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Depth estimation from a single image is a key instrument for several applications from robotics to virtual reality. Traditional 3D sensors typically use stereoscopic vision, movement, or the structured light. However, these sensors depend on the environment (sun, texture) or require several equipments (camera, projector), which leads to very cumbersome systems. Recently, deep learning approaches in computer vision tasks such as object recognition and classification have brought improvements in the field of depth estimation. In this thesis, we develop methods for monocular depth estimation with deep neural network by exploring different cues : defocus blur and semantics. We conduct several experiments to understand the contribution of each cue in terms of generalization and model performance. At first, we propose an efficient convolutional neural network for depth estimation along with a conditional Generative Adversarial framework. Our method achieves performances among the best on standard datasets for depth estimation. This first approach only exploits the geometric aspects of the scene to estimate depth. Yet another known index for depth estimation is defocus blur, an optical cue fundamentally linked to depth. However, depth estimation using Depth from Defocus (DFD) with a conventional camera and a single image suffers from ambiguity relative to the focal plane and dead

Titre : Apprentissage de profondeur par flou de défocalisation : les réseaux de neurones pour l'estimation de la profondeur mono-image Mots clés : apprentissage profond, estimation de profondeur, flou de défocalisation, sémantique, apprentissage multi-tâche Résumé : L'estimation de profondeur à partir d'une seule image est maintenant cruciale pour plusieurs applications, de la robotique à la réalité virtuelle. Les capteurs 3D traditionnels exploitent typiquement la vision stéréoscopique, le mouvement ou la projection d'une lumière structurée. Cependant, ces capteurs dépendent de l'environnement (soleil, texture) ou nécessitent plusieurs périphériques (caméra, projecteur), ce qui conduit à des systèmes très encombrants. Récemment, les approches par apprentissage profond dans les tâches de vision par ordinateur telles que la reconnaissance et la classification d'objets apportent des améliorations au domaine de l'estimation de profondeur. Dans cette thèse, nous développons des méthodes pour l'estimation en profondeur avec un réseau de neurones profond en explorant différents indices, tels que le flou de défocalisation et la sémantique. Nous menons également plusieurs expériences pour comprendre la contribution de chaque indice à la performance du modèle et sa capacité de généralisation. Le premier défi concerne l'architecture réseau, qui suit habituellement les avancées proposées chaque année dans le domaine de l'apprentissage profond. Le deuxième défi est la définition d'une fonction de perte appropriée pour la régression en profondeur. Ainsi, la relation entre les réseaux et les fonctions objectives est complexe et leurs influences respectives sont difficiles à distinguer. Dans ce contexte, nous proposons un réseau de neurones convolutif efficace pour l'estimation de la profondeur ainsi qu'une stratégie d'entraînement basée sur les réseaux génératifs adversaires conditionnels. Notre méthode permet d'obtenir des performances parmi les meilleures sur les jeux de données standards. Cette première approche exploite les aspects géométriques de la scène uniquement pour en déduire la profondeur. Néanmoins, un autre indice connu pour l'estimation de profondeur est le flou de défocalisa-tion, une information optique qui lui est fondamentalement liée. Cependant, l'estimation de profondeur à l'aide du flou de défocalisation (Depth from Defocus, DFD) avec une caméra conventionnelle et une seule image souffre d'une ambiguïté dans l'estimation de profondeur par rapport au plan focal et à la zone aveugle liée à la profondeur de champ de la caméra, où aucun flou ne peut être mesuré. Nous explorons cet indice dans le contexte des réseaux de neurones profonds et nous montrons que ces modèles sont capables d'apprendre et d'utiliser implicitement cette information pour améliorer les performances et dépasser les limitations connues des approches classiques d'estimation de la profondeur par flou de défocalisation. Nous construisons également une nouvelle base de données avec de vraies images focalisées et défocalisées que nous utilisons pour valider notre approche. Néanmoins, ces indices optiques ne sont pas les seules caractéristiques possibles pour améliorer la capacité d'apprentissage d'un réseau. En fait, plusieurs bases de données existantes pour la vision par ordinateur incluent des données annotées pour plus d'une tâche spécifique. Par exemple, il est possible d'avoir la carte de profondeur ainsi qu'une carte de segmentation sémantique pour une même image. Ainsi, nous explorons l'utilisation de cette information sémantique, qui apporte une information contextuelle riche, en apprenant à la prédire conjointement avec la profondeur par une approche multi-tâche. Cette approche nous permet de réduire la taille en mémoire d'un réseau de neurones pour plusieures tâches en apprenant une représentation d'un espace abstrait complémentaire de ces objectifs. Nous démontrons des excellents résultats sur des applications dans le contexte des images aériennes ainsi que de la robotique pour la reconstruction 3D. Nous démontrons la validité de nos expériences avec plusieurs jeux de données contenant des images intérieures, extérieures et aériennes. zone, duo to camera depth of field, where no blur can be measured. Thus, we explore this cue in the context of deep neural networks and show how these models are able to learn and implicitly use this information to improve performance and overcome the known limitations of classical DFD estimation approaches. We also present a new database with real focused and defocused images that we created to validate our approach. However, these optical indices are not the only possible characteristics to improve the learning capacity of a network. In fact, several existing databases for computer vision include annotations for more than one specific task. For example, for some datasets it is possible to have the depth map as well as a semantic segmentation map for the same image. Thus, we explore the use of this semantic information, which brings rich contextual information, by learning to predict it together with depth by adopting a multitask approach. This method allows to reduce the size in memory of a neural network for several tasks by learning a representation of an abstrate space that is complementary to these objectives. We demonstrate excellent results on applications in the context of aerial imagery as well as robotics for 3D reconstruction. We demonstrate the validity of our experiments with several datasets containing indoor, outdoor and aerial images.
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Motivation

3D perception is a key instrument to interact and understand what is around us by using visual cues. Related fields as robotics and virtual reality may genuinely benefit from reliable depth estimation approach. Applications vary from obstacle avoidance, task cooperation, object manipulation and path planning, to correctly positioning a virtual object in a real scene. Though most common techniques for depth estimation rely on multiple cameras, time-of-flight methods or structured projection, we focus in this thesis in single image approaches. Indeed, compared to other mentioned methods, depth estimation from a single monocular camera is a much more attractive and versatile alternative as is does not limit the application systems in space constraints, energy consumption and computational power.

Even though humans may find it straightforward to extract monocular depth cues and understand distances between different objects from a scene while keeping only one eye opened, in computer vision, this still represents a challenge as it is an ill-posed and ambiguous problem. Recently, deep learning methods gain a lot of attention as performances in diverse tasks (e.g., object detection, semantic segmentation) have rapidly improved over the last decade. Depth estimation from a single image also benefits from this field and show impressive results. However, this domain still lacks a deeper understandability on model design and use of perceptual depth cues. In this present work, we propose new approaches to improve the performance and understanding of monocular depth estimation using deep learning.

Context

Recent advances from the last century in building more complex cameras and computers led researchers to create a field, called Computer Vision (CV), which main objective is to give a machine the ability to see and understand. This domain aims to perform several tasks from object detection and recognition, to tracking and also, depth estimation, which is the main focus of this thesis.

Due to many stages of biological evolution, our pair of eyes along with our 1.2. Context brain's capacity to process images are able to understand 3D perception from binocular and monocular cues. A very straightforward experiment to understand some of these cues can be performed with a common game for kids. It consists in challenging one to bring a pointing index finger (starting with the arm stretched) right to the point of one's nose, while keeping only one eye opened. Most kids fail miserably and bring the finger to a random point of the face, leading to some innocent laughs from the more experienced, which already trained to perform the task with one eye. This simple experiment shows us the importance of binocular cues brought by our stereo vision system. It also shows how flexible our cognitive synapses are to adapt to new situations by learning, which in this case means to adapt to a monocular configuration. Finally, using our binocular vision when looking at a far distance, we end up relying less on these cues, since our baseline (distance between the eyes) is so small. In this case, we rely on monocular cues for depth perception, e.g., texture gradient, known objects and sizes, shape from shading, linear perspective, defocus.

In computer vision, we do not have this amazing complex brain developed during millions of years of evolution to adapt to new tasks from experience. We have memory and processing units. When handling images, machines deal with an abundance of pixels with brightness information and basically, they do not know what to do with it. Extracting information from these values means building a model to explain their relations. To perform a certain task a computer vision algorithm explores gradients, defines features and relations between these and their positions to finally output the desired prediction corresponding to the target objective.

The aforementioned steps stand for a simple illustration to much more complex model-based techniques, which consist of developing explicit mathematical representation and rules for some task. Indeed, the evolution of these model-based approaches finally became insufficient for our needs, despite not losing importance in research. In fact, one cannot write down an algorithm to model each existing task or object in nature. At this point it seamed more interesting to give a machine the ability to learn. Arthur Samuel, in 1959, put a name to this new domain, calling it Machine Learning (ML) [START_REF] Samuel | Some studies coin machine learning using the game of checkers[END_REF]. This name is fruitful for science fiction books and movies where robots rule the world. However, we cannot forget a machine is basically memory and processing. It is still far from the complexity of biological brains. Giving a machine the ability to learn means to create a parametrized model that can be updated from experience, with respect to some task, according to a performance metric [START_REF] Mitchell | Machine learning[END_REF].

In the last few years, both domains, ML and CV, experimented many steps of evolution, notably with the increasing computational power of Graphic Processing Unities (GPUs), and availability of data. Finally a sub-field of ML, Deep Learning (DL) [START_REF] Hinton | A fast learning algorithm for deep belief nets[END_REF], was created to process larger volumes of data with the capability to generate mapping functions with increasing complexity. It consists of deep architectures of convolutional, regularization and non-linear layers. This new domain has the ability to extract image representations with multiple levels of abstraction [START_REF] Lecun | Deep learning[END_REF], which is bringing outstanding results in computer vision's already mentioned tasks and also other domains like Natural Language Processing (NPL) and robotics.

In this context, depth estimation also made great progress due to the availability of labelled datasets [START_REF] Silberman | Indoor segmentation and support inference from rgbd images[END_REF][START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] containing pairs of Red Green Blue (RGB) images and corresponding depth maps obtained cheaply by so-called RGB-D sensors (e.g., Microsoft Kinect). Contributions for these tasks have high impact on several other domains as augmented reality, where the machine must be able to place a virtual object with the right scale and orientation in a scene; robotics and autonomous driving, where depth information is essential to move in a certain environment; and human-machine interaction.

Problem Statement

In the last section, we briefly discussed about the importance of monocular and binocular cues for 3D perception. We also presented two important fields related to translating this understanding to the machine: CV and ML. Although depth estimation from a single image using ML has reached significant improvement and impressive performance in the last few years, much still remains poorly understood. Indeed, the importance of knowing how deep neural networks learn and work is deeply related to the safety of the application system. In order to make progress, we need to be certain our model can adapt and operate even when unknown rules apply. In this thesis, we propose to answer some of these open questions:

• On the design of the best ML model for monocular depth estimation: how do particular choices of network architectures, loss functions and experimental conditions affect on the robustness of the deep network?

• On the joint development of an optical sensor and ML algorithm: how do optics and sensor design influence on depth information learning and how can we explore both domains to co-design an optimal system?

• On the robustness of the deep model to experiments in-the-wild: as ML models are sensitive to training data, can optical cues help the model improve performance on new data from different domains?

• On the use of semantics to improve depth estimation: how to benefit from transfer across tasks to perform both semantic segmentation and depth estimation?

We start our study by presenting an overview of some of the most important contributions of the state-of-the-art for depth prediction. In the following section, we present general highlights of model and data-based techniques for depth estimation. We limit our analysis to passive-only techniques, which, in contrast to active methods, do not rely on further projections. A more detailed state-of-the-art will be developed in each chapter separately.

Visual Cues for 3D Depth Perception and Model-Based Approaches

In this section, we review a few of these perceptual informations and corresponding classical model-based techniques (i.e. without learning) to explore them in depth estimation. To facilitate our analysis, we group these methods by the corresponding cue in use: monocular or binocular. This study will help us to understand how does neural networks possibly explore an image to extract important information to the desired task.

Binocular Cue

Stereopsis (stereo vision) is a binocular cue which explores the apparent motion between images (parallax) from slightly different points of view. To correctly estimate disparity and thus give accurate depth estimation, we must rely on a finely calibrated system, and also on efficient feature extraction and corresponding 3D points matching methods. Most improvements in stereo vision are related to these last two challenges. Among one of the most popular methods, the Semi-Global Matching algorithm (SGM) [START_REF] Hirschmüller | Accurate and efficient stereo processing by semi-global matching and mutual information[END_REF][START_REF] Hirschmuller | Stereo processing by semiglobal matching and mutual information[END_REF][START_REF] Hirschmüller | Memory efficient semi-global matching[END_REF] offers a good tradeoff between accuracy and computational efficiency. It combines concepts of global and local methods to minimize a pixel-wise matching cost and a pairwise smoothness terms.

However, stereo methods are limited by the baseline distance and also by the need of textured information to make correspondences between feature points. Despite these limitations, parallax is the most used cue for depth estimation [START_REF] Saxena | Depth estimation using monocular and stereo cues[END_REF].

Monocular Cues

Structure from motion (SfM) [START_REF] Ullman | The interpretation of structure from motion[END_REF] is related to another group of techniques that rely on geometrical aspects from stereo vision, as parallax, for 3D reconstruction with a single camera. However, instead of directly using camera parameters to estimate depth, it aims at finding the 3D structure of a stationary scene from a set of 2D images via camera motion estimation. It is usually adopted in conjunction with a Multi view stereo (MVS) algorithm to take the estimated location and orientation of the object w.r.t. (with respect to) the camera to build a dense 3D point cloud.

Challenges in Structure from Motion (SfM) are in the field of bundle adjustment to optimize a cost function known as the total reprojection error. SfM methods can be classified between offline methods and online methods. Offline variants, also denoted as photogrammetry, usually exhaustively process all data before global reconstruction. In opposition, online approaches handle information incrementally to perform reconstruction while data are being acquired, as in Simultaneous Localization and Mapping (SLAM) [START_REF] Durrant-Whyte | Simultaneous localization and mapping: part i[END_REF] and in Visual Odometry (VO) [START_REF] Nistér | Visual odometry[END_REF]. However, ambiguity remains a problem as it becomes impossible to recover the absolute scale of a scene. Indeed, these latter techniques usually rely on geometric features and not on semantic information, though it is an important feature that can bring information on objects scale.

Shading is related to techniques that perform Shape from Shading, which relies on the basics that shape and position of an object in space can be defined by how the light falls on and reflects off its surface. Shape information is derived from gradual variation of shading in the image, the luminance gradient. [START_REF] Horn | Shape from shading. chapter Obtaining Shape from Shading Information[END_REF] focused on finding the non-linear first order solution of the brightness equation. Subsequent works propose new approaches on developing further analytical solutions and optimization techniques [START_REF] Zhang | Shape-from-shading: a survey[END_REF][START_REF] Durou | Numerical methods for shapefrom-shading: A new survey with benchmarks[END_REF]. Shape from shading is still an ill-posed problem with many solutions even with a complete control of the experimental setup. For example, it can be due to the fact that there are ambiguities on concave and convex surfaces. Usually, some assumptions are made to simplify the problem, such as that all the parameters of the light source, surface reflectance and camera are known.

Texture gradient is related to Shape from Texture methods which explore the fact that closer objects show richer texture information than farther ones [START_REF] Super | Shape from texture using local spectral moments[END_REF], as they capture the distribution of the direction of edges.

In [START_REF] Clerc | The texture gradient equation for recovering shape from texture[END_REF], they develop a deformation gradient estimator under perspective projection to measure relative metric changes between the surface and the image plane which is related to 3D shape of an object.

The dependency of rich texture information leads to poor performance of these techniques. Also, they need complementary global features to predict reliable depth or shape information.

Defocus blur refer to a loss of sharpness related to the distance with the camera in-focus plane. The amount of blur visible in an image is a function of the lens aperture, the camera pixel size and the location of the object w.r.t. the in-focus plane.

In computational photography, several works investigated the use of defocus blur to infer depth, starting from [START_REF] Pentland | A new sense for depth of field[END_REF]. Early works used two images with various settings. This restricts the use for static scenes only, otherwise it requires a specific and complex optical apparatus [START_REF] Green | Multi-aperture photography[END_REF][START_REF] Nagahara | Programmable aperture camera using lcos[END_REF]. Recent works usually use DFD with a single image (SIDFD). Although the acquisition is simple, it also leads to more complex processing as both the scene and the blur are unknown. State of the art approaches use analytical models for the scene such as sharp edges models [START_REF] Zhuo | Defocus map estimation from a single image[END_REF] or statistical scene Gaussian priors [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF][START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF] DFD with a conventional camera and a single image suffers from ambiguity in depth estimation with respect to the focal plane and dead zone, due to the camera depth of field, where no blur can be measured. Moreover, DFD requires a scene model and an explicit calibration between blur level and depth value to estimate 3D information from an unknown scene.

The aforementioned methods use model-based approaches to extract depth from the images. Monocular cues are good for local depth estimations, but usually rely on other techniques to extract global features for predicting a complete depth map from an image. In the following, we look into machine learning methods for monocular depth estimation.

Depth Estimation with Deep Learning

A Brief History of Neural Networks

Machine learning has gained much attention in the last few years thanks to the impressive results in many fields of application from research on health to robotics. The first mathematical models date back to the Perceptron algorithm [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF][START_REF] Rosenblatt | Principles of neurodynamics. perceptrons and the theory of brain mechanisms[END_REF], which was inspired on Hebb's rule [START_REF] Hebb | The organization of behavior: a neuropsychological theory[END_REF] on the importance of strong connectivity between neurons to perform learning.

Depth Estimation with Deep Learning

This emerging domain felt into a controversial period when some of its limitations were pointed by [START_REF] Minsky | Perceptrons: An introduction to computational geometry[END_REF] and further advances came slow. It was only years later that a core part of ML was developed bringing a new series of improvements. Indeed, one the most important contributions was the advanced gradient descent technique, or reverse mode of automatic differentiation, proposed in [START_REF] Linnainmaa | The representation of the cumulative rounding error of an algorithm as a taylor expansion of the local rounding errors[END_REF][START_REF] Linnainmaa | Taylor expansion of the accumulated rounding error[END_REF], [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF]. Until here, backpropagation, i.e. the gradient of the error function w.r.t. Neural Network (NN)'s weight, was calculated through standard Jacobian matrix calculations layer per layer [START_REF] Schmidhuber | Deep learning in neural networks: An overview[END_REF]. From these works, [START_REF] Werbos | Beyond regression:" new tools for prediction and analysis in the behavioral sciences[END_REF][START_REF] Werbos | Applications of advances in nonlinear sensitivity analysis[END_REF] derived the first use of automatic backpropagation with NN and finally it was applied to CNNs in [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF] with the release of the well-known handwritten dataset, MNIST.

In the 2000's, NNs were giving decent results on object classification compared the concurrent methods at the time. A new sub-field of ML, DL, started shy by increasing the number of layers in the CNNs, allowing the model to increase its complexity to represent the desired mapping. But at this time there was not much data and computers were slow.

