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Une approche basée sur les données pour le
traitement automatique du langage naturel

en français contemporain et historique

Résumé

Depuis plusieurs années, les approches neuronales ont régulièrement amélioré l’état
de l’art du traitement automatique des langues (TAL) sur une grande variété de
tâches. L’un des principaux facteurs ayant permis ces progrès continus est l’utilisa-
tion de techniques d’apprentissage par transfert. Ces méthodes consistent à partir
d’un modèle pré-entraîné et à le réutiliser, avec peu ou pas d’entraînement supplé-
mentaire, pour traiter d’autres tâches. Même si ces modèles présentent des avantages
évidents, leur principal inconvénient est la quantité de données nécessaire pour les
pré-entraîner. Ainsi, le manque de données disponibles à grande échelle a freiné le
développement de tels modèles pour le français contemporain et a fortiori pour ses
états de langue plus anciens.

Cette thèse met l’accent sur le développement de corpus pour le pré-entraînement
de telles architectures. Cette approche s’avère extrêmement efficace car nous sommes
en mesure d’améliorer l’état de l’art pour un large éventail de tâches de TAL pour
le français contemporain et historique, ainsi que pour six autres langues contempo-
raines. De plus, nous montrons que ces modèles sont extrêmement sensibles à la
qualité, à l’hétérogénéité et à l’équilibre des données de pré-entraînement et mon-
trons que ces trois caractéristiques sont de meilleurs prédicteurs de la performance
des modèles que la taille des données de pré-entraînement. Nous montrons égale-
ment que l’importance de la taille des données de pré-entraînement a été surestimée
en démontrant à plusieurs reprises que l’on peut pré-entraîner de tels modèles avec
des corpus de taille assez modeste.

Mots-clés :modèle de langue, corpus de pré-entraînement, traitement automatique
des langues, français contemporain, français historique, apprentissage par transfert.

iii



A Data-driven Approach to Natural
Language Processing for Contemporary and

Historical French

Abstract

In recent years, neural methods for Natural Language Processing (NLP) have con-
sistently and repeatedly improved the state of the art in a wide variety of NLP tasks.
One of the main contributing reasons for this steady improvement is the increased
use of transfer learning techniques. These methods consist in taking a pre-trained
model and reusing it, with little to no further training, to solve other tasks. Even
though these models have clear advantages, their main drawback is the amount of
data that is needed to pre-train them. The lack of availability of large-scale data
previously hindered the development of such models for contemporary French, and
even more so for its historical states.

In this thesis, we focus on developing corpora for the pre-training of these transfer
learning architectures. This approach proves to be extremely effective, as we are able
to establish a new state of the art for a wide range of tasks in NLP for contemporary,
medieval and early modern French as well as for six other contemporary languages.
Furthermore, we are able to determine, not only that these models are extremely
sensitive to pre-training data quality, heterogeneity and balance, but we also show
that these three features are better predictors of the pre-trained models’ performance
in downstream tasks than the pre-training data size itself. In fact, we determine
that the importance of the pre-training dataset size was largely overestimated, as we
are able to repeatedly show that such models can be pre-trained with corpora of a
modest size.

Keywords: language model, pre-training corpora, natural language processing,
contemporary french, historical french, transfer learning.
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1 Introduction
In which we present the BASNUM project and the motiva-
tions behind this Ph.D thesis. We give a small overview of
our approach by discussing transfer learning in NLP, we then
discuss Digital Humanities and NLP for historical languages,
and we give a brief overview of the two historical states of
the French language that will have a central part later in this
Ph.D. thesis. Finally, we give the outline of the present text.

1.1 The BASNUM Project

This thesis is part of the ANR BASNUM project (ANR-18-CE38-0003), which had as
its main objective to digitize the “Dictionnaire Universel” (DU) of Antoine Furetière,
in its 1701 version reviewed and corrected by Basnage de Beauval (Furetière, 1701),
and to analyze it with digital tools, in order to reveal the importance of this work for
the evolution of science and mentalities in the 18th century. The project also aimed
to contribute to the current movement to design innovative methods for digitizing,
encoding and analyzing texts.

From a purely computational point of view, the BASNUM project intended to
carry out two types of tasks:

1. a first structuring task where the macrostructure of the dictionary would be
annotated,

2. a second enrichment task which consisted in carrying out a wide range of tasks
of information extraction, annotation of the dictionary microstructure and even
normalization and modernization of the text.

The first task of automatically structuring dictionaries had been already partially
covered by the work of Khemakhem et al. (2017, 2018) who developed GROBID-
dictionaries, a submodule of GROBID1 (Grobid contributors, 2008 — 2018) imple-
menting a Java machine learning library for structuring digitized lexical resources
in TEI format (TEI Consortium, eds, 2018), to enable analysis, extraction and struc-
turing of textual information in such resources. GROBID-dictionaries had already

1Machine learning library to extract, analyze and restructure raw documents such as PDFs into
structured and TEI-encoded documents.
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1 Introduction

obtained promising results and performances (Khemakhem, 2020), so much so that
it was used to make a first annotation of the Dictionnaire Universel macrostructure.

Given the work done by Khemakhem (2020), we decided to concentrate on the
second task of enriching the dictionaries, which at the time remained quite general
and abstract, in particular in contrast to the first task of structuring. To approach this
task, we had two options: either developing multiple models and annotation systems
dedicated to each of the subtasks involved in this enrichment and solely targeting the
Dictionnaire Universel, or developing a single generic annotation model capable of
addressing all enrichment subtasks and capable of handling not only theDictionnaire
Universel, but also other texts and resources from the modern period.2

Given the nature of the enrichment task and the fact that new neural language
models able to transfer knowledge between different tasks in natural language
processing (NLP) had just been published at the beginning of this thesis (Peters
et al., 2018; Devlin et al., 2019), we decided to focus on the second option and,
accordingly, to develop a single general model that we hoped would be able to be
used for all these enrichment tasks and for any type of document in Modern or
Contemporary French.

By choosing this approach, we also wanted to approach in an indirect way the
first task of automatic structuring. This is because we believed that it was possible
to improve the first results of GROBID-dictionaries by using new neural models.
Indeed, GROBID-dictionaries relied on CRF models (Conditional Random Fields)
(Lafferty et al., 2001) which were widely used for token labeling and classification,
but that had been superseded by these neural models in recent years (Lample et al.,
2016; Devlin et al., 2019). Furthermore, we knew that the developers of GROBID had
started working with some of these neural models by writing DeLFT, a library for
text processing, covering token labeling and classification. This library reimplements
the latest machine learning models in NLP (DeLFT contributors, 2018) and aims to
improve GROBID’s pipelines. It is tools and ideas like those contained in DeLFT that
could be applied to GROBID-Dictionaries to significantly improve and expand its
capabilities for the benefit of the BASNUM project, especially in addition to resources
that we had decided to develop.

Having chosen to develop these new models for French, such as ELMo (Peters
et al., 2018) or BERT (Devlin et al., 2019), we had to start by building and collecting
our own corpus for the pre-training of these architectures, since the contemporary
French corpora freely available at the time, such as Wikipedia or frWAC (Baroni
et al., 2009), were not considered to be large enough for this (Liu et al., 2019).

Our plan then was to develop a pre-training corpus for Contemporary French,
then to pre-train a language model for Contemporary French and finally to use the
knowledge transfer capabilities of these architectures to adapt it to Early Modern
French, in case we were unable to find enough textual resources to directly pre-

2Between the 16th and 18th century.
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train such a language model for Early Modern French. During this thesis, we also
wanted to investigate the question of the minimum amount of resources required to
successfully pre-train such models, an amount which, at the time, was considered
higher than what was available for historical languages (Peters et al., 2018; Liu et al.,
2019).

1.2 Transfer Learning in NLP

In recent years neural methods for Natural Language Processing (NLP) have consis-
tently and repeatedly improved the state of the art in a wide variety of NLP tasks
such as parsing, PoS-tagging, named entity recognition, machine translation, text
classification and reading comprehension among others. Probably the main con-
tributing factor in this steady improvement for NLP models is the raise in usage of
transfer learning techniques in the field. These methods normally consist of taking
a pre-trained model and reusing it, with little to no retraining, to solve a different
task from the original one it was intended to solve; in other words, one transfers the
knowledge from one task to another.

Most of the transfer learning done in NLP nowadays is done in an unsupervised
manner, that is, it normally consists of a language model that is fed unannotated
plain text in a particular language; so that it extracts or learns the basic features
and patterns of the given language. The model is subsequently used on top of
an specialised architecture designed to tackle a particular NLP task. Probably the
best known example of this type of model are word embeddings which consist of
real-valued vector representations that are trained for each word on a given corpus.
Some notorious examples of word embeddings are word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014) and fastText (Mikolov et al., 2018). All these models
are context-free, meaning that a given word has one single vector representation
that is independent of context, thus for a polysemous word like Washington, one
would have one single representation that is reused for the city, the state and the US
president.

In order to overcome the problem of polysemy, contextual models have recently
appeared. Most notably ELMo (Peters et al., 2018) which produces deep contextual-
ized word representations out of the internal states of a deep bidirectional language
model in order tomodel word use and how the usage varies across linguistic contexts.
ELMo still needs to be used alongside a specialised architecture for each given down-
stream task, but newer architectures that can be fine-tuned have also appeared. For
these, the model is first fed unannotated data, and is then fine-tuned with annotated
data to a particular downstream task without relying on any other architecture. some
remarkable examples of this type of model are GPT-1, GPT-2 (Radford et al., 2018,
2019), BERT (Devlin et al., 2019) and XLNet (Yang et al., 2019); the latter being
the current state-of-the-art for multiple downstream tasks. All of these models are
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different arrangements of the Transformer architecture (Vaswani et al., 2017) trained
with different datasets, except for XLNet which is an instance of the Transformer-XL
(Dai et al., 2019).

Even though these models have clear advantages, their main drawback is the
amount of data that is needed to train them in order to obtain a functional and
efficient model. For instance, for the first English version of word2vec, Mikolov et al.
(2013) used a one billion word dataset consisting of various news articles. Later
Al-Rfou’ et al. (2013) and then Bojanowski et al. (2017) used the plain text from
Wikipedia to train distributions of word2vec and fastText respectively, for languages
other than English. Now, the problem of obtaining large quantities of data aggravates
evenmore for contextual models, as they normally needmultiple instances of a given
word in order to capture all its different uses and in order to avoid overfitting due to
the large quantity of hyperparameters that these models have. Peters et al. (2018)
for example use a 5.5 billion token3 dataset comprised of crawled news articles plus
the English Wikipedia in order to train ELMo, Devlin et al. (2019) use a 3.3 billion
word4 corpus made by merging the English Wikipedia with the BooksCorpus (Zhu
et al., 2015), and Radford et al. (2019) use a 40GB English corpus created by scraping
outbound links from Reddit.5

While Wikipedia is freely available, and multiple pipelines exist6,7 to extract plain
text from it, some of the bigger corpora mentioned above are not made available by
the authors either due to copyright issues or probably because of the infrastructure
needed to serve and distribute such big corpora. Moreover, the vast majority of both
these models and the corpora they are trained with are in English, meaning that the
availability of high quality NLP for other languages, specially for low-resource and
historical languages, is rather limited.

The problem of scarcity of pre-training and training data is something that we
will have to weather throughout the course of this Ph.D. thesis, we will thus focus
on developing these resources in order to try to fill the existing gap that we observed
at the beginning of this thesis for both Contemporary and Historical French. In
fact rather than focusing on improving the architectures of the available models
mentioned above, we will focus on developing resources to both pre-train and fine-
tune them, we will thus try to improve the state of the art for both Contemporary
and Historical French by solely working on data and textual resources. We will study
the impact that balanced corpora and corpus quality has on these models, we will
try to answer the question of how much data is even needed in order to obtain a
decently performing contextualized model, and we will also try to assess the impact

3Punctuation marks are counted as tokens.
4Space sparated tokens.
5https://www.reddit.com/
6https://github.com/attardi/wikiextractor
7https://github.com/hghodrati/wikifil
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of fine-tuning (training) data on the performance of these models in a wide range of
downstream tasks.

1.3 Digital Humanities and NLP for Historical Languages

With the rise of digital humanities, it is becoming increasingly important to develop
high quality tools to automatically process old states of languages. Libraries, archives
and museums, among others, are digitizing large numbers of historical sources,
from which high quality data must be extracted for further study by specialists of
human sciences following new approaches such as “distant reading” (Moretti, 2013).
Many (sub)tasks such as automatic OCR post-correction (Rijhwani et al., 2021) and
linguistic annotation (Camps et al., 2021) benefit from pre-trained language models
to improve their accuracy.

Languages evolve over time on many levels: from one century to another, we
see variations in spelling, syntax, the lexicon etc. However, this variation is not
uniform: it tends, at least for “literate scriptors” (literature, journalism, law, etc.), to
converge towards a single norm over time, and this has especially been the case for
French because of the prominent role of the Académie française and the remarqueurs
(Ayres-Bennett and Seijido, 2011). The result of this convergence is, for instance, that
spelling and word order within sentences have become stricter, where they were less
so in the past. From a computational perspective, historical states of language are
therefore not only different from the contemporary state, but, from a computational
perspective, are also more complex because they do not follow a strict and explicit
norm. In French, this explicit norm appeared in the 17th c. and was slowly integrated
throughout the 18th c.

On top of this first linguistic problem, a second issue appears: because the pro-
duction of textual sources has continued to grow exponentially, it is easier to collect
a corpus for contemporary French than for the 19th c. French, which is itself easier
than for the 18th c. French, etc. The further we go back in time, the more scarce
resources are, which creates the following paradox: we have more data when the
language is homogeneous and simple for the computer to process, and less when it
is heterogeneous and harder to process.

Using contextual word embeddings as input representations has brought clear
gains in performances for most of the NLP tasks for which they have been used.
However, this has mostly been attested in languages where sufficient (raw) linguistic
data is available. For less-resourced languages, the most common approach has
been to leverage multilingual models such as mBERT (Devlin et al., 2019) whose
pre-training corpus does not even contain historical data.

Historical languages are typical cases where available linguistic data is limited,
with no chance of acquiring new texts. They are also not normalized by spelling and
institutional conventions and tend to be more heterogeneous than contemporary
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lesser-resourced languages, giving us a very interesting yet challenging case of study
to try to approach with contextualized word embedding models.

1.3.1 Medieval French

Medieval French covers both Old French (9th-13th c.) and Middle French (14th-15th
c.). These stages are linguistically close and both precede the adoption of spelling
norms. Middle French is more regular than Old French in some respects such as
word order (Marchello-Nizia et al., 2020) and less in others such as NP structure
and pronouns system (Marchello-Nizia, 1979). Medieval French covers a set of Oïl
Romance languages spoken in the kingdom of France between the 9th and the 15th
century (fig. 1.1).8 There are around twenty such languages.

Older texts are close to Late Latin, and verse is prevalent until the end of the 13th
century. Old French has a relatively free word order. Until the mid-11th century, the
prevalent order is Subject-Object-Verb (SOV), which is then gradually supplanted by
SVO, which is the default order in Contemporary French. Unlike most languages
with free word order, the functions of verbal arguments are not always given away
by morphological clues, the already simplistic case system of Old French disappears
progressively through the covered period.

Figure 1.1: Oïl languages

8Hand-drawn figure by Mathilde Regnault.
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There are also many cases of syntactic ambiguity. For example, in the following
quote from Lancelot,9 (verse 5436), both la dame and Lancelot could be the subject or
the object of Vit and only the context enables the reader to understand that la dame is
the subject.

Dolant
Mournful

et
and

pansif
meditative

Lancelot
Lancelot

Vit
saw

la
the

dame
lady

‘The lady saw that Lancelot was mournful and meditative.’

Word order is also relatively freewithin constituents. For example, a nounmodifier
can be on the left or on the right of its governor, and it is not necessarily preceded
by a preposition. In contemporary French, it can only appear on the right, and it is
found without a preposition only in some cases like named entities. Because of the
general free word order and the absence of punctuation in our treebank, this adds
up to the ambiguity of the analysis.

In each of the following examples from the SRCMF corpus (Prévost and Stein,
2013), the noun following roi (“king”) has a different analysis: head of roi, modifier,
argument of the same verb or a different one, with no explicit marking:

Fus tu donc pus a la roi cort
Were you then no more at the king court

nmod
det

case

“Then were you not at the king’s court anymore?” (Beroul Tristan)

la fille au riche roi pescheor
the daughter of the rich king fisher

flat

“the daughter of the rich Fisher King” (Queste del Saint Graal)

De Guenelun atent li reis nuveles
From Ganelon waits the king news

nsubj

obj

“The king waits for news from Ganelon.” (Chanson de Roland)

Biax sire fet li rois escu vos envoiera Diex
Dear Sir says the king shield you send-FUT God

nsubj
obj

“Dear Sir, says the king, God will send you a shield.” (Queste del Saint Graal)
9In the edition from Pierre Kunstmann, from the online Base de français médiéval: http://catalog.

bfm-corpus.org/CharretteKu.
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1 Introduction

Furthermore, overt subjects are not mandatory, and are often dropped in texts
written in verse until the 12th century, after which the presence of subjects increases
through time. These phenomena are particularly prevalent in verse, where metric
and rhyming constraints often lead to more contrived syntactic forms than in prose.

Another source of ambiguity is the variety of spellings, due to the lack of spelling
standard. For example, the word moult (transl. a lot (of), very), emblematic of this
period, is initially an adjective, and it is progressively grammaticalized, becoming
an adverb. Several forms appear at the same time, some with a declension, some
without, and the radical does not have a fixed spelling: molt(e)(s), molz, mult(e)(s),
mul(t)z, mou(l)t…

1.3.2 Early Modern French

Source Normalized Translation

Surquoy, SIRE, s’il plaiſt à
voſtre Maieſté de ſe ſou-
uenir des miſeres de ſon
Eſtat, dõt au moins ell’a
tiré cét aduantage, qu’en
vne grande ieuneſse ell’a ac-
quis vne grande experiec̃e,
elle verra que tous les mal-
heurs de sõ bas âge ont
pris leur commencement en
ſemblables occaſions;

Sur quoi, SIRE, s’il plaît à
votre Majesté de se souvenir
des misères de son état dont au
moins elle a tiré cet avantage,
qu’en une grande jeunesse elle
a acquis une grande expéri-
ence, elle verra que tous les
malheurs de son bas âge ont
pris leur commencement en
semblables occasions ;

“Whereupon, SIR, if it
pleases your Majesty to
remember the miseries of
her state, from which at
least she has derived this
advantage, that in great
youth she has acquired
great experience, she will
see that all the misfortunes
of her early life took their
beginning on similar occa-
sions;”

Table 1.1: Example of normalization taken from the Lettres of Guez de Balzac (1624).

We loosely define Early Modern French as a state of language following Middle
French in 1500—following here the terminus ad quem used by theDictionnaire deMoyen
Français (Martin, Robert (dir.), 2020)—and ending with the French Revolution in
1789. It therefore encompasses three centuries (16th, 17th and 18th c.), or two linguistic
periods: the français préclassique or “preclassical French”, 1500–1630 and the français
classique or “classical French”, 1630–1689; both periodizations are currently used in
French linguistics (e.g. by Vachon (2010) and Amatuzzi et al. (2019)).

A typical example of Early Modern French, taken from Guez de Balzac (1624),
is given in Table 1.1. We note here the presence of several phenomena that have
now disappeared in contemporary French, such as the presence of abbreviations
(dõt→dont), the long s (ſ, seemiſeres), the use of v instead of u (vne for une), the
conservation of etymological letters (voſtre < Latin vŏster rather than votre) and calli-
graphic letters (-y in Surquoy), the absence of welding (mal-heurs and not malheurs)
and the opposite (Surquoy and not Sur quoi).
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1.4 Outline

For NLP systems, which process raw sequences, such differences with respect to
contemporary French are not trivial, and they prevent the processing of historical
texts with tools trained on recent sources.

1.4 Outline

This document is organized in 6 different parts, each of which comprises multiple
chapters:

Part I Contains this introduction as well as two other chapters, one discussing the
availability of raw textual resources throughout this thesis for both Contemporary
and Historical languages; and the other discussing the state-of-the-art architectures
that appeared during the course of this Ph.D., as well as a brief discussion of down-
stream tasks for contemporary French, the available datasets and the state-of-the-art
models available for these tasks.

Part II Contains a detailed discussion, spanning from chapter 4 to chapter 8, of
the curation, audits and evaluations, and improvements of our raw multilingual
corpus OSCAR (Ortiz Suárez et al., 2019; Ortiz Suárez et al., 2020b; Abadji et al.,
2021; Abadji et al., 2022) intended for the pre-training of language models.

Part III Spans from chapter 9 to chapter 10, and concerns the curation of mono-
lingual corpora, for both Contemporary and Historical French, intended for the
pre-training of language models.

Part IV Comprises chapters 11 to 15, and concerns the pre-training and develop-
ment of language models for Contemporary, Medieval and Early Modern French; as
well as their respective evaluations across a wide range of downstream tasks.

Part V Contains chapter 16 which outlines the conclusions and perspectives of this
Ph.D. thesis.

Part VI Finally, contains all the appendices as well as additional information that
is relevant to our work.

11





2 On Raw Corpora for Language
Modeling

Inwhich the corpora available for the pre-training of language
models both at the beginning and throughout this Ph.D. the-
sis are described. We also describe one of the pipelines used
to produce one of the corpora, and at the end we discuss both
the raw and annotated corpora available for some historical
languages.

As previously stated, the only freely-available corpora, considered large enough for
the pre-training of language models in Contemporary French at the beginning of
this Ph.D thesis, were Wikipedia and frWac. The frWaC corpus (Baroni et al., 2009)
is a French text corpus collected from the .fr domain with using medium-frequency
words from the Le Monde Diplomatique corpus and basic French vocabulary lists as
seeds. The corpus consists of French websites with total size 1.3 billion words. While
frWac was almost 2 times bigger than the French Wikipedia at the time, it was still
nowhere near the amount of data that was thought to be needed to properly train a
Transformer-based language model at the time (Liu et al., 2019). However, we liked
the idea of Baroni et al. (2009) of using web pages and crawling as a mean to obtain
large quantities of textual data. This is why the work of Mikolov et al. (2018) and its
use of Common Crawl and the FastText linear classifier (Joulin et al., 2016; Joulin
et al., 2017), in order to gather large amounts of multilingual text plays a central role
in the development of our own multilingual web based corpora.

In this chapter we first describe the work of Mikolov et al. (2018), then we present
and discuss the large web corpora that became available through this thesis that
were not available at the begging of it, and the challenges that came with them and
with the ever-growing demand for large textual corpora. Finally, we briefly give an
overview of the available corpora for historical languages.

2.1 Common Crawl

Common Crawl is a non-profit foundation which produces and maintains an open
repository of web crawled data that is both accessible and analyzable.1 Common

1http://commoncrawl.org/about/
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Crawl’s complete web archive consists of petabytes of data collected over 8 years
of web crawling. The repository contains raw web page HTML data (WARC files),
metadata extracts (WAT files) and plain text extracts (WET files). The organization’s
crawlers has always respected nofollow2 and robots.txt3 policies.

Each monthly Common Crawl snapshot is in itself a massive multilingual corpus,
where every single file contains data coming from multiple web pages written in a
large variety of languages and covering all possible types of topics. Thus, in order to
effectively use this corpus for Natural Language Processing and Machine Learning
applications, one has first to extract, filter, clean and classify the data in the snapshot
by language.

Throughout this thesis, we will use theWET files which contain the extracted plain
texts from the websites mostly converted to UTF-8, as well as headers containing
the metadata of each crawled document. Each WET file comes compressed in gzip
format4 and is stored on Amazon Web Services.

Common Crawl has already been successfully used to train language models,
even multilingual ones. The most notable example is probably FastText which
was first trained for English using Common Crawl (Mikolov et al., 2018) and then
for other 157 different languages (Grave et al., 2018). In fact Grave et al. (2018)
proposed a pipeline to filter, clean and classify Common Crawl, which we shall call
the “FastText pre-processing pipeline.” They used the FastText linear classifier (Joulin
et al., 2016; Joulin et al., 2017) to classify each line of CommonCrawl by language, and
downloaded the initial corpus and schedule the I/O using some simple Bash scripts.
Their solution, however, proved to be a synchronous blocking pipeline that works
well on infrastructures having the necessary hardware to assure high I/O speeds
even when storing tens of terabytes of data at a time. But that downscales poorly
to medium-low resource infrastructures that rely on more traditional cost-effective
electromechanical mediums in order to store this amount of data.

2.1.1 FastText’s Pipeline

The “FastText pre-processing pipeline” used by Grave et al. (2018) launches multiple
process, preferably as many as available cores. Each of these processes first down-
loads one Common Crawl WET file which then proceeds to decompress after the
download is over. After decompressing, an instance of the FastText linear classifier
(Joulin et al., 2016; Joulin et al., 2017) is launched, the classifier processes each WET
file line by line, generating a language tag for each line. The tags are then stored in a
tag file which holds a one-to-one correspondence between lines of the WET file and
its corresponding language tag. The WET file and the tag files are read sequentially
and each on the WET file line holding the condition of being longer than 100 bytes is

2http://microformats.org/wiki/rel-nofollow
3https://www.robotstxt.org/
4https://www.gnu.org/software/gzip/
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2.1 Common Crawl

appended to a language file containing only plain text (tags are discarded). Finally,
the tag file and the WET files are deleted.

Only when one of these processes finishes another can be launched. This means
that one can at most process and download as many files as cores the machine has.
That is, if for example a machine has 24 cores, only 24 WET files can be downloaded
and processed simultaneously, moreover, the 25th file won’t be downloaded until
one of the previous 24 files is completely processed.

When all theWET files are classified, one would normally get around 160 language
files, each file holding just plain text written in its corresponding language. These
files still need to be filtered in order to get rid of all files containing invalid UTF-8
characters, so again a number of processes are launched, this time depending on the
amount of memory of the machine. Each process reads a language file, first filters for
invalid UTF-8 characters and then performs deduplication. A simple non-collision
resistant hashing algorithm is used to deduplicate the files.

The FastText linear classifier works by representing sentences for classification as
Bags of Words (BoW) and training a linear classifier. A weight matrix 𝐴 is used as a
look-up table over the words and the word representations are then averaged into a
text representation which is fed to the linear classifier. The architecture is in general
similar to the CBoW model of Mikolov et al. (2013), but the middle word is replaced
by a label. They uses a softmax function 𝑓 to compute the probability distribution
over the classes. For a set of 𝑁 documents, the model is trained to minimize the
negative log-likelihood over the classes:

−
1
𝑁

𝑁
∑
𝑛=1

𝑦𝑛 log(𝑓 (𝐵𝐴𝑥𝑛)),

where 𝑥𝑛 is the normalized bag of features of the 𝑛-th document, 𝑦𝑛 is the 𝑛-th label,
and 𝐴, 𝐵 are the weight matrices. The pre-trained FastText model for language recog-
nition (Grave et al., 2018) is capable of recognizing around 176 different languages
and was trained using 400 million tokens from Wikipedia as well as sentences from
the Tatoeba website.5

2.1.2 CCNet

We note that the original Common-Crawl-based corpus created by Grave et al. (2018)
to train FastText is not freely available. Shortly arfter having started working with
Common Crawl data and developing a pipeline to classify it by language (Ortiz
Suárez et al., 2019), a new architecture for creating a Common-Crawl-based corpus
named CCNet (Wenzek et al., 2020) was published, although it included specialized
filtering based on the KenLM library (Heafield, 2011) and trained on Wikipedia,

5https://tatoeba.org/
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which might result in a cleaner corpus; the resulting CCNet corpus itself was never
published in its entirety.

2.2 Demand for Large Corpora

Using large corpora to train neural language models dates back to way before the
beginning of this Ph.D. thesis (Schwenk and Gauvain, 2005). During the course
of our studies, we observed the demand for large corpora considerably increasing,
specially the last two years with the advent of semi-supervised learning methods in
NLP, in particular with contextualized word representations (Howard and Ruder, 2018;
Peters et al., 2018; Devlin et al., 2019) and more recently very large generative language
models like GPT-3, T5, GPT-Neo (Raffel et al., 2020; Brown et al., 2020; Black et al.,
2021). While there have been some recent efforts to manually curate such corpora6
(Gao et al., 2020), the common approach to collect large amounts of raw textual data
still relies primarily on crawled web text (Ortiz Suárez et al., 2019; Ortiz Suárez et al.,
2020b; Xue et al., 2021; El-Kishky et al., 2020; Esplà et al., 2019; Bañón et al., 2020;
Gao et al., 2020), and although some of the initial concerns of using crawled data
(Trinh and Le, 2018; Radford et al., 2019) were addressed during the course of this
particular Ph.D. thesis (Ortiz Suárez et al., 2020b; Martin et al., 2020) there a many
concerns that still need to be tackled (Caswell et al., 2020) specially for multilingual
data (Kreutzer et al., 2022).

In this demand for large raw textual corpora we can observe a clear back and forth
in the type of data used to pre-train these models. On one hand some authors have
opted for highly curated or edited data like Wikipedia such as Al-Rfou’ et al. (2013)
and Bojanowski et al. (2017) for static word embeddings, the 1B Word Benchmark
(Chelba et al., 2014) for ELMo (Peters et al., 2018), and the BookCorpus (Zhu et al.,
2015) and Wikipedia for BERT (Devlin et al., 2019). On the other hand projects
like those of Pennington et al. (2014) or Grave et al. (2018) used crawled data
for the pre-training of fixed word embeddings, CamemBERT (Martin et al., 2020),
our contextualized model for French, successfully used only Crawled data for pre-
training, and even large generative languagemodels like T5 have usedmainly crawled
data successfully (Raffel et al., 2020). We can of course also see examples of projects
successfully using a mix of both manually curated and automatically crawled data
such as RoBERTa (Liu et al., 2019), FauBERT(Le et al., 2020b), XLNet (Yang et al.,
2019) and GPT-Neo (Black et al., 2021; Gao et al., 2020). However, no matter the
chosen approach to build these large corpora, there are in every case concerns
that have been expressed, specially for the datasets used in very large generative
language models (Bender et al., 2021), even when using manually edited resources
like Wikipedia (Barera, 2020).

6https://bigscience.huggingface.co
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2.2.1 Problems with Crawled Corpora

Corpora collected by web crawlers are known to be noisy (Junczys-Dowmunt, 2019;
Luccioni and Viviano, 2021). In highly multilingual settings, past work found that
web-crawls of lower-resource languages have serious issues, especially with segment-
level LangID (Caswell et al., 2020). Cleaning and filtering web-crawls can boost
general language modeling (Gao et al., 2020; Brown et al., 2020; Raffel et al., 2020)
and downstream task performance (Moore and Lewis, 2010; Rarrick et al., 2011; Xu
and Koehn, 2017; Khayrallah and Koehn, 2018; Brown et al., 2020).

As the scale of ML research grows, it becomes increasingly difficult to validate
automatically collected and curated datasets (Biderman and Scheirer, 2020; Birhane
and Prabhu, 2021; Bender et al., 2021). Several works have focused on advancing
methodologies and best practices to address these challenges. Bender and Friedman
(2018) introduced data statements, a documentary framework for NLP datasets that
seeks to provide a universal minimum bar for dataset description. Similar work
has been done on systematizing documentation in other areas in data science and
machine learning, including work focusing on online news (Kevin et al., 2018), data
ethics (Sun et al., 2019), and data exploration (Holland et al., 2018), as well as gener-
alist work such as (Gebru et al., 2018). Data quality is also implicitly documented by
successes of filtering methods. There is a large literature on filtering data for various
NLP tasks, e.g. (Axelrod et al., 2011; Moore and Lewis, 2010; Rarrick et al., 2011;
Wang et al., 2018; Kamholz et al., 2014; Junczys-Dowmunt, 2018; Caswell et al., 2020).

2.2.2 Publically Available Web-based Corpora

Parallel Monolingual

CCAligned ParaCrawl v7.1 WikiMatrix OSCAR mC4

#languages 137 41 85 166 101
Source CC 2013–2020 selected websites Wikipedia CC 11/2018 CC all
Filtering level document sentence sentence document document
Langid FastText CLD2 FastText FastText CLD3
Alignment LASER Vec/Hun/BLEU-Align LASER - -
Evaluation TED-6 WMT-5 TED-45 POS/DEP-5 XTREME

Table 2.1: Comparison of parallel and monolingual corpora extracted from web documents,
including their downstream evaluation tasks. All parallel corpora are evaluated for
machine translation (BLEU). TED-6: da, cr, sl, sk, lt, et; TED-45: 45-language
subset of (Qi et al., 2018); WMT-5: cs, de, fi, lv, ro. POS/DEP-5: part-of-speech
labeling and dependency parsing for bg, ca, da, fi, id.

Table 2.1 provides an overview of the corpora of interest in this work. We selected
the corpora for their multilinguality and the inclusion of understudied languages in
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NLP. With the exception of WikiMatrix and ParaCrawl, all corpora are derived from
Common Crawl (CC).7

CCAligned (El-Kishky et al., 2020) is a parallel dataset built off 68 CC snap-
shots. Documents are aligned if they are in the same language according to FastText
LangID (Joulin et al., 2016; Joulin et al., 2017), and have the same URL but for a
differing language code. These alignments are refined with cross-lingual LASER
embeddings (Artetxe and Schwenk, 2019). For sentence-level data, they split on
newlines and align with LASER, but perform no further filtering. Human annotators
evaluated the quality of document alignments for six languages (de, zh, ar, ro, et,
my)8 selected for their different scripts and amount of retrieved documents, reporting
precision of over 90%. The quality of the extracted parallel sentences was evaluated
in a machine translation (MT) task on six European (da, cr, sl, sk, lt, et) languages
of the TED corpus (Qi et al., 2018), where it compared favorably to systems built on
crawled sentences from WikiMatrix and ParaCrawl v6.

Multilingual C4 (mC4) (Xue et al., 2021) is a document-level dataset used for
training the mT5 language model. It consists of monolingual text in 101 languages
and is generated from 71 CC snapshots. It filters out pages that contain less than
three lines of at least 200 characters and pages that contain bad words.9 Since this is
a document-level dataset, we split it by sentence and deduplicate it before rating.
For language identification, it uses CLD3 (Botha et al., 2017),10 a small feed-forward
neural network that was trained to detect 107 languages. The mT5 model pre-trained
on mC4 is evaluated on 6 tasks of the XTREME benchmark (Hu et al., 2020) covering
a variety of languages and outperforms other multilingual pre-trained language
models such as mBERT (Devlin et al., 2019) and XLM-R (Conneau et al., 2020).

OSCAR (Ortiz Suárez et al., 2019; Ortiz Suárez et al., 2020b) our own corpus,
to which we devote the whole Part II of this Ph.D thesis, is a set of monolingual
corpora extracted from CC snapshots, specifically from the plain text WET format
distributed by CC which removes all the HTML tags and converts the text to UTF-8.
It is deduplicated and follows the approach by (Grave et al., 2018) of using FastText
LangID (Joulin et al., 2016; Joulin et al., 2017) on a line-level.11,12 No other filtering
was applied. For five languages (bg, ca, da, fi, id) OSCAR was used by its original
authors to train language models which were then evaluated on parsing and POS

7http://commoncrawl.org/
8For language codes please refer to the IETF BCP 47 language tag https://www.iana.org/

assignments/language-subtag-registry/language-subtag-registry
9https://github.com/LDNOOBW/

10https://github.com/google/cld3/
11Line-level here refers to the ‘\n’ separated lines in the Common Crawl WET files.
12https://fasttext.cc/docs/en/language-identification.html
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tagging (Ortiz Suárez et al., 2020b). OSCAR has also been used in independent
studies to train monolingual or multilingual language models (ar, as, bn, de, el,
fr, gu, he, hi, kn, ml, mr, nl, or, pa, ro, ta, te) and subsequently evaluate them on
various downstream tasks (Antoun et al., 2021; Kakwani et al., 2020; Wilie et al., 2020;
Chan et al., 2020; Koutsikakis et al., 2020; Martin et al., 2020; Chriqui and Yahav, 2021;
Seker et al., 2021; Delobelle et al., 2020; Dumitrescu et al., 2020; Masala et al., 2020).

ParaCrawl v7.1 is a parallel dataset with 41 language pairs primarily aligned
with English (39 out of 41) and mined using the parallel-data-crawling tool Bitextor
(Esplà et al., 2019; Bañón et al., 2020) which includes downloading documents,
preprocessing and normalization, aligning documents and segments, and filtering
noisy data via Bicleaner.13 ParaCrawl focuses on European languages, but also
includes 9 lower-resource, non-European language pairs in v7.1. Sentence alignment
and sentence pair filtering choices were optimized for five languages (mt, et, hu, cs,
de) by training and evaluating MT models on the resulting parallel sentences. An
earlier version (v5) was shown to improve translation quality on WMT benchmarks
for cs, de, fi, lv, ro.

WikiMatrix (Schwenk et al., 2021) is a public dataset containing 135M parallel
sentences in 1620 language pairs (85 languages) mined from Wikipedia. Out of
the 135M parallel sentences, 34M are aligned with English. The text is extracted
from Wikipedia pages, split into sentences, and duplicate sentences are removed.
FastText LangID is used before identifying bitext with LASER’s distance-based
mining approach. The margin threshold is optimized by training and evaluating
downstream MT models on four WMT benchmarks (de-en, de-fr, cs-de, cs-fr).
The final dataset is used to train translation models that are then evaluated by
automatically measuring the quality of their translations against human translations
of TED talks in 45 languages, with highest quality for translations between English
and e.g. pt, es, da, and lowest for sr, ja, mr, zh_TW.

2.3 Historical French Corpora

Large datasets for historical states of languages or extinct languages do exist. The
Corpus Middelnederlands for Medieval Dutch (Reenen, Pieter van andMulder, Maaike,
1998) and the Base Geste for Medieval French (Jean-Baptiste-Camps et al., 2019) are
freely available online, encoded in TEI. It is also the case for other corpora for later
states of language, such as the Reference corpus of historical Slovene, covering approx-
imately three centuries of Slovene (1584–1899) (Erjavec, 2015), and the “corpus
noyau” of Presto (Blumenthal and Vigier, 2018). This last corpus, in its extended ver-
sion, uses other French corpora such as Espistemon for Renaissance French (Demonet,
13https://github.com/bitextor/bicleaner
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1998–) and the University of Chicago’s American and French Research on the Treasury of
the French Language (ARTFL) (Morrissey and Olsen, 1981–); or like Frantext (ATILF,
1998–b), which is a generalist French corpus, covering the different states of the
French language between the 11th and the 21st century. Although most of these
text collections are free, the two biggest ones, Frantext and ARTFL, are not freely
available or open-sourced.

Regarding corpora annotated corpora for historical languages, very few of them
have manually annotated syntactical resources for their medieval states. English
has three such treebanks (Archive, 2001; Kroch et al., 2000; Traugott and Pintzuk,
2008) for Old and Middle English. The TOROT treebank for Old Church Slavonic,
Old East Slavonic and Middle Russian is another large resource (Berdicevskis and
Eckhoff, 2020). There is a treebank for Medieval Latin as well, the Index Thomisticus
Treebank (Passarotti, 2019). To our knowledge, the last large treebank containing
medieval texts is IcePaHC for Icelandic (Rögnvaldsson et al., 2012). Some other
corpora were annotated automatically in order to reduce the cost of annotation. For
example, Rocio et al. (2003) adapted a parsing pipeline for contemporary Portuguese
and Lee and Kong (2014) used a previously annotated treebank (Lee and Kong,
2012) to parse a larger medieval Chinese corpus. Concerning contemporary regional
Romance languages, Miletic et al. (2020) also used a smaller treebank to generate
new annotations, and concluded that using similar languages to train a model does
not improve parsing. Although there are many resources for Latin, and some for
Ancient Greek, we do not include them here, because they do not face the same
challenges as medieval states of language, in particular the high level of spelling
variability. And of course for Medieval French there is the SRCMF treebank that will
be extensively used in chapter 14.
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3 On Language Models and
Downstream Tasks

In which we give a brief overview of word representations,
we present a few of the non-English representations that
were available when we began this Ph.D. thesis. We also give
an overview of the downstream tasks that we will use for
evaluation as well as brief description of the state-of-the-art
models that were available when we started working on these
tasks. We finally give an overview of the available neural
models for historical languages.

Language models and more specifically word representations take a central part
in the approach that we have chosen to tackle the tasks laid by the BASNUM project.
In this chapter we give an overview of the available word representations that were
available we began this Ph.D. thesis as well as a small description of the architecture
of said representations.

We will also discuss the downstream tasks that we will use for evaluation focusing
on particular on what was available for the French language throughout the course of
this Ph.D. thesis. We also give briefly discuss the state-of-the-art models and studies
for these tasks. Finally, we end the chapter by discussing some advancements in
neural models for historical languages.

3.1 On Word Representations

One of the key elements that has pushed the state of the art considerably in neu-
ral NLP in recent years has been the introduction and spread of transfer learning
methods to the field. These methods can normally be classified in two categories
according to how they are used:

• Feature-based methods, which involve pre-training real-valued vectors (“em-
beddings”) at the word, sentence, or paragraph level; and using them in
conjunction with a specific architecture for each individual downstream task.
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• Fine-tuning methods, which introduce a minimal number of task-specific pa-
rameters, and instead copy the weights from a pre-trained network and then
tune them to a particular downstream task.

Embeddings or languagemodels can be divided into fixed, meaning that they generate
a single representation for each word in the vocabulary; and contextualized, meaning
that a representation is generated based on both the word and its surrounding
context, so that a single word can have multiple representations, each one depending
on how it is used.

In practice, most fixed embeddings are used as feature-based models. The most
notable examples are word2vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014)
and FastText (Mikolov et al., 2018). All of them are extensively used in a variety of
applications nowadays. On the other hand, contextualized word representations and
language models have been developed using both feature-based architectures, the
most notable examples being ELMo and Flair (Peters et al., 2018; Akbik et al., 2018),
and transformer based architectures, that are commonly used in a fine-tune setting,
as is the case of GPT-1, GPT-2 (Radford et al., 2018, 2019), BERT and its derivatives
(Devlin et al., 2019; Liu et al., 2019; Lan et al., 2020) and more recently XLNet (Yang
et al., 2019) and T5 (Raffel et al., 2020). All of them have repeatedly improved the
state-of-the art in many downstream NLP tasks over the last year.

In general, the main advantage of using language models is that they are mostly
built in an unsupervisedmanner, and they can be trained with raw, unannotated plain
text. However, their main drawback is that enormous quantities of data seem to be
required to properly train them especially in the case of contextualized models, for
which larger corpora are thought to be needed to properly address polysemy and
cover the wide range of uses that commonly exist within languages.

For the first English version of word2vec, Mikolov et al. (2013) used a one billion
word dataset consisting of various news articles. Later Al-Rfou’ et al. (2013) and then
Bojanowski et al. (2017) used the plain text from Wikipedia to train distributions
of word2vec and FastText respectively, for languages other than English. Now, the
problem of obtaining large quantities of data aggravates even more for contextual
models, as they normally need multiple instances of a given word in order to capture
all its different uses and in order to avoid overfitting due to the large quantity of
hyperparameters that these models have. Peters et al. (2018) for example use a 5.5
billion token1 dataset comprised of crawled news articles plus the English Wikipedia
in order to train ELMo, Devlin et al. (2019) use a 3.3 billion word2 corpus made
by merging the English Wikipedia with the BooksCorpus (Zhu et al., 2015), and
Radford et al. (2019) use a 40GB English corpus created by scraping outbound links
from Reddit.3

1Punctuation marks are counted as tokens.
2Space sparated tokens.
3https://www.reddit.com/
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For gathering data in a wide range of languages, Wikipedia is a commonly used
option. It has been used to train fixed embeddings (Al-Rfou’ et al., 2013; Bojanowski
et al., 2017) and more recently the multilingual BERT (mBERT) (Devlin et al., 2019).
However, for some languages, Wikipedia might not be large enough to train good
quality contextualized word embeddings. Moreover, Wikipedia data all belong to
the same specific genre and style. To address this problem, one can resort to crawled
text from the internet; the largest and most widespread dataset of crawled text being
Common Crawl.4 Such an approach generally solves the quantity and genre/style
coverage problems but might introduce noise in the data, an issue which has earned
the corpus some criticism, most notably by Trinh and Le (2018) and Radford et al.
(2019). Using Common Crawl also leads to data management challenges as the
corpus is distributed in the form of a large set of plain text each containing a large
quantity of unclassified multilingual documents from different websites.

Concerning contextual models, Baevski et al. (2019) trained a BERT-like model for
English using Common Crawl. They followed the “fastText pre-processing pipeline”
but they removed all copies of Wikipedia inside Common Crawl. They also trained
their model using News Crawl (Bojar et al., 2018) and using Wikipedia + BooksCor-
pus, they compared three models and showed that Common Crawl gives the best
performance out of the three corpora in spite of the previously mentioned criticism.

The XLNet model was trained for English by joining the BookCorpus, English
Wikipedia, Giga5 (Parker et al., 2011), ClueWeb 2012-B (Callan et al., 2009) and
Common Crawl. Particularly for Common Crawl, Yang et al. (2019) say they use
“heuristics to aggressively filter out short or low-quality articles” from Common
Crawl, however they don’t give any detail about these “heuristics” nor about the
pipeline they use to classify and extract the English part of Common Crawl. It is
important to note that none of these projects distributed their classified, filtered
and cleaned versions of Common Crawl, making it difficult in general to faithfully
reproduce their results.

