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In recent years, neural methods for Natural Language Processing (NLP) have consistently and repeatedly improved the state of the art in a wide variety of NLP tasks. One of the main contributing reasons for this steady improvement is the increased use of transfer learning techniques. These methods consist in taking a pre-trained model and reusing it, with little to no further training, to solve other tasks. Even though these models have clear advantages, their main drawback is the amount of data that is needed to pre-train them. The lack of availability of large-scale data previously hindered the development of such models for contemporary French, and even more so for its historical states.

In this thesis, we focus on developing corpora for the pre-training of these transfer learning architectures. This approach proves to be extremely effective, as we are able to establish a new state of the art for a wide range of tasks in NLP for contemporary, medieval and early modern French as well as for six other contemporary languages. Furthermore, we are able to determine, not only that these models are extremely sensitive to pre-training data quality, heterogeneity and balance, but we also show that these three features are better predictors of the pre-trained models' performance in downstream tasks than the pre-training data size itself. In fact, we determine that the importance of the pre-training dataset size was largely overestimated, as we are able to repeatedly show that such models can be pre-trained with corpora of a modest size.

Une approche basée sur les données pour le traitement automatique du langage naturel en français contemporain et historique Résumé Depuis plusieurs années, les approches neuronales ont régulièrement amélioré l'état de l'art du traitement automatique des langues (TAL) sur une grande variété de tâches. L'un des principaux facteurs ayant permis ces progrès continus est l'utilisation de techniques d'apprentissage par transfert. Ces méthodes consistent à partir d'un modèle pré-entraîné et à le réutiliser, avec peu ou pas d'entraînement supplémentaire, pour traiter d'autres tâches. Même si ces modèles présentent des avantages évidents, leur principal inconvénient est la quantité de données nécessaire pour les pré-entraîner. Ainsi, le manque de données disponibles à grande échelle a freiné le développement de tels modèles pour le français contemporain et a fortiori pour ses états de langue plus anciens.
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Introduction

In which we present the BASNUM project and the motivations behind this Ph.D thesis. We give a small overview of our approach by discussing transfer learning in NLP, we then discuss Digital Humanities and NLP for historical languages, and we give a brief overview of the two historical states of the French language that will have a central part later in this Ph.D. thesis. Finally, we give the outline of the present text.

The BASNUM Project

This thesis is part of the ANR BASNUM project (ANR-18-CE38-0003), which had as its main objective to digitize the "Dictionnaire Universel" (DU) of Antoine Furetière, in its 1701 version reviewed and corrected by Basnage de Beauval [START_REF] Furetière | Dictionnaire Universel, contenant généralement tous les mots françois tant vieux que modernes, & les termes des sciences et des arts[END_REF], and to analyze it with digital tools, in order to reveal the importance of this work for the evolution of science and mentalities in the 18 th century. The project also aimed to contribute to the current movement to design innovative methods for digitizing, encoding and analyzing texts.

From a purely computational point of view, the BASNUM project intended to carry out two types of tasks:

1. a first structuring task where the macrostructure of the dictionary would be annotated, 2. a second enrichment task which consisted in carrying out a wide range of tasks of information extraction, annotation of the dictionary microstructure and even normalization and modernization of the text.

The first task of automatically structuring dictionaries had been already partially covered by the work of [START_REF] Khemakhem | Automatic extraction of tei structures in digitized lexical resources using conditional random fields[END_REF][START_REF] Khemakhem | Enhancing usability for automatically structuring digitised dictionaries[END_REF] who developed GROBIDdictionaries, a submodule of GROBID1 (Grobid contributors, 2008(Grobid contributors, -2018) ) implementing a Java machine learning library for structuring digitized lexical resources in TEI format (TEI Consortium, eds, 2018), to enable analysis, extraction and structuring of textual information in such resources. GROBID-dictionaries had already obtained promising results and performances [START_REF] Khemakhem | Standard-based Lexical Models for Automatically Structured Dictionaries[END_REF], so much so that it was used to make a first annotation of the Dictionnaire Universel macrostructure.

Given the work done by [START_REF] Khemakhem | Standard-based Lexical Models for Automatically Structured Dictionaries[END_REF], we decided to concentrate on the second task of enriching the dictionaries, which at the time remained quite general and abstract, in particular in contrast to the first task of structuring. To approach this task, we had two options: either developing multiple models and annotation systems dedicated to each of the subtasks involved in this enrichment and solely targeting the Dictionnaire Universel, or developing a single generic annotation model capable of addressing all enrichment subtasks and capable of handling not only the Dictionnaire Universel, but also other texts and resources from the modern period. 2Given the nature of the enrichment task and the fact that new neural language models able to transfer knowledge between different tasks in natural language processing (NLP) had just been published at the beginning of this thesis [START_REF] Peters | Deep contextualized word representations[END_REF][START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF], we decided to focus on the second option and, accordingly, to develop a single general model that we hoped would be able to be used for all these enrichment tasks and for any type of document in Modern or Contemporary French.

By choosing this approach, we also wanted to approach in an indirect way the first task of automatic structuring. This is because we believed that it was possible to improve the first results of GROBID-dictionaries by using new neural models. Indeed, GROBID-dictionaries relied on CRF models (Conditional Random Fields) [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF] which were widely used for token labeling and classification, but that had been superseded by these neural models in recent years [START_REF] Lample | Neural architectures for named entity recognition[END_REF][START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF]. Furthermore, we knew that the developers of GROBID had started working with some of these neural models by writing DeLFT, a library for text processing, covering token labeling and classification. This library reimplements the latest machine learning models in NLP (DeLFT contributors, 2018) and aims to improve GROBID's pipelines. It is tools and ideas like those contained in DeLFT that could be applied to GROBID-Dictionaries to significantly improve and expand its capabilities for the benefit of the BASNUM project, especially in addition to resources that we had decided to develop.

Having chosen to develop these new models for French, such as ELMo [START_REF] Peters | Deep contextualized word representations[END_REF] or BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF], we had to start by building and collecting our own corpus for the pre-training of these architectures, since the contemporary French corpora freely available at the time, such as Wikipedia or frWAC [START_REF] Baroni | The wacky wide web: a collection of very large linguistically processed web-crawled corpora[END_REF], were not considered to be large enough for this [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF].

Our plan then was to develop a pre-training corpus for Contemporary French, then to pre-train a language model for Contemporary French and finally to use the knowledge transfer capabilities of these architectures to adapt it to Early Modern French, in case we were unable to find enough textual resources to directly pre-
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train such a language model for Early Modern French. During this thesis, we also wanted to investigate the question of the minimum amount of resources required to successfully pre-train such models, an amount which, at the time, was considered higher than what was available for historical languages [START_REF] Peters | Deep contextualized word representations[END_REF][START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF].

Transfer Learning in NLP

In recent years neural methods for Natural Language Processing (NLP) have consistently and repeatedly improved the state of the art in a wide variety of NLP tasks such as parsing, PoS-tagging, named entity recognition, machine translation, text classification and reading comprehension among others. Probably the main contributing factor in this steady improvement for NLP models is the raise in usage of transfer learning techniques in the field. These methods normally consist of taking a pre-trained model and reusing it, with little to no retraining, to solve a different task from the original one it was intended to solve; in other words, one transfers the knowledge from one task to another.

Most of the transfer learning done in NLP nowadays is done in an unsupervised manner, that is, it normally consists of a language model that is fed unannotated plain text in a particular language; so that it extracts or learns the basic features and patterns of the given language. The model is subsequently used on top of an specialised architecture designed to tackle a particular NLP task. Probably the best known example of this type of model are word embeddings which consist of real-valued vector representations that are trained for each word on a given corpus. Some notorious examples of word embeddings are word2vec [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF], GloVe [START_REF] Pennington | GloVe: Global vectors for word representation[END_REF] and fastText [START_REF] Mikolov | Advances in pre-training distributed word representations[END_REF]. All these models are context-free, meaning that a given word has one single vector representation that is independent of context, thus for a polysemous word like Washington, one would have one single representation that is reused for the city, the state and the US president.

In order to overcome the problem of polysemy, contextual models have recently appeared. Most notably ELMo [START_REF] Peters | Deep contextualized word representations[END_REF] which produces deep contextualized word representations out of the internal states of a deep bidirectional language model in order to model word use and how the usage varies across linguistic contexts. ELMo still needs to be used alongside a specialised architecture for each given downstream task, but newer architectures that can be fine-tuned have also appeared. For these, the model is first fed unannotated data, and is then fine-tuned with annotated data to a particular downstream task without relying on any other architecture. some remarkable examples of this type of model are GPT-1, GPT-2 [START_REF] Radford | Improving language understanding by generative pre-training[END_REF][START_REF] Radford | Language models are unsupervised multitask learners[END_REF], BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] and XLNet [START_REF] Yang | Xlnet: Generalized autoregressive pretraining for language understanding[END_REF]; the latter being the current state-of-the-art for multiple downstream tasks. All of these models are 1 Introduction different arrangements of the Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF] trained with different datasets, except for XLNet which is an instance of the Transformer-XL [START_REF] Dai | Transformer-XL: Attentive language models beyond a fixedlength context[END_REF].

Even though these models have clear advantages, their main drawback is the amount of data that is needed to train them in order to obtain a functional and efficient model. For instance, for the first English version of word2vec, [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF] used a one billion word dataset consisting of various news articles. Later [START_REF] Al-Rfou | Polyglot: Distributed word representations for multilingual NLP[END_REF] and then [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF] used the plain text from Wikipedia to train distributions of word2vec and fastText respectively, for languages other than English. Now, the problem of obtaining large quantities of data aggravates even more for contextual models, as they normally need multiple instances of a given word in order to capture all its different uses and in order to avoid overfitting due to the large quantity of hyperparameters that these models have. [START_REF] Peters | Deep contextualized word representations[END_REF] for example use a 5.5 billion token 3 dataset comprised of crawled news articles plus the English Wikipedia in order to train ELMo, [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] use a 3.3 billion word 4 corpus made by merging the English Wikipedia with the BooksCorpus (Zhu et al., 2015), and [START_REF] Radford | Language models are unsupervised multitask learners[END_REF] use a 40GB English corpus created by scraping outbound links from Reddit. 5While Wikipedia is freely available, and multiple pipelines exist 6,7 to extract plain text from it, some of the bigger corpora mentioned above are not made available by the authors either due to copyright issues or probably because of the infrastructure needed to serve and distribute such big corpora. Moreover, the vast majority of both these models and the corpora they are trained with are in English, meaning that the availability of high quality NLP for other languages, specially for low-resource and historical languages, is rather limited.

The problem of scarcity of pre-training and training data is something that we will have to weather throughout the course of this Ph.D. thesis, we will thus focus on developing these resources in order to try to fill the existing gap that we observed at the beginning of this thesis for both Contemporary and Historical French. In fact rather than focusing on improving the architectures of the available models mentioned above, we will focus on developing resources to both pre-train and finetune them, we will thus try to improve the state of the art for both Contemporary and Historical French by solely working on data and textual resources. We will study the impact that balanced corpora and corpus quality has on these models, we will try to answer the question of how much data is even needed in order to obtain a decently performing contextualized model, and we will also try to assess the impact of fine-tuning (training) data on the performance of these models in a wide range of downstream tasks.

Digital Humanities and NLP for Historical Languages

With the rise of digital humanities, it is becoming increasingly important to develop high quality tools to automatically process old states of languages. Libraries, archives and museums, among others, are digitizing large numbers of historical sources, from which high quality data must be extracted for further study by specialists of human sciences following new approaches such as "distant reading" [START_REF] Moretti | Distant reading[END_REF]. Many (sub)tasks such as automatic OCR post-correction [START_REF] Rijhwani | Lexically aware semi-supervised learning for OCR post-correction[END_REF] and linguistic annotation [START_REF] Camps | Corpus and Models for Lemmatisation and POS-tagging of Classical French Theatre[END_REF] benefit from pre-trained language models to improve their accuracy.

Languages evolve over time on many levels: from one century to another, we see variations in spelling, syntax, the lexicon etc. However, this variation is not uniform: it tends, at least for "literate scriptors" (literature, journalism, law, etc.), to converge towards a single norm over time, and this has especially been the case for French because of the prominent role of the Académie française and the remarqueurs [START_REF] Ayres | Remarques et observations sur la langue française[END_REF]. The result of this convergence is, for instance, that spelling and word order within sentences have become stricter, where they were less so in the past. From a computational perspective, historical states of language are therefore not only different from the contemporary state, but, from a computational perspective, are also more complex because they do not follow a strict and explicit norm. In French, this explicit norm appeared in the 17 th c. and was slowly integrated throughout the 18 th c.

On top of this first linguistic problem, a second issue appears: because the production of textual sources has continued to grow exponentially, it is easier to collect a corpus for contemporary French than for the 19 th c. French, which is itself easier than for the 18 th c. French, etc. The further we go back in time, the more scarce resources are, which creates the following paradox: we have more data when the language is homogeneous and simple for the computer to process, and less when it is heterogeneous and harder to process.

Using contextual word embeddings as input representations has brought clear gains in performances for most of the NLP tasks for which they have been used. However, this has mostly been attested in languages where sufficient (raw) linguistic data is available. For less-resourced languages, the most common approach has been to leverage multilingual models such as mBERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] whose pre-training corpus does not even contain historical data.

Historical languages are typical cases where available linguistic data is limited, with no chance of acquiring new texts. They are also not normalized by spelling and institutional conventions and tend to be more heterogeneous than contemporary 1 Introduction lesser-resourced languages, giving us a very interesting yet challenging case of study to try to approach with contextualized word embedding models.

Medieval French

Medieval French covers both Old French (9 th -13 th c.) and Middle French (14 th -15 th c.). These stages are linguistically close and both precede the adoption of spelling norms. Middle French is more regular than Old French in some respects such as word order [START_REF] Marchello-Nizia | Grande Grammaire Historique du Français (GGHF)[END_REF] and less in others such as NP structure and pronouns system [START_REF] Marchello-Nizia | Histoire de la langue française aux XIVe et XVe siècles[END_REF]. Medieval French covers a set of Oïl Romance languages spoken in the kingdom of France between the 9 th and the 15 th century (fig. 1.1). 8 There are around twenty such languages.

Older texts are close to Late Latin, and verse is prevalent until the end of the 13 th century. Old French has a relatively free word order. Until the mid-11 th century, the prevalent order is Subject-Object-Verb (SOV), which is then gradually supplanted by SVO, which is the default order in Contemporary French. Unlike most languages with free word order, the functions of verbal arguments are not always given away by morphological clues, the already simplistic case system of Old French disappears progressively through the covered period. There are also many cases of syntactic ambiguity. For example, in the following quote from Lancelot, 9 (verse 5436), both la dame and Lancelot could be the subject or the object of Vit and only the context enables the reader to understand that la dame is the subject. Word order is also relatively free within constituents. For example, a noun modifier can be on the left or on the right of its governor, and it is not necessarily preceded by a preposition. In contemporary French, it can only appear on the right, and it is found without a preposition only in some cases like named entities. Because of the general free word order and the absence of punctuation in our treebank, this adds up to the ambiguity of the analysis.

Dolant

In each of the following examples from the SRCMF corpus (Prévost and Stein, 2013), the noun following roi ("king") has a different analysis: head of roi, modifier, argument of the same verb or a different one, with no explicit marking:

Fus tu donc pus a la roi cort

Were you then no more at the king court "Dear Sir, says the king, God will send you a shield." (Queste del Saint Graal)

Furthermore, overt subjects are not mandatory, and are often dropped in texts written in verse until the 12 th century, after which the presence of subjects increases through time. These phenomena are particularly prevalent in verse, where metric and rhyming constraints often lead to more contrived syntactic forms than in prose.

Another source of ambiguity is the variety of spellings, due to the lack of spelling standard. For example, the word moult (transl. a lot (of), very), emblematic of this period, is initially an adjective, and it is progressively grammaticalized, becoming an adverb. Several forms appear at the same time, some with a declension, some without, and the radical does not have a fixed spelling: molt(e)(s), molz, mult(e)(s), mul (t) We loosely define Early Modern French as a state of language following Middle French in 1500-following here the terminus ad quem used by the Dictionnaire de Moyen Français (Martin, Robert (dir.), 2020)-and ending with the French Revolution in 1789. It therefore encompasses three centuries (16 th , 17 th and 18 th c.), or two linguistic periods: the français préclassique or "preclassical French", 1500-1630 and the français classique or "classical French", 1630-1689; both periodizations are currently used in French linguistics (e.g. by [START_REF] Vachon | Le Changement linguistique au XVIe siècle: une étude basée sur des textes littéraires français[END_REF] and [START_REF] Amatuzzi | Améliorer et appliquer les outils numériques. ressources et approches pour l'étude du changement linguistique en français préclassique et classique[END_REF].

A typical example of Early Modern French, taken from Guez de Balzac (1624), is given in Table 1.1. We note here the presence of several phenomena that have now disappeared in contemporary French, such as the presence of abbreviations (dõt→dont), the long s (ſ, see miſeres), the use of v instead of u (vne for une), the conservation of etymological letters (voſtre < Latin vŏster rather than votre) and calligraphic letters (-y in Surquoy), the absence of welding (mal-heurs and not malheurs) and the opposite (Surquoy and not Sur quoi).

Outline

For NLP systems, which process raw sequences, such differences with respect to contemporary French are not trivial, and they prevent the processing of historical texts with tools trained on recent sources.

Outline

This document is organized in 6 different parts, each of which comprises multiple chapters:

Part I Contains this introduction as well as two other chapters, one discussing the availability of raw textual resources throughout this thesis for both Contemporary and Historical languages; and the other discussing the state-of-the-art architectures that appeared during the course of this Ph.D., as well as a brief discussion of downstream tasks for contemporary French, the available datasets and the state-of-the-art models available for these tasks.

Part II Contains a detailed discussion, spanning from chapter 4 to chapter 8, of the curation, audits and evaluations, and improvements of our raw multilingual corpus OSCAR [START_REF] Javier | Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures[END_REF]Ortiz Suárez et al., 2020b;[START_REF] Abadji | Ungoliant: An optimized pipeline for the generation of a very large-scale multilingual web corpus[END_REF][START_REF] Abadji | Towards a Cleaner Document-Oriented Multilingual Crawled Corpus[END_REF] intended for the pre-training of language models. Part III Spans from chapter 9 to chapter 10, and concerns the curation of monolingual corpora, for both Contemporary and Historical French, intended for the pre-training of language models.

Part IV Comprises chapters 11 to 15, and concerns the pre-training and development of language models for Contemporary, Medieval and Early Modern French; as well as their respective evaluations across a wide range of downstream tasks. Part V Contains chapter 16 which outlines the conclusions and perspectives of this Ph.D. thesis.

Part VI Finally, contains all the appendices as well as additional information that is relevant to our work.

2 On Raw Corpora for Language

Modeling

In which the corpora available for the pre-training of language models both at the beginning and throughout this Ph.D. thesis are described. We also describe one of the pipelines used to produce one of the corpora, and at the end we discuss both the raw and annotated corpora available for some historical languages.

As previously stated, the only freely-available corpora, considered large enough for the pre-training of language models in Contemporary French at the beginning of this Ph.D thesis, were Wikipedia and frWac. The frWaC corpus [START_REF] Baroni | The wacky wide web: a collection of very large linguistically processed web-crawled corpora[END_REF] is a French text corpus collected from the .fr domain with using medium-frequency words from the Le Monde Diplomatique corpus and basic French vocabulary lists as seeds. The corpus consists of French websites with total size 1.3 billion words. While frWac was almost 2 times bigger than the French Wikipedia at the time, it was still nowhere near the amount of data that was thought to be needed to properly train a Transformer-based language model at the time [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF]. However, we liked the idea of [START_REF] Baroni | The wacky wide web: a collection of very large linguistically processed web-crawled corpora[END_REF] of using web pages and crawling as a mean to obtain large quantities of textual data. This is why the work of [START_REF] Mikolov | Advances in pre-training distributed word representations[END_REF] and its use of Common Crawl and the FastText linear classifier [START_REF] Joulin | FastText.zip: Compressing text classification models[END_REF][START_REF] Joulin | Bag of tricks for efficient text classification[END_REF], in order to gather large amounts of multilingual text plays a central role in the development of our own multilingual web based corpora.

In this chapter we first describe the work of [START_REF] Mikolov | Advances in pre-training distributed word representations[END_REF], then we present and discuss the large web corpora that became available through this thesis that were not available at the begging of it, and the challenges that came with them and with the ever-growing demand for large textual corpora. Finally, we briefly give an overview of the available corpora for historical languages.

Common Crawl

Common Crawl is a non-profit foundation which produces and maintains an open repository of web crawled data that is both accessible and analyzable. 1 Common Crawl's complete web archive consists of petabytes of data collected over 8 years of web crawling. The repository contains raw web page HTML data (WARC files), metadata extracts (WAT files) and plain text extracts (WET files). The organization's crawlers has always respected nofollow2 and robots.txt3 policies.

Each monthly Common Crawl snapshot is in itself a massive multilingual corpus, where every single file contains data coming from multiple web pages written in a large variety of languages and covering all possible types of topics. Thus, in order to effectively use this corpus for Natural Language Processing and Machine Learning applications, one has first to extract, filter, clean and classify the data in the snapshot by language.

Throughout this thesis, we will use the WET files which contain the extracted plain texts from the websites mostly converted to UTF-8, as well as headers containing the metadata of each crawled document. Each WET file comes compressed in gzip format 4 and is stored on Amazon Web Services.

Common Crawl has already been successfully used to train language models, even multilingual ones. The most notable example is probably FastText which was first trained for English using Common Crawl [START_REF] Mikolov | Advances in pre-training distributed word representations[END_REF] and then for other 157 different languages [START_REF] Grave | Learning word vectors for 157 languages[END_REF]. In fact [START_REF] Grave | Learning word vectors for 157 languages[END_REF] proposed a pipeline to filter, clean and classify Common Crawl, which we shall call the "FastText pre-processing pipeline." They used the FastText linear classifier [START_REF] Joulin | FastText.zip: Compressing text classification models[END_REF][START_REF] Joulin | Bag of tricks for efficient text classification[END_REF] to classify each line of Common Crawl by language, and downloaded the initial corpus and schedule the I/O using some simple Bash scripts. Their solution, however, proved to be a synchronous blocking pipeline that works well on infrastructures having the necessary hardware to assure high I/O speeds even when storing tens of terabytes of data at a time. But that downscales poorly to medium-low resource infrastructures that rely on more traditional cost-effective electromechanical mediums in order to store this amount of data.

FastText's Pipeline

The "FastText pre-processing pipeline" used by [START_REF] Grave | Learning word vectors for 157 languages[END_REF] launches multiple process, preferably as many as available cores. Each of these processes first downloads one Common Crawl WET file which then proceeds to decompress after the download is over. After decompressing, an instance of the FastText linear classifier [START_REF] Joulin | FastText.zip: Compressing text classification models[END_REF][START_REF] Joulin | Bag of tricks for efficient text classification[END_REF] is launched, the classifier processes each WET file line by line, generating a language tag for each line. The tags are then stored in a tag file which holds a one-to-one correspondence between lines of the WET file and its corresponding language tag. The WET file and the tag files are read sequentially and each on the WET file line holding the condition of being longer than 100 bytes is
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appended to a language file containing only plain text (tags are discarded). Finally, the tag file and the WET files are deleted.

Only when one of these processes finishes another can be launched. This means that one can at most process and download as many files as cores the machine has. That is, if for example a machine has 24 cores, only 24 WET files can be downloaded and processed simultaneously, moreover, the 25 th file won't be downloaded until one of the previous 24 files is completely processed.

When all the WET files are classified, one would normally get around 160 language files, each file holding just plain text written in its corresponding language. These files still need to be filtered in order to get rid of all files containing invalid UTF-8 characters, so again a number of processes are launched, this time depending on the amount of memory of the machine. Each process reads a language file, first filters for invalid UTF-8 characters and then performs deduplication. A simple non-collision resistant hashing algorithm is used to deduplicate the files.

The FastText linear classifier works by representing sentences for classification as Bags of Words (BoW) and training a linear classifier. A weight matrix 𝐴 is used as a look-up table over the words and the word representations are then averaged into a text representation which is fed to the linear classifier. The architecture is in general similar to the CBoW model of [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF], but the middle word is replaced by a label. They uses a softmax function 𝑓 to compute the probability distribution over the classes. For a set of 𝑁 documents, the model is trained to minimize the negative log-likelihood over the classes:

- 1 𝑁 𝑁 ∑ 𝑛=1 𝑦 𝑛 log(𝑓 (𝐵𝐴𝑥 𝑛 )),
where 𝑥 𝑛 is the normalized bag of features of the 𝑛-th document, 𝑦 𝑛 is the 𝑛-th label, and 𝐴, 𝐵 are the weight matrices. The pre-trained FastText model for language recognition [START_REF] Grave | Learning word vectors for 157 languages[END_REF] is capable of recognizing around 176 different languages and was trained using 400 million tokens from Wikipedia as well as sentences from the Tatoeba website.5 

CCNet

We note that the original Common-Crawl-based corpus created by [START_REF] Grave | Learning word vectors for 157 languages[END_REF] to train FastText is not freely available. Shortly arfter having started working with Common Crawl data and developing a pipeline to classify it by language [START_REF] Javier | Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures[END_REF], a new architecture for creating a Common-Crawl-based corpus named CCNet [START_REF] Wenzek | CCNet: Extracting high quality monolingual datasets from web crawl data[END_REF] was published, although it included specialized filtering based on the KenLM library [START_REF] Heafield | KenLM: Faster and smaller language model queries[END_REF]) and trained on Wikipedia, which might result in a cleaner corpus; the resulting CCNet corpus itself was never published in its entirety.

Demand for Large Corpora

Using large corpora to train neural language models dates back to way before the beginning of this Ph.D. thesis [START_REF] Schwenk | Training neural network language models on very large corpora[END_REF]. During the course of our studies, we observed the demand for large corpora considerably increasing, specially the last two years with the advent of semi-supervised learning methods in NLP, in particular with contextualized word representations [START_REF] Howard | Universal language model fine-tuning for text classification[END_REF][START_REF] Peters | Deep contextualized word representations[END_REF][START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] and more recently very large generative language models like GPT-3, T5, GPT-Neo [START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF][START_REF] Brown | Language models are few-shot learners[END_REF][START_REF] Black | GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow. If you use this software[END_REF]. While there have been some recent efforts to manually curate such corpora6 [START_REF] Gao | The Pile: An 800GB Dataset of Diverse Text for Language Modeling[END_REF], the common approach to collect large amounts of raw textual data still relies primarily on crawled web text [START_REF] Javier | Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures[END_REF]Ortiz Suárez et al., 2020b;Xue et al., 2021;[START_REF] El-Kishky | CCAligned: A massive collection of cross-lingual web-document pairs[END_REF][START_REF] Esplà | ParaCrawl: Web-scale parallel corpora for the languages of the EU[END_REF][START_REF] Bañón | ParaCrawl: Web-scale acquisition of parallel corpora[END_REF][START_REF] Gao | The Pile: An 800GB Dataset of Diverse Text for Language Modeling[END_REF], and although some of the initial concerns of using crawled data [START_REF] Trieu | A Simple Method for Commonsense Reasoning[END_REF][START_REF] Radford | Language models are unsupervised multitask learners[END_REF] were addressed during the course of this particular Ph.D. thesis (Ortiz Suárez et al., 2020b;[START_REF] Martin | CamemBERT: a tasty French language model[END_REF] there a many concerns that still need to be tackled [START_REF] Caswell | Language ID in the wild: Unexpected challenges on the path to a thousand-language web text corpus[END_REF] specially for multilingual data [START_REF] Kreutzer | Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets[END_REF].

In this demand for large raw textual corpora we can observe a clear back and forth in the type of data used to pre-train these models. On one hand some authors have opted for highly curated or edited data like Wikipedia such as [START_REF] Al-Rfou | Polyglot: Distributed word representations for multilingual NLP[END_REF] and [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF] for static word embeddings, the 1B Word Benchmark [START_REF] Chelba | One billion word benchmark for measuring progress in statistical language modeling[END_REF] for ELMo [START_REF] Peters | Deep contextualized word representations[END_REF], and the BookCorpus (Zhu et al., 2015) and Wikipedia for BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF]. On the other hand projects like those of [START_REF] Pennington | GloVe: Global vectors for word representation[END_REF] or [START_REF] Grave | Learning word vectors for 157 languages[END_REF] used crawled data for the pre-training of fixed word embeddings, CamemBERT [START_REF] Martin | CamemBERT: a tasty French language model[END_REF], our contextualized model for French, successfully used only Crawled data for pretraining, and even large generative language models like T5 have used mainly crawled data successfully [START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF]. We can of course also see examples of projects successfully using a mix of both manually curated and automatically crawled data such as RoBERTa [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF], FauBERT (Le et al., 2020b), XLNet [START_REF] Yang | Xlnet: Generalized autoregressive pretraining for language understanding[END_REF] and GPT-Neo [START_REF] Black | GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow. If you use this software[END_REF][START_REF] Gao | The Pile: An 800GB Dataset of Diverse Text for Language Modeling[END_REF]. However, no matter the chosen approach to build these large corpora, there are in every case concerns that have been expressed, specially for the datasets used in very large generative language models [START_REF] Bender | On the dangers of stochastic parrots: Can language models be too big?[END_REF], even when using manually edited resources like Wikipedia [START_REF] Barera | Mind the gap: Addressing structural equity and inclusion on wikipedia[END_REF].

Demand for Large Corpora

Problems with Crawled Corpora

Corpora collected by web crawlers are known to be noisy [START_REF] Junczys-Dowmunt | Microsoft translator at WMT 2019: Towards largescale document-level neural machine translation[END_REF][START_REF] Luccioni | What's in the box? an analysis of undesirable content in the Common Crawl corpus[END_REF]. In highly multilingual settings, past work found that web-crawls of lower-resource languages have serious issues, especially with segmentlevel LangID [START_REF] Caswell | Language ID in the wild: Unexpected challenges on the path to a thousand-language web text corpus[END_REF]. Cleaning and filtering web-crawls can boost general language modeling [START_REF] Gao | The Pile: An 800GB Dataset of Diverse Text for Language Modeling[END_REF][START_REF] Brown | Language models are few-shot learners[END_REF][START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF] and downstream task performance [START_REF] Moore | Intelligent selection of language model training data[END_REF][START_REF] Rarrick | MT detection in web-scraped parallel corpora[END_REF][START_REF] Xu | Zipporah: a fast and scalable data cleaning system for noisy web-crawled parallel corpora[END_REF][START_REF] Khayrallah | On the impact of various types of noise on neural machine translation[END_REF][START_REF] Brown | Language models are few-shot learners[END_REF].

As the scale of ML research grows, it becomes increasingly difficult to validate automatically collected and curated datasets [START_REF] Biderman | Pitfalls in Machine Learning Research: Reexamining the Development Cycle[END_REF][START_REF] Birhane | Large image datasets: A pyrrhic win for computer vision?[END_REF][START_REF] Bender | On the dangers of stochastic parrots: Can language models be too big?[END_REF]. Several works have focused on advancing methodologies and best practices to address these challenges. [START_REF] Bender | Data statements for natural language processing: Toward mitigating system bias and enabling better science[END_REF] introduced data statements, a documentary framework for NLP datasets that seeks to provide a universal minimum bar for dataset description. Similar work has been done on systematizing documentation in other areas in data science and machine learning, including work focusing on online news [START_REF] Vincentius Kevin | Information nutrition labels: A plugin for online news evaluation[END_REF], data ethics [START_REF] Sun | Mithralabel: Flexible dataset nutritional labels for responsible data science[END_REF], and data exploration [START_REF] Holland | The Dataset Nutrition Label: A Framework To Drive Higher Data Quality Standards[END_REF], as well as generalist work such as [START_REF] Gebru | Datasheets for Datasets[END_REF]. Data quality is also implicitly documented by successes of filtering methods. There is a large literature on filtering data for various NLP tasks, e.g. [START_REF] Axelrod | Domain adaptation via pseudo in-domain data selection[END_REF][START_REF] Moore | Intelligent selection of language model training data[END_REF][START_REF] Rarrick | MT detection in web-scraped parallel corpora[END_REF][START_REF] Wang | Denoising neural machine translation training with trusted data and online data selection[END_REF][START_REF] Kamholz | PanLex: Building a resource for panlingual lexical translation[END_REF][START_REF] Junczys-Dowmunt | Dual conditional cross-entropy filtering of noisy parallel corpora[END_REF][START_REF] Caswell | Language ID in the wild: Unexpected challenges on the path to a thousand-language web text corpus[END_REF]. [START_REF] Qi | When and why are pre-trained word embeddings useful for neural machine translation[END_REF]; WMT-5: cs, de, fi, lv, ro. POS/DEP-5: part-of-speech labeling and dependency parsing for bg, ca, da, fi, id.

Publically Available Web-based Corpora

Table 2.1 provides an overview of the corpora of interest in this work. We selected the corpora for their multilinguality and the inclusion of understudied languages in NLP. With the exception of WikiMatrix and ParaCrawl, all corpora are derived from Common Crawl (CC).7 

CCAligned [START_REF] El-Kishky | CCAligned: A massive collection of cross-lingual web-document pairs[END_REF] is a parallel dataset built off 68 CC snapshots. Documents are aligned if they are in the same language according to FastText LangID [START_REF] Joulin | FastText.zip: Compressing text classification models[END_REF][START_REF] Joulin | Bag of tricks for efficient text classification[END_REF], and have the same URL but for a differing language code. These alignments are refined with cross-lingual LASER embeddings [START_REF] Artetxe | Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond[END_REF]. For sentence-level data, they split on newlines and align with LASER, but perform no further filtering. Human annotators evaluated the quality of document alignments for six languages (de, zh, ar, ro, et, my) 8 selected for their different scripts and amount of retrieved documents, reporting precision of over 90%. The quality of the extracted parallel sentences was evaluated in a machine translation (MT) task on six European (da, cr, sl, sk, lt, et) languages of the TED corpus [START_REF] Qi | When and why are pre-trained word embeddings useful for neural machine translation[END_REF], where it compared favorably to systems built on crawled sentences from WikiMatrix and ParaCrawl v6.

Multilingual C4 (mC4) (Xue et al., 2021) is a document-level dataset used for training the mT5 language model. It consists of monolingual text in 101 languages and is generated from 71 CC snapshots. It filters out pages that contain less than three lines of at least 200 characters and pages that contain bad words. 9 Since this is a document-level dataset, we split it by sentence and deduplicate it before rating. For language identification, it uses CLD3 [START_REF] Botha | Natural language processing with small feedforward networks[END_REF], 10 a small feed-forward neural network that was trained to detect 107 languages. The mT5 model pre-trained on mC4 is evaluated on 6 tasks of the XTREME benchmark [START_REF] Hu | XTREME: A massively multilingual multi-task benchmark for evaluating cross-lingual generalisation[END_REF] covering a variety of languages and outperforms other multilingual pre-trained language models such as mBERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] and XLM-R [START_REF] Conneau | Unsupervised cross-lingual representation learning at scale[END_REF].

OSCAR [START_REF] Javier | Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures[END_REF]Ortiz Suárez et al., 2020b) our own corpus, to which we devote the whole Part II of this Ph.D thesis, is a set of monolingual corpora extracted from CC snapshots, specifically from the plain text WET format distributed by CC which removes all the HTML tags and converts the text to UTF-8. It is deduplicated and follows the approach by [START_REF] Grave | Learning word vectors for 157 languages[END_REF] of using FastText LangID [START_REF] Joulin | FastText.zip: Compressing text classification models[END_REF][START_REF] Joulin | Bag of tricks for efficient text classification[END_REF] on a line-level. 11,12 No other filtering was applied. For five languages (bg, ca, da, fi, id) OSCAR was used by its original authors to train language models which were then evaluated on parsing and POS tagging (Ortiz Suárez et al., 2020b). OSCAR has also been used in independent studies to train monolingual or multilingual language models (ar, as, bn, de, el, fr, gu, he, hi, kn, ml, mr, nl, or, pa, ro, ta, te) and subsequently evaluate them on various downstream tasks [START_REF] Wissam Antoun | AraELECTRA: Pre-training text discriminators for Arabic language understanding[END_REF][START_REF] Kakwani | IndicNLPSuite: Monolingual corpora, evaluation benchmarks and pre-trained multilingual language models for Indian languages[END_REF][START_REF] Wilie | IndoNLU: Benchmark and resources for evaluating Indonesian natural language understanding[END_REF][START_REF] Chan | German's next language model[END_REF][START_REF] Koutsikakis | Greek-bert: The greeks visiting sesame street[END_REF][START_REF] Martin | CamemBERT: a tasty French language model[END_REF][START_REF] Chriqui | HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition[END_REF][START_REF] Seker | AlephBERT:A Hebrew Large Pre-Trained Language Model to Start-off your Hebrew NLP Application With[END_REF][START_REF] Delobelle | RobBERT: a Dutch RoBERTa-based Language Model[END_REF][START_REF] Dumitrescu | The birth of Romanian BERT[END_REF][START_REF] Masala | RoBERT -a Romanian BERT model[END_REF]. ParaCrawl v7.1 is a parallel dataset with 41 language pairs primarily aligned with English (39 out of 41) and mined using the parallel-data-crawling tool Bitextor [START_REF] Esplà | ParaCrawl: Web-scale parallel corpora for the languages of the EU[END_REF][START_REF] Bañón | ParaCrawl: Web-scale acquisition of parallel corpora[END_REF] which includes downloading documents, preprocessing and normalization, aligning documents and segments, and filtering noisy data via Bicleaner. 13 ParaCrawl focuses on European languages, but also includes 9 lower-resource, non-European language pairs in v7.1. Sentence alignment and sentence pair filtering choices were optimized for five languages (mt, et, hu, cs, de) by training and evaluating MT models on the resulting parallel sentences. An earlier version (v5) was shown to improve translation quality on WMT benchmarks for cs, de, fi, lv, ro.

WikiMatrix [START_REF] Schwenk | WikiMatrix: Mining 135M parallel sentences in 1620 language pairs from Wikipedia[END_REF] is a public dataset containing 135M parallel sentences in 1620 language pairs (85 languages) mined from Wikipedia. Out of the 135M parallel sentences, 34M are aligned with English. The text is extracted from Wikipedia pages, split into sentences, and duplicate sentences are removed. FastText LangID is used before identifying bitext with LASER's distance-based mining approach. The margin threshold is optimized by training and evaluating downstream MT models on four WMT benchmarks (de-en, de-fr, cs-de, cs-fr). The final dataset is used to train translation models that are then evaluated by automatically measuring the quality of their translations against human translations of TED talks in 45 languages, with highest quality for translations between English and e.g. pt, es, da, and lowest for sr, ja, mr, zh_TW.

Historical French Corpora

Large datasets for historical states of languages or extinct languages do exist. The Corpus Middelnederlands for Medieval Dutch [START_REF] Reenen | Corpus middelnederlands[END_REF] and the Base Geste for Medieval French (Jean-Baptiste- [START_REF] Alicecochet | Geste: Geste: un corpus de chansons de geste[END_REF] are freely available online, encoded in TEI. It is also the case for other corpora for later states of language, such as the Reference corpus of historical Slovene, covering approximately three centuries of Slovene (1584-1899) [START_REF] Erjavec | Reference corpus of historical slovene goo300k 1.2. Slovenian language resource repository CLARIN[END_REF], and the "corpus noyau" of Presto (Blumenthal and Vigier, 2018). This last corpus, in its extended version, uses other French corpora such as Espistemon for Renaissance French (Demonet, 1998-) and the University of Chicago's American and French Research on the Treasury of the French Language (ARTFL) [START_REF] Morrissey | American and french research on the treasury of the french language (artfl)[END_REF]; or like Frantext (ATILF, 1998-b), which is a generalist French corpus, covering the different states of the French language between the 11 th and the 21 st century. Although most of these text collections are free, the two biggest ones, Frantext and ARTFL, are not freely available or open-sourced.

Regarding corpora annotated corpora for historical languages, very few of them have manually annotated syntactical resources for their medieval states. English has three such treebanks (Archive, 2001;[START_REF] Kroch | The Penn-Helsinki Parsed Corpus of Middle English (PPCME2). CD-ROM[END_REF][START_REF] Closs | Coding the York-Toronto-Helsinki Parsed Corpus of Old English Prose to investigate the syntaxpragmatics interface[END_REF] for Old and Middle English. The TOROT treebank for Old Church Slavonic, Old East Slavonic and Middle Russian is another large resource [START_REF] Berdicevskis | A diachronic treebank of Russian spanning more than a thousand years[END_REF]. There is a treebank for Medieval Latin as well, the Index Thomisticus Treebank [START_REF] Passarotti | The Project of the Index Thomisticus Treebank[END_REF]. To our knowledge, the last large treebank containing medieval texts is IcePaHC for Icelandic [START_REF] Eiríkur Rögnvaldsson | The Icelandic parsed historical corpus (IcePaHC)[END_REF]. Some other corpora were annotated automatically in order to reduce the cost of annotation. For example, [START_REF] Vitor | Automated Creation of a Medieval Portuguese Partial Treebank[END_REF] adapted a parsing pipeline for contemporary Portuguese and [START_REF] Lee | A dependency treebank of Chinese Buddhist texts[END_REF] used a previously annotated treebank [START_REF] Lee | A dependency treebank of classical Chinese poems[END_REF] to parse a larger medieval Chinese corpus. Concerning contemporary regional Romance languages, [START_REF] Miletic | Building a Universal Dependencies treebank for Occitan[END_REF] also used a smaller treebank to generate new annotations, and concluded that using similar languages to train a model does not improve parsing. Although there are many resources for Latin, and some for Ancient Greek, we do not include them here, because they do not face the same challenges as medieval states of language, in particular the high level of spelling variability. And of course for Medieval French there is the SRCMF treebank that will be extensively used in chapter 14.

On Language Models and

Downstream Tasks

In which we give a brief overview of word representations, we present a few of the non-English representations that were available when we began this Ph.D. thesis. We also give an overview of the downstream tasks that we will use for evaluation as well as brief description of the state-of-the-art models that were available when we started working on these tasks. We finally give an overview of the available neural models for historical languages.

Language models and more specifically word representations take a central part in the approach that we have chosen to tackle the tasks laid by the BASNUM project. In this chapter we give an overview of the available word representations that were available we began this Ph.D. thesis as well as a small description of the architecture of said representations.

We will also discuss the downstream tasks that we will use for evaluation focusing on particular on what was available for the French language throughout the course of this Ph.D. thesis. We also give briefly discuss the state-of-the-art models and studies for these tasks. Finally, we end the chapter by discussing some advancements in neural models for historical languages.

On Word Representations

One of the key elements that has pushed the state of the art considerably in neural NLP in recent years has been the introduction and spread of transfer learning methods to the field. These methods can normally be classified in two categories according to how they are used:

• Feature-based methods, which involve pre-training real-valued vectors ("embeddings") at the word, sentence, or paragraph level; and using them in conjunction with a specific architecture for each individual downstream task.

• Fine-tuning methods, which introduce a minimal number of task-specific parameters, and instead copy the weights from a pre-trained network and then tune them to a particular downstream task.

Embeddings or language models can be divided into fixed, meaning that they generate a single representation for each word in the vocabulary; and contextualized, meaning that a representation is generated based on both the word and its surrounding context, so that a single word can have multiple representations, each one depending on how it is used.

In practice, most fixed embeddings are used as feature-based models. The most notable examples are word2vec [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF], GloVe [START_REF] Pennington | GloVe: Global vectors for word representation[END_REF] and FastText [START_REF] Mikolov | Advances in pre-training distributed word representations[END_REF]. All of them are extensively used in a variety of applications nowadays. On the other hand, contextualized word representations and language models have been developed using both feature-based architectures, the most notable examples being ELMo and Flair [START_REF] Peters | Deep contextualized word representations[END_REF][START_REF] Akbik | Contextual string embeddings for sequence labeling[END_REF], and transformer based architectures, that are commonly used in a fine-tune setting, as is the case of GPT-1, GPT-2 [START_REF] Radford | Improving language understanding by generative pre-training[END_REF][START_REF] Radford | Language models are unsupervised multitask learners[END_REF], BERT and its derivatives [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF][START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF][START_REF] Lan | ALBERT: A lite BERT for self-supervised learning of language representations[END_REF] and more recently XLNet [START_REF] Yang | Xlnet: Generalized autoregressive pretraining for language understanding[END_REF] and T5 [START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF]. All of them have repeatedly improved the state-of-the art in many downstream NLP tasks over the last year.

In general, the main advantage of using language models is that they are mostly built in an unsupervised manner, and they can be trained with raw, unannotated plain text. However, their main drawback is that enormous quantities of data seem to be required to properly train them especially in the case of contextualized models, for which larger corpora are thought to be needed to properly address polysemy and cover the wide range of uses that commonly exist within languages.