Finally, ImageNet [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF] was released with nearly 1.2M training samples from 1000 classes and a first CNN was adapted to a GPUs [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], significantly reducing training time and increasing the possibility to create deeper networks.

These first successful applications rapidly brought the interest from other domains of study and created new needs for datasets and methods. It was the case of depth estimation, which is our main interest in this thesis.

Deep Depth Estimation

Several works have been developed to perform monocular depth estimation based on machine learning techniques. One of the first solutions was presented by [START_REF] Saxena | Learning Depth from Single Monocular Images[END_REF], which formulate the depth estimation for the Make3D dataset as a Markov Random Field (MRF) problem with horizontally aligned images using a multi-scale architecture.

Thanks to easily generated Red Green Blue Depth (RGB-D) data, several approaches based on deep learning, referred as deep depth, have been proposed in recent years.

Most contributions in deep depth are performed in a supervised learning fashion. This is most common type of learning and considers that the dataset contains both samples of labelled data (x i , y i ) i∈N , where x represents an input and y, the corresponding output. Some works also perform depth estimation with an unsupervised learning method, on which the dataset has no labels for the objective task and the network learns to find the desired pattern on the existing labels.

In deep depth estimation, observed improvements are typically proposed in the network architecture, loss function or post-processing for depth refinement. [START_REF] Eigen | Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture[END_REF], [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF] proposed a multi-scale architecture capable of extracting global and local information from the scene to estimate the corresponding depth map. These works show a carefully designed scale-invariant loss, improved in [START_REF] Eigen | Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture[END_REF] to use gradient features. [START_REF] Wang | Towards unified depth and semantic prediction from a single image[END_REF] extended [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF] by exploring joint depth and semantic prediction with a hierarchical Conditional Random Field (HCRF). CRFs are also explored as a post-processing step by [START_REF] Cao | Estimating depth from monocular images as classification using deep fully convolutional residual networks[END_REF] to improve reliability of the predictions More recently, in Deep Ordinal Regression Network (DORN), [START_REF] Fu | Deep ordinal regression network for monocular depth estimation[END_REF] propose to restructure the depth maps to use classification instead of regression. This is carefully done by designing a loss function capable of establishing an ordinal relation between classes.

Optical Cues and Deep Learning

In Section 1.4, we reviewed some model-based techniques that explore visual cues to predict depth. These optical cues can also be explored with neural networks to improve predictions, for example, defocus blur. Few contributions in deep learning successfully integrate there cues during training in a supervised and unsupervised fashion. [START_REF] Anwar | Depth estimation and blur removal from a single out-of-focus image[END_REF] present a network for depth estimation and deblurring using a single defocused image. However, to perform supervised training, they 1.6. Thesis Structure create a synthetically defocused dataset from real images without consideration of a realistic blur variation with respect to the depth, nor sensor settings (e.g., camera aperture, focal distance). Instead, [START_REF] Hazirbas | Deep depth from focus[END_REF] created a new dataset with unconventional optics to perform depth estimation. [START_REF] Srinivasan | Aperture supervision for monocular depth estimation[END_REF] use aperture supervision to improve rendered images with defocus blur from predicted depth maps. Finally, (Gur and Wolf, 2019) propose to estimate depth from focus cues in an unsupervised manner.

Thesis Structure

The outline of this dissertation is as follows.

• Chapter 2: Depth estimation from a single monocular image has reached great performances thanks to recent works based on deep networks, as reviewed in section 1.5. However, as various choices of losses, architectures and experimental conditions are proposed in the literature, it is difficult to establish their respective influence on the performances. Thus, here we propose an in-depth study of various losses and experimental conditions for depth regression, such as front-end architecture and number of training samples. From this study we propose a new network architecture for depth estimation, called D3-Net, combining an encoder-decoder architecture with an adversarial loss. This network reaches top scores in the competitive evaluation of a standard dataset while being simpler to train in a single phase.

• Chapter 3: Recent approaches in depth estimation with deep learning exploit geometrical structures of all-in-focus scenes to predict corresponding depth maps. However, typical cameras also produce images with more or less pronounced defocus blur depending on the depth of the objects of a scene and camera settings (e.g., aperture, focus, shutter speed). These features may represent an important hint on learning depth prediction with deep neural networks as they are strongly correlated to depth information.

In this chapter, we study the influence of defocus blur in depth estimation performance with a network architecture having close to state-of-the-art performances on depth estimation with deep learning from both all-in-focus and defocused images datasets. We show that out-of-focus blur improves depth prediction performance and we also investigate the influence of blur in the depth prediction observing model uncertainty with a Bayesian neural network approach.

• Chapter 4: Many datasets for depth estimation also contain data for other objectives such as semantic and instance segmentation. This extra information can be an important cue to improve the model's performance using Multi-Task Learning techniques. In this chapter, we explore joint estimation of semantics and depth maps within two different domains: aerial imagery and robotics. In the first part of this chapter, we derive D3-Net to the multi-objective approach to jointly estimate semantics and height information. Our method successfully outperforms state-of-the-art techniques without post-processing and using Very High Definition samples. We also conduct experiments to analyse the uncertainty of the network on predictions for this domain and multi-task configuration. In the second part of the chapter, we propose an efficient method to jointly learn semantic segmentation and depth refinement for 3D semantic reconstruction for autonomous navigation. Our pipeline consists of a deep neural network structure and an iterative way to create a consistent 3D semantic mesh from the network's predictions. The performances of each step of the proposed method are evaluated on the 3D Reconstruction Meets Semantics (3DRMS) dataset and surpass state-of-the-art approaches.

Contributions

In this dissertation, we develop an approach to estimate a depth map using a single image as input and deep learning techniques. We summarise our main contributions as follows:

• We propose a new deep network architecture to perform deep depth estimation. We show the performance of our model is very competitive over state-of-the-art approaches.

• We show that optical cues can be implicitly learned by a deep neural network to improve depth estimation even on never seen scenes. This work leads to producing a system that overcomes ambiguity and need of through calibration of traditional approaches.

• We also show that semantics may bring complementary information for depth estimation with the use of multi-task learning techniques.

In the previous chapter, we reviewed classical and recent techniques to estimate a depth map from a single image. We discussed the advantages and disadvantages of different approaches that make use of diverse monocular and stereo cues to this aim. We also exposed recent advances in DL which brought significant improvement to this domain thanks to more robust and refined models as well as for the the increasing amount of available data. However, some properties and training choices remain poorly understood, as for example the impact of the cost function on optimising the parameters of the network, which we are going to address here.

In this chapter we propose a CNN architecture and we adopt an end-to-end routine to experiment different loss functions from the state-of-the-art in deep depth estimation. We study the influence of particular choices of commonly adopted loss functions on the robustness of a deep neural network model for depth estimation. More concretely, this approach allows to leverage learning dynamics and performance for the proposed optimisation methods. From this study we propose a new network for depth estimation combining an encoder-decoder architecture with an adversarial loss. This network reached top scores on the competitive benchmark based on the NYUv2 dataset, while being one of the simplest to train in a single phase. This work has been published in [START_REF] Carvalho | Estimation de profondeur à partir d'une seule image avec un réseau adversaire[END_REF]Carvalho et al. ( , 2018c) ) and code is provided in https://github.com/marcelampc/d3net_depth_estimation.

Introduction

Current approaches for depth estimation using deep neural networks usually optimize a pixel-wise regression model on the reference depth map. They exploit geometrical aspects of a scene from a single point of view (a single image) to esti-mate the 3D structure with the use of convolutional neural networks (CNNs) [START_REF] Eigen | Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture[END_REF], [START_REF] Liu | Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields[END_REF], [START_REF] Wang | Towards unified depth and semantic prediction from a single image[END_REF]. The first main challenge faced by the aforementioned papers is defining an appropriate loss function for depth regression. The L 2 norm has often been a popular choice for this task, but a custom loss [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF] and, more recently, an adversarial loss [START_REF] Jung | Depth prediction from a single image with conditional adversarial networks[END_REF] have also been adopted with success. Even though information to drive learning of the network comes from an effective loss function, this one lacks of attention in research studies.

The second challenge concerns the network architecture, which usually follows the advances proposed every year in this flourishing field: VGG16 (Eigen andFergus, 2015, Liu et al., 2015b), fully convolutional encoder-decoders [START_REF] Ummenhofer | Demon: Depth and motion network for learning monocular stereo[END_REF], Residual Networks (ResNet) [START_REF] Laina | Deeper depth prediction with fully convolutional residual networks[END_REF]. Thus, the relationship between networks and objective functions is intricate, and their respective influences are difficult to distinguish.

In this chapter, we lead an in-depth study of the various losses adopted until now, also analysing standard regression losses. We highlight the main contributions as follows:

• We propose D3-Net, a deep neural network based on the reuse of feature maps, dedicated to depth estimation which is simple and efficient to train;

• We show that on small training datasets, the simple L 1 loss usually performs better than previously proposed losses alongside with scale-invariant loss;

• We also show that with large training data, we can benefit from an adversarial loss to get even finer details in depth estimates, possibly because there is no mode collapse [START_REF] Mao | Least squares generative adversarial networks[END_REF] in such cases;

• We show that our best approach, which consists of an encoder-decoder network with dense blocks and skip connections and an adversarial loss, is among the top ones of the state of the art on NYUv2 [START_REF] Silberman | Indoor segmentation and support inference from rgbd images[END_REF] while being simpler to train than previous models.

We first provide, in section 2.2, a review of DL's basic mathematical concepts and most commonly adopted loss functions for supervised depth estimation. We describe in section 2.3 our deep network, D3-Net, and common variations from the literature. In section 2.4, we perform a thorough analysis to estimate network's convergence properties with different metrics from state-of-the-art.

Objective Regression for Depth Estimation

Machine Learning Basics

The basic goal in ML is to build a parametrized statistical model to reflect important aspects of the objective in study by tuning its parameters on learning. The simplest form of machine learning is a supervised learning algorithm called linear regression [START_REF] Legendre | Nouvelles méthodes pour la détermination des orbites des comètes[END_REF][START_REF] Gauss | Theoria motus corporum coelestium in sectionibus conicis solem ambientium[END_REF], which intends to find a linear function (linear model) that fits best a certain collection of samples. In the next section, we provide a brief review on linear regression.

Supervised Learning

Suppose we have a training set, D, with N datapoints. Using a parametrized notation, D consists in pairs of samples from an input vector, x ∈ X , and corresponding target vector, y ∈ Y. Our objective is to find a general model, y = f (x), where f : X → Y. In other words, considering a set of candidate functions, F, we want to find the optimal function f * ∈ F so that for a training example,

(x (i) , y (i) ) i∈[N ] , we have y (i) ≈ f * (x (i) ).
In linear regression, the function f is linear, thus,

f θ (x) = N j θ j x j = θ ⊺ x, (2.1) 
where j ∈ [Q]|X = R Q , and θ j 's are the parameters that characterize a family of functions, f θ . To fit our model to D, we search for an intelligent choice of parameters, θ, that minimizes a cost function, 2.2. Objective Regression for Depth Estimation

J(θ) = E[L(f (x, θ), y)]. (2.2)
J(θ) is also referred to loss or objective function and measures the error between the prediction, ŷi , and the desired output, y i . Let E[•] be the expectation on the training set performance (i.e. the measurement of the generalization performance [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF]) and L represents the chosen loss function, such as

L(•, •) : Y × Y → R + .
Back to linear regression, in eq. 2.3 we adopt a L 2 norm so,

J(θ) ≈ 1 2 N i (θ T x (i) -y (i) ) 2 , (2.3)
thus, our objective is to find f * = f θ * , so that,

θ * = arg min θ J(θ) (2.4) 
To minimize J, most-common methods, like the gradient descent [START_REF] Cauchy | Méthode générale pour la résolution des systemes d'équations simultanées[END_REF][START_REF] Rumelhart | Learning internal representations by error propagation[END_REF] algorithm, consider J(θ) and its gradient, ∇J θ , which corresponds the partial derivative of J(θ), w.r.t. the model's weights (parameters).

The above mentioned gradient descent method is a common alternative to optimize the parameters of the model iteratively by evaluating the error and the gradient w.r.t. the complete D as,

θ t = θ t-1 -γ∇ θ E[J(θ)] (2.5)
where γ is a chosen gain or step to update θ. Common variations include the Stochastic Gradient Descent (SGD) [START_REF] Robbins | A stochastic approximation method[END_REF], which is more adapted to large amount of data as parameters are updated for each training pair {x (i) , y (i) }, as

θ t = θ t-1 -γ∇ θ J(θ; x (i) , y (i) ). (2.6)
The optimisation of the model's parameter is deeply related to the gradient estimation, ∇ θ J(θ), which is commonly done by backpropagation, as already men-tioned in section 1.5.1.

A commonly used gradient descent optimisation algorithm in DL is the Adaptive Moment Estimation (Kingma and Ba, 2014a), Adam, which computes adaptive learning rates for each network parameter w.r.t. the first ( m t-1 ) and the second ( v t-1 ) bias-corrected moments of the gradients.

θ t = θ t-1 -γ mt-1 vt-1 + ϵ , (2.7) 
where ϵ is a very small constant.

Convolutional Neural Networks and Deep Learning

The classic neural network architecture, the Multilayer Perceptron (MLP), is an evolution of the original Perceptron model of [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF] and consist on one or multiple hidden layers which weights are fully connected to all units from the input. Increasing the number of hidden layers leads to a more complex parametrized function with more capability to learn the desired distribution. In CV, however, this configuration is particularly expensive in terms of computation as images represent a large input that would require a high number of connections. These limitations motivated the development of a neural networks based on local connections and shared weights, the Convolutional Neural Networks [START_REF] Lecun | Handwritten digit recognition with a backpropagation network[END_REF][START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF][START_REF] Lecun | Learning algorithms for classification: A comparison on handwritten digit recognition[END_REF], which consist of successive convolutional operations between layers. They also had the particularity of being much easier to train and to give better generalization than fully-connected networks [START_REF] Lecun | Deep learning[END_REF].

The success of this structure associated to further advances on computational capacity with the GPUs and to the availability of a large amount of labeled data raised the interest of the CV and ML communities in the development of new NNs with increasing degrees of complexity and depth [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF].

In Fig. 2.1, we observe an illustration of a widely used CNN, called VGG-16, originally proposed for image recognition. We observe some other layers additionally to convolutional operations which help the network to improve generalization and learning. In the following, we list some of the most common intermediate lay- ers. We will not enter in details of these structures, thus, we recommend original publications, or referred ones, for further information.

• Regularization layers: Dropout [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF], L 2 regularization;

• Normalization layers: batch normalization, BatchNorm [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF];

• Activation layers: softmax, tanh, Rectified Linear Unit (ReLU) [START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF];

• Pooling: max-pooling, average pooling [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF]; However, naively deepening the architectures by stacking more convolutional layers may enforce the problem of vanishing gradients, which occurs when gradient values approaches to 0 and the network does not learn well.

Residual Networks (ResNet) [START_REF] He | Deep residual learning for image recognition[END_REF] presented a solution to overcome this problem by adopting a residual learning technique. Instead of learning the complete feature map, residual layers learn only the residual function with the insertion of shortcut connections.

The output of a standard residual block, illustrated in Fig. 2.2(b), corresponds to: (2.8) x e l = T (G l (x e l-1 ) + x e l-1 ), where G l (•) refers to a composite function with the following operations: 3 × 3 convolution, a ReLU, 3×3 convolution. T (•) refers to a ReLU operation. Also, for deeper versions of ResNet, the bottleneck version of G l (•) refers to the following operations: 1 × 1 convolution, RelU, 3 × 3 convolution, RelU, 1 × 1 convolution. Further improvements consider a BatchNorm layer after each convolutional layer.

Densely Connected Convolutional Networks (DenseNet) [START_REF] Huang | Densely connected convolutional networks[END_REF] propose to explore the use of skip connections between layers with the same resolution. Here, instead of adding a feature map to a residual information, these blocks concatenate past feature maps to benefit from low-level feature activations in addition to high level feature activations. DenseNets proved to be efficient for image classification.

The output of a dense block, illustrated in Fig. 2.2(c), corresponds to:

(2.9) x e l = M l ([x e 0 , x e 1 , ..., x e l-1 ]),

where [x e 0 , x e 1 , ..., x e l-1 ] refers to the concatenation of the feature maps from the last l layers and M (.) refers to the composite function of the following operations: BatchNorm, ReLU, 3 × 3 convolution. The original implementation suggests the use of a growth rate (k) to limit the number of feature maps from each layer.

U-Net was originally proposed for segmentation of medical images in [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. This network is made of two subsequent parts, the first is the encoder that will map the input image to feature maps with high-abstraction level with low-resolution that will be further mapped to the desired output space by the decoder. The main contribution of U-Net lies in the use of fast-forward connections to directly connect convolutional blocks of same resolution between the encoder and the decoder parts. Just as in DenseNet, this allows the network to profit from already existing feature maps to decode information without losing too much information as image is encoded. So, for a generic layer d i of the decoder, its output is given by: (2.10)

x d l = W l ([x d l-1 , x e l-1 ]),
where W i (.) corresponds to the operations applied to the concatenation [.] of the feature maps from the last decoder layer d i-1 and its equivalent feature maps with the same spatial resolution from the encoder e i-1 . W i (.) depends on the choice of the block on the decoder.

Standard Loss Functions for Depth Estimation

Recently, most new methods for depth estimation are based on Deep Convolutional Neural Network (DCNN) and trained with on pixel-wise regression. In this section, we present some related works and cost functions associated to measure the error on deep depth estimation, which we are going to explore in this work.

Classical Norms

Most works simply used standard regression losses like mean absolute (L 1 ),

L 1 = 1 N N i |y (i) -ŷ(i) | (2.11)
and mean square (L 2 ), (2.12) to train their networks (Xu et al., 2018a, Ma and[START_REF] Ma | Sparse-to-dense: Depth prediction from sparse depth samples and a single image[END_REF]. Thus, most contributions focus in the network architectures and the use of Conditional Random Fields (CRF) to regularize the output.

L 2 = 1 N N i (y (i) -ŷ(i) ) 2 ,

Task-specific losses

One of the first network architectures was proposed by Eigen et al. ( 2014) who adopted a multi-scale DCNN. They also propose a scale-invariant loss, carefully designed to encourage neighbour pixels to have similar depth values:

L eigen = 1 N N i (d (i) ) 2 - λ N 2 ( N i d (i) ) 2 (2.13)
where N is the number of output pixels,

d (i) = log(y (i) ) -log(ŷ (i)
), such as y and ŷ correspond to the ground truth and the predicted depth map, and λ is a parameter to balance contribution of the scale-invariant term over the first term of the equation, the L 2 norm. In the original paper, λ = 0.5. Later, [START_REF] Wang | Towards unified depth and semantic prediction from a single image[END_REF] extended this work by exploring joint depth and semantic prediction with a hierarchical Conditional Random Field (HCRF). Then, [START_REF] Eigen | Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture[END_REF] included first order gradients in the loss to enforce close local structure on depth prediction as, (2.14) i) and ∇ y d (i) be the horizontal and vertical gradients of d (i) . [START_REF] Laina | Deeper depth prediction with fully convolutional residual networks[END_REF] claim empirical improvements due to the loss design using the L berhu (eq. 2.15), instead of L 2 alone, but their method also includes a new network and a new component, the up-projection blocks. Comparison between losses is performed only between L berhu and L 2 .