3.1.1 Some Language Model Architectures

ELMo: Contextualized word embeddings Embeddings from LanguageModels (ELMo)
(Peters et al., 2018) is a Language Model, i.e, a model that given a sequence of 𝑁
tokens, (𝑡1, 𝑡2, ..., 𝑡𝑁), computes the probability of the sequence by modeling the
probability of token 𝑡𝑘 given the history (𝑡1, ..., 𝑡𝑘−1):

𝑝(𝑡1, 𝑡2, … , 𝑡𝑁) =
𝑁

∏
𝑘=1

𝑝(𝑡𝑘 ∣ 𝑡1, 𝑡2, … , 𝑡𝑘−1).

4https://commoncrawl.org
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More precisely, ELMo uses a bidirectional language model, which combines a for-
ward and a backward LSTM-based language model. ELMo also computes a context-
independent token representation via a CNN over characters.

BERT and RoBERTa BERT (Devlin et al., 2019) is a multi-layer bidirectional Trans-
former encoder trainedwith amasked languagemodeling (MLM) objective, inspired
by the Cloze task (Taylor, 1953). It comes in two sizes: the BERTBASE architecture and
the BERTLARGE architecture. The BERTBASE architecture is 3 times smaller and there-
fore faster and easier to use while BERTLARGE achieves increased performance on
downstream tasks. RoBERTa (Liu et al., 2019) improves the original implementation
of BERT by identifying key design choices for better performance, using dynamic
masking, removing the next sentence prediction task, training with larger batches,
on more data, and for longer.

3.2 Non-English Word Representations

Since the introduction of word2vec (Mikolov et al., 2013), many attempts have been
made to create multilingual language representations; for fixed word embeddings
the most remarkable works are those of (Al-Rfou’ et al., 2013) and (Bojanowski
et al., 2017) who created word embeddings for a large quantity of languages using
Wikipedia, and later (Grave et al., 2018) who trained the FastText word embeddings
for 157 languages using Common Crawl and who in fact showed that using crawled
data significantly increased the performance of the embeddings especially for mid-
to low-resource languages.

Regarding contextualized models, the most notable non-English contribution has
been that of the mBERT (Devlin et al., 2019), which is distributed as (i) a single
multilingual model for 100 different languages trained on Wikipedia data, and as
(ii) a single multilingual model for both Simplified and Traditional Chinese. Four
monolingual fully trained ELMo models have been distributed for Japanese, Por-
tuguese, German and Basque;5 44 monolingual ELMo models6 where also released
by the HIT-SCIR team (Che et al., 2018) during the CoNLL 2018 Shared Task (Zeman
et al., 2018), but their training sets where capped at 20 million words.

Following the success of large pre-trained language models, they were extended
to the multilingual setting with multilingual BERT (hereafter mBERT) (Devlin et al.,
2019), a single multilingual model for 104 different languages trained on Wikipedia
data, and later XLM (Conneau and Lample, 2019), which significantly improved
unsupervized machine translation. More recently XLM-R (Conneau et al., 2020),
extended XLM by training on 2.5TB of data and outperformed previous scores on
multilingual benchmarks. They show that multilingual models can obtain results

5https://allennlp.org/elmo
6https://github.com/HIT-SCIR/ELMoForManyLangs
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competitive with monolingual models by leveraging higher quality data from other
languages on specific downstream tasks.

A few non-English monolingual models had been released at the beginning of
this thesis: ELMo models for Japanese, Portuguese, German and Basque7 and BERT
for Simplified and Traditional Chinese (Devlin et al., 2019) and German (Chan et al.,
2019).

However, to the best of our knowledge, at the beginning of this Ph.D. thesis, no
particular effort had been made toward training models for languages other than
English at a scale similar to the latest English models (e.g. RoBERTa trained on more
than 100GB of data).

3.2.1 Recent Developments in Contextualized Representations

Since the introduction of contextualized word representations (Peters et al., 2018;
Akbik et al., 2018; Devlin et al., 2019) and the many improvements proposed for
them in the consumption of computational resources (Clark et al., 2020), in the
amount of data required to fine-tune them (Raffel et al., 2020), and more recently
in the length of the contextual window (Xiong et al., 2021); there have also been
important advancements from a digital humanities point of view on unsupervised
domain adaptation (Ramponi and Plank, 2020). In this case, one specializes a language
model to a particular domain with unlabeled data in order to improve performance
in downstream tasks. This can be achieved by pre-training the models from scratch
with specialized data (Beltagy et al., 2019) or by continuing the training of a general
model with a new corpus (Lee et al., 2019; Peng et al., 2019). This last method
has already been successfully implemented in the context of historical languages,
in particular Han and Eisenstein (2019) showed that one can successfully adapt
the original BERT (Devlin et al., 2019) to Early Modern English by continuing the
pre-training on historical raw texts.

In a multilingual context, transformer-based models such as mBERT have been
adapted to low-resource languages and evaluated in dependency parsing and POS-
tagging showing promising results (Chau et al., 2020; Muller et al., 2021; Gururangan
et al., 2020; Wang et al., 2020b). However, this multilingual approach has also been
criticized for favoring monolingual pre-training even when data is scarce (Virtanen
et al., 2019; Ortiz Suárez et al., 2020b). Indeed, even when only small pre-training
corpora are available, BERT-like models have also been successfully pre-trained,
resulting in well-performing models (Micheli et al., 2020). Furthermore, compact
BERT-like models have also been studied (Turc et al., 2019) and might prove useful
in data constrained conditions, such as monolingual pre-training of contextualized
word representation for low-resource languages. In any case BERT-Like models have

7https://allennlp.org/elmo
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been one of the most prolific subjects of study in NLP since the start of this Ph.D.
thesis (Rogers et al., 2020).

3.3 Downstream Tasks Evaluation

POS-Tagging and Dependency Parsing POS-tagging is a low-level syntactic task,
which consists in assigning to each word its corresponding grammatical category.
Dependency-parsing consists of higher order syntactic task like predicting the la-
beled syntactic tree capturing the syntactic relations between words. We evaluate
the performance of our models throughout this text, by using the standard UPOS
accuracy for POS-tagging, and Unlabeled Attachment Score (UAS) and Labeled
Attachment Score (LAS) for dependency parsing. We will always assume gold
tokenization and gold word segmentation as provided in the UD treebanks.

For both of these tasks we always run our experiments using the Universal Depen-
dencies (UD)8 framework and its corresponding UD POS tag set (Petrov et al., 2012)
and UD treebank collection (Nivre et al., 2018), which was used for the CoNLL 2018
shared task (Seker et al., 2018). We often perform the evaluations of our Contem-
porary French models on the four freely available French UD treebanks in UD v2.2:
GSD (McDonald et al., 2013), Sequoia9 (Candito and Seddah, 2012; Candito et al.,
2014), Spoken (Lacheret et al., 2014; Bawden et al., 2014),10 and ParTUT (Sanguinetti
and Bosco, 2015).

Natural Language Inference (NLI) We will further evaluate some of our models
on NLI, using the French part of the XNLI dataset (Conneau et al., 2018). NLI
consists in predicting whether a hypothesis sentence is entailed, neutral or contra-
dicts a premise sentence. The XNLI dataset is the extension of the Multi-Genre NLI
(MultiNLI) corpus (Williams et al., 2018) to 15 languages by translating the valida-
tion and test sets manually into each of those languages. The English training set is
machine translated for all languages other than English. The dataset is composed of
122k train, 2490 development and 5010 test examples for each language. As usual,
NLI performance is evaluated using accuracy.

Named Entity Recognition (NER) Finally, we also evaluate our models in NER,
which is a sequence labeling task predicting which words refer to real-world objects,
such as people, locations, artifacts and organizations. We use the French Treebank11

(FTB) (Abeillé et al., 2003) in its 2008 version introduced by Candito and Crabbé

8https://universaldependencies.org
9https://deep-sequoia.inria.fr

10Speech transcript uncased that includes annotated disfluencies without punctuation
11This dataset has only been stored and used on Inria’s servers after signing the research-only agree-

ment.
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(2009) and with NER annotations by Sagot et al. (2012). The FTB contains more
than 11 thousand entity mentions distributed among 7 different entity types. A brief
overview of the FTB can also be found in Table 3.1. As NER plays a central role in
this Ph.D. thesis, beign the task in which we evaluate our models the most, we give
an expanded overview of the task in the following paragraphs.

Named Entity Recognition

Named entity recognition (NER) is the widely studied task consisting in identifying
text spans that denote named entities such as person, location and organization names,
to name the most important types. Such text spans are called named entity mentions.
In NER, mentions are generally not only identified, but also classified according to
a more or less fine-grained ontology, thereby allowing for instance to distinguish
between the telecommunication company Orange and the town Orange in southern
France (among others). Importantly, it has long been recognized that the type of
named entities can be defined in two ways, which underlies the notion of metonymy:
the intrinsic type (France is always a location) and the contextual type (in la France a
signé un traité ‘France signed a treaty’, France denotes an organization).

NER has been an important task in natural language processing for quite some
time. It was already the focus of the MUC conferences and associated shared tasks
(Marsh and Perzanowski, 1998), and later that of the CoNLL 2003 and ACE shared
tasks (Tjong Kim Sang and DeMeulder, 2003; Doddington et al., 2004). Traditionally,
as for instance was the case for the MUC shared tasks, only person names, location
names, organization names, and sometimes “other proper names” are considered.
However, the notion of named entity mention is sometimes extended to cover any
text span that does not follow the general grammar of the language at hand, but a
type- and often culture-specific grammar, thereby including entities ranging from
product and brand names to dates and from URLs to monetary amounts and other
types of numbers.

As for many other tasks, NER was first addressed using rule-based approaches,
followed by statistical and now neural machine learning techniques (see Section 3.3.3
for a brief discussion on NER approaches). Of course, evaluating NER systems
as well as training machine-learning-based NER systems, statistical or neural, re-
quire named-entity-annotated corpora. Unfortunately, most named entity annotated
French corpora are oral transcripts, and they are not always freely available. The ES-
TER and ESTER2 corpora (60 plus 150 hours of NER-annotated broadcast transcripts)
(Galliano et al., 2005, 2009), as well as the Quaero (Grouin et al., 2011) corpus are
based on oral transcripts (radio broadcasts). Interestingly, the Quaero corpus relies
on an original, very rich and structured definition of the notion of named entity
(Rosset et al., 2011). It contains both the intrinsic and the contextual types of each
mention, whereas the ESTER and ESTER2 corpora only provide the contextual type.
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3.3.1 Evaluation Datasets

Treebanks As previously stated, we perform most our evaluations on the four
freely available French UD treebanks in UD v2.2: GSD, Sequoia, Spoken, and ParTUT,
presented in Table 3.1.

GSD treebank (McDonald et al., 2013) is the second-largest tree-bank available
for French after the FTB (described in subsection 3.3.1), it contains data from blogs,
news, reviews, and Wikipedia.

Sequoia tree-bank (Candito et al., 2014) comprises more than 3000 sentences, from
the French Europarl, the regional newspaper L’Est Républicain, the French Wikipedia
and documents from the European Medicines Agency.

Spoken was automatically converted from the Rhapsodie tree-bank (Lacheret
et al., 2014) with manual corrections. It consists of 57 sound samples of spoken
French with phonetic transcription aligned with sound (word boundaries, syllables,
and phonemes), syntactic and prosodic annotations.

ParTUT is a conversion of a multilingual parallel treebank developed at the Univer-
sity of Turin, and consisting of a variety of text genres, including talks, legal texts, and
Wikipedia articles, among others; ParTUT data is derived from the already-existing
parallel treebank, Par(allel)TUT (Sanguinetti and Bosco, 2015). Table 3.1 contains a
summary comparing the sizes of the treebanks.

Treebank #Tokens #Sentences Genres

Blogs, NewsGSD 389,363 16,342
Reviews, Wiki

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
Medical, NewsSequoia 68,615 3,099 Non-fiction, Wiki

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
Spoken 34,972 2,786 Spoken

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
ParTUT 27,658 1,020 Legal, News, Wikis

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
FTB 350,930 27,658 News

Table 3.1: Statistics on the treebanks used in POS tagging, dependency parsing, and NER
(FTB).

Again as we pay special attention to the NER task, and we actually work directly
on the FTB by aligning both the Universal Dependencies and the TEI-annotated NER
version of it in section 9.2.1, we provide an expanded overview of the corpus here
below.
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The original named entity FTB annotation layer

Sagot et al. (2012) annotated the FTB with the span, absolute type,12 sometimes
subtype and Aleda unique identifier of each named entity mention.13 Annotations
are restricted to person, location, organization and company names, as well as a
few product names.14 There are no nested entities. Non capitalized entity mentions
(e.g. banque mondiale ‘World Bank’) are annotated only if they can be disambiguated
independently of their context. Entity mentions that require the context to be disam-
biguated (e.g. Banque centrale) are only annotated if they are capitalized.15 For person
names, grammatical or contextual words around the mention are not included in
the mention (e.g. in M. Jacques Chirac or le Président Jacques Chirac, only Jacques Chirac
is included in the mention).

Tags used for the annotation have the following information:

• the identifier of the NE in the free large-scale entity database for French Aleda
database (Sagot and Stern, 2012) (eid attribute); when a named entity is not
present in the database, the identifier is null,16

• the normalized named of the named entity as given in Aleda; for locations it
is their name as given in GeoNames and for the others, it is the title of the
corresponding French Wikipedia article,

• the type and, when relevant, the subtype of the entity.

Here are two annotation examples:
<ENAMEX type="Organization" eid="1000000000016778" name="Confédération
française démocratique du travail">CFDT</ENAMEX>
<ENAMEX type="Location" sub_type="Country" eid="2000000001861060"
name="Japan">Japon</ENAMEX>

Sagot et al. (2012) annotated the 2007 version of the FTB treebank (with the
exception of sentences that did not receive any functional annotation), i.e. 12,351
sentences comprising 350,931 tokens. The annotation process consisted in a manual
12Every mention of France is annotated as a Location with subtype Country, as given in Aleda (a free

large-scale entity database for French) database (Sagot and Stern, 2012), even if in context the
mentioned entity is a political organization, the French people, a sports team, etc.

13Only proper nouns are considered as named entity mentions, thereby excluding other types of
referential expressions.

14More precisely, we used a tagset of 7 base NE types: Person, Location, Organization, Company,
Product, POI (Point of Interest) and FictionChar.

15So for instance, in université de Nantes ‘Nantes university’, only Nantes is annotated, as a city, as
université is written in lowercase letters. However, Université de Nantes ‘Nantes University’ is wholly
annotated as an organization. It is non-ambiguous because Université is capitalized. Université de
Montpellier ‘Montpellier University’ being ambiguous when the text of the FTB was written and
when the named entity annotations were produced, only Montpellier is annotated, as a city.

16Specific conventions for entities that have merged, changed name, ceased to exist as such (e.g. Tchequ-
oslovaquie) or evolved in other ways are described in Sagot et al. (2012).
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correction and validation of the output of a rule- and heuristics-based named entity
recognition and linking tool in an XML editor. Only a single person annotated the
corpus, despite the limitations of such a protocol, as acknowledged by Sagot et al.
(2012).

In total, 5,890 of the 12,351 sentences contain at least a named entity mention.
11,636 mentions were annotated, which are distributed as follows: 3,761 location
names, 3,357 company names, 2,381 organization names, 2,025 person names, 67
product names, 29 fiction character names and 15 points of interest.

3.3.2 Brief State of the Art for Dependency Parsing and POS Tagging

For dependency parsing and POS tagging the most notable non-English specific
contribution is that of the CoNLL 2018 Shared Task (Zeman et al., 2018), where the
1st place (LAS Ranking) was awarded to the HIT-SCIR team (Che et al., 2018) who
used Dozat and Manning (2017)’s Deep Bi-affine parser and its extension described in
(Dozat et al., 2017), coupled with deep contextualized ELMo embeddings (Peters
et al., 2018) (capping the training set at 20 million words). The 1st place in universal
POS tagging was awarded to Smith et al. (2018) who used two separate instances of
Bohnet et al. (2018)’s tagger.

More recent developments in POS tagging and parsing include those of Straka
et al. (2019) which couples another CoNLL 2018 shared task participant, UDPipe 2.0
(Straka, 2018), with mBERT greatly improving the scores of the original model, and
UDify (Kondratyuk and Straka, 2019), which adds an extra attention layer on top of
mBERT plus a Deep Bi-affine attention layer for dependency parsing and a Softmax
layer for POS tagging. UDify is actually trained by concatenating the training sets of
124 different UD treebanks, creating a single POS tagging and dependency parsing
model that works across 75 different languages.

3.3.3 Brief State of the Art for NER

Asmentioned above, NERwas first addressed using rule-based approaches, followed
by statistical and nowneuralmachine learning techniques. In addition, many systems
use a lexicon of named entity mentions, usually called a “gazetteer” in this context.

Most of the advances in NER have been achieved on English, in particular with the
CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003) and Ontonotes v5 (Pradhan
et al., 2012, 2013) corpora. In recent years, NER was traditionally tackled using
Conditional Random Fields (CRF) (Lafferty et al., 2001) which are quite suited for
NER; CRFs were later used as decoding layers for Bi-LSTM architectures (Huang
et al., 2015; Lample et al., 2016) showing considerable improvements over CRFs
alone. These Bi-LSTM-CRF architectures were later enhanced with contextualized
word embeddings which yet again brought major improvements to the task (Peters
et al., 2018; Akbik et al., 2018). Finally, large pre-trained architectures settled the
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current state of the art showing a small yet important improvement over previous
NER-specific architectures (Devlin et al., 2019; Baevski et al., 2019).

For French, rule-based system have been developed until relatively recently, due
to the lack of proper training data (Sekine and Nobata, 2004; Rosset et al., 2005; Stern
and Sagot, 2010; Nouvel et al., 2014). The limited availability of a few annotated
corporamade it possible to apply statistical machine learning techniques (Béchet and
Charton, 2010; Dupont and Tellier, 2014; Dupont, 2017) as well as hybrid techniques
combining handcrafted grammars and machine learning (Béchet et al., 2011). To the
best of our knowledge, the best results previously published on FTB NER are those
obtained by Dupont (2017), who trained both CRF and BiLSTM-CRF architectures
and improved them using heuristics and pre-trained word embeddings.

Leaving aside French and English, the CoNLL 2002 shared task included NER
corpora for Spanish and Dutch corpora (Tjong Kim Sang, 2002) while the CoNLL
2003 shared task included a German corpus (Tjong Kim Sang and DeMeulder, 2003).
The recent efforts by Straková et al. (2019) settled the state of the art for Spanish and
Dutch, while Akbik et al. (2018) did so for German.

3.3.4 Common Baselines

In dependency parsing and POS-tagging we will often compare our models with:

• mBERT: The multilingual cased version of BERT. We often fine-tune mBERT on
each of the treebanks with an additional layer for POS-tagging and dependency
parsing.

• XLMMLM-TLM: A multilingual pretrained language model from Conneau and
Lample (2019), which showed better performance than mBERT on NLI. We
use the version available in the Hugging’s Face transformer library (Wolf et al.,
2019).

• UDify (Kondratyuk and Straka, 2019): A multitask and multilingual model
based on mBERT, UDify is trained simultaneously on 124 different UD tree-
banks, creating a single POS tagging and dependency parsingmodel thatworks
across 75 different languages. We always report the scores from Kondratyuk
and Straka (2019) paper.

• UDPipe Future (Straka, 2018): An LSTM-basedmodel ranked 3rd in dependency
parsing and 6th in POS tagging at the CoNLL 2018 shared task (Seker et al.,
2018). We always report the scores from Kondratyuk and Straka (2019) paper.

• UDPipe Future + mBERT + Flair (Straka et al., 2019): The original UDPipe
Future implementation usingmBERT and Flair as feature-based contextualized
word embeddings. We always report the scores from Straka et al. (2019) paper.
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In French, as discussed avobe, no extensive work has been done on NER due to
the limited availability of annotated corpora. Thus, we compare our models with the
only recent available baselines set by Dupont (2017), who trained both CRF (Lafferty
et al., 2001) and BiLSTM-CRF (Lample et al., 2016) architectures on the FTB and
enhanced them using heuristics and pretrained word embeddings. Additionally,
as for POS and dependency parsing, we often compare our models to a fine-tuned
version of mBERT for the NER task.

For XNLI, we provide the scores of mBERT which has been reported for French
by Wu and Dredze (2019). We report scores from XLMMLM-TLM (described above),
the best model from Conneau and Lample (2019). We will also report the results of
XLM-R (Conneau et al., 2020).

3.4 Neural Models for Historical Languages

Efficient language models have been trained for less-resourced or extinct Languages
such as Latin (Bamman and Burns, 2020), following the approach of Martin et al.
(2020) for training language models with fewer data than was previously thought.
There have also been some recent projects that specifically target EarlyModern French
such as that of Pie Extended (Clérice, 2020) that uses the hierarchical encoding ar-
chitecture originally proposed by Manjavacas et al. (2019) which itself is constructed
by stacking multiple Bi-LSTM-CRFs. Clérice (2020) distributes pre-trained models
for POS tagging and lemmatisation.

Lastly, concerning dependency parsing and POS-tagging of Old French in particu-
lar, the works of Guibon et al. (2014) and Stein (2014, 2016) are noteworthy. However,
they use very different approaches to the one used throughout this thesis and eval-
uate on previous versions of SRCMF, with incompatible annotation choices and
slightly different texts. For the UD version of SRCMF, the most notable work is that
of UDPipe 2.0 (Straka, 2018), which was later enhanced by including contextualized
word embeddings (Straka et al., 2019).
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4 Goclassy: an Asynchronous
Language Classification Pipeline for
Common Crawl

In which we present the work of Ortiz Suárez et al. (2019),
introducing the first OSCAR corpus, now known as OSCAR
2019, as well as asynchronous pipeline goclassy that was
used to produce OSCAR 2019 and that was specifically con-
ceived to be used in low resource infrastructures.1

As previously mentioned, back in the fall of 2018 when this Ph.D. started, there
was no freely available contemporary French corpus of the size that was thought to
be needed at that time in order to train a state-of-the art language model. The only
available resources were the French Wikipedia and frWAC (Baroni et al., 2009). At
the time, the original fastText’s language classification pipeline (Grave et al., 2018)
was recently published, but while Grave et al. (2018) published word embeddings
for a wide range of languages using the produced corpus, the corpus itself was never
published. We thus decided to reproduce and improve Grave et al. (2018) in order
to get enough raw textual French data to train a language model. Given that our
pipeline ended up being capable of classifying text in a wide range of languages, we
decided to publish a multilingual corpus instead of a monolingual French one. In
this chapter we thus lay the details of the goclassy as well as the first version of the
OSCAR corpus.

4.1 An Asynchronous Pipeline

We propose a new pipeline derived from the fastText one which we call goclassy,
we reuse the fastText linear classifier (Joulin et al., 2016; Joulin et al., 2017) and the
pre-trained fastText model for language recognition (Grave et al., 2018), but we
completely rewrite and parallelize their pipeline in an asynchronous manner.

The order of operations is more or less the same as in the fastText pre-processing
pipeline but instead of clustering multiple operations into a single blocking process,

1Contributions: I did the concrete work and designedmost of it under the supervision ofmy coauthors
and Ph.D. supervisors.
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Figure 4.1: A scheme of the goclassy pipeline. The red square represents the Compressed
WET files stored on Amazon Web Services. The FILE-ARCHIVE icons represent the gzip files
stored locally, the FILE-ALT represents one of the 50K WET files. The FILE-ALT represents the
filtered file and the Tags represents a file of language tags, one tag per line in
FILE-ALT. The Language represents one of the 166 classified files. Each arrow represents an
asynchronous non-blocking worker and dotted arrows represent a line filtering
process.

we launch a worker for each operation, andwe bound the number of possible parallel
operations at a given time by the number of available threads instead of the number
of CPUs. We implement goclassy using the Go programming language2 so we let
the Go runtime3 handle the scheduling of the processes. Thus, in our pipeline we
don’t have towait for awholeWET file to download, decompress and classify in order
to start downloading and processing the next one, a new file will start downloading
and processing as soon as the scheduler is able to allocate a new process.

When using electromechanical mediums of storage, I/O blocking is one of the
main problems one encounters. To overcome this, we introduced buffers in all our
I/O operations, a feature that is not present in the fastText pre-processing pipeline.
We also create, from the start, a file for each of the 176 languages that the pre-trained
fastText language classifier is capable of recognizing, and we always leave them open,
as we find that getting a file descriptor to each time we want to write, if we wanted
to leave them open just when needed, introduces a big overhead.

We also do the filtering and cleaning processes at line level before feeding each
line to the classifier, which makes us create a new filtered file so that we can have a
correspondence with the tag file, which in turn will consume more space, but that
will also reduce the amount of unnecessary classifications performed by fastText.
The filtered and file tags are then read and lines are appended to its corresponding
language file. The writing in the classification step is asynchronous, meaning that

2https://golang.org/
3https://golang.org/src/runtime/mprof.go
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process writing a line to the filtered files does not wait for the classifier to write a tag
on the tag file. Figure 4.1 shows the pipeline up to this point.

After all WET files are processed, we then use Isaac Whitfield’s deduplication
tool runiq4 which is based on Yann Collet’s xxhash645, an extremely fast non-
cryptographic hash algorithm that is resistant to collisions. We finally use the Mark
Adler’s pigz6 for data compression, as opposed to the canonical UNIX tools pro-
posed in the original fastText pipeline. We add both tools to our concurrent pipeline,
executing multiple instances of them in parallel, in order to ensure we use the most
of our available resources at a given time.

Beyond improving the computational time required to classify this corpus, we
propose a simple improvement on the cleaning scheme in the fastText pre-processing
pipeline. This improvement allows our pipeline to better take into account the
multilingual nature of Common Crawl; that is, we count UTF-8 characters instead of
bytes for setting the lower admissible bound for the length of a line to be fed into the
classifier. This straightforward modification on the fastText pre-processing pipeline
assures we take into account the multiple languages present in Common Crawl that
use non-ASCII encoded characters.

Given that our implementation is written in Go, we release binary distributions7
of goclassy for all major operating systems. Both pigz and runiq are also available
for all major operating systems.

4.2 Benchmarks

10 files 100 files 200 files
Min Max Mean Min Max Mean Min Max Mean

real
fastText 2m50s 6m45s 3m31s 13m46s 38m38s 17m39s 26m20s 47m48s 31m4s
goclassy 1m23s 3m12s 1m42s 7m42s 12m43s 9m8s 15m3s 15m47s 15m16s
user
fastText 26m45s 27m2s 26m53s 4h21m 4h24m 4h23m 8h42m 8h48m 8h45m
goclassy 10m26s 12m53s 11m0s 1h46m 1h54m 1h49m 3h37m 3h40m 3h38m
sys
fastText 40.14s 40.85s 40.56s 6m14s 6m17s 6m15s 12m26s 12m45s 12m31s
goclassy 37.34s 45.98s 39.67s 5m7s 5m34s 5m16s 9m57s 10m14s 10m5s

Table 4.1: Benchmarks are done using the UNIX time tool, are repeated 10 times each and
are done for random samples of 10, 100 and 200 WET files. Only the classifying
and filtering part are benchmarked. The table shows the minimum, maximum
and mean time for the user, real and sys time over the 10 runs. Here “fastText” is
used as short for the pipeline.

4https://github.com/whitfin/runiq
5https://github.com/Cyan4973/xxHash
6https://zlib.net/pigz/
7https://github.com/oscar-corpus/goclassy
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We test both pipelines against one another in an infrastructure using traditional
electromechanical storage mediums that are connected to the main processing ma-
chine via an Ethernet interface, that is, a low I/O speed environment as compared
to an infrastructure where one would have an array of SSDs connected directly to
the main processing machine via a high speed interface. We use a machine with an
Intel® Xeon® Processor E5-2650 2.00 GHz, 20M Cache, and 203.1 GiB of RAM. We
make sure that no other processes apart from the benchmark and the Linux system
processes are run. We do not include downloading, decompression or deduplication
in our benchmarks as downloading takes far too much time, and deduplication and
compression were performed with third party tools that don’t make part of our main
contribution. We are mainly interested in seeing how the way the data is fed to the
classifier impacts the overall processing time.

Benchmarks in table 4.1 of our goclassy pipeline show a drastic reduction in pro-
cessing time compared to the original fastText prepossessing pipeline. We show that
in our particular infrastructure, we are capable of reducing the real time as measured
by the time UNIX tool almost always by half. The user time which represents the
amount of CPU time spent in user-mode code (outside the kernel) within the process
is almost three times lower for our goclassy pipeline, this particular benchmark
strongly suggest a substantial reduction in energy consumption of goclassy with
respect to the fastText pipeline.

As we understand that even an infrastructure with more than 20TB of free space
in traditional electromechanical storage is not available to everyone and we propose
a simple parametrization in our pipeline that actively deletes already processed
data and that only downloads and decompresses files when needed, thus ensuring
that no more than 10TB of storage are used at a given time. We nevertheless note
that delaying decompression increases the amount of computation time, which is a
trade-off that some users might make as it might be more suitable for their available
infrastructure.

4.3 OSCAR 2019

We are aware that some users might not even have access to a big enough infras-
tructure to run our pipelines or just to store all the Common Crawl data. Moreover,
even if previously used and cited in NLP and Machine Learning research, we note
that at the time of OSCAR’s 2019 publication there was no public distribution of
CommonCrawl that was filtered, classified by language and ready to use forMachine
Learning or NLP applications. We thus decide to publish a pre-processed version of
the November 2018 dump of Common Crawl which comprises usable data in 166
different languages, we publish8 our version under the name OSCAR 2019 which is
short for Open Super-large Crawled Aggregated coRpus 2019.

8https://oscar-corpus.com/post/oscar-2019/ and https://huggingface.co/datasets/oscar
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4.4 Conclusions

After processing all the data with goclassy, the size of the whole Common Crawl
corpus is reduced to 6.3TB, but in spite of this considerable reduction, OSCAR 2019
still dwarfed all previously freely available corpora having more 800 billion “words”
or space-separated tokens and noting that this in fact is an understatement of how
big OSCAR 2019 really is, as some of the largest subcorpora within OSCAR 2019
such as Chinese and Japanese do not use spaces. The sizes in bytes for both the
original and the deduplicated versions of OSCAR 2019 can be found in table A.1.
OSCAR 2019 is published in both in unshuffled and shuffled distributions:

• The unshuffled distribution loosely respects the original documents, this is
because by design goclassy considers that a document is a set of contiguous
lines (i.e. coming from the same URL record) that share a language classifi-
cation. Thus, if a URL record contains texts in multiple languages, goclassy
will split this record in multiple documents. The documents here are separated
by newlines. This unshuffled OSCAR 2019 is distributed from France under a
research-only license, or from the USA through the Hugging Face’s datasets
library under the Creative Commons CC0 license (“no rights reserved”).9 This is
in part due to the difference in copyright laws between the US and the EU.

• The shuffled distribution takes each language subcorpus of the unshuffled dis-
tribution of OSCAR 2019 and shuffles it at line level. There is no concept of
document in this distribution of OSCAR 2019. As the original content is not
reconstructive, we distribute the shuffled OSCAR 2019 from France under the
Creative Commons CC0 license (“no rights reserved”).

4.4 Conclusions

We have presented goclassy a very efficient and concurrent pipeline for language
classification and data cleaning and pre-processing, we have also presented OSCAR
2019 a substantially big Common Crawl-based corpus aimed at NLP application
needing large quantities of raw textual data such as the pre-training of state-of-
the-art language models. As we will see in further chapters, OSCAR 2019 would
end up substantially increasing the amount of freely available data for medium to
low resource languages, thus improving and facilitating NLP research for them.
Moreover, our goclassy pipeline will continue to evolve and be fully rewritten
into a new and optimized pipeline, greatly facilitating the production of large scale
multilingual corpora in constrained pr low budget infrastructures. However, as
OSCAR 2019 is still an automatically web-crawled corpus that at this point hadn’t
been manually audited, many questions remained about the quality of the data, at
this point we didn’t even know if producing a usable language model out of it was

9http://creativecommons.org/publicdomain/zero/1.0/
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possible. These and other question will be discussed and answered in the following
chapters.
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5 A First Evaluation of the OSCAR
Corpus

In which we present the work of Ortiz Suárez et al. (2020b),
who propose the first evaluation of OSCAR 2019 as a pre-
training corpus for language modeling. This evaluation was
done by selecting OSCAR subcorpora for 5 morphologically
and tipologically different mid-resource languages and pre-
training monolingual ELMo models (Peters et al., 2018) for
each of them. These ELMo models are then attached to the
UDPipe 2.0 architecture (Straka, 2018; Straka et al., 2019) and
evaluated in dependency parsing and POS tagging.1

Having released OSCAR 2019, the first thing that we wanted to do with it was
to evaluate how good it actually was for what it was mainly intended, that is, the
pre-training of contextualized word embeddings that had just become available
at the time we started working on OSCAR 2019. Such models included ULMFiT
(Howard and Ruder, 2018), ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019)
among others at that time. For this first evaluation we decided to train ELMo contex-
tualized word embeddings for 5 languages: Bulgarian, Catalan, Danish, Finnish and
Indonesian. We train one set of embeddings using only Wikipedia data, and another
set using only OSCAR 2019 data. We chose these languages primarily because they
are morphologically and typologically different from one another, but also because
all the OSCAR 2019 subcorpora for these languages were of a sufficiently manageable
size such that the ELMo pre-training was doable in less than one month with the
computational resources we had access to at the time. Contrary to HIT-SCIR team
(Che et al., 2018), we do not impose any cap on the amount of data, and instead use
the entirety of Wikipedia or OSCAR 2019 for each of our 5 chosen languages.

5.1 Corpora

Wikipedia is the biggest online multilingual open encyclopedia, comprising more
than 40 million articles in 301 different languages. Because articles are curated by

1Contributions: I did the concrete work and designedmost of it under the supervision ofmy coauthors
and Ph.D. supervisors.

41



5 A First Evaluation of the OSCAR Corpus

Language Size #Ktokens #Kwords #Ksentences

Bulgarian 609M 64,190 54,748 3,685
Catalan 1.1G 211,627 179,108 8,293
Danish 338M 60,644 52,538 3,226
Finnish 669M 89,580 76,035 6,847
Indonesian 488M 80,809 68,955 4,298

Table 5.1: Size of Wikipedia corpora, measured in bytes, thousands of tokens, words and
sentences.

Language Size #Ktokens #Kwords #Ksentences

Bulgarian 14G 1,466,051 1,268,115 82,532
Catalan 4.3G 831,039 729,333 31,732
Danish 9.7G 1,828,881 1,620,091 99,766
Finnish 14G 1,854,440 1,597,856 142,215
Indonesian 16G 2,701,627 2,394,958 140,138

Table 5.2: Size of OSCAR 2019 subcorpora, measured in bytes, thousands of tokens, words
and sentences.

language andwritten in an open collaborationmodel, its text tends to be of very high-
quality in comparison to other free online resources. This is why Wikipedia has been
extensively used in various NLP applications (Wu and Weld, 2010; Mihalcea, 2007;
Al-Rfou’ et al., 2013; Bojanowski et al., 2017). We downloaded the XML Wikipedia
dumps2 and extracted the plain-text from them using the wikiextractor.py script3
from Giuseppe Attardi. We present the number of words and tokens available for
each of our 5 languages in Table 5.1. Furthermore, we decided against deduplicating
the Wikipedia data as the corpora are already quite small. We tokenize the 5 corpora
using UDPipe (Straka and Straková, 2017).

As we did for Wikipedia, we tokenize OSCAR 2019 subcorpora for the 5 languages
we chose for our study using UDPipe. Table 5.2 provides quantitative information
about the 5 resulting tokenized corpora.

5.1.1 Noisiness

We wanted to address (Trinh and Le, 2018) and (Radford et al., 2019)’s criticisms
of Common Crawl, so we devised a simple method to measure how noisy the
OSCAR 2019 subcorpora were for our 5 languages. We randomly extract a number
of lines from each corpus, such that the resulting random sample contains one

2XML dumps from April 4, 2019.
3Available here.
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Language OOV Wikipedia OOV OSCAR 2019

Bulgarian 60,879 66,558
Catalan 34,919 79,678
Danish 134,677 123,299
Finnish 266,450 267,525
Indonesian 116,714 124,607

Table 5.3: Number of out-of-vocabulary words in random samples of 1M words for OSCAR
2019 and Wikipedia.

million words.4 Likewise, we test if the words are in the corresponding GNU Aspell5
dictionary. We repeat this task for each of the 5 languages, for both the OSCAR and
the Wikipedia corpora. We compile in Table 5.3 the number of out-of-vocabulary
tokens for each corpus.

As expected, this simple metric shows that in general the OSCAR samples contain
more out-of-vocabulary words than the Wikipedia ones. However, the difference in
magnitude between the two is strikingly lower than one would have expected in view
of the criticisms by Trinh and Le (2018) and Radford et al. (2019), thereby validating
the usability of Common Crawl data when it is properly filtered, as was achieved
by in the OSCAR 2019 corpus. We even observe that, for Danish, the number of
out-of-vocabulary words in OSCAR is lower than that on Wikipedia.

5.2 Experimental Setting

The main goal of this paper is to show the impact of training data on contextualized
word representations when applied in particular downstream tasks. To this end,
we train different versions of the Embeddings from Language Models (ELMo) (Peters
et al., 2018) for both theWikipedia and OSCAR 2019 corpora, for each of our selected
5 languages. We save the models’ weights at different number of epochs for each
language, in order to test how corpus size affect the embeddings and to see whether
and when overfitting happens when training ELMo on smaller corpora.

We take each of the trained ELMo models and use them in conjunction with the
UDPipe 2.0 (Straka, 2018; Straka et al., 2019) architecture for dependency parsing
and POS-tagging to test our models. Furthermore, we train UDPipe 2.0 using gold
tokenization and segmentation for each of our ELMo models, the only thing that
changes from training to training is the ELMo model as hyperparameters always
remain at the default values (except for number of training tokens) (Peters et al.,
2018).

4We remove tokens that are capitalized or contain less than 4 UTF-8 encoded characters, allowing us
to remove bias against Wikipedia, which traditionally contains a large quantity of proper nouns
and acronyms.

5http://aspell.net/
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5.2.1 Contextualized word embeddings

Embeddings from Language Models (ELMo) (Peters et al., 2018) is an LSTM-based
language model. More precisely, it uses a bidirectional language model, which
combines a forward and a backward LSTM-based language model. ELMo also
computes a context-independent token representation via a CNN over characters.

We train ELMo models for Bulgarian, Catalan, Danish, Finnish and Indonesian
using the OSCAR 2019 subcorpora on the one hand and the Wikipedia corpora on
the other. We train each model for 10 epochs, as was done for the original English
ELMo (Peters et al., 2018). Likewise, we save checkpoints at 1st, 3rd and 5th epoch
in order to investigate some concerns about possible overfitting for smaller corpora
(Wikipedia in this case) raised by the original ELMo authors.6

5.2.2 UDPipe 2.0

For our POS tagging and dependency parsing evaluation, we use UDPipe 2.0, which
has a freely available and ready to use implementation.7 This architecture was sub-
mitted as a participant to the 2018 CoNLL Shared Task (Zeman et al., 2018), obtaining
the 3rd place in LAS ranking. UDPipe 2.0 is a multi-task model that predicts POS
tags, lemmas and dependency trees jointly.

The originalUDPipe 2.0 implementation calculates 3 different embeddings, namely:

• Pre-trained word embeddings: In the original implementation, the Wikipedia
version of fastText embeddings is used (Bojanowski et al., 2017); we replace
them in favor of the newer Common-Crawl-based fastText embeddings trained
by Grave et al. (2018).

• Trained word embeddings: Randomly initialized word representations that are
trained with the rest of the network.

• Character-level word embeddings: Computed using bi-directional GRUs of di-
mension 256. They represent every UTF-8 encoded character with two 256
dimensional vectors, one for the forward and one for the backward layer. These
two vector representations are concatenated and are trained along the whole
network.

After the CoNLL 2018 Shared Task, the UDPipe 2.0 authors added the option to
concatenate contextualized representations to the embedding section of the network
(Straka et al., 2019), we use this new implementation, and we concatenate our pre-
trained deep contextualized ELMo embeddings to the three embeddings mentioned
above.

6https://github.com/allenai/bilm-tf/issues/135
7https://github.com/CoNLL-UD-2018/UDPipe-Future
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5.2 Experimental Setting

Treebank #Ktokens #Ksentences

Bulgarian-BTB 156 11
Catalan-AnCora 530 17
Danish-DDT 100 6
Finnish-FTB 159 19
Finnish-TDT 202 15
Indonesian-GSD 121 6

Table 5.4: Size of treebanks, measured in thousands of tokens and sentences.

Once the embedding step is completed, the concatenation of all vector repre-
sentations for a word are fed to two shared bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) layers. The output of these two BiLSTMS is then fed to two
separate specific LSTMs:

• The tagger- and lemmatizer-specific bidirectional LSTMs, with Softmax classi-
fiers on top, which process its output and generate UPOS, XPOS, UFeats and
Lemmas. The lemma classifier also takes the character-level word embeddings
as input.

• The parser-specific bidirectional LSTM layer, whose output is then passed
to a bi-affine attention layer (Dozat and Manning, 2017) producing labeled
dependency trees.

5.2.3 Treebanks

To train the selected parser and tagger (cf. Section 5.2.2) and evaluate the pre-trained
language models in our 5 languages, we run our experiments using the Universal
Dependencies (UD)8 paradigm and its corresponding UD POS tag set (Petrov et al.,
2012). We use all the treebanks available for our five languages in the UD treebank
collection version 2.2 (Nivre et al., 2018), which was used for the CoNLL 2018 shared
task, thus we perform our evaluation tasks in 6 different treebanks (see Table 5.4 for
treebank size information).

• Bulgarian BTB: Created at the Institute of Information and Communication
Technologies, Bulgarian Academy of Sciences, it consists of legal documents,
news articles and fiction pieces.

• Catalan-AnCora: Built on top of the Spanish-Catalan AnCora corpus (Taulé et al.,
2008), it contains mainly news articles.

• Danish-DDT: Converted from the Danish Dependency Treebank (Buch-Kromann,
2003). It includes news articles, fiction and non fiction texts and oral transcrip-
tions.

8https://universaldependencies.org
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• Finnish-FTB: Consists of manually annotated grammatical examples from
VISK9 (The Web Version of the Large Grammar of Finnish).

• Finnish-TDT: Based on the Turku Dependency Treebank (TDT). Contains texts
fromWikipedia, Wikinews, news articles, blog entries, magazine articles, gram-
mar examples, Europarl speeches, legal texts and fiction.

• Indonesian-GSD: Includes mainly blog entries and news articles.

5.3 Results & Discussion

Treebank Model UPOS UAS LAS

UDify 98.89 95.54 92.40
UDPipe 2.0 98.98 93.38 90.35

Bulgarian BTB +mBERT 99.20 95.34 92.62
+ELMoWikipedia 99.17 94.93 92.05
+ELMoOSCAR 99.40 96.01 93.56

UDify 98.89 94.25 92.33
UDPipe 2.0 98.88 93.22 91.06

Catalan-AnCora +mBERT 99.06 94.49 92.74
+ELMoWikipedia 99.05 93.99 92.24
+ELMoOSCAR 99.06 94.49 92.88

UDify 97.50 87.76 84.50
UDPipe 2.0 97.78 86.88 84.31

Danish-DDT +mBERT 98.21 89.32 87.24
+ELMoWikipedia 98.45 89.05 86.92
+ELMoOSCAR 98.62 89.84 87.95

Treebank Model UPOS UAS LAS

UDify 93.80 86.37 81.40
UDPipe 2.0 96.65 90.68 87.89

Finnish-FTB +mBERT 96.97 91.68 89.02
+ELMoWikipedia 97.27 92.05 89.62
+ELMoOSCAR 98.13 93.81 92.02

UDify 94.43 86.42 82.03
UDPipe 2.0 97.45 89.88 87.46

Finnish-TDT +mBERT 97.57 91.66 89.49
+ELMoWikipedia 97.65 91.60 89.34
+ELMoOSCAR 98.36 93.54 91.77

UDify 93.36 86.45 80.10
UDPipe 2.0 93.69 85.31 78.99

Indonesian-GSD +mBERT 94.09 86.47 80.40
+ELMoWikipedia 93.94 86.16 80.10
+ELMoOSCAR 94.12 86.49 80.59

Table 5.5: Scores fromUDPipe 2.0 (fromKondratyuk and Straka, 2019), the previous state-of-
the-art models UDPipe 2.0+mBERT (Straka et al., 2019) and UDify (Kondratyuk
and Straka, 2019), and our ELMo-enhanced UDPipe 2.0 models. Test scores are
given for UPOS, UAS and LAS in all five languages. Best scores are shown in bold,
second-best scores are underlined.

5.3.1 Parsing and POS tagging results

We use UDPipe 2.0 without contextualized embeddings as our baseline for POS
tagging and dependency parsing. However, we did not train the model without
contextualized word embedding ourselves. We instead take the scores as they are
reported in (Kondratyuk and Straka, 2019). We also compare our UDPipe 2.0 +
ELMo models against the state-of-the-art results (assuming gold tokenization) for
these languages, which are either UDify (Kondratyuk and Straka, 2019) or UDPipe
2.0 + mBERT (Straka et al., 2019).

Results for UPOS, UAS and LAS are shown in Table 5.5. We obtain the state of the
art for the three metrics in each of the languages with the UDPipe 2.0 + ELMoOSCAR

9http://scripta.kotus.fi/visk
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models. We also see that in every single case the UDPipe 2.0 + ELMoOSCAR re-
sult surpasses the UDPipe 2.0 + ELMoWikipedia one, suggesting that the size of the
pre-training data plays an important role in downstream task results. This also
supports our hypothesis that the OSCAR corpus, being multi-domain, exhibits a
better coverage of the different styles, genres and uses present at least in these 5
languages.

