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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Path-integral (PI) approaches have been exploited since decades to treat strongly-coupled quan-
tum many-body systems. Among the latter, we will pay particular attention throughout this
thesis to those encountered in nuclear physics. The important diversity of phenomena occur-
ring at the nuclear scale propelled developments of various approaches over the past decades,
the most successful of which either focus on describing specific nuclear features or, on the con-
trary, assume the task of having to embrace all aspects of the nuclear phenomenology. On the
one hand, we have for instance nuclear collective models [1–4], which are based on global or
bosonic degrees of freedom (dofs). Such models have addressed convincingly collective behav-
iors of vibrational and rotational nature. Other examples are the cluster models [5, 6], which
involve cluster of nucleons as basal dofs and were developed to account for specific spectro-
scopic features of rather light nuclei. On the other hand, nuclear energy density functionals
(EDFs) [7, 8] were formulated with the ambition of ultimately describing a vast richness of
nuclear phenomena, ranging from the structure and reactions in finite nuclei to the complex
processes in neutron stars. These approaches describe the nucleus as a collection of dressed
nucleons coupled through an effective interaction. The adjective “effective” is a key aspect here
as it implies that part of the impact of the medium on the nucleon-nucleon (NN) interaction
is taken into account implicitly via a fitting procedure, hence degrading the reliability of the
EDF method (as long as no hierarchization principles have been identified) while rendering its
underlying numerical procedure less demanding. On the contrary, there are also nuclear ap-
proaches, coined as ab initio, which are based on the NN interaction in free space and thus have
the endeavor to describe nuclear phenomena from first principles. Such interactions explicitly
take into account how correlations between nucleons are impacted by the presence of fellowmen
and how the nucleus self-organizes in consequence. Early nuclear approaches used to employ
phenomenological models of the NN force [9] (based on the seminal work of Yukawa [10]) as
input for “traditional” ab initio schemes [11–15].

Such a bushy proliferation of approaches may seem fundamentally flawed in the perspective
of epistemological standards [16], and may even seem to yield inconsistent viewpoints of the
nucleus, e.g. the apparent conflicting pictures of a tightly bound liquid droplet on the one hand
and of a delocalized shell-like structure on the other. Nonetheless, the philosophy underpin-
ning the renormalization group, namely the emergence and effectiveness concepts, promotes
a description of complex systems in terms of a web of interlocking effective theories rather
than based on a unique fundamental theory [16]. This thus supports the strategy instinctively
adopted by nuclear physics since its infancy, although in an incomplete form due to the phe-
nomenological construct of standard nuclear models. Even though the latter have given us
access to a precious empirical knowledge about the emergent scales and associated dofs in nu-
clear physics, only a reformulation in the language of effective (field) theories (EFTs) can turn

1



2 CHAPTER 1. INTRODUCTION

them into consistent and robust frameworks capable of reliable predictions [17], i.e. with a do-
main of validity (e.g. in terms of energy scale) clearly identified, a systematic way of improving
their results, a possibility to assess theoretical errors, ...

Figure 1.1: Nuclear chart and range of applicability of the two main microscopic methods in
nuclear theory (ab initio and EDF), compared with the region of stable nuclei and that of nuclei
that have been experimentally discovered until 2020 (Atomic mass evaluation 2020). Figure
taken from ref. [18].

For the purpose of constructing such reliable approaches, a consistent description of inter-
nucleon interactions (with respect to quantum chromodynamics (QCD)) has been achieved
within chiral EFT [19–21], which now constitutes a basis for various implementations of ab
initio approaches in nuclear physics [22–31]. Likewise, halo/cluster features in light nuclei
and collective rotational/vibrational behaviors in heavy systems can consistently be addressed
within Halo/Cluster EFTs [21, 32, 33] and macroscopic EFTs [34–39] respectively. However,
the framework of nuclear EDFs has yet to be reformulated in the language of EFT [17]. One
can certainly argue that this is an appealing task as the EDF approach is currently providing
the most complete and accurate (at least near the empirically known regions) description of
ground state (gs) and excited state properties of atomic nuclei over the entire nuclear chart, as
illustrated by fig. 1.1. Traditional EDFs owe their success to several features, the first of which
includes an efficient resummation of nucleon correlations at the level of the one-body reduced
density matrix (hence the name of the approach) which captures quantitatively the bulk of
properties deriving from the nuclear saturation phenomenon. In this way, the EDF method
exhibits a strong resemblance to density functional theory (DFT) [40–42]. However, another
salient feature of EDFs, i.e. the optimal account of so-called non-dynamical correlations at the
source of collective behaviors (deformation, superfluidity, clustering, ...) via the spontaneous
breakdown and restoration of symmetries, distance them from DFT in the sense that they do
not seem to align with the Kohn-Sham formulation of DFT, see e.g. refs. [43, 44] and references
therein. Such a success has to be contrasted with the drawbacks related to the lack of rigor-
ous foundations for the EDF method, e.g. the phenomenological character of the underlying
NN interaction mentioned earlier (which translates into parametrization-dependent predictions
away from known data) or the absence of a framework to design systematic improvements.
Many paths towards a proper EFT formulation for nuclear EDFs have been envisioned to over-



3

come these limitations [45–49], among which the functional integral or PI language provides a
powerful frame to account for quantal fluctuations in a systematic way [17, 50–57]. The latter
direction is further pursued in this thesis.

Let us analyze the key features of standard nuclear EDFs at the root of their success,
i.e. their accuracy (near the empirically known regions) and their favorable scaling making
them relevant for large-scale studies of nuclear systems (irrespective of the number of involved
nucleons or their expected shell structure). Such features will guide the formulation of EDFs
in the PI language. The EDF method typically unfolds two categories of expansions, neither
of which are systematized1: a first expansion at the level of the effective vertex and a second
in the form of a sequential integration of classes of correlations. We discuss below these two
types of expansions in more detail:

1. The first expansion involves the analytic form of the effective vertex at the heart of the
EDF. More precisely, nuclear EDFs were originally built from an (ill-defined) effective
vertex interpreted as an in-medium NN interaction [58–62]. A modern perspective seeks
a general expression for the EDF without direct references to an effective interaction [63–
65], but requires the latter to derive from a pseudo Hamiltonian in order to avoid spurious
self-interactions and self-pairing contributions [66, 67]. In any case, an effective vertex
is exploited as the generator of an EDF. Traditionally, its form follows from a heuristic
argument of simplicity, i.e. the ability to reproduce some set of data with a minimal
“operatorial” structure. Popular non-relativistic parametrizations, like the Skyrme [58]
and Gogny [59, 60] ones, involve central and spin-orbit contributions, while the covariant
ones [61, 62] use scalar-isoscalar, vector-isoscalar and vector-isovector channels (alongside
with a Coulomb channel for both non-relativistic and covariant EDFs). In this way, the
generalization of the effective vertex, e.g. the addition of a tensor term or more involved
channels, is more a matter of art than dictated by some systematic arguments. Modern
Skyrme-like parametrizations are built from a generic momentum expansion [63], prefer-
ably with a finite-range regulator and a three-nucleon channel [68–72]. If the resulting
functional is shown to be systematically improvable, such an expansion is still not orga-
nized with respect to a genuine power counting. Another issue pertains to the presence
of density-dependent terms, which on the one hand allow for a quantitative description of
nuclear systems, while on the other hand are known to contaminate the EDF calculations
with unphysical contributions [73]. This situation has triggered an effort to replace these
density-dependent terms by well-defined operatorial forms, e.g. three-body terms [68–72]
or a structure inspired by many-body perturbation theory (MBPT) beyond the first non-
trivial order [74]. However, none of these approaches achieved the same accuracy and the
same simplicity as density-dependent effective vertex. It is worth going back to the origin
of such density-dependent terms to better understand how they efficiently capture the
physics stemming from the saturation phenomenon. Early Hartree-Fock calculations in
nuclear physics with a density-independent NN interaction adjusted to reproduce A-body
observables (typically binding energies and radii) were unable to provide a simultaneous
correct description of both binding energies and radii. The introduction of an explicit
medium dependence, most generally in the form of a density dependence, magically re-
solved this issue. The so-called rearrangement term induced by the density-dependent
interaction at the level of the equation of motion provides us with a more flexible relation
between the binding energy of the system and the energies of the nucleon orbitals: it ac-
commodates the computation of a correct binding energy with a sufficiently compressed

1In other words, the corresponding results can not be improved in a systematic fashion, i.e. by going from
one level of approximation to the next.
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single particle spectrum at the same time, thus yielding proper saturation properties. One
of the questions explored in this thesis is related to the origin of such density-dependent
terms. Namely, can we understand why they drastically improve the description of nuclear
features? Can we find other objects than the density to grasp correlations as efficiently,
but in a spuriosity-free fashion?

2. The second expansion takes the form of a sequential account of nucleonic correlations.
So-called bulk correlations2 are efficiently grasped by a density-dependent vertex, from
which one constructs an EDF. In a first step coined as single-reference (SR) EDF, the
EDF is obtained as the expectation value of the effective Hamiltonian (containing the ef-
fective density-dependent vertex in addition to the kinetic energy operator) in a product
state allowed to spontaneously break the symmetries of the original nuclear Hamilto-
nian (essentially the spatial translation group (nuclei are localized, self-bound systems),
the rotational SU(2) group (nuclei usually exhibit what is called nuclear deformation)
and the U(1) group associated with the conservation of nucleon number (most nuclei are
superfluid)). The energy of the system then appears as a functional of its normal and
anomalous one-body density matrices, found after solving the corresponding Hartree-
Fock-Bogoliubov (HFB) equations [75–78], also referred to as Bogoliubov-de Gennes
equations. These one-body density matrices can be parametrized by the (bosonic) or-
der parameters associated with the aforementioned symmetries. It is through such a
spontaneous symmetry breaking (SSB) procedure that the EDF is able to grasp non-
trivial physics and more specifically non-dynamical correlations, which are responsible
for deformation, clustering and superfluidity, at low cost (at the cost of a SR approach
essentially). However, nuclei are finite-size (or mesoscopic) systems, so that they can
not spontaneously break any symmetries. Quantum fluctuations of the order parameters
around the values minimizing the SR EDF (or saddles) are not negligible and eventu-
ally preclude any SSBs by mixing the degenerate vacua defining the Goldstone manifold
and yielding a unique gs with good symmetry properties. As such, the quantum fluc-
tuations of the order parameters have to be accounted for in a further step, coined as
multi-reference (MR) EDF. In MR EDF, the energy is computed as the expectation value
of the effective Hamiltonian in a more general state, namely a non-orthogonal product of
HFB states. The energy becomes a functional of transition density matrices connecting
two HFB states. A full-fledged MR EDF description takes the form of the projected
generator coordinate method (PGCM) [7], where additional correlations stemming from
the fluctuations of the order parameters are accounted for not only to describe the gs of
nuclei, but also their (collective) excited spectra. In particular, one approximation of the
PGCM, where one writes the expectation values of the effective Hamiltonian between two
HFB states (i.e. the so-called energy kernels) as a Gaussian function (Gaussian Over-
lap Approximation), leads to a collective Hamiltonian whose dofs are (bosonic) collective
coordinates (the order parameters discussed above). Such a collective Hamiltonian does
not exhibit the spuriosities contaminating the full-fledged PGCM but its construction is
not systematically improvable. One related question that the present thesis will try to
address is whether one could arrive to a similar result, i.e. a framework where the original
dofs have been integrated out of the theory in favor of collective coordinates, but in a
rigorous and systematically improvable framework.

Such a sequential account of nucleonic correlations at the level of the SR, and then MR
EDF, is relevant only if nucleonic correlations exhibit such a hierarchy. This is indeed what is

2The bulk correlations are by definition those whose contribution to the binding energy of nuclear systems
varies continuously with the proton and/or neutron number(s). Such correlations encompass for instance nuclear
saturation properties.
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Figure 1.2: Binding energy of the 240Pu calculated at the SR EDF level (HFB) and at the MR
EDF one with projection (projected HFB) and configuration mixing (GCM). Figure taken from
ref. [64].

empirically observed and illustrated in fig. 1.2. The latter displays the 240Pu binding energy
computed at both the SR and MR levels. The SR result that does not break any symmetry,
corresponding to the black curve at |q| = 0 (q is the quadrupole moment of the density, which
here plays the role of an order parameter for the rotational symmetry), grasps bulk correlations
which constitute at least 98% of the binding energy in this situation. Letting the reference state
breaking down the rotational symmetry enables us to gain around 14 MeV of correlation energy,
which represents around 2% of the system’s binding energy. Then, within the MR realization
of the EDF method where only angular fluctuations of the order parameters are accounted
for (with the so-called projection techniques), the restoration of the broken rotational (and
particle-number) symmetry (symmetries) brings a further contribution to the binding energy,
thus leading to the global minimum of the red curve. A full-fledged PGCM calculation further
grasps correlations and yields the black dot dubbed “GCM”, located about 0.5 MeV below the
global minimum of the red curve. The behavior of 240Pu is representative of heavy doubly open-
shell nuclei but remains one example among many. We can summarize the different categories
of correlations that are treated within the framework of the EDF method, alongside with the
corresponding energy scales, as done in tab. 1.1.

Table 1.1: Categories of correlations treated by the EDF method. Aval and Gdeg denote respec-
tively the number of valence nucleons and the degeneracy of the corresponding valence shell
(i.e. the number of orbitals located in top of so-called magic configurations).

Type of correlations Treatment Energy scale Vary as

bulk grasped in the functional ∼ 8 A MeV A

collective static order parameter |q| 6= 0 (SSB) . 25 MeV Aval, Gdeg

collective dynamical quantum fluctuations of q . 5 MeV Aval, Gdeg

Besides the very good description of nuclei’s gs and spectroscopic properties by the EDF
method, the empirical nature of the latter approach, due to the parametrization of the underly-



6 CHAPTER 1. INTRODUCTION

Figure 1.3: Bound nuclei predicted via the PC-PK1 procedure used to parametrize a covariant
EDF. Figure taken from ref. [79].

ing functionals, raises numerous sensible points: i) the connection between current functionals
and elementary forces between nucleons is not explicit; ii) the predictive character of EDF pre-
dictions for experimentally undiscovered nuclei relies heavily on the area of the nuclear chart
used to constrain the free parameters of the functionals. The second flaw in the predictive
power of the EDF approach is illustrated for a covariant functional by fig. 1.3. In the latter,
one can see in particular the important variations of the driplines location3 with respect to the
exploited parametrization procedure. The extensive exploitation of traditional EDFs (Gogny,
Skyrme or covariant) have shown numerous limitations of this framework related either to the
parametrization procedure, the too simple nature of the analytical forms of the functionals or
to the lack of firm theoretical foundations underlying their construction. Several approaches
can be considered to overcome such limitations:

1. Refine traditional empirical functionals either by improving the parametrization proce-
dure to grasp more non-trivial physics or by using a richer analytical form for the function-
als (finite-range features, addition of tensor terms, less drastic density dependences, ...).
The latter strategy has notably led to the Gogny functional with various parametrizations
such as D1N [80], D1M [81] and D2 [82].

2. Improve the MR EDF methods (PGCM, quasi-particle random phase approximation, ...)
or construct new ones able to tackle excited states that are so far not reliably and/or not
efficiently described by this framework.

3. Develop ab initio approaches to extend their range of applicability and to enhance their
accuracy.

4. One might also follow a parallel direction (with respect to 3.) with the aim of constructing
less empirical EDFs, connected to the QCD vacuum (possibly at finite density). A relevant
way to achieve this is to reformulate the EDF method as an EFT.

3The driplines are the boundaries on the nuclear chart that separate the bound nuclei from the unbound
ones.
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The reformulation of the EDF framework as an EFT can be done through numerous relevant
perspectives [17]. It is possible for instance to employ a top-down approach in which one starts
from ab initio approaches to reach an EDF. The reverse can also be considered by following
a bottom-up philosophy in which a general EDF is constructed from first principles, before
being adjusted on experimental results or ab initio calculations. This leads us to the goals
of the present thesis work on PI approaches. Developing an EFT in nuclear physics amounts
to constructing a Lagrangian or a classical action describing the bare NN interaction. The
following step consisting in calculating nuclear observables from these functionals is usually
referred to as the treatment of the (nuclear) many-body problem. The PI framework provides
us with plenty of techniques to achieve the latter step. For instance, one can readily introduce in
these approaches new (presumably collective) dofs, notably via exact identities called Hubbard-
Stratonovich transformations (HSTs) [83, 84]. One can therefore naturally draw a parallel with
the PGCM in that respect. Moreover, just like EFTs, most PI approaches are systematically
improvable themselves, which enables us to control our approximations, another important
feature lacking in current EDFs. One should also mention the natural connection that can be
exhibited between DFT and the effective action (EA) formalism, which is a subpart of the PI
framework. Along these lines, we can mention the work of Furnstahl and collaborators [17,
50–57], and notably the work of Valiev and Fernando [85] demonstrating that the 2-particle-
point-irreducible (2PPI) EA is suited to formulate a Kohn-Sham DFT.

From these remarks, the PI framework seems indeed relevant to formulate reliable theoretical
descriptions of nuclear systems. We will therefore aim at better understanding how this can be
achieved throughout this thesis work. To that end, we will exploit a toy model as theoretical
playground to perform a comparative study of state-of-the-art PI approaches. The chosen
model is the (0+0)-D O(N)-symmetric ϕ4-theory or, more simply, (0+0)-D O(N) model4,
which will be presented in chapter 2 after giving a brief recall on the PI formalism. Considering
the importance of O(N) models [86–88] and PI techniques [87, 89, 90] in theoretical physics5
(especially due to the connection between these O(N) models and universal properties of critical
systems [95–98]), this comparative study is clearly fueled by other areas of physics, as pointed
out in the forthcoming chapters and references therein, and this thesis thus certainly finds strong
echoes in those areas as well. Besides this, a key feature of the toy model under consideration
is the presence of the O(N) symmetry, whose spontaneous breakdown will be studied with care
in this comparative study. This will enable us in particular to draw connections with the SR
and MR EDF schemes. We will also argue in chapter 2 that PI techniques can be split into
two categories: functional renormalization group (FRG) approaches and the others, coined as
diagrammatic techniques, which will be studied in chapters 4 and 3, respectively. In these two
chapters, the performances of these methods will be examined in the strongly-coupled regime of
the model under consideration, in connection with the nuclear many-body problem. Different
types of EAs and HSTs will also be exploited for many methods investigated in these two
chapters, still with the aim of identifying the most relevant dofs to treat our problem, and
we will also carefully discuss how the resulting conclusions can be extended to more realistic
models, and notably to nuclear EDFs. Finally, chapter 5 contains our concluding remarks and
outlooks for this comparative study of PI techniques.

4Throughout this thesis, we use “O(N) model” as synonym for “O(N)-symmetric ϕ4-theory”, as is often the
case.

5To illustrate this, we point out that O(N)-symmetric ϕ4-theories reduce to well-known models exploited
in statistical physics, i.e. to the Ising model [91], the XY model and the Heisenberg model at N = 1, 2 and 3
respectively. At N = 4, O(N) models are also used to study the phase structure of QCD (see refs. [92–94] as
examples).
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2.1 Relevant generating functionals and observables

We aim at describing strongly-coupled quantum many-body systems hosting collective behav-
iors of bosonic nature. A possible angle of attack involves correlation functions which contain
the complete physical information on the corresponding quantum many-body system1. In the
canonical formulation of quantum mechanics, the constituents of the theory are represented by
operator-valued distributions ϕ̂α, with a generic index α ≡ (a, r, τ,ms, c) ≡ (a, x) collecting
spacetime coordinates (r, τ) (with r and τ being respectively the (D − 1)-dimensional space
position vector and the imaginary time) and, if relevant, spin projection ms, charge c, and
internal a labels, such that:

ϕ̂α = ϕ̂a,x =





ϕ̂a,ms(r, τ) for c = − .

ϕ̂†a,ms(r, τ) for c = + .
(2.1)

The n-point correlation functionG(n) then stems from the expectation value, in the (interacting)
many-body system gs |vac〉, of a (time-ordered) product of n field operators:

G(n)
α1α2···αn ≡ 〈vac|Tϕ̂α1ϕ̂α2 · · · ϕ̂αn|vac〉 , (2.2)

where T stands for the time-ordered product.

Alternatively, correlation functions can be computed from standard generating function-
als [103], conveniently expressed as sum-over-histories in configuration space within Feynman’s
PI formulation of quantum mechanics [104, 105], where the dofs of the theory are now realized

1In an axiomatic approach to quantum field theory (QFT), the Wightman reconstruction theorem [99–102]
states that a sequence of (tempered) n-point correlation functions completely determines the Hilbert space and
algebra of fields (realized as operator-valued distributions), up to unitary equivalence.

9
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via number-valued fields2, such as ϕ̃α3. Coupling the field ϕ̃α to a test (external) source Jα
yields the action:

SJ [ϕ̃] = S[ϕ̃]− Jαϕ̃α , (2.3)

where S[ϕ̃] stands for the (Euclidean) classical action of the system and summation over re-
peated indices is assumed, i.e.:

Jαϕ̃α ≡ Ja,xϕ̃a,x

≡
∑

ms,c,a

∫ ~β

0

dτ

∫

RD−1

dD−1r Ja,ms,c(r, τ)ϕ̃a,ms,−c(r, τ) ,
(2.4)

in a D-dimensional spacetime and with inverse temperature β. The (Euclidean) PI representa-
tion of the system’s partition function in presence of the source (also called vacuum persistence
amplitude) derives from these ingredients and is given by the functional integral (also called
PI):

Z[J ] = N
∫

C
Dϕ̃ e−

1
~SJ [ϕ̃] , (2.5)

where N is a normalization factor, C the space of configurations4 for the fluctuating field ϕ̃α and
Dϕ̃ the PI measure. The functional Z[J ] is the generating functional of correlation functions,
namely:

G(n)
α1α2···αn ≡ 〈ϕ̃α1ϕ̃α2 · · · ϕ̃αn〉vac =

∫
Dϕ̃ ϕ̃α1ϕ̃α2 · · · ϕ̃αne−

1
~S[ϕ̃]

∫
Dϕ̃ e−

1
~S[ϕ̃]

=
~n

Z[J = 0]

δnZ[J ]

δJα1δJα2 · · · δJαn

∣∣∣∣
J=0

.

(2.6)

A diagrammatic representation of Z[J ] consists of the sum of all vacuum diagrams, implying
that the correlation functions (2.6) contain both connected and disconnected contributions. On
the other hand, physically relevant observables often only involve the fully connected part of
Z[J ], which can be summarized in terms of another generating functional called the Schwinger
functional5 W [J ] defined via:

Z[J ] ≡ e
1
~W [J ] . (2.7)

The cumulants or connected correlation functions G(n),c then follow from the functional deriva-
tives of W [J ]:

G(n),c
α1α2···αn = ~n−1 δnW [J ]

δJα1δJα2 · · · δJαn

∣∣∣∣
J=0

. (2.8)

An exact and compact representation of the generating functional Z[J ] can be achieved
through the n-particle-irreducible (nPI) EA [107–109]. While the diagrammatic representation
of Z[J ] consists of vacuum diagrams involving the bare propagator and vertices of the theory,

2Throughout this thesis manuscript, fluctuating fields, i.e. fields displaying quantum fluctuations treated
within a PI, are denoted with an upper tilde, like ϕ̃α.

3Although part of the derivations performed in this thesis are valid for both bosonic and fermionic field
theories, we give in sections 2.1 and 2.2 a brief introduction on the PI formalism assuming that ϕ̃α is a bosonic
(i.e. non-Grassmann) field, as it is sufficient to present the main functionals exploited in the forthcoming
chapters. More exhaustive introductions on the PI formalism for both bosonic and fermionic field theories can
be found e.g. in refs. [89, 106].

4The integration domain defining each functional integral will be left implicit in most cases.
5In analogy with thermodynamics, Z[J = 0] is the partition function while W [J = 0] corresponds to (minus)

the free energy (up to a constant proportional to the temperature).
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the nPI EA provides a systematic method to perform non-perturbative resummations on the
m-point correlation functions (m ≤ n) of the theory, yielding a diagrammatic series in terms of
the dressed propagator and m-point vertex functions with m ≤ n. The diagrammatic series
expressing a nPI EA involve nPI diagrams6 only, hence the name “nPI” EA. In that regard, we
point out the works of Vasil’ev and collaborators [110–115], which prove notably:

• The 1PI and 2PI natures of the diagrams expressing the 1PI and 2PI EAs, respec-
tively [110].

• The equivalence between the Schwinger-Dyson equations [103, 116] and the gap equations
of the nPI EA formalism [111].

• The convexity of nPI EAs with respect to each of their arguments [112].

• Expressions of nPI vertices in terms of 1PI vertices [113].

• The 3PI nature of the diagrams expressing the 3PI EA [114].

• The 4PI nature of the diagrams expressing the 4PI EA [115].

As will be discussed throughout chapter 4 in particular, the 2PI EA framework7 is a direct
reformulation of the Green’s function formalism based on Dyson equation and the Luttinger-
Ward functional [116, 118]. It was pioneered by the work of Lee, Yang, De Dominicis and
others in statistical physics [108, 118–122], and subsequently extended by Cornwall, Jackiw
and Tomboulis [109] to the framework of field theory discussed here, which is why the 2PI EA
approach is also coined as CJT formalism.

Regarding the mathematical definitions of nPI EAs, one first introduces (external) sources
Jα, Kα1α2 , L

(3)
α1α2α3 , ... , L(n)

α1···αn coupled to the local field ϕ̃α and the composite bilocal field
ϕ̃α1ϕ̃α2 , trilocal field ϕ̃α1ϕ̃α2ϕ̃α3 , ..., n-local field ϕ̃α1 · · · ϕ̃αn , respectively:

SJKL(3)···L(n) [ϕ̃] ≡ S [ϕ̃]− Jαϕ̃α −
1

2
Kα1α2ϕ̃α1ϕ̃α2

− 1

3!
L(3)
α1α2α3

ϕ̃α1ϕ̃α2ϕ̃α3 − · · · −
1

n!
L(n)
α1···αnϕ̃α1 · · · ϕ̃αn ,

(2.9)

and

Z
[
J,K, L(3), · · ·

]
≡ e

1
~W [J,K,L(3),··· ]

= N
∫

C
Dϕ̃ e−

1
~SJKL(3)···[ϕ̃] .

(2.10)

The nPI EA Γ(nPI) is then obtained after Legendre transforming the Schwinger functional with

6A (connected) diagram is nPI if it remains connected after cutting n non-equivalent propagator lines.
7See ref. [117] for a pedagogical introduction on the 2PI EA.
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respect to the sources:

Γ(nPI)[φ,G, V, · · · ] =−W
[
J,K, L(3), · · ·

]
+ Jα

δW
[
J,K, L(3), · · ·

]

δJα
+Kα1α2

δW
[
J,K, L(3), · · ·

]

δKα1α2

+L(3)
α1α2α3

δW
[
J,K, L(3), · · ·

]

δL
(3)
α1α2α3

+ · · ·

=−W
[
J,K, L(3), · · ·

]
+ Jαφα +

1

2
Kα1α2 (φα1φα2 + ~Gα1α2)

+
1

6
L(3)
α1α2α3

(
φα1φα2φα3 + ~Gα1α2φα3 + ~Gα1α3φα2 + ~Gα2α3φα1 + ~2Vα1α2α3

)

+ · · · ,
(2.11)

where the 1-point correlation function φα, the propagator Gα1α2 , the 3-point vertex Vα1α2α3 , ...
satisfy:

δW
[
J,K, L(3), · · ·

]

δJα
= φα , (2.12)

δW
[
J,K, L(3), · · ·

]

δKα1α2

=
1

2
[φα1φα2 + ~Gα1α2 ] , (2.13)

δW
[
J,K, L(3), · · ·

]

δL
(3)
α1α2α3

=
1

6

[
φα1φα2φα3 + ~Gα1α2φα3 + ~Gα1α3φα2 + ~Gα2α3φα1 + ~2Vα1α2α3

]
,

(2.14)
...

Within the nPI EA framework, the physical m-point functions (i.e. the m-point functions at
vanishing sources) of the theory with m ≤ n are self-consistently dressed through a variational
principle, i.e. by solving the gap equations:

δΓ(nPI)[φ,G, V, · · · ]
δφα

∣∣∣∣
φ=φ,G=G,V=V ,···

= 0 ∀α , (2.15)

δΓ(nPI)[φ,G, V, · · · ]
δGα1α2

∣∣∣∣
φ=φ,G=G,V=V ,···

= 0 ∀α1, α2 , (2.16)

δΓ(nPI)[φ,G, V, · · · ]
δVα1α2α3

∣∣∣∣
φ=φ,G=G,V=V ,···

= 0 ∀α1, α2, α3 , (2.17)

...

while the higher m-point functions (with m > n) coincide with the bare ones.

Basic properties about the system of interest can be obtained from the above generating
functionals. Among these, we will focus throughout this thesis in particular on:

• The gs energy Egs of the interacting system:

Egs = lim
β→∞

(
− 1

β
ln(Z[J = 0, · · · ])

)
= lim

β→∞

(
− 1

~β
W [J = 0, · · · ]

)

= lim
β→∞

(
1

~β
Γ(nPI)

[
φ = φ, · · ·

])
.

(2.18)
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• The gs density ρgs of the interacting system:

ρgs(r, τ) = 〈ϕ̃αϕ̃α〉vac

=
~2

Z[J = 0, K = 0, · · · ]
δ2Z[J,K, · · · ]

δJαδJα

∣∣∣∣
J=0,K=0,···

= ~
δ2W [J,K, · · · ]

δJαδJα

∣∣∣∣
J=0,K=0,···

+ φαφα

= 2
δW [J,K, · · · ]

δKαα

∣∣∣∣
J=0,K=0,···

.

(2.19)

• The effective potential Veff(φ), which is determined from the 1PI EA evaluated at a
uniform (i.e. spacetime-independent) field configuration φu after factorizing the volume
of Euclidean spacetime [123]:

Γ(1PI)[φu] =

∫
dτdD−1r Veff(φu) . (2.20)

2.2 Wick’s theorem and diagrammatic techniques
In order to properly explain what we refer to as diagrammatic techniques in this thesis, we
now illustrate how Wick’s theorem [124] is implemented in the PI formalism. To that end,
we first consider the non-interacting version of the generating functional Z[J ] defined by (2.3)
and (2.5):

Z[J ] = N
∫
Dϕ̃ e

1
~ (−S0[ϕ̃]+Jαϕ̃α)

= N
∫
Dϕ̃ e

1
~(− 1

2
ϕ̃α1G

−1
0,α1α2

ϕ̃α2+Jα1 ϕ̃α1) ,

(2.21)

where we just introduced the quadratic part of S[ϕ̃], i.e. the free classical action:

S0[ϕ̃] =
1

2
ϕ̃α1G

−1
0,α1α2

ϕ̃α2 , (2.22)

expressed here in terms of the free propagator G0. We then exceptionally leave integration or
summation over indices more implicit by using a compact vector notation (in which XT denotes
the transpose of X notably) in order to calculate:

−1

2
(ϕ̃−G0J)TG−1

0 (ϕ̃−G0J) +
1

2
JTG0J

= − 1

2
ϕ̃TG−1

0 ϕ̃+
1

2
ϕ̃TG−1

0 G0J +
1

2
JTGT

0G
−1
0 ϕ̃−

���
���

���1

2
JTGT

0G
−1
0 G0J +

��
�
��1

2
JTG0J

= − 1

2
ϕ̃TG−1

0 ϕ̃+ JTϕ̃

= − 1

2
ϕ̃α1G

−1
0,α1α2

ϕ̃α2 + Jα1ϕ̃α1 ,

(2.23)

where we have notably exploited the symmetry of G0 (i.e. GT
0 = G0) alongside with the relation

ϕ̃TJ = JTϕ̃. Therefore, (2.21) is equivalent to:

Z[J ] = N
∫
Dϕ̃ e

1
~(− 1

2
(ϕ̃−G0J)TG−1

0 (ϕ̃−G0J)+ 1
2
JTG0J)

= N
∫
Dϕ̃′ e 1

~(− 1
2
ϕ̃′α1

G−1
0,α1α2

ϕ̃′α2
+ 1

2
Jα1G0,α1α2Jα2) .

(2.24)
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Besides introducing back α-indices in the second line of (2.24), we have also introduced ϕ̃′ via
the shift ϕ̃→ ϕ̃′ +G0J . From this, it directly follows that8:

Z[J ] = N e
1
2~Jα1G0,α1α2Jα2

∫
Dϕ̃ e−

1
2~ ϕ̃α1G

−1
0,α1α2

ϕ̃α2 . (2.25)

The integral in the right-hand side (RHS9) of (2.25) is just a constant, as can be shown from
Gaussian integration (see appendix A). Replacing Z[J ] in (2.25) with (2.21) leads to:

∫
Dϕ̃ e

1
~(− 1

2
ϕ̃α1G

−1
0,α1α2

ϕ̃α2+Jα1 ϕ̃α1)

∫
Dϕ̃ e−

1
2~ ϕ̃α1G

−1
0,α1α2

ϕ̃α2

= e
1
2~Jα1G0,α1α2Jα2 . (2.26)

Finally, differentiating n times (n being even) both sides of (2.26) with respect to J before
setting J equal to zero gives us the following expression of the correlation functions of (even)
order n for the non-interacting theory specified by S0[ϕ̃]:

〈ϕ̃α1 · · · ϕ̃αn〉0 ≡
∫
Dϕ̃ ϕ̃α1 · · · ϕ̃αn e

1
~(− 1

2
ϕ̃α1G

−1
0,α1α2

ϕ̃α2+Jα1 ϕ̃α1)

∫
Dϕ̃ e−

1
2~ ϕ̃α1G

−1
0,α1α2

ϕ̃α2

= ~
n
2

∑

P∈Sn

G0,αP (1)αP (2)
· · ·G0,αP (n−1)αP (n)

,

(2.27)
where the RHS involves a sum over all elements P of the permutation group Sn of even order
n. Result (2.27) formulates Wick’s theorem in the PI formalism. All permutations between
indices of propagators implied by the sum of the RHS of (2.27) are most conveniently rep-
resented by diagrams weighted by numerical factors called multiplicities. In this thesis, we
call diagrammatic techniques every approach relying on diagrammatic representations of the
permutations set by Wick’s theorem. This excludes notably FRG approaches, even though
the latter are based on equations that can be represented diagrammatically as well. Note also
that the quadratic part S0[ϕ̃] retained in the generating functional Z[J ] to derive (2.27) is not
necessarily the free part of the classical action S[ϕ̃], such that G0 is no longer a free propagator
(but rather a more dressed object): this point is at the heart of chapter 3.

2.3 Selected topics on functional renormalization group
FRG approaches rely on a master equation dictating the evolution of a functional of interest
(typically a Schwinger functional or an EA) with respect to a parameter, called the flow pa-
rameter, which can either be a dimensionless or a dimensionful quantity representing typically
the momentum scale of the theory under consideration. In practice, this master equation is
treated via some expansion scheme (that we discuss in detail in chapter 4) to turn it into a set
of coupled first-order integro-differential equations to solve, which contrasts with self-consistent
equations such as (2.15) to (2.17) encountered in diagrammatic EA approaches. All the techni-
cal details underpinning this procedure is outlined in chapter 4 and corresponding appendices
but we want to stress at this stage a few important aspects of current FRG studies of fermionic
systems.

There are strong connections between several FRG methods and Wilson’s renormalization
group [95–97] that turned out to be successful to describe critical phenomena10. The idea
underlying Wilson’s approach, i.e. a step-by-step integration with respect to the momentum

8The Jacobian underlying shifts like ϕ̃→ ϕ̃′ +G0J is trivial such that Dϕ̃′ = Dϕ̃ in the present case.
9In the same way, “left-hand side” will be denoted as LHS.

10See ref. [125] for a pedagogical introduction on Wilson’s renormalization group and the concept of coarse-
graining.
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scale that we refer to asWilsonian momentum-shell integration, was first implemented for
an EA by Wetterich [126], following up the previous work of Polchinski leading to the famous
Polchinski or Wilson-Polchinski equation [127]. The flow parameter of Wetterich’s FRG is thus
the momentum scale k (or another related parameter). Moreover, the corresponding master
equation, coined as Wetterich equation (see section 4.1.1 and appendix E.1), sets the scale
dependence of the 1PI EA describing the studied quantum system, which is why we will use
1PI-FRG as synonym for Wetterich’s FRG. This scale-dependent 1PI EA, also called average
EA, describes a coarse-grained system in the sense of Kadanoff and Wilson.

We put forward Wetterich’s approach here as it is still clearly the most widespread FRG
technique. The main reasons for this are notably a certain ease of implementation as compared
to FRG methods based on a nPI EA with n > 1, and also the Wilsonian momentum-shell
integration that makes it equipped to tackle critical phenomena and phase transitions. We
also want to emphasize in the present section some important features of the implementation
of Wetterich’s FRG in the framework of fermionic systems. In particular, it has been proven
very advantageous to introduce the so-called scale-dependent or flowing bosonization by
combining this method with HSTs: either by exploiting a HST that is scale-dependent itself [128,
129], or rather by simply letting the expectation value of the Hubbard-Stratonovich field depend
on the momentum scale [130–132]. The latter formulation has been generalized [133] such that
only the fluctuating composite operators introduced via HSTs (and not their expectation values)
are scale-dependent (see ref. [134] for a concrete example of application in the context of QCD).
A further generalization aiming at treating explicit symmetry breaking is developed in ref. [135].
We list below several reasons motivating the use of flowing bosonization:

• To overcome the Fierz ambiguity:
In order to turn the Wetterich equation into a set of integro-differential equations, one
must introduce an ansatz for the analytical form of the scale-dependent 1PI EA, which
typically involves fermionic bilinears in the framework of fermionic theories. The Fierz
ambiguity results from the possibility to apply Fierz transformations to these fermionic
bilinears. This translates into an unphysical dependence of the results obtained via mean-
field theory (MFT) with respect to a mean-field parameter11,12 [136]. In the language of
partial bosonization, MFT is implemented by neglecting quantum fluctuations of the
Hubbard-Stratonovich field. HSTs therefore provide a natural framework to handle the
Fierz ambiguity which will be further reduced as long as we incorporate bosonic fluctu-
ations in our approximations (which is achieved by enriching the starting ansatz for the
scale-dependent 1PI EA). Rendering the bosonization scale-dependent in addition enables
us to sweep away (some of) the problematic fermionic bilinears at each momentum scale,
so as to reduce at least the adverse effects due to the Fierz ambiguity.

• To bridge the gap between the ultraviolet (UV) and the infrared (IR) scales
if the relevant dofs change during the flow:
In practice, the differential equations underlying Wetterich’s FRG are solved by letting
the momentum scale flowing from an UV scale down to an IR scale at which the scale-
dependent 1PI EA is supposedly close to the exact 1PI EA of the studied system. Further-
more, HSTs introduce bosonic fields in fermionic theories. This is interesting for example
in FRG studies of QCD, in which the computations throughout the flow can be rendered
more efficient by allowing scale-dependent quark and gluon couplings (more relevant at

11In particular, the Fierz ambiguity will be present in the framework of FRG if the starting ansatz used for
the scale-dependent 1PI EA results from MFT (see equation (9) of ref. [136] for a concrete example).

12Note that the diagrammatic EA approaches (such as the Schwinger-Dyson equations’ framework) do not
suffer from such an unphysical dependence and are thus free from the Fierz ambiguity [136].
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the UV scale) but also scale-dependent meson couplings (more relevant at the IR scale)
in the scale-dependent 1PI EA [137].

• To study SSBs and phase transitions:
Phase transitions stemming from an onset of SSB might result in the divergence of some
couplings (typically quartic couplings) involved in the ansatz of the scale-dependent 1PI
EA. In this situation, it might be necessary to introduce further couplings in this ansatz
(including for instance 8-fermion interactions in the flow) to have access to a proper
order parameter for such transitions, which might render the implementation of the FRG
procedure extremely difficult. If these divergences originate from quartic couplings λi, one
can replace the latter by auxiliary fields with masses mi ∼ 1/λi with the help of HSTs.
In this way, the aforementioned divergences are therefore not present in the partially
bosonized theory and there is hence no need to turn on further couplings during the flow
to study phase transitions in this case. Note that, since the quartic couplings λi depend
on the momentum scale, the bosonization thus performed must also be scale-dependent
to prevent the related divergences from pursuing the flow down to the IR scale.

The toy model studied in this thesis is not a relevant framework to investigate the technique
of flowing bosonization especially because it does not involve any fermionic field and therefore
does not exhibit the Fierz ambiguity, regardless of the method used to treat it. Despite that, we
believe it is important to have the above three points in mind throughout our toy model study
since they underlie many FRG applications to fermionic systems, whereas we will keep empha-
sizing the connections between the present work and more realistic (fermionic) applications in
the forthcoming chapters.

2.4 Playground of this thesis: (0+0)-D O(N)-symmetric
ϕ4-theory

We use the O(N)-symmetric ϕ4-theory in arbitrary spacetime dimensions to investigate various
expansion schemes expressed within the PI language, with a special emphasis on the broken-
symmetry phase, and apply our results in the exactly solvable (0+0)-D case13. QFTs formulated
in zero dimension feature a base manifold M reducing exactly to one point14, i.e. M = {•}.
All fields living on M = {•} are completely specified by assigning a number (e.g. a real
one) at this one point, such that the PI measure Dϕ̃ on C reduces to the standard Lebesgue
measure dϕ̃ (e.g. on R). The tremendous simplifications brought by the latter feature explain
why (0+0)-D QFTs serve as safe, more controllable and hence useful didactic playgrounds for
exploring various aspects of more complicated QFTs, as they allow for explicit solutions that
can not be obtained in higher dimensions [138–151]. The dofs of the (0+0)-D O(N) model
are represented by real fluctuating bosonic fields ϕ̃a : {•} → R living on the base manifold
M = {•}, i.e. real random variables, with O(N)-symmetric quartic self-interaction. We store
them in the O(N) scalar multiplet:

~̃ϕ ≡



ϕ̃1
...
ϕ̃N


 , (2.28)

13By definition, a (n+m)-D theory lives in a spacetime with n space and m time dimensions, which means
that there is neither space nor time dimension in the case of the studied (0+0)-D toy model.

14No notion of metric can be defined on the manifoldM, with the consequence that the Lorentz group and
all of its representations are trivial, i.e. all fields living onM are point-like and must be scalars.
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and consider the Lie group action O(N) y RN defined by left multiplication, with the infinites-
imal transformation given by:

δεϕ̃a =
N∑

b=1

εabϕ̃b , (2.29)

characterized by real antisymmetric matrices (i.e. εab = −εba ∈ R) and the indices a, b, ...
(which label the N orthogonal directions in the color space defined on RN) are referred to as
color indices. The dynamics of the system is governed by the classical action15 S : RN → R,
given by the expression:

S
(
~̃ϕ
)

=
m2

2
~̃ϕ

2
+
λ

4!

(
~̃ϕ

2
)2

, (2.30)

which is invariant under transformations of the O(N) group, and where the real parameters m2

and λ stand for the bare squared mass and bare coupling constant, respectively. No derivative
(i.e. kinetic) terms contribute to this action owing to the (0+0)-D nature of spacetime16. In
the present work, we consider mostly two sources with O(N) group structure, namely the local
source ~J whose components Ja are coupled to the fields ϕ̃a and the bilocal source K whose
elementsKab are coupled to the composite fields ϕ̃aϕ̃b. In this context, the Schwinger functional
of the theory is given by:

Z
(
~J,K

)
= e

1
~W
(
~J,K
)

=

∫

RN
dN ~̃ϕ e−

1
~SJK

(
~̃ϕ
)
, (2.31)

with

SJK

(
~̃ϕ
)
≡ S

(
~̃ϕ
)
− ~J · ~̃ϕ− 1

2
~̃ϕ ·
(
K~̃ϕ

)
. (2.32)

The symbol “·” in (2.32) refers to the scalar product in color space defined as:

X · Y ≡
N∑

a=1

XaYa , (2.33)

while ~̃ϕ ·
(
K~̃ϕ

)
is short for:

N∑

a,b=1

ϕ̃aKabϕ̃b . (2.34)

The (0+0)-D O(N) model with the generating functional (2.31) takes the form of a prob-
ability theory for N real stochastic variables ϕ̃a whose probability distribution is given by
e−

1
~SJK(~̃ϕ). The benefit of working in a (0+0)-D spacetime is already manifest from the fact

that expression (2.31) admits an analytical representation [147, 150] in terms of the Kummer
confluent hypergeometric function 1F1(a; b; z) [152]. After rewriting the integral of (2.31) in
hyperspherical coordinates, the exact partition function reads:

Zexact
(
~J = ~0,K = 0

)
= e

1
~W

exact
(
~J=~0,K=0

)
= ΩNRN−1 , (2.35)

15In a (0+0)-D spacetime, the classical action S as well as all generating functionals characterizing the theory
(such as Schwinger functionals or EAs) are functions rather than functionals.

16This is why (0+0)-D QFTs are sometimes referred to as the static ultra-local limit of a QFT in finite D
dimensions.
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with17

RN

(
~;m2;λ

)
≡
∫ ∞

0

dũ ũN e
− 1

~

(
m2

2
ũ2+ λ

4!
ũ4
)

=





2
N−1

2

(
~
m2

)N+1
2

Γ

(
N + 1

2

)
∀m2 > 0 and λ = 0 ,

∞ ∀m2 ≤ 0 and λ = 0 ,

2
3N−5

4 3
N+1

4

(
λ

~

)−N+3
4

[√
λ

~
Γ

(
N + 1

4

)
1F1

(
N + 1

4
;
1

2
;
3m4

2λ~

)

−m
2
√

6

~
Γ

(
N + 3

4

)
1F1

(
N + 3

4
;
3

2
;
3m4

2λ~

)]
∀λ > 0 ,

(2.36)

for N ∈ N∗. Note also that ΩN denotes the surface area of the N -dimensional unit sphere:

ΩN =
2π

N
2

Γ
(
N
2

) . (2.37)

The gs energy18 and density19 can be obtained from:

Egs = − ln
(
Z
(
~J = ~0,K = 0

))
= −1

~
W
(
~J = ~0,K = 0

)
, (2.38)

ρgs =
1

N

〈
~̃ϕ

2
〉

= − 2

N

∂W
(
~J,K

)

∂m2

∣∣∣∣∣ ~J=~0
K=0

, (2.39)

with the expectation value defined as:

〈
· · ·
〉
≡ 1

Z
(
~J = ~0,K = 0

)
∫
dN ~̃ϕ · · · e− 1

~S
(
~̃ϕ
)
. (2.40)

From these definitions, one can infer the exact solutions:

Eexact
gs = − ln

(
ΩNRN−1

)
, (2.41)

ρexact
gs =

RN+1

NRN−1

. (2.42)

On the other hand, the computation of the 1-point correlation function:

~φ ≡
〈
~̃ϕ
〉

=
∂W

(
~J,K

)

∂ ~J

∣∣∣∣∣ ~J=~0
K=0

, (2.43)

17Γ exceptionally denotes Euler gamma function [152] and not an EA in (2.36) and (2.37).
18In a (0+0)-D spacetime, the extraction (2.18) of the gs energy from the partition function simplifies, after

an arbitrary scaling that cancels the factor in front of the logarithm, to Egs = − ln
(
Z
(
~J = ~0,K = 0

))
.

19Note that the denomination “density” is abusive in the case where N = 1. Indeed, the O(N) model does
not exhibit any continuous symmetry in this situation, hence no conserved Noether current.
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or of the effective potential Veff

(
~φ
)
provides information on the occurrence of SSB [123]. While

the exact solution for the former reduces to ~φ
exact

= 0 for all values of the coupling constant λ
and of the squared mass m2, the latter derives from the 1PI EA according to20:

Veff

(
~φ
)

= Γ(1PI)
(
~φ
)

= −W
(
~J,K = 0

)
+ ~J · ~φ , (2.44)

with

~φ =
∂W

(
~J,K

)

∂ ~J

∣∣∣∣∣
K=0

. (2.45)

The exact effective potential V exact
eff

(
~φ
)
is evaluated numerically from (2.44) combined with

(2.45), and then plotted in fig. 2.1 for N = 2 together with the classical potential:

U
(
~φ
)

=
m2

2
~φ2 +

λ

4!

(
~φ2
)2

, (2.46)

which coincides with the classical action (2.30) of the studied (0+0)-D model21.
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Figure 2.1: Classical and exact effective potentials as functions of the background constant
field’s modulus

∣∣∣~φ
∣∣∣ at N = 2, λ/4! = 1 and m2 = −1 (left) or m2 = +1 (right).

The lowest energy states of the system at the classical (i.e. at the tree) level are given by the
minima of the classical potential (2.46). In the situation where the coupling constant λ is real
and zero or positive (which is a restriction followed to obtain all numerical results presented in
this thesis), we can show by minimizing the classical potential (2.46) that these are:

• For m2 > 0, a unique vacuum ~φ = ~0 where the O(N) symmetry is conserved (sponta-
neously as well as explicitly).

20Relation (2.20) reduces to the leftmost equality of (2.44), i.e. Veff

(
~φ
)

= Γ(1PI)
(
~φ
)
, for our (0+0)-D O(N)

model.
21At finite dimensions, the classical action S differs from the corresponding classical potential U since the

latter does not contain any derivative (i.e. kinetic) terms.



20 CHAPTER 2. SETTING THE STAGE

• For m2 < 0 and λ 6= 0, a manifold of degenerate vacua (satisfying ~φ2 = −3!m2/λ > 0)
where the original O(N) symmetry is spontaneously (but not explicitly) broken down to
O(N − 1).

In the full theory, the lowest energy states are found by minimizing the exact effective potential
V exact
eff

(
~φ
)
, which yields a unique gs conserving the O(N) symmetry (spontaneously and explic-

itly), irrespectively of the sign of m2 as shown by fig. 2.1. In what follows, we will refer to the
phase with m2 < 0 (m2 > 0) as broken-symmetry (unbroken-symmetry) regime or phase, even
though one must keep in mind that the O(N) symmetry is broken down only spontaneously
and only at the classical level. This absence of broken symmetry in the exact solution of the toy
model under consideration enables us to make an analogy with the study of finite-size systems
(and nuclei notably) which do not exhibit any SSB, as we discussed in chapter 1. We have also
illustrated in this way with fig. 2.1 a general result for spatial dimensions less than or equal
to two, where the divergences of Goldstone propagators cause large quantum fluctuations that
spread away any classically selected configuration, hence precluding the spontaneous breakdown
of a continuous symmetry [153].
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In this chapter, we investigate various diagrammatic PI techniques defined in section 2.2. We in-
deed saw that the PI formalism offers a powerful language for a systematic, controlled treatment
of quantum fluctuations by dressing an initial, reference configuration of a many-body system.
It also provides us with convenient mathematical manipulations for reshuffling (bosonic) collec-
tive fluctuations so that it is efficiently captured from the leading order of the description, e.g.
via a HST and/or by coupling sources to composite operators within the nPI EA framework.
The goals we ultimately have in mind are: i) to find the theoretical construct underpinning
the nuclear EDF method, for it to be rigorously formulated and turned into a systematically
improvable approach; ii) to design other optimal strategies for catching efficiently the typical
correlations at play in strongly-coupled many-body systems. To that end, we investigate several
frameworks to incorporate non-perturbative collective features at the lowest non-trivial orders.
To analyze these various diagrammatic expansions and their resummation properties, we work
within the O(N)-symmetric ϕ4-theory where the various strategies are first derived in arbitrary
spacetime dimensions for both the unbroken- and broken-symmetry regimes. We then perform
our numerical applications in the exactly solvable (0+0)-D situation presented in section 2.4,
where we have seen that radiative corrections restore the O(N) symmetry spontaneously broken
at the classical level in the phase with m2 < 0.

More precisely, the chapter is organized as follows. First, a general presentation of the var-
ious studied strategies is given in section 3.1. In section 3.2, we focus on perturbative schemes
expanding around the non-interacting physics or the classical configuration. Because of the
asymptotic nature of the perturbative series representation of our physical quantities, mean-
ingful results can only be obtained after applying proper resummation techniques, which are
examined in section 3.3. Then, we investigate the treatment of many-body systems within the
optimized perturbation theory (OPT) [154–161] in section 3.4. The latter provides a variational
improvement of a perturbative expansion by adding and subtracting an arbitrary quadratic
term in the classical action of the theory under consideration, then optimizing the perturba-
tive expansion by imposing the resulting truncated series to be stationary with respect to this
quadratic kernel at the working order rather than just at the leading order (as done for
example in MBPT implemented on top of a self-consistent mean-field configuration such as
the Hartree-Fock and HFB reference states). Finally, the nPI EA method is considered in
section 3.5. It offers a hybridation of variational and perturbative expansions, where a series
of Feynman diagrams is involved, with 1- through n-point (connected) correlation functions
obtained by self-consistently dressing the bare ones via variational equations of motion. In
particular, for n = 2, the so-called 2PPI reduction of the 2PI EA provides a firm theoretical
ground to DFT [85, 162–165], as will be explained in section 3.5.3.
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3.1 Aim of the study
We consider the finite-dimensional counterpart of the classical action (2.30):

S
[
~̃ϕ
]

=

∫

x

[
1

2
(∇xϕ̃a(x)) (∇xϕ̃

a(x)) +
m2

2
ϕ̃a(x)ϕ̃a(x) +

λ

4!
(ϕ̃a(x)ϕ̃a(x))2

]

≡
∫ ~β

0

dτ

∫

RD−1

dD−1r

[
1

2

(
∂τ ~̃ϕ · ∂τ ~̃ϕ+∇r

~̃ϕ · ∇r
~̃ϕ
)

+
m2

2
~̃ϕ

2
+
λ

4!

(
~̃ϕ

2
)2
]
,

(3.1)

with implicit summation over repeated internal indices (also called color indices). Introducing
a local source ~J(x) and a bilocal one K(x, y), a generating functional of the theory is given by:

Z
[
~J,K

]
= e

1
~W
[
~J,K
]

=

∫
D~̃ϕ e−

1
~SJK

[
~̃ϕ
]
, (3.2)

with
∫
D~̃ϕ =

∫
Dϕ̃1 · · ·

∫
Dϕ̃N and

SJK

[
~̃ϕ
]
≡ S

[
~̃ϕ
]
−
∫

x

Ja(x)ϕ̃a(x)− 1

2

∫

x,y

ϕ̃a(x)Kab(x, y)ϕ̃b(y) . (3.3)

Except for the zero-dimensional situation1, the integral in (3.2) can not be computed exactly,
and therefore needs to be treated approximatively, e.g. within the expansion schemes discussed
subsequently.

The purpose of this work is to investigate various approaches for capturing efficiently, i.e.
from the lowest non-trivial orders of the description, the correlated behavior of the system. In
wavefunction-based theory, an expansion method is specified by a splitting of the many-body
Hamiltonian H into so-called unperturbed H0 and residual H1 parts. After solving (part of)
the many-body problem for H0, one goes from an eigenstate |Θ(0)〉 of H0 to an exact eigenstate
|Ψ〉 of H by incorporating the physics encoded into H1 within a given expansion method (of
perturbative or non-perturbative nature). For the expansion method to converge efficiently
(and even to start in open-shell systems), a careful partitioning between unperturbed and
residual sectors must be employed. The unperturbed reference state |Θ(0)〉 can be chosen under
the form of a product state, i.e. H0 is quadratic in the fields (i.e. it is a 1-body operator).
In finite-size systems featuring so-called static correlations, responsible for collective behaviors
such as density oscillations or superfluidity, a more sophisticated choice for |Θ(0)〉 is needed, e.g.
under the form of a linear combination of non-orthogonal symmetry-breaking product states,
each parametrized by a set of order parameters associated to the broken symmetries (i.e. a
PGCM ansatz). Such a linear combination captures non-negligible fluctuations of the order
parameters from the zeroth-order description, including the ones restoring the symmetries of
the system.

Likewise, in the PI language, a given expansion method is based on a splitting of the classical
action between an unperturbed and a residual part S = S0 + S1. Such a partitioning is not
unique, and it is the purpose of this study to explore various splittings and to analyze their
effectiveness in catching correlations from the first non-trivial orders of the chosen approach. For
instance, S0 is usually obtained after reducing the interacting theory to a free theory, possibly
with self-consistently determined parameters (e.g. in the self-consistent mean-field approach).
Typically, the quartic self-interaction

(
~̃ϕ · ~̃ϕ

)2 would be replaced by a term proportional to

1To clarify, the zero-dimensional situation or zero-dimensional limit refers throughout this entire thesis to
the (0+0)-D situation (and not to the (0+1)-D situation, as it is sometimes the case in the literature).
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〈
~̃ϕ · ~̃ϕ

〉
0
~̃ϕ · ~̃ϕ, where

〈
~̃ϕ · ~̃ϕ

〉
0
is the free field average. To systematically improve on such

a S0, one needs to identify some small expansion parameter, which is difficult in practice
(especially in the treatment of strongly-coupled systems). In fact, the reduction yielding S0

would be justified if, for some reasons, the (bosonic) fluctuations of the composite field ~̃ϕ · ~̃ϕ
were negligible compared to the fluctuations of the original field ~̃ϕ itself.

In contrast with the canonical formulation of quantum mechanics, the PI formalism makes it
very convenient to include the physics associated to the composite field ~̃ϕ · ~̃ϕ. In that respect, a
possible option involves the HST, i.e. an exact manipulation by which the two-body interaction
between the original dofs are decoupled at the price of introducing an extra, collective field
(another way to achieve this being to work within the nPI EA framework). The HST is just
based on standard Gaussian integral properties and, in the present situation, translates into
the identity:

e−
λ
~4!

∫
x (~̃ϕ(x)·~̃ϕ(x))

2

=

√
6~
πλ

∫
Dσ̃ e−

∫
x[

6~
λ
σ̃2(x)+iσ̃(x)~̃ϕ(x)·~̃ϕ(x)] , (3.4)

where the Hubbard-Stratonovich (or auxiliary) field σ̃(x) is a collective quantum (i.e. fluctuat-
ing) field which is a scalar in color space. The original theory based on ~̃ϕ(x) is then transformed
into an equivalent one whose partition function reads, after the redefinition σ̃ →

√
λ

12~2 σ̃, as
follows:

Zmix =

∫
D~̃ϕDσ̃ e− 1

~Smix

[
~̃ϕ,σ̃
]
∝ Z

[
~J = ~0,K = 0

]
, (3.5)

with

Smix

[
~̃ϕ, σ̃

]
=

1

2

∫

x

[(
∇x
~̃ϕ(x)

)
·
(
∇x
~̃ϕ(x)

)
+

(
m2 + i

√
λ

3
σ̃(x)

)
~̃ϕ(x) · ~̃ϕ(x) + σ̃2(x)

]
. (3.6)

At this stage, one can work with the mixed system thus obtained, which involves both ~̃ϕ
and σ̃ as dofs and where the original, cumbersome quartic interaction between the original dofs
has been replaced by a Yukawa interaction between ~̃ϕ and the collective field σ̃. We can also
exploit the fact that the mixed action (3.6) is now quadratic in the field ~̃ϕ, which can therefore
be integrated out in the partition function (3.5), thus leading to:

Zcol =

∫
Dσ̃ e− 1

~Scol[σ̃] ∝ Z
[
~J = ~0,K = 0

]
, (3.7)

with
Scol[σ̃] =

1

2

∫

x

σ̃2(x)− 1

2
STr [ln(Gσ̃)] , (3.8)

and

G−1
σ̃;ab(x, y) =

(
−∇2

x +m2 + i

√
λ

3
σ̃(x)

)
δabδ(x− y) , (3.9)

where the supertrace STr is by definition the trace taken with respect to both color and space-
time indices, i.e. STr ≡ TraTrx.

For each of these three representations, coined as original, mixed and collective hereafter, we
will then proceed to a partitioning between unperturbed and residual sectors and account for the
physics encoded in the residual part within a given (perturbative or non-perturbative) scheme.
The performances of each strategy will be also tested in (0+0)-D by comparing the gs energy
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and density obtained at a given order of the studied expansions with their exact counterparts
given respectively by Eexact

gs and ρexactgs defined in section 2.4. We also explained in the latter
section that the phase of the O(N) model under consideration withm2 < 0 (and with λ real and
positive, which is a restriction often left implicit in our forthcoming discussions, although it only
applies to our numerical applications and not to our formal derivations) exhibits a spontaneous
breakdown of the O(N) symmetry at the classical level whereas the field fluctuations lead
to the restoration of this symmetry in the framework of the exact solution. The analysis of
the gs symmetry properties at each order of the studied expansions will be carried out by
systematically extending each expansion scheme to this phase.

3.2 Loop expansions and perturbative treatment

Among the various strategies one can elaborate to tackle a many-body problem, perturbation
theory (PT) generally comes as a first attempt. In the PI formalism, PT is implemented by
splitting the classical action (in presence of the sources) into a reference part S0

JK and a residual
part S1

JK , before perturbatively introducing the effects of the residual part in the Z and W
functionals. A first (naive) approach is to organize the perturbative expansion by powers of the
interaction after taking the action of the non-interacting system (i.e. at λ = 0) as the reference
configuration. This translates into:

SJK

[
~̃ϕ
]

= S0
JK

[
~̃ϕ
]

+ S1
JK

[
~̃ϕ
]
, (3.10)

S0
JK

[
~̃ϕ
]

=
1

2

∫

x,y

ϕ̃a(x)G−1
0;K;ab(x, y)ϕ̃b(y)−

∫

x

Ja(x)ϕ̃a(x) , (3.11)

S1
JK

[
~̃ϕ
]

=
λ

4!

∫

x

(ϕ̃a(x)ϕ̃a(x))2 , (3.12)

with the free propagator of the field ~̃ϕ in presence of the sources:

G−1
0;K;ab(x, y) =

(
−∇2

x +m2
)
δabδ(x− y)−Kab(x, y) . (3.13)

In particular, such a λ-wise perturbative expansion breaks down in the broken-symmetry phase
where the partition function of the non-interacting system diverges.

Let us briefly mention here another expansion method for many-body systems featuring
some internal symmetry. When the dofs have N components, scalar composite fields may
exhibit small fluctuations in the large N limit, thus providing us with a relevant leading order as
a starting point for an efficient expansion (exploiting 1/N as expansion parameter). This yields
the so-called large N or 1/N -expansions2 [166]. The 1/N -expansion of the zero-dimensional
O(N)-symmetric ϕ4 model is detailed in appendix B.

Another approach consists in implementing PT under the form of a loop expansion (LE), i.e.
to organize the perturbative series by powers of the fluctuations of the field around its classical
configuration. The main assumption behind the LE is that field configurations different from
the field expectation value only give a small contribution to the functional integral. The LE
will be carried out after considering three types of splitting of the classical action, involving the
original, mixed and collective representations based on S

[
~̃ϕ
]
, Smix

[
~̃ϕ, σ̃

]
and Scol[σ̃] respectively,

where correlations are differently shuffled between the unperturbed and residual parts.

2See ref. [88] and references therein for a complete presentation of 1/N -expansions.
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3.2.1 Splitting of the classical actions

Within the LE framework, the splitting of each classical action S
[
~̃ϕ
]
, Smix

[
~̃ϕ, σ̃

]
and Scol[σ̃],

added to the chosen source-dependent terms, between unperturbed and residual parts stems
from a Taylor expansion around their saddle points.

3.2.1.1 Original representation

In the original theory with classical action in presence of the external sources (3.3), the saddle
point ~ϕcl(x) satisfies:

δSJK
[
~̃ϕ
]

δ~̃ϕ(x)

∣∣∣∣∣
~̃ϕ=~ϕcl

=
δS
[
~̃ϕ
]

δ~̃ϕ(x)

∣∣∣∣∣
~̃ϕ=~ϕcl

− ~J(x)−
∫

y

K(x, y)~ϕcl(y) = ~0 ∀x . (3.14)

Setting3 ~̃ϕ = ~ϕcl +
√
~ ~̃χ, the Taylor expansion of SJK

[
~̃ϕ
]
around ~̃ϕ = ~ϕcl leads to the following

splitting:
SJK

[
~̃ϕ = ~ϕcl +

√
~ ~̃χ
]

= S0
ϕcl;JK

[
~̃χ
]

+ S1
ϕcl;JK

[
~̃χ
]
, (3.15)

S0
ϕcl;JK

[
~̃χ
]

= SJK [~ϕcl] +
~
2

∫

x,y

χ̃a(x)G−1
ϕcl;JK;ab(x, y)χ̃b(y) , (3.16)

S1
ϕcl;JK

[
~̃χ
]

=
~ 3

2λ

3!

∫

x

χ̃a(x)χ̃a(x)χ̃b(x)ϕcl;b(x) +
~2λ

4!

∫

x

χ̃a(x)χ̃a(x)χ̃b(x)χ̃b(x) , (3.17)

with G−1
ϕcl;JK

being the unperturbed inverse propagator in presence of the sources4:

G−1
ϕcl;JK;ab(x, y) ≡ δ2SJK

[
~̃ϕ
]

δϕ̃a(x)δϕ̃b(y)

∣∣∣∣∣
~̃ϕ=~ϕcl

=

(
−∇2

x +m2 +
λ

6
ϕccl(x)ϕcl;c(x)

)
δabδ(x− y) +

λ

3
ϕcl;a(x)ϕcl;b(x)δ(x− y)

−Kab(x, y) .

(3.18)

The propagator (3.18) differs from that of (3.13) involved in the λ-wise expansion as it is
dressed by the classical solution ~ϕcl. In the unbroken-symmetry phase, where ~ϕcl = ~0, the ~-
and λ-expansions coincide. On the other hand, building the perturbative expansion on top of
the symmetry-breaking saddle point allows for the exploration of the broken-symmetry phase
within PT, contrary to the λ-expansion.

3.2.1.2 Mixed representation

The mixed representation can be based on generating functionals involving the local sources
~J(x), j(x) as well as the bilocal ones K(x, y) and k(x, y), associated with the original and
collective fields respectively. This gives us e.g.:

Zmix

[
J ,K

]
= e

1
~Wmix[J ,K] =

∫
D~̃ϕDσ̃ e− 1

~Smix,JK

[
~̃ϕ,σ̃
]
, (3.19)

3The
√
~ factor is explicitly introduced such that ~̃χ ∼ O(1) and any dependence on the fluctuations around

the saddle point translates into an appropriate power of the reduced Planck’s constant ~.
4The propagator G−1

ϕcl;JK
implicitly depends on the source ~J through the saddle point ~ϕcl.
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where

Smix,JK

[
Ψ̃
]
≡ Smix

[
Ψ̃
]
−
∫

x

Jα(x)Ψ̃α(x)− 1

2

∫

x,y

Ψ̃α(x)Kαβ(x, y)Ψ̃β(y) , (3.20)

with Smix given by (3.6) and with superfields living in a (N + 1)-dimensional extended color
space aggregating the N components of the original dofs and the collective one, i.e.:

Ψ̃(x) ≡
(
~̃ϕ(x)
σ̃(x)

)
, (3.21)

J (x) ≡
(
~J(x)
j(x)

)
, (3.22)

K(x, y) ≡
(
K(x, y) ~0
~0T k(x, y)

)
. (3.23)

In (3.20) and hereafter, Greek indices run over the (N + 1)-dimensional superspace while Latin
indices run over the N -dimensional color space. The saddle point Ψcl ≡

(
~ϕcl σcl

)T of Smix,JK
satisfies:

δSmix,JK
[
Ψ̃
]

δΨ̃(x)

∣∣∣∣∣
Ψ̃=Ψcl

= 0 ∀x . (3.24)

Setting Ψ̃ = Ψcl+
√
~ Ξ̃ with Ξ̃ ≡

(
~̃χ ζ̃

)T

, the Taylor expansion of Smix,JK
[
Ψ̃
]
around Ψ̃ = Ψcl

leads to the splitting:

Smix,JK

[
Ψ̃ = Ψcl +

√
~ Ξ̃
]

= S0
mix,Ψcl;JK

[
Ξ̃
]

+ S1
mix,Ψcl;JK

[
Ξ̃
]
, (3.25)

S0
mix,Ψcl;JK

[
Ξ̃
]

= Smix,JK[Ψcl] +
~
2

∫

x,y

Ξ̃α(x)G−1
Ψcl;JK;αβ(x, y)Ξ̃β(y) , (3.26)

S1
mix,Ψcl;JK

[
Ξ̃
]

= i~
3
2

√
λ

12

∫

x

ζ̃(x)χ̃a(x)χ̃a(x) , (3.27)

where the unperturbed inverse propagator in presence of the sources reads:

G−1
Ψcl;JK(x, y) ≡ δ2Smix,JK

[
Ψ̃
]

δΨ̃(x)δΨ̃(y)

∣∣∣∣∣
Ψ̃=Ψcl

=



(
−∇2

x +m2 + i
√

λ
3
σcl(x)

)
IN i

√
λ
3
~ϕcl(x)

i
√

λ
3
~ϕT
cl(x) 1


 δ(x− y)−K(x, y) ,

(3.28)

with ID being the D-dimensional identity matrix. As compared to the original representation,
the classical configuration of the collective field σcl dresses the propagator of the original dofs:

G−1
σcl;JK;ab(x, y) =

(
−∇2

x +m2 + i

√
λ

3
σcl(x)

)
δabδ(x− y)−Kab(x, y) . (3.29)

From the equation of motion (3.24) at vanishing sources, we show that the saddle points ~ϕcl

and σcl are related via:

σcl(x) = −i
√

λ

12
~ϕcl(x) · ~ϕcl(x) , (3.30)
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where ~ϕcl and σcl denote respectively the configurations of ~ϕcl and σcl when all sources are set
equal to zero. One therefore recovers from (3.29) the inverse propagator in the original represen-
tation (3.18), up to a term which is accounted for in off-diagonal parts of the superpropagator
in the mixed representation. In other words, as long as one works within PT organized in
powers of the unperturbed propagators, the same physics is encoded in the unperturbed
sector of both the original and mixed representations, and it remains to be seen whether the
incorporation of the residual physics is more efficient in one of these two representations.

3.2.1.3 Collective representation

Finally, the collective representation relies on the partition function (3.7) which becomes, after
introducing the local source J (x) =

(
~J(x) j(x)

)T
:

Zcol

[
J
]

= e
1
~Wcol[J ] =

∫
Dσ̃ e− 1

~Scol,J [σ̃] , (3.31)

with

Scol,J [σ̃] = Scol[σ̃]−
∫

x

j(x)σ̃(x)− 1

2

∫

x,y

Ja(x)Gσ̃;ab(x, y)J b(y) , (3.32)

where Scol and Gσ̃ are given by (3.8) and (3.9) respectively. The saddle point σcl of Scol,J
satisfies:

δScol,J [σ̃]

δσ̃(x)

∣∣∣∣
σ̃=σcl

= 0 ∀x . (3.33)

Setting σ̃ = σcl +
√
~ ζ̃, a Taylor expansion of Scol,J around σ̃ = σcl leads to the splitting:

Scol,J

[
σ̃ = σcl +

√
~ ζ̃
]

= S0
col,σcl;J

[
ζ̃
]

+ S1
col,σcl;J

[
ζ̃
]
, (3.34)

S0
col,σcl;J

[
ζ̃
]

= Scol,J [σcl] +
~
2

∫

x,y

ζ̃(x)D−1
σcl;J (x, y)ζ̃(y) , (3.35)

S1
col,σcl;J

[
ζ̃
]

=
∞∑

n=3

~n
2

n!

∫

x1,··· ,xn
S

(n)
col,J (x1, · · · , xn)ζ̃(x1) · · · ζ̃(xn) , (3.36)

with

S
(n)
col,J (x1, · · · , xn) ≡ δnScol,J [σ̃]

δσ̃(x1) · · · δσ̃(xn)

∣∣∣∣
σ̃=σcl

, (3.37)

and Dσcl;J (x, y) being the propagator of the collective field in presence of the sources, i.e.:

D−1
σcl;J (x, y) = S

(2)
col,J (x, y) . (3.38)

The unperturbed and residual channels both involve the propagator of the original field ~̃ϕ(x):

G−1
σcl;J ;ab(x, y) =

(
−∇2

x +m2 + i

√
λ

3
σcl(x)

)
δabδ(x− y) , (3.39)

which coincides, in the limit where all sources vanish, with the mixed representation one (3.29),
with however a different configuration for the saddle point σcl renormalizing the mass. We now
proceed to the perturbative expansion based on each of the three aforementioned splittings.
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3.2.2 Loop expansions

In each representation of the system, the LE is implemented after inserting the corresponding
action split into unperturbed and residual parts in the partition function Z, and then Taylor
expanding the exponential of S1.

3.2.2.1 Original loop expansion

In the framework of the original theory, the ~-expansion for the partition function reads:

ZLE;orig
[
~J,K

]
= e−

1
~SJK [~ϕcl]

(∫
D~̃χ e−

1
2

∫
x,y

~̃χ(x)·
(
G−1
ϕcl;JK

(x,y)~̃χ(y)
))

×


1 +

∞∑

n=1

(−1)n

(3!)n n!

n∑

q=0

(
n
q

)
~
n+q

2

4q

〈(
λ

∫

x

~̃χ
2
(x)~̃χ(x) · ~ϕcl(x)

)n−q (
λ

∫

x

(
~̃χ

2
(x)
)2
)q〉

0,JK


 ,

(3.40)

with the source-dependent expectation value defined as:

〈
· · ·
〉

0,JK
=

1

Z0

[
~J,K

]
∫
D~̃χ · · · e−

1
~S

0
ϕcl;JK

[
~̃χ
]
, (3.41)

and
Z0

[
~J,K

]
=

∫
D~̃χ e−

1
~S

0
ϕcl;JK

[
~̃χ
]
. (3.42)

The ~-expansion of the Schwinger functional W LE;orig
[
~J,K

]
≡ ~ ln

(
ZLE;orig

[
~J,K

])
derives

from (3.40) together with the linked-cluster theorem [89], by virtue of which one can substitute
the correlation functions in (3.40) by their connected counterparts, thus leading to:

W LE;orig
[
~J,K

]
=−SJK

[
~ϕcl
]

+
~
2

STr
[
ln
(
Gϕcl;JK

)]

+
∞∑

n=1

(−1)n

(3!)n n!

n∑

q=0

(
n
q

)
~
n+q+2

2

4q

〈(
λ

∫

x

~̃χ
2
(x)~̃χ(x) · ~ϕcl(x)

)n−q (
λ

∫

x

(
~̃χ

2
(x)
)2
)q〉c

0,JK

,

(3.43)

where the term with the supertrace STr stems from Gaussian integration (see appendix A):
∫
D~̃χ e−

1
2

∫
x,y

~̃χ(x)·
(
G−1
ϕcl;JK

(x,y)~̃χ(y)
)

= e
1
2

STr[ln(Gϕcl;JK)] . (3.44)

Denoting the modulus of the classical solution ~ϕcl as %(x) ≡ |~ϕcl(x)|, we can choose a = N as
the direction along which the SSB occurs in the broken-symmetry phase without any loss of
generality, i.e.:

~ϕcl(x) = %(x)




0
...
0
1


 . (3.45)

The propagator (3.18) can then be separated into the one associated to the O(N − 1) subspace
(the Goldstone manifold in the broken-symmetry phase when N ≥ 2), namely:

G−1
ϕcl;JK;g;ab(x, y) =

(
−∇2

x +m2 +
λ

6
%2(x)

)
δabδ(x− y)−Kab(x, y) ∀a, b ∈ [1, N − 1] , (3.46)
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and the one of the remaining massive (or Higgs) mode for a = N , i.e.:

G−1
ϕcl;JK;NN(x, y) =

(
−∇2

x +m2 +
λ

2
%2(x)

)
δ(x− y)−KNN(x, y) . (3.47)

The connected correlation functions in (3.43) can therefore be rewritten as:
〈(

λ

∫

x

~̃χ
2
(x)χ̃N(x)%(x)

)n−q (
λ

∫

x

(
~̃χ

2
(x)
)2
)q〉c

0,JK

, (3.48)

and evaluated by means of Wick’s theorem (as presented in section 2.2), conveniently repre-
sented by a set of Feynman diagrams with the rules:

x, a y, b → Gϕcl;JK;ab(x, y) , (3.49a)

xa
b

c
N → λ%(x)δabδcN , (3.49b)

xa
b

c
d → λδabδcd . (3.49c)

Up to orderO
(
~2
)
5, the perturbative series thus obtained for the Schwinger functionalW

[
~J,K

]

reads:

W LE;orig
[
~J,K

]
=− SJK

[
~ϕcl

]
+

~
2

STr
[
ln
(
Gϕcl;JK

)]

+ ~2


 −

1

24
− 1

12
+

1

18

+
1

18
+

1

36
+

1

18

+
1

72




+O
(
~3
)
.

(3.50)

5One might also refer to order O
(
~2
)
as the 2-loop order or 2-loop level. Indeed, for LEs of Schwinger

functionals or diagrammatic expansions of EAs, the powers of ~ count the number of loops in the corresponding
diagrams. In other words, n-loop order is synonymous with order O

(
~n
)
in the language used here.
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Further details on the evaluation of the diagrams contributing to the latter diagrammatic series
are given in appendix C.1.

In the (0+0)-D limit, the perturbative expansion of the Schwinger functional given by (3.50)
reduces to:

W LE;orig
(
~J,K

)
=− SJK

(
~ϕcl

)
+

~
2

[
(N − 1) ln

(
2πGϕcl;JK;g

)
+ ln

(
2πGϕcl;JK;NN

)]

+
~2λ

72

[
− 3G2

ϕcl;JK;g

(
−1 +N2

)
+ 15G3

ϕcl;JK;NNλ%
2

+G2
ϕcl;JK;NN

(
−9 + 6Gϕcl;JK;g (−1 +N)λ%2

)

+Gϕcl;JK;NNGϕcl;JK;g (−1 +N)
(
−6 + Gϕcl;JK;g (1 +N)λ%2

) ]

+O
(
~3
)
,

(3.51)

where we have assumed that Kab = Kδab so that (3.46) becomes:

G−1
ϕcl;JK;g;ab = G−1

ϕcl;JK;gδab ∀a, b ∈ [1, N − 1] , (3.52)

with
G−1
ϕcl;JK;g = m2 +

λ

6
%2 −K . (3.53)

When ~J = ~0 and K = 0, the modulus % satisfies:

%2 ≡ %2
(
~J = ~0,K = 0

)
=





0 ∀m2 ≥ 0 ,

−6m2

λ
∀m2 < 0 and λ 6= 0 ,

(3.54)

which yields the following expressions for Gϕcl;JK;g and Gϕcl;JK;NN at vanishing sources:

Gϕcl;g = Gϕcl;gIN−1 =





G0 IN−1 =
1

m2
IN−1 ∀m2 > 0 ,

∞ IN−1 ∀m2 ≤ 0 and λ 6= 0 ,

∀N ≥ 2 , (3.55)

Gϕcl,NN =





G0 =
1

m2
∀m2 ≥ 0 ,

− 1

2m2
∀m2 < 0 and λ 6= 0 ,

∀N ≥ 1 . (3.56)

From (2.38) and (2.39), one can then obtain the corresponding series for the gs energy and den-
sity. Setting x ≡ ~λ/m4 (thus showing that our loop-wise expansion amounts to an expansion
in powers of the coupling constant λ), we get in the regime with m2 > 0 and for N ∈ N∗:

ELE;orig
gs =− N

2
ln

(
2π

m2

)
+
N (2 +N)

24
x− N (6 + 5N +N2)

144
x2

+
N (120 + 128N + 44N2 + 5N3)

2592
x3 +O

(
x4
)
,

(3.57)

and

ρLE;origgs =
~
m2

(
1− 2 +N

6
x+

6 + 5N +N2

18
x2 − 120 + 128N + 44N2 + 5N3

216
x3 +O

(
x4
))

.

(3.58)
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In the regime with m2 < 0, we have for N = 1:

ELE;orig
gs = − 3

2x
− 1

2
ln

(
π

−m2

)
− x

8
− x2

12
− 11x3

96
+O

(
x4
)
, (3.59)

and

ρLE;origgs =
~
m2

(
−6

x
+ 1 +

x

2
+

2x2

3
+

11x3

8
+O

(
x4
))

. (3.60)

For N > 1, no finite results can be obtained in the phase with m2 < 0 for the gs energy
and density, as long as we stick with the original dofs ~̃ϕ, because in this case the Goldstone
propagator Gϕcl;g exhibits (IR) divergences [153] which, as discussed in section 2.4, preclude
the spontaneous breakdown of the continuous O(N) symmetry.

3.2.2.2 Mixed loop expansion

Repeating the calculations outlined between (3.40) and (3.43) for the mixed case, the LE yields:

W LE;mix[J ,K
]

=− Smix,JK[Ψcl] +
~
2
ST r

[
ln
(
GΨcl;JK

)]

+
∞∑

n=1

(−1)n

(2n)!

~n+1λn

12n

〈〈(∫

x

ζ̃(x)~̃χ(x) · ~̃χ(x)

)2n
〉〉c

0,JK

,
(3.61)

where the superpropagator GΨcl;JK(x, y) can be written in terms of the propagatorGσcl;JK(x, y)

of the original dofs ~̃ϕ, the propagator Dσcl;JK(x, y) of the collective dof σ̃ and the mixed prop-
agator ~Fϕcl;JK(x, y) as follows:

GΨcl;JK =

(
Gσcl;JK

~Fϕcl;JK
~FT
ϕcl;JK Dσcl;JK

)
, (3.62)

with the supertrace ST r satisfying ST r ≡ TrαTrx, while the source-dependent expectation
value involves the following reference measure:

〈〈
· · ·
〉〉

0,JK =
1

Zmix,0

[
J ,K

]
∫
DΞ̃ · · · e−

1
~S

0
mix,Ψcl;JK

[
Ξ̃
]
, (3.63)

and

Zmix,0

[
J ,K

]
=

∫
DΞ̃ e

− 1
~S

0
mix,Ψcl;JK

[
Ξ̃
]
. (3.64)
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The connected correlation functions are once again conveniently represented by Feynman dia-
grams with the rules:

a bx

a bx

a bx




→
√
λ δab , (3.65a)

x, a y, b → Gσcl;JK;ab(x, y) , (3.65b)

x y → Dσcl;JK(x, y) , (3.65c)

x, a y → Fϕcl;JK;a(x, y) . (3.65d)

Up to order O
(
~2
)
, we derive in this way the following expression of the Schwinger functional:

W LE;mix[J ,K
]

=− Smix,JK[Ψcl] +
~
2
ST r

[
ln
(
GΨcl;JK

)]

− ~2


 1

24
+

1

12
+

1

6

+
1

6
+

1

6




+O
(
~3
)
,

(3.66)

and we refer to appendix C.2 for additional details on the determination of the diagrams.

In the (0+0)-D situation, the gs energy and density are obtained from the Schwinger func-
tional according to the relations:

ELE;mix
gs = −1

~
W LE;mix(J = 0,K = 0

)
, (3.67)

ρLE;mix
gs =

2

N
Tra


 ∂W LE;mix

(
J ,K

)

∂K

∣∣∣∣∣J=0
K=0


 = − 2

N

∂W LE;mix(J = 0,K = 0)

∂m2
, (3.68)

which are the counterparts of (2.38) and (2.39) in the mixed representation. When the sources
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J and K vanish, the saddle point Ψcl reduces to:

Ψcl ≡ Ψcl(J = 0,K = 0) =

(
~ϕcl

σcl

)
=





(
~0

0

)
∀m2 ≥ 0 ,



√
−6m2

λ
~e

im2
√

3
λ


 ∀m2 < 0 and λ 6= 0 ,

(3.69)

with ~e a unit N -component vector. In the unbroken-symmetry regime and when all sources are
set equal to zero, the inverse propagator G−1

Ψcl
= G−1

0 is diagonal:

G−1
0 =

(
m2IN ~0
~0T 1

)
, (3.70)

so that all propagators of the theory reduce to the bare ones, i.e.:

Gσcl = G0 = G0 IN =
1

m2
IN , (3.71)

Dσcl = D0 = 1 , (3.72)

~Fϕcl = ~F0 = ~0 . (3.73)

In this case, the Schwinger functional (3.66) reads up to order O
(
~4
)
:

W LE;mix(J = 0,K = 0) =
~
2

[N ln(2πG0) + ln(D0)]− ~2λ

24

(
2D0G

2
0N +D0G

2
0N

2
)

+
~3λ2

144

(
6D2

0G
4
0N + 5D2

0G
4
0N

2 +D2
0G

4
0N

3
)

− ~4λ3

2592

(
120D3

0G
6
0N + 128D3

0G
6
0N

2 + 44D3
0G

6
0N

3 + 5D3
0G

6
0N

4
)

+O
(
~5
)
,

(3.74)

which coincides with the Schwinger functional (3.51) of the original theory, still evaluated at
m2 > 0 and vanishing sources. Therefore, the same series representation of the gs energy
and density as in the original theory are found in the mixed representation. Likewise, we get
identical results in the regime with m2 < 0. At m2 < 0, λ 6= 0 and N = 1 for instance, we can
show from (3.69) that the inverse superpropagator at vanishing sources reads:

G−1
Ψcl

=

(
0 −

√
2m2

−
√

2m2 1

)
, (3.75)

and thus

GΨcl = −
(

1
2m2

1√
2m2

1√
2m2

0

)
, (3.76)

leading to the same series as in the original representation in the broken-symmetry regime (and
more specifically to the series (3.59) and (3.60) for Egs and ρgs, respectively). For N > 1, G−1

Ψcl

is a singular matrix and we face the same limitations as in the original representation. To
conclude, the LE based on the mixed representation does not bring anything more compared
to that of the original theory.
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3.2.2.3 Collective loop expansion

We now focus on the LE in the collective representation, i.e. the collective LE. Such a technique
is sometimes called the ε-expansion, as e.g. in ref. [167]. This designation follows from early
works with collective actions [168], which name their expansion parameter ε instead of ~. For
the sake of completeness, we also point out the works of refs. [169, 170] which discuss the
differences of renormalization issues between the collective case and the original one based on
a ϕ4 self-interaction for the original dofs. We do not address the matter of renormalization
here as it is absent from our (0+0)-D applications. Furthermore, the collective LE is usually
not exploited beyond its first non-trivial order. We will outline in this section how to construct
the collective LE series up to their first non-trivial order for our O(N) model at arbitrary
dimensions but we will perform applications of this method up to its third non-trivial order
and combine it with resummation procedures in (0+0)-D. To our knowledge, the collective LE
has neither been pushed up to its third non-trivial order nor been combined with resummation
theory so far, regardless of the model under consideration. Following the same steps as in the
previous representations, the partition function of the theory based on (3.32) reads up to the
first non-trivial order (i.e. up to order O(~)):

ZLE;col[J
]

= e−
1
~Scol,J [σcl]

(∫
Dζ̃ e−

1
2

∫
x,y ζ̃(x)D−1

σcl;J
(x,y)ζ̃(y)

)

×
[

1− ~
24

∫

x,y,z,u

S
(4)
col,J (x, y, z, u)

〈
ζ̃(x)ζ̃(y)ζ̃(z)ζ̃(u)

〉
0,J

+
~
72

∫

x1,y1,z1
x2,y2,z2

S
(3)
col,J (x1, y1, z1)S

(3)
col,J (x2, y2, z2)

〈
ζ̃(x1)ζ̃(y1)ζ̃(z1)ζ̃(x2)ζ̃(y2)ζ̃(z2)

〉
0,J

+O
(
~2
)
]
,

(3.77)

where

〈
· · ·
〉

0,J =
1

Zcol,0

[
J
]
∫
Dζ̃ · · · e−

1
~S

0
col,σcl;J

[
ζ̃
]
, (3.78)

and

Zcol,0

[
J
]

=

∫
Dζ̃ e−

1
~S

0
col,σcl;J

[
ζ̃
]
. (3.79)
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Introducing the Feynman rules:

x, a y, b → Gσcl;J ;ab(x, y) , (3.80a)

x y → Dσcl;J (x, y) , (3.80b)

a bx → i

√
λ

3
δab , (3.80c)

×
x, a

→ Ja(x) , (3.80d)

x y

z

→ S
(3)
col,J (x, y, z) , (3.80e)

x y

zu
→ S

(4)
col,J (x, y, z, u) , (3.80f)

the terms involved in the brackets of the RHS of (3.77) read:

∫

x,y,z,u

S
(4)
col,J (x, y, z, u)

〈
ζ̃(x)ζ̃(y)ζ̃(z)ζ̃(u)

〉
0,J

= 3 , (3.81)

and

∫

x1,y1,z1
x2,y2,z2

S
(3)
col,J (x1, y1, z1)S

(3)
col,J (x2, y2, z2)

〈
ζ̃(x1)ζ̃(y1)ζ̃(z1)ζ̃(x2)ζ̃(y2)ζ̃(z2)

〉
0,J

= 9

+6 .

(3.82)

In these expressions, the propagator of the collective field as well as the vertex functions can
be evaluated after exploiting the following expression for the derivative of the original field
propagator Gσ̃ defined by (3.9):

δGσ̃;ab(x, y)

δσ̃(z)
=
δ
(
G−1
σ̃

)−1

ab
(x, y)

δσ̃(z)

=−
∫

u,v

Gσ̃;a
c (x, u)

δG−1
σ̃;cd(u, v)

δσ̃(z)
Gσ̃;

d
b (v, y)

=− i
√
λ

3
Gσ̃;a

c (x, z)Gσ̃;cb(z, y) ,

(3.83)
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where the derivative of the second line was evaluated with expression (3.9) of G−1
σ̃;ab(x, y). Since

the propagator Gσcl;J (involved in (3.39) and (3.80a)) corresponds to Gσ̃ evaluated at σ̃ = σcl,
we show the following relations directly from (3.83):

D−1
σcl;J (x, y) = −

x y

× ×
− 1

2
x y + δ(x− y) , (3.84)

x y

z

=

x y

z

×

×
+

x y

z

×

×
+

x y

z

× ×
+

x y

z
, (3.85)

and

x y

zu
=−


 x y

zu

×

×
+

x
y

zu

×

×
+

x
y

zu

×

×
+

x y

zu

× ×
+

x y

zu

×

×

+
x y

zu
××

+
x y

zu
××

+
x y

zu

×

×
+

x y

zu

× ×
+

x
y

zu

×

×

+
x

y

zu

×

×
+

x y

zu

×

×
+

x y

zu

+
x y

zu

+
x y

zu

 .

(3.86)

After plugging the vertex functions (3.85) and (3.86) into (3.81) and (3.82) combined with (3.77),
the Schwinger functional in the collective representation is expressed up to order O

(
~2
)
as fol-
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lows:

W LE;col[J
]

=− Scol,J [σcl] +
~
2

Tr
[
ln
(
Dσcl;J

)]

+ ~2




1

8


 4

××
+ 4

×

×
+ 4

××
+ 2 +




+
1

12


 6

×

×

×

×
+ 3

×

×

×

×

+ 6

×

×
+




+
1

8


 4

×

×

×

×
+ 4

×

×

×

×
+

×

×

×

×

+ 4

×

×
+ 2

×

×
+







+O
(
~3
)
.

(3.87)

In the (0+0)-D limit, the Schwinger functional expanded up to the second non-trivial order
(i.e. up to order O(~3)) reads:

W LE;col(J ) =− Scol,J (σcl) +
~
2

ln(Dσcl;J )

− ~2

648
G4
σcl;JD

2
σcl;JNλ

2
[
− 27− 108Gσcl;J J

2 + 5G2
σcl;JDσcl;JNλ

+ 30G3
σcl;JDσcl;J J

2Nλ+ 45G4
σcl;JDσcl;J J

4Nλ
]

+
~3

11664
G6
σcl;JD

3
σcl;JNλ

3
[
− 540− 3240Gσcl;J J

2 + 360G2
σcl;JDσcl;JNλ

+ 2880G3
σcl;JDσcl;J J

2Nλ− 750G5
σcl;JD

2
σcl;J J

2N2λ2

+ 270G8
σcl;JD

3
σcl;J J

4N3λ3 + 540G9
σcl;JD

3
σcl;J J

6N3λ3

+ 405G10
σcl;JD

3
σcl;J J

8N3λ3 + 3G4
σcl;JDσcl;JNλ

(
1836J4

− 25Dσcl;JNλ
)

+ 5G6
σcl;JD

2
σcl;JN

2λ2
(
− 495J4

+Dσcl;JNλ
)

+ 60G7
σcl;JD

2
σcl;J J

2N2λ2
(
− 45J4

+Dσcl;JNλ
)]

+O
(
~4
)
,

(3.88)
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where it follows from (3.84) that:

D−1
σcl;J =

λN

6
G2
σcl;J

(
2Gσcl;J J

2 + 1
)

+ 1 , (3.89)

where we have used the relations Ja = J ∀a and Gσcl;J ;ab = Gσcl;J δab with Gσcl;J given by:

G−1
σcl;J = m2 + i

√
λ

3
σcl , (3.90)

as can be deduced from (3.39). In contrast with the original and mixed representations, the LE
in the collective representation is not organized with respect to the coupling constant λ, thus
making it non-perturbative. The corresponding expressions for the gs energy and density are
deduced once again after imposing that all sources vanish. The saddle points of the collective
classical action Scol (i.e. the solutions of (3.33) at vanishing external sources and in (0+0)-D)
read:

σcl ≡ σcl[J = 0] = i

(√
3m2 ±

√
3m4 + 2Nλ

2
√
λ

)
, (3.91)

to be compared to the equivalent quantity (3.30) in the mixed representation. The propagator
of the original field thus takes the same formG−1

σcl;ab
= G−1

σcl
δab =

(
m2 + i

√
λ
3
σcl

)
δab at vanishing

sources in both the mixed and collective representations but, while the trivial expression for
σcl in the mixed representation leads to the same renormalization of the squared mass as
in the original representation, the non-perturbative expression (3.91) for σcl in the collective
representation yields a non-trivial dressing of Gσcl

, i.e.:

G−1
σcl

=
1

2

(
m2 ∓

√
m4 +

2

3
λN

)
, (3.92)

obtained after inserting (3.91) into (3.90) at vanishing J (i.e. (3.92) is the configuration of (3.90)
when the source J vanishes). Similarly, in moving from the mixed to the collective represen-
tation, we go from a trivial collective field propagator to the non-perturbative expression:

D−1
σcl

=
2λN

3
(
m2 ∓

√
m4 + 2

3
λN
)2 + 1 , (3.93)

which results from the combination of (3.89) at vanishing J and (3.92). We finally deduce the
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series expansions for the gs energy and density valid for all N ≥ 1 and for both signs of m2:

ELE;col
gs =−

3m4 +Nλ−m2
√

9m4 + 6Nλ+ 2Nλ ln

(
12π

3m2+
√

9m4+6Nλ

)

4~λ

+
1

2
ln

(
1 +

6Nλ
(
3m2 +

√
9m4 + 6Nλ

)2

)

− ~
Nλ2

6
(
3m4 + 2Nλ+m2

√
9m4 + 6Nλ

)3

[
27m4 + 8Nλ+ 9m2

√
9m4 + 6Nλ

]

+ ~2 10m2Nλ3

(
3m4 + 2Nλ+m2

√
9m4 + 6Nλ

)6

×
[
108m10 + 90m6Nλ+ 15m2N2λ2 +

(
N2λ2 + 18m4Nλ+ 36m8

)√
9m4 + 6Nλ

]

− ~3 2Nλ4

45
(
3m4 + 2Nλ+m2

√
9m4 + 6Nλ

)9

×
[
9185400m20 + 11136204m16Nλ+ 3610818m12N2λ2 + 52650m8N3λ3

− 70605m4N4λ4 − 1792N5λ5 +
(
− 7119m2N4λ4 − 48474m6N3λ3

+ 476550m10N2λ2 + 2691468m14Nλ+ 3061800m18
)√

9m4 + 6Nλ
]

+O
(
~4
)
,

(3.94)

and

ρLE;colgs =
6

3m2 +
√

9m4 + 6Nλ

+

√
3m2 +

√
3m4 + 2Nλ√

3m4 + 2Nλ

×
{
− ~

6λ(
3m2 +

√
9m4 + 6Nλ

) (
3m4 + 2Nλ+m2

√
9m4 + 6Nλ

)

+ ~2 2λ2
(
3m2 +

√
9m4 + 6Nλ

) (
9m4 +Nλ+ 3m2

√
9m4 + 6Nλ

)
(
3m4 + 2Nλ+m2

√
9m4 + 6Nλ

)4

− ~3 10λ3
(
3m2 +

√
9m4 + 6Nλ

)3

(
3m4 + 2Nλ+m2

√
9m4 + 6Nλ

)7

×
[
54m8 + 15m4Nλ− 2N2λ2 +

(
−m2Nλ+ 18m6

)√
9m4 + 6Nλ

]

+ ~4 2λ4
(
3m2 +

√
9m4 + 6Nλ

)5

9
(
3m4 + 2Nλ+m2

√
9m4 + 6Nλ

)10

×
[
11340m12 + 2538m8Nλ− 1722m4N2λ2 − 21N3λ3 +

(
− 226m2N2λ2

− 414m6Nλ+ 3780m10
)√

9m4 + 6Nλ

]
+O

(
~5
)
}
,

(3.95)
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where relations homologous to (3.67) and (3.68) were exploited, i.e.:

ELE;col
gs = −1

~
W LE;col(J = 0

)
, (3.96)

ρLE;colgs = − 2

N

∂W LE;col(J = 0)

∂m2
. (3.97)

3.2.3 Discussion

The comparison between the exact gs energy and density and the ones obtained within the LE
based on the original (or mixed) and collective representations is performed in figs. 3.1 and 3.2
at N = 1 and 2, respectively. Moreover, we will also examine the vacuum expectation value
of the original field, which signals the spontaneous breakdown of the O(N) symmetry when
becoming finite. It is defined as:

φa(x) ≡ φa

[
~J = ~0,K = 0;x

]
≡ 〈ϕ̃a(x)〉JK

∣∣∣∣ ~J=~0
K=0

, (3.98)

where 〈
· · ·
〉
JK

=
1

Z
[
~J,K

]
∫
D~̃ϕ · · · e− 1

~SJK

[
~̃ϕ
]
. (3.99)

Note that ~φ can only be computed for N = 1 in the original (or mixed) LE, but for all N

in the collective one. In the original and mixed representations, ~φ
(n)

, i.e. ~φ computed up to
order O

(
~n
)
in the LE, stems from the derivative of the corresponding Schwinger functional W

with respect to the source ~J , thus yielding the following relations from series (3.51) (at ~ = 1,
m2 = −1 and N = 1):

φ
(0)

=

√
6

λ
= ϕcl , (3.100)

φ
(1)

= −λ− 8

4

√
3

2λ
, (3.101)

φ
(2)

= −41λ2 + 192λ− 1536

256
√

6λ
, (3.102)

φ
(3)

= −321λ3 + 82λ2 + 384λ− 3072

512
√

6λ
, (3.103)

φ
(4)

= −64573λ4 + 30816λ3 + 7872λ2 + 36684λ− 294912

49152
√

6λ
, (3.104)

which are plotted in fig. 3.3.

According to figs. 3.1 and 3.2 (and thus for N = 1 and 2), the original (as well as the
mixed) LE(s) only yields (yield) a reasonable description of the gs energy and density for very
small values of the coupling constant λ . 0.2 (hence λ/4! . 8.10−3), as expected from the fact
that PT based on the original (and mixed) dofs is, at best, an intrinsically weakly-interacting
approach. The description quickly deteriorates for larger λ. Furthermore, fig. 3.3 shows that,
at N = 1, the expectation value of ~̃ϕ is badly reproduced at each order of the original (and
mixed) LE(s), with no sign of restoration of the (discrete) symmetry broken at the classical
level. However, the first orders of the collective LE yield results close to the exact solutions,
even in the broken-symmetry phase where no finite results can be obtained for N ≥ 2 within
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Figure 3.1: Gs energy Egs (left) or density ρgs (right) calculated at ~ = 1, m2 = ±1 and N = 1
(Re(λ) ≥ 0 and Im(λ) = 0), and compared with the corresponding exact solution (black
dots). The indication “O

(
~n
)
” for the collective LE results specifies that the series representing

W LE;col has been exploited up to order O
(
~n
)
(which implies notably that the corresponding

series for ELE;col
gs is calculated up to order O(~n−1) according to (3.96)). Recall also that the

expansion parameter x is defined as x ≡ ~λ/m4.

the original (and mixed) LE(s). Regarding the expectation value of ~̃ϕ in the framework of
the collective LE, we deduce from the derivative of the generating functional Zcol (expressed
by (3.31)) with respect to the source ~J that:

~φ(x) ∝ δZcol

[
~J, j
]

δ ~J(x)

∣∣∣∣∣ ~J=~0
j=0

∝
[∫
Dσ̃
(∫

y

Gσ̃(x, y) ~J(y)

)
e−

1
~Scol,J [σ̃]

]

~J=~0
j=0

= ~0 ,

(3.105)

to all orders of the collective LE, regardless of the dimension. In other words, the O(N)
symmetry, although possibly (spontaneously) broken down at the classical level, always gets
exactly restored from the first non-trivial order of the collective LE.

In the original and mixed representations (as well as in the collective one, but to a lesser
extent), the perturbative series derived so far show no signs of convergence: the results obtained
for Egs and ρgs worsen as the truncation order (with respect to ~) of these series increases,
except for very small values of λ. This behavior signals the illegitimate application of PT
to a system where the fundamental phenomena are non-perturbative in nature. Indeed, in
quantum mechanics and QFT, PT typically produces asymptotic series with a zero radius
of convergence, whose origin lies in instanton-like effects, i.e. an instability of the theory at
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Figure 3.2: Same as fig. 3.1 with N = 2 instead. Note that no finite results can be obtained in
the broken-symmetry phase (which corresponds to the left panel of both plots) from the LE in
the original and mixed representations.
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Figure 3.3: 1-point correlation function ~φ (defined from (3.98) and (3.99)) calculated at ~ = 1,
m2 = −1 and N = 1 (Re(λ) > 0 and Im(λ) = 0) from the first orders of the original (and
mixed) LE(s) as a function of the coupling constant λ/4!. Note that, at N = 1, ~φ coincides
with φ ≡

∣∣∣~φ
∣∣∣.
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some phase of the coupling (here for λ < 0, where the potential becomes unbounded), which
translates into a factorial growth of the number of Feynman diagrams with the order of the
expansion [171, 172]. Note however that the series underlying the 1/N -expansion are not
asymptotic, although the 1/N -expansion coincides with the collective LE at their first non-
trivial orders according to figs. 3.1 and 3.2. The series underlying the collective LE being
asymptotic however, this equivalence breaks down at higher truncation orders but illustrates
the non-perturbative character of the collective LE. From this connection, we also expect the
collective LE to be more and more performing as N increases, which is in accordance with
figs. 3.1 and 3.2.

Asymptotic series however hide relevant information about the system, that needs to be
deciphered through proper resummation techniques. Within this frame, PT is typically com-
bined with a meticulously crafted analytic continuation function, yielding accurate results far
beyond the weakly-interacting regime, and even allowing for the computation of genuinely
non-perturbative features from low-order PT, as discussed in the next section.

3.3 Resummation of the perturbative series

3.3.1 Borel analysis

The dominant method for giving a meaning to an asymptotic series relies on Borel analysis [173].
Let P (x) be a physical quantity of interest, for which we only know a representation in terms
of a divergent, asymptotic series expansion for small x:

P (x) ∼
∞∑

n=0

pnx
n , (3.106)

with the generic large-order behavior:

pn ∼
n→∞

(−1)nn!annbc

(
1 +O

(
1

n

))
. (3.107)

Typically, the parameter a only depends on the classical action of the system while the pa-
rameters b and c are specific to the quantity P (x) under consideration. Borel analysis first
consists in introducing the Borel transform of the asymptotic series under consideration, which
translates for (3.106) into:

B[P ](ζ) =
∞∑

n=0

pn
Γ(n+ 1)

ζn ∀ζ ∈ C , (3.108)

which is a specific case of the Borel-Le Roy transform [174]:

Bs[P ](ζ) =
∞∑

n=0

pn
Γ(n+ s+ 1)

ζn ∀s ∈ R,∀ζ ∈ C . (3.109)

Both transforms (3.108) and (3.109) remove the factorial growth of the initial series coefficients
pn and the ζ-complex plane is referred to as Borel plane. The new series Bs[P ](ζ), also called
Borel-Le Roy sum (or simply Borel sum at s = 0), now has a finite non-zero radius of conver-
gence and is analytic in a disk around the origin. The original function P (x) is then recovered
from Bs[P ](ζ) after taking the inverse Borel-Le Roy transform, i.e.:

PBs(x) =

∫ ∞

0

dζ ζse−ζBs[P ](xζ) , (3.110)
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which derives from the identity:

1 =

∫∞
0
dζ ζn+se−ζ

Γ(n+ s+ 1)
. (3.111)

By construction, PBs(x) has the same asymptotic expansion as the function P (x). It is actu-
ally an analytic continuation of P (x) to a larger domain and may therefore provide sensible
results out of the original asymptotic series. However, the Borel-Le Roy transform Bs[P ](ζ)
often exhibits poles and branch cuts along the integration path in (3.110), so that the integral
in (3.110) needs to be performed after deforming the integration contour in order to avoid the
singularities in the Borel plane. P (x) is said to be non Borel-summable when the result of the
integration depends on the choice of contour, reflecting the fact that the half-line [0,∞) (where
the perturbative expansion parameter takes values) is a so-called Stokes line. In this case, the
singularities in the Borel plane induce a non-perturbative ambiguity: different integration paths
yield functions with the same asymptotic behavior, but differing by exponentially suppressed
terms which correspond to non-perturbative contributions. A unique well-defined resummation
procedure can still be obtained after including the contributions from instanton-like configura-
tions, thus resulting in a representation of the perturbative expansion under the more general
form of a resurgent transseries. The latter can be derived for instance via the Picard-Lefschetz
integration method, that we discuss next.

3.3.2 Lefschetz thimbles decomposition

Picard-Lefschetz theory provides an elegant framework for generating an ambiguous-free rep-
resentation of a perturbative series [175, 176]. For the sake of simplicity, we illustrate its
application to the studied zero-dimensional model at N = 1. Extensions to higher-dimensional
PIs and systems invariant under continuous symmetries are detailed, e.g., in refs. [175, 176].
Adding a multiplicative constant 1/

√
~ for later convenience, the partition function of the

studied (0+0)-D O(N) model at N = 1 reads:

Z(m2, λ, ~) =
1√
~

∫

R
dϕ̃ e−

1
~S(ϕ̃) , (3.112)

with classical action:
S(ϕ̃) =

m2

2
ϕ̃2 +

λ

4!
ϕ̃4 . (3.113)

The analysis can be straightforwardly extended to more general integrals of the form:
∫

R
dϕ̃ e−

1
~S(ϕ̃)−Jϕ̃−K

2
ϕ̃2

, (3.114)

or ∫

R
dϕ̃ p(ϕ̃)e−

1
~S(ϕ̃) , (3.115)

with p(ϕ̃) a polynomial in the field ϕ̃. Redefining the field via ϕ̃→ ϕ̃/
√
λ yields:

Z(m2, g) =
1√
g

∫

R
dϕ̃ e−

1
g
V (ϕ̃) , (3.116)

with g ≡ ~λ and

V (ϕ̃) ≡ S(ϕ̃)|λ=1 =
m2

2
ϕ̃2 +

1

4!
ϕ̃4 . (3.117)

The fundamental idea behind Picard-Lefshetz theory applied to the PI is appealingly summa-
rized by Paul Painlevé in ref. [177]: “between two truths of the real domain, the easiest and
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shortest path quite often passes through the complex domain”. In the present situation, even
if the integral Z(m2, g) is defined over real variables, the natural space in which the saddle
(or critical) points of the action V (ϕ̃) and their corresponding integration cycles live is the
complexification of the original space. Understanding the behavior of Z(m2, g) for g ∈ R+

therefore passes by the study of its analytic continuation where g = |g|eiθ ∈ C. The argument
of the exponential in (3.116) becomes complex-valued, thus turning the partition function into
a violently oscillating integral whose evaluation is difficult. One can significantly improve the
properties of the integral by:

• Continuing the integrand into the complex plane, i.e. viewing the action V (z) as a
holomorphic function of the complex variable z, such that Z now reads as an open contour
integral:

Z(m2, g) =
1√
g

∫

C
dz e−

1
g
V (z) , (3.118)

where C is a cycle with real dimension 1, coinciding with the real line when g ∈ R+.

• Continuously deforming the integration domain as g varies such that the integral (3.118)
is convergent.

Picard-Lefschetz integration method provides a decomposition of the integration cycle C
into a linear combination C =

∑
i niJi (with ni ∈ Z) of nicer cycles (over which the integral

is convergent) Ji attached to the saddle points z?i of V (z)6, and obtained after solving the
gradient flow (or steepest descent) equations:





∂z

∂τ
= −∂F̄

∂z̄
,

∂z̄

∂τ
= −∂F

∂z
,

(3.119)

where F (z) ≡ −V (z)/g, τ is the flow parameter and the upper bars denote the complex
conjugation. The cycles Ji are called Lefschetz thimbles or simply thimbles. Along the flow,
Re(F ) is strictly decreasing (except for the trivial solution that sits at a saddle point z?i for
all τ) and Im(F ) is constant and equal to Im(F (z?i )). In the studied case, the saddle points
of V (z) are z?0 = 0 and z?± = ±

√
−6m2, and sit on the imaginary (real) axis when m2 ≥ 0

(m2 ≤ 0). Saddle points and solutions of (3.119) are displayed in fig. 3.4 for different values of
m2 and g = 1± 0.1i.

The integer coefficients ni are found after considering the upward flows Ki (which are called
anti-thimbles), solutions of the converse (steepest ascent) equations:





∂z

∂τ
= +

∂F̄

∂z̄
,

∂z̄

∂τ
= +

∂F

∂z
,

(3.120)

shown as dotted lines in fig. 3.4. Along the anti-thimbles Ki, Re(F ) is monotonically increasing
(making the integral divergent) and Im(F ) is constant and equals to Im(F (z?i )). According

6As a complex version of Morse theory [178], this Picard-Lefschetz decomposition can only be performed for
isolated critical points, i.e. for saddle points z?i such that V ′′(z?i ) 6= 0.



3.3. RESUMMATION OF THE PERTURBATIVE SERIES 47

−4 −2 0 2 4
−4

−2

0

2

4
m2 = 1, Im(g) = −0.1

J−

K+

J+

K−

J0K0

z0

z+

z−

−40

−20

0

20

40

R
e(
F

)

−4 −2 0 2 4
−4

−2

0

2

4
m2 = 1, Im(g) = 0.1

J+

K+

J−
K−

J0

K0

z0

z+

z−

−40

−20

0

20

40

R
e(
F

)

−4 −2 0 2 4
−4

−2

0

2

4
m2 = 0, Im(g) = −0.1

z0

−40

−20

0

20

40

R
e(
F

)

−4 −2 0 2 4
−4

−2

0

2

4
m2 = 0, Im(g) = 0.1

z0

−40

−20

0

20

40

R
e(
F

)

−4 −2 0 2 4
−4

−2

0

2

4
m2 = −1, Im(g) = −0.1

J−

J+

K+

K−

K0

J0

z0 z+z−

−40

−20

0

20

40

R
e(
F

)

−4 −2 0 2 4
−4

−2

0

2

4
m2 = −1, Im(g) = 0.1

J−
J+

K−

K+

K0

J0

z0 z+z−

−40

−20

0

20

40

R
e(
F

)

Figure 3.4: Critical points (black dots) of F (z) and their downward (solid lines) and upward
(dotted lines) flows in the z-complex plane, for g = 1 − 0.1i (left column) and g = 1 + 0.1i
(right column), and for m2 = +1 (upper panels), the degenerate case m2 = 0 (middle panels)
and m2 = −1 (lower panels). The value of Re(F ) is given by the colormap.

to Picard-Lefschetz theory, ni corresponds to the intersection pairing of the original contour C
and the upward flow Ki. The partition function (3.118) can then be written as:

Z(m2, g) =
∑

i

niZi(m
2, g) , (3.121)

where
Zi(m

2, g) ≡ 1√
g

∫

Ji(θ)
dz e−

1
g
V (z) , (3.122)

admits an asymptotic power series expansion around the saddle point z?i , which is Borel-
summable to the exact result [179] (recall that θ ≡ arg(g)).
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As can be seen in fig. 3.4, the intersection numbers (n0 = +1, n± = 0) of the upward flows
Ki with the original integration cycle (i.e. the real axis) do not depend on the sign of Im(g)
in the phase with m2 > 0. In this case, the integration cycle coincides with a single thimble,
which translates into:

Z(m2 > 0, g) = Z0(m2 > 0, g) =
1√
g

∫

J0(θ)

dz e−
1
g
V (z) . (3.123)

By expanding around the saddle point z?0 = 0, the partition function of the theory can therefore
be unambiguously represented by an asymptotic power series Z(m2 > 0, g) = Z(0),m2>0(g) =∑

n Z
(0),m2>0
n gn which is Borel-summable to the exact result, i.e. Z(m2 > 0, g) = Z

(0),m2>0
Bs (g)

with:
Z

(0),m2>0
Bs (g) =

1√
g
e−

1
g
V (z?0 )

∫ ∞

0

dζ ζse−ζBs
[
Z(0),m2>0

]
(gζ) , (3.124)

and

Bs
[
Z(0),m2>0

]
(ζ) =

∞∑

n=0

Z
(0),m2>0
n

Γ(n+ s+ 1)
ζn . (3.125)

In the phase with m2 < 0, the integral is on the Stockes line, which is reflected by the jump
of the intersection numbers from (n0 = +1, n± = +1) for Im(g) < 0 to (n0 = −1, n± = +1)
for Im(g) > 0. Since the integrals over the thimbles J+ and J− yield the same result, the
partition function of the theory can be written as follows:

Z(m2 < 0, g) = ±Z0(m2 < 0, g)+2Z+(m2 < 0, g) ∀ Im(g) ≶ 0 , (3.126)

where each Zi can again be represented by an asymptotic series Z(i),m2<0(g) =
∑

n Z
(i),m2<0
n gn

after being expanded around the corresponding saddle point z?i and being Borel resummed,
thus yielding the resurgent transseries:

Z(m2 < 0, g) =
1√
g

{
± e− 1

g
V (z?0 )

∫ ∞

0

dζ ζse−ζBs
[
Z(0),m2<0

]
(gζ)

+ 2e−
1
g
V (z?+)

∫ ∞

0

dζ ζse−ζBs
[
Z(+),m2<0

]
(gζ)

}
∀ Im(g) ≶ 0 .

(3.127)

In practice, only the first terms of the asymptotic series Z(i)(g) are known, such that cal-
culating the integral

∫∞
0
dζ ζse−ζBs

[
Z(i)
]
(gζ) only amounts to reinserting the Γ(n + s + 1)

factors and leads back to the initial diverging series. Getting non-trivial results thus requires
to make some assumptions about the unknown coefficients of the series, e.g. by re-expressing
the Borel-Le Roy transform Bs

[
Z(i)
]
(ζ) in terms of a non-polynomial function whose first Tay-

lor coefficients match the known terms of the former. In what follows, we investigate three
kinds of such functions, defining the so-called Padé-Borel(-Le Roy), conformal mapping and
Borel-hypergeometric resummations.

3.3.3 Padé-Borel resummation

We consider once again the generic physical quantity P (x) represented by a factorially divergent
asymptotic series (3.106), which is transformed into (3.109) and (3.110) by means of Borel-Le
Roy transforms. The idea behind Padé-Borel-Le Roy resummation [173, 174, 180–183] is to
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rewrite the Borel-Le Roy transform Bs[P ] as a Padé approximant PU/V Bs[P ], which is a rational
function and can therefore develop a richer analytic behavior (with singularities in particular)
as compared to the polynomial representing Bs[P ] initially. The Padé approximant PU/V Bs[P ]
is constructed from the knowledge of the Borel-Le Roy transform partial sum up to order M
as:

PU/V Bs[P ](ζ) =

∑U
n=0 anζ

n

1 +
∑V

n=0 bnζ
n
, (3.128)

with U+V = M . The coefficients {an} and {bn} are fixed by equating order by order the Taylor
series of (3.128) with the expansion (3.109), up to the desired order. The original function P (x)
is estimated after substituting the Borel-Le Roy sum Bs[P ] by its Padé approximant PU/V Bs[P ]
in the integral of (3.110). For our numerical applications, we will focus on the Padé-Borel
resummation, i.e. on the Padé-Borel-Le Roy resummation with s = 0, for which we define
PBP [U/V ] ≡ PU/V Bs=0[P ]. We point out however that there exists recent studies, such as
that of ref. [184], discussing the determination of optimal values for the s parameter within the
framework of Padé-Borel-Le Roy resummation, which is a task that we defer to future works
for the O(N) model considered in this thesis.
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Figure 3.5: Gs energy Egs (left) or density ρgs (right) calculated at ~ = 1, m2 = ±1 and N = 1
(Re(λ) ≥ 0 and Im(λ) = 0), and compared with the corresponding exact solution (black
dots). All presented results are obtained from series determined via the LE in the original
representation.

We compared the performances of the Padé-Borel resummation procedure in reproducing
the gs energy and density for the studied toy model under various settings, namely by following
the step-by-step procedure: i) change the order M of PT up to order O

(
x3
)
; ii) consider all the
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possible Padé approximants7 at a given orderM ; iii) either resum the power series or transseries
representation of the partition function Z and, from there, compute the gs energy and density
(indicated by PBZ in figs. 3.5 and 3.6), or directly derive the perturbative expansion of the gs
energy and density and then proceed with their resummation (indicated by PBEgs and PBρgs

in figs. 3.5 and 3.6). The best results are displayed as lines with a symbol (the color indicates
the truncation order in PT while the filled/open aspect refers to the power series/transseries
representation of the resummed quantity) in figs. 3.5 and 3.6, at N = 1 and 2 respectively.
In the unbroken-symmetry regime, the best description of the gs energy on the one hand is
obtained at N = 1 and 2 with the Padé-Borel resummation of the perturbative series for Egs

pushed up to order O
(
x3
)
( ), with [1/2] Padé approximants. On the other hand, the best

reproduction of the gs density in the unbroken-symmetry regime is achieved via Padé-Borel
resummation of the perturbative series for ρgs pushed up to order O

(
x3
)
( ) (up to order

O(x) ( )) with [1/2] ([0/1]) Padé approximants at N = 1 (N = 2). In the broken-symmetry
regime at N = 1, the best description of the gs energy and density is given by the Padé-Borel-
Écalle resummation of the transseries representation of Z (obtained from a slight modification
of the integration path underlying the inverse Borel transforms in the corresponding Padé-Borel
resummation procedure [185], thus avoiding singularities in the Borel plane) at order O

(
x2
)
in

PT ( ), with [1/1] Padé approximants. In all these cases, a major improvement over the
bare PT results can be noticed, i.e. (except for m2 < 0) the global behavior of the gs energy
and density with respect to the coupling strength λ/4! is now consistent with the exact trend
over the whole range of tested values (i.e. for λ/4! ∈ [0, 10], which is wider than [0, 1] considered
in figs. 3.1 and 3.2), and even quantitatively reproduced up to λ/4! ∼ 2.
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Figure 3.6: Same as fig. 3.5 with m2 = +1 and N = 2 instead. As in fig. 3.2, no finite
results can be obtained in the broken-symmetry phase from the LE in the original and mixed
representations.

7In this thesis, all Padé approximants are determined with the PadeApproximant function of
Mathematica 12.1.
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3.3.4 Conformal mapping

While the Padé-Borel(-Le Roy) resummation procedure only involves the knowledge about the
first terms of the initial perturbative series (3.106), the method of Borel(-Le Roy) transform
with conformal mapping [186] aims at more reliable results by incorporating in addition the
knowledge on the large-order behavior (3.107) of pn. The parameters a, b and c in (3.107) can be
computed via, e.g., the Lipatov method where the coefficients pn are represented by the contour
integral pn = 1

2πi

∮
C dζ

P (ζ)
ζn+1 calculated for large n through steepest descent. In particular, the

coefficient a determines the position of the singularity of the Borel-Le Roy transform (3.109)
which is the closest to the origin, i.e. Bs[P ](ζ) is analytical in a circle of radius 1/a, with
a = 2/3 (a = 4/3) at N = 1 (N = 2) for the studied (0+0)-D O(N) model. One of the
methods for continuing the Borel-Le Roy transform beyond its circle of convergence, and (to a
certain extent) accelerating the convergence of PBs(x), relies on the conformal mapping of the
Borel plane: 




w(ζ) =

√
1 + aζ − 1√
1 + aζ + 1

.

ζ =
4

a

w

(1− w)2
.

(3.129)

Under this transformation, a point in the ζ-complex plane is mapped within a disk of unit radius
|w| = 1. In particular, the origin is left invariant and the branch-cut singularity ζ ∈]−∞,−1/a]
is mapped to the boundary of the w-unit disk, thus turning the Taylor expansion of the function
B̃s[P ](w) ≡ Bs[P ](ζ(w)) into a convergent one for |w| < 1. The original quantity P (x) is then
determined after re-expanding Bs[P ](xζ) in the new variable w(xζ) in (3.110), i.e. after writing
(assuming that only the first M terms of the original series are known):

Bs[P ](ζ) =
M∑

n=0

Wn (w(ζ))n , (3.130)

with

Wn =
n∑

k=0

pk
Γ(k + s+ 1)

(
4

a

)k
(k + n− 1)!

(n− k)!(2k − 1)!
. (3.131)

and we will also set s = 0 in our numerical applications.

The gs energy and density obtained for our toy model after a conformal mapping resumma-
tion of the partition function Z are displayed as ( ) when Z is represented by a power
series (transseries) in figs. 3.5 and 3.6, at N = 1 and 2 respectively. As far as the energy is con-
cerned, the conformal mapping resummation applied to the partition function yields results in
better agreement with the exact ones, especially in the strongly-interacting regime (for λ/4! & 2
more specifically), in comparison with the estimates obtained via Padé-Borel resummation of
the energy perturbative series at the same order of PT. The results are however not as good for
the gs density. In the phase with m2 < 0 where the partition function is not Borel-summable,
fig. 3.5 shows the gs energy and density of the system obtained both from Z represented by
an ambiguous power series and by a resurgent transseries. In the former case, the global be-
havior of the gs energy with the coupling strength is fairly well reproduced, but a quantitative
reproduction of the exact result is not achieved, even in the weakly-interacting limit. The gs
density, when deduced from a power series representation of Z, misses the monotonic decreasing
displayed by the exact result when going from weak to strong couplings. Representing Z by a
transseries slightly improves the description of the gs energy and density of the system, with
now a correct description of the range set by λ/4! . 1.



52 CHAPTER 3. DIAGRAMMATIC TECHNIQUES

3.3.5 Borel-hypergeometric resummation

Borel-hypergeometric or Meijer-G resummation [187–193] extends the idea behind Padé ap-
proximants while trying to overcome the known issues of the latter8 by working with more
sophisticated continuation functions, i.e. hypergeometric functions, which can notably mimic
branch cuts in the complex plane, and whose (inverse) Borel transforms are known and conve-
niently represented by Meijer G-functions [194, 195]. To our knowledge and unlike the other
resummation methods discussed previously, the Borel-hypergeometric resummation has never
been applied to any O(N)-symmetric theory, putting aside the (0+0)-D case at N = 1 [192].
We will push our investigations in (0+0)-D up to N = 4 in the present study. Regardless of
the model under consideration, the recipe underlying the Borel-hypergeometric resummation
procedure can be presented as follows [192, 193]:

1. As for the other resummation procedures, starting from the asymptotic series representing
P (x) truncated at an odd order M (the case of even truncation orders will be discussed
below), one starts by computing the coefficients bn ≡ pn/n! = pn/Γ(n + 1) of the Borel
transform BP ≡ Bs=0[P ].

2. One then computes the M ratios b1/b0, · · · , bM/bM−1 of two consecutive coefficients of
the Borel series and makes the ansatz that such ratios bn+1/bn are rational functions of
n, coined as rM(n) and defined as:

rM(n) ≡
∑l

k=0 ukn
k

1 +
∑l

k=1 vkn
k
, (3.132)

with l = (M − 1)/2. The M+1
2

+ M−1
2

= M unknowns uk and vk are determined from the
M equations:

bn+1

bn
= rM(n) , (3.133)

where n runs from 0 to M − 1.

