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Abstract

Modern computing platforms for embedded systems are evolving towards
heterogeneous architectures comprising different types of processing elements
and accelerators. Such an evolution is driven by the steady increasing compu-
tational demand required by modern cyber-physical systems. These systems
need to acquire large amounts of data from multiple sensors and process them
for performing the required control and monitoring tasks. These requirements
translate into the need to execute complex computing workloads such as
machine learning, encryption, and advanced signal processing algorithms,
within the timing constraints imposed by the physical world. Heterogeneous
systems can meet this computational demand with a high level of energy
efficiency by distributing the computational workload among the different
processing elements.

This thesis contributes to the development of system support for real-time
systems on heterogeneous platforms by presenting novel methodologies and
techniques for enabling predictable hardware acceleration on SoC-FPGA
platforms. The first part of this thesis presents a framework designed for sup-
porting the development of real-time applications on SoC-FPGAs, leveraging
hardware acceleration and logic resource “virtualization” through dynamic
partial reconfiguration. The proposed framework is based on a device model
that matches the capabilities of modern SoC-FPGA devices, and it is centered
around a custom scheduling infrastructure designed to guarantee bounded
response times. This characteristic is crucial for making dynamic hardware
acceleration viable for safety-critical applications. The second part of this
thesis presents a full implementation of the proposed framework on Linux.
Such implementation allows developing predictable applications leveraging
the large number of software systems available on GNU/Linux while rely-
ing on dynamic FPGA-based hardware acceleration for performing heavy
computations. Finally, the last part of this thesis introduces a reservation
mechanism for the AMBA AXI bus aimed at improving the predictability of
hardware accelerators by regulating BUS contention through a bandwidth
reservation mechanism.
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Riassunto

Le moderne architetture di calcolo per sistemi integrati sono in via di
evoluzione verso piattaforme sempre più eterogenee, comprendenti diverse
tipologie di processori e acceleratori. Tale evoluzione è guidata dalla necessità
di soddisfare la crescente richiesta di capacità di calcolo da parte dai moderni
sistemi cyber-fisici. Questi sistemi hanno la necessità di acquisire e processare
grandi quantità di dati, provenienti da differenti sensori, in modo da poter
eseguire le necessarie operazioni di controllo e supervisione. Tali requisiti si
traducono nella necessità di eseguire carichi computazionali complessi quali
algoritmi per l’apprendimento automatico, l’elaborazione numerica dei segnali
e la crittografia, nel rispetto dei vincoli temporali imposti dall’interazione con
il mondo fisico. Le piattaforme eterogenee consentono di soddisfare questa
domanda di calcolo distribuendo il carico di lavoro di calcolo tra i diversi
processori e acceleratori, mantenendo quindi un elevato livello di efficienza
energetica.

Questa tesi contribuisce allo sviluppo del supporto per i sistemi in tempo
reale su le piattaforme eterogenee, presentando un insieme di tecniche e
metodologie per rendere predicibile l’accelerazione hardware su piattaforme
SoC-FPGA. La prima parte di questa tesi presenta un framework progettato
per supportare lo sviluppo di applicazioni in tempo reale su piattaforme
SoC-FPGA, sfruttando l’accelerazione hardware e la riconfigurazione dinam-
ica parziale per «virtualizzare» le risorse logiche. Il framework è basato su
un device model che esprime le caratteristiche delle moderne piattaforme
SoC-FPGA, ed è strutturato intorno a un’infrastruttura di schedulazione
progettata per garantire tempi di risposta limitati. Questa caratteristica
è fondamentale per rendere l’accelerazione hardware dinamica utilizzabile
nel contesto dei sistemi critici. La seconda parte della tesi presenta un im-
plementazione completa del framework proposto su Linux. Grazie a questa
implementazione, è possibile sviluppare applicazioni predicibili in ambiente
GNU/Linux, sfruttando l’accelerazione dinamica basata su FPGA per es-
eguire le operazioni computazionalmente più pesanti, utilizzando al contempo
la grande quantità di software e librerie offerte dall’ambiente. Successiva-
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mente, l’ultima parte di questa tesi presenta un meccanismo di regolazione
della banda per il bus AMBA AXI concepito per migliorare la predicibilità
dell’accelerazione hardware sulle piattaforme eterogenee.



Résumé

Les architectures informatiques modernes pour les systèmes intégrés évolu-
ent vers des plateformes de plus en plus hétérogènes, comprenant différents
types de processeurs et d’accélérateurs. Cette évolution est entraînée par
la nécessité de répondre à la demande croissante de capacité de calcul par
les systèmes cyber-physiques modernes. Ces systèmes doivent acquérir et
traiter de grandes quantités de données, provenant de différents capteurs, afin
d’exécuter les tâches de contrôle et de surveillance nécessaires. Ces exigences
se traduisent par la nécessité d’exécuter des charges de calcul complexes telles
que des algorithmes d’apprentissage automatique, de traitement numérique
des signaux et de cryptographie, en respectant les contraintes de temps im-
posées par l’interaction avec le monde physique. Les plateformes hétérogènes
permettent de répondre à cette demande de calcul, en distribuant le travail
entre les différents processeurs et accélérateurs, ce qui permet de maintenir
un niveau élevé d’efficacité énergétique.

Cette thèse contribue au développement du support pour les systèmes
temps réels sur des plateformes hétérogènes, en présentant un ensemble de
techniques et de méthodologies pour rendre prévisible l’accélération matérielle
sur les plateformes SoC-FPGA. La première partie de cette thèse présente un
framework pour soutenir le développement d’applications en temps réel sur
les plateformes SoC-FPGA, en utilisant l’accélération matérielle et la recon-
figuration dynamique partielle pour « virtualiser » les ressources logiques. Le
framework est basé sur un device model qui exprime les caractéristiques des
plateformes SoC-FPGA modernes, et il est structuré autour d’une infrastruc-
ture d’ordonnancement conçue pour garantir des temps de réponse limités.
Cette caractéristique est fondamentale pour rendre l’accélération matérielle
dynamique viable dans le contexte des systèmes critiques. La deuxième partie
de la thèse présente une implémentation complète du framework proposé
sur Linux. Grâce à cette implémentation, il est possible de développer des
applications prévisibles dans l’environnement GNU/Linux, en profitant de
l’accélération dynamique basée sur FPGA pour exécuter les opérations de
calcul les plus intensifs, tout en utilisant la grande quantité de logiciels et de

4



bibliothèques offerts par l’environnement. Ensuite, la dernière partie de cette
thèse présente un mécanisme de régulation de la bande pour le bus AMBA
AXI conçu pour améliorer la prévisibilité de l’accélération matérielle sur les
plateformes hétérogènes.
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Chapter 1
Introduction

This chapter presents the motivations behind the development of this
thesis. First, an overview of traditional software-programmable architectures
like general-purpose processors and graphic processing units is presented,
showing their advantages and limitations. Then, the opportunity of using
FPGA platforms as computing devices for developing custom hardware
accelerators are discussed and confronted with the existing constraints. Later,
the advantages offered by modern heterogenous SoC-FPGAs are discussed,
describing how these platforms can be leveraged to combine the advantages
of traditional software-programmable architectures with the benefits offered
by reconfigurable FPGA-based acceleration. Finally, the challenges arising
from leveraging FPGA-based computing to accelerate real-time applications
are discussed, presenting the solution proposed in this thesis to address these
challenges.
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Chapter 1. Introduction

1.1 FPGA as computing devices

FPGA devices have been traditionally employed for the rapid prototyping
of digital logic and for low-volume applications whose limited production
numbers do not justify the manufacturing of dedicated application-specific
integrated circuits (ASIC) chips. However, recently, there has been a renewed
interest in FPGAs as platforms for implementing hardware accelerations. The
steady increase in the computational demand required by modern applications,
from cyber-physical systems to the cloud services, began to show the limits
of traditional general-purpose software-programmable architectures, such
as CPUs and current GPUs, in terms of energy efficiency. By leveraging
the FPGA programmable fabric, it is possible to deploy custom hardware
accelerators with datapaths tailored for the specific algorithms required by
the application. In this way, it is possible to support the execution of complex
computing workloads, such as machine learning algorithms and image/video
processing, within the timing and energy constraints imposed by physical
and performance requirements.

1.1.1 Software programmable devices

Traditional programmable general-processors are based on the Von Neu-
man architecture. In this computing paradigm, a processor constituted by a
control unit and one or more execution units. The processor is connected to a
memory containing both data and instructions. In the most simple case, the
execution unit comprises a single functional unit, the arithmetic logic unit
(ALU). In this architecture, the processor cyclically (i) fetches and decodes
the current instruction (pointed by a program counter register) from memory,
(ii) fetches the operands, (iii) processes them using the execution unit, (iv)
write the results to a register file or memory, and (v) update the program
counter. Although modern CPUs are remarkably complex devices, capable
of concurrently executing multiple instructions out of order using several
functional units, they are still conceptually based on this model architecture.
This main limitation of the Von Neuman architecture comes from the fact
that it is intrinsically limited by the rate at which instructions and data
can be retrieved and written from memory. Modern state-of-the-art CPUs
mitigate this issue in many ways, like using a Harvard architecture with
large separate caches for instructions and data or leveraging instruction-level
parallelism to execute multiple instructions simultaneously. However, this
fundamental limitation still exists, and many research and industrial efforts
are dedicated to finding efficient mitigation strategies.
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Chapter 1. Introduction

1.1.2 SIMD processing and GPUs

Many real-world computationally intensive applications, like video and
image processing, signal processing, etc. need to perform the same sequence of
operations over large sets of data. Hence, one possible and yet very successful
strategy to improve the performances of general-purpose processors has been
exploiting data parallelism by designing functional units capable of simul-
taneously performing the same operation on multiple data operands. This
paradigm is referred to as single instruction multiple data (SIMD) in Flynn’s
taxonomy. In this way, the fetch and decoding stages of a single instruction
correspond to many parallel operations on multiple data. Historically, the
SIMD paradigm has been first implemented in high-end vector processors.
Afterward, many vendors augmented their off-the-shelf general-purpose pro-
cessors with dedicated SIMD units accessible through dedicated instruction
set extensions. Finally, this paradigm has been adopted by modern general-
purpose GPU, which are essentially multicore architectures consisting of many
GPU cores. Internally, each GPU core has multiple SIMD lanes capable of
parallel data processing.

1.1.3 Instruction set architecture

Computer programmers can write programs relying on an abstract model
of the processor called instruction set architecture (ISA). The ISA is a detailed
functional specification of the processor describing how the instructions
operate on the registers or the memory, and other aspects of the processor’s
behaviors. The same ISA can be implemented in different ways depending
on the specific requirements in terms of performances, costs, and energy.
Concrete implementations of an ISA realized using digital logic are referred
to as microarchitectures. The ISA provides a compatibility layer that is a
fundamental abstraction in software computing. In fact, a program built
for an ISA can indeed run on all processors implementing the same ISA.
Current software-programmable processors, including CPUs and GPUs, are
programmed using the machine instructions specified by their ISAs. Hence,
their microarchitectures are designed to conform to the architectural model
detailed by the ISA. Such microarchitectures are thus centered around a
general-purpose programmable datapath built of functional units that can be
configured by the control unit according to a sequence of instructions.

1.1.4 FPGA as programmable computing devices

FPGAs are radically different computing devices with respect to software-
programmable processors in the sense that they do not rely on a predefined
microarchitecture or an ISA to be programmed. Instead, “programming”
an FPGA means designing the datapath itself that will be used to process
the data. The resulting design will be implemented as digital logic using
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Chapter 1. Introduction

the FPGA’s logic cells. In a certain sense, FPGAs are one level of abstrac-
tion below software-programmable processors providing the possibility to
design the computing microarchitecture itself, as illustrated in Figure 1.1.
An FPGA configuration does not contain a program, in the form of a se-
quence of instructions, but rather the set of state information required to
configure the programmable fabric to form the specified logic. This hardware-
programmability means that FPGAs can be used in very flexible ways. For
instance, an FPGA can be configured for implementing a custom hardware
accelerator designed with a processing datapath tailored for efficiently imple-
menting in hardware a specific algorithm. Still, it can also be configured to
form the logic of a software-programmable microarchitecture implementing
the ISA of a processor.

Hardware
microarchitecture

FPGA fabric

Programmable logic design

Software stack Software stack
(optional)

Hardware

Software-programmable
processor

FPGA

Software
ISA ISA (optional)

Figure 1.1: Comparison of the abstraction layers in a software-programmable
processor and in an FPGA-based system.

Figure 1.2 illustrates how the inference process for a deep artificial neural
network (a) can be performed considering different computing paradigms.
With a traditional general-purpose processor (b), the computations required
by each layer are executed sequentially. SIMD/vector units (c), like the
one present in GPU cores, can speed up the computation by performing
multiple operations in parallel, exploiting data parallelism. However, each
inference run still needs multiple cycles to be completed. By leveraging
the FPGA fabric, it possible to implement the inference process with a
custom architecture (d) in which the computations required by each layer
are performed by custom functional units (FU). With this approach, the
throughput of the interference process can be increased without the need for
ramping up the clock frequency.

Traditionally, this “hardware programming” has been carried out using
hardware description languages (HDL) like VHDL or Verilog, which are based
on a different paradigm with respect to software programming languages such
as C or Python. At a very high level, software programming languages allow
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Chapter 1. Introduction

describing an algorithm in terms of a sequence of statements that will be
sequentially executed by a processor or interpreted by an interpreter. On the
other hand, hardware description languages allow specifying sets of operations
that will be performed concurrently when the activation conditions are met,
eventually triggering other operations. This coding model allows the HDL
language synthesizer to transform an HDL description into a digital logic
implementation consisting of multiple independent entities (such as adder,
multiplexers, and flip-flops) that operate concurrently. Such a digital logic
implementation can then be mapped onto the logical primitives of an FPGA.

However, the inherent complexity of hardware design and debugging,
together with the lack of knowledge on hardware description languages among
software programmers, have traditionally relegated FPGA-based computing to
niche applications where the benefits outnumber the additional development
costs.

1.1.5 High-level sysnthesis

Many research and industrial efforts have been dedicated to bridging the
gap between software programming languages for general-purpose processors
and hardware programming languages. These efforts culminated in the
development of high-level synthesis (HLS) tools, which allow translating an
algorithmic description of a procedure into a hardware implementation [46].
The algorithmic description provided as an input to an HLS tool is typically
coded using standard software programming languages, such as C or C++,
extended with specific statements or compiler directives (pragmas) to optimize
the code for hardware implementation. These extensions are often crucial
for improving the HLS translation process helping the tool generating an
efficient hardware description. At the end of the translation process, HLS
tools typically generate a hardware implementation in the form of a register-
transfer level (RTL) description of a processing datapath controlled by a
control unit consisting of a set of finite-state machines.

HLS tools are crucial for enabling software programmers to access FPGA-
based computing and improving the productivity of digital hardware design
in general. Although hardware designs generated using current HLS tools
tend to be less efficient with respect to native HDL designs, the huge leaps
in productivity provided by a HLS-based design flow often offset these imple-
mentation inefficiencies.

1.1.6 FPGA-based hardware accelerators

As previously described, FPGAs are based on a hardware-programmable
fabric that can be configured to implement any kind of digital processing logic,
from software-programmable processors to dedicated hardware accelerators.
This thesis addresses the specific case in which an FPGA is used for acceler-
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Figure 1.2: Illustration of a deep neural network (a) inference process per-
formed using different computing paradigms. (b) traditional general-purpose
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Chapter 1. Introduction

ating real-time applications using custom hardware accelerators generated
using a HLS-based flow. Many real-time applications consist of cyclic and
sporadic activities. These activities often include i) a control logic portion,
typically implemented using conditional logic statements such as if–then–else
chains, and ii) computationally intensive portions that may present some
level of data-parallelism. These latter computationally intensive parts are
prone to be accelerated using some form of parallel computing hardware. In
modern systems, these sections are often accelerated using high-performance
programmable GPUs. Hence, these computationally intensive code sections
are implemented using sequences of compute kernels. These kernels are then
compiled for the specific GPU’s architecture and later submitted at run-time
to the GPU cores to be executed.

In modern design flows, compute kernels are coded using dedicated frame-
works such as OpenCL or CUDA, which are based on a programming model
that is somehow similar to the ones used in traditional software program-
ming. Moreover, the languages used for describing these kernels are based
on popular system programming languages such as C or C++. While this
approach is clearly convenient in terms of code productivity, it also comes
with its intrinsic limitations since GPUs are still software computing devices
with a programmable datapath. On the one hand, this software programma-
bility offers a crucial abstraction that allows these devices to be conveniently
programmed with a predefined instruction set. On the other hand, it comes
with its intrinsic limitations in terms of processing efficiency since, to be
general-purpose programmable, the architecture has to be oriented to a wide
range of computations rather than being tailored for a specific class of algo-
rithms. While software programming optimization techniques can mitigate
some of these structural constraints, they cannot circumvent fundamental
architectural limitations.

Conversely, by leveraging FPGA-based acceleration, it is possible to rule
out the limitations imposed by software-programmable architectures. The
FPGA programmable logic fabric allows implementing custom accelerators
with datapaths tailored for the specific code portions to be accelerated. These
accelerators do not need to implement a pre-existing ISA. Hence, they are
not architecturally constrained to a specific processing paradigm. As a result,
they can deliver high processing throughput while being energy-efficient. In
other words, by skipping the software-programmability abstraction layer,
it is possible to address the root limitations of traditional programmable
architectures. For instance, Figure 1.3 shows a simple application consisting
of two cyclic activities, A and B, making use of dedicated FPGA-based
hardware accelerators to speed up their computations. Each job of activity
A calls hardware accelerator A to speedup its computationally intensive
portions. Likewise, each job of activity B relies on hardware accelerator B to
speedup its computationally intensive portions.
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Figure 1.3: Illustration of a real-time application making use of FPGA-based
hardware acceleration.

1.1.7 Overheads and limitations of HW-programmability

While FPGA’s hardware-programmability offers unique flexibility, it
also comes at a cost. When compared to a standard-cell implementation,
configurable logic cells and routing resources introduces significant overhead
in terms of area requirements. Considering the same digital logic circuit, an
FPGA implementation would require, on average, 20 times more silicon area,
and it would result in 3 to 4 times slower in terms of clock cycles compared to a
standard-cells ASIC implementation [38]. Moreover, FPGA implementations
consume more dynamic power with respect to ASIC implementations. While
the exact measure of this gap depends on the current technological node,
it is very like that this overhead will continue to be present even for future
generations of FPGA fabric. Nevertheless, modern FPGA tries to bridge
this gap using special-purpose logic cells that can improve the efficiency by
hardwiring selected primitive functions directly on silicon (hard blocks).

1.2 Predictability of hardware accelerators

One of the most fundamental properties that real-time systems should
have is predictability. In order to be predictable, a system must be itself
composed of predictable and well-documented components that do not present
unexpected behaviors. When a system is predictable, it becomes feasible to
derive a response time analysis providing worst-case response time bounds
of the system’s activities. On the contrary, if the system includes black-
box components, documented only with limited and vague information, it
can become very challenging or even impossible to derive reasonable worst-
case response time bounds. In the context of cyber-physical systems, these
response-time bounds are crucial for guaranteeing that the system can safely
operate within the timing constraints imposed by the physical environment.

In this respect, the adoption of GPU-based accelerations for real-time
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systems may pose some serious concerns. Currently, only minimal and neb-
ulous information on the internal architecture and resource management
logic is publicly available for state-the-art GPUs. Moreover, modern GPUs
are usually programmed using very complex software stacks, often including
proprietary software components. These software stacks add another layer of
uncertainty, which further complicates the development of a realistic system
model required to derive safe worst-case response time bounds. On the con-
trary, FPGA-based hardware accelerators are intrinsically more open, offering
the possibility to simulate and even describe their internal architectures at
clock-level granularity. Hence, FPGA-based accelerators can be modeled with
higher precision, providing the system designer with accurate estimations
of the worst-case response times [19, 51]. These characteristics have made
FPGA-based acceleration attractive in several safety-critical domains such as
signal processing, machine learning algorithms, convolutional neural networks,
and many other computationally-intensive applications [31, 34, 72].

Another benefit of FPGA acceleration emerges when considering that
practical hardware accelerators need to access shared resources such as the
system bus for exchanging data with the rest of the system. Typically, FPGA-
based hardware accelerators are connected to the remainder of the system
through an interconnect bus. Such a interconnect represents a contention
point since it is concurrently accessed by the accelerators for reaching the
data allocated in the main system memory. In this respect, the FPGA-based
approach to hardware acceleration provides some advantages since portions
of the interconnect itself are implemented on the programmable FPGA fabric.
Hence, they can be customized by attaching dedicated bus modules such as
bandwidth regulators or even replaced with custom interconnects modules
implementing the desired arbitration policy.

1.3 Heterogenous SoC-FPGAs

As previously discussed, many real-time applications consist of cyclic
and sporadic activities comprising control logic portions often interleaved
with computationally intensive portions. On the one hand, computationally
intensive portions usually present some form of data-parallelism that can be
exploited using parallel hardware. On the other hand, control logic portions
comprise conditional statements that present control and data dependencies.
These statements need to be evaluated sequentially and hence are not suitable
for parallel execution. For this reason, control sections are prone to be coded
as software processes to be executed on a general-purpose processor.

This kind of real-time application can be implemented on traditional
FPGA chips leveraging the versatility of the programmable fabric. Software
activities can be executed on a soft-core processor, which is a general-purpose
software-programmable processor implemented using the FPGA fabric logic
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cells. At the same time, the computationally intensive section can be coded
and designed as custom hardware accelerators managed by the soft-core
processor. However, this type of implementation has its intrinsic drawbacks.
Soft-cores provides significantly worse performances when compared to hard
processors implemented directly on silicon. In recent years, SoC-FPGAs
platforms have emerged as an attempt to tackle this limitation by leverag-
ing the hardware-programmability of the FPGA fabric while retaining the
advantages of traditional general-programmable processors.