Taking a closer look at the results for Danish, we see that ELMoWikipedia, which
was trained with a mere 300 MB corpus, does not show any sign of overfitting, as the
UDPipe 2.0 + ELMoWikipedia results considerably improve the UDPipe 2.0 baseline.
This is the case for all of our ELMoWikipedia models as we never see any evidence of
a negative impact when we add them to the baseline model. In fact, the results of
UDPipe 2.0 + ELMoWikipedia give better than previous state-of-the-art results in all
metrics for the Finnish-FTB and in UPOS for the Finnish-TDT. The results for Finnish
are actually quite interesting, as mBERT was pre-trained on Wikipedia and here we
see that the multilingual setting in which UDify was fine-tuned exhibits sub-baseline
results for all metrics, and that the UDPipe + mBERT scores are often lower than
those of our UDPipe 2.0 + ELMoWikipedia. This actually suggests that even though the
multilingual approach of mBERT (in pre-training) or UDify (in pre-training and fine-
tuning) leads to better performance for high-resource languages or languages that
are closely related to high-resource languages, it might also significantly degrade
the representations for more isolated or even simply more morphologically rich
languages like Finnish. In contrast, our monolingual approach with UDPipe 2.0 +
ELMoOSCAR improves the previous SOTA considerably, by more than 2 points for
somemetrics. Note however that Indonesian, which might also be seen as a relatively
isolated language, does not behave in the same way as Finnish.

5.3.2 Impact of the number of training epochs

An important topic wewanted to address with our experiments was that of overfitting
and the number of epochs one should train the contextualized embeddings for. The
ELMo authors have expressed that increasing the number of training epochs is
generally better, as they argue that training the ELMo model for longer reduces
held-out perplexity and further improves downstream task performance.10 This
is why we intentionally fully pre-trained the ELMoWikipedia to the 10 epochs of the
original ELMo paper, as its authors also expressed concern over the possibility of
overfitting for smaller corpora. We thus save checkpoints for each of our ELMo
model at the 1, 3, 5 and 10 epoch marks so that we can properly probe for overfitting.
The scores of all checkpoints are reported in Table 5.6. Here again we do not train
the UDPipe 2.0 baselines without embedding, we just report the scores published in
Kondratyuk and Straka (2019).
10Their comments on the matter can be found on https://github.com/allenai/bilm-tf/issues/

135.
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The first striking finding is that even though all ourWikipedia data sets are smaller
than 1 GB in size (except for Catalan), none of the ELMoWikipedia models show any
sign of overfitting, as the results continue to improve for all metrics the more we
train the ELMo models, with the best results consistently being those of the fully
trained 10 epoch ELMos. For all of our Wikipedia models, but those of Catalan and
Indonesian, we see sub-baseline results at 1 epoch; training the model for longer is
better, even if the corpora are small.

Treebank Model UPOS UAS LAS

UDPipe 2.0 98.98 93.38 90.35
+ELMoWikipedia(1) 98.81 93.60 90.21
+ELMoWikipedia(3) 99.01 94.32 91.36
+ELMoWikipedia(5) 99.03 94.32 91.38

Bulgarian BTB +ELMoWikipedia(10) 99.17 94.93 92.05
+ELMoOSCAR(1) 99.28 95.45 92.98
+ELMoOSCAR(3) 99.34 95.58 93.12
+ELMoOSCAR(5) 99.34 95.63 93.25
+ELMoOSCAR(10) 99.40 96.01 93.56

UDPipe 2.0 98.88 93.22 91.06
+ELMoWikipedia(1) 98.93 93.24 91.21
+ELMoWikipedia(3) 99.02 93.75 91.93
+ELMoWikipedia(5) 99.04 93.86 92.05

Catalan-AnCora +ELMoWikipedia(10) 99.05 93.99 92.24
+ELMoOSCAR(1) 99.07 93.92 92.29
+ELMoOSCAR(3) 99.10 94.29 92.69
+ELMoOSCAR(5) 99.07 94.38 92.75
+ELMoOSCAR(10) 99.06 94.49 92.88

UDPipe 2.0 97.78 86.88 84.31
+ELMoWikipedia(1) 97.47 86.98 84.15
+ELMoWikipedia(3) 98.03 88.16 85.81
+ELMoWikipedia(5) 98.15 88.24 85.96

Danish-DDT +ELMoWikipedia(10) 98.45 89.05 86.92
+ELMoOSCAR(1) 98.50 89.47 87.43
+ELMoOSCAR(3) 98.59 89.68 87.77
+ELMoOSCAR(5) 98.59 89.46 87.64
+ELMoOSCAR(10) 98.62 89.84 87.95

Treebank Model UPOS UAS LAS

UDPipe 2.0 96.65 90.68 87.89
+ELMoWikipedia(1) 95.86 89.63 86.39
+ELMoWikipedia(3) 96.76 91.02 88.27
+ELMoWikipedia(5) 96.97 91.66 89.04

Finnish-FTB +ELMoWikipedia(10) 97.27 92.05 89.62
+ELMoOSCAR(1) 97.91 93.41 91.43
+ELMoOSCAR(3) 98.00 93.99 91.98
+ELMoOSCAR(5) 98.15 93.98 92.24
+ELMoOSCAR(10) 98.13 93.81 92.02

UDPipe 2.0 97.45 89.88 87.46
+ELMoWikipedia(1) 96.73 89.11 86.33
+ELMoWikipedia(3) 97.55 90.84 88.50
+ELMoWikipedia(5) 97.55 91.11 88.88

Finnish-TDT +ELMoWikipedia(10) 97.65 91.60 89.34
+ELMoOSCAR(1) 98.27 93.03 91.29
+ELMoOSCAR(3) 98.38 93.60 91.83
+ELMoOSCAR(5) 98.39 93.57 91.80
+ELMoOSCAR(10) 98.36 93.54 91.77

UDPipe 2.0 93.69 85.31 78.99
+ELMoWikipedia(1) 93.70 85.81 79.46
+ELMoWikipedia(3) 93.90 86.04 79.72
+ELMoWikipedia(5) 94.04 85.93 79.97

Indonesian-GSD +ELMoWikipedia(10) 93.94 86.16 80.10
+ELMoOSCAR(1) 93.95 86.25 80.23
+ELMoOSCAR(3) 94.00 86.21 80.14
+ELMoOSCAR(5) 94.23 86.37 80.40
+ELMoOSCAR(10) 94.12 86.49 80.59

Table 5.6: UPOS, UAS and LAS scores for the UDPipe 2.0 baseline reported by (Kondratyuk
and Straka, 2019), plus the scores for checkpoints at 1, 3, 5 and 10 epochs for all the
ELMoOSCAR and ELMoWikipedia. All scores are test scores. Best ELMoOSCAR scores
are shown in bold while best ELMoWikipedia scores are underlined.

ELMoOSCAR models exhibit exactly the same behavior as ELMoWikipedia models
where the scores continue to improve the longer they are pre-trained, except for
the case of Finnish. Here we actually see an unexpected behavior where the model
performance caps around the 3rd to 5th epoch. This is surprising because the Finnish
OSCAR 2019 subcorpus is more than 20 times bigger than our smallest Wikipedia
corpus, the Danish Wikipedia, that did not exhibit this behavior. As previously
mentioned Finnish is morphologically richer than the other languages in which we
trained ELMo, we hypothesize that the representation space given by the ELMo
embeddings might not be sufficiently big to extract more features from the Finnish
OSCAR subcorpus beyond the 5th epoch mark, however in order to test this we
would need to train a larger language model like BERT which is sadly beyond our
computing infrastructure limits (cf. Appendix B.1). However, we do note that pre-
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training our current languagemodel architectures in amorphologically rich language
like Finnish might actually better expose the limits of our existing approaches to
language modeling.

One last thing that it is important to note with respect to the number of training
epochs is that even thoughwe fully pre-trained our ELMoWikipedia’s andELMoOSCAR’s
to the recommended 10 epoch mark, and then compared them against one another,
the number of training steps between both pre-trained models differs drastically
due to the big difference in corpus size (for Indonesian, for instance, 10 epochs
correspond to 78K steps for ELMoWikipedia and to 2.6M steps for OSCAR; the com-
plete picture is provided in the Appendix, in Table B.2). In fact, we can see in Table
5.6 that all the UDPipe 2.0 + ELMoOSCAR(1) perform better than the UDPipe 2.0 +
ELMoWikipedia(1) models across all metrics. Thus, we believe that talking in terms
of training steps as opposed to training epochs might be a more transparent way of
comparing two pre-trained models.

5.4 Conclusions

In this chapter, we have explored the use of the Common-Crawl-based OSCAR 2019
corpora to train ELMo contextualized embeddings for five typologically diverse
mid-resource languages. We have compared them with Wikipedia-based ELMo
embeddings on two classical NLP tasks, POS tagging and parsing, using state-of-
the-art neural architectures at the end of 2019. Our goal was to explore whether the
noisiness level of Common Crawl data, often invoked to criticize the use of such data,
could be compensated by its larger size; for some languages, the OSCAR 2019 corpus
is several orders of magnitude larger than the corresponding Wikipedia. Firstly, we
found that when properly filtered, Common Crawl data is not massively noisier than
Wikipedia. Secondly, we show that embeddings trained using OSCAR 2019 data
consistently outperform Wikipedia-based embeddings, to the extent that they allow
us to improve the state of the art in POS tagging and dependency parsing for all the
6 chosen treebanks. Thirdly, we observe that more training epochs generally results
in better embeddings even when the training data is relatively small, as is the case
for Wikipedia.

Our experiments show that Common-Crawl-based data such as the OSCAR corpus
can be used to train high-quality contextualized embeddings, even for languages for
whichmore standard textual resources lack volume or genre variety. This could result
in better performances in a number of NLP tasks for many non highly resourced
languages. However, we are aware that this first evaluation of the OSCAR 2019
remains limited both in terms of methodology and in terms of the actual portion of
the whole corpus that was evaluated. Automated evaluations like this one will not
give us a complete assessment of the quality of the corpus beyond its usefulness for
the training of contextualized embeddings. This is why in the following chapter we
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will discuss a more thorough and extensive audit of the OSCAR 2019 corpus as well
as other web-crawled corpora, which was the result of an international collaboration
with a diverse team of more than 50 researchers.

50



6 Quality at a Glance: An Audit of
OSCAR 2019 and other Web-Crawled
Datasets

In which we present the work of Kreutzer et al. (2022), who
propose the first manual audit of OSCAR 2019 along other 4
crawled corpora. For the audit 51 volunteers from the NLP
community were recruited, covering about 70 languages with
proficient language skills. The study proposes solutions for
effective, low-effort data auditing, including an error taxon-
omy. The study reflects on the potential harm of low-quality
data releases for low-resource languages, and provides a set
of recommendations for future multilingual data releases.1

Having done a first automatic evaluation of a small portion of the OSCAR 2019
corpus for a selection for 5 mid-resource languages, we wanted to better assess the
global quality of the corpus specially for low-resource languages. To accomplish
this, we participated in a collaborative effort to manually audit OSCAR 2019 and
other 4 crawled corpora that have been extensively used in NLP research in the last
few years.

Thus, to shed light on the quality of data crawls, specially for the lowest resource
languages, we perform amanual data audit for 230 per-language subsets of fivemajor
crawledmultilingual datasets:2 CCAligned (El-Kishky et al., 2020), ParaCrawl (Esplà
et al., 2019; Bañón et al., 2020), WikiMatrix (Schwenk et al., 2021), OSCAR 2019
(Ortiz Suárez et al., 2019; Ortiz Suárez et al., 2020b) and mC4 (Xue et al., 2021). We
propose solutions for effective, low-effort data auditing (Section 6.1), including an
error taxonomy. Our quantitative analysis reveals surprisingly low amounts of valid
in-language data, and identifies systematic issues across datasets and languages. In
addition, we find that a large number of datasets is labeled with nontransparent or
incorrect language codes (Section 6.2). This leads us to reflect on the potential harm

1Contributions: I annotated 5 subcorpora for OSCAR 2019, and 2 subcorpora for ParaCrawl 7.1. I
also facilitated the access to the OSCAR samples, helped with statistics about the OSCAR corpus
specially when they involved operations over the entire corpus. Finally, I actively participated in
the writing of the scientific article.

2Annotations are available for download (last accessed: 12 Oct 2021).
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of low-quality data releases for low-resource languages (Section 6.3), and provide a
set of recommendations for future multilingual data releases (Section 6.4).

6.1 Auditing Data Quality

None of the five selected datasets has been evaluated for quality on the sentence level
(exception: several languages in ParaCrawl v3), and downstream evaluations are
centered around a small fraction of higher-resource languages. This is insufficient
for drawing conclusions about the quality of individual or aligned sentences (in
parallel datasets), and about the entirety of languages. In addition, there might be
a publication bias preventing negative results with any of the above corpora with
lower quality being published.

To close this gap, we conduct a human data quality audit focused on the lowest-
resource and most under-evaluated languages, but also covering mid- and high-
resource languages for comparison.

6.1.1 Auditing Process

Participants We recruited 51 volunteers from the NLP community, covering about
70 languages with proficient language skills.3 Each sentence is annotated by one
rater. To verify our hypothesis that those annotations can be largely done by non-
native speakers, we repeat a set of language expert annotations by a non-expert, and
measure the accuracy of the non-expert.

Sample selection For each language in each dataset, we took a random sample of
100 lines, which may be anywhere from single words to short paragraphs depending
on segmentation. We manually annotated them according to the error taxonomy
described below. For WikiMatrix and CCAligned, we selected those languages that
are paired with English, and for ParaCrawl, we also included those paired with
Spanish (“total” counts in Table 6.2). We did not annotate all languages, but focused
on the ones with the least number of sentences in each dataset (at least the smallest
10) and languages for which we found proficient speakers. Since we annotate the
same maximum number of sentences4 across all chosen languages regardless of their
total number of sentences, the annotated samples are not an unbiased sample from
the whole dataset.

3This surprisingly high number comes in part because there are many closely related languages, e.g.
one person may be proficient enough to rate many different Slavic or Turkic languages even if only
one is their native language.

4Some languages had fewer than 100 sentences.
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Non-expert labeling strategies Although many of the volunteers were familiar
with the languages in question or spoke related languages, in cases where no speaker
of a relevant language could be found, volunteers used dictionaries and internet
search to form educated guesses. We discuss this deeper in Appendix C.3 to highlight
how much of this low-resource focused evaluation can actually be done by non-
proficient speakers with relatively low effort. In general, we aim to find an upper
bound on quality, sowe encouraged annotators to be forgiving of translationmistakes
when the overall meaning of the sentence or large parts thereof are conveyed, or
when most of the sentence is in the correct language.

Effort The individual effort was dependent on the quality and complexity of the
data, and on the annotator’s knowledge of the language(s), e.g., it took from less than
two minutes for an English native speaker to pass through 100 well-formed English
sentences (or similarly to annotate languages with 0% in-language sentences), to
two hours of “detective work” for well-formed content in languages for an annotator
without familiarity.

Correct Codes

C: Correct translation, any Combined label for CC, CB, CS

CC: Correct translation, natural sentence
en The Constitution of South Africa nso Molaotheo wa Rephabliki ya Afrika Borwa
en Transforming your swimming pool into a pond de Umbau Ihres Swimmingpools zum Teich

CB: Correct translation, Boilerplate or low quality
en Reference number: 13634 ln Motango ya référence: 13634
en Latest Smell Stop Articles fil Pinakabagong mga Artikulo Smell Stop

CS: Correct translation, Short
en movies, dad it cinema, papà
en Halloween - without me ay Hallowen – janiw nayampejj

Error Codes

X: Incorrect translation, but both correct languages
en A map of the arrondissements of Paris kg Paris kele mbanza ya kimfumu ya Fwalansa.
en Ask a question tr Soru sor Kullanıma göre seçim

WL: Source OR target wrong language, but both still linguistic content
en The ISO3 language code is zho zza Táim eadra bracach mar bhionns na frogannaidhe.
en Der Werwolf — sprach der gute Mann, de des Weswolfs, Genitiv sodann,

NL: Not a language: at least one of source and target are not linguistic content
en EntryScan 4 _ tn TSA PM704 _
en organic peanut butter ckb �? �? �? �? �? �? �?

Table 6.1: Annotation codes for parallel data with sentence pair examples. The language
code before each sentence indicates the language it is supposed to be in.

Taxonomy In order to quantify errors, we developed a simple error taxonomy.
Sentences and sentence pairs were annotated according to a simple rubric with error
classes of Incorrect Translation (X, excluded for monolingual data), Wrong Language
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(WL), and Non-Linguistic Content (NL). Of correct sentences (C), we further mark
single words or phrases (CS) and boilerplate contents (CB). In addition, we asked
annotators to flag offensive or pornographic content. Table 6.1 provides examples
for parallel data, and Appendix C.2 contains detailed annotation instructions.

Parallel Monolingual

CCAligned ParaCrawl v7.1 WikiMatrix OSCAR mC4

#langs audited / total 65 / 119 21 / 38 20 / 78 51 / 166 48 / 108
%langs audited 54.62% 55.26% 25.64% 30.72% 44.44%
#sents audited / total 8037 / 907M 2214 / 521M 1997 / 95M 3517 / 8.4B 5314 / 8.5B
%sents audited 0.00089% 0.00043% 0.00211% 0.00004% 0.00006%

m
ac
ro

C 29.25% 76.14% 23.74% 87.21% 72.40%
X 29.46% 19.17% 68.18% - -
WL 9.44% 3.43% 6.08% 6.26% 15.98%
NL 31.42% 1.13% 1.60% 6.54% 11.40%
offensive 0.01% 0.00% 0.00% 0.14% 0.06%
porn 5.30% 0.63% 0.00% 0.48% 0.36%

m
ic
ro

C 53.52% 83.00% 50.58% 98.72% 92.66%
X 32.25% 15.27% 47.10% - -
WL 3.60% 1.04% 1.35% 0.52% 2.33%
NL 10.53% 0.69% 0.94% 0.75% 5.01%
offensive 0.00% 0.00% 0.00% 0.18% 0.03%
porn 2.86% 0.33% 0.00% 1.63% 0.08%

#langs =0% C 7 0 1 7 0
#langs <50% C 44 4 19 11 9
#langs >50% NL 13 0 0 7 1
#langs >50% WL 1 0 0 3 4

Table 6.2: Averages of sentence-level annotations across datasets and selected languages.
Macro-avg: Each language is weighted equally in the aggregation, regardless
of its size. Micro-avg: Each label is weighted by the fraction of sentences for
that language in the overall annotated corpus, i.e., the annotations for higher-
represented languages are upweighted, and annotations for lower-represented
languages are downweighted. The bottom rows contain the number of languages
that have 0% labeled C etc. Note that these are not true expectations since the
languages audited were not randomly sampled.

6.1.2 Human Audit Results

Interpretation of Results For each language, we compute the percentage of each
label within the 100 audited sentences. Then, we either aggregate the labels across
languages with equal weights (macro-average), or weight them according to their
presence in the overall dataset (micro-average). Results are shown in Table 6.2.
The statistics for the correct codes (CC, CB, CS) are combined as C. The number of
languages, the numbers of sentences per language and the choice of languages differ
across datasets, both in the original release and in the selection for our audit, so the
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comparison of numbers across datasets has to be taken with a grain of salt. Since
the numbers are based on a small sample of sentences that were partially annotated
by non-experts, the error statistics are only rough estimates. Our audit captures a
decent ratio of languages (25–55%, 2nd row in Table 6.2), but only a tiny fraction of
the overall number of sentences (0.00004–0.002%). When we speak of “low-” and
“high”-resource languages, we mean languages with smaller or larger representation
in the datasets at hand. When reporting language-specific results we use the original
language identifiers of the datasets.

Which datasets have quality issues? The macro-averaged results show that the
ratio of correct samples (C) ranges from 24% to 87%, with a large variance across the
five audited datasets. Particularly severe problems were found in CCAligned and
WikiMatrix, with 44 of the 65 languages that we audited for CCAligned containing
under 50% correct sentences, and 19 of the 20 in WikiMatrix. In total, 15 of the 205
language specific samples (7.3%) contained not a single correct sentence. For the
parallel datasets we are also interested in the quantity of misaligned/mistranslated
sentences (X). For WikiMatrix, two-thirds of the audited samples were on average
misaligned. We noticed that sentences were often similar in structure, but described
different facts (see Table 6.5). This might originate from the nature of the underlying
Wikipedia articles, since they are often comparable rather than parallel (Schwenk
et al., 2021).

Figure 6.1 illustrates per-corpus correctness more completely, showing for each
dataset what percent of audited corpora are under each possible threshold of cor-
rectness.

Why haven’t these problems been reported before? The findings above are averaged
on a per-language basis (i.e. macro-average), and therefore give low and high-
resource languages equal weight. If we instead estimate the quality on a per-sentence
basis, i.e. down-weight lower-resource languages in the computation of the average,
the numbers paint a more optimistic picture (“micro” block in Table 6.2). This
is especially relevant for the monolingual datasets because they contain audits for
English, whichmakes up for 43% of all sentences in OSCAR 2019 and 36% inmC4. To
illustrate the effect of this imbalance: A random sample from the entire mC4 dataset
with over 63% chancewill be from one of the 8 largest languages (en, ru, es, de, fr, it,
pt, pl, >100M sentences each), of which all have near perfect quality. Analogously,
evaluation and tuning of web mining pipelines and resulting corpora in downstream
applications focused largely on higher-resource languages (Section 2.2.2), so the low
quality of underrepresented languages might go unnoticed if there is no dedicated
evaluation, or no proficient speakers are involved in the curation (Nekoto et al.,
2020).
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Figure 6.1: Fraction of languages in each dataset below a given quality threshold (percent
correct).

How much content is nonlinguistic or in the wrong language? Nonlinguistic
content is a more common problem than wrong-language content. Among the
parallel datasets, CCAligned contains the highest percentage of nonlinguistic con-
tent, at 31.42% on average across all rated corpora, and also the highest percent of
wrong-language content, at 9.44%. Among the monolingual datasets, mC4 contains
the highest ratio both of sentences in incorrect languages (15.98% average) and
nonlinguistic content (11.40% average), with 4 of the 48 audited languages having
more than 50% contents in other languages. The low amount of wrong language in
ParaCrawl shows the benefits of selecting domains by the amount in-language text,
but the dataset also covers the smallest amount of languages. The low ratio of wrong
language samples in OSCAR may reflect the success of line-level LangID filtering.
These numbers provide evidence that more research in LangID could improve the
overall quality, especially with respect to nonlinguistic content.

Which languages got confused? The languages thatwere confusedwere frequently
related higher-resource languages. However, there were also a significant number of
“out-of-model cousin” cases, where languages not supported by the LangID model
ended up in a similar-seeming language. For instance in mC4, much of the Shona
(sn, Bantu language spoken in Zimbabwe and Mozambique) corpus is actually
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Kinyarwanda (rw, Bantu language spoken in mostly in Rwanda and Uganda)—and,
peculiarly, much of the Hawaiian (haw, Polynesian language spoken in Hawaii) is
actually Twi (tw/ak, Central Tano language spoken mostly in Ghana).
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Figure 6.2: Percentage of sentences labeled as correct vs. log N sentences for all audited
languages.

Do low-resource languages have lower quality? Low-resource datasets tend to
have lower human-judged quality. The Spearman rank correlation between quality
(%C) and size is positive in all cases. The trend is strongest for mC4 (𝑟 = 0.66), and
gradually declines for CCAligned (𝑟 = 0.53), WikiMatrix (𝑟 = 0.49), ParaCrawl
(𝑟 = 0.43), and OSCAR (𝑟 = 0.37). Figure 6.2 compares the number of sentences for
each language against the proportion of correct sentences: Not all higher-resource
languages (> 106 sentences) have high quality, in particular for CCAligned (e.g.
Javanese (en-jv_ID)with 5%C, or Tagalog (en-tl_XX)with 13%C). Formid-resource
languages (104–106 sentences) the picture is inconclusive, with some languages
having high quality, and others having extremely low quality, even within the same
datasets, e.g. Urdu in CCAligned en-ur_PK has 100%C vs. its romanized counterpart
en-ur_PK_rom 0.5% C. For individual error codes trends are less clear (not depicted).

Which languages have the lowest quality? Across datasets we observe that the
quality is particularly poor for languages that are included in romanized script
(_rom/_latn), but are more commonly written in other scripts, e.g., Urdu (ur),
Japanese (ja), Arabic (ar). These are not transliterations of other scripts, but mostly
contain non-linguistic material or wrong languages (e.g. the romanized Japanese
corpus in mC4 (ja_latn) contains Spanish, French, English, Portuguese, amongst
others). In terms of geography, the poorest quality is found for African languages
(Bambara (bm), Fula (ff), Kikongo (kg), Luganda (lg), Lingala (ln), Norther Sotho
(nso), Oromo (om), Shona (sn), Somali (so), Tswana (tn), Wolof (wo)), minority
languages in Europe and the Middle East that are closely related to higher-resource
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languages (Azerbaijani (az-IR), North Frisian (frr), Neapolitan (nap), Silesian
(szl), Zaza (zza)), lesser spoken Chinese languages sharing a script with Mandarin
(Yue (yue), Wu (wuu)), four major Austronesian (Central Bikol (bcl), Chavacano
(cbk), Javanese (jv), Sundanese (su)), and some South-Asian languages, in particu-
lar Sinhala (si). Appendix C.4 contains the detailed per-language statistics for all
corpora.

What is the incidence of offensive and pornographic content? Overall, the sam-
pled sentences did not contain a large amount of offensive contents. However, there
were notable amounts of pornographic content (> 10%) found in CCAligned for 11
languages.

es_XX bm_ML yo_NG tr_TR ku_TR zh_CN af_ZA jv_ID zh_TW it_IT mean

Acc-6 0.58 0.73 0.41 0.45 0.43 0.55 0.65 0.55 0.46 0.55 0.66
Acc-4 0.77 0.73 0.60 0.55 0.56 0.72 0.72 0.57 0.58 0.66 0.72
Acc-2 0.91 0.96 0.72 0.64 0.71 0.79 0.77 0.92 0.81 0.69 0.79

Table 6.3: Rater evaluation for a subset of audits from CCAligned (aligned with English)
measured by the accuracy (Acc-𝑛) of annotations by non-proficient speaker against
annotations by proficient speakers.

tyv rm bar eml zh la mean

Acc-6 1.0 0.98 1.0 1.0 0.86 1.0 0.98
Acc-4 1.0 1.0 1.0 1.0 0.87 1.0 0.98
Acc-2 1.0 1.0 1.0 1.0 0.87 1.0 0.98

Table 6.4: Rater evaluation for a subset of audits fromOSCAR 2019measured by the accuracy
(Acc-𝑛) of annotations by non-proficient speaker against annotations by proficient
speakers.

Annotation quality For a subset of audited languages from CCAligned and OS-
CAR 2019 we measure the accuracy (Acc) of the labels assigned by non-proficient
speakers against the labels assigned by proficient speakers for all audited sentences.
This can be understood as a directed measure of annotator agreement for the special
case where one rater is an expert and the other is not. Results for varying label
granularity are reported in Tables 6.3 and 6.4. For 𝑛 = 6 all classes of the taxonomy
were distinguished, for 𝑛 = 4 the C subclasses were combined, and for 𝑛 = 2 it is
binary decision between C and the rest of the error classes. With the full 6-class
taxonomy (Acc-6) we find a mean accuracy of 0.66 for CCAligned audits, and 0.98
for OSCAR audits. With a binary taxonomy (Acc-2) distinguishing C from the rest,
the accuracy further increases to 0.79 for CCAligned. This provides strong evidence
that good quality annotations are not limited to those proficient in a language.
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However, the significant drop of accuracy for finer-grained labels hints at that
our taxonomy can be further improved, especially for parallel sentences. The error
taxonomy lacks at least one category of error, namely “correct/in-language but
unnatural”. Similarly, the definition of “correct-short” and “correct-boilerplate”
were not understood equally by all annotators and the concept of “correct-short”
has potential issues for agglutinative languages like Turkish. Finally, it was unclear
what to do with related dialects, e.g. when a sentence is “almost correct but wrong
dialect” or when it is unclear which dialect a sentence belongs to. We recommend
including these categories for future audits

6.1.3 Automatic Filtering

Given the frequency of WL and NL annotations, it might be tempting to use open-
source LangID models to post-filter data on a per-sentence(-pair) level, as OSCAR
does. Unfortunately, this turns out to have its own issues.

Sentence-level n-gramLangID filtering We classify all sentence pairs of CCAligned
with CLD3, an n-gram based LangID model. By comparing its predictions to the
audit labels, we evaluate its quality on the subset of annotated samples: the classifier
should detect both correct languages when the pair is annotated as C and X, and
should detect incorrect languages in the pair when WL and NL. On this task, the CLD3
classifier achieves an average precision of only 40.6%.

Sentence-level Transformer LangID filtering N-gram LangID models like CLD3
have known problems. However, Caswell et al. (2020) demonstrate that semi-
supervised Transformer-based LangID models strongly out-perform them. We
train a comparable Transformer-based LangID model and apply it to our annotated
CCAligned data. We find that filtering noisy corpora (< 50% correct) on LangID
for both source and target leads to gains in median precision, rising from 13.8%
pre-filter to 43.9% post-filter. However, this comes at a steep cost of 77.5% loss in
recall. The biggest winners were Lingala, whose precision climbs from 8% to 80%,
and Oromo, which soars from 2% to 33% in-language. Both of these, however, come
at the cost of losing 50% of the correct in-language sentences, being reduced from
22k sentences to 3k and 1k sentences respectively, which would likely be too small
for building downstream models. The moral is that, at least at the current stage,
there is no one-size-fits-all approach for sentence-level LangID filtering.

6.2 Dataset Mis-labeling

Standardized and unambiguous representations of language codes are important for
practical data use and exchange. The standard used by most academic and industry
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applications is BCP-47 (Phillips and Davis, 2005), which builds off the two-letter
ISO639-2 codes and three-letter ISO639-3 codes, but also allows to add subtags for
scripts (e.g. Hindi in Latin script: hi-Latn) or regional varieties (e.g. French spoken
in Canada: fr-CA). It would enhance transparency and interoperability if adopted
consistently, especially with growing language diversity in NLP.

We find a variety of errors and inconsistencies in language code usage, ranging
from serious mislabelings to small transgressions against standard conventions. For
this analysis, we also include the JW300 (Agić and Vulić, 2019) dataset, a multilin-
gual dataset crawled from jw.org. In summary, we find 8 nonstandard codes in
CCAligned, 3 in OSCAR 2019, 1 in mC4, 1 in WikiMatrix, and 70 in JW300, for 83 in
total. This does not include the 59 codes affected by superset issues. Full details are
given in Appendix C.1.

Inconsistent Language Codes One common issue is simply using nonstandard or
invented codes. For example, CCAligned uses only two-letter codes, so when the
BCP-47 code for a language is three letters it is either shortened (e.g. zza → zz) or
invented (shn → qa). Similarly, OSCAR 2019 contains data labeled as als (BCP-47
for Tosk Albanian) that is actually in gsw (Alemannic).5 22 additional language
codes in JW300 have similar issues, including 12 codes that start with jw_ but are
not Javanese.

False Sign Languages 12% (48/417) of JW300 carry language codes for sign lan-
guages. Instead of sign language transcripts they are texts in another high resource
language, mostly English or Spanish—for example, the en-zsl (Zambian sign
language) data is actually English-English parallel data (copies), details in Ap-
pendix C.1. This was likely caused by videos with sign language interpretation
embedded on the crawled websites.6

Mysterious supersets When datasets contain language codes that are supersets
of other language codes, it is difficult to determine which particular language the
text contains. WikiMatrix has Serbian (sr), Croatian (hr), Bosnian (bs), and Serbo-
Croatian (sh)—their superset.7 The issue of codes that are supersets of others is
common enough to include a small table dedicated to it (Appendix Table C.1). In
some cases this may not be an issue, as with Arabic, where ar conventionally refers to
Modern Standard Arabic, even though the code technically encompasses all dialects.
In many cases, the nature of the data in the superset code remains a mystery.

5This is a result of the language code used by the Alemannic Wikipedia and affects any corpus or tool
that uses Wikipedia data without correcting for this, like FastText.

6Kudos to Rebecca Knowles for this explanation.
7https://iso639-3.sil.org/code/hbs

60

jw.org
https://en.wikipedia.org/wiki/Alemannic_Wikipedia
https://iso639-3.sil.org/code/hbs
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Deprecated codes Finally, there are several deprecated codes that are used: sh in
Wikimatrix, iw in mC4, sh and eml in OSCAR 2019, and daf in JW300.

6.3 Risks of Low-Quality Data

Lowquality in downstream applications Text corpora today are building blocks for
manydownstreamNLPapplications like question answering and text summarization—
for instance, a common approach is to first train translation models on such data
and then automatically translate training data for downstream models (Conneau
et al., 2018). If the data used for the original systems is flawed, derived technology
may fail for those languages far down the line without knowing the causes. This
risk of undesired downstream effects calls for future studies with a careful treatment
of intertwined effects such as data size and domain, language-specific phenomena,
evaluation data and metric biases. To give the reader a brief glimpse of the impact
of data quality for the example of translation, we compare the C% metric from our
audit with the translation quality (sentencepiece-BLEU, spBLEU) of the multilingual
translation model M2M124 for 124 languages (Goyal et al., 2021). It was trained on
WikiMatrix and CCAligned, and similar data collected with the same tools, which
we expect to show similar biases. Translation quality is evaluated on the trusted,
human-translated FloReS benchmark (Goyal et al., 2021). For the 21 languages
present in both the audit and the FloReS benchmark, we found a positive correlation
(Spearman) between the data quality scores and spBLEU of 𝜌 = 0.44 (𝑝 = 0.041).
This is not as large as the correlation with data size (𝜌 = 0.66, 𝑝 = 0.00078), but it
nonetheless helps to explain translation quality—the correlation between the product
of C% and data size (in other words, the expected total number of good sentences in
the dataset), is the highest yet, with a value of 𝜌 = 0.73 (𝑝 = 0.00013).8

Representation washing Since there are datasets which contain many low-resource
languages, the community may feel a sense of progress and growing equity, despite
the actual quality of the resources for these languages. Similarly, if low-quality
datasets are used as benchmarks they may exaggerate model performance, making
low-resource NLP appear more solved than it is—or conversely, if models perform
poorly when trained with such data, it may be wrongly assumed that the task of
learning models for these languages is harder than it actually is or infeasible given
current resources. These effects could result in productive effort being redirected
away from these tasks and languages.

8For the translation from English, BLEU scores are less comparable but the trend holds nonetheless,
with values of (𝜌 = 0.32, 𝑝 = 0.14), (𝜌 = 0.74, 𝑝 = 0.000078), and (𝜌 = 0.80, 𝑝 = 0.0000087)
respectively.
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en The prime minister of the UK is Boris Johnson.
nl De minister-president van Nederland is Mark Rutte.

en: The prime minister of the Netherlands is Mark Rutte.

en 24 March 2018
pt 14 Novembro 2018

en: 14 November 2018

en The current local time in Sarasota is 89 minutes.
nn Den lokale tiden i Miami er 86 minutt.

en: The local time in Miami is 86 minutes.

en In 1932 the highway was extended north to LA.
bar 1938 is de Autobahn bei Inglstod fertig gstellt.

en: The highway near Inglstod was completed in 1938.

Table 6.5: Examples of “parallel” data where the translation has a different meaning than the
source, but the form looks the same. (We added translations of the non-English
side.) Such data may encourage hallucinations of fake “facts”.

Trust in incorrect “facts” We found many instances of parallel-looking sentences
that are structurally and semantically similar, but not factually correct translations
(Table 6.5). They can cause models to produce plausible “translations” that are
factually wrong, but users may still trust them (algorithmic trust) without verifying
the information. Similarly, automation bias (Skitka et al., 1999), referring to humans
favoring decisions made by automated systems over decisions made by humans,
might amplify the issues of inaccurate translations caused by misalignments.

6.4 Future Work and Recommendations

Of the five multilingual corpora evaluated, we consistently found severe issues
with quality, especially in the lower-resource languages. We rated samples of 205
languages, and found that 87 of them had under 50% usable data, with a full 15
languages at 0% in-language. We furthermore found consistent issues with mis-
labeled data and nonstandard language codes, particularly in the JW300 dataset,
and identified 83 affected corpora, at least 48 of which were entirely spurious (Sec-
tion 6.2). While there might have been anecdotal evidence of insufficient quality
for some datasets, the majority of these quality issues had not been reported, nor
been investigated in depth. These issues might go unnoticed for languages that
are not represented in the evaluation of the crawling methods, and cause harm in
downstream applications (Khayrallah and Koehn, 2018).

There are a variety of ways to improve both the ease and accuracy of human
evaluation, as well a few classes of issues we ignored in this paper, like close dialects.
Ideally we would like to build a standard suite of automatic metrics for datasets,
but more research is necessary to determine what the appropriate metrics would
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be. One important area missing from our analyses however is the estimated portion
of a dataset which has been generated by MT (Rarrick et al., 2011), LM systems, or
bots/templates, as for example in the analysis of C4 (Dodge et al., 2021). The infor-
mation captured in machine-generated content might still be useful for modeling,
but might falsely overrepresent typical generation patterns and introduce linguistic
errors or unnatural artifacts.

We therefore strongly recommend looking at samples of any dataset before using
it or releasing it to the public. As we have shown, one does not need to be proficient
in a language to see when there are serious quality issues, and a quick scan of 100
sentences can be sufficient to detect major problems. Moreover, going through and
annotating a small sample of data can bring actionable insights about new ways to
filter or use it.

If data quality issues are found, a wide variety of techniques can be explored,
like filtering on length-ratio, LangID, TF-IDF wordlists (Caswell et al., 2020) or
dictionaries (Kamholz et al., 2014); to neural approaches like LM scoring (Axelrod
et al., 2011; Moore and Lewis, 2010; Wang et al., 2018). Unfortunately, none of these
provides a quick and easy fix, especially for low-resource languages—data cleaning
is no trivial task!

Noisy datasets are by no means useless, at least if they contain some desirable
content. Therefore, an alternative to filtering can be documentation (Bender et al.,
2021). This can take the form of a per-language quality score and notes about known
issues, a datasheet (Gebru et al., 2018) or nutrition label (Holland et al., 2018).
However, we suggest researchers not release corpora with near-zero in-language
content, as this may give the mistaken impression of usable resources.

Finally, we encourage the community to continue conducting evaluations and
audits of public datasets—similar to system comparison papers.

6.5 Conclusions for the OSCAR Project

While the study described in chapter 5 showed encouraging results for the OSCAR
2019 corpus, a lot of concerns about the actual quality of the data remained unad-
dressed. This has addressed some of these concerns and actually showed promising
results for the OSCAR corpus especially in comparison to the other four audited
corpora, as OSCAR 2019 obtained the highest percentage of correct sentences as
shown in table 6.2.

However, we also acknowledge that major issues remain to be addressed as has
been pointed out here and more importantly, only 0.00004% of the corpus was
actually audited here, meaning that potential issues with both the corpus and the
pipelinemight remain to be discovered. This collaborationmarks thus a turning point
for the OSCAR project, as it served as a platform and catalyst for both relaunching
the project and start working on further versions of the corpus to the one originally
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published in 2019 (Ortiz Suárez et al., 2019). The following two chapterswill describe
the creation of two subsequent versions of OSCAR that try to address some of the
problems described here and some others that were pointed by the users of the
project at both the corpus and the pipeline level.
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pipeline

In which we present the work of Abadji et al. (2021), who
after the evaluations discussed in the previous two chapters,
completely rewrote the original OSCAR’s goclassy pipeline,
added features to the corpus such as metadata extraction
and published the second version of the OSCAR corpus now
known as OSCAR 21.09.1

As discussed in previous chapters, OSCAR 2019 was generated from the plain
text data extracts (WET files) of the November 2018 Common Crawl dump, which
was distributed in the form of 56,000 shards, that were then filtered and classified
by language (Ortiz Suárez et al., 2019; Ortiz Suárez et al., 2020b). OSCAR 2019 is
now available for research through the Huma-Num servers2 in Europe and for the
public at large through Hugging Face’s Datasets Hub3 where it now has more than
15 thousands downloads.

OSCAR 2019 came in four different versions, each one intended for different tasks.
These versions were either unshuffled or shuffled (that is, for each language, lines have
been shuffled, destroying record and thus document integrity), and non-deduplicated
or deduplicated (since duplicate lines account for more than half of the total data4
generated by the pipeline). For the unshuffled versions, each language file contained
paragraphs that came from the same record, and each paragraph is separated by a
newline.

Simply put, OSCAR 2019 was composed of single language files that contained
textual data (ta.txt for the Tamil language, for example). However, due to the
often huge sizes of these files, and subsequently the impracticality of storage and
distribution, OSCAR 2019 files were split and compressed in equally sized parts.

1Contributions: I designed most of the experiments and comparisons to be made between the two
pipelines, I downloaded and prepared Common Crawl for extraction and I actively participated in
the writing of the scientific article.

2https://oscar-corpus.com/post/oscar-2019/
3https://huggingface.co/datasets/oscar
4OSCAR-orig: 6.3TB, OSCAR-dedup: 3.2TB
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However, but OSCAR 2019 and its pipeline came with a number of limitations,
which we will discuss in the following sections, and we will try to start fixing in this
and the following chapter.

7.1 Limitations of the OSCAR 2019 Corpus and its Generation
Pipeline

7.1.1 OSCAR 2019

OSCAR 2019 was inherently linked to its generation pipeline, and as such its quality
partly depended on the pipeline’s quality. While OSCAR 2019 was considered to
be one of the cleanest multilingual corpora available as discussed in the previous
chapter and in (Caswell et al., 2020), several problems had been described, and
the state of the publicly available code raised questions about maintenance and
maintenability of the pipeline itself. Apart from the fact that its content dated back
to 2018, some of the problems with OSCAR 2019 include:

• Language label mismatches and inconsistencies, which occurs earlier in the
pipeline and would be fixable downstream,

• Representation washing as defined by Kreutzer et al. (2022), whereby low
resource languages, while present in the corpus, are of a significantly lower
quality than higher resource languages without any quality metric available
publicly.

Moreover, the more recent dumps of Common Crawl in 2021 contain more than
64,000 shards (almost 10,000 more than the dump used for OSCAR 2019). Further-
more, each of these shards is composed of numerous records, and each record holds
textual content along with metadata. While Common Crawl shards hold document-
level metadata that could be useful downstream, they were com discarded and do
not appear in OSCAR 2019, whereas other corpora generated from Common Crawl
do include them, e.g. CCNet (Wenzek et al., 2020). This limits OSCAR 2019 users to
the textual content only, whereas metadata could have been distributed along with
the corpus itself.

7.1.2 goclassy

OSCAR 2019 was built using goclassy, a high-performance asynchronous pipeline
written in Go described in Chapter 4. However, it suffered from several caveats that
makes the re-generation and update of the corpus relatively complex in practice.

While goclassy’s source code was easily readable thanks to the choice of an
uncluttered programming language and a pragmatic approach, the lack of structure
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in both the source and the project itself made goclassy difficult to extend and
maintain.

The pipeline was not functional out-of-the-box, as the user had to provide the
compressed shards from CommonCrawl, manually install FastText (Joulin et al.,
2016; Joulin et al., 2017) and create specific directories by themselves, since only
partial instructions are given in the supplied README file.

As described in Chapter 4, goclassy also made heavy use of I/O, as data was
saved and loaded repeatedly between steps; as an example, the identification step
stored language identification data and individual sentences in two files, before
generating the final files (one per language). Despite these limitations, goclassy’s
performance remained acceptable mainly due to Go’s emphasis on easy and efficient
parallelization and inherent speed. The pipeline for instance used clever handling of
file descriptors and employed extensive buffering, which limited I/O calls cost in
some parts.

7.2 Building a New Version of the OSCAR Corpus

Having identified some shortcomings of bothOSCAR2019 and its pipeline, goclassy,
we decided to restart theOSCARproject by completely rewriting our pipeline. To that
end, we introduce Ungoliant, a new corpus generation pipeline that, like goclassy,
creates a large-scale multilingual text corpus from a CommonCrawl dump. However,
contrarily to goclassy, Ungoliant is fully modular, better structured, and highly
parametrizable; thereby allowing comparisons between several parallelization strate-
gies. A specific effort was put in testing and documentation. Parts of Ungoliant
are heavily inspired by goclassy, although for its implementation we decided to
use Rust rather than Go, which is often considered to be a faster more low level
programming language.5

We also use Ungoliant to generate a new version of the OSCAR corpus from a
more recent Common Crawl dump. The new corpus includes metadata information
while retaining backward compatibility with the OSCAR 2019 corpus.

7.2.1 Ungoliant

Rationale and Scope

While Ungoliant is heavily inspired by goclassy, it provides a better set of tools to
download, process, filter and aggregate textual and contextual data from Common
Crawl. These operations can be sequential, parallel or both, depending on contexts
and performance requirements.

We provide both batch and streaming processing, so that the whole pipeline could
be run either online, with every step running on streams of data, or offline, with

5https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust-go.html
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Platform #shards goclassy Ungoliant Approx. speedup

Desktop
1 30s 13s ×2.3

10 3m6s 2m12s ×1.3
25 9m10s 5m47s ×1.5

HPC
1 40s 6s ×6.6

25 2m40s 1m6s ×2.4
100 7m59s 4m14s ×1.8

Table 7.1: Comparison of approximate generation times depending on platform and number
of shards.

every step running on tangible files, or a mix of both, using already downloaded
Common Crawl dumps but streaming the rest of the process. Moreover, we embed
numerous filtering and deduplication utilities directly inside Ungoliant, making
these features available for pipeline composition and post-processing.

