
HAL Id: tel-03771164
https://theses.hal.science/tel-03771164v2

Submitted on 7 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Développement de nouvelles méthodes
d’homogénéisation des données atmosphériques GNSS.

Application à l’étude de la variabilité climatique.
Annarosa Quarello

To cite this version:
Annarosa Quarello. Développement de nouvelles méthodes d’homogénéisation des données atmo-
sphériques GNSS. Application à l’étude de la variabilité climatique.. Sciences de la Terre. Sorbonne
Université, 2020. Français. �NNT : 2020SORUS457�. �tel-03771164v2�

https://theses.hal.science/tel-03771164v2
https://hal.archives-ouvertes.fr


1



Abstract

Homogenization is an important and crucial step to improve the use of observational

data for climate analysis. This work is motivated by the analysis of long GNSS Inte-

grated Water Vapor (IWV) data which have not yet been used in this context. These

series are affected by inhomogeneities linked to changes in the instrumentation, in the

environment, and in the data processing procedure. Due to the natural variability of

the series we actually work on the time series of differences, using ERA-Interim re-

analysis as reference for the climate signal. A base assumption is that the differences

contain only the signature of the abrupt changes from the GNSS series which can be

detected by means of a segmentation algorithm. Careful analysis of the segmentation

results allows to sort the cases when this assumption is actually not true.

The main contribution of this thesis was the development a novel segmentation

method dedicated to detecting changes in the mean of the GNSS-ERA-Interim IWV

difference series. This segmentation model integrates a periodic bias and a heteroge-

neous, monthly varying, variance to properly fit the characteristics of the series. The

method consists of first estimating the variance using a robust estimator and then es-

timating the segmentation parameters (the positions of the change-points, the means

of the segments) and the periodic bias model in a sequential way. The segmentation

parameters and the periodic bias model are estimated iteratively for a fixed number of

change-points. The inference is achieved by the classical maximum likelihood proce-

dure using a dynamic programming algorithm for the estimation of the segmentation

parameters which provides the exact solution in a reasonable amount of time. The

procedure is repeated for all the numbers of change-points tested between 0 and a

maximum (about 30). Finally, the optimal number of change-points is chosen using

a penalized model selection strategy. Several criteria are tested.

The method is implemented in the R GNSSseg package available on CRAN.

The performance of the proposed method was evaluated by numerical simulations.

An application for a real dataset of 120 global GNSS stations in the global IGS net-



work is presented for the period from January 1995 to December 2010. Inspection of

the results reveals that the detected change-points contain a fraction (2̃0%) of out-

liers which are characterized by double detections with two large offsets, generally of

opposite signs, close together, e.g. a few tens of days apart. In order to detect and

eliminate the outliers a screening method was developed. The final set of change-

points is validated with respect to GNSS metadata which contain information on

equipment changes that occurred at the stations. The percentage of validation re-

mains moderate at the level of 20 % despite all the changes are statistically significant.

Some of the change-points may actually be due to the reference series (ERA-Interim).

Finally, the segmentation information (dates of the change-points) is included in a

linear regression algorithm which is used to estimate the GNSS IWV trends. The

estimated trends are tested for significance and compared to the ERA-Interim trends.

Higher spatial consistency in the GNSS trends and improved consistency is found

after homogenisation with ERA-Interim in regions where the reanalysis is known to

perform well.

Several options are discussed to further improve the homogenisation method, such

as alternative segmentation models including autocorrelation in the series and more

complex bias functions. Another issue is the correct attribution of the detected

change-points which may actually be due to the reference series. Validations involving

dual GNSS comparisons would be useful when the network density permits. However,

the current method already significantly improves the homogeneity of the GNSS series

and may be used for climate trends and variability analysis.
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signal. La courbe bleue en bas de graphique montre l’écart-type des fluctuations mensuelles. 18
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différentes de σ?2 : (a) σ?2 = 0.1, (b) σ?2 = 0.5 et (c) σ?2 = 1.5. Les lignes pointillées rouges

indiquent les positions des vraies ruptures. . . . . . . . . . . . . . . . . . . . . . . . 34

7



LIST OF FIGURES
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entre les ruptures détectées et les changements connus les plus proches, le nombre de
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Chapter 1

Résumé long

1.1 Introduction

Les séries longues de données sont essentielles pour l’étude, la compréhension et la modélisation des

processus météorologiques et climatiques globaux. Cependant, ces séries sont souvent affectées par des

inhomogénéités dues aux changements des instruments de mesure ou des observateurs, au déplacement

de la station et aux changements d’environnement autour de la station (Jones et al. [1986]). Ces inho-

mogénéités se manifestent généralement par des changements abrupts dans les séries, rendant l’estimation

des tendances et variabilités climatiques peu précises ou biaisées (Thorne et al. [2005]). L’homogénéisation

de ces séries est donc une étape cruciale. Cette homogénéisation consiste à (1) détecter les changements

abrupts ou ruptures ; (2) valider ces ruptures, i.e. séparer les ”vraies” détections des ”fausses” à l’aide

de Metadata ; (3) corriger les séries de ces ruptures avant ou pendant l’estimation des tendances.

Dans cette thèse, nous sommes intéressés à un nouveau type de données : les données journalières de

Contenu Intégré en Vapeur d’Eau (CIVE) mesurées par GNSS (Global Navigation Satellite Systems),

appelées GNSS CIVE (IWV Integrated Water Vapor en anglais), plus précises que les mesures par

radiosondes auparavant réalisées. Les études portant sur l’homogénéité de ce nouveau type de données

sont récentes et peu nombreuses (Bock et al. [2010]; Ning et al. [2016]; Parracho et al. [2018]; Vey et al.

[2009]). Dans ces séries, une forte variabilité naturelle a été observée rendant la détection de ces ruptures

difficile. Afin de palier à ce problème et dû au fait que nous ne disposons pas de séries proches, nous avons

utilisé la réanalyse ERA-Interim (Dee et al. [2011]) comme référence qui représente bien la variabilité

atmosphérique (Parracho et al. [2018]) : nous considérons les séries de différence ∆CIV E entre le GNSS

et les données de réanalyse (∆CIV E = CIV EGPS −CIV EERAI). Dans ce travail, nous disposons d’un

ensemble de données GNSS issu du réseau IGS repro1 (Bock [2017]) représenté sur la Figure 1.1). Plus

précisément, nous avons les séries GNSS CIVE de 120 stations pour la période du 1er janvier 1995 au
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31 décembre 2010.

Figure 1.1 – Répartition des 460 stations GNSS disponibles à partir du jeu de données IGS repro1
couvrant la période du 1er janvier 1995 au 31 décembre 2010. Les différents marqueurs représentent la
longueur de la série. Parmi les 460 stations, 120 sont des séries de plus de 15 ans. La source : Bock [2014].

Afin d’illustrer l’intérêt d’analyser la série de différence, regardons une série particulière qui est la

série GNSS CIVE de la station CCJM (station tropicale située au nord de la mer des Philippines).

La Figure 1.2 (a) présente cette série (en noir). On observe une variation saisonnière marquée avec

des valeurs variants de 10 kgm−2 à 60 kgm−2 entre l’hiver et l’été, ainsi qu’une forte variabilité liée à

l’évolution des conditions météorologiques. Sur cette Figure est aussi représentée la série de la réanalyse

ERA-Interim associée (en rouge). Les deux jeux de données semblent en accord. Les lignes pointillées

verticales donnent les changements d’équipement connus qui comprennent les changements de récepteur

et d’antenne tels que trouvés dans les fichiers logs du site IGS, ainsi que deux changements de traitement

en 2008 et 2009. Une inspection visuelle de la série permettant de voir si un changement connu induit

une rupture dans la série n’est clairement pas évidente. La Figure 1.2 (b) présente la série de différences

∆CIV E. On voit maintenant clairement apparâıtre une rupture le 24 février 2001 qui est associée à un

changement de récepteur et d’antenne de la station CCJM. Les autres changements connus ne semblent

pas produire de ruptures. En suivant la même approche que Lu & Lund [2007], nous avons ajusté un

modèle de changement de moyenne à la série ∆CIV E avec un changement connu (sans y inclure de

tendance puisque nous travaillons sur la différence), en rouge sur la Figure. De plus, suivant l’approche

proposée par Collilieux et al. [2019], nous avons modélisé la présence d’un biais périodique par une série

de Fourier d’ordre 4 avec une période de base de 1 an (365,25 jours) et des harmoniques de 1/2, 1/3

et 1/4 d’année (en magenta sur la Figure). Le saut dans les moyennes est estimé à 2,8 kgm−2. La

raison de la présence d’un biais périodique malgrè le fait que l’on travaille sur la différence s’explique

par une différence de représentativité entre les deux ensembles de données. En effet, les observations

GNSS peuvent capturer une certaine variabilité à petite échelle non résolue par la réanalyse (Bock &

Parracho [2019]). Bien que la réanalyse soit la meilleure référence que nous puissions avoir, elle n’est pas
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parfaite et ces différences doivent être prises en compte dans le modèle de segmentation afin d’éviter la

sur-détection de ruptures dûe à la présence de ce biais périodique. Un deuxième point qui caractérise les

différences CIVE est la variation annuelle de la variance (Bock & Parracho [2019]). Cette caractéristique

est mise en évidence par la ligne bleue dans la Figure 1.2 (b) qui représente l’écart-type mensuel des

résidus quotidiens après ajustement.

L’objectif principal de cette thèse était de développer un nouveau modèle de détection de ruptures

ou segmentation adapté à ces deux particularités de la série temporelle de différence GNSS CIVE : un

biais périodique et une variance mensuelle.

(a) (b)

Figure 1.2 – (a) Séries temporelles GNSS et ERA-Interim CIVE de la station CCJM située dans la mer
des Philippines (27N, 142E). Les lignes vertes verticales sont les changements d’équipement documentés
dans les métadonnées. (b) Différence CIVE (GPS - ERA-Interim) en gris. Un seul changement a été
retenu a priori pour ajuster un modèle : fonction constante par morceau (superposé au signal, en rouge)
+ série de Fourier d’ordre 4 (en magenta en bas de graphique), le modèle ajusté est superpose en magenta
sur le signal. La courbe bleue en bas de graphique montre l’écart-type des fluctuations mensuelles.

La détection de changements abrupts ou ruptures est un domaine important et très actif en statis-

tique. L’objectif consiste à identifier des instants, positions ou dates où les propriétés statistiques des

données sont différentes avant et après ces instants, typiquement la distribution. Ces ruptures délimitent

ce qu’on appelle des segments. Une synthèse de l’état de l’art des méthodes de détection de ruptures,

appelées aussi méthodes de segmentation, développées dans le domaine spécifique du climat est donnée

dans le Tableau 2.1. La grande majorité des méthodes sont paramétriques (basées sur un modèle pa-

ramétrique par opposition à une approche non paramétrique) et fréquentiste (estimation ponctuelle par

opposition à une approche bayésienne). Dans ce contexte paramétrique et fréquentiste, les deux grands

types de méthodes proposées sont : (1) basées sur des tests statistiques de détection d’une rupture
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(détection locale) et la méthode consiste à détecter les ruptures les unes après les autres (la solution

n’est pas exacte du point de vue de la détection globale), et (2) basées sur une recherche simultanée

des ruptures en utilisant des critères de vraisemblance pénalisée. Dans cette dernière approche, on peut

faire une distinction selon l’exactitude ou pas de l’algorithme d’optimisation utilisé. Dans cette thèse,

nous avons considéré cette dernière méthode en cherchant à utiliser un algorithme de segmentation exact

(au sens du critère de vraisemblance). La Section 1.2 présente la méthode générale de segmentation :

l’objectif est de montrer les difficultés tant statistique qu’algorithmique de cette approche et de présenter

les solutions existantes dans la littérature.

La méthode de segmentation que nous avons développée est présentée dans la Section 1.3 dans la-

quelle ses performances sont étudiées à l’aide d’une étude de simulation. La Section 1.4 présente les

résultats de la segmentation sur les données réelles des 120 stations. Parmi les ruptures détectées, cer-

taines semblent plutôt correspondre à des détections sur des pics de bruit qu’on appellera des valeurs

aberrantes (”outliers” en anglais). Dans cette section, nous proposons une méthode automatique pour

séparer les ”outliers” des ”vraies” ruptures. Cette étape est appelée étape de “nettoyage” (screening

en anglais). Enfin, nous utilisons l’ensemble des ruptures nettoyé des outliers pour estimer la tendance

climatique dans les séries CIVE.

La Figure 1.3 donne le schéma de la procédure globale proposée. La première étape consiste à

récupérer les données d’intérêts d’une part en utilisant la technique de traitement des données CIVE

dérivée du GNSS et d’autre part en effectuant la différence avec la série de référence obtenue par ERAI

afin d’éliminer la variabilité naturelle des séries CIVE, notées ∆CIV E. Il s’ensuit l’étape de segmen-

tatation des séries puis de ”nettoyage”. Les ruptures sont ensuite utilisées afin d’estimer la tendance

climatique dans les séries d’origine.

1.2 Méthode générale de segmentation

Nous présentons la méthode générale de segmentation dans un cadre paramétrique, fréquentiste uti-

lisant l’inférence par la méthode du maximum de vraisemblance (pénalisée). Les données observées

y = {yt}t=1,...,n sont supposées être des réalisations de n variables aléatoires indépendantes Yt de loi de

probabilité (Pθ)θ∈Θ où le paramètre θ est supposé affecté par K − 1 ruptures :

Yt ∼ Pθk si t ∈ Ik = Jtk−1 + 1, tkK, k = 1, . . . ,K

où

1. K est le nombre de segments,
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Figure 1.3 – Schéma de la procédure générale proposée pour l’analyse des séries journalières GNSS
∆CIV E.

2. T = (t1, . . . , tK−1) le vecteur des K − 1 ruptures qui décomposent le signal en K segments,

Ik = Jtk−1 + 1, tkK, avec la convention t0 = 0 et tK = n.

3. θ = (θ1, . . . , θK) est le vecteur des paramètres de la distribution.

Classiquement en segmentation, l’inférence se fait en trois étapes : (1) estimation de θ à T et K fixés, (2)

estimation de T à K fixé et (3) choix de K. L’étape (1) ne présente en général pas de difficultés majeures

et se fait de façon exacte. Notons θ̂ l’estimateur de θ. Les principales difficultés concernent l’étape (2) qui

pose un problème algorithmique et l’étape (3) qui pose un problème statistique de sélection de modèles.

Pour l’estimation des instants de ruptures, nous cherchons à maximiser la log-vraisemblance calculée

en son maximum pour θ̂

T̂ = argmax
T∈MK,n

log p(y;K,T, θ̂) = argmax
T∈MK,n

K∑
k=1

tk∑
t=tk−1+1

log pθ̂k (yt),

où MK,n = {(t1, . . . , tK−1) ∈ NK−1, 0 = t0 < t1 < · · · < tK−1 < tK = n} est l’ensemble de toutes les
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segmentations possibles de la grille J1, nK en K segments. Pour ce faire, nous devons explorer tout l’espace

MK,n qui est de très grande taille,
(
n−1
K−1

)
. Un algorithme naif ne peut être ainsi utilisé. L’algorithme

maintenant bien connu qui permet d’obtenir la solution exacte en un temps algorithmique raisonnable est

l’algorithme de Programmation Dynamique (DP), introduit par Bellman [1954]. La condition nécessaire

pour pouvoir utiliser DP est que la quantité à maximiser soit segment-additive. En particulier, il ne sera

pas possible de l’utiliser si il existe un paramètre commun aux segments. À ce stade, nous disposons

d’une collection de meilleures segmentations en K segments et l’objectif est de choisir le ”meilleur” K.

Cette étape (3) est une question de choix de modèles qui se résout par la maximisation d’un critère de

vraisemblance pénalisée :

K̂ = argmax
K

log p(y;K, T̂ , θ̂)− pen(K,n).

Ainsi le problème se réduit au choix d’une ”bonne” pénalité. Dans cette thèse, nous considérerons quatre

critères : celui proposé par Lavielle [2005], noté Lav, dans lequel la pénalité est proportionnelle au nombre

de segments ; celui proposé par Birgé & Massart [2001], qui mène à deux versions BM1 et BM2 car deux

heursitiques pour calibrer les constantes peuvent être utilisées (voir Arlot & Massart [2009]) et, celui

proposé par Zhang & Siegmund [2007], mBIC, qui est une version modifiée du critère BIC classique dédié

à la segmentation dans la moyenne d’un processus gaussien. Le choix de K est un problème compliqué

et délicat. Les critères étant différents, ils peuvent sélectionner un modèle différent.

1.3 Une nouvelle méthode de segmentation adaptée aux

données GNSS CIVE

Nous présentons la méthode de segmentation que nous avons développée. Il s’agit d’une méthode de

ruptures dans la moyenne d’un processus gaussien qui prend en compte les caractéristiques des données

CIVE GNSS, à savoir un biais périodique et une variance mensuelle. Ce travail s’est basé sur un modèle

proposé par Bock et al. [2018], qui est un modèle de détection de ruptures dans la moyenne à variance

mensuelle, auquel nous avons ajoutée une composante périodique.

1.3.1 Modèle et inférence

Les données observées y = {yt}t=1,...,n sont supposées être des réalisations de n variables aléatoires

indépendantes Yt tel que

(i) la moyenne de Yt est composée de deux termes :

– une fonction constante par morceaux µk(t) égale à µk sur l’intervalle Imean
k = Jtk−1 + 1, tkK

de longueur nk = tk − tk−1 où 0 = t0 < t1 < . . . < tK−1 < tK = n. Les T = {tk}k=1,...,K−1

sont les positions des ruptures et K est le nombre d’intervalles ou segments.
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1.3 Une nouvelle méthode de segmentation adaptée aux données GNSS CIVE

– et une fonction ft ;

(ii) la variance de Yt dépend du mois, c’est-à-dire qu’elle est constante sur l’intervalle Ivar
mois = {t; date(t) ∈

mois} de longueur nmois où date(t) représente la date à la position t.

Le modèle est donc le suivant

Yt = µk + ft + Et, avec {Et}t iid ∼ N(0, σ2
mois) pour t ∈ Imean

k ∩ Ivar
mois, (1.1)

pour k = 1, . . . ,K. Les intervalles {Imean
k }k sont inconnus contrairement aux intervalles {Ivar

mois}mois qui

sont fixes. La composante fonctionnelle ft décrit les variations lisses de la moyenne de la série ∆CIV E.

La log-vraisemblance s’écrit

log p(y;K,T ,µ,σ2, f) = −n
2

log (2π)
∑
mois

nmois

2
log (σ2

mois)−
1

2

K∑
k=1

∑
mois

∑
t∈Imean

k
∩Ivar

mois

(yt − µk − ft)2

σ2
mois

Le problème qui se pose ici est que σ et f sont des paramètres communs aux segments. Ainsi DP ne peut

être directement utilisé. Pour palier à ce problème et conserver l’utilisation de DP, nous avons proposé

la procédure d’inférence en plusieurs étapes suivante :

1. Estimation of σ2
mois. Nous estimons tout d’abord la variance en utilisant un estimateur robuste

proposé par Bock et al. [2018]. L’idée est d’appliquer l’estimateur proposé par Rousseeuw & Croux

[1993] sur la séries différenciée (Yt+1 − Yt). Dans la mesure où l’on considère la série différenciée,

la présence de la fonction f n’a pas beaucoup d’impact sur l’estimation. La variance estimée est

notée σ̂2
mois.

2. Estimation de f , T et µ itérativement pour chaque valeur de K. À l’itération [h+ 1] :

(a) l’estimateur de f est l’estimateur pondéré des moindres carrés avec les poids 1/σ̂2
mois obtenus

sur la série {yt − µ[h]
k }t. De part le fait que l’effet saisonnier observé pour la station CCJM

(Figure 1.2 (b)), comme par de nombreuses autres stations, est lisse, nous avons décidé de

représenter f comme une série de Fourier d’ordre 4 comprenant les périodicités annuelle,

semi-annuelle, ter-annuelle et trimestrielle du signal :

ft =

4∑
i=1

ai cos(wit) + bi sin(wit),

où wi = 2π i
L

est la fréquence angulaire de la période L/i et L est la durée moyenne de

l’année (L = 365.25 jours lorsque le temps t est exprimé en jours). La fonction estimée est

notée f [h+1].
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(b) les paramètres de segmentation sont estimés sur la série {yt − f [h+1]
t }t. On obtient

µ
[h+1]
k =

∑
mois

∑
t∈Imean

k
∩Ivar

mois

(yt−f
[h+1]
t )

σ̂2
mois∑

mois

∑
t∈Imean

k
∩Ivar

mois

1
σ̂2

mois

,

et

T [h+1] = argmin
T∈MK,n

K∑
k=1

∑
mois

∑
t∈Imean

k
∩Ivar

mois

(yt − f [h+1]
t − µ[h+1]

k )2

σ̂2
mois

.

Cette dernière minimisation peut alors se faire via l’algorithme DP. Les estimateurs finaux

sont notés f̂ , T̂ et µ̂.

3. Choix de K. Nous considérons les 4 critères donnés dans le paragraphe précécent. La variance étant

estimée au préalable, le problème de segmentation peut se voir comme un problème de segmentation

à variance ”connue”. Ainsi le contraste utilisé dans les critères pénalisé est le critère des moindres

carrés.

La procédure complète de cette nouvelle méthode de segmentation est résumée dans la Figure 1.4.

Différentes variantes ont été testées avant d’aboutir à la procédure proposée. Ces variantes différaient

sur les aspects suivants : (1) le choix de l’initialisation de la procédure itérative entre la segmentation et

l’estimation de la fonction f , avec et sans pondération ; (2) la mise à jour de l’estimation de la variance

dans la procédure itérative ; (3) la sélection des composantes significatives de la série de Fourier pour

l’estimation de f .

La méthode finale a été implémentée sous la forme d’un package R � GNSSseg � disponible sur le

CRAN (https://cran.r-project.org/web/packages/GNSSseg/index.html). Récemment, une version plus

rapide de DP a été développée par Hocking et al. [2018]. Le package associé est gfpop disponible sur Gi-

tHub. Cela nous a permis de developper une deuxième version du package plus rapide, appelée GNSSfast,

qui peut être téléchargé depuis https://github.com/arq16/GNSSfast.git.

1.3.2 Etude de simulation

Pour évaluer la performance de la méthode, nous avons testé la procédure sur des données simulées.

1.3.2.1 Plan de l’étude et critères de qualité.

Les séries sont de longueur 400 avec 4 années de 2 mois de 50 jours chacun. Elles sont affectées par 6

ruptures aux positions t = 55, 77, 177, 222, 300, 366 avec des valeurs de moyennes alternant entre 0 et

1. La fonction f(t) = 0, 7 cos(2πt/L) où L = 100 est la durée d’un an. Nous avons fixé σ?1 à 0.5 et fait

varier σ?2 entre 0.1 et 1.5 par pas de 0.2. Chaque configuration a été simulée 100 fois. Les vraies valeurs

des paramètres sont indicés ci-dessous par ”∗”. Pour évaluer la qualité des estimations obtenues, nous

avons utilisé les critères suivants :
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1.3 Une nouvelle méthode de segmentation adaptée aux données GNSS CIVE

Figure 1.4 – Schéma de l’algorithme.

1. pour la fonction f , l’erreur quadratique moyenne (RMSE) : RMSE(f) =

[
1
n

∑n
t=1

{
f̂t − f∗t

}2
]1/2

;

2. pour les paramètres de segmentation, nous avons considéré plusieurs critères :

? la différence entre le nombre de ruptures estimé et le vrai : K̂ −K∗ ;

? le RMSE des moyennes estimées ;
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? les deux composantes de la distance de Hausdorff, notées d1 and d2, et définies par :

d1(t?, t̂) = max
t?

min
t̂
|t? − t̂| and d2(t?, t̂) = d1(̂t, t?).

Pour une segmentation parfaite, d1 et d2 sont nuls. Une petite valeur de d1 signifie que les

ruptures détectées sont bien positionnées et une petite valeur de d2 qu’une grande partie des

vraies ruptures sont correctement détectées.

? l’histogramme de la positions des ruptures estimées.

1.3.3 Résultats

Précision des estimations des paramètres. La Figure 1.5 présente les résultats pour les 4

critères de sélection de modèle et le cas du vrai nombre de segments (K = 7) et les différents critères

de qualité donnés ci-dessus. Pour de petites valeurs de σ?2 , le problème de détection est facile et tous les

critères de sélection de modèle retrouvent le nombre correct de segments (Figure 1.5 (a)). Cependant

pour de grandes valeurs de σ?2 , la détection devient plus difficile. Les différents critères de sélection

se comportent légèrement différemment : Lav à tendance à retrouver le vrai nombre de segments en

moyenne mais avec une grande variabilité, tandis que BM1, BM2 et mBIC ont tendance à sous-estimer

le nombre de segments (plus pour mBIC). Cependant, trouver le nombre correct de segments ne signifie

pas que les ruptures sont correctement positionnées. En effet, pour Lav et le cas où K = 7, la médiane

d1 est assez élevée (Figure 1.5 (c)). Par contre, la médiane d2 est plus petite pour le cas où K = 7 par

rapport aux critères testés (Figure 1.5 (d)). Enfin, le RMSE(µ) est très similaire pour tous les critères

(Figure 1.5 (b)), bien que Lav montre une médiane et une variabilité plus grandes lorsque σ?2 est grand.

La Figure 1.5 (e) donne le RMSE(f) en fonction de σ?2 . Les résultats ne dépendent pas beaucoup du

critère de sélection, mais sont légèrement meilleurs lorsque le vrai nombre de segments est considéré et

lorsque σ2 prend des valeurs intermédiaires. Les résultats pour Lav montrent une médiane légèrement

plus élevée et une plus grande variabilité.

Probabilité de détection. La Figure 1.6 donne la probabilité de détecter les positions des ruptures

détectées sur les 100 simulations pour trois valeurs de σ?2 = 0.1, 0.5 et 1.5, et σ?1 = 0.5. En général, les

ruptures situées dans les ”mois” avec petite variance sont souvent détectées avec les trois critères et

également lorsque la vraie valeur de K est considérée. Ainsi, dans le cas (a) où σ?1 = 0.5 et σ?2 = 0.1, la

probabilité de détection est légèrement plus petite pour la position 222 qui est contenue dans un segment

avec σ?1 = 0.5, et pour la position 300 pour laquelle la moyenne et la variance changent. Dans le cas (b)

où σ?1 = σ?2 = 0.5, la probabilité de détection est plus ou moins la même pour tous les critères. Lorsque

σ?2 = 1.5, le problème est plus difficile. Encore une fois, les ruptures situées dans les ”mois” avec un bruit

plus petit sont mieux détectées (positions 222 et 300) mais pour les quatre autres ruptures, les résultats
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sont contrastés bien qu’ils soient tous situés dans un mois avec σ?2 = 1.5. Les ruptures à 55 et 77 ne sont

presque jamais détectés. Pour mBIC ceci est cohérent avec le fait que la médiane K̂ = 5, c’est-à-dire

qu’il manque deux ruptures en moyenne (Figure 1.5 (a)), mais les quatre autres ruptures ne sont pas

si mal situés (d1 n’est pas si grand, Figure 1.5 (c), mais d2 est très grand, Figure 1.5 (d)). La situation

est un peu similaire pour BM1. Pour Lav et la vraie valeur de K, le nombre de détections est correct

(en moyenne pour Lav) mais du fait du bruit important, elles sont parfois très mal positionnés (grandes

valeurs pour d1 et d2).