For the first English version of word2vec, [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF] used a one billion word dataset consisting of various news articles. Later [START_REF] Al-Rfou | Polyglot: Distributed word representations for multilingual NLP[END_REF] and then [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF] used the plain text from Wikipedia to train distributions of word2vec and FastText respectively, for languages other than English. Now, the problem of obtaining large quantities of data aggravates even more for contextual models, as they normally need multiple instances of a given word in order to capture all its different uses and in order to avoid overfitting due to the large quantity of hyperparameters that these models have. [START_REF] Peters | Deep contextualized word representations[END_REF] for example use a 5.5 billion token1 dataset comprised of crawled news articles plus the English Wikipedia in order to train ELMo, [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] use a 3.3 billion word2 corpus made by merging the English Wikipedia with the BooksCorpus (Zhu et al., 2015), and [START_REF] Radford | Language models are unsupervised multitask learners[END_REF] use a 40GB English corpus created by scraping outbound links from Reddit. 3For gathering data in a wide range of languages, Wikipedia is a commonly used option. It has been used to train fixed embeddings [START_REF] Al-Rfou | Polyglot: Distributed word representations for multilingual NLP[END_REF][START_REF] Bojanowski | Enriching word vectors with subword information[END_REF] and more recently the multilingual BERT (mBERT) [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF]. However, for some languages, Wikipedia might not be large enough to train good quality contextualized word embeddings. Moreover, Wikipedia data all belong to the same specific genre and style. To address this problem, one can resort to crawled text from the internet; the largest and most widespread dataset of crawled text being Common Crawl. 4 Such an approach generally solves the quantity and genre/style coverage problems but might introduce noise in the data, an issue which has earned the corpus some criticism, most notably by Trinh and [START_REF] Trieu | A Simple Method for Commonsense Reasoning[END_REF] and [START_REF] Radford | Language models are unsupervised multitask learners[END_REF]. Using Common Crawl also leads to data management challenges as the corpus is distributed in the form of a large set of plain text each containing a large quantity of unclassified multilingual documents from different websites.

Concerning contextual models, [START_REF] Baevski | Cloze-driven pretraining of self-attention networks[END_REF] trained a BERT-like model for English using Common Crawl. They followed the "fastText pre-processing pipeline" but they removed all copies of Wikipedia inside Common Crawl. They also trained their model using News Crawl [START_REF] Bojar | Findings of the 2018 conference on machine translation (WMT18)[END_REF] and using Wikipedia + BooksCorpus, they compared three models and showed that Common Crawl gives the best performance out of the three corpora in spite of the previously mentioned criticism.

The XLNet model was trained for English by joining the BookCorpus, English Wikipedia, Giga5 [START_REF] Parker | English gigaword fifth edition, linguistic data consortium[END_REF], ClueWeb 2012-B [START_REF] Callan | Clueweb09 data set[END_REF] and Common Crawl. Particularly for Common Crawl, [START_REF] Yang | Xlnet: Generalized autoregressive pretraining for language understanding[END_REF] say they use "heuristics to aggressively filter out short or low-quality articles" from Common Crawl, however they don't give any detail about these "heuristics" nor about the pipeline they use to classify and extract the English part of Common Crawl. It is important to note that none of these projects distributed their classified, filtered and cleaned versions of Common Crawl, making it difficult in general to faithfully reproduce their results.

Some Language Model Architectures

ELMo: Contextualized word embeddings Embeddings from Language Models (ELMo) [START_REF] Peters | Deep contextualized word representations[END_REF]) is a Language Model, i.e, a model that given a sequence of 𝑁 tokens, (𝑡 1 , 𝑡 2 , ..., 𝑡 𝑁 ), computes the probability of the sequence by modeling the probability of token 𝑡 𝑘 given the history (𝑡 1 , ..., 𝑡 𝑘-1 ):

𝑝(𝑡 1 , 𝑡 2 , … , 𝑡 𝑁 ) = 𝑁 ∏ 𝑘=1 𝑝(𝑡 𝑘 | 𝑡 1 , 𝑡 2 , … , 𝑡 𝑘-1 ).
4 https://commoncrawl.org 23 More precisely, ELMo uses a bidirectional language model, which combines a forward and a backward LSTM-based language model. ELMo also computes a contextindependent token representation via a CNN over characters.

BERT and RoBERTa BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] is a multi-layer bidirectional Transformer encoder trained with a masked language modeling (MLM) objective, inspired by the Cloze task [START_REF] Taylor | cloze procedure": A new tool for measuring readability[END_REF]. It comes in two sizes: the BERT BASE architecture and the BERT LARGE architecture. The BERT BASE architecture is 3 times smaller and therefore faster and easier to use while BERT LARGE achieves increased performance on downstream tasks. RoBERTa [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF] improves the original implementation of BERT by identifying key design choices for better performance, using dynamic masking, removing the next sentence prediction task, training with larger batches, on more data, and for longer.

Non-English Word Representations

Since the introduction of word2vec [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF], many attempts have been made to create multilingual language representations; for fixed word embeddings the most remarkable works are those of [START_REF] Al-Rfou | Polyglot: Distributed word representations for multilingual NLP[END_REF] and [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF] who created word embeddings for a large quantity of languages using Wikipedia, and later [START_REF] Grave | Learning word vectors for 157 languages[END_REF] who trained the FastText word embeddings for 157 languages using Common Crawl and who in fact showed that using crawled data significantly increased the performance of the embeddings especially for midto low-resource languages.

Regarding contextualized models, the most notable non-English contribution has been that of the mBERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF], which is distributed as (i) a single multilingual model for 100 different languages trained on Wikipedia data, and as (ii) a single multilingual model for both Simplified and Traditional Chinese. Four monolingual fully trained ELMo models have been distributed for Japanese, Portuguese, German and Basque;5 44 monolingual ELMo models6 where also released by the HIT-SCIR team [START_REF] Che | Towards better UD parsing: Deep contextualized word embeddings, ensemble, and treebank concatenation[END_REF] during the CoNLL 2018 Shared Task [START_REF] Daniel Zeman | CoNLL 2018 shared task: Multilingual parsing from raw text to Universal Dependencies[END_REF], but their training sets where capped at 20 million words.

Following the success of large pre-trained language models, they were extended to the multilingual setting with multilingual BERT (hereafter mBERT) [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF], a single multilingual model for 104 different languages trained on Wikipedia data, and later XLM [START_REF] Conneau | Cross-lingual language model pretraining[END_REF], which significantly improved unsupervized machine translation. More recently XLM-R [START_REF] Conneau | Unsupervised cross-lingual representation learning at scale[END_REF], extended XLM by training on 2.5TB of data and outperformed previous scores on multilingual benchmarks. They show that multilingual models can obtain results

Non-English Word Representations

competitive with monolingual models by leveraging higher quality data from other languages on specific downstream tasks.

A few non-English monolingual models had been released at the beginning of this thesis: ELMo models for Japanese, Portuguese, German and Basque7 and BERT for Simplified and Traditional Chinese [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] and German [START_REF] Chan | German bert[END_REF].

However, to the best of our knowledge, at the beginning of this Ph.D. thesis, no particular effort had been made toward training models for languages other than English at a scale similar to the latest English models (e.g. RoBERTa trained on more than 100GB of data).

Recent Developments in Contextualized Representations

Since the introduction of contextualized word representations [START_REF] Peters | Deep contextualized word representations[END_REF][START_REF] Akbik | Contextual string embeddings for sequence labeling[END_REF][START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] and the many improvements proposed for them in the consumption of computational resources [START_REF] Clark | Electra: Pre-training text encoders as discriminators rather than generators[END_REF], in the amount of data required to fine-tune them [START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF], and more recently in the length of the contextual window [START_REF] Xiong | Nyströmformer: A nyström-based algorithm for approximating self-attention[END_REF]; there have also been important advancements from a digital humanities point of view on unsupervised domain adaptation [START_REF] Ramponi | Neural unsupervised domain adaptation in NLP-A survey[END_REF]. In this case, one specializes a language model to a particular domain with unlabeled data in order to improve performance in downstream tasks. This can be achieved by pre-training the models from scratch with specialized data [START_REF] Beltagy | SciBERT: A pretrained language model for scientific text[END_REF] or by continuing the training of a general model with a new corpus [START_REF] Lee | BioBERT: a pre-trained biomedical language representation model for biomedical text mining[END_REF][START_REF] Peng | Transfer learning in biomedical natural language processing: An evaluation of BERT and ELMo on ten benchmarking datasets[END_REF]. This last method has already been successfully implemented in the context of historical languages, in particular [START_REF] Han | Unsupervised domain adaptation of contextualized embeddings for sequence labeling[END_REF] showed that one can successfully adapt the original BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] to Early Modern English by continuing the pre-training on historical raw texts.

In a multilingual context, transformer-based models such as mBERT have been adapted to low-resource languages and evaluated in dependency parsing and POStagging showing promising results [START_REF] Chau | Parsing with multilingual BERT, a small corpus, and a small treebank[END_REF][START_REF] Muller | When being unseen from mBERT is just the beginning: Handling new languages with multilingual language models[END_REF][START_REF] Gururangan | Don't stop pretraining: Adapt language models to domains and tasks[END_REF]Wang et al., 2020b). However, this multilingual approach has also been criticized for favoring monolingual pre-training even when data is scarce [START_REF] Virtanen | Multilingual is not enough: BERT for Finnish[END_REF]Ortiz Suárez et al., 2020b). Indeed, even when only small pre-training corpora are available, BERT-like models have also been successfully pre-trained, resulting in well-performing models [START_REF] Micheli | On the importance of pre-training data volume for compact language models[END_REF]. Furthermore, compact BERT-like models have also been studied [START_REF] Turc | Well-Read Students Learn Better: On the Importance of Pre-training Compact Models[END_REF] and might prove useful in data constrained conditions, such as monolingual pre-training of contextualized word representation for low-resource languages. In any case BERT-Like models have been one of the most prolific subjects of study in NLP since the start of this Ph.D. thesis [START_REF] Rogers | A primer in BERTology: What we know about how BERT works[END_REF].

Downstream Tasks Evaluation

POS-Tagging and Dependency Parsing POS-tagging is a low-level syntactic task, which consists in assigning to each word its corresponding grammatical category. Dependency-parsing consists of higher order syntactic task like predicting the labeled syntactic tree capturing the syntactic relations between words. We evaluate the performance of our models throughout this text, by using the standard UPOS accuracy for POS-tagging, and Unlabeled Attachment Score (UAS) and Labeled Attachment Score (LAS) for dependency parsing. We will always assume gold tokenization and gold word segmentation as provided in the UD treebanks.

For both of these tasks we always run our experiments using the Universal Dependencies (UD) 8 framework and its corresponding UD POS tag set [START_REF] Petrov | A universal part-of-speech tagset[END_REF] and UD treebank collection (Nivre et al., 2018), which was used for the CoNLL 2018 shared task [START_REF] Seker | Universal morpho-syntactic parsing and the contribution of lexica: Analyzing the ONLP lab submission to the CoNLL 2018 shared task[END_REF]. We often perform the evaluations of our Contemporary French models on the four freely available French UD treebanks in UD v2.2: GSD [START_REF] Mcdonald | Universal Dependency annotation for multilingual parsing[END_REF], Sequoia9 [START_REF] Candito | Le corpus sequoia : annotation syntaxique et exploitation pour l'adaptation d'analyseur par pont lexical (the sequoia corpus : Syntactic annotation and use for a parser lexical domain adaptation method)[END_REF][START_REF] Candito | Deep syntax annotation of the sequoia French treebank[END_REF], Spoken [START_REF] Lacheret | Rhapsodie: a prosodic-syntactic treebank for spoken French[END_REF][START_REF] Bawden | Correcting and validating syntactic dependency in the spoken French treebank rhapsodie[END_REF], 10 and ParTUT [START_REF] Sanguinetti | PartTUT: The Turin University Parallel Treebank[END_REF].

Natural Language Inference (NLI) We will further evaluate some of our models on NLI, using the French part of the XNLI dataset [START_REF] Conneau | XNLI: Evaluating cross-lingual sentence representations[END_REF]. NLI consists in predicting whether a hypothesis sentence is entailed, neutral or contradicts a premise sentence. The XNLI dataset is the extension of the Multi-Genre NLI (MultiNLI) corpus [START_REF] Williams | A broad-coverage challenge corpus for sentence understanding through inference[END_REF] to 15 languages by translating the validation and test sets manually into each of those languages. The English training set is machine translated for all languages other than English. The dataset is composed of 122k train, 2490 development and 5010 test examples for each language. As usual, NLI performance is evaluated using accuracy.

Named Entity Recognition (NER) Finally, we also evaluate our models in NER, which is a sequence labeling task predicting which words refer to real-world objects, such as people, locations, artifacts and organizations. We use the French Treebank11 (FTB) [START_REF] Abeillé | Building a Treebank for French[END_REF] in its 2008 version introduced by [START_REF] Candito | Improving generative statistical parsing with semi-supervised word clustering[END_REF] and with NER annotations by Sagot et al. (2012). The FTB contains more than 11 thousand entity mentions distributed among 7 different entity types. A brief overview of the FTB can also be found in Table 3.1. As NER plays a central role in this Ph.D. thesis, beign the task in which we evaluate our models the most, we give an expanded overview of the task in the following paragraphs.

Named Entity Recognition

Named entity recognition (NER) is the widely studied task consisting in identifying text spans that denote named entities such as person, location and organization names, to name the most important types. Such text spans are called named entity mentions. In NER, mentions are generally not only identified, but also classified according to a more or less fine-grained ontology, thereby allowing for instance to distinguish between the telecommunication company Orange and the town Orange in southern France (among others). Importantly, it has long been recognized that the type of named entities can be defined in two ways, which underlies the notion of metonymy: the intrinsic type (France is always a location) and the contextual type (in la France a signé un traité 'France signed a treaty', France denotes an organization).

NER has been an important task in natural language processing for quite some time. It was already the focus of the MUC conferences and associated shared tasks [START_REF] Marsh | MUC-7 evaluation of IE technology: Overview of results[END_REF], and later that of the CoNLL 2003 and ACE shared tasks [START_REF] Tjong | Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition[END_REF][START_REF] Doddington | The automatic content extraction (ACE) program -tasks, data, and evaluation[END_REF]. Traditionally, as for instance was the case for the MUC shared tasks, only person names, location names, organization names, and sometimes "other proper names" are considered. However, the notion of named entity mention is sometimes extended to cover any text span that does not follow the general grammar of the language at hand, but a type-and often culture-specific grammar, thereby including entities ranging from product and brand names to dates and from URLs to monetary amounts and other types of numbers.

As for many other tasks, NER was first addressed using rule-based approaches, followed by statistical and now neural machine learning techniques (see Section 3.3.3 for a brief discussion on NER approaches). Of course, evaluating NER systems as well as training machine-learning-based NER systems, statistical or neural, require named-entity-annotated corpora. Unfortunately, most named entity annotated French corpora are oral transcripts, and they are not always freely available. The ES-TER and ESTER2 corpora (60 plus 150 hours of NER-annotated broadcast transcripts) [START_REF] Galliano | The ESTER phase II evaluation campaign for the rich transcription of French broadcast news[END_REF][START_REF] Galliano | The ester 2 evaluation campaign for the rich transcription of French radio broadcasts[END_REF], as well as the Quaero [START_REF] Grouin | Proposal for an extension of traditional named entities: From guidelines to evaluation, an overview[END_REF] corpus are based on oral transcripts (radio broadcasts). Interestingly, the Quaero corpus relies on an original, very rich and structured definition of the notion of named entity [START_REF] Rosset | Entités nommées structurées : guide d'annotation quaero[END_REF]. It contains both the intrinsic and the contextual types of each mention, whereas the ESTER and ESTER2 corpora only provide the contextual type.

Evaluation Datasets

Treebanks As previously stated, we perform most our evaluations on the four freely available French UD treebanks in UD v2.2: GSD, Sequoia, Spoken, and ParTUT, presented in Table 3.1.

GSD treebank [START_REF] Mcdonald | Universal Dependency annotation for multilingual parsing[END_REF] is the second-largest tree-bank available for French after the FTB (described in subsection 3.3.1), it contains data from blogs, news, reviews, and Wikipedia.

Sequoia tree-bank [START_REF] Candito | Deep syntax annotation of the sequoia French treebank[END_REF] comprises more than 3000 sentences, from the French Europarl, the regional newspaper L'Est Républicain, the French Wikipedia and documents from the European Medicines Agency.

Spoken was automatically converted from the Rhapsodie tree-bank [START_REF] Lacheret | Rhapsodie: a prosodic-syntactic treebank for spoken French[END_REF] with manual corrections. It consists of 57 sound samples of spoken French with phonetic transcription aligned with sound (word boundaries, syllables, and phonemes), syntactic and prosodic annotations.

ParTUT is a conversion of a multilingual parallel treebank developed at the University of Turin, and consisting of a variety of text genres, including talks, legal texts, and Wikipedia articles, among others; ParTUT data is derived from the already-existing parallel treebank, Par(allel)TUT [START_REF] Sanguinetti | PartTUT: The Turin University Parallel Treebank[END_REF]. Table 3.1 contains a summary comparing the sizes of the treebanks. Again as we pay special attention to the NER task, and we actually work directly on the FTB by aligning both the Universal Dependencies and the TEI-annotated NER version of it in section 9.2.1, we provide an expanded overview of the corpus here below.

The original named entity FTB annotation layer Sagot et al. (2012) annotated the FTB with the span, absolute type, 12 sometimes subtype and Aleda unique identifier of each named entity mention. 13 Annotations are restricted to person, location, organization and company names, as well as a few product names. 14 There are no nested entities. Non capitalized entity mentions (e.g. banque mondiale 'World Bank') are annotated only if they can be disambiguated independently of their context. Entity mentions that require the context to be disambiguated (e.g. Banque centrale) are only annotated if they are capitalized. 15 For person names, grammatical or contextual words around the mention are not included in the mention (e.g. in M. Jacques Chirac or le Président Jacques Chirac, only Jacques Chirac is included in the mention).

Tags used for the annotation have the following information:

• the identifier of the NE in the free large-scale entity database for French Aleda database (Sagot and Stern, 2012) (eid attribute); when a named entity is not present in the database, the identifier is null,16 

• the normalized named of the named entity as given in Aleda; for locations it is their name as given in GeoNames and for the others, it is the title of the corresponding French Wikipedia article,

• the type and, when relevant, the subtype of the entity.

Here are two annotation examples:

<ENAMEX type="Organization" eid="1000000000016778" name="Confédération française démocratique du travail">CFDT</ENAMEX> <ENAMEX type="Location" sub_type="Country" eid="2000000001861060" name="Japan">Japon</ENAMEX> Sagot et al. (2012) annotated the 2007 version of the FTB treebank (with the exception of sentences that did not receive any functional annotation), i.e. 12,351 sentences comprising 350,931 tokens. The annotation process consisted in a manual correction and validation of the output of a rule-and heuristics-based named entity recognition and linking tool in an XML editor. Only a single person annotated the corpus, despite the limitations of such a protocol, as acknowledged by Sagot et al. (2012).

In total, 5,890 of the 12,351 sentences contain at least a named entity mention. 11,636 mentions were annotated, which are distributed as follows: 3,761 location names, 3,357 company names, 2,381 organization names, 2,025 person names, 67 product names, 29 fiction character names and 15 points of interest.

Brief State of the Art for Dependency Parsing and POS Tagging

For dependency parsing and POS tagging the most notable non-English specific contribution is that of the CoNLL 2018 Shared Task [START_REF] Daniel Zeman | CoNLL 2018 shared task: Multilingual parsing from raw text to Universal Dependencies[END_REF], where the 1 st place (LAS Ranking) was awarded to the HIT-SCIR team [START_REF] Che | Towards better UD parsing: Deep contextualized word embeddings, ensemble, and treebank concatenation[END_REF] who used Dozat and Manning (2017)'s Deep Bi-affine parser and its extension described in (Dozat et al., 2017), coupled with deep contextualized ELMo embeddings [START_REF] Peters | Deep contextualized word representations[END_REF] [START_REF] Straka | UDPipe 2.0 prototype at CoNLL 2018 UD shared task[END_REF], with mBERT greatly improving the scores of the original model, and UDify [START_REF] Kondratyuk | 75 languages, 1 model: Parsing Universal Dependencies universally[END_REF], which adds an extra attention layer on top of mBERT plus a Deep Bi-affine attention layer for dependency parsing and a Softmax layer for POS tagging. UDify is actually trained by concatenating the training sets of 124 different UD treebanks, creating a single POS tagging and dependency parsing model that works across 75 different languages.

Brief State of the Art for NER

As mentioned above, NER was first addressed using rule-based approaches, followed by statistical and now neural machine learning techniques. In addition, many systems use a lexicon of named entity mentions, usually called a "gazetteer" in this context.

Most of the advances in NER have been achieved on English, in particular with the CoNLL 2003 [START_REF] Tjong | Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition[END_REF] and Ontonotes v5 [START_REF] Sameer Pradhan | CoNLL-2012 shared task: Modeling multilingual unrestricted coreference in OntoNotes[END_REF][START_REF] Sameer Pradhan | Towards robust linguistic analysis using OntoNotes[END_REF] corpora. In recent years, NER was traditionally tackled using Conditional Random Fields (CRF) [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF] which are quite suited for NER; CRFs were later used as decoding layers for Bi-LSTM architectures [START_REF] Huang | Bidirectional LSTM-CRF Models for Sequence Tagging[END_REF][START_REF] Lample | Neural architectures for named entity recognition[END_REF] showing considerable improvements over CRFs alone. These Bi-LSTM-CRF architectures were later enhanced with contextualized word embeddings which yet again brought major improvements to the task [START_REF] Peters | Deep contextualized word representations[END_REF][START_REF] Akbik | Contextual string embeddings for sequence labeling[END_REF]. Finally, large pre-trained architectures settled the current state of the art showing a small yet important improvement over previous NER-specific architectures [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF][START_REF] Baevski | Cloze-driven pretraining of self-attention networks[END_REF].

For French, rule-based system have been developed until relatively recently, due to the lack of proper training data [START_REF] Sekine | Definition, dictionaries and tagger for extended named entity hierarchy[END_REF][START_REF] Rosset | Interaction et recherche d'information : le projet Ritel[END_REF][START_REF] Stern | Resources for Named Entity Recognition and Resolution in News Wires[END_REF][START_REF] Nouvel | Pattern mining for named entity recognition[END_REF]. The limited availability of a few annotated corpora made it possible to apply statistical machine learning techniques [START_REF] Béchet | Unsupervised knowledge acquisition for extracting named entities from speech[END_REF][START_REF] Dupont | A named entity recognizer for French (un reconnaisseur d'entités nommées du français)[END_REF][START_REF] Dupont | Exploration de traits pour la reconnaissance d'entités nommées du français par apprentissage automatique (feature exploration for French named entity recognition with machine learning)[END_REF] as well as hybrid techniques combining handcrafted grammars and machine learning [START_REF] Béchet | Coopération de méthodes statistiques et symboliques pour l'adaptation non-supervisée d'un système d'étiquetage en entités nommées (statistical and symbolic methods cooperation for the unsupervised adaptation of a named entity recognition system)[END_REF]. To the best of our knowledge, the best results previously published on FTB NER are those obtained by [START_REF] Dupont | Exploration de traits pour la reconnaissance d'entités nommées du français par apprentissage automatique (feature exploration for French named entity recognition with machine learning)[END_REF], who trained both CRF and BiLSTM-CRF architectures and improved them using heuristics and pre-trained word embeddings.

Leaving aside French and English, the CoNLL 2002 shared task included NER corpora for Spanish and Dutch corpora [START_REF] Tjong | Introduction to the CoNLL-2002 shared task: Languageindependent named entity recognition[END_REF] while the CoNLL 2003 shared task included a German corpus [START_REF] Tjong | Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition[END_REF]. The recent efforts by [START_REF] Straková | Neural architectures for nested NER through linearization[END_REF] settled the state of the art for Spanish and Dutch, while [START_REF] Akbik | Contextual string embeddings for sequence labeling[END_REF] did so for German.

Common Baselines

In dependency parsing and POS-tagging we will often compare our models with:

• mBERT: The multilingual cased version of BERT. We often fine-tune mBERT on each of the treebanks with an additional layer for POS-tagging and dependency parsing.

• XLM MLM-TLM : A multilingual pretrained language model from Conneau and Lample (2019), which showed better performance than mBERT on NLI. We use the version available in the Hugging's Face transformer library [START_REF] Wolf | HuggingFace's Transformers: State-of-the-art Natural Language Processing[END_REF].

• UDify [START_REF] Kondratyuk | 75 languages, 1 model: Parsing Universal Dependencies universally[END_REF]: A multitask and multilingual model based on mBERT, UDify is trained simultaneously on 124 different UD treebanks, creating a single POS tagging and dependency parsing model that works across 75 different languages. We always report the scores from [START_REF] Kondratyuk | 75 languages, 1 model: Parsing Universal Dependencies universally[END_REF] paper.

• UDPipe Future [START_REF] Straka | UDPipe 2.0 prototype at CoNLL 2018 UD shared task[END_REF]: An LSTM-based model ranked 3 rd in dependency parsing and 6 th in POS tagging at the CoNLL 2018 shared task [START_REF] Seker | Universal morpho-syntactic parsing and the contribution of lexica: Analyzing the ONLP lab submission to the CoNLL 2018 shared task[END_REF]. We always report the scores from [START_REF] Kondratyuk | 75 languages, 1 model: Parsing Universal Dependencies universally[END_REF] paper.

• UDPipe Future + mBERT + Flair [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF]: The original UDPipe Future implementation using mBERT and Flair as feature-based contextualized word embeddings. We always report the scores from [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF] paper.

In French, as discussed avobe, no extensive work has been done on NER due to the limited availability of annotated corpora. Thus, we compare our models with the only recent available baselines set by [START_REF] Dupont | Exploration de traits pour la reconnaissance d'entités nommées du français par apprentissage automatique (feature exploration for French named entity recognition with machine learning)[END_REF], who trained both CRF [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF] and BiLSTM-CRF [START_REF] Lample | Neural architectures for named entity recognition[END_REF] architectures on the FTB and enhanced them using heuristics and pretrained word embeddings. Additionally, as for POS and dependency parsing, we often compare our models to a fine-tuned version of mBERT for the NER task.

For XNLI, we provide the scores of mBERT which has been reported for French by [START_REF] Wu | Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT[END_REF]. We report scores from XLM MLM-TLM (described above), the best model from [START_REF] Conneau | Cross-lingual language model pretraining[END_REF]. We will also report the results of XLM-R [START_REF] Conneau | Unsupervised cross-lingual representation learning at scale[END_REF].

Neural Models for Historical Languages

Efficient language models have been trained for less-resourced or extinct Languages such as Latin [START_REF] Bamman | Latin BERT: A Contextual Language Model for Classical Philology[END_REF], following the approach of [START_REF] Martin | CamemBERT: a tasty French language model[END_REF] for training language models with fewer data than was previously thought. There have also been some recent projects that specifically target Early Modern French such as that of Pie Extended (Clérice, 2020) that uses the hierarchical encoding architecture originally proposed by [START_REF] Manjavacas | Improving lemmatization of non-standard languages with joint learning[END_REF] which itself is constructed by stacking multiple Bi-LSTM-CRFs. Clérice (2020) distributes pre-trained models for POS tagging and lemmatisation.

Lastly, concerning dependency parsing and POS-tagging of Old French in particular, the works of [START_REF] De Balzac | Parsing Poorly Standardized Language Dependency on Old French[END_REF] and [START_REF] Stein | Parsing heterogeneous corpora with a rich dependency grammar[END_REF][START_REF] Stein | Old French dependency parsing: Results of two parsers analysed from a linguistic point of view[END_REF] are noteworthy. However, they use very different approaches to the one used throughout this thesis and evaluate on previous versions of SRCMF, with incompatible annotation choices and slightly different texts. For the UD version of SRCMF, the most notable work is that of UDPipe 2.0 [START_REF] Straka | UDPipe 2.0 prototype at CoNLL 2018 UD shared task[END_REF], which was later enhanced by including contextualized word embeddings [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF]. 2019), introducing the first OSCAR corpus, now known as OSCAR 2019, as well as asynchronous pipeline goclassy that was used to produce OSCAR 2019 and that was specifically conceived to be used in low resource infrastructures. 1As previously mentioned, back in the fall of 2018 when this Ph.D. started, there was no freely available contemporary French corpus of the size that was thought to be needed at that time in order to train a state-of-the art language model. The only available resources were the French Wikipedia and frWAC [START_REF] Baroni | The wacky wide web: a collection of very large linguistically processed web-crawled corpora[END_REF]. At the time, the original fastText's language classification pipeline [START_REF] Grave | Learning word vectors for 157 languages[END_REF] was recently published, but while [START_REF] Grave | Learning word vectors for 157 languages[END_REF] published word embeddings for a wide range of languages using the produced corpus, the corpus itself was never published. We thus decided to reproduce and improve [START_REF] Grave | Learning word vectors for 157 languages[END_REF] in order to get enough raw textual French data to train a language model. Given that our pipeline ended up being capable of classifying text in a wide range of languages, we decided to publish a multilingual corpus instead of a monolingual French one. In this chapter we thus lay the details of the goclassy as well as the first version of the OSCAR corpus.

An Asynchronous Pipeline

We propose a new pipeline derived from the fastText one which we call goclassy, we reuse the fastText linear classifier [START_REF] Joulin | FastText.zip: Compressing text classification models[END_REF][START_REF] Joulin | Bag of tricks for efficient text classification[END_REF] and the pre-trained fastText model for language recognition [START_REF] Grave | Learning word vectors for 157 languages[END_REF], but we completely rewrite and parallelize their pipeline in an asynchronous manner.

The order of operations is more or less the same as in the fastText pre-processing pipeline but instead of clustering multiple operations into a single blocking process, we launch a worker for each operation, and we bound the number of possible parallel operations at a given time by the number of available threads instead of the number of CPUs. We implement goclassy using the Go programming language2 so we let the Go runtime3 handle the scheduling of the processes. Thus, in our pipeline we don't have to wait for a whole WET file to download, decompress and classify in order to start downloading and processing the next one, a new file will start downloading and processing as soon as the scheduler is able to allocate a new process.

When using electromechanical mediums of storage, I/O blocking is one of the main problems one encounters. To overcome this, we introduced buffers in all our I/O operations, a feature that is not present in the fastText pre-processing pipeline. We also create, from the start, a file for each of the 176 languages that the pre-trained fastText language classifier is capable of recognizing, and we always leave them open, as we find that getting a file descriptor to each time we want to write, if we wanted to leave them open just when needed, introduces a big overhead.

We also do the filtering and cleaning processes at line level before feeding each line to the classifier, which makes us create a new filtered file so that we can have a correspondence with the tag file, which in turn will consume more space, but that will also reduce the amount of unnecessary classifications performed by fastText. The filtered and file tags are then read and lines are appended to its corresponding language file. The writing in the classification step is asynchronous, meaning that 4.2 Benchmarks process writing a line to the filtered files does not wait for the classifier to write a tag on the tag file. Figure 4.1 shows the pipeline up to this point.

After all WET files are processed, we then use Isaac Whitfield's deduplication tool runiq 4 which is based on Yann Collet's xxhash64 5 , an extremely fast noncryptographic hash algorithm that is resistant to collisions. We finally use the Mark Adler's pigz6 for data compression, as opposed to the canonical UNIX tools proposed in the original fastText pipeline. We add both tools to our concurrent pipeline, executing multiple instances of them in parallel, in order to ensure we use the most of our available resources at a given time.

Beyond improving the computational time required to classify this corpus, we propose a simple improvement on the cleaning scheme in the fastText pre-processing pipeline. This improvement allows our pipeline to better take into account the multilingual nature of Common Crawl; that is, we count UTF-8 characters instead of bytes for setting the lower admissible bound for the length of a line to be fed into the classifier. This straightforward modification on the fastText pre-processing pipeline assures we take into account the multiple languages present in Common Crawl that use non-ASCII encoded characters.

Given that our implementation is written in Go, we release binary distributions7 of goclassy for all major operating systems. Both pigz and runiq are also available for all major operating systems. We test both pipelines against one another in an infrastructure using traditional electromechanical storage mediums that are connected to the main processing machine via an Ethernet interface, that is, a low I/O speed environment as compared to an infrastructure where one would have an array of SSDs connected directly to the main processing machine via a high speed interface. We use a machine with an Intel ® Xeon ® Processor E5-2650 2.00 GHz, 20M Cache, and 203.1 GiB of RAM. We make sure that no other processes apart from the benchmark and the Linux system processes are run. We do not include downloading, decompression or deduplication in our benchmarks as downloading takes far too much time, and deduplication and compression were performed with third party tools that don't make part of our main contribution. We are mainly interested in seeing how the way the data is fed to the classifier impacts the overall processing time.

Benchmarks

Benchmarks in table 4.1 of our goclassy pipeline show a drastic reduction in processing time compared to the original fastText prepossessing pipeline. We show that in our particular infrastructure, we are capable of reducing the real time as measured by the time UNIX tool almost always by half. The user time which represents the amount of CPU time spent in user-mode code (outside the kernel) within the process is almost three times lower for our goclassy pipeline, this particular benchmark strongly suggest a substantial reduction in energy consumption of goclassy with respect to the fastText pipeline.

As we understand that even an infrastructure with more than 20TB of free space in traditional electromechanical storage is not available to everyone and we propose a simple parametrization in our pipeline that actively deletes already processed data and that only downloads and decompresses files when needed, thus ensuring that no more than 10TB of storage are used at a given time. We nevertheless note that delaying decompression increases the amount of computation time, which is a trade-off that some users might make as it might be more suitable for their available infrastructure.

OSCAR 2019

We are aware that some users might not even have access to a big enough infrastructure to run our pipelines or just to store all the Common Crawl data. Moreover, even if previously used and cited in NLP and Machine Learning research, we note that at the time of OSCAR's 2019 publication there was no public distribution of Common Crawl that was filtered, classified by language and ready to use for Machine Learning or NLP applications. We thus decide to publish a pre-processed version of the November 2018 dump of Common Crawl which comprises usable data in 166 different languages, we publish8 our version under the name OSCAR 2019 which is short for Open Super-large Crawled Aggregated coRpus 2019.

After processing all the data with goclassy, the size of the whole Common Crawl corpus is reduced to 6.3TB, but in spite of this considerable reduction, OSCAR 2019 still dwarfed all previously freely available corpora having more 800 billion "words" or space-separated tokens and noting that this in fact is an understatement of how big OSCAR 2019 really is, as some of the largest subcorpora within OSCAR 2019 such as Chinese and Japanese do not use spaces. The sizes in bytes for both the original and the deduplicated versions of OSCAR 2019 can be found in table A.1. OSCAR 2019 is published in both in unshuffled and shuffled distributions:

• The unshuffled distribution loosely respects the original documents, this is because by design goclassy considers that a document is a set of contiguous lines (i.e. coming from the same URL record) that share a language classification. Thus, if a URL record contains texts in multiple languages, goclassy will split this record in multiple documents. The documents here are separated by newlines. This unshuffled OSCAR 2019 is distributed from France under a research-only license, or from the USA through the Hugging Face's datasets library under the Creative Commons CC0 license ("no rights reserved"). 9 This is in part due to the difference in copyright laws between the US and the EU.

• The shuffled distribution takes each language subcorpus of the unshuffled distribution of OSCAR 2019 and shuffles it at line level. There is no concept of document in this distribution of OSCAR 2019. As the original content is not reconstructive, we distribute the shuffled OSCAR 2019 from France under the Creative Commons CC0 license ("no rights reserved").

Conclusions

We have presented goclassy a very efficient and concurrent pipeline for language classification and data cleaning and pre-processing, we have also presented OSCAR 2019 a substantially big Common Crawl-based corpus aimed at NLP application needing large quantities of raw textual data such as the pre-training of state-ofthe-art language models. As we will see in further chapters, OSCAR 2019 would end up substantially increasing the amount of freely available data for medium to low resource languages, thus improving and facilitating NLP research for them. Moreover, our goclassy pipeline will continue to evolve and be fully rewritten into a new and optimized pipeline, greatly facilitating the production of large scale multilingual corpora in constrained pr low budget infrastructures. However, as OSCAR 2019 is still an automatically web-crawled corpus that at this point hadn't been manually audited, many questions remained about the quality of the data, at this point we didn't even know if producing a usable language model out of it was possible. These and other question will be discussed and answered in the following chapters. [START_REF] Peters | Deep contextualized word representations[END_REF] for each of them. These ELMo models are then attached to the UDPipe 2.0 architecture [START_REF] Straka | UDPipe 2.0 prototype at CoNLL 2018 UD shared task[END_REF][START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF] and evaluated in dependency parsing and POS tagging. 1

Having released OSCAR 2019, the first thing that we wanted to do with it was to evaluate how good it actually was for what it was mainly intended, that is, the pre-training of contextualized word embeddings that had just become available at the time we started working on OSCAR 2019. Such models included ULMFiT [START_REF] Howard | Universal language model fine-tuning for text classification[END_REF], ELMo [START_REF] Peters | Deep contextualized word representations[END_REF] and BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] among others at that time. For this first evaluation we decided to train ELMo contextualized word embeddings for 5 languages: Bulgarian, Catalan, Danish, Finnish and Indonesian. We train one set of embeddings using only Wikipedia data, and another set using only OSCAR 2019 data. We chose these languages primarily because they are morphologically and typologically different from one another, but also because all the OSCAR 2019 subcorpora for these languages were of a sufficiently manageable size such that the ELMo pre-training was doable in less than one month with the computational resources we had access to at the time. Contrary to HIT-SCIR team [START_REF] Che | Towards better UD parsing: Deep contextualized word embeddings, ensemble, and treebank concatenation[END_REF], we do not impose any cap on the amount of data, and instead use the entirety of Wikipedia or OSCAR 2019 for each of our 5 chosen languages. language and written in an open collaboration model, its text tends to be of very highquality in comparison to other free online resources. This is why Wikipedia has been extensively used in various NLP applications [START_REF] Wu | Open information extraction using Wikipedia[END_REF][START_REF] Mihalcea | Using Wikipedia for automatic word sense disambiguation[END_REF][START_REF] Al-Rfou | Polyglot: Distributed word representations for multilingual NLP[END_REF][START_REF] Bojanowski | Enriching word vectors with subword information[END_REF]. We downloaded the XML Wikipedia dumps2 and extracted the plain-text from them using the wikiextractor.py script3 from Giuseppe Attardi. We present the number of words and tokens available for each of our 5 languages in Table 5.1. Furthermore, we decided against deduplicating the Wikipedia data as the corpora are already quite small. We tokenize the 5 corpora using UDPipe [START_REF] Straka | Tokenizing, POS tagging, lemmatizing and parsing UD 2.0 with UDPipe[END_REF].

Corpora

As we did for Wikipedia, we tokenize OSCAR 2019 subcorpora for the 5 languages we chose for our study using UDPipe. Table 5.2 provides quantitative information about the 5 resulting tokenized corpora.

Noisiness

We wanted to address (Trinh and [START_REF] Trieu | A Simple Method for Commonsense Reasoning[END_REF] and [START_REF] Radford | Language models are unsupervised multitask learners[END_REF]'s criticisms of Common Crawl, so we devised a simple method to measure how noisy the OSCAR 2019 subcorpora were for our 5 languages. We randomly extract a number of lines from each corpus, such that the resulting random sample contains one million words. 4 Likewise, we test if the words are in the corresponding GNU Aspell5 dictionary. We repeat this task for each of the 5 languages, for both the OSCAR and the Wikipedia corpora. We compile in Table 5.3 the number of out-of-vocabulary tokens for each corpus.

As expected, this simple metric shows that in general the OSCAR samples contain more out-of-vocabulary words than the Wikipedia ones. However, the difference in magnitude between the two is strikingly lower than one would have expected in view of the criticisms by Trinh and [START_REF] Trieu | A Simple Method for Commonsense Reasoning[END_REF] and [START_REF] Radford | Language models are unsupervised multitask learners[END_REF], thereby validating the usability of Common Crawl data when it is properly filtered, as was achieved by in the OSCAR 2019 corpus. We even observe that, for Danish, the number of out-of-vocabulary words in OSCAR is lower than that on Wikipedia.

Experimental Setting

The main goal of this paper is to show the impact of training data on contextualized word representations when applied in particular downstream tasks. To this end, we train different versions of the Embeddings from Language Models (ELMo) [START_REF] Peters | Deep contextualized word representations[END_REF] for both the Wikipedia and OSCAR 2019 corpora, for each of our selected 5 languages. We save the models' weights at different number of epochs for each language, in order to test how corpus size affect the embeddings and to see whether and when overfitting happens when training ELMo on smaller corpora.

We take each of the trained ELMo models and use them in conjunction with the UDPipe 2.0 [START_REF] Straka | UDPipe 2.0 prototype at CoNLL 2018 UD shared task[END_REF][START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF] architecture for dependency parsing and POS-tagging to test our models. Furthermore, we train UDPipe 2.0 using gold tokenization and segmentation for each of our ELMo models, the only thing that changes from training to training is the ELMo model as hyperparameters always remain at the default values (except for number of training tokens) [START_REF] Peters | Deep contextualized word representations[END_REF].

Contextualized word embeddings

Embeddings from Language Models (ELMo) [START_REF] Peters | Deep contextualized word representations[END_REF]) is an LSTM-based language model. More precisely, it uses a bidirectional language model, which combines a forward and a backward LSTM-based language model. ELMo also computes a context-independent token representation via a CNN over characters.

We train ELMo models for Bulgarian, Catalan, Danish, Finnish and Indonesian using the OSCAR 2019 subcorpora on the one hand and the Wikipedia corpora on the other. We train each model for 10 epochs, as was done for the original English ELMo [START_REF] Peters | Deep contextualized word representations[END_REF]. Likewise, we save checkpoints at 1 st , 3 rd and 5 th epoch in order to investigate some concerns about possible overfitting for smaller corpora (Wikipedia in this case) raised by the original ELMo authors.6 

UDPipe 2.0

For our POS tagging and dependency parsing evaluation, we use UDPipe 2.0, which has a freely available and ready to use implementation. 7 This architecture was submitted as a participant to the 2018 CoNLL Shared Task [START_REF] Daniel Zeman | CoNLL 2018 shared task: Multilingual parsing from raw text to Universal Dependencies[END_REF], obtaining the 3 rd place in LAS ranking. UDPipe 2.0 is a multi-task model that predicts POS tags, lemmas and dependency trees jointly.

The original UDPipe 2.0 implementation calculates 3 different embeddings, namely:

• Pre-trained word embeddings: In the original implementation, the Wikipedia version of fastText embeddings is used [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF]; we replace them in favor of the newer Common-Crawl-based fastText embeddings trained by [START_REF] Grave | Learning word vectors for 157 languages[END_REF].

• Trained word embeddings: Randomly initialized word representations that are trained with the rest of the network.

• Character-level word embeddings: Computed using bi-directional GRUs of dimension 256. They represent every UTF-8 encoded character with two 256 dimensional vectors, one for the forward and one for the backward layer. These two vector representations are concatenated and are trained along the whole network.

After the CoNLL 2018 Shared Task, the UDPipe 2.0 authors added the option to concatenate contextualized representations to the embedding section of the network [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF], we use this new implementation, and we concatenate our pretrained deep contextualized ELMo embeddings to the three embeddings mentioned above. Once the embedding step is completed, the concatenation of all vector representations for a word are fed to two shared bidirectional LSTM [START_REF] Hochreiter | Long Short-Term Memory[END_REF] layers. The output of these two BiLSTMS is then fed to two separate specific LSTMs:

• The tagger-and lemmatizer-specific bidirectional LSTMs, with Softmax classifiers on top, which process its output and generate UPOS, XPOS, UFeats and Lemmas. The lemma classifier also takes the character-level word embeddings as input.

• The parser-specific bidirectional LSTM layer, whose output is then passed to a bi-affine attention layer (Dozat and Manning, 2017) producing labeled dependency trees.

Treebanks

To train the selected parser and tagger (cf. Section 5.2.2) and evaluate the pre-trained language models in our 5 languages, we run our experiments using the Universal Dependencies (UD) 8 paradigm and its corresponding UD POS tag set [START_REF] Petrov | A universal part-of-speech tagset[END_REF]. We use all the treebanks available for our five languages in the UD treebank collection version 2.2 (Nivre et al., 2018), which was used for the CoNLL 2018 shared task, thus we perform our evaluation tasks in 6 different treebanks (see Table 5.4 for treebank size information).

• Bulgarian BTB: Created at the Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, it consists of legal documents, news articles and fiction pieces.

• Catalan-AnCora: Built on top of the Spanish-Catalan AnCora corpus [START_REF] Mariona Taulé | AnCora: Multilevel annotated corpora for Catalan and Spanish[END_REF], it contains mainly news articles.

• Danish-DDT: Converted from the Danish Dependency Treebank [START_REF] Curran Associates | The danish dependency treebank and the dtag treebank tool[END_REF]. It includes news articles, fiction and non fiction texts and oral transcriptions.

• Finnish-FTB: Consists of manually annotated grammatical examples from VISK 9 (The Web Version of the Large Grammar of Finnish).

• Finnish-TDT: Based on the Turku Dependency Treebank (TDT). Contains texts from Wikipedia, Wikinews, news articles, blog entries, magazine articles, grammar examples, Europarl speeches, legal texts and fiction.