L eigengrad = 1 N N i (d (i) ) 2 - λ 2N 2 ( N i d (i) ) 2 + 1 N N i [(∇ x d (i) ) 2 + (∇ y d (i) ) 2 ], let ∇ x d (
L berhu =    L 1 (y (i) , ŷ(i) ) L 1 (y (i) , ŷ(i) ) ⪕ c, L 2 (y (i) ,ŷ (i) )+c 2 2c
else.

(2.15)

This work was extended in [START_REF] Ma | Sparse-to-dense: Depth prediction from sparse depth samples and a single image[END_REF] with adoption of an L 1 loss.

Finally, [START_REF] Kendall | What uncertainties do we need in bayesian deep learning for computer vision[END_REF] proposed a Bayesian network based on the architecture in [START_REF] Huang | Densely connected convolutional networks[END_REF], [START_REF] Jégou | The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation[END_REF] combined to a novel regression function that captures the uncertainty of the data (noisy observations) to improve learning, based on [START_REF] Kendall | Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding[END_REF].

The aforementioned losses are all based on handcrafted functions, i.e. a distance measurement between datapoints that does not change during learning. However, it is still unclear that these designed equations are the best way possible to measure the error between two high-dimensional spaces corresponding to the desired output and the predicted one for a NN.

In this manner, recently [START_REF] Goodfellow | Generative adversarial nets[END_REF] proposed to adopt an adversarial network model to learn a metric between two distributions and possibly give further information to learn the desired task, this framework is known as the Generative Adversarial Networks (GANs).

Generative Adversarial Networks

Since their introduction in [START_REF] Goodfellow | Generative adversarial nets[END_REF], GANs became a very popular way to learn high-dimensional data distribution. As illustrated in Fig. 2.3, this framework consists of two networks trained with adversarial objectives, the generator G and the discriminator D. While the first network learns to capture data distribution in order to generate realistic outputs, the second one is trained to classify the likeliness of its inputs to the real distribution. Despite their success, these networks are highly unstable and very tricky to train. However, many contributions that followed the original paper either proposed new ways to im-prove stability and generalization, either proposed to adapt the framework to a new application with impressive results [START_REF] Arjovsky | Wasserstein gan[END_REF][START_REF] Mao | Least squares generative adversarial networks[END_REF][START_REF] Thanh-Tung | Improving generalization and stability of generative adversarial networks[END_REF][START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF].

Notation. The generator G(•) is a differentiable model (NN) trained to learn the mapping G : Z → D, let z ∈ Z be an input vector from a known prior distributions p z (•) and x ∈ X be the real dataset from an unknown density function p data (•). This mapping defines an implicit distribution p g (•) meant to be as close as possible to the data distribution. Accordingly, a second NN is defined, the discriminator D, which is trained as a classifier with the sigmoid cross entropy loss function to distinguish real samples that belongs to p data (•) from fake samples that belongs to p g (•).

Finally, these two networks are trained to solve a minmax game with the objective function, (2.16)

min G max D J gan (G, D) = E x∼p data (x) [log(D(x))] + E z∼pz(z) [log(1 -D(G(z)))]
which corresponds to the Jensen-Shannon divergence (JSD) between p data and p g , as pointed out in [START_REF] Goodfellow | Generative adversarial nets[END_REF]. In concrete, G and D are trained in separate phases. D is trained in a supervised manner with a pair {G(z (i) ), 0} (i∈N ) when given a fake sample and {x (i) , 1} (i∈N ) , when given a true sample. Then, the generator G is optimized giving a pair {G(z (i) ), 1} (i∈N ) to D, while D is not updated here. This forces D to penalise the learned distribution p g accordingly to how it learned to distinguish data from the two given distributions. However, the original GAN have some drawbacks related to this metric. In practice, if D becames too good, gradients will be too small to improve G's predictions, and cause vanishing gradients.

Also, mode collapse [START_REF] Goodfellow | Generative adversarial nets[END_REF] and training unstability are other known pathologies in GANs (Thanh- [START_REF] Thanh-Tung | Improving generalization and stability of generative adversarial networks[END_REF]. The first is related to generalization capability and is characterized by missing modes in p g from the true distribution even when they are throughout the training set, which results in a lack of diversity in the generated data. The second one concerns the convergence of GANs during training, which is usually unstable and hard to scale in high dimensional settings. Many contributions claim to make the training framework more stable and improve generalization. We briefly expose two common methods from the literature [START_REF] Arjovsky | Wasserstein gan[END_REF] and [START_REF] Mao | Least squares generative adversarial networks[END_REF] in the following.

In Wasserstein Generative Adversarial Network (WGAN), Arjovsky et al. ( 2017) replace the JSD by the Wassestein distance, which the authors present as a more meaningful and stable metric. So, they replace the discriminator by a critic that can be optimized at its best to improve generator's performance without the vanishing gradients problem. The model also includes the weight clipping as a new hyperparameter to enforce the Lipschitz constraint. However, this term also introduce some problems as being very sensitive to this parameter. The model does not converge if this hyperparameter is not well tuned. In Least Squares Generative Adversarial Network (LSGAN), [START_REF] Mao | Least squares generative adversarial networks[END_REF] claim that the discriminator's sigmoid cross entropy loss function may lead to vanishing gradients and propose a least squares loss function for the discriminator, the objective function is

(2.17) min G min D J lsgan (G, D) = 1 2 E x∼p data (x) [(D(x, y) -a) 2 ] + 1 2 E z∼pz(z) [(D(x, G(x)) -b) 2 ]
where a and b are labels for real and fake data. When training the discriminator, a = 1 and b = 0, and when training the generator, b = 1 as the first term from eq. 2.17 is ignored.

Other contributions in adversarial training are application-related and include changes in the architecture and adaptations to data (e.g., images, text). [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] presented the first efficient use of a GAN with deep convolutional networks to generate natural images from a noise vector. Later, [START_REF] Mirza | Conditional generative adversarial nets[END_REF] introduced the Conditional GANs (CGANs) by adding labels to G and D inputs. This way, the image generated by G were conditioned to this discrete information, as well as the input of the discriminator.

Finally, [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF] proposed to condition the generated image, G(x), on another image, x, instead of using a label. Also, they noted that GANs sometimes predict too sharp images, so they proposed to add a smoothing function (L 1 norm) to the output of the generator. [START_REF] Jung | Depth prediction from a single image with conditional adversarial networks[END_REF] successfully used this idea of the adversarial loss to perform depth prediction with a two-phase training strategy: the network is first trained with a L 1 loss and posteriorly fine-tuned with the adversarial loss.

Our Contributions

In this work, we conduct a comparison of standard and custom losses presented in the last section, including the long-discarded L eigen . We provide a review of the loss functions we adopt in our experiments in Table 2.1. Also, we bring a new insight to the use of the adversarial loss which requires a large amount of data to be effective. To perform our experiments, we propose an efficient network with an encoder-decoder architecture, with both short-skipping inside dense blocks and long-skipping between the front-end and back-end parts, for context. Thus, it leverages all techniques presented before in section 2.2.1.2.

D3-Net: Deep Dense Depth Estimation Network

To conduct the experiments, we propose an encoder-decoder architecture, referred to as D3-Net and illustrated in Figure 2.4. The architecture is based on the U-Net structure with skip-connections between the encoder and the decoder parts to improve context-aware learning. In contrast to precedent architectures (Xu et al., 2018a[START_REF] Jung | Depth prediction from a single image with conditional adversarial networks[END_REF], our network can be trained in a single phase and does not require any additional analytical model like CRFs [START_REF] Wang | Towards unified depth and semantic prediction from a single image[END_REF], Xu et al., 2018a). We explain our choices for the encoder and decoder parts in the following.

The front-end architecture corresponds to the contractive part of a neural network, which is the one that interacts with the input image in order to encode this information extracting low, mid and high-level features to some mean. In classification, the resulting feature maps are further transformed to a vector corresponding to the probability to belong to a certain class. For depth estimation, these feature maps are fed into a decoder part. The encoder part of D3-Net is based on DenseNet-121 [START_REF] Huang | Densely connected convolutional networks[END_REF], where we replaced a max-pooling by a 4×4 convolution with stride=2 to reduce resolution while increasing the number of channels of the feature maps. With respect to the original paper, we ignore the final layers for classifications and connect the resulting output to a decoder network. In our experiments, we also perform some tests with ResNet50 and we follow same steps as for DenseNet and ignore classification layers to decode feature maps with high-level of abstraction on the second part of D3-Net.

The back-end architecture maps the feature maps from the encoder part to the target output, i.e. depth map. The decoder is composed of blocks with a 4 × 4 transposed convolution with stride=2 followed by a 3 × 3 convolution with stride=1, both interleaved by a batch normalization and a ReLU activation layers to upsample the feature map while learning the best weights to perform the operation.

Adversarial Loss Function

We adapt the CGAN from [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF] for depth estimation. Adopting an adversarial network for depth estimation leads to finer perceived details and sharper edges in the depth maps.

We illustrate our framework in Fig. 2.5. The discriminator network D is designed to measure and classify if an input depth map is true or false. True maps correspond to the ground truth depths and false maps correspond to depth maps generated by G. This adversarial training is an alternative to already presented handcrafted loss functions as it tries to find an implicit definition of the loss function by learning a metric in the image space. However, to smooth GAN predictions and guide training, we add an L 1 term to the output of D3-Net. We adopt the LSGAN, already presented in section 2.2.3 to produce more realistic results. Our adversarial loss consists of minimizing the following energy equation:

(2.18) L lscgan = 1 2 E x,y∼p data (x,y) [(D(x, y) -1) 2 ] + 1 2 E x∼p data (x) [(D(x, G(x)) -c) 2 ] + λL L1 (G(x)))
let c be equal to 0 while training D and equal to 1, while training G.

Patch-GAN was originally proposed by [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF] to evaluate the generated image by patches instead of assigning a true or false label to the complete prediction. This leads the network to produce outputs with finer details. We reduce the number of layers from the original paper to produce an output of the patch-discriminator of resolution 78x62 for an input image of 320x256. We observed that this modification also helped the network to improve stability during training. 

Experiments

For our experiments, we adopt the NYU-Depth V2 (NYUv2) dataset [START_REF] Silberman | Indoor segmentation and support inference from rgbd images[END_REF] In the first experiment, we observe, for all regression losses in Table 2.1, the RMS error and accuracy variation according to different loads from the original dataset. We also study the convergence speed of the network to improve results. Note that to conduct direct comparisons, we carefully perform all training processes keeping the same starting parameters (e.g., learning rate, optimizer's settings). Finally, to generalize our conclusions, we lead a second experiment where the front-end network of D3-Net, originally DenseNet-121, is replaced by ResNet-50, already adopted in [START_REF] Laina | Deeper depth prediction with fully convolutional residual networks[END_REF], Xu et al. (2018a), [START_REF] Ma | Sparse-to-dense: Depth prediction from sparse depth samples and a single image[END_REF]. We then study the variations of three error metrics for the different losses when changing the architecture.

To compare the performances on depth estimation, we adopt standard error measurements proposed in [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF], Liu et al. (2015a) and also a stan-
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Mean absolute
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Scale-invariant loss with gradients

L eigengrad 1 N N i (d (i) ) 2 - λ 2N 2 ( N i d (i) ) 2 + 1 N N i [(∇ x d (i) ) 2 + (∇ y d (i) ) 2 ] BerHu L berhu L 1 (y (i) , ŷ(i) ) L 1 (y (i) , ŷ(i) ) ⪕ c, L 2 (y (i) ,ŷ (i) )+c 2 2c
else.

Huber L huber L 1 (y (i) , ŷ(i) ) L 1 (y (i) , ŷ(i) ) ⩾ c, L 2 (y (i) ,ŷ (i) )+c 2 2c
else.

Our Conditional Least Squares Generative Adversarial Network (CLSGAN) dard benchmark dataset for deep depth prediction: NYUv2. As one can expect, more data leads to better results in all cases. However, losses evolve differently from one split to another. In general terms, L 1 and L eigen present the best performances for different sizes of the dataset. On the other hand, L lscgan becomes highly efficient when trained with large amounts of data. GANs Table 2.2: Error measurements adopted to evaluate depth estimation performance [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF], where y (i) and ŷ(i) are the ground truth and prediction respectively, and N is the total number of pixels.

L lscgan 1 2 E x,y∼p data (x,y) [(D(x, y) - 1) 2 ] + 1 2 E x∼p data (x) [(D(x, G(x)) - c) 2 ] + λL L1 (G(x)))
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y (i) ) = δ < thr
have a well known instability (mode collapse [START_REF] Mao | Least squares generative adversarial networks[END_REF]) that, in our case, can be circumvented with more data.

From Figure 2.7, L 1 and L eigen also appear to converge more effectively than the other losses and then obtain better predictions faster. This remains true for the two smaller splits, but when training the model with 230k, we can notice the GAN model and L eigen outperform other error functions.

Qualitative Performance Comparison.

For better comparison between the models, we also provide visualization of predicted depth maps in Figure 2.8 for models trained on the complete NYUv2 dataset. In general, we notice that L huber and L 2 tend to smooth predictions. Even though L berhu benefits from L 1 for small errors, L 2 factor seems to degrade estimations as well. It is important to notice that standard L 2 encourages residuals where error is small, but L 1 can encourage sparse solutions where error is zero.

L berhu proposes to take advantage of L 1 for very small errors and use L 2 otherwise. From the presented quantitative and qualitative experiments the squared term seems to favor smooth predictions when adopting L berhu as well as L huber and L 2 . On the other hand, L lscgan , L eigen and L 1 present nice visual predictions confirming previous quantitative results. The patch-GAN approach can lead the model to capture high-frequency details (e.g., contours, small objects). These characteristics can be clearly observed for example in the first row, where the contours of the different chairs in the back are well predicted when compared to L berhu and L huber , for example, that almost ignore them. Other very fine details can be seen in the L lscgan predictions of the second row for the shelves and the television.

Different Front-end Architectures.

In order to generalize our study, we evaluate the performances of the presented losses with another front-end architecture: ResNet. The main difference with DenseNet is that ResNet learns by optimising the residual information and DenseNet learns by feeding later layers with feature maps from precedent ones and more importantly, this allows gradients to flow directly to input signal diminishing cases of vanishing gradients. Figure 2.9 shows on the same graph performance of both front-end networks. We adopt the training split with 12k images to fasten training compared to the whole dataset. Our results show that L 1 and L eigen show better results for both architectures. Besides, DenseNet encoder presents globally better results than ResNet with the only exception of slightly poorer RMSE. Our method using adversarial loss can be trained end-to-end in a single phase, in contrast to [START_REF] Jung | Depth prediction from a single image with conditional adversarial networks[END_REF]. Compared to [START_REF] Kendall | Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding[END_REF], it does not require the use of a Monte Carlo method to capture the uncertainty of the model and improve performance, like [START_REF] Kendall | What uncertainties do we need in bayesian deep learning for computer vision[END_REF].

Conclusion

In this chapter, we have presented a study of the influence of regression losses and experimental conditions on depth estimation using deep learning. Several losses from the literature as well as standard losses have been considered. Performance tests have been conducted on NYUv2 datasets with various sizes, and two different encoder-decoder architectures. We have shown that on small datasets, L 1 and L eigen losses produce the best performances and when the size of the dataset increases, the performance benefits from the use of adversarial loss. Finally, based on this study we have proposed a network combining a simple encoder-decoder architecture with dense blocks and skip connections and an adversarial loss. At the time of publication, this network reached top results on the NYUv2 dataset while being simpler to train than previous works such as Xu et al. (2018a), [START_REF] Kendall | What uncertainties do we need in bayesian deep learning for computer vision[END_REF]. This work was based on a standard depth estimation dataset, NYUv2. In the next chapter, we explore how the use of unconventional, defocused images can improve predictions with neural networks. We will see that out D3-Net architecture is generic enough to handle optical cues. In the last chapter, we proposed a simple and efficient deep network for depth estimation associated to an adversarial training framework, which generated sharp and realistic depth maps. D3-Net is based on the reuse of feature maps with dense connections in the front-end architecture and skip-connections from the encoder to the decoder parts. This approach improves information flow during learning and avoids reconstructing feature maps already generated in precedent layers. We tested the network on a reference dataset, NYUv2, containing pairs of sharp RGB images and the corresponding depth maps. However, we did not account on further optical cues that can contain some extra information to improve depth prediction, like defocus blur.

In this chapter, we explore the defocus blur, a well-known optical cue for depth estimation in Computational Photography Indeed, depending on settings (e.g., aperture, focus), typical cameras can generate images with defocus blur, an information deeply related to depth. Though a few works have recently explored this cue associated to deep neural networks, as mentioned in section 1.5, the field still lacks understanding on the influence of it to improve learning on the task depth estimation.

In this regard, we study how the performance of a neural network can be related to different configurations of the defocus blur, corresponding to different settings of a camera, and overcome known drawbacks from classical approaches as ambiguity and deadzone. We perform our analysis on both a synthetically defocused dataset and on a real dataset for accurate evaluation. We further examine the uncertainty of the CNN predictions to better understand the main difficulties of the trained models while learning the proposed task with and without blur. Finally, we verify how the deep model behaves when confronted to challenging images in the wild with the Depth-in-the-Wild (Chen et al., 2016a) has been published in Carvalho et al. (2018a,b). Code and dataset are provided in https://github.com/marcelampc/d3net_depth_estimation.

Introduction

Traditional depth estimation approaches exploit different physical aspects to extract 3D information from perception, such as stereoscopic vision, structure from motion, structured light and other depth cues in 2D images (Saxena et al., 2009, Calderero and[START_REF] Calderero | Recovering relative depth from low-level features without explicit T-junction detection and interpretation[END_REF]. However, some of these techniques impose some restrictions that depend on the environment (e.g., sun, texture) or even require several devices (camera or projector), leading to cumbersome systems. Many efforts have been made to build compact systems: the most notable are perhaps the light-field cameras which use a microlens array in front of the sensor, from which a depth map can be extracted [START_REF] Ng | Light field photography with a hand-held plenoptic camera[END_REF].

An important cue for depth estimation has for long been the defocus blur. From geometrical optics, the amount of defocus blur of an object (Fig. 3.2) can be related to its depth with the relation

ϵ = Ds • 1 f - 1 d out - 1 s , (3.1)
where f stands for the focal length, d out the distance of the object with respect to the lens, s the distance between the sensor and the lens and D the lens diameter.

D = f /N,
where N is the f-number. However, DFD with a conventional camera and a single image suffers from ambiguity in depth estimation with respect to the focal plane and dead zone, due to the camera depth of field, where no blur can be measured. Moreover, most DFD methods require a scene model and an explicit calibration between blur level and depth value to estimate 3D information from an unknown scene. It is tempting to integrate defocus blur with the power of neural networks, which leads to the question: does defocus blur improve deep depth estimation performances?