1.4 Application aux données réelles

La version finale de la nouvelle méthode de segmentation a été appliquée aux différences CIVE (GNSS

moins ERA-Interim) de 120 stations. Pour valider les ruptures détectées pour les stations GNSS, nous

avons utilisé les métadonnées disponibles sur le site IGS (ftp ://igs.org/pub/station/log/). En principe,

les métadonnées IGS sont bien mises à jour mais il peut arriver que certaines modifications ne soient pas

enregistrées ou que certaines dates soient erronées. Nous avons extrait pour chaque station les dates de

changement de récepteur (R), d’antenne (A), de traitement (P) et de radôme (D).

La nouvelle méthode est étiquetée (a). Trois variantes de la méthode sont également présentées pour

discuter de la sensibilité des résultats et de la performance des quatre critères de sélection. Les variantes

sont : (b) seuls les termes statistiquement significatifs de la série de Fourier sont sélectionnés, (c) seule

la segmentation est implémentée, c’est-à-dire que le biais périodique modélisé par la fonction f n’est pas

inclus (c’est la méthode proposée par Bock et al. [2018]), (d) une variance homogène est considérée au

lieu d’un variance mensuelle (il s’agit d’une version homoscédastique mais incluant toujours la fonction

f).

Nombre de ruptures. La Figure 1.7 (a) montre le nombre des ruptures détectées pour les quatre

critères. D’autres résultats sont données dans le Tableau 1.1. La répartition du nombre des ruptures

détectées par station est très différente selon le critère de sélection. Plus particulièrement, mBIC détecte

entre 9 et 29 ruptures par station, avec une valeur moyenne de 27, 1, c’est-à-dire que dans de nombreux

cas, le plus grand nombre possible est sélectionné (29 puisque Kmax = 30). Ce comportement n’a pas été

observé avec les simulations présentées dans la Section 1.2. Cela conduit à une forte sur-segmentation, ce

qui n’est pas souhaité. Ce critère de pénalité n’est donc pas adapté à la nature des données analysées ici.

Une raison pourrait être que l’hypothèse d’erreur gaussienne n’est pas valide avec ces séries temporelles.

Une corrélation temporelle reste en effet dans les données. Par exemple pour la station CCJM (Figure

1.2) nous avons calculé le lag-1 de la fonction d’autocorrélation des résidus et trouvé une valeur de r =

0,249.

La variante (b), montre un impact marginal sur le nombre de détections et le nombre de validations
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Table 1.1 – Comparaison des résultats de segmentation pour les quatre variantes et les quatre critères
de sélection du modèle. De gauche à droite : nombre de stations avec des ruptures, nombre min / moyen
/ max de ruptures détectées par station, nombre total de ruptures, nombre total de valeurs aberrantes
(outliers), nombre total de validations, pourcentage de validations y compris les valeurs aberrantes,
pourcentage de validations sans valeurs aberrantes.

Nsta min mean max detections outliers validations

Variante (a) (segfonc)

mBIC 120 9 27.1 29 3251 2096 267 8.2% 20.9%
Lav 114 0 4.0 28 474 129 75 15.8% 21.3%
BM1 98 0 2.8 14 335 36 70 20.9% 23.3%
BM2 107 0 3.6 18 435 64 77 17.7% 20.6%

Variante (b) (segfonc/select)

mBIC 120 8 27.2 29 3268 2090 270 8.3% 20.7%
Lav 115 0 7.8 28 940 411 116 12.3% 20.8%
BM1 100 0 2.8 13 334 46 68 20.4% 23.4%
BM2 107 0 3.7 24 439 76 81 18.5% 22.1%
Variante (c) (segonly)

mBIC 120 9 28.1 29 3367 1255 361 10.7% 16.4%
Lav 113 0 2.9 16 350 28 64 18.3% 19.6%
BM1 90 0 2.2 12 269 8 53 19.7% 20.2%
BM2 102 0 3.5 17 414 24 68 16.4% 17.4%

Variante (d) (seghomofonc)

mBIC 116 0 19.0 29 2283 1637 178 7.8% 24.1%
Lav 114 0 3.5 26 415 148 56 13.5% 20.4%
BM1 92 0 2.4 19 287 40 61 21.3% 24.1%
BM2 101 0 3.2 19 387 82 68 17.6% 21.7%

pour trois critères (mBIC, BM1 et BM2). Dans les cas (c) et (d), le nombre de ruptures détectées

diminue. Avec la variante (d), la variance est supposée constante ce qui a pour conséquence que la

fonction estimée sera différente et les moyennes des segments également. On observe également que les

écarts-types moyens sont différents (1, 19 contre 0,84 kgm−2 pour la variante (a)) et moins de ruptures

sont détectés. Le Tableau 1.1 montre également que le nombre de valeurs aberrantes est augmenté

dans le cas (d), sauf pour mBIC qui est problématique, et le nombre de validations est diminué, mais

le pourcentage de validations est pratiquement inchangé. La comparaison des quatre variantes montre

que le modèle complet avec variance hétérogène et une série harmonique pour le biais périodique a les

meilleures propriétés (nombre raisonnable de détections, petit nombre de valeurs aberrantes et taux élevé

de validations).

Validations. Parmi les trois critères, BM1 a le plus petit nombre de valeurs aberrantes (36) et le

taux de validations le plus élevé (20,9 %). Ces deux caractéristiques, ainsi que le fait que BM1 possède

un nombre raisonnable de ruptures (2,8 en moyenne par station), en font le critère de sélection préféré.
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Parmi les ruptures validées trouvées par BM1, il existe 53 types R, 16 A, 7 D et 13 P. Parfois plusieurs

types de changements sont simultanés. Les changements de récepteurs sont le cas le plus fréquent. Il s’agit

aussi du type de changement le plus fréquent dans les métadonnées. Cependant, cela contraste avec les

résultats de Ning et al. [2016] qui n’ont pas du tout pris en compte les changements de récepteurs.

Stations particulières. La Figure 1.8 présente les résultats de segmentation des variantes (a), (c)

et (d) pour quatre stations particulières.

Dans le cas de POL2, les trois variantes détectent respectivement 3, 12 et 1 rupture(s). Le signal

présente une forte variation périodique qui est bien ajustée par les modèles pour les variantes (a) et

(d). La variante (a) a une rupture validée (23/02/2008 pour un changement connu le 06/03/2008). La

variante (c) n’a pas de validation, bien qu’elle détecte 12 ruptures. La variante (d) ne détecte qu’une

seule rupture, qui est situé à 72 jours de la rupture connue la plus proche et qui cöıncide avec l’une des

trois ruptures trouvées par la variante (a). La détection de cette rupture est rendue difficile car elle se

situe dans un mois avec un fort bruit.

Dans le cas de STJO, les variantes (a) et (d) détectent respectivement 5 et 4 ruptures, avec une

valeur aberrante chacune mais pas à la même position. La variante (c) ne donne aucune détection (BM1

est souvent un critère conservatif).

Dans le cas de DUBO, les variantes (a) et (c) détectent deux ruptures à peu près à la même position,

situées à proximité des changements connus, mais une seule est validée pour la variante (a). La seconde

est située à 34 jours d’un changement connu pour la variante (a) et à 148 jours pour la variante (c). La

la variante (a) reste la plus précise. La variante (d) a 4 détections qui consistent en fait en 2 ruptures,

chacune étant associée à une valeur aberrante. Bien que le biais périodique soit ici modélisé, les deux

ruptures sont assez mal localisées et donc non validées.

Enfin pour MCM4 le signal présente des inhomogénéités très marquées sous forme de plusieurs chan-

gements brusques mais aussi d’oscillations non stationnaires. Les changements brusques sont bien captés

par la variante (a) qui détecte 5 ruptures parmi lesquelles 4 sont validées. Les oscillations non station-

naires ne sont que partiellement modélisées par la fonction périodique. Ce résultat suggère d’utiliser

une base de fonctions plus complexes. La variante (c) fonctionne assez bien aussi et conduit à presque

les mêmes détections que la variante (a). Deux changements sont validés. La variante (d) surestime en

revanche le nombre des ruptures pour mieux s’adapter aux oscillations non stationnaires mais avec des

détections de valeurs aberrantes. Les quatre mêmes ruptures sont validées comme avec la variante (a)

mais les moyennes ajustées sont assez différentes.

Détection et suppression des erreurs aberrantes. L’inspection des résultats de la segmen-

tation montre qu’il y a des valeurs aberrantes dues à des pics de bruit dans les séries temporelles (cf.

l’exemple de STJO). Dans la Table 1.1 nous avons considéré comme ”outliers” les ruptures plus proches
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que 30 jours mais ce seuil avait été choisi un peu arbitrairement. Afin de déterminer le seuil de détection

de manière plus rigoureuse nous avons analysé la distribution des longueurs de segments ainsi que la

variation des moyennes avant et après les ruptures proches. Mais avant il est nécessaire de définir plus

précisément la notion de valeurs aberrantes ou ”outlier”.

Formellement, soit ti et ti+1 les positions de deux ruptures consécutives. Si ti+1−ti < seuil, alors ces

ruptures ti et ti+1 sont appelés ”valeurs aberrantes” (outliers) et forment un ”cluster” de deux valeurs

aberrantes. Les différentes configurations observées des ruptures détectées sont représentées sur la Figure

1.9 :

• classe 1, appelées ’valeurs aberrantes seulement’ (exemples de cas (a), (b), (c)),

• classe 2, appelées ’valeurs aberrantes et rupture’ (cas (d), (e), (f)),

• classe 3, appelées ’rupture seulement’ (cas (g), (h)).

Les classes 1 et 2 correspondent à un cluster de deux valeurs aberrantes (ti+1 − ti < seuil). Dans

les cas de la classe 1, la variation des moyennes avant et après le cluster n’est pas significative (selon

un test statistique précisé ci-dessous), alors qu’en classe 2 elle est significative. Le but du nettoyage est

donc d’éliminer les deux ruptures de classe 1, et de remplacer les ruptures de classe 2 par une seule

rupture (schématisée par le point médian sur la Figure 1.9). La classe 3 est la situation normale lorsque

la distance entre les deux ruptures est supérieure au seuil (ti+1 − ti ≥ threshold).

L’analyse de la distribution des longueurs des segments a montré qu’il y a un groupe de petits

segments de longueurs inférieures à 50 jours séparé du reste de la distribution qui est plus étendue.

Entre 50 et 100 jours il y a un minimum ce qui suggère que le seuil peut être choisi dans cet intervalle.

Afin de déterminer le seuil optimal, nous avons utilisé un modele de melange et avons effectivement

trouvé deux populations : une de petites longueurs et une de plus grandes longueurs (Figure 1.10).

La frontiere entre les deux populations est estimée à 81 jours. Nous avons par la suite fixé le seuil de

détection des valeurs aberrantes à 80 jours. Pour déterminer ensuite si une valeur aberrante est de classe

1 ou 2 nous avons fait un test d’égalité des moyennes avant et après le cluster. Nous avons utilisé un test

de moyennes pondérées en prenant comme variance la variance estimée par la segmentation (elle peut

être différence pour chaque point du signal).

La Figure 1.11 montre le résultat du nettoyage pour la station IISC. Avant le nettoyage, la station

avait 12 ruptures, dont 8 valeurs aberrantes, regroupées en 3 clusters. Les deux premiers clusters ont 2

valeurs aberrantes chacun, tandis que le troisième cluster en a 4. La variation de la moyenne avant et

après ces clusters est significative, donc tous sont classés en classe 2. Le nettoyage gardera alors le point

médian de ces clusters, résultant en 7 ruptures restantes.

Nous avons également testé une autre méthode pour éviter les outliers en modifiant le paramètre

’lmin’, représentant la longueur minimale des segments dans la segmentation. Il permet d’interdire à

la segmentation de choisir des segments plus petits que ’lmin’. Nous avons analysé le comportement
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avant le nettoyage après le nettoyage

criteria detections validations % validation detections validations % validation

lmin1

mBIC 3251 264 8.1 1270 146 11.50
Lav 474 75 15.8 341 67 19.65
BM1 335 70 20.9 292 68 23.29
BM2 435 77 17.7 370 74 20.00

lmin10

mBIC 3056 276 9.03 1261 155 12.29
Lav 530 84 15.85 361 70 19.39
BM1 341 75 21.99 301 71 23.59
BM2 491 83 16.90 413 77 18.64

Table 1.2 – Comparaison des résultats de segmentation pour les valeurs de 1 et 10 de la longueur
de segment minimale (lmin) pour le seuil de valeur aberrante de 80. De gauche à droite : nombre des
ruptures détectées, nombre total de validations, pourcentage de validations, avant et après le nettoyage.

de la segmentation pour des valeurs de lmin allant de 10 à 100. En augmentant lmin, le nombre total

de segments augmente également, principalement dans les petits segments. Au-delà de lmin=10, les

résultats ne sont pas très concluants. En comparant les résultats pour toutes les valeurs de lmin (de 1 à

100), suivies ou non du ”nettoyage” décrit précédemment, et pour tous les critères, nous avons trouvé

que le taux de validation des ruptures finales est le plus élevé pour le critère BM1 avec lmin=10 après

le ”nettoyage”. Ce serait donc cette méthode qu’il faudrait retenir. Dans tous les cas et pour chaque

critère la procédure de ”nettoyage” améliore les résultats. Et dans tous les cas les meilleurs résultats sont

obtenus pour BM1. La Table 1.2 montre les résultats pour lmin=1 et 10. Le pourcentage de validation

pour BM1 passe de 20.90% à 23.59% entre lmin=1 avant nettoyage et lmin=10 après nettoyage.

Estimation de tendance. La tendance est estimée directement sur la série CIVE avec un modèle

dans lequel sont inclus, en plus de la tendance, une fonction constante par morceaux dont les rupture

sont celles données par la segmentation (après le nettoyage) et les valeurs moyennes sont des paramètres

à estimer, et une fonction harmonnique (série de Fourier d’ordre 4 dont les coefficients sont à estimer)

qui représente la variation saisonnière du CIVE. Toutes les autres échelles de variabilité vont dans les

résidus. L’estimation des paramètres est faite dans un premier temps par moindres carrés ordinaires

(OLS). La Figure 1.12 montre les résultats pour la station ALIC qui a 5 ruptures. Le modèle est bien

ajusté aux variations (lentes) du signal (graphe du haut), mais lorsque nous regardons la distribution

des moyennes et la tendance nous constatons une confusion entre ces paramètres. La tendance estimée

ne parait pas réaliste : â = 0.790 ± 0.112kgm−2an−1, elle est trop forte et significative. En analysant

les résidus on constate qu’il sont très corrélés (r = 0.7858). L’hypothèse de bruit indépendant n’est

pas vérifiée. L’erreur sur le paramètre n’est donc pas correcte avec l’OLS. Du coup nous avons utilisé

les moindres carrés généralisés (GLS) pour tenir compte du bruit corrélé. Les estimations GLS, avec

le modèle d’erreur AR(1), sont considérées comme plus réalistes. L’estimation de la tendance avec la

méthode GLS était â = 0, 820 ± 0, 307kgm−2an−1. Elle est toujours trop forte et significative bien que
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l’erreur standard ait presque triplé avec le modèle de bruit AR(1). En général, nous avons testé les

estimations de tendance pour toutes les stations, avec un test d’hypothèse et un seuil de significativé de

0, 05. Pour les modèles OLS et GLS qui prennent en compte les ruptures, nous avons trouvé 40 et 14

stations avec des tendances signifcatives, respectivement.

1.5 Conclusions et perspectives.

Dans cette thèse, nous avons développé une nouvelle méthode de segmentation dédiée à la détection de

changements abrupt de la moyenne qui prend en compte un biais périodique et une variance hétérogène

à intervalles fixes (mensuels) dans les différences CIVE entre les observations GNSS et la réanalyse

ERA-Interim. La méthode a d’abord été testée et optimisée par une étude de simulation, puis appliquée

aux données GNSS IWV pour 120 stations du réseau IGS mondial pour la période de janvier 1995 à

décembre 2010. Nous avons vu que le comportement de la procédure dans les simulations est différent

de celui des données réelles.

Segmentation. Au niveau de la phase de segmentation, nous avons vu que la procédure peut être très

sensible à l’estimation de la fonction, tout comme le problème de la sélection du modèle est également

délicat. Une façon d’améliorer la segmentation sur les vraies données est d’estimer le f , qui en réalité

est évidemment plus complexe, avec une méthode plus flexible, non paramétrique ou semi-paramétrique.

Une méthode déjà testée en segmentation est, par exemple, la méthode Lasso (Bertin et al. [2017]). Une

autre façon d’améliorer la segmentation serait d’utiliser une perte de Hubert ou Biweight. Même si nous

traitons les valeurs aberrantes a posteriori (avec la méthode de nettoyage) il pourrait être intéressant

d’utiliser une sorte de telles pertes parce qu’elles permettent de supprimer les points les plus extrêmes

qui pourraient avoir un fort impact à la fois sur la détection des ruptures, sur l’estimations des moyennes

et sur f . De plus, l’utilisation d’une série de référence à plus haute résolution spatiale (par exemple les

réanalyses ERA5 et UERRA) pour CIVE réduira les différences de représentativité.

Pour le choix du modèle final, en général, nous préférons un critère qui n’évalue pas trop de ruptures.

Le critère le plus approprié pour ces données était BM1, en termes de performance sur les simulations,

les quantités des ruptures estimées et les pourcentages de validation. Après segmentation, nous avons

également remarqué la présence de valeurs aberrantes qui sont des ruptures proches les unes des autres.

Elles sont généralement dus à des pics de bruit importants dans la série qui peuvent être supprimés

avec une méthode de nettoyage. Dans le cas du critère BM1, il a détecté 20% des valeurs aberrantes

et en a supprimé un tiers lorsqu’un seuil de 80 jours était utilisé. Une autre approche pour traiter le

problème des valeurs aberrantes a été testée en imposant une longueur de ’lmin’ dans l’algorithme de

segmentation. En guise de compromis, nous avons constaté que lmin = 10 combiné au nettoyage produit

les meilleurs résultats (taux de validation le plus élevé).

31



1.5 Conclusions et perspectives.

Validation. Les ruptures trouvées ont été attribuées au GNSS, puis validées à l’aide de métadonnées.

Le taux de validation le plus élevé a été obtenu à partir de la combinaison de lmin égale à 10 + nettoyage

(23, 59%). Les ruptures non validées peuvent être attribuées à la série de référence ou à des changements

non enregistrés de métatada ou de fausses détections. Des données plus récentes couvrant une période

plus longue existent (1994-2019, Bock [2019]) ainsi que des réseaux plus denses que le réseau utilisé dans

cette étude. Ces données permettront de tester la significativité des ruptures détectées pour fiabiliser

l’attribution des changements (mieux distinguer les ruptures dans à la série GNSS de celles dans la série

de référence).

Estimation de tendance. Pour avoir une série homogène, il est possible d’estimer la tendance en

intégrant les ruptures trouvées dans le modèle. Les tendances linéaires ont été estimées par les moindres

carrés ordinaires et généralisés (OLS et GLS) sur la série temporelle GNSS CIVE en tenant compte des

ruptures détectées par la segmentation (après le nettoyage). Bien que cette approche ait été couramment

utilisée dans la communauté GNSS (Bernet et al. [2020]; Klos et al. [2018]), une confusion entre la

tendance et les moyennes a été trouvée et conduira à une surestimation des sauts dans la moyenne.

De plus l’estimation de tendance par GLS en supposant un processus AR (1) donne des incertitudes de

tendance plus réalistes que l’OLS, mais elles sont également beaucoup plus importantes. En conséquence,

seulement 12 % des stations ont une tendance significative (comparativement à 30 % avec OLS).
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1.5 Conclusions et perspectives.

(a) (b)

(c) (d)

(e)

Figure 1.5 – Résultats pour les quatre critères de sélection (BM1, BM2, Lav, and mBIC) et le vrai
nombre de segments (True) pour σ?1 = 0.5 et des valeurs différentes pour σ?2 . (a) K̂−K? ; (b) RMSE(µ) ;
(c) d1 et (d) d2 ; (e) RMSE de f .
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1.5 Conclusions et perspectives.

Figure 1.6 – Histogramme des positions des vraies ruptures avec, de gauche à droite, les critères de
sélection BM, Lav et mBIC, et le vrai K (TRUE), pour σ?1 = 0.5 et trois valeurs différentes de σ?2 : (a)
σ?2 = 0.1, (b) σ?2 = 0.5 et (c) σ?2 = 1.5. Les lignes pointillées rouges indiquent les positions des vraies
ruptures.
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1.5 Conclusions et perspectives.

Figure 1.7 – Histogrammes du nombre des ruptures détectées pour quatre variantes des critères de
sélection du modèle (mBIC, Lav, BM1 et BM2). Les nombres donnés dans les graphiques sont le nombre
moyen, minimum et maximum des ruptures détectées par station, N est le nombre total des ruptures
par méthode.
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1.5 Conclusions et perspectives.

Figure 1.8 – Exemples de résultats obtenus avec les variantes (a), (c) et (d) du modèle de segmentation,
de gauche à droite, pour quatre stations différentes : POL2, STJO, DUBO et MCM4 (de haut en bas).
Le contenu des graphiques est similaire à celui de la figure 1.2 (b). Le ligne rouges verticales indiquent
les ruptures détectées par la segmentation. Le texte inséré en haut à gauche des graphiques rapporte
l’écart type moyen du bruit, la variation (max-min) de l’écart type du bruit, l’écart type de la fonction
de biais périodique et la variation (max-min ) de la fonction de biais périodique. Le texte en bleu indique
le nombre total de détections et de changements connus, la distance minimale et maximale entre les
ruptures détectées et les changements connus les plus proches, le nombre de détections validées et le
nombre d’outliers (’noise detections’) détectés avec un seuil de 30 jours.
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1.5 Conclusions et perspectives.

Figure 1.9 – Classification des ruptures détectées. Les classes 1 et 2 contiennent des détections aber-
rantes (outliers) définies comme telles car elles sont plus proches qu’un seuil (typ. entre 30 et 80 jours).

Figure 1.10 – La densité (logarithme de la longeur des segments pour BM1) de toutes les stations
(en noir) et la densité de chacun des deux groupes (en rouge pour le premier et en vert pour le second)
déterminés par un modèle de mélange. La ligne verticale noire indique la limite entre les deux groupes
(81 jours) qui est optimale pour détecter les ”outliers”.
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1.5 Conclusions et perspectives.

Figure 1.11 – Résultat de la segmentation pour la station IISC. Les lignes rouges pointillées verti-
cales montrent les ruptures détectées et les lignes vertes pointillées verticales montrent les changements
d’équipement à partir des métadonnées. Les symboles en bas indiquent le résultats de la classification
des outliers : un carré rouge une rupture normale (classe 3), un cercle rouge indique une valeur aber-
rante (classe 1 ou 2), un triangle inversé rouge indique une rupture validée. Les valeurs aberrantes sont
détectées avec un seuil de 80 jours et forment 3 clusters. Les variations de moyenne avant/après les
clusters sont significatives (i.e. ils sont de classe 2).
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1.5 Conclusions et perspectives.

Figure 1.12 – Séries temporelles de GNSS IWV pour la station ALIC et modèle de tendance ajusté
avec OLS : (en haut) la série est représentée en gris, la ligne rouge est le modèle ajusté et la ligne jaune
est la tendance estimée + les moyennes, (en bas) la les résidus sont représentés en gris, les moyennes
centrées en rouge et la tendance en jaune. Les lignes verticales noires en pointillé sont les ruptures
détectées à partir de la segmentation (après le nettoyage). La valeur de tendance et son erreur standard
sont données dans le graphique supérieur.
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Chapter 2

Introduction

2.1 Context and problematic

2.1.1 Climate data analysis: definitions and basic concepts

Climate can be defined as the statistical description in terms of mean and variability of relevant physical

quantities over a period of time ranging from months to thousands or millions of years (Planton [2013]).

The quantities of interest are often those of direct impact on human life such as temperature, precipi-

tation, and wind at the Earth’s surface. Climate is thus tightly linked to weather and the distinction

is made in terms of temporal periods mainly, such that climate is often considered as the long-term

average of weather (typically over a period of 30 years). The state of the climate system is controlled

from the interaction of five major components: the atmosphere, the hydrosphere, the cryosphere, the

lithosphere and the biosphere, and the interactions between them. The system evolves in time under the

influence of its own internal dynamics and because of external forcings (e.g. volcanic eruptions, solar

variations, and anthropogenic forcings such as the changing composition of the atmosphere and land

use change). Climate variability includes random variability (or noise) and more organised patterns or

modes of variability with return periods ranging between a few years and thousands of years (Rohli &

Vega [2018]). On the shorter time scales, El Niño Southern Oscillation (ENSO) is a well known pattern

of tropical sea surface temperatures anomalies in the Pacific Ocean with worldwide effects and a period

of the oscillation that typically varies between two and eight years (Wang [2018]). Understanding and

predicting climate variability is important because of the impacts of extreme weather events (e.g. flash

floods and landslides resulting from heavy precipitation, diseases and crop failures due to heat waves

and droughts). Besides climate variability, one often invokes climate change which is more specifically

referring to a change in the state of the climate (i.e. in the mean and/or the variability of its properties)
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that persists for an extended period, typically decades or longer (Planton [2013]). Distinction should

here also be made between the natural causes and those attributable to human activities, namely those

altering the atmospheric composition such as green house gas (GHG) emissions responsible for the rise

in average surface temperature in modern climate (ca 1850-present) known as global warming (IPCC,

2013). The effects of global warming include rising sea levels, regional changes in precipitation, more

frequent extreme weather events such as heat waves, and expansion of deserts (IPCC, 2014).

The two main methods employed by climatologists are the analysis of observations and the modelling

of the physical laws (processes) that determine the climate. Paleoclimatology is interested in the anal-

ysis variables such as temperature and precipitation over geological time scales (thousands to millions

of years) the observations of which are provided indirectly by proxies (e.g. analysis of tree rings, or ice

and sedimental cores). On the other hand, modern climatology uses direct and traceable measurements

which are available for about two centuries and were primarily collected by meteorologists, both on land

and on board ships. Because the initial purpose of those measurements was not for creating a long-term

climate record, there is poor homogeneity in the data due to many changes in instrumentation and

practice (Jones et al. [1986]). However, observations have long been the main source of information for

understanding the physical processes determining the mean climate and its variations. Meteorological

instruments have benefited the rapidly evolving technologies and gained in accuracy and spatial cov-

erage, especially since the satellite era from the late 1970s. Modern climatology also extensively uses

numerical models to study specific mechanisms in both idealized and real Earth system frameworks.

