the aging process and 

muscle function are intertwined throughout life, a tool that can monitor this muscle functional 

decline deserves special attention. These insights are important to consider for interventions 

that prevent or delay development of sarcopenia. This also has the potential to enable public 

health messages to reach young people encouraging healthy lifestyle changes such as 

increasing physical activity with immediate to lifelong benefits for muscle health. Therefore, to 

prevent or delay the onset of sarcopenia, the aim is to maximize muscle in youth and young 

adulthood, maintain muscle in middle age and minimize loss in older age [97]. However, the 

evidence to date supporting this approach is largely observational and trials of life course 
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interventions are needed, with the use of efficient methodologies and accurate, non-invasive, 

ambulatory and large-scale use techniques. The strength of the CHRONOS study is that the 

HD-sEMG technique was able to detect not only healthy aging, but also the effect of sedentary 

lifestyle on the muscle function contrary to other routinely used techniques or clinical 

parameters. 

 Sarcopenia is associated with low muscle quantity and quality/functionality, and 

these parameters are technically difficult to measure accurately with one device [97]. Firstly, 

the HD-sEMG technique recorded during the sit to stand (STS) motion, a daily life motion, thus 

integrating this physical performance aspect, defined as the ability to carry out physical tasks 

in order to function independently in daily life. Secondly, HD-sEMG scores were based on 

contraction intensity and dynamics, reflecting muscle functionality. Thirdly, HD-sEMG scores 

were significantly correlated with muscle thickness measured by ultrasonography, reflecting 

the muscle mass. Thus, the HD-sEMG technique should represent an innovative approach for 

a comprehensive and complete muscle assessment. 

 The monocentric character and the relatively small sample size of this study limit 

the generalization of our results, and larger samples are definitively needed. However, this was 

a pilot study, and it demonstrated the promising capacity of this innovative technology. The 

HD-sEMG technique exhibits usefulness for non-invasive, comprehensive muscle mass and 

functionality assessment for diagnosis of both chronological and pathological/accelerated 

muscle aging, potentially precursor to sarcopenia. Another limitation is that, although the HD-

sEMG scores were independent of BMI or fat thickness, the study was conducted in selected 

healthy participants without obesity. It cannot be ruled out that the higher fat thickness in 

obese participants could prevent accurate muscle measurements with the surface 

electromyography. Finally, further studies, related to larger and heterogeneous populations, 

are needed to definitively assess these complex physiological mechanisms related to muscle 

aging and validate the assumptions we have presented in this preliminary study. 
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2.6 Conclusion  
 

This chapter proposed a complete and multimodal analysis of muscle aging, during 

daily life motion (STS), in view to unveiling the promising potential of the HD-sEMG technique 

to monitor early changes in muscle function impacted with aging and physical activity level. 

The results obtained showed that the HD-sEMG technique on the rectus femoris was able to 

discriminate between the five age categories of healthy physically active subjects, and more 

interestingly, to discriminate between active and sedentary participants contrary to the clinical 

parameters and others routinely used techniques (DXA and ultrasonography). The observed 

modifications, related to sedentary subjects, are not sufficiently significant to be detected yet 

by other techniques such as muscle atrophy state evaluated by ultrasound. The most 

interesting point is that these differences were reduced compared to older active age 

categories: HD-sEMG scores of 45-54 years-old sedentary participants were comparable with 

the scores of active participants, aged older than 55 years old. This strongly suggests that 

sedentary lifestyle seems to accelerate the muscle aging process at both anatomical and 

functional level, and this subtle accelerated process can be detected by the HD-sEMG 

technique.  These promising preliminary results can help to provide an interesting tool for 

clinicians to improve both accuracy and sensitivity of functional assessment. We will introduce 

in the next chapter the main elements, covering advanced signal processing and machine 

learning, to build the first estimator device of Motor Functional Age (MFA) that will be 

predicted for sedentary subject.  
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3.1 Introduction 
 

Throughout this manuscript, it is recalled that the way of muscle aging differs from one 

individual to another.  Indeed, the aging process is a combination of many factors such as the 

biological and physiological changes of the organs, the environmental conditions as well as 

the lifestyle of the person. That generates costly consequences as mentioned in previous 

chapters. In this context, developing new non-invasive approaches for early evaluation of 

sarcopenia is a major challenge [5]. Our objective in this chapter, focused on giving the main 

elements to develop a wireless medical device based on high-definition surface 

electromyography (HD-sEMG) technology, a non-invasive and portable technology, for the 

diagnosis of muscle aging by introducing muscle functional age (MFA). It will allow advances 

not only for clinical practice in terms of diagnosis to implement appropriate management, but 

also as a judgment criterion of therapeutic trials for anti-sarcopenic drugs and nutritional 

supplements.  

Other interventions that slow down the effects of muscle aging with a view for 

sarcopenia prevention and functional rehabilitation can be monitored using HD-sEMG 

technique. The scientific issues of this study are twofold:  1- Clinical by the evaluation of muscle 

aging and methodological through development of a diagnostic tool, compatible with E-health 

platform, based on the analysis of HD-sEMG signals. 2- Research and development by giving 

more qualitative and accurate information linked to muscle aging changes to interpret deeply 

the physiological observations related to muscle aging.  

Preliminary study obtained in young and older patients [189] by using the HD-sEMG 

techniques have shown that HD-sEMG descriptors related to muscular activity are discriminant 

with the age. Experimental results depicted in Chapter 2 demonstrated this assertion. This 

main result encouraged us to explore the usefulness of integrating advanced signal processing 

methods and classifiers from machine learning theory in this thesis in order to estimate the 

MFA score and discriminate different age categories.  

Thus, we will perform three kinds of studies:  

The first preliminary study consists on applying a recent Blind Source Separation (BSS) 

technique, the Canonical Correlation Analysis (CCA) approach, to analyze the estimated 
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sources from the HD-sEMG recordings obtained from CHRONOS project, and their possible 

modifications with aging.  

The second preliminary study is based on exploring time frequency analysis on the 32 

channels of the grid with aging. The aim is to evaluate if the muscle activation regions, 

obtained from the analysis of the nonstationary HD-sEMG signals, differ with aging in time and 

frequency during the STS motion.  Both studies 1 and 2 were tested on small number of 

patients from CHRONOS database due to the complex signal processing task which is time 

consuming. However, optimized processing procedure is definitively needed to enlarge this 

study on bigger database in the future work.   

The third study will be more complete and will address the classification of CHRONOS 

database according to age categories, by using the basic descriptors, frequently used in the 

analysis of experimental and simulated HD-sEMG data and containing temporal, frequency 

and statistical information. The objective is to evaluate the discriminative power of HD-sEMG 

parameters with aging, as demonstrated by the statistical study in the second chapter of the 

averaged descriptors MCD and MCI. 

The final goal of this chapter is to propose an MFA estimator based on machine learning 

approaches. Another goal is to demonstrate the usefulness of these approaches in a better 

assessment of muscle aging, in order to develop remote monitoring tools of muscle capacities 

by using simplified, automatic, and non-invasive acquisition procedure, which guarantees 

acceptability by a maximum of patients.  

 

3.2 Analysis of HD-sEMG signals  
3.2.1 Aging effect evaluation on HD-sEMG signals using CCA 

approach 
 

- Introduction  
 

The objective of the proposed study is to exploit the technology of high-density surface 

electromyography (HD-sEMG), in order to evaluate the muscle activation in young and older 

subjects during a daily life gesture, namely, Sit To Stand (STS), using wireless connected 

ambulatory equipment (TMSi©) and Blind Source Separation (BSS) approach with Canonical 

Correlation Analysis (CCA). Sixteen subjects from CHRONOS database participated (50% 
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females) divided into two categories (‘H1’: young (30.62 yrs ±5.92,23.95 kg/m² ±3.08), versus 

‘H2’:old (61.87 yrs ±7.98, 23.4 kg/m² ±3.38)), in the recording of HD-sEMG signals, using 32-

electrodes square grids (4x8), during Sit To Stand (STS) motion, three times at spontaneous 

speed (as described in the previous chapter). The studied muscle is the Rectus Femoris (RF) 

muscle.  

The recorded HD-sEMG signals were analyzed with CCA approach to extract correlation 

coefficient sets according to two age categories (young versus old), in order to evaluate its 

discriminating power with aging. Statistical tests (t-test) were used to evaluate the 

discrimination for these two categories. The calculation of CCA correlation coefficients showed 

a significant difference between young and old category concerning the mean CCA correlation 

coefficient (P<0.001***) and also the standard deviation of the CCA correlation coefficients 

(P<0.0001****).  

- Materials and methods  
 
Participants 
 

In this study, sixteen subjects participated in the recording of the experimental signals, 

divided into two categories (H1 & H2) with the following characteristics: 

 

Table 9. Cohort description (BMI: Body Mass Index) 
Category H1 H2 

Gender 4M/4F 4M/4F 

Range of age 

(years) 

30.62 ±5.92 61.87 ±7.98 

BMI (Kg/m²) 23.95 ±3.08 23.46 ±3.38 

 

As described in the previous chapter, all participants provided their written informed 

consent. Institutional review boards approved the clinical study (Patient Protection Committee, 

project number 2018/31). The study was registered on ClinicalTrials.gov ID: NCT03560648. 

The database was declared to the French National Commission for Data Protection and Liberty 

(CNIL, France). The subjects presented in Table 9 did not have any history of muscular or 

neurological disorder. 
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Age effect evaluation using CCA Algorithm  
 

The CCA is a statistical multivariate method that correlates linear relationships between 

two multidimensional variables. It is used frequently to denoise HD-sEMG signals[174]. The 

CCA algorithm attempts to extract the original sources, in a BSS paradigm, having maximum 

autocorrelation values (at a specific time delay) and minimum intercorrelation values with each 

other [181].  

This method has the main advantage of ranking the estimated sources according to a 

correlation coefficient and allowing the construction of a pertinent thresholding paradigm. It 

has been successfully used for HD-sEMG signal analysis [174,175,181]. It suggests the use of 

the source vector as the first multidimensional variable and its temporally delayed version as 

the second [174].   

In addition, it proposes to solve the BSS problem by finding the base vectors so that 

the projections of the variables onto these vectors are mutually maximized [174]. The CCA 

algorithm attempts to extract the original sources having a maximum autocorrelation value (at 

a specific time delay) and minimum intercorrelation value with each other. 

We assume that a multidimensional random variable:  

 

     𝑿 = [𝑿𝟏,𝑿𝟐,…𝑿𝒏]                                                                     Eq. 9 

 

With n being the number of sensors 

X is the result of an unknown mixture of unknown source signals:  

 

𝑺 = [𝑺𝟏, 𝑺𝟐, …𝑺𝒏]                                                                                                 Eq. 10 
 

The mixing is assumed to be linear, Therefore, reducing the mixing to a matrix 

multiplication allows to write [181]: 

 

 

									𝑿 = 𝑨. 𝑺                                                          Eq. 11 
 

Where S, X are respectively the source and the grid signals matrixes of dimension (n×m) 

with n being the number of sensors and m the number of samples, and A is the mixing matrix 

of dimension (n×n).  
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The aim is to retrieve the original source signals S by estimating the mixing matrix A 

with A is the estimated mixing matrix equal to the inverse of the estimated demixing matrix 

W. This can be achieved by introducing the demixing matrix W such that: 

 
												𝒁 = 𝒘.𝑿																																																																																																																																																					Eq. 12	
 

Where the matrix Z approximates the source matrix S by a scaling factor.   

Let Y be the delayed version of the source matrix X such that: 

 

𝒀(𝒌) = 𝑿(𝒌 − 𝟏)																																																																																																																														Eq. 13	
 

Where k represents the sample number. The one sampling period delay was chosen after 

multiple denoising trials using different delays between X and Y. The CCA algorithm obtains 

two sets of basis vectors, one for X and the other for Y, such that the correlations between the 

projections of the variables onto these basis vectors are mutually maximized. The mean value 

of each row from the data matrices X and Y is removed, then by considering:𝑢 = 𝑤 _	
`	

 ·X and 

𝑣 = 𝑤b_. 𝑌. The linear combinations of the elements in X and Y, respectively, the correlation 

between u and v, called the variates or the canonical components, can be represented by [9]:  

 

𝝆 = 𝑬[𝒖𝒗]
H𝑬[𝒖²]𝑬[𝒗²]

=
𝒘𝑻	𝒙	𝑪𝒙𝒚	𝒘𝒚

j(𝒘𝒙𝑻𝑪𝒙𝒙𝒘𝒙)(𝒘𝒚𝑻𝑪𝒚𝒚𝒘𝒚)	
	                                                               Eq. 14 

 
where Cxx and Cyy represent the autocovariance matrices of X and Y, 

respectively. 