To answer this question we propose a series of experiments with synthetic and real defocused data as follows:

• We create a synthetically defocused dataset with optically realistic blur variation and compare several optical settings to analyse how can defocus blur influence on deep depth performance and robustness. We adopt D3-Net as our main deep architecture;

• We show predictions can be improved with this optical cue as it overcomes ambiguity and deadzone problems by being able to encompass both geometric and statistical aspects of standard deep depth (global features) with use the defocus blur information (local feature);

• We also perform a study on the uncertainty of the network, which demonstrate lower variation of predictions with defocus blur.

• We create a real defocused dataset to validate the method. Then, we finetune D3-Net to successfully perform the proposed task even with a very small number of samples;

• We extend our experiments of transferring learning to a real defocused outdoor dataset. Thus, we show how this optical cue can help the network to become more robust when challenged to predict depth in the wild.

These experiments show that defocused information is exploited by neural networks and is indeed an important hint to improve deep depth estimation. Moreover, the joint use of structural and blur information proposed in this chapter overcomes current limitations of single-image DFD such as ambiguity and dead zone, with respect to the focal plane. Finally, we show that these findings can be used in a dedicated device with real defocus blur to actually predict depth indoors and outdoors with good generalization.

Related Work

We present in the following section state-of-the-art approaches from depth prediction with defocus blur.

Depth estimation using DFD. In computational photography, several works investigated the use of defocus blur to infer depth, starting from [START_REF] Pentland | A new sense for depth of field[END_REF]. Recent works usually use DFD with a single image (SIDFD). Although the acquisition is simple, it also leads to more complex processing as both the scene and the blur are unknown. State of the art approaches use analytical models for the scene such as sharp edges models [START_REF] Zhuo | Defocus map estimation from a single image[END_REF] or statistical scene Gaussian priors [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF][START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF]. Coded apertures have also been proposed to improve depth estimation accuracy with respect to standard optics [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF][START_REF] Veeraraghavan | Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing[END_REF][START_REF] Chakrabarti | Depth and deblurring from a spectrally varying depth of field[END_REF][START_REF] Sellent | Which side of the focal plane are you on?[END_REF].

Nevertheless, SIDFD suffers from two main limitations: first, there is an ambiguity related to the object's position in front or behind the in-focus plane; second, blur variation cannot be measured in the camera depth of field, leading to a dead zone. Ambiguity can be solved using asymmetrical coded aperture [START_REF] Sellent | Which side of the focal plane are you on?[END_REF], or even by setting the focus at infinity, at a cost of reducing the light intensity that reaches the sensor or large depth of field (i.e. , dead zone), respectively. Second, dead zones can be overcome using several images with various in-focus planes. In a single snapshot context, this can be obtained with unconventional optics such as a plenoptic camera [START_REF] Hazirbas | Deep depth from focus[END_REF] or a lens with chromatic aberration [START_REF] Guichard | Extended depth-of-field using sharpness transport across colour channels[END_REF][START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF], but both at the cost of image quality (low resolution or chromatic aberration).

Indeed, inferring depth from the amount of defocus blur with model-based techniques requires a tedious explicit calibration step, usually conducted using point sources or a known high frequency pattern [START_REF] Delbracio | The non-parametric sub-pixel local point spread function estimation is a well posed problem[END_REF][START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF] at each potential depth. These constraints lead us to investigate data-based methods using deep learning techniques to explore structured information together with blur cues to execute the proposed task.

Learning depth from defocus blur. The existence of common datasets for depth estimation [START_REF] Silberman | Indoor segmentation and support inference from rgbd images[END_REF][START_REF] Saxena | Make3d: Learning 3d scene structure from a single still image[END_REF][START_REF] Hazirbas | Deep depth from focus[END_REF], containing pairs of RGB images and corresponding depth maps, allows to consider the creation of synthetic defocused data using real camera parameters that can be used by a deep learning approach. To the best of our knowledge, only a few works in the literature use defocus blur as a cue in learning depth from a single image. [START_REF] Srinivasan | Aperture supervision for monocular depth estimation[END_REF] use defocus blur to train a network dedicated to monocular depth estimation: the model measures the consistency of simulated defocused images, generated from the estimated depth map and all-in-focus image, with true defocused images. However, the final network is used to conduct depth estimation from all-in-focus images. [START_REF] Hazirbas | Deep depth from focus[END_REF] conduct depth estimation using a focal stack, which is more related to depth from focus approaches than DFD. Finally, [START_REF] Anwar | Depth estimation and blur removal from a single out-of-focus image[END_REF] present a network for depth estimation and deblurring using a single defocused image. This work shows that networks can integrate blur interpretation. However, [START_REF] Anwar | Depth estimation and blur removal from a single out-of-focus image[END_REF] create a synthetically defocused dataset from real NYUv2 images without consideration of a realistic blur variation with respect to the depth, nor sensor settings (e.g., camera aperture, focal distance). However, there has not been much investigation about how defocus blur influences on depth estimation, nor how can these experiments improve depth prediction in the wild.

Latest Works. Subsequent to the work presented in this chapter, the field of received a few more contributions. Gur and Wolf (2019) propose an unsupervised method to estimate depth from focus cues. In depth from focus, the settings of the camera may change and many acquisitions are made. They propose a Point Spread Function (PSF) convolutional layer that generates defocused images from the all-in-focus image, estimated depth and camera parameters. [START_REF] Chang | Deep optics for monocular depth estimation and 3d object detection[END_REF] made several experiments from a platform with unconventional optics, inherent singl-lens chromatic aberration, with a co-design end and 3D object detection.

Our Contributions

We present an original system for deep depth from defocus (Deep-DFD): i.e. singleimage depth prediction in the wild using deep learning and depth-from-defocus. In section 3.4.1, we study the influence of defocus blur on deep depth estimation performances. We run tests on a synthetically defocused dataset generated from a set of true depth maps and all-in-focus images. The amount of defocus blur with respect to depth varies according to a physical optical model to better relate to realistic examples.

We also compare performances of deep depth estimation with several optical settings: here we compare the case of all-in-focus images with the case of defocused images from three different focus settings. We analyse the influence of defocus blur on neural networks using uncertainty maps and diagrams of errors per depth.

In section 3.4.2, we carry out validation and analysis of the estimation results on a new dataset with pairs of real images and depth maps obtained with a Digital Single Lens Reflex (DSLR) camera and an RGB-D (Red Green Blue Depth) sensor. At last, in section 3.4.3, we show the network is able to generalized to images in the wild. Finally, we developed a platform for building a large scale dataset of focused and defocused images along with corresponding depth maps for indoor and outdoor scenes.

Experiments

In this section, we adapth D3-Net to perform a series of experiments with synthetic and real defocused data exploring the power of deep learning to depth prediction. As we are interested in using blur as a cue, we do not apply any image processing for data augmentation capable of modifying out-of-focus information. Hence, for all experiments, we extract random crops of 224x224 from the original images and apply horizontal flip with a probability of 50%. Tests are realized using the full-resolution image.

Synthetically Defocused Dataset

Dataset Generation from NYUv2

It is possible to realistic generate defocused data from all-in-focus images, the corresponding depth map and some camera parameters. Thus, we perform our experiments in this section using NYUv2 795 to accelerate experiments. The dataset was already presented in section 2.4 To generate physically realistic out-of-focus images, we choose the parameters corresponding to a synthetic camera with a focal length of 15mm, f-number 2.8 and pixel size of 5.6µm. Three settings of in-focus plane are tested, respectively at 2m, 4m and 8m from the camera. Fig. 3.3 shows the variation of the blur diameter ϵ with respect to depth, for both settings and Fig. 3.4 shows examples of synthetic defocused images. As illustrated in Fig. 3.3, setting the in-focus plane at 2m corresponds to a camera with small depth of field. The objects in the depth range of 1 to 10m will present small defocus blur amounts, apart from the objects in the camera depth of field, which remain sharp. Note that this configuration suffers from depth ambiguity caused by the blur estimation. Setting the in-focus plane at a larger depth, here 4m or 8m, corresponds to a camera with larger depth of field. Only the closest objects will show defocus blur, with the blur amount in the approximate depth range 0-3m that will be larger than with the 2m setting. This can be observed in the extracted details of images in Fig. 3.4.

To create the out-of-focus dataset, we adopt the layered approach of [START_REF] Hasinoff | A layer-based restoration framework for variable-aperture photography[END_REF] where each defocused image L is the sum of K blurred images multiplied by masks taking into account local object depth and occlusion of foreground objects according to:

L = k [(A k L + A * k L * k ) * h(k))] M k , (3.2) 
where * represents a convolution, h(k) is the defocus blur at depth k, L is the allin-focus image, A k is the mask corresponding to object at depth k and A * k L * k the layer extension behind occlusions. Finally M k models the cumulative occlusions defined as:

M k = K k ′ =k+1 (1 -A k ′ * h(k ′ )). (3.3)
Following [START_REF] Srinivasan | Aperture supervision for monocular depth estimation[END_REF], we model the blur as a disk function of which diameter varies with the depth.

We later discuss in this chapter this approach and propose a realistic procedure with a real capture platform.
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Focus at 2m

Focus at 8m 

Performance Results

Table 3.1 shows performance results of D3-Net first using all-focused and then defocused images with proposed settings. Note that as illustrated in Fig. 3.3 when the in-focus plane is at 8m, there is no observable ambiguity. Hence performance comparison with SIDFD methods can then be made. In such manner, we include error metrics of two methods from the SIDFD literature [START_REF] Zhuo | Defocus map estimation from a single image[END_REF]Sim, 2011, Trouvé et al., 2011) which estimate the amount of local blur using either sharp edge model or gaussian prior on the scene gradients.

Several conclusions can be drawn from Table 3.1. First, as already stated by [START_REF] Anwar | Depth estimation and blur removal from a single out-of-focus image[END_REF], there is a significant improvement on the performance of depth estimation when using out-of-focus images instead of all-in-focus images. Second, D3-Net outperforms the standard model-based SIDFD methods, which can also be observed in Fig. 3.6, without requiring an analytical scene model nor explicit blur calibration. Indeed, the neural network learns both parameters without being specifically defined. Furthermore, there is also a sensitivity of the depth estimation performance with respect to the position of the in-focus plane. The best setting for these tests is the in-focus plane at 2m, which corresponds to a significant amount of blur for most of the objects but near the focal plane. This shows that the network actually uses blur cue and is able to overcome depth ambiguity using geometrical structural information. Fig. 3.6 also illustrates this conclusion: the presented scene has mainly three depth levels with a foreground below 2m, a background after 2m, and intermediate level around 2m. The corresponding outof-focus image is generated using an in-focus plane at 2m. Using [START_REF] Zhuo | Defocus map estimation from a single image[END_REF], the background and the foreground are at the same depth, while D3-Net shows no such error in the depth map.

Finally, we also trained and tested D3-Net with the dataset proposed in [START_REF] Anwar | Depth estimation and blur removal from a single out-of-focus image[END_REF]. However, differently from the method explored in this chapter, the out-of-focus images were generated without any regard to camera settings. The last two rows from Table 3.1 shows that D3-Net also outperforms the network in [START_REF] Anwar | Depth estimation and blur removal from a single out-of-focus image[END_REF].

In addition, Fig. 3.5 and columns 3 and 6 from Fig. 3.8 show examples of Table 3.1: Performance comparison of D3-Net using all-in-focus images, defocused images with three positions of the in-focus planes, and two SIDFD approaches [START_REF] Zhuo | Defocus map estimation from a single image[END_REF]Sim, 2011, Trouvé et al., 2011) for the 8m focus setting.

Methods

Error↓ Accuracy↑ rel log10 rms rmslog δ < 1.25 δ < 1.25 2 δ < 1.25 predicted depth maps. The depth maps obtained with out-of-focus images are sharper than using all-in-focus images. Indeed, defocus blur provides local depth information to the network leading to a better depth map segmentation.

Per Depth Error Analysis

In ML, the more a model is exposed to the same kind of data distribution, p data , the best it will perform w.r.t. to new samples from the p data . Here, we study the prediction error per depth range when using all-in-focus images or defocused images and observe relation to depth data distribution. Fig. 3.7 shows in the same plot repartition the RMS per depth in meters and the depth distribution for testing and training images for the NYUv2 dataset. For all-in-focus images, the errors seem to be highly correlated to the number of examples in the dataset. Indeed, a minimum error is obtained for 2m, corresponding to the depth with the highest number of examples. On the other hand, using defocus blur, errors repartition is more similar to a quadratic increase of error with depth, which is the usual error repartition of passive depth estimation.

Furthermore, the 2m focus setting does not show an error increase at 2m (its focal plane position), though it corresponds to the dead zone of SIDFD. This surprising result shows that the proposed approach overcomes this issue probably because the neural network relies on context and geometric features. In general, 2m, 4m and 8m focus have similar performance for depth range between 0 to 3m. After this depth, the 2m focus presents lowest errors. When focus is at 4m, we observe a drop in all metrics performances compared to 2m and 8m. The reason for this can be observed when comparing both Figures 3.3 and 3.7. This configuration presents worst RMS performances between 3 and 7m, when blur information is too small to be used by the network and there is not enough data to overcome the missing cue, but enough to worsen results. The same happens to the model at 8m, where results are more prone to errors after approximately 7m. 

Uncertainties on the Depth Estimation Model

To go further in the analysis of understanding the influence of blur in depth prediction, we present a study on model uncertainties following [START_REF] Kendall | Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding[END_REF], [START_REF] Kendall | What uncertainties do we need in bayesian deep learning for computer vision[END_REF], [START_REF] References Gal | Dropout as a bayesian approximation: Representing model uncertainty in deep learning[END_REF]. More precisely, we evaluate the epistemic uncertainty of the deep network model, or how ignorant is the model with respect to the dataset probabilistic distribution.

To perform this experiment, we place a prior distribution over the network weights to replace the deterministic weight parameters at test time [START_REF] Kendall | What uncertainties do we need in bayesian deep learning for computer vision[END_REF]. We adopt the Monte Carlo dropout method (Gal and Ghahramani, 2016) to measure variational inference placing dropout layers during train and also during test phases on the first 2 blocks of the decoder. Following [START_REF] Kendall | Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding[END_REF], we produce 50 samples for each image, calculate the mean prediction and the variance of these predictions to generate the model uncertainty.

Fig. 3.8 presents examples of the network prediction, mean error and epistemic uncertainty for the NYUv2 dataset with sharp images and with focus at 2m. Mean error is produced using the ground truth image, while the variance only depends on the model's prior distribution. For both configurations, highest variances are observed in non-textured areas and edges, as predictable. However, the model with blur has less diffuse uncertainty: it is concentrated on the object edges, and these objects are better segmented. In the second rows of the figure, we observe that the all-in-focus model has difficulties to find an object near the window, while this is overcome with blur cues present on the defocused model. In the first rows, we observe high levels of uncertainty at the zones near the bookcase, defocused model reduce some of this variance with defocus information. Finally, the last rows present a hard example where both models have high prediction variances mainly in the top middle part, where there is a connection between the kitchen and the living room, which can be confusing for the neural model. However the all-in-focus model also presents high mean error and variance in the bottom zone unlike the model with blur.

DSLR Dataset

In section 3.4.1, several experiments were performed using a synthetic version of NYUv2. However, when adopting convolutional neural networks, it can be a little tricky to use the desired output (depth) to create blur information on the input of the network. So, in the following, we validate our method on real defocused data from a DSLR camera paired with the respective depth map from a calibrated RGB-D sensor.

Platform and Dataset Creation

To create a DFD dataset, we paired a DSLR Nikon D200 with an Asus Xtion sensor to produce out-of-focus data and corresponding depth maps, respectively. Our platform can be observed in Fig. 3.9. We carefully calibrate the depth sensor to the DSLR coordinates to produce RGB images paired with the corresponding depth map. The proposed dataset contains 110 images from indoor scenes, with 81 images for training and 29 images for testing. Each image is acquired with two camera apertures that are manually modified: f /2.8 and f /8, providing respectively out-of-focus and all-in-focus images.

As the DFD dataset contains a small amount of images for learning, we pretrain the network using simulated images from NYUv2 dataset and then conduct a finetuning of the network using the real dataset. The DSLR camera originally captures images of high resolution 3872x2592; but to reduce the calculation burden, we downsample the DSLR images to 645x432. In order to simulate defocused images from NYUv2 as similar as possible as those provided by the DSLR, the image from the Kinect are upsampled and cropped to have the same resolution and the same field of view as the 645x432 DSLR images. Then defocus blur is applied to the images using the same method as in section 3.4.1 but with a blur variation with respect to depth that fits the real blur variation of the DSLR, obtained experimentally. 

Performance Results

Using the real images dataset, we perform three experiments: first we train D3-Net with the in-focus dataset and defocused dataset respectively, using same patch approach from last experiments. We also test D3-Net with the in-focus dataset using an strategy that explores the global information of the scene using a series of preprocessing methods: we resize input images to 320x256 and performance data augmentation suggested in [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF] to improve generalization.

In Table 3.2, the performance metrics from the proposed models can be com- pared. The results show that defocus blur does improve the network performance increasing 10 to 20 percentual points in accuracy and also gives qualitative results with better segmentation as illustrated in Fig. 3.10.

The network is capable to find a relation between depth and defocus blur and predict better results, even though the network may miss from global information when being trained with small patches. When feeding the network with resized images, filters from the last layers of the encoder, as from the first layers of the decoder, can understand the global information as they are fed with feature maps from the entire scene in a low resolution. However, this relation is not enough to give better predictions. As we can observe in the first examples of the third row in Fig. 3.10, the DFD D3-Net used defocus to find the contours of the object, meanwhile the D3-Net with resize wrongly predicts the form of a chair, as it is an object constantly present in front of a desk. Our experiments show that the Deep-DFD model is more robust to generalization and less prone to overfitting than traditional methods trained and finetuned on all-in-focus images.

Depth in the Wild

In the era of autonomous vehicles (on land, on water, or in the air), there has been an increasing demand of less intrusive, more robust sensors and processing techniques to embed in systems able to evolve in the wild. Previously, we validated our approach with several experiments on indoor scenes and we proved that blur can be learned by a neural network to improve prediction and also to improve the model's confidence to its estimations. In this section, we now propose to tackle the general case of uncontrolled scenes. We first assess the ability of the standard D3-Net, trained without defocus blur, to generalize to "in-the-wild" images using the Depth-in-the-Wild dataset (Chen et al., 2016b) (DiW). Second, we use the whole system, D3-Net trained on indoor defocused images and the DSLR camera described from section 3.4.2, in uncontrolled, outdoor environments.

Depth-in-the-Wild dataset (DiW)

The ground truth of the DiW dataset is not dense; indeed, only two points of each RGB image are relatively annotated as being closer or farther from the camera, or at the same distance. To adapt the D3-Net to this dataset, we replace the objective function of the network by the one proposed by the authors of the dataset (Chen et al., 2016a). Then, for training, we take the weights of D3-Net trained on NYUv2 (Carvalho et al., 2018c), and finetune the model on DiW using the modified network. We show the results of this model on the test set of DiW in Fig. 3.11. The predicted depths present sharp edges for people and objects and give plausible estimates of the 3D structure of the given scenes. This shows that the a neural network has inherent capacity to predict depth in the wild. However, as the network was mostly trained on indoor scenes, unknown features from outdoor are usually mistaken. In the following, we will observe how optical cues help the network generalize better.