Observations are crucial here as a ground truth for the validation of climate models simulations of the

past. The better our climate models represent the past climate (i.e. the mean state and the variability

including the extremes), the more confident we can be into their predictions of the future climate (Karl

& Trenberth [2003]). Global climate models (GCMs) offer also a means to study the impact of various

external climate forcings and especially separate natural and anthropogenic forcings, e.g. investigate

the impact of the increase of atmospheric CO2 concentrations since the industrial revolution (Myhre

et al. [2017]). Besides observations and climate models, atmospheric reanalyses are a hybrid modeling

technique where a numerical model is run with constant assimilation of observations, hence correcting

model defaults and drifts where and when they occur and serving as a physical interpolation tool where

observations are lacking (Dee et al. [2011]). Currently, two types of reanalyses are available: modern

reanalyses which assimilate surface and upper air data since the 1950s (see below) and satellite data

since the late 1970s, and century reanalyses which assimilate only surface temperature, pressure, and

wind data going back to the mid or late 1800s (https://reanalyses.org/).

The collection of climate observations is coordinated by several international bodies such as Global

Climate Observing System (GCOS) and Detection of Atmospheric Composition Change (NDACC), see

Appendix A for a description.

41

https://reanalyses.org/
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Long (decadal to centenial) records of observational data are essential for monitoring climate change

and supporting climate research. However, long time series are often affected by inhomogeneties due

to instrumentation or observer changes, station relocation and changes in the measurement conditions

around the station (Jones et al. [1986]). These inhomogeneties manifest usually as abrupt, but also

sometimes gradual, changes in the measured signals which are detrimental to estimating climate trends

and variability (Thorne et al. [2005]). In many cases, the station history provides useful information on

the causes for the changes but unfortunately not all changes are documented. Visual inspection of time

series has been traditionally used to confirm documented change-points and to detect undocumented

change-points. However, this task is time consuming and subjective. In recent years, a great deal of

statistical methods have been developed to assist and automate the detection of change-points in climate

series (see Peterson et al. [1998]; Reeves et al. [2007]; Venema et al. [2012]). They have been applied

primarily to create high quality, homogenized, global and regional temperature based on the collection of

surface and upper-air measurements as well as more recently on satellite data (Seidel et al. [2004]). New

methods have been developed for other variables such as precipitation, surface pressure, wind speed, and

humidity, and subsequent climate data sets have been released (Beaulieu et al. [2008]; Domonkos & Coll

[2015]; Wan et al. [2007, 2010]; Willett et al. [2008]).

The homogenization of climate data consists in three main tasks: 1) the detection of change-points,

i.e. the dates when the statistical properties of the studied variable undergo a significant change (e.g. in

the mean or in the variability). This task is also referred to as the segmentation task because the time

series is sliced into homogeneous sub-series. 2) the validation of the set of change-points issued from the

previous task. This step consists in a critical analysis of the proposed segmentation result and aims at

separating true detections from false detections. Metadata play an important role at this step because

they can offer a rationale explanation to any observed or suspected change-point. 3) the correction of

the raw data according to the set of validated change-points. This task consists in modifying the original

data in order to remove any spurious non-climatic signal (e.g. by subtracting an estimate of a mean bias

for a given period).

In this thesis we will be interested in a new data type, the integrated water vapour (IWV) estimates,

which are derived from ground-based Global Positioning System (GPS) and more generally from Global

Navigation Satellite Systems (GNSS) measurements (see Appendix B). The homogeneity of this new data

type has been questioned recently in a small number of studies (Bock et al. [2010]; Ning et al. [2016];

Parracho et al. [2018]; Vey et al. [2009]). However, no specific homogenisation method has yet been

developed that would account for the statistical properties of these data. The aim of this thesis is to fill

this gap. Before going more into details in the next chapters, Section 2.1.2 will introduce and illustrate

the homogeneity issues in surface temperature data and the traditional approach to the homogenization

of this data type. Then Sections 2.1.3 and 2.1.4 will describe the specific features and characteristics of
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the GNSS IWV data and explain to which extent the previous homogenization approaches need to be

adapted to this new data type. Section 2.2 will introduce the general statistical framework in which this

thesis will be developed, giving, in Section 2.2.1, an overview of the existing statistical methods proposed

in the climate literature and, explaining, Section 2.2.2 the main difficulties faced in this context.

2.1.2 Inhomogeneities in climate data: the case of surface air temper-

ature

Origin of inhomogeneities

Four major factors are listed by Jones et al. [1986] which affect meteorological station homogeneity:

1) changes in instrumentation, exposure and measurement techniques; 2) changes in station location;

3) changes in observation times and processing methods; 4) changes in the environment around the

station, particularly with respect to urban growth. Instrumentation changes are desirable as new and

more modern instruments are more accurate and stable, and provide often new capabilities (e.g. higher

temporal sampling, automatic recalibration, etc.). However, each instrument has its own measurements

biases and random errors such that an instrument change usually induces a change in the mean signal, also

called a level shift (Lu & Lund [2007]), and possibly a change in the noise variance and autocorrelation

(Lu et al. [2010] ). In some special and rather uncommon cases the instruments may also show a drift

which would manifest as a linear or a non-linear spurious signal and require a special signal processing

procedure. Observer changes can induce inhomogeneities in time series namely when they involve a

change in the time of measurement, in the instrument preparation or calibration, or type setting errors

(e.g. when the observations are manually transmitted by the observer). Station location can have a

direct impact on the measurements because the meteorological conditions are location dependent, e.g.

temperature and pressure change rapidly with altitude, and wind speed near the surface depends on

the roughness of the station environment (e.g. open meadows, small bushes, and trees around can

alter differently the surface wind speed). Changes in instrumentation, location, and practice are in

principle recorded in the station history, so called metadata. However, metadata records are notoriously

incomplete (Li & Lund [2015]). Moreover, not every change listed in the metadata necessarily induces a

shift in the time series.

Figure 2.1 shows an example of annual temperatures at Tuscaloosa, Alabama, discussed by Lu &

Lund [2007]. This century-long time series shows a clear year-to-year scatter that can be attributed to

inter-annual climate variability along with two change-points, in 1939 and 1957. These change-points

coincide with a change of thermometer (1939) and a station relocation (1957) as recorded in the sta-

tion history. Another station relocation is mentioned in 1987 but this one cannot be detected in the

time series. Superposed to the time series are linear trend fits when the two change-points are ignored

and taken into account, respectively. A linear trend estimate and one standard error are -0.3023 +/-
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0.7755°C/Century when shifts are ignored and 3.5166 +/- 0.4186°C/Century when shifts are taken into

account. It is visually evident that the level-shift adjusted trend is preferable, and hence the authors

to conclude that temperature has been increasing by more than 3°C at Tuscaloosa over the 20th cen-

tury. Comparatively, the unadjusted trend concludes on a temperature decrease at this site. Taking the

change-points into account in the signal analysis can thus critically change the conclusions regarding

the climatic trends. Taking change-points into account has also an impact on the autocorrelation of the

residuals as shown in Figure 2.2. Lu & Lund [2007] conclude that the memory structure in a model

ignoring the abrupt changes typically needs to be longer than for a model where the shift information is

taken into account.

Figure 2.1 – Yearly temperatures at Tuscaloosa, Alabama, with least squares trends. Source: Lu
& Lund [2007]

Figure 2.2 – Sample autocorrelations of ordinary least squares residuals. Source: Lu & Lund
[2007]
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Usage of metadata

In the example above the authors have assumed that the change-points occur at known times, which were

taken from the station history record. Not all known change-points were included in the trend plus level

shift model fit, however. A preselection was made based on t-tests for changes in the means and F-tests

for changes in the means and trend where they concluded that the 1987 change-points was not significant

and that a single overall trend slope was a better choice than a trend per segment. This simple approach

cannot be applied in most cases, however, because the metadata are often incomplete. The more general

problem is thus one in which the number of change-points and their times are both unknown. Many

different statistical methods have been developed over the past years to tackle this problem (Costa &

Soares [2009]; Peterson et al. [1998]; Reeves et al. [2007]; Venema et al. [2012]). Section 2.2.1 below

gives a short review of the methods. Metadata remain nevertheless a useful source of information which

are used either to validate the detected change-points or to formulate a prior distribution in a Bayesian

approach (Li & Lund [2015]). WMO guidelines on metadata and homogenization are provided in Aguilar

et al. [2003].

Absolute and relative segmentation approaches

Figure 2.1 showed an example of an annual temperature time series in which a linear trend could easily

be detected and interpreted as a climate signal (i.e. a warming of the air close to the surface over the

20th century). To properly estimate this trend the authors took both effects into account simultaneously

(trend and offsets) in the homogenization method. Similarly, when monthly time series are analysed the

seasonal variations, which are a dominant component in the signal at that temporal scale, need to be

taken into account. Figure 2.3(a) shows the monthly temperatures at Tuscaloosa, Alabama, discussed by

Lu et al. [2010] in which the seasonal variations are the main visible feature. Detecting the change-points

directly in this time series would be very difficult. To overcome this difficulty, two main approaches are

commonly used. 1) When the data from the target station are considered in standalone the approach is

said to be absolute. The seasonal variations can here be handled in two ways: i) mean seasonal variation

is removed by subtracting to each month the mean value for that month. The resulting monthly anomaly

signal is then analyzed. ii) the mean seasonal variation is represented by either a parametric or a non-

parametric model and its parameters are fitted simultaneously with the trends and offsets. 2) The second

approach consists in using a reference series from one or several nearby stations which are exposed to

the same climate signal (i.e. including the seasonal but also the trend component). This segmentation

approach is referred to as the relative approach. Figure 2.3(b) shows the monthly temperature adjusted

for the seasonal mean for Tuscaloosa, Alabama, along with the fitted trend and change-points. Two

change-points are detected in April 1939 and July 1957, respectively, and the trend slope estimate is

0.00258 °C/month (3.10 °C/century) +/- 0.00039 °C/month (0.47 °C/century). In that case the authors
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used a statistical segmentation method which estimates the change-point number, locations, and the

time series regression parameters (Lu et al. [2010]). The method will be described in more details in

Section 1.2. The two change-points detected by the method are validated with the station metadata and

the estimated trend slope is consistent with the estimate found from the annual data discussed above.

Figure 2.3 – The Tuscaloosa data with change-point structure imposed. Source: Lu et al. [2010].

Figure 2.4 – The Tuscaloosa minus the reference data with change-point structure imposed.
Source: Lu et al. [2010]

Figure 2.4 shows the results when the relative approach is used, i.e. when the segmentation is

applied to Tuscaloosa minus a reference series that averages three neighboring stations (Lu et al. [2010]).

Here four change-points are detected. None of them is found within the same year as the metadata

information (station changes are occured in 1921, 1939, 1957 and 1987). However, three of them are

within 3 or 6 years and the authors to conclude that the relative analysis is superior to the absolute

one. The extra change-point in 1909 is possibly attributed by the authors to inhomogeneities in the

reference series at two of the neighboring stations. Though there is consensus that relative methods are
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generally superior to absolute methods (see e.g. Venema, 2012), this example points nevertheless to the

difficulty of handling inhomogneities in the reference series. Much effort has actually been devoted to the

development of multiple change-point methods which tackle this issue (e.g. Caussinus & Mestre [2004];

Menne & Williams [2009]).

2.1.3 The role of water vapour in climate

Water vapor is a key component of the global hydrologic cycle and plays a major role in many atmo-

spheric processes contributing to the weather and climate. It is essential for the development of disturbed

weather, influences the planetary radiative balance, and influences surface fluxes and soil moisture (Sher-

wood et al. [2010]). The latent heat released when atmospheric water vapor condenses and the cooling

of air through evaporation or sublimation of condensate affect strongly atmospheric circulations making

water vapour an active player in dynamic processes that shape the global circulation of the atmosphere

(Schneider & Levine [2010]). Through its abundance (about 0.2% of the total mass of atmospheric

gases), it is also the dominant greenhouse gas in the atmosphere. However, compared to the long-lived

greenhouse gases (CO2, CH4, N2O. . . ) which act as the drivers of the greenhouse effect, water vapour

acts as fast feedback variable. The water vapor feedback is the process whereby an initial warming of

the planet, caused, for example, by an increase in atmospheric carbon dioxide, leads to an increase in the

humidity of the atmosphere. Because water vapor is itself a greenhouse gas, this increase in humidity

causes enhanced warming by a factor of 2 to 3 of the initial warming (Held & Soden [2000]). The rate at

which water vapour increases per 1 K of temperature increase is controlled by the Clausius–Clapeyron

(CC) relation (see e.g. Held & Soden [2006]). Under the assumption of constant relative humidity,

this rate is about 7% K−1. At global scale, observational and modelling studies have suggested that the

relative humidity is maintained and that water vapour in the atmosphere closely follows the temperature

in agreement with the C-C equation (Held & Soden [2006]; Semenov & Bengtsson [2002]). However, at

a regional scale, deviations from C-C law are observed and the strength of the feedback can vary largely

(O’Gorman & Muller [2010]). In addition, the short residence time of water vapour in the atmosphere

and its small scale variability make its representation in global weather and climate models extremely

challenging (Sherwood et al. [2010]). Ground-based observational networks and satellite missions are

thus important sources of moisture information for monitoring the change in atmospheric composition

in the context of global warming, constraining atmospheric reanalyses and validating climate model

simulations.

Global and regional trends in temperature and water vapour have been shown to vary considerably

among the various climate models due to differences in numerical approximation and physical param-

eterizations (IPCC, 2014). The differences among the IPCC AR5 models in the tropics lie in a range

of factors up to 1:5 (see Flato et al. [2013] P774, Fig. 9.9). Accurate and homogeneous water vapour
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observations are expected to play a central role in quantifying the uncertainty and identifying the errors

sources in the models. In this respect, Parracho et al. [2018] showed that a major issue in the global

climate models may be linked with atmospheric circulation that controls decadal moisture trends and

interannual variability. Water vapour trends are also a good diagnostic of the homogeneity of reanalyses

and satellite data. For example, Schröder et al. [2016], compared several reanalyses and satellite data

sets and identified change-points in the reanalyses that coincided with changes in the observing system

(e.g. start and end of assimilation of satellite data in the reanalyses).

Humidity measurements in the troposphere have been made since the 1950s using radiosonde balloons

equipped with pressure, temperature, and humidity sensors. But the global radiosonde data record covers

mostly the Northern Hemisphere, and its usefulness for climate monitoring is limited by errors and biases

associated with the instruments and by discontinuities due to changes in sensors and procedures over time

(Dai et al. [2011]; Ross & Elliott [2001]; Wang & Carlson [2001]). Total column water vapor (TCWV)

and profiles of tropospheric humidity have been measured by satellites since the end of the 1970s, but

long-term trends are difficult to derive from satellite data because of intercalibration limitations.

2.1.4 Inhomogeneities in GNSS IWV data

The ground-based GNSS receivers are presently one of the most reliable techniques for sensing TCWV,

also referred to as IWV and precipitable water (PW), with accuracy at the level of 1–2 kg m−2or5%

inallweatherconditions(Bocket al. [2007]; Wanget al. [2007]).GNSSIWV hasbeenextensivelyusedfordetectinghumiditybiasesinradiosondedataandnumericalweatherpredictionmodels(Bock&Nuret [2009]; Wang&Zhang [1998]; Wanget al. [2012])andforstudyingatmosphericprocessesandclimatetrends(Bocket al. [2008]; Nilsson&Elgered [2008]; Ning&Elgered [2012]; Parrachoet al. [2018]; Wang&Zhang [1998]).However, changesinGNSSinstrumentationandprocessingoptionshavebeenshowntoproduceshiftsinthelongtimeserieswhichrequireaproperdetectionandcorrectionbeforetrendscanbeestimatedconfidently(Bocket al. [2010]; Ninget al. [2016]; Parrachoet al. [2018]; V eyet al. [2009]).

Sources of inhomogeneity in GNSS IWV data

It is obvious that changes in instrumentation occurring either in the space segment (e.g. replacement of

older generation satellites by new satellites) or, more often, at the ground level are susceptible to break

homogeneity of the raw measurements. Fortunately, GNSS ground stations are rather robust devices

which don’t need to be changed often except e.g. to adapt to the new emerging satellite constellations.

Hence, all tracking stations switched progressively from GPS only to GPS, GLONASS, Galileo, and

Beidou complient instrumentation over the past years.

The replacement of an antenna is likely to introduce a change in the antenna’s phase center offset

(PCO) and phase center variation (PCV) map (the variation of phase as a function of the radio wave

incidence angle). Phase center offsets induce an uncertainty in the position of the antenna reference point

and thus alter the stability of the station coordinates but have only marginal impact on the ZTD stability.

A change in PCV on the other hand can induce a small bias both in station coordinates (especially in

the vertical component) and in ZTDs. In order to minimize this effect, the IGS introduced antenna

calibration models for all tracking stations used in the IGS network. Nevertheless, it may happen that

for older antenna types the PCO/PCV models are not as accurate as for recent types and the antenna
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change may induce a small offset in the ZTD time series (see the example of CCJM below).

Many permanent GNSS stations are equipped with antenna radomes as a means of protection against

general wear, to prevent the buildup of debris and snow, and to discourage people and animals from dis-

turbing the antenna (https://kb.unavco.org/kb/article/unavco-resources-radomes-520.html). Antenna

radomes affect the signal propagation thereby altering the antenna’s absolute PCO and PCV. When the

appropriate PCO and PCV models for each antenna and radome combination are applied during the

data processing, this effect should only produce a small bias. Vey et al., 2009, illustrated the effect of

a combined change of antenna and radome which produced an offset in IWV of -1.3 kg m-2 at station

HOFN (Iceland). Smaller offsets were also reported for other stations by these authors.

GNSS receivers are high-tech electronic devices which benefit from continous improvement and evo-

lutions. In a receiver lifetime, a large number of firmware updates are usually applied: ca 70% of the

receiver changes reported in the IGS site logs are firmware updates while 30%are hardware changes.

Hardware changes most often occur after a system failure which can be detected from the drop in the

number of daily measurements and the increase in the noise, drift and/or other spurious signal in the

coordinates and ZTDs (Parracho et al. [2018]; Vey et al. [2009]). Periods of receiver malfunctioning

should be removed from the analysed IWV time series. Fortunately, these cases are rare. In regular

operations, the main mechanism through which a receiver change can induce a change in the mean ZTD

estimate is via the satellite geometry, e.g. when the tracking capabilities including more or less low

elevation satellites. Changing the elevation cutoff angle in the receiver software can have a similar effect.

The reason is that PCV errors, mapping function errors and satellite geometry determined by the cutoff

angle act together to determine the ZTD and station height bias.

The impact of multipath is difficult to predict, partly because the electric and magnetic proper-

ties of the stations’ environments are not well determined and partly because the coupling effects with

metallic objects nearby is complex and highly variable. Multipath changes can be natural such as grow-

ing/declining of vegetation, or due to human interventions, e.g. cutting of vegetation and construction

of buildings nearby. They would induce either gradual or abrupt changes in ZTD estimates, respectively.

IGS elaborated recommendations for installing permanent stations, including the siting and mon-

umentation rules to protect from excessive multipath and guarantee long term positioning stability

(https://kb.igs.org/hc/en-us/articles/202011433-Current-IGS-Site-Guidelines). Station history informa-

tion is recorded in the so-called IGS site logs which are intended to report all instrumentation changes

(receiver, antenna, radome, external clock, meteorological sensor, etc.), also including firmware updates

and elevation cutoff changes. However, the description of the station environment in terms of elevation

mask is optional. Besides the site logs, information on the data quality is produced daily by IGS data

centres using TEQC software (Estey & Meertens [1999]) as well as by the IGS analysis centres as a

by-product of the data processing; the latter are software-dependent however. The analysis of both

information types could be used to create additional metadata, e.g. to detect a change in the receiver
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tracking performance, in satellite health, in station multipath, etc.

Homogenization of GNSS IWV series

First, it should be recalled that the detection of discontinuities in GNSS station coordinate solutions has

been practiced for a long time in the geodetic community, either for computing terrestrial reference frames

(Collilieux et al. [2011]) or analysing station velocities due to tectonic motions (Williams [2003]). Until

now, change-points were usually detected by visual inspection of time series. Statistical segmentation

methods have also been tested in the framework of Detection of Offsets in GPS time series Experiment

(DOGEx) but the study concluded that manual methods almost always gave better results than auto-

mated or semi-automated methods (Gazeaux et al. [2015]). More recently, new statistical approaches

have been developed which show more promising results; they are the semi-parametric segmentation

of multiple series (Bertin et al. [2017]) and a factor model approach for the joint segmentation with

between-series correlation (Collilieux et al. [2019]). Both approaches have been tailored to fit specific

characteristics of a global network of GNSS station coordinate solutions. They include namely common

biases represented by a functional part or between-station correlations. In all cases the change-points

parameters remain station specific (i.e. independent from one station to another) and the segmentation

model is based on the absolute approach (see Section 2.1.2). Following the same methodology, this

thesis aims at adapting existing segmentation methods and developing new methods that fit the statis-

tical properties of IWV time series. GNSS IWV time series are structurally very different from GNSS

coordinate time series (they include flicker noise and only small seasonal signals), and the hypothesis of

common time-dependent biases or spatial correlations are weak. For these reasons the above-mentioned

methods don’t apply.

In the GNSS-derived IWV daily series the signal is stronger due to the natural variability of the

IWV variable, making more difficult to find the abrupt changes. It is thus mandatory to use a relative

homogenization technique.

In this work, we analysed GNSS data from the IGS network shown in Figure 2.5. Because this network

is quite sparse, the construction of references series from neighboring stations is hard. Therefore we used

the ERA-Interim reanalysis Dee et al. [2011] as a reference and analyzed the IWV differences between

the GNSS and the reanalysis data: ∆IWV = IWVGPS − IWVERAI . It was shown in a previous study

that the ERA-Interim reanalysis represents well the signal of the atmospheric variability Parracho et al.

[2018].

Characteristics of GNSS IWV series

Figure 2.6(a) shows a time series of daily GNSS IWV data from the IGS repro1 data set Bock [2017]. The

IWV time series at this tropical station (CCJM, Japan, located north of the Philippines Sea) exhibits a
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Figure 2.5 – Distribution of 460 GNSS stations available from the IGS repro1 dataset covering
the period from 1 January 1995 to 31 December 2010. The different markers represent the length
of the time series. Among the 460 stations, 120 have time series longer than 15 years. Source:
Bock [2014].

marked seasonal variation, with values varying from 10 kgm−2 to 60 kgm−2 between winter and summer,

as well as a strong day-to-day variability linked to the changing weather situations. The figure also shows

the IWV time series from the ERA-Interim reanalysis (Dee et al. [2011]). It can be seen that the two

data sets are in good agreement. They represent the seasonal and daily variations with high similarity.

The vertical dotted lines show the known equipment changes for the GNSS station. They include the

dates of receiver and antenna changes as found in the IGS site log files, and also two processing changes

in 2008 and 2009. It is not obvious from the inspection of the time series if any change induces a break

in the GNSS time series.

Figure 2.6(b) shows the time series of IWV differences, IWVGPS − IWVERAI . This plot reveals

one obvious change-point on 24 Feb 2001 which coincides with a change of receiver and antenna at the

station. The other known changes don’t seem to produce inhomogeneities (at least no change in the

mean difference can be detected visually). Following the same approach as Lu & Lund [2007] we fitted

a least-squares model to the ∆IWV data with a change in the mean signal at a known time. Our model

did not include a trend because we analyse a difference series (target minus reference). On the other

hand, following the approach of Collilieux et al. [2019], we model the presence of a periodic bias with a

Fourier series of order 4 with a base period of 1 year (365.25 days) and harmonics of 1/2, 1/3 and 1/4 of

a year. The jump in the means is estimated to 2.8 kgm−2. Among the 120 stations that we examined,

this offset is actually the largest that was encountered. The reason why this offset is that large is because

the particular antenna and radome models that were used during the processing of the former period

were incorrect (they were actually not known and alternate models were used while instead the data

should not have been processed). During the later period the proper model was available and used, and

the bias with respect to ERA-Interim disappeared. Another feature present in the Figure is the periodic

bias represented by the magenta line. This bias is explained by small differences in representativeness
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(a)

(b)

Figure 2.6 – (a) GNSS and ERA-Interim IWV time series at station CCJM located in the sea of
the Philippines (27.096°N, 142.185°E).(b) IWV difference (GPS - ERA-Interim) in grey shading.
The vertical green lines show the equipment changes documented in the metadata.
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between the two data sets. Indeed, the GNSS observations can capture some small-scale variability

not resolved by the reanalysis (Bock & Parracho [2019]). Although the reanalysis is the best available

reference data set we can have, it is not perfect and this differences must be taken into account in

the segmentation model in order to avoid the over-detection of change-points in place of variations in

the bias. Finally, a third feature shown in this example is the annual variation in the variance show

by the blue line which represents the monthly standard deviation of the daily post-fit residuals. Few

existing segmentation models take this feature into account. Finally, we also computed the lag-1 of the

autocorrelation function of the residuals and found a value of r = 0.249. This value is relatively small

and allows for neglecting the serial dependence in the IWVGPS − IWVERAI differences in a first step.

2.2 Statistical framework for change-point detection

Change-point detection analysis constitutes an important and active current area of statistics. The

proposed statistical methods dedicated to the specific climate field were naturally inspired by the many

statistical methods developed in more general settings. The purpose consists in identifying instants,

positions or dates where the statistical properties of the data before and after these instants are different,

typically in the distribution. These change-points delimit what are called segments. This change-point

detection problem is an old subject in statistics, dating back to 1954 Page [1954] with testing a potential

single change-point. Over the decades, change-point methods have developed rapidly and intensively

with multiple change-points, different types of data and other assumptions. A big distinction between

them concerns the objective itself of the detection: on-line and off-line detection. The former consists in

detecting change-points as soon as they occur in the time series, whereas the off-line approach consists in

detecting all the change-points once the whole series is observed. In this thesis, we consider the off-line

detection of multiple change-points. We can refer to Ardia et al. [2019]; Jandhyala et al. [2013]; Truong

et al. [2020] for a review, admittedly not exhaustive, of recent numerous methods.

Section 2.2.1 presents a state-of-art of the statistical methods proposed in climate field literature.

In this thesis, we focus on parametric methods in a frequentist framework using penalized criteria. In

Section 2.2.2, we precise the main difficulties that arise in this approach which are both statistical (for the

choice of the number of change-points) and algorithmic (for the location of change-points) and present

the current solutions proposed in the literature.