3. Hypergeometric vectors x̄ = (1,−x1, · · · ,−xl) and ȳ = (−y1, · · · ,−yl) are then con-
structed via the equations:

l∑

k=0

ukx
k = 0 , (3.134)

1 +
l∑

k=1

vky
k = 0 , (3.135)

and used to define the hypergeometric approximant of the Borel transform BP in terms
of the generalized hypergeometric function:

HMBP (ζ) ≡ l+1F l

(
x̄, ȳ,

ul
vl
ζ

)
. (3.136)

4. One finally recovers the original function P (x) through an inverse Borel transform, which
can be represented in terms of a Meijer G-function Gm,n

p,q

(
a1,··· ,ap
b1,··· ,bq

∣∣∣z
)
, i.e.:

PHB(x) =

∫ ∞

0

dζ e−ζHMBP (xζ) =

∏l
k=1 Γ(−yk)∏l
k=1 Γ(−xk)

Gl+2,1
l+1,l+2

(
1,−y1,··· ,−yl

1,1,−x1,··· ,−xl

∣∣∣∣−
vl
ulx

)
.

(3.137)
8As rational functions, Padé approximants built-in singularities are poles. Hence, since many poles are needed

to mimic a branch cut, the Padé-Borel resummation procedure converges slowly when the Borel transform to
be approximated displays branch cuts.
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For an even truncation order M , one first subtracts the constant zeroth-order term from the
original series, then factors out the first-order term and finally follows the above recipe on
the resulting series with an odd (M − 1) truncation order. The final answer is obtained after
re-multiplying the resummed series by the first-order term and re-adding the constant.

The gs energy and density of the system obtained from the Borel-hypergeometric resum-
mation of the partition function are reported in figs. 3.5 and 3.6 at N = 1 and 2 respectively.
Results corresponding to the third non-trivial order of PT are displayed as ( ) when Z
is represented by a power series (transseries). The Borel-hypergeometric resummation of the
partition function yields the best results among all the resummation schemes, and even leads
to an exact description of the partition function of the O(2)- and O(4)-symmetric theories from
the third non-trivial order of the original LE, as shown by fig. 3.7.
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Figure 3.7: Gs energy Ecalc
gs (left) or density ρcalc

gs (right) calculated from Borel-hypergeometric
resummation applied to the original (or mixed) LE series up to their third non-trivial order
(notably labeled “LE H3BZ” in figs. 3.5 and 3.6, which correspond to the present results (in the
unbroken-symmetry regime) labeled “N = 1” and “N = 2”, respectively). More specifically, we
show here the difference between these results and the corresponding exact solution Eexact

gs or
ρexact

gs at ~ = 1, m2 = +1 and N = 1, 2, 3 and 4 (Re(λ) ≥ 0 and Im(λ) = 0).

3.3.6 Conclusion

Resummation techniques offer an impressive way of extracting sensible results from the very
simple ordinary PT over a wide range of values for the coupling constant λ/4!, including the
strongly-coupled regime. The various resummation techniques at our disposal actually render
the LE (and all other techniques based on asymptotic series) rather versatile. The description
of the gs energy and density (as well as the 1-point correlation function ~φ at N = 1 in the phase
with m2 < 0) are significantly improved at trivial cost. However, a very accurate reproduction
of the system’s features requires to reach at least the third non-trivial order of PT, which can be
difficult to determine in realistic cases. Besides, the theoretical foundation of the nuclear EDF
can not be found in standard PT (even when completed by a resummation procedure), as no
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self-consistent dressing of, e.g., the field propagator is achieved and the energy is not obtained
as a functional of the density in the spirit of DFT. We now turn to an optimized version of PT
which bears stronger resemblance with EDFs via the use of self-consistent expansions.

3.4 Optimized Perturbation Theory

3.4.1 Spirit of the optimized perturbation theory

In standard PT formulated in the original representation (which was discussed in section 3.2),
the splitting of the classical action S = S0 +S1 into an unperturbed reference part S0 (which is
supposedly simple enough to compute the corresponding energies and correlation functions
without any approximation) and a residual part S1 was performed within the LE, which
amounts to a λ-wise expansion in the unbroken-symmetry phase of the studied O(N) model.
In this situation, S0 coincides with the classical action of the non-interacting system and S1

contains the interaction. OPT9 challenges such a splitting by optimizing the reference part S0

around which one expands. Namely, there exists an infinite number of acceptable reference
parts S0

σ depending on some parameter σ(x) (not to be confused with the collective Hubbard-
Stratonovich field σ̃(x)), thus yielding the following splitting:

S
[
~̃ϕ
]

= S0
σ

[
~̃ϕ
]

+ S1
σ

[
~̃ϕ
]

≡
(
S0
[
~̃ϕ
]
− 1

2

∫

x

σ(x)~̃ϕ(x) · ~̃ϕ(x)

)
+

(
S1
[
~̃ϕ
]

+
1

2

∫

x

σ(x)~̃ϕ(x) · ~̃ϕ(x)

)
,

(3.138)

where the original splitting appears as the particular case where σ(x) = 0. Formally, one
has done nothing but adding and subtracting an arbitrary quadratic term in the classical
action. The idea behind OPT is then to exploit the introduction of such a Gaussian kernel
to reorganize the partitioning into unperturbed and residual parts in a more flexible fashion,
where non-perturbative correlations are shifted towards the easily solvable unperturbed channel.
Indeed, when the perturbative expansion around S0

σ is truncated at some finite order, physical
quantities exhibit an artificial dependence in the parameter σ(x) that must be fixed. Relevant
choices of σ(x), such that S0

σ mimics as faithfully as possible the full action S, allow us to dress
the propagator of the original field with non-trivial physics and turn the original divergent
perturbative series into an exponentially-fast convergent one. At its first non-trivial order
and depending on the condition chosen to fix σ(x), OPT can lead to identical results as self-
consistent mean-field approaches like the Hartree-Fock theory (which is different from standard
PT in the original representation, presented in section 3.2, whose propagator is not the one
involved in Hartree-Fock theory but just corresponds to the bare propagator, possibly dressed
by the vacuum expectation value of ~̃ϕ(x) within the LE in the broken-symmetry regime), as
will be illustrated later in section 3.5.2.2. The key principle underlying OPT is that σ(x) is
optimized at the working order, i.e. is different at each truncation order, which is essential
to obtain the aforementioned systematic improvement of our results and thus contrasts with
methods based on asymptotic series.

Several optimization criteria can be devised to this end:

• In the ODM approach, σ(x) is determined according to mathematical convergence prop-
erties of the series [221].

9We name OPT all strategies involving an optimized splitting into unperturbed and residual parts via some
conditions, which includes more approaches than those exploited in refs. [154, 157–160, 196–214], such as
variational PT (VPT) [90, 183, 215], linear delta-expansion (LDE) [216], self-consistent expansion (SCE) [217,
218], self-similar PT [219] or order-dependent mapping (ODM) [220, 221].
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• Other classes of strategies are based on the fact that a given physical quantity O(k)

computed at kth order of the OPT expansion exhibits an artificial dependence with
respect to σ(x), so that one should try to make O(k) minimally sensitive to it. This can
be achieved via the so-called principle of minimal sensitivity (PMS) [154], i.e. a
variational principle imposing:

δO(k)

δσ(x)

∣∣∣∣
σ=σ

(k)
PMS

= 0 ∀x , (3.139)

or via the turning point (TP) method [222] where one rather looks for a plateau in the
behavior of O(k) with respect to σ(x):

δ2O(k)

δσ(x)2

∣∣∣∣
σ=σ

(k)
TP

= 0 ∀x , (3.140)

or via the fastest apparent convergence (FAC) [154] where σ(x) is fixed so that O
calculated at two subsequent OPT orders yields the same result, i.e.:

[
O(k) −O(k−1)

]
σ=σ

(k)
FAC

= 0 , (3.141)

which amounts to imposing that the kth coefficient in the OPT expansion is zero.

• Another kind of optimization procedure involves a self-consistent condition (SCC) for
σ(x) where some physical features of the system are asked to be faithfully reproduced
from the zeroth order of the description. In the spirit of Kohn-Sham DFT, one can ask
that the 2-point correlation function of the system calculated at kth order of the OPT

expansion
〈
~̃ϕ(x) · ~̃ϕ(y)

〉(k)

(which reduces to the density at y = x) coincides with the

zeroth-order one
〈
~̃ϕ(x) · ~̃ϕ(y)

〉(0)

:
[〈
~̃ϕ(x) · ~̃ϕ(y)

〉(k)

−
〈
~̃ϕ(x) · ~̃ϕ(y)

〉(0)
]

σ=σ
(k)
SCC

= 0 ∀x, y . (3.142)

Such an optimization procedure, like the previous ones (PMS, TP, FAC), requires the
calculation of a physical quantity at kth order of the OPT expansion, which is often
difficult to achieve. We can use instead the following alternative implementation of the
SCC:

[〈(
~̃ϕ(x) · ~̃ϕ(y)

)m(k)
〉(1)

−
〈(

~̃ϕ(x) · ~̃ϕ(y)
)m(k)

〉(0)
]

σ=σ
(k)
SCC

= 0 ∀x, y , (3.143)

which is only a first-order relation, therefore easy to compute. The dependence in the
working expansion order k appears via the exponent of the correlation function m(k). In
particular, a dependence of the form m(k) = k was studied in ref. [223] and shown to
yield an exponentially-fast convergent series representation of physical quantities. One can
understand the first-order nature of the last optimization procedure along the following
lines: since the OPT expansion creates itself its partitioning between unperturbed and
residual sectors such that the residual part is indeed small (in some sense) compared to
the unperturbed one, we expect that the first-order correction will be the dominant one.
In other words, the condition imposing a given correlation function computed at the first
order of the OPT expansion to coincide with the zeroth-order one should not be very
different from the same criteria for the correlation functions computed at the working
order k > 1 (instead of k = 1), which is why the difference is expected to be captured by
simple forms of m(k) (such as m(k) = k).
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OPT has been widely used for decades via the above optimization criteria [90, 154, 157–
160, 183, 196–221]. In particular, we can mention a previous study [150] of the unbroken-
symmetry phase of the (0+0)-D O(N) model considered in this thesis using OPT based on the
PMS, the TP method and the FAC. However, this work exploits the (0+0)-D nature of the
problem to directly expand the quantities of interest, thus bypassing notably the diagrammatic
constructions underlying Wick’s theorem that can hardly be avoided in finite dimensions. In
what follows, we will not use such a shortcut and construct the diagrammatic series underlying
OPT for our O(N) model in arbitrary dimensions10 as usual. We will investigate the SCC as
well and extend results of ref. [150] to the broken-symmetry regime of the studied (0+0)-D
O(N) model.

3.4.2 Splitting of the classical action

We thus focus as a next step on the classical action of the studied (finite-dimensional) O(N)
model whose expression is recalled here for convenience:

S
[
~̃ϕ
]

=

∫

x

[
1

2
(∇xϕ̃a(x)) (∇xϕ̃

a(x)) +
m2

2
ϕ̃a(x)ϕ̃a(x) +

λ

4!
(ϕ̃a(x)ϕ̃a(x))2

]
. (3.144)

The implementation of OPT first requires to introduce a set of non-fluctuating (i.e. classical)
collective fields coupled to relevant bilinears in the original field(s). In the present case, the only
relevant bilinear form in the field ~̃ϕ(x) is ~̃ϕ(x) · ~̃ϕ(y), or its local counterpart ~̃ϕ(x) · ~̃ϕ(x). We
therefore introduce a single collective field σ(x)11, thus resulting in the following partitioning:

S
[
~̃ϕ
]

= S0
σ

[
~̃ϕ
]

+ S1
σ

[
~̃ϕ
]
, (3.145)

S0
σ

[
~̃ϕ
]

=
1

2

∫

x,y

ϕ̃a(x)G−1
σ;ab(x, y)ϕ̃b(y) , (3.146)

S1
σ

[
~̃ϕ
]

=

∫

x

[
λ

4!

(
~̃ϕ(x) · ~̃ϕ(x)

)2

+
1

2
σ(x)~̃ϕ(x) · ~̃ϕ(x)

]
, (3.147)

with the OPT propagator defined as follows:

G−1
σ;ab(x, y) =

(
−∇2

x +m2 − σ(x)
)
δabδ(x− y) . (3.148)

3.4.3 Perturbative expansion

We proceed as before with the perturbative expansion of the partition function12:

Z =

∫
D~̃ϕ e

−
(
S0
σ

[
~̃ϕ
]

+δS1
σ

[
~̃ϕ
])
, (3.149)

where a fictitious factor δ has been introduced in order to keep track of the order for the OPT
expansion (δ must therefore be set equal to 1 at the end of all calculations, which is the condition
for (3.149) to reduce to the original partition function of the studied O(N) model). Contrary
to the mixed representation including the original field ~̃ϕ(x) and the fluctuating collective
Hubbard-Stratonovitch field σ̃(x), there is no path-integration over the configurations of σ(x)
in the present case, which is why we stressed above the non-fluctuating character of this field.

10Note that the construction of diagrammatic series in the framework of OPT has already been discussed in
ref. [197] for a ϕ4-theory, but not for the O(N)-symmetric case.

11The absence of tilde on σ highlights the fact that it is a non-fluctuating field.
12We set ~ = 1 in this entire section on OPT.
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Taylor expanding the exponential of the residual action S1
σ in (3.149) yields the following

expressions:

ZOPT =

(∫
D~̃ϕ e−

∫
x,y

~̃ϕ(x)·(G−1
σ (x,y)~̃ϕ(y))

)

×


1 +

∞∑

k=1

(−δ)k
k!

k∑

l=0

(
k
l

)〈(
1

2

∫

x

σ(x)~̃ϕ
2
(x)

)k−l(
λ

4!

∫

x

(
~̃ϕ

2
(x)
)2
)l〉

0,σ


 ,

(3.150)

and

WOPT =
1

2
STr [ln(Gσ)] +

∞∑

k=1

(−δ)k
k!

k∑

l=0

(
k
l

)〈(
1

2

∫

x

σ(x)~̃ϕ
2
(x)

)k−l(
λ

4!

∫

x

(
~̃ϕ

2
(x)
)2
)l〉c

0,σ

,

(3.151)
where the σ-dependent expectation value is defined by:

〈
· · ·
〉

0,σ
≡ 1

Z0,σ

∫
D~̃ϕ · · · e−S0

σ

[
~̃ϕ
]
, (3.152)

with
Z0,σ =

∫
D~̃ϕ e−S

0
σ

[
~̃ϕ
]
. (3.153)

The connected correlation functions in (3.151) are then rewritten with the help of Wick’s
theorem together with the Feynman rules:

x, a y, b → Gσ;ab(x, y) , (3.154a)

xa
b

c
d → λδabδcd , (3.154b)

x
a b → σ(x)δab . (3.154c)

In this way, the Schwinger functional reads up to order O
(
δ2
)
:

WOPT =
1

2
STr [ln(Gσ)]

− δ




1

2
+

1

24
+

1

12




+ δ2




1

4
+

1

12
+

1

6
+

1

72
+

1

36

+
1

144
+

1

36
+

1

144




+O
(
δ3
)
,

(3.155)
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where further information on the determination of the diagrams can also be found in ap-
pendix C.1.

We deduce the expressions of the partition function and the Schwinger functional of our
O(N) model in the zero-dimensional limit (pushed up to order O(δ3) in the OPT expansion
and setting δ = 1):

ZOPT;(3) = (2πGσ)
N
2

[
1− NσGσ

2
+
N(N + 2)

8

(
σ2 − λ

3

)
G2
σ +

N(N + 2)(N + 4)

48

(
λ− σ2

)
σG3

σ

+
N(N + 2)(N + 4)(N + 6)

192

(
λ

6
− σ2

)
λG4

σ

− N(N + 2)(N + 4)(N + 6)(N + 8)

2304
λ2σG5

σ

− N(N + 2)(N + 4)(N + 6)(N + 8)(N + 10)

82944
λ3G6

σ

]
,

(3.156)

and

WOPT;(3) =
N

2
ln(2πGσ)− NσGσ

2
− 1

24
N
(
λ (N + 2)− 6σ2

)
G2
σ +

1

12
Nσ

(
λ (N + 2)− 2σ2

)
G3
σ

+
1

144
λN (N + 2)

(
λ (N + 3)− 18σ2

)
G4
σ −

1

36
λ2Nσ

(
N2 + 5N + 6

)
G5
σ

− 1

2592
λ3N

(
5N3 + 44N2 + 128N + 120

)
G6
σ ,

(3.157)

with the dressed propagator:

Gσ =
1

m2 − σ , (3.158)

and σ to be determined via one of the optimization conditions discussed previously. The gs
energy and density of our (0+0)-D O(N) model (for all N ≥ 1 and for both the unbroken- and
broken-symmetry phases) obtained from OPT thus read:

EOPT;(3)
gs =− N

2
ln

(
2π

m2 − σ

)

+
N

2592(m2 − σ)

(
1296σ +

108(λ(2 +N)− 6σ2)

m2 − σ − 216σ(λ(2 +N)− 2σ2)

(m2 − σ)2

− 18λ(2 +N)(λ(3 +N)− 18σ2)

(m2 − σ)3
+

72λ2(6 + 5N +N2)σ

(m2 − σ)4

+
λ3(120 + 128N + 44N2 + 5N3)

(m2 − σ)5

)
,

(3.159)
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and

ρOPT;(3)
gs =

1

m2 − σ

− 1

216(m2 − σ)2

(
216σ +

36(λ(2 +N)− 6σ2)

m2 − σ − 108(λ(2 +N)σ − 2σ3)

(m2 − σ)2

− 12λ(2 +N)(λ(3 +N)− 18σ2)

(m2 − σ)3
+

60λ2(6 + 5N +N2)σ

(m2 − σ)4

+
λ3(120 + 128N + 44N2 + 5N3)

(m2 − σ)5

)
.

(3.160)

A definite estimate of the gs energy and density is only obtained after fixing a value for σ, as
we discuss next.

3.4.4 Optimization of σ

What distinguishes OPT from many other approaches is the fact that the optimization of the
field σ depends on the working order k. We focus on three classes of optimization criteria for
σ, namely the PMS, the TP method and the SCC13.

3.4.4.1 Principle of minimal sensitivity

We first consider the PMS, where we either ask the partition function ZOPT;(k), the gs energy
E

OPT;(k)
gs or the gs density ρOPT;(k)

gs , computed at order k (i.e. up to order O(δk)) of the OPT
expansion, to be extremal with respect to σ, i.e.:

∂ZOPT;(k)

∂σ

∣∣∣∣
σ=σ

(k)
PMS;Z

= 0 , (3.161)

∂E
OPT;(k)
gs

∂σ

∣∣∣∣∣
σ=σ

(k)
PMS;E

= 0 , (3.162)

∂ρ
OPT;(k)
gs

∂σ

∣∣∣∣∣
σ=σ

(k)
PMS;ρ

= 0 . (3.163)

For instance, at the first non-trivial order (i.e. up to order O(δ)) of the OPT expansion, the
three above equations are polynomial and second-order with respect to σ and their solutions
read:

σ
(1)
PMS;Z =

3m2 (N + 4)±
√

3N (λ (N2 + 4N + 4) + 3Nm4)

6 (N + 2)
, (3.164)

σ
(1)
PMS;E =

1

2

(
m2 ±

√
m4 +

2λ

3
(N + 2)

)
, (3.165)

σ
(1)
PMS;ρ =

1

2

(
m2 ±

√
m4 + λ (N + 2)

)
. (3.166)

13The study of ref. [150] has already shown that the FAC optimization procedure is less performing than the
PMS approach when determining the gs energy, the self-energy and the fourth-order vertex function Γ(1PI)(4)

(
~φ =

~0
)
in the framework of the unbroken-symmetry phase of the toy model considered in this thesis.
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The complexity of the PMS equations (3.161) to (3.163) increases with the truncation order,
i.e. with the working order k. We illustrate in fig. 3.8 that, for the purpose of determining Egs

or ρgs, it is in general more efficient to apply the PMS directly on the OPT series representing
Egs or ρgs respectively (i.e. to exploit (3.162) and (3.163)), rather than on Z (i.e. rather than
using (3.161)). We can already appreciate in this figure the nice convergence properties of OPT
at its first two non-trivial orders, which will be discussed further later in this section.
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Figure 3.8: Difference between the calculated gs energy Ecalc
gs and the corresponding exact

solution Eexact
gs at N = 1 (left) and N = 2 (right), with ~ = 1 and m2 = ±1 (Re(λ) ≥ 0 and

Im(λ) = 0).

3.4.4.2 Turning point

The optimization of σ via the TP method is based on the equations:

∂2E
OPT;(k)
gs

∂σ2

∣∣∣∣∣
σ=σ

(k)
TP;E

= 0 , (3.167)

∂2ρ
OPT;(k)
gs

∂σ2

∣∣∣∣∣
σ=σ

(k)
TP;ρ

= 0 , (3.168)

whose solutions are, at the first non-trivial order of the OPT expansion:

σ
(1)
TP;E = ±

√
m4 +

λ

2
(N + 2) , (3.169)

σ
(1)
TP;ρ =

1

4

(
m2 ±

√
9m4 + 8λ (N + 2)

)
. (3.170)

As for the PMS, the complexity of the TP optimization equations such as (3.167) and (3.168)
grows with the working order k.
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3.4.4.3 Self-consistent condition

We implement the optimization of σ via the SCC by solving the equation:
〈(

~̃ϕ · ~̃ϕ
)k〉(1)

0,σ=σ
(k)
SCC

=

〈(
~̃ϕ · ~̃ϕ

)k〉(0)

0,σ=σ
(k)
SCC

, (3.171)

where the σ-dependent expectation value is already defined by (3.152) and (3.153) in arbitrary
dimensions. Whatever the working order k in the OPT expansion, the complexity of the SCC
equation (3.171) remains that of a second-order polynomial equation in σ. It is the order of
the correlation functions involved in both the RHS and LHS of this SCC equation that changes
with k. One can then write the solutions of (3.171) for all k as:

σ
(k)
SCC =

1

2

(
m2 ±

√
m4 +

2λ

3
(N + k + 1)

)
. (3.172)

Hence, the solutions (3.165) and (3.172), obtained respectively from the PMS and the SCC,
coincide at k = 1. In other words, we obtain the same solution for σ either by imposing the
gs energy calculated up to the first non-trivial order of the OPT expansion to be extremal
with respect to σ or by demanding that the density (or propagator) calculated at the first non-
trivial order of the OPT expansion coincides with the one obtained from the zeroth order. We
postpone to future works the investigation of the validity of this connection at higher truncation

orders k, where the SCC is implemented in the form
〈
~̃ϕ · ~̃ϕ

〉(k)

0,σ=σ
(k)
SCC

=
〈
~̃ϕ · ~̃ϕ

〉(0)

0,σ=σ
(k)
SCC

.

3.4.5 Discussion

As explained in section 3.4.1, OPT optimizes the partitioning of the original classical action S
into an unperturbed reference part S0 and a residual part S1, which translates into a non-trivial
dressing of the unperturbed field propagatorGσ (defined by (3.148) for the studied O(N) model
in arbitrary dimensions) with non-perturbative correlations. It is instructive to compare how
the propagator gets renormalized in the frameworks of both OPT and LEs, within the mixed
and collective representations in particular. To that end, we write the dressed unperturbed
propagators in the generic form:

G?
0;ab =

1

m2
?

δab , (3.173)

with m? being a renormalized mass. As discussed right below (3.91), we have obtained for both
the mixed and collective LEs:

m2
?;LE = m2 + i

√
λ

3
σcl , (3.174)

with σcl being the saddle point of the mixed or collective classical action at vanishing sources,
and where the collective Hubbard-Stratonovich dof σ̃ is a fluctuating field participating to the
PI measure. More specifically, we have found the following expressions for σcl:

σcl;mix = −i
√

λ

12
~ϕcl · ~ϕcl =





0 ∀m2 ≥ 0 ,

i

√
3

λ
m2 ∀m2 < 0 and λ 6= 0 ,

(3.175)

and14

σcl;col =
i

2

√
3

λ

(
m2 −

√
m4 +

2λ

3
N

)
, (3.176)

14Only the minus sign solution (which is the physical solution) is taken in (3.91) to obtain (3.176).
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according to (3.69) and (3.91) for the mixed and collective LEs, respectively. After insert-
ing (3.175) and (3.176) into (3.174), we obtain the following unperturbed inverse propagators:

m2
?;LE;mix =





m2 ∀m2 ≥ 0 ,

0 ∀m2 < 0 and λ 6= 0 ,

(3.177)

and

m2
?;LE;col =

1

2

(
m2 +

√
m4 +

2λ

3
N

)
. (3.178)

These (inverse) propagators are the same whatever the working order k of the LE, i.e. regardless
up to which order O

(
~k
)
the LE is carried out. In other words, only the series representing the

quantities of interest (i.e. the gs energy and density in this study), which involve the dressed
unperturbed (inverse) propagator m2

?, vary with the working order k of the LE, whereas m2
?

remains independent of k and is always given by (3.177) or (3.178) for the mixed and collective
representations, respectively.

However, the dressed (inverse) propagator involved in OPT depends on the collective dof σ
(i.e. on a non-fluctuating field to be adjusted), which itself depends on the working order k (i.e.
it depends up to which order O(δk) the OPT is carried out), namely m2

?;OPT = m2
?;OPT(σ(k)).

In other words, both the OPT series of the gs energy and density on the one hand and the
dressed unperturbed propagator on the other hand change with the working order k. Focusing
on the PMS and SCC optimization procedures only, we obtain15 at the first non-trivial order
of the OPT expansion:

m2
?;OPT;PMS;E;(1) =

1

2

(
m2 +

√
m4 +

2λ

3
(N + 2)

)
, (3.179)

m2
?;OPT;PMS;ρ;(1) =

1

2

(
m2 +

√
m4 + λ (N + 2)

)
, (3.180)

and, up to order O
(
δk
)
of the OPT expansion,

m2
?;OPT;SCC;(k) =

1

2

(
m2 +

√
m4 +

2λ

3
(N + k + 1)

)
. (3.181)

We recover of course the property m2
?;OPT;SCC;(1) = m2

?;OPT;PMS;E;(1) discussed before right be-
low (3.172) but we can also see a significant resemblance between the renormalized masses
(3.179) and (3.181) obtained from OPT via PMS and SCC on the one hand and, on the other
hand, that given by (3.178) for the collective LE.

An excellent reproduction of the gs energy and density is achieved with OPT based on the
PMS, which notably results in an accuracy around 0.5% at the third non-trivial order in both
the unbroken- and broken-symmetry regimes at N = 2, as shown notably by fig. 3.10. At the
first non-trivial order, the PMS and the SCC lead to identical results, as justified below (3.172)
and illustrated by fig. 3.9 at N = 2. However, fig. 3.10 shows (still at N = 2) that the PMS
slightly outperforms the SCC: for example, the corresponding estimates for Egs are respectively

15Similarly to (3.176), expressions (3.179), (3.180) and (3.181) are all physical solutions. They are obtained
by taking the minus sign solutions of (3.165), (3.166) and (3.172), respectively. Their physical character can be
seen from the fact that they all reduce to m2

? = m2 at λ = 0 and m2 ≥ 0.
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Figure 3.9: Difference between the calculated gs energy Ecalc
gs (left) or density ρcalc

gs (right) and
the corresponding exact solution Eexact

gs or ρexact
gs at ~ = 1, m2 = ±1 and N = 2 (Re(λ) ≥ 0

and Im(λ) = 0). The presented results are the first non-trivial orders of the collective LE and
OPT with the three different tested optimization procedures. See also the caption of fig. 3.1
for the meaning of the indication “O

(
~n
)
” for the collective LE results.

around 0.6% and 1.1% throughout most of the tested range of values for the coupling constant
(i.e. for λ/4! ∈ [0, 10]). This loss of accuracy of the SCC as compared to the PMS is rather
small considering the simplicity of the underlying equations to solve: at the third non-trivial
order (and regardless of the values of N and m2), the SCC still amounts to finding the roots
of a quadratic polynomial whereas the PMS criterion is now a polynomial equation of order
6. Note also that, according to figs. 3.9 and 3.10, the TP method is clearly less performing
than the SCC and the PMS at the first non-trivial order of the OPT expansion but becomes
comparable to SCC at the third one, whereas the underpinning equations to solve are closer to
those of the PMS in terms of complexity. The TP method is thus disappointing (as compared
to both the PMS and the SCC) in that respect.

Comparing the two best approaches investigated so far, i.e. OPT and the collective LE,
figs. 3.9 and 3.10 show that, after combination with resummation, the collective LE outperforms
OPT at both the first and third non-trivial orders for both Egs and ρgs, at N = 2. Furthermore,
as discussed earlier from figs. 3.1 and 3.2, the performances of the collective LE are expected to
improve with N due to its connection with the 1/N -expansion whereas such an argument does
not hold for OPT (for instance, the performances of OPT in fig. 3.8 do not differ significantly
at N = 1 and 2). However, regarding the formalisms underpinning these two techniques,
the diagrammatic representations of their respective expansions is much more demanding to
determine on the side of the collective LE: whereas OPT diagrams are directly obtained by
adding the square vertex (3.154c) to the diagrams of the original LE at ~ϕcl = ~0 (i.e. in
the unbroken-symmetry regime) in all possible ways, the collective LE requires to construct
the diagrammatic expressions of all vertex functions S(n)

col,J for n = 2, · · · , 2k to determine
the corresponding Schwinger functional up to order O

(
~k
)
. As can be inferred from (3.85)

and (3.86) expressing respectively S
(3)
col,J and S

(4)
col,J , the determination of the diagrammatic

expressions of S(n)
col,J becomes quickly lengthy as n increases. This cumbersomeness directly
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Figure 3.10: Same as fig. 3.9 but for the third non-trivial orders of the collective LE (includ-
ing the best tested resummation procedures among the Padé-Borel and Borel-hypergeometric
schemes) and of OPT.

results from the logarithm structure of the collective classical action. Besides this, we should
also stress that the collective LE (as any other approach formulated in the mixed or collective
representation) rely on a HST and is therefore subject to a well-known drawback of the latter,
i.e. the fatal focusing of HSTs on a single channel [160] that may yield considerable difficulties
when trying to describe more realistic systems exhibiting competing instabilities (which is
notably the case for most nuclei of the nuclear chart). The origin of this problem lies in the
fact that, for such systems, we have an infinite number of choices to implement the HST (e.g.
should we integrate out the coupling associated to the particle-hole channel or that associated
to the particle-particle one? Mixtures are also possible, which explains the infinite number of
choices). Once one has integrated out the chosen channel, the physics of the other channel(s)
are automatically resummed into the propagator of the newly obtained theory, as a result
of the fluctuating character of the Hubbard-Stratonovich field. Although this might seem
appealing at first sight, such a propagator is often very hard to calculate in practice, hence
the aforementioned difficulties for methods based on HST(s). The implementation of OPT
described in the present section is designed to circumvent this issue. Generalizing the recipe
outlined in section 3.4.2, we can indeed introduce a classical field coupled to each relevant
bilinear in the original field(s) of the theory under consideration, thus treating all channels in
an equitable fashion. Hence, the simplicity of the underlying diagrammatic construction and
the possibility to circumvent the fatal focusing of HSTs are both important advantages of OPT
(over the collective LE in particular) for the purpose of describing realistic many-body systems.

In conclusion, OPT offers an interesting framework to describe strongly-coupled many-body
systems at low cost. As opposed to LEs, OPT results are directly systematically improvable
in the sense that they do not rely on resummation procedures: they take the form of (tremen-
dously) fast convergent series (see notably refs. [224–227] for detailed studies on the convergence
behavior of OPT series). However, the energy and the density are not tied in a functional as
in the EDF approach. We now investigate the third and last family of approaches considered
in the present chapter. These approaches are based on EAs from which one can work with
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functionals of the correlation functions of the theory, or their local versions that can coincide
with e.g. the density of the system.

3.5 Effective action

The EA framework allows for representing the partition function of a given theory in an exact
and compact fashion. As discussed in section 2.1, the nPI EA can be expressed in terms
of diagrams with dressed propagators and dressed k-point vertex functions for k ≤ n. We
investigate the 1PI, 2P(P)I and 4PPI EAs either organized with respect to ~ or λ, for the
original, mixed and collective representations of the studied O(N) model, as summarized in
tab. 3.1. Within these various EA implementations, expressions will be worked out via the
inversion method16 (IM) introduced by Fukuda and collaborators [162, 163], especially since
it enables us to draw direct connections with Kohn-Sham DFT via the 2PPI EA [85]. There
are of course other methods to derive the diagrammatic expressions of EAs, like for instance a
method developed by Carrington to exploit the 4PI EA [229]. We choose to focus on the IM
especially because of the links that it enlights between the EA formalism and DFT which is
particularly precious to us in our aim to reformulate the nuclear EDF method. Hence, we will
wait until section 3.5.3 on the 2PPI EA to present the general principles underlying the IM and
its aforementioned connections with DFT but we stress that the derivations of all diagrammatic
expressions of the EAs treated in this chapter are discussed in detail in appendix D within the
IM framework.

Table 3.1: All EA implementations investigated in the present study of the (0+0)-D O(N)-
symmetric ϕ4-theory. The designation “no 1-pt” indicates that all 1-point correlation functions
(i.e. the 1-point correlation function of the original field and possibly that of the Hubbard-
Stratonovich field) are imposed to vanish in the corresponding formalism. In addition, “~-
expansion” and “λ-expansion” refer to the parameter organizing the expansion (and therefore
the truncation) of the EA, i.e. either the ~ constant or the coupling constant λ of the studied
O(N) model.

Original EA Mixed EA Collective EA
~-expansion λ-expansion ~-expansion λ-expansion ~-expansion λ-expansion

1PI EA X X X
2P(P)I X X

2P(P)I EA (no 1-pt) X X X X
4PPI EA (no 1-pt) X X

3.5.1 1PI effective action

3.5.1.1 Original effective action

~-expansion: We start our discussion on EA approaches with the original 1PI EA (i.e. the
1PI EA formulated in the original representation) organized with respect to ~. Note that for
any nPI EAs with a ~-expansion, we could actually directly express the EA by simply retaining
all the nPI diagrams up to a certain power of ~ in the LE series of the corresponding Schwinger
functional. We have however carried out the IM in such cases in order to illustrate how the IM

16The formalism of part of the 1PI and 2PI EA approaches discussed in this thesis (those expressed in the
original representation and λ-wise organized) are discussed in ref. [228] for a ϕ4-theory (but not for the O(N)-
symmetric case) and QCD. As opposed to this work and for the sake of clarity, we explicitly construct here the
1PI EA via the IM instead of directly giving the 1PI diagrams contributing to it.
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formalism enables us to recover this diagrammatic property (see appendix D.2). The 1PI EA
under consideration is defined by the following Legendre transform:

Γ(1PI)
[
~φ
]
≡−W

[
~J
]

+

∫

x

Ja(x)
δW
[
~J
]

δJa(x)

=−W
[
~J
]

+

∫

x

Ja(x)φa(x) ,

(3.182)

with

φa(x) =
δW
[
~J
]

δJa(x)
, (3.183)

and W
[
~J
]
corresponds to the original Schwinger functional determined in section 3.2 via the

LE at K = 0, i.e. W
[
~J
]
≡ W LE;orig

[
~J,K = 0

]
. This EA can be expressed diagrammatically

as (see appendix D.2.1):

Γ(1PI)
[
~φ
]

= S
[
~φ
]
− ~

2
STr

[
ln
(
Gφ

)]

+ ~2




1

24
+

1

12
− 1

18
− 1

36




+O
(
~3
)
,

(3.184)

with the Feynman rules:

x, a y, b → Gφ;ab(x, y) , (3.185a)

xa
b

c
N → λ

∣∣∣~φ(x)
∣∣∣ δabδcN , (3.185b)

xa
b

c
d → λδabδcd , (3.185c)

where, as in our previous treatment of LEs in section 3.2, we have fixed our coordinates in
color space such that a spontaneous breakdown of the O(N) symmetry can only occur in the
direction set by a = N (still without any loss of generality). Such a convention will be followed
throughout the entire section 3.5. This translates into:

~φ(x) =
∣∣∣~φ(x)

∣∣∣




0
...
0
1


 . (3.186)
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Moreover, the propagator Gφ is not dressed by the classical configuration ~ϕcl of the original
field as in (3.18) for the original LE, but by its 1-point correlation function ~φ ≡

〈
~̃ϕ
〉
J
(satisfy-

ing (3.183)), which contains quantal or radiative corrections. It is defined by:

G−1
φ;ab(x, y) ≡ δ2S[~̃ϕ]

δϕ̃a(x)δϕ̃b(y)

∣∣∣∣∣
~̃ϕ=~φ

=

(
−∇2

x +m2 +
λ

6
φc(x)φc(x)

)
δabδ(x− y) +

λ

3
φa(x)φb(x)δ(x− y) .

(3.187)

Let us then evaluate Γ(1PI) in the (0+0)-D limit. As in section 3.2 (with (3.52) to (3.56)
more specifically), we separate the (inverse) propagator G−1

φ into the Goldstone modes one

G−1
φ;g = G−1

φ;gIN−1 =
(
m2 + λ~φ2/6

)
IN−1 and that of the Higgs mode (associated to the direction

a = N in color space according to our choice of coordinates) G−1
φ;NN = m2 + λ~φ2/2. From this,

we evaluate the diagrams contributing to Γ(1PI) at order O
(
~2
)
:

= λ [Gφ;NN + (N − 1)Gφ;g]
2 , (3.188)

= λ
[
G2
φ;NN + (N − 1)G2

φ;g

]
, (3.189)

= λ2φ2
NG

3
φ;NN , (3.190)

= λ2φ2
NGφ;NN

[
G2
φ;NN + (N − 1)G2

φ;g

]
. (3.191)

According to (3.188) to (3.191), it follows that (3.184) reduces in the zero-dimensional limit to:

Γ(1PI)
(
~φ
)

= S
(
~φ
)
− ~

2

[
(N − 1) ln

(
2πGφ;g

)
+ ln

(
2πGφ;NN

)]

+ ~2

[
λ

72

(
9 (Gφ;NN)2 + 3 (Gφ;g)

2 (N2 − 1
)
− 6 (Gφ;NN)3 λφ2

N

− 2Gφ;NNGφ;g (N − 1)
(
−3 + Gφ;gλφ

2
N

) )
]

+O
(
~3
)
,

(3.192)

with S
(
~φ
)

= m2φ2
N/2 +λφ4

N/4! here. This expression of the 1PI EA is then exploited by fixing
the configuration of the 1-point correlation function ~φ and more specifically of its component
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φN . This is achieved by solving the gap equation:

0 =
∂Γ(1PI)

(
~φ
)

∂φN

∣∣∣∣∣
~φ=~φ

=
(
Gφ;g

)−1
φN +

~
2

[
Gφ;NNλφN +

1

3
Gφ;g (−1 +N)λφN

]

+ ~2

[
1

108
λ2φN

(
− 45

(
Gφ;NN

)3 − 3
(
Gφ;g

)3 (−1 +N2
)

+ 27
(
Gφ;NN

)4
λφ

2

N + 3
(
Gφ;NN

)2
Gφ;g (−1 +N)

(
− 3 + Gφ;gλφ

2

N

)

+Gφ;NN

(
Gφ;g

)2
(−1 +N)

(
− 9 + 2Gφ;gλφ

2

N

))]

+O
(
~3
)
,

(3.193)

with ~φ =
(
φ1 · · · φN−1 φN

)T
=
(
0 · · · 0 φN

)T, G−1

φ;g
= m2 + λφ

2

N/6 and G−1

φ;NN
=

m2 + λφ
2

N/2 (the latter two quantities corresponding respectively to the configurations of G−1
φ;g

and G−1
φ;NN at ~J = ~0). The gs energy is subsequently inferred from the solution ~φ together

with (3.192) according to:

E1PI EA;orig
gs =

1

~
Γ(1PI)

(
~φ = ~φ

)
. (3.194)

λ-expansion: Exploiting instead λ as expansion parameter17, the 1PI EA (still defined by
(3.182) and (3.183)) reads (see appendix D.2.1):

Γ(1PI)
[
~φ
]

= S
[
~φ
]
− 1

2
STr

[
ln
(
G0

)]

+
1

24
+

1

12
+

1

12
+

1

6

+O
(
λ2
)
,

(3.195)

with the Feynman rules:

x, a y, b → G0;ab(x, y) , (3.196a)

x, a → φa(x) , (3.196b)

xa
b

c
d → λδabδcd . (3.196c)

17In this thesis, we always set ~ = 1 while treating λ-expansions of EAs.
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We stress that, in the framework of the λ-expansion, the 1PI EA involves the bare propagator
G0 which is no longer dressed by the 1-point correlation function ~φ according to the relation:

G−1
0;ab(x, y) =

(
−∇2

x +m2
)
δabδ(x− y) , (3.197)

which is to be compared with (3.187) for the ~-expansion.

As a next step, we take the zero-dimensional limit. The diagrams of (3.195) are thus
evaluated as follows:

= λN2G2
0 , (3.198)

= λNG2
0 , (3.199)

= λNφ2
NG0 , (3.200)

= λφ2
NG0 , (3.201)

with
G−1

0;ab = G−1
0 δab = m2δab . (3.202)

After combining (3.198) to (3.201) with (3.195), we infer the following expression of Γ(1PI):

Γ(1PI)
(
~φ
)

= S
(
~φ
)
− N

2
ln
(
2πG0

)
+ λ

(
N2 + 2N

24
G2

0 +
N + 2

12
φ2
NG0

)
+O

(
λ2
)
, (3.203)

where we still have to specify a configuration for ~φ. This is done after solving the gap equation:

0 =
∂Γ(1PI)

(
~φ
)

∂φN

∣∣∣∣∣
~φ=~φ

= φNG
−1
0 + λ

(
1

6
φ

3

N +
N + 2

6
φNG0

)
+O

(
λ2
)
, (3.204)

where ~φ is already defined right below (3.193). The value of φN thus obtained enables us to
infer an estimate for the gs energy by using (3.194) as for the ~-expansion. It can also be noted
that the results of the ~-expansion up to order O

(
~2
)
(given by (3.192) and (3.193)) and those

of the λ-expansion up to order O
(
λ
)
(given by (3.203) and (3.204)) coincide if ~φ = ~φ = ~0. This

remark remains valid if we compare ~-expansion results up to order O
(
~n+1

)
and λ-expansion

results up to order O
(
λn
)
for any n ∈ N.
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3.5.1.2 Collective effective action

Similarly to the analysis made in the section dedicated to the LE and for the same motivations
(namely investigating whether the introduction of an auxiliary collective field helps in grasping
more efficiently non-trivial correlations at low orders), we now focus on the collective 1PI EA,
i.e. the 1PI EA implemented in the collective representation (defined in section 3.2.1.3) where
the original field ~̃ϕ has been integrated out in favor of the collective Hubbard-Stratonovich
field σ̃. There are numerous works exploiting the collective 1PI EA. These applications take
multiple forms for the following reasons:

• One can use the Schwinger-Dyson equations formalism, equivalent to that of the EA
treated in this chapter [168, 230–242]. The collective 1PI EA formalism in this form is
referred to as mean-field PT, mean-field theory or self-consistent field approximation.

• The EA can be expanded using different expansion parameters like 1/N [235, 240, 241,
243–248] or ~ [167, 242, 249–260]18.

We stress that all of these approaches are equivalent as long as the truncation of the EA is
organized with respect to the same parameter, e.g. 1/N or ~ typically (see ref. [241] for an
exhaustive discussion on truncation schemes of Schwinger-Dyson equations). If the parameter in
question is ~, the resulting approach is sometimes called mean-field expansion [249, 250] or, more
recently, auxiliary field LE (LOAF) [167, 242, 253–260] (see ref. [242] for a detailed discussion
on this technique). The LOAF should not be confused with the LOAF approximation which
consists in keeping only the term of orderO

(
~0
)
(i.e. the leading order) in the series representing

the collective 1PI EA in the framework of the LOAF. For the purpose of determining the gs
energy and density of the toy model under study, this amounts to considering the leading orders
of the collective LE series (3.94) and (3.95)19. The latter remark is only true assuming that the
physical configuration of the 1-point correlation function of the original field ~φ determined from
the gap equations in the LOAF approximation is zero (see appendix D.2.2 for further details
on that point).

The collective 1PI EA is also defined by Legendre transforming the corresponding Schwinger
functional. This translates into:

Γ
(1PI)
col [Φ] ≡−Wcol

[
J
]

+

∫

x

J α(x)
δWcol

[
J
]

δJ α(x)

=−Wcol

[
J
]

+

∫

α

J α(x)Φα(x) ,

(3.205)

with

Φα(x) =
δWcol

[
J
]

δJ α(x)
, (3.206)

or, in terms of the 1-point correlation functions of the original and Hubbard-Stratonovich fields
(i.e. ~φ(x) =

〈
~̃ϕ(x)

〉
and η(x) = 〈σ̃(x)〉, respectively),

Φ(x) =

(
~φ(x)
η(x)

)
. (3.207)

18Let us stress once again that the parameter that we refer to as ~ in the collective situation sometimes bear
different names in the literature, like ε [168] or θ [252].

19The leading order of the energy series expressed by (3.94) corresponds to a term of order O
(
~−1

)
and not

O
(
~0
)
.
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Note also that Wcol

[
J
]
is the collective Schwinger functional treated in section 3.2 with the

LE, i.e. Wcol

[
J
]
≡ W LE;col

[
J
]
. The collective 1PI EA can be represented diagrammatically

according to (see appendix D.2.2):

Γ
(1PI)
col [Φ] = Scol[η] +

1

2

∫

x,y

φa(x)G−1
Φ;ab(x, y)φb(y)− ~

2
Tr
[
ln
(
DΦ

)]

− ~2




1

2
+

1

2
+

1

2
+

1

4

+
1

4
+

1

8
+

1

2
+

1

12




+O
(
~3
)
,

(3.208)

where GΦ and DΦ are the original and collective field propagators respectively, conveniently
collected in the superpropagator GΦ as follows:

GΦ =

(
GΦ

~0
~0T DΦ

)
, (3.209)

G−1
Φ;ab(x, y) =

(
−∇2

x +m2 + i

√
λ

3
η(x)

)
δabδ(x− y) , (3.210)

D−1
Φ (x, y) =

δ2Scol,J [σ̃]

δσ̃(x)δσ̃(y)

∣∣∣∣
σ̃=η
~J=~J0

, (3.211)

with ~J0 being a source coefficient introduced in the framework of the IM (see appendix D.2.2).
Result (3.208) relies on the Feynman rules:

x, a y, b → GΦ;ab(x, y) , (3.212a)

x y → DΦ(x, y) , (3.212b)

a bx → i

√
λ

3
δab . (3.212c)

As a next step, we study the collective 1PI EA in (0+0)-D. In this limit, the propaga-
tors (3.210) and (3.211) respectively satisfy:

G−1
Φ;ab = G−1

Φ δab =

(
m2 + i

√
λ

3
η

)
δab , (3.213)
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D−1
Φ =

λ

3
GΦφ

2
N +

λ

6
NG2

Φ + 1 , (3.214)

and the diagrams involved in (3.208) read:

= =

(
i

√
λ

3

)4

G3
ΦD

2
Φφ

2
N , (3.215)

= =

(
i

√
λ

3

)4

NG4
ΦD

2
Φ , (3.216)

= =

(
i

√
λ

3

)6

G4
ΦD

3
Φφ

4
N , (3.217)

=

(
i

√
λ

3

)6

NG5
ΦD

3
Φφ

2
N , (3.218)

=

(
i

√
λ

3

)6

N2G6
ΦD

3
Φ . (3.219)

Therefore, according to (3.208) as well as (3.215) to (3.219), Γ
(1PI)
col becomes in (0+0)-D:

Γ
(1PI)
col

(
Φ
)

= Scol(η) +
1

2
G−1

Φ φ2
N −

~
2

ln
(
DΦ

)

+ ~2

[
− λ2

9
G3

ΦD
2
Φφ

2
N −

λ2

24
NG4

ΦD
2
Φ +

λ3

36
G4

ΦD
3
Φφ

4
N +

λ3

54
NG5

ΦD
3
Φφ

2
N

+
λ3

324
N2G6

ΦD
3
Φ

]

+O
(
~3
)
,

(3.220)

with Scol(η) = 1
2
η2−N

2
ln
(
2πGΦ

)
. As before, the expression for the 1PI EA becomes exploitable

after fixing the relevant 1-point correlation function(s) (i.e. the components of Φ here), which
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is now done via the gap equations:

0 =
∂Γ

(1PI)
col

(
Φ
)

∂φN

∣∣∣∣∣
Φ=Φ

= G−1

Φ
φN +

~
3
GΦDΦλφN

+ ~2

[
− 1

162
G3

Φ
D2

Φ
λ2φN

(
36 +G4

Φ
D2

Φ
N2λ2 − 42GΦDΦλφ

2

N

+ 6G3
Φ
D2

Φ
Nλ2φ

2

N + 3G2
Φ
DΦλ

(
−5N + 3DΦλφ

4

N

))]

+O
(
~3
)
,

(3.221)

and

0 =
∂Γ

(1PI)
col

(
Φ
)

∂η

∣∣∣∣∣
Φ=Φ

= η +
i

2

√
λ

3

(
GΦN + φ

2

N

)
− ~

iG2
Φ
DΦλ

3
2

6
√

3

(
GΦN + φ

2

N

)

+ ~2

[
iG4

Φ
D2

Φ
λ

5
2

324
√

3

(
G5

Φ
D2

Φ
N3λ2 + 108φ

2

N + 7G4
Φ
D2

Φ
N2λ2φ

2

N

+ 6GΦ

(
9N − 10DΦλφ

4

N

)
+ 9G2

Φ
DΦλφ

2

N

(
−7N +DΦλφ

4

N

)

+ 15G3
Φ
DΦNλ

(
−N +DΦλφ

4

N

)) ]

+O
(
~3
)
,

(3.222)

with Φ =
(
~φ η

)T

=
(
φ1 · · · φN−1 φN η

)T
=
(
0 · · · 0 φN η

)T, G−1

Φ
= m2 + i

√
λ
3
η

and D−1

Φ
= λ

3
GΦφ

2

N + λ
6
NG2

Φ
+ 1 (as follows respectively from (3.213) and (3.214) in the case

where J vanishes). Finally, the gs energy and density are respectively deduced after plugging
the solution Φ into:

E1PI EA;col
gs =

1

~
Γ

(1PI)
col

(
Φ = Φ

)
, (3.223)

ρ1PI EA;colgs =
i

N

√
12

λ
η . (3.224)

The latter relation follows by considering the following classical equation of motion in the mixed
representation:

∂Smix

(
~̃ϕ, σ̃

)

∂σ̃
= σ̃ + i

√
λ

12
~̃ϕ

2
= 0 , (3.225)

which can be inferred from (3.24) in (0+0)-D with all external sources set equal to zero. In the
spirit of the Schwinger-Dyson equations formalism, we take the expectation value of (3.225) to
turn it into the equality20:

ρgs ≡
1

N

〈
~̃ϕ

2
〉

=
i

N

√
12

λ
η , (3.226)

in accordance with (3.224).

20The definition of the gs density used in (3.226) was introduced in (2.39) with an expectation value defined
by (2.40).
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For both signs ofm2, the physical solutions found from the extremization of both the original
1PI EA (in the ~- and λ-expansions) and the collective 1PI EA at order O

(
~2
)
(i.e. from the

resolution of the corresponding gap equations) possess a vanishing 1-point correlation function
~φ for the original field. As explained below (3.204), this implies that the ~- and λ-expansions
of the original 1PI EA are equivalent in this situation. Most importantly, this means that these
1PI EA approaches do not exhibit any spurious spontaneous breakdown of the O(N) symmetry
at their first non-trivial orders, which is in accordance with the minimum of the exact effective
potential V exact

eff

(
~φ
)
lying at ~φ = ~0 regardless of the sign ofm2 (as discussed in section 2.4). Even

though this is a reassuring feature, it is also fatal for the original 1PI EA since ~φ is the only
adjustable variable that can be used to grasp correlations in this framework. This is illustrated
by fig. 3.11 where the gs energy estimated from the original 1PI EA diverges very quickly as λ
increases. This approach is thus completely irrelevant to tackle the non-perturbative regime of
our model, regardless of the calculated quantity (i.e. gs energy, gs density, ...).

−10 −5 0 5 10
λ

4!m2
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−1.5
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0.5

E
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collective LE O(h̄2)

OPT (PMS on Egs) O(δ)

1PI EA O(h̄2)

collective 1PI EA O(h̄2)
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ρ
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collective 1PI EA O(h̄2)

Figure 3.11: Gs energy Egs or density ρgs calculated at ~ = 1, m2 = ±1 and N = 2 (Re(λ) ≥ 0
and Im(λ) = 0). The indication “O

(
~n
)
” for the results obtained from the ~-expanded 1PI

EAs specifies that the series representing the EA in question has been exploited up to order
O
(
~n
)
(which implies notably that the corresponding series for the gs energy is calculated up

to order O(~n−1) according to (3.194) and (3.223)).

While the constraint of the O(N) symmetry is too strong for the original 1PI EA, the
collective one manages to capture non-perturbative physics thanks to the 1-point correlation
function η of the Hubbard-Stratonovich field. This illustrates the key advantage of HSTs by
which one introduces a new field in the arena that is not constrained by the symmetries of
the model under consideration. The Hubbard-Stratonovich field being a scalar with respect
to the O(N) transformations in the present case, its expectation value can be finite without
spoiling the O(N) symmetry and can therefore dress the propagator GΦ with non-perturbative
physics. However, we can question the efficiency of the collective 1PI EA from another angle
as fig. 3.11 shows for both Egs and ρgs at N = 2 that this EA approach is outperformed by
the collective LE over the whole range of tested values for the coupling constant (i.e. for
λ/4! ∈ [0, 10]). Even though the determination of the diagrammatic representation of the 1PI
EA is less demanding than that of the Schwinger functional (as the latter includes connected
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1-particle-reducible (1PR) diagrams as opposed to the 1PI EA), the EA framework requires
to solve also gap equations which are self-consistent for realistic models. This is a significant
reason to favor the LE as compared to the EA method in this situation, especially considering
the good performances of the collective LE beyond its first non-trivial order illustrated notably
by figs. 3.9 and 3.10. Besides this, it should also be noted that the diagrammatic constructions
are significantly more demanding to develop in the framework of the collective representation,
as compared to the original and mixed ones. Hence, we will investigate the 2PI EA in the next
section for the original and mixed versions of the studied O(N) model, still paying particular
attention to the presence or absence of SSB in the solutions of the corresponding gap equations.
The 2PI EA enables us to express the energy as a functional of the 2-point correlation function
(or Green’s function or full propagator) of the system, which gets dressed with non-perturbative
physics via the resolution of the corresponding gap equation. We will also carefully illustrate
how the mixed 2PI EA exploits the Hubbard-Stratonovich field to capture correlations.

3.5.2 2PI effective action

3.5.2.1 Original effective action

Full original 2PI EA: We first point out that the original 2PI EA has already been in-
vestigated for the O(N)-symmetric ϕ4 model but many of these studies consider a 1/N -
expansion [261–263]. We will focus in section 3.5.2 on the ~- and λ-expansions exclusively
and discuss the connections between these two expansion schemes as a next step.

As before, we start by giving the definition of the EA under consideration, i.e. the original
2PI EA here. It relies on the Legendre transform:

Γ(2PI)
[
~φ,G

]
≡−W

[
~J,K

]
+

∫

x

Ja(x)
δW
[
~J,K

]

δJa(x)
+

∫

x,y

Kab(x, y)
δW
[
~J,K

]

δKba(x, y)

=−W
[
~J,K

]
+

∫

x

Ja(x)φa(x) +
1

2

∫

x,y

φa(x)Kab(x, y)φb(y)

+
~
2

∫

x,y

Kab(x, y)Gba(y, x) ,

(3.227)

with

φa(x) =
δW
[
~J,K

]

δJa(x)
, (3.228)

Gab(x, y) =
δ2W

[
~J,K

]

δJa(x)δJ b(y)
=

2

~
δW
[
~J,K

]

δKab(x, y)
− 1

~
φa(x)φb(y) , (3.229)

and W
[
~J,K

]
≡ W LE;orig

[
~J,K

]
has already been expressed diagrammatically via the LE in

section 3.2. From definition (3.227), it can be shown that the original 2PI EA can be ex-
pressed in terms of 2PI diagrams only, which translates for the studied O(N) model into (see
appendix D.3.1):

Γ(2PI)
[
~φ,G

]
= S

[
~φ
]
− ~

2
STr

[
ln
(
G
)]

+
~
2

STr
[
G−1
φ G− I

]

+~2




1

24
+

1

12
− 1

18
− 1

36




+O
(
~3
)
,

(3.230)
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with I being the identity with respect to both spacetime and color indices (i.e. Iab(x, y) =
δabδ(x− y)) and (3.230) is based on the Feynman rules:

x, a y, b → Gab(x, y) , (3.231a)

xa
b

c
N → λ

∣∣∣~φ(x)
∣∣∣ δabδcN , (3.231b)

xa
b

c
d → λδabδcd . (3.231c)

Note that the propagator G is more general than the one involved in the original 1PI EA,
i.e. Gφ. The former will be dressed by non-trivial correlations through the corresponding gap
equations while the latter is the mere unperturbed propagator, however possibly dressed by the
1-point correlation function ~φ.

We then examine the original 2PI EA in the zero-dimensional limit. To that end, we evaluate
the different contributions to the RHS of (3.230) in (0+0)-D:

STr
[
G−1
φ G− I

]
= G−1

φ;abG
ba − δa

a =




G−1
φ;11G11 − 1 for N = 1 ,

G−1
φ;11G11 +G−1

φ;22G22 − 2 for N = 2 ,
(3.232)

= λ

(
N∑

a=1

Gaa

)2

=





λG2
11 for N = 1 ,

λ (G11 +G22)2 for N = 2 ,
(3.233)

= λ
N∑

a,b=1

G2
ab =





λG2
11 for N = 1 ,

λ
(
G2

11 + 2G2
12 +G2

22

)
for N = 2 ,

(3.234)

= λ2φ2
N

N∑

a,b=1

GNaGabGbN =





λ2φ2
1G

3
11 for N = 1 ,

λ2φ2
2

(
G2

12 (G11 + 2G22) +G3
22

)
for N = 2 ,

(3.235)

= λ2φ2
NGNN

N∑

a,b=1

G2
ab =





λ2φ2
1G

3
11 for N = 1 ,

λ2φ2
2G22

(
G2

11 + 2G2
12 +G2

22

)
for N = 2 ,

(3.236)
where we have notably used the symmetry property of G (i.e. Gab = Gba ∀a, b) to simplify
our expressions for N = 2. To further specify (3.232), we also recall the expression of G−1

φ

introduced for the 1PI EA in section 3.5.1.1, based on a splitting between Goldstone and Higgs
modes:

G−1
φ,ab = G−1

φ;g (1− δaN) (1− δbN) +G−1
φ;NNδaNδbN , (3.237)
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with G−1
φ;g = m2 + λ~φ2/6 and G−1

φ;NN = m2 + λ~φ2/2 (and ~φ2 = φ2
N as usual). With the

help of (3.232) to (3.236), we show that expression (3.230) of the original 2PI EA becomes in
(0+0)-D:

• For N = 1:

Γ(2PI)
(
~φ,G

)
= S

(
~φ
)

+ ~

[
− 1

2
ln
(
2πG11

)
+

1

2

(
m2 +

λ

2
φ2

1

)
G11 −

1

2

]

+ ~2

[
λ

8
G2

11 −
λ2φ2

1

12
G3

11

]

+O
(
~3
)
.

(3.238)

• For N = 2:

Γ(2PI)
(
~φ,G

)
= S

(
~φ
)

+ ~

[
− 1

2

(
ln
(
2πG11

)
+ ln

(
2πG22

))
+

1

2

((
m2 +

λ

6
φ2

2

)
G11

+

(
m2 +

λ

2
φ2

2

)
G22

)
− 1

]

+ ~2

[
λ

72

(
G11

(
6G22 − 4G2

12λφ
2
2

)
+ 3G2

22

(
3− 2G22λφ

2
2

)

+G2
11

(
9− 2G22λφ

2
2

)
− 12G2

12

(
−1 +G22λφ

2
2

) )
]

+O
(
~3
)
.

(3.239)

We stress that φN and G are independent. However, the components of G are constrained by
its symmetry (i.e. Gab = Gba), so that the 2PI EA Γ(2PI)

(
~φ,G

)
depends on (N2 + N)/2 + 1

independent variational variables forming the set {φN ,Gab| a, b ∈ N∗, a ≤ b ≤ N}. This enables
us to derive the following gap equations for Γ(2PI)

(
~φ,G

)
:

• For N = 1:

0 =
∂Γ(2PI)

(
~φ,G

)

∂φ1

∣∣∣∣∣ ~φ=
~
φ

G=G

= m2φ1 +
λ

6
φ

3

1 + ~
(

1

2
λφ1G11

)
− ~2

(
1

6
λ2φ1G

3

11

)
+O

(
~3
)
,

(3.240)

0 =
∂Γ(2PI)

(
~φ,G

)

∂G11

∣∣∣∣∣ ~φ=
~
φ

G=G

=
~
4
G
−1

11

(
−2 + 2m2G11 + λφ

2

1G11

)
+

~2

4

(
λG11 − λ2φ

2

1G
2

11

)

+O
(
~3
)
.

(3.241)
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• For N = 2:

0 =
∂Γ(2PI)

(
~φ,G

)

∂φ2

∣∣∣∣∣ ~φ=
~
φ

G=G

= m2φ2 +
λ

6
φ

3

2 + ~

[
1

6
λφ2

(
G11 + 3G22

)
]
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[
1

18
λ2φ2

(
2G11G

2

12 +G
2

11G22 + 6G
2

12G22 + 3G
3

22

)]

+O
(
~3
)
,

(3.242)

0 =
∂Γ(2PI)

(
~φ,G

)

∂G11

∣∣∣∣∣ ~φ=
~
φ

G=G

= ~

[
− 1

2
G
−1

11 +
1

2

(
m2 +

λ

6
φ

2

2

)]

− ~2

[
1

36
λ
(
−3G22 + 2G

2

12λφ
2

2 +G11

(
−9 + 2G22λφ

2

2

))]

+O
(
~3
)
,

(3.243)

0 =
∂Γ(2PI)

(
~φ,G

)

∂G22

∣∣∣∣∣ ~φ=
~
φ

G=G

= ~

[
− 1

2
G
−1

22 +
1
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(
m2 +

λ

2
φ

2
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[
1

36
λ
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−3G11 − 9G22 +G
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2

2 + 6G
2

12λφ
2
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2

22λφ
2
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+O
(
~3
)
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(3.244)

0 =
∂Γ(2PI)

(
~φ,G

)

∂G12

∣∣∣∣∣ ~φ=
~
φ

G=G

= −~2

[
1

9
G12λ

(
−3 +G11λφ

2

2 + 3G22λφ
2

2

)]
+O

(
~3
)
. (3.245)

The gs energy and density can be obtained from the solutions of the latter gap equations via
the relations:

E2PI EA;orig
gs =

1

~
Γ(2PI)

(
~φ = ~φ,G = G

)
, (3.246)

ρ2PI EA;origgs =
1

N

(
~Tra

(
G
)

+ ~φ · ~φ
)
. (3.247)

Fig. 3.12 shows two different solutions obtained by solving the gap equations (3.242) to
(3.245) up to order O

(
~2
)
: only one of these two solutions exhibits a spontaneous breakdown

of the O(N) symmetry, with a finite 1-point correlation function ~φ in the non-perturbative
regime21. It is however the solution without SSB (at least over the whole range of values
for λ/4! shown in fig. 3.12) that minimizes the gs energy and can thus be coined as physical

21It is acknowledged that solutions of gap equations for this 2PI EA have a tendency to violate Ward identities
associated with global symmetries. This is synonymous to violations of Goldstone’s theorem [264–266] and
appearance of massive Goldstone bosons if SSB occurs. A recent extension of the 2PI EA formalism, known as
symmetry-improved 2PI (SI2PI) EA or symmetry-improved CJT EA [267], has been constructed to overcome
the drawbacks of previous approaches that already address this issue [268–277]. The SI2PI EA formalism
consists in constraining the extremization of the standard 2PI EA by imposing the Ward identities of the model
under consideration as a constraint via the method of Lagrange multipliers, thus resulting in a modified set of
gap equations whose solutions can not violate Goldstone’s theorem by construction. The SI2PI EA has already
been successfully applied to several models [267, 278–281], especially to a O(2)-symmetric ϕ4-theory [267, 282].
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Figure 3.12: Two different solutions of the gap equations of the 2PI EA Γ(2PI)
(
~φ,G

)
at its first

non-trivial order for the gs energy Egs or the 1-point correlation function ~φ at ~ = 1, m2 = −1
and N = 2 (Re(λ) > 0 and Im(λ) = 0). More precisely, the left-hand plot shows the difference
between the gs energy Ecalc

gs calculated from each of these solutions on the one hand and the
corresponding exact solution Eexact

gs on the other hand. See also the caption of fig. 3.11 for the
meaning of the indication “O

(
~n
)
” for the results obtained from ~-expanded EAs.

solution. This illustrates that, for the O(N) model under consideration whose exact solution
does not break the O(N) symmetry, we can safely consider the 2PI EA at ~φ = ~0 defined as
Γ(2PI)[G] ≡ Γ(2PI)

[
~φ = ~0,G

]
, without any loss of accuracy for a given truncation order. This

could have been anticipated from our previous results of fig. 3.11 which showed that the 1-point
correlation function ~φ is not capable of capturing non-trivial physics in the framework of the
1PI EA either.

Original 2PI EA with vanishing 1-point correlation function: Hence, we will now
focus on the 2PI EA at ~φ = ~0, i.e. Γ(2PI)[G]. This restriction imposes notably that all diagrams
involving vertex (3.231b) vanish, thus rendering the enhanced complexity of the underpinning
diagrammatic expansion with increasing truncation orders more tractable. We will thus push
the present investigation up to its third non-trivial order (i.e. up to order O(~4) for the EA).
This will be done by determining every 2PI diagram contributing to W LE;orig

[
~J = ~0,K

]
up to

order O
(
~4
)
(the source ~J is no longer useful if we assume that ~φ = ~0 since every non-vanishing

correlation function can be expressed by differentiating the Schwinger functional with respect
to K in this case). Note that all these diagrams and the corresponding multiplicities can be
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found in appendix C.1. This procedure leads to:

Γ(2PI)[G] =− ~
2

STr
[
ln
(
G
)]

+
~
2

STr
[
G−1

0 G− I
]

+ ~2




1

24
+

1

12




− ~3




1

72
+

1

144




+ ~4




1

324
+

1

108
+

1

324
+

1

216

+
1

1296




+O
(
~5
)
,

(3.248)

where the Feynman rules are still given by (3.231a) and (3.231c) and G0 is the bare propagator
(defined by (3.197)) which coincides with Gφ (defined by (3.187)) at ~φ = ~0.

As a next step, we consider the zero-dimensional situation. First of all, since SSB can
not occur in the present approach because of the constraint ~φ = ~0, G must also be invariant
under O(N) transformations, which means that its structure in color space must be trivial, i.e.
Gab = G δab ∀a, b. With this in mind, we evaluate in (0+0)-D the following supertrace:

STr
[
G−1

0 G− I
]

= N
(
m2G− 1

)
, (3.249)

and the diagrams involved in (3.248):

= λN2G2 , (3.250)

= λNG2 , (3.251)

= λ2NG4 , (3.252)

= λ2N2G4 , (3.253)
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= = λ3NG6 , (3.254)

= = λ3N2G6 , (3.255)

= λ3N3G6 . (3.256)

From (3.248) and (3.249) to (3.256), it follows that:

Γ(2PI)(G) = ~
(
−N

2
ln(2πG) +

N

2

(
m2G− 1

))
+ ~2

(
N2 + 2N

24
λG2

)
− ~3

(
N2 + 2N

144
λ2G4

)

+ ~4

(
N3 + 10N2 + 16N

1296
λ3G6

)
+O

(
~5
)
.

(3.257)

Finally, the differentiation of (3.257) yields the following gap equation:

0 =
∂Γ(2PI)(G)

∂G

∣∣∣∣
G=G

= ~
(
−N

2
G
−1

+
N

2
m2

)
+ ~2

(
N2 + 2N

12
λG

)
− ~3

(
N2 + 2N

36
λ2G

3
)

+ ~4

(
N3 + 10N2 + 16N

216
λ3G

5
)

+O
(
~5
)
,

(3.258)

with Gab = G δab ∀a, b. The gs energy and density are obtained from the solution G as well
as (3.246) and (3.247) with ~φ = ~0. Besides, as was shown earlier for the 1PI EA at the first
non-trivial orders, the ~- and λ-expansions for the 2PI EA coincide at ~φ = ~0. It can indeed
be seen in (3.257) that the power series of Γ(2PI)(G) is equivalently organized with respect to
~ and λ. More specifically, ~-expansion results truncated at order O

(
~n+1

)
are equivalent to

those of the λ-expansion truncated at order O
(
λn
)
for all n ∈ N.

The results thus obtained from Γ(2PI)(G) are displayed in fig. 3.13. The first non-trivial
order, which is implemented by truncating Γ(2PI)(G) right beyond order O

(
~2
)
, coincides with

the standard Hartree-Fock result as it can be shown that the gap equation (3.258) is equivalent
to a Dyson equation with Hartree-Fock self-energy if all terms of order O

(
~3
)
or higher are

ignored. According to fig. 3.13, this truncation is barely affected as the coupling constant λ
increases in the regime set by λ/4! & 1 (for both signs of m2) and achieves an accuracy of
about 10% for both Egs and ρgs at N = 2 in this situation. We have illustrated in this way the
non-perturbative character of the Hartree-Fock theory and we can thus see that the present
2PI EA approach is designed to improve this Hartree-Fock result in a systematic fashion.
However, if we consider the solutions of the gap equation (3.258) at the next two orders in ~,
we actually observe the reverse: in almost the entire interval λ/4! ∈ [0, 10] for both signs of
m2, the resulting estimates of Egs and ρgs worsen as the truncation order with respect to ~
increases. This is because, just like our perturbative series derived with the LE in section 3.2,
the series representing Γ(2PI)(G) (i.e. (3.248) or (3.257) in (0+0)-D) is asymptotic, even after
setting G = G.
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Figure 3.13: Difference between the calculated gs energy Ecalc
gs or density ρcalc

gs and the cor-
responding exact solution Eexact

gs or ρexact
gs at ~ = 1, m2 = ±1 and N = 2 (Re(λ) ≥ 0 and

Im(λ) = 0). See also the caption of fig. 3.11 for the meaning of the indication “O
(
~n
)
” for the

results obtained from ~-expanded EAs.

We therefore exploit a resummation procedure, and more specifically the Padé-Borel re-
summation scheme, to illustrate the expected improvement with respect to the Hartree-Fock
result. It amounts to modifying the underlying procedure as follows: the expression of Γ(2PI)(G)
(given by (3.257)) truncated at the chosen order with respect to ~ is replaced by a given Padé
approximant to subsequently derive the gap equations. In this way, the solution G is system-
atically improved via resummation. As a next step, the gs energy and density are still inferred
from (3.246) and (3.247) at ~φ = ~0, with one additional peculiarity for Egs: Γ(2PI)

(
~φ = ~0,G = G

)

is rewritten in (3.246) with the Padé-Borel resummation procedure outlined in section 3.3.3.
We refer to this entire procedure as Padé-Borel resummation of the EA, even though there
is no Borel transform involved in the determination of ρgs. The implementation of the Borel-
hypergeometric resummation is not that straightforward for the EA formalism since we do not
have analytical formulae to rewrite derivatives of Meijer G-functions with respect to each of
their entries [283]. Considering the good performances of this resummation procedure at the
level of the LE, we can definitely expect it to be relevant in the framework of EAs as well, but
we postpone such an investigation to future works.

Regarding the numerical results thus obtained with the Padé-Borel resummation, we can
indeed see in fig. 3.13, which shows the results obtained from the best Padé approximants at
each of the three first non-trivial orders of Γ(2PI)(G), that a [2/1] Padé approximant reaches
an accuracy of 1% for both Egs and ρgs for λ/4! ∈ [0, 10], which is to be compared with the
10% of the Hartree-Fock result. However, the best Padé approximants at the first two non-
trivial orders, i.e. the [0/1] and [1/1] approximants, do not manage to clearly improve the
corresponding bare results (labeled respectively “2PI EA (~φ = ~0) O(~2)” and “2PI EA (~φ = ~0)
O(~3)” in fig. 3.13) for all values of the coupling constant λ in both the unbroken- and broken-
symmetry phases, which leads us to another important point on renormalization that we now
discuss.
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The absence of integrals over spacetime indices in the studied (0+0)-D problem exempts
us from renormalization issues. Until recently, there was no renormalization recipe to exploit
reliably the EA approaches of this chapter beyond their lowest non-trivial orders (i.e. beyond
the Hartree-Fock level). More specifically, whereas a procedure to renormalize 2PI EAs with
counterterms has been put forward in the early 2000s [284–287], it is acknowledged that nPI
EAs have a tendency to break gauge invariance at order O

(
~m
)
when m > n. In other words,

nPI EAs are optimally exploited when they are considered at order O
(
~n
)
[288, 289], which

implies that, to perform calculations beyond the Hartree-Fock level of 2PI EAs, one should
handle 3PI or higher-order EAs, for which there was no renormalization recipe until recently.
This limitation was overcome by a recent study [290] developing a new renormalization scheme
based on FRG that enables us to handle the divergences encountered in any nPI EA approaches,
and thus safely exploit nPI EAs up to any order even for gauge theories. In addition to
this longstanding lack of renormalization recipe for EA approaches beyond their lowest non-
trivial orders, resummation procedures are in general inefficient at first non-trivial orders of
diagrammatic expansions, as is illustrated with fig. 3.13. This explains that there are only very
few studies [149] investigating the EA formalism in combination with resummation theory.
However, the latter remains a key aspect of the present approach as it is the resummation that
enables us to turn the EA techniques treated in this chapter into systematically improvable
approaches. We will therefore not content ourselves with the present resummation analysis and
perform similar applications to what will turn out to be the most performing EA method of
this chapter, i.e. the mixed 2PI EA.

3.5.2.2 Mixed effective action

~-expansion for the full mixed 2PI EA: Although mixed EAs of O(N) models were
pioneered by the work of Coleman, Jackiw and Politzer [153], the developments of their 2PI
versions were carried out by Cooper and collaborators [168, 291–295] and later by Aarts et
al. [296] for instance. Note also some applications of this formalism to the study of chiral
symmetry restoration [275]. As for the collective LE discussed in section 3.2.2.3, the present
study is to our knowledge the first pushing this approach based on the mixed 2PI EA up to its
third non-trivial order (i.e. up to order O(~4) for the ~-expansion of this EA22) and to combine
it with a resummation procedure. Furthermore, a well-known implementation of the mixed 2PI
EA is the bare vertex approximation (BVA) [292–294], which is equivalent to the first non-trivial
order of the ~-expansion (for which the EA is still considered up to order O(~2)). The BVA
was notably shown to be successful in the framework of QFTs at finite temperature. For an
O(N)-symmetric ϕ4-theory in (1+1)-D for instance, the problematic absence of thermalization
found in the framework of the Hartree approximation is cured by the BVA [294].

The definition of the mixed 2PI EA can be inferred from that of the original 2PI EA (given
by (3.227) to (3.229)) by replacing correlation functions and sources by their supercounterparts,
thus leading to:

Γ
(2PI)
mix

[
Φ,G

]
≡−Wmix

[
J ,K

]
+

∫

x

J α(x)
δWmix

[
J ,K

]

δJ α(x)
+

∫

x,y

Kαβ(x, y)
δWmix

[
J ,K

]

δKβα(x, y)

=−Wmix

[
J ,K

]
+

∫

x

J α(x)Φα(x) +
1

2

∫

x,y

Φα(x)Kαβ(x, y)Φβ(y)

+
~
2

∫

x,y

Kαβ(x, y)Gβα(y, x) ,

(3.259)

22To clarify, the present full mixed 2PI EA approach has to our knowledge never been pushed up to its third
non-trivial order regardless of the chosen expansion scheme, even in the framework of the 1/N -expansion
which is often considered for 2PI EA studies notably [292–294, 296].
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with

Φα(x) =
δWmix

[
J ,K

]

δJ α(x)
, (3.260)

Gαβ(x, y) =
δ2Wmix

[
J ,K

]

δJ α(x)δJ β(y)
=

2

~
δWmix

[
J ,K

]

δKαβ(x, y)
− 1

~
Φα(x)Φβ(y) , (3.261)

or, to further specify our supernotations (still involving the 1-point correlation functions ~φ(x) =〈
~̃ϕ(x)

〉
and η(x) = 〈σ̃(x)〉),

Φ =

(
~φ
η

)
, (3.262)

G =

(
G ~F
~FT D

)
, (3.263)

and the Schwinger functional Wmix

[
J ,K

]
≡ W LE;mix

[
J ,K

]
has already been introduced in

section 3.2. The mixed 2PI EA organized in powers of ~ can be written in terms of 2PI
diagrams only, which yields for the O(N) model under consideration (see appendix D.3.2):

Γ
(2PI)
mix

[
Φ,G

]
= Smix[Φ]− ~

2
ST r

[
ln
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G
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+
~
2
ST r
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Φ G − I
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+
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+

1

324
+O

(
~F 2
)



+O
(
~5
)
,

(3.264)

with the superidentity Iαβ(x, y) = δαβδ(x− y) and the Feynman rules:
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a bx

a bx

a bx




→
√
λ δab , (3.265a)

x, a y, b → Gab(x, y) , (3.265b)

x y → D(x, y) , (3.265c)

x, a y → Fa(x, y) , (3.265d)

whereas the propagator GΦ satisfies:

G−1
Φ (x, y) ≡ δ2Smix

[
Ψ̃
]

δΨ̃(x)δΨ̃(y)

∣∣∣∣∣
Ψ̃=Φ

=



(
−∇2

x +m2 + i
√

λ
3
η(x)

)
IN i

√
λ
3
~φ(x)

i
√

λ
3
~φT(x) 1


 δ(x− y) . (3.266)

There is no direct analytical expression relating the components of G (i.e. G, D and ~F ) to
the 1-point correlation function Φ (or to φ and η) because these propagators are introduced
through (3.263) and not as (inverses of) derivatives of the classical action Smix. This should
be contrasted with (3.187) (defining Gφ) as well as (3.210) and (3.211) (defining GΦ and
DΦ), which constitute the propagator lines of the original and collective 1PI EAs in (3.184)
and (3.208), respectively. Hence, since propagator lines represent G, D and ~F in the present
matrix implementation of mixed EAs and since such propagators are not easily tied to the
corresponding 1-point correlation functions ~φ and η, the mixed representation is not suited for
a 1PI formulation, as opposed to the original and collective approaches discussed previously.

As a next step, we then turn to the (0+0)-D situation in which we evaluate the different
contributions to (3.264) as follows:

ST r
[
G−1

Φ G − I
]

= G−1
Φ;αβGβα − δα

α

=




G−1

Φ;11G11 + G−1
Φ;12G21 + G−1

Φ;21G12 + G−1
Φ;22G22 − 2 for N = 1 ,

G−1
Φ;11G11 + G−1

Φ;22G22 + G−1
Φ;23G32 + G−1

Φ;32G23 + G−1
Φ;33G33 − 3 for N = 2 ,

(3.267)

= λD
N∑

a,b=1

G2
ab

=





λDG2
11 for N = 1 ,

λD
(
G2

11 + 2G2
12 +G2

22

)
for N = 2 ,

(3.268)



86 CHAPTER 3. DIAGRAMMATIC TECHNIQUES

= λ
N∑

a,b=1

FaGabFb

=





λF 2
1G11 for N = 1 ,

λ
(
F 2

1G11 + 2F1F2G12 + F 2
2G22

)
for N = 2 ,

(3.269)

= λ2D2

N∑

a,b,c,d=1

GabGbcGcdGda

=





λ2D2G4
11 for N = 1 ,

λ2D2
(
G4

11 + 4G2
11G

2
12 + 2G4

12 + 4G11G
2
12G22 + 4G2

12G
2
22 +G4

22

)
for N = 2 ,

(3.270)

= λ2

(
N∑

a,b=1

FaGabFb

)2

=





λ2F 4
1G

2
11 for N = 1 ,

λ2
(
F 2

1G11 + 2F1F2G12 + F 2
2G22

)2
for N = 2 ,

(3.271)

= λ2D

(
N∑

a=1

F 2
a

)(
N∑

a,b,c=1

GabGbcGca

)

=





λ2DF 2
1G

3
11 for N = 1 ,

λ2D
(
F 2

1 + F 2
2

) (
G3

11 + 3G11G
2
12 + 3G2

12G22 +G3
22

)
for N = 2 ,

(3.272)

= λ2D

N∑

a,b,c,d=1

FaGabGbcGcdFd

=





λ2DF 2
1G

3
11 for N = 1 ,

λ2D
(
F 2

1G
3
11 + 2F1F2G

2
11G12 + 2F 2

1G11G
2
12 + F 2

2G11G
2
12 + 2F1F2G

3
12

+2F1F2G11G12G22 + F 2
1G

2
12G22 + 2F 2

2G
2
12G22 + 2F1F2G12G

2
22

+F 2
2G

3
22

)
for N = 2 ,

(3.273)
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= λ2

N∑

a,b,c,d=1

GabGbcFaFcF
2
d

=





λ2F 4
1G

2
11 for N = 1 ,

λ2
(
F 4

1G
2
11 + F 2

1F
2
2G

2
11 + 2F 3

1F2G11G12 + 2F1F
3
2G11G12 + F 4

1G
2
12 + 2F 2

1F
2
2G

2
12

+F 4
2G

2
12 + 2F 3

1F2G12G22 + 2F1F
3
2G12G22 + F 2

1F
2
2G

2
22 + F 4

2G
2
22

)
for N = 2 ,

(3.274)

= = λ3D3

N∑

a,b,c,d,e,f=1

GabGbcGcdGdeGefGfa

=





λ3D3G6
11 for N = 1 ,

λ3D3
(
G6

11 + 6G4
11G

2
12 + 9G2

11G
4
12 + 2G6

12 + 6G3
11G

2
12G22

+12G11G
4
12G22 + 6G2

11G
2
12G

2
22 + 9G4

12G
2
22

+6G11G
2
12G

3
22 + 6G2

12G
4
22 +G6

22

)
for N = 2 ,

(3.275)

= λ3D3

(
N∑

a,b,c=1

GabGbcGca

)2

=





λ3D3G6
11 for N = 1 ,

λ3D3
(
G3

11 + 3G11G
2
12 + 3G2

12G22 +G3
22

)2
for N = 2 ,

(3.276)

where we have exploited the symmetry property of G (i.e. Gab = Gba ∀a, b) at N = 2.
Moreover, the mixed classical action reads Smix(Φ) = m2φ2

N/2 + η2/2 + i
√
λ/12 ηφ2

N in the
present case and the components of G−1

Φ in (3.267) are found from the (0+0)-D version of (3.266),
i.e.:

G−1
Φ =



(
m2 + i

√
λ
3
η
)
IN i

√
λ
3
~φ

i
√

λ
3
~φT 1


 . (3.277)

According to (3.267) to (3.277), (3.264) reduces in (0+0)-D to:
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• For N = 1:

Γ
(2PI)
mix

(
Φ,G

)
= Smix(Φ)
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√
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√
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]
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1 + 12DF 2
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11

)
]
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[
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(
F 2
)
]

+O
(
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)
.

(3.278)

• For N = 2:

Γ
(2PI)
mix

(
Φ,G

)
= Smix(Φ)

+~

[
− 1

2
ln
(
2πG11

)
− 1

2
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− 1

2
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1

2
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√
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3
η

)
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+2i

√
λ

3
φ2F2 +D

)
− 3

2

]

+~2

[
1

12
λ
(
2F 2
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12 +G2
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))
]

+~3
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1

72
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(
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1

(
5G2

11 + 4G2
12

)
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(
4G2
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22

)

+4DF 2
2

(
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11 + 5G11G
2
12 + 7G2

12G22 + 3G3
22

)
+D2

(
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2
12 + 2G4

12

+4G11G
2
12G22 + 4G2

12G
2
22 +G4

22

)
+ 8F1F2G12

(
F 2

2 (2G11 + 3G22) + 2D
(
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11

+G2
12 +G11G22 +G2
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))
+ 4F 2

1

(
F 2

2

(
2G2

11 + 6G2
12 +G11G22 + 2G2

22

)

+D
(
3G3

11 + 7G11G
2
12 + 5G2

12G22 +G3
22

)))
]

+~4

[
1

324
λ3D3

(
5G6

11 + 30G4
11G

2
12 + 8G6

12 + 45G4
12G

2
22 + 30G2

12G
4
22 + 5G6

22

+3G2
11

(
15G4

12 + 8G2
12G

2
22

)
+ 2G3

11

(
15G2

12G22 +G3
22

)
+ 6G11

(
11G4

12G22

+5G2
12G

3
22

))
+O

(
~F 2
)]

+O
(
~5
)
.

(3.279)

The gap equations associated to Γ
(2PI)
mix

(
Φ,G

)
are determined by differentiating (3.278) and

(3.279) (and by considering the symmetry of G discussed right below (3.239)) as follows:

• For N = 1:

0 =
∂Γ

(2PI)
mix

(
Φ,G

)

∂φ1

∣∣∣∣∣
Φ=Φ
G=G

= m2φ1 + i

√
λ

3
η φ1 + ~

(
i

√
λ

3
F 1

)
, (3.280)
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0 =
∂Γ

(2PI)
mix

(
Φ,G

)

∂η

∣∣∣∣∣
Φ=Φ
G=G

= η + i

√
λ

12
φ

2

1 + ~

(
i

√
λ

12
G11

)
, (3.281)

0 =
∂Γ

(2PI)
mix

(
Φ,G

)

∂G11

∣∣∣∣∣
Φ=Φ
G=G

= ~
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2
G
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√
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1

2
D F

2

1G
2

11λ
2 +
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2
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(3.282)

0 =
∂Γ

(2PI)
mix
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Φ,G

)

∂D

∣∣∣∣∣
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D
−1

+
1

2

)
+ ~2

(
1

12
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(3.283)
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(3.284)

• For N = 2:

0 =
∂Γ

(2PI)
mix

(
Φ,G

)

∂φ2

∣∣∣∣∣
Φ=Φ
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)
, (3.285)
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∂Γ

(2PI)
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√
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12
φ

2

2 + ~

[
i

√
λ

12

(
G11 +G22

)
]
, (3.286)
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(3.292)

Note that the gap equations (3.280) to (3.292) rely on the relations:

Φ =
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~φ
η

)
=


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...
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, (3.293)

and
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. (3.294)

Similarly to (3.246) and (3.247) for the original 2PI EA, the gs energy and density are now
obtained from the solutions of the gap equations Φ and G alongside with the equalities:

E2PI EA;mix
gs =

1

~
Γ

(2PI)
mix

(
Φ = Φ,G = G

)
, (3.295)

ρ2PI EA;mix
gs =

1

N

(
~Tra

(
G
)

+ ~φ · ~φ
)
. (3.296)
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Furthermore, we assume no spontaneous breakdown of the O(N) symmetry if the mixed 2PI
EA is considered up to order O

(
~4
)
, hence the term O

(
~F 2
)
in (3.264). This means that we

can set ~φ = ~0, Gab = G δab and ~F = ~0 in the gap equations (3.280) to (3.292) if the latter are
exploited up to order O

(
~4
)
.

−10 −5 0 5 10
λ

4!m2

−5

0

5

10

( E
ca

lc
gs
−
E

ex
ac

t
gs

) ·
10

2

2PI EA (φ = 0) O(h̄2)

2PI EA (φ = 0) PB[2/1]

mixed 2PI EA O(h̄2)

mixed 2PI EA O(h̄3)

mixed 2PI EA O(h̄4)

mixed 2PI EA PB[0/1]

mixed 2PI EA PB[1/1]

mixed 2PI EA PB[2/1]

−10 −5 0 5 10
λ

4!m2

−10

−5

0

5

( ρ
ca

lc
gs
−
ρ

ex
ac

t
gs

) ·
10

2

2PI EA (φ = 0) O(h̄2)

2PI EA (φ = 0) PB[2/1]

mixed 2PI EA O(h̄2)

mixed 2PI EA O(h̄3)

mixed 2PI EA O(h̄4)

mixed 2PI EA PB[0/1]

mixed 2PI EA PB[1/1]

mixed 2PI EA PB[2/1]

Figure 3.14: Difference between the calculated gs energy Ecalc
gs or density ρcalc

gs and the cor-
responding exact solution Eexact

gs or ρexact
gs at ~ = 1, m2 = ±1 and N = 1 (Re(λ) ≥ 0 and

Im(λ) = 0). See also the caption of fig. 3.11 for the meaning of the indication “O
(
~n
)
” for the

results obtained from ~-expanded EAs.

The estimations of the gs energy and density determined in this way from the mixed 2PI
EA at N = 1 and N = 2 are presented in figs. 3.14 and 3.15, respectively. With or without
resummation, the mixed 2PI EA results outperform in general those of the original 2PI EA
Γ(2PI)(G) for a given truncation with respect to ~. This is illustrated for both Egs and ρgs in
figs. 3.14 and 3.15 for the first non-trivial orders of these approaches and, after resummation,
for their third non-trivial orders (with the [2/1] Padé approximants). In particular, these two
figures show that, in the non-perturbative regime of the studied model at N = 1 and 2, the
mixed 2PI EA achieves an accuracy of about 2% for Egs (to be compared with about 5% to 8%
for the corresponding results of the original 2PI EA), and even less for ρgs, already at its first
non-trivial order, which corresponds to the BVA result mentioned previously. Furthermore, as
the solutions of the gap equations leading to our mixed 2PI EA results never break the O(N)

symmetry (and notably always satisfy ~F = ~0) at the first two non-trivial orders (i.e. when the
mixed 2PI EA is considered up to orders O(~2) and O(~3)), we can reasonably expect no SSB at
the next non-trivial order, which motivates our previous assumption ignoring the contribution
of ~F -dependent diagrams at order O

(
~4
)
in (3.264). Interestingly, the absence of SSB at first

non-trivial order (of the ~-expansion) for the mixed 2PI EA also implies that only the Fock
diagram with a wiggly line (i.e. with a D propagator) contributes to the BVA result, which
means that the latter is equivalent to the result obtained from the same mixed 2PI EA at order
O
(
1/N

)
. Although we do not treat 1/N -expansions of EAs in this study, it is interesting to

know that its first non-trivial order in the expansion of the mixed 2PI EA coincides with the
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Figure 3.15: Same as fig. 3.14 with N = 2 instead.

excellent BVA approximation for the studied model, which illustrates that 1/N can be a viable
alternative to ~ or λ as expansion parameter.

Furthermore, as the mixed 2PI EA method clearly stands out among the EA approaches
treated so far, we compare it in fig. 3.16 with the best methods investigated in sections 3.2
and 3.4 (i.e. the collective LE and OPT via PMS) forN = 2, at first and third non-trivial orders.
We can see on this figure that, after resummation if necessary, the excellent performances of
the collective LE, OPT with PMS and the mixed 2PI EA are very close both at first and third
non-trivial orders, with the exception of the first non-trivial order for OPT with PMS which
is known to coincide with the Hartree-Fock result of the original 2PI EA Γ(2PI)(G) for Egs

(note however that the original 2PI EA relies on asymptotic series, and thus on resummation
procedures, whereas OPT does not), as can be seen from fig. 3.16. These performances should
of course be put in contrast with the ability to treat different channels in more realistic systems,
in which case, for reasons explained previously at the end of section 3.4, both the collective
LE and the mixed 2PI EA might encounter significant difficulties as they both rely on a HST.
We postpone such an application to more realistic systems with competing channels to future
studies but we just point out at this stage that the performances of OPT are the most likely
to be unaffected in these situations.

Although the BVA has already been applied to many QFTs, this is certainly not the case
of higher truncation orders of the mixed 2PI EA (i.e. for truncations of this EA beyond order
O(~2)). In addition, we are performing to our knowledge the first applications of resummation
theory to the mixed 2PI EA. Choosing once again the Padé-Borel scheme as resummation
procedure, we find that the best Padé approximant obtained from the first non-trivial order
of the mixed 2PI EA does not manage to clearly improve the corresponding bare results (i.e.
the BVA results) in general, according to figs. 3.14 and 3.15. Padé-Borel resummation thus
starts being efficient at order O

(
~3
)
and, at the third non-trivial order (and more specifically

from [2/1] Padé approximants), yields excellent results which are barely distinguishable from
the exact solution in both figs. 3.14 and 3.15.
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Figure 3.16: Difference between the calculated gs energy Ecalc
gs or density ρcalc

gs and the cor-
responding exact solution Eexact

gs or ρexact
gs at ~ = 1, m2 = ±1 and N = 2 (Re(λ) ≥ 0 and

Im(λ) = 0). See also the captions of figs. 3.1 and 3.11 for the meaning of the indication
“O
(
~n
)
” for the results obtained from the collective LE and ~-expanded EAs.

In conclusion, the significant improvement as compared to the original 2PI EA results
can be attributed to both the 1-point correlation function η and the propagator D of the
Hubbard-Stratonovich field since we always find ~φ = ~F = ~0 in the solutions of the mixed
2PI EA’s gap equations leading to the results of figs. 3.14 and 3.15, i.e. we do not find any
spontaneous breakdown of the O(N) symmetry in the framework of the mixed 2PI EA. We will
thus determine as a next step how efficient the mixed 2PI EA formalism is if we impose the
1-point correlation function η of the Hubbard-Stratonovich field to vanish, which will enable us
to better understand the role of both η and D in the mixed 2PI EA approach.

~-expansion for the mixed 2PI EA with vanishing 1-point correlation functions:
We then study the mixed 2PI EA with both 1-point correlation functions ~φ and η set equal to
zero, i.e. Γ

(2PI)
mix

[
G
]
≡ Γ

(2PI)
mix

[
Φ = 0,G

]
. This condition also imposes ~F = ~0, which enables us to

discard all ~F -dependent diagrams in (3.264):

Γ
(2PI)
mix

[
G
]

=− ~
2
ST r

[
ln
(
G
)]

+
~
2
ST r

[
G−1

0 G − I
]

+
~2

12
− ~3

72

+ ~4


 1

324
+

1

108
+

1

324




+O
(
~5
)
,

(3.297)
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with (3.265a) to (3.265c) as Feynman rules and the propagator G0 is given by:

G−1
0 (x, y) =

(
(−∇2

x +m2) IN ~0
~0T 1

)
δ(x− y) , (3.298)

which coincides with (3.266) when Φ vanishes.

Let us then focus on the zero-dimensional situation by evaluating the different terms involved
in the RHS of (3.297) in (0+0)-D. For that purpose, we first note that the constraint ~φ = ~0
imposes that the O(N) symmetry can not be broken down in the framework of the present
approach and therefore Gab = G δab ∀a, b, as discussed above (3.249) for the original 2PI EA.
This considerably simplifies (3.297) according to:

ST r
[
G−1

0 G − I
]

= Nm2G+D − (N + 1) , (3.299)

= NλDG2 , (3.300)

= Nλ2D2G4 , (3.301)

= = Nλ3D3G6 , (3.302)

= N2λ3D3G6 . (3.303)

As a consequence, expression (3.297) of Γ
(2PI)
mix

[
G
]
becomes in (0+0)-D:

Γ
(2PI)
mix

(
G
)

= ~
(
−N

2
ln
(
2πG

)
− 1

2
ln(D) +

1

2

(
Nm2G+D −N − 1

))

+ ~2

(
N

12
λDG2

)
− ~3

(
N

72
λ2D2G4

)
+ ~4

(
N2 + 4N

324
λ3D3G6

)
+O

(
~5
)
,

(3.304)

and the corresponding gap equations are:

0 =
∂Γ

(2PI)
mix

(
G
)

∂G

∣∣∣∣∣
G=G

= ~
(
−N

2
G
−1

+
N

2
m2

)
+ ~2

(
N

6
λD G

)
− ~3

(
N

18
λ2D

2
G

3
)

+ ~4

(
N2 + 4N

54
λ3D

3
G

5
)

+O
(
~5
)
,

(3.305)

and

0 =
∂Γ

(2PI)
mix

(
G
)

∂D

∣∣∣∣∣
G=G

= ~
(
−1

2
D
−1

+
1

2

)
+ ~2

(
N

12
λG

2
)
− ~3

(
N

36
λ2D G

4
)

+ ~4

(
N2 + 4N

108
λ3D

2
G

6
)

+O
(
~5
)
,

(3.306)



3.5. EFFECTIVE ACTION 97

with

G =

(
G ~0
~0T D

)
=




G 0 · · · 0 0
0 G · · · 0 0
...

... . . . ...
...

0 0 · · · G 0
0 0 · · · 0 D




. (3.307)

λ-expansion for the mixed 2PI EA with vanishing 1-point correlation functions:
In the framework of the mixed 2PI EA, ~- and λ-expansions are not equivalent even if all
1-point correlation functions are imposed to vanish. Hence, we now derive Γ

(2PI)
mix [G] via the

λ-expansion23. We thus obtain (see appendix D.3.2):

Γ
(2PI)
mix [G] =− 1

2
ST r

[
ln
(
G
)]

+
1

2
ST r

[
G−1

0 G − I
]

+


 1

24
+

1

12




+


 −

1

72
+

1

144
+

1

576




+




1

324
+

1

108
+

1

324

− 1

432
+

1

864

+
1

864
+

1

5184




+O
(
λ4
)
,

(3.308)

where we have used the Feynman rules (3.265a) to (3.265c) and the superpropagator G is now
diagonal, i.e.:

G =

(
G ~0
~0T D

)
. (3.309)

The diagrams contributing to Γ
(2PI)
mix [G] in (3.308) are not all 2PI (some are even disconnected).

As opposed to the ~-expansion scheme, there is actually no guarantee that the diagrams gener-
ated by the Legendre transform of the 2PI EA cancel out with all 2PR graphs of the Schwinger
functional in the framework of the λ-expansion (some disconnected diagrams are actually also
generated by this Legendre transform), even though it turned out that the λ-expansion of the
1PI EA yielded Γ(1PI) in (3.195) expressed in terms of 1PI diagrams only. Nevertheless, we keep

23We stress again that we set ~ = 1 while doing so.
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referring to the functional Γ
(2PI)
mix [G] as a 2PI EA in the present situation since the diagrams

contributing to it are indeed all 2PI when expanded with respect to ~, as shown by (3.297).

We then study (3.308) in the zero-dimensional situation. The absence of SSB still allows
us to set Gab = Gab δab. Hence, in (0+0)-D, the rightmost supertrace term and the diagrams
of (3.308) reduce to:

ST r
[
G−1

0 G − I
]

= Nm2G+D − (N + 1) , (3.310)

= N2λDG2 , (3.311)

= NλDG2 , (3.312)

= Nλ2D2G4 , (3.313)

= N3λ2D2G4 , (3.314)

= N4λ2D2G4 , (3.315)

= = Nλ3D3G6 , (3.316)

= N2λ3D3G6 , (3.317)

= N3λ3D3G6 , (3.318)

= N4λ3D3G6 , (3.319)

= N5λ3D3G6 , (3.320)

= N6λ3D3G6 . (3.321)
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Figure 3.17: Difference between the calculated gs energy Ecalc
gs or density ρcalc

gs and the cor-
responding exact solution Eexact

gs or ρexact
gs at ~ = 1, m2 = ±1 and N = 2 (Re(λ) ≥ 0 and

Im(λ) = 0). See notably the caption of fig. 3.11 for the meaning of the indication “O
(
~n
)
”

for the results obtained from ~-expanded EAs. Note also that there are no results for the
λ-expansion in the regime with m2 < 0 as the corresponding approach is ill-defined in this case.
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From this, (3.308) becomes:

Γ
(2PI)
mix

(
G
)

=− N

2
ln(2πG)− 1

2
ln(D) +

1

2

(
Nm2G+D −N − 1

)

+ λ

(
N2 + 2N

24
DG2

)
+ λ2

(
N4 + 4N3 − 8N

576
D2G4

)

+ λ3

(
N6 + 6N5 + 6N4 − 12N3 + 16N2 + 64N

5184
D3G6

)

+O
(
λ4
)
,

(3.322)

and the corresponding gap equations are given by:

0 =
∂Γ

(2PI)
mix

(
G
)

∂G

∣∣∣∣∣
G=G

=− N

2
G
−1

+
N

2
m2 + λ

(
N2 + 2N

12
D G

)
+ λ2

(
N4 + 4N3 − 8N

144
D

2
G

3
)

+ λ3

(
N6 + 6N5 + 6N4 − 12N3 + 16N2 + 64N

864
D

3
G

5
)

+O
(
λ4
)
,

(3.323)

0 =
∂Γ

(2PI)
mix

(
G
)

∂D

∣∣∣∣∣
G=G

=− 1

2
D
−1

+
1

2
+ λ

(
N2 + 2N

24
G

2
)

+ λ2

(
N4 + 4N3 − 8N

288
D G

4
)

+ λ3

(
N6 + 6N5 + 6N4 − 12N3 + 16N2 + 64N

1728
D

2
G

6
)

+O
(
λ4
)
,

(3.324)

with G and D defined via (3.307).

All results obtained from the mixed 2PI EA are compared in fig. 3.17, which logically
illustrates that the full mixed 2PI EA method outperforms its homologous approaches impos-
ing (~φ, η) = (~0, 0). This clearly shows that the 1-point correlation function of the Hubbard-
Stratonovich field, i.e. η, plays an essential role in the performances of the full mixed 2PI
EA, both in the unbroken- and broken-symmetry regimes. We can also see in fig. 3.17 that
the mixed 2PI EA approach with (~φ, η) = (~0, 0), based on the ~- or on the λ-expansion, does
not outperform its original counterpart (which is based on the 2PI EA Γ(2PI)(G)) at their first
non-trivial orders. This section clearly puts forward the full mixed 2PI EA and the ability of
the Hubbard-Stratonovich field to capture correlations. We will then investigate the 4PPI EA
as another direction in the purpose of outperforming the original 2PI EA method via collective
dofs. We will remain in the framework of the original representation to see how the addition of
a new source (coupled to a quartic combination of the field) in the Schwinger functional could
enable us to achieve this purpose. Before this, we will discuss the 2PPI EA formalism via the
IM which is used thereafter to exploit the 4PPI EA.

3.5.3 2PPI effective action

The IM was first developed in the framework of the 2PPI EA [162, 163], a few years after the
introduction of the 2PPI EA itself [297, 298]. The original motivation for the IM was that, in
finite dimensions, the Legendre transform defining the 2PPI EA (or any other nPPI EA) can
not be done explicitly, as opposed to those of nPI EAs (the technical reason for this will be
explained below in the present section). Hence, we were in need for a method that would be able
to carry out the Legendre transform underlying the EAs indirectly or, more specifically, order
by order with respect to a given expansion parameter, which is exactly what the IM does. This
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method has paved the way to a whole research effort which has notably led to refs. [299–302]
for further applications of the 2PPI EA via the IM in atomic physics and especially ref. [303]
which is the first paper addressing superconductivity with the 2PPI EA. We will rather focus
here, on the one hand, on the works of Fukuda et al. [162] and of Valiev and Fernando [85], who
have shown that the 2PPI EA constitutes a means to implement Kohn-Sham DFT, and, on the
other hand, on that of Okumura [304], who studied exhaustively the diagrammatic properties
of the 2PPI EA. Both refs. [85] and [304] exploit the IM for a field theory involving a single field
and impose the corresponding 1-point correlation function to vanish. We will therefore follow
the same restriction here24. The starting point of the IM consists in expanding the functionals
of interest with respect to the chosen expansion parameter, i.e. ~ in the present case25:





Γ(2PPI)[ρ; ~] =
∞∑

n=0

Γ(2PPI)
n [ρ]~n ,

W [K; ~] =
∞∑

n=0

Wn[K]~n ,

K[ρ; ~] =
∞∑

n=0

Kn[ρ]~n ,

ρ =
∞∑

n=0

ρn[K]~n ,

(3.325a)

(3.325b)

(3.325c)

(3.325d)

where the EA under consideration is now a functional of the density ρ:

Γ(2PPI)[ρ] ≡−W [K] +

∫

x

Ka[ρ;x]
δW [K]

δKa(x)

=−W [K] +
~
2

∫

x

Ka[ρ;x]ρa(x) ,

(3.326)

with
ρa(x) =

2

~
δW [K]

δKa(x)
, (3.327)

and the Schwinger functional W [K] defined by:

Z[K] = e
1
~W [K] =

∫
D~̃ϕ e−

1
~SK

[
~̃ϕ
]
, (3.328)

SK

[
~̃ϕ
]
≡ S

[
~̃ϕ
]
− 1

2

∫

x

Ka(x)ϕ̃2
a(x) . (3.329)

TheWn coefficients are deduced from the LE result (3.50) for the studied model with ~J = ~0 and
Kab(x, y) = Ka(x)δabδ(x − y). Note however that most of the present discussion on refs. [85,
162, 304] is model-independent.

24Refs. [85, 304] also use a coupling constant instead of ~ as expansion parameter for the IM. We will stick
to the ~-expansion scheme here to prepare the ground for the 4PPI EA treated in section 3.5.4 but one should
keep in mind that, for the studied O(N) model as well as for many other theories, ~- and λ-expansions of the
2PPI EA are equivalent if all 1-point correlation functions vanish, as was pointed out below (3.258) for the
original 2PI EA.

25In (3.325a) to (3.325d), we specify all variables on which Γ(2PPI), W , K and ρ depend but part of these
dependences will be left implicit in the forthcoming derivations.
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Following the recipe of the IM, we combine the definition (3.326) with (3.325a), (3.325b)
and (3.325c):

∞∑

n=0

Γ(2PPI)
n [ρ]~n = −

∞∑

n=0

Wn

[
∞∑

m=0

Km[ρ]~m
]
~n +

~
2

∞∑

n=0

∫

x

Ka
n[ρ;x]ρa(x)~n . (3.330)

The Taylor expansion of the Wn coefficients around K = K0 in (3.330) yields26,27,28 (see ap-
pendix D.5.3 with ζα = Mα[ρ, ζ] = Mn,α[ρ, ζ] = 0 ∀α, n):

Γ(2PPI)
n [ρ] =−Wn[K = K0]−

n−1∑

m=1

∫

x

δWn−m[K]

δKa(x)

∣∣∣∣
K=K0

Km,a[ρ;x]

−
n−1∑

m=2

1

m!

n∑

n1,··· ,nm=1
{n1+···+nm≤n}

∫

x1,··· ,xm

δmWn−(n1+···+nm)[K]

δKa1(x1) · · · δKam(xm)

∣∣∣∣
K=K0

Kn1,a1 [ρ;x1] · · ·Knm,am [ρ;xm]

+
1

2

∫

x

Ka
n−1[ρ;x]ρa(x)δn≥1

=−Wn[K = K0]−
n−2∑

m=1

∫

x

δWn−m[K]

δKa(x)

∣∣∣∣
K=K0

Km,a[ρ;x]

−
n−1∑

m=2

1

m!

n∑

n1,··· ,nm=1
{n1+···+nm≤n}

∫

x1,··· ,xm

δmWn−(n1+···+nm)[K]

δKa1(x1) · · · δKam(xm)

∣∣∣∣
K=K0

Kn1,a1 [ρ;x1] · · ·Knm,am [ρ;xm]

+
1

2

∫

x

Ka
0 [ρ;x]ρa(x)δn1 ,

(3.331)

where the second equality was obtained by using the relation:

ρa(x) = 2
δW1[K]

δKa(x)

∣∣∣∣
K=K0

. (3.332)

The latter equality results from the independence of ρ with respect to ~, i.e. ρ is a quantity
of order O

(
~0
)
. It might seem surprising at first for an object encoding quantum information

like ρ to be independent of ~. This striking feature is a direct consequence of the Legendre
transform defining Γ(2PPI) in (3.326) (see (D.15) in appendix D.2 for a mathematical proof
of this property). From this, (3.332) directly follows after inserting (3.325b) into (3.327) at
K = K0, i.e.:

ρa(x) = 2
δW0[K]

δKa(x)

∣∣∣∣
K=K0

~−1

︸ ︷︷ ︸
0

+ 2
δW1[K]

δKa(x)

∣∣∣∣
K=K0︸ ︷︷ ︸

ρa(x)

+ 2
δW2[K]

δKa(x)

∣∣∣∣
K=K0

~ + 2
δW3[K]

δKa(x)

∣∣∣∣
K=K0

~2 + · · ·
︸ ︷︷ ︸

0

.

(3.333)

The zeroth-order coefficient of the 2PPI EA equals zero since the 1-point correlation function
of ~̃ϕ is imposed to vanish (Γ(2PPI)

0 [ρ] = −W0[K = K0] = S
(
~̃ϕ = ~0

)
= 0) and we then discuss in

26We exceptionally use a1, a2, · · · instead of a, b, · · · to denote color indices in (3.331).

27Note that (3.331) involves the shorthand notation δn≥m =

{
1 if n ≥ q .
0 otherwise .

28The curly braces below discrete sums contain a condition that must be satisfied by each term of the sum
in question.
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further details the cases where n = 1 and 2 in (3.331):

Γ
(2PPI)
1 [ρ] = −W1[K = K0] +

1

2

∫

x

Ka
0 [ρ;x]ρa(x) , (3.334)

Γ
(2PPI)
2 [ρ] = −W2[K = K0] . (3.335)

We then differentiate both sides of (3.334) with respect to ρ:

��
��
�1

2
K0,a(x) = −

∫

y

δW1[K = K0]

δKb
0(y)

δKb
0(y)

δρa(x)
+
��

��
�1

2
K0,a(x) +

1

2

∫

y

δKb
0[ρ; y]

δρa(x)
ρb(y) , (3.336)

where K0 was introduced via:

δΓ
(2PPI)
n [ρ]

δρa(x)
=

1

2
Kn−1,a[ρ;x]δn≥1 , (3.337)

which can be deduced from (3.326). From (3.336), it follows that:

0 =

∫

y

(
−δW1[K = K0]

δKb
0(y)

+
1

2
ρb(y)

)
δKb

0[ρ; y]

δρa(x)
. (3.338)

We thus recover (3.332) from (3.338) assuming that:

δW1[K = K0]

δK0,a(x)
=
δW1[K]

δKa(x)

∣∣∣∣
K=K0

, (3.339)

and
δKb

0[ρ; y]

δρa(x)
6= 0 . (3.340)

Valiev and Fernando have actually proven that (3.340) is a consequence of the strict concavity29

of Γ(2PPI)[ρ] (or, equivalently, of Γ
(2PPI)
1 [ρ]) [85], i.e.:

δKb
0[ρ; y]

δρa(x)
= 2

δ2Γ
(2PPI)
1 [ρ]

δρa(x)δρb(y)
< 0 , (3.341)

as follows from (3.337). The strict concavity of the 2PPI EA results itself from that of the
Schwinger functional [85]:

W
[
νK + (1− ν)K ′

]
> νW [K] + (1− ν)W

[
K ′
]
, (3.342)

for 0 < ν < 1. From the latter result, it also follows that the mapping {K} → {ρ}, between
the set of allowable external sources K and the corresponding densities ρ generated by (3.327),
is one-to-one. This is a very fundamental property for the IM applied to the 2PPI EA as it
guarantees that (3.327) can be inverted to obtain K[ρ] without ambiguity. Besides the IM, it
can also be viewed as an existence proof of the 2PPI EA, which plays the role of the density
functional in the present analogy with DFT. In other words, the one-to-one nature of the map-
ping {K} → {ρ} implies that Γ(2PPI)[ρ], and therefore the corresponding gs energy, is a unique
functional of the density ρ, which is none other than the first Hohenberg-Kohn theorem [40].
This should be coupled with the proof that Γ(2PPI)[ρ] satisfies the second Hohenberg-Kohn

29In ref. [85], Valiev and Fernando use the convention Γ(2PPI)[ρ] = +W [K] −
∫
x
Ka[ρ;x] δW [K]

δKa(x) , as opposed
to (3.326), and therefore prove that Γ(2PPI)[ρ] is strictly convex instead of strictly concave.
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theorem [40], which follows by shifting the external source by an arbitrary external potential
Vext [162]:

Γ(2PPI)[ρ] =−W [K] +
~
2

∫

x

Ka[ρ;x]ρa(x)

=−WVext=0[K − Vext] +
~
2

∫

x

(Ka[ρ;x]− V a
ext(x))ρa(x)

︸ ︷︷ ︸
ΓVext=0 [ρ]

+
~
2

∫

x

V a
ext(x)ρa(x) . (3.343)

Hence, the 2PPI EA satisfies the second Hohenberg-Kohn theorem simply because the Schwinger
functional depends on K and Vext in the same fashion. These existence proofs shown in refs. [85,
162] mean that the framework of the 2PPI EA contains all the ingredients of a DFT. Further-
more, as pointed out in ref. [85] via the IM, the Kohn-Sham implementation [41, 42] is also
present in this framework. On the one hand, according to (3.332) and the one-to-one nature
of the mapping {K} → {ρ}, the exact gs density of the interacting system can be obtained,
for a single configuration K0 of the source K, from the first-order coefficient W1[K] which is
independent of the coupling constant λ30. On the other hand, the Kohn-Sham implementation
states that there is a unique external potential Vext,KS such that this exact gs density character-
izing the interacting system coincides with that of an auxiliary non-interacting one submitted
to Vext,KS. Therefore, the Kohn-Sham implementation acquires its meaning in the 2PPI EA
formalism after noticing that K0 plays the role of the Kohn-Sham potential. Moreover, we can
also split the 2PPI EA according to the Kohn-Sham scheme: the kinetic part can be isolated
through a derivative expansion of the EA and the exchange-correlation part can be approxi-
mated using usual methods (local density approximation, ...) [162]. Thus, we can conclude that
DFT is always present in the framework of the 2PPI EA according to the above proofs of the
Hohenberg-Kohn theorems and exploiting the 2PPI EA via the IM amounts to implementing
a Kohn-Sham DFT.

We will then explain how the Kohn-Sham self-consistent procedure works in the framework
of the IM by differentiating expression (3.335) of Γ

(2PPI)
2 with respect to ρ:

δΓ
(2PPI)
2 [ρ]

δρa(x)
=− δW2[K = K0]

δρa(x)

=−
∫

y

δW2[K = K0]

δK0,b(y)

δK0,b[ρ; y]

δρa(x)

=− 1

2

∫

y

δW2[K = K0]

δK0,b(y)

(
δ2W1[K = K0]

δK0(y)δK0(x)

)−1

ba

=− 1

2

∫

y

D−1
ab [K0;x, y]

δW2[K = K0]

δK0,b(y)
,

(3.344)

where the third line is obtained from (3.332) and the following propagator was introduced:

Dab[K0;x, y] ≡ δ2W1[K = K0]

δKa
0 (x)δKb

0(y)
. (3.345)

Hence, we have just used the chain rule:

δ

δρa(x)
=

1

2

∫

y

D−1
ab [K0;x, y]

δ

δK0,b(y)
. (3.346)

30Recall that, since we have imposed the 1-point correlation function of ~̃ϕ to vanish here, ~-expansion results
truncated at order O

(
~n+1

)
coincide with those of the λ-expansion truncated at order O

(
λn
)
for all n ∈ N.

This implies that W1[K] does not depend on λ in the ~-expansion scheme.
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As a next step, we infer from (3.337) and (3.344):

K1,a[ρ;x] = −
∫

y

D−1
ab [K0;x, y]

δW2[K = K0]

δK0,b(y)
. (3.347)

This recipe can be applied at the next order, i.e. setting n = 3 in (3.331) to obtain an expression
for Γ

(2PPI)
3 [ρ] that we differentiate with respect to ρ in order to deduceK2[ρ] according to (3.337).

We can proceed in this way up to any order, which would yield all Γ
(2PPI)
n and Kn coefficients

thus derived expressed in terms of the D propagator and Wn coefficients as well (recall that
the Wn coefficients are fully specified by the LE and are thus considered as inputs of the IM
procedure). For a truncation order Nt, this procedure can be represented as follows:

Γ
(2PPI)
1 −−→ Γ

(2PPI)
2 −−−−−−−−−−→

K1[ρ] = 2
δΓ

(2PPI)
2 [ρ]

δρ

K1 −−→ Γ
(2PPI)
3 −−−−−−−−−−→

K2[ρ] = 2
δΓ

(2PPI)
3 [ρ]

δρ

K2 −−→ · · · −−→ Γ
(2PPI)
Nt

(3.348)
As a result, the 2PPI EA is expressed in terms of the zeroth-order coefficient of the source (i.e.
K0 here) instead of the argument of the EA (i.e. ρ here). In fact, the dependence of Γ(2PPI)[ρ]
with respect to ρ in its expression resulting from the IM is implicit through K0[ρ]31. The reason
for this difference was given at the beginning of this section: for nPPI EAs and contrary to nPI
EAs, the Legendre transform underlying the definition of the EA can not be done explicitly in
finite dimensions. Technically, this translates into the fact that the relation (3.332) can not be
inverted to write K0 explicitly in terms of ρ32. In (0+0)-D and after imposing that all 1-point
correlation functions vanish (so that all bilocal sources involved in the 2PI EA formalism reduce
to scalars in color space), this problem vanishes since the 2PPI EA reduces to the 2PI one in
this situation, as discussed at the end of this section.

Hence, in the framework of the 2PPI EA, we must solve the gap equation for K0 instead of
ρ. This equation is therefore more conveniently rewritten as follows:

0 =
δΓ(2PPI)[ρ]

δρa(x)

∣∣∣∣
ρ=ρ

=
δΓ

(2PPI)
0 [ρ]

δρa(x)

∣∣∣∣∣
ρ=ρ︸ ︷︷ ︸

0

+
δΓ

(2PPI)
1 [ρ]

δρa(x)

∣∣∣∣∣
ρ=ρ︸ ︷︷ ︸

1
2
K0,a(x)

+
δΓ

(2PPI)
2 [ρ]

δρa(x)

∣∣∣∣∣
ρ=ρ

+
δΓ

(2PPI)
3 [ρ]

δρa(x)

∣∣∣∣∣
ρ=ρ

+ · · · ∀a, x ,

(3.349)
and, more conveniently:

K0,a(x) = −
∞∑

n=2

∫

y

D−1
ab

[
K0 = K0;x, y

] δΓ(2PPI)
n [ρ]

δK0,b(y)

∣∣∣∣∣
K0=K0

, (3.350)

where we have used the functional chain rule (3.346). The self-consistent procedure aiming at
extracting K0 from (3.350) is completely analogous to that treating the Kohn-Sham equations.
It consists in the 5 following steps:

1) Choose a truncation order Nt with respect to ~.
31Consequently, the D propagator is convenient here notably because it enables us through the chain

rule (3.346) to turn derivatives of the Γ
(2PPI)
n coefficients with respect to ρ into derivatives with respect to

K0.
32On the contrary, we notably show in appendix D.2 that the Legendre transform underlying the 1PI EA can

be carried out explicitly. This can be seen in the framework of the IM from (D.55) which can be inverted to
express ~J0

[
~φ
]
explicitly in terms of the 1-point correlation function ~φ, as shown by (D.65). In finite dimensions,

there is no counterpart of this procedure for K0[ρ] in the present case.
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2) Make an initial guess for K0 that we denote as K(old)

0 .

3) Determine the derivatives δΓ
(2PPI)
2 [ρ]

δK0,a(x)

∣∣∣∣
K0=K

(old)
0

, · · · , δΓ
(2PPI)
Nt

[ρ]

δK0,a(x)

∣∣∣∣
K0=K

(old)
0

, where the coeffi-

cients Γ
(2PPI)
2 [ρ], · · · ,Γ(2PPI)

Nt
[ρ] are found from the IM.

4) Evaluate the new configurationK(new)

0 of the Kohn-Sham potentialK0 from (3.350) rewrit-
ten as:

K
(new)

0,a (x) = −
Nt∑

n=2

∫

y

D−1
ab

[
K0 = K

(old)

0 ;x, y
] δΓ(2PPI)

n [ρ]

δK0,b(y)

∣∣∣∣∣
K0=K

(old)
0

, (3.351)

where the RHS is completely specified by steps 1, 2 and 3.

5) Replace K(old)

0 by K(new)

0 in step 2 and repeat steps 2 to 4 until the difference
∣∣K(new)

0 −
K

(old)

0

∣∣ becomes reasonably small, i.e. until self-consistency is achieved.

Such a self-consistent procedure is basically identical to that used to treat gap equations for
other nPPI or nPI EAs, whether we solve these equations for zeroth-order coefficients of the
sources or for the arguments of the EA. We just present this recipe in detail here to conclude
our discussion on the connection between the 2PPI EA and Kohn-Sham DFT, which entirely
follows from the fact that K0 is a Kohn-Sham potential.

We then briefly discuss the diagrammatic properties of the 2PPI EA. The IM outlined
above would yield an expression for the 2PPI EA in terms of the K0 coefficient. Such an
expression can be represented diagrammatically after constructing the Feynman rules for the
D propagator as well as for other propagators and vertex functions involved in the LE of the
Schwinger functional. It was shown in ref. [304] that the diagrams thus obtained are all 1-
vertex-irreducible (1VI) beyond the Hartree-Fock level, i.e., for our ~-expansion, ∆Γ(2PPI)[ρ] ≡
Γ(2PPI)[ρ] − Γ

(2PPI)
0 [ρ] − Γ

(2PPI)
1 [ρ] − Γ

(2PPI)
2 [ρ] is only given by 1VI diagrams33. More specifi-

cally, such a diagrammatic rule can be formulated as follows for our finite-dimensional O(N)-
symmetric ϕ4 model:

∆Γ(2PPI) ∼
∫
D~̃ϕD~̃Ω e−

1
~ S̆
[
~̃ϕ,
~̃
Ω
]

∫
D~̃ϕD~̃Ω e−

1
~ S̆0

[
~̃ϕ,
~̃
Ω
]

∣∣∣∣∣∣
conn/tree/1VI/excl

, (3.352)

with the classical action:

S̆
[
~̃ϕ,
~̃
Ω
]

=
1

2

∫

x,y

ϕ̃a(x)G−1
ab [K0;x, y]ϕ̃b(y) +

1

2

∫

x,y

Ω̃a(x)Dab[K0;x, y]Ω̃b(y)

︸ ︷︷ ︸
S̆0

[
~̃ϕ,
~̃
Ω
]

+
λ

4!

∫

x

(ϕ̃a(x)ϕ̃a(x))2 +
1

2

∫

x

Ω̃a(x)ϕ̃2
a(x) ,

(3.353)

33A diagram is 1-vertex-reducible (1VR) if at least one of its vertices can be split to render the diagram
disconnected. If a diagram is neither a trivial skeleton (i.e. a diagram that does not contain any vertex, which
usually represents STr ln terms) nor 1VR, it is 1VI by definition. For example, in the case of the diagrams
resulting from the LE in section 3.2.2.1, splitting a zigzag vertex simply means cutting the corresponding zigzag
line in half.
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where G[K0] ≡ GK [K = K0] is defined from the propagator GK involved in the LE of W [K],
i.e.:

G−1
K;ab[K;x, y] =

δ2S
[
~̃ϕ
]

δϕ̃a(x)δϕ̃b(y)

∣∣∣∣∣
~̃ϕ=~0

−Ka(x)δabδ(x− y) =
(
−∇2

x +m2 −Ka(x)
)
δabδ(x− y) .

(3.354)
Owing to the absence of spontaneous breakdown of the O(N) symmetry in the present frame-
work, the sourceK as well as all theKn coefficients are scalars in color space, i.e. Ka(x) = K(x)
and Kn,a(x) = Kn(x) ∀n, a, x, which implies the same trivial structure for both GK [K] and
G[K0], i.e. GK;ab[K;x, y] = GK [K;x, y]δab and Gab[K0;x, y] = G[K0;x, y]δab ∀a, b, x, y. We

also stress that ~̃Ω is a fake quantum field which has nothing to do with the auxiliary field intro-
duced via HST or OPT. In other words, ~̃Ω is just a mathematical artifact introduced in (3.352)
after noticing that the diagrammatic expression of the 2PPI EA of a ϕ4-theory resulting from
the IM looks like that of a theory with both ϕ4 and Yukawa interaction terms, in which the
propagator associated to the “meson” field is D−1[K0]34. According to the rule (3.352), the
diagrammatic expression resulting from the IM for the 2PPI EA with vanishing 1-point cor-
relation function (for ~̃ϕ) can be equivalently obtained by performing a LE of the generating

functional in the numerator of the RHS of (3.352) around
(
~̃ϕ,
~̃
Ω
)

=
(
~0,~0
)
. The indication

“conn/tree/1VI/excl” means that, among all diagrams generated by this LE, only those that
are connected, 1VI and tree with respect to the D propagator35 are kept and we must also
exclude every diagram that contains self connections, i.e.:

and/or double connections, i.e.:

with the Feynman rule:

x, a y, b → Gab[K0;x, y] . (3.355)

These restrictions are quite drastic so that, for the studied model, there are no diagrams
involving D−1[K0] in the three first non-trivial orders of the 2PPI EA, i.e. in the Γ

(2PPI)
n

coefficients for n ≤ 4. However, the following diagram contributes to Γ
(2PPI)
5 [ρ] for instance:

, (3.356)

34Note that our definition (3.345) of the D propagator is the inverse of that of Okumura in ref. [304] (see
equation (2.89) in ref. [304]).

