
HAL Id: tel-03770246
https://theses.hal.science/tel-03770246

Submitted on 6 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Source localization and connectivity analysis of uterine
activity

Saeed Zahran

To cite this version:
Saeed Zahran. Source localization and connectivity analysis of uterine activity. Bioengineering. Uni-
versité de Technologie de Compiègne; Université Libanaise, 2018. English. �NNT : 2018COMP2469�.
�tel-03770246�

https://theses.hal.science/tel-03770246
https://hal.archives-ouvertes.fr


  
 
 
 
 
                     Par Saeed ZAHRAN 
 
 

 
 
 
 

 
 
 

Thèse présentée en cotutelle 
pour l’obtention du grade 
de Docteur de l’UTC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Source localization and connectivity 
 analysis of uterine activity 

Soutenue le 18 décembre 2018 
Spécialité : Bioingénierie et Informatique : Unité de 
Recherche en Biomécanique et Bioingénierie (UMR-7338) 
 
 
 
 
 

 D2469 



COTUTELLE THESIS 
To obtain the degree of Doctor issued by

Sorbonne University, Université de technologie de Compiègne 

Doctoral School « Sciences pour l'Ingénieur » 

and 

Lebanese University 

Doctoral School « Sciences et Technologie » 

Presented and publicly defended by 

NADER Noujoud 

31-1-2017 

Title: 

Connectivity analysis of the EHG during pregnancy and Labor 

  

          Jury Members  

Régine LE BOUQUIN JEANNES              Prof. , Université de Rennes 1 Reviewer 

Zaher DAWI            Prof., American University of Beirut Reviewer 

Sofiane BOUDAOUD Assistant Prof., Université de Technologie de Compiègne Examiner 

Massimo MISCHI Assistant Prof.,  Eindhoven University of Technology Examiner 

Mahmoud HASSAN  Dr. , Université de Rennes 1 Examiner 

Wassim FALOU                 Prof. , Université libanaise Co-Supervisor 

Catherine MARQUE  Prof., Université de Technologie de Compiègne Supervisor 

Mohamad KHALIL                Prof. , Université libanaise Supervisor 

Saeed ZAHRAN

Ahmad DIAB Dr.

Source localization and connectivity analysis of uterine activity

Ahmad Diab             Dr., Lebanese University                               Co-Supervisor
Catherine MARQUE Prof., Université de technologie de Compiègne Supervisor
Mohamad KHALIL                                                     Prof., Lebanese University                                  Supervisor

Jury Members :
Mohamad HAJJ HASSAN Assistant Prof., Lebanese International  University Examiner
Christine FERNANDEZ Prof., University of Poitiers Examiner
Ziad BOU FARAJ                    Assistant Prof., American University of Science and Technology           Reviewer
Regine LE BOUQUIN        Prof., University of Rennes 1                                                 Reviewer
Ahmad DIAB            Dr., Lebanese University                                               Co-Supervisor
Catherine MARQUE Prof., University of Technology of Compiègne                     Supervisor
Mohamad KHALIL                                    Prof., Lebanese University                                                   Supervisor

Ziad O. ABU-FARAJ

Regine LE BOUQUIN                  Prof., University of Rennes 1                                           Reviewer
Ziad O. ABU-FARAJ                    Prof., American University of Science & Technology       Reviewer
Christine FERNANDEZ Prof., University of Poitiers Examiner
Mohamad HAJJ HASSAN            Assoc. Prof., Lebanese International University             Examiner
Ahmad DIAB                                Dr., Lebanese University                                              Co-Director
Catherine MARQUE                     Prof., University of Technology of Compiegne                  Director
Mohamad KHALIL                        Prof., Lebanese University                                                Director

Regine LE BOUQUIN                     Prof., University of Rennes 1        Reviewer
Ziad O. ABU-FARAJ                   Prof., American University of Science & Technology       Reviewer
Christine FERNANDEZ       Prof., University of Poitiers                                              Examiner
Mohamad HAJJ HASSAN   Assoc. Prof., Lebanese International University             Examiner
Ahmad DIAB Dr., Lebanese University Co-Director
Catherine MARQUE Prof., University of Technology of Compiegne                  Director
Mohamad KHALIL                Prof., Lebanese University                                Director

Régine LE BOUQUIN                     Prof., University of Rennes 1                             Reviewer
Ziad O. ABU-FARAJ                       Prof.,  American University of Science & Technology                              Reviewer
Christine FERNANDEZ       Prof., University of Poitiers                                                                      Examiner
Mohamad HAJJ HASSAN                                  Assoc. Prof., Lebanese International University                                     Examiner
Jeremy LAFORET Dr., University of Technology of Compiegne                Examiner
Ahmad DIAB      Asst. Prof., Lebanese University            Co-Director
Catherine MARQUE                                            Prof., University of Technology of Compiegne                                         Director
Mohamad KHALIL                                               Prof., Lebanese University                                                                       Director

Spécialité : Bioingénierie et Informatique

   18/12/2018



2



Acknowledgments

I would like to thank my thesis supervisors: Prof. Catherine MARQUE, Prof Mohamad Khalil and Dr.

Ahmad Diab for their insight, support and sharing of knowledge that has made this thesis possible.

Besides my advisor, I would like to express my sincere gratitude to Dr. Maxime Yochum for the

continuous support of my Ph.D study and related research, for his patience, motivation, and immense

knowledge. His guidance helped me in all the time of research. Furthermore, I am much obliged to him

for his time for detailed discussions, his patience and encouragement as well as his ability to make a

glass half empty look half full again.

My sincere thanks also goes to Dr. Marie Elisabeth Rognes and Dr. Christophe Grova for offering me

the summer internship opportunities in their groups and leading me working on diverse exciting projects.

Furthermore, I would like to thank the members of the jury for taking the time to evaluate my thesis

and for their participation in my PhD defense.

I would like to acknowledge the financial support of my work, that has been ensured by French

government scholarship.

Finally, I must express my very profound gratitude to my parents for providing me with support and

continuous encouragement throughout my years of study and through the process of researching and

writing this thesis. This accomplishment would not have been possible without them. Thank you.

To each and every one of you – Thank you.

i





Contents

1 Introduction: Context and motivation 2

2 State of the art 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Uterus Anatomy and Physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Uterus Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Uterine activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2.A Cellular excitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2.B Uterine synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Problem of preterm labor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Methods for monitoring pregnancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 The Electrohysterography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Excitability analysis - Linear parameters . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Excitability analysis - NonLinear parameters . . . . . . . . . . . . . . . . . . . . . . 20

2.5.3 Synchronization analysis – propagation/connectivity parameters . . . . . . . . . . 21

2.6 Mechanotransduction mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 EHG Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Inverse problems for imaging uterine activity . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Electrohysterogram Imaging (EHGI) and Inverse problem 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Forward model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Surface source space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Source localisation and extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Minimum Norm Estimate (MNE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Weighted Minimum Norm Estimate (wMNE) . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Standardized low resolution brain electromagnetic tomography (sLORETA) . . . . 36

3.3.4 Transform-based tensor methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.5 Sparse, variation-based source imaging approaches . . . . . . . . . . . . . . . . . 40

iii



3.3.6 Standard Maximum Entropy on the Mean (cMEM) . . . . . . . . . . . . . . . . . . 41

3.3.6.A Realistic Spatial Model using Data Driven Parcellization (DDP) of the

uterus surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.6.B Regularization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.7.A Area Under the Receiver Operating Characteristic(ROC) Curve, AUC: . . 42

3.3.7.B Dipole Localization Error (DLE) . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.7.C Correlation coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.7.D Spatial Dispersion(SD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Influence of recoding conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1.A Inter-electrodes spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1.B Influence of the number of electrodes . . . . . . . . . . . . . . . . . . . . 45

3.4.1.C Influence of the fat thickness . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Numerical Experiments of Tensor analysis . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2.A Influence of the SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2.B Influence of the number of time samples . . . . . . . . . . . . . . . . . . 46

3.4.2.C Influence of the number of sensors . . . . . . . . . . . . . . . . . . . . . 47

3.4.3 cMEM: Influence of the number of parcels . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.4 Method selectivity: Influence of patch distance . . . . . . . . . . . . . . . . . . . . 48

3.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 EHG Source Connectivity 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Inverse solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.3 Connectivity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.3.A Cross-correlation coefficient (R2) . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.3.B Imaginary part of coherence (Icoh) . . . . . . . . . . . . . . . . . . . . . 57

4.2.3.C The nonlinear correlation (h2) . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.4 Graph analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.5 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iv



5 Forward problem: The Computational Model 64

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 The Torso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Action Potential Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Mathematical derivation of the bidomain model . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Coupling the uterus and the torso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 3D realistic uterine muscle mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.7 Numerical model:Operator Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.8 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.8.1 Simulation on a 3D Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.9 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusions and perspectives 78

A Appendix 99

v



List of Figures

1.1 Illustration of the EHG forward and inverse problems . . . . . . . . . . . . . . . . . . . . . 4

1.2 Illustration of the EHG forward and inverse problems . . . . . . . . . . . . . . . . . . . . . 5

2.1 Anatomy of pregnant uterus ( [2]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Three-dimensional structure of the woman uterus [141]. . . . . . . . . . . . . . . . . . . . 11

2.3 Electrical activity of rat uterus at different terms of pregnancy [94] . . . . . . . . . . . . . . 11

2.4 The evolution of Gap junction number during gestation, birth and after delivery [64]. . . . 12

2.5 The gradual development of synchronous behavior in areas of the uterus that eventu-

ally lead to the widespread rhythmic contractions of the uterus that increase intrauterine

pressure and dilate the cervix at the time of labor [164]. . . . . . . . . . . . . . . . . . . . 13

2.6 A representation of gap junctions [171]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Labor and Not in Labor illustration with the expression of Cx43 that are required to in-

crease intrauterine pressure [164]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 The new multichannel system: 4x4 electrode matrix placed on the women abdomen with

two reference electrodes on the hip and the tocographic probe. . . . . . . . . . . . . . . . 24

2.9 Digitized tocodynamometer paper (Top), monopolar signals (middle), corresponding bipo-

lar signals (bottom). The blue lines define the beginning and the end of the contraction

according to TOCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Illustration of the study environment: forward model and inverse model in the context of

EHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Example of signals for the cells in one patch. . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 The uterus patch is embedded in a volume conductor. As a consequence, S is projected

at electrodes (X1 ... XNr) placed at the abdominal skin as determined by the leadfield

matrix G, which includes the effects of the volume conductor on electrical activity at the

uterus level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vi



3.4 Electrodes montage, a) 64 (8.57mm inter-electrodes), b) 16 (17.5mm inter-electrodes), c)

30 (5.5cm x 3.5cm inter-electrodes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Uterus mesh; the blue lines indicate the normal of each dipole. . . . . . . . . . . . . . . . 33

3.6 a) The black box indicates the region used to introduce the definition of local uterus patch,

b) Local patch bounded by the thick red lines. Blue spots denote the locations of the

sources after 10-mm decimation. A Cartesian coordinate system with z-direction aligned

with the average normal direction is indicated with the black arrows. . . . . . . . . . . . . 34

3.7 Temporal signals of the simulated monopolar EHG signals with a 3D volume conductor. . 34

3.8 Power Spectral Density of the simulated monopolar EHG signals . . . . . . . . . . . . . . 35

3.9 Segmentation and Denoising of the recorded EHG signals. (a) TOCO signal used for

segmentation. (b) Monopolar EHGs. (c) Monopolar EHGs after denoising. The vertical

lines represent the window of segmentation of the baseline used to extract the noise . . . 35

3.10 Leadfield and signal matrix estimation procedures for the STF and the STWV analyses . 40

3.11 clustering of the uterus surface at different spatial scales s obtained using the DDP tech-

nique (each color represents one region). . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.12 Receiver Operating Characteristic (ROC) Curve Analysis [1] . . . . . . . . . . . . . . . . . 43

3.13 Bargraph representation of DLE distribution for 16, 30 and 64 electrodes with three sim-

ulated sources (a) patch on the ax-index, (b) patch on 31.28 mm from the ax-index, (c)

patch on 93.5 mm from the ax-index. 25 mm of inter-electrode spacing and SVB-SCCD

inverse method are used in this simulation, 30cm2 area of the patch, Nt = 100 time sam-

ples with a sampling rate of 10Hz, 25mm Interelectrode distance . . . . . . . . . . . . . . 45

3.14 Representation of DLE and SD, with the fat thickness. 64 number of electrodes with 25mm

inter-electrode spacing and SVB-SCCD inverse method are used in this simulation, 30cm2

area of the patch, Nt = 100 time samples with a sampling rate of 10Hz . . . . . . . . . . 46

3.15 Correlation of original and estimated signal vectors for the STWV and STF analyses for

patches with large distance and patches with small distance as a function of the SNR for

T = 100 time samples, N = 64 sensors, 30cm2 area of the patch, with a sampling rate of

10Hz, 25mm Interelectrode distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.16 Correlation of original and estimated signal vectors for the space-time-wave-vector (STWV)

and space-time-frequency (STF) analyses for patches with large distance, and patches

with small distance depending on the number of time samples for a SNR of 4 dB, N =

64 sensors, 30cm2 area of the patch, with a sampling rate of 10Hz, 25mm Interelectrode

distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



3.17 Correlation of original and estimated signal vectors for the STWV and STF analyses for

patches with large distance, and patches with small distance depending on the number

of sensors for T = 100 time samples, a Signal to noise ratio (SNR) of 4 dB, 30cm2 area of

the patch, Nt = 100 time samples with a sampling rate of 10Hz . . . . . . . . . . . . . . . 48

3.18 cMEM qualitative assessment. Visual analysis of source localization results together with

Area Under the ROC curve (AUC) and Spatial Dispersion(SD) values for a simulated

source of spatial extent se = 2, 3 and 4 at s=15, 10 and 8, 30cm2 area of the patch,

N = 64 sensors, Nt = 100 time samples with a sampling rate of 10Hz . . . . . . . . . . . 49

3.19 AUC obtained for different methods applied to raw EHG data (up) and to spatially prewhitened

EHG data (down) for three different scenarios composed of two patches with large dis-

tance (left), patches with medium distance (center), and patches small distance (right).

(30cm2 area of the patch, N = 64 sensors, Nt = 100 time samples with a sampling rate

of 10Hz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.20 EHG source imaging using SVB-SCCD inverse method of pregnant contraction recorded

by 16 electrodes. Each window represents 20 s of averaged data. . . . . . . . . . . . . . 51

4.1 Identification of uterus network: first, a network is generated by the model and considered

as the ground truth. By solving the forward problem, synthetic EHG data are generated.

These signals are then used to solve the inverse problem in order to reconstruct the

dynamics of sources using three different inverse solutions (wMNE, svbccd and cMEM).

The statistical couplings are then computed between the reconstructed sources using

three different methods (r2, h2 and Icoh). The identified network by each combination

(inverse/connectivity) was then compared with the original network using a network similarity 59

4.2 Ilustration of the simulated signals in each step . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Two networks scenario. (a) uterus networks obtained by using the different inverse and

connectivity methods. (b) The original network (ground truth) is shown and (c) values

(mean ± standard deviation) of the similarity indices computed between the network iden-

tified by each combination and the model network . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Results obtained by the network-based approach (SVBCCD/h2) Results obtained by the

localization based approach (SVBCCD). Results were averaged over a 50 ms interval

around each of the spike peaks. Red color represents the sources with the highest energy.

A. Results for labor EHG signals, and B. Results for 4 week before labor EHG signals . . 63

5.1 A Multiscale Model of the uterus from cell to organ level . . . . . . . . . . . . . . . . . . . 66

5.2 Equivalent current source model for the uterus membrane. [30] . . . . . . . . . . . . . . . 70

5.3 Coupling between the uterus and the torso . . . . . . . . . . . . . . . . . . . . . . . . . . 72

viii



5.4 An illustration of 27 regions where the conductivites in the border is 0.001 ms/cm and

0.0068 ms/cm inside the regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Action potential of single cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Results of the simulation Figures a) to f) correspond to the electrical activity of the uterus;

Each figure corresponds to a given time of the simulation: respectively [1s, 2s, 3s, 4s, 5s,

6s] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.1 The EHG data can be used to estimate the uterus sources by solving the inverse prob-

lem. Functional connectivity measures can be applied on the reconstructed sources.

Graph measures can be computed and the correspondent uterus network can be visual-

ized. Node’s size and color can be used to encode any chosen network measures (their

strength for instance) as well as the edges (their weight for instance).. . . . . . . . . . . . 101

A.2 The interface of forward modeling computation . . . . . . . . . . . . . . . . . . . . . . . . 102

A.3 The interface of inverse modeling computation . . . . . . . . . . . . . . . . . . . . . . . . 103

A.4 Source estimation of a region far from electrodes . . . . . . . . . . . . . . . . . . . . . . . 103

A.5 Source estimation of a region near from electrodes . . . . . . . . . . . . . . . . . . . . . . 104

A.6 Multiview of uterus netwark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

ix



List of Tables

3.1 Performance of source imaging algorithms in terms of Distance of Localization Error (DLE)

with different montages of inter-electrodes spacing for two patches with 60mm distance,

30cm2 area of the patch, Nt = 100 time samples with a sampling rate of 10Hz. The

smallest DLE obtained for each methods is marked in red. . . . . . . . . . . . . . . . . . . 44

3.2 Performance of source imaging algorithms in terms of DLE (in cm) and signal correlation

for the considered scenarios with large patch distance (1), medium patch distance (2),

and small patch distance (3), applied to raw EHG data. (30cm2 area of the patch, N = 64

sensors, Nt = 100 time samples with a sampling rate of 10Hz) . . . . . . . . . . . . . . . 51

3.3 Performance of source imaging algorithms in terms of DLE (in cm) and signal correlation

for the considered scenarios with large patch distance (1), medium patch distance (2),

and small patch distance (3), applied to spatially prewhitened EHG data. (30cm2 area of

the patch, N = 64 sensors, Nt = 100 time samples with a sampling rate of 10Hz) . . . . . 51

5.1 Parameters of the electrical model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

x



Acronyms

AP Action Potential

AUC Area under curve

BEM Boundary Element Methods

Cx43 Protein connexin 43

cMEM coherent Maximum Entropy on the Mean

EHG Electrohysterogram

EHGSI Electrohysterogram imaging

EEG Electroencephalogram

ECG Electrocardiogram

EHGSI Electrohysterogram imaging

EMG Electromyogram

FFN Fetal Fibronectin

FWL Fast Wave Low

FWH Fast Wave High

FW-h2 Filtered Windowed-h2

GJ gap junctions

GC Granger causality

H General synchronization

h2 Nonlinear correlation

xi



Icoh Imaginary part of coherence

IUP Intrauterine pressure

LIF light-induced auto fluorescence

MMG Magnetomyography

MNE Minimum norm method

MRI Magnetic resonance imaging

ODEs Ordinary differential equations

PTL Preterm labor

PSD Power spectral density

ROC Receiver operating characteristic

Red3 Model reduction with only three variables

R2 Linear correlation

SNR Signal to noise ratio

SD Spatial dispersion

STF space-time-frequency

STWV space-time-wave-vector

SVB-SCCD Sparse variation based sparse cortical current density

sLORETA Standardized low resolution brain electromagnetic tomography

VB-SCCD Variation based sparse cortical current density

WMNE Weighted minimum norm

WHO World Health Organization

ZEB1 Zinc finger E-box-binding homeobox 1

1



1
Introduction: Context and motivation

2



Electrohysterography is a non-invasive technique that records uterine activity with a high temporal

resolution using an array of sensors, which are placed on the abdominal skin. The measurements con-

tain valuable information about the electrical uterine sources [144]. This information is crucial for the

diagnosis and management of some diseases (Preterm Labor) or for the understanding of the uterus

functions. In this thesis, we are concerned with the localization of the active uterus regions, which are

involved in uterine activity during contraction.