SoC-FPGAs are heterogeneous platforms comprising a system-on-chip
device tightly coupled with FPGA hardware-programmable fabric, as shown
in Figure 1.4. The SoC side typically includes traditional SoC functional
components such as i) one or more general-purpose cores, ii) a memory
controller, iii) a set of internal peripherals providing I/O capabilities, and
iv) an interconnect connecting all components. SoC-FPGAs are extendable
devices in the sense that the FPGA fabric can be used to implement additional
hardware modules for extending the functionalities of the SoC. In modern
Xilinx’s SoC-FPGA, the SoC part of the device is called the processing
system (PS), while the FPGA side is referred to as programmable logic
(PL). In Intel (previously Altera) devices, the SoC side is referred to as hard
processor system (HPS). The general-purpose hard processor cores included
in the SoC side offers a huge performance improvement with respect to soft-
cores. Moreover, they can be used without consuming valuable programmable
resources of the FPGA fabric for implementing a soft-core.

Real-time applications can be efficiently deployed on these SoC-FPGA
heterogeneous platforms by executing the control logic portion on the general-
purpose hard cores while implementing the computationally intensive portions
as hardware accelerators deployed on the FPGA.

1.4 Reconfigurable hardware

The vast majority of modern FPGAs and SoC-FPGAs support dynamic
partial reconfiguration (DPR). This feature allows reconfiguring at run-time a
subset of the FPGA’s logic resources while the remaining resources continue to
operate without being interrupted. By leveraging DPR, it is possible to share
one or more portions of FPGA fabric between multiple hardware modules in
time-multiplexing. This capability is especially interesting when considering
that real-time applications typically consist of periodic or sporadic activities.
In this context, implementing the computationally intensive portions of the
activities as statistically allocated hardware accelerators can result in an
underutilization of the FPGA fabric since logic resources may idling most
of the time. However, by leveraging DPR, it is possible to reconfigure the
fabric on the fly, implementing the required hardware accelerators only when
they are actually needed by a software activity for performing the necessary
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Figure 1.4: Block diagram of a SoC-FPGA platform.

computations.
From a real-time systems perspective, this scenario opens an entirely new

scheduling dimension for applications on FPGA platforms. The traditional
concept of multitasking can be extended to hardware activities in the form
of hardware accelerators. Similarly to software multitasking, where multiple
tasks share the processors by switching contexts, DPR allows interleaving
multiple hardware activities on the FPGA fabric. In this way, it is possible to
improve logic resource utilization. Moreover, similarly to the abstraction of a
virtual processor, DPR can be used to provide the abstraction of a “virtual
FPGA capable” of hosting more hardware activities than what is statically
possible within its physical resources.

While this paradigm presents many opportunities, it also poses multiple
open issues. Some of these queries arise from current FPGA’s architectural
limitations, such as the limited reconfiguration rate and the impossibility
of reconfiguring more than one portion of FPGA at a time. Some others
are more fundamental such as which kind of scheduling policy is suitable for
managing the reconfiguration and the execution of the hardware accelerators
on FPGA. Moreover, the contention costs of concurrent accesses to shared
resources such as system bus must be considered, and the accesses must be
supervised with a suitable mechanism for preventing overruns.

This thesis addresses these issues by presenting a novel approach for
supporting the development and execution of real-time applications on SoC-
FPGA platforms. First, Chapter 2 proposes an essential background on the
enabling technologies used in this thesis. Then, Chapter 3 presents a frame-
work designed for supporting predictable hardware acceleration of real-time
applications using dynamic partial reconfiguration to “virtualize” the FPGA
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fabric resources. With this approach, it is possible to host more hardware
accelerators in time-sharing than could otherwise be statically allocated on
the physical fabric. Later, Chapter 4 proposes a full implementation of the
proposed framework on GNU/Linux, which allows leveraging the benefits of
FPGA-based predictable acceleration while relying on the available software
libraries and services available on a rich operating system. Finally, Chapter 5
introduces a bus bandwidth regulation and reservation mechanism aimed at
enhancing system safety and predictability by regulating the access to shared
resources.
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Essential background

This chapter presents an essential background on the enabling technolo-
gies behind heterogenous SoC-FPGAs that are the reference platforms used
for the development of this thesis. First, FPGA devices are introduced as
reconfigurable platforms for implementing logic functions, and then their
internal structure is briefly discussed. Later, the design flow used for imple-
menting digital logic on the FPGA fabric is discussed. Finally, an overview
of the partial reconfiguration mechanism is presented.
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2.1 Overview of FPGAs architecture

FPGAs are integrated circuits designed to be configured after manufac-
turing for implementing arbitrary logic functions in hardware. In this sense,
they differ from ASICs, which are custom manufactured to implement a set
of specific functionalities fixed at design time. The process of customizing
the FPGA fabric for implementing a specific logic function is referred to as
device configuration. An FPGA configuration, unlike a CPU program, does
not specify a set of operations that will be interpreted and executed by the
FPGA, but rather contains the actual configuration data needed to set its
internal components for implementing the desired logic function in the form
of a digital circuit.

2.1.1 Internal architecture

In ASICs chips, logic functions are implemented by hard-wiring together
logic gates at manufacturing time. On FPGAs, by contrast, logic functions
are implemented by means of configurable logic cells. These configurable
logic elements are typically built around a look-up table (LUT).

Look-up tables

A n-inputs LUT is a logic circuit that can be configured to implement any
possible combinational logic function with n inputs and a single output. For
a LUT with n inputs, 2n configuration memory cells are needed to store the
truth table of the logic function to be implemented. Then, a 2n : 1 multiplexer
is used to route the state bit from one of the configuration memory cells to
the output according to the inputs values. Figure 2.1 illustrates a simplified
2-input look-up table implementing an AND gate.
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Figure 2.1: Illustration of a simplified 2-input look-up table.
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Configuration cells

At the physical level, configuration memory cells can be implemented
using different technologies. Depending on the need for constant power in
order to retain data, these technologies be classified into two main categories
(i) volatile storage technologies, like static RAM (SRAM) cells, and (ii) non-
volatile storage technologies like flash memory or antifuse cells. Leading
FPGA manufacturers, like Xilinx and Intel (previously Altera), use SRAM-
based configuration memory cells, since this technology provides high logic
densities. Moreover, unlike flash memory, SRAM cells do not wear out while
being written. This characteristic is crucial in the context of this thesis since
with the proposed approach for FPGA-based hardware acceleration the fabric
needs to be continuously configured at run-time. Hence, this work considers
only FPGAs with SRAM-based configuration memory.

Logic cells

Elementary logic cells are built combining one or more look-up tables
with flip-flops (FF) capable of storing a state. This allows logic cells to
implement sequential logic besides combinational logic. In modern state-of-
the-art implementations, logic cells are rather complex modules, including
several LUTs, FFs, multiplexers, arithmetic and carry chains, and shift
registers. In this way, complex logic functions can be implemented efficiently.
In Xilinx’s implementations, logic cells are referred to as configurable logic
blocks (CLB) [1, 70], while in Intel’s FPGAs they are referred to as logic
array block (LAB) [32]. These logic cells constitute the main logic resources
for implementing sequential and combinational logic functions.

Routing infrastructure and I/O blocks

In order to implement programmable computing fabric, logic cells are dis-
tributed in a regular 2D grid structure across the FPGA chip and connected
trough a programmable routing infrastructure that allows communications
between cells. The routing infrastructure is composed of switchable inter-
connects, which are typically implemented using multiplexers. In this way,
logic cells can be connected together, forming a configurable fabric that can
implement (given a sufficient amount of resources) any logic function. At
the edges of the 2D programmable fabric, special input/output cells, allows
connecting the logic cells to the outside world, providing the device with
essential input and output capabilities.

Special-purpose cells

While a homogeneous fabric composed of logic cells could, in principle,
implement any function, such an implementation would probably be rather
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inefficient. In fact, many real-word algorithms require memory storage
resources and often need to perform standard arithmetic operations. By
implementing these kinds of resources as specialized hard cells, large classes
of algorithms can be implemented more efficiently, minimizing the logic
resources consumption. For this reason, the fabric of modern state-of-the-art
FPGA is a heterogeneous structure in which arrays of logic cells are interleaved
with arrays of arithmetic accelerator cells and dense on-chip random access
memory cells. In Xilinx’s UltraScale+ FPGA fabric, arithmetic accelerators
cells are called digital signal processing (DSPs) blocks, while on-chip dense
memory cells are called block RAM (BRAMs). Selected versions of the fabric
may also include another type of memory cells, called UltraRAM, which allows
even denser memory storage at the cost of a slower access rate. Depending
on the specific version, the FPGA fabric may even include other types of
special-purpose cells, like analog-to-digital converters, hi-speed transceivers,
video encoders/decoders.

Figure 2.2 illustrates a schematization of the configurable logic fabric
available on modern FPGA. Rows of logic blocks (LCs) are distributed across
the FPGA chip interleaved by rows of specialized memory cells (MCs), and
arithmetic/DSP cells (ACs). The cells are interconnected through a pro-
grammable routing infrastructure. Specialized I/O cells provide input/output
capabilities.

LCMC ACLC LCI/O I/O

LCMC ACLC LCI/O I/O

LCMC ACLC LCI/O I/O

LCMC ACLC LCI/O I/O

LCMC ACLC LCI/O I/O

I/OI/OI/OI/OI/O

I/OI/OI/OI/OI/O

Figure 2.2: Schematization of the configurable logic fabric available on modern
FPGA. Logic blocks (LCs) are distributed across the FPGA chip interleaved
by rows of specialized memory cells (MCs), and arithmetic/DSP cells (ACs).
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2.2 Design flow

A typical FPGA design flow can be summarized in two main steps (i)
a design phase and (ii) a synthesis and implementation phase. The design
phase consists of integrating a collection of logic entities into a system design.
These entities could be first-party intellectual properties (IPs), created by the
designer, or library IPs supplied directly by the FPGA vendor or provided
by a third-party. In modern design flows, the designer can create its own
IPs using a large variety of languages and tools, providing different levels
of abstractions. On the one hand, hardware design experts can directly
code IPs using low-level hardware description languages such as VHDL or
Verilog, retaining full control over the generated hardware. On the other
hand, software-oriented programmers can leverage HLS tools, which allows
generating an RTL implementation staring form an algorithmic description
coded using popular programming languages such as C or C++. Moreover,
it is also possible to use model-based design tools, which allow creating IPs
using automatic RTL code generation.

Once the design phase is complete, the resulting design comprising a
collection of IPs in the form of HDL entities can be built through the synthesis
and implementation phases. In the synthesis phase, the HDL design entities
are translated into a set gate-level netlists describing the logic functions in
terms of registers and logic gates. In addition to the gate-level netlists, the
synthesis tool may also provide a netlist optimized for the specific target
device describing the logic functions in terms of primitive logic cells available
on the target architecture. Finally, the implementation phase maps the
output products of the synthesis phase onto the physical resources of the
FPGA. In the first step, the netlist gates are optimized and mapped to the
primitive logic cells of the target FPGA fabric. Then, these primitives are
placed on the physical FPGA fabric and routed, minimizing interconnections
wires distances. Finally, the resulting placed and mapped design is translated
into a binary file called bitstream.

2.3 FPGA configuration

Once the configuration bitstream has been generated, it can be trans-
ferred to the FPGA configuration memory through a configuration interface.
Modern SoC-FPGA platforms typically include both internal and external
configuration interfaces. External configuration interfaces allow configur-
ing the FPGA from a host device using standard connections such as the
JTAG interface. Conversely, internal configuration interfaces allow the FPGA
to autonomously reconfigure itself without the need for a host machine. In
SRAM-based FPGAs, the configuration memory is implemented using volatile
memory cells that do not retain the state when the power is removed. For

25



Chapter 2. Essential background

this reason, bitstreams are often stored in a companion non-volatile memory,
such as flash memory, connected with the FPGA. In this way, the FPGA can
perform a self-configuration during the system boot process.

2.3.1 Dynamic partial reconfiguration

Dynamic partial reconfiguration is the ability to dynamically reconfigure
a subset of logic cells included in the FPGA fabric while the remaining
cells continue to operate without interruption [37, 73]. A physical subset of
the FPGA fabric that can be dynamically reconfigured is referred to as a
reconfigurable partition. The physical fabric of the FPGA can be divided
into multiple reconfigurable partitions. Each partition is associated with a set
of reconfigurable modules, which are design entities (such as IPs) synthesized
and implemented for that partition. Each reconfigurable module typically
performs a different functionality, and it is implemented into a configuration
file called partial bitstream. A reconfigurable partition can host one of its
reconfigurable modules at a time. The remainder of the FPGA fabric, which
is not assigned to any reconfigurable partition, is referred to as the static
region.

The amount of time required for reconfiguring a partition depends on the
throughput of the FPGA’s reconfiguration interface and the size of the partial
bitstream. The size of a partial bitstream depends on the geometrical size
of the reconfigurable partition and the kind of logic resources encompassed.
Given a particular family of FPGAs, the throughput of the reconfiguration
interface is usually bounded to a maximum rate depending on the specific
fabric architecture. Hence, the reconfiguration time for a particular family
of FPGA can be modeled as a function of the bitstream size. Usually, the
reconfiguration time scales fairly linearly with the size of the partial bitstream
and thus can be modeled using a linear function.

2.4 On-chip interconnections

As described in Section 2.2, a system design consists of a set of logic entities
interconnected among them. These entities need to be connected among
them to exchange data and control signals. In modern design flows, these
entities are IP modules integrated and connect using an on-chip interconnect.
The de-facto standard interface for on-chip interconnections in SoC-FPGA is
the ARM Advanced Microcontroller Bus Architecture Advanced eXtensible
Interface (AMBA AXI). The AXI standard defines a master-slave interface
allowing simultaneous, bi-directional data exchange. The purpose of the AXI
standard is to facilitate the development of complex FPGA designs with
large numbers of components promoting the portability of IP cores. In the
context of this thesis, AXI is the standard utilized for the development of the
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framework proposed in Chapter 3, and the bandwidth reservation mechanism
described in Chapter 5.
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Chapter 3
The FRED framework

This chapter presents FRED, a framework for supporting predictable
hardware acceleration of real-time applications using dynamic partial recon-
figuration. FRED leverage dynamic partial reconfiguration for hosting in
time-sharing a larger number of hardware accelerators than could otherwise
be statically allocated on the physical fabric. The FRED framework is based
on a platform model which is used to derive a response-time analysis for
verifying the schedulability of a real-time task set under given constraints
and assumptions. Although the proposed framework is based on a generic
platform model, it has been conceived to account for several real-world con-
straints present on contemporary platforms. FRED has been prototyped
on the Zynq SoC, showing that it can be supported by current SoC-FPGA
platforms.
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3.1 Platform model

FRED considers a heterogeneous computing platforms consisting of one or
more general-purpose processors coupled with a dynamically reconfigurable
FPGA. Both sides of the platforms, the general-purpose processors and the
FPGA, have access to a shared memoryM as illustrated in Figure 3.1. The
FPGA fabric contains b logic blocks, which represents an abstraction of the
specific physical cells available on the fabric. The FPGA fabric is statically
partitioned into a set of nP partitions P = {P1, ..., PnP }, where each partition
Pk is composed of bk logic blocks, with

∑nP
k=1 bk ≤ b. Logic blocks are not

shared between partitions. Each partition Pk is further split into nSk slots of
bSk logic blocks, such that ∀Pk ∈ P, nSk · bSk ≤ bk. Logic blocks are not shared
among the slots.
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Figure 3.1: FRED platform model.

3.2 Application model

A FRED application consists of two kinds of computational activities, (i)
software tasks (SW-tasks), and (ii) hardware tasks (HW-tasks). SW-tasks
are conventional software activities running on one of the general-purpose
processors, while HW-tasks are instances of hardware accelerators designed
to be configured and executed on the FPGA fabric. SW-tasks can speedup
parts of their computation by requesting the execution of HW-tasks on the
FPGA fabric. More formally, a FRED application is composed by two sets
of activities; (i) a set of nS SW-tasks ΓS = {τ1, ..., τnS}, and (ii) a set of nH
HW-tasks ΓH = {τH1 , ..., τHnH

}.

3.2.1 Hardware task model

Each HW-task τHi ∈ ΓH is an instance of an hardware accelerator requiring
bi logic blocks and having a worst-case execution time (WCET) CHi . A HW-
task can execute only after being configured on one of the FPGA fabric’s
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slots.

3.2.2 Reconfiguration interface model

FRED assumes that the heterogeneous platform is equipped with an
FPGA reconfiguration interface (FRI), which can dynamically reconfigure a
slot at run-time forming a specific HW-task τHi . Each slot can accommodate
at most one HW-task [50, 9]. The FRI has been modeled to match the
capabilities and limitations of real-world platforms (such as [37, 73]). Hence,
it is assumed that:

1. the FRI can reconfigure a slot without affecting the execution of the
HW-tasks currently running in other slots;

2. no processor cycles are used for reconfiguring a slot (the few clock cycles
required for programming the FRI’s DMA [77] are not modeled at this
stage);

3. the FRI can reconfigure at most one slot at a time.

In order to reconfigure a given HW-task τHi into a slot, the FRI has to
reconfigure all its logic blocks, independently from the number bi of logic
blocks used by τHi . Each HW-task τHi can be reconfigured in any of the
slots belonging to a single partition. The partition hosting a HW-task τHi
is denoted as P (τHi ) and referred to as affinity. For all HW-tasks having
affinity P (τHi ) = Pk, it must be bi ≤ bSk .

The FRI is characterized by a throughput ρ, meaning that rSk = bSk /ρ
units of time are needed to reconfigure a slot of a given partition Pk. Hence,
the time ra needed to reconfigure a HW-task τHa such that P (τHa ) = Pk is
ra = rSk .

3.2.3 Software task model

Each SW-task τi ∈ ΓS can make use of the HW-tasks in ΓH to accelerate
its computations and is subject to timing constraints. In particular, each
SW-task τi

• uses a set H(τi) ⊆ ΓH of mi HW-tasks;

• alternates the execution of mi + 1 sub-tasks (also referred to as chunks)
with the execution of the mi HW-tasks in H(τi); thus, the execution of
a SW-task τi can be represented as a sequence

τi := 〈τi,1, τHa , τi,2, τHb , . . . , τi,mi+1〉,

where {τHa , τHb , . . .} ∈ H(τi) and τi,j is the j-th sub-task of τi. Whenever
the execution of a HW-task τHa is requested, the corresponding SW-
task self-suspends until the completion of τHa . The beginning of the
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1 sw_task(τi)
2 {
3 <...>
4 <prepare input data for τHa >
5 execute_hw_task(τHa );
6 <retrieve output data from τHa >
7 <...>
8 <prepare input data for τHb >
9 execute_hw_task(τHb );

10 <retrieve output data from τHb >
11 <...>
12 }

Listing 3.1: Pseudo-code of the implementation skeleton of a SW-task.

self-suspension phase coincides with the termination of the sub-task
that issued a request for a HW-task. In a dual manner, the completion
of a HW-task coincides with the release of the next sub-task.

• has a total WCET Ci, composed of the WCETs Ci,j of all its sub-tasks
τi,j ; that is, Ci =

∑m+1
j=1 Ci,j .

• is periodically (or sporadically) released with a period (or minimum
inter-arrival time)of Ti units of time, hence generating an infinite
sequence of execution instances (denoted as jobs);

• is subject to timing constraints; that is, each of its jobs must complete
its execution within a deadline Di relative to its activation time.

Each HW-task can be used by at most one SW-task, that is
⋂
τi∈ΓS H(τi) =

∅. Listing 3.1 reports the pseudo-code defining the body of a SW-task τi
using mi = 2 HW-tasks in the set H(τi) = {τHa , τHb }. The statement <...>
represents a SW-task’s generic code block containing a sequence of instructions
that will be executed on the general-purpose processor.

The SW-task illustrated in Listing 3.1 is described by the sequence
〈τi,1, τHa , τi,2, τHb , τi,3〉: the first sub-task τi,1 consists of lines 3-5, the second
sub-task τi,2 of lines 6-9 and the third sub-task τi,3 of lines 10-11. execute_-
hw_task(τHj ) is a blocking system call, which is in charge of (i) requesting the
execution of τHj and (ii) suspending the execution of τi until the completion
of τHj . Note that at line 4, τi,1 prepares the input data for τHa . Similarly, τi,2
retrieves the output data produced by τHa (line 6) and prepares the input
data for τHb (line 8).

Figure 3.2 illustrates a timeline showing the delays experienced by another
SW-task τi:=〈τi,1, τHa , τi,2〉 when requesting the execution of a HW-task τHa .

As visible in the figure, task τi is activated at time t0. At time t1, the first
sub-task τi,1 requests the execution of the HW-task τHa and self-suspends its
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Figure 3.2: Execution behavior of a SW-task calling a HW-task. The exe-
cute_hw_task call issue the execution request to the scheduler.

execution at time t2, where (t2 − t1) corresponds to the system overhead to
issue the request. This example assumes that all the slots of partition P (τHa )
are busy (i.e., currently occupied by other HW-tasks that are executing),
hence a delay ∆a is introduced from time t2 until time t3, at which one slot
of P (τHa ) becomes free. Once there is a free slot in P (τHa ), the HW-task can
be reconfigured, from time t3 to t4, using the FRI: such operation takes at
most ra units of time, where ra = bSk /ρ (being k the affinity of τHa ).