 

Cxy represents the cross-covariance matrix of X and Y, and wx and wy are the 

corresponding weight vectors. Then, the maximization problem will be solved by setting the 

derivative of ρ, with respect to 𝑤` and 𝑤b, equal to zero which leads to the Eq.15. 

 

𝑪𝒙𝒙k𝟏𝑪𝒙𝒚𝑪𝒚𝒚𝒘𝒙 = 𝝆²𝒘𝒙	𝑪𝒚𝒚k𝟏𝑪𝒚𝒙𝑪𝒙𝒙𝒘𝒚 = 𝝆²𝒘𝒚																																																																																		Eq. 15	
 

With ρ is the square root of the eigenvalue, 𝑤` and 𝑤b are Eigen vectors of 𝐶``km𝐶`b𝐶bb	 and 

𝐶bbkm𝐶b`𝐶``  ,respectively. 
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  The first variates obtained by CCA are, maximally correlated with each other [8]. The 

next pair of weight vectors is obtained likewise by finding variates, which are maximally 

correlated with each other and uncorrelated with the variates of the first pair.  

All the variates are found in an iterative manner [120,175]. Consequently, these variates 

are considered as the sources having maximal autocorrelation and are uncorrelated with each 

other. Thus, when CCA algorithm is applied on the raw HD-sEMG signals matrix, we obtain 

the sources (estimated canonical components) ranked from the higher to the lower delayed 

autocorrelation. The algorithm therefore extracts the original sources of the signal having a 

maximum autocorrelation value and a minimum inter-correlation value between them [182]. 

     The advantage of this separation is that the sources are sorted according to their correlation 

coefficient value. Thus, the first source will have the highest autocorrelation approximately 

equal to one and the last source will have the lowest autocorrelation close to 0. 

We propose to evaluate the obtained correlation coefficient set according to two age 

categories (young versus old) to evaluate its discriminating power. For each participant in each 

category (H1 and H2), we computed the averaged correlation coefficients of 31 sources (the 

channel 32 is the reference) (Figure 3.1) and the standard deviation (std) of these sources, then 

we compute the average of these two parameters (mean and std) in each category. Finally, we 

compare the data of young and old category by using statistical tests (t-test) to evaluate the 

discrimination for these two categories. 

 
Figure 3.1: Representation of canonical components (estimated sources) for one subject during STS motion. 
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- Results and discussions 
 

The calculation of CCA correlation coefficients showed a significant difference between 

young and old category concerning the mean CCA correlation coefficient (P<0.001***) and 

also the standard deviation of the CCA correlation coefficients (P<0.0001****) as exposed in 

Table 10.   

Table 10. t-test results for H1 and H2 groups 
 

 H1 

(young) 

         

H2 

(older) 

t-test 

(P-value) 

SNR (dB) 18.13 ±4.59 18.12 ±4.86  

Mean Correlation 
coefficient   

0.86±0.07 0.90 ±0.08 P<0.001*** 

Std of correlation 
coefficient   

0.16±0.04 0.091± 0.06 P<0.0001**** 

 

A higher correlation coefficient observed in the older group can be related directly to 

spectral contain of the muscle electrical activity; because of the SNR goodness, we assume 

that these modifications in the correlation of sources can be related to muscle activity changes 

with aging and generating differences with the young category.  

Indeed, we explain this higher autocorrelation values in old population by the presence 

of more sources with narrower spectral bands (related to larger autocorrelation functions) in 

contrary to the young category. This should be linked to the modifications of muscle fibers 

typology; older people have more MUs of type I (slow velocity) and less type II (fast velocity) 

compared to young people [211]. Type I fibers are characterized by a low force, power and 

speed production but an important endurance. These fibers have slow contraction and a slow 

fatigability. They are used in low force level requiring activities like walking, posture 

maintaining and in daily activities such as STS motion used in the present study.  

The motor units that contains these types of fibers are called slow motor units [14,124]. 

That is why the muscle fibers Type I are more dominant with aging. In contrary Type II fibers 

are described by having a high force production but low resistance to fatigue and bigger 

diameter than the type I fibers [14,124]. Type II MU electrical activity exhibits larger spectral 

contain and narrower autocorrelation function. They are present in the young category. This 
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could also explain the rapid decay of the CCA correlation coefficient trend in young category 

(H1) compared to the old category (H2) as depicted in Figure 3.2.  

 
Figure 3.2 Obtained CCA correlation coefficients for the 31 estimated sources for young (H1) “up” and older  

(H2) “down” groups. 
 

In fact, this figure shows the trends of the average correlation coefficients, for each 

source and each age category; this result is complementary with the t-test and validate the 

utility of CCA approach not only in the aim of signal denoising but also in order to extract new 

features sensitive to muscle changes with aging.   

This will be exploited in future work, combined to classification approaches, to better 

separate age categories. In addition, these autocorrelation trends will be also investigated 

using middle-age category in a next study. In addition, it is planned to extend this preliminary 

study to analysis the CHRONOS database. 

The study of Watanabe et al. on the relationships between muscle strength and multi-

channel surface EMG parameters in eighty-eight older shows also a high correlation of HD-

sEMG parameters in the older subjects [123]. This high correlation is supposed to be linked to 

the modulation of muscle structure with aging and not only to the atrophy. This result agrees 

with our study and notably with the result of Figure 3.3, which also shows clear modifications 

with aging. These modifications can be functionally evaluated by HD-sEMG parameters such 

as correlation coefficient from CCA proposed in the present study.  
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Figure 3.3: Boxplot of the mean correlation coefficient of the estimated sources for H1 (young) and H2 (older) 

groups. 
  

We observed also that the standard deviation of the autocorrelation coefficient (Figure 

3.4) significantly decreases in old category compared to young category. This can be also 

related to the variation in muscle architecture and thickness which are modified with aging and 

can be assessed using ultrasonography imaging [212]. Note also that the standard deviation 

disperses even more in the older than in the young. This is possibly due to the heterogeneity 

of the muscular structure and electrical activity that seems to increase with aging, among 

subjects, as shown in a recent study [213]. It is important to note that the BMI index is similar 

in both age categories (Table 9) to avoid signal filtering effects due to the adipose tissue that 

could bias the result interpretation. 

The present study aims at exploiting the advantages of combining the HD-sEMG 

technique and CCA approach, using autocorrelation coefficients (mean and standard deviation 

of the sources) and statistical test (t-test) to evaluate aging effect throughout life using 

classification of CCA sources.  

We observed a trend of sources that clearly differentiates each category (young and 

old). This could be related to anatomical and functional modifications related to aging and not 

solely to the atrophy process [123]. However, gender difference analysis has not been 

addressed in this study in order to keep the power of the statistical testing according to the 

small database size. The database will be increased in size with further clinical studies assessing 

gender differences. 
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The main aim of this study is to give objective and intuitive information, using few 

parameters, to the clinician related to muscle decline and to contribute in finding solutions for 

standardization of aging effect evaluation as previously mentioned [5]. 

 
Figure 3.4:  Boxplot of standard deviation of CCA correlation coefficients for the estimated sources for H1 

(young) and H2 (older)groups. 
 

Further studies are needed to better explain the complex mechanisms underlying muscle 

aging. This study is relevant to introduce new parameters from HD-sEMG signal processing, in 

order to demonstrate some differences in muscle activity linked to age-related changes in 

clinical routine. To make easier the implementation of this study in clinical applications, the 

information chain from clinical investigators to engineers and analysts was already successfully 

tested in clinical environment during the data acquisition process. Indeed, thanks to the data 

management tools set up in the clinical environment and in the research laboratory, the data 

communication is practical. The frequency of the measurements will depend on the needs of 

the clinicians for patients’ follow-up. 

- Conclusion 
 

The obtained results are promising and indicate a clear difference between the obtained 

source variability using CCA method between the young and the old tested subjects during 

daily life motion. This study allowed us to unveil the potential of the CCA approach in a deeper 

screening of muscular modifications with aging, starting from the idea to support therapeutic 

and prevention approach of sarcopenia in the older population. The results indicated clear 

modifications in the electrical activity, measured by HD-sEMG technique, related to muscle 
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activity during STS motion. These modifications should be linked to both anatomical and/or 

functional changes and be better investigated in future works on bigger cohorts like 

CHRONOS database. 

 

3.2.2 Time-Frequency analysis of HD-sEMG signals with aging  
 

- Introduction  
 

In this study we aim to evaluate the possible changes in regions activation of the Rectus 

Femoris muscle during STS motion that implies several short dynamic contractions and the 

generation of non-stationary HD-sEMG signals. To overcome the limitations of the Fourier 

transform in the analysis of non-stationary sEMG signals as mentioned in chapter 2, time–

frequency transforms have been applied to signals acquired during dynamic contractions. Each 

segment has been transformed using the Short Time Fourier Transform (STFT), the simplest of 

the Time-Frequency transforms and the easiest to be interpreted. However, with this method, 

it is not possible to have a good resolution simultaneously in time and frequency domain [214]. 

- Materials and methods  
 

The short time Fourier transform (STFT) is a linear Time-Frequency Representation (TFR) 

that was used to study fatigue during isometric and isotonic muscle contractions. These studies 

showed that the frequency content of the sEMG signal slides to lower frequencies with 

increased fatigue [215,216]. In case it is not possible to consider the signal as stationary, the 

STFT assumes that the sEMG signal is stationary over a short-windowed signal segment and 

then analyzes each segment with the Fourier transform[217,218]. TFRs represent signals in 

both time and frequency. Thus, the STFT with analysis window h(t) is given by [217,219]: 

 

  
  Where x is the analyzed signal weighted by the sliding time widow h by time shift t.                  

The STFT preserves time-frequency shifts on the signal [217,219] , 
 

 

   Eq. 16 

   Eq. 17 
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With t0 is a time shift and f0 a frequency shift Introduced by the modulation with the complex 

harmonic at  f0.However, the STFT does not preserve energy information and it is limited by 

assumption of signal stationarity over the length of the window [217,219]]. Following the 

uncertainty inequality, given as:  

 
where ω = 2𝜋f, if the window is chosen to have a narrow bandwidth to increase frequency 

resolution, then the time resolution decreases since the window has long duration. This trade 

off presents a problem in dynamics analysis since the desirable use is to detect changes in the 

frequency content; if the changes are small, the high frequency resolution is needed but at the 

cost of low time resolution.  

Wavelet based methods were also used to study frequency changes for fatigue analysis 

[177]. The STFT and continuous wavelet transform (CWT) were used to analyze 

mechanomyography (MMG) and sEMG signals collected from the vastus lateralis and rectus 

femoris muscles during isometric ramp contractions [220,221].  

A Hamming window of 0.6s was used by the STFT, with an overlap of 0.1 s, and the resulting 

TFR was used to estimate the mean power frequency (MPF) at each time. Frequency shifting 

to lower frequencies was not observed in this experiment. The wavelet is only useful for 

multiresolution analysis, desiring different frequency resolutions at different times, and this 

was not shown to be needed for STS analysis. Note, also, that the wavelet transform also uses 

windowing and thus still has Time-Frequency resolution trade off. For this analysis, a resolution 

of Δf=3,9, Hz and Δt=0,2560 seconds was used.  

The segmented part of the data was transformed by multiplying the signal by a Hamming 

window, then, after computing the discrete Fourier transform and shifting the window along 

the HD-sEMG recordings (31 channels), we obtained a new spectrum each 256 ms for each 

electrode and for each segment (three segments of STS of each patient). After, the 

spectrogram has been calculated between 0 Hz and 50 Hz. This choice is justified by the fact 

that main modifications with aging of the MU recruitment and firings are supposed to be in 

this frequency bandwidth. For illustration purposes, an image of all the channel spectrograms 

has been constructed to show the spatial distribution of the electrical energy, between 0 Hz 

Eq. 18 
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and 50 Hz, of the RF muscle activity and see the difference between the power distribution in 

RF region during STS. 

Many limitations are found with this protocol, starting with the fact that it is unknown where 

the several STS steps take place (as explained in section “STS justification”), because no 

camera was used during this protocol. To solve this, the point of maximum extension has been 

approximated with the time location of the maximum power value in the time frequency 

domain.  

- Results and discussion  
 

According to the obtained results, one can observe that, for a young person, at the time 

considered as short-isometric contraction of the femoral muscle (between 1300 and 1600 ms), 

the time frequency plane is richer in frequency and energy (approximately 20 decibels (dB)). 

However, for a senior, the energy the spectrum is twice as low compared to young people 

(about 10 decibels) with less frequency and larger time support. In fact, for an older person, 

the contraction time is greater compared to a young person. This could be explained by the 

fact that the aged muscle contains more slow than fast motor units. Indeed, the muscle 

develops strength in a longer duration of time than in the young. However, the muscle of a 

young privileges the use of fast motor units in order to quickly execute the STS motion which 

explains the important energy and the frequency richness during shorter period (Figure 3.5).  