The ElectroHysterogram signals recorded at the skin surface (Electrohysterogram (EHG)) originate

from a certain area of the uterus where a single cell can initiate contractions. But multiple cells, highly

synchronized are needed for forceful and maintained contractions [115]. Furthermore, one active cell

exhibits a burst of action potentials (bursting spikes). As a consequence, and contrary to the classical

point source that can be modeled by a single dipole (one dipole at each vertex of the mesh oriented

normal to the mesh surface), for the uterine muscle, the source space can be modeled by extended

sources with patches (part of the region) presenting highly correlated actives cells. The objective thus

consists in identifying the positions (and spatial extents) of the active uterus sources from the noisy

mixture of signals which is recorded at the surface of the abdominal skin by the EHG electrodes. This

is known as the inverse problem. On the other hand, deriving the EHG signals for a known source

configuration through modeling is referred to as the forward problem (cf. Figure 1.1). Thanks to the

advanced mathematical tools that permit to compute the so-called lead field matrix, which characterizes

the propagation within the volume conductor, solving the forward problem has become straightforward.

By contrast, finding a solution to the inverse problem is still a challenging task. This is especially the

case in the context of multiple sources with time correlated signals, that are involved in the propagation

phenomena. This problem is the key issue of this thesis and motivates the implementaion of algorithms

that are robust to source correlation and to spatial extent.

The inverse problem in uterus has been formulated in different ways in order to non-invasively obtain

valuable information about the uterus condition. Identifying the location and spatial extent of several

highly correlated and simultaneously active uterus sources from abdominal ElectroHysterogram record-

ings and extracting the corresponding uterus signals is a challenging problem. The use of the EHG for

imaging the sources of the uterine electrical activity could be a new and powerful diagnosis technique.

However, the use of EHG gives limited performance as the uterus often demonstrates several simul-

taneously active regions and as EHGs present low signal-to-noise ratios. The purpose of this work is

to study the ability of different distributed source localization methods to recover extended sources of

uterus activity from abdominal EHG. Due to the lack of a gold standard to evaluate source localiza-

tion methods, our evaluation was performed in a controlled environment using well-controlled realistic

simulations of EHG signals, involving several locations. Simulated data were corrupted by physiological
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Figure 1.1: Illustration of the EHG forward and inverse problems

EHG noise. The performance of several state-of-the-art techniques for extended source localization is

evaluated using a detection accuracy index based on the Dipole Localization Error, the Area Under the

Receiver Operating Characteristic Receiver operating characteristic (ROC), Area Under the Curve Area

under curve (AUC), and the Correlation Coefficient.

The forward problem is based on a previous work from our team [110], [134] where we consider

the volume conductor with 3D realistic meshes (obtained from FEMONUM project [17])) extracted from

Magnetic resonance imaging (MRI) images, where only the interfaces have meshed. This makes possi-

ble the use of Boundary Element Methods (BEM). The lead field matrix G is estimated using the BEM

based on a 3D mesh of the interface, for the source model, and on a realistically-shaped abdominal

model for the volume conductor. Interpreting the uterine activity requires realistic physiological mod-

els and accurate numerical solvers. A volume-averaged approach is employed for this model, which

consists in considering that the uterus tissue is divided into two separate domains (intracellular and

extracellular) assumed to be continuous. Because in future work we are interested in investigating the

effects of mechanical deformation on simulated EHG, we need to compute both intracellular and extra-

cellular potentials. This requires the use of the bidomain model. This model is derived by considering

the uterus tissue as two superimposed Ohmic conductors that are separated by the cell membrane.

EHG inverse problems have no unique solution, since the number of sources is always much larger

than the number of sensors. This is therefore an ill-posed problem, which requires additional assump-

tions to regularize the solution. Various L2/L1−norm regularization techniques have been implemented
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to search for a unique solution which are referred to as the minimum norm solutions. They comprise

techniques such as the original minimum norm method (Minimum norm method (MNE)) introduced

in [79], the wieghted minimum norm (Weighted minimum norm (WMNE)) [89] and the standardized low

resolution brain electromagnetic tomography (Standardized low resolution brain electromagnetic tomog-

raphy (sLORETA)) [138]. In this work, we test a variation based sparse cortical current density Variation

based sparse cortical current density (VB-SCCD) [48] together with its other extensions method [14], that

are different from both L1- and L2-norm regularized MNE, since it uses the concept of sparse source

imaging. We study their performance on realistic simulated data in comparison to the conventional

source localization algorithms and tensor method.

Furthermore, we conduct a detailed study of the combination between the algorithm used to solve the

EHG inverse problem and the algorithm used to measure the functional connectivity. We evaluate the

combinations of three inverse solutions algorithms (Sparse variation based sparse cortical current den-

sity (SVB-SCCD), WMNE and coherent Maximum Entropy on the Mean (cMEM)) and four connectivity

measures (Linear correlation (R2), Nonlinear correlation (h2) and Imaginary part of coherence (Icoh)).

Furthermore, we conduct a detailed study of the influence of some experimental parameters, including

inter-electrode spacing, number of electrodes and fat thickness, on these performances. The different

steps of the comparative analysis are summarized in Figure 1.2.

Figure 1.2: Illustration of the EHG forward and inverse problems

This thesis is organized as follows:
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In Chapter 2, we provide some background information on the origin of electrical uterine signals, the

characteristics of EHG systems, as well as uterine contraction. Furthermore, we describe the mathe-

matical model of EHG that is employed for the simulations conducted in this thesis. In Chapter 3 we

compare different inverse methods, to assess their detection accuracy when extended uterus areas are

activated. In Chapter 4 we analyze the impact of the combination between the algorithm used to solve

the EHG inverse problem and the algorithm used to measure the functional connectivity. In Chapter 5

we present the uterus electrophysiology model at the tissue level with continuum approximations via the

bidomain equations.

Finally, Chapter 6 presents a general Conclusion and Perspectives of this work.
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2.1 Introduction

During the last few decades, the quest for knowledge of the uterus has been motivated, not only by

a desire to reveal the secrets of this vital organ, but also by its growing clinical importance. Preterm

labor is an important public health problem in Europe and other developed countries as it represents

nearly 7% of all births. The annual societal economic burden associated with preterm birth in the United

States was at least $26.2 billion in 2005 [92]. The pregnant woman gives birth at term between 37 and

40 weeks of pregnancy. However, this period may end prematurely and induce morbidity and mortality

of newborns, when the woman gives birth before 37 weeks of pregnancy. An improved understanding of

how the uterus works may lead to new techniques for the diagnosis and treatment of uterus problems.

This serves as motivation for the enormous resources that are invested in uterus-related research. In-

deed some days more in uterus can improve the maturation of the fetus. The early detection of a preterm

labor (Preterm labor (PTL)) is important for its prevention.

The close link between the electrical activity and uterus problems is the basis of the diagnostic power

of the Electrohysterography, which is the oldest non-invasive tool for diagnosing uterus conditions. The

Electrohysterogram, EHG, is the recording of electrical potential differences on the body surface that

result from the electrical activity in the uterus. These potential differences are caused by sources of

electrical current in the active uterus muscle.

The electrical activity of the uterus is a well-studied process [29], both of the small scale processes

occurring in the cells and of the organ-level pattern of electrical activation. Even so, there are a large

number of mechanisms that are not fully understood. The organ-level electrical activity of the uterus is

the result of billions of small-scale processes occurring in the cells, and the existing knowledge of how

all these processes interact is very limited. A very promising technique to extend our knowledge in this

field is the use of mathematical modelling and computer simulations. By formulating precise, quantitative

descriptions of the small-scale processes, these models can be combined to form mathematical models

of larger systems [185]. This field is often referred to as integrative physiology, and has the potential

to improve significantly our understanding of how small-scale processes interact to form the functioning

organ. In addition to their efficacy, experiments based on mathematical models and computations often

represent a simpler, and less expensive, alternative to experiments with real uterus.

For the case of the electrical activity of the uterus, improved understanding may lead to improved

treatment techniques and diagnosis, for instance in the form of more precise EHG analysis.

The focus of this thesis is on understanding the uterine activation process based on computer simu-
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lations of the electrical activity of the uterus. Particular emphasis is placed on simulating EHGs, but the

simulation results have a number of other applications as well. To motivate the basics of the mathemati-

cal model, we will here provide a description of the EHG and the electrophysiology of the uterus [29].

2.2 Uterus Anatomy and Physiology

2.2.1 Uterus Anatomy

The location of the uterus is within the pelvic region directly behind the bladder, and frontal of the

sigmoid colon. The non-pregnant uterus is pear-shaped, about 7.5 cm in length, 4 to 5 cm broad, and

2 to 3.0 cm thick and it weighs 50 to 70 grams [53]. The uterus can be divided anatomically into four

portions: the fundus which corresponds to the upper portion, the corpus which is the main part of the

uterus including uterine cavity, the cervix and the cervical canal [10] held in position within the pelvis by

ligaments, which are called endopelvic fascia.

With pregnancy The uterus grows in size, increases in weight, and its walls thin out (Figure 2.1) [152].

During the first trimester, the uterus rises out of the pelvic cavity and reaches the level of the umbilicus

by week 20. By weeks 28-30, the uterus reaches the epigastric region. The mother’s abdominal viscera

are displaced, and the skin and muscles of the anterior abdominal wall are greatly stretched. Uterine

size increase is due to hypertrophy of preexisting muscle fibers for the most part and partly to develop-

ment of some new fibers.

The uterus has three tissue layers. From innermost to outermost, these layers are as follows:

• Endometrium: is the inner epithelial layer that lines the uterus, along with its mucous membrane,

of the mammalian uterus. Consists of a single layer of columnar epithelium plus the stroma on

which it rests which is the innermost glandular layer and functions as a lining for the uterus. It

consists of glandular cells that produce secretions. This membrane thickens to prepare the uterus

for implantation of a fertilized egg. [59].

• Myometrium is the middle layer and forms the larger part of the uterine wall, consisting mainly of

uterine myocytes. Its main function is to induce uterine contractions [4]. It is composed of three

layers of smooth muscles. This layer has an active role during pregnancy. It increases both by

hypertrophy of the existing cells and by multiplication of the cell number. During the last stage

of gestation, the smooth cells reach a maximum length of 300 µm and a maximum width of 10

µm [39].
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• Perimetrium: Serous layer of visceral peritonium. It covers the outer surface of the uterus, en-

veloping the body of the uterus and part of the cervix.

Figure 2.1: Anatomy of pregnant uterus ( [2]).

The uterine smooth muscle fibers are arranged in overlapping tissue-like bands, the exact arrange-

ment of which is a highly debated topic [44]. All myocytes (uterine muscle cells) are gathered in pack-

ages or ”bundles” with junctions between them. Packets are contiguous within a bundle or fasciculus.

The bundles are arranged parallel to the surface of the uterus, transversely at the fundus and obliquely

downward. Communicating bridges, named Gap Junctions, connect adjacent bundles. A diagram of this

structural organization is shown Figure 2.2.

2.2.2 Uterine activity

Uterine contraction take place after the generation and propagation of electrical activity in the my-

ometrium cells [69], [150], [149]. The electrical activity depends on two parameters related to the con-

tractile process: the excitation and the propagation of the electrical activity. The evolution of uterine

contractions is therefore related to an increase in cellular excitability as well as an increase in the syn-

chronization of the entire uterus [69].
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Figure 2.2: Three-dimensional structure of the woman uterus [141].

2.2.2.A Cellular excitability

The electrical activity of one cell can be characterized using two types of potential: the resting po-

tential and the action potential. The resting potential is formed of a slow wave, of small amplitude, of

the electrical activity of a membrane. Above a certain threshold of variation of this resting potential, the

action potentials are generated. One action potential is due to sudden variations in the permeability of

the cell membrane. During pregnancy, the physiological electrical activity is composed of discontinuous

bursts of action potentials (figure 2.3)). This inconstant electrical activity has the consequence of the

existence of irregular uterine contractions, of low intensity of certain parts of myometrium. On the other

hand, term and labor uterine electrical activity is composed of regular bursts with several peaks of action

potential (figure 2.3) that propagate to the entire myometrium in a short time, leading to regular intense

contractions [160].

Figure 2.3: Electrical activity of rat uterus at different terms of pregnancy [94]

2.2.2.B Uterine synchronization

Myometrial cells can either trigger their own activity or be excited by the action potentials from a

neighboring cell. This propagation of the electrical activity in the uterine muscle is ensured by the
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local electric potential propagation between active cells to their inactive neighbors, electrically coupled

through local ionic currents [108]. The inter-cell electrical coupling is improved by the presence of gap

junctions (gap junctions (GJ)). These gap junctions are areas where the membranes of two adjacent

cells form pores allowing an electrical coupling. Gap junctions (Figure 2.6) are connections created by

the protein connexin 43 (Protein connexin 43 (Cx43)) [66]. These gap junctions provide channels of

low electrical resistance between cells [99]. These junctions allow the passage of small molecules, and

facilitate electrical connection. It appears that the gap junctions have a significant role in the development

of a synchronous electrical activity when approaching delivery. During gestation, the number of junctions

is much low. The GJ are created in large number few hours before delivery, ensuring the development

of a synchronized muscle activity (figure 2.4).

Figure 2.4: The evolution of Gap junction number during gestation, birth and after delivery [64].

The human uterus shows a low level of order for the majority of pregnancy, and activity at any one

time, at different places in the uterus, is very similar. Dramatically, this picture changes at the time of

labor with an increase in contractility, energy consumption, and order, as the activity at different times

is different, either relaxed or contracting (Figure 2.5) [75]. The uterus initiates and coordinates the firing

of individual myometrial cells to produce organized contractions causing the expulsion of the fetus from

the mother’s body. The contractile activity of the uterus results from the excitation and propagation of

electrical activity.

In the human being, contractility of the uterus is impeded at the starting of pregnancy to permit

implantation. Hormonal signals inhibit uterine contractility. The signals derive from the maternal ovary

that produces progesterone [57]. The progesterone suppresses myometrial contractility, providing a

“brake” on the uterus. The brake decreases uterine contractility for the wide majority of pregnancy. The

brake technique contains keeping single myocytes disassembled from one another. This is done by
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Figure 2.5: The gradual development of synchronous behavior in areas of the uterus that eventually lead to the
widespread rhythmic contractions of the uterus that increase intrauterine pressure and dilate the cervix
at the time of labor [164].

decreasing gap junctions between individual myocytes [158].

Throughout most of pregnancy, and in all species studied, these cell-to-cell channels or contacts are

low, with poor coupling and decreased electrical conductance. The formation of Cx43 is suppressed by

a transcription factor called zinc finger E- box binding homeobox (Zinc finger E-box-binding homeobox

1 (ZEB1)), which is stimulated by progesterone [147]. The suppression of Cx43 expression guaran-

tees that even if a myometrial cell depolarizes, the electrical signal does not go far and no increase in

intrauterine pressure occurs.

At term, however, the cell junctions increase and form an electrical syncytium required for coordina-

tion of myometrial cells for effective contractions. A large number of gap junctions between myometrial

cells is observed during labor [63] ensuring the development of a synchronized muscle activity (Figure

2.4) due to electrical diffusion. The available data strongly support the presence of a brake on uter-

ine contractility provided by progesterone. The hypothesis of the progesterone block was developed

by Csapo [38] in the middle of last century and for many years little further progress occurred. A pri-

mary problem was how the block was removed. It seems that in human beings, estrogen action may

increase to override the action of the progesterone brake. Estrogen has many actions on the uterine

myometrium. Acting via micro- RNA species estrogen action reduces the formation of ZEB transcription

factors that inhibit production of Cx43 [148, 179]. These events combine at the end of pregnancy to

dramatically increase the connectivity of myometrial myocytes, which makes them more likely to con-

currently depolarize and to remain depolarized longer (Figure 2.7) [173]. The increase in connectivity

between individual myocytes at the end of pregnancy and the increase in myocyte excitability allows the

myocytes to behave as coupled oscillators and generate coordinated contractions.
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Figure 2.6: A representation of gap junctions [171].

The area over which an action potential could spread is a key determinant of the development of

synchronous contractions. If the area over which an action potential could spread is large enough,

contraction of this region or patch of tissue would increase intrauterine pressure leading to an increase

in uterine wall tension [40]. Increased uterine wall tension then provoked widespread synchronous

contraction of myocytes. If the area over which an action potential propagated is too small to raise

intrauterine pressure then no synchronous contractions of the whole uterus would occur. Synchronous

contractions across the uterus raise the intrauterine pressure leading to dilation of the cervix.

Although the quintessential endpoint of labor is cervical dilation, it is critically important that the

uterus generates large intrauterine pressures for dilation to occur. The concept of assessing intrauterine

pressure is still relevant and clinically useful for determining the adequacy of uterine contractions [6] [28].

The areas of the uterine wall that were not participating in a contraction would elongate when the actively

contracting areas increased wall tension, and elongation of the passive areas would attenuate the rises

of pressure. Because of this effect, high pressures of labor can be generated only when most of the

uterine wall is contracting at the same time in a coordinated manner [40].

In summary, from Caldeyro-Barcia, we learned that frequent contractions that consistently generate

high intrauterine pressures are necessary and sufficient for labor. From Csapo, we understand that in

order to achieve the high pressures, the uterus must somehow contract most areas at the same time.

Caldeyro-Barcia described his ‘triple descending gradient’ model of uterine function as a wave-like con-

traction which starts at the fundus, spreads down the uterus, and decreases in strength and duration
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Figure 2.7: Labor and Not in Labor illustration with the expression of Cx43 that are required to increase intrauterine
pressure [164].

as it progresses [6]. The fact that uterine muscle creates bioelectrical activity as it contracts was estab-

lished at the time, although Caldeyro-Barcia did not emphasize that contractile activity occurs as a direct

result of electrical activity. Detailed investigations into the electrical properties of uterine cells and tissue

began in the mid-1950s, and the concept of excitation–contraction coupling in myometrium was soon

formalized ( [41], [74], [123]). In 1963, Csapo and Takeda [42] reported that when in active labor, uter-

ine bioelectrical signals were expressed in synchrony with the generation of intrauterine pressure. He

defined contractions that remained local as nonpropagating and labor contractions as propagating [40].

These terms were likely chosen to emphasize that his concept for all uterine signaling involved action po-

tential propagation. Connexin 43 is the protein responsible for cell to cell electrical coupling in the heart,

and Garfield’s discovery of connexin 43 in the uterus [66] provided a mechanism for uterine electrical

communication. Through the 1980s and 1990s, emerging data supported the concept that connexin

43 increases myometrial excitability, and inferred that action potential propagation is the mechanism

for both short- and long-distance electrical signaling ( [62]). Through the end of the twentieth century,

action potentials were thought to perform three important functions: initiating and maintaining cellular

contractions, recruiting cells for participation in the contraction, and organ-level signaling to coordinate

contractile activity in all parts of the uterus. Yet discrepancies arose when experimentally testing action
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potential propagation as the mechanism for signaling long distances. There is a significant doubt that

myometrial action potentials travel in straight paths. In sheep [11], rodent [97], and human [21], [165]

action potentials are not found to travel linearly.

In their recent review, Rabotti and Mischi concluded that electrical propagation in human is unpre-

dictable and demonstrates complex patterns [143]. Using a 152 element array of superconducting quan-

tum interference devices (SQUID), Ramon and coworkers (2005) found that localized biomagnetic ac-

tivity (and by direct inference, bioelectrical activity) appeared suddenly in random locations that were

not contiguous or anatomically related to each other. Hence the enigma – action potentials appear to

propagate slowly in tissue, in complex pathways, noncontiguously, and over only short distances.