Deep-DFD in the wild

We now propose to observe how deep models trained with blurred indoor images behave when confronted to challenging outdoor scenes. These experiments explore the model's capability to adapt predictions to new scenarios, never seen during training. To perform our tests, we first acquire new data using the DSLR camera with defocus optics (from section 3.4.2) and keeping the same camera settings. As the depth sensor from the proposed platform works poorly outdoor, this new set of images does not contain respective depth ground truth. Thus, the model is neither trained on the new data, nor finetuned. Indeed, we use directly the models finetuned on indoor data with defocus blur (section 3. Results from the CNN models and from [START_REF] Zhuo | Defocus map estimation from a single image[END_REF] analytical method are shown in Fig. 3.12. With D3-Net trained on all-in-focus images, the model constantly fails to extract information from new objects, as can be observed in the images with the road and also with the tree trunk. As expected, this model tries to base prediction on objects similar to what those seen during training or during finetuning, which are mostly non-existent in these new scenes. On the contrary, though the model trained with defocus blur information has equally never seen these new scenarios, the predictions give results relatively close to the expected depth maps. Indeed, the Deep-DFD model notably extracts and uses blur information to help prediction, as geometric features are unknown for the trained network. Finally, Zhuo's method also gives encouraging results, but constantly fails due to defocus blur ambiguity to the focal plane (as on the handrail on the top left example of fig. 3.12). As can be deduced from our experiments, the combined use of geometric, statistical and defocus blur is a promising method to generalize learning capabilities.

Limitations of DSLR Dataset. To perform further experiments with defocused data and deep learning techniques, the proposed dataset only contains a small amount of data. Indeed, the created platform is not well adapted to generate a bigger dataset for practical purposes. For each new sample, we manually make two captures with the DSLR camera, while changing the f-number for each configuration, and one capture for the depth image from the Xtion PRO sensor, which must be connected to a notebook. Another limitation of this first approach is that the depth sensor can only be used indoor, thus, reducing the domain of application. Hence, we created a new platform for capturing data explained in the following.

Maratus Dataset

The Platform

The Maratus platform, illustrated in 3.13, was created to overcome the limitations of the DSLR structure and produce depth maps for both indoor and outdoor scenes, capture all data at once and generate focused and defocused data. For these means, it is equipped with the following sensors:

• 2 1" cameras 16mm to simultaneously capture sharp and defocused images with large field of view. One camera has aperture f /1.8 to generate defocused images, and the other, f /8; • Stereo pair to produce outdoor depth maps;

• D435 Intel RealSense to capture indoor depth maps.

We have chosen the in-focus position for the camera that produce defocused images based on an experiment on synthetic data, which results are in Table 3.3. The corresponding theoretical curves for blur are illustrated in Fig. 3.14.

These sensors were synchronized either by hardware or by software. We adopt a Robot Operating System (ROS) framework [START_REF] Quigley | Ros: an open-source robot operating system[END_REF] to manage data acquisition and saving. We also created a friendly-user interface to visualize cameras outputs while capturing new data, control exposition and control the framework at a high level (e.g., capture new data, create video, start/stop the application).

All cameras were carefully calibrated using Kalibr * . We adopt the left camera as reference to reproject images and depth maps from the other sensors. In Fig. 3.15, we observe some examples of captured data before reprojection.

Short-term perspectives. The platform is ready use to build a large scale dataset with defocused and focused images from indoor and outdoor scenes. Moreover the two identical lens allow to perform a fair comparison with images from different camera settings. Also, for future experiments, we can add a chromatic lens to capture data with chromatic aberration [START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF].

Conclusion

In this chapter, we have studied the influence of defocus blur as a cue in a monocular depth estimation using deep learning approach. We have shown that using blurred images outperforms the use of all-in-focus images, without requiring any scene model nor blur calibration. Besides, the combined use of defocus blur and geometrical structure information on the image, brought by the use of a deep network, avoids the classical limitations of DFD with a conventional camera, such as depth ambiguity or dead zones. We have proposed different tools to visualize the benefit of defocus blur on the network performance, such as per depth error statistics and uncertainty maps. These tools have shown that depth estimation with defocus blur is most significantly improved at short depths, resulting in better depth map segmentations. We have also compared performance of deep depth estimation with defocus blur from several optical settings to better understand the influence of the camera parameters to deep depth prediction. In our tests, the best performances are obtained for a close in-focus plane, which leads to really small camera depths of field and thus defocus blur on most of the objects in the dataset.

Besides synthetic data, this chapter also provides excellent results on both indoor and outdoor real defocused images from a new set of DSLR images. These experiments on real defocused data proved that defocus blur combined to neural networks are more robust to training data and domain generalization, reducing possible constraints of actual acquisition models with active sensors and stereo systems. Notably, results on the challenging domain of outdoor scenes without further calibration, or finetuning prove that this new system can be widely used in the wild to combine physical information (defocus blur) and cues already used by standard neural networks, such as geometry and perspective. These observations open the way to further studies on the optimization of the camera parameters and acquisition modalities for 3D estimation using defocus blur and deep learning, as discussed in this chapter.

Finally, we have built Maratus platform to create a large scale dataset with tuples of focused, defocused images and corresponding depth maps.

In the next chapter, instead of relying on an optical cue, we draw our attention to semantic cues. Indeed, semantic information can help distinguish different ob- jects from a scene, identify different global scales and improve background and foreground understanding. Moreover, we show that it can be learned simultaneously with depth maps by exploring a mechanism called Multi-Task Learning. In the last chapter, we investigated the influence of defocus blur on the performance of deep neural networks for depth estimation. We carried out thorough experiments on synthetic and real datasets and showed that out-of-focus blur not only greatly improves performance on this task but also reduces networks uncertainty. Even though these results are promising, this approach is still restrict to data that contains defocus blur information.

Indeed, optical cues are not the only possible hint available to improve learning capabilities. In fact, many of the existing datasets for CV include labelled data for more than one specific task, for example, NYUv2 contains both depth and semantic segmentation maps. Thus, semantic maps represent an extra information that can be further explored with Multi-Task Learning (MTL) to learn many tasks at once and improve generalization by learning complementary representation between these objectives [START_REF] Caruana | Multitask learning[END_REF].

In this chapter, we study two interesting cases of application where 3D information and semantics are jointly explored by a neural network with a MTL framework to bring an improvement in performance. First, in Section 4.2, we present a deep neural network architecture derived from D3-Net presented in Chapter 2 for learning semantics and local height jointly. We show how multi-task learning benefits from each task on the large dataset of the 2018 Data Fusion Contest. Our approach performs better than state-of-the-art without postprocessing techniques. Moreover, our framework also yields an uncertainty map which allows assessing the prediction of the model. Then, in Section 4.3, we address 3D semantic reconstruction for autonomous navigation using colearning of depth map and semantic segmentation. However, instead of directly learning a depth map, our framework learns to refine the output of a standard stereo technique for depth estimation jointly with semantic estimation. The core of our pipeline is a MTL deep neural network which tightly refines depth and also produces accurate semantic segmentation maps. Its inputs are a raw image and a depth map produced from a pair of images by a standard stereo vision technique. The resulting semantic 3D point clouds are then merged in order to create a consistent 3D semantic mesh. The performances of each step of the proposed method are then successfully evaluated on the 3DRMS dataset.

Transfer Learning with Multi-Task Learning

MTL aims at discovering the latent relatedness among tasks to improve generalization by Transfer Learning. In practice, it leverages the domain-specific information contained in the training signals of related tasks to build a better model which benefits all tasks [START_REF] Caruana | Multitask learning[END_REF]. However, these relations and how to make the best use of them is still unclear. Recently, [START_REF] Zamir | Taskonomy: Disentangling task transfer learning[END_REF] presented a method to build the taxonomy of a set of visual tasks to model their affinities and improve learning. Though the given structure brings a new insight on how to exploit these relations, the approach does not consider different architectures, or how relations between tasks can change during learning.

When considering the network architecture, tasks may benefit from soft and hard parameter sharing, which are illustrated in Fig. 4.1. In the soft case, the objectives do not directly share hidden layers. Instead, they are constrained by (1)

t1 = θ (1)
t2 , so tasks share some network layers.

a similarity measurement that encourages these parameters to be related at a high representation level. On the contrary, in hard parameter sharing, a few (or many) hidden layers are the shared by the multiple objectives while some layers are task-specific. This last configuration assumes that the different tasks share a latent subspace which, when true, reduces the risk of overfitting. In the following, we focus on this last configuration as it also reduces the number of parameters of a network architecture in the MTL approach.

Learning multiple tasks requires to correctly balance each objective's contribution at every training iteration. Thus, when errors are backpropagated, the resulting gradient in the common layers will correspond to the sum of all task gradients. A simple way to control the contribution of each task consists in multiplying each loss term in the final loss (eq. 4.1) by a scalar α t , specific for each task. However, finding the optimal values for each α t is still challenging.

L f inal = T t=1 α t L t (4.1)
Consequently, many methods have been proposed to effectively estimate α t in order to converge common parameters values to the best model for all tasks. They weight task specific losses according to their intrinsic uncertainty [START_REF] Kendall | Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[END_REF], directly the gradient magnitude for GradNorm (Chen et al.), or to Pareto improvements between the conflicting tasks for MTL-MGDA [START_REF] Sener | Multi-task learning as multi-objective optimization[END_REF]. In the following, we explain the main idea of each approach.

Equal weights is the most common approach and consists on weighting all losses uniformly (α 1 = ... = α T ). This approach does not handle cases when the evaluations errors have different scales. In consequence, some tasks can be dominant and predictions may be degraded for the other ones. However, this technique can still be effective in the case we cannot appropriately measure the best contribution of each task to the global model.

GradNorm (Chen et al.) dynamically learns the scaling factors w.r.t. the gradients of the last common layer and the rate balance, defined as the relative inverse training rate for each task. By directly modifying gradient magnitudes with learnable parameters, this method does not rely on empirical values for α t . [START_REF] Sener | Multi-task learning as multi-objective optimization[END_REF] propose to adapt the Multiple Gradient Descent Algorithm (MGDA) to the multi-objective optimization. This approach uses the Frank-Wolfe algorithm [START_REF] Jaggi | Revisiting frank-wolfe: Projection-free sparse convex optimization[END_REF] to find a common descent direction to the gradients of the shared layers at each iteration and achieve Pareto optimality, i.e. an optimal state where to improve one objective, the others would be degraded. Besides that, the paper also proposes to reduce memory use by applying the MGDA to the upper-bound (we refer as MTL-MGDA-UB). Which means to evaluate the gradient of task losses w.r.t. the intermediate representation on the last common layer, instead of evaluating w.r.t. all shared parameters. Learning multiple related tasks has been often shown to improve performance on each objective individually. In this chapter, we experiment how learning lowdimensional representation shared across 3D information and semantics can be adapted to aerial images and also for robotics, on a 3D reconstruction task. We start by adapting common scene-parsing MTL approaches to the context of aerial imagery, where informations on scale and geometry related to known objects can be tricky to learn. Thus, we observe that learning multiple tasks can sucessfuly guide a neural model to explore more context information from the input image in this domain. Then, we bring our attention to a 3D reconstruction application for robotics. Here, instead of directly learning a mapping from an RGB space to depth space, we first generate a depth map from a stereo pair with a classic approach to finaly refine this map through a neural network while it jointly learns semantic segmentation. This configuration has the advantage of carrying depth hints from a previous step and context information from the semantic task. Finally, an iterative approach is used to create a 3D mesh from a synthetic and real scene. Aerial imagery has never been so common, even at Very High Resolution (VHR), now that everyone can access images from around the world in any computer. Its automatic analysis is also in progress and has been boosted in the last decade by the tremendous progresses of neural network models. It includes spectral analysis, change detection, and two applications which are of particular interest in this study: semantic mapping of the land surface and local height estimation. Adding semantics to images by creating high-quality land-cover maps is crucial for environment analysis or urban modelling. A standard way to formulate this problem is classification of each pixel, now reframed as semantic segmentation [START_REF] Paisitkriangkrai | Effective semantic pixel labeling with convolutional networks and Conditional Random Fields[END_REF][START_REF] Audebert | Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks[END_REF]. Besides, providing the local height in the form of Digital Surface Models (DSMs) is useful for urban planning, telecommunications, aviation, and intelligent transport systems. It has been traditionally done by multi-view stereo [START_REF] Facciolo | Automatic 3D reconstruction from multi-date satellite images[END_REF] until that recently, deep learning approaches also offer competitive performances. Eventually, [START_REF] Srivastava | Joint height estimation and semantic labeling of monocular aerial images with cnns[END_REF], [START_REF] Zheng | POP-Net: Encoder-dual decoder for semantic segmentation and single-view height estimation[END_REF], [START_REF] Kunwar | U-Net ensemble for semantic and height estimation using coarse-map initialization[END_REF] made one step further by combining 3D and semantics through MTL.

MTL-MGDA

The ISPRS Vaihingen dataset comprises IRRG (Infra-Red, Red and Green) images at 9cm / pixel, DSM and 2D and 3D semantic labelled maps for urban classification and 3D reconstruction. It contains 33 patches of different sizes, of which 16 images are used for training and the remaining 17 are used for testing. Semantic maps were annotated with 6 classes including impervious surfaces, building, low vegetation, tree, car and clutter/background. We ignore this last class during training and testing.

The 2018 Data Fusion Contest (DFC2018) dataset is a collection of multisource optical imagery over Houston, Texas. In particular, it contains Very High Resolution (VHR) colour images resampled at 5cm / pixel, hyperspectral images and LiDAR-derived products such as DSMs and Digital Elevation Models (DEMs) at a resolution of 50cm / pixel. A 20-class, handmade ground-truth exists: 4 tiles (corresponding to the VHR images in the red frame in Fig. 4.3) are available for training while 10 tiles remain undisclosed for evaluation on the the DASE website * . This work was accepted to IEEE Geoscience and Remote Sensing Letters (GRSL) and code is provided in https://github.com/marcelampc/aerial_mtl.

Related Work

Semantic segmentation this task consists in giving a class label to each pixel in the image [START_REF] Brostow | Semantic object classes in video: A high-definition ground truth database[END_REF], and has been commonly carried out in the recent years by Fully-Convolutional Networks (FCNs) since Long et al. (2015a). In remote sensing, it corresponds to the old problem of land-surface classification [START_REF] Benediktsson | Neural network approaches versus statistical methods in classification of multisource remote sensing data[END_REF] and has been popularized again by recent benchmarks on urban land-use mapping [START_REF] Cramer | The DGPF-test on digital airborne camera evaluationoverview and test design[END_REF][START_REF] Xu | Advanced multi-sensor optical remote sensing for urban land use and land cover classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest[END_REF]. Current stateof-the-art approaches based on FCNs include [START_REF] Paisitkriangkrai | Effective semantic pixel labeling with convolutional networks and Conditional Random Fields[END_REF], [START_REF] Audebert | Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks[END_REF], [START_REF] Marmanis | Classification with an edge: Improving semantic image segmentation with boundary detection[END_REF] which combines segmentation with boundary detection. When multi-source data is available, as in the 2018 DFC, dedicated network architectures such as Fusion-CNN [START_REF] Xu | Advanced multi-sensor optical remote sensing for urban land use and land cover classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest[END_REF] can be designed to use this information.

Elevation estimation. The problem at hand here is to estimate the distance between the sensor and the observed scene, which means depth in computer vision or elevation (up to an affine transformation) in remote sensing. In remote sensing, several networks for predicting elevation were also proposed, first [START_REF] Srivastava | Joint height estimation and semantic labeling of monocular aerial images with cnns[END_REF] then [START_REF] Mou | IM2HEIGHT: Height estimation from single monocular imagery via fully residual convolutional-deconvolutional network[END_REF], [START_REF] Ghamisi | Img2dsm: Height simulation from single imagery using conditional generative adversarial net[END_REF], [START_REF] Amirkolaee | Height estimation from single aerial images using a deep convolutional encoder-decoder network[END_REF]. In particular, Amirkolaee and Arefi (2019) uses a ResNet-based FCN to produce the DSM while [START_REF] Ghamisi | Img2dsm: Height simulation from single imagery using conditional generative adversarial net[END_REF] adds an adversarial loss to improve the likelihood of the synthesized DSM. Some works show how the estimated DSM is an useful additional information for building detection [START_REF] Mou | IM2HEIGHT: Height estimation from single monocular imagery via fully residual convolutional-deconvolutional network[END_REF] or semantic segmentation [START_REF] Ghamisi | Img2dsm: Height simulation from single imagery using conditional generative adversarial net[END_REF]. It is worth noting that the 2019 Data Fusion Contest (Le [START_REF] Saux | IEEE GRSS Data Fusion Contest: Large-Scale Semantic 3D Reconstruction[END_REF] comprises one challenge about Single-view Semantic 3D Challenge which should yield to new methods to tackle this problem in remote sensing.

MTL with Aerial Images

Recent works include the simultaneous prediction of depth, normals and semantic labels [START_REF] Eigen | Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture[END_REF] or normalized DSM and semantic labels [START_REF] Srivastava | Joint height estimation and semantic labeling of monocular aerial images with cnns[END_REF]. In the latter, the network consists mostly in shared hidden convolutional layers followed by task-specific heads: one fully-connected layer and the appropriate loss. However, this work does not show improvement from using an MTL approach instead of a single-task network.

Our Contributions

We propose to use a dense MTL deep network that simultaneously estimates both height and semantic maps from a single aerial image. To reach this goal, our approach builds on powerful models for depth prediction from a single image, presented in Chapter 2. In [START_REF] Srivastava | Joint height estimation and semantic labeling of monocular aerial images with cnns[END_REF], their network consists mostly in shared hidden convolutional layers followed by task-specific heads: one fullyconnected layer and the appropriate loss. With respect to theirs, our multi-task architecture favors a middle split for the division in two task-specific branches, a more suitable strategy for tasks as diverse as semantic mapping and DSM regression as this gives the model more specialized layers for each objective.

We show in section 4.2.4.1 that both tasks may benefit from each other and, we also obtain state-of-the-art results using Very-High-Resolution (VHR) imagery only on reference datasets: DFC2018 [START_REF] Xu | Advanced multi-sensor optical remote sensing for urban land use and land cover classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest[END_REF] and ISPRS Semantic La- beling [START_REF] Cramer | The DGPF-test on digital airborne camera evaluationoverview and test design[END_REF]. On challenging DFC2018 data, comparing deep learning methods only, our approach achieves 8% more accuracy than the winning solution Fusion-Net without post-processing [START_REF] Xu | Multi-source remote sensing data classification via fully convolutional networks and post-classification processing[END_REF]. Moreover, in section 4.2.4.2 we investigate the model uncertainty [START_REF] Kendall | Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding[END_REF] to bring a new insight to aerial imagery processing and better understand success and failure cases. Finally, in section 4.2.4.3, we also implemented various mechanisms for balancing tasks during optimization following literature in Chen et al., [START_REF] Sener | Multi-task learning as multi-objective optimization[END_REF] already presented in section 4.1 to analyse their contributions when confronted to the DFC2018 dataset Network Architecture. We adapted D3-Net, an encoder-decoder deep network originally created for depth estimation, to a multi-task architecture by adding a semantic classification decoder. This architecture favors hard parameter sharing: as illustrated in Fig. 4.2, the contractive and the early decoder layers are common for both semantics and height estimation. Last layers of the decoders are specific for each objective and generate respectively as many channels as classes for semantics and one channel for height. The training area is delimited by a red rectangle on the RGB image.