2.2.1 Overview of change-point detection methods in climate

This section aims at presenting the main homogenization methods proposed in the climate literature in

the sense that they are the most used and/or adapted by the community. In particular, they are listed

in various review papers (see Easterling & Peterson [1995], Peterson et al. [1998], Aguilar et al. [2003],
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2.2 Statistical framework for change-point detection

Reeves et al. [2007], Ducré-Robitaille et al. [2003], Ribeiro et al. [2016]) and have been also assessed in

the COST action HOME Venema et al. [2012] for monthly temperature and precipitation observations

and, more recently, in COST Action GNSS4SWEC for GNSS IWV Van Malderen et al. [2020]. These

methods are detailed in Table 2.1 with different types of information. The two first columns contain

the name and the reference of the method, following by the characteristics of the data to which they

are applied (the time resolution and the type of series in terms of relative or absolute). The last two

columns list the papers in which the method is used or adapted and the review papers in which it appears

respectively. For some of these methods, free software is available. Table 2.2 gives the list of the software

by specifying the name of the latest version, its computer language and availability. The methods are

based on different statistical approaches and tools. Among them, we have the classical distinctions

between parametric versus non-parametric methods and frequentist versus Bayesian approaches, and

the use of classical inference procedures based on tests or maximum penalized likelihood procedures.

Each of these points is precised for the different methods in columns from 5 to 8 of Table 2.1 providing

details as for example about the used or developed tests, with an algorithmic point of view in column 9.

Information about specific features taken into account in the modeling is given in column 10. Based on

these statistical and algorithmical considerations, we built a possible classification between the methods

in the form of a tree given in Figure 2.7 allowing to have a quick and more readable vision of the difference

between them. The numbers appearing in this tree correspond to the numbers of the methods listed

in Table 2.1. In the following paragraphs, we explain and detail each of the criteria used to build this

classification tree (columns from 5 to 10 of Table 2.1 or levels of the tree reported on the left of Figure

2.7).
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2.2 Statistical framework for change-point detection

num latest version language url

1 PRODIGE

2 ACMANT3 Windows
executables

http://www.c3.urv.cat/softdata.php

3 HOMER R package http://www.c3.urv.cat/softdata.php

8 MASH v3 Windows
executables

https://www.met.hu/en/omsz/rendezvenyek/

homogenization_and_interpolation/software/

10 RHtestV4 R package,
FORTRAN

https://github.com/ECCC-CDAS/RHtests

13 AnClim Windows
executables

http://www.climahom.eu/software-solution/

anclim

14 RHtests dlyPrcp R package https://github.com/ECCC-CDAS/RHtests

15 CLIMATOL3.1.1 R Package https://cran.r-project.org/web/packages/

climatol/index.html

Table 2.2 – Free software implementing some of the methods listed in Table 2.1.

Figure 2.7 – Statistical classification of change-point methods in climate. The levels of the leafs
are reported on the left of the tree and numbers at the end of each branch refer to change-point
methods detailed in the Table 2.1.
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2.2 Statistical framework for change-point detection

abbreviation definition

y, m, d, h year, month, day, hour

CL Caussinus & Lyazrhi

BM Birgé & Massart

mBIC Modified Bayesian information criterion

MDL Minimum Description Length

DP Dynamic Programming

GA Genetic Algorithm

MLR Maximum Likelihood Ratio

AR autoregressive

BS Binary Segmentation

MCMC Markov Chain Monte Carlo

PMF Penalized Maximal F test

PMT Penalized Maximal t test

SRMD Squared Relative Mean Difference

Table 2.3 – Abbreviations used in Table 2.1.

Models. A first distinction that can be made between the methods is based on parametric or non-

parametric models. The latter assumes the data to be distribution-free contrary to the former for which

the data are supposed to be drawn from a particular probability distribution. As we can observe in

Table 2.1 or in Figure 2.2, all the proposed methods in climate are parametric, except the ones proposed

by Ducré-Robitaille et al. [2003]; Karl & Williams [1987]; LANZANTE [1996]; Reeves et al. [2007];

Van Malderen et al. [2020] which are based on the classical non-parametric Mann-Whitney test. The

parametric approach in segmentation consists in assuming that the series is modeled by a Pθ distribution,

and some or all of the parameters θ that are subject to changes. This approach requires a precise

knowledge of the signal under study for first determining the distribution and after choosing which are

the parameters affected by the abrupt changes. In climate, the distribution is largely supposed Gaussian

but, when it is not suitable, for example for precipitation data, another distribution are considered and

methods should be redeveloped according to, as in Li & Lund [2012]; Wang et al. [2010]. Concerning

the affected parameters, in the vast majority changes are assumed to affect the signal mean, but some

authors also considered changes in trend as Lund & Reeves [2002]; Vincent [1998].

Approaches. Among the parametric methods, one can distinguish the frequentist and Bayesian ap-

proaches. The frequentist approach considers the parameter as fixed and proposes a point estimation

by maximizing a well-suitable contrast function (e.g. the likelihood p(Y|θ) and θ̂ = argmax
θ

log p(Y|θ))

whereas the Bayesian approach treats the parameter as a random variable drawn from a distribution,

called the prior distribution, and aims at retrieving its posterior distribution, i.e. its distribution given
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2.2 Statistical framework for change-point detection

the data p(θ|Y). In climate, this approach has been considered by Hewaarachchi et al. [2017]; Li &

Lund [2015]; Seidou & Ouarda [2007]; Seidou et al. [2007]. Compared to the frequentist approach, its

advantage is that it makes it possible to take into account information on the change-point locations

using the metadata through the prior distribution, as in Hewaarachchi et al. [2017]; Li & Lund [2015].

If Seidou et al. [2007] and Seidou & Ouarda [2007] adopt a pure Bayesian approach, Hewaarachchi et al.

[2017] and Li & Lund [2015] considered an empirical Bayes-type approach that can be seen as a mixture

between frequentist and Bayesian since some parameters are point estimated and some are integrated.

As Table 2.1 shows, most of the proposed methods in climate are addressed in a frequentist statistical

framework.

Inference procedure. The most commonly detection techniques proposed in climate in a para-

metric framework are based on two classical stastistical approaches: hypothesis tests and maximum

likelihood inference. In the latter, the change-point detection problem is thus formulated as an estima-

tion problem solved via the maximization of the (log-)likelihood criterion raising both algorithmical and

model selection issues. In the former, which constitutes the huge part of this literature, it is formulated

as a statistical hypothesis test for testing the presence of a single change-point leading to sequential

detection procedures for the multiple change-point detection problem. Formally, given a time series

y = {yt}t=1,...,n, if a change-point exists at a time t = ϕ, then the behavior of series {yt}t=1,...,ϕ differs

from the behavior of series {yt}t=ϕ+1,...,n in some sense. In a parametric framework, the observed data

are modeled by a random process Y = {Yt}t=1,...,n with a probability distribution Pθ and this translate

as a change in Pθ in terms of the parameter θ, i.e. the parameter θ of the two sub-series (the data on

segments J1, ϕK and Jϕ+1, nK) is different. Naturally neither the existence or the location of the change-

point ϕ are known in practice. Using the test-based approach, the purpose consists thus in first testing

the presence of a change-point and then estimating its position. The first problem can be formulated in

terms of the two following hypothesis:



H0 : Y1, . . . , Yn i.i.d ∼ Pθ

against

H1 : ∃ t ∈ (1, . . . , n)


Y1, . . . , Yϕ i.i.d ∼ Pθ1

Yϕ+1, . . . , Yn i.i.d ∼ Pθ2

θ1 6= θ2

The standard tests are most used in climate are the t-test, F-test, and the likelihood ratio test (see

methods lines from 7 to 16 in Table 2.1 and reference papers listed in column ’users’). Whatever the
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2.2 Statistical framework for change-point detection

choice of the statistical test, the general procedure is the following: each position is tested with an

alternative hypothesis saying that a change occurs at this position. If the maximal value of the test

statistic among the n − 1 possible positions is larger than a critical value then the null hypothesis is

rejected and the change-point is estimated as the position for which the test statistic attains a local

maximum. In order to build the test decision, Monte Carlo simulations are usually used to approximate

the distribution of the maximal test statistic since it is quite complex. Improvements of the t-test

and the F-test have been proposed by Wang [2008a,b]; Wang et al. [2007, 2010] in view of an equally

detection power of each position-test leading to penalized versions of these two tests (PMT and PMF).

This procedure allows to detect possibly one single change-point. When multiple detection is wanted,

sub-segmentation techniques can be used. This search consists in recursively applying the test until no

significant change-point is found. Several algorithms have been proposed with application to climate

data and are presented in the next paragraph.

The second approach, based on penalized likelihood, was considered by some authors (see lines from

1 to 6 in Table 2.1). Several methods were proposed which differ in the formulation of the penalty

function and the search algorithm. In this thesis we also adopted the penalized likelihood approach as

is detailed in Section 2.2.2. As we have seen in the previous paragraph, a Bayesian approach has been

considered by some authors for single detection or multiple detection (see methods lines from 17 to 20

in Table 2.1). As in the parametric framework, the adopted criterion is based on the likelihood function.

Search. This paragraph presents an algorithmic point-of-view of the methods. More precisely, the

question arising here concerns the fact that the multiple detection inference is performed in an exact

manner or not. The exact version means that the solution is optimal according to the considered inference

criterion and the non-exact to a sub-optimal one. The multiple change-point detection methods using

recursive tests will leads necessarily to sub-optimal solutions since all the possible segmentation solutions

are not considered. In this approach, among the proposed algorithms in climate, the most widely used

search is the Binary Segmentation (BS) since it is conceptually simple and easy to implement: if a

change-point is detected, the time series is partitioned in two series. The test is then applied on each of

the two series separately until there is no more significant change-point (see Wang et al. [2007], Wang

[2008a], Menne & Williams [2009], Stepanek et al. [2009]). A modification is proposed by Guijarro [2011]

using moving windows. Another iterative procedure proposed by Lund & Reeves [2002], consists at each

iteration in a detecting/correcting procedure: a change-point is detected on the whole series using a

statistical test and the mean shift associated with the latter is removed. Although these algorithms lead

to sub-optimal solutions, they have an advantage in the case of long series of being faster than exact
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2.2 Statistical framework for change-point detection

algorithms with a complexity linear in the length of the series. When all the change-points are detected

simultaneously, whatever the frequentist or Bayesian approach, an algorithmical problem appears. This

problem is well known and is due to the need of visiting the whole segmentation space which can be huge.

In climate, in a frequentist framework, two well known algorithms are used: the dynamic programming

(DP) by Bock et al. [2018]; Caussinus & Mestre [2004]; Domonkos et al. [2011] and a genetic-type

algorithm (GA), that uses principles of genetic selection and mutation, by Li & Lund [2012]; Lu et al.

[2010]. With the former the solution is optimal whereas with the latter it is sub-optimal. This point is

discussed in the next section. In a Bayesian framework, there is no analytic expression of the posterior

distribution of the change-points. A classical way of solving the problem is to carry out Monte Carlo

simulations. In climate, Li & Lund [2015]; Li et al. [2019] used the classical Markov Chain Monte Carlo

(MCMC) method. This approximation leads thus to a sub-optimal solution. The only algorithm that

gives the optimal solution is described by Fearnhead [2006] which was used by Seidou & Ouarda [2007].

Specific features. In addition to the abrupt changes, climate series present different characteristics

which, if not taken into consideration, can influence the segmentation process. In particular, effects that

are not included in the segmentation model will be captured by the segmentation solution leading to

many false detection. First working on the series of differences using a relative approach (see Section

2.1.2), the climate trend is, in theory, removed. However, in the case of an absolute approach, it is

fundamental to integrate this trend in the segmentation model as proposed by Lu et al. [2010]; Lund &

Reeves [2002]; Lund et al. [2007]; Vincent [1998]. Other characteristics can be taken into account, such as

temporal dependence and periodic features which can affect the mean or the covariance. Dependencies

such as periodic and autoregressive Gaussian process of order p have been considered (see lines 5, 6, 10,

11, 14, 19, and 20 of Table 2.1). Some authors also modelled the variance of the process (Bock et al.

[2018]; Hewaarachchi et al. [2017]; Lu et al. [2010]).

2.2.2 The maximum penalized-likelihood approach used in this work.

Two main issues.

The inference approach adopted in this thesis sets in a parametric and frequentist framework. A vast

majority of methods setting on this approach use a two-step strategy: (i) estimate the change-point

locations as well as the corresponding distribution parameters θ for a fixed number of change-points and

(ii) choose the number of change-points. In most cases, the estimation of θ is not a problem because

the exact solution can be derived. The major difficulties are: 1) to estimate the change-point positions,

which leads to an algorithmic issue, and 2) to estimate the number of change-points, which is a model
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2.2 Statistical framework for change-point detection

selection problem.

Estimating the change-point positions. The classical maximum likelihood tools cannot be

applied due to the discrete nature of the change-point parameters. This therefore implies the exploration

of the whole segmentation space that is huge. Such an exploration is prohibitive in terms of computational

time when performed in a naive manner (with a complexity in O(nK) if K is the number of segments

or K − 1 is the number of change-points and n is the length of the series). If the search of the optimal

segmentation according to the likelihood criterion can be based on a sequential principle as the binary

segmentation (see for example Olshen et al. [2004] and Fryzlewicz et al. [2014]) leading to (acceptable)

sub-optimal solutions, there exists an efficient algorithm that enables to recover the exact solution in a

fast manner (with a complexity in O(Kn2)): the dynamic programming (DP) algorithm. This algorithm

was introduced by Bellman [1954] and used for the first time in segmentation by Auger & Lawrence [1989]

under the name ”segment neighborhood”. For the past ten years, many authors have proposed pruned

versions of this algorithm that still remain exact: Killick et al. [2012]; Maidstone et al. [2017]; Rigaill

[2015] with a linear complexity in n. DP is still widely used today, also in climate (Bock et al. [2018];

Caussinus & Mestre [2004]; Domonkos & Coll [2015]; Mestre et al. [2013]). All these exact algorithms

can be used as long as the criterion to be optimized is additive on the segments. This condition is

not always satisfied, typically when others effects that are not affected by the changes are added in the

segmentation model. In this case, some authors suggest the use of a genetic algorithm (GA) providing

an approximate solution to the segmentation ( Li & Lund [2012]; Lu et al. [2010]).

Choosing the number of change-points. In most applications, this number is unknown and

needs to be estimated. This model selection problem can be solved using penalized criteria: a penalty

term is added to the inference criterion (here the log-likelihood) in order to take into account the com-

plexity of the model. The problem is thus reduced to the choice of an appropriate penalty function. It

is well known that the classical criteria such as Akaike information criterion (AIC) proposed by Akaike

[1973] and Bayesian information criterion (BIC) proposed by Schwarz [1978] are not theoretically adapted

in the segmentation context for different reasons (see Birgé & Massart [2007] and Zhang & Siegmund

[2007], respectively) and tend to overestimate the number of segments in practice. Modified versions

of the AIC and BIC dedicated to the segmentation framework have been proposed by Lebarbier [2005]

based on the works of Birgé & Massart [2001] and Zhang & Siegmund [2007]. The latter is called mod-

ified Bayesian information criterion (mBIC). In the specific climate context, other penalties have been

proposed. Caussinus & Mestre [2004] proposed a BIC-like penalty considering both change-points and
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outliers. Some authors proposed penalties based on the MDL (Minimum description length) criterion

proposed by Rissanen [1978] (see for example Li & Lund [2012]; Lu et al. [2010]).

2.3 Outline of this work

The main goal of this thesis was to develop a new segmentation model adapted to the special features

of the GNSS IWV difference time series highlighted in Section 2.1.3 and Figure 2.6. As explained in

Section 2.2.2 we decided to consider a penalized-likelihood approach using DP which allows to find the

exact solution to the associated segmentation problem. Knowing the position of the change-points will

allow to correct the original GNSS IWV time series for inhomogeneities (abrupt changes in the mean) or

alternatively implement a trend estimation method that takes the inhomogneneities into account. The

structure of the following chapters describes the development and the application of this method to the

global GNSS data set introduced in Section 2.1.3 and Figure 2.5.

Chapter 3 provides a general segmentation framework using a penalized likelihood inference method.

Two classic and widely used models are presented, with particular emphasis on the algorithmic part: the

homoscedastic model which considers changes in the mean of an independent Gaussian process and the

heteroscedastic model which considers changes both in the mean and in the variance. A third model is

also presented which was proposed by Bock et al. [2018] to account for the changing monthly variance

observed in the GNSS IWV differences (see Figure 2.5). However, it is shown that these models fail when

the data contain an additional signal such as a periodic bias highlighted in the GNSS IWV differenes

(Figure 2.5).

Chapter 4 introduces a new model developed in this thesis. This model is an extension of the

previous model (Bock et al. [2018]) and accounts for the periodic bias. This chapter describes the model,

inference, and algorithmic aspects which allowed to use DP. The method is tuned and its performance

is assessed by extensive numerical simulations. The method has been released as an R package available

to the scientific community.

Chapter 5 shows the results of our method on real data. It also presents our approach to deal with

the outliers. A trend estimation for the data is proposed.

Finally, Chapter 6 discusses and concludes on the findings of the research presented in this thesis,

as well as its limitations, lessons learned during the conducting process, and some guidelines for future

work.
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Chapter 3

Segmentation methods

A general segmentation method is presented in this chapter. The considered approach is parametric,

frequentist and is based on a penalized likelihood inference. Section 3.1 introduces the general segmen-

tation model. Sections 3.2 and 3.3 present the classical maximum likelihood method used to estimate

the parameters and the DP algorithm used to solve the optimization problem. Section 3.4 introduces

several penalties that will be used for the choice of the number of changes or segments. In Sections 3.5

and 3.6 the method is applied on three specific models. The two firsts are classic and very widely used

models called the homoscedastic and the heteroscedastic gaussian models. They consider changes in the

mean and changes both in the mean and in the variance respectively. Then, we present a model that is

”between the two latter”: the changes affected only the mean and the variance is heterogeneous but on

fixed and known intervals. This model has been proposed by Bock et al. [2018] for a first analysis of the

GNSS data. With one simulated series, we illustrate that these models fail when the signal includes a

periodic bias as is evidenced on the real GNSS IWV differenced data (see Figure 2.6 (b)).

The model proposed by Bock et al. [2018] will be the basis of the new model developed in this work and

described in Chapter 4.

3.1 General Model

We observe y = {yt}t=1,...,n a finite sequence of observed data which are realizations of n independent

random variables Yt that are supposed to be drawn from a probability distribution (Pθ)θ∈Θ such that
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the parameter θ is affected by K − 1 changes. The model is thus:

Yt ∼



Pθ1 , t = 1, . . . , t1

Pθ2 , t = t1 + 1, . . . , t2

. . . ,

Pθk , t = tk−1 + 1, . . . , tk

. . . ,

PθK t = tK−1 + 1, . . . , n,

where θk 6= θk+1, ∀k ∈ {1, . . . ,K − 1}. Modeling the data is thus the first issue. The difficulty is to

choose both the distribution Pθ and which parameter is affected by the changes (all can be affected or

some of them only).

The parameters of the model to be estimated are the following ones:

1. K the number of the segments,

2. T = (t1, . . . , tK−1) the K − 1 change-points, that decompose the signal in K segments, Ik =

Jtk−1 + 1, tkK, with the convention t0 = 0 and tK = n.

3. θ = (θ1, . . . , θK) the parameters of the distribution.

Once the model has been specified, the issue regards the inference of all the parameters given below.

3.2 Inference

The classical maximum likelihood method is used to estimate the parameters. If we suppose that the

probability distribution Pθ admits a density fθ and since the Yt are independent, the likelihood is written

as follows

p(y;K,T ,θ) =

n∏
t=1

p(yt;θ,T ) =

K∏
k=1

tk∏
t=tk−1+1

fθk (yt)

and the log-likelihood as

log p(y;K,T ,θ) =

K∑
k=1

tk∑
t=tk−1+1

log fθk (yt) (3.1)

The inference is conventionally done in three steps:

(i) Estimating the distribution parameters θ, T and K being fixed. We get:

θ̂ = argmax
θ∈ΘK

log p(y;K,T ,θ) = argmax
θ∈ΘK

K∑
k=1

tk∑
t=tk−1+1

log fθk (yt).
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Thus

θ̂k = argmax
θk∈Θ

tk∑
t=tk−1+1

log fθk (yt).

(ii) Finding the change-point locations T for a fixed number of segments K (or K − 1 change-points).

To this aim, we have now to maximize the log-likelihood calculated at its maximum:

T̂ = argmax
T∈MK,n

log p(y;K,T, θ̂) = argmax
T∈MK,n

K∑
k=1

tk∑
t=tk−1+1

log fθ̂k (yt),

where MK,n = {(t1, . . . , tK−1) ∈ NK−1, 0 = t0 < t1 < · · · < tK−1 < tK = n} is the set of all

possible segmentations of the grid J1, nK in K segments. While the distribution parameters are

continuous, the change-point parameters are discrete. This point constitutes the major difficulty

in segmentation. Indeed, in this case the likelihood is not differentiable with respect to these

parameters and the classical maximum likelihood tools can not be used. We have thus to explore

the whole space MK,n. The size of this space is huge since it is
(
n−1
K−1

)
causing an algorithmic

problem. Indeed, from a computational point of view, an exhaustive exploration would have a

complexity in O(nK). The only way (until 2011) to reduce this complexity and obtained the exact

solution is to use the dynamic programming (DP) introduced by Bellman [1954]. Its complexity is

linear in K and quadratic in the length of the time series (O(Kn2)). More details on this algorithm

are given in Section 3.3.

At this point, we have a collection of the best segmentation of the data in k = 1, . . . ,K segments

and the purpose is to choose the ”best” one.

(iii) Choosing the number of segments K. The fit to the data, given by the likelihood, will always

increase with the number of segments. In order to choose an appropriate segmentation, a common

strategy consists in adding a penalty term depending of the number of segments:

K̂ = argmax
K

log p(y;K, T̂ , θ̂)− pen(K,n).

Thus the problem is reduce to the choice of a ”good” penalty. A more detailed discussion and

presentation of different penalties adapted in segmentation framework will be given in the Section

3.4.
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3.3 Dynamic Programming

The dynamic programming algorithm is a recursive algorithm, based on the Bellman optimality principle

”Sub-paths of the optimal path are themselves optimal” (Bellman [1954], and it was introduced for the

first time in the context of segmentation by Fisher [1958].Recall that the optimisation problem for

estimating the change-points is the following

min
T∈MK,n

K∑
k=1

tk∑
t=tk−1+1

− log fθ̂k (yt). (3.2)

This optimization problem is actually a shortest path problem, that can be solved thanks to DP in an

exact manner. Let define

• C(i, j) =
∑j
t=i− log fθ̂ij (yt) is the cost of the path connecting i to j directly, e.g. the cost of the

segment Ii−>j with θ̂ij is the estimation of θ using the data {yi, . . . , yj},

• Ck(i, j) the cost of the best path connecting i to j in k sub-paths, e.g. the best segmentation from

i to j in k segments.

Using these notations, the optimization problem of interest (3.2) is written

CK(1, n) = min
1≤t1<,...,<tK−1

K∑
k=1

C(tk−1 + 1, tk).

This cost can be computed using a recursive formulation.

Recursive formulation. Considering first the case of K = 2 segments, i.e. one change-point, we

have

C2(1, n) = min
1≤t1<n

2∑
k=1

C(tk−1 + 1, tk) = min
1≤t1<n

{
C(1, t1) + C(t1 + 1, n)

}
= min

1≤h<n

{
C1(1, h) + C(h+ 1, n)

}
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3.3 Dynamic Programming

For any K,

CK(1, n) = min
1≤t1<···<tK−1<n

K∑
k=1

C(tk−1 + 1, tk)

= min
1≤t1<···<tK−1<n

{K−1∑
k=1

C(tk−1 + 1, tk) + C(tK−1 + 1, n)

}

= min
K−1≤tK−1<n

{
min

1≤t1<···<tK−2<tK−1

K−1∑
k=1

C(tk−1 + 1, tk) + C(tK−1 + 1, n)

}
= min

K−1≤h<n

{
CK−1(1, h) + C(h+ 1, n)

}

Description of DP. This algorithm requires the calculation of the cost of all segments for 1 ≤ i ≤

j ≤ n stored in an upper diagonal matrix D n× n, called cost matrix.

matD =


C(i, j) if i ≤ j

+∞ otherwise

Step k: for 2 ≤ k ≤ K, k ≤ j ≤ n,

do

Ck(1, j) = min
k−1≤h<j

{Ck−1(1, h) + C1(h+ 1, j)}

DP allows to calculate the cost of the best segmentation in K segments, but does not have as output

the optimal segmentation itself. The algorithm is completed by a backtracking procedure, which allows

to rebuild the associated optimal change-points. The DP algorithm has a complexity of the order of

O(Kn2) if the calculation of the cost matrix is of the same order.

Sufficient condition for using DP. DP can be applied if and only if the quantity to be optimized

is segment-additive, i.e. − log p(y;K,T , θ̂) =
∑K
k=1 Ck where Ck denotes a function of k (see for example

Bai & Perron [2003]; Lavielle [2005]; Picard et al. [2005]). A sufficient condition to have this segment-

additivity is the independence between the segments in terms of observations (the Yt of different segments

are independent) and in terms of parameters (the parameters are all segment-specific). Thus the presence

of global (or common) parameters among the segments hampers the use of DP. Note that if there exists

some dependence between the Yt, DP can be applied only if the dependence parameter is (also) affected

by the abrupt changes. For more details, see Section 2.6.1 in Chakar et al. [2017]. Some climate models,

as as seen in 2.2.1, take into account some additional effects, such as temporal dependence and periodic

features (see for example Hewaarachchi et al. [2017]; Lu et al. [2010] and Bock et al. [2018]). In this case,

DP cannot be applied directly and alternatives have been proposed leading to approximate solutions: a
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3.4 Model Selection

two-step inference procedure using again DP as in Bock et al. [2018] (see Section 3.6) or the use of an

other algorithm, the GA algorithm as in Lu et al. [2010].

Recently, faster (linear or quasi-linear in n in n in many cases) but still exact versions of DP have been

proposed: PELT (Killick et al. [2012]) and PDPA (Rigaill [2015]) and the mixture of them (Maidstone

et al. [2017]). For PDPA, the necessary condition is there that is one single parameter (thus affected

by abrupt changes). The PELT algorithm integrates a penalty proportional to K (so it simultaneously

estimates the change-point locations and their number). However, it is known that such AIC-type

penalty selects too many segments (Cleynen et al. [2014]).

3.4 Model Selection

The procedure described in Section 3.2 provides the best segmentation, according to the likelihood, in

a fixed number of segments K, which is unknown in practice. The choice of K can be seen as a model

selection problem. To this purpose, the most common strategy is to use penalized contrast criteria.