After the reconfiguration phase, τHa starts executing at time t4 on the
FPGA and completes at time t5 within CHa units of time. Then, the SW-task
is resumed and executes its second sub-task τi,2, which completes at time
t6. Note that τi is suspended for the interval [t2, t5], which is no longer than
S = ∆a + ra + CHa .

While the example presented above has a single SW-task, FRED considers
applications consisting of multiple SW-tasks and HW-tasks that contend
the resources available on the platform. Therefore, a SW-task τi can suffer
a temporal interference from the execution of other SW-tasks that, if not
properly managed, can determine the violation of its deadline Di. Such
interference also depends on the contention for the FPGA slots and the FRI
caused by the other HW-tasks. For these reasons, a scheduling infrastructure
is needed to support a set of concurrent HW-tasks and SW-tasks.

3.3 Scheduling infrastructure

In FRED, each SW-task τi is assigned a fixed priority of πi, also inherited
by all its sub-tasks. A SW-task is denoted as ready when (i) it has a pending
job (i.e., a job released but not yet completed) and (ii) it is not self-suspended
waiting for the completion of a HW-task. SW-tasks are assumed to be
scheduled according to a fixed-priority (FP) preemptive scheduling, so that,
at any point in time, the ready task with the highest priority is executed on
the processor.

Besides the processor, two other resources are contented by SW-tasks:
the slots in the FPGA partition (shared with other HW-tasks having the
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same affinity) and the FRI. Hence, multiple requests for such resources need
to be scheduled. The overall scheduling infrastructure managing the slots and
the FRI is based on a multi-level queue structure, illustrated in Figure 3.3.
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Figure 3.3: Scheduling infrastructure for HW-tasks requests in FRED.

The remainder of this section first describes the scheduling policies used
for each resource. Then, it presents the scheduling rules that apply to every
request for HW-tasks when traversing the multi-level queue structure of
Figure 3.3.

3.3.1 Slot scheduling

For the purpose of scheduling, each slot can be free or busy. In turn,
a busy slot can be active when there is a HW-task reconfigured on it that
is executing or reserved. A HW-task τHi with affinity P (τHi ) = Pk, that
is waiting for a free slot in partition Pk, is kept in a queue Qk managed
according to a first-in-first-out (FIFO) policy. Note that such a scheduling
policy guarantees a starvation-free progress mechanism. Moreover, it does
not require preempting the execution of HW-tasks, which is known to be a
challenging issue [45][24] leading to non-negligible run-time overheads.

3.3.2 FRI scheduling

Whenever there are x free slots into a given partition Pk, such x slots
are reserved for the first x HW-task requests waiting into Qk, which then
have to contend the FRI to reconfigure their corresponding HW-task. While
slots are shared only among the HW-tasks belonging to the same partition,
the FRI is a single resource contented by all the requests for HW-tasks in
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the application. HW-task requests contending the FRI are kept in a queue
denoted as QFRI .

In FRED, slot reconfiguration requests are managed according to a ticket-
based scheduling policy, which is described below and can be configured
to be executed either in a preemptive or non-preemptive mode. Please
note that HW-task execution is assumed to be non-preemptive to contain
the preemption overhead associated with FPGA configuration readback.
Hence, preemptive and non-preemptive policies are only related to the FPGA
reconfiguration phase through the FRI. When using a non-preemptive policy,
the reconfiguration phase cannot be interrupted. On the contrary, when using
a preemptive policy, the reconfiguration phase can be interrupted to serve
another reconfiguration request.

3.3.3 Ticket-based scheduling

The ticked-based scheduling policy is described by the following rules
that apply to both non-preemptive and preemptive management of the FRI:

R1 Each execution request Ra for an HW-task τHa is assigned a “ticket”
marked with the absolute time t(Ra) at which Ra has been issued.

R2 Every partition queue Qk and the FRI queue QFRI enqueues execution
requests for HW-tasks by increasing ticket time.

R3 When a request Ra for HW-task τHa is issued, Ra is inserted in the
partition queue Qk with Pk = P (τHa ).

R4 At any point in time t, for every partition queue Qk, the first ηk(t) ≥ 0
requests in Qk are removed from Qk and inserted in QFRI , where ηk(t)
is the number of free slots in Pk at time t. Contextually, these ηk(t)
slots become reserved (and hence busy).

R5 Once the HW-task τHa related to a request Ra has been reconfigured
onto a slot, Ra is removed from QFRI , that slot becomes active, and
τHa starts executing.

R6 When a HW-task τHa completes its execution, the corresponding slot
becomes free.

The following scheduling rules distinguish between non-preemptive and
preemptive management of the FRI. In the case of preemptive FRI scheduling,
the following rule holds:

R-P1 Whenever QFRI is not empty, the FRI reconfigure the HW-task related
to the first request in QFRI (i.e., the one having the earliest ticket
time).

For non-preemptive FRI scheduling the following rules hold:
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R-NP1 When the FRI is reconfiguring a HW-task it cannot be interrupted to
serve another request.

R-NP1 When the FRI completes a reconfiguration phase, or QFRI becomes
not empty, the FRI starts reconfiguring the HW-task related to the
first request in QFRI .

3.3.4 Scheduling example

Figure 3.4 shows an example of FRED preemptive FRI management
schedule for an FPGA module containing two partitions P1 and P2, each
consisting of a single slot.

Figure 3.4: Example of FRED scheduling with preemptive FRI.

The FRED application consists of three SW-tasks: τ1 = 〈τ1,1, τ
H
a , τ1,2, τ

H
b , τ1,3〉,

τ2 = 〈τ2,1, τ
H
c , τ2,2〉, and τ3 = 〈τ3,1, τ

H
d , τ3,2〉. The priority assignment is

such that π1 > π2 > π3. HW-tasks τHa and τHb share partition P1 (i.e.,
P (τHa ) = P (τHb ) = P1), whereas HW-tasks τHc and τHd share partition P2

(i.e., P (τHc ) = P (τHd ) = P2).
All the SW-tasks are synchronously released at time 0. Being the highest-

priority one, τ1 starts executing as first and at time t = 1 completes its
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sub-task τ1,1 by issuing a request Ra for HW-task τHa . Contextually, τ1

self-suspends its execution. According to Rule R3, Ra is inserted in the
partition queue Q1. Since partition P1 is empty, at time t = 1 there is a
free slot (η1(1) = 1); hence, according to Rule R4, Ra is moved to QFRI

and the slot of P1 becomes reserved. Moreover, according to Rule R-P1, the
FRI starts reconfiguring τHa . At time t = 5, τHa has been reconfigured and
according to Rule R5 it starts executing.

At time t = 1, τ2 starts executing being the highest-priority SW-task
ready. At time t = 2, τ2 concludes its sub-task τ2,1 by issuing a request
Rc for τHc . According to Rule R3, Rc is inserted in the partition queue Q2.
Since partition P2 is empty, at time t = 2 there is free slot (η2(2) = 1); hence,
according to Rule R4, Rc is moved to QFRI and the slot of P2 becomes
reserved. However, since Rc has a later ticket time than Ra, Rc is delayed
until τHa has been reconfigured (time t = 5). Then, τHc can be reconfigured
and be executed.

At time t = 2, τ3 is the highest-priority SW-task ready, thus it starts
executing until time t = 3, when it terminates its first sub-task τ3,1 by issuing
a request Rd for τHd . According to Rule R3, Rd is inserted in the partition
queue Q2. However, being the slot of P2 busy (specifically, reserved in [5,7]
and active in (7,11]), Rd waits in Q2 until time t = 11. At time t = 11, τHc
completes its execution, Rule R6 is applied and the slot of P2 becomes free.
According to Rule R4, Rd is moved to QFRI , the slot of P2 becomes again
busy (specifically, reserved) and τHd starts to be reconfigured.

Now, consider again τ1. At time 9, τHa is completed and hence the sub-
task τ1,2 can be released. At time 10, τ1,2 completes by issuing a request
Rb for HW-task τHb . By Rule R3 and Rule R4, Rb is inserted into QFRI .
Being QFRI empty, τHb starts to be reconfigured. However, as explained
above, at time t = 11, Rd (issued by τ3) is inserted into QFRI . Being
t(Rd) = 3 < t(Rb) = 10, according to Rule-R-P1 the reconfiguration of τHb
is preempted to reconfigure τHd until time t = 13. Hence in [11, 13) Rb is
delayed. Finally, note that the FRI queue is not managed in a pure FIFO
manner.

3.4 Communication between SW and HW-tasks

As stated in Section 3.2.3, SW-tasks make use of HW-tasks to accelerate
specific computations; that is, a SW-task offloads a computation by requesting
the execution of a HW-task on the FPGA and then retrieves the output of
such a computation to continue the execution on the processor. As shown
in Listing 3.1, the communication between a SW-task τi and a HW-task τHa
includes two phases:

(i) sub-task τi,j prepares the input data for τHa ;
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(ii) sub-task τi,j+1 retrieves the data produced by τHa .

It is worth observing that the approach used to enable communications
between SW-tasks and HW-tasks can affect the real-time performance of the
system by introducing different worst-case scenarios. For instance, suppose
that the output data produced by a HW-task are stored in its internal memory
area, and that phase (ii) comprises a copy from the local memory of the
HW-task to a memory area accessible by the SW-task. In such a case, the
HW-task must remain programmed onto the FPGA module until the sub-task
in charge of executing the phase (ii) will be executed. Otherwise, output
data would be lost.

Due to the scheduling delays suffered by SW-tasks, the actual time a
HW-task occupies a slot is hence dependent on SW-tasks’ execution behavior.
Longer slot occupation times increase the delays suffered by HW-tasks,
which in turn increase the delays suffered by SW-tasks by inflating their
suspension time when waiting for the completion of a HW-task. Such a
circular dependency can originate pathological scenarios that significantly
increase the worst-case response time of SW-tasks, thus making this approach
not attractive for a real-time system.

To overcome this problem, FRED adopts a different approach inspired
by the capabilities of state-of-the-art platforms, where the communication
between SW-tasks and HW-tasks is supported by allowing HW-tasks to
access the shared memory M directly through bus mastering. Hence, the
two communication phases are implemented as follows:

(i) sub-task τi,j prepares the input data for τHa in a memory area MIN
a

insideM, and τHa retrieves the input data by directly accessingMIN
a ;

(ii) τHa stores the output data into a memory areaMOUT
a insideM, and

τi,j+1 retrieves them directly fromMOUT
a , hence τHa can release its slot

as it finishes.

References (i.e., memory pointers) to bothMIN
a andMOUT

a are assumed to
be provided to the HW-task or known a priori. By adopting this solution,
the time τHa must hold a slot is totally decoupled from the scheduling delays
of SW-tasks and is always upper-bounded by the WCET CHa plus the slot
reconfiguration time ra.

Please note that this communication strategy is not limited to platforms
having a main memory shared between the processor and the FPGA, but it
can also be used in platforms where a dedicated memory is reserved for such a
communication. Indeed, the latter solution is more suitable for safety-critical
systems requiring a higher level of predictability.
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3.5 Response-time bounds

This section presents a summary of the FRED response-time analysis
reminding to [12] for a comprehensive description since it is beyond the scope
of this thesis. The FRED scheduling infrastructure presented in Section3.3
has been designed to ensure bounded response times by design. These
bounds can be derived using a sufficient response-time analysis based on
the response-time analysis for real-time fixed-segment self-suspending tasks
(SS-tasks) developed by Nelissen et al.’s [49]. The SS-task model is a generic
model for real-time computational activities where multiple execution phases
are alternated to self-suspension phases. Hence, the SS-task model matches
the execution behavior of the SW-tasks FRED precisely.

In a FRED application, each SW-task τi can be represented as a se-
quence τi:= 〈τi,1, τHa , τi,2, τHb , . . . , τi,mi+1〉, where {τHa , τHb , . . .} ∈ H(τi) and
τi,j is the j-th sub-task of τi. Each SW-task can be mapped to a seg-
mented self-suspending sporadic task τs characterized by mi + 1 computa-
tion segmens Cs,j separated by mi suspension intervals Ss,j such as τs :=
〈Cs,1, Ss,1, Cs,2, . . . , Ss,m, Cs,m+1〉 according to the following rules:

1. Cs,j = Ci,j , ∀j = 1, . . . ,mi + 1;

2. Ss,j = ra + CHa + ∆a, ∀j = 1, . . . ,mi, where τHa ∈ H(τi) : τi :=
〈. . . , τi,j , τHa , τi,j+1, . . .〉. where Xi is a parameter of τi.

Intuitively, each sub-task of the SW-task τi is mapped into a sub-task of
the SS-task τs, while each execution of a HW-task τHa by τi is mapped to a
suspension phase of the SS-task τs. Each HW-task suspension phase includes
the reconfiguration time ra, the WCET CHa , and the worst-case delay ∆a

suffered by the HW-task while traversing the FRED scheduling infrastructure.
Finally, all other parameters of the SS-task τs are equal to the ones of the
SW-task τi. By using these mapping rules, all SW-tasks parameters are
known besides the delay ∆a. Hence, to compute a safe upper-bound for
SW-tasks response times, it suffices bounding the delay ∆a.

In the case of preemptive FRI management, ∆a can be bounded using
the following theorem:

Theorem 1 (from [12]). Consider an arbitrary HW-task request Ra for
τHa issued by a SW-task τi. Let Pk = P (τHa ) be the affinity of τHa . Using
preemptive management of the FRI, the maximum delay ∆a incurred by Ra
is upper-bounded by

∆P
a =

∑
τj 6=τi

max
τHb ∈H(τj)

{
∆slot
b + rb

}
(3.1)

where

∆slot
b =


CH

b

nS
k

if P (τHb ) = Pk

0 otherwise.
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While, in the case of non-preemptive FRI management, a safe bound for
∆a can be computed as follows

Theorem 2 (from [12]). Consider an arbitrary HW-task request Ra for
τHa issued by a SW-task τi. Let Pk = P (τHa ) be the affinity of τHa . Under
non-preemptive management of the FRI, the maximum delay ∆a incurred by
Ra is upper-bounded by

∆NP
a = ∆P

a +NHmax
k × rmaxk (3.2)

where
NHmax

k =
∣∣{τHb ∈ ΓH : P (τHb ) = Pk}

∣∣
and

rmaxk = max
τHb ∈ΓH

{rb : P (τHb ) 6= Pk}.

3.6 Practical validation and profiling

This section presents a preliminary prototype implemented on the Zynq-
7000 platform to evaluate the feasibility of the proposed approach, profile
hardware acceleration speedup factors, and measure reconfiguration overheads.
The considered platform includes a dual-core ARM Cortex-A9 processor and
a 7-series FPGA integrated on the same chip. The internal structure of
a Zynq SoC can be divided into two main functional blocks referred to as
processing system (PS) and programmable logic (PL) [77]. The PS block
comprises the ARM Cortex-A9 MPCore, the memory interfaces, and the I/O
peripherals, while the PL block includes the FPGA programmable fabric.
The subsystems included in the PS are interconnected among themselves and
to the PL through an ARM AMBA AXI (Advanced eXtensible Interface)
interconnect.

The hardware modules configured on the PL can access the interconnect
through a set of master and slave AXI interfaces exported by the PS side
to the PL side. Slave interfaces allow modules to access the global memory
space and share the DRAM memory with the processors. Dynamic partial
reconfiguration is supported under the PS control. PL fabric can be fully
or partially (re)configured by the PS through the device configuration in-
terface (DevC) subsystem. The DevC includes a DMA engine that can be
programmed to transfer bitstreams from the main memory to the PL con-
figuration memory through the processor configuration access port (PCAP).
Please note that since the DevC is included in the PS, it doesn’t consume
any PL logic resources to be instantiated.
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3.6.1 System architecture

In the prototype developed for the case study, the PL area is divided into
two main regions: a static region and a reconfigurable region. The static
region contains the communication infrastructure and other support modules,
while the reconfigurable region is organized as a single partition divided into
S slots, each hosting a HW-task.

In general, since bitstream relocation is not supported by the Xilinx
standard tools [37][73], each HW-task τHi is implemented as a set of nSk
bitstreams, one for each slot Sj of its associated partition P (τHi ). Each slot
Sj can accommodate all the specific implementations of each HW-task τHi
that belongs to partition P (τHi ).

Since the slot interface should match the one of the HW-tasks [73], a
common interface that all HW-tasks are required to implement has been
defined. Such a common interface is similar to the one adopted by Sadri et
al. [58]. The interface includes an AXI master interface for accessing the
system memory, an AXI slave interface through which the HW-task can be
controlled by the PS, and an interrupt signal to notify the PS. The AXI
master interface logic allows HW-tasks to retrieve data autonomously from
the memory space, implementing the communication mechanism described
in Section 3.4.

In the current experimental setup, the AXI master interfaces exported
by the HW-tasks are attached to high-performance slave ports exported by
the PS, while the AXI slave control interfaces are attached to the general-
purpose master ports. The software part consists of a user-level library for
the FreeRTOS operating system. The library abstracts the reconfiguration
mechanism and provides a simple API that enables SW-tasks to request the
execution of HW-tasks on the PL through the execute_hw_task() function,
as described in Listing 3.1.

3.6.2 Experimental setup

The prototype has been deployed on a ZYBO board, featuring the Z-7010
Zynq SoC supported by 512 MB of DDR3 memory. The ARM cores included
in the PS run at 650 MHz while the clock frequency for the PL is set to 100
MHz. In this experimental setup, the single reconfigurable partition has been
divided into two slots, each containing about 25% of the slices available in
the programmable logic. The remaining 50% of the resources are allocated to
the static part. Since both slots have the same dimensions, also the partial
bitstreams resulting from the logic synthesis process have the same size of
338 KByte. Therefore, a large number of partial bitstreams can be stored in
the 512 MB RAM memory.

The developed case study includes four standard functions implemented
both as HW-tasks and software code: three simple image convolution filters
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(Sobel, Blur, and Sharp) and a matrix multiplier. The HW-tasks have been
designed with Xilinx’s Vivado HLS tool, while the software versions have
been implemented in C99 language. The image processing HW-tasks process
images of size 800×600 pixels, with 24-bit color depth. The matrix multiplier
HW-task has been configured to multiply 512 elements integer matrices.

3.6.3 Experimental results

This section presents a set of experiments that have been performed
to evaluate the feasibility of the proposed approach using the case study
prototype.

Speedup evaluation experiment

A first experiment has been carried out to measure the speedup factors
achievable from hardware acceleration on FPGA. The longest observed execu-
tion times (LOET) of the four HW-tasks have been measured and compared
against the execution times of their software counterparts over 1000 runs. The
results are reported in Table 3.1. The minimum speedup has been computed
as the ratio between the minimum software execution time and the maximum
hardware execution time observed. Despite the fact that the clock frequency
(100 MHz) of the FPGA was slower than the one of the processor (650 MHz),
hardware-accelerated implementations provided a relevant speedup between
5 and 15 over their software counterparts.

It is worth noticing that the measured speedup factors are dependent
upon the specific implementation and optimization techniques. In general, it
is reasonable to assume, for stream processing oriented operations, an average
speedup factor ranging between 5 and 20, due to the high level of parallelism
achievable on an FPGA.

Operation FPGA
LOET [ms]

Software
LOET [ms] Min speedup

Sobel 19.763 178.874 9.050
Blur 24.629 374.164 15.190
Sharp 24.630 306.539 12.386
Mult 1696.327 8774.103 5.170

Table 3.1: Speedup evaluation.

Response time experiment

A second experiment was carried out to evaluate the longest observed
response times in a scenario where the number of HW-tasks exceeds the
number of slots. The task set used for this test includes four SW-tasks
that use the four HW-tasks defined in Section 3.6.2. SW-tasks are assigned

41



Chapter 3. The FRED framework

priorities according to the rate-monotonic algorithm. Table 3.2 summarizes
the task parameters and the longest observed response times in an 8-hour
run.

Considering the software execution times profiled in the previous exper-
iment, it is worth noticing that the task set used for this experiment can
only be scheduled through hardware acceleration. The equivalent task set,
implemented as purely software tasks, with the same periods and priorities,
it is clearly not schedulable on the processor.

Task Period [ms] Longest Observed
Response Time [ms]

Sobel 100 43.748
Blur 150 69.438
Sharp 170 74.855
Mult 2500 1723.200

Table 3.2: Longest observed response times.

Figure 3.5 shows the distribution of the reconfiguration times observed
in the previous scheduling test for more than 500,000 reconfiguration events.
The longest observed reconfiguration time is 2.845 ms. Therefore, since all
bitstreams have a size of 338 KByte, the minimum observed throughput of
the PCAP configuration port resulted in being 116 MB/s, which is consistent
with the throughput of 145 MB/s stated by Xilinx [77].
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Figure 3.5: Distribution of reconfiguration times (ms).

It is worth mentioning that the set of four HW-tasks used for this ex-
periment cannot be implemented statically using only 50% of the resources
available on the PL fabric. Partial reconfiguration allows to virtually extend
the number of resources to accommodate all the HW-tasks in timesharing.