                
Figure 3.5: Focus for Time-Frequency map for one channel of young subject (up) and senior (down) subject during 

sit to stand motion 
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This observed result with aging is in agreement with the MCD score increase presented 

in the previous chapter. This preliminary result using Time-Frequency analysis will be exploited 

to develop new descriptors to discriminate between the two young and old populations. 

A precise subject-to-subject analysis is still not possible with the followed experimental 

protocol with no use of camera recordings for possible synchronization. In fact, it is not 

possible to compare between STS phases (flexion/ extension duration) because the speed 

inter-variability. Thus, the signal length is different between patients and between segments. 

One can roughly approximate the maximum muscle contraction that corresponds 

approximately to the middle of the stand phase. But from the 31 channel cartography, we 

observed that the muscle activation it is concentrated in the proximal part of the grid (See 

Figure 3.6,Figure 3.7 and Figure 3.8) and in the beginning of the distal part according to our 

grid of electrodes (which is located in the 70% away from the top of the patella). All the 

subjects tested have almost this observed spatial distribution (more activation in proximal 

part).  

 

 
Figure 3.6 : Time-Frequency cartography for representative Young subject 25 yrs. 
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Figure 3.7 : Time-Frequency cartography for representative Young subject 52 yrs. 

 

 
Figure 3.8: Time-Frequency cartography for representative Young subject 63 yrs. 
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The observed spatial distribution can be explained in part by the fact that two motor nerve 

branches innervate the human RF muscle. In [118], the femoral triangle area was dissected to 

identify the branches of the femoral nerve. It was observed that the motor branch of the RF 

was divided into 2 sub-branches just before it reached the 20% of muscle length from the hip. 

Based on this anatomical evidence, it can be estimated that the boundaries of the 

neuromuscular compartment are located at 20–33% of the RF muscle length from the hip. 

Previous studies using mfMRI have shown that during isokinetic knee extension exercises, the 

level of activation between the proximal and distal regions of the RF muscle is different [222].  

Based on this finding, it is admitted that there are proximal and distal neuromuscular 

compartments in the RF muscle, and they are supposed to be independently regulated. Since 

the beginning of the electrode grid is located in the proximal third (30%) length of the RF 

muscle, the proximal grid area in this study can be divided into proximal neuromuscular 

compartments, while the middle and distal grid areas can be classified into distal 

neuromuscular compartment. Another study showed that the proximal part is more activated 

during the hip flexion, and the distal part is more activated during knee extension [223].  In 

[223] during knee extension, normalized RMS value at the distal region was significantly higher 

than the proximal region at 80% of MVC (p < 0.05). On the other hand, during hip flexion, 

normalized RMS values at the proximal region were significantly higher than middle and distal 

regions at 60% of MVC (p < 0.05). During STS motion, both hip flexion and knee extension are 

present and could explain the observed spatial distribution in the Time-Frequency domain. 

However, one can observe the aging effect in time spreading of the Time-Frequency 

representation. In fact, it is clear that further analysis is needed to better understand underlying 

processes related to STS motion with aging. 

- Conclusion  
 

In conclusion, we investigated the spatial activation pattern in the RF muscle during STS 

motion in the Time-Frequency domain. This first study, to our knowledge, can provide a better 

understanding of the characteristics and functional roles of RF muscle and its neuromuscular 

compartments. Indeed, the hypothesis of possible different RF region activation with aging 

seems to hold. According to these preliminary results, we observed significant differences with 

aging from young subject to older one (young person (25 yrs.), middle age person (52 yrs.) and 

old person (63 yrs.) in spatial distribution, timing and power intensity in the Time-Frequency 
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domain. The validity of the suggested hypotheses has to be demonstrated in future works on 

larger database. It is planned to extend this preliminary to the whole CHRONOS database. 

For this purpose, computing time of Time-Frequency maps need to be optimized.  

 

3.3 Prediction of muscle aging based on HD-sEMG features 
classification  

 

3.3.1 Introduction  
 

The goal of this section is to give a first insight about prediction the aging effect in RF 

muscle and the impact of a sedentary lifestyle. Indeed, for this sake, we use a conventional 

automated recognition system, using machine learning methods, which can be divided into 

two main basic tasks, feature extraction and classification (Figure 3.9). It should be noted that 

we would give a special focus to the evaluation of the discrimination power of the extracted 

features.  

Despite the ability of recorded HD- sEMG signals to give useful information, they are 

not always captured in ready and adequate format for analysis and interpretation, which clearly 

shows the need to address the problem of information extraction and interpretation. 

Therefore, relevant and discriminative features are of critical and fundamental importance to 

achieve high performances. 

Feature extraction is of extreme importance in order to evaluate muscle aging effects. 

It seeks to transform and fix the dimensionality of an initial input raw data to generate a new 

set of features containing meaningful information contributing to assign the observations to 

the correct corresponding class either on training samples or new unseen data class (See 

Figure 3.9). Unfortunately, doing this correctly and completely represents a continuous 

challenging problem, which took the effort and attention of researchers in signal processing 

and computer science communities. Actually, the extracted features from the raw signals are 

used to feed up various machine learning classifiers techniques. Before delving to the details 

of the obtained results, we give hereafter a general overview of the different extracted features 

as well as the tested classifiers.  
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Figure 3.9 : The overview of classification set up 

 
 

Let recall that, the chronological age taken alone is rarely a reliable index of the motor 

efficiency of a person to make a physical effort. The assessment of motor capacity is virtually 

related to the functional age, different from the chronological age. That mean, our 

chronological age does not reflect precisely our muscular abilities, because there may be 

young people in physical inactivity who also suffer from defined motor loss as early aging [9]. 

Based on that, we propose to evaluate the Muscle Functional Age (MFA) in this section, 

because it is becoming more important to find out solution to slow down the aging process 

by improving the lifestyle, such as diet, activities, life choices [9,10]. Based on that, we propose 

to predict the Muscle Functional Age (MFA), proposed by S. Boudaoud and K. Kinugawa, using 

different machine learning architectures compared in term of accuracy performances on active 

subjects and tested on unseen sedentary subjects to evaluate their MFA. 

 

3.3.2 Features from HD-sEMG signal  
 

- Temporal domain [224]:  

In the time domain, the parameters allowing quantification of the activation level are:  

● integrated EMG (iEMG) represents the integral of a rectified digitized signal xi during 

a period of time corresponding to Ntot samples [224]:  
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𝒊𝑬𝑴𝑮 = ∑ |𝒙𝒊|		𝑵𝒕𝒐𝒕
𝒊P𝟏 	 																																																																																															Eq. 19	

● Averaged Rectified Value (ARV) corresponds to the average of the rectified values of a 

sEMG signal xi during a segment of time corresponding to Ntot samples. It is expressed 

by [224]:  

𝑨𝑹𝑽 = 𝟏
𝑵𝒕𝒐𝒕

∑ |𝒙𝒊|					𝑵𝒕𝒐𝒕
𝒊P𝟏 								 																																																																					 	 									Eq. 20 

	

● Root Mean Squared (RMS) correlates with the signal power. It is computed using the 

following equation [224]:  

𝑹𝑴𝑺 = j 𝟏
𝑵𝒕𝒐𝒕

∑ 𝒙𝒊𝟐𝑵𝒕𝒐𝒕
𝒊P𝟏 																																																																						 																										 											Eq. 21	

- Frequency domain:  

In the frequency domain, the spectral parameters are based on the Power Spectral 

Density (PSD) of the sEMG signal by [224]:  

𝑺p𝒆𝒌𝒘q = ∑ 𝒓(𝝉)st
𝝉Pkt . 𝒆k𝒋𝒌𝝎	 	 																																																																																				Eq. 22	

Where 𝑒kwxy(𝑤 = 2𝛱𝑓)		is the 𝑘~�	sinusoidal harmonic and r(k) is the autocorrelation function 

expressed by the expected value:   𝑟(𝜏) = 𝐸[𝑥(𝑘 + 𝜏)𝑥(𝑘)]. 

The power of the sEMG signal is generally between 5 and 500 Hz with the primary 

energy contained in the 50 -150 Hz portion [225]. The change in the spectral content of the 

EMG signal is usually tested using frequency parameters such as:  

● The median frequency (fmed) corresponds to the frequency that breaks up the PSD 

total energy in two equal power parts given by [217]:  

∑ 𝑺𝒌
𝒇𝒎𝒆𝒅
𝒌P𝟏 = ∑ 𝑺𝒌

𝑭𝒕𝒐𝒕
𝒌P𝒇𝒎𝒆𝒅                                                                                     Eq. 23	

With 𝐹~�~  is the total number of samples in the frequency domain. 

● The mean frequency (fmean) stands for the ratio of the first spectral moment 

normalized by total energy. It is computed using the following equation [217]:  
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𝒇𝒎𝒆𝒂𝒏P
∑ 𝒇𝒌𝑺𝒌
𝑭𝒕𝒐𝒕
𝒌6𝟏
∑ 𝑺𝒌
𝑭𝒕𝒐𝒕
𝒌6𝟏

		                                                                                                     Eq. 24	

With 𝑓� is the frequency value at the 𝑖~�	sample.  

- High order statistic (HOS) domain [226,227]:  

The HOS parameters, the skewness (asymmetry) and the kurtosis (flatness), track 

indirectly the Power density function (PDF) shape modifications of the sEMG signal as used in  

Ayachi et al, [228]. We recall briefly the definitions of both normalized parameters in the 

following equations for the sEMG amplitude:  

          𝑺𝒌𝒆𝒘(𝒔𝑬𝑴𝑮) = 𝑬�(𝒔𝑬𝑴𝑮k𝝁)𝟑�

(𝑬�(𝒔𝑬𝑴𝑮k𝝁)𝟐�)
𝟑
𝟐
																																																																																																							Eq. 25	

 

          𝑲𝒖𝒓(𝒔𝑬𝑴𝑮) = 𝑬�(𝒔𝑬𝑴𝑮k𝝁)𝟒�
(𝑬�(𝒔𝑬𝑴𝑮k𝝁)𝟐�)𝟐

− 𝟑                                                                                 Eq. 26	

Where E(.) is defined as the expectation operator, and μ is the mean value of the sEMG 

signal amplitude. It is important to note, that these high moments are invariant to the mean 

value and variance variability. These parameters were computed for STS dynamics contraction 

by averaging the values obtained over ten epochs of 0.2 seconds (sampling frequency, fs, fixed 

at 1000 Hz) in order to minimize the bias of the used HOS estimators that employ empirical 

formula.  

3.3.3 Classifiers  

Machine learning is a branch of computer science, it represents an application of 

artificial intelligence (AI) providing systems the ability to automatically learn and improve from 

experience without being explicitly programmed [229]. Machine learning (ML) learns models 

from previous (the past knowledge) data in order to predict the new data (future knowledge). 

The key process is the learning that mimics human intelligences. Classification is the process 

of predicting the class of given data points. Classes are sometimes called targets/ labels or 

categories. Predictive classification predictive modeling is the task of approximating a 

mapping function (f) from input variables (X) to discrete output variables (y). Many different 

statistical, probabilistic, and optimization techniques can be implemented as the learning 
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methods such as the logistic regression, artificial neural networks (ANN), K-nearest neighbor 

(KNN), decision trees (DT) and Naive Bayes [230]. There are two main types of ML learning - 

supervised learning and unsupervised learning.  

The supervised learning builds a model by learning from known classes (labeled training 

data) [230]. In contrast, unsupervised learning methods learn the common features from 

unknown class data (unlabeled training data) [230]. The strength of ML methods is the ability 

to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is 

particularly well-suited to complex medical data. Namely, genomic data especially in cancer 

studies [231]. The ML methods is also used in ambulatory devices for electrophysiological 

monitoring such as HD-sEMG and EHG techniques to predict premature delivery [232,233], to 

select the feature-channels pairs that best classify the hand postures at different limb positions 

[234], also to do pattern recognition based on HD-sEMG spatial features extraction for an 

efficient proportional control of a robotic arm [235] and more applications in biomedical field 

related to EEG or ECG signal analysis [236]. In our work we will test fours classifiers from 

machine learning library in Python: Support Vector machines, Random forest, K Nearest 

Neighbors (Knn),and Multi Layers Perceptron (MLP). 