35The expression “tree with respect to the D propagator” is synonymous to “1PR with respect to each D
propagator”. Namely, a diagram is tree with respect to the D propagator either if it does not contain any D
propagator or if removing any of its D propagators renders this diagram disconnected.
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where D−1[K0] is represented according to:

x, a y, b →D−1
ab [K0;x, y] , (3.357)

and the zigzag vertex is as usual given by:

xa
b

c
d → λδabδcd . (3.358)

Therefore, as opposed to nPI EAs, some diagrams involved in the final expression of the 2PPI
EA are not present at the level of the LE of the Schwinger functional in the framework of the
~-expansion. For example, the LE of W [K] does not yield diagrams in terms of D−1[K0] such
as (3.356). In conclusion, the diagrammatic construction of the 2PPI EA is based on more
demanding rules than those of the 2PI EA but this must be contrasted with the numerical
resolution of the gap equations which is more difficult in the situation of the 2PI EA since the
latter is a functional of propagators (i.e. of bilocal objects) as opposed to the density functional
Γ(2PPI).

Most of the present discussion on the IM readily extends to QFTs with several fields or to
one field with additional external sources coupled with combinations of this field other than
ϕ̃2
a(x) encountered in (3.329). However, one has to keep in mind that this section does not

discuss the most general implementation of the IM. If the Schwinger functional involves several
sources (as e.g. for a 4PPI EA), the procedure (3.348) is not convenient to determine the source
coefficients so that one must rather follow the most general implementation of the IM [304, 305]
based on the series representing the arguments of the EA (such as (3.325d) in the studied case)
and outlined in appendix D. This remark applies in particular to the case of one field with a
local source ~J added to (3.329) such as:

SJK

[
~̃ϕ
]
≡ S

[
~̃ϕ
]
−
∫

x

Ja(x)ϕ̃a(x)− 1

2

∫

x

Ka(x)ϕ̃2
a(x) , (3.359)

in order to include a finite 1-point correlation function in the 2PPI EA formalism. This would
define a promising area to construct a DFT able to treat SSB, notably for O(N)-symmetric
theories. There are already applications of the 2PPI EA to the O(N)-symmetric ϕ4-theory
which include a possible non-vanishing 1-point correlation function in the formalism [261, 262,
272, 306]. They have notably found an unphysical SSB at next-to-leading order (NLO) of a
1/N -expansion in (1+1)-D at finite temperature. However, each approach aiming at avoiding
possible violations of Ward identities in the framework of the 2PI EA, like the SI2PI EA [267],
the method of non-vanishing external sources of Garbrecht and Millington [307] or even the
mixed 2PI EA [153, 168, 291–293, 295, 296], is straightforwardly adaptable to the 2PPI EA.

For the 2PPI EA with possible non-zero 1-point correlation function, we would find, as for
the 2PI EA (see appendix D.3.1), that the proliferation of diagrams is already cumbersome at
the first non-trivial order in the framework of the IM. Unfortunately, as explained above, we can
no longer simply pick the relevant diagrams among those of the LE of the Schwinger functional
in the framework of the 2PPI EA. Nevertheless, one could tackle this issue by generalizing the
rule (3.352) and/or using the whole machinery of the IM presented above and in appendix D
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to write a code determining all the diagrams contributing to a 2PPI EA with finite 1-point
correlation functions. A numerical tool constructing all the diagrams involved in Bogoliubov
MBPT (BMBPT) up to any truncation order is discussed in refs. [308–310] and could be used
as a starting point. Such a code would be of great use for any nPPI or nPI EA, especially in the
case of realistic models for which the diagrams generated by the LE might be very numerous
at the first non-trivial orders as well.

Let us finish this general presentation of the 2PPI EA by discussing the work of Furnstahl
and collaborators [17, 53, 54, 56, 57, 311] who brought the 2PPI EA (still via the IM) in nuclear
physics:

• Refs. [53, 54] aim at turning the Hartree-Fock implementation of the Skyrme EDF into
a systematically improvable approach by exploiting the 2PPI EA via the IM. In order
to achieve this, the latter method is applied to a dilute fermion gas with short-range
interaction. The authors use the product askF instead of ~ as expansion parameter for
the EA36, with as and kF being respectively the s-wave scattering length and the Fermi
momentum of the gas. The diagrammatic underlying the expansion of the Schwinger
functional used as input for the IM is that of an EFT combined with a renormalization
scheme (based on dimensional regularization with minimal subtraction) worked out in
ref. [50].

• The inclusion of pairing correlations in the framework of the 2PPI EA is worked out in
ref. [56]. The latter shows notably how to recover results of the BCS theory with this PI
technique.

• Refs. [17, 57, 311] are reviews making a state of play of the methods relevant to turn
the nuclear EDF approach into a DFT, like the 2PPI EA. In particular, these references
discuss the techniques of quantization of gauge theories in the PI framework. Gauge
symmetries and associated SSBs have proven to be powerful tools to describe open-shell
nuclei, notably in the current EDF framework [7]. In technical terms, this requires the
quantization of gauge theories. This can be achieved in the PI formalism by, e.g., intro-
ducing ghost fields via the Faddeev-Popov method [312]. Another possibility suggested
in ref. [17, 57] consists in exploiting the BRST symmetry [313–315] to get rid of spurious
dofs (and thus work with a unique gs) [316, 317]. The latter direction might be less
cumbersome than that of Faddeev-Popov, in particular in the case of non-Abelian gauge
theories. However, both of these quantization techniques, and their combination with
the PI techniques applied in the present comparative study, remain to be explored in the
framework of nuclear physics.

Following the above IM procedure, the 2PPI EA of the studied O(N) model with vanishing
1-point correlation function can be expressed as follows (see also appendix D.4 for a derivation

36The short-range feature of the interaction renders the product askF small enough to be a relevant expansion
parameter.
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of result (3.368) from which (3.360) can be deduced by setting M0,a[ρ, ζ;x] = 0 ∀a, x):

Γ(2PPI)[ρ] =− ~
2

STr
[
ln
(
G[K0]

)]
+

~
2

∫

x

Ka
0 [ρ;x]ρa(x)

+ ~2




1

24
+

1

12




− ~3




1

72
+

1

144




+ ~4




1

324
+

1

108
+

1

324
+

1

216

+
1

1296




+O
(
~5
)
,

(3.360)

where the Feynman rules are given by (3.355) and (3.358). The (0+0)-D version of (3.360)
(which can be directly deduced from a result of section 3.5.4 as well, i.e. by settingM0(ρ, ζ) = 0
into (3.383)) satisfies:

Γ(2PPI)(ρ) = ~
[
−N

2
ln(2πρ(K0)) +

N

2

(
m2ρ(K0)− 1

)]
+ ~2

[
1

24
λ
(
N2 + 2N

)
(ρ(K0))2

]

− ~3

[
N2 + 2N

144
λ2 (ρ(K0))4

]
+ ~4

[
N3 + 10N2 + 16N

1296
λ3 (ρ(K0))6

]
+O

(
~5
)
,

(3.361)

with ρa being also a scalar in color space, i.e. ρa = ρ(K0) = (m2 −K0(ρ))
−1 ∀a. By com-

paring (3.248) with (3.360), we can see that the 2PI and 2PPI EAs with vanishing 1-point
correlation function are expressed, up to order O

(
~4
)
, in terms of the same diagrams which

contribute to both EAs with the same numerical factors. The difference between these two EAs
is hidden in the propagator which is dressed by the bilocal functional K0,ab(x, y) for the 2PI
EA on the one hand and by the local functional K0,a(x) for the 2PPI EA on the other hand.
At order O

(
~5
)
, the diagrams of the 2PPI and 2PI EAs no longer coincide due to the appear-

ance of diagrams such as (3.356) in the expression of the 2PPI EA. Nevertheless, in (0+0)-D,
the expressions of the 2PI and 2PPI EAs coincide in the absence of SSB, i.e. results (3.257)
and (3.361) are equivalent, since the equality Gab(x, y) = G δab = ρ(K0) δab is valid in this
case37. However, one should bear in mind that this equivalence a priori does not hold (even
in (0+0)-D) if the O(N) symmetry is (spontaneously) broken down since there is no reason to
enforce the relation Gab = G δab for the 2PI EA in this situation.

37The gap equation of the 2PPI EA expressed by (3.361) can therefore be directly deduced in (0+0)-D
from (3.258) after substituting G by ρ(K0).
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3.5.4 4PPI effective action

A first application of the 4PPI EA was carried out by Okopińska [305]. The 4PPI EA is
deduced from the 4PI one by assuming that all sources are local. Hence, the 4PPI and 4PI EA
formalisms are very similar and we can find most of the relevant information for the presentation
of the 4PPI EA formalism in the literature related to the 4PI EA [115, 229, 318, 319]. As
opposed to all EA approaches based on a ~-expansion that we have investigated in the rest
of section 3.5, no diagrammatic rule has been worked out so far for the 4PPI EA in order to
determine general properties of the underpinning diagrams (as opposed to (3.352) for the 2PPI
EA with its 1VI diagrams notably). We will not develop such a diagrammatic rule below but
construct instead the diagrammatic expression of the 4PPI EA via the IM for the O(N) model
under consideration (see appendix D.4). Moreover, neither the 4PI nor the 4PPI EA has ever
been exploited in the framework of an O(N)-symmetric theory to our knowledge. Since the
4PI and 4PPI EAs of our O(N) model coincide in (0+0)-D and in the absence of spontaneous
breakdown of the O(N) symmetry38, the present study is the first to perform such applications.
More specifically, we now investigate the 4PPI EA with vanishing 1-point correlation function
in the original representation, still in arbitrary dimensions as a first step. This functional is
defined by the following Legendre transform:

Γ(4PPI)[ρ, ζ] ≡−W [K,M ] +

∫

x

Ka[ρ, ζ;x]
δW [K,M ]

δKa(x)
+

∫

x

Ma[ρ, ζ;x]
δW [K,M ]

δMa(x)

=−W [K,M ] +
~
2

∫

x

Ka[ρ, ζ;x]ρa(x) +
~2

8

∫

x

Ma[ρ, ζ;x]ρ2
a(x) +

~3

24

∫

x

Ma[ρ, ζ;x]ζa(x) ,

(3.362)

with

ρa(x) =
2

~
δW [K,M ]

δKa(x)
, (3.363)

ζa(x) =
24

~3

δW [K,M ]

δMa(x)
− 3

~
ρ2
a(x) , (3.364)

and the Schwinger functional W [K,M ] satisfying:

Z[K,M ] = e
1
~W [K,M ] =

∫
D~̃ϕ e−

1
~SKM

[
~̃ϕ
]
, (3.365)

SKM

[
~̃ϕ
]
≡ S

[
~̃ϕ
]
− 1

2

∫

x

Ka(x)ϕ̃2
a(x)− 1

4!

∫

x

Ma(x)ϕ̃4
a(x) . (3.366)

38The 4PI and 4PPI EAs of the studied O(N) model coincide without SSB and in (0+0)-D since the absence of
SSB imposes that all non-local sources underlying the 4PI EA reduce to scalars in color space. Since spacetime
indices vanish in (0+0)-D, this implies that all these sources become local, in which case the definitions of the
4PI and 4PPI EAs become indeed equivalent. For further details, one can compare the definition of the 4PI EA
given in ref. [229] with that of the 4PPI EA given by (3.362) to (3.366).
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The IM is then implemented from the following power series:





Γ(4PPI)[ρ, ζ; ~] =
∞∑

n=0

Γ(4PPI)
n [ρ, ζ]~n .

W [K,M ; ~] =
∞∑

n=0

Wn[K,M ]~n .

K[ρ, ζ; ~] =
∞∑

n=0

Kn[ρ, ζ]~n .

M [ρ, ζ; ~] =
∞∑

n=0

Mn[ρ, ζ]~n .

ρ =
∞∑

n=0

ρn[K,M ]~n .

ζ =
∞∑

n=0

ζn[K,M ]~n .

(3.367a)

(3.367b)

(3.367c)

(3.367d)

(3.367e)

(3.367f)

From the IM, we show that the 4PPI EA (3.362) reads (see appendix D.4):

Γ(4PPI)[ρ, ζ] =− ~
2

STr
[
ln
(
G[K0]

)]
+

~
2

∫
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0 [ρ, ζ;x]ρa(x)

+ ~2



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
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(
~5
)
,

(3.368)
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and the corresponding Feynman rules are:

x, a y, b → Gab[K0;x, y] , (3.369a)

xa
b

c
d → (λ−M0,a[ρ, ζ;x]δac) δabδcd . (3.369b)

where the propagator G[K0] ≡ GK [K = K0] is already defined by (3.354) and remains a scalar
in color space as for the 2PPI EA formalism discussed in section 3.5.3. The coefficients K0 and
M0, introduced via the power series (3.367c) and (3.367d), also exhibit such a simple structure
in color space and are the variational parameters of the present EA approach. Furthermore,
we can see that (3.360) and (3.368), expressing respectively Γ(2PPI)[ρ] and Γ(4PPI)[ρ, ζ], are very
close: the diagrams have identical topologies and are weighted with the same factors up to
order O

(
~4
)
. However, the two expressions are of course not identical due to the presence of

the M0 coefficient in the case of the 4PPI EA (notably via the zigzag vertex (3.369b)).

We conclude this section by studying the zero-dimensional limit as usual. In order to evalu-
ate the diagrams of (3.368) in (0+0)-D, we must have in mind that the zigzag vertex (3.369b) is
dressed by M0[ρ, ζ] if and only if the color indices at each four ends of this vertex are identical,
as a result of the presence of δacδabδcd in (3.369b). This yields:

N∑

a=1

K0,a(ρ, ζ)ρa =
N∑

a=1

K0,a(ρ, ζ) a = NK0(ρ, ζ)ρ(K0) = N
(
m2ρ(K0)− 1

)
, (3.370)

N∑

a=1

M0,a(ρ, ζ)ρ2
a =

N∑

a=1

M0,a(ρ, ζ)

(
a

)2

= NM0(ρ, ζ) (ρ(K0))2 , (3.371)

N∑

a=1

M0,a(ρ, ζ)ζa = −
N∑

a=1

M0,a(ρ, ζ)
a

= −NM0(ρ, ζ) (λ−M0(ρ, ζ)) (ρ(K0))4 ,

(3.372)

= [N (λ−M0(ρ, ζ)) +N (N − 1)λ] (ρ(K0))2 , (3.373)

= N (λ−M0(ρ, ζ)) (ρ(K0))2 , (3.374)

= N (λ−M0(ρ, ζ))2 (ρ(K0))4 , (3.375)

=
[
N (λ−M0(ρ, ζ))2 +N (N − 1)λ2

]
(ρ(K0))4 , (3.376)
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= = N (λ−M0(ρ, ζ))3 (ρ(K0))6 , (3.377)

=
[
N (λ−M0(ρ, ζ))3 +N (N − 1)λ3

]
(ρ(K0))6 , (3.378)

=
[
N (λ−M0(ρ, ζ))2 +N (N − 1)λ2

]
(λ−M0(ρ, ζ)) (ρ(K0))6 , (3.379)

=
[
N (λ−M0(ρ, ζ))3 + 3N (N − 1)λ2 (λ−M0(ρ, ζ))

+N (N − 1) (N − 2)λ3
]

(ρ(K0))6 ,

(3.380)

where we have used relations derived in appendix D.4 (i.e. (D.235) and (D.236)) in (3.370),
(3.371) and (3.372). As mentioned earlier, the absence of spontaneous breakdown of the O(N)
symmetry in the present situation induces notably thatG(K0), K0(ρ, ζ) andM0(ρ, ζ) all reduce
to scalars in color space, which translates into the relations: Gab(K0) = ρ(K0)δab, K0,a(ρ, ζ) =
K0(ρ, ζ) ∀a and M0,a(ρ, ζ) = M0(ρ, ζ) ∀a. Moreover, by noticing that the contribution of each
diagram must be of order O

(
Nm
)
whenM0(ρ, ζ) = 0, with m being the number of independent

propagator loops in the diagram under consideration, we can infer the following sum rules for
the factors involved in the RHSs of (3.373), (3.376), (3.378), (3.379) and (3.380):

• For m = 2 (i.e. for (3.373), (3.376), (3.378) and (3.379)):

N +N (N − 1) = N2 . (3.381)

• For m = 3 (i.e. for (3.380)):

N + 3N (N − 1) +N (N − 1) (N − 2) = N3 . (3.382)

According to (3.370) to (3.380), (3.368) reduces in (0+0)-D to:

Γ(4PPI)(ρ, ζ) = ~
[
− N

2
ln(2πρ(K0)) +

N

2

(
m2ρ(K0)− 1

) ]

+ ~2

[
1

24
λ
(
N2 + 2N

)
(ρ(K0))2

]

− ~3

[
1

144
N
(
−3 (M0(ρ, ζ))2 + (2 +N)λ2

)
(ρ(K0))4

]

+ ~4

[
1

1296
N
(
− 27 (M0(ρ, ζ))3 + 81 (M0(ρ, ζ))2 λ− 9M0(ρ, ζ) (8 +N)λ2

+
(
16 + 10N +N2

)
λ3
)

(ρ(K0))6

]

+O
(
~5
)
.

(3.383)
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By exploiting the relations39 ρa = ρ(K0) = (m2 −K0(ρ, ζ))
−1 ∀a and ζa = ζ(K0,M0) =

− (λ−M0(ρ, ζ)) (ρ(K0))4 ∀a (see appendix D.4 and more specifically (D.235) and (D.236) for
the derivation of these two relations in arbitrary dimensions), we then construct the following
chain rules in order to derive the gap equations associated to Γ(4PPI)(ρ, ζ):

∂

∂ρ
=
∂K0(ρ, ζ)

∂ρ

∂

∂K0

+
∂M0(ρ, ζ)

∂ρ︸ ︷︷ ︸
0

∂

∂M0

=

(
∂ρ(K0)

∂K0

)−1
∂

∂K0

= (ρ(K0))−2 ∂

∂K0

,

(3.384)

∂

∂ζ
=
∂K0(ρ, ζ)

∂ζ

∂

∂K0

+
∂M0(ρ, ζ)

∂ζ

∂

∂M0

=

(
∂ζ(K0,M0)

∂K0

)−1
∂

∂K0

+

(
∂ζ(K0,M0)

∂M0

)−1
∂

∂M0

=− 1

4
(λ−M0(ρ, ζ))−1 (ρ(K0))−5 ∂

∂K0

+ (ρ(K0))−4 ∂

∂M0

.

(3.385)

The gap equations associated to Γ(4PPI)(ρ, ζ) actually satisfy (see appendix D.4 and more specif-
ically (D.200a) and (D.200b) to justify the simplifications of the derivatives of Γ(4PPI)(ρ, ζ)
outlined in (3.386) and (3.387)):

0 =
∂Γ(4PPI)(ρ, ζ)

∂ρ

∣∣∣∣
ρ=ρ

ζ=ζ

=
∂Γ

(4PPI)
0 (ρ, ζ)

∂ρ

∣∣∣∣∣
ρ=ρ

ζ=ζ︸ ︷︷ ︸
0

+
∂Γ

(4PPI)
1 (ρ, ζ)

∂ρ

∣∣∣∣∣
ρ=ρ

ζ=ζ︸ ︷︷ ︸
1
2
K0

~ +
∂Γ

(4PPI)
2 (ρ, ζ)

∂ρ

∣∣∣∣∣
ρ=ρ

ζ=ζ

~2

+
∂Γ

(4PPI)
3 (ρ, ζ)

∂ρ

∣∣∣∣∣
ρ=ρ

ζ=ζ

~3 +
∂Γ

(4PPI)
4 (ρ, ζ)

∂ρ

∣∣∣∣∣
ρ=ρ

ζ=ζ

~4 +O
(
~5
)
,

(3.386)

0 =
∂Γ(4PPI)(ρ, ζ)

∂ζ

∣∣∣∣
ρ=ρ

ζ=ζ

=
∂Γ

(4PPI)
0 (ρ, ζ)

∂ζ

∣∣∣∣∣
ρ=ρ

ζ=ζ︸ ︷︷ ︸
0

+
∂Γ

(4PPI)
1 (ρ, ζ)

∂ζ

∣∣∣∣∣
ρ=ρ

ζ=ζ︸ ︷︷ ︸
0

~ +
∂Γ

(4PPI)
2 (ρ, ζ)

∂ζ

∣∣∣∣∣
ρ=ρ

ζ=ζ︸ ︷︷ ︸
0

~2

+
∂Γ

(4PPI)
3 (ρ, ζ)

∂ζ

∣∣∣∣∣
ρ=ρ

ζ=ζ︸ ︷︷ ︸
1
24
M0

~3 +
∂Γ

(4PPI)
4 (ρ, ζ)

∂ζ

∣∣∣∣∣
ρ=ρ

ζ=ζ

~4 +O
(
~5
)
,

(3.387)

with ρa = ρ =
(
m2 −K0

)−1 ∀a and ζa = ζ = −
(
λ−M0

)
ρ4 ∀a. Finally, after combin-

39The conservation of the O(N) symmetry in the present framework also imposes that both arguments of the
4PPI EA, i.e. ρ and ζ, are scalars in color space.
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ing (3.383), (3.384) and (3.385) with (3.386) and (3.387), we obtain the two gap equations:

0 =
∂Γ(4PPI)(ρ, ζ)

∂ρ

∣∣∣∣
ρ=ρ

ζ=ζ

=
~
2
K0 + ~2

[
1

12
N (2 +N)λρ

]
− ~3

[
1

36
N
(
−3M

2

0 + (2 +N)λ2
)
ρ3

]

+ ~4

[
1

216
N
(
− 27M

3

0 + 81M
2

0λ− 9M0 (8 +N)λ2

+
(
16 + 10N +N2

)
λ3
)
ρ5

]

+O
(
~5
)
,

(3.388)

0 =
∂Γ(4PPI)(ρ, ζ)

∂ζ

∣∣∣∣
ρ=ρ

ζ=ζ

=
~3

24
M0

− ~4

[
1

864

(
λ−M0

)−1
N
(
− 81M

3

0 + 243M
2

0λ− 3M0 (76 + 5N)λ2

+ (8 +N)2 λ3
)
ρ2

]

+O
(
~5
)
,

(3.389)

whereas the gs energy and density are deduced from the solutions of these two gap equations
as follows:

E4PPI EA;orig
gs =

1

~
Γ(4PPI)

(
ρ = ρ, ζ = ζ

)
, (3.390)

ρ4PPI EA;origgs = ~ρ . (3.391)

One can directly infer from (3.387) that, if contributions to Γ(4PPI) of order O
(
~4
)
or higher are

ignored, the solution of the gap equations for M0(ρ, ζ) is inevitably trivial, i.e. M0 = 0. This
implies that we need to push our investigations at least up to order O

(
~4
)
(i.e. up to the third

non-trivial order) to find non-trivial solutions for M0(ρ, ζ) so that the 4PPI EA formalism
might improve the 2PPI one for a vanishing 1-point correlation function. This feature gets
accentuated for higher nPPI EAs: the 4PPI and 6PPI EAs’ results would not differ below the
fifth non-trivial order (still for a vanishing 1-point correlation function) and so on40. We are
just illustrating in this way a well-known fact, i.e. that nP(P)I EAs all yield identical results
at order O

(
~m
)
for n ≥ m [320].

Furthermore, the results obtained at third non-trivial order for our (0+0)-D O(N) model
do not clearly improve the 2PPI EA results in all phases, as can be seen from figs. 3.18 and 3.19
for N = 1 and 2 respectively. For most results of fig. 3.18 and thus at N = 1, the 4PPI EA
approach clearly outperforms the 2PPI EA one at order O

(
~4
)
, with the exception of ρgs in

the broken-symmetry phase. At N = 2 however, fig. 3.19 shows that the best 4PPI EA results
(besides the trivial solution M0 = 0 for which 2PPI and 4PPI EAs coincide, as can be seen by
comparing (3.361) and (3.383)) are even worse than the best 2PPI EA ones. Nevertheless, the

40Although we do not show it here, we point out that the situation is slightly improved if the 1-point and
3-point correlation functions are allowed to take finite values. In this case, the 4PPI EA might improve the
2PPI EA results already at order O

(
~3
)
(i.e. at second non-trivial order) if the n-point correlation functions

with n odd are not constrained to vanish according to the symmetries of the problem. The latter condition does
not hold in the case of the studied O(N) model for which the 4PPI EA results are thus still expected to coincide
with the 2PPI EA ones at second non-trivial order even if the underlying formalism allows for non-trivial 1-point
and 3-point correlation functions.
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Figure 3.18: Gs energy Egs or density ρgs calculated at ~ = 1, m2 = ±1 and N = 1 (Re(λ) ≥ 0
and Im(λ) = 0). See also the caption of fig. 3.11 for the meaning of the indication “O

(
~n
)
” for

the results obtained from ~-expanded EAs.
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Figure 3.19: Same as fig. 3.18 with N = 2 instead.

comparisons between 2PPI and 4PPI EAs in figs. 3.18 and 3.19 should be taken with caution
as we are considering asymptotic series without resummation here. We will actually not apply
resummation theory to the 4PPI EA as the previous discussion is sufficient to make our point
on nP(P)I EAs with n > 2, which is as follows.

All above remarks outlined below (3.389) are inherent to the present choice of expansion
parameter, i.e. ~, and do not hold a priori in the framework of another expansion scheme.
From this, we conclude that nP(P)I EAs with n > 2 are less efficient than HSTs to introduce
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new collective dofs in the arena, at least in the framework of the ~-expansion for a model
that does not exhibit competing instabilities. We have illustrated in this chapter how HSTs
and nP(P)I EAs with n ≥ 2 can be used separately or together to introduce collective dofs
in our description. Note that nPI EA formalisms are based in general on self-consistent gap
equations41 involving bilocal, trilocal, ... and n-local objects as variational parameters, which
might significantly burden the underpinning numerical procedure. We can circumvent this by
dealing instead with nPPI EAs for which all variational parameters are local, but the price
to pay is a significant complexification on the side of the formalism, as was illustrated in
section 3.5.3 for the 2PPI EA (or in appendix D.4 for the 4PPI EA). Besides this, 2P(P)I EAs
and higher-order EAs enable us to exploit densities as dofs (either through a propagator with
e.g. the 2PI EA or directly with density functionals such as the 2PPI EA), which provides us
with an interesting connection with the nuclear EDF formalism. We will remain in the EA
framework in the next chapter on FRG techniques which rely on different expansion schemes
for EAs (as compared to the ~-, λ- and 1/N -expansions discussed in the present chapter), thus
grasping non-perturbative physics in a very different manner.

41In (0+0)-D, these gap equations are not self-consistent but just algebraic, as we have seen throughout the
whole section 3.5.
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We pursue our investigations on PI methods in this chapter, now focusing on FRG approaches.
The questions underlying our study remain identical to those put forward in chapter 3: what
are the most efficient methods in catching correlations at the non-perturbative level and what
are the relevant dofs to achieve this? We will still exploit our (0+0)-D O(N)-symmetric ϕ4-
theory as a playground for our numerical applications and the latter question will be addressed
by considering the mixed and collective representations of this model on various occasions. The
link with the EDF formalism is less direct with FRG methods than with the EA approaches
dealt with in chapter 3. All FRG techniques, which still belong to the EA formalism, rely
on integro-differential equations whereas the EDF methods, as well as the diagrammatic EA
techniques treated in chapter 3 that we will now refer to as self-consistent PT for the sake
of clarity, require to solve self-consistent equations for realistic models. In that respect, the
FRG framework is a serious candidate to produce a new generation of approaches in nuclear
theory. The study presented in this chapter aims at better understanding the ability of FRG
techniques to achieve this and more generally to describe strongly-coupled quantum systems.
To that end, we will discuss FRG techniques formulated from a 1PI EA, a 2PI EA and a 2PPI
EA, coined respectively as 1PI-FRG [126, 133], 2PI-FRG [321, 322] and 2PPI-FRG [323], and
we will emphasize in particular the connections between these different FRG approaches.

More specifically, the present chapter is split into three sections treating separately the 1PI-
FRG, the 2PI-FRG and finally the 2PPI-FRG. Each of these sections contains two parts, the
first one presenting the general formalism of the FRG approach under consideration at arbitrary
dimensions and the second one specifying to our (0+0)-D O(N) model. While there already
exists plenty of applications of the 1PI-FRG to O(N) models [324–333], we develop and apply
the 2PI-FRG and the 2PPI-FRG to an O(N) model for the first time to our knowledge. We will
also illustrate the links between certain implementations of the 2PI-FRG and self-consistent
PT. Some of these implementations are actually capable of taking the results of self-consistent
PT as inputs. Since self-consistent PT is equivalent to Hartree-Fock(-Bogoliubov) theory at its
first non-trivial order, this will enable us to draw an interesting parallel with the MR step of
the nuclear EDF approach [7, 8].

4.1 1PI functional renormalization group

4.1.1 State of play and general formalism

As we already discussed in chapter 2, the most widespread FRG approach is the 1PI-FRG
proposed by Wetterich in refs. [126, 334–336] alongside with others [337–341]. It remains
an active area in numerous fields of physics, as e.g. in QCD [134, 135, 342–352], quantum
gravity [353–362], condensed matter physics [363–373] or nuclear physics [374, 375]. Note
also some applications to out-of-equilibrium systems [376–386]. We will present the 1PI-FRG
formalism for a general QFT involving a single fluctuating field ϕ̃α depending on a single index
α ≡ (a, x), with x ≡ (r, τ) being the spacetime position (r and τ being respectively the
space position and the imaginary time) and a an internal quantum number that, if specified,
coincides with the color index of an O(N) model. The output of this method is the EA, as in all
FRG approaches investigated in the present study. The 1PI-FRG relies on the scale-dependent
generating functional1:

Zk[J ] = eWk[J ] =

∫
Dϕ̃ e−S[ϕ̃]−∆Sk[ϕ̃]+

∫
α Jαϕ̃α , (4.1)

1We set ~ = 1 throughout the entire chapter 4 and corresponding appendices.
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where
φα ≡ φk,α[J ] =

δWk[J ]

δJα
, (4.2)

and
∆Sk

[
ϕ̃
]

=
1

2

∫

α1,α2

ϕ̃α1Rk,α1α2ϕ̃α2 , (4.3)

using the shorthand notation for the integration:
∫

α

≡
∑

a

∫

x

≡
∑

a

∫ β

0

dτ

∫
dD−1r . (4.4)

Furthermore, Rk is called cutoff function or regulator whereas k denotes the momentum scale
of the theory under consideration and will be referred to as flow parameter. The cutoff function
Rk plays a central role in the present approach, as in all FRG approaches. It must notably
exhibit the same symmetry properties as the corresponding propagator. Therefore, as we are
considering the case of a bosonic field, Rk is symmetric, i.e.2 Rk,α1α2 = Rk,α2α1 = δa1a2Rk(x1 −
x2) ∀α1, α2 (for a fermionic field, Rk,α1α2 = −Rk,α2α1 ∀α1, α2). Note also that, for realistic
applications, the final equations to solve are usually written in momentum space. It is indeed
more natural to do so as the flow parameter corresponds to a momentum scale. Recalling
that φα ≡ φa(x), this is achieved via the following Fourier transformations in D-dimensional
Euclidean spacetime:

φ̆a(p) =

∫

x

e−ipxφa(x) , (4.5)

Γ̆(1PI)(n)
a1,··· ,an [φ; p1, · · · , pn] = (2π)−nD

∫

x1,··· ,xn
e−i

∑n
m=1 pmxmΓ(1PI)(n)

a1,··· ,an [φ;x1, · · · , xn] , (4.6)

where Γ̆
(1PI)(n)
a1···an [φ; p1, · · · , pn] ≡ δnΓ(1PI)[φ]

δφ̆a1 (p1)···δφ̆an (pn)
, Γ

(1PI)(n)
a1···an [φ;x1, · · · , xn] ≡ δnΓ(1PI)[φ]

δφa1 (x1)···δφan (xn)
and

the momentum p = (p, iωn) is such that px = p ·r−ωnτ , with ωn being a Matsubara frequency.
In this situation, we also Fourier transform the regulator Rk, thus leading to:

∆Sk
[
φ
]

=
1

2

∑

a

∫
dDp

(2π)D
φ̆a(p)R̆k,a(p)φ̆a(−p) , (4.7)

with
R̆k,a1a2(p1, p2) = (2π)Dδa1a2δ

(D)(p1 + p2)R̆k,a1(p1) , (4.8)

where δ(D) is the D-dimensional Dirac delta function [387]. We will actually rather focus on
the properties of R̆k instead of those of Rk in the discussions to come (we will switch to a
more common notation thereafter, denoting R̆k(p) rather as Rk(p)). However, we point out
that, due to the absence of spacetime indices in the framework of our toy model study, we will
not exploit Fourier transforms in the forthcoming applications of the 1PI-FRG, or of any other
FRG approaches.

The flowing EA Γ
(1PI)
k is defined through the modified Legendre transform:

Γ
(1PI)
k [φ] = −Wk[J ] +

∫

α

Jαφα −∆Sk[φ] , (4.9)

where the need for the rightmost term−∆Sk[φ] will be clarified below. After differentiating (4.1)
with respect to k, we end up with an exact flow equation for Wk[J ] which is equivalent to

2In the present chapter and in the corresponding appendices, we will denote color indices by a1, a2, a3, ...
instead of a, b, c, ... as was done in the previous chapters.
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Polchinski’s flow equation [127]. With the help of definition (4.9), we can turn this into an
exact flow equation for Γ

(1PI)
k [φ], which is nothing other than the Wetterich equation [126] (see

appendix E.1):

Γ̇
(1PI)
k [φ] ≡ ∂kΓ

(1PI)
k [φ] =

1

2
STr

[
Ṙk

(
Γ

(1PI)(2)
k [φ] +Rk

)−1
]
, (4.10)

where the matrix Γ
(1PI)(2)
k [φ] ≡ δ2Γ

(1PI)
k [φ]

δφδφ
is the Hessian3 of the flowing EA Γ

(1PI)
k and STr denotes

the supertrace as usual. We also stress that, in our notations, the dot will always denote
derivatives with respect to the flow parameter, in the present as well as in the forthcoming
sections treating other FRG approaches. The Wetterich equation is solved by evolving the flow
parameter k from the chosen UV cutoff Λ to zero. Throughout this procedure, we actually
probe the energy range [0,Λ] by incorporating quantum corrections to the classical action until
it coincides with the full-fledged EA. Hence, the flowing EA Γ

(1PI)
k must satisfy the following

boundary conditions:




Γ
(1PI)
k=Λ [φ] = S

[
ϕ̃ = φ

]
.

Γ
(1PI)
k=0 [φ] = Γ(1PI)[φ] .

(4.11a)

(4.11b)

These boundary conditions are translated into constraints for the cutoff functions4:





Rk=Λ,α1α2 =∞ ∀α1, α2 .

Rk=0,α1α2 = 0 ∀α1, α2 .

(4.12a)

(4.12b)

The link between (4.11b) and (4.12b) can be directly established from the definition of Γ
(1PI)
k

given by (4.9). It can be shown on the other hand that the constraint of (4.12a) enables us to
satisfy (4.11a) by considering (4.9) in the form (see appendix E.1 and more specifically (E.7)
for a derivation of (4.13)):

Jα1 =
δΓ

(1PI)
k [φ]

δφα1

+

∫

α2

Rk,α1α2φα2 . (4.13)

By exploiting the latter equality at k = Λ, we can show that combining (4.1) and (4.9) leads

3The Hessian of Γ
(1PI)
k is sometimes denoted as Γ

(1,1)
k =

−→
δ

δΦT Γk
←−
δ
δΦ , where Φ = δW [J]

δJT is a column vector
whose components are given by the (complex and real) fields on which the 1PI EA Γk depends [388, 389].

4According to (4.1) and (4.3), the introduction of the cutoff function Rk dresses the (inverse) free propagator
C−1 as C−1 → C−1

k = C−1 + Rk. However, we can equivalently use a multiplicative cutoff function via
C−1 → C−1

k = RkC
−1, in which case (4.12b) is no longer valid. Hence, the constraints (4.12a) and (4.12b)

can be respectively rephrased as C−1
k=Λ,α1α2

= ∞ ∀α1, α2 and C−1
k=0,α1α2

= C−1 ∀α1, α2 so that they become
independent of the way Rk is introduced.
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to:

e−Γ
(1PI)
k=Λ [φ] = e

Wk=Λ[J ]−
∫
α Jαφα+ 1

2

∫
α1,α2

φα1Rk=Λ,α1α2
φα2

=

(∫
Dϕ̃ e

−S[ϕ̃]− 1
2

∫
α1,α2

ϕ̃α1Rk=Λ,α1α2
ϕ̃α2+

∫
α Jαϕ̃α

)
e
−
∫
α Jαφα+ 1

2

∫
α1,α2

φα1Rk=Λ,α1α2
φα2

=

(∫
Dϕ̃ e

−S[ϕ̃]− 1
2

∫
α1,α2

ϕ̃α1Rk=Λ,α1α2
ϕ̃α2+

∫
α

δΓ
(1PI)
k=Λ

[φ]

δφα
ϕ̃α+

∫
α1,α2

φα1Rk=Λ,α1α2
ϕ̃α2

)

× e
−
∫
α

δΓ
(1PI)
k=Λ

[φ]

δφα
φα− 1

2

∫
α1,α2

φα1Rk=Λ,α1α2
φα2

=

∫
Dϕ̃ e−S[ϕ̃]+

∫
α

δΓ
(1PI)
k=Λ

[φ]

δφα
(ϕ̃α−φα) e

− 1
2

∫
α1,α2

(ϕ̃α1−φα1)Rk=Λ,α1α2(ϕ̃α2−φα2)
︸ ︷︷ ︸

∼δ[ϕ̃−φ] according to (4.12a)

,

(4.14)

which gives us:

Γ
(1PI)
k=Λ [φ] ∼ S[φ] , (4.15)

as expected. The condition (4.15) sets the starting point of the flow: needless to say that it is
a very useful condition as the classical action is known in practice. Note however that (4.15)
would not be satisfied if we would not have modified the Legendre transform defining the flowing
EA Γ

(1PI)
k , hence the relevance of the extra term ∆Sk in (4.9).

We are now left with discussing the analytic form of the cutoff function Rk for 0 < k < Λ.
In that respect, let us first point out that, except for simple toy models [147], the Wetterich
equation can not be directly integrated and must therefore be approximated in some way. Since
approximations are almost always necessary to solve the Wetterich equation, the flow depends
on the choice of Rk. This implies that physical results might themselves depend on the latter,
even if the boundary conditions (4.12a) and (4.12b) are fulfilled. The predictive power of the
FRG approach can therefore be improved by implementing optimization procedures aiming
at minimizing such an undesirable feature. Here are examples of optimization procedures
developed so far: one based on the principle of minimal sensitivity [329, 330, 390, 391], which
determines the optimal values for the parameters of a given cutoff function, and the Litim-
Pawlowski method [133, 392–396], leading to the so-called theta or Litim regulator [392, 393]:

Rk(p) = C
(
k2 − p2

)
Θ
(
k2 − p2

)
, (4.16)

where C is a constant of order unity and Θ is the Heaviside function [152]. The regulator (4.16) is
not suited to be combined with all approximations of the Wetterich equation (and in particular
not with the derivative expansion discussed below) since it is not a differentiable function.
However, in some situations, it has the advantage to allow for performing integrals analytically
in the integro-differential equations deduced from the Wetterich equation. Another common
choice of cutoff function is:

Rk(p) = C p2

ep2/k2 − 1
, (4.17)

which is referred to as the exponential regulator. The cutoff functions (4.16) and (4.17) are
both considered as soft, in contrast to sharp regulators which are rather used in the framework
of perturbative approaches (see fig. 4.1).
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Figure 4.1: General forms of soft and sharp cutoff functions.

To summarize, there are essentially two features influencing the predictive power of the 1PI-
FRG (and of all other FRG approaches): the choice of the cutoff function (alongside with the
aforementioned optimization procedures) and the approximation used to solve the Wetterich
equation (or other flow equations for other FRG approaches). The implementation of such
an approximation is a two-step procedure: the Wetterich equation must be expanded in some
way before being truncated. We will refer to the combination of these two steps as truncation
scheme. For the 1PI-FRG, several truncation schemes have been developed and tested. As
examples, we can mention:

• The vertex expansion [341, 397]: it relies on a Taylor expansion of the flowing action
Γ

(1PI)
k [φ] in powers of the field φ (and not of its spacetime derivatives):

Γ
(1PI)
k [φ] = Γ

(1PI)

k +
∞∑

n=2

1

n!

∫

α1,··· ,αn
Γ

(1PI)(n)

k,α1···αn

(
φ− φk

)
α1
· · ·
(
φ− φk

)
αn

, (4.18)

where φk,α = δWk[J ]
δJα

∣∣∣
J=0

, Γ
(1PI)

k ≡ Γ
(1PI)
k

[
φ = φk

]
, Γ

(1PI)(n)

k,α1···αn ≡
δnΓ

(1PI)
k [φ]

δφα1 ···δφαn

∣∣∣∣
φ=φk

and φk must

extremize the flowing EA, i.e.:

δΓ
(1PI)
k [φ]

δφα

∣∣∣∣∣
φ=φk

= 0 ∀α, k . (4.19)

Inserting the expansion (4.18) into the Wetterich equation and identifying the terms with
identical powers of φ−φk in the LHS and RHS turns it into an infinite tower of differential
equations (see section 4.1.2 for a concrete application). In order to deal with a closed
finite set of equations, the simplest option consists in defining a truncation order Nmax

and imposing:

Γ
(1PI)(n)

k,α1···αn = Γ
(1PI)(n)

k=Λ,α1···αn ∀α1, · · · , αn, k, ∀n > Nmax .
(4.20)

If the EA depends on several fields, it is convenient to rewrite first the Wetterich equation
as:

Γ̇
(1PI)
k =

1

2
STr

[
∂̃k ln

(
Γ

(1PI)(2)
k +Rk

)]
, (4.21)

where the operator ∂̃k is a derivative with respect to k that only acts on the cutoff function
Rk. The fluctuation matrix Fk is then introduced as:

Γ
(1PI)(2)
k +Rk = Pk + Fk , (4.22)
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where Fk and Pk denote respectively the field-dependent and field-independent parts.
Combining (4.21) and (4.22), the vertex expansion can be implemented by expanding the
Wetterich equation as:

Γ̇
(1PI)
k =

1

2
STr

[(
∂̃kPk

)
P−1
k

]
+

1

2

∞∑

n=1

(−1)n−1

n
STr

[
∂̃k
(
P−1
k Fk

)n]
. (4.23)

The relevance of the vertex expansion relies on the validity of the Taylor expansion
in (4.18) or (4.23). Put differently, the vertex expansion is useful as long as the momen-
tum dependence of the vertex functions does not play a significant role in the physical
process to be described.

• The derivative expansion (DE): it mimics the expansion of the free energy in Landau
theory for the flowing EA [324, 329–331, 398, 399]. The general idea of the DE is to
expand the flowing EA with respect to the field and its spacetime derivatives. There
are also different truncation orders for the DE, the simplest being the local-potential
approximation (LPA). This scheme is most usually formulated for an O(N) model in
which case we rather deal with the O(N)-invariant ρ

[
~φ
]
≡ ~φ2/2 or, more explicitly5,

ρ
[
~φ
]
≡ ∑N

a=1(φa(x))2/2. The main reason for this is that the flowing classical action
Sk = S + ∆Sk and the flowing EA Γ

(1PI)
k exhibit the same linear symmetries (e.g. the

O(N) symmetry) and invariant of these symmetries (e.g. ρ for the O(N) symmetry) are
natural choices to play the role of expansion parameter for Γ

(1PI)
k in particular. The most

widespread implementations of the DE are:

– LPA:
Γ

(1PI)
k

[
~φ
]

=

∫

x

[
1

2

(
~∇~φ
)2

+ Uk[ρ]

]
, (4.24)

– LPA’:
Γ

(1PI)
k

[
~φ
]

=

∫

x

[
Zk
2

(
~∇~φ
)2

+ Uk[ρ]

]
, (4.25)

– DE2:

Γ
(1PI)
k

[
~φ
]

=

∫

x

[
Zk[ρ]

2

(
~∇~φ
)2

+
1

4
Yk[ρ]

(
~∇ρ
)2

+ Uk[ρ]

]
, (4.26)

where the effective potential Uk[ρ] only encompasses even powers of the field, as follows
from the definition of ρ. The functional Uk[ρ] gives us access to the most relevant in-
formation related to thermodynamics (equation of state, ...). The above ansätze, and
notably (4.26), have been proven to be very successful in treating O(N) [326] and Gross-
Neveu [400] models. However, for more complicated models, it turns out that addi-
tional approximations are almost always necessary, as illustrated by the work of Tissier et
al. [325, 327, 328]. In such situations, several invariants might come into play (instead of
just ρ) and one usually needs new functions (other than Zk and Yk) to achieve a reason-
ably good physical description, which renders the FRG procedure much more demanding
numerically. To handle this, a convenient additional approximation is to expand Uk and
Zk with respect to all invariants and then truncate the power series thus obtained6.

Let us put aside these additional approximations for the rest of our discussion on the
DE. In order to achieve a practical calculation based on the DE, we insert ansätze (4.24),

5The arrow still symbolizes the vector character in color space.
6See ref. [329] for a concrete example.
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(4.25) and (4.26) into the Wetterich equation in order to extract from the latter an exact
flow equation for the effective potential Uk[ρ]. For instance, after exploiting the O(N)

symmetry of the problem as well as the relation Γ
(1PI)
k

[
~φ = ~φu

]
= ΩUk[ρ = ρu] (Ω being

the spacetime volume of the system and ρu ≡ ρ
[
~φ = ~φu

]
being evaluated by definition

at a uniform field configuration ~φu, uniform meaning ~φu(x) = ~φu ∀x), we obtain for the
LPA7,8:

U̇k[ρ] =
1

2

∫
dDp

(2π)D
Ṙk(p) (Gk,L(ρ, p) + (N − 1)Gk,T (ρ, p)) , (4.27)

where 



Gk,L(ρ, p) =
(

Γ
(1PI)(2)
k,L (ρ, p) +Rk(p)

)−1

=
(
p2 + U

(1)
k (ρ) + 2ρU

(2)
k (ρ) +Rk(p)

)−1

,

Gk,T(ρ, p) =
(

Γ
(1PI)(2)
k,T (ρ, p) +Rk(p)

)−1

=
(
p2 + U

(1)
k (ρ) +Rk(p)

)−1

,

(4.28a)

(4.28b)

with U
(n)
k (ρ) denoting the nth-order derivative of Uk with respect to ρ. The subscripts

“L” and “T” respectively label longitudinal and transverse components with respect to the
direction associated with SSB, e.g. Γ

(1PI)(2)
k,L denotes the second-order derivative of Γ

(1PI)
k

with respect to φa=N(x) if ~φ2 = (φa=N(x))2.

As its name suggests, DE2 is referred to as the second order of the DE whereas the
LPA and the LPA’ can both be seen as its first order. The only difference between
the LPA and the LPA’ is the presence of the running field renormalization constant Zk
in (4.25). Despite its simplicity, the LPA has notably proven successful in the study
of SSBs in the framework of O(N) models [332]. Moreover, as shown in ref. [332], the
LPA results satisfy the Mermin-Wagner theorem [401–403] assuming that the effective
potential Uk[ρ] in (4.24) is not further approximated. However, the LPA turns out to
be disappointing in the determination of critical exponents, especially for the anomalous
dimension η. More precisely, the LPA always yields η = 0, as can be seen from the flowing

propagator Gk(ρ, p) =
(

Γ
(1PI)(2)
k (ρ, p) +Rk(p)

)−1

which reduces to Gk=0(ρ = 0, p) = 1/p2

at criticality which contrasts with the expected critical behavior Gk=0(ρ = 0, p) ∼ 1/|p|2−η
with η finite in less than 4 dimensions [125, 326, 333, 404–408]. The LPA’ cures this
problem thanks to Zk: after choosing a relevant cutoff function [333, 409], it enables us
to define a flowing anomalous dimension ηk = −k∂k ln(Zk), so that η = lim

k→0
ηk can be

extracted at the end of the flow at criticality. Besides this improvement with respect to
the LPA, the LPA’ is often not sufficient to achieve a satisfactory quantitative accuracy in
the determination of critical exponents. Nonetheless, let us point out that the successes
of the LPA (and the LPA’) suggest that the DE is performed around an efficiently chosen
starting point, hence the motivation for exploiting the second order of the DE (in which
Zk becomes a function of ρ alongside with Yk) [326, 335, 410–416], or even higher orders
such as the fourth [330, 417, 418] and the sixth [419].

7We refer to refs. [125, 147] for more details on the derivation of (4.27).
8In a uniform field configuration, ρ is no longer a function of x, which implies e.g. that Uk is no longer a

functional but a function, hence the notation Uk(ρ) instead of Uk[ρ].
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As for the vertex expansion, the relevance of the ansätze underlying the DE (i.e. (4.24),
(4.25) and (4.26) for the first two orders) does not rely on the smallness of a given
coupling constant so that the 1PI-FRG combined with the DE is still a non-perturbative
method. However, the validity of these ansätze is certainly not as clear as that of the
vertex expansion. Firstly, we can argue that, thanks to the flow parameter k acting as
an IR regulator, the flowing EA Γ

(1PI)
k does not suffer from the divergences characterizing

critical behaviors9. The latter only affect the physical EA, i.e. Γ
(1PI)
k=0

[
~φ
]

= Γ(1PI)
[
~φ
]
.

Therefore, the 1PI vertices Γ
(1PI)(n)
k>0

(
~φu, p1, · · · , pn

)
are smooth functions of the momenta

pi so that Γ
(1PI)
k can be expanded in terms of spacetime derivatives of the field ~φ to

capture the long-distance physics (typically the physics associated to a scale larger than
k−1 or m−1, with m being the mass of the field ~φ). More rigorously, the convergence of
the DE relies on the fact that the expansion of Γ

(1PI)
k with respect to p2/k2 has a finite

radius of convergence rconv on the one hand and, on the other hand, that the momentum
cutoff pcutoff is sufficiently small10 for rconv to be significantly greater than p2

cutoff/k
2. Such

conditions are usually satisfied in unitary theories for instance.

In conclusion, as opposed to the vertex expansion, the DE is particularly suited to catch
long-distance physics and thus to study critical phenomena. However, such a truncation
scheme does not retain the full momentum dependence of the vertex functions kept by
the truncation. Although we discuss below other truncation schemes developed in order
to cure this problem, we can also point out a slight modification of the LPA’, called
the LPA” [420–422], which enables us to capture the full momentum dependence of the
propagator Gk, inducing notably better estimates of the critical exponents [421, 422].
The LPA” has led to many successful applications, in equilibrium as well as in out-of-
equilibrium physics [423–427].

• The BMW approximation (named after its inventors Blaizot, Méndez-Galain and
Wschebor): it is inspired from previous study of critical phenomena in the framework
of liquid state theory [428, 429] and relies on a set of coupled flow equations obtained by
differentiating the Wetterich equation with respect to the arguments of the EA (hence
φ for Γ

(1PI)
k [φ]) [430–438]11. In this way, we obtain in momentum space a differential

equation expressing e.g. ∂kΓ
(1PI)(2)
k (φu, p) (evaluated in a uniform field configuration φu)

in terms of Γ
(1PI)(3)
k (φu, p,−q,−(p + q)) and Γ

(1PI)(4)
k (φu, p,−p, q,−q). Moreover, as the

derivative ∂kRk(q) regularizes the momentum integrals such that the terms with |q| & k
vanish, we can consider the zero-momentum version of this equation (i.e. we set q = 0) as
a first level of approximation. As Γ

(1PI)(3)
k (φu, p,−q,−(p+q)) and Γ

(1PI)(4)
k (φu, p,−p, q,−q)

are directly related to Γ
(1PI)(2)
k (φu, p) at q = 0, the equation thus obtained can be con-

sidered as a closed set for Γ
(1PI)(2)
k (φu, p). One can also solve this integro-differential

equation altogether with the exact equation (4.27) for the effective potential Uk derived
in the framework of the LPA, which then gives us access to many physical quantities of
interest. Hence, the implementation of the BMW approximation does not require to drop
any vertices, as opposed to e.g. condition (4.20) for the vertex expansion. Although the
equations are solved in the zero-momentum sector (as we have set q = 0), the momentum

9Technically, this translates into the fact that the derivative ∂kRk(q) regularizes all momentum integrals
involved in the set of integro-differential equations to solve.

10Recall that the momentum pcutoff is set by the derivative ∂kRk(q) regularizing the momentum integrals so
that only the momentum modes satisfying |p| . pcutoff contribute to the flow, with pcutoff ≈ k as illustrated by
fig. 4.1.

11See also ref. [125] for a pedagogical introduction on the BMW approximation.
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Figure 4.2: Schematic illustration of the 1PI-FRG flow.

dependence of the flowing vertices (Γ(1PI)(2)
k (φu, p) in the above example) is fully taken

into account whereas part of their field dependence is lost, which contrasts with the DE.

The present discussion on the truncation schemes of the 1PI-FRG is not exhaustive. For
instance, there are also truncation schemes for the 1PI-FRG which are inspired from the 2PI
EA formalism, and more specifically from Φ-derivable approximations12 [440, 441], which has
definitely shed some light on the renormalization and possible extensions of the latter type of
approximations. For more details, we refer to the recent review [333] and references therein.
The latter notably compares the critical exponents (i.e. the correlation-length exponent ν,
the anomalous dimension η and the correction-to-scaling exponent ω) calculated with different
orders of the DE and the BMW approximation.

In conclusion, the FRG procedure based on the Wetterich equation starts from the clas-
sical theory (according to (4.15)), incorporates progressively quantum correlations on top of
it throughout the flow (i.e. by solving the set of integro-differential equations resulting from
the vertex expansion, the DE, the BMW approximation or from any other truncation scheme
of the Wetterich equation), so as to reach the corresponding quantum theory (or rather an
approximated version of it in practice) at the end of the flow (see fig. 4.2).

4.1.2 Application to the (0+0)-D O(N)-symmetric ϕ4-theory

4.1.2.1 Original 1PI functional renormalization group

Applications of the 1PI-FRG to the quantum anharmonic oscillator, i.e. to the (0+1)-D ϕ4-
theory, are presented in ref. [408]. We will deal here with the (0+0)-D situation via our O(N)
model introduced in section 2.4. Note also that the 1PI-FRG has already been applied to this
toy model, but only in its original representation, in its unbroken-symmetry phase and using
the vertex expansion [147]. However, it should be noted that, in (0+0)-D, the DE amounts
to rewriting exactly the Wetterich equation, i.e. the DE is no longer an approximation, as
discussed in ref. [147]. This is simply due to the absence of spacetime indices in (0+0)-D. As a

12The Luttinger-Ward functional fulfills a set of conservation laws identified by Baym and Kadanoff, even after
truncation of its diagrammatic expression in terms of 2PI diagrams [439]. Any approximation that is equivalent
to such a truncation (and thus does not violate the corresponding conservation laws) is called Φ-derivable.
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result, all derivative terms in the ansätze (4.24) to (4.26), or in any other ansätze underlying
a DE, vanish, which implies that the effective potential Uk coincides with the flowing 1PI EA
Γ

(1PI)
k . We will therefore not investigate the DE in the present comparative study. Furthermore,

as the main motivation for using the BMW approximation is to better grasp the momentum
dependence of vertex functions (which is absent in (0+0)-D), we will not exploit this truncation
scheme either and content ourselves with the vertex expansion. We will actually see later that
we only exploit the vertex expansion to treat the exact flow equations of all FRG approaches
tested in this study, although this may not appear clearly in all FRG formalisms (especially
for the 2PI-FRG). Considering the aforementioned successes of both the DE and the BMW
approximation for the 1PI-FRG, we will have to keep in mind, while drawing conclusions from
the present (0+0)-D study, that efficient truncation schemes other than the vertex expansion
can be used in the framework of finite-dimensional models.

Exceptionally for the 1PI-FRG, we will directly take the zero-dimensional limit before car-
rying out the vertex expansion. The reason behind this is that we intend to reach quite high
truncation orders for which the equations become already quite cumbersome even in (0+0)-D.
This is especially the case in the framework of the mixed theory that will be investigated to a
lesser extent for other FRG approaches. In (0+0)-D, the Wetterich equation for an EA Γ

(1PI)
k

(
~φ
)

reads:

Γ̇
(1PI)
k

(
~φ
)

=
1

2
STr

[
Ṙk

(
Γ

(1PI)(2)
k

(
~φ
)

+Rk

)−1
]

=
1

2

N∑

a1,a2=1

Ṙk,a1a2Gk,a2a1

(
~φ
)
, (4.29)

with
G−1
k,a1a2

(
~φ
)
≡ Γ

(1PI)(2)
k,a1a2

(
~φ
)

+Rk,a1a2 . (4.30)

As can be deduced from the general formalism presented in section 4.1.1, the vertex expan-
sion procedure applied to (4.29) starts from the Taylor expansion of Γ

(1PI)
k around its flowing

extremum at ~φ = ~φk, which reduces in (0+0)-D to:

Γ
(1PI)
k

(
~φ
)

= Γ
(1PI)

k +
∞∑

n=2

1

n!

N∑

a1,··· ,an=1

Γ
(1PI)(n)

k,a1···an

(
~φ− ~φk

)
a1

· · ·
(
~φ− ~φk

)
an
. (4.31)

We have used in (4.31) the definitions:

Γ
(1PI)

k ≡ Γ
(1PI)
k

(
~φ = ~φk

)
∀k , (4.32)

Γ
(1PI)(n)

k,a1···an ≡
∂nΓ

(1PI)
k

(
~φ
)

∂φa1 · · · ∂φan

∣∣∣∣∣
~φ=~φk

∀a1, · · · , an, k , (4.33)

and
Γ

(1PI)(1)

k,a = 0 ∀a, k , (4.34)

by construction. We will then distinguish two situations to pursue the vertex expansion further.
On the one hand, in the unbroken-symmetry regime (i.e. in the phase with m2 > 0) where
~φk = ~0 ∀k, the infinite set of differential equations resulting from the vertex expansion includes
(see appendix E.2.1):

Γ̇k =
N

2
Ṙk

(
Gk −G(0)

k

)
, (4.35)

Γ̇
(1PI)(2)

k = −N + 2

6
ṘkG

2

kΓ
(1PI)(4)

k , (4.36)
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Γ̇
(1PI)(4)

k =
N + 8

3
ṘkG

3

k

(
Γ

(1PI)(4)

k

)2

− N + 4

10
ṘkG

2

kΓ
(1PI)(6)

k , (4.37)

Γ̇
(1PI)(6)

k = −5N + 130

3
ṘkG

4

k

(
Γ

(1PI)(4)

k

)3

+(N + 14) ṘkG
3

kΓ
(1PI)(4)

k Γ
(1PI)(6)

k −N + 6

14
ṘkG

2

kΓ
(1PI)(8)

k ,

(4.38)
where, as shown below by (4.46) and (4.47), Gk and G(0)

k are respectively the diagonal parts of
the propagators Gk and G(0)

k defined by:

G
−1

k,a1a2
≡ Γ

(1PI)(2)

k,a1a2
+Rk,a1a2 , (4.39)

(
G

(0)

k

)−1

a1a2

≡ Γ
(1PI)(2)

k=ki,a1a2
+Rk,a1a2 , (4.40)

with
Rk,a1a2 = Rk δa1a2 , (4.41)

and ki being the initial value of the flow parameter k. We have also used the following relations
resulting from the O(N) symmetry:

Γ
(1PI)(2)

k,a1a2
= Γ

(1PI)(2)

k δa1a2 ∀a1, a2 , (4.42)

Γ
(1PI)(4)

k,a1a2a3a4
= Γ

(1PI)(4)

k (δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3) ∀a1, a2, a3, a4 ,
(4.43)

Γ
(1PI)(6)

k,a1a2a3a4a5a6
= Γ

(1PI)(6)

k (δa1a2δa3a4δa5a6 + δa1a2δa3a5δa4a6 + δa1a2δa3a6δa4a5 + δa1a3δa2a4δa5a6

+ δa1a3δa2a5δa4a6 + δa1a3δa2a6δa4a5 + δa1a4δa2a3δa5a6 + δa1a4δa2a5δa3a6

+ δa1a4δa2a6δa3a5 + δa1a5δa2a3δa4a6 + δa1a5δa2a4δa3a6 + δa1a5δa2a6δa3a4

+δa1a6δa2a3δa4a5 + δa1a6δa2a4δa3a5 + δa1a6δa2a5δa3a4) ∀a1, · · · , a6 ,

(4.44)

Γ
(1PI)(n)

k,a1···an = 0 ∀a1, · · · , an, ∀n odd . (4.45)

As a consequence of (4.42), the propagators Gk and G(0)

k satisfy:

Gk,a1a2 = Gk δa1a2 =
(

Γ
(1PI)(2)

k +Rk

)−1

δa1a2 , (4.46)

G
(0)

k,a1a2
= G

(0)

k δa1a2 =
(

Γ
(1PI)(2)

k=ki
+Rk

)−1

δa1a2 . (4.47)

Note that the differential equations (4.35) to (4.38) are already given in ref. [147]. On the other
hand, in the broken-symmetry regime (i.e. in the phase with m2 < 0), the homologous infinite
set of differential equations contains at N = 1 (see appendix E.2.1 for the corresponding flow
equations expressing the derivatives of the 1PI vertices of order 5 and 6 with respect to k):

Γ̇
(1PI)

k =
1

2
Ṙk

(
Gk −G(0)

k

)
, (4.48)

φ̇k =
1

2Γ
(1PI)(2)

k

ṘkG
2

kΓ
(1PI)(3)

k , (4.49)

Γ̇
(1PI)(2)

k = φ̇kΓ
(1PI)(3)

k + ṘkG
3

k

(
Γ

(1PI)(3)

k

)2

− 1

2
ṘkG

2

kΓ
(1PI)(4)

k , (4.50)

Γ̇
(1PI)(3)

k = φ̇kΓ
(1PI)(4)

k − 3ṘkG
4

k

(
Γ

(1PI)(3)

k

)3

+ 3ṘkG
3

kΓ
(1PI)(3)

k Γ
(1PI)(4)

k − 1

2
ṘkG

2

kΓ
(1PI)(5)

k , (4.51)
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Γ̇
(1PI)(4)

k = φ̇kΓ
(1PI)(5)

k + 12ṘkG
5

k

(
Γ

(1PI)(3)

k

)4

− 18ṘkG
4

k

(
Γ

(1PI)(3)

k

)2

Γ
(1PI)(4)

k

+ 4ṘkG
3

kΓ
(1PI)(3)

k Γ
(1PI)(5)

k + 3ṘkG
3

k

(
Γ

(1PI)(4)

k

)2

− 1

2
ṘkG

2

kΓ
(1PI)(6)

k ,
(4.52)

with Γ
(1PI)(n)

k,1···1 ≡ Γ
(1PI)(n)

k . Moreover, the propagators Gk ≡ Gk,11 and G(0)

k ≡ G
(0)

k,11 are still given
by (4.39) and (4.40), respectively.

We also point out that, in order to avoid unphysical contributions to Γ
(1PI)

k during the flow,
we have performed the replacement Gk → Gk − G

(0)

k in the output of the vertex expansion
procedure so as to obtain (4.35) and (4.48)13. The necessity of this subtraction can be seen by
the fact that no quantum corrections must be added to Γ

(1PI)

k throughout the flow if λ = 0,
i.e. the relation Γ

(1PI)

k=kf
= Γ

(1PI)

k=ki
must hold in the free case. Indeed, we have in this situation

Γ
(1PI)(3)

k = Γ
(1PI)(4)

k = 0 ∀k, thus implying Γ̇
(1PI)(2)

k = 0 ∀k or, equivalently, Γ
(1PI)(2)

k = Γ
(1PI)(2)

k=ki
∀k.

Hence, such a replacement allows for Γ̇
(1PI)

k to vanish for all k if λ = 0, in which case we have
Γ

(1PI)

k=kf
= Γ

(1PI)

k=ki
as expected.

At the present stage, we still have not specified the model under consideration: all we know
is that we are dealing with a 1PI EA depending on a single field ~φ which is a vector in color space
and lives in a zero-dimensional spacetime. In the framework of FRG approaches, the model (i.e.
the classical action under consideration) is often only specified via the initial conditions used
to solve the set of differential equations resulting from the truncation applied to the exact flow
equation of the method (i.e. the Wetterich equation here). The initial conditions used to solve
the above two sets of differential equations for our (0+0)-D O(N) model can also be obtained
by assuming that the O(N) symmetry can only be spontaneously broken in the direction set
by a = N in color space, i.e. by assuming that ~φ2 = φ2

N . In this case, they are given by:

φk=ki,a
= ϕcl,a =





0 ∀a, ∀m2 > 0 ,

±
√
−6m2

λ
δaN ∀a, ∀m2 < 0 and λ 6= 0 ,

(4.53)

Γ
(1PI)

k=ki
=





−N
2

ln

(
2π

m2

)
+ S

(
~̃ϕ = ~φk=ki

)
= −N

2
ln

(
2π

m2

)
∀m2 > 0 ,

S
(
~̃ϕ = ~φk=ki

)
=
m2

2
~φ

2

k=ki
+
λ

4!

(
~φ

2

k=ki

)2

∀m2 < 0 ,

(4.54)

Γ
(1PI)(2)

k=ki,a1a2
=

∂2S
(
~̃ϕ
)

∂ϕ̃a1∂ϕ̃a2

∣∣∣∣∣
~̃ϕ=~φk=ki

= m2δa1a2 +
λ

2
φ

2

k=ki,N
∀a1, a2 ,

(4.55)

Γ
(1PI)(3)

k=ki,a1a2a3
=

∂3S
(
~̃ϕ
)

∂ϕ̃a1∂ϕ̃a2∂ϕ̃a3

∣∣∣∣∣
~̃ϕ=~φk=ki

= λφk=ki,N
(δa1Nδa2a3 + δa2Nδa1a3 + δa3Nδa1a2) ∀a1, a2, a3 ,

(4.56)

13Such a shift is allowed since it amounts to adding a constant (at fixed k) to Γ
(1PI)

k and, as a result, to
Γ

(1PI)
k

(
~φ
)
. Physical observables are therefore not affected by this operation.
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Γ
(1PI)(4)

k=ki,a1a2a3a4
=

∂4S
(
~̃ϕ
)

∂ϕ̃a1∂ϕ̃a2∂ϕ̃a3∂ϕ̃a4

∣∣∣∣∣
~̃ϕ=~φk=ki

= λ (δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3) ∀a1, a2, a3, a4 ,

(4.57)

Γ
(1PI)(n)

k=ki,a1···an =
∂nS

(
~̃ϕ
)

∂ϕ̃a1 · · · ∂ϕ̃an

∣∣∣∣∣
~̃ϕ=~φk=ki

= 0 ∀a1, · · · , an, ∀n ≥ 5 .

(4.58)

From (4.55), (4.57) and (4.58), we readily deduce the initial conditions for the symmetric part
Γ

(1PI)(n)
k of the 1PI vertices of even order n introduced via (4.42) to (4.44) for m2 > 0:

Γ
(1PI)(2)

k=ki
= m2 , (4.59)

Γ
(1PI)(4)

k=ki
= λ , (4.60)

Γ
(1PI)(n)

k=ki
= 0 ∀n ≥ 6 . (4.61)

In accordance with (4.20), the truncation of the infinite tower of differential equations containing
either (4.35) to (4.38) (for all N and m2 > 0) or (4.48) to (4.52) (for N = 1 and m2 < 0) is
implemented by the condition:

Γ
(1PI)(n)

k = Γ
(1PI)(n)

k=ki
∀k, ∀n > Nmax , (4.62)

where Γ
(1PI)(n)

k corresponds to: i) the symmetric part of the 1PI vertices of (even) order n (as
defined via (4.42) to (4.44) up to n = 6) for all N andm2 > 0; ii) the 1PI vertices themselves for
N = 1 and m2 < 0 according to the definition Γ

(1PI)(n)

k ≡ Γ
(1PI)(n)

k,1···1 . Note also that the logarithm
term in (4.54) was added to shift the calculated gs energy Egs so that the latter coincides with
the corresponding exact solution for λ = 0 and m2 > 0. We deduce indeed the gs energy from
Γ

(1PI)

k at the end of the flow using the relation:

E1PI-FRG;orig
gs = Γ

(1PI)

k=kf
, (4.63)

which would hold exactly if the infinite tower of differential equations resulting from the vertex
expansion was solved without approximation (such as (4.62)). Furthermore, the gs density ρgs

is inferred at m2 > 0 from (2.19) in the form:

ρ1PI-FRG;orig
gs =

1

N

N∑

a=1

∂2Wk=kf

(
~J
)

∂J2
a

∣∣∣∣∣
~J=~0

=
1

N

N∑

a=1

(
Γ

(1PI)(2)

k=kf

)−1

aa
=
(

Γ
(1PI)(2)

k=kf

)−1

, (4.64)

which results from (4.42). We will actually neither calculate Egs nor ρgs in the regime with
m2 < 0, as explained below. Furthermore, the chosen cutoff function for both m2 < 0 and
m2 > 0 is:

Rk,a1a2 = Rk δa1a2 =
(
k−1 − 1

)
δa1a2 ∀a1, a2 . (4.65)

Since the cutoff function does not depend on position or momentum in (0+0)-D, the only
relevant conditions to choose its analytical form are (4.12a) and (4.12b), that (4.65) obviously
satisfies if the flow parameter k runs from ki = 0 to kf = 1 (which indeed implies that Rk=ki

=∞
and Rk=kf

= 0).

Regarding the regime with m2 > 0, we solve the differential equations (4.35) to (4.38) up
to Nmax = 6, with the initial conditions (4.59) to (4.61) and the cutoff function (4.65). Due
to the symmetry constraint (4.45), this enables us to determine the first two non-trivial orders
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Figure 4.3: Difference between the calculated gs energy Ecalc
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the corresponding exact solution Eexact
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Figure 4.4: Same as fig. 4.3 with N = 2 instead.

of the 1PI-FRG, the first one being set by the truncation Nmax = 4 and the second one by
Nmax = 6. The results thus obtained are displayed in figs. 4.3 and 4.4 for both Egs and ρgs with
N = 1 or 2. While the first non-trivial order results all lie within a few percents away from the
corresponding exact solution over the whole range of tested values for the coupling constant
(λ/4! ∈ [0, 10] as usual), the second one’s are hardly distinguishable from their exact solutions.
The performances of this FRG approach are also barely affected as the coupling constant λ/4!
evolves, hence the non-perturbative character of this approach.

However, the resolution of the system given by (4.48) to (4.52) with m2 < 0 (together with
additional differential equations given in appendix E.2.1 for 4 < Nmax ≤ 6), using the initial
conditions (4.53) to (4.58) and the cutoff function (4.65), is prevented, the system being too
stiff (at least for the NDSolve function of Mathematica 12.1). Hence, we only display 1PI-FRG
results for the unbroken-symmetry phase in the framework of the original theory.
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For fermionic systems nonetheless, the original field φ is of Grassmannian nature. In this
situation, the only truncation scheme at our disposal is a vertex expansion around the config-
uration where this field vanishes. This is because functionals of Grassmann variables can only
be exploited via their Taylor expansions. Unfortunately, such an expansion is equivalent to a
LE which means that, after truncation, this FRG formulation is a perturbative approach. Such
a limitation can be overcome with a recent extension of the 1PI-FRG called DMF2RG [442–
444], in which the standard 1PI-FRG procedure is slightly modified so that the flow starts at
the results of dynamical MFT (DMFT) [445, 446] instead of the classical theory14. HSTs also
provide us with other means to tackle non-perturbative physics efficiently in the framework of
the 1PI-FRG: this indeed enables us to introduce bosonic fields in the problem, which allows
for expansions around non-trivial minima, and are thus more suited to grasp non-perturbative
effects. This stresses the importance of the upcoming discussions on the mixed and collective
representations. We will notably check if the stiffness of the equation systems to solve within
the 1PI-FRG is sufficiently reduced in these situations to tackle the regime with m2 < 0.

4.1.2.2 Mixed 1PI functional renormalization group

Let us now consider the Wetterich equation for our zero-dimensional O(N) model after per-
forming a HST, i.e. in the mixed representation. It reads:

Γ̇
(1PI)
mix,k

(
~φ, η
)

=
1

2
ST r

[
Ṙk

(
Γ

(1PI)(2)
mix,k

(
~φ, η
)

+Rk

)−1
]
, (4.66)

where the Hessian of the flowing EA is now given by:

Γ
(1PI)(2)
mix,k

(
~φ, η
)

=




∂2Γ
(1PI)
mix,k

∂~φ∂~φ

∂2Γ
(1PI)
mix,k

∂~φ∂η

∂2Γ
(1PI)
mix,k

∂η∂~φ

∂2Γ
(1PI)
mix,k

∂η∂η


 ≡

(
Γ

(1PI)(2φ)
mix,k Γ

(1PI)(1φ,1η)
mix,k

Γ
(1PI)(1φ,1η)
mix,k Γ

(1PI)(2η)
mix,k

)
, (4.67)

and the cutoff function Rk exhibits the following matrix structure in extended color space:

Rk =

(
R

(φ)
k

~0
~0T R

(η)
k

)
=

(
RkIN ~0
~0T Rk

)
= RkIN+1 . (4.68)

We will now apply the vertex expansion procedure to (4.66), starting from the Taylor series:

Γ
(1PI)
mix,k

(
~φ, η
)

= Γ
(1PI)

mix,k +
∞∑

n=2

1

n!

n∑

m=0

(
n
m

) N∑

a1,··· ,am=1

Γ
(1PI)(mφ,(n−m)η)

mix,k,a1···am

(
~φ− ~φk

)
a1

· · ·
(
~φ− ~φk

)
am

(η − ηk)n−m ,

(4.69)
with

Γ
(1PI)

mix,k ≡ Γ
(1PI)
mix,k

(
~φ = ~φk, η = ηk

)
∀s , (4.70)

Γ
(1PI)(nφ,mη)

mix,k,a1···an ≡
∂n+mΓ

(1PI)
mix,k

(
~φ, η
)

∂φa1 · · · ∂φan∂ηm

∣∣∣∣∣ ~φ=
~
φk

η=ηk

∀a1, · · · , an, k , (4.71)

and15
Γ

(1PI)(1φ)

mix,k,a = Γ
(1PI)(1η)

mix,k = 0 ∀a, k , (4.72)

14DMFT is a non-perturbative method, and so does the DMF2RG as a consequence. It consists in mapping
a lattice model (i.e. a many-body system) into an auxiliary problem in the form of a quantum impurity model,
typically an Anderson impurity model [447]. The quantities of interest are then extracted from the latter model
via some approximations (typically, the self-energy is assumed to be local).

15The relations Γ
(1PI)(nφ)

mix,k ≡ Γ
(1PI)(nφ,0η)

mix,k and Γ
(1PI)(nη)

mix,k ≡ Γ
(1PI)(0φ,nη)

mix,k are assumed for all n in (4.72) as well
as in subsequent equations.



4.1. 1PI FUNCTIONAL RENORMALIZATION GROUP 135

since the flowing EA is now extremal at
(
~φ η

)
=
(
~φk ηk

)
. Furthermore, as the latter EA

now depends on several fields, we follow the corresponding recipe outlined in section 4.1.1 and
perform the splitting put forward in (4.22):

Γ
(1PI)(2)
mix,k +Rk = Pk + Fk , (4.73)

where the fluctuation matrix contains all the field dependence:

Fk =

(
Γ

(1PI)(2φ)
mix,k − Γ

(1PI)(2φ)

mix,k Γ
(1PI)(1φ,1η)
mix,k − Γ

(1PI)(1φ,1η)

mix,k

Γ
(1PI)(1φ,1η)
mix,k − Γ

(1PI)(1φ,1η)

mix,k Γ
(1PI)(2η)
mix,k − Γ

(1PI)(2η)

mix,k

)
, (4.74)

which imposes that Pk satisfies:

Pk =

(
R

(φ)
k + Γ

(1PI)(2φ)

mix,k Γ
(1PI)(1φ,1η)

mix,k

Γ
(1PI)(1φ,1η)

mix,k R
(η)
k + Γ

(1PI)(2η)

mix,k

)
, (4.75)

to be consistent with (4.73). For m2 > 0, we will use the counterparts of (4.42) to (4.45)
introducing the symmetric parts of 1PI vertices:

Γ
(1PI)(2φ,nη)

mix,k,a1a2
= Γ

(1PI)(2φ,nη)

mix,k δa1a2 ∀a1, a2, n , (4.76)

Γ
(1PI)(4φ,nη)

mix,k,a1a2a3a4
= Γ

(1PI)(4φ,nη)

mix,k (δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3) ∀a1, a2, a3, a4, n ,
(4.77)

Γ
(1PI)(nφ,mη)

mix,k,a1···an = 0 ∀a1, · · · , an,m, ∀n odd . (4.78)

As explained in section 4.1.1, the next step of the vertex expansion consists in carrying out
matrix products between P−1

k and Fk. If m2 < 0, we can not use the O(N) symmetry to
impose (4.78), which renders the resulting differential equations very cumbersome. For this
reason, we will just present our analytical results of the mixed 1PI-FRG for the unbroken-
symmetry phase (i.e. for m2 > 0), in which ~φk = ~0 ∀k. In this situation, we show with the
help of (4.74) and (4.75) as well as (4.76) to (4.78) that the differential equations resulting
from the vertex expansion procedure applied to (4.66) are for example (see appendix E.2.2 for
the corresponding flow equations expressing the derivatives of the 1PI vertices of order 3 and
4 with respect to k):

• For N = 1:
Γ̇

(1PI)

mix,k =
1

2

(
G

(φ)

k −G
(φ)(0)

k

)
+

1

2

(
G

(η)

k −G
(η)(0)

k

)
, (4.79)

η̇k =
Ṙk

2Γ
(1PI)(2η)

mix,k

(
Γ

(1PI)(3η)

mix,k

(
G

(η)

k

)2

+ Γ
(1PI)(2φ,1η)

mix,k

(
G

(φ)

k

)2
)
, (4.80)

Γ̇
(1PI)(2φ)

mix,k = η̇kΓ
(1PI)(2φ,1η)

mix,k

− 1

2
Ṙk

(
Γ

(1PI)(2φ,2η)

mix,k

(
G

(η)

k

)2

+G
(φ)

k

(
Γ

(1PI)(4φ)

mix,k G
(φ)

k

− 2
(

Γ
(1PI)(2φ,1η)

mix,k

)2

G
(η)

k

(
G

(η)

k +G
(φ)

k

)))
,

(4.81)

Γ̇
(1PI)(2η)

mix,k = η̇kΓ
(1PI)(3η)

mix,k

− 1

2
Ṙk

(
Γ

(1PI)(4η)

mix,k

(
G

(η)

k

)2

− 2
(

Γ
(1PI)(3η)

mix,k

)2 (
G

(η)

k

)3

+
(
G

(φ)

k

)2
(

Γ
(1PI)(2φ,2η)

mix,k − 2
(

Γ
(1PI)(2φ,1η)

mix,k

)2

G
(φ)

k

))
,

(4.82)
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• For N = 2:
Γ̇

(1PI)

mix,k =
(
G

(φ)

k −G
(φ)(0)

k

)
+

1

2

(
G

(η)

k −G
(η)(0)

k

)
, (4.83)

η̇k =
Ṙk

2Γ
(1PI)(2η)

mix,k

(
Γ

(1PI)(3η)

mix,k

(
G

(η)

k

)2

+ 2Γ
(1PI)(2φ,1η)

mix,k

(
G

(φ)

k

)2
)
, (4.84)

Γ̇
(1PI)(2φ)

mix,k = η̇kΓ
(1PI)(2φ,1η)

mix,k

− 1

6
Ṙk

(
3Γ

(1PI)(2φ,2η)

mix,k

(
G

(η)

k

)2

+ 4Γ
(1PI)(4φ)

mix,k

(
G

(φ)

k

)2

− 6
(

Γ
(1PI)(2φ,1η)

mix,k

)2

G
(η)

k G
(φ)

k

(
G

(η)

k +G
(φ)

k

))
,

(4.85)

Γ̇
(1PI)(2η)

mix,k = η̇kΓ
(1PI)(3η)

mix,k

+ Ṙk

(
− 1

2
Γ

(1PI)(4η)

mix,k

(
G

(η)

k

)2

+
(

Γ
(1PI)(3η)

mix,k

)2 (
G

(η)

k

)3

− Γ
(1PI)(2φ,2η)

mix,k

(
G

(φ)

k

)2

+ 2
(

Γ
(1PI)(2φ,1η)

mix,k

)2 (
G

(φ)

k

)3
)
,

(4.86)

where we have introduced the propagators:
(
G

(φ)

k

)−1

a1a2

=
(
G

(φ)

k

)−1

δa1a2 =
(

Γ
(2φ)

mix,k +Rk

)
δa1a2 ∀a1, a2 , (4.87)

(
G

(η)

k

)−1

= Γ
(2η)

mix,k +Rk , (4.88)

and their classical counterparts introduced for the same reason as that mentioned below (4.52):
(
G

(φ)(0)

k

)−1

a1a2

=
(
G

(φ)(0)

k

)−1

δa1a2 =
(

Γ
(2φ)

mix,k=ki
+Rk

)
δa1a2 ∀a1, a2 , (4.89)

(
G

(η)(0)

k

)−1

= Γ
(2η)

mix,k=ki
+Rk . (4.90)

Moreover, as a first level of approximation which is nothing other than the MFT already
discussed in section 2.3, we can set all bosonic entries of P−1

k equal to zero [136]. For the toy
model under consideration, this amounts to neglecting the bottom-right component of P−1

k , i.e.
this amounts to setting P−1

k,N+1N+1 = G
(η)

k = 0. The sets of differential equations to solve in
the framework of MFT for Nmax ≤ 2 can therefore be directly inferred from (4.79) to (4.82)
for N = 1 and from (4.83) to (4.86) for N = 2 (and from the results of appendix E.2.2 for
Nmax ≤ 4 and N = 1 or 2) by setting G(η)

k = 0.

Whether we restrict ourselves to MFT or not, the initial conditions used to solve the dif-
ferential equations within the mixed 1PI-FRG, for all N and for m2 > 0, are inferred from the
classical action Smix (together with the definitions (4.76) to (4.78) notably), which gives us:

ηk=ki
= σcl = 0 , (4.91)

Γ
(1PI)

mix,k=ki
= −N

2
ln

(
2π

m2

)
+ Smix

(
~̃ϕ = ~φk=ki

, σ̃ = ηk=ki

)
= −N

2
ln

(
2π

m2

)
, (4.92)
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Γ
(1PI)(2φ)

mix,k=ki
= m2 , (4.93)

Γ
(1PI)(2η)

mix,k=ki
= 1 , (4.94)

Γ
(1PI)(2φ,1η)

mix,k=ki
= i

√
λ

3
, (4.95)

Γ
(1PI)(3η)

mix,k=ki
= 0 , (4.96)

Γ
(1PI)(mφ,nη)

mix,k=ki
= 0 ∀ m+ n ≥ 4 . (4.97)

The truncation of the infinite set of differential equations containing e.g. (4.79) to (4.82) (at
N = 1 and m2 > 0) or (4.83) to (4.86) (at N = 2 and m2 > 0) is now imposed by:

Γ
(1PI)(nφ,mη)

mix,k = Γ
(1PI)(nφ,mη)

mix,k=ki
∀k, ∀ n+m > Nmax . (4.98)

As explained below (4.62) for (4.54), the logarithm in (4.92) was only introduced to shift Egs,
which is deduced in the present case from:

E1PI-FRG;mix
gs = Γ

(1PI)

mix,k=kf
, (4.99)

and the gs density follows from:

ρ1PI-FRG;mix
gs =

1

N

N∑

a=1

(
Γ

(1PI)(2φ)

mix,k=kf

)−1

aa
=
(

Γ
(1PI)(2φ)

mix,k=kf

)−1

, (4.100)

where Γ
(1PI)(2φ)

mix,k is introduced in the RHS using (4.76) at n = 0. We will also exploit the cutoff
function (4.65) for both the original and auxiliary field sectors:

Rk = k−1 − 1 . (4.101)

Let us first concentrate our discussion on the regime with m2 > 0. The corresponding mixed
1PI-FRG results are obtained by solving the equation system comprised of (4.79) to (4.82) for
N = 1 and of (4.83) to (4.86) for N = 2 (together with additional differential equations given
in appendix E.2.2 for 2 < Nmax ≤ 4), with the initial conditions (4.91) to (4.97) and the
cutoff function (4.101). Without the MFT approximation, they exhibit a distinct convergence
towards the exact solution, as can be seen in figs. 4.3 and 4.4 for both Egs and ρgs with N = 1
and 2. For example, at Nmax = 4, the mixed 1PI-FRG outperforms the original 1PI-FRG in
all these situations, although one can also point out that Nmax = 4 corresponds to the third
non-trivial order of the mixed 1PI-FRG but only to the first one of the original 1PI-FRG (the
first three non-trivial orders of the mixed 1PI-FRG approach correspond to Nmax = 2, 3 and 4).
The superiority of the mixed 1PI-FRG as compared to the original one for a given Nmax can
notably be attributed to the 1-point correlation function of the auxiliary field taking non-trivial
values, as illustrated by fig. 4.5. This echoes very clearly our comparison between the original
and mixed 2PI EAs in chapter 3 where the 1-point correlation function of the auxiliary field
was also put forward to explain the difference between the BVA and the original Hartree-Fock
result.

We have also implemented the MFT by setting the propagator G(η)

k equal to zero for all
k. This amounts to setting the mass of the bosonic field σ̃ (or equivalently the associated
cutoff function R(η)

k introduced in (4.68)) to infinity. This completely freezes the fluctuations
of this field. In other words, the MFT can not capture radiative corrections associated with
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Figure 4.6: Difference between the calculated gs energy Ecalc
gs (left) or density ρcalc
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the corresponding LOAF approximation results ELOAF

gs or ρLOAF
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(Re(λ) ≥ 0 and Im(λ) = 0).

the auxiliary field. This notably excludes all contributions beyond the leading order of the
collective LE. Therefore, the MFT can not, by construction, outperform the leading order of
the collective LE, which coincides with the LOAF approximation as explained in chapter 3.
This means that the MFT should tend to the LOAF approximation as the truncation order
Nmax increases, which is illustrated by figs. 4.6 and 4.7.
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Figure 4.7: Same as fig. 4.6 with N = 2 instead.
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Figure 4.8: Difference between the calculated gs energy Ecalc
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gs (right) and
the corresponding exact solution Eexact
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gs at m2 = +1 and N = 1 (Re(λ) ≥ 0 and

Im(λ) = 0).

Finally, although figs. 4.8 and 4.9 show that the approximation underlying MFT induces a
significant loss in the accuracy of mixed 1PI-FRG results, they also illustrate that its efficiency
is not affected in the strongly-coupled regime: the MFT can therefore be considered as a first
level of non-perturbative approximations.

Regarding the phase with m2 < 0, we encounter the same limitation as in the original
theory: the set of differential equations resulting from the vertex expansion procedure applied
to (4.66) is too stiff to be solved from ki = 0 to kf = 1 (still using the NDSolve function of
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Figure 4.9: Same as fig. 4.8 with N = 2 instead.

Mathematica 12.1). We will therefore turn to the collective representation as our last attempt
to describe the broken-symmetry phase with the 1PI-FRG.

4.1.2.3 Collective 1PI functional renormalization group

In (0+0)-D and for the collective theory, the Wetterich equation reduces to:

Γ̇
(1PI)
col,k

(
~φ
)

=
1

2
ṘkDk(η) , (4.102)

with
D−1
k (η) ≡ Γ

(1PI)(2)
col,k (η) +Rk . (4.103)

Hence, the collective situation is very similar to the original one (based on (4.29)) with N = 1.
The output of the vertex expansion procedure applied to (4.102) can therefore be directly
deduced from the set of differential equations presented in (4.48) to (4.52). Up to Nmax = 4,
this gives us:

Γ̇
(1PI)

col,k =
1

2
Ṙk

(
Dk −D(0)

k

)
, (4.104)

η̇k =
1

2Γ
(1PI)(2)

col,k

ṘkD
2

kΓ
(1PI)(3)

col,k , (4.105)

Γ̇
(1PI)(2)

col,k = η̇kΓ
(1PI)(3)

col,k + ṘkD
3

k

(
Γ

(1PI)(3)

col,k

)2

− 1

2
ṘkD

2

kΓ
(1PI)(4)

col,k , (4.106)

Γ̇
(1PI)(3)

col,k = η̇kΓ
(1PI)(4)

col,k − 3ṘkD
4

k

(
Γ

(1PI)(3)

col,k

)3

+ 3ṘkD
3

kΓ
(1PI)(3)

col,k Γ
(1PI)(4)

col,k − 1

2
ṘkD

2

kΓ
(1PI)(5)

col,k , (4.107)

Γ̇
(1PI)(4)

col,k = η̇kΓ
(1PI)(5)

col,k + 12ṘkD
5

k

(
Γ

(1PI)(3)

col,k

)4

− 18ṘkD
4

k

(
Γ

(1PI)(3)

col,k

)2

Γ
(1PI)(4)

k

+ 4ṘkD
3

kΓ
(1PI)(3)

col,k Γ
(1PI)(5)

col,k + 3ṘkD
3

k

(
Γ

(1PI)(4)

col,k

)2

− 1

2
ṘkD

2

col,kΓ
(1PI)(6)

col,k ,
(4.108)

with
Γ

(1PI)

col,k ≡ Γ
(1PI)
col,k (η = ηk) ∀k , (4.109)
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Γ
(1PI)(n)

col,k ≡
∂nΓ

(1PI)
col,k (η)

∂ηn

∣∣∣∣∣
η=ηk

∀k , (4.110)

and
D
−1

k ≡ Γ
(1PI)(2)

col,k +Rk , (4.111)
(
D

(0)

k

)−1

≡ Γ
(1PI)(2)

col,k=ki
+Rk , (4.112)

where D(0)

k plays the same role as G(0)

k in the original case (see the explanation below (4.52) for
more details). The corresponding initial conditions are:

ηk=ki
= σcl = i

(√
3m2 −

√
3m4 + 2Nλ

2
√
λ

)
, (4.113)

Γ
(1PI)

col,k=ki
= Scol

(
σ̃ = ηk=ki

)
=

1

2

(
ηk=ki

)2 − N

2
ln


 2π

m2 + i
√

λ
3
ηk=ki


 , (4.114)

Γ
(1PI)(n)

col,k=ki
=
∂nScol

(
σ̃
)

∂σ̃n

∣∣∣∣∣
σ̃=ηk=ki

= δn2 + (−1)n+1N

2
(n− 1)!




i
√

λ
3

m2 + i
√

λ
3
ηk=ki



n

∀n ≥ 2 .

(4.115)
In addition, the infinite tower of differential equations including (4.104) to (4.108) is truncated
by imposing:

Γ
(1PI)(n)

col,k = Γ
(1PI)(n)

col,k=ki
∀k, ∀n > Nmax . (4.116)

Furthermore, the gs energy is deduced from:

E1PI-FRG;col
gs = Γ

(1PI)

col,k=kf
, (4.117)

as in (4.63), whereas the gs density is estimated by exploiting (3.226) as follows:

ρ1PI-FRG;col
gs =

i

N

√
12

λ
ηk=kf

. (4.118)

Finally, we still use (4.101) as cutoff function. Note that all analytical results given since
equation (4.104) are valid for both m2 < 0 and m2 > 0. This follows from the fact that the
O(N) symmetry does not constrain the auxiliary field as it does for the original field via (4.42)
to (4.45). Hence, as opposed to the original situation, there is no additional difficulty in treating
the regime with m2 < 0 instead of m2 > 0 in the framework of the collective representation.

The collective 1PI-FRG procedure is carried out by solving the equation system given
by (4.104) to (4.108), with the initial conditions (4.113) to (4.115) and the cutoff function
(4.101). From this, we are able to calculate Egs and ρgs for all signs of m2, which yields notably
our first 1PI-FRG results for m2 < 0. These results, shown in figs. 4.10 and 4.11, are however
disappointing in the sense that, for m2 > 0, they are all outperformed by the original and
mixed 1PI-FRG approaches at a given Nmax. Actually, for both m2 < 0 and m2 > 0, figs. 4.10
and 4.11 show that the collective 1PI-FRG must be pushed at least up to Nmax = 4 to yield an
accuracy below 10%, whereas this is already achieved by the mixed 1PI-FRG at Nmax = 2 for
m2 > 0.
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Figure 4.10: Difference between the calculated gs energy Ecalc
gs (left) or density ρcalc

gs (right)
and the corresponding exact solution Eexact

gs or ρexact
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Figure 4.11: Same as fig. 4.10 with N = 2 instead.

Note also that the connection between the collective 1PI-FRG and MFT is also clear. The
starting point of the collective 1PI-FRG procedure coincides with the collective classical action,
i.e. with the LOAF approximation towards which the MFT tends. Hence, the collective 1PI-
FRG incorporates quantum corrections (which correspond to the bosonic fluctuations neglected
by the MFT) on top of the LOAF approximation throughout the flow: it is therefore by
construction more efficient than the MFT version of the mixed 1PI-FRG.
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4.2 2PI functional renormalization group

4.2.1 State of play and general formalism

Formulations of FRG approaches for 2PI EAs have started since the early 2000s [133, 321,
448–450]. Some of these approaches discuss the implementation of symmetries in an exhaustive
manner [133, 448], as e.g. the conservation of U(1) Ward identities for the description of
superconductivity. The detailed discussion of ref. [133] also outlines the recipe to construct
flow equations for any nPI EA (i.e. for nPI EAs with n ≥ 1) by interpreting cutoff functions as
shifts for the sources. Moreover, in ref. [449], the ideas of the work of Alexandre, Polonyi and
Sailer [451, 452] deriving a generalization of the Callan-Symanzik equation [453–455] via the 1PI
EA are exploited to determine a flow equation for the 2PI EA. The resulting approach, called
internal space (IS) RG, has been compared with other RG methods, including the standard
Callan-Symanzik RG, the Wegner-Houghton RG [456], the LPA treatment of the 1PI-FRG, in
the framework of a comparative study on a (0+1)-D O(N)-symmetric ϕ4-theory [457].

We will rather focus in this section on the more recent 2PI-FRG formalism put forward by
Dupuis in refs. [321, 322], and more specifically on its different versions called C-flow [321],
U-flow [322] and CU-flow [322] that we will define further below. The U-flow and CU-flow
can be both formulated via a modification of the Legendre transform defining the 2PI EA, in
the same way as for the 1PI-FRG with the extra term ∆Sk[φ] in (4.9). In any case, the aim
remains to obtain a starting point as convenient as possible for the flow: the presence of ∆Sk[φ]
in (4.9) enables us to start the 1PI-FRG procedure at the classical theory whereas the 2PI-FRG
flow can begin at the result of self-consistent PT in this way16. We save once again technical
explanations for later discussions in this section but we just want to point out at this stage
the connections between the 2PI-FRG à la Dupuis and the 1PI-FRG based on the Wetterich
equation. In fact, Wetterich also developed a 2PI-FRG approach based on a modified Legendre
transform as well [450]. However, as opposed to this work, Dupuis’ 2PI-FRG is based on flow
equations for the Luttinger-Ward functional and not for the 2PI EA itself, which significantly
improves its convergence17. Moreover, both Wetterich and Dupuis ignore the field dependence
of the 2PI EA in their 2PI-FRG formulations, i.e. they consider Γ(2PI)[φ = 0, G], which is also
referred to as bosonic EA [450]. This explains part the appealing features of Dupuis’ 2PI-FRG18

listed below, stressing some advantages of this 2PI-FRG as compared to its 1PI counterpart:

• The simplified 2PI EA Γ(2PI)[φ = 0, G] does not depend on Grassmann variables, which
implies that there is no Fierz ambiguity in the framework of any 2PI-FRG approach
relying on such a functional. Note also that, prior to FRG studies, the bosonic EA has
also been put forward as a means of avoiding the Fierz ambiguity encountered with MFT
in the framework of self-consistent PT [458].

• Contrary to a 1PI EA depending only on Grassmann fields, expansions of Γ(2PI)[φ = 0, G]
around non-trivial minima are possible since the propagator G is a bosonic vari-
able. This notably renders the 2PI-FRG well suited to grasp non-perturbative physics in
fermionic systems, even without HSTs.

• When the 2PI-FRG flow is designed to take results of self-consistent PT as inputs, the
2PI-FRG offers the possibility to start the flow in a broken-symmetry phase, which

16See more specifically the discussion below (4.231) for a clarification on the link between modified Legendre
transform and starting point of the 2PI-FRG flow.

17This improvement will be thoroughly discussed below and illustrated via the numerical applications pre-
sented in section 4.3.2.2 on the 2PPI-FRG.

18In what follows, 2PI-FRG refers implicitly to the 2PI-FRG à la Dupuis developed in refs. [321, 322].
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enables us to avoid phase transitions (and the associated problematic divergences encoun-
tered in the 1PI-FRG) during the flow.

• Besides its convenient starting points, the 2PI-FRG is designed itself to avoid the unde-
sirable divergences from which the 1PI-FRG suffers. This is simply because the quantities
calculated during the flow are different: one calculates the 1PI vertices (i.e. derivatives
of the 1PI EA) during the 1PI-FRG flow and the 2PI vertices (i.e. derivatives of the
Luttinger-Ward functional) during the 2PI-FRG flow. A concrete example is given in
ref. [321] for an application of the C-flow implementation of the 2PI-FRG to the BCS
theory: in this study, the entrance into the broken-symmetry phase during the flow is
just signaled by a finite value of the anomalous self-energy and the divergences of certain
response functions can only be noticed by solving a posteriori the relevant Bethe-Salpeter
equations with the calculated 2PI vertices.

According to the latter remarks, it is tempting to say that there is no need at all for
scale-dependent bosonization in the framework of the 2PI-FRG. It would actually be more
advantageous to present this in another way: the absence of Fierz ambiguity renders us free
to exploit scale-dependent bosonization for other purposes. Actually, it turns out that Bethe-
Salpeter equation(s) must be solved at each step of the flow for most implementations of the
U-flow and the CU-flow versions of the 2PI-FRG. The corresponding flow equations are thus
quite demanding to solve numerically (and especially more demanding as compared to the
corresponding 1PI-FRG equations). In that respect, it would be very interesting to freeze the
evolution of the 2PI vertices that must be fed to this (these) Bethe-Salpeter equation(s) during
the flow. In this situation, such an equation (such equations) must only be solved once and for
all at the starting point of the flow, which would considerably lower the weight of the numerical
procedure to implement, as we will discuss below.

This is probably due to this important numerical weight that very few applications of the
2PI-FRG have been carried out so far. Among these, we can mention the work of Rentrop,
Jakobs and Meden on the (0+1)-D ϕ4-theory [459] and on the (0+1)-D Anderson impurity
model19 [460]. Later on, the 2PI-FRG has been designed by Katanin so as to take the 2PI
vertices calculated from DMFT as inputs [462], thus developing a 2PI counterpart for the
DMF2RG discussed in section 4.1.2. Most importantly, the tower of differential equations
resulting from this approach are tractable enough to tackle a (2+1)-D Hubbard model, as
proven by the results presented in ref. [462]. Although the Hubbard model is most often taken
as first playground to formulate 2PI-FRG approaches [322, 450, 462], the work of ref. [462] is
notably the first to present numerical results for the self-energy of such a model, which are fairly
close to corresponding diagrammatic determinant Monte Carlo results [463]. To our knowledge,
we have thus discussed all applications of the 2PI-FRG published so far, illustrating in this way
that this promising approach has barely been beyond the stage of toy model applications.

Let us then present the 2PI-FRG formalism. All implementations of this method investi-
gated in the present study are based on the generating functional:

Z[K] = eW [K] =

∫
Dψ̃ e−S

[
ψ̃
]

+ 1
2

∫
α,α′ ψ̃αKαα′ ψ̃α′ , (4.119)

where ψ̃ is either a real bosonic field (ζ = +1) or a real Grassmann field (ζ = −1). The index
α ≡ (a, x) used in (4.119) combines this time an internal index a (e.g. the color index for an

19Note that the work of refs. [459, 460] echoes that of ref. [461] which treats the same models with the
1PI-FRG.
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O(N) model) with x ≡ (r, τ,ms, c) including the space coordinate r, the imaginary time τ , the
spin projection mσ and a charge index c if necessary. Regarding the latter, note that, in the
framework of the 2PI-FRG as presented here, ψ̃α is always mathematically treated as a real
field with an extra index, instead of a complex one. This extra index is the charge index c
defined as follows20:

ψ̃α = ψ̃a,x =





ψ̃a,ms(r, τ) for c = − .

ψ̃†a,ms(r, τ) for c = + .

(4.120)

In addition, we have exploited in (4.119) the shorthand notation:
∫

α

≡
∑

a

∫

x

≡
∑

a

∑

ms,c

∫ β

0

dτ

∫
dD−1r , (4.121)

assuming that the studied system lives in a D-dimensional spacetime. It will be also most
convenient to group α-indices by pairs via a bosonic index:

γ ≡ (α, α′) . (4.122)

For instance, the connected correlation functions can be expressed in terms of such indices:

W (n)
γ1···γn [K] ≡ δnW [K]

δKγ1 · · · δKγn

=
δnW [K]

δKα1α′1
· · · δKαnα′n

=
〈
ψ̃α1ψ̃α′1 · · · ψ̃αnψ̃α′n

〉
K
, (4.123)

which defines the connected propagator:

Gγ = W (1)
γ [K] =

〈
ψ̃αψ̃α′

〉
K
, (4.124)

for n = 1 (see appendix F.1), using an expectation value defined as:

〈
· · ·
〉
K

=
1

Z[K]

∫
Dψ̃ · · · e−S

[
ψ̃
]

+ 1
2

∫
α,α′ ψ̃αKαα′ ψ̃α′ . (4.125)

As the components of the source K satisfy Kαα′ = ζKα′α, the correlation functions of (4.123)
possess the symmetry properties:





W
(n)

(α1,α′1)···(αi,α′i)···(αn,α′n)[K] = ζW
(n)

(α1,α′1)···(α′i,αi)···(αn,α′n)[K] ,

W (n)
γ1···γn [K] = W (n)

γP (1)···γP (n)
[K] ,

(4.126a)

(4.126b)

with P denoting an arbitrary element of the permutation group of order n, and especially:

Gαα′ = ζGα′α , (4.127)

at n = 1. With this bosonic index notation, the Legendre transform defining the 2PI EA under
consideration reads:

Γ(2PI)[G] =−W [K] +
1

2

∫

γ

Kγ
δW [K]

δKγ

=−W [K] + Trγ(KG) ,

(4.128)

20In other words, whether the relation ψ̃† = ψ̃ is satisfied or not, we will always use formulae pertaining to
real fields in the framework of the 2PI-FRG, like Gaussian integral formulae (see appendix A).
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where the second line was obtained using (4.124) and the trace with respect to bosonic indices
was introduced:

Trγ(M) =
1

2

∫

γ

Mγγ =
1

2

∫

α,α′
M(α,α′)(α,α′) , (4.129)

withM being an arbitrary bosonic matrix. In contrast, the trace (or supertrace) with respect to
α-indices will be denoted as Trα in the whole section 4.2 (as well as in corresponding appendices)
for the sake of clarity. Note also that, as in (4.129), an integration over bosonic indices amounts
to integrating (or just summing) over all its constituent indices:

∫

γ

≡
∫

α,α′
, (4.130)

where the integrals of the RHS are defined by (4.121). In what follows, we will use a DeWitt-like
notation for the integration over bosonic indices. For n arbitrary bosonic matrices Mm (with
m = 1, . . . , n), it takes the following form:

M1,γ1γ̂1 · · ·Mn,γ̂n−1γ2 =
1

2n−1

∫

γ̂1,··· ,γ̂n−1

M1,γ1γ̂1 · · ·Mn,γ̂n−1γ2 , (4.131)

where the hatted indices are all dummy and the non-hatted ones are all free by convention.
The 1/2 factors involved in (4.129) and (4.131) are purely conventional but convenient as a
result of the symmetry properties outlined in (4.126) (see appendix F.1).

In the framework of the 2PI-FRG, it is also natural to consider the Luttinger-Ward func-
tional Φ[G], which corresponds to the interaction part of the 2PI EA defined via (4.128):

Φ[G] ≡ Γ(2PI)[G]− Γ
(2PI)
0 [G] , (4.132)

where the free part of the 2PI EA is given by:

Γ
(2PI)
0 [G] = −ζ

2
Trα [ln(G)] +

ζ

2
Trα

[
GC−1 − I

]
, (4.133)

as can be derived via Gaussian functional integration (see appendix F.2), with I denoting the
identity with respect to α-indices (i.e. Iα1α2 = δα1α2) and C being the free propagator, i.e.:

C−1
αα′ =

δ2S
[
ψ̃
]

δψ̃αδψ̃α′

∣∣∣∣∣
ψ̃=0

, (4.134)

in terms of the classical action S. Recall that the Luttinger-Ward functional is the sum of
2PI diagrams, with propagator lines corresponding to the full propagator G. The so-called
2PI vertices correspond to its derivatives, i.e. Φ

(n)
γ1···γn [G] ≡ δnΦ[G]

δGγ1 ···δGγn
. Note that, in order to

determine gs energies, the thermodynamic potential:

Ω[G] ≡ 1

β
Γ(2PI)[G] , (4.135)

will also be considered.

In order to determine the physical configuration Gs of the propagator G throughout the
flow, we will consider Dyson equation. Note that the upper bars (as that in Gs) label physical
configurations as usual, i.e. a functional evaluated at vanishing source21 (i.e. at Kγ = 0 ∀γ

21For instance, the physical configurations of the 2PI EA under consideration and of the corresponding
Luttinger-Ward functional respectively read Γ

(2PI)

s ≡ Γ(2PI)
[
G = Gs

]
and Φs ≡ Φ

[
G = Gs

]
.
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here). Furthermore, in the present framework, all these physical quantities are subject to evolve
during the flow and they therefore all possess a subscript s to stress that point, s denoting the
flow parameter for all 2PI-FRG approaches22 as well as for all 2PPI-FRG implementations
discussed in subsequent sections. Turning back to Dyson equation, we point out that the
latter follows directly from the above definition of the Luttinger-Ward functional. In order to
illustrate this, we can differentiate the definition of the 2PI EA given by (4.128) with respect
to the source K, which leads to (see appendix F.1):

δΓ(2PI)[G]

δGγ

= Kγ . (4.136)

This equality can be shown to be equivalent to Dyson equation in the form (see appendix F.2):

G−1
γ = C−1

γ − Σγ[G]−Kγ , (4.137)

by exploiting (4.132) together with the following expression of the self-energy:

Σγ[G] ≡ −δΦ[G]

δGγ

. (4.138)

Between (4.119) and (4.138), we have only discussed various features of the 2PI EA formalism.
Let us then specify to the 2PI-FRG formalism by introducing one or several cutoff functions
into the generating functional (4.119). There are different ways to achieve this, which will be
discussed thereafter, but our main point for the time being is that most quantities introduced
since (4.119) (e.g. W [K], Γ(2PI)[G], Φ[G] and Σ[G]) now become dependent on the flow param-
eter s. In particular, by setting Kγ = 0 ∀γ in (4.136), we then define Gs as the propagator
configuration that extremizes the flow-dependent 2PI EA Γ

(2PI)
s [G] at each step of the flow, i.e.:

δΓ
(2PI)
s [G]

δGγ

∣∣∣∣∣
G=Gs

= 0 ∀γ, s , (4.139)

which leads to (4.137) with Kγ = 0 ∀γ, i.e.:

Gs,γ =
(
C−1 − Σs

)−1

γ
. (4.140)

Differentiating both sides of this equation with respect to the flow parameter yields the first-
order differential equation:

Ġs,α1α′1
≡ ∂sGs,α1α′1

= −
∫

α2,α′2

Gs,α1α2

(
Ċ−1 − Σ̇s

)
α2α′2

Gs,α′2α
′
1
, (4.141)

where the dot still indicates a derivative with respect to the flow parameter, as will always be
the case in what follows. Note also that, in the framework of the 2PI-FRG, the propagator G
is obtained from the flow-dependent Schwinger functional:

Gγ ≡ Gs,γ[K] = W (1)
s,γ [K] , (4.142)

in parallel with (4.2) for the 1PI-FRG.

22In comparison with the 1PI-FRG presented previously, we will see in further discussions that the flow
parameter s coincides with a momentum scale in certain (but not all) versions of the 2PI-FRG implementing a
Wilsonian momentum-shell approach.



148 CHAPTER 4. FUNCTIONAL RENORMALIZATION GROUP TECHNIQUES

The general form of the equation system to solve in the framework of the 2PI-FRG corre-
sponds to the following infinite tower of differential equations:





Ġs,α1α′1
= −

∫

α2,α′2

Gs,α1α2

(
Ċ−1 − Σ̇s

)
α2α′2

Gs,α′2α
′
1
,

Ω̇s = F
[
C,Gs,Φs,Σs,

{
Φ

(n)

s ;n ≥ 2
}]

,

Φ̇s = Φ̇s + Ġs,γ̂Φ
(1)

s,γ̂ = Φ̇s − Ġs,γ̂Σs,γ̂ ,

Σ̇s,γ = Σ̇s,γ − Ġs,γ̂Φ
(2)

s,γ̂γ ,

Φ̇
(n)

s,γ1···γn = Φ̇
(n)

s,γ1···γn + Ġs,γ̂Φ
(n+1)

s,γ̂γ1···γn ∀n ≥ 2 ,

(4.143a)

(4.143b)

(4.143c)

(4.143d)

(4.143e)

where Fs is a functional to be specified. The RHSs of (4.143c) to (4.143e) were obtained through
the chain rule based on bosonic indices (see appendix F.1). Similarly to the 1PI-FRG procedure,
the above flow equations are usually rewritten with the help of Fourier transformations. We
refer to the works of Dupuis [322] and Katanin [462] for more details on these transformations
and the associated conventions.

By introducing the Luttinger-Ward functional via the splitting set by (4.132), (4.143a)
to (4.143e) can equivalently be obtained by performing a vertex expansion of the flow-dependent
2PI EA Γ

(2PI)
s [G] as follows:

Γ(2PI)
s [G] = Γ

(2PI)

s +
∞∑

n=2

1

n!

∫

γ1,··· ,γn
Γ

(2PI)(n)

s,γ1···γn

(
G−Gs

)
γ1
· · ·
(
G−Gs

)
γn

, (4.144)

with Γ
(2PI)

s ≡ Γ
(2PI)
s

[
G = Gs

]
, Γ

(2PI)(n)

s,γ1···γn ≡
δnΓ

(2PI)
s [G]

δGγ1 ···δGγn

∣∣∣
G=Gs

and the first-order derivative of

Γ
(2PI)
s vanishes at G = Gs according to (4.139), which is the counterpart of (4.19) underlying

the vertex expansion for the 1PI-FRG. After plugging this expansion into the different master
equations that can be derived for Γ

(2PI)
s in the framework of the 2PI-FRG (see appendix F.4) and

comparing the terms with identical powers of G−Gs in the LHS and RHS of the equations thus
obtained, one should get back the differential equations expressed by (4.143a) to (4.143e), thus
specifying the analytical forms of the function F in (4.143b) as well as those of the derivatives

Φ̇s, Σ̇s and Φ̇
(n)

s (with n ≥ 2)23.

All 2PI-FRG approaches treated in this thesis can be applied to any system whose classical
action can be put in the form:

S
[
ψ̃
]

= S0

[
ψ̃
]

+ Sint

[
ψ̃
]

=
1

2

∫

α1,α2

ψ̃α1C
−1
α1α2

ψ̃α2 +
1

4!

∫

α1,α2,α3,α4

Uα1α2α3α4ψ̃α1ψ̃α2ψ̃α3ψ̃α4 ,

(4.145)
with the two-body interaction U satisfying the symmetry property:

Uα1α2α3α4 = ζN(P )UαP (1)αP (2)αP (3)αP (4)
, (4.146)

23We actually follow a different (although equivalent) path to derive the analytical forms of F, Φ̇s, Σ̇s and

Φ̇
(n)

s (with n ≥ 2) in appendix F.4.
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Figure 4.12: Schematic illustrations of the C-flow, U-flow and CU-flow for the 2PI-FRG. Recall
that C and U are respectively the free propagator and the two-body interaction of the model
under consideration (specified by the classical action expressed by (4.145)).

N(P ) being the number of inversions in the permutation P . Hence, in the present 2PI-FRG
study, we are only treating systems with two-body interactions at most. However, it is straight-
forward to generalize the formalism presented in the whole section 4.2 to interactions which are
three-body or more after including in Sint terms being sextic in the field (i.e. varying as ∼ ψ̃6)
or more. Following the derivations discussed in chapter 3 for the 2PI EA, one can deduce from
the classical action (4.145) the following expression of the Luttinger-Ward functional in terms
of 2PI diagrams:

Φ[G] = ΦSCPT[U,G] ≡ 1

8
− 1

48
+O

(
U3
)

=
1

8

∫

γ1,γ2

Uγ1γ2Gγ1Gγ2 −
1

48

∫

γ1,γ2,γ3,γ4

Uα1α2α3α4Uα′1α′2α′3α′4Gγ1Gγ2Gγ3Gγ4 +O
(
U3
)
.

(4.147)

We have introduced in this way the functional ΦSCPT[U,G], which is identical to the Luttinger-
Ward functional, although we stress its dependence with respect to the interaction U (usually
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left implicit) and the subscript “SCPT” indicates that we consider its expression (4.147) usu-
ally taken as input for the variational procedure underlying self-consistent PT. This concludes
our introduction for the 2PI-FRG and we will then discuss in further details its specific im-
plementations. The latter are coined as C-flow, U-flow or CU-flow, depending on the way the
cutoff function Rs is introduced in the classical action (4.145): either in the free propagator
(e.g. via C−1 → C−1

s = C−1 + Rs) for the C-flow, either in the two-body interaction (e.g. via
U → Us = U +Rs) for the U-flow or in both for the CU-flow (see fig. 4.12).

4.2.1.1 C-flow

Main features: The C-flow version of the 2PI-FRG was introduced in ref. [321]. The under-
lying idea remains to implement the momentum-shell integration à la Wilson, as in the 1PI-FRG
based on Wetterich equation, except that we are now computing the 2PI EA Γ(2PI)[G] through-
out the flow instead of the 1PI one. In particular, the flow parameter s can be interpreted now
as a momentum scale. By definition, the C-flow consists in considering a flow-dependent free
propagator Cs. This amounts to inserting a cutoff function Rs in the classical action (4.145) via
the substitution C−1 → C−1

s = RsC
−1 or equivalently C−1 → C−1

s = C−1 +Rs, which is exactly
what is done for the 1PI-FRG by introducing the term ∆Sk in (4.1). The C-flow is therefore
close in spirit to Wetterich’s approach. Owing to such a connection, we can deduce the required
values for Cs=si and Cs=sf from the boundary conditions for Rk set by (4.12a) and (4.12b):





Cs=si,γ = 0 ∀γ ,

Cs=sf = C ,

(4.148a)

(4.148b)

with si and sf being respectively the values of the flow parameter at the beginning and at the
end of the flow.

The Luttinger-Ward functional does not depend on the free propagator C, and therefore
not on s for the C-flow. Consequently, it is an invariant of the flow, which translates into24:

Φ̇s[G] = 0 ∀s . (4.149)

In particular, (4.149) implies that all components of Φ̇s, Σ̇s and Φ̇
(n)

s (with n ≥ 2) vanish, which
enables us to simplify the three lowest equalities in the set of (4.143) as:





Φ̇s = −Ġs,γ̂Σs,γ̂ .

Σ̇s,γ = −Ġs,γ̂Φ
(2)

s,γ̂γ .

Φ̇
(n)

s,γ1···γn = Ġs,γ̂Φ
(n+1)

s,γ̂γ1···γn ∀n ≥ 2 .

(4.150a)

(4.150b)

(4.150c)

The flow dependence of Gs involved in (4.150a) to (4.150c) follows from that of Cs according
to Dyson equation in the form of (4.140). Moreover, the flow equation (4.143b) expressing

Ω̇s = 1
β
Γ̇

(2PI)

s is basically determined by computing an expression for Γ̇
(2PI)

s from the generating
functional (4.119) (see appendix F.4.1). However, it is not tractable in this form because of

24Besides the qualitative argument just given to justify (4.149), a mathematical proof of the latter is given in
appendix F.4.
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the initial condition Gs=si,γ = 0 ∀γ (see discussion around (4.157) for the justification of this

initial condition) since it induces a divergence of the derivative of ζ
2
Trα

[
ln(Gs)

]
in Γ̇

(2PI)

0,s at
the starting point of the flow, i.e. at s = si. Therefore, we will calculate during the flow the
following quantity:

∆Ωs ≡
1

β

(
Γ

(2PI)

s − Γ
(2PI)
0,s [Cs]

)
= Ωs +

ζ

2β
Trα [ln(Cs)] , (4.151)

instead of Ωs. The extra term Γ0,s[Cs] eliminates the aforementioned divergence problem, as a
result of (4.148a).

In conclusion, the tower of differential equations underlying the C-flow version of the 2PI-
FRG is thus given by (see appendix F.4.1):

Ġs,α1α′1
= −

∫

α2,α′2

Gs,α1α2

(
Ċ−1

s − Σ̇s

)
α2α′2

Gs,α′2α
′
1
, (4.152)

∆Ω̇s =
1

β
Ċ−1

s,γ̂

(
Gs − Cs

)
γ̂
, (4.153)

Φ̇s = −Ġs,γ̂Σs,γ̂ , (4.154)

Σ̇s,γ = −Ġs,γ̂Φ
(2)

s,γ̂γ , (4.155)

Φ̇
(n)

s,γ1···γn = Ġs,γ̂Φ
(n+1)

s,γ̂γ1···γn ∀n ≥ 2 . (4.156)

The desired value of the thermodynamic potential, i.e. Ωs=sf , is readily obtained at the end of
the flow of ∆Ωs through (4.151) in the form Ωs=sf = ∆Ωs=sf − ζ

2β
Trα [ln(Cs=sf )].

Initial conditions: From Dyson equation and more specifically from (4.140), it is clear that
the initial condition for Cs given by (4.148a) implies that:

Gs=si,γ = 0 ∀γ . (4.157)

This condition enables us to find the initial conditions for Φs and the corresponding derivatives
from the diagrammatic expansion of the Luttinger-Ward functional expressed by (4.147) (see
appendix F.5.1 for the derivations of (4.160) and (4.161)):

Φs=si = 0 , (4.158)

Σs=si,γ = 0 ∀γ , (4.159)

Φ
(2)

s=si,γ1γ2
= Uγ1γ2 , (4.160)

Φ
(4)

s=si,γ1γ2γ3γ4
= −1

2

[({[
Uα1α2α3α4Uα′1α′2α′3α′4 + ζ (α1 ↔ α′1)

]
+ ζ (α2 ↔ α′2)

}
+ ζ (α3 ↔ α′3)

)
+ ζ (α4 ↔ α′4)

]
,

(4.161)
Φ

(n)

s=si,γ1···γn = 0 ∀γ1, · · · , γn, ∀n odd . (4.162)

Even though (4.158) to (4.162) are derived from a truncated result in practice, these equations
are exact at s = si because of (4.157). It remains to determine the initial condition for ∆Ωs.
Combining (4.151) with (4.132) and (4.133) at s = si gives us:

∆Ωs=si =
1

β

(
Γ

(2PI)

s=si
− Γ

(2PI)
0,s=si

[Cs]
)

=
1

β

(
−ζ

2
Trα

[
ln
(
Gs=si

)]
+
ζ

2
Trα

[
Gs=siC

−1
s=si
− I
]

+ Φs=si +
ζ

2
Trα [ln(Cs=si)]

)
.

(4.163)
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According to (4.148a), (4.157) and (4.158), this is equivalent to:

∆Ωs=si = 0 . (4.164)

Truncations:

• tC-flow:
The truncated C-flow (tC-flow) is a specific implementation of the C-flow in which the in-
finite tower of differential equations given by (4.152) to (4.156) is rendered finite according
to the condition:

Φ
(n)

s = Φ
(n)

s=si
∀s, ∀n > Nmax . (4.165)

In this way, the equation system made of (4.152) to (4.156) reduces to a set of Nmax + 2
first-order differential equations. It is shown in ref. [459] that the tC-flow scheme with
truncation order Nmax = 2NSCPT − 1 or 2NSCPT (with NSCPT ∈ N∗) is equivalent to self-
consistent PT up to order O

(
UNSCPT

)
, e.g. the tC-flow with Nmax = 1 or 2 is equivalent

to Hartree-Fock theory.

Let us then prove the latter statement at Nmax = 1 following the lines set out by ref. [459].
In this situation, we have notably Φ

(2)

s = Φ
(2)

s=si
= U ∀s according to (4.165) alongside

with the initial condition (4.160). In this way, (4.155) becomes:

Σ̇s,γ = −Ġs,γ̂Uγ̂γ , (4.166)

which, after integration with respect to s, yields25:

Σs,γ = −Gs,γ̂Uγ̂γ , (4.167)

and more specifically at s = sf :

Σs=sf ,γ = −Gs=sf ,γ̂Uγ̂γ , (4.168)

which is nothing else than the Hartree-Fock self-energy. From (4.167), the flow equa-
tion (4.154) for the Luttinger-Ward functional is turned into the equality:

Φ̇s = Ġs,γ̂1Uγ̂1γ̂2Gs,γ̂2 . (4.169)

After integration with respect to s, this gives us26:

Φs=sf =
1

2
Gs=sf ,γ̂1Uγ̂1γ̂2Gs=sf ,γ̂2 , (4.170)

which now corresponds to the Hartree-Fock approximation of the Luttinger-Ward func-
tional, as can be seen after comparison with (4.147). Therefore, according to (4.168)
and (4.170), all flowing quantities reduce to their Hartree-Fock results at the end of the
flow. We have proven in this way that the tC-flow with truncation order Nmax = 1 is
equivalent to self-consistent PT at the Hartree-Fock level (i.e. at order O(U)). This
remark can be extended to Nmax = 2 since:

Φ̇
(2)

s,γ1γ2
= Ġs,γ̂Φ

(3)

s,γ̂γ1γ2
= 0 ∀s , (4.171)

25The integration constant in (4.168) equals zero according to the initial conditions (4.157) and (4.159).
26The integration constant in (4.170) also vanishes, now according to the initial conditions (4.157) and (4.158).
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and thus Φ
(2)

s = Φ
(2)

s=si
= U ∀s in this case as well, as a consequence of (4.160), (4.162) (for

n = 3) and (4.165) (for n = 3). Actually, we can show in the same manner that, if Nmax is
odd, the truncation orders Nmax and Nmax + 1 are equivalent in the framework of the tC-
flow. In addition, the arguments leading to (4.168) and (4.170) can be straightforwardly
extended to any truncation of the tC-flow (i.e. to any Nmax ∈ N∗) in order to prove its
connection with the corresponding order of self-consistent PT. In this fashion, we have
shown that, for any non-zero positive integer NSCPT, the tC-flow with Nmax = 2NSCPT−1
or 2NSCPT and N th

SCPT-order self-consistent PT are equivalent, as stated above. This
has the interesting consequence that identical results can be obtained by solving two
different types of equations: first-order integro-differential equations for the tC-flow and
self-consistent equations for self-consistent PT.