Ungoliant features a loosely defined pipeline interface, on which we re-implement
goclassy’s one, while improving performance by threading more aggressively and
avoiding I/O where it is not necessary: While goclassy uses intermediate files for
tags and sentences, we try to keep everything inmemory in order to avoid losing time
loading or writing files. The Rust language provides constructs that helps us build
complex abstractions and pipelines while limiting proactive file I/O or computing,
since nearly all the reimplemented pipeline is built around lazy evaluation. File I/O
is only used when loading shards, and when writing sentences in language files.

Through benchmarking we found that the best parallelization strategy is to use
rayon,6 awork-stealing (Blumofe and Leiserson, 1999) parallel and concurrent library
enablingmassive parallelization. We parallelize on shard-, record- and sentence-level
processing.

To evaluate Ungoliant performance, we run both goclassy and Ungoliant’s im-
plementation on 1, 10, 25 and 100 Common Crawl shards both on a middle-range
laptop computer (i5-7200u, 8 GB RAM, NVMe SSD) and a HPC node (Xeon 5218
(64 Threads), 180 GB RAM). Results are shown in Table 7.1.

Ungoliant performs better than goclassy on all tasks, independently of the plat-
form or number of shards processed. However, we can note that Ungoliant’s speedup
is higher on short tasks, which is explained by its aggressive multithreading strategy,
while goclassy uses a record-scope multithreading at its finest granularity.

7.2.2 Iterating on the goclassy Pipeline

CommonCrawl dumps containmetadata that hold useful information such as related
records, recognized language(s), or origin URLs. Since OSCAR’s 2019 pipeline
discarded metadata and sentences could be shuffled, we lost the ability to investigate

6https://github.com/rayon-rs/rayon
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the metadata itself, as well as working on potentially multilingual documents, since
we separated text from metadata.

The new pipeline (and the resulting new corpus schema) aims to establish a
first link between textual data and metadata from Common Crawl, while staying
backward compatible with the existing OSCAR 2019 schema.

In other words, switching from the original OSCAR 2019 corpus and the newly
generated one should be a drop-in operation.

Metadata Extraction and Linking

Our choice of keeping the corpus backward compatible with the original OSCAR
2019 introduces changes in the way the corpus is generated, namely regarding
metadata: a record’s body is composed of sentences that aren’t guaranteed to be of the
same language. Since OSCAR merges sentences from multiple records into a single
file, special attention has to be paid to the metadata dispatch too.

Approaches to tackle this problem range from (1) storing all metadata in a single
location to (2) having language-specific metadata files that contain the metadata for
each line in the language file.

Both (1) and (2) have their strengths and weaknesses, namely:

1. Having all metadata at the same place may facilitate wide queries about whole
metadata, but at a cost of a very large size (which harms both accessibility and
performance).

2. Getting themetadata for a given line is fast since line numbers are synchronized,
but there is repeated information and a potentially important increase in size.

We thus choose a hybrid approach which keeps metadata local to each language,
while trying to limit the information repetition by keeping an entry by group of
chunks rather than by line, where a chunk is a series of contiguous sentences that
share the same language from the same document.

An overview of the pipeline can be seen in Figure 7.1, where we depict Ungoliant
at a macro level in the first part of the figure, and where we also give a more precise
view on record processing and metadata extraction in the second half of the figure.

Metadata is distributed via JSON-encoded files holding an ordered list of metadata
entries, along with offsets (𝑜) and paragraph lengths (𝑙), enabling any user to get
the content of a said metadata by querying for lines (𝑜, 𝑜 + 𝑙] in the content file.

This approach still has drawbacks, in particular when looking for the correspond-
ing metadata of a given sentence/paragraph, where one has to perform a search on
themetadata file, or whenworkingwithmultilingual documents. Another important
drawback is the resulting cost of potentially merging back numerous language parts:
Since metadata query is offset-based, merging back metadata files implies updating
those offsets.
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Figure 7.1: Record processing with metadata extraction. Headers are kept aside while sen-
tences are identified and grouped into same-language bins. Headers are then
cloned for each bin, and are sequentially stamped with an offset that is recorded
for the whole operation, and written to disk into text and metadata files by lan-
guage.
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Platform #shards Without Metadata With Metadata Speedup

Desktop
1 13s 12s ×1.1

10 2m12s 1m55s ×1.1
25 5m47s 4m50s ×1.2

HPC
1 6s 7s ×0.9

25 1m6s 1m12s ×0.9
100 4m14s 4m36s ×0.9

Table 7.2: Comparison of approximate generation times with and without metadata genera-
tion.

Having paragraphs andmetadata linked by offsets in a highly parallelized pipeline
implies to take special care at the offset level. The solution is to use shard-scoped
offsets (starting from 0 for each language), and to keep global offsets protected by a
mutex guard. This way, when a given shard is done processing and is ready to be
written on disk, we convert shard-scoped offsets to global-scoped ones, update the
global-scoped ones and then write text and metadata on disk.

We compare running times for the reimplementation of the goclassy pipeline,
and our new pipeline adding metadata extraction, using both desktop and HPC
contexts. The results are reported in Table 7.2.

Metadata generation does not seem to influence generation time dramatically.
However, we can notice a slight performance difference between HPC and Desktop
contexts. These differences may lie in the storage medium differences, I/O layout, or
algorithmic peculiarities benefiting desktop contexts because of other bottlenecks.

7.2.3 Characteristics of the OSCAR 21.09 Corpus

We evaluate the newly generated OSCAR 21.09 corpus (published in September
20217), assessing its ability to reflect events that occurred after the publication of
OSCAR 2019, that is, events that occurred after November 2018, and we detail the
metadata format and potential use.

Comparison with OSCAR 2019

While it is expected that our new corpus has a larger file size than OSCAR 2019 since
Common Crawl itself grew from 7.42 TB to 8.06 TB, metadata quickly adds up and
accounts for nearly 15% of the total uncompressed data in OSCAR 21.09.

The size difference is not the same for each language, and while the corpus as a
whole is bigger now, some languages are smaller than they were before.

Results show that already largely represented languages gain more and more
data (like the English language, which constituted more than a third of the original

7https://oscar-corpus.com/post/oscar-v21-09/
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OSCAR Version Common Crawl OSCAR (dedup) Metadata Total (increase)

2019 7.42TB 6.3TB (3.2TB) N/A 6.3TB
21.09 8.06TB 7.2TB (3.3TB) 1.2TB 8.4TB (+33%)

Table 7.3: Comparison of the size of the Common Crawl dumps and their corresponding
OSCAR sizes between the 2019 and the 21.09 versions. Compressed (Common
Crawl) sources are fromNovember 2018 and February 2021 dumps. Total is Textual
+ Metadata without deduplication.
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Figure 7.2: Comparison of language size (in bytes) between OSCAR 2018 and OSCAR 2021
(top/bottom 5 only).

OSCAR 2019), except for the Russian language which loses approximately 100Gb of
textual content. These results are summarized in Figure 7.2.

However, in a context where the number of languages is very high (higher than
150) and of varying sizes, evolution can’t be analyzed via a mere size evaluation.
By computing, for each language, the relative size difference between the 2019 and
21.09 releases of OSCAR, less resourced languages do appear, hinting at a better
representation of some of them. These results can be found in Figure 7.3.

Note nonetheless that numerous languages have been omitted from Figure 7.3,
either:

• because they were present in the original OSCAR 2019 and are now absent
(Central Bikol and Cantonese)

• or because they were absent in the original OSCAR 2019 and are now present
(Manx, Rusyn, Scots and West Flemish)
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Precautions have to be taken when using these corpora and further work has to
be done to correctly assess the quality of low-to-mid resource languages in order
to better reflect the quality of each corpus to the OSCAR users. Some sub-corpora
exhibited either a particularly low number of sentences or just very low quality data,
and as such they are not really usable in practice. However, they still account for a
language in the total language count of both the original OSCAR 2019 and the new
OSCAR 21.09.
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Figure 7.3: Comparison of language percentage between OSCAR 2018 and OSCAR 2021
(top/bottom 5 only).

Metadata

Metadata provides new contextual data that is useful to evaluate the corpus and
draw metrics.

The total size of metadata is 1.2 TB, ranging from 4Kb to 500Gb, depending on the
number of lines. Relative size varies from 100% to 20%, diminishing with the textual
data size, which is expected.

Our choice of keepingmetadata aside from themain content adds some complexity
when working with both textual and contextual data:

• When trying to get the metadata of given sentence, one has to get the line
number 𝑘, then sequentially (or use a search algorithm since offsets are sorted)
look for the record (with offset 𝑜 and length 𝑙), where 𝑘 ∈ [𝑜, 𝑜 + 𝑙].
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Language Term 2018 2021

Arabic Beirut port explosion 0 31
Burmese* Min Aung Hlaing 387 3439
English Obama 30039 27639
English Biden 990 19299
French Yellow Vests 2 96

Table 7.4: Comparison of occurrences of news-related terms between OSCAR and our corpus
in a sample of 100 Common Crawl shards. For the Burmese language, we use
the whole 2018 and 2021 corpus since it is a low resource language. Terms are
translated to the target language.

• Looking for lines corresponding to a particular metadata entry is easier: one
has to read the textual file, skipping until the 𝑜-th line, then read 𝑙 lines.

Presence of events

Using a sample of five sub-corpora, we perform a simple search of terms in order to
assess and compare the presence of pre- and post- 2018 events and persons in both
corpora. Terms and frequency are grouped in Table 7.4.

Our corpus keeps around the same number of occurrences for pre-2018 events
or public figures such as Barack Obama, while increasing the occurrence of people
linked to more recent events (Joe Biden).

We include search terms linked to post-2018 events in French and Arabic which
are smaller corpora (resp. 200 and 80 GB), and in Burmese, a mid-resource language
(approximately 2 GB). We observe a term occurrences evolution that reflects the
linked events’ timing and importance.

7.2.4 License

This new OSCAR 21.09 corpus is released under a research-only license that is
compliant with the EU’s exceptions for research in text and data mining. Contrarily
to the original OSCAR 2019, no shuffled version of the corpus is distributed, instead
we put in place an authentication system that allows us to verify that requests for
the corpus come from research institutions. A contact form is also provided for
independent researchers so that we can study their particular cases and determine if
the utilization of the corpus corresponds to a legitimate research use.

Moreover, the introduction of metadata makes our corpus far more queryable,
thus simplifying and speeding up the handling of take-down GDPR requests. For
this reason, we release the complete set of metadata under a CC0 public domain
license, so that any individual can check if their personal or even copyrighted data is
in our new OSCAR 21.09 corpus and make a request accordingly.
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7.3 Conclusion

Although the work presented in this particular chapter does not directly address
some of the previous concerns raised by Caswell et al. (2020) and discussed in
Chapter 6. We do believe that a more efficient, more modular and better documented
pipeline is the first step in making the OSCAR project more approachable by other
members of the NLP and Digital Humanities communities.

Moreover, we also believe that the addition of metadata to OSCAR is a big step
towards improving the quality of its content as itwill provide us and other researchers
willing to use OSCAR with enough information to better explore, audit, annotate
and filter the corpus.

In the next and final chapter of the OSCAR part in this thesis we will explore the
question of document integrity which might be useful for researchers interested
in document level tasks and which until now is not respected for Common Crawl
records containing multilingual data. We will also continue improving Ungoliant
and start using the metadata that we extract from the Common Crawl records to
produce the first ever OSCAR annotations.
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8 Towards a Cleaner
Document-Oriented Annotated
OSCAR Corpus

In which we present the work of Abadji et al. (2022), who
continued improving over the second OSCAR pipeline Un-
goliant by adding mechanisms to ensure document integrity,
specially for multilingual records of Common Crawl, and
also by adding the first methods for simple annotations of the
OSCAR corpus that would allow users to more easily filter
the data and obtain a cleaner dataset specially for language
modeling applications.1

In this final chapter about the OSCAR project we present the first methods for
adding simple annotators to the Ungoliant pipeline that build upon the improve-
ments presented in the previous chapter and that actually allow us to finally start
addressing some problems exposed in chapter 6 and in far more detail in (Caswell
et al., 2020; Kreutzer et al., 2022). Moreover, we also introduce a new method for
document level language classification that:

1. Is based on line-level language classification allowing us to hopefully preserve
the classification quality that we saw in chapter 6.

2. Allow us to respect document integrity such that we can establish a one to one
correspondence between OSCAR documents and Common Crawl records.

3. Allows us to get multilingual documents that might one day serve as the basis
of a parallel OSCAR corpus.

1Contributions: I devised the length based filter and the length based annotations, as well as the adult
annotations based on a blocklist. I also came up with the method for document label language
identification as well as the formalism presented in section 8.2. I proposed some of the comparisons
we did between OSCAR versions. Finally, I actively participated in the writing of the scientific
article.
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8.1 Filtering

Previous OSCAR pipelines were line-oriented (where a line is defined as a string
separated by \n, and often correspond to a paragraph), which meant that the highest
filtering granularity were lines. Having a document-oriented corpus implies that:

• We must try to keep the document integrity, by altering it in a way that does
not completely destroy its coherence.

• Operations on the document (filtering, identification, annotation) must take
into account the document as a whole.

We aim to produce a corpus that is similar in size and quality to OSCAR 21.09,
looking for a set of filters that limits the inclusion of short, noisy lines in documents,
while keeping a sufficient quantity of data, especially for low- and mid-resource
languages. Those filters either keep/discard a given document, or remove lines from
the document body then keep it.

8.1.1 Header and footer filter

Similar to previous OSCAR pipelines, we use a length-based filter discarding short-
lines. However, we restrict the removal on contiguous sequences of short lines
that are located either at the head or at the tail of the document. In the following
document, only the lines preceded by an exclamation point would be kept.

Home
Login
Sign Up
Welcome to my Website
! Lorem Ipsum Dolor Sit Amet ....
! Lorem Ipsum Dolor Sit Amet ....
! Lorem Ipsum Dolor Sit Amet ....
! Lorem Ipsum Dolor Sit Amet ....
Copyright Myself
Legal
Contact

The solution still has numerous drawbacks, especially when dealing with docu-
ments crawled from the internet, a source known to be extremely noisy and full of
edge cases: Adding a long line at the very head and tail of the previous document
would completely negate the benefits of the filter.
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8.1.2 Short lines proportion filter

In order to refine the filtering process, we use a count-based filter that separates the
data in two bins: One for short lines and one for long lines. The filter then checks
which bin is bigger, and filters out documents where the short lines bin is bigger.

This filter may limit the impact of documents containing low-quality long lines at
the head/tail, then a high number of short lines.

8.2 Identification

The backbone of the language identification process is similar to the one used in
goclassy (Chapter 4) for the generation of OSCAR 2019 and Ungoliant (Chapter
7) for the generation of OSCAR 21.09. However, shifting to a document oriented
corpus (with a single top-level identification per document) requires to infer the
document identification, based on line identifications.

We define a document 𝒟 as a pair 𝒟 = (ℒ, 𝒢) where ℒ = {𝑙1, … , 𝑙𝑛} is the set of
lines (strings separated by \n) that constitute the document and 𝒢 = {𝑔1, … , 𝑔𝑚}2 is
the set of languages identified by FastText for the document 𝒟. When FastText is not
able to identify a language for a specific line, for instance because the confidence isn’t
higher than 0.8, we tag said linewith theNo Identification Language thatwe simply note
by 𝑔0. Furthermore, we define each line 𝑙𝑖 in a document 𝒟 as a triplet 𝑙𝑘 = (𝑔𝑖, 𝑝𝑖, 𝑠𝑖)
where 𝑔𝑖 is the language identified by FastText with the highest confidence for the
line 𝑙𝑖, 𝑝𝑖 is said confidence and 𝑠𝑖 is the size in bytes of the line 𝑙𝑖. We also note
|𝑙𝑖| = 𝑠𝑖, and we thus define the size |𝒟| of a document 𝒟 as

|𝒟| =
𝑛

∑
𝑖=0

|𝑙𝑖| =
𝑛

∑
𝑖=0

𝑠𝑖.

Moreover, for each identified language 𝑔 ∈ 𝒢 in a document containing 𝑛 lines, we
define its size |𝑔| as

|𝑔| = ∑
{𝑖∣𝑔𝑖=𝑔}

𝑠𝑖.

Finally, for each language 𝑔 ∈ 𝒢 we can also compute its overall weighted confidence 𝑃
throughout the document 𝒟 as the following weighted mean:

𝑃 = |𝒟|−1 ∑
{𝑖∣𝑔𝑖=𝑔}

𝑠𝑖𝑝𝑖.

8.2.1 Multilingual document identification

A document can contain lines in multiple languages for several reasons:
2Note that since FastText identifies one language by line, we always have 𝑚 ≤ 𝑛 for every document

𝒟.
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1. Identificationmismatch, that can showup frequently, especiallywith languages
that have significant vocabulary overlap (Czech and Slovak),

2. Crawl from a website where the interface is written in a language, and the
body is written in another one,

3. Crawl from a translation page, where the same content is present in two (or
more) different languages.

In these examples, we should aim to limit the presence of 1. and 2., while maxi-
mizing the presence of 3.: documents having a balanced set of lines per language.
Thus, we decide to take a cautious approach, restricting the multilingual document
identification test to the documents that:

• Have at least 5 lines,

• Have at most 5 different languages.

Next, we compute the proportion for each language 𝑔𝑗 ∈ 𝒢 in the document 𝒟 defined
as follows

Pr𝑔𝑗
=

|𝑔𝑗|
|𝒟|

,

including for the no identification language 𝑔0.
A document 𝒟 containing 𝑛 lines is identified as multilingual if and only if:

⎧{{
⎨{{⎩

|𝑔𝑗| ≥
|𝒟|

𝑛 + 1 ∀𝑔𝑗 ≠ 𝑔0, and

|𝑔0| ≤
|𝒟|

𝑛 + 1

As an example, a document holding 𝑚 = 3 languages is multilingual if each language
makes up at least 1

𝑚+1 = 1
4 of the document, and that there is at most 1

4 of the
document that is of unknown identification.

8.2.2 Monolingual identification

We begin by identifying each line, keeping in memory the language identified, the
confidence of the identification, and the size of the line. We keep track of lines that
have not been identified with a special token, and a confidence of 1.

If the document does not pass the multilingual check, we then take the largest
represented language and compute its overall confidence 𝑃𝑗 and use a minimum
confidence threshold of 0.6 that is way lower than the previous pipelines (0.8).
This is motivated by the following reason: The document-based filtering removes
documents containing lines that could have been kept by former pipelines, thus
reducing the size of the generated data.
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8.3 Annotation

Using a lower threshold could help getting lower-quality documents that still hold
high-confidence lines in themselves.

8.3 Annotation

While the filtering and identification steps are lenient by using lower thresholds
than the previous pipelines, we introduce annotations, as non-destructive filters
that enable more precise downstream filtering for the corpus users, as well as a
useful resource to quickly assess the quality of a corpus. Annotations enable more
aggressive filters to be run, since the non-destructive nature of annotations can in
turn be used to refine annotation filters.

Numerous annotations are available, and each document can have several ones at
the same time.

8.3.1 Length-based annotations

Some simple annotations are added when documents don’t meet certain length
requirements:

• The document has a low (≤ 5) number of lines (tiny)

• The document has a high number (≥ 50%) of short lines (short_sentences)

These annotations help to spot potentially tiny documents, where the line structure
or the document size could negatively influence training tasks.

A third annotation checks the occurrence of short lines at the start of the document,
and adds a header annotation if it is the case, indicating that low-quality content
could be present at the start of the document.

A fourth annotation named footer works in the same way on the tail of the docu-
ment.

8.3.2 Noise detection

Some documents make their way into the corpus while being extremely noisy or
non-linguistic. As an example, source code can be found in English corpora because
of the presence of English words in the source itself.

We use a filter that computes a ratio between letters and non-letters.
This filter is based on Unicode categories. We use categories Lu, Ll, Lt, Lm, Lo3 for

letters, and we add categories Mn, Mc, Me4 for accents and diacritics.
A noisy annotation is added if the ratio passes a certain threshold, set to 0.5.

3Lu: Uppercase letter, Ll: Lowercase letter, Lt: Titlecase, Lm: Modifier, Lo: Other.
4Mn: Nonspacing mark, Ms: Spacing mark, Me: Enclosing mark.
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8 Towards a Cleaner Document-Oriented Annotated OSCAR Corpus

8.3.3 Adult documents

We use the UT1 blocklist5 as a base for adult content filtering. The UT1 blocklist is
a collection of thematic blocklists (adult, gambling, blog, among others), usually
utilized in internet access control for schools. The list is constituted and extended by
both human and robots contributions (known indexes, search engines, exploration
of already known addresses). The blocklist is updated twice to thrice a week by
Fabrice Prigent.

Each folder contains URL and domain blocklists, enabling filtering of bothwebsites
that are centered around adult content, and websites hosting user-generated content
that can be of adult nature (several social networks...).

The adult blocklist comprises roughly 3.7M records.

8.4 Corpus

We apply the aforementioned pipeline to the November/December 2021 crawl dump
of Common Crawl. The result is a new corpus, OSCAR 22.01. While its structure is
different from the previous OSCAR corpora (due to the choice of generating a docu-
ment oriented corpus), we have attempted to compare the two corpora, especially
in terms of size and news-related topic presence and recall. We also evaluate the
occurrence and pertinence of the annotations.

100 KB 100 MB 100 GB
Size (in bytes)

0

5

10

15

20

25

N
um

be
r o

f c
or

po
ra

OSCAR 21.09

100 KB 100 MB 100 GB
Size (in bytes)

0

5

10

15

20

25
OSCAR 22.01

100 KB 100 MB 100 GB
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on

Both (ecdf)

Version
OSCAR 21.09
OSCAR 22.01

Figure 8.1: Corpus size distribution between OSCAR 21.09 and 22.01

5https://dsi.ut-capitole.fr/blacklists/.
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8.4 Corpus

8.4.1 Comparison with OSCAR 21.09

Size distribution

The data layout of OSCAR 22.01 may limit the relevance of raw size comparisons,
since metadata are larger (annotations and line identifications were not present in
previous OSCAR Corpora), and fused with textual data (metadata were distributed
in separate files for OSCAR 21.09).

However, comparing the distribution of corpus sizes may help us ensure that the
new corpus has a size distribution similar to the older one.

We compare the distribution of the sub-corpora sizes between OSCAR 21.09 and
OSCAR 22.01 in figure 8.1. We see that while the overall distribution is similar, the
lower end of the distribution has more variance: The [0B, 100KB) range shows more
corpora at its bounds than at its center. Furthermore, we also plot the empirical
cumulative density function, that helps to assert the distribution similarity between
OSCAR 21.09 and OSCAR 22.01.
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Figure 8.2: Content size comparison of selected languages in OSCAR 22.01 versus OSCAR
21.09

We also select three low-resourced languages, three mid-resourced languages
and three high-resources languages and compare their content (that is, textual data
excludingmetadata) betweenOSCAR 22.01 andOSCAR 21.09. Comparison is shown
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in figure 8.2. While the overall sizes of these corpora have slightly decreased, the
sizes of the mid and high resource languages are similar enough.

Size differences in low-resource languages

The low-sized corpora exhibit important size changes. As an example, the Alemannic
German corpus went from 7MB to 360KB between OSCAR 21.09 and OSCAR 22.01.
This size decrease can be explained by the way the document identification works: by
reasoning at a document level, documents containing amajority of German identified
lines and a minority of Alemannic German identified lines will be identified as a
German document, whereas previous OSCAR pipelines would have separated the
lines and increase the size of the Alemannic German corpus.

By extracting the lines identified as Alemannic from the German corpus, we get
around 30MB of data, which could constitute an Alemannic corpus with a size
comparable to the OSCAR 21.09 Alemannic corpus after confidence and length
based filtering.

This situation can, in a way, help us investigate the cases of linguistic proximity,
where languages have a lexical overlap: When a line identified as Alemannic German
is found inside a document that has been identified as German:

1. Is the line in German, and it is an identification error?

2. Is the line in Alemannic German, in a document that is in German? (ex: A
German website related to the Alemannic German language)

3. Is the whole document in Alemannic German, and the identification classified
the majority of Alemannic as German?

Those three cases can arise and may help to enhance the detection of a said lan-
guage, by finding (1) identification mismatches, hoping that these cases would
improve identification after training, or (3), after verification by a speaker of the
language, state that the whole document is in Alemannic. The new data collected
could in turn be used to improve language detection.

New themes

As OSCAR 22.01 is based on the November/December 2021 dump (compared to
OSCAR 21.09, based on the February 2021 dump), the corpus should include data
related to events contemporary to February 2021. We conduct a simple word search
similar to the one conducted for the generation of OSCAR 21.09 (Abadji et al., 2021),
using both old and new events, in order to give a rough idea of both the actuality
and the memory of the corpus.

We see that the events and terms related to events predating February 2021 are still
present in the corpus, but have a lower count that nevertheless remains in the same
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Language Term 21.09 22.01

Arabic Beirut port explosion 31 13
Burmese* Min Aung Hlaing 3439 2736
English Obama 27639 8697
English Biden 19299 8232
English Omicron 131 417
French Yellow Vests 96 73
Spanish Aborto 1504 572

Table 8.1: Comparison of occurrences of news-related terms between OSCAR and our corpus
in a sample of 100 Common Crawl shards.
*: For the Burmese language, we use the whole 21.09 and 22.01 corpus since it has
less than 100 sentences in both subcorpora. Terms are translated in the corpus
language.

order of magnitude. We also count the occurrences of the term Omicron, related
to the Omicron variant, and observe that the term has a higher count on the 21.01
sample.

Absence of deduplication

Contrary to OSCAR 21.09, we do not distribute a deduplicated version of themajority
of OSCAR 22.01.

The line-level deduplication of documents would have destroyed the integrity
of documents themselves, hampering human readability and even sequential sen-
tence sense. We can imagine having forum discussions’ sense destroyed because of
identical responses, or song lyrics being altered.

Moreover, the similarity-based document-level deduplication procedure is very
costly in terms of computing power and time (Gao et al., 2020).

We make the choice of distributing a non deduplicated version of OSCAR along
with a deduplicated, line oriented version of the English corpus, while encouraging
the use of deduplication in the context of training language models (Lee et al., 2021).
A line-level deduplication tool will be available as part of the OSCAR toolkit6. We
will also distribute a deduplicated version of the English part of OSCAR 22.01, with
a data layout similar to OSCAR 21.09 corpora.

6https://github.com/oscar-corpus/oscar-tools
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8 Towards a Cleaner Document-Oriented Annotated OSCAR Corpus

8.4.2 Annotations

Raw stats

Annotations help us to infer the composition of the corpora: The tiny, short_sentences
and especially noisy annotations may indicate documents of a varying poor quality,
with noisy being the worst.

Also, comparing corpora annotation distributions, especially related to their size,
could highlight potentially very low quality corpora. This semi-automated quality
checking process could be used to label corpora where data quality is bad.

We select 3 low-resource (≃100KB), 3mid-resource (≃100MB) and 3 high-resource
(≃100GB) languages and plot the number of documents per annotation, adding a
total legend for the total document count and a clean legend for documents that do
not have any annotation. We then plot the counts for each resource group using
adapted scales.

We observe that the annotation distribution is similar for each resource group, but
that the lower resourced languages have a higher proportion of documents annotated
with short_sentences and tiny.
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Figure 8.3: Annotation count in selected low, mid and high resource languages (scales are
adapted to corpus size)

In order to better compare the resource groups, we display the annotation distri-
bution in a heat map (figure 8.4). We notice important differences between low and
mid/high resource groups. A very large proportion of the low resource group is
annotated as tinywhile simultaneously detaining fewdocuments annotated short_sen-
tences, indicating the presence of long sentenceswithin documentswith a lownumber
of sentences.
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Figure 8.4: Heat map of annotation distributions in selected low, mid and high resource
languages.

Multilinguality

The OSCAR 22.01 Corpus also contains a multilingual corpus, composed of doc-
uments holding lines in multiple languages. Each document contains at least 2
languages, and at most 5.

We check the co-occurrence of languages, highlighting the coupling of language
tuples. These tuples may highlight either linguistic similarity (Czech and Slovak,
Russian and Belarusian) and subsequent poor classification, errors or languages
commonly found together on documents. Due to the number of languages and the
sparsity of the data, we show the language couples with a number of documents
greater than 20 000 (Figure 8.5).

We also note the presence of English in a high number of documents. This could
be explained by boilerplate content in web pages, such as menu headers or footers.

Using the clean annotation filter on the multilingual corpus may help to retrieve
the highest quality multilingual documents.
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Figure 8.5: Count of (𝑙1, 𝑙2) language tuples in the multilingual corpus. Languages tuples
with less than 20,000 occurrences are not shown.

Clean documents

We also look into documents that did not get annotated at all, and we find that
these documents are usually of a high quality. However, their relative proportion in
corpora may limit their usage.

We use a sample of the English corpus (183,497 documents, 1.3 GB) and compare
the size of documents depending on the presence (or not) of annotations. The
stacked counts are shown in figure 8.6.

We observe that clean document mean length is slightly shorter than non-clean
ones. Also, we note that while the length standard deviation of clean documents
seems to be shorter, the computation yields larger numbers, caused by outliers in
the high end (Annotations: 𝜇 = 8606 𝜎 = 49874, Clean: 𝜇 = 6537 𝜎 = 14983). By
removing the top and bottom 5%, we get (Annotations: 𝜇 = 3686 𝜎 = 4047, Clean:
𝜇 = 3582 𝜎 = 3202).

These results are not sufficient to state on the intrinsic quality of the clean docu-
ments, but may ease the study of the filters and identify future filtering needs.
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Adult documents

While very small in proportions, adult annotation documents highlight interesting
facts.

The French sample contains 32,870 adult documents, out of 52,037,098.
We count if some documents coming from tetu.com are labeled as adult, in order

to probe the possibility of finding LGBTQI+ content annotated as adult. We find
1063 documents, representing ∼ 3.2% of the adult documents. This may imply that
more LGBTQI+ content sites are present in the blocklist, thus increasing the ratio of
LGBTQI+ content labeled as adult.

We take the first 100 adult documents of the French corpus and check whether
they are properly classified.

• true positives documents that exhibit explicit sexual content geared towards
pornography (pornographic websites, sexually explicit fictions)

• false positives documents that do not meet these criteria,
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We separately count websites that are simultaneously non-explicit and from
LGBTQI+ websites.

We find:

1. 77 true positives,

2. 2 false positives belonging to LGBTQI+ websites,

3. 21 false positives

While the majority of true positives are properly classified, numerous educational
documents do appear: These type of documents exhibit an explicit language, but
does feature a good document quality, and a better representation of sexuality that
is less offensive compared to the usual associations between sexually explicit content
and hate speech (Luccioni and Viviano, 2021).

The false positives are, for the majority, websites that do not belong in the blocklist
in the first place. We assume that the addresses were previously used as adult
websites.

Hard bound problems

Several pipeline steps (especially annotators), work using hard thresholds. As an
example, any document that is less than 5 lines is considered to be tiny. However,
when exploring data, we can see that there is a number of documents whose number
of lines is in the neighboring of the threshold, and quality is similar to the documents
labeled as tiny.

When plotting the distribution of clean and annotated corpus data, we can notice
that a very high number of documents are of a tiny (100B) size, which coincidentally
happens to be the minimum size for a document to be accepted, since the first filter
removes lines that are shorter than 100 characters (≥ 100B).

8.5 Discussion

8.5.1 Corpus

We provide a new, document-oriented corpus of the same size of OSCAR 21.09 that
keeps document integrity and is easier to filter thanks to annotations.

While the mid and high resourced languages are of a similar size, several low
resource languages have seen an important decrease of size. We still have to check
whether this size decrease comes with a quality increase, since previous low resource
OSCAR corpora sometimes exhibited extremely poor quality: Many non-linguistic
corpora that were published and deemed unusable weeks or months after release.

We also note that documents of similar languages could have been merged into
larger corpora, and we show that the German corpus holds ∼ 30MB of Alemannic
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that, with appropriate filtering, could be treated as an independent corpus. These
cases of merging are also interesting to investigate, as they can explain identification
mismatches and could, in turn, help to build better language identification models.
More work has to be done in order to properly map the connection between low-
resource languages and mid and high resource languages potentially containing
data in these languages.

8.5.2 Annotations

The selected annotations exhibit numerous caveats that have to be addressed in the
future iterations of OSCAR generation pipelines.

The length-based annotations are widespread in the corpus, especially in mid to
high resource languages (∼ 50% in Czech) highlighting the potential low quality of
a high number of documents as well as the need of better characterizing the nature
of these line length discrepancies. Web crawls often contain boilerplate content
extracted from headers, footers and sidebars, and these lines are present in the
Common Crawl dumps. Another solution would be to base the whole OSCAR
generation pipeline on raw HTML files, potentially multiplying the computational
cost and complexity of generating corpora.

The adult annotation, based from an adult URL blocklist, is present on a very
limited set of documents. However, studies have shown that adult content has
been present in a previous version of OSCAR in a larger proportion than the one
measured here (Kreutzer et al., 2022) (and Chapter 6), hinting at a bad performance
of the blocklist based adult content filtering approach. Moreover, we noticed that the
blocklist contained websites representing LGBTQI+ related topics, which damages
the representation of the LGBTQI+ (association with adult content, filtering out
LGBTQI+ documents, which in turn could limit the representation in downstream
tasks...). Model-based approaches may help in improving the adult annotation, and
should be the next step towards a better annotation of adult content (Luccioni and
Viviano, 2021).

8.6 Conclusion

With the improvements to the Ungoliant pipeline described in this chapter and the
release of OSCAR 22.01, we believe we are moving the OSCAR project in a direction
were we are capable of distributing high quality up-to-date textual data for a wide
range of NLP and Digital Humanities applications.

While we are aware that not all the problems and concerns around the OSCAR
corpus have been addressed, we hope we can continue working on this project as it
has already had a significant impact on the NLP community, especially for studies
in underrepresented languages.
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We believe however that the next steps in improving our corpuswill require amore
close involvement and participation of the OSCAR users. We thus hope that in the
coming months and years we will be able to build an active open source community
around the OSCAR project where people will be able to collaborate and contribute
directly to the development of future versions of OSCAR and its pipeline Ungoliant.

While this chapter marks the end of the multilingual discussion of this thesis, the
French sub-corpus of OSCAR will be instrumental to the development of our models
and resources for both contemporary and historical French, as we will see in the
coming chapters.
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French Corpora
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9 Contemporary French Corpora

In which we present a part of the work of Popa-Fabre et al.
(2020) who construct a balanced corpus for contemporary
French that could be used for language modeling; and of
Ortiz Suárez et al. (2020a) who aligned both the Universal
Dependencies and the TEI-annotated NER version of the
French Treebank, correcting multiple annotation mistakes
and discrepancies, and who then converted the NER anno-
tations to a more machine-ready CoNLL-like format that is
more often used for training neural models.1

Having constructed a multilingual corpus out of web data that was in theory
big enough to train a state-of-the-art language model (Liu et al., 2019) for a wide
range of languages, and having addressed some of the quality concerns that some
researchers had expressed about this type of corpus. Wewanted to focus a little more
on constructing resources specifically for Contemporary and Historical French, as
this was the originally intended taskwhenwe first startedworking onOSCAR, which
was always intended to be a French corpus only, but that ended being multilingual
due to the multilingual nature of Common Crawl.

In this chapter we will present CaBeRnet (Popa-Fabre et al., 2020) A Contemporary
French Balanced Corpus that is orders of magnitude smaller than the French OSCAR
sub-corpus, but that as opposed to OSCAR, it is manually curated and specifically
designed to be a linguistically balanced cross-genre corpus for the French language.
We will also briefly present the work of Ortiz Suárez et al. (2020a) who aligned
both the Universal Dependencies and the TEI-annotated NER version of the French
Treebank, giving us a more consistent a more user-friendly NER French corpus that
will be used for evaluation in later chapters.

1Contributions: For the part of (Popa-Fabre et al., 2020) presented here, I prepared and helped with
the cleaning of the Wikipedia section of CaBeRnet, I also prepared and tokenized all the corpora
for the descriptive comparison. For the part of (Ortiz Suárez et al., 2020a) presented here I devised
a small part of the alignment script and did some manual corrections on the NER annotations of
the FTB.
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9.1 Contemporary French Balanced Corpora

While working on OSCAR 2019,2 the question of quality versus size of corpus caught
our attention. We wanted to study in particular the issue of corpus “representative-
ness” in order to grasp to what extent a linguistically balanced cross-genre language
sample would be sufficient to pre-train a language model. Here for “representative-
ness” we follow Biber’s definition: “representativeness refers to the extent to which a
sample includes the full range of variability in a population” (Biber, 1993).

To construct our corpora we adopt a balanced approach by sampling a wide spec-
trum of language use and its cross-genre variability, be it situational (e.g. format,
author, addressee, purposes, settings or topics) or linguistic, e.g. linked to distribu-
tional parameters like frequencies of word classes and genres. In this fashion, we
developed two corpora:

1. The French Balanced Reference Corpus (CaBeRnet), which includes a wide-
ranging and balanced coverage of cross-genre language use to be maximally
representative of the French language and therefore yield good generalizations
from.

2. The French Children Book Test (CBT-fr), which includes both narrative material
and oral language use as present in youth literature, and which could be used
for domain-specific language model training.

Both corpora are inspired by existing American and English corpora, respectively
COCA, the balanced Corpus of Contemporary American English (Davies, 2009,
2010), and the Children Book Test (Hill et al., 2016, CBT).

9.1.1 CaBeRnet

The CaBeRnet corpus was inspired by the genre partition of the American balanced
corpus COCA,3 which at the end of 2019, when this study was conducted, contained
over 618millionwords of text (20millionwords each year 1990-2019) andwas equally
divided among spoken, fiction, popular magazines, newspapers, and academic texts
(Davies, 2009, 2010). A second reference, guiding our approach and sampling
method, was one of the earliest precursors of balanced reference corpora: the BNC
(Consortium et al., 2007), which covered a wide variety of genres, with the intention
to be a representative sample of spoken and written language.

CaBeRnet was obtained by compiling existing data-sets and web-text extracted
from different sources as detailed in this subsection. As shown in Table 9.1, genres
sources are evenly divided (∼120 million words each) into spoken, fiction, magazine,

2All the work on CaBeRnet was conducted prior to the existence of OSCAR 21.09 and OSCAR 22.01.
As a result, all the mentions of OSCAR in this chapter refer to OSCAR 2019.

3https://www.english-corpora.org/coca/
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9.1 Contemporary French Balanced Corpora

CaBeRnet Sub-set Tokens Unique Forms TTR

Oral 122,864,888 291,744 0.0024
Popular 131,444,017 458,521 0.0035
News 132,708,943 462,971 0.0035
Fiction 198,343,802 983,195 0.0050
Academic 126,431,211 1,433,663 0.0113
Total 711,792,861 2,558,513 0.0036

Table 9.1: Comparison of number of unique forms in the different genres represented by
CaBeRnet partition. TTR: Type-Token Ratio. Lemmatization and tokenization was
performed as described in §9.1.3.

newspaper, academic to achieve genre-balanced between oral and written modality
in newspapers and popular written style, technical reports and Wikipedia entries,
fiction, literature and academic production.

CaBeRnet Oral The oral sub-portion gathers both oral transcriptions (ORFEO
and Rhapsodie4) and Films subtitles (Open Subtitles.org), pruned from diacritics,
interlocutors tagging and time stamps. To these transcriptions, we add the French
European Parliament Proceedings (1996-2011), as presented in Koehn (2005), which
contribute a sample of more complex oral style with longer sentences and richer
vocabulary.

CaBeRnet Popular Press The whole sub-portion of Popular Press is gathered from
an open data-set from the Est Républicain (1999, 2002 and 2003), a regional press
format.5 It was selected to match popular style as it is characterized by easy-to-read
press style and a wide range of every-day topics characterizing local regional french
press.

CaBeRnet Fiction & Literature The Fiction & Literature sub-portion was compiled
from March 2019’s Wiki Source and WikiBooks dump and extracted using WikiEx-
tractor.py, a script that extracts and cleans text from a WikiMedia database dumps,
by performing template expansion and preprocessing of template definitions.6

CaBeRnet News The News sub-portion builds upon web crawled elements, in-
cluding Wikimedia’s NewsComments and WikiNews reports from the May 2019
WikiMedia dump, collected with a custom version of WikiExtractor.py. We also add

4ORFEO corpus available at www.cocoon.huma-num.fr/exist/crdo/ ; Rhapsodie corpus at www.
projet-rhapsodie.fr.

5Corpus available at www.cnrtl.fr/corpus/estrepublicain/.
6Script available at https://github.com/attardi/wikiextractor.
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9 Contemporary French Corpora

newspaper’s content gathered by the Chambers-Rostand Corpus (i.e. Le Monde
2002-2003, La Dépèche 2002-2003, L’Humanité 2002-2003) and Le Monde diplomatique.
This open-source corpora were assembled to represent a higher register of written
news style from different political and thematic horizons. Several months of French
Press Agency reports are also added (AFP, 2007-2011-2012), which contribute with
a more simple and telegraphic style than the others newspaper written samples of
the corpus.7

CaBeRnet Academic The academic genre was also built from different sources
including technical and educational texts from WikiBooks and Wikipedia dump
(prior to 2016) for their thematic variety of highly specializedwritten production. The
ORFEO Corpus offered a small sample of academic writings like PhD dissertations
and scientific articles encompassing a wide choice of disciplinary topics, and the
TALN Corpus8 was included to represent more concise written style characterizing
scientific abstracts and proceedings.

For all sub-portions of CaBeRnet, visual inspection was performed to remove
section titles, redundant meta-information linked to publishing schemes of each of
the six news editor included. This was manually achieved by compiling a rich set of
regular expressions specific of each textual source to obtain clean plain text as an
output.

9.1.2 French Children Book Test (CBT-fr)

The French Children Book Test (CBT-fr) was built upon its original English version,
the Children Book Test (CBT) (Hill et al., 2016),9 which consists of books freely
available from Project Gutenberg.10

Using youth literature and children books guarantees a clear narrative structure,
and a large amount of dialogues, which enriches with oral register the literary style
of this corpus. The English version of this corpus was originally built as a benchmark
data-set to test how well language models capture meaning in context. It contains
108 books, and a vocabulary size of 53,628 tokens.

The French version of CBT, named CBT-fr, was constructed to guarantee enough
linguistic similarities between the collected books in the two languages. 104 freely
available books were included. One third of the books were purposely chosen
because they were classical translations of English literary classics. Chapter heads,
titles, notes and all types of editorial information were removed to obtain a plain

7This part of CaBeRnet corpus is still subject to License restrictions. However, this restricted amount
of AFP news reports can reasonably fall in the public domain.

8TALN proceedings corpus (about 2 million) builds on a subset of 586 scientific articles (from 2007 to
2013), namely TALN and RECITAL. Available at redac.univ-tlse2.fr/corpus/taln_en.html.

9This data-set can be found at www.fb.ai/babi/.
10www.gutenberg.org.
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narrative text. The effort of keeping proportion, genre, domain, and time as equal as
possible yields a multilingual set of comparable corpora with a similar balance and
representativeness.

Children Book Test - fr Words

Number of different lemmas 25,139
Total number of forms 95,058
Mean number of forms per lemma 3.78
Number of lemmas having more than one form : 14,128
Percentage of lemmas with multiple forms 56.20

Table 9.2: Lexical statistics of French CBT, performed as described in §9.1.3

9.1.3 Descriptive Comparison

Having put together these two different balanced corpora, we wanted to perform a
descriptive comparison between them, the French subcorpus of OSCAR 2019 (that
we call OSCAR-fr for short) and Wikipedia (Wikipedia-fr). In order to perform this
comparison we start by tokenizing all corpora. For this we used two different tok-
enizers: A standalone version of SEM (Segmenteur-Étiqueteur Markovien) (Dupont,
2017) and TreeTagger (Schmid, 1999). Both are based on cascades of regular ex-
pressions, and both perform tokenization and sentence splitting. The first was used
for descriptive purposes because it technically allowed to segment and tokenize
all corpora including OSCAR (23 billion words). Hence, all corpora were entirely
segmented into sentences and tokenized using SEM.

While the second tokenization method was only run on 3 million words samples to
automatically tag them with TreeTagger into part-of-speech and lemmatize them.11
All corpora were randomly shuffled by sentence to then select samples of 3 million
words, to be able to compare them in terms of lexical composition (Type-Token Ratio,
see Table 9.4).

For Wikipedia-fr in particular we use a dump executed from April 2019, where
HTML tags and tables were removed, together with template expansion using At-
tardi’s tool WikiExtractor.12

Size and Composition

Length of sentences is a simple measure to quantify both sentence syntactic com-
plexity and genre. Hence, the number of sentences reported in Table 9.3 shows
interesting patterns of distributions across genres.
11Based on the tagset available at https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

data/french-tagset.html.
12https://github.com/attardi/wikiextractor
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corpus wordforms tokens sentences

OSCAR-fr 23,212,459,287 27,439,082,933 1,003,261,066
Wiki-fr 665,599,545 802,283,130 21,775,351
CaBeRnet 697,119,013 830,894,133 54,216,010
CBT-fr 5,697,584 6,910,201 317,239

Table 9.3: Comparing the corpora under study.