- Support Vector Machines (SVM)  

Support vector machines (SVMs) are a set of supervised learning methods, used   for  

classification analysis introduced by Vapnik [237]. It is based  on  statistical  learning theory 

[237]. Given   a   set   of   training examples, each marked as belonging to one of two categories, 

an SVM training algorithm builds a model that assigns new examples into one category or the 

other, making   it a non-probabilistic binary linear classifier. A support vector machine 

constructs a hyper-plane or set of hyper-planes in a high or infinite dimensional space, which 

can be used for classification, regression or other tasks. Intuitively, a good separation is 

achieved by the hyper-plane that has the largest distance to the nearest training data points 

of any class (so-called functional margin), since in general the larger the margin the lower the 

generalization error of the classifier [238,239]. The Figure 3.10 below shows the decision 

function for a linearly separable problem, with three samples on the margin boundaries, called 

“support vectors'': 
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Figure 3.10: the decision function for a linearly separable problem, with three samples on the margin boundaries 

[240].   
 
The support vector machines has several advantages listed hereafter [240]: 

● Performs well in high dimensional spaces when the number of dimensions is greater 

than the number of samples. 

● Uses a subset of training points in the decision function (called support vectors), so it 

is also memory efficient. 

● Different kernel functions can be specified for the decision function. Common kernels 

are provided, but it is also possible to specify custom kernels. 

The choice of the optimal parameters for SVM to get optimal accuracy scores will be 

done thanks to Hyper parameters optimization.  

- Random Forest (RF)  

Random forest (RF) is an essential machine learning algorithm, proposed by Leo 

Breiman in 2001 [241]. It is easy to interpret, stable with generally good accuracy and can be 

used for classification or regression tasks. It therefore covers a large part of Machine Learning 

issues [242]. It is an algorithm based on the assembly of decision trees by constructing a 

multitude of decision trees at training time.  As its name suggests, a decision tree helps to 

make a decision through a series of tests whose answer (yes / no) will lead to the final decision 

[243], see Figure 3.11. On the tree, each question corresponds to a node, that is, a place where 

a branch splits into two branches. Depending on the answer to each question, we will orient 
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ourselves towards a particular branch of the tree to finally arrive on a leaf of the tree (or end) 

which will contain the answer to our question [242]. 

Random Forests can be made up of several dozen or even hundreds of trees, each tree 

is trained on a subset of the dataset and gives the result. The results of the selected decision 

trees are then combined to give a final answer. Each tree “votes” and the final answer is the 

one that had the majority vote [242,243]. 

 

Figure 3.11: Random forest setup  
 

- Multi Layers Perceptron Couche (MLP) 

A multilayer perceptron (MLP) is a class of feedforward Artificial Neural Network (ANN) 

[244,245]. MLP utilizes a supervised learning technique called backpropagation for training. Its 

multiple layers and non-linear activation distinguish MLP from a linear perceptron. It can 

distinguish data that is not linearly separable. A multi-layer neural network consists of a large 

number of units (neurons) joined together in a pattern of connections (Figure 3.12) [245]. Units 

in a net are usually segregated into three classes: input units, which receive information to be 

processed; output units, where the results of the processing are found; and units in between 

known as hidden units. Feed-forward ANNs (Figure 3.12) allow features to travel one way only, 

from input to output. 
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Figure 3.12 : Neuronal network [246].   
 

- K Nearest Neighbors (Knn)  

The k-Nearest-Neighbors (Knn) method of classification is one of the simplest methods 

in machine learning. It seeks to find the most similar data points in the training data, and make 

a guess based on their classifications [229,247]. Although very simple to understand and 

implement, this method has seen wide application in many domains, such as 

in recommendation systems, semantic searching, and anomaly detection [247]. Unlike most 

other methods of classification, Knn falls under lazy learning [230] (i.e. there is no explicit 

training phase before classification). While we can immediately begin classifying once we have 

our data, there are some inherent problems with this type of algorithm. Indeed, we must be 

able to keep the entire training set in memory unless we apply some type of reduction. It 

should be noted that performing classifications could be computationally expensive as the 

algorithm parses through all data points for each classification. For these reasons, Knn tends 

to work best on smaller datasets with a limited number of features [230]. 

3.3.4 Experiments & Methodology 

Performing a classification mainly consists of several steps: (a) choosing an experiment 

scheme, (b) choosing a set of features or attributes according to maximized discriminative 
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power (feature selection); (c) training the classifier; (d) validating the classifier; and finally (e) 

evaluating potential errors in the classification scheme by analyzing confusion matrix (well 

classified versus misclassified data statistics).  

In this work, we suggest to evaluate several experimental designs to classify features 

according to age categories. Firstly, we will describe the dataset architecture, the 

implementation of classifiers, and we will present and discuss the accuracy of the classification 

according to each feature and experimental design.    

- Dataset description  

As described before, the CHRONOS dataset contains 82 active subjects (49% females) 

according to IPAQ (as described in the chapter 2), with a mean age of 49 ± 14 years and a 

mean body mass index (BMI) of 23.7 ± 2.7 kg/m2, divided into 5 age categories (from 25 years 

to 74 years) as depicted on Table 11. Each subject provides 3 Sit To Stand trials combined to 

HD-sEMG signal recording.   

Table 11.  Dataset description 
Age categories  Females (%) Number of 

subjects 
Age 

range 
(yrs) 

BMI(Kg/m²) 
(mean((±sd)) 

Class 1 50 16 25-34  23.88(±2.80) 
Class 2 50 16 35-44 23.63(±2.90)  
Class 3 47 17 45-54 23.53(±2.32) 
Class 4 47 17 55-64 24.0(±3.24) 
Class 5 50 16 65-74 23.63(±2.83) 

 The aforementioned extracted features from HD-sEMG signals for the classification 

stage are extracted from the CHRONOS database. The HD-sEMG   signals   were   detected   

from   a   restricted   area   of   the   skin   over   the   muscle (in the proximal zone of the Rectus 

Femoris muscle) using HD-sEMG electrode grid according to the experimental protocol.   

These 2D array   electrodes are organized   in   8 rows and 4 columns. The recorded HD-sEMG 

data was preprocessed using band-pass filtered at 20-450 Hz, automatically segmented to 

extract muscle contraction using Hilbert envelope and finally sampled at 1000   Hz. 

For each STS trial, 31 channels   were   recorded (the 32 channel is the reference). Each 

HD-sEMG dataset was recorded separately and refers to the original file containing others 

information of patients in order to make data exploration easier. This permits to have a 
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flexibility in data management to allow several studies such as a comparison between clinical 

data and HD-sEMG data, adding new features, etc. During this thesis, the standardization of 

this data was done starting from HD-sEMG raw data to feature extraction. The main goal of 

this standardization is to make the whole process from data recording (with all details about 

experimentation) to feature extraction, across processing of HD-sEMG signals, traceable, 

archived, and reusable for future advanced studies. Thus, this will facilitate the reuse of codes 

for similar studies whether for data from the CHRONOS project or from other studies and 

avoiding redundancy. From another point of view, it will also facilitate the communication of 

all users involved in the projects. 

- Classification methodology 
 

The muscle functional age (MFA) estimation based on the classification of the extracted 

features from the recorded HD-sEMG data is summarized in Figure 3.13. 

 

Figure 3.13: Classification process 

In this section, we decided to test three feature extraction methodologies from HD-

sEMG signals. In the first methodology, we extract the features from the averaged signals over 

channels for each trial. The objective of this architecture is to evaluate if the signal averaging 

is an exploratory and promising possibility to be considered in the final device, which will 

predict the motor functional age (MFA). 
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Then for each subject we have one value per feature and per trial (3 values for each 

subject). The advantage of using the averaged signals is the simplicity of its integration into 

the final software dedicated to clinical applications, considering the fast computation time of 

the features and also all the processing steps before the calculation of the features.  

This methodology will also allow us to compare the classification results of these 

features with the statistical results of basic scalar parameters such as MCI and MCD, shown in 

chapter 2. In contrast, the averaged data architecture makes hard to obtain a precise and 

spatial information on the changes in muscle activity over the grid.  Another critical point is 

the discriminant vector construction combining different features.  

This is why we decided to test each feature separately for the averaged feature 

methodology, and also for the other methodologies, in order to avoid the design of a 

complete black box system where we cannot extract some physiological interpretations from 

the used features.  

The second methodology consists on the classification of the features using 31 channels 

per trial and per subject in order to evaluate the muscle aging changes related to spatial 

muscle activation changes observed on the HD-sEMG grid.  

And finally, in the third methodology, we keep the 31 channel per trial and per subject 

but in this time will dived the complete STS contraction into three-time segments, to consider 

the STS phases (as described in chapter 1).  Then, we compute features for each time segment 

in order to evaluate the changes linked to the several STS phases. Finally, we will propose a 

classification procedure, based on channel majority voting, to predict the MFA on the 

sedentary subject group. 

The proposed three feature extraction methodologies are exposed in Figure 3.14:  
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Figure 3.14: Feature extraction for MFA prediction 

 

During the implementation of the classifiers, it was necessary to think about the best 

calibration parameter values. For this sake, we refer the reader to the literature regarding the 

choice of these hyper-parameters [229]. In statistics, this step is called hyper-parameter 

optimization; it represents a parameter from a prior distribution which captures the prior belief 

before data is observed [247]. In any machine learning algorithm, hyper-parameters are 

important because they directly control the behavior of the training algorithm and have a 

significant impact on the performance of the trained model.  

Choosing appropriate hyper-parameters plays a crucial role in the success of our 

classification approaches since it makes a huge impact on the learned model performances 

[248]. Choosing good hyper-parameters gives two benefits: a). Efficient search in the space of 

possible hyper-parameters. b). Management simplicity of a large set of experiments for hyper-

parameter tuning.  

The common algorithms to find the most optimal hyper-parameters include: Grid 

Search, Random Search, Bayesian Optimization.  In this study, we have chosen the grid search 

method (Figure 3.15). It is a classical technique for calibrating hyper-parameters. It tries all the 
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possible hyper-parameter combinations and then provides the best combination giving the 

best accuracy score [249].  

    
Figure 3.15: Grid Search method  

Source: https://blog.floydhub.com/guide-to-hyperparameters-search-for-deep-learning-models/  
 

The Grid search method is a simple algorithm to use but it suffers from complexity 

increase related to high dimensional space namely called the curse of dimensionality. For more 

generalization ability (new knowledge ability) and in order to avoid possible dependence to a 

special training/testing set (past knowledge dependence), we have performed a 10-fold cross 

validation scheme (see Figure 3.16). Indeed, each time, 9-folds have been used for training 

(90%) and the remaining one (10%) for testing. The performance is measured by the 

classification accuracy given by [247,250]:  

 
        

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 	 𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆s𝑻𝒓𝒖𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
𝑻𝒐𝒕𝒂𝒍		𝑺𝒂𝒎𝒑𝒍𝒆

																																																																               Eq. 27 
 

We repeat the operation 10-times, and the final accuracy is given by the mean 

accuracies and its corresponding the standard deviation (see Figure 3.16)  

Validating a classifier involves testing it on a set of subjects (the test set) that is 

independent of the training set. When the dataset is large, one can simply divide it into a 

training and test set (hold-out method). But in case of smaller database, we used cross 
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validation such as an effective and statistically justified validation method that can be used in 

this case [247].  

 
Figure 3.16: Cross validation (K-fold) method 

In this approach, combined to hyper-parameter tuning process, one sample (10% of 

the database) is removed from the training set (Figure 3.16). The classifier is trained using the 

remaining training set, and then evaluated using the hold-out sample as a test (Figure 3.16). 

This process is repeated in turn for each member of the training set. Other validation methods 

can be used instead the proposed one and are computationally less intensive, and some 

machine learning techniques combine training and validation of classifiers in one process 

[238,247].The performance of tested classifiers to separate the 5 age classes using each feature 

is compared according to the accuracy scores.. Because our database is well equilibrated in 

term of samples per class, the accuracy is supposed to be a good performance indicator.  

We will complete this analysis by giving the confusion matrix in order to evaluate which 

classes will be confused in the classification.  This would provide some observations and 

interpretations correlated to the statistical results obtained in the CHRONOS clinical study in 

Chapter 2.  
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Finally, we will test the ability of the most relevant features to ensure the MFA prediction on 

new data from the sedentary group (low activity level according to IPAQ). It is important to 

keep in mind that for these sedentary subjects are not labeled with a known MFA.  Their 

classification, trained on active subjects, to a younger or older age category will constitute the 

MFA prediction and can be considered as a generalization process of the selected classifiers.  

3.3.5 Results and discussion  
 

- Results of HD-sEMG features from the averaged channels (Features Extraction 
Methodology 1) 

To verify that the averaged features from HD-sEMG signals allow the recognition of 

aging changes through ages categories for active subjects, we compared the four classifiers 

(RF, SVM, MLP, Knn) accuracy for each of the height features depicted in the previous sections 

(input dimension: 1 averaged feature from 31 channels x 3 trials).  