• mC-flow:
The modified C-flow (mC-flow) implements a truncation of the C-flow’s infinite tower via
the following condition:

Φ
(n)

s = Φ
(n)

SCPT,NSCPT,s

∣∣∣
U→Φ

(2)
sym,s

∀s, ∀n > Nmax , (4.172)

with
Φ

(2)

sym,s,α1α2α3α4
=

1

3

(
Φ

(2)

s,α1α2α3α4
+ Φ

(2)

s,α2α3α1α4
+ Φ

(2)

s,α3α1α2α4

)
. (4.173)

The truncation condition (4.172) is an ansatz based on the perturbative expression of the
Luttinger-Ward functional, i.e. (4.147). The functional ΦSCPT,NSCPT

[U,G] corresponds to
the NSCPT first terms of the perturbative series of the RHSs of (4.147). According to this
definition, we have for example:

ΦSCPT,NSCPT=1,s

∣∣
U→Φ

(2)
sym,s
≡ 1

8

∫

γ1,γ2

Φ
(2)

sym,s,γ1γ2
Gs,γ1Gs,γ2 . (4.174)

Furthermore, the motivation for replacing U by Φ
(2)

s is set by the initial condition for
Φ

(2)

s , i.e. (4.160). Generalizing the latter relation to all s indeed suggests to substitute U
by Φ

(2)

s in (4.172) but the problem is that U and Φ
(2)

s have different symmetry properties.
Indeed, the condition:

Uα1α2α3α4 = ζN(P )UαP (1)αP (2)αP (3)αP (4)
, (4.175)

imposes an invariance of U (up to a sign) under 4! = 24 transformations as opposed
to (4.126), i.e.:

Φ
(2)

s,(α1,α′1)(α2,α′2) = ζΦ
(2)

s,(α′1,α1)(α2,α′2) = ζΦ
(2)

s,(α1,α′1)(α′2,α2) = Φ
(2)

s,(α′1,α1)(α′2,α2) , (4.176)

which relates to 4 transformations only. This brings us to the relevance of Φ
(2)

sym,s which
is constructed so as to possess the same symmetry properties as U [459]:

Φ
(2)

sym,s,α1α2α3α4
= ζN(P )Φ

(2)

sym,s,αP (1)αP (2)αP (3)αP (4)
, (4.177)

hence the substitution U → Φ
(2)

sym,s in (4.172).

In conclusion, the equation system to solve contains Nmax +2 differential equations for both
the tC-flow and the mC-flow. Only the flow equations for the 2PI vertex of order Nmax differ
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between these two versions of the C-flow:




Φ̇
(Nmax)

s,γ1···γNmax
= Ġs,γ̂Φ

(Nmax+1)

s=si,γ̂γ1···γNmax
for the tC-flow ,

Φ̇
(Nmax)

s,γ1···γNmax
= Ġs,γ̂

(
Φ

(Nmax+1)

SCPT,NSCPT,s

∣∣∣
U→Φ

(2)
sym,s

)

γ̂γ1···γNmax

for the mC-flow ,

(4.178a)

(4.178b)

where NSCPT remains a positive integer to be specified. According to expression (4.147) of the
Luttinger-Ward functional, a choice NSCPT ≤ Nmax/2 induces Φ

(Nmax+1)

SCPT,NSCPT,s
[U,G] = 0 ∀s, which

implies that the mC-flow reduces to the tC-flow in this case.

4.2.1.2 U-flow

Main features: The U-flow scheme, which was put forward in refs. [322, 459], provides an
alternative to the C-flow in which the cutoff function Rs is inserted into the two-body interaction
U rather than in the free propagator C. In other words, it is based on the substitution U →
Us = RsU or equivalently U → Us = U + Rs. Just like the C-flow, the U-flow implements in
principle the Wilsonian momentum-shell integration, with s being connected to the momentum
scale. This is notably the case with the cutoff function Rs chosen in ref. [322]27 which plays
the role of an IR regulator for (low-energy) collective fluctuations, thus preventing problematic
divergences during the flow. However, as we will see in our zero-dimensional applications
of section 4.2.2.4, a perfectly valid choice (even in finite dimensions) for Rs could be set by
Us = RsU = sU , with s a dimensionless parameter. This follows the philosophy of the 2PPI-
FRG discussed in section 4.3 and the resulting 2PI-FRG implementation does not carry out
the momentum-shell integration à la Wilson. However, we will see that such a choice for Rs

does not necessarily diminish the power of the U-flow version of the 2PI-FRG (see notably the
discussion below (4.235) to conclude section 4.2.1.2). The boundary conditions for Us are:





Us=si,γ1γ2 = 0 ∀γ1, γ2 .

Us=sf = U .

(4.179a)

(4.179b)

Hence, the starting point of the flow corresponds to the free theory (or to the results of self-
consistent PT, as explained below in more detail) in the U-flow scheme and, just as for the
C-flow, the fully interacting quantum theory is recovered at the end of the flow.

In the framework of the U-flow, we will frequently consider the pair propagator Π[G] defined
as:

Πγ1γ2 [G] ≡ W
(2)
0,γ1γ2

[K(G)] ≡ δ2W0[K(G)]

δKγ1δKγ2

, (4.180)

from the free version of the generating functional given by (4.119), i.e.:

Z0[K] = eW0[K] =

∫
Dψ̃ e−S0

[
ψ̃
]

+ 1
2

∫
α,α′ ψ̃αKαα′ ψ̃α′ . (4.181)

It can be shown that definition (4.180) is equivalent to (see appendix F.3):

Πγ1γ2 [G] = Gα1α′2
Gα′1α2

+ ζGα1α2Gα′1α
′
2
. (4.182)

27See notably section IV.C. of ref. [322].
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The inverse pair propagator is given by (see appendix F.3):

Πinv
γ1γ2

[G] = G−1
α1α′2

G−1
α′1α2

+ ζG−1
α1α2

G−1
α′1α

′
2
, (4.183)

where the exponent “inv” denotes an inverse with respect to bosonic indices, i.e.:

Iγ1γ2 = Mγ1γ̂M
inv
γ̂γ2

, (4.184)

for an arbitrary bosonic matrix M . Inverses with respect to α-indices are still indicated via
“−1” as an exponent. From (4.182) and (4.183), we infer the following symmetry properties of
the pair propagator and its inverse:





Π(inv)
γ1γ2

[G] = ζΠ
(inv)

(α′1,α1)γ2
[G] = ζΠ

(inv)

γ1(α′2,α2)[G] = Π
(inv)

(α′1,α1)(α′2,α2)[G] ,

Π(inv)
γ1γ2

[G] = Π(inv)
γ2γ1

[G] ,

(4.185a)

(4.185b)

which are similar to those of the connected correlation functions, i.e. to (4.126). It is also
important to note that the pair propagator is related to the derivatives W (2)[K] and Φ(2)[G]
via the Bethe-Salpeter equation:

W (2)[K] = Π[G]− Π[G]Φ(2)[G]W (2)[K] . (4.186)

This equation can be derived from the following equivalent relation (see appendix F.3):

W (2)[K] =
(
Γ(2PI)(2)[G]

)inv
=
(
Πinv[G] + Φ(2)[G]

)inv
. (4.187)

Using the latter equalities (especially (4.182) and (4.187)), the tower of differential equations
associated with the U-flow implementation of the 2PI-FRG can be derived from the generating
functional (4.119) after introducing the cutoff function Rs in the manner discussed previously.
This leads to (see appendix F.4.2 for the corresponding flow equation expressing the derivative
of the 2PI vertex of order 3 with respect to s):

Ġs,α1α′1
=

∫

α2,α′2

Gs,α1α2Σ̇s,α2α′2
Gs,α′2α

′
1
, (4.188)

Ω̇s =
1

6β
U̇s,γ̂1γ̂2

(
W

(2)

s +
1

2
Πs

)

γ̂2γ̂1

, (4.189)

Φ̇s =
1

6
U̇s,γ̂1γ̂2

(
W

(2)

s +
1

2
Πs

)

γ̂2γ̂1

+
1

6
Σs,γ̂1W

(2)

s,γ̂1γ̂2
U̇s,γ̂3γ̂4

[
W

(2)

s,γ̂4γ̂5

(
Π

inv

s,γ̂5γ̂6

δΠs,γ̂6γ̂7

δGs,γ̂2

Π
inv

s,γ̂7γ̂8
− Φ

(3)

s,γ̂2γ̂5γ̂8

)
W

(2)

s,γ̂8γ̂3
+

1

2

δΠs,γ̂4γ̂3

δGs,γ̂2

]
,

(4.190)

Σ̇s,γ =− 1

3

(
I + ΠsΦ

(2)

s

)inv

γγ̂1

[
2
(
I + ΠsΦ

(2)

s

)inv

U̇s

(
I + ΠsΦ

(2)

s

)inv

+ U̇s

]

α̂1α̂2α̂′2α̂
′
1

Gs,γ̂2

+
1

6

(
I + ΠsΦ

(2)

s

)inv

γγ̂1

U̇s,γ̂2γ̂3W
(2)

s,γ̂3γ̂4
Φ

(3)

s,γ̂1γ̂4γ̂5
W

(2)

s,γ̂5γ̂2
,

(4.191)
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Φ̇
(2)

s,γ1γ2
=

1

3
U̇s,γ̂1γ̂2

[
W

(2)

s,γ̂2γ̂3

(
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6
− Φ

(3)

s,γ1γ̂3γ̂6

)
W

(2)

s,γ̂6γ̂7

×
(

Π
inv

s,γ̂7γ̂8

δΠs,γ̂8γ̂9

δGs,γ2

Π
inv

s,γ̂9γ̂10
− Φ

(3)

s,γ2γ̂7γ̂10

)
W

(2)

s,γ̂10γ̂1

−W (2)

s,γ̂2γ̂3
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6

δΠs,γ̂6γ̂7

δGs,γ2

Π
inv

s,γ̂7γ̂8
W

(2)

s,γ̂8γ̂1

+
1

2
W

(2)

s,γ̂2γ̂3

(
Π

inv

s,γ̂3γ̂4

δ2Πs,γ̂4γ̂5

δGs,γ1δGs,γ2

Π
inv

s,γ̂5γ̂6
− Φ

(4)

s,γ1γ2γ̂3γ̂6

)
W

(2)

s,γ̂6γ̂1

+
1

4

δ2Πs,γ̂2γ̂1

δGs,γ1δGs,γ2

]
+ Ġs,γ̂Φ

(3)

s,γ̂γ1γ2
,

(4.192)

where
Iγ1γ2 ≡

δGγ1

δGγ2

= δα1α2δα′1α′2 + ζδα1α′2
δα′1α2

, (4.193)

denotes the components of the identity matrix in the bosonic index formalism (see appendix F.1)
and we have used the notation:

δnΠs

δGs,γ1 · · · δGs,γn

≡ δnΠ[G]

δGγ1 · · · δGγn

∣∣∣∣
G=Gs

. (4.194)

The components of the bosonic matrix W
(2)

s involved in the differential equations (4.189)
to (4.192) must a priori be determined by solving the Bethe-Salpeter equation (either in the
form of (4.186) or (4.187)), unless we use a different (supposedly drastic) approximation for
W

(2)

s . This remark is not without consequences for the U-flow as this numerical resolution,
which might be demanding for realistic models, must be repeated at each step of the flow.

We discuss two main implementations of the U-flow: the plain U-flow (pU-flow) and the
modified U-flow (mU-flow). As opposed to the C-flow, such implementations do not only differ
by the truncation of the hierarchy based on (4.188) to (4.192). We will see in particular that,
as opposed to the pU-flow, the mU-flow does not directly rely on the latter equation system
such that the starting point for these two versions of the U-flow are sharply different as well.

pU-flow:

• Truncation:
The pU-flow consists in solving the tower of differential equations including (4.188)
to (4.192) with the truncation established by (4.165). In that respect, the pU-flow is
the counterpart of the tC-flow for the U-flow.

• Initial conditions:
As implied by (4.179a), the starting point of the pU-flow coincides with the free theory.
In this situation, the Luttinger-Ward functional vanishes by definition, as well as the self-
energy and all corresponding 2PI vertices, so that the initial conditions for the pU-flow
read:

Gs=si = C , (4.195)

Ωs=si =
1

β
Γ

(2PI)
0 [G = C] = − ζ

2β
Trα [ln(C)] , (4.196)

Φs=si = 0 , (4.197)
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Σs=si,γ = 0 ∀γ , (4.198)

Φ
(n)

s=si,γ1,··· ,γn = 0 ∀γ1, · · · , γn, ∀n ≥ 2 , (4.199)

where (4.196) is deduced from (4.133) with the condition Gs=si = C which directly follows
from Dyson equation (4.140) combined with (4.198).

• tU-flow:
The truncated U-flow (tU-flow) is a computationally more affordable version of the pU-
flow. In the framework of the tU-flow, (4.187) is truncated in a drastic fashion so as
to obtain a simple expression of W (2)

s , thus bypassing the necessity to solve the Bethe-
Salpeter equation. This approximation is applied to (4.187) as follows:

W
(2)

s = Πs +O
(

Φ
(2)

s

)
' Πs . (4.200)

Such a truncation indeed induces a cancellation of the inverse propagators involved e.g.
in the flow equations (4.190) and (4.192) via the relation:

Iγ1γ2 = Πs,γ1γ̂Π
inv

s,γ̂γ2
' W

(2)

s,γ1γ̂
Π

inv

s,γ̂γ2
. (4.201)

Finally, the flowing 2PI vertices in the tU-flow scheme are still selected according to the
truncation condition (4.165). The tU-flow is actually particularly suited to deal with the

truncation order Nmax = 2. In this situation, the differential equation expressing Φ̇
(2)

s

reduces to a form simple enough to be directly integrated so that the equation system to
solve becomes (see appendix F.4.2):

Ġs,α1α′1
=

∫

α2,α′2

Gs,α1α2Σ̇s,α2α′2
Gs,α′2α

′
1
, (4.202)

Ω̇s =
1

6β
U̇s,γ̂1γ̂2

[(
Π

inv

s + Us

)inv

+
1

2
Πs

]

γ̂2γ̂1

, (4.203)

Φ̇s =
1

6
U̇s,γ̂1γ̂2

[(
Π

inv

s + Us

)inv

+
1

2
Πs

]

γ̂2γ̂1

+
1

6
Σs,γ̂1

(
Π

inv

s + Us

)inv

γ̂1γ̂2

U̇s,γ̂3γ̂4

[
(
I + ΠsUs

)inv

γ̂4γ̂5

δΠs,γ̂5γ̂6

δGs,γ̂2

(
I + ΠsUs

)inv

γ̂6γ̂3
+

1

2

δΠs,γ̂4γ̂3

δGs,γ̂2

]
,

(4.204)

Σ̇s,γ = −1

6

(
I + ΠsUs

)inv

γγ̂1
U̇s,γ̂2γ̂3

[
(
I + ΠsUs

)inv

γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ̂1

(
I + ΠsUs

)inv

γ̂5γ̂2
+

1

2

δΠs,γ̂3γ̂2

δGs,γ̂1

]
,

(4.205)

Φ
(2)

s,γ1γ2
= Us,γ1γ2 . (4.206)

In summary, (4.202) to (4.206) are respectively obtained from the pU-flow equations
(4.188) to (4.192) by imposing that all components of Φ

(3)

s and Φ
(4)

s vanish (to enforce
the truncation order Nmax = 2) and by exploiting the approximation (4.200) in the form
of (4.201) (to implement the tU-flow).
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mU-flow:

• Definition of the modified Luttinger-Ward functional:
The mU-flow is based on the following transformation of the Luttinger-Ward functional:

Φs[G] ≡ Φs[G] + ΦSCPT,NSCPT
[U,G]− ΦSCPT,NSCPT

[Us, G] , (4.207)

where Φs[G] will be referred to as the modified Luttinger-Ward functional and the func-
tional ΦSCPT,NSCPT

[U,G] was already introduced in (4.172) to present the mC-flow. As a
consequence of (4.207) combined with (4.132), we can also define a bold counterpart for
the 2PI EA Γ

(2PI)
s [G] as:

Γ(2PI)
s [G] ≡ Γ(2PI)

s [G] + ΦSCPT,NSCPT
[U,G]− ΦSCPT,NSCPT

[Us, G] , (4.208)

with the corresponding thermodynamic potential:

Ωs[G] =
1

β
Γ(2PI)

s [G] , (4.209)

and the modified 2PI vertices Φ
(n)
s,γ1···γn [G] ≡ δnΦs[G]

δGγ1 ···δGγn
satisfy:

Φ(n)
s [G] ≡ Φ(n)

s [G]+Φ
(n)
SCPT,NSCPT

[U,G]−Φ
(n)
SCPT,NSCPT

[Us, G] ∀n ∈ N∗ , (4.210)

which, at n = 1, gives us the self-energy:

Σγ ≡ −
δΦs[G]

δGγ

. (4.211)

We can also introduce the configuration Gs of the propagator G which extremizes the
bold 2PI EA of (4.208) according to:

δΓ
(2PI)
s [G]

δGγ

∣∣∣∣∣
G=Gs

= 0 ∀γ, s , (4.212)

which is the counterpart of (4.139). Note that (4.212) can also be rewritten in the form
of a Dyson equation:

Gs,γ =
(
C−1 −Σs

)−1

γ
, (4.213)

using (4.211). Although the relevance of the splitting of (4.207) will become clearer
with the following discussion on the initial conditions for the present approach, we can
already state at this stage that the general idea underlying the mU-flow is to calculate
Φs ≡ Φs

[
G = Gs

]
and its derivatives:

Φ
(n)

s,γ1···γn ≡
δnΦs[G]

δGγ1 · · · δGγn

∣∣∣∣
G=Gs

, (4.214)

instead of Φs

[
G = Gs

]
and the corresponding 2PI vertices during the flow. The mU-flow

equations can therefore be obtained from the pU-flow ones (e.g. (4.188) to (4.192)) by
substituting the flowing quantities Gs, Ωs, Φs, Σs and Φ

(n)

s (with n ≥ 2) by their bold
counterparts (i.e. Gs, Ωs, Φs, Σs and Φ

(n)

s with n ≥ 2, respectively) according to the
above definitions. That being so, we stress that, according to (4.179b), the functional
Φs[G] and all other bold entities introduced here are constructed such that they coincide
with their original counterparts at the end of the flow, e.g. Φs=sf [G] = Φs=sf [G]. Physical
quantities are thus still recovered at s = sf . It is also important to keep in mind that,
in the present discussion on the mU-flow and notably in (4.213), all upper bars label a
functional evaluated at G = Gs and not at G = Gs as opposed to all other 2PI-FRG
implementations presented in this chapter.
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• Truncation:
The truncation is no longer implemented by the condition (4.165) which is replaced by:

Φ
(n)

s = Φ
(n)

s=si
∀s, ∀n > Nmax . (4.215)

The truncation of the mU-flow is therefore more refined than that of the pU-flow. Indeed,
whereas the initial conditions Φ

(n)

s=si
are simply inferred from the free theory in (4.198)

and (4.199), the quantities Φ
(n)

s=si
contain non-perturbative information transcribing the

correlations resummed via self-consistent PT according to (4.210) and (4.214) alongside
with (4.179a), (4.198) and (4.199).

• Initial conditions:
Let us discuss the latter statement in more detail. According to the initial condition
Us=si = 0 set by (4.179a), (4.207) and (4.210) reduce at s = si to:

Φs=si [G] = ΦSCPT,NSCPT
[U,G] , (4.216)

Σs=si [G] = −Φ
(1)
SCPT,NSCPT

[U,G] , (4.217)

Φ(n)
s=si

[G] = Φ
(n)
SCPT,NSCPT

[U,G] ∀n ≥ 2 . (4.218)

Hence, at the beginning of the flow, Φs[G], Σs[G] and Φ
(n)
s [G] possess the analytical form

respectively of Φ[G], Σ[G] and Φ(n)[G] in the framework of self-consistent PT up to order
O
(
UNSCPT

)
. However, we are more specifically interested in these functionals evaluated

at G = Gs, so we must now address the determination of Gs=si . The latter configuration
can be determined from Dyson equation (4.213), i.e. from:

Gs=si,γ =
(
C−1 −Σs=si

)−1

γ
. (4.219)

Since, as we just discussed with (4.217), Σs=si [G] coincides with a truncated perturbative
expression of the self-energy, (4.219) is nothing else than the usual gap equation for the
propagator encountered in the CJT formalism. If we denote as GSCPT,NSCPT

a chosen
solution28 of this self-consistent equation, we have:

Gs=si = GSCPT,NSCPT
. (4.220)

From (4.220) as well as (4.216) to (4.218), we infer the rest of the relevant initial conditions
for the mU-flow:

Ωs=si =
1

β

(
Γ

(2PI)
0

[
G = GSCPT,NSCPT

]
+ ΦSCPT,NSCPT

[
U,G = GSCPT,NSCPT

])

=
1

β

(
− ζ

2
Trα

[
ln
(
GSCPT,NSCPT

)]
+
ζ

2
Trα

[
GSCPT,NSCPT

C−1 − I
]

+ ΦSCPT,NSCPT

[
U,G = GSCPT,NSCPT

])
,

(4.221)

Φs=si = ΦSCPT,NSCPT

[
U,G = GSCPT,NSCPT

]
, (4.222)

Σs=si = −Φ
(1)
SCPT,NSCPT

[
U,G = GSCPT,NSCPT

]
, (4.223)

28The self-consistent gap equation (4.219) possesses a priori several solutions. In other words, there are several
possible starting points of the mU-flow for a given approximation of ΦSCPT[U,G] (i.e. for a given NSCPT). Such
a freedom can be seen as a considerable advantage of the mU-flow approach, as discussed below (4.235).
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Φ
(n)

s=si
= Φ

(n)
SCPT,NSCPT

[
U,G = GSCPT,NSCPT

]
∀n ≥ 2 . (4.224)

Therefore, as non-perturbative information has been incorporated into GSCPT,NSCPT
via

the self-consistent procedure followed in the resolution of (4.219), the same applies to
Ωs=si , Φs=si , Σs=si and Φ

(n)

s=si
(with n ≥ 2). For example, we can already resum Hartree

and Fock diagrams (e.g. for NSCPT = 1) or even some ring diagrams (e.g. for NSCPT = 2)
before even starting to solve the flow equations, so we have now a very efficient starting
point. In conclusion, the mU-flow is designed to take the results of self-consistent PT
(with any approximation) as inputs for the FRG procedure29.

• mU-flow equations with Hartree-Fock starting point:
Let us then set NSCPT = 1 in order to specify to the situation where the starting point
of the mU-flow coincides with the Hartree-Fock approximation. We can deduce from the
perturbative series (4.147) that:

ΦSCPT,NSCPT=1[U,G] =
1

8

∫

γ1,γ2

Uγ1γ2Gγ1Gγ2 , (4.225)

which implies that the transformations underlying the mU-flow for NSCPT = 1 read:




Ωs[G] = Ωs[G] +
1

2β
(U − Us)γ̂1γ̂2

Gγ̂1Gγ̂2 .

Φs[G] = Φs[G] +
1

2
(U − Us)γ̂1γ̂2

Gγ̂1Gγ̂2 .

Σs,γ[G] = Σs,γ[G]− (U − Us)γγ̂ Gγ̂ .

Φ(2)
s,γ1γ2

[G] = Φ(2)
s,γ1γ2

[G] + Uγ1γ2 − Us,γ1γ2 .

Φ(n)
s,γ1···γn [G] = Φ(n)

s,γ1···γn [G] ∀n ≥ 3 .

(4.226a)

(4.226b)

(4.226c)

(4.226d)

(4.226e)

With the help of (4.226a) to (4.226e), we can introduce Ωs[G], the modified Luttinger-
Ward functional Φs[G] and its derivatives into the pU-flow equations (4.189) to (4.192),
thus obtaining the differential equations underlying the mU-flow with NSCPT = 1. For
instance, (4.189) to (4.191) become in this way (see appendix F.4.2 for the corresponding
flow equation expressing the derivative of the modified 2PI vertex of order 2 with respect
to s):

Ω̇s =
1

6β
U̇s,γ̂1γ̂2

(
W

(2)

s − Πs

)
γ̂2γ̂1

, (4.227)

Φ̇s =
1

6
U̇s,γ̂1γ̂2

(
W

(2)

s − Πs

)
γ̂2γ̂1

+
1

6

[
Σs,γ1 + (U − Us)γ1γ̂2

Gs,γ̂2

]

×W (2)

s,γ̂1γ̂3
U̇s,γ̂4γ̂5

[
W

(2)

s,γ̂5γ̂6

(
Π

inv

s,γ̂6γ̂7

δΠs,γ̂7γ̂8

δGs,γ̂3

Π
inv

s,γ̂8γ̂9
−Φ

(3)

s,γ̂3γ̂6γ̂9

)
W

(2)

s,γ̂9γ̂4
+

1

2

δΠs,γ̂5γ̂4

δGs,γ̂3

]
,

(4.228)
29There is also an implementation of the 1PI-FRG for partially bosonized fermionic models (i.e. for fermionic

models in their mixed representations) constructed to exploit the results of the self-consistent Hartree ap-
proximation (using the fermionic density as a variational parameter) as starting point of the flow [464]. The
underlying formalism could be in principle adapted to treat the toy model considered in this thesis but we defer
this to future works.
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Σ̇s,γ =−1

3

(
I + ΠsΦ

(2)

s

)inv

γγ̂1

×
([

2
(
I + Πs

(
Φ

(2)

s − U + Us

))inv

U̇s

(
I + Πs

(
Φ

(2)

s − U + Us

))inv

+ U̇s

]

α̂1α̂2α̂′2α̂
′
1

Gs,γ̂2

−1

2
U̇s,γ̂2γ̂3W

(2)

s,γ̂3γ̂4
Φ

(3)

s,γ̂1γ̂4γ̂5
W

(2)

s,γ̂5γ̂2
− 3U̇s,γ̂1γ̂2Gs,γ̂2

)
,

(4.229)

where W (2)

s [K] is still given by the Bethe-Salpeter equation in the form:

W (2)
s [K] =

(
Πinv[G] + Φ(2)

s [G]− U + Us

)inv
, (4.230)

as can be deduced from (4.187) and (4.226d). However, the flow equation controlling the
evolution of Gs is not inferred from the pU-flow equations but simply by differentiating
the Dyson equation (4.213) with respect to the flow parameter30:

Ġs,α1α′1
=

∫

α2,α′2

Gs,α1α2Σ̇s,α2α′2
Gs,α′2α

′
1
. (4.231)

Furthermore, the bold 2PI EA can be expressed by multiplying both sides of (4.226a)
by β:

Γ(2PI)
s [G] = Γ(2PI)

s [G] +
1

2
(U − Us)γ̂1γ̂2

Gγ̂1Gγ̂2

= −W [K] + Trγ(KG) +
1

2
(U − Us)γ̂1γ̂2

Gγ̂1Gγ̂2 .
(4.232)

Therefore, the bold 2PI EA is defined via a Legendre transform modified by the term31:

1

2
(U − Us)γ̂1γ̂2

Gγ̂1Gγ̂2 =
1

2
(U − (U +Rs))γ̂1γ̂2

Gγ̂1Gγ̂2 = −1

2
Rs,γ̂1γ̂2Gγ̂1Gγ̂2 , (4.233)

for NSCPT = 1, just like the Legendre transform underlying the 1PI EA is modified in (4.9)
by the term:

−∆Sk[φ] = −1

2

∫

α1,α2

φα1Rk,α1α2φα2 . (4.234)

The same remark applies to any value of NSCPT for the mU-flow, in which case the bold
2PI EA is defined by (4.208) and the term modifying the Legendre transform is:

ΦSCPT,NSCPT
[U,G]− ΦSCPT,NSCPT

[Us, G] . (4.235)

According to our previous explanations, the extra terms (4.233) to (4.235) are just means
to enforce a convenient starting point for the corresponding FRG procedure (the classical
theory for the 1PI-FRG and self-consistent PT for the mU-flow version of the 2PI-FRG).

Finally, let us consider the situation where the choice for the scale-dependent interaction
Us (or, equivalently, for the cutoff function Rs) is such that the Wilsonian momentum-
shell integration is not implemented through the U-flow. At first sight, this could be taken

30As opposed to the flow equations (4.227) to (4.229) which rely on the mU-flow transformations at NSCPT = 1
given by (4.226a) to (4.226e), (4.231) is valid regardless of the value of NSCPT.

31We assume that Us = U+Rs in (4.233) only to clarify its link with (4.234) but we stress that all derivations
presented so far are valid regardless of the analytical form of Us.
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as a severe limitation of this approach for the purpose of describing critical phenomena.
However, this issue is remarkably circumvented in the framework of the mU-flow which
can be designed to start in a broken-symmetry phase if necessary (or more generally in
the phase that we aim to describe) so as to avoid undesirable phase transitions during the
flow, depending on the solution GSCPT,NSCPT

chosen for the initial conditions. This remark
only applies if the different solutions of the Dyson equation (4.219) give us access to each
phase that we seek to describe, which works in principle for the U(1) symmetry notably,
and therefore for the description of superfluid systems, as the relevant order parameters
can be identified as components of the propagator G in such a situation32.

4.2.1.3 CU-flow

Main features: The CU-flow version of the 2PI-FRG was developed in ref. [322]. It es-
sentially amounts to combining the C-flow and the U-flow, and more specifically the tC-
flow and the pU-flow, together. A noticeable fact is that, as the C-flow and (if the cor-
responding cutoff function is chosen accordingly) the U-flow, such an approach also carries
out the Wilsonian momentum-shell integration. Hence, the CU-flow relies on the transforma-
tion C−1 → C−1

s = C−1 + R
(C)
s (or, equivalently, C−1 → C−1

s = R
(C)
s C−1) combined with

U → Us = U +R
(U)
s (or, equivalently, U → Us = R

(U)
s U), with as before:





Cs=si,γ = 0 ∀γ .

Cs=sf = C .

Us=si,γ1γ2 = 0 ∀γ1, γ2 .

Us=sf = U .

(4.236a)

(4.236b)

(4.236c)

(4.236d)

Due to the initial condition (4.236a), the starting point of the CU-flow suffers from the same
divergence problem as that of the C-flow, which is why we will consider the functional ∆Ωs

(defined by (4.151)) in the present framework as well. Furthermore, we can expect the differ-
ential equations underlying the CU-flow to contain contributions from both the C-flow and the
U-flow, besides the flow equation expressing Ġs which is given by (4.152) as in the C-flow. This
can clearly be seen from the CU-flow equation expressing ∆Ω̇s (see appendix F.4.3):

∆Ω̇s =
1

β
Ċ−1

s,γ̂

(
Gs − Cs

)
γ̂

︸ ︷︷ ︸
C-flow contribution

+
1

6β
U̇s,γ̂1γ̂2

(
W

(2)

s +
1

2
Πs

)

γ̂2γ̂1︸ ︷︷ ︸
U-flow contribution

. (4.237)

However, since the Luttinger-Ward functional is an invariant of the C-flow (according to

(4.149)), the flow equations expressing Φ̇s, Σ̇s and Φ̇
(n)

s (with n ≥ 2) coincide in principle

with those of the pU-flow, and notably with (4.190) for Φ̇s and (4.192) for Φ̇
(2)

s . There is how-
ever a subtlety that implies that (4.191) (which expresses Σ̇s for the pU-flow) is not valid in the
present situation. We have thus rewritten this equation in a form exploitable for the CU-flow

32However, the mU-flow as presented here does not provide us with a similar freedom to tackle an O(N) sym-
metry as neither Γ(2PI)[G] nor Γ(2PI)[G] is capable of spontaneously breaking such a symmetry by construction
(as they can not exhibit a non-zero 1-point correlation function for the field ψ̃).
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(see appendix F.4.3):

Σ̇s,γ =− 1

3

[
2
(
I + ΠsΦ

(2)

s

)inv

U̇s

(
I + ΠsΦ

(2)

s

)inv

+ U̇s

]

αα̂α̂′α′
Gs,γ̂

+
1

6
U̇s,γ̂1γ̂2W

(2)

s,γ̂2γ̂3
Φ

(3)

s,γγ̂3γ̂4
W

(2)

s,γ̂4γ̂1
− Ġs,γ̂Φ

(2)

s,γ̂γ .

(4.238)

Truncations: The infinite tower of differential equations for the CU-flow is closed by enforcing
the same truncation condition as in the tC-flow and the pU-flow (i.e. (4.165)), which is why we
mentioned above that the CU-flow is essentially a merger of the latter two approaches.

Initial conditions: On the one hand, as for the C-flow, the condition Cs=si,γ = 0 ∀γ
(i.e. (4.236a)) induces that:

Gs=si,γ = 0 ∀γ , (4.239)

∆Ωs=si = 0 . (4.240)

On the other hand, as for the pU-flow, the condition Us=si,γ1γ2 = 0 ∀γ1, γ2 (i.e. (4.236c)) implies
that:

Φs=si = 0 , (4.241)

Σs=si,γ = 0 ∀γ , (4.242)

Φ
(n)

s=si,γ1···γn = 0 ∀γ1, · · · , γn, ∀n ≥ 2 . (4.243)

4.2.2 Application to the (0+0)-D O(N)-symmetric ϕ4-theory

4.2.2.1 Symmetrization of the two-body interaction

We present in the whole section 4.2.2 our applications of the 2PI-FRG to the studied zero-
dimensional O(N) model. The novel feature of this 2PI-FRG study is the treatment of the
O(N) symmetry (and especially of the broken-symmetry phase of an O(N) model), which has
never been tackled before with such a formalism to our knowledge. As a first step, we show
that the 2PI-FRG is applicable to the O(N) model under consideration. The C-flow, U-flow
and CU-flow versions of the 2PI-FRG can indeed all be exploited to treat the original version
of this model as its classical action is in accordance with the analytical form (4.145), i.e.:

S
(
~̃ϕ
)

= S0

(
~̃ϕ
)

+ Sint

(
~̃ϕ
)

=
1

2
m2~̃ϕ

2
+

1

4!
λ
(
~̃ϕ

2
)2

=
1

2

N∑

a1,a2=1

ϕ̃a1C
−1
a1a2

ϕ̃a2 +
1

4!

N∑

a1,a2,a3,a4=1

Ua1a2a3a4ϕ̃a1ϕ̃a2ϕ̃a3ϕ̃a4

=
1

2

∫

α1,α2

ψ̃α1C
−1
α1α2

ψ̃α2 +
1

4!

∫

α1,α2,α3,α4

Uα1α2α3α4ψ̃α1ψ̃α2ψ̃α3ψ̃α4 ,

(4.244)

where the fluctuating field ψ̃ coincides with the bosonic field ~̃ϕ:

ψ̃α = ϕ̃a , (4.245)

the integrals are now just discrete sums:

∫

γ

=
N∑

a,a′=1

, (4.246)
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as α-indices reduce to color indices in the present situation:

γ ≡ (α, α′) = (a, a′) , (4.247)

whereas the free propagator and the two-body interaction are respectively given by33:

C−1
a1a2

= m2δa1a2 , (4.248)

Ua1a2a3a4 =
λ

3
(δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3) . (4.249)

For any application of the 2PI-FRG to a bosonic (fermionic) theory, the two-body interaction
must be constructed so as to be symmetric (antisymmetric) under permutation of its indices,
i.e. so as to satisfy (4.146) which was widely exploited to derive the 2PI-FRG flow equations
given in section 4.2.1. For our bosonic toy model, U must therefore be symmetric, i.e.:

Ua1a2a3a4 = UaP (1)aP (2)aP (3)aP (4)
, (4.250)

under any permutation P , which is indeed satisfied by (4.249). However, the classical actions
underlying the mixed and collective representations (given in arbitrary dimensions by (3.6)
and (3.8) respectively) can not be written in the required form (4.145). Therefore, the gen-
eral 2PI-FRG formalism presented in section 4.2.1 (and especially the U-flow and CU-flow
implementations) can not be directly applied to these two versions of the toy model under
consideration. We can nonetheless quite readily extend the C-flow formalism to these two
situations by rederiving the initial conditions from the diagrammatic expressions of the corre-
sponding Luttinger-Ward functionals (i.e. from the counterparts of (4.147)) and by taking into
account that a second fluctuating field enters the arena in the mixed situation. Formulations
of the U-flow and CU-flow implementations of the 2PI-FRG in the framework of the mixed
representation are however much less straightforward, as will be discussed in more detail in
section 4.2.2.4.

4.2.2.2 Original 2PI functional renormalization group C-flow

In almost all cases34, we will just rewrite the general 2PI-FRG flow equations presented in
section 4.2.1 for the studied toy model by simply replacing integrals over bosonic indices by
summations over color indices, as follows from (4.246). We thus start by deducing in this
way the tower of differential equations for the C-flow in the framework of the original theory
from (4.152) to (4.156):

Ġs,a1a′1
= −

N∑

a2,a′2=1

Gs,a1a2

(
Ċ−1

s − Σ̇s

)
a2a′2

Gs,a′2a
′
1
, (4.251)

33As opposed to the conventions followed so far, matrices that live in color space are no longer written in
bold characters in section 4.2.2 (and corresponding appendices), e.g. the free propagator and the self-energy
are denoted as C and Σ instead of C and Σ, respectively. The reason behind this is to keep the bold characters
for the modified 2PI vertices and other quantities introduced in the framework of the mU-flow, thus avoiding
overlapping notations.

34There are only two exceptions: i) the application of the C-flow in the framework of the mixed representation
for which we generalize in addition the C-flow formalism to a field theory involving two fields, as we just
mentioned at the end of section 4.2.2.1; ii) the application of the mU-flow with N = 2 and Nmax = 2 or 3 where
we will exploit a trick (inherent to the (0+0)-D situation) in order to avoid evaluating the derivatives δΠs

δGs,γ
and

δ2Πs

δGs,γ1δGs,γ2

in the flow equations expressing the derivatives of the 2PI vertices of order 2 and 3 with respect to
s (see appendix F.8.2).
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∆Ω̇s =
1

2

N∑

a,a′=1

Ċ−1
s,aa′

(
Gs − Cs

)
aa′

, (4.252)

Σ̇s,a1a′1
= −1

2

N∑

a2,a′2=1

Ġs,a2a′2
Φ

(2)

s,(a2,a′2)(a1,a′1) , (4.253)

Φ̇
(n)

s,(a1,a′1)···(an,a′n) =
1

2

N∑

an+1,a′n+1=1

Ġs,an+1a′n+1
Φ

(n+1)

s,(an+1,a′n+1)(a1,a′1)···(an,a′n) ∀n ≥ 2 ,

(4.254)
with ∆Ωs = Ωs+ 1

2
Tra [ln(2πCs)]. We will exploit the flow equation expressing Φ̇s (or Φ̇s for the

mU-flow) in none of our 2PI-FRG applications. This stems from the fact that we are interested
in the gs energy Egs and gs density ρgs, which are deduced respectively from Ωs=sf = Ωs=sf and
Gs=sf = Gs=sf as follows:

E2PI-FRG
gs = Ωs=sf = Ωs=sf , (4.255)

ρ2PI-FRGgs =
1

N

N∑

a=1

Gs=sf ,aa =
1

N

N∑

a=1

Gs=sf ,aa , (4.256)

and the flow equations expressing Ω̇s and Ġs (or Ω̇s and Ġs for the mU-flow) never depend on
Φs (or Φs respectively), whether it is in the framework of the C-flow, the U-flow or the CU-
flow. Relations (4.255) and (4.256) will actually be used to estimate respectively Egs and ρgs for
all 2PI-FRG approaches (including the C-flow in the framework of the mixed representation)
treated in this section 4.2.2. Furthermore, we have basically two symmetry arguments that
allow us to simplify the flow equations (4.251) to (4.254):

• General symmetry argument:
The symmetry properties of the correlation functionsW (n) given by (4.126a) and (4.126b)
are also exhibited by the propagator Gs, the self-energy Σs and all other 2PI vertices
Φ

(n)

s (with n ≥ 2). For the 2PI vertex Φ
(2)

s at N = 2 for instance, we have a priori
24 = 16 components Φ

(2)

s,(a1,a′1)(a2,a′2) to consider for the flow. However, since Φ
(2)

s,(a1,a′1)(a2,a′2) =

Φ
(2)

s,(a′1,a1)(a2,a′2) = Φ
(2)

s,(a1,a′1)(a′2,a2) = Φ
(2)

s,(a′1,a1)(a′2,a2) according to (4.126a) and Φ
(2)

s,(a1,a′1)(a2,a′2) =

Φ
(2)

s,(a2,a′2)(a1,a′1) according to (4.126b), this set reduces to 6 flowing components, which are

for instance: Φ
(2)

s,(1,1)(1,1), Φ
(2)

s,(1,1)(1,2), Φ
(2)

s,(1,1)(2,2), Φ
(2)

s,(1,2)(1,2), Φ
(2)

s,(1,2)(2,2) and Φ
(2)

s,(2,2)(2,2).

• Symmetry argument inherent to the O(N) symmetry:
Since the 2PI-FRG formalism was developed in a framework that can not exhibit any
spontaneous breakdown of the O(N) symmetry35, all matrices reduce to scalars in color
space throughout the entire flow, i.e.:

C−1
s,aa′ = C−1

s δaa′ ∀s , (4.257)

Gs,aa′ = Gs δaa′ ∀s , (4.258)

Σs,aa′ = Σs δaa′ ∀s . (4.259)

The cutoff function Rs must therefore be chosen such that condition (4.257) is fulfilled.
After rewriting the flow equations (4.251) to (4.254) with (4.257) to (4.259), we can see

35We recall that the O(N) symmetry can not be spontaneously broken down in the framework of the 2PI-
FRG since its main functionals Γ(2PI)[G] ≡ Γ(2PI)[φ = 0, G] and Φ[G] ≡ Φ[φ = 0, G] are all defined in the
configuration where the 1-point correlation function of the field ψ̃ vanishes, i.e. where φα =

〈
ψ̃α

〉
K

= 0 ∀α.
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that the components of the 2PI vertices Φ
(n)

s which have at least one bosonic index with
distinct color indices (i.e. at least one index γ = (a, a′) with a 6= a′) are somehow cut
out of the flow. In particular, this translates into the fact that they do not affect Ωs=sf

and Gs=sf which are the quantities of interest for us in the present study. Getting back
to our example on Φ

(2)

s , the number of corresponding components of interest for the flow
is thus further reduced from 6 to 3: Φ

(2)

s,(1,1)(1,1), Φ
(2)

s,(1,1)(2,2) and Φ
(2)

s,(2,2)(2,2). Finally, since

the color space is isotropic in the absence of SSB36, we have Φ
(2)

s,(2,2)(2,2) = Φ
(2)

s,(1,1)(1,1) ∀s,
thus ending up with only 2 relevant components.

Such symmetry constraints significantly simplify the flow equations (4.251) to (4.254) for
N ≥ 2. We thus rewrite these differential equations explicitly for N = 1 and 2 by exploiting
the above symmetry arguments in the latter case:

• For N = 1 (∀Nmax):
Ġs = −G2

s

(
Ċ−1

s − Σ̇s

)
, (4.260)

∆Ω̇s =
1

2
Ċ−1

s

(
Gs − Cs

)
, (4.261)

Σ̇s = −1

2
ĠsΦ

(2)

s , (4.262)

Φ̇
(n)

s =
1

2
ĠsΦ

(n+1)

s ∀n ≥ 2 . (4.263)

• For N = 2 (up to Nmax = 3):

Ġs = −G2

s

(
Ċ−1

s − Σ̇s

)
, (4.264)

∆Ω̇s = Ċ−1
s

(
Gs − Cs

)
, (4.265)

Σ̇s = −1

2
Ġs

(
Φ

(2)

s,(1,1)(1,1) + Φ
(2)

s,(1,1)(2,2)

)
, (4.266)

Φ̇
(2)

s,(1,1)(1,1) =
1

2
Ġs

(
Φ

(3)

s,(1,1)(1,1)(1,1) + Φ
(3)

s,(1,1)(1,1)(2,2)

)
, (4.267)

Φ̇
(2)

s,(1,1)(2,2) =
1

2
Ġs

(
Φ

(3)

s,(1,1)(1,1)(2,2) + Φ
(3)

s,(1,1)(2,2)(2,2)

)
, (4.268)

Φ̇
(3)

s,(1,1)(1,1)(1,1) =
1

2
Ġs

(
Φ

(4)

s,(1,1)(1,1)(1,1)(1,1) + Φ
(4)

s,(1,1)(1,1)(1,1)(2,2)

)
, (4.269)

Φ̇
(3)

s,(1,1)(1,1)(2,2) =
1

2
Ġs

(
Φ

(4)

s,(1,1)(1,1)(1,1)(2,2) + Φ
(4)

s,(1,1)(1,1)(2,2)(2,2)

)
. (4.270)

We have introduced the shorthand notation Φ
(n)

s ≡ Φ
(n)

s,(1,1)···(1,1) in (4.260) to (4.263), which
will be used again repeatedly in 2PI-FRG flow equations at N = 1. The initial conditions
required to solve the latter two sets of differential equations are directly deduced from those
given by (4.157) to (4.164) in our previous general discussion on the C-flow. For all N , they
are given by (see appendix F.5.2.1 for the expression of the components of Φ

(4)

s=si
):

Gs=si,aa′ = 0 ∀a, a′ , (4.271)

36For Φ
(3)

s , this implies Φ
(3)

s,(2,2)(2,2)(2,2) = Φ
(3)

s,(1,1)(1,1)(1,1) ∀s, but also Φ
(3)

s,(1,1)(2,2)(2,2) = Φ
(3)

s,(1,1)(1,1)(2,2) ∀s.
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∆Ωs=si = 0 , (4.272)

Σs=si,aa′ = 0 ∀a, a′ , (4.273)

Φ
(2)

s=si,(a1,a′1)(a2,a′2) = U(a1,a′1)(a2,a′2) =
λ

3

(
δa1a′1

δa2a′2
+ δa1a2δa′1a′2 + δa1a′2

δa′1a2

)
, (4.274)

Φ
(n)

s=si,(a1,a′1)···(an,a′n) = 0 ∀a1, a
′
1, · · · , an, a′n, ∀n odd , (4.275)

where (4.249) was used to express U(a1,a′1)(a2,a′2) in (4.274). We will implement the tC-flow up

to Nmax = 10 at N = 1, which requires to determine all Φ
(n)

s=si
up to n = 10 (recall that the

truncation orders Nmax = 9 and Nmax = 10 are equivalent for the tC-flow). This is achieved
from the following perturbative expression of the Luttinger-Ward functional at N = 1 [149]:

ΦSCPT(G) =
1

8
λG2 − 1

48
λ2G4 +

1

48
λ3G6 − 5

128
λ4G8 +

101

960
λ5G10 +O

(
λ6
)
, (4.276)

from which we infer:
Φ

(2)

s=si
= λ , (4.277)

Φ
(4)

s=si
= −8λ2 , (4.278)

Φ
(6)

s=si
= 960λ3 , (4.279)

Φ
(8)

s=si
= −403200λ4 , (4.280)

Φ
(10)

s=si
= 390942720λ5 , (4.281)

where we have taken into account that the identity matrix of the bosonic index formalism (given
by (4.193)) reduces to 2 (and not 1) in the (0+0)-D limit at N = 1, i.e. (4.193) becomes in the
(0+0)-D limit:

I(a1,a′1)(a2,a′2) ≡
∂Ga1a′1

∂Ga2a′2

= δa1a2δa′1a′2 + δa1a′2
δa′1a2

, (4.282)

which yields at N = 1:

I ≡ ∂G

∂G
= 2 . (4.283)

Hence, for the O(N) model under consideration at N = 1, the 2PI-FRG flow equations of
our toy model can either be derived via standard derivation rules or by taking the (0+0)-D
limit of their more general versions (written in terms of bosonic indices) using (4.283). We
always follow the latter procedure in this study but solving the equations thus obtained in
both situations leads in principle to identical results (see appendix F.6). Finally, the conditions
implementing the truncations of the tC-flow and mC-flow schemes in the framework of the
(0+0)-D O(N)-symmetric ϕ4-theory are:

• For the tC-flow:
Φ

(n)

s = Φ
(n)

s=si
∀s, ∀n > Nmax . (4.284)
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• For the mC-flow37,38 (at N = 1):

– At Nmax = 2:

∗ At NSCPT = 2:

Φ
(3)

s = Φ
(3)

SCPT,NSCPT=2,s

∣∣∣
λ→Φ

(2)
s

= −4
(

Φ
(2)

s

)2

Gs . (4.285)

∗ At NSCPT = 3:

Φ
(3)

s = Φ
(3)

SCPT,NSCPT=3,s

∣∣∣
λ→Φ

(2)
s

= −4
(

Φ
(2)

s

)2

Gs + 20
(

Φ
(2)

s

)3

G
3

s . (4.286)

– At Nmax = 3:

∗ At NSCPT = 2:

Φ
(4)

s = Φ
(4)

SCPT,NSCPT=2,s

∣∣∣
λ→Φ

(2)
s

= −8
(

Φ
(2)

s

)2

. (4.287)

∗ At NSCPT = 3:

Φ
(4)

s = Φ
(4)

SCPT,NSCPT=3,s

∣∣∣
λ→Φ

(2)
s

= −8
(

Φ
(2)

s

)2

+ 120
(

Φ
(2)

s

)3

G
2

s . (4.288)

– At Nmax = 4:

∗ At NSCPT = 3:

Φ
(5)

s = Φ
(5)

SCPT,NSCPT=3,s

∣∣∣
λ→Φ

(2)
s

= 480
(

Φ
(2)

s

)3

Gs . (4.289)

Finally, the cutoff function Rs chosen for every application of the C-flow version of the
2PI-FRG in the framework of the original theory is identical to (4.65) used for the 1PI-FRG,
i.e.:

C−1
s,a1a2

= C−1
a1a2

+Rs,a1a2 =
(
m2 +Rs

)
δa1a2 ∀a1, a2 , (4.290)

with
Rs = s−1 − 1 , (4.291)

which satisfies the required boundary conditions set by (4.148a) and (4.148b) as the flow pa-
rameter still runs from si = 0 to sf = 1 during the flow. Note that, just like k in our 1PI-FRG
applications discussed in section 4.1.2, s is also a dimensionless number here.

In conclusion, our C-flow results for the original theory are obtained by solving the differ-
ential equations (4.260) to (4.263) for N = 1 (up to Nmax = 10) and (4.264) to (4.270) for
N = 2 (up to Nmax = 4), with initial conditions given by (4.271) to (4.275) (along with (4.277)
to (4.281) for N = 1) and the cutoff function set by (4.290) and (4.291) for all N . Moreover,
the truncations are imposed by (4.284) for all N in the framework of the tC-flow and by (4.285)
to (4.289) for N = 1 in the framework of the mC-flow. This leads to all results presented in
fig. 4.13 for N = 1 and to the tC-flow result (obtained within the original representation) shown
in fig. 4.14 for N = 2. Focusing first on fig. 4.13, we can see that, for both Egs and ρgs, the

37Recall that, as discussed below (4.178b), it is pointless to investigate the mC-flow with NSCPT ≤ Nmax/2
as it reduces to the tC-flow in this situation.

38According to the definition of Φ
(2)

sym,s given by (4.173), we have Φ
(2)

sym,s = Φ
(2)

s for the studied toy model at
N = 1.
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Figure 4.13: Difference between the calculated gs energy Ecalc
gs or density ρcalc

gs and the corre-
sponding exact solution Eexact

gs or ρexact
gs at m2 = +1 and N = 1 (Re(λ) ≥ 0 and Im(λ) = 0).

tC-flow curves are further and further away from the exact solution (except for λ/4! � 1) as
the truncation order Nmax increases. This is certainly an odd feature for an FRG approach but
it is consistent with the equivalence between the tC-flow and self-consistent PT discussed in
section 4.2.1: such a worsening is thus a manifestation of the asymptotic character of the series
underlying self-consistent PT, which is at the heart of chapter 3.

We can also note that there are no tC-flow results for the truncation orders Nmax = 3 or 4
and Nmax = 7 or 8 in fig. 4.13 as we face the same stiffness issues (with the NDSolve function
of Mathematica 12.1) as those encountered in section 4.1.2 for our 1PI-FRG applications in
the broken-symmetry phase. We have also checked that the same problem manifests itself at
N = 2 with Nmax = 3 or 4: the only tC-flow curve for the original theory shown in fig. 4.14
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Figure 4.14: Difference between the calculated gs energy Ecalc
gs or density ρcalc

gs and the corre-
sponding exact solution Eexact

gs or ρexact
gs at m2 = +1 and N = 2 (Re(λ) ≥ 0 and Im(λ) = 0).

See notably the caption of fig. 3.11 for the meaning of the indication “O
(
~n
)
” for the results

obtained from ~-expanded EAs within self-consitent PT.

is just obtained for Nmax = 1 or 2. However, all those tC-flow calculations (with or without
stiffness issues) have been performed in the unbroken-symmetry phase, which suggests that
the origin of these stiffness problems for the 1PI-FRG flow equations (only occurring in the
broken-symmetry phase) on the one hand and for the 2PI-FRG tC-flow on the other hand
are different. Despite such limitations, it is rather fruitful to further exploit the equivalence
between the tC-flow implementation of the 2PI-FRG and self-consistent PT. To that end, we
recall that, as we have done in chapter 3, self-consistent PT for Γ(2PI)(G) is carried out by
solving the gap equations extremizing Γ(2PI)(G) with respect to G and then picking up the
physical solution39 G. Remarkably, the initial conditions of the C-flow are such that the tC-

39The physical solution G leading to all our results from self-consistent PT applied to Γ(2PI)(G) (shown
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flow results coincide with those of our physical solutions for Nmax = 1 or 2, Nmax = 5 or 6 and
Nmax = 9 or 10 at N = 1 (according to fig. 4.13) and for Nmax = 1 or 2 at N = 2 (according to
fig. 4.14). Nevertheless, there is a change of physical solutions in the perturbative regime (i.e.
for λ/4! � 1) for self-consistent PT applied up to order O(λ2) (or, equivalently, O(~3)) and
O(λ4) (or, equivalently, O(~5)), as can be seen in fig. 4.15. These correspond respectively to the
tC-flow approach with truncation orders Nmax = 3 or 4 and Nmax = 7 or 8, which are precisely
the Nmax values where the stiffness problem arises. This illustrates that the tC-flow is not suited
to fully reproduce self-consistent PT when there is a change of physical solutions involved in
the latter framework for the chosen truncation of the EA. This limitation can be attributed
to the fact that the initial conditions for the tC-flow are fixed once and for all (i.e. regardless
of the values of coupling constants) from the perturbative expression of the Luttinger-Ward
functional, which does not allow for reproducing the change of solutions observed in fig. 4.15.
This also implies that the stiffness problem arising in our tC-flow calculations is inherent to
the C-flow formalism and not to the used numerical tools.
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2PI-FRG tC-flow Nmax = 1 or 2

2PI-FRG tC-flow Nmax = 5 or 6

2PI-FRG tC-flow Nmax = 9 or 10

Figure 4.15: Gs density ρgs calculated at m2 = +1 and N = 1 (Re(λ) ≥ 0 and Im(λ) = 0),
and compared with the corresponding exact solution (black dots).

Regarding the mC-flow, we can see that the corresponding ansatz underlying the truncation
manages to cure the aforementioned stiffness problem for Nmax = 3 or 4, but not for all choices
of NSCPT: the combination (Nmax, NSCPT) = (3, 2) set by (4.287) still suffers from it for instance.
Besides, it also introduces this issue at the truncation order Nmax = 2 which is not affected in
the framework of the tC-flow: this problem arises e.g. at the truncation (Nmax, NSCPT) = (2, 3)
(set by (4.286)), hence its absence from fig. 4.13. Furthermore, we can also see that mC-flow
results might deteriorate as Nmax and/or NSCPT increase(s), as can be seen by comparing the
curves associated with (Nmax, NSCPT) = (2, 2) and (Nmax, NSCPT) = (3, 3) in fig. 4.13. This
is an important drawback as it shows that we loose accuracy while incorporating explicitly
more information in our truncation. The ansatz underlying the mC-flow truncation is therefore
not reliable. Moreover, although we have only investigated the mC-flow truncation scheme for

notably in figs. 3.13 and 4.15) is defined as the solution of the gap equation (for the propagator G) yielding the
calculated complex gs density ρcalc

gs,comp that is closest to the corresponding exact solution ρexact
gs , i.e. that gives

us the smallest norm
∣∣ρcalc

gs,comp − ρexact
gs

∣∣. The term “norm” should be understood here as the norm of a complex
number as ρcalc

gs,comp might have a non-zero imaginary part. Recall that ρcalc
gs = Re

(
ρcalc

gs,comp

)
in all our plots.
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N = 1, the problematic features of the mC-flow that we have just put forward are expected
to manifest themselves for any N . We thus consider the present discussion on fig. 4.13 to be
sufficient to make our point for the mC-flow in the framework of the original representation.

All applications of the C-flow version of the 2PI-FRG have been discussed for m2 > 0 so
far. The corresponding formalism is actually not suited to treat the regime with m2 < 0: if one
might set m2 equal to a negative value to solve the equation system made of (4.251) to (4.254),
the results thus obtained would be unphysical (with e.g. a negative estimate of the gs density
ρgs). A more relevant way the tackle the unbroken-symmetry regime with a C-flow approach
would be to add a linear source in the generating functional (4.119) as follows:

Z[J,K] = eW [J,K] =

∫
Dψ̃ e−S

[
ψ̃
]

+
∫
α Jαψ̃α+ 1

2

∫
α,α′ ψ̃αKαα′ ψ̃α′ . (4.292)

We would then reintroduce a cutoff function Rs in the quadratic part of the classical action in
order to develop an extension of the C-flow formalism able to treat regimes with a non-vanishing
1-point correlation function φ of the field ψ̃. However, there are several reasons according to
which such an extension is of little interest:

• The central object of the resulting approach would no longer be Γ(2PI)[G] ≡ Γ(2PI)[φ =
0, G] but the full 2PI EA Γ(2PI)[φ,G] instead. Hence, as the 1-point correlation function
φ is a Grassmann field for applications to fermionic systems, the Fierz ambiguity might
arise and we would loose in this way an important advantage of the 2PI-FRG.

• This extension would reduce to the usual C-flow approach developed for Γ(2PI)[G] in the
regime with m2 > 0. We have already shown that this C-flow approach possesses severe
drawbacks (for its tC-flow as well as its mC-flow implementations), which would hold in
principle in the regime with m2 < 0 via such an extension.

Hence, we will stop our C-flow investigations at the present stage for the original theory and
rather exploit other implementations of the 2PI-FRG to tackle the broken-symmetry regime.

In conclusion, we have studied the unbroken-symmetry regime of our O(N) model by im-
plementing higher truncation orders for the tC-flow and the mC-flow as compared to the ap-
plications presented in refs. [459, 460] with the purpose of getting a clearer idea of the ability
to control our approximations in these frameworks. The conclusion is rather negative as our
results show that none of the two tested C-flow implementations are systematically improvable
in a reliable fashion: i) the tC-flow worsens with increasing truncation orders and does not en-
able us to go reliably beyond its first non-trivial order (which coincides with the Hartree-Fock
result); ii) the ansatz underlying the mC-flow does not seem reliable either as the corresponding
results might also deteriorate as Nmax and/or NSCPT increase(s). Hence, we will then apply
these methods to the mixed representation of the studied toy model (still in the regime with
m2 > 0) in order to check if these limitations can be lifted.

4.2.2.3 Mixed 2PI functional renormalization group C-flow

In the framework of the mixed theory, a second fluctuating field σ̃ enters the arena and the
Schwinger functional to consider involves the source-dependent terms 1

2

∑N
a1,a2=1 ϕ̃a1K

(ϕ)
a1a2ϕ̃a2

and 1
2
K(σ)σ̃2 in that case, where K(ϕ) and K(σ) are both bilocal sources in finite dimensions.

The corresponding Luttinger-Ward functional Φmix(G,D) thus depends on two propagators,
D being the propagator associated with the Hubbard-Stratonovich field. Furthermore, the
C-flow is now implemented by introducing two cutoff functions, R(ϕ)

s and R(σ)
s , dressing respec-

tively the free propagator of the original field (via (C(ϕ))−1 → (C
(ϕ)
s )−1 = (C(ϕ))−1 + R

(ϕ)
s
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or (C(ϕ))−1 → (C
(ϕ)
s )−1 = R

(ϕ)
s (C(ϕ))−1) and that of the Hubbard-Stratonovich field (via

(C(σ))−1 → (C
(σ)
s )−1 = (C(σ))−1 + R

(σ)
s or (C(σ))−1 → (C

(σ)
s )−1 = R

(σ)
s (C(σ))−1). Hence, the

contribution of the Hubbard-Stratonovich sector simply adds up to the flow equations of the
original C-flow such that the tower of differential equations underlying the C-flow in the frame-
work of the mixed representation of our (0+0)-D O(N) model is directly deduced from (4.251)
to (4.254):

Ġs,a1a′1
= −

N∑

a2,a′2=1

Gs,a1a2

((
Ċ(ϕ)

s

)−1

− Σ̇
(ϕ)

s

)

a2a′2

Gs,a′2a
′
1
, (4.293)

Ḋs = −D2

s

((
Ċ(σ)

s

)−1

− Σ̇
(σ)

s

)
, (4.294)

∆Ω̇s =
1

2

N∑

a,a′=1

(
Ċ(ϕ)

s

)−1

aa′

(
Gs − C(ϕ)

s

)
aa′

+
1

2

(
Ċ(σ)

s

)−1 (
Ds − C(σ)

s

)
, (4.295)

Σ̇
(ϕ)

s,a1a′1
= −1

2

N∑

a2,a′2=1

Ġs,a2a′2
Φ

(2G)

mix,s,(a2,a′2)(a1,a′1) −
1

2
ḊsΦ

(1G,1D)

mix,s,a1a′1
, (4.296)

Σ̇
(σ)

s = −1

2

N∑

a1,a′1=1

Ġs,a1a′1
Φ

(1G,1D)

mix,s,a1a′1
− 1

2
ḊsΦ

(2D)

mix,s , (4.297)

Φ̇
(nG,mD)

mix,s,(a1,a′1)···(an,a′n) =
1

2

N∑

an+1,a′n+1=1

Ġs,an+1a′n+1
Φ

((n+1)G,mD)

mix,s,(an+1,a′n+1)(a1,a′1)···(an,a′n)

+
1

2
ḊsΦ

(nG,(m+1)D)

mix,s,(a1,a′1)···(an,a′n) ∀(n,m) \ {(1, 0), (0, 1)} ,

(4.298)

where ∆Ωs = Ωs + 1
2
Tra

[
ln
(

2πC
(ϕ)
s

)]
+ 1

2
ln
(
C

(σ)
s

)
and the self-energies are defined as:

Σ
(ϕ)
aa′ (G,D) = −∂Φmix(G,D)

∂Gaa′
, (4.299)

Σ(σ)(G,D) = −∂Φmix(G,D)

∂D
. (4.300)

Note also that we have used the shorthand notation Φ
(nG,mD)

mix,s,(a1,a′1)···(an,a′n) =
∂n+mΦ

(nG,mD)
mix,s (G,D)

∂Ga1a
′
1
···∂Gana′n∂D

m

∣∣∣∣
G=Gs
D=Ds

together with Φ
(nG)

mix,s ≡ Φ
(nG,0D)

mix,s and Φ
(nD)

mix,s ≡ Φ
(0G,nD)

mix,s ∀n in (4.296) and (4.297). The symmetry
arguments put forward previously for the original C-flow also apply to the original sector in
the present situation. This implies notably that:

(
C(ϕ)

s

)−1

aa′
=
(
C(ϕ)

s

)−1
δaa′ ∀s , (4.301)

Gs,aa′ = Gs δaa′ ∀s , (4.302)

Σ
(ϕ)

s,aa′ = Σ
(ϕ)

s δaa′ ∀s . (4.303)

Therefore, the sums over color indices in (4.293) to (4.298) can be dealt with in the same
manner as in (4.251) to (4.254). In this way, (4.293) to (4.298) become:
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• For N = 1 (∀Nmax):

Ġs = −G2

s

((
Ċ(ϕ)

s

)−1

− Σ̇
(ϕ)

s

)
, (4.304)

Ḋs = −D2

s

((
Ċ(σ)

s

)−1

− Σ̇
(σ)

s

)
, (4.305)

∆Ω̇s =
1

2

(
Ċ(ϕ)

s

)−1 (
Gs − C(ϕ)

s

)
+

1

2

(
Ċ(σ)

s

)−1 (
Ds − C(σ)

s

)
, (4.306)

Σ̇
(ϕ)

s = −1

2
ĠsΦ

(2G)

mix,s −
1

2
ḊsΦ

(1G,1D)

mix,s , (4.307)

Σ̇
(σ)

s = −1

2
ĠsΦ

(1G,1D)

mix,s − 1

2
ḊsΦ

(2D)

mix,s , (4.308)

Φ̇
(nG,mD)

mix,s =
1

2
ĠsΦ

((n+1)G,mD)

mix,s +
1

2
ḊsΦ

(nG,(m+1)D)

mix,s ∀(n,m)\{(1, 0), (0, 1)} . (4.309)

• For N = 2 (up to Nmax = 2):

Ġs = −G2

s

((
Ċ(ϕ)

s

)−1

− Σ̇
(ϕ)

s

)
, (4.310)

Ḋs = −D2

s

((
Ċ(σ)

s

)−1

− Σ̇
(σ)

s

)
, (4.311)

∆Ω̇s =
(
Ċ(ϕ)

s

)−1 (
Gs − C(ϕ)

s

)
+

1

2

(
Ċ(σ)

s

)−1 (
Ds − C(σ)

s

)
, (4.312)

Σ̇
(ϕ)

s = −1

2
Ġs

(
Φ

(2G)

mix,s,(1,1)(1,1) + Φ
(2G)

mix,s,(1,1)(2,2)

)
− 1

2
ḊsΦ

(1G,1D)

mix,s,(1,1) , (4.313)

Σ̇
(σ)

s = −ĠsΦ
(1G,1D)

mix,s,(1,1) −
1

2
ḊsΦ

(2D)

mix,s , (4.314)

Φ̇
(2G)

mix,s,(1,1)(1,1) =
1

2
Ġs

(
Φ

(3G)

mix,s,(1,1)(1,1)(1,1) + Φ
(3G)

mix,s,(1,1)(1,1)(2,2)

)
+

1

2
ḊsΦ

(2G,1D)

mix,s,(1,1)(1,1) , (4.315)

Φ̇
(2G)

mix,s,(1,1)(2,2) =
1

2
Ġs

(
Φ

(3G)

mix,s,(1,1)(1,1)(2,2) + Φ
(3G)

mix,s,(1,1)(2,2)(2,2)

)
+

1

2
ḊsΦ

(2G,1D)

mix,s,(1,1)(2,2) , (4.316)

Φ̇
(2D)

mix,s = ĠsΦ
(1G,2D)

mix,s,(1,1) +
1

2
ḊsΦ

(3D)

mix,s , (4.317)

Φ̇
(1G,1D)

mix,s,(1,1) =
1

2
Ġs

(
Φ

(2G,1D)

mix,s,(1,1)(1,1) + Φ
(2G,1D)

mix,s,(1,1)(2,2)

)
+

1

2
ḊsΦ

(1G,2D)

mix,s,(1,1) . (4.318)

The initial conditions required to solve the latter equation systems are determined in the
same manner as for the original theory, with one additional subtlety: as was discussed in
chapter 3, the series representing the Luttinger-Ward functional Φmix(G,D) in the framework
of self-consistent PT differ whether ~ or λ is used as expansion parameter. Hence, we define
these two distinct series from (3.297) and (3.308) as follows:

Φmix,SCPT,~-exp(G,D) =
~2

12
+O

(
~3
)

=
1

12
~2λD

N∑

a1,a2=1

G2
a1a2

+O
(
~3
)
,

(4.319)
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Φmix,SCPT,λ-exp(G,D) =
1

24
+

1

12
+O

(
λ2
)

=
1

24
λD

(
N∑

a1=1

Ga1a1

)2

+
1

12
λD

N∑

a1,a2=1

G2
a1a2

+O
(
λ3
)
.

(4.320)

Relations (4.319) and (4.320) are thus exploited to determine the initial conditions Φ
(nG,mD)

s=si

which are identical whether we consider (4.319) or (4.320) for all combinations of m and n
except for m = 2n, as a consequence of Gs=si,aa′ = Ds=si = 0 ∀a, a′. In conclusion, we obtain
the following initial conditions for all N (see appendix F.5.2.2):

Gs=si,aa′ = 0 ∀a, a′ , (4.321)

Ds=si = 0 , (4.322)

∆Ωs=si = 0 , (4.323)

Σ
(ϕ)

s=si,aa′
= 0 ∀a, a′ , (4.324)

Σ
(σ)

s=si
= 0 , (4.325)

Φ
(2G,1D)

mix,s=si,(a1,a′1)(a2,a′2) =





2λ

3

(
δa1a2δa′1a′2 + δa1a′2

δa′1a2

)
from the ~-expansion (i.e. from (4.319)) ,

2λ

3

(
δa1a′1

δa2a′2
+ δa1a2δa′1a′2 + δa1a′2

δa′1a2

)
from the λ-expansion (i.e. from (4.320)) ,

(4.326)

Φ
(nG,mD)

mix,s=si,(a1,a′1)···(an,a′n) = 0 ∀a1, a
′
1, · · · , an, a′n, ∀n 6= 2m .

(4.327)
Finally, we address the truncation of the present C-flow approach. For the mC-flow, we will
exploit the three first non-trivial orders of both Φmix,SCPT,~-exp(G,D) and Φmix,SCPT,λ-exp(G,D)
(deduced respectively from (3.304) and (3.322)) at N = 1:

Φmix,SCPT,~-exp(G,D) =
1

12
~2λDG2 − 1

72
~3λ2D2G4 +

5

324
~4λ3D3G6 +O

(
~5
)
, (4.328)

Φmix,SCPT,λ-exp(G,D) =
1

8
λDG2 − 1

192
λ2D2G4 +

1

64
λ3D3G6 +O

(
λ4
)
. (4.329)

Hence, the truncation of the tower of differential equations for the C-flow in the framework of
the mixed representation is set by (see appendix F.7 for the mC-flow’s truncation conditions
up to NSCPT = 3 with Nmax = 1):

• For the tC-flow:

Φ
(nG,mD)

s = Φ
(nG,mD)

s=si
∀s, ∀ n+m > Nmax . (4.330)



176 CHAPTER 4. FUNCTIONAL RENORMALIZATION GROUP TECHNIQUES

• For the mC-flow40 (at N = 1 and Nmax = NSCPT = 1):

– From the ~-expansion at ~ = 1 (i.e. from (4.328)):

Φ
(2G)

s = Φ
(2G)

mix,SCPT,~-exp,NSCPT=1,s

∣∣∣
λ→ 3

4
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Ds , (4.331)

Φ
(2D)

s = Φ
(2D)

mix,SCPT,~-exp,NSCPT=1,s

∣∣∣
λ→ 3

4
Φ

(2G,1D)
s

= 0 , (4.332)

Φ
(1G,1D)

s = Φ
(1G,1D)

mix,SCPT,~-exp,NSCPT=1,s

∣∣∣
λ→ 3

4
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Gs . (4.333)

– From the λ-expansion (i.e. from (4.329)):

Φ
(2G)

s = Φ
(2G)

mix,SCPT,λ-exp,NSCPT=1,s

∣∣∣
λ→ 1

2
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Ds , (4.334)

Φ
(2D)

s = Φ
(2D)

mix,SCPT,λ-exp,NSCPT=1,s

∣∣∣
λ→ 1

2
Φ

(2G,1D)
s

= 0 , (4.335)

Φ
(1G,1D)

s = Φ
(1G,1D)

mix,SCPT,λ-exp,NSCPT=1,s

∣∣∣
λ→ 1

2
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Gs . (4.336)

Note that the integer NSCPT still indicates that the NSCPT first terms of the chosen pertur-
bative expression of the Luttinger-Ward functional (i.e. either Φmix,SCPT,~-exp(G,D) in (4.328)
up to order O(~NSCPT+1) or Φmix,SCPT,λ-exp(G,D) in (4.329) up to order O(λNSCPT)) have been
considered to establish the truncation conditions of the mC-flow. The last ingredient required
to perform our calculations are the analytic forms of the cutoff functions R(ϕ)

s and R
(σ)
s . We

choose: (
C(ϕ)

s

)−1

a1a2
=
(
C(ϕ)

)−1

a1a2
+R(ϕ)

s,a1a2
=
(
m2 +Rs

)
δa1a2 ∀a1, a2 , (4.337)

(
C(σ)

s

)−1
=
(
C(σ)

)−1
+R(σ)

s = 1 +Rs , (4.338)

and
Rs = s−1 − 1 , (4.339)

with si = 0 and sf = 1, similarly to (4.291) for the original representation.

To summarize, our numerical results for the C-flow in the framework of the mixed theory
are determined up to Nmax = 4 by solving the differential equation system made of (4.304)
to (4.309) for N = 1 and of (4.310) to (4.318) for N = 2, with initial conditions set by (4.321)
to (4.327), truncation conditions given by (4.330) for the tC-flow and by (4.331) to (4.336)
for the mC-flow at N = 1 and Nmax = NSCPT = 1 (see appendix F.7 for NSCPT = 1, 2 or 3
with Nmax = 1). Finally, (4.337) to (4.339) set the chosen cutoff functions. The gs energy and
density thus calculated are presented by figs. 4.16 for N = 1 and 4.14 for N = 2. First of all, we
can see in both of these figures, and thus for N = 1 and N = 2, that the first non-trivial order
of self-consistent PT is well reproduced by the tC-flow, in the framework of the ~-expansion
as well as the λ-expansion. The formal proof of the equivalence between the tC-flow and self-
consistent PT, given in the discussion of section 4.2.1 on the C-flow, is indeed straightforwardly
generalizable to the mixed situation. We thus conclude that, in the framework of the original

40The initial condition (4.326) induces Φ
(2G,1D)

s=si = 4λ/3 and Φ
(2G,1D)

s=si = 2λ at N = 1, respectively from the

~-expansion and from the λ-expansion, which explains the substitutions λ→ 3Φ
(2G,1D)

s /4 and λ→ Φ
(2G,1D)

s /2
in the corresponding implementations of the mC-flow.
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Figure 4.16: Same as fig. 4.14 with N = 1 instead.

and of the mixed representations, the tC-flow approach is not systematically improvable in
itself. One might further investigate the properties of the underlying series (4.144) representing
the 2PI EA to see whether a combination of the tC-flow with resummation theory might be
relevant to overcome this limitation.

Regarding the mC-flow results of fig. 4.16, our qualitative conclusions do not change either
as compared to the original theory. For Egs and ρgs, the tC-flow at Nmax = 2 and mC-flow at
Nmax = NSCPT = 1 coincide for both the ~-expansion and the λ-expansion. This could have
been directly deduced from the truncation conditions (4.331) to (4.336) which are equivalent

to the differential equations expressing Φ̇
(2G)

s , Φ̇
(2D)

s and Φ̇
(1G,1D)

s in the framework of the tC-
flow at Nmax = 2. Furthermore, as for the tC-flow and self-consistent PT, the mC-flow results
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determined from the λ-expansion always outperform in fig. 4.16 those obtained from the ~-
expansion for a given choice of Nmax and NSCPT (note that the mC-flow with (Nmax, NSCPT) =
(1, 2) and truncation deduced from the ~-expansion of the Luttinger-Ward functional is absent
from fig. 4.16 due to the stiffness problem discussed earlier, slightly after (4.291)). However, at
Nmax = 1, the mC-flow results associated with the λ-expansion clearly worsen from NSCPT = 1
to NSCPT = 2 (at least for λ/4! ∈ [0, 10]) and, in particular for Egs, the corresponding curve
at NSCPT = 3 is barely closer to the exact solution than that at NSCPT = 1. Furthermore, the
mixed mC-flow results of fig. 4.16, which are all determined for Nmax = 1 (but up to NSCPT = 3,
which can turn out to be a very demanding truncation to reach for a realistic theory), are either
worse or only slightly better than the best mC-flow estimates for Egs and ρgs obtained in the
original theory (with (Nmax, NSCPT) = (2, 2)) in fig. 4.13. Hence, the present mC-flow approach
does not appear to be very efficient at exploiting the Hubbard-Stratonovich field to grasp further
correlations but, besides the performance, our main point is that the mC-flow truncation is not
more reliable in the mixed representation than it is in the original one.

In conclusion, we have contented ourselves with the original and mixed situations for the
C-flow (and only at N = 1 for the mC-flow) as we believe that such applications are sufficient
to make our point: the C-flow is rather disappointing and not reliable to design well-controlled
systematically improvable approximation schemes. However, we have illustrated the interesting
equivalence between the tC-flow and self-consistent PT (with a restriction to odd truncation
orders NSCPT for self-consistent PT in the framework of the original theory). There is no reason
that such observations change for the collective representation (for which the determination of
the initial conditions would actually be significantly more cumbersome due to the more involved
nature of the diagrammatic representation of the Luttinger-Ward functional in this situation).
Unless some extensions of these methods are designed to change these qualitative features, these
approaches are therefore of little interest for us in our aim to construct reliable approaches to
study strongly-coupled quantum many-body systems. Thus, we now turn to the U-flow in order
to see how this can be achieved via the 2PI-FRG.

4.2.2.4 2PI functional renormalization group U-flow

Plain U-flow: Let us first stress that the symmetry arguments put forward for the C-flow
also hold for the U-flow as none of the 2PI-FRG approaches treated in this study are able to
exhibit a spontaneous breakdown of the O(N) symmetry since they are all based on the 2PI
EA Γ(2PI)[G] ≡ Γ(2PI)[φ = 0, G] with vanishing 1-point correlation function φ. In particular, the
propagator Gs and the self-energy Σs still satisfy respectively (4.258) and (4.259) for all 2PI-
FRG applications to the O(N) model under consideration. This implies that the corresponding
pair propagator, defined previously by (4.182), reduces to:

Πs,(a1,a′1)(a2,a′2) = Gs,a1a′2
Gs,a′1a2

+Gs,a1a2Gs,a′1a
′
2

= G
2

s

(
δa1a′2

δa′1a2
+ δa1a2δa′1a′2

)
, (4.340)

and, according to (4.187) and (4.193) expressing respectively the derivativeW (2) and the bosonic
identity matrix, this also leads to:

W
(2)

s,(a1,a′1)(a2,a′2) =
(

Π
inv

s + Φ
(2)

s

)inv

(a1,a′1)(a2,a′2)

=
1

2

N∑

a3,a′3=1

Πs,(a1,a′1)(a3,a′3)

(
I + ΠsΦ

(2)

s

)inv

(a3,a′3)(a2,a′2)

= G
2

s

(
I + ΠsΦ

(2)

s

)inv

(a1,a′1)(a2,a′2)
,

(4.341)
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with

(
I + ΠsΦ

(2)

s

)
(a1,a′1)(a2,a′2)

= I(a1,a′1)(a2,a′2) +
1

2

N∑

a3,a′3=1

Πs,(a1,a′1)(a3,a′3)Φ
(2)

s,(a3,a′3)(a2,a′2)

= δa1a2δa′1a′2 + δa1a′2
δa′1a2

+G
2

sΦ
(2)

s,(a1,a′1)(a2,a′2) ,

(4.342)

where (4.282) was used to replace I(a1,a′1)(a2,a′2). Furthermore, we already specify the chosen
cutoff function for Us:

Us,a1a2a3a4 = RsUa1a2a3a4 = sUa1a2a3a4 =
sλ

3
(δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3) ∀a1, a2, a3, a4 ,

(4.343)
as this will enable us to simplify the final forms of our flow equations thanks to Kronecker
deltas brought in by the interaction U (expressed by (4.249)). Note that the flow parameter s
still runs from si = 0 to sf = 1 in the present situation, thus implying that (4.343) satisfies the
required boundary conditions (4.179a) and (4.179b). With all of this in mind, we rewrite the
general pU-flow equations given by (4.188), (4.189) and (4.191) in the framework of the studied
toy model:

Ġs = G
2

sΣ̇s , (4.344)

Ω̇s =
λ

72
G

2

s




N∑

a1,a2=1

(
I + ΠsΦ

(2)

s

)inv

(a1,a1)(a2,a2)
+ 2

N∑

a1,a′1=1

(
I + ΠsΦ

(2)

s

)inv

(a1,a′1)(a1,a′1)
+N (2 +N)


 ,

(4.345)

Σ̇s =− λ

72
Gs

N∑

a1,a′1,a2=1

(
I + ΠsΦ

(2)

s

)inv

(1,1)(a1,a′1)

×
(

N∑

a3,a4=1

(
I + ΠsΦ

(2)

s

)inv

(a1,a2)(a3,a3)

(
I + ΠsΦ

(2)

s

)inv

(a4,a4)(a2,a′1)

+ 2
N∑

a3,a′3=1

(
I + ΠsΦ

(2)

s

)inv

(a1,a2)(a3,a′3)

(
I + ΠsΦ

(2)

s

)inv

(a3,a′3)(a2,a′1)

)

− λ

36
Gs (N + 2)

N∑

a1=1

(
I + ΠsΦ

(2)

s

)inv

(1,1)(a1,a1)

+
λ

576
G

4

s

N∑

a1,a′1,a2,a3,a4,a′4,a5,a′5=1

(
I + ΠsΦ

(2)

s

)inv

(1,1)(a1,a′1)

(
I + ΠsΦ

(2)

s

)inv

(a2,a2)(a4,a′4)

× Φ
(3)

s,(a1,a′1)(a4,a′4)(a5,a′5)

(
I + ΠsΦ

(2)

s

)inv

(a5,a′5)(a3,a3)

+
λ

288
G

4

s

N∑

a1,a′1,a2,a′2,a3,a′3,a4,a′4=1

(
I + ΠsΦ

(2)

s

)inv

(1,1)(a1,a′1)

(
I + ΠsΦ

(2)

s

)inv

(a2,a′2)(a3,a′3)

× Φ
(3)

s,(a1,a′1)(a3,a′3)(a4,a′4)

(
I + ΠsΦ

(2)

s

)inv

(a4,a′4)(a2,a′2)
,

(4.346)

where the color indices set equal to 1 in the RHS of (4.346) just result from our convention
Σs ≡ Σs,11 (which is arbitrary in the sense that Σs,11 = Σs,aa ∀a owing to the conservation of
the O(N) symmetry). Hence, the resolution of the Bethe-Salpeter equation during the flow
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now simply amounts to inverting
(
I + ΠsΦ

(2)

s

)
, i.e. to solve:

I(a1,a′1)(a2,a′2) =
1

2

N∑

a3,a′3=1

(
I + ΠsΦ

(2)

s

)
(a1,a′1)(a3,a′3)

(
I + ΠsΦ

(2)

s

)inv

(a3,a′3)(a2,a′2)
, (4.347)

which is nothing other than a set of N4 coupled algebraic equations.

Furthermore, as opposed to our presentation of the C-flow equations, we will not evaluate
explicitly the sums over color indices for N = 2 in the U-flow equations as the relations thus
obtained (in particular from (4.346)) would be extremely cumbersome and certainly pointless
for our discussion. We simply carry out these summations numerically instead. However, we
will still pay particular attention to the case with N = 1 on which we now focus. In this
situation, the definitions given in our general presentation of the U-flow in section 4.2.1 take a
very simple form. For example, the definition (4.184) of the inverse of a given bosonic matrix
M becomes:

M inv =
4

M
, (4.348)

as a result of (4.283), whereas the pair propagator and its inverse read:

Π(G) = 2G2 , (4.349)

Πinv(G) =
2

G2
, (4.350)

from which we can deduce the following expression of W (2)

s :

W
(2)

s =
4

2G
−2

s + Φ
(2)

s

, (4.351)

according to (4.187) (or (4.341)) and the derivatives:

∂Π(G)

∂G
= 8G , (4.352)

∂2Π(G)

∂G2
= 16 , (4.353)

still according to (4.283). From (4.188), (4.189), (4.191) and (4.192) as well as (4.343) specifying
the chosen cutoff function for Us, we infer the following pU-flow equations for the studied O(N)
model at N = 1 with the help of (4.348) to (4.353) (see appendix F.8.1 for the corresponding
flow equation expressing the derivative of the 2PI vertex of order 3 with respect to s):

Ġs = G
2

sΣ̇s , (4.354)

Ω̇s =
λ

24

(
4
(

2G
−2

s + Φ
(2)

s

)−1

+G
2

s

)
, (4.355)

Σ̇s = −λ
3

(
2 +G

2

sΦ
(2)

s

)−1
((

2G
−2

s + Φ
(2)

s

)−2 (
8G
−3

s − Φ
(3)

s

)
+Gs

)
, (4.356)

Φ̇
(2)

s =
λ

6

(
2
(

2G
−2

s + Φ
(2)

s

)−3 (
8G
−3

s − Φ
(3)

s

)2

− 64
(

2G
−2

s + Φ
(2)

s

)−2

G
−4

s

+
(

2G
−2

s + Φ
(2)

s

)−2 (
16G

−4

s − Φ
(4)

s

)
+ 2

)
+

1

2
ĠsΦ

(3)

s ,

(4.357)
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where (4.354), (4.355) and (4.356) are respectively equivalent to (4.344), (4.345) and (4.346)
at N = 1. We deduce in the same way the tU-flow equations at Nmax = 2 and N = 1
from (4.202), (4.203), (4.205) and (4.206):

Ġs = G
2

sΣ̇s , (4.358)

Ω̇s =
λ

24

(
4
(

2G
−2

s + sλ
)−1

+G
2

s

)
, (4.359)

Σ̇s = −λ
3
Gs

(
2 + sλG

2

s

)−1
(

8
(

2 + sλG
2

s

)−2

+ 1

)
, (4.360)

Φ
(2)

s = sλ . (4.361)
The initial conditions required to solve the pU-flow equations (including the tU-flow ones) in
the framework of the toy model under consideration are:

Gs=si,aa′ = Caa′ =
1

m2
δaa′ , (4.362)

Ωs=si = −N
2

ln

(
2π

m2

)
, (4.363)

Σs=si,aa′ = 0 ∀a, a′ , (4.364)

Φ
(n)

s=si,(a1,a′1)···(an,a′n) = 0 ∀a1, a
′
1, · · · , an, a′n, ∀n ≥ 2 , (4.365)

and the truncation of the corresponding tower of differential equations is set by (4.284). We
stress that condition (4.284) is already implemented in the tU-flow equations (4.358) to (4.361)
for the truncation at Nmax = 2.

Thus, our pU-flow calculations are performed by solving the equation system made of (4.344)
to (4.346) at Nmax = 1 for all N (for N = 2 especially), (4.354) to (4.357) up to Nmax = 2 at
N = 1 or (4.358) to (4.361) for the tU-flow at Nmax = 2 and N = 1. The initial conditions used
to solve these differential equations are given by (4.362) to (4.365), the associated truncation
condition is expressed by (4.284) whereas (4.343) sets the chosen cutoff function for Us. The pU-
flow results thus obtained for N = 1 are notably presented in fig. 4.17. The latter shows that the
pU-flow exhibits a clear convergence from Nmax = 1 to Nmax = 3 towards the exact solution for
the gs energy Egs and density ρgs, thus achieving an accuracy of about 1% or less at λ/4! = 10
and Nmax = 3 for both Egs and ρgs. As could have been expected from the drastic character of
the approximation underpinning the tU-flow, the latter approach is significantly less performing
than the standard implementation of the pU-flow, as can be seen in fig. 4.17 at Nmax = 2. It
shows actually that the tU-flow at Nmax = 2 is even less efficient than the standard pU-flow
at Nmax = 1 in almost the entire interval λ/4! ∈ [0, 10] for both Egs and ρgs. We recall here
that the idea motivating the introduction of the tU-flow was to avoid solving the Bethe-Salpeter
equation repeatedly throughout the flow. However, the standard implementation of the pU-flow
only requires to solve this equation at Nmax ≥ 2. At Nmax = 1, we have indeed Φ

(2)

s = Φ
(2)

s=si
= 0

∀s according to the truncation condition (4.284), which implies that I+ ΠsΦ
(2)

s = I ∀s and the
Bethe-Salpeter equation in the form of (4.347) becomes immediately trivial. Therefore, since
the pU-flow at Nmax = 1 outperforms in general its tU-flow simplification at Nmax = 2, the
latter is of very little relevance, at least at Nmax = 2. As truncation orders Nmax larger than 2
are already quite demanding to reach for realistic theories, we thus conclude that we must rely
on other approximations to circumvent the numerical weight underlying the implementation of
the pU-flow (or of the mU-flow) version of the 2PI-FRG. Note also that our pU-flow results at
N = 2 and Nmax = 1 are shown in fig. 4.24 for Egs and ρgs in comparison with other approaches
like the mU-flow on which we then focus.
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Modified U-flow: We will start by giving the mU-flow equations expressing Ġs, Ω̇s and Σ̇s

with NSCPT = 1 in the framework of our (0+0)-D O(N) model for all N . There are essentially
two manners to achieve this at this stage: either we deduce such equations from our general
results of section 4.2.1 (i.e. from (4.227), (4.229) and (4.231)) by exploiting the O(N) symmetry
in the same way as for the pU-flow or directly by rewriting the pU-flow equations (4.344)
to (4.346) in terms of the bold quantities underlying the mU-flow, which involves notably the
modified Luttinger-Ward functional defined as:

Φs(G) ≡ Φs(G) + ΦSCPT,NSCPT=1(U,G)− ΦSCPT,NSCPT=1(Us, G)

= Φs(G) + λ (1− s)


 1

24

(
N∑

a1=1

Ga1a1

)2

+
1

12

N∑

a1,a2=1

G2
a1a2


 ,

(4.366)

with

ΦSCPT,NSCPT=1,s(U,G) =
1

24
+

1

12

=
λ

24

(
N∑

a1=1

Ga1a1

)2

+
λ

12

N∑

a1,a2=1

G2
a1a2

.

(4.367)

In any case, the O(N) symmetry implies:

Gs,aa′ = Gs δaa′ ∀s , (4.368)

Σs,aa′ = Σs δaa′ ∀s , (4.369)
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Πs,(a1,a′1)(a2,a′2) = G
2

s

(
δa1a′2

δa′1a2
+ δa1a2δa′1a′2

)
, (4.370)

and the expression of W (2)

s to consider now can be directly inferred from (4.341) (alongside
with (4.367) and (4.370)):

W
(2)

s,(a1,a′1)(a2,a′2) =
(

Π
inv

s + Φ
(2)

s + Φ
(2)

SCPT,NSCPT=1,s(Us)− Φ
(2)

SCPT,NSCPT=1,s(U)
)inv

(a1,a′1)(a2,a′2)

=
1

2

N∑

a3,a′3=1

Πs,(a1,a′1)(a3,a′3)Υ
inv

s,(a3,a′3)(a2,a′2)

= G
2

sΥ
inv

s,(a1,a′1)(a2,a′2) ,

(4.371)

with

Υs,(a1,a′1)(a2,a′2) ≡
(
I + Πs

(
Φ

(2)

s + Φ
(2)

SCPT,NSCPT=1,s(Us)− Φ
(2)

SCPT,NSCPT=1,s(U)
))

(a1,a′1)(a2,a′2)

= δa1a2δa′1a′2 + δa1a′2
δa′1a2

+G
2

sΦ
(2)

s,(a1,a′1)(a2,a′2)

− λ

3
(1− s)G

2

s

(
δa1a′1

δa2a′2
+ δa1a2δa′1a′2 + δa1a′2

δa′1a2

)
,

(4.372)

where the last line simply follows from the definition (4.282) of the bosonic identity matrix and:
(

Φ
(2)

SCPT,NSCPT=1,s(Us)− Φ
(2)

SCPT,NSCPT=1,s(U)
)

(a1,a′1)(a2,a′2)
= −λ

3
(1− s)

(
δa1a′1

δa2a′2
+ δa1a2δa′1a′2 + δa1a′2

δa′1a2

)
,

(4.373)
as a result of (4.367). We also recall once again that the bar labels functions evaluated at
G = Gs instead of G = Gs in the framework of the mU-flow. The three mU-flow equations
thus obtained are:

Ġs = G
2

sΣ̇s , (4.374)

Ω̇s =
λ

72
G

2

s




N∑

a1,a2=1

Υ
inv

s,(a1,a1)(a2,a2) + 2
N∑

a1,a′1=1

Υ
inv

s,(a1,a′1)(a1,a′1) − 2N (N + 2)


 , (4.375)

Σ̇s =− λ

72
Gs

N∑

a1,a′1,a2=1

(
I + ΠsΦ

(2)

s

)inv

(1,1)(a1,a′1)

×
(

N∑

a3,a4=1

Υ
inv

s,(a1,a2)(a3,a3)Υ
inv

s,(a4,a4)(a2,a′1) + 2
N∑

a3,a′3=1

Υ
inv

s,(a1,a2)(a3,a′3)Υ
inv

s,(a3,a′3)(a2,a′1)

)

+
λ

18
Gs (N + 2)

N∑

a1=1

(
I + ΠsΦ

(2)

s

)inv

(1,1)(a1,a1)

+
λ

576
G

4

s

N∑

a1,a′1,a2,a3,a4,a′4,a5,a′5=1

(
I + ΠsΦ

(2)

s

)inv

(1,1)(a1,a′1)
Υ

inv

s,(a2,a2)(a4,a′4)Φ
(3)

s,(a1,a′1)(a4,a′4)(a5,a′5)Υ
inv

s,(a5,a′5)(a3,a3)

+
λ

288
G

4

s

N∑

a1,a′1,a2,a′2,a3,a′3,a4,a′4=1

(
I + ΠsΦ

(2)

s

)inv

(1,1)(a1,a′1)
Υ

inv

s,(a2,a′2)(a3,a′3)Φ
(3)

s,(a1,a′1)(a3,a′3)(a4,a′4)Υ
inv

s,(a4,a′4)(a2,a′2) ,

(4.376)

where the color indices equal to 1 in the RHS of (4.376) follow from the convention Σs ≡
Σs,11 = Σs,aa ∀a, similarly to (4.346). We have pushed our mU-flow derivations so as to be able
to perform calculations up to Nmax = 3 for all N . However, instead of calculating the differential



184 CHAPTER 4. FUNCTIONAL RENORMALIZATION GROUP TECHNIQUES

equations involving Φ̇
(2)

s and Φ̇
(3)

s to achieve this, we have exploited the fact that the 2PI and
2PPI EAs of the studied (0+0)-D model coincide in the absence of SSB to develop a mU-flow
formulation of the 2PPI-FRG treated in section 4.3 (see appendix F.8.2). The derivation of the
underpinning differential equations is less demanding than for the present 2PI-FRG approach.
In particular, it does not require to evaluate derivatives such as δΠs

δGs,γ
and δ2Πs

δGs,γ1δGs,γ2

. For

instance, the evaluation of δΠs

δGs,γ
led to a consequent step in the derivation of (4.376)41 (see

notably (F.97) and (F.98) in appendix F.4.2). This 2PPI-FRG approach is not suited to treat
finite-dimensional systems (as we explain technically in appendix F.8.2) but the existence of
such a shortcut illustrates an important advantage of the zero-dimensional toy model chosen
for this comparative study.

Let us nevertheless focus on the quantities involved in (4.374) to (4.376), which will enable
us to further clarify the general features of the implementation of the mU-flow. The bosonic
matrix I + ΠsΦ

(2)

s satisfies the equality:
(
I + ΠsΦ

(2)

s

)
(a1,a′1)(a2,a′2)

= δa1a2δa′1a′2 + δa1a′2
δa′1a2

+G
2

sΦ
(2)

s,(a1,a′1)(a2,a′2) , (4.377)

which can be derived in the same way as in (4.342) with Gs and Φ
(2)

s respectively replaced
by Gs and Φ

(2)

s . Hence, as can be seen from (4.375) and (4.376), solving the Bethe-Salpeter
equation now translates into inverting the bosonic matrices I + ΠsΦ

(2)

s and Υs. Actually, by
comparing (4.372) with (4.377), we can notice that Υs reduces to I+ΠsΦ

(2)

s by setting s = 1 in

the very last line of (4.372). Hence, the components of
(
I + ΠsΦ

(2)

s

)inv

can be directly deduced

from those of Υ
inv

s as well and we can content ourselves to invert Υs, i.e. to solve:

I(a1,a′1)(a2,a′2) =
1

2

N∑

a3,a′3=1

Υs,(a1,a′1)(a3,a′3)Υ
inv

s,(a3,a′3)(a2,a′2) . (4.378)

The inversion of Υs is not trivial at Nmax = 1 and N ≥ 2, as opposed to I + ΠsΦ
(2)

s for the
pU-flow42. At N = 1 however, Υ

inv

s is readily found according to (4.348):

Υ
inv

s =
4

Υs

, (4.379)

with Υs ≡ Υs,(1,1)(1,1) whereas, at N = 2, we solve 24 = 16 coupled algebraic equations deduced
from (4.378) combined with (4.372). Among the 16 components of Υ

inv

s at N = 2, only 8 differ
from zero and are given by:

Υ
inv

s,(1,1)(1,1) = Υ
inv

s,(2,2)(2,2) =
9
(

2 + sλG
2

s

)

9 + 9sλG
2

s + 2s2λ2G
4

s

, (4.380)

Υ
inv

s,(1,1)(2,2) = Υ
inv

s,(2,2)(1,1) = − 3sλG
2

s

9 + 9sλG
2

s + 2s2λ2G
4

s

, (4.381)

41For the same reasons, we could develop a similar 2PPI-FRG approach to push our pU-flow and CU-flow
calculations to higher truncation orders for N ≥ 2 but we rather focus on the mU-flow which will turn out to
be the most performing 2PI-FRG method tested in this study.

42As we explained when treating the pU-flow, the triviality of the inversion of I + ΠsΦ
(2)

s at Nmax = 1 ∀N
follows from the truncation condition Φ

(2)

s = Φ
(2)

s=si = 0, thus implying that I+ΠsΦ
(2)

s reduces to the identity I.
We clearly do not have such a condition at our disposal here to simplify Υs that drastically, even at Nmax = 1.
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Υ
inv

s,(1,2)(1,2) = Υ
inv

s,(1,2)(2,1) = Υ
inv

s,(2,1)(1,2) = Υ
inv

s,(2,1)(2,1) =
3

3 + sλG
2

s

. (4.382)

Following our previous explanation below (4.377), we directly infer from this the 8 non-vanishing

components of
(
I + ΠsΦ

(2)

s

)inv

:

(
I + ΠsΦ

(2)

s

)inv

(1,1)(1,1)
=
(
I + ΠsΦ

(2)

s

)inv

(2,2)(2,2)
=

9
(

2 + λG
2

s

)

9 + 9λG
2

s + 2λ2G
4

s

, (4.383)

(
I + ΠsΦ

(2)

s

)inv

(1,1)(2,2)
=
(
I + ΠsΦ

(2)

s

)inv

(2,2)(1,1)
= − 3λG

2

s

9 + 9λG
2

s + 2λ2G
4

s

, (4.384)

(
I + ΠsΦ

(2)

s

)inv

(1,2)(1,2)
=
(
I + ΠsΦ

(2)

s

)inv

(1,2)(2,1)
=
(
I + ΠsΦ

(2)

s

)inv

(2,1)(1,2)
=
(
I + ΠsΦ

(2)

s

)inv

(2,1)(2,1)
=

3

3 + λG
2

s

.

(4.385)
We will also treat the mU-flow withNSCPT up to 3 atN = 1. Hence, we investigate the 2PI-FRG
with starting point coinciding with each of the three first non-trivial orders of self-consistent
PT. Note that the mU-flow has only been tested at NSCPT = 1 in the comparative studies of
2PI-FRG approaches mentioned earlier (i.e. in refs. [459, 460]). The expression of the modified
Luttinger-Ward Φs(G) at NSCPT = 3 can be deduced from the perturbative expression (4.276),
which leads to:

Φs(G) = Φs(G) + ΦSCPT,NSCPT=3,s(U,G)− ΦSCPT,NSCPT=3,s(Us, G)

= Φs(G) +
1

8
λG2 (1− s)− 1

48
λ2G4

(
1− s2

)
+

1

48
λ3G6

(
1− s3

)
.

(4.386)

From this relation, we can determine the differential equations underlying the mU-flow up
to NSCPT = 3 from the pU-flow equations (4.354) to (4.356). We obtain in this way (see
appendix F.8.1 for the corresponding flow equations expressing the derivative of the modified
2PI vertices of order 2 and 3 with respect to s):

• For NSCPT = 1:
Ġs = G

2

sΣ̇s , (4.387)

Ω̇s =
λ

24

(
4
(

2G
−2

s + Φ
(2)

s − λ (1− s)
)−1

+G
2

s

)
− 1

8
λG

2

s , (4.388)

Σ̇s = −λ
3

(
2 +G

2

sΦ
(2)

s

)−1
((

2G
−2

s + Φ
(2)

s − λ (1− s)
)−2 (

8G
−3

s −Φ
(3)

s

)
− 2Gs

)
.

(4.389)

• For NSCPT = 2:
Ġs = G

2

sΣ̇s , (4.390)

Ω̇s =
λ

24

(
4
(

2G
−2

s + Φ
(2)

s − λ (1− s) + λ2G
2

s

(
1− s2

))−1

+G
2

s

)
− 1

8
λG

2

s +
1

24
sλ2G

4

s ,

(4.391)

Σ̇s =− λ

3

(
2 +G

2

sΦ
(2)

s

)−1
((

2G
−2

s + Φ
(2)

s − λ (1− s) + λ2G
2

s

(
1− s2

))−2

×
(

8G
−3

s −Φ
(3)

s − 4λ2Gs

(
1− s2

))
− 2Gs + 2sλG

3

s

)
.

(4.392)
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• For NSCPT = 3:
Ġs = G

2

sΣ̇s , (4.393)

Ω̇s =
λ

24

(
4

(
2G
−2

s + Φ
(2)

s − λ (1− s) + λ2G
2

s

(
1− s2
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2
λ3G

4
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(
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2

s

)

− 1

8
λG

2

s +
1

24
sλ2G

4
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1
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s2λ3G

6

s ,

(4.394)

Σ̇s =−λ
3

(
2 +G

2

sΦ
(2)

s

)−1
((

2G
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s + Φ
(2)

s − λ (1− s) + λ2G
2

s

(
1− s2

)
− 5

2
λ3G

4

s

(
1− s3

))−2

×
(

8G
−3

s −Φ
(3)

s − 4λ2Gs

(
1− s2

)
+ 20λ3G

3

s

(
1− s3

))

−2Gs + 2sλG
3

s −
9

2
s2λ2G

5

s

)
.

(4.395)

As already stated by (4.221) to (4.224) as well as (4.220), the initial conditions of the mU-
flow are directly inferred from the self-consistent PT results up to the chosen order O

(
UNSCPT

)
.

For the present application to the (0+0)-D O(N)-symmetric ϕ4-theory, they read:

Gs=si = GSCPT,NSCPT
, (4.396)

Ωs=si = Egs,SCPT,NSCPT
, (4.397)

Σs=si = −Φ
(1)
SCPT,NSCPT

(
U,G = GSCPT,NSCPT

)
, (4.398)

Φ
(n)

s=si
= Φ

(n)
SCPT,NSCPT

(
U,G = GSCPT,NSCPT

)
∀n ≥ 2 . (4.399)

We thus point out a peculiarity of (0+0)-D applications: Ωs=si directly coincides with the gs
energy calculated from self-consistent PT up to order O

(
UNSCPT

)
, i.e. Egs,SCPT,NSCPT

, since the
zero-temperature limit defining the gs energy vanishes in (0+0)-D (as was already discussed
when introducing (2.38)). At NSCPT = 1, the initial conditions (4.396) to (4.399) reduce to:

Gs=si = GSCPT,NSCPT=1 , (4.400)

Ωs=si = Egs,SCPT,NSCPT=1 , (4.401)

Σs=si,(a1,a′1) = −λ
6
δa1a′1

N∑

a2=1

GSCPT,NSCPT=1,a2a2 −
λ

3
GSCPT,NSCPT=1,a1a′1

, (4.402)

Φ
(2)

s=si,(a1,a′1)(a2,a′2) = U(a1,a′1)(a2,a′2) =
λ

3

(
δa1a′1

δa2a′2
+ δa1a2δa′1a′2 + δa1a′2

δa′1a2

)
, (4.403)

Φ
(n)

s=si,(a1,a′1)···(an,a′n) = 0 ∀a1, a
′
1, · · · , an, a′n, ∀n ≥ 3 , (4.404)

as can be deduced from (4.367) together with identity (4.282). Finally, we recall that, regardless
of the chosen value for NSCPT, the infinite tower of differential equations underlying the mU-flow
is truncated with the condition:

Φ
(n)

s = Φ
(n)

s=si
∀s, ∀n > Nmax . (4.405)

In summary, our mU-flow results atNmax = 1 are determined by solving the set of differential
equations (4.374) to (4.376) for all N (for N = 2 especially) and at NSCPT = 1 as well as (4.387)
to (4.395) at N = 1 for more involved starting points (i.e. for NSCPT = 1, 2 or 3). The
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Figure 4.18: Difference between the calculated gs energy Ecalc
gs or density ρcalc

gs and the corre-
sponding exact solution Eexact

gs or ρexact
gs at m2 = +1 and N = 1 (Re(λ) ≥ 0 and Im(λ) = 0).

corresponding initial conditions are inferred from the perturbative expression of the Luttinger-
Ward functional (given e.g. by (4.367) for all N and by (4.276) at N = 1), as shown by (4.396)
to (4.399) which reduce to (4.400) to (4.404) at NSCPT = 1 for all N . Finally, the truncation
condition for the mU-flow is given by (4.405) and the cutoff function for the two-body interaction
is still set by (4.343). Comparing first the pU-flow and the mU-flow with the simplest starting
point (i.e. with a Hartree-Fock starting point corresponding to NSCPT = 1) in fig. 4.18, we can
see that the convergence is significantly faster for the latter approach: at the first non-trivial
order for instance, the mU-flow results of fig. 4.18 exhibit an accuracy below 2% for Egs, and
even less for ρgs, over the whole range λ/4! ∈ [0, 10] withm2 > 0. This could have been expected
from the quality of the starting points of the two methods thus compared: the Hartree-Fock
starting point of the mU-flow already incorporates a consequent part of the correlations within
the studied systems (even at the non-perturbative level), as opposed to the free theory for the
pU-flow.

It is then quite natural to test the mU-flow for more involved starting points, i.e. for
NSCPT > 1, which has never been done so far to our knowledge. Hence, fig. 4.19 shows mU-flow
results up to Nmax = 3 with NSCPT = 1, 2 and 3 for both Egs and ρgs in the unbroken- and
broken-symmetry regimes of our toy model. We point out first of all the appearance of the same
stiffness issues as before (still with the NDSolve function of Mathematica 12.1) for the mU-flow
at NSCPT = 2 and 3 with Nmax = 2, hence explaining the absence of the corresponding curves
in fig. 4.19. This does not prevent us from noticing in this figure that, besides a few exceptions,
the mU-flow at NSCPT = 1 is more performing than at NSCPT = 2 or 3 for a given truncation
order Nmax, for Egs as well as for ρgs. Although the starting point contains more and more
information about the system to describe as NSCPT increases, we recall that it is the bare self-
consistent PT results (i.e. without resummation) that the mU-flow procedure takes as inputs.
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Figure 4.19: Difference between the calculated gs energy Ecalc
gs or density ρcalc

gs and the corre-
sponding exact solution Eexact

gs or ρexact
gs at m2 = +1 and N = 1 (Re(λ) ≥ 0 and Im(λ) = 0).

Such results take the form of diverging asymptotic series for Γ(2PI)(G) (as we have shown in
chapter 3) and the corresponding estimates for Egs and ρgs all worsen as the truncation order
NSCPT increases. It was only after applying a resummation procedure that we managed to turn
self-consistent PT into a systematically improvable technique in chapter 3. In the light of the
latter comments, we can conclude that, unlike resummation procedures, the mU-flow approach
is not suited to extract the full information from the asymptotic series representing the 2PI EA
(and the corresponding 2PI vertices) taken as input(s). The mU-flow is thus most efficient at
NSCPT = 1, which is why we have tested this approach in the unbroken- and broken-symmetry
regimes for N = 1 and 2, as shown by figs. 4.20 and 4.21. Our qualitative conclusions on the
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Figure 4.20: Difference between the calculated gs energy Ecalc
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gs and the corre-
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also the caption of fig. 3.11 for the meaning of the indication “O
(
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” for the results obtained
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Figure 4.21: Same as fig. 4.20 with N = 2 instead.

two latter figures are identical: for Egs and ρgs and for both signs ofm2, we see that the mU-flow
procedure at Nmax = 1 clearly improves the Hartree-Fock curve representing its starting point,
and this mU-flow result is itself improved by increasing the truncation order Nmax until the
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curve corresponding to Nmax = 3 becomes barely distinguishable from the exact solution.

Besides these appealing performances of the mU-flow, one might also address the numerical
weight of the underpinning numerical procedure which is significantly increased by the Bethe-
Salpeter equation to solve throughout the flow. A possibility to diminish the weight of this
numerical procedure would be to freeze the evolution of Φ

(2)

s (or Φ
(2)

s for the pU-flow) in the
spirit of the scale-dependent HSTs discussed in section 2.3 for the 1PI-FRG. To achieve this,
we would need to develop a U-flow version of the 2PI-FRG in the mixed representation, i.e.
for a theory based on a Yukawa interaction. Such approaches would be based on generating
functionals like:

Zmix[j,K] = eWmix[j,K] =

∫
Dψ̃Dσ̃ e−Smix,0

[
ψ̃,σ̃
]
− 1

2

∫
x1,γ2

Ux1γ2 σ̃x1 ψ̃α2 ψ̃α′2
+
∫
α jασ̃α+ 1

2

∫
α,α′ ψ̃αKαα′ ψ̃α′ ,

(4.406)
or

Zmix[J ,K] = eWmix[J ,K] =

∫
DΨ̃ e

−Smix,0

[
Ψ̃
]
− 1

2

∫
β1,γ2

Uβ1γ2
Ψ̃β1

Ψ̃β2
Ψ̃β′2

+
∫
β JβΨ̃β+ 1

2

∫
β,β′ Ψ̃βKββ′ Ψ̃β′ ,

(4.407)
instead of (4.119). Note that Smix,0 denotes the free part of the classical action Smix, the
supernotations used in (4.407) are introduced in chapter 3 via (3.21) to (3.23) and the super
Yukawa interaction U is such that:

∫

β1,γ2

Uβ1γ2Ψ̃β1Ψ̃β2Ψ̃β′2
=

∫

x1,γ2

Ux1γ2σ̃x1ψ̃α2ψ̃α′2 . (4.408)

According to the excellent performances of the 1PI-FRG combined with HSTs, one might
assume that a linear source directly coupled to the bosonic field σ̃ would be sufficient to add
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so as to extend the original U-flow into an efficient approach in the mixed representation, as
was done in (4.406). In order to develop a mU-flow approach, it should however be noted
that the corresponding self-consistent PT results (referred to as “self-consistent PT 2PI/1PI
EA” in fig. 4.22) are however worse than those of the original 2PI EA Γ(2PI)(G) for the studied
toy model, as can be seen from fig. 4.22. According to the latter, it is clearly appealing to
design a mU-flow approach starting from the self-consistent PT results of the full mixed 2PI
EA43, although it would inevitably be more demanding to implement than the method based
on (4.406). This can be done by considering the generating functional (4.407) instead of (4.406).
Therefore, extending the U-flow to the mixed representation could not only allow for monitoring
the numerical weight of the 2PI-FRG procedure but also to improve the performances of the
FRG approach itself by exploiting the Hubbard-Stratonovich field to grasp correlations before
even starting the flow (via self-consistent PT) as well as throughout the flow. However, because
of the index structure of the Yukawa interaction U (in (4.406)) or U (in (4.407)), the derivation
of the corresponding flow equations (following the lines set out in appendix F.4.2 for the original
U-flow version of the 2PI-FRG) requires to invert matrices with components of the form:

Mα1γ2 , (4.409)

for (4.406), with the bosonic index defined as usual as γ ≡ (α, α′), or:

Mβ1γ2 , (4.410)

for (4.407), with γ ≡ (β, β′). The definitions of the corresponding inverse(s) do not straightfor-
wardly follow from the bosonic index formalism as exploited so far. In the case of (4.406) for
instance, the definitions set by:

∫

α3

Mγ1α3Minv
α3γ2

= Iγ1γ2 , (4.411)

and
1

2

∫

γ3

Mα1γ3Minv
γ3α2

= δα1α2 , (4.412)

do not provide the right number of conditions to fix the components ofMinv in an unambiguous
manner. Hence, extending the mU-flow implementation of the 2PI-FRG in the framework of
the mixed theory still requires a consequent work on the side of the formalism. The present
discussion has put forward several appealing features of such a direction that we postpone to
subsequent projects.

4.2.2.5 2PI functional renormalization group CU-flow

As for the mU-flow, we have two options at our disposal to derive the CU-flow equations ex-
pressing Ġs, ∆Ω̇s and Σ̇s for the studied O(N) model: either we combine the corresponding
C-flow and pU-flow equations already formulated for our (0+0)-D model in the present sec-
tion 4.2.2 by following the general recipe set out in the CU-flow discussion of section 4.2.1
or we start our derivations from the results of the latter section (i.e. from (4.152), (4.237)
and (4.238)) and simplify them by exploiting the O(N) symmetry as we already did for the
C-flow and U-flow approaches. In all cases, the obtained differential equations can be put in
the form:

Ġs = −G2

s

(
Ċ−1

s − Σ̇s

)
, (4.413)

43Recall that self-consistent PT based on the full mixed 2PI EA is presented in section 3.5.2.2 and definitely
stood out among the diagrammatic techniques tested in chapter 3.
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∆Ω̇s =
N

2
Ċ−1

s

(
Gs − Cs

)

+
λ

72
G

2

s




N∑

a1,a2=1

(
I + ΠsΦ

(2)

s

)inv

(a1,a1)(a2,a2)
+ 2

N∑

a1,a′1=1

(
I + ΠsΦ

(2)

s

)inv

(a1,a′1)(a1,a′1)
+N (2 +N)


 ,

(4.414)

Σ̇s =− λ

36
Gs

N∑

a1,a2,a3=1

(
I + ΠsΦ

(2)

s

)inv

(1,a1)(a2,a2)

(
I + ΠsΦ

(2)

s

)inv
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18
Gs
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(
I + ΠsΦ

(2)

s

)inv
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(
I + ΠsΦ
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s

)inv
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288
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4

s
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I + ΠsΦ
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s

)inv
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Φ
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s

)inv
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144
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s
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(
I + ΠsΦ
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s

)inv
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Φ

(3)

s,(1,1)(a2,a′2)(a3,a′3)

(
I + ΠsΦ

(2)

s

)inv
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− λ

18
Gs (N + 2)− 1

2
Ġs

N∑

a1=1

Φ
(2)

s,(a1,a1)(1,1) ,

(4.415)

where the definition Σs ≡ Σs,11 was also used in (4.415) to set color indices equal to 1. In
particular, (4.413) to (4.415) were derived from relations (4.257) to (4.259) implementing the
conservation of the O(N) symmetry during the flow. We also choose the same cutoff functions
as those used previously for the C-flow and the U-flow, which are specified by (4.291) (along
with (4.290)) and (4.343). The CU-flow will notably be investigated up to the truncation order
Nmax = 3 at N = 1, in which case (4.413) to (4.415) reduce to (see appendix F.8.1 for the
corresponding flow equations expressing the derivative of the 2PI vertices of order 2 and 3 with
respect to s):

Ġs = −G2

s

(
Ċ−1

s − Σ̇s

)
, (4.416)

∆Ω̇s =
1

2
Ċ−1

s

(
Gs − Cs

)
+

λ

24

(
4
(

2G
−2

s + Φ
(2)

s

)−1

+G
2

s

)
, (4.417)

Σ̇s =
λ

3
Gs

(
2 +G

2

sΦ
(2)

s

)−2
(

1

2
G

3

sΦ
(3)

s − 4

)
− λ

6
Gs −

1

2
ĠsΦ

(2)

s . (4.418)

Finally, we recall that, in the framework of the CU-flow, all quantities calculated throughout
the flow vanish at the starting point, i.e.:

Gs=si,aa′ = 0 ∀a, a′ , (4.419)

∆Ωs=si = 0 , (4.420)

Σs=si,aa′ = 0 ∀a, a′ , (4.421)

Φ
(n)

s=si,(a1,a′1)···(an,a′n) = 0 ∀a1, a
′
1, · · · , an, a′n, ∀n ≥ 2 , (4.422)

as was already indicated by (4.239) to (4.243), and the associated infinite tower of differential
equations is truncated by imposing (4.284).
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Figure 4.23: Difference between the calculated gs energy Ecalc
gs or density ρcalc

gs and the corre-
sponding exact solution Eexact

gs or ρexact
gs at m2 = +1 and N = 1 (Re(λ) ≥ 0 and Im(λ) = 0).

The mC-flow curve represents the best C-flow result up to Nmax = 3 whereas the green, orange
and purple mU-flow curves correspond to the best U-flow results obtained at Nmax = 1, 2 and 3,
respectively.

Hence, our CU-flow results at Nmax = 1 are obtained by solving (4.413) to (4.415) (which
reduce respectively to (4.416) to (4.418) at N = 1), with the initial conditions (4.419) to (4.422)
and the truncation condition (4.284). The corresponding cutoff functions are still set by (4.291)
(with (4.290)) for C−1

s and by (4.343) for Us. In fig. 4.23 which shows the results thus obtained
at N = 1, the CU-flow estimates for Egs and ρgs clearly outperform at Nmax = 2 the mC-flow
curve which can be considered as our best C-flow result (including those obtained in the mixed
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Figure 4.24: Difference between the calculated gs energy Ecalc
gs or density ρcalc

gs and the corre-
sponding exact solution Eexact

gs or ρexact
gs at m2 = +1 and N = 2 (Re(λ) ≥ 0 and Im(λ) = 0).

The tC-flow and mU-flow curves correspond respectively to the best C-flow and U-flow results
obtained at Nmax = 1.

representation), as can be seen from fig. 4.16. Furthermore, fig. 4.23 also shows that the CU-
flow results are comparable to the best mU-flow ones (i.e. to the mU-flow results at NSCPT = 1)
up to Nmax = 3 for both Egs and ρgs. These remarks also apply to the case where N = 2 at
Nmax = 1, as can be checked from fig. 4.24. Note however that, for the same reasons as the
C-flow, the CU-flow is not suited to treat the regime with m2 < 0.

4.3 2PPI functional renormalization group

4.3.1 State of play and general formalism

The 2PPI-FRG was first developed in the early 2000s by Polonyi and Sailer [323] and discussed
in the context of quantum electrodynamics (QED). Links between this approach and DFT
were also emphasized in ref. [323], as well as in ref. [164] which puts forward the 2PPI-FRG
as a means for calculating properties of nuclear systems in a systematic manner. The first
numerical application of this method came out almost a decade later with the work of Kemler
and Braun [148], who took as theoretical laboratories the (0+0)-D ϕ4-theory in its unbroken-
symmetry regime (i.e. the studied toy model with N = 1 and m2 > 0) and to the (0+1)-D
ϕ4-theory, still in the phase without SSB. Corrections of the application to the latter toy model
were pointed out subsequently by Rentrop and collaborators in ref. [459]. A few years later,
an extension of the 2PPI-FRG formalism, coined as Kohn-Sham FRG (KS-FRG) due to its
connection with the Kohn-Sham scheme, was developed by Liang, Niu and Hatsuda [151]. To
our knowledge, the KS-FRG has only been applied to the toy model considered in this thesis
with N = 1 and in its unbroken-symmetry regime.
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The 2PPI-FRG practitioners have also managed to treat a (1+1)-D model [465–469], called
the Alexandrou-Negele nuclei as a consequence of an earlier work of Alexandrou, Myczkowski
and Negele on this model using a Monte Carlo approach [470]. Such a model reproduces some
basic properties of the nuclear force (short-range repulsive and long-range attractive). As any
other toy model, the Alexandrou-Negele nuclei have been used to benchmark different theoreti-
cal approaches (see ref. [471] for the similarity renormalization group (SRG)) but they have also
been exploited to describe real physical systems such as ultracold fermionic atoms interacting
via a dipolar interaction [472]. For that reason in addition to the technical difficulties related
to the inclusion of a space dimension, the work of Kemler and Braun presented in ref. [465] can
be considered as a pioneering work for the 2PPI-FRG community. More specifically, it presents
results obtained for the gs energies (in comparison with Monte Carlo results [470]), intrinsic
densities and density correlation functions. Other subsequent applications were carried out for
an infinite number of particles by Yokota and collaborators in order to study spinless nuclear
matter with this model: this led to the determination of the nuclear saturation curve and other
gs properties on the one hand [467] and to the calculation of spectral functions for the study
of excited states on the other hand [468].

Then, applications to higher-dimensional systems were performed recently by Yokota and
collaborators on a (2+1)-D homogeneous electron gas [469, 473] and on a (3+1)-D homogeneous
electron gas [474], thus achieving the first two-dimensional and three-dimensional applications
of the 2PPI-FRG. Note also the work of ref. [475] which designs a 2PPI-FRG approach to
describe classical liquids. This paper shows through an application to a (1+0)-D toy model
that this novel approach compares favorably with more conventional methods based on integral
equations. Finally, the 2PPI-FRG formalism has also been generalized to treat superfluid
systems [476], thus marking a significant step towards the description of systems with competing
instabilities. The resulting approach can actually be considered as a DFT for systems with
pairing correlations and echoes the work of Furnstahl and collaborators with the 2PPI EA and
the IM [56].

As a first step, we now outline the basic ingredients of the 2PPI-FRG formalism in order to
prepare the ground for our toy model applications. The generating functional underlying this
FRG approach is given by44:

Z[K] = eW [K] =

∫
Dψ̃†Dψ̃ e−S

[
ψ̃†,ψ̃
]

+
∫
αKαψ̃

†
αψ̃α , (4.423)

where we now consider a complex field ψ̃ which is either bosonic or Grassmannian. The equa-
tions underlying the 2PPI-FRG are barely modified if ψ̃ is a real field (which is the case of
interest for our toy model study), besides a few numerical factors. We choose to keep the
present discussion to the framework of a complex field ψ̃ and postpone the discussion of such
details to section 4.3.2. The different configurations of ψ̃ are now specified by an α-index which
is essentially the same as that used in section 4.2.1 in our presentation of the 2PI-FRG, with
the exception of the charge index c. The latter is indeed no longer necessary as we distinguish
explicitly ψ̃ from its complex conjugate ψ̃† in the present formalism. Therefore, the following
conventions are used in (4.423) and will hold in the rest of section 4.3.1:

∫

α

≡
∑

a

∫

x

≡
∑

a

∑

ms

∫ β

0

dτ

∫
dD−1r , (4.424)

44Although the notations for the generating functionals Z[K] and W [K] are identical to those of (4.119)
related to the 2PI-FRG, we stress that Z[K] and W [K] are always defined by (4.423) in the whole section 4.3
and in corresponding appendices.
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with α ≡ (a, x) and x ≡ (r, τ,ms) (a, r, τ and ms being defined between (4.119) and (4.120)).
The connected correlation functions deduced from (4.423) are:

W (n)
α1···αn [K] ≡ δnW [K]

δKα1 · · · δKαn

=
〈
ψ̃†α1

ψ̃α1 · · · ψ̃†αnψ̃αn
〉
K
, (4.425)

which yields the density:
ρα = W (1)

α [K] =
〈
ψ̃†αψ̃α

〉
K
, (4.426)

at n = 1, where we have just introduced the expectation value45:

〈
· · ·
〉
K

=
1

Z[K]

∫
Dψ̃†Dψ̃ · · · e−S

[
ψ̃†,ψ̃
]

+
∫
αKαψ̃

†
αψ̃α . (4.427)

As opposed to the 2PI-FRG, the source is now a bosonic object regardless of the nature of
ψ̃ (i.e. Grassmannian or not), which implies notably the following symmetry property for the
correlation functions of (4.425):

W (n)
α1···αn [K] = W (n)

αP (1)···αP (n)
[K] , (4.428)

to be compared with (4.126a) and (4.126b) for the 2PI-FRG formalism. The following 2PPI
EA is at the heart of the present approach:

Γ(2PPI)[ρ] =−W [K] +

∫

α

Kα
δW [K]

δKα

=−W [K] +

∫

α

Kαρα ,

(4.429)

where the second line follows from (4.426).

All implementations of the 2PPI-FRG treated below are applicable to any system whose
classical action can be written as:

S
[
ψ̃†, ψ̃

]
= S0

[
ψ̃†, ψ̃

]
+ Sint

[
ψ̃†, ψ̃

]
=

∫

α

ψ̃†α

(
∂τ + Ôkin + Vα − µ

)
ψ̃α +

1

2

∫

α1,α2

ψ̃†α1
ψ̃†α2

Uα1α2ψ̃α2ψ̃α1 ,

(4.430)
where Ôkin corresponds to the kinetic operator46 and we place ourselves in the grand canonical
ensemble here by using a chemical potential µ to monitor the particle number47. In the frame-
work of the 2PPI-FRG, it is typically the one-body potential V and the two-body interaction
U which are rendered flow-dependent by introducing cutoff functions, i.e. the Schwinger func-
tional W [K] and the 2PPI EA Γ(2PPI)[ρ] become dependent on s via the substitution U → Us

sometimes combined with V → Vs. After doing so, we exploit in particular the following
convention:

ρα ≡ ρs,α[K] = W (1)
s,α [K] , (4.431)

which is the counterpart of (4.2) and (4.142) used respectively for the 1PI-FRG and the 2PI-
FRG. Moreover, although the classical action (4.430) only contains a two-body interaction, the

45Following up the remark of footnote 44, the expectation value
〈
· · ·
〉
K

is given by (4.427) and not by (4.125)
in all 2PPI-FRG discussions.