Most often, the contrast denoted c here is the least-squares criterion or minus the log-likelihood, and the

number of segments K or change-points K−1 is chosen by minimizing c(y;K, T̂ , θ̂)+pen(K,n) for some

suitable penalty function pen(K,n). As already mentioned in Section 2.2.2, classical penalties such as

AIC (Akaike [1973]) and BIC (Schwarz [1978]) are not adapted to the segmentation framework (Birgé &

Massart [2007] and Zhang & Siegmund [2007]) and tend to overestimate the number of segments. A huge

literature has been devoted to propose penalties dedicated to the segmentation framework (see Lavielle

[2005]; Lebarbier [2005]; Zhang & Siegmund [2007]) and in the specific climate context (see Caussinus &

Mestre [2004]; Li & Lund [2012]; Lu et al. [2010]). In this thesis, we will consider three of them:

? the one proposed by Lavielle [2005], denoted Lav in which the penalty is proportional to the

number of segments:

K̂ = argmin
K

c(y;K, T̂ , θ̂) + βK, (3.3)

where β is the penalty constant chosen using an adaptive method proposed by the author.

? the one proposed by Birgé & Massart [2001], denoted BM and calibrated by Lebarbier [2005]

for segmentation in the mean of Gaussian process:

K̂ = argmin
K

c(y;K, T̂ , θ̂) + αK
[
5 + 2 log

( n
K

)]
, (3.4)

where the penalty constant α can be calibrated using the slope heuristic proposed by Arlot &

Massart [2009].
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3.5 Classical Gaussian segmentation models

? the one proposed by Zhang & Siegmund [2007] called the modified BIC (mBIC) which is a

modified version of the classical BIC criterion dedicated to the segmentation in the mean of a

Gaussian process yt ∼ N(µk, σ
2): two versions exist, one with known variance and one with

unknown variance. The former is :

K̂ = argmin
K

1

2

K∑
k=1

tk∑
t=tk−1+1

(yt − µ̂k)2 +
1

2

K∑
k=1

log (t̂k − t̂k−1)−
(

3

2
−K

)
log (n). (3.5)

Ardia et al. [2019] show that the MDL criterion, used by Li & Lund [2012] and Lu et al. [2010],

can be seen as a Bayesian criterion with appropriate prior distributions for change-point models.

As a consequence, the obtained based-MDL penalties looks like the mBIC. In particular, both

penalties integrate a term depending on the segment lengths of the segmentation.

The choice of K is a complicated and delicate problem. Moreover, because their formulations are

different, each criterion may select a different model.

3.5 Classical Gaussian segmentation models

In this section we will restrict the study to the cases of an independent Gaussian process

∀t ∈ {1, . . . , n}, Yt ∼ N(µ(t), σ(t)2)

in order to illustrate the inference procedure. Two models can be considered: the homoscedastic model

called (M1) and heteroscedastic model called (M2). In (M1), the mean is the only parameter affected by

the abrupt changes, and the variance is considered constant during the time. The distribution parameters

are θ = (µ, σ2),where µ = (µ1, µ2, . . . , µK), and the model is written as follows

(M1) Yt = µk + Et, Et i.i.d. ∼ N(0, σ2),

for t ∈ Ik = Jtk−1 + 1, tkK with k ∈ J1,KK.

In the heteroscedastic model (M2), the abrupt changes affect simultaneously the mean and the variance.

The distribution parameters are then θ = (µ,σ2),where µ = (µ1, µ2, . . . , µK) and σ2 = (σ2
1 , σ

2
2 , . . . , σ

2
K).

And the model is written as follows

(M2) Yt = µk + Et, Et ind. ∼ N(0, σ2
k),
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3.5 Classical Gaussian segmentation models

for t ∈ Ik = Jtk−1 + 1, tkK with k ∈ J1,KK.

The inference procedure is described in the Section 3.2. We take up the structure of the aforemen-

tioned paragraph, introducing the log-likelihood and focus on the two first steps of the inference (the

estimation of the distribution parameters and the change-point locations when K is fixed).

Log-likelihood. The log-likelihood for model (M1) is

log p(y;K,T ,µ, σ2) =

K∑
k=1

tk∑
t=tk−1+1

log f(µk,σ
2)(yt),

= −n
2

log(2πσ2)− 1

2σ2

K∑
k=1

tk∑
t=tk−1+1

(yt − µk)2

and for model (M2) is

log p(y;K,T ,µ,σ2) =

K∑
k=1

tk∑
t=tk−1+1

log f(µk,σ
2
k

)(yt)

=

K∑
k=1

− (tk − tk−1)

2
log(2πσ2

k)−
K∑
k=1

 1

2σ2
k

tk∑
t=tk−1+1

(yt − µk)2

 .

Estimation of θ, T being fixed (step (i)). The estimators of the mean and the variance are

the classical maximum likelihood estimators:

µ̂k =
1

(tk − tk−1)

tk∑
t=tk−1+1

Yt for (M1) and (M2),

σ̂2 =
1

n

K∑
k=1

tk∑
t=tk−1+1

(Yt − µ̂k)2 for (M1),

σ̂2
k =

1

(tk − tk−1)

tk∑
t=tk−1+1

(Yt − µ̂k)2 for (M2)

Finding the change-point locations T (step (ii)). Recall that T̂ is obtained by maximizing

the log-likelihood calculated at its maximum for θ:

T̂ = argmax
T∈MK,n

log p(y;K,T , θ̂).
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3.5 Classical Gaussian segmentation models

For model (M1), we get

T̂ = argmax
T∈MK,n

log p(y;K,T, µ̂, σ̂2)

= argmax
T

(
−n

2

(
log(2π) + log(σ̂2)

)
− 1

2σ̂2
nσ̂2))

= argmax
T

− n

2

(
log(2π) + 1 + log

(
1

n

K∑
k=1

tk∑
t=tk−1+1

(yt − µ̂k)2

))

= argmin
T

K∑
k=1

tk∑
t=tk−1+1

(yt − µ̂k)2

Thus DP applied by considering as the cost of the segment Ji, jK,

C(i, j) =

j∑
t=i

(yt − µ̂i,j)2

where µ̂ij = yij = 1
nij

∑j
t=i yij and nij = j − i + 1. The model (M1) has a common parameter:

the variance σ2. We have seen that a sufficient condition for using DP is that there are no common

parameters. It turns out that the maximization in distribution parameters θ comes down to a problem

of optimizing a segment-additive quantity. This model is the only exception, to our knowledge, with a

common parameter where it still works.

For model (M2), we get

T̂ = argmax
T∈MK,n

log p(y;K,T , µ̂, σ̂2)

= argmax
T

( K∑
k=1

− (tk − tk−1)

2
(log(2π) + log(σ̂2

k))−
K∑
k=1

1

2σ̂2
k

(tk − tk−1)σ̂2
k

)

= argmax
T

( K∑
k=1

− (tk − tk−1)

2

log(2π) + log

 1

tk − tk−1

tk∑
t=tk−1+1

(yt − µ̂k)2

− n

2

)

= argmin
T

K∑
k=1

(tk − tk−1) log

 1

tk − tk−1

tk∑
t=tk−1+1

(yt − µ̂k)2


Thus DP applied by considering as the cost of the segment Ji, jK,

C(i, j) =

j∑
t=i

nij log

( j∑
t=i

(yt − µ̂ij)2

nij

)
.

The model (M2) satisfies the necessary and sufficient conditions to use DP: yt are independent and

all parameters are segment-specific.
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3.6 Segmentation in the mean with heterogeneous variance on fixed time-intervals

3.6 Segmentation in the mean with heterogeneous variance

on fixed time-intervals

Recall that in this thesis, we are motivated by the homogenization of the GNSS ∆IWV series presented

in Section 2.1.4. As we have seen, these series present some particular characteristics in addition to the

abrupt changes: a monthly change in variance (with a period of one year) and a smoothly varying bias

as illustrated in Figure 2.6 (b). First let us consider the latter characteristic (and thus forgetting the

smoothly varying bias). The two classical models presented in the above section will not be adapted. In

order to illustrate this point, we applied them on a simulated time series. We consider a series of length

of n = 400 with 4 ”years” of 2 ”months” of 50 ”days” each and with standard deviations changing every

month. A total of 6 change-points are considered at positions t = 55, 77, 177, 222, 300, 366 and the mean

within each segment alternates between 0 and 1. The standard deviations of the two months are σ1 = 0.2

and σ2 = 1.2. The simulated series is represented in Figure 3.1. Note that the change-points located at

the positions t = 55, 77, 177, 366 are more difficult to detect because they are located in segments with

a high standard deviation (σ2), the change-point located at t = 300 corresponds to both a change in the

mean and in the variance and the one at t = 222 belongs to a segment with a small standard deviation

(σ1) thus easier to detect. The segmentation solutions obtained with the homoscedastic model (M1)

and the heteroscedastic model (M2) using the BM model selection criterion are given in Figure 3.2 (a)

and (b), respectively. The heteroscedastic model finds 8 change-points: only one change in the mean is

detected and all the changes in the variance are detected, as requested by this model and so expected.

The homoscedastic model retrieves 4 change-points among the 6, the two missing change-points being

positioned in a segment with a high standard deviation.

Recently, a segmentation model has been proposed by Bock et al. [2018] including a variance changing

on given and fixed time intervals. An evenly-spaced time interval of one month was chosen with a period

of one year, as this corresponds with the dominant mode of variability seen in the data series. The

variance can also change somehow from year to year, but this variation is neglected. The model writes

as:

Yt = µk + Et, Et iid ∼ N(0, σ2
month), ∀t ∈ Ik ∩ Imonth

for t ∈ Ik = Jtk−1 + 1, tkK with k ∈ J1,KK, and if date(t) is the date at the position t, Imonth =
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3.6 Segmentation in the mean with heterogeneous variance on fixed time-intervals

Figure 3.1 – A simulated time series of length n = 400 with 6 change-points (vertical dotted red
lines) with standard deviation σ1 = 0.2 in blue and σ2 = 1.2 in green. The red line corresponds
to the mean of the signal.

{t; date(t) ∈ month}. The log-likelihood is

log p(y;K,T ,µ,σ2) =

K∑
k=1

∑
month

∑
t∈Ik∩Imonth

−1

2
log(2πσ2

month)−
K∑
k=1

∑
month

∑
t∈Ik∩Imonth

(yt − µk)2

2σ2
month

.

where σ2 = (σ2
month)month. The maximum likelihood estimators of µk and σmonth are respectively

µ̂k =

∑
month

∑
t∈Ik∩Imonth

Yt
σ̂2
month∑

month

∑
t∈Ik∩Imonth

1
σ̂2
month

, (3.6)

and

σ̂2
month =

1

nmonth

∑
t∈Ik∩Imonth

(Yt − µ̂k)2.

As we can see, the estimators are inter-dependent. The inference step (i) therefore already poses difficul-

ties. Moreover, another problem arises: σmonth links some segments together, so DP cannot be used to

estimate the change-points as the segment-additivity condition is not met (see Section 3.3). In order to

keep possible the use of DP, the solution proposed by Bock et al. [2018], following the strategy proposed

by Chakar et al. [2017], is to first estimate the variances and then use the classical inference with ’known’

variances:

• Estimating the variances σ2
month. The main problem is to estimate the variance in the presence of
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3.6 Segmentation in the mean with heterogeneous variance on fixed time-intervals

(a) Homoscedastic model

(b) Heteroscedastic model

Figure 3.2 – Obtained segmentation with the homoscedastic (a) and the heteroscedastic (b) mod-
els on the simulated time series plotted in Figure 3.1. The vertical dotted black lines correspond
to the estimated change-points, the black lines to the estimated mean and the red line to the
true mean.
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3.6 Segmentation in the mean with heterogeneous variance on fixed time-intervals

change-points. Since the classical estimator would fail, Bock et al. [2018] proposed to use a robust

estimator proposed by Rousseeuw & Croux [1993] and apply it to the differenced time series,

Yt − Yt−1. This series is centered except at the change-point positions (i.e. only K − 1 (K � n)

differences are non-centered) which can be seen as outliers. The scale estimator of Rousseeuw &

Croux [1993] is robust with respect to a small number of outliers. The estimated monthly standard

deviation write finally:

σ̃month =
QCR,n((Yt+1 − Yt)t)√

2
, t ∈ month (3.7)

where for a process X

QCR,n(X) = cQ {|Xi −Xj | ; 1 ≤ i < j ≤ n}(d 1
4
C2
ne) ,

with

cQ =
1√

2Φ−1
(

5
8

) ≈ 2.2191,

where Φ denotes the cumulative distribution function of a standard Gaussian random variable.

Note that the QCR,n(X) estimator is proportional to the first quartile of the absolute differences.

The σ̃month is computed over all years for the month considered.

• Classical inference with ’known’ variances. The estimators of µk are given by equation (3.6) in

which σ̂2
month is replaced by σ̃2

month resulting in a classical weighted least-squares estimator with

weights 1/σ̃2
month. Then to estimate the change-points, the optimization problem is

T̂ = argmax
T∈MK,n

log p(y;K,T, µ̂, σ̃2)

= argmin
T

K∑
k=1

∑
month

∑
t∈Ik∩Imonth

(yt − µ̂k)2

σ̃2
month

.

Thus DP applied by considering as the cost of the segment Ji, jK,

C(i, j) =

j∑
t=i

(yt − µ̂ij)2

σ̃2
t

.

We applied this method on the same simulated time series as in the previous paragraph plotted in

Figure 3.1. The obtained result is given in Figure 3.4: we can observe that all the true change-points

are retrieved. More simulation results, including comparisons to the homoscedastic and heteroscedastic

models, as well as application to real data with this model are presented in Bock et al. [2018].

Now let’s get back to the smoothly varying bias seen in the GNSS ∆IWV data (Figure 2.6 (b)). As
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3.6 Segmentation in the mean with heterogeneous variance on fixed time-intervals

Figure 3.3 – Segmentation obtained with the model proposed by Bock et al. [2018] on the simu-
lated time series plotted in Figure 3.1. The vertical dotted black lines correspond to the estimated
change-points, the black lines to the estimated mean and the red line to the true mean.
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3.6 Segmentation in the mean with heterogeneous variance on fixed time-intervals

Figure 3.4 – Segmentation obtained with the model proposed by Bock et al. [2018] on the simu-
lated time series in which a periodic function has been added. The vertical black lines correspond
to the estimated change-points, the black line corresponds to the estimated mean, the global mean
(the mean and the function) is in red.

explained in Section 2.1.4 this bias is due to representativenenes differences between the GNSS point

observation and the reanalysis. In order to evaluate the impact of this feature, we added a periodic

function: ft = 0.7 cos(2πt/L), where L = 100 is the length of a year, to the previously simulated series.

The resulting series is plotted in Figure 3.4 with its true average (the mean plus the function) in red.

The segmentation obtained with the model proposed by Bock et al. [2018] is also given in this figure.

We can observe that the segmentation captures the functional with an overestimation of the number of

change-points. This phenomenon is also observed on real GNSS ∆IWV series as will be illustrated in

Chapter 5. To solve this issue, a new model is developed Chapter 4 to take into account the possible

presence of a smoothly varying bias which is modelled as an additive functional part.
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Chapter 4

A new segmentation method

adapted to GNSS IWV difference

data

In this chapter, we present the new segmentation model we developed in order to better fit the char-

acteristics of GNSS ∆IWV data, namely a monthly variance and a smoothly varying bias (see Section

2.1.4). Segmentation models which do not include these features were shown to fail (see Chapter 3).

The main idea for the new model is to add a functional part to the model proposed by Bock et al.

[2018] which already modeled the monthly variance (see Section 3.6). The proposed model is described

in Section 4.1 and the inference procedure in Section 4.2. As classical in segmentation (see Chapter

3), the inference is performed in two steps: 1) estimation of the variance, the functional part and the

segmentation parameters for fixed a number of segments, and 2) selection of the number of segments.

An additional algorithmic difficulty for this new model compared to the model of Bock et al. [2018]

is that the function is a global parameter and again hampers to use DP. To circumvent this problem,

we propose to estimate iteratively the functional part and the segmentation parameters. Section 4.3

presents a numerical simulation study to assess the performance of the proposed method. Note that the

associated algorithm results from tests of different possible variants (e.g. updating the monthly variance

during the iterative procedure instead of estimating it once at the beginning, or interchanging the order

of the estimation of the functional and the segmentation at the initialization). Section 4.4 presents the

results of these variants. Finally, Section 4.5 presents the R packages GNSSseg and GNSSfast which are
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4.1 Model

two releases of the method that have been made available to the community.

4.1 Model

Let be y = {yt}1,...,n the observed series with length n that is supposed to be modeled by a Gaussian

independent random process Y = {Yt}t=1,...,n such that

(i) the mean of Y is composed of two terms:

– a piece-wise constant function µk(t) equal to µk on the interval Imean
k = Jtk−1 + 1, tkK with

length nk = tk − tk−1 where 0 = t0 < t1 < . . . < tK−1 < tK = n. The T = {tk}k=1,...,K−1

are the times of the abrupt changes or change-points and K is the number of intervals or

segments.

– and a function ft;

(ii) the variance of Y is month-dependent, i.e. it is constant within the interval Ivar
month = {t; date(t) ∈

month} with length nmonth where date(t) stands for the date at the position t.

The resulting model is thus the following

Yt = µk + ft + Et, ∀t ∈ Imean
k ∩ Ivar

month, (4.1)

where the errors {Et}t are centered independent Gaussian with heterogeneous variance, i.e. {Et}t i.i.d. ∼

N(0, σ2
month) if t ∈ Ivar

month and for k = 1, . . . ,K. The intervals {Imean
k }k are unknown contrary to the

intervals {Ivar
month}month that are fixed. The functional component ft describes the smooth variations of

mean of the series ∆IWV .

4.2 Inference

As usual in segmentation based on the maximum likelihood inference procedure framework (see Chapter

3), the inference is performed in two steps that are here:

Step 1 Estimate T = (t1, . . . , tK−1) theK−1 change-points, µ = (µk)k theK means, σ2 = (σ2
month)month

the monthly variances, and f the function, with K being fixed.

Step 2 Choose the number of segments K.
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4.2 Inference

The log-likelihood of the model defined by Eq. (4.1) is equal to

log p(y;K,T ,µ,σ2, f) = −n
2

log (2π)
∑

month

nmonth

2
log (σ2

month)

−1

2

K∑
k=1

∑
month

∑
t∈Imean

k
∩Ivar

month

(yt − µk − ft)2

σ2
month

(4.2)

4.2.1 Step 1: Inference of T , µ, σ2 and f , with K being fixed

As we have seen in Chapter 3, the use of the DP algorithm is now classical to estimate the change-point

positions. This is the only algorithm that enables to retrieve the exact maximum likelihood solution.

However, DP can be applied if and only if the quantity to be optimized is additive with respect to the

segments. Here the presence of the ’global’ parameters σ2
month and f will link the segments and the re-

quired condition will not be satisfied. In order to circumvent this algorithmical problem and keep the use

of DP, we propose to proceed in two steps: (1) we estimate the variances using a robust estimator as in

Chakar et al. [2017] and Bock et al. [2018] and (2) we estimate iteratively f and the segmentation param-

eters (i.e. the change-points and the means) using DP as in Gazeaux et al. [2015] and Bertin et al. [2017].

The proposed algorithm is thus the following:

(1) Estimation of σ2
month . As seen in Section 3.6, Bock et al. [2018] proposed a consistent estimator

for the variance parameter based on the robust one proposed by Rousseeuw & Croux [1993]. This

estimator is defined by Eq. (3.7). We use here this estimator even in the presence of the function

f because the latter does not have much impact on the resulting estimation (in the application,

this smoothly varying bias is almost completely cancelled out in the differentiated series). The

estimated variance is noted σ̂2
month.

(2) Estimation of f and both T and µ iteratively . The procedure consists in minimizing the

minus log-likelihood given in Eq. (4.2) iteratively. At iteration [h+ 1]:

(a) the estimator of f is the weighted least-squares estimator with weights 1/σ̂2
month applied

to {yt − µ[h]
k }t. Based on the seasonal character of the smoothly varying bias observed for

station CCJM (Figure 2.6 (b)) and shared by many other stations, we decided to represent

f as a Fourier series of order 4 accounting for annual, semi-annual, terannual, and quarterly

periodicities in the signal:

ft =

4∑
i=1

ai cos(wit) + bi sin(wit),
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where wi = 2π i
L

is the angular frequency of period L/i and L is the mean length of the

year (L = 365.25 days when time t is expressed in days). The estimated function is denoted

f [h+1].

(b) the segmentation parameters are estimated based on {yt − f [h+1]
t }t. We get

µ
[h+1]
k =

∑
month

∑
t∈Imean

k
∩Ivar

month

(yt−f
[h+1]
t )

σ̂2
month∑

month

∑
t∈Imean

k
∩Ivar

month

1
σ̂2

month

, (4.3)

and

T [h+1] = argmin
T∈MK,n

K∑
k=1

∑
month

∑
t∈Imean

k
∩Ivar

month

(yt − f [h+1]
t − µ[h+1]

k )2

σ̂2
month

,

where we recall that MK,n = {(t1, . . . , tK−1) ∈ NK−1, 0 = t0 < t1 < . . . , tK−1 < tK = n} is

the set of all the possible partitions of the grid J1, nK in K segments. This minimization can

now be obtained using DP where the cost of the segment Ji, jK is

C(i, j) =

j∑
t=i

(yt − f [h+1]
t − µ̂[h+1]

i,j )2

σ̂2
t

,

where µ̂
[h+1]
i,j is the estimated mean in the considering segment given by Eq. (4.3) and σ̂2

t is

the value of the variance at position t.

The final estimators are denoted f̂ , T̂ and µ̂.

4.2.2 Choice of K

The best K is selected again using three model selection criteria presented in Section 3.4: the ones

proposed by Lavielle [2005], Birgé & Massart [2001] and Zhang & Siegmund [2007] denoted respectively

Lav, BM and mBIC. Since in our estimation procedure the variances are estimated first, our segmentation

problem can be seen as one in which the variance is ’known’. We thus propose to use the least-squares

based criterion defined as follows:

c(y;K, T̂ , θ̂) =

K∑
k=1

∑
month

∑
t∈Îmean

k
∩Ivar

month

(yt − f̂t − µ̂k)2

σ̂2
month

. (4.4)

Some remarks about the two first criteria which involves penalty constants to be calibrated:

• for the Lav’s criterion, β is the penalty constant chosen using an adaptive method . The method

involves a threshold S which is fixed to S = 0.75, as suggested by Lavielle [2005].

• for the BM’s criterion, the penalty constant α can be calibrated using the slope heuristic proposed
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by Arlot & Massart [2009]. Two methods are proposed actually: the ”dimension jump” and the

”data-driven slope estimation” which are referred to as BM1 and BM2, respectively, hereafter.

4.2.3 In practice and different choices

In practice, the iterative procedure in Step 1 of the inference (Section 4.2.1) is performed for K =

1, . . . ,Kmax where Kmax should be 2 or 3 times larger than the expected number of change-points. For

both the simulations (hereafter) and the applications (in Chapter 5), we used Kmax = 30.

The iterative procedure needs a proper initialization procedure and a stopping rule. For the initial-

ization, the function f is estimated first, using a unweighted least-squares criterion. For the stopping

rule the change of ft and µk between two successive iterations is checked against a fixed threshold. The

convergence of the iterative procedure is accelerated using the stopping test proposed by Varadhan &

Roland [2008].

The final algorithm was derived after testing several different options discussed in Section 4.4. It is

summarized in Figure 4.1.

4.3 Simulations

4.3.1 Simulation Design and Quality Criteria.

Simulation Design. The same simulation design as in Section 3.6 was used here. The time series have

a length of n = 400 with 4 ”years” of 2 ”months” of 50 ”days” each and with standard deviations chang-

ing every month, and with 6 change-points at positions t = 55, 77, 177, 222, 300, 366 and mean values

alternating between 0 and 1. The periodic function was again modelled by f(t) = 0.7 cos(2πt/L) where

L = 100 is the length of one year. Since we consider here only two months, the standard deviations is

alternating between two values, σ1 and σ2, for which several batches of simulations were generated with

different values: σ1 = 0.1, 0.5, or 0.9 and σ2 = 0.1 to 1.5 by step of 0.2. Each batch contained 100 time

series. Figure 4.2 shows an example of one such series.

Quality Criteria. The quality of the results will be quantified by analyzing the differences between

the estimates and their corresponding true values. In the following, the estimates will be denoted with

a hat x̂ and the true values with a star superscript x?.
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Figure 4.1 – Schematic of the algorithm.

1. for the estimated variance or the standard deviation parameters, we analyze the difference with

respect to the true values for each of the two months;

2. for the function f , we compute the root mean square error (RMSE) of the estimated function:

RMSE(f) =

[
1
n

∑n
t=1

{
f̂t − f∗t

}2
]1/2

;

3. for the segmentation parameters, the following criteria are considered:
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Figure 4.2 – Example of a simulated time series (black solid line in lower panel) of length n = 400
with K = 7 segments (red solid line), function f(t) = 0.7 cos(2πt/L) (blue solid line), noise (cyan
solid line) with standard deviation σ1 = 0.1 and σ2 = 0.5 (changing every L/2 = 50 points,
starting with σ1).

? the difference between the estimated number of segments and the true one K̂ −K∗;

? the RMSE of the estimated mean parameter µ̂:

RMSE(µ) =
[

1
n

∑n
t=1 {µ̂t − µ

∗
t }2
]1/2

;

? the distance between the estimated positions of the change-points t̂ and the true ones t?;

this distance is measured with the help of the two components of the Hausdorff distance, d1

and d2, defined as:

d1(a, b) = max
b

min
a
|a− b| and d2(a, b) = d1(b, a).

In our case, d1(t?, t̂) quantifies the largest distance between an estimated change-point and the

true ones. However, it does not say if some change-points are missing. This complementary

information is given by d2(t?, t̂) which quantifies how close the true change-points are to the

detected ones. A perfect segmentation results in both null d1 and d2. A small d1 means that the

detected change-points are well positioned and a small d2 that a large part of the true change-

points are correctly detected. A common situation found in practice is the one where the number

of change-points is under-estimated, with a small d1 and a large d2. In that case, some change-

points are undetected but the detected ones are correctly located. This situation is satisfying here

since in our applications one prefer to miss some (small) change-points rather than having too

many false detections.
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? the histogram of the change-point locations provide a measure of the probability of the po-

sition of the change-points.

4.3.2 Simulation Results

Only the results for σ?1 = 0.5 are illustrated hereafter. The results for the others values of σ?1 are discussed

at the end of the Section.

Accuracy of the variance estimates. Figure 4.3 presents the estimation errors of σ̂1 and σ̂2

for different values of σ?2 . It is seen that the variance estimator works well and the estimated standard

deviations are retrieved with the same accuracy as in Bock et al. [2018] despite the presence of the

periodic bias. The dispersion increases when σ?2 is increasing as one can expect.