The highest recognition accuracy was 92%,±0.06, 90%,±0.05, for ARV and RMS feature 

respectively with SVM classifier. this classifier demonstrates a high recognition ability for HD-

sEMG data in other application, such as gesture recognition [251]. Also, the higher accuracy 

for RF and Knn classifiers was observed: 96%,±0.04, 94%,±0.05 respectively for ARV feature 

see Figure 3.17. 

The other features demonstrate a very good accuracy with RF, SVM and Knn (see Figure 

3.17 for more details). For example, IEMG feature performed with an accuracy of 85%,±0.23, 

94%,±0.03, 93%,±0.07 for RF, SVM, and Knn respectively. In contrast, the MLP classifier 

performed not well.  It may be because this classifier is not adapted to our proposal 

configurations taking account the complexity and the dimension of neuronal network. The 

complexity of the model is based on the architecture, which is determined here by the number 

of hidden: it is the first parameter used to control the network.  

To preserve convergence properties, some restrictions have to be respected, 

particularly concerning the dimension [252]. Since we used the hyper parameters optimization 

process, we assume maybe for the eventual data, the input layer dimension was small and not 

enough adapted to MLP classifier. The aim of testing this classifier is to give an idea about 
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several kind of classifiers from statistical learning such as SVM, RF and Knn and also from 

neuronal technique such as MLP [253].  

 

Figure 3.17: Accuracy percentage of HD-sEMG features from the averaged channels channels (Feature Extraction 
Methodology 1) 

 

Indeed, the averaged feature methodology seems to be robust for the recognition of 

muscle changes based on HD-sEMG features.  This data input architecture has many 

advantageous such as an easier implementation in clinical device after choosing the best 

feature with the best classifier and a better robustness against clinical variability. However, the 

spatial information from the grid is missed and more precise analysis on the spatial muscle 

activation becomes impossible. 

- Results of HD-sEMG features from 31 channels (Feature extraction methodology 
2) 

The second feature extraction methodology evaluates the ability of each feature ((input 

dimension:  1 feature x 3 trials x 31 channels).The classification results are showed in  the Figure 

3.18 below the classifiers performed a considerable accuracy score for ARV, RMS, IEMG and 

EMGMAX (71%,±0.1 , 89%,±0.23, 88,±0.05, 74%,±0.05) using RF classifiers, we observe that 

the accuracy score globally decrease using this methodology especially for some features such 

as ARV, skewness, kurtosis ,MNF and MDF with RF. This is clearly due to the increasing of the 

variability in the dataset including now all the 31 channels. In contrast, an interesting 

performance was obtained by MLP (64%,±0.13	for ARV, 74%,±0.12 for Skewness) comparing 
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to the first architecture with averaged features (Figure 3.18), that confirm that MLP work better 

with large input layer dimension as mentioned before [252].  

 
Figure 3.18: Accuracy percentage of HD-sEMG features from 31 channels (Feature extraction methodology 2) 

 

This feature extraction methodology based on 31 channels gave us a better overview 

about how to explore classification approaches to study the contribution of each feature in the 

muscle functional changes including spatial activation information over the grid. Thanks to this 

methodology, we can also analyze the possible region activation by observing how each 

feature contribute in the surface of the grid, and interpret more the activation behavior of RF 

muscle during STS test. This can provide more precise knowledge on muscle activation 

strategies, piloted by the peripheral nervous system. However, the proposed methodology 

could also be combined to channel selection procedure to better assess the considered 

regions. 

An interesting future study could be considering the fusion of the 31 channels with 

other clinical data to evaluate muscle functional age such as ultrasound images or other 

electrophysiological signals. A recent  study for motion classification strategy based on sEMG-

EEG signal combination for upper limb amputees prothesis control showed that the 

classification performance  achieved by the fusion of sEMG and EEG signals was significantly 

better than that obtained by using either sEMG or EEG signals alone [254].  
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- Results of HD-sEMG features from the segmented HD-sEMG signals for 31 
channels (Feature extraction methodology 3) 

This last feature extraction methodology was proposed to evaluate the behavior of the 

studied features and the classification performances if we analyze the HD-sEMG signals during 

STS separately and according to three-time segments or windows (Figure 3.19). The objective 

is to take into account the dynamic nature of the recorded signals following the STS phases as 

illustrated in the figure below.  

      

Figure 3.19: the three segments of EMG contraction during STS motion 

Unfortunately, during the data recording sessions, due to regulatory issue, we could 

not have a camera for recording STS motion for precise identifying all STS phases within HD-

sEMG signals.  However, to initiate a first preliminary study, an arbitrary segmentation is 

proposed for evaluation the classification performances by taking into account the dynamic 

nature of the HD-sEMG signals. For this purpose, we will evaluate the performance using the 

three segments. Future work will concern the improvement of this methodology using camera 

to identify precisely the phases of STS to analyze deeply the motion modification with aging 

changes based on HD-sEMG signals.  

The obtained results for the 1st segment (that we consider matching with the initiation 

of hip flexion) from the HD-sEMG contraction illustrate the increase in the accuracy comparing 

to the previous architecture based on the 31 channels analyzing the entire contraction.  This 

increase concerns particularly in Skewness and Kurtosis features for all classifiers.  For example, 

for RF method, they increase from 58%,±0.2, ,59%,±0.14 respectively in the previous 

architecture (Figure 3.18) to 87%,±0.05, 87%,±0.07 in the classification results related to the 
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first segment (Figure 3.20). Indeed, the Skewness and Kurtosis already showed high sensitivity 

to the probability density function shape of HD-sEMG signals and were helpful to classify the 

muscle force [121,227]. In contrary, The MNF and MDF features showed worse performances 

using all classifiers for example with SVM, the accuracy is 30%,±0.12, 35%,±0.16, this bad 

accuracy is related to the shortness of signals that affects spectrum estimation [215]. 

 
Figure 3.20: Accuracy percentage of HD-sEMG features from the 1st segment of all channels 

 

The 2nd segment, refers to the middle part of the contraction containing the rising phase 

(Figure 3.19). In fact, this segment is related to the phase of the transition from siting to 

standing. This phase in STS motion is critical in term of energy request (we obtain the maximum 

amplitude of sEMG activity during this step).  This step bears on the coherence between the 

acceleration of the trunk and the contraction of the muscle in lower limb particularly the RF 

muscle. Generally, during this phase, the risk of failing increases in older population. We 

observe that the performance of classifiers is higher and recognize better the age categories 

of the active subjects (Figure 3.21). For Illustration, the Knn demonstrated a good performance 

with ARV by 93% ±0.07, with Skewness and Kurtosis 93%,±0.06, 95%, ±0.08 respectively.  
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Figure 3.21: Accuracy percentage of HD-sEMG features from the 2nd segment of all channels 

 

The final tested segment in this architecture refers to the step of the stabilization of the 

posture during STS motion. The accuracy performance given by this segment is higher with 

Knn classifier and SVM for the ARV (Knn: 94%,±0.07, SVM: 89%,±0.09), RMS (Knn: 93% ,±0.09, 

SVM:  87%,±0.08), Skewness (Knn:  96% ,±0.08, SVM: 96% ,±0.06), and Kurtosis (Knn: 95% 

,±0.07, SVM: 96%,±0.05) respectively (Figure 3.22).   

  
Figure 3.22: Accuracy percentage of HD-sEMG features from the 3rd segment of all channels 

 

We analyzed the confusion matrices of each feature and classifier for each methodology 

(3 methodologies X 8 features X 4 classifiers). For illustration purpose, we present a 
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representative confusion matrix (Figure 3.23).  We observed that all classifiers confused 

between two neighbors’ classes (1 with 2, 2 with 3 or 4 with 5). This observation is In agreement 

with the fact that muscle aging is a time evolving process. Subjects can be lie in the borderline 

inducing possible misclassification.  

 
Figure 3.23: Representative confusion matrix for the four classifiers with methodology 1, using ARV feature.  
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The following tables shows the top classifiers, which provided interesting performance 

in all three methodologies, including Knn, SVM and RF with the features: RMS, EMGMAX, 

Skewness and Kurtosis. We observe that the results of Knn were the most stable throughout 

the three methodologies. This is why we choose these features with this classifier in the MFA 

prediction (see next section). One can also observe that the dynamic of contraction according 

to the three analyzed time segments has an impact and will better explored in future works. 

Furthermore, introducing spatial Information with all the channels during the whole contraction 

seems to degrade the classification performances due to greater variability (time and spatial). 

 

Table 12. Summary of the best classifiers and features (accuracy performances in %) 

 

- Results of MFA prediction  
 

Finally, we aim to test the prediction of the MFA giving new data from sedentary 

subjects. We recall our hypothesis that muscle aging occurs earlier and/or in the sedentary 

subjects than the active ones. As a result, their muscle activity properties will be more similar 

to the older categories than their own chronological category (as mentioned and statistically 

evaluated in the Chapter2). Indeed, the aim of this section is to take benefits of the presented 

classification approaches studied before for predicting which age class belongs to the 

sedentary subjects. Our objective is to confirm the statistical results obtained in the clinical 

study with machine learning prediction, in order to give an application overview about the 
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innovative tool dedicated to muscle aging monitoring with physical activity combined to MFA 

concept and HD-sEMG analysis.  

The prediction is performed using two algorithms recommended for the prediction of 

new experimental data: Logistic regression and Knn, using the features showed a high accuracy 

to discriminate the five age, such as: RMS, Skewness, Kurtosis, and the maximum amplitude 

(EMGMAX). The logistic regression is a binomial regression model, that provides a simple 

mathematical model with many real observations [255]. It is associated with a vector of random 

variables. it is widely used in prediction based on real data such as features extracted from 

experimental signals [255]. Finally, for both methods, a majority voting is performed over the 

three trials to obtain the final predicted age class (integer between 1 and 5). 

The aim of testing particularly this methodology ((input dimension: 4 features x 31 

channels x 3 trials) is to evaluate the dispersion of the MFA prediction in the grid. The 

classification accuracy obtained by Knn and LR methods using this classification methodology 

is 95%,±0.08 and 92%±0.01, respectively for active category classification as in previous 

sections. The Knn and LR both demonstrate that the sedentary lifestyle impact considerably 

the chronological age class by predicting an MFA, for the majority of the nine tested sedentary 

subjects, equal to age class 4 (55-64 yrs.).  

It seems for us that the earlier aging caused by a reduced physical activity, attested by 

the IPAQ questionnaire, can be detected thanks to HD-sEMG feature classification depicted 

in table 13. It is interesting to note that the older tested subject (subject 7) has been associated 

to a predicted MFA of age class 5 by Knn (65-74 yrs.). One can note also that the subject 9, 

even with a low physical activity remains with a predicted MFA that is equal to his chronological 

age category (age class 3). This can be explained by possible imprecision in filling the IPAQ or 

a favorable genetical background. It has been observed, during the experiment, that this 

subject responded to the protocol as an active subject of age class 3. However, a larger cohort 

of sedentary subjects is definitively needed to refine the discussed observations.  
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Table 13. Summary of MFA prediction using Knn and LR methods 

 
We explored also the channel classification over the grid, to assess possible 

regionalization of early muscle aging using the two prediction methods. For the LR method, 

we observe clearly for a representative subject that the grid is predominantly predicted in class 

4 see Figure 3.24 indicating a homogeneous classification according to channels.  

 
Figure 3.24: MFA Prediction by majority voting of sedentary representative subject 2 using logistic regression 

 

However, for the Knn method in Figure 3.25, the obtained results are different with a 

real regionalization of the classification results, in a heterogeneous manner, according to 

channel and trial. Further effort is needed to better assess, on larger number of subjects, this 

suspected early aging regionalization. 

Class 4 =55-64yrs.Class 5=65-74yrs. 

Trial 1= Trial 2= Trial 3= 
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All these prediction results are promising. They refine the early aging estimation 

compared to the statistical testing presented in chapter 2 by providing an MFA for each tested 

sedentary subject. However, Knn method seems to provide results more related to 

physiological aspects of RF activation in comparison to LR method.  However, both methods 

predicted an older age for the majority of sedentary subjects that confirms the strong 

predictive potential of the proposed tool for early muscle aging evaluation. 

 
Figure 3.26: MFA Prediction by majority voting of sedentary representative subject 2 using Knn. 

 
-  Conclusion 

 
 Through this section based on MFA prediction, by using machine learning approaches, 

we strongly suggested that the HD-sEMG ambulatory used device, coupled to a classification 

software, demonstrated its usefulness in rapid and wireless evaluation of muscle capacities, 

showing a promising accuracy to discriminate age categories, and to predict early muscle 

aging related sedentary lifestyle using MFA concept. This opens the door for clinical 

applications related to E-Health and personalized medicine. Expected benefits are not only for 

the older, but also for the young, to alert them about future dangers related to accelerated 

aging as sarcopenia. Thus, physiotherapists and clinicians could routinely employ the proposed 

device for muscle assessment through life in a near future. 