Like cardiac cells, uterine myometrial cells can generate either their own impulses -pacemaker cells-

or can be excited by the action potentials propagated from the other neighboring cells -pacefollower cells.

But unlike cardiac cells, each myometrial cell can alternately act as a pacemaker or a pacefollower. In

other words, there is no evidence of the existence of a fixed anatomic pacemaker area on the uterine

muscle [115]. The spontaneous oscillations in the membrane potential of the autonomously active pace-

maker cells lead to the generation of an action potential burst when the threshold of firing is reached.

The electrical activity arising from these pacemaker cells excites the neighboring cells, because they are

coupled by electronic connections called gap junctions. It is believed that the action potential burst can

originate from any uterine cell, thus the pacemaker site can shift from one contraction to another.

Many hypotheses on the pacemaker cells have been issued including their number, position ... It

seems that there is a one or more preferential pacemaker activities loci near the fundus, as found by

Caldeyro-Barcia et al. [27]. This activity is then propagated in all directions, but ultimately from the fun-

dus to the cervix.

A more recent hypothesis explains the long-distance uterine synchronization by means of a hydrodynamic-

stretch activation mechanism [91], mechano-transduction process, rather than to solely the classical

electrical propagation hypothesis, presented above. The synchronization of uterine contractility is thus

related to two distinct phenomena: electrical propagation through GJs (local electrical diffusion) and

mechano-transduction process (global uterus synchronization) [91]. This mechano-transduction pro-

cess will be detailed in section 2.6.
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2.3 Problem of preterm labor

Preterm birth, that is, birth before the 37th week of pregnancy, remains a major problem in ob-

stetrics. In Europe and other developed countries, the incidence of preterm birth is between 5 and

12%. According to the definition of the World Health Organization (World Health Organization (WHO)),

preterm delivery is a delivery at a gestational age of less than 37 completed weeks or less than 259

days of amenorrhea. Every birth occurring after 22 weeks of amenorrhea and before 37 weeks is

defined as a premature birth. A birth occurring before 22 weeks of amenorrhea is considered as an

abortion by WHO. Also, preterm birth accounts for 85% of infant mortality and 50% of infant neurologic

disorders [71]. Infants born prematurely are at high risk of mortality as well as health and development

problems [71], [36]. Preterm birth is a pathology that can lead to serious consequences for the child and

has also a socio-economic cost. The main risks to children are:

Preterm birth is a pathology that can lead to serious consequences for the child and has also a socio-

economic cost. The main risks to children are:

• Respiratory distress (often associated with hyaline membrane disease)

• Infection

• Neurological Diseases

• Hypothermia

• Necrotizing enterocolitis

2.4 Methods for monitoring pregnancy

Optimal detection of labor implies finding markers indicating that the labor will occur, but also pre-

dicting whether it will actually result in a premature birth (premature labor). There are several methods

presently used for the monitoring of pregnancy, among them:

• Intrauterine pressure (Intrauterine pressure (IUP)), the mechanical effect of uterine contraction, is

a direct method providing precise information concerning uterine contractions efficiency. For its

measurement, a catheter is inserted into the uterine cavity and connected to a pressure sensor,

giving information on the duration, amplitude and frequency of appearance of the contractions [68].

Despite the accurate information provided by IUP, its major drawback is its invasiveness. IUP can-

not clearly be used during pregnancy as it requires rupture of the membranes in order to insert the
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catheter into the amniotic sac. Therefore, it can increase the risk of infection or accidental labor

induction [160].

• Tocography being external and non-invasive, is the most widely used method for monitoring uter-

ine contractions during pregnancy. This device contains a force sensor placed on the mother’s

abdomen, usually over the uterine fundus. This sensor measures the deformation of the abdomen

as a result of a contraction [24] and provides only quantification of the number of contractions per

time unit. This parameter has been demonstrated being not predictive of delivery [26].

• Biological tests, such as fibronectin, have been clinically used for the prognosis of premature

births [87], although they have a low predictive value.

• A noninvasive technique named light-induced auto fluorescence (light-induced auto fluorescence

(LIF)) has been proposed for labor monitoring [65]. It attempts to evaluate optically the concentra-

tion of collagen in cervical tissue.

• The measurement of cervix length via endovaginal ultrasonography, Cervical changes, when evi-

denced by sonographic measurement of cervical length, may be an accurate indicator of women

needing specific therapeutic monitoring [154], [100]. The sequential use of cervical sonography

and fibronectin test appears to give better results indicator of preterm risk. However, these in-

dicators are mainly associated with a strong negative predictive value. Furthermore, using this

technique needs cervical dilation and effacement, and may induce vaginal bleeding, or ruptured

membranes [37]. It is thus not adapted to preterm labor detection.

• Magnetomyography (Magnetomyography (MMG)) measures the magnetic fields associated with

the uterine action potentials. It is a noninvasive technique. A device based on 151 magnetic sen-

sor array were used to MMG recording of spontaneous uterine activity [55].

• Fetal Fibronectin (Fetal Fibronectin (FFN)) [126], α-fetoprotein [180], Placental peptides [119].

They have been proposed as methods for monitoring patients that have a risk for premature labor.

Some results show that FFN can be used for the prediction of premature labor [87].

• One of the promising methods to monitor the efficiency of uterine contractions during pregnancy

is the analysis of the electrical activity of the uterine muscle, the electrohysterogram (EHG) [114],
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recorded on the mother’s abdomen [6], [168].

2.5 The Electrohysterography

Labor and delivery are preceded by two physiological phenomena: increased excitability and in-

creased connectivity between the myometrial cells, which results in an increase in the propagation of

the action potentials that trigger the uterine contractions [44]. Electrohysterogram EHG is the non-

invasive measurement of the electrical activity related to uterine contractions. It originates from the

depolarization-repolarization of billions of smooth muscle myometrial cells. It is a technique that records

uterine activity with a high temporal resolution by using one pair or an array of electrodes, which are

placed on the abdominal skin. The measurements contain valuable information about the electrical

uterine sources. It permits to monitor the efficiency of uterine contractions during pregnancy. This infor-

mation is crucial for the diagnosis and management of some diseases or for the understanding of the

uterus functions. It is one of the most promising bio-physical markers of PTL. The parameters derived

from the EHG signal have been considered, both in time [98,166], and in frequency domains [65,98]. The

uterine contractility depends on the excitability of uterine cells and on the propagation of the electrical

activity to the whole uterus [44]. Both aspects influence the spectral content of EHG, mainly composed

of two frequency components, traditionally referred to as Fast Wave Low (FWL) (Fast Wave Low) and

Fast Wave High (FWH) (Fast Wave High). These frequency components may be related to the propa-

gation and to the excitability of the uterus respectively [122]. Several studies have already been realized

in the context of preterm labor detection by processing EHG.

EHG is low-cost, non-invasive and thus easily suitable for pregnant women. The exploration of con-

traction behaviors at the uterus level, by using EHG inverse solutions may help to shed light on dysfunc-

tional process of the uterus and on the clinical diagnosis of severe diseases which can also impact the

baby. Nowaday, there is no effective detection for preterm labor, and when it exists, it is often too late to

delay it. EHG source imaging (Electrohysterogram imaging (Electrohysterogram imaging (EHGSI))) may

provide a solution to detect preterm labor sooner, which could permit to use treatment more efficiently.

Several tools of EHG signal processing have been used first to analyze the excitability (linear method

and nonlinear method) from processing only one EHG lead (monovariate analysis), and then to study

the propagation of uterine electrical activity, by using correlation between 2 EHG leads (Bivariate analy-

sis).
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Linear methods, in both time and frequency domains, were the first used to extract features from one

EHG signal. Recently, much attention has been paid to the use of nonlinear analysis techniques for the

EHG characterization. Additionally, in the last few years, several teams focused on the study of uterine

synchronization based on multi-electrode EHG recordings.

2.5.1 Excitability analysis - Linear parameters

The first parameters used for the characterization of uterine contractility/excitability were extracted

from the time domain [112], [73], [113], [23], [116], [191], [161]. Then several EHG analysis and char-

acteristics extraction were made in other domains. These include frequency representation, through

Fourier transform and time-frequency representation or wavelet transform.

In the frequency domain, the power spectral density (Power spectral density (PSD)) of the electrical

activity has been used in several studies. By using PSD, several variables were calculated, such as peak

frequency, [22], [107], [70], [101], [49], [176], [163], [106], mean frequency [172], median frequency [58].

The ratios of the energies contained in several frequency bands, or the relative energy, have also been

used for the characterization of the efficiency of contractions .

Some authors have also used time–frequency methods such as wavelet decomposition [9], [47] to

characterize EHG. They extracted relevant parameters, after the decomposition into details coefficients.

2.5.2 Excitability analysis - NonLinear parameters

In an attempt to improve the results obtained when using linear methods, and as the EHG, like

other biomedical signals, seems to present some nonlinear characteristics, several measures have been

proposed for detecting nonlinear characteristics in the EHG. Radomski et al. [145] have applied sample

entropy to identify regularity in uterine EMG.

Ivancevic et al. [88] have presented a review on the nonlinear parameters used for the prediction of

preterm birth. One of the studied methods of interest is the Lyapunov exponent that studies the stability

of the signal and its sensitivity to initial conditions.

Diab et al. [46] compared the performances of several nonlinear methods (time reversibility, sample

entropy, Lyapunov exponent and delay vector variance) on synthetic signals. The aim was to test their

sensitivity to the change of signal complexity, with or without noise. Then, they applied these methods

on contractions recorded during pregnancy and labor. Results on synthetic signals showed that time

reversibility is less sensitive to changes in noise. On real signals, the results show a clear superiority of

time reversibility in classifying pregnancy and labor EHG.
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2.5.3 Synchronization analysis – propagation/connectivity parameters

Several studies have been realized to characterize the uterine propagation by means of the synchro-

nization between EHG signals recorded at the abdominal surface. These efforts were based on various

methods such as i) correlation/connectivity analysis [56] [83], [111] where the methods were applied on

the entire uterine burst manually segmented, and ii) propagation velocity quantified by analyzing either

the propagation of whole bursts of EHG [106], or single spikes identified within bursts [106]. Indeed,

looking at the connectivity at the electrode level, bivariate analysis, could provide important information

on the synchronization of the uterine activity.

These methods used recently to characterize the Correlation/connectivity can be divided into two types:

phase synchronization (mean phase coherence and phase entropy) [82]; linear (R2) and nonlinear (h2)

correlations [84]. They permit to characterize the connectivity between 2 EHGs, recorded at different

locations on the abdomen, and study either its evolution during normal pregnancy, or its ability to dis-

criminate pregnancy and labor contractions. Marque et al. have used the linear correlation coefficient

(R2) and noticed more correlation in low than in high frequencies [155]. Duchene et al used auto-

correlation, cepstrum and deconvolution function in order to study the uterine Electromyogram (EMG)

propagation [51]. Their results show that no linear propagation can be evidenced from all developed

methods. The linear inter-correlation has been also used for EHG propagation analysis by Karlsson et

al. [90]. They used 16 electrodes for the EHG recording. They present both an animation of the evolution

of the electric potential, as well as a temporal correlation evolution. They observed complex activation

patterns. Mansour et al. used the inter-correlation function to analyze the propagation of the internal

uterine EMG of a monkey by using four internal electrodes [109]. The signals were first filtered into FWL

and FWH frequency bands. Their results indicate that the correlation during labor is higher for FWL than

for FWH. Other studies used the nonlinear correlation coefficient to estimate the relationships between

16 EHG signals recorded by a matrix of 4x4 electrodes placed on the woman’s abdomen [83]. Authors

showed a significant difference between pregnancy and labor contractions [84] as well as an increase in

the correlation of EHGs as labor approaches [128]. Recently, Diab et al. [45] performed a comparative

study between several correlation measures applied to EHG signals. Authors used the nonlinear corre-

lation coefficient (h2), General synchronization (General synchronization (H)) and the Granger causality

(Granger causality (GC)). They tested the sensitivity of these methods to some characteristics of the

signal (non-stationarity, frequency content) or to the recording protocol (bipolar or monopolar recording),

in order to improve the performance of the coupling detection methods for the classification of EHG

bursts recorded during pregnancy and labor. They processed EHG signals recorded from 48 women

during pregnancy (174 contractions) and labor (115 contractions), with a 16 electrode matrix (4x4). The

h2 coefficient did not demonstrate any monotonic increase from pregnancy to labor. Therefore, authors

tried to improve the performance of this method. They retained only the low frequency band of the EHG
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(FWL), which is supposed to be more related to the propagation of EHG, and proposed a time vary-

ing approach. The combination of these two preprocessing steps (windowing, filtration step to retain

only FWL), Filtered Windowed-h2 (Filtered Windowed-h2 (FW-h2)), leads to an increase in h2 perfor-

mance.They obtained good performance with an increase from pregnancy to labor. They also noticed

that H method performance is highly influenced by the nonlinearity of EHG signals and therefore requires

further investigation. Monopolar recordings gave better results than bipolar ones.

However, in almost all previous studies, reported above, about the synchronization of uterine elec-trical

activity [45], authors estimated the correlation between multiple EHG. The EHG correlation matrices

were often reduced keeping only their mean and standard deviations. Despite the encouraging results

obtained, relevant information may have been missed due to this averaging, which may induce the rel-

atively low classification rate reported so far. To characterize precisely the correlation/connectivity of

uterine sources of activity, Nader [130], [131] proposed to use a network measure technique based on

graph theory, She based her work on the estimation of a correlation matrix by using H2, R2 or the Imag-

inary part of the coherence (Icoh), the quantification of the obtained connectivity matrices using graph

theory-based parameters, the clinical use of these measures for pregnancy monitoring as well as for the

classification between pregnancy and labor EHG bursts. This network-based approach demonstrated

very promising tool to quantify uterine synchronization, when applied at the abdominal level, for a better

pregnancy monitoring.

Furthermore, most of these methods were applied to surface signals, representing each a mix of activity

coming from different sources. Nader tested, as a first trial, the application of the connectivity analysis

to the source of EHG, identified by a simplified approach [129]. The aim of this thesis is to study further

the possible interest of the application of the connectivity analysis at the source level. We thus work on

the best way to identify the sources directly by means of inverse methods, as well as the best mean to

study the connectivity of the obtained sources. We mainly developed our study on simulated realistic

signals, and then applied the best method to real EHGs.

2.6 Mechanotransduction mechanisms

The first experimental report indicating that mechano-transduction might be important in organ-level

signaling for the uterus appeared in 1965 by Takeda, who studied the repressurized postpartum rabbit

uterus [91]. Mechano-transduction mechanism, was initially proposed by Takeda [170], as the origin of

global uterine muscle synchronization [188]. Briefly, a contraction starting from one part of the uterus,

induces the contraction of another part, not only by electrical diffusion through the tissue, but also by

means of the tissue stretching related to the induced increase in the intrauterine pressure (IUP). An

interesting study proposed by Young proves that mechano-transduction exists on uterine tissue from
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rat [189], where a uterus piece contracts, due to its stretching induced by the contraction of a second

uterus piece. This theory is possible due to the existence of electrical stretch-activated channels in

the membrane of smooth muscle cells [86], [157]. These channels are mechanotransducers as they

convert a tissue stretching (induced by the intrauterine pressure) into a biological signal (ionic current

inward or outward the muscle cell). For smooth muscle cells, they concern particularly the calcium and

sodium channels [192], [193]. While the stretching of uterine parts, initially inactive, increases due to

the increase in the intrauterine pressure induced by the active parts of the uterus, these channels open

and then induce the contraction of the stretched part by mechano-transduction. This process permits

to initiate the long-distance synchronization of the uterine muscle, and may partly explained the poor

results obtained when trying to quantify global uterine synchronization.

2.7 EHG Recording

The EHG signal has been studied mainly after segmentation of the electrical bursts corresponding

to the mechanical contractions of the uterus [117]. Marque et al. [114] used bipolar Ag/ AgCl surface

electrodes (8 mm diameter, 2.5 cm spacing) for recording EHG. A reference electrode was positioned

on the women’s hip. They indicate that the best electrode position was the median vertical axis of the

woman’s abdomen.

Simultaneous recording of internal and external EMG activity on the same woman showed a very good

correlation between the two signals [181]. This demonstrated that the surface EMG signal is represen-

tative of the electrical activity of the uterine muscle. These results have been confirmed in an analysis

of the EMG signal of the pregnant macaque [109]. Using these results, the external uterine EMG has

become a standard non-invasive method for the study of uterus electrical activity.

The electrohysterogram (EHG), that is the uterine EMG recorded, by using surface electrodes, is

characterized by a low frequency activity (0.1 to 0.3 Hz) with a superimposed activity of higher frequency

(FW, fast Wave: 0.3 to 2 Hz). The low frequency signal is considered as the result of mechanical

disturbances induced by the deformation of the abdomen under the effect of contractions [168]. At the

opposite, FW (parted then in two components FWL - Fast Wave Low- and FWH - Fast Wave High) is

related to uterine contractions.

During the BioModUE-PTL, a new multielectrode system has been used (Porti 32, TMSi) that offers

recording of up to 32 channels (Figure 2.8). Based on this system, we standardized the protocol using

Ag/AgCl electrodes (8mm diameter), positionned as a 4x4 matrix placed on the woman’s abdomen (the

third electrode column of the grid being set on the uterine median axis, and the 10-11h electrode on the

middle of the uterus), with two reference electrodes on each woman’s hips. The collected signals are
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fed into an amplifier and then to an A/D converter (PORTI 32). Then, by using an optical fiber and a

USB cable, the signals are digitized (Sampling frequency equal to 200Hz) by a PC where they can be

saved on disk or uploaded to an online database. Another signal called TOCO (output of a tocographic

probe) is also recorded by using the probe placed above the electrode matrix (figure 2.8). This signal is

further used for EHG bursts segmentation.

Figure 2.8: The new multichannel system: 4x4 electrode matrix placed on the women abdomen with two reference
electrodes on the hip and the tocographic probe.

To increase the signal to noise ratio, we calculated the vertical bipolar signals, obtaining thus 12

bipolar signals (Figure 2.9). The monopolar and bipolar bursts of uterine electrical activity that corre-

spond to contractions were manually segmented, based on the TOCO signal recorded simultaneously.

The tocodynamometer paper trace was digitalized in order to facilitate the segmentation of the uterine

contractions (Figure 2.9).

2.8 Inverse problems for imaging uterine activity

The application of biomedical source localization is not new. Source imaging applied to Electroen-

cephalogram (Electroencephalogram (EEG)) [77] or electrocardiography (Electrocardiogram (ECG)) [85]

signals, attempts to reconstruct internal electrical activity of the body by using surface measurements

on the scalp in the case of EEG, on the torso or the limbs for ECG. Source imaging techniques are a

powerful tool for the analysis of human organs and biological systems. Their common feature is that

they require mathematical modeling of the acquisition process and numerical methods for the solution of
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Figure 2.9: Digitized tocodynamometer paper (Top), monopolar signals (middle), corresponding bipolar signals
(bottom). The blue lines define the beginning and the end of the contraction according to TOCO.

the equations relating the data (the signals) to the unknown object (the sources of activity). Their main

feature is that the problems to solve are ill-posed, so that their solutions require special care.

An alternative approach to identifying an initial stimulus to a surface activity is via inverse modeling.

In this approach, available measurements or observations are used to constrain the model input. The

inverse electrocardiography entails finding the electrical activation on the heart’s epicardium (outer wall)

from electrocardiogram (ECG) measurements on the torso. For recent advances in this field of elec-

trocardiographic imaging see [34], [13]. Another natural cardiac electrophysiological inverse problem

that is less studied is to find the electrical activation inside the myocardium given measurements of the

extracellular potential on the epicardium as can be obtained via electrocardiographic imaging [25].