• Indonesian-GSD: Includes mainly blog entries and news articles. Table 5.5: Scores from UDPipe 2.0 (from [START_REF] Kondratyuk | 75 languages, 1 model: Parsing Universal Dependencies universally[END_REF], the previous state-ofthe-art models UDPipe 2.0+mBERT [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF] and UDify [START_REF] Kondratyuk | 75 languages, 1 model: Parsing Universal Dependencies universally[END_REF], and our ELMo-enhanced UDPipe 2.0 models. Test scores are given for UPOS, UAS and LAS in all five languages. Best scores are shown in bold, second-best scores are underlined.

Results & Discussion

Parsing and POS tagging results

We use UDPipe 2.0 without contextualized embeddings as our baseline for POS tagging and dependency parsing. However, we did not train the model without contextualized word embedding ourselves. We instead take the scores as they are reported in [START_REF] Kondratyuk | 75 languages, 1 model: Parsing Universal Dependencies universally[END_REF]. We also compare our UDPipe 2.0 + ELMo models against the state-of-the-art results (assuming gold tokenization) for these languages, which are either UDify [START_REF] Kondratyuk | 75 languages, 1 model: Parsing Universal Dependencies universally[END_REF] or UDPipe 2.0 + mBERT [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF].

Results for UPOS, UAS and LAS are shown in Table 5.5. We obtain the state of the art for the three metrics in each of the languages with the UDPipe 2.0 + ELMo OSCAR
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models. We also see that in every single case the UDPipe 2.0 + ELMo OSCAR result surpasses the UDPipe 2.0 + ELMo Wikipedia one, suggesting that the size of the pre-training data plays an important role in downstream task results. This also supports our hypothesis that the OSCAR corpus, being multi-domain, exhibits a better coverage of the different styles, genres and uses present at least in these 5 languages.

Taking a closer look at the results for Danish, we see that ELMo Wikipedia , which was trained with a mere 300 MB corpus, does not show any sign of overfitting, as the UDPipe 2.0 + ELMo Wikipedia results considerably improve the UDPipe 2.0 baseline. This is the case for all of our ELMo Wikipedia models as we never see any evidence of a negative impact when we add them to the baseline model. In fact, the results of UDPipe 2.0 + ELMo Wikipedia give better than previous state-of-the-art results in all metrics for the Finnish-FTB and in UPOS for the Finnish-TDT. The results for Finnish are actually quite interesting, as mBERT was pre-trained on Wikipedia and here we see that the multilingual setting in which UDify was fine-tuned exhibits sub-baseline results for all metrics, and that the UDPipe + mBERT scores are often lower than those of our UDPipe 2.0 + ELMo Wikipedia . This actually suggests that even though the multilingual approach of mBERT (in pre-training) or UDify (in pre-training and finetuning) leads to better performance for high-resource languages or languages that are closely related to high-resource languages, it might also significantly degrade the representations for more isolated or even simply more morphologically rich languages like Finnish. In contrast, our monolingual approach with UDPipe 2.0 + ELMo OSCAR improves the previous SOTA considerably, by more than 2 points for some metrics. Note however that Indonesian, which might also be seen as a relatively isolated language, does not behave in the same way as Finnish.

Impact of the number of training epochs

An important topic we wanted to address with our experiments was that of overfitting and the number of epochs one should train the contextualized embeddings for. The ELMo authors have expressed that increasing the number of training epochs is generally better, as they argue that training the ELMo model for longer reduces held-out perplexity and further improves downstream task performance. 10 This is why we intentionally fully pre-trained the ELMo Wikipedia to the 10 epochs of the original ELMo paper, as its authors also expressed concern over the possibility of overfitting for smaller corpora. We thus save checkpoints for each of our ELMo model at the 1, 3, 5 and 10 epoch marks so that we can properly probe for overfitting. The scores of all checkpoints are reported in Table 5.6. Here again we do not train the UDPipe 2.0 baselines without embedding, we just report the scores published in [START_REF] Kondratyuk | 75 languages, 1 model: Parsing Universal Dependencies universally[END_REF].

The first striking finding is that even though all our Wikipedia data sets are smaller than 1 GB in size (except for Catalan), none of the ELMo Wikipedia models show any sign of overfitting, as the results continue to improve for all metrics the more we train the ELMo models, with the best results consistently being those of the fully trained 10 epoch ELMos. For all of our Wikipedia models, but those of Catalan and Indonesian, we see sub-baseline results at 1 epoch; training the model for longer is better, even if the corpora are small. 94.00 86.21 80.14 +ELMo OSCAR (5) 94.23 86.37 80.40 +ELMo OSCAR (10) 94.12 86.49 80.59

Table 5.6: UPOS, UAS and LAS scores for the UDPipe 2.0 baseline reported by [START_REF] Kondratyuk | 75 languages, 1 model: Parsing Universal Dependencies universally[END_REF], plus the scores for checkpoints at 1, 3, 5 and 10 epochs for all the ELMo OSCAR and ELMo Wikipedia . All scores are test scores. Best ELMo OSCAR scores are shown in bold while best ELMo Wikipedia scores are underlined.

ELMo OSCAR models exhibit exactly the same behavior as ELMo Wikipedia models where the scores continue to improve the longer they are pre-trained, except for the case of Finnish. Here we actually see an unexpected behavior where the model performance caps around the 3 rd to 5 th epoch. This is surprising because the Finnish OSCAR 2019 subcorpus is more than 20 times bigger than our smallest Wikipedia corpus, the Danish Wikipedia, that did not exhibit this behavior. As previously mentioned Finnish is morphologically richer than the other languages in which we trained ELMo, we hypothesize that the representation space given by the ELMo embeddings might not be sufficiently big to extract more features from the Finnish OSCAR subcorpus beyond the 5 th epoch mark, however in order to test this we would need to train a larger language model like BERT which is sadly beyond our computing infrastructure limits (cf. Appendix B.1). However, we do note that pre-training our current language model architectures in a morphologically rich language like Finnish might actually better expose the limits of our existing approaches to language modeling.

One last thing that it is important to note with respect to the number of training epochs is that even though we fully pre-trained our ELMo Wikipedia 's and ELMo OSCAR 's to the recommended 10 epoch mark, and then compared them against one another, the number of training steps between both pre-trained models differs drastically due to the big difference in corpus size (for Indonesian, for instance, 10 epochs correspond to 78K steps for ELMo Wikipedia and to 2.6M steps for OSCAR; the complete picture is provided in the Appendix, in Table B.2). In fact, we can see in Table 5.6 that all the UDPipe 2.0 + ELMo OSCAR(1) perform better than the UDPipe 2.0 + ELMo Wikipedia(1) models across all metrics. Thus, we believe that talking in terms of training steps as opposed to training epochs might be a more transparent way of comparing two pre-trained models.

Conclusions

In this chapter, we have explored the use of the Common-Crawl-based OSCAR 2019 corpora to train ELMo contextualized embeddings for five typologically diverse mid-resource languages. We have compared them with Wikipedia-based ELMo embeddings on two classical NLP tasks, POS tagging and parsing, using state-ofthe-art neural architectures at the end of 2019. Our goal was to explore whether the noisiness level of Common Crawl data, often invoked to criticize the use of such data, could be compensated by its larger size; for some languages, the OSCAR 2019 corpus is several orders of magnitude larger than the corresponding Wikipedia. Firstly, we found that when properly filtered, Common Crawl data is not massively noisier than Wikipedia. Secondly, we show that embeddings trained using OSCAR 2019 data consistently outperform Wikipedia-based embeddings, to the extent that they allow us to improve the state of the art in POS tagging and dependency parsing for all the 6 chosen treebanks. Thirdly, we observe that more training epochs generally results in better embeddings even when the training data is relatively small, as is the case for Wikipedia.

Our experiments show that Common-Crawl-based data such as the OSCAR corpus can be used to train high-quality contextualized embeddings, even for languages for which more standard textual resources lack volume or genre variety. This could result in better performances in a number of NLP tasks for many non highly resourced languages. However, we are aware that this first evaluation of the OSCAR 2019 remains limited both in terms of methodology and in terms of the actual portion of the whole corpus that was evaluated. Automated evaluations like this one will not give us a complete assessment of the quality of the corpus beyond its usefulness for the training of contextualized embeddings. This is why in the following chapter we will discuss a more thorough and extensive audit of the OSCAR 2019 corpus as well as other web-crawled corpora, which was the result of an international collaboration with a diverse team of more than 50 researchers.

6 Quality at a Glance: An Audit of OSCAR 2019 and other Web-Crawled Datasets

In which we present the work of [START_REF] Kreutzer | Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets[END_REF], who propose the first manual audit of OSCAR 2019 along other 4 crawled corpora. For the audit 51 volunteers from the NLP community were recruited, covering about 70 languages with proficient language skills. The study proposes solutions for effective, low-effort data auditing, including an error taxonomy. The study reflects on the potential harm of low-quality data releases for low-resource languages, and provides a set of recommendations for future multilingual data releases. 1Having done a first automatic evaluation of a small portion of the OSCAR 2019 corpus for a selection for 5 mid-resource languages, we wanted to better assess the global quality of the corpus specially for low-resource languages. To accomplish this, we participated in a collaborative effort to manually audit OSCAR 2019 and other 4 crawled corpora that have been extensively used in NLP research in the last few years.

Thus, to shed light on the quality of data crawls, specially for the lowest resource languages, we perform a manual data audit for 230 per-language subsets of five major crawled multilingual datasets: 2 CCAligned (El-Kishky et al., 2020), ParaCrawl [START_REF] Esplà | ParaCrawl: Web-scale parallel corpora for the languages of the EU[END_REF][START_REF] Bañón | ParaCrawl: Web-scale acquisition of parallel corpora[END_REF], WikiMatrix [START_REF] Schwenk | WikiMatrix: Mining 135M parallel sentences in 1620 language pairs from Wikipedia[END_REF]), OSCAR 2019[START_REF] Javier | Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures[END_REF]Ortiz Suárez et al., 2020b) and mC4 (Xue et al., 2021). We propose solutions for effective, low-effort data auditing (Section 6.1), including an error taxonomy. Our quantitative analysis reveals surprisingly low amounts of valid in-language data, and identifies systematic issues across datasets and languages. In addition, we find that a large number of datasets is labeled with nontransparent or incorrect language codes (Section 6.2). This leads us to reflect on the potential harm of low-quality data releases for low-resource languages (Section 6.3), and provide a set of recommendations for future multilingual data releases (Section 6.4).

Auditing Data Quality

None of the five selected datasets has been evaluated for quality on the sentence level (exception: several languages in ParaCrawl v3), and downstream evaluations are centered around a small fraction of higher-resource languages. This is insufficient for drawing conclusions about the quality of individual or aligned sentences (in parallel datasets), and about the entirety of languages. In addition, there might be a publication bias preventing negative results with any of the above corpora with lower quality being published.

To close this gap, we conduct a human data quality audit focused on the lowestresource and most under-evaluated languages, but also covering mid-and highresource languages for comparison.

Auditing Process

Participants We recruited 51 volunteers from the NLP community, covering about 70 languages with proficient language skills. 3 Each sentence is annotated by one rater. To verify our hypothesis that those annotations can be largely done by nonnative speakers, we repeat a set of language expert annotations by a non-expert, and measure the accuracy of the non-expert.

Sample selection For each language in each dataset, we took a random sample of 100 lines, which may be anywhere from single words to short paragraphs depending on segmentation. We manually annotated them according to the error taxonomy described below. For WikiMatrix and CCAligned, we selected those languages that are paired with English, and for ParaCrawl, we also included those paired with Spanish ("total" counts in Table 6.2). We did not annotate all languages, but focused on the ones with the least number of sentences in each dataset (at least the smallest 10) and languages for which we found proficient speakers. Since we annotate the same maximum number of sentences4 across all chosen languages regardless of their total number of sentences, the annotated samples are not an unbiased sample from the whole dataset.

Non-expert labeling strategies Although many of the volunteers were familiar with the languages in question or spoke related languages, in cases where no speaker of a relevant language could be found, volunteers used dictionaries and internet search to form educated guesses. We discuss this deeper in Appendix C.3 to highlight how much of this low-resource focused evaluation can actually be done by nonproficient speakers with relatively low effort. In general, we aim to find an upper bound on quality, so we encouraged annotators to be forgiving of translation mistakes when the overall meaning of the sentence or large parts thereof are conveyed, or when most of the sentence is in the correct language.

Effort The individual effort was dependent on the quality and complexity of the data, and on the annotator's knowledge of the language(s), e.g., it took from less than two minutes for an English native speaker to pass through 100 well-formed English sentences (or similarly to annotate languages with 0% in-language sentences), to two hours of "detective work" for well-formed content in languages for an annotator without familiarity.

(WL), and Non-Linguistic Content (NL). Of correct sentences (C), we further mark single words or phrases (CS) and boilerplate contents (CB). In addition, we asked annotators to flag offensive or pornographic content. Macro-avg: Each language is weighted equally in the aggregation, regardless of its size. Micro-avg: Each label is weighted by the fraction of sentences for that language in the overall annotated corpus, i.e., the annotations for higherrepresented languages are upweighted, and annotations for lower-represented languages are downweighted. The bottom rows contain the number of languages that have 0% labeled C etc. Note that these are not true expectations since the languages audited were not randomly sampled.

Human Audit Results

Interpretation of Results For each language, we compute the percentage of each label within the 100 audited sentences. Then, we either aggregate the labels across languages with equal weights (macro-average), or weight them according to their presence in the overall dataset (micro-average). Results are shown in Table 6.2.

The statistics for the correct codes (CC, CB, CS) are combined as C. The number of languages, the numbers of sentences per language and the choice of languages differ across datasets, both in the original release and in the selection for our audit, so the comparison of numbers across datasets has to be taken with a grain of salt. Since the numbers are based on a small sample of sentences that were partially annotated by non-experts, the error statistics are only rough estimates. Our audit captures a decent ratio of languages (25-55%, 2nd row in Table 6.2), but only a tiny fraction of the overall number of sentences (0.00004-0.002%). When we speak of "low-" and "high"-resource languages, we mean languages with smaller or larger representation in the datasets at hand. When reporting language-specific results we use the original language identifiers of the datasets.

Which datasets have quality issues? The macro-averaged results show that the ratio of correct samples (C) ranges from 24% to 87%, with a large variance across the five audited datasets. Particularly severe problems were found in CCAligned and WikiMatrix, with 44 of the 65 languages that we audited for CCAligned containing under 50% correct sentences, and 19 of the 20 in WikiMatrix. In total, 15 of the 205 language specific samples (7.3%) contained not a single correct sentence. For the parallel datasets we are also interested in the quantity of misaligned/mistranslated sentences (X). For WikiMatrix, two-thirds of the audited samples were on average misaligned. We noticed that sentences were often similar in structure, but described different facts (see Table 6.5). This might originate from the nature of the underlying Wikipedia articles, since they are often comparable rather than parallel [START_REF] Schwenk | WikiMatrix: Mining 135M parallel sentences in 1620 language pairs from Wikipedia[END_REF]. Figure 6.1 illustrates per-corpus correctness more completely, showing for each dataset what percent of audited corpora are under each possible threshold of correctness.

Why haven't these problems been reported before? The findings above are averaged on a per-language basis (i.e. macro-average), and therefore give low and highresource languages equal weight. If we instead estimate the quality on a per-sentence basis, i.e. down-weight lower-resource languages in the computation of the average, the numbers paint a more optimistic picture ("micro" block in Table 6.2). This is especially relevant for the monolingual datasets because they contain audits for English, which makes up for 43% of all sentences in OSCAR 2019 and 36% in mC4. To illustrate the effect of this imbalance: A random sample from the entire mC4 dataset with over 63% chance will be from one of the 8 largest languages (en, ru, es, de, fr, it, pt, pl, >100M sentences each), of which all have near perfect quality. Analogously, evaluation and tuning of web mining pipelines and resulting corpora in downstream applications focused largely on higher-resource languages (Section 2.2.2), so the low quality of underrepresented languages might go unnoticed if there is no dedicated evaluation, or no proficient speakers are involved in the curation [START_REF] Nekoto | Participatory research for low-resourced machine translation: A case study in African languages[END_REF]. How much content is nonlinguistic or in the wrong language? Nonlinguistic content is a more common problem than wrong-language content. Among the parallel datasets, CCAligned contains the highest percentage of nonlinguistic content, at 31.42% on average across all rated corpora, and also the highest percent of wrong-language content, at 9.44%. Among the monolingual datasets, mC4 contains the highest ratio both of sentences in incorrect languages (15.98% average) and nonlinguistic content (11.40% average), with 4 of the 48 audited languages having more than 50% contents in other languages. The low amount of wrong language in ParaCrawl shows the benefits of selecting domains by the amount in-language text, but the dataset also covers the smallest amount of languages. The low ratio of wrong language samples in OSCAR may reflect the success of line-level LangID filtering. These numbers provide evidence that more research in LangID could improve the overall quality, especially with respect to nonlinguistic content.

Which languages got confused? The languages that were confused were frequently related higher-resource languages. However, there were also a significant number of "out-of-model cousin" cases, where languages not supported by the LangID model ended up in a similar-seeming language. For instance in mC4, much of the Shona (sn, Bantu language spoken in Zimbabwe and Mozambique) corpus is actually Kinyarwanda (rw, Bantu language spoken in mostly in Rwanda and Uganda)-and, peculiarly, much of the Hawaiian (haw, Polynesian language spoken in Hawaii) is actually Twi (tw/ak, Central Tano language spoken mostly in Ghana). Do low-resource languages have lower quality? Low-resource datasets tend to have lower human-judged quality. The Spearman rank correlation between quality (%C) and size is positive in all cases. The trend is strongest for mC4 (𝑟 = 0.66), and gradually declines for CCAligned (𝑟 = 0.53), WikiMatrix (𝑟 = 0.49), ParaCrawl (𝑟 = 0.43), and OSCAR (𝑟 = 0.37). Figure 6.2 compares the number of sentences for each language against the proportion of correct sentences: Not all higher-resource languages (> 10 6 sentences) have high quality, in particular for CCAligned (e.g. Javanese (en-jv_ID) with 5%C, or Tagalog (en-tl_XX) with 13%C). For mid-resource languages (10 4 -10 6 sentences) the picture is inconclusive, with some languages having high quality, and others having extremely low quality, even within the same datasets, e.g. Urdu in CCAligned en-ur_PK has 100%C vs. its romanized counterpart en-ur_PK_rom 0.5% C. For individual error codes trends are less clear (not depicted).

Which languages have the lowest quality? Across datasets we observe that the quality is particularly poor for languages that are included in romanized script (_rom/_latn), but are more commonly written in other scripts, e.g., Urdu (ur), Japanese (ja), Arabic (ar). These are not transliterations of other scripts, but mostly contain non-linguistic material or wrong languages (e.g. the romanized Japanese corpus in mC4 (ja_latn) contains Spanish, French, English, Portuguese, amongst others). In terms of geography, the poorest quality is found for African languages (Bambara (bm), Fula (ff), Kikongo (kg), Luganda (lg), Lingala (ln), Norther Sotho (nso), Oromo (om), Shona (sn), Somali (so), Tswana (tn), Wolof (wo)), minority languages in Europe and the Middle East that are closely related to higher-resource 57 languages (Azerbaijani (az-IR), North Frisian (frr), Neapolitan (nap), Silesian (szl), Zaza (zza)), lesser spoken Chinese languages sharing a script with Mandarin (Yue (yue), Wu (wuu)), four major Austronesian (Central Bikol (bcl), Chavacano (cbk), Javanese (jv), Sundanese (su)), and some South-Asian languages, in particular Sinhala (si). Appendix C.4 contains the detailed per-language statistics for all corpora.

What is the incidence of offensive and pornographic content? Overall, the sampled sentences did not contain a large amount of offensive contents. However, there were notable amounts of pornographic content (> 10%) found in CCAligned for 11 languages. Annotation quality For a subset of audited languages from CCAligned and OS-CAR 2019 we measure the accuracy (Acc) of the labels assigned by non-proficient speakers against the labels assigned by proficient speakers for all audited sentences. This can be understood as a directed measure of annotator agreement for the special case where one rater is an expert and the other is not. Results for varying label granularity are reported in Tables 6.3 and 6.4. For 𝑛 = 6 all classes of the taxonomy were distinguished, for 𝑛 = 4 the C subclasses were combined, and for 𝑛 = 2 it is binary decision between C and the rest of the error classes. With the full 6-class taxonomy (Acc-6) we find a mean accuracy of 0.66 for CCAligned audits, and 0.98 for OSCAR audits. With a binary taxonomy (Acc-2) distinguishing C from the rest, the accuracy further increases to 0.79 for CCAligned. This provides strong evidence that good quality annotations are not limited to those proficient in a language. 58 6.2 Dataset Mis-labeling However, the significant drop of accuracy for finer-grained labels hints at that our taxonomy can be further improved, especially for parallel sentences. The error taxonomy lacks at least one category of error, namely "correct/in-language but unnatural". Similarly, the definition of "correct-short" and "correct-boilerplate" were not understood equally by all annotators and the concept of "correct-short" has potential issues for agglutinative languages like Turkish. Finally, it was unclear what to do with related dialects, e.g. when a sentence is "almost correct but wrong dialect" or when it is unclear which dialect a sentence belongs to. We recommend including these categories for future audits

Automatic Filtering

Given the frequency of WL and NL annotations, it might be tempting to use opensource LangID models to post-filter data on a per-sentence(-pair) level, as OSCAR does. Unfortunately, this turns out to have its own issues.

Sentence-level n-gram LangID filtering We classify all sentence pairs of CCAligned with CLD3, an n-gram based LangID model. By comparing its predictions to the audit labels, we evaluate its quality on the subset of annotated samples: the classifier should detect both correct languages when the pair is annotated as C and X, and should detect incorrect languages in the pair when WL and NL. On this task, the CLD3 classifier achieves an average precision of only 40.6%.

Sentence-level Transformer LangID filtering N-gram LangID models like CLD3 have known problems. However, [START_REF] Caswell | Language ID in the wild: Unexpected challenges on the path to a thousand-language web text corpus[END_REF] demonstrate that semisupervised Transformer-based LangID models strongly out-perform them. We train a comparable Transformer-based LangID model and apply it to our annotated CCAligned data. We find that filtering noisy corpora (< 50% correct) on LangID for both source and target leads to gains in median precision, rising from 13.8% pre-filter to 43.9% post-filter. However, this comes at a steep cost of 77.5% loss in recall. The biggest winners were Lingala, whose precision climbs from 8% to 80%, and Oromo, which soars from 2% to 33% in-language. Both of these, however, come at the cost of losing 50% of the correct in-language sentences, being reduced from 22k sentences to 3k and 1k sentences respectively, which would likely be too small for building downstream models. The moral is that, at least at the current stage, there is no one-size-fits-all approach for sentence-level LangID filtering.

Dataset Mis-labeling

Standardized and unambiguous representations of language codes are important for practical data use and exchange. The standard used by most academic and industry applications is BCP-47 [START_REF] Phillips | Tags for Identifying Languages[END_REF], which builds off the two-letter ISO639-2 codes and three-letter ISO639-3 codes, but also allows to add subtags for scripts (e.g. Hindi in Latin script: hi-Latn) or regional varieties (e.g. French spoken in Canada: fr-CA). It would enhance transparency and interoperability if adopted consistently, especially with growing language diversity in NLP.

We find a variety of errors and inconsistencies in language code usage, ranging from serious mislabelings to small transgressions against standard conventions. For this analysis, we also include the JW300 [START_REF] Agić | JW300: A wide-coverage parallel corpus for lowresource languages[END_REF] dataset, a multilingual dataset crawled from jw.org. In summary, we find 8 nonstandard codes in CCAligned, 3 in OSCAR 2019, 1 in mC4, 1 in WikiMatrix, and 70 in JW300, for 83 in total. This does not include the 59 codes affected by superset issues. Full details are given in Appendix C.1. Inconsistent Language Codes One common issue is simply using nonstandard or invented codes. For example, CCAligned uses only two-letter codes, so when the BCP-47 code for a language is three letters it is either shortened (e.g. zza → zz) or invented (shn → qa). Similarly, OSCAR 2019 contains data labeled as als (BCP-47 for Tosk Albanian) that is actually in gsw (Alemannic). 5 22 additional language codes in JW300 have similar issues, including 12 codes that start with jw_ but are not Javanese.

False Sign Languages 12% (48/417) of JW300 carry language codes for sign languages. Instead of sign language transcripts they are texts in another high resource language, mostly English or Spanish-for example, the en-zsl (Zambian sign language) data is actually English-English parallel data (copies), details in Appendix C.1. This was likely caused by videos with sign language interpretation embedded on the crawled websites. 6Mysterious supersets When datasets contain language codes that are supersets of other language codes, it is difficult to determine which particular language the text contains. WikiMatrix has Serbian (sr), Croatian (hr), Bosnian (bs), and Serbo-Croatian (sh)-their superset. 7 The issue of codes that are supersets of others is common enough to include a small table dedicated to it (Appendix Table C.1). In some cases this may not be an issue, as with Arabic, where ar conventionally refers to Modern Standard Arabic, even though the code technically encompasses all dialects. In many cases, the nature of the data in the superset code remains a mystery.

Risks of Low-Quality Data

Deprecated codes Finally, there are several deprecated codes that are used: sh in Wikimatrix, iw in mC4, sh and eml in OSCAR 2019, and daf in JW300.

Risks of Low-Quality Data

Low quality in downstream applications Text corpora today are building blocks for many downstream NLP applications like question answering and text summarizationfor instance, a common approach is to first train translation models on such data and then automatically translate training data for downstream models [START_REF] Conneau | XNLI: Evaluating cross-lingual sentence representations[END_REF]. If the data used for the original systems is flawed, derived technology may fail for those languages far down the line without knowing the causes. This risk of undesired downstream effects calls for future studies with a careful treatment of intertwined effects such as data size and domain, language-specific phenomena, evaluation data and metric biases. To give the reader a brief glimpse of the impact of data quality for the example of translation, we compare the C% metric from our audit with the translation quality (sentencepiece-BLEU, spBLEU) of the multilingual translation model M2M124 for 124 languages [START_REF] Goyal | The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation[END_REF]. It was trained on WikiMatrix and CCAligned, and similar data collected with the same tools, which we expect to show similar biases. Translation quality is evaluated on the trusted, human-translated FloReS benchmark [START_REF] Goyal | The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation[END_REF]. For the 21 languages present in both the audit and the FloReS benchmark, we found a positive correlation (Spearman) between the data quality scores and spBLEU of 𝜌 = 0.44 (𝑝 = 0.041). This is not as large as the correlation with data size (𝜌 = 0.66, 𝑝 = 0.00078), but it nonetheless helps to explain translation quality-the correlation between the product of C% and data size (in other words, the expected total number of good sentences in the dataset), is the highest yet, with a value of 𝜌 = 0.73 (𝑝 = 0.00013). 8Representation washing Since there are datasets which contain many low-resource languages, the community may feel a sense of progress and growing equity, despite the actual quality of the resources for these languages. Similarly, if low-quality datasets are used as benchmarks they may exaggerate model performance, making low-resource NLP appear more solved than it is-or conversely, if models perform poorly when trained with such data, it may be wrongly assumed that the task of learning models for these languages is harder than it actually is or infeasible given current resources. These effects could result in productive effort being redirected away from these tasks and languages. Trust in incorrect "facts" We found many instances of parallel-looking sentences that are structurally and semantically similar, but not factually correct translations (Table 6.5). They can cause models to produce plausible "translations" that are factually wrong, but users may still trust them (algorithmic trust) without verifying the information. Similarly, automation bias [START_REF] Skitka | Does automation bias decision-making?[END_REF], referring to humans favoring decisions made by automated systems over decisions made by humans, might amplify the issues of inaccurate translations caused by misalignments.

Future Work and Recommendations

Of the five multilingual corpora evaluated, we consistently found severe issues with quality, especially in the lower-resource languages. We rated samples of 205 languages, and found that 87 of them had under 50% usable data, with a full 15 languages at 0% in-language. We furthermore found consistent issues with mislabeled data and nonstandard language codes, particularly in the JW300 dataset, and identified 83 affected corpora, at least 48 of which were entirely spurious (Section 6.2). While there might have been anecdotal evidence of insufficient quality for some datasets, the majority of these quality issues had not been reported, nor been investigated in depth. These issues might go unnoticed for languages that are not represented in the evaluation of the crawling methods, and cause harm in downstream applications [START_REF] Khayrallah | On the impact of various types of noise on neural machine translation[END_REF].

There are a variety of ways to improve both the ease and accuracy of human evaluation, as well a few classes of issues we ignored in this paper, like close dialects. Ideally we would like to build a standard suite of automatic metrics for datasets, but more research is necessary to determine what the appropriate metrics would 6.5 Conclusions for the OSCAR Project be. One important area missing from our analyses however is the estimated portion of a dataset which has been generated by MT [START_REF] Rarrick | MT detection in web-scraped parallel corpora[END_REF], LM systems, or bots/templates, as for example in the analysis of C4 [START_REF] Dodge | Documenting large webtext corpora: A case study on the colossal clean crawled corpus[END_REF]. The information captured in machine-generated content might still be useful for modeling, but might falsely overrepresent typical generation patterns and introduce linguistic errors or unnatural artifacts.

We therefore strongly recommend looking at samples of any dataset before using it or releasing it to the public. As we have shown, one does not need to be proficient in a language to see when there are serious quality issues, and a quick scan of 100 sentences can be sufficient to detect major problems. Moreover, going through and annotating a small sample of data can bring actionable insights about new ways to filter or use it.

If data quality issues are found, a wide variety of techniques can be explored, like filtering on length-ratio, LangID, TF-IDF wordlists [START_REF] Caswell | Language ID in the wild: Unexpected challenges on the path to a thousand-language web text corpus[END_REF] or dictionaries [START_REF] Kamholz | PanLex: Building a resource for panlingual lexical translation[END_REF]; to neural approaches like LM scoring [START_REF] Axelrod | Domain adaptation via pseudo in-domain data selection[END_REF][START_REF] Moore | Intelligent selection of language model training data[END_REF][START_REF] Wang | Denoising neural machine translation training with trusted data and online data selection[END_REF]. Unfortunately, none of these provides a quick and easy fix, especially for low-resource languages-data cleaning is no trivial task! Noisy datasets are by no means useless, at least if they contain some desirable content. Therefore, an alternative to filtering can be documentation [START_REF] Bender | On the dangers of stochastic parrots: Can language models be too big?[END_REF]. This can take the form of a per-language quality score and notes about known issues, a datasheet [START_REF] Gebru | Datasheets for Datasets[END_REF] or nutrition label [START_REF] Holland | The Dataset Nutrition Label: A Framework To Drive Higher Data Quality Standards[END_REF]. However, we suggest researchers not release corpora with near-zero in-language content, as this may give the mistaken impression of usable resources.

Finally, we encourage the community to continue conducting evaluations and audits of public datasets-similar to system comparison papers.

Conclusions for the OSCAR Project

While the study described in chapter 5 showed encouraging results for the OSCAR 2019 corpus, a lot of concerns about the actual quality of the data remained unaddressed. This has addressed some of these concerns and actually showed promising results for the OSCAR corpus especially in comparison to the other four audited corpora, as OSCAR 2019 obtained the highest percentage of correct sentences as shown in table 6.2.

However, we also acknowledge that major issues remain to be addressed as has been pointed out here and more importantly, only 0.00004% of the corpus was actually audited here, meaning that potential issues with both the corpus and the pipeline might remain to be discovered. This collaboration marks thus a turning point for the OSCAR project, as it served as a platform and catalyst for both relaunching the project and start working on further versions of the corpus to the one originally published in 2019 [START_REF] Javier | Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures[END_REF]. The following two chapters will describe the creation of two subsequent versions of OSCAR that try to address some of the problems described here and some others that were pointed by the users of the project at both the corpus and the pipeline level. As discussed in previous chapters, OSCAR 2019 was generated from the plain text data extracts (WET files) of the November 2018 Common Crawl dump, which was distributed in the form of 56,000 shards, that were then filtered and classified by language [START_REF] Javier | Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures[END_REF]Ortiz Suárez et al., 2020b). OSCAR 2019 is now available for research through the Huma-Num servers2 in Europe and for the public at large through Hugging Face's Datasets Hub 3 where it now has more than 15 thousands downloads.

OSCAR 2019 came in four different versions, each one intended for different tasks. These versions were either unshuffled or shuffled (that is, for each language, lines have been shuffled, destroying record and thus document integrity), and non-deduplicated or deduplicated (since duplicate lines account for more than half of the total data4 generated by the pipeline). For the unshuffled versions, each language file contained paragraphs that came from the same record, and each paragraph is separated by a newline.

Simply put, OSCAR 2019 was composed of single language files that contained textual data (ta.txt for the Tamil language, for example). However, due to the often huge sizes of these files, and subsequently the impracticality of storage and distribution, OSCAR 2019 files were split and compressed in equally sized parts.

However, but OSCAR 2019 and its pipeline came with a number of limitations, which we will discuss in the following sections, and we will try to start fixing in this and the following chapter.

7.1 Limitations of the OSCAR 2019 Corpus and its Generation Pipeline OSCAR 2019 was inherently linked to its generation pipeline, and as such its quality partly depended on the pipeline's quality. While OSCAR 2019 was considered to be one of the cleanest multilingual corpora available as discussed in the previous chapter and in [START_REF] Caswell | Language ID in the wild: Unexpected challenges on the path to a thousand-language web text corpus[END_REF], several problems had been described, and the state of the publicly available code raised questions about maintenance and maintenability of the pipeline itself. Apart from the fact that its content dated back to 2018, some of the problems with OSCAR 2019 include:

• Language label mismatches and inconsistencies, which occurs earlier in the pipeline and would be fixable downstream,

• Representation washing as defined by [START_REF] Kreutzer | Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets[END_REF], whereby low resource languages, while present in the corpus, are of a significantly lower quality than higher resource languages without any quality metric available publicly.

Moreover, the more recent dumps of Common Crawl in 2021 contain more than 64,000 shards (almost 10,000 more than the dump used for OSCAR 2019). Furthermore, each of these shards is composed of numerous records, and each record holds textual content along with metadata. While Common Crawl shards hold documentlevel metadata that could be useful downstream, they were com discarded and do not appear in OSCAR 2019, whereas other corpora generated from Common Crawl do include them, e.g. CCNet [START_REF] Wenzek | CCNet: Extracting high quality monolingual datasets from web crawl data[END_REF]. This limits OSCAR 2019 users to the textual content only, whereas metadata could have been distributed along with the corpus itself.

goclassy

OSCAR 2019 was built using goclassy, a high-performance asynchronous pipeline written in Go described in Chapter 4. However, it suffered from several caveats that makes the re-generation and update of the corpus relatively complex in practice.

While goclassy's source code was easily readable thanks to the choice of an uncluttered programming language and a pragmatic approach, the lack of structure in both the source and the project itself made goclassy difficult to extend and maintain.

The pipeline was not functional out-of-the-box, as the user had to provide the compressed shards from CommonCrawl, manually install FastText [START_REF] Joulin | FastText.zip: Compressing text classification models[END_REF][START_REF] Joulin | Bag of tricks for efficient text classification[END_REF] and create specific directories by themselves, since only partial instructions are given in the supplied README file.

As described in Chapter 4, goclassy also made heavy use of I/O, as data was saved and loaded repeatedly between steps; as an example, the identification step stored language identification data and individual sentences in two files, before generating the final files (one per language). Despite these limitations, goclassy's performance remained acceptable mainly due to Go's emphasis on easy and efficient parallelization and inherent speed. The pipeline for instance used clever handling of file descriptors and employed extensive buffering, which limited I/O calls cost in some parts.

Building a New Version of the OSCAR Corpus

Having identified some shortcomings of both OSCAR 2019 and its pipeline, goclassy, we decided to restart the OSCAR project by completely rewriting our pipeline. To that end, we introduce Ungoliant, a new corpus generation pipeline that, like goclassy, creates a large-scale multilingual text corpus from a Common Crawl dump. However, contrarily to goclassy, Ungoliant is fully modular, better structured, and highly parametrizable; thereby allowing comparisons between several parallelization strategies. A specific effort was put in testing and documentation. Parts of Ungoliant are heavily inspired by goclassy, although for its implementation we decided to use Rust rather than Go, which is often considered to be a faster more low level programming language. 5We also use Ungoliant to generate a new version of the OSCAR corpus from a more recent Common Crawl dump. The new corpus includes metadata information while retaining backward compatibility with the OSCAR 2019 corpus.

Ungoliant Rationale and Scope

While Ungoliant is heavily inspired by goclassy, it provides a better set of tools to download, process, filter and aggregate textual and contextual data from Common Crawl. These operations can be sequential, parallel or both, depending on contexts and performance requirements.

We provide both batch and streaming processing, so that the whole pipeline could be run either online, with every step running on streams of data, or offline, with every step running on tangible files, or a mix of both, using already downloaded Common Crawl dumps but streaming the rest of the process. Moreover, we embed numerous filtering and deduplication utilities directly inside Ungoliant, making these features available for pipeline composition and post-processing. Ungoliant features a loosely defined pipeline interface, on which we re-implement goclassy's one, while improving performance by threading more aggressively and avoiding I/O where it is not necessary: While goclassy uses intermediate files for tags and sentences, we try to keep everything in memory in order to avoid losing time loading or writing files. The Rust language provides constructs that helps us build complex abstractions and pipelines while limiting proactive file I/O or computing, since nearly all the reimplemented pipeline is built around lazy evaluation. File I/O is only used when loading shards, and when writing sentences in language files.

Through benchmarking we found that the best parallelization strategy is to use rayon,6 a work-stealing [START_REF] Blumofe | Scheduling multithreaded computations by work stealing[END_REF] parallel and concurrent library enabling massive parallelization. We parallelize on shard-, record-and sentence-level processing.

To evaluate Ungoliant performance, we run both goclassy and Ungoliant's implementation on 1, 10, 25 and 100 Common Crawl shards both on a middle-range laptop computer (i5-7200u, 8 GB RAM, NVMe SSD) and a HPC node (Xeon 5218 (64 Threads), 180 GB RAM). Results are shown in Table 7.1.

Ungoliant performs better than goclassy on all tasks, independently of the platform or number of shards processed. However, we can note that Ungoliant's speedup is higher on short tasks, which is explained by its aggressive multithreading strategy, while goclassy uses a record-scope multithreading at its finest granularity.

Iterating on the goclassy Pipeline

Common Crawl dumps contain metadata that hold useful information such as related records, recognized language(s), or origin URLs. Since OSCAR's 2019 pipeline discarded metadata and sentences could be shuffled, we lost the ability to investigate the metadata itself, as well as working on potentially multilingual documents, since we separated text from metadata.

The new pipeline (and the resulting new corpus schema) aims to establish a first link between textual data and metadata from Common Crawl, while staying backward compatible with the existing OSCAR 2019 schema.

In other words, switching from the original OSCAR 2019 corpus and the newly generated one should be a drop-in operation.

Metadata Extraction and Linking

Our choice of keeping the corpus backward compatible with the original OSCAR 2019 introduces changes in the way the corpus is generated, namely regarding metadata: a record's body is composed of sentences that aren't guaranteed to be of the same language. Since OSCAR merges sentences from multiple records into a single file, special attention has to be paid to the metadata dispatch too.

Approaches to tackle this problem range from (1) storing all metadata in a single location to (2) having language-specific metadata files that contain the metadata for each line in the language file.

Both (1) and ( 2) have their strengths and weaknesses, namely:

1. Having all metadata at the same place may facilitate wide queries about whole metadata, but at a cost of a very large size (which harms both accessibility and performance).

2. Getting the metadata for a given line is fast since line numbers are synchronized, but there is repeated information and a potentially important increase in size.

We thus choose a hybrid approach which keeps metadata local to each language, while trying to limit the information repetition by keeping an entry by group of chunks rather than by line, where a chunk is a series of contiguous sentences that share the same language from the same document.

An overview of the pipeline can be seen in Figure 7.1, where we depict Ungoliant at a macro level in the first part of the figure, and where we also give a more precise view on record processing and metadata extraction in the second half of the figure.

Metadata is distributed via JSON-encoded files holding an ordered list of metadata entries, along with offsets (𝑜) and paragraph lengths (𝑙), enabling any user to get the content of a said metadata by querying for lines (𝑜, 𝑜 + 𝑙] in the content file.

This approach still has drawbacks, in particular when looking for the corresponding metadata of a given sentence/paragraph, where one has to perform a search on the metadata file, or when working with multilingual documents. Another important drawback is the resulting cost of potentially merging back numerous language parts: Since metadata query is offset-based, merging back metadata files implies updating those offsets. Having paragraphs and metadata linked by offsets in a highly parallelized pipeline implies to take special care at the offset level. The solution is to use shard-scoped offsets (starting from 0 for each language), and to keep global offsets protected by a mutex guard. This way, when a given shard is done processing and is ready to be written on disk, we convert shard-scoped offsets to global-scoped ones, update the global-scoped ones and then write text and metadata on disk.

We compare running times for the reimplementation of the goclassy pipeline, and our new pipeline adding metadata extraction, using both desktop and HPC contexts. The results are reported in Table 7.2.

Metadata generation does not seem to influence generation time dramatically. However, we can notice a slight performance difference between HPC and Desktop contexts. These differences may lie in the storage medium differences, I/O layout, or algorithmic peculiarities benefiting desktop contexts because of other bottlenecks.

Characteristics of the OSCAR 21.09 Corpus

We evaluate the newly generated OSCAR 21.09 corpus (published in September 20217 ), assessing its ability to reflect events that occurred after the publication of OSCAR 2019, that is, events that occurred after November 2018, and we detail the metadata format and potential use.

Comparison with OSCAR 2019

While it is expected that our new corpus has a larger file size than OSCAR 2019 since Common Crawl itself grew from 7.42 TB to 8.06 TB, metadata quickly adds up and accounts for nearly 15% of the total uncompressed data in OSCAR 21.09.

The size difference is not the same for each language, and while the corpus as a whole is bigger now, some languages are smaller than they were before.

Results show that already largely represented languages gain more and more data (like the English language, which constituted more than a third of the original OSCAR 2019), except for the Russian language which loses approximately 100Gb of textual content. These results are summarized in Figure 7.2. However, in a context where the number of languages is very high (higher than 150) and of varying sizes, evolution can't be analyzed via a mere size evaluation. By computing, for each language, the relative size difference between the 2019 and 21.09 releases of OSCAR, less resourced languages do appear, hinting at a better representation of some of them. These results can be found in Figure 7. 3. Note nonetheless that numerous languages have been omitted from Figure 7.3, either:

• because they were present in the original OSCAR 2019 and are now absent (Central Bikol and Cantonese)

• or because they were absent in the original OSCAR 2019 and are now present (Manx, Rusyn, Scots and West Flemish)

Precautions have to be taken when using these corpora and further work has to be done to correctly assess the quality of low-to-mid resource languages in order to better reflect the quality of each corpus to the OSCAR users. Some sub-corpora exhibited either a particularly low number of sentences or just very low quality data, and as such they are not really usable in practice. However, they still account for a language in the total language count of both the original OSCAR 2019 and the new OSCAR 21.09. 

Metadata

Metadata provides new contextual data that is useful to evaluate the corpus and draw metrics. The total size of metadata is 1.2 TB, ranging from 4Kb to 500Gb, depending on the number of lines. Relative size varies from 100% to 20%, diminishing with the textual data size, which is expected.

Our choice of keeping metadata aside from the main content adds some complexity when working with both textual and contextual data: • Looking for lines corresponding to a particular metadata entry is easier: one has to read the textual file, skipping until the 𝑜-th line, then read 𝑙 lines.

Presence of events

Using a sample of five sub-corpora, we perform a simple search of terms in order to assess and compare the presence of pre-and post-2018 events and persons in both corpora. Terms and frequency are grouped in Table 7.4.

Our corpus keeps around the same number of occurrences for pre-2018 events or public figures such as Barack Obama, while increasing the occurrence of people linked to more recent events (Joe Biden).

We include search terms linked to post-2018 events in French and Arabic which are smaller corpora (resp. 200 and 80 GB), and in Burmese, a mid-resource language (approximately 2 GB). We observe a term occurrences evolution that reflects the linked events' timing and importance.

License

This new OSCAR 21.09 corpus is released under a research-only license that is compliant with the EU's exceptions for research in text and data mining. Contrarily to the original OSCAR 2019, no shuffled version of the corpus is distributed, instead we put in place an authentication system that allows us to verify that requests for the corpus come from research institutions. A contact form is also provided for independent researchers so that we can study their particular cases and determine if the utilization of the corpus corresponds to a legitimate research use.

Moreover, the introduction of metadata makes our corpus far more queryable, thus simplifying and speeding up the handling of take-down GDPR requests. For this reason, we release the complete set of metadata under a CC0 public domain license, so that any individual can check if their personal or even copyrighted data is in our new OSCAR 21.09 corpus and make a request accordingly.

Conclusion

Although the work presented in this particular chapter does not directly address some of the previous concerns raised by [START_REF] Caswell | Language ID in the wild: Unexpected challenges on the path to a thousand-language web text corpus[END_REF] and discussed in Chapter 6. We do believe that a more efficient, more modular and better documented pipeline is the first step in making the OSCAR project more approachable by other members of the NLP and Digital Humanities communities.

Moreover, we also believe that the addition of metadata to OSCAR is a big step towards improving the quality of its content as it will provide us and other researchers willing to use OSCAR with enough information to better explore, audit, annotate and filter the corpus.