As reported on Table 9.3, in theWikipedia-fr dataset (660million words) sentences
are relatively longer compared to other corpora. It has the advantage of having a
comparable size to CaBeRnet, but its homogeneity in terms of written genre is limited
to Wikipedia’s entries descriptive style.

Lexical Variety

We also try to find a useful measure of complexity that measures lexical richness
or variety in vocabulary. For this, we present the type-token ration (TTR) of the
corpora we analyze. This measure, is generally used to assess language use aspects,
like the amount of words used to communicate by language learners or children,
it represents the total number of unique words (types/forms) divided by the total
number of tokens in a given sample of text. Thus, the closer the TTR ratio is to 1, the
greater the lexical richness of the corpus. Table 9.1 summarizes the lexical variety
of the five sub-portions of CaBeRnet, respectively taken as representative of Oral,
Popular, Fiction, News, and Academic genres.

Domain diversity of texts can be observed in the lexical statistics showing a gradual
increase in the number of distinct lexical forms (cf. TTR). This pattern reflects a
generally acknowledged distributional pattern of vocabulary-size across genres. Oral
style shows a poorer lexical variety compared to newspapers/magazines’ textual
typology. The lexically rich fictional/classic literature is outreached by academic
writing-style with its wide-ranging specialized vocabulary. All in all, Table 9.1 quanti-
tatively suggests that the selected textual and oral materials are indeed representative
of the five types of genres of CaBeRnet.

Morphological Richness

To select a measure that would help quantifying the different corpora morphological
richness, we follow Bonami and Beniamine (2015). Hence, the proportion of lemmas
with multiple forms in a given vocabulary size was evaluated on randomly selected
samples of 3-million-words from each of the analyzed corpora (see Table 9.4).

Table 9.4 reports some more in-depth lexical and morphological statistics across
corpora. Here we see that, although OSCAR is 34 times bigger than CaBeRnet, their
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9.2 A named entity annotation layer for the UD version of the French TreeBank

3M samples CBT-fr CaBeRnet Wiki-fr OSCAR-fr

nb of diff. lemmas 25,139 30,488 31,385 31,204
tot. nb forms 95,058 180,089 238,121 190,078
mean nb forms/lemma 3.78 6.19 7.85 6.40
nb lemmas > 1 form 14,128 15,927 15,182 16,480
% lemmas > 1 form 56.20 52.24 48.37 52.81

Table 9.4: Lexical statistics on morphological richness over randomly selected samples of 3
million words from each corpus. nb : number

total number of forms and the proportion of lemmas having more than one form in
a 3-million-word sample are quite similar. FrWiki shows a radically different lexical
distribution with numerous hapaxes but a lower morphological richness. Although
its total number of forms is more than one third higher than in OSCAR and CaBeRnet
samples, the proportion of lemmas having more than one distinct form is around
four points below CaBeRnet and OSCAR. Comparatively, youth literature in CBT-fr
shows the greatest morphological richness, with around 56% of lemmas havingmore
than one form.

Having performed this descriptive evaluation, we will evaluate how these corpora
perform as pre-training datasets for language models in the following part of the
thesis. For now, we will present a small improvement that we contributed to an
existing Named Entity Recognition corpus in French.

9.2 A named entity annotation layer for the UD version of
the French TreeBank

As discussed in 3.3.1, Sagot et al. (2012) describe the addition to the French Treebank
(FTB) (Abeillé et al., 2003) in its FTB-UC version (Candito et al., 2010) of a new, freely
available annotation layer providing named entity information in terms of span and
type (NER) as well as reference (NE linking), using theWikipedia-based Aleda entity
database (Sagot and Stern, 2012) as a reference entity database. This was the first
freely available French corpus annotated with referential named entity information
and the first freely available such corpus for the written journalistic genre. However,
this annotation is provided in the form of an XML-annotated (TEI-annotated) text
with sentence boundaries but no tokenization.

Since the publication of that named entity FTB annotation layer, the field has
evolved in many ways. Firstly, most treebanks are now available as part of the
Universal Dependencies (UD)13 treebank collection (Zeman et al., 2021). Secondly,
neural approaches have considerably improved the state of the art in natural language

13https://universaldependencies.org
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processing in general and in NER in particular. In this regard, the emergence of
contextual language models has played a major role. However, surprisingly few
neural French NER systems have been published.14 This might be because of the
fact that getting access to the FTB with its named entity layer as well as using this
corpus were not straightforward tasks.

For a number of technical reasons, re-aligning the XML-format named entity FTB
annotation layer created by Sagot et al. (2012) with the “official” version of the FTB
or, later, with the version of the FTB provided within the Universal Dependency
(UD) framework was not a straightforward task.15 Moreover, due to the intellectual
property status of the source text in the FTB, the named entity annotations could
only be provided to people having signed the FTB license, which prevented them
from being made freely downloadable online.

Our goal in this section is to prove a new, easy-to-use UD-aligned version of the
named entity annotation layer in the FTB. We describe the process whereby we re-
aligned the named entity FTB annotations by Sagot et al. (2012) with the UD version
of the FTB (Candito et al., 2010). This makes it possible to share these annotations
in the form of a set of additional columns that can easily be pasted to the UD FTB
file. This new version of the named entity FTB layer is much more readily usable
than the original TEI encoded version, and will serve as a basis for our experiments
in the last part of this thesis.

9.2.1 Alignment to the UD version of the FTB

The named entity (NE) annotation layer for the FTB was developed using an XML
editor on the raw text of the FTB. Annotations are provided as inline XML elements
within the sentence-segmented but non tokenized text. For creating our NERmodels,
we first had to align these XML annotations with the already tokenized UD version
of FTB.

Sentences were provided in the same order for both corpora, so we did not have
to align them. For each sentence, we created a mapping 𝑀 between the raw text of
the NE-annotated FTB (i.e. after having removed all XML annotations) and tokens
in the UD version of the FTB corpus. More precisely, character offsets in the FTB-NE
raw text were mapped to token offsets in the tokenized FTB-UD. This alignment was
done using case-insensitive character-based comparisons and were a mapping of a
span in the raw text to a span in the tokenized corpus.

14Apart from the systems we will present in the last part of this thesis, we are only aware of the
entity-fishing NER (and NE linking) system developed by Patrice Lopez, a freely available yet
unpublished system.

15Note that the UD version of the FTB is freely downloadable, but does not include the original tokens
or lemmas. Only people with access to the original FTB can restore this information, as required by
the intellectual property status of the source text.
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9.3 Conclusion

We used the inline XML annotations to create offline, character-level NE annota-
tions for each sentence, and reported the NE annotations at the token level in the
FTB-UD using the mapping 𝑀 obtained.

We logged each error (i.e. an unaligned NE or token) and then manually corrected
the corpora, as those cases were always errors in either corpora and not alignment
errors. Likewise, we found 70 errors in FTB-NE and 3 errors in FTB-UD. Errors in
FTB-NE were mainly XML entity problems (unhandled ”&”, for instance) or slightly
altered text (for example, a missing comma). Errors in FTB-UD were probably the
result of some XML artifacts.

9.3 Conclusion

In this chapter we have presented two balanced corpora for Contemporary French,
these corpora will be used as pre-training datasets for language models in the next
part of the thesis and will serve as both a baseline and a benchmark for assessing
the quality of OSCAR as a pre-training corpus, at least for French.

We also presented an alignment to the UD version of the French Treebank, which
can be considered as a small quality-of-life improvement that will facilitate the usage
of this dataset as an evaluation of the neuralmodels thatwewill train in the upcoming
part of the thesis. We also believe that this new version of the NER annotated FTB
will be useful to other researcher that would like to evaluate NER architectures on
this dataset.
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In which we present a part of the work of Grobol et al. (2022)
who put together a raw corpus for Medieval French intended
to pre-train language models. We also present part of the
work of Gabay et al. (2022) who construct a FreEMmax,a cor-
pus for Early Modern French for the pre-training of language
models, as well as FreEMNER an evaluation corpus anno-
tated in named entity recognition. We also briefly present
FreEMLPM an evaluation corpus annotated in part-of-speech
tagging.1

Having extensivelyworked in Contemporary French corpora, wewanted to refocus
and develop some historical French resources. As mentioned in the introduction of
this thesis, this Ph.D. project was conceived and financed by ANR BASNUM (ANR-
18-CE38-0003) project, whose main objective was to digitize and enrich Antoine
Furetière’s Dictionnaire Universel (DU), in its 1701 version reviewed and corrected by
Basnage de Beauval (Furetière, 1701), a text written in its entirety in Early Modern
French. In Section 10.2 we develop resources for Early Modern French intended for
both the pre-training and the evaluation of neural language models. This will allow
us to develop, in the next Part, state-of-the-art models capable of conducting the
dictionary enriching task originally planned by the BASNUM project.

Having said this, we also decided to participate in the curation of a small Medieval
French corpus for the pre-training of a languagemodel. Participating in this endeavor
means that at the end of this chapter we will have developed resources for French
covering a period going from the 9th century to the present day, that is, we will have
developed and curated textual resources for effectively all language states of French.

1Contributions: For the part of (Grobol et al., 2022) presented in this chapter, I just helped with
the statistics presented in table 10.1 and figure 10.1. For the part (Gabay et al., 2022) presented
here, I helped in the crawling of some of the Wikisource transcriptions and some transcriptions
found online. For the subsection 10.2.3 I coded a script that allows to parse the corpus into a
machine-readable format, find some common mistakes in annotations and generate the final split; I
also made some manual corrections to the training corpus itself.
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10.1 Medieval French Corpus

This section describes the raw corpus of Medieval French we gathered in order
to train unsupervised language models for Old French. To our knowledge, it is
one of the largest such dataset gathered for Medieval French, although it remains
quite small (55MiB in total) relatively to the corpora usually used for pre-training
contextual embeddings models.

We chose to include a few texts from the early Middle French period (14th -15th
c.) in this raw corpus, which brings a valuable complement of the prose documents
that are lacking for Old French, while staying close enough to late Old French, the
boundary between the two epochs being somewhat fuzzy. These texts precede the
adoption of norms established by editors after the invention of Gutenberg’s printing
press. Middle French is more regular than Old French in some respects such as
word order (Marchello-Nizia et al., 2020) and less in others such as NP structure
and pronouns system (Marchello-Nizia, 1979), but they share most of their lexicon
and for these relatively early texts, the syntax is not too different from that of late
Old French texts.

Corpus Size / MiB

BFM (Guillot et al., 2018) 20.7
AND (Rothwell et al., 2005) 17.2
NCA (Kunstmann and Stein, 2007) 9.7
Chartes Douai (Gleßgen, 2003) 3.1
OpenMedFr (Wrisley, 2018) 1.7
Geste (Jean-Baptiste-Camps et al., 2019) 1.5
MCVF (Martineau, 2008) 1.4
Chartes Aube (Reenen et al., 2007) 0.2

Total 55.3

Table 10.1: Data collection

Medieval French has many factors of variation: language evolution, dialects, do-
mains, forms of text (verse or prose) and lack of standard. Our dataset gives us a
representation of Medieval French that is as accurate and diversified as possible,
given the limited amount of material that survived to these days. The detailed in-
structions to replicate this dataset are described in the Appendix F.1. No particular
processing is done on the original documents.

In order to get a sound evaluation of the contextual embeddings trained with this
dataset, we filter out the documents that are also present in the SRCMF treebank used
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Figure 10.1: Distribution of form and domain, gathered from documents metadata and
manual annotation.

for evaluation purposes in section 14.1.2 The resulting corpus is quite heterogeneous:
legal texts and verse literature are in the majority, whereas other domains, such as
historical and didactic texts, are under-represented, as can be seen in fig. 10.1.

10.2 Early Modern French Corpora

For the past few years, we have been involved in the development of linguistic
resources for Early Modern French. The initiative, called FreEM (which stands for
FREnch Early Modern), aims to collect the corpora required for various NLP tasks
such as lemmatization, POS tagging, linguistic normalization and named entity
recognition. Two of these corpora are introduced here: FreEMmax (see Section 10.2.1)
and FreEMLPM (see Section 10.2.2).

10.2.1 FreEMmax

Usable historical documents are difficult to find because, as previously mentioned,
they are more rare than contemporary ones; editors tend to normalize the language
(i.e. use the spelling conventions of contemporary French, see (Gabay, 2014)), tran-
scriptions are not (always) distributed in a digital format. FreEMmax (Gabay et al.,
2022) is an attempt to solve this problem, and the aim of this dataset is to group
together the largest number of texts possible written in Early Modern French.

The texts we have curated have a variety of sources, which can be grouped into
three main types:

2As noted by Gururangan et al. (2020), pre-training on task specific data provides an additional
boost, this would muddle our results, since our objective here is not so much task optimization as
embeddings benchmarking.
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• Two institutional datasets have been used and are non open-sourced:
– Frantext intégral (ATILF, 1998–b), the biggest database of French texts

(only the texts between 1500 and 1800), a very small portion of which is
open access: Frantext Démonstration (ATILF, 1998–a);

– Electronic Enlightenment (Bodleian Libraries, 2008–), an online collection
of edited correspondences of the Early Modern period;

• Several come from research projects distributing transcriptions online:
– TheAntonomaz project, Frenchmazarinades (https://cahier.hypotheses.

org/antonomaz);
– The II.B section (in French) of the Actis Pacis Westphalicae, diplomatic

letters for the Peace of Westphalia (http://kaskade.dwds.de/dstar/
apwcf/);

– The Bibliothèques virtuelles humanistes, 16th c. French literature (http:
//www.bvh.univ-tours.fr);

– The Corpus électronique de la première modernité, 17th c. French literature
(http://www.cepm.paris-sorbonne.fr)

– TheCondé project, coutumiers normands (https://conde.hypotheses.org)
– The Corpus Descartes, works of René Descartes (https://www.unicaen.

fr/puc/sources/prodescartes/);
– The Bibliothèque dramatique of the CELLF, 17th c. French plays (http://

bibdramatique.huma-num.fr);
– The Fabula numericaproject, French fables (https://obvil.sorbonne-universite.

fr/projets/fabula-numerica);
– The Fonds Boissy, plays of Louis de Boissy (https://www.licorn-research.

fr/Boissy.html);
– The Mercure Galant project, the famous French gazette and literary mag-

azine between 1672 and 1710 (https://obvil.sorbonne-universite.
fr/corpus/mercure-galant);

– The Rousseau online project, works of Jean-Jacques Rousseau (https://
www.rousseauonline.ch);

– The Sermo project, sermons of the 16th and 17th c. (http://sermo.unine.
ch);

– The Théâtre classique project, 17th and 18th c. French plays (http://www.
theatre-classique.fr);

• Additional sources come from researchers who kindly accepted to offer their
personal transcriptions or data scrapped by our team:
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– Transcriptions by Anne-Élisabeth Spica (17th c. French novels);

– Transcriptions found on Wikisource (https://fr.wikisource.org);

– Transcriptions (ePub files) found on Gallica (https://gallica.bnf.fr);

– Transcriptions found on various websites online.

Origin #Tokens Origin #Tokens

Spica corpus 691,467 Frantext intégral (>1500, <1800) 60,018,390
Antonomaz project 119,194 Frantext intégral (>1800) 71,504,440
Acta Pacis Westphlicae II B 2,463,047 Frantext Démonstration 1,255,454
Bibliothèque Bleue 776,838 Gallica 5,212,333
BVH 2,434,657 Boissy project 438,215
CEPM 2,707,432 Mercure galant 5,427,469
Condé project 3,173,845 Rousseau Online project 2,428,587
Descartes 1,025,337 Scrapping 1,936,835
CELLF 1,873,772 Sermo project 529,647
Electronic enlightenment 6,568,047 Théâtre classique project 13,916,169
Fabula project 145,978 Wikisource 996,329

TOTAL 185,643,482

Table 10.2: Breakdown of the FreEMmax corpus by text origin.

Figure 10.2: Distribution of the documents in the FreEMmax corpus per year

Additional data for later states of the language, up to the 1920’s (mainly from
FRANTEXT intégral), are also provided for two main reasons: on the one hand, it
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is common to normalize Early Modern French into Contemporary French (Gabay,
2014) because of the linguistic proximity between these the two states of the language,
and on the other hand, it helps to collect (precious) additional data to avoid ending
up with too small of a corpus for our needs.

The final result is far from being balanced or representative (see Figure 10.2).
16th c. French documents are under-represented, as well as 18th c. literature. The
17th c. is clearly over-represented, especially its second half—probably one of the
most important of French literature, which could explain this situation (on top of
our personal interest for this specific period).

As some texts are still (partially) protected by restrictive licenses, the FreEMmax
corpus exists in both open and non-open versions, only the open one being dis-
tributed.3 In order to limit the impact of licenses forbidding the modification of files,
we have designed a pipeline to distribute the data as it was found and recreate it
(see Figure 10.3).

Metadata is prepared manually in order to have the same categories for each
document, whatever its origin. As well as the author, the title and the date (where
relevant), we also provide the genre (“theater”), sometimes a subgenre (“tragedy”),
the linguistic status (normalized or not) and the license attached to the transcription.

Figure 10.3: FreEMmax compilation pipeline. All files are kept in their original format. Meta-
data is manually prepared in separate files in order to automatically transform
and clean (in blue) all the available documents into XML TEI files following
the same encoding. It allows us to distribute open data (in green) but also data
distributed with restrictions regarding the modification of the original format
(in orange). Non-open texts (in red) are not distributed.

3https://freem-corpora.github.io/corpora/max/
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10.2.2 FreEMLPM

The FreEMLPM (Gabay et al., 2020-10) stands for Lemma, POS tags, Morphology. The
POS-annotated data, is a mixture of two different sources. On the one hand, there
is the CornMol corpus (Camps et al., 2021), made up of normalized 17th c. French
comedies. On the other hand, there is a gold subset of the Presto corpus (Blumenthal
et al., 2017), made up of texts of different genres written during the 16th, 17th and
18th c., which have previously used to train annotation tools (Diwersy et al., 2017),
and was heavily corrected by us to match our annotation principles (Gabay et al.,
2020).

On top of traditional in-domain tests, an out-of-domain testing dataset was pre-
pared to control the capacity of the model to generalize to other genres and periods.
Centuries covered are the 16th, 17th, 18th, 19th and 20th. There are two test sets for
each century: one made up only of theater, the other of everything but theater. Each
test set comprises 10 short samples (c. 100 tokens), as representative as possible
of the linguistic production of the century (female and male authors, decade of
publication, genre, etc.).

All the data from FreEMLPM (but almost none of the out-of-domain) can be found
in FreEMmax.

10.2.3 FreEMNER

Figure 10.4: Number of tokens per century.

Rather than designing a new corpus, we have decided to use a subpart of the “core
corpus” of the Presto project (Blumenthal et al., 2017), namely the text written during
the French Ancien Régime (c.15th-18th c., i.e. 34 texts).4 This choice is driven by our
will to limit the number of annotated corpora for historical French, the same set of
documents having already been abundantly corrected to train a lemmatizer (Gabay
et al., 2020-10), but also to avoid a complex selection of works supposed to ensure a

4A text has been withdrawn: the Histoire d’un voyage faict en la terre du Brésil by Jean de Léry, the
transcription being too faulty to be able to correctly annotate the document.
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relative representativeness of literary documents from the Ancien Régime, already
perfectly done by our colleagues.

The number of genres covered is very large: poetry, drama, novel, correspondence,
grammar, philosophy, short stories, encyclopedic literature, etc. and guarantees, here
again, a reasonable representativeness of the range of possibilities of Belles-Lettres.5
The corpus is balanced regarding the distribution per century (approx 10/century)
but not regarding the length of the texts, which increases over time (cf. fig. 10.4),
following a possible trend in literature.

Annotation

Person Function
pers.ind pers.coll func.ind func.coll

Location Production
loc.adm.town loc.phys.geo loc.fac prod.art prod.rule prod.object
loc.adm.reg loc.phys.hydro loc.oro
loc.adm.nat
loc.adm.sup

Organization Time Event Quantity
org.adm org.ent time.date.abs event amount

time.date.rel

Table 10.3: Types (in gray) and subtypes taken from the Quaero typology.

Because two important historical corpora presented supra (Quaero and Impresso)
have chosen to follow the Quaero annotation guide (Rosset et al., 2011), it seemed
logical to use this same typology. Because our texts and interests diverge from
those of the aforementioned corpora, only some types and subtypes have been kept
(cf. tab. 10.3) from the Quaero annotation scheme. The details of our annotation
choices can be found in a dedicated annotation manual (Gabay et al., 2020).

Token Lemma POS COARSE FINE FINE-COMP NESTED Wikidata ID

Les le Da O O O O _
allemands allemand Nc O O O O _
élurent élire Vvc O O O O _
pour pour S O O O O _
empereur empereur Nc B-pers B-pers.ind B-comp.title O Q438435
Rodolphe Rodolphe Np I-pers I-pers.ind B-comp.name O Q438435
duc duc Nc I-pers I-pers.ind B-comp.title O Q438435
de de S I-pers I-pers.ind I-comp.title O Q438435
Suabe Souabe Np I-pers I-pers.ind I-comp.title B-loc.adm.reg Q438435

Table 10.4: NERC Fine-Grained annotation avec EL

5We do not offer a detailed description of the genres covered, these overlapping easily: poetry can be
theological, political correspondence, etc.
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The annotated texts are available in multi-columns tsv files (cf. tab. 10.4). Each
token has a lemma (manually corrected) and a POS (produced by the Presto project,
non-systematically corrected but fairly reliable) using the MULTEXT tag set. We
propose a coarse-grained annotation for high-level entity types and fine-grained
annotation using subtypes using the following syntax:

BIO-TYPE.SUBTYPE
For instance: B-loc.adm.town

Subtypes are sometimes simple (B-org.town) sometimes double (B-loc.phys.geo),
depending of the complexity of the entity to annotate. Nested entities (i.e. an entity
in an entity, such as a place name in a person name in Henri d’Angleterre, “Henry of
England“) follow exactly the same syntax, and components a similar one, using six
transverse elements:

• name to annotate tokens that are names (Louis, Philippe…)

• title to annotate tokens that are titles (sieur, duc, abbé…)

• qualifier to annotate tokens that are adjectives (l’Inde orientale, l’Arabie
heureuse, la mer athlantique, l’ancienne Colchide)… but also the generation
(Henri IV) or a cardinal position

• kind to annotate tokens that are hyperonyms (l’Empire de Constantinople, la
mer du Japon

• unit to annotate tokens that are units (meters, league, inches, pounds…)

• val to annotate tokens that are values (a number) that is linked to a unit to
annotate an amount.

We have decided not to annotate metaphorical uses differently or in a separate
column: everything is annotated in a literal sense. Thus, in France goes to war,
France is labelled loc.adm.nat (i.e. the country) and not org.adm (i.e. the French
government).

We have also started a first phase of semantic annotation, using Wikidata (Vran-
dečić and Krötzsch, 2014-09-23) identifiers, which remains imperfect. Due to the
complexity of analyzing certain entities, in particular personal names (e.g. Pope
John), it was decided to annotate them only very marginally, only in the event of the
absence of ambiguity (e.g. Pope John V). The annotation of place names, on the other
hand, is more advanced and almost exhaustive.

A first layer of annotation was made using regular expressions, before moving on
to a manual correction phase. Given the size of the corpus, it is obvious that each
token has not been checked, and that the final result does not claim to be perfect.
Occasional checks, however, concluded that the annotation was of high enough
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Figure 10.5: Number of entities (log10 scale) per category.

quality to move on to the training phase. All the annotation work was carried out by
a single person, in order to ensure the consistency of the data. The structure of the
file and the form of the tags was controlled by a specific parser, designed specifically
for this corpus. Figure 10.5 shows the distribution of the coarse entity categories
throughout FreEMNER on a logarithmic scale. For more detail please refer to figures
G.1 and G.2 in the appendix.

10.3 Conclusion

In this chapter we have presented two raw textual corpora for historical French
intended to be used in the pre-training of state-of-the-art language models, one for
Medieval French and another one for Early Modern French. These corpora will be
used in the next par of this thesis to produce two language models in order to tackle
the textual enriching task proposed by the BASNUM project. As these two corpora
are in fact quite general and diverse, we believe that the models they will produce
will allow researcher in Digital Humanities to enrich and better study not only for the
Dictionnaire Universel, but also any other text in Early Modern or Medieval French.

We have also presented a NER annotated corpus in Early Modern French, that
will allow not only to evaluate our language models for Early Modern French in the
upcoming part of the thesis, but also to produce a general ready-to-use state-of-the-
art model for NER in Early Modern French.
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11 CamemBERT
In which we present a part of the work of Martin et al. (2020)
who pre-trained the first transformer based language model
for Contemporary French using the French subcorpus of OS-
CAR 2019 (Ortiz Suárez et al., 2019; Ortiz Suárez et al., 2020b).
The model that we call CamemBERT is then evaluated in
dependency parsing, part-of-speech tagging, named entity
recognition and natural language inference. We also study
the question of how corpus size and diversity affects the per-
formance of an architecture like RoBERTa (Liu et al., 2019)
in downstream tasks.1

Having extensivelyworked into creating and curating textual resources in previous
chapters and parts of this thesis, we wanted to use these resources in order to train a
monolingual contextual language model for Contemporary French.

When we started the experiments that will be discussed in this chapter, the avail-
ability of large monolingual transformer based models was limited to English-only
models (Devlin et al., 2019; Radford et al., 2019; Liu et al., 2019; Yang et al., 2019;
Raffel et al., 2020) and most of the work in other languages was being done through
multilingual models like mBERT (Devlin et al., 2019). And even though multilingual
models gave remarkable results at the time, they were often larger, and their results,
as we will observe for French, could lag behind their monolingual counterparts for
high-resource languages.

In order to reproduce and validate results that had so far only been obtained for
English, we took advantage of the first version of OSCAR2 (Ortiz Suárez et al., 2019)
which had just been released at that time. We used the French subcorpus of OSCAR

1Contributions: I prepared OSCAR 2019 for the pre-training of CamemBERT and actually had to
re-write the whole pipeline in order to produce the first unshuffled version of OSCAR. I did all the
experiments where CamemBERT is used in embedding form. I also wrote the code to synchronize
and extract fixed token embeddings from CamemBERT which was necessary at the time since this
option did not exist in Hugging Face Transformer library at the time. Moreover, the whole section
11.3 and one of the main scientific contributions of the article was originally devised by me as one of
the experiments that we wanted to conduct for the OSCAR project and was supposed to be part of
(Ortiz Suárez et al., 2020b) presented in chapter 5. However, due to time and space constraints we
preferred to do these experiments as part of the CamemBERT project. Finally, I actively participated
in writing (Martin et al., 2020).

2Now OSCAR 2019.
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2019 to train a monolingual language model for French, dubbed CamemBERT. We
also trained alternative versions of CamemBERT on different smaller corpora with
different levels of homogeneity in genre and style in order to assess the impact of
these parameters on downstream task performance. CamemBERT used the RoBERTa
architecture (Liu et al., 2019).

We then evaluated our model on four different downstream tasks for French:
part-of-speech (POS) tagging, dependency parsing, named entity recognition (NER)
and natural language inference (NLI). CamemBERT improved on the state of the art
in all four tasks compared to previous monolingual and multilingual approaches
includingmBERT, XLM and XLM-R, which confirmed the effectiveness of pre-trained
contextual language models for French.

11.1 CamemBERT: A Contemporary French Language Model

In this section, we describe the pre-training data, architecture, training objective and
optimization setup we use for CamemBERT.

11.1.1 Training data

Pre-trained language models benefits from being trained on large datasets (Devlin
et al., 2019; Liu et al., 2019; Raffel et al., 2020). We therefore use the French subcorpus
of OSCAR 2019 (Ortiz Suárez et al., 2019; Ortiz Suárez et al., 2020b). No other filtering
is done. We use the deduplicated non-shuffled version of the French subcorpus,
which amounts to 138GB of raw text and to around 32.7B tokens after subword
tokenization.

11.1.2 Pre-processing

We segment the input text data into subword units using SentencePiece (Kudo and
Richardson, 2018). SentencePiece is an extension of Byte-Pair encoding (BPE) (Sen-
nrich et al., 2016) andWordPiece (Kudo, 2018) that does not require pre-tokenization
(at the word or token level), thus removing the need for language-specific tokenisers.
We use a vocabulary size of 32k subword tokens. These subwords are learned on 107

sentences sampled randomly from the pre-training dataset. We do not use subword
regularization (i.e. sampling from multiple possible segmentations) for the sake of
simplicity.

11.1.3 Language Modeling

Transformer Similar to RoBERTa and BERT, CamemBERT is a multi-layer bidi-
rectional Transformer (Vaswani et al., 2017). CamemBERT uses the original archi-
tectures of BERTBASE (12 layers, 768 hidden dimensions, 12 attention heads, 110M
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parameters) and BERTLARGE (24 layers, 1024 hidden dimensions, 16 attention heads,
335M parameters). CamemBERT is very similar to RoBERTa, the main difference
being the use of whole-word masking and the usage of SentencePiece tokenization
(Kudo and Richardson, 2018) instead of WordPiece (Schuster and Nakajima, 2012).

Pretraining Objective We train our model on the Masked Language Modeling
(MLM) task. Given an input text sequence composed of 𝑁 tokens 𝑥1, ..., 𝑥𝑁, we
select 15% of tokens for possible replacement. Among those selected tokens, 80%
are replaced with the special <MASK> token, 10% are left unchanged and 10% are
replaced by a random token. The model is then trained to predict the initial masked
tokens using cross-entropy loss.

Following the RoBERTa approach, we dynamically mask tokens instead of fixing
them statically for the whole dataset during preprocessing. This improves variability
and makes the model more robust when training for multiple epochs.

Since we use SentencePiece to tokenize our corpus, the input tokens to the model
are a mix of whole words and subwords. An upgraded version of BERT3 and Joshi
et al. (2020) have shown that masking whole words instead of individual subwords
leads to improved performance. Whole-word Masking (WWM) makes the training
task more difficult because the model has to predict a whole word rather than
predicting only part of the word given the rest. We train our models using WWM by
using white spaces in the initial non-tokenized text as word delimiters.

WWM is implemented by first randomly sampling 15% of the words in the se-
quence and then considering all subword tokens in each of this 15% for candidate
replacement. This amounts to a proportion of selected tokens that is close to the
original 15%. These tokens are then either replaced by <MASK> tokens (80%), left
unchanged (10%) or replaced by a random token.

Subsequentwork has shown that the next sentence prediction (NSP) task originally
used in BERTdoes not improve downstream task performance (Conneau andLample,
2019; Liu et al., 2019), thus we also remove it.

Optimization Following (Liu et al., 2019), we optimize the model using Adam
(Kingma and Ba, 2015) (𝛽1 = 0.9, 𝛽2 = 0.98) for 100k steps with large batch sizes
of 8192 sequences, each sequence containing at most 512 tokens. We enforce each
sequence to only contain complete paragraphs (which correspond to lines in the
pre-training dataset).

Pre-training We use the RoBERTa implementation in the fairseq library (Ott et al.,
2019). Our learning rate is warmed up for 10k steps up to a peak value of 0.0007
instead of the original 0.0001 given our large batch size, and then fades to zero with
polynomial decay. Unless otherwise specified, our models use the BASE architecture,

3https://github.com/google-research/bert/blob/master/README.md

119

https://github.com/google-research/bert/blob/master/README.md
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and are pre-trained for 100k backpropagation steps on 256 Nvidia V100 GPUs (32 GB
each) for a day. We do not train our models for longer due to practical considerations,
even though the performance still seemed to continue increasing afterwards.

11.1.4 Using CamemBERT for downstream tasks

We use the pretrained CamemBERT in twoways. In the first one, which we refer to as
fine-tuning, we fine-tune the model on a specific task in an end-to-end manner. In the
second one, referred to as feature-based embeddings or simply embeddings, we extract
frozen contextual embedding vectors from CamemBERT. These two complemen-
tary approaches shed light on the quality of the pretrained hidden representations
captured by CamemBERT.

Fine-tuning For each task, we append the relevant predictive layer on top of Camem-
BERT’s architecture. Following the work done on the BERT paper (Devlin et al.,
2019), for sequence tagging and sequence labeling we append a linear layer that
respectively takes as input the last hidden representation of the <s> special token
and the last hidden representation of the first subword token of each word. For de-
pendency parsing, we plug a bi-affine graph predictor head as inspired by Dozat and
Manning (2017). We fine-tune on XNLI by adding a classification head composed
of one hidden layer with a non-linearity and one linear projection layer, with input
dropout for both.

We fine-tune CamemBERT independently for each task and each dataset, opti-
mizing the model using the Adam optimizer (Kingma and Ba, 2015) with a fixed
learning rate. Likewise, we run a grid search on a combination of learning rates
and batch sizes. Furthermore, we select the best model on the validation set out
of the 30 first epochs. For NLI we use the default hyper-parameters provided by
the authors of RoBERTa on the MNLI task.4 Although this might have pushed the
performances even further, we do not apply any regularization techniques such as
weight decay, learning rate warm-up or discriminative fine-tuning, except for NLI.
We show that fine-tuning CamemBERT in a straightforward manner leads to state-
of-the-art results on all tasks and outperforms the existing multilingual BERT-based
models in all cases. The POS tagging, dependency parsing, and NER experiments
are run using Hugging Face’s Transformer library extended to support CamemBERT
and dependency parsing (Wolf et al., 2019). The NLI experiments use the fairseq
library following the RoBERTa implementation.

Embeddings Following Straková et al. (2019) and Straka et al. (2019) for mBERT
and the English BERT, we make use of CamemBERT in a feature-based embeddings

4More details at https://github.com/pytorch/fairseq/blob/master/examples/roberta/
README.glue.md.
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setting. In order to obtain a representation for a given token, we first compute the
average of each sub-word’s representations in the last four layers of the Transformer,
and then average the resulting sub-word vectors.

We evaluate CamemBERT in the embeddings setting for POS tagging, dependency
parsing and NER; using the open-source implementations of Straka et al. (2019) and
Straková et al. (2019).5

Dowstream Tasks For POS tagging and dependency parsing, we run our experi-
ments using the Universal Dependencies (UD)6 framework and its corresponding
UD POS tag set (Petrov et al., 2012) and UD treebank collection (Nivre et al., 2018),
which was used for the CoNLL 2018 shared task (Seker et al., 2018). We perform
our evaluations on the four freely available French UD treebanks in UD v2.2: GSD
(McDonald et al., 2013), Sequoia7 (Candito and Seddah, 2012; Candito et al., 2014),
Spoken (Lacheret et al., 2014; Bawden et al., 2014),8 and ParTUT (Sanguinetti and
Bosco, 2015).

For NER, we use the French Treebank (FTB) (Abeillé et al., 2003) in its 2008
version introduced by Candito and Crabbé (2009) and with NER annotations by
Sagot et al. (2012). More precisely, we used the corrected and synchronized version
(Ortiz Suárez et al., 2020a) presented in subsection 9.2.1.

Finally, we evaluate our model on NLI, using the French part of the XNLI dataset
(Conneau et al., 2018). The XNLI dataset is the extension of the Multi-Genre NLI
(MultiNLI) corpus (Williams et al., 2018) to 15 languages by translating the valida-
tion and test sets manually into each of those languages. The English training set is
machine translated for all languages other than English.

11.2 Evaluation of CamemBERT

In this section, we measure the performance of our models by evaluating them on
the four aforementioned tasks: POS tagging, dependency parsing, NER and NLI.

POS Tagging and Dependency Parsing For POS tagging and dependency parsing,
we compare CamemBERT with other models in the two settings: fine-tuning and as
feature-based embeddings. We report the results in Table 11.1.

CamemBERT reaches state-of-the-art scores on all treebanks and metrics in both
scenarios. The two approaches achieve similar scores, with a slight advantage for

5UDPipe Future is available at https://github.com/CoNLL-UD-2018/UDPipe-Future, and the code
for nested NER is available at https://github.com/ufal/acl2019_nested_ner.

6https://universaldependencies.org.
7https://deep-sequoia.inria.fr.
8Speech transcript uncased that includes annotated disfluencies without punctuation.
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GSD Sequoia Spoken ParTUT
Model

UPOS LAS UPOS LAS UPOS LAS UPOS LAS

mBERT (fine-tuned) 97.48 89.73 98.41 91.24 96.02 78.63 97.35 91.37
XLMMLM-TLM (fine-tuned) 98.13 90.03 98.51 91.62 96.18 80.89 97.39 89.43
UDify (Kondratyuk and Straka, 2019) 97.83 91.45 97.89 90.05 96.23 80.01 96.12 88.06
UDPipe Future (Straka, 2018) 97.63 88.06 98.79 90.73 95.91 77.53 96.93 89.63
+ mBERT + Flair (emb.) (Straka et al., 2019) 97.98 90.31 99.32 93.81 97.23 81.40 97.64 92.47

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
CamemBERT (fine-tuned) 98.18 92.57 99.29 94.20 96.99 81.37 97.65 93.43
UDPipe Future + CamemBERT (embeddings) 97.96 90.57 99.25 93.89 97.09 81.81 97.50 92.32

Table 11.1: POS and dependency parsing scores on 4 French treebanks, reported on test sets
assuming gold tokenization and segmentation (best model selected on validation
out of 4). Best scores in bold, second best underlined.

the fine-tuned version of CamemBERT, thus questioning the need for complex task-
specific architectures such as UDPipe Future.

Despite a much simpler optimization process and no task specific architecture,
fine-tuning CamemBERT outperforms UDify on all treebanks and sometimes by a
largemargin (e.g. +4.15% LAS on Sequoia and +5.37 LAS on ParTUT). CamemBERT
also reaches better performance than other multilingual pre-trained models such as
mBERT and XLMMLM-TLM on all treebanks.

CamemBERT achieves overall slightly better results than the previous state-of-
the-art and task-specific architecture UDPipe Future+mBERT+Flair, except for POS
tagging on Sequoia and POS tagging on Spoken, where CamemBERT lags by 0.03%
and 0.14% UPOS respectively. UDPipe Future+mBERT+Flair uses the contextu-
alized string embeddings Flair (Akbik et al., 2018), which are in fact pre-trained
contextualized character-level word embeddings specifically designed to handle
misspelled words as well as subword structures such as prefixes and suffixes. This
design choice might explain the difference in score for POS tagging with Camem-
BERT, especially for the Spoken treebank where words are not capitalized, a factor
that might pose a problem for CamemBERT which was trained on capitalized data,
but that might be properly handle by Flair on the UDPipe Future+mBERT+Flair
model.

Named-Entity Recognition ForNER,we similarly evaluate CamemBERT in the fine-
tuning setting and as input embeddings to the task specific architecture LSTM+CRF.
We report these scores in Table 11.2.

In both scenarios, CamemBERT achieves higher F1 scores than the traditional
CRF-based architectures (both non-neural and neural), and than the fine-tuned
multilingual BERT models.9

Using CamemBERT as embeddings to the traditional LSTM+CRF architecture
gives slightly higher scores than by fine-tuning the model (89.08 vs. 89.55). This

9XLMMLM-TLM is a lower-case model. Case is crucial for NER, therefore we do not report its low
performance (84.37%)
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Model F1

SEM (CRF) (Dupont, 2017) 85.02
LSTM-CRF (Dupont, 2017) 85.57
mBERT (fine-tuned) 87.35

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
CamemBERT (fine-tuned) 89.08
LSTM+CRF+CamemBERT (embeddings) 89.55

Table 11.2: NER scores on the FTB (best model selected on validation out of 4). Best scores
in bold, second best underlined.

demonstrates that even though CamemBERT can be used successfully without any
task-specific architecture, it can still produce high quality contextualized embeddings
that might be useful in scenarios where powerful downstream architectures exist.

Natural Language Inference On the XNLI benchmark, we compare CamemBERT
to previous state-of-the-artmultilingualmodels in the fine-tuning setting. In addition
to the standardCamemBERTmodelwith a BASE architecture, we train anothermodel
with the LARGE architecture, referred to as CamemBERTLARGE, for a fair comparison
with XLM-RLARGE. This model was trained with the CCNet corpus, described in
Sec. 11.3, for 100k steps.10 We expect that training the model for longer would yield
even better performance.

Model Acc. #Params

mBERT (Devlin et al., 2019) 76.9 175M
XLMMLM-TLM (Conneau and Lample, 2019) 80.2 250M
XLM-RBASE (Conneau et al., 2020) 80.1 270M

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
CamemBERT (fine-tuned) 82.5 110M

Supplement: LARGE models
XLM-RLARGE (Conneau et al., 2020) 85.2 550M

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
CamemBERTLARGE (fine-tuned) 85.7 335M

Table 11.3: NLI accuracy on the French XNLI test set (best model selected on validation out
of 10). Best scores in bold, second best underlined.

CamemBERT reaches higher accuracy than its BASE counterparts reaching +5.6%
over mBERT, +2.3 over XLMMLM-TLM, and +2.4 over XLM-RBASE. CamemBERT also
uses as few as half as many parameters (110M vs. 270M for XLM-RBASE).

CamemBERTLARGE achieves a state-of-the-art accuracy of 85.7% on the XNLI
benchmark, as opposed to 85.2, for the recent XLM-RLARGE.
10We train our LARGE model with the CCNet corpus for practical reasons, mainly due to the fact that

it was more readily available on the Facebook infrastructure we used to train CamemBERT. Given
that BASE models reach similar performance when using OSCAR or CCNet as pretraining corpus
(Appendix Table E.2), we expect an OSCAR LARGE model to reach comparable scores.
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CamemBERT uses fewer parameters than multilingual models, mostly because
of its smaller vocabulary size (e.g. 32k vs. 250k for XLM-R). Two elements might
explain the better performance of CamemBERT over XLM-R. Even though XLM-R
was trained on an impressive amount of data (2.5TB), only 57GB of this data is in
French, whereas we used 138GB of French data. Additionally, XLM-R also handles
100 languages, and the authors show that when reducing the number of languages
to 7, they can reach 82.5% accuracy for French XNLI with their BASE architecture.

Summary of CamemBERT’s results CamemBERT improves the state of the art
for the 4 downstream tasks considered, thereby confirming the usefulness of a
monolingual Transformer-based models for contemporary French. We obtain these
results when using CamemBERT as a fine-tuned model or when used as contextual
embeddings with task-specific architectures. This questions the need for more
complex downstream architectures, similar to what was shown for English (Devlin
et al., 2019). Additionally, this suggests that CamemBERT is also able to produce
high-quality representations out-of-the-box without further tuning.

11.3 Impact of corpus origin and size

In this section we investigate the influence of the homogeneity and size of the pre-
training corpus on downstream task performance. With this aim, we train alternative
version of CamemBERT by varying the pre-training datasets. For this experiment,
we fix the number of pre-training steps to 100k, and allow the number of epochs to
vary accordingly (more epochs for smaller dataset sizes). All models use the BASE
architecture.

In order to investigate the need for homogeneous clean data versus more diverse
and possibly noisier data, we use alternative sources of pre-training data in addition
to OSCAR 2019:

• Wikipedia, which is homogeneous in terms of genre and style. We use the
official 2019 French Wikipedia dumps.11 We remove HTML tags and tables
using Giuseppe Attardi’s WikiExtractor.12

• CCNet (Wenzek et al., 2020), a dataset extracted from Common Crawl with
a different filtering process than for OSCAR. It was built using a language
model trained on Wikipedia, in order to filter out bad quality texts such as
code or tables.13 As this filtering step biases the noisy data from Common
Crawl to more Wikipedia-like text, we expect CCNet to act as a middle ground
between the unfiltered “noisy”OSCAR 2019 dataset, and the “clean”Wikipedia

11https://dumps.wikimedia.org/backup-index.html.
12https://github.com/attardi/wikiextractor.
13We use the head split, which corresponds to the top 33% of documents in terms of filtering perplexity.
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11.3 Impact of corpus origin and size

dataset. As a result of the different filtering processes, CCNet contains longer
documents on average compared to OSCAR 2019 with smaller—and often
noisier—documents weeded out.

Table 11.4 summarizes statistics of these different corpora.

Corpus Size #tokens #docs Tokens/doc
Percentiles:

5% 50% 95%

Wikipedia 4 GB 990M 1.4M 102 363 2530
CCNet 135 GB 31.9B 33.1M 128 414 2869
OSCAR 2019 138 GB 32.7B 59.4M 28 201 1946

Table 11.4: Statistics on the pre-training datasets used.

In order tomake a fair comparison between these three sources of pre-training data,
we randomly sample 4 GB (the size of Wikipedia) of text (at the document level)
from OSCAR and CCNet, thereby creating samples of both Common-Crawl-based
corpora of the same size as the French Wikipedia. These smaller 4GB samples also
provides us away to investigate the impact of pre-training data size. Downstream task
performance for our alternative versions of CamemBERT are provided in Table 11.5.
The upper section reports scores in the fine-tuning setting while the lower section
reports scores for the embeddings.

11.3.1 Common Crawl vs. Wikipedia?

Table 11.5 clearly shows that models trained on the 4 GB versions of OSCAR 2019
and CCNet (Common Crawl) perform consistently better than the one trained on
the French Wikipedia. This is true both in the fine-tuning and embeddings setting.
Unsurprisingly, the gap is larger on tasks involving texts whose genre and style are
more divergent from those of Wikipedia, such as tagging and parsing on the Spoken
treebank. The performance gap is also very large on the XNLI task, probably as a
consequence of the larger diversity of Common-Crawl-based corpora in terms of
genres and topics. XNLI is indeed based on multiNLI which covers a range of genres
of spoken and written text.

The downstream task performances of the models trained on the 4 GB version of
CCNet and OSCAR are much more similar.14

14We provide the results of a model trained on the whole CCNet corpus in the Appendix. The
conclusions are similar when comparing models trained on the full corpora: downstream results
are similar when using OSCAR or CCNet.
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GSD Sequoia Spoken ParTUT Average NER NLI
Dataset Size

UPOS LAS UPOS LAS UPOS LAS UPOS LAS UPOS LAS F1 Acc.