In literature, we can find different methodologies to address the problem of localize ischemic regions

using potential measurements taken at the body surface. Several works have analyzed the localization

of cardiac ischemia from remote voltage measurements [177]. In [102] the size and position of my-

ocardial infarction is estimated by minimizing the difference between real voltage measurements and

model-simulated ones.

The hypothesis behind this thesis is that the analysis of uterine synchronization, which is a phe-

nomenon of great importance for the characterization of uterine contraction efficiency (and thus for the

25



detection of PTL) could give better results when applied to identified sources rather than to surface

EHG. We thus have questioned in this work 3 mains aspects: i) the forward problem: which model best

represents the links between sources and EHG?; ii) The inverse problem: which method is more suited

to the specificity of uterine sources identification?; iii) The synchronization analysis: which method is

adapted to the anlysis at the source level? The following chapters will present our approach to answer

these questions.
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3.1 Introduction

The uterine contractility is the direct consequence of the underlying electrical activity in the my-

ometrial cells [3]. The electrohysterogram (EHG) measures the uterine electrical activity (Uterine elec-

tromyogram, uEMG) generated by the underlying activity in the myometrial cells, by using a few number

of sensors distributed on the mother’s abdominal skin [44]. It is a long-standing technique for the analysis

of uterine activity that consists in measuring the electric potential on the skin surface with up to an array

of sensors. Due to its good temporal resolution, the EHG is used to monitor uterine contraction and has

proven to be useful in the clinical evaluation of uterine activity as early as 18 weeks of pregnancy [72].

It has been more recently used as a noninvasive technique to identify uterus activation patterns,

which plays a crucial role in contractiliyty. Indeed, it is the only technique with the Magnetomyography

(MMG) providing information directly linked to the generation of the uEMG. Performing an accurate lo-

calization of EHG sources of uEMG is thus of particular interest to better understand their generation

and propagation. We propose in this work to use the imaging of the source of the electrical activity

based on inverse source localization from the EHGs [190] to tackle this problem. This technique allows

a noninvasive reconstruction of the electrical potential on the uterine surface based on electrical poten-

tial measured on the body surface and on anatomical data related to the abdominal conducting volume.

This non-invasive modality is used in this study to localize uterus regions involved during the generation

of burst of contractile activity. There is a large gap of understanding about how billions of uterine cells

contract. Uterine activity originates from excitability and synchronization of myometrial cells. This syn-

chronization could be the result of two phenomena: a) increased connectivity between the myometrial

cells, due to the appearance of Gap Junctions, which results in an increase in the local diffusion of the

action potentials [44], b) increased sensitivity to mechanotransduction, at the cell level, that permits a

longer distance activation of the uterine muscle due to its stretching [186].

Caldeyro-Barcia described their model of uterine function as a wave-like contraction which starts at the

fundus, spreads down the uterus, and decreases in strength and duration as it progresses [27]. Wolfs

and van Leeuwen [182] estimated a linear propagation. However, there is a significant doubt that my-

ometrial action potentials travel in straight paths. In sheep [136], rodent [98], and human [143] action

potentials are not found to travel linearly.

Furthermore the amplitude of Magnetomyography (MMG) signals for physiological uterine activity is

expected to range from pico (10−12) to femto (10−15) Tesla (T), depending on the approach of measure-

ment [61]. As mentioned in [103], uterine burst activity give rise to a relatively large amplitude (4.5 pT).

This implies that MMG signals are likely to arise from large spatially extended regions of active uterus.

Thus uEMG are detectable on EHG/MMG recordings only when associated with a spatially extended

uterus generator of several square centimeters. It is thus essential to assess the ability of source lo-

calization methods to recover such spatial extent of the sources. Furtherfore, not only it is important to
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localize the origin of uEMG but also to recover their spatial extent and estimate the temporal course of

their activity. This task can become particularly challenging when several distributed regions with highly

synchronized activity are simultaneously active or are involved during a propagation process.

Source localization methods may help to determine the regions of the uterus where the activity are

generated [190]. Studying the underlying mechanisms and anatomical areas involved in the generation

and the propagation of uEMG constitutes a key issue toward a better understanding of the uterus. This

process is generally referred to as source imaging and permits to identify the uterus regions that are

involved in generating characteristic activity patterns, which is of clinical relevance. Inferring the source

location within the uterus from a signal acquired on the abdominal skin, i.e., the EHG inverse problem,

is an ill-posed problem since there is a large number of source configurations that can produce the ex-

act same potential at the surface of the abdominal skin. Additional constraints should then be added

to obtain a unique solution. Two types of approaches have been proposed [12, 121] in the literature.

(1) The equivalent current dipole methods assume that the potentials are generated by a few dipolar

sources [93, 159]. (2) The distributed source methods assume that surface potentials are generated by

a large number of dipolar sources distributed within source space [43]. Distributed source methods seem

appropriate to estimate spatially extended sources. In our work, we aim at localizing myocyte activation

on a large number of sources (around 5,000) given few sensors (around 64 or less). The problem is then

highly underdetermined and requires additional constraints in the form of a regularization scheme. In

this study we add a priori knowledge or constraints by fixing the position of the sources along the uterus

surface to achieve linearity in the inverse problem. However, the problem is still under-determined due

to the small number of electrodes. In order to obtain a unique solution, additional constraints in the form

of a regularization scheme are required. Some mathematical constraints are proposed, such as choos-

ing the minimum energy solution [80] or the maximum of spatial smoothness solution [139]. Statistical

frameworks, based on Bayesian inference [174] or entropy [7, 33], Were propose in the state of the art

to provide a flexible way of introducing prior information.

Our objective here was to carefully compare different methods, to assess their detection accuracy when

extended uterus areas were activated. To do so, we used a common ground-truth fully controlled simu-

lation environment (Figure 3.1).

First, to overcome the accuracy issues when using Boundary Element solutions due to the high con-

ductivity ratio between neighboring tissues (muscle/fat conductivity ratio), we solved the forward problem

using Symmetric Boundary Element [95] an extended version of the Green representation theorem [132].

Then, we simulated in this environment different patterns of source configurations varying the number of

sources, their spatial properties, and their level of synchronization. We also considered the influence of

the number of sensors and used a realistically shaped uterus model. All simulated data were corrupted
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Figure 3.1: Illustration of the study environment: forward model and inverse model in the context of EHG

by averaged physiological EHG noise.

Six source localization methods were thus evaluated and compared, namely: the sloreta [138], the

cMEM [32], STWV-DA and STF-DA [15], the Sparse, variation-based source imaging approaches [14].

We quantified the performance of each method by using different criterion permitting to test their perfor-

mances. Finally, we applied the source localization method to real EHG recordings,.

3.2 Forward model

The electrical activity that can be observed at the surface of the abdominal skin originates mostly

from myometrium cells that are primarily located in the middle layer of the uterine wall, consisting mainly

of uterine smooth muscle cells (also called myocytes). In order to obtain a signal of sufficient amplitude

to be measurable at the skin surface, a certain number of simultaneously active myocyte populations is

required. We used in this study an electrical model of these populations developed by our team, based

on an Hodgkin-Huxley approach. All details can be found in [185]. The variables of the electrical model

are described by the following equations:

dVm
dt

=
1

Cm
(Istim − Ica − Ik − IkCa − IL) (3.1)

dnk

dt
=
hk∞−nk
τnk

(3.2)

d[Ca]2+

dt
= fc[−αICa − kCa[Ca2+]i] (3.3)

where V m is the transmembrane potential , nK is the potassium activation variable, KCa is the

Calcium extraction factor and [Ca2+]i the intracellular calcium concentration. The ionic currents are ICa
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for the voltage dependent calcium channel current, IK for the voltage dependent potassium channel

current, IKCa for the calcium dependent potassium channel current and Il for the leakage current.

For the generation of sources, we consider a number of patches each of which consists of several

adjacent cells corresponding to a determined uterus area. Using this electrical model, we created the

signals with a sampling rate of 10 Hz for all the cells of each patch (see Figure 3.2 for one example).

Figure 3.2: Example of signals for the cells in one patch.

The electric potential at the surface of the skin is characterized by the superposition of signals orig-

inating from all over the uterus. For modeling purposes, we define a source space that consists of D

dipoles located on the uterus surface with a fixed orientation perpendicular to surface. The dipoles are

positioned at the vertex of the mesh of the uterus surface. The realistic shape of the uterus has been

segmented from a standard 3D MR data set offered to the scientific community by the FEMONUM project

[17]. The triangle vertices will later become the source locations. In the same fashion, the compartment

borders of skin, fat, and muscle are segmented, subsampled, and triangulated. The obtained thousands

of triangles serve as the geometric model for the Symmetric Boundary Element Method used in the

forward calculations [76]. The EHG measurements (X ∈ RN×T ) recorded by N electrodes for T time

samples, contain a linear mixture of the sources (S ∈ RD×T ) in the presence of noise (N ∈ RN×T ), such

that:

X = GS +N (3.4)

where (G ∈ RN×D) is the lead field matrix that describes the propagation in the volume conductor

and depends on spatial parameters of the model, such as the geometry of the uterus, muscle, fat and

abdominal skin as well as their conductivities, andD denotes the number of dipoles. G is estimated using

the Symmetric Boundary Element Method (BEM) with the OpenMEEG [76]implemented in Brainstorm

software. Based on the realistically-shaped uterus model cited above the forward problem is there solved
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in a 4-layer realistic model of the volume conductor that contains: the myometrium (where the source is

located) with conductivity = 0.2S/m (the source are supposed to be located at the surface of the uterine

muscle); the abdominal muscle with conductivity 0.3S/m, and thickness = 0.936cm; fat with conductivity

= 0.04S/m and thickness = 2cm; and skin with conductivity = 0.5S/m and thickness = 0.2cm. With the

dipoles of the source space located on the uterus surface and perpendicular to this surface, as said

previously, the EHG inverse problem then consists in reconstructing the sources S based on the surface

measurements X for a given lead field matrix G (Figure 3.3). However, as the number of dipoles (several

thousands) generally exceeds the number of sensors (several tenths), the source imaging problem is

ill-posed. In order to restore identifiability of this ill-posed linear inverse problem, additional hypotheses

about the sources have to be made. A spatial prewhitening is thus accomplished to decorrelate the

source signals, in order to facilitate the separation of the components. This is done by multiplying the

data and the lead field matrix by the prewhitening matrix P = K+, where K is the square root of the

covariance matrix of the background activity.

Figure 3.3: The uterus patch is embedded in a volume conductor. As a consequence, S is projected at electrodes
(X1 ... XNr) placed at the abdominal skin as determined by the leadfield matrix G, which includes the
effects of the volume conductor on electrical activity at the uterus level

To test the influence of the recording protocol (number and position of electrodes), we generated

data for Nr = 16; 30; 64 electrodes according to different montages of the electrodes, corresponding

to different recording protocols used in our team: for the 64 electrodes we used 8,57 mm between the

electrodes (Figure 3.4 a), for the 16 electrodes 17,5 mm (Figure 3.4 b) and for the 30 electrodes we

used 5.5 cm in the rows and 3.5 cm in the column (Figure 3.4 c).
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Figure 3.4: Electrodes montage, a) 64 (8.57mm inter-electrodes), b) 16 (17.5mm inter-electrodes), c) 30 (5.5cm x
3.5cm inter-electrodes)

3.2.1 Surface source space

When working with distributed source models, the locations of the dipolar sources need to be spec-

ified a priori to compute the forward operator, also known as the gain matrix. This ensemble of dipole

locations is called the source space. We assume that each point of the uterus mesh is a source which

leads to an average spacing of 3.1 mm between dipoles. The dipoles are oriented normal to the uterus

surface (Figure 3.5).

Figure 3.5: Uterus mesh; the blue lines indicate the normal of each dipole.

In order to decrease the computation time of the lead field and of the simulation of sources, we

proposed a new algorithm to segment the uterus into different regions (see chapter 5, section 5.6).

We thus considered only 5000 dipoles or less instead of the initial 9288 dipoles. In order to simulate

extended sources, we then define from these 5000 dipoles, different local patches as illustrated (Figure

3.6). For some localization study, we used 2 different patches separated by either a small distance
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(interpatch distance= 5cm) or a large distance (interpatch distance= 15cm).

Figure 3.6: a) The black box indicates the region used to introduce the definition of local uterus patch, b) Local
patch bounded by the thick red lines. Blue spots denote the locations of the sources after 10-mm
decimation. A Cartesian coordinate system with z-direction aligned with the average normal direction
is indicated with the black arrows.

Figure 3.7 presents the EHGs obtained with a 4 by 4 electrodes grid. The 16 signals are presented

according to their position on the electrode grid. Figure 3.8 shows the Power Spectral Density of the

Figure 3.7: Temporal signals of the simulated monopolar EHG signals with a 3D volume conductor.

EHG signals. The Y axis represents the electrode number and the X axis the frequency content. Each

noise-free simulated EHG signals were then corrupted by adding realistic physiological noise extracted

from a segment of real EHG background activity (figure 3.9).
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Figure 3.8: Power Spectral Density of the simulated monopolar EHG signals

Figure 3.9: Segmentation and Denoising of the recorded EHG signals. (a) TOCO signal used for segmentation.
(b) Monopolar EHGs. (c) Monopolar EHGs after denoising. The vertical lines represent the window of
segmentation of the baseline used to extract the noise
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3.3 Source localisation and extraction

In this work, we compared different methods, extracted from the literature, in order to assess their

detection accuracy when extended uterus areas were activated, to simulate uterine sources.

3.3.1 Minimum Norm Estimate (MNE)

Minimum norm estimates are based on a search for the solution with minimum power using the L2

norm to regularize the problem, assuming that the solution should be the one providing the minimum

energy of the current distribution.

D̂MNE = (GTG+ λI)−1GTX (3.5)

where I is the identity matrix and λ is the regularization parameter.

3.3.2 Weighted Minimum Norm Estimate (wMNE)

The minimum norm is there weighted by a multivariate source prelocalization (MSP) a preprocessing

method used to extract some prior information. This is done by introducing a weighting matrix WS :

D̂wMNE = (GTWSG+ λI)−1GTWSX (3.6)

where Ws is a diagonal matrix, WS = 1
APM(i) computed for each source and APM is the activation

probability map generated by MSP.

3.3.3 Standardized low resolution brain electromagnetic tomography (sLORETA)

The idea of the conventional sLORETA algorithm [138] consists in standardizing the Minimum Norm

Estimte solution for the current density distribution, computed on a voxel grid, by weighting the current

dipoles by their estimated variances. This method can be adapted to our data model by replacing

the voxel grid by a surface grid that considers only dipoles on the uterus surface with an orientation

perpendicular to this surface.

sLORETA [138] uses the source distribution estimated from MNE and standardizes it a posteriori by the

variance of each estimated dipole source:

D̂sLORETA = D̂T
MNE,1{|VD̂|}

−1D̂MNE,1 (3.7)

where |VD̂|
−1 defined as GT [GGT + λI]−1 ∈ RNd×Nr is the Tikhonov-regularized inverse matrix of G

and I denotes the identity matrix of size Nr ×Nr.
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3.3.4 Transform-based tensor methods

To separate several simultaneously active patches (extended sources) and to reduce the noise on

the estimated lead field matrix, we employ a tensor-based preprocessing step. The idea of this method

consists in exploiting the structure of the data in 3 different ways. This is done by applying a transform to

the two-dimensional measurements (2D space) along time. Under the hypothesis that the resulting data,

which depends on three variables, is trilinear (time and 2D space), the tensor W can be decomposed

in a unique way (under mild conditions) up to scale and permutation ambiguities, into separate charac-

teristics for each variable with the help of the Canonical Polyadic (CP) decomposition (also sometimes

referred to as Parallel Factor Analysis (PARAFAC)). It is thus possible to get an accurate estimate of

the spatial mixing matrix or the signal matrix without imposing statistical constraints on sources (unlike

Independent Component Analysis (ICA), which may be physiologically difficult to justify.

To get a 3-dimensional data tensor which can be treated by the CP decomposition, one can either

compute a transform over time of the electric potential measurements, which leads to the Space-Time-

Frequency (STF) analysis, or a transform over space, yielding Space-Time-Wave-Vector (STWV) data.

These methods will be described in the subsequent sections.

a- Time-Frequency (STF) analysis

A technique often used for the time-frequency analysis consists in using the wavelet transform of the time

signals x(r, t) of the different channels [124]. The resulting three dimension data can then be stored into

the data tensor. In order to decompose the tensor W using the CP decomposition, we assume that for

each extended source, the time and frequency variables separate, leading to a trilinear tensor. This is

approximately the case under the hypothesis of oscillatory signals. The tensor can then be decomposed

as:

W (r, t, f) =

∫ ∞
−∞

x(r, t)Ψ(α, τ, t)dτ

≈
R∑
p=1

a(ri, p)b(tj ; p)c(fk; p).

(3.8)

where ri, tj and fk represent the sampled space, time, and frequency variables and a(ri; p), b(tj ; p), and

c(fk; p) denote elements of the loading matrices A, B, and C indicating the space, time, and frequency

characteristics, respectively. The number of components R corresponds to the number of extended

sources. The loading matrix A, containing the spatial characteristics, generally constitutes a good es-

timate of the spatial mixing matrix Ĥ(e). Pseudoinverse of the estimated spatial mixing matrix Ĥ(e) is

used to obtain an improved estimate of the signal matrix Ŝ(e):
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Ŝ(e) = Ĥ(e)+X (3.9)

b- Space-Time-Wave-Vector (STWV) analysis

Space-Time-Wave-Vector (STWV) is obtained by a 3D local Fourier transform over space accomplished

on the measured data. If a local spatial Fourier transform is calculated within a certain region on the

uterus, selected by the spherical window function w(r′-r) centered at a sensor position r, the STWV

tensor

F (rk, tl, km) =

∫ ∞
−∞

w(r′ − rk)x(r′, tl)e
jkTmr

′
dr′

≈
R∑
r=1

ar(rk)br(tl)cr(km).

(3.10)

is obtained [16], where variable km is the wave vector which indicate the direction of the changes of

electric potential. Here, w(r′ − rk) is a window function that selects data to the sensor with position rk

for the local transform and ar(rk), br(tl), and cr(km), denote the space, time, and wave vector charac-

teristics, which are obtained by the CP decomposition of the tensor.

This analysis requires knowledge of the sensor positions, specified by the matrix r, and of the number of

expected sources (corresponding to the number of CP components) R. Several types of window func-

tions can be used, including rectangular, triangular, Hann, and Blackman windows. The radius of the

window function is fixed relative to the smallest distance between a pair of adjacent sensors of the EHG

matrix and is specified by the variable d. As sensors at the border of the EHG electrode matrix are not

surrounded by other sensors that would permit to compute a 3D Fourier transform, these sensors should

be excluded from the analysis. To this end, their indices need to be specified by a vector. The tensor is

decomposed by using the DIAG (previously called SALT) algorithm [105], [104]. The results of the tensor

decomposition yield an estimate of the signal matrix Ŝ = [b1, ..., bR], describing the temporal dynamics

of each source. An estimate of the so-called spatial mixing matrix H = [h1, ..., hR], which characterizes

the spatial distribution of each source at the sensor level, is obtained as Ĥ(e) = XŜ(e)+, where Ŝ(e)+

denotes the pseudo-inverse of Ŝ(e).

Ĥ(e) = XŜ(e)+ (3.11)

c- Disk algorithm (DA)

To localize extended sources based on the estimated spatial mixing matrix obtained by the STWV

and STF analyses, we present in this section the Disk Algorithm [15]. In addition to the hypotheses that

are made on the structure of the STF or STWV tensor in order to separate the sources, this approach

assumes that the measurements can be described by extended sources with a piece-wise constant spa-
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tial distribution

The concept underlying the Disk Algorithm consists in recovering the extended source from a number

of small circular-shaped patches of grid dipoles, the disks.