Figure 4.3 – Boxplots of standard deviation estimation errors: σ̂1−σ?
1 in red and σ̂2−σ?

2 in blue,
with σ?

1=0.5 and σ?
2 = 0.1, . . . , 1.5. Each case includes 100 simulations.

Accuracy of segmentation parameter estimates. Figure 4.4 shows the results for the four

model selection criteria and the special case where the number of segments K is fixed to the true value

(K = 7). For small values of σ?2 , the detection problem is easy and all the model selection criteria

retrieve the correct number of segments (Figure 4.4(a)). However for large values of σ?2 , the detection

becomes difficult, and the errors increase. The different criteria behave slightly differently. Lav tends to

85



4.3 Simulations

give the true number of segments in median, but with a large dispersion, while BM1, BM2, and mBIC

tend to underestimate the number of segments (more for mBIC). However, finding the correct number

of segments does not mean that the change-points are properly positioned. Indeed, for Lav and the case

when K = 7, the median d1 is still quite large (Figure 4.4(c)). On the other hand, the median d2 is

smaller for the case when K = 7 compared to the tested criteria (Figure 4.4(d)). Finally, RMSE(µ) is

very similar for all the criteria (Figure 4.4(b)), though Lav shows a larger median and dispersion when

σ?2 is large. When σ?2 takes intermediate values the case when K = 7 yields slightly improved results.

Probability of detection. Figure 4.5 shows the percentage of the change-point detections for three

values of σ?2 = 0.1, 0.5 and 1.5, and σ?1 = 0.5. In general, the change-points located in the ”months”

with smaller variance are more often recovered with all three criteria, and also when the true K is used.

Hence, in the case (a) when σ?1 = 0.5 and σ?2 = 0.1, the probability of detection is slightly smaller for

the position 222, which is contained in a segment with σ?1 = 0.5, and for the position 300 where both

the mean and the variance change. In the case (b) when σ?1 = σ?2 = 0.5, the probability of detection is

more or less the same for all the change-points and all the criteria. When σ?2 = 1.5, the problem is more

complicated. Again the change-points located in the ”months” with smaller noise are better detected

(positions 222 and 300) but for the other four change-points the results are contrasted although they

are all located in months with σ?2 = 1.5. The change-points at 55 and 77 are almost never detected.

For mBIC this is consistent with the fact that the median K̂=5, i.e. two change-points are missing, on

average (Figure 4.4(a)), but the other four change-points are not so badly located (d1 is not that large,

Figure 4.4(c), but d2 is very large, Figure 4.4(d)). The situation is a bit similar for BM1. On the other

hand, for Lav and the true K, the number of detections is correct (on average for Lav) but due to the

large noise they are sometimes very badly positioned (large d1 and d2).

Accuracy of the function estimate. Figure 4.6 shows RMSE(f) as a function of σ?2 . As expected,

the errors increase when σ?2 increases. The results do not much depend on the selection criterion, but the

results are slightly better when the true number of segments is known and when σ?2 takes intermediate

values. The results for Lav show a slightly larger median and larger dispersion.

The results for other values of σ?1 are very similar for BM1, BM2, mBIC, and the case when the

true K is used. The results are slightly improved for σ?1 = 0.1 and slightly degraded for σ?1 = 0.9,

as expected, see Figures 4.7 and 4.8, respectively. The results for Lav are more chaotic, with either

large under-estimation of K for the smaller σ?1 and over-estimation of K for the larger σ?1 , with large
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(a) (b)

(c) (d)

Figure 4.4 – Results with the four selection criteria (BM1, BM2, Lav, and mBIC) and with
the true number of segments (True), for σ?

1 = 0.5 and different values of σ?
2 . (a) K̂ −K?; (b)

RMSE(µ); (c) first Hausdorff distance d1 and (d) second Hausdorff distance d2.

subsequent degradation of the other quality criteria. In general, under-estimating K leads to an increase

of RMSE(µ), while over-estimating K leads to an increase of d1.

The main conclusions from the simulation study are the following:

• The proposed method works well but the results are sensitive to the choice of the function form

due to its possible confusion with the change-points. Performing a selection of the statistically

significant parameters of the function appears as a good way to reduce this problem and improves
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Figure 4.5 – Histogram of change-point detections with, from left to right, the BM, Lav, and
mBIC selection criteria, and the case when the true number of segments is used (TRUE), for
σ?
1 = 0.5 and three different values for σ?

2 : (a) σ?
2 = 0.1, (b) σ?

2 = 0.5 and (c) σ?
2 = 1.5. The red

dotted lines indicate the positions of the true change-points.

slightly the change-point detection with our simulated data (see Section 4.4).

• Concerning the model selection criteria, BM1, BM2, and mBIC, provide very similar results. They

behave well and detect correctly the number and position of change-points when the noise is not

too large. When the noise is heavy some change-points are missed but this is a counterpart of

the limited number of false detections. The Lav criterion shows much larger dispersion in the
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Figure 4.6 – RMSE of the estimated function f for σ?
1 = 0.5 and different values for σ?

2 .

number of change-points and, though the estimated number is close to the truth in median, some

change-points are not properly located (larger d1 and d2) with an impact on the estimated µ and

f .

4.4 Tested Alternatives

In this section, we discuss several other implementations of the algorithm that were tested before selecting

the final form described in Section 4.2.

(1) Updating the variance: instead of estimating the standard deviation vector σ once at the begin-

ning only (step 1), we tested a version of the algorithm where σ was updated at each iteration

in the loop (step 2). Figure 4.9 shows the results when the variance vector is updated during

the iterative procedure: a positive impact of this procedure was to provide slightly more accurate

estimates for the variance with also a positive impact on the estimated function, ft, and the seg-

mentation parameters (µ and T ). However, the small changes in variance at each iteration slowed

down the convergence of the algorithm with actually only small improvement of the accuracy of the

estimated function and parameters in the end. For this reason, we did not select this procedure.

This test also showed that our method is not very sensitive to the accuracy of the variance.

(2) Variants of the initialization. In the standard initialization procedure described in Section 4.2,

f is estimated first using an unweighted regression and then the segmentation is performed on

yt − ft. Here we show the results for three variants: (a) the segmentation is performed first and
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(a) (b)

(c) (d)

Figure 4.7 – Results with the four selection criteria (BM1, BM2, Lav, and mBIC) and with
the true number of segments (True), for σ?

1 = 0.1 and different values of σ?
2 . (a) K̂ −K?; (b)

RMSE(µ); (c) first Hausdorff distance d1 and (d) second Hausdorff distance d2.

then f is estimated on yt−µt using a weighted regression (b) f is estimated first using a weighted

regression (as in the loop) and then the segmentation is performed on yt − ft; (c) f is estimated

first using a weighted regression (as in the loop) but on on yt − ȳ (recentred signal).

Figure 4.10 shows the results for case (a). Compared to Figure 4.4, the results are significantly

degraded for all values of σ2. Especially, the larger d1 indicates that change-points are badly

located. The reason is that in the initialization, the segmentation catches the variations in the
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(a) (b)

(c) (d)

Figure 4.8 – Results with the four selection criteria (BM1, BM2, Lav, and mBIC) and with
the true number of segments (True), for σ?

1 = 0.9 and different values of σ?
2 . (a) K̂ −K?; (b)

RMSE(µ); (c) first Hausdorff distance d1 and (d) second Hausdorff distance d2.

signal due to the periodic function following by a wrong estimation of f . Then the iterative

procedure does not change this effect and leads naturally to an over-segmentation in addition of

the bad estimation of f . This particularly marked for small values of the noise σ2 and for the

Lav’s criterion whatever σ2.

Figure 4.11 shows the results for case (b). The results are degraded as well but less than previ-

ously and mainly for larger σ2. The reason of this effect can be explained by the fact that the
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Figure 4.9 – Boxplots of standard deviation estimation errors for the alternative (1) in 4.4, when
the variance vector is updated during the iterative procedure: σ̂1−σ?

1 in red and σ̂2−σ?
2 in blue,

with σ?
1=0.5 and σ?

2 = 0.1, . . . , 1.5. Each case includes 100 simulations.

change-points belonging to small variance periods are absorbed by f degrading thus its estimation

at this initialization step. And as for the case (a), the iterative procedure does not change too

much this effect.

The results for case (c) (not shown here) are very similar to those obtained with our initialization

procedure. This alternative is equivalent to include a constant term in the linear regression to

estimate f . Its estimation is less degraded compared to case (b) and the loop corrects it.

Our choice of estimating first the function f using an unweighted regression is more flexible in the

sense that it does not capture the all segmentation effect at the initialization step allowing thus

the iterative procedure to correctly separate the function and the segmentation terms.

(3) Selection of the function model. The sensitivity of the procedure to the initialization step dis-

cussed above highlights the possible confusion between the function and segmentation. This sen-

sitivity can be further explored by testing different models for f . The idea behind is that simpler

models might be less confused with the segmentation making the procedure more accurate in

terms of change-point locations. We tested two alternatives: (a) the shape of f is known up to a

scaling factor, i.e. ft = a1 cos(2πt/L); (b) the full Fourier series of order 4 is used in the linear

regression, then only the statistically significant terms are selected based on their p-values accord-

ing to a threshold of 0.001. Figures 4.12 and 4.13 show that the results for these two cases are
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(a) (b)

(c) (d)

Figure 4.10 – Simulation results when the segmentation is performed first in the initialization
step. (a) K̂ −K?; (b) first Hausdorff distance d1; (c) RMSE(µ); (d) RMSE(f).

both consistent and improve the segmentation results compared to our method (Figures 4.4 and

4.6). Especially, the overall RMSE of the fitted function is strongly reduced. The impact on the

positions and amplitudes of the change-points is rather small, however, and the impact in the case

of real data is negligible (see Section 5).
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(a) (b)

(c) (d)

Figure 4.11 – f is estimated using a weighted regression in the initialization step, as a function
of σ2.

4.5 R packages

4.5.1 Presentation of the package GNSSseg

The procedure, proposed in 4.2, and with its alternatives, is been developed as a R package named

GNSSseg, avaible on the CRAN (https://cran.r-project.org/web/packages/GNSSseg/index.html). The

94

https://cran.r-project.org/web/packages/GNSSseg/index.html


4.5 R packages

(a) (b)

(c) (d)

Figure 4.12 – f is estimated using the true shape, as a function of σ2.

main function is called GNSSseg with the following arguments:

GNSSseg(Data, lyear, lmin, Kmax, selection.K, S, f , selection.f , threshold, tol)

where:

• Data is a data frame containing two fields: signal for the signal and date for the time information

associated to the signal, both fields are vectors of length n. The date field should be of class

POSIXct (i.e. an implementation of GMT). The time does not need to be continuously sampled
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(a) (b)

(c) (d)

Figure 4.13 – The statistically significant parameters of f are selected (p-values¡0.001).

(i.e. the data can contain gaps and/or the signal can contain NA values). The temporal resolution

of the signal should be daily;

• lyear is the length of the year in the signal. Default is 365.25;

• lmin is the minimum length of the segments. Default is 1;

• Kmax is the maximal number of segments. Default is 30;

• selection.K can be used to choose either all (selection.K=”All”) or only one specific selection

criterion (possible values are ”Lav”, ”mBIC”, ”BM slope” for BM1, and ”BM BJ”for BM2) and
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also to run the algorithm for one specific value of K only (selection.K=”none”). In the latter

case, the value of K used is the one specified in the variable Kmax;

• S is the threshold used in the Lav criterion. Default is 0.75

• f allows to skip the estimation of the function and perform only the segmentation (using option

f=FALSE). The default value for f is TRUE.

• selection.f allows to apply the selection based on a significance test on the parameters of the

function, possible values are TRUE and FALSE. The default value is selection.f=FALSE (no

selection applied).

• threshold in the case when selection.f is TRUE, this parameter can be used to the threshold on

the p-values. The default value is threshold = 0.05. Note that a threshold equal to 1 is equivalent

to a selection based on AIC only.

• tol is the threshold used in stopping rule of the iterative procedure (step 2) of the general algorithm.

The default value of tol (10−4) was chosen empirically and can be modified. Smaller values will

need more iterations for the algorithm to converge;

The main function returns the final estimates of K̂, t̂k, µ̂k, σ̃
2
month, f̂t for each of the model selection

criteria selected with selection.K.

4.5.2 GNSSfast: improvement of execution time

The GNSSseg package takes time on long series in practice due to the segmentation applied iteratively. Re-

cently, a faster version of DP has been developed by Hocking et al. [2018]. The associated package is gfpop

and is available on the git repository https://github.com/vrunge/gfpop.git. It reduces the computational

time to O(Kn logn) (compared to O(n2) for DP). We integrated it in GNSSseg resulting in a new package

called GNSSfast. This new package can be downloaded from https://github.com/arq16/GNSSfast.git.

We evaluated empirically the improvement of our algorithm on ten time series from the data de-

scribed in Section 5.1 on a machine Ubuntu 18.04.2 LTS; the length of the series n is between 5000 and

6000. In average, the segmentation takes 41 minutes (2463 seconds) with GNSSseg (DP) against one

minute and half (79 seconds) with GNSSfast.

Note that although GNSSfast significantly improves the speed, it is not yet possible to change the

minimum length of the segments, which is therefore set to 1.
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Chapter 5

Application to real data

5.1 Dataset, metadata, and validation procedure

Outline of the data analysis procedure. Figure 5.1 represents the schematic of the homogeni-

sation procedure applied to the real data. The first step consists in forming the daily IWV differences

which will served as the input to the homogenisation. The IWV data from the GNSS data set and the

reference data set may not be on the same time grid and some resampling, interpolating, and averaging

may be necessary. This computation is done by the ”comparison” software. In this work we used the

reprocessed GNSS IWV data from 120 global GNSS stations (Figure 1.1) and ERA-Interim reanalysis

as the reference data set. The reprocessed data set is limited to the period from 1 January 1995 to 31

December 2010. The daily GNSS IWV, ERA-Interim IWV, and the differences are publicly available

from Bock [2017].

The second, and main step, is the ”segmentation”. We applied the new method described in Chapter

4 as well as three variants. The variants implement simplified models we use to investigate the impact of

including the monthly variance and smoothly varying bias in the new method. The results are presented

in the Section 5.2.

The segmentation method detects sometimes a couple or more change-points located close together

which we call outliers. They are usually due to spikes in the noise and shows thus large variations in

the mean. Such detections are unwanted and the next step in the processing called ”screening” aims

at removing them. A basic outlier detection scheme is used in Section 5.2 which compares the position

difference between successive change-points to a predetermined threshold of 30 days. A more elaborate

screening method is described in later Section 5.3. The screening result is a reduced set of change-points
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Figure 5.1 – Schema of the general homogenisation procedure on GNSS ∆IWV daily series.

{t̃k}.

The next step is the ”attribution” where the detected change-points will be attributed a flag {q̃k} to

say whether their origin can be attributed to ”GNSS” with some confidence or not. Different methods

of attribution are discussed in Section 5.4. A very straightforward method consists in comparing every

detected change-point to the equipment changes known from the metadata. When a coincidence is found
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within some predetermined range, the change-point is considered as attributed to GNSS origin. When

the range is small (e.g. 30 days), the probability that the matching is due to chance is quite small (on

the order of 10−4). In 5.2 we will use this method to ”validate” the segmentation results. More details

about the usage of the GNSS metadata is given in the next paragraph.

The final step in our analysis is the computation of the trends taking the segmentation results into

account. The estimation method and results are presented in 5.5.

GNSS metadata and validation procedure. For validating the detected change-points for the

GNSS stations we used the available metadata from the IGS site-logs (ftp://igs.org/pub/station/log/).

They contain for each station the dates of changes of receiver (R), antenna (A), and radome (D).

Experience shows that equipment changes do not produce systematically a break in the GNSS IWV time

series. The most important changes are those affecting the antenna and its electromagnetic environment,

the satellite visibility, and the number of observations, Vey et al. [2009]. For instance, Ning et al.

[2016] considered only antenna and radome changes, as well as addition/removal of microwave absorbing

material which was known by the authors for one specific station (ONSA). However, there is some

evidence that changes in the receiver settings also induce inhomogeneities, e.g. when the elevation cutoff

angle is changed (Vey et al. [2009]). So we decided to include receiver changes as well. We also included

the dates of processing changes (P) which occurred at a few stations in 2008 and 2009, this issue is

discussed in Parracho et al. [2018]. In principle, the IGS metadata are well maintained but it may

happen that some changes are not recorded or that some dates are wrong. Undocumented changes

might occur due to changes in the environment, e.g. cutting of vegetation and construction of buildings

nearby the antenna as well as seasonal changes in multipath due to growing/declining vegetation may

also impact the measurements and produce either abrupt or gradual changes. As a consequence, though

metadata represent a valuable source of validation, a full matching between detected change-points and

metadata is not to be expected.

Because of noise in the signal, the detected changes may also not coincide perfectly with the known

changes and we must allow some flexibility in the validation procedure. A window of 30 days before

or after a documented change was used for the automatic validation of the detected change-points. A

visual inspection was also performed to check if the invalidated change-points make sense.
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5.2 Segmentation Results

5.2.1 General results

The final version of the new segmentation method was applied to IWV differences (GNSS minus ERA-

Interim) from 120 stations. Figure 5.2 shows the number of detected change-points for the four criteria.

The new method is labelled (a). Three variants of the method are also presented to discuss the sensitivity

of the results and the performance of the four selection criteria. The variants are: (b) only the statistically

significant terms of the Fourier series are selected (this optional test was introduced in Section 4.4 to

test if reducing the number of degrees of freedom in the function leads to better results), (c) only the

segmentation is implemented, i.e. the periodic bias modelled by the function f is not included (this is the

method proposed by Bock et al. [2018]), (d) a homogeneous variance is considered instead of a monthly

variance (this is a homoscedastic version but still including the functional). Statistics on the number of

detected change-points are included in Figure 5.2. More statistics including the number of validations

and outliers are given in Table 5.1. In this sub-Section, change-points are flagged as outliers when their

position difference is smaller than 30 days. This choice is consistent with the validation window of 30

days.

Let us first discuss the results for the final version of the new method shown in Figure 5.2(a). Over the

120 GNSS stations, mBIC, Lav, BM1, and BM2 detect a total of 3251, 474, 335, and 435 change-points,

respectively. The distribution of the number of change-points per station is very different depending on

the selection criterion. Most notably, mBIC detects between 9 and 29 change-points per station, with

a mean value of 27.1, i.e. in many cases the largest possible number is selected (29 since Kmax = 30).

This behaviour was not observed with the simulations shown in Section 4. From Table 5.1 we see that

mBIC actually has many outliers (2096 out of 3251 detections). Comparison of contrast values reveals

that mBIC selects solutions with smaller SSR values than the other criteria, i.e. the model selected

by mBIC generally explains better the observed signal. However, this is at the expense of strong over-

segmentation, which is not wanted. This penalty criterion is thus not well adapted to the nature of the

data analyzed here. One of the reasons might be that the hypothesis of Gaussian errors is not valid with

these time series, due to serial correlation in the data mentioned in the 2 (r = 0.249 for station CCJM,

Figure 2.6) and spikes in the noise. The three other selection criteria provide much more consistent

results, with mean number of change-points of 2.8, 3.6 and 4.0, respectively, for BM1, BM2, and Lav.

Among the three criteria, we see from Table 5.1 that BM1 has the smallest number of outliers (36) and

the highest rate of validations (20.9%). These two features, and also the fact that BM1 has a reasonable

number of change-points (2.8 on average per station), make this selection criterion the preferred one.
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Figure 5.2 – Histograms of the number of change-points detected for four variants of the model
selecting criteria (mBIC, Lav, BM1, and BM2). The numbers given in the plots are the mean,
min, and max number of change-points detected per station, N is the total number of change-
points per method.

These general results are more or less the same for the 3 variants, with some slight differences. Variant

(b), with selection of the Fourier series coefficients, shows marginal impact on the number of detections

and the number of validations for three criteria (mBIC, BM1, and BM2). Only for Lav do the mean and

total number of detections increase (by nearly a factor of 2). We do not have a precise explanation for

this, but it reveals some instability in the model selection with this criterion. Instability could also be

guessed from the maximal number of detections of 28 already seen in variant (a). It means that in some

cases, Lav selects a number of segments very close to the maximum (Kmax = 30). BM1 and BM2 have

also more outliers with this variant, though the total number of detections is almost unchanged. So,

contrary to the simulation results, there is no benefit of selecting the functional model with the real data.
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Table 5.1 – Comparison of segmentation results for the four variants and the four model selection
criteria. From left to right: Number of stations with change-points, min/mean/max number
of detected change-points per station, total number of change-points, total number of outliers,
total number of validations, percentage of validations including outliers, percentage of validations
without outliers.

Nsta min mean max detect outliers valid valid valid without outliers

Variant (a) (segfonc)

mBIC 120 9 27.1 29 3251 2096 267 8.2% 20.9%
Lav 114 0 4.0 28 474 129 75 15.8% 21.3%
BM1 98 0 2.8 14 335 36 70 20.9% 23.3%
BM2 107 0 3.6 18 435 64 77 17.7% 20.6%

Variant (b) (segfonc/select)

mBIC 120 8 27.2 29 3268 2090 270 8.3% 20.7%
Lav 115 0 7.8 28 940 411 116 12.3% 20.8%
BM1 100 0 2.8 13 334 46 68 20.4% 23.4%
BM2 107 0 3.7 24 439 76 81 18.5% 22.1%
Variant (c) (segonly)

mBIC 120 9 28.1 29 3367 1255 361 10.7% 16.4%
Lav 113 0 2.9 16 350 28 64 18.3% 19.6%
BM1 90 0 2.2 12 269 8 53 19.7% 20.2%
BM2 102 0 3.5 17 414 24 68 16.4% 17.4%

Variant (d) (seghomofonc)

mBIC 116 0 19.0 29 2283 1637 178 7.8% 24.1%
Lav 114 0 3.5 26 415 148 56 13.5% 20.4%
BM1 92 0 2.4 19 287 40 61 21.3% 24.1%
BM2 101 0 3.2 19 387 82 68 17.6% 21.7%

In variant (c), the result for mBIC is slightly worse (more detections) but with fewer outliers. For

the three other criteria the number of detections decreases significantly. The latter behaviour was actu-

ally not expected. Our interpretation is that when the periodic bias is not modelled, the segmentation

algorithm has two options: (i) either put additional change-points to better fit the periodic variations in

the signal, but this would lead to many more change-points (4 per year, i.e. a total of 64 per station for a

16-year time series) and cost too much to the selection criteria because of the penalty term, (ii) or select

only those change-points with a large amplitude that are not confounded with the periodic bias. The

observed result (Figure 5.2(c) and Table 5.1) suggest that BM1, BM2, and Lav prefer the second, more

conservative option. As a consequence fewer change-points are detected and these may still include some

outliers. Stated in other words, variant (a) including the periodic bias is actually capable of detecting

smaller offsets, which makes it more efficient for the homogenization purpose. Note that with variant (c),

103



5.2 Segmentation Results

the situation described by option (i) occurs nevertheless in some cases as will be illustrated in the next

sub-section, and though the number of outliers and validations both decrease for BM1, BM2, and Lav,

the percentage of validations remains nearly the same (Table 5.1). So, variant (a) clearly works better

than variant (c) in the sense it detects more change-points but with the drawback of more outliers. This

point is further discussed in the last section.

In variant (d) the variance is assumed to be constant. This has two consequences: (i) the function

is fitted with uniform weights which in general leads to an estimated function f̂ and an estimated mean

µ̂ of different shapes, (ii) the estimated variance is larger than the mean variance of the variant (a)

(the average mean standard deviations amount to 1.19 vs. 0.84kgm−2, respectively) and fewer change-

points are detected. Table 5.1 confirms that with this method fewer change-points are detected than

with variant (a), however the number of outliers is increased (except for mBIC which is again a special

case). The number of validations is also decreased, but the percentage of validations is almost unchanged.

The comparison of our four model variants showed that the complete model with heterogeneous

variance and a full functional model for the periodic bias has the best properties (reasonable number

of detections, small number of outliers, and high rate of validations). Among the four model selection

criteria, BM1 and BM2 behave better than Lav and mBIC, with a small advantage for BM1 (higher val-

idation rate). The last row of 5.1 not discussed so far computes the rate of validation slightly differently

by excluding the outliers that are not validated from the total number of change-points. The assumption

here is that we can achieve a proper screening by removing all unnecessary (here invalidated) outliers.

The numbers rise as the denominator of the ratio becomes smaller. The conclusions are unchanged as

BM1 gets still be best score and reaches 23-24%. This rather optimistic outlier-corrected validation rate

will be revised in Section 5.3. Figure 5.3(a) shows that the yearly-mean standard deviation of the noise

ranges between 0 and 2 kgm−2, with a mean value over the 120 stations of 0.84kgm−2. The seasonal

excursion is of 0.63kgm−2 on average, which reflects the importance of modelling the heterogeneous

variance. Figure 5.3(b) presents a measure of the magnitude of the periodic bias for BM1. With an

average value of 0.33 kgm−2 it is clear that the periodic bias is not negligible and modelling it improves

the segmentation results as shown by comparing the results of variant (d) and (a). Figure 5.3(c) shows

that the distribution of offsets (changes in mean) is nearly symmetrical. The mean absolute value of

1.27kgm−2 is relatively large. The dip centred on zero reflects the fact that the smaller offsets are more

difficult to detect. The most frequently detected offsets are found around +/- 0.5kgm−2. The larger

offsets (up to +/- 10kgm−2) are outliers. The distribution of signal-to-noise ratio (SNR, computed as
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the absolute value of offset divided by standard deviation of noise) is peaking at 0.6 and the larger

values (up to 10) correspond again to outliers. The mean SNR of 1.55 reflects the fact that offsets have

in general an amplitude comparable to the noise.

Figure 5.3 – Histograms of segmentation results for the final method with selection criterion BM1:
(a) Number of stations with respect to the estimated standard deviation of the noise (mean and
max-min of the 12 monthly values); (b) Number of stations with respect to the standard deviation
of the estimated function; (c) Distribution of offsets of detected change-points; (d) Distribution
of SNR of detected change-points..

5.2.2 Examples of special cases

We compared the results of the different variants station by station. For most stations, the results were

identical whatever the method, however some special cases are worth mentioning. Here we will only

discuss the results obtained with criterion BM1. With variant (c) there are actually 66 stations which

have the same number of detections than variant (a). Although in general the change-points are located
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at the same position in the time series, this is not always the case. For 18 stations variant (c) detects

more change-points and in 36 cases, it detects fewer. Station POL2 is an example for the former situation

and station STJO an example of the latter. DUBO is an example where the same number is detected

but the change-points are not located at the same position. With variant (d), the number of stations

with equal, more, and fewer number of detections is: 57, 24, and 39, respectively. Examples are: EBRE,

MCM4, and POL2.