Experiments

Loss functions. As discussed in section 4.2.2, learning multiple tasks requires to correctly balance each objective's contribution at every training iteration. Indeed, each output is evaluated with a corresponding loss function: we adopt the absolute error, L 1 , for height regression and the cross entropy loss, L ce , for semantics evaluation.

L ce evaluates the mismatch between the ground truth, y, and the predicted label, ŷ,

L ce (y, ŷ) = - K k=1 y k log ŷk , (4.2) 
where K is total number of labels. Pre-processing. For both datasets, we perform training using 320x320 crops from the original images. For the ISPRS Vaihingen dataset, we adopt the normalized DSMs (nDSM) from [START_REF] Gerke | Use of the stair vision library within the ISPRS 2D semantic labeling benchmark (Vaihingen)[END_REF] following [START_REF] Srivastava | Joint height estimation and semantic labeling of monocular aerial images with cnns[END_REF] for height estimation. Also, the original DFC2018 dataset does not includes height maps originally, thus we generate them by substracting the DEM to the DSM, as illustrated in Fig. 4.4. As mentioned, RGB images from DFC2018 are 10 times larger than the height and semantic models. So, we perform training with two different strategies: first, to deal with VHR images, we upsample the height and semantic maps to the same resolution of the input image before performing crops; second, to speed up training and testing, we downsample the RGB images by a factor of 10. We refer to these pre-processing strategies as VHR MTL and LR (low-resolution) MTL. Data augmentation. To improve generalization, we perform the following online data augmentation: random crops from original tiles, rotation from 0 to 90 degrees, horizontal and vertical flips.

From crops to tiles. Inference is implemented using a Gaussian prior over patches to avoid a checkerboard effect on the output. We predict patches sequentially with a stride smaller than the window size and weight overlapping areas with a 2D Gaussian map. Results are improved when using larger windows and small strides as we can leverage more information from neighbor patches. For our experiments, we use a test window of 1024 and a stride of 256. When generating VHR outputs, these are downsampled afterwards to compare to ground truth maps.

Training is performed with PyTorch [START_REF] Paszke | Automatic differentiation in pytorch[END_REF] framework. We used Please note these methods use multi-source data from DSM, DEM, Hyperspectral image and VHR RGB as input to estimate semantic maps only. For fairness of comparison, results with a * refer to methods without ad-hoc detector nor postprocessing, i.e. comparable with our approach. It appears our model overcomes past learning-based approaches by 10 percentual points on overall accuracy.

The above results are inferred in nearly 13 minutes for each 10 4 × 10 4 pixels tile, when using the inference proposed in section 4.2.3. For large batch processing, this time can even be reduced by using the LR model, which reduces time to nearly 10 seconds per tile at the cost of losing efficiency.

We can also observe the generated maps in Fig. 4.3 and also crops for specific regions in Fig. 4.5. In general, the network produces nearly accurate results for ground, residential buildings and vegetation while some structures are more challenging, like high buildings or stadiums. These classes have various shapes, colours and heights. Thus, it is difficult to estimate precise height values from bird-view images. Semantics are detailed, with even plastic seats, playground or concrete elements in the stadium.

Results with Vaihingen dataset are presented in table 4.2. We observe that our performances overcome [START_REF] Srivastava | Joint height estimation and semantic labeling of monocular aerial images with cnns[END_REF]. This is likely due to a better network with skip-connections and an earlier split between task-specific decoders. It is worth noting that our MTL approach only improves semantic classification if compared to single-task models for this dataset, while it slightly degrading depth predictions. In [START_REF] Srivastava | Joint height estimation and semantic labeling of monocular aerial images with cnns[END_REF], none of the tasks was improved by MTL. Possible reason for this might be that Vaihingen does not have much variance between train and test sets, so the model overfits on both configurations (i.e. single and MTL), which leads to similar results.

Effects of MTL on Model Uncertainty

In addition to error measures, [START_REF] Kendall | Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding[END_REF] also proposed to evaluate the uncertainty of the network, which accounts for the ignorance of the model parameters with respect to the input images. To perform this analysis, we follow the original paper and keep dropout layers active during inference. For each tile, we generate 30 samples from which we calculate the standard deviation of the predictions. We perform this test for height estimation only for simplicity.

The results in Fig. 4.6 and Fig. 4.7 allows us to understand which zones of the input image are the most challenging to the network. In general, contours present high variance, and are indeed very challenging. Although semantic maps bring complementary information on geometry and on the types of structures (e.g., building, trees), much of these constructions have different heights, which increases uncertainty of the network. High buildings in general have indeed a plane rooftop which appears the same whatever its altitude. We also note that trees are quite uncertain even if predictions were quite good: this is a difficult class due to texture variance or deciduousness. 

Comparison between MTL Methods

In this section, we compare the classic approach with equal weights to state-ofthe-art methods for multi-task learning. These techniques were already tested on datasets for digit classification, Multi-label classification, urban outdoor and indoor scene understanding (Cityscape [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] and NYUv2 (Silberman et al., 2012)). We now test them for the first time on VHR aerial images to understand their contribution to improve MTL.

As the chosen methods originally rely on architectures without skip connections, we perform experiments with and without these features for best comparison. We observe results for the mentioned methods in Tables 4.3 and4.4. From our experiments, we observed that aerial imagery requires less context for the objective tasks than scene-parsing datasets in Chen et al., [START_REF] Sener | Multi-task learning as multi-objective optimization[END_REF]. We believe that subtle MTL techniques are more prone to better results on these kind of datasets. Also, in the case of DFC2018, semantic annotations are very sparse and gradient values are impacted, which compromising other MTL methods.

Conclusions on MTL for aerial imagess

In this chapter, we have shown that MTL methods work really well on aerial imagery and may lead to better results when compared to single-task techniques. We proved that complementary features from each objective can be learned by a deep model to improve performance independently. Our experiments on DFC2018 show that a model with less input data and no special post-processing can lead to results comparable to the much complex state-of-the-art results. Thus, this framework can be easily adopted for urban modelling without the need of any complementary information. However, experiments with very recent MTL variants showed that surprisingly the simple equal-weight approach leads to best performances. Maybe subtle MTL methods require larger and denser datasets.

Semantic segmentation and heigh/depth estimation are indeed related tasks, which correspondence can be learned by a neural network through MTL. In the next section, we experiment this framework on a robotics application, 3D reconstruction. However, instead of directly learning both semantics and 3D information, to improve depth estimation we add to the input a coarse depth map that will guide predictions and only learn the residual refinement for depth. This section was a collaborative work with Maxime Ferrera, Alexandre Boulch, Julien Moras, Bertrand Le Saux and Pauline Trouvé-Peloux as part of submission to the 3DRMS Challenge [START_REF] Tylecek | The second workshop on 3d reconstruction meets semantics: Challenge results discussion[END_REF] at the ECCV 2018 Workshop.

Context

Autonomous navigation is conditioned by the ability of sensing and analysing the environment to take new decisions. In this context, accurate 3D reconstruction and semantic understanding of the scenes are critical. Indeed, building a 3D map of the scene including semantic information allows to plan future trajectories accordingly to the tasks to perform.

Over the past years, improvements on data acquisition techniques and processing made possible reconstructing 3D scenes in multiple ways. Active sensors are now mature technology and some variants gain special attention, like LiDAR, which produce dense and reliable point clouds [START_REF] Cole | Using laser range data for 3d slam in outdoor environments[END_REF] and RGB-D sensors that generates corresponding depth maps which can be combined to scene reconstruction [START_REF] Whelan | Elasticfusion: Dense slam without a pose graph[END_REF]. However, passive approaches like SfM are also commonly adopted to recover 3D relations between points and objects from a set of 2D images.

In this work, we present a new approach to jointly learn geometry and semantics for incremental 3D mapping. The proposed pipeline consists of two steps, corresponding to different levels of data aggregation (Fig. 4.8). First, at image level, a MTL network estimates a depth map and a semantic segmentation map. Then, these geometric and semantic features are accumulated into a global representation where the semantic mesh of the scene is extracted from the 3D representation, which allows scene understanding and planning of further actions.

In details, the main contributions of this section are the following. The first key point is the joint use of geometric and machine learning approaches. As illustrated in Fig. 4.8, a raw depth map is estimated from a pair of images using stereo and then is refined through a convolutional neural network. A second key point is the co-learning of depth and semantic segmentation from the raw depth map and an RGB images. Hence the proposed network performs multiple tasks at once, with mutual benefit. We show that this approach leads to better performances than independent predictions of depth and semantic segmentation. Furthermore, the proposed network is able to efficiently transfer from synthetic to real data. Finally, in opposition to global, offline reconstruction methods, our approach is incremental and is hence compatible with autonomous navigation and robotics.

The section is organized as follows: section 4.3.2 presents works related to the problem, section 4.3.3 describes our semantic reconstruction pipeline and finally section 4.3.4.1 evaluates our method with quantitative and qualitative results on the 3D Reconstruction Meets Semantic (3DRMS) dataset [START_REF] Tylecek | 3d reconstruction meets semantics -reconstruction challenge[END_REF], which contains series of stereo sequences generated over a simulated and a real garden.

Related work

Perception for autonomous navigation has been a great topic of interest in the last two decades. As cameras became cheap and easy to embed while still offering rich information, vision-based SLAM methods grew more and more popular Mur-Artal et al. (2015), [START_REF] Forster | SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems[END_REF]. SLAM allows a robot to localize itself with respect to the environment. Either this environment is unknown, and its 3D structure is simultaneously estimated, or the environment is already known, and a previously built map can be used [START_REF] Lynen | Get out of my lab: Large-scale, real-time visual-inertial localization[END_REF], [START_REF] Schneider | maplab: An open framework for research in visualinertial mapping and localization[END_REF]. In the latter case, such maps can be obtained by regular SLAM methods, i.e. building the map of the environment and then using it for self localization. Maps can also be built offline by SfM algorithms such as Colmap [START_REF] Schönberger | Structure-from-motion revisited[END_REF] or OpenMVG (Moulon et al.) before being used for real-time localization. All these approaches for offline or online map construction only use the geometric structure of the scene. However, a few works proposed to also benefit from semantic information, yielding in semantic SLAM [START_REF] Civera | Towards semantic slam using a monocular camera[END_REF]. Indeed, this allows to get better maps and increase the localization reliability [START_REF] Mccormac | Semanticfusion: Dense 3d semantic mapping with convolutional neural networks[END_REF], [START_REF] Schönberger | Semantic visual localization[END_REF]. Using RGB-D data, a pipeline using random forests for creating semantic maps in 2D and 3D was proposed in [START_REF] Hermans | Dense 3d semantic mapping of indoor scenes from rgb-d images[END_REF]. More recently, [START_REF] Ma | Multi-view deep learning for consistent semantic mapping with rgb-d cameras[END_REF] applied joint learning with neural networks over multiple RGB-D views to generate better 2D semantic maps, but did not reconstruct corresponding 3D models. With respect to all these approaches, our method offers a functional pipeline from 2D images to 3D reconstruction with semantics. With respect to the latter ones, semantics and geometry have a better integration directly in the network.

The joint use of geometry and semantics has been investigated in many works. [START_REF] Valentin | Mesh based semantic modelling for indoor and outdoor scenes[END_REF] creates 3D reconstruction using a TSDF (Truncated Signed Distance Function) based approach and the 3D semantic problem is solved directly in the 3D geometric space by the means of conditional random fields (CRF) over meshes, capturing 3D properties fused to appearance properties from images. [START_REF] Vineet | Incremental dense semantic stereo fusion for large-scale semantic scene reconstruction[END_REF] use a similar scheme to perform near real time 3D semantic reconstruction using stereo cameras. They use directly geometric based depth map (Elas) to make the geometric reconstruction and perform labeling using a random Forest based method. The merging is also done using CRF. In its Model-Free 3D (MF3D), [START_REF] Tung | Mf3d: Model-free 3d semantic scene parsing[END_REF] propose a similar approach but used a model free classifier using a label transfer method. However, none of these approaches combine 3D and semantic information to refine each other.

In, [START_REF] Häne | Joint 3d scene reconstruction and class segmentation[END_REF], a dense 3D semantic reconstruction method that tightly fuses geometric and semantic is proposed. A prior 3D reconstruction and semantic segmentation are first separately predicted and then fused together in a joint formulation to improve both the semantic and the geometry of the final reconstruction. Nonetheless, the complexity of the method prevents it from being used in large-scale scenarios. Improving the results of depth and semantic predictions has also been proposed by the authors of [START_REF] Kendall | Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[END_REF]. They use a MTL neural network taking as input a single RGB image and outputting a depth map, a semantic segmentation and instances detection. They show that training a MTL network results in better predictions compared to the use of similar networks performing each task separately. However, their network is very sensitive to the losses weighting, which need to be carefully learnt. In our approach, the joint use of geometric stereo and RGB image as network input allows to get rid of this weighting issue.

Fully Convolutional Networks (FCNs) [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF], [START_REF] Badrinarayanan | SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[END_REF], [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] have been widely used for many tasks in computer vision. In brief, they are dense prediction methods which intend to assign information back onto the original pixels positions. Semantic segmentation is a common domain of application for such dense prediction networks.We focus here on the approaches which benefit from geometric information. FuseNet [START_REF] Hazirbas | Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture[END_REF] uses two interlaced encoders and a single decoder for semantic segmentation from RGB-D data. Alternatively, in [START_REF] Audebert | Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks[END_REF], the authors introduce residual fusion using a small network to merge the outputs of two SegNets applied to different sensor modalities. A finer (though more complex) approach, 3D graph neural network [START_REF] Qi | 3d graph neural networks for rgbd semantic segmentation[END_REF], consists in considering information extracted from the local 3D graph of adjacency and using it in the segmentation network. [START_REF] Guerry | SnapNet-R: Consistent 3d multi-view semantic labeling for robotics[END_REF] proposed 3D-consistent data augmentation to incorporate the geometry directly in the training set. Among all these approaches, the one which has most in common with ours is FuseNet [START_REF] Hazirbas | Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture[END_REF], since they share solving the fusion problem by a highly-integrated network. However, our network goes beyond simple fusion, and address a MTL problem, with semantic segmentation and depth adjustment.

As presented in Fig. 4.8, our method is composed of two computation levels: depth and semantic maps generation; 3D data accumulation for surface reconstruction. These tasks are combined sequentially and result in an accurate method for 3D scene reconstruction. Stereo sequences are used to produce the semantic mesh.

Our main idea is to learn jointly the depth and the semantic segmentation in a MTL deep neural network framework. Besides, we also benefit from geometric depth estimation methods. Indeed, raw depth map estimated from a pair of stereo images with geometric approach are used as inputs of the MTL network. In the following, we describe in details the four sub-tasks of Fig. 4.8.

Depth estimation

The first step of the proposed 3D reconstruction pipeline consists in estimating depth maps from stereo views. In brief, the calibration of stereo cameras allows estimating the relative pose of the right camera with respect to the left one, as well as their distortion parameters. Using these informations, the left and right images may be undistorted and rectified in order to be aligned. Once aligned, the depth of corresponding points in both images can be estimated from the known baseline between the cameras, their focal length and the disparity between the two points.

In the proposed method, the stereo matching algorithm used to compute the disparity maps is SGBM Hirschmuller (2007). SGBM is a semi-global method which estimates disparity by minimizing an energy function made of the Sum of Absolute Distances (SAD) over a local window and a smoothness term. SGBM was tested using its OpenCV implementation and no post-processing were applied.

Semantic Segmentation and Depth Enhancement

The task at hand here is the reconstruction of a semantic mesh of the given scene. Hence, the objective is twofold: reconstruct the geometry of the scene (3D localization of the mesh vertices) and identify semantics (attach a label to each mesh element). However, the depth maps produced using SGBM are far from being perfect (Fig. 4.10a). Hence, a refinement step is needed to produce better depth maps. As the geometric errors mostly occur on edges, using the RGB image as an additional information would lead the network to produce sharper edges.

Besides, as shown in [START_REF] Hazirbas | Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture[END_REF], [START_REF] Qi | 3d graph neural networks for rgbd semantic segmentation[END_REF], semantic segmentation benefits from both RGB images and depth maps. These considerations motivate the proposed approach of a MTL fully convolutional neural network for a joint prediction of depth and semantic segmentation. The proposed architecture was inspired by FuseNet [START_REF] Hazirbas | Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture[END_REF] and is presented in Fig. 4.8. The MTL Network has an encoder-decoder structure, with two branches for the encoder, and two independent branches for the decoder (one for semantics, one for depth estimation). Contrarily to the original implementation of FuseNet, we add skip connections between the encoder and decoder parts to improve spatial information flow over the network. Branches in the contractive part take the RGB and raw depth inputs respectively and as feature maps are generated, they are melt from the depth branch to the RGB input branch. Also, depth refinement is performed in a residual manner, adding the correction to the input raw map. The network was trained over 100 epochs, where each epoch contain 100 batches. The learning rate was initially set to 0.01 and halved every 30 epochs. For semantic segmentation and depth regression we used the cross entropy loss (eq. 4.

2), L ce , and the L 1 norm (eq. 2.11), respectively. As this network is trained with a multi-objective learning approach, for means of training time and memory consumption, we use the equal-weights (eq. 4.1) method to balance the influence of each task on the network optimisation phase. 

Filtering

Even though depth is enhanced using the MTL network, a few errors remain when an object occludes another. In this case, the network tends to smooth the transition between objects and overlook small details (such as tree leafs for example).

To avoid unwanted outliers in later stages of the 3D reconstruction, we apply the following filtering operations. First, points labeled as sky are removed. Second, points from uncertain object borders are identified and removed. These borders correspond to transitions between objects at different depths, so we compute the gradient of depth over the image and remove all pixels for which the gradient norm is greater than a fixed threshold (empirically set to 0.05).

Iterative 3D map construction

The 3D reconstruction module is based on TSDF modeling. This technique estimates a scalar field which represents the approximate distance of every points in the 3D space to the nearest surface. In practice, the field is estimated over a 3D discretization of the world and only close to surfaces. The distance estimated is signed: positive outside of the object and negative for the inside. Hence, the zero crossing is an implicit representation of the surfaces of the objects present in the scene and a dedicated processing allow to recover the mesh. The TSDF implementation used in this section is based on OpenChisel [START_REF] Klingensmith | Chisel: Real time large scale 3d reconstruction onboard a mobile device[END_REF].