The localization of distributed sources is done for each component separately by comparing the

spatial mixing vectors ĥr, r = [1, ..., R], estimated in the first step, to the spatial mixing vectors associated

with a number of potential distributed sources contained in a dictionary .

We refer to this method as the disk algorithm (DA), because we employ circular-shaped regions of

varying sizes, called disks, to define the potential distributed sources of the dictionary.

The input of this algorithm is the spatial mixing vector, estimated in the first step, as well as the matrix

which characterizes the spatial mixing vector of all disks, that are part of the dictionary. These disks are

described by the matrix which contains the indices of the dipoles that belong to each disk.

To determine the disks which best explain the estimated spatial mixing vectors of the sources, a

metric based on the normalized inner product between the spatial mixing vector ĥr of the r-th source

estimated in the first step and the spatial mixing vectors h of the disks is computed:

F (ĥr, h) = − (ĥTr h)2

hTh
(3.12)

The disks are then ranked according to their metric and the distributed sources are reconstructed by

uniting the disks associated with the smallest values of the metric. The output of the DA algorithm is a

cell array containing different source estimates obtained by uniting and increasing the number of disks

up to a maximal number of disks.

To select an appropriate source configuration among these solutions, a measure referred to as the

Goodness-of-fit (GOF) can be employed. The idea consists in choosing the source configuration that

minimizes the relative reconstruction error:

GOF =
‖X −Xrec‖F
‖X‖F

(3.13)

where Xrec =
∑P
p=1 hpS

T
p corresponds to the data matrix that is reconstructed from the estimated

source configuration, which is composed of P source regions. Here, hp denotes the reconstructed spa-

tial mixing vector of the p − th source region in the estimated source configuration and Sp denotes the

corresponding source signal. The source signals S = [s1, ....., sP ]T can be computed as S = Ĥ+X with

Ĥ = [ĥ1, ..., ĥp].

The patches are localized based on the spatial mixing vectors obtained by the STF and STWV
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preprocessing using DA. Depending on the tensor method used for the preprocessing, we subsequently

refer to these techniques as STF-DA and STWV-DA (Figure 3.10).

Figure 3.10: Leadfield and signal matrix estimation procedures for the STF and the STWV analyses

3.3.5 Sparse, variation-based source imaging approaches

The variation-based algorithm is a source imaging method based on structured sparsity, which im-

proves the Variation-Based Sparse Cortical Current Density (VB-SCCD) method [14]. More particularly,

it imposes sparsity on the variational map and in the original source domain by solving the following

optimization problem:

‖X−GS‖2F + λ(f(VS) + αf(S)) (3.14)

where the regularizing function f is either the L1-norm (for SVB-SCCD) or the L1,2-norm (for L1,2-

SVBSCCD). VB-SCCD optimization problem assumes a piece-wise constant spatial source distribution,

and can be regarded as a particular case of (3.14) where α = 0. The matrix V is a linear operator

that implements the variational map. For a given mesh of the uterus surface, which defines the source

space, this operator can be computed by using the following matrix:

V =


v11 v12 . . . v1N

v21 v22 . . . v2N

...
...

. . .
...

vP1 vP2 . . . vPn


where vij = 1; vik = −1; if the triangles share the same edge, and vij = 0 otherwise. The parameter

α determines the size of the estimated source regions and should generally be chosen such that 0 ≤

α ≤ 1. The parameter λ determines the overall influence of the regularization term and should be

adjusted based on the noise level. Equation 3.14 can be solved by the optimization problem using the

Alternating Direction Method of Multipliers (ADMM) algorithm, which is a simple and efficient algorithm

for constrained convex optimization. This gain on computational complexity enables us to apply the
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algorithm to large time intervals and to reconstruct the source signals. Different values for the parameter

λ can be given as input to the algorithm and a suitable regularization parameter is chosen automatically

from this set of values by selecting the parameter for which ‖VS‖0+α‖S‖0 is minimal.

3.3.6 Standard Maximum Entropy on the Mean (cMEM)

The Maximum Entropy on the Mean (MEM) solver is based on a probabilistic method where inference

on the current source intensities is estimated from the data, which is the basic idea of the maximum

of entropy. The main feature of this method is its ability to recover the spatial extent of the underlying

sources. Its solution is assessed by finding the distribution of source intensities to a reference distribution

in which source intensities are organized into parcels showing homogeneous activation state. In addition

a constraint of local spatial smoothness in each parcel can be introduced [32].

3.3.6.A Realistic Spatial Model using Data Driven Parcellization (DDP) of the uterus surface

We assume that uterine activity can be organized into functional uterus regions. Data Driven Par-

cellization (DDP) method was used to perform full parceling of the uterus surface into non-overlapping

regions at different scales(see figure 3.11). Such a partition at a specific spatial scale s is denoted by

P (s). Region growing around each seed points was then iterated until a given spatial neighborhood

order s is reached, resulting in a partition of the whole uterus into K regions.

In this DDP approach, we used partial information from Uterine Magnetomyography (MMG) data in or-

der to guide this spatial clustering. The SQUID synchronization data in [146] suggest regions with an

area of 64cm2. Therefore, on a classical uterine muscle surface the surface area is 1300cm2 assuming a

perfect sphere (20 to 21 regions) and approximately 1900cm2 assuming a more realistic oblate spheroid.

Then the number of regions could be around 30, and the global uterine synchronization occurs when the

number of regions is 15− 30 while synchronized contractions are inhibited when the number of regions

is between 32 and 44 [187]. According to the surface of the used mesh (1726.59cm2), K = 44, K = 27

and K = 13 regions have been chosen in the following result section leading to a mean surface region

of 39.24cm2, 63.95cm2 and 132.81cm2 respectively.

Defining uterine activity in terms of K regions of functionally homogenous activity (K � r) aims at better

conditioning the under-determined inverse problem, while the inverse method will infer the local source

intensity inside each region.

3.3.6.B Regularization Techniques

To regularize the problem, priori model or assumptions regarding the distribution of the sources j

were added to admit a unique solution. In the MEM framework, the amplitude of the sources j is es-
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Figure 3.11: clustering of the uterus surface at different spatial scales s obtained using the DDP technique (each
color represents one region).

timated as a multivariate random variable. In this study we used the variant of MEM algorithm called

coherent MEM (cMEM) implementation, as described in [32]. In cMEM, additional constraint of local

spatial smoothness in each region was introducedusing diffusion based spatial priors [60].

We assessed the detection accuracy of cMEM by simulating sources of several spatial extents se

ranging from 11.14 cm2 to 59.91 cm2. Secondly, using the spatial model P (s), we assessed the influence

of the spatial clustering scale s on their detection accuracy.

3.3.7 Performance Evaluation

3.3.7.A Area Under the Receiver Operating Characteristic(ROC) Curve, AUC:

AUC was proposed in [78] as a detection accuracy index (between 0 and 1), to assess the sensitivity

of a source localization method to the spatial extent of the underlying generator. An AUC value greater

than 0.8 was considered a good detection accuracy. The AUC index is assessing towards a Ground

Truth the normalized energy of a source map at a specific time sample. AUC was estimated based on

available Ground Truth, whereby, ROC curves were generated by plotting the sensitivity against the false

positive detection rate for different detection thresholds b (between 0 and 1). Normalized energy for both

the estimated and the simulated current density distribution were used to quantify the amount of true

positive (TP), true negative (TN), false negative (FN), and false positive (FP) for each threshold (Figure

3.12).

sensitivity(b) =
TP (b)

TP (b) + FN(b)
(3.15)

specificity(b) =
TN(b)

TN(b) + FP (b)
(3.16)
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Figure 3.12: Receiver Operating Characteristic (ROC) Curve Analysis [1]

3.3.7.B Dipole Localization Error (DLE)

The Distance of Localization Error (DLE) [31], which characterizes the difference between the original

and the estimated source configurations, is defined as follows:

DLE =
1

2Q

∑
k∈I

min
l∈Î
‖rk − rl‖+

1

2Q̂

∑
l∈Î

min
l∈Î
‖rk − rl‖ (3.17)

where Q and Q̂ are the numbers of original and estimated active dipoles i.e., Q = #I, Q̂ = #Î, and rk

denotes the position of the k − th source dipole.

3.3.7.C Correlation coefficients

In order to analyze the quality of the extracted signals of the different methods, we compute the cor-

relation coefficients between the original and the estimated signals of the uterine activity components.

The quality of the extracted signals is evaluated by calculating this correlation coefficients between the

estimated patch signal and the averaged signal of all dipoles belonging to a patch. We then compute

the mean of the correlation coefficients for all patches.

ρs =
(s− µs)T (ŝ− µŝ)

‖s−mus‖2.‖ŝ−muŝ‖2
(3.18)
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3.3.7.D Spatial Dispersion(SD)

This index [125], measures the spatial spread of the estimated source distribution around the true

source location. Spatial dispersion (SD) values close to zero means there is no active source outside

the simulated patch.

SD(ĵ) =

√√√√∑r
i=1

(
minl∈φ(D2(i, l))ĵ2(i, τ0)

)∑r
i=1 ĵ

2(i, τ0)
(3.19)

Where ĵ is the result of the source localization method to be evaluated, ĵ(i, τ0) represents the amplitude

of the current density distribution estimated for a dipolar source i on the uterus surface at the main peak

of the spike(τ0), minl∈φ (D(i,l)) indicates the minimum Euclidean distance between the source i and the

sources l in the simulated patch, φ represents the set of indices of the dipoles in the simulated patch.

3.4 Results

3.4.1 Influence of recoding conditions

3.4.1.A Inter-electrodes spacing

An important factor that influences the result of the source localization, and especially the reso-

lution of the localization is the distance between electrodes. In our experiments, to record EHG, we

used a grid of 4x4 electrodes with a 17.5 mm electrode spacing [5]. To determine the influence of the

inter-electrodes distance on the source localization resolution, we consider the following six distances

between electrodes: 5 mm, 10 mm, 17.5 mm, 20 mm, 25 mm, and 30 mm. We used in this analysis two

patches parted by 60 mm distance. The corresponding DLE are presented in table3.1. For all inverse

methods, 25 mm outperforms all the other distances.

Table 3.1: Performance of source imaging algorithms in terms of Distance of Localization Error (DLE) with different
montages of inter-electrodes spacing for two patches with 60mm distance, 30cm2 area of the patch,
Nt = 100 time samples with a sampling rate of 10Hz. The smallest DLE obtained for each methods is
marked in red.

Interelectrode (mm) 5 10 17.5* 20 25 30
MNE 3.83 4.14 3.83 3.54 3.50 3.52

WMNE 4.16 4.04 3.99 3.75 3.63 3.69
sLORETA 3.81 3.79 3.71 3.58 3.44 3.95
SVBSCCD 5.37 4.27 3.79 3.05 1.78 2.29
VBSCCD 3.69 3.74 3.66 3.41 2.46 3.38
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3.4.1.B Influence of the number of electrodes

Besides the inter-electrodes spacing, the number of electrodes may affect the source localization

result. We consider here different electrode numbers: 16, 30 and 64. The corresponding DLE graphs

as well as the position of the original patches are plotted in figure 3.13. For these simulations, we used

only one patch. The vertex of the mesh located closest to the center of the electrode grid is defined as

the ax-index. The patch is placed on the ax-index (figure 3.13a), then 31.28 mm apart from the ax-index

(figure. 3.13b), and third 93.5 mm apart from the ax-index (figure 3.13c) to get far gradually from the

position of the electrode grid. For the 3 configurations, 64 clearly give better results

Figure 3.13: Bargraph representation of DLE distribution for 16, 30 and 64 electrodes with three simulated sources
(a) patch on the ax-index, (b) patch on 31.28 mm from the ax-index, (c) patch on 93.5 mm from the ax-
index. 25 mm of inter-electrode spacing and SVB-SCCD inverse method are used in this simulation,
30cm2 area of the patch, Nt = 100 time samples with a sampling rate of 10Hz, 25mm Interelectrode
distance
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3.4.1.C Influence of the fat thickness

As the conductivity of the fat is low, the fat thickness may have a large impact on the source local-

ization performance. We thus studied this point with the following simulations. We conduct a simulation

study with one patch placed on the ax-index with different fat thicknesses 3, 8, 13, 18, 23 mm [54]. The

resulting DLE and SD curves are displayed in figure 3.14, which evidences an increase in both DLE and

SD with increasing fat thickness.

Figure 3.14: Representation of DLE and SD, with the fat thickness. 64 number of electrodes with 25mm inter-
electrode spacing and SVB-SCCD inverse method are used in this simulation, 30cm2 area of the
patch, Nt = 100 time samples with a sampling rate of 10Hz

3.4.2 Numerical Experiments of Tensor analysis

3.4.2.A Influence of the SNR

The STWV analysis achieves good performances for SNR greater than 4 dB, reaching correlation

coefficients that are higher than 0.8. The best results are obtained for distant patches (distance = 15 cm)

whereas the worst results are achieved for close patches (distance = 5cm) . The correlation coefficients

of the signals estimated by using the STF analysis do not exceed 0.5 for all tested SNR. In fact, due to

the high correlation of the signals of the two synchronous patches, the STF analysis does not manage

to separate the sources, which explains its bad performance.

3.4.2.B Influence of the number of time samples

For the STWV analysis, the signal correlation coefficient is approximately the same for all consid-

ered lengths of time intervals, meaning that the temporal characteristics of the sources are accurately

extracted by the CP decomposition independently of the signal length. However for STF, as explained

previously, this method does not permit to separate the sources, due to their correlated signals, and the

46



Figure 3.15: Correlation of original and estimated signal vectors for the STWV and STF analyses for patches with
large distance and patches with small distance as a function of the SNR for T = 100 time samples, N
= 64 sensors, 30cm2 area of the patch, with a sampling rate of 10Hz, 25mm Interelectrode distance

accuracy for the estimated source time signals is poor.

Figure 3.16: Correlation of original and estimated signal vectors for the STWV and STF analyses for patches with
large distance, and patches with small distance depending on the number of time samples for a SNR
of 4 dB, N = 64 sensors, 30cm2 area of the patch, with a sampling rate of 10Hz, 25mm Interelectrode
distance

3.4.2.C Influence of the number of sensors

Figure 3.17 presnts the correlation coefficients for different electrode configurations and a SNR of 4

dB. While we observe only a slight increase in the correlation coefficients while increasing the number

of sensors for the STF analysis, the performance of the STWV method clearly depends on the number

of sensors used to simulate EHGs, specially for the close distant patches.
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Figure 3.17: Correlation of original and estimated signal vectors for the STWV and STF analyses for patches with
large distance, and patches with small distance depending on the number of sensors for T = 100 time
samples, a SNR of 4 dB, 30cm2 area of the patch, Nt = 100 time samples with a sampling rate of
10Hz

3.4.3 cMEM: Influence of the number of parcels

The performance of cMEM method with the validation metrics AUC and SD for three spatial extents

of the source (se= 2, 3 and 4) at different clustering scales (s=15, 10 and 8) are illustrated in figure 3.18.

We noticed that the localization accuracy increased when increasing the source spatial extent. We also

illustrated the impact of the clustering scale s. We observed an overall very good accuracy (AUC > 0.8

and SD < 29 for all spatial extents) at a clustering scale s=8.

3.4.4 Method selectivity: Influence of patch distance

We compare the performance in term of selectivity of the sources for SVB-SCCD, VB-SCCD, STWV-

DA, STF-DA, cMEM and sLORETA. To this end, EHG data are generated for N = 30 electrodes using

a realistic uterus and abdomen model with four compartments that represent the uterus, the muscle,

the fat and the skin. For the generation of extended sources, we consider a number of patches each

of which consists of 20 adjacent dipoles. Highly-correlated uEMG signals comprising 200 time samples

with a sampling rate of 200 Hz are created for all dipoles of one patch. The main interest of the methods

consists in their ability to separate several simultaneously active patches. An important factor for the

distinction of two patches is their distance. This point is therefore studied in the following simulations. To

study the influence of the patch distance on the source localization results, we consider in the following

three configurations of two superficial patches with large, medium, and small distances, amounting to

approximately 15 cm, 10 cm, and 5 cm, respectively. This will permit us to test the spatial resolution

of the methods. We used 2 patches that exhibit similar activities with highly synchronized activities.

The time courses of the dipoles in the first patch are delayed by several time samples according to the
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Figure 3.18: cMEM qualitative assessment. Visual analysis of source localization results together with Area Under
the ROC curve (AUC) and Spatial Dispersion(SD) values for a simulated source of spatial extent se =
2, 3 and 4 at s=15, 10 and 8, 30cm2 area of the patch, N = 64 sensors, Nt = 100 time samples with
a sampling rate of 10Hz

distance between the two patches and attributed to the dipoles in the second patch. Assuming that the

other patches are activated due to a propagation of uEMG, we use the same signals for the dipoles of

the second patch but introduce a delay, for small distances, a random delay of 5 ms is used for each

signal. For medium distances the signals are shifted 13 ms and for large distances, a signal delay of 20

ms is employed. The performance achieved with the different source imaging algorithms for the three

scenarios, averaged over 20 realizations with different patch signals (by introducing small variations in

amplitude and delay) and noise, is summarized in Table 3.2 and 3.3. The AUC boxplot obtained for the

tested source localization methods are plotted in Figure 3.19 for both raw and prewhitened EHG data

(The EHG data were spatially prewhitened before applying the source localization algorithms).

In the case where the source imaging algorithms are applied to the raw EHG recordings, for all three

patch configurations, the AUC boxplot, the DLE and the correlation coefficient values show that both

VB-SCCD and SVB-SCCD clearly outperform all other extended source localization approaches. For

two patches (scenario 3), one can observe that SVB-SCCD approach clearly leads to better results than

VB-SCCD. The SVB-SCCD approach provides a better separation of the sources than the VB-SCCD

approach. cMEM and STWV-DA achieves comparable performances for all three source configurations.

They does not permit to recover the patches as accurately as variation-based source imaging methods

but perform better than sLORETA. STF-DA exhibiting high DLEs. The localization accuracy diminishes

with decreasing source distance. Applying the source imaging algorithms to the prewhitened data leads

to an improved performance for all methods. In particular, the cMEM algorithm attains almost the same
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performance as STWV-DA. STF-DA manages to recover both patches. Furthermore, the AUC boxplot

obtained for each method for the three tested scenarios are comparable, which means that the patch

distance does not influence the source localization performance in the case of prewhitened data.

Application on real EHGs:

We then applied the best method (SVB-SCCD) to real EHG signals. We used a standard protocol, to

record the electrical activity of the uterine muscle. This protocol uses a grid of 16 monopolar electrodes

(4x4 matrix) placed on the woman’s abdominal skin, with two reference electrodes on each of her hips.

The standardized system uses Ag/AgCl electrodes (8mm diameter, with 17.5 mm distance between

the centers of two adjacent electrodes). Each window in figure 3.20 represents 20 s of averaged data

overlaps with the previous and subsequent windows by 10 s. Hot spots of myometrial activity are seen.

Islands of activity appear without activation of neighboring tissue. We could not evidence from these

preliminary results any kind of linear propagation of the uterine electrical activity.