In the next and final chapter of the OSCAR part in this thesis we will explore the question of document integrity which might be useful for researchers interested in document level tasks and which until now is not respected for Common Crawl records containing multilingual data. We will also continue improving Ungoliant and start using the metadata that we extract from the Common Crawl records to produce the first ever OSCAR annotations.

8 Towards a Cleaner Document-Oriented Annotated OSCAR Corpus

In which we present the work of [START_REF] Abadji | Towards a Cleaner Document-Oriented Multilingual Crawled Corpus[END_REF], who continued improving over the second OSCAR pipeline Ungoliant by adding mechanisms to ensure document integrity, specially for multilingual records of Common Crawl, and also by adding the first methods for simple annotations of the OSCAR corpus that would allow users to more easily filter the data and obtain a cleaner dataset specially for language modeling applications. 1In this final chapter about the OSCAR project we present the first methods for adding simple annotators to the Ungoliant pipeline that build upon the improvements presented in the previous chapter and that actually allow us to finally start addressing some problems exposed in chapter 6 and in far more detail in [START_REF] Caswell | Language ID in the wild: Unexpected challenges on the path to a thousand-language web text corpus[END_REF][START_REF] Kreutzer | Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets[END_REF]. Moreover, we also introduce a new method for document level language classification that:

1. Is based on line-level language classification allowing us to hopefully preserve the classification quality that we saw in chapter 6.

2. Allow us to respect document integrity such that we can establish a one to one correspondence between OSCAR documents and Common Crawl records.

3. Allows us to get multilingual documents that might one day serve as the basis of a parallel OSCAR corpus.

Filtering

Previous OSCAR pipelines were line-oriented (where a line is defined as a string separated by \n, and often correspond to a paragraph), which meant that the highest filtering granularity were lines. Having a document-oriented corpus implies that:

• We must try to keep the document integrity, by altering it in a way that does not completely destroy its coherence.

• Operations on the document (filtering, identification, annotation) must take into account the document as a whole.

We aim to produce a corpus that is similar in size and quality to OSCAR 21.09, looking for a set of filters that limits the inclusion of short, noisy lines in documents, while keeping a sufficient quantity of data, especially for low-and mid-resource languages. Those filters either keep/discard a given document, or remove lines from the document body then keep it.

Header and footer filter

Similar to previous OSCAR pipelines, we use a length-based filter discarding shortlines. However, we restrict the removal on contiguous sequences of short lines that are located either at the head or at the tail of the document. In the following document, only the lines preceded by an exclamation point would be kept.

Home Login Sign Up

Welcome to my Website ! Lorem Ipsum Dolor Sit Amet .... ! Lorem Ipsum Dolor Sit Amet .... ! Lorem Ipsum Dolor Sit Amet .... ! Lorem Ipsum Dolor Sit Amet ....

Copyright Myself Legal Contact

The solution still has numerous drawbacks, especially when dealing with documents crawled from the internet, a source known to be extremely noisy and full of edge cases: Adding a long line at the very head and tail of the previous document would completely negate the benefits of the filter.

Short lines proportion filter

In order to refine the filtering process, we use a count-based filter that separates the data in two bins: One for short lines and one for long lines. The filter then checks which bin is bigger, and filters out documents where the short lines bin is bigger.

This filter may limit the impact of documents containing low-quality long lines at the head/tail, then a high number of short lines.

Identification

The backbone of the language identification process is similar to the one used in goclassy (Chapter 4) for the generation of OSCAR 2019 and Ungoliant (Chapter 7) for the generation of OSCAR 21.09. However, shifting to a document oriented corpus (with a single top-level identification per document) requires to infer the document identification, based on line identifications.

We define a document 𝒟 as a pair 𝒟 = (ℒ, 𝒢) where ℒ = {𝑙 1 , … , 𝑙 𝑛 } is the set of lines (strings separated by \n) that constitute the document and 𝒢 = {𝑔 1 , … , 𝑔 𝑚 }2 is the set of languages identified by FastText for the document 𝒟. When FastText is not able to identify a language for a specific line, for instance because the confidence isn't higher than 0.8, we tag said line with the No Identification Language that we simply note by 𝑔 0 . Furthermore, we define each line 𝑙 𝑖 in a document 𝒟 as a triplet 𝑙 𝑘 = (𝑔 𝑖 , 𝑝 𝑖 , 𝑠 𝑖 ) where 𝑔 𝑖 is the language identified by FastText with the highest confidence for the line 𝑙 𝑖 , 𝑝 𝑖 is said confidence and 𝑠 𝑖 is the size in bytes of the line 𝑙 𝑖 . We also note |𝑙 𝑖 | = 𝑠 𝑖 , and we thus define the size |𝒟| of a document 𝒟 as

|𝒟| = 𝑛 ∑ 𝑖=0 |𝑙 𝑖 | = 𝑛 ∑ 𝑖=0 𝑠 𝑖 .
Moreover, for each identified language 𝑔 ∈ 𝒢 in a document containing 𝑛 lines, we define its size |𝑔| as

|𝑔| = ∑ {𝑖|𝑔 𝑖 =𝑔} 𝑠 𝑖 .
Finally, for each language 𝑔 ∈ 𝒢 we can also compute its overall weighted confidence 𝑃 throughout the document 𝒟 as the following weighted mean:

𝑃 = |𝒟| -1 ∑ {𝑖|𝑔 𝑖 =𝑔} 𝑠 𝑖 𝑝 𝑖 .

Multilingual document identification

A document can contain lines in multiple languages for several reasons:

1. Identification mismatch, that can show up frequently, especially with languages that have significant vocabulary overlap (Czech and Slovak),

2. Crawl from a website where the interface is written in a language, and the body is written in another one, 3. Crawl from a translation page, where the same content is present in two (or more) different languages.

In these examples, we should aim to limit the presence of 1. and 2., while maximizing the presence of 3.: documents having a balanced set of lines per language. Thus, we decide to take a cautious approach, restricting the multilingual document identification test to the documents that:

• Have at least 5 lines,

• Have at most 5 different languages.

Next, we compute the proportion for each language 𝑔 𝑗 ∈ 𝒢 in the document 𝒟 defined as follows

Pr 𝑔 𝑗 = |𝑔 𝑗 | |𝒟| ,
including for the no identification language 𝑔 0 .

A document 𝒟 containing 𝑛 lines is identified as multilingual if and only if:

⎧ { { ⎨ { { ⎩ |𝑔 𝑗 | ≥ |𝒟| 𝑛 + 1 ∀𝑔 𝑗 ≠ 𝑔 0 , and 
|𝑔 0 | ≤ |𝒟| 𝑛 + 1
As an example, a document holding 𝑚 = 3 languages is multilingual if each language makes up at least 1 𝑚+1 = 1 4 of the document, and that there is at most 1 4 of the document that is of unknown identification.

Monolingual identification

We begin by identifying each line, keeping in memory the language identified, the confidence of the identification, and the size of the line. We keep track of lines that have not been identified with a special token, and a confidence of 1.

If the document does not pass the multilingual check, we then take the largest represented language and compute its overall confidence 𝑃 𝑗 and use a minimum confidence threshold of 0.6 that is way lower than the previous pipelines (0.8). This is motivated by the following reason: The document-based filtering removes documents containing lines that could have been kept by former pipelines, thus reducing the size of the generated data.

Annotation

Using a lower threshold could help getting lower-quality documents that still hold high-confidence lines in themselves.

Annotation

While the filtering and identification steps are lenient by using lower thresholds than the previous pipelines, we introduce annotations, as non-destructive filters that enable more precise downstream filtering for the corpus users, as well as a useful resource to quickly assess the quality of a corpus. Annotations enable more aggressive filters to be run, since the non-destructive nature of annotations can in turn be used to refine annotation filters.

Numerous annotations are available, and each document can have several ones at the same time.

Length-based annotations

Some simple annotations are added when documents don't meet certain length requirements:

• The document has a low (≤ 5) number of lines (tiny)

• The document has a high number (≥ 50%) of short lines (short_sentences)

These annotations help to spot potentially tiny documents, where the line structure or the document size could negatively influence training tasks.

A third annotation checks the occurrence of short lines at the start of the document, and adds a header annotation if it is the case, indicating that low-quality content could be present at the start of the document.

A fourth annotation named footer works in the same way on the tail of the document.

Noise detection

Some documents make their way into the corpus while being extremely noisy or non-linguistic. As an example, source code can be found in English corpora because of the presence of English words in the source itself.

We use a filter that computes a ratio between letters and non-letters. This filter is based on Unicode categories. We use categories Lu, Ll, Lt, Lm, Lo3 for letters, and we add categories Mn, Mc, Me4 for accents and diacritics.

A noisy annotation is added if the ratio passes a certain threshold, set to 0.5.

Adult documents

We use the UT1 blocklist 5 as a base for adult content filtering. The UT1 blocklist is a collection of thematic blocklists (adult, gambling, blog, among others), usually utilized in internet access control for schools. The list is constituted and extended by both human and robots contributions (known indexes, search engines, exploration of already known addresses). The blocklist is updated twice to thrice a week by Fabrice Prigent. Each folder contains URL and domain blocklists, enabling filtering of both websites that are centered around adult content, and websites hosting user-generated content that can be of adult nature (several social networks...).

The adult blocklist comprises roughly 3.7M records.

Corpus

We apply the aforementioned pipeline to the November/December 2021 crawl dump of Common Crawl. The result is a new corpus, OSCAR 22.01. While its structure is different from the previous OSCAR corpora (due to the choice of generating a document oriented corpus), we have attempted to compare the two corpora, especially in terms of size and news-related topic presence and recall. We also evaluate the occurrence and pertinence of the annotations. The data layout of OSCAR 22.01 may limit the relevance of raw size comparisons, since metadata are larger (annotations and line identifications were not present in previous OSCAR Corpora), and fused with textual data (metadata were distributed in separate files for OSCAR 21.09). However, comparing the distribution of corpus sizes may help us ensure that the new corpus has a size distribution similar to the older one.

We compare the distribution of the sub-corpora sizes between OSCAR 21.09 and OSCAR 22.01 in figure 8.1. We see that while the overall distribution is similar, the lower end of the distribution has more variance: The [0B, 100KB) range shows more corpora at its bounds than at its center. Furthermore, we also plot the empirical cumulative density function, that helps to assert the distribution similarity between OSCAR 21.09 and OSCAR 22.01. We also select three low-resourced languages, three mid-resourced languages and three high-resources languages and compare their content (that is, textual data excluding metadata) between OSCAR 22.01 and OSCAR 21.09. Comparison is shown in figure 8.2. While the overall sizes of these corpora have slightly decreased, the sizes of the mid and high resource languages are similar enough.

Size differences in low-resource languages

The low-sized corpora exhibit important size changes. As an example, the Alemannic German corpus went from 7MB to 360KB between OSCAR 21.09 and OSCAR 22.01. This size decrease can be explained by the way the document identification works: by reasoning at a document level, documents containing a majority of German identified lines and a minority of Alemannic German identified lines will be identified as a German document, whereas previous OSCAR pipelines would have separated the lines and increase the size of the Alemannic German corpus.

By extracting the lines identified as Alemannic from the German corpus, we get around 30MB of data, which could constitute an Alemannic corpus with a size comparable to the OSCAR 21.09 Alemannic corpus after confidence and length based filtering.

This situation can, in a way, help us investigate the cases of linguistic proximity, where languages have a lexical overlap: When a line identified as Alemannic German is found inside a document that has been identified as German:

1. Is the line in German, and it is an identification error? 2. Is the line in Alemannic German, in a document that is in German? (ex: A German website related to the Alemannic German language)

3. Is the whole document in Alemannic German, and the identification classified the majority of Alemannic as German?

Those three cases can arise and may help to enhance the detection of a said language, by finding (1) identification mismatches, hoping that these cases would improve identification after training, or (3), after verification by a speaker of the language, state that the whole document is in Alemannic. The new data collected could in turn be used to improve language detection.

New themes

As OSCAR 22.01 is based on the November/December 2021 dump (compared to OSCAR 21.09, based on the February 2021 dump), the corpus should include data related to events contemporary to February 2021. We conduct a simple word search similar to the one conducted for the generation of OSCAR 21.09 [START_REF] Abadji | Ungoliant: An optimized pipeline for the generation of a very large-scale multilingual web corpus[END_REF], using both old and new events, in order to give a rough idea of both the actuality and the memory of the corpus.

We see that the events and terms related to events predating February 2021 are still present in the corpus, but have a lower count that nevertheless remains in the same order of magnitude. We also count the occurrences of the term Omicron, related to the Omicron variant, and observe that the term has a higher count on the 21.01 sample.

Absence of deduplication

Contrary to OSCAR 21.09, we do not distribute a deduplicated version of the majority of OSCAR 22.01.

The line-level deduplication of documents would have destroyed the integrity of documents themselves, hampering human readability and even sequential sentence sense. We can imagine having forum discussions' sense destroyed because of identical responses, or song lyrics being altered.

Moreover, the similarity-based document-level deduplication procedure is very costly in terms of computing power and time [START_REF] Gao | The Pile: An 800GB Dataset of Diverse Text for Language Modeling[END_REF].

We make the choice of distributing a non deduplicated version of OSCAR along with a deduplicated, line oriented version of the English corpus, while encouraging the use of deduplication in the context of training language models [START_REF] Lee | Deduplicating Training Data Makes Language Models Better[END_REF]. A line-level deduplication tool will be available as part of the OSCAR toolkit6 . We will also distribute a deduplicated version of the English part of OSCAR 22.01, with a data layout similar to OSCAR 21.09 corpora.

Annotations

Raw stats Annotations help us to infer the composition of the corpora: The tiny, short_sentences and especially noisy annotations may indicate documents of a varying poor quality, with noisy being the worst.

Also, comparing corpora annotation distributions, especially related to their size, could highlight potentially very low quality corpora. This semi-automated quality checking process could be used to label corpora where data quality is bad.

We select 3 low-resource (≃100KB), 3 mid-resource (≃100MB) and 3 high-resource (≃100GB) languages and plot the number of documents per annotation, adding a total legend for the total document count and a clean legend for documents that do not have any annotation. We then plot the counts for each resource group using adapted scales.

We observe that the annotation distribution is similar for each resource group, but that the lower resourced languages have a higher proportion of documents annotated with short_sentences and tiny. In order to better compare the resource groups, we display the annotation distribution in a heat map (figure 8.4). We notice important differences between low and mid/high resource groups. A very large proportion of the low resource group is annotated as tiny while simultaneously detaining few documents annotated short_sentences, indicating the presence of long sentences within documents with a low number of sentences. 

Multilinguality

The OSCAR 22.01 Corpus also contains a multilingual corpus, composed of documents holding lines in multiple languages. Each document contains at least 2 languages, and at most 5.

We check the co-occurrence of languages, highlighting the coupling of language tuples. These tuples may highlight either linguistic similarity (Czech and Slovak, Russian and Belarusian) and subsequent poor classification, errors or languages commonly found together on documents. Due to the number of languages and the sparsity of the data, we show the language couples with a number of documents greater than 20 000 (Figure 8.5).

We also note the presence of English in a high number of documents. This could be explained by boilerplate content in web pages, such as menu headers or footers.

Using the clean annotation filter on the multilingual corpus may help to retrieve the highest quality multilingual documents. 

Clean documents

We also look into documents that did not get annotated at all, and we find that these documents are usually of a high quality. However, their relative proportion in corpora may limit their usage.

We use a sample of the English corpus (183,497 documents, 1.3 GB) and compare the size of documents depending on the presence (or not) of annotations. The stacked counts are shown in figure 8.6.

We observe that clean document mean length is slightly shorter than non-clean ones. Also, we note that while the length standard deviation of clean documents seems to be shorter, the computation yields larger numbers, caused by outliers in the high end (Annotations: 𝜇 = 8606 𝜎 = 49874, Clean: 𝜇 = 6537 𝜎 = 14983). By removing the top and bottom 5%, we get (Annotations: 𝜇 = 3686 𝜎 = 4047, Clean: 𝜇 = 3582 𝜎 = 3202).

These results are not sufficient to state on the intrinsic quality of the clean documents, but may ease the study of the filters and identify future filtering needs. The French sample contains 32,870 adult documents, out of 52,037,098. We count if some documents coming from tetu.com are labeled as adult, in order to probe the possibility of finding LGBTQI+ content annotated as adult. We find 1063 documents, representing ∼ 3.2% of the adult documents. This may imply that more LGBTQI+ content sites are present in the blocklist, thus increasing the ratio of LGBTQI+ content labeled as adult.

We take the first 100 adult documents of the French corpus and check whether they are properly classified.

• true positives documents that exhibit explicit sexual content geared towards pornography (pornographic websites, sexually explicit fictions)

• false positives documents that do not meet these criteria,

We separately count websites that are simultaneously non-explicit and from LGBTQI+ websites.

We find:

1. 77 true positives, 2. 2 false positives belonging to LGBTQI+ websites,

21 false positives

While the majority of true positives are properly classified, numerous educational documents do appear: These type of documents exhibit an explicit language, but does feature a good document quality, and a better representation of sexuality that is less offensive compared to the usual associations between sexually explicit content and hate speech [START_REF] Luccioni | What's in the box? an analysis of undesirable content in the Common Crawl corpus[END_REF].

The false positives are, for the majority, websites that do not belong in the blocklist in the first place. We assume that the addresses were previously used as adult websites.

Hard bound problems

Several pipeline steps (especially annotators), work using hard thresholds. As an example, any document that is less than 5 lines is considered to be tiny. However, when exploring data, we can see that there is a number of documents whose number of lines is in the neighboring of the threshold, and quality is similar to the documents labeled as tiny.

When plotting the distribution of clean and annotated corpus data, we can notice that a very high number of documents are of a tiny (100B) size, which coincidentally happens to be the minimum size for a document to be accepted, since the first filter removes lines that are shorter than 100 characters (≥ 100B).

Discussion

Corpus

We provide a new, document-oriented corpus of the same size of OSCAR 21.09 that keeps document integrity and is easier to filter thanks to annotations.

While the mid and high resourced languages are of a similar size, several low resource languages have seen an important decrease of size. We still have to check whether this size decrease comes with a quality increase, since previous low resource OSCAR corpora sometimes exhibited extremely poor quality: Many non-linguistic corpora that were published and deemed unusable weeks or months after release.

We also note that documents of similar languages could have been merged into larger corpora, and we show that the German corpus holds ∼ 30MB of Alemannic that, with appropriate filtering, could be treated as an independent corpus. These cases of merging are also interesting to investigate, as they can explain identification mismatches and could, in turn, help to build better language identification models. More work has to be done in order to properly map the connection between lowresource languages and mid and high resource languages potentially containing data in these languages.

Annotations

The selected annotations exhibit numerous caveats that have to be addressed in the future iterations of OSCAR generation pipelines.

The length-based annotations are widespread in the corpus, especially in mid to high resource languages (∼ 50% in Czech) highlighting the potential low quality of a high number of documents as well as the need of better characterizing the nature of these line length discrepancies. Web crawls often contain boilerplate content extracted from headers, footers and sidebars, and these lines are present in the Common Crawl dumps. Another solution would be to base the whole OSCAR generation pipeline on raw HTML files, potentially multiplying the computational cost and complexity of generating corpora.

The adult annotation, based from an adult URL blocklist, is present on a very limited set of documents. However, studies have shown that adult content has been present in a previous version of OSCAR in a larger proportion than the one measured here [START_REF] Kreutzer | Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets[END_REF] (and Chapter 6), hinting at a bad performance of the blocklist based adult content filtering approach. Moreover, we noticed that the blocklist contained websites representing LGBTQI+ related topics, which damages the representation of the LGBTQI+ (association with adult content, filtering out LGBTQI+ documents, which in turn could limit the representation in downstream tasks...). Model-based approaches may help in improving the adult annotation, and should be the next step towards a better annotation of adult content [START_REF] Luccioni | What's in the box? an analysis of undesirable content in the Common Crawl corpus[END_REF].

Conclusion

With the improvements to the Ungoliant pipeline described in this chapter and the release of OSCAR 22.01, we believe we are moving the OSCAR project in a direction were we are capable of distributing high quality up-to-date textual data for a wide range of NLP and Digital Humanities applications.

While we are aware that not all the problems and concerns around the OSCAR corpus have been addressed, we hope we can continue working on this project as it has already had a significant impact on the NLP community, especially for studies in underrepresented languages.

We believe however that the next steps in improving our corpus will require a more close involvement and participation of the OSCAR users. We thus hope that in the coming months and years we will be able to build an active open source community around the OSCAR project where people will be able to collaborate and contribute directly to the development of future versions of OSCAR and its pipeline Ungoliant.

While this chapter marks the end of the multilingual discussion of this thesis, the French sub-corpus of OSCAR will be instrumental to the development of our models and resources for both contemporary and historical French, as we will see in the coming chapters. Having constructed a multilingual corpus out of web data that was in theory big enough to train a state-of-the-art language model [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF] for a wide range of languages, and having addressed some of the quality concerns that some researchers had expressed about this type of corpus. We wanted to focus a little more on constructing resources specifically for Contemporary and Historical French, as this was the originally intended task when we first started working on OSCAR, which was always intended to be a French corpus only, but that ended being multilingual due to the multilingual nature of Common Crawl.

In this chapter we will present CaBeRnet (Popa-Fabre et al., 2020) A Contemporary French Balanced Corpus that is orders of magnitude smaller than the French OSCAR sub-corpus, but that as opposed to OSCAR, it is manually curated and specifically designed to be a linguistically balanced cross-genre corpus for the French language. We will also briefly present the work of Ortiz Suárez et al. (2020a) who aligned both the Universal Dependencies and the TEI-annotated NER version of the French Treebank, giving us a more consistent a more user-friendly NER French corpus that will be used for evaluation in later chapters.

Contemporary French Balanced Corpora

While working on OSCAR 2019,2 the question of quality versus size of corpus caught our attention. We wanted to study in particular the issue of corpus "representativeness" in order to grasp to what extent a linguistically balanced cross-genre language sample would be sufficient to pre-train a language model. Here for "representativeness" we follow Biber's definition: "representativeness refers to the extent to which a sample includes the full range of variability in a population" [START_REF] Biber | Representativeness in Corpus Design[END_REF].

To construct our corpora we adopt a balanced approach by sampling a wide spectrum of language use and its cross-genre variability, be it situational (e.g. format, author, addressee, purposes, settings or topics) or linguistic, e.g. linked to distributional parameters like frequencies of word classes and genres. In this fashion, we developed two corpora:

1. The French Balanced Reference Corpus (CaBeRnet), which includes a wideranging and balanced coverage of cross-genre language use to be maximally representative of the French language and therefore yield good generalizations from.

2. The French Children Book Test (CBT-fr), which includes both narrative material and oral language use as present in youth literature, and which could be used for domain-specific language model training.

Both corpora are inspired by existing American and English corpora, respectively COCA, the balanced Corpus of Contemporary American English [START_REF] Davies | The 385+ million word corpus of contemporary american english (1990-2008+): Design, architecture, and linguistic insights[END_REF][START_REF] Davies | The Corpus of Contemporary American English as the first reliable monitor corpus of English[END_REF], and the Children Book Test (Hill et al., 2016, CBT).

CaBeRnet

The CaBeRnet corpus was inspired by the genre partition of the American balanced corpus COCA, 3 which at the end of 2019, when this study was conducted, contained over 618 million words of text (20 million words each year 1990-2019) and was equally divided among spoken, fiction, popular magazines, newspapers, and academic texts [START_REF] Davies | The 385+ million word corpus of contemporary american english (1990-2008+): Design, architecture, and linguistic insights[END_REF][START_REF] Davies | The Corpus of Contemporary American English as the first reliable monitor corpus of English[END_REF]. A second reference, guiding our approach and sampling method, was one of the earliest precursors of balanced reference corpora: the BNC (Consortium et al., 2007), which covered a wide variety of genres, with the intention to be a representative sample of spoken and written language.

CaBeRnet was obtained by compiling existing data-sets and web-text extracted from different sources as detailed in this subsection. As shown in Table 9.1, genres sources are evenly divided (∼120 million words each) into spoken, fiction, magazine, newspaper, academic to achieve genre-balanced between oral and written modality in newspapers and popular written style, technical reports and Wikipedia entries, fiction, literature and academic production.

CaBeRnet Oral The oral sub-portion gathers both oral transcriptions (ORFEO and Rhapsodie4 ) and Films subtitles (Open Subtitles.org), pruned from diacritics, interlocutors tagging and time stamps. To these transcriptions, we add the French European Parliament Proceedings (1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011), as presented in [START_REF] Koehn | Europarl: A parallel corpus for statistical machine translation[END_REF], which contribute a sample of more complex oral style with longer sentences and richer vocabulary.

CaBeRnet Popular Press The whole sub-portion of Popular Press is gathered from an open data-set from the Est Républicain (1999, 2002 and 2003), a regional press format. 5 It was selected to match popular style as it is characterized by easy-to-read press style and a wide range of every-day topics characterizing local regional french press.

CaBeRnet [START_REF] Tjong | Introduction to the CoNLL-2002 shared task: Languageindependent named entity recognition[END_REF][START_REF] Gleßgen | L'élaboration philologique et l'étude lexicologique des plus anciens documents linguistiques de la France à l'aide de l'informatique[END_REF], La Dépèche 2002[START_REF] Gleßgen | L'élaboration philologique et l'étude lexicologique des plus anciens documents linguistiques de la France à l'aide de l'informatique[END_REF], L'Humanité 2002[START_REF] Gleßgen | L'élaboration philologique et l'étude lexicologique des plus anciens documents linguistiques de la France à l'aide de l'informatique[END_REF] and Le Monde diplomatique. This open-source corpora were assembled to represent a higher register of written news style from different political and thematic horizons. Several months of French Press Agency reports are also added (AFP, 2007(AFP, -2011(AFP, -2012)), which contribute with a more simple and telegraphic style than the others newspaper written samples of the corpus.7 

CaBeRnet Academic The academic genre was also built from different sources including technical and educational texts from WikiBooks and Wikipedia dump (prior to 2016) for their thematic variety of highly specialized written production. The ORFEO Corpus offered a small sample of academic writings like PhD dissertations and scientific articles encompassing a wide choice of disciplinary topics, and the TALN Corpus8 was included to represent more concise written style characterizing scientific abstracts and proceedings. For all sub-portions of CaBeRnet, visual inspection was performed to remove section titles, redundant meta-information linked to publishing schemes of each of the six news editor included. This was manually achieved by compiling a rich set of regular expressions specific of each textual source to obtain clean plain text as an output.

French Children Book Test (CBT-fr)

The French Children Book Test (CBT-fr) was built upon its original English version, the Children Book Test (CBT) [START_REF] Hill | The goldilocks principle: Reading children's books with explicit memory representations[END_REF], 9 which consists of books freely available from Project Gutenberg. 10Using youth literature and children books guarantees a clear narrative structure, and a large amount of dialogues, which enriches with oral register the literary style of this corpus. The English version of this corpus was originally built as a benchmark data-set to test how well language models capture meaning in context. It contains 108 books, and a vocabulary size of 53,628 tokens.

The French version of CBT, named CBT-fr, was constructed to guarantee enough linguistic similarities between the collected books in the two languages. 104 freely available books were included. One third of the books were purposely chosen because they were classical translations of English literary classics. Chapter heads, titles, notes and all types of editorial information were removed to obtain a plain narrative text. The effort of keeping proportion, genre, domain, and time as equal as possible yields a multilingual set of comparable corpora with a similar balance and representativeness. 

Descriptive Comparison

Having put together these two different balanced corpora, we wanted to perform a descriptive comparison between them, the French subcorpus of OSCAR 2019 (that we call OSCAR-fr for short) and Wikipedia (Wikipedia-fr). In order to perform this comparison we start by tokenizing all corpora. For this we used two different tokenizers: A standalone version of SEM (Segmenteur-Étiqueteur Markovien) [START_REF] Dupont | Exploration de traits pour la reconnaissance d'entités nommées du français par apprentissage automatique (feature exploration for French named entity recognition with machine learning)[END_REF] and TreeTagger [START_REF] Schmid | Improvements in Part-of-Speech Tagging with an Application to German[END_REF]. Both are based on cascades of regular expressions, and both perform tokenization and sentence splitting. The first was used for descriptive purposes because it technically allowed to segment and tokenize all corpora including OSCAR (23 billion words). Hence, all corpora were entirely segmented into sentences and tokenized using SEM.

While the second tokenization method was only run on 3 million words samples to automatically tag them with TreeTagger into part-of-speech and lemmatize them. 11All corpora were randomly shuffled by sentence to then select samples of 3 million words, to be able to compare them in terms of lexical composition (Type-Token Ratio, see Table 9.4).

For Wikipedia-fr in particular we use a dump executed from April 2019, where HTML tags and tables were removed, together with template expansion using Attardi's tool WikiExtractor. 12

Size and Composition

Length of sentences is a simple measure to quantify both sentence syntactic complexity and genre. Hence, the number of sentences reported in Table 9 As reported on Table 9.3, in the Wikipedia-fr dataset (660 million words) sentences are relatively longer compared to other corpora. It has the advantage of having a comparable size to CaBeRnet, but its homogeneity in terms of written genre is limited to Wikipedia's entries descriptive style.

Lexical Variety

We also try to find a useful measure of complexity that measures lexical richness or variety in vocabulary. For this, we present the type-token ration (TTR) of the corpora we analyze. This measure, is generally used to assess language use aspects, like the amount of words used to communicate by language learners or children, it represents the total number of unique words (types/forms) divided by the total number of tokens in a given sample of text. Thus, the closer the TTR ratio is to 1, the greater the lexical richness of the corpus. Table 9.1 summarizes the lexical variety of the five sub-portions of CaBeRnet, respectively taken as representative of Oral, Popular, Fiction, News, and Academic genres.

Domain diversity of texts can be observed in the lexical statistics showing a gradual increase in the number of distinct lexical forms (cf. TTR). This pattern reflects a generally acknowledged distributional pattern of vocabulary-size across genres. Oral style shows a poorer lexical variety compared to newspapers/magazines' textual typology. The lexically rich fictional/classic literature is outreached by academic writing-style with its wide-ranging specialized vocabulary. All in all, Table 9.1 quantitatively suggests that the selected textual and oral materials are indeed representative of the five types of genres of CaBeRnet.

Morphological Richness

To select a measure that would help quantifying the different corpora morphological richness, we follow [START_REF] Bonami | Implicative structure and joint predictiveness[END_REF]. Hence, the proportion of lemmas with multiple forms in a given vocabulary size was evaluated on randomly selected samples of 3-million-words from each of the analyzed corpora (see Table 9.4).

Table 9.4 reports some more in-depth lexical and morphological statistics across corpora. Here we see that, although OSCAR is 34 times bigger than CaBeRnet, their 100 Having performed this descriptive evaluation, we will evaluate how these corpora perform as pre-training datasets for language models in the following part of the thesis. For now, we will present a small improvement that we contributed to an existing Named Entity Recognition corpus in French.

A named entity annotation layer for the UD version of the French TreeBank

As discussed in 3.3.1, Sagot et al. (2012) describe the addition to the French Treebank (FTB) [START_REF] Abeillé | Building a Treebank for French[END_REF] in its FTB-UC version [START_REF] Candito | Statistical French dependency parsing: Treebank conversion and first results[END_REF] of a new, freely available annotation layer providing named entity information in terms of span and type (NER) as well as reference (NE linking), using the Wikipedia-based Aleda entity database (Sagot and Stern, 2012) as a reference entity database. This was the first freely available French corpus annotated with referential named entity information and the first freely available such corpus for the written journalistic genre. However, this annotation is provided in the form of an XML-annotated (TEI-annotated) text with sentence boundaries but no tokenization.

Since the publication of that named entity FTB annotation layer, the field has evolved in many ways. Firstly, most treebanks are now available as part of the Universal Dependencies (UD) 13 treebank collection (Zeman et al., 2021). Secondly, neural approaches have considerably improved the state of the art in natural language processing in general and in NER in particular. In this regard, the emergence of contextual language models has played a major role. However, surprisingly few neural French NER systems have been published. 14 This might be because of the fact that getting access to the FTB with its named entity layer as well as using this corpus were not straightforward tasks.

For a number of technical reasons, re-aligning the XML-format named entity FTB annotation layer created by Sagot et al. (2012) with the "official" version of the FTB or, later, with the version of the FTB provided within the Universal Dependency (UD) framework was not a straightforward task. 15 Moreover, due to the intellectual property status of the source text in the FTB, the named entity annotations could only be provided to people having signed the FTB license, which prevented them from being made freely downloadable online.

Our goal in this section is to prove a new, easy-to-use UD-aligned version of the named entity annotation layer in the FTB. We describe the process whereby we realigned the named entity FTB annotations by Sagot et al. (2012) with the UD version of the FTB [START_REF] Candito | Statistical French dependency parsing: Treebank conversion and first results[END_REF]. This makes it possible to share these annotations in the form of a set of additional columns that can easily be pasted to the UD FTB file. This new version of the named entity FTB layer is much more readily usable than the original TEI encoded version, and will serve as a basis for our experiments in the last part of this thesis.

Alignment to the UD version of the FTB

The named entity (NE) annotation layer for the FTB was developed using an XML editor on the raw text of the FTB. Annotations are provided as inline XML elements within the sentence-segmented but non tokenized text. For creating our NER models, we first had to align these XML annotations with the already tokenized UD version of FTB.

Sentences were provided in the same order for both corpora, so we did not have to align them. For each sentence, we created a mapping 𝑀 between the raw text of the NE-annotated FTB (i.e. after having removed all XML annotations) and tokens in the UD version of the FTB corpus. More precisely, character offsets in the FTB-NE raw text were mapped to token offsets in the tokenized FTB-UD. This alignment was done using case-insensitive character-based comparisons and were a mapping of a span in the raw text to a span in the tokenized corpus. We used the inline XML annotations to create offline, character-level NE annotations for each sentence, and reported the NE annotations at the token level in the FTB-UD using the mapping 𝑀 obtained.

We logged each error (i.e. an unaligned NE or token) and then manually corrected the corpora, as those cases were always errors in either corpora and not alignment errors. Likewise, we found 70 errors in FTB-NE and 3 errors in FTB-UD. Errors in FTB-NE were mainly XML entity problems (unhandled "&", for instance) or slightly altered text (for example, a missing comma). Errors in FTB-UD were probably the result of some XML artifacts.

Conclusion

In this chapter we have presented two balanced corpora for Contemporary French, these corpora will be used as pre-training datasets for language models in the next part of the thesis and will serve as both a baseline and a benchmark for assessing the quality of OSCAR as a pre-training corpus, at least for French.

We also presented an alignment to the UD version of the French Treebank, which can be considered as a small quality-of-life improvement that will facilitate the usage of this dataset as an evaluation of the neural models that we will train in the upcoming part of the thesis. We also believe that this new version of the NER annotated FTB will be useful to other researcher that would like to evaluate NER architectures on this dataset.
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In which we present a part of the work of [START_REF] Grobol | BERTrade: Using Contextual Embeddings to Parse Old French[END_REF] who put together a raw corpus for Medieval French intended to pre-train language models. We also present part of the work of Gabay et al. (2022) who construct a FreEM max ,a corpus for Early Modern French for the pre-training of language models, as well as FreEM NER an evaluation corpus annotated in named entity recognition. We also briefly present FreEM LPM an evaluation corpus annotated in part-of-speech tagging. 1Having extensively worked in Contemporary French corpora, we wanted to refocus and develop some historical French resources. As mentioned in the introduction of this thesis, this Ph.D. project was conceived and financed by ANR BASNUM (ANR-18-CE38-0003) project, whose main objective was to digitize and enrich Antoine Furetière's Dictionnaire Universel (DU), in its 1701 version reviewed and corrected by Basnage de Beauval [START_REF] Furetière | Dictionnaire Universel, contenant généralement tous les mots françois tant vieux que modernes, & les termes des sciences et des arts[END_REF], a text written in its entirety in Early Modern French. In Section 10.2 we develop resources for Early Modern French intended for both the pre-training and the evaluation of neural language models. This will allow us to develop, in the next Part, state-of-the-art models capable of conducting the dictionary enriching task originally planned by the BASNUM project.

Having said this, we also decided to participate in the curation of a small Medieval French corpus for the pre-training of a language model. Participating in this endeavor means that at the end of this chapter we will have developed resources for French covering a period going from the 9 th century to the present day, that is, we will have developed and curated textual resources for effectively all language states of French.

Medieval French Corpus

This section describes the raw corpus of Medieval French we gathered in order to train unsupervised language models for Old French. To our knowledge, it is one of the largest such dataset gathered for Medieval French, although it remains quite small (55 MiB in total) relatively to the corpora usually used for pre-training contextual embeddings models.

We chose to include a few texts from the early Middle French period (14 th -15 th c.) in this raw corpus, which brings a valuable complement of the prose documents that are lacking for Old French, while staying close enough to late Old French, the boundary between the two epochs being somewhat fuzzy. These texts precede the adoption of norms established by editors after the invention of Gutenberg's printing press. Middle French is more regular than Old French in some respects such as word order [START_REF] Marchello-Nizia | Grande Grammaire Historique du Français (GGHF)[END_REF] and less in others such as NP structure and pronouns system (Marchello-Nizia, 1979), but they share most of their lexicon and for these relatively early texts, the syntax is not too different from that of late Old French texts.

Corpus

Size / MiB BFM [START_REF] Guillot | Base de français médiéval : une base de référence de sources médiévales ouverte et libre au service de la communauté scientifique[END_REF] 20.7 AND [START_REF] Rothwell | Anglo-Norman dictionary, 2nd edition revised and enlarged edition[END_REF] 17.2 NCA [START_REF] Kunstmann | Le nouveau corpus d'Amsterdam actes de l'atelier de Lauterbad, 23-26 février 2006[END_REF] 9.7 Chartes Douai [START_REF] Gleßgen | L'élaboration philologique et l'étude lexicologique des plus anciens documents linguistiques de la France à l'aide de l'informatique[END_REF] 3.1 OpenMedFr [START_REF] Wrisley | The open medieval french initiative[END_REF] 1.7 Geste (Jean-Baptiste- [START_REF] Alicecochet | Geste: Geste: un corpus de chansons de geste[END_REF] 1.5 MCVF [START_REF] Martineau | Un corpus pour l'analyse de la variation et du changement linguistique[END_REF] 1.4 Chartes Aube [START_REF] Van Reenen | Chartes de Champagne en français conservées aux Archives de l'Aube[END_REF] 0.2 Total 55.3 Medieval French has many factors of variation: language evolution, dialects, domains, forms of text (verse or prose) and lack of standard. Our dataset gives us a representation of Medieval French that is as accurate and diversified as possible, given the limited amount of material that survived to these days. The detailed instructions to replicate this dataset are described in the Appendix F.1. No particular processing is done on the original documents.

In order to get a sound evaluation of the contextual embeddings trained with this dataset, we filter out the documents that are also present in the SRCMF treebank used for evaluation purposes in section 14.1. 2 The resulting corpus is quite heterogeneous: legal texts and verse literature are in the majority, whereas other domains, such as historical and didactic texts, are under-represented, as can be seen in fig. 10.1.

Early Modern French Corpora

For the past few years, we have been involved in the development of linguistic resources for Early Modern French. The initiative, called FreEM (which stands for FREnch Early Modern), aims to collect the corpora required for various NLP tasks such as lemmatization, POS tagging, linguistic normalization and named entity recognition. Two of these corpora are introduced here: FreEM max (see Section 10.2.1) and FreEM LPM (see Section 10.2.2).

FreEM max

Usable historical documents are difficult to find because, as previously mentioned, they are more rare than contemporary ones; editors tend to normalize the language (i.e. use the spelling conventions of contemporary French, see [START_REF] Gabay | Pourquoi moderniser l'orthographe? principes d'ecdotique et littérature du XVIIe siècle[END_REF]), transcriptions are not (always) distributed in a digital format. FreEM max (Gabay et al., 2022) is an attempt to solve this problem, and the aim of this dataset is to group together the largest number of texts possible written in Early Modern French. The texts we have curated have a variety of sources, which can be grouped into three main types:

• Two institutional datasets have been used and are non open-sourced:

-Frantext intégral (ATILF, 1998-b) Additional data for later states of the language, up to the 1920's (mainly from FRANTEXT intégral), are also provided for two main reasons: on the one hand, it 109 is common to normalize Early Modern French into Contemporary French [START_REF] Gabay | Pourquoi moderniser l'orthographe? principes d'ecdotique et littérature du XVIIe siècle[END_REF] because of the linguistic proximity between these the two states of the language, and on the other hand, it helps to collect (precious) additional data to avoid ending up with too small of a corpus for our needs.

The final result is far from being balanced or representative (see Figure 10.2). 16 th c. French documents are under-represented, as well as 18 th c. literature. The 17 th c. is clearly over-represented, especially its second half-probably one of the most important of French literature, which could explain this situation (on top of our personal interest for this specific period).

As some texts are still (partially) protected by restrictive licenses, the FreEM max corpus exists in both open and non-open versions, only the open one being distributed. 3 In order to limit the impact of licenses forbidding the modification of files, we have designed a pipeline to distribute the data as it was found and recreate it (see Figure 10.3).

Metadata is prepared manually in order to have the same categories for each document, whatever its origin. As well as the author, the title and the date (where relevant), we also provide the genre ("theater"), sometimes a subgenre ("tragedy"), the linguistic status (normalized or not) and the license attached to the transcription. 

FreEM LPM

The FreEM LPM (Gabay et al., 2020-10) stands for Lemma, POS tags, Morphology. The POS-annotated data, is a mixture of two different sources. On the one hand, there is the CornMol corpus [START_REF] Camps | Corpus and Models for Lemmatisation and POS-tagging of Classical French Theatre[END_REF], made up of normalized 17 th c. French comedies. On the other hand, there is a gold subset of the Presto corpus [START_REF] Blumenthal | Presto, un corpus diachronique pour le français des XVIe-XXe siècles[END_REF], made up of texts of different genres written during the 16 th , 17 th and 18 th c., which have previously used to train annotation tools [START_REF] Diwersy | Ressources et méthodes pour l'analyse diachronique[END_REF], and was heavily corrected by us to match our annotation principles (Gabay et al., 2020).

On top of traditional in-domain tests, an out-of-domain testing dataset was prepared to control the capacity of the model to generalize to other genres and periods. Centuries covered are the 16 th , 17 th , 18 th , 19 th and 20 th . There are two test sets for each century: one made up only of theater, the other of everything but theater. Each test set comprises 10 short samples (c. 100 tokens), as representative as possible of the linguistic production of the century (female and male authors, decade of publication, genre, etc.).

All the data from FreEM LPM (but almost none of the out-of-domain) can be found in FreEM max . Rather than designing a new corpus, we have decided to use a subpart of the "core corpus" of the Presto project [START_REF] Blumenthal | Presto, un corpus diachronique pour le français des XVIe-XXe siècles[END_REF], namely the text written during the French Ancien Régime (c.15 th -18 th c., i.e. 34 texts). 4 This choice is driven by our will to limit the number of annotated corpora for historical French, the same set of documents having already been abundantly corrected to train a lemmatizer (Gabay et al., 2020-10), but also to avoid a complex selection of works supposed to ensure a relative representativeness of literary documents from the Ancien Régime, already perfectly done by our colleagues.

FreEM NER

The number of genres covered is very large: poetry, drama, novel, correspondence, grammar, philosophy, short stories, encyclopedic literature, etc. and guarantees, here again, a reasonable representativeness of the range of possibilities of Belles-Lettres. 5The corpus is balanced regarding the distribution per century (approx 10/century) but not regarding the length of the texts, which increases over time (cf. fig. 10.4) Because two important historical corpora presented supra (Quaero and Impresso) have chosen to follow the Quaero annotation guide [START_REF] Rosset | Entités nommées structurées : guide d'annotation quaero[END_REF], it seemed logical to use this same typology. Because our texts and interests diverge from those of the aforementioned corpora, only some types and subtypes have been kept (cf. tab. 10.3) from the Quaero annotation scheme. The details of our annotation choices can be found in a dedicated annotation manual (Gabay et al., 2020). The annotated texts are available in multi-columns tsv files (cf. tab. 10.4). Each token has a lemma (manually corrected) and a POS (produced by the Presto project, non-systematically corrected but fairly reliable) using the MULTEXT tag set. We propose a coarse-grained annotation for high-level entity types and fine-grained annotation using subtypes using the following syntax: BIO-TYPE.SUBTYPE For instance: B-loc.adm.town Subtypes are sometimes simple (B-org.town) sometimes double (B-loc.phys.geo), depending of the complexity of the entity to annotate. Nested entities (i.e. an entity in an entity, such as a place name in a person name in Henri d'Angleterre, "Henry of England") follow exactly the same syntax, and components a similar one, using six transverse elements:

• name to annotate tokens that are names (Louis, Philippe…)

• title to annotate tokens that are titles (sieur, duc, abbé…)

• qualifier to annotate tokens that are adjectives (l'Inde orientale, l'Arabie heureuse, la mer athlantique, l'ancienne Colchide)… but also the generation (Henri IV) or a cardinal position

• kind to annotate tokens that are hyperonyms (l'Empire de Constantinople, la mer du Japon

• unit to annotate tokens that are units (meters, league, inches, pounds…)

• val to annotate tokens that are values (a number) that is linked to a unit to annotate an amount.