Overall, this case study has shown that, despite reconfiguration, times
are not negligible, the proposed approach can be implemented using current
FPGA technology to improve the performance of real-time applications with
respect to a pure software implementation.
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FRED on Linux

This chapter presents FREDLinux, an implementation of the FRED
framework for Linux designed for Xilinx’s heterogeneous multiprocessor
system-on-chip (MPSoC) platforms. FREDLinux allows developing rich
applications leveraging the large number of systems available on Linux (such as
drivers, libraries, networking stacks, etc.) while relying on predictable FPGA-
based hardware acceleration for performing heavy computations. FREDLinux
is based on a runtime software support working on top of a system support
design deployed on the FPGA fabric. The first part of this chapter presents
the system design for implementing the FRED platform model. Then, the
architecture of the software support for Linux is presented, comprising (i) a
support for shared-memory communication with hardware accelerators, (ii)
an improved driver to handle the FPGA reconfiguration, and (iii) a user-space
server for managing hardware acceleration. Finally, this chapter presents a
case study application designed for testing the proposed implementation in a
realistic scenario.
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4.1 Platform support

This section describes a design for supporting the FRED framework on
over Xilinx’s heterogeneous MPSoCs platforms, such as Zynq-7000 and Zynq
UltraScale+, which have been chosen as the reference platforms for the
framework. Xilinx’s MPSoCs are popular heterogeneous platforms, including
at least a multi-core ARM Cortex-A processor tightly coupled with a Xilinx’s
reconfigurable FPGA fabric. The internal structure of MPSoCs is divided
into two main functional blocks: (i) the processing system (PS) block and,
(ii) the programmable logic (PL) block [77]. The PS includes a multi-core
Cortex-A processor, a set of memory controllers for interfacing external
memories, a small amount of on-chip RAM, and various I/O peripherals.
The PL side includes a reconfigurable FPGA fabric containing a different
number and types of logic resources depending on the specific model. The
subsystems included in the PS side, i.e., ARM cores, memory controller, and
peripherals, are interconnected through an AMBA AXI bus. The same AXI
infrastructure can be used to extend the system by connecting custom logic
modules configured on the PL. The main interconnection between the PS
and PL consists of a set of memory-mapped AXI interfaces exported by the
PS side to the PL side.

4.1.1 System support design

The FRED support design provides the foundations for the software
support enabling the deployment of dynamically-reconfigured HW-tasks on
the PL fabric. Figure 4.1 provides a schematic representation of the design.
The PL area is partitioned into two main regions: (i) a static region, and
(ii) a reconfigurable region hosting the hardware accelerators modules. The
static region contains the AXI interconnection infrastructure, namely a set of
AXI Interconnects (discussed in Section 4.1.1), and may host other support
modules in an application-dependent fashion. The reconfigurable region is
subpartitioned into a set of slots that are logically grouped in partitions
following the specifications of the FRED framework presented in Chapter 3.
As already discussed, a slotted approach is more suitable for real-time systems
since no allocation and defragmentation overhead is introduced. Moreover,
Xilinx’s tools support static partitioning natively using Pblocks, which allows
constraining implementation to a geometrical region of the FPGA. Hence
a FRED design flow can be implemented using native design tools without
relying on third-party experimental solutions for slotless support.

According to FRED’s shared-memory communication paradigm, described
in Section 3.4, each HW-task must be able to autonomously access memory
regions that are also available to the processors. Xilinx’s MPSoCs provides
three alternatives for implementing such memory regions: (i) using the
internal on-chip memory; (ii) using PL resources to build custom memories
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Figure 4.1: Support design for Xilinx’s MPSoCs.

on the PL (using BRAM logic blocks); or (iii) using the main (off-chip)
DRAM memory. Alternative (i) is not viable since the on-chip memory is
too small (256 KB) [77, 76] and hence may be unsuitable for supporting
shared-memory communication with multiple HW-tasks. Alternative (ii) may
determine a waste of the FPGA resources since implementing large memory
buffers on PL require a significant amount of BRAM logic blocks. Conversely,
alternative (iii) allows taking advantage of the high-performance AXI ports
(HP ports) that grant direct access to the DRAM controller from the PL.
The availability of such ports suggests that Xilinx’s MPSoCs are well suited
for designs that follow this approach. Hence, FREDLinux implements the
shared-memory paradigm using the off-chip DRAM memory shared between
the PS and the PL.

In FRED, each HW-task has affinity a partition and can be configured
and executed in any slot belonging to that partition. This requirement
implies that each slot must be able to host any HW-tasks associated with
his partition. This requirement can be fulfilled, within the constraints of
real Xilinx’s FPGA platforms [73], by defining a common interface that each
HW-task must implement to be deployed on the system.

Common interface

The proposed common interface for HW-tasks consist of (i) at least one
AXI master interface, (ii) an AXI-Lite slave interface exporting a predefined
set of control registers and eight data registers, and (iii) an interrupt signal
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to notify the PS cores. The AXI master interfaces (denoted as AXI M in
Figure 4.1) allow HW-tasks to access the main memory through the PS
DRAM controller, implementing the sharing memory paradigm. In this way,
HW-tasks can autonomously retrieve the data they need to process without
hampering the processor. Besides the FRED requirements, bus mastering is
also crucial for supporting high-performance hardware accelerators that need
to process large amounts of data.

The AXI-Lite slave interface (denoted as AXI S in Figure 4.1) allows
mapping HW-task’s control and data register into the ARM cores address
space. In this way, HW-tasks can be controlled by the FREDLinux software
support. All HW-tasks are required to implement the same set of control and
data registers map, allowing the software support to use a common software
driver. The eight data registers are used to exchange memory pointers and
their meaning depends on the specific function implemented by the HW-task.
Finally, the interrupt signal (denoted as INT in Figure 4.1), is meant to be
connected to the interrupt controller to notify the completion of the HW-task
to the ARM cores.

FREDLinux has been designed with high-level synthesis support in mind
to enable the implementation of computationally intensive functions as FPGA-
based hardware accelerators. Hence, compliant HW-tasks can be easily
generated using the popular Vivado HLS tool, starting from a high-level be-
havioral description. To this end, it is sufficient to wrap a C or C++ function
into the common top-level wrapper reported in Listing 4.1 for generating a
FREDLinux compliant HW-task. The HLS tool will automatically generate
the standard interface logic thanks to its interface synthesis capabilities. In
addition to HLS, it is also possible to code HW-tasks directly using hard-
ware description languages such as VHDL or Verilog for achieving higher
performances. A VHDL stub is provided in such a case. Moreover, Xilinx’s
Vivado suite provides HDL code stubs for implementing the AXI master and
AXI-Lite slave interfaces.

Dynamic partial reconfiguration support

In Xilinx’s MPSoCs, the FPGA fabric within the PL can be fully or
partially (re)configured under the control of the software running in the ARM
cores inside the PS using the processor configuration access port (PCAP).
The PCAP is fed by a DMA engine that can be programmed to transfer a
bitstream from the main DRAM memory to the PL configuration memory.
Compared to other configuration paths, such as the processor configuration
access port (ICAP), the PCAP is driven by control logic included on the PS
side of the device. Hence, it does not consume additional PL fabric resources
to be instantiated. Xilinx’s standard toolchain does not support bitstreams
relocation [73], i.e., the same bitstream cannot be used to program the same
HW-tasks in different slots. This limitation can be overcome by synthesizing
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Listing 4.1: HLS code for implementing HW-tasks.
1 void slot_i(args_t *id, args_t args[ARGS_SIZE], volatile data_t *mem_in,

volatile data_t *mem_out)
2 {
3 // AXI Lite control bus
4 #pragma HLS INTERFACE s_axilite port=return bundle=ctrl_bus
5 #pragma HLS INTERFACE s_axilite port=id bundle=ctrl_bus
6 #pragma HLS INTERFACE s_axilite port=args bundle=ctrl_bus
7

8 // AXI Master memory ports
9 #pragma HLS INTERFACE m_axi port=mem_in offset=slave bundle=mem_bus

10 #pragma HLS INTERFACE s_axilite port=mem_in bundle=ctrl_bus
11 #pragma HLS INTERFACE m_axi port=mem_out offset=slave bundle=mem_bus
12 #pragma HLS INTERFACE s_axilite port=mem_out bundle=ctrl_bus
13

14 fred_hwacc_body(id, args, mem_in, mem_out);
15 }

a different bitstream for each slot of the partition to which the corresponding
HW-task belongs. It is worth noting that this approach does not imply a
large memory consumption, as bitstreams files are typically in the order of a
few megabytes.

Slot decouplers

During the FPGA reconfiguration process, the behavior of the reconfig-
urable slot is undefined since its logic cells may be in an inconsistent state.
Hence the logic cells may generate temporary glitches causing cause trouble-
some spurious transactions in other modules such as the AXI interconnects,
or the ARM cores interrupt controller. To solve this problem, each slot is
protected by a partial reconfiguration decoupler (denoted as PR decoupler
in Figure 4.1), which binds slot’s interface wires to safe logic values during
the reconfiguration process [73]. The FREDLinux runtime controls each
decoupler through a single control register, which is mapped into the address
space through an AXI-Lite slave interface.

Interconnections

In FRED, all HW-tasks employs bus mastering techniques for accessing
the system memory and sharing data with SW-tasks running on the ARM
cores. Hence, bus and memory access represents a crucial contention point.
The problem of controlling bus and memory contention in a predictable
fashion is addressed later in this thesis since it requires the development of
custom hardware modules for custom managing the AXI bus. In FREDLinux,
the rationale behind the interconnection strategy employed for the system
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support design is to evenly distribute the bandwidth supplied by all available
HP ports to the HW-tasks. To this end, the AXI master interfaces exported
by each slot (using a placeholder HW-task) are connected to an interconnect
block [8] associated with the slot, thus resulting in a single AXI master
interface. If the number of HP ports actually available from the PS is
less than the number of slots, the slots’ interconnects master interfaces are
connected to the HP ports directly. Otherwise, if the design contains more
HW-task than available HP ports, an additional level of interconnects is
required to connect the slots’ interconnects master interfaces to the available
HP ports. Please note that the support design depends only on the total
number of slots and not on the actual number of HW-tasks.

4.2 Linux support

This section describes the architecture of the FREDLinux software support
built on top of the system support design. The software support has been
designed in a modular fashion, relying as much as possible on user-space
implementation for improving maintainability, safety, and extendability. The
internal architecture of the system is shown in Figure 4.2. The central
component of the software support is a user-space server process, named
fred-server, who is in charge of handling and dispatching acceleration requests
from SW-tasks. The fred-server relies upon two custom kernel modules,
and the UIO framework, for performing the low-level operations required to
control the hardware components of the system support design.

Periodic SW-tasks can be implemented as regular Linux processes or
threads using the POSIX compliant SW-task body presented in Listing 4.2.
The SW-task body iteratively (i) performs its computations calling one or
more HW-tasks, and then (ii) make use of POSIX’s clock_nanosleep()
function for suspending and waiting for the next activation. Since Linux
makes use of virtual memory, each SW-task process can access only its own
private virtualized address space. On the other hand, HW-tasks are custom
hardware components directly accessing the physical address space where the
DRAM memory is mapped through the AXI bus. The need for implementing
the FRED shared buffers paradigm, described in Section 3.4, requires the
development of an efficient mechanism to share data between the virtual and
the physical domains. Recent MPSoCs platforms like the Zynq UltraScale+
include an IOMMU that allows AXI masters deployed in the PL to have a
virtualized view of the system memory. However, older platforms like the
Zynq-7000 does not include an IOMMU. Hence, HW-tasks are limited to
a physical view of the system memory. To provide a uniform yet efficient
implementation of the communication mechanism, FREDLinux relies on a
zero-copy design, using coherent memory buffers as communication channels
between SW-tasks and HW-tasks. The zero-copy design allows SW-tasks and
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HW-tasks to share data without any associated overhead.

Listing 4.2: Pseudo-code stub for a SW-task.
1 void sw_task_stub(void *args)
2 {
3 struct timespec ts;
4 int period_ms = <task_period>;
5

6 /* Get current time */
7 clock_gettime(CLOCK_MONOTONIC, &ts);
8 /* Set next activation */
9 time_add_ms(&ts, period_ms);

10

11 while (1) {
12 /*
13 * SW-task body:
14 * <First software chunk>
15 * <Call HW-task>
16 * <Second software chunk>
17 * <Call HW-task>
18 * <Third software chunk>
19 */
20

21 /* Sleep until next activation */
22 clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &t, NULL);
23 /* Set next activation */
24 time_add_ms(&t, period_ms);
25 }
26 }

4.2.1 Kernel-space components

The fred-server process uses the two custom kernel modules for (i) allocat-
ing the memory buffers employed to share data between SW and HW-tasks,
and (ii) managing the PL fabric reconfiguration. The fred-server relies on
the UIO framework for managing HW-tasks, i.e., accessing control and data
registers, and observing the interrupt lines.

Buffers allocator module

To enforce memory coherence between SW-tasks and HW-tasks, the
shared-memory infrastructure described in Section 3.4, has been implemented
using a set of uncached memory buffers allocated by a custom kernel allocator
module. Such a module uses the Linux DMA layer to allocate physically
contiguous (uncached) memory buffers used to exchange data between SW-
tasks and HW-tasks.
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When loaded, the allocator module creates a new character device named
fred_buffctl, which is used by the fred-server during the initialization phase
for requesting the allocation of memory buffers. Each allocation request is
performed using the ioctl syscall, including, as a parameter, the size of the
required buffer. On the kernel side, when the driver receives an allocation
request, it creates a new character device named fred_buffN (where N refers
to the buffer identifier that is assigned by the module) and allocates a new
contiguous memory buffer, associated with the device, using the dma_alloc_-
coherent() function of the Linux DMA layer. The character device is the
means by which the buffer is accessible from user-space.

Once the buffer device has been created, it can be accessed by a SW-task
using the Linux standard mmap() syscall. When a SW-task calls (from user-
space) the mmap() on a buffer character device, the associated memory buffer
will be mapped into its virtual address space. Inside the allocator module
(on the kernel side), the mapping is performed using the dma_common_mmap()
function of the Linux DMA layer. Once the buffer is mapped into the SW-
task’s virtual address space, it can be accessed by the SW-task to read and
write data without any system overhead. Since the buffer is uncached, no
flush and invalidate operations are required on the cache. Please note that
there are no cache levels common to both the processor and the hardware
accelerators when directly connected to the DRAM controller trough the HP
ports. On the other side, a HW-task can access the same buffer through a
physical memory address. The buffers’ physical address are passed to the
HW-tasks by the FRED server using the set of data registers belonging to
the HW-tasks’ common interface described in Section 4.1.1.

In this way, data can be efficiently shared between HW and SW tasks
without any copy operation or operating system overhead. It is worth
observing that, with this design, the SW-tasks never directly deal with
memory management operations. SW-tasks see their shared buffers only as a
set of character device that can be mapped, during its initialization phase,
into their virtual memory spaces. From the programmer’s perspective, the
process of mapping of these buffers, likewise all other interactions with the
fred-server, is assisted by the client support library described in Section 4.3.
During the system shutdown phase, the fred-server releases the buffer devices
created during the initialization phase using the ioctl syscall again on the
fred_buffctl control device.

Reconfiguration module

This section presents an optimized reconfiguration driver based on Xilinx’s
original kernel module for enabling dynamic partial reconfiguration under
Linux. Such a kernel module allocates a character device named xdevcfg
that can be used to reconfigure at run-time the FPGA fabric from user-space
using a bitstream as input. Once loaded, the kernel module instantiates
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a character device named xdevcfg. The reconfiguration process can be
initiated by writing the bitstream file into the xdevcfg device file using a
standard write() operation. The Xilinx’s original kernel module has been
likely designed with simplicity as a primary design principle. Internally, for
each request, the driver allocates a contiguous uncached memory buffer using
the dma_alloc_coherent() function of the Linux DMA layer. Once the
buffer has been allocated and mapped, the driver copies the entire bitstream
from the user space to the buffer, using the copy_from_user() function of
the Linux kernel. Once the bitstream has been copied into the buffer, the
driver starts an internal DMA engine for transferring the bitstream from the
system memory to the FPGA configuration memory. After the DMA has
been started, the driver performs a busy-wait, polling on a DMA status flag
until the transfer is completed. This design is clearly intended to keep the
driver safe and easy to use. Still, it is clearly unsuitable for FRED since
the overhead caused by multiple user-to-kernel copies and busy waits is not
compatible with the intensive usage of partial reconfiguration required by
the framework. To overcoming these issues, the original driver has been
modified, taking advantage of the allocator module described in the previous
section. The rationale is to pre-load all the HW-tasks’ bitstreams into a set of
contiguous memory buffers allocated using the allocator module. Since those
operations are performed only once, during the fred-server initialization, they
do not produce any overhead at run-time. Once the bitstreams are loaded into
the physically contiguous memory buffers, they can be reached by the internal
DMA engine used for partial reconfiguration. For this reason, the original
kernel module has been modified by adding an ioctl() method that allows
starting the reconfiguration by passing a memory reference to a pre-allocated
bitstream to the driver. In order to avoid the busy-wait, the poll() method
of the character device interface implemented, providing support for I/O
multiplexing. Once the reconfiguration has been completed, such a method
sets the file descriptor of the xdevcfg device ready for a read operation.
In this way, the reconfiguration process can be easily monitored through
POSIX standard I/O multiplexing methods such as select() and poll(),
or the Linux-specific epoll(). With these modifications, the reconfiguration
process is started by an ioctl() call on the xdevcfg device, which returns
immediately. Then, a user-space application, like the fred-server, can be
notified for the conclusion of the reconfiguration without busy-waiting through
I/O multiplexing.

4.2.2 User-space components

The fred-server is the central user-space component of FREDLinux. Form
an architectural perspective, the fred-server is an event-driven application that
handles service requests coming from multiple event sources like SW-tasks
performing acceleration requests, HW-tasks notifying their completion, and
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other hardware events like the conclusion of the FPGA reconfiguration process.
From a functional perspective, the fred-server interacts with the rest of the
system by means of two main software interfaces, one dedicated to interprocess
communications with SW-tasks and the other to communicate with Linux
and the kernel support, as illustrated in Figure 4.2. The communication
interface between the fred-server and SW-tasks is implemented using UNIX
domain sockets. In this way, SW-tasks are decoupled from the fred-server.

During the initialization phase, the fred-server reads a set of files describing
the system layout and the available HW-tasks. Then, according to such a
system description, initializes the support, using the allocator kernel module
to instantiate the memory buffers used for both bitstreams and data sharing.
After the initialization phase, the server opens a listening socket used by
SW-tasks to establish a new connection. Once the connection is established,
the SW-task can send requests to the server.

From a client programmer perspective, communication functions between
SW-tasks and the fred-server are encapsulated into the client support library
to ease the development process. It is worth noticing that SW-tasks never
interact directly with the hardware, nor are they required to perform privileged
operations. The fred-server mediates any interaction between client SW-tasks
and the platform hardware.

fred-server

/dev/uioN/dev/fred/buffN

Reconfiguration
module Buffers allocator module UIO (Linux internal)

/dev/fred/buffN/dev/fred/buffN /dev/fred/buffctl /dev/uioN/dev/uioN/dev/xdevcfg_mod

Slots_DrvBuff_Ctrl

Event loop / schedulerIPC
Accelerated
processes
(tasks)

Accelerated
processes
(tasks)

SW-tasks

User

kernel

Rcfg_Drv Decs_Drv

Figure 4.2: Overview of the fred-server.

Fred-server internals

The fred-server is written in standard C99 using standard POSIX and
Linux API. In recent versions, the fred-server has been redesigned in a modular
fashion according to the reactor design pattern. The reactor pattern is an event
handling pattern used for implementing event-driven applications capable
of serializing and dispatching service requests arriving concurrently from
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multiple event sources [62, 54]. In particular, the rector pattern decouples the
responsibility of receiving and demultiplexing events from the responsibility of
actually handling events. This characteristic is especially useful within FRED
since multiple software and hardware event sources like SW-tasks, HW-tasks,
FPGA reconfiguration interface, etc. need to be handled differently. In this
context, the reactor pattern allows implementing each event handler with a
different class derived from a common abstract base class. This approach
conforms to the single responsibility principle [43] since each handler class
needs to change only if the handling logic of the corresponding event needs
to change. Moreover, it also respects the open-close design principle [43]
since new classes of events (e.g., handling IPC signals) can be managed by
implementing a new handling class without the need of modifying existing
handler classes. Please note that although C99 does not provide native
language support for object-oriented programming, there are established
techniques for supporting the object-oriented programming paradigm in
C99 [60, 63]. The internal architecture of the fred-server is illustrated in
Figure 4.3, highlighting the most relevant interactions between its key internal
components.

Event_Handler

Slot Sw_Task_Client

Reactor

Sys_Layout

Poll_ReactorEpoll_Reactor

Data_Buffers

Hw_Task

Partition

epoll()

Sw_Task_Listener Dev_Rcfg Signals_Recv

epoll()

Scheduler

Decoup_Drv

Slot_Drv

Rcfg_Drv

dispatches

«use»«use»

register

register

«or»

Parser Bitstream_Buffers

Figure 4.3: Internal components of the fred-server.

• The Event_Handler is the abstract base class defining the interface of
an event handler object. It must be inherited by all concrete event
handlers classes, which holds the responsibility of serving a specific
type of event. All event handler instance contains a handle component,
which is tied, during the initialization of each instance, to an operating
system object (i.e., a file description) identifying the actual event source.

• The Reactor abstract base class defines the interface for registering
handlers and for running the event loop. Concrete implementation
must provide methods for (i) registering new event handlers and (ii)
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implementing the event loop logic for cyclically waiting over the handles
provided by the set of registered events handlers. When an event occurs
(i.e., a handle becomes ready), the event loop serves the event by calling
the event handling logic contained in the event handler object that owns
the handle. Reactors rely on synchronous event demultiplexers provided
by the operating system (e.g., poll, select, etc.) for waiting on the set
of registered handles. Currently, FREDLinux provides two concrete
implementations of the reactor that must be used in a mutually exclusive
way depending on the specific needs. The first implementation is based
on the POSIX’s standard poll function. The second implementation is
based on the more recent epoll mechanism provided by Linux. The
main advantage of the epoll function is that its time complexity is
constant (i.e., O(1)) with respect to the number of monitored handles.
On the contrary, the time complexity of the classic poll function scales
up linearly (i.e., O(n)) with the number of handles. However, given
the limited number of event sources present in a typical FREDLinux
design, and considering the limited amount of overhead introduced
by the whole event handling logic, the performance difference is very
limited in practical cases.