Trial 1= Trial 2= Trial 3= 
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General conclusion 
 

 
This thesis had the main objective to unveil the potential of the proposed research 

approach, based on assessing changes of muscular capacity with age using a recent high-

density electromyography technique, namely HD-sEMG. The starting clinical goal is to support 

prevention strategies of muscle pathology frequently encountered in older people. The 

technological outcome will be a complete portable solution that combines HD-sEMG 

recording device and associated machine learning software for predicting the people at risk 

of sarcopenia. 

Our applicative context is not only for the older population, but also for the young, to 

alert them about the impact on muscle health of sedentary life style and to avoid the future 

dangers that can be engendered with aging such sarcopenia.  

For this purpose, we introduced in this work the concept of Motor Functional Age 

(MFA), proposed by PhD directors: S. Boudaoud and K. Kinugawa. The MFA is suspected to 

be different (higher) from the Chronological Age (CA) in case of early muscle aging, induced 

by some factors such as sedentary life style. 

To explore this early muscle aging, under the scope of the CHRONOS project (EIT 

Health funding), we started by the conception of a multimodal experimental protocol, 

including clinical examinations and HD-sEMG technique.  Then, we dealt with segmentation 

and processing of the HD-sEMG signals to extract precisely the contraction information of the 

Rectus Femoris during STS. After the subject screening process, I recorded and constructed, 

during a heavy schedule of 6 months in clinical environment (Hôpital Charles Foix, AP-HP), a 

HD-sEMG database from 91 subjects of different age category and physical activity level. 

 All the obtained data (HD-sEMG signals, clinical examinations, questionnaires…etc.) 

were saved in eCRF platform to keep traceability and ensure ethical protection of the data. In 

fact, this data organization allowed us to provide a statistical analysis, in order to deduce the 

first assumptions related to muscle functional changes with aging and physical activity level.  
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After these essential steps to provide a complete documented database, we started 

with the evaluation of simple and easily usable scores in clinical evaluation of muscle functional 

aging, namely MCI (intensity of muscle contraction) and MCD (dynamics of muscle contraction) 

taken from the averaged electrical activity of the HD-sEMG grid. The statistical results 

obtained from the 91 studied subjects over 5 age decades and 2 physical activity levels, 

comparing between the HD-sEMG scores and the clinical scores, showed the potential of this 

technique to better assess the muscle quality (anatomy and function) than the usual methods. 

We did not observe significant difference in their BMI, dietary intake, DXA skeletal muscle 

mass index, handgrip strength, walking distance and SPPB according to age and physical 

activity. However, we observed that: 

- The HD-sEMG scores significantly discriminated the 5 age categories among active subjects 

(MCI, p<0.01 and MCD p<0.001), 

- The HD-sEMG scores significantly discriminated sedentary subjects from active subjects aged 

45-54 years (MCI, p<0.01 and MCD p<0.0001), 

- The HD-sEMG scores for sedentary subjects was not significantly different from those of older 

active subjects (>55 years) suggesting possible early aging.  

- Muscle thickness (MT) assessed by ultrasound imaging showed no significant difference with 

physical activity for the 45-54 yrs age category. 

After this complete clinical study, we wanted to enrich the knowledge around early 

muscle aging and MFA by carrying out advanced processing and classification studies on the 

available database.  For this purpose, we evaluated first, a Blind Source Separation (BSS) 

technique, the CCA algorithm to discriminate the young population from the old population 

according to the coefficient of their correlation canonical components.  This approach is often 

used in signal denoising by separating the noise and the useful signals into different sources. 

The objective of our study was to evaluate if aging has an impact on this source estimation. 

The answer seems to be affirmative with significant statistical results for both mean correlation 

values and their standard deviation. This promising result indicates possible anatomical, 

physiological and neural modifications with aging that affects the signals from the grid and 

their decomposition into several sources.  After that, we explored the grid signature of time-

frequency maps. In fact, the HD-sEMG signals recorded from STS are nonstationary. The goal 

is to better analyze this nonstationary behavior with time-frequency analysis. For this purpose, 

spectrogram using Short Time Fourier Transform (STFT) was tested on specific frequency 
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range (0-50 Hz) that corresponds to Motor Unit firing rate range. Again, the obtained results 

on few subjects showed a difference in the time distribution of the spectral power in the young 

/ middle and old subject according also to specific regions of the grid (proximal or distal). 

These preliminary results will serve to enrich physiological interpretations in terms of regional 

activation of the muscle according to the motion realized. In the literature, this kind of studies 

showed interesting results in coherence with our preliminary time frequency analysis related 

to the spatial distribution of electrical activity in the proximal area of the Rectus Femoris 

muscle.  

In the last part of this thesis, thanks to the results found in the chapter 2, we thought 

about proposing classification architectures (methodology1, 2 and 3), using HD-sEMG features 

with several methodologies (averaging the features over the grid, keeping all channels, 

introducing time segmentation following STS phases) using Machine Learning algorithms. For 

this purpose, four classifiers were tested with the three proposed methodologies. In addition, 

eight HD-sEMG features were analyzed. The testing was done first on classifying the five age 

categories of active subjects. Promising results were obtained especially for Knn classifier and 

a reduced set of five HD-sEMG features reaching the best classification accuracy of 96%. It 

was also observed the influence of the three methodologies on the classification results 

indicating the importance of respecting a compromise between classification robustness 

(averaging over the grid) and physiological outcomes (using all the channels of the grid). 

Finally, Knn and another prediction method, namely Logistic Regression, were used 

with the best five HD-sEMG features for predicting MFA on a small database of nine sedentary 

subjects from the age range of 45-54 yrs. (class 3). The majority of the subjects were classified 

in class 4 corresponding to an older active class [55-64 yrs.]  indicating an early muscle aging. 

Furthermore, the older sedentary subject (54 yrs.) was classified in class 5 [65-74 yrs.] by Knn 

classifier indicating probable monotonic behavior of the observed early muscle aging 

predicted by MFA. These results agree and refine those obtained by statistical testing in 

chapter 2. 

As a limitation of this thesis work, we can note the relatively small size (91 subjects) of 

the database. In fact, presented studies might be validated on larger number of subjects of 

both active and sedentary subjects. Indeed, further studies are needed to enrich the normative 

database (active subjects) with the same inclusion/exclusion criteria. Creating new databases 

with more flexible inclusion/exclusion criteria (ex: BMI) to test the generalization of the 
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obtained results will be also interesting. In the future, it would be important to study if MFA 

may be used as a sarcopenia risk among people and to develop also HD-sEMG software as a 

medical device allowing to diagnose sarcopenia. 

The choice of the studied muscle can be criticized.  The choice of the Rectus Femoris 

muscle as the muscle of interest was motivated by literature reviews that mentioned RF as 

highly faced to aging changes, among other quadriceps muscle, even with its relatively small 

size. However, one has to keep in mind the complex architecture of the RF (bipennate and 

biarticulated muscle) that complicates the physiological interpretation of the recorded HD-

sEMG signals. Nevertheless, in contrary to other quadriceps muscles, the RF is the most 

superficial one. This important property maximizes the HD-sEMG signal quality by reducing 

possible crosstalk interference.  Despite the complicated anatomy, it has been possible to 

observe specific HD-sEMG maps during STS motion that are different with aging in term of 

intensity, dynamic and spatial repartition. Further studies are planned in the team that will 

concern other muscles like the Biceps Brachii under isometric conditions. Even with 

complicated muscle anatomy and dynamic short motion like STS, we have been able to 

manage the inter-subject variability to provide robust and reproducible metrics (ex: MCD, MCI 

and MFA) for muscle aging monitoring. 

To conclude, this thesis provided the essential experimental, methodological and 

numerical elements to accurately assess muscle functionality and quality with aging and 

physical activity using HD-sEMG technique. The overall objective is to support the evolution 

of clinical practice while respecting the needs and recommendations suggested by 

practitioners by providing innovative prediction tools for muscle evaluation. Our hope is to 

make the HD-sEMG technology and the power of computations (signal processing and 

classification) supporting patients and public health to promote healthy and active aging 

through life. 
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Annexes  
 
Annex 1. Questionnaire de l’activité physique IPAQ (version longue, française, interview 
téléphonique) 
 
LIRE : Je vais vous interroger sur le temps que vous avez passé à être actif physiquement 
ces 7 derniers jours. Merci de répondre à chaque question même si vous ne vous 
considérez pas comme une personne physiquement active. Pensez aux activités que vous 
faites au travail, à domicile et dans votre jardin, pour vos déplacements d’un endroit à 
l’autre et pendant votre temps libre pour les loisirs, l’exercice ou le sport. 
 
1ERE PARTIE : ACTIVITE PHYSIQUE LIEE AU TRAVAIL 
 
LIRE : Les premières questions portent sur votre travail. Par travail on entend les emplois 
payés, le travail agricole, le travail bénévole, les études, les stages et tout autre type de 
travail non payé que vous avez effectué en dehors du domicile. Ne tenez pas compte du 
travail non payé que vous effectuez à domicile, comme faire le ménage, le jardinage, 
entretenir la maison ou vous occuper de votre famille. Je vous interrogerai sur ces 
activités plus tard. 
 
Avez-vous actuellement un emploi ou faites-vous un travail payé ou non payé en dehors de 
votre domicile ? [Travail ; Oui = 1, Non = 0 ; 8,9] 
 
____  Oui 
____ Non [Passez à la 2ème Partie] 
8.  Ne sait pas / Pas sûr [Passez à la 2ème Partie] 
9.  N’a pas répondu 
 
[Clarification de l’enquêteur : Cela comprend aussi les cours, les études et les stages. Cela 
comprend aussi le travail bénévole et le temps passé à chercher un emploi. Cela ne 
comprend pas le travail non payé fait à la maison ou dans votre jardin, ni le temps passé à 
s’occuper d’une personne à charge. Ceci fera l’objet de questions plus tard.] 
 
LIRE : Les questions suivantes portent sur toutes les activités physiques que vous avez 
faites au travail qu’il soit payé ou non. Cela ne comprend pas les trajets entre votre 
domicile et votre travail. 
 
LIRE : Tout d’abord, pensez aux activités intenses qui vous ont demandé un gros effort 
physique au travail. Les activités intenses font respirer beaucoup plus fort que 
d’habitude. Il peut s’agir d’activités comme porter des charges lourdes, creuser, faire de 
la maçonnerie ou monter des escaliers. Pensez seulement aux activités physiques 
intenses qui ont duré au moins dix minutes d’affilée. 
 
Ces 7 derniers jours, pendant combien de jours avez-vous fait des activités physiques 
intenses au travail ? [De 0 à 7, 8, 9] 



 2 

 
____  Jours par semaine [Si la personne répond 0, passez à la question 4] 
Ne sait pas/pas sûr [Passez à la question 4] 
N’a pas répondu [Passez à la question 4] 
 
[Clarification de l’enquêteur : Pensez seulement aux activités physiques de ce type qui ont 
duré au moins 10 minutes d’affilée.] 
 
[Clarification de l’enquêteur : Le travail comprend le travail payé et non payé ainsi que les 
études et les stages. Tenez compte de tous les emplois et du travail bénévole.] 
 
Quand vous avez fait des activités physiques intenses au travail au cours d’un de ces jours, 
combien de temps y avez-vous consacré en moyenne ? 
 
___ ___  Heures par jour [De 0 à 16] 
___ ___  Minutes par jour [De 0 à 960, 998, 999] 
Ne sait pas / Pas sûr 
N’a pas répondu 
 
[Clarification de l’enquêteur : Pensez seulement aux activités physiques de ce type qui ont 
duré au moins 10 minutes d’affilée.] 
 
[Précision pour l’enquêteur : On recherche une durée moyenne par jour. Si la personne 
interrogée ne peut pas répondre parce que le temps consacré aux activités varie beaucoup 
d’un jour à l’autre ou bien parce qu’il y a une grande variété de travaux payés ou non, 
demandez : « Quelle a été la durée totale de vos activités physiques intenses au travail ces 7 
derniers jours ? » 
 
___ ___ Heures par semaine [De 0 à 112] 
___ ___ ___ ___ Minutes par semaine [De 0 à 6720, 9998, 9999] 
9998.  Ne sait pas/pas sûr 
9999.  N’a pas répondu 
 
LIRE : Maintenant pensez aux activités qui vous ont demandé un effort physique modéré 
au travail. Les activités physiques modérées font respirer un peu plus fort que d’habitude 
et peuvent comprendre des activités comme porter des charges légères. N’incluez pas 
la marche. Là encore, pensez seulement aux activités physiques modérées qui ont duré 
au moins 10 minutes d’affilé. 
 
