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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Path-integral (PI) approaches have been exploited since decades to treat strongly-coupled quan-
tum many-body systems. Among the latter, we will pay particular attention throughout this
thesis to those encountered in nuclear physics. The important diversity of phenomena occur-
ring at the nuclear scale propelled developments of various approaches over the past decades,
the most successful of which either focus on describing specific nuclear features or, on the con-
trary, assume the task of having to embrace all aspects of the nuclear phenomenology. On the
one hand, we have for instance nuclear collective models [1-4|, which are based on global or
bosonic degrees of freedom (dofs). Such models have addressed convincingly collective behav-
iors of vibrational and rotational nature. Other examples are the cluster models [5, 6], which
involve cluster of nucleons as basal dofs and were developed to account for specific spectro-
scopic features of rather light nuclei. On the other hand, nuclear energy density functionals
(EDFs) [7, 8] were formulated with the ambition of ultimately describing a vast richness of
nuclear phenomena, ranging from the structure and reactions in finite nuclei to the complex
processes in neutron stars. These approaches describe the nucleus as a collection of dressed
nucleons coupled through an effective interaction. The adjective “effective” is a key aspect here
as it implies that part of the impact of the medium on the nucleon-nucleon (NN) interaction
is taken into account implicitly via a fitting procedure, hence degrading the reliability of the
EDF method (as long as no hierarchization principles have been identified) while rendering its
underlying numerical procedure less demanding. On the contrary, there are also nuclear ap-
proaches, coined as ab initio, which are based on the NN interaction in free space and thus have
the endeavor to describe nuclear phenomena from first principles. Such interactions explicitly
take into account how correlations between nucleons are impacted by the presence of fellowmen
and how the nucleus self-organizes in consequence. Early nuclear approaches used to employ
phenomenological models of the NN force [9] (based on the seminal work of Yukawa [10]) as
input for “traditional” ab initio schemes [11-15].

Such a bushy proliferation of approaches may seem fundamentally flawed in the perspective
of epistemological standards [16], and may even seem to yield inconsistent viewpoints of the
nucleus, e.g. the apparent conflicting pictures of a tightly bound liquid droplet on the one hand
and of a delocalized shell-like structure on the other. Nonetheless, the philosophy underpin-
ning the renormalization group, namely the emergence and effectiveness concepts, promotes
a description of complex systems in terms of a web of interlocking effective theories rather
than based on a unique fundamental theory [16]. This thus supports the strategy instinctively
adopted by nuclear physics since its infancy, although in an incomplete form due to the phe-
nomenological construct of standard nuclear models. Even though the latter have given us
access to a precious empirical knowledge about the emergent scales and associated dofs in nu-
clear physics, only a reformulation in the language of effective (field) theories (EFTs) can turn

1



2 CHAPTER 1. INTRODUCTION

them into consistent and robust frameworks capable of reliable predictions [17], i.e. with a do-
main of validity (e.g. in terms of energy scale) clearly identified, a systematic way of improving
their results, a possibility to assess theoretical errors, ...

=
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Figure 1.1: Nuclear chart and range of applicability of the two main microscopic methods in
nuclear theory (ab initio and EDF), compared with the region of stable nuclei and that of nuclei
that have been experimentally discovered until 2020 (Atomic mass evaluation 2020). Figure
taken from ref. [18].

For the purpose of constructing such reliable approaches, a consistent description of inter-
nucleon interactions (with respect to quantum chromodynamics (QCD)) has been achieved
within chiral EFT [19-21], which now constitutes a basis for various implementations of ab
initio approaches in nuclear physics [22-31]. Likewise, halo/cluster features in light nuclei
and collective rotational /vibrational behaviors in heavy systems can consistently be addressed
within Halo/Cluster EFTs |21, 32, 33] and macroscopic EFTs [34-39] respectively. However,
the framework of nuclear EDFs has yet to be reformulated in the language of EFT [17]. One
can certainly argue that this is an appealing task as the EDF approach is currently providing
the most complete and accurate (at least near the empirically known regions) description of
ground state (gs) and excited state properties of atomic nuclei over the entire nuclear chart, as
illustrated by fig. 1.1. Traditional EDFs owe their success to several features, the first of which
includes an efficient resummation of nucleon correlations at the level of the one-body reduced
density matrix (hence the name of the approach) which captures quantitatively the bulk of
properties deriving from the nuclear saturation phenomenon. In this way, the EDF method
exhibits a strong resemblance to density functional theory (DFT) [40-42]. However, another
salient feature of EDFs, i.e. the optimal account of so-called non-dynamical correlations at the
source of collective behaviors (deformation, superfluidity, clustering, ...) via the spontaneous
breakdown and restoration of symmetries, distance them from DFT in the sense that they do
not seem to align with the Kohn-Sham formulation of DFT, see e.g. refs. [43, 44| and references
therein. Such a success has to be contrasted with the drawbacks related to the lack of rigor-
ous foundations for the EDF method, e.g. the phenomenological character of the underlying
NN interaction mentioned earlier (which translates into parametrization-dependent predictions
away from known data) or the absence of a framework to design systematic improvements.
Many paths towards a proper EFT formulation for nuclear EDFs have been envisioned to over-