• The Software_Task_Listener is a concrete event handler which is in
charge of registering SW-tasks during the initialization phase. This
handler contains a listening socket handle. Whenever this handler
receives a valid initialization request from a SW-task, it creates and
registers to the reactor a new SW_Task object that handles the new
connection socket.

• The Sw_Task_Client is a concrete handler representing an active SW-
task and containing its connection socket handle. Each Sw_Task_Client
is associated with a set of Hw_Tasks objects, representing the HW-tasks
that the SW-task can call to accelerate its execution. Moreover, it owns
a set of Data_Bufferer objects, which are coherent buffers objects used
to exchange data with the associated HW-tasks.

• The Slot class is a concrete handler representing a “physical socket” for
HW-task. That is a fixed portion of the FPGA area where a HW-task
can be plugged in by means of partial reconfiguration. When initialized,
the Slot starts in the empty state, meaning that no HW-task is actually
configured into the physical slot. Once the Slot has been reserved
to a SW-task, it goes into the reserved state where it is ready for
reconfiguration. After reconfiguration, the Slot goes into the ready
state, meaning that the contained HW-task is ready to execute. At the
end of the HW-task execution, the Slot goes into an idle state waiting
to be reconfigured. However, if the same HW-task needs to be executed
again, the reconfiguration process is skipped to save time. The Slot
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object controls the contained HW-task and the slot’s paired decoupler
using, in turn, the Slot_Drv and Decoup_Drv low-level components.
These components allow decoupling the FRED control logic from the
responsibility of performing the low-level control actions, which depends
on the specific platform. In particular, the Slot_Drv component exports
the file handle owned by the Slot object that is used by the reactor to
know then the contained HW-task completed its execution.

• The Dev_Rcfg is a concrete handler that represents the reconfiguration
device. It relies on a low-level component called Rcfg_Drv for controlling
the specific reconfiguration engine of the platform. The handle exported
by the Rcfg_Drv is used by the reactor to know when a reconfiguration
is completed.

• The Signal_Receiver is an optional concrete handler that can be used
for handling inter-process communication signals synchronously with
the reactors’ event loop logic using Linux’s signalfd function. If this
handler is registered to the reactor, it allows receiving and handling
standard signals like SIGTERM and others.

• The Scheduler module is the central component in charge of imple-
menting the FRED scheduling policy described in Chapter 3 using the
proposed multi-level queue structure. All event handlers components
notify the scheduler when an event occurs. In turn, the scheduler
performs the required actions.

• The Sys_Layout class models the physical layout of the system. A
FREDLinux system is composed by a set of partitions, each of them
containing a set of slots, and a set of HW-tasks. During the initial-
ization process, the Sys_Layout module parses two configurations files
describing the FREDLinux system layout. The first file specifies the
layout of the FPGA in terms of partitions and slots. The second file
defines the available HW-tasks. According to the content of these files,
the Sys_Layout modules initialize the system instantiating all compo-
nents and registering to the reactor (i) all hardware related handlers
such as Dev_Rcfg all Slot, and (ii) the initial software handlers such
as Sw_Task_Listener and Signal_Recev.

4.3 Client support library API

The client support library provides a lightweight API that can be used by
client programmers to develop FREDLinux hardware-accelerated applications.
The client support library presented here is written in C99, and it is designed
to provide support for C or C++ applications. However, since SW-tasks are
completely decoupled from the fred-server through UNIX domain sockets,
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additional client API for other languages can be easily developed as long as
they follow the standard communication protocol with the fred-server. For
instance, a Python implementation is already available, although it is not
presented here since it’s beyond the scope of this thesis.

Listing 4.3: Client support library API functions.
1 struct fred_data;
2 struct fred_hw_task;
3

4 //--------------------------------------------------------------------------
5

6 int fred_init(struct fred_data **self);
7

8 int fred_bind(struct fred_data *self, struct fred_hw_task **hw_task,
uint32_t hw_task_id);

9

10 int fred_accel(struct fred_data *self, const struct fred_hw_task *hw_task);
11

12 void fred_free(struct fred_data *self);
13

14 //--------------------------------------------------------------------------
15

16 int fred_get_buffs_count(const struct fred_data *self, struct fred_hw_task *
hw_task);

17

18 ssize_t fred_get_buff_size(const struct fred_data *self, struct fred_hw_task
*hw_task, int buff_idx);

19

20 //--------------------------------------------------------------------------
21

22 void *fred_map_buff(const struct fred_data *self, struct fred_hw_task *
hw_task, int buff_idx);

23

24 void fred_unmap_buff(const struct fred_data *self, struct fred_hw_task *
hw_task, int buff_idx);

Listing 4.3 reports the functions composing the client support library
API. The fred_init function initiate the communication with the fred-server
initializing an opaque handler of type struct fred_data which holds the
state of the connection. After the initialization phase, a SW-task can request
the association with one or more HW-tasks using the fred_bind function.
Such a function takes as input the id of the HW-task an initialize an opaque
handler fred_hw_task, which contains a set of references to the data buffers
used to share the data between the SW-task (i.e., the current process or
thread) and the HW-task. These buffers can be mapped into the process’
address space using the fred_map_buff function, which takes as input the
fred_hw_task handle of the HW-task and the index of the buffer, returning a
pointer to the mapped buffer. The service functions fred_get_buffs_count

56



Chapter 4. FRED on Linux

and fred_get_buff_size can be used to query respectively the number
and the size of the buffers used by an HW-task. Once the SW-task has
completed its initialization phase, binding with the HW-tasks and mapping
the associated data buffers, it can proceed with is computations, eventually
filling the shared buffers and calling one or more HW-task using the fred_-
accel function. The fred_accel is a blocking function that suspends the
SW-tasks until the invoked HW-task completes its execution. After the
HW-task completion, the SW-task will resume its execution and can retrieve
the data processed by the HW-task by accessing the shared buffers as regular
memory. Finally, during the system shutdown phase, the SW-task can unmap
all the shared buffers using the fred_unmap_buff and close the session with
the fred-server by calling the fred_free function. Listing 4.4 shows the
pseud-code of a SW-task implemented using the C API provided by the
client support library. For the sake of clarity, the SW-task uses only a single
HW-task, and errors handling code is omitted.
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Listing 4.4: Pseudo-code stub of a SW-task using the C API.
1 void sw_task(void *args)
2 {
3 struct timespec ts;
4 int period_ms = <task_period>;
5

6 struct fred_data *fred;
7 struct fred_hw_task *hw_task;
8 uint32_t hw_task_id = <hw_task_id>;
9

10 void *buff_in = NULL;
11 void *buff_out = NULL;
12

13 /* Initialize communication and bind a HW-task */
14 fred_init(&fred_data);
15 fred_bind(fred_data, &hw_task, hw_task_id);
16

17 /* Map the buffers */
18 buff_in = fred_map_buff(fred, hw_task, 0);
19 buff_out = fred_map_buff(fred, hw_task, 1);
20

21 /* Get current time */
22 clock_gettime(CLOCK_MONOTONIC, &ts);
23 /* Set next activation */
24 time_add_ms(&ts, period_ms);
25

26 while (1) {
27 /* Fill input buffer */
28 buff_in[i] = <....>
29

30 /* Call the HW-task */
31 fred_accel(fred_data, hw_task);
32

33 /* Read output data buffer */
34 <....> = buff_out[i]
35

36 /* Sleep until next activation */
37 clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &t, NULL);
38 /* Set next activation */
39 time_add_ms(&t, period_ms);
40 }
41 }
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4.4 Case study application

This section presents a case study application that makes use of FRED-
Linux for speeding up real-time processing of live images acquired by a
USB webcam, and integer matrix multiplication. Besides FREDLinux, the
case study application make use of Video4Linux (V4L) and Qt frameworks
available on GNU/Linux. The case study has been developed and tested on
Digilent’s Zybo board, which includes a Zynq-7010 SoC supported by 512
MB of DDR3 memory.

The application comprises four processing functions implemented as cus-
tom hardware accelerators (HW-tasks) and functionally equivalent software
procedures for evaluation purposes. Three processing functions are image
processing filters (FastX, gradient map, and Sobel) designed using the popular
OpenCV library. The HW-tasks filters are built with Vivado HLS using the
available OpenCV subset, while the equivalent software implementations are
built using the regular OpenCV C++ API. The filters are implemented as a
stack of OpenCV functions inspired by Xilinx’s recommendations described
in [3]. Figure 4.4 shows the output of the image filters using a test image as
input. Finally, the last processing function is an integer matrix multiplier
implemented both in HLS and C++ using the naive O(n3) algorithm.

The amount of logic resources required to allocate all processing functions
HW-tasks statically (i.e., allocated at the same time) exceeds the amount of
resources available on the physical FPGA. Hence, using hardware acceleration
for all tasks would be unfeasible. FREDLinux allows to “virtually” extend
the amount of logic of resources enabling the platform to accommodate all
the accelerators in timesharing.

4.4.1 Case study architecture

From a system perspective, the application is composed of 4 SW-task
and 4 HW-tasks. Each SW-task is a cyclic thread that calls a processing
function during each job. Each HW-task implements a hardware processing
function. The SW-tasks can operate in two modes (i) software mode and
(ii) hardware mode. In the software mode, the SW-task processes the data
using the software implementation of the processing function; in hardware
mode, the SW-task relies on hardware acceleration calling the corresponding
HW-task to perform the computation.

In the default configuration, the image filter processing functions are
set for processing images of 640× 480 pixels with 24-bit color depth, while
the matrix multiplier performs 30 multiplication of 64× 64 matrices. The
hardware implementations of processing functions have been wrapped within
the FREDLinux standard HW-task interface presented in Listing 4.1 and
translated into RTL implementations using Vivado HLS. At the same time,
the equivalent software versions are compiled as regular C++ functors or
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Figure 4.4: Test image processed using filter processing functions. Clockwise
from the top: Test image, FastX filter, gradient map (Gmap) filter, Sobel
filter.

functions.
The input data for the image filters are acquired through a USB webcam

using the V4L framework. A schematic representation of the internal architec-
ture of the application is presented in Figure 4.5. The frame grabber thread
copies the frames acquired by the webcam into a shared buffer implemented
as a cyclic asynchronous buffer (CAB) [15]. The CAB mechanism is designed
to support asynchronous lock-free communication between cyclic activities
with different periods. In this way, the image processing SW-tasks can read
the frames from the buffer without blocking, even when having different
periods. After reading the image from the CAB, each SW-task processes the
input frame depending on the current processing mode. If the SW-task is
set in software processing mode, the frames are processed using the OpenCL
software procedure, and the output is directed to a Qt image (QImage) buffer.
If the SW-task is set for hardware processing, the frames are copied from
the cyclic buffer to the input buffer of the correspondent image processing
HW-task. Once the copy is completed, the HW-tasks execution request is
sent to the fred-server, and the SW-task is suspended. After the completion
of the HW-task, the owner SW-task resumes its execution and retrieves the
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processed frame form the HW-task’s output buffer, which is associated with
a QImage object to avoid another additional copy. Finally, independently
from hardware or software mode, the resulting image is stored in a QImage
buffer that can be passed to the Qt window component to be displayed.

HW-task
Gmap

Frame 
grabber 
thread

CAB
shared
buffer

HW-task
FastX

HW-task
Sobel

V4L /
Linux

Qt4 /
Linux

HW-task
Mmul

Display

Mouse/Keyboard

Webcam

SW-task
FastX

SW-task
Gmap

SW-task
Mmul

SW-task
Sobel

Figure 4.5: Overview of the application structure.

4.4.2 Application internals

The case study application has been implemented in C++11 using Qt
and V4L on top of the Xilinx’s Petalinux “distribution”. Figure 4.6 presents
an overview of the application’s internal architecture. All SW-tasks are
subclasses of the abstract base class AbsTask that realize a functor (callable
object), with a periodic behavior, dispatchable to a standard std::thread
object. The image processing SW-tasks are instances of the derived class
MultiFrameProcessor that owns a set of AbsFrameFilter objects. These
objects are filter components used for processing sequences of images and
include the logic for interfacing with the Qt framework. Among the set filter
objects components, only one can be active at a time. The active filter object
can be exchanged at runtime to change the behavior of the frame processor.

The AbsFrameFilter abstract base class is subclassed into the SwFrame-
Filter and HwFrameFilter concrete classes providing the logic for imple-
menting, respectively, a pure software and a hardware-accelerated filter. Once
instantiated, these classes are associated are the actual filtering functor object,
in the case of a software filter, or a HwTask object in the case of a hardware
filter. The HwTask object is a functor object that wraps all the logic required
to interact with the fred-server using the client support library presented in
Section 4.3. Each HwTask instance is bounded to a HW-task by passing the
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corresponding HW-task’s id to the class’s constructor.
In the current version of the application, only two frame filters are attached

to each frame processor SW-task; (i) an OpenCV software implementation of
the processing function filter and (ii) a hardware implementation of the same
filter in the form of a HW-task. The matrix multiplier SW-task is an instance
of the MultiFuncTask class, which is dedicated to nonvisual processing and
contains a set of processing functor as components. Similarly to the image
processing tasks, only two functors are attached in the current version (i) a
software implementation in the form of a regular function, and (ii) a hardware
implementation of a matrix multiplier int the form of a HW-task.

AbsTask

MultiFuncTask AbsFrameProcessor

AbsFrameFilter

MultiFrameProcessor

SwFrameFilterHwFrameFilter

HwTask Functor

FrameGrabber

CyclicBuffer

FastX
Sobel
Gmap
Mmult

Sw Functor

Figure 4.6: Informal class diagram of the application.

Programmable logic partitioning

The Zynq PL FPGA fabric is divided into a static region and a recon-
figurable region according to the FREDLinux support design described in
Section 4.1.1. The static region contains a set of AXI Interconnect and
other support modules like a video output module. In contrast, the reconfig-
urable region is organized in partitions and slots for dynamically hosting the
HW-tasks. More specifically, the reconfigurable region is divided into two
partitions, each containing one slot. The first partition P0 contains roughly
32% of the total logic resources accounting for 5600 LUTs, while the second
partition P1 includes 14% of the total logic resources corresponding to 2400
LUTs. The remaining resources, 9600 LUTs, corresponding to approximately
54% of the total, are reserved for the static region. A representation of the
partitioning is presented in Figure 4.7. The total resource distribution is
slightly more uneven since special-purpose cells like DSPs and BRAMs are
not homogeneously distributed on the fabric.

The FastX and the matrix multiplier HW-tasks are associated with the
larger partition P0 requiring more resources. The lighter Sobel and Gmap
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             Static

P0

P1

Figure 4.7: Visualization of the FPGA fabric partitioning.

HW-tasks are associated with the smaller partition P1. Since both partitions
are composed of a single slot, only one bitstream is required for each HW-task.

4.5 Performance evaluation

This section presents the results of a set of experiments aimed at evaluating
the performances of FREDLinux using the case study application.

4.5.1 Speed up evaluation experiments

This first set of experiments has been carried out to evaluate the speedup
achieved for each processing function introduced through hardware accel-
eration in comparison to a pure software implementation. To this end, for
each processing function, a separate experiment has been put in place. In
each experiment, the application has been configured to run only a single
processing SW-task to avoid interferences. Each trial consists of two separate
runs. In the first run, the SW-task is configured to run in hardware mode,
which means that the SW-task executes the processing function by calling
the corresponding HW-task computing on the FPGA. In the second run,
the SW-task is configured to run in software mode, which means to call the
software implementation of the processing function running on the ARM
Cortex processor. Each experiment runs consist of more than 10000 jobs.

During both runs, the SW-task is profiled using a logic analyzer connected
to the GPIO pins controlled by the ARM core inside the PS. It is worth noting
that, even if there is no contention among SW-tasks since only one is running,
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the system load caused by the Qt framework, the fred-server, and Linux is
still present. The results of the experiments are summarized in Table 4.1.
It worth observing that execution times of the hardware implementations
of the image processing functions are similar despite implementing different
algorithms. These similarities can be explained by considering that all HW-
task filters process images of the same size, i.e., 640× 480 pixels with 24-bit
color depth. Therefore, they move the same amount of data from and to the
DRAM system memory.

Function name SW avg.
[ms]

SW worst
[ms]

HW avg.
[ms]

HW worst
[ms] Avg. speed up

FastX 58.222 62.864 4.905 5.068 11.869
Gmap 55.521 56.690 4.770 4.879 11.639
Sobel 68.823 71.119 4.864 4.976 14.146
Mmul 65.080 70.112 23.662 23.748 2.751

Table 4.1: Speed up evaluation experiments.

4.5.2 System acceleration experiment

A second experiment has been then carried out to evaluate the performance
improvement achievable with hardware acceleration considering the whole
application. For this purpose, the application is configured to run with
all four SW-tasks described in Section 4.4.1 active at the same time. In
order to evaluate the system speedup provided by the FREDLinux hardware
acceleration, the experiment is composed of two separate runs. In the first
run, all the SW-tasks are configured to run in software mode while, in the
second run, all SW-tasks are set for running in hardware mode.

The main difference with respect to the first set of experiments is that
now all SW-tasks execute and perform acceleration request to the fred-server
concurrently. Hence, when a SW-task running in hardware mode (i.e., calling
an HW-task) performs an acceleration request, it can experience a blocking
because there are no free slots currently available or the reconfiguration
interface is busy. The parameters of all software activities involved in this
test, including SW-tasks, are summarized in Table 4.2. The results of the
experiment are reported in Table 4.3 comparing the observed response times
of the SW-tasks while running in software and hardware modes for over 30
minutes. Figure 4.8 presents a distribution of the response times.

Overall, the results of this practical evaluation show that the resource
“virtualization” mechanism provided by FREDLinux allows improving the
performance of case study application thought hardware acceleration even
when it would be unfeasible with a static approach due to logic resources
limitation.
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Activity name Relative
Priority

Period
[ms]

FRED server (process) 0 -
Qt event loop thread 0 -
Frame grabber thread 1 33.3
Plain image copy thread 2 50
SW-task Sobel (thread) 3 80
SW-task Gmap (thread) 3 80
SW-task FastX (thread) 3 120
SW-task Mmul (thread) 3 120

Table 4.2: Software activities parameters.

Activity name Response time [ms]
SW Avg. HW Avg. SW Max. HW Max.

SW-task Sobel 180.024 48.978 616.779 111.154
SW-task Gmap 161.861 50.173 731.724 96.756
SW-task FastX 118.670 65.125 515.957 106.558
SW-task Mmul 102.304 53.017 274.588 108.384

Table 4.3: Comparison of the SW-tasks’s observed response times in software
and hardware modes.

Overhead evaluation

The second object of this experiment is to evaluate the system overhead
introduced by the fred-server using the proposed case study application. The
actual overhead introduced by the fred-server vary depending on the specific
version and may change as the development process continues. Hence, this
experiment aims at estimating the overall impact of the fred-server on the
system compared to other activities. The overhead experienced by a SW-
task due to the fred-server is visualized in figure 4.9. The first component
Oj,1 includes (i) the communication overhead introduced by handling a new
request, (ii) the overhead experienced by the request while traversing the multi-
level queue structure and, (iii) the overhead introduced by programming the
reconfiguration interface. The second component Oj,2 includes the overhead
introduced for reactivating the fred-server and programming the control
and data registers of the hardware accelerator module. Finally, the third
component Oj,3 accounts for the overhead introduced by the reactivation of
the fred-server and the communication for notifying the completion of the
acceleration request to the SW-task.
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Cj
hRj
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HW-taskj

SW-taski
S

Figure 4.9: Execution behavior of a SW-task calling a HW-task considering
the overheads introduced by the FRED server.

It is worth noting that, when considering the whole application consisting
of multiple SW and HW-tasks, those overhead components depend on the
number of concurrent requests that the server must handle. This because the
fred-server is activated every time an event source (.e.g., SW-task acceleration
requests, HW-tasks execution complete, FPGA reconfiguration completes)
becomes active. While serving these events, the fred-server makes acceleration
requests progressing through scheduling multi-queue infrastructure up to
the reconfiguration and execution stages. Hence, the overhead components
experienced by a SW-task experience are inflated by the cost of managing
other acceleration requests. The results of this experimental evaluation show
that the fred-server process is running for the 0.945% of the total time in the
entire 30 minutes hardware-accelerated run.
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Figure 4.8: Comparison of response times distributions for SW-tasks in
software and hardware mode.
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Enhancing BUS predictability

This chapter presents the AXI Budgeting Unit (ABU), which is a custom
AXI component designed for providing bus bandwidth reservation to hardware
accelerators deployed on FPGAs. An ABU shields a hardware accelerator from
possible misbehaviors of other accelerators (in terms of exceeding bus data
transfers) by predictably enforcing a given bus bandwidth. The ABU is not
a bus arbiter but a traffic shaper component to be placed between hardware
accelerators and a standard AMBA AXI bus infrastructure. ABUs can
seamlessly be integrated into any FPGA design on top of the proprietary AXI
Interconnect provided by vendors. This approach reduces the development
costs and enhances portability and compatibility with any future releases
of AXI-compliant IPs. ABUs have been implemented and tested upon SoC-
FPGA platforms. After presenting a model for hardware accelerators based on
the characteristics of realistic implementations (from Xilinx IP libraries and
OpenCV), an analysis to bound the response times of hardware accelerators
is proposed. The analysis is performed in the bus bandwidth domain and
results to be tractable, as well as accurate to study FPGA-based hardware
accelerators. Finally, the last part of this chapter reports a set of experimental
results conducted on the Zynq-7020 aimed at demonstrating the effectiveness
of the reservation mechanism implemented by ABUs, even in the presence of
misbehaving hardware accelerators, and the validity of the proposed analysis.
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5.1 The problem of BUS contention

Practical high-performance hardware accelerators are typically memory-
intensive units capable of autonomously retrieving data from the system
memory using direct memory access (DMA) or bus mastering techniques.
Each HW-task accelerator is implemented using a subset of the FPGA’s
logic resources that are reserved only to that specific accelerator. Hence,
in a setup comprising multiple hardware accelerators, their execution units
operate in parallel, independently of each other, being not subject to any kind
of contention regarding logic resources. In general, the response time of a
hardware accelerator depends on the amount of data moved, its computation
time, and the bus and memory bandwidth available from the system. The
amount of data moved, and the computation time can be bounded at design
time, being dependent on the accelerator design. Conversely, the bus and
memory bandwidth depends on the platform’s capabilities and can be a
significant subject of contention with other hardware accelerators. In the
context of a system comprising multiple hardware accelerators, like the one
shown in Figure 5.1, bus and memory contention can become the dominant
factor in determining the response time of the accelerators. If the effects
of such contention are not taken into account, the interference caused and
experienced by the hardware accelerators can jeopardize the predictability of
the entire system.