In order to estimate the distance field, the 3D space is discretized into voxels and the filtered depth maps are integrated into the TSDF according to the poses of the camera. The depth maps are first clipped in order to only process 3D points within a clipping range distance from the camera (in practice from 0.5 to 5-10 meters). In addition to distance estimations, we also add semantic classification fusion. Thus the module can take as a new input, either the label image resulting from classification or directly the classification scores (cf. Section 4.3.3.2). These semantic inputs are processed in the same way as the depth maps, that is the voxels integrate the semantic scores in addition to the distance-to-nearest-surface values. When all the frames have been integrated, a filter removes the voxels which do not contain accurate enough distance values. For each remaining voxel, the semantic label is selected as the one with highest score. In practice, the voxel grid resolution is set to 3cm. The mesh is finally generated by applying Marching Cube [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF] over this voxel grid.

Experiments

Jointly Estimation of Depth and Semantics

In this section, each step of the semantic reconstruction pipeline is evaluated on the 3DRMS dataset [START_REF] Tylecek | 3d reconstruction meets semantics -reconstruction challenge[END_REF]. The data consists in four synthetic training sequences with ground truth and a synthetic test sequence for evaluation (for which the ground truth remains undisclosed). An additional real sequence is also available with a train set containing ground truth for semantic segmentation only and a test set. Note that ground truth poses are available and used for all sequences but SLAM methods could easily be combined to our pipeline. We further divide the training set in train and validation to present evaluation scores and comparable visual results. Precisely, we created two folds from the training data: fold 1 with training scenes from sequences 128, 160, 224 and testing scenes from sequence 001; and fold 2 with training scenes from sequences 001, 128, 160 and testing scenes from sequence 224.

In the following, semantic segmentation, depth estimation and global 3D reconstruction are evaluated on this dataset and compared to state of the art approaches.

Semantic segmentation. The final semantic reconstructions depend on the results of 2D images semantic segmentation. As accurate images semantic segmentation is required in order to produce correctly labeled 3D meshes, we evaluate the performance of our approach on this task. Our architecture is evaluated against two state-of-the-art approaches: U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] and FuseNet [START_REF] Hazirbas | Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture[END_REF]. Performances are computed according to the classical metrics [START_REF] Guerry | SnapNet-R: Consistent 3d multi-view semantic labeling for robotics[END_REF] and results are presented in Table 4.5(a). It shows a clear improvement of the performance of semantic segmentation on sequence 001 when using the proposed MTL network and results similar to FuseNet Hazirbas et al. ( 2016) on sequence 224. In Fig. 4.9, examples of semantic segmentations of some 2D images from the dataset are displayed. It shows that co-learning enforces consistency with respect to the 3D structure. Indeed, neighbor pixels with the same depth (i.e. also close to each other in 3D) tend to get the same label.

Depth estimation. The quality of 3D reconstruction highly depends on the estimation of an accurate depth map. In this section, we propose to generate a precise depth map by refining a raw one obtained with a stereo pair. This process is one of the tasks of our MTL network. In the following, we compare the performances of depth estimation using traditional stereo method, SGBM [START_REF] Hirschmuller | Stereo processing by semiglobal matching and mutual information[END_REF] with the performances of the refined depth estimates. We also evaluate the performance of a state-of-the-art single-image depth estimation approach, with D3-Net, and of FuseNet [START_REF] Hazirbas | Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture[END_REF], set here to output refined depth images.

The various depth map predictions are first compared in Table 4.5(b) using standard error measurements previously used for the same purpose. We also provide the proportion of points with a deviation less than a given value in Fig. 4.10b and the RMS function with respect to the ground truth distance in Table 4.5(b). Several conclusions can be drawn from this. First, refinement of the geometric depth map using a MTL neural network highly improves the depth estimation accuracy. Indeed for geometric approaches, only 40 % of the points have a deviation lower than 2m, while it reaches 80 % using the proposed MTL approaches. One can note that improvement is specifically significant for small depth range, between 0 to 5m, which is crucial for safe autonomous navigation. Furthermore, our tests also show that using a state-of-the-art FCN for single-image depth esti- mation outperforms the purely geometric approaches according to these standard, global metrics. As discussed in the following, this result can be explained by a better depth map segmentation obtained by deep learning approach. Figure 4.10 shows examples of depth maps obtained with the various geometric or MTL approaches. A geometric method such as SGBM results in accurate depth estimates but with a low quality on the segmentation of the depth map. On the contrary, a deep learning approach such as D3-Net shows an excellent depth segmentation, but produces biased depth values. Finally, the proposed approach which benefits from both geometrical and deep learning techniques shows the best results both in terms of accuracy and quality of depth segmentation.

Iterative 3D Reconstruction

In this section, we present the final results of the reconstruction for both test sets 001 and 224. We provide quantitative and qualitative results on the semantics in 3D.

Geometric reconstruction. As defined in [START_REF] Strisciuglio | Trimbot2020: an outdoor robot for automatic gardening[END_REF], the quality of the reconstruction can be evaluated from two points of view. First, each point of the ground truth must be close to a point of the reconstructed scene, this is the completeness of the reconstruction, i.e. it express how well the whole scene has been discovered and reconstructed. Second, each point of the reconstruction must be close to a point of the ground truth, this is accuracy. The accuracy aims at evaluating how well the reconstruction fits to the ground truth. In practice, a good reconstruction is a compromise between completeness and accuracy; filling the space with points would improve the completeness while selecting only few points, well positioned, would improve the accuracy.

We use the following metrics for quantitative results:

• from ground truth to reconstruction: the average distance of GT point to the mesh, and the completeness (the distance d such that 90% of the GT points are at distance less than d to the reconstruction).

• from reconstruction to GT: the average distance of mesh vertices to GT, and the accuracy (percentage of vertices at distance less than 5cm to the GT)

We compute these metrics using CloudCompare ‡ . For readability, we restrict the numbers to sequence 001 (Table 4.5(c)).

The results are first computed with respect to the full scene ground truth (including complete trees) and then with a cropped ground truth at 1m height (corresponding to the use case of autonomous lawnmower). As expected, using all the estimated 3D points in the mapping leads to better completeness but produce a lot of reconstruction artifacts, in particular at transitions between objects or sky. Filtering these points based on gradient produce much better results according to outlier production while ensuring a good completeness. Even better performances are achieved using a a cropped ground truth. This is mostly due to the small baseline of the stereo images and the ground view, leading to missing or uncertain tree reconstruction.

Finally, error maps are presented on the left side of Fig. 4.11. For the GT → Predictions maps, the red points (error greater than 10cm) are the missing parts. For the Predictions → GT maps, red points correspond to hallucinated objects, particularly multiple tree trunks or flowers. 3D Semantics. Evaluation of 3D semantics is not straightforward: there is no direct correspondence between points of the ground truth and the reconstructed mesh. Our evaluation strategy is to create a geometric clone of the ground truth and then assign to each point the label of the nearest vertex in our reconstructed mesh. By doing so, we obtain prediction/GT label pairs usable for metric computation. Table 4.5(d) presents the results for the MTL Net with gradient filtering for overall accuracy (OA), average accuracy (Av Acc.) and average intersection over union (Av. IoU). Left side of Fig. 4.11 shows snapshots of the surface with semantics labels. Most of the errors are located on the ground, mostly mixing grass and ground and failing on very small connected component, such as pebbles in the grass.

Time Constraints

We give some timing results for each separate block of our pipeline. The experiments were carried with an Intel Xeon CPU E3-1505M and Nvidia GTX1070 GPU. Stereo depth map estimation with SGBM takes 0.03s, the MTL network depth and semantic inference takes 0.4s and the filtering step has a negligible computation time. For the 3D reconstruction, with a clipping range of 5m and with resolutions of 3cm, 5cm and 10cm, the related run times are respectively 0.4s, 0.15s and 0.1s per depth map. Higher clipping ranges increases the computation load as it significantly augment the number of points to use in the reconstruction. With a range of 10m and a resolution of 3cm, the integration of one depth map takes 2.2s. As our pipeline is designed to process incoming data online, one can expect each stereo pair to be processed in less than 0.85s for a high resolution map (3cm voxels -5m range) and in less than 0.5s for lower resolution maps (≥ 5cm voxels -5m range), which are often sufficient for autonomous navigation.

Transfer to real data

The ultimate goal of the reconstruction pipeline is to be applicable to real data. To test the ability of our pipeline to generalize from the synthetic dataset to real outdoor data, we experiment the real test dataset. The results are shown on Fig. 4.12. For visual comparison, we confront the reconstruction for the synthetic test (first row) and real data (second row), note the high difference between the two sample images. We tested first direct transfer of the neural network to the new dataset. While depth estimation was still efficient (middle image), semantic segmentation was deteriorated. To address this problem, we finetuned the segmentation decoder of the network on the train set for ten epochs. Note that, in order to maintain the depth estimation quality, as the finetuning does not include depth ground truth, we froze the weights of the encoder and the depth decoder.

Results are the in the right column and shows that the semantics of the main objects and ground classes are well recovered.

Conclusions in MTL for 3D Reconstruction

In this section, we have presented a 3D reconstruction approach from multiple stereo image pairs. The reconstruction pipeline mixes both the accuracy of geometric approaches and the complex, high-order modeling made possible by deep neural networks. We show that co-learning of depth estimation and pixelwise semantic labeling is possible in robotics scenarios and improves the framework at every stage. Indeed, the MTL network, while being lighter than separate networks, is also more effective. The proposed approach is compatible with online mapping and does not require global optimization which makes it suited to real time applications. Moreover, an important contribution of this work is the efficiency of transfer learning from synthetic data to real environments in robotics. The efficiency of the method has been assessed on the 3DRMS dataset [START_REF] Tylecek | 3d reconstruction meets semantics -reconstruction challenge[END_REF].

A close look at the reconstructed surfaces shows that most of the geometric errors come from the duplication of some objects. Moreover, the main part of semantic errors are due to mis-detected pixels which deteriorate the global score while most of the other objects are correctly recognized. To improve these aspects of the method, future works will include performing object detection and tracking during the sequence. First, the object identification between images would reduce the number of instances in the final product and second, labels would be regularized at object level.

Conclusions

In this section, we adopted semantics as an extra information to guide 3D estimation on aerial images and on synthetic outdoor images for 3D reconstruction. Indeed, both tasks share some relatedness that could be successfully leveraged by a MTL approach. Semantic maps have rich information on objects, its positions 

Conclusions

In this thesis, we developed different approaches to estimate a depth map from a single image with deep neural networks by exploring different cues. First, we use only statistics and geometry from scene composition. Then, we use the aid of defocus blur. Finally, we adopt semantic cues combined to a MTL approach. We have shown how these cues may affect on learning to improve generalization and reduce ambiguity, and also to reduce the uncertainty of the network.

We first developed an efficient neural network for depth estimation from a single image, D3-Net. This model consistently explores the reuse of feature maps with dense-blocks and skip-connections. Along with this network, we first proposed the use of a GAN loss for depth estimation, simultaneously with [START_REF] Jung | Depth prediction from a single image with conditional adversarial networks[END_REF]. In details, we adopted a conditional GAN combined with the LSGAN objective. We also proposed a study with several loss functions from the state-of-the-art in deep depth estimation to compare their contributions when optimizing a same neural architecture. Our method performs best to generate sharp depth maps among the top performance approaches in deep depth estimation by the time of this work's publication. However, while working with standard datasets for depth estimation, we are constrained to use sharp images as inputs.

Optics can bring additional information for estimating depth: for example, defocus blur which is used in Depth from Defocus (DFD). We adapted D3-Net to defocused images. We showed deep networks are capable of implicitly using this extra information along with further geometrical and statistical cues to improve results. Moreover it overcomes well-known problems, as ambiguity and dead zone, from classical DFD methods. We also demonstrated that defocus blur can reduce network's epistemic uncertainty and improve generalization. For this, we studied the uncertainty of the network with a Bayesian approach. We showed that deep-DFD could be performed indoor and outdoor, and even with unknown scenes. For this purpose, we developed various platforms with modified optics to capture real focused and defocused images. Another important conclusion from this study is the sensibility of the deep model to different camera settings (e.g., f-number, infocus plane). This opens a perspective to future co-design of a sensor with optimal settings to be explored by a deep neural network. As proved before, optical cues are indeed an important information for 3D understanding, however, it requires specific optics and most images are not defocused.

Semantic segmentation is another source of rich contextual information related to depth estimation and is also present in many datasets. We proposed that semantic segmentation and 3D estimation could be successfully leveraged by a Multi-Task Learning approach. We validated this on different contexts: aerial imagery and 3D reconstruction for robotics. While working with aerial images, we showed that it is possible to learn to predict height and urban mapping improving both tasks simultaneously. For 3D robotic reconstruction, semantic information was jointly learned with a depth refinement objective. The resulting outputs, a semantic segmentation and a dense depth map were then processed by an iterative method to create a 3D mesh of the environment explored by the robot. The multiobjective approach showed to bring improvements to both tasks and finally to the desired 3D reconstruction.

Building on these findings, we now present perspectives to continue this work. On the one hand, defocus blur is indeed an important cue for depth estimation, on the other hand it also affects on the quality of the image and can degrade results for other tasks that rely on a sharp image. Therefore, we carry our interest to techniques of image restoration to recover a sharp image from a blurred one.

There is a vast literature for approaches in image deblurring. In particular, variational methods or Bayesian approaches have been highly investigated, as [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]Pock (2011), Idier (2013). State-of-the-art methods are usually classified onto non-blind and blind techniques w.r.t. previous knowledge of the PSF. Blind deblurring is a very complex task as both scene and blur are unknown. Scene statistical model and a Bayesian framework are used in [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF]. The use of multiples images is also a way to improve the blind deblurring results [START_REF] References Delbracio | Hand-held video deblurring via efficient fourier aggregation[END_REF].

Today, there is a growing number of works concerning deblurring with DL. [START_REF] Sun | Learning a convolutional neural network for non-uniform motion blur removal[END_REF] is among the first deep image deblurring methods and adopts non-blind technique, which considers previous knowledge of the blur kernel. They propose a network to learn the probabilities of a blur w.r.t. a pre-defined family of potential kernels. A more recent work using GANs considers a conditional approach to generate a sharp image from a blurred one without previous knowledge of the PSF [START_REF] Kupyn | Deblurgan: Blind motion deblurring using conditional adversarial networks[END_REF].

Most of the afore mentionned references deal with motion blur, i.e. from camera or object motion. If assumption on the blur shape is usually difficult, the deblurring task is often simplified by considering the blur as uniform in the image.

Here our aim is to deblur images with a degradation caused by defocus. This problem could be think of less difficult than motion deblurring, as defocused PSF depends only on the depth and the optics. However, this blur varies spatially with abrupt changes due to occlusions. Besides, objects edges can show a mixture of blurs due to overlapping of defocused PSF. Hence, only few works deal with such degradations. [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF], [START_REF] Anwar | Depth estimation and blur removal from a single out-of-focus image[END_REF] generate the all-focus image from an estimated depth map and the defocused image. The all-focus image is a weighted sum of deconvolved images obtained using all the potential defocused PSFs. The depth maps provides the weights to select locally the region that has been deconvolved by the correct PSF. Using DL, [START_REF] Yan | Blind image blur estimation via deep learning[END_REF], present a blind approach that learns how to classify blur from a family of pre-defined blur types, including defocus. More recently, [START_REF] Wang | Training very deep cnns for general non-blind deconvolution[END_REF] adopt a residual strategy between a pre-deconvolved image and the sharp image to perform a general non-blind deconvolution, with an application to defocus blur.

In contrast, as defocus blur and depth are highly related, our idea is to consider the task of depth estimation as a guide for deblurring using a MTL approach.

Preliminary Studies

We propose to follow these studies with two possible directions. The first is illustrated in Fig. 5.1 and considers a multi-objective network to estimate depth and the residual information to sharpen a blurred input image. The second is illustrated in Fig. 5.2 and consists in a more complex pipeline to simultaneously learn depth estimation and image restoration by explicitly estimating the blur kernels associated to the depth map and the blurred image to reconstruct the sharp image. The extra step is meant to insert a prior knowledge to relate depth and blur so the framework can be used in a semi-supervised fashion, when dataset lacks of either depth maps, or sharp images.

We also propose to balance the multi-task approach by using a regularization term from Optimal transport theory, following [START_REF] Janati | Wasserstein regularization for sparse multi-task regression[END_REF], which successfully deals with sparse information to improve estimation of several related tasks.

In this context, the Maratus platform presented in Chapter 3 will be used to generate a large dataset with focused and defocused data.

Point Cloud Prediction from a Single Image

Motivation and Related Work

Recently, there has been a growing interest in working with 3D data instead of raster depth maps. This comes from the fact that machines should be able to understand 3D information to interact with the real world. Indeed, in robotics, geometry is only defined in 3D. The first challenge is to define an efficient rep- resentation of 3D data. The second is to define a adequate loss function for unstructured data.

Some well-known 3D representation types are using voxel grids and point clouds. Point clouds are a collection of points {x (j) , y (j) , z (j) } (j∈N ) in 3D, usually associated to another piece of information, e.g., distance, intensity. The resulting tuple is common to many sensors, e.g., Light Detection And Ranging (LiDAR), Microsoft Kinect, Intel RealSense Cameras. This representation consists on a compact, but unstructured type of data. Voxels represent a fixed position on a pre-defined regular grid in 3D, thus they are a structured type of data, however voluminous.

In the context of DL, some recent contributions propose to use depth estimation to improve 3D object localization and detection. In [START_REF] Wang | Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving[END_REF][START_REF] You | Pseudo-lidar++: Accurate depth for 3d object detection in autonomous driving[END_REF], first, they use a deep network to predict a depth map, then they generate a point cloud from dense depth representation by using the camera settings and a depth correction step. In [START_REF] Roddick | Orthographic feature transform for monocular 3d object detection[END_REF], they introduce a mapping from a single image to 3D at a feature level by creating an intermediate bird-eye voxel-based representation in the latent space. Thus, it would be useful to directly predict point clouds from a single image. This mapping consists on implicitly learning camera parameters and 3D information without further transformations. It has the advantage of representing data in a format that can be updated incrementally with new points.

Our objective is to be able to predict unstructured 3D information learned from all types of sensors above mentioned.

Preliminary studies

In the context of the internship of Rémy Leroy, I co-supervised, we developed a few approaches to predict point clouds from a single image (Fig. 5.3). Our approach is based on a CNN to map the input information to the desired output space by constraining the predictions with a loss function from Optimal Transport, which allows to perform alignment of the representation between the target and the source domains when working with distributions.