We have decided not to annotate metaphorical uses differently or in a separate column: everything is annotated in a literal sense. Thus, in France goes to war, France is labelled loc.adm.nat (i.e. the country) and not org.adm (i.e. the French government).

We have also started a first phase of semantic annotation, using Wikidata (Vrandečić and Krötzsch, 2014-09-23) identifiers, which remains imperfect. Due to the complexity of analyzing certain entities, in particular personal names (e.g. Pope John), it was decided to annotate them only very marginally, only in the event of the absence of ambiguity (e.g. Pope John V). The annotation of place names, on the other hand, is more advanced and almost exhaustive.

A first layer of annotation was made using regular expressions, before moving on to a manual correction phase. Given the size of the corpus, it is obvious that each token has not been checked, and that the final result does not claim to be perfect. Occasional checks, however, concluded that the annotation was of high enough quality to move on to the training phase. All the annotation work was carried out by a single person, in order to ensure the consistency of the data. The structure of the file and the form of the tags was controlled by a specific parser, designed specifically for this corpus. Figure 10.5 shows the distribution of the coarse entity categories throughout FreEM NER on a logarithmic scale. For more detail please refer to figures G.1 and G.2 in the appendix.

Conclusion

In this chapter we have presented two raw textual corpora for historical French intended to be used in the pre-training of state-of-the-art language models, one for Medieval French and another one for Early Modern French. These corpora will be used in the next par of this thesis to produce two language models in order to tackle the textual enriching task proposed by the BASNUM project. As these two corpora are in fact quite general and diverse, we believe that the models they will produce will allow researcher in Digital Humanities to enrich and better study not only for the Dictionnaire Universel, but also any other text in Early Modern or Medieval French.

We have also presented a NER annotated corpus in Early Modern French, that will allow not only to evaluate our language models for Early Modern French in the upcoming part of the thesis, but also to produce a general ready-to-use state-of-theart model for NER in Early Modern French.
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In which we present a part of the work of [START_REF] Martin | CamemBERT: a tasty French language model[END_REF] who pre-trained the first transformer based language model for Contemporary French using the French subcorpus of OS-CAR 2019 [START_REF] Javier | Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures[END_REF]Ortiz Suárez et al., 2020b). The model that we call CamemBERT is then evaluated in dependency parsing, part-of-speech tagging, named entity recognition and natural language inference. We also study the question of how corpus size and diversity affects the performance of an architecture like RoBERTa [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF] in downstream tasks. 1 Having extensively worked into creating and curating textual resources in previous chapters and parts of this thesis, we wanted to use these resources in order to train a monolingual contextual language model for Contemporary French.

When we started the experiments that will be discussed in this chapter, the availability of large monolingual transformer based models was limited to English-only models [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF][START_REF] Radford | Language models are unsupervised multitask learners[END_REF][START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF][START_REF] Yang | Xlnet: Generalized autoregressive pretraining for language understanding[END_REF][START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF] and most of the work in other languages was being done through multilingual models like mBERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF]. And even though multilingual models gave remarkable results at the time, they were often larger, and their results, as we will observe for French, could lag behind their monolingual counterparts for high-resource languages.

In order to reproduce and validate results that had so far only been obtained for English, we took advantage of the first version of OSCAR 2 (Ortiz Suárez et al., 2019) which had just been released at that time. We used the French subcorpus of OSCAR 1 Contributions: I prepared OSCAR 2019 for the pre-training of CamemBERT and actually had to re-write the whole pipeline in order to produce the first unshuffled version of OSCAR. I did all the experiments where CamemBERT is used in embedding form. I also wrote the code to synchronize and extract fixed token embeddings from CamemBERT which was necessary at the time since this option did not exist in Hugging Face Transformer library at the time. Moreover, the whole section 11.3 and one of the main scientific contributions of the article was originally devised by me as one of the experiments that we wanted to conduct for the OSCAR project and was supposed to be part of (Ortiz Suárez et al., 2020b) presented in chapter 5. However, due to time and space constraints we preferred to do these experiments as part of the CamemBERT project. Finally, I actively participated in writing [START_REF] Martin | CamemBERT: a tasty French language model[END_REF]). 2 Now OSCAR 2019. 117 2019 to train a monolingual language model for French, dubbed CamemBERT. We also trained alternative versions of CamemBERT on different smaller corpora with different levels of homogeneity in genre and style in order to assess the impact of these parameters on downstream task performance. CamemBERT used the RoBERTa architecture [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF].

We then evaluated our model on four different downstream tasks for French: part-of-speech (POS) tagging, dependency parsing, named entity recognition (NER) and natural language inference (NLI). CamemBERT improved on the state of the art in all four tasks compared to previous monolingual and multilingual approaches including mBERT, XLM and XLM-R, which confirmed the effectiveness of pre-trained contextual language models for French.

CamemBERT: A Contemporary French Language Model

In this section, we describe the pre-training data, architecture, training objective and optimization setup we use for CamemBERT.

Training data

Pre-trained language models benefits from being trained on large datasets [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF][START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF][START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF]. We therefore use the French subcorpus of OSCAR 2019 [START_REF] Javier | Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures[END_REF]Ortiz Suárez et al., 2020b). No other filtering is done. We use the deduplicated non-shuffled version of the French subcorpus, which amounts to 138GB of raw text and to around 32.7B tokens after subword tokenization.

Pre-processing

We segment the input text data into subword units using SentencePiece [START_REF] Kudo | SentencePiece: A simple and language independent subword tokenizer and detokenizer for neural text processing[END_REF]. SentencePiece is an extension of Byte-Pair encoding (BPE) [START_REF] Sennrich | Neural machine translation of rare words with subword units[END_REF] and WordPiece [START_REF] Kudo | Subword regularization: Improving neural network translation models with multiple subword candidates[END_REF] that does not require pre-tokenization (at the word or token level), thus removing the need for language-specific tokenisers. We use a vocabulary size of 32k subword tokens. These subwords are learned on 10 7 sentences sampled randomly from the pre-training dataset. We do not use subword regularization (i.e. sampling from multiple possible segmentations) for the sake of simplicity.

Language Modeling

Transformer Similar to RoBERTa and BERT, CamemBERT is a multi-layer bidirectional Transformer [START_REF] Vaswani | Attention is all you need[END_REF]. CamemBERT uses the original architectures of BERT BASE (12 layers, 768 hidden dimensions, 12 attention heads, 110M 118 parameters) and BERT LARGE (24 layers, 1024 hidden dimensions, 16 attention heads, 335M parameters). CamemBERT is very similar to RoBERTa, the main difference being the use of whole-word masking and the usage of SentencePiece tokenization [START_REF] Kudo | SentencePiece: A simple and language independent subword tokenizer and detokenizer for neural text processing[END_REF] instead of WordPiece [START_REF] Schuster | Japanese and korean voice search[END_REF].

Pretraining Objective We train our model on the Masked Language Modeling (MLM) task. Given an input text sequence composed of 𝑁 tokens 𝑥 1 , ..., 𝑥 𝑁 , we select 15% of tokens for possible replacement. Among those selected tokens, 80% are replaced with the special <MASK> token, 10% are left unchanged and 10% are replaced by a random token. The model is then trained to predict the initial masked tokens using cross-entropy loss.

Following the RoBERTa approach, we dynamically mask tokens instead of fixing them statically for the whole dataset during preprocessing. This improves variability and makes the model more robust when training for multiple epochs.

Since we use SentencePiece to tokenize our corpus, the input tokens to the model are a mix of whole words and subwords. An upgraded version of BERT 3 and Joshi et al. (2020) have shown that masking whole words instead of individual subwords leads to improved performance. Whole-word Masking (WWM) makes the training task more difficult because the model has to predict a whole word rather than predicting only part of the word given the rest. We train our models using WWM by using white spaces in the initial non-tokenized text as word delimiters. WWM is implemented by first randomly sampling 15% of the words in the sequence and then considering all subword tokens in each of this 15% for candidate replacement. This amounts to a proportion of selected tokens that is close to the original 15%. These tokens are then either replaced by <MASK> tokens (80%), left unchanged (10%) or replaced by a random token.

Subsequent work has shown that the next sentence prediction (NSP) task originally used in BERT does not improve downstream task performance [START_REF] Conneau | Cross-lingual language model pretraining[END_REF][START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF], thus we also remove it.

Optimization Following [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF], we optimize the model using Adam (Kingma and Ba, 2015) (𝛽 1 = 0.9, 𝛽 2 = 0.98) for 100k steps with large batch sizes of 8192 sequences, each sequence containing at most 512 tokens. We enforce each sequence to only contain complete paragraphs (which correspond to lines in the pre-training dataset).

Pre-training We use the RoBERTa implementation in the fairseq library [START_REF] Ott | fairseq: A fast, extensible toolkit for sequence modeling[END_REF]. Our learning rate is warmed up for 10k steps up to a peak value of 0.0007 instead of the original 0.0001 given our large batch size, and then fades to zero with polynomial decay. Unless otherwise specified, our models use the BASE architecture, and are pre-trained for 100k backpropagation steps on 256 Nvidia V100 GPUs (32 GB each) for a day. We do not train our models for longer due to practical considerations, even though the performance still seemed to continue increasing afterwards.

Using CamemBERT for downstream tasks

We use the pretrained CamemBERT in two ways. In the first one, which we refer to as fine-tuning, we fine-tune the model on a specific task in an end-to-end manner. In the second one, referred to as feature-based embeddings or simply embeddings, we extract frozen contextual embedding vectors from CamemBERT. These two complementary approaches shed light on the quality of the pretrained hidden representations captured by CamemBERT.

Fine-tuning For each task, we append the relevant predictive layer on top of Camem-BERT's architecture. Following the work done on the BERT paper [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF], for sequence tagging and sequence labeling we append a linear layer that respectively takes as input the last hidden representation of the <s> special token and the last hidden representation of the first subword token of each word. For dependency parsing, we plug a bi-affine graph predictor head as inspired by Dozat and Manning (2017). We fine-tune on XNLI by adding a classification head composed of one hidden layer with a non-linearity and one linear projection layer, with input dropout for both.

We fine-tune CamemBERT independently for each task and each dataset, optimizing the model using the Adam optimizer (Kingma and Ba, 2015) with a fixed learning rate. Likewise, we run a grid search on a combination of learning rates and batch sizes. Furthermore, we select the best model on the validation set out of the 30 first epochs. For NLI we use the default hyper-parameters provided by the authors of RoBERTa on the MNLI task. 4 Although this might have pushed the performances even further, we do not apply any regularization techniques such as weight decay, learning rate warm-up or discriminative fine-tuning, except for NLI. We show that fine-tuning CamemBERT in a straightforward manner leads to stateof-the-art results on all tasks and outperforms the existing multilingual BERT-based models in all cases. The POS tagging, dependency parsing, and NER experiments are run using Hugging Face's Transformer library extended to support CamemBERT and dependency parsing [START_REF] Wolf | HuggingFace's Transformers: State-of-the-art Natural Language Processing[END_REF]. The NLI experiments use the fairseq library following the RoBERTa implementation.

Embeddings Following [START_REF] Straková | Neural architectures for nested NER through linearization[END_REF] and [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF] for mBERT and the English BERT, we make use of CamemBERT in a feature-based embeddings setting. In order to obtain a representation for a given token, we first compute the average of each sub-word's representations in the last four layers of the Transformer, and then average the resulting sub-word vectors.

We evaluate CamemBERT in the embeddings setting for POS tagging, dependency parsing and NER; using the open-source implementations of [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF] and [START_REF] Straková | Neural architectures for nested NER through linearization[END_REF]. 5Dowstream Tasks For POS tagging and dependency parsing, we run our experiments using the Universal Dependencies (UD)6 framework and its corresponding UD POS tag set [START_REF] Petrov | A universal part-of-speech tagset[END_REF] and UD treebank collection (Nivre et al., 2018), which was used for the CoNLL 2018 shared task [START_REF] Seker | Universal morpho-syntactic parsing and the contribution of lexica: Analyzing the ONLP lab submission to the CoNLL 2018 shared task[END_REF]. We perform our evaluations on the four freely available French UD treebanks in UD v2.2: GSD [START_REF] Mcdonald | Universal Dependency annotation for multilingual parsing[END_REF], Sequoia7 [START_REF] Candito | Le corpus sequoia : annotation syntaxique et exploitation pour l'adaptation d'analyseur par pont lexical (the sequoia corpus : Syntactic annotation and use for a parser lexical domain adaptation method)[END_REF][START_REF] Candito | Deep syntax annotation of the sequoia French treebank[END_REF], Spoken [START_REF] Lacheret | Rhapsodie: a prosodic-syntactic treebank for spoken French[END_REF][START_REF] Bawden | Correcting and validating syntactic dependency in the spoken French treebank rhapsodie[END_REF], 8 and ParTUT [START_REF] Sanguinetti | PartTUT: The Turin University Parallel Treebank[END_REF].

For NER, we use the French Treebank (FTB) [START_REF] Abeillé | Building a Treebank for French[END_REF] in its 2008 version introduced by Candito and Crabbé ( 2009) and with NER annotations by Sagot et al. (2012). More precisely, we used the corrected and synchronized version (Ortiz Suárez et al., 2020a) presented in subsection 9.2.1.

Finally, we evaluate our model on NLI, using the French part of the XNLI dataset [START_REF] Conneau | XNLI: Evaluating cross-lingual sentence representations[END_REF]. The XNLI dataset is the extension of the Multi-Genre NLI (MultiNLI) corpus [START_REF] Williams | A broad-coverage challenge corpus for sentence understanding through inference[END_REF] to 15 languages by translating the validation and test sets manually into each of those languages. The English training set is machine translated for all languages other than English.

Evaluation of CamemBERT

In this section, we measure the performance of our models by evaluating them on the four aforementioned tasks: POS tagging, dependency parsing, NER and NLI. POS Tagging and Dependency Parsing For POS tagging and dependency parsing, we compare CamemBERT with other models in the two settings: fine-tuning and as feature-based embeddings. We report the results in Table 11.1.

CamemBERT reaches state-of-the-art scores on all treebanks and metrics in both scenarios. The two approaches achieve similar scores, with a slight advantage for the fine-tuned version of CamemBERT, thus questioning the need for complex taskspecific architectures such as UDPipe Future. Despite a much simpler optimization process and no task specific architecture, fine-tuning CamemBERT outperforms UDify on all treebanks and sometimes by a large margin (e.g. +4.15% LAS on Sequoia and +5.37 LAS on ParTUT). CamemBERT also reaches better performance than other multilingual pre-trained models such as mBERT and XLM MLM-TLM on all treebanks.

CamemBERT achieves overall slightly better results than the previous state-ofthe-art and task-specific architecture UDPipe Future+mBERT+Flair, except for POS tagging on Sequoia and POS tagging on Spoken, where CamemBERT lags by 0.03% and 0.14% UPOS respectively. UDPipe Future+mBERT+Flair uses the contextualized string embeddings Flair [START_REF] Akbik | Contextual string embeddings for sequence labeling[END_REF], which are in fact pre-trained contextualized character-level word embeddings specifically designed to handle misspelled words as well as subword structures such as prefixes and suffixes. This design choice might explain the difference in score for POS tagging with Camem-BERT, especially for the Spoken treebank where words are not capitalized, a factor that might pose a problem for CamemBERT which was trained on capitalized data, but that might be properly handle by Flair on the UDPipe Future+mBERT+Flair model.

Named-Entity Recognition For NER, we similarly evaluate CamemBERT in the finetuning setting and as input embeddings to the task specific architecture LSTM+CRF. We report these scores in Table 11.2.

In both scenarios, CamemBERT achieves higher F1 scores than the traditional CRF-based architectures (both non-neural and neural), and than the fine-tuned multilingual BERT models. 9Using CamemBERT as embeddings to the traditional LSTM+CRF architecture gives slightly higher scores than by fine-tuning the model (89.08 vs. 89.55). This Model F1 SEM (CRF) [START_REF] Dupont | Exploration de traits pour la reconnaissance d'entités nommées du français par apprentissage automatique (feature exploration for French named entity recognition with machine learning)[END_REF] 85.02 LSTM-CRF [START_REF] Dupont | Exploration de traits pour la reconnaissance d'entités nommées du français par apprentissage automatique (feature exploration for French named entity recognition with machine learning)[END_REF] 85 demonstrates that even though CamemBERT can be used successfully without any task-specific architecture, it can still produce high quality contextualized embeddings that might be useful in scenarios where powerful downstream architectures exist.

Natural Language Inference On the XNLI benchmark, we compare CamemBERT to previous state-of-the-art multilingual models in the fine-tuning setting. In addition to the standard CamemBERT model with a BASE architecture, we train another model with the LARGE architecture, referred to as CamemBERT LARGE , for a fair comparison with XLM-R LARGE . This model was trained with the CCNet corpus, described in Sec. 11.3, for 100k steps. 10 We expect that training the model for longer would yield even better performance.

Model Acc. #Params mBERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] 76.9 175M XLM MLM-TLM [START_REF] Conneau | Cross-lingual language model pretraining[END_REF] 80.2 250M XLM-R BASE [START_REF] Conneau | Unsupervised cross-lingual representation learning at scale[END_REF] 80.1 270M
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CamemBERT (fine-tuned)

110M

Supplement: LARGE models XLM-R LARGE [START_REF] Conneau | Unsupervised cross-lingual representation learning at scale[END_REF] 85. CamemBERT reaches higher accuracy than its BASE counterparts reaching +5.6% over mBERT, +2.3 over XLM MLM-TLM , and +2.4 over XLM-R BASE . CamemBERT also uses as few as half as many parameters (110M vs. 270M for XLM-R BASE ).

CamemBERT LARGE achieves a state-of-the-art accuracy of 85.7% on the XNLI benchmark, as opposed to 85.2, for the recent XLM-R LARGE .

CamemBERT uses fewer parameters than multilingual models, mostly because of its smaller vocabulary size (e.g. 32k vs. 250k for XLM-R). Two elements might explain the better performance of CamemBERT over XLM-R. Even though XLM-R was trained on an impressive amount of data (2.5TB), only 57GB of this data is in French, whereas we used 138GB of French data. Additionally, XLM-R also handles 100 languages, and the authors show that when reducing the number of languages to 7, they can reach 82.5% accuracy for French XNLI with their BASE architecture.

Summary of CamemBERT's results CamemBERT improves the state of the art for the 4 downstream tasks considered, thereby confirming the usefulness of a monolingual Transformer-based models for contemporary French. We obtain these results when using CamemBERT as a fine-tuned model or when used as contextual embeddings with task-specific architectures. This questions the need for more complex downstream architectures, similar to what was shown for English [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF]. Additionally, this suggests that CamemBERT is also able to produce high-quality representations out-of-the-box without further tuning.

Impact of corpus origin and size

In this section we investigate the influence of the homogeneity and size of the pretraining corpus on downstream task performance. With this aim, we train alternative version of CamemBERT by varying the pre-training datasets. For this experiment, we fix the number of pre-training steps to 100k, and allow the number of epochs to vary accordingly (more epochs for smaller dataset sizes). All models use the BASE architecture.

In order to investigate the need for homogeneous clean data versus more diverse and possibly noisier data, we use alternative sources of pre-training data in addition to OSCAR 2019:

• Wikipedia, which is homogeneous in terms of genre and style. We use the official 2019 French Wikipedia dumps. 11 We remove HTML tags and tables using Giuseppe Attardi's WikiExtractor. 12 • CCNet [START_REF] Wenzek | CCNet: Extracting high quality monolingual datasets from web crawl data[END_REF], a dataset extracted from Common Crawl with a different filtering process than for OSCAR. It was built using a language model trained on Wikipedia, in order to filter out bad quality texts such as code or tables. 13 As this filtering step biases the noisy data from Common Crawl to more Wikipedia-like text, we expect CCNet to act as a middle ground between the unfiltered "noisy" OSCAR 2019 dataset, and the "clean" Wikipedia In order to make a fair comparison between these three sources of pre-training data, we randomly sample 4 GB (the size of Wikipedia) of text (at the document level) from OSCAR and CCNet, thereby creating samples of both Common-Crawl-based corpora of the same size as the French Wikipedia. These smaller 4GB samples also provides us a way to investigate the impact of pre-training data size. Downstream task performance for our alternative versions of CamemBERT are provided in Table 11.5. The upper section reports scores in the fine-tuning setting while the lower section reports scores for the embeddings.

Common Crawl vs. Wikipedia?

Table 11.5 clearly shows that models trained on the 4 GB versions of OSCAR 2019 and CCNet (Common Crawl) perform consistently better than the one trained on the French Wikipedia. This is true both in the fine-tuning and embeddings setting. Unsurprisingly, the gap is larger on tasks involving texts whose genre and style are more divergent from those of Wikipedia, such as tagging and parsing on the Spoken treebank. The performance gap is also very large on the XNLI task, probably as a consequence of the larger diversity of Common-Crawl-based corpora in terms of genres and topics. XNLI is indeed based on multiNLI which covers a range of genres of spoken and written text.

The downstream task performances of the models trained on the 4 GB version of CCNet and OSCAR are much more similar. 14 14 We provide the results of a model trained on the whole CCNet corpus in the Appendix. The conclusions are similar when comparing models trained on the full corpora: downstream results are similar when using OSCAR or CCNet. 11.5: Results on the four tasks using language models pre-trained on data sets of varying homogeneity and size, reported on validation sets (average of 4 runs for POS tagging, parsing and NER, average of 10 runs for NLI).

How much data do you need?

An unexpected outcome of our experiments is that the model trained "only" on the 4 GB sample of OSCAR 2019 performs remarkably similarly to the standard CamemBERT trained on the whole 138 GB OSCAR 2019. The only task with a large performance gap is NER, where "138 GB" models are better by 0.9 F1 points. This could be due to the higher number of named entities present in the larger corpora, which is beneficial for this task. On the contrary, other tasks don't seem to gain from the additional data.

In other words, when trained on corpora such as OSCAR and CCNet, which are heterogeneous in terms of genre and style, 4 GB of uncompressed text is large enough as pre-training corpus to reach state-of-the-art results with the BASE architecture, better than those obtained with mBERT (pre-trained on 60 GB of text). 15 This calls into question the need to use a very large corpus such as OSCAR or CCNet when training a monolingual Transformer-based language model such as BERT or RoBERTa. Not only does this mean that the computational (and therefore environmental) cost of training a state-of-the-art language model can be reduced, but it also means that CamemBERT-like models can be trained for all languages for which a Common-Crawl-based corpus of 4 GB or more can be created. OSCAR is available in more than 150 languages, and provides such a corpus for around 38 languages. Moreover, it is possible that slightly smaller corpora (e.g. down to 1 GB) could also prove sufficient to train high-performing language models. We obtained our results with BASE architectures. Further research is needed to confirm the validity of our findings on larger architectures and other more complex natural language understanding tasks. However, even with a BASE architecture and 4 GB of training data, the validation loss is still decreasing beyond 100k steps (and 400 epochs). This suggests that we 11.4 Discussion are still under-fitting the 4 GB pre-training dataset, training longer might increase downstream performance.

Discussion

Between the pre-publication of this work 16 and the publication of its peer-reviewed version [START_REF] Martin | CamemBERT: a tasty French language model[END_REF], many monolingual language models appeared, e.g. (Le et al., 2020b;[START_REF] Virtanen | Multilingual is not enough: BERT for Finnish[END_REF][START_REF] Delobelle | RobBERT: a Dutch RoBERTa-based Language Model[END_REF], and for as much as 30 languages [START_REF] Nozza | What the [MASK]? Making Sense of Language-Specific BERT Models[END_REF]. In almost all tested configurations they displayed better results than multilingual language models such as mBERT [START_REF] Pires | How multilingual is multilingual BERT[END_REF]. Interestingly, Le et al. (2020b) showed that using FlauBERT, another RoBERTa-based language model for Contemporary French, which was trained on less but more edited data, in conjunction to CamemBERT in an ensemble system could improve the performance of a parsing model and establish a new state-of-the-art in constituency parsing for Contemporary French, highlighting thus the complementarity of both models. 17 As it was the case for English when BERT was first released, the availability of similar scale language models for Contemporary French enabled interesting applications, such as large scale anonymization of legal texts, where CamemBERT-based models established a new state-of-the-art on this task [START_REF] Benesty | Ner algo benchmark: spacy, flair, m-bert and camembert on anonymizing french commercial legal cases[END_REF], or the first large question answering experiments on a French Squad data set that was released after the publication of CamemBERT (d'Hoffschmidt et al., 2020) where the authors matched human performance using CamemBERT LARGE . Being the first pre-trained Trasnformer-based language model that used the OSCAR corpus and given its impact on the community, CamemBERT paved the way for many works on monolingual language models that followed. Furthermore, the availability of all its training data favors reproducibility and is a step towards better understanding such models and the impact that the pre-training data has on them. In that spirit, we make the models used in our experiments available via our website 18 and via the huggingface and fairseq APIs, in addition to the base CamemBERT model.

Conclusion

In this chapter we investigated the feasibility of training a Transformer-based language model for languages other than Contemporary English. Using Contemporary French as an example, we trained CamemBERT, a language model based on RoBERTa. We evaluated CamemBERT on four downstream tasks (part-of-speech tagging, dependency parsing, named entity recognition and natural language inference) in 16 https://arxiv.org/abs/1911.03894v1 (First ArXiv version). 17

We refer the reader to (Le et al., 2020b) for a comprehensive benchmark and details therein. 18 https://camembert-model.fr 127 which our best model reached or improved the state of the art in all tasks considered, even when compared to strong multilingual models such as mBERT, XLM and XLM-R, while also having fewer parameters.

Our experiments confirm the previous findings presented in chapter 5 that using web crawled data with high variability is preferable to using Wikipedia-based data. In addition, we showed that our models could reach surprisingly high performances with as low as 4 GB of pre-training data, questioning thus the need for large scale pre-training corpora. This shows that state-of-the-art Transformer-based language models can be trained on languages with far fewer resources than previously believed, and whenever a few gigabytes of data are available. This paves the way for the rise of monolingual contextual pre-trained language models for mid-and low-resourced languages. The question of knowing whether pre-training on small domain specific content will be a better option than transfer learning techniques such as fine-tuning remains open, and we will partially study it in the context of historical data in upcoming chapters. 2020) who further train pre-train ELMo models with the previously presented CaBeRnet and CBT-fr and then evaluate them in multiple downstream tasks in order to assess the importance of representative and balanced corpora as pre-training datasets. 1Having trained the RoBERTa [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF] based CamemBERT [START_REF] Martin | CamemBERT: a tasty French language model[END_REF] models in the previous chapter, we wanted to fairly compare the Transformerbased architecture with ELMo [START_REF] Peters | Deep contextualized word representations[END_REF], the BiLSTM-based contextualized word representations that predated the BERT model [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF]. Such a comparison had already been done to an extent in English by [START_REF] Peters | To tune or not to tune? adapting pretrained representations to diverse tasks[END_REF], but in that case, ELMo and BERT where pre-trained with different datasets, which as we saw in previous chapters, can have an enormous impact on the performance of these types of models. We thus decided to train an ELMo model with the French subcorpus of OSCAR 2019 to fairly compare with CamemBERT. We first compare these two models in a benchmarking experiment in named entity recognition that we do in order to find the best possible combination of embeddings and architectures for NER or at least for the NER annotated version of the FTB that we presented in subsection 9.2.1. We then expand our experiments by actually repeating most of the CamemBERT experiments but this for comparing the OSCAR pre-trained ELMo with CaBeRnet and CBT-fr ELMos.

FrELMo

We train an ELMo model for contemporary French using the French subcorpus of OSCAR 2019. Furthermore, we train each model for 10 epochs, as was done for the original English ELMo [START_REF] Peters | Deep contextualized word representations[END_REF]. We also use the same hyper-parameters and the same pre-processing as the originals ELMo authors, i.e., we shuffle the French subcorpus of OSCAR 2019 at a line level. In this case we do not bother to save checkpoints as we previously saw that training for longer produced better models (see 5), so we train for the full 10 epochs as the original authors suggested [START_REF] Peters | Deep contextualized word representations[END_REF].

12.1.1 Benchmarking NER Models Experiments For our benchmark of NER models for French, we used SEM [START_REF] Dupont | Exploration de traits pour la reconnaissance d'entités nommées du français par apprentissage automatique (feature exploration for French named entity recognition with machine learning)[END_REF] as our strong baseline because, to the best of our knowledge, it was the previous stateof-the-art for named entity recognition on the FTB-NE corpus. Other French NER systems are available, such as the one given by SpaCy. However, it was trained on another corpus called WikiNER, making the results non-comparable. We can also cite the system of [START_REF] Stern | A joint named entity recognition and entity linking system[END_REF]. This system was trained on another newswire (AFP) using the same annotation guidelines, so the results given in this article are not directly comparable. This model was trained on FTB-NE in [START_REF] Stern | Identification automatique d'entités pour l'enrichissement de contenus textuels[END_REF] (table C.7, page 303), but the article is written in French. The model yielded an F1-score of 0.7564, which makes it a weaker baseline than SEM. We can cite yet another NER system, namely grobid-ner. 2 It was trained on the FTB-NE and yields an F1-score of 0.8739, but two things are to be taken into consideration in grobid-ner's score: the tagset was slightly modified and scores were averaged over a 10-fold cross validation. To see why this is important for FTB-NE, see section 12.1.3. In this section, we will compare our strong baseline with a series of neural models. We will use the two current state-of-the-art neural architectures for NER, namely seq2seq and LSTM-CRFs models. We will use various pre-trained embeddings in said architectures: fastText, CamemBERT and FrELMo embeddings. SEM SEM [START_REF] Dupont | Exploration de traits pour la reconnaissance d'entités nommées du français par apprentissage automatique (feature exploration for French named entity recognition with machine learning)[END_REF] is a tool that relies on linear-chain CRFs [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF] to perform tagging. SEM uses Wapiti [START_REF] Lavergne | Practical very large scale CRFs[END_REF] v1.5.0 as linear-chain CRFs implementation. SEM uses the following features for NER:

• token, prefix/suffix from 1 to 5 and a Boolean isDigit features in a [-2, 2] window;

12.1 FrELMo

• previous/next common noun in sentence;

• 10 gazetteers (including NE lists and trigger words for NEs) applied with some priority rules in a [-2, 2] window;

• a "fill-in-the-gaps" gazetteers feature where tokens not found in any gazetteer are replaced by their POS, as described in [START_REF] Raymond | Reconnaissance robuste d'entités nommées sur de la parole transcrite automatiquement[END_REF]. These features used token unigrams and token bigrams in a [-2, 2] a window.

• tag unigrams and bigrams.

We trained our own SEM model by using SEM features on gold tokenization and optimized L1 and L2 penalties on the development set. The metric used to estimate convergence of the model is the error on the development set (1 -𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦). Our best result on the development set was obtained using the rprop algorithm, a 0.1 L1 penalty and a 0.1 L2 penalty.

SEM also uses an NE mention broadcasting post-processing (mentions found at least once are used as a gazetteer to tag unlabeled mentions), but we did not observe any improvement using this post-processing on the best hyperparameters on the development set.

Neural models

In order to study the relative impact of different word vector representations and different architectures, we trained a number of NER neural models that differ in multiple ways. They use zero to three of the following vector representations: Fast-Text non-contextual embeddings [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF], the FrELMo contextual language model, and one of multiple CamemBERT language models [START_REF] Martin | CamemBERT: a tasty French language model[END_REF] (see Appendix E). The CamemBERT models we use in our experiments differ in multiple ways:

• Training corpus: OSCAR 2019 or CCNet [START_REF] Wenzek | CCNet: Extracting high quality monolingual datasets from web crawl data[END_REF]. For comparison purposes, we also display the results of an experiment using the mBERT multilingual BERT model trained on the Wikpiedias for over 100 languages.

• Model size: following [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF], we use both "BASE" and "LARGE" models; these models differ by their number of layers (12 vs. 24), hidden dimensions (768 vs. 1024), attention heads (12 vs. 16) and, as a result, their number of parameters (110M vs. 340M).

• Masking strategy: the objective function used to train a CamemBERT model is a masked language model objective. However, BERT-like architectures like CamemBERT rely on a fixed vocabulary of explicitly predefined size obtained by an algorithm that splits rarer words into subwords, which are part of the vocabulary together with more frequent words. As a result, it is possible to 131 use a whole-word masked language objective (the model is trained to guess missing words, which might be made of more than one subword) or a subword masked language objective (the model is trained to guess missing subwords).

Our models use the acronyms WWM and SWM respectively to indicate the type of masking they used.

We use these word vector representations in three types of architectures:

• Fine-tuning architectures: in this case, we add a dedicated linear layer to the first subword token of each word, and the whole architecture is then fine-tuned to the NER task on the training data.

• Embedding architectures: word vectors produced by language models are used as word embeddings. We use such embeddings in two types of LSTM-based architectures: an LSTM fed to a seq2seq layer and an LSTM fed to a CRF layer.

In such configurations, the use of several word representations at the same time is possible, using concatenation as a combination operator. For instance, in Table 12.1, the model FastText + CamemBERT OSCAR-BASE-WWM under the header "LSTM-CRF + embeddings corresponds to a model using the LSTM-CRF architecture and, as embeddings, the concatenation of FastText embeddings, the output of the CamemBERT "BASE" model trained on OSCAR with a wholeword masking objective, and the output of the FrELMo language model. For all LSTM-based architectures we use the implementation of [START_REF] Straková | Neural architectures for nested NER through linearization[END_REF].

For our neural models, we optimized hyperparameters using F1-score on development set as our convergence metric.

We train each model three times with three different seeds, select the best seed on the development set, and report the results of this seed on the test set in Table 12.1.

Results

Word Embeddings: Results obtained by SEM and by our neural models are shown in table 12.1. First important result that should be noted is that LSTM+CRF and LSTM+seq2seq models have similar performances to that of the SEM (CRF) baseline when they are not augmented with any kind of embeddings. Just adding classical fastText word embeddings dramatically increases the performance of the model. ELMo Embeddings: Adding contextualized ELMo embeddings increases again the performance for both architectures. However, we note that the difference is not as big as in the case of the pair with/without fastText word embeddings for the LSTM-CRF. For the seq2seq model, it is the contrary: adding ELMo gives a good improvement while fastText does not improve the results as much. 
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CamemBERT Embeddings: Adding the CamemBERT embeddings always increases the performance of the model LSTM based models. However, as opposed to adding ELMo, the difference with/without CamemBERT is equally considerable for both the LSTM-seq2seq and LSTM-CRF. In fact adding CamemBERT embeddings increases the original scores far more than ELMo embeddings does, so much so that the state-of-the-art model is the LSTM + CRF + FastText + CamemBERT OSCAR-BASE-SWM .

CamemBERT + FrELMo: Contrary to the results given in [START_REF] Straková | Neural architectures for nested NER through linearization[END_REF], adding ELMo to CamemBERT did not have a positive impact on the performances of the models. Our hypothesis for these results is that, contrary to [START_REF] Straková | Neural architectures for nested NER through linearization[END_REF], we trained ELMo and CamemBERT on the same corpus. We think that, in our case, ELMo either does not bring any new information or even interfere with CamemBERT.

Base vs large: an interesting observation is that using large model negatively impacts the performances of the models. One possible reason could be that, because the models are larger, the information is more sparsely distributed and that training on the FTB-NE, a relatively small corpus, is harder.

Impact of shuffling the data

One important thing about the FTB is that the underlying text is made of articles from the newspaper Le Monde that are chronologically ordered. Moreover, the standard development and test sets are at the end of the corpus, which means that they are made of articles that are more recent than those found in the training set. This means that a lot of entities in the development and test sets may be new and therefore unseen in the training set. To estimate the impact of this distribution, we shuffled the data, created a new training/development/test split of the same lengths as in the standard split, and retrained and reevaluated our models. We repeated this process 3 times to avoid unexpected biases. The raw results of this experiment are given in table 12.2. We can see that the shuffled splits result in improvements on all metrics, the improvement in F1-score on the test set ranging from 4.04 to 5.75 (or 25% to 35% error reduction) for our SEM baseline, and from 1.73 to 3.21 (or 18% to 30% error reduction) for our LSTM-CRF architectures, reaching scores comparable to the English state-of-the-art. This highlights a specific difficulty of the FTB-NE corpus where the development and test sets seem to contain non-negligible amounts of unknown entities. This specificity, however, allows to have a quality estimation which is more in line with real use cases, where unknown NEs are frequent. This is especially the case when processing newly produced texts with models trained on FTB-NE, as the text annotated in the FTB is made of articles around 20 years old. 

Conclusions of the Benchmark

We establish a new state-of-the-art for French NER using state-of-the-art neural techniques and recently produced neural language models for French. Our best neural model reaches an F1-score which is 6.55 points higher (a 40% error reduction) than the strong baseline provided by the SEM system. We also highlight how the FTB-NE is a good approximation of a real use case. Its chronological partition increases the number of unseen entities allows to have a better estimation of the generalization capacities of machine learning models than if it were randomized.

One interesting point to investigate is that using Large embeddings overall has a negative impact on the models performances. It could be because larger models store information relevant to NER more sparingly, making it harder for trained models to capitalize them. We would like to investigate this hypothesis in future research.

Pre-training Corpora Evaluation for ELMo models

Having completed this Benchmark in NER, we also wanted to better understand the computational impact of the quality, size and linguistic balance in ELMo's [START_REF] Peters | Deep contextualized word representations[END_REF] pre-training. We conducted this experiments with ELMo instead of BERT or RoBERTa, as ELMo is a far less demanding model in terms of computing power when it comes to pre-training, and at the moment when we conducted these experiments we didn't have access to the infrastructure required to pre-train Transformer-based models. 135 12.2.1 ELMo Pre-traing & Fine-tuning Method Two protocols were carried out to evaluate the impact of corpora characteristics on the tasks under analysis. Method 1 implies a full pre-training ELMo-based language models for each of the corpora mentioned in Table 9.3. While Method 2 is based on pre-training OSCAR + fine-tuning with our French Balanced Reference Corpus CaBeRnet, yielding ELMo OSCAR+CaBeRnet . Hence, the pure pre-traing (i.e. Method 1) yields the following four language models which were pre-trained on the four corpora under comparison : ELMo OSCAR (FrELMo in the previous section), ELMo Wikipedia , ELMo CaBeRnet and ELMo CBT .

We conduct the same experiments that we did for CamemBERT in dependency parsing, POS tagging and NER. We also coupled our ELMo models with the same tasks specific architectures as before, namely textbfUDPipe Future [START_REF] Straka | UDPipe 2.0 prototype at CoNLL 2018 UD shared task[END_REF] for POS tagging and dependency parsing and [START_REF] Straková | Neural architectures for nested NER through linearization[END_REF] for NER. Experiments were run using the Universal Dependencies (UD) paradigm and its corresponding UD POS-tag set [START_REF] Petrov | A universal part-of-speech tagset[END_REF] and UD treebank collection version 2.2 (Nivre et al., 2018), which was used for the CoNLL 2018 shared task. ELMo CaBeRnet : A Test for Balance The representations offered by ELMo CaBeRnet are not only competitive but sometimes better than Wikipedia ones. One should keep in mind that almost all the four treebanks we use in this section include Wikipedia data. ELMo CaBeRnet is reaching state-of-the-are results in POS-tagging on Spoken. Notably, it performs better than CamemBERT, the previous state of the art on this oral specialized tree-bank (cf. dark gray highlight on Table 12.3). We understand this results as a clear effect of balance when testing upon a purely spoken test-set. Importantly, this effect is difficultly explainable by the size of oral-style data in CaBeRnet. The oral sub-part is only one fifth of the total, and in this one fifth, only an even smaller amount of data comes from purely oral transcripts comparable the ones in the Spoken tree-bank, namely 67,444 words from Rhapsodie corpus, and 575,894 words form ORFEO. Hence, CaBeRnet's balanced oral language use shows to pay off in POS-tagging. These results are surprising, especially given the fact that our evaluation method was aiming at comparing the quality of word-embedding representations and not beating the state-of-the-art.

Results & Discussion

ELMo CaBeRnet : A Test for Coverage From Table 12.3, we discover that not only balance, but also the broad and diverse genre converge of CaBeRnet may play a role in its POS-tagging success is we compare its results with ELMo CBT that also features oral dialogues in youth literature. The fact that ELMo CBT does not show a comparable performance in POS-tagging, can be interpreted as linked to its size, but possibly also to its lack of variety in genres, thus, suggesting the advantage of a comprehensive coverage of language use. This suggests that a balanced sample may enhance the convergence of generalization about oral-style from distinct genre that still implies oral-like dialogues like in fiction. In sum, broad coverage may contribute to enhancing representations about oral language.

The effect of balance on Fine-tuning For POS-tagging in GSD the results of ELMo OSCAR are in second place position compared to ELMo OSCAR+CaBeRnet that is extremely close to ELMo Wikipedia . While in POS-tagging in ParTUT, ELMo Wikipedia exhibits better results than ELMo OSCAR , and ELMo OSCAR+CaBeRnet is in second position.

Comparing GSD and Sequoia scores from ELMo OSCAR and ELMo OSCAR+CaBeRnet , we observe that fine-tuning with CaBeRnet the embeddings that were pre-trained on OSCAR, yields better representations for the three tasks compared to both the original ELMo OSCAR and ELMo CaBeRnet . However, fine-tuning does not always yield better findings than ELMo OSCAR on Spoken and ParTUT, where ELMo OSCAR+CaBeRnet places in second after ELMo OSCAR for parsing scores UAS/LAS (cf. Table 12.3).

A closer look on Parsing results reveals an interesting pattern of results across treebanks (see light gray highlights on Table 12.3). We see that for GSD and Sequoia the CaBeRnet fine-tuned version ELMo OSCAR+CaBeRnet compared to the pure OSCAR pre-trained ELMo OSCAR is achieving higher scores. While a reverse and less clearcut pattern is observable for the other two treebanks, namely Spoken and ParTUT. This configuration can be explained if we understand this pattern as due to the reinforcement and unlearning of ELMo OSCAR representations during the process of fine-tuning. Specifically, we can observe that parsing scores are better on treebanks that share the kind of language use represented in CaBeRnet, while they are worse 137 on corpora that are closer in language sample to OSCAR corpus, like Spoken and ParTuT. This calls for further developments of CaBeRnet ( §12.2.3).

ELMo CBT : small but relevant ELMo CBT shows an intriguing pattern of results. Even if its scores are under the baseline on GSD and Sequoia, it yields over the baseline results for Spoken and ParTUT. Given its reduced size, one would expect it to overfit, this would explain the under baseline performance. However, this was not the case on Spoken and ParTUT treebanks, thus showing ELMo CBT contribution in generating representations that are useful to UDPipe model to achieve better results in POS-tagging and parsing tasks on the ParTUT and Spoken tree-banks. The presence of oral dialogues is certainly playing a role in this results' pattern. This unexpected result calls for further investigation on the impact of pre-training with reduced-size, noiseless, domain-specific corpora.

NER NER -Results on FTB Precision Recall F1

Baselines Models SEM (CRF) [START_REF] Dupont | Exploration de traits pour la reconnaissance d'entités nommées du français par apprentissage automatique (feature exploration for French named entity recognition with machine learning)[END_REF] 87.89 82.34 85.02 LSTM-CRF [START_REF] Dupont | Exploration de traits pour la reconnaissance d'entités nommées du français par apprentissage automatique (feature exploration for French named entity recognition with machine learning)[END_REF] 87 For NER, LSTM-CRF+FastText+ELMo OSCAR+CaBeRnet achieves a better precision, recall and F1 than the traditional CRF-based SEM architectures and even Camem-BERT. Importantly, LSTM-CRF+FastText+ELMo CaBeRnet reaches better results in finding entity mentions, than Wikipedia which is a highly specialized corpus in terms of vocabulary variety and size, as can be seen in the overwhelming total number of unique forms it contains (see Table 9.4). We can conclude that both pre-training and fine-tuning with CaBeRnet on ELMo OSCAR generates better word-embedding representations than Wikipedia in this downstream task.

CBT-fr NER results are under the LSTM-CRF baseline. This can possibly be explained by the distance in terms of topics and domain from FTB treebank (i.e. newspaper articles), or by the reduced-size of the corpus to yield good-enough representation to perform named entity recognition.

All in all, our evaluations confirm the effectiveness of large ELMo-based language models fine-tuned or pre-trained with a balanced and linguistically representative corpus, like CaBeRnet as opposed to domain-specific ones.

Conclusion

We investigated the relevance of different types of corpora on ELMo's pre-training and fine-tuning. It confirms the effectiveness and quality of word-embeddings obtained through balanced and linguistically representative corpora.

The proposed evaluation methods are showing that CaBeRnet and CBT-fr are not only relevant for neural NLP and language modeling in French, but that corpus balance shows to be a significant predictor of ELMo's accuracy on Spoken test data-set and for NER tasks.

The results obtained for the parsing tasks on ParTUT open a new perspective for the development of the French Balanced Reference Corpus, involving the enhancement of the terminological coverage of CaBeRnet. A sixth sub-part could be included to cover technical domains like legal and medical ones, and thereby enlarge the specialized lexical coverage of CaBeRnet.