Figure 3.19: AUC obtained for different methods applied to raw EHG data (up) and to spatially prewhitened EHG
data (down) for three different scenarios composed of two patches with large distance (left), patches
with medium distance (center), and patches small distance (right). (30cm2 area of the patch, N = 64
sensors, Nt = 100 time samples with a sampling rate of 10Hz)
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Table 3.2: Performance of source imaging algorithms in terms of DLE (in cm) and signal correlation for the consid-
ered scenarios with large patch distance (1), medium patch distance (2), and small patch distance (3),
applied to raw EHG data. (30cm2 area of the patch, N = 64 sensors, Nt = 100 time samples with a
sampling rate of 10Hz)

DLE Correlation coefficient %
Scenario 1 2 3 1 2 3
SVB-SCCD 0.12 2.12 3.01 96.6 93.2 90.09
VB-SCCD 0.14 2.9 5.9 95.1 91.2 80.9
cMEM 4.2 5.34 6.3 75.3 73.4 72.3
STWV-DA 6.43 8.3 12.4 71.44 68.11 60
STF-DA 25.16 20.67 17.4 47.5 52.6 55.67
sLORETA 10.56 12.54 17.8 65.43 59.8 54.89

Table 3.3: Performance of source imaging algorithms in terms of DLE (in cm) and signal correlation for the consid-
ered scenarios with large patch distance (1), medium patch distance (2), and small patch distance (3),
applied to spatially prewhitened EHG data. (30cm2 area of the patch, N = 64 sensors, Nt = 100 time
samples with a sampling rate of 10Hz)

DLE Correlation coefficient %
Scenario 1 2 3 1 2 3
SVB-SCCD 0.98 1.4 2.59 97.65 95.41 92.5
VB-SCCD 0.99 1.9 3.2 96.4 94.7 90.52
cMEM 3.4 4.01 4.55 85.4 83.34 81.6
STWV-DA 3.3 4.23 4.7 85.7 83.23 81.17
STF-DA 13.16 12.67 10.15 56.9 59.4 65.88
sLORETA 5.67 8.9 11.12 76.45 75.6 72.42

Figure 3.20: EHG source imaging using SVB-SCCD inverse method of pregnant contraction recorded by 16 elec-
trodes. Each window represents 20 s of averaged data.
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3.5 Discussion and Conclusion

We have investigated the relationship between the source localization, and some experimental pa-

rameters: the number, distance of electrodes and the fat thickness. It was proved that the source

localization benefitted from an increased number of electrodes and that an optimal electrode spacing

(25mm for an inter-patch distance of 60mm) exists. We have also shown that an increase in the fat

thickness leads to larger DLE and SD values. This may be related to the fact that, with increasing fat

thickness, the electrode get farther away from the true source that are contributing to the estimated so-

lution. Thus the diffusion process due to the low conductivity of the fat impedes the localization accuracy.

We demonstrated using Data Driven Parcellization of the uterus surface is particularly relevant to lo-

calize uterine sources as well as their spatial extent. The possibility of locating the sources of the uterus

is likely to give new information on the synchronization of activity of the whole uterus.

We have conducted our analysis using a realistic uterus model and have aimed at identifying the spa-

tial extent of the sources. The computer simulations have shown that both SVB-SCCD and VB-SCCD

exhibited the best performance, which permits to simultaneously localize several highly correlated active

source regions. They appear therefore to be of the most promising approaches for the identification of

multiple active uterus regions in the context of propagation phenomena. Nevertheless, the VB-SCCD

algorithm shows some difficulties in separating sources. The SVB-SCCD method permits to obtain more

focal source estimates than VB-SCCD and achieves the separation of even closer sources, which leads

to an increased performance in terms of signal extraction, due to the additional regularization term that

imposes sparsity in the original source domain. We have also analyzed the use of tensor-based methods

which separate the sources prior to the localization. STWV method accurately separated the patches

and exhibited good performance. This can be explained by the fact that the STWV analysis correctly

separates the spatial mixing vectors of the two patches and therefore permits to localize each patch

individually. In particular, STWV-DA has proven to be robust if applied to the raw EHG data with no

prewhitening, contrary to the other tested source imaging algorithms, which, for patches with medium to

small distances, only lead to good results in the case of prewhitened data. However, the tensor-based

methods do not provide accurate results for the correlated sources in case of the STF analysis due to

the highly correlated signals of the two patches (Due to propagation effects, the source signals can be

expected to be highly correlated), which differ only by a small time delay. The STF analysis is therefore

unlikely to separate the sources, therefore impeding source localization. This poor sensitivity may be

explained by the inability of the STF analysis to identify components that can be associated to differ-

ent patches because the time-frequency content of the simulated patch activities is nearly identical. The

time signals of the different sources should not be too correlated to be properly identified by this method.
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Low correlations facilitate the source separation. STWV-DA does not yield as accurate results as cMEM

for the raw EHG data. Nevertheless, employing prewhitening improves the source localization results

obtained by STWVD-DA, leading to a performance that is similar to STWV-DA in this case. sLORETA

generally do not permit to achieve as accurate results as cMEM.

When applying SVB-SCCD inverse method to real signals, our analysis of the evolution of the real

sources during contraction showed a non-linear propagation, appear to propagate slowly in tissue, in

complex pathways and noncontiguously.

This result promotes the hypothesis that another mechanism than the only electrical diffusion, permits

the global uterus synchronization. In future work we would like to go deeply to the clinical applications

(estimating the sizes of the regions and analysing the synchronicity between them), in order to improve

our knowledge concerning the uterine synchronization.
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4.1 Introduction

Noninvasive EHG source connectivity is a technique to identify functional uterine networks at uterus

level from noninvasive recordings.

Studying the global synchronization of the uterus at the source level, by using noninvasive signals

(recorded real EHGs) could be a very important tool for clinical purpose. Imaging techniques could

be used to identify uterus networks involved in pregnant uterus functions as well as in labor. A num-

ber of studies performed at the level of electrodes reported that electrohysterogram (EHG) associated

with appropriate signal processing techniques might bring relevant information about normal networks

activated [130]. Indeed, this interpretation is not straightforward as signals are severely corrupted by

the effects of volume conduction. To overcome these difficulties, we apply connectivity methods on

the temporal dynamics of uterus sources reconstructed from surface EHG. This approach includes two

steps (EHG inverse problem followed by source connectivity estimation). However, it raises a number of

methodological issues. First, it requires to solve the ill- posed EHG inverse problem. Second, a func-

tional connectivity method must be chosen among the many available ones. A central issue is the impact

of selected methods (EHG inverse solution and connectivity measure) on the topological/statistical prop-

erties of identified uterine networks. Regarding the first aspect, several approaches have been proposed

to solve the EHG inverse problem, some efforts have been done to evaluate inverse algorithms in the

view of localizing the uterus sources [190]. For the purpose of this study, we retained three functional

connectivity methods based on linear cross-correlation (R2) [20], nonlinear regression (h2) [142, 178],

coherence function [19].

In this study, we report a quantitative comparison of methods aimed at identifying uterus networks

from surface EHG data. In addition, our comparative study includes simulated EHGs generated from

realistic computational model uterine sources.

To characterize precisely connectivity matrices and quantify the global uterine connectivity, we used

an analysis based on the graph theory. This field has shown a growing interest in the last years, espe-

cially to characterize uterus networks [24, 130, 156]. According to this approach, a connectivity matrix

can be represented as graphs consisting of a set of nodes interconnected by edges.

In this study, we analyze the impact of the combination between the algorithm used to solve the EHG in-

verse problem and the algorithm used to measure the functional connectivity. We evaluate three inverse

solution algorithms and three connectivity measures, on data simulated from a 3D model that gener-

ate realistic uterine EHG recorded in woman’s abdomen. We used a network-based similarity index to

compare between the network identified by each of the inverse/connectivity combination and the original

network generated by the model.
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The chapter is organized as follows. The connectivity and inverse algorithms we retained for eval-

uation are described in the methods section. Results obtained from the quantitative comparison of

analyzed methods are then presented. They show that fairly different networks are identified from the

same EHG data set when different methods are being used. However, they also suggest that the com-

binations (inverse + connectivity methods) could lead to the identification of networks topologically close

to the expected ones.

4.2 Materials and methods

4.2.1 Data generation

The EHG signals recorded at the abdominal skin surface mostly reflect the activity of myometrial

cells within the uterus. We model these activities by using a realistic model developed in our team, to

simulate EHGs. This model permits us to control the number, position and activity of the uterine sources

(network of sources) used to simulate the EHGs, as described previously. Each noise-free simulated

EHG signals were then corrupted by adding realistic physiological noise extracted from a segment of real

EHG background activity (figure 4.2). We generated by using this model different networks by creating

different sources which connectivity are known (ground truth network). This ground truth will then be

compared with the estimated network.

4.2.2 Inverse solutions

We chose in this work to compare 3 inverse methods: wMNE, cMEM and SVBCCD. We retain

wMNE as a a classical inverse method, SVBCCD because this method gave the best results for source

localization in the previous study and cMEM that perfomed well on raw data (with no prewhitening).

4.2.3 Connectivity measures

For the purpose of this work, we selected three methods that permit to estimate the functional uterus

connectivity from electrophysiological signals. These 3 methods are the ones that were selected in

Nader’s preliminary work [129].

4.2.3.A Cross-correlation coefficient (R2)

This is one of most classical measures of interdependence between two time series [8]. The cross-

correlation coefficient measures the linear correlation between two variablesX and Y in the time domain
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as a function of their time delay (t). The estimation of this coefficient for the two-time series X(t) and Y(t)

is performed by using the following equation:

R2 = max
τ

cov2(X(t), Y (t+ τ))

(σX(t)σY (t+ τ))2
(4.1)

where σ and cov denote the standard deviation and the covariance, respectively. R2 ranges from 0

(X and Y are independent) to 1 (Y is a linear function of X).

4.2.3.B Imaginary part of coherence (Icoh)

The coherence (C) function gives the linear correlation between two signals X and Y as a function

of the frequency [135]. It is defined as their cross-spectral density function CXY normalized by their

individual auto-spectral density functions CXX and CY Y . The imaginary part of coherence (Icoh) is then

defined as:

Icoh =
|ImCXY (f)|√
|CXX(f)| |CY Y (f)|

(4.2)

Icoh varies between 0 (X and Y are independent) and 1 (X and Y are fully correlated). This new

connectivity analysis will be tested in this work and compared to the previously used method. To quantify

the connectivity computed with these different methods over the whole matrix of EHG signals, we will

use the graph theory approach.

4.2.3.C The nonlinear correlation (h2)

In practice, to estimate the nonlinear correlation coefficient h2, we study a scatter plot of Y versus X.

We subdivide the values of X into bins; for each bin, we calculate the average value of X (pi) and the

average value of Y (qi). The regression curve is approximated by connecting the resulting points (pi, qi)

by straight line segments [140]. Then, the nonlinear correlation coefficient between the two signals X

and Y is calculated as follows:

h2
Y/X =

∑N
k=1 Y (k)2 −

∑N
k−1(Y (k)− f(Xi))

2)∑N
k−1 Y (k)2)

(4.3)

The estimator h2
y/x ranges from 0 (Y is independent of X) to 1 (Y is fully determined by X) and the

nonlinear correlation coefficient is asymmetrical so hy/x 6= hx/y and thus permits to give information on

the direction of the information. This asymmetry feature is not explored in our work as we are interested

only in the presence or not of a nonlinear relationship between two signals. To quantify the connectivity

computed with these different methods over the whole matrix of EHG signals, we will use the graph

theory approach.
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4.2.4 Graph analysis

The “Graph theory” started with the scientist Euler in 1936 when he tried to find a solution for the

question: “What is the best path across the seven Köningsberg bridges?” [18]. This path that was called

later “Eulerian path” should cross over each of the seven bridges exactly once. From such problems, the

field of graph theory has developed numerous algorithms that can be applied into many domains. Later

on, this approach has been largely used in several fields such as biological system, internet networks

and social groups [133].

Several metrics can be extracted from a graph network to quantify its connectivity. We chose in this work

to use the strength parameter that provided the best results in : Nader’s results [129].

The strength shows the importance and the contribution of each node with respect to the rest of the

network. The strength of a node is the sum of the weights of the edges connected to this node and can

be defined as:

Si =
∑
j∈N

wij (4.4)

where i, j denotes respectively the ith , jth nodes and wij is the value (weight) of the relation between

nodes i and j [156]. The average strength value over all the nodes can be also computed, indicating the

overall characteristic of the network.

4.2.5 Proposed approach

The different steps of our analysis of the connectivity at the source level are summarized in figure 4.1

and figure 4.2. In step 1, the lead field matrix G was computed as previously explained (chapter 3). The

distributed source space consisted in a mesh of the uterus surface (5000 vertices). Dipoles were located

at each vertex of this mesh. The time-course of each dipole of the source space was generated from

a physiologically uterus model reported in [185], that permits the simulation of uterine electrical activity

with well-controlled time shifts. We considered in this work two interconnected networks. The temporal

dynamics of the second network were highly correlated with those of the first one, but with a minor delay

(50ms). This delay was usually interpreted as reflecting propagation between distant regions in the

uterus. 20 trials of 40s at 200 Hz containing 30 uterine spikes were simulated. Each trial was obtained

for a new realization of the input random noise leading to a new realization of uterine spikes.

In step 2, the temporal dynamics of dipolar sources D were estimated from simulated surface EHG

signals S(t). The three above-described methods (wMNE, cmem, svbccd) were used to estimate D, the

highest energy sources. The uterus surface was parcellated into 1000 regions of interest (ROI). Then, in

step 3 the functional connectivity among uterus sources was computed using the 3 methods described

above (R2 , h2 and Icoh). The strength of all nodes of the connectivity matrix was then computed. A

thresholding procedure was then applied on the functional connectivity values in order to retain only the
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strongest functional connections. On all connectivity matrices (1000 x 1000) we computed the strength

of each node. We kept nodes with the highest 1% strength values. The same threshold was applied on

the connectivity matrices for all combinations (inverse/connectivity).

Finally, in step 4, the performance of each method (source reconstruction+functional connectivity)

was evaluated against its capacity to identify a network topologically close to that expected. For this

purpose, we used a criterion based on the simNet algorithm [120]. The main advantage of this algorithm

is that it takes into account the spatial location (3D coordinates) of the nodes when comparing two

networks. The algorithm provides a normalized Similarity Index (SI) between 0 (totally different graph)

and 1 (same graph). A Gaussian noise was used as external input.

We used the matlab based Brain Connectivity Toolbox (BCT) for the calculation of graph parameters

[156]. For the simulated data, we used Python programming language using the Pycharm Edu 2.0.3

software (www.jetbrains.com). For the network visualization, we used mayavi toolbox on the same

software.

Figure 4.1: Identification of uterus network: first, a network is generated by the model and considered as the ground
truth. By solving the forward problem, synthetic EHG data are generated. These signals are then
used to solve the inverse problem in order to reconstruct the dynamics of sources using three different
inverse solutions (wMNE, svbccd and cMEM). The statistical couplings are then computed between
the reconstructed sources using three different methods (r2, h2 and Icoh). The identified network by
each combination (inverse/connectivity) was then compared with the original network using a network
similarity
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Figure 4.2: Ilustration of the simulated signals in each step

4.3 Results

A typical example of the connectivity graphs obtained for the 9 different combinations of the source

reconstruction and functional connectivity methods is presented in figure 4.3. The qualitative visual

inspection of the identified networks shows that results are highly dependent on the both chosen algo-

rithms used to solve the EHG inverse problem and to measure the functional connectivity. The qualitative

analysis also showed that the number of nodes and the connections between them varied according to

the combination of methods used. Quantification of these differences is provided in Fig. 4.4c. Overall,

values of network similarity ranged from 55 to 69 %. The combination providing the highest similarity

values between the estimated and the actual network was scbsccd/ h2 (69 %) followed by scvbsccd/Icoh

(65 %) and wmne/r2 (61 %). The lowest similarity value was obtained with the cmem/Icoh combination.

For labor data case, we can notice, as expected, an increased synchronization among interconnected

myometrium populations distributed over distant areas. This synchronization often leads to an increase

in uterus connectivity more evident than during pregnancy (4 weeks before labor), as shown in figure

5.6.

4.4 Discussion and conclusion

Identifying uterus networks from noninvasive EHG data is a challenging issue. The joint use of these

two approaches (source localization combined with functional connectivity analysis ) is still novel and

raises a number of methodological issues that should be controlled in order to get appropriate and

interpretable results. In this study, we presented a comparative analysis of the results obtained from the

possible combinations between three algorithms to solve the EHG inverse problem and three methods to

estimate the functional connectivity. The connectivity matrix was then quantified by a graph parameter,
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the strength.

The results show that the choice of the inverse algorithm and the connectivity method is crucial and

can strongly alter the results and their interpretation. It is remarkable that starting from the exact same

EHG recordings, different networks can be identified. An originality of this study is related to the use

of EHG signals simulated data from a realistic model as a ground truth for comparing the performance

of considered methods. By proposing a quantitative comparison procedure, we were able to retain one

combination that showed the best performance in identifying the uterus networks. Overall results ob-

tained on simulated data indicated that the combination of the scbsccd and the h2 methods leads to the

most relevant networks as compared with the ground-truth (simulations) (similarity index of 0,7). These

results outperform the ones obtained when using a simple approach and classical methods, as done in

Nader’s preliminary work [129] were the highest value obtained by this similarity index was around 0,3.

The connectivity matrices were thresholded by keeping the nodes with highest strength values

(strongest 1%). This procedure was used to standardize the comparison between all the combina-

tions. The threshold of 1% was chosen as the one giving the best results, after testing several values

of the threshold. In the previous work [129], the threshold was 10%. But they worked with 16 regions.

Here we worked with 1000 regions and we activate the nodes directly below the electrodes.

EHG source connectivity can be a valuable method to identify uterus networks. However, results are

highly dependent on the choice of processing methods.
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Figure 4.3: Two networks scenario. (a) uterus networks obtained by using the different inverse and connectivity
methods. (b) The original network (ground truth) is shown and (c) values (mean ± standard deviation)
of the similarity indices computed between the network identified by each combination and the model
network
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Figure 4.4: Results obtained by the network-based approach (SVBCCD/h2) Results obtained by the localization
based approach (SVBCCD). Results were averaged over a 50 ms interval around each of the spike
peaks. Red color represents the sources with the highest energy. A. Results for labor EHG signals, and
B. Results for 4 week before labor EHG signals
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5.1 Introduction

Biosimulation models of the uterus electrical activity have become a very useful tool. It provides bet-

ter understanding for the complex biophysical phenomena related to the contractility of the uterus such

as uterine contractions during pregnancy. At cellular level, the electrical activity of uterus tissue may be

simulated by solving a system of Ordinary differential equations (Ordinary differential equations (ODEs))

describing the electrical behavior of the cell membrane. Because the biophysical processes underlying

this phenomenon are non-linear and change very rapidly, the ODE system is a challenge to be solved

numerically. Furthermore, the implementation of these models is a hard task for commercial finite ele-

ment software. In this study we conducted a finite element formulation, model and code generation, for

monodomain and bidomain equations. The developed code is coupled with the Red3 cell electrophysi-

ological model already developed [96] in order to have isotropic excitation propagation starting from the

cell to the complete uterus levels. Fenics was used to build the proposed finite element code.

Uterus tissue can be viewed as connected cells (myocytes), organized and tethered through an

extracellular matrix to produce the contraction of the uterus. The currents underlying the propagation

of the electrical activity from cell to cell flow across the cell membrane (Gap Junctions) and through

both the intracellular and extracellular spaces in the uterus (Figure 5.1). Over the past 30 years there

has been considerable interest in the structures that couple the intracellular spaces of myocytes to one

another [35]. Myometrial cells are coupled together electrically by gap junctions composed of connexin

proteins [67]. The increase in gap junction number, and the resulting facilitated electrical transmission,

provide better coupling between the cells resulting in synchronization and coordination of the contractile

events of the connected cells. There is evidence that gap junctions form a pathway for the passage

of action potentials by forming a low-resistance electrical contact between the cells [122], [66]. Many

studies indicated that during most of pregnancy phases, the cell-to-cell gap junctions are absent or

present in very low density [66]. On the other hand, a large number of gap junctions between myometrial

cells is observed during labor [63].