Fine-tuning
Wiki 4GB 98.28 93.04 98.74 92.71 96.61 79.61 96.20 89.67 97.45 88.75 89.86 78.32
CCNet 4GB 98.34 93.43 98.95 93.67 96.92 82.09 96.50 90.98 97.67 90.04 90.46 82.06
OSCAR 4GB 98.35 93.55 98.97 93.70 96.94 81.97 96.58 90.28 97.71 89.87 90.65 81.88

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
OSCAR 138GB 98.39 93.80 98.99 94.00 97.17 81.18 96.63 90.56 97.79 89.88 91.55 81.55

Embeddings (with UDPipe Future (tagging, parsing) or LSTM+CRF (NER))
Wiki 4GB 98.09 92.31 98.74 93.55 96.24 78.91 95.78 89.79 97.21 88.64 91.23 -
CCNet 4GB 98.22 92.93 99.12 94.65 97.17 82.61 96.74 89.95 97.81 90.04 92.30 -
OSCAR 4GB 98.21 92.77 99.12 94.92 97.20 82.47 96.74 90.05 97.82 90.05 91.90 -

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
OSCAR 138GB 98.18 92.77 99.14 94.24 97.26 82.44 96.52 89.89 97.77 89.84 91.83 -

Table 11.5: Results on the four tasks using language models pre-trained on data sets of
varying homogeneity and size, reported on validation sets (average of 4 runs for
POS tagging, parsing and NER, average of 10 runs for NLI).

11.3.2 How much data do you need?

An unexpected outcome of our experiments is that the model trained “only” on
the 4 GB sample of OSCAR 2019 performs remarkably similarly to the standard
CamemBERT trained on the whole 138 GB OSCAR 2019. The only task with a large
performance gap is NER, where “138 GB” models are better by 0.9 F1 points. This
could be due to the higher number of named entities present in the larger corpora,
which is beneficial for this task. On the contrary, other tasks don’t seem to gain from
the additional data.

In other words, when trained on corpora such as OSCAR and CCNet, which are
heterogeneous in terms of genre and style, 4 GB of uncompressed text is large enough
as pre-training corpus to reach state-of-the-art results with the BASE architecture,
better than those obtained with mBERT (pre-trained on 60 GB of text).15 This calls
into question the need to use a very large corpus such as OSCAR or CCNet when
training amonolingual Transformer-based languagemodel such as BERTor RoBERTa.
Not only does this mean that the computational (and therefore environmental) cost
of training a state-of-the-art language model can be reduced, but it also means that
CamemBERT-like models can be trained for all languages for which a Common-
Crawl-based corpus of 4 GB or more can be created. OSCAR is available in more than
150 languages, and provides such a corpus for around 38 languages. Moreover, it is
possible that slightly smaller corpora (e.g. down to 1 GB) could also prove sufficient
to train high-performing language models. We obtained our results with BASE
architectures. Further research is needed to confirm the validity of our findings on
larger architectures and other more complex natural language understanding tasks.
However, even with a BASE architecture and 4 GB of training data, the validation
loss is still decreasing beyond 100k steps (and 400 epochs). This suggests that we

15The OSCAR-4 GB model gets slightly better XNLI accuracy than the full OSCAR-138 GB model
(81.88 vs. 81.55). This might be due to the random seed used for pre-training, as each model is
pre-trained only once.
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are still under-fitting the 4 GB pre-training dataset, training longer might increase
downstream performance.

11.4 Discussion

Between the pre-publication of this work16 and the publication of its peer-reviewed
version (Martin et al., 2020), many monolingual language models appeared, e.g.
(Le et al., 2020b; Virtanen et al., 2019; Delobelle et al., 2020), and for as much as 30
languages (Nozza et al., 2020). In almost all tested configurations they displayed
better results than multilingual language models such as mBERT (Pires et al., 2019).
Interestingly, Le et al. (2020b) showed that using FlauBERT, another RoBERTa-based
language model for Contemporary French, which was trained on less but more
edited data, in conjunction to CamemBERT in an ensemble system could improve the
performance of a parsing model and establish a new state-of-the-art in constituency
parsing for Contemporary French, highlighting thus the complementarity of both
models.17

As it was the case for English when BERT was first released, the availability of
similar scale language models for Contemporary French enabled interesting applica-
tions, such as large scale anonymization of legal texts, where CamemBERT-based
models established a new state-of-the-art on this task (Benesty, 2019), or the first
large question answering experiments on a French Squad data set that was released
after the publication of CamemBERT (d’Hoffschmidt et al., 2020) where the authors
matched human performance using CamemBERTLARGE. Being the first pre-trained
Trasnformer-based languagemodel that used theOSCAR corpus and given its impact
on the community, CamemBERT paved the way for many works on monolingual
language models that followed. Furthermore, the availability of all its training data
favors reproducibility and is a step towards better understanding such models and
the impact that the pre-training data has on them. In that spirit, we make the models
used in our experiments available via our website18 and via the huggingface and
fairseq APIs, in addition to the base CamemBERT model.

11.5 Conclusion

In this chapter we investigated the feasibility of training a Transformer-based lan-
guage model for languages other than Contemporary English. Using Contemporary
French as an example, we trained CamemBERT, a languagemodel based on RoBERTa.
We evaluated CamemBERT on four downstream tasks (part-of-speech tagging, de-
pendency parsing, named entity recognition and natural language inference) in
16https://arxiv.org/abs/1911.03894v1 (First ArXiv version).
17We refer the reader to (Le et al., 2020b) for a comprehensive benchmark and details therein.
18https://camembert-model.fr
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11 CamemBERT

which our best model reached or improved the state of the art in all tasks consid-
ered, even when compared to strong multilingual models such as mBERT, XLM and
XLM-R, while also having fewer parameters.

Our experiments confirm the previous findings presented in chapter 5 that using
web crawled data with high variability is preferable to using Wikipedia-based data.
In addition, we showed that our models could reach surprisingly high performances
with as low as 4 GB of pre-training data, questioning thus the need for large scale
pre-training corpora. This shows that state-of-the-art Transformer-based language
models can be trained on languageswith far fewer resources than previously believed,
and whenever a few gigabytes of data are available. This paves the way for the rise
of monolingual contextual pre-trained language models for mid- and low-resourced
languages. The question of knowing whether pre-training on small domain specific
content will be a better option than transfer learning techniques such as fine-tuning
remains open, and we will partially study it in the context of historical data in
upcoming chapters.
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In which we present a part of the work of Ortiz Suárez et al.
(2020a) who pre-train an ELMo model for Contemporary
French and then evaluate its performance in the NER anno-
tated FTB against all the available versions of CamemBERT.
From these experiments Ortiz Suárez et al. (2020a) set a new
state of the art for this corpus. We also present part of the
work of Popa-Fabre et al. (2020) who further train pre-train
ELMo models with the previously presented CaBeRnet and
CBT-fr and then evaluate them in multiple downstream tasks
in order to assess the importance of representative and bal-
anced corpora as pre-training datasets.1

Having trained the RoBERTa (Liu et al., 2019) based CamemBERT (Martin et al.,
2020) models in the previous chapter, we wanted to fairly compare the Transformer-
based architecture with ELMo (Peters et al., 2018), the BiLSTM-based contextualized
word representations that predated the BERT model (Devlin et al., 2019). Such a
comparison had already been done to an extent in English by Peters et al. (2019),
but in that case, ELMo and BERT where pre-trained with different datasets, which
as we saw in previous chapters, can have an enormous impact on the performance
of these types of models. We thus decided to train an ELMo model with the French
subcorpus of OSCAR 2019 to fairly compare with CamemBERT. We first compare
these twomodels in a benchmarking experiment in named entity recognition that we
do in order to find the best possible combination of embeddings and architectures
for NER or at least for the NER annotated version of the FTB that we presented in
subsection 9.2.1. We then expand our experiments by actually repeating most of
the CamemBERT experiments but this for comparing the OSCAR pre-trained ELMo
with CaBeRnet and CBT-fr ELMos.

1Contributions: for the part of (Ortiz Suárez et al., 2020a) presented here I pre-trained FrELMo and
conducted all the experiments involving FrELMo and CamemBERT. For the part of popa-fabre-etal-
2020-french presented here, I pre-trained all the ELMo models and conducted all the evaluations in
downstream tasks.
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12.1 FrELMo

We train an ELMo model for contemporary French using the French subcorpus of
OSCAR 2019. Furthermore, we train each model for 10 epochs, as was done for the
original English ELMo (Peters et al., 2018). We also use the same hyper-parameters
and the same pre-processing as the originals ELMo authors, i.e., we shuffle the
French subcorpus of OSCAR 2019 at a line level. In this case we do not bother to save
checkpoints as we previously saw that training for longer produced better models
(see 5), so we train for the full 10 epochs as the original authors suggested (Peters
et al., 2018).

12.1.1 Benchmarking NER Models

Experiments

For our benchmark of NER models for French, we used SEM (Dupont, 2017) as
our strong baseline because, to the best of our knowledge, it was the previous state-
of-the-art for named entity recognition on the FTB-NE corpus. Other French NER
systems are available, such as the one given by SpaCy. However, it was trained on
another corpus called WikiNER, making the results non-comparable. We can also
cite the system of (Stern et al., 2012). This system was trained on another newswire
(AFP) using the same annotation guidelines, so the results given in this article are
not directly comparable. This model was trained on FTB-NE in Stern (2013) (table
C.7, page 303), but the article is written in French. The model yielded an F1-score of
0.7564, which makes it a weaker baseline than SEM. We can cite yet another NER
system, namely grobid-ner.2 It was trained on the FTB-NE and yields an F1-score of
0.8739, but two things are to be taken into consideration in grobid-ner’s score: the
tagset was slightly modified and scores were averaged over a 10-fold cross validation.
To see why this is important for FTB-NE, see section 12.1.3.

In this section, we will compare our strong baseline with a series of neural models.
We will use the two current state-of-the-art neural architectures for NER, namely
seq2seq and LSTM-CRFs models. We will use various pre-trained embeddings in
said architectures: fastText, CamemBERT and FrELMo embeddings.

SEM

SEM (Dupont, 2017) is a tool that relies on linear-chain CRFs (Lafferty et al., 2001)
to perform tagging. SEM uses Wapiti (Lavergne et al., 2010) v1.5.0 as linear-chain
CRFs implementation. SEM uses the following features for NER:

• token, prefix/suffix from 1 to 5 and a Boolean isDigit features in a [-2, 2]
window;

2https://github.com/kermitt2/grobid-ner#corpus-lemonde-ftb-french
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• previous/next common noun in sentence;

• 10 gazetteers (including NE lists and trigger words for NEs) applied with some
priority rules in a [-2, 2] window;

• a ”fill-in-the-gaps” gazetteers feature where tokens not found in any gazetteer
are replaced by their POS, as described in (Raymond and Fayolle, 2010). These
features used token unigrams and token bigrams in a [-2, 2] a window.

• tag unigrams and bigrams.

We trained our own SEM model by using SEM features on gold tokenization and
optimized L1 and L2 penalties on the development set. The metric used to estimate
convergence of the model is the error on the development set (1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦). Our
best result on the development set was obtained using the rprop algorithm, a 0.1 L1
penalty and a 0.1 L2 penalty.

SEM also uses an NE mention broadcasting post-processing (mentions found at
least once are used as a gazetteer to tag unlabeled mentions), but we did not observe
any improvement using this post-processing on the best hyperparameters on the
development set.

Neural models

In order to study the relative impact of different word vector representations and
different architectures, we trained a number of NER neural models that differ in
multiple ways. They use zero to three of the following vector representations: Fast-
Text non-contextual embeddings (Bojanowski et al., 2017), the FrELMo contextual
language model, and one of multiple CamemBERT language models (Martin et al.,
2020) (see Appendix E). The CamemBERT models we use in our experiments differ
in multiple ways:

• Training corpus: OSCAR 2019 or CCNet (Wenzek et al., 2020). For compari-
son purposes, we also display the results of an experiment using the mBERT
multilingual BERT model trained on the Wikpiedias for over 100 languages.

• Model size: following Devlin et al. (2019), we use both “BASE” and “LARGE”
models; these models differ by their number of layers (12 vs. 24), hidden
dimensions (768 vs. 1024), attention heads (12 vs. 16) and, as a result, their
number of parameters (110M vs. 340M).

• Masking strategy: the objective function used to train a CamemBERT model
is a masked language model objective. However, BERT-like architectures like
CamemBERT rely on a fixed vocabulary of explicitly predefined size obtained
by an algorithm that splits rarer words into subwords, which are part of the
vocabulary together with more frequent words. As a result, it is possible to
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use a whole-word masked language objective (the model is trained to guess
missing words, which might be made of more than one subword) or a subword
masked language objective (the model is trained to guess missing subwords).
Our models use the acronyms WWM and SWM respectively to indicate the
type of masking they used.

We use these word vector representations in three types of architectures:

• Fine-tuning architectures: in this case, we add a dedicated linear layer to the
first subword token of each word, and the whole architecture is then fine-tuned
to the NER task on the training data.

• Embedding architectures: word vectors produced by languagemodels are used
as word embeddings. We use such embeddings in two types of LSTM-based
architectures: an LSTM fed to a seq2seq layer and an LSTM fed to a CRF layer.
In such configurations, the use of several word representations at the same
time is possible, using concatenation as a combination operator. For instance,
in Table 12.1, the model FastText + CamemBERTOSCAR-BASE-WWM under the
header “LSTM-CRF + embeddings corresponds to a model using the LSTM-CRF
architecture and, as embeddings, the concatenation of FastText embeddings,
the output of the CamemBERT “BASE”model trained on OSCARwith a whole-
wordmasking objective, and the output of the FrELMo language model. For all
LSTM-based architectures we use the implementation of Straková et al. (2019).

For our neural models, we optimized hyperparameters using F1-score on develop-
ment set as our convergence metric.

We train each model three times with three different seeds, select the best seed on
the development set, and report the results of this seed on the test set in Table 12.1.

12.1.2 Results

Word Embeddings: Results obtained by SEM and by our neural models are shown
in table 12.1. First important result that should be noted is that LSTM+CRF and
LSTM+seq2seq models have similar performances to that of the SEM (CRF) baseline
when they are not augmented with any kind of embeddings. Just adding classical
fastText word embeddings dramatically increases the performance of the model.

ELMo Embeddings: Adding contextualized ELMo embeddings increases again the
performance for both architectures. However, we note that the difference is not as big
as in the case of the pair with/without fastText word embeddings for the LSTM-CRF.
For the seq2seq model, it is the contrary: adding ELMo gives a good improvement
while fastText does not improve the results as much.
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Model Precision Recall F1-Score

baseline
SEM (CRF) 87.18 80.48 83.70

LSTM-seq2seq 85.10 81.87 83.45
+ FastText 86.98 83.07 84.98
+ FastText + FrELMo 89.49 87.48 88.47
+ FastText + CamemBERTOSCAR-BASE-WWM 89.79 88.86 89.32
+ FastText + CamemBERTOSCAR-BASE-WWM + FrELMo 90.00 88.60 89.30
+ FastText + CamemBERTCCNET-BASE-WWM 90.31 89.29 89.80
+ FastText + CamemBERTCCNET-BASE-WWM + FrELMo 90.11 88.86 89.48
+ FastText + CamemBERTOSCAR-BASE-SWM 90.09 89.46 89.77
+ FastText + CamemBERTOSCAR-BASE-SWM + FrELMo 90.11 88.95 89.53
+ FastText + CamemBERTCCNET-BASE-SWM 90.31 89.38 89.84
+ FastText + CamemBERTCCNET-BASE-SWM + FrELMo 90.64 89.46 90.05
+ FastText + CamemBERTCCNET-500K-WWM 90.68 89.03 89.85
+ FastText + CamemBERTCCNET-500K-WWM + FrELMo 90.13 88.34 89.23
+ FastText + CamemBERTCCNET-LARGE-WWM 90.39 88.51 89.44
+ FastText + CamemBERTCCNET-LARGE-WWM + FrELMo 89.72 88.17 88.94

LSTM-CRF + embeddings
LSTM-CRF 85.87 81.35 83.55
+ FastText 88.53 84.63 86.53
+ FastText + FrELMo 88.89 88.43 88.66
+ FastText + CamemBERTOSCAR-BASE-WWM 90.47 88.51 89.48
+ FastText + CamemBERTOSCAR-BASE-WWM + FrELMo 89.70 88.77 89.24
+ FastText + CamemBERTCCNET-BASE-WWM 90.24 89.46 89.85
+ FastText + CamemBERTCCNET-BASE-WWM + FrELMo 89.38 88.69 89.03
+ FastText + CamemBERTOSCAR-BASE-SWM 90.96 89.55 90.25
+ FastText + CamemBERTOSCAR-BASE-SWM + FrELMo 89.44 88.51 88.98
+ FastText + CamemBERTCCNET-BASE-SWM 90.09 88.69 89.38
+ FastText + CamemBERTCCNET-BASE-SWM + FrELMo 88.18 87.65 87.92
+ FastText + CamemBERTCCNET-500K-WWM 89.46 88.69 89.07
+ FastText + CamemBERTCCNET-500K-WWM + FrELMo 90.11 88.86 89.48
+ FastText + CamemBERTCCNET-LARGE-WWM 89.19 88.34 88.76
+ FastText + CamemBERTCCNET-LARGE-WWM + FrELMo 89.03 88.34 88.69

fine-tuning
mBERT 80.35 84.02 82.14
CamemBERTOSCAR-BASE-WWM 89.36 89.18 89.27
CamemBERTCCNET-500K-WWM 89.35 88.81 89.08
CamemBERTCCNET-LARGE-WWM 88.76 89.58 89.39

Table 12.1: Results on the test set for the best development set scores.

133



12 FrELMo

CamemBERT Embeddings: Adding the CamemBERT embeddings always increases
the performance of the model LSTM based models. However, as opposed to adding
ELMo, the difference with/without CamemBERT is equally considerable for both the
LSTM-seq2seq and LSTM-CRF. In fact adding CamemBERT embeddings increases
the original scores far more than ELMo embeddings does, so much so that the
state-of-the-art model is the LSTM + CRF + FastText + CamemBERTOSCAR-BASE-SWM.

CamemBERT + FrELMo: Contrary to the results given in Straková et al. (2019),
adding ELMo to CamemBERT did not have a positive impact on the performances
of the models. Our hypothesis for these results is that, contrary to Straková et al.
(2019), we trained ELMo and CamemBERT on the same corpus. We think that, in
our case, ELMo either does not bring any new information or even interfere with
CamemBERT.

Base vs large: an interesting observation is that using large model negatively
impacts the performances of the models. One possible reason could be that, because
the models are larger, the information is more sparsely distributed and that training
on the FTB-NE, a relatively small corpus, is harder.

12.1.3 Impact of shuffling the data

One important thing about the FTB is that the underlying text is made of articles
from the newspaper Le Monde that are chronologically ordered. Moreover, the
standard development and test sets are at the end of the corpus, which means that
they are made of articles that are more recent than those found in the training set.
This means that a lot of entities in the development and test sets may be new and
therefore unseen in the training set. To estimate the impact of this distribution, we
shuffled the data, created a new training/development/test split of the same lengths
as in the standard split, and retrained and reevaluated our models. We repeated this
process 3 times to avoid unexpected biases. The raw results of this experiment are
given in table 12.2. We can see that the shuffled splits result in improvements on all
metrics, the improvement in F1-score on the test set ranging from 4.04 to 5.75 (or
25% to 35% error reduction) for our SEM baseline, and from 1.73 to 3.21 (or 18% to
30% error reduction) for our LSTM-CRF architectures, reaching scores comparable
to the English state-of-the-art. This highlights a specific difficulty of the FTB-NE
corpus where the development and test sets seem to contain non-negligible amounts
of unknown entities. This specificity, however, allows to have a quality estimation
which is more in line with real use cases, where unknown NEs are frequent. This is
especially the case when processing newly produced texts with models trained on
FTB-NE, as the text annotated in the FTB is made of articles around 20 years old.
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Model Precision Recall F1-Score

shuf 1
SEM(dev) 92.96 87.84 90.33
LSTM-CRF+CamemBERTOSCAR-BASE-SWM(dev) 93.77 94.00 93.89
SEM(test) 91.88 87.14 89.45
LSTM-CRF+CamemBERTOSCAR-BASE-SWM(test) 92.59 93.96 93.27

shuf 2
SEM(dev) 91.67 85.96 88.73
LSTM-CRF+CamemBERTOSCAR-BASE-SWM(dev) 93.15 94.21 93.68
SEM(test) 90.57 87.76 89.14
LSTM-CRF+CamemBERTOSCAR-BASE-SWM(test) 92.63 94.31 93.46

shuf 3
SEM(dev) 92.53 88.75 90.60
LSTM-CRF+CamemBERTOSCAR-BASE-SWM(dev) 94.85 95.82 95.34
SEM(test) 90.68 85.00 87.74
LSTM-CRF+CamemBERTOSCAR-BASE-SWM(test) 91.30 92.67 91.98

Table 12.2: Results on the test set for the best development set scores.

12.1.4 Conclusions of the Benchmark

We establish a new state-of-the-art for French NER using state-of-the-art neural
techniques and recently produced neural language models for French. Our best
neural model reaches an F1-score which is 6.55 points higher (a 40% error reduction)
than the strong baseline provided by the SEM system.

We also highlight how the FTB-NE is a good approximation of a real use case.
Its chronological partition increases the number of unseen entities allows to have a
better estimation of the generalization capacities of machine learning models than if
it were randomized.

One interesting point to investigate is that using Large embeddings overall has a
negative impact on the models performances. It could be because larger models store
information relevant to NER more sparingly, making it harder for trained models to
capitalize them. We would like to investigate this hypothesis in future research.

12.2 Pre-training Corpora Evaluation for ELMo models

Having completed this Benchmark in NER, we also wanted to better understand the
computational impact of the quality, size and linguistic balance in ELMo’s (Peters
et al., 2018) pre-training. We conducted this experiments with ELMo instead of
BERT or RoBERTa, as ELMo is a far less demanding model in terms of comput-
ing power when it comes to pre-training, and at the moment when we conducted
these experiments we didn’t have access to the infrastructure required to pre-train
Transformer-based models.
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12.2.1 ELMo Pre-traing & Fine-tuning Method

Two protocols were carried out to evaluate the impact of corpora characteristics on
the tasks under analysis. Method 1 implies a full pre-training ELMo-based language
models for each of the corpora mentioned in Table 9.3. While Method 2 is based
on pre-training OSCAR + fine-tuning with our French Balanced Reference Corpus
CaBeRnet, yielding ELMoOSCAR+CaBeRnet. Hence, the pure pre-traing (i.e. Method 1)
yields the following four languagemodelswhichwere pre-trained on the four corpora
under comparison : ELMoOSCAR (FrELMo in the previous section), ELMoWikipedia,
ELMoCaBeRnet and ELMoCBT.

We conduct the same experiments that we did for CamemBERT in dependency
parsing, POS tagging and NER. We also coupled our ELMo models with the same
tasks specific architectures as before, namely textbfUDPipe Future (Straka, 2018) for
POS tagging and dependency parsing and (Straková et al., 2019) for NER. Exper-
iments were run using the Universal Dependencies (UD) paradigm and its corre-
sponding UD POS-tag set (Petrov et al., 2012) and UD treebank collection version
2.2 (Nivre et al., 2018), which was used for the CoNLL 2018 shared task.

12.2.2 Results & Discussion

Dependency Parsing and POS-tagging

GSD Sequoia Spoken ParTUT
Model

UPOS UAS LAS UPOS UAS LAS UPOS UAS LAS UPOS UAS LAS

Baseline UDPipe Future 97.63 90.65 88.06 98.79 92.37 90.73 95.91 82.90 77.53 96.93 92.17 89.63
+ELMoCBT 97.49 90.21 87.37 98.40 92.18 90.56 96.60 85.05 79.82 97.27 92.55 90.44
+ELMoWikipedia 97.92 92.13 89.77 99.22 94.28 92.97 97.28 85.61 80.79 97.62 94.01 91.78
+ELMoCaBeRnet 97.87 92.02 89.62 99.33 94.42 93.14 97.30 85.39 80.63 97.43 94.02 91.86
+ELMoOSCAR 97.85 92.41 90.05 99.30 94.43 93.25 97.10 85.83 80.94 97.47 94.74 92.55

+ELMoOSCAR+CaBeRnet 97.98 92.57 90.22 99.34 94.51 93.38 97.24 85.91 80.93 97.58 94.47 92.05

State-of-the-art
UDify 97.83 93.60 91.45 97.89 92.53 90.05 96.23 85.24 80.01 96.12 90.55 88.06
UDPipe Future + mBERT 97.98 92.55 90.31 99.32 94.88 93.81 97.23 86.27 81.40 97.64 94.51 92.47
CamemBERT 98.19 94.82 92.47 99.21 95.56 94.39 96.68 86.05 80.07 97.63 95.21 92.90

Table 12.3: Final POS and dependency parsing scores on 4 French treebanks (French GSD,
Spoken, Sequoia and ParTUT), reported on test sets (4 averaged runs) assuming
gold tokenisation. Best scores in bold, second to best underlined, state-of-the-art
results in italics.

ELMoCaBeRnet: A Test for Balance The representations offered by ELMoCaBeRnet
are not only competitive but sometimes better thanWikipedia ones. One should keep
in mind that almost all the four treebanks we use in this section include Wikipedia
data. ELMoCaBeRnet is reaching state-of-the-are results in POS-tagging on Spoken.
Notably, it performs better than CamemBERT, the previous state of the art on this
oral specialized tree-bank (cf. dark gray highlight on Table 12.3). We understand
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this results as a clear effect of balance when testing upon a purely spoken test-set.
Importantly, this effect is difficultly explainable by the size of oral-style data in
CaBeRnet. The oral sub-part is only one fifth of the total, and in this one fifth, only
an even smaller amount of data comes from purely oral transcripts comparable the
ones in the Spoken tree-bank, namely 67,444 words from Rhapsodie corpus, and
575,894 words form ORFEO. Hence, CaBeRnet’s balanced oral language use shows
to pay off in POS-tagging. These results are surprising, especially given the fact that
our evaluation method was aiming at comparing the quality of word-embedding
representations and not beating the state-of-the-art.

ELMoCaBeRnet: A Test for Coverage From Table 12.3, we discover that not only
balance, but also the broad and diverse genre converge of CaBeRnet may play a
role in its POS-tagging success is we compare its results with ELMoCBT that also
features oral dialogues in youth literature. The fact that ELMoCBT does not show
a comparable performance in POS-tagging, can be interpreted as linked to its size,
but possibly also to its lack of variety in genres, thus, suggesting the advantage of a
comprehensive coverage of language use. This suggests that a balanced sample may
enhance the convergence of generalization about oral-style from distinct genre that
still implies oral-like dialogues like in fiction. In sum, broad coverage may contribute
to enhancing representations about oral language.

The effect of balance on Fine-tuning For POS-tagging in GSD the results of
ELMoOSCAR are in second place position compared to ELMoOSCAR+CaBeRnet that
is extremely close to ELMoWikipedia. While in POS-tagging in ParTUT, ELMoWikipedia
exhibits better results than ELMoOSCAR, and ELMoOSCAR+CaBeRnet is in second posi-
tion.

Comparing GSD and Sequoia scores from ELMoOSCAR and ELMoOSCAR+CaBeRnet,
we observe that fine-tuning with CaBeRnet the embeddings that were pre-trained
on OSCAR, yields better representations for the three tasks compared to both the
original ELMoOSCAR and ELMoCaBeRnet. However, fine-tuning does not always yield
better findings than ELMoOSCAR on Spoken and ParTUT, where ELMoOSCAR+CaBeRnet
places in second after ELMoOSCAR for parsing scores UAS/LAS (cf. Table 12.3).

A closer look on Parsing results reveals an interesting pattern of results across
treebanks (see light gray highlights on Table 12.3). We see that for GSD and Sequoia
the CaBeRnet fine-tuned version ELMoOSCAR+CaBeRnet compared to the pure OSCAR
pre-trained ELMoOSCAR is achieving higher scores. While a reverse and less clear-
cut pattern is observable for the other two treebanks, namely Spoken and ParTUT.
This configuration can be explained if we understand this pattern as due to the
reinforcement and unlearning of ELMoOSCAR representations during the process of
fine-tuning. Specifically, we can observe that parsing scores are better on treebanks
that share the kind of language use represented in CaBeRnet, while they are worse
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on corpora that are closer in language sample to OSCAR corpus, like Spoken and
ParTuT. This calls for further developments of CaBeRnet (§12.2.3).

ELMoCBT: small but relevant ELMoCBT shows an intriguing pattern of results.
Even if its scores are under the baseline on GSD and Sequoia, it yields over the
baseline results for Spoken and ParTUT. Given its reduced size, one would expect it
to overfit, this would explain the under baseline performance. However, this was
not the case on Spoken and ParTUT treebanks, thus showing ELMoCBT contribution
in generating representations that are useful to UDPipe model to achieve better
results in POS-tagging and parsing tasks on the ParTUT and Spoken tree-banks. The
presence of oral dialogues is certainly playing a role in this results’ pattern. This
unexpected result calls for further investigation on the impact of pre-training with
reduced-size, noiseless, domain-specific corpora.

NER

NER - Results on FTB Precision Recall F1

Baselines Models
SEM (CRF) (Dupont, 2017) 87.89 82.34 85.02
LSTM-CRF (Dupont, 2017) 87.23 83.96 85.57

LSTM-CRF test models 85.87 81.35 83.55
+FastText 88.53 84.63 86.53
+FastText+ELMoCBT 79.77 77.63 78.69
+FastText+ELMoWikipedia 88.87 87.56 88.21
+FastText+ELMoCaBeRnet 88.91 87.22 88.06
+FastText+ELMoOSCAR 88.89 88.43 88.66

+FastText+ELMoOSCAR+CaBeRnet 90.70 89.12 89.93

State-of-the-art Models
CamemBERT (Martin et al., 2020) 89.35 88.81 89.08

Table 12.4: NER Results on French Treebank (FTB): best scores, second to best.

For NER, LSTM-CRF+FastText+ELMoOSCAR+CaBeRnet achieves a better precision,
recall and F1 than the traditional CRF-based SEM architectures and even Camem-
BERT. Importantly, LSTM-CRF+FastText+ELMoCaBeRnet reaches better results in
finding entity mentions, than Wikipedia which is a highly specialized corpus in
terms of vocabulary variety and size, as can be seen in the overwhelming total num-
ber of unique forms it contains (see Table 9.4). We can conclude that both pre-training
and fine-tuning with CaBeRnet on ELMoOSCAR generates better word-embedding
representations than Wikipedia in this downstream task.

CBT-fr NER results are under the LSTM-CRF baseline. This can possibly be
explained by the distance in terms of topics and domain from FTB treebank (i.e.
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newspaper articles), or by the reduced-size of the corpus to yield good-enough
representation to perform named entity recognition.

All in all, our evaluations confirm the effectiveness of large ELMo-based language
models fine-tuned or pre-trained with a balanced and linguistically representative
corpus, like CaBeRnet as opposed to domain-specific ones.

12.2.3 Conclusion

We investigated the relevance of different types of corpora on ELMo’s pre-training
and fine-tuning. It confirms the effectiveness and quality of word-embeddings
obtained through balanced and linguistically representative corpora.

The proposed evaluation methods are showing that CaBeRnet and CBT-fr are not
only relevant for neural NLP and language modeling in French, but that corpus
balance shows to be a significant predictor of ELMo’s accuracy on Spoken test data-set
and for NER tasks.

The results obtained for the parsing tasks on ParTUTopen a newperspective for the
development of the French Balanced Reference Corpus, involving the enhancement
of the terminological coverage of CaBeRnet. A sixth sub-part could be included
to cover technical domains like legal and medical ones, and thereby enlarge the
specialized lexical coverage of CaBeRnet.

Further developments of this resource would involve an extension to cover user-
generated content, ranging from well written blogs, tweets to more variable written
productions like newspaper’s comment or forums, as present in the CoMeRe corpus
(Chanier et al., 2014). The computational experiments conducted here also show
that pre-training language models like ELMo on a very small sample like the French
Children Book Test corpus or CaBeRnet yields unexpected results. This opens a
perspective for languages that have smaller training corpora. ELMo could be a better
suited language model for those languages than it is for others having larger size
resources.

To conclude, our current evaluations show that linguistic quality in terms of repre-
sentativeness and balance yields better performing contextualized word-embeddings.
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13 SinNer CLEF-HIPE2020
In which we present our participation (Ortiz Suárez et al.,
2020) to the CLEF-HIPE 2020 shared task (Ehrmann et al.,
2020). We actually use thisNER shared task as an opportunity
see how well the Contemporary French language models
that we had trained could perform without any further pre-
training or fine-tuning in a task that mainly used historical
data. Here we also evaluate the impact that pre-processing
has on the models’ performance.1

Having participated in the pre-training of Contemporary French language models
like CamemBERT (Martin et al., 2020) and FrELMo (Ortiz Suárez et al., 2020a; Popa-
Fabre et al., 2020) we wanted to better asses how these models would perform in
downstream tasks without any further fine-tuning or additional pre-training data.
We wanted to assess in particular how much effective would be a transfer learning
technique between different states of the French language. The CLEF-HIPE 2020
shared task (Ehrmann et al., 2020) seemed then like a good opportunity to test this,
as HIPE (Identifying Historical People, Places and other Entities) was an evaluation
campaign on named entity processing on historical newspapers in French, German
and English, which was organized in the context of the impresso project and run
as a CLEF 2020 Evaluation Lab. In this study we also evaluate the impact that pre-
processing has on the performance of our models, specially when the training data
comes from OCRized text.

13.1 Dataset for the CLEF-HIPE shared task

The dataset of the CLEF-HIPE shared task contains newspaper articles of 17th-20th
century. The text is an output of anOCR software, then tokenized and annotatedwith
labels corresponding to each sub-task. This peculiarity of historical documents will
be detailed later in this section. The corpus provided for French and German both
contained training data (train) and development data (dev) whereas, for English
only development data was provided for the shared task. For this reason, we chose
to work on French and German only.

1Contributions: I made all the experiments for French and German involving the ELMo models and
the LSTM-CRFs. Notably the runs 1 and 2. I also actively contributed to writing the scientific article.
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Table 13.1 shows some statistics of this dataset. The size of the training dataset for
French was twice as big as for German, whereas the development sets had roughly
the same size. As usual in NER, persons (Pers) and locations (Loc) were the most
frequent entity types.

Tokens Documents Segments Labeled named entities
Pers Loc Org Time Prod

Train Fr 166217 158 19183 3067 2513 833 273 198
Dev Fr 37592 43 4423 771 677 158 69 48
Train De 86960 104 10353 1747 1170 358 118 112
Dev De 36175 40 4186 664 428 172 73 53

Table 13.1: Statistics on the training and development data in French and German

TOKEN NE-COARSE NE-FINE NE-NESTED NEL MISC
LIT METO LIT METO COMP LIT METO

# language = fr
# newspaper = EXP
# date = 1918-04-22
# document_id = EXP-1918-04-22-a-i0077
# segment_iiif_link = https://iiif.dhlab.epfl.ch/iiif_impresso…
Lettre O O O O O O _ _ _
de O O O O O O _ _ _
la O O O O O O _ _ _
Su B-loc O B-loc.adm.reg O O B-loc.adm.nat Q689055 _ NoSpaceAfter
. I-loc O I-loc.adm.reg O O I-loc.adm.nat Q689055 _ _
_ I-loc O I-loc.adm.reg O O I-loc.adm.nat Q689055 _ NoSpaceAfter
sss I-loc O I-loc.adm.reg O O I-loc.adm.nat Q689055 _ _
allemands I-loc O I-loc.adm.reg O O O Q689055 _ EndOfLine
# segment_iiif_link = https://iiif.dhlab.epfl.ch/iiif_impresso…
( O O O O O O _ _ NoSpaceAfter
Nous O O O O O O _ _ _
serons O O O O O O _ _ _
heureux O O O O O O _ _ _
de O O O O O O _ _ _
publier O O O O O O _ _ _
…

Table 13.2: Example extracted from the French training dataset

Table 13.2 shows an excerpt of the train dataset (CoNLL format). For each docu-
ment, general information were provided. Among them, newspaper and date may
have been features useful for recognizing entities, but we did not take advantage
of it. Each document was composed of segments, starting with ”# segment …” cor-
responding to lines in the original documents. Each segment is tokenized in order
to correspond to the CoNLL format with one token per line. These two notions,
segments and tokens, are very important since they do not always match the type of
unit usually processed in NLP pipelines. Segments seldom correspond to sentences,
so there is a need to concatenate the segments to get the raw text and then segment it
into sentences. This is very interesting since it gets us close to real-world conditions
rather than laboratory conditions, and as we show in Section 13.3.2, that this segment
vs. sentence question has an important influence on the results. Regarding tokens,
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the tokenization is obviously not perfect. We can see that there are non-standard
words and bad tokenization due to the OCR output (in red in Table 13.2). If we
concatenate the tokens we get the sequence ”Su. _sss allemands” instead of ”Suisse
allemande”. These non-standard words make the Named Entity Recognition task
more complicated and, again, more realistic.

13.2 CRFs and Contextualized Word Embeddings for NER

Here we present the different models that we use for the shared-tasks, which are
again some of the architectures used in the previous chapter for the NER benchmark.

13.2.1 CRF model (run3)

We use SEM (Segmenteur-Étiqueteur Markovien)2,3 (Dupont, 2017) with the exact
same features described in Subsection 12.1.1.

We trained a CLEF HIPE specific model by optimizing L1 and L2 penalties on
the development set. The metric used to estimate convergence of the model is the
error on the development set (1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦). For French, our optimal L1 and L2
penalties were 0.5 and 0.0001 respectively (default Wapiti parameters). For German,
our optimal L1 and L2 penalties were 1.0 and 0.0001 respectively.

One interest of SEM is that it has a built-in sentence tokenizer for French using
a rule-based approach. By default, CLEF-HIPE provides a newline segmentation
that is the output of an OCR engine. As a result, some NE mentions span across
multiple segments, making it very hard to identify them correctly. It is to be expected
that models trained (and labelling on) sentences would yield better performances
than those trained (and labelling on) segments. SEM makes it simple to switch
between different sequence segmentations, which allowed us to label sentences and
output segments. SEM’s sentence segmentation engine works using mainly local
rules to determine whether a token is the last of a sequence (e.g.: is a dot preceded
by a known title abbreviation?). It also uses non-local rules to remember whether a
token is between parentheses or French quotes to not segment automatically within
them. Since we work at token level, we had to adapt some rules to fit CLEF-HIPE to-
kenization. For example, SEM decides at tokenization stage whether a dot is a strong
punctuation or part of a larger token, as for abbreviations. This has the advantage
of making sentence segmentation easier. CLEF-HIPE tokenization systematically
separates dots, so we adapted some sentence segmentation rules, for example: we
decided not to consider a dot as a sentence terminator if the previous token was in a
lexicon of titles or functions. No specific handling of OCR errors were done. Another
interest is that SEM has an NE mention broadcasting process. Mentions found at

2available at: https://github.com/YoannDupont/SEM.
3translates to: Markovian Tokenizer-Tagger (MTT).
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least once in a document are used as a gazetteer to tag unlabeled mentions within
said document. When a new mention overlaps and is strictly longer than an already
found mention, the new mention will replace the previous one in the document.

13.2.2 ELMo-LSTM-CRF (run1 and run2)

For our experiments, we follow the same approach of previous chapters by using
the Bi-LSTM-CRF implementation of Straková et al. (2019) which is open source
and readily available,4 and pre-appending contextualized word-embeddings to the
model. For French we pre-append the FrELMo model Ortiz Suárez et al. (2020a),
which as we saw in the previous chapter, is the standard ELMo (Peters et al., 2018)
implementation5 trained on the French subcorpus of OSCAR 20196 (Ortiz Suárez
et al., 2019; Ortiz Suárez et al., 2020b). For German we pre-append the German
ELMo (May, 2019), which is again the standard ELMo implementation but trained
on the German Wikipedia.

Contrary to the approach used in Subsection 12.1.1, we do not use the Camem-
BERT model (Martin et al., 2020) for French or the German BERT (Chan et al., 2019).
Both of these models are BERT-based and as such they are limited to a 512-token
contextualized window. Moreover, they both use SentencePiece (Kudo and Richard-
son, 2018) meaning that tokens are actually subwords, which considerably increases
the number of tokens per sentence, specially for the longer ones, thus decreasing the
contextual windows of both CamemBERT and the German BERT. SentencePiece also
introduces the problem of a fixed-size vocabulary, which in the case of this shared
task might negatively impact the performance of said models, as they could struggle
to handle OCR problems or just non-standard vocabulary. Since our main goal was
to reconstruct the sentences and use long contextualized sequences we opted to use
ELMo which can easily handle longer sequences with its standard implementation
and actually has a dynamic vocabulary thanks to the CNN character embedding
layer, thus it might be better equipped to handle non-standard orthography and OCR
problems. We actually did a preliminary experiment for French with CamemBERT,
but the results were even worse than our baselines, so we decided to scrap it. We
will see this phenomenon again on chapter 15 where we will actually report it and
study it more in depth.

For the fixed word embeddings we used the Common Crawl-based FastText em-
beddings (Grave et al., 2018) originally trained by Facebook as opposed to the
embeddings provided by the HIPE shared task, as we obtained better dev scores
using the original FastText embeddings for both French and German.

4Available at: https://github.com/ufal/acl2019_nested_ner.
5Available at: https://github.com/allenai/bilm-tf.
6Available at: https://oscar-corpus.com.
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run French German
P R F1 P R F1

winner 83.1 84.9 84.0 79.0 80.5 79.7
run 1 77.8 79.4 78.6 63.1 66.6 64.8
run 2 78.8 80.2 79.5 65.8 65.8 65.8
run 3 70.2 57.9 63.5 64.4 43.8 52.1

average 70.2 66.7 67.6 63.8 58.1 60.0
median 71.5 68.6 68.6 66.8 57.7 64.5

Table 13.3: Strict results for our systems compared to the winning system (micro measures)

We used the standard hyperparameters originally7 used by Straková et al. (2019).
Namely a batch size of 8, a dropout of 0.5, a learning rate of 0.001 and 10 epochs.
The difference between run 1 and 2, is that run 1 uses the data as is, while run 2 uses
the reconstructed sentences.

13.3 Results and Discussion

13.3.1 Official shared task results

The results of our 3 runs compared to the best run on the NERC-coarse shared-task
for French and German are given in Table 13.3 (strict scenario). For both tasks, we
are the third best ranking team. We only did very minimal adaptation of existing
systems. We did not modify tokenization for any language. The most notable change
was to use custom sentence segmentation instead of given segments for French
and using some additional lexica as features for our CRF model in German (for
French, we only used existing SEM lexica). Other than that, we only optimized
hyperparameters on the dev set. This clearly illustrates the power of contextual
embeddings and today’s neural network architectures. This is encouraging in terms
of usability of state-of-the-art models on real-world data.

13.3.2 Study of sequence segmentation

In this section, we evaluate the influence of sequence segmentation on system perfor-
mances. This evaluation is done for French only, as we used SEM to provide sentence
segmentation and SEM could only provide a proper sentence segmentation for that
language. As can be seen in table 13.4, sentence segmentation allows us to improve
results by 3.5 F1 points. This is due to the fact that some entities were split across
multiple segments in the original data. Using a custom sentence segmentation allows
to have entities in a single sequence. This segmentation is applied both with training

7https://github.com/ufal/acl2019_nested_ner/blob/master/tagger.py#L484.
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Type P R F1
Segments Sentences Segments Sentences Segments Sentences

Loc 85.21 87.73 (+2.52) 87.52 87.08 (-0.44) 86.35 87.41 (+1.06)
Org 70.62 71.33 (+0.71) 62.78 65.64 (+2.86) 66.47 68.37 (+1.90)
Pers 80.24 84.64 (+4.40) 76.88 82.09 (+5.21) 78.52 83.35 (+4.83)
Prod 62.96 75.86 (+12.90) 39.53 56.41 (+16.88) 48.57 64.71 (+16.14)
Time 86.21 90.91 (+4.70) 78.12 87.72 (+9.60) 81.97 89.29 (+7.32)

Global 81.03 84.46 (+3.43) 81.61 84.46 (+2.85) 79.52 83.01 (+3.49)

Table 13.4: Comparison between segments and sentences on French dev dataset (run 1),
strict scenario

metric french german
not to dev to dev not to dev to dev

P 78.8 79.5 (+0.7) 65.8 68.2 (+2.4)
R 80.2 80.7 (+0.5) 65.8 66.1 (+0.3)
F1 79.5 80.1 (+0.6) 65.8 67.1 (+1.3)

Table 13.5: Results obtained on the test set (strict metric) with only the train set (not to dev)
and with train+dev sets (to dev) with our best system (run 2)

data and evaluation data, so that our systems can access a more proper context for
named entities. The cost of using another segmentation is relatively cheap, as SEM
can process nearly 1 GB of raw text per hour.

Per entity comparison is also available in Table 13.4. One can see that the improve-
ment of sentence segmentation is not very significant for locations (Loc). This is
due to two facts : (i) locations are usually small in terms of tokens and therefore
less prone to be separated in two segments and (ii) there was less room from im-
provement since they were the easiest entity type to detect (86.35% F1-score). In
contrast, entities of type “product” (Prod), usually longer in tokens, were very hard
to predict with only 48.57% F1-measure and benefited the most from segmentation
in sentences (+16 percentage points in F1-measure).