Our proposed method is performed in two phases for memory limitations and was inspired fromFan et al. ( 2017), [START_REF] Mandikal | Dense 3D point cloud reconstruction using a deep pyramid network[END_REF]. At first, out network predicts a skeleton point cloud, which is a sparse representation of the scene. We perform a series of experiments with cost functions associated to penalizing distributions. We adopt the chamfer distance [START_REF] Borgefors | Distance transformations in digital images[END_REF]) and an approximate Wasserstein distance by the Sinkhorn algorithm [START_REF] Peyré | Computational optimal transport[END_REF]Cuturi, 2019, Villani, 2008). Next, this first output is densified by second NN using a residual approach [START_REF] He | Deep residual learning for image recognition[END_REF]. This densification step explores both global and local features to add new points with small variations w.r.t. the original predictions from the first phase. This approach was tested on the KITTI [START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF] contains pairs of RGB images and point clouds from LiDAR. We observe some results in Fig. 5.4. Thus, we showed that it is indeed possible to successfully map a single image to a point cloud using neural networks and an associated function from Optimal Transport, which constrains points distribution to a realistic and distributed configuration. This implementation is the first method to introduce point cloud estimation from a single image to represent a complete scene. Current limitations from this approach are related to the density of the 3D representation and efficient memory usage. Future work in the subject is necessary to define an architecture more adapted to the task. We also intend to use single image 3D prediction to object detection and localization.

Co-design of a Deep-DFD Camera

We have seen in Chapter 3 that a change of a single parameter of a conventional camera, such as the focus plane position, had an influence on the model's performance. This raises the question of optimization of optical settings for a neural network dedicated to depth estimation. Going further, one could consider to jointly design the optics and the network in a co-design approach. Recent works from the literature introduce the optics into the CNN as a new differentiable layer (Gur and Wolf, 2019) and benefit from the power of parameter optimization of neural network to optimize both optics and network parameters [START_REF] Chang | Deep optics for monocular depth estimation and 3d object detection[END_REF]. A perspective of our work in deep depth estimation is to use such co-design approach with the proposed D3-Net network. In contrast with recent works, we propose in particular to focus on the use of unconventional optics dedicated to DFD such as a coded aperture [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF] or chromatic aberration [START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF].

LSGAN Least Squares Generative Adversarial Network. 27, 30, 104 MF3D Model-Free 3D. 88 ML Machine Learning. [START_REF] Saxena | Learning Depth from Single Monocular Images[END_REF]4,5,9,18,20,69,70,[START_REF] Zhang | Shape-from-shading: a survey[END_REF]72,73,74,[START_REF] Moulon | an open multiple view geometry library[END_REF]77,79,80,82,84,85,87,89,90,91,92,94,[START_REF] Sun | Learning a convolutional neural network for non-uniform motion blur removal[END_REF]97,98,99,101,104 
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 21 Figure 2.1: Illustration of VGG-16. Source Simonyan and Zisserman (2015)
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 22 Figure 2.2: Representation of convolutional blocks from different architectures. (a) Standard generic block for convolutional neural networks. (b) Generic residual block. (c) Generic dense block.
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 23 Figure 2.3: Original GAN framework illustration. The generator G is trained to learn an implicit distribution to generate realistic outputs to fool the discriminative model D, which is trained to distinguish fake samples that are generated in G from real samples coming from the real dataset.
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 24 Figure 2.4: D3-Net architecture.

Figure 2 . 5 :

 25 Figure 2.5: Adaptation of the conditional Generative Adversarial Network in[START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF] for depth estimation.

  which has approximately 230k pairs of indoor images from 249 scenes for training and 215 scenes for testing. We refer to this split as NYUv2 230k. NYUv2 also contains a smaller dataset, which we refer to as NYUv2 795, with 1449 pairs of aligned RGB and depth images, of which 795 pairs are used for training and 654 pairs for testing. Original frames from Microsoft Kinect output are 640x480. Pairs of images from the RGB and Depth sensors are posteriorly aligned, cropped and processed to fill-in invalid depth values. Final resolution is 561x427.

  2.4.1 Quantitative Performance Comparison.

Figure 2 .

 2 Figure 2.6 shows the evolution of the network performance with different losses when trained with different sizes of dataset. We adopt three different splits with the 795 pairs from the small NYUv2 dataset, 12k pairs from equally spaced samples of the complete dataset and 230k pairs of images from the whole dataset.
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 26 Figure 2.6: Performance evolution for different dataset sizes and different losses using D3-Net architecture.
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 27 Figure 2.7: Comparison of the convergence speed between the losses inTable 2.1 on test data.
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 29 Figure 2.9: Performance comparison of regression losses with different front-end architectures.
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 31 Figure 3.1: Depth estimation predictions with synthetic and real defocused data on indoor and outdoor challenging scenes. These results show the flexibility to new datasets of a model trained with a synthetically defocused indoor dataset, finetuned on a real DSLR indoor set and finally tested in outdoor scenes without further training.
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 32 Figure 3.2: Illustration of the DFD principle. Rays originating from the out of focus point (black dot) converge before the sensor and spread over a disc of diameter ϵ.
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 33 Figure 3.3: Blur diameter variation vs depth for the following in-focus settings: 2m, 4m and 8m tests on the NYUv2 dataset.
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 34 Figure 3.4: Examples of synthetic defocused images generated from an image of the NYUv2 database for two camera in-focus plane settings: 2 and 8 m.
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 35 Figure 3.5: Qualitative comparison for different predictions with the proposed defocus blur configurations.
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 36 Figure 3.6: Comparison between D3-Net estimation and Zhuo and Sim (2011) for images with the focus plane at 2m.
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 37 Figure 3.7: Distribution of depth pixels on different depth ranges and RMS performance of D3-Net trained on all-focused and defocused data.
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 39 Figure 3.9: Experimental platform with Xtion PRO sensor coupled to a DSLR Nikon camera.

Figure 3 . 10 :

 310 Figure 3.10: Qualitative comparison of D3-Net trained on defocused and all-focused images from a DSLR camera.
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 311 Figure 3.11: Examples of depth prediction using DIW dataset with D3-Net trained on NYUv2.
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 312 Figure 3.12: Comparison of monocular 3D estimation methods: from left to right, D3-Net trained on defocused images, D3-Net trained on all-in-focus images and a classical DFD approach by Zhuo and Sim (2011).

Figure 3 . 13 :

 313 Figure 3.13: Maratus platform for acquisition of indoor and outdoor data with defocused blur and corresponding depth maps generated from a stereo pair or a RealSense depth camera.

Figure 3 .

 3 Figure 3.14: Theoretical curves for varying settings of in-focus planes to perform a choice of parameters that lead to best results with D3-Net.

AllFigure 3 . 15 :

 315 Figure 3.15: Some examples from Maratus dataset.
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 41 Figure 4.1: Types of learning strategy for multiple tasks. x (i) is the input data, y (i) t k the output for a task, t k , so that k ∈ T , θ t k s are learnable parameters and L ⊔ ∥ represent an specific loss. (a) Single-task learning with two separate networks. (b) MTL with soft parameter sharing. θ (1) t1 and θ (1) t2 are constrained by a similarity measurement. (c) MTL with hard parameter sharing. θsh = θ
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 2 Multi-Task Learning of Height and Semantics from Aerial Images 4.2.1 Introduction

Figure 4 . 2 :

 42 Figure 4.2: Architecture of our D3-Net MTL model for aerial imagery. Left most layers share parameters between all tasks and right most layers are task-specific. Last layer of each decoder differs only on the output number of channels, followed by task evaluation metric (cross-entropy, or L 1 , for semantic and height estimation, respectively).
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 43 Figure 4.3: Results on the DFC2018 dataset trained with equal weights (best results). Top row shows RGB image and height ground-truth, bottom row semantic prediction and height estimate.The training area is delimited by a red rectangle on the RGB image.

Figure 4 . 4 :

 44 Figure 4.4: Height map generation using the Digital Surface Model (DSM) and the Digital Elevation Model (DEM): height as DSM-DEM.
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 45 Figure 4.5: Crop areas over the DFC2018 dataset. From left to right, input RGB image, semantic ground-truth and prediction (black is no information), height ground-truth and prediction. Top row show the Houston University stadium and bottom row shows a residential area.
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 46 Figure 4.6: Uncertainty map of height (standard deviation of model predictions).

Figure 4 . 7 :

 47 Figure 4.7: Crop areas over the uncertainty map.
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 48 Figure 4.8: Pipeline for generating geometric and semantic 3D reconstruction maps.
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 3 Multi-Task Learning of Geometry and Semantics for Online 3D Reconstruction
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 49 Figure 4.9: Comparison of the semantic segmentation maps generated by U-Net trained on RGB images; and the proposed MTL network architecture trained on RGB and raw depth images.

  (a) Comparison of depth estimation approaches: geometric approach (SGBM); depth prediction (D3-Net); and MTL network (last column). First row / Last row: depth maps / error maps in mm. RMS with respect to the ground truth distance Refined depth Deviation or distance (in meter) (b) Impact of the depth refinement on depth estimation quality
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 410 Figure 4.10: Depth estimation comparison.
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 4 Figure 4.11: Semantic Reconstruction: Semantics mesh (left) and geometric error heat maps (right).

Figure 4 . 12 :

 412 Figure 4.12: Reconstructions on the tests sets of the 3DRMS dataset. Synthetic data from the test set has been generated accordingly to the training set, thus data is similar. Real data contains more details and conditions unknown by the neural network, we use geometry transfer and semantics finetuning to produce results for this dataset.
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 51 Figure 5.1: Supervised learning of depth estimation and deblurring simultaneously. Here, a blurred image, x B is used as input of a neural network f 1 (•) to perform depth estimation, which output, d is compared to ground-truth d using a defined loss function L t1 (•). For deblurring, a second neural network with a few layers, f 2 (•) receives a concatenation on intermediate feature maps, γ, from f 1 (•), and d to predict a residual sharp image, xS_res , which is added x B and finally compared to the sharp ground truth with a defined loss function L t2 (•).
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 52 Figure 5.2: Semi-supervised pipeline for estimating depth and for deblurring from a blurred RGB image. The objective is to create a cyclic pipeline to relate depth and defocus blur. Here, f k represent different functions to be either replaced by a CNN, or model-based functions to introduce prior-knowledge to the pipeline, L t k are task-specific losses, x B , the blurred image, x S , the sharp image, d, the depth map, σ, the map with PSF information accross the image dimension.
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 53 Figure 5.3: Point cloud (PC) prediction from a single image using a CNN.
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 54 Figure 5.4: Results for sparse point cloud (PC) prediction and densification.
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 21 List of common losses for regression.

Table 2

 2 .1 on test data.

	RGB	Ground truth	L lscgan	L 1

eigen

Figure 2.8: Qualitative result of D3-Net trained to minimize different regression losses from the literature of depth from monocular images.
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 23 Performance metrics obtained by state of the art methods of deep depth estimation with NYUv2 dataset. Results extracted from original papers. Our best result consists in the D3-Net trained with L lscgan with 230k pairs of images.

	Methods	Error↓ rel log10 rms rmslog	Accuracy↑ δ < 1.25 δ < 1.25 2 δ < 1.25 3
	Eigen and Fergus (2015) 0.158 Laina et al. (2016) 0.127 0.055 0.573 0.195 -0.641 0.214 Xu et al. (2018a) 0.121 0.052 0.586 -Cao et al. (2017) 0.141 0.060 0.540 -Jung et al. (2017) 0.134 -0.527 -82.2% 97.1% 99.3% 76.9% 95.0% 98.8% 81.1% 95.3% 98.8% 81.1% 95.4% 98.7% 81.9% 96.5% 99.2% D3-Net 0.136 -0.504 0.199 82.1% 95.5% 98.7% Kendall and Gal (2017) 0.110 0.045 0.506 -81.7% 95.9% 98.9%

2.4.4 Comparison with state of the art methods

Finally, we show in Table

2

.3 that the proposed D3-Net architecture combined with L lscgan and trained with NYUv2 230k reaches the top state of the art methods.
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		Original RGB images	
	D3-Net All-in-focus	0.226 -0.706 -	65.8% 89.2% 96.7%
		RGB images with additional blur	
	D3-Net 2m focus D3-Net 4m focus D3-Net 8m focus Zhuo and Sim (2011) 8m focus 0.273 -0.981 -0.068 0.028 0.274 0.110 0.085 0.036 0.398 0.125 0.060 -0.324 -Trouvé et al. (2011) 8m focus 0.429 0.289 1.743 0.956	96.1% 99.0% 99.6% 92.5% 99.0% 99.8% 95.2% 99.1% 99.9% 51.7% 83.1% 95.1% 39.2% 52.7% 61.5%
	RGB images with additional blur proposed by Anwar et al. (2017)
	Anwar et al. (2017) D3-Net	0.094 0.039 0.347 -0.036 0.016 0.144 0.054	-99.3%100.0% 100.0% --
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 32 Performance comparison of D3-Net using all-in-focus and defocused images on a real DSLR dataset.

	Methods	Error↓ rel log10 rms rmslog	Accuracy↑ δ < 1.25 δ < 1.25 2 δ < 1.25 3
	f /2.8 f /8 f /8 (resize)	0.157 0.065 0.546 0.234 0.225 0.095 0.730 0.285 0.199 0.084 0.654 0.259	80.9% 94.4% 97.6% 60.2% 87.7% 98.0% 69.6% 91.6% 97.4%

Table 3 . 3 :

 33 Performance comparison of D3-Net on several synthetically defocused versions of NYUv2 with varying in-focus planes.

	focus at (m)	Error↓ rel log10 rms rmslog	Accuracy↑ δ < 1.25 δ < 1.25 2 δ < 1.25 3
	1.0 1.25 1.4 1.7 2 2.5 3 5 10	0.068 -0.293 0.057 -0.267 0.054 -0.254 0.058 -0.273 0.064 -0.290 0.071 -0.311 0.089 -0.388 0.087 -0.446 0.074 -0.340	---------	96.3%100.0% 100.0% 97.2% 99.9% 100.0% 97.6%100.0% 100.0% 97.0% 99.9% 100.0% 96.3% 99.8% 100.0% 94.9% 99.9% 100.0% 92.9% 99.8% 100.0% 91.7% 99.8% 100.0% 94.5% 99.9% 100.0%
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Table 4 . 2 :

 42 Comparison of MTL state-of-the-art and our architecture adopting an equal weight approach on Vaihingen dataset.

		Height Errors mae↓ mse↓ rms↓ OA*(%)↑AA**↑Kappa↑ Semantic Errors
	Srivastava et al. (2017) 0.063	-	0.098	78.8% 73.4% 71.9%
	D3-Net Height D3-Net Semantics D3-Net MTL	0.039 0.005 0.067 ---0.045 0.006 0.074	-87.4% 84.4% 75.0% --87.7% 85.4% 75.9%

Table 4 . 3 :

 43 Comparison of different MTL approaches from the state-of-the-art with Vaihingen dataset

		MTL Method	Height Errors↓ mae mse rms	Semantic Errors↑ OA(%)AA(%)Kappa
	no skip	MTL-MGDA-UB (Sener and Koltun, 2018) 0.042 0.006 0.075 81.9% 66.0% 55.8% GradNorm (Chen et al.) 0.044 0.006 0.074 87.3% 84.2% 74.3% Equal Weights 0.047 0.006 0.076 87.3% 84.2% 74.6%
	skip	MTL-MGDA (Sener and Koltun, 2018) 0.042 0.007 0.079 85.8% 81.4% 71.2% GradNorm (Chen et al.) 0.040 0.005 0.068 87.4% 85.1% 75.4% Equal Weights 0.043 0.006 0.073 87.5% 84.9% 75.5%

Table 4 . 4 :

 44 Comparison of different MTL state-of-the-art approaches with VHR input images from DFC2018 dataset.

		MTL Method	Height Errors↓ mae mse rms	Semantic Errors↑ OA(%)AA(%)Kappa
	no skip	MTL-MGDA-UB (Sener and Koltun, 2018) 1.475 9.911 3.047 GradNorm (Chen et al.) 1.394 8.886 2.857 Equal Weights 1.520 8.589 2.826	52.98 47.59 0.50 58.00 54.23 0.56 58.26 54.74 0.56
	skip	MTL-MGDA (Sener and Koltun, 2018) 1.303 7.415 2.627 GradNorm (Chen et al.) 1.340 7.898 2.743 Equal Weights 1.263 7.279 2.599	59.13 55.53 0.57 63.07 58.92 0.61 74.44 68.30 0.73

Table 4 . 5 :

 45 Evaluation on the 3DRMS dataset.

	(a) Evaluation of the semantic segmentation
	Methods				Test on 001 / 224
	Input	Output		OA	A. Prec.	A. IoU
	Baselines U-Net RGB FuseNet RGB	S S	0.9068 / 0.9054 0.8286 / 0.7496 0.7012 / 0.6395 0.9091 / 0.9311 0.8577 / 0.8038 0.7371 / 0.7169
	Multitask refinement MTL Net. RGB+D D+S	0.9411 / 0.9303 0.8965 / 0.8017 0.7980 / 0.7195
		(b) Evaluation of the depth estimation
		Methods		Error↓, Test on 001 / 224
		Input	Output	rel	rms
	Geometric SGBM Mono image D3-Net Mono RGB RGBx2 D D Refinement FuseNet RGB+D D MTL Net. RGB+D D+S	0.518 / 0.439 1.801 / 1.745 0.145 / 0.110 0.755 / 0.477 0.057 / 0.074 0.395 / 0.454 0.082 / 0.089 0.394 / 0.436
	(c) Evaluation of the 3D reconstruction (scene 001).
				GT -→ Recons.	Recons. -→ GT
	Filtering method range Av. dist.	Complet. dist. 90%	Av. dist.	Acc. % < 5cm
	Full scene No filtering Gradient	5m 10m 0.061 0.061 5m 0.077 10m 0.058	0.145 0.164 0.208 0.156	0.201 0.311 0.037 0.047	32.2% 20.9% 77.6% 70.5%
	Cropped scene z=1m Gradient 10m 0.043	0.109	0.031	83.9%
		(d) Evaluation of the 3D semantics.
	Scene 001	OA Av. Acc. Av. IoU
	Full scene Cropped z=1m 0.8640 0.8705 0.8950 0.8735	0.7285 0.7339
		Gradient filtering with r=10m, scene 001.
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Chapter 4. On the Insight of Semantics: a Multi-Task Approach and sizes, which can be used by a 3D estimator to better understand the scene with both global and local features.
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Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] as our optimizer with learning rate of 2e-4 and we train our model with a Nvidia GTX 1080 GPU. Metrics. To evaluate our models, we use common metrics from (Eigen andFergus, 2015, Srivastava et al., 2017). For height estimation, we use the mean absolute error (mae):

and the root mean squared error (rmse),

For classification, we use overall accuracy (OA), average accuracy (AA) and Kappa, as in [START_REF] Xu | Advanced multi-sensor optical remote sensing for urban land use and land cover classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest[END_REF]. Results for DFC2018 are evaluated online on the official GRSS Dase Website † .

Jointly Learning Height and Semantics

In this experiment, we use the original D3-Net with the corresponding task decoder for single task training, and the proposed model with equal weights for MTL. This choice is faster and less memory consuming than state-of-the-art techniques (i.e. GradNorm, MTL-MGDA).

If we focus on the bottom lines of Table 4.1, we observe that performances are improved for both objectives by the multi-task model if compared to the single-task. It has the advantage of learning complementary features, using less parameters compared to single models for each task.

In the upper lines of table 4.1, we observe state-of-the-art results for DFC2018.