The other component of the intracellular resistance is determined by the micro- and nanostructures

inside the cell itself. Like most muscle cells, uterus myocytes contain contractile proteins: actin and

myosin. Contraction of smooth muscle cells happens due to the interaction of myosin and actin fila-

ments. The key enzyme is the myosin light chains kinase (MLCK) which, activated by the complex

Ca2+- calmoduline (Ca2+ − CaM), phosphorylates the myosin light chain LC20. It is in this phospho-

rylated form that myosin can interact with actin and cause contraction. The fall in the concentration

of intracellular calcium
[
Ca2+

]
i

leads to relaxation: the dephosphorylated myosin, by the action of a

specific phosphating, then detaches from the actin. Furthermore, phosphorylation of MLCK causes a

decrease in its ability to activate myosin and thereby to produce the contraction. This activation pattern
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(related to depolarization followed by repolarization) is well established in vitro but does not always seem

to be strictly followed in vivo. In addition, the relative importance of different control channels varies ac-

cording to whether it is a spontaneous contractile activity or that caused by extracellular signals. Some

animal studies suggest the existence of other regulatory pathways involving protein kinase C (PKC) and

the fine filament proteins, the caldesmon and calponin, whose role is far from being elucidated in the

uterus [184], [183].

Like the intracellular space, the extracellular space of uterus tissue is similarly complex. But unlike the

intracellular space, the role of the interstitial space on the spread of electrical activity is less well under-

stood or appreciated.

Uterus electrophysiology at the tissue level is typically modeled with continuum approximations via

the monodomain or bidomain equations, two time-dependent systems of partial differential equations

(PDEs) describing the propagation of the transmembrane (and extracellular) potential through the uterus

tissue. In order to improve the realism of the model used to solve the forward problem, we implemented

a framework for simulating the uterus contraction using the Python interface to FEniCS [52].

Figure 5.1: A Multiscale Model of the uterus from cell to organ level

5.2 The Torso

The mathematical model for electrical activity in the tissue is based on local volume averaging. In-

deed, modeling each cell separately would be much too costly). We consider the body as a volume

conductor, in which the electrical activity can be described by the Maxwell’s equations. We assume

that the effect of temporal variations is negligible, so that we consider the static equation 5.1 giving the

electric field E.

∇× E = 0 (5.1)
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From 5.1, the electric field can be written from an electric potential u as:

E = −∇u (5.2)

The current density J in a conductor is directly related to the electrical field E by the conductivity M of

the medium. This relates J 5.3 with the electrical potential u 5.2.

J = −M∇u (5.3)

The active uterus tissue generates current sources in the body, modeled as one or more dipoles. The

approach considered here consists in computing the potential distribution only to area of the body im-

mediately surrounding the uterus. We introduce this aera as the torso, denoted as ΩT . The torso might

be viewed as a passive conductor, which amounts to assume that ∇J = 0 in ΩT .

In the following we denote uT and MT the electrical potential and conductivity in the torso, respectively.

The previous divergence free relation on J leads to the standard relation 5.4 describing the electrical

potential in the torso

∇.(MT∇uT ) = 0 on ΩT (5.4)

It is natural to assume that the body is surrounded by air, considered as electrically insulating. This

leads us to consider the homogeneous Neumann bounday condition 5.5 at the exterior surface of the

torso δΩT .

MT (∇uT .n) = 0 on δΩT . (5.5)

We introduce the uterus domain ΩU as embedded in the torso ΩT . This implies an inner boundary

denoted as δU which is the interface between the uterus and the surrounding torso. We assume that

the potential uδU is knowm in this region. The problem to solve for the torso then becomes


∇.(MT∇uT ) = 0 on ΩT

MT (∇uT .n) = 0 on δΩT

uT = uδU on δU

5.3 Action Potential Model

The uterus muscle cells belong to a class of cells known as excitable cells, which have the ability

to respond actively to an electrical stimulus or to generate spontaneous activity. As described in intro-

duction the uterus cells are also connected, so that a stimulated cell may pass the electrical signal on

to neighbouring cells. This ability enables an electric stimulation of one part of the uterus to propagate
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through the muscle and activate a part of the the uterus. The signal propagation in excitable tissue

takes the form of a so-called depolarization of the cells. When the cells are at rest, there is a potential

difference across the cell membrane. The potential inside the cells, called the intracellular potential, is

negative compared to the extracellular potential, which is the potential in the space between the cells.

When excitable cells are stimulated electrically they depolarize, i.e. the difference between intracellular

and extracellular potential changes from its normal negative value to being positive or approximately

zero. The depolarization followed by a repolarization that restores the potential difference to its resting

value. The complete cycle of depolarization and repolarization is called an action potential. Because the

potential difference across the cell membrane is essential for the behaviour of excitable tissue, we need

to construct a mathematical model that is able to describe this difference. The used Action Potential (AP)

model Figure 5.2 is a cellular model developed in our lab and can be found in [151]. For computation

time saving, a reduction of the Rihana’s model was used. Indeed, as the model considers each vertex as

a cell, this AP model needs to be computed 99084 times per integration time. Therefore, the AP model

reduction, named Model reduction with only three variables (Red3), is only three variables [96] instead

of the 10 equations per cell of the Rihana’s original model. The most computation time consuming part

of the original model was ICa calcium current. Therefore, the reduction is in part based on the modifica-

tion of that current with the one proposed by Parthimos et al. [137]. That reduction is a needed step to

the execution time of the model to be acceptable, even in recent clusters, and allows a computation to

organ scale (whole uterine muscle) rather than tissue scale. Thereby, the three variables of the simpler

electrical model are described by the following equations:

dVm
dt

=
1

Cm
(Istim − Ica − IK − IKCa − IL) (5.6)

dnk

dt
=
hk∞−nk
τnk

(5.7)

d
[
Ca
]2+

i

dt
= fc[−αICa −KCa[Ca2+]i] (5.8)

where Vm is the transmembrane potential, nK is the potassium activation variable, KCa is the Calcium

extraction factor and [Ca2+]i the intracellular calcium concentration. The ionic currents are ICa for the

voltage dependent calcium channel current, IK for the voltage dependent potassium channel current,

IKCa for the calcium dependent potassium channel current and IL for the leakage current.

Ica = Jback +Gca(Vm − Eca)
1

1 + e
Vca−V m

Rca

, (5.9)

IK = Gknk(Vm − EK), (5.10)
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Table 5.1: Parameters of the electrical model.

Variable Value Description Unit
Gk 0.064 Potassium channels conductance mS/cm2

GkCa 0.08 Potassium/Calcium channels conductance mS/cm2

GL 0.0055 Leak channels conductance mS/cm2

k 0.01 Half-point potassium concentration µmol
fc 0.4 calcium influx probability
a 4e-5 current conservation factor molcm2/µC
kca 0.1 Ca extraction factor ms−1

El -20 Leak nerst potential mV
Ek -83 Potassium nerst potential mV
R 8.318 gas constant JK−1mol−1

T 295 Temperature K
F 96.487 Faraday constant KC mol[
ca2+

]
3 Extracellular calcium concentration mmol

Jback 0.023 Background calcium current mA/cm2

Gca 0.022 VOCC conductance mS/cm2

Vca -20.07 Half-point of the VOCC activation sigmoid mV
Rca 5.97 Maximum slope of the VOCC activation mV

IkCa = GKCa

[
Ca2+

]2
i[

Ca2+
]2
i

+ k2
(Vm − EK) (5.11)

IL = GL(Vm − EL) (5.12)

The Nernst potential for Ca2+ is given by:

ECa =
RT

2F
ln
[[Ca2+

]
e[

Ca2+
]
i

]
(5.13)

where R is the ideal gas constant and T is the absolute temperature (K).

hk 8 =
1

1 + e
4.2−Vm

21.1

(5.14)

τnk = 23.75e
−Vm
72.15 (5.15)

The constant for the electrical model are given in Table 1

However, as discussed above, the number of cells in the uterus is too large to model each cell

separately. Hence, we considered continuous approximations of the tissue, which must be able to

distinguish between the intracellular and extracellular domains.
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Figure 5.2: Equivalent current source model for the uterus membrane. [30]

5.4 Mathematical derivation of the bidomain model

To include the effects of the potential difference across the membrane, the tissue is now divided

into two separate domains: the intracellular and the extracellular. Both domains are assumed to be

continuous and they both fill the complete volume of the uterus muscle. The justification for viewing

the intracellular space as continuous is that the muscle cells are connected via so-called gap junctions.

These are small channels embedded in the cell membrane, which form direct contact between the in-

ternals of two neighboring cells. Thanks to the presence of the gap junctions, substances such as ions

or small molecules may pass directly from one cell to another, without entering the space between the

two cells (the extracellular domain). The intracellular and extracellular domains are separated by the cell

membrane. The membrane acts as an electrical insulator between the two domains. The transmem-

brane potential is defined for every point in the uterus, as the difference between the extracellular and

intracellular potential.

Considering the intracellular and extracellular spaces specifically, we have:

Ji = −Mi∇ui (5.16)

Je = −Me∇ue (5.17)

where Ji and Je are the intracellular and extracellular current densities,Mi andMe are the corresponding

conductivity tensors, respectively, and ui and ue are the respective potentials.

We introduce now Cm the capacitance of the cell membrane, qi (resp. qe) the intracellular (resp.
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extracellular) charge. The charge accumulation is balanced, and we have the relation

∂qi
∂t

= −∂qe
∂t

= χCm
∂v

∂t
(5.18)

Due to the potential difference v, the ions are forced to move across the membrane in a definite

direction. We introduce the corresponding ionic current Iion across the membrane. The net current

must be equal to the sum of the rate of charge accumulation and the ionic current, giving

−5.Ji =
∂qi
∂t

+ χIion (5.19)

From the definition of the curent density Ji, we obtain

5 (Mi5 ui) = χCm
∂v

∂t
+ χIion (5.20)

Let’s remind that the difference of potential across the membrane is v = ui− ue.

5 ·(Mi5 v) +5(Mi5 ue) = χCm
∂v

∂t
+ χIion on ΩH (5.21)

5 ·(Mi5 v) +5((Mi +Me)5 ue) = 0 on ΩH (5.22)

Also, we assume that the intracellular domain is not in contact with the interface δH between the uterus

and the torso. This correspond to the homogeneous condition

Mi(5ui · n) = Mi(5v · n) +Mi(5ue · n) = 0 on H (5.23)

The numerical solution of the bidomain equations was based on [50], where efficient numerical methods

were used to solve these equations. For the bidomain model, we applied operator splitting to separate

the coupled nonlinear systems of partial differential equations (PDEs) into a system of ODEs, a parabolic

PDE, and an elliptic PDE [175]. The system of ODEs associated with the cell model kinetics was

integrated using appropriate implicit methods [167].

5.5 Coupling the uterus and the torso

The coupling between the uterus tissue and the torso surrounding the uterus concerns what is hap-

pening at the interface at the interface δU (Figure 5.3). The conservation of the current between the

uterus and the torso reads as the boundary condition

Mi(5ui · n) +Me(5ue · n) = MT (5uT
n) on δH (5.24)
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Rewriting the equation from the transmembrane potential v, we obtain



5 · (Mi5 v) +5(Mi5 ue) = χCm
∂v
∂t + χIion on ΩH

5 · (Mi5 v) +5((Mi +Me)5 ue) = 0 on ΩH

∇.(MT∇uT ) = 0 on ΩT

MT (∇uT .n) = 0 on δΩT

uT = ue on δH

Mi(5ui · n) +Mi(5ue · n) = 0 on ΩH

Mi(5ui · v) + (Mi +Me)(5ue · n) = MT (5uT ) on ΩH

Figure 5.3: Coupling between the uterus and the torso

5.6 3D realistic uterine muscle mesh

We used a 3D realistic mesh of a uterus. The mesh has been obtained thanks to the FEMONUM

project (http:// femonum.telecom-paristech.fr/) extracted from MRI images. This mesh was performed at

34.5 weeks of amenhorrea. A tetrahedron mesh is built upon the surface mesh using TetGen [162].

In order to construct the regions, on the mesh that we used for this study, we used a random seed

selection among the vertices of the mesh and then a region-growing algorithm. In the model, we can

choose the number of regions. Concerning the seed selection, a Poisson disk sampling distribution al-

gorithm [118] was used. It allows to have a well distributed seeds on the uterus surface without having

seeds too close from each other as it could be the case if we used a completely random selection. The

algorithm for region-growing (see Annex Algorithm 1) permits to attribute one different label per seed. It

allows to attribute one different label per seed, found by Poisson disk distributions (representing the re-

gions), from one to the number of chosen seeds. Then, each region propagates its label to its neighbors

until all vertices in the mesh are attributed.
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In order to electrically isolate regions from each other, the conductivities is set to a 0.001 ms/cm at

the border and 0.0068 ms/cm inside the regions Figure 5.4.

Figure 5.4: An illustration of 27 regions where the conductivites in the border is 0.001 ms/cm and 0.0068 ms/cm
inside the regions.

5.7 Numerical model:Operator Splitting

We used the operator splitting technique to solve the complete coupled model described in the pre-

vious section. It consists in introducing operators L1 and L2 so that our problem can read on the form

∂u

∂t
= (L1 + L2)u (5.25)

with u the solution of the problem, and u(0) = u0 an initial condition. The problem is then splitt into

three steps. Considering a small time step t, we first solve the problem for t ∈ [0, 4t2 ] (step 1)

∂v

∂t
= L1v with v(0) = u0 (5.26)

Then, we solve the problem associated with the L2 operator for t ∈ [0,4t] (step 2)

∂w

∂t
= L2v with w(0) = v(

4t
2

) (5.27)

And finally, we come back to the L1 operator for t ∈ [4t/2,4t] (step 3) To model the coupling of the

uterus and the torso, the definition of the operators L1 and L2 are:

L1v = − 1

Cm
Iion(v) (5.28)
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L2v = 5 · (Mi5ue) (5.29)

We apply a θ - formulation as a generalization of the previously introduced operator splitting tech-

nique, with 0 ≤ θ ≤ 1. We denote vn = v(tn), and we apply the three previous steps of the method to

compute vn+1 for each tn ∈ [0, T ].

Step1

Solve the system for tn < t < tn + θ4 t

∂v

∂t
= −Iion(v) with v(tn) = u0) (5.30)

The solution is vnθ = v(tn + θ4 t)

Step2

Solve the system for tn < t < tn +4t, withv(tn) = vnθ

5 ·(Mi 5 v) +5(Mi 5 ue) = χCm
∂v

∂t
+ χIion ΩH (5.31)

5 ·(Mi 5 u) +5((Mi +Me)∇ue) = 0 on ΩT (5.32)

∇ · (MT∇uT ) = 0 on ΩT (5.33)

The solution is vn+1 = v(tn +4t).

Step3

Solve the system for tn + θ4 t < t < tn +4t

∂v

∂t
= −Iion(v) with v(tn + θ4 t) = vn+1

θ ) (5.34)

The solution is vn+1 = −v(tn +4t.

The discretization of this problem is based on a θ − rule for time discretization, and on a finite ele-

ment method in space. The steps 1 and 3 could be resolved with a standard single-domain model. We

introduce V (H) a function space defined over the domain ωH , and V (T ) a function space defined over

the domain ωT . In this way, the solutions v and ue will be in V (H) and the solution uT will be in V (T ). In

the following, un+θ
e (resp. un+θ

T ) denotes an approximation of ue (resp. uT ) at time tn+θ4t. We multiply

the two first equations by a test function ψH ∈ V (H) and the second one by a test function ψT ∈ V (T ),
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and integrate over the respective domains. This gives the variational formulation.

Equation 1

∫
ΩH

vn+1
θ ψH + θ∇t

∫
ΩH

Mi∇vn+1
θ · ∇ψH +4t ∈ΩH

−θδt
∫
δH

Mi(∇vn+1
θ · n)ψH −∇t

∫
δH

Mi(∇un+θ
e · n)ψH

(5.35)

=

∫
ΩH

vnθ ψH − (1− θ)4 t

∫
OmegaH

Mi∇vnθ · ∇ψH + (1− θ)4 t

∫
δH

Mi(∇vnθ · n)ψH

(5.36)

Equation 2

−θ
∫

ΩH

Mi∇vn+1
θ · ∇ψH − (1− θ)

∫
ΩH

Mi∇vnθ · ∇ψH −
∫

ΩH

(Mi +Me)∇un+θ
e · ∇ψH + θ

∫
δH

Mi(∇vn+1
θ · n)ψH

(5.37)

+(1− θ) + (1− θ)4 t

∫
δH

Mi(∇vnθ · n)ψH +

∫
δH

(Mi +Me)(∇un+θ
e · n)ψH = 0 ∀ψH ∈ V (H)

(5.38)

Equation 3

−
∫

ΩH

MT∇un+θ
T +

∫
ΩH

MT (∇un+θ
T · nT )ψT +

∫
δT

(∇un+θ
T · nT )ψT = 0 ∀ψT ∈ V (T ) (5.39)

The continuity condition is used to define a new field u defined over the whole domainH∪T . Considering

the previous notations un+θ
e and un+θ

T , we define

un+θ =

{
un+θ
e for x ∈ H
uTn+ θ for x ∈ T

(5.40)

This new field un+θ is continuous at the interface δH.

We define a new function space V (H ∪ T ) for this field, and the previous test function ψH and ψT can

then be replaced by a single test function ψ ∈ V (H ∪ T ). We multiply the 2nd equation by −4tθ , and we

apply the boundary conditions. The weak form is reduced to

∫
ΩH

vn+1
θ ψH + θ4 t

∫
ΩH

Mi∇vn+1
θ · ∇ψH +4t

∫
ΩH

Mi∇vn+1
θ · ∇ψH (5.41)

=

∫
ΩH

vn+1
θ ψH − (1− θ)4 t

∫
ΩH

Mi∇vnθ · ∇ψH ∀ψH ∈ V (H) (5.42)
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4t
∫

ΩH

Mi∇vn+1
θ · ∇ψ +

−4 t

θ

∫
ΩH

(Mi +Me)∇un+θ · ∇ψ +
4t
θ

∫
ΩH

(MT )∇un+θ · ∇ψ (5.43)

= −4t(1− θ)
θ

∫
ΩH

Mi∇vn+1
θ · ∇ψ ∀ψ ∈ V (H ∪ t = T ) (5.44)

5.8 Numerical Experiments

5.8.1 Simulation on a 3D Mesh

In this simulation, we consider three dimensional domains (3D volumetric mesh). We run coupled cell

model bidomain simulations, with the Red3 model. In the numerical simulations we used the parameters

presented in Table 1 for the modified Red3 model. Figure 5.5 represents the simulation of an action

potential for a bidomain approach. The tissue has a negative resting potential, typically v = 50mV. Then,

the cell depolarizes, returning to its negative resting potential. The whole process is called the action

potential. In Figure 5.6 we present the results of the simulation of a propagated activity on a whole

isotropic uterus (no regions). The signal propagation in this uterus takes the form of a depolarization,

where the potential rises and reaches a positive peak potential after a couple of milliseconds.