HW-Accel1

BUS

Memory

HW-Accel2

HW-Accel3

HW-Accel4

MemCtrl

L1
L2

CPU0

L1 CPU1

Figure 5.1: Block diagram of a custom system deployed on a SoC-FPGA
platform.

This scenario is worsened by the fact that often it is not possible for a
designer to control the actual bus demand rate of each accelerator deployed
on the system. For instance, if the HW-task accelerator is available in the
form of a closed IP, it may be impossible to tune the actual rate at which
bus transactions are issued. Another aspect to consider is the increasing
relevance that high-level synthesis (HLS) is gaining in the design of hardware
accelerators for FPGAs [47, 16]. While these tools allow for a significant
speedup of the hardware design process, they lack the precise control over
the design that a register-transfer level (RTL) implementation can achieve.
This effectively reduces the possibility for the designer to precisely tune the
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rate of bus transactions. Finally, hardware accelerators can be plagued by
design issues and bugs that may lead to execution overruns or illegal memory
accesses.

To mitigate these issues, some hardware vendors typically integrate tradi-
tional priority-based arbitration in their interconnect implementations. More
recent FPGA platforms also include (limited) mechanisms for QoS-aware
arbitration [71]. However, the closed source nature of these implementations,
often paired with an opaque description of the internals, makes it difficult
to model such closed IPs and derive formal properties. In fact, the limited
flexibility of those mechanisms and the lack of a proper reservation policy
make them unsuited for safety-critical environments.

These challenges could be tackled by a methodology that enforces a more
predictable environment, allowing for a controlled integration of first and
third-party accelerators. As modern operating systems provide isolation
and supervision mechanisms for software processes, it is worth providing
supervision and reservation mechanisms also for the hardware activities
performed by accelerators. This would enhance system predictability and
enable the FPGA-based acceleration paradigm to be effectively used in
safety-critical applications.

5.2 System model and Background

The proposed approach considers an AXI system composed of an in-
terconnect, a set Γ = {τ1, . . . , τn} of HW-tasks accelerators, and a shared
sink module (e.g., a memory controller) deployed on a SoC-FPGA platform.
Similarly to FRED, it is assumed that HW-task accelerators are AXI memory-
mapped master modules capable of autonomously accessing data in a shared
memory, which is reachable through a sink interface. Each HW-task accelera-
tor performs the same computational activity on each run. All HW-tasks are
connected to an interconnect block, which in turn is connected to the sink
module.

The next subsections introduce a model for the interconnect together
with some essential background related to the AXI bus, a model of the
HW-tasks, and a model of the sink module. It is important to note that
most of the assumptions reported in this section are only adopted for the
purpose of analyzing the system (Section 5.4), while the proposed system-level
mechanism (Section 5.3), i.e., the ABU, is independent of most of the adopted
modeling strategies.

5.2.1 AXI interconnect

The central element of an AXI-based system is the AXI interconnect,
which acts like a “switch” connecting one or more AXI master devices to
one or more slave devices. The interconnect performs crucial activities such
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as protocol conversions and the arbitration of bus transactions. Within the
context of the system model, the interconnect is assumed to be configured in
a N -to-1 mode, i.e., it connects N ≥ 1 masters to a single slave device such
as a memory controller. Under this setting, the interconnect is in charge of
arbitrating the transactions issued by the master modules.

Arbitration policy

The AXI specification [6] does not mandate any specific arbitration
protocol for the interconnect. Some interconnect implementations, such as
the Xilinx standard Interconnect IP [8], provide two arbitration modes: (i)
fixed-priority scheduling, in which the user configures static priorities for the
slave ports, and (ii) a fair allocation using round-robin. In recent releases
of the Vivado suite, Xilinx provides the new SmartConnect IP [64] (meant
to replace the current Interconnect IP in new designs) in which the fixed-
priority arbitration has been dropped retaining the round-robin arbitration
only. Hence, to match realistic modern designs, this work only focuses on
round-robin arbitration. In addition, it is assumed that the interconnect (i)
implements ideal round-robin scheduling with reclaiming, i.e., the unused
bandwidth is fairly re-distributed by the contenders that demand more than
the fair bandwidth share, and (ii) does not introduce any overhead. Note that
the actual implementation of the round-robin policy is typically not known,
e.g., as it is the case of the Xilinx IPs, which are closed-source and lack of
proper detailed documentation concerning arbitration policies. As a result,
more accurate modeling of the arbitration may be difficult to obtain and may
introduce inconsistencies among different versions of the IPs. Nevertheless,
the experimental results carried out in this work surprisingly revealed a
marginal deviation of the behavior of the Xilinx’s interconnects with respect
to the ideal case (see Section 5.6).

AXI Links

An AXI link provides a bidirectional connection between a master and
a slave interface. Each AXI link comprises five independent transaction
channels: two channels (read address and read data) for read transactions,
and three channels (write address, write data, and write response) for write
transactions. Each channel implements a two-way handshake mechanism
by using a pair of VALID and READY signals. The producer generates
the VALID signal to indicate when the address or data are available. The
consumer generates the READY signal to indicate that it can accept the
information. The actual transfer occurs only when both the VALID and
READY signals are asserted. In order to distinguish between READY and
VALID signals of read and write transactions, the letters R and W are
appended before their names (e.g., RREADY and WREADY).
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Read and write channels of a link can operate independently one from
each other, i.e., each HW-task may perform read and write transactions
concurrently. However, the AXI specification [6] does not mandate how
the interconnect should manage such a level of concurrency among channel
groups. In this system model, it is assumed that the interconnect arbitrates
read and write channel groups independently, thus permitting concurrent
read and write transactions from master modules. Please note that both the
standard Interconnect and Smartconnect IPs provided by Xilinx operate in
this mode [8], [64].

Figure 5.2: Screenshots of bus signals for read and write memory transactions
of two HW-tasks (FIR and Sobel), taken from Vivado. The HW-tasks are
are operating upon a Xilinx Zynq-7020 platform. The figure also reports a
zoom of about 10 clock cycles.

5.2.2 HW-tasks

All HW-tasks are periodically activated, and thus generate a potentially-
infinite sequence of execution instances (also referred to as jobs). Each
HW-task operates like a DMA module, generating an equal number of
read and write transactions. The transactions issued by each HW-task are
assumed to be uniformly distributed during its execution and hence issued at
a fixed rate. Please observe that despite this modeling strategy may seem
coarse, many real-world hardware accelerators that perform data-parallel
operations (e.g., video, image, and signal processing on raw data) present
regular memory access patterns that can be modeled with a uniform demand.
As a representative example, Figure 5.2 reports the bus signals for memory
transactions of two state-of-the-art HW-tasks, namely a FIR filter (slot0 in
the figure) and a Sobel filter from the OpenCV library (slot1 in the figure).
The trace at the top of the figure reports the execution of the 0.76% and
the 0.6% of a job of the two HW-tasks, respectively. The HW-tasks have
been implemented with high-level synthesis (HLS) upon a Xilinx Zynq-7020
platform. As it can be noted from the figure, the FIR filter exhibits a uniform
pattern of transactions (one 32-bit word per clock cycle); the same holds for
the Sobel filter, with the exception of a few clock cycles every about 600 clock
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cycles (the stop is attributed to the end of the processing of a row of the
input image). Across all its execution, the amount of clock cycles in which
the Sobel filter does not issue bus transactions corresponds to less than 10%.
Nevertheless, please observe that for the purpose of analysis, the Sobel filter
can still be pessimistically modeled by assuming that bus transactions are
issued even in the last 600 clock cycles: further details on this strategy are
discussed in Section 5.6.4.

Formally, each HW-task τi is characterized by the following three parame-
ters: (i) a demand rate Di, which represents the rate of memory transactions
(both reads and writes), (ii) the maximum number Ni of memory transactions
issued by each job, and (iii) its period Ti. Due to the presence of separate
channels for reads and writes, the demand rate of each HW-task is bounded
by two transactions per clock cycle. Demand rates are typically expressed
as the number of transactions per clock cycle; when needed, a word size
(such as 32-bit) may also be used in place of the number of transactions. It
is very important to note that HW-tasks have very different characteristics
with respect to classical software tasks. Indeed, HW-tasks have an intrinsic
parallel execution and are usually implemented such that they can perform
computations while issuing memory transactions (i.e., computations and
memory accesses are overlapped in time). For instance, this fact can also
be observed from Figure 5.2, as the hardware accelerators issue memory
transactions at (almost) every clock cycle. For this reason, computations
times are not modeled, and HW-tasks are assumed to be completed when
they complete all their Ni memory transactions.

5.2.3 Sink module

The sink module models an endpoint block like a memory controller or a
downstream AXI Interconnect (e.g., in the presence of multiple Interconnects
that are connected in a hierarchical manner). Formally, the sink module is
modeled with a supply bandwidth S that denotes the total rate of transactions
it can accept, i.e., the maximum ratio of read and write transactions served
per clock cycle.

It is worth mentioning that the size, in bytes, of a single transaction may
vary even on the same system depending on how the AXI logic has been
implemented on each module. Actually, the AXI standard allows connecting
multiple hardware modules with different transaction word sizes or even
protocol versions; the Interconnect is then responsible for converting the
format of transactions. For instance, the high-performance ports included
in the Zynq platforms by Xilinx for accessing the system DRAM memory
dispose of a supply rate of two double-word (64-bit) transactions per clock
cycle, while the default configuration of AXI master ports for hardware
accelerators uses single-word transactions. When it is necessary to avoid
possible inconsistencies, demand and supply rates are always expressed by
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using the smallest word in the system.

5.3 AXI Budgeting Unit

This work proposes a system infrastructure that comprises a set A =
{A1, . . . , An} of ABU modules controlled by a central unit named ABU
controller. Each ABU module is conceived to be placed between a hardware
accelerator and the remainder of the bus infrastructure. A sample setup is
shown in Figure 5.3. The purpose of each ABU module is to supervise the
bus traffic generated by the corresponding hardware accelerator providing
both temporal and spatial isolation. Specifically, the objectives of ABUs are:

• implementing a memory bandwidth reservation mechanism by (i) keep-
ing track of the number of bus transactions issued by HW-tasks, and
(ii) enforcing a maximum budget of transactions within periodic time
windows; and

• as a side feature, implementing a memory protection mechanism that re-
stricts the address space accessible by HW-tasks to a set of configurable
regions.

HW-Task1 ABU1

      Sink

Interconnect

M S M S

HW-Task2 ABU2M S M S

HW-TaskN ABUNM S M S

M S

       ABU ControllerSFrom CPU

Figure 5.3: Illustration of an AXI system with hardware accelerators protected
by ABUs. The boxes labeled with M and S denote master and slave AXI
ports, respectively.

The ABU controller serves as a central control point that allows pro-
gramming the ABU modules by means of memory-mapped registers exposed
through a single AXI slave interface. In its typical usage, these memory-
mapped registers are controlled by the processor (e.g., by a driver at the level
of the operating system or a hypervisor). The ABU modules are, in turn, con-
nected to the ABU controller through a custom bus, which is used to transfer
configuration parameters and signals. As it is illustrated in Figure 5.3, each
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ABU module also exports one AXI master and one AXI slave interface. The
AXI slave interface serves as the access point for the hardware accelerator,
while the AXI master port is meant to be connected to the remainder of the
bus. These components are implemented in VHDL using an RTL behavioral
description and deployed onto the FPGA fabric.

5.3.1 ABU working principle

According to the AXI standard, the master modules are the ones in charge
of initiating bus transactions. Consequently, the HW-tasks drive the system
by concurrently performing requests for bus transactions to the interconnect,
which in turn selects which pending transactions need to be propagated to
the sink module. The main idea behind the budgeting mechanism of ABUs
is to act as a bridge between HW-tasks and the Interconnect by monitoring
and altering the AXI signals. An example of an ABU in action is shown
in Figure 5.4 for the case of a HW-task performing a sequence of write
transactions. The figure reports the state of the AXI signals that are relevant
for the considered examples, namely WVALID in output from the HW-task
and the ABU (first and second rows, respectively), WREADY in output from
the Sink and the ABU (third and fourth rows, respectively), and WDATA to
show the data traffic on the bus (last row). The evolution of the ABU budget
over time is also reported at the top of the figure. As it can be observed
from the figure, when the ABU budget ends at time t1, write transactions
are blocked although the HW-task is ready to transmit data (WVALID in
output from the HW-task is up) and the sink is ready to receive it (WREADY
in output from the Sink is up). This is accomplished by masking signals
WVALID and WREADY forcing their logic state to zero, as it is illustrated
in the second and fourth rows in the figure within time interval [t1, t2]. Note
that, when no budget exhaustion occurs, the ABU has a transparent behavior
mirroring all signals (see time window [t2, t3] in the figure).

WVALID
(HW-task) 

WREADY
(ABU SI) 

WDATA
(ABU MI-SI)

Budget

ABU Period

WVALID
(ABU MI) 

WREADY
(Sink) 

B i

b(t)
i

t0 t1 t3t2 Time

Figure 5.4: Example of ABU in action: impact on the AXI bus signals.
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Budgeting mechanism

For each ABU Ai, the proposed solution allows configuring (i) a maximum
budget of Bi transactions, and (ii) a period Pi with which the budget is
replenished. Each ABU also keeps track of a variable parameter denoted as
instantaneous budget bi. At the system startup, bi = Bi,∀i = 1, . . . , n. Then,
as a HW-task performs bus transactions, the instantaneous budget is decre-
mented until it reaches zero (budget depletion). As long as its instantaneous
budget is zero, an ABU forbids bus transactions by acting on (R/W)VALID
and (R/W)READY data and address signals. The instantaneous budget is
recharged periodically and synchronously, i.e., if the system startup corre-
sponds to time t = 0, the instantaneous budget of Ai is set to bi = Bi at
every time t = kTi, k ∈ N. From the perspective of memory bandwidth, note
that each ABU enforces a transaction rate of Bi/Pi for the corresponding
HW-task independently of the behavior of the latter.

Memory protection

The ABU controller allows configuring X memory address regions for each
ABU Ai to which the corresponding HW-task is allowed to access. Each of
such regions ri,j (with j = 1, . . . , X) is identified with a base memory address
and a size, which are configurable by means of memory-mapped registers
offered by the controller. Whenever a HW-task τi access an address outside
one of the regions r1,1, . . . , ri,X , the corresponding ABU Ai blocks all memory
transactions of τi, as it would be disconnected from the bus; consequently,
the ABU controller raises an interrupt signal. The HW-task that triggered
the fault can be identified by reading a status register of the controller. The
normal operation of the ABU can be restored by acting on another control
register offered by the controller. This feature is particularly useful in the
context of virtualized systems, where a hypervisor running on the CPU of
the system-on-chip can configure the memory regions and react to illegal
memory accesses.

ABU internals

The internal architecture of an ABU module is illustrated in Figure 5.5.
The communication channels on the AXI link between the master and the
slave interfaces are routed through a decoupler block that can stop the master
from issuing transactions. The decoupler works by acting on the ready and
valid signals to suspend the handshake procedure temporarily. The budgeting
mechanism is implemented by means of a transaction counter that keeps track
of each read/write transaction and, when the budget is exhausted, sends a
signal to activate the decoupler block. The ABU controller provides a pair
of registers for configuring the budget and the period of each ABU. Such
registers are accessible as memory-mapped via the AXI slave interface of the

76



Chapter 5. Enhancing BUS predictability

controller. The memory protection function is implemented by comparing
the values on the read and write address channels with the range of addresses
specified for each region ri,j .

HW-Accelerator

M

Interconnect / 
Sink

S

Budget and 
period

registers

Buffers bases
registers

Buffers offsets
registers

Transaction
Counter

Write address channel
Read address channel
Write data channel
Read data channel
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Read address 
comparator

Write address 
comparator
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Figure 5.5: Internal functional block diagram of an ABU.

Table 5.1: Resource utilization for an ABU unit and the ABU controller on a
Zynq-7020 platform.

Resource type One ABU ABUs Controller
LUT 436/53200 (0.82%) 279/53200 (0.56%)
FF 379/106400 (0.36%) 529/106400 (0.50%)
DSP 0/140 (0%) 0/140 (0%)
BRAM 0/220 (0%) 0/220 (0%)

Note that the core logic of ABUs is implemented with lightweight mecha-
nisms (counters, comparators, and switches), and hence no extra clock cycles
are needed to traverse ABUs. Therefore, ABUs do not introduce delays:
the cost of using them is only attributed to the additional FPGA resources
required to be deployed. The resource utilization of one ABU and the ABU
controller, when implemented upon a Xilinx Zynq-7020 platform, is reported
in Table 5.1. The table also reports the percentage of resources occupied by
the two modules with respect to the total amount of resources available on
the Zynq-7020. As can be noted from the table, ABUs have a very marginal
impact on resource consumption.

5.4 Bandwidth-driven response-time analysis

This section studies the effect of bandwidth contention on HW-tasks under
the considered modeling strategy and presents a methodology to guarantee
the system predictability using the ABU. Differently from most proposals in
the literature, the proposed analysis does not aim at accounting for possible
interleaves of bus transactions over time (e.g., like the analysis of classical
periodic real-time tasks), but aims at studying the contention incurred by
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HW-tasks in the bandwidth domain, i.e., considering the actual rates at which
the transactions make progress in the presence of other interfering tasks. This
because, as mentioned in Section 5.2.2, real-world hardware accelerators
typically perform uniformly-distributed bus transactions at a constant rate
and, in particular, they even issue transactions at every clock cycle (see
Figure 5.2). These characteristics make it possible to treat HW-tasks as fluid
computational activities that make progress at a given rate (e.g., similarly to
fair multiprocessor scheduling [7]), and hence allow studying the system in
bandwidth domain.

In order to illustrate this peculiarity of the problem studied in this work,
a simple example is firstly reported to show the effect of the contention
introduced by round-robin arbitration (Sec. 5.4.1) in the bandwidth domain.
Then, an observation concerning the critical instant for a set of HW-tasks
is presented together with an illustrative example (Sec. 5.4.2). Finally, a
strategy to enhance the system predictability by making HW-tasks prone to
worst-case response-time analysis is presented (Sec. 5.5).

5.4.1 Illustrative example

To illustrate the effect of bandwidth contention incurred by HW-tasks
subject to round-robin arbitration, consider a system composed of (i) a
sink module providing a supply of S = 6, (ii) an interconnect directly
connected to the sink module, and (iii) three HW-tasks, namely τ1, τ2, and
τ3, directly connected to the interconnect. The HW-tasks have the same
demand D1 = D2 = D3 = S/2 = 3 corresponding to half of the supply. The
first HW-task (τ1) needs to perform N1 = 6 transactions and has a period of
T1 = 9 time units. The second HW-task (τ2) performs N2 = 24 transactions
within a period of T2 = 11 time units. Finally, the third HW-task (τ3)
performs N3 = 30 transactions within a period of T3 = 15 time units.

To avoid possible misunderstanding, please bear in mind that HW-tasks
are statically allocated onto the FPGA area and hence do not contend the
logical resources of the FPGA. For this reason, HW-tasks operate in a parallel
fashion using their own (private) logic resources and can incur in contention
only when issuing bus transactions.

Consider the case in which all HW-tasks are synchronously released at
the same instant t = 0. Figure 5.6(a) illustrates the resulting schedule of the
three HW-tasks by showing the intervals of time in which they are operating
(on the top of the figure) and the repartition of the bandwidth over time
(on the bottom of the figure). Each square unit of the bandwidth supply
in the figure represents a transaction unit. At time t = 0, since the total
bandwidth demanded by all HW-tasks D1 +D2 +D3 = 9 exceeds the available
bandwidth supply S = 6, the Interconnect limits the bandwidth of the three
HW-tasks to a fair share of S/3 = 2. This bandwidth allocation continues
up to t = N1/(S/3) = 3, when τ1 finishes its execution. Once τ1 completes,
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Figure 5.6: Examples of HW-task scheduling in the bandwidth domain with
(a) synchronous release and (b) without synchronous release. In (b), HW-task
τ3 experiences a longer response time with respect to the schedule in (a).
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τ2 and τ3 can proceed at their full rate of S/2 = 3 without suffering any
contention. At time t = 9, τ2 completes but a new periodic instance of τ1 is
also released. Again, both τ1 and τ3 can progress at their full rate without
contention. At time t = 11, τ1 and τ3 complete at the same time and a new
instance of τ2 is activated. The latter can then proceed to operate while no
other HW-task is active. Since τ2 demands a bandwidth of D2 = 3, half of
the supply is left unused up to the next activation of τ3 (which will occur at
time t = 15).

5.4.2 Analysis issues

As it can be noted from Figure 5.6(a), HW-tasks are “slowed down” only
when the total bandwidth demanded by active HW-tasks exceeds the supply
(as it happens in [0, 3) in the figure), i.e., when they make progress at a
rate that is lower than their demand. Clearly, this phenomenon affects the
worst-case response times of the HW-tasks.