13.3.3 To dev or not to dev?

In Table 13.5 we show the results that could have been obtained by training the
Bi-LSTM model on both train and dev dataset. We used the same hyperparameters
as we did for our official run. Despite the fact that it does not ensure the robustness
of the system, the added-value seem to be quite disappointing.8 In German the gain
may be a bit more significant, probably due to the smaller size of the training dataset.

8In particular, if we consider that it would not have given us a better ranking on any language.
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13.4 Conclusion

In this chapter we presented three methods developed for the Named Entity Recog-
nition task in French and German historical newspapers. The first method relied
on linear-chain CRFs while the other two methods use a Bidirectional LSTM and
a bidirectional Language Model (ELMo). The latter outperformed the CRF model
and achieved rank 3 on the NER task in both French and German. We also showed
that the type of sequences used has a significant influence on the results. When we
segment in sentences rather than using the segments of the dataset as it is the results
are systematically much better, with an exception for locations where the gain is
marginal. This suggests that sentence segmentation remains a key component of
efficient NLP architectures, in particular for models taking advantage of the context.
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14 BERTrade
In which we present part of the work of Grobol et al. (2022)
who pre-train and develop RoBERTa-based (Liu et al., 2019)
models for Medieval French and subsequently evaluate them
on POS tagging and dependency parsing on the SRCMF tree-
bank (Prévost and Stein, 2013). Most notably, Grobol et al.
(2022) try to transfer knowledge from contemporary French
to Old French by post-training existing Contemporary French
language models with a small Medieval French corpus.1

Having successfully pre-trained and evaluated state-of-the-art language models
for Contemporary French, we wanted to finally develop these kinds of resources for
Historical French. To this end, we believed Old French to be a particularly interesting
language for this kind of study, since relatively to its limited amount of available raw
text, its volume of annotated linguistic data is quite high, due to the existence of the
SRCMF dependency treebank (Prévost and Stein, 2013) and its latest incarnation in
the Universal Dependency project (Nivre et al., 2020), which boasts around 17.7K
sentences2 for around 171K words.

Another interesting property of Old French is its proximity to a well-resourced
language, namely contemporary French, for which we had previously developed
monolingual contextual embeddings models (and for which other language models
had also been developed at this point) that had been shown to be relevant for
dependency parsing as discussed in Chapters 5, 11,12 and on (Martin et al., 2020;
Le et al., 2020a). Last, but certainly not least, the design of an accurate syntactic
parser for Old French would be a very valuable tool for computer-assisted linguistic
studies. Indeed, studying the historical variation of syntax in a language that lacks
both native speakers and centralized standard variants can be very challenging, due
to the prohibitive cost of manual annotation. Automatic syntactic annotations, either
as a “silver-standard” truth or as a bootstrapping step towards manual annotation,
can drastically reduce that cost.

In this chapter, exploiting this currently unique situation of Old French among
lesser-resourced and historical languages, we use dependency parsing and POS-

1Contributions: I participated to the pre-training of somemodels and their evaluations in downstream
tasks, some of which are sadly not presented here as we obtained rather negative results with them.
I also did all the computations for the carbon footprint that are presented in appendix F.3.

2Putting it in the second place of all French language treebanks in number of sentences.
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tagging of Old French as probes of the relevance of contextual embeddings in a
context of high heterogeneity and relative scarcity of data. More precisely, we
consider several neural language models, some of which we train or fine-tuned on
the corpus of raw Old and Middle French texts presented in Section 10.1, and use
their internal representations of words as inputs to train taggers and parsers on
the SRCMF treebank. The resulting tagging and parsing scores then serve as an
evaluation of the quality and usefulness of these representations. In particular:

• We provide empirical evidence that contextual embeddings are relevant for
historical language processing, even when no data is available beyond the
treebank used to train a parser.

• We provide a comparative study of several strategies for obtaining such contex-
tual embeddings. Specifically, we compare cases where raw data is available
in the target language and cases where existing contextual embeddings are
available for the contemporary counterpart of a historical language.

• We develop BERTrade,3 a set of contextual word embedding models and a
state-of-the-art POS-tagging and dependency parsing model.

14.1 Experiments

We evaluate a set of alternative word representations on Old French, using their
usefulness for POS-tagging and dependency parsing as a downstream evaluation.
To that end, we use the annotated treebank of Old French (SRCMF) (Prévost and
Stein, 2013) as provided by the 2.7 version of the UD dataset (Zeman et al., 2020) as
a reference treebank. We note however that a more recent version of the SRCMF has
been recently published (Zeman et al., 2021) after we did these experiments, this
new version introduces most notably the punctuation to the SRCMF treebank.

Our parser/tagger probe uses Dozat and Manning (2018)’s neural graph parser
made as reimplemented by Le et al. (2020a) and Grobol and Crabbé (2021), using
the same hyperparameters. Word representations are obtained by concatenating
subword embeddings, averaged over transformer layers together with character em-
beddings and non contextualized word embeddings. This representation is similar
to those used by Straka et al. (2019); Ling et al. (2015). In all of our experiments, the
contextual embeddings are fine-tuned while training the parser. Unlike the recent
CoNLL challenges settings, we assume gold tokenization, since the syntactic annota-
tions we target provide a reference word-based segmentation. Using a predicted one
could only add noise to our experiments. Furthermore, for most European languages
using a Latin script—including Old and Middle French—, word segmentation is
acceptably approximated by simple typographic tokenization.

3Bertrade de Laon, also known as Berthe au Grand Pied was the mother of Charlemagne.
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14.1 Experiments

The remaining of this section presents our experimental results, sorted by nature of
required data. We report UPOS POS-tagging scores as well as unlabeled and labeled
attachment scores for dependency parsing (respectively UAS and LAS), as given
by the CoNLL-2018 scorer, computed on the development set of SRCMF to avoid
overfitting the architecture and transfer learning procedure to the test set. Results
on the test set are provided only for the dev-best models to allow us to compare our
results to the state of the art.

Due to the number of costly experiments,4 the results are reported on single runs.
The results should therefore be interpreted only with respects to the broad trends:
small score differences between competing settings should be taken with care.

14.1.1 Baselines

Embeddings UPOS UAS LAS

Vanilla 93.51 87.60 81.54
Random-base 93.17 86.97 80.71
finBERT 94.44 88.44 82.47

Table 14.1: Results on SRCMF dev — no additional data.

We first compare a baseline where contextual embeddings are not used at all
(Vanilla) with two settings using models with no preexisting knowledge of Old
French: Random-base, a randomly initialized model using the same architecture and
model size as RoBERTa-base (Liu et al., 2019) and finBERT (Virtanen et al., 2019),
a contextual embedding model from Finnish, a Uralic language that is unrelated
to Old French. These baselines are meant to check that the gain in performances
observedwhen usingmodels with some (possibly indirect) knowledge of Old French
are linked to this knowledge and not simply due to an increase in the number of
trainable parameters (for the random baseline) or to a weight distribution induced
by training on a language modeling task that would be universally good for all
languages (for the finBERT baseline, which can thus be seen as a different kind of
weight initialization).

Table 14.1 shows the results obtained in these configurations, which show that
using a model with random weights, even fine-tuned for these tasks, does not bring
any improvement, and is in fact even worse than using no contextual embeddings at
all. In contrast, using a model that has been pre-trained for language modeling—
even for an unrelated language—brings some modest improvements. This suggests
that pre-training gives a structure to this kind of model that makes it suitable for
fine-tuning on the downstream task, but the impact of this gain is clearly—and

4See the Appendix F.3 for elements on the carbon footprint of our experiments.
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predictably—very limited compared to what can be expected for representations
that have been trained on relevant linguistic data.

14.1.2 With related contextual embeddings

Base model UPOS UAS LAS

FlauBERT 95.70 90.43 85.45
CamemBERT 95.86 91.15 86.31
mBERT 96.06 91.52 86.83

Table 14.2: Results on SRCMF dev — monolingual models.

When a low-resource language is close to a well-resourced one, it is possible to
leverage models designed for the latter. For Old French, contemporary French is an
obvious candidate and two contextual embeddings models are available: FlauBERT
(Le et al., 2020a) and CamemBERT (Martin et al., 2020). Furthermore, mBERT
(Devlin et al., 2019), a model trained on a multilingual corpus which does not
include Old French (possibly apart from some fragments in its contemporary French
training data), has been shown to be suitable for many languages, and in particular
for Indo-European and Romance languages (Straka et al., 2019; Muller et al., 2021).
We report in table 14.2 the results obtained when using these language models
directly, without additional fine-tuning involving Old French data.

As expected, these results show significant improvements over the baselines,
confirming that using contextual embeddings for a related language works better
than both randomly initialized embeddings and embeddings pre-trained for an
unrelated language—even after fine-tuning. More surprisingly, the best results here
are obtained with mBERT. This could mean that mBERT benefits from having been
pre-trained for a wider range of languages, including in particular other Romance
languages that share with Old French some features, for instance null subjects.

14.1.3 With raw linguistic data

We now try to take advantage of the raw Medieval French data described in section
10.1. To that end, we explore two strategies: training a model from scratch and
refining existing models by “post-training” them—running a few more training
epochs on the Medieval French raw data.

In the “from scratch” strategy we first train a BPE sub-word tokenizer (Wang
et al., 2020a) on our raw corpus, then train a RoBERTa (Liu et al., 2019) masked
language model. We take inspiration from Micheli et al. (2020), who worked in a
setting close to ours: a small and noisy pre-training corpus used to create a model
from scratch, we used a RoBERTa architecture. As reported in table 14.3, we tested
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Name Layers Embeddings Heads UPOS UAS LAS

BERTrade-tiny 2 128 2 94.03 88.66 82.79
BERTrade-small 4 512 8 96.53 86.30 87.49
BERTrade-petit 12 256 4 97.14 91.90 89.18
BERTrade-medium 8 512 8 96.62 91.92 87.60
BERTrade-base 12 768 12 96.74 92.37 88.42

Table 14.3: Results on SRCMF dev — Performances of different model sizes when training
from scratch

several parametrizations of the architecture also inspired by Turc et al. (2019). Out
of these alternatives, the “BERTrade-petit” configuration was the most successful
and this is the one we keep for the following experiments.

For the “post-training” strategy, we continue the training of the pre-trainedmodels
used in sections 14.1.1 and 14.1.2, for 12 epochs on our raw corpus. We used the
same RoBERTa masked language modeling task, using the same parameters as Wang
et al. (2020b) (but without vocabulary modifications), resulting in the BERTrade-X
models, where X is the name of the base model.

Base model UPOS UAS LAS

BERTrade-petit 97.14 92.95 89.18

BERTrade-finBERT 96.28 92.12 87.92
BERTrade-mBERT 96.95 93.33 89.60
BERTrade-CamemBERT 97.16 93.75 90.06
BERTrade-FlauBERT 96.94 93.75 90.07

Table 14.4: Results on SRCMF dev — using raw data.

The results of these experiments are reported in Table 14.4. Comparing these to
our results of section 14.1.2 shows that training a model from scratch, even on such
limited amounts of data, yields a better model than a simple task-specific fine-tuning
of mBERT. However, post-training mBERT yields even better results, and the best
ones are obtained by post-training the models for contemporary French.

14.1.4 Putting it all together

Finally, in table 14.5, we compare the performances of our models on the test set
of SRCMF with those obtained by Straka et al. (2019), with similar methods. The
difference between the models is that we fine-tune the word embeddings, while
Straka et al. (2019) keep them frozen.

Our mBERT baseline, which is the closest to their configuration, shows that even
without any additional data, task-specific fine-tuning already brings significant
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Model UPOS UAS LAS

Straka et al. (2019) 96.26 91.83 86.75

mBERT 96.19 92.03 87.52
BERTrade-petit 96.60 92.20 87.95
BERTrade-mBERT 97.11 93.86 90.37
BERTrade-FlauBERT 97.15 93.96 90.57
BERTrade-CamemBERT 97.29 94.36 90.90

Table 14.5: Results on SRCMF test

improvements, while our models refined using our raw corpus of Medieval French
bring further improvements, leading to state-of-the-art results that are consistent
with their results on the development set.

14.2 Conclusion

In this chapter, we have shown that building a monolingual contextual word embed-
dings model for Medieval French is possible even with limited and heterogeneous
linguistic data and that it can bring significant performance gains in parsing and POS-
tagging. To that end, the best strategy seems to be post-training a contextual word
embedding model for contemporary French on rawMedieval French documents. We
have not directly addressed the internal heterogeneity issue in both our pre-training
and fine-tuning data, relying instead on the versatility of the representation models
that we considered can bypass it, but it seems a promising perspective for future
work—for instance by using finer-grained post-training, concentrating on specific
linguistic sub-periods or genres.

For historical languages in general, where not a lot of data is available, this suggests
that language-specific fine-tuning is more efficient when applied to a model pre-
trained for their contemporary counterpart than when applied to a multilingual
model. While this study is not currently easy to replicate for other languages due
to the lack of annotated data for a suitable downstream task, it suggests that the
considerable amount of work required to gather even a small amount of raw texts in
the target language is a sound investment, given the significant improvements it can
bring to contextual word representations. Beyond historical languages, these findings
could also help for processing minority dialectal variants and contact languages
of well-resourced languages, and we leave for future work the exploration of these
generalizations.
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15 D’AlemBERT

In which we present part of the work of Gabay et al. (2022)
who pre-train and develop RoBERTa-based (Liu et al., 2019)
models for Early Modern French from scratch with the
FreEMmax corpus, and subsequently evaluate it on POS tag-
ging and named entity recognition on the FreEMLPM and the
FreEMNER corpora respectively.1

After having successfully pre-trained and evaluated a Transformer-based language
model for Medieval French, we wanted to develop such a model for Early Modern
French, the state of language corresponding to that of the Dictionnaire Universel
in its 1701 edition (Furetière, 1701), the main text of study of the ANR BASNUM
(ANR-18-CE38-0003) that funded this Ph.D. thesis. Thus, in this chapter we develop
D’AlemBERT, a neural language model for Early Modern French, and we evaluate
it in POS tagging and NER on the FreEMLPM and the FreEMNER corpora respec-
tively. Contrary to the approach used in the previous chapter, we only pre-train
D’AlemBERT from scratch, and we do not post-train any of the Contemporary French
models. We decided to do this mainly because that our FreEMmax, our pre-training
dataset is around 1.2 GB in size which is around 20 times the size of the corpus
used in the BERTrade experiments for Medieval French, we also thought that 1.2
GB would be enough to properly train a RoBERTa-based architecture in light of the
results obtained for CamemBERT in subsection 11.3.2.

15.1 D’AlemBERT: a neural language model for Early
Modern French

In this section, we describe the pre-training data, architecture, training objective and
optimization setup we use for D’AlemBERT, our new neural language model for
Early Modern French.

1Contributions: I pre-trained D’AlemBERT and did all the experiments in downstream tasks as well
as the fine-tuning of CamemBERT. I also actively participated in writing the scientific article.
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15.1.1 Pre-processing

Similar to RoBERTa (Liu et al., 2019) we segment the input text data into subword
units using Byte-Pair encoding (BPE) (Sennrich et al., 2016) in the implementation
proposed by (Radford et al., 2019) that uses bytes instead of unicode characters as
the base subword units. The BPE encoding does not require pre-tokenization (at
the word or token level), thus removing the need to develop a specific tokenizer for
Early Modern French. We use a vocabulary size of 32,768 subword tokens. These
subwords are learned on the entire FreEMmax dataset.

15.1.2 Language Modelling

Transformer D’AlemBERT uses the exact same architecture as RoBERTa, which is
a multi-layer bidirectional Transformer (Vaswani et al., 2017). D’AlemBERT uses the
original base architecture of RoBERTa (12 layers, 768 hidden dimensions, 12 attention
heads, 110M parameters).

Pre-training Objective We train our model on the Masked Language Modelling
(MLM) task as proposed by RoBERTa’s authors (Liu et al., 2019): given an input
text sequence composed of 𝑁 tokens 𝑥1, ..., 𝑥𝑁, we select 15% of tokens for possible
replacement. Among those selected tokens, 80% are replaced with the special <MASK>
token, 10% are left unchanged and 10% are replaced by a random token. The model
is then trained to predict the masked tokens using cross-entropy loss.

Again, following the RoBERTa approach, we dynamically mask tokens instead of
fixing them statically for the whole dataset during preprocessing. We also choose not
to use the next sentence prediction (NSP) task originally used in BERT (Devlin et al.,
2019), as it has been shown that it does not improve downstream task performance
(Conneau and Lample, 2019; Liu et al., 2019).

Optimization Optimization for our model in the exact same way as (Liu et al., 2019)
using Adam (Kingma and Ba, 2015) (𝛽1 = 0.9, 𝛽2 = 0.98) for 31k steps with large
batch sizes of 8,192 sequences, each sequence containing at most 512 tokens.

Pre-training We use the RoBERTa implementation in the Zelda Rose library,2 and
again, in the same way as Liu et al. (2019) our learning rate is warmed up for 10k
steps up to a peak value of 0.0003 instead of the original 0.0001 used by the original
implementation of RoBERTa (Liu et al., 2019), as our model diverged with the 0.0001
value. Furthermore, we hypothesize that this is either due to the smaller size of
FreEMmax (compared to the corpora used for RoBERTa or CamemBERT) or to our
large batch size. We train our model for 31k steps, which amounts to 41 epochs. The

2https://github.com/LoicGrobol/zeldarose
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15.2 Evaluation and Discussion

total pre-training times, the details of the infrastructure we used and even the carbon
emissions of our model are reported in Appendix G.1.

15.2 Evaluation and Discussion

15.2.1 Part-Of-Speech Tagging

In order to evaluate our D’AlemBERT model, we first fine-tune it for POS tagging on
the FreEMLPM corpus. We use the flair framework3 for sequence tagging (Akbik
et al., 2019). To fine-tune D’AlemBERT for POS we follow the same approach as
Schweter and Akbik (2020) with some modifications: we append a linear layer of
size 256 that takes as input the last hidden representation of the <s> special token
and the mean of the last hidden representation of the subword units of each token
(token as defined for FreEMLPM), that is, we use a “mean” subword pooling strategy.
We fine-tune D’AlemBERT with a learning rate of 0.000005 for a total of 10 epochs.
We also fine-tune CamemBERT using the exact same hyperparameters as that we
use for D’AlemBERT.

FreEMLPM provides a standard split (train, dev, test), however it also proposes
an evaluation on a out-of-domain subcorpus that is not contained in the standard
split and that is separated by century (from the 16th to the 20th century) and that
also contains both the Normalized and Original versions of the texts for the 16th, 17th
and 18th centuries. The idea of this out-of-domain evaluation corpus is to have a
fine-grained evaluation of the models to better assess their performance in all the
different types of text that one might encounter when working with Early Modern
French data.

Original

Model 16 17 18 19 20 Avg

Drama
Pie Extended 90.34 94.47 94.64 - - 93.15
CamemBERT 87.06 89.01 90.92 - - 89.00
D’AlemBERT 94.17 96.59 96.28 - - 95.68

Varia
Pie Extended 89.85 93.44 95.98 - - 93.09
CamemBERT 86.90 88.85 92.85 - - 89.53
D’AlemBERT 93.86 95.73 96.95 - - 95.51

Both
Pie Extended 90.08 93.95 95.33 - - 93.12
CamemBERT 86.98 88.93 91.89 - - 89.27
D’AlemBERT 94.02 96.16 96.62 - - 95.60

Normalized or Contemporary

Model 16 17 18 19 20 Avg

Drama
Pie Extended 93.69 95.75 95.61 95.03 93.71 94.76
CamemBERT 90.18 91.51 91.37 91.13 91.42 91.12
D’AlemBERT 96.25 96.97 96.80 96.25 95.00 96.25

Varia
Pie Extended 92.52 94.81 95.98 92.24 94.03 93.94
CamemBERT 89.79 90.69 93.06 90.54 89.78 93.94
D’AlemBERT 94.52 96.64 96.88 94.90 95.30 95.65

Both
Pie Extended 93.08 95.28 95.80 93.65 93.87 94.35
CamemBERT 89.99 91.10 92.22 90.84 90.60 92.53
D’AlemBERT 95.39 96.81 96.84 95.58 95.15 95.95

Table 15.1: Comparison between D’AlemBERT, CamemBERT and Pie Extended performance
on the test set, out-of-domian data of FreEMLPM. Best scores in bold sencond
best in italics.

3https://github.com/flairNLP/flair
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15 D’AlemBERT

Following the approach of Clérice (2020), we report the scores obtained on the out-
of-domain testing dataset of FreEMLPM in Table 15.1. We use the scores previously
reported by Clérice (2020) using Pie Extended, a stacked BiLSTM-CRF model, as our
first baseline as well as the fine-tuned CamemBERT that serves as a second baseline
as well as a rough estimation of how much knowledge can D’AlemBERT transfer
from the FreEMmax corpus into this task.

We can see that D’AlemBERT consistently outperforms Pie Extended and Camem-
BERT in both the normalized and original versions of our out-of-domain testing data
and for all different periods by a considerable margin. Furthermore, we can also see
that on average the difference in score between D’AlemBERT and Pie Extended is
greater for the original split than the normalized one. This suggests that D’AlemBERT
can generalize more effectively to non-normalized data than the more traditional
architecture used by Pie Extended. Moreover, we can also see that the difference in
scores is also greater for the 16th c. and 17th c. data. This is interesting, especially for
the 16th c, because, as we can see in Figure 10.2, this is the least represented period
in the FreEMmax corpus. This result actually suggests that D’AlemBERT might be
able to do effective transfer learning from the 18th c., 19th c. and 20th c. data to the
16th c. and 17th c. data.

As for CamemBERT, we can see that it consistently scores lower than both D’Alem-
BERT and Pie Extended. Moreover, we can see that it struggles particularly with
the non-normalized data of the 16th c., 17th c. and 18th c.. This results clearly shows
that CamemBERT cannot easily generalize to these earlier states of languages, or
at least not with the quantity of data found in the training set of FreEMLPM. These
results also show the impressive capacity of D’AlemBERT of quickly generalizing to
diverse set of states of language, as well as its capacity to transfer knowledge from
the FreEMmax corpus into this task. The obtained results are also a testament to the
importance of the pre-training data, specially taking in account that the pre-training
set of CamemBERT is more than 100 times bigger than that of D’AlemBERT.

15.2.2 Named Entity Recognition

Model Precision Recall F1-Score

LSTM-CRF 0.8640 0.8533 0.8586
CamemBERT 0.9303 0.9309 0.9306
D’AlemBERT 0.9329 0.9323 0.9326

Table 15.2: Comparison betweenD’AlemBERT, CamemBERT and an LSTM-CRF-basedmodel
performance on the test set of FreEMNER. Best scores in bold sencond best in
italics.
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15.3 Conclusion

Now we fine-tune D’AlemBERT on NER with the FreEMNER corpus. We use once
again the flair framework4 for sequence tagging (Akbik et al., 2019) and we follow
the same approach as Schweter and Akbik (2020) with the exact same modifications
as in the previous subsection. We also fine-tune CamemBERT using the exact same
hyperparameters as that we use for D’AlemBERT. For a baseline we use the BiLSTM-
CRF implementation provided by the flair library, and we couple it with character
embeddings as well as the Common Crawl-based FastText embeddings (Grave et al.,
2018) originally trained by Facebook. Results for all models can be seen in Table 15.2.

In contrast to our POS tagging experiments, here we see D’AlemBERT getting
marginally better scores than D’AlemBERT, we believe that this is due to the striking
size of FreEMNER which has more than 5 million annotated tokens, that is, we believe
that in this case CamemBERT has enough training data in order to properly fine-
tune to this task in Early Modern French and in particular to potentially overcome
the poor representations given by the SentencePiece (Kudo and Richardson, 2018)
trained on Contemporary French for the out-of-vocabulary words found in the
Early Modern French data.5 We believe that to a certain extent, given the size of
FreEMNER, CamemBERT might be “forgetting” its pre-training contemporary data
and “re-learning” the Early Modern French data in FreEMNER.

In any case, the results obtained here by D’AlemBERT are on par with the state-
of-the-art NER models for Contemporary English (Wang et al., 2021) while using a
much simpler architecture. The results obtained by both Transformer-based models
largely outperform those obtained by our LSTM-CRF based baseline, which shows
how well the Transformer-based models respond to large quantities of annotated
data. We report the results by entity type on the appendix section G.2.

15.3 Conclusion

In this chapter we showed that it is possible to successfully train a Transformer-based
language model for Early Modern French from scratch with even less data than
originally shown in Chapter 11 and in (Martin et al., 2020). Moreover, with our
POS tagging evaluation we were able to observe some form of transfer learning
and generalization across multiple states of the language corresponding to different
periods of time, while in our experiments in named entity recognition we observed
the type of performance one can get when given a big enough annotated corpus,
even when the models are not particularly fine-tuned to the specific period of time
of the annotated data.

We believe that D’AlemBERT will be of use not only to the BASNUM project, but
also to all digital humanists and linguists interested in Early Modern French. For our

4https://github.com/flairNLP/flair
5We observe that SentencePiece tends to split OOV words by characters which might not be ideal for
sequence-tagging tasks, specially for NER.
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15 D’AlemBERT

futurework, we hope that wewill be able to study the application of our D’AlemBERT
model to other NLP tasks such as text normalization or even document structuring,
where we hope to more extensively study the transfer learning capabilities of our
approach.
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16 Conclusions and Perspectives
In which we present the conclusions of this Ph.D. thesis and
outline future perspectives and research directions that might
develop in the coming years.

During the course of this Ph.D. thesis we developed 3 versions of a large mul-
tilingual corpus, we participated in the development of one balanced corpus for
Contemporary French, the curation of a corpus for Medieval French and another
for Early Modern French. With these corpora, we developed contextualized ELMo
representations (Peters et al., 2018) for six languages: Bulgarian, Catalan, Danish,
Finnish, French and Indonesian. We also participated in the development of three
RoBERTa-based (Liu et al., 2019) models for Contemporary, Medieval and Early
Modern French.

We chose to focus on the development of data for the pre-training of language
models rather than on the architectures themselves. This approach proved to be
very effective as we were able to establish new states of the art for a wide range of
tasks in natural language processing for five of the six aforementioned languages
as well as for Contemporary, Medieval and Early Modern French. Furthermore,
we were able to determine, not only that these contextualized language models
are extremely sensitive to pre-training data quality, heterogeneity and balance, but
we also showed that these three features were better predictors of the pre-trained
models’ performance in downstream tasks than the pre-training data size itself. In
fact, we were able to determine that the importance of pre-training dataset size had
been largely overestimated (Martin et al., 2020) as we were able to repeatedly show
that one can pre-train these architectures with quite modestly size corpora.

We consider that we have reached and far exceeded all the initial objectives set by
the BASNUM project for this thesis, by producing models and automatic annotation
systems that will make it possible to enrich not only the Dictionnaire Universel of
Basnage but also any other type of document in French from any possible time
period. Moreover, due to recent developments by the GROBID (Grobid contributors,
2008 — 2018) and DeLFT (DeLFT contributors, 2018) authors, it is now possible to
easily plug all of the contextualized language models that we have developed to their
document structuring pipeline, we hope that these will quickly allow the members
of the BASNUMproject to use our French models and in particular, our D’AlemBERT
model with GROBID-dictionaries (Khemakhem et al., 2017, 2018), hoping that they
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16 Conclusions and Perspectives

can largely improve the initial annotations of the macrostructure already performed
by Khemakhem (2020) in just a few lines of code.

We hope that the resources we have produced here will be of great use to re-
searchers in both natural language processing and digital humanities. In particular,
we hope that we will be able to continue working in improving our OSCAR project,
which grew from a side-project intended to gather resources for pre-training lan-
guagemodels in French, to a fully fledge Open Source project with a thriving commu-
nity.1,2,3 The first version of the OSCAR corpus, OSCAR 2019, now has more than 14
thousand downloads4 and has been used independent studies to train monolingual
and multilingual language models in more than 18 different languages (Antoun
et al., 2021; Kakwani et al., 2020; Wilie et al., 2020; Chan et al., 2020; Koutsikakis
et al., 2020; Martin et al., 2020; Chriqui and Yahav, 2021; Seker et al., 2021; Delobelle
et al., 2020; Dumitrescu et al., 2020; Masala et al., 2020) making it possible to NLP
researchers with all different backgrounds and interests, to access some of the latest
developments in state-of-the-art NLP.

However, we do acknowledge that OSCAR is far from a perfect corpus, and many
of the concerns expressed by Caswell et al. (2020); Kreutzer et al. (2022) remain to be
addressed. This is a direction of research that we would like to explore in the future,
so that we can provide the OSCAR community with an ever-evolving, up-to-date,
properly classified, high-quality and even annotated corpus.

Finally, we would like to continue our research in NLP for digital humanities, by
trying to apply our methods to other historical languages, we would additionally like
to study and research the latest developments in tokenization agnostic architectures
(Clark et al., 2021; Xue et al., 2021) that would be of great use when one has to model
historical language that exhibit free word order and non-standardized orthography.
In direct relation to the BASNUM project, we would also like to study the new sparse
attention architectures (Xiong et al., 2021; Beltagy et al., 2020), that are capable of
handling large contextual windows and that might be of great use for tasks like
document structuring were one has to deal with long sequences of text, allowing
us to develop end-to-end architectures for document structuring without the need
to go through dedicated document processing pipelines such as GROBID (Grobid
contributors, 2008 — 2018) or DeLFT (DeLFT contributors, 2018).

1https://oscar-corpus.com.
2https://discord.com/invite/4JNg9FTar4.
3https://twitter.com/oscarnlp.
4https://huggingface.co/datasets/oscar.
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A Goclassy: an Asynchronous Language Classification Pipeline for Common Crawl

Language Size Words Language Size Words

Orig Dedup Orig Dedup Orig Dedup Orig Dedup

Afrikaans 241M 163M 43,482,801 29,533,437 Lower Sorbian 13K 7.1K 1,787 966
Albanian 2.3G 1.2G 374,196,110 186,856,699 Luxembourgish 29M 21M 4,403,577 3,087,650
Amharic 360M 206M 28,301,601 16,086,628 Macedonian 2.1G 1.2G 189,289,873 102,849,595
Arabic 82G 32G 8,117,162,828 3,171,221,354 Maithili 317K 11K 69,161 874
Aragonese 1.3M 801K 52,896 45,669 Malagasy 21M 13M 3,068,360 1,872,044
Armenian 3.7G 1.5G 273,919,388 110,196,043 Malay 111M 42M 16,696,882 6,045,753
Assamese 113M 71M 6,956,663 4,366,570 Malayalam 4.9G 2.5G 189,534,472 95,892,551
Asturian 2.4M 2.0M 381,005 325,237 Maltese 24M 17M 2,995,654 2,163,358
Avaric 409K 324K 24,720 19,478 Marathi 2.7G 1.4G 162,609,404 82,130,803
Azerbaijani 2.8G 1.5G 322,641,710 167,742,296 Mazanderani 691K 602K 73,870 64,481
Bashkir 128M 90M 9,796,764 6,922,589 Minangkabau 608K 310K 5,682 4,825
Basque 848M 342M 120,456,652 45,359,710 Mingrelian 5.8M 4.4M 299,098 228,629
Bavarian 503 503 399 399 Mirandese 1.2K 1.1K 171 152
Belarusian 1.8G 1.1G 144,579,630 83,499,037 Modern Greek 62G 27G 5,479,180,137 2,412,419,435
Bengali 11G 5.8G 623,575,733 363,766,143 Mongolian 2.2G 838M 181,307,167 68,362,013
Bihari 110K 34K 8,848 2,875 Nahuatl languages 12K 11K 1,234 1,193
Bishnupriya 4.1M 1.7M 198,286 96,940 Neapolitan 17K 13K 5,282 4,147
Bosnian 447K 116K 106,448 20,485 Nepali 1.8G 1.2G 107,448,208 71,628,317
Breton 29M 16M 5,013,241 2,890,384 Newari 5.5M 4.1M 564,697 288,995
Bulgarian 32G 14G 2,947,648,106 1,268,114,977 Northern Frisian 4.4K 4.4K 1,516 1,516
Burmese 1.9G 1.1G 56,111,184 30,102,173 Northern Luri 76K 63K 8,022 6,740
Catalan 8.0G 4.3G 1,360,212,450 729,333,440 Norwegian 8.0G 4.7G 1,344,326,388 804,894,377
Cebuano 39M 24M 6,603,567 3,675,024 Norwegian Nynorsk 85M 54M 14,764,980 9,435,139
Central Bikol 885 885 312 312 Occitan 5.8M 3.7M 750,301 512,678
Central Khmer 1.1G 581M 20,690,610 10,082,245 Oriya 248M 188M 14,938,567 11,321,740
Central Kurdish 487M 226M 48,478,334 18,726,721 Ossetian 13M 11M 1,031,268 878,765
Chavacano 520 520 130 130 Pampanga 760 304 130 52
Chechen 8.3M 6.7M 711,051 568,146 Panjabi 763M 460M 61,847,806 37,555,835
Chinese 508G 249G 14,986,424,850 6,350,215,113 Persian 79G 38G 9,096,554,121 4,363,505,319
Chuvash 39M 26M 3,041,614 2,054,810 Piemontese 2.1M 1.9M 362,013 337,246
Cornish 44K 14K 8,329 2,704 Polish 109G 47G 15,277,255,137 6,708,709,674
Croatian 226M 110M 34,232,765 16,727,640 Portuguese 124G 64G 20,641,903,898 10,751,156,918
Czech 53G 24G 7,715,977,441 3,540,997,509 Pushto 361M 242M 46,559,441 31,347,348
Danish 16G 9.5G 2,637,463,889 1,620,091,317 Quechua 78K 67K 10,186 8,691
Dhivehi 126M 79M 7,559,472 4,726,660 Romanian 25G 11G 3,984,317,058 1,741,794,069
Dimli 146 146 19 19 Romansh 7.4K 6.5K 1,093 960
Dutch 78G 39G 13,020,136,373 6,598,786,137 Russia Buriat 13K 11K 963 809
Eastern Mari 7.2M 6.0M 565,992 469,297 Russian 1.2T 568G 92,522,407,837 46,692,691,520
Egyptian Arabic 66M 33M 7,305,151 3,659,419 Sanskrit 93M 37M 4,331,569 1,713,930
Emilian-Romagnol 25K 24K 6,376 6,121 Scottish Gaelic 1.9M 1.3M 310,689 207,110
English 2.3T 1.2T 418,187,793,408 215,841,256,971 Serbian 3.9G 2.2G 364,395,411 207,561,168
Erzya 1.4K 1.2K 90 78 Serbo-Croatian 25M 5.8M 5,292,184 1,040,573
Esperanto 299M 228M 48,486,161 37,324,446 Sicilian 3.3K 2.8K 554 468
Estonian 4.8G 2.3G 643,163,730 309,931,463 Sindhi 347M 263M 43,530,158 33,028,015
Finnish 27G 13G 3,196,666,419 1,597,855,468 Sinhala 1.4G 802M 93,053,465 50,864,857
French 282G 138G 46,896,036,417 23,206,776,649 Slovak 9.1G 4.5G 1,322,247,763 656,346,179
Galician 620M 384M 102,011,291 63,600,602 Slovenian 2.5G 1.3G 387,399,700 193,926,684
Georgian 3.6G 1.9G 171,950,621 91,569,739 Somali 61K 16K 1,202 472
German 308G 145G 44,878,908,446 21,529,164,172 South Azerbaijani 27M 19M 2,175,054 1,528,709
Goan Konkani 2.2M 1.8M 124,277 102,306 Spanish 278G 149G 47,545,122,279 25,928,290,729
Guarani 36K 24K 7,382 4,680 Sundanese 211K 141K 30,321 20,278
Gujarati 1.1G 722M 72,045,701 50,023,432 Swahili 13M 8.1M 2,211,927 1,376,963
Haitian 3.9K 3.3K 1,014 832 Swedish 44G 25G 7,155,994,312 4,106,120,608
Hebrew 20G 9.8G 2,067,753,528 1,032,018,056 Tagalog 573M 407M 98,949,299 70,121,601
Hindi 17G 8.9G 1,372,234,782 745,774,934 Tajik 379M 249M 31,758,142 21,029,893
Hungarian 40G 18G 5,163,936,345 2,339,127,555 Tamil 9.3G 5.1G 420,537,132 226,013,330
Icelandic 1.5G 846M 219,900,094 129,818,331 Tatar 670M 305M 51,034,893 23,825,695
Ido 147K 130K 25,702 22,773 Telugu 2.5G 1.6G 123,711,517 79,094,167
Iloko 874K 636K 142,942 105,564 Thai 36G 16G 951,743,087 368,965,202
Indonesian 30G 16G 4,574,692,265 2,394,957,629 Tibetan 187M 138M 1,483,589 936,556
Interlingua 662K 360K 180,231 100,019 Tosk Albanian 5.0M 2.8M 841,750 459,001
Interlingue 24K 1.6K 5,352 602 Turkish 60G 27G 7,577,388,700 3,365,734,289
Irish 88M 60M 14,483,593 10,017,303 Turkmen 11M 6.8M 1,113,869 752,326
Italian 137G 69G 22,248,707,341 11,250,012,896 Tuvinian 12K 7.9K 759 540
Japanese 216G 106G 4,962,979,182 1,123,067,063 Uighur 122M 83M 8,657,141 5,852,225
Javanese 659K 583K 104,896 86,654 Ukrainian 53G 28G 4,204,381,276 2,252,380,351
Kalmyk 113K 112K 10,277 10,155 Upper Sorbian 4.2M 1.8M 545,351 236,867
Kannada 1.7G 1.1G 81,186,863 49,343,462 Urdu 2.7G 1.7G 331,817,982 218,030,228
Karachay-Balkar 2.6M 2.3M 185,436 166,496 Uzbek 21M 12M 2,450,256 1,381,644
Kazakh 2.7G 1.5G 191,126,469 108,388,743 Venetian 18K 17K 3,492 3,199
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Kirghiz 600M 388M 44,194,823 28,982,620 Vietnamese 68G 32G 12,036,845,359 5,577,159,843
Komi 2.3M 1.2M 201,404 95,243 Volapük 2.0M 2.0M 321,121 318,568
Korean 24G 12G 2,368,765,142 1,120,375,149 Walloon 273K 203K 50,720 37,543
Kurdish 94M 60M 15,561,003 9,946,440 Waray 2.5M 2.2M 397,315 336,311
Lao 174M 114M 4,133,311 2,583,342 Welsh 213M 133M 37,422,441 23,574,673
Latin 26M 8.3M 4,122,201 1,328,038 Western Frisian 35M 26M 5,691,077 4,223,816
Latvian 4.0G 1.8G 520,761,977 236,428,905 Western Mari 1.2M 1.1M 93,338 87,780
Lezghian 3.3M 3.0M 247,646 224,871 Western Panjabi 12M 9.0M 1,426,986 1,111,112
Limburgan 29K 27K 4,730 4,283 Wu Chinese 109K 32K 11,189 4,333
Lithuanian 8.8G 3.9G 1,159,661,742 516,183,525 Yakut 42M 26M 2,547,623 1,789,174
Lojban 736K 678K 154,330 141,973 Yiddish 141M 84M 13,834,320 8,212,970
Lombard 443K 433K 75,229 73,665 Yoruba 55K 27K 8,906 3,518
Low German 18M 13M 2,906,347 2,146,417 Yue Chinese 3.7K 2.2K 186 128

Total 6.3T 3.2T 844,315,434,723 425,651,344,234

Table A.1: Size of the OSCAR corpus by language measured in bytes and number of words.
Standard UNIX human-readable notation is used for the size in byte. We define
“words” as spaced separated tokens, which gives a good estimate of the size of
each corpus for languages using Latin or Cyrillic alphabets, but might give a
misleading size for other languages such as Chinese or Japanese.
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B A First Evaluation of the OSCAR
Corpus

B.1 Computational cost and carbon footprint

In light of recent concerns about the power consumption and carbon footprint of
deep learning models (Schwartz et al., 2020; Bender et al., 2021) we report the power
consumption and carbon footprint of our main experiments following the approach
of Strubell et al. (2019). We use the training times of each model to compute both
power consumption and CO2 emissions.

In our set-up we used two different machines, each one having 4 NVIDIA GeForce
GTX 1080 Ti graphic cards and 128GB of RAM, the difference between the machines
being that one uses a single Intel Xeon Gold 5118 processor, while the other uses
two Intel Xeon E5-2630 v4 processors. One GeForce GTX 1080 Ti card is rated at
around 250 W,1 the Xeon Gold 5118 processor is rated at 105 W,2 while one Xeon
E5-2630 v4 is rated at 85 W.3 For the DRAM we can use the work of Desrochers et al.
(2016) to estimate the total power draw of 128GB of RAM at around 13W. Having
this information, we can now use the formula proposed by Strubell et al. (2019) in
order to compute the total power required to train one ELMo model:

𝑝𝑡 =
1.58𝑡(𝑐𝑝𝑐 + 𝑝𝑟 + 𝑔𝑝𝑔)

1000

Where 𝑐 and 𝑔 are the number of CPUs and GPUs respectively, 𝑝𝑐 is the average
power draw (in Watts) from all CPU sockets, 𝑝𝑟 the average power draw from all
DRAM sockets, and 𝑝𝑔 the average power draw of a single GPU. We estimate the
total power consumption by adding GPU, CPU and DRAM consumptions, and then
multiplying by the Power Usage Effectiveness (PUE), which accounts for the additional
energy required to support the compute infrastructure. We use a PUE coefficient
of 1.58, the 2018 global average for data centers (Strubell et al., 2019). In table B.1
we report the training times in both hours and days, as well as the total power draw

1https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-1080-ti/specifications
2https://ark.intel.com/content/www/us/en/ark/products/120473/

intel-xeon-gold-5118-processor-16-5m-cache-2-30-ghz.html
3https://ark.intel.com/content/www/us/en/ark/products/92981/

intel-xeon-processor-e5-2630-v4-25m-cache-2-20-ghz.html
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B A First Evaluation of the OSCAR Corpus

Language Power Hours Days KWh·PUE CO2e

OSCAR-Based ELMos
Bulgarian 1183 515.00 21.45 962.61 49.09
Catalan 1118 199.98 8.33 353.25 18.02
Danish 1183 200.89 8.58 375.49 19.15
Finnish 1118 591.25 24.63 1044.40 53.26
Indonesian 1183 694.26 28.93 1297.67 66.18

Wikipedia-Based ELMos
Bulgarian 1118 15.45 0.64 27.29 1.39
Catalan 1118 51.08 2.13 90.22 4.60
Danish 1118 14.56 0.61 25,72 1.31
Finnish 1118 21.79 0.91 38.49 1.96
Indonesian 1118 20.28 0.84 35.82 1.82

Total emissions 216.78

Table B.1: Average power draw (Watts), training times (in both hours and days), mean power
consumption (KWh) and CO2 emissions (kg) for each ELMo model trained.

(in Watts) of the system used to train each individual ELMo model. We use this
information to compute the total power consumption of each ELMo, also reported
in table B.1.

We can further estimate the CO2 emissions in kilograms of each single model by
multiplying the total power consumption by the average CO2 emissions per kWh in
France (where the models were trained). According to the RTE (Réseau de transport
d’électricité / Electricity Transmission Network) the average emission per kWh were
around 51g/kWh in November 2019,4 when the models were trained. Thus the total
CO2 emissions in kg for one single model can be computed as:

CO2e = 0.051𝑝𝑡

All emissions for the ELMo models are also reported in table B.1.
We do not report the power consumption or the carbon footprint of training the

UDPipe 2.0 architecture, as each model took less than 4 hours to train on a machine
using a single NVIDIA Tesla V100 card. Also, this machine was shared during
training time, so it would be extremely difficult to accurately estimate the power
consumption of these models.

Even though it would have been interesting to replicate all our experiments and
computational cost estimationswith state-of-the-art fine-tuningmodels such as BERT,
XLNet, RoBERTa or ALBERT, we recall that these transformer-based architectures are
extremely costly to train, as noted by the BERT authors on the official BERT GitHub
repository,5 and are currently beyond the scope of our computational infrastructure.

4https://www.rte-france.com/fr/eco2mix/eco2mix-co2
5https://github.com/google-research/bert
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B.2 Number of training steps for each checkpoint and each corpus

However we believe that ELMo contextualized word embeddings remain a useful
model that still provide an extremely good trade-off between performance to training
cost, even setting new state-of-the-art scores in parsing and POS tagging for our five
chosen languages, performing even better than the multilingual mBERT model.

B.2 Number of training steps for each checkpoint and each
corpus

Language 1 Epoch 3 Epochs 5 Epochs 10 Epochs

Wikipedia-Based ELMos
Bulgarian 6,268 18,804 31,340 62,680
Catalan 20,666 61,998 103,330 206,660
Danish 5,922 17,766 29,610 59,220
Finnish 8,763 26,289 43,815 87,630
Indonesian 7,891 23,673 39,455 78,910

OSCAR-Based ELMos
Bulgarian 143,169 429,507 715,845 1,431,690
Catalan 81,156 243,468 405,780 811,560
Danish 81,156 243,468 405,780 811,560
Finnish 181,230 543,690 906,150 1,812,300
Indonesian 263,830 791,490 1,319,150 2,638,300

Table B.2: Number of training steps for each checkpoint, for the ELMoWikipedia and
ELMoOSCAR of each language.
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C Quality at a Glance: An Audit of
OSCAR 2019 and other
Web-Crawled Datasets

Dataset Supercode Subcode(s)

JW300 kg kwy
JW300 mg tdx
JW300 qu que, qug, qus,

quw, quy, quz,
qvi, qvz

JW300 sw swc

OSCAR ar arz
OSCAR az azb
OSCAR sh bs, hr, sr
OSCAR ku ckb
OSCAR ms id, min
OSCAR no nn
OSCAR sq als∗

OSCAR zh yue, wuu

WikiMatrix ar arz
WikiMatrix sh bs, hr, sr
WikiMatrix zh wuu

Table C.1: Situations where two language codes are represented, but one is a superset of
another by the ISO standard, leading to unclarity about the data in the supercode
dataset. ∗The als dataset is actually in gsw.