Figure 5.5: Action potential of single cell

5.9 Discussion and conclusion

We presented a mathematical description of the bidomain model for simulating the electrical behavior

of uterus tissue. An approach is presented to simulate the propagation of the excitation in the uterus

tissues, based on non linear models of reaction-diffusion type, considering the bidomain approach. The

ionic currents are expressed by the simple modified electrophysiological cell model (Red3), especially

designed for human uterus tissue. One approach that has gained interest in this work views the uterus
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Figure 5.6: Results of the simulation Figures a) to f) correspond to the electrical activity of the uterus; Each figure
corresponds to a given time of the simulation: respectively [1s, 2s, 3s, 4s, 5s, 6s]

tissue not as a discrete structure, but rather as two coupled, continuous domains: one for the intracellular

space and the other for the interstitial space. For convenience, the averaged potentials and currents in

both domains are defined at every point in space. The structure is partially preserved by assigning

a conductivity tensor at each point. Numerical simulations on a three-dimensional domain (volumetric

mesh) were done to show the behavior of the excitation spread and the repolarization phase for isotropic

electric activity. The results show that the proposed developed approach can successfully be used to

simulate uterus isotropic propagation of the excitation in three-dimensional tissue. It suggests that such

method may provide a good basis for uterus simulation research in a more physiologically way. The

present developed approach helps calculate the intra-cellular and extra-cellular action potential of uterus

tissues in the uterus physical domain which can be used to predict the uterus electrohystrogram (EHG).
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6
Conclusions and perspectives
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The technique of EHGI allows a noninvasive reconstruction of the electrical potential on the uterus

surface based on electrical potential measured on the body surface and anatomical data of the torso.

EHGI provides very precious information about the uterus condition since it is able to provide refined spa-

tial description of the electrical wave pathway and magnitude on the uterus surface. This may help a lot

in different clinical interventions. The scientific algorithms behind any EHGI tool are able to preprocess

the anatomical data of the patient in order to provide a computational mesh, filter noisy measurements

of the electrical potential and solve an inverse problem.

The inverse problem in uterus electrohysterography (electrohysterography imaging (EHGI)) is a new

and a powerful diagnosis technique. This non-invasive technology interests more and more medical

in-dustries. The success of this technology would be considered as a breakthrough in the uterus diag-

nosis. However, in many cases the quality of reconstructed electrical potential is not accurate enough.

The difficulty comes from the fact that the inverse problem in uterus electrohysterography is well known

as a mathematically ill-posed problem. Different methods based on Thikhnov regularization have been

used in order to regularize the problem.

We have conducted our analysis by using a realistic uterus model and have aimed at identifying

the spa-tial extent of the sources. The computer simulations have shown that both SVB-SCCD and VB-

SCCD exhibited the best performance, which permits to simultaneously localize several highly correlated

active source regions. They appear therefore to be the most promising approaches for the identification

of multiple active uterus regions in the context of propagation phenomena. When applying SVB-SCCD

in-verse method to real signals, our analysis of the evolution of the real sources during contraction

showed a non-linear propagation, propagating slowly in tissue, with complex pathways and noncontigu-

ously.

Identifying uterus networks from noninvasive EHG data is a challenging issue. The joint use of the

two needed approaches (source localization combined with functional connectivity analysis is still novel

and raises a number of methodological issues that should be controlled in order to get appropriate and

interpretable results. We presented a comparative analysis of the results obtained from the possible

combinations between three algorithms to solve the EHG inverse problem and three methods to esti-

mate the functional connectivity.

The results show that the choice of the inverse algorithm and the connectivity method is crucial and

can strongly alter the results and their interpretation. By proposing a quantitative comparison procedure,

we were able to propose one combination of methods (scbsccd and h2) that aoutperform the previously
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obtained results. This could be due to the ability of scbsccd to efficiently separate extended and sources.

The non linear correlation h2 is also a method that is proved to be efficient for the characterization of

uterine connectivity, which is clearly a non linear process. This combination of methods leads to the

most relevant networks as compared with the ground-truth simulations. This source connectivity ap-

proach when applied to EHG could be a valuable method to identify uterus networks. However, results

are highly dependent on the choice of the processing methods.

Computational uterus modeling is becoming an increasingly powerful tool in uterus disease research.

Uterus electrophysiology at the tissue level is presently modeled with a discrete approach based on or-

dinary differential Equation (ODEs) describing the excitation and diffusion processes of the transmem-

brane potential through the uterus tissue. We presented in this work a mathematical description of a

bidomain model for simulating the electrical behavior of uterus tissue. Numerical simulations on a three-

dimensional domain (volumetric mesh) were simu-lated to show the behavior of the excitation spread

and the repolarization phase for isotropic electric activity. The results show that the proposed devel-

oped numerical code can successfully be used to simulate uterus excitation isotropic propagation in

three-dimensional tissue. It suggests that such bidomain method may provide a good basis for uterus

simulation research in a more physiologically way.

In future work we would like to go deeply to the clinical applications (estimating the sizes of the re-

gions, analysing the synchronicity between them). An interface that will permit to ease this process is

presented in Apendix A. We would also like to improve the model used to solve the forward problem

to get a more realistic representation of the uterine behavior. In the ideal, this model should be ren-

dered patient specific to face to the wide interindividual variability encountered in the clinical practice.

Indeed, to investigate the performance of this method in localizing synchronous regions from clinical

measurements, we have to assume that the electrophysiological model that will be used to constrain the

minimization problem is sufficiently accurate.
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[80] HÄMÄLÄINEN, M. S., AND ILMONIEMI, R. J. Interpreting magnetic fields of the brain: minimum

norm estimates. Medical and biological engineering and computing 32, 1 (1994), 35–42.

[81] HASSAN, M., SHAMAS, M., KHALIL, M., EL FALOU, W., AND WENDLING, F. Eegnet: an open

source tool for analyzing and visualizing m/eeg connectome. PloS one 10, 9 (2015), e0138297.

[82] HASSAN, M., TERRIEN, J., ALEXANDERSSON, A., MARQUE, C., AND KARLSSON, B. Improv-

ing the classification rate of labor vs. normal pregnancy contractions by using ehg multichannel

recordings. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International

Conference of the IEEE (2010), IEEE, pp. 4642–4645.

[83] HASSAN, M., TERRIEN, J., KARLSSON, B., AND MARQUE, C. Interactions between uterine emg

at different sites investigated using wavelet analysis: comparison of pregnancy and labor contrac-

tions. EURASIP Journal on Advances in Signal Processing 2010 (2010), 17.

[84] HASSAN, M., TERRIEN, J., MUSZYNSKI, C., ALEXANDERSSON, A., MARQUE, C., AND KARLS-

SON, B. Better pregnancy monitoring using nonlinear correlation analysis of external uterine

electromyography. IEEE Transactions on Biomedical Engineering 60, 4 (2013), 1160–1166.

88



[85] HE, B., AND COHEN, R. J. Body surface laplacian ecg mapping. IEEE Transactions on Biomedical

Engineering 39, 11 (1992), 1179–1191.

[86] HILL, M. A., ZOU, H., POTOCNIK, S. J., MEININGER, G. A., AND DAVIS, M. J. Invited review:

arteriolar smooth muscle mechanotransduction: Ca2+ signaling pathways underlying myogenic

reactivity. Journal of applied physiology 91, 2 (2001), 973–983.

[87] IAMS, J. D. Prediction and early detection of preterm labor. Obstetrics & Gynecology 101, 2

(2003), 402–412.

[88] IVANCEVIC, T., JAIN, L., PATTISON, J., AND HARIZ, A. Preterm birth analysis using nonlinear

methods. Recent Patents on Biomedical Engineering 1, 3 (2008), 160–170.

[89] IWAKI, S., AND UENO, S. Weighted minimum-norm source estimation of magnetoencephalogra-

phy utilizing the temporal information of the measured data. Journal of Applied physics 83, 11

(1998), 6441–6443.

[90] KARLSSON, B., TERRIEN, J., GUDMUNDSSON, V., STEINGRIMSDOTTIR, T., AND MARQUE, C.

Abdominal ehg on a 4 by 4 grid: mapping and presenting the propagation of uterine contractions.

In 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007

(2007), Springer, pp. 139–143.

[91] KENNEDY, D., AND TAKEDA, K. Reflex control of abdominal flexor muscles in the crayfish: I.

the twitch system. Journal of Experimental Biology 43, 2 (1965), 211–227.

[92] KLIEGMAN, R. M., BEHRMAN, R. E., JENSON, H. B., AND STANTON, B. M. Nelson textbook of

pediatrics e-book. Elsevier Health Sciences, 2007.

[93] KOLES, Z. J. Trends in eeg source localization. Electroencephalography and clinical Neurophysi-

ology 106, 2 (1998), 127–137.

[94] KURIYAMA, H., AND SUZUKI, H. Changes in electrical properties of rat myometrium during gesta-

tion and following hormonal treatments. The Journal of Physiology 260, 2 (1976), 315–333.

[95] KYBIC, J., CLERC, M., ABBOUD, T., FAUGERAS, O., KERIVEN, R., AND PAPADOPOULO, T. A

common formalism for the integral formulations of the forward eeg problem. IEEE transactions on

medical imaging 24, 1 (2005), 12–28.

[96] LAFORET, J., RABOTTI, C., TERRIEN, J., MISCHI, M., AND MARQUE, C. Toward a multiscale

model of the uterine electrical activity. IEEE Transactions on Biomedical Engineering 58, 12

(2011), 3487–3490.

89



[97] LAMMERS, T., HENNINK, W., AND STORM, G. Tumour-targeted nanomedicines: principles and

practice. British journal of cancer 99, 3 (2008), 392.

[98] LAMMERS, W. J., MIRGHANI, H., STEPHEN, B., DHANASEKARAN, S., WAHAB, A., AL SUL-

TAN, M. A., AND ABAZER, F. Patterns of electrical propagation in the intact pregnant guinea

pig uterus. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology

294, 3 (2008), R919–R928.

[99] LEES-MILLER, S. P., AND ANDERSON, C. W. The human double-stranded dna-activated protein

kinase phosphorylates the 90-kda heat-shock protein, hsp90 alpha at two nh2-terminal threonine

residues. Journal of biological chemistry 264, 29 (1989), 17275–17280.

[100] LEITICH, H., BRUNBAUER, M., KAIDER, A., EGARTER, C., AND HUSSLEIN, P. Cervical length and

dilatation of the internal cervical os detected by vaginal ultrasonography as markers for preterm

delivery: a systematic review. American journal of obstetrics and gynecology 181, 6 (1999), 1465–

1472.

[101] LEMAN, H., MARQUE, C., AND GONDRY, J. Use of the electrohysterogram signal for characteriza-

tion of contractions during pregnancy. IEEE transactions on biomedical engineering 46, 10 (1999),

1222–1229.

[102] LI, G., AND HE, B. Non-invasive estimation of myocardial infarction by means of a heart-model-

based imaging approach: a simulation study. Medical and Biological Engineering and Computing

42, 1 (2004), 128–136.

[103] LOWERY, C., ESWARAN, H., MURPHY, P., AND WILSON, J. Uterine magnetomyography, Apr. 9

2003. US Patent App. 10/411,027.

[104] LUCIANI. Canonical polyadic decomposition based on joint eigenvalue decomposition. Chemo-

metrics and Intelligent Laboratory Systems 132 (2014), 152–167.

[105] LUCIANI, X., AND ALBERA, L. Semi-algebraic canonical decomposition of multi-way arrays and

joint eigenvalue decomposition. In 2011 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP) (2011), IEEE, pp. 4104–4107.

[106] LUCOVNIK, M., MANER, W. L., CHAMBLISS, L. R., BLUMRICK, R., BALDUCCI, J., NOVAK-

ANTOLIC, Z., AND GARFIELD, R. E. Noninvasive uterine electromyography for prediction of

preterm delivery. American journal of obstetrics and gynecology 204, 3 (2011), 228–e1.

[107] MANER, W. L., GARFIELD, R. E., MAUL, H., OLSON, G., AND SAADE, G. Predicting term and

preterm delivery with transabdominal uterine electromyography. Obstetrics & Gynecology 101, 6

(2003), 1254–1260.

90



[108] MANSOUR, S. Etude de l’electromyographie uterine: caracterisation, propagation, modelisation

des transferts.

[109] MANSOUR, S., DEVEDEUX, D., GERMAIN, G., MARQUE, C., AND DUCHÊNE, J. Uterine emg spec-
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l’électromyogramme utérin pour la caractérisation des contractions pendant la grossesse. RBM-

News 21, 9 (1999), 200–211.

[114] MARQUE, C. K., TERRIEN, J., RIHANA, S., AND GERMAIN, G. Preterm labour detection by use

of a biophysical marker: the uterine electrical activity. In BMC pregnancy and childbirth (2007),

vol. 7, BioMed Central, p. S5.

[115] MARSHALL, J. Regulation of activity in uterine smooth muscle. Physiological Reviews. Supple-

ment 5 (1962), 213.

[116] MAUL, H., MANER, W. L., OLSON, G., SAADE, G. R., AND GARFIELD, R. E. Non-invasive

transabdominal uterine electromyography correlates with the strength of intrauterine pressure and

is predictive of labor and delivery. The Journal of Maternal-Fetal & Neonatal Medicine 15, 5 (2004),

297–301.

[117] MAUL, H., MANER, W. L., SAADE, G. R., AND GARFIELD, R. E. The physiology of uterine

contractions. Clinics in perinatology 30, 4 (2003), 665–676.

[118] MCCOOL, M., AND FIUME, E. Hierarchical poisson disk sampling distributions. In Proceedings of

the conference on Graphics interface (1992), vol. 92, pp. 94–105.

[119] MCLEAN, M., BISITS, A., DAVIES, J., WOODS, R., LOWRY, P., AND SMITH, R. A placental clock

controlling the length of human pregnancy. Nature medicine 1, 5 (1995), 460.

91



[120] MHEICH, A., HASSAN, M., WENDLING, F., KHALIL, M., DUFOR, O., GRIPON, V., AND BERROU,

C. Simnet: A new algorithm for measuring brain networks similarity. In Advances in Biomedical

Engineering (ICABME), 2015 International Conference on (2015), IEEE, pp. 119–122.

[121] MICHEL, C. M., MURRAY, M. M., LANTZ, G., GONZALEZ, S., SPINELLI, L., AND DE PERALTA,

R. G. Eeg source imaging. Clinical neurophysiology 115, 10 (2004), 2195–2222.

[122] MILLER, S., GARFIELD, R., AND DANIEL, E. Improved propagation in myometrium associated with

gap junctions during parturition. American Journal of Physiology-Cell Physiology 256, 1 (1989),

C130–C141.

[123] MIRONNEAU, J. Excitation-contraction coupling in voltage clamped uterine smooth muscle. The

Journal of physiology 233, 1 (1973), 127–141.

[124] MIWAKEICHI, F., MARTINEZ-MONTES, E., VALDÉS-SOSA, P. A., NISHIYAMA, N., MIZUHARA, H.,
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A. EHG Computer Interface

Although EHG instrumentation is becoming more common in research centers and hospitals, research

software availability and standardization remain limited. EHG source imaging poses a series of specific

technical challenges (e.g., the multidimensional nature of the data, the multitude of approaches to mod-

eling tissues and geometry, and the ambiguity of source modeling). Ideally, EHG imaging is multimodal:

EHG recordings need to be registered to a source space that may be obtained from structural MRI data,

which adds to the complexity of the analysis. EHG data analysis and source imaging feature a multitude

of possible approaches, which draw on a wide range of signal processing techniques. Forward model-

ing, which maps elemental myometrium current sources to skin potentials, is dependent on the shape

and conductivity of tissues and can be performed using a number of methods. Inverse source model-

ing, which resolves the myometrium sources that gave rise to EHG recordings, has been approached

through a multitude of methods, [190]. This diversity of models and methods reflects the ill-posed nature

of electrophysiological imaging which requires restrictive models or regularization procedures to ensure

a stable inverse solution. In a clinical environment, raw recordings are often used to identify and char-

acterize uterus activity [45, 127]. More recently, an increasing number of methods have been proposed

to address the detection of functional connectivity among uterus regions [131]. Despite such daunting

diversity and complexity in user needs and methodological approaches, an integrated soft- ware solution

would be beneficial to the imaging community and provide progressive automation, standardization and

reproducibility of some of the most common analysis pathways.

EHG are effective imaging techniques allowing for analysis of the dynamics of functional uterus

networks at abdominal skin level and/or at reconstructed sources. However, a tool that can cover all

the processing steps of identifying uterus networks from EHG signals is still missing. Here, we report

an adaption of brainstorm software package [169] and eegnet tool [81] to uterus domain, running under

MATLAB (Math works, inc), and allowing for analysis and visualization of functional uterus networks

from EHG recordings. It includes 1) solving the forward problem 2) the solution of the inverse problem

to localize / reconstruct the uterus sources, 3) the computation of functional connectivity among signals

collected at the time courses of reconstructed sources, 4) simulate uterine activity in a determined region

and 5) the computation of the network measures based on graph theory analysis. This unique tool

combines the EHG functional connectivity analysis and the computation of network measures derived

from the graph theory.

The processing pipeline is to identify, visualize and characterize uterus networks from EHG record-

ings. It can perform all steps including the estimation of uterus sources, the computation of the functional

connectivity and the mapping of uterus networks at source level. The basic workflow is shown in Figure

A.1.
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Figure A.1: The EHG data can be used to estimate the uterus sources by solving the inverse problem. Functional
connectivity measures can be applied on the reconstructed sources. Graph measures can be com-
puted and the correspondent uterus network can be visualized. Node’s size and color can be used to
encode any chosen network measures (their strength for instance) as well as the edges (their weight
for instance)..

The main elements are:

The data. This file represents either the EHG data or the reconstructed sources. The default file format is

the ‘.mat’. It should be a 3 dimensional matrix (NcxNsxNt) where Nc, NsandNt are the channels (uterus

regions in the case of sources file) number, the sample size and the number of trials (Nt is considered

1 for data averaged over trials), respectively. When solving the inverse problem and for visualizing the

network at electrode level, the electrode location file is required. Both the.xyz and.mat formats are sup-

ported.

The imported data can be firstly visualized.

The adjacency matrix. This file is an NcxNc dimension. It contains the values of the functional

connections between all the channels (or uterus regions). This file can be also in NsxNcxNc in the

case where it is the dynamics of functional networks that is being analyzed. To compute the functional

connectivity (FC) matrices, four methods are available: the cross-correlation, the mean phase coher-

ence (MPC), the mutual information (MI) and the Phase Locking Value (PLV), see section 4.2.3. After

choosing the desired method, the connectivity values can be computed over EHG signals (generating

2D networks) or over the time series associated with the reconstructed sources (generating 3D networks

at uterus level). To assess the significance of the obtained connections, surrogates data analysis can be

used and a level of significance can be set which allow users to keep only the statistically significant con-

nections (see [153] for details about this approach). The output of this analysis is the matrix containing

only the significant connections.

Visualization of the Data Brainstorm provides a rich interface for displaying and interacting with

EHG recordings including various displays of time series, topographical mapping on 2D or 3D surfaces

Source modeling

We now need to obtain a model that explains how uterine electric currents (the source space) pro-
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duce differences in electrical potentials at external sensors (the sensor space), given the different tissues

(essentially uterus, muscle, fat and skin)(Figure A.2) .

The process of modeling how data values can be obtained outside of the uterus with EHG from elec-

trical current dipoles in the uterus is called forward modeling.

We will obtain a matrix [Nsensors ∗Nsources] that relates the activity of the sources to the sensor data

collected during the experiment.

For solving the EHG forward modeling OpenMEEG BEM: Symmetric Boundary Element Method from

the open-source software OpenMEEG was used.

After having the forward model in the database that explains how the uterus sources determine the

values on the sensors. This is useful for simulations, but what we need next is to solve the inverse

problem: how to estimate the sources when we have the recordings.

Figure A.2: The interface of forward modeling computation
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Figure A.3: The interface of inverse modeling computation

Figure A.4: Source estimation of a region far from electrodes
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Figure A.5: Source estimation of a region near from electrodes

Figure A.6: Multiview of uterus netwark
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B. Region growing algorithm
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