Unfortunately, a bandwidth-driven response-time analysis cannot be
accomplished by leveraging classical techniques for periodic real-time tasks.
In particular, when studying the problem, we identified a set of issues (in
some way similar to those identified in the analysis of multiprocessor real-time
systems under global scheduling [22]) that prevent to analyze the system by
looking at a single scheduling scenario.

To provide a taste of the identified issues, this section demonstrates
that the classical critical instant theorem for periodic real-time tasks under
uniprocessor scheduling does not hold for the problem studied in this work.
Indeed, the longest response time of a HW-task may not occur when it is
synchronously released together with all other HW-tasks.

To this end, consider the same system setup used for the previous example
(Sec. 5.4.1). This time, assume that τ2 is released before τ1 and τ3 at time
t = −2, as shown in Figure 5.6(b). In this way, the first job of τ2 can issue
six transactions without suffering contention before τ1 and τ3 are activated
at time t = 0. Hence the first job of τ2 completes early (time t = 7) with
respect to the case of synchronous release, leaving half of the bandwidth
supply unused in time interval [7, 9). Since τ2 has been released earlier, also
its next instance will be released earlier at time t = 9. Such a second job of
τ2 interferes with both τ1 and τ3 causing τ3 to finish at time t = 12, i.e., one
unit of time later than in the case of synchronous release. In conclusion, by
releasing τ2 two unit of time earlier with respect to the synchronous release
case, the response time of τ3 increases by one unit of time.

Proving a correct critical instant for the general case resulted in a chal-
lenging problem that is still open. Nevertheless, as it is shown in the following
section, ABUs can be extremely useful to make the system far more prone to
analysis, hence increasing its predictability.
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5.5 Response-time analysis with ABUs

Besides ABUs implement resource reservation, hence protecting the system
from misbehaving HW-tasks, they can also be leveraged at the stage of analysis
to help bounding the response times of the HW-tasks. Indeed, under the
assumption that the ABU periods are orders of magnitude smaller than
the periods of the HW-tasks, i.e., Pi � mini=1,...,n {Ti}, ABUs can act as
bandwidth regulators limiting the maximum demand rate of HW-tasks.

Differently to software-based reservation techniques, for which a short
reservation period determines a high overhead, the assumption on ABUs’
periods is practical because ABUs are realized in hardware and hence do
not introduce relevant issues when adopted with short reservation periods.
Specifically, as mentioned in Section 5.3, ABUs are designed is such a way
that do not introduce delays and do not represent bottlenecks for the logic
circuits deployed onto the FPGA such that the operating frequency of the
latter has to be limited.

Under this setting, each ABU offers to the corresponding HW-task a
virtual, dedicated supply of bus bandwidth Bi/Pi, which is independent
of the behavior of the other HW-tasks as long as the ABU budgets are
guaranteed. Therefore, the problem of analyzing a set of HW-tasks protected
by ABUs can be decomposed into two independent steps:

1. guaranteeing that a set of ABUs can provide the corresponding band-
widths in the worst case, i.e., their entire budgets can be safely provided
in every period; and

2. guaranteeing that the bandwidth provided by each ABU is sufficient
for the corresponding HW-task to meet its deadline.

These steps are addressed in the following two sub-sections, respectively.

5.5.1 Analyzing ABUs

As long as the sum of the bandwidths provided by a set of ABUs does
not exceed the total supply S, i.e.,

∑n
i=1Bi/Pi ≤ S, no contention can occur;

therefore, it is guaranteed that their budgets can be provided within every
periodic instance. However, in the general case, this condition may not
hold, and hence the analysis of ABUs must account for contention exactly as
discussed in the example of Section 5.4.1.

Nevertheless, differently from a direct analysis of HW-tasks, two observa-
tions can be leveraged to make the analysis of ABUs tractable. First, as men-
tioned in Section 5.3, ABUs are synchronously activated at the system startup.
Second, due to the assumption on the ABUs’ periods (Pi � mini=1,...,n {Ti}),
there is no particular advantage in assigning heterogeneous periods to ABUs,
and hence to act as fluid bandwidth regulators they can be all configured
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with the same period P . How to configure a suitable value for the period P
is discussed in the experimental evaluation reported in Section 5.6.

Under this setting, it is then sufficient to study the case of synchronously
released ABUs by analyzing a single problem window of length P that contains
a single periodic instance of each ABU. In other words, it is enough to verify
that all ABUs can provide their budget before time t = P assuming that
they are all released at time t = 0.

When contention occurs, it is not straightforward to compute how the
available bandwidth supply is distributed between a set of active HW-tasks.
In fact, considering n arbitrary HW-tasks and a supply S, they can be
classified in (i) those that demand less (or the same) bandwidth than the
fair share S/n, and (ii) those that demand more bandwidth than S/n, with
the result that the spare bandwidth left by HW-tasks of type (i) is fairly
re-distributed between the HW-tasks of type (ii). Algorithm 1 is presented
to account for this phenomenon and computes the actual share of bandwidth
of a supply S for each HW-task in a set CHW of contending HW-tasks.

Algorithm 1: Computing bandwidth shares.
Input: A set of HW-tasks: CHW = {τ1, . . . , τm}
Input: Sink supply: S
Output: A set of bandwidth shares: D = {D1, . . . , Dm}

1 begin
2 Srem ← S
3 M ← |CHW |
4 for τhwi ∈ CHW by increasing Di do
5 Di ← min (Di, Srem/M)

6 Srem ← Srem −Di

7 M ←M − 1

8 end
9 return D

10 end

The correctness of the algorithm is stated by the following lemma.

Lemma 1. Given a sink with supply S and a set of HW-tasks CHW that
contend for the supply, Algorithm 1 computes the actual share of bandwidth
Di assigned to each HW-task τi ∈ CHW under a fair arbitration policy which
evenly distributes the available bandwidth among the HW-tasks.

Proof. The proof is by induction on the iterative steps of the algorithm. Base
case (first iteration, M = |CHW |): Let τi be the HW-task considered at
the first iteration. If Di ≥ S/M , then by line 5 τi is assigned a bandwidth
share Di = S/M , which is correct, as it corresponds to the fair share. Since
the set of HW-tasks is explored in order of increasing Di (see line 4), then
all the following iterations will consider HW-tasks with Di ≥ S/M and,

82



Chapter 5. Enhancing BUS predictability

for the same reason, will be assigned a bandwidth equal to the fair share.
Otherwise, if Di < S/M , then the HW-task will be assigned a bandwidth
share equal to the required demand Di = Di. Note that this cannot affect
the bandwidth assignment of the other HW-tasks as Di is lower than the
fair share S/M . Inductive case (M < |CHW |): Suppose that the algorithm
assigned a correct bandwidth to the first |CHW | −M + 1 HW-tasks and that
it remains to distribute a supply bandwidth Srem to M < |CHW | HW-tasks.
Let τi be the HW-task considered at the current iteration. Similarly to the
base case, if Di ≥ Srem/M , then by line 5 τi is assigned a bandwidth share
Di = Srem/M , which is correct, as it corresponds to the fair share with
respect to the remaining M − 1 HW-tasks. Again, since the set of HW-tasks
is explored in order of increasing Di, the same will hold for all the following
iterations. Otherwise, if Di < Srem/M , then the HW-task will be assigned a
bandwidth share equal to the required demand Di = Di, which again cannot
affect a fair distribution for the following M − 1 HW-tasks. Hence the lemma
follows.

Leveraging Algorithm 1, it is finally possible to build a schedulability test
that verifies whether a set of ABUs can provide their budget within their
period P . This is accomplished by Algorithm 2, which unrolls the execution
of a set of HW-tasks protected by ABUs within an analysis window [0, P ].

The algorithm inputs the set of HW-tasks THW and the corresponding
set of ABUs A (the i-th ABU is connected to the i-th HW-task), and returns
a boolean predicate that indicates whether the ABUs are schedulable or not.
The algorithm keeps track of the analysis time t (initialized to t = 0) and the
instantaneous budget bi available for each ABU Ai, which is initialized to Bi
(full budget). At the beginning of the ABU period (t = 0), all ABUs have
available budget and hence all HW-tasks are considered active, i.e., they can
generate transactions. Consequently, at line 4, the set of active HW-tasks,
denoted with CHW , is initialized to THW . Then, the procedure enters a loop
at line 5. At each iteration, the algorithm computes the distribution of the
supply S among the active HW-tasks by means of Algorithm 1, so obtaining
the share of bandwidth Di for each HW-task τi ∈ CHW . Subsequently, it
computes the amount of time ∆ needed by at least one ABU Ai to provide
all the available budget bi, which is given by ∆ = min(bi /Di). If a HW-task
is not able to complete within the period P , then the system is deemed
unschedulable and the algorithm terminates (lines 8-9). Otherwise, the
algorithm proceeds by updating the budget of each ABU accounting for a
lower-bound on the transactions performed in an interval of length ∆ (line 12).
Also, if the budget of an ABU is depleted (bi = 0), then the corresponding
HW-task is prevented to issue transactions and hence is removed from the set
of active HW-tasks CHW (line 14).Finally, the algorithm advances the time t
by ∆ and continues to iterate until the set CHW is empty. If the algorithm
completes without never detecting a deadline miss at lines 8-9, then the
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Algorithm 2: Analysis of ABUs.
Input: A set of HW-tasks: THW = {τ0, . . . , τn}
Input: A set of ABUs: A = {A0, . . . , An}
Output: Result of the schedulability test (true/false)

1 begin
2 t← 0
3 bi ← Bi ∀i = 1, . . . , n
4 CHW ← THW
5 while CHW 6= ∅ do
6 D← Algorithm 1(CHW , S)

7 ∆← minτi∈CHW
(bi /Di)

8 if ∆ + t ≥ P then
9 return false

10 end
11 for τi ∈ CHW do
12 bi ← bi − bDi ·∆c
13 if bi = 0 then
14 CHW ← CHW \ {τi}
15 end
16 end
17 t← t+ ∆

18 end
19 return true
20 end

system is deemed schedulable. Finally, the following lemma states that the
analysis of Algorithm 2 is sustainable, i.e., increasing the ABU budgets can
only worsen the schedulability of a set of ABUs (and, vice versa, a set of
schedulable ABUs remains schedulable if the budgets are decreased).

Lemma 2. The schedulabiliy test provided by Algorithm 2 is sustainable with
respect to budgets Bi.

Proof. Suppose that a set of ABUs is not schedulable according to Algorithm 2.
Hence, there exists a certain time t at which the condition at line 8 holds.
Consider an arbitrary ABU Ai (associated to task τi) and let [0, t′) be the
interval of time in which τi is in set CHW during [0, t), i.e., t′ ≤ t. There are
two cases: (i) τi is still in set CHW at time t (i.e., t′ = t), (ii) τi left set CHW
before time t (i.e., at time t′ < t).

Case (i): In [0, t), τi always contributed to the bandwidth distribution by
means of Algorithm 1. Hence, if the budget Bi is increased, the bandwidth
shares Di assigned during [0, t) are the same and therefore the schedulability
result cannot change. If ∆ = bi/Di (i.e., at time t, τi is the task detected to
miss its deadline), then, by increasing the budget Bi, ∆ can only increase
and hence the condition at line 8 would hold too.
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Case (ii): Similarly to the previous case, τi always contributed to the
bandwidth distribution in [0, t′) and hence, if Bi is increased, the execution
of Algorithm 2 cannot change up to time t′. If the budget Bi is increased to
Bi + ε, at time t′ it can be either that the value of ∆ remains the same, or
that it increases too by ε. Consequently, τi will remain for more time into
set CHW , contributing to the bandwidth distribution also after time t′, or
still leaves set CHW at time t′. In both these cases the schedulability result
cannot change.

Hence the lemma follows.

5.5.2 Analysis example

0 Time

τ1, A1 (D1 = 4)

τ2, A2  (D2 = 5)

τ3, A3  (D3 = 4)

S 
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Figure 5.7: Example of HW-tasks executing within an ABU period.

Figure 5.7 presents an example of the schedulability test presented in
Algorithm 2 using a system composed of (i) a sink module providing a supply
of S = 7, (ii) an interconnect directly connected to the sink module, and (iii)
four HW-tasks, formally THW = {τ1, τ2, τ3, τ4}. The HW-tasks are connected
to the interconnect through their respective ABUs, A1, A2, A3, and A4. The
first HW-task (τ1) has a demand of D1 = 4 and an ABU budget B1 = 10.
The second HW-task (τ2) has a demand D2 = 5 and an ABU budget of
B2 = 25. The third HW-task τ3 has a demand of D3 = 4 and an ABU budget
B3 = 61. Finally, the last HW-task τ4 has a demand of D4 = 1 and an ABU
budget of B4 = 14. All ABUs A1, . . . , A4 are configured with the same period
P = 21.

At the beginning of the ABU period (t = 0), all HW-tasks are simultane-
ously activated (CHW ← THW ) since the ABUs’ instantaneous budgets have
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been replenished to their full capacity: b1 = 10, b2 = 25, b3 = 61, and b4 = 14.
First, the supply shares Di are computed using Algorithm 1 resulting in
D1 = 2, D2 = 2, D3 = 2, and D4 = 1. Then, the interval ∆ is computed
as ∆ = min(bi /Di) = b1 /D1 = 5. Since the sum of current time t = 0 and
∆ = 5 is less than the ABU period P = 21, the algorithm can continue by (i)
updating the instantaneous budgets b1 = 0, b2 = 15, b3 = 51, and b4 = 9; (ii)
removing τ1 from the set of active HW-task (CHW ← CHW \ {τ1}) since it
has exhausted his ABU budget; and (iii) updating the time t = t+ ∆ = 5.
In the next iteration, the new bandwidth shares are computed as D2 = 3,
D3 = 3, and D4 = 1. Then, the new interval is computed as ∆ = b2 /D2 = 5.
Consequently, (i) the instantaneous budgets are updated b2 = 0, b3 = 36, and
b4 = 4; (ii) τ2 is removed form the set of active HW-tasks (CHW ← CHW \{τ2})
having exhausted its budget; and (iii) time is updated t = t+ ∆ = 10. In the
next iteration, only τ3 and τ4 are active. Hence, the new bandwidth shares
are computed as D3 = 4 and D4 = 1, which corresponds to their demands
D3 = D3, D4 = D4 since their sum is less that the supply S = 7. The new
interval is computed as ∆ = b4 /D4 = 4. Consequently, (i) the instantaneous
budgets are updated b4 = 0 and b3 = 20; (ii) τ4 is removed form the set of
active HW-tasks (CHW ← CHW \ {τ4}) having exhausted its budget; and (iii)
time is updated t = t+ ∆ = 14. Finally, in the last iteration, the bandwidth
shares of τ3 corresponds to its demand D3 = D3 = 4. Hence, τ3 depletes its
budget at ∆ = b3 /D3 = 5, and the time can be updated to t = t+ ∆ = 19.
Since t ≤ P , all HW-task are able of exhausting their budgets within the
period. Hence, the system is feasible.

0 Time

τ1, A1 (D1 = 4)

τ2, A2  (D2 = 5)

τ3, A3  (D3 = 4)

S 
=

 7

τ4, A4  (D4 = 1)
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Figure 5.8: Example of HW-tasks executing within an ABU period with a
budget overrun.
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Figure 5.8 presents the same scheduling example with the only difference
that the ABU budget of τ3 has been increased to B3 = 73. In this case,
the system becomes unfeasible since τ3 it is unable of exhausting his budget
within a single ABU period. Please note that this happens even if the sum
of the ABU budgets is smaller than the sink capacity within an ABU period∑
Bi = 122 ≤ P · S = 147, because τ3 is unable to fully utilize the available

supply due to its limited demand.

5.5.3 Assigning ABU budgets

As ABUs act as bandwidth regulators for HW-tasks, they enforce a specific
rate at which transactions are issued. Specifically, a HW-task τi protected by
ABU Ai issues transactions at rate Bi/P as long as the ABU is guaranteed
to be schedulable according to the analysis presented in the previous section.
Therefore, to guarantee that τi is capable of performing Ni transactions
within its implicit deadline Ti, it is sufficient that the following inequality is
satisfied: Ni

Bi/P
≤ Ti. By rewriting the latter equation, it is possible to derive

a constraint on the ABU budgets to ensure the schedulability of a set THW
of HW-tasks, i.e.,

∀τi ∈ THW , Bi ≥
Ni · P
Ti

. (5.1)

Note that the same constraint can be generalized to the case of constrained
deadlines by simply replacing Ti with the relative deadline of the HW-task.

Lemma 3. If a set of HW-tasks THW = {τ0, . . . , τn} respectively protected by
a set of ABUs A = {A0, . . . , An} is not schedulable (according to Algorithm 2)
by setting the ABU budgets as Bi = Ni·P

Ti
, then it is not schedulable with any

other budget assignment.

Proof. Given the constraint of Equation (5.1), Bi = Ni·P
Ti

is the minimum
budget for each ABU Ai such that the schedulability of τi can be guaranteed.
Hence, feasible budget configurations can include only budget values larger
than Ni·P

Ti
. By Lemma 2, if a set of ABUs is not schedulable by assigning

such minimum budgets, then it is also not schedulable by assigning larger
budgets. Hence the lemma follows.

5.6 Experimental evaluation

To assess the effectiveness of the ABUs on a real hardware system, an
experimental evaluation has been conducted on the Zynq-7020 SoC platform
by Xilinx. The experimental evaluation is structured in two parts: the
first part aims at evaluating the effectiveness of the reservation mechanism
enforced by the ABUs using DMA-like HW-tasks; the second part evaluates
the ABUs with a case study application that comprises a finite impulse
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response (FIR) HW-task for signal processing and a Sobel HW-task for image
processing from OpenCV.

All HW-tasks used in this evaluation have been designed with Xilinx’s
Vivado HLS. The choice of utilizing HLS comes from the steadily increasing
relevance that high-level synthesis is assuming in the design of hardware
accelerators. For instance, a HLS tool can also be used to synthesize a
HW-task implementing a custom compute unit for executing an OpenCL
kernel. The hardware-level interface of the HW-tasks used in this evaluation
consists of (i) two AXI4 master interfaces for accessing the system memory;
(ii) one AXI4-lite slave control interface, to expose a set of memory-mapped
registers through which the software can control the HW-task; and (iii) an
interrupt signal to notify the processor when the computation of the HW-task
is completed.

Each HW-task is controlled by a periodic software task running on top of
the FreeRTOS kernel, which in turn runs upon one the Cortex-A processors of
the Zynq-7020. The software task relies on a device driver for managing the
HW-task, feeding the addresses of the source and destination memory buffers
as arguments. The driver controls the HW-tasks through the set of control
registers exported via the AXI4-lite slave interface. Each job of each software
task starts the corresponding HW-task and then self-suspends waiting for
the HW-task to complete the execution. When the HW-task has completed,
it sends an interrupt signal, which is caught by the interrupt service routine
included in the driver. The service routine, in turn, wakes up the software
task, which can then complete its job. This evaluation is focused on the
timing properties of HW-tasks only.

5.6.1 Evaluation of the reservation mechanism

The first part of the experimental evaluation aims at validating the
effectiveness of the reservation mechanism when one or more HW-tasks
deviate from the nominal behavior by demanding a higher transaction rate
and issuing more transactions than expected. Note that, from the perspective
of bus contention, the bus transactions issued by HW-tasks are the only
relevant aspect. Therefore, this evaluation employs a set of DMA-like HW-
tasks, which allows for an almost-arbitrary control of the bus transactions
that are generated. Nevertheless, also note that several hardware accelerators
for FPGAs, including those of the Xilinx’s IPs library such as FFT [25], FIR
filter [26], and Convolution Encoder [18], require the support of a DMA for
accessing the system memory.

Variants of HW-tasks

To simulate the effect of a misbehaving HW-task, three variants of the
same DMA-like HW-task have been designed. Each variant differs by the
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amount of data Ni and the demand rate Di. The parameters of these variants,
referred to as modes, are summarized in Table 5.2. The demand value in
MB/s is calculated by considering that each bus transaction involves a 32-bit
word and that the clock rate of the FPGA is set to 100 MHz. All the HW-
tasks issue 16-word burst transactions. On the Zynq-7020, the maximum
supply bandwidth S available to access the memory from the PS through a
HP port is four transactions per clock for each port, as they operate in 64-bit
mode (the DRAM clock is set to 525 MHz).

Table 5.2: Configuration of HW-tasks. The demand Di is expressed in both
transactions per clock cycle and in megabytes per second.

HW-task mode Di Ni

[tr/clk] [MB/s] [tr] [MB]
1 2 763 524288 2
2 1 381 262144 1
3 2/3 254 131072 0.5

Description of the experimental setting.

The system setup used for this evaluation comprises four DMA-like HW-
tasks allocated on the Zynq’s PL and connected to a single HP port through an
AXI Interconnect. The Interconnect is set in performance mode to maximize
the bandwidth available to the HP port. An ABU module is placed between
each HW-task and the Interconnect. The baseline configuration includes two
HW-tasks, τ1 and τ2, set in mode 1, a HW-task, τ3, operating in mode 2,
and the last HW-task τ4 set in mode 3. This configuration represents the
system operating in nominal conditions, i.e., when all the HW-tasks respect
their nominal demand Di and data length Ni values, and is referred to as
nom. To study the effect of misbehaving HW-tasks, two additional variants
of the baseline configuration have been defined. In the first misbehaving
configuration, referred to as misb-3, τ3 operates in mode 1 instead of mode 2.
This configuration, represents the case in which a single HW-task exceeds
its nominal values, demanding a higher transaction rate and length. In
the second misbehaving configuration, named misb-3-4, τ3 and τ4, normally
operating in mode 2 and mode 3 respectively, now operate in mode 1. This
configuration aims at reproducing the scenario in which two HW-tasks exceed
their nominal values.