come these limitations [45-49|, among which the functional integral or PI language provides a
powerful frame to account for quantal fluctuations in a systematic way |17, 50-57|. The latter
direction is further pursued in this thesis.

Let us analyze the key features of standard nuclear EDFs at the root of their success,
i.e. their accuracy (near the empirically known regions) and their favorable scaling making
them relevant for large-scale studies of nuclear systems (irrespective of the number of involved
nucleons or their expected shell structure). Such features will guide the formulation of EDFs
in the PI language. The EDF method typically unfolds two categories of expansions, neither
of which are systematized': a first expansion at the level of the effective vertex and a second
in the form of a sequential integration of classes of correlations. We discuss below these two
types of expansions in more detail:

1. The first expansion involves the analytic form of the effective vertex at the heart of the
EDF. More precisely, nuclear EDFs were originally built from an (ill-defined) effective
vertex interpreted as an in-medium NN interaction [58—62|. A modern perspective seeks
a general expression for the EDF without direct references to an effective interaction [63—
65], but requires the latter to derive from a pseudo Hamiltonian in order to avoid spurious
self-interactions and self-pairing contributions [66, 67]. In any case, an effective vertex
is exploited as the generator of an EDF. Traditionally, its form follows from a heuristic
argument of simplicity, i.e. the ability to reproduce some set of data with a minimal
“operatorial” structure. Popular non-relativistic parametrizations, like the Skyrme [58]
and Gogny [59, 60] ones, involve central and spin-orbit contributions, while the covariant
ones [61, 62] use scalar-isoscalar, vector-isoscalar and vector-isovector channels (alongside
with a Coulomb channel for both non-relativistic and covariant EDFs). In this way, the
generalization of the effective vertex, e.g. the addition of a tensor term or more involved
channels, is more a matter of art than dictated by some systematic arguments. Modern
Skyrme-like parametrizations are built from a generic momentum expansion [63], prefer-
ably with a finite-range regulator and a three-nucleon channel [68-72|. If the resulting
functional is shown to be systematically improvable, such an expansion is still not orga-
nized with respect to a genuine power counting. Another issue pertains to the presence
of density-dependent terms, which on the one hand allow for a quantitative description of
nuclear systems, while on the other hand are known to contaminate the EDF calculations
with unphysical contributions |73]. This situation has triggered an effort to replace these
density-dependent terms by well-defined operatorial forms, e.g. three-body terms [68-72]
or a structure inspired by many-body perturbation theory (MBPT) beyond the first non-
trivial order [74]. However, none of these approaches achieved the same accuracy and the
same simplicity as density-dependent effective vertex. It is worth going back to the origin
of such density-dependent terms to better understand how they efficiently capture the
physics stemming from the saturation phenomenon. Early Hartree-Fock calculations in
nuclear physics with a density-independent NN interaction adjusted to reproduce A-body
observables (typically binding energies and radii) were unable to provide a simultaneous
correct description of both binding energies and radii. The introduction of an explicit
medium dependence, most generally in the form of a density dependence, magically re-
solved this issue. The so-called rearrangement term induced by the density-dependent
interaction at the level of the equation of motion provides us with a more flexible relation
between the binding energy of the system and the energies of the nucleon orbitals: it ac-
commodates the computation of a correct binding energy with a sufficiently compressed

'In other words, the corresponding results can not be improved in a systematic fashion, i.e. by going from
one level of approximation to the next.
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single particle spectrum at the same time, thus yielding proper saturation properties. One
of the questions explored in this thesis is related to the origin of such density-dependent
terms. Namely, can we understand why they drastically improve the description of nuclear
features? Can we find other objects than the density to grasp correlations as efficiently,
but in a spuriosity-free fashion?