Further developments of this resource would involve an extension to cover usergenerated content, ranging from well written blogs, tweets to more variable written productions like newspaper's comment or forums, as present in the CoMeRe corpus [START_REF] Chanier | The CoMeRe corpus for French: structuring and annotating heterogeneous CMC genres[END_REF]. The computational experiments conducted here also show that pre-training language models like ELMo on a very small sample like the French Children Book Test corpus or CaBeRnet yields unexpected results. This opens a perspective for languages that have smaller training corpora. ELMo could be a better suited language model for those languages than it is for others having larger size resources.

To conclude, our current evaluations show that linguistic quality in terms of representativeness and balance yields better performing contextualized word-embeddings.

13 SinNer CLEF-HIPE2020

In which we present our participation (Ortiz Suárez et al., 2020) to the CLEF-HIPE 2020 shared task [START_REF] Ehrmann | Extended overview of clef hipe 2020: Named entity processing on historical newspapers[END_REF]. We actually use this NER shared task as an opportunity see how well the Contemporary French language models that we had trained could perform without any further pretraining or fine-tuning in a task that mainly used historical data. Here we also evaluate the impact that pre-processing has on the models' performance. 1Having participated in the pre-training of Contemporary French language models like CamemBERT [START_REF] Martin | CamemBERT: a tasty French language model[END_REF]FrELMo (Ortiz Suárez et al., 2020a;[START_REF] Popa-Fabre | French contextualized word-embeddings with a sip of CaBeRnet: a new French balanced reference corpus[END_REF] we wanted to better asses how these models would perform in downstream tasks without any further fine-tuning or additional pre-training data. We wanted to assess in particular how much effective would be a transfer learning technique between different states of the French language. The CLEF-HIPE 2020 shared task [START_REF] Ehrmann | Extended overview of clef hipe 2020: Named entity processing on historical newspapers[END_REF] seemed then like a good opportunity to test this, as HIPE (Identifying Historical People, Places and other Entities) was an evaluation campaign on named entity processing on historical newspapers in French, German and English, which was organized in the context of the impresso project and run as a CLEF 2020 Evaluation Lab. In this study we also evaluate the impact that preprocessing has on the performance of our models, specially when the training data comes from OCRized text.

Dataset for the CLEF-HIPE shared task

The dataset of the CLEF-HIPE shared task contains newspaper articles of 17 th -20 th century. The text is an output of an OCR software, then tokenized and annotated with labels corresponding to each sub-task. This peculiarity of historical documents will be detailed later in this section. The corpus provided for French and German both contained training data (train) and development data (dev) whereas, for English only development data was provided for the shared task. For this reason, we chose to work on French and German only.

Table 13.1 shows some statistics of this dataset. The size of the training dataset for French was twice as big as for German, whereas the development sets had roughly the same size. As usual in NER, persons (Pers) and locations (Loc) were the most frequent entity types. 13.2 shows an excerpt of the train dataset (CoNLL format). For each document, general information were provided. Among them, newspaper and date may have been features useful for recognizing entities, but we did not take advantage of it. Each document was composed of segments, starting with "# segment …" corresponding to lines in the original documents. Each segment is tokenized in order to correspond to the CoNLL format with one token per line. These two notions, segments and tokens, are very important since they do not always match the type of unit usually processed in NLP pipelines. Segments seldom correspond to sentences, so there is a need to concatenate the segments to get the raw text and then segment it into sentences. This is very interesting since it gets us close to real-world conditions rather than laboratory conditions, and as we show in Section 13.3.2, that this segment vs. sentence question has an important influence on the results. Regarding tokens, 13.2 CRFs and Contextualized Word Embeddings for NER the tokenization is obviously not perfect. We can see that there are non-standard words and bad tokenization due to the OCR output (in red in Table 13.2). If we concatenate the tokens we get the sequence "Su. _sss allemands" instead of "Suisse allemande". These non-standard words make the Named Entity Recognition task more complicated and, again, more realistic.

CRFs and Contextualized Word Embeddings for NER

Here we present the different models that we use for the shared-tasks, which are again some of the architectures used in the previous chapter for the NER benchmark. 13.2.1 CRF model (run3) We use SEM (Segmenteur-Étiqueteur Markovien) 2,3 (Dupont, 2017) with the exact same features described in Subsection 12.1.1.

We trained a CLEF HIPE specific model by optimizing L1 and L2 penalties on the development set. The metric used to estimate convergence of the model is the error on the development set (1 -𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦). For French, our optimal L1 and L2 penalties were 0.5 and 0.0001 respectively (default Wapiti parameters). For German, our optimal L1 and L2 penalties were 1.0 and 0.0001 respectively.

One interest of SEM is that it has a built-in sentence tokenizer for French using a rule-based approach. By default, CLEF-HIPE provides a newline segmentation that is the output of an OCR engine. As a result, some NE mentions span across multiple segments, making it very hard to identify them correctly. It is to be expected that models trained (and labelling on) sentences would yield better performances than those trained (and labelling on) segments. SEM makes it simple to switch between different sequence segmentations, which allowed us to label sentences and output segments. SEM's sentence segmentation engine works using mainly local rules to determine whether a token is the last of a sequence (e.g.: is a dot preceded by a known title abbreviation?). It also uses non-local rules to remember whether a token is between parentheses or French quotes to not segment automatically within them. Since we work at token level, we had to adapt some rules to fit CLEF-HIPE tokenization. For example, SEM decides at tokenization stage whether a dot is a strong punctuation or part of a larger token, as for abbreviations. This has the advantage of making sentence segmentation easier. CLEF-HIPE tokenization systematically separates dots, so we adapted some sentence segmentation rules, for example: we decided not to consider a dot as a sentence terminator if the previous token was in a lexicon of titles or functions. No specific handling of OCR errors were done. Another interest is that SEM has an NE mention broadcasting process. Mentions found at least once in a document are used as a gazetteer to tag unlabeled mentions within said document. When a new mention overlaps and is strictly longer than an already found mention, the new mention will replace the previous one in the document. For our experiments, we follow the same approach of previous chapters by using the Bi-LSTM-CRF implementation of [START_REF] Straková | Neural architectures for nested NER through linearization[END_REF] which is open source and readily available, 4 and pre-appending contextualized word-embeddings to the model. For French we pre-append the FrELMo model Ortiz Suárez et al. (2020a), which as we saw in the previous chapter, is the standard ELMo [START_REF] Peters | Deep contextualized word representations[END_REF] implementation 5 trained on the French subcorpus of OSCAR 20196 [START_REF] Javier | Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures[END_REF]Ortiz Suárez et al., 2020b). For German we pre-append the German ELMo (May, 2019), which is again the standard ELMo implementation but trained on the German Wikipedia.

Contrary to the approach used in Subsection 12.1.1, we do not use the Camem-BERT model [START_REF] Martin | CamemBERT: a tasty French language model[END_REF] for French or the German BERT [START_REF] Chan | German bert[END_REF]. Both of these models are BERT-based and as such they are limited to a 512-token contextualized window. Moreover, they both use SentencePiece [START_REF] Kudo | SentencePiece: A simple and language independent subword tokenizer and detokenizer for neural text processing[END_REF] meaning that tokens are actually subwords, which considerably increases the number of tokens per sentence, specially for the longer ones, thus decreasing the contextual windows of both CamemBERT and the German BERT. SentencePiece also introduces the problem of a fixed-size vocabulary, which in the case of this shared task might negatively impact the performance of said models, as they could struggle to handle OCR problems or just non-standard vocabulary. Since our main goal was to reconstruct the sentences and use long contextualized sequences we opted to use ELMo which can easily handle longer sequences with its standard implementation and actually has a dynamic vocabulary thanks to the CNN character embedding layer, thus it might be better equipped to handle non-standard orthography and OCR problems. We actually did a preliminary experiment for French with CamemBERT, but the results were even worse than our baselines, so we decided to scrap it. We will see this phenomenon again on chapter 15 where we will actually report it and study it more in depth.

For the fixed word embeddings we used the Common Crawl-based FastText embeddings [START_REF] Grave | Learning word vectors for 157 languages[END_REF] originally trained by Facebook as opposed to the embeddings provided by the HIPE shared task, as we obtained better dev scores using the original FastText embeddings for both French and German. We used the standard hyperparameters originally 7 used by [START_REF] Straková | Neural architectures for nested NER through linearization[END_REF]. Namely a batch size of 8, a dropout of 0.5, a learning rate of 0.001 and 10 epochs. The difference between run 1 and 2, is that run 1 uses the data as is, while run 2 uses the reconstructed sentences.

Results and Discussion

Results and Discussion

Official shared task results

The results of our 3 runs compared to the best run on the NERC-coarse shared-task for French and German are given in Table 13.3 (strict scenario). For both tasks, we are the third best ranking team. We only did very minimal adaptation of existing systems. We did not modify tokenization for any language. The most notable change was to use custom sentence segmentation instead of given segments for French and using some additional lexica as features for our CRF model in German (for French, we only used existing SEM lexica). Other than that, we only optimized hyperparameters on the dev set. This clearly illustrates the power of contextual embeddings and today's neural network architectures. This is encouraging in terms of usability of state-of-the-art models on real-world data.

Study of sequence segmentation

In this section, we evaluate the influence of sequence segmentation on system performances. This evaluation is done for French only, as we used SEM to provide sentence segmentation and SEM could only provide a proper sentence segmentation for that language. As can be seen in table 13.4, sentence segmentation allows us to improve results by 3.5 F1 points. This is due to the fact that some entities were split across multiple segments in the original data. Using a custom sentence segmentation allows to have entities in a single sequence. This segmentation is applied both with training data and evaluation data, so that our systems can access a more proper context for named entities. The cost of using another segmentation is relatively cheap, as SEM can process nearly 1 GB of raw text per hour. Per entity comparison is also available in Table 13. [START_REF]1 Benchmarks are done using the UNIX time tool, are repeated 10 times each and are done for random samples of 10, 100 and 200 WET files. Only the classifying and filtering part are benchmarked. The table shows the minimum, maximum and[END_REF]. One can see that the improvement of sentence segmentation is not very significant for locations (Loc). This is due to two facts : (i) locations are usually small in terms of tokens and therefore less prone to be separated in two segments and (ii) there was less room from improvement since they were the easiest entity type to detect (86.35% F1-score). In contrast, entities of type "product" (Prod), usually longer in tokens, were very hard to predict with only 48.57% F1-measure and benefited the most from segmentation in sentences (+16 percentage points in F1-measure). 13.3.3 To dev or not to dev?

In Table 13.5 we show the results that could have been obtained by training the Bi-LSTM model on both train and dev dataset. We used the same hyperparameters as we did for our official run. Despite the fact that it does not ensure the robustness of the system, the added-value seem to be quite disappointing. 8 In German the gain may be a bit more significant, probably due to the smaller size of the training dataset.

Conclusion

In this chapter we presented three methods developed for the Named Entity Recognition task in French and German historical newspapers. The first method relied on linear-chain CRFs while the other two methods use a Bidirectional LSTM and a bidirectional Language Model (ELMo). The latter outperformed the CRF model and achieved rank 3 on the NER task in both French and German. We also showed that the type of sequences used has a significant influence on the results. When we segment in sentences rather than using the segments of the dataset as it is the results are systematically much better, with an exception for locations where the gain is marginal. This suggests that sentence segmentation remains a key component of efficient NLP architectures, in particular for models taking advantage of the context.

BERTrade

In which we present part of the work of [START_REF] Grobol | BERTrade: Using Contextual Embeddings to Parse Old French[END_REF] who pre-train and develop RoBERTa-based [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF] models for Medieval French and subsequently evaluate them on POS tagging and dependency parsing on the SRCMF treebank (Prévost and Stein, 2013). Most notably, [START_REF] Grobol | BERTrade: Using Contextual Embeddings to Parse Old French[END_REF] try to transfer knowledge from contemporary French to Old French by post-training existing Contemporary French language models with a small Medieval French corpus. 1 Having successfully pre-trained and evaluated state-of-the-art language models for Contemporary French, we wanted to finally develop these kinds of resources for Historical French. To this end, we believed Old French to be a particularly interesting language for this kind of study, since relatively to its limited amount of available raw text, its volume of annotated linguistic data is quite high, due to the existence of the SRCMF dependency treebank (Prévost and Stein, 2013) and its latest incarnation in the Universal Dependency project [START_REF] Nivre | Universal Dependencies v2: An evergrowing multilingual treebank collection[END_REF], which boasts around 17.7 K sentences 2 for around 171 K words.

Another interesting property of Old French is its proximity to a well-resourced language, namely contemporary French, for which we had previously developed monolingual contextual embeddings models (and for which other language models had also been developed at this point) that had been shown to be relevant for dependency parsing as discussed in Chapters 5, 11,12 and on (Martin et al., 2020;Le et al., 2020a). Last, but certainly not least, the design of an accurate syntactic parser for Old French would be a very valuable tool for computer-assisted linguistic studies. Indeed, studying the historical variation of syntax in a language that lacks both native speakers and centralized standard variants can be very challenging, due to the prohibitive cost of manual annotation. Automatic syntactic annotations, either as a "silver-standard" truth or as a bootstrapping step towards manual annotation, can drastically reduce that cost.

In this chapter, exploiting this currently unique situation of Old French among lesser-resourced and historical languages, we use dependency parsing and POS-1 Contributions: I participated to the pre-training of some models and their evaluations in downstream tasks, some of which are sadly not presented here as we obtained rather negative results with them. I also did all the computations for the carbon footprint that are presented in appendix F. 3. 2 Putting it in the second place of all French language treebanks in number of sentences. 149 tagging of Old French as probes of the relevance of contextual embeddings in a context of high heterogeneity and relative scarcity of data. More precisely, we consider several neural language models, some of which we train or fine-tuned on the corpus of raw Old and Middle French texts presented in Section 10.1, and use their internal representations of words as inputs to train taggers and parsers on the SRCMF treebank. The resulting tagging and parsing scores then serve as an evaluation of the quality and usefulness of these representations. In particular:

• We provide empirical evidence that contextual embeddings are relevant for historical language processing, even when no data is available beyond the treebank used to train a parser.

• We provide a comparative study of several strategies for obtaining such contextual embeddings. Specifically, we compare cases where raw data is available in the target language and cases where existing contextual embeddings are available for the contemporary counterpart of a historical language.

• We develop BERTrade,3 a set of contextual word embedding models and a state-of-the-art POS-tagging and dependency parsing model.

Experiments

We evaluate a set of alternative word representations on Old French, using their usefulness for POS-tagging and dependency parsing as a downstream evaluation.

To that end, we use the annotated treebank of Old French (SRCMF) (Prévost and Stein, 2013) as provided by the 2.7 version of the UD dataset (Zeman et al., 2020) as a reference treebank. We note however that a more recent version of the SRCMF has been recently published (Zeman et al., 2021) after we did these experiments, this new version introduces most notably the punctuation to the SRCMF treebank.

Our parser/tagger probe uses Dozat and Manning (2018)'s neural graph parser made as reimplemented by Le et al. (2020a) and [START_REF] Grobol | Analyse en dépendances du français avec des plongements contextualisés (French dependency parsing with contextualized embeddings)[END_REF], using the same hyperparameters. Word representations are obtained by concatenating subword embeddings, averaged over transformer layers together with character embeddings and non contextualized word embeddings. This representation is similar to those used by [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF]; [START_REF] Ling | Finding function in form: Compositional character models for open vocabulary word representation[END_REF]. In all of our experiments, the contextual embeddings are fine-tuned while training the parser. Unlike the recent CoNLL challenges settings, we assume gold tokenization, since the syntactic annotations we target provide a reference word-based segmentation. Using a predicted one could only add noise to our experiments. Furthermore, for most European languages using a Latin script-including Old and Middle French-, word segmentation is acceptably approximated by simple typographic tokenization.

The remaining of this section presents our experimental results, sorted by nature of required data. We report UPOS POS-tagging scores as well as unlabeled and labeled attachment scores for dependency parsing (respectively UAS and LAS), as given by the CoNLL-2018 scorer, computed on the development set of SRCMF to avoid overfitting the architecture and transfer learning procedure to the test set. Results on the test set are provided only for the dev-best models to allow us to compare our results to the state of the art.

Due to the number of costly experiments, 4 the results are reported on single runs. The results should therefore be interpreted only with respects to the broad trends: small score differences between competing settings should be taken with care. We first compare a baseline where contextual embeddings are not used at all (Vanilla) with two settings using models with no preexisting knowledge of Old French: Random-base, a randomly initialized model using the same architecture and model size as RoBERTa-base [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF] and finBERT [START_REF] Virtanen | Multilingual is not enough: BERT for Finnish[END_REF], a contextual embedding model from Finnish, a Uralic language that is unrelated to Old French. These baselines are meant to check that the gain in performances observed when using models with some (possibly indirect) knowledge of Old French are linked to this knowledge and not simply due to an increase in the number of trainable parameters (for the random baseline) or to a weight distribution induced by training on a language modeling task that would be universally good for all languages (for the finBERT baseline, which can thus be seen as a different kind of weight initialization).

Table 14.1 shows the results obtained in these configurations, which show that using a model with random weights, even fine-tuned for these tasks, does not bring any improvement, and is in fact even worse than using no contextual embeddings at all. In contrast, using a model that has been pre-trained for language modelingeven for an unrelated language-brings some modest improvements. This suggests that pre-training gives a structure to this kind of model that makes it suitable for fine-tuning on the downstream task, but the impact of this gain is clearly-and 4 See the Appendix F.3 for elements on the carbon footprint of our experiments. 151 predictably-very limited compared to what can be expected for representations that have been trained on relevant linguistic data. When a low-resource language is close to a well-resourced one, it is possible to leverage models designed for the latter. For Old French, contemporary French is an obvious candidate and two contextual embeddings models are available: FlauBERT (Le et al., 2020a) and CamemBERT [START_REF] Martin | CamemBERT: a tasty French language model[END_REF]. Furthermore, mBERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF], a model trained on a multilingual corpus which does not include Old French (possibly apart from some fragments in its contemporary French training data), has been shown to be suitable for many languages, and in particular for Indo-European and Romance languages [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF][START_REF] Muller | When being unseen from mBERT is just the beginning: Handling new languages with multilingual language models[END_REF]. We report in table 14.2 the results obtained when using these language models directly, without additional fine-tuning involving Old French data.

As expected, these results show significant improvements over the baselines, confirming that using contextual embeddings for a related language works better than both randomly initialized embeddings and embeddings pre-trained for an unrelated language-even after fine-tuning. More surprisingly, the best results here are obtained with mBERT. This could mean that mBERT benefits from having been pre-trained for a wider range of languages, including in particular other Romance languages that share with Old French some features, for instance null subjects.

With raw linguistic data

We now try to take advantage of the raw Medieval French data described in section 10.1. To that end, we explore two strategies: training a model from scratch and refining existing models by "post-training" them-running a few more training epochs on the Medieval French raw data.

In the "from scratch" strategy we first train a BPE sub-word tokenizer (Wang et al., 2020a) on our raw corpus, then train a RoBERTa [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF]) masked language model. We take inspiration from [START_REF] Micheli | On the importance of pre-training data volume for compact language models[END_REF] several parametrizations of the architecture also inspired by [START_REF] Turc | Well-Read Students Learn Better: On the Importance of Pre-training Compact Models[END_REF]. Out of these alternatives, the "BERTrade-petit" configuration was the most successful and this is the one we keep for the following experiments.

For the "post-training" strategy, we continue the training of the pre-trained models used in sections 14.1.1 and 14.1.2, for 12 epochs on our raw corpus. We used the same RoBERTa masked language modeling task, using the same parameters as Wang et al. (2020b) (but without vocabulary modifications), resulting in the BERTrade-X models, where X is the name of the base model.

Base model UPOS UAS LAS

BERTrade-petit 97. The results of these experiments are reported in Table 14.4. Comparing these to our results of section 14.1.2 shows that training a model from scratch, even on such limited amounts of data, yields a better model than a simple task-specific fine-tuning of mBERT. However, post-training mBERT yields even better results, and the best ones are obtained by post-training the models for contemporary French.

Putting it all together

Finally, in table 14.5, we compare the performances of our models on the test set of SRCMF with those obtained by [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF], with similar methods. The difference between the models is that we fine-tune the word embeddings, while [START_REF] Straka | Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing[END_REF] keep them frozen.

Our mBERT baseline, which is the closest to their configuration, shows that even without any additional data, task-specific fine-tuning already brings significant 153 improvements, while our models refined using our raw corpus of Medieval French bring further improvements, leading to state-of-the-art results that are consistent with their results on the development set.

Model

UPOS UAS LAS

Conclusion

In this chapter, we have shown that building a monolingual contextual word embeddings model for Medieval French is possible even with limited and heterogeneous linguistic data and that it can bring significant performance gains in parsing and POStagging. To that end, the best strategy seems to be post-training a contextual word embedding model for contemporary French on raw Medieval French documents. We have not directly addressed the internal heterogeneity issue in both our pre-training and fine-tuning data, relying instead on the versatility of the representation models that we considered can bypass it, but it seems a promising perspective for future work-for instance by using finer-grained post-training, concentrating on specific linguistic sub-periods or genres.

For historical languages in general, where not a lot of data is available, this suggests that language-specific fine-tuning is more efficient when applied to a model pretrained for their contemporary counterpart than when applied to a multilingual model. While this study is not currently easy to replicate for other languages due to the lack of annotated data for a suitable downstream task, it suggests that the considerable amount of work required to gather even a small amount of raw texts in the target language is a sound investment, given the significant improvements it can bring to contextual word representations. Beyond historical languages, these findings could also help for processing minority dialectal variants and contact languages of well-resourced languages, and we leave for future work the exploration of these generalizations.

D'AlemBERT

In which we present part of the work of Gabay et al. (2022) who pre-train and develop RoBERTa-based [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF] models for Early Modern French from scratch with the FreEM max corpus, and subsequently evaluate it on POS tagging and named entity recognition on the FreEM LPM and the FreEM NER corpora respectively.1 

After having successfully pre-trained and evaluated a Transformer-based language model for Medieval French, we wanted to develop such a model for Early Modern French, the state of language corresponding to that of the Dictionnaire Universel in its 1701 edition [START_REF] Furetière | Dictionnaire Universel, contenant généralement tous les mots françois tant vieux que modernes, & les termes des sciences et des arts[END_REF], the main text of study of the ANR BASNUM (ANR-18-CE38-0003) that funded this Ph.D. thesis. Thus, in this chapter we develop D'AlemBERT, a neural language model for Early Modern French, and we evaluate it in POS tagging and NER on the FreEM LPM and the FreEM NER corpora respectively. Contrary to the approach used in the previous chapter, we only pre-train D'AlemBERT from scratch, and we do not post-train any of the Contemporary French models. We decided to do this mainly because that our FreEM max , our pre-training dataset is around 1.2 GB in size which is around 20 times the size of the corpus used in the BERTrade experiments for Medieval French, we also thought that 1.2 GB would be enough to properly train a RoBERTa-based architecture in light of the results obtained for CamemBERT in subsection 11.3.2.

15.1 D'AlemBERT: a neural language model for Early Modern French

In this section, we describe the pre-training data, architecture, training objective and optimization setup we use for D'AlemBERT, our new neural language model for Early Modern French.

Pre-processing

Similar to RoBERTa [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF] we segment the input text data into subword units using Byte-Pair encoding (BPE) [START_REF] Sennrich | Neural machine translation of rare words with subword units[END_REF] in the implementation proposed by [START_REF] Radford | Language models are unsupervised multitask learners[END_REF] that uses bytes instead of unicode characters as the base subword units. The BPE encoding does not require pre-tokenization (at the word or token level), thus removing the need to develop a specific tokenizer for Early Modern French. We use a vocabulary size of 32,768 subword tokens. These subwords are learned on the entire FreEM max dataset.

Language Modelling

Transformer D'AlemBERT uses the exact same architecture as RoBERTa, which is a multi-layer bidirectional Transformer [START_REF] Vaswani | Attention is all you need[END_REF]. D'AlemBERT uses the original base architecture of RoBERTa (12 layers, 768 hidden dimensions, 12 attention heads, 110M parameters).

Pre-training Objective We train our model on the Masked Language Modelling (MLM) task as proposed by RoBERTa's authors [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF]: given an input text sequence composed of 𝑁 tokens 𝑥 1 , ..., 𝑥 𝑁 , we select 15% of tokens for possible replacement. Among those selected tokens, 80% are replaced with the special <MASK> token, 10% are left unchanged and 10% are replaced by a random token. The model is then trained to predict the masked tokens using cross-entropy loss. Again, following the RoBERTa approach, we dynamically mask tokens instead of fixing them statically for the whole dataset during preprocessing. We also choose not to use the next sentence prediction (NSP) task originally used in BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF], as it has been shown that it does not improve downstream task performance [START_REF] Conneau | Cross-lingual language model pretraining[END_REF][START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF].

Optimization Optimization for our model in the exact same way as [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF] using Adam (Kingma and Ba, 2015) (𝛽 1 = 0.9, 𝛽 2 = 0.98) for 31k steps with large batch sizes of 8,192 sequences, each sequence containing at most 512 tokens.

Pre-training We use the RoBERTa implementation in the Zelda Rose library,2 and again, in the same way as [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF] our learning rate is warmed up for 10k steps up to a peak value of 0.0003 instead of the original 0.0001 used by the original implementation of RoBERTa [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF], as our model diverged with the 0.0001 value. Furthermore, we hypothesize that this is either due to the smaller size of FreEM max (compared to the corpora used for RoBERTa or CamemBERT) or to our large batch size. We train our model for 31k steps, which amounts to 41 epochs. The

Evaluation and Discussion

total pre-training times, the details of the infrastructure we used and even the carbon emissions of our model are reported in Appendix G.1. In order to evaluate our D'AlemBERT model, we first fine-tune it for POS tagging on the FreEM LPM corpus. We use the flair framework3 for sequence tagging [START_REF] Akbik | FLAIR: An easy-to-use framework for state-of-the-art NLP[END_REF]. To fine-tune D'AlemBERT for POS we follow the same approach as Schweter and Akbik (2020) with some modifications: we append a linear layer of size 256 that takes as input the last hidden representation of the <s> special token and the mean of the last hidden representation of the subword units of each token (token as defined for FreEM LPM ), that is, we use a "mean" subword pooling strategy. We fine-tune D'AlemBERT with a learning rate of 0.000005 for a total of 10 epochs. We also fine-tune CamemBERT using the exact same hyperparameters as that we use for D'AlemBERT.

Evaluation and Discussion

FreEM LPM provides a standard split (train, dev, test), however it also proposes an evaluation on a out-of-domain subcorpus that is not contained in the standard split and that is separated by century (from the 16 th to the 20 th century) and that also contains both the Normalized and Original versions of the texts for the 16 th , 17 th and 18 th centuries. The idea of this out-of-domain evaluation corpus is to have a fine-grained evaluation of the models to better assess their performance in all the different types of text that one might encounter when working with Early Modern French data. Following the approach of Clérice (2020), we report the scores obtained on the outof-domain testing dataset of FreEM LPM in Table 15.1. We use the scores previously reported by Clérice (2020) using Pie Extended, a stacked BiLSTM-CRF model, as our first baseline as well as the fine-tuned CamemBERT that serves as a second baseline as well as a rough estimation of how much knowledge can D'AlemBERT transfer from the FreEM max corpus into this task.

We can see that D'AlemBERT consistently outperforms Pie Extended and Camem-BERT in both the normalized and original versions of our out-of-domain testing data and for all different periods by a considerable margin. Furthermore, we can also see that on average the difference in score between D'AlemBERT and Pie Extended is greater for the original split than the normalized one. This suggests that D'AlemBERT can generalize more effectively to non-normalized data than the more traditional architecture used by Pie Extended. Moreover, we can also see that the difference in scores is also greater for the 16 th c. and 17 th c. data. This is interesting, especially for the 16 th c, because, as we can see in Figure 10.2, this is the least represented period in the FreEM max corpus. This result actually suggests that D'AlemBERT might be able to do effective transfer learning from the 18 th c., 19 th c. and 20 th c. data to the 16 th c. and 17 th c. data.

As for CamemBERT, we can see that it consistently scores lower than both D'Alem-BERT and Pie Extended. Moreover, we can see that it struggles particularly with the non-normalized data of the 16 th c., 17 th c. and 18 th c.. This results clearly shows that CamemBERT cannot easily generalize to these earlier states of languages, or at least not with the quantity of data found in the training set of FreEM LPM . These results also show the impressive capacity of D'AlemBERT of quickly generalizing to diverse set of states of language, as well as its capacity to transfer knowledge from the FreEM max corpus into this task. The obtained results are also a testament to the importance of the pre-training data, specially taking in account that the pre-training set of CamemBERT is more than 100 times bigger than that of D'AlemBERT. Now we fine-tune D'AlemBERT on NER with the FreEM NER corpus. We use once again the flair framework4 for sequence tagging [START_REF] Akbik | FLAIR: An easy-to-use framework for state-of-the-art NLP[END_REF] and we follow the same approach as Schweter and Akbik (2020) with the exact same modifications as in the previous subsection. We also fine-tune CamemBERT using the exact same hyperparameters as that we use for D'AlemBERT. For a baseline we use the BiLSTM-CRF implementation provided by the flair library, and we couple it with character embeddings as well as the Common Crawl-based FastText embeddings [START_REF] Grave | Learning word vectors for 157 languages[END_REF] originally trained by Facebook. Results for all models can be seen in Table 15.2.

In contrast to our POS tagging experiments, here we see D'AlemBERT getting marginally better scores than D'AlemBERT, we believe that this is due to the striking size of FreEM NER which has more than 5 million annotated tokens, that is, we believe that in this case CamemBERT has enough training data in order to properly finetune to this task in Early Modern French and in particular to potentially overcome the poor representations given by the SentencePiece [START_REF] Kudo | SentencePiece: A simple and language independent subword tokenizer and detokenizer for neural text processing[END_REF] trained on Contemporary French for the out-of-vocabulary words found in the Early Modern French data. 5 We believe that to a certain extent, given the size of FreEM NER , CamemBERT might be "forgetting" its pre-training contemporary data and "re-learning" the Early Modern French data in FreEM NER .

In any case, the results obtained here by D'AlemBERT are on par with the stateof-the-art NER models for Contemporary English [START_REF] Wang | Automated concatenation of embeddings for structured prediction[END_REF] while using a much simpler architecture. The results obtained by both Transformer-based models largely outperform those obtained by our LSTM-CRF based baseline, which shows how well the Transformer-based models respond to large quantities of annotated data. We report the results by entity type on the appendix section G.2.

Conclusion

In this chapter we showed that it is possible to successfully train a Transformer-based language model for Early Modern French from scratch with even less data than originally shown in Chapter 11 and in (Martin et al., 2020). Moreover, with our POS tagging evaluation we were able to observe some form of transfer learning and generalization across multiple states of the language corresponding to different periods of time, while in our experiments in named entity recognition we observed the type of performance one can get when given a big enough annotated corpus, even when the models are not particularly fine-tuned to the specific period of time of the annotated data.

We believe that D'AlemBERT will be of use not only to the BASNUM project, but also to all digital humanists and linguists interested in Early Modern French. For our future work, we hope that we will be able to study the application of our D'AlemBERT model to other NLP tasks such as text normalization or even document structuring, where we hope to more extensively study the transfer learning capabilities of our approach.

Part V

Conclusions and Perspectives 161

In which we present the conclusions of this Ph.D. thesis and outline future perspectives and research directions that might develop in the coming years.

During the course of this Ph.D. thesis we developed 3 versions of a large multilingual corpus, we participated in the development of one balanced corpus for Contemporary French, the curation of a corpus for Medieval French and another for Early Modern French. With these corpora, we developed contextualized ELMo representations [START_REF] Peters | Deep contextualized word representations[END_REF] for six languages: Bulgarian, Catalan, Danish, Finnish, French and Indonesian. We also participated in the development of three RoBERTa-based [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF]) models for Contemporary, Medieval and Early Modern French.

We chose to focus on the development of data for the pre-training of language models rather than on the architectures themselves. This approach proved to be very effective as we were able to establish new states of the art for a wide range of tasks in natural language processing for five of the six aforementioned languages as well as for Contemporary, Medieval and Early Modern French. Furthermore, we were able to determine, not only that these contextualized language models are extremely sensitive to pre-training data quality, heterogeneity and balance, but we also showed that these three features were better predictors of the pre-trained models' performance in downstream tasks than the pre-training data size itself. In fact, we were able to determine that the importance of pre-training dataset size had been largely overestimated [START_REF] Martin | CamemBERT: a tasty French language model[END_REF] as we were able to repeatedly show that one can pre-train these architectures with quite modestly size corpora.

We consider that we have reached and far exceeded all the initial objectives set by the BASNUM project for this thesis, by producing models and automatic annotation systems that will make it possible to enrich not only the Dictionnaire Universel of Basnage but also any other type of document in French from any possible time period. Moreover, due to recent developments by the GROBID (Grobid contributors, 2008(Grobid contributors, -2018) ) and DeLFT (DeLFT contributors, 2018) authors, it is now possible to easily plug all of the contextualized language models that we have developed to their document structuring pipeline, we hope that these will quickly allow the members of the BASNUM project to use our French models and in particular, our D'AlemBERT model with GROBID-dictionaries [START_REF] Khemakhem | Automatic extraction of tei structures in digitized lexical resources using conditional random fields[END_REF][START_REF] Khemakhem | Enhancing usability for automatically structuring digitised dictionaries[END_REF], hoping that they can largely improve the initial annotations of the macrostructure already performed by [START_REF] Khemakhem | Standard-based Lexical Models for Automatically Structured Dictionaries[END_REF] in just a few lines of code.

We hope that the resources we have produced here will be of great use to researchers in both natural language processing and digital humanities. In particular, we hope that we will be able to continue working in improving our OSCAR project, which grew from a side-project intended to gather resources for pre-training language models in French, to a fully fledge Open Source project with a thriving community. 1,2,3 The first version of the OSCAR corpus, OSCAR 2019, now has more than 14 thousand downloads4 and has been used independent studies to train monolingual and multilingual language models in more than 18 different languages [START_REF] Wissam Antoun | AraELECTRA: Pre-training text discriminators for Arabic language understanding[END_REF][START_REF] Kakwani | IndicNLPSuite: Monolingual corpora, evaluation benchmarks and pre-trained multilingual language models for Indian languages[END_REF][START_REF] Wilie | IndoNLU: Benchmark and resources for evaluating Indonesian natural language understanding[END_REF][START_REF] Chan | German's next language model[END_REF][START_REF] Koutsikakis | Greek-bert: The greeks visiting sesame street[END_REF][START_REF] Martin | CamemBERT: a tasty French language model[END_REF][START_REF] Chriqui | HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition[END_REF][START_REF] Seker | AlephBERT:A Hebrew Large Pre-Trained Language Model to Start-off your Hebrew NLP Application With[END_REF][START_REF] Delobelle | RobBERT: a Dutch RoBERTa-based Language Model[END_REF][START_REF] Dumitrescu | The birth of Romanian BERT[END_REF][START_REF] Masala | RoBERT -a Romanian BERT model[END_REF] making it possible to NLP researchers with all different backgrounds and interests, to access some of the latest developments in state-of-the-art NLP.

However, we do acknowledge that OSCAR is far from a perfect corpus, and many of the concerns expressed by [START_REF] Caswell | Language ID in the wild: Unexpected challenges on the path to a thousand-language web text corpus[END_REF]; [START_REF] Kreutzer | Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets[END_REF] remain to be addressed. This is a direction of research that we would like to explore in the future, so that we can provide the OSCAR community with an ever-evolving, up-to-date, properly classified, high-quality and even annotated corpus.

Finally, we would like to continue our research in NLP for digital humanities, by trying to apply our methods to other historical languages, we would additionally like to study and research the latest developments in tokenization agnostic architectures [START_REF] Clark | CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation[END_REF]Xue et al., 2021) that would be of great use when one has to model historical language that exhibit free word order and non-standardized orthography. In direct relation to the BASNUM project, we would also like to study the new sparse attention architectures [START_REF] Xiong | Nyströmformer: A nyström-based algorithm for approximating self-attention[END_REF][START_REF] Beltagy | Longformer: The Long-Document Transformer[END_REF], that are capable of handling large contextual windows and that might be of great use for tasks like document structuring were one has to deal with long sequences of text, allowing us to develop end-to-end architectures for document structuring without the need to go through dedicated document processing pipelines such as GROBID (Grobid contributors, 2008(Grobid contributors, -2018) ) In light of recent concerns about the power consumption and carbon footprint of deep learning models [START_REF] Schwartz | Green ai[END_REF][START_REF] Bender | On the dangers of stochastic parrots: Can language models be too big?[END_REF] we report the power consumption and carbon footprint of our main experiments following the approach of [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF]. We use the training times of each model to compute both power consumption and CO 2 emissions.

In our set-up we used two different machines, each one having 4 NVIDIA GeForce GTX 1080 Ti graphic cards and 128GB of RAM, the difference between the machines being that one uses a single Intel Xeon Gold 5118 processor, while the other uses two Intel Xeon E5-2630 v4 processors. One GeForce GTX 1080 Ti card is rated at around 250 W,1 the Xeon Gold 5118 processor is rated at 105 W,2 while one Xeon E5-2630 v4 is rated at 85 W. 3 For the DRAM we can use the work of [START_REF] Desrochers | A validation of dram rapl power measurements[END_REF] to estimate the total power draw of 128GB of RAM at around 13W. Having this information, we can now use the formula proposed by [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF] in order to compute the total power required to train one ELMo model:

𝑝 𝑡 = 1.58𝑡(𝑐𝑝 𝑐 + 𝑝 𝑟 + 𝑔𝑝 𝑔 ) 1000 
Where 𝑐 and 𝑔 are the number of CPUs and GPUs respectively, 𝑝 𝑐 is the average power draw (in Watts) from all CPU sockets, 𝑝 𝑟 the average power draw from all DRAM sockets, and 𝑝 𝑔 the average power draw of a single GPU. We estimate the total power consumption by adding GPU, CPU and DRAM consumptions, and then multiplying by the Power Usage Effectiveness (PUE), which accounts for the additional energy required to support the compute infrastructure. We use a PUE coefficient of 1.58, the 2018 global average for data centers [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF]. In (in Watts) of the system used to train each individual ELMo model. We use this information to compute the total power consumption of each ELMo, also reported in table B.1. We can further estimate the CO 2 emissions in kilograms of each single model by multiplying the total power consumption by the average CO 2 emissions per kWh in France (where the models were trained). According to the RTE (Réseau de transport d'électricité / Electricity Transmission Network) the average emission per kWh were around 51g/kWh in November 2019, 4 when the models were trained. Thus the total CO 2 emissions in kg for one single model can be computed as:

CO 2 e = 0.051𝑝 𝑡 All emissions for the ELMo models are also reported in table B.1.

We do not report the power consumption or the carbon footprint of training the UDPipe 2.0 architecture, as each model took less than 4 hours to train on a machine using a single NVIDIA Tesla V100 card. Also, this machine was shared during training time, so it would be extremely difficult to accurately estimate the power consumption of these models.

Even though it would have been interesting to replicate all our experiments and computational cost estimations with state-of-the-art fine-tuning models such as BERT, XLNet, RoBERTa or ALBERT, we recall that these transformer-based architectures are extremely costly to train, as noted by the BERT authors on the official BERT GitHub repository, 5 and are currently beyond the scope of our computational infrastructure.

B.2 Number of training steps for each checkpoint and each corpus

However we believe that ELMo contextualized word embeddings remain a useful model that still provide an extremely good trade-off between performance to training cost, even setting new state-of-the-art scores in parsing and POS tagging for our five chosen languages, performing even better than the multilingual mBERT model. 

C.1 Details on Language Code Issues

Table C.1 provides a complete lists of the corpora where one code is defined as a superset of the other by the ISO standard, and in Table C.2 we provide a complete list of the language codes in JW300 which purport to be sign language but are actually unrelated high-resource languages. There are 48 languages in the JW300 corpus with language codes that correspond to sign languages, but in reality are unrelated high-resource languages (usually the most spoken language in the country of origin of the sign language). This table shows the actual language of the data corresponding to each sign language code.

Special attention needs to be given to the JW300 dataset, which, in addition to the sign languages and superset code issues, has a variety of other peculiarities. These problems seem to originate in the codes used by jw.org,1 which were apparently not checked in the creation of the JW300 dataset. An overview is provided in Table C.3, and the following paragraphs give specifics.

Twelve languages in JW300 have codes starting in jw_, suggesting they are varieties of Javanese (ISO639-1 jw), but are instead attempts to represent language dialects for which there are no BCP-47 codes. These codes seem to have been updated in jw.org to appropriate BCP-47 private-use extensions in the form <supercode>_x_<tag>, which are provided in Table C extensions. Three codes appear in addition to equivalent ISO codes, making it unclear which languages they are. One language uses a deprecated ISO code. Four languages use the ISO639-3 code instead of the ISO639-2 code, and therefore are not BCP-47.

In addition to the jw_ tags, there are two other mis-used private subtags: hy_arevmda, which in addition to lacking the mandatory _x_ appears to represent standard Western Armenian (hyw); and rmy_AR, which, rather than being Romany from Argentina, is Kalderash Romany.

There are also a few anomalies where private use extensions should have been used but other methods were found to convey the distinctions. Three codes appear in addition to equivalent ISO codes, making it unclear which languages they are. Two of these are equivalencies between ISO639-2 and ISO639-3 (nya and ny are both Chichewa, qu and que are both Quechua), and one is a script equivalency (kmr and kmr_latn are both in Latin script). In these three cases the two codes do represent different languages-so a private use extension would have been appropriate.

Finally, there is the more minor issue that three languages use the ISO639-3 code instead of the ISO639-2 code, and therefore are not BCP-47.

In addition to the JW300-specific errors, Table C 

C.2 Complete Error Taxonomy and Instructions

In addition to the examples given in Table 6.1, raters were provided with the following verbal notes on the error codes:

• CC: Correct translation, natural sentence: It's OK if it's a sentence fragment instead of a whole sentence, as long as it is not too short (about 5 words or greater). The translation does not have to be perfect.

• CS: Correct Translation, but single word or short phrase: Also includes highly repeated short phrases, like "the cat the cat the cat the cat the cat ..."

• CB: Correct translation, but boilerplate: This can be auto-generated or formulaic content, or content that one deems "technically correct but generally not very useful to NLP models". Unfortunately, it's often not clear what should be counted as boilerplate...do your best.

• X: Incorrect translation [for parallel sentences] both source and target are in the correct language, but they are not adequate translations.

• WL: Wrong language For short sentences, especially with proper nouns, there is often a fine line between "Wrong language" and "Not language". Do your best.

• NL: Not language At least one of source and target are not linguistic content. Any sentence consisting only of a proper noun (e.g. "Tyrone Ping") should be marked as NL.

• U: Unknown for sentences that need verification by a native speaker. This is an auxiliary label that is resolved in most cases.

C.3 Methodological Notes

A surprising amount of work can be done without being an expert in the languages involved. The easiest approach is simply to search the internet for the sentence, which usually results in finding the exact page the sentence came from, which in turn frequently contains clues like language codes in the URL, or a headline like News in X language, sometimes with references to a translated version of the same page. However, for the cases where this is insufficient, here are a few tips, tricks, and observations.

No Skills Required: Things that do not require knowledge of the language(s) in question.

1. "Not language" can usually be identified by anyone who can read the script, though there are tricky cases with proper nouns.

2. Frequently, "parallel" sentences contain different numbers in the source and target (especially autogenerated content), and are easy to disqualify.

3. Errors tend to repeat. If a word is mistranslated once, it will often be mistranslated many more times throughout a corpus, making it easy to spot.

Basic Research Required: Things that do not require knowledge of the language(s) in question but can be done with basic research.

1. If it's written in the wrong script it's considered wrong language. (Sometimes the writing system is indicated in the published corpus, e.g. bg-Latn, but usually the language has a "default" script defined by ISO.)

2. Some types of texts come with inherent labels or markers, such as enumerators or verse numbers.

3. When all else fails, search the internet for the whole sentence or n-grams thereof! If the whole sentence can be found, frequently the language is betrayed by the web page (the language's autonym is useful in this case).

C.4 Complete Audit Results

Table for C.5 give the complete annotation percentages for OSCAR 2019. For each annotation label, we report the ratio of the annotated sentences (of max 100 sentences) that were assigned that label by the primary annotator. Repeated annotations done for agreement measurement are not included. The C column aggregates all correct sub-codes (CC, CS, CB). We also report the total number of sentences that each dataset contains for each language and the average sentence length for the audited sentences to illustrate differences across languages. The original language codes as they are published with the datasets are maintained for the sake of consistency (but should be handled with care in future work, see Section 6.2), and those with less than 20% correct sentences are highlighted. For the complete audit results for the other 4 datasets, please refer to the original [START_REF] Kreutzer | Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets[END_REF] In this appendix, we analyze different design choices of CamemBERT (Table E.2), namely with respect to the use of whole-word masking, the training dataset, the model size, and the number of training steps in complement with the analyses of the impact of corpus origin and size (Section 11.3). In all the ablations, all scores come from at least 4 averaged runs. For POS tagging and dependency parsing, we average the scores on the 4 treebanks. We also report all averaged test scores of our different models in Table E.1.