The results for a selection of four stations are given in Figure 5.4:

• In the case of POL2, variants (a), (c) and (d) detect 3, 12, and 1 change-point(s), respectively. The

signal shows a strong periodic variation which is well fitted by the models of variant (a) and (d) but

is erroneously captured by the segmentation in variant (c). Variant (a) has one validated change-

point (detected date: 2008-02-23, known change: 2008-03-06, type of change: P). Variant (c) has

no validation, although it detects 12 change-points. Variant (d) detects only one change-point,

which is located 72 days from the nearest known change-point and is thus not validated, but it

coincides with one of the three detections found by variant (a). The detection of this change-point

is made difficult because it is located in a month with heavy noise.

• In the case of STJO, variants (a) and (d) detect 5 and 4 change-points, respectively, with one

outlier each but not at the same position. Among the detected change-points, one is exactly the

same (detected: 2003-04-18, known: 2003-06-08, type: R) but is not validated, and one is close

(detected by variant (a): 1999-07-20, by variant (d): 1999-07-19, known: 1999-07-29, type: R)

and is validated. Variant (c) gives no detection, the conservative option (ii), discussed above at

page 103, is selected by BM1.

• In the case of DUBO, variants (a) and (c) detect two change-points at almost the same position

but not exactly. Both are located close to known changes but only one is validated for variant (a)

(detected: 1999-05-07, known: 1999-05-26, type: R). The second one is located 34 days from a

known change for variant (a) and 148 days for variant (c). Though variant (c) works not bad, it is

not as accurate as variant (a) because the periodic bias is neglected. Variant (d) has 4 detections

which actually consist in 2 change-points, each being associated with an outlier. Although the

periodic bias is modelled here, both change-points are quite badly located and thus not validated.

• Finally for MCM4 the signal has very marked inhomogeneities in the form of several abrupt

changes but also non-stationary oscillations. The abrupt changes are well captured by variant (a)

who detects 5 change-points among which 4 are validated (types are in chronological order: R, R,
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P, P). The non-stationary oscillations are only partly modelled by the periodic function. This is a

special case where even the model used in variant (a) is not well adapted to such oscillations. This

result advocates for an improvement of the functional basis. In that case, variant (c) works quite

well too and leads to almost the same detections as variant (a), but only the two P changes are

validated. Variant (d) on the other hand over-estimates the number of change-points to better fit

the non-stationary oscillations but with detections of outliers. The four same change-points are

validated as with variant (a) but the fitted means are quite different.

Among the 70 validated change-points found with variant (a) by BM1 (see Table 5.1), there are 53 R,

16 A, 7 D, and 13 P types (note that these numbers don’t sum up to 70 because in many cases the

changes involve several types). We find here that receiver changes are the most frequent explanation

for inhomogeneities. This is not surprising since they are the most frequent change-type occurring

at GNSS stations (among the 1731 known changes, 1142 are of R type, 389 A, 70 D, and 425 P).

However, this is in contrast with Ning et al. [2016]’s results who did not consider receiver changes at

all. Most of the receiver changes documented in the IGS sitelogs actually refer to operating software

updates which don’t have much impact on the observations as long as they don’t involve a change

in the minimum elevation cutoff angle. Hardware changes on the other hand are more prone to have

an impact. We performed a quality control based on the observation files with TEQC software Estey

& Meertens [1999] and found that in many cases hardware updates lead to changes in the multipath

diagnostic parameters and in some occasions in the percentage of observations. Examples are the receiver

changes at STJO on 1999-08-06 (from ROGUE SNR 8000 to AOA SNR 12 ACT) and at MCM4 on

2002-01-03 (from ROGUE SNR 8000 to AOA SNR 12 ACT) and 2006-05-19 (from AOA SNR 12 ACT

to ASHTECH ZXII3), discussed above. At MCM4, strong oscillations are visible in the multipath

diagnostics (mp1 and mp2) during the AOA SNR 12 ACT period, similar to those seen in the IWV

differences (Figure 5.4). This reveals a malfunctioning of the GNSS equipment during that period also

associated with a jump in the mean signal at the beginning and at the end of the period.

5.2.3 Comparison with Ning et al. [2016]

Similar to this study, Ning et al. [2016] analyzed the homogeneity of GNSS-ERAI IWV differences for

a global network of 101 GNSS sites with a least 15 years of observations. Their series were used with

monthly sampling whereas here we used daily sampling. They used the PMTred test Wang [2008a] to

detect abrupt changes in the mean IWV difference but this model does not include a periodic bias.

They detected a total of 62 change-points, at 47 stations, among which 45 detections were attributed

to the GNSS series, 16 to ERAI, and 1 was undetermined. Their attribution method was based on the
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Figure 5.4 – Examples of results obtained with variants (a), (c), and (d) from left to right, for
four different stations: POL2, STJO, DUBO, and MCM4 (from top to bottom). The content
of the plots is similar to Fig. 2.6(b). The text inserted at the top left of the plots reports the
mean standard deviation of the noise, the variation (max-min) of the standard deviation of the
noise, the standard deviation of the periodic bias function, and the variation (max-min) of the
periodic bias function. The text in blue reports the total number of detections and of known
changes, the minimum and maximum distance between detected change-points and the nearest
known changes, the number of validated detections, and the number of noise detections.
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comparison of the GNSS candidate series to two or three references series (ERAI, another nearby GNSS

series, and/or a nearby VLBI series). Consistency between the two or three detected offsets was used to

attribute the change-points to GNSS and disagreement to ERAI (by default). They also used the GNSS

metadata and validated 13 detections, but they included only antenna, radome, and known microwave

absorbing material changes. Their validation window was +/- 6-month wide, i.e. much larger than our

+/- 30-day window. We reanalyzed their results based on the metadata we had for 42 IGS sites of their

GNSS network. We found that 10 out of 12 unvalidated GNSS detections could actually be explained

with receiver changes and 2 with receiver+antenna changes using the same 6-month window. Six of the

detections agreed with receiver changes within less than 2 months. Regarding the change-points they

attributed to ERAI, we found that 5 out of 15 coincide with GNSS changes (2 receiver changes and 3

antenna changes). However, inspection of the GNSS-ERAI IWV difference time series suggests that in

many cases these detections might be due to outliers and gaps in the time series. This suggests that

the PMTred test which they used is quite sensitive to fluctuations in the noise similar to variant (d)

discussed in the previous sub-section.

The comparison of our results for variant (a) with Ning et al. [2016]’s results for 31 common stations

which have change-points leads to the following conclusions: (i) our method detects nearly twice more

change-points than PMTred (107 vs. 43), (ii) among 32 PMTred detections attributed to GNSS, about

1/3rd coincide with ours within +/- 2 months, 1/3rd within 2-6 months and 1/3rd within more than

6 months, (iii) among 11 PMTred detections attributed to ERAI, 4 change-points coincide with ours

within +/- 1 month (the others being about 6 months or more apart) and none of them can be explained

by GNSS metadata, even when including receiver changes. Inspection of the IWV differences and the

TEQC diagnostics led us also to the conclusion that 4 change-points attributed to ERAI may indeed

be due to inhomogeneities in ERAI. The stations and dates involved are: GODE (1998-08-06), HOB2

(2006-06-10), and WUHN (1999-02-14 and 2006-09-27). For station WUHN, Parracho et al. [2018] also

detected an anomaly in the ERAI IWV series around 2006-09 which coincides with a change in radiosonde

type from the station at the city of Wuhan, China. Since the radiosonde data are assimilated into ERAI,

any abrupt change in these data may be transferred to the reanalysis.

5.3 Screening outliers

In this Section we will re-examine the outlier detection method introduced in the previous sub-section.

Formally, let be ti and ti+1 the positions of two consecutive change-points. If ti+1− ti < threshold, then

these change-points ti and ti+1 are called ”outliers” and they form a ”cluster” of two outliers. Outliers
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are most of the time due to spikes in the noise (see the example of STJO in Figure 5.4 in the case of

segfonc model, the 4th and 5th change-points). However, a couple of outliers may still be associated

with a ”true” change-point (STJO in Figure 5.4 in the case of seghomofonc model, 3rd and 4th change-

points). A ”true” change-point can be characterized by a significant change in the mean before and after

the cluster of outliers. Figure 5.5 explains further the three possible situations that may arise with two

change-points:

• class 1, called ’outliers alone’ (example cases (a), (b), (c)),

• class 2, called ’outliers and change-point’ (cases (d), (e), (f)),

• class 3, called ’change-point only’ (cases (g), (h)).

Class 1 and 2 correspond to the detection of a cluster of two outliers (ti+1 − ti < threshold). In the

cases of class 1, the variation of the means before and after the cluster is not significant (according to a

statistical test), whereas in class 2 it is significant. The aim of the screening is thus to eliminate both

change-points (outliers) of class 1, and to replace the couple of outliers of class 2 by a single change-point

(schematized by the mid-point on Figure 5.5). Class 3 is the regular situation when the distance between

the two change-points is larger than the ”outlier-detection” threshold: ti+1 − ti ≥ threshold. There can

be more than two consecutive change-points which are pairwise closer than the outlier-detection thresh-

old. All these change-points will be grouped in one cluster and the test on the means will be performed

between the mean before and after the cluster. The screening may in that case replace or remove more

than two change-points.

In Section 5.3.1, we will re-examine the choice of the outlier-detection threshold (fixed to 30 in the

previous sub-section). Therefore we will analyse the distribution of segment lengths and search for a

class of small segments that may be identified as the outliers according to our definition. Then we will

describe the test for equal means used to distinguish between class 1 and 2. The outlier detection method

will be applied on the segmentation results obtained with the new segmentation method. Section 5.3.2

presents the results. In Section 5.3.3 we discuss an alternative approach to eliminate the short segments

with the help of the minimal length parameter (denoted lmin) introduced in Section 4.5.

5.3.1 Threshold and proposed test

Analysis of segment length. Figure 5.6 presents the histogram of the segment lengths obtained

with the model selection criterion BM1 for all the stations. The distribution is roughly exponential:

small segment lengths are the most frequent and long segments the least, except a small peak around
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Figure 5.5 – The different observed configurations of the detected change-points.

5000 days which corresponds to stations with no change-point. Figure 5.7 is a zoomed version for lengths

smaller than 240 days. We see that there is a peak for the bin [10, 20] followed by a dip for the bin

[20, 30]. The initial choice of an outlier-detection threshold of 30 days was not bad but a more extended

dip is seen between 50 and 100. A better choice may thus be in this interval instead. For choosing in a

more objective way this outlier-detection threshold, we will use a mixture model below.

Figure 5.6 – Histograms of the segment lengths, for BM1 with a bin size of 500 days.
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Figure 5.7 – Histograms of the segment lengths, for BM1, zoomed for lengths from 1 to 240, with
a bin size of 10 days.

Mixture models. We propose to classify the lengths of the segments using a Gaussian mixture model

with common variance (Biernacki et al. [2000]; McLachlan & Peel [2004]; Titterington et al. [1985]). We

use the classical Integrated Completed Likelihood (ICL) criterion proposed by Biernacki et al. [2000]

to choose the number of groups. Indeed this criterion is well suitable compared to the BIC one in this

clustering objective context. Figure 5.6 showed that the distribution of the segment lengths is rather

exponential. To apply a Gaussian mixture model we changed the scale to the logarithm one, see Figure

5.8. The ICL criterion selects 2 groups. Figure 5.9 shows the estimated density for each of them. The

boundary between the two groups is at 81. This results is consistent with the subjective analysis done

in the previous paragraph, where we noted a dip in the distribution of segment lengths between 50 and

100.

Test Once the outlier-threshold is chosen (once the outliers are isolated from the ”true” change-points,

i.e. classes 1 and 2 from the class 3), we have to decide if the associated clusters are in class 1 or in class

2. As explained in the introduction of this Section, the distinction is based on the difference between the

means before and after the cluster. To test if the difference is significant (class 2) or not (class 1), we

build a test of equality of means. According to the model Eq. 4.1 of Chapter 4, {Yt}t is an independent

Gaussian process with a mean equals to µk + ft if t belongs to segment k and a variance that is monthly

different. More formally, let be ti and tj the positions of the first and last outliers of the cluster, then

the means we want to compare are µi and µj+1. Denote by Ii and Ij+1 the associated segments. If we
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Figure 5.8 – The logarithmic distribution of the length of the segments.

Figure 5.9 – The density of all the data (in black) and the density of each of the two groups
(in red for the first and in green for the second). The black vertical line indicates the boundary
between the two groups.

note Ỹt = Yt − ft, we have that

Ỹt ∼ N(µi, σt
2) if t ∈ Ii
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where σ2
t is the variance at position t. Here we assume that the function f , the intervals Ii and the

variances are known. In practice, we used their estimates (see Chapter 4). The test hypotheses are


H0 : µi − µj+1 = 0

against

H1 : µi − µj+1 6= 0

Recall that the maximum likelihood estimators of the means µi and µj+1 are µ̂i =

∑
t∈Ii

Ỹt
σ2
t∑

t∈Ii
1
σ2
t

and µ̂j+1 =

∑
t∈Ij+1

Ỹt
σ2
t∑

t∈Ij+1
1
σ2
t

respectively (see Chapter 4). We thus consider the following test statistic

T =
µ̂i − µ̂j+1√

1∑
t∈Ii

1
σ2
t

+ 1∑
t∈Ij+1

1
σ2
t

,

and its law under H0 is N(0, 1). Indeed, we have that

Ỹt
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1
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)

We reject H0 with a significance level of 5% if |tobs| > 1.96 or equivalently if p-value= 2Φ(−|tobs|) <

0.05 where tobs is the observed test statistic and Φ is the cumulative distribution function of N(0, 1).

5.3.2 Outliers detection

In this Section, we applied the proposed screening method on the segmentation results of Section 5.2.

For the outlier-detection threshold we considered the initial value of 30 days that we used in Section 5.2

and the optimal value of 80 days determined with the mixture model. We restrict the analysis to the

segmentation results obtained with the BM1 selection criterion.

The total number of detected change-points with BM1 is 335. With a threshold of 30 days, 36

change-points are detected as outliers which are grouped in 18 clusters all of which are composed of 2

outliers only. Applying the test for equality in the means, 17 clusters are classified in class 2 and only 1

in class 1. With a threshold of 80 days, more outliers are detected: 70 outliers grouped in 34 clusters, 33

clusters of 2 outliers and 1 cluster of 4 outliers (station IISC shown below). Among them, 27 clusters are

classified in class 2 and 7 in class 1. The screening eliminates the outliers belonging to class 1 and keeps

the midpoint between the last and first outliers of the clusters of class 2. As a result, 315 change-points

remain after the screening with the threshold of 30 days and 292 change-points with the threshold of 80
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days.

Figures 5.10 and 5.11 show the case of station IISC for the threshold of 30 days and 80 days,

respectively. With the threshold of 30 days, before the screening, the station has 12 change-points

(dotted red lines) of which 6 outliers (marked with a red circle) are grouped in 3 clusters of 2 outliers

each. The first two clusters are classified in class 2 while the third cluster is in class 1 (marked with an

”x” on the bottom). The screening will thus keep the mid-point for the first two clusters and remove

the two outliers for the third cluster. After the screening, 8 change-points remain. With the threshold

of 80 days, there are again three clusters. The first two clusters are the same but the third cluster now

also includes the two change-points that are located earlier in the time series (all four change-points

of this cluster are in the year 2005). The change in mean before and after this cluster is significant

(although they appear visually close). All three clusters are classified in class 2. After the screening, 7

change-points remain.

In order to judge the benefit of the screening we inspected the number and percentage of validations

with respect to the metadata, before and after screening. The number of validations before the screening

was 70. After the screening is decreased to 69 and 68 with the threshold of 30 days and 80 days,

respectively. The lost validations were outliers which belonged all to class 2 (outlier + change-point).

The reason why they were lost is because the initial dates were replaced with the midpoints and they

were beyond the validation window of 30 days. More importantly, the percentage of validations is slightly

increasing with both detection thresholds. It goes from 20.89% before the screening to 21.90% after the

screening with the threshold of 30 days and 23.3% with the threshold of 80 days.

Results for the other criteria are presented in Tables 5.2 and ?? below for the threshold of 80 days (see

the top parts of these Tables with lmin= 1). An improvement in the percentage of validations is observed

for all four criteria.

5.3.3 Test of different minimum segment size

In this sub-section we discuss an alternative approach to eliminate the short segments with the help

of the minimal length parameter (denoted lmin) introduced in Section 4.5. This parameter will force

the segmentation algorithm to separate successive change-points by at least ”lmin” days. It is thus a

mean to avoid small segment lengths. First we will investigate the impact of increasing lmin on the

distribution of the detected segment lengths. Then we will analyse the impact of one specific station,

IISC which was already analysed in Section 5.3.2. Finally, we will study the impact on the percentage

of validation of various lmin values combined with the screening method described in the Section 5.3.2

for the different model selection criteria.
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Impact of changing lmin on the distribution of segment lengths Figures 5.12 shows the

histograms of the detected segment lengths for lmin values between 1 and 100. Two general features are

evidenced. First, as lmin increases, the total number of segments increases (this number is reported on

the y-axis of each plot). Second, the increase concerns mainly the small segment lengths, with a strong

peak in the bin of the smallest segments (from lmin to lmin+10). A similar behaviour is found with the

other criteria (BM2 and Lav, but not with mBIC which shows the opposite tendency but this criterion

has in all cases too many detections and is not reliable in our application). Table 5.2 reports the results

for all the criteria. We can suspect that this increasing is due to the fact that the segmentation need to

compensate the forbidden detections (imposed by lmin).

This behaviour is actually not very satisfying if one expected to use only lmin to get rid of the

outliers. Indeed, if we would use e.g. lmin= 80 to be consistent with the mixed model results discussed

above, we would still have many small segments with lengths = 80..90. So a better solution would be to

combine a value of lmin> 1 but not too big and the screening method. This option is discussed below.

But first, we will analyse in more detail the impact of changing lmin on the segmentation results for one

specific station.

Impact of changing lmin on the segmentation results for IISC Figure 5.13 shows the

segmentation results for station IISC, criterion BM1, when lmin takes values between 1 and 100. The

case lmin=1 was already discussed above. The segmentation detects 12 change-points among which

8 are outliers grouped in 3 clusters (the outlier detection threshold is 80 days). The first cluster has

two outliers at dates 1997-10-21 and 1997-11-18 and its segment length is 23 (not counting the days

with no observations). The second cluster has starting on 2004-05-12 also two outliers which are 5 days

apart. The last cluster includes 4 outliers located between 2005-04-04 and 2005-08-29. It is composed

of two pairs of outliers detected on two noise peaks. When lmin is increased to a value of 10, the second

cluster disappears but there is still one change-point which is associated to a visible change in mean on

2004-05-02. The first cluster on the other hand is present and the dates are unchanged, and the two

change-points disappeared from the third cluster while the remaining two are still outliers are located

at the same dates. When lmin is further increased, the change-points which were in the first and third

clusters with lmin= 1 are still detected with increasing segment lengths. In the case of the first cluster,

the two change-points remain close and are detected as outliers until lmin= 60 (outliers are not detected

for lmin= 80 or 100 because the outlier-threshold is 80 days). In the case of the third cluster the behavior

is more complicated with two peaks for lmin= 20, 50 and 60, and even more for lmin= 80 and 100. These
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peaks seem to catch the quasi-periodic behavior of the signal which cannot be fitted by the purely period

function. This supposition is reinforced by the decreasing of the amplitude of the estimated function

with respect to the increasing of lmin: 2.93 for lmin= 10, 2.84 for lmin= 60 and 2.23 for lmin= 80.

For the purpose of the screening, one could conclude that the segmentation solution for lmin= 10 is

good enough: it allowed to remove one cluster with a small segment clearly associated with an isolated

noise peak. The other clusters are more difficult to remove because they are associated with a burst of

noise of some width. In terms of number of change-points, the results for station IISC follow the general

tendency which is an increase when lmin is increased, with some fluctuation however. Especially, there is

one situation (lmin= 40) where the number of change-points is zero. Inspection of other stations reveals

that it is not uncommon that for certain values of lmin the number of change-points can drop to zero.

However, for many stations the number is steadily increasing, which means that new change-points

appears, which are in some cases outliers (separated by less than 80 days). The case of no detected

change-points can be explained by the marginal behavior of the BM1’s heuristic. Indeed, this heuristic

aims at calibrating the penalty constant based on the biggest jump of dimension with respect to this

constant. In some cases, the higher jump is reached by several values of the constant. By default, the

lower dimension is considered and can often lead to zero detection whereas the others jumps allow some

detections. This is the case of the station IISC with lmin=40: with the first jump we have no detection

whereas with the second one, 10 change-points are detected.

Performance of combining lmin and the screening method Here we evaluate the perfor-

mance of the screening method combined with lmin. Table 5.2 and Table ?? summarize the results

before and after the screening. Among the different criteria, the highest percentage of validation is

always obtained with BM1, independently of lmin, both before and after the screening. The overall best

values for BM1 are found for lmin=10, which are 21.99% and 23.59%, before and after the screening,

respectively. The screening improves the results for all lmin values and all criteria.

In Table ?? are presented the same results as Table 5.2 after the screening. As we have seen before

in 5.3.1, the result for lmin= 1 is improved after the screening, passing by a percentage of validation,

the best in both cases for BM1 of 20.90% to 23.29%. For larger lmin, the best without the screening

was lmin= 10 and criterion BM1 with a percentage of validation of 21.99%, that was still less good than

the results for lmin= 1 and BM1 after the screening. After applying the screening, the best is for the

lmin= 10 and BM1 with a percentage of validation of 23.59%. This is also, in absolute the best score

obtained. In general, better scores are obtained after having applied the screening (in particular, for the

criteria Lav and BM2 with lmin= 1). This comparison proves that actually the screening proposed in
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5.3.1 improves the results of the segmentation, eliminating the outliers in the detected change-points.

We have seen that increasing lmin also increases the number of outliers, after the screening the

percentage of validation improved with respect at the results without applying the screening. Another

criterion for an indication of whether by increasing lmin we have a better segmentation, in general, is

to look at the percentage of clusters validated after screening, in Table ??. In general, the percentage

of clusters considered significant is higher for BM2 and lmin = 1. Until lmin= 40, BM1 and BM2

percentage are higher than 75%. For lav and mBIC is generally always lower than other criteria. This

percentage indicates the quantity of the change-points detected for each lmin that are kept as ”good”.

In this case lmin= 1 seems to show the best segmentation.

5.4 Attribution

The goal of the attribution is to determine the cause of the change-points detected by the segmentation

method. Since the method is operating on IWV differences, there is ambiguity whether the cause is

a change in the mean of the target series (GNSS) or the reference series (ERAI in our case). The

most widely used method is to compare the detected change-points to metadata (Venema et al. [2012]).

In Section 5.2 we compared our segmentation results to the IGS metadata available for our GNSS

reprocessed data set and found a validation rate about 21% for BM1. After the outlier screening, this

number slightly increased to 23%. The remaining change-points can be due to undocumented GNSS

equipment changes and changes in the station’s environment, inhomogeneity in the ERAI reference

series, and/or false detections due to noise spikes not detected as outliers and undmodelled effects (e.g.

autocorrelation in the difference series). We assume that the first two explanations are the most likely.

One way to further disentangle the GNSS and ERAI causes is to test the significance of every detected

change-point by comparing the mean of IWV differences over the homogeneous parts of the series between

the target GNSS series and another reference series different from ERAI. Past studies used dual GNSS

comparisons, as well as comparisons involving DORIS and VLBI data (Bock et al. [2010]; Ning et al.

[2016]). Other reanalyses such as MERRA-2 might also be useful (Parracho et al. [2018]). Using this

approach, the detected change-points can be confirmed (if the difference in mean is significant) or not.

If it is confirmed by one or several additional comparisons, the cause is attributed to GNSS. If not, the

ERAI reference series might be tested as well to attribute possibly the cause to ERAI. A limitation with

this method is that, not having a large availability of GNSS stations or other observing techniques in our

global network, we cannot carry out an exhaustive check of all target stations. However, this approach

might be useful in dense regional or national networks.
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criteria detections validations % validation outliers cluster class 2 % class 2

lmin1

mBIC 3251 264 8.1 2714 1027 733 71.37
Lav 474 75 15.8 194 85 61 71.76
BM1 335 70 20.90 70 34 27 79.41
BM2 435 77 17.7 113 55 48 87.27

lmin10

mBIC 3056 276 9.03 2432 936 637 68.05
Lav 530 84 15.85 231 101 62 61.38
BM1 341 75 21.99 64 32 24 75
BM2 491 83 16.90 128 63 50 79.36

lmin20

mBIC 2883 296 10.27 2158 838 595 71
Lav 556 87 15.65 234 101 70 69.30
BM1 392 72 18.37 73 36 27 75
BM2 570 91 15.96 171 82 64 78.04

lmin30

mBIC 2689 306 11.38 1857 744 511 68.68
Lav 783 120 15.33 379 159 100 62.89
BM1 439 82 18.68 92 45 36 80
BM2 676 105 15.53 209 99 83 83.83

lmin40

mBIC 2541 318 12.51 1592 665 470 70.67
Lav 917 127 13.85 426 186 127 68.27
BM1 453 85 18.76 93 45 32 71.11
BM2 727 109 14.99 222 109 82 75.22

lmin50

mBIC 2376 302 12.71 1259 544 382 70.22
Lav 1145 150 13.10 540 233 160 68.66
BM1 512 92 17.97 96 47 31 65.95
BM2 774 110 14.21 205 100 75 75

lmin60

mBIC 2262 288 12.73 969 431 299 69.37
Lav 1225 165 13.47 430 194 118 60.82
BM1 555 92 16.58 79 39 24 61.53
BM2 901 132 14.65 226 108 69 63.88

lmin80

mBIC 2077 261 12.56 0 0 0 0
Lav 1453 194 13.35 0 0 0 0
BM1 614 106 17.26 0 0 0 0
BM2 911 136 14.92 0 0 0 0

lmin100

mBIC 1873 232 12.38 0 0 0 0
Lav 1627 195 11.98 0 0 0 0
BM1 688 115 16.71 0 0 0 0
BM2 1158 169 14.59 0 0 0 0

Table 5.2 – Comparison of segmentation results for different values of the minimum segment
length (lmin) for the outlier-threshold 80 before the screening. From left to right: number of
detected change-points, total number of validations, percentage of validations, total number of
outliers, number of clusters, number of clusters in class 2 and the percentage of cluster in class
2.
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criteria detections validations % validation

lmin1

mBIC 1270 146 11.50
Lav 341 67 19.65
BM1 292 68 23.29
BM2 370 74 20.00

lmin10

mBIC 1261 155 12.29
Lav 361 70 19.39
BM1 301 71 23.59
BM2 413 77 18.64

lmin20

mBIC 1320 175 13.18
Lav 392 74 18.87
BM1 346 70 20.23
BM2 463 84 18.14

lmin30

mBIC 1343 174 12.81
Lav 504 88 17.26
BM1 383 79 20.37
BM2 550 97 17.45

lmin40

mBIC 1419 197 13.81
Lav 618 102 16.50
BM1 392 77 19.64
BM2 587 95 16.18

lmin50

mBIC 1499 206 13.68
Lav 765 111 14.51
BM1 447 82 18.34
BM2 644 100 15.53

lmin60

1592 225 14.07
913 139 15.22
500 86 17.20
744 119 15.99

Table 5.3 – Comparison of segmentation results after screening for different values of the minimum
segment length (lmin) for the outlier-threshold 80. From left to right: number of detected change-
points, total number of validations, percentage of validations.
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5.5 Trends estimation

The homogenisation method developed in Chapter 4 combined with the treatment of outliers proposed

above allow to obtain the abrupt changes appearing in the GNSS IWV series. This information can

then be used to estimate correctly the climate trend in the series. To this aim, one solution would be to

correct the raw series IWV from these change-points and then estimate the trend on the corrected series.