5.6.2 Profiling HW-tasks

The first set of experiments has been carried out to characterize the
system configurations without ABUs. To this end, a separate profiling
experiment has been conducted for each configuration of the system: the
base configuration nom, and two misbehaving configurations misb-3 and
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misb-3-4. These experiments allow evaluating the impact of one or more
misbehaving HW-tasks on the response times of the other HW-tasks when
using the default round-robin arbitration policy of the Interconnect. For this
set of experiments, τ1 is activated every 10 ms, τ2 every 15 ms, τ3 every 25
ms, and τ4 every 50 ms. Measurements on the hardware have been conducted
with multiple runs by testing random activation offsets of the HW-tasks,
for a total of about 30 minutes of execution (collecting data for hundreds
of thousands of jobs). Figure 5.9 presents the results of these experiments
by reporting the longest-observed response times on the real hardware as
solid color bars. The results corresponding to the misbehaving HW-tasks are
highlighted with different colors and patterns. Comparing the response times
observed under nominal conditions (nom) with the response times obtained
under misbehaving configurations, it is evident that even a single misbehaving
HW-task (misb-3 ) could have a significant impact on the response time of
the other HW-tasks. This effect becomes even more tangible when taking
into account the configuration misb-3-4 in which two HW-tasks misbehave.
For instance, the response time of τ1 in misb-3-4 increases by more than 50%
with respect to nominal conditions.
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Figure 5.9: Response times of four HW-tasks without and with ABUs under
multiple configurations.
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5.6.3 Evaluating the reservation mechanism

The following set of experiments analyzes what happens when the ABUs
are present. These experiments serve two purposes: first, to test the effec-
tiveness of temporal isolation between HW-tasks; second, to confirm that
the assumptions made in Sections 5.2 and 5.4 to model and analyze the
system are realistic. To this end, the longest-observed response times on
the hardware have been compared with the response-time bounds computed
by the analysis of Section 5.4. The ABUs have been configured according
to the minimum budgets provided by Lemma 3 under nominal conditions.
The period of ABUs has been selected according to the following rationale.
Since the ABUs count integer transactions, the period must be chosen as the
smallest value that can ensure that all the minimum budgets provided by
Lemma 3 are integers. Furthermore, to avoid splitting transaction bursts, it
is worth choosing a period such that the budget is a multiple of the burst size.
Such a period can be easily obtained with a binary search. The resulting
ABU configuration for this experimental setting is reported in Table 5.3. The
table also reports the response times, both observed on the hardware and
obtained by the analysis proposed in this work, under configuration nom.

As it can be noted from Figure 5.9, ABUs allow controlling the longest-
observed response times (e.g., fixed to 2.98 for τ1) independently of the
behavior of the other HW-tasks; indeed, the response times are the same
even in the misbehaving configurations misb-3 and misb-3-4. Clearly, this
improvement is achieved at the expenses of the misbehaving tasks (τ3 and
τ4): in fact, their response times in misbehaving configurations is penalized.

Table 5.3: Configuration parameters for the ABUs and response times for
the corresponding HW-tasks under the nominal configuration.

HW-Task ABU Response times [ms]
Bi [tr] P [clk] Longest observed By analysis

τ1 224

128

2.982 2.995
τ2 112 5.893 5.991
τ3 32 9.876 10.485
τ4 16 9.328 10.485

5.6.4 A case study

The second part of the experimental evaluation considers a case-study
application that comprises a FIR filter HW-task for signal processing, a Sobel
HW-task for image processing, and two DMA-like HW-tasks operating in
mode 1. The FIR filter implements a 12th order low-pass filter designed to
process 16kHz audio samples with a cutoff frequency of 4 kHz. Internally, the
FIR filter uses fixed-point representations to take advantage of the FPGA’s
DSP blocks. Each instance of the FIR filter processes 1 MB of samples.
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The Sobel filter processes 640 × 480 RGB images with 24-bit color depth,
resulting in a size of 1200 KB. Table 5.4 summarizes the characteristics of
these accelerators, which both issue 16-word burst transactions.

Table 5.4: Parameters of the Sobel and FIR hardware accelerators.

HW-task Di Ni

[tr/clk] [MB/s] [tr] [KB]
Sobel 1.9 725 614400 2400
FIR 2 763 524288 2048

As visible from the trace shown in Figure 5.2, the access pattern generated
by the Sobel filter HW-task is not strictly uniform due to a short pause
occurring between two image lines. Such a signal analysis has been performed
on the real hardware by instrumenting the design with an integrated logic
analyzer (ILA) module. Clearly, the access pattern of the Sobel HW-task
violates the uniform transaction hypothesis made in Section 5.2 to model the
system. However, by performing the pessimistic assumption that the Sobel
HW-task continues issuing transactions even during the brief pause between
a line and the next, it is still possible to safely model it as a uniform access
accelerator. Such a model can be used to assign the ABU budget and compute
safe upper bounds on the response time of the Sobel HW-task. The case
study application has been tested with a set of four experiments considering
different HW-task periods and ABU budgets. Table 5.5 summarizes the
parameters used for the experiments. The ABU period P is set to 128 clock
cycles in all of the experiments. The results are reported in Figure 5.10, which
compares the response times calculated using the proposed response-time
analysis, plotted as solid bars, with the longest-observed response times
obtained on the real hardware, illustrated with striped bars. Measurements
on the hardware have been performed as described in the previous section.

The experimental results show that the ABU is indeed effective even
considering a case-study application comprising a realistic hardware workload
suited for signal and image processing. The response times bounds obtained
with the analysis are close to the longest-observed values with a maximum
relative error of 3% in the case of HW-tasks with uniform demand. As
expected, the maximum difference between the bound and the measurements
(13%) occurs for the Sobel HW-task, since it has been pessimistically modeled
by assuming a continuous bus access at its maximum rate.
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Table 5.5: Configuration parameters for the case study (HW-task periods
and ABU budgets).

Task
Experiment

1 2 3 4
Ti [ms] Bi [tr] Ti [ms] Bi [tr] Ti [ms] Bi [tr] Ti [ms] Bi [tr]

FIR 6 176 6 160 8 96 6 160
Sobel 7 160 8 144 9 112 12 96
DMA-2 10 80 12 64 6 144 7 128
DMA-1 12 64 7 112 7 128 10 80
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Figure 5.10: Response times for the case study.
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Chapter 6
Related work

This chapter compares the work presented in this thesis with other ap-
proaches available in the literature. First, the FRED framework is compared
in detail with existing solutions by systematically classifying the differences
within a taxonomy. Then, current solutions for enhancing bus predictabil-
ity and safety are compared with the proposed ABU highlighing the key
differences.
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6.1 Predictable hardware acceleration on FPGA

The solutions proposed in the literature to exploit FPGA-based hardware
acceleration are quite heterogeneous due to the evolution of such platforms
and the wide range of applications that can take advantage of this technology.
The intrinsic parallelism, the reduced interference among the running activ-
ities, and the reduced variability in the execution made such a technology
appealing for real-time applications, ranging from network management [44]
to scheduling of hard [48] and soft [28] tasks. However, current solutions are
limited to static or slowly evolving scenarios. Before analyzing the related
work on DPR for real-time task scheduling, a taxonomy is first introduced to
classify the existing solutions and precisely position the proposed approach
with respect to the literature.

6.1.1 Taxonomy

The features considered to organize the taxonomy concern the reconfigura-
tion approach, the allocation methods, the model of the FPGA reconfiguration
interface (FRI), and the types of managed tasks.

Reconfiguration approaches

They can be distinguished between static and dynamic. In a static
approach, the allocation of hardware tasks (HW-tasks) is performed at the
initialization phase, while in a dynamic approach HW-tasks can be allocated
at runtime upon specific events. Dynamic approaches can be used to support
mode-changes in the application (allowing tasks to be added and removed from
the task set) or trigger a reconfiguration every time a new job is scheduled
(job-level reconfiguration). A static approach has no runtime reconfiguration
overhead, but the maximum number of HW-tasks is limited by the physical
size of the FPGA. Dynamic approaches trade extra reconfiguration overhead
to increase the total number of HW-tasks that can be managed.

Allocation methods

They can be distinguished between slotted and slotless. In a slotted
approach, the FPGA area is partitioned into slots of given size connected via
buses provided on the static part of the FPGA. A HW-task can occupy one or
more slots. In a slotless solution, HW-tasks can arbitrarily be positioned on
the FPGA area and data are transferred through the reconfiguration interface
inside the FPGA. Slotted approaches have the advantage of having the
communication channels already in place, but the FPGA area may be partially
wasted due to slot granularity. On the other hand, slotless solutions increase
the utilization efficiency of the FPGA area, but are penalized by higher
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reconfiguration times due to the instantiation of communication channels
and the increased traffic on the FRI due to the additional data transfer.

FRI model

The FRI plays a central role in FPGAs with DPR, thus, building a proper
model of the FRI is crucial for estimating worst-case delays and enabling a real-
time analysis. The easiest approach is to reduce complexity by considering
reconfiguration delays negligible. This is a strong unrealistic assumption,
considering that, in current FPGAs, reconfiguration delays can have the
same order of magnitude of task execution times. A simple approximation
can be obtained using a constant reconfiguration time. However, since
the reconfiguration time is proportional to the number of logic cells to be
reconfigured, and the FRI is a shared resource, providing a safe bound would
introduce a huge pessimism in the analysis. Less pessimistic values can be
obtained considering the reconfiguration time composed by two elements:
one proportional to the number of logic cells to be reconfigured and one due
to the time spent in waiting for the FRI. Most of the works focused on kernel
mechanisms considered an FRI model tailored to real solutions, as the Xilinx
ICAP and PCAP ports [50].

Task model

Modern heterogeneous platforms include general purpose-processors tightly
coupled with FPGA fabric on the same chip [77]. On such platforms it is
thus possible to execute both HW-tasks, running on the FGPA, and software
tasks (SW-tasks), running on the processors.

Related work analysis

The works considered in this section are related to the proposed ap-
proach in that they provide a timing analysis under reconfigurable FPGA
architectures or propose a software support for HW-task management.

Di Natale and Bini [48] proposed an optimization method to partition
the reconfigurable area of a homogeneous FPGA platform into slots to be
allocated to HW-tasks and softcores running the remaining tasks. Given
the high computational complexity of the method, this approach can only
be used off-line to obtain a static task allocation, hence it does not exploit
the advantages of the dynamic reconfiguration. Pellizzoni and Caccamo [53]
addressed a similar problem in a more dynamic scenario, proposing an
allocation scheme and an admission test to provide real-time guarantees of
applications supporting mode changes, where tasks can either be executed in
software on a CPU or in hardware on the FPGA.

Danne and Platzner [21] presented two algorithms (one EDF-based and
one server-based) to schedule only preemptive HW-tasks, but the model
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adopted for the FPGA platform is quite simple and does not consider any
reconfiguration time and allocation constraints. Saha et. al. [59] presented a
new scheduling algorithm for preemptable HW-tasks, exploiting the higher
speed and the improved capabilities of modern reconfiguration interfaces to
dynamically change the allocation every time a task terminates. However,
this approach assumes a homogeneous partition and a fixed reconfiguration
time, which can lead to a huge waste of the area and a high pessimism in
the analysis. In summary, in all the works cited above, the models used for
the FPGA and the reconfiguration interface are too simple to describe the
limitations of the available platforms, and the corresponding approaches do
not fully exploit reconfiguration capabilities under real-time constraints.

Dittmann and Frank [24] addressed the analysis of reconfiguration requests
as a single core scheduling problem. The paper assumes a single set of
homogeneous slots managed by a non-preemptable FRI and considers only
HW-tasks (SW-tasks are not taken into account). Unfortunately, due to
missing proofs, it is not clear how response-time bounds follow. In addition,
the authors did not investigate sustainability issues and their analysis may
be affected by later-discovered misconceptions concerning non-preemptive
fixed-priority scheduling [23].

Other authors proposed methods for supporting a job-level reconfiguration
from a system perspective. The easiest solution is to communicate with a
HW-task through proper software stubs that interact with the kernel scheduler
and manage the HW-tasks at the application level. Another approach is to
extend the operating system to provide specific primitives for scheduling,
allocating, and programming HW-tasks, along with those related to SW-
tasks management. The second method increases the complexity of the
kernel, but reduces the issues related to the effects that two non-interacting
scheduling levels have on the pessimism in the timing analysis. The approach
based on the use of SW stubs has been followed by most of the authors
presenting the few working solutions actually available, because it requires
less modification in the kernel and has a reduced effects of the average
performance, which is the main concern in these solutions. For instance,
Lübbers and Platzner [42] proposed the ReconOS operating system, which
extends the classic multi-threading programming model to hardware activities
executed on a reconfigurable device. HW-tasks interact with SW-tasks threads
trough a custom developed POSIX-style API, using the same operating
system mechanisms, like semaphores, condition variables, and message queues.
Originally designed for fully reconfigurable FPGAs, this solution has then
been extended by the same authors to support partial reconfiguration [41],
with a cooperative multitasking approach to deal with slot contentions. More
recently, Happe et. al. [30] proposed an extension to the ReconOS execution
environment to provide HW-tasks preemptability. However, its focus is
on hardware enabling technologies, not on a kernel support for exploiting
this capability. Iturbe et al. [33] presented the R3TOS operating system
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to support a more dynamic task allocation, exploiting the reconfiguration
interface to avoid static communication channels. In their solution, scheduling
and allocation of HW-task is performed by a module, called HWuK, which
is also in charge of controlling the programming interface in an exclusive
manner. The authors proposed a HW-task model and algorithms for their
scheduling and allocation. However, a worst-case analysis is not provided
and nothing is said on the schedulability of SW-tasks.

Although based on a more realistic FPGA model, the approaches consid-
ered in this second set of papers have been designed to improve the average
system performance and focused on kernel implementation issues, without
deriving worst-case response times bounds. As a consequence, these methods
cannot be used for a real-time scheduling analysis.

6.1.2 Classification

Table 6.1 classifies the presented works according to the proposed tax-
onomy, also highlighting the availability of a real-time analysis (RTA) to
better emphasize the differences with respect to the proposed approach.
Summarizing, different approaches have been proposed to exploit the ad-
vantages of DPR-enabled FPGAs, but none of them provided worst-case
bounds for enabling a worst-case timing analysis of real-time sets of mixed
HW-tasks and SW-tasks. In addition, most of the previous work did not
consider heterogeneous FPGA slots. To overcome these limitations, FRED
uses a heterogeneous slotted-based design to make reconfiguration times more
predictable and derive a schedulability analysis for real-time applications
exploiting DPR capabilities. FPGA reconfiguration is managed at the job
level and the schedulability analysis takes into account the delays and the
constraints coming from the FRI.

Work Reconfig. Alloc. FRI model Tasks RTA
Lübbers, 09 Static Slotted ICAP HW/SW No
Lübbers, 10 Job-level NP Slotted ICAP HW/SW No
Happe, 15 Job-level P Slotted ICAP HW/SW No
Iturbe, 15 Job-level NP Slotless ICAP HW/SW No

Di Natale, 07 Static Slotless Not required HW/SW Yes
Pellizzoni, 07 Mode-ch NP Slotted Not addressed HW/SW Yes
Danne, 05 Job-level P Slotless Zero overhead HW Yes
Saha, 15 Job-level P Slotless Fixed overhead HW Yes

Dittmann, 07 Job-level NP Slotted General (NP) HW Yes
FRED Job-level NP Slotted General (P/NP) HW/SW Yes

Table 6.1: Classification of the related work.

98



Chapter 6. Related work

6.1.3 Linux support

Concerning the support available on Linux for FPGA-based hardware ac-
celeration and partial reconfiguration, there is a growing interest in providing
system support to these features. However, the current mainline kernel only
provides baseline support for partial reconfiguration, in the form of a common
abstraction layer above the different vendor-specific drivers. Brodersen et
al. address this problem by proposing BORPH [65], which is an extension
of Linux to allow the co-scheduling of software tasks and hardware tasks.
Similar to the ReconOS solution, they provide inter-task communication using
standard UNIX interprocess communication (IPC) semantics. Unfortunately,
the project is no more active. Hence the last release is based on an old version
of the Linux kernel, and the support for modern FPGA platforms is missing.

6.2 Enhancing bus predictability

Resource reservation techniques have been introduced in the context of
real-time systems for CPUs scheduling [56, 2, 11] and applied to share other
computational resources like programmable GPUs [36, 35]. Essentially, the
idea is assigning to each entity (e.g., task) a fraction of a shared resource under
contention (e.g., processor) in order to provide temporal isolation. Similarly,
this work adjusts the same approach to the contention of the AMBA AXI
bus in the context of hardware-programmable SoC FPGA platforms.

Many research efforts have been dedicated to the problem of bus contention
in real-time systems. Schliecker et al. [61] use an event-based model to
estimate delays for communications and computation activities on a multicore
SoC platform. Pellizzoni and Caccamo [52] analyzed the interaction between
CPU and peripherals while contending a shared main memory within a
theoretical framework and proposed a conceptual solution based on a hardware
server to control the unpredictable behavior of COTS peripherals. Betti et
al. [10] presented a framework for providing real-time guarantees in a COTS
platform. Each peripheral within the platform is supervised by a “real-time
bridge” controlled by a system-wide peripheral scheduler. Their framework has
been developed and evaluated on PC platforms with PCI Express bus while
our approach considers on-chip buses for integrated SoC-FPGA platforms.

In the context of memory contention on multicore platforms, Agrawal
et al. [4] presented a technique to perform the analysis both WCETs and
schedulability of real-time activities under dynamic memory scheduling. Yum
et al. [75] proposed a memory bandwidth reservation mechanism named
MemGuard. The system provides memory performance isolation employing
a bandwidth regulator for each core. The bandwidth regulators enforce a
budgeting mechanism and are implemented using performance counters. Our
approach is somehow related to this work since both consider bandwidth
regulation of bus master agents. However, while MemGuard considers inter-
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core interference on an Intel chip multiprocessor, our work considers bus
interference generated by hardware accelerators on the AMBA AXI bus.

In the domain of packet switching networks, many efforts have been
dedicated to the modeling and the analysis of traffic scheduling algorithms
to provide quality of service (QoS) guarantees [20, 69]. Such methodologies
have also been employed on SoCs platforms to develop and analyze arbiters
for heavily-contented resources like the system memory [5, 27]. The ABU
can be improved by leveraging the results of these works. Concerning the
development of on-chip communication infrastructures for SoC platforms,
transaction-based buses and packet-based networks on chip (NoC) remain the
dominant approaches [57]. Typically, arbitration for on-chip interconnects is
performed using Fixed Priority, Round Robin, and Time-Division Multiple
Access (TDMA). Poletti et al. presented a performance analysis comparing
different arbitration policies for SoCs platforms in [55]. A TDMA-based
arbitration scheme with dynamic timeslot allocation is employed in [57, 14] to
improve system predictability while providing good average-case performance.
Lahiri et al. [39] proposed a statistical approach to arbitration using a ticket-
based random selection which was further extended by other works [17, 40]
to improve predictability. Steine et al. [68] proposed a TDMA budget based
scheduler for data flow applications, which has been used by Staschulat et
al. [67] for memory arbitration. However, while the latter work is explicitly
targeted at embedded systems, it is still limited to dataflow applications.
Bourgade [13] proposed a bus arbitration scheme for multicore platforms
designed to ease the estimation of the tasks’ worst-case execution times.
Reconfigurable bus arbiters [74, 66] can be dynamically configured to change
the arbitration policy depending on the application requirements. Likewise,
several papers in the literature addressed the problem of designing predictable
memory controllers for multi-core architectures. Guo et al. [29] presented a
comparative analysis of predictable DRAM controllers.
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Conclusions

This thesis addressed the problem of enhancing system predictability
while using FPGA-based hardware acceleration for real-time systems. The
first part of this thesis presented FRED, a framework designed for supporting
FPGA hardware acceleration and fabric resources “virtualization” through
dynamic partial reconfiguration. The FRED framework has been convinced
to be predictable by design, ensuring bounded response times for software
activities that make use of hardware acceleration for speeding up their
computations. The proposed framework is based on a platform model that
matches the capabilities and limitations of modern SoC-FPGA platforms.
After presenting the model of the platform and the computational activities, a
scheduling infrastructure has been proposed. Such a scheduling infrastructure
has been designed to bound the delays experienced by the software activities
that make use of hardware acceleration. FRED has been prototyped on
FreeRTOS and then fully implemented on a rich operating system such as
GNU/Linux. The Linux implementation has been evaluated with a realistic
case study application showing that practical applications can indeed benefit
from dynamic hardware acceleration on SoC-FPGA platforms. The second
part of this thesis presented the ABU, a mechanism for enhancing bus
predictability and system safety on SoC-FPGA platforms. The ABU provides
a hardware-based reservation mechanism for the AMBA AXI bus aimed at
isolating hardware accelerators. After describing the internal architecture
of the ABU, a response-time in the bandwidth domain has been presented
to verify the schedulability of a set of hardware accelerators under real-time
constraints. The proposed mechanism has been implemented and validated
with real-word hardware accelerators to demonstrate its practical applicability.
A substantial experimental evaluation confirmed the effectiveness of the
proposed solution, showing that it can be implemented with a limited amount
of FPGA logic resources.
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Future research efforts will be dedicated to improving the integration
of the proposed mechanisms and to support newer SoC-FPGA platforms.
Moreover, another promising direction for further research is the integration
of the proposed mechanisms into a hypervisor. In the domain of CPS, the
isolation and reservation support provided by hypervisors are becoming
crucial for safely integrating several functionalities with different criticality on
the same platform. Applying the proposed methodologies for FPGA-based
hardware acceleration in this domain can provide substantial performance
improvements while guaranteeing the necessary predictability.
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