C.1 Details on Language Code Issues

Table C.1 provides a complete lists of the corpora where one code is defined as a
superset of the other by the ISO standard, and in Table C.2 we provide a complete list
of the language codes in JW300 which purport to be sign language but are actually
unrelated high-resource languages.
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C Quality at a Glance: An Audit of OSCAR 2019 and other Web-Crawled Datasets

Actual language Code in JW300

cs cse
de gsg
el gss
en ase, asf, bfi, ins, psp,

sfs, zib, zsl
es aed, bvl, csf, csg, csn,

csr, ecs, esn, gsm, hds,
lsp, mfs, ncs, prl, pys,
ssp, vsl

fi fse
fr fcs,fsl
hu hsh
id inl
it ise
ja jsl
ko kvk
pl pso
pt bzs, mzy, psr, sgn_AO
ro rms
ru rsl
sk svk
sq sql
st jw_ssa
zh csl, tss

Table C.2: There are 48 languages in the JW300 corpus with language codes that correspond
to sign languages, but in reality are unrelated high-resource languages (usually
the most spoken language in the country of origin of the sign language). This
table shows the actual language of the data corresponding to each sign language
code.

Special attention needs to be given to the JW300 dataset, which, in addition to the
sign languages and superset code issues, has a variety of other peculiarities. These
problems seem to originate in the codes used by jw.org,1 which were apparently
not checked in the creation of the JW300 dataset. An overview is provided in Table
C.3, and the following paragraphs give specifics.

Twelve languages in JW300 have codes starting in jw_, suggesting they are varieties
of Javanese (ISO639-1 jw), but are instead attempts to represent language dialects for
which there are no BCP-47 codes. These codes seem to have been updated in jw.org
to appropriate BCP-47 private-use extensions in the form <supercode>_x_<tag>,
which are provided in Table C.3. Twelve languages have codes starting in jw_,
suggesting they are varieties of Javanese, but are instead mis-parsed private-use

1The jw.org website seems to use correct BCP-47 extensions now, however, and entering a code such
as “jw_dmr” redirects to “naq_x_dmr”.
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C.1 Details on Language Code Issues

Code in JW300 BCP-47 code Actual Language Name

Incorrect private-use extensions

hy_arevmda hyw Western Armenian
jw_dgr os_x_dgr Digor Ossetian
jw_dmr naq_x_dmr Damara Khoekhoe
jw_ibi yom_x_ibi Ibinda Kongo
jw_paa pap_x_paa Papiamento (Aruba)
jw_qcs qxl Salasaca Highland Kichwa
jw_rmg rmn_x_rmg Greek Romani (South)
jw_rmv rmy_x_rmv Vlax Romani, Russia
jw_spl nso_x_spl Sepulana
jw_ssa st_ZA Sesotho (South Africa)
jw_tpo pt_PT Portuguese (Portugal)
jw_vlc ca_x_vlc Catalan (Valencia)
jw_vz skg_x_vz Vezo Malagasy
rmy_AR rmy_x_? Kalderash

Equivalent codes used in place of extensions

kmr_latn kmr_x_rdu Kurmanji (Caucasus)
nya ny_x_? Chinyanja (Zambia)
que qu_x_? Quechua (Ancash)

Deprecated codes

daf dnj/lda Dan

ISO-693-3 used in place of ISO-693-2

cat ca Catalan
gug gn Guarani
run rn Kirundi
tso_MZ ts_MZ Changana (Mozambique)

Table C.3: Language code issues in the JW300 datasets for 22 language varieties not covered
by Tables C.1 and C.2. Private use extensions are given as they appear in jw.org,
and specified as ‘?’ if they are absent from jw.org.

extensions. Three codes appear in addition to equivalent ISO codes, making it
unclear which languages they are. One language uses a deprecated ISO code. Four
languages use the ISO639-3 code instead of the ISO639-2 code, and therefore are not
BCP-47.

In addition to the jw_ tags, there are two othermis-usedprivate subtags: hy_arevmda,
which in addition to lacking the mandatory _x_ appears to represent standard West-
ern Armenian (hyw); and rmy_AR, which, rather than being Romany from Argentina,
is Kalderash Romany.
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There are also a few anomalies where private use extensions should have been
used but other methods were found to convey the distinctions. Three codes appear
in addition to equivalent ISO codes, making it unclear which languages they are.
Two of these are equivalencies between ISO639-2 and ISO639-3 (nya and ny are both
Chichewa, qu and que are both Quechua), and one is a script equivalency (kmr and
kmr_latn are both in Latin script). In these three cases the two codes do represent
different languages—so a private use extension would have been appropriate.

Finally, there is the more minor issue that three languages use the ISO639-3 code
instead of the ISO639-2 code, and therefore are not BCP-47.

In addition to the JW300-specific errors, Table C.4 summarizes miscellaneous
errors in CCAligned and OSCAR 2019 that were detailed in Section 6.2.

Dataset Code in Corpus Correct Code

CCAligned zz zza
CCAligned sz szl
CCAligned ns nso
CCAligned cb ckb
CCAligned tz ber
CCAligned qa shn
CCAligned qd kac
CCAligned cx ceb

mC4 iw he

OSCAR eml egl
OSCAR als gsw
OSCAR sh hbs

WikiMatrix sh hbs

Table C.4: Miscellaneous errors in language codes.

C.2 Complete Error Taxonomy and Instructions

In addition to the examples given in Table 6.1, raters were provided with the
following verbal notes on the error codes:

• CC: Correct translation, natural sentence: It’s OK if it’s a sentence fragment
instead of a whole sentence, as long as it is not too short (about 5 words or
greater). The translation does not have to be perfect.

• CS: Correct Translation, but single word or short phrase: Also includes highly
repeated short phrases, like “the cat the cat the cat the cat the cat ...”

• CB: Correct translation, but boilerplate: This can be auto-generated or formu-
laic content, or content that one deems “technically correct but generally not
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very useful to NLP models”. Unfortunately, it’s often not clear what should be
counted as boilerplate...do your best.

• X: Incorrect translation [for parallel sentences] both source and target are in
the correct language, but they are not adequate translations.

• WL: Wrong language For short sentences, especially with proper nouns, there
is often a fine line between “Wrong language” and “Not language”. Do your
best.

• NL: Not language At least one of source and target are not linguistic content.
Any sentence consisting only of a proper noun (e.g. “Tyrone Ping”) should be
marked as NL.

• U: Unknown for sentences that need verification by a native speaker. This is an
auxiliary label that is resolved in most cases.

C.3 Methodological Notes

A surprising amount of work can be done without being an expert in the languages
involved. The easiest approach is simply to search the internet for the sentence,
which usually results in finding the exact page the sentence came from, which in
turn frequently contains clues like language codes in the URL, or a headline like
News in X language, sometimes with references to a translated version of the same
page. However, for the cases where this is insufficient, here are a few tips, tricks, and
observations.

No Skills Required: Things that do not require knowledge of the language(s) in
question.

1. “Not language” can usually be identified by anyone who can read the script,
though there are tricky cases with proper nouns.

2. Frequently, “parallel” sentences contain different numbers in the source and
target (especially autogenerated content), and are easy to disqualify.

3. Errors tend to repeat. If a word is mistranslated once, it will often be mistrans-
lated many more times throughout a corpus, making it easy to spot.

Basic Research Required: Things that do not require knowledge of the language(s)
in question but can be done with basic research.

1. If it’s written in the wrong script it’s considered wrong language. (Sometimes
the writing system is indicated in the published corpus, e.g. bg-Latn, but
usually the language has a “default” script defined by ISO.)
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2. Some types of texts come with inherent labels or markers, such as enumerators
or verse numbers.

3. When all else fails, search the internet for thewhole sentence or n-grams thereof!
If the whole sentence can be found, frequently the language is betrayed by the
web page (the language’s autonym is useful in this case).

C.4 Complete Audit Results

Table for C.5 give the complete annotation percentages for OSCAR 2019. For each
annotation label, we report the ratio of the annotated sentences (ofmax 100 sentences)
that were assigned that label by the primary annotator. Repeated annotations done
for agreement measurement are not included. The C column aggregates all correct
sub-codes (CC, CS, CB). We also report the total number of sentences that each dataset
contains for each language and the average sentence length for the audited sentences
to illustrate differences across languages. The original language codes as they are
published with the datasets are maintained for the sake of consistency (but should
be handled with care in future work, see Section 6.2), and those with less than 20%
correct sentences are highlighted. For the complete audit results for the other 4
datasets, please refer to the original Kreutzer et al. (2022) work.
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C CC CS CB WL NL porn # sentences avg length

diq 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 131.00
bcl 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 1 623.00
cbk 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 1 519.00
pam 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2 139.00
bar 25.00% 25.00% 0.00% 0.00% 0.00% 75.00% 0.00% 4 53.50
myv 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 5 127.00
yue 0.00% 0.00% 0.00% 0.00% 57.14% 42.86% 0.00% 7 177.00
mwl 57.14% 57.14% 0.00% 0.00% 42.86% 0.00% 0.00% 7 141.00
frr 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 9 231.56
ht 30.00% 30.00% 0.00% 0.00% 0.00% 70.00% 0.00% 10 329.10
ie 30.00% 30.00% 0.00% 0.00% 30.00% 40.00% 0.00% 11 121.70
scn 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 17 155.59
tyv 96.15% 96.15% 0.00% 0.00% 0.00% 3.85% 0.00% 26 167.96
mai 79.31% 75.86% 0.00% 3.45% 20.69% 0.00% 0.00% 29 141.17
bxr 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 37 160.76
dsb 100.00% 97.56% 0.00% 2.44% 0.00% 0.00% 0.00% 41 155.15
so 0.00% 0.00% 0.00% 0.00% 28.57% 71.43% 0.00% 42 208.24
rm 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 47 137.66
nah 100.00% 96.67% 0.00% 3.33% 0.00% 0.00% 0.00% 60 164.53
nap 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 61 152.11
yo 98.46% 96.92% 0.00% 1.54% 1.54% 0.00% 0.00% 64 281.57
gn 81.48% 81.48% 0.00% 0.00% 2.47% 16.05% 0.00% 81 234.95
vec 91.36% 91.36% 0.00% 0.00% 0.00% 8.64% 0.00% 81 184.90
kw 91.57% 90.36% 0.00% 1.20% 3.61% 4.82% 0.00% 83 162.75
wuu 0.00% 0.00% 0.00% 0.00% 98.84% 1.16% 0.00% 86 157.15
eml 42.57% 42.57% 0.00% 0.00% 0.00% 57.43% 0.00% 104 177.88
bh 89.42% 21.15% 0.00% 68.27% 1.92% 8.65% 0.00% 104 137.17
min 64.00% 6.00% 0.00% 58.00% 27.00% 9.00% 0.00% 180 649.85
qu 100.00% 98.97% 0.00% 1.03% 0.00% 0.00% 0.00% 425 167.27
su 99.00% 99.00% 0.00% 0.00% 0.00% 1.00% 0.00% 676 221.00
jv 97.00% 86.00% 0.00% 11.00% 1.00% 2.00% 0.00% 2350 203.08
als 93.00% 93.00% 0.00% 0.00% 6.00% 1.00% 0.00% 7997 375.44
la 98.00% 98.00% 0.00% 0.00% 2.00% 0.00% 0.00% 33838 224.11
uz 98.00% 98.00% 0.00% 0.00% 2.00% 0.00% 0.00% 34244 369.99
nds 97.03% 95.05% 0.00% 1.98% 2.97% 0.00% 0.00% 35032 344.74
sw 98.00% 98.00% 0.00% 0.00% 0.00% 2.00% 0.00% 40066 196.70
br 100.00% 96.00% 0.00% 4.00% 0.00% 0.00% 0.00% 61941 239.56
fy 97.00% 97.00% 0.00% 0.00% 2.00% 1.00% 0.00% 67762 340.23
am 81.09% 79.10% 0.00% 1.99% 18.91% 0.00% 0.00% 287142 267.43
af 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 517353 339.18
eu 100.00% 98.00% 0.00% 2.00% 0.00% 0.00% 0.00% 1099498 330.93
mn 98.00% 94.00% 0.00% 4.00% 2.00% 0.00% 0.00% 1430527 309.94
te 98.99% 93.94% 1.01% 4.04% 0.00% 1.01% 1.01% 1685185 412.31
kk 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2719851 318.93
ca 99.00% 91.00% 0.00% 8.00% 1.00% 0.00% 0.00% 13292843 333.38
nl 98.00% 94.00% 2.00% 2.00% 2.00% 0.00% 4.00% 126067610 305.01
it 87.13% 71.29% 1.98% 13.86% 11.88% 0.99% 1.98% 210348435 393.66
zh 100.00% 97.00% 0.00% 3.00% 0.00% 0.00% 1.00% 232673578 195.60
fr 100.00% 93.00% 0.00% 7.00% 0.00% 0.00% 5.00% 461349575 306.62
es 100.00% 94.00% 0.00% 6.00% 0.00% 0.00% 3.00% 488616724 268.07
en 99.00% 96.00% 0.00% 3.00% 0.00% 1.00% 1.00% 3809525119 364.65

Table C.5: Audit results for a sample of 100 sentences from OSCAR for each language,
compared to the number of sentences available in the dataset. If fewer than
100 sentences were available, all sentences were audited Language codes are as
originally published. Length is measured in number of characters. Languages
with less than 20% correct sentences are boldfaced.
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D Towards a Cleaner
Document-Oriented Annotated
OSCAR Corpus

D.1 Carbon Footprint

We use a single machine having 192 GB of RAM and two Intel Xeon Gold 5218 pro-
cessors, which is rated at 125 W,1. For the DRAM we can use the work of Desrochers
et al. (2016) to estimate the total power draw of 192GB of RAM at around 20W. The
total power draw of this setting adds up to around 270 W.

Having this information, we can now use the formula proposed by Strubell et al.
(2019) in order to compute the total power required to pre-train one model from
scratch:

𝑝𝑡 =
1.58𝑡(𝑐𝑝𝑐 + 𝑝𝑟)

1000
Where 𝑐 is the number of CPUs, 𝑝𝑐 is the average power draw (inWatts) from all CPU
sockets and 𝑝𝑟 the average power draw from all DRAM sockets. We estimate the total
power consumption by adding CPU and DRAM consumption, and then multiplying
by the Power Usage Effectiveness (PUE), which accounts for the additional energy
required to support the compute infrastructure. We use a PUE coefficient of 1.58, the
2018 global average for data centers (Strubell et al., 2019). The total time to generate
OSCAR 22.01 in this infrastructure was of 42.6 hours. We use this information to
compute the total power consumption of the OSCAR generation, which amounts to
0.4266 kWh.

We can further estimate the CO2 emissions in kilograms of the OSCAR generation
by multiplying the total power consumption by the average CO2 emissions per kWh
in our region which were 38.64g/kWh in average between the 3rd and the 5th of
January 20222, the exact time at which the generation was run. Thus the total CO2
emissions in kg for one single model can be computed as:

CO2e = 0.03864𝑝𝑡

Thus total CO2 emissions amount to 0.01648kg or 16.48g.
1Intel Xeon Gold 5218 specification
2Rte - éCO2mix.
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D.2 Language Table
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D.2 Language Table

Language Size Documents Words Language Size Documents Words

Afrikaans 47.0 MB 12,393 6,227,310 Luxembourgish 15.8 MB 5,108 1,545,946
Tosk Albanian 363.6 kB 139 37,381 Lezghian 375.5 kB 124 19,250
Amharic 461.0 MB 37,513 30,481,153 Limburgish 1.4 kB 2 41
Aragonese 10.6 kB 12 51 Lombard 2.6 kB 2 225
Arabic 84.2 GB 8,718,929 6,103,711,887 Lao 337.1 MB 28,914 6,682,982
Egyptian Arabic 2.8 MB 1,256 176,096 Lithuanian 20.0 GB 2,303,070 1,712,802,056
Assamese 221.2 MB 17,084 11,109,557 Latvian 8.2 GB 1,032,987 707,361,898
Asturian 73.6 kB 77 3,919 Maithili 21.6 kB 23 483
Avaric 18.6 kB 14 582 Malagasy 57.3 MB 3,028 7,279,056
Azerbaijani 3.5 GB 491,847 291,927,692 Eastern Mari 11.3 MB 1,612 641,525
South Azerbaijani 14.1 MB 5,381 693,746 Minangkabau 6.0 MB 585 614,613
Bashkir 95.5 MB 11,198 5,418,474 Macedonian 3.6 GB 341,775 244,058,579
Belarusian 1.8 GB 180,046 107,227,860 Malayalam 4.1 GB 250,972 137,831,247
Bulgarian 35.1 GB 2,887,115 2,405,981,285 Mongolian 2.8 GB 237,719 176,405,432
Bihari languages 24.2 kB 27 569 Marathi 3.3 GB 250,376 160,179,233
Bangla 15.1 GB 1,171,501 751,877,226 Western Mari 743.5 kB 155 43,916
Tibetan 234.5 MB 18,683 2,286,269 Malay 5.3 MB 5,228 217,818
Bishnupriya 2.0 MB 271 98,419 Maltese 2.5 MB 2,208 118,190
Breton 33.7 MB 16,119 3,111,619 Multilingual 12.1 GB 1,210,685 936,187,711
Bosnian 10.3 kB 10 422 Burmese 1.9 GB 158,733 44,835,970
Russia Buriat 32.9 kB 39 785 Mazanderani 128.2 kB 76 7,337
Catalan 13.9 GB 2,627,307 1,508,919,864 Nahuatl languages 8.7 kB 12 179
Chechen 14.0 MB 4,086 798,766 Low German 9.0 MB 1,938 1,012,561
Cebuano 44.6 MB 5,742 5,253,785 Nepali 3.7 GB 391,947 177,885,116
Central Kurdish 716.4 MB 84,950 43,913,025 Newari 5.7 MB 1,134 273,837
Czech 58.6 GB 10,381,916 5,452,724,456 Dutch 114.0 GB 20,206,532 12,329,127,151
Chuvash 41.8 MB 4,750 2,465,782 Norwegian Nynorsk 6.8 MB 5,835 459,183
Welsh 409.3 MB 90,378 49,488,495 Norwegian 2.8 GB 973,188 279,182,902
Danish 12.6 GB 2,265,479 1,454,439,292 Occitan 2.1 MB 373 31,061
German 496.7 GB 70,075,424 46,826,676,844 Odia 487.9 MB 52,942 23,755,902
Dimli (individual language) 706 Bytes 1 19 Ossetic 13.9 MB 3,560 800,430
Lower Sorbian 707 Bytes 1 17 Punjabi 1.1 GB 68,094 70,068,604
Divehi 217.2 MB 24,067 10,112,205 Polish 139.0 GB 19,301,137 12,584,498,906
Greek 78.3 GB 6,738,546 5,031,242,803 Piedmontese 1.7 MB 698 188,270
Emiliano-Romagnolo. 901 Bytes 1 53 Western Panjabi 46.7 MB 6,790 4,060,419
English 3.2 TB 431,992,659 377,376,402,775 Pashto 490.3 MB 50,312 46,293,249
Esperanto 558.3 MB 111,932 58,416,628 Portuguese 170.3 GB 23,735,707 18,441,864,893
Spanish 381.9 GB 51,386,247 42,829,835,316 Quechua 744 Bytes 1 14
Estonian 9.2 GB 1,362,524 820,975,443 Romanian 49.2 GB 4,624,764 5,261,803,995
Basque 1.1 GB 233,658 97,092,942 Russian 1.1 TB 76,060,844 62,811,122,663
Persian 77.4 GB 7,665,871 6,430,164,396 Sanskrit 136.0 MB 4,472 5,671,369
Finnish 37.8 GB 4,948,961 2,900,615,928 Sakha 65.6 MB 6,284 3,473,813
French 382.2 GB 52,037,098 41,713,990,658 Sicilian 1.5 kB 2 50
Western Frisian 75.3 MB 21,946 6,357,929 Sindhi 117.1 MB 15,516 10,685,611
Irish 45.6 MB 12,233 4,877,850 Serbian (Latin) 931.8 kB 738 92,875
Scottish Gaelic 137.7 kB 136 7,769 Sinhala 2.0 GB 108,593 113,179,741
Galician 255.2 MB 88,803 27,051,212 Slovak 16.5 GB 2,409,555 1,619,121,944
Guarani 9.0 kB 10 374 Slovenian 1.2 GB 351,894 118,400,246
Goan Konkani 787.2 kB 46 38,831 Somali 2.1 kB 3 109
Gujarati 4.8 GB 136,467 301,170,777 Albanian 3.0 GB 437,287 326,325,149
Hebrew 30.3 GB 3,132,396 2,249,377,984 Serbian 6.9 GB 577,472 482,932,670
Hindi 23.3 GB 1,529,907 1,534,799,198 Sundanese 5.0 MB 263 547,145
Croatian 11.2 MB 11,462 505,369 Swedish 48.0 GB 7,541,278 5,078,331,128
Upper Sorbian 132.8 kB 110 8,825 Swahili 1.3 MB 462 123,050
Hungarian 53.9 GB 6,866,062 4,598,787,907 Tamil 11.4 GB 556,772 452,343,748
Armenian 4.7 GB 379,267 268,031,270 Telugu 3.4 GB 249,756 137,752,065
Interlingua 40.2 kB 6 10,125 Tajik 870.9 MB 46,366 56,627,727
Indonesian 17.4 GB 2,244,622 1,984,195,207 Thai 66.1 GB 5,030,254 1,626,779,846
Iloko 97.9 kB 75 8,592 Turkmen 4.4 MB 2,485 276,632
Ido 77.3 kB 105 2,690 Filipino 646.5 MB 70,394 81,881,278
Icelandic 2.0 GB 396,183 210,365,124 Turkish 75.1 GB 10,826,031 6,421,221,358
Italian 229.3 GB 28,502,092 24,294,684,830 Tatar 915.3 MB 76,398 51,875,265
Japanese 258.7 GB 36,328,931 5,592,948,356 Uyghur 201.9 MB 18,556 11,240,889
Lojban 1.9 MB 570 260,542 Ukrainian 48.8 GB 4,558,214 2,879,585,992
Javanese 152.7 kB 70 10,441 Urdu 3.4 GB 336,994 332,816,354
Georgian 7.1 GB 488,588 281,430,479 Uzbek 19.9 MB 9,526 1,370,842
Kazakh 2.9 GB 261,085 157,267,307 Vietnamese 98.9 GB 9,587,233 12,283,185,482
Khmer 1.9 GB 121,910 30,564,131 Volapük 825.9 kB 661 57,039
Kannada 2.6 GB 150,850 108,450,571 Walloon 105.7 kB 138 4,386
Korean 51.8 GB 5,881,481 3,854,968,649 Waray 7.6 MB 933 830,872
Karachay-Balkar 119.6 kB 91 4,089 Wu Chinese 137.2 kB 88 3,056
Kurdish 150.3 MB 29,906 17,390,759 Kalmyk 9.3 kB 9 250
Komi 119.9 kB 127 3,335 Mingrelian 7.6 MB 2,550 253,333
Cornish 1.4 kB 2 55 Yiddish 232.5 MB 23,418 15,809,780
Kyrgyz 518.6 MB 62,244 28,028,986 Yoruba 24.7 kB 26 1,042
Latin 4.1 MB 4,397 187,446 Chinese 900.9 GB 56,524,518 23,149,203,886

Table D.1: Size of the OSCAR 22.01 corpus by language measured in bytes and number of
words. Standard UNIX human-readable notation is used for the size in byte. We
define “words” as spaced separated tokens, which gives a good estimate of the
size of each corpus for languages using Latin or Cyrillic alphabets, but might give
a misleading size for other languages such as Chinese or Japanese.
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E CamemBERT

GSD Sequoia Spoken ParTUT NER NLI
Dataset Masking Arch. #Steps

UPOS LAS UPOS LAS UPOS LAS UPOS LAS F1 Acc.

Fine-tuning

OSCAR Subword Base 100k 98.25 92.29 99.25 93.70 96.95 79.96 97.73 92.68 89.23 81.18
OSCAR Whole-word Base 100k 98.21 92.30 99.21 94.33 96.97 80.16 97.78 92.65 89.11 81.92
CCNET Subword Base 100k 98.02 92.06 99.26 94.13 96.94 80.39 97.55 92.66 89.05 81.77
CCNET Whole-word Base 100k 98.03 92.43 99.18 94.26 96.98 80.89 97.46 92.33 89.27 81.92
CCNET Whole-word Base 500k 98.21 92.43 99.24 94.60 96.69 80.97 97.65 92.48 89.08 83.43
CCNET Whole-word Large 100k 98.01 91.09 99.23 93.65 97.01 80.89 97.41 92.59 89.39 85.29

Embeddings (with UDPipe Future (tagging, parsing) or LSTM+CRF (NER))
OSCAR Subword Base 100k 98.01 90.64 99.27 94.26 97.15 82.56 97.70 92.70 90.25 -
OSCAR Whole-word Base 100k 97.97 90.44 99.23 93.93 97.08 81.74 97.50 92.28 89.48 -
CCNET Subword Base 100k 97.87 90.78 99.20 94.33 97.17 82.39 97.54 92.51 89.38 -
CCNET Whole-word Base 100k 97.96 90.76 99.23 94.34 97.04 82.09 97.39 92.82 89.85 -
CCNET Whole-word Base 500k 97.84 90.25 99.14 93.96 97.01 82.17 97.27 92.28 89.07 -
CCNET Whole-word Large 100k 98.01 90.70 99.23 94.01 97.04 82.18 97.31 92.28 88.76 -

Table E.1: Performance reported on Test sets for all trained models (average over multiple
fine-tuning seeds).

In this appendix, we analyze different design choices of CamemBERT (Table E.2),
namely with respect to the use of whole-word masking, the training dataset, the
model size, and the number of training steps in complement with the analyses of
the impact of corpus origin and size (Section 11.3). In all the ablations, all scores
come from at least 4 averaged runs. For POS tagging and dependency parsing, we
average the scores on the 4 treebanks. We also report all averaged test scores of our
different models in Table E.1.

E.1 Impact of Whole-Word Masking

In Table E.2, we compare models trained using the traditional subword masking
with whole-word masking. Whole-Word Masking positively impacts downstream
performances for NLI (although only by 0.5 points of accuracy). To our surprise,
this Whole-Word Masking scheme does not benefit much lower level task such as
Name Entity Recognition, POS tagging and Dependency Parsing.

E.2 Impact of model size

Table E.2 compares models trained with the BASE and LARGE architectures. These
models were trained with the CCNet corpus (135 GB) for practical reasons. We con-
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E CamemBERT

Dataset Masking Arch. #Param. #Steps UPOS LAS NER XNLI

Masking Strategy
OSCAR Subword Base 110M 100k 97.78 89.80 91.55 81.04
OSCAR Whole-word Base 110M 100k 97.79 89.88 91.44 81.55

Model Size
CCNet Whole-word Base 110M 100k 97.67 89.46 90.13 82.22
CCNet Whole-word Large 335M 100k 97.74 89.82 92.47 85.73

Dataset
CCNet Whole-word Base 110M 100k 97.67 89.46 90.13 82.22
OSCAR Whole-word Base 110M 100k 97.79 89.88 91.44 81.55

Number of Steps
CCNet Whole-word Base 110M 100k 98.04 89.85 90.13 82.20
CCNet Whole-word Base 110M 500k 97.95 90.12 91.30 83.04

Table E.2: Comparing scores on the Validation sets of different design choices. POS tagging
and parsing datasets are averaged. (average over multiple fine-tuning seeds).

firm the positive influence of larger models on the NLI and NER tasks. The LARGE
architecture leads to respectively 19.7% error reduction and 23.7%. To our surprise,
on POS tagging and dependency parsing, having three timemore parameters doesn’t
lead to a significant difference compared to the BASE model. Tenney et al. (2019)
and Jawahar et al. (2019) have shown that low-level syntactic capabilities are learned
in lower layers of BERT while higher level semantic representations are found in
upper layers of BERT. POS tagging and dependency parsing probably do not benefit
from adding more layers as the lower layers of the BASE architecture already capture
what is necessary to complete these tasks.

E.3 Impact of training dataset

Table E.2 compares models trained on CCNet and on OSCAR. The major differ-
ence between the two datasets is the additional filtering step of CCNet that favors
Wikipedia-Like texts. The model pretrained on OSCAR gets slightly better results
on POS tagging and dependency parsing, but gets a larger +1.31 improvement on
NER. The CCNet model gets better performance on NLI (+0.67).

E.4 Impact of number of steps

Figure E.1 displays the evolution of downstream task performance with respect to
the number of steps. All scores in this section are averages from at least 4 runs with
different random seeds. For POS tagging and dependency parsing, we also average
the scores on the 4 treebanks.
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Figure E.1: Impact of number of pretraining steps on downstream performance for Camem-
BERT.

.

We evaluate our model at every epoch (1 epoch equals 8360 steps). We report
the masked language modelling perplexity along with downstream performances.
Figure E.1, suggests that the more complex the task the more impactful the number
of steps is. We observe an early plateau for dependency parsing and NER at around
22k steps, while for NLI, even if themarginal improvement with regard to pretraining
steps becomes smaller, the performance is still slowly increasing at 100k steps.

In Table E.2, we compare two models trained on CCNet, one for 100k steps and
the other for 500k steps to evaluate the influence of the total number of steps. The
model trained for 500k steps does not increase the scores much from just training
for 100k steps in POS tagging and parsing. The increase is slightly higher for XNLI
(+0.84).

Those results suggest that low level syntactic representation are captured early in
the language model training process while it needs more steps to extract complex
semantic information as needed for NLI.
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F.1 Collecting the Data

The following data can be downloaded directly from their website:

• Chartes de l’Aube:
https://sites.google.com/site/achimstein/research/resources
Extract raw text from XML files: <body>, then <s>, then <word>.

• Geste:
https://github.com/Jean-Baptiste-Camps/Geste
Raw text is available under /txt/norm/.

• OpenMedFr:
https://github.com/OpenMedFr/texts
Remove the header of each file (until *** START), its last line (*** END), para-
graph breaks (#|) and folios or pages numbers.

Special permissions are required to access and use these sources:

• AND:
https://anglo-norman.net/project-members

• BFM:
http://bfm.ens-lyon.fr/spip.php?article19
Raw text is available.

• Chartes Douai:
https://www.rose.uzh.ch/docling

• MCVF: http://www.voies.uottawa.ca

• NCA:
https://sites.google.com/site/achimstein/research/resources
Extract raw text from the XML files: <body> then <txm:form>.
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F.2 Details on the Models

F.2.1 Models Trained From Scratch

These are trained for 32 epochs in a masked language modeling task using the same
parameters as RoBERTa (Liu et al., 2019) but a smaller batch size of 256 samples1,
which amounts to a magnitude of 105 steps. We also use a smaller vocabulary
size (8192) than other works, in line with the observations of Ding et al. (2019)
that learning large vocabularies on small corpora defeats the purpose of sub-word
tokenization. Using a larger vocabulary size of 5×104 (like FlauBERT) also did
not seem to bring any improvements in our preliminary experiments and made
pre-training more expensive.

F.2.2 Post-training

The pretrained models we used in the post-training settings are those available in the
4.2.0 version of Huggingface Transformers (Wolf et al., 2020) and the exact handles
are:

mBERT bert-base-multilingual-cased

flauBERT flaubert/flaubert_base_cased

camemBERT camembert-base

finBERT TurkuNLP/bert-base-finnish-cased-v1

The post-trained models are those with MLM heads, which we did not reset before
post-training, so the post-training phase can be seen as a language transfer task for
masked language modeling out of which we extract a contextual word embeddings
model.

F.3 Carbon Footprint

We report the power consumption and carbon footprint of our main experiments
following the approach of Strubell et al. (2019). Two different configurations were
used in our experiments, one for pre-training models from scratch (Pre-train) and
another one for continuing the training of existing models (Post-train).

1Preliminary experiments with larger batch sizes showed no significant improvement to compensate
for the heavier computational load.
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F.3 Carbon Footprint

Model Power (W) # Models Duration (h) Consumption (kWh) CO2e (kg)

Pre-train 10756 11 6 11216.36 358.92
Post-train 1520 4 20 192.13 6.15

Total emissions 365.07

Table F.1: Average power draw, number of models trained, training times in hours, mean
power consumption including power usage effectiveness (PUE), and CO2 emis-
sions; for each setting.

Pre-train: We use a cluster of 4 machines each one having 8 GPUNvidia Tesla V100
SXM2 32GiB, 384GiB of RAM, and two Intel Xeon Gold 6226 processors. OneNvidia
Tesla V100 card is rated at around 300W,2 while the Xeon Gold 6226 processor is
rated at 125W,3. For the DRAM we can use the work of Desrochers et al. (2016) to
estimate the total power draw of 384GiB of RAM at around 39W. The total power
draw of this setting adds up to around 10 756W. We train 11 different models in this
configuration.

Post-train: We use a single machine having 4 GPUNvidia Tesla V100 SXM2 32GiB,
192GiB of RAM and two Intel Xeon Gold 6248 processors. The Xeon Gold 6248
processor is rated at 150 W,4, and the DRAM total power draw can be estimated at
around 20W. The total power draw of this setting adds up to around 1520W. We
train 4 different models in this configuration.

Having this information, we can now use the formula proposed by Strubell et al.
(2019) in order to compute the total power required for each setting:

𝑝𝑡 =
1.58𝑡(𝑐𝑝𝑐 + 𝑝𝑟 + 𝑔𝑝𝑔)

1000
Where 𝑐 and 𝑔 are the number of CPUs and GPUs respectively, 𝑝𝑐 is the average

power draw (inW) from all CPU sockets, 𝑝𝑟 the average power draw from all DRAM
sockets, and 𝑝𝑔 the average power draw of a single GPU. We estimate the total power
consumption by adding GPU, CPU and DRAM consumption, and then multiplying
by the Power Usage Effectiveness (PUE), which accounts for the additional energy
required to support the compute infrastructure. We use a PUE coefficient of 1.58, the
2018 global average for data centers (Strubell et al., 2019). In table F.1 we report the
training times in hours, as well as the total power draw (in Watts) of the system used
to train the models. We use this information to compute the total power consumption
of each setting, also reported in table F.1.

We can further estimate the CO2 emissions in kilograms of each single model by
multiplying the total power consumption by the average CO2 emissions per kWh in

2Nvidia Tesla V100 specification
3Intel Xeon Gold 6226 specification
4Intel Xeon Gold 6248 specification
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our region which were around 32 g kW−1 h in January 2021,5 when the models were
trained. Thus the total CO2 emissions in kg for one single model can be computed
as:

CO2e = 0.032𝑝𝑡

All emissions are also reported in table F.1.

5Rte - éCO2mix.
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G D’AlemBERT

G.1 Carbon Footprint

Model Power (W) Time (h) (PUE·kWh) CO2e (kg)

Pre-train 48640 20 1537.02 46.11
Evaluation 589 1 0.93 0.03

Total CO2e 46.14

Table G.1: Average power draw, number of models trained, training times in hours, mean
power consumption including power usage effectiveness (PUE), and CO2 emis-
sions; for each setting.

In light of recent interest concerning the energy consumption and carbon emission
of machine learning models and specifically of those of language models (Schwartz
et al., 2020; Bender et al., 2021), we have decided to report the power consumption
and carbon footprint of all our experiments following the approach of Strubell et al.
(2019). We report the energy consumption and carbon emissions of both the pre-
training of D’AlemBERT and its evaluation.

Pre-training: We use a cluster of 32 machines, each one having 4 GPU Nvidia Tesla
V100 SXM2 32GiB, 192GiB of RAM, and two Intel Xeon Gold 6248 processors. One
Nvidia Tesla V100 card is rated at around 300W,1 while the Xeon Gold 6248 processor
is rated at 150W.2 For the DRAM we can use the work of Desrochers et al. (2016)
to estimate the total power draw of 192GiB of RAM at around 20W. Thus, the total
power draw of the pre-training adds up to around 48640W.

Evaluation: We use a single machine with a single GPU Nvidia Tesla V100 SXM2
32GiB, 384GiB of RAM and two Intel Xeon Gold 6226 processors. The Xeon Gold
6226 processor is rated at 125 W,3 and the DRAM total power draw can be estimated
at around 39W. Therefore, the total power draw of the evaluation adds up to around
589W.

1Nvidia Tesla V100 specification
2Intel Xeon Gold 6248 specification
3Intel Xeon Gold 6226 specification
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G D’AlemBERT

With this information, we use the formula proposed by Strubell et al. (2019) to
compute the total power required for each setting:

𝑝𝑡 =
1.58𝑡(𝑐𝑝𝑐 + 𝑝𝑟 + 𝑔𝑝𝑔)

1000
Where 𝑐 and 𝑔 are the number of CPUs and GPUs respectively, 𝑝𝑐 is the average

power draw (in W) from all CPU sockets, 𝑝𝑟 the average power draw from all DRAM
sockets and 𝑝𝑔 the average power draw of a single GPU. We estimate the total power
consumption by adding GPU, CPU and DRAM consumption, and then multiplying
by the Power Usage Effectiveness (PUE), which accounts for the additional energy
required to support the compute infrastructure. We use a PUE coefficient of 1.58, the
2018 global average for data centers (Strubell et al., 2019). In Table G.1 we report the
training times in hours, as well as the total power draw (in Watts) of the system used
to train the models. We use this information to compute the total power consumption
of each setting, also reported in Table G.1.

We can further estimate the CO2 emissions in kilograms of each single model by
multiplying the total power consumption by the average CO2 emissions per kWh in
our region, which were around 30g/kWh between the 30th and the 31st of December,4
when the models were trained. Thus the total CO2 emissions in kg for one single
model can be computed as:

CO2e = 0.030𝑝𝑡

All emissions are also reported in Table G.1.

G.2 Detail Results of Experiments in NER by Entity Type

Here we show the results of each of the trained NER models by entity type.

G.3 Entity Distribution by Text in NER Data

The following diagrams show the detail of the coarse entity distribution by text in
FreEMNER.

4Rte - éCO2mix.
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G.3 Entity Distribution by Text in NER Data

LSTM-CRF

Entity Type Precision Recall F1-Score Support

pers 0.8808 0.8435 0.8617 2734
loc 0.8109 0.8707 0.8397 1384
amount 0.9040 0.9040 0.9040 250
time 0.9604 0.9237 0.9417 236
func 0.8872 0.8429 0.8645 140
org 0.8824 0.6122 0.7229 49
prod 0.9231 0.4444 0.6000 27
event 0.7273 0.6667 0.6957 12

micro avg 0.8640 0.8533 0.8586 4832
macro avg 0.8720 0.7635 0.8038 4832
weighted avg 0.8659 0.8533 0.8583 4832
samples avg 0.7737 0.7737 0.7737 4832

Table G.2: Results of the BiLSTM-CRF model on the test set of FreEMNER by entity type.

CamemBERT

Entity Type Precision Recall F1-Score Support

pers 0.9373 0.9236 0.9304 2734
loc 0.9140 0.9371 0.9254 1384
amount 0.9840 0.9840 0.9840 250
time 0.9447 0.9407 0.9427 236
func 0.9209 0.9143 0.9176 140
org 0.8364 0.9388 0.8846 49
prod 0.7742 0.8889 0.8276 27
event 0.8333 0.8333 0.8333 12

micro avg 0.9303 0.9309 0.9306 4832
macro avg 0.8931 0.9201 0.9057 4832
weighted avg 0.9307 0.9309 0.9307 4832
samples avg 0.8856 0.8856 0.8856 4832

Table G.3: Results of CamemBERT on the test set of FreEMNER by entity type.
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D’AlemBERT

Entity Type Precision Recall F1-Score Support

pers 0.9355 0.9279 0.9317 2734
loc 0.9242 0.9335 0.9288 1384
amount 0.9800 0.9800 0.9800 250
time 0.9456 0.9576 0.9516 236
func 0.9333 0.9000 0.9164 140
org 0.8148 0.8980 0.8544 49
prod 0.8621 0.9259 0.8929 27
event 0.8333 0.8333 0.8333 12

micro avg 0.9329 0.9323 0.9326 4832
macro avg 0.9036 0.9195 0.9111 4832
weighted avg 0.9331 0.9323 0.9327 4832
samples avg 0.8893 0.8893 0.8893 4832

Table G.4: Results of D’AlemBERT model on the test set of FreEMNER by entity type.
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Lavrentiev, John Lee, Phương Lê Hò̂ng, Alessandro Lenci, Saran Lertpradit, Her-
man Leung, Maria Levina, Cheuk Ying Li, Josie Li, Keying Li, Yuan Li, KyungTae
Lim, Bruna Lima Padovani, Krister Lindén, Nikola Ljubešić, Olga Loginova, Ste-
fano Lusito, Andry Luthfi, Mikko Luukko, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Menel Mahamdi, Jean Maillard, Aibek Makazhanov, Michael Mandl,
Christopher Manning, Ruli Manurung, Büşra Marşan, Cătălina Mărănduc, David
Mareček, Katrin Marheinecke, Héctor Martínez Alonso, Lorena Martín-Rodríguez,
André Martins, Jan Mašek, Hiroshi Matsuda, Yuji Matsumoto, Alessandro Mazzei,
Ryan McDonald, Sarah McGuinness, Gustavo Mendonça, Tatiana Merzhevich,
Niko Miekka, Karina Mischenkova, Margarita Misirpashayeva, Anna Missilä,
Cătălin Mititelu, Maria Mitrofan, Yusuke Miyao, AmirHossein Mojiri Foroushani,
Judit Molnár, Amirsaeid Moloodi, Simonetta Montemagni, Amir More, Laura
Moreno Romero, Giovanni Moretti, Keiko Sophie Mori, Shinsuke Mori, Tomohiko
Morioka, Shigeki Moro, Bjartur Mortensen, Bohdan Moskalevskyi, Kadri Muis-
chnek, Robert Munro, Yugo Murawaki, Kaili Müürisep, Pinkey Nainwani, Mariam
Nakhlé, Juan Ignacio Navarro Horñiacek, Anna Nedoluzhko, Gunta Nešpore-
Bērzkalne, Manuela Nevaci, Lương Nguyêñ Thị, Huyêǹ Nguyêñ Thị Minh, Yoshi-
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Une approche basée sur les données pour le traitement automatique du langage
naturel en français contemporain et historique

Depuis plusieurs années, les approches neuronales ont régulièrement amélioré l’état de l’art du traitement
automatique des langues (TAL) sur une grande variété de tâches. L’un des principaux facteurs ayant permis ces
progrès continus est l’utilisation de techniques d’apprentissage par transfert. Ces méthodes consistent à partir
d’un modèle pré-entraîné et à le réutiliser, avec peu ou pas d’entraînement supplémentaire, pour traiter d’autres
tâches. Même si ces modèles présentent des avantages évidents, leur principal inconvénient est la quantité de
données nécessaire pour les pré-entraîner. Ainsi, le manque de données disponibles à grande échelle a freiné le
développement de tels modèles pour le français contemporain et a fortiori pour ses états de langue plus anciens.

Cette thèse met l’accent sur le développement de corpus pour le pré-entraînement de telles architectures. Cette
approche s’avère extrêmement efficace car nous sommes en mesure d’améliorer l’état de l’art pour un large éventail
de tâches de TAL pour le français contemporain et historique, ainsi que pour six autres langues contemporaines.
De plus, nous montrons que ces modèles sont extrêmement sensibles à la qualité, à l’hétérogénéité et à l’équilibre
des données de pré-entraînement et montrons que ces trois caractéristiques sont de meilleurs prédicteurs de la
performance desmodèles que la taille des données de pré-entraînement. Nousmontrons également que l’importance
de la taille des données de pré-entraînement a été surestimée en démontrant à plusieurs reprises que l’on peut
pré-entraîner de tels modèles avec des corpus de taille assez modeste.

Mots-clés :modèle de langue, corpus de pré-entraînement, traitement automatique des langues, français contem-

porain, français historique, apprentissage par transfert.

A Data-driven Approach to Natural Language Processing for Contemporary and
Historical French

In recent years, neural methods for Natural Language Processing (NLP) have consistently and repeatedly
improved the state of the art in a wide variety of NLP tasks. One of the main contributing reasons for this steady
improvement is the increased use of transfer learning techniques. These methods consist in taking a pre-trained
model and reusing it, with little to no further training, to solve other tasks. Even though these models have clear
advantages, their main drawback is the amount of data that is needed to pre-train them. The lack of availability of
large-scale data previously hindered the development of such models for contemporary French, and even more so
for its historical states.

In this thesis, we focus on developing corpora for the pre-training of these transfer learning architectures. This
approach proves to be extremely effective, as we are able to establish a new state of the art for a wide range of tasks
in NLP for contemporary, medieval and early modern French as well as for six other contemporary languages.
Furthermore, we are able to determine, not only that these models are extremely sensitive to pre-training data
quality, heterogeneity and balance, but we also show that these three features are better predictors of the pre-trained
models’ performance in downstream tasks than the pre-training data size itself. In fact, we determine that the
importance of the pre-training dataset size was largely overestimated, as we are able to repeatedly show that such
models can be pre-trained with corpora of a modest size.

Keywords: language model, pre-training corpora, natural language processing, contemporary french, historical

french, transfer learning.
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