Ces 7 derniers jours, pendant combien de jours avez-vous fait des activités physiques 
modérées au travail ? [De 0 à 7, 8, 9] 
____  Jours par semaine [Si la personne répond 0, passez à la Question 6] 
Ne sait pas / pas sûr [Passez à la question 6] 
N’a pas répondu [Passez à la question 6] 
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[Clarification de l’enquêteur : Pensez seulement aux activités physiques de ce type qui ont 
duré au moins 10 minutes d’affilée.] 
 
[Clarification de l’enquêteur : Le travail comprend le travail payé et non payé ainsi que les 
études et les stages. Tenez compte de tous les emplois et du travail bénévole.] 
 
Quand vous avez fait des activités physiques modérées au travail au cours d’un de ces jours, 
combien de temps y avez-vous consacré en moyenne ? 
___ ___ Heures par jour [De 0 à 16] 
___ ___ ___ Minutes par jour [De 0 à 960, 998, 999] 
Ne sait pas / pas sûr 
N’a pas répondu à la question 
 
[Clarification de l’enquêteur : Pensez seulement aux activités physiques de ce type qui ont 
duré au moins 10 minutes d’affilée.] 
 
[Précision pour l’enquêteur : On recherche une durée moyenne par jour. Si la personne 
interrogée ne peut pas répondre parce que le temps consacré aux activités varie beaucoup 
d’un jour à l’autre ou bien parce qu’il y a une grande variété de travaux payés ou non, 
demandez : « Quelle a été la durée totale de vos activités physiques modérées au travail ces 
7 derniers jours ? » 
 
___ ___ Heures par semaine [De 0 à 112] 
___ ___ ___ ___ Minutes par semaine [De 0 à 6720, 9998, 9999] 
9998.  Ne sait pas/Pas sûr 
9999.  N’a pas répondu 
 
LIRE : Maintenant, pensez au temps que vous passez à marcher pendant au moins 10 
minutes au travail. Ne tenez pas compte de la marche entre votre domicile et votre lieu 
de travail. 
 
Ces 7 derniers jours, pendant combien de jours avez-vous marché au travail ? [De 0 à 7, 8, 
9] 
___  Jours par semaine [Si la personne répond 0, passez à la 2ème partie] 
8.   Ne sait pas/Pas sûr [Passez à la 2ème partie] 
9.   N’a pas répondu [Passez à la 2ème partie] 
 
[Clarification de l’enquêteur : Pensez seulement à la marche qui a duré au moins 10 minutes 
d’affilée.] 
 
[Clarification de l’enquêteur : Tenez compte de tous les types de travail.] 
 
Quand vous avez marché au travail au cours d’un de ces jours, combien de temps y avez-
vous consacré en moyenne?  
___ ___ Heures par jour [De 0 à 16] 
___ ___ ___ Minutes par jour [De 0 à 960, 998, 999] 
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998. Ne sait pas/Pas sûr 
999. N’a pas répondu 
 
[Clarification de l’enquêteur : Pensez seulement à la marche qui a duré au moins 10 minutes 
d’affilée.] 
 
[Précision pour l’enquêteur : On recherche une durée moyenne par jour. Si la personne 
interrogée ne peut pas répondre parce que le temps consacré aux activités varie beaucoup 
d’un jour à l’autre ou bien parce qu’il y a une grande variété de travaux payés ou non, 
demandez : « Quelle a été la durée totale de votre marche au travail ces 7 derniers jours ? »] 
___ ___ Heures par semaine [De 0 à 112] 
___ ___ ___ ___ Minutes par semaine [De 0 à 6720, 9998, 9999] 
9998. Ne sait pas/Pas sûr 
9999. N’a pas répondu 
 
 
2ème PARTIE : ACTIVITE PHYSIQUE LIEE AUX DEPLACEMENTS  
 
LIRE : Maintenant, pensez à la manière dont vous vous êtes déplacé d’un endroit à un 
autre, notamment pour vous rendre au travail, dans des magasins, au cinéma, etc. 
 
Ces 7 derniers jours, pendant combien de jours vous êtes-vous déplacé en véhicule 
motorisé comme le train, le bus, la voiture ou le tramway ? [De 0 à 7, 8, 9] 
___ Jours par semaine [Si la personne interrogée répond 0, passez à la question 10] 
Ne sait pas / Pas sûr [Passez à la question 10] 
N’a pas répondu [Passez à la question 10] 
 
Quand vous vous êtes déplacé dans un véhicule à moteur (comme un train, un autobus, une 
voiture ou un tram) au cours d’un de ces jours, combien de temps cela a-t’il duré en moyenne 
?  
___ ___ Heures par jour [De 0 à 16] 
___ ___ ___ Minutes par jour [De 0 à 960, 998, 999] 
998.  Ne sait pas / Pas sûr 
999.  N’a pas répondu 
 
[Précision pour l’enquêteur : On recherche une durée moyenne par jour. Si la personne 
interrogée ne peut pas répondre parce que le temps consacré aux activités varie beaucoup 
d’un jour à l’autre, demandez : « Quelle a été la durée totale de vos déplacements en 
véhicule motorisé ces 7 derniers jours ? »] 
___ ___ Heures par semaine [De 0 à 112] 
___ ___ ___ ___ Minutes par semaine [De 0 à 6720, 9998, 9999] 
9998. Ne sait pas / Pas sûr 
9999. N’a pas répondu 
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LIRE : Maintenant, pensez à vos déplacements à vélo entre votre domicile et votre travail, 
pour faire des courses ou pour aller d’un endroit à un autre. Ne tenez compte que des 
trajets à vélo qui ont duré au moins 10 minutes d’affilée. 
 
Ces 7 derniers jours, pendant combien de jours avez-vous fait du vélo pour aller d’un endroit 
à un autre ? [De 0 à 7, 8, 9] 
___  Jours par semaine [Si la personne répond 0, passez à la question 12] 
Ne sait pas/Pas sûr [Passez à la question 12] 
N’a pas répondu [Passez à la question 12] 
 
[Clarification de l’enquêteur : Pensez à vos déplacements à vélo qui ont duré au moins 10 
minutes d’affilée.] 
 
Quand vous avez fait du vélo au cours d’un de ces jours, combien de temps y avez-vous 
consacré en moyenne ?  
___ ___ Heures par jour [De 0 à 16] 
___ ___ ___ Minutes par jour [De 0 à 960, 998, 999] 
998.  Ne sait pas/Pas sûr 
999.  N’a pas répondu 
 
[Clarification de l’enquêteur : Pensez à vos déplacements à vélo qui ont duré au moins 10 
minutes d’affilée.] 
 
[Précision pour l’enquêteur : On recherche une durée moyenne par jour. Si la personne 
interrogée ne peut pas répondre parce que le temps consacré aux activités varie beaucoup 
d’un jour à l’autre, demandez : « Quelle a été la durée totale de vos déplacements à vélo 
pour aller d’un endroit à un autre ces 7 derniers jours ? »] 
___ ___ Heures par semaine [De 0 à 112] 
___ ___ ___ ___ Minutes par semaine [De 0 à 6720, 9998, 9999] 
9998. Ne sait pas/Pas sûr 
9999. N’a pas répondu 
 
LIRE : Maintenant, pensez au temps que vous avez passé à marcher pour vous déplacer 
entre votre domicile et votre travail, pour faire des courses ou pour aller d’un endroit à 
un autre. Incluez seulement la marche qui  a duré au moins 10 minutes d’affilée. Ne tenez 
pas compte de la marche de loisir qui n’avait pas pour but le déplacement d’un endroit 
à un autre. 
 
Ces 7 derniers jours, pendant combien de jours vous êtes-vous déplacé à pied ? [De 0 à 7, 
8, 9] 
___ Jours par semaine [Si la personne répond 0, passez à la 3ème partie] 
Ne sait pas/Pas sûr [Passez à la 3ème partie] 
9. N’a pas répondu [Passez à la 3ème partie] 
 
[Clarification de l’enquêteur : Pensez seulement à la marche qui a duré au moins 10 minutes 
d’affilée.] 
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Quand vous avez marché pour vos déplacements au cours d’un de ces jours, combien de 
temps y avez-vous consacré en moyenne ?  
___ ___ Heures par jour [De 0 à 16] 
___ ___ ___ Minutes par jour [De 0 à 960, 998, 999] 
998.  Ne sait pas/Pas sûr 
999.  N’a pas répondu 
 
[Clarification de l’enquêteur : Pensez seulement à la marche qui a duré au moins 10 minutes 
d’affilée.] 
[Précision pour l’enquêteur : On recherche une durée moyenne par jour. Si la personne 
interrogée ne peut pas répondre parce que le temps consacré aux activités varie beaucoup 
d’un jour à l’autre, demandez : « Quelle a été la durée totale de vos déplacements à pied 
pour aller d’un endroit à un autre ces 7 derniers jours ? »] 
___ ___ Heures par semaine [De 0 à112] 
___ ___ ___ ___ Minutes par semaine [De 0 à 6720, 9998, 9999] 
9998. Ne sait pas/Pas sûr 
9999. N’a pas répondu 
 
 
3ème PARTIE : MENAGE, ENTRETIEN DE LA MAISON, TEMPS PASSE A S’OCCUPER DE 
SA FAMILLE 
 
LIRE : Maintenant pensez aux activités physiques que vous avez faites ces 7 derniers jours 
à l’intérieur et à l’extérieur de votre domicile comme faire le ménage, le jardinage, faire 
des travaux d’entretien et vous occuper de votre famille. 
 
LIRE : Pensez d’abord aux activités intenses qui demandent un gros effort physique et 
que vous avez faites dans votre jardin ou votre cour. Les activités intenses font respirer 
beaucoup plus fort que d’habitude et comprennent des activités comme soulever des 
charges lourdes, couper du bois, déblayer la neige ou bêcher. Encore une fois, pensez 
seulement aux activités physiques intenses qui ont duré au moins 10 minutes d’affilée. 
 
Ces 7 derniers jours, pendant combien de jours avez-vous fait des activités physiques 
intenses dans votre jardin ou votre cour ? [De 0 à 7, 8, 9] 
___  Jours par semaine [Si la personne répond 0, passez à la question 16.] 
Ne sait pas / pas sûr [Passez à la question 16]  
N’a pas répondu [Passez à la question 16] 
 
[Clarification de l’enquêteur : Pensez seulement aux activités physiques de ce type qui ont 
duré au moins 10 minutes d’affilée.] 
 
Quand vous avez fait des activités physiques intenses dans votre jardin ou votre cour au 
cours d’un de ces jours, combien de temps y avez-vous consacré en moyenne?  
___ ___   Heures par jour [De 0 à 16] 
___ ___ ___   Minutes par jour [De 0 à 960, 998, 999] 



 7 

998.  Ne sait pas / pas sûr 
999.  N’a pas répondu 
 
[Clarification de l’enquêteur : Pensez seulement aux activités physiques de ce type qui ont 
duré au moins 10 minutes d’affilée.] 
 
[Précision pour l’enquêteur : On recherche une durée moyenne par jour. Si la personne 
interrogée ne peut pas répondre parce que le temps consacré aux activités varie beaucoup 
d’un jour à l’autre, demandez : « Quelle a été la durée totale de vos activités physiques 
intenses dans votre jardin ou votre cour ces 7 derniers jours ? »] 
___ ___ Heures par semaine [De 0 à 112] 
___ ___ ___ ___ Minutes par semaine [De 0 à 6720, 9998, 9999] 
9998.  Ne sait pas / Pas sûr 
9999.  N’a pas répondu 
 
LIRE : Maintenant pensez aux activités dans votre jardin ou votre cour qui vous ont 
demandé un effort physique modéré. Les activités physiques modérées font respirer un 
peu plus fort que d’habitude et comprennent des activités comme soulever des charges 
légères, balayer, nettoyer les vitres et ratisser. Encore une fois, ne tenez compte que des 
activités physiques modérées qui ont duré au moins 10 minutes d’affilée. 
 
Ces 7 derniers jours, pendant combien de jours avez-vous fait des activités modérées dans 
votre jardin ou votre cour ? [De 0 à 7, 8, 9] 
___ Jours par semaine [Si la personne interrogée répond 0, passez à la question 18] 
8.  Ne sait pas / Pas sûr [Passez à la question 18] 
9.  N’a pas répondu [Passez à la question 18] 
 
[Clarification de l’enquêteur : Pensez seulement aux activités physiques de ce type qui ont 
duré au moins 10 minutes d’affilée] 
 
Quand vous avez fait de l’activité physique modérée dans votre jardin ou votre cour au cours 
d’un de ces jours, combien de temps y avez-vous consacré en moyenne?  
___ ___ Heures par jour [De 0 à 16] 
___ ___ ___ Minutes par jour [De 0 à 960, 998, 999] 
998.  Ne sait pas / Pas sûr  
999.  N’a pas répondu 
 
[Clarification de l’enquêteur : Pensez seulement aux activités physiques de ce type qui ont 
duré au moins 10 minutes d’affilée.] 
 