E.1 Impact of Whole-Word Masking

In Table E.2, we compare models trained using the traditional subword masking with whole-word masking. Whole-Word Masking positively impacts downstream performances for NLI (although only by 0.5 points of accuracy). To our surprise, this Whole-Word Masking scheme does not benefit much lower level task such as Name Entity Recognition, POS tagging and Dependency Parsing. . We evaluate our model at every epoch (1 epoch equals 8360 steps). We report the masked language modelling perplexity along with downstream performances. Figure E.1, suggests that the more complex the task the more impactful the number of steps is. We observe an early plateau for dependency parsing and NER at around 22k steps, while for NLI, even if the marginal improvement with regard to pretraining steps becomes smaller, the performance is still slowly increasing at 100k steps.

E.2 Impact of model size

In Table E.2, we compare two models trained on CCNet, one for 100k steps and the other for 500k steps to evaluate the influence of the total number of steps. The model trained for 500k steps does not increase the scores much from just training for 100k steps in POS tagging and parsing. The increase is slightly higher for XNLI (+0.84).

Those results suggest that low level syntactic representation are captured early in the language model training process while it needs more steps to extract complex semantic information as needed for NLI.

F.2 Details on the Models F.2.1 Models Trained From Scratch These are trained for 32 epochs in a masked language modeling task using the same parameters as RoBERTa [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF] but a smaller batch size of 256 samples1 , which amounts to a magnitude of 10 5 steps. We also use a smaller vocabulary size (8192) than other works, in line with the observations of [START_REF] Ding | A call for prudent choice of subword merge operations in neural machine translation[END_REF] that learning large vocabularies on small corpora defeats the purpose of sub-word tokenization. Using a larger vocabulary size of 5×10 4 (like FlauBERT) also did not seem to bring any improvements in our preliminary experiments and made pre-training more expensive.

F.2.2 Post-training

The pretrained models we used in the post-training settings are those available in the 4.2.0 version of Huggingface Transformers [START_REF] Wolf | Transformers: State-of-the-art natural language processing[END_REF] The post-trained models are those with MLM heads, which we did not reset before post-training, so the post-training phase can be seen as a language transfer task for masked language modeling out of which we extract a contextual word embeddings model.

F.3 Carbon Footprint

We report the power consumption and carbon footprint of our main experiments following the approach of [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF]. Two different configurations were used in our experiments, one for pre-training models from scratch (Pre-train) and another one for continuing the training of existing models (Post-train). our region which were around 32 g kW -1 h in January 2021, 5 when the models were trained. Thus the total CO 2 emissions in kg for one single model can be computed as:

CO 2 e = 0.032𝑝 𝑡 All emissions are also reported in languages. Macro-avg: Each language is weighted equally in the aggregation, regardless of its size. Micro-avg: Each label is weighted by the fraction of sentences for that language in the overall annotated corpus, i.e., the annotations for higher-represented languages are upweighted, and annotations for lower-represented languages are downweighted. The bottom rows contain the number of languages that have 0% labeled C etc. Note that these are not true expectations since the languages audited were not randomly sampled. . . . . . . 6.3 Rater evaluation for a subset of audits from CCAligned (aligned with English) measured by the accuracy (Acc-𝑛) of annotations by non-proficient speaker against annotations by proficient speakers. . C. 
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  Ungoliant: The Second OSCAR pipeline In which we present the work of Abadji et al. (2021), who after the evaluations discussed in the previous two chapters, completely rewrote the original OSCAR's goclassy pipeline, added features to the corpus such as metadata extraction and published the second version of the OSCAR corpus now known as OSCAR 21.09. 1

Figure 7 . 2 :
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  present a part of the work of Popa-Fabre et al. (2020) who construct a balanced corpus for contemporary French that could be used for language modeling; and of Ortiz Suárez et al. (2020a) who aligned both the Universal Dependencies and the TEI-annotated NER version of the French Treebank, correcting multiple annotation mistakes and discrepancies, and who then converted the NER annotations to a more machine-ready CoNLL-like format that is more often used for training neural models. 1
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 103 Figure 10.3: FreEM max compilation pipeline. All files are kept in their original format. Metadata is manually prepared in separate files in order to automatically transform and clean (in blue) all the available documents into XML TEI files following the same encoding. It allows us to distribute open data (in green) but also data distributed with restrictions regarding the modification of the original format (in orange). Non-open texts (in red) are not distributed.
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12 FrELMo

 12 In which we present a part of the work of Ortiz Suárez et al. (2020a) who pre-train an ELMo model for Contemporary French and then evaluate its performance in the NER annotated FTB against all the available versions of CamemBERT. From these experiments Ortiz Suárez et al. (2020a) set a new state of the art for this corpus. We also present part of the work of Popa-Fabre et al. (
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 2 1 Part-Of-Speech Tagging

Figure E. 1

 1 Figure E.1 displays the evolution of downstream task performance with respect to the number of steps. All scores in this section are averages from at least 4 runs with different random seeds. For POS tagging and dependency parsing, we also average the scores on the 4 treebanks.
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 1 

	z, mou(l)t…		
	1.3.2 Early Modern French	
	Source	Normalized	Translation
	Surquoy, SIRE, s'il plaiſt à	Sur quoi, SIRE, s'il plaît à	"Whereupon, SIR, if it
	voſtre Maieſté de ſe ſou-	votre Majesté de se souvenir	pleases your Majesty to
	uenir des miſeres de ſon	des misères de son état dont au	remember the miseries of
	Eſtat, dõt au moins ell'a	moins elle a tiré cet avantage,	her state, from which at
	tiré cét aduantage, qu'en	qu'en une grande jeunesse elle	least she has derived this
	vne grande ieuneſse ell'a ac-	a acquis une grande expéri-	advantage, that in great
	quis vne grande experiece,	ence, elle verra que tous les	youth she has acquired
	elle verra que tous les mal-	malheurs de son bas âge ont	great experience, she will
	heurs de sõ bas âge ont	pris leur commencement en	see that all the misfortunes
	pris leur commencement en	semblables occasions ;	of her early life took their
	ſemblables occaſions;		beginning on similar occa-
			sions;"

1: Example of normalization taken from the Lettres of Guez de Balzac (1624).

Table 2 .

 2 

			Parallel		Monolingual
		CCAligned	ParaCrawl v7.1	WikiMatrix	OSCAR	mC4
	#languages	137	41	85	166	101
	Source	CC 2013-2020	selected websites	Wikipedia CC 11/2018	CC all
	Filtering level	document	sentence	sentence	document document
	Langid	FastText	CLD2	FastText	FastText	CLD3
	Alignment	LASER	Vec/Hun/BLEU-Align	LASER	-	-
	Evaluation	TED-6	WMT-5	TED-45	POS/DEP-5 XTREME

1: Comparison of parallel and monolingual corpora extracted from web documents, including their downstream evaluation tasks. All parallel corpora are evaluated for machine translation (BLEU). TED-6: da, cr, sl, sk, lt, et; TED-45: 45-language subset of

  (capping the training set at 20 million words). The 1 st place in universal POS tagging was awarded to Smith et al. (2018) who used two separate instances of Bohnet et al. (2018)'s tagger. More recent developments in POS tagging and parsing include those of Straka et al. (2019) which couples another CoNLL 2018 shared task participant, UDPipe 2.0

  Figure 4.1: A scheme of the goclassy pipeline. The red square represents the Compressed WET files stored on Amazon Web Services. The FILE-ARC icons represent the gzip files stored locally, the FILE-ALT represents one of the 50K WET files. The FILE-ALT represents the filtered file and the Tags represents a file of language tags, one tag per line in FILE-ALT . The Language represents one of the 166 classified files. Each arrow represents an asynchronous non-blocking worker and dotted arrows represent a line filtering process.

		Compressed	WET		Filtered Files	Files Classified
		Files	Files		Language Tags	by Language
		FILE-ARC	FILE-ALT	fastText	FILE-ALT Tags	
		FILE-ARC	FILE-ALT	fastText	FILE-ALT Tags	Language ⋯Language
	Common Crawl	FILE-ARC	FILE-ALT	fastText	FILE-ALT Tags	Language ⋯Language
		⋮	⋮	⋮	⋮	Language ⋯Language
		FILE-ARC	FILE-ALT	fastText	FILE-ALT Tags	

Table 4
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	.1: Benchmarks are done using the UNIX time tool, are repeated 10 times each and
	are done for random samples of 10, 100 and 200 WET files. Only the classifying
	and filtering part are benchmarked. The table shows the minimum, maximum
	and mean time for the user, real and sys time over the 10 runs. Here "fastText" is
	used as short for the pipeline.

Table 5 .

 5 4: Size of treebanks, measured in thousands of tokens and sentences.

	Treebank	#Ktokens #Ksentences
	Bulgarian-BTB	156	11
	Catalan-AnCora	530	17
	Danish-DDT	100	6
	Finnish-FTB	159	19
	Finnish-TDT	202	15
	Indonesian-GSD	121	6

Table 6 .

 6 Table 6.1 provides examples for parallel data, and Appendix C.2 contains detailed annotation instructions.

				Parallel		Monolingual
			CCAligned ParaCrawl v7.1 WikiMatrix	OSCAR	mC4
	#langs audited / total	65 / 119	21 / 38	20 / 78	51 / 166	48 / 108
	%langs audited	54.62%	55.26%	25.64%	30.72%	44.44%
	#sents audited / total 8037 / 907M	2214 / 521M	1997 / 95M 3517 / 8.4B 5314 / 8.5B
	%sents audited	0.00089%	0.00043%	0.00211%	0.00004%	0.00006%
		C	29.25%	76.14%	23.74%	87.21%	72.40%
	macro	X WL NL offensive	29.46% 9.44% 31.42% 0.01%	19.17% 3.43% 1.13% 0.00%	68.18% 6.08% 1.60% 0.00%	-6.26% 6.54% 0.14%	-15.98% 11.40% 0.06%
		porn	5.30%	0.63%	0.00%	0.48%	0.36%
		C	53.52%	83.00%	50.58%	98.72%	92.66%
	micro	X WL NL	32.25% 3.60% 10.53%	15.27% 1.04% 0.69%	47.10% 1.35% 0.94%	-0.52% 0.75%	-2.33% 5.01%
		offensive	0.00%	0.00%	0.00%	0.18%	0.03%
		porn	2.86%	0.33%	0.00%	1.63%	0.08%
		#langs =0% C	7	0	1	7	0
		#langs <50% C	44	4	19	11	9
		#langs >50% NL	13	0	0	7	1
		#langs >50% WL	1	0	0	3	4

2: Averages of sentence-level annotations across datasets and selected languages.

Table 6 .
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		es_XX bm_ML yo_NG tr_TR ku_TR zh_CN af_ZA jv_ID zh_TW it_IT mean
	Acc-6	0.58	0.73	0.41	0.45	0.43	0.55	0.65	0.55	0.46	0.55	0.66
	Acc-4	0.77	0.73	0.60	0.55	0.56	0.72	0.72	0.57	0.58	0.66	0.72
	Acc-2	0.91	0.96	0.72	0.64	0.71	0.79	0.77	0.92	0.81	0.69	0.79
				tyv	rm	bar eml	zh	la mean		
			Acc-6 1.0 0.98 1.0	1.0 0.86 1.0	0.98		
			Acc-4 1.0	1.0	1.0	1.0 0.87 1.0	0.98		
			Acc-2 1.0	1.0	1.0	1.0 0.87 1.0	0.98		

3: Rater evaluation for a subset of audits from CCAligned (aligned with English) measured by the accuracy (Acc-𝑛) of annotations by non-proficient speaker against annotations by proficient speakers.
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4: Rater evaluation for a subset of audits from OSCAR 2019 measured by the accuracy (Acc-𝑛) of annotations by non-proficient speaker against annotations by proficient speakers.

  The prime minister of the Netherlands is Mark Rutte. Miami er 86 minutt. en: The local time in Miami is 86 minutes. en In 1932 the highway was extended north to LA. bar 1938 is de Autobahn bei Inglstod fertig gstellt. en: The highway near Inglstod was completed in 1938. Table 6.5: Examples of "parallel" data where the translation has a different meaning than the source, but the form looks the same. (We added translations of the non-English side.) Such data may encourage hallucinations of fake "facts".

	en	24 March 2018
	pt	14 Novembro 2018
		en: 14 November 2018
	en	The current local time in Sarasota is 89 minutes.
	nn	Den lokale tiden i

en

The prime minister of the UK is Boris Johnson. nl De minister-president van Nederland is Mark Rutte. en:

Table 7

 7 

	.1: Comparison of approximate generation times depending on platform and number
	of shards.

  Record processing with metadata extraction. Headers are kept aside while sentences are identified and grouped into same-language bins. Headers are then cloned for each bin, and are sequentially stamped with an offset that is recorded for the whole operation, and written to disk into text and metadata files by language.

	Platform #shards Without Metadata With Metadata Speedup
			1		13s	12s	×1.1
	Desktop	10		2m12s	1m55s	×1.1
	HPC	Compressed Files FILE-ARC	25 1 25 100	WET Files FILE	5m47s 6s 1m6s Process Record 4m14s	Metadata, 4m50s Paragraph, 7s Language Tag 1m12s 4m36s	×1.2 ×0.9 ×0.9 ×0.9
	Common Crawl Table 7.2: Comparison of approximate generation times with and without metadata genera-FILE-ARC FILE-ARC FILE FILE Process Language ⋯Language Record Process Record Language ⋯Language tion.
		⋮		⋮	⋮			Language ⋯Language
		FILE-ARC		FILE	Process Record		
		sentences	filter	fasttext	(sentence, tag) (sentence, tag) (sentence, tag)	
							group languages
	Record	headers			lang len sentences	lang len sentences	lang len sentences
						headers	headers	headers
					sentences			text
					headers			meta
						offset offset + len
						offsets	

update Figure 7.1:

Table 7 .

 7 3: Comparison of the size of the Common Crawl dumps and their corresponding OSCAR sizes between the 2019 and the 21.09 versions. Compressed (Common Crawl) sources are from November 2018 and February 2021 dumps. Total is Textual + Metadata without deduplication.

	1	0	1 Size Difference (bytes) 2	3	4

•

  When trying to get the metadata of given sentence, one has to get the line number 𝑘, then sequentially (or use a search algorithm since offsets are sorted) look for the record (with offset 𝑜 and length 𝑙), where 𝑘 ∈ [𝑜, 𝑜 + 𝑙].

	Language	Term	2018	2021
	Arabic	Beirut port explosion	0	31
	Burmese*	Min Aung Hlaing	387	3439
	English	Obama 30039 27639
	English	Biden	990 19299
	French	Yellow Vests	2	96

Table 7 .

 7 4: Comparison of occurrences of news-related terms between OSCAR and our corpus in a sample of 100 Common Crawl shards. For the Burmese language, we use the whole 2018 and 2021 corpus since it is a low resource language. Terms are translated to the target language.

Table 8 .

 8 1: Comparison of occurrences of news-related terms between OSCAR and our corpus in a sample of 100 Common Crawl shards. *: For the Burmese language, we use the whole 21.09 and 22.01 corpus since it has less than 100 sentences in both subcorpora. Terms are translated in the corpus language.

	8.4 Corpus

Table 9 .

 9 3: Comparing the corpora under study.

	.3 shows

Table 9 .

 9 4: Lexical statistics on morphological richness over randomly selected samples of 3 million words from each corpus. nb : number total number of forms and the proportion of lemmas having more than one form in a 3-million-word sample are quite similar. FrWiki shows a radically different lexical distribution with numerous hapaxes but a lower morphological richness. Although its total number of forms is more than one third higher than in OSCAR and CaBeRnet samples, the proportion of lemmas having more than one distinct form is around four points below CaBeRnet and OSCAR. Comparatively, youth literature in CBT-fr shows the greatest morphological richness, with around 56% of lemmas having more than one form.

	9.2 A named entity annotation layer for the UD version of the French TreeBank
	3M samples	CBT-fr CaBeRnet Wiki-fr OSCAR-fr
	nb of diff. lemmas	25,139	30,488	31,385	31,204
	tot. nb forms	95,058	180,089 238,121	190,078
	mean nb forms/lemma	3.78	6.19	7.85	6.40
	nb lemmas > 1 form	14,128	15,927	15,182	16,480
	% lemmas > 1 form	56.20	52.24	48.37	52.81

Table 10

 10 

.1: Data collection

Table 10 .

 10 , the biggest database of French texts (only the texts between 1500 and 1800), a very small portion of which is open access: Frantext Démonstration (ATILF, 1998-a);

	-Electronic Enlightenment (Bodleian Libraries, 2008-), an online collection
	of edited correspondences of the Early Modern period;
	• Several come from research projects distributing transcriptions online:
	-The Antonomaz project, French mazarinades (https://cahier.hypotheses.
	org/antonomaz);
	-The II.B section (in French) of the Actis Pacis Westphalicae, diplomatic
	letters for the Peace of Westphalia (http://kaskade.dwds.de/dstar/
	apwcf/);

-The Bibliothèques virtuelles humanistes, 16 th c. French literature (http: //www.bvh.univ-tours.fr); -The Corpus électronique de la première modernité, 17 th c. French literature (http://www.cepm.paris-sorbonne.fr) -The Condé project, coutumiers normands (https://conde.hypotheses.org) -The Corpus Descartes, works of René Descartes (https://www.unicaen. fr/puc/sources/prodescartes/); -The Bibliothèque dramatique of the CELLF, 17 th c. French plays (http:// bibdramatique.huma-num.fr); -The Fabula numerica project, French fables (https://obvil.sorbonne-universite. fr/projets/fabula-numerica); -The Fonds Boissy, plays of Louis de Boissy (https://www.licorn-research. fr/Boissy.html); -The Mercure Galant project, the famous French gazette and literary magazine between 1672 and 1710 (https://obvil.sorbonne-universite. fr/corpus/mercure-galant); -The Rousseau online project, works of Jean-Jacques Rousseau (https:// www.rousseauonline.ch); -The Sermo project, sermons of the 16 th and 17 th c. (http://sermo.unine. 2: Breakdown of the FreEM max corpus by text origin.

Table 10 .

 10 3: Types (in gray) and subtypes taken from the Quaero typology.

	,

Table 10 .

 10 4: NERC Fine-Grained annotation avec EL

Table 11 .

 11 1: POS and dependency parsing scores on 4 French treebanks, reported on test sets assuming gold tokenization and segmentation (best model selected on validation out of 4). Best scores in bold, second best underlined.

	GSD	Sequoia	Spoken	ParTUT

Table 11 . 2 :

 112 NER scores on the FTB (best model selected on validation out of 4). Best scores in bold, second best underlined.

	.57

Table 11 . 3

 113 

	2 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 550M CamemBERT LARGE (fine-tuned) 85.7 335M

: NLI accuracy on the French XNLI test set (best model selected on validation out of 10). Best scores in bold, second best underlined.

Table 11 .

 11 Impact of corpus origin and size dataset. As a result of the different filtering processes, CCNet contains longer documents on average compared to OSCAR 2019 with smaller-and often noisier-documents weeded out. 4 summarizes statistics of these different corpora.

	11 https://dumps.wikimedia.org/backup-index.html.
	12 https://github.com/attardi/wikiextractor.
	13 We use the head split, which corresponds to the top 33% of documents in terms of filtering perplexity.
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Table 11 .

 11 4: Statistics on the pre-training datasets used.

Table

  

	Dataset Size	GSD UPOS LAS	Sequoia UPOS LAS	Spoken UPOS LAS	ParTUT UPOS LAS	Average UPOS LAS	NER F1	NLI Acc.
	Fine-tuning							
	Wiki	4GB	98.28 93.04	98.74 92.71	96.61 79.61	96.20 89.67	97.45 88.75	89.86	78.32
	CCNet	4GB	98.34 93.43	98.95 93.67	96.92 82.09	96.50 90.98	97.67 90.04	90.46	82.06
	OSCAR 4GB ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 98.35 93.55 98.97 93.70 96.94 81.97 96.58 90.28 97.71 89.87 90.65 81.88 OSCAR 138GB 98.39 93.80 98.99 94.00 97.17 81.18 96.63 90.56 97.79 89.88 91.55 81.55
	Embeddings (with UDPipe Future (tagging, parsing) or LSTM+CRF (NER))				
	Wiki	4GB	98.09 92.31	98.74 93.55	96.24 78.91	95.78 89.79	97.21 88.64	91.23	-
	CCNet	4GB	98.22 92.93	99.12 94.65	97.17 82.61	96.74 89.95	97.81 90.04	92.30	-
	OSCAR 4GB ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 98.21 92.77 99.12 94.92 97.20 82.47 96.74 90.05 97.82 90.05 91.90 -OSCAR 138GB 98.18 92.77 99.14 94.24 97.26 82.44 96.52 89.89 97.77 89.84 91.83 -
								125

Table 12 .

 12 1: Results on the test set for the best development set scores.

	Model

Table 12 .

 12 2: Results on the test set for the best development set scores.

	Model	Precision Recall F1-Score
				shuf 1
	SEM(dev)	92.96	87.84	90.33
	LSTM-CRF+CamemBERT OSCAR-BASE-SWM (dev)	93.77	94.00	93.89
	SEM(test)	91.88	87.14	89.45
	LSTM-CRF+CamemBERT OSCAR-BASE-SWM (test)	92.59	93.96	93.27
				shuf 2
	SEM(dev)	91.67	85.96	88.73
	LSTM-CRF+CamemBERT OSCAR-BASE-SWM (dev)	93.15	94.21	93.68
	SEM(test)	90.57	87.76	89.14
	LSTM-CRF+CamemBERT OSCAR-BASE-SWM (test)	92.63	94.31	93.46
				shuf 3
	SEM(dev)	92.53	88.75	90.60
	LSTM-CRF+CamemBERT OSCAR-BASE-SWM (dev)	94.85	95.82	95.34
	SEM(test)	90.68	85.00	87.74
	LSTM-CRF+CamemBERT OSCAR-BASE-SWM (test)	91.30	92.67	91.98

Table 12 .

 12 3: Final POS and dependency parsing scores on 4 French treebanks (French GSD, Spoken, Sequoia and ParTUT), reported on test sets (4 averaged runs) assuming gold tokenisation. Best scores in bold, second to best underlined, state-of-the-art results in italics.

	Dependency Parsing and POS-tagging			
		GSD		Sequoia	Spoken		ParTUT
	Model	UPOS UAS	LAS	UPOS UAS LAS	UPOS UAS	LAS	UPOS UAS LAS
	Baseline UDPipe Future	97.63 90.65 88.06	98.79 92.37 90.73	95.91 82.90 77.53	96.93 92.17 89.63
	+ELMo CBT	97.49 90.21 87.37	98.40 92.18 90.56	96.60 85.05 79.82	97.27 92.55 90.44
	+ELMo Wikipedia	97.92 92.13 89.77	99.22 94.28 92.97	97.28 85.61 80.79	97.62 94.01 91.78
	+ELMo CaBeRnet	97.87 92.02 89.62	99.33 94.42 93.14	97.30 85.39 80.63	97.43 94.02 91.86
	+ELMo OSCAR	97.85 92.41 90.05	99.30 94.43 93.25	97.10 85.83 80.94	97.47 94.74 92.55
	+ELMo OSCAR+CaBeRnet	97.98 92.57 90.22	99.34 94.51 93.38	97.24 85.91 80.93	97.58 94.47 92.05
	State-of-the-art						
	UDify	97.83 93.60 91.45	97.89 92.53 90.05	96.23 85.24 80.01	96.12 90.55 88.06
	UDPipe Future + mBERT 97.98 92.55 90.31	99.32 94.88 93.81	97.23 86.27 81.40	97.64 94.51 92.47
	CamemBERT	98.19 94.82 92.47	99.21 95.56 94.39	96.68 86.05 80.07	97.63 95.21 92.90

Table 12 . 4
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	.23	83.96 85.57

: NER Results on French Treebank (FTB): best scores, second to best.

Table 13 . 2 :

 132 Example extracted from the French training dataset

			Tokens Documents Segments	Labeled named entities
							Pers Loc Org Time Prod
	Train Fr 166217		158	19183 3067 2513 833	273	198
	Dev Fr	37592		43	4423	771 677 158	69	48
	Train De 86960		104	10353 1747 1170 358	118	112
	Dev De	36175		40	4186	664 428 172	73	53
	Table 13.1: Statistics on the training and development data in French and German
	TOKEN	NE-COARSE	NE-FINE		NE-NESTED	NEL		MISC
		LIT	METO	LIT	METO COMP		LIT	METO	
	# language = fr								
	# newspaper = EXP								
	# date = 1918-04-22								
	# document_id = EXP-1918-04-22-a-i0077						
	# segment_iiif_link = https://iiif.dhlab.epfl.ch/iiif_impresso…			
	Lettre	O	O	O	O	O	O	_	_	_
	de	O	O	O	O	O	O	_	_	_
	la	O	O	O	O	O	O	_	_	_
	Su	B-loc O	B-loc.adm.reg O	O	B-loc.adm.nat	Q689055 _	NoSpaceAfter
	.	I-loc	O	I-loc.adm.reg	O	O	I-loc.adm.nat	Q689055 _	_
	_	I-loc	O	I-loc.adm.reg	O	O	I-loc.adm.nat	Q689055 _	NoSpaceAfter
	sss	I-loc	O	I-loc.adm.reg	O	O	I-loc.adm.nat	Q689055 _	_
	allemands	I-loc	O	I-loc.adm.reg	O	O	O	Q689055 _	EndOfLine
	# segment_iiif_link = https://iiif.dhlab.epfl.ch/iiif_impresso…			
	(	O	O	O	O	O	O	_	_	NoSpaceAfter
	Nous	O	O	O	O	O	O	_	_	_
	serons	O	O	O	O	O	O	_	_	_
	heureux	O	O	O	O	O	O	_	_	_
	de	O	O	O	O	O	O	_	_	_
	publier	O	O	O	O	O	O	_	_	_
	…									
	Table									

Table 13 .

 13 3: Strict results for our systems compared to the winning system (micro measures)

	run		French			German	
		P	R	F1	P	R	F1
	winner	83.1	84.9	84.0	79.0	80.5	79.7
	run 1	77.8	79.4	78.6	63.1	66.6	64.8
	run 2	78.8	80.2	79.5	65.8	65.8	65.8
	run 3	70.2	57.9	63.5	64.4	43.8	52.1
	average	70.2	66.7	67.6	63.8	58.1	60.0
	median	71.5	68.6	68.6	66.8	57.7	64.5

Table 13

 13 

	.4: Comparison between segments and sentences on French dev dataset (run 1),
	strict scenario			
	metric	french	german
		not to dev	to dev	not to dev	to dev
	P	78.8	79.5 (+0.7)	65.8	68.2 (+2.4)
	R	80.2	80.7 (+0.5)	65.8	66.1 (+0.3)
	F1	79.5	80.1 (+0.6)	65.8	67.1 (+1.3)

Table 13 .

 13 5: Results obtained on the test set (strict metric) with only the train set (not to dev) and with train+dev sets (to dev) with our best system (run 2)

Table 14 .

 14 1: Results on SRCMF dev -no additional data.

Table 14 .

 14 14.1.2 With related contextual embeddings 2: Results on SRCMF dev -monolingual models.

	Base model	UPOS UAS LAS
	FlauBERT	95.70 90.43 85.45
	CamemBERT 95.86 91.15 86.31
	mBERT	96.06 91.52 86.83

  , who worked in a setting close to ours: a small and noisy pre-training corpus used to create a model from scratch, we used a RoBERTa architecture. As reported in table14.3, we tested 

	Name	Layers Embeddings Heads UPOS UAS LAS
	BERTrade-tiny	2	128	2	94.03 88.66 82.79
	BERTrade-small	4	512	8	96.53 86.30 87.49
	BERTrade-petit	12	256	4	97.14 91.90 89.18
	BERTrade-medium	8	512	8	96.62 91.92 87.60
	BERTrade-base	12	768	12	96.74 92.37 88.42
	Table 14.3: Results on SRCMF dev -Performances of different model sizes when training
	from scratch				

Table 14 .

 14 4: Results on SRCMF dev -using raw data.

		14 92.95 89.18
	BERTrade-finBERT	96.28 92.12 87.92
	BERTrade-mBERT	96.95 93.33 89.60
	BERTrade-CamemBERT 97.16 93.75 90.06
	BERTrade-FlauBERT	96.94 93.75 90.07

Table 14 .

 14 5: Results on SRCMF test

	Straka et al. (2019)	96.26 91.83 86.75
	mBERT	96.19 92.03 87.52
	BERTrade-petit	96.60 92.20 87.95
	BERTrade-mBERT	97.11 93.86 90.37
	BERTrade-FlauBERT	97.15 93.96 90.57
	BERTrade-CamemBERT 97.29 94.36 90.90

94.17 96.59 96.28

  

			Original						Normalized or Contemporary
	Model	16	17	18 19 20	Avg	Model	16	17	18	19	20	Avg
	Drama							Drama				
	Pie Extended 90.34 94.47 94.64	-	-93.15	Pie Extended 93.69 95.75 95.61 95.03 93.71 94.76
	CamemBERT 87.06 89.01 90.92	-	-89.00	CamemBERT 90.18 91.51 91.37 91.13 91.42 91.12
	D'AlemBERT -	-95.68	D'AlemBERT				
	Varia											
	Pie Extended 89.85 93.44 95.98	-	-93.09					
	CamemBERT 86.90 88.85 92.85	-	-89.53					
	D'AlemBERT 93.86 95.73 96.95	-	-95.51					
	Both											
	Pie Extended 90.08 93.95 95.33	-	-93.12					
	CamemBERT 86.98 88.93 91.89	-	-89.27					
	D'AlemBERT 94.02 96.16 96.62	-	-95.60					

96.25 96.97 96.80 96.25 95.00 96.25

  

	Varia
	Pie Extended 92.52 94.81 95.98 92.24 94.03 93.94
	CamemBERT 89.79 90.69 93.06 90.54 89.78 93.94
	D'AlemBERT

94.52 96.64 96.88 94.90 95.30 95.65

  

	Both
	Pie Extended 93.08 95.28 95.80 93.65 93.87 94.35
	CamemBERT 89.99 91.10 92.22 90.84 90.60 92.53
	D'AlemBERT

95.39 96.81 96.84 95.58 95.15 95.95

  

Table 15 .

 15 1: Comparison between D'AlemBERT, CamemBERT and Pie Extended performance on the test set, out-of-domian data of FreEM LPM . Best scores in bold sencond best in italics.

Table 15 .

 15 2: Comparison between D'AlemBERT, CamemBERT and an LSTM-CRF-based model performance on the test set of FreEM NER . Best scores in bold sencond best in italics.

	15.2.2 Named Entity Recognition	
	Model	Precision Recall F1-Score
	LSTM-CRF	0.8640 0.8533	0.8586
	CamemBERT	0.9303 0.9309	0.9306
	D'AlemBERT	0.9329 0.9323	0.9326

  or DeLFT (DeLFT contributors, 2018).

	Language A Goclassy: an Asynchronous Size Words Language Size Orig Dedup Orig Dedup Orig Dedup Afrikaans 241M 163M 43,482,801 29,533,437 Lower Sorbian 13K 7.1K Albanian 2.3G 1.2G 374,196,110 186,856,699 Luxembourgish 29M 21M Language Classification Pipeline Orig 1,787 Words 4,403,577 Amharic 360M 206M 28,301,601 16,086,628 Macedonian 2.1G 1.2G 189,289,873	Dedup 3,087,650 966 102,849,595
		Arabic Aragonese Armenian Assamese Asturian	82G 1.3M 3.7G 113M for Common Crawl 32G 8,117,162,828 3,171,221,354 Maithili 801K 52,896 45,669 Malagasy 1.5G 273,919,388 110,196,043 Malay 71M 6,956,663 4,366,570 Malayalam 2.4M 2.0M 381,005 325,237 Maltese	317K 21M 111M 4.9G 24M	11K 13M 42M 2.5G 17M	69,161 3,068,360 16,696,882 189,534,472 2,995,654	874 1,872,044 6,045,753 95,892,551 2,163,358
		Avaric		409K		324K		24,720		19,478	Marathi	2.7G	1.4G	162,609,404	82,130,803
		Azerbaijani		2.8G		1.5G		322,641,710		167,742,296	Mazanderani	691K	602K	73,870	64,481
		Bashkir		128M		90M		9,796,764		6,922,589	Minangkabau	608K	310K	5,682	4,825
		Basque		848M		342M		120,456,652		45,359,710	Mingrelian	5.8M	4.4M	299,098	228,629
		Bavarian		503		503		399		399	Mirandese	1.2K	1.1K	171	152
		Belarusian		1.8G		1.1G		144,579,630		83,499,037	Modern Greek	62G	27G	5,479,180,137	2,412,419,435
		Bengali		11G		5.8G		623,575,733		363,766,143	Mongolian	2.2G	838M	181,307,167	68,362,013
		Bihari		110K		34K		8,848		2,875	Nahuatl languages	12K	11K	1,234	1,193
	Bishnupriya Part VI Bosnian Breton Bulgarian Language Size Burmese Orig Dedup 4.1M 447K 29M 32G 1.9G		1.7M 116K 16M 14G 1.1G Orig	198,286 106,448 5,013,241 2,947,648,106 Words 56,111,184 Dedup	96,940 20,485 2,890,384 1,268,114,977 Language 30,102,173	Neapolitan Nepali Newari Northern Frisian Northern Luri Orig	17K 1.8G 5.5M 4.4K 76K Dedup Size	13K 1.2G 4.1M 4.4K 63K Orig	5,282 107,448,208 564,697 1,516 Words 8,022 Dedup	4,147 71,628,317 288,995 1,516 6,740
	Catalan Cebuano 600M Central Bikol 2.3M Central Khmer Central Kurdish Chavacano 24G 94M 174M Appendices 8.0G 39M Kirghiz 388M 885 Komi 1.2M 1.1G 487M 520 Korean 12G Kurdish 60M Lao 114M Chechen 8.3M Latin 26M 8.3M	4.3G 24M 44,194,823 885 201,404 581M 226M 520 2,368,765,142 15,561,003 4,133,311 6.7M 4,122,201	1,360,212,450 6,603,567 28,982,620 312 95,243 20,690,610 48,478,334 130 1,120,375,149 9,946,440 2,583,342 711,051 1,328,038	729,333,440 3,675,024 Vietnamese Norwegian Norwegian Nynorsk 68G 312 Occitan Volapük 2.0M 10,082,245 Oriya 18,726,721 Ossetian 130 Pampanga Walloon 273K Waray 2.5M Welsh 213M 568,146 Panjabi Western Frisian 35M	8.0G 85M 32G 5.8M 2.0M 248M 13M 760 203K 2.2M 133M 763M 26M	4.7G 54M 12,036,845,359 1,344,326,388 14,764,980 5,577,159,843 3.7M 750,301 321,121 318,568 188M 14,938,567 11M 1,031,268 304 130 50,720 37,543 397,315 336,311 37,422,441 23,574,673 460M 61,847,806 5,691,077 4,223,816	804,894,377 9,435,139 512,678 11,321,740 878,765 52 37,555,835
	Latvian	Chinese 4.0G		508G 1.8G		249G 520,761,977 14,986,424,850 236,428,905 6,350,215,113 Western Mari Persian	1.2M	79G 1.1M	38G 93,338 9,096,554,121 87,780 4,363,505,319
	Lezghian	Chuvash 3.3M		39M 3.0M		26M 247,646	3,041,614 224,871	2,054,810 Western Panjabi Piemontese 12M	2.1M 9.0M	1.9M 1,426,986	362,013 1,111,112	337,246
	Cornish Croatian 29K Czech 8.8G Danish 736K Dhivehi 443K Dimli Low German Limburgan Lithuanian Lojban Lombard 18M		44K 226M 27K 53G 3.9G 16G 678K 126M 433K 146 13M		14K 110M 24G 1,159,661,742 4,730 9.5G 154,330 79M 75,229 146 2,906,347	8,329 34,232,765 7,715,977,441 516,183,525 4,283 3,540,997,509 2,704 16,727,640 Wu Chinese Polish Portuguese 109K Pushto Yakut 42M 2,637,463,889 1,620,091,317 Quechua 141,973 Yiddish 141M 7,559,472 4,726,660 Romanian 73,665 Yoruba 55K 19 19 Romansh 2,146,417 Yue Chinese 3.7K	109G 124G 32K 361M 26M 78K 84M 25G 27K 7.4K 2.2K	47G 64G 11,189 15,277,255,137 20,641,903,898 242M 46,559,441 2,547,623 1,789,174 6,708,709,674 4,333 10,751,156,918 31,347,348 67K 10,186 13,834,320 8,212,970 8,691 11G 3,984,317,058 8,906 3,518 1,741,794,069 6.5K 1,093 960 186 128
	Total	Dutch Eastern Mari 6.3T		78G 7.2M 3.2T	39G 6.0M 844,315,434,723 13,020,136,373 565,992 425,651,344,234 6,598,786,137 469,297	Russia Buriat Russian	13K 1.2T	11K 568G	963 92,522,407,837	809 46,692,691,520
		Egyptian Arabic	66M		33M		7,305,151		3,659,419	Sanskrit	93M	37M	4,331,569	1,713,930
		Emilian-Romagnol	25K		24K		6,376		6,121	Scottish Gaelic	1.9M	1.3M	310,689	207,110
		English		2.3T		1.2T	418,187,793,408	215,841,256,971	Serbian	3.9G	2.2G	364,395,411	207,561,168
		Erzya		1.4K		1.2K		90		78	Serbo-Croatian	25M	5.8M	5,292,184	1,040,573
		Esperanto		299M		228M		48,486,161		37,324,446	Sicilian	3.3K	2.8K	554	468
		Estonian		4.8G		2.3G		643,163,730		309,931,463	Sindhi	347M	263M	43,530,158	33,028,015
		Finnish		27G		13G		3,196,666,419	1,597,855,468	Sinhala	1.4G	802M	93,053,465	50,864,857
		French		282G		138G	46,896,036,417	23,206,776,649	Slovak	9.1G	4.5G	1,322,247,763	656,346,179
		Galician		620M		384M		102,011,291		63,600,602	Slovenian	2.5G	1.3G	387,399,700	193,926,684
		Georgian		3.6G		1.9G		171,950,621		91,569,739	Somali	61K	16K	1,202	472
		German		308G		145G	44,878,908,446	21,529,164,172	South Azerbaijani	27M	19M	2,175,054	1,528,709
		Goan Konkani		2.2M		1.8M		124,277		102,306	Spanish	278G	149G	47,545,122,279	25,928,290,729
		Guarani		36K		24K		7,382		4,680	Sundanese	211K	141K	30,321	20,278
		Gujarati		1.1G		722M		72,045,701		50,023,432	Swahili	13M	8.1M	2,211,927	1,376,963
		Haitian		3.9K		3.3K		1,014		832	Swedish	44G	25G	7,155,994,312	4,106,120,608
		Hebrew		20G		9.8G		2,067,753,528	1,032,018,056	Tagalog	573M	407M	98,949,299	70,121,601
		Hindi		17G		8.9G		1,372,234,782		745,774,934	Tajik	379M	249M	31,758,142	21,029,893
		Hungarian		40G		18G		5,163,936,345	2,339,127,555	Tamil	9.3G	5.1G	420,537,132	226,013,330
		Icelandic		1.5G		846M		219,900,094		129,818,331	Tatar	670M	305M	51,034,893	23,825,695
		Ido		147K		130K		25,702		22,773	Telugu	2.5G	1.6G	123,711,517	79,094,167
		Iloko		874K		636K		142,942		105,564	Thai	36G	16G	951,743,087	368,965,202
		Indonesian		30G		16G		4,574,692,265	2,394,957,629	Tibetan	187M	138M	1,483,589	936,556
		Interlingua		662K		360K		180,231		100,019	Tosk Albanian	5.0M	2.8M	841,750	459,001
		Interlingue		24K		1.6K		5,352		602	Turkish	60G	27G	7,577,388,700	3,365,734,289
		Irish		88M		60M		14,483,593		10,017,303	Turkmen	11M	6.8M	1,113,869	752,326
		Italian		137G		69G	22,248,707,341	11,250,012,896	Tuvinian	12K	7.9K	759	540
		Japanese		216G		106G		4,962,979,182	1,123,067,063	Uighur	122M	83M	8,657,141	5,852,225
		Javanese		659K		583K		104,896		86,654	Ukrainian	53G	28G	4,204,381,276	2,252,380,351
		Kalmyk		113K		112K		10,277		10,155	Upper Sorbian	4.2M	1.8M	545,351	236,867
		Kannada		1.7G		1.1G		81,186,863		49,343,462	Urdu	2.7G	1.7G	331,817,982	218,030,228
		Karachay-Balkar	2.6M		2.3M		185,436		166,496	Uzbek	21M	12M	2,450,256	1,381,644
		Kazakh		2.7G		1.5G		191,126,469		108,388,743	Venetian	18K	17K	3,492	3,199
											165

Table A .

 A 1: Size of the OSCAR corpus by language measured in bytes and number of words. Standard UNIX human-readable notation is used for the size in byte. We define "words" as spaced separated tokens, which gives a good estimate of the size of each corpus for languages using Latin or Cyrillic alphabets, but might give a misleading size for other languages such as Chinese or Japanese.

	B A First Evaluation of the OSCAR Corpus
	B.1 Computational cost and carbon footprint

  table B.1 we report the training times in both hours and days, as well as the total power draw

	Language	Power Hours Days KWh•PUE	CO 2 e
	OSCAR-Based ELMos			
	Bulgarian	1183 515.00 21.45	962.61	49.09
	Catalan	1118 199.98	8.33	353.25	18.02
	Danish	1183 200.89	8.58	375.49	19.15
	Finnish	1118 591.25 24.63	1044.40	53.26
	Indonesian	1183 694.26 28.93	1297.67	66.18
	Wikipedia-Based ELMos			
	Bulgarian	1118	15.45	0.64	27.29	1.39
	Catalan	1118	51.08	2.13	90.22	4.60
	Danish	1118	14.56	0.61	25,72	1.31
	Finnish	1118	21.79	0.91	38.49	1.96
	Indonesian	1118	20.28	0.84	35.82	1.82
	Total emissions				216.78
	Table B.1: Average power draw (Watts), training times (in both hours and days), mean power
	consumption (KWh) and CO 2 emissions (kg) for each ELMo model trained.

Table B .

 B 2: Number of training steps for each checkpoint, for the ELMo Wikipedia and ELMo OSCAR of each language.

	B.2 Number of training steps for each checkpoint and each corpus C Quality at a Glance: An Audit of OSCAR 2019 and other
	Web-Crawled Datasets
	Language	1 Epoch 3 Epochs 5 Epochs 10 Epochs
	Wikipedia-Based ELMos	
	Bulgarian Catalan Dataset	6,268 20,666 Supercode Subcode(s) 18,804 31,340 61,998 103,330 206,660 62,680
	Danish JW300		5,922 kg	17,766	29,610 kwy	59,220
	Finnish Indonesian JW300 JW300		8,763 7,891 mg qu	26,289 23,673	43,815 39,455 tdx que, qug, qus, 87,630 78,910
	OSCAR-Based ELMos		quw, quy, quz,
	Bulgarian Catalan Danish JW300	143,169 81,156 81,156 sw	429,507 243,468 243,468	715,845 405,780 qvi, qvz 405,780 swc	1,431,690 811,560 811,560
	Finnish OSCAR 181,230 ar	543,690	906,150 arz	1,812,300
	Indonesian 263,830 OSCAR az	791,490 1,319,150 azb	2,638,300
	OSCAR	sh		bs, hr, sr
	OSCAR	ku		ckb
	OSCAR	ms		id, min
	OSCAR	no		nn
	OSCAR	sq		als *
	OSCAR	zh		yue, wuu
	WikiMatrix ar		arz
	WikiMatrix sh		bs, hr, sr
	WikiMatrix zh		wuu

Table C .

 C 1: Situations where two language codes are represented, but one is a superset of another by the ISO standard, leading to unclarity about the data in the supercode dataset.

* 

The als dataset is actually in gsw.

Code in JW300 BCP-47 code Actual Language Name Incorrect private-use extensions

  .3. Twelve languages have codes starting in jw_, suggesting they are varieties of Javanese, but are instead mis-parsed private-use

	hy_arevmda	hyw	Western Armenian
	jw_dgr	os_x_dgr	Digor Ossetian
	jw_dmr	naq_x_dmr	Damara Khoekhoe
	jw_ibi	yom_x_ibi	Ibinda Kongo
	jw_paa	pap_x_paa	Papiamento (Aruba)
	jw_qcs	qxl	Salasaca Highland Kichwa
	jw_rmg	rmn_x_rmg	Greek Romani (South)
	jw_rmv	rmy_x_rmv	Vlax Romani, Russia
	jw_spl	nso_x_spl	Sepulana
	jw_ssa	st_ZA	Sesotho (South Africa)
	jw_tpo	pt_PT	Portuguese (Portugal)
	jw_vlc	ca_x_vlc	Catalan (Valencia)
	jw_vz	skg_x_vz	Vezo Malagasy
	rmy_AR	rmy_x_?	Kalderash
	Equivalent codes used in place of extensions
	kmr_latn	kmr_x_rdu	Kurmanji (Caucasus)
	nya	ny_x_?	Chinyanja (Zambia)
	que	qu_x_?	Quechua (Ancash)
		Deprecated codes
	daf	dnj/lda	Dan
	ISO-693-3 used in place of ISO-693-2
	cat	ca	Catalan
	gug	gn	Guarani
	run	rn	Kirundi
	tso_MZ	ts_MZ	Changana (Mozambique)

Table C .