46For instance, Ôkin = ∂µ∂
µ = � for a Klein-Gordon Lagrangian, Ôkin = iγµ∂µ for a Dirac Lagrangian or

Ôkin = −∇2

2m for any non-relativistic system of mass m.
47Alternatively, one can also simply impose a given particle number at the initial conditions of the 2PPI-FRG

procedure since the particle number is conserved during the flow, as shown in ref. [465].
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present FRG method can be straightforwardly extended to treat three-body and even higher-
body interactions by including higher powers of ψ̃†ψ̃ into (4.430), similarly to (4.145) for the
2PI-FRG.

As a side comment, we want to point out that any theoretical approach based on the gen-
erating functional (4.423) is not relevant to describe superfluid systems, as opposed to (4.119)
for the 2PI-FRG. In that respect, we would indeed need to calculate the expectation values of
ψ̃ψ̃ and ψ̃†ψ̃†, and the generating functional (4.423) is not suited to achieve this. Following the
steps of ref. [476], we can generalize (4.423) as follows in that purpose:

Z
[
K(ρ), K(κ),

(
K(κ)

)† ]
= eW

[
K(ρ),K(κ),(K(κ))

†
]

=

∫
Dψ̃†Dψ̃ e−S

[
ψ̃†,ψ̃
]

+
∫
αK

(ρ)
α ψ̃†αψ̃α+

∫
αK

(κ)
α ψ̃αψ̃α+

∫
α(K(κ))

†
α
ψ̃†αψ̃

†
α ,

(4.432)
where the anomalous densities can now be accessed via:

δW [K]

δK
(κ)
α

=
〈
ψ̃αψ̃α

〉
K
, (4.433)

δW [K]

δ (K(κ))
†
α

=
〈
ψ̃†αψ̃

†
α

〉
K
. (4.434)

Such an extension is not necessary for the 2PI-FRG as presented previously since some com-
ponents of the propagator Gαα′ already coincide with expectation values of ψ̃ψ̃ and ψ̃†ψ̃† (for
charge indices satisfying c = c′ = + or c = c′ = − according to (4.124)). There are also
some subtleties underpinning the implementation of a 2PPI-FRG procedure from the generat-
ing functional (4.432). This is beyond the scope of the present discussion but we refer to the
work of Yokota and collaborators [476] for more details on this topic. Although this formulation
of the 2PPI-FRG is suited to describe SSBs (related to superfluid systems at least), it should
be noted that it does not carry out the momentum-shell integration à la Wilson, and neither
do all of the 2PPI-FRG approaches treated thereafter. Our main point here is that, unlike
the 2PI-FRG considered in section 4.2, the 2PPI-FRG formalism exploited in this thesis is not
adapted to tackle superfluid systems, although the necessary extensions to achieve this (which
are irrelevant for our toy model study) are well established [476].

4.3.1.1 Standard 2PPI functional renormalization group

Main features: We start by discussing the standard version of the 2PPI-FRG, as proposed
by Polonyi and Sailer [323] and then exploited e.g. by Kemler and Braun [148, 465]. After
performing the substitutions V → Vs and U → Us into the classical action (4.430), we can show
that the corresponding flow-dependent 2PPI EA Γ

(2PPI)
s [ρ], originally expressed via (4.429),

satisfies the master equation (see appendix G.1):

Γ̇(2PPI)
s [ρ] =

∫

α

V̇s,αρα +
1

2
STr

[
U̇s

(
Γ(2PPI)(2)
s [ρ]

)−1
]

+
1

2

∫

α1,α2

U̇s,α1α2ρα1ρα2 , (4.435)

where we just introduced back the notation STr to indicate the trace with respect to α-indices48
and the 2PPI vertices satisfy:

Γ(2PPI)(n)
s,α1···αn [ρ] ≡ δnΓ

(2PPI)
s [ρ]

δρα1 · · · δραn
. (4.436)

48We recall that Trα was introduced in section 4.2 on the 2PI-FRG to denote the trace with respect to α-
indices. The underlying reason was specific to the 2PI-FRG formalism as we stressed in this way the difference
with the trace taken with respect to bosonic indices (i.e. Trγ).
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Moreover, it can also be rather advantageous to consider the flow equation for the Schwinger
functional instead of that of the corresponding EA (see appendix G.1):

Ẇs[K] = −
∫

α

V̇s,αW
(1)
s,α [K]− 1

2

∫

α1,α2

U̇s,α1α2W
(2)
s,α1α2

[K]− 1

2

∫

α1,α2

U̇s,α1α2W
(1)
s,α1

[K]W (1)
s,α2

[K] ,

(4.437)
as was done in ref. [465]. Although (4.435) and (4.437) are fully equivalent (i.e. they can be
deduced from each other without approximation), the initial conditions might be much less
cumbersome to determine in the latter case, as explained in more detail below.

In practice, the exact flow equation (4.435) is turned into an infinite tower of differential
equations with a vertex expansion of Γ

(2PPI)
s [ρ]:

Γ(2PPI)
s [ρ] = Γ

(2PPI)

s +
∞∑

n=2

1

n!

∫

α1,··· ,αn
Γ

(2PPI)(n)

s,α1···αn (ρ− ρs)α1
· · · (ρ− ρs)αn , (4.438)

where Γ
(2PPI)

s ≡ Γ
(2PPI)
s [ρ = ρs], Γ

(2PPI)(n)

s,α1···αn ≡
δnΓ

(2PPI)
s [ρ]

δρα1 ···δραn

∣∣∣
ρ=ρs

and the flowing density ρs extremizes

the flowing 2PPI EA:
δΓ

(2PPI)
s [ρ]

δρα

∣∣∣∣∣
ρ=ρs

= 0 ∀α, s , (4.439)

in the same manner as (4.19) for the 1PI-FRG and (4.139) for the 2PI-FRG. The flow equa-
tion (4.437) is treated in the same spirit by Taylor expanding Ws[K] around the configuration
where the source K vanishes, i.e.:

Ws[K] = W s +
∞∑

n=1

∫

α1,··· ,αn
W

(n)

s,α1···αnKα1 · · ·Kαn , (4.440)

with
W

(1)

s,α = ρs,α , (4.441)

according to (4.431). Finally, the expansion of the 2PPI EA given by (4.438) is inserted into the
corresponding master equation and the terms of identical powers of ρ − ρs are then identified
to deduce an infinite set of differential equations for ρs and the 2PPI vertices Γ

(2PPI)(n)

s . The
same is done for the expansion (4.440) of Ws[K] except that the identification is performed
with respect to the powers of the source K.

Regarding the boundary conditions, Us must satisfy the same relations as those encountered
in the U-flow implementation of the 2PI-FRG, i.e.:





Us=si,α1α2 = 0 ∀α1, α2 .

Us=sf = U .

(4.442a)

(4.442b)

However, the initial condition (4.442a) does not always imply that the starting point of the
flow coincides with the free theory. This actually depends on the analytical form chosen for the
one-body potential Vs, and more specifically on the initial condition Vs=si (Vs=sf = V is always
imposed to recover (4.430) at the end of the flow). In that respect, we can mainly distinguish
two situations:
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• Vs = V ∀s:
A possibility consists in choosing Vs independent from s, i.e. Vs = V ∀s. As a result, the
two-body interaction Us is gradually turned on during the flow while Vs is kept equal to
its initial value Vs=si = V . Hence, this approach can be qualified as a U-flow scheme.

• Vs = (1− s)VKS ∀s (with si = 0 and sf = 1):
Self-bound systems such as nuclei are by definition not subjected to an external potential
such that the condition Vs=sf=1,α = 0 ∀α must be fulfilled. In this case, a natural option
consists in starting the flow at the Kohn-Sham system with the choice Vs = (1 − s)VKS

such that Vs=si=0 = VKS, with VKS being the solution of the Kohn-Sham equation for the
optimal one-body potential [164]. This induces a particularly elegant structure of the
flow: the two-body interaction Us is gradually turned on and the mean-field Vs gradually
switched off during the flow until the Kohn-Sham system at s = si = 0 is transformed
into the fully self-bound system at s = sf = 1. We implement in this way a CU-flow.

In what follows, we will focus on the U-flow implementation of the standard 2PPI-FRG,
which is the approach exploited in most 2PPI-FRG applications mentioned previously. How-
ever, the forthcoming discussion remains valid regardless of the analytical form chosen for Us.
As for the 2PI-FRG, the cutoff function Rs can be introduced equivalently via Us = RsU or
Us = U + Rs, although the former remains the most common choice especially with Us = sU .
We will also assume that there is no one-body potential, i.e. Vα = 0 ∀α, to prepare the ground
for our toy model study. In this situation, the master equation for Γ

(2PPI)
s [ρ] given by (4.435)

reduces to:
Γ̇(2PPI)
s [ρ] =

1

2
STr

[
U̇s

(
Γ(2PPI)(2)
s [ρ]

)−1
]

+
1

2

∫

α1,α2

U̇s,α1α2ρα1ρα2 , (4.443)

and the starting point of the flow coincides with the free theory, as we now discuss in further
details.

Initial conditions: The free theory is specified by retaining only the quadratic part of the
classical action S, i.e. S0, in the generating functional (4.423), thus obtaining49:

Z0[K] = eW0[K] =

∫
Dψ̃†Dψ̃ e−S0

[
ψ̃†,ψ̃
]

+
∫
αKαψ̃

†
αψ̃α = eζSTr[ln(GK)] , (4.444)

with
G−1
K,α1α2

=
(
∂τ1 + Ôkin + Vα1 − µ−Kα1

)
δα1α2 , (4.445)

and ζ = ±1 to distinguish the cases where ψ̃ is a bosonic or a Grassmann field, as usual. Hence,
the initial conditions for the derivatives of the Schwinger functional are readily obtained by
differentiating the STr ln term expressing W0[K] in (4.444) with respect to K:

W
(n)

s=si,α1···αn [K] = W
(n)

0,α1···αn , (4.446)

which constitutes all initial conditions required to treat the flow equation forWs[K], i.e. (4.437)
(with V̇s,α = 0 ∀α, s in the present case). Regarding the flow equation for the EA, we can not
simply express the free 2PPI EA Γ

(2PPI)
0 [ρ] explicitly in terms of ρ as we did for the free 2PI

EA in terms of G with (4.133). This stems from the fact that the Legendre transform can not
be carried out explicitly for the 2PPI EA, as we explained in detail in section 3.5.3. Instead,

49To clarify, we have used the relation S0

[
ψ̃†, ψ̃

]
=
∫
α
ψ̃†α

(
∂τ + Ôkin + Vα − µ

)
ψ̃α −

∫
α
Kαψ̃

†
αψ̃α =

∫
α1,α2

ψ̃α1G
−1
K,α1α2

ψ̃α2 in order to carry out Gaussian integration.
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the 2PPI vertices can be determined from the derivatives of the Schwinger functional via the
relation (see appendix G.1):

Γ(2PPI)(2)
s,α1α2

[ρ] =
(
W (2)

s [K]
)−1

α1α2
. (4.447)

This is done with the help of the chain rule:

δ

δρα1

=

∫

α2

δKα2

δρα1

δ

δKα2

=

∫

α2

(
W (2)

s [K]
)−1

α1α2

δ

δKα2

, (4.448)

based on (4.431). For example, Γ
(2PPI)(3)
s,α1α2 [ρ] is deduced from (4.447) as follows:

Γ(2PPI)(3)
s,α1α2α3

[ρ] =

∫

α4

(
W (2)

s [K]
)−1

α3α4

δ

δKα4

(
W (2)

s [K]
)−1

α1α2

=−
∫

α4,α5,α6

(
W (2)

s [K]
)−1

α3α4

(
W (2)

s [K]
)−1

α1α5
W (3)

s,α4α5α6
[K]

(
W (2)

s [K]
)−1

α6α2
,

(4.449)

and we can further differentiate this expression of Γ
(2PPI)(3)
s,α1α2α3 [ρ] to obtain a similar result for

Γ
(2PPI)(4)
s,α1α2α3α4 [ρ] and so on. What is of interest for us is the free version of such relations for the

purpose of determining the initial conditions for the 2PPI vertices, which are thus given by:

Γ
(2PPI)(2)

s=si,α1α2
=
(
W

(2)

0

)−1

α1α2

, (4.450)

Γ
(2PPI)(3)

s=si,α1α2α3
= −

∫

α4,α5,α6

(
W

(2)

0

)−1

α3α4

(
W

(2)

0

)−1

α1α5

W
(3)

0,α4α5α6

(
W

(2)

0

)−1

α6α2

, (4.451)

and so on, or more generally for n ≥ 3:

Γ
(2PPI)(n)

s=si,α1α2α3···αn =

∫

α2n−2

(
W (2)

s [K]
)−1

αnα2n−2

δ

δKα2n−2

· · ·
∫

αn+1

(
W (2)

s [K]
)−1

α3αn+1

δ

δKαn+1

(
W

(2)
0 [K]

)−1

α1α2

∣∣∣∣
K=0

,

(4.452)
which is to be combined with the initial condition for the flowing density:

ρs=si,α
= W

(1)

s=si,α
, (4.453)

resulting from (4.431). Besides being generally more tedious than the derivation of W (n)

s=si
(with

n ≥ 1), the calculation of the derivatives Γ
(2PPI)(n)

s=si
(with n ≥ 2) also requires the inversion

of W (2)

0 , which might be very involved for theories that are not invariant under time and
space translations. This clarifies why it might be more efficient to exploit the master equation
for the Schwinger functional (i.e. (4.437)) instead of that for the 2PPI EA (i.e. (4.435)) in
some situations. In any case, the 2PPI vertices can be deduced at the end of the flow from the
derivatives of the Schwinger functional (and vice versa) via relations such as (4.447) and (4.449)
if necessary.

Truncations: The infinite tower of differential equations resulting from the vertex expan-
sion (4.438) combined with the master equation for Γ

(2PPI)
s [ρ] is truncated once again by ig-

noring the flow of the vertices of order larger than a given integer Nmax. This is achieved by
imposing different conditions on these vertices, which define different implementations of the
standard 2PPI-FRG:

• For the sU-flow:
Γ

(2PPI)(n)

s = 0 ∀s, ∀n > Nmax . (4.454)
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• For the pU-flow:
Γ

(2PPI)(n)

s = Γ
(2PPI)(n)

s=si
∀s, ∀n > Nmax . (4.455)

• For the iU-flow:
Γ

(2PPI)(n)

s = Γ
(2PPI)(n)

s=si

∣∣∣
m2[ρ0]→m2[ρs]

∀s, ∀n > Nmax . (4.456)

Although the standard 2PPI-FRG has already been applied to the (0+0)-D model considered
in this thesis (only in its unbroken-symmetry regime with N = 1) [148], it should be stressed
at the present stage that only the simplest truncation scheme, i.e. the sU-flow, was exploited
in this case. Indeed, the sU-flow truncation is clearly the most drastic whereas the iU-flow one
is a priori the most refined. The condition underpinning the sU-flow enables us to content
ourselves with the determination of the initial conditions Γ

(2PPI)(n)

s=si
up to n = Nmax. However,

the pU-flow requires us to pursue this procedure up to n = Nmax + 2 since the differential

equations (resulting from the vertex expansion) expressing Γ̇
(2PPI)(n)

s (with 2 ≤ n ≤ Nmax)
depend on other 2PPI vertices Γ

(2PPI)(m)

s of order up to m = n+2. Finally, the iU-flow was first
introduced in ref. [148] under the name “RG improvement” or “RGi”. The associated truncation
is implemented by expressing the squared mass of the studied system (which coincides with the
oscillator frequency ω for the toy models studied in ref. [148]) in terms of its free density ρ0 and
then replace it by the flowing density ρs in the expression of Γ

(2PPI)(n)

s=si
for n > Nmax, as stated

by (4.456). This assumption is thus quite close in spirit to the truncation condition used in the
mC-flow implementation of the 2PI-FRG.

4.3.1.2 Kohn-Sham functional renormalization group

Main features: As mentioned at the beginning of section 4.3, the KS-FRG was introduced by
Liang and collaborators [151]. This approach was put forward as a “novel optimization theory
of FRG with faster convergence”, as compared to other 2PPI-FRG approaches (especially the
sU-flow and pU-flow of the standard 2PPI-FRG) treated previously. The underlying idea is to
“split the total EA into the mean-field part ΓKS,s and the correlation part γs”:

Γ(2PPI)
s [ρ] = ΓKS,s[ρ] + γs[ρ] . (4.457)

Keeping in mind that the flow dependence of Γ
(2PPI)
s [ρ] results in principle from that of the

one-body potential Vs (unless we specify to the U-flow scheme) and of the two-body interaction
Us, we can define the flowing 2PPI EA as:

Γ(2PPI)
s [ρ] ≡ Γ(2PPI)[ρ;Vs, Us] , (4.458)

which implies that its flowing mean-field part satisfies:

ΓKS,s[ρ] ≡ Γ(2PPI)[ρ;Vs = VKS,s, Us = 0] , (4.459)

where VKS,s is the Kohn-Sham potential for the studied system at the stage of the flow where
the flow parameter has value s. The flowing density ρs must now extremize both Γ

(2PPI)
s [ρ] and

ΓKS,s[ρ] according to:
δΓKS,s[ρ]

δρα

∣∣∣∣
ρ=ρs

= 0 ∀α, s , (4.460)

to be combined with (4.439). As a consequence of definition (4.457), this implies that the
configuration ρs of the density also corresponds to an extremum of the correlation part γs[ρ]:

δγs[ρ]

δρα

∣∣∣∣
ρ=ρs

= 0 ∀α, s . (4.461)
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Relation (4.460) is actually equivalent to the Kohn-Sham equation [41, 42], hence (4.460) is not
at all a new artificial condition. We are just exploiting in this way a well-known equation of
quantum many-body physics to improve the 2PPI-FRG approach. This also explains the origin
of the name KS-FRG: the mean-field part ΓKS,s[ρ] of the 2PPI EA is determined by solving
the Kohn-Sham equation in the form of (4.460) at each step of the flow50 and its correlation
part γs[ρ] is calculated by solving a set of integro-differential equations, like those encountered
in any FRG procedure. To obtain such an equation system, we must rewrite the exact flow
equation for the 2PPI EA, i.e. (4.435), as a (still exact) flow equation for γs[ρ]. This is achieved
by plugging the splitting (4.457) into (4.435) as a first step:

γ̇s[ρ] = −Γ̇KS,s[ρ] +

∫

α

V̇s,αρα +
1

2
STr

[
U̇s

(
Γ

(2)
KS,s[ρ] + γ(2)

s [ρ]
)−1
]

+
1

2

∫

α1,α2

U̇s,α1α2ρα1ρα2 ,

(4.462)
where Γ

(n)
KS,s,α1···αn ≡

δnΓKS,s[ρ]

δρα1 ···δραn
and γ(n)

s,α1···αn ≡ δnγs[ρ]
δρα1 ···δραn

. We then rewrite the derivative Γ̇KS,s[ρ]

with the help of the chain rule:

Γ̇KS,s[ρ] =

∫

α1,α2

δΓKS,s[ρ]

δVKS,s,α1

δVKS,s,α1

δρs,α2

ρ̇s,α2
. (4.463)

The whole dependence of ΓKS,s[ρ] with respect to the flow parameter s stems from that of VKS,s

according to its definition given by (4.459). We also consider the definition of ΓKS,s[ρ] in terms
of the corresponding Schwinger functional WKS,s[K]:

ΓKS,s[ρ] =−WKS,s[K] +

∫

α

Kα
δWKS,s[K]

δKα︸ ︷︷ ︸
ρα

=− ln

(∫
Dψ̃†Dψ̃ e−SKS,s

[
ψ̃†,ψ̃
]

+
∫
αKαψ̃

†
αψ̃α

)
+

∫

α

Kαρα

=− ln

(∫
Dψ̃†Dψ̃ e−

∫
α ψ̃
†
α(∂τ+Ôkin+VKS,α−µ)ψ̃α+

∫
αKαψ̃

†
αψ̃α

)
+

∫

α

Kαρα ,

(4.464)

which, after differentiation with respect to VKS,α, gives us:

δΓKS,s[ρ]

δVKS,α

=
1

ZKS,s[K]

∫
Dψ̃†Dψ̃ ψ̃†αψ̃α e

−
∫
α ψ̃
†
α(∂τ+Ôkin+VKS,α−µ)ψ̃α+

∫
αKαψ̃

†
αψ̃α

=
δWKS,s[K]

δKα

= ρα .

(4.465)

Note that we have just used in both (4.464) and (4.465) the relation:

ρα =
δWKS,s[K]

δKα

, (4.466)

which asserts that the exact source-dependent density is obtained from the generating function-
als of the Kohn-Sham system. Such a relation has already been discussed in section 3.5.3 via
the IM (see (3.332)). At Kγ = 0 ∀γ, this coincides with the Kohn-Sham scheme [41, 42] stating
that, for any interacting system, there is a unique non-interacting system (i.e. a unique system

50At each step of the flow, it is more precisely the flow-dependent Kohn-Sham potential VKS,s that is deter-
mined from (4.460) and ΓKS,s[ρ] is then deduced from VKS,s, as the relation between ΓKS,s[ρ] and VKS,s can be
inferred from Gaussian integration, as will be illustrated in section 4.3.2.2.
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whose classical action is quadratic) with the same gs density, the one-body potential of this
auxiliary non-interacting system being the Kohn-Sham potential. Furthermore, we also know,
notably from our previous discussion on DFT in section 3.5.3 as well, that the dependence of
the density functional ΓKS,s[ρ] with respect to the corresponding one-body potential has the
form of a convolution with the density ρα. This leads to:

δΓKS,s

δρs,α1

= − δ

δρs,α1

∫

α2

VKS,s,α2ρs,α2
= −VKS,s,α1 . (4.467)

Using (4.465) and (4.467), the chain rule (4.463) is rewritten as follows:

Γ̇KS,s[ρ] =

∫

α1,α2

δΓKS,s[ρ]

δVKS,s,α1︸ ︷︷ ︸
ρα1

δVKS,s,α1

δρs,α2︸ ︷︷ ︸
−

δ2ΓKS,s
δρs,α2

δρs,α1

ρ̇s,α2
= −

∫

α1,α2

ρα1Γ
(2)

KS,s,α1α2
ρ̇s,α2

, (4.468)

assuming that δnΓKS,s

δρs,α1
···δρs,αn

=
δnΓKS,s[ρ]

δρα1 ···δραn

∣∣∣
ρ=ρs

≡ Γ
(n)

KS,s,α1···αn ∀α1, · · · , αn, s. After combining

(4.468) with (4.462), we obtain the following master equation for γs[ρ]:

γ̇s[ρ] =

∫

α1

ρα1

(
V̇s,α1 +

∫

α2

Γ
(2)

KS,s,α1α2
ρ̇s,α2

)
+

1

2
STr

[
U̇s

(
Γ

(2)
KS,s[ρ] + γ(2)

s [ρ]
)−1
]

+
1

2

∫

α1,α2

U̇s,α1α2ρα1ρα2 .

(4.469)
This master equation is turned into an infinite tower of differential equations for γs ≡ γ[ρ = ρs]

and the derivatives γ(n)
s,α1···αn ≡ δnγs[ρ]

δρα1 ···δραn

∣∣∣
ρ=ρs

from the expansion:

γs[ρ] = γs +
∞∑

n=2

∫

α1,··· ,αn
γ(n)
s,α1···αn (ρ− ρs)α1

· · · (ρ− ρs)αn , (4.470)

which is simplified according to (4.461) imposing that γ(1)
s vanishes. It is finally by inserting

this expansion into (4.469) and identifying the terms with identical powers of ρ − ρs on both
sides of the equation thus derived that we obtain the equation system to solve for the KS-FRG.
Note once again that this equation system includes in addition the Kohn-Sham equation in the
form (4.460) in order to determine the Kohn-Sham potential VKS,s, and therefore the mean-
field part ΓKS,s[ρ], at each step of the flow. It should also be stressed that, as for the standard
2PPI-FRG, we can split the KS-FRG into a U-flow and a CU-flow scheme, whether we choose
Vs independent or dependent from s, respectively. However, in both situations, the Kohn-Sham
potential VKS,s is subject to evolve during the flow. Furthermore, we can already see at this
stage a strong connection between the U-flow implementation of the KS-FRG and the pU-flow
version of the 2PI-FRG for the following reasons:

• They all rely on a splitting of the EA under consideration introducing its correlation
part (γs[ρ] for the KS-FRG and the Luttinger-Ward functional Φs[G] for the 2PI-FRG),
although this analogy must be taken with care: Φs[G] encompasses the entire information
from the interaction in the case of the 2PI-FRG whereas some of it is recast into the
mean-field part ΓKS,s via VKS,s for the 2PPI-FRG.

• They can be both formulated as a vertex expansion of the EA under consideration.
This was already stated by (4.144) for the 2PI-FRG, whereas the tower of differential
equations underlying the KS-FRG can be obtained equivalently by directly Taylor ex-
panding Γ

(2PPI)
s [ρ] and performing the splitting Γ

(2PPI)
s [ρ] = ΓKS,s[ρ] + γs[ρ] a posteriori

(instead of applying the latter splitting first and expanding the correlation part via (4.470)
afterwards).
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• The correlation part of the EA is truncated in the same manner, as can be seen by
comparing (4.165) with (4.473) below.

The link between these two FRG approaches will be further discussed from our toy model
applications presented in section 4.3.2.

In conclusion, besides the direct connection with DFT provided by the 2PPI EA formalism,
the KS-FRG enables us to exploit the Kohn-Sham scheme to improve the convergence of the
method, as compared to other standard 2PPI-FRG approaches. Technically, this amounts to
adding the Kohn-Sham equation (4.460) to the set of integro-differential equations to solve. The
KS-FRG has also been put forward with a method to estimate theoretical errors [151], that we
will not discuss further besides pointing out that the approach thus obtained is equivalent to
a Kohn-Sham DFT with uncertainty quantification of the results. Finally, another interesting
feature of the KS-FRG is the determination of the corresponding initial conditions which is
much less cumbersome as compared to that of the standard 2PPI-FRG, as we explain below.

Initial conditions: Whether we consider the U-flow or CU-flow implementation of the KS-
FRG, the initial conditions for γs and the corresponding derivatives are:

γs=si
= 0 , (4.471)

γ(n)
s=si,α1,··· ,αn = 0 ∀α1, · · · , αn, ∀n ≥ 2 . (4.472)

In the case of the U-flow, the solution of VKS,s found from (4.460) is trivial at the starting point
of the flow such that ΓKS,s=si [ρ] coincides with the free part of Γ(2PPI)[ρ]. For the CU-flow, such
a solution is non-trivial at s = si and ΓKS,s=si [ρ] thus already incorporates information about
the interaction. In both cases, the exactly solvable system used as starting point of the flow is
fully specified by the mean-field part of the EA, hence the initial condition γs=si [ρ] = 0 which
translates into (4.471) and (4.472) according to (4.470).

Truncation: Finally, the truncation of the infinite set of differential equations extracted from
the master equation (4.469) with (4.470) is simply implemented by imposing:

γ(n)
s = γ(n)

s=si
∀s, ∀n > Nmax , (4.473)

for a given truncation order Nmax.

4.3.2 Application to the (0+0)-D O(N)-symmetric ϕ4-theory

4.3.2.1 Standard 2PPI functional renormalization group

We now turn back to the studied (0+0)-D O(N) model for which the α-indices all reduce to
color ones. In particular, the two-body interaction U can be directly expressed in terms of the
coupling constant λ as follows:

Uα1α2 = Ua1a2 =
λ

12
∀a1, a2 . (4.474)

One can indeed check that this definition is consistent with:

Sint

[
ψ̃†, ψ̃

]
=

1

2

∫

α1,α2

ψ̃†α1
ψ̃†α2

Uα1α2ψ̃α2ψ̃α1 =
λ

4!

N∑

a1,a2=1

ϕ̃2
a1
ϕ̃2
a2

=
λ

4!
~̃ϕ

2
, (4.475)

where
ψ̃α = ψ̃†α = ϕ̃a , (4.476)
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as required by comparing (4.430) with the original classical action S
(
~̃ϕ
)
of our toy model. More-

over, we also choose the same cutoff function Rs as for the U-flow and CU-flow implementations
of the 2PI-FRG treated in section 4.2.2, i.e.:

Us,a1a2 = RsUa1a2 = sUa1a2 = s
λ

12
∀a1, a2 , (4.477)

in accordance with (4.343). We also use si = 0 and sf = 1 as for the 2PI-FRG. From (4.474)
to (4.477), we infer that the master equation (4.435) reduces in the present (0+0)-D framework
to:

Γ̇(2PPI)
s (ρ) =

λ

24

(
N∑

a1,a2=1

Gs,a1a2(ρ) +
N∑

a1,a2=1

ρa1ρa2

)
, (4.478)

with
G−1

s,a1a2
(ρ) ≡ Γ(2PPI)(2)

s,a1a2
(ρ) . (4.479)

Similarly to the previous FRG approaches, we treat (4.478) with a vertex expansion proce-
dure based on the Taylor expansion of Γ

(2PPI)
s (ρ) around its extremum at ρ = ρs, i.e.:

Γ(2PPI)
s (ρ) = Γ

(2PPI)

s +
∞∑

n=2

1

n!

N∑

a1,··· ,an=1

Γ
(2PPI)(n)

s,a1···an (ρ− ρs)a1
· · · (ρ− ρs)an , (4.480)

where
Γ

(2PPI)

s ≡ Γ(2PPI)
s

(
ρ = ρs

)
∀s , (4.481)

Γ
(2PPI)(n)

s,a1···an ≡
∂nΓ

(2PPI)
s (ρ)

∂ρa1 · · · ∂ρan

∣∣∣∣∣
ρ=ρs

∀a1, · · · , an, s , (4.482)

and, in particular,
Γ

(2PPI)(1)

s,a = 0 ∀a, s . (4.483)

The infinite tower of differential equations resulting from this vertex expansion procedure in-
cludes notably (see appendix G.2.1 for the corresponding flow equations expressing the deriva-
tives of the 2PPI vertices of order 3 and 4 with respect to s):

Γ̇
(2PPI)

s =
λ

24

N∑

a1,a2=1

(
Gs,a1a2 + ρs,a1

ρs,a2

)
, (4.484)

ρ̇s,a1
=

λ

24

N∑

a2=1

Gs,a1a2

(
N∑

a3,a4,a5,a6=1

Gs,a3a5Γ
(2PPI)(3)

s,a2a5a6
Gs,a6a4 − 2

N∑

a3=1

ρs,a3

)
, (4.485)

Γ̇
(2PPI)(2)

s,a1a2
=

N∑

a3=1

ρ̇s,a3
Γ

(2PPI)(3)

s,a3a1a2

+
λ

24

(
2 + 2

N∑

a3,a4,a5,a6,a7,a8=1

Gs,a3a5Γ
(2PPI)(3)

s,a1a5a6
Gs,a6a7Γ

(2PPI)(3)

s,a2a7a8
Gs,a8a4

−
N∑

a3,a4,a5,a6=1

Gs,a3a5Γ
(2PPI)(4)

s,a1a2a5a6
Gs,a6a4

)
.

(4.486)

Regarding the initial conditions, we can actually bypass the lengthy procedure outlined in
section 4.3.1.1 by exploiting the fact that the 2PI EA coincides with the 2PPI one in the
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present framework, i.e. by exploiting the relation Γ(2PPI)(ρ) = Γ(2PI)(G) (which results itself
from both the (0+0)-D character of the studied model and from the fact that the 1-point
correlation function of ~̃ϕ is imposed to be zero in the 2PPI-FRG framework). This enables
us to find the initial conditions for the 2PPI vertices by differentiating the free 2PI EA, given
by (4.133) that reduces in (0+0)-D to:

Γ
(2PI)
0 (G) = −1

2
Tra
[

ln(2πG)
]

+
1

2
Tra
(
C−1G− IN

)
, (4.487)

and then replacing G by ρ via Ga1a2 = ρa1δa1a2 . This leads to:

ρs=si,a
=

1

m2
∀a , (4.488)

Γ
(2PPI)

s=si,a1a2
= −N

2
ln

(
2π

m2

)
, (4.489)

Γ
(2PPI)(2)

s=si,a1a2
=

1

2
ρ−2
s=si,a1

δa1a2 ∀a1, a2 , (4.490)

Γ
(2PPI)(3)

s=si,a1a2a3
= −ρ−3

s=si,a1
δa1a2δa1a3 ∀a1, a2, a3 , (4.491)

Γ
(2PPI)(4)

s=si,a1a2a3a4
= 3ρ−4

s=si,a1
δa1a2δa1a3δa1a4 ∀a1, a2, a3, a4 , (4.492)

Γ
(2PPI)(5)

s=si,a1a2a3a4a5
= −12ρ−5

s=si,a1
δa1a2δa1a3δa1a4δa1a5 ∀a1, a2, a3, a4, a5 ,

(4.493)
Γ

(2PPI)(6)

s=si,a1a2a3a4a5a6
= 120ρ−6

s=si,a1
δa1a2δa1a3δa1a4δa1a5δa1a6 ∀a1, a2, a3, a4, a5, a6 .

(4.494)
The infinite tower of differential equations containing (4.484) to (4.486) is truncated according
to the three following conditions (given by (4.454) to (4.456) in our general presentation of the
standard 2PPI-FRG):

• For the sU-flow:
Γ

(2PPI)(n)

s = 0 ∀s, ∀n > Nmax . (4.495)

• For the pU-flow:
Γ

(2PPI)(n)

s = Γ
(2PPI)(n)

s=si
∀s, ∀n > Nmax . (4.496)

• For the iU-flow:
Γ

(2PPI)(n)

s = Γ
(2PPI)(n)

s=si

∣∣∣
ρs=si

→ρs
∀s, ∀n > Nmax . (4.497)

In particular, the substitution m2[ρ0] → m2[ρs] in (4.456) has been replaced by ρs=si
→ ρs

in its zero-dimensional counterpart given by (4.497). This can be explained as follows: for
the studied (0+0)-D model, m2(ρ0) = 1/ρ0 = (1/N)

∑N
a=1 1/ρs=si,a

according to (4.488), which
implies that the substitution m2(ρ0)→ m2(ρs) = (1/N)

∑N
a=1 1/ρs,a is equivalent to ρs=si

→ ρs.
Note that we could not directly replace ρs=si

for finite-dimensional systems since Γ
(2PPI)(n)

s=si
can

not be written explicitly in terms of ρs=si
in such cases. Finally, let us point out that the gs

energy and density are both directly obtained at the end of the flow via the relations:

Es2PPI-FRG
gs = Γ

(2PPI)

s=sf
, (4.498)

ρs2PPI-FRGgs =
1

N

N∑

a=1

ρs=sf ,a
. (4.499)
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Figure 4.25: Difference between the calculated gs energy Ecalc
gs or density ρcalc

gs and the corre-
sponding exact solution Eexact

gs or ρexact
gs at m2 = +1 and N = 1 (Re(λ) ≥ 0 and Im(λ) = 0).
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Figure 4.26: Same as fig. 4.25 with N = 2 instead.

The application of the standard 2PPI-FRG designed since the beginning of section 4.3.2.1 is
only able to treat the unbroken-symmetry regime of our toy model. It can actually be readily
extended to tackle the broken-symmetry one by using a CU-flow implementation, as will be
illustrated later with the most performing 2PPI-FRG approach tested in this study, i.e. the
KS-FRG.

To summarize, our calculations for the standard 2PPI-FRG up to Nmax = 2 are carried out
by solving the differential equations (4.484) to (4.486), with initial conditions given by (4.488)
to (4.492). The associated truncation conditions are set by (4.495), (4.496) and (4.497) for the
sU-flow, the pU-flow and the iU-flow respectively. Note also that the chosen cutoff function
for the two-body interaction is expressed by (4.477). The sU-flow can not be implemented at
Nmax = 1 since (4.495) implies that G−1

s,a1a2
= Γ

(2PPI)(2)

s,a1a2
= 0 ∀a1, a2, s at this truncation order,

which renders the associated flow equations (i.e. (4.484) and (4.485)) ill-defined. We thus
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compare the three aforementioned truncation schemes of the standard 2PPI-FRG at N = 1
and N = 2, in figs. 4.25 and 4.26 respectively. From these two figures and for both Egs and
ρgs, it can clearly be seen that the sU-flow is outperformed by the pU-flow which is itself less
performing than the iU-flow. This was expected from definitions (4.495) to (4.497) that put
forward the iU-flow as the most refined truncation scheme among the three. As can be seen
from figs. 4.25 and 4.26 as well as from figs. 4.29 and 4.30, the iU-flow results for the gs energy
and density are systematically improved from Nmax = 1 to Nmax = 3. This could be regarded
as a surprising feature considering the similarity between the truncation conditions (4.456) for
the iU-flow and (4.172) (with (4.173)) for the mC-flow implementation of the 2PI-FRG which
did not prove to be that reliable.

4.3.2.2 Kohn-Sham functional renormalization group

From (4.474) to (4.477), we can show that the master equation of the KS-FRG expressed
by (4.469) reduces for our zero-dimensional O(N) model to:

γ̇s(ρ) =
1

2
V̇s

N∑

a1=1

ρa1+
N∑

a1,a2=1

ρa1Γ
(2)

KS,s,a1a2
ρ̇s,a2

+
λ

24

(
N∑

a1,a2=1

Gs,a1a2(ρ) +
N∑

a1,a2=1

ρa1ρa2

)
, (4.500)

where
ΓKS,s ≡ ΓKS,s

(
ρ = ρs

)
∀s , (4.501)

Γ
(n)

KS,s,a1···an ≡
∂nΓKS,s(ρ)

∂ρa1 · · · ∂ρan

∣∣∣∣
ρ=ρs

∀a1, · · · , an, s , (4.502)

and the propagator Gs(ρ) is already defined by (4.479) which can be put in the form:

G−1
s,a1a2

(ρ) ≡ Γ(2PPI)(2)
s,a1a2

(ρ) = Γ
(2)
KS,s,a1a2

(ρ) + γ(2)
s,a1a2

(ρ) . (4.503)

As opposed to our previous discussion on the standard 2PPI-FRG, we assume that the one-body
potential Vs can vary throughout the flow to treat the regime with m2 < 0, hence exploiting a
CU-flow approach. More specifically, the free part of the classical action (4.430) now satisfies:

S0

[
ψ̃†, ψ̃

]
=

∫

α

ψ̃†α

(
∂τ + Ôkin + Vα − µ

)
ψ̃α =

1

2
V

N∑

a=1

ϕ̃2
a =

1

2
m2~̃ϕ

2
, (4.504)

with V = m2, and we choose the following flow-dependent one-body potential:

Vs =





m2 ∀m2 > 0 ,

(2s− 1)m2 ∀m2 < 0 ,
(4.505)

alongside with (4.477) for the flow-dependent two-body interaction Us, still using si = 0 and
sf = 1 as boundary values for s. Hence, the derivative V̇s vanishes in the regime with m2 > 0
in which case we thus recover a U-flow formulation. Actually, our choice (4.505) for m2 < 0
has nothing to do with a CU-flow implementation designed so that the starting point of the
flow coincides with the Kohn-Sham system (as described right above (4.443)). It is simply
a trick to tackle the regime with m2 < 0 for the studied (0+0)-D model by using the free
theory with squared mass −m2 > 0 as starting point for the flow (Vs=si = −m2 at si = 0 for
m2 < 0 according to (4.505)). We thus circumvent in this way the problem of divergence of the
corresponding partition function or Schwinger functional at λ = 0 and m2 < 0, which restricts
the U-flow implementation of all 2PPI-FRG approaches treated here to the unbroken-symmetry
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phase. Note that this trick can also be exploited to tackle the latter phase with the pU-flow
implementation of the 2PI-FRG.

Furthermore, the vertex expansion recipe is applied to (4.500) using notably the Taylor
expansion of γs(ρ) around its extremum at ρ = ρs, i.e.:

γs(ρ) = γs +
∞∑

n=2

1

n!

N∑

a1,··· ,an=1

γ(n)
s,a1···an (ρ− ρs)a1

· · · (ρ− ρs)an , (4.506)

with
γs ≡ γs

(
ρ = ρs

)
∀s , (4.507)

γ(n)
s,a1···an ≡

∂nγs(ρ)

∂ρa1 · · · ∂ρan

∣∣∣∣
ρ=ρs

∀a1, · · · , an, s , (4.508)

and
γ(1)
s,a = 0 ∀a, s . (4.509)

This vertex expansion leads as usual to an infinite tower of differential equations which contains
for instance (see appendix G.2.2 for the corresponding flow equations expressing the derivatives
γ̇

(3)

s and γ̇(4)

s ):

γ̇s =
1

2
V̇s

N∑

a1=1

ρs,a1
+

1

2

N∑

a1=1

ρ−1
s,a1
ρ̇s,a1

+
λ

24

N∑

a1,a2=1

(
Gs,a1a2 + ρs,a1

ρs,a2

)
, (4.510)

ρ̇s,a1
=− 1

2
V̇s

N∑

a2=1

Gs,a1a2

+
λ

24

N∑

a2=1

Gs,a1a2

(
N∑

a3,a4,a5,a6=1

Gs,a3a5

(
Γ

(3)

KS,s + γ(3)
s

)
a2a5a6

Gs,a6a4 − 2
N∑

a3=1

ρs,a3

)
,

(4.511)

γ̇
(2)

s,a1a2
=

N∑

a3=1

ρ̇s,a3
γ(3)
s,a3a1a2

+
λ

24

(
2 + 2

N∑

a3,a4,a5,a6,a7,a8=1

Gs,a3a5

(
Γ

(3)

KS,s + γ(3)
s

)
a1a5a6

Gs,a6a7

(
Γ

(3)

KS,s + γ(3)
s

)
a2a7a8

Gs,a8a4

−
N∑

a3,a4,a5,a6=1

Gs,a3a5

(
Γ

(4)

KS,s + γ(4)
s

)
a1a2a5a6

Gs,a6a4

)
.

(4.512)

The initial conditions used to solve the resulting equation systems are:

γs=si
= 0 , (4.513)

γ(n)
s=si,a1,··· ,an = 0 ∀a1, · · · , an, ∀n ≥ 2 , (4.514)

and these equation systems are closed with the condition:

γ(n)
s = γ(n)

s=si
∀s, ∀n > Nmax , (4.515)
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after choosing a truncation order Nmax. Finally, an expression for the mean-field part ΓKS,s(ρ)
can be directly inferred from the free 2PI EA expressed by (4.487), after performing the substi-
tutions Ga1a2 → ρa1δa1a2 and C−1

a1a2
→ VKS,s,a1δa1a2 (thus introducing the Kohn-Sham potential

at the expense of the free propagator). This leads to:

ΓKS,s(ρ) = −1

2

N∑

a=1

ln(2πρa) +
1

2

N∑

a=1

VKS,s,aρa −
N

2
. (4.516)

We directly deduce from (4.516) the following derivatives:

Γ
(1)

KS,s,a = −1

2
ρ−1
s,a +

1

2
VKS,s,a ∀a, s , (4.517)

Γ
(2)

KS,s,a1a2
=

1

2
ρ−2
s,a1
δa1a2 ∀a1, a2, s , (4.518)

Γ
(3)

KS,s,a1a2a3
= −ρ−3

s,a1
δa1a2δa1a3 ∀a1, a2, a3, s , (4.519)

Γ
(4)

KS,s,a1a2a3a4
= 3ρ−4

s,a1
δa1a2δa1a3δa1a4 ∀a1, a2, a3, a4, s , (4.520)

Γ
(5)

KS,s,a1a2a3a4a5
= −12ρ−5

s,a1
δa1a2δa1a3δa1a4δa1a5 ∀a1, a2, a3, a4, a5, s ,

(4.521)

Γ
(6)

KS,s,a1a2a3a4a5a6
= 120ρ−6

s,a1
δa1a2δa1a3δa1a4δa1a5δa1a6 ∀a1, a2, a3, a4, a5, a6, s ,

(4.522)
which coincide with the corresponding derivatives of the free version of the 2PPI EA Γ

(2PPI)
s (ρ)

at n ≥ 2 (as can be seen up to n = 6 by comparing (4.518) to (4.522) with (4.490) to (4.494)).
We then consider (4.517) together with the condition of extremization of ΓKS,s(ρ):

Γ
(1)

KS,s,a = 0 ∀a, s , (4.523)

which enables us to find the following simple expression for the flow-dependent Kohn-Sham
potential:

VKS,s,a = ρ−1
s,a ∀a, s . (4.524)

Plugging (4.524) into (4.516) leads to:

ΓKS,s = −1

2

N∑

a=1

ln
(
2πρs,a

)
, (4.525)

and we can thus deduce the gs energy at the end of the flow by using the relation:

EKS-FRG
gs = Γ

(2PPI)

s=sf
= ΓKS,s=sf + γs=sf

= −1

2

N∑

a=1

ln
(
2πρs=sf ,a

)
+ γs=sf

, (4.526)

whereas the gs density is obtained from:

ρKS-FRG
gs =

1

N

N∑

a=1

ρs=sf ,a
. (4.527)
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Figure 4.27: Difference between the calculated gs energy Ecalc
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Figure 4.28: Same as fig. 4.27 with N = 2 instead.

Hence, our KS-FRG results up to Nmax = 2 are obtained by solving the equation system
containing (4.510) to (4.512) (combined with (4.518) to (4.520)), with initial conditions set
by (4.513) and (4.514) and truncation condition imposed by (4.515). The flow-dependent one-
body potential Vs and Kohn-Sham potential VKS,s are respectively given by (4.505) and (4.524)
whereas the cutoff function for the two-body interaction Us is still expressed by (4.477). The
KS-FRG was introduced to improve the convergence of the standard 2PPI-FRG in its most basic
implementations, i.e. with the sU-flow or pU-flow as truncation schemes. This improvement
is illustrated by figs. 4.27 and 4.28, which clearly show that the KS-FRG outperforms the
pU-flow version of the standard 2PPI-FRG51 over the whole range of tested values for the
coupling constant (i.e. for λ/4! ∈ [0, 10]) for both Egs and ρgs up to Nmax = 4 at N = 1

51Recall that the pU-flow outperforms itself the sU-flow implementation of the standard 2PPI-FRG, as was
illustrated by figs. 4.25 and 4.26.
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Figure 4.30: Same as fig. 4.29 with N = 2 instead.

and up to Nmax = 3 at N = 2. We also point out interesting connections between different
FRG approaches tested so far: figs. 4.29 and 4.30 illustrate that the pU-flow version of the
2PI-FRG, the iU-flow version of the 2PPI-FRG and the KS-FRG lead to identical results for
the studied toy model. The equivalence between the pU-flow of the 2PI-FRG on the one
hand and the latter two 2PPI-FRG approaches on the other hand would no longer be valid
at finite dimensions since the 2PI EA Γ(2PI)(G) and the 2PPI EA Γ(2PPI)(ρ) only coincide in
(0+0)-D. However, the connection between the iU-flow and the KS-FRG remains unaffected as
dimension increases since both of these approaches are based on the 2PPI EA Γ(2PPI)(ρ). The
latter remark enables us to characterize the KS-FRG as a more easily implementable version of
the iU-flow (which clearly stands out among the standard 2PPI-FRG techniques) for the two
following reasons: i) the substitution m2[ρ0]→ m2[ρs] (introduced in (4.456)) underpinning the
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Figure 4.31: Difference between the calculated gs energy Ecalc
gs or density ρcalc
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sponding exact solution Eexact

gs or ρexact
gs at m2 = ±1 and N = 1 (Re(λ) ≥ 0 and Im(λ) = 0).

iU-flow is not readily generalizable to all theories and the KS-FRG does not rely on it; ii) the KS-
FRG completely bypasses the lengthy determination of the initial conditions Γ

(2PPI)(n)

s=si
(outlined

from (4.447) to (4.452)) that must be performed up to n = Nmax + 2 within the iU-flow.

Finally, as the KS-FRG stands out as the most efficient 2PPI-FRG approach tested in
the present study, we compare this method in figs. 4.31 and 4.32 with the most performing
1PI-FRG and 2PI-FRG techniques tested in previous sections, i.e. the mixed 1PI-FRG and
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Figure 4.32: Same as fig. 4.31 with N = 2 instead.

the mU-flow version of the 2PI-FRG at NSCPT = 1. Except for the mixed 1PI-FRG, this
comparison is extended to the regime with m2 < 0 thanks to the choice of flowing one-body
potential Vs put forward in (4.505), which leads to KS-FRG results of similar accuracy for
both signs of m2 at a given truncation order Nmax. Since the pU-flow version of the 2PI-
FRG is equivalent to the KS-FRG for the toy model under consideration, figs. 4.31 and 4.32
basically compare the mU-flow and pU-flow implementations of the 2PI-FRG in the unbroken-
and broken-symmetry regimes. As was pointed out in section 4.2.2, the better performances
of the mU-flow can be attributed to the quality of its starting point: the Hartree-Fock theory
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for the mU-flow and the free theory (at squared mass |m2|) for the pU-flow or the KS-FRG.
Furthermore, in figs. 4.31 and 4.32 and in the regime with m2 > 0, the mU-flow of the 2PI-
FRG clearly outperforms the mixed 1PI-FRG whereas the KS-FRG yields a similar or a slightly
better accuracy than the latter. In addition to the absence of mixed 1PI-FRG results in the
broken-symmetry phase, it can be said that our best 1PI-FRG results are rather disappointing
as compared to the 2PI-FRG and 2PPI-FRG ones. However, it should be stressed that many
state-of-the-art implementations of the 1PI-FRG discussed in section 4.1.1 have not been tested
in this study. In most cases, this was because of the (0+0)-D character of the toy model under
consideration which prevents from illustrating the relevance of these methods. For instance,
as we said earlier, the DE’s truncation scheme does not constitute an approximation of the
Wetterich equation for our toy model whereas there is no momentum in (0+0)-D such that
the BMW approximation can not be used to better capture the momentum dependence of
1PI vertex functions. The DMF2RG implementations of the 1PI-FRG and 2PI-FRG have not
been tested in this comparative study either. It would actually be enlightening to compare the
ability of 1PI-FRG and 2PI-FRG approaches to describe the momentum dependence of 1PI
vertex functions as they are extracted from the flow in very different fashions within these two
schemes: for example, the momentum dependence of the flowing 1PI vertex Γ

(1PI)(4)

s or Γ
(1PI)(4)

k

is found from Φ
(2)

s or Φ
(2)

s by solving a Bethe-Salpeter equation in the framework of the 2PI-
FRG whereas it is determined by discretizing the momentum space into patches throughout the
flow within the fermionic 1PI-FRG. Such a comparison could be done using a (0+1)-D model
such as those used in refs. [459, 460]. Note that there is also an implementation of the KS-FRG
left to test, i.e. its CU-flow implementation designed such that the KS-FRG’s starting point
coincides with the Kohn-Sham system (i.e. using the flowing one-body potential Vs = (1−s)VKS

∀s introduced right above (4.443)). It would also be interesting to compare its performances
with those of the mU-flow of the 2PI-FRG, which would amount to comparing the relevance of
the Hartree-Fock and the Kohn-Sham systems as starting points of the flow, but we defer this
to future investigations.

Getting back to our main point, we finally stress that, considering the limitations of the
present study and especially the (0+0)-D character of the toy model under consideration, it
can not be concluded from our results that the 1PI-FRG is less efficient than the 2PI-FRG and
2PPI-FRG schemes, especially considering the many successful applications to strongly-coupled
systems outlined in section 4.1.1. The efficiency of the 1PI-FRG, 2PI-FRG and 2PPI-FRG
would be compared in a more reliable manner by further discussing the numerical implementa-
tions of these three FRG schemes in the framework of finite-dimensional models. However, we
do expect the excellent performances of the mU-flow and CU-flow versions of the 2PI-FRG to
hold in the framework of more realistic (fermionic) systems, notably because they are designed
to tackle both particle-hole and particle-particle channels on an equal footing.
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Chapter 5

Conclusion

Let us first summarize the results obtained from the (0+0)-D O(N) model studied in this thesis.

Concerning the diagrammatic techniques discussed in chapter 3, the simplest approach
to implement is certainly the standard LE for the original theory. Combining the latter with
resummation theory (Padé-Borel resummation [173, 180], conformal mapping [186] or Borel-
hypergeometric resummation [187, 192]) leads to decent results only at the third non-trivial
order in the unbroken-symmetry regime. This is not even the case in the broken-symmetry
phase: although a transseries representation combined with Borel-hypergeometric resummation
yields satisfactory results at the third non-trivial order for N = 1, no (finite) result can be
extracted from the LE (even with a transseries representation) for N ≥ 2 due to divergences
inherent to Golstone’s theorem [266]. We have also applied a HST to the studied toy model,
with or without integrating out the original field, thus leading to its collective and mixed
representations, respectively. The latter problem related to Golstone’s theorem is also present
in the mixed case but not in the collective one. The diagrammatic series is technically more
demanding to derive in the framework of the collective representation but it turns out to be
very successful even at the first non-trivial order (with or without resummation). The present
study is to our knowledge the first to combine this collective LE with resummation theory (see
e.g. results of figs. 5.1 to 5.4) and to push it up to its third non-trivial order (see e.g. results
of figs. 5.3 and 5.4) where we find, as expected, a significant improvement of our results for all
calculated quantities, i.e. for the gs energy Egs and density ρgs, with the help of resummation.
We have also exhibited an interesting link between the collective LE and the 1/N -expansion [88,
166], which coincide at their first non-trivial orders.

We have also exploited a modified version of PT called OPT [154]. OPT is not suited to
be combined with a HST but it does not suffer from Goldstone’s theorem in the original repre-
sentation of our model. The simplicity of OPT is also appealing: it simply amounts to adding
and subtracting a quadratic term in the classical action of the theory under consideration,
thus introducing a classical field (which contrasts with the quantum field introduced via HST)
which is then adjusted in order to optimize the truncation of the perturbative series. Several
optimization procedures have been investigated, including the SCC which is close in spirit to
Kohn-Sham DFT, and the more demanding PMS, which gave us our best OPT results in both
the unbroken- and broken-symmetry regimes.

Finally, among the self-consistent PT or diagrammatic EA approaches, the best results are
obtained from the 2PI EA in the framework of the mixed representation, whereas other more
involved techniques such as the 4PPI EA [305] turned out to be quite disappointing. More
specifically, this mixed 2PI EA approach, whose first non-trivial order in the ~-expansion is
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known as the BVA [292], has been combined with a resummation procedure (see e.g. results of
figs. 5.1, 5.3 and 5.4) and pushed up to its third non-trivial order (see e.g. results of figs. 5.3
and 5.4) for the first time in this thesis. It clearly stands out from our study thanks to the
expectation value of the auxiliary field which has proven to be very effective in capturing
quantum correlations. We have also carefully checked that the physical solution of the gap
equations corresponding to this mixed 2PI EA never exhibits a spurious breakdown of the
O(N) symmetry at the first non-trivial order or beyond, in accordance with the exact solution
of our toy model discussed in chapter 2.

In conclusion, the most performing diagrammatic techniques (in the determination of Egs

and ρgs) of this study are the collective LE, OPT with PMS and the mixed 2PI EA (or,
more accurately, self-consistent PT based on the mixed 2PI EA). We have notably detailed in
appendix C the determination of the diagrams (including their multiplicities) underlying the
latter two approaches up to their third non-trivial orders. The performances of these three
techniques are compared at their first non-trivial orders in figs. 5.1 and 5.2 and at their third
non-trivial orders in figs. 5.3 and 5.4, still for the gs energy and density at N = 1 and 2.
For the methods relying on asymptotic series, i.e. the collective LE and the mixed 2PI EA,
the resummation procedure might slightly improve the first non-trivial order obtained from
the bare series, which is why figs. 5.1 and 5.2 sometimes display results from Padé-Borel or
Borel-hypergeometric resummation (which might actually be identical for Egs in the unbroken-
symmetry phase). To fully appreciate the merits of the resummation, we need to focus on
higher truncation orders like those leading to figs. 5.3 and 5.4. The results shown in figs. 5.1
to 5.4 clearly show that the collective LE, OPT with PMS and the mixed 2PI EA all yield
similar performances in both the unbroken- and broken-symmetry regimes of our toy model.
It can be noted however that OPT with PMS gives a slightly worse estimate of the gs energy
than the two other methods at first non-trivial order, in which case it simply coincides with
the Hartree-Fock result of the original 2PI EA. Moreover, according to the aforementioned
connection between the 1/N -expansion and the collective LE, the latter is expected to be more
efficient as N increases, which is in accordance with the results of figs. 5.1 to 5.4. Finally,
we stress again that some of the most performing tested techniques, i.e. the collective LE
and the mixed 2PI EA, have been pushed beyond their first non-trivial orders and combined
with resummation procedures for the first time in this work. This is of particular importance
considering that resummation is an essential ingredient to turn these approaches into reliable
and systematically improvable techniques.

Then, regarding the study of chapter 4 on FRG techniques, various implementations of
the 1PI-FRG [126], the 2PPI-FRG [323] and the 2PI-FRG [321, 322] were investigated. The
1PI-FRG approach put forward by Wetterich exhibits nice convergence properties for both
Egs and ρgs in the framework of the original, mixed and collective representations, although
the equation systems underlying the 1PI-FRG in the first two representations turned out to
be too stiff (at least for the numerical tools used to perform this study, i.e. the NDSolve

function of Mathematica 12.1 in particular) to tackle the broken-symmetry regime. We have
also shown how to recover the leading order of the collective LE, referred to as the LOAF
approximation [253], via the 1PI-FRG in the mixed representation, i.e. via the mixed 1PI-FRG,
combined with MFT [136]. Furthermore, it should be stressed that our 1PI-FRG study was
restricted to the vertex expansion as a means to treat the Wetterich equation. There are however
alternative methods to this vertex expansion, e.g. the DE and the BMW approximation, that
can not be exploited in (0+0)-D but have already proven very efficient in the framework of
finite-dimensional models, as was discussed at the end of section 4.1.1.
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There are also various implementations of the 2PPI-FRG and of the 2PI-FRG. To our
knowledge, none of these FRG approaches have ever been applied to an O(N) model, which
is why we have discussed the treatment of the O(N) symmetry in their respective formalisms
in an exhaustive fashion. As can be expected from ref. [151], our calculations show that the
most efficient implementation of the 2PPI-FRG is the KS-FRG that relates the 2PPI-FRG to
the Kohn-Sham scheme [41, 42] of DFT. We have also shown that the KS-FRG results can be
recovered from a truncation scheme of the standard 2PPI-FRG, coined as iU-flow. We have
thus clarified in this way the utility of the KS-FRG scheme, whose implementation is more
readily adaptable to higher-dimensional theories than that of the iU-flow. In addition, a cutoff
function has been designed for the KS-FRG to treat the broken-symmetry phase of the studied
model as efficiently as the unbroken-symmetry one, for both Egs and ρgs.

Concerning the 2PI-FRG, there are mainly two implementations, i.e. the C-flow and the
U-flow, which can be combined into a third, i.e. the CU-flow. For the C-flow, the cutoff
function is introduced in the quadratic part of the classical action, as for the 1PI-FRG of
Wetterich, whereas the U-flow is closer in spirit to the 2PPI-FRG as the cutoff function is
inserted into the interaction part of the classical action. We have established an interesting
connection with the 2PPI-FRG, namely that the pU-flow results of the 2PI-FRG are identical
to those obtained from the KS-FRG for the studied (0+0)-D toy model. Such a link does not
hold for finite-dimensional theories but gives us a clearer idea on the closeness between the
2PPI-FRG and the 2PI-FRG formalisms. Moreover, the performances of the C-flow of the 2PI-
FRG are rather disappointing, for the original as well as for the mixed theories. We have also
encountered some stiffness problems in our C-flow calculations, whose origins have been clarified
and certainly differ from those leading to the stiffness issues in our 1PI-FRG applications. The
results obtained from both the U-flow and the CU-flow in the original representation are much
more satisfactory. We have also discussed extensions of these two methods to the mixed theory
but deferred their implementations to future investigations. Within the U-flow approaches,
our study clearly puts forward the mU-flow designed such that the starting point of the flow
coincides with the Hartree-Fock result of the original 2PI EA treated via self-consistent PT. This
mU-flow implementation of the 2PI-FRG clearly stands out among the FRG results presented
in chapter 4, in both the unbroken- and broken-symmetry phases of our toy model. We can
actually see in figs. 5.1 to 5.4 that this approach reproduces the gs energy and density of our
model with an accuracy that is comparable to that of the best diagrammatic techniques of
chapter 3.

Therefore, we have applied and illustrated the efficiency of many non-perturbative PI meth-
ods throughout the comparative study of this thesis. However, in order to fully exploit the
benefits of this toy model study, we must also be aware of its limitations. The latter are essen-
tially due to two features of the chosen toy model: i) the absence of competing channels; ii) the
(0+0)-D character. Concerning the first point, all techniques relying on a HST (i.e. formulated
in the mixed or in the collective representation) are expected to encounter significant problems
in the treatment of systems with competing channels [160] (e.g. for superfluid systems where
the particle-hole and particle-particle channels are of comparable importance), as we discussed
in chapter 3. More specifically, the implementation of the collective LE and the mixed 2PI EA
should be much more difficult for such systems, as opposed to OPT (regardless of the chosen
optimization procedure) and the 2PI-FRG in the original representation notably. Regarding
the second source of limitation, i.e. the (0+0)-D character of our toy model, it prevented us
from properly apprehending the numerical weight of the tested methods1, although we have

1It should be noted that the (0+0)-D nature of our O(N) model also led to reasonable computation times
for all tested techniques and was therefore an advantage in itself as well.
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partially compensated this point with the inclusion of the O(N) symmetry. For example, for
the purpose of describing more realistic strongly-coupled systems, further studies of the mU-
flow on models including at least one spatial dimension should be performed to better illustrate
how demanding this implementation of the 2PI-FRG (which relies on the resolution of the
Bethe-Salpeter equation at each step of the flow) is, as compared to 2PPI-FRG approaches
especially. A relevant arena to achieve this is the Alexandrou-Negele nuclei’s model studied
in refs. [465, 467, 468] with the 2PPI-FRG. Among all performing methods mentioned above,
OPT is probably the only approach whose numerical implementation is not expected to get sig-
nificantly more complicated in the framework of finite-dimensional theories. In particular, the
equations underlying the tested optimization procedures in OPT (i.e. the PMS, the TP method
and the SCC) should remain polynomial in the framework of finite-dimensional O(N) models
while the gap equations encountered in diagrammatic EA techniques and the flow equations
underpinning FRG methods would respectively become self-consistent and integro-differential.

The expected limitations of the collective LE, the mixed 2PI EA (due to the HST) and of the
mU-flow version of the 2PI-FRG (with an expected significant numerical weight related to the
resolution of the Bethe-Salpeter equation throughout the flow) should certainly not be taken
for granted. We thus suggest other comparative studies on finite-dimensional systems with
competing instabilities as outlook of the present work. Some possible playgrounds to achieve
this are the (2+1)-D Hubbard model of ref. [322] or the uniform fermionic system with short-
range interaction treated in ref. [56] constructing a DFT for superfluid systems from the 2PPI
EA and the IM. Even though the obtained results might be disappointing, such comparative
studies might trigger some modifications or extensions of the methods under consideration that
would make them more suitable to achieve our ultimate goal, i.e. to achieve an accurate and
computationally affordable description of strongly-coupled fermionic systems. An example of
such extensions of the 2PI-FRG is the DMF2RG implemention put forward by Katanin in
ref. [462] presenting a successful application of this formalism to the (2+1)-D Hubbard model.
Nonetheless, sticking to the mU-flow version of the 2PI-FRG provides us with an interesting
connection with the nuclear EDF approach: while the MR EDF procedures all take as inputs
the one-body density matrices calculated from the HFB equations, the mU-flow can start from
the propagator (from which we can infer the densities of the studied system) determined from
self-consistent PT via the Hartree-Fock approximation. It is tempting to push this analogy
with the MR EDF scheme further by saying that the mU-flow also has the power to describe
collective phenomena by restoring the symmetries broken down by its starting point, but this
remains to be proven.
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APPENDIX A. GAUSSIAN INTEGRATION

Appendix A

Gaussian integration

In this appendix, we derive Gaussian integral formulae for real bosonic and fermionic (i.e.
Grassmann) fields:

• Bosonic scalar field:
For a real non-Grassmann variable y, we have the following Gaussian integral formula:

∫ ∞

−∞

dy√
2π

e−
1
2
ay2

=
1√
a
, (A.1)

with a > 0. As a next step, we generalize this result to n dimensions by introducing
a n-component vector y =

(
y1 · · · yn

)T and a n × n positive definite1 real symmetric
matrix A. Assuming that y is expressed in a basis where A is diagonal, we obtain:

∫

Rn

dny

(2π)n/2
e−

1
2
yTAy =

∫

Rn

(
n∏

i=1

dyi√
2π

)
e−

1
2

∑n
i=1 yiAiiyi

=
n∏

i=1

∫ ∞

−∞

dyi√
2π

e−
1
2
yiAiiyi

︸ ︷︷ ︸
1√
Aii

=

(
n∏

i=1

Aii

)−1/2

= [Det(A)]−1/2 .

(A.2)

The determinant being a basis-independent quantity, the latter result holds in any basis.
The Gaussian functional integral formula for a non-Grassmann scalar field is given by the
limit n→∞ of result (A.2):

∫
Dψ̃ e

− 1
2

∫
α1,α2

ψ̃α1Aα1α2 ψ̃α2 = [Det(A)]−1/2 , (A.3)

where ψ̃α is a real bosonic field, the α-indices gather all relevant indices labeling the field
ψ̃ (spacetime indices, spin projections, ...) and A is henceforth a functional matrix.

1The positive definiteness of A means that this matrix satisfies the relation yTAy > 0 for any non-zero
n-component column vector y.
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• Fermionic scalar field:
We consider a complex Grassmann variable η. Owing to the identity η2 = 0, any element
f of a Grassmann algebra with m generators η1, ..., ηm can be expressed as:

f(η1, ..., ηm) = 1 +
m∑

k=1

m∑

l1,...,lk=1

cl1...lkηl1 ...ηlk . (A.4)

In particular, the function f(η, η∗) = e−η
∗aη can be considered as an element of a Grass-

mann algebra with 2 generators η and η∗ so that:

e−η
∗aη = 1 + c1η + c2η

∗ + c12ηη
∗ = 1− η∗aη , (A.5)

where the coefficients c1 = c2 = 0 and c12 = −a are found by Taylor expanding the
exponential function of the LHS. This enables us to infer the following Gaussian integral
formula for complex Grassmann variables2:

∫
dη∗dη e−η

∗aη =

∫
dη∗dη (1− η∗aη) = +a . (A.6)

Let A and η =
(
η1 · · · ηn

)T be respectively an arbitrary complex matrix and a n-
component vector. We assume once again that A is diagonal in the chosen basis in the
first instance so that the generalization of result (A.6) to n dimensions reads:

∫
dnη†dnη e−η

†Aη =

∫ ( n∏

i=1

dη∗i dηi

)
e−

∑n
i=1 η

∗
i Aiiηi

=
n∏

i=1

∫
dη∗i dηi e

−η∗i Aiiηi

︸ ︷︷ ︸
Aii

=
n∏

i=1

Aii

=Det(A) .

(A.7)

The properties of the determinant can once again be invoked to justify that the latter
result does not depend on the chosen basis. Let us now focus on the real case by introduc-
ing a vector θ =

(
θ1 · · · θn

)T with n real Grassmann scalar variables as components.
The corresponding Gaussian integral reads:

∫
dnθ e−

1
2
θTAθ , (A.8)

where the integer n must now be even. Taylor expanding the exponential function leads

2Recall that, for Grassmann variables, differentiation and integration are identical operations, i.e. ∂
∂ηη =

∫
dη η = 1, ∂

∂η∗ η
∗ =

∫
dη∗ η∗ = 1 and ∂2

∂η∗∂ηη
∗η =

∫
dη∗dη η∗η = −1. The minus sign in the latter relation

results from the anticommuting property of Grassmann variables, i.e. ηη∗ = −η∗η.
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to3:

∫
dnθ e−

1
2
θTAθ =

∫ ( n∏

i=1

dθi

)
e−

1
2

∑n
i,j=1 θiAijθj

=
∞∑

m=0

(−1)m

2mm!

∫ ( n∏

i=1

dθi

)(
n∑

i,j=1

θiAijθj

)m

=
(−1)n/2

2n/2
(
n
2

)
!

∫ ( n∏

i=1

dθi

)(
n∑

i,j=1

θiAijθj

)n/2

=
(−1)n/2

2n/2
(
n
2

)
!

∑

P∈Sn

∫ ( n∏

i=1

dθi

)
θP (1)AP (1)P (2)θP (2) · · · θP (n−1)AP (n−1)P (n)θP (n)

=
(−1)n/2

2n/2
(
n
2

)
!

∑

P∈Sn

sgn(P )

(∫
dθ1 θ1

)

︸ ︷︷ ︸
1

· · ·
(∫

dθn θn

)

︸ ︷︷ ︸
1

AP (1)P (2) · · ·AP (n−1)P (n)

=
(−1)n/2

2n/2
(
n
2

)
!

∑

P∈Sn

sgn(P ) AP (1)P (2) · · ·AP (n−1)P (n) ,

(A.9)

where sgn(P ) is the signature of permutation P . The only non-vanishing terms in the sum∑∞
m=0 of the second line must contain the product θ1 · · · θn up to a permutation, i.e. they

must satisfy m = n/2: those with m < n/2 all vanish due to the relation
∫
dθ 1 = 0 and

those with m > n/2 all equal zero because of the anticommuting property of Grassmann
variables in the form θ2

i = 0 ∀i. The last line of (A.9) involves the Pfaffian of matrix A
so that we can write:

∫
dnθ

(−1)n/2
e−

1
2
θTAθ = Pf(A) . (A.10)

This Pfaffian is related to the determinant of A. By taking the square of both sides
of (A.10), it can be shown that:

∫
dnθdnθ′ e−

1
2
θTAθ− 1

2
θ′TAθ′ = [Pf(A)]2 . (A.11)

We then perform the change of variables:





η =
1√
2

(θ + iθ′) ,

η∗ =
1√
2

(θ − iθ′) ,
(A.12)

3Due to the anticommuting property of Grassmann variables, we have
∑n
i,j=1 θiAijθj = −∑n

i,j=1 θjAijθi =

−∑n
i,j=1 θiAjiθj . Therefore, only the antisymmetric part of A contributes to the sums involved in (A.9).
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with
dnθdnθ′ = dθ1 · · · dθndθ′1 · · · dθ′n

= (−1)n/2 dθ1dθ
′
1 · · · dθndθ′n

= (−1)n/2

∣∣∣∣∣

∂θ1
∂η∗1

∂θ1
∂η1

∂θ′1
∂η∗1

∂θ′1
∂η1

∣∣∣∣∣ dη
∗
1dη1 · · ·

∣∣∣∣∣
∂θn
∂η∗n

∂θn
∂ηn

∂θ′n
∂η∗n

∂θ′n
∂ηn

∣∣∣∣∣ dη
∗
ndηn

= (−1)n/2

∣∣∣∣∣
1√
2

1√
2

i√
2
− i√

2

∣∣∣∣∣ dη
∗
1dη1 · · ·

∣∣∣∣∣
1√
2

1√
2

i√
2
− i√

2

∣∣∣∣∣ dη
∗
ndηn

= (−1)n/2 (−1)n︸ ︷︷ ︸
+1

in︸︷︷︸
(−1)n/2

dη∗1dη1 · · · dη∗ndηn︸ ︷︷ ︸
dnη†dnη

= dnη†dnη ,

(A.13)

where the Jacobians are determined from the inverse relations of (A.12), i.e.:




θ =
1√
2

(η + η∗) .

θ′ = − i√
2

(η − η∗) .
(A.14)

These two relations also allow for calculating:

−1

2
θTAθ − 1

2
θ′TAθ′ =− 1

4
(η + η∗)T A (η + η∗) +

1

4
(η − η∗)TA (η − η∗)

=− 1

2
ηTAη∗ − 1

2
η∗TAη

=− η†Aη .

(A.15)

Combining (A.13) and (A.15) with (A.11), we end up with:
∫
dnη†dnη e−η

†Aη = [Pf(A)]2 . (A.16)

According to result (A.7), the LHS of (A.16) can be identified as the determinant of A
so that:

Det(A) = [Pf(A)]2 . (A.17)

From this, we infer that (A.10) is equivalent to:
∫

dnθ

± (−1)n/2
e−

1
2
θTAθ = [Det(A)]+1/2 . (A.18)

The homologous relation for fields is obtained in the continuum limit n→∞:
∫
Dψ̃ e

− 1
2

∫
α1,α2

ψ̃α1Aα1α2 ψ̃α2 = [Det(A)]+1/2 , (A.19)

with ψ̃α being now a real Grassmann field and the α-indices play the same role as in (A.3).

According to (A.3) and (A.19), the Gaussian functional integral formula for an arbitrary
real field is4: ∫

Dψ̃ e
− 1

2

∫
α1,α2

ψ̃α1Aα1α2 ψ̃α2 = [Det(A)]−ζ/2 = e−
ζ
2

STr[ln(A)] , (A.20)

4The integration measures involved in (A.2) and (A.18) set the convention for the PI measure Dψ̃, which
hence absorbs a factor lim

n→∞
(2π)−n/2 for a bosonic field and lim

n→∞
± (−1)n/2 for a Grassmann one, respectively.
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with ζ equaling +1 if ψ̃ is a bosonic field and -1 if ψ̃ is a Grassmann field. The supertrace STr
introduced in (A.20) is by definition the trace taken with respect to α-indices.
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Appendix B

1/N-expansion

We summarize below the derivation of the 1/N -expansion for the (0+0)-D O(N)-symmetric
ϕ4-theory given by Keitel and Bartosch in ref. [147] which is also exploited by Rosa et al. in
ref. [150]. We will pursue the derivations up to higher orders for the gs density and also explain
how to extend their results in the broken-symmetry regime. Let us start by considering the
partition function of the studied toy model1:

Z =

∫

RN
dN ~̃ϕ e−S

(
~̃ϕ
)

=

∫

RN
dN ~̃ϕ e

−m
2

2
~̃ϕ

2
− λ

4!

(
~̃ϕ

2
)2

. (B.1)

In the limit N →∞, our zero-dimensional toy model possesses an infinite number of dofs and
fluctuations are therefore suppressed in this case. This translates into the constraint that the
integrand vanishes in (B.1) in this limit, which can be achieved by imposing that the classical
action S

(
~̃ϕ
)
is of order O(N). In this way, we deduce that ~̃ϕ

2
= O(N) since the mass m

does not depend on N . In order to ensure dimensional consistency, we infer from this that
λ = O

(
N−1

)
. This dimensional analysis suggests to introduce the N -independent quantities

ỹ ≡ N−1~̃ϕ
2
and λ̆ ≡ Nλ. After defining the norm ũ ≡

∣∣∣~̃ϕ
∣∣∣ =

√
Nỹ, we rewrite (B.1) in

hyperspherical coordinates as follows2:

Z1/N -exp = ΩN

∫ ∞

0

dũ ũN−1e−
m2

2
ũ2− λ

4!
ũ4

= ΩNN
N−1

2

∫ ∞

0

(
1

2

√
N

ỹ
dỹ

)
ỹ
N−1

2 e
−N

(
m2

2
ỹ+ λ̆

4!
ỹ2
)

=
1

2
ΩNN

N
2

∫ ∞

0

dỹ

ỹ
e−Nf(ỹ) ,

(B.2)

where we have notably used dũ =
√
N/ỹ dỹ/2 to obtain the second line as well as the following

definition in the third line:

f
(
ỹ
)
≡ m2

2
ỹ +

λ̆

4!
ỹ2 − 1

2
ln(ỹ) . (B.3)

At this stage, we are in a situation very similar to that of the starting point of the original LE
in (3.2), except that the role of the expansion parameter is now played by 1/N instead of ~.

1We set ~ = 1 in this entire appendix on the 1/N -expansion.
2Since the scalar product ~̃ϕ

2
and therefore the integrand in (B.1) are isotropic in color space, we can carry

out integration over angular variables in the entire color space, thus introducing the surface area of the N -
dimensional unit sphere ΩN = 2πN/2/Γ(N/2) (with Γ being Euler gamma function [152]) into (B.2).
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Hence, we will carry out a saddle point approximation by solving:

∂f
(
ỹ
)

∂ỹ

∣∣∣∣∣
ỹ=y

= 0 , (B.4)

which has two solutions, whose physical relevance depends on the value of m2, as in (3.54)
(combined with (3.45)). We find for λ 6= 0:

y =





3m2

λ̆



√

1 +
2λ̆

3m4
− 1


 ∀m2 > 0 .

3m2

λ̆


−

√

1 +
2λ̆

3m4
− 1


 ∀m2 < 0 .

(B.5)

Only the upper solution was exploited in refs. [147] and [150] as these works focus on the
unbroken-symmetry phase in their applications of the 1/N -expansion. Then, the rest of the
procedure is also quite similar to that of a LE. We Taylor expand f

(
ỹ
)
as well as 1/ỹ around

ỹ = y up to a chosen order in ỹ− y and finally expand the partition function thus obtained. If
f
(
ỹ
)
and 1/ỹ are respectively expanded up to fourth and second orders in ỹ − y, this leads to:

Z1/N -exp = ΩNN
N
2

√
2π

4y2f
(2)

e−Nf
[
1 +

12m4y2 − 27m2y + 16

6N (2−m2y)3

] [
1 +O

(
1

N

)]
, (B.6)

where the function f and its second-order derivative can be rewritten as follows when evaluated
at ỹ = y:

f ≡ f
(
ỹ = y

)
=
m2

4
y +

1

4
− 1

2
ln(y) , (B.7)

f
(2) ≡ ∂2f

(
ỹ
)

∂ỹ2

∣∣∣∣∣
ỹ=y

=
1

y2 −
m2

2y
. (B.8)

The gs energy E
1/N -exp
gs = − ln

(
Z1/N -exp

)
can be expressed by expanding ln

(
Z1/N -exp

)
, with

Z1/N -exp given by (B.6)3:

E1/N -exp
gs = N

[
m2

4
y− 1

4
− 1

2
ln(2πy)

]
+

1

2
ln
(

2−m2y
)
− 1

N

[
(8 +m2y) (m2y − 1)

2

6 (2−m2y)3

]
+O

(
1

N2

)
,

(B.9)
and the gs density is determined by differentiating (B.9) with respect to m2 according to the
relation4 ρ1/N -exp

gs = 2
N

∂E
1/N-exp
gs

∂m2 (which follows from (2.38) to (2.40)):

ρ1/N -exp
gs = y +

1

N




2
λ̆
3
y+m2

− 2y

2−m2y


+

1

N2




4 (1−m2y) (1 + 2m2y)
(
−
√

3 +m2y + λ̆
3
y2
)

(
λ̆
3
y +m2

)
(−2 +m2y)4


+O

(
1

N3

)
.

(B.10)
3Note that only the leftmost logarithm term in our expression (B.9) for the gs energy differs from that of

the interaction-induced shift of the free energy Γ(0) given by equation (A.5) in ref. [147] since Γ(0) = − ln(Z) +
ln(Z0) = Egs +N ln

(
2π/m2

)
/2.

4The dependence of y with respect to m2, which is set by (B.5), must be taken into account when differen-
tiating E1/N-exp

gs to deduce ρ1/N-exp
gs .
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For m2 > 0, the first-order coefficient in (B.10) reduces to the free gs density (i.e. the exact gs
density at λ = 0) in the limit of vanishing coupling constant, i.e.:

lim
λ→0

y =
1

m2
∀m2 > 0 , (B.11)

as expected. Note that an alternative derivation of result (B.9) was developed by Schelstraete
and Verschelde in ref. [142].
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Appendix C

Diagrams and multiplicities

C.1 Original loop expansion and optimized perturbation
theory

In the framework of the original LE, each diagram contributing to the Schwinger functional
W LE;orig

[
~J,K

]
(expressed by (3.50)) comes with a multiplicity1 given by:

MLE,orig =
(2p)!!4p(2q)!!

(2!)S+DNV

, (C.1)

which can be deduced from the work of ref. [477]. The integers S and D denote respectively
the number of self and double connections with the propagator lines (3.49a) (representing
Gϕcl;JK;ab(x, y)) whereas q and p are the number of vertices (3.49b) and (3.49c) involved in the
diagram under consideration. Finally, NV corresponds to the number of vertex permutations
that leave the diagram unchanged. These numbers are given in tab. C.1 for the diagrams
of (3.50). Formula (C.1) can be generalized for the OPT expansion by taking into account that
the underlying diagrams might possess 2-leg vertices as well:

MOPT =
(2!)r(r!)(2p)!!4p(2q)!!

(2!)S+DNV

, (C.2)

where r denotes the number of 2-leg vertices (3.154c), whereas S and D are now respectively
the number of self and double connections with the propagator lines (3.154a) (representing
Gσ;ab(x, y)). Every diagram contributing to WOPT (expressed by (3.155)) up to order O

(
δ3
)
is

given in tab. C.1 together with the corresponding S, D and NV factors. Note that we always
have q = 0 in the framework of OPT as treated in section 3.4 since the OPT expansion was
performed around a trivial saddle point (i.e. for ~ϕcl = ~0) in this section. It is also possible to
design an OPT expansion around a non-trivial (i.e. finite) saddle point, just like the original LE
for the studied toy model in the broken-symmetry regime (for which ~ϕ2

cl = −6m2/λ). Such an
expansion is of little relevance for the zero-dimensional O(N) model under consideration since
the minimum of its exact effective potential V exact

eff

(
~φ
)
always lies at ~φ = ~0, as was discussed

in section 2.4. However, the additional OPT diagrams appearing when ~ϕcl 6= 0 are given in
tab. C.1 as well.

Summations over internal and spacetime indices are also implicitly accounted for by all
diagrammatic representations used in chapter 3 (and especially in (3.50) and (3.155) for the

1The multiplicity corresponds to the number of Wick’s contractions represented by a given diagram, i.e. the
number of different ways of pairing the indices in the RHS of (2.27).
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original LE and OPT expansions). In order to explain how to evaluate the sums over color (i.e.
internal) indices, let us assume exceptionally that the latter sums are not taken into account
by the diagrams. To that end, let us focus temporarily on the original LE (based on the
expectation value

〈
· · ·
〉

0,JK
defined by (3.41) and (3.42)) and we make use of the multinomial

theorem in order to write:

λ

〈(
~̃χ

2
)2
〉

0,JK

= λ

〈(∫

x

χ̃2
1,x +

∫

x

χ̃2
2,x + · · ·+

∫

x

χ̃2
N,x

)2
〉

0,JK

= λ
∑

i1,i2,··· ,iN=0
{i1+i2+···+iN=2}

(
2

i1, i2, · · · , iN

)

×
∫

x
(1)
1 ,··· ,x(1)

i1
,··· ,x(N)

1 ,··· ,x(N)
iN

〈
χ̃2

1,x
(1)
1

· · · χ̃2

1,x
(1)
i1

· · · χ̃2

N,x
(N)
1

· · · χ̃2

N,x
(N)
iN

〉

0,JK

= λ

N∑

a=1

∫

x
(a)
1 ,x

(a)
2

〈
χ̃2

a,x
(a)
1

χ̃2

a,x
(a)
2

〉
0,JK

+ 2λ
N∑

a,b=1
{a>b}

∫

x
(a)
1 ,x

(b)
1

〈
χ̃2

a,x
(a)
1

χ̃2

b,x
(b)
1

〉
0,JK

= λ

N∑

a=1

∫

x
(a)
1 ,x

(a)
2

〈
χ̃2

a,x
(a)
1

χ̃2

a,x
(a)
2

〉
0,JK

+ λ

N∑

a,b=1
{a6=b}

∫

x
(a)
1 ,x

(b)
1

〈
χ̃2

a,x
(a)
1

χ̃2

b,x
(b)
1

〉
0,JK

= λN

∫

x
(1)
1 ,x

(1)
2

〈
χ̃2

1,x
(1)
1

χ̃2

1,x
(1)
2

〉
0,JK

+ λN(N − 1)

∫

x
(1)
1 ,x

(2)
1

〈
χ̃2

1,x
(1)
1

χ̃2

2,x
(2)
1

〉
0,JK

= N


 + 2


+N(N − 1)

= N2 + 2N ,

(C.3)

where xn, x
(a)
n and x

(b)
n denote spacetime indices for all n. The curly braces in the discrete

sums of the second, third and fourth equalities of (C.3) contain conditions that must be satis-
fied by all terms generated by the corresponding sum. We have also exploited the properties〈
χ̃2
a,x1

χ̃2
a,x2

〉
0,JK

=
〈
χ̃2

1,x1
χ̃2

1,x2

〉
0,JK
∀a, x1, x2 and

〈
χ̃2
a,x1

χ̃2
b,x2

〉
0,JK

=
〈
χ̃2

1,x1
χ̃2

2,x2

〉
0,JK
∀x1, x2 with

a 6= b to obtain the fifth equality, as well as Gϕcl;JK,(a,x1)(b,x2) = 0 ∀x1, x2 with a 6= b2 to get the
sixth equality. Hence, summations over color indices yield a factor N2 and N for a Hartree and
a Fock diagram respectively. This illustrates a more general rule, namely that the contribution
of each diagram with m propagator loops is proportional to Nm. Note that the loop in question
must be exclusively made of propagator lines, e.g. the contribution of

2We stress that, although this is not directly apparent from definition (3.18), the condition
Gϕcl;JK,(a,x1)(b,x2) = 0 ∀x1, x2 with a 6= b also holds in the broken-symmetry phase of the studied O(N)
model in the framework of our convention (3.45) which does not induce any loss of generality in our derivations.
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is independent of N whereas

yields a contribution of order O(N).

Finally, we illustrate an advantage of the studied toy model resulting from its (0+0)-D
nature: in (0+0)-D and as opposed to finite-dimensional problems, partition functions or
Schwinger functionals can be expressed in terms of a Lebesgue integral which can be directly
expanded with respect to ~ or another chosen parameter after a relevant change of coordinates,
thus bypassing the increasing complexity of the diagrammatic with the truncation order. For
the original LE, the change of coordinates we are referring to consists in rewriting in hyper-
spherical coordinates the zero-dimensional counterpart of the generating functional (3.2) after
the saddle point approximation introducing ~̃χ via ~̃ϕ = ~ϕcl +

√
~ ~̃χ. This generating functional

can be put in the form:

Z
(
~J,K

)
= e−

1
~SJK(~ϕcl)

∫

RN
dN ~̃χ e

− 1
2
~̃χ·
(
G−1
ϕcl;JK

~̃χ
)
− ~

1
2 λ
3!

~̃χ
2
(~ϕcl·~̃χ)− ~λ

4!

(
~̃χ

2
)2

= e−
1
~SJK(~ϕcl)

∫

RN
dN ~̃χ e

− 1
2
G−1
ϕcl;JK;g

~̃
A

2

− 1
2
G−1
ϕcl;JK;NN χ̃

2
N−

~
1
2 λ
3!

%χ̃N

(
~̃
A

2

+χ̃2
N

)
− ~λ

4!

((
~̃
A

2
)2

+2
~̃
A

2

χ̃2
N+χ̃4

N

)
,

(C.4)

where ~̃A satisfies:

~̃χ ≡




χ̃1
...

χ̃N−1

χ̃N


 ≡

(
~̃
A
χ̃N

)
, (C.5)

and G−1
ϕcl;JK;g = m2 + λ

6
%2−K is the diagonal part of the inverse Goldstone propagator defined

by (3.52) and (3.53) whereas G−1
ϕcl;JK;NN = m2 + λ

2
%2−K is associated to the Higgs mode (and

expressed by (3.47) in arbitrary dimensions), still assuming that the source K is a scalar in
color space (i.e. Kab = Kδab). Note also that % is the modulus introduced via the choice of
coordinates (3.45) and expressed by (3.54) at vanishing sources. Taking into account that the
O(N) symmetry of our toy model can be spontaneously broken (in the direction set by a = N
in color space according to (3.45)), isotropy in color space is only exhibited in the subspace of

dimension N −1 in which ~̃A lives. Performing the aforementioned change of coordinates within
this subspace and carrying out integration over angular variables lead to:

Z
(
~J,K

)
= ΩN−1 e

− 1
~SJK(~ϕcl)

∫ ∞

−∞
dχ̃N PN−2(χ̃N , %) e

− 1
2
G−1
ϕcl;JK;NN χ̃

2
N−

~
1
2 λ
3!

%χ̃3
N−

~λ
4!
χ̃4
N , (C.6)

where ΩN = 2πN/2/Γ(N/2) (with Γ denoting Euler gamma function [152]) is the surface area
of the N -dimensional unit sphere and we have also:

PN(χ̃N , %) =

∫ ∞

0

dã ãNe
− 1

2
G−1
ϕcl;JK;gã

2− ~
1
2 λ
3!

%χ̃N ã
2− ~λ

12
χ̃2
N ã

2− ~λ
4!
ã4

, (C.7)
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with ã being the norm of ~̃A, i.e. ã ≡
∣∣∣~̃A
∣∣∣. Expanding the RHS of (C.6) with respect to ~ yields:

ZLE;orig
(
~J,K

)
= e−

1
~SJK(~ϕcl)(2π)

N
2 G

N−1
2

ϕcl;JK;g

√
Gϕcl;JK;NN

{
1

+
~λ
72

[
− 3G2

ϕcl;JK;g

(
−1 +N2

)
+ 15G3

ϕcl;JK;NNλ%
2 +G2

ϕcl;JK;NN

(
−9 + 6Gϕcl;JK;g (−1 +N)λ%2

)

+Gϕcl;JK;NNGϕcl;JK;g (−1 +N)
(
−6 + Gϕcl;JK;g (1 +N)λ%2

) ]

+
~2λ2

10368

[
9G4

ϕcl;JK;g

(
−15− 8N + 14N2 + 8N3 +N4

)
+ 3465G6

ϕcl;JK;NNλ
2%4

+630G5
ϕcl;JK;NNλ%

2
(
−9 + 2Gϕcl;JK;g (−1 +N)λ%2

)

−6Gϕcl;JK;NNG
3
ϕcl;JK;g

(
−3−N + 3N2 +N3

) (
−6 + Gϕcl;JK;g (5 +N)λ%2

)

+105G4
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(
9− 24Gϕcl;JK;g (−1 +N)λ%2 + 2G2
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(
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)
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)
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) (
162− 72Gϕcl;JK;g (3 +N)λ%2 + G2
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)

+2297295G9
ϕcl;JK;NNλ

3%6 + 405405G8
ϕcl;JK;NNλ

2%4
(
−15 + 2Gϕcl;JK;g (−1 +N)λ%2
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ϕcl;JK;g

(
35 + 12N +N2

)
λ2%4 + G3

ϕcl;JK;g

(
315 + 143N + 21N2 +N3

)
λ3%6

)

+945G5
ϕcl;JK;NNGϕcl;JK;g

(
− 162 (−1 +N) + 405Gϕcl;JK;g

(
−1 +N2

)
λ%2

−60G2
ϕcl;JK;g

(
−3−N + 3N2 +N3

)
λ2%4 + G3

ϕcl;JK;g

(
−15− 8N + 14N2 + 8N3 +N4
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(C.8)

or, considering W LE;orig
(
~J,K

)
≡ ~ ln

(
ZLE;orig

(
~J,K

))
instead of ZLE;orig

(
~J,K

)
:
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)
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+3N
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2 + 4G2
ϕcl;JK;gλ

2%4
) )

+4G3
ϕcl;JK;NNG

3
ϕcl;JK;g (−1 +N)

(
− 864 + 2943Gϕcl;JK;gλ%

2 − 990G2
ϕcl;JK;gλ

2%4 + 31G3
ϕcl;JK;gλ

3%6

+Gϕcl;JK;gN
3λ%2

(
27− 54Gϕcl;JK;gλ%

2 + 5G2
ϕcl;JK;gλ

2%4
)

+N2
(
−54 + 1188Gϕcl;JK;gλ%

2 − 630G2
ϕcl;JK;gλ

2%4 + 29G3
ϕcl;JK;gλ

3%6
)

+N
(
−864 + 4104Gϕcl;JK;gλ%

2 − 1566G2
ϕcl;JK;gλ

2%4 + 55G3
ϕcl;JK;gλ

3%6
) )

+9G4
ϕcl;JK;NNG

2
ϕcl;JK;g (−1 +N)

(
− 540 + 2664Gϕcl;JK;gλ%

2 − 1047G2
ϕcl;JK;gλ

2%4 + 68G3
ϕcl;JK;gλ

3%6

+G2
ϕcl;JK;gN

3λ2%4
(
−13 + 4Gϕcl;JK;gλ%

2
)

+ Gϕcl;JK;gN
2λ%2

(
324− 429Gϕcl;JK;gλ%

2 + 44G2
ϕcl;JK;gλ

2%4
)

+N
(
−324 + 2916Gϕcl;JK;gλ%

2 − 1463G2
ϕcl;JK;gλ

2%4 + 108G3
ϕcl;JK;gλ

3%6
) )]

+O
(
~5
)
.

(C.9)

It is then straightforward to deduce an expression for the gs energy and density from (C.8)
or (C.9) combined with the relations:

ELE;orig
gs = − ln

(
ZLE;orig

(
~J = ~0,K = 0

))
= −1

~
W LE;orig

(
~J = ~0,K = 0

)
, (C.10)

ρLE;origgs =
2~
N

∂ELE;orig
gs

∂m2
, (C.11)

which follow respectively from (2.38) and (2.39). Finally, we stress that the rule of evaluation
of sums over color indices illustrated with (C.3) (i.e. that the contribution of each diagram with
m propagator loops3 is proportional to Nm) applies to all diagrammatic techniques investigated
in chapter 3. Furthermore, the direct expansions of the generating functionals Z or W enable
us to obtain directly the series representations of Egs and ρgs in the framework of LEs and
OPT. The underlying recipe is always essentially the same as that outlined between (C.4)
and (C.11), although some steps can sometimes be skipped: i) for the OPT expansion performed
around a trivial saddle point (as discussed in section 3.4), the O(N) symmetry can not be
spontaneously broken, which implies that the angular integration can be carried out over the
whole N -dimensional color space (instead of its (N − 1)-dimensional subspace) at the stage
of (C.6); ii) There is no need of hyperspherical coordinates at all in the framework of the
collective LE since the N -component original field is integrated out in this situation.

3The components of the propagators in question must depend on two color indices, which is e.g. not the
case of Dσcl;JK and ~Fϕcl;JK in the mixed LE.
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Table C.1: Diagrams involved in the expansion of WOPT (expressed by (3.155)) up to order
O
(
δ3
)
. The diagrams are sorted according to the connected correlation functions that generate

them in the OPT expansion (the corresponding expectation value
〈
· · ·
〉

0,σ
is defined by (3.152)

and (3.153)), as indicated by the left-hand column. The multiplicityMOPT of a given diagram
can be deduced from (C.2) together with the corresponding vector (S,D;NV) given below (see
text below (C.1) and (C.2) for the definitions of S, D and NV).

Contribution Diagrams

σ
〈
~̃χ
2
〉c
0,σ

(1, 0; 1)

λ

〈(
~̃χ
2
)2〉c

0,σ

(2, 0; 2) (0, 1; 2)

σ2
〈(
~̃χ
2
)2〉c

0,σ

(0, 1; 2)

λσ

〈(
~̃χ
2
)3〉c

0,σ

(1, 1; 1) (0, 0; 2)

λ2%2
〈
χ̃2
N

(
~̃χ
2
)2〉c

0,σ

(0, 0; 2) (0, 0; 2) (1, 0; 1) (0, 1; 2) (2, 0; 2)

λ2
〈(
~̃χ
2
)4〉c

0,σ

(0, 0; 8) (0, 0; 4) (1, 0; 2) (0, 2; 4) (2, 1; 2)

σ3
〈(
~̃χ
2
)3〉c

0,σ

(0, 0; 6)

λσ2
〈(
~̃χ
2
)4〉c

0,σ

(1, 0; 2) (0, 2; 2) (0, 0; 4) (0, 0; 2)

λ2%2σ

〈
χ̃2
N

(
~̃χ
2
)3〉c

0,σ

(0, 0; 1) (0, 0; 1) (0, 0; 2) (0, 0; 2) (0, 1; 1)



C.1. ORIGINAL LOOP EXPANSION AND OPTIMIZED PERTURBATION THEORY 239

(1, 0; 1) (1, 0; 1) (0, 1; 2) (0, 0; 2)

(1, 1; 1) (2, 0; 2)

λ2σ

〈(
~̃χ
2
)5〉c

0,σ

(0, 0; 2) (0, 0; 2) (0, 0; 2) (1, 0; 2) (0, 1; 2)

(1, 0; 1) (0, 1; 2) (2, 0; 2) (1, 2; 1)

λ3%2
〈
χ̃2
N

(
~̃χ
2
)4〉c

0,σ

(0, 0; 2) (0, 0; 2) (1, 0; 2) (1, 1; 2) (1, 0; 1)

(1, 0; 1) (1, 1; 1) (0, 1; 2) (0, 0; 1) (0, 0; 1)

(0, 2; 2) (1, 1; 1) (0, 0; 1) (0, 1; 1) (0, 0; 2)

(0, 0; 1) (0, 0; 2) (1, 0; 2) (2, 0; 1) (3, 0; 2)

(0, 0; 2) (1, 0; 1) (0, 0; 4) (0, 0; 2) (0, 1; 1)

(0, 0; 2) (1, 0; 1) (1, 0; 2) (2, 0; 1)
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(2, 0; 2) (1, 0; 1) (1, 0; 2) (2, 1; 1)

λ3
〈(
~̃χ
2
)6〉c

0,σ

(0, 0; 4) (1, 0; 2) (0, 3; 6) (1, 0; 2) (0, 0; 12)

(1, 1; 2) (0, 1; 4) (3, 0; 6) (0, 1; 2) (2, 0; 4)

(0, 0; 12) (0, 0; 4) (1, 0; 2) (0, 0; 6) (1, 1; 2)

(0, 0; 8) (0, 0; 2) (2, 0; 2) (2, 2; 2)

C.2 Mixed loop expansion
Similarly to the path followed in section C.1, we work out a formula expressing the multiplicities
of all diagrams resulting from the LE in the mixed representation. In this way, we obtain:

MLE,mix =
(2p)!4pNF

(2!)S+DNV

, (C.12)

where S and D are now respectively the number of self and double connections with the prop-
agator lines (3.65b) and (3.65d) representing respectively Gσcl;JK and ~Fϕcl;JK (self and double
connections made of Dσcl;JK propagators, i.e. made of wiggly lines according to (3.65c), are
not possible). Note that NV still denotes the number of vertex permutations that leave the
diagram unchanged, NF is to be specified below and p equals half the number of vertices (3.65a)
involved in the diagram under consideration. Result (C.12) can actually be determined through
slight modifications of (C.1). The Gσcl;JK and Dσcl;JK propagators (i.e. (3.65b) and (3.65c))
contribute toMLE,mix respectively in the same way as the Gϕcl;JK propagator (i.e. (3.49a)) and
the zigzag vertex (i.e. (3.49c)) toMLE,orig. Due to the HST performed in the mixed representa-
tion, we have swapped the two interaction terms (with associated vertices (3.49b) and (3.49c))
of the original ϕ4-theory for a Yukawa interaction (corresponding to (3.65a)), thus inducing
that the factor (2p)!!(2q)!! in (C.1) is replaced by (2p)! in (C.12). The other and last difference
between the diagrammatic of the original and mixed LEs is the presence in the mixed case of
the ~Fϕcl;JK propagator which has no counterpart in the original LE. As opposed to all other
propagators introduced so far, we must account for the possibility to exchange the extremi-
ties of the ~Fϕcl;JK propagator (even though ~FT

ϕcl;JK;a(x, y) ≡ ~Fϕcl;JK;a(y, x) = ~Fϕcl;JK;a(x, y) to
ensure that GT

Φcl;JK = GΦcl;JK) since only one of its two extremities is associated to a color
index, as can be seen from (3.65d). More specifically, for every loop exclusively made of ~Fϕcl;JK
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propagators, we can switch the extremities of all these propagators at once without affecting
the nature of the studied diagram. Such a property contributes a factor 2 to the multiplicity
of the latter. This explains the dependence of MLE,mix with respect to the number NF of
loops exclusively made of ~Fϕcl;JK propagators. The factors S, D, NV and NF associated to 2PI
diagrams expressing the mixed 2PI EA Γ

(2PI)
mix

[
Φ,G

]
introduced in section 3.5.2.2 are given by

tab. C.2 and their multiplicities can also be inferred from (C.12) (2PI diagrams contributing
to W LE;mix[J ,K] determined from the mixed LE in section 3.2.2.2 are also essentially given by
tab. C.2, except that all of their propagator lines are black and not red).

Table C.2: Diagrams contributing to the 2PI EA Γ
(2PI)
mix

[
Φ,G

]
up to order O

(
~4
)
(with ~F = ~0

at order O(~4)). The left-hand column indicates the order at which the diagrams contribute
to the expansion of Γ

(2PI)
mix

[
Φ,G

]
. The multiplicityMLE,mix of a given diagram can be deduced

from (C.12) together with the corresponding vector (S,D;NV, NF) given below (see text be-
low (C.12) for the definitions of S, D, NV and NF).

Order Diagrams

O
(
~2
)

(0, 1; 2, 1) (0, 1; 2, 2)

O
(
~3
)

(0, 0; 8, 1) (0, 0; 8, 2) (0, 0; 2, 1) (0, 0; 1, 1) (0, 0; 2, 2)

O
(
~4
)

(with ~F = ~0) (0, 0; 12, 1) (0, 0; 4, 1) (0, 0; 12, 1)
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Appendix D

Inversion method

D.1 Foreword and notations

As explained in chapter 3, the IM is a technique designed to derive diagrammatic expressions
of EAs. We will present in this appendix the most general implementation of the IM, which
is in particular more general than the implementation discussed in section 3.5.3 (and based
notably on (3.348)) in the sense that it is more suited to treat EAs based on Schwinger func-
tionals depending on several sources (such as 2P(P)I EAs with non-vanishing 1-point correlation
function(s) and 4P(P)I EAs) and/or for theories involving several quantum fields.

Some of the underlying equations being significantly cluttered, we will use some notations
which are slightly more compact than those exploited in chapter 3. In particular, color (space-
time) indices will be denoted as a1, a2, ... instead of a, b, ... (x1, x2, ... instead of x, y, ...).
Furthermore, color and spacetime indices will be collected into α-indices defined as α ≡ (a, x).
Summation over color indices and integration over spacetime positions will thus be encompassed
through the following shorthand notation:

∫

α

≡
N∑

a=1

∫

x

≡
N∑

a=1

∫ ~/T

0

dτ

∫
dDr , (D.1)

at temperature T . Hence, the notations used in this appendix D coincide with those of sec-
tion 4.1.1 of the FRG chapter. Furthermore, the superindices introduced in the framework of
the mixed representation are denoted by b1, b2, ..., and gathered with spacetime indices into
β-indices as β ≡ (b, x). In this case, the shorthand notation for sums and integrals reads:

∫

β

≡
N+1∑

b=1

∫

x

≡
N+1∑

b=1

∫ ~/T

0

dτ

∫
dDr . (D.2)

We will thus carry out the IM in sections D.2, D.3 and D.4 for 1PI, 2PI and 4PPI EAs,
respectively. The purpose of section D.2, which tackles both the original and collective 1PI
EAs, is mostly pedagogical since it shows how to recover a well-known diagrammatic rule via
the IM, i.e. that 1PI EAs can be expressed in terms of 1PI graphs only. In this way, we prepare
the ground for the subsequent sections D.3 and D.4, and more specifically for the treatments
of the λ-expanded mixed 2PI EA and of the original 4PPI EA, for which there is no such a
simple diagrammatic rule. Note also that one of the purposes of section D.3 is to illustrate the
cumbersomeness of the IM for the full 2PI EAs (i.e. for 2PI EAs with non-vanishing 1-point
correlation function(s)). Finally, let us point out that the IM for a mP(P)I EA relies on the

243
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power series:

Γ(mP(P)I) =
∞∑

n=0

Γ(mP(P)I)
n gn , (D.3)

where g is the chosen expansion parameter (i.e. ~ or λ in the studied situations). The IM
procedure requires to express the Γ

(mP(P)I)
n coefficients in terms of the corresponding Schwinger

functional. The derivations of such expressions being quite technical, we will disentangle them
from the core of the IM procedure and postpone them to the end of this appendix in section D.5.

D.2 1PI effective action

D.2.1 Original effective action

~-expansion: The starting point of the IM consists in expanding the EA under consideration,
its arguments, the corresponding Schwinger functional and the associated sources with respect
to the chosen expansion parameter. For the 1PI EA in the framework of the ~-expansion, this
translates into: 




Γ(1PI)
[
~φ; ~
]

=
∞∑

n=0

Γ(1PI)
n

[
~φ
]
~n ,

W
[
~J ; ~
]

=
∞∑

n=0

Wn

[
~J
]
~n ,

~J
[
~φ; ~
]

=
∞∑

n=0

~Jn

[
~φ
]
~n ,

~φ =
∞∑

n=0

~φn

[
~J
]
~n ,

(D.4a)

(D.4b)

(D.4c)

(D.4d)

and we recall the definition of Γ(1PI):

Γ(1PI)
[
~φ
]
≡−W

[
~J
]

+

∫

α

Jα

[
~φ
]δW

[
~J
]

δJα

=−W
[
~J
]

+

∫

α

Jα

[
~φ
]
φα ,

(D.5)

with

φα =
δW
[
~J
]

δJα
. (D.6)

Note also the following subtlety about the 1-point correlation function in (D.4d): ~φ is indepen-
dent of ~J (as explained from (D.13a) below (D.14)) and of ~ (as proven by (D.15)) but this
does not prevent the ~φn coefficients from depending on the source ~J . For the sake of brevity,
we will not indicate in what follows ~ as argument of the EA, the Schwinger functional or the
sources, except for a few cases in which it clarifies the discussion. Determining a diagrammatic
expression for the EA Γ(1PI) up to order O

(
~m
)
amounts to specifying all the Γ

(1PI)
n coefficients

up to n = m: this is the purpose of the IM. It will become clear below why we also need to
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determine theWn, ~Jn and ~φn coefficients to achieve this. We can already point out at this stage
that combining (D.4b) and (D.4d) with (D.6) leads to:

φn,α

[
~J
]

=
δWn

[
~J
]

δJα
. (D.7)

Diagrammatic expressions of the Wn coefficients can be directly deduced from the LE of
W
[
~J,K

]
carried out in section 3.2.2.1, and more specifically from result (3.50) expressing

W LE;orig
[
~J,K

]
, after setting K = 0. For n = 0, 1 and 2, we have:

W0

[
~J
]

= −S
[
~ϕcl

]
+

∫

α

Jα

[
~φ
]
ϕcl,α

[
~J
]
, (D.8)

W1

[
~J
]

=
1

2
STr

[
ln
(
Gϕcl;J

[
~J
])]

, (D.9)

W2

[
~J
]

=− 1

24
− 1

12
+

1

18
+

1

18

+
1

36
+

1

18
+

1

72
.

(D.10)

Such relations involve the classical 1-point correlation function ~ϕcl

[
~J
]
and the propagator

Gϕcl;J

[
~J
]

= Gϕcl;JK

[
~J,K = 0

]
which are both functions of an arbitrary external source ~J .

They satisfy: 



ϕcl,α

[
~J
]

= φ0,α

[
~J
]

=
δW0

[
~J
]

δJα
,

Gϕcl;J,α1α2

[
~J
]
≡


 δ2S

[
~̃ϕ
]

δ~̃ϕδ~̃ϕ

∣∣∣∣∣
~̃ϕ=~ϕcl



−1

α1α2

=
δ2W0

[
~J
]

δJα1δJα2

,

(D.11a)

(D.11b)

where

G−1
ϕcl;J,α1α2

[
~J
]

=

(
−∇2

x1
+m2 +

λ

6
~ϕ2

cl,x1

[
~J
])

δα1α2 +
λ

3
ϕcl,α1

[
~J
]
ϕcl,α2

[
~J
]
δx1x2 , (D.12)

and (D.11a) is equivalent to (D.7) at n = 0. Note however that the argument of Γ(1PI) is the
quantum 1-point correlation function ~φ = ~φ0

[
~J = ~J0

]
and not the classical one ~ϕcl

[
~J
]
. Setting

~J = ~J0 into (D.11a) and (D.11b), we obtain:




φα = ϕcl,α

[
~J = ~J0

]
= φ0,α

[
~J = ~J0

]
=
δW0

[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

,

Gφ,α1α2

[
~φ
]
≡ Gϕcl;J,α1α2

[
~J = ~J0

]
=


 δ2S

[
~̃ϕ
]

δ~̃ϕδ~̃ϕ

∣∣∣∣∣
~̃ϕ=~φ



−1

α1α2

=
δ2W0

[
~J
]

δJα1δJα2

∣∣∣∣∣
~J= ~J0

,

(D.13a)

(D.13b)
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with

G−1
φ,α1α2

[
~φ
]

=

(
−∇2

x1
+m2 +

λ

6
~φ2
x1

)
δα1α2 +

λ

3
φα1φα2δx1x2 . (D.14)

Since ~φ equals ~ϕcl evaluated at ~J = ~J0 according to (D.13a), it is clear that ~φ does not depend on
the external source ~J . Relations (D.13a) and (D.13b) emphasize the key role of the zeroth-order
coefficient of the source(s) (i.e. ~J0 here) in the IM. We then make two comments about (D.11)
and (D.13):

• The relation ~φ = ~φ0

[
~J = ~J0

]
imposes that ~φ is a quantity of order O

(
~0
)
, i.e. that it

is independent of ~. This property directly results from the Legendre transform defining
Γ(1PI). Considering ~ and ~φ as independent variables, taking the differential of both sides
of (D.5) yields:

δΓ(1PI)
[
~φ, ~
]

=−

�
��

�
��

�
��

��∫

α

δW
[
~J, ~
]

δJα︸ ︷︷ ︸
φα

δJα

[
~φ
]
− ∂W

[
~J, ~
]

∂~
d~ +

�
��

�
��
�∫

α

δJα

[
~φ
]
φα +

∫

α

Jα

[
~φ
]
δφα

=− ∂W
[
~J, ~
]

∂~
d~ +

∫

α

Jα

[
~φ
]
δφα .

(D.15)

The derivation of (D.15) indeed shows that Γ(1PI) is independent of the external source ~J
(as should be expected from the Legendre transform) if and only if ~φ and ~ are independent
variables. Hence, the independence of ~φ and ~ is an essential feature for the IM. Note
also that the reasoning based on (D.15) can be adapted to any EA in order to show the
independence of its argument(s) with respect to ~.

• We will distinguish the Feynman rules of the propagators and vertices evaluated at ar-
bitrary external source ~J or at ~J = ~J0. More specifically, for the original 1PI EA, we
choose the following Feynman rules at arbitrary external source ~J :

α1 α2 → Gϕcl;J,α1α2

[
~J
]
, (D.16a)

xa1

a2

a3

N → λ
∣∣∣~ϕcl

[
~J
]∣∣∣ δa1a2δa3N , (D.16b)

xa1

a2

a3

a4 → λδa1a2δa3a4 , (D.16c)

which respectively correspond to (3.49a), (3.49b) and (3.49c) evaluated at K = 0, and
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∣∣∣~ϕcl

[
~J
]∣∣∣ = %|K=0 is also defined by (3.45). On the other hand, at ~J = ~J0, we have:

α1 α2 → Gφ,α1α2

[
~φ
]
, (D.17a)

xa1

a2

a3

N → λ
∣∣∣~φ
∣∣∣ δa1a2δa3N , (D.17b)

xa1

a2

a3

a4 → λδa1a2δa3a4 , (D.17c)

which are equivalent to (3.185a), (3.185b) and (3.185c), respectively.

We are now equipped to pursue the IM. The next step consists in inserting the power
series (D.4a), (D.4b) and (D.4c) into the Legendre transform definition of the EA given by (D.5),
thus leading to:

∞∑

n=0

Γ(1PI)
n

[
~φ
]
~n = −

∞∑

n=0

Wn

[
∞∑

m=0

~Jm

[
~φ
]
~m
]
~n +

∞∑

n=0

∫

α

Jn,α

[
~φ
]
φα~n . (D.18)

By Taylor expanding the Wn coefficients in the RHS of (D.18) around ~J = ~J0, one obtains (see
section D.5.1):

Γ(1PI)
n

[
~φ
]

=−Wn

[
~J = ~J0

]
−

n∑

m=1

∫

α

δWn−m
[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

Jm,α

[
~φ
]

−
n∑

m=2

1

m!

n∑

n1,··· ,nm=1
{n1+···+nm≤n}

∫

α1,··· ,αm

δmWn−(n1+···+nm)

[
~J
]

δJα1 · · · δJαm

∣∣∣∣∣
~J= ~J0

Jn1,α1

[
~φ
]
· · · Jnm,αm

[
~φ
]

+

∫

α

Jn,α

[
~φ
]
φα .

(D.19)

Let us recall here that curly braces below discrete sums contain a condition that must satisfied
by each term of the sum in question, as already used in (C.3). We also point out that a discrete
sum vanishes if the upper boundary of the running index is less than its starting value, e.g.
the second line of (D.19) vanishes if n < 2 due to

∑n
m=2. We can further simplify (D.19) by

noticing that (D.13a) enables us to write:

−
n∑

m=1

∫

α

δWn−m
[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

Jm,α

[
~φ
]

+

∫

α

Jn,α

[
~φ
]
φα =−

n−1∑

m=1

∫

α

δWn−m
[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

Jm,α

[
~φ
]

+

∫

α

J0,α

[
~φ
]
φαδn0 .

(D.20)
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After combining (D.20) with (D.19), we have:

Γ(1PI)
n

[
~φ
]

=−Wn

[
~J = ~J0

]
−

n−1∑

m=1

∫

α

δWn−m
[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

Jm,α

[
~φ
]

−
n∑

m=2

1

m!

n∑

n1,··· ,nm=1
{n1+···+nm≤n}

∫

α1,··· ,αm

δmWn−(n1+···+nm)

[
~J
]

δJα1 · · · δJαm

∣∣∣∣∣
~J= ~J0

Jn1,α1

[
~φ
]
· · · Jnm,αm

[
~φ
]

+

∫

α

J0,α

[
~φ
]
φαδn0 .

(D.21)

We will derive in the present section the first non-trivial order of the 1PI EA via the IM,
which amounts to determining Γ(1PI) up to order O

(
~2
)
. Therefore, we will consider (D.21) at

n = 0, 1 and 2:

Γ
(1PI)
0

[
~φ
]

= −W0

[
~J = ~J0

]
+

∫

α

J0,α

[
~φ
]
φα , (D.22)

Γ
(1PI)
1

[
~φ
]

= −W1

[
~J = ~J0

]
, (D.23)

Γ
(1PI)
2

[
~φ
]

= −W2

[
~J = ~J0

]
−
∫

α

δW1

[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

J1,α

[
~φ
]
− 1

2

∫

α1,α2

δ2W0

[
~J
]

δJα1δJα2

∣∣∣∣∣
~J= ~J0

J1,α1

[
~φ
]
J1,α2

[
~φ
]
.

(D.24)
From (D.21) (as well as (D.22) to (D.24)) together with (D.4a), it is clear that Γ(1PI) is com-
pletely specified by the Wn and ~Jn coefficients. In particular, we must evaluate derivatives of
the Wn coefficients. According to (D.22) to (D.24), we only need two of them to determine the
EA up to order O

(
~2
)
. One of these two derivatives is already given by (D.13b):

δ2W0

[
~J
]

δJα1δJα2

∣∣∣∣∣
~J= ~J0

= α1 α2 . (D.25)

Note that, in (D.25) and in all forthcoming diagrams in appendix D, external points are repre-
sented by an empty dot with its corresponding index (except for Feynman rules). If the index
is not indicated, then integration is implicitly carried out over this index (see (D.39) for an
application of this convention). The other derivative that we need is calculated using (D.9):

δW1

[
~J
]

δJα1

=
δ

δJα1

(
1

2
STr

[
ln
(
Gϕcl;J

[
~J
])])

=
1

2

δ

δJα1

∫

α2

ln
(
Gϕcl;J,α2α2

[
~J
])

=
1

2

∫

α2,α3

G−1
ϕcl;J,α2α3

[
~J
]δGϕcl;J,α3α2

[
~J
]

δJα1

.

(D.26)

In order to evaluate the derivative of the last line, we will make use of the three following
relations:

δ

δJα1

=

∫

α2

δϕcl,α2

[
~J
]

δJα1

δ

δϕcl,α2

, (D.27)

δϕcl,α1

[
~J
]

δJα2

=
δ2W0

[
~J
]

δJα2δJα1

= Gϕcl;J,α2α1

[
~J
]
, (D.28)
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δG−1
ϕcl;J,α1α2

[
~J
]

δϕcl,α3

=
δ

δϕcl,α3

((
−∇2

x1
+m2 +

λ

6
~ϕ2

cl,x1

[
~J
])

δα1α2 +
λ

3
ϕcl,α1

[
~J
]
ϕcl,α2

[
~J
]
δx1x2

)

=
λ

6

δ~ϕ2
cl,x1

[
~J
]

δϕcl,α3︸ ︷︷ ︸
2ϕcl,α3

δx1x3

δα1α2 +
λ

3
δα1α3ϕcl,α2

[
~J
]
δx1x2 +

λ

3
ϕcl,α1

[
~J
]
δα2α3δx1x2

=
λ

3

(
ϕcl,α3

[
~J
]
δα1α2δx1x3 + ϕcl,α2

[
~J
]
δα1α3δx1x2 + ϕcl,α1

[
~J
]
δα2α3δx1x2

)
,

(D.29)

where we have combined (D.11a) with (D.11b) to obtain (D.28) and used (D.12) as expression
of G−1

ϕcl;J,α1α2

[
~J
]
to start the derivation of (D.29). By exploiting (D.27), (D.28) and (D.29), we

calculate:

δGϕcl;J,α3α2

[
~J
]

δJα1

=−
∫

α4,α5

Gϕcl;J,α3α4

[
~J
]δG−1

ϕcl;J,α4α5

[
~J
]

δJα1

Gϕcl;J,α5α2

[
~J
]

=−
∫

α4,α5,α6

Gϕcl;J,α3α4

[
~J
]δϕcl,α6

[
~J
]

δJα1

δG−1
ϕcl;J,α4α5

[
~J
]

δϕcl,α6

Gϕcl;J,α5α2

[
~J
]

=− λ

3

∫

α4,α5,α6

Gϕcl;J,α3α4

[
~J
]
Gϕcl;J,α1α6

[
~J
]

×
(
ϕcl,α6

[
~J
]
δα4α5δx4x6 + ϕcl,α5

[
~J
]
δα4α6δx4x5 + ϕcl,α4

[
~J
]
δα5α6δx4x5

)

×Gϕcl;J,α5α2

[
~J
]

=− λ

3

(∫

α4,α6

ϕcl,α6

[
~J
]
Gϕcl;J,α3α4

[
~J
]
Gϕcl;J,α1α6

[
~J
]
Gϕcl;J,α4α2

[
~J
]
δx4x6

+

∫

α4,α5

ϕcl,α5

[
~J
]
Gϕcl;J,α3α4

[
~J
]
Gϕcl;J,α1α4

[
~J
]
Gϕcl;J,α5α2

[
~J
]
δx4x5

+

∫

α4,α5

ϕcl,α4

[
~J
]
Gϕcl;J,α3α4

[
~J
]
Gϕcl;J,α1α5

[
~J
]
Gϕcl;J,α5α2

[
~J
]
δx4x5

)

=− 1

3

(

α2

α3

α1

+
α1

α3

α2

+
α1

α2

α3

)
.

(D.30)

We then insert (D.30) into (D.26) and set ~J = ~J0:

δW1

[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

= −1

6




α

+ 2

α

 . (D.31)

The only quantity left to determine in (D.22) to (D.24) is the source coefficient ~J1. To that end,
we will make use of the power series of ~φ, i.e. (D.4d). By Taylor expanding the ~φn coefficients
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around ~J = ~J0, we obtain:

φα1 =
∞∑

n=0

φn,α1

[
~J
]
~n

= φ0,α1

[
~J
]

+ φ1,α1

[
~J
]
~ +O

(
~2
)

= φ0,α1

[
~J = ~J0

]
+

∫

α2

δφ0,α1

[
~J
]

δJα2

∣∣∣∣∣
~J= ~J0

(
Jα2

[
~φ
]
− J0,α2

[
~φ
])

+O
((

~J − ~J0

)2
)

+
(
φ1,α1

[
~J = ~J0

]
+O

(
~J − ~J0

))
~ +O

(
~2
)

= φ0,α1

[
~J = ~J0

]
+ ~

(∫

α2

δφ0,α1

[
~J
]

δJα2

∣∣∣∣∣
~J= ~J0

J1,α2

[
~φ
]

+ φ1,α1

[
~J = ~J0

])
+O

(
~2
)
,

(D.32)

where the last line was obtained by using the equality ~J
[
~φ
]
− ~J0

[
~φ
]

= ~J1

[
~φ
]
~+O

(
~2
)
resulting

directly from (D.4c). By setting ~J = ~J0 in (D.32), we turn the latter result into an infinite
tower of coupled integro-algebraic equations as a consequence of (D.13a) (i.e. as a consequence
of the fact that ~φ is of order O(~0)):





Order O
(
~0
)

: φα = φ0,α

[
~J = ~J0

]
∀α ,

Order O(~) : 0 =

∫

α2

δφ0,α1

[
~J
]

δJα2

∣∣∣∣∣
~J= ~J0

J1,α2

[
~φ
]

+ φ1,α1

[
~J = ~J0

]
∀α1 ,

...

(D.33a)

(D.33b)

where (D.33a) is equivalent to (D.13a). We can then exploit (D.33b) to determine ~J1. In order
to achieve this, we must find diagrammatic expressions for the other quantities involved in
this equation. To that end, we can use (D.7) to directly deduce these quantities from (D.25)
and (D.31), i.e.:

δφ0,α1

[
~J
]

δJα2

∣∣∣∣∣
~J= ~J0

=
δ2W0

[
~J
]

δJα2δJα1

∣∣∣∣∣
~J= ~J0

= α1 α2 , (D.34)

φ1,α

[
~J = ~J0

]
=
δW1

[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

= −1

6




α

+ 2

α

 . (D.35)

After inserting (D.34) and (D.35) into (D.33b), we obtain:

0 = α 1 − 1

6




α

+ 2

α

 , (D.36)

with
n
α
→ Jn,α

[
~φ
]
. (D.37)
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By introducing the inverse propagator:

α1 α2 → G−1
φ,α1α2

[
~φ
]
, (D.38)

we can isolate ~J1 in (D.36) by multiplying the latter equation by G−1
φ and integrating over the

relevant index. Indeed, the term involving ~J1 becomes in this way:

α1 1 =

∫

α2,α3

G−1
φ,α1α2

[
~φ
]
Gφ,α2α3

[
~φ
]
J1,α3

[
~φ
]

=

∫

α3

δα1α3J1,α3

[
~φ
]

= J1,α1

[
~φ
]
.

(D.39)
Therefore, (D.36) is rewritten as:

J1,α

[
~φ
]

= J1,a,x

[
~φ
]

=
1

6 x a +
1

3 xa . (D.40)

We are now able to determine a diagrammatic expression for Γ
(1PI)
2 from (D.24). For that

purpose, let us focus on each term of (D.24) separately. From (D.25), (D.31) and (D.40), it
follows that:

∫

α

δW1

[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

J1,α

[
~φ
]

=− 1

9
− 1

9

− 1

36
,

(D.41)

1

2

∫

α1,α2

δ2W0

[
~J
]

δJα1δJα2

∣∣∣∣∣
~J= ~J0

J1,α1

[
~φ
]
J1,α2

[
~φ
]

=
1

18
+

1

18

+
1

72
.

(D.42)
By collecting (D.41), (D.42) as well as (D.8) to (D.10), we can turn (D.22) to (D.24) into our
final expression for Γ(1PI) up to order O

(
~2
)
:

Γ(1PI)
[
~φ
]

= S
[
~φ
]
− ~

2
STr

[
ln
(
Gφ

[
~φ
])]

+ ~2




1

24
+

1

12
− 1

18
− 1

36




+O
(
~3
)
.