[Précision pour l’enquêteur : On recherche une durée moyenne par jour. Si la personne 
interrogée ne peut pas répondre parce que le temps consacré aux activités varie beaucoup 
d’un jour à l’autre, demandez : « Quelle a été la durée totale de vos activités physiques 
modérées dans votre jardin ou votre cour ces 7 derniers jours ? »] 
___ ___ ___ Heures par semaine [De 0 à 112] 
___ ___ ___ Minutes par semaine [De 0 à 960, 998, 999] 
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9998.  Ne sait pas / Pas sûr 
9999.  N’a pas répondu 
 
LIRE : Maintenant pensez aux activités à l’intérieur de votre domicile qui vous ont 
demandé au moins un effort physique modéré. Cela comprend des activités comme 
soulever des charges légères, nettoyer le sol ou les vitres et balayer. Ne tenez compte 
que des activités physiques modérées qui ont duré au moins 10 minutes d’affilée. 
 
[Clarification de l’enquêteur : Les activités modérées font respirer un peu plus fort que 
d’habitude.] 
 
Ces 7 derniers jours, pendant combien de jours avez-vous fait des activités modérées à 
l’intérieur de votre domicile ? [De 0 à 7, 8, 9] 
___   Jours par semaine [Si la personne interrogée répond 0, passez à la 4ème partie] 
8.  Ne sait pas / pas sûr [Passez à la 4ème partie] 
9.  N’a pas répondu [Passez à la 4ème partie] 
 
[Clarification de l’enquêteur : Pensez seulement aux activités physiques de ce type qui ont 
duré au moins 10 minutes d’affilée.] 
 
[Clarification de l’enquêteur : Ces 7 derniers jours, combien de jours avez-vous fait des 
activités qui demandent au moins un effort modéré à l’intérieur de votre domicile ?] 
 
Quand vous avez fait de l’activité physique modérée à l'intérieur votre maison au cours d’un 
de ces jours, combien de temps y avez-vous consacré en moyenne?  
___ ___ Heures par jour [De 0 à 16] 
___ ___ ___ Minutes par jour [De 0 à 960, 998, 999] 
998.  Ne sait pas / Pas sûr 
999.  N’a pas répondu 
 
[Clarification de l’enquêteur : Pensez seulement aux activités physiques de ce type qui ont 
duré au moins 10 minutes d’affilée.] 
 
[Précision pour l’enquêteur : On recherche une durée moyenne par jour. Si la personne 
interrogée ne peut pas répondre parce que le temps consacré aux activités varie beaucoup 
d’un jour à l’autre, demandez : « Quelle a été la durée totale de vos activités physiques 
modérées à l’intérieur de votre domicile ces 7 derniers jours ? »] 
___ ___ Heures par semaine [De 0 à 112] 
___ ___ ___ ___ Minutes par semaine [De 0 à 6720, 9998, 9999] 
9998.  Ne sait pas / Pas sûr 
9999.  N’a pas répondu 
 
 
4ème PARTIE : ACTIVITE PHYSIQUE LIEE AUX LOISIRS, AU SPORT ET AU TEMPS LIBRE 
 



 9 

LIRE : Maintenant, pensez à toutes les activités physiques que vous avez faites ces 7 
derniers jours seulement dans le cadre de votre temps libre, de vos activités sportives 
ou de vos loisirs. Ne tenez pas compte des activités que vous avez déjà mentionnées. 
 
Sans compter la marche que vous avez déjà mentionnée, ces 7 derniers jours, combien de 
jours avez-vous marché pendant au moins 10 minutes pendant votre temps libre ? [De 0 à 
7, 8, 9] 
___  Jours par semaine [Si la personne répond 0, passez à la question 22] 
8.  Ne sait pas / pas sûr [Passez à la question 22] 
9.  N’a pas répondu [Passez à la question 22] 
 
[Clarification de l’enquêteur : Pensez seulement à la marche qui a duré au moins 10 minutes 
d’affilée.] 
 
Quand vous avez marché au cours de votre temps libre au cours d’un de ces jours, combien 
de temps y avez-vous consacré en moyenne ?  
___ ___ Heures par jour [De 0 à 16] 
___ ___ ___ Minutes par jour [De 0 à 960, 998, 999] 
998. Ne sait pas/Pas sûr 
999. N’a pas répondu 
 
[Clarification de l’enquêteur : Pensez seulement à la marche qui a duré au moins 10 minutes 
d’affilée.] 
 
[Précision pour l’enquêteur : On recherche une durée moyenne par jour. Si la personne 
interrogée ne peut pas répondre parce que le temps consacré aux activités varie beaucoup 
d’un jour à l’autre, demandez : « Quelle a été la durée totale de votre marche pendant votre 
temps libre ces 7 derniers jours ? »] 
___ ___ Heures par semaine [De 0 à 112] 
___ ___ ___ ___ Minutes par semaine [De 0 à 6720, 9998, 9999] 
9998.  Ne sait pas / Pas sûr 
9999.  N’a pas répondu 
 
LIRE : Maintenant, pensez aux autres activités physiques que vous avez faites pendant 
votre temps libre pendant au moins 10 minutes d’affilée. 
 
LIRE : Tout d’abord, pensez aux activités intenses qui demandent un gros effort physique 
et que vous avez faites pendant votre temps libre. Il peut s’agir d’activités comme courir, 
faire du vélo ou nager vite ou faire de la gym type aérobic. 
 
[Clarification de l’enquêteur : Les activités intenses font respirer plus fort que d’habitude.] 
 
Ces 7 derniers jours, pendant combien de jours avez-vous fait des activités physiques 
intenses pendant votre temps libre ? [De 0 à 7, 8, 9] 
___  Jours par semaine [Si la réponse est 0, passez à la question 24] 
8.  Ne sait pas / pas sûr [Passez à la question 24] 
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9.  N’a pas répondu [Passez à la question 24] 
 
[Clarification de l’enquêteur : Pensez seulement aux activités physiques intenses qui ont 
duré au moins 10 minutes d’affilée.] 
 
Quand vous avez fait des activités physiques intenses au cours de votre temps libre au cours 
d’un de ces jours, combien de temps y avez-vous consacré en moyenne ? 
___ ___ Heures par jour [De 0 à 16] 
___ ___ ___ Minutes par jour [De 0 à 960, 998, 999] 
998.  Ne sait pas / Pas sûr 
999.  N’a pas répondu 
 
[Clarification de l’enquêteur : Pensez seulement aux activités physiques de ce type qui ont 
duré au moins 10 minutes d’affilée.] 
 
[Précision pour l’enquêteur : On recherche une durée moyenne par jour. Si la personne 
interrogée ne peut pas répondre parce que le temps consacré aux activités varie beaucoup 
d’un jour à l’autre, demandez : « Quelle a été la durée totale de vos activités physiques 
intenses pendant votre temps libre ces 7 derniers jours ? »] 
___ ___ Heures par semaine [De 0 à 112] 
___ ___ ___ ___ Minutes par semaine [De 0 à 6720, 9998, 9999] 
9998.  Ne sait pas / Pas sûr 
9999.  N’a pas répondu 
 
LIRE : Maintenant, pensez aux activités qui demandent un effort physique modéré et que 
vous avez faites pendant votre temps libre. Il peut s’agir d’activités comme faire du vélo 
ou nager à un rythme tranquille ou jouer au tennis en double. Encore une fois, ne tenez 
compte que des activités modérées qui ont duré au moins 10 minutes d’affilée. 
 
[Clarification de l’enquêteur : les activités physiques modérées font respirer un peu plus fort 
que d’habitude.]  
 
Ces 7 derniers jours, pendant combien de jours avez-vous fait des activités physiques 
modérées pendant votre temps libre ? [De 0 à 7, 8, 9] 
___  Jours par semaine [Si la personne répond 0, passez à la 5ème partie] 
Ne sait pas / pas sûr [Passez à la 5ème partie] 
N’a pas répondu [Passez à la 5ème partie] 
 
[Clarification de l’enquêteur : Pensez seulement aux activités physiques de ce type qui ont 
duré au moins 10 minutes d’affilée.] 
 
Quand vous avez fait des activités physiques modérées pendant votre temps libre au cours 
d’un de ces jours, combien de temps y avez-vous consacré en moyenne ? 
___ ___ Heures par jour [De 0 à 16] 
___ ___ ___ Minutes par jour [De 0 à 960, 998, 999] 
998.  Ne sait pas/Pas sûr 
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999.  N’a pas répondu 
 
[Clarification de l’enquêteur : Pensez seulement aux activités physiques de ce type qui ont 
duré au moins 10 minutes d’affilée.] 
 
[Précision pour l’enquêteur : On recherche une durée moyenne par jour. Si la personne 
interrogée ne peut pas répondre parce que le temps consacré aux activités varie beaucoup 
d’un jour à l’autre, demandez : « Quelle a été la durée totale de vos activités physiques 
modérées pendant votre temps libre ces 7 derniers jours ? »] 
___ ___  Heures par semaine [De 0 à 112] 
___ ___ ___ ___ Minutes par semaine [De 0 à 6720, 9998, 9999] 
9998.  Ne sait pas/Pas sûr 
9999.  N’a pas répondu 
 
 
5ème PARTIE : TEMPS PASSE ASSIS 
 
LIRE : La dernière question porte sur le temps que vous avez passé assis ces 7 derniers 
jours. Incluez le temps passé au travail, à la maison, le temps passé à étudier ou en stage 
et le temps de loisirs. Cela peut comprendre le temps passé assis à votre bureau, assis 
lors d’une visite chez des amis, le temps passé à lire ou bien le temps passé assis ou 
allongé à regarder la télé. N’incluez pas le temps passé assis dans un véhicule motorisé 
que vous avez déjà mentionné. 
 
En moyenne, ces 7 derniers jours, combien de temps avez-vous passé assis pendant un jour 
de semaine ?  
___ ___ Heures par jour [De 0 à 16] 
___ ___ ___ Minutes par jour [De 0 à 960, 998, 999] 
998. Ne sait pas/Pas sûr 
999. N’a pas répondu 
 
[Clarification de l’enquêteur : Incluez le temps passé allongé sans dormir en plus du temps 
passé assis.] 
 
[Précision pour l’enquêteur : On recherche une durée moyenne par jour. Si la personne 
interrogée ne peut pas répondre parce que le temps consacré aux activités varie beaucoup 
d’un jour à l’autre, demandez : « Au total, combien de temps avez-vous passé assis 
mercredi dernier ? » 
___ ___ Heures le mercredi [De 0 à 16] 
___ ___ ___ ___ Minutes le mercredi [De 0 à 960, 998, 999] 
9998.  Ne sait pas/Pas sûr 
9999.  N’a pas répondu 
 
En moyenne, le week-end dernier, combien de temps avez-vous passé assis au cours d’une 
journée ? 
___ ___ Heures par jour [De 0 à 16] 
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___ ___ ___ Minutes par jour [De 0 à 960, 998, 999] 
998.  Ne sait pas / pas sûr 
999.  N’a pas répondu 
 
[Clarification de l’enquêteur : Incluez le temps passé allongé sans dormir en plus du temps 
passé assis.] 
 
[Précision pour l’enquêteur : On recherche une durée moyenne par jour. Si la personne 
interrogée ne peut pas répondre parce que le temps consacré aux activités varie beaucoup 
d’un jour à l’autre, demandez : « Au total, combien de temps avez-vous passé assis 
samedi dernier ? » 
___ ___ Heures le samedi [De 0 à 16] 
___ ___ ___ ___ Minutes le samedi [De 0 à 960, 998, 999] 
9998.  Ne sait pas/Pas sûr 
9999.  N’a pas répondu 
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Annex 2. Reproducibility of the HD-sEMG Muscular Contraction Intensity MCI score (μV) 
among the 3 sit to stand trials according to age categories (A: 25-34 yr.; B: 25-44 yr.; C: 45-
54 yr.; D: 55-64 yr.; E = 65-74 yr.) 
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Annex 3. Reproducibility of the HD-sEMG Muscle Contraction Dynamics MCD score (Sec) 
among the 3 sit to stand trials according to age categories (A: 25-34 yr.; B: 25-44 yr.; C: 45-
54 yr.; D: 55-64 yr.; E = 65-74 yr.) 
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Annex 4. Poster of EUGMS congress 2017 
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Annex 5.Poster of EUGMS congress 2018 
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