 C 3: Language code issues in the JW300 datasets for 22 language varieties not covered by Tables C.1 and C.2. Private use extensions are given as they appear in jw.org, and specified as '?' if they are absent from jw.org.

Table C .

 C .4 summarizes miscellaneous errors in CCAligned and OSCAR 2019 that were detailed in Section 6.2.

	Dataset	Code in Corpus Correct Code
	CCAligned zz	zza
	CCAligned sz	szl
	CCAligned ns	nso
	CCAligned cb	ckb
	CCAligned tz	ber
	CCAligned qa	shn
	CCAligned qd	kac
	CCAligned cx	ceb
	mC4	iw	he
	OSCAR	eml	egl
	OSCAR	als	gsw
	OSCAR	sh	hbs
	WikiMatrix sh	hbs

4: Miscellaneous errors in language codes.

Table C .

 C work. 5: Audit results for a sample of 100 sentences from OSCAR for each language, compared to the number of sentences available in the dataset. If fewer than 100 sentences were available, all sentences were audited Language codes are as originally published. Length is measured in number of characters. Languages with less than 20% correct sentences are boldfaced.

	Language		C	CC Size	CS Documents	CB	Words	WL	NL Language	porn # sentences avg length Size Documents	Words
	diq Afrikaans	100.00% 100.00% 0.00% 47.0 MB 12,393	0.00% 6,227,310 0.00%	0.00% 0.00% Luxembourgish	15.8 MB	5,108	131.00 1,545,946
	bcl Tosk Albanian cbk Amharic Aragonese		0.00% 0.00%	0.00% 0.00% 363.6 kB 139 0.00% 0.00% 461.0 MB 37,513 10.6 kB 12	0.00% 0.00% 100.00% 0.00% 100.00% 0.00% 37,381 Lezghian 0.00% 0.00% 30,481,153 Limburgish 51 Lombard	375.5 kB 1.4 kB 2.6 kB	124 2 2	623.00 519.00	19,250 41 225
	pam 100.00% 100.00% 0.00% 84.2 GB 8,718,929 bar 25.00% 25.00% 0.00% Egyptian Arabic Arabic 2.8 MB 1,256 Assamese 221.2 MB 17,084	0.00% 6,103,711,887 0.00% 0.00% 0.00% 176,096 11,109,557	0.00% 0.00% Lao 75.00% 0.00% Lithuanian Latvian	337.1 MB 20.0 GB 8.2 GB	28,914 2,303,070 1,032,987	6,682,982 139.00 1,712,802,056 53.50 707,361,898
	myv 100.00% 100.00% 0.00% Asturian 73.6 kB yue 0.00% 0.00% 0.00% Avaric 18.6 kB Azerbaijani 3.5 GB 491,847 77 14	0.00% 0.00% 291,927,692 0.00% 3,919 57.14% 582	0.00% 0.00% Maithili 42.86% 0.00% Malagasy Eastern Mari	21.6 kB 57.3 MB 11.3 MB	23 3,028 1,612	483 7,279,056 127.00 177.00 641,525
	mwl South Azerbaijani frr Bashkir Belarusian	57.14% 0.00%	57.14% 0.00% 14.1 MB 5,381 0.00% 0.00% 95.5 MB 11,198 1.8 GB 180,046	0.00% 0.00% 5,418,474 42.86% 693,746 0.00% 100.00% 0.00% 0.00% 0.00% Minangkabau Macedonian 107,227,860 Malayalam	6.0 MB 3.6 GB 4.1 GB	585 341,775 250,972	614,613 141.00 244,058,579 231.56 137,831,247
	ht Bulgarian ie Bihari languages Bangla		30.00% 30.00%	30.00% 0.00% 35.1 GB 2,887,115 30.00% 0.00% 24.2 kB 27 15.1 GB 1,171,501	0.00% 2,405,981,285 0.00% 0.00% 30.00% 569 751,877,226	70.00% 0.00% Mongolian 40.00% 0.00% Marathi Western Mari	2.8 GB 3.3 GB 743.5 kB	237,719 250,376 155	176,405,432 329.10 160,179,233 121.70 43,916
	scn Tibetan tyv Bishnupriya Breton	100.00% 100.00% 0.00% 234.5 MB 18,683 96.15% 96.15% 0.00% 2.0 MB 271 33.7 MB 16,119	0.00% 2,286,269 0.00% 0.00% 0.00% 98,419 3,111,619	0.00% 0.00% Malay 3.85% 0.00% Maltese Multilingual	5.3 MB 2.5 MB 12.1 GB	5,228 2,208 1,210,685	217,818 155.59 118,190 167.96 936,187,711
	mai Bosnian bxr Russia Buriat Catalan dsb Chechen Cebuano	79.31% 100.00% 100.00% 0.00% 75.86% 0.00% 10.3 kB 32.9 kB 13.9 GB 2,627,307 10 39 100.00% 97.56% 0.00% 14.0 MB 4,086 44.6 MB 5,742	3.45% 0.00% 1,508,919,864 20.69% 422 0.00% 785 2.44% 0.00% 798,766 5,253,785	0.00% 0.00% Burmese 0.00% 0.00% Mazanderani Nahuatl languages 0.00% 0.00% Low German Nepali	1.9 GB 128.2 kB 8.7 kB 9.0 MB 3.7 GB	158,733 76 12 1,938 391,947	44,835,970 141.17 7,337 179 160.76 1,012,561 155.15 177,885,116
	so Central Kurdish rm Czech Chuvash	0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 716.4 MB 84,950 58.6 GB 10,381,916 41.8 MB 4,750	0.00% 43,913,025 28.57% 0.00% 0.00% 5,452,724,456 2,465,782	71.43% 0.00% Newari 0.00% 0.00% Dutch Norwegian Nynorsk	5.7 MB 114.0 GB 6.8 MB	1,134 20,206,532 5,835	273,837 208.24 12,329,127,151 137.66 459,183
	nah nap Danish Welsh German	100.00% 0.00%	96.67% 0.00% 409.3 MB 90,378 0.00% 0.00% 12.6 GB 2,265,479 496.7 GB 70,075,424	3.33% 49,488,495 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% Norwegian 1,454,439,292 Occitan 46,826,676,844 Odia	2.8 GB 2.1 MB 487.9 MB	973,188 373 52,942	279,182,902 164.53 31,061 152.11 23,755,902
	yo Dimli (individual language) 98.46% gn 81.48% Lower Sorbian Divehi	96.92% 0.00% 706 Bytes 81.48% 0.00% 707 Bytes 217.2 MB 24,067 1 1	1.54% 0.00% 10,112,205 1.54% 19 2.47% 17	0.00% 0.00% Ossetic 16.05% 0.00% Punjabi Polish	13.9 MB 1.1 GB 139.0 GB	3,560 68,094 19,301,137	800,430 281.57 70,068,604 234.95 12,584,498,906
	vec kw Emiliano-Romagnolo. 91.36% Greek 91.57% English	91.36% 0.00% 78.3 GB 6,738,546 90.36% 0.00% 901 Bytes 1 3.2 TB 431,992,659	0.00% 5,031,242,803 0.00% 1.20% 3.61% 53 377,376,402,775	8.64% 0.00% Piedmontese 4.82% 0.00% Western Panjabi Pashto	1.7 MB 46.7 MB 490.3 MB	698 6,790 50,312	188,270 184.90 4,060,419 162.75 46,293,249
	wuu Esperanto eml Spanish Estonian		0.00% 42.57%	0.00% 0.00% 558.3 MB 111,932 42.57% 0.00% 381.9 GB 51,386,247 9.2 GB 1,362,524	0.00% 58,416,628 98.84% 0.00% 0.00% 42,829,835,316 820,975,443	1.16% 0.00% Portuguese 57.43% 0.00% Quechua Romanian	170.3 GB 744 Bytes 49.2 GB	23,735,707 1 4,624,764	18,441,864,893 157.15 14 177.88 5,261,803,995
	bh Basque min Persian Finnish		89.42% 64.00%	21.15% 0.00% 68.27% 1.1 GB 233,658 97,092,942 1.92% 6.00% 0.00% 58.00% 27.00% 77.4 GB 7,665,871 6,430,164,396 37.8 GB 4,948,961 2,900,615,928	8.65% 0.00% Russian 9.00% 0.00% Sanskrit Sakha	1.1 TB 136.0 MB 65.6 MB	76,060,844 4,472 6,284	62,811,122,663 137.17 5,671,369 649.85 3,473,813
	qu su Western Frisian French Irish	100.00% 99.00%	98.97% 0.00% 382.2 GB 52,037,098 99.00% 0.00% 75.3 MB 21,946 45.6 MB 12,233	1.03% 41,713,990,658 0.00% 0.00% 0.00% 6,357,929 4,877,850	0.00% 0.00% Sicilian 1.00% 0.00% Sindhi Serbian (Latin)	1.5 kB 117.1 MB 931.8 kB	2 15,516 738	50 10,685,611 167.27 221.00 92,875
	jv Scottish Gaelic als Galician Guarani		97.00% 93.00%	86.00% 0.00% 11.00% 137.7 kB 136 93.00% 0.00% 0.00% 255.2 MB 88,803 27,051,212 1.00% 7,769 6.00% 9.0 kB 10 374	2.00% 0.00% Sinhala 1.00% 0.00% Slovak Slovenian	2.0 GB 16.5 GB 1.2 GB	108,593 2,409,555 351,894	113,179,741 203.08 1,619,121,944 375.44 118,400,246
	la Goan Konkani uz Gujarati Hebrew		98.00% 98.00%	98.00% 0.00% 787.2 kB 98.00% 0.00% 4.8 GB 136,467 46 30.3 GB 3,132,396	0.00% 0.00% 301,170,777 2.00% 38,831 2.00% 2,249,377,984	0.00% 0.00% Somali 0.00% 0.00% Albanian Serbian	2.1 kB 3.0 GB 6.9 GB	3 437,287 577,472	109 326,325,149 224.11 369.99 482,932,670
	nds sw Croatian Hindi Upper Sorbian		97.03% 98.00%	95.05% 0.00% 23.3 GB 1,529,907 98.00% 0.00% 11.2 MB 11,462 132.8 kB 110	1.98% 1,534,799,198 2.97% 0.00% 0.00% 505,369 8,825	0.00% 0.00% Sundanese 2.00% 0.00% Swedish Swahili	5.0 MB 48.0 GB 1.3 MB	263 7,541,278 462	547,145 344.74 5,078,331,128 196.70 123,050
	br Hungarian fy Armenian Interlingua	100.00% 97.00%	96.00% 0.00% 53.9 GB 6,866,062 97.00% 0.00% 4.7 GB 379,267 40.2 kB 6	4.00% 4,598,787,907 0.00% 0.00% 2.00% 268,031,270 10,125	0.00% 0.00% Tamil 1.00% 0.00% Telugu Tajik	11.4 GB 3.4 GB 870.9 MB	556,772 249,756 46,366	452,343,748 239.56 137,752,065 340.23 56,627,727
	am Indonesian af Iloko Ido	81.09% 100.00% 100.00% 0.00% 79.10% 0.00% 17.4 GB 2,244,622 97.9 kB 75 77.3 kB 105	1.99% 1,984,195,207 18.91% 0.00% 0.00% 8,592 2,690	0.00% 0.00% Thai 0.00% 0.00% Turkmen Filipino	66.1 GB 4.4 MB 646.5 MB	5,030,254 2,485 70,394	1,626,779,846 267.43 276,632 339.18 81,881,278
	eu Icelandic mn Italian Japanese	100.00% 98.00%	98.00% 0.00% 2.0 GB 396,183 94.00% 0.00% 229.3 GB 28,502,092 258.7 GB 36,328,931	2.00% 210,365,124 0.00% 4.00% 2.00% 24,294,684,830 5,592,948,356	0.00% 0.00% Turkish 0.00% 0.00% Tatar Uyghur	75.1 GB 915.3 MB 201.9 MB	10,826,031 76,398 18,556	6,421,221,358 330.93 51,875,265 309.94 11,240,889
	te kk Javanese Lojban Georgian ca Kazakh Khmer	98.99% 100.00% 100.00% 0.00% 93.94% 1.01% 1.9 MB 570 152.7 kB 70 7.1 GB 488,588 99.00% 91.00% 0.00% 2.9 GB 261,085 1.9 GB 121,910	4.04% 0.00% 281,430,479 0.00% 260,542 0.00% 10,441 8.00% 1.00% 157,267,307 30,564,131	1.01% 1.01% Ukrainian 0.00% 0.00% Urdu Uzbek 0.00% 0.00% Vietnamese Volapük	48.8 GB 3.4 GB 19.9 MB 98.9 GB 825.9 kB	4,558,214 336,994 9,526 9,587,233 661	2,879,585,992 412.31 332,816,354 1,370,842 318.93 12,283,185,482 333.38 57,039
	nl Kannada it Korean Karachay-Balkar		98.00% 87.13%	94.00% 2.00% 2.6 GB 150,850 71.29% 1.98% 13.86% 2.00% 108,450,571 2.00% 11.88% 51.8 GB 5,881,481 3,854,968,649 119.6 kB 91 4,089	0.00% 4.00% Walloon 0.99% 1.98% Waray Wu Chinese	105.7 kB 7.6 MB 137.2 kB	138 933 88	4,386 830,872 305.01 393.66 3,056
	zh Kurdish fr Komi Cornish	100.00% 100.00%	97.00% 0.00% 150.3 MB 29,906 93.00% 0.00% 119.9 kB 127 1.4 kB 2	3.00% 17,390,759 0.00% 7.00% 0.00% 3,335 55	0.00% 1.00% Kalmyk 0.00% 5.00% Mingrelian Yiddish	9.3 kB 7.6 MB 232.5 MB	9 2,550 23,418	250 253,333 195.60 306.62 15,809,780
	es Kyrgyz en Latin	100.00% 99.00%	94.00% 0.00% 518.6 MB 62,244 96.00% 0.00% 4.1 MB 4,397	6.00% 28,028,986 0.00% 3.00% 0.00% 187,446	0.00% 3.00% Yoruba 1.00% 1.00% Chinese	24.7 kB 900.9 GB	26 56,524,518	1,042 23,149,203,886 268.07 364.65

Table D .

 D 1: Size of the OSCAR 22.01 corpus by language measured in bytes and number of words. Standard UNIX human-readable notation is used for the size in byte. We define "words" as spaced separated tokens, which gives a good estimate of the size of each corpus for languages using Latin or Cyrillic alphabets, but might give a misleading size for other languages such as Chinese or Japanese.

	Dataset Masking	Arch. #Steps	GSD UPOS LAS	Sequoia UPOS LAS	Spoken UPOS LAS	ParTUT UPOS LAS	NER F1	NLI Acc.
	Fine-tuning								
	OSCAR Subword	Base	100k	98.25 92.29	99.25 93.70	96.95 79.96	97.73 92.68	89.23	81.18
	OSCAR Whole-word	Base	100k	98.21 92.30	99.21 94.33	96.97 80.16	97.78 92.65	89.11	81.92
	CCNET Subword	Base	100k	98.02 92.06	99.26 94.13	96.94 80.39	97.55 92.66	89.05	81.77
	CCNET Whole-word	Base	100k	98.03 92.43	99.18 94.26	96.98 80.89	97.46 92.33	89.27	81.92
	CCNET Whole-word	Base	500k	98.21 92.43	99.24 94.60	96.69 80.97	97.65 92.48	89.08	83.43
	CCNET Whole-word Large	100k	98.01 91.09	99.23 93.65	97.01 80.89	97.41 92.59	89.39	85.29
	Embeddings (with UDPipe Future (tagging, parsing) or LSTM+CRF (NER))				
	OSCAR Subword	Base	100k	98.01 90.64	99.27 94.26	97.15 82.56	97.70 92.70	90.25	-
	OSCAR Whole-word	Base	100k	97.97 90.44	99.23 93.93	97.08 81.74	97.50 92.28	89.48	-
	CCNET Subword	Base	100k	97.87 90.78	99.20 94.33	97.17 82.39	97.54 92.51	89.38	-
	CCNET Whole-word	Base	100k	97.96 90.76	99.23 94.34	97.04 82.09	97.39 92.82	89.85	-
	CCNET Whole-word	Base	500k	97.84 90.25	99.14 93.96	97.01 82.17	97.27 92.28	89.07	-
	CCNET Whole-word Large	100k	98.01 90.70	99.23 94.01	97.04 82.18	97.31 92.28	88.76	-

Table E.1: Performance reported on Test sets for all trained models (average over multiple fine-tuning seeds).

Table E .

 E 2 compares models trained with the BASE and LARGE architectures. These models were trained with the CCNet corpus (135 GB) for practical reasons. We con-Table E.2: Comparing scores on the Validation sets of different design choices. POS tagging and parsing datasets are averaged. (average over multiple fine-tuning seeds). firm the positive influence of larger models on the NLI and NER tasks. The LARGE architecture leads to respectively 19.7% error reduction and 23.7%. To our surprise, on POS tagging and dependency parsing, having three time more parameters doesn't lead to a significant difference compared to the BASE model. Tenney et al. (2019) and Jawahar et al. (2019) have shown that low-level syntactic capabilities are learned in lower layers of BERT while higher level semantic representations are found in upper layers of BERT. POS tagging and dependency parsing probably do not benefit from adding more layers as the lower layers of the BASE architecture already capture what is necessary to complete these tasks. E.3 Impact of training dataset Table E.2 compares models trained on CCNet and on OSCAR. The major difference between the two datasets is the additional filtering step of CCNet that favors Wikipedia-Like texts. The model pretrained on OSCAR gets slightly better results on POS tagging and dependency parsing, but gets a larger +1.31 improvement on NER. The CCNet model gets better performance on NLI (+0.67).

	Dataset	Masking	Arch. #Param. #Steps	UPOS LAS NER XNLI
	Masking Strategy				
	OSCAR	Subword	Base	110M	100k	97.78 89.80 91.55 81.04
	OSCAR Whole-word	Base	110M	100k	97.79 89.88 91.44 81.55
	Model Size				
	CCNet	Whole-word	Base	110M	100k	97.67 89.46 90.13 82.22
	CCNet	Whole-word Large	335M	100k	97.74 89.82 92.47 85.73
	Dataset				
	CCNet	Whole-word	Base	110M	100k	97.67 89.46 90.13 82.22
	OSCAR Whole-word	Base	110M	100k	97.79 89.88 91.44 81.55
	Number of Steps				
	CCNet	Whole-word	Base	110M	100k	98.04 89.85 90.13 82.20
	CCNet	Whole-word	Base	110M	500k	97.95 90.12 91.30 83.04

E.4 Impact of number of steps

Table G .

 G table F.1. 2: Results of the BiLSTM-CRF model on the test set of FreEM NER by entity type.

		LSTM-CRF	
	Entity Type	Precision Recall F1-Score Support
	pers	0.8808 0.8435	0.8617
	loc	0.8109 0.8707	0.8397
	amount	0.9040 0.9040	0.9040
	time	0.9604 0.9237	0.9417
	func	0.8872 0.8429	0.8645
	org	0.8824 0.6122	0.7229
	prod	0.9231 0.4444	0.6000
	event	0.7273 0.6667	0.6957
	micro avg	0.8640 0.8533	0.8586
	macro avg	0.8720 0.7635	0.8038
	weighted avg	0.8659 0.8533	0.8583
	samples avg	0.7737 0.7737	0.7737
		CamemBERT	
	Entity Type	Precision Recall F1-Score Support
	pers	0.9373 0.9236	0.9304
	loc	0.9140 0.9371	0.9254
	amount	0.9840 0.9840	0.9840
	time	0.9447 0.9407	0.9427
	func	0.9209 0.9143	0.9176
	org	0.8364 0.9388	0.8846
	prod	0.7742 0.8889	0.8276
	event	0.8333 0.8333	0.8333
	micro avg	0.9303 0.9309	0.9306
	macro avg	0.8931 0.9201	0.9057
	weighted avg	0.9307 0.9309	0.9307
	samples avg	0.8856 0.8856	0.8856

Table G .

 G 3: Results of CamemBERT on the test set of FreEM NER by entity type.Figure G.1: Number of entities by text on a logarithmic scale.5.6 UPOS, UAS and LAS scores for the UDPipe 2.0 baseline reported by (Kondratyuk and Straka, 2019), plus the scores for checkpoints at 1, 3, 5 and 10 epochs for all the ELMo OSCAR and ELMo Wikipedia . All scores are test scores. Best ELMo OSCAR scores are shown in bold while best ELMo Wikipedia scores are underlined. . . . . . . . . . . . . . . . . . . . 6.1 Annotation codes for parallel data with sentence pair examples. The language code before each sentence indicates the language it is supposed to be in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Averages of sentence-level annotations across datasets and selected

  3 Language code issues in the JW300 datasets for 22 language varieties not covered by Tables C.1 and C.2. Private use extensions are given as they appear in jw.org, and specified as '?' if they are absent from jw.org. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 C.4 Miscellaneous errors in language codes. . . . . . . . . . . . . . . . . . 178 C.5 Audit results for a sample of 100 sentences from OSCAR for each language, compared to the number of sentences available in the dataset. If fewer than 100 sentences were available, all sentences were audited Language codes are as originally published. Length is measured in number of characters. Languages with less than 20% correct sentences are boldfaced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 D.1 Size of the OSCAR 22.01 corpus by language measured in bytes and number of words. Standard UNIX human-readable notation is used for the size in byte. We define "words" as spaced separated tokens, which gives a good estimate of the size of each corpus for languages using Latin or Cyrillic alphabets, but might give a misleading size for other languages such as Chinese or Japanese. . . . . . . . . . . . . . . 185 E.1 Performance reported on Test sets for all trained models (average over multiple fine-tuning seeds). . . . . . . . . . . . . . . . . . . . . . 187 E.2 Comparing scores on the Validation sets of different design choices. POS tagging and parsing datasets are averaged. (average over multiple fine-tuning seeds). . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 F.1 Average power draw, number of models trained, training times in hours, mean power consumption including power usage effectiveness (PUE), and CO 2 emissions; for each setting. . . . . . . . . . . . . . . . 193 G.1 Average power draw, number of models trained, training times in hours, mean power consumption including power usage effectiveness (PUE), and CO 2 emissions; for each setting. . . . . . . . . . . . . . . . 195 G.2 Results of the BiLSTM-CRF model on the test set of FreEM NER by entity type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 G.3 Results of CamemBERT on the test set of FreEM NER by entity type. . 197 G.4 Results of D'AlemBERT model on the test set of FreEM NER by entity type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Cette thèse met l'accent sur le développement de corpus pour le pré-entraînement de telles architectures. Cette approche s'avère extrêmement efficace car nous sommes en mesure d'améliorer l'état de l'art pour un large éventail de tâches de TAL pour le français contemporain et historique, ainsi que pour six autres langues contemporaines. De plus, nous montrons que ces modèles sont extrêmement sensibles à la qualité, à l'hétérogénéité et à l'équilibre des données de pré-entraînement et montrons que ces trois caractéristiques sont de meilleurs prédicteurs de la performance des modèles que la taille des données de pré-entraînement. Nous montrons également que l'importance de la taille des données de pré-entraînement a été surestimée en démontrant à plusieurs reprises que l'on peut pré-entraîner de tels modèles avec des corpus de taille assez modeste.

Machine learning library to extract, analyze and restructure raw documents such as PDFs into structured and TEI-encoded documents.

Between the 16 th and 18 th century.

Punctuation marks are counted as tokens.

Space sparated tokens.

https://www.reddit.com/

https://github.com/attardi/wikiextractor

https://github.com/hghodrati/wikifil

Hand-drawn figure by Mathilde Regnault.

In the edition from Pierre Kunstmann, from the online Base de français médiéval: http://catalog. bfm-corpus.org/CharretteKu.

http://commoncrawl.org/about/

http://microformats.org/wiki/rel-nofollow

https://www.robotstxt.org/

https://www.gnu.org/software/gzip/

https://tatoeba.org/

https://bigscience.huggingface.co

http://commoncrawl.org/

For language codes please refer to the IETF BCP 47 language tag https://www.iana.org/ assignments/language-subtag-registry/language-subtag-registry

https://github.com/LDNOOBW/

https://github.com/google/cld3/

Line-level here refers to the '\n' separated lines in the Common Crawl WET files.

https://fasttext.cc/docs/en/language-identification.html

https://github.com/bitextor/bicleaner

Punctuation marks are counted as tokens.

Space sparated tokens.

https://www.reddit.com/

https://allennlp.org/elmo

https://github.com/HIT-SCIR/ELMoForManyLangs

https://allennlp.org/elmo

https://universaldependencies.org

https://deep-sequoia.inria.fr

Speech transcript uncased that includes annotated disfluencies without punctuation

This dataset has only been stored and used on Inria's servers after signing the research-only agreement.

Every mention of France is annotated as a Location with subtype Country, as given in Aleda (a free large-scale entity database for French) database(Sagot and Stern, 2012), even if in context the mentioned entity is a political organization, the French people, a sports team, etc.

Only proper nouns are considered as named entity mentions, thereby excluding other types of referential expressions.

More precisely, we used a tagset of 7 base NE types: Person, Location, Organization, Company, Product, POI (Point of Interest) and FictionChar.

So for instance, in université de Nantes 'Nantes university', only Nantes is annotated, as a city, as université is written in lowercase letters. However, Université de Nantes 'Nantes University' is wholly annotated as an organization. It is non-ambiguous because Université is capitalized. Université de Montpellier 'Montpellier University' being ambiguous when the text of the FTB was written and when the named entity annotations were produced, only Montpellier is annotated, as a city.

Specific conventions for entities that have merged, changed name, ceased to exist as such (e.g. Tchequoslovaquie) or evolved in other ways are described inSagot et al. (2012).29

Contributions: I did the concrete work and designed most of it under the supervision of my coauthors and Ph.D. supervisors.

https://golang.org/

https://golang.org/src/runtime/mprof.go

https://github.com/whitfin/runiq

https://github.com/Cyan4973/xxHash

https://zlib.net/pigz/

https://github.com/oscar-corpus/goclassy

https://oscar-corpus.com/post/oscar-2019/ and https://huggingface.co/datasets/oscar

http://creativecommons.org/publicdomain/zero/1.0/

XML dumps fromApril 4, 2019. 

Available here.

We remove tokens that are capitalized or contain less than 4 UTF-8 encoded characters, allowing us to remove bias against Wikipedia, which traditionally contains a large quantity of proper nouns and acronyms.

http://aspell.net/

https://github.com/allenai/bilm-tf/issues/135

https://github.com/CoNLL-UD-2018/UDPipe-Future

https://universaldependencies.org

http://scripta.kotus.fi/visk

Their comments on the matter can be found on https://github.com/allenai/bilm-tf/issues/ 135.

Contributions: I annotated 5 subcorpora for OSCAR

2019, and 2 subcorpora for ParaCrawl 7.1. I also facilitated the access to the OSCAR samples, helped with statistics about the OSCAR corpus specially when they involved operations over the entire corpus. Finally, I actively participated in the writing of the scientific article.[START_REF]1 Comparison of parallel and monolingual corpora extracted from web documents, including their downstream evaluation tasks[END_REF] Annotations are available for download (last accessed: 12 Oct 2021).

This surprisingly high number comes in part because there are many closely related languages, e.g. one person may be proficient enough to rate many different Slavic or Turkic languages even if only one is their native language.

Some languages had fewer than 100 sentences.

Correct Codes C: Correct translation, any Combined label for CC, CB, CS CC: Correct translation, natural sentence en The Constitution of South Africa nso Molaotheo wa Rephabliki ya Afrika Borwa en Transforming your swimming pool into a pond de Umbau Ihres Swimmingpools zum Teich CB: Correct translation, Boilerplate or low quality en Reference number: 13634 ln Motango ya référence: 13634 en Latest Smell Stop Articles fil Pinakabagong mga Artikulo Smell Stop CS: Correct translation, Short en movies, dad it cinema, papà en Halloween -without me ay Hallowen -janiw nayampejj Error Codes X: Incorrect translation, but both correct languages en A map of the arrondissements of Paris kg Paris kele mbanza ya kimfumu ya Fwalansa. en Ask a question tr Soru sor Kullanıma göre seçim WL: Source OR target wrong language, but both still linguistic content en The ISO3 language code is zho zza Táim eadra bracach mar bhionns na frogannaidhe. en Der Werwolf -sprach der gute Mann, de des Weswolfs, Genitiv sodann, NL: Not a language: at least one of source and target are not linguistic content en EntryScan 4 _ tn TSA PM704 _ en organic peanut butter ckb ? ? ? ? ? ? ?Table6.1: Annotation codes for parallel data with sentence pair examples. The language code before each sentence indicates the language it is supposed to be in.Taxonomy In order to quantify errors, we developed a simple error taxonomy. Sentences and sentence pairs were annotated according to a simple rubric with error classes of Incorrect Translation (X, excluded for monolingual data), Wrong Language

This is a result of the language code used by the Alemannic Wikipedia and affects any corpus or tool that uses Wikipedia data without correcting for this, like FastText.

Kudos to Rebecca Knowles for this explanation.

https://iso639-3.sil.org/code/hbs

For the translation from English, BLEU scores are less comparable but the trend holds nonetheless, with values of (𝜌 = 0.32, 𝑝 = 0.14), (𝜌 = 0.74, 𝑝 = 0.000078), and (𝜌 = 0.80, 𝑝 = 0.0000087) respectively.

Contributions: I designed most of the experiments and comparisons to be made between the two pipelines, I downloaded and prepared Common Crawl for extraction and I actively participated in the writing of the scientific article.

https://oscar-corpus.com/post/oscar-2019/

https://huggingface.co/datasets/oscar

 

https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust-go.html

https://github.com/rayon-rs/rayon

https://oscar-corpus.com/post/oscar-v21-09/

Contributions: I devised the length based filter and the length based annotations, as well as the adult annotations based on a blocklist. I also came up with the method for document label language identification as well as the formalism presented in section 8.2. I proposed some of the comparisons we did between OSCAR versions. Finally, I actively participated in the writing of the scientific article.

Note that since FastText identifies one language by line, we always have 𝑚 ≤ 𝑛 for every document 𝒟.

Lu: Uppercase letter, Ll: Lowercase letter, Lt: Titlecase, Lm: Modifier, Lo: Other.

Mn: Nonspacing mark, Ms: Spacing mark, Me: Enclosing mark.

https://github.com/oscar-corpus/oscar-tools

Contributions: For the part of (Popa-Fabre et al.,

2020) presented here, I prepared and helped with the cleaning of the Wikipedia section of CaBeRnet, I also prepared and tokenized all the corpora for the descriptive comparison. For the part of(Ortiz Suárez et al., 2020a) presented here I devised a small part of the alignment script and did some manual corrections on the NER annotations of the FTB.

All the work on CaBeRnet was conducted prior to the existence of OSCAR 21.09 and OSCAR 22.01. As a result, all the mentions of OSCAR in this chapter refer to OSCAR 2019.

https://www.english-corpora.org/coca/

ORFEO corpus available at www.cocoon.huma-num.fr/exist/crdo/ ; Rhapsodie corpus at www. projet-rhapsodie.fr.

Corpus available at www.cnrtl.fr/corpus/estrepublicain/.

Script available at https://github.com/attardi/wikiextractor.97

This part of CaBeRnet corpus is still subject to License restrictions. However, this restricted amount of AFP news reports can reasonably fall in the public domain.

TALN proceedings corpus (about 2 million) builds on a subset of 586 scientific articles (from 2007 to 2013), namely TALN and RECITAL. Available at redac.univ-tlse2.fr/corpus/taln_en.html.

This data-set can be found at www.fb.ai/babi/.

www.gutenberg.org.

Based on the tagset available at https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/ data/french-tagset.html.

https://github.com/attardi/wikiextractor

https://universaldependencies.org

Apart from the systems we will present in the last part of this thesis, we are only aware of the entity-fishing NER (and NE linking) system developed by Patrice Lopez, a freely available yet unpublished system.

Note that the UD version of the FTB is freely downloadable, but does not include the original tokens or lemmas. Only people with access to the original FTB can restore this information, as required by the intellectual property status of the source text.

Contributions: For the part of(Grobol et al., 

2022) presented in this chapter, I just helped with the statistics presented in table10.1 and figure10.1. For the part(Gabay et al., 2022) presented here, I helped in the crawling of some of the Wikisource transcriptions and some transcriptions found online. For the subsection 10.2.3 I coded a script that allows to parse the corpus into a machine-readable format, find some common mistakes in annotations and generate the final split; I also made some manual corrections to the training corpus itself. 105

As noted by[START_REF] Gururangan | Don't stop pretraining: Adapt language models to domains and tasks[END_REF], pre-training on task specific data provides an additional boost, this would muddle our results, since our objective here is not so much task optimization as embeddings benchmarking.107

https://freem-corpora.github.io/corpora/max/

A text has been withdrawn: the Histoire d'un voyage faict en la terre du Brésil by Jean de Léry, the transcription being too faulty to be able to correctly annotate the document. 111

We do not offer a detailed description of the genres covered, these overlapping easily: poetry can be theological, political correspondence, etc.

https://github.com/google-research/bert/blob/master/README.md

More details at https://github.com/pytorch/fairseq/blob/master/examples/roberta/ README.glue.md.

UDPipe Future is available at https://github.com/CoNLL-UD-2018/UDPipe-Future, and the code for nested NER is available at https://github.com/ufal/acl2019_nested_ner.

https://universaldependencies.org.

https://deep-sequoia.inria.fr.

Speech transcript uncased that includes annotated disfluencies without punctuation. 121

XLM MLM-TLM is a lower-case model. Case is crucial for NER, therefore we do not report its low performance (84.37%)

We train our LARGE model with the CCNet corpus for practical reasons, mainly due to the fact that it was more readily available on the Facebook infrastructure we used to train CamemBERT. Given that BASE models reach similar performance when using OSCAR or CCNet as pretraining corpus (Appendix TableE.2), we expect an OSCAR LARGE model to reach comparable scores.

The OSCAR-4 GB model gets slightly better XNLI accuracy than the full. This might be due to the random seed used for pre-training, as each model is pre-trained only once.

Contributions: for the part of(Ortiz Suárez et al., 

2020a) presented here I pre-trained FrELMo and conducted all the experiments involving FrELMo and CamemBERT. For the part of popa-fabre-etal-2020-french presented here, I pre-trained all the ELMo models and conducted all the evaluations in downstream tasks. 129

https://github.com/kermitt2/grobid-ner#corpus-lemonde-ftb-french

Contributions: I made all the experiments for French and German involving the ELMo models and the LSTM-CRFs. Notably the runs 1 and

I also actively contributed to writing the scientific article.

available at: https://github.com/YoannDupont/SEM.

translates to: Markovian Tokenizer-Tagger (MTT).

Available at: https://github.com/ufal/acl2019_nested_ner.

Available at: https://github.com/allenai/bilm-tf.

Available at: https://oscar-corpus.com.

In particular, if we consider that it would not have given us a better ranking on any language.

Bertrade de Laon, also known as Berthe au Grand Pied was the mother of Charlemagne.

Contributions: I pre-trained D'AlemBERT and did all the experiments in downstream tasks as well as the fine-tuning of CamemBERT. I also actively participated in writing the scientific article.

https://github.com/LoicGrobol/zeldarose

https://github.com/flairNLP/flair

https://github.com/flairNLP/flair

We observe that SentencePiece tends to split OOV words by characters which might not be ideal for sequence-tagging tasks, specially for NER.159

https://oscar-corpus.com.

https://discord.com/invite/4JNg9FTar4.

https://twitter.com/oscarnlp.

https://huggingface.co/datasets/oscar.

https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-1080-ti/specifications

https://ark.intel.com/content/www/us/en/ark/products/120473/ intel-xeon-gold-5118-processor-16-5m-cache-2-30-ghz.html

https://ark.intel.com/content/www/us/en/ark/products/92981/ intel-xeon-processor-e5-2630-v4-25m-cache-2-20-ghz.html 

https://www.rte-france.com/fr/eco2mix/eco2mix-co2

https://github.com/google-research/bert

The jw.org website seems to use correct BCP-47 extensions now, however, and entering a code such as "jw_dmr" redirects to "naq_x_dmr".

Preliminary experiments with larger batch sizes showed no significant improvement to compensate for the heavier computational load.

Rte -éCO 2 mix.

Nvidia Tesla V100 specification

Intel Xeon Gold 6248 specification

Intel Xeon Gold 6226 specification

Rte -éCO 2 mix.

Figure G.2: Entity types by text on a logarithmic scale.
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Code ¶ Tags Code ¶ Tags Code ¶ Tags ⋮ Code ¶ Tags Files Classified by Language F BERTrade F.1 Collecting the Data

The following data can be downloaded directly from their website: • Chartes de l'Aube: https://sites.google.com/site/achimstein/research/resources Extract raw text from XML files: <body>, then <s>, then <word>. • Geste: https://github.com/Jean-Baptiste-Camps/Geste Raw text is available under /txt/norm/. • OpenMedFr: https://github.com/OpenMedFr/texts Remove the header of each file (until *** START), its last line (*** END), paragraph breaks (#|) and folios or pages numbers. Special permissions are required to access and use these sources: • AND: https://anglo-norman.net/project-members • BFM: http://bfm.ens-lyon.fr/spip.php?article19 Raw text is available. • Chartes Douai: https://www.rose.uzh.ch/docling • MCVF: http://www.voies.uottawa.ca • NCA: https://sites.google.com/site/achimstein/research/resources Extract raw text from the XML files: <body> then <txm:form>.

D Towards a Cleaner

Document-Oriented Annotated OSCAR Corpus

D.1 Carbon Footprint

We use a single machine having 192 GB of RAM and two Intel Xeon Gold 5218 processors, which is rated at 125 W, 1 . For the DRAM we can use the work of [START_REF] Desrochers | A validation of dram rapl power measurements[END_REF] to estimate the total power draw of 192GB of RAM at around 20W. The total power draw of this setting adds up to around 270 W.

Having this information, we can now use the formula proposed by [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF] in order to compute the total power required to pre-train one model from scratch:

𝑝 𝑡 = 1.58𝑡(𝑐𝑝 𝑐 + 𝑝 𝑟 ) 1000 Where 𝑐 is the number of CPUs, 𝑝 𝑐 is the average power draw (in Watts) from all CPU sockets and 𝑝 𝑟 the average power draw from all DRAM sockets. We estimate the total power consumption by adding CPU and DRAM consumption, and then multiplying by the Power Usage Effectiveness (PUE), which accounts for the additional energy required to support the compute infrastructure. We use a PUE coefficient of 1.58, the 2018 global average for data centers [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF]. The total time to generate OSCAR 22.01 in this infrastructure was of 42.6 hours. We use this information to compute the total power consumption of the OSCAR generation, which amounts to 0.4266 kWh.

We can further estimate the CO 2 emissions in kilograms of the OSCAR generation by multiplying the total power consumption by the average CO 2 emissions per kWh in our region which were 38.64g/kWh in average between the 3rd and the 5th of January 2022 2 , the exact time at which the generation was run. Thus the total CO 2 emissions in kg for one single model can be computed as:

CO 2 e = 0.03864𝑝 𝑡 Thus total CO 2 emissions amount to 0.01648kg or 16.48g. Pre-train: We use a cluster of 4 machines each one having 8 GPU Nvidia Tesla V100 SXM2 32 GiB, 384 GiB of RAM, and two Intel Xeon Gold 6226 processors. One Nvidia Tesla V100 card is rated at around 300 W, 2 while the Xeon Gold 6226 processor is rated at 125 W, 3 . For the DRAM we can use the work of [START_REF] Desrochers | A validation of dram rapl power measurements[END_REF] to estimate the total power draw of 384 GiB of RAM at around 39 W. The total power draw of this setting adds up to around 10 756 W. We train 11 different models in this configuration.

Post-train: We use a single machine having 4 GPU Nvidia Tesla V100 SXM2 32 GiB, 192 GiB of RAM and two Intel Xeon Gold 6248 processors. The Xeon Gold 6248 processor is rated at 150 W, 4 , and the DRAM total power draw can be estimated at around 20 W. The total power draw of this setting adds up to around 1520 W. We train 4 different models in this configuration.

Having this information, we can now use the formula proposed by [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF] in order to compute the total power required for each setting:

1000 Where 𝑐 and 𝑔 are the number of CPUs and GPUs respectively, 𝑝 𝑐 is the average power draw (in W) from all CPU sockets, 𝑝 𝑟 the average power draw from all DRAM sockets, and 𝑝 𝑔 the average power draw of a single GPU. We estimate the total power consumption by adding GPU, CPU and DRAM consumption, and then multiplying by the Power Usage Effectiveness (PUE), which accounts for the additional energy required to support the compute infrastructure. We use a PUE coefficient of 1.58, the 2018 global average for data centers [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF]. In table F.1 we report the training times in hours, as well as the total power draw (in Watts) of the system used to train the models. We use this information to compute the total power consumption of each setting, also reported in table F.1.

We can further estimate the CO 2 emissions in kilograms of each single model by multiplying the total power consumption by the average CO 2 emissions per kWh in In light of recent interest concerning the energy consumption and carbon emission of machine learning models and specifically of those of language models [START_REF] Schwartz | Green ai[END_REF][START_REF] Bender | On the dangers of stochastic parrots: Can language models be too big?[END_REF], we have decided to report the power consumption and carbon footprint of all our experiments following the approach of [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF]. We report the energy consumption and carbon emissions of both the pretraining of D'AlemBERT and its evaluation.

Pre-training: We use a cluster of 32 machines, each one having 4 GPU Nvidia Tesla V100 SXM2 32GiB, 192GiB of RAM, and two Intel Xeon Gold 6248 processors. One Nvidia Tesla V100 card is rated at around 300W, 1 while the Xeon Gold 6248 processor is rated at 150W. 2 For the DRAM we can use the work of [START_REF] Desrochers | A validation of dram rapl power measurements[END_REF] to estimate the total power draw of 192GiB of RAM at around 20W. Thus, the total power draw of the pre-training adds up to around 48640W.

Evaluation: We use a single machine with a single GPU Nvidia Tesla V100 SXM2 32GiB, 384GiB of RAM and two Intel Xeon Gold 6226 processors. The Xeon Gold 6226 processor is rated at 125 W, 3 and the DRAM total power draw can be estimated at around 39W. Therefore, the total power draw of the evaluation adds up to around 589W.

With this information, we use the formula proposed by [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF] to compute the total power required for each setting:

1000 Where 𝑐 and 𝑔 are the number of CPUs and GPUs respectively, 𝑝 𝑐 is the average power draw (in W) from all CPU sockets, 𝑝 𝑟 the average power draw from all DRAM sockets and 𝑝 𝑔 the average power draw of a single GPU. We estimate the total power consumption by adding GPU, CPU and DRAM consumption, and then multiplying by the Power Usage Effectiveness (PUE), which accounts for the additional energy required to support the compute infrastructure. We use a PUE coefficient of 1.58, the 2018 global average for data centers [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF]. In Table G.1 we report the training times in hours, as well as the total power draw (in Watts) of the system used to train the models. We use this information to compute the total power consumption of each setting, also reported in Table G.1.

We can further estimate the CO 2 emissions in kilograms of each single model by multiplying the total power consumption by the average CO 2 emissions per kWh in our region, which were around 30g/kWh between the 30 th and the 31 st of December, 4 when the models were trained. Thus the total CO 2 emissions in kg for one single model can be computed as:

CO 2 e = 0.030𝑝 𝑡 All emissions are also reported in Table G.1.

G.2 Detail Results of Experiments in NER by Entity Type

Here we show the results of each of the trained NER models by entity type.

G.3 Entity Distribution by Text in NER Data

The following diagrams show the detail of the coarse entity distribution by text in FreEM NER . 
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A Data-driven Approach to Natural Language Processing for Contemporary and Historical French

In recent years, neural methods for Natural Language Processing (NLP) have consistently and repeatedly improved the state of the art in a wide variety of NLP tasks. One of the main contributing reasons for this steady improvement is the increased use of transfer learning techniques. These methods consist in taking a pre-trained model and reusing it, with little to no further training, to solve other tasks. Even though these models have clear advantages, their main drawback is the amount of data that is needed to pre-train them. The lack of availability of large-scale data previously hindered the development of such models for contemporary French, and even more so for its historical states.

In this thesis, we focus on developing corpora for the pre-training of these transfer learning architectures. This approach proves to be extremely effective, as we are able to establish a new state of the art for a wide range of tasks in NLP for contemporary, medieval and early modern French as well as for six other contemporary languages. Furthermore, we are able to determine, not only that these models are extremely sensitive to pre-training data quality, heterogeneity and balance, but we also show that these three features are better predictors of the pre-trained models' performance in downstream tasks than the pre-training data size itself. In fact, we determine that the importance of the pre-training dataset size was largely overestimated, as we are able to repeatedly show that such models can be pre-trained with corpora of a modest size.