2. The second expansion takes the form of a sequential account of nucleonic correlations.
So-called bulk correlations? are efficiently grasped by a density-dependent vertex, from
which one constructs an EDF. In a first step coined as single-reference (SR) EDF, the
EDF is obtained as the expectation value of the effective Hamiltonian (containing the ef-
fective density-dependent vertex in addition to the kinetic energy operator) in a product
state allowed to spontaneously break the symmetries of the original nuclear Hamilto-
nian (essentially the spatial translation group (nuclei are localized, self-bound systems),
the rotational SU(2) group (nuclei usually exhibit what is called nuclear deformation)
and the U(1) group associated with the conservation of nucleon number (most nuclei are
superfluid)). The energy of the system then appears as a functional of its normal and
anomalous one-body density matrices, found after solving the corresponding Hartree-
Fock-Bogoliubov (HFB) equations [75-78], also referred to as Bogoliubov-de Gennes
equations. These one-body density matrices can be parametrized by the (bosonic) or-
der parameters associated with the aforementioned symmetries. It is through such a
spontaneous symmetry breaking (SSB) procedure that the EDF is able to grasp non-
trivial physics and more specifically non-dynamical correlations, which are responsible
for deformation, clustering and superfluidity, at low cost (at the cost of a SR approach
essentially). However, nuclei are finite-size (or mesoscopic) systems, so that they can
not spontaneously break any symmetries. Quantum fluctuations of the order parameters
around the values minimizing the SR EDF (or saddles) are not negligible and eventu-
ally preclude any SSBs by mixing the degenerate vacua defining the Goldstone manifold
and yielding a unique gs with good symmetry properties. As such, the quantum fluc-
tuations of the order parameters have to be accounted for in a further step, coined as
multi-reference (MR) EDF. In MR EDF, the energy is computed as the expectation value
of the effective Hamiltonian in a more general state, namely a non-orthogonal product of
HFB states. The energy becomes a functional of transition density matrices connecting
two HFB states. A full-fledged MR EDF description takes the form of the projected
generator coordinate method (PGCM) [7], where additional correlations stemming from
the fluctuations of the order parameters are accounted for not only to describe the gs of
nuclei, but also their (collective) excited spectra. In particular, one approximation of the
PGCM, where one writes the expectation values of the effective Hamiltonian between two
HFB states (i.e. the so-called energy kernels) as a Gaussian function (Gaussian Over-
lap Approximation), leads to a collective Hamiltonian whose dofs are (bosonic) collective
coordinates (the order parameters discussed above). Such a collective Hamiltonian does
not exhibit the spuriosities contaminating the full-fledged PGCM but its construction is
not systematically improvable. One related question that the present thesis will try to
address is whether one could arrive to a similar result, i.e. a framework where the original
dofs have been integrated out of the theory in favor of collective coordinates, but in a
rigorous and systematically improvable framework.

Such a sequential account of nucleonic correlations at the level of the SR, and then MR
EDF, is relevant only if nucleonic correlations exhibit such a hierarchy. This is indeed what is

2The bulk correlations are by definition those whose contribution to the binding energy of nuclear systems
varies continuously with the proton and/or neutron number(s). Such correlations encompass for instance nuclear
saturation properties.
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Figure 1.2: Binding energy of the '°Pu calculated at the SR EDF level (HFB) and at the MR
EDF one with projection (projected HFB) and configuration mixing (GCM). Figure taken from
ref. [64].

empirically observed and illustrated in fig. 1.2. The latter displays the *°Pu binding energy
computed at both the SR and MR levels. The SR result that does not break any symmetry,
corresponding to the black curve at |g| = 0 (g is the quadrupole moment of the density, which
here plays the role of an order parameter for the rotational symmetry), grasps bulk correlations
which constitute at least 98% of the binding energy in this situation. Letting the reference state
breaking down the rotational symmetry enables us to gain around 14 MeV of correlation energy,
which represents around 2% of the system’s binding energy. Then, within the MR realization
of the EDF method where only angular fluctuations of the order parameters are accounted
for (with the so-called projection techniques), the restoration of the broken rotational (and
particle-number) symmetry (symmetries) brings a further contribution to the binding energy,
thus leading to the global minimum of the red curve. A full-fledged PGCM calculation further
grasps correlations and yields the black dot dubbed “GCM?