However, as we have observed on the particular station CCJM (see Figure 2.6 (a) in the introduction),

the IWV series exhibits also a marked seasonal variation. We thus proposed a global model on IWV

in which are integrated, in addition to the trend, a piece-wise constant mean on fixed intervals (the

intervals obtained by the segmentation) and a function h that aims to model the seasonal variation.

After presenting this model, we show a preliminary analysis on a particular series.

Model and estimation Denote by Yt the signal IWV at position t, the model is the following:

Yt = mk + a · xt + ht + Et, t ∈ Îk = Jt̂k−1 + 1, t̂kK with k ∈ J1, K̂K, (5.1)

where the vector of errors E = {Et} are centered and t̂k are the segments obtained by the proposed

procedure (combining the segmentation method with the screening) on the IWV differences (using the

ERAI reference). As classically, we estimate the parameters using the least-square method. For the

estimation of the function h, we follow the same approach as for the estimation of f in 4, i.e. using a

Fourier series of order 4:

ht =

4∑
i=1

ai cos(wit) + bi sin(wit),

where wi = 2π i
L

is the angular frequency of period L/i and L is the mean length of the year (L = 365.25

days when time t is expressed in days).

Let consider the matricial formulation of this model:

Y = Xβ + E, (5.2)

where Y = (Y1 Y2 . . . Yn)T is a n-dimensional column vector, X the design matrix with dimension

[n × (K̂ + 1 + 2 × 4)] (K̂ for the segments, 1 for the trend and 2 × 4 for the coefficients of the Fourier

decomposition), β the K̂ + 9-dimensional column vector of the unknown coefficient and E the column

vector of errors with size n. We estimate these parameters using the classical least-square criterion:

• if the errors are assumed to be independent, i.e. Cov(E) = σ2In where In is the identity matrix

with size n, the adapted criterion is the classical Ordinary Least-Squares criterion (OLS) leading

121



5.5 Trends estimation

to the classical OLS estimator:

β̂OLS = Argmin
β
‖Y −Xβ‖2 = (XTX)−1XTY , (5.3)

• if the errors are assumed to be correlated, i.e. Cov(E) = Ω that is not diagonal, the adapted

criterion is the classical Generalized Least-Squares criterion (GLS) leading to the classical GLS

estimator:

β̂GLS = Argmin
β
‖Y −Xβ‖2Ω−1 = (XTΩ−1X)−1XTΩ−1Y . (5.4)

In practice, Ω is typically unknown. In this case, an estimator of Ω denoted Ω̂ is substituted in

(5.4). Ω is classically estimated using the OLS estimated residuals Êt = Yt −Xβ̂OLS
t .

Preliminary analysis on a case study Let us first examine the OLS results for one particular

station (ALIC). This station has 5 change-points after the screening. Figure 5.14 shows the GNSS IWV

time series, the fitted model, and the residuals. The estimated trend value is â = 0.790 kgm−2yr−1 and its

standard error is σa = 0.112kgm−2yr−1. The trend value is remarkably large and significant with respect

to the standard error. The trend value without change-points estimated is â = −0.089 kgm−2yr−1 which

is indeed much smaller. The lower plot shows that the centred time series of the piece-wise constant

function representing the mean values and the trend go in opposite directions. There is confusion

between the trend and the mean parameters. This problem is actually reflected in the covariance matrix

of the parameters as strong correlation between parameters mk and a (r = 0.83 with between m1 and

a and r = −0.92 between m6 and a). The standard deviation of the parameters is also increased

(σm1 = 1.04kgm−2 and σm6 = 0.57kgm−2) compared to the case when no change-points are estimated

(σm1 = 0.12kgm−2 and σa = 0.030kgm−2yr−1). Including change-points increases significantly the

error in the parameters. The comparison of the trends estimated given by both OLS solutions (with

and without change-points included) shows a huge difference in the values: they are of opposite signs

and differ in magnitude by factor of ∼ 8.9. Although the trend estimated without the change-points is

not reliable (because we know the time series is inhomogeneous), it is still more reasonable compared

to published trends. For example, Parracho et al. [2018] found trends for the same station of −0.117,

−0.070, and −0.081 kgm−2yr−1 for monthly IWV data from GNSS (inhomogeneous), ERA-Interim, and

MERRA-2 reanalysis, respectively. It should be noted that Parracho et al. [2018] computed trend using

the Theil-Sen method (Sen [1968]; Theil [1992]) which is known to be more robust than OLS but cannot

include the change-points.

Another feature seen in Figure 5.14 (lower plot) is the temporal variation of the residual’s magnitude.

122



5.5 Trends estimation

It is quite common that IWV variability is larger in the summer period than in the winter period (Bock

& Parracho [2019]). This feature would suggest to use a model for the variance of the errors that is

time-dependent, i.e. Cov(E) = Ω would be diagonal but with different diagonal elements. The OLS

solution is in that case not optimal and the GLS solution is required (which in that case is called the

weighted least-squares, WLS, solution). Further insight into the residual’s properties is given by 5.15

which shows that there is also strong serial correlation in the time series. This is actually expected since

atmospheric variability can be quite large and our model only accounts for a smooth seasonal variation

modelled by a fourth order Fourier Series.

To account for these features we tested both the WLS and GLS solution. In the WLS we determined

the error variance by computing the empirical variance on a moving window of size 30 days on the

residuals from the first OLS. In the GLS we specified an autoregressive model of order 1 (AR(1)) with a

lag-1 correlation coefficient of 0.7858 (estimated from the residuals from the first OLS). The estimated

parameters (in the case 5 change-points are included) changed only slightly, but the standard errors

changed significantly. In the case of WLS, the errors decreased. In the case of the GLS they increased.

Because the autocorrelation in the data is real, the WLS error estimates are biased as the OLS estimates

were. The GLS estimates with the AR(1) error model is thought to be more realistic, although it does not

account for the heteroscedasticity of the errors. The trend estimate with the GLS method was â = 0.820

kgm−2yr−1 with a standard error of σa = 0.307kgm−2yr−1. The error on the trend increased by a

factor of 2.72 (actually the error increased on all parameters by almost the same amount). Comparing

the trend and its error, it can still be concluded that the trend is significant at the level of 0.05.

If the noise structure is more complex than an AR(1), it can be difficult to identify and to represent it

correctly with the GLS approach. An interesting alternative is to use the moving block bootstrap (MBB)

technique (Mudelsee [2019]) which takes into account implicitly the distribution and the correlation of

the noise, without modeling them explicitly.

General results for all stations We tested if the estimated trend was different from zero to a

given value (0.05) significance level. We have therefore carried out a hypothesis test where the null

hypothesis H0: a = 0, against the alternative hypothesis, H1: a 6= 0. If the null hypothesis is true, the

t-statistic is t = â/σa and its law under H0 is N(0, 1). We reject H0 with a significance level of 5% if

p-value= Φ(−|tobs|) < 0.05 where tobs is the observed test statistic and Φ is the cumulative distribution

function of N(0, 1). If we consider the OLS and GLS models without taking into account the change

points, respectively 67 and 29 trend estimates are significant at the 0.05 level. However, we know that

these trends estimates are not reliable because even a single change-point is enough to bias the trend
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estimate. If the model includes the change points detected with the segmentation method described in

Section 5.2, we have 40 and 14 stations with significant trend estimates at the 0.05 level. Figures 5.16

shows the trends of the GLS solution for both cases (with and without including the change-points).

Figures 5.17 shows the same results with error bars. In these Figures we see that ALIC is the worst

case where the trend is increased. There are other cases where the trend is actually decreased, and cases

where it is unchanged (the latter include stations with no change-points).
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Figure 5.10 – Outlier detection and classification for the case of station IISC, with a threshold of
30 days. Upper: full time series. The vertical dotted red lines show the detected change-points
and the vertical dashed green lines show the equipment changes from metadata. Symbols on
the bottom: a red circle indicates an outlier, a red square a regular change-point, a red inverted
triangle a validated change-point. On the black horizontal line at -9, the red symbol ”x” atop
the first outlier of a clusted indicates that the change in mean is not significant (class 1) and the
screening will remove both outliers. For the other clusters (class 2), the screening with replace
the change-points by the mid-point. The lower plot shows a zoom on the class 1 outliers.
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Figure 5.11 – Similar to Figure 5.10 but with the threshold of 80 days. Note that the four
change-points of year 2005 are all outliers and belong to the same cluster of class 2.
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Figure 5.12 – Histograms of the detected segment lengths, for BM1, for lmin varying from 1 to
100. Note the change in vertical axis for the latter two plots.
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Figure 5.13 – Similar to Figure 5.10 but for different lmin values (1 to 100, see figure titles) and
an outlier detection threshold of 80 days. The estimated periodic function is not added to the
means for clarity.
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Figure 5.14 – Time series of GNSS IWV for the station ALIC and fitted trend model with OLS:
(top) the time series is plotted in gray, the red line is the fitted model, and the yellow line is
the estimated trend + means, (bottom) the residuals are plotted in gray, centred means in red,
and the trend in yellow. The vertical black dashed lines are the detected change-points from
the segmentation (after the screening). The trend value and its standard error are given in the
upper plot.
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Figure 5.15 – OLS regression residuals from 5.14
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Figure 5.16 – Trend estimates (on the top) and difference (on the bottom) between the GLS
estimate for the trend without considering the change-points (GPS) and GLS estimate integrating
change-points in the model (GPSc.)
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Figure 5.17 – Trend estimates (on the top) and difference (on the bottom) between the GLS
estimate for the trend without considering the change-points (GPS) and GLS estimate integrating
change-points in the model (GPSc.), with error bars.
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Chapter 6

Conclusions and perspectives

6.1 Discussion and conclusions

In this thesis we have developed a new segmentation method devoted to the detection of abrupt changes

in the mean which takes into account a periodic bias and a heterogeneous variance on fixed intervals

(monthly) in the IWV differences between GNSS observations and ERA-Interim reanalysis. The method

was tested and optimized first through a simulation study and then applied to IWV GNSS data for 120

stations of the global IGS network for the period from January 1995 to December 2010. The method

works well and was published on the CRAN. Below we discuss a few limitations and issues that were

noticed and possible ways to solve them.

Segmentation: sensitivity of the results to the bias function f . The simulation study

revealed a sensitivity of the segmentation results to the way the periodic bias f is initialized and esti-

mated. Indeed, there is possible confusion between the segmentation parameters and the period bias.

The selection of significant parameters of the function model was shown to be able to stabilize the prob-

lem in the case of the simulations. With the real data, on the other hand, this option did not have

a significant impact on the segmentation results. Indeed, in the real data, the smoothly varying bias

which is modeled so far by a low order periodic function may be more complex. Also the noise in the

real data is not Gaussian iid but has some autocorrelation (although it is believed to be short term)

which may contribute to the bias variations. Using a more complex function basis for the estimation

of f or a non-parametric approach may help to solve this issue. It is also expected that the use of a

reference IWV data set with reduced representativeness errors (e.g. ERA5 reanalysis) would decrease

the smoothly varying bias.
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Segmentation: model selection. The model selection is a delicate and difficult problem. The

tested criteria give different results both with simulations and with the real GNSS data. In the sim-

ulations, Lav has an unstable behavior, while BM1, BM2, and mBIC give very similar results. The

best results are found with BM1 which estimates the lowest number of change-points and outliers, and

achieves the highest validation rate. In real data, mBIC strongly over-segments, Lav remains unstable

but approaches the behavior of BM1 and BM2, but the best criterion is again BM1. In general, we prefer

a criterion which does not estimate too many change-points. We also noticed the presence of outliers

which are couples of change-points located close together. They are typically due to large noise spikes

in the series which can be removed by a screening method.

Screening. The detection and removal of outliers was treated with a screening method which consists

in testing the variations in mean of the segment before and after a group of ”close” outliers (called a

cluster). The method proved efficient. In the case of BM1 criterion, it detected 20% of change-points as

outliers and removed one third of them when a threshold of 80 days was used to detect outliers (”close”

change-points) and a significance level of 0.05 for the change of means. Another approach to handle

the outlier issue was tested by imposing a minimum segment length in the segmentation algorithm.

This approach had one main drawback which is that although segments with length smaller than the

threshold lmin are avoided, the total number of change-points increased as lmin was increased. Again

this tendency reflects bad behavior of the model selection criteria (all except mBIC which still largely

over-segments). As a compromise, we found that lmin = 10 combined with the screening yields the

best results (highest validation rate). Other strategies could consist of better filtering the initial data

(screening of GNSS IWV), using a reference with smaller representativeness differences (e.g. ERA5

reanalysis), using a different criterion to be optimized in the segmentation that is less sensitive to noise

spikes than the least-squares or the Gaussian PDF assumption in the log-likelihood (Eq. 4.2). In Section

6.2 below we show some preliminary results with a Biweight loss function.

Attribution. Attribution of the change-points to the GNSS using metadata produced a rate of 23%.

This rate remains low. Possible causes can be undocumented GNSS equipment changes, changes in

the station’s environment, inhomogeneity in the ERAI reference series, and/or false detections due to

unmodelled effects in the signal. Another approach to confirm the GNSS origin of the detected change-

points is to test the significance of the changes in the mean when the target GNSS series is compared to

another, nearby, GNSS series. Such a method was implemented by Ning et al. [2016] who had obtained

a similar 2̃0% of validations from metadata. They cross-compared 59 out of 62 GNSS stations of their
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global network which probably included baselines of several 100 kilometers (this information is not given

in the publication). Using denser GNSS networks and data from other observing systems (DORIS, VLBI,

radiosondes) might help to implement this approach in the future.

Estimation of linear trends. The linear trends were estimated by ordinary and generalized least-

squares (OLS and GLS) on the GNSS IWV time series including change-points detected by the seg-

mentation (after screening). Although this approach has been commonly used in the GNSS community

(Bernet et al. [2020]; Klos et al. [2018]) a confusion between the trend and mean parameters was found.

This issue gets worse when the number of change-points increases. Another issue is due to autocorrela-

tion of the ”noise” in the IWV series which actually represents the day to day atmospheric variability.

The lag-1 correlation coefficients for the 120 stations range between 0.22 and 0.81, with a median of

0.64. The trend estimation by GLS assuming an AR(1) process gives more realistic trend uncertainties

than OLS but they are also much larger. As a results only 12% of the stations have a significant trend

(compared to 30% with OLS) but due to the confusion effect, these trends are probably mis-represented.

This problem still needs to be improved.

Correction of the IWV time series. To produce a corrected (homogenized) series, it is necessary

to remove the offsets in the mean between segments. This can be can done in two ways: either subtract

the variations in the means estimated during the segmentation or subtract the means estimated during

the trend estimation. Both approaches are unsatisfying so far. In this first case the offsets might be due

to a change-point in the reference series. As long as the change-points cannot efficiently be attributed

to GNSS this approach will introduces spurious offsets in the corrected signal. In the second case, the

confusion between the estimated trends and means will over-estimate the offsets and produce similar

errors. These issues need to be solved first.

Applications on Benchmark data of the COST GNSS4SWEC. Our new segmentation

method was used as part of the COST GNSS4SWEC Benchmark on three synthetic data sets based

on the analysis of real data Van Malderen et al. [2020]. All three data sets included abrupt changes in

the mean that were randomly distributed, seasonal signals (annual, semi-annual, 3 and 4 months), and

different noise processes. The ”easy” data set simulated Gaussian white noise; the ”moderate” data set

simulated white noise plus AR(1) noise; and the ”complex” data set moreover included gaps and local

trends. Our method obtained the best scores among all the segmentation methods tested exaequo with

the ACMANT method Domonkos & Coll [2017] also based on a penalised maximum likelihood approach.

However, with ”complex” data set, all methods have trouble because none of the methods includes the
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autocorrelation in the model. There are some methods that include a dependence in the series (see 2.1),

however these methods are sub-optimal. One evolution of our method which is optimal would consist in

taking the autocorrelation into account. This point is further discussed below.

6.2 Perspectives

The limitations of the present version of the segmentation method and the general homogenization and

trend estimation procedures have been highlighted and discussed in the previous sub-section. Here we

discuss some additional ideas of improvements of the method that would require new developments (new

models and inference approaches).

Improving the estimation of the function f . Using a non-parametric or semi-parametric

approach could bring more flexibility and improve the estimation of f and consequently the segmentation

(estimation of the change-points). One could consider the semi-parametric approach proposed by Bertin

et al. [2017]. They considered a segmentation model including a functional part for which a dictionary

approach is used to estimate it. A Lasso procedure is used to select the relevant functions of the

dictionary. This approach allows for example the estimation of functions that are smooth and also show

some irregularities.

Improving the segmentation using Hubert or Biweight losses. A way to avoid the detec-

tion of outliers could be to consider an adapted loss function as the Hubert or the Biweight loss (instead

of the log-likelihood). Indeed, in this case the mean and the functional estimates would not take into

account the extreme data points and thus avoid the detection of outliers. Both the segmentation results

and functional estimates would be more robust. We did a preliminary test of this method using the

gfpop R package (Hocking et al. [2018]) and we applied the segmentation with a weighted Biweight loss

on the particular station IISC (corrected from the functional estimated by our current method). Figure

6.1 compares this method to the results obtained with our current method shown earlier (Figure 5.11).

Recall that the current procedure detects 12 change-points of which 8 outliers and, after screening 7

remained. Now, the robust segmentation detects only 5 change-points: 4 change-points are common and

one (on 2005-01-31) replaces a cluster of outliers detected with the screening (see Chapter 5.3.1).

Improving the segmentation by including dependence. On the station CCJM, we com-

puted the lag-1 of the autocorrelation function of the residuals and found a value of r = 0.249. The value

slightly decreases to 0.223 when it is computed from the residuals of the GLS estimation including the

screened change-points. The r values for all the stations range between 0.204 and 0.655 with a median
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6.2 Perspectives

Figure 6.1 – Segmentation result obtained with a robust method (Biweight loss) for the station
IISC (dashed green lines) compared to the current method (same as in Figure 5.11) represented
as dotted red lines.

value of 0.386. In order to take this dependence into account in the model used for the segmentation, we

could follow the work of Chakar et al. [2017] who proposed a segmentation model with an autoregressive

noise (not affected by the change-points).

Application to other data sets. New GNSS and reanalysis data sets are now available, in par-

ticular global GNSS reprocessed series spanning a longer period (1994-2019, Bock [2019]), denser GNSS

regional networks, e.g. in Europe (Pacione et al. [2017]), and higher-resolution reanalyses (e.g. ERA5

and UERRA). It would be interesting to compare the segmentation results and the trend estimates

obtained with these new data sets to those found in this work. Longer time series are also of special

interest to investigate more extensively the climate trends and variability.
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Appendix A

GCOS and NDACC networks

The Climate Observing System (GCOS) program was established in 1992 and stimulates, coordinates,

and facilitates the taking of needed observations by national or international organizations to support

their own requirements as well as common goals

(https://gcos.wmo.int). It provides an operational framework for integrating and enhancing the observa-

tional systems of participating countries and organizations into a comprehensive system focused on the

requirements for climate issues. It includes in-situ observations from atmospheric, ocean, and terrestrial

instruments, as well as satellite data. The atmospheric component comprises a baseline network of about

1000 ground stations providing temperature and precipitation observations and a network of radiosonde

stations providing upper-air measurements of temperature, pressure, wind, and humidity from balloons.

The GCOS surface and upper air data archives contain high quality continuous observations dating back

to the early 1900s and 1950s, respectively.

The Network for the Detection of Atmospheric Composition Change (NDACC) is composed of more

than 70 globally distributed, ground-based, remote-sensing research stations with more than 160 cur-

rently active instruments providing high quality, consistent, standardized, long-term measurements of

atmospheric temperatures and trace gases, particles, spectral UV radiation reaching the Earth’s surface,

and physical parameters for detection of trends in overall atmospheric composition, understanding their

impacts on the stratosphere, troposphere, and mesosphere, establishing links between climate change

and atmospheric composition, testing and validating atmospheric measurements from satellites, sup-

porting process-focused scientific field campaigns, and testing and improving theoretical models of the

atmosphere http://www.ndaccdemo.org. The NDACC began network operations as The Network for

Detection of Stratospheric Change (NDSC) in January 1991 and includes data back to the 1960s.
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Appendix B

Principles of the GNSS IWV
technique.

Figure B.1 – Propagation of GPS signals. Source Bock, 2013.

The GNSS IWV technique is based on the estimation of the propagation delay of radio waves trans-

mitted from a constellation of GNSS satellites that are measured by ground-based receiving stations

Bevis et al. [1992], as shown in Figure B.1. It is a remote sensing technique that involves complex signal

processing and auxiliary data. The technique involves a constellation of satellites (nominally 24 satellites

in the case of GPS) for which the orbits are determined from the analysis of the measurements collected

by a ground-based tracking network. In order to link the satellite positions and the Earth-fixed receiver

positions, Earth Rotation Parameters (ERPs) as well as other system parameters are also required (e.g.

satellite clock offsets, inter-system biases when the measurements from several systems, e.g. GPS and
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GLONASS, are analysed together). These auxiliary data are produced by the system operators and

broadcasted as a message contained in the GNSS satellite signals to the general user for navigation pur-

poses (Hofmann-Wellenhof et al. [1993]). For scientific applications such as geodesy, geophysics, weather

forecasting and climate monitoring, the accuracy requirements on these auxiliary data are much more

stringent. High quality products are thus provided by the International GNSS Service (IGS) who co-

ordinates the analysis of a global reference network since 1994 (http://www.igs.org/network). Initially

composed of about 50 stations, the IGS network grew rapidly to about 300 stations and has been stabi-

lized around this number since 2003 (Dow et al. [2008]). Figure 2.5 gives a view of the station network

used in this work (120 stations with time series of 15 years). In addition to the IGS network, many

national and regional networks have been established, based on public and private initiatives for both

scientific and commercial activities. Part of the observations collected by these networks is publicly

available and many of these data are adequate for being reprocessed and used for scientific applications

(Jones et al. [2019]).

The GNSS data processing technique for scientific applications consists typically in the analysis of

daily batches of code and phase measurements of one or several stations. For each station, one set of

3D coordinates is estimated daily along with a group of zenith tropospheric delays (ZTDs) with a time

interval between five minutes and two hours, as well as a number of other parameters (phase ambiguities,

receiver clock offsets, tropopsheric gradients), depending on the software and processing options (see

Jones et al. [2019], for more details on processing options and https://www.unavco.org/software/data-

processing/postprocessing/postprocessing.html for a description of processing software).

The IWV estimates are derived from the ZTDs (Bevis et al. [1992]; Bock [2014]), for more detailed see

Chapter 2 of Bernardes Parracho [2017]. The difference ZWD = ZTD - ZHD corresponds to the zenith

wet delay; ZHD is the zenith hydrostatic delay, it is computed from the barometric surface pressure at

the level of the GNSS antenna; Tm is the weighted mean temperature in the atmospheric column above

the antenna.

The uncertainty in the GNSS IWV estimates is dependent on the uncertainty in each of the three

variables: ZTD (determined by the quality of the phase measurements and the data processing proce-

dure), K(Tm) (determined by the accuracy of the Tm data and the empirically determined refractivity

constants K2 and k3) and ZHD (dependent on the accuracy of the surface pressure data and refractivity

constant k1). The quality of the phase measurements depends on the quality of the instrumentation

(GNSS receiver and antenna, including the stability of the receiver clock) but also of the environment.

Signal reflection and scattering on the environment (ground surface, vegetation, buildings) that is de-

tected by the receiving antenna is known to interfere with the direct signal coming from the satellites

140



and generate signal fading and phase errors which a have detrimental impact on the quality of the sta-

tion coordinates and ZTDs (Elósegui et al. [1995]). The accuracy of the estimated parameters is also

depending on the tropospheric propagation modelling approach, especially the mapping functions used

to relate the delays in the direction of the satellites to the delay at the zenith under the assumption of a

perfectly layered atmosphere (Boehm & Schuh [2013]). A detailed discussion and evaluation of each of

the error sources is given in Bock & Parracho [2019]; Ning et al. [2016]; Parracho et al. [2018].

In order to guarantee a high accuracy and homogeneity of the ZTD and IWV estimates for climate

trend analysis, it is crucial to adopt a frozen processing procedure and use consistent and homogeneous

auxiliary data, namely reprocessed satellite orbits, clocks, and ERPs (Ostini [2012]; Steigenberger [2006]).
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Elósegui, P., Davis, J.L., Jaldehag, R.T.K., Johansson, J.M., Niell, A.E. & Shapiro, I.I.

(1995). Geodesy using the global positioning system: The effects of signal scattering on estimates of

site position. Journal of Geophysical Research: Solid Earth, 100, 9921–9934. 141

Estey, L. & Meertens, C. (1999). Teqc: The multi-purpose toolkit for gps/glonass data. GPS Solu-

tions, 3, 42–49. 49, 107

Fearnhead, P. (2006). Exact and efficient bayesian inference for multiple changepoint problems. Stat

Comput , 116, 203–213. 60

Fisher, W.D. (1958). On grouping for maximum homogeneity. Journal of the American Statistical

Association, 53, 789–798. 66

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P.,

Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C.,

Kattsov, V., Reason, C. & Rummukainen, M. (2013). Evaluation of climate models, 741–882.

Cambridge University Press, Cambridge, UK. 47

Fryzlewicz, P. et al. (2014). Wild binary segmentation for multiple change-point detection. The Annals

of Statistics, 42, 2243–2281. 61

Gazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M., Moore, A.W., Ostini,

L., Petrie, E., Roggero, M., Teferle, F.N., Olivares, G. & Webb, F.H. (2013). Detecting

offsets in GPS time series: First results from the detection of offsets in GPS experiment. Journal of

Geophysical Research (Solid Earth), 118, 2397–2407.

Gazeaux, J., Lebarbier, E., Collilieux, X. & Métivier, L. (2015). Joint segmentation of multiple
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