(D.43)
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We first notice that all 1PR graphs ofW2

[
~J = ~J0

]
are canceled out by those of (D.41) and (D.42)

in (D.24), thus leaving Γ
(1PI)
2 (and therefore Γ(1PI) up to order O(~2)) expressed in terms of 1PI

diagrams only, as expected. The recipe of the IM outlined above to derive (D.43) can be
straightforwardly generalized to derive Γ(1PI) up to any desired order in ~: we have determined
Γ(1PI) up to order O

(
~2
)
by calculating ~φ1 and ~J1, which translates in general into Γ(1PI) is

determined up to order O
(
~n
)
(with n ≥ 2) via the IM from ~φ1, · · · , ~φn−1 and ~J1, · · · , ~Jn−1. In

summary, the IM consists in “inverting” the relation φα = δW [ ~J ]
δJα

to determine ~J
[
~φ
]
and, as a

result, the 1PI EA through (D.5).

λ-expansion: We then determine the 1PI EA via the IM with the coupling constant λ instead
of ~ as expansion parameter1. This version of the IM has already been developed by Okumura
for a ϕ4-theory which does not exhibit any O(N) symmetry [304]. As opposed to the ~-
expansion treated earlier, the coefficients of the Schwinger functional W

[
~J
]
are not already at

our disposal thanks to the LE or other methods treated in previous sections. Therefore, we
start by expandingW

[
~J
]
for our O(N)-symmetric ϕ4-theory in arbitrary dimensions as follows:

eW
[
~J
]

=

∫
D~̃ϕ e−S

[
~̃ϕ
]

+
∫
α Jαϕ̃α

=

∫
D~̃ϕ e−

1
2

∫
α1,α2

ϕ̃α1G
−1
0,α1α2

ϕ̃α2− λ
4!

∑N
a1,a2=1

∫
x ϕ

2
a1,xϕ

2
a2,x+

∫
α Jαϕ̃α

= e
− λ

4!

∑N
a1,a2=1

∫
x

(
δ

δJa1,x

)2(
δ

δJa2,x

)2
∫
D~̃ϕ e−

1
2

∫
α1,α2

ϕ̃α1G
−1
0,α1α2

ϕ̃α2+
∫
α Jαϕ̃α ,

(D.44)

with the free propagator G0 defined by (3.197) recalled below:

G−1
0,α1α2

=
(
−∇2

x1
+m2

)
δα1α2 . (D.45)

We then complete the square in the last line of (D.44) by calculating:

−1

2

∫

α1,α2

(
~̃ϕ−G0

~J
)
α1

G−1
0,α1α2

(
~̃ϕ−G0

~J
)
α2

+
1

2

∫

α1,α2

Jα1G0,α1α2Jα2

=−
∫

α1,α2

1

2
ϕ̃α1G

−1
0,α1α2

ϕ̃α2 +
1

2

∫

α1,α2,α3

Jα1G0,α1α2G
−1
0,α2α3

ϕ̃α3

+
1

2

∫

α1,α2,α3

ϕ̃α1G
−1
0,α1α2

G0,α2α3Jα3 −
1

2

∫

α1,α2,α3,α4

Jα1G0,α1α2G
−1
0,α2α3

G0,α3α4Jα4

+
1

2

∫

α1,α2

Jα1G0,α1α2Jα2

=−
∫

α1,α2

1

2
ϕ̃α1G

−1
0,α1α2

ϕ̃α2 +
1

2

∫

α1,α3

Jα1

∫

α2

G0,α1α2G
−1
0,α2α3

︸ ︷︷ ︸
δα1α3

ϕ̃α3

+
1

2

∫

α1,α3

ϕ̃α1

∫

α2

G−1
0,α1α2

G0,α2α3

︸ ︷︷ ︸
δα1α3

Jα3 −
1

2

∫

α1,α4

Jα1

∫

α2,α3

G0,α1α2G
−1
0,α2α3

G0,α3α4

︸ ︷︷ ︸
G0,α1α4

Jα4

+
1

2

∫

α1,α2

Jα1G0,α1α2Jα2

=− 1

2

∫

α1,α2

ϕ̃α1G
−1
0,α1α2

ϕ̃α2 +

∫

α

Jαϕ̃α .

(D.46)
1We therefore set ~ = 1 while developing the formalism.
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With the help of the latter result, (D.44) is rewritten as:

eW
[
~J
]

= e
− λ

4!

∑N
a1,a2=1

∫
x

(
δ

δJa1,x

)2(
δ

δJa2,x

)2
∫
D~̃ϕ e

− 1
2

∫
α1,α2(

~̃ϕ−G0
~J)
α1
G−1

0,α1α2(~̃ϕ−G0
~J)
α2

+ 1
2

∫
α1,α2

Jα1G0,α1α2Jα2

= e
− λ

4!

∑N
a1,a2=1

∫
x

(
δ

δJa1,x

)2(
δ

δJa2,x

)2

e
1
2

∫
α1,α2

Jα1G0,α1α2Jα2

∫
D~̃ϕ e

− 1
2

∫
α1,α2(

~̃ϕ−G0
~J)
α1
G−1

0,α1α2(~̃ϕ−G0
~J)
α2 .

(D.47)

After the substitution ~̃ϕ → ~̃ϕ
′

= ~̃ϕ −G0
~J (whose Jacobian is trivial, i.e. D~̃ϕ′ = D~̃ϕ), (D.47)

becomes:

eW
[
~J
]

= e
− λ

4!

∑N
a1,a2=1

∫
x

(
δ

δJa1,x

)2(
δ

δJa2,x

)2

e
1
2

∫
α1,α2

Jα1G0,α1α2Jα2

∫
D~̃ϕ′ e− 1

2

∫
α1,α2

ϕ̃′α1G
−1
0,α1α2

ϕ̃′α2

︸ ︷︷ ︸
e

1
2 STr[ln(G0)]

= e
1
2

STr[ln(G0)]e
− λ

4!

∑N
a1,a2=1

∫
x

(
δ

δJa1,x

)2(
δ

δJa2,x

)2

e
1
2

∫
α,α′ JαG0,αα′Jα′

= e
1
2

STr[ln(G0)]

∞∑

n=0

(−1)n

n!

(
λ

4!

)n

×
N∑

a1,··· ,a2n=1

∫

x1,··· ,xn

(
δ

δJa1,x1

)2(
δ

δJa2,x1

)2

· · ·
(

δ

δJa2n−1,xn

)2(
δ

δJa2n,xn

)2

e
1
2

∫
α,α′ JαG0,αα′Jα′ .

(D.48)

A diagrammatic representation of W
[
~J
]
follows by carrying out the functional derivatives with

respect to ~J in the last line. In this way, we find:

λ

(
δ

δJa1,x

)2(
δ

δJa2,x

)2

e
1
2

∫
α,α′ JαG0,αα′Jα′ =


 x

a1 a2 + 2 x
a1 a2 + x

×

×
a1 a2

+ x
×

×
a1 a2 + 4 x

× ×
a1 a2 + x

×

×

×

×
a1 a2




×e 1
2

∫
α,α′ JαG0,αα′Jα′ ,

(D.49)

with the Feynman rules:

α1 α2 → G0,α1α2 , (D.50a)

×
α

→ Jα , (D.50b)

xa1

a2

a3

a4 → λδa1a2δa3a4 , (D.50c)



254 APPENDIX D. INVERSION METHOD

and external points are still indicated by empty dots. If we combine (D.49) with (D.48), we
obtain the expansion of W

[
~J
]
up to order O(λ):

eW
[
~J
]

= e
1
2

STr[ln(G0)]+ 1
2

∫
α1,α2

Jα1G0,α1α2Jα2

×


 1−




1

24
+

1

12
+

1

12
×

×

+
1

6

× ×

+
1

24
×

×

×

×

+O
(
λ2
)




 ,

(D.51)

which, after taking the logarithm, gives us:

W
[
~J
]

=
1

2
STr[ln(G0)] +

1

2
× ×

− 1

24
− 1

12
− 1

12
×

×

− 1

6

× ×

− 1

24
×

×

×

×

+O
(
λ2
)
.

(D.52)

We then turn to the IM by giving the following series:




Γ(1PI)
[
~φ;λ
]

=
∞∑

n=0

Γ(1PI)
n

[
~φ;λ
]
,

W
[
~J ;λ
]

=
∞∑

n=0

Wn

[
~J ;λ
]
,

~J
[
~φ;λ
]

=
∞∑

n=0

~Jn

[
~φ;λ
]
,

~φ =
∞∑

n=0

~φn

[
~J ;λ
]
,

(D.53a)

(D.53b)

(D.53c)

(D.53d)

where Γ(1PI) is still defined by (D.5). Note that the λ-dependence of the functionals involved
in (D.53a) to (D.53d) will be left implicit below, as was done above for ~. As the coupling
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constant λ is incorporated into the vertex function (D.50c) underlying our diagrammatic repre-
sentation, it will be more convenient to deal with λ-dependent Γ

(1PI)
n ,Wn, ~Jn and ~φn coefficients

in order to carry out the IM. Hence, it should be understood that the functionals Γ
(1PI)
n , Wn, ~Jn

and ~φn are of order O
(
λn
)
by definition and are a priori different from their eponymous coun-

terparts of (D.4a) to (D.4d). The general recipe of the IM outlined earlier for the ~-expansion
remains identical, as it would be for any other expansion parameter. In particular, ~φ remains
independent of ~J and of the expansion parameter. Moreover, similarly to (D.11a) and (D.13a),
the classical and quantum 1-point correlation functions satisfy:

ϕcl,α

[
~J
]

= φ0,α

[
~J
]

=
δW0

[
~J
]

δJα
=

δ

δJα

(
1

2
STr[ln(G0)] +

1

2
× ×

)
= α × , (D.54)

and

φα = ϕcl,α

[
~J = ~J0

]
= φ0,α

[
~J = ~J0

]
=
δW0

[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

= α o , (D.55)

where we have notably used:

n
α
→ Jn,α

[
~φ
]
, (D.56)

as in (D.37). We can also straightforwardly derive the homologous result of (D.21) for the
λ-expansion, that we directly give below:

Γ(1PI)
n

[
~φ
]

=−Wn

[
~J = ~J0

]
−

n−1∑

m=1

∫

α

δWn−m
[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

Jm,α

[
~φ
]

−
n∑

m=2

1

m!

n∑

n1,··· ,nm=1
{n1+···+nm≤n}

∫

α1,··· ,αm

δmWn−(n1+···+nm)

[
~J
]

δJα1 · · · δJαm

∣∣∣∣∣
~J= ~J0

Jn1,α1

[
~φ
]
· · · Jnm,αm

[
~φ
]

+

∫

α

J0,α

[
~φ
]
φαδn0 .

(D.57)

In the present situation, the first non-trivial order corresponds to n = 1 (i.e. to order O(λ))
instead of n = 2 (i.e. instead of order O(~2)) in the framework of the ~-expansion. Hence,
contenting ourselves with this order, we are interested in (D.57) evaluated at n = 0 and 1:

Γ
(1PI)
0

[
~φ
]

= −W0

[
~J = ~J0

]
+

∫

α

J0,α

[
~φ
]
φα , (D.58)

Γ
(1PI)
1

[
~φ
]

= −W1

[
~J = ~J0

]
. (D.59)

Hence, we no longer need to determine the ~J1 and ~φ1 coefficients in order to calculate the first
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non-trivial order. From (D.58) and (D.59) as well as (D.52), we directly infer:

Γ(1PI)
[
~φ
]

= − 1

2
STr[ln(G0)]− 1

2
o o +

∫

α

J0,α

[
~φ
]
φα

+
1

24
+

1

12
+

1

12
o

o

+
1

6

o o

+
1

24
o

o

o

o

+O
(
λ2
)
.

(D.60)

According to (D.55), we can show that:

−1

2
o o +

∫

α

J0,α

[
~φ
]
φα +

1

24
o

o

o

o

=
1

2
o o +

1

24

=
1

2

∫

α1,α2

J0,α1G0,α1α2J0,α2

+
λ

4!

N∑

a1,a2=1

∫

x

φ2
a1,x

φ2
a2,x

=
1

2

∫

α1,α2

φα1G
−1
0,α1α2

φα2

+
λ

4!

N∑

a1,a2=1

∫

x

φ2
a1,x

φ2
a2,x

= S
[
~φ
]
,

(D.61)

with

α → φα . (D.62)

With the help of (D.55) and (D.61), (D.60) can be simplified as follows:

Γ(1PI)
[
~φ
]

= S
[
~φ
]
− 1

2
STr[ln(G0)]

+
1

24
+

1

12
+

1

12
+

1

6

+O
(
λ2
)
.

(D.63)
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In the previous work of Okumura [304], it is also pointed out that the diagrammatic expression
of the 1PI EA can be determined by integrating the equation:

δΓ
(1PI)
n

[
~φ
]

δφα
= Jn,α

[
~φ
]
, (D.64)

which directly follows from definition (D.5) together with the power series (D.53a) and (D.53c).
Following the lines set out by ref. [304], ~J0 is determined by inverting (D.55), thus yielding:

J0,α1

[
~φ
]

=

∫

α2

G−1
0,α1α2

φα2 , (D.65)

and the ~Jn coefficients (with n ≥ 1) are calculated in the same way as ~J1 via (D.33b) above.
In summary, comparing the additional method proposed by Okumura and the IM formulation
presented here, the ~Jn coefficients are determined in the same manner and the two approaches
lead to identical expressions of the 1PI EA (i.e. (D.63)) up to ~φ-independent (or, equivalently,
~J0-independent) terms.

D.2.2 Collective effective action

Let us then turn to a more involved situation by carrying out the IM in order to determine the
collective 1PI EA Γ

(1PI)
col at the lowest non-trivial order in the framework of the ~-expansion, i.e.

up to order O
(
~2
)
. Most of the derivations are very similar to the IM applied to Γ(1PI), the only

difference being that the functionals involved in the calculations are labeled by the superindices
defined in section D.1, i.e. β ≡ (b, x) (instead of α ≡ (a, x)). A few additional complexities
arise at some stages in which we will decouple in our equations the auxiliary field sector (i.e.
b = N + 1) to that of the original field (i.e. b = 1, · · · , N). The power series underpinning the
first step of the IM are now given by:





Γ
(1PI)
col

[
Φ; ~

]
=
∞∑

n=0

Γ
(1PI)
col,n [Φ]~n ,

Wcol

[
J ; ~

]
=
∞∑

n=0

Wcol,n

[
J
]
~n ,

J
[
Φ; ~

]
=
∞∑

n=0

Jn[Φ]~n ,

Φ =
∞∑

n=0

Φn

[
J
]
~n ,

(D.66a)

(D.66b)

(D.66c)

(D.66d)

and the EA Γ
(1PI)
col is defined from the corresponding Schwinger functional Wcol

[
J
]
by (3.205)

and (3.206), i.e.:

Γ
(1PI)
col [Φ] ≡−Wcol

[
J
]

+

∫

β

Jβ[Φ]
δWcol

[
J
]

δJβ
=−Wcol

[
J
]

+

∫

β

Jβ[Φ]Φβ ,

(D.67)
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with

Φβ =
δWcol

[
J
]

δJβ
. (D.68)

Combining (D.68) with (D.66b) and (D.66d), the Φn coefficients can be expressed as follows:

Φn,β

[
J
]

=
δWcol,n

[
J
]

δJβ
, (D.69)

where the Wcol,n coefficients are deduced from the collective LE result (3.87):

Wcol,0

[
J
]

= −Scol[σcl] +

∫

x

jx[Φ]σcl,x

[
J
]

+
1

2

∫

α1,α2

Jα1 [Φ]Gσcl;J ,α1α2

[
J
]
Jα2 [Φ] , (D.70)

Wcol,1

[
J
]

=
1

2
Tr
[
ln
(
Dσcl;J

[
J
])]

, (D.71)

Wcol,2

[
J
]

=
1

8


 4

××
+ 4

×

×
+ 4

××
+ 2 +




+
1

12


 6

×

×

×

×
+ 3

×

×

×

×

+ 6

×

×
+




+
1

8


 4

×

×

×

×
+ 4

×

×

×

×
+

×

×

×

×

+ 4

×

×
+ 2

×

×
+


 .

(D.72)

The classical 1-point correlation function Ψcl

[
J
]
and the propagator GΨcl;J

[
J
]
are given at

arbitrary external source J by:




Ψcl,β

[
J
]

= Φ0,β

[
J
]

=
δWcol,0

[
J
]

δJβ
= (1− δbN+1)ϕcl,α

[
J
]

+ δbN+1σcl,x

[
J
]
,

GΨcl;J ,β1β2

[
J
]

=
δ2Wcol,0

[
J
]

δJβ1δJβ2

= (1− δb1N+1) (1− δb2N+1)Gσcl;J ,α1α2

[
J
]

+ δb1N+1δb2N+1Dσcl;J ,x1x2

[
J
]
,

(D.73a)

(D.73b)
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or, in matrix form: 



Ψcl

[
J
]

=
(
~ϕcl

[
J
]
σcl

[
J
])T

,

GΨcl;J
[
J
]

=

(
Gσcl;J

[
J
]

~0
~0T Dσcl;J

[
J
]
)
,

(D.74a)

(D.74b)

where Gσcl;J and Dσcl;J are respectively defined by (3.39) and (3.38), i.e.:

G−1
σcl;J ,α1α2

[
J
]
≡
(
−∇2

x1
+m2 + i

√
λ

3
σcl,x1

[
J
]
)
δα1α2 , (D.75)

and

D−1
σcl;J ,x1x2

[
J
]
≡ δ2Scol,J [σ̃]

δσ̃x1δσ̃x2

∣∣∣∣
σ̃=σcl

. (D.76)

If (D.73a) and (D.73b) are evaluated at J = J0, we have:





Φβ = Ψcl,β

[
J = J0

]
= Φ0,β

[
J = J0

]
=
δWcol,0

[
J
]

δJβ

∣∣∣∣∣
J=J0

= (1− δbN+1)φα + δbN+1ηx ,

Gβ1β2 [Φ] = GΨcl;J ,β1β2

[
J = J0

]
=
δ2Wcol,0

[
J
]

δJβ1δJβ2

∣∣∣∣∣
J=J0

= (1− δb1N+1) (1− δb2N+1)GΦ,α1α2 [Φ] + δb1N+1δb2N+1DΦ,x1x2 [Φ] ,

(D.77a)

(D.77b)

and, in matrix form: 



Φ =
(
~φ η

)T

,

G[Φ] =

(
GΦ[Φ] ~0
~0T DΦ[Φ]

)
,

(D.78a)

(D.78b)

where, according to (3.210) and (3.211), we have:

G−1
Φ,α1α2

[Φ] ≡
(
−∇2

x1
+m2 + i

√
λ

3
ηx1

)
δα1α2 , (D.79)

and

D−1
Φ,x1x2

[Φ] ≡ δ2Scol,J [σ̃]

δσ̃x1δσ̃x2

∣∣∣∣
σ̃=η
~J=~J0

. (D.80)

By following the reasoning of (D.15), it can be proven from the definition of Γ
(1PI)
col (i.e. (D.67))

that Φ is independent of ~. From the latter definitions, we then work out all the Feynman rules
that we will use below to determine Γ

(1PI)
col via the IM. At arbitrary external source J , these Feyn-

man rules are identical to those of the collective LE (i.e. identical to (3.80a), (3.80b), (3.80c)
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and (3.80d)), which are:

α1 α2 → Gσcl;J ,α1α2

[
J
]
, (D.81a)

x1 x2 → Dσcl;J ,x1x2

[
J
]
, (D.81b)

a1 a2x → i

√
λ

3
δa1a2 , (D.81c)

×
α
→ Jα , (D.81d)

whereas, at J = J0, we will rather use:

α1 α2 → GΦ,α1α2 [Φ] , (D.82a)

x1 x2 → DΦ,x1x2 [Φ] , (D.82b)

a1 a2x → i

√
λ

3
δa1a2 , (D.82c)

n
α

→ Jn,α[Φ] , (D.82d)

β1 β2 → Gβ1β2 [Φ] , (D.82e)

where (D.82a), (D.82b) and (D.82c) are equivalent to (3.212a), (3.212b) and (3.212c), respec-
tively. As a next step, we combine the series (D.66a), (D.66b) and (D.66c) with (D.67) (i.e.
with the Legendre transform definition of Γ

(1PI)
col ):

∞∑

n=0

Γ
(1PI)
col,n [Φ]~n = −

∞∑

n=0

Wcol,n

[
∞∑

m=0

Jm[Φ]~m
]
~n +

∞∑

n=0

∫

β

Jn,β[Φ]Φβ ~n . (D.83)

From this, we derive in the same way as for (D.21):

Γ
(1PI)
col,n [Φ] =−Wcol,n

[
J = J0

]
−

n−1∑

m=1

∫

β

δWcol,n−m
[
J
]

δJβ

∣∣∣∣∣
J=J0

Jm,β[Φ]

−
n∑

m=2

1

m!

n∑

n1,··· ,nm=1
{n1+···+nm≤n}

∫

β1,··· ,βm

δmWcol,n−(n1+···+nm)

[
J
]

δJβ1 · · · δJβm

∣∣∣∣∣
J=J0

Jn1,β1 [Φ] · · · Jnm,βm [Φ]

+

∫

β

J0,β[Φ]Φβδn0 .

(D.84)
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As we are interested in the lowest non-trivial order, we will determine Γ
(1PI)
col,0 , Γ

(1PI)
col,1 and Γ

(1PI)
col,2

which, according to (D.84), read:

Γ
(1PI)
col,0 [Φ] = −W0

[
J = J0

]
+

∫

β

J0,β[Φ]Φβ , (D.85)

Γ
(1PI)
col,1 [Φ] = −W1

[
J = J0

]
, (D.86)

Γ
(1PI)
col,2 [Φ] = −W2

[
J = J0

]
−
∫

β

δW1

[
J
]

δJβ

∣∣∣∣∣
J=J0

J1,β[Φ]− 1

2

∫

β1,β2

δ2W0

[
J
]

δJβ1δJβ2

∣∣∣∣∣
J=J0

J1,β1 [Φ]J1,β2 [Φ] .

(D.87)
We can further specify Γ

(1PI)
col,0 by deriving from (D.70) and (D.73a) some relations analogous

to (D.54) and (D.55) exploited above in the framework of the λ-expansion of Γ(1PI):

ϕcl,α1

[
J
]

=
δWcol,0

[
J
]

δJα1

=
δ

δJα1

(
−Scol[σcl] +

∫

x2

jx2 [Φ]σcl,x2

[
J
]

+
1

2

∫

α2,α3

Jα2 [Φ]Gσcl;J ,α2α3

[
J
]
Jα3 [Φ]

)

=

∫

α2

Gσcl;J ,α1α2

[
J
]
Jα2 [Φ] ,

(D.88)

and, at J = J0:

φα1 =

∫

α2

GΦ,α1α2 [Φ]J0,α2 [Φ] , (D.89)

or, equivalently:

α = α o . (D.90)

From (D.70), (D.85) and (D.89), we show that:

Γ
(1PI)
col,0 [Φ] =−W0[J = J0] +

∫

β

J0,β[Φ]Φβ

=−
(
− Scol[η] +

∫

x

j0,x[Φ]ηx +
1

2

∫

α1,α2

J0,α1 [Φ]Gα1α2 [Φ]J0,α2 [Φ]

)
+

∫

β

J0,β[Φ]Φβ

= Scol[η]−
∫

x

j0,x[Φ]ηx −
∫

α1,α2

J0,α1 [Φ]Gα1α2 [Φ]J0,α2 [Φ]

︸ ︷︷ ︸
−
∫
β J0,β [Φ]Φβ

+
1

2

∫

α1,α2

J0,α1 [Φ]Gα1α2 [Φ]J0,α2 [Φ]

︸ ︷︷ ︸∫
α1,α2

φα1G
−1
α1α2 [Φ]φα2

+

∫

β

J0,β[Φ]Φβ

= Scol[η] +
1

2

∫

α1,α1

φα1G
−1
α1α2

[Φ]φα2 .

(D.91)

Even though the original field has been integrated out in the collective representation, it can still
be seen at the level of the LE that this field still plays a role through its source ~J , which gives
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us access to the corresponding correlation functions (and to the gs density ρgs in particular).
The presence of the original field is perhaps more apparent at the level of the EA since we
can introduce back the 1-point correlation function ~φ through (D.89), which notably yields a
kinetic term2 for ~φ in Γ

(1PI)
col,0 according to (D.91).

Let us then focus on Γ
(1PI)
col,2 by determining the two derivatives involved in (D.87). One of

these two derivatives directly follows from (D.77b):

δ2Wcol,0

[
J
]

δJβ1δJβ2

∣∣∣∣∣
J=J0

= β1 β2 , (D.92)

and the other derivative that we seek is calculated from (D.71) as follows:

δWcol,1

[
J
]

δJβ1

=
δ

δJβ1

(
1

2
Tr
[
ln
(
Dσcl;J

[
J
])])

=
1

2

δ

δJβ1

∫

x2

ln
(
Dσcl;J ,x2x2

[
J
])

=
1

2

∫

x2,x3

D−1
σcl;J ,x2x3

[
J
]δDσcl;J ,x3x2

[
J
]

δJβ1

=− 1

2

∫

x2,x3,x4,x5

D−1
σcl;J ,x2x3

[
J
]
Dσcl;J ,x3x4

[
J
]δD−1

σcl;J ,x4x5

[
J
]

δJβ1

Dσcl;J ,x5x2

[
J
]

=− 1

2

∫

x2,x3

δD−1
σcl;J ,x2x3

[
J
]

δJβ1

Dσcl;J ,x3x2

[
J
]
.

(D.93)

The derivative of D−1
σcl;J with respect to J in the last line of (D.93) will be evaluated by making

use of:
δJα2

δJβ1

= δα1α2 (1− δb1N+1) , (D.94)

and
δGσcl;J ,α2α3

[
J
]

δJβ1

=−
∫

α4,α5

Gσcl;J ,α2α4

[
J
]δG−1

σcl;J ,α4α5

[
J
]

δJβ1

Gσcl;J ,α5α3

[
J
]

=−
∫

α4,α5

Gσcl;J ,α2α4

[
J
] δ

δJβ1

((
−∇2

x4
+m2 + i

√
λ

3
σcl,x4

[
J
]
)
δα4α5

)
Gσcl;J ,α5α3

[
J
]

=−
∫

α4

Gσcl;J ,α2α4

[
J
]
(
i

√
λ

3

δσcl,x4

[
J
]

δJβ1︸ ︷︷ ︸
δσcl,x4

[J ]

δjx1
δb1N+1

)
Gσcl;J ,α4α3

[
J
]

=−i
√
λ

3
δb1N+1

∫

α4

Gσcl;J ,α2α4

[
J
] δσcl,x4

[
J
]

δjx1︸ ︷︷ ︸
Dσcl;J ,x1x4 [J ]

Gσcl;J ,α4α3

[
J
]

=−i
√
λ

3
δb1N+1

∫

α4

Gσcl;J ,α2α4

[
J
]
Dσcl;J ,x1x4

[
J
]
Gσcl;J ,α4α3

[
J
]
,

(D.95)
2This kinetic term is the reason why the LOAF approximation coincides with the collective LE at its leading

order if and only if the gap equations of Γ
(1PI)
col yield ~φ = ~0, as stated at the beginning of section 3.5.1.2.
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which follows from (D.75) and where the relation:

Dσcl;J ,x1x2

[
J
]

=
δ2Wcol,0

[
J
]

δjx1δjx2

=
δηcl,x2

δjx1

, (D.96)

is equivalent to (D.73b) (combined with (D.73a)) at b1 = b2 = N + 1. From (D.94) and (D.95)
as well as (3.84), we calculate:

δD−1
σcl;J ,x2x3

[
J
]

δJβ1

=
δ

δJβ1

(
λ

3

N∑

a6,a7=1

∫

α4,α5

Jα4Gσcl;J ,α4(a6,x2)

[
J
]
Gσcl;J ,(a6,x2)(a7,x3)

[
J
]
Gσcl;J ,(a7,x3)α5

[
J
]
Jα5

+
λ

6

N∑

a4,a5=1

Gσcl;J ,(a4,x2)(a5,x3)

[
J
]
Gσcl;J ,(a5,x3)(a4,x2)

[
J
]

+ δx2x3

)

=− (1− δb1N+1)




α1

x2 x3

×
+

α1

x2 x3

×



+δb1N+1




x1 ×

×x2 x3

+

x1

× ×x2 x3

+

x1 ×

× x2 x3

+

x1

x2 x3




.

(D.97)

The derivative ofWcol,1

[
J
]
involved in (D.87) is obtained by inserting (D.97) into (D.93) before

setting J = J0:

δWcol,1

[
J
]

δJβ1

∣∣∣∣∣
J=J0

= (1− δb1N+1)

α1 o

− 1

2
δb1N+1




2

x1 o

o

+

x1

o o

+

x1



.

(D.98)

As a next step, we determine the J1 coefficient from the power series of Φ. The procedure is
analogous to that leading to ~J1 for Γ(1PI): we Taylor expand the Φn coefficients around J = J0

in (D.66d) and identify the following relations by exploiting the fact that Φ is of order O
(
~0
)
:





Order O
(
~0
)

: Φβ = Φ0,β

[
J = J0

]
,

Order O(~) : 0 =

∫

β2

δΦ0,β1

[
J
]

δJβ2

∣∣∣∣∣
J=J0

J1,β2 [Φ] + Φ1,β1

[
J = J0

]
∀β1 ,

...

(D.99a)

(D.99b)
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where it follows from (D.69) that:

δΦ0,β1

[
J
]

δJβ2

=
δ2Wcol,0

[
J
]

δJβ2δJβ1

, (D.100)

Φ1,β

[
J
]

=
δWcol,1

[
J
]

δJβ
. (D.101)

According to (D.100) and (D.101), (D.99b) can be rewritten with the help of (D.92) and (D.98)
as:

0 = β 1 + (1− δbN+1)

α o

− 1

2
δbN+1




2

x o

o

+

x

o o

+

x



.

(D.102)

With the inverse propagator:

β1 β2 → G−1
β1β2

[Φ] , (D.103)

we isolate J1 in (D.102):

J1,β[Φ] =− i
√
λ

3
(1− δbN+1)

α

o

+
i

2

√
λ

3
δbN+1




2

o

x

o

+
x

o o

+
x




,

(D.104)

where we have used:

∫

β3

(1− δb3N+1)
β1 β3

α2
= (1− δb1N+1) δα1α2 , (D.105)

∫

β3

δb3N+1
β1 β3

x2
= δb1N+1δx1x2 . (D.106)
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From derivatives (D.92) and (D.98) as well as expression (D.104) of J1, we calculate:

∫

β

δW1

[
J
]

δJβ

∣∣∣∣∣
J=J0

J1,β[Φ] =−
oo

−
o

o

o

o

−
o

o

o

o

− 1

4
o

o

o

o

−
o

o

− 1

2
o

o

− 1

4
,

(D.107)

1

2

∫

β1,β2

δ2W0

[
J
]

δJβ1δJβ2

∣∣∣∣∣
J=J0

J1,β1 [Φ]J1,β2 [Φ] =
1

2

oo

+
1

2
o

o

o

o

+
1

2
o

o

o

o

+
1

8
o

o

o

o

+
1

2
o

o

+
1

4
o

o

+
1

8
.

(D.108)

After inserting (D.72), (D.107) and (D.108) into (D.87), Γ
(1PI)
col,2 becomes:

Γ
(1PI)
col,2 [Φ] =− 1

2
o

o

− 1

2

oo

− 1

2
o

o

o

o

− 1

4
o

o

o

o

− 1

4
− 1

8
− 1

2
o

o

− 1

12
.

(D.109)
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Finally, we conclude the above derivations by giving our final expression for the collective
1PI EA which results from (D.91), (D.86) (combined with (D.71)) and (D.109) (combined
with (D.90)):

Γ
(1PI)
col [Φ] = Scol[η] +

1

2

∫

α1,α2

φα1G
−1
Φ;α1α2

[Φ]φα2 −
~
2

Tr
[
ln
(
DΦ[Φ]

)]

− ~2




1

2
+

1

2
+

1

2
+

1

4

+
1

4
+

1

8
+

1

2
+

1

12




+O
(
~3
)
,

(D.110)

where all diagrams are 1PI (with respect to both GΦ and DΦ), as expected.

D.3 2PI effective action

D.3.1 Original effective action

With ~ as expansion parameter, the investigation of the 2PI EA via the IM starts with the
following power series:





Γ(2PI)
[
~φ,G; ~

]
=
∞∑

n=0

Γ(2PI)
n

[
~φ,G

]
~n ,

W
[
~J,K; ~

]
=
∞∑

n=0

Wn

[
~J,K

]
~n ,

~J
[
~φ,G; ~

]
=
∞∑

n=0

~Jn

[
~φ,G

]
~n ,

K
[
~φ,G; ~

]
=
∞∑

n=0

Kn

[
~φ,G

]
~n ,

~φ =
∞∑

n=0

~φn

[
~J,K

]
~n ,

G =
∞∑

n=0

Gn

[
~J,K

]
~n ,

(D.111a)

(D.111b)

(D.111c)

(D.111d)

(D.111e)

(D.111f)
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with the definition:

Γ(2PI)
[
~φ,G

]
≡−W

[
~J,K

]
+

∫

α

Jα

[
~φ,G

]δW
[
~J,K

]

δJα
+

∫

α1,α2

Kα1α2

[
~φ,G

]δW
[
~J,K

]

δKα1α2

=−W
[
~J,K

]
+

∫

α

Jα

[
~φ,G

]
φα +

1

2

∫

α1,α2

φα1Kα1α2

[
~φ,G

]
φα2

+
~
2

∫

α1,α2

Kα1α2

[
~φ,G

]
Gα1α2 ,

(D.112)

where

φα =
δW
[
~J,K

]

δJα
, (D.113)

Gα1α2 =
δ2W

[
~J,K

]

δJα1δJα2

=
2

~
δW
[
~J,K

]

δKα1α2

− 1

~
φα1φα2 . (D.114)

The Wn coefficients are directly inferred from the LE result (3.50) at n = 0, 1 and 2. At
arbitrary external sources ~J andK, the 1-point correlation function and propagator of interest
are:




ϕcl,α

[
~J,K

]
= φ0,α

[
~J,K

]
=
δW0

[
~J,K

]

δJα
,

Gϕcl;JK,α1α2

[
~J,K

]
= G0,α1α2

[
~J,K

]

=


 δ2S

[
~̃ϕ
]

δ~̃ϕδ~̃ϕ

∣∣∣∣∣
~̃ϕ=~ϕcl

−K
[
~φ,G

]


−1

α1α2

=
δ2W0

[
~J,K

]

δJα1δJα2

= 2
δW1

[
~J,K

]

δKα1α2

− δW1

[
~J,K

]

δJα1

δW0

[
~J,K

]

δJα2

− δW0

[
~J,K

]

δJα1

δW1

[
~J,K

]

δJα2

,

(D.115a)

(D.115b)

where the penultimate line results from (D.114) combined with (D.111b) and (D.113). At(
~J,K

)
=
(
~J0,K0

)
, we have:





~φ = ϕcl,α

[
~J = ~J0,K = K0

]
= φ0,α

[
~J = ~J0,K = K0

]
=
δW0

[
~J,K

]

δJα

∣∣∣∣∣ ~J=~J0
K=K0

.

Gα1α2 = Gϕcl;JK,α1α2

[
~J = ~J0,K = K0

]
= G0,α1α2

[
~J = ~J0,K = K0

]

=


 δ2S

[
~̃ϕ
]

δ~̃ϕδ~̃ϕ

∣∣∣∣∣
~̃ϕ=~φ

−K0

[
~φ,G

]


−1

α1α2

=
δ2W0

[
~J,K

]

δJα1δJα2

∣∣∣∣∣ ~J=~J0
K=K0

= 2
δW1

[
~J,K

]

δKα1α2

∣∣∣∣∣ ~J=~J0
K=K0

− δW1

[
~J,K

]

δJα1

∣∣∣∣∣ ~J=~J0
K=K0

δW0

[
~J,K

]

δJα2

∣∣∣∣∣ ~J=~J0
K=K0

− δW0

[
~J,K

]

δJα1

∣∣∣∣∣ ~J=~J0
K=K0

δW1

[
~J,K

]

δJα2

∣∣∣∣∣ ~J=~J0
K=K0

.

(D.116a)

(D.116b)

As was proven for ~φ in the framework of the 1PI EA, we can prove similarly from (D.112) that
both ~φ and G are independent of ~ in the present case. Note also that, thanks to the presence
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of K0 in (D.116b), ~φ and G can be considered as independent as well: this essential property,
which marks an important difference between the 1PI EA and 2PI EA formalisms, is used in
the derivation of the gap equations associated to Γ(2PI) in section 3.5.2. As a next step, we
give the relevant Feynman rules to develop the IM for Γ(2PI). At arbitrary external sources ~J
and K, we have the Feynman rules (3.49a) to (3.49c) underpinning the LE of section 3.2.2.1
recalled below:

α1 α2 → Gϕcl;JK,α1α2

[
~J,K

]
, (D.117a)

xa1

a2

a3

N → λ
∣∣∣~ϕcl,α

[
~J,K

]∣∣∣ δa1a2δa3N , (D.117b)

xa1

a2

a3

a4 → λδa1a2δa3a4 , (D.117c)

and, at
(
~J,K

)
=
(
~J0,K0

)
, (D.117a) to (D.117c) coincide with (3.231a) to (3.231c), i.e.:

α1 α2 → Gα1α2 , (D.118a)

xa1

a2

a3

N → λ
∣∣∣~φ
∣∣∣ δa1a2δa3N , (D.118b)

xa1

a2

a3

a4 → λδa1a2δa3a4 . (D.118c)

As a next step, we determine an expression for the Γ
(2PI)
n coefficients by combining (D.112)

with (D.111a), (D.111b), (D.111c) and (D.111d):

∞∑

n=0

Γ(2PI)
n

[
~φ,G

]
~n =−

∞∑

n=0

Wn

[
∞∑

m=0

~Jm

[
~φ,G

]
~m,

∞∑

m=0

Km

[
~φ,G

]
~m
]
~n +

∞∑

n=0

∫

α

Jn,α

[
~φ,G

]
φα~n

+
1

2

∞∑

n=0

∫

α1,α2

φα1Kn,α1α2

[
~φ,G

]
φα2~n +

1

2

∞∑

n=0

∫

α1,α2

Kn,α1α2

[
~φ,G

]
Gα1α2~n+1 .

(D.119)
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This leads to (see section D.5.2):

Γ(2PI)
n

[
~φ,G

]
=−Wn

[
~J = ~J0,K = K0

]
−

n∑

m=1

∫

α

δWn−m
[
~J,K

]

δJα

∣∣∣∣∣ ~J=~J0
K=K0

Jm,α

[
~φ,K

]

−
n∑

m=1

∫

α1,α2

δWn−m
[
~J,K

]

δKα1α2

∣∣∣∣∣ ~J=~J0
K=K0

Km,α1α2

[
~φ,G

]

−
n∑

m=2

1

m!

m∑

l,l′=1
{l+l′=m}

n∑

n1,··· ,nl,n̂1,··· ,n̂l′=1
{n1+···+nl+n̂1+···+n̂l′≤n}

(
m
l

)

×
∫

α1,··· ,αl
α̂1,··· ,α̂2l′

δmWn−(n1+···+nl+n̂1+···+n̂l′ )
[
~J,K

]

δJα1 · · · δJαlδKα̂1α̂2 · · · δKα̂2l′−1α̂2l′

∣∣∣∣∣ ~J=~J0
K=K0

×Jn1,α1

[
~φ,G

]
· · · Jnl,αl

[
~φ,G

]
Kn̂1,α̂1α̂2

[
~φ,G

]
· · ·Kn̂l′ ,α̂2l′−1α̂2l′

[
~φ,G

]

+

∫

α

Jn,α

[
~φ,G

]
φα +

1

2

∫

α1,α2

φα1Kn,α1α2

[
~φ,G

]
φα2

+
1

2

∫

α1,α2

Kn−1,α1α2

[
~φ,G

]
Gα1α2δn≥1 .

(D.120)

We then rewrite (D.120) by considering (D.116a) as well as the relation:

δW0

[
~J,K

]

δKα1α2

∣∣∣∣∣ ~J=~J0
K=K0

=
1

2
φα1φα2 , (D.121)

which can be inferred from the equality W0

[
~J,K

]
= −SJK

[
~ϕcl

]
that follows from (3.50).

Similarly to the derivation of (D.20), these relations enable us to show that:

−
n∑

m=1

∫

α

δWn−m
[
~J,K

]

δJα

∣∣∣∣∣ ~J=~J0
K=K0

Jm,α

[
~φ,G

]
+

∫

α

Jn,α

[
~φ,G

]
φα

= −
n−1∑

m=1

∫

α

δWn−m
[
~J,K

]

δJα

∣∣∣∣∣ ~J=~J0
K=K0

Jm,α

[
~φ,G

]
+

∫

α

J0,α

[
~φ,G

]
φαδn0 ,

(D.122)

and

−
n∑

m=1

∫

α1,α2

δWn−m
[
~J,K

]

δKα1α2

∣∣∣∣∣ ~J=~J0
K=K0

Km,α1α2

[
~φ,G

]
+

1

2

∫

α1,α2

φα1Kn,α1α2

[
~φ,G

]
φα2

= −
n−1∑

m=1

∫

α1,α2

δWn−m
[
~J,K

]

δKα1α2

∣∣∣∣∣ ~J=~J0
K=K0

Km,α1α2

[
~φ,G

]
+

1

2

∫

α1,α2

φα1K0,α1α2

[
~φ,G

]
φα2δn0 ,

(D.123)
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which implies that (D.120) is equivalent to:

Γ(2PI)
n

[
~φ,G

]
=−Wn

[
~J = ~J0,K = K0

]
−

n−1∑

m=1

∫

α

δWn−m
[
~J,K

]

δJα

∣∣∣∣∣ ~J=~J0
K=K0

Jm,α

[
~φ,K

]

−
n−1∑

m=1

∫

α1,α2

δWn−m
[
~J,K

]

δKα1α2

∣∣∣∣∣ ~J=~J0
K=K0

Km,α1α2

[
~φ,G

]

−
n∑

m=2

1

m!

m∑

l,l′=1
{l+l′=m}

n∑

n1,··· ,nl,n̂1,··· ,n̂l′=1
{n1+···+nl+n̂1+···+n̂l′≤n}

(
m
l

)

×
∫

α1,··· ,αl
α̂1,··· ,α̂2l′

δmWn−(n1+···+nl+n̂1+···+n̂l′ )
[
~J,K

]

δJα1 · · · δJαlδKα̂1α̂2 · · · δKα̂2l′−1α̂2l′

∣∣∣∣∣ ~J=~J0
K=K0

×Jn1,α1

[
~φ,G

]
· · · Jnl,αl

[
~φ,G

]
Kn̂1,α̂1α̂2

[
~φ,G

]
· · ·Kn̂l′ ,α̂2l′−1α̂2l′

[
~φ,G

]

+

∫

α

J0,α

[
~φ,G

]
φαδn0 +

1

2

∫

α1,α2

φα1K0,α1α2

[
~φ,G

]
φα2δn0

+
1

2

∫

α1,α2

Kn−1,α1α2

[
~φ,G

]
Gα1α2δn≥1 .

(D.124)

Still focusing on the first non-trivial order, we will exploit (D.124) evaluated at n = 0, 1 and 2,
i.e.:

Γ
(2PI)
0

[
~φ,G

]
= −W0

[
~J = ~J0,K = K0

]
+

∫

α

J0,α

[
~φ,G

]
φα +

1

2

∫

α1,α2

φα1K0,α1α2

[
~φ,G

]
φα2 ,

(D.125)

Γ
(2PI)
1

[
~φ,G

]
= −W1

[
~J = ~J0,K = K0

]
+

1

2

∫

α1,α2

K0,α1α2

[
~φ,G

]
Gα1α2 , (D.126)

Γ
(2PI)
2

[
~φ,G

]
=−W2

[
~J = ~J0,K = K0

]
−
∫

α

δW1

[
~J,K

]

δJα

∣∣∣∣∣ ~J=~J0
K=K0

J1,α

[
~φ,G

]

−
∫

α1,α2

δW1

[
~J,K

]

δKα1α2

∣∣∣∣∣ ~J=~J0
K=K0

K1,α1α2

[
~φ,G

]

− 1

2

∫

α1,α2

δ2W0

[
~J,K

]

δJα1δJα2

∣∣∣∣∣ ~J=~J0
K=K0

J1,α1

[
~φ,G

]
J1,α2

[
~φ,G

]

− 1

2

∫

α1,α2,α3,α4

δ2W0

[
~J,K

]

δKα1α2δKα3α4

∣∣∣∣∣ ~J=~J0
K=K0

K1,α1α2

[
~φ,G

]
K1,α3α4

[
~φ,G

]

−
∫

α1,α2,α3

δ2W0

[
~J,K

]

δJα1δKα2α3

∣∣∣∣∣ ~J=~J0
K=K0

J1,α1

[
~φ,G

]
K1,α2α3

[
~φ,G

]

+
1

2

∫

α1,α2

K1,α1α2

[
~φ,G

]
Gα1α2 .

(D.127)

It is customary to rewrite the rightmost term in (D.126) using the relation:

K0

[
~φ,G

]
= G−1

φ

[
~φ
]
−G−1 , (D.128)
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with

G−1
φ,α1α2

[
~φ
]
≡ δ2S

[
~̃ϕ
]

δϕ̃α1δϕ̃α2

∣∣∣∣∣
~̃ϕ=~φ

=

(
−∇2

x1
+m2 +

λ

6
~φ2
x1

)
δα1α2 +

λ

3
φα1φα2δx1x2 , (D.129)

as follows from (D.116b). In this way, (D.126) becomes:

Γ
(2PI)
1

[
~φ,G

]
= −W1

[
~J = ~J0,K = K0

]
+

1

2
STr

[
G−1
φ

[
~φ
]
G− I

]
, (D.130)

where Iα1α2 = δα1α2 = δa1a2δx1x2 . We then focus on Γ
(2PI)
2 and (D.127). As for the 1PI EA with

result (D.35), we derive:

φ1,α

[
~J,K

]
=
δW1

[
~J,G

]

δJα
= −1

6
α

− 1

3

α

. (D.131)

In order to determine the source coefficients ~J1 and K1, we need to find a diagrammatic
expression for G1 as well. This can be achieved by further differentiating (D.131), i.e.:

G1

[
~J,K

]
=
δ2W1

[
~J,G

]

δJα1δJα2

=
δ

δJα1


 −

1

6
α2

− 1

3

α2

 . (D.132)

The derivative in the rightmost side can be evaluated with the help of the two equalities given
below:

δϕcl,α2

[
~J,K

]

δJα1

=
δ2W0

[
~J
]

δJα1δJα2

= Gϕcl;JK,α1α2

[
~J,K

]
= α1 α2 , (D.133)

δGϕcl;JK,α2α3

[
~J,K

]

δJα1

= −1

3

(

α2

α3

α1

+
α1

α3

α2

+
α1

α2

α3

)
,

(D.134)
which are the counterparts of (D.25) and (D.30) for the 2PI EA, respectively. After following
this recipe, we find an expression of G1 involving 13 distinct diagrams. Let us bear this number
in mind and derive the equations to solve for ~J1 and K1. For that purpose, we Taylor expand
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the ~φn andGn coefficients around
(
~J,K

)
=
(
~J0,K0

)
in the power series (D.111e) and (D.111f):

φα1 =
∞∑

n=0

φn,α1

[
~J,K

]
~n

= φ0,α1

[
~J,K

]
+ φ1,α1

[
~J,K

]
~ +O

(
~2
)

= φ0,α1

[
~J = ~J0,K = K0

]
+

∫

α2

δφ0,α1

[
~J,K

]

δJα2

∣∣∣∣∣ ~J=~J0
K=K0

(
Jα2

[
~φ,K

]
− J0,α2

[
~φ,K

])

+

∫

α2,α3

δφ0,α1

[
~J,K

]

δKα2α3

∣∣∣∣∣ ~J=~J0
K=K0

(
Kα2α3

[
~φ,K

]
−K0,α2α3

[
~φ,K

])

+ φ1,α1

[
~J = ~J0,K = K0

]
~ +O

(
~2
)

= φ0,α1

[
~J = ~J0,K = K0

]

+ ~
( ∫

α2

δφ0,α1

[
~J,K

]

δJα2

∣∣∣∣∣ ~J=~J0
K=K0

J1,α2

[
~φ,K

]
+

∫

α2,α3

δφ0,α1

[
~J,K

]

δKα2α3

∣∣∣∣∣ ~J=~J0
K=K0

K1,α2α3

[
~φ,K

]

+ φ1,α1

[
~J = ~J0,K = K0

] )

+O
(
~2
)
,

(D.135)

Gα1α2 =
∞∑

n=0

Gn,α1α2

[
~J,K

]
~n

= G0,α1α2

[
~J,K

]
+G1,α1α2

[
~J,K

]
~ +O

(
~2
)

= G0,α1α2

[
~J = ~J0,K = K0

]
+

∫

α3

δG0,α1α2

[
~J,K

]

δJα3

∣∣∣∣∣ ~J=~J0
K=K0

(
Jα3

[
~φ,K

]
− J0,α3

[
~φ,K

])

+

∫

α3,α4

δG0,α1α2

[
~J,K

]

δKα3α4

∣∣∣∣∣ ~J=~J0
K=K0

(
Kα3α4

[
~φ,K

]
−K0,α3α4

[
~φ,K

])

+G1,α1α2

[
~J = ~J0,K = K0

]
~ +O

(
~2
)

= G0,α1α2

[
~J = ~J0,K = K0

]

+ ~
( ∫

α3

δG0,α1α2

[
~J,K

]

δJα3

∣∣∣∣∣ ~J=~J0
K=K0

J1,α3

[
~φ,K

]

+

∫

α3,α4

δG0,α1α2

[
~J,K

]

δKα3α4

∣∣∣∣∣ ~J=~J0
K=K0

K1,α3α4

[
~φ,K

]
+G1,α1α2

[
~J = ~J0,K = K0

] )

+O
(
~2
)
.

(D.136)
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Exploiting the fact that ~φ and G are independent of ~, we extract the following equations
from (D.135) and (D.136):





0 =

∫

α2

δφ0,α1

[
~J,K

]

δJα2

∣∣∣∣∣ ~J=~J0
K=K0

J1,α2

[
~φ,K

]
+

∫

α2,α3

δφ0,α1

[
~J,K

]

δKα2α3

∣∣∣∣∣ ~J=~J0
K=K0

K1,α2α3

[
~φ,K

]

+φ1,α1

[
~J = ~J0,K = K0

]
.

0 =

∫

α3

δG0,α1α2

[
~J,K

]

δJα3

∣∣∣∣∣ ~J=~J0
K=K0

J1,α3

[
~φ,K

]
+

∫

α3,α4

δG0,α1α2

[
~J,K

]

δKα3α4

∣∣∣∣∣ ~J=~J0
K=K0

K1,α3α4

[
~φ,K

]

+G1,α1α2

[
~J = ~J0,K = K0

]
.

(D.137a)

(D.137b)

It is clear at this stage that, since G1 brings up a dozen diagrams in the latter equation system,
both ~J1 and K1 will be given by more than 10 diagrams, regardless of how we isolate them
in (D.137a) and (D.137b). Therefore, some terms in the RHS of (D.127) will yield more than
a hundred terms to the expression of Γ

(2PI)
2 , which renders the IM already very cumbersome to

carry out at the first non-trivial order for the 2PI EA. However, we point out that the formalism
developed so far already gives us the essential ingredients to determine nPI EAs with (mixed
and collective representations) and without HST (original representation). In particular, the
separation between the original field and auxiliary field sectors with Kronecker deltas carried
out in section D.2.2 can be used for any mixed or collective nP(P)I EAs. Luckily, in the
present case, we know that all 2PR diagrams should be canceled out from the expressions of
the Γ

(2PI)
n coefficients (with n ≥ 2), notably from the work of Vasil’ev and collaborators [110].

We therefore exploit this property to express the full original 2PI EA up to order O
(
~2
)
directly

from (D.125) and (D.130) alongside with the LE result (3.50):

Γ(2PI)
[
~φ,G

]
= S

[
~φ
]
− ~

2
STr

[
ln
(
G
)]

+
~
2

STr
[
G−1
φ

[
~φ
]
G− I

]

+~2




1

24
+

1

12
− 1

18
− 1

36




+O
(
~3
)
.

(D.138)

Since all 2-particle-reducible (2PR) diagrams are also 1PR at order O
(
~2
)
of the original LE

series of the Schwinger functional (i.e. (3.50)), the diagrams contributing to Γ(2PI) are identical
to those of Γ(1PI) at this order (although the plain red lines do not represent the same propagator,
i.e. (D.17a) for the 1PI EA and (D.118a) for the 2PI EA). This is no longer the case at the
next order, i.e. at order O

(
~3
)
.

D.3.2 Mixed effective action

~-expansion for the full mixed 2PI EA: As before with the IM, we start by presenting
this formalism with some definitions and relevant Feynman rules. To begin with, we have the



274 APPENDIX D. INVERSION METHOD

following power series:





Γ
(2PI)
mix

[
Φ,G; ~

]
=
∞∑

n=0

Γ(2PI)
n

[
Φ,G

]
~n ,

Wmix

[
J ,K; ~

]
=
∞∑

n=0

Wmix,n

[
J ,K

]
~n ,

J
[
Φ,G; ~

]
=
∞∑

n=0

Jn
[
Φ,G

]
~n ,

K
[
Φ,G; ~

]
=
∞∑

n=0

Kn
[
Φ,G

]
~n ,

Φ =
∞∑

n=0

Φn

[
J ,K

]
~n ,

G =
∞∑

n=0

Gn
[
J ,K

]
~n ,

(D.139a)

(D.139b)

(D.139c)

(D.139d)

(D.139e)

(D.139f)

where

Γ
(2PI)
mix

[
Φ,G

]
≡−Wmix

[
J ,K

]
+

∫

β

Jβ
[
Φ,G

]δWmix

[
J ,K

]

δJβ
+

∫

β1,β2

Kβ1β2

[
Φ,G

]δWmix

[
J ,K

]

δKβ1β2

=−Wmix

[
J ,K

]
+

∫

β

Jβ
[
Φ,G

]
Φβ +

1

2

∫

β1,β2

Φβ1Kβ1β2

[
Φ,G

]
Φβ2

+
~
2

∫

β1,β2

Kβ1β2

[
Φ,G

]
Gβ1β2 ,

(D.140)

and

Φβ =
δWmix

[
J ,K

]

δJβ
, (D.141)

Gβ1β2 =
δ2Wmix

[
J ,G

]

δJβ1δJβ2

=
2

~
δWmix

[
J ,K

]

δKβ1β2

− 1

~
Φβ1Φβ2 . (D.142)

The Wmix,n coefficients are now given by the mixed LE result (3.66) for n = 0, 1 and 2. On
the one hand, at arbitrary external sources J and K, the 1-point correlation function and
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propagator to consider for the mixed 2PI EA formalism are:




Ψcl,β

[
J ,K

]
= Φ0,β

[
J ,K

]
=
δWmix,0

[
J ,K

]

δJβ
= (1− δbN+1)ϕcl,α

[
J ,K

]
+ δbN+1σcl,x

[
J ,K

]
,

GΨcl;JK,β1β2

[
J ,K

]
= G0,β1β2

[
J ,K

]
=
δ2Wmix,0

[
J ,K

]

δJβ1δJβ2

=

(
δ2Smix

[
Ψ̃
]

δΨ̃δΨ̃

∣∣∣∣∣
Ψ̃=Ψcl

−K
[
Φ,G

]
)−1

β1β2

= (1− δb1N+1) (1− δb2N+1)Gσcl;JK,α1α2

[
J ,K

]

+ δb1N+1δb2N+1Dσcl;JK,x1x2

[
J ,K

]

+ (1− δb1N+1) δb2N+1Fϕcl;JK,α1x2

[
J ,K

]

+ δb1N+1 (1− δb2N+1)Fϕcl;JK,x1α2

[
J ,K

]
,

(D.143a)

(D.143b)

(D.143c)

and, in matrix form:




Ψcl

[
J ,K

]
=
(
~ϕcl

[
J ,K

]
σcl

[
J ,K

])T
.

GΨcl;JK
[
J ,K

]
=

(
Gσcl;JK

[
J ,K

]
~Fϕcl;JK

[
J ,K

]
~FT
ϕcl;JK

[
J ,K

]
Dσcl;JK

[
J ,K

]
)
.

(D.144a)

(D.144b)

On the other hand, we have at
(
J ,K

)
=
(
J0,K0

)
:





Φβ = Ψcl,β

[
J = J0,K = K0

]
= Φ0,β

[
J = J0,K = K0

]

=
δWmix,0

[
J ,K

]

δJβ

∣∣∣∣∣J=J0
K=K0

= (1− δbN+1)φα + δbN+1ηx ,

Gβ1β2 = GΨcl;JK,β1β2

[
J = J0,K = K0

]
= G0,β1β2

[
J = J0,K = K0

]

=
δ2Wmix,0

[
J ,K

]

δJβ1δJβ2

∣∣∣∣∣J=J0
K=K0

=

(
δ2Smix

[
Ψ̃
]

δΨ̃δΨ̃

∣∣∣∣∣
Ψ̃=Φ

−K0

[
Φ,G

]
)−1

β1β2

= (1− δb1N+1) (1− δb2N+1)Gα1α2 + δb1N+1δb2N+1Dx1x2

+ (1− δb1N+1) δb2N+1Fα1x2 + δb1N+1 (1− δb2N+1)Fx1α2 ,

(D.145a)

(D.145b)

(D.145c)

or, in matrix form: 



Φ =
(
~φ η

)T

.

G =

(
G ~F
~FT D

)
.

(D.146a)

(D.146b)
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The independence of (each component of) G and Φ with respect to ~ follows from the Legendre
transform in (D.140), as for the 1PI and 2PI EAs treated previously. We then recall the
Feynman rules (already given by (3.265a) to (3.265d)) that we use to express the mixed 2PI
EA:

a1 a2x

a1 a2x

a1 a2x




→
√
λ δa1a2 , (D.147a)

α1 α2 → Gα1α2 , (D.147b)

x1 x2 → Dx1x2 , (D.147c)

α1 x2 → Fα1x2 = Fx2α1 . (D.147d)

From analogous derivations as those leading to (D.125) and (D.126) (combined with (D.130))
for the original 2PI EA, we prove the relations:

Γ
(2PI)
mix,0

[
Φ,G

]
= −Wmix,0

[
J = J0,K = K0

]
+

∫

β

J0,β

[
Φ,G

]
Φβ +

1

2

∫

β1,β2

Φβ1K0,β1β2

[
Φ,G

]
Φβ2 ,

(D.148)

Γ
(2PI)
mix,1

[
Φ,G

]
=−Wmix,1

[
J = J0,K = K0

]
+

1

2

∫

β1,β2

K0,β1β2

[
Φ,G

]
Gβ1β2

=−Wmix,1

[
J = J0,K = K0

]
+

1

2
ST r

[
G−1

Φ [Φ]G − I
]
,

(D.149)

where I = δβ1β2 = δb1b2δx1x2 , and:

G−1
Φ,β1β2

[Φ] ≡ δ2Smix

[
Ψ̃
]

δΨ̃β1δΨ̃β2

∣∣∣∣∣
Ψ̃=Φ

=

(
−∇2

x1
+m2 + i

√
λ

3
ηx1

)
δα1α2 (1− δb1N+1) (1− δb2N+1)

+ δx1x2δb1N+1δb2N+1

+ i

√
λ

3
φα1δx1x2 (1− δb1N+1) δb2N+1

+ i

√
λ

3
φα2δx1x2δb1N+1 (1− δb2N+1) ,

(D.150)

or, in matrix form:

G−1
Φ,x1x2

[Φ] =



(
−∇2

x1
+m2 + i

√
λ
3
ηx1

)
IN i

√
λ
3
~φx1

i
√

λ
3
~φT
x1

1


 δx1x2 . (D.151)
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Finally, we construct a diagrammatic expression for Γ
(2PI)
mix

[
Φ,G

]
up to the third non-trivial

order, i.e. up to order O
(
~4
)
. To that end, we first determine all the 2PI diagrams contributing

to this EA (or to the LE of Wmix

[
J ,K

]
) up to order O

(
~3
)
. At order O

(
~4
)
, the number of

relevant 2PI diagrams is already considerable (roughly a hundred). However, since we always
find in our zero-dimensional applications (with or without Padé-Borel resummation) ~φ = ~F = ~0
as optimal solution of our gap equations at the first two non-trivial orders (i.e. up to order
O(~2) and O(~3)) both in the unbroken- and broken-symmetry regimes, we can reasonably
expect that the O(N) symmetry is also fully conserved at the third non-trivial order as well
(i.e. up to order O(~4)) and therefore safely ignore ~F -dependent diagrams. In this way, using
in addition (D.148) and (D.149) combined with the LE result (3.66), we obtain:

Γ
(2PI)
mix

[
Φ,G

]
= Smix[Φ]− ~

2
ST r

[
ln
(
G
)]

+
~
2
ST r

[
G−1

Φ [Φ]G − I
]

+ ~2




1

12
+

1

6




− ~3




1

72
+

1

36
+

1

18
+

1

9
+

1

9




+ ~4




1

324
+

1

108
+

1

324
+O

(
~F 2
)



+O
(
~5
)
.

(D.152)

λ-expansion for the mixed 2PI EA with vanishing 1-point correlation functions: We
start by expanding the Schwinger functional of the studied O(N) model in arbitrary dimensions
and involving the source-dependent action Smix,K (which coincides with Smix,JK defined by (3.20)
when J vanishes), i.e.3:

eWmix[K] =

∫
DΨ̃ e−Smix,K

[
Ψ̃
]

=

∫
DΨ̃ e−Smix

[
Ψ̃
]

+ 1
2

∫
β1,β2

Ψ̃β1Kβ1β2 Ψ̃β2

=

∫
D~̃ϕDσ̃ e−

1
2

∫
α1,α2

ϕ̃α1 [(−∇2
x1

+m2)δα1α2−Kα1α2 ]ϕ̃α2−
1
2

∫
x1,x2

σ̃x1 (δx1x2−kx1x2 )σ̃x2−i
√

λ
12

∑N
a=1

∫
x σ̃xϕ̃

2
a,x ,

(D.153)

where we have exploited the diagonality of the external source K:

K =

(
K ~0
~0T k

)
. (D.154)

Using the definitions:

G−1
K,α1α2

[K] ≡ δ2Smix,K
[
Ψ̃
]

δϕ̃α1δϕ̃α2

∣∣∣∣∣
Ψ̃=0

=
(
−∇2

x1
+m2

)
δα1α2 −Kα1α2 , (D.155)

3We set once again ~ = 1 while λ is the expansion parameter under consideration.
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D−1
K,x1x2

[K] ≡ δ2Smix,K
[
Ψ̃
]

δσ̃x1δσ̃x2

∣∣∣∣∣
Ψ̃=0

= δx1x2 − kx1x2 , (D.156)

as well as the source-dependent expectation value:

〈〈
· · ·
〉〉

0,K =
1

Zmix,0[K]

∫
DΨ̃ · · · eS0

mix,K

[
Ψ̃
]
, (D.157)

with

Zmix,0[K] =

∫
DΨ̃ · · · eS0

mix,K

[
Ψ̃
]
, (D.158)

and

S0
mix,K

[
Ψ̃
]

=
1

2

∫

α1,α2

ϕ̃α1

[(
−∇2

x1
+m2

)
δα1α2 −Kα1α2

]
ϕ̃α2 +

1

2

∫

x1,x2

σ̃x1 (δx1x2 − kx1x2) σ̃x2 ,

(D.159)
we can rewrite (D.153) as follows:

eWmix[K] =

∫
D~̃ϕDσ̃ e− 1

2

∫
α1,α2

ϕ̃α1G
−1
K,α1α2

[K]ϕ̃α2− 1
2

∫
x1,x2

σ̃x1D
−1
K,x1x2

[K]σ̃x2−i
√

λ
12

∑N
a=1

∫
x σ̃xϕ̃

2
a,x

= Zmix,0[K]

〈〈
e−i
√

λ
12

∑N
a=1

∫
x σ̃xϕ̃

2
a,x

〉〉

0,K

= e
1
2

STr[ln(GK[K])]+ 1
2

Tr[ln(DK[K])]

×
∞∑

n=0

(−i)n
n!

(
λ

12

)n
2

N∑

a1,··· ,an=1

∫

x1,··· ,xn

〈〈
σ̃x1ϕ̃

2
a1,x1
· · · σ̃xnϕ̃2

an,xn

〉〉
0,K

= e
1
2

STr[ln(GK[K])]+ 1
2

Tr[ln(DK[K])]

×
∞∑

n=0

(−1)n

(2n)!

(
λ

12

)n N∑

a1,··· ,a2n=1

∫

x1,··· ,x2n

〈〈
σ̃x1ϕ̃

2
a1,x1
· · · σ̃x2nϕ̃

2
a2n,x2n

〉〉
0,K

.

(D.160)

The last line of (D.160) was deduced from the previous one by exploiting the fact that all
correlation functions containing an odd number of σ̃ fields vanish in the present approach, as
a consequence of our condition to impose each 1-point correlation function to vanish. Taking
the logarithm in (D.160) enables us to express the Schwinger functional in terms of connected
correlation functions only, as usual. This translates into:

Wmix[K] =
1

2
STr

[
ln
(
GK[K]

)]
+

1

2
Tr
[
ln
(
DK[K]

)]

+
∞∑

n=1

(−1)n

(2n)!

(
λ

12

)n N∑

a1,··· ,a2n=1

∫

x1,··· ,x2n

〈〈
σ̃x1ϕ̃

2
a1,x1
· · · σ̃x2nϕ̃

2
a2n,x2n

〉〉c
0,K

=
1

2
STr

[
ln
(
GK[K]

)]
+

1

2
Tr
[
ln
(
DK[K]

)]

−


 1

24
+

1

12



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+


 1

72
+

1

36
+

1

36
+

1

144

+
1

144




+O
(
λ3
)
,

(D.161)

with the Feynman rules:

a1 a2x

a1 a2x

a1 a2x




→
√
λ δa1a2 , (D.162a)

α1 α2 → GK,α1α2 [K] , (D.162b)

x1 x2 → DK,x1x2 [K] . (D.162c)

Note that the multiplicities of the diagrams involved in (D.161) are still deduced from (C.12)
and the diagrams contributing at order O

(
λ3
)
in this expansion can also be inferred from the

graphs expressing λ3

〈(
~̃χ

2
)6
〉c

0,σ

in tab. C.1 by replacing each zigzag vertex (3.154b) by a

wiggly line (D.162c).

Let us then turn to the IM, starting with the power series:




Γ
(2PI)
mix

[
G;λ

]
=
∞∑

n=0

Γ
(2PI)
mix,n

[
G;λ

]
,

Wmix

[
K;λ

]
=
∞∑

n=0

Wmix,n

[
K;λ

]
,

K
[
G;λ

]
=
∞∑

n=0

Kn
[
K;λ

]
,

G =
∞∑

n=0

Gn
[
K;λ

]
,

(D.163a)

(D.163b)

(D.163c)

(D.163d)

with Γ
(2PI)
mix [G] ≡ Γ

(2PI)
mix

[
Φ = 0,G

]
satisfying (D.140) (with J and Φ equaling zero), from which
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we can infer the relation:
δΓ

(2PI)
mix,n[G]

δGβ1β2

=
1

2
Kn,β1β2 [G] , (D.164)

that we will exploit later. Here, Γ
(2PI)
mix,n, Wmix,n, Kn and Gn are all functionals of order O

(
λn
)

by definition. On the one hand, we have the propagator GK[K] involved in the λ-expansion of
Wmix and evaluated at arbitrary external source K:

GK,β1β2 [K] =
δ2Smix

[
Ψ̃
]

δΨ̃β1δΨ̃β2

∣∣∣∣∣
Ψ̃=0

−Kβ1β2 [G] = 2
δWmix,0[K]

δKβ1β2

, (D.165)

or, in matrix form:

GK[K] =

(
GK[K] ~0
~0T DK[K]

)
, (D.166)

and, on the other hand, the argument of Γ
(2PI)
mix [G], i.e. the propagator GK[K] evaluated at

K = K0:

Gβ1β2 = GK,β1β2 [K = K0] =
δ2Smix

[
Ψ̃
]

δΨ̃β1δΨ̃β2

∣∣∣∣∣
Ψ̃=0

−K0,β1β2 [G] = 2
δWmix,0[K]

δKβ1β2

∣∣∣∣
K=K0

= β1 β2 ,

(D.167)
and, in matrix form:

G =

(
G ~0
~0T D

)
. (D.168)

In order to develop the IM for the λ-expansion of Γ
(2PI)
mix , we will exploit the following Feynman

rules:
a1 a2x

a1 a2x

a1 a2x




→
√
λ δa1a2 , (D.169a)

α1 α2 → Gα1α2 , (D.169b)

x1 x2 → Dx1x2 , (D.169c)

β1 β2 → Gβ1β2 . (D.169d)

We then combine the series (D.163a), (D.163b) and (D.163c) with the definition of the mixed
2PI EA Γ

(2PI)
mix [G] in terms of Legendre transform of Wmix[K]:
∞∑

n=0

Γ
(2PI)
mix,n[G] = −

∞∑

n=0

Wmix,n

[
∞∑

m=0

Km[G]

]
+

1

2

∞∑

n=0

∫

β1,β2

Kn,β1β2 [G]Gβ1β2 . (D.170)
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After Taylor expanding the Wmix,n coefficients of the RHS around K = K0, we obtain the
following expression:

Γ
(2PI)
mix,n[G] =−Wmix,n[K = K0]−

n∑

m=1

∫

β1,β2

δWmix,n−m[K]

δKβ1β2

∣∣∣∣
K=K0

Km,β1β2 [G]

−
n∑

m=2

1

m!

n∑

n1,··· ,nm=1
{n1+···+nm≤n}

∫

β1,··· ,β2m

δmWmix,n−(n1+···+nm)[K]

δKβ1β2 · · · δKβ2m−1β2m

∣∣∣∣
K=K0

Kn1,β1β2 [G] · · · Knm,β2m−1β2m [G]

+
1

2

∫

β1,β2

Kn,β1β2 [G]Gβ1β2 ,

(D.171)

which can also be directly deduced from (D.120) after replacing K by K and discarding the
contributions of both ~J and ~φ. Furthermore, according to (D.167), we have the equality:

−
n∑

m=1

∫

β1,β2

δWmix,n−m[K]

δKβ1β2

∣∣∣∣
K=K0

Km,β1β2 [G] +
1

2

∫

β1,β2

Kn,β1β2 [G]Gβ1β2

= −
n−1∑

m=1

∫

β1,β2

δWmix,n−m[K]

δKβ1β2

∣∣∣∣
K=K0

Km,β1β2 [G] +
1

2

∫

β1,β2

K0,β1β2 [G]Gβ1β2δn0 ,

(D.172)

which enables us to simplify (D.171) as follows:

Γ
(2PI)
mix,n[G] =−Wmix,n[K = K0]−

n−1∑

m=1

∫

β1,β2

δWmix,n−m[K]

δKβ1β2

∣∣∣∣
K=K0

Km,β1β2 [G]

−
n∑

m=2

1

m!

n∑

n1,··· ,nm=1
{n1+···+nm≤n}

∫

β1,··· ,β2m

δmWmix,n−(n1+···+nm)[K]

δKβ1β2 · · · δKβ2m−1β2m

∣∣∣∣
K=K0

Kn1,β1β2 [G] · · · Knm,β2m−1β2m [G]

+
1

2

∫

β1,β2

K0,β1β2 [G]Gβ1β2δn0 .

(D.173)

At n = 0, 1, 2 and 3, (D.173) becomes:

Γ
(2PI)
mix,0[G] = −Wmix,0[K = K0] +

1

2

∫

β1,β2

K0,β1β2 [G]Gβ1β2

= −Wmix,0[K = K0] +
1

2
ST r

[
G−1

0 G − I
]
,

(D.174)

Γ
(2PI)
mix,1[G] = −Wmix,1[K = K0] , (D.175)

Γ
(2PI)
mix,2[G] =−Wmix,2[K = K0]−

∫

β1,β2

δWmix,1[K]

δKβ1β2

∣∣∣∣
K=K0

K1,β1β2 [G]

− 1

2

∫

β1,β2,β3,β4

δ2Wmix,0[K]

δKβ1β2δKβ3β4

∣∣∣∣
K=K0

K1,β1β2 [G]K1,β3β4 [G] ,

(D.176)
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Γ
(2PI)
mix,3[G] =−Wmix,3[K = K0]−

∫

β1,β2

δWmix,2[K]

δKβ1β2

∣∣∣∣
K=K0

K1,β1β2 [G]

−
∫

β1,β2

δWmix,1[K]

δKβ1β2

∣∣∣∣
K=K0

K2,β1β2 [G]

− 1

2

∫

β1,β2,β3,β4

δ2Wmix,1[K]

δKβ1β2δKβ3β4

∣∣∣∣
K=K0

K1,β1β2 [G]K1,β3β4 [G]

−
∫

β1,β2,β3,β4

δ2Wmix,0[K]

δKβ1β2δKβ3β4

∣∣∣∣
K=K0

K1,β1β2 [G]K2,β3β4 [G]

− 1

6

∫

β1,β2,β3,β4,β5,β6

δ3Wmix,0[K]

δKβ1β2δKβ3β4δKβ5β6

∣∣∣∣
K=K0

K1,β1β2 [G]K1,β3β4 [G]K1,β5β6 [G] ,

(D.177)

with

G−1
0,x1x2

=

((
−∇2

x1
+m2

)
IN ~0

~0T 1

)
δx1x2 , (D.178)

and the supertrace term in (D.174) is obtained in the same way as in (D.130) and (D.149).
From (D.174) and (D.175) combined with (D.161), it directly follows that:

Γ
(2PI)
mix,0[G] = −1

2
ST r

[
ln
(
G
)]

+
1

2
ST r

[
G−1

0 G − I
]
, (D.179)

Γ
(2PI)
mix,1[G] =

1

24
+

1

12
. (D.180)

In order to determine a diagrammatic expression of Γ
(2PI)
mix,2 from (D.176), we point out that

differentiating propagator lines with respect to K amounts to cutting these lines in half, i.e.:

δGK,β1β2 [K]

δKβ3β4

∣∣∣∣
K=K0

=
β4

β1

β2

β3

, (D.181)

and, for the components of GK:

δGK,α1α2 [K]

δKβ3β4

∣∣∣∣
K=K0

= (1− δb3N+1) (1− δb4N+1)
α4

α1

α2

α3

, (D.182)

δDK,x1x2 [K]

δKβ3β4

∣∣∣∣
K=K0

= δb3N+1δb4N+1
x4

x1

x2

x3

. (D.183)

From (D.181) as well as (D.165), we can evaluate the second-order derivative in (D.176):

δ2Wmix,0[K]

δKβ1β2δKβ3β4

∣∣∣∣
K=K0

=
1

2

δGK,β3β4 [K]

δKβ1β2

∣∣∣∣
K=K0

=
1

2 β2

β3

β4

β1

. (D.184)
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The first-order derivative in (D.176) can be determined from (D.182) and (D.183):

δWmix,1[K]

δKβ1β2

∣∣∣∣
K=K0

=− 1

12
(1− δb1N+1) (1− δb2N+1)



α2

α1

+ 2

α1 α2



− 1

24
δb1N+1δb2N+1


 x1

x2

+ 2 x1 x2


 ,

(D.185)

where the Wmix,1 coefficient is given by (D.161). Only the K1 coefficient is left to determine
in expression (D.176) of Γ

(2PI)
mix,2. As we are dealing with a single external source in the present

situation, the source coefficients can all be determined via (D.164) (thus following the simplified
implementation of the IM presented in section 3.5.3 via (3.348)) from which we can infer:

Kn,β1β2 [G] = 2
δΓ

(2PI)
mix,n[G]

δGβ1β2

= 2

∫

β3,β4

δK0,β3β4 [G]

δGβ1β2

δΓ
(2PI)
mix,n[G]

δK0,β3β4

= 2

∫

β3,β4

(
δGβ1β2 [K0]

δK0,β3β4

)−1 δΓ
(2PI)
mix,n[G]

δK0,β3β4

= 2

∫

β3,β4

(
−
∫

β5,β6

Gβ1β5 [K0]
δG−1

β5β6
[K0]

δK0,β3β4︸ ︷︷ ︸
−δβ5β3

δβ6β4

Gβ6β2 [K0]

)−1
δΓ

(2PI)
mix,n[G]

δK0,β3β4

= 2

∫

β3,β4

(Gβ1β3 [K0]Gβ4β2 [K0])−1 δΓ
(2PI)
mix,n[G]

δK0,β3β4

,

(D.186)

where we have used (D.167) to introduce the Kronecker deltas in the fourth line. It should be
stressed that, in the present situation, this procedure is strictly equivalent to the most general
implementation of the IM (outlined e.g. in section D.2 for the 1PI EA with (D.32) notably),
which would amount here to Taylor expanding the Gn coefficients in the power series (D.163d)
around K = K0. However, the trick of (D.186) would not enable us to isolate all the source
coefficients if several sources are involved in the formalism (like ~J and K for Γ(2PI)

[
~φ,G

]
), in

which case the most general implementation of the IM is relevant. In order to determine K1,
we can combine (D.175) with (D.186) at n = 1, thus leading to:

K1,β1β2 [G] = 2

∫

β3,β4

(Gβ1β3 [K0]Gβ4β2 [K0])−1 δΓ
(2PI)
mix,1[G]

δK0,β3β4

=− 2

∫

β3,β4

(Gβ1β3 [K0]Gβ4β2 [K0])−1 δWmix,1[K = K0]

δK0,β3β4

.

(D.187)

Then, assuming that:
δWmix,1[K = K0]

δK0,β3β4

=
δWmix,1[K]

δKβ3β4

∣∣∣∣
K=K0

, (D.188)

we can insert (D.185) into (D.187) to express the K1 coefficient diagrammatically. By doing so,
the factor (Gβ1β3 [K0]Gβ4β2 [K0])−1 in (D.187) will cancel out with all propagator lines connected
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to an external point in (D.185), thus yielding:

K1,β1β2 [G] = (1− δb1N+1) (1− δb2N+1)


 1

6

α1

α2
+

1

3

α1 α2




+ δb1N+1δb2N+1


 1

12 x1

x2

+
1

6
x1 x2


 .

(D.189)

As a next step, we obtain from (D.184), (D.185) and (D.189):

∫

β1,β2

δWmix,1[K]

δKβ1β2

∣∣∣∣
K=K0

K1,β1β2 [G] =− 1

18
− 1

18
− 1

72

− 1

36
− 1

288
,

(D.190)

1

2

∫

β1,β2,β3,β4

δ2Wmix,0[K]

δKβ1β2δKβ3β4

∣∣∣∣
K=K0

K1,β1β2 [G]K1,β3β4 [G] =
1

36
+

1

36

+
1

144
+

1

72

+
1

576
.

(D.191)

According to (D.190), (D.191) and the expression of Wmix,2 given by (D.161), (D.176) can be
rewritten as follows:

Γ
(2PI)
mix,2[G] = − 1

72
+

1

144
+

1

576
. (D.192)

Then, in order to find a homologous expression for Γ
(2PI)
mix,3 from (D.177), we determine notably
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the K2 coefficient from (D.186):

K2,β1β2 [G] = (1− δb1N+1) (1− δb2N+1)


 − 1

9

α1

α2
+

1

36

α1 α2

+
1

36

α1

α2
+

1

72

α1

α2




+ δb1N+1δb2N+1


 −

1

18
x1 x2 +

1

72

x1

x2

+
1

72

x2

x1
+

1

144
x2

x1


 .

(D.193)

From this, we determine a diagrammatic expression for Γ
(2PI)
mix,3 and combine it with (D.179),

(D.180) and (D.192), which gives us:

Γ
(2PI)
mix [G] =− 1

2
ST r

[
ln
(
G
)]

+
1

2
ST r

[
G−1

0 G − I
]

+


 1

24
+

1

12




+


 −

1

72
+

1

144
+

1

576




+




1

324
+

1

108
+

1

324

− 1

432
+

1

864

+
1

864
+

1

5184




+O
(
λ4
)
.

(D.194)
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D.4 4PPI effective action

For the original 4PPI EA with vanishing 1-point correlation function, the IM relies on the
following power series: 




Γ(4PPI)[ρ, ζ; ~] =
∞∑

n=0

Γ(4PPI)
n [ρ, ζ]~n ,

W [K,M ; ~] =
∞∑

n=0

Wn[K,M ]~n ,

K[ρ, ζ; ~] =
∞∑

n=0

Kn[ρ, ζ]~n ,

M [ρ, ζ; ~] =
∞∑

n=0

Mn[ρ, ζ]~n ,

ρ =
∞∑

n=0

ρn[K,M ]~n ,

ζ =
∞∑

n=0

ζn[K,M ]~n ,

(D.195a)

(D.195b)

(D.195c)

(D.195d)

(D.195e)

(D.195f)

and the definition of the 4PPI EA with vanishing 1-point correlation function is:

Γ(4PPI)[ρ, ζ] ≡−W [K,M ] +

∫

α

Kα[ρ, ζ]
δW [K,M ]

δKα

+

∫

α

Mα[ρ, ζ]
δW [K,M ]

δMα

=−W [K,M ] +
~
2

∫

α

Kα[ρ, ζ]ρα +
~2

8

∫

α

Mα[ρ, ζ]ρ2
α +

~3

24

∫

α

Mα[ρ, ζ]ζα ,

(D.196)

where

ρα =
2

~
δW [K,M ]

δKα

, (D.197)

ζα =
24

~3

δW [K,M ]

δMα

− 3

~
ρ2
α . (D.198)

If we differentiate the second line of (D.196), we obtain:




δΓ(4PPI)[ρ, ζ]

δρα
=

~
2
Kα[ρ, ζ] +

~2

4
Mα[ρ, ζ]ρα .

δΓ(4PPI)[ρ, ζ]

δζα
=

~3

24
Mα[ρ, ζ] .

(D.199a)

(D.199b)

If we insert as a next step the power series (D.195a), (D.195c) and (D.195d) into (D.199a)
and (D.199b), the independence of both ρ and ζ with respect to ~ enables us to identify the
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terms of order O
(
~n
)
in the relations thus derived to obtain:





δΓ
(4PPI)
n [ρ, ζ]

δρα
=

1

2
Kn−1,α[ρ, ζ]δn≥1 +

1

4
Mn−2,α[ρ, ζ]ραδn≥2 .

δΓ
(4PPI)
n [ρ, ζ]

δζα
=

1

24
Mn−3,α[ρ, ζ]δn≥3 .

(D.200a)

(D.200b)

Note that, as usual, the independence of the arguments of the EA, i.e. ρ and ζ here, with respect
to ~ can be proven using the reasoning of (D.15) showing that the 1-point correlation function ~φ
is of order O

(
~0
)
in the framework of the 1PI EA. Furthermore, the diagrammatic expressions

of the Wn coefficients can still be inferred from the original LE discussed in section 3.2.2.1
but one must take into account that both ~ϕcl and ~J vanish in the present case (as all n-point
correlation functions with n odd vanish in the present situation) and that the quartic vertex
function represented by a zigzag line (according to rule (3.49c)) is now dressed by the external
source M4. More accurately, for n = 0, 1, 2 and 3, we have:

W0[K,M ] = 0 , (D.201)

W1[K,M ] = W1[K] =
1

2
STr

[
ln
(
GK [K]

)]
, (D.202)

W2[K,M ] =− 1

24
− 1

12
, (D.203)

W3[K,M ] =
1

72
+

1

36
+

1

144
+

1

36

+
1

144
,

(D.204)

where the propagator involved in the LE of W [K,M ] is given by:

G−1
K,α1α2

[K] =
δ2S
[
~̃ϕ
]

δϕ̃α1δϕ̃α2

∣∣∣∣∣
~̃ϕ=0

−Kα1 [ρ, ζ]δα1α2

=
(
−∇2

x1
+m2 −Kα1 [ρ, ζ]

)
δα1α2 ,

(D.205)

4This is actually the advantage of exploiting the 4PI (or the 4PPI) EA at the expense of the 2PI (or the
2PPI) one, namely using extra sources to dress vertex functions in addition to propagators.
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and we have used the following Feynman rules at arbitrary external sources K and M :

α1 α2 → GK,α1α2 [K] , (D.206a)

xa1

a2

a3

a4 → (λ−Ma1,x[ρ, ζ]δa1a3) δa1a2δa3a4 . (D.206b)

The diagrams contributing to W4[K,M ] are identical to those representing λ3

〈(
~̃χ

2
)6
〉c

0,σ

in

tab. C.1 and their multiplicities are also expressed by (C.1). We then express the following
non-fluctuating fields evaluated at arbitrary external sources K and M :





ρK,α[K] = GK,αα[K] = ρ0,α[K,M ] = ρ0,α[K] = 2
δW1[K]

δKα

.

ζKM,α[K,M ] = ζ0,α[K,M ] = 24

(
δW3[K,M ]

δMα

− δW1[K]

δKα

δW2[K,M ]

δKα

)
.

(D.207a)

(D.207b)

At (K,M) = (K0,M0), these two fields coincide with the arguments of the 4PPI EA with
vanishing 1-point correlation function:





ρα = Gαα[K0] = GK,αα[K = K0] = ρ0,α[K = K0] = 2
δW1[K]

δKα

∣∣∣∣
K=K0

.

ζα = ζKM,α[K = K0,M = M0] = ζ0,α[K = K0,M = M0]

= 24

(
δW3[K,M ]

δMα

∣∣∣∣
K=K0
M=M0

− δW1[K]

δKα

∣∣∣∣
K=K0

δW2[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

)
.

(D.208a)

(D.208b)

The above expressions of ρα and ζα in terms of derivatives ofWn coefficients result from (D.197)
and (D.198), as well as from the power series (D.195e) and (D.195f), combined with their
independence with respect to ~. Moreover, we point out that ρK,α[K] introduced in (D.207a)
is just the diagonal part of the propagator GK [K] (defined by (D.205)) which underlies our
diagrammatic representation for the LE of the Schwinger functional W [K,M ]. In the same
way, ρα is the diagonal part of the propagator G[K0] involved in the diagrammatic expression
of the 4PPI EA that we seek. The associated Feynman rules correspond to those of (D.206a)
and (D.206b) evaluated at (K,M) = (K0,M0):

α1 α2 → Gα1α2 [K0] , (D.209a)

xa1

a2

a3

a4 → (λ−M0,a1,x[ρ, ζ]δa1a3) δa1a2δa3a4 . (D.209b)
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Then, we insert the power series (D.195a), (D.195b), (D.195c) and (D.195d) into definition
(D.196) of our 4PPI EA:

∞∑

n=0

Γ(4PPI)
n [ρ, ζ]~n =−

∞∑

n=0

Wn

[
∞∑

m=0

Km[ρ, ζ]~m,
∞∑

m=0

Mm[ρ, ζ]~m
]
~n +

1

2

∞∑

n=0

∫

α

Kn,α[ρ, ζ]ρα~n+1

+
1

8

∞∑

n=0

∫

α

Mn,α[ρ, ζ]ρ2
α~n+2 +

1

24

∞∑

n=0

∫

α

Mn,α[ρ, ζ]ζα~n+3 .

(D.210)

The Taylor expansion of the Wn coefficients in the RHS of (D.210) around (K,M) = (K0,M0)
yields (see section D.5.3):

Γ(4PPI)
n [ρ, ζ] =−Wn[K = K0,M = M0]−

n∑

m=1

∫

α

δWn−m[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

Km,α[ρ, ζ]

−
n∑

m=1

∫

α

δWn−m[K,M ]

δMα

∣∣∣∣
K=K0
M=M0

Mm,α[ρ, ζ]

−
n∑

m=2

1

m!

m∑

l,l′=1
{l+l′=m}

n∑

n1,··· ,nl,n̂1,··· ,n̂l′=1
{n1+···+nl+n̂1+···+n̂l′≤n}

(
m
l

)

×
∫

α1,··· ,αl
α̂1,··· ,α̂l′

δmWn−(n1+···+nl+n̂1+···+n̂l′ )[K,M ]

δKα1 · · · δKαlδMα̂1 · · · δMα̂l′

∣∣∣∣
K=K0
M=M0

×Kn1,α1 [ρ, ζ] · · ·Knl,αl [ρ, ζ]Mn̂1,α̂1 [ρ, ζ] · · ·Mn̂l′ ,α̂l′
[ρ, ζ]

+
1

2

∫

α

Kn−1,α[ρ, ζ]ραδn≥1 +
1

8

∫

α

Mn−2,α[ρ, ζ]ρ2
αδn≥2 +

1

24

∫

α

Mn−3,α[ρ, ζ]ζαδn≥3

=−Wn[K = K0,M = M0]−
n−2∑

m=1

∫

α

δWn−m[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

Km,α[ρ, ζ]

−
n−3∑

m=1

∫

α

δWn−m[K,M ]

δMα

∣∣∣∣
K=K0
M=M0

Mm,α[ρ, ζ]

−
n−1∑

m=2

1

m!

m∑

l,l′=1
{l+l′=m}

n∑

n1,··· ,nl,n̂1,··· ,n̂l′=1
{n1+···+nl+n̂1+···+n̂l′≤n}

(
m
l

)

×
∫

α1,··· ,αl
α̂1,··· ,α̂l′

δmWn−(n1+···+nl+n̂1+···+n̂l′ )[K,M ]

δKα1 · · · δKαlδMα̂1 · · · δMα̂l′

∣∣∣∣
K=K0
M=M0

×Kn1,α1 [ρ, ζ] · · ·Knl,αl [ρ, ζ]Mn̂1,α̂1 [ρ, ζ] · · ·Mn̂l′ ,α̂l′
[ρ, ζ]

+
1

2

∫

α

K0,α[ρ, ζ]ραδn1 +
1

8

∫

α

M0,α[ρ, ζ]ρ2
αδn2 +

1

24

∫

α

Mn−3,α[ρ, ζ]ζαδn≥3 ,

(D.211)

where the latter equality was obtained by exploiting (D.201), expression (D.202) of W1[K,M ]
in the form:

δW1[K,M ]

δMα

= 0 ∀α , (D.212)
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as well as (D.208a) via the relation:

−
n−1∑

m=1

∫

α

δWn−m[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

Km,α[ρ, ζ] +
1

2

∫

α

Kn−1,α[ρ, ζ]ραδn≥1

= −
n−2∑

m=1

∫

α

δWn−m[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

Km,α[ρ, ζ] +
1

2

∫

α

K0,α[ρ, ζ]ραδn1 ,

(D.213)

and expression (D.203) of W2[K,M ] in the form:

−
n−2∑

m=1

∫

α

δWn−m[K,M ]

δMα

∣∣∣∣
K=K0
M=M0

Mm,α[ρ, ζ] +
1

8

∫

α

Mn−2,α[ρ, ζ]ρ2
αδn≥2

= −
n−3∑

m=1

∫

α

δWn−m[K,M ]

δMα

∣∣∣∣
K=K0
M=M0

Mm,α[ρ, ζ] +
1

8

∫

α

M0,α[ρ, ζ]ρ2
αδn2 .

(D.214)

For n = 0, 1, 2, 3 and 4, (D.211) translates into:

Γ
(4PPI)
0 [ρ, ζ] = −W0[K = K0,M = M0] , (D.215)

Γ
(4PPI)
1 [ρ, ζ] = −W1[K = K0,M = M0] +

1

2

∫

α

K0,α[ρ, ζ]ρα , (D.216)

Γ
(4PPI)
2 [ρ, ζ] = −W2[K = K0,M = M0] +

1

8

∫

α

M0,α[ρ, ζ]ρ2
α , (D.217)

Γ
(4PPI)
3 [ρ, ζ] =−W3[K = K0,M = M0]−

∫

α

δW2[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

K1,α[ρ, ζ]

− 1

2

∫

α1,α2

δ2W1[K,M ]

δKα1δKα2

∣∣∣∣
K=K0
M=M0

K1,α1 [ρ, ζ]K1,α2 [ρ, ζ] +
1

24

∫

α

M0,α[ρ, ζ]ζα ,

(D.218)

Γ
(4PPI)
4 [ρ, ζ] =−W4[K = K0,M = M0]−

∫

α

δW3[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

K1,α[ρ, ζ]

−
∫

α

δW2[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

K2,α[ρ, ζ]−
∫

α

δW3[K,M ]

δMα

∣∣∣∣
K=K0
M=M0

M1,α[ρ, ζ]

− 1

2

∫

α1,α2

δ2W2[K,M ]

δKα1δKα2

∣∣∣∣
K=K0
M=M0

K1,α1 [ρ, ζ]K1,α2 [ρ, ζ]

− 1

2

∫

α1,α2

δ2W2[K,M ]

δMα1δMα2

∣∣∣∣
K=K0
M=M0

M1,α1 [ρ, ζ]M1,α2 [ρ, ζ]

−
∫

α1,α2

δ2W2[K,M ]

δKα1δMα2

∣∣∣∣
K=K0
M=M0

K1,α1 [ρ, ζ]M1,α2 [ρ, ζ]

−
∫

α1,α2

δ2W1[K,M ]

δKα1δKα2

∣∣∣∣
K=K0
M=M0

K1,α1 [ρ, ζ]K2,α2 [ρ, ζ]

− 1

6

∫

α1,α2,α3

δ3W1[K,M ]

δKα1δKα2δKα3

∣∣∣∣
K=K0
M=M0

K1,α1 [ρ, ζ]K1,α2 [ρ, ζ]K1,α3 [ρ, ζ]

+
1

24

∫

α

M1,α[ρ, ζ]ζα .

(D.219)
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From expressions (D.201) to (D.203) of the Wn coefficients, we can directly rewrite (D.215)
to (D.217) as:

Γ
(4PPI)
0 [ρ, ζ] = 0 , (D.220)

Γ
(4PPI)
1 [ρ, ζ] = −1

2
STr

[
ln
(
G[K0]

)]
+

1

2

∫

α

K0,α[ρ, ζ]ρα , (D.221)

Γ
(4PPI)
2 [ρ, ζ] =

1

24
+

1

12
+

1

8

∫

α

M0,α[ρ, ζ]ρ2
α

=
1

24

N∑

a1,a2=1

∫

x

G(a1,x)(a1,x)[K0]G(a2,x)(a2,x)[K0]
(
λ−((((((

(((M0,a1,x[ρ, ζ]δa1a2

)

+
1

12

N∑

a1,a2=1

∫

x

(
G(a1,x)(a2,x)[K0]

)2 (
λ−((((((

(((M0,a1,x[ρ, ζ]δa1a2

)

+
��

���
���

�1

8

∫

α

M0,α[ρ, ζ]ρ2
α

=
λ

24

N∑

a1,a2=1

∫

x

G(a1,x)(a1,x)[K0]G(a2,x)(a2,x)[K0] +
λ

12

N∑

a1,a2=1

∫

x

(
G(a1,x)(a2,x)[K0]

)2

=
1

24
+

1

12
.

(D.222)

According to (D.220), (D.221) and (D.222), Γ(4PPI) does not depend on M0 if truncated at the
lowest non-trivial order (i.e. at order O(~2)), which means that we need to calculate at least
the second non-trivial order (i.e. order O(~3)) here to appreciate a possible improvement of
the 2PPI EA of section 3.5.3 with the present 4PPI EA formalism. We recall that we have
actually shown in section 3.5.4 with (3.386) and (3.387) that results obtained from Γ(2PPI)[ρ]
and Γ(4PPI)[ρ, ζ] coincide at second non-trivial order as well. We then evaluate the derivatives
involved in the RHSs of (D.218) and (D.219) in order to rewrite Γ

(4PPI)
3 [ρ, ζ] and Γ

(4PPI)
4 [ρ, ζ].

To that end, let us first point out that, when applied to diagrammatic expressions of the Wn

coefficients, derivatives with respect to Kα only act on propagator lines as:

δ

δKα1

α2 α3 =−
∫

α4,α5

GK,α2α4 [K]
δG−1

K,α4α5
[K]

δKα1

GK,α5α3 [K]

=

∫

α4,α5

GK,α2α4 [K]
δKα4 [ρ, ζ]

δKα1︸ ︷︷ ︸
δα4α1

δα4α5GK,α5α3 [K]

= GK,α2α1 [K]GK,α1α3 [K]

= α2 α3α1
,

(D.223)
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whereas those with respect to Mα only affect vertices as:

δ

δMα1 α3

α2

α5

α4

= −
α3

α2

α5

α4α1

. (D.224)

By comparing (D.223) with, e.g., (D.181), one can see that derivatives with respect to the
external source dressing the propagator (i.e. Kα[ρ, ζ] here) now amounts to inserting external
points into propagator lines instead of cutting them as in the 2PI EA formalism. This results
from the definitions of nPPI EAs, and more specifically from the restriction that K is a local
source in the present situation. Using (D.223) and (D.224) together with (D.202) to (D.204),
we are equipped to evaluate the following derivatives of the Wn coefficients:

δW2[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

= − 1

12
α − 1

6

α

, (D.225)

δ2W1[K,M ]

δKα1δKα2

∣∣∣∣
K=K0
M=M0

=
1

2
α1 α2 , (D.226)

δW3[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

=
1

18
α +

1

18
α +

1

18

α

+
1

36
α

+
1

36
α +

1

18

α

+
1

36
α

+
1

72
α +

1

72

α

,

(D.227)

δW3[K,M ]

δMα

∣∣∣∣
K=K0
M=M0

= − 1

24 α
− 1

12
α − 1

24
α ,

(D.228)

δ2W2[K,M ]

δKα1δKα2

∣∣∣∣
K=K0
M=M0

= −1

6

α1

α2

− 1

12
α1 α2 − 1

3

α1 α2

− 1

6

α1

α2

,

(D.229)
δ2W2[K,M ]

δMα1δMα2

∣∣∣∣
K=K0
M=M0

= 0 , (D.230)

δ2W2[K,M ]

δKα1δMα2

∣∣∣∣
K=K0
M=M0

=
1

4
α1 α2 , (D.231)
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δ3W1[K,M ]

δKα1δKα2δKα3

∣∣∣∣
K=K0
M=M0

= α1 α2

α3

. (D.232)

We are left to determine the source coefficients K1[ρ, ζ], K2[ρ, ζ] andM1[ρ, ζ] in order to rewrite
expressions (D.218) and (D.219) of Γ

(4PPI)
3 [ρ, ζ] and Γ

(4PPI)
4 [ρ, ζ]. As the present formalism

involves more than one external source, we will do so by following the recipe of section D.2
and Taylor expand the coefficients of the power series (D.195e) and (D.195f) around (K,M) =
(K0,M0):

ρα1 =
∞∑

n=0

ρn,α1 [K,M ]~n

= ρ0,α1 [K] + ρ1,α1 [K,M ]~ + ρ2,α1 [K,M ]~2 +O
(
~3
)

= ρ0,α1 [K = K0] +

∫

α2

δρ0,α1 [K]

δKα2

∣∣∣∣
K=K0

(
K1,α2 [ρ, ζ]~ +K2,α2 [ρ, ζ]~2

)

+
1

2

∫

α2,α3

δ2ρ0,α1 [K]

δKα2δKα3

∣∣∣∣
K=K0

(K1,α2 [ρ, ζ]~) (K1,α3 [ρ, ζ]~)

+

[
ρ1,α1 [K = K0,M = M0] +

∫

α2

δρ1,α1 [K,M ]

δKα2

∣∣∣∣
K=K0
M=M0

(K1,α2 [ρ, ζ]~)

+

∫

α2

δρ1,α1 [K,M ]

δMα2

∣∣∣∣
K=K0
M=M0

(M1,α2 [ρ, ζ]~)

]
~

+ ρ2,α1 [K = K0,M = M0]~2 +O
(
~3
)

= ρ0,α1 [K = K0]

+ ~
(∫

α2

δρ0,α1 [K]

δKα2

∣∣∣∣
K=K0

K1,α2 [ρ, ζ] + ρ1,α1 [K = K0,M = M0]

)

+ ~2

(∫

α2

δρ0,α1 [K]

δKα2

∣∣∣∣
K=K0

K2,α2 [ρ, ζ] +
1

2

∫

α2,α3

δ2ρ0,α1 [K]

δKα2δKα3

∣∣∣∣
K=K0

K1,α2 [ρ, ζ]K1,α3 [ρ, ζ]

+

∫

α2

δρ1,α1 [K,M ]

δKα2

∣∣∣∣
K=K0
M=M0

K1,α2 [ρ, ζ] +

∫

α2

δρ1,α1 [K,M ]

δMα2

∣∣∣∣
K=K0
M=M0

M1,α2 [ρ, ζ]

+ ρ2,α1 [K = K0,M = M0]

)

+O
(
~3
)
,

(D.233)

ζα1 =
∞∑

n=0

ζn,α1 [K,M ]~n

= ζ0,α1 [K,M ] + ζ1,α1 [K,M ]~ + ζ2,α1 [K,M ]~2 +O
(
~3
)

= ζ0,α1 [K = K0,M = M0] +

∫

α2

δζ0,α1 [K,M ]

δKα2

∣∣∣∣
K=K0
M=M0

(
K1,α2 [ρ, ζ]~ +K2,α2 [ρ, ζ]~2

)

+

∫

α2

δζ0,α1 [K,M ]

δMα2

∣∣∣∣
K=K0
M=M0

(
M1,α2 [ρ, ζ]~ +M2,α2 [ρ, ζ]~2

)
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+

[
ζ1,α1 [K = K0,M = M0] +

∫

α2

δζ1,α1 [K,M ]

δKα2

∣∣∣∣
K=K0
M=M0

(K1,α2 [ρ, ζ]~)

+

∫

α2

δζ1,α1 [K,M ]

δMα2

∣∣∣∣
K=K0
M=M0

(M1,α2 [ρ, ζ]~)

]
~

+ ζ2,α1 [K = K0,M = M0]~2 +O
(
~3
)

= ζ0,α1 [K = K0,M = M0]

+ ~

(∫

α2

δζ0,α1 [K,M ]

δKα2

∣∣∣∣
K=K0
M=M0

K1,α2 [ρ, ζ] +

∫

α2

δζ0,α1 [K,M ]

δMα2

∣∣∣∣
K=K0
M=M0

M1,α2 [ρ, ζ]

+ ζ1,α1 [K = K0,M = M0]

)

+ ~2

(∫

α2

δζ0,α1 [K,M ]

δKα2

∣∣∣∣
K=K0
M=M0

K2,α2 [ρ, ζ] +

∫

α2

δζ0,α1 [K,M ]

δMα2

∣∣∣∣
K=K0
M=M0

M2,α2 [ρ, ζ]

+

∫

α2

δζ1,α1 [K,M ]

δKα2

∣∣∣∣
K=K0
M=M0

K1,α2 [ρ, ζ] +

∫

α2

δζ1,α1 [K,M ]

δMα2

∣∣∣∣
K=K0
M=M0

M1,α2 [ρ, ζ]

+ ζ2,α1 [K = K0,M = M0]

)

+O
(
~3
)
.

(D.234)

We have used in (D.233) and (D.234) the relations δρ0,α1 [K,M ]

δMα2
=

δρ0,α1 [K]

δMα2
= 0 ∀α1, α2 and

δ2ζ0,α1 [K,M ]

δMα2δMα3
= 0 ∀α1, α2, α3, which both follow from expressions (D.208a) and (D.208b) of ρ0,α

and ζ0,α after evaluating the derivatives of the Wn coefficients. At (K,M) = (K0,M0), the
latter expressions read:

ρα = ρ0,α[K = K0] = 2
δW1[K]

δKα

∣∣∣∣
K=K0

= 2
δ

δKα

(
1

2
STr

[
ln
(
GK [K]

)])∣∣∣∣
K=K0

=
δ

δKα

∣∣∣∣
K=K0

= α ,

(D.235)

ζα = ζ0,α[K = K0,M = M0] = 24

(
δW3[K,M ]

δMα

∣∣∣∣
K=K0
M=M0

− δW1[K]

δKα

∣∣∣∣
K=K0

δW2[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

)

=−
α

,

(D.236)
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where the derivatives of W2 and W3 are given by (D.225) and (D.228). As a next step, we
set K = K0 and M = M0 in (D.233) and (D.234). By exploiting the fact that both ρ and ζ
are quantities of order O

(
~0
)
, we turn the relations thus obtained into the following system of

coupled equations:




Order O
(
~0
)

: ρα = ρ0,α[K = K0] ∀α ,
ζα = ζ0,α[K = K0,M = M0] ∀α ,

Order O(~) : 0 =

∫

α2

δρ0,α1 [K]

δKα2

∣∣∣∣
K=K0

K1,α2 [ρ, ζ]

+ ρ1,α1 [K = K0,M = M0] ∀α1 ,

0 =

∫

α2

δζ0,α1 [K,M ]

δKα2

∣∣∣∣
K=K0
M=M0

K1,α2 [ρ, ζ]

+

∫

α2

δζ0,α1 [K,M ]

δMα2

∣∣∣∣
K=K0
M=M0

M1,α2 [ρ, ζ]

+ ζ1,α1 [K = K0,M = M0] ∀α1 ,

Order O
(
~2
)

: 0 =

∫

α2

δρ0,α1 [K]

δKα2

∣∣∣∣
K=K0

K2,α2 [ρ, ζ]

+
1

2

∫

α2,α3

δ2ρ0,α1 [K]

δKα2δKα3

∣∣∣∣
K=K0

K1,α2 [ρ, ζ]K1,α3 [ρ, ζ]

+

∫

α2

δρ1,α1 [K,M ]

δKα2

∣∣∣∣
K=K0
M=M0

K1,α2 [ρ, ζ]

+

∫

α2

δρ1,α1 [K,M ]

δMα2

∣∣∣∣
K=K0
M=M0

M1,α2 [ρ, ζ]

+ ρ2,α1 [K = K0,M = M0] ∀α1 ,

0 =

∫

α2

δζ0,α1 [K,M ]

δKα2

∣∣∣∣
K=K0
M=M0

K2,α2 [ρ, ζ]

+

∫

α2

δζ0,α1 [K,M ]

δMα2

∣∣∣∣
K=K0
M=M0

M2,α2 [ρ, ζ]

+

∫

α2

δζ1,α1 [K,M ]

δKα2

∣∣∣∣
K=K0
M=M0

K1,α2 [ρ, ζ]

+

∫

α2

δζ1,α1 [K,M ]

δMα2

∣∣∣∣
K=K0
M=M0

M1,α2 [ρ, ζ]

+ ζ2,α1 [K = K0,M = M0] ∀α1 ,

...

(D.237a)
(D.237b)

(D.237c)

(D.237d)

(D.237e)

(D.237f)

where (D.237a) and (D.237b) are already imposed by (D.208a) and (D.208b) respectively. Since

δρ0,α1 [K]

δKα2

∣∣∣∣
K=K0

= 2
δ2W1[K]

δKα2δKα1

∣∣∣∣
K=K0

= α1 α2 , (D.238)
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according to (D.226), we can determine the K1 coefficient from (D.237c) by introducing the
2-particle inverse propagator:

α1 α2 →
(
G2[K0]

)−1

α1α2
. (D.239)

Practically, we multiply both sides of (D.237c) by this inverse propagator and integrate over
the relevant index to isolate K1, which leads to:

0 = 1α

︸ ︷︷ ︸
K1,α[ρ,ζ]

−1

6
α − 1

3
α , (D.240)

where we have introduced the Feynman rule:

n
α
→ Kn,α[ρ, ζ] , (D.241)

and exploited the following expression of ρ1[K = K0,M = M0]:

ρ1[K = K0,M = M0] = 2
δW2[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

= −1

6
α − 1

3

α

, (D.242)

which is deduced from (D.225). Then, we rewrite (D.240) as:

K1,α1 [ρ, ζ] =
1

6
α1 +

1

3
α1

=
1

6

N∑

a2,a3,a4=1

∫

x2,x3

(
G2[K0]

)−1

α1(a2,x2)
G2

(a2,x2)(a3,x3)[K0]G(a4,x3)(a4,x3)[K0]

× (λ−M0,a3,x3 [ρ, ζ]δa3a4)

+
1

3
α1

=
1

6

N∑

a4=1

G(a4,x1)(a4,x1)[K0] (λ−M0,α1 [ρ, ζ]δa1a4) +
1

3
α1

=
1

6 x1

a1 +
1

3
α1 .

(D.243)
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From (D.243) as well as derivatives (D.225) and (D.226), we infer that:

∫

α

δW2[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

K1,α[ρ, ζ] =− 1

18
− 1

18

− 1

72
,

(D.244)

1

2

∫

α1,α2

δ2W1[K,M ]

δKα1δKα2

∣∣∣∣
K=K0
M=M0

K1,α1 [ρ, ζ]K1,α2 [ρ, ζ] =
1

36
+

1

36

+
1

144
,

(D.245)

where we have used equalities like:

= , (D.246)

which holds in particular thanks to the trivial structure of the propagator G[K0] in color space,
i.e. G(a1,x1)(a2,x2)[K0] = Gx1x2 [K0]δa1a2 as follows from the absence of spontaneous breakdown
of the O(N) symmetry in the present framework (see also the remark right below (3.354)).
According to (D.244) and (D.245) as well as expression (D.204) of the W3 coefficient, (D.218)
can be rewritten as follows:

Γ
(4PPI)
3 [ρ, ζ] = − 1

72
− 1

144
+

1

24

∫

α

M0,α[ρ, ζ]ζα . (D.247)

Diagrammatic expressions for the source coefficients K2 andM1 are then determined in order to
find from (D.219) the counterpart of result (D.247) for Γ

(4PPI)
4 [ρ, ζ]. This can be achieved from

the coupled equations (D.237d) and (D.237e), whose derivatives of the ρn and ζn coefficients
are evaluated below:

δζ0,α1 [K,M ]

δKα2

∣∣∣∣
K=K0
M=M0

= 24

(
δ2W3[K,M ]

δKα2δMα1

∣∣∣∣
K=K0
M=M0

− δ2W1[K]

δKα2δKα1

∣∣∣∣
K=K0

δW2[K,M ]

δKα1

∣∣∣∣
K=K0
M=M0

− δW1[K]

δKα1

∣∣∣∣
K=K0

δ2W2[K,M ]

δKα2δKα1

∣∣∣∣
K=K0
M=M0

)

= − 4
α1

α2

,

(D.248)
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δζ0,α1 [K,M ]

δMα2

∣∣∣∣
K=K0
M=M0

= 24

(
δ2W3[K,M ]

δMα2δMα1

∣∣∣∣
K=K0
M=M0

− δ2W1[K]

δMα2δKα1

∣∣∣∣
K=K0

δW2[K,M ]

δKα1

∣∣∣∣
K=K0
M=M0

− δW1[K]

δKα1

∣∣∣∣
K=K0

δ2W2[K,M ]

δMα2δKα1

∣∣∣∣
K=K0
M=M0

)

=

α1

α2

,

(D.249)

δ2ρ0,α1 [K]

δKα2δKα3

∣∣∣∣
K=K0

= 2
δ3W1[K]

δKα2δKα3δKα1

∣∣∣∣
K=K0

= 2 α1 α2

α3

, (D.250)

δρ1,α1 [K,M ]

δKα2

∣∣∣∣
K=K0
M=M0

= 2
δ2W2[K,M ]

δKα2δKα1

∣∣∣∣
K=K0
M=M0

=−1

3

α1

α2

− 1

6
α1 α2 − 2

3

α1 α2

− 1

3

α1

α2

,

(D.251)

δρ1,α1 [K,M ]

δMα2

∣∣∣∣
K=K0
M=M0

= 2
δ2W2[K,M ]

δMα2δKα1

∣∣∣∣
K=K0
M=M0

=
1

2
α1 α2 , (D.252)

and δρ0,α1 [K]

δKα2

∣∣∣
K=K0

is already given by (D.238). Note also that (D.250), (D.251) and (D.252)

correspond respectively to (D.232), (D.229) and (D.231) up to a factor 2. According to (D.249),
M1 can be isolated in (D.237d) by introducing the 4-particle inverse propagator:

α1 α2 →
(
G4[K0]

)−1

α1α2
. (D.253)

After combining (D.243), (D.248) and (D.249) with (D.237d), this procedure leads to:

M1,α[ρ, ζ] = −2

3

α

− 2

3

α

− 1

6

α

. (D.254)

Thanks to the latter result, we have everything to determine a homologous expression of K2

from (D.237e). This is accomplished by inserting the expression of ρ2[K = K0,M = M0]
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deduced from (D.227), i.e.:

ρ2[K = K0,M = M0] = 2
δW3[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

=
1

9
α +

1

9
α +

1

9

α

+
1

18
α

+
1

18
α +

1

9

α

+
1

18
α

+
1

36
α +

1

36

α

,

(D.255)

as well as (D.238) (D.243), (D.250), (D.251), (D.252) and (D.254) into (D.237e) before isolating
K2 with the help of the 2-particle inverse propagator (D.239). In this way, we obtain:

K2,α[ρ, ζ] =− 4

9

α

− 2

3

α

− 1

6

α

+
1

9
α

+
1

18
α .

(D.256)

From the determination of the Kn and Mn coefficients presented in this section, we can infer
the general procedure to calculate any source coefficient of any nPPI EA: the coefficients of
a source coupled to a local product of m fields in the source-dependent partition function Z
are isolated in the equations homologous to (D.237a) to (D.237f) by introducing a m-particle
inverse propagator, such as (D.239) (used to determine all Kn coefficients here) at m = 2
and (D.253) (used to determine all Mn coefficients here) at m = 4. The latter statement is also
valid if p-point correlation functions with p odd are accessible in the formalism, in which case we
would consider additional local products of m fields with m odd: at m = 1, we would make use
of the 1-particle inverse propagator like (D.38) used for the 1PI EA, etc. Getting back to the
present derivation, we have specified each entity of expression (D.219) of Γ

(4PPI)
4 [ρ, ζ] according

to results (D.243), (D.254) and (D.256) for the source coefficients as well as derivatives (D.225)
to (D.232). From this, we determine all diagrams contributing to Γ

(4PPI)
4 [ρ, ζ]. In doing so, we

notably exploit relations similar to (D.246) such as:

= . (D.257)

By combining the expression of Γ
(4PPI)
4 [ρ, ζ] thus obtained with the other Γ

(4PPI)
n coefficients

given by (D.220), (D.221), (D.222) and (D.247), we derive our final result for the 4PPI EA
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Γ(4PPI)[ρ, ζ] of the studied O(N) model up to the third non-trivial order:

Γ(4PPI)[ρ, ζ] =− ~
2

STr
[
ln
(
G[K0]

)]
+

~
2

∫

α

K0,α[ρ, ζ]ρα

+ ~2




1

24
+

1

12
+

1

8

∫

α

M0,α[ρ, ζ]ρ2
α




+ ~3


 −

1

72
− 1

144
+

1

24

∫

α

M0,α[ρ, ζ]ζα




+ ~4




1

324
+

1

108
+

1

324
+

1

216

+
1

1296




+O
(
~5
)
.

(D.258)

Result (D.258) shows that all inverse propagators involved in expressions (D.254) and (D.256)
of M1 and K2 have been canceled out in Γ

(4PPI)
4 [ρ, ζ]. However, as discussed for the 2PPI EA

with (3.356), these inverse propagators will appear in diagrams contributing to the 4PPI EA
at order O

(
~5
)
.

D.5 Derivation of effective action coefficients

D.5.1 1PI effective action

Finally, we derive general expressions for Γ
(mP(P)I)
n coefficients used in the previous sections,

starting with the Γ
(1PI)
n coefficients introduced in (D.4a). To that end, we start by consider-

ing (D.18) recalled below:

∞∑

n=0

Γ(1PI)
n

[
~φ
]
~n = −

∞∑

n=0

Wn

[
∞∑

m=0

~Jm

[
~φ
]
~m
]
~n +

∞∑

n=0

∫

α

Jn,α

[
~φ
]
φα~n . (D.259)
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The Wn coefficients are then Taylor expanded around ~J = ~J0:

Wn

[
∞∑

m=0

~Jm

[
~φ
]
~m
]

= Wn

[
~J0

[
~φ
]

+
∞∑

m=1

~Jm

[
~φ
]
~m
]

= Wn

[
~J = ~J0

]
+

∫

α

δWn

[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

(
∞∑

m=1

Jm,α

[
~φ
]
~m
)

+
∞∑

m=2

1

m!

∫

α1,··· ,αm

δmWn

[
~J
]

δJα1 · · · δJαm

∣∣∣∣∣
~J= ~J0

×
(
∞∑

n1=1

Jn1,α1

[
~φ
]
~n1

)
· · ·
(
∞∑

nm=1

Jnm,αm

[
~φ
]
~nm

)

= Wn

[
~J = ~J0

]
+
∞∑

m=1

∫

α

δWn

[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

Jm,α

[
~φ
]
~m

+
∞∑

m=2

1

m!

∞∑

n1,··· ,nm=1

∫

α1,··· ,αm

δmWn

[
~J
]

δJα1 · · · δJαm

∣∣∣∣∣
~J= ~J0

× Jn1,α1

[
~φ
]
· · · Jnm,αm

[
~φ
]
~n1+···+nm .

(D.260)

The latter relation is just the result of a functional generalization of the Taylor expansion for
a p-variable function f(x1, · · · , xp) around the point (x1, · · · , xp) = (x1, · · · , xp) given by5:

f(x1, · · · , xp) = f(x1, · · · , xp) +

p∑

l=1

∂f(x1, · · · , xp)
∂xl

∣∣∣∣
x1=x1,··· ,xp=xp

(xl − xl)

+
∞∑

m=2

1

m!

∑

k1,··· ,kp≥0
{k1+···+kp=m}

∂mf(x1, ..., xp)

∂xk1
1 ...∂x

kp
p

∣∣∣∣∣
x1=x1,··· ,xp=xp

(x1 − x1)k1 · · · (xp − xp)kp .

(D.261)

Inserting (D.260) into (D.259) leads to:

∞∑

n=0

Γ(1PI)
n

[
~φ
]
~n =−

∞∑

n=0

Wn

[
~J = ~J0

]
~n −

∞∑

n=0

∞∑

m=1

∫

α

δWn

[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

Jm,α

[
~φ
]
~m+n

︸ ︷︷ ︸
A1

−
∞∑

n=0

∞∑

m=2

1

m!

∞∑

n1,··· ,nm=1

∫

α1,··· ,αm

δmWn

[
~J
]

δJα1 · · · δJαm

∣∣∣∣∣
~J= ~J0

Jn1,α1

[
~φ
]
· · · Jnm,αm

[
~φ
]
~n1+···+nm+n

︸ ︷︷ ︸
A2

+
∞∑

n=0

∫

α

Jn,α

[
~φ
]
φα ~n .

(D.262)

The powers of ~ involved in the latter equation suggest to perform the substitutions:

• For A1:
n→ n−m . (D.263)

5In the example of (D.261), the functional generalization amounts to taking the limit p→∞.
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• For A2:
n→ n− (n1 + · · ·+ nm) . (D.264)

This implies that the discrete sums of terms A1 and A2 change as follows:

• For A1:
∞∑

n=0

∞∑

m=1

→
∞∑

n=1

n∑

m=1

. (D.265)

• For A2:
∞∑

n=0

∞∑

m=2

∞∑

n1,··· ,nm=1

→
∞∑

n=1

n∑

m=2

n∑

n1,··· ,nm=1
{n1+···+nm≤n}

. (D.266)

From this, (D.262) becomes:

∞∑

n=0

Γ(1PI)
n

[
~φ
]
~n =−

∞∑

n=0

Wn

[
~J = ~J0

]
~n −

∞∑

n=1

n∑

m=1

∫

α

δWn−m
[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

Jm,α

[
~φ
]
~n

−
∞∑

n=1

n∑

m=2

1

m!

n∑

n1,··· ,nm=1
{n1+···+nm≤n}

∫

α1,··· ,αm

δmWn−(n1+···+nm)

[
~J
]

δJα1 · · · δJαm

∣∣∣∣∣
~J= ~J0

× Jn1,α1

[
~φ
]
· · · Jnm,αm

[
~φ
]
~n

+
∞∑

n=0

∫

α

Jn,α

[
~φ
]
φα ~n .

(D.267)

Since ~φ and ~ are independent, we can identify the terms of orderO
(
~n
)
in both sides of (D.267),

thus leading to:

Γ(1PI)
n

[
~φ
]

=−Wn

[
~J = ~J0

]
−

n∑

m=1

∫

α

δWn−m
[
~J
]

δJα

∣∣∣∣∣
~J= ~J0

Jm,α

[
~φ
]

−
n∑

m=2

1

m!

n∑

n1,··· ,nm=1
{n1+···+nm≤n}

∫

α1,··· ,αm

δmWn−(n1+···+nm)

[
~J
]

δJα1 · · · δJαm

∣∣∣∣∣
~J= ~J0

Jn1,α1

[
~φ
]
· · · Jnm,αm

[
~φ
]

+

∫

α

Jn,α

[
~φ
]
φα .

(D.268)

D.5.2 2PI effective action

We then derive an expression for the Γ
(2PI)
n coefficients introduced in (D.111a). Our derivations

start from (D.119), i.e.:

∞∑

n=0

Γ(2PI)
n

[
~φ,G

]
~n =−

∞∑

n=0

Wn

[
∞∑

m=0

~Jm

[
~φ,G

]
~m,

∞∑

m=0

Km

[
~φ,G

]
~m
]
~n +

∞∑

n=0

∫

α

Jn,α

[
~φ,G

]
φα~n

+
1

2

∞∑

n=0

∫

α1,α2

φα1Kn,α1α2

[
~φ,G

]
φα2~n +

1

2

∞∑

n=0

∫

α1,α2

Kn,α1α2

[
~φ,G

]
Gα1α2~n+1 .

(D.269)
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The recipe is very similar to that leading to expression (D.268) of the Γ
(1PI)
n coefficients. Hence,

we start by Taylor expanding Wn

[
~J,K

]
around

(
~J,K

)
=
(
~J0,K0

)
:

Wn

[
∞∑

m=0

~Jm

[
~φ,G

]
~m,

∞∑

m=0

Km

[
~φ,G

]
~m
]

= Wn

[
~J0

[
~φ,G

]
+
∞∑

m=1

~Jm

[
~φ,G

]
~m,K0

[
~φ,G

]
+
∞∑

m=0

Km

[
~φ,G

]
~m
]

= Wn

[
~J = ~J0,K = K0

]
+

∫

α

δWn

[
~J,K

]

δJα

∣∣∣∣∣ ~J=~J0
K=K0

(
∞∑

m=1

Jm,α

[
~φ,G

]
~m
)

+

∫

α1,α2

δWn

[
~J,K

]

δKα1α2

∣∣∣∣∣ ~J=~J0
K=K0

(
∞∑

m=1

Km,α1α2

[
~φ,G

]
~m
)

+
∞∑

m=2

1

m!

m∑

l,l′=1
{l+l′=m}

(
m
l

)

×
∫

α1,··· ,αl
α̂1,··· ,α̂2l′

δmWn

[
~J,K

]

δJα1 · · · δJαlδKα̂1α̂2 · · · δKα̂2l′−1α̂2l′

∣∣∣∣∣ ~J=~J0
K=K0

×
(
∞∑

n1=1

Jn1,α1

[
~φ,G

]
~n1

)
· · ·
(
∞∑

nl=1

Jnl,αl

[
~φ,G

]
~nl
)

×
(
∞∑

n̂1=1

Kn̂1,α̂1α̂2

[
~φ,G

]
~n̂1

)
· · ·




∞∑

n̂l′=1

Kn̂l′ ,α̂2l′−1α̂2l′

[
~φ,G

]
~n̂l′



= Wn

[
~J = ~J0,K = K0

]
+
∞∑

m=1

∫

α

δWn

[
~J,K

]

δJα

∣∣∣∣∣ ~J=~J0
K=K0

Jm,α

[
~φ,K

]
~m

+
∞∑

m=1

∫

α1,α2

δWn

[
~J,K

]

δKα1α2

∣∣∣∣∣ ~J=~J0
K=K0

Km,α1α2

[
~φ,G

]
~m

+
∞∑

m=2

1

m!

m∑

l,l′=1
{l+l′=m}

∞∑

n1,··· ,nl,n̂1,··· ,n̂l′=1

(
m
l

)

×
∫

α1,··· ,αl
α̂1,··· ,α̂2l′

δmWn

[
~J,K

]

δJα1 · · · δJαlδKα̂1α̂2 · · · δKα̂2l′−1α̂2l′

∣∣∣∣∣ ~J=~J0
K=K0

× Jn1,α1

[
~φ,G

]
· · · Jnl,αl

[
~φ,G

]
Kn̂1,α̂1α̂2

[
~φ,G

]
· · ·Kn̂l′ ,α̂2l′−1α̂2l′

[
~φ,G

]

× ~n1+···+nl+n̂1+···+n̂l′ .

(D.270)
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We combine (D.270) with (D.269):

∞∑

n=0

Γ(2PI)
n

[
~φ,G

]
~n =−

∞∑

n=0

Wn

[
~J = ~J0,K = K0

]
~n −

∞∑

n=0

∞∑

m=1

∫

α

δWn

[
~J,K

]

δJα

∣∣∣∣∣ ~J=~J0
K=K0

Jm,α

[
~φ,K

]
~m+n

︸ ︷︷ ︸
B1

−
∞∑

n=0

∞∑

m=1

∫

α1,α2

δWn

[
~J,K

]

δKα1α2

∣∣∣∣∣ ~J=~J0
K=K0

Km,α1α2

[
~φ,G

]
~m+n

︸ ︷︷ ︸
B2

−
∞∑

n=0

∞∑

m=2

1

m!

m∑

l,l′=1
{l+l′=m}

∞∑

n1,··· ,nl,n̂1,··· ,n̂l′=1

(
m
l

)∫

α1,··· ,αl
α̂1,··· ,α̂2l′

δmWn

[
~J,K

]

δJα1 · · · δJαlδKα̂1α̂2 · · · δKα̂2l′−1α̂2l′

∣∣∣∣∣ ~J=~J0
K=K0

× Jn1,α1

[
~φ,G

]
· · · Jnl,αl

[
~φ,G

]
Kn̂1,α̂1α̂2

[
~φ,G

]
· · ·Kn̂l′ ,α̂2l′−1α̂2l′

[
~φ,G

]
~n1+···+nl+n̂1+···+n̂l′+n

︸ ︷︷ ︸
B3

+
∞∑

n=0

∫

α

Jn,α

[
~φ,G

]
φα~n +

1

2

∞∑

n=0

∫

α1,α2

φα1Kn,α1α2

[
~φ,G

]
φα2~n

+
1

2

∞∑

n=0

∫

α1,α2

Kn,α1α2

[
~φ,G

]
Gα1α2~n+1 .

(D.271)

We then perform the following substitutions in (D.271):

• For B1 and B2:

n→ n−m . (D.272)

• For B3:

n→ n− (n1 + · · ·+ nl + n̂1 + · · ·+ n̂l′) . (D.273)

As a consequence, the discrete sums of B1, B2 and B3 are affected as follows:

• For B1 and B2:
∞∑

n=0

∞∑

m=1

→
∞∑

n=1

n∑

m=1

. (D.274)

• For B3:
∞∑

n=0

∞∑

m=2

∞∑

n1,··· ,nl,n̂1,··· ,n̂l′=1

→
∞∑

n=1

n∑

m=2

n∑

n1,··· ,nl,n̂1,··· ,n̂l′=1
{n1+···+nl+n̂1+···+n̂l′≤n}

. (D.275)
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According to this, (D.271) becomes:
∞∑

n=0

Γ(2PI)
n

[
~φ,G

]
~n =−

∞∑

n=0

Wn

[
~J = ~J0,K = K0

]
~n

−
∞∑

n=1

n∑

m=1

∫

α

δWn−m
[
~J,K

]

δJα

∣∣∣∣∣ ~J=~J0
K=K0

Jm,α

[
~φ,K

]
~n

−
∞∑

n=1

n∑

m=1

∫

α1,α2

δWn−m
[
~J,K

]

δKα1α2

∣∣∣∣∣ ~J=~J0
K=K0

Km,α1α2

[
~φ,G

]
~n

−
∞∑

n=1

n∑

m=2

1

m!

m∑

l,l′=1
{l+l′=m}

n∑

n1,··· ,nl,n̂1,··· ,n̂l′=1
{n1+···+nl+n̂1+···+n̂l′≤n}

(
m
l

)

×
∫

α1,··· ,αl
α̂1,··· ,α̂2l′

δmWn−(n1+···+nl+n̂1+···+n̂l′ )
[
~J,K

]

δJα1 · · · δJαlδKα̂1α̂2 · · · δKα̂2l′−1α̂2l′

∣∣∣∣∣ ~J=~J0
K=K0

× Jn1,α1

[
~φ,G

]
· · · Jnl,αl

[
~φ,G

]

×Kn̂1,α̂1α̂2

[
~φ,G

]
· · ·Kn̂l′ ,α̂2l′−1α̂2l′

[
~φ,G

]
~n

+
∞∑

n=0

∫

α

Jn,α

[
~φ,G

]
φα~n +

1

2

∞∑

n=0

∫

α1,α2

φα1Kn,α1α2

[
~φ,G

]
φα2~n

+
1

2

∞∑

n=0

∫

α1,α2

Kn,α1α2

[
~φ,G

]
Gα1α2~n+1 .

(D.276)

Finally, we exploit the fact that both ~φ and G are independent of ~ to identify the terms of
order O

(
~n
)
in (D.276):

Γ(2PI)
n

[
~φ,G

]
=−Wn

[
~J = ~J0,K = K0

]
−

n∑

m=1

∫

α

δWn−m
[
~J,K

]

δJα

∣∣∣∣∣ ~J=~J0
K=K0

Jm,α

[
~φ,K

]

−
n∑

m=1

∫

α1,α2

δWn−m
[
~J,K

]

δKα1α2

∣∣∣∣∣ ~J=~J0
K=K0

Km,α1α2

[
~φ,G

]

−
n∑

m=2

1

m!

m∑

l,l′=1
{l+l′=m}

n∑

n1,··· ,nl,n̂1,··· ,n̂l′=1
{n1+···+nl+n̂1+···+n̂l′≤n}

(
m
l

)

×
∫

α1,··· ,αl
α̂1,··· ,α̂2l′

δmWn−(n1+···+nl+n̂1+···+n̂l′ )
[
~J,K

]

δJα1 · · · δJαlδKα̂1α̂2 · · · δKα̂2l′−1α̂2l′

∣∣∣∣∣ ~J=~J0
K=K0

×Jn1,α1

[
~φ,G

]
· · · Jnl,αl

[
~φ,G

]
Kn̂1,α̂1α̂2

[
~φ,G

]
· · ·Kn̂l′ ,α̂2l′−1α̂2l′

[
~φ,G

]

+

∫

α

Jn,α

[
~φ,G

]
φα +

1

2

∫

α1,α2

φα1Kn,α1α2

[
~φ,G

]
φα2 +

1

2

∫

α1,α2

Kn−1,α1α2

[
~φ,G

]
Gα1α2δn≥1 .

(D.277)

D.5.3 4PPI effective action

Finally, we determine an expression for the Γ(4PPI) coefficients introduced in the power se-
ries (D.195a) for the original 4PPI EA with vanishing 1-point correlation function. The deriva-
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tions start from (D.210) recalled below:

∞∑

n=0

Γ(4PPI)
n [ρ, ζ]~n =−

∞∑

n=0

Wn

[
∞∑

m=0

Km[ρ, ζ]~m,
∞∑

m=0

Mm[ρ, ζ]~m
]
~n +

1

2

∞∑

n=0

∫

α

Kn,α[ρ, ζ]ρα~n+1

+
1

8

∞∑

n=0

∫

α

Mn,α[ρ, ζ]ρ2
α~n+2 +

1

24

∞∑

n=0

∫

α

Mn,α[ρ, ζ]ζα~n+3 .

(D.278)

Once again, the general calculation steps are essentially the same as those of sections D.5.1
and D.5.2 treating the 1PI and 2PI EAs, as they would be for any other nPI or nPPI EAs. We
thus Taylor expand the Wn coefficients in (D.278) around (K,M) = (K0,M0):

Wn

[
∞∑

m=0

Km[ρ, ζ]~m,
∞∑

m=0

Mm[ρ, ζ]~m
]

= Wn

[
K0[ρ, ζ] +

∞∑

m=1

Km[ρ, ζ]~m,M0[ρ, ζ] +
∞∑

m=1

Mm[ρ, ζ]~m
]

= Wn[K = K0,M = M0] +

∫

α

δWn[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

(
∞∑

m=1

Km,α[ρ, ζ]~m
)

+

∫

α

δWn[K,M ]

δMα

∣∣∣∣
K=K0
M=M0

(
∞∑

m=1

Mm,α[ρ, ζ]~m
)

+
∞∑

m=2

1

m!

m∑

l,l′=1
{l+l′=m}

(
m
l

)

×
∫

α1,··· ,αl
α̂1,··· ,α̂l′

δmWn[K,M ]

δKα1 · · · δKαlδMα̂1 · · · δMα̂l′

∣∣∣∣
K=K0
M=M0

×
(
∞∑

n1=1

Kn1,α1 [ρ, ζ]~n1

)
· · ·
(
∞∑

nl=1

Knl,αl [ρ, ζ]~nl
)

×
(
∞∑

n̂1=1

Mn̂1,α̂1 [ρ, ζ]~n̂1

)
· · ·




∞∑

n̂l′=1

Mn̂l′ ,α̂l′
[ρ, ζ]~n̂l′




= Wn[K = K0,M = M0] +
∞∑

m=1

∫

α

δWn[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

Km,α[ρ, ζ]~m

+
∞∑

m=1

∫

α

δWn[K,M ]

δMα

∣∣∣∣
K=K0
M=M0

Mm,α[ρ, ζ]~m

+
∞∑

m=2

1

m!

m∑

l,l′=1
{l+l′=m}

∞∑

n1,··· ,nl,n̂1,··· ,n̂l′=1

(
m
l

)

×
∫

α1,··· ,αl
α̂1,··· ,α̂l′

δmWn[K,M ]

δKα1 · · · δKαlδMα̂1 · · · δMα̂l′

∣∣∣∣
K=K0
M=M0

×Kn1,α1 [ρ, ζ] · · ·Knl,αl [ρ, ζ]Mn̂1,α̂1 [ρ, ζ] · · ·Mn̂l′ ,α̂l′
[ρ, ζ]~n1+···+nl+n̂1+···+n̂l′ .

(D.279)
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As a next step, we insert (D.279) into (D.278):

∞∑

n=0

Γ(4PPI)
n [ρ, ζ]~n =−

∞∑

n=0

Wn[K = K0,M = M0]~n −
∞∑

n=0

∞∑

m=1

∫

α

δWn[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

Km,α[ρ, ζ]~m+n

︸ ︷︷ ︸
C1

−
∞∑

n=0

∞∑

m=1

∫

α

δWn[K,M ]

δMα

∣∣∣∣
K=K0
M=M0

Mm,α[ρ, ζ]~m+n

︸ ︷︷ ︸
C2

−
∞∑

n=0

∞∑

m=2

1

m!

m∑

l,l′=1
{l+l′=m}

∞∑

n1,··· ,nl,n̂1,··· ,n̂l′=1

(
m
l

)∫

α1,··· ,αl
α̂1,··· ,α̂l′

δmWn[K,M ]

δKα1 · · · δKαlδMα̂1 · · · δMα̂l′

∣∣∣∣
K=K0
M=M0

×Kn1,α1 [ρ, ζ] · · ·Knl,αl [ρ, ζ]Mn̂1,α̂1 [ρ, ζ] · · ·Mn̂l′ ,α̂l′
[ρ, ζ]~n1+···+nl+n̂1+···+n̂l′+n

︸ ︷︷ ︸
C3

+
1

2

∞∑

n=0

∫

α

Kn,α[ρ, ζ]ρα~n+1 +
1

8

∞∑

n=0

∫

α

Mn,α[ρ, ζ]ρ2
α~n+2 +

1

24

∞∑

n=0

∫

α

Mn,α[ρ, ζ]ζα~n+3 .

(D.280)

We then rename indices in C1, C2 and C3 respectively as in B1, B2 and B3 in section D.5.2.
According to (D.272) to (D.275), (D.280) is equivalent to:

∞∑

n=0

Γ(4PPI)
n [ρ, ζ]~n =−

∞∑

n=0

Wn[K = K0,M = M0]~n −
∞∑

n=1

n∑

m=1

∫

α

δWn−m[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

Km,α[ρ, ζ]~n

−
∞∑

n=1

n∑

m=1

∫

α

δWn−m[K,M ]

δMα

∣∣∣∣
K=K0
M=M0

Mm,α[ρ, ζ]~n

−
∞∑

n=1

n∑

m=2

1

m!

m∑

l,l′=1
{l+l′=m}

n∑

n1,··· ,nl,n̂1,··· ,n̂l′=1
{n1+···+nl+n̂1+···+n̂l′≤n}

(
m
l

)

×
∫

α1,··· ,αl
α̂1,··· ,α̂l′

δmWn−(n1+···+nl+n̂1+···+n̂l′ )[K,M ]

δKα1 · · · δKαlδMα̂1 · · · δMα̂l′

∣∣∣∣
K=K0
M=M0

×Kn1,α1 [ρ, ζ] · · ·Knl,αl [ρ, ζ]Mn̂1,α̂1 [ρ, ζ] · · ·Mn̂l′ ,α̂l′
[ρ, ζ]~n

+
1

2

∞∑

n=0

∫

α

Kn,α[ρ, ζ]ρα~n+1 +
1

8

∞∑

n=0

∫

α

Mn,α[ρ, ζ]ρ2
α~n+2

+
1

24

∞∑

n=0

∫

α

Mn,α[ρ, ζ]ζα~n+3 .

(D.281)
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The independence of both ρ and ζ with respect to ~ enables us to identify the terms of order
O
(
~n
)
in (D.281) to obtain:

Γ(4PPI)
n [ρ, ζ] =−Wn[K = K0,M = M0]−

n∑

m=1

∫

α

δWn−m[K,M ]

δKα

∣∣∣∣
K=K0
M=M0

Km,α[ρ, ζ]

−
n∑

m=1

∫

α

δWn−m[K,M ]

δMα

∣∣∣∣
K=K0
M=M0

Mm,α[ρ, ζ]

−
n∑

m=2

1

m!

m∑

l,l′=1
{l+l′=m}

n∑

n1,··· ,nl,n̂1,··· ,n̂l′=1
{n1+···+nl+n̂1+···+n̂l′≤n}

(
m
l

)

×
∫

α1,··· ,αl
α̂1,··· ,α̂l′

δmWn−(n1+···+nl+n̂1+···+n̂l′ )[K,M ]

δKα1 · · · δKαlδMα̂1 · · · δMα̂l′

∣∣∣∣
K=K0
M=M0

×Kn1,α1 [ρ, ζ] · · ·Knl,αl [ρ, ζ]Mn̂1,α̂1 [ρ, ζ] · · ·Mn̂l′ ,α̂l′
[ρ, ζ]

+
1

2

∫

α

Kn−1,α[ρ, ζ]ραδn≥1 +
1

8

∫

α

Mn−2,α[ρ, ζ]ρ2
αδn≥2 +

1

24

∫

α

Mn−3,α[ρ, ζ]ζαδn≥3 .

(D.282)
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Appendix E

1PI functional renormalization group

E.1 Master equation (Wetterich equation)

We will derive in this appendix all general equations that led to our results for the 1PI-FRG. We
will start by deriving the master equation of this approach, i.e. the Wetterich equation [126].
To that end, let us first introduce the flow-dependent expectation value:

〈
· · ·
〉
J,k

=
1

Zk[J ]

∫
Dϕ̃ · · · e−S[ϕ̃]−∆Sk[ϕ̃]+

∫
α Jαϕ̃α , (E.1)

and then differentiate (4.1) with respect to k at a fixed configuration of the source J :

Ẇk[J ]
∣∣∣
J

= −1

2

∫

α1,α2

Ṙk,α1α2 〈ϕ̃α1ϕ̃α2〉J,k . (E.2)

We also calculate:

W
(2)
k,α1α2

[J ] ≡ δ2Wk[J ]

δJα1δJα2

=
δ

δJα1

〈ϕ̃α2〉J,k
= 〈ϕ̃α1ϕ̃α2〉J,k − 〈ϕ̃α1〉J,k 〈ϕ̃α2〉J,k
= 〈ϕ̃α1ϕ̃α2〉J,k − φα1φα2 ,

(E.3)

which gives us:
〈ϕ̃α1ϕ̃α2〉J,k = W

(2)
k,α1α2

[J ] + φα1φα2 . (E.4)

After combining (E.4) with (E.2), we obtain the relation:

Ẇk[J ]
∣∣∣
J

= −1

2

∫

α1,α2

Ṙk,α1α2

(
W

(2)
k,α1α2

[J ] + φα1φα2

)
, (E.5)

which is fully equivalent to the Polchinski equation [127]. We will then turn this into a flow
equation for Γ

(1PI)
k [φ] by differentiating (4.9) with respect to k while keeping the source J fixed:

Γ̇
(1PI)
k [φ]

∣∣∣
J

=− Ẇk[J ]
∣∣∣
J

+

∫

α

Jα φ̇α

∣∣∣
J
− 1

2

∫

α1,α2

Ṙk,α1α2φα1φα2 −
∫

α1,α2

Rk,α1α2

(
φ̇α1

∣∣∣
J

)
φα2

=− Ẇk[J ]
∣∣∣
J

+

∫

α

δΓ
(1PI)
k [φ]

δφα
φ̇α

∣∣∣
J
− 1

2

∫

α1,α2

Ṙk,α1α2φα1φα2 ,

(E.6)
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where the last line follows from:

δΓ
(1PI)
k [φ]

δφα1

=−
∫

α2

δJα2

δφα1

δWk[J ]

δJα2︸ ︷︷ ︸
φα2

+

∫

α2

δJα2

δφα1

φα2 + Jα1 −
∫

α2

Rk,α1α2φα2

= Jα1 −
∫

α2

Rk,α1α2φα2 ,

(E.7)

deduced from (4.9) as well. As a next step, we use the following chain rule:

∂

∂k

∣∣∣∣
J

=
∂

∂k

∣∣∣∣
φ

+

∫

α

φ̇α

∣∣∣
J

δ

δφα
. (E.8)

Note that such a chain rule trick will be used throughout all derivations of FRG flow equations
in this thesis. Reorganizing the terms in (E.6), we obtain the equality:

Γ̇
(1PI)
k [φ]

∣∣∣
J
−
∫

α

δΓ
(1PI)
k [φ]

δφα
φ̇α

∣∣∣
J

= − Ẇk[J ]
∣∣∣
J
− 1

2

∫

α1,α2

Ṙk,α1α2φα1φα2 , (E.9)

which, according to (E.5) and (E.8), is equivalent to:

Γ̇
(1PI)
k [φ]

∣∣∣
φ

=
1

2

∫

α1,α2

Ṙk,α1α2W
(2)
k,α1α2

[J ] . (E.10)

We then need to rewrite the derivative of Wk[J ] in the RHS of (E.10) in terms of Γ
(1PI)
k . This

can be done by differentiating (E.7) with respect to φα, thus leading to:

Γ
(1PI)(2)
k,α1α2

[φ] ≡ δ2Γ
(1PI)
k [φ]

δφα1δφα2

=
δJα2

δφα1

−Rk,α1α2

=
(
W

(2)
k [J ]

)−1

α1α2

−Rk,α1α2 ,

(E.11)

or, equivalently,

W
(2)
k,α1α2

[J ] =
(

Γ
(1PI)(2)
k [φ] +Rk

)−1

α1α2

. (E.12)

The Wetterich equation [126] directly follows after inserting (E.12) into (E.10):

Γ̇
(1PI)
k [φ] ≡ Γ̇

(1PI)
k [φ]

∣∣∣
φ

=
1

2

∫

α1,α2

Ṙk,α1α2

(
Γ

(1PI)(2)
k [φ] +Rk

)−1

α1α2

, (E.13)

or, in a more common form,

Γ̇
(1PI)
k [φ] =

1

2
STr

[
Ṙk

(
Γ

(1PI)(2)
k [φ] +Rk

)−1
]
. (E.14)

E.2 Vertex expansion

E.2.1 Original 1PI functional renormalization group

As a next step, we carry out a vertex expansion of the original 1PI EA of the studied zero-
dimensional O(N) model in order to turn the corresponding Wetterich equation into a tower
of coupled differential equations. This Wetterich equation is given by (4.29) recalled below:

Γ̇
(1PI)
k

(
~φ
)

=
1

2
STr

[
Ṙk

(
Γ

(1PI)(2)
k

(
~φ
)

+Rk

)−1
]

=
1

2

N∑

a1,a2=1

Ṙk,a1a2Gk,a2a1

(
~φ
)
. (E.15)
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On the one hand, the Taylor expansion of Γ
(1PI)
k performed around an extremum (Γ(1PI)(1)

k,a = 0
∀a, k), given by:

Γ
(1PI)
k

(
~φ
)

= Γ
(1PI)

k +
∞∑

n=2

1

n!

N∑

a1,··· ,an=1

Γ
(1PI)(n)

k,a1···an

(
~φ− ~φk

)
a1

· · ·
(
~φ− ~φk

)
an
, (E.16)

is used to rewrite the LHS of (E.15) in the following form:

Γ̇
(1PI)
k

(
~φ
)

= Γ̇
(1PI)

k −
N∑

a1,a2=1

φ̇k,a2
Γ

(1PI)(2)

k,a2a1

(
~φ− ~φk

)
a1

+
∞∑

n=2

1

n!

N∑

a1,··· ,an=1

(
Γ̇

(1PI)(n)

k,a1···an −
N∑

an+1=1

φ̇k,an+1
Γ

(1PI)(n+1)

k,an+1a1···an

)(
~φ− ~φk

)
a1

· · ·
(
~φ− ~φk

)
an
,

(E.17)

which is to be associated with definitions (4.32), (4.33) and (4.34). On the other hand, the
RHS of (E.15) is rewritten by Taylor expanding the propagator Gk

(
~φ
)
around ~φ = ~φk:

Gk,a1a2

(
~φ
)

= Gk,a1a2 +
∞∑

n=1

1

n!

N∑

a3,··· ,an+2=1

∂nGk,a1a2

(
~φ
)

∂φa3 · · · ∂φan+2

∣∣∣∣∣
~φ=~φk

(
~φ− ~φk

)
a3

· · ·
(
~φ− ~φk

)
an+2

,

(E.18)
where Gk ≡ Gk

(
~φ = ~φk

)
. With the help of (4.30), the derivatives of Gk,a1a2

(
~φ
)
in (E.18) can

be evaluated to obtain:

Gk,a1a2

(
~φ
)

= Gk,a1a2 −
N∑

a3,a4,a5=1

Gk,a1a4Γ
(1PI)(3)

k,a3a4a5
Gk,a5a2

(
~φ− ~φk

)
a3

+
1

2

N∑

a3,a4=1

[
2

N∑

a5,a6,a7,a8=1

Gk,a1a5Γ
(1PI)(3)

k,a3a5a6
Gk,a6a7Γ

(1PI)(3)

k,a4a7a8
Gk,a8a2

−
N∑

a5,a6=1

Gk,a1a5Γ
(1PI)(4)

k,a3a4a5a6
Gk,a6a2

](
~φ− ~φk

)
a3

(
~φ− ~φk

)
a4

+O
( ∣∣∣~φ− ~φk

∣∣∣
3
)
.

(E.19)

We can already see at this stage that the expansion of Gk can be conveniently represented
in a diagrammatic fashion. Following this direction, we can more readily push the expansion
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in (E.19) further, thus leading to:

Gk,a1a2

(
~φ
)

= a1 a2 −

a1 a2

3

+
1

2




2

a1 a2

3 3 −

a1 a2

4




+
1

6



− 6

a1 a2

3 33 + 3

a1 a2

4 3

+ 3

a1 a2

3 4 −

a1 a2

5




+
1

24




24

a1 a2

3 33 3 − 12

a1 a2

4 33

− 12

a1 a2

3 34 − 12

a1 a2

3 43

+ 6

a1 a2

4 4 + 4

a1 a2

5 3

+ 4

a1 a2

3 5 −

a1 a2

6




+O
( ∣∣∣~φ− ~φk

∣∣∣
5
)
,

(E.20)
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with the diagrammatic rules:

a →
(
~φ− ~φk

)
a
, (E.21a)

a2

a1

an

.
.
..

.
n → Γ

(1PI)(n)

k,a1···an , (E.21b)

a1 a2 → Gk,a1a2 , (E.21c)

and the empty dots still indicate external points. We then specify to the unbroken-symmetry
regime, in which ~φk and all 1PI vertices Γ

(1PI)(n)

k vanish for n odd and for all k to ensure invari-
ance under O(N) rotations. In this situation, (E.20) reduces to:

Gk,a1a2

(
~φ
)

= a1 a2

− 1

2

a1 a2

4

+
1

4

a1 a2

4 4 − 1

24

a1 a2

6

− 1

8

a1 a2

4 44 +
1

48

a1 a2

6 4

+
1

48

a1 a2

4 6 − 1

720

a1 a2

8

+O
( ∣∣∣~φ

∣∣∣
8
)
.

(E.22)

As a next step, we insert this diagrammatic expression into the RHS of (E.15). As a result of
the presence of the supertrace operator in the latter relation, this basically amounts to joining
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the external points in (E.22) as follows:

a1 a2 −−→ , (E.23)

where the cross indicates an insertion of Ṙk according to the rule:

a1a2 → Rk,a1a2 = Rkδa1a2 , (E.24)

and the shaded blobs encompass any combinations of 1PI vertices and field insertions (E.21a)
that can be found in (E.22). Hence, the RHS of (E.15) becomes in this way:

1

2

N∑

a1,a2=1

Ṙk,a1a2Gk,a2a1

(
~φ
)

=
1

2

− 1

4
4

+
1

8
4 4 − 1

48
6

− 1

16
4 44 +

1

48
6 4

− 1

1440
8

+O
( ∣∣∣~φ

∣∣∣
8
)
.

(E.25)

Moreover, in the framework of the unbroken-symmetry regime, (E.17) can be rewritten as:

Γ̇
(1PI)
k

(
~φ
)

= Γ̇
(1PI)

k +
∞∑

n=2
{n even}

1

n!

N∑

a1,··· ,an=1

Γ̇
(1PI)(n)

k,a1···anφa1 · · ·φan . (E.26)

At this stage, we have expanded the RHS and the LHS of (E.15), via (E.25) and (E.26)
respectively. The next step consists in identifying the terms with identical powers of the field
~φ in (E.25) and (E.26), which yields:

Γ̇
(1PI)

k =
1

2
, (E.27)
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N∑

a1,a2=1

Γ̇
(1PI)(2)

k,a1a2
φa1φa2 = −1

2
4 , (E.28)

N∑

a1,a2,a3,a4=1

Γ̇
(1PI)(4)

k,a1a2a3a4
φa1φa2φa3φa4 = 3 4 4 − 1

2
6 , (E.29)

N∑

a1,a2,a3,a4,a5,a6=1

Γ̇
(1PI)(6)

k,a1a2a3a4a5a6
φa1φa2φa3φa4φa5φa6 =− 45 4 44

+ 15 6 4

− 1

2
8 .

(E.30)

In order to further simplify (E.27) to (E.30), we introduce the symmetric parts of the propagator
Gk and of the 1PI vertices of even order:

Gk,a1a2 = Gk δa1a2 , (E.31)

Γ
(1PI)(2)

k,a1a2
= Γ

(1PI)(2)

k δa1a2 ∀a1, a2 , (E.32)

Γ
(1PI)(4)

k,a1a2a3a4
= Γ

(1PI)(4)

k (δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3) ∀a1, a2, a3, a4 ,
(E.33)

Γ
(1PI)(6)

k,a1a2a3a4a5a6
= Γ

(1PI)(6)

k (δa1a2δa3a4δa5a6 + δa1a2δa3a5δa4a6 + δa1a2δa3a6δa4a5 + δa1a3δa2a4δa5a6

+ δa1a3δa2a5δa4a6 + δa1a3δa2a6δa4a5 + δa1a4δa2a3δa5a6 + δa1a4δa2a5δa3a6

+ δa1a4δa2a6δa3a5 + δa1a5δa2a3δa4a6 + δa1a5δa2a4δa3a6 + δa1a5δa2a6δa3a4

+δa1a6δa2a3δa4a5 + δa1a6δa2a4δa3a5 + δa1a6δa2a5δa3a4) ∀a1, · · · , a6 ,

(E.34)

as is allowed in the absence of spontaneous breakdown of the O(N) symmetry, and the sym-
metric part of the cutoff function:

Rk,a1a2 = Rk δa1a2 . (E.35)

More specifically, we aim at turning (E.27) to (E.30) into expressions for the β-functions

Γ̇
(1PI)(n)

k . In the case of (E.27), it directly follows from (E.31) and (E.35) that:

Γ̇
(1PI)

k =
N

2
Gk , (E.36)
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since the sums over color indices yield a factor N for any closed propagator loop, as discussed
in appendix C.1. In order to evaluate such sums in (E.28) to (E.30), we must open up the 1PI
vertices according to (E.33) and (E.34). For Γ

(1PI)(4)

k , this amounts to writing:

a1 a3

a2 a4

4 =
1

3




a1 a3

a2 a4

4 +

a1 a3

a2 a4

4 +

a1 a3

a2 a4

4




, (E.37)

with the following rule:

.
.
..

.
n → Γ

(1PI)(n)

k , (E.38)

where there are n/2 dotted lines that leave the empty circle containing the integer n (which
is always even here). Rule (E.38) is to be distinguished from (E.21b) according to (E.33)
and (E.34) notably. After inserting (E.32) and (E.37) into (E.28), we obtain:

Γ̇
(1PI)(2)

k δa1a2 =− 1

6




a1

a2

4 + 2

a1 a2

4




=− N + 2

6
ṘkG

2

kΓ
(1PI)(4)

k δa1a2 ,

(E.39)

which, at a1 = a2, corresponds to our final expression for Γ̇
(1PI)(2)

k :

Γ̇
(1PI)(2)

k = −N + 2

6
ṘkG

2

kΓ
(1PI)(4)

k . (E.40)

In order to rewrite (E.29) in the same fashion, we need to open up Γ
(1PI)(6)

k as well. According
to (E.34), there are 15 combinations to consider:

a1
a2 a3

a4 a5
a6

6 =
1

15




a2 a3

a5 a6

a1 a4

6 +

a2 a3

a5 a6

a1 a4

6 + 13 other diagrams




.

(E.41)
Following the lines set out by (E.39), we can now exploit (E.37) and (E.41) as well as (E.33)
and (E.34) to simplify (E.29) as follows:

1

3
Γ̇

(1PI)(4)

k (δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3) =

(
N + 8

9
ṘkG

3

k

(
Γ

(1PI)(4)

k

)2

− N + 4

30
ṘkG

2

kΓ
(1PI)(6)

k

)

× (δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3) ,

(E.42)
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which directly yields:

Γ̇
(1PI)(4)

k =
N + 8

3
ṘkG

3

k

(
Γ

(1PI)(4)

k

)2

− N + 4

10
ṘkG

2

kΓ
(1PI)(6)

k . (E.43)

Finally, it remains us to open up Γ
(1PI)(8)

k in order to rewrite (E.30) via the same procedure.
Gathering up all differential equations obtained in this way, we have:

Γ̇k =
N

2
Ṙk

(
Gk −G(0)

k

)
, (E.44)

Γ̇
(1PI)(2)

k = −N + 2

6
ṘkG

2

kΓ
(1PI)(4)

k , (E.45)

Γ̇
(1PI)(4)

k =
N + 8

3
ṘkG

3

k

(
Γ

(1PI)(4)

k

)2

− N + 4

10
ṘkG

2

kΓ
(1PI)(6)

k , (E.46)

Γ̇
(1PI)(6)

k = −5N + 130

3
ṘkG

4

k

(
Γ

(1PI)(4)

k

)3

+(N + 14) ṘkG
3

kΓ
(1PI)(4)

k Γ
(1PI)(6)

k −N + 6

14
ṘkG

2

kΓ
(1PI)(8)

k ,

(E.47)
where the introduction of G(0)

k is justified below (4.52).

In order to treat the regime with m2 < 0, let us then assume that the O(N) symmetry can
be spontaneously broken. We restrict ourselves to the situation where N = 1, which implies
that the vector ~φ has a single component φ. We will outline the main steps of the vertex
expansion as well. To begin with, we consider the Wetterich equation (E.15) at N = 1:

Γ̇
(1PI)
k (φ) =

1

2
Ṙk

(
Γ

(1PI)(2)
k (φ) +Rk

)−1

=
1

2
ṘkGk(φ) . (E.48)

As mentioned in section 4.1.2, this situation is equivalent to that of the collective representation.
Hence, the present discussion can also be considered as the recipe to treat theWetterich equation
of the collective theory with the vertex expansion. The vertex expansion procedure is simply
carried out by Taylor expanding the LHS of (E.48) as:

Γ̇
(1PI)
k (φ) = Γ̇

(1PI)

k − φ̇kΓ
(1PI)(2)

k

(
φ− φk

)
+
∞∑

n=2

1

n!

(
Γ̇

(1PI)(n)

k − φ̇kΓ
(1PI)(n+1)

k

)(
φ− φk

)n
, (E.49)
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(as follows from (E.17) with N = 1) and its RHS as:
1

2
ṘkGk(φ) =
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2
ṘkGk

− 1
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ṘkG
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ṘkG

2

kΓ
(1PI)(4)
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(E.50)

Finally, identifying the terms with the same powers of φ − φk leads to the following set of
differential equations:

Γ̇
(1PI)

k =
1

2
Ṙk

(
Gk −G(0)

k

)
, (E.51)

φ̇k =
1

2Γ
(1PI)(2)

k

ṘkG
2

kΓ
(1PI)(3)

k , (E.52)
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k , (E.54)
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4

k

(
Γ

(1PI)(3)

k

)2

Γ
(1PI)(4)

k

+ 4ṘkG
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(E.55)
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ṘkG

2

kΓ
(1PI)(8)

k ,

(E.57)

where the reason behind the introduction of G(0)

k in (E.51) is once again discussed below (4.52).

E.2.2 Mixed 1PI functional renormalization group

We then outline the main steps of the vertex expansion procedure treating the Wetterich equa-
tion for the toy model under consideration in the framework of the mixed representation. The
latter equation is already given by (4.66) in the form:

Γ̇
(1PI)
mix,k

(
~φ, η
)

=
1

2
ST r

[
Ṙk

(
Γ

(1PI)(2)
mix,k

(
~φ, η
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+Rk

)−1
]
, (E.58)

with

Rk =

(
R

(φ)
k

~0
~0T R

(η)
k

)
=

(
RkIN ~0
~0T Rk

)
= RkIN+1 . (E.59)

As a first step, we expand the mixed 1PI EA around an extremum (Γ(1PI)(1φ)

mix,k,a = Γ
(1PI)(1η)

mix,k = 0
∀a, k) via the relation:
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(E.60)
from which we deduce the following expression of the LHS of (E.58):
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(E.61)
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Then, the RHS of (E.58) is expanded by introducing the matrices Pk and Fk as:

Γ
(1PI)(2)
mix,k +Rk = Pk + Fk . (E.62)

As Fk must encompass the whole field dependence, we must have:

Fk =
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and
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Furthermore, each component of Fk can be expanded by differentiating (E.60), thus leading to:
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(E.67)

The expansion of the RHS is then carried out by matrix multiplications between P−1
k and Fk

according to:
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Ṙk (Pk + Fk)−1

]

=
1

2
ST r

[
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(E.68)

where the third line was obtained using the matrix generalization of the Taylor series:

1

1 + x
=
∞∑

n=0

(−1)nxn . (E.69)
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We also point out that the expansion procedure outlined in (E.68) is strictly equivalent to that
of (4.23).

We will focus on the unbroken-symmetry regime in order to go further in the vertex expan-
sion procedure. In this situation, we can exploit the following relations:

Γ
(1PI)(2φ,nη)

mix,k,a1a2
= Γ

(1PI)(2φ,nη)

mix,k δa1a2 ∀a1, a2, n , (E.70)

Γ
(1PI)(4φ,nη)

mix,k,a1a2a3a4
= Γ

(1PI)(4φ,nη)

mix,k (δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3) ∀a1, a2, a3, a4, n ,
(E.71)

which are respectively the counterparts of (E.32) and (E.33) for the mixed theory, and:

Γ
(1PI)(nφ,mη)

mix,k,a1···an = 0 ∀a1, · · · , an,m, ∀n odd . (E.72)

In particular, after combining (E.64) with (E.59), (E.70) and (E.72), we obtain:
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)
, (E.73)

and the inversion of Pk thus becomes trivial such that P−1
k is now a diagonal matrix, i.e.:
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k IN ~0

~0T G
(η)

k

)
. (E.74)

This implies in particular that the number of terms generated by the matrix products in (E.68)
is significantly reduced as compared with the situation where SSB can occur (i.e. where (E.72)
does not hold). Moreover, as ~φk = ~0 ∀k in the unbroken-symmetry regime, the expressions of
the components of Fk given by (E.65) to (E.67) can be simplified as:

Fk,a1a2 =
∞∑

n=1

1

n!

n∑

m=0
{m even}

(
n
m

) N∑

a1,··· ,am=1

Γ
(1PI)((m+2)φ,(n−m)η)

mix,k,a1···am φa1 · · ·φam (η − ηk)n−m , (E.75)

Fk,aN+1 = Fk,N+1a =
∞∑

n=1

1

n!

n∑

m=0
{m even}

(
n
m

) N∑

a1,··· ,am=1

Γ
(1PI)(mφ,(n−m+2)η)

mix,k,a1···am φa1 · · ·φam (η − ηk)n−m ,

(E.76)

Fk,N+1N+1 =
∞∑

n=1

1

n!

n∑

m=0
{m odd}

(
n
m

) N∑

a1,··· ,am=1

Γ
(1PI)((m+1)φ,(n−m+1)η)

mix,k,a1···am φa1 · · ·φam (η − ηk)n−m ,

(E.77)
on the one hand and, on the other hand, the LHS of (E.58) given by (E.61) reduces to:

Γ̇
(1PI)
mix,k

(
~φ, η
)

= Γ̇
(1PI)

mix,k

+
∞∑

n=2

1

n!

n∑

m=0
{m even}

(
n
m

) N∑

a1,··· ,am=1

(
Γ̇

(1PI)(mφ,(n−m)η)

mix,k,a1···am − η̇kΓ
(1PI)(mφ,(n−m+1)η)

mix,k,a1···am

)
φa1 · · ·φam (η − ηk)n−m

−
∞∑

n=2

1

n!

n∑

m=0
{m odd}

(
n
m

) N∑

a1,··· ,am+1=1

φ̇k,am+1
Γ

(1PI)((m+1)φ,(n−m)η)

mix,k,am+1a1···am φa1 · · ·φam (η − ηk)n−m ,

(E.78)
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where the restrictions “m even” and “m odd” for the sums are a direct consequence of (E.72).
Finally, we carry out the matrix products (P−1

k Fk)n involved in (E.68) (where the expansion
is performed up to a finite truncation order n = Nmax in practice) with P−1

k given by (E.74)
and Fk specified by (E.75) to (E.77). In this way, we have expanded the RHS of the Wetterich
equation given by (E.58). By identifying the terms of the relation thus derived with those
of (E.78) (which coincides with the LHS of the Wetterich equation in the form of (E.58))
involving the same powers of the fields ~φ and η−ηk, we obtain the following tower of differential
equations for N = 1:

Γ̇
(1PI)

mix,k= 1
2

(
G

(φ)
k −G

(φ)(0)
k

)
+ 1

2

(
G

(η)
k −G

(η)(0)
k

)
, (E.79)

η̇k=
Ṙk

2Γ
(1PI)(2η)
mix,k

(
Γ

(1PI)(3η)
mix,k

(
G

(η)
k

)2
+Γ

(1PI)(2φ,1η)
mix,k

(
G

(φ)
k

)2
)
, (E.80)

Γ̇
(1PI)(2φ)

mix,k = η̇kΓ
(1PI)(2φ,1η)
mix,k − 1

2
Ṙk

(
Γ

(1PI)(2φ,2η)
mix,k

(
G

(η)
k

)2
+G

(φ)
k

(
Γ

(1PI)(4φ)
mix,k G

(φ)
k −2

(
Γ

(1PI)(2φ,1η)
mix,k

)2
G

(η)
k

(
G

(η)
k +G

(φ)
k

)))
,

(E.81)

Γ̇
(1PI)(2η)

mix,k = η̇kΓ
(1PI)(3η)
mix,k − 1

2
Ṙk

(
Γ

(1PI)(4η)
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(
G

(η)
k

)2
−2
(

Γ
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)2(
G

(η)
k

)3
+
(
G

(φ)
k

)2
(

Γ
(1PI)(2φ,2η)
mix,k −2

(
Γ
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mix,k

)2
G

(φ)
k

))
,

(E.82)

Γ̇
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+Ṙk
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(
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G
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(
2G
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))
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(φ)
k

(
2Γ

(1PI)(2φ,2η)
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(η)
k

(
G

(η)
k +G

(φ)
k

)
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(
Γ

(1PI)(4φ)
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(φ)
k
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(

Γ
(1PI)(2φ,1η)
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)2
G

(η)
k

(
G

(η)
k +2G

(φ)
k

))))

+F(N=1)
1

(
Γ

(1PI)(nφ,mη)
mix,k ; n+m≤5

)
,

(E.83)
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(1PI)(3η)
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−3Ṙk
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(
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)3(
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k
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(
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k
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(
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,

(E.84)
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(
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+
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(
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mix,k ; n+m≤6

)
,

(E.85)
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(
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(
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(
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,

(E.86)
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Γ̇
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(
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(
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(
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(
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(
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(
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and for N = 2:
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(1PI)

mix,k=
(
G

(φ)
k −G

(φ)(0)
k

)
+ 1

2

(
G

(η)
k −G

(η)(0)
k

)
, (E.88)
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Ṙk

(
3Γ

(1PI)(2φ,2η)
mix,k

(
G

(η)
k

)2
+4Γ

(1PI)(4φ)
mix,k

(
G

(φ)
k

)2
−6
(

Γ
(1PI)(2φ,1η)
mix,k

)2
G

(η)
k G

(φ)
k

(
G

(η)
k +G

(φ)
k

))
,

(E.90)

Γ̇
(1PI)(2η)

mix,k = η̇kΓ
(1PI)(3η)
mix,k +Ṙk
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where the propagators G(φ)(0)

k and G(η)(0)

k are introduced for the same reason as for G(0)

k in the
framework of the original theory. The functions F (N)

n , involved in (E.83) to (E.87) as well as
in (E.92) to (E.96), depend on vertex functions of order 5 (and 6 for n ≥ 3) so that they do not
contribute to the above equations for Nmax ≤ 4, according to the initial conditions set by (4.97)
in section 4.1.2.



APPENDIX F. 2PI FUNCTIONAL RENORMALIZATION GROUP

Appendix F

2PI functional renormalization group

F.1 Bosonic index formalism

The formalism related to bosonic indices involves additional subtleties as compared to that
based on the fermionic ones. This stems from the symmetry properties (given in (4.126)
and (4.127) notably) of objects like Gαα′ or Kαα′ . In particular, the identity matrix is con-
structed so as to exhibit such symmetries:

Iγ1γ2 = Iγ2γ1 ≡
δGγ1

δGγ2

=
δKγ1

δKγ2

= δα1α2δα′1α′2 + ζδα1α′2
δα′1α2

. (F.1)

An expression for the functional derivative δW [K]
δKγ

in terms of the propagator Gγ directly follows
from definition (F.1) and from the generating functional expressed by (4.119):

δW [K]

δKα1α′1

=
1

Z[K]
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(F.2)

or, in terms of bosonic indices,

δW [K]

δKγ

= Gγ . (F.3)
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Another important point is the matrix multiplication with respect to bosonic indices. For
two bosonic matrices M and N , this gives us:

(MN)γ1γ2
=

1

2

∫

γ3

Mγ1γ3Nγ3γ2 =
1

2

∫

α3,α′3

Mγ1(α3,α′3)N(α3,α′3)γ2
= Mγ1γ̂Nγ̂γ2 , (F.4)

Trγ(M) =
1

2

∫

γ

Mγγ . (F.5)

Hence, it involves an extra 1/2 factor as compared to the standard matrix multiplication
with respect to α-indices, which is convenient considering the symmetry properties discussed
above (F.1). For instance, the bosonic identity matrix involving two terms in its definition (F.1)
so as to satisfy those symmetries, such a 1/2 factor is usually canceled out as follows:

δ

δGγ1

1

2

∫

γ3

Gγ3Mγ3γ2 =
1

2

∫

γ3

δGγ3

δGγ1︸ ︷︷ ︸
Iγ1γ3

Mγ3γ2

=
1

2

∫

γ3

(
δα1α3δα′1α′3 + ζδα1α′3

δα′1α3

)
Mγ3γ2

=
1

2

(
Mγ1γ2 + ζ M(α′1,α1)γ2︸ ︷︷ ︸

ζM(α1,α
′
1)γ2

)

= Mγ1γ2 ,

(F.6)

with M being an arbitrary bosonic matrix satisfying the symmetry properties of (4.126). Note
in addition that a specific realization of (F.4) is the chain rule:

δW [K]

δGγ1

=
1

2

∫

γ2

δKγ2

δGγ1

δW [K]

δKγ2

. (F.7)

For n bosonic matrices M1,..., Mn, (F.4) can be generalized to:

(M1 · · ·Mn)γ1γ2
=

1

2n−1

∫

γ3,...,γn+1

M1,γ1γ3 · · ·Mn,γn+1γ2

=
1

2n−1

∫

α3,α′3,...,αn+1,α′n+1

M1,γ1(α3,α′3) · · ·Mn,(αn+1,α′n+1)γ2

= M1,γ1γ̂1 · · ·Mn,γ̂n−1γ2 .

(F.8)

We will often exploit the commutativity of the matrix product based on bosonic indices, i.e.
(M1M2)γ1γ2

= (M2M1)γ1γ2
. This property is verified assuming that the matrices involved in

the product are symmetric, i.e. Mi,γ1γ2 = Mi,γ2γ1 with i = 1 or 2 for our example. The latter
property is indeed often exhibited by entities manipulated in this work, as shown by (4.126)
and (4.185). The inverse with respect to bosonic indices can be defined from (F.1) and (F.4):

Iγ1γ2 =
(
MM inv

)
γ1γ2

=
1

2

∫

γ3

Mγ1γ3M
inv
γ3γ2

. (F.9)

We will also evaluate the derivative δΓ(2PI)[G]
δGγ

by considering the definition of the 2PI EA
given by (4.128) and recalled below:

Γ(2PI)[G] = −W [K] + Trγ(KG) . (F.10)
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Using the chain rule expressed by (F.7), we then differentiate both sides of (F.10) with respect
to G:
δΓ(2PI)[G]

δGα1α′1

=−δW [K]

δGα1α′1

+
1

2

∫

γ2

δKγ2

δGα1α′1

Gγ2 +
1

2

∫

α2,α′2

Kα2α′2

δGα2α′2

δGα1α′1

=−1

2

∫

γ2

δKγ2

δGα1α′1

δW [K]

δKγ2︸ ︷︷ ︸
Gγ2

+
1

2

∫

γ2

δKγ2

δGα1α′1

Gγ2 +
1

2

∫

α2,α′2

Kα2α′2

(
δα2α1δα′2α′1 + ζδα2α′1

δα′2α1

)

=
1

2

(
Kα1α′1

+ ζ Kα′1α1︸ ︷︷ ︸
ζKα1α

′
1

)

= Kα1α′1
,

(F.11)

and, in terms of bosonic indices,
δΓ(2PI)[G]

δGγ

= Kγ . (F.12)

F.2 Dyson equation

As a next step, we derive an expression for the free 2PI EA Γ
(2PI)
0 [G] starting from the generating

functional expressed by (4.119):

Z[K] = eW [K] =

∫
Dψ̃ e−S

[
ψ̃
]

+ 1
2

∫
α,α′ ψ̃αKαα′ ψ̃α′ . (F.13)

More specifically, the free part S0 of action S can be written explicitly in terms of the free
propagator C as formulated by (4.145):

S
[
ψ̃
]

= S0

[
ψ̃
]

+ Sint

[
ψ̃
]

=
1

2

∫

α,α′
ψ̃αC

−1
αα′ψ̃α′ + Sint

[
ψ̃
]
. (F.14)

From this, we infer that the corresponding free generating functional is given by:

Z0[K] = eW0[K] =

∫
Dψ̃ e−S0

[
ψ̃
]

+ 1
2

∫
α,α′ ψ̃αKαα′ ψ̃α′

=

∫
Dψ̃ e−

1
2

∫
α,α′ ψ̃α(C−1−K)

αα′
ψ̃α′

=
[
Det
(
C−1 −K

)]−ζ/2
,

(F.15)

where we have used (A.20) to derive the last line. For later purposes, it will be more convenient
to replace the functional determinant so as to obtain:

W0[K] = −ζ
2

Trα
[
ln
(
C−1 −K

)]
. (F.16)

The propagator G0 can be deduced from the free generating functional W0[K] as follows:

G0,α1α′1
=

δW0[K]

δKα1α′1

=
ζ

2

∫

α2,α′2

(
C−1 −K

)−1

α2α′2

δKα′2α2

δKα1α′1

=
ζ

2

∫

α2,α′2

(
C−1 −K

)−1

α2α′2

(
δα′2α1

δα2α′1
+ ζδα′2α′1δα2α1

)

=
ζ

2

[(
C−1 −K

)−1

α′1α1
+ ζ

(
C−1 −K

)−1

α1α′1

]

=
(
C−1 −K

)−1

α1α′1
.

(F.17)
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From (F.16) and (F.17), we infer the two useful relations:




W0[K] =
ζ

2
Trα [ln(G0)] .

K = C−1 −G−1
0 .

(F.18a)

(F.18b)

We then consider the definition of the 2PI EA given by (4.128) which reads in the free case:

Γ
(2PI)
0 [G0] = −W0[K] + Trγ(KG0) . (F.19)

With the help of (F.18a) and (F.18b) as well as the conventions related to bosonic indices (see
appendix F.1), this relation can be rewritten as follows:

Γ
(2PI)
0 [G0] =−W0[K] +G0,γ̂Kγ̂

=− ζ

2
Trα [ln(G0)] +

1

2

∫

α,α′
G0,αα′ Kαα′︸︷︷︸

ζKα′α

=− ζ

2
Trα [ln(G0)] +

ζ

2
Trα(G0K)

=− ζ

2
Trα [ln(G0)] +

ζ

2
Trα

[
G0

(
C−1 −G−1

0

)]
.

(F.20)

The free part of the full 2PI EA can thus be defined as:

Γ
(2PI)
0 [G] = −ζ

2
Trα [ln(G)] +

ζ

2
Trα

[
GC−1 − I

]
, (F.21)

which could also have been deduced from the previous result (3.248) derived via the IM. Fi-
nally, in order to deduce Dyson equation from (F.21), we combine the latter equality with the
definition of the Luttinger-Ward functional established by (4.132):

Φ[G] ≡ Γ(2PI)[G]− Γ
(2PI)
0 [G] = Γ(2PI)[G] +

ζ

2
Trα [ln(G)]− ζ

2
Trα

[
GC−1 − I

]
. (F.22)

By differentiating this relation with respect to G, we obtain:

Σγ1 [G] ≡ −δΦ[G]

δGγ1

=− δΓ(2PI)[G]

δGγ1︸ ︷︷ ︸
Kγ1

−ζ
2

∫

α2,α′2

G−1
α2α′2

δGα′2α2

δGα1α′1

+
ζ

2

∫

α2,α′2

δGα2α′2

δGα1α′1

C−1
α′2α2

=−Kγ1 −
ζ

2

∫

α2,α′2

G−1
α2α′2

(
δα′2α1

δα2α′1
+ ζδα′2α′1δα2α1

)

+
ζ

2

∫

α2,α′2

(
δα2α1δα′2α′1 + ζδα2α′1

δα′2α1

)
C−1
α′2α2

=−Kγ1 −
ζ

2

(
G−1
α′1α1︸ ︷︷ ︸

ζG−1

α1α
′
1

+ζG−1
α1α′1

)
+
ζ

2

(
C−1
α′1α1︸ ︷︷ ︸

ζC−1

α1α
′
1

+ζC−1
α1α′1

)

=−Kγ1 −G−1
α1α′1

+ C−1
α1α′1

,

(F.23)

which is equivalent to Dyson equation in the form:

G−1
γ = C−1

γ − Σγ[G]−Kγ . (F.24)

Note also that, as can be deduced from (F.17) and (F.24), we can define the free propagator
G0 as G0 ≡ G[Σ = 0].
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F.3 Bethe-Salpeter equation
We first consider the definition of the free propagator G0 used in (F.17):

G0,γ = W
(1)
0,γ [K] =

δW0[K]

δKγ

. (F.25)

We then determine an expression for W (2)
0 [K] by differentiating the latter equality with respect

to K:

W
(2)
0,γ1γ2

[K(G0)] =
δ2W0[K(G0)]

δKγ1δKγ2

=
δG0,γ2

δKγ1

=

∫

α3,α′3

G0,α2α3

δKα3α′3

δKα1α′1

G0,α′3α
′
2

=

∫

α3,α′3

G0,α2α3

(
δα3α1δα′3α′1 + ζδα3α′1

δα′3α1

)
G0,α′3α

′
2

= G0,α2α1︸ ︷︷ ︸
ζG0,α1α2

G0,α′1α
′
2

+ ζ G0,α2α′1︸ ︷︷ ︸
ζG0,α′1α2

G0,α1α′2

= G0,α1α′2
G0,α′1α2

+ ζG0,α1α2G0,α′1α
′
2
.

(F.26)

We have evaluated the derivative of G0 with respect to K in the above calculation by making
use of the relation G0 =

(
C−1 − K

)−1 derived in (F.17). We recall that the pair propagator
Π[G] is defined as:

Π[G] ≡ W
(2)
0 [K(G)] . (F.27)

According to (F.26), this is equivalent to:

Πγ1γ2 [G] = Gα1α′2
Gα′1α2

+ ζGα1α2Gα′1α
′
2
. (F.28)

From (F.28) together with the definition of the inverse of a bosonic matrix set by (F.9), we
infer that the inverse pair propagator reads:

Πinv
γ1γ2

[G] = G−1
α1α′2

G−1
α′1α2

+ ζG−1
α1α2

G−1
α′1α

′
2
. (F.29)

This can be checked through the following calculation:
(
Π[G]Πinv[G]

)
γ1γ2

= Πγ1γ̂3 [G]Πinv
γ̂3γ2

[G]

=
1

2

∫

γ3

Πγ1γ3 [G]Πinv
γ3γ2

[G]

=
1

2

∫

α3,α′3

(
Gα1α′3

Gα′1α3
+ ζGα1α3Gα′1α

′
3

) (
G−1
α3α′2

G−1
α′3α2

+ ζG−1
α3α2

G−1
α′3α

′
2

)

=
1

2

∫

α3,α′3

Gα1α′3
Gα′1α3

G−1
α3α′2

G−1
α′3α2

︸ ︷︷ ︸
δα1α2δα′1α

′
2

+
ζ

2

∫

α3,α′3

Gα1α′3
Gα′1α3

G−1
α3α2

G−1
α′3α

′
2

︸ ︷︷ ︸
δα1α

′
2
δα′1α2

+
ζ

2

∫

α3,α′3

Gα1α3Gα′1α
′
3
G−1
α3α′2

G−1
α′3α2

︸ ︷︷ ︸
δα1α

′
2
δα′1α2

+
1

2

∫

α3,α′3

Gα1α3Gα′1α
′
3
G−1
α3α2

G−1
α′3α

′
2

︸ ︷︷ ︸
δα1α2δα′1α

′
2

= δα1α2δα′1α′2 + ζδα1α′2
δα′1α2

= Iγ1γ2 .

(F.30)
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An important relation for the 2PI-FRG formalism is that linkingW (2)[K] with the second-order
derivative of the 2PI EA, i.e. Γ(2PI)(2)[G]. In the bosonic index formalism, it can be derived
from (F.1), (F.3), (F.9) and (F.12) as follows:

Iγ1γ2 ≡
δGγ1

δGγ2

=
δ2W [K]

δGγ2δKγ1

=
1

2

∫

γ3

δKγ3

δGγ2

δ2W [K]

δKγ3δKγ1

=
1

2

∫

γ3

δ2Γ(2PI)[G]

δGγ2δGγ3

δ2W [K]

δKγ3δKγ1

, (F.31)

which yields, in a more compact notation,

Iγ1γ2 =
(
Γ(2PI)(2)[G]W (2)[K]

)
γ1γ2

, (F.32)

or, equivalently,
W (2)[K] =

(
Γ(2PI)(2)[G]

)inv
. (F.33)

In the free case, this reduces to:

W
(2)
0 [K(G)] ≡ Π[G] =

(
Γ

(2PI)(2)
0 [G]

)inv

. (F.34)

Furthermore, we also know from the definition of the Luttinger-Ward functional given by (4.132)
that:

Γ(2PI)(2)[G] = Γ
(2PI)(2)
0 [G] + Φ(2)[G] . (F.35)

Combining (F.33), (F.34) and (F.35) allows for writing:

W (2)[K] =
(
Γ(2PI)(2)[G]

)inv

=
(

Γ
(2PI)(2)
0 [G] + Φ(2)[G]

)inv

=
(
Πinv[G] + Φ(2)[G]

)inv

= Π[G]
(
I + Π[G]Φ(2)[G]

)inv
,

(F.36)

where matrix multiplication (with respect to bosonic indices) is left implicit in the last line.
We then consider the Taylor expansion:

(I +M)inv =
∞∑

n=0

(−1)nMn , (F.37)

where M0 = I and Mn
γ1γ2

= 1
2n−1

∫
γ3...γn+1

Mγ1γ3 · · ·Mγn+1γ2 = Mγ1γ̂1 · · ·Mγ̂n−1γ2 . Sticking to the
matrix notation used in the last line of (F.36), (F.37) enables us to rewrite (F.36) as:

W (2)[K] = Π[G]
∞∑

n=0

(−1)n
(
Π[G]Φ(2)[G]

)n

= Π[G] + Π[G]
∞∑

n=1

(−1)n
(
Π[G]Φ(2)[G]

)n

= Π[G] + Π[G] Π[G]Φ(2)[G]︸ ︷︷ ︸
Φ(2)[G]Π[G]

∞∑

n=1

(−1)n
(
Π[G]Φ(2)[G]

)n−1

= Π[G]− Π[G]Φ(2)[G] Π[G]
∞∑

n=0

(−1)n
(
Π[G]Φ(2)[G]

)n

︸ ︷︷ ︸
W (2)[K]

= Π[G]− Π[G]Φ(2)[G]W (2)[K] ,

(F.38)
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where we have used the commutative property of the matrix product based on bosonic indices
(see appendix F.1). Hence, we have just derived the Bethe-Salpeter equation:

W (2)[K] = Π[G]− Π[G]Φ(2)[G]W (2)[K] , (F.39)

which is equivalent to (F.33), as we have just proven. Therefore, W (2)[K] can either be deter-
mined in a self-consistent manner from the Bethe-Salpeter equation in the form of (F.39) or
via the inversion of a bosonic matrix from (F.33).

F.4 Tower of flow equations

F.4.1 C-flow

The starting point of the derivation of the flow equations for the C-flow version of the 2PI-FRG
is the generating functional Z[K] in the form of (4.119) combined with the classical action
S
[
ψ̃
]
given by (4.145):

Z[K] = eW [K] =

∫
Dψ̃ e−

1
2

∫
α,α′ ψ̃αC

−1
αα′ ψ̃α′−Sint

[
ψ̃
]

+ 1
2

∫
α,α′ ψ̃αKαα′ ψ̃α′ . (F.40)

After performing the substitution C−1 → C−1
s ≡ C−1 + Rs (or, equivalently, C−1

s ≡ RsC
−1)

and differentiating both sides of (F.40) with respect to s at a fixed configuration of the source
K, we obtain:

Ẇs[K]
∣∣∣
K

=− 1

2Zs[K]

∫

α,α′
Ċ−1

s,αα′

∫
Dψ̃ ψ̃αψ̃α′ e

− 1
2

∫
α,α′ ψ̃αC

−1
s,αα′ ψ̃α′−Sint

[
ψ̃
]

+ 1
2

∫
α,α′ ψ̃αKαα′ ψ̃α′

=− 1

2

∫

α,α′
Ċ−1

s,αα′

(
1

Zs[K]

∫
Dψ̃ ψ̃αψ̃α′ e

−Ss

[
ψ̃
]

+ 1
2

∫
α,α′ ψ̃αKαα′ ψ̃α′

)

︸ ︷︷ ︸
Gαα′

=− Ċ−1
s,γ̂Gγ̂ ,

(F.41)

where G was introduced with the help of (4.142). Then, the procedure to deduce a flow equation
for the 2PI EA from (F.41) is very similar to that used in appendix E.1 to derive the Wetterich
equation. Let us start by considering the chain rule relating derivatives with respect to the
flow parameter at fixed source K and that at fixed propagator G:

∂

∂s

∣∣∣∣
K

=
∂

∂s

∣∣∣∣
G

+
1

2

∫

γ

Ġγ

∣∣∣
K

δ

δGγ

, (F.42)

which is the counterpart of (E.8) for the 2PI EA. Applying this operator to the 2PI EA yields:

Γ̇(2PI)
s [G]

∣∣∣
K

= Γ̇(2PI)
s [G]

∣∣∣
G

+
1

2

∫

γ

Ġγ

∣∣∣
K

δΓ
(2PI)
s [G]

δGγ︸ ︷︷ ︸
Kγ

= Γ̇(2PI)
s [G]

∣∣∣
G

+
1

2

∫

γ

Ġγ

∣∣∣
K
Kγ ,

(F.43)

where we have used (F.12) to introduce the source K. As a next step, we consider once
again (4.128):

Γ(2PI)
s [G] = −Ws[K] + Trγ(KG) , (F.44)
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that we rewrite via differentiation as follows:

Γ̇(2PI)
s [G]

∣∣∣
K

= − Ẇs[K]
∣∣∣
K

+
1

2

∫

γ

Kγ Ġγ

∣∣∣
K
. (F.45)

The latter relation is equivalent to:

Γ̇(2PI)
s [G]

∣∣∣
K
− 1

2

∫

γ

Kγ Ġγ

∣∣∣
K︸ ︷︷ ︸

Γ̇
(2PI)
s [G]

∣∣∣
G

= − Ẇs[K]
∣∣∣
K
, (F.46)

where we are now in a position to exploit (F.43), as indicated by the underbrace. Combining the
result thus obtained with (F.41), we can deduce the master equation of the 2PI EA underlying
the C-flow:

Γ̇(2PI)
s [G] ≡ Γ̇(2PI)

s [G]
∣∣∣
G

=− Ẇs[K]
∣∣∣
K

= Ċ−1
s,γ̂Gγ̂ ,

(F.47)

which resembles noticeably the Wetterich equation for the 1PI EA, as can be seen after com-
parison with (E.13). In order to derive the corresponding master equation for the Luttinger-
Ward functional, we will exploit expression (F.21) of the free 2PI EA after the substitution
C−1 → C−1

s :

Γ
(2PI)
0,s [G] = −ζ

2
Trα [ln(G)] +

ζ

2
Trα

[
GC−1

s − I
]
. (F.48)

The differentiation with respect to s at fixed G leads to:

Γ̇
(2PI)
0,s [G] ≡ Γ̇

(2PI)
0,s [G]

∣∣∣
G

=
ζ

2

∫

α,α′
Gαα′ Ċ

−1
s,α′α︸ ︷︷ ︸

ζĊ−1
s,αα′

=
1

2

∫

α,α′
Gαα′Ċ

−1
s,αα′

= Gγ̂Ċ
−1
s,γ̂ .

(F.49)

From (F.47) and (F.49), we infer that:

Γ̇(2PI)
s [G] = Γ̇

(2PI)
0,s [G] , (F.50)

which proves that the Luttinger-Ward functional is an invariant of the flow in the present case:

Φ̇s[G] ≡ Φ̇s[G]
∣∣∣
G

= Γ̇(2PI)
s [G]− Γ̇

(2PI)
0,s [G] = 0 . (F.51)

Furthermore, at vanishing external source, the 2PI EA becomes:

Γ
(2PI)

s = Γ
(2PI)

0,s + Φs = −ζ
2

Trα
[
ln
(
Gs

)]
+
ζ

2
Trα

[
GsC

−1
s − I

]
+ Φs , (F.52)

where we have used (F.48). We then differentiate (F.52) with respect to the flow parameter:

Γ̇
(2PI)

s =− ζ

2

∫

α,α′
Ġs,αα′G

−1

s,α′α +
ζ

2

∫

α,α′
Ġs,αα′C

−1
s,α′α +

ζ

2

∫

α,α′
Gs,αα′Ċ

−1
s,α′α + Φ̇s

=
ζ

2

∫

α,α′
Ġs,αα′

(
−G−1

s + C−1
s

)
α′α︸ ︷︷ ︸

Σs,α′α

+
ζ

2

∫

α,α′
Gs,αα′Ċ

−1
s,α′α + Φ̇s

=
ζ

2

∫

α,α′
Ġs,αα′ Σs,α′α︸ ︷︷ ︸

ζΣs,αα′

+
ζ

2

∫

α,α′
Gs,αα′ Ċ

−1
s,α′α︸ ︷︷ ︸

ζĊ−1
s,αα′

+Φ̇s

= Ġs,γ̂Σs,γ̂ +Gs,γ̂Ċ
−1
s,γ̂ + Φ̇s ,

(F.53)
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where the self-energy was introduced by making use of Dyson equation in the form of (F.24).
The derivative Φ̇s can be rewritten via the chain rule combined with (F.51):

Φ̇s = Φ̇s︸︷︷︸
0

+Ġs,γ̂ Φ
(1)

s,γ̂︸︷︷︸
−Σs,γ̂

=− Ġs,γ̂Σs,γ̂ .

(F.54)

According to (F.53) and (F.54), we have:

Γ̇
(2PI)

s = Gs,γ̂Ċ
−1
s,γ̂ . (F.55)

We also consider ∆Ωs defined by (4.151):

∆Ωs ≡
1

β

(
Γ

(2PI)

s − Γ
(2PI)
0,s [Cs]

)
=

1

β

(
Γ

(2PI)

s +
ζ

2
Trα [ln(Cs)]

)
=

1

β

(
Γ

(2PI)

s − ζ

2
Trα

[
ln
(
C−1

s

)])
.

(F.56)
An expression for ∆Ω̇s can then be found from (F.55) and (F.56):

∆Ω̇s =
1

β

(
Γ̇

(2PI)

s − ζ

2

∫

α,α′
Ċ−1

s,αα′ Cs,α′α︸ ︷︷ ︸
ζCs,αα′

)

=
1

β

(
Gs,γ̂Ċ

−1
s,γ̂ − Ċ−1

s,γ̂Cs,γ̂

)

=
1

β
Ċ−1

s,γ̂

(
Gs − Cs

)
γ̂
.

(F.57)

The latter equation adds up to (4.141) and the set of (4.150) so that the tower of flow equations
for the C-flow is given by:

Ġs,α1α′1
= −

∫

α2,α′2

Gs,α1α2

(
Ċ−1

s − Σ̇s

)
α2α′2

Gs,α′2α
′
1
, (F.58)

∆Ω̇s =
1

β
Ċ−1

s,γ̂

(
Gs − Cs

)
γ̂
, (F.59)

Φ̇s = −Ġs,γ̂Σs,γ̂ , (F.60)

Σ̇s,γ = −Ġs,γ̂Φ
(2)

s,γ̂γ , (F.61)

Φ̇
(n)

s,γ1···γn = Ġs,γ̂Φ
(n+1)

s,γ̂γ1···γn ∀n ≥ 2 . (F.62)

F.4.2 U-flow

We start once again from (4.119) expressing the generating functional Z[K] together with the
classical action S

[
ψ̃
]
given by (4.145):

Z[K] = eW [K] =

∫
Dψ̃ e

−S0

[
ψ̃
]
− 1

4!

∫
α1,α

′
1,α2,α

′
2
Uα1α

′
1α2α

′
2
ψ̃α1 ψ̃α′1

ψ̃α2 ψ̃α′2
+ 1

2

∫
α1,α

′
1
ψ̃α1Kα1α

′
1
ψ̃α′1 . (F.63)
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Replacing the two-body interaction via U → Us = U + Rs (or, equivalently, Us = RsU) and
differentiating with respect to s at fixed K leads to:

Ẇs[K]
∣∣∣
K

=− 1

4!

∫

α1,α′1,α2,α′2

U̇s,α1α′1α2α′2

(
1

Zs[K]

∫
Dψ̃ ψ̃α1ψ̃α′1ψ̃α2ψ̃α′2 e

−Ss

[
ψ̃
]

+ 1
2

∫
α1,α

′
1
ψ̃α1Kα1α

′
1
ψ̃α′1

)

︸ ︷︷ ︸〈
ψ̃α1 ψ̃α′1

ψ̃α2 ψ̃α′2

〉
K,s

=− 1

4!

∫

α1,α′1,α2,α′2

U̇s,α1α′1α2α′2

〈
ψ̃α1ψ̃α′1ψ̃α2ψ̃α′2

〉
K,s

,

(F.64)

where we have exploited the flow-dependent expectation value:
〈
· · ·
〉
K,s

=
1

Zs[K]

∫
Dψ̃ · · · e−Ss

[
ψ̃
]

+ 1
2

∫
α1,α

′
1
ψ̃α1Kα1α

′
1
ψ̃α′1 . (F.65)

Using (4.142) once more, we then express the connected correlation functionW (2)
s [K] as follows:

W (2)
s,γ2γ1

[K] ≡ δ2Ws[K]

δKγ2δKγ1

=
δ

δKα2α′2

〈
ψ̃α1ψ̃α′1

〉
K,s

=
1

2

∫

α3,α′3

〈
ψ̃α1ψ̃α′1ψ̃α3

δKα3α′3

δKα2α′2

ψ̃α′3

〉

K,s

−
〈
ψ̃α2ψ̃α′2

〉
K,s︸ ︷︷ ︸

Gγ2

〈
ψ̃α1ψ̃α′1

〉
K,s︸ ︷︷ ︸

Gγ1

=
1

2

∫

α3,α′3

〈
ψ̃α1ψ̃α′1ψ̃α3

(
δα3α2δα′3α′2 + ζδα3α′2

δα′3α2

)
ψ̃α′3

〉
K,s
−Gγ2Gγ1

=
1

2

(〈
ψ̃α1ψ̃α′1ψ̃α2ψ̃α′2

〉
K,s

+ ζ
〈
ψ̃α1ψ̃α′1ψ̃α′2ψ̃α2

〉
K,s

)
−Gγ2Gγ1

=
〈
ψ̃α1ψ̃α′1ψ̃α2ψ̃α′2

〉
K,s
−Gγ2Gγ1 ,

(F.66)

which is equivalent to:
〈
ψ̃α1ψ̃α′1ψ̃α2ψ̃α′2

〉
K,s

= W (2)
s,γ2γ1

[K] +Gγ2Gγ1 . (F.67)

From this, (F.64) can be rewritten as:

Ẇs[K]
∣∣∣
K

= −1

6
U̇s,γ̂1γ̂2

(
W

(2)
s,γ̂2γ̂1

[K] +Gγ̂2Gγ̂1

)
. (F.68)

We rewrite specifically the following term by renaming dummy indices:

U̇s,γ̂1γ̂2Gγ̂2Gγ̂1 =
1

4

∫

γ1,γ2

U̇s,γ1γ2Gγ2Gγ1

=
1

8

∫

α1,α′1,α2,α′2

U̇s,α1α′1α2α′2
Gα2α′2

Gα1α′1
+

1

8

∫

α1,α′1,α2,α′2

U̇s,α1α′1α2α′2
Gα2α′2

Gα1α′1

=
1

8

∫

α1,α′1,α2,α′2

U̇s,α2α′1α
′
2α1︸ ︷︷ ︸

U̇s,γ1γ2

Gα′2α1
Gα2α′1

+
1

8

∫

α1,α′1,α2,α′2

U̇s,α′2α
′
1α2α1︸ ︷︷ ︸

ζU̇s,γ1γ2

Gα2α1Gα′2α
′
1

=
1

8

∫

α1,α′1,α2,α′2

U̇s,γ1γ2

(
Gα′2α1

Gα2α′1
+ ζGα2α1Gα′2α

′
1

)
︸ ︷︷ ︸

Πγ2γ1 [G]

=
1

2
U̇s,γ̂1γ̂2Πγ̂2γ̂1 [G] ,

(F.69)
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where we have used the property Uα1α2α3α4 = ζN(P )UαP (1)αP (2)αP (3)αP (4)
. According to this, (F.68)

is equivalent to:

Ẇs[K]
∣∣∣
K

= −1

6
U̇s,γ̂1γ̂2

(
W (2)

s [K] +
1

2
Π[G]

)

γ̂2γ̂1

. (F.70)

The reasoning leading to the first line of (F.47) still holds in the framework of the U-flow. Let
us then recall the relation thus obtained:

Γ̇(2PI)
s [G] ≡ Γ̇(2PI)

s [G]
∣∣∣
G

= − Ẇs[K]
∣∣∣
K
, (F.71)

which, after inserting (F.70), becomes:

Γ̇(2PI)
s [G] =

1

6
U̇s,γ̂1γ̂2

(
W (2)

s [K] +
1

2
Π[G]

)

γ̂2γ̂1

. (F.72)

By definition, the free 2PI EA is independent of the two-body interaction Us (and therefore
independent of the flow parameter s in the present case) so that:

Γ̇
(2PI)
0,s [G] ≡ Γ̇

(2PI)
0,s [G]

∣∣∣
G

= 0 . (F.73)

According to (4.132), this gives us:

Φ̇s[G] ≡ Φ̇s[G]
∣∣∣
G

= Γ̇(2PI)
s [G]− Γ̇

(2PI)
0,s [G] = Γ̇(2PI)

s [G] . (F.74)

Combining (F.74) with (F.72) yields:

Φ̇s[G] =
1

6
U̇s,γ̂1γ̂2

(
W (2)

s [K] +
1

2
Π[G]

)

γ̂2γ̂1

. (F.75)

Most equations constituting the tower of flow equations for the U-flow scheme can be determined
from (F.75) in particular:

• Expressions of Ġs:
Just like the free 2PI EA, the free propagator C does not depend on Us, which translates
into:

Ċγ = 0 ∀γ , (F.76)

in the framework of the U-flow. In this situation, (4.141) reduces to:

Ġs,α1α′1
=

∫

α2,α′2

Gs,α1α2Σ̇s,α2α′2
Gs,α′2α

′
1
. (F.77)

The flow of Gs can actually also be determined via the Bethe-Salpeter equation instead of
the Dyson one, in the U-flow as well as in the C-flow and CU-flow schemes. Even though
we do not investigate this alternative in this work, we determine below the associated
flow equation, which will be useful in further derivations. To that end, we recall that, in
the calculations of (F.36), it was shown that:

W (2)
s [K] =

(
Πinv[G] + Φ(2)

s [G]
)inv

. (F.78)

Furthermore, the 2PI EA under consideration is extremal at Kγ = 0 ∀γ, i.e.:

Γ
(2PI)(1)

s,γ = 0 ∀γ, s , (F.79)
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with

Γ(2PI)(n)
s,γ1···γn [G] ≡ δnΓ

(2PI)
s [G]

δGγ1 · · · δGγn

. (F.80)

Differentiating (F.79) with respect to s and making use of (F.33) and (F.74) leads to:

Γ̇
(2PI)(1)

s,γ = Γ̇
(2PI)(1)

s,γ︸ ︷︷ ︸
Φ̇

(1)

s,γ

+Ġs,γ̂Γ
(2PI)(2)

s,γ̂γ︸ ︷︷ ︸(
W

(2)
s

)inv

γ̂γ

= 0 , (F.81)

which, according to the definition Σs[G] ≡ −Φ
(1)
s [G], gives us:

Ġs,γ = W
(2)

s,γγ̂Σ̇s,γ̂ . (F.82)

After inserting (F.78) into (F.82), we obtain:

Ġs,γ =
(

Π
inv

s + Φ
(2)

s

)inv

γγ̂
Σ̇s,γ̂ . (F.83)

Hence, the flow of Gs can either be determined from (F.77) or (F.83).

• Expression of Ω̇s:
The 2PI EA under consideration satisfies the extremization condition (F.79), which en-
ables us to simplify the following implementation of the chain rule:

Γ̇
(2PI)

s = Γ̇
(2PI)

s + Ġs,γ̂ Γ
(2PI)(1)

s,γ̂︸ ︷︷ ︸
0

= Γ̇
(2PI)

s . (F.84)

From (F.74) and (F.84), it directly follows that:

Γ̇
(2PI)

s = Φ̇s . (F.85)

According to the definition Ωs ≡ 1
β
Γ

(2PI)
s together with (F.85), we infer that:

Ω̇s =
1

β
Φ̇s . (F.86)

With the help of (F.75) and (F.86), we finally obtain:

Ω̇s =
1

6β
U̇s,γ̂1γ̂2

(
W

(2)

s +
1

2
Πs

)

γ̂2γ̂1

. (F.87)

• Expression of Φ̇s:
From (4.143c) and (F.82), it follows that:

Φ̇s = Φ̇s + Ġs,γ̂Φ
(1)

s,γ̂ = Φ̇s − Ġs,γ̂Σs,γ̂ = Φ̇s − Σs,γ̂1W
(2)

s,γ̂1γ̂2
Σ̇s,γ̂2 . (F.88)

As a next step, we derive an expression for Σ̇s from (F.75):

Σ̇s,γ[G] ≡ −Φ̇(1)
s,γ [G] = −1

6
U̇s,γ̂1γ̂2

(
δW

(2)
s,γ̂2γ̂1

[K]

δGγ

+
1

2

δΠγ̂2γ̂1 [G]

δGγ

)
. (F.89)
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We then evaluate the derivative:

δW
(2)
s,γ2γ3 [K]

δGγ1

=
δ

δGγ1

(
Πinv[G] + Φ(2)

s [G]
)inv

γ2γ3

=−
(
Πinv[G] + Φ(2)

s [G]
)inv

γ2γ̂1︸ ︷︷ ︸
W

(2)
s,γ2γ̂1

[K]

(
δΠinv[G]

δGγ1

+
δΦ

(2)
s [G]

δGγ1

)

γ̂1γ̂2

(
Πinv[G] + Φ(2)

s [G]
)inv

γ̂2γ3︸ ︷︷ ︸
W

(2)
s,γ̂2γ3

[K]

= W
(2)
s,γ2γ̂1

[K]

(
Πinv
γ̂1γ̂2

[G]
δΠγ̂2γ̂3 [G]

δGγ1

Πinv
γ̂3γ̂4

[G]− Φ
(3)
s,γ1γ̂1γ̂4

[G]

)
W

(2)
s,γ̂4γ3

[K] ,

(F.90)

where we have replaced W (2)
s [K] in the first line using (F.78). Inserting the latter expres-

sion of δW
(2)
s,γ2γ3

[K]

δGγ1
into (F.89) and setting Kγ = 0 ∀γ yields:

Σ̇s,γ = −1

6
U̇s,γ̂1γ̂2

[
W

(2)

s,γ̂2γ̂3

(
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ

Π
inv

s,γ̂5γ̂6
− Φ

(3)

s,γγ̂3γ̂6

)
W

(2)

s,γ̂6γ̂1
+

1

2

δΠs,γ̂2γ̂1

δGs,γ

]
,

(F.91)
using the shorthand notation (4.194). Hence, (F.88) can be rewritten by replacing Φ̇s and
Σ̇s using respectively (F.75) and (F.91):

Φ̇s =
1

6
U̇s,γ̂1γ̂2

(
W

(2)

s +
1

2
Πs

)

γ̂2γ̂1

+
1

6
Σs,γ̂1W

(2)

s,γ̂1γ̂2
U̇s,γ̂3γ̂4

[
W

(2)

s,γ̂4γ̂5

(
Π

inv

s,γ̂5γ̂6

δΠs,γ̂6γ̂7

δGs,γ̂2

Π
inv

s,γ̂7γ̂8
− Φ

(3)

s,γ̂2γ̂5γ̂8

)
W

(2)

s,γ̂8γ̂3
+

1

2

δΠs,γ̂4γ̂3

δGs,γ̂2

]
.

(F.92)

• Expression of Σ̇s:
From (4.143d) and (F.82), we also obtain:

Σ̇s,γ = Σ̇s,γ − Ġs,γ̂Φ
(2)

s,γ̂γ = Σ̇s,γ − Φ
(2)

s,γγ̂1
W

(2)

s,γ̂1γ̂2
Σ̇s,γ̂2 . (F.93)

Leaving once again summations underlying multiplications between bosonic matrices im-
plicit and following a reasoning similar to that of (F.38) in the derivation of the Bethe-
Salpeter equation, we have:

Σ̇s = Σ̇s − Φ
(2)

s W
(2)

s Σ̇s

=
(
I − Φ

(2)

s W
(2)

s

)
Σ̇s

=

[
I − Φ

(2)

s Πs

(
I + ΠsΦ

(2)

s

)inv
]

Σ̇s

=

[
I − ΠsΦ

(2)

s

∞∑

n=0

(−1)n
(

ΠsΦ
(2)

s

)n
]

Σ̇s

=

[
∞∑

n=0

(−1)n
(

ΠsΦ
(2)

s

)n
]

Σ̇s

=
(
I + ΠsΦ

(2)

s

)inv

Σ̇s ,

(F.94)
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where (F.36) was exploited to replace W (2)

s in the third line. Combining (F.94) with
(F.91) gives us the following expression for Σ̇s:

Σ̇s,γ = −1

6

(
I + ΠsΦ

(2)

s

)inv

γγ̂1

U̇s,γ̂2γ̂3

[
W

(2)

s,γ̂3γ̂4

(
Π

inv

s,γ̂4γ̂5

δΠs,γ̂5γ̂6

δGs,γ̂1

Π
inv

s,γ̂6γ̂7
− Φ

(3)

s,γ̂1γ̂4γ̂7

)
W

(2)

s,γ̂7γ̂2
+

1

2

δΠs,γ̂3γ̂2

δGs,γ̂1

]
.

(F.95)
As a next step, we evaluate the derivative of the pair propagator Π[G] involved in the
RHS of (F.95). Considering expression (4.182) of Π[G], we can show that:

δΠγ2γ3 [G]

δGγ1

=
δ

δGγ1

[
Gα2α′3

Gα′2α3
+ ζGα2α3Gα′2α

′
3

]

=
δGα2α′3

δGγ1

Gα′2α3
+Gα2α′3

δGα′2α3

δGγ1

+ ζ
δGα2α3

δGγ1

Gα′2α
′
3

+ ζGα2α3

δGα′2α
′
3

δGγ1

= Gα′2α3
δα2α1δα′3α′1 +Gα2α′3

δα′2α1
δα3α′1

+ ζGα′2α
′
3
δα2α1δα3α′1

+ ζGα2α3δα′2α1
δα′3α′1

+ ζ (α1 ↔ α′1) .

(F.96)

From this, we calculate:
(
I + ΠsΦ

(2)

s

)inv

γγ̂1

U̇s,γ̂2γ̂3

δΠs,γ̂3γ̂2

δGs,γ̂1

=
1

8

∫

γ1,γ2,γ3

(
I + ΠsΦ

(2)

s

)inv

γγ1

U̇s,γ2γ3

δΠs,γ3γ2

δGs,γ1

=
1

8

∫

γ1

[∫

α2,α′3

(
I + ΠsΦ

(2)

s

)inv

γγ1

U̇s,α2α′1α1α′3︸ ︷︷ ︸
U̇s,α1α

′
3α2α

′
1

Gs,α′3α2
+

∫

α′2,α3

(
I + ΠsΦ

(2)

s

)inv

γγ1

U̇s,α′1α
′
2α3α1︸ ︷︷ ︸

U̇s,α1α3α
′
2α
′
1

Gs,α3α′2

+ζ

∫

α′2,α
′
3

(
I + ΠsΦ

(2)

s

)inv

γγ1

U̇s,α′1α
′
2α1α′3︸ ︷︷ ︸

ζU̇s,α1α
′
3α
′
2α
′
1

Gs,α′3α
′
2

+ ζ

∫

α2,α3

(
I + ΠsΦ

(2)

s

)inv

γγ1

U̇s,α2α′1α3α1︸ ︷︷ ︸
ζU̇s,α1α3α2α

′
1

Gs,α3α2

]

+ζ (α1 ↔ α′1)

=

∫

γ1,γ2

(
I + ΠsΦ

(2)

s

)inv

γγ1

U̇s,α1α2α′2α
′
1
Gs,γ2

= 4
(
I + ΠsΦ

(2)

s

)inv

γγ̂1

U̇s,α̂1α̂2α̂′2α̂
′
1
Gs,γ̂2 .

(F.97)

In the same way, we obtain:
(
I + ΠsΦ

(2)

s

)inv

γγ̂1

U̇s,γ̂2γ̂3W
(2)

s,γ̂3γ̂4
Π

inv

s,γ̂4γ̂5

δΠs,γ̂5γ̂6

δGs,γ̂1

Π
inv

s,γ̂6γ̂7
W

(2)

s,γ̂7γ̂2

=
1

128

∫

γ1,γ2,γ3,γ4,γ5,γ6,γ7

(
I + ΠsΦ

(2)

s

)inv

γγ1

U̇s,γ2γ3W
(2)

s,γ3γ4
Π

inv

s,γ4γ6

δΠs,γ6γ7

δGs,γ1

Π
inv

s,γ7γ5
W

(2)

s,γ5γ2

=
1

128

∫

γ1,γ2,γ3,γ4,γ5

[∫

α′6,α7

(
I + ΠsΦ

(2)

s

)inv

γγ1

U̇s,γ2γ3W
(2)

s,γ3γ4
Π

inv

s,γ4(α1,α′6)︸ ︷︷ ︸
Π

inv
s,(α1,α

′
6)γ4

W
(2)
s,γ4γ3

U̇s,γ3γ2

Gs,α′6α7
Π

inv

s,(α7,α′1)γ5
W

(2)

s,γ5γ2︸ ︷︷ ︸
W

(2)
s,γ2γ5

Π
inv
s,γ5(α7,α

′
1)

+

∫

α6,α′7

(
I + ΠsΦ

(2)

s

)inv

γγ1

U̇s,γ2γ3W
(2)

s,γ3γ4
Π

inv

s,γ4(α6,α1)︸ ︷︷ ︸
ζΠ

inv
s,(α1,α6)γ4

W
(2)
s,γ4γ3

U̇s,γ3γ2

Gs,α6α′7
Π

inv

s,(α′1,α
′
7)γ5

W
(2)

s,γ5γ2︸ ︷︷ ︸
ζW

(2)
s,γ2γ5

Π
inv
s,γ5(α′7,α

′
1)

+ζ

∫

α′6,α
′
7

(
I + ΠsΦ

(2)

s

)inv

γγ1

U̇s,γ2γ3W
(2)

s,γ3γ4
Π

inv

s,γ4(α1,α′6)︸ ︷︷ ︸
Π

inv
s,(α1,α

′
6)γ4

W
(2)
s,γ4γ3

U̇s,γ3γ2

Gs,α′6α
′
7

Π
inv

s,(α′1,α
′
7)γ5

W
(2)

s,γ5γ2︸ ︷︷ ︸
ζW

(2)
s,γ2γ5

Π
inv
s,γ5(α′7,α

′
1)
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+ζ

∫

α6,α7

(
I + ΠsΦ

(2)

s

)inv

γγ1

U̇s,γ2γ3W
(2)

s,γ3γ4
Π

inv

s,γ4(α6,α1)︸ ︷︷ ︸
ζΠ

inv
s,(α1,α6)γ4

W
(2)
s,γ4γ3

U̇s,γ3γ2

Gs,α6α7 Π
inv

s,(α7,α′1)γ5
W

(2)

s,γ5γ2︸ ︷︷ ︸
W

(2)
s,γ2γ5

Π
inv
s,γ5(α7,α

′
1)

]

+ζ (α1 ↔ α′1)

=
1

16

∫

γ1,γ2,γ3,γ4,γ5,γ6

(
I + ΠsΦ

(2)

s

)inv

γγ1

Π
inv

s,(α1,α6)γ4
W

(2)

s,γ4γ3
U̇s,γ3γ2W

(2)

s,γ2γ5
Π

inv

s,γ5(α′6,α
′
1)Gs,γ6

= 4
(
I + ΠsΦ

(2)

s

)inv

γγ̂1

(
Π

inv

s W
(2)

s U̇sW
(2)

s Π
inv

s

)
α̂1α̂2α̂′2α̂

′
1

Gs,γ̂2

= 4
(
I + ΠsΦ

(2)

s

)inv

γγ̂1

[(
I + ΠsΦ

(2)

s

)inv

U̇s

(
I + ΠsΦ

(2)

s

)inv
]

α̂1α̂2α̂′2α̂
′
1

Gs,γ̂2 ,

(F.98)

where the last line was derived using the identity:

Π
inv

s,γ1γ̂
W

(2)

s,γ̂γ2
=
(
I + ΠsΦ

(2)

s

)inv

γ1γ2

, (F.99)

which follows from (F.78) at Kγ = 0 ∀γ. From both (F.97) and (F.98), we prove that the
flow equation of Σs given by (F.95) is equivalent to1:

Σ̇s,γ =− 1

3

(
I + ΠsΦ

(2)

s

)inv

γγ̂1

[
2
(
I + ΠsΦ

(2)

s

)inv

U̇s

(
I + ΠsΦ

(2)

s

)inv

+ U̇s

]

α̂1α̂2α̂′2α̂
′
1

Gs,γ̂2

+
1

6

(
I + ΠsΦ

(2)

s

)inv

γγ̂1

U̇s,γ̂2γ̂3W
(2)

s,γ̂3γ̂4
Φ

(3)

s,γ̂1γ̂4γ̂5
W

(2)

s,γ̂5γ̂2
.

(F.100)

• Expression of Φ̇
(2)

s :

From (F.91), we infer the following expression for Φ̇
(2)

s :

Φ̇
(2)

s,γ1γ2
=

1

6
U̇s,γ̂1γ̂2

[
2
δW

(2)

s,γ̂2γ̂3

δGs,γ1

(
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ2

Π
inv

s,γ̂5γ̂6
− Φ

(3)

s,γ2γ̂3γ̂6

)
W

(2)

s,γ̂6γ̂1

+W
(2)

s,γ̂2γ̂3

(
δΠ

inv

s,γ̂3γ̂4

δGs,γ1

δΠs,γ̂4γ̂5

δGs,γ2

Π
inv

s,γ̂5γ̂6
+ Π

inv

s,γ̂3γ̂4

δ2Πs,γ̂4γ̂5

δGs,γ1δGs,γ2

Π
inv

s,γ̂5γ̂6

+ Π
inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ2

δΠ
inv

s,γ̂5γ̂6

δGs,γ1

− δΦ
(3)

s,γ2γ̂3γ̂6

δGs,γ1

)
W

(2)

s,γ̂6γ̂1

+
1

2

δ2Πs,γ̂2γ̂1

δGs,γ1δGs,γ2

]

=
1

3
U̇s,γ̂1γ̂2

[
W

(2)

s,γ̂2γ̂3

(
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6
− Φ

(3)

s,γ1γ̂3γ̂6

)
W

(2)

s,γ̂6γ̂7

×
(

Π
inv

s,γ̂7γ̂8

δΠs,γ̂8γ̂9

δGs,γ2

Π
inv

s,γ̂9γ̂10
− Φ

(3)

s,γ2γ̂7γ̂10

)
W

(2)

s,γ̂10γ̂1

−W (2)

s,γ̂2γ̂3
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6

δΠs,γ̂6γ̂7

δGs,γ2

Π
inv

s,γ̂7γ̂8
W

(2)

s,γ̂8γ̂1

1Note that the present derivation of the flow equation expressing Σ̇s,γ reproduces the main results of sec-
tion 6.1. of ref. [459]. In particular, (F.100) is to be compared with the equations numbered (81) and (83) in
the latter reference.
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+
1

2
W

(2)

s,γ̂2γ̂3

(
Π

inv

s,γ̂3γ̂4

δ2Πs,γ̂4γ̂5

δGs,γ1δGs,γ2

Π
inv

s,γ̂5γ̂6
− Φ

(4)

s,γ1γ2γ̂3γ̂6

)
W

(2)

s,γ̂6γ̂1

+
1

4

δ2Πs,γ̂2γ̂1

δGs,γ1δGs,γ2

]
,

(F.101)

where the derivative of W (2)
s [K] with respect to G was replaced with the help of (F.90)

in the latter equality. Let us then recall the chain rule from (4.143e):

Φ̇
(2)

s,γ1γ2
= Φ̇

(2)

s,γ1γ2
+ Ġs,γ̂Φ

(3)

s,γ̂γ1γ2
. (F.102)

Inserting (F.101) into (F.102) gives us the differential equation for Φ
(2)

s that we seek:

Φ̇
(2)

s,γ1γ2
=

1

3
U̇s,γ̂1γ̂2

[
W

(2)

s,γ̂2γ̂3

(
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6
− Φ

(3)

s,γ1γ̂3γ̂6

)
W

(2)

s,γ̂6γ̂7

×
(

Π
inv

s,γ̂7γ̂8

δΠs,γ̂8γ̂9

δGs,γ2

Π
inv

s,γ̂9γ̂10
− Φ

(3)

s,γ2γ̂7γ̂10

)
W

(2)

s,γ̂10γ̂1

−W (2)

s,γ̂2γ̂3
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6

δΠs,γ̂6γ̂7

δGs,γ2

Π
inv

s,γ̂7γ̂8
W

(2)

s,γ̂8γ̂1

+
1

2
W

(2)

s,γ̂2γ̂3

(
Π

inv

s,γ̂3γ̂4

δ2Πs,γ̂4γ̂5

δGs,γ1δGs,γ2

Π
inv

s,γ̂5γ̂6
− Φ

(4)

s,γ1γ2γ̂3γ̂6

)
W

(2)

s,γ̂6γ̂1

+
1

4

δ2Πs,γ̂2γ̂1

δGs,γ1δGs,γ2

]
+ Ġs,γ̂Φ

(3)

s,γ̂γ1γ2
.

(F.103)

• Expression of Φ̇
(3)

s :
We start from the chain rule expressed by (4.143e) in the form:

Φ̇
(3)

s,γ1γ2γ3
= Φ̇

(3)

s,γ1γ2γ3
+ Ġs,γ̂Φ

(4)

s,γ̂γ1γ2γ3
. (F.104)

From (F.101), we deduce an expression for Φ̇
(3)

s which can be combined with (F.104) to
obtain:

Φ̇
(3)

s,γ1γ2γ3
=

1

3
U̇s,γ̂1γ̂2

[
3W

(2)

s,γ̂2γ̂3

(
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6
− Φ

(3)

s,γ1γ̂3γ̂6

)
W

(2)

s,γ̂6γ̂7

×
(

Π
inv

s,γ̂7γ̂8

δΠs,γ̂8γ̂9

δGs,γ2

Π
inv

s,γ̂9γ̂10
− Φ

(3)

s,γ2γ̂7γ̂10

)
W

(2)

s,γ̂10γ̂11

×
(

Π
inv

s,γ̂11γ̂12

δΠs,γ̂12γ̂13

δGs,γ3

Π
inv

s,γ̂13γ̂14
− Φ

(3)

s,γ3γ̂11γ̂14

)
W

(2)

s,γ̂14γ̂1

+

(
W

(2)

s,γ̂2γ̂3

(
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6
− Φ

(3)

s,γ1γ̂3γ̂6

)
W

(2)

s,γ̂6γ̂7

×
(

Π
inv

s,γ̂7γ̂8

δ2Πs,γ̂8γ̂9

δGs,γ2δGs,γ3

Π
inv

s,γ̂9γ̂10
− Φ

(4)

s,γ2γ3γ̂7γ̂10

)
W

(2)

s,γ̂10γ̂1

+ (γ2, γ1, γ3) + (γ3, γ1, γ2)

)
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− 2

(
W

(2)

s,γ̂2γ̂3

(
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6
− Φ

(3)

s,γ1γ̂3γ̂6

)
W

(2)

s,γ̂6γ̂7

× Π
inv

s,γ̂7γ̂8

δΠs,γ̂8γ̂9

δGs,γ2

Π
inv

s,γ̂9γ̂10

δΠs,γ̂10γ̂11

δGs,γ3

Π
inv

s,γ̂11γ̂12
W

(2)

s,γ̂12γ̂1

+ (γ2, γ1, γ3) + (γ3, γ1, γ2)

)

+ 3W
(2)

s,γ̂2γ̂3
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6

δΠs,γ̂6γ̂7

δGs,γ2

Π
inv

s,γ̂7γ̂8

δΠs,γ̂8γ̂9

δGs,γ3

Π
inv

s,γ̂9γ̂10
W

(2)

s,γ̂10γ̂1

−
(
W

(2)

s,γ̂2γ̂3
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6

δ2Πs,γ̂6γ̂7

δGs,γ2δGs,γ3

Π
inv

s,γ̂7γ̂8
W

(2)

s,γ̂8γ̂1

+ (γ2, γ1, γ3) + (γ3, γ1, γ2)

)

− 1

2
W

(2)

s,γ̂2γ̂3
Φ

(5)

s,γ1γ2γ3γ̂3γ̂4
W

(2)

s,γ̂4γ̂1

]
+ Ġs,γ̂Φ

(4)

s,γ̂γ1γ2γ3
,

(F.105)

where we have used δ3Πs[G]
δGγ1δGγ2δGγ3

= 0 ∀γ1, γ2, γ3 (which follows directly from (4.182)),

(F.90) (to evaluate the derivatives of W (2)
s [K] with respect to G) as well as the notation:

Fγ1γ2γ3 + (γ2, γ1, γ3) + (γ3, γ1, γ2) = Fγ1γ2γ3 + Fγ2γ1γ3 + Fγ3γ1γ2 , (F.106)

valid for any functional F .

Additional calculations for the tU-flow: We have so far derived (from (F.63) to (F.106))
the tower of differential equations for the U-flow, in a form suited to implement the pU-flow. In
the following calculations, we rewrite these flow equations at Nmax = 2 using the approximation

of (4.200) and dropping terms of orderO
(
U̇sΦ

(2)

s

)
in the differential equation expressing Φ̇

(2)

s,γ1γ2
.

This amounts to deriving the tower of flow equations underlying the tU-flow at Nmax = 2.
Introducing the identity matrix I via (4.201), we proceed as follows:

• Expression of Φ̇
(2)

s :
We first set all components of Φ

(3)

s and Φ
(4)

s equal to zero in (F.101) in order to implement
the truncation order Nmax = 2. Using (4.201), the relation thus obtained can be further
simplified as shown below:

Φ̇
(2)

s,γ1γ2
=

1

3
U̇s,γ̂1γ̂2

[
W

(2)

s,γ̂2γ̂3
Π

inv

s,γ̂3γ̂4︸ ︷︷ ︸
Iγ̂2γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6
W

(2)

s,γ̂6γ̂7︸ ︷︷ ︸
Iγ̂5γ̂7

Π
inv

s,γ̂7γ̂8

δΠs,γ̂8γ̂9

δGs,γ2

Π
inv

s,γ̂9γ̂10
W

(2)

s,γ̂10γ̂1︸ ︷︷ ︸
Iγ̂9γ̂1

−W (2)

s,γ̂2γ̂3
Π

inv

s,γ̂3γ̂4︸ ︷︷ ︸
Iγ̂2γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6

δΠs,γ̂6γ̂7

δGs,γ2

Π
inv

s,γ̂7γ̂8
W

(2)

s,γ̂8γ̂1︸ ︷︷ ︸
Iγ̂7γ̂1

+
1

2
W

(2)

s,γ̂2γ̂3
Π

inv

s,γ̂3γ̂4︸ ︷︷ ︸
Iγ̂2γ̂4

δ2Πs,γ̂4γ̂5

δGs,γ1δGs,γ2

Π
inv

s,γ̂5γ̂6
W

(2)

s,γ̂6γ̂1︸ ︷︷ ︸
Iγ̂5γ̂1

+
1

4

δ2Πs,γ̂2γ̂1

δGs,γ1δGs,γ2

]

=
1

4
U̇s,γ̂1γ̂2

δ2Πs,γ̂2γ̂1

δGs,γ1δGs,γ2

.

(F.107)
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Since Φ
(3)

s,γ1γ2γ3
= 0 ∀γ1, γ2, γ3 in the present case, we have in addition:

Φ̇
(2)

s,γ1γ2
= Φ̇

(2)

s,γ1γ2
+ Ġs,γ̂Φ

(3)

s,γ̂γ1γ2
= Φ̇

(2)

s,γ1γ2
. (F.108)

Therefore, (F.107) is equivalent to:

Φ̇
(2)

s,γ1γ2
=

1

4
U̇s,γ̂1γ̂2

δ2Πs,γ̂2γ̂1

δGs,γ1δGs,γ2

. (F.109)

With the help of (4.182), we then evaluate the second-order derivative of Π[G] with
respect to G involved in the RHS of (F.109):

δ2Πγ3γ4 [G]

δGγ1δGγ2

=
δ2

δGγ1δGγ2

(
Gα3α′4

Gα′3α4
+ ζGα3α4Gα′3α

′
4

)

=
δ

δGγ1

(
δGα3α′4

δGα2α′2

Gα′3α4
+Gα3α′4

δGα′3α4

δGα2α′2

+ ζ
δGα3α4

δGα2α′2

Gα′3α
′
4

+ ζGα3α4

δGα′3α
′
4

δGα2α′2

)

=
δ

δGγ1

[
Gα′3α4

δα3α2δα′4α′2 +Gα3α′4
δα′3α2

δα4α′2
+ ζGα′3α

′
4
δα3α2δα4α′2

+ ζGα3α4δα′3α2
δα′4α′2

+ζ (α2 ↔ α′2)
]

=
δGα′3α4

δGα1α′1

δα3α2δα′4α′2 +
δGα3α′4

δGα1α′1

δα′3α2
δα4α′2

+ ζ
δGα′3α

′
4

δGα1α′1

δα3α2δα4α′2
+ ζ

δGα3α4

δGα1α′1

δα′3α2
δα′4α′2

+ζ (α2 ↔ α′2)

=
[
δα′3α1

δα4α′1
δα3α2δα′4α′2 + δα3α1δα′4α′1δα′3α2

δα4α′2
+ ζδα′3α1

δα′4α′1δα3α2δα4α′2
+ ζδα3α1δα4α′1

δα′3α2
δα′4α′2

+ζ (α2 ↔ α′2)
]

+ ζ (α1 ↔ α′1) .

(F.110)

The latter result enables us to drastically simplify (F.109) as follows:

Φ̇
(2)

s,γ1γ2
=

1

16

∫

α3,α′3,α4,α′4

U̇s,α3α′3α4α′4

[
δα′4α1

δα3α′1
δα4α2δα′3α′2 + δα4α1δα′3α′1δα′4α2

δα3α′2

+ ζδα′4α1
δα′3α′1δα4α2δα3α′2

+ ζδα4α1δα3α′1
δα′4α2

δα′3α′2

+ ζ (α2 ↔ α′2)

]
+ ζ (α1 ↔ α′1)

=
1

16

[
U̇s,α′1α

′
2α2α1︸ ︷︷ ︸

U̇s,γ1γ2

+ U̇s,α′2α
′
1α1α2︸ ︷︷ ︸

U̇s,γ1γ2

+ζ U̇s,α′2α
′
1α2α1︸ ︷︷ ︸

ζU̇s,γ1γ2

+ζ U̇s,α′1α
′
2α1α2︸ ︷︷ ︸

ζU̇s,γ1γ2

+ζ (α2 ↔ α′2)

]

+ ζ (α1 ↔ α′1)

= U̇s,γ1γ2 .

(F.111)

The Luttinger-Ward functional characterizes by definition the interaction part of the 2PI
EA, which implies in particular that Φ

(2)

s,γ1γ2
= 0 ∀γ1, γ2 if Us,γ1γ2 = 0 ∀γ1, γ2. This provides

a boundary condition to integrate the latter differential equation, thus yielding:

Φ
(2)

s,γ1γ2
= Us,γ1γ2 . (F.112)
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• Expression of Σ̇s:
Using (F.99) and setting Φ

(3)

s,γ1γ2γ3
= 0 ∀γ1, γ2, γ3, (F.95) can be rewritten as:

Σ̇s,γ = −1

6

(
I + ΠsΦ

(2)

s

)inv

γγ̂1

U̇s,γ̂2γ̂3

[
W

(2)

s,γ̂3γ̂4
Π

inv

s,γ̂4γ̂5︸ ︷︷ ︸(
I+ΠsΦ

(2)
s

)inv

γ̂3γ̂5

δΠs,γ̂5γ̂6

δGs,γ̂1

Π
inv

s,γ̂6γ̂7
W

(2)

s,γ̂7γ̂2︸ ︷︷ ︸(
I+ΠsΦ

(2)
s

)inv

γ̂6γ̂2

+
1

2

δΠs,γ̂3γ̂2

δGs,γ̂1

]

= −1

6

(
I + ΠsΦ

(2)

s

)inv

γγ̂1

U̇s,γ̂2γ̂3

[(
I + ΠsΦ

(2)

s

)inv

γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ̂1

(
I + ΠsΦ

(2)

s

)inv

γ̂5γ̂2

+
1

2

δΠs,γ̂3γ̂2

δGs,γ̂1

]
.

(F.113)

The truncation inherent to the tU-flow can then be introduced by replacing Φ
(2)

s via
(F.112):

Σ̇s,γ = −1

6

(
I + ΠsUs

)inv

γγ̂1
U̇s,γ̂2γ̂3

[
(
I + ΠsUs

)inv

γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ̂1

(
I + ΠsUs

)inv

γ̂5γ̂2
+

1

2

δΠs,γ̂3γ̂2

δGs,γ̂1

]
.

(F.114)

• Expression of Φ̇s:
After replacing W

(2)

s through (F.78) or (F.99) and setting once again Φ
(3)

s,γ1γ2γ3
= 0

∀γ1, γ2, γ3, (F.92) becomes:

Φ̇s =
1

6
U̇s,γ̂1γ̂2

[(
Π

inv

s + Φ
(2)

s

)inv

+
1

2
Πs

]

γ̂2γ̂1

+
1

6
Σs,γ̂1

(
Π

inv

s + Φ
(2)

s

)inv

γ̂1γ̂2

U̇s,γ̂3γ̂4

[
W

(2)

s,γ̂4γ̂5
Π

inv

s,γ̂5γ̂6︸ ︷︷ ︸(
I+ΠsΦ

(2)
s

)inv

γ̂4γ̂6

δΠs,γ̂6γ̂7

δGs,γ̂2

Π
inv

s,γ̂7γ̂8
W

(2)

s,γ̂8γ̂3︸ ︷︷ ︸(
I+ΠsΦ

(2)
s

)inv

γ̂7γ̂3

+
1

2

δΠs,γ̂4γ̂3

δGs,γ̂2

]

=
1

6
U̇s,γ̂1γ̂2

[(
Π

inv

s + Φ
(2)

s

)inv

+
1

2
Πs

]

γ̂2γ̂1

+
1

6
Σs,γ̂1

(
Π

inv

s + Φ
(2)

s

)inv

γ̂1γ̂2

U̇s,γ̂3γ̂4

[(
I + ΠsΦ

(2)

s

)inv

γ̂4γ̂5

δΠs,γ̂5γ̂6

δGs,γ̂2

(
I + ΠsΦ

(2)

s

)inv

γ̂6γ̂3

+
1

2

δΠs,γ̂4γ̂3

δGs,γ̂2

]
.

(F.115)

We then approximate (F.115) by introducing Us at the expense of Φ
(2)

s using (F.112):

Φ̇s =
1

6
U̇s,γ̂1γ̂2

[(
Π

inv

s + Us

)inv

+
1

2
Πs

]

γ̂2γ̂1

+
1

6
Σs,γ̂1

(
Π

inv

s + Us

)inv

γ̂1γ̂2

U̇s,γ̂3γ̂4

[
(
I + ΠsUs

)inv

γ̂4γ̂5

δΠs,γ̂5γ̂6

δGs,γ̂2

(
I + ΠsUs

)inv

γ̂6γ̂3
+

1

2

δΠs,γ̂4γ̂3

δGs,γ̂2

]
.

(F.116)

• Expression of Ω̇s:
Similarly to the previous derivations, W (2)

s is replaced in (F.87) using (F.78). The tU-flow
is then implemented via (F.112), thus yielding:

Ω̇s =
1

6β
U̇s,γ̂1γ̂2

[(
Π

inv

s + Us

)inv

+
1

2
Πs

]

γ̂2γ̂1

. (F.117)
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Additional calculations for the mU-flow: We now aim at deriving the tower of differential
equations underlying the mU-flow with a Hartree-Fock starting point, i.e. with NSCPT = 1. To
that end, let us first recall the transformations outlined in section 4.2.1.2 defining the flowing
quantities in the framework of the mU-flow with NSCPT = 1:





Ωs[G] = Ωs[G] +
1

2β
(U − Us)γ̂1γ̂2

Gγ̂1Gγ̂2 .

Φs[G] = Φs[G] +
1

2
(U − Us)γ̂1γ̂2

Gγ̂1Gγ̂2 .

Σs,γ[G] = Σs,γ[G]− (U − Us)γγ̂ Gγ̂ .

Φ(2)
s,γ1γ2

[G] = Φ(2)
s,γ1γ2

[G] + Uγ1γ2 − Us,γ1γ2 .

Φ(n)
s,γ1···γn [G] = Φ(n)

s,γ1···γn [G] ∀n ≥ 3 .

(F.118a)

(F.118b)

(F.118c)

(F.118d)

(F.118e)

The flow equations corresponding to the mU-flow with NSCPT = 1 are basically determined
by following the same reasoning as that leading to the pU-flow equations derived beforehand,
except that Ωs, Φs and the 2PI vertices Φ

(n)
s must be replaced by their bold counterparts

via (F.118a) to (F.118e) before setting Kγ = 0 ∀γ to deduce Ω̇s, Σ̇s and Φ̇
(n)

s from Ω̇s, Σ̇s and
Φ̇

(n)
s , respectively.

We will now explain this procedure in further details. To begin with, we derive the differ-
ential equation expressing Ω̇s in two different manners for the sake of clarity. Firstly, in order
to replace Ωs by Ωs in the corresponding pU-flow equation (i.e. (F.87)), one can apply the
substitution:

Ωs[G]→ Ωs[G]− 1

2β
(U − Us)γ̂1γ̂2

Gγ̂1Gγ̂2 , (F.119)

in the form:

Ω̇s[G]→ Ω̇s[G] +
1

2β
U̇s,γ̂1γ̂2Gγ̂1Gγ̂2 = Ω̇s[G] +

1

4β
U̇s,γ̂1γ̂2Πγ̂2γ̂1 [G] , (F.120)

which follows from (F.118a) as well as (F.69). In this fashion, (F.87) is turned into:

Ω̇s =
1

6β
U̇s,γ̂1γ̂2

(
W

(2)

s − Πs

)
γ̂2γ̂1

. (F.121)

Secondly, (F.121) can also be derived by noticing that the configuration Gs of the bold propa-
gator extremizes by definition the flowing bold 2PI EA Γ

(2PI)
s [G]. This enables us to follow the

lines set out by (F.84) by showing:

Γ̇
(2PI)

s = Γ̇
(2PI)

s + Ġs,γ̂ Γ
(2PI)(1)

s,γ̂︸ ︷︷ ︸
0

= Γ̇
(2PI)

s , (F.122)

so that, according to the definition Ωs ≡ 1
β
Γ

(2PI)
s , we have:

Ω̇s = Ω̇s , (F.123)
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where the RHS can be directly transformed via the substitution:

Ω̇s[G]→ Ω̇s[G]− 1

4β
U̇s,γ̂1γ̂2Πγ̂2γ̂1 [G] , (F.124)

resulting from (F.118a) combined with (F.69), just like (F.120). Hence, we replace in this way
Ωs by Ωs (and not the reverse) in (F.123). This leads to:

Ω̇s = Ω̇s︸︷︷︸
1
β

Γ̇
(2PI)

s

− 1

4β
U̇s,γ̂1γ̂2Πs,γ̂2γ̂1

=
1

β
Φ̇s −

1

4β
U̇s,γ̂1γ̂2Πs,γ̂2γ̂1 ,

(F.125)

where (F.74) was used to obtain the last line. After insertion of (F.75), this becomes:

Ω̇s =
1

6β
U̇s,γ̂1γ̂2

(
W

(2)

s +
1

2
Πs

)

γ̂2γ̂1

− 1

4β
U̇s,γ̂1γ̂2Πs,γ̂2γ̂1

=
1

6β
U̇s,γ̂1γ̂2

(
W

(2)

s − Πs

)
γ̂2γ̂1

.

(F.126)

The latter equality coincides with (F.121), as expected, and it is the mU-flow counterpart
of (F.87) for NSCPT = 1.

As a next step for the derivation of the mU-flow equations, we apply, in the expressions of
Σ̇s and Φ̇

(n)
s (with n ≥ 2) deduced from (F.75), the following transformations set by (F.118b)

to (F.118e): 



Φs[G]→ Φs[G]− 1

2
(U − Us)γ̂1γ̂2

Gγ̂1Gγ̂2 ,

Σs,γ[G]→ Σs,γ[G] + (U − Us)γγ̂ Gγ̂ ,

Φ(2)
s,γ1γ2

[G]→ Φ(2)
s,γ1γ2

[G]− Uγ1γ2 + Us,γ1γ2 ,

Φ(n)
s,γ1···γn [G]→ Φ(n)

s,γ1···γn [G] ∀n ≥ 3 ,

(F.127a)

(F.127b)

(F.127c)

(F.127d)
from which follow notably:





Φ̇s[G]→ Φ̇s[G] +
1

2
U̇s,γ̂1γ̂2Gγ̂1Gγ̂2 = Φ̇s[G] +

1

4
U̇s,γ̂1γ̂2Πγ̂2γ̂1 [G] ,

Σ̇s,γ[G]→ Σ̇s,γ[G]− U̇s,γγ̂Gγ̂ ,

Φ̇(2)
s,γ1γ2

[G]→ Φ̇(2)
s,γ1γ2

[G] + U̇s,γ1γ2 ,

Φ̇(n)
s,γ1···γn [G]→ Φ̇(n)

s,γ1···γn [G] ∀n ≥ 3 ,

(F.128a)

(F.128b)

(F.128c)

(F.128d)

where transformation (F.128a) was derived using (F.69). Regarding the flow equation express-
ing the derivative Σ̇s, we can still exploit (F.94) in the form2:

Σ̇s =
(
I + ΠsΦ

(2)

s

)inv

Σ̇s , (F.129)

2We recall that, in the framework of the mU-flow, the upper bars always indicate an evaluation at G = Gs

instead of G = Gs, e.g. Πs ≡ Π[G = Gs].
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with Σ̇s determined via the recipe outlined above (involving transformation (F.128b) in par-
ticular). Furthermore, the derivatives Φ̇

(n)
s [G] resulting from this very recipe based on (F.127)

and (F.128) are finally fed to the chain rule:

Φ̇
(n)

s,γ1···γn = Φ̇
(n)

s,γ1···γn + Ġs,γ̂Φ
(n+1)

s,γ̂γ1···γn . (F.130)

Let us finally summarize the tower of differential equations derived in this manner for the
mU-flow with NSCPT = 1:

Ġs,α1α′1
=

∫

α2,α′2

Gs,α1α2Σ̇s,α2α′2
Gs,α′2α

′
1
, (F.131)

Ω̇s =
1

6β
U̇s,γ̂1γ̂2

(
W

(2)

s − Πs

)
γ̂2γ̂1

, (F.132)

Φ̇s =
1

6
U̇s,γ̂1γ̂2

(
W

(2)

s − Πs

)
γ̂2γ̂1

+
1

6

[
Σs,γ1 + (U − Us)γ1γ̂2

Gs,γ̂2

]

×W (2)

s,γ̂1γ̂3
U̇s,γ̂4γ̂5

[
W

(2)

s,γ̂5γ̂6

(
Π

inv

s,γ̂6γ̂7

δΠs,γ̂7γ̂8

δGs,γ̂3

Π
inv

s,γ̂8γ̂9
−Φ

(3)

s,γ̂3γ̂6γ̂9

)
W

(2)

s,γ̂9γ̂4
+

1

2

δΠs,γ̂5γ̂4

δGs,γ̂3

]
,

(F.133)

Σ̇s,γ =− 1

3

(
I + ΠsΦ

(2)

s

)inv

γγ̂1

×
([

2
(
I + Πs

(
Φ

(2)

s − U + Us

))inv

U̇s

(
I + Πs

(
Φ

(2)

s − U + Us

))inv

+ U̇s

]

α̂1α̂2α̂′2α̂
′
1

Gs,γ̂2

− 1

2
U̇s,γ̂2γ̂3W

(2)

s,γ̂3γ̂4
Φ

(3)

s,γ̂1γ̂4γ̂5
W

(2)

s,γ̂5γ̂2
− 3U̇s,γ̂1γ̂2Gs,γ̂2

)
,

(F.134)

Φ̇
(2)

s,γ1γ2
=

1

3
U̇s,γ̂1γ̂2

[
W

(2)

s,γ̂2γ̂3

(
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6
−Φ

(3)

s,γ1γ̂3γ̂6

)
W

(2)

s,γ̂6γ̂7

×
(

Π
inv

s,γ̂7γ̂8

δΠs,γ̂8γ̂9

δGs,γ2

Π
inv

s,γ̂9γ̂10
−Φ

(3)

s,γ2γ̂7γ̂10

)
W

(2)

s,γ̂10γ̂1

−W (2)

s,γ̂2γ̂3
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ1

Π
inv

s,γ̂5γ̂6

δΠs,γ̂6γ̂7

δGs,γ2

Π
inv

s,γ̂7γ̂8
W

(2)

s,γ̂8γ̂1

+
1

2
W

(2)

s,γ̂2γ̂3

(
Π

inv

s,γ̂3γ̂4

δ2Πs,γ̂4γ̂5

δGs,γ1δGs,γ2

Π
inv

s,γ̂5γ̂6
−Φ

(4)

s,γ1γ2γ̂3γ̂6

)
W

(2)

s,γ̂6γ̂1

+
1

4

δ2Πs,γ̂2γ̂1

δGs,γ1δGs,γ2

]
− U̇s,γ1γ2 + Ġs,γ̂Φ

(3)

s,γ̂γ1γ2
,

(F.135)

where W (2)

s can be expressed by applying substitution (F.127c) to (F.78):

W
(2)

s =
(

Π
inv

s + Φ
(2)

s − U + Us

)inv

. (F.136)

Results (F.131) to (F.135) are the mU-flow counterparts of the pU-flow equations (F.77), (F.87),
(F.92), (F.100) and (F.103), respectively. Note that, among (F.131) to (F.135), (F.131) is the
only equation which is not obtained from pU-flow equations via substitutions (F.119), (F.120),
(F.127) or (F.128). It simply follows from the fact that Gs satisfies a Dyson equation with Σs

as self-energy.
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F.4.3 CU-flow

As pointed out in section 4.2.1.3, the differential equations implementing the CU-flow are
composed of C-flow and U-flow contributions. We can therefore directly deduce these from
previous results:

• Expression of Ġs:
As for the C-flow and the U-flow, the differential equation expressing Ġs is obtained by
differentiating the corresponding Dyson equation with respect to the flow parameter:

Ġs,α1α′1
= −

∫

α2,α′2

Gs,α1α2

(
Ċ−1

s − Σ̇s

)
α2α′2

Gs,α′2α
′
1
. (F.137)

• Expression of Ω̇s:
Combining (F.47) for the C-flow and (F.72) for the U-flow, we obtain the relation:

Γ̇(2PI)
s [G] = Ċ−1

s,γ̂Gγ̂ +
1

6
U̇s,γ̂1γ̂2

(
W (2)

s [K] +
1

2
Π[G]

)

γ̂2γ̂1

, (F.138)

which, according to (F.84), reduces at Kγ = 0 ∀γ to:

Γ̇
(2PI)

s = Ċ−1
s,γ̂Gs,γ̂ +

1

6
U̇s,γ̂1γ̂2

(
W

(2)

s +
1

2
Πs

)

γ̂2γ̂1

. (F.139)

Similarly to the previous C-flow derivations, (F.139) is translated into a flow equation for:

∆Ωs ≡
1

β

(
Γ

(2PI)

s − Γ
(2PI)
0,s [Cs]

)
=

1

β

(
Γ

(2PI)

s +
ζ

2
Trα [ln(Cs)]

)
=

1

β

(
Γ

(2PI)

s − ζ

2
Trα

[
ln
(
C−1

s

)])
.

(F.140)
The derivative of ∆Ωs with respect to s is expressed as in (F.57):

∆Ω̇s =
1

β

(
Γ̇

(2PI)

s − ζ

2

∫

α,α′
Ċ−1

s,αα′ Cs,α′α︸ ︷︷ ︸
ζCs,αα′

)

=
1

β

(
Γ̇

(2PI)

s − Ċ−1
s,γ̂Cs,γ̂

)
,

(F.141)

and we finally replace Γ̇
(2PI)

s using (F.139):

∆Ω̇s =
1

β
Ċ−1

s,γ̂

(
Gs − Cs

)
γ̂

+
1

6β
U̇s,γ̂1γ̂2

(
W

(2)

s +
1

2
Πs

)

γ̂2γ̂1

. (F.142)

• Expression of Φ̇s:
From the definition of the Luttinger-Ward functional, we have:

Φ̇s[G] = Γ̇(2PI)
s [G]− Γ̇

(2PI)
0,s [G] , (F.143)

where every derivative with respect to s is implicitly carried out at fixed propagator G, as
in (F.51) and (F.74). Since the free EA Γ

(2PI)
0,s [G] is independent from the interaction U ,
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Γ̇
(2PI)
0,s only contains a contribution from the C-flow. In other words, Γ̇0,s[G] is now given

by (F.49). By exploiting (F.138) as well, (F.143) becomes:

Φ̇s[G] =
�
��
�

Ċ−1
s,γ̂Gγ̂ +

1

6
U̇s,γ̂1γ̂2

(
W (2)

s [K] +
1

2
Π[G]

)

γ̂2γ̂1

−
�
��
�

Ċ−1
s,γ̂Gγ̂

=
1

6
U̇s,γ̂1γ̂2

(
W (2)

s [K] +
1

2
Π[G]

)

γ̂2γ̂1

.

(F.144)

Therefore, the latter expression of Φ̇s only contains a contribution from the U-flow, which
is consistent with (F.51) showing that the Luttinger-Ward functional is an invariant of
the C-flow. This remark can be extended to the derivatives of the 2PI vertices Φ̇

(n)
s . The

flow equation expressing Φ̇s is therefore identical to that of Φs given by (F.92) in the
framework of the U-flow, i.e.:

Φ̇s =
1

6
U̇s,γ̂1γ̂2

(
W

(2)

s +
1

2
Πs

)

γ̂2γ̂1

+
1

6
Σs,γ̂1W

(2)

s,γ̂1γ̂2
U̇s,γ̂3γ̂4

[
W

(2)

s,γ̂4γ̂5

(
Π

inv

s,γ̂5γ̂6

δΠs,γ̂6γ̂7

δGs,γ̂2

Π
inv

s,γ̂7γ̂8
− Φ

(3)

s,γ̂2γ̂5γ̂8

)
W

(2)

s,γ̂8γ̂3
+

1

2

δΠs,γ̂4γ̂3

δGs,γ̂2

]
.

(F.145)

• Expression of Σ̇s:
There is however a subtlety regarding the flow equation for the self-energy because (F.94)
and therefore (F.100) (which is derived from (F.94)) are not valid in the framework of
the CU-flow. This stems from the fact that the derivation of (F.94) itself relies on (F.82)
which is satisfied if and only if Γ̇

(2PI)(1)
s = Φ̇

(1)
s (or, equivalently, Γ̇

(2PI)(1)
s = −Σ̇s), the

latter equality requiring that Ċs,γ = 0 ∀γ, which is not valid for all s in the framework
of the CU-flow (by definition of the CU-flow). Nonetheless, we can directly exploit the
chain rule in the form (4.143d) combined with expression (F.91) of Σ̇s,γ, thus leading to:

Σ̇s,γ =− 1

6
U̇s,γ̂1γ̂2

[
W

(2)

s,γ̂2γ̂3

(
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ

Π
inv

s,γ̂5γ̂6
− Φ

(3)

s,γγ̂3γ̂6

)
W

(2)

s,γ̂6γ̂1
+

1

2

δΠs,γ̂2γ̂1

δGs,γ

]

− Ġs,γ̂Φ
(2)

s,γ̂γ .

(F.146)

As in (F.97) and (F.98), we can show that:

U̇s,γ̂1γ̂2

δΠs,γ̂2γ̂1

δGs,γ

= 4U̇s,αα̂α̂′α′Gs,γ̂ , (F.147)

U̇s,γ̂1γ̂2W
(2)

s,γ̂2γ̂3
Π

inv

s,γ̂3γ̂4

δΠs,γ̂4γ̂5

δGs,γ

Π
inv

s,γ̂5γ̂6
W

(2)

s,γ̂6γ̂1
= 4

[(
I + ΠsΦ

(2)

s

)inv

U̇s

(
I + ΠsΦ

(2)

s

)inv
]

αα̂α̂′α′
Gs,γ̂ .

(F.148)
According to (F.147) and (F.148), (F.146) is equivalent to:

Σ̇s,γ =− 1

3

[
2
(
I + ΠsΦ

(2)

s

)inv

U̇s

(
I + ΠsΦ

(2)

s

)inv

+ U̇s

]

αα̂α̂′α′
Gs,γ̂

+
1

6
U̇s,γ̂1γ̂2W

(2)

s,γ̂2γ̂3
Φ

(3)

s,γγ̂3γ̂4
W

(2)

s,γ̂4γ̂1
− Ġs,γ̂Φ

(2)

s,γ̂γ .

(F.149)
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• Expressions of Φ̇
(n)

s (with n ≥ 2):
Since there are no C-flow contributions to the derivatives Φ̇

(n)
s as explained above (F.145),

the differential equations expressing Φ̇
(n)

s for the CU-flow are identical to those derived
previously for the pU-flow. In particular, the CU-flow equations for Φ

(2)

s and Φ
(3)

s are
already given by (F.103) and (F.105), respectively.

F.5 Initial conditions for the C-flow

F.5.1 General case

• For NSCPT = 1:
As exposed by (4.147), the expression of the Luttinger-Ward functional resulting from
self-consistent PT and truncated at the Hartree-Fock level (i.e. at NSCPT = 1) is:

ΦSCPT,NSCPT=1[U,G] ≡ 1

8

∫

γ1,γ2

Uγ1γ2Gγ1Gγ2 . (F.150)

From (F.150), we infer that:

Φ
(2)
SCPT,NSCPT=1,γ1γ2

[U,G] ≡ δ2ΦSCPT,NSCPT=1[U,G]

δGγ1δGγ2

=
1

4

δ

δGγ1

∫

γ3,γ4

Uγ3γ4Gγ3

δGγ4

δGγ2

=
1

4

δ

δGγ1

∫

γ3,γ4

Uγ3γ4Gγ3

(
δα4α2δα′4α′2 + ζδα4α′2

δα′4α2

)

=
1

4

δ

δGγ1

(∫

γ3

Uγ3γ2Gγ3 + ζ

∫

γ3

Uγ3(α′2,α2)Gγ3

)

=
1

4

∫

γ3

Uγ3γ2

δGγ3

δGγ1

+
ζ

4

∫

γ3

Uγ3(α′2,α2)︸ ︷︷ ︸
ζUγ3γ2

δGγ3

δGγ1

=
1

2

∫

γ3

Uγ3γ2

δGγ3

δGγ1

=
1

2

∫

γ3

Uγ3γ2

(
δα3α1δα′3α′1 + ζδα3α′1

δα′3α1

)

=
1

2
Uγ1γ2 +

ζ

2
U(α′1,α1)γ2︸ ︷︷ ︸
ζUγ1γ2

= Uγ1γ2 ,

(F.151)

where we have made use of the property Uα1α2α3α4 = ζN(P )UαP (1)αP (2)αP (3)αP (4)
. We are

more specifically interested in the situation where the external source K vanishes:

Φ
(2)

SCPT,NSCPT=1,s,γ1γ2
= Uγ1γ2 . (F.152)

• For NSCPT = 2:
We consider once again the expression of the Luttinger-Ward functional resulting from
self-consistent PT, i.e. (4.147), in order to evaluate Φ

(4)
SCPT,NSCPT=2[U,G]. At NSCPT = 2,
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it reduces to:

ΦSCPT,NSCPT=2[U,G] ≡ 1

8

∫

γ1,γ2

Uγ1γ2Gγ1Gγ2 −
1

48

∫

γ1,γ2,γ3,γ4

Uα1α2α3α4Uα′1α′2α′3α′4Gγ1Gγ2Gγ3Gγ4 .

(F.153)
Differentiating both sides of (F.153) with respect to G leads to:

Φ
(4)
SCPT,NSCPT=2,γ1γ2γ3γ4

[U,G] ≡ δ4ΦSCPT,NSCPT=2[U,G]

δGγ1δGγ2δGγ3δGγ4

=− 1

48

δ4

δGγ1δGγ2δGγ3δGγ4

∫

γ5,γ6,γ7,γ8

Uα5α6α7α8Uα′5α′6α′7α′8Gγ5Gγ6Gγ7Gγ8

=− 1

12

δ3

δGγ1δGγ2δGγ3

∫

γ5,γ6,γ7,γ8

Uα5α6α7α8Uα′5α′6α′7α′8Gγ5Gγ6Gγ7

δGγ8

δGγ4

=− 1

12

δ3

δGγ1δGγ2δGγ3

[∫

γ5,γ6,γ7

Uα5α6α7α4Uα′5α′6α′7α′4Gγ5Gγ6Gγ7 + ζ (α4 ↔ α′4)

]

=−1

4

δ2

δGγ1δGγ2

[∫

γ5,γ6,γ7

Uα5α6α7α4Uα′5α′6α′7α′4Gγ5Gγ6

δGγ7

δGγ3

+ ζ (α4 ↔ α′4)

]

=−1

4

δ2

δGγ1δGγ2

{[∫

γ5,γ6

Uα5α6α3α4Uα′5α′6α′3α′4Gγ5Gγ6 + ζ (α3 ↔ α′3)

]
+ ζ (α4 ↔ α′4)

}

=−1

2

δ

δGγ1

{[∫

γ5,γ6

Uα5α6α3α4Uα′5α′6α′3α′4Gγ5

δGγ6

δGγ2

+ ζ (α3 ↔ α′3)

]
+ ζ (α4 ↔ α′4)

}

=−1

2

δ

δGγ1

({[∫

γ5

Uα5α2α3α4Uα′5α′2α′3α′4Gγ5 + ζ (α2 ↔ α′2)

]
+ ζ (α3 ↔ α′3)

}
+ ζ (α4 ↔ α′4)

)

=−1

2

({[∫

γ5

Uα5α2α3α4Uα′5α′2α′3α′4
δGγ5

δGγ1

+ ζ (α2 ↔ α′2)

]
+ ζ (α3 ↔ α′3)

}
+ ζ (α4 ↔ α′4)

)

=−1

2

[({[
Uα1α2α3α4Uα′1α′2α′3α′4 + ζ (α1 ↔ α′1)

]
+ ζ (α2 ↔ α′2)

}
+ ζ (α3 ↔ α′3)

)
+ ζ (α4 ↔ α′4)

]
,

(F.154)

where the equality Uα1α2α3α4 = ζN(P )UαP (1)αP (2)αP (3)αP (4)
was used once more. After setting

Kγ = 0 ∀γ, we obtain:

Φ
(4)

SCPT,NSCPT=2,s,γ1γ2γ3γ4
= −1

2

[({[
Uα1α2α3α4Uα′1α′2α′3α′4 + ζ (α1 ↔ α′1)

]
+ ζ (α2 ↔ α′2)

}
+ ζ (α3 ↔ α′3)

)
+ ζ (α4 ↔ α′4)

]
.

(F.155)

Let us then recall that, according to (4.157), the propagator satisfies:

Gs=si,γ = 0 ∀γ , (F.156)

at the starting point of the C-flow. Therefore, the latter expressions of Φ
(2)

SCPT,NSCPT=1,s and

Φ
(4)

SCPT,NSCPT=2,s can be generalized to all orders of self-consistent PT in this situation, i.e.

Φ
(2)

s=si
= Φ

(2)

SCPT,NSCPT=1,s=si
and Φ

(4)

s=si
= Φ

(4)

SCPT,NSCPT=2,s=si
for the C-flow. We can thus deduce

in this way the initial conditions for 2PI vertices in the framework of the C-flow, i.e. for Φ
(2)

s

and Φ
(4)

s :
Φ

(2)

s=si,γ1γ2
= Uγ1γ2 , (F.157)

Φ
(4)

s=si,γ1γ2γ3γ4
= −1

2

[({[
Uα1α2α3α4Uα′1α′2α′3α′4 + ζ (α1 ↔ α′1)

]
+ ζ (α2 ↔ α′2)

}
+ ζ (α3 ↔ α′3)

)
+ ζ (α4 ↔ α′4)

]
.

(F.158)

F.5.2 Application to the (0+0)-D O(N)-symmetric ϕ4-theory

F.5.2.1 Original representation

We then determine the components of Φ
(2)

s=si
and Φ

(4)

s=si
for the original version of the studied

O(N) model. Such results can be directly deduced respectively from (F.157) and (F.158) after
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replacing α-indices by color ones (i.e. after replacing αi by ai for all integers i). Another
possibility is to differentiate the perturbative expression of the Luttinger-Ward functional that
can be inferred from (3.248). This perturbative expression is:

ΦSCPT[G] =
1

24
+

1

12
− 1

72
− 1

144
+O

(
λ3
)
,

(F.159)
and its differentiation leads to:

Φ
(2)

s=si,(a1,a′1)(a2,a′2) =
∂2

∂Ga1a′1
∂Ga2a′2




1

24
+

1

12




∣∣∣∣∣∣∣∣
G=Gs=si=0

=
∂2

∂Ga1a′1
∂Ga2a′2




λ

24

(
N∑

a3=1

Ga3a3

)2

+
λ

12

N∑

a3,a4=1

G2
a3a4




∣∣∣∣∣∣∣∣
G=Gs=si=0

,

(F.160)

Φ
(4)

s=si,(a1,a′1)(a2,a′2)(a3,a′3)(a4,a′4) =− ∂4

∂Ga1a′1
∂Ga2a′2

∂Ga3a′3
∂Ga4a′4




1

72
+

1

144




∣∣∣∣∣∣∣∣
G=Gs=si=0

=− ∂4

∂Ga1a′1
∂Ga2a′2

∂Ga3a′3
∂Ga4a′4



λ2

72

N∑

a5,a6,a7,a8=1

Ga5a6Ga6a7Ga7a8Ga8a5

+
λ2

144

(
N∑

a5,a6=1

G2
a5a6

)2




∣∣∣∣∣∣∣∣
G=Gs=si=0

.

(F.161)

In order to recover results that are consistent with (F.157) and (F.158), the differentiation of
the propagator G must be carried out according to the relation:

∂Ga1a′1

∂Ga2a′2

= I(a1,a′1)(a2,a′2) = δa1a2δa′1a′2 + δa1a′2
δa′1a2

, (F.162)

which is the counterpart of definition (F.1) in the framework of the toy model under consider-
ation. This procedure leads to:

Φ
(2)

s=si,(a1,a′1)(a2,a′2) =
λ

3

(
δa1a′1

δa2a′2
+ δa1a2δa′1a′2 + δa1a′2

δa′1a2

)
= U(a1,a′1)(a2,a′2) , (F.163)
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Φ
(4)

s=si,(a1,a′1)(a2,a′2)(a3,a′3)(a4,a′4) =−1

9
λ2
( (
δa1a′4

δa′1a′3 + δa1a′3
δa′1a′4

)
δa2a4δa′2a3

+
(
δa1a4δa′1a′3 + δa1a′3

δa′1a4

)
δa2a′4

δa′2a3

+
(
δa1a′4

δa′1a3
+ δa1a3δa′1a′4

)
δa2a4δa′2a′3 +

(
δa1a4δa′1a3

+ δa1a3δa′1a4

)
δa2a′4

δa′2a′3

+
(
δa1a′4

δa′1a′3 + δa1a′3
δa′1a′4

)
δa2a3δa′2a4

+
(
δa1a′4

δa′1a3
+ δa1a3δa′1a′4

)
δa2a′3

δa′2a4

+
(
δa1a4δa′1a′3 + δa1a′3

δa′1a4

)
δa2a3δa′2a′4 +

(
δa1a4δa′1a3

+ δa1a3δa′1a4

)
δa2a′3

δa′2a′4

+
(
δa1a′4

δa′1a′2 + δa1a′2
δa′1a′4

)
δa2a′3

δa3a4 +
(
δa1a′3

δa′1a′2 + δa1a′2
δa′1a′3

)
δa2a′4

δa3a4

+
(
δa1a′4

δa′1a2
+ δa1a2δa′1a′4

)
δa′2a′3δa3a4 +

(
δa1a′3

δa′1a2
+ δa1a2δa′1a′3

)
δa′2a′4δa3a4

+
(
δa1a4δa′1a′2 + δa1a′2

δa′1a4

)
δa2a′3

δa3a′4
+
(
δa1a′3

δa′1a′2 + δa1a′2
δa′1a′3

)
δa2a4δa3a′4

+
(
δa1a4δa′1a2

+ δa1a2δa′1a4

)
δa′2a′3δa3a′4

+
(
δa1a′3

δa′1a2
+ δa1a2δa′1a′3

)
δa′2a4

δa3a′4

+
(
δa1a′4

δa′1a′2 + δa1a′2
δa′1a′4

)
δa2a3δa′3a4

+
(
δa1a3δa′1a′2 + δa1a′2

δa′1a3

)
δa2a′4

δa′3a4

+
(
δa1a′4

δa′1a2
+ δa1a2δa′1a′4

)
δa′2a3

δa′3a4
+
(
δa1a3δa′1a2

+ δa1a2δa′1a3

)
δa′2a′4δa′3a4

+
(
δa1a4δa′1a′2 + δa1a′2

δa′1a4

)
δa2a3δa′3a′4 +

(
δa1a3δa′1a′2 + δa1a′2

δa′1a3

)
δa2a4δa′3a′4

+
(
δa1a4δa′1a2

+ δa1a2δa′1a4

)
δa′2a3

δa′3a′4 +
(
δa1a3δa′1a2

+ δa1a2δa′1a3

)
δa′2a4

δa′3a′4

)

−2

9
λ2
( (
δa1a′4

δa′1a4
+ δa1a4δa′1a′4

) (
δa2a′3

δa′2a3
+ δa2a3δa′2a′3

)

+
(
δa1a′3

δa′1a3
+ δa1a3δa′1a′3

) (
δa2a′4

δa′2a4
+ δa2a4δa′2a′4

)

+
(
δa1a′2

δa′1a2
+ δa1a2δa′1a′2

) (
δa3a′4

δa′3a4
+ δa3a4δa′3a′4

) )
,

(F.164)

where U(a1,a′1)(a2,a′2) was introduced in (F.163) with the help of (4.249). We finally deduce
from (F.163) and (F.164) the initial conditions for the following components of 2PI vertices
involved in the equation system made of (4.264) to (4.270):

Φ
(2)

s=si,(1,1)(1,1) = λ , (F.165)

Φ
(2)

s=si,(1,1)(2,2) =
λ

3
, (F.166)

Φ
(4)

s=si,(1,1)(1,1)(1,1)(1,1) = −8λ2 , (F.167)

Φ
(4)

s=si,(1,1)(1,1)(1,1)(2,2) = 0 , (F.168)

Φ
(4)

s=si,(1,1)(1,1)(2,2)(2,2) = −8λ2

9
. (F.169)

F.5.2.2 Mixed representation

We derive in the rest of section F.5 the expressions of the components of Φ
(2G,1D)

mix,s=si
which are

required to implement the C-flow in the framework of the mixed representation of the studied
O(N) model. To that end, we recall definitions (4.319) and (4.320):

Φmix,SCPT,~-exp(G,D) =
~2

12
+O

(
~3
)
, (F.170)

Φmix,SCPT,λ-exp(G,D) =
1

24
+

1

12
+O

(
λ2
)
. (F.171)

We then use once again identity (F.162) along with ∂D
∂D

= I = 2 in order to calculate:
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• From the ~-expansion with ~ = 1 (i.e. from (F.170)):

Φ
(2G,1D)

mix,s=si,(a1,a′1)(a2,a′2) =
∂3

∂Ga1a′1
∂Ga2a′2

∂D


 1

12




∣∣∣∣∣∣∣G=Gs=si=0

D=Ds=si=0

=
∂3

∂Ga1a′1
∂Ga2a′2

∂D

(
1

12
λD

N∑

a3,a4=1

G2
a3a4

)∣∣∣∣∣
G=Gs=si=0

D=Ds=si=0

=
2λ

3

(
δa1a2δa′1a′2 + δa1a′2

δa′1a2

)
.

(F.172)

• From the λ-expansion (i.e. from (F.171)):

Φ
(2G,1D)

mix,s=si,(a1,a′1)(a2,a′2) =
∂3

∂Ga1a′1
∂Ga2a′2

∂D


 1

24
+

1

12




∣∣∣∣∣∣∣G=Gs=si=0

D=Ds=si=0

=
∂3

∂Ga1a′1
∂Ga2a′2

∂D


 1

24
λD

(
N∑

a3=1

Ga3a3

)2

+
1

12
λD

N∑

a3,a4=1

G2
a3a4



∣∣∣∣∣∣G=Gs=si=0

D=Ds=si=0

=
2λ

3

(
δa1a′1

δa2a′2
+ δa1a2δa′1a′2 + δa1a′2

δa′1a2

)
.

(F.173)

The components Φ
(2G,1D)

mix,s,(1,1)(1,1) and Φ
(2G,1D)

mix,s,(1,1)(2,2) involved in the tower of differential equa-
tions made of (4.310) to (4.318) must therefore satisfy:

Φ
(2G,1D)

mix,s=si,(1,1)(1,1) =





4λ

3
from the ~-expansion ,

2λ from the λ-expansion ,

(F.174)

Φ
(2G,1D)

mix,s=si,(1,1)(2,2) =





0 from the ~-expansion .

2λ

3
from the λ-expansion .

(F.175)

F.6 (0+0)-D limit of the bosonic index formalism at N = 1

As pointed out below (4.283), there are essentially two different manners to derive the 2PI-FRG
flow equations for the studied (0+0)-D O(N) model with N = 1: either using standard deriva-
tion rules or by taking the (0+0)-D limit of their more general versions involving summations
over bosonic indices. In the latter case, the identity reduces to 2 according to:

∂G

∂G
= I = 2 , (F.176)

as a result of the definition of the bosonic identity matrix (given by (F.1)) and the chain
rule (F.7) still introduces a 1/2 factor:

∂W (K)

∂G
=

1

2

∂K

∂G

∂W (K)

∂K
, (F.177)



354 APPENDIX F. 2PI FUNCTIONAL RENORMALIZATION GROUP

whereas, in the former case, standard derivation rules simply give us:

∂G

∂G
= 1 , (F.178)

and
∂W (K)

∂G
=
∂K

∂G

∂W (K)

∂K
. (F.179)

For the sake of clarity, we will compare in this appendix the equation systems determined from
these two procedures for the tC-flow at Nmax = 2. These equation systems are obtained by
following the recipe outlined in section 4.2.1 for the C-flow together with that of appendix F.4.1,
either by exploiting (F.176) and (F.177) or (F.178) and (F.179) as derivation rules. This leads
to:

• From the (0+0)-D limit of the bosonic index formalism at N = 1:

– Flow equations:

Ġs = −G2

s

(
Ċ−1

s − Σ̇s

)
, (F.180)

∆Ω̇s =
1

2
Ċ−1

s

(
Gs − Cs

)
, (F.181)

Σ̇s = −1

2
ĠsΦ

(2)

s , (F.182)

Φ̇
(2)

s =
1

2
ĠsΦ

(3)

s . (F.183)

– Initial conditions:
Gs=si = 0 , (F.184)

∆Ωs=si = 0 , (F.185)

Σs=si = 0 , (F.186)

Φ
(2)

s=si
= λ , (F.187)

Φ
(3)

s=si
= 0 . (F.188)

– Truncation:
Φ

(3)

s = Φ
(3)

s=si
∀s . (F.189)

• From standard derivation rules:

– Flow equations:

Ġs = −G2

s

(
Ċ−1

s − Σ̇s

)
, (F.190)

∆Ω̇s =
1

2
Ċ−1

s

(
Gs − Cs

)
, (F.191)

Σ̇s = −2ĠsΦ
(2)

s , (F.192)

Φ̇
(2)

s = ĠsΦ
(3)

s . (F.193)
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– Initial conditions:
Gs=si = 0 , (F.194)

∆Ωs=si = 0 , (F.195)

Σs=si = 0 , (F.196)

Φ
(2)

s=si
=

1

4
λ , (F.197)

Φ
(3)

s=si
= 0 . (F.198)

– Truncation:
Φ

(3)

s = Φ
(3)

s=si
∀s . (F.199)

The equation system made of (F.180) to (F.183) corresponds to the differential equa-
tions (4.260) to (4.263). Moreover, the initial conditions (F.184) to (F.188) are identical
to (4.271) to (4.275) at N = 1.

The expressions of Φ
(2)

s=si
given by (F.187) and (F.197) are both obtained from (4.276) recalled

below:
ΦSCPT(G) =

1

8
λG2 +O

(
λ2
)
. (F.200)

To obtain (F.187), we have differentiated (F.200) as follows:

Φ
(2)

s=si
=

∂2

∂G2

(
1

8
λG2

)∣∣∣∣
G=Gs=si=0

=
∂

∂G

(
1

4
λG

∂G

∂G︸︷︷︸
2

)∣∣∣∣
G=Gs=si=0

=

(
1

2
λ
∂G

∂G︸︷︷︸
2

)∣∣∣∣
G=Gs=si=0

= λ ,

(F.201)

whereas, in the derivation of (F.197), we have calculated:

Φ
(2)

s=si
=

∂2

∂G2

(
1

8
λG2

)∣∣∣∣
G=Gs=si=0

=
∂

∂G

(
1

4
λG

∂G

∂G︸︷︷︸
1

)∣∣∣∣
G=Gs=si=0

=

(
1

4
λ
∂G

∂G︸︷︷︸
1

)∣∣∣∣
G=Gs=si=0

=
1

4
λ .

(F.202)

Furthermore, the difference between (F.183) and (F.193) is due to the presence of the 1/2
factor in the functional chain rule of the bosonic index formalism, as explained with (F.177)
and (F.179). For this reason, one might expect a factor 1 instead of 2 in (F.192) but there is
an additional factor 2 entering the arena in the definition of the self-energy:

Σs(G) = −2Φ(1)
s (G) , (F.203)
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whereas we have:
Σs(G) = −Φ(1)

s (G) , (F.204)

in the (0+0)-D limit of the bosonic index formalism at N = 1. In order to justify (F.203), we
briefly go through some derivations of appendices F.1 and F.2 with standard derivation rules,
starting with:

Z(K) = eW (K) =

∫ ∞

−∞
dϕ̃ e−S(ϕ̃)+ 1

2
Kϕ̃2

, (F.205)

from which we infer:

∂W (K)

∂K
=

1

2

1

Z(K)

∫ ∞

−∞
dϕ̃ ϕ̃2 e−S[ϕ̃]+ 1

2
Kϕ̃2

=
1

2

〈
ϕ̃2
〉
K

=
1

2
G ,

(F.206)

and the corresponding 2PI EA Γ(2PI)(G) satisfies:

Γ(2PI)(G) =−W (K) +K
∂W (K)

∂K

=−W (K) +
1

2
KG .

(F.207)

The free version of (F.205) is:

Z0(K) = eW0(K) =

∫ ∞

−∞
dϕ̃ e−S0(ϕ̃)+ 1

2
Kϕ̃2

=

∫ ∞

−∞
dϕ̃ e−

1
2

(C−1−K)ϕ̃2

=

√
2π

C−1 −K ,

(F.208)

which leads to:
W0(K) =

1

2

(
ln(2π)− ln

(
C−1 −K

))
. (F.209)

According to (F.206) and (F.209), we have:

G0 = 2
∂W0(K)

∂K
=

1

C−1 −K , (F.210)

or, equivalently,
K = C−1 −G−1

0 . (F.211)

We then deduce from (F.209) to (F.211) an expression for the free part Γ
(2PI)
0 (G) of Γ(2PI)(G)

by calculating:

Γ
(2PI)
0 (G0) = −W0[K] +

1

2
KG0 = −1

2
ln(2πG0) +

1

2

(
C−1G0 − 1

)
, (F.212)

which implies that Γ
(2PI)
0 (G) reads:

Γ
(2PI)
0 (G) = −1

2
ln(2πG) +

1

2

(
C−1G− 1

)
. (F.213)
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Then, we define the Luttinger-Ward functional from (F.213) as:

Φ(G) ≡ Γ(2PI)(G)− Γ
(2PI)
0 (G) = Γ(2PI)(G) +

1

2
ln(2πG)− 1

2

(
C−1G− 1

)
. (F.214)

By differentiating (F.214) with respect to G, we obtain:

Φ(1)(G) =
∂Γ(2PI)(G)

∂G︸ ︷︷ ︸
1
2
K

+
1

2
G−1 − 1

2
C−1 =

1

2

(
K +G−1 − C−1

)
, (F.215)

where the derivative ∂Γ(2PI)(G)
∂G

was replaced with the help of (F.207). We can thus see from
(F.215) that the self-energy Σ must indeed be defined by (F.203) to recover Dyson equation in
the form:

G−1 = C−1 − Σ(G)−K , (F.216)
in accordance with (F.24). This implies the C-flow equation:

Σ̇s = −2Φ̇
(1)

s = −2ĠsΦ
(2)

s , (F.217)

which coincides with (F.192).

In conclusion, solving the system of equations set either by (F.180) to (F.189) or by (F.190)
to (F.199) leads to identical results (and notably to the green curves labeled “2PI-FRG tC-
flow Nmax = 1 or 2” in fig. 4.13). This equivalence ensures the consistency of the definitions
underlying the bosonic index formalism presented in appendix F.1 and holds for any other
2PI-FRG approach applied to the (0+0)-D O(N) model under consideration with N = 1.

F.7 Mixed C-flow for the (0+0)-D O(N)-symmetric ϕ4-theory
We give in this appendix the truncation conditions underlying the mC-flow for the mixed
representation of the (0+0)-D O(N)-symmetric ϕ4-theory at the truncation order Nmax = 1
and at N = 1. These relations are obtained by differentiating the following expressions of
Φmix,SCPT,~-exp(G,D) and Φmix,SCPT,λ-exp(G,D) (which are already given by (4.328) and (4.329))
with respect to the propagators G and D:

Φmix,SCPT,~-exp(G,D) =
1

12
~2λDG2 − 1

72
~3λ2D2G4 +

5

324
~4λ3D3G6 +O

(
~5
)
, (F.218)

Φmix,SCPT,λ-exp(G,D) =
1

8
λDG2 − 1

192
λ2D2G4 +

1

64
λ3D3G6 +O

(
λ4
)
. (F.219)

This differentiation is carried out using the identity:
∂G

∂G
=
∂D

∂D
= I = 2 . (F.220)

This leads to:

• From the ~-expansion at ~ = 1 (i.e. from (F.218)):

– At NSCPT = 1:

Φ
(2G)

s = Φ
(2G)

mix,SCPT,~-exp,NSCPT=1,s

∣∣∣
λ→ 3

4
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Ds , (F.221)

Φ
(2D)

s = Φ
(2D)

mix,SCPT,~-exp,NSCPT=1,s

∣∣∣
λ→ 3

4
Φ

(2G,1D)
s

= 0 , (F.222)

Φ
(1G,1D)

s = Φ
(1G,1D)

mix,SCPT,~-exp,NSCPT=1,s

∣∣∣
λ→ 3

4
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Gs . (F.223)
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– At NSCPT = 2:

Φ
(2G)

s = Φ
(2G)

mix,SCPT,~-exp,NSCPT=2,s

∣∣∣
λ→ 3

4
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Ds −
3

8

(
Φ

(2G,1D)

s

)2

D
2

sG
2

s ,

(F.224)

Φ
(2D)

s = Φ
(2D)

mix,SCPT,~-exp,NSCPT=2,s

∣∣∣
λ→ 3

4
Φ

(2G,1D)
s

= − 1

16

(
Φ

(2G,1D)

s

)2

G
4

s , (F.225)

Φ
(1G,1D)

s = Φ
(1G,1D)

mix,SCPT,~-exp,NSCPT=2,s

∣∣∣
λ→ 3

4
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Gs−
1

4

(
Φ

(2G,1D)

s

)2

DsG
3

s .

(F.226)

– At NSCPT = 3:

Φ
(2G)

s = Φ
(2G)

mix,SCPT,~-exp,NSCPT=3,s

∣∣∣
λ→ 3

4
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Ds −
3

8

(
Φ

(2G,1D)

s

)2

D
2

sG
2

s +
25

32

(
Φ

(2G,1D)

s

)3

D
3

sG
4

s ,

(F.227)

Φ
(2D)

s = Φ
(2D)

mix,SCPT,~-exp,NSCPT=3,s

∣∣∣
λ→ 3

4
Φ

(2G,1D)
s

=− 1

16

(
Φ

(2G,1D)

s

)2

G
4

s +
5

32

(
Φ

(2G,1D)

s

)3

DsG
6

s ,

(F.228)

Φ
(1G,1D)

s = Φ
(1G,1D)

mix,SCPT,~-exp,NSCPT=3,s

∣∣∣
λ→ 3

4
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Gs −
1

4

(
Φ

(2G,1D)

s

)2

DsG
3

s +
15

32

(
Φ

(2G,1D)

s

)3

D
2

sG
5

s .

(F.229)

• From the λ-expansion (i.e. from (F.219)):

– At NSCPT = 1:

Φ
(2G)

s = Φ
(2G)

mix,SCPT,λ-exp,NSCPT=1,s

∣∣∣
λ→ 1

2
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Ds , (F.230)

Φ
(2D)

s = Φ
(2D)

mix,SCPT,λ-exp,NSCPT=1,s

∣∣∣
λ→ 1

2
Φ

(2G,1D)
s

= 0 , (F.231)

Φ
(1G,1D)

s = Φ
(1G,1D)

mix,SCPT,λ-exp,NSCPT=1,s

∣∣∣
λ→ 1

2
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Gs . (F.232)

– At NSCPT = 2:

Φ
(2G)

s = Φ
(2G)

mix,SCPT,λ-exp,NSCPT=2,s

∣∣∣
λ→ 1

2
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Ds −
1

16

(
Φ

(2G,1D)

s

)2

D
2

sG
2

s ,

(F.233)

Φ
(2D)

s = Φ
(2D)

mix,SCPT,λ-exp,NSCPT=2,s

∣∣∣
λ→ 1

2
Φ

(2G,1D)
s

= − 1

96

(
Φ

(2G,1D)

s

)2

G
4

s , (F.234)

Φ
(1G,1D)

s = Φ
(1G,1D)

mix,SCPT,λ-exp,NSCPT=2,s

∣∣∣
λ→ 1

2
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Gs−
1

24

(
Φ

(2G,1D)

s

)2

DsG
3

s .

(F.235)

– At NSCPT = 3:

Φ
(2G)

s = Φ
(2G)

mix,SCPT,λ-exp,NSCPT=3,s

∣∣∣
λ→ 1

2
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Ds −
1

16

(
Φ

(2G,1D)

s

)2

D
2

sG
2

s +
15

64

(
Φ

(2G,1D)

s

)3

D
3

sG
4

s ,

(F.236)
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Φ
(2D)

s = Φ
(2D)

mix,SCPT,λ-exp,NSCPT=3,s

∣∣∣
λ→ 1

2
Φ

(2G,1D)
s

=− 1

96

(
Φ

(2G,1D)

s

)2

G
4

s +
3

64

(
Φ

(2G,1D)

s

)3

DsG
6

s ,

(F.237)

Φ
(1G,1D)

s = Φ
(1G,1D)

mix,SCPT,λ-exp,NSCPT=3,s

∣∣∣
λ→ 1

2
Φ

(2G,1D)
s

=
1

2
Φ

(2G,1D)

s Gs −
1

24

(
Φ

(2G,1D)

s

)2

DsG
3

s +
9

64

(
Φ

(2G,1D)

s

)3

D
2

sG
5

s .

(F.238)

F.8 U-flow and CU-flow for the (0+0)-D O(N)-symmetric
ϕ4-theory

F.8.1 pU-flow, mU-flow and CU-flow equations at N = 1

We give below the differential equations required to implement the pU-flow, mU-flow and CU-
flow versions of the 2PI-FRG up to Nmax = 3 for the studied O(N) model at N = 1:

• For the pU-flow:
Ġs = G

2

sΣ̇s , (F.239)

Ω̇s =
λ

24

(
4
(

2G
−2

s + Φ
(2)

s

)−1

+G
2

s

)
, (F.240)

Σ̇s = −λ
3

(
2 +G

2

sΦ
(2)

s

)−1
((

2G
−2

s + Φ
(2)

s

)−2 (
8G
−3

s − Φ
(3)

s

)
+Gs

)
, (F.241)

Φ̇
(2)

s =
λ

6

(
2
(

2G
−2

s + Φ
(2)

s

)−3 (
8G
−3

s − Φ
(3)

s

)2

− 64
(

2G
−2

s + Φ
(2)

s

)−2

G
−4

s

+
(

2G
−2

s + Φ
(2)

s

)−2 (
16G

−4

s − Φ
(4)

s

)
+ 2

)
+

1

2
ĠsΦ

(3)

s ,

(F.242)

Φ̇
(3)

s =
λ

6

(
2G
−2

s + Φ
(2)

s

)−2
(

6
(

2G
−2

s + Φ
(2)

s

)−2 (
8G
−3

s − Φ
(3)

s

)3

+ 6
(

2G
−2

s + Φ
(2)

s

)−1 (
8G
−3

s − Φ
(3)

s

)(
16G

−4

s − Φ
(4)

s

)

− 384G
−4

s

((
2G
−2

s + Φ
(2)

s

)−1 (
8G
−3

s − Φ
(3)

s

)
−G−1

s

)
− Φ

(5)

s

)

+
1

2
ĠsΦ

(4)

s .

(F.243)

• For the mU-flow at NSCPT = 1:
Ġs = G

2

sΣ̇s , (F.244)

Ω̇s =
λ

24

(
4
(

2G
−2

s + Φ
(2)

s − λ (1− s)
)−1

+G
2

s

)
− 1

8
λG

2

s , (F.245)

Σ̇s = −λ
3

(
2 +G

2

sΦ
(2)

s

)−1
((

2G
−2

s + Φ
(2)

s − λ (1− s)
)−2 (

8G
−3

s −Φ
(3)

s

)
− 2Gs

)
,

(F.246)
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Φ̇
(2)

s =
λ

6

(
2
(

2G
−2

s + Φ
(2)

s − λ (1− s)
)−3 (

8G
−3

s −Φ
(3)

s

)2

− 64G
−4

s

(
2G
−2

s + Φ
(2)

s − λ (1− s)
)−2

+
(

2G
−2

s + Φ
(2)

s − λ (1− s)
)−2 (

16G
−4

s −Φ
(4)

s

)
+ 2

)

− λ+
1

2
ĠsΦ

(3)

s ,

(F.247)

Φ̇
(3)

s =
λ

6

(
2G
−2

s + Φ
(2)

s − λ (1− s)
)−2

×
(

6
(

2G
−2

s + Φ
(2)

s − λ (1− s)
)−2 (

8G
−3

s −Φ
(3)

s

)3

+ 6
(

2G
−2

s + Φ
(2)

s − λ (1− s)
)−1 (

8G
−3

s −Φ
(3)

s

)(
−48G

−4

s −Φ
(4)

s

)

+ 384G
−5

s −Φ
(5)

s

)
+

1

2
ĠsΦ

(4)

s .

(F.248)

• For the mU-flow at NSCPT = 2:
Ġs = G

2

sΣ̇s , (F.249)

Ω̇s =
λ

24

(
4
(

2G
−2

s + Φ
(2)

s − λ (1− s) + λ2G
2

s

(
1− s2

))−1

+G
2

s

)
− 1

8
λG

2

s +
1

24
sλ2G

4

s ,

(F.250)

Σ̇s =− λ

3

(
2 +G

2

sΦ
(2)

s

)−1
((

2G
−2

s + Φ
(2)

s − λ (1− s) + λ2G
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• For the mU-flow at NSCPT = 3:
Ġs = G

2

sΣ̇s , (F.254)
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Φ̇
(2)

s =
λ

6

(
2

(
2G
−2

s + Φ
(2)

s − λ (1− s) + λ2G
2

s

(
1− s2

)
− 5

2
λ3G

4

s

(
1− s3

))−3

×
(

8G
−3

s −Φ
(3)

s − 4λ2Gs

(
1− s2

)
+ 20λ3G

3

s

(
1− s3

))2

− 64G
−4

s

(
2G
−2

s + Φ
(2)

s − λ (1− s) + λ2G
2

s

(
1− s2

)
− 5

2
λ3G

4

s

(
1− s3

))−2

+

(
2G
−2

s + Φ
(2)

s − λ (1− s) + λ2G
2

s

(
1− s2

)
− 5

2
λ3G

4

s

(
1− s3

))−2

×
(

16G
−4

s −Φ
(4)

s − 8λ2
(
1− s2

)
+ 120λ3G

2

s

(
1− s3

))
+ 2

)

− λ+ 2sλ2G
2

s −
15

2
s2λ3G

4

s +
1

2
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• For the CU-flow:
Ġs = −G2

s

(
Ċ−1

s − Σ̇s

)
, (F.259)

∆Ω̇s =
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F.8.2 mU-flow equations at NSCPT = 1 and for all N

As we have seen with the derivations of (F.97) and (F.98) to rewrite the U-flow equation (F.95)
expressing Σ̇s, rewriting the 2PI-FRG flow equations by evaluating the derivatives δΠs

δGs,γ
and/or

δ2Πs

δGs,γ1δGs,γ2

is a cumbersome procedure3. Instead, we could of course just replace these deriva-

tives by their expressions in terms of Gs, Kronecker deltas and Dirac delta functions, such
as (F.96) for δΠs

δGs,γ
, and treat numerically the (quite lengthy) differential equations thus ob-

tained. However, we can also exploit a trick for the studied (0+0)-D model based on the fact
that its 2PI and 2PPI EAs coincide in the absence of SSB, i.e. Γ(2PI)(G) = Γ(2PPI)(ρ) (with
Γ(2PPI)(ρ) defined from (4.429) in arbitrary dimensions). We can therefore formulate a mU-flow
from the master equation of the 2PPI-FRG (see appendix G.1) which is treated as a next step
with a vertex expansion up to Nmax = 3. Such a procedure would therefore be equivalent to
carrying out the mU-flow version of the 2PI-FRG up to Nmax = 3 as well, owing to the con-
nection between the 2PI-FRG and the vertex expansion highlighted via (4.144). We will thus
follow this recipe here to construct a mU-flow for the 2PPI-FRG with a Hartree-Fock starting
point, i.e. with NSCPT = 1. In order to achieve this, we start from the master equation of the
2PPI-FRG written for the (0+0)-D O(N)-symmetric ϕ4-theory, i.e.:

Γ̇(2PPI)
s (ρ) =

λ

24

(
N∑

a1,a2=1

(
Γ(2PPI)(2)
s (ρ)

)−1

a1a2
+

N∑

a1,a2=1

ρa1ρa2

)
, (F.264)

as was already given by (4.478) and (4.479). We then split the 2PPI EA Γ
(2PPI)
s (ρ) according

to:
Γ(2PPI)
s (ρ) = Γ

(2PPI)
0,s (ρ) + Φs(ρ) , (F.265)

with Γ
(2PPI)
0,s (ρ) and Φs(ρ) being respectively the free and interacting parts of Γ

(2PPI)
s (ρ). Since

Γ(2PI)(G) = Γ(2PPI)(ρ), Φs(ρ) coincides with the Luttinger-Ward functional in the present case.
As for the 2PI-FRG, the mU-flow is implemented by introducing the modified Luttinger-Ward
functional defined by (4.366) and (4.367) recalled below:

Φs(G) ≡ Φs(G) + ΦSCPT,NSCPT=1(U,G)− ΦSCPT,NSCPT=1(Us, G) , (F.266)

3Recall that, for n ≥ 3, we have δnΠs

δGs,γ1 ···δGs,γn

= 0 ∀γ1, · · · , γn, s according to expression (4.182) of Π[G].
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with

ΦSCPT,NSCPT=1(U,G) = λ
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24
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+
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 , (F.267)

and

ΦSCPT,NSCPT=1(Us, G) = sλ


 1

24

(
N∑

a1=1

Ga1a1

)2

+
1

12

N∑

a1,a2=1

G2
a1a2


 . (F.268)

Due to the absence of SSB, we know that the propagator G is a scalar in color space, i.e.
Ga1a2 = G δa1a2 ∀a1, a2, which implies that the less constraining relation:

Ga1a2 = ρa1δa1a2 ∀a1, a2 , (F.269)

must be satisfied as well. Combining (F.269) with (F.266) to (F.268) leads to:

Φs(ρ) ≡ Φs(ρ) + ΦSCPT,NSCPT=1(U, ρ)− ΦSCPT,NSCPT=1(Us, ρ) , (F.270)

with

ΦSCPT,NSCPT=1(U, ρ) = λ
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ρ2
a


 , (F.271)

and

ΦSCPT,NSCPT=1(Us, ρ) = sλ
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ρa

)2

+
1

12

N∑

a=1

ρ2
a


 . (F.272)

According to (F.270), the splitting (F.265) is equivalent to:

Γ(2PPI)
s (ρ) = Γ

(2PPI)
0,s (ρ) + Φs(ρ)
︸ ︷︷ ︸

Γ
(2PPI)
s (ρ)

−ΦSCPT,NSCPT=1(U, ρ) + ΦSCPT,NSCPT=1(Us, ρ)

= Γ(2PPI)
s (ρ)− ΦSCPT,NSCPT=1(U, ρ) + ΦSCPT,NSCPT=1(Us, ρ) ,

(F.273)

which enables us to rewrite the master equation (F.264) as:

Γ̇(2PPI)
s (ρ) =

λ

24

(
N∑

a1,a2=1

Gs,a1a2(ρ) +
N∑

a1,a2=1

ρa1ρa2

)
− Φ̇SCPT,NSCPT=1(Us, ρ) , (F.274)

where

G−1
s,a1a2

(ρ) ≡ Γ(2PPI)(2)
s,a1a2

(ρ)

= Γ(2PPI)(2)
s,a1a2

(ρ)− ∂2ΦSCPT,NSCPT=1(U, ρ)

∂ρa1∂ρa2

+
∂2ΦSCPT,NSCPT=1(Us, ρ)

∂ρa1∂ρa2

.
(F.275)

We then extract a tower of differential equations from (F.274) by performing a vertex expansion
of Γ

(2PPI)
s (ρ) around its flowing extremum at ρ = ρs, i.e.:

Γ(2PPI)
s (ρ) = Γ

(2PPI)

s +
∞∑

n=2

1

n!

N∑

a1,··· ,an=1

Γ
(2PPI)(n)

s,a1,··· ,an (ρ− ρs)a1
· · · (ρ− ρs)an , (F.276)

with
Γ

(2PPI)

s ≡ Γ(2PPI)
s

(
ρ = ρs

)
∀s , (F.277)
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Γ
(2PPI)(n)

s,a1···an ≡
∂nΓ

(2PPI)
s (ρ)

∂ρa1 · · · ∂ρan

∣∣∣∣∣
ρ=ρs

∀a1, · · · , an, s , (F.278)

and, in particular,

Γ
(2PPI)(1)

s,a = 0 ∀a, s . (F.279)

Differentiating (F.276) with respect to s yields:

Γ̇(2PPI)
s (ρ) = Γ̇

(2PPI)
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ρ̇a2
Γ
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· · · (ρ− ρs)an ,

(F.280)

where we have used the relation:

Γ̇
(2PPI)(n)

s,a1···an −
N∑

an+1=1

ρ̇s,an+1
Γ

(2PPI)(n+1)
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Φ

(n+1)

s,an+1a1···an , (F.281)

which results from the following chain rule (derived from the equality Γ̇
(2PPI)(n)
s = Φ̇

(n)
s ∀n, s):

Γ̇
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(F.282)

Furthermore, we calculate the derivatives of Φ̇SCPT,NSCPT=1(Us, ρ) = ΦSCPT,NSCPT=1(U, ρ) with
respect to ρ from (F.271) or (F.272):

∂Φ̇SCPT,NSCPT=1(Us, ρ)

∂ρa1

=
∂ΦSCPT,NSCPT=1(U, ρ)

∂ρa1

=
λ

12
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ρa2 +
λ

6
ρa1 , (F.283)

∂2Φ̇SCPT,NSCPT=1(Us, ρ)

∂ρa1∂ρa2

=
∂2ΦSCPT,NSCPT=1(U, ρ)

∂ρa1∂ρa2

=
λ

12
(1 + 2δa1a2) , (F.284)

∂nΦ̇SCPT,NSCPT=1(Us, ρ)

∂ρa1 · · · ∂ρan
=
∂nΦSCPT,NSCPT=1(U, ρ)

∂ρa1 · · · ∂ρan
= 0 ∀n ≥ 3 . (F.285)
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From this, we infer the Taylor expansion of Φ̇SCPT,NSCPT=1(Us, ρ) around ρ = ρs:
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(F.286)

In the same way, the middle term in the RHS of (F.274) can also be rewritten exactly in terms
of ρ− ρs:

λ

24
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ρa1ρa2 =
λ
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(F.287)

The only term left to expand in the master equation (F.274) is:

λ

24

N∑

a1,a2=1

Gs,a1a2(ρ) . (F.288)

One can first expand the propagatorGs(ρ) very conveniently in a diagrammatic fashion to derive
such an expansion. The recipe to achieve this was already described in detail in section E.2
on the vertex expansion in the framework of the 1PI-FRG and we will therefore not repeat it
here. We just point out instead that the expansion thus obtained is then inserted into the flow
equation (F.274), alongside with (F.280), (F.286) and (F.287). The LHS and RHS of (F.274)
are both expanded in terms of ρ−ρs in this way and identifying the terms with identical powers
of ρ− ρs gives us the tower of differential equations for the present mU-flow approach. Up to
the truncation order Nmax = 3 (i.e. up to order O((ρ − ρs)

3) in the expansion (F.276)), we
obtain:
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24
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=
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(F.290)
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(2PPI)(3)

0,s + Φ
(3)

s

)
a1a6a7

Gs,a7a8

(
Γ

(2PPI)(3)

0,s + Φ
(3)

s

)
a2a8a9

×Gs,a9a10

(
Γ

(2PPI)(3)

0,s + Φ
(3)

s

)
a3a10a11

Gs,a11a5

−2
N∑

a4,a5,a6,a7,a8,a9,a10,a11=1

Gs,a4a6

(
Γ

(2PPI)(3)

0,s + Φ
(3)

s

)
a2a6a7

Gs,a7a8

(
Γ

(2PPI)(3)

0,s + Φ
(3)

s

)
a1a8a9

×Gs,a9a10

(
Γ

(2PPI)(3)

0,s + Φ
(3)

s

)
a3a10a11

Gs,a11a5

−2
N∑

a4,a5,a6,a7,a8,a9,a10,a11=1

Gs,a4a6

(
Γ

(2PPI)(3)

0,s + Φ
(3)

s

)
a1a6a7

Gs,a7a8

(
Γ

(2PPI)(3)

0,s + Φ
(3)

s

)
a3a8a9

×Gs,a9a10

(
Γ

(2PPI)(3)

0,s + Φ
(3)

s

)
a2a10a11

Gs,a11a5

+2
N∑

a4,a5,a6,a7,a8,a9=1

Gs,a4a6

(
Γ

(2PPI)(4)

0,s + Φ
(4)

s

)
a1a2a6a7

Gs,a7a8

(
Γ

(2PPI)(3)

0,s + Φ
(3)

s

)
a3a8a9

Gs,a9a5

+2
N∑

a4,a5,a6,a7,a8,a9=1

Gs,a4a6

(
Γ

(2PPI)(4)

0,s + Φ
(4)

s

)
a1a3a6a7

Gs,a7a8

(
Γ

(2PPI)(3)

0,s + Φ
(3)

s

)
a2a8a9

Gs,a9a5

+2
N∑

a4,a5,a6,a7,a8,a9=1

Gs,a4a6

(
Γ

(2PPI)(4)

0,s + Φ
(4)

s

)
a2a3a6a7

Gs,a7a8

(
Γ

(2PPI)(3)

0,s + Φ
(3)

s

)
a1a8a9

Gs,a9a5

−
N∑

a4,a5,a6,a7=1

Gs,a4a6

(
Γ

(2PPI)(5)

0,s + Φ
(5)

s

)
a1a2a3a6a7

Gs,a7a5

)
,

(F.292)

where all upper bars label quantities evaluated at ρ = ρs, like:

G
−1

s ≡ G−1
s (ρ = ρs) . (F.293)

According to (F.275), (F.284) and (F.293), we have:

G
−1

s,a1a2
= Γ

(2)

0,s,a1a2
+ Φ

(2)

s,a1a2
− λ

12
(1− s) (1 + 2δa1a2) ∀a1, a2 . (F.294)

To clarify the link with the mU-flow formulated from the 2PI-FRG, we point out that,
for example, the set of three flow equations including (4.374), (4.375) and (4.376) (obtained
from a 2PI-FRG formulation) are altogether equivalent to the equation system made of (F.289)
and (F.290) (obtained from a 2PPI-FRG formulation). This can be seen after inserting (4.376)
(that expresses Σ̇s) into (4.374) (that expresses Ġs), which yields (F.290). We illustrate in
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this way that, for the (0+0)-D model under consideration and at equal values of NSCPT and
Nmax, the present mU-flow version of the 2PPI-FRG is equivalent to its 2PI-FRG counterpart
outlined in section 4.2.2.4.

The expressions of the derivatives of the free 2PPI EA involved in (F.289) to (F.292) are
found by differentiating the corresponding free 2PI EA Γ

(2PI)
0 (G) with respect to G, where

Γ
(2PI)
0 (G) reads (according to (F.21)):

Γ
(2PI)
0 (G) = −1

2
Tra
[

ln(2πG)
]

+
1

2
Tra
(
C−1G− IN

)
, (F.295)

and then replacing Ga1a2 by ρa1δa1a2 with (F.269). In this way, we obtain:

Γ
(2PPI)(2)

0,s,a1a2
=

1

2
ρ−2
s,a1
δa1a2 ∀a1, a2 , (F.296)

Γ
(2PPI)(3)

0,s,a1a2a3
= −ρ−3

s,a1
δa1a2δa1a3 ∀a1, a2, a3 , (F.297)

Γ
(2PPI)(4)

0,s,a1a2a3a4
= 3ρ−4

s,a1
δa1a2δa1a3δa1a4 ∀a1, a2, a3, a4 , (F.298)

Γ
(2PPI)(5)

0,s,a1a2a3a4a5
= −12ρ−5

s,a1
δa1a2δa1a3δa1a4δa1a5 ∀a1, a2, a3, a4, a5 . (F.299)

Note also that the flow parameter s runs from si = 0 to sf = 1 as usual. The initial conditions
for the derivatives Φ

(n)

s (with n ≥ 2) are directly inferred from (F.284) and (F.285) at s = si:

Φ
(2)

s=si,a1a2
=
∂2ΦSCPT,NSCPT=1(U, ρ)

∂ρa1∂ρa2

∣∣∣∣
ρ=ρs

=
λ

12
(1 + 2δa1a2) ∀a1, a2 , (F.300)

Φ
(n)

s=si,a1···an =
∂nΦSCPT,NSCPT=1(U, ρ)

∂ρa1 · · · ∂ρan

∣∣∣∣
ρ=ρs

= 0 ∀a1, · · · , an, ∀n ≥ 3 ,

(F.301)
whereas Γs=si and ρs=si

coincide respectively with the gs energy and density calculated with
self-consistent PT (from Γ(2PPI)(ρ) or, equivalently, from Γ(2PI)(G)) at NSCPT = 1, i.e.:

Γs=si = Egs,SCPT,NSCPT=1 , (F.302)

ρs=si
= ρgs,SCPT,NSCPT=1 . (F.303)

Finally, the truncation of the infinite tower of differential equations containing (F.289) to
(F.292) is implemented via the condition:

Φ
(n)

s = Φ
(n)

s=si
∀s, ∀n > Nmax . (F.304)

We conclude the mU-flow derivations of this section with two important caveats:

• We can not bypass the 2PI-FRG in this way for more realistic models since the relation
Γ(2PI)(G) = Γ(2PPI)(ρ) does not hold in finite dimensions.

• The mU-flow thus designed for the 2PPI-FRG is not directly applicable to finite dimen-
sional problems since ΦSCPT,NSCPT=1(U, ρ) is not written explicitly in terms of ρ in the
framework of self-consistent PT for the 2PPI EA in such situations, which implies that
we can not simply differentiate it with respect to ρ to determine the initial conditions

Φ̇
(n)

s=si
(with n ≥ 2) given here by (F.300) and (F.301). However, following the ideas of the

IM outlined in section 3.5.3, one might attempt to work out some formulae expressing the

initial conditions Φ̇
(n)

s=si
at any dimensions but we leave this as an outlook for the present

study.
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Appendix G

2PPI functional renormalization group

G.1 Master equation

Following the lines set out by ref. [323], we derive the master equation of the 2PPI-FRG in this
appendix. The corresponding reasoning is very close to that leading to the CU-flow equations
for the 2PI-FRG (see appendix F.4.3). To that end, we start again from an expression of the
relevant generating functional, i.e.:

Z[K] =

∫
Dψ̃†Dψ̃ e−S

[
ψ̃†,ψ̃
]

+
∫
αKαψ̃

†
αψ̃α , (G.1)

assuming the following analytical form for the classical action:

S
[
ψ̃†, ψ̃

]
=

∫

α

ψ̃†α

(
∂τ + Ôkin + Vα − µ

)
ψ̃α +

1

2

∫

α1,α2

ψ̃†α1
ψ̃†α2

Uα1α2ψ̃α2ψ̃α1 . (G.2)

The source K is now local in (G.1), as opposed to the source considered in the 2PI-FRG frame-
work. The dependence with respect to the flow parameter s is introduced via the substitutions
V → Vs and U → Us, thus clarifying the link with the CU-flow version of the 2PI-FRG. In
other words, the one-body potential (and therefore the free propagator C as introduced in our
presentation of the 2PI-FRG) and the two-body interaction are both a priori flow-dependent
in the framework of the 2PPI-FRG. The next step consists in differentiating the corresponding
Schwinger functional with respect to s while keeping the source K constant, thus yielding:

Ẇs[K]
∣∣∣
K

=−
∫

α

V̇s,α

(
1

Zs[K]

∫
Dψ̃†Dψ̃ ψ̃†αψ̃α e

−Ss

[
ψ̃†,ψ̃
]

+
∫
αKαψ̃

†
αψ̃α

)

︸ ︷︷ ︸
〈ψ̃†αψ̃α〉

K,s

− 1

2

∫

α1,α2

U̇s,α1α2

(
1

Zs[K]

∫
Dψ̃†Dψ̃ ψ̃†α1

ψ̃†α2
ψ̃α2ψ̃α1 e

−Ss

[
ψ̃†,ψ̃
]

+
∫
αKαψ̃

†
αψ̃α

)

︸ ︷︷ ︸
〈ψ̃†α1

ψ̃†α2
ψ̃α2 ψ̃α1〉K,s

=−
∫

α

V̇s,αW
(1)
s,α [K]− 1

2

∫

α1,α2

U̇s,α1α2

〈
ψ̃†α1

ψ̃†α2
ψ̃α2ψ̃α1

〉
K,s

,

(G.3)

where we have made use of the flow-dependent expectation value:

〈
· · ·
〉
K,s
≡ 1

Zs[K]

∫
Dψ̃†Dψ̃ · · · e−Ss

[
ψ̃†,ψ̃
]

+
∫
αKαψ̃

†
αψ̃α , (G.4)
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not to be confused with definition (F.65) used for the 2PI-FRG approaches. Besides, similarly
to (F.66) for the U-flow implementation of the 2PI-FRG, we calculate:

W (2)
s,α1α2

[K] ≡ δ2Ws[K]

δKα1δKα2

=
δ

δKα1

〈
ψ̃†α2

ψ̃α2

〉
K,s

=
〈
ψ̃†α1

ψ̃α1ψ̃
†
α2
ψ̃α2

〉
K,s
−
〈
ψ̃†α1

ψ̃α1

〉
K,s

〈
ψ̃†α2

ψ̃α2

〉
K,s

=
〈
ψ̃†α1

ψ̃†α2
ψ̃α2ψ̃α1

〉
K,s
−W (1)

s,α1
[K]W (1)

s,α2
[K] ,

(G.5)

which gives us: 〈
ψ̃†α1

ψ̃†α2
ψ̃α2ψ̃α1

〉
K,s

= W (2)
s,α1α2

[K] +W (1)
s,α1

[K]W (1)
s,α2

[K] . (G.6)

According to (G.6), (G.3) is equivalent to:

Ẇs[K]
∣∣∣
K

=−
∫

α

V̇s,αW
(1)
s,α [K]− 1

2

∫

α1,α2

U̇s,α1α2W
(2)
s,α1α2

[K]

− 1

2

∫

α1,α2

U̇s,α1α2W
(1)
s,α1

[K]W (1)
s,α2

[K] .

(G.7)

Hence, we have just derived a flow equation for the Schwinger functional Ws[K]. Let us then
turn this into a flow equation for the corresponding 2PPI EA Γ

(2PPI)
s [ρ]. In that respect, we

first rewrite the derivative Γ̇
(2PPI)
s [ρ]

∣∣∣
ρ
in terms of Ẇs[K]

∣∣∣
K
. As was done earlier for the 1PI

and 2PI EAs via (E.8) and (F.42) respectively, this can be achieved from the chain rule:

∂

∂s

∣∣∣∣
K

=
∂

∂s

∣∣∣∣
ρ

+

∫

α

ρ̇α|K
δ

δρα
. (G.8)

From this, we just need to repeat the reasoning outlined between (F.42) and (F.47) for the 2PI
EA Γ(2PI)[G] in order to obtain:

Γ̇(2PPI)
s [ρ] ≡ Γ̇(2PPI)

s [ρ]
∣∣∣
ρ

= − Ẇs[K]
∣∣∣
K
. (G.9)

As a next step, we will rewrite the derivatives of the Schwinger functional involved in the RHS
of (G.7). For the first-order derivative, we simply use (4.431) recalled below:

W (1)
s,α [K] = ρα . (G.10)

For the second-order derivative, we follow the lines set out in our previous derivation of the
Bethe-Salpeter equation (see appendix F.3):

δα1α2 =
δρα1

δρα2

=

∫

α3

δρα1

δKα3

δKα3

δρα2

=

∫

α3

δρα1

δKα3︸ ︷︷ ︸
W

(2)
s,α1α3

δKα3

δρα2

=

∫

α3

W (2)
s,α1α3

[K]
δKα3

δρα2

, (G.11)

as a result of (G.10) notably. Since Kα = δΓ(2PPI)[ρ]
δρα

according to (4.429), we can introduce

Γ
(2PPI)(2)
s,α1α2 [ρ] ≡ δ2Γ

(2PPI)
s [ρ]

δρα1δρα2
into (G.11) as:

δα1α2 =

∫

α3

W (2)
s,α1α3

[K]Γ(2PPI)(2)
s,α3α2

[ρ] , (G.12)



G.2. VERTEX EXPANSION 371

or, equivalently,
W (2)

s,α1α2
[K] =

(
Γ(2PPI)(2)
s [ρ]

)−1

α1α2
. (G.13)

Finally, we just need to combine (G.7) with (G.9), (G.10) and (G.13) to obtain the master
equation of the 2PPI-FRG:

Γ̇(2PPI)
s [ρ] =

∫

α

V̇s,αρα +
1

2
STr

[
U̇s

(
Γ(2PPI)(2)
s [ρ]

)−1
]

+
1

2

∫

α1,α2

U̇s,α1α2ρα1ρα2 . (G.14)

G.2 Vertex expansion

G.2.1 Standard 2PPI functional renormalization group

We give in this appendix the coupled differential equations extracted from the master equation
of the standard 2PPI-FRG in the framework of the (0+0)-D O(N)-symmetric ϕ4-theory. This
master equation was already given by (4.478) recalled below:

Γ̇(2PPI)
s (ρ) =

λ

24

(
N∑

a1,a2=1

Gs,a1a2(ρ) +
N∑

a1,a2=1

ρa1ρa2

)
, (G.15)

with the propagator Gs(ρ) defined by:

G−1
s,a1a2

(ρ) ≡ Γ(2PPI)(2)
s,a1a2

(ρ) . (G.16)

The vertex expansion is then carried out by expanding both sides of (G.15) around ρ = ρs,
where ρs is a configuration of ρ that extremizes the 2PPI EA Γ

(2PPI)
s (ρ) (i.e. Γ

(2PPI)(1)

s,a = 0
∀a, s). The LHS of (G.15) is expanded using:

Γ(2PPI)
s (ρ) = Γ

(2PPI)

s +
∞∑

n=2

1

n!

N∑

a1,··· ,an=1

Γ
(2PPI)(n)

s,a1···an (ρ− ρs)a1
· · · (ρ− ρs)an . (G.17)

The rest of the recipe of the vertex expansion is presented in detail in section E.2 for the
1PI-FRG, which was notably based on a diagrammatic representation of the expansion of
the propagator Gk

(
~φ
)
that is straightforwardly adapted to Gs(ρ) in the present situation.

Therefore, we will not detail again the vertex expansion procedure but we refer instead the
reader to section E.2 for the corresponding derivations. We thus directly give the differential
equations that we have inferred from (G.15):

Γ̇
(2PPI)

s =
λ

24

N∑

a1,a2=1

(
Gs,a1a2 + ρs,a1

ρs,a2

)
, (G.18)

ρ̇s,a1
=

λ

24

N∑

a2=1

Gs,a1a2

(
N∑

a3,a4,a5,a6=1

Gs,a3a5Γ
(2PPI)(3)

s,a2a5a6
Gs,a6a4 − 2

N∑

a3=1

ρs,a3

)
, (G.19)

Γ̇
(2PPI)(2)

s,a1a2
=

N∑

a3=1

ρ̇s,a3
Γ

(2PPI)(3)

s,a3a1a2

+
λ

24

(
2 + 2

N∑

a3,a4,a5,a6,a7,a8=1

Gs,a3a5Γ
(2PPI)(3)

s,a1a5a6
Gs,a6a7Γ

(2PPI)(3)

s,a2a7a8
Gs,a8a4

−
N∑

a3,a4,a5,a6=1

Gs,a3a5Γ
(2PPI)(4)

s,a1a2a5a6
Gs,a6a4

)
,

(G.20)
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Γ̇
(2PPI)(3)

s,a1a2a3
=

N∑

a4=1

ρ̇s,a4
Γ

(2PPI)(4)

s,a4a1a2a3

+
λ

24

(
− 2

N∑

a4,a5,a6,a7,a8,a9,a10,a11=1

Gs,a4a6Γ
(2PPI)(3)

s,a1a6a7
Gs,a7a8Γ

(2PPI)(3)

s,a2a8a9
Gs,a9a10Γ

(2PPI)(3)

s,a3a10a11
Gs,a11a5

−2
N∑

a4,a5,a6,a7,a8,a9,a10,a11=1

Gs,a4a6Γ
(2PPI)(3)

s,a2a6a7
Gs,a7a8Γ

(2PPI)(3)

s,a1a8a9
Gs,a9a10Γ

(2PPI)(3)

s,a3a10a11
Gs,a11a5

−2
N∑

a4,a5,a6,a7,a8,a9,a10,a11=1

Gs,a4a6Γ
(2PPI)(3)

s,a1a6a7
Gs,a7a8Γ

(2PPI)(3)

s,a3a8a9
Gs,a9a10Γ

(2PPI)(3)

s,a2a10a11
Gs,a11a5

+2
N∑

a4,a5,a6,a7,a8,a9=1

Gs,a4a6Γ
(2PPI)(4)

s,a1a2a6a7
Gs,a7a8Γ

(2PPI)(3)

s,a3a8a9
Gs,a9a5

+2
N∑

a4,a5,a6,a7,a8,a9=1

Gs,a4a6Γ
(2PPI)(4)

s,a1a3a6a7
Gs,a7a8Γ

(2PPI)(3)

s,a2a8a9
Gs,a9a5

+2
N∑

a4,a5,a6,a7,a8,a9=1

Gs,a4a6Γ
(2PPI)(4)

s,a2a3a6a7
Gs,a7a8Γ

(2PPI)(3)

s,a1a8a9
Gs,a9a5

−
N∑

a4,a5,a6,a7=1

Gs,a4a6Γ
(2PPI)(5)

s,a1a2a3a6a7
Gs,a7a5

)
,

(G.21)

Γ̇
(2PPI)(4)

s = ρ̇sΓ
(2PPI)(5)

s

+
λ

24

(
8G

3

sΓ
(2PPI)(3)

s Γ
(2PPI)(5)

s + 6G
3

s

(
Γ

(2PPI)(4)

s

)2

− 36G
4

s

(
Γ

(2PPI)(3)

s

)2

Γ
(2PPI)(4)

s

+ 24G
5

s

(
Γ

(2PPI)(3)

s

)4

−G2

sΓ
(2PPI)(6)

s

)
,

(G.22)

where we have used the shorthand notations ρs ≡ ρs,1 and Γ
(2PPI)(n)

s ≡ Γ
(2PPI)(n)

s,1···1 ∀n in (G.22)
which is only valid at N = 1.

G.2.2 Kohn-Sham functional renormalization group

Remaining in the framework of the (0+0)-D O(N) model under consideration, we then present
the corresponding equation system for the KS-FRG, which is obtained by treating the master
equation of the KS-FRG expressing the derivative γ̇s(ρ) in the same footing. This master
equation was given by (4.500), i.e.:

γ̇s(ρ) =
1

2
V̇s

N∑

a1=1

ρa1 +
N∑

a1,a2=1

ρa1Γ
(2)

KS,s,a1a2
ρ̇s,a2

+
λ

24

(
N∑

a1,a2=1

Gs,a1a2(ρ) +
N∑

a1,a2=1

ρa1ρa2

)
, (G.23)

where the propagator Gs(ρ) is given by (G.16) which is equivalent to:

G−1
s,a1a2

(ρ) ≡ Γ(2PPI)(2)
s,a1a2

(ρ) = Γ
(2)
KS,s,a1a2

(ρ) + γ(2)
s,a1a2

(ρ) . (G.24)

The vertex expansion is now applied by expanding both sides of (G.23) around the configuration
ρ = ρs that extremizes γs(ρ) (i.e. γ(1)

s,a = 0 ∀a, s). Notably, the expansion of the LHS of (G.23)
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directly follows from:

γs(ρ) = γs +
∞∑

n=2

1

n!

N∑

a1,··· ,an=1

γ(n)
s,a1···an (ρ− ρs)a1

· · · (ρ− ρs)an . (G.25)

We refer once again to section E.2 for the details of the derivations underlying the vertex
expansion and directly give instead the differential equations that we obtained by applying this
procedure to (G.23):
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Note that (G.30), which is only valid at N = 1, involves the shorthand notations ρs ≡ ρs,1,
Γ

(n)

KS,s ≡ Γ
(n)

KS,s,1···1 ∀n and γ(n)
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Appendix H

Summary in French - Résumé en français

Les approches de type intégrale fonctionnelle résultent d’une formulation particulière de la
théorie quantique des champs, produit de la fusion entre la théorie des champs et la formulation
de la mécanique quantique basée sur les intégrales de chemin [104, 105]. Celles-ci sont donc
souvent aussi appelées approches de type intégrale de chemin et se sont avérées extrêmement
pertinentes dans des domaines de recherche très variés, incluant notamment plusieurs domaines
de la physique qui traitent du problème à N corps quantique (physique de la matière condensée,
physique nucléaire, physique des particules, ...). Ce travail de thèse vise à expliquer comment
différentes techniques de ce type, et surtout celles de l’état de l’art, permettent de décrire
les systèmes quantiques à N corps. Il paie une attention particulière aux systèmes fortement
corrélés de taille finie, ce qui est le cas des noyaux atomiques notamment. Les travaux visant à
décrire des systèmes nucléaires à l’aide d’approches de type intégrale de chemin demeurent peu
nombreux, préliminaires mais prometteurs [53, 54, 56, 465–469], et cette thèse s’inscrit ainsi
dans cette lignée, tout en s’adressant à l’ensemble des communautés intéressées par le problème
à N corps quantique.

Le chapitre 1 de cette thèse présente un état des lieux des approches utilisées à l’heure
actuelle pour traiter le problème à N corps nucléaire. Pour une telle discussion, il faut tout
d’abord avoir en tête les caractéristiques principales des noyaux atomiques : i) Les noyaux
sont constitués de fermions, à savoir les nucléons (i.e. les protons et les neutrons), qui sont
fortement corrélés ; ii) Les nucléons sont eux-mêmes des particules composites puisqu’ils sont
constitués de quarks et de gluons, ce qui implique que l’interaction nucléon-nucléon (NN) dérive
de la dynamique des quarks et des gluons ; iii) Les noyaux sont des systèmes auto-confinés,
i.e. les nucléons d’un noyau sont confinés dans un potentiel qu’ils génèrent eux-mêmes ; iv) Les
noyaux sont des systèmes mésoscopiques (i.e. de taille finie) et ne peuvent donc pas manifester
de brisure de symétrie spontanée (SSB).

Concernant tout d’abord la construction formelle de l’interaction NN, une approche fiable
permettrait selon le point ii) de connecter directement l’interaction ainsi construite à celle
gouvernant la physique des quarks et des gluons, décrite notamment par la chromodynamique
quantique (QCD). Une approche de l’état de l’art consiste à développer des interactions NN
à travers des théories effectives de basse énergie de la QCD, appelées théories effectives des
champs (EFTs) chirales [19–21]. De cette manière, on construit une interaction NN nue, c’est-
à-dire qui ne prend pas en compte les effets du milieu. Ces derniers sont alors capturés par
l’étape du traitement du problème à N corps, i.e. l’étape de traitement de cette interaction dans
le but d’en extraire des observables. Ce processus en deux étapes (construction de l’interaction
+ traitement du problème à N corps) caractérise toute approche microscopique visant à décrire
un système nucléaire. Une telle philosophie basée sur une interaction NN nue définit ainsi les
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approches dites ab initio, dont les implémentations les plus modernes sont souvent basées sur des
EFTs chirales, et donc explicitement reliées à la QCD. Il est également important de mentionner
que ces techniques ab initio sont systématiquement améliorables dans le sens où l’on peut y
définir un certain ordre ou niveau d’approximation, que l’on peut éventuellement améliorer
en calculant un ordre suivant. Autrement dit, les approches ab initio sont particulièrement
adaptées pour contrôler la physique qui est prise en compte dans nos modèles. Ces avantages
ont bien entendu un prix, plus précisément sur le plan numérique, si bien que les techniques ab
initio ne peuvent pas encore être appliquées aux noyaux les plus lourds (pas à la majorité des
noyaux composés de plus de 100 nucléons notamment), même si leur portée d’application ne
cesse de s’accroître à l’heure actuelle.

Il y a également l’approche énergie fonctionnelle de la densité (EDF) [7, 8] qui constitue une
alternative aux techniques ab initio. Il s’agit aujourd’hui de la seule approche microscopique
qui peut être appliquée à tous les systèmes nucléaires (i.e. à tous les noyaux atomiques mais
aussi e.g. aux étoiles à neutrons). Contrairement aux techniques ab initio, l’approche EDF
n’est pas systématiquement améliorable et repose sur une interaction NN effective (c’est-à-dire
une interaction NN incorporant déjà au moins partiellement les effets du milieu nucléaire).
Alors qu’une interaction résultant d’une EFT dans le cadre d’une méthode ab initio prend la
forme d’un lagrangien ou d’un hamiltonien, celle-ci est encodée dans une fonctionnelle de la
matrice densité à un corps (aussi appelée fonctionnelle de la densité ou EDF) dérivant d’un
pseudo hamiltonien pour l’approche EDF. À cet égard, cette dernière ressemble ainsi à la
théorie fonctionnelle de la densité (DFT) [40–42]. Il y a cependant deux différences essentielles
entre EDF et DFT : i) L’approche EDF est phénoménologique dans le sens où la construction
de la fonctionnelle de la densité sous-jacente repose sur une ansatz et non sur des théorèmes
d’existence comme les théorèmes de Hohenberg-Kohn sur lesquels se base la DFT. De plus,
les théorèmes de Hohenberg-Kohn [40] sont définis pour des systèmes soumis à un potentiel
externe : leur formulation dans le cadre de systèmes auto-confinés comme les noyaux atomiques
est toujours sujette à débats ; ii) Contrairement à l’EDF, la DFT n’est pas adaptée à décrire
les systèmes à couches ouvertes (et qui exhibent donc des comportements collectifs), ce qui
se traduit techniquement par le fait que les théorèmes de Hohenberg-Kohn et le schéma de
Kohn-Sham ne sont formulés que pour des systèmes ne manifestant aucune brisure de symétrie.
Le caractère phénoménologique discuté dans le point i) implique que l’approche EDF n’est pas
explicitement connectée à la QCD, contrairement aux techniques ab initio. En contrepartie,
il induit également, en combinaison avec les méthodes de traitement des EDFs, que le coût
numérique sous-jacent demeure suffisamment faible pour étudier tous les systèmes nucléaires.

Concernant justement les méthodes de traitement des EDFs, à savoir le traitement du prob-
lème à N corps, nous pouvons à présent expliciter quelques points importants liés au point
ii). Le traitement des EDFs se scinde généralement en deux étapes [8]. La première, appelée
single-reference (SR) EDF, consiste à appliquer un principe variationnel à la fonctionnelle util-
isée : les relations résultantes à résoudre sont en général des équations Hartree-Fock-Bogoliubov
(HFB) [75–78], aussi appelées équations Bogoliubov-de Gennes. Cette étape est ainsi basée sur
une approximation de champ moyen, ce dernier prenant en général la forme d’un déterminant
de Slater brisant certaines symétries dont la nature dépend du type de comportement collectif
que l’on cherche à décrire. En physique nucléaire, ces SSBs concernent typiquement le groupe
des translations spatiales (les noyaux sont des systèmes mésoscopiques et donc localisés dans
l’espace), le groupe U(1) (la plupart des noyaux sont superfluides) et le groupe SU(2) (les
noyaux peuvent également être non-sphériques, ce qui est qualifié de déformation nucléaire).
Comme dit précédemment, les noyaux atomiques sont des systèmes mésoscopiques et ne peu-
vent donc pas manifester de SSB. Par conséquent, les symétries brisées au niveau SR EDF
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doivent être restaurées via une seconde étape appelée multi-reference (MR) EDF. Ainsi, dans
le cadre de l’approche EDF, ce mécanisme de brisures et de restaurations de symétrie permet de
capturer des corrélations associées à divers phénomènes collectifs de manière particulièrement
efficace pour des systèmes nucléaires, d’où le point ii) évoqué ci-dessus. Plus concrètement, dif-
férentes réalisations de l’étape MR EDF sont mentionnées dans le chapitre 1, et en particulier
la projected generator coordinate method (PGCM) qui repose sur un autre principe variationnel
optimisant les poids d’une superposition d’états restaurant ainsi la ou les symétrie(s) spontané-
ment brisée(s) au niveau SR EDF. Ces superpositions impliquent une somme sur les différentes
valeurs du ou des paramètre(s) d’ordre associé(s) à cette ou ces symétrie(s) brisée(s). Ce
paramètre est un degré de liberté (bosonique) collectif, de même que la densité qui intervient
dans la fonctionnelle utilisée. Cela souligne l’importance de tels degrés de liberté pour traiter
efficacement le problème à N corps nucléaire.

Il serait bien sûr extrêmement intéressant de construire des modèles possédant à la fois la
fiabilité des méthodes ab initio (qui découle de leur caractère systématiquement améliorable et
de leur lien explicite avec la QCD) et l’efficacité de l’approche EDF (liée à son coût numérique
gérable pour les outils actuels, même pour les systèmes nucléaires les plus complexes). Notre but
général est de construire des modèles nucléaires connectés à la QCD et dont l’implémentation
reste abordable d’un point de vue numérique. Il y a bien entendu plusieurs directions pos-
sibles à suivre dans cette optique. En particulier, la formulation de la théorie quantique des
champs basée sur les intégrales de chemin est une option pertinente pour diverses raisons.
Parmi ces dernières, on peut notamment mentionner que les approches de ce formalisme sont
systématiquement améliorables et qu’elles sont adaptées pour traiter des lagrangiens ou des
hamiltoniens (qui résulteraient par exemple d’EFTs de la QCD). De plus, puisque l’importance
des degrés de liberté collectifs a été soulignée ci-dessus, il convient également d’insister sur le
fait qu’il existe différentes techniques inhérentes à ce formalisme pour introduire de tels ob-
jets, comme e.g. les transformations de Hubbard-Stratonovich (HSTs) [83, 84] ou encore les
méthodes utilisant des actions effectives (EAs) n-particle-(point-)irreducible (nP(P)I). Comme
mentionné précédemment, il se trouve que les approches basées sur des intégrales de chemin
ont été peu exploitées en physique nucléaire et les applications effectuées demeurent prélimi-
naires mais prometteuses [53, 54, 56, 465–469]. Ceci dit, le formalisme des intégrales de chemin
pourrait permettre de répondre à des questions ouvertes soulevées par les modèles nucléaires
actuels. Par exemple, les EDFs dérivent de pseudo hamiltoniens dépendant de la densité et
cette dépendance est source de spuriosités mais permet de construire une interaction sous la
forme d’une EDF qui prend en compte les effets du milieu nucléaire : l’origine de cette dépen-
dance, qui est au cœur de l’approche EDF, est toujours sujette à débats à l’heure actuelle.
Il y a donc de nombreux indicateurs appuyant la pertinence des approches de type intégrale
de chemin pour construire des modèles nucléaires fiables. Ce travail de thèse est une étude
exploratoire de telles approches dans le cadre d’un toy model, à savoir la théorie ϕ4 (0+0)-D
et O(N)-symétrique ou plus simplement modèle O(N) (0+0)-D. Considérant l’importance des
modèles O(N) [86–88] et des techniques basées sur des intégrales de chemin [87, 89, 90] en
physique théorique, la pertinence du travail ainsi réalisé dépasse clairement les frontières de la
physique nucléaire. Néanmoins, le lien avec le problème à N corps nucléaire sera également
mis en exergue régulièrement à travers cette étude. Le chapitre 1 se termine par une annonce
de plan indiquant que les méthodes testées sont séparées en deux catégories : les approches
de type groupe de renormalisation fonctionnel (FRG) et les autres qualifiées de techniques
diagrammatiques. Celles-ci font respectivement l’objet des chapitres 4 et 3. Le chapitre 2
s’attache à définir techniquement ces deux catégories d’approches ainsi que le toy model choisi
et le chapitre 5 contient la conclusion de cette thèse.
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Le chapitre 2 de cette thèse définit tout d’abord les principales fonctionnelles manipulées
dans le cadre des approches de type intégrale de chemin, à savoir la fonction de partition, la
fonctionnelle de Schwinger et les EAs nPI [107–115]. Les EAs nPPI sont abordées dans la
présente étude mais discutées en détail dans le chapitre 3 uniquement, où l’on explicite notam-
ment le lien entre EA 2PPI et DFT [85, 162–165]. Le début du chapitre 2 fournit également les
équations permettant d’obtenir à partir de ces fonctionnelles les grandeurs physiques d’intérêt
pour ce travail de thèse, à savoir l’énergie et la densité à l’état fondamental, notées respec-
tivement Egs et ρgs, ainsi que le potentiel effectif Veff . Ensuite, une section clarifie ce que l’on
qualifie d’approches diagrammatiques dans le cadre de cette étude : les diagrammes en ques-
tion sont générés par le théorème de Wick [124] à travers une relation que l’on démontre (on
fait ainsi référence à la notion d’intégration gaussienne traitée en détail dans l’annexe A). Des
diagrammes peuvent également être utilisés dans le cadre d’approches de type FRG mais (en
général) pas dans le but de représenter les contractions associées au théorème de Wick. Concer-
nant le FRG justement, quelques caractéristiques de la philosophie sous-jacente sont aussi mises
en avant, à savoir notamment l’implémentation dans le cadre du FRG basé sur l’équation de
Wetterich [126] (que l’on appelle également 1PI-FRG) de l’intégration par couches d’impulsion
proposée par Wilson [95–97] et particulièrement efficace pour décrire les phénomènes critiques.
Le FRG basé sur l’équation de Wetterich est aujourd’hui clairement l’approche FRG la plus
répandue. Dans le cadre d’applications à des systèmes fermioniques, cette méthode est souvent
combinée avec une bosonification dépendante de l’échelle (appelée scale-dependent bosonization
ou flowing bosonization), la bosonification étant mise en œuvre via une HST [128–133, 135].
Une telle approche est en général utilisée pour : i) gérer l’ambiguïté de Fierz [136] ; ii) changer
de degrés de liberté au cours du flow (e.g. passer des quarks aux mésons) ; iii) étudier les SSBs
et les transitions de phase. L’ambiguïté de Fierz se traduit par une dépendance non-physique
(par rapport à un paramètre de champ moyen) des résultats obtenus par la théorie du champ
moyen (MFT) combinée avec le 1PI-FRG, ce qui découle du caractère fermionique du problème
traité. Cependant, ce problème est absent du modèle O(N) étudié dans le cadre de la présente
thèse puisque celui-ci n’implique aucun champ fermionique. On définit ainsi ce toy model dans
la dernière section du chapitre 2. Celui-ci est basé sur l’action classique:

S
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~̃ϕ
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m2

2
~̃ϕ

2
+
λ

4!

(
~̃ϕ

2
)2

, (H.1)

où m est la masse associée au champ ϕ̃a (a = 1, · · · , N), λ une constante de couplage et le
champ réel fluctuant ϕ̃a est défini par l’application ϕ̃a : {•} → R, où {•} indique un espace-
temps ponctuel (i.e. sans dimension d’espace ni de temps), résultant du caractère (0+0)-D du
modèle. Un champ ϕ̃a correspond à une composante du vecteur ~̃ϕ, soit:

~̃ϕ ≡



ϕ̃1
...
ϕ̃N


 . (H.2)

L’action classique (H.1) est également invariante sous les transformations du groupe O(N)
que l’on définit mathématiquement dans le chapitre 2. La simplicité d’un tel modèle peut
être considérée comme un avantage important pour la présente étude puisque l’implémentation
numérique des méthodes testées peut être réalisée à moindre coût. En d’autres termes, le toy
model choisi est un terrain propice pour effectuer une étude comparative exhaustive des tech-
niques considérées. Il s’agit également d’un modèle exactement soluble, ce qui nous permettra
de juger la performance des méthodes testées en comparant les résultats obtenus avec les solu-
tions exactes correspondantes. En particulier, la solution exacte pour le potentiel effectif Veff

nous permet de montrer que, même si la symétrie O(N) peut être spontanément brisée par la
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théorie classique (e.g. lorsque m2 < 0, Re(λ) > 0 et Im(λ) = 0), aucune SSB n’est présente
au niveau de la solution exacte. Cette dernière jouant ici le rôle du système quantique, cette
caractéristique permet ainsi de faire le lien avec l’étude de systèmes mésoscopiques qui ne mani-
festent eux non plus aucune SSB. Enfin, on précise que les calculs réalisés pour l’ensemble de ce
travail de thèse seront effectués dans deux régimes, l’un brisant la symétrie O(N) spontanément
au niveau classique (m2 < 0), l’autre ne brisant aucune symétrie (m2 > 0), toujours avec les
conditions Re(λ) > 0 et Im(λ) = 0. De plus, la majorité des applications numériques sera
réalisée pour N = 1 ou N = 2. Il faut noter que la symétrie O(N) n’est continue que pour
N ≥ 2 : il s’agit de la situation dans laquelle des modes de Goldstone sont générés si la symétrie
O(N) est brisée spontanément (ce qui ne peut donc se produire qu’au niveau classique pour
le toy model étudié). On s’intéressera également particulièrement au régime non-perturbatif
(λ/4! & 1) du modèle choisi, pour faire notamment le lien avec le problème à N corps nucléaire.

Le chapitre 3 se concentre donc sur les techniques diagrammatiques. Dans le cadre de ce
chapitre, le formalisme est d’abord développé pour un modèle O(N) en dimensions arbitraires,
puis le cas (0+0)-D est considéré pour les applications numériques. Afin de préparer les études
des chapitres 3 et 4, on commence par utiliser une HST pour définir différentes représentations
du modèle O(N) étudié. Sans HST, il y a la représentation originale de ce modèle basée
sur N degrés de liberté (comme ceux impliqués dans (H.2) en (0+0)-D) interagissant via une
interaction quartique O(N)-symétrique (comme celle impliquée dans (H.1) en (0+0)-D). En
appliquant une HST à la fonction de partition de la représentation originale, on peut introduire
un champ collectif σ̃ en plus des N degrés de liberté originaux. L’interaction quartique originale
disparaît dans ce processus de telle sorte que ces N+1 degrés de liberté interagissent désormais
via une interaction de Yukawa (elle aussi O(N)-symétrique) et la représentation ainsi obtenue
est qualifiée de mixte dans la présente étude. Enfin, il se trouve que, dans la fonction de partition
de la représentation mixte, l’intégrale (fonctionnelle) sur les N degrés de liberté originaux est
gaussienne et peut donc être effectuée exactement, de telle sorte que la fonction de partition
résultante n’implique plus que σ̃ comme champ fluctuant. Cela mène donc à la troisième
et dernière représentation considérée dans cette thèse, à savoir la représentation collective.
Les représentations originale, mixte et collective sont toutes des versions mathématiquement
équivalentes du modèle étudié puisque les HSTs et l’intégration gaussienne sont toutes basées sur
des relations mathématiques exactes. En d’autres termes, les fonctions de partition de ces trois
représentations contiennent exactement la même information car aucune approximation n’est
réalisée pour obtenir la représentation mixte ou collective à partir de l’originale. Cependant,
l’application d’une technique donnée (avec un ordre de troncation donné) pourra mener à des
performances différentes selon la représentation choisie, ce qui est analysé en détail par la suite.

On passe ensuite à la première technique diagrammatique traitée dans le chapitre 3, à
savoir la loop expansion (LE). Toutes les techniques diagrammatiques reposent sur une sépa-
ration (splitting en anglais) de l’action classique (avec possiblement des termes de source) en
une partie résiduelle et une partie non-perturbée autour de laquelle le développement en série
diagrammatique de la fonctionnelle de Schwinger (ou de la fonction de partition) du modèle est
réalisé selon le théorème de Wick (la détermination des diagrammes résultant de la LE est dé-
taillée dans l’annexe C). Le paramètre organisant les contributions à ce développement en série
est la constante de Planck réduite ~. Dans le cadre de la LE, cette séparation est réalisée de la
manière suivante : l’action classique de la représentation considérée (ajoutée à un ou plusieurs
terme(s) de source permettant d’avoir accès à toutes les fonctions de corrélation du modèle) est
développée autour d’un de ces extrema et les termes qui sont au maximum quadratiques par
rapport à (aux) champ(s) fluctuant(s) constituent la partie non-perturbée. On montre que la
LE est équivalente pour les représentations originale et mixte. En particulier, les LEs originale
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et mixte ne donnent aucun résultat fini lorsquem2 < 0 et N ≥ 2, ce qui peut être attribué à une
manifestation du théorème de Goldstone [153] en (0+0)-D. De plus, toujours pour les représen-
tations originale et mixte, la LE produit des séries (e.g. pour la fonctionnelle de Schwinger, Egs

ou ρgs) qui sont toutes organisées par rapport à la constante de couplage λ du modèle O(N)
étudié (en plus de l’être par rapport à ~). Ce n’est en revanche pas le cas pour la LE formulée
dans la représentation collective, qui est ainsi intrinsèquement non-perturbative. On montre
alors que, pour un ordre de troncation donné par rapport à ~, la LE collective surpasse claire-
ment ses homologues original et mixte. Cela est illustré jusqu’au troisième ordre non-trivial
de la LE (i.e. jusqu’à l’ordre O(~4) pour Egs ou ρgs) et, à notre connaissance, la LE collective
n’avait jamais été appliquée à un ordre aussi élevé précédemment. On prouve également que la
symétrie O(N) est automatiquement restaurée par la LE collective alors que les LEs originale
et mixte mènent toujours à une brisure spontanée non-physique (i.e. pas au niveau classique)
de cette symétrie. Les résultats montrent également que les performances de la LE collective
s’améliorent lorsque N augmente. Cela est cohérent avec le fait que le développement en 1/N ,
qui est une méthode répandue (et traitée explicitement dans l’annexe B reprenant notamment
les travaux de Keitel et Bartosch [147] ainsi que ceux de Rosa et collaborateurs [150]) [88, 166],
et la LE collective coïncident au niveau de leur premier ordre non-trivial, ce qui est montré par
les résultats de la présente étude. Cependant, cette équivalence n’est plus valable à des ordres
de troncation plus élevés puisque les séries résultant de la LE sont asymptotiques, contraire-
ment à celles du développement en 1/N . Cela se manifeste notamment par le fait que, plus on
augmente l’ordre de troncation de la LE par rapport à ~ (et ce quelque soit la représentation
choisie), les résultats se dégradent pour un certain régime de valeurs de la constante de couplage
λ. Pour les représentations originale et mixte, cette dégradation se manifeste dans l’ensemble
du régime non-perturbatif.

Il a été mentionné précédemment que la LE est réalisée autour d’un extremum de l’action
classique mais que se passe-t-il lorsque cette action a plusieurs extrema ? Dans la formula-
tion standard de la LE, il faut effectivement en choisir un mais celle-ci peut être généralisée à
l’aide de la théorie de Picard-Lefschetz [175, 176] pour prendre en compte tous les extrema de
l’action classique. Pour ce faire, on détaille comment décomposer le contour d’intégration de
la fonction de partition du toy model étudié (uniquement à N = 1) pour obtenir une représen-
tation en transsérie (et non en série) de cette fonction de partition, et pour en déduire ensuite
les quantités calculées dans le cadre de cette étude, à savoir Egs et ρgs. La représentation en
transséries correspond à une combinaison de séries obtenues via la LE standard évaluée à chacun
des extrema de l’action classique et ces séries sont toutes pondérées par un terme exponentiel
dont l’argument implique l’action classique évaluée au même extremum. Cependant, toutes ces
séries sont toujours asymptotiques et même les transséries obtenues ne peuvent donc pas être
considérées comme un résultat final. Pour obtenir une information fiable (et donc une approche
systématiquement améliorable) à partir de la LE combinée ou non avec la théorie de Picard-
Lefschetz (et à partir de toute autre technique basée sur des séries asymptotiques), on peut
appliquer diverses méthodes de resommation aux séries asymptotiques déterminées. Trois de
ces méthodes ont été exploitées dans ce travail de thèse : i) La resommation de Padé-Borel [173,
180–183] est une technique très connue et répandue, qui utilise des approximants (appelés ap-
proximants de Padé) sous forme de fractions rationnelles ; ii) Le conformal mapping [186] repose
sur une application du plan de Borel dans un cercle de rayon unité : c’est par cette application
que l’on peut redistribuer l’information sur le comportement de la série originale (asympto-
tique) aux ordres élevés à tous les coefficients d’une nouvelle série à partir de laquelle on peut
donc construire de meilleures approximations ; iii) La resommation Meijer-G ou resommation
Borel-hypergéométrique [187–193] est quant à elle basée sur d’autres approximants (qui peu-
vent être exprimés à l’aide de fonctions G de Meijer [194, 195]) qui manifestent des coupures
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de branchement, ce qui les différencie des pôles des approximants de Padé. A notre connais-
sance, la présente étude est la première à appliquer la resommation Borel-hypergéométrique à
un modèle O(N) (mis à part le cas (0+0)-D à N = 1) ainsi qu’à combiner la LE collective avec
une méthode de resommation. Concernant les résultats obtenus, l’apport de la représentation
en transséries est clairement illustré dans un régime pertinent (à savoir pour m2 < 0 à N = 1).
Cependant, même si la resommation Borel-hypergéométrique se démarque, il s’avère que, pour
les LEs originale et mixte, la resommation ne permet d’obtenir une description satisfaisante du
régime non-perturbatif du toy model choisi qu’à partir du troisième ordre non-trivial, ce qui
peut être extrêmement difficile à atteindre dans le cadre d’une théorie réaliste.

On passe ensuite à la deuxième technique diagrammatique traitée dans le chapitre 3, à savoir
la théorie des perturbations optimisée (OPT) [90, 154, 157–160, 183, 196–221]. Dans le cadre
de cette approche, on ajoute et on retranche un terme quadratique à l’action classique, de telle
sorte à habiller les parties libre (i.e. quadratique) et interaction de cette action. Les versions
habillées de ces parties libre et interaction constituent respectivement les parties non-perturbée
et résiduelle à partir desquelles le développement diagrammatique de l’OPT est réalisé (la
détermination des diagrammes résultant de l’OPT est détaillée dans l’annexe C). La partie
quadratique ainsi ajoutée implique un champ classique σ que l’on peut ensuite ajuster pour
optimiser ce développement, ce qui explique le nom de la méthode OPT. Différents critères
existent pour ajuster ce champ classique et trois d’entre eux ont été testés dans ce travail de
thèse : i) Le principe de moindre sensibilité (PMS) consiste à extrémiser la série diagrammatique
tronquée par rapport au champ classique σ ; ii) La méthode du turning point (TP) revient à
chercher les points d’inflexion (et non les extrema comme le PMS) de la série tronquée par
rapport à σ ; iii) La condition auto-cohérente (SCC) impose que certaines quantités choisies
soient reproduites exactement à l’ordre zéro ainsi qu’à l’ordre de troncation du développement
de l’OPT (si la quantité choisie est la densité, on a ainsi une connexion claire avec le schéma de
Kohn-Sham de la DFT). Il se trouve que le PMS et la méthode du TP peuvent être soit appliqués
directement à la série décrivant la quantité que l’on cherche à calculer (e.g. Egs), soit à la série
exprimant la fonction de partition (à partir de laquelle la grandeur physique d’intérêt est donc
déterminée a posteriori). Les résultats obtenus (notamment avec le PMS pour déterminer Egs)
montrent que la première option est meilleure que la seconde. On note que le PMS et la méthode
du TP ont d’ailleurs déjà été appliqués au modèle O(N) de cette étude mais uniquement dans
le régime où m2 > 0 [150]. Dans cette thèse, on étend cette étude au régime avec m2 < 0 (où
l’on rappelle que la symétrie O(N) est spontanément brisée au niveau classique) et compare
les résultats obtenus avec la SCC. Bien que le critère du PMS s’avère être clairement le plus
performant à tous les ordres testés de l’OPT, il ne mène pas aux équations les plus simples
à résoudre. Pour cette raison, la présente étude met en avant la SCC comme une alternative
viable pour construire des modèles abordables d’un point de vue numérique. On peut aussi
noter que, contrairement à la LE, la symétrie O(N) est automatiquement conservée dans le
cadre de l’OPT qui ne peut donc pas mener à une SSB non-physique pour le toy model traité.
Enfin, il convient de préciser que l’ensemble des calculs réalisés pour l’OPT ont été effectués
dans la représentation originale du modèle O(N). Il se trouve que l’OPT peut être considérée
comme une alternative aux HSTs qui requièrent de choisir un canal à absorber pour introduire
un nouveau champ quantique. A l’inverse, l’OPT permet en principe de traiter tous les canaux
d’un modèle donné de manière équitable en introduisant un champ classique (et non quantique)
pour chacun d’entre eux (toujours en ajoutant et en soustrayant un terme quadratique à l’action
classique). Les problèmes rencontrés par les HSTs avec les modèles basés sur différents canaux
d’importance comparable est bien connu [160] et sont donc remarquablement contournés par
l’OPT. Ceci dit, cette caractéristique n’affecte pas la présente étude puisque le toy model choisi
n’implique qu’un seul canal. Il est toutefois important de garder cet aspect à l’esprit dans
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le but d’extrapoler les conclusions tirées de cette thèse à des théories plus réalistes avec les
précautions qui s’imposent.

Ni la LE ni l’OPT n’implique de fonctionnelle reliant l’énergie à la densité et donc aucune
méthode exploitée à ce stade ne permet d’établir un lien clair avec l’approche EDF nucléaire.
Ce n’est pas le cas des théories des perturbations auto-cohérentes, qui sont basées sur des EAs,
vers lesquelles on se tourne ensuite. Une EA est définie comme transformée de Legendre de la
fonctionnelle de Schwinger correspondante : différents types d’EAs (EAs 1PI, 2PI, 3PI ... ou
2PPI, 3PPI, ...) sont obtenues selon les termes de source introduits dans cette fonctionnelle
de Schwinger. Lorsqu’une expression diagrammatique de cette dernière est établie (e.g. via
la LE), on peut toujours en principe en déduire une expression pour l’EA correspondante par
e.g. la méthode de l’inversion (qui est appliquée dans l’annexe D aux cas des EAs 1PI, 2PI et
4PPI) [162, 163]. Les quantités Egs et ρgs (ou d’autres observables d’intérêt) sont déterminées
en extrémisant l’EA considérée (tronquée à un ordre donné dans son développement) par rap-
port à ses arguments : les équations ainsi obtenues sont appelées équations de gap. Lorsque
le paramètre choisi pour organiser le développement est ~, une EA nPI peut être directement
exprimée en sélectionnant tous les diagrammes nPI dans l’expression de la fonctionnelle de
Schwinger associée et résultant de la LE. Deux paramètres différents ont été considérés pour les
approches diagrammatiques basées sur des EAs, à savoir ~ et λ. Pour l’EA 1PI, on considère
les représentations originale et collective (la représentation mixte n’est pas exploitée pour des
raisons techniques expliquées dans le chapitre 3). Pour l’EA 1PI originale avec ~ ou λ comme
paramètre de développement, on constate que la symétrie O(N) est toujours conservée, ce qui
implique que la solution des équations de gap pour la fonction de corrélation à 1-point (associée
au champ original ~̃ϕ) est toujours nulle. Par conséquent, l’EA 1PI originale n’a aucun moyen de
capturer des corrélations efficacement pour décrire le régime non-perturbatif du modèle O(N)
étudié de manière satisfaisante, ce qui transparaît clairement dans les résultats obtenus. En
revanche, l’EA 1PI collective fait intervenir la fonction de corrélation à 1-point du champ aux-
iliaire σ̃, qui n’est quant à elle pas contrainte par la symétrie O(N). On montre ainsi que cette
approche basée sur l’EA 1PI collective, connue notamment sous le nom d’auxiliary field loop
expansion (LOAF) [167, 242, 253–260], mène à de bien meilleurs résultats que son homologue
utilisant l’EA 1PI originale. Cependant, l’EA 1PI collective possède aussi certains défauts, à
savoir e.g. que les développements diagrammatiques du modèle O(N) sont bien plus difficiles
à déterminer pour la représentation collective que pour l’originale ou la mixte. On étudie donc
ensuite le cas de l’EA 2PI dans le cadre de ces deux dernières représentations. Il convient
de rappeler que des degrés de liberté collectifs sont automatiquement introduits lorsque l’on
manipule des EAs nP(P)I avec n ≥ 2. Les EAs 2PI [108, 109, 118–122] et 2PPI [297, 298]
peuvent être considérées respectivement comme des fonctionnelles de fonctions de Green et
des fonctionnelles de la densité, d’où le lien avec l’approche EDF nucléaire. Dans le cadre du
développement par rapport à ~ et par rapport à λ, les EAs 2PI originale et mixte sont toutes
les deux poussées jusqu’à leur troisième ordre non-trivial, ce qui est une première pour le cas
mixte [153, 168, 291–293, 295, 296] à notre connaissance (la détermination des diagrammes
contribuant à l’EA 2PI mixte est aussi détaillée dans l’annexe C). Pour la représentation origi-
nale (et contrairement à la situation mixte), les développements en ~ et en λ coïncident lorsque
l’on impose que les fonctions de corrélation à 1-point s’annulent. On peut aussi noter que les
premiers ordres non-triviaux de l’OPT via le PMS ou la SCC et de la théorie des perturbations
auto-cohérente pour l’EA 2PI originale sont identiques pour Egs : il s’agit du résultat de la
théorie Hartree-Fock. De plus, il se trouve que, dans le cadre des théories des perturbations
auto-cohérentes, les EAs sont elles aussi représentées par des séries asymptotiques. Une re-
sommation de Padé-Borel est développée pour l’EA 2PI originale (en imposant que la fonction
de corrélation à 1-point du champ ~̃ϕ s’annule) ainsi que pour l’EA 2PI mixte avec ~ comme
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paramètre de développement, ce qui constitue aussi une première pour l’EA 2PI mixte. Cette
dernière approche s’avère être la plus performante parmi toutes celles testées dans le chapitre 3,
avec la LE collective et l’OPT basée sur le PMS. L’étude réalisée montre notamment que les
solutions retenues des équations de gap de l’EA 2PI mixte (qui mènent donc à d’excellents
résultats) ne manifestent aucune brisure non-physique de la symétrie O(N), et se distinguent
donc de la LE originale ou mixte. Enfin, pour conclure le chapitre 3, une section clarifie le
lien entre EA 2PPI et DFT (à la Kohn-Sham [85]) [162, 163]. Cependant, il s’avère que, pour
le toy model étudié, les EAs 2PI et 2PPI coïncident en l’absence de brisure spontanée de la
symétrie O(N). Enfin, une dernière section traite l’EA 4P(P)I [115, 229, 305, 318, 319] dans
la représentation originale, avec un développement en ~ et en imposant que les fonctions de
corrélation à 1-point s’annulent : il s’agit à notre connaissance de la première application d’une
technique basée sur une EA 4P(P)I à un modèle O(N). Les résultats obtenus sont décevants,
notamment parce que l’EA 4P(P)I coïncide avec l’EA 2P(P)I (qui est pourtant bien moins
complexe à traiter, que ce soit sur le plan formel ou numérique) pour les deux premiers ordres
non-triviaux de la théorie des perturbations auto-cohérente dans le cas étudié.

Le chapitre 4 traite ensuite les approches de type FRG. L’idée sous-jacente du FRG est
aussi d’ajouter un ou plusieurs terme(s) (contenant une fonction de cutoff ) à l’action classique
du modèle considéré, ce(s) terme(s) impliquant une dépendance par rapport à un paramètre
d’échelle ou de flow qui peut par exemple correspondre à une échelle d’impulsion. De cette
façon, toutes les fonctionnelles du formalisme (e.g. la fonctionnelle de Schwinger ou les EAs)
deviennent dépendantes de ce paramètre. On dérive ainsi une équation différentielle exacte
(d’ordre 1 par rapport au paramètre de flow) pour l’une de ces fonctionnelles, appelée équation
de flow, qui est formulée la plupart du temps pour une EA. L’approche nP(P)I-FRG est donc
basée sur une équation de flow pour une EA nP(P)I. Cette équation différentielle est ensuite
traitée pour en tirer un système infini d’équations intégro-différentielles (qui doit donc être
tronqué). Il convient alors de pointer du doigt un aspect clé des approches FRG, à savoir le
point de départ utilisé pour résoudre ces équations différentielles couplées. Ce point de départ
doit bien entendu correspondre à un système que l’on sait traiter exactement (e.g. système
libre, théorie Hartree-Fock) mais on peut s’attendre à ce que plus le point de départ utilisé
incorpore des corrélations, plus l’approche FRG sous-jacente soit performante. La qualité du
point de départ des approches FRG testées joue ainsi un rôle prépondérant dans l’étude du
chapitre 4.

L’approche FRG la plus répandue est traitée dans un premier temps : il s’agit du 1PI-FRG
qui est basé sur l’équation de Wetterich [126] (cette équation est démontrée dans l’annexe E).
Pour cette approche, la fonction de cutoff est introduite dans la partie libre de l’action clas-
sique, de manière à habiller le propagateur libre de la théorie sous-jacente. Le début du
chapitre 4 explique pourquoi les conditions initiales de l’approche de Wetterich coïncident avec
la théorie classique, ce qui résulte notamment d’une modification de la transformée de Legendre
de l’EA 1PI à l’aide de cette fonction de cutoff. L’extraction d’un système d’équations intégro-
différentielles couplées à partir de l’équation de Wetterich peut être effectuée par diverses méth-
odes, notamment par la vertex expansion [341, 397], la derivative expansion (DE) [324, 329–331,
398, 399] et l’approximation Blaizot-Méndez-Galain-Wschebor (BMW) [430–434]. Cependant,
pour des raisons techniques que l’on explique, la DE et l’approximation BMW ne peuvent pas
être testées dans le cadre du toy model (0+0)-D traité dans cette thèse. Seule la vertex expan-
sion sera donc utilisée dans la présente étude. Le 1PI-FRG sera ainsi appliqué au modèle O(N)
(0+0)-D dans le cadre des représentations originale, mixte et collective (les démonstrations des
équations différentielles couplées résultant de la vertex expansion appliquée à l’équation de
Wetterich de ce toy model sont détaillées dans l’annexe E). Cette application a déjà été réal-
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isée pour la représentation originale dans le régime où m2 > 0 [147]. On teste donc ici une
nouvelle fois la pertinence de l’introduction de degrés de liberté collectifs à travers une HST.
En particulier, l’implémentation de la MFT via le 1PI-FRG mixte est discutée et illustrée par
des applications numériques. Des problèmes de raideur des équations différentielles à traiter se
manifestent dans le régime où m2 < 0 et dans le cadre des représentations originale et mixte.
Le 1PI-FRG collectif traite en revanche le modèle étudié avec la même efficacité quelque soit le
signe de m2. Cependant, dans le régime où m2 > 0, le 1PI-FRG reste le plus performant dans
la représentation mixte.

On se concentre ensuite sur le 2PI-FRG [321, 322] et le 2PPI-FRG [323] qui sont tous
deux définis dans un cadre théorique imposant que toutes les fonctions de corrélation à 1-point
s’annulent. Cela implique donc que la symétrie O(N) ne peut pas être brisée spontanément
par ces approches. A notre connaissance, ces dernières n’ont jamais été appliquées à un modèle
O(N). L’impact de la symétrie O(N) sur les formalismes du 2PI-FRG et du 2PPI-FRG est
donc discuté en détail dans le chapitre 4. Le 2PI-FRG est traité avant le 2PPI-FRG. Différents
avantages d’une formulation basée sur une EA 2PI (qui ne dépend donc pas de variables de
Grassmann puisque toutes les fonctions de corrélation à 1-point sont nulles) sont tout d’abord
mis en avant, comme notamment l’absence d’ambiguïté de Fierz (ce qui est d’ailleurs aussi
un avantage du 2PPI-FRG), marquant ainsi une différence importante avec le 1PI-FRG. Trois
formulations du 2PI-FRG sont traitées : i) le C-flow [321] pour lequel la fonction de cutoff est
introduite en habillant le propagateur libre de la théorie considérée, comme pour le 1PI-FRG
formulé par Wetterich ; ii) le U-flow [322] pour lequel la fonction de cutoff est introduite de
manière à habiller la partie interaction (et non la partie libre) de l’action classique du modèle
traité ; iii) le CU-flow [322] pour lequel la fonction de cutoff habille à la fois la partie libre
et la partie interaction de l’action classique et qui est donc une combinaison du C-flow et
du U-flow. Les équations de flow et les systèmes d’équations différentielles résultant de leur
vertex expansion sont démontrés en détail en dimensions arbitraires dans le chapitre 4 (ainsi
que dans l’annexe F). On considère tout d’abord le C-flow à partir duquel des applications
numériques ont été réalisées dans le cadre des représentations originale et mixte. Deux versions
du C-flow sont testées : i) le truncated C-flow (tC-flow) qui est l’implémentation standard du
C-flow et connue pour être équivalente à la théorie des perturbations auto-cohérente [459], ce
qui est vérifié à diverses reprises dans la présente étude ; ii) le modified C-flow (mC-flow) qui
repose sur une ansatz des vertex 2PI pour tronquer le système infini d’équations différentielles
sous-tendant le C-flow. Pour le tC-flow et le mC-flow, quelques problèmes de raideur sont une
nouvelle fois mis en exergue et discutés notamment en exploitant le lien entre le tC-flow et la
théorie des perturbations auto-cohérente. Quelque soit la représentation choisie, les conclusions
pour le C-flow sont identiques : i) Bien que le tC-flow permet finalement d’appliquer la théorie
des perturbations auto-cohérente en résolvant des équations différentielles couplées d’ordre 1
(au lieu des équations de gap traitées au chapitre 3), les résultats associés se dégradent plus la
troncation du système d’équations différentielles couplées sous-jacent est raffinée, conformément
aux propriétés des séries asymptotiques mises en avant dans le chapitre 3. Le tC-flow n’est
donc pas une approche systématiquement améliorable en soit ; ii) L’ansatz sous-tendant le mC-
flow ne s’avère pas suffisamment fiable pour construire des approches améliorables de manière
systématique. Pour pallier la limitation soulevée par le point i), une combinaison du tC-
flow avec des méthodes de resommation pourrait être testée mais n’est pas traitée par la
présente étude. Il est également expliqué que le C-flow, dans sa version exploitée dans cette
thèse [321], n’est pas adapté pour décrire le régime du modèle O(N) étudié avec m2 < 0.
Pour cette raison, une piste de généralisation du C-flow incluant des fonctions de corrélation
à 1-point non-triviales est suggérée mais présente plusieurs désavantages conséquents mis en
avant. On passe ensuite au U-flow dont trois implémentations sont traitées uniquement dans
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le cadre de la représentation originale (pour des raisons techniques expliquées en détail) : i) le
truncated U-flow (tU-flow) dont le point de départ associé est la théorie libre et qui est basé
sur une approximation particulièrement drastique permettant d’éviter de résoudre l’équation
de Bethe-Salpeter pour traiter les équations différentielles correspondantes ; ii) le plain U-
flow (pU-flow) qui est l’implémentation standard du U-flow dont le point de départ associé
est aussi la théorie libre ; iii) le modified U-flow (mU-flow) qui constitue une modification ou
une généralisation du pU-flow telle que le point de départ de l’approche coïncide désormais
avec les résultats de la théorie des perturbations auto-cohérente (tronquée à l’ordre choisi).
Le pU-flow et le mU-flow peuvent s’avérer particulièrement coûteux numériquement car le
traitement des équations différentielles associées nécessite de résoudre l’équation de Bethe-
Salpeter. Pour cette raison, le tU-flow pourrait être une alternative intéressante mais la présente
étude montre que cette approche ne permet pas de décrire le régime non-perturbatif du toy
model étudié de manière satisfaisante. De plus, le mU-flow se montre bien plus performant que
le tU-flow et le pU-flow, ce qui pouvait être anticipé de par la qualité supérieure de son point
de départ. Le mU-flow est implémenté jusqu’au troisième ordre non-trivial de la procédure
FRG, pour les trois premiers ordres non-triviaux de la théorie des perturbations auto-cohérente
constituant son point de départ, et pour les deux signes de m2. Le point de départ Hartree-
Fock (i.e. le premier ordre non-trivial de la théorie des perturbations auto-cohérente pour
l’EA 2PI originale) s’avère être le meilleur choix et le mU-flow constitue d’ailleurs dans ce cas
l’approche FRG la plus performante du chapitre 4, quelque soit le signe de m2. L’extension
du mU-flow à la représentation mixte est aussi discutée : il s’agit d’une direction intéressante
puisqu’elle permettrait d’utiliser les excellents résultats obtenus avec l’EA 2PI mixte (via la
théorie des perturbations auto-cohérente) au chapitre 3 comme point de départ de la procédure
FRG. Cependant, ce travail requiert encore des développements conséquents sur le plan du
formalisme, ce qui est laissé à de futures investigations. Enfin, le CU-flow est aussi traité
et appliqué numériquement. Une seule implémentation du CU-flow est testée (à savoir son
implémentation standard qui peut être considérée comme une fusion entre le tC-flow et le pU-
flow) : ses performances sont satisfaisantes et comparables à celle du mU-flow avec point de
départ Hartree-Fock dans le régime où m2 > 0. Cependant, le CU-flow ne permet pas de traiter
le cas avec m2 < 0 pour les mêmes raisons que le C-flow.

Le chapitre 4 se termine par une section sur le 2PPI-FRG [323]. L’idée d’une implémentation
de type CU-flow a déjà été mise en avant pour le 2PPI-FRG [164], auquel cas le point de départ
de la procédure FRG pourrait coïncider avec le système de Kohn-Sham. Cependant, cette
formulation n’a pas été formulée complètement car un travail conséquent reste à réaliser sur
le plan du formalisme (notamment pour déterminer les conditions initiales des vertex 2PPI).
Pour les applications numériques, on se concentre donc sur la formulation de type U-flow qui
est la plus utilisée dans les travaux actuels basés sur le 2PPI-FRG [151, 465–469, 473–475].
En parallèle des implémentations de type U-flow ou CU-flow (qui conditionnent uniquement la
manière dont la fonction de cutoff est introduite dans la fonction de partition ou la fonctionnelle
de Schwinger), deux versions du 2PPI-FRG existent : i) le 2PPI-FRG standard qui correspond
à la formulation originelle du 2PPI-FRG [323] ; ii) le Kohn-Sham FRG (KS-FRG) qui est
une modification du 2PPI-FRG standard avec une meilleure convergence (par rapport aux
troncations canoniques utilisées pour le 2PPI-FRG standard, à savoir le standard U-flow (sU-
flow) et le plain U-flow (pU-flow) que l’on définit) obtenue en résolvant l’équation de Kohn-
Sham [41, 42] en plus des équations différentielles sous-jacentes. Les formalismes de ces deux
versions sont développés en détail en dimensions arbitraires dans le chapitre 4 (ainsi que dans
l’annexe G). Les résultats numériques obtenus pour le modèle O(N) (0+0)-D confirment que le
KS-FRG surpasse les versions canoniques du 2PPI-FRG standard (i.e. le 2PPI-FRG standard
avec le sU-flow et le pU-flow). On montre également qu’un schéma de troncation plus raffiné
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(que le sU-flow et le pU-flow), appelé improved U-flow (iU-flow), permet de retrouver les
résultats du KS-FRG avec le 2PPI-FRG standard : cela permet de mettre en avant la puissance
du formalisme du KS-FRG qui est plus facilement généralisable à des modèles plus réalistes
(par rapport au toy model traité dans cette thèse) que le 2PPI-FRG standard basé sur l’iU-flow.
Ainsi, le KS-FRG est la meilleure implémentation du 2PPI-FRG testée dans la présente étude
comparative. On montre notamment qu’avec un choix de fonction de cutoff judicieux, cette
technique peut être utilisée pour décrire le régime du modèle O(N) (0+0)-D avec m2 < 0, et ce
avec la même efficacité que pour le cas où m2 > 0. Il est aussi illustré que, pour un problème
(0+0)-D, les résultats du KS-FRG et du pU-flow du 2PI-FRG coïncident.

Le chapitre 5 conclut ce travail de thèse en résumant les résultats des chapitres 3 et 4 ainsi
qu’en donnant différentes directions possibles à suivre pour de futurs travaux. Une comparaison
est faite entre les meilleures approches testées dans cette thèse, à savoir la LE collective, l’OPT
basée sur le PMS, la théorie des perturbations auto-cohérente basée sur l’EA 2PI mixte et
l’implémentation mU-flow du 2PI-FRG. Le succès des approches basées sur une EA 2P(P)I
et/ou sur une HST (on rappelle que les représentations mixte et collective sont toutes les
deux basées sur une HST) témoigne de la pertinence des degrés de liberté collectifs. Dans ce
chapitre de conclusion, on insiste également sur les limitations du toy model considéré pour
l’étude comparative réalisée, à savoir : i) son caractère (0+0)-D ; ii) le fait qu’il ne possède
qu’un seul canal. Le point i) est à la fois un avantage et un désavantage puisqu’il permet
de tester un grand nombre d’approches avec des temps de calculs raisonnables mais certaines
approches ne peuvent pas être testées pour un modèle (0+0)-D, comme le 1PI-FRG basé sur
la DE ou l’approximation BMW qui ont toutes les deux prouvé leur efficacité [324, 329–331,
398, 399, 430–434]. Concernant le point ii), on peut anticiper que toutes les approches basées
sur une HST rencontreront des difficultés dans le traitement de modèles avec différents canaux
d’importance comparable, comme il a été expliqué au chapitre 3. Cela est notamment le cas de
la LE collective et de la théorie des perturbations auto-cohérente basée sur l’EA 2PI mixte. À
cet égard, on peut dire que l’OPT basée sur le PMS et l’implémentation mU-flow du 2PI-FRG
se démarquent de ce travail de thèse puisqu’elles sont toutes les deux adaptées à traiter ce
genre de modèles. Il faut toutefois noter que, contrairement à l’OPT, les équations à résoudre
dans le cadre du 2PI-FRG devraient être significativement plus complexes dans le cas d’un
modèle à dimension finie, en comparaison avec le problème (0+0)-D étudié dans cette thèse.
Cependant, de récents travaux ont montré des résultats encourageants du 2PI-FRG dans le
cadre d’un modèle (2+1)-D [462]. Une poursuite naturelle de ce travail de thèse serait par
exemple une étude comparative des méthodes testées ici dans le but de traiter un système à
dimension finie avec différents canaux d’importance comparable. Concernant l’approche EDF
utilisée en physique nucléaire, un lien entre l’étape MR EDF et la formulation mU-flow du
2PI-FRG pourrait également être clarifié.
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Titre : Approches de type intégrale de chemin pour l’étude de systèmes quantiques à N
corps fortement corrélés
Mots clés : Groupe de renormalisation fonctionnel, Diagrammes de Feynman, Action effective, Théorie
de la resommation, Brisure de symétrie spontanée, Modèle O(N)

Résumé : Le cœur de ce travail de thèse est
la formulation de la théorie quantique des champs
basée sur les intégrales de chemin et sa capacité à
décrire les systèmes quantiques à N corps fortement
corrélés de taille finie. Les phénomènes collectifs
gouvernant la phénoménologie de tels systèmes peu-
vent être efficacement décrits par l’implémentation
de brisures de symétrie spontanées (SSB) dans le
cadre d’approches de type champ moyen. Cepen-
dant, la limite thermodynamique n’étant pas perti-
nente pour des systèmes de taille finie, ces derniers
ne peuvent manifester de SSB et les symétries
brisées au niveau du champ moyen doivent donc
être restaurées. L’efficacité d’approches théoriques
à traiter les systèmes quantiques de taille finie
peut donc être étudiée à travers leur capacité
à restaurer les symétries brisées spontanément.
Dans ce travail de thèse, nous prenons pour cadre
théorique un modèle O(N) à zéro dimension pour
réaliser une telle étude avec différentes techniques

de type intégrale de chemin : théorie des pertur-
bations combinée avec diverses méthodes de resom-
mation (Padé-Borel, Borel-hypergéométrique, con-
formal mapping), versions améliorées de la théorie
des perturbations (transséries déterminées via le for-
malisme des Lefschetz thimbles, théorie des pertur-
bations optimisée), théorie des perturbations auto-
cohérente basée sur des actions effectives (auxiliary
field loop expansion (LOAF), formalisme Cornwall-
Jackiw-Tomboulis (CJT), action effective 4PPI, ...),
techniques de type groupe de renormalisation fonc-
tionnel (FRG) (FRG basé sur l’équation de Wet-
terich, DFT-FRG, 2PI-FRG). Des connexions entre
ces différentes méthodes sont aussi mises en exergue.
De plus, le formalisme des intégrales de chemin nous
offre la possibilité d’introduire des degrés de lib-
erté collectifs de manière exacte à l’aide de transfor-
mations de Hubbard-Stratonovich : l’effet de telles
transformations sur les méthodes susmentionnées est
également étudié en détail.

Title: Path-integral approaches to strongly-coupled quantum many-body systems
Keywords: Functional renormalization group, Feynman diagrams, Effective action, Resummation the-
ory, Spontaneous symmetry breaking, O(N) model

Abstract: The core of this thesis is the path-
integral formulation of quantum field theory and its
ability to describe strongly-coupled quantum many-
body systems of finite size. Collective behaviors can
be efficiently described in such systems through the
implementation of spontaneous symmetry breaking
(SSB) in mean-field approaches. However, as the
thermodynamic limit does not make sense in finite-
size systems, the latter can not exhibit any SSB
and the symmetries which are broken down at the
mean-field level must therefore be restored. The effi-
ciency of theoretical approaches in the treatment of
finite-size quantum systems can therefore be stud-
ied via their ability to restore spontaneously bro-
ken symmetries. In this thesis, a zero-dimensional
O(N) model is taken as a theoretical laboratory
to perform such an investigation with many state-
of-the-art path-integral techniques: perturbation

theory combined with various resummation meth-
ods (Padé-Borel, Borel-hypergeometric, conformal
mapping), enhanced versions of perturbation the-
ory (transseries derived via Lefschetz thimbles, op-
timized perturbation theory), self-consistent per-
turbation theory based on effective actions (auxil-
iary field loop expansion (LOAF), Cornwall-Jackiw-
Tomboulis (CJT) formalism, 4PPI effective ac-
tion, ...), functional renormalization group (FRG)
techniques (FRG based on the Wetterich equation,
DFT-FRG, 2PI-FRG). Connections between these
different techniques are also emphasized. In addi-
tion, the path-integral formalism provides us with
the possibility to introduce collective degrees of free-
dom in an exact fashion via Hubbard-Stratonovich
transformations: the effect of such transformations
on all the aforementioned methods is also examined
in detail.


	Introduction
	Setting the stage
	Relevant generating functionals and observables
	Wick's theorem and diagrammatic techniques
	Selected topics on functional renormalization group
	Playground of this thesis: (0+0)-D O(N)-symmetric 4-theory

	Diagrammatic techniques
	Aim of the study
	Loop expansions and perturbative treatment
	Splitting of the classical actions
	Original representation
	Mixed representation
	Collective representation

	Loop expansions
	Original loop expansion
	Mixed loop expansion
	Collective loop expansion

	Discussion

	Resummation of the perturbative series
	Borel analysis
	Lefschetz thimbles decomposition
	Padé-Borel resummation
	Conformal mapping
	Borel-hypergeometric resummation
	Conclusion

	Optimized Perturbation Theory
	Spirit of the optimized perturbation theory
	Splitting of the classical action
	Perturbative expansion
	Optimization of 
	Principle of minimal sensitivity
	Turning point
	Self-consistent condition

	Discussion

	Effective action
	1PI effective action
	Original effective action
	Collective effective action

	2PI effective action
	Original effective action
	Mixed effective action

	2PPI effective action
	4PPI effective action


	Functional renormalization group techniques
	1PI functional renormalization group
	State of play and general formalism
	Application to the (0+0)-D O(N)-symmetric 4-theory
	Original 1PI functional renormalization group
	Mixed 1PI functional renormalization group
	Collective 1PI functional renormalization group


	2PI functional renormalization group
	State of play and general formalism
	C-flow
	U-flow
	CU-flow

	Application to the (0+0)-D O(N)-symmetric 4-theory
	Symmetrization of the two-body interaction
	Original 2PI functional renormalization group C-flow
	Mixed 2PI functional renormalization group C-flow
	2PI functional renormalization group U-flow
	2PI functional renormalization group CU-flow


	2PPI functional renormalization group
	State of play and general formalism
	Standard 2PPI functional renormalization group
	Kohn-Sham functional renormalization group

	Application to the (0+0)-D O(N)-symmetric 4-theory
	Standard 2PPI functional renormalization group
	Kohn-Sham functional renormalization group



	Conclusion
	Gaussian integration
	1/N-expansion
	Diagrams and multiplicities
	Original loop expansion and optimized perturbation theory
	Mixed loop expansion

	Inversion method
	Foreword and notations
	1PI effective action
	Original effective action
	Collective effective action

	2PI effective action
	Original effective action
	Mixed effective action

	4PPI effective action
	Derivation of effective action coefficients
	1PI effective action
	2PI effective action
	4PPI effective action


	1PI functional renormalization group
	Master equation (Wetterich equation)
	Vertex expansion
	Original 1PI functional renormalization group
	Mixed 1PI functional renormalization group


	2PI functional renormalization group
	Bosonic index formalism
	Dyson equation
	Bethe-Salpeter equation
	Tower of flow equations
	C-flow
	U-flow
	CU-flow

	Initial conditions for the C-flow
	General case
	Application to the (0+0)-D O(N)-symmetric 4-theory
	Original representation
	Mixed representation


	(0+0)-D limit of the bosonic index formalism at N=1
	Mixed C-flow for the (0+0)-D O(N)-symmetric 4-theory
	U-flow and CU-flow for the (0+0)-D O(N)-symmetric 4-theory
	pU-flow, mU-flow and CU-flow equations at N=1
	mU-flow equations at NSCPT=1 and for all N


	2PPI functional renormalization group
	Master equation
	Vertex expansion
	Standard 2PPI functional renormalization group
	Kohn-Sham functional renormalization group


	Summary in French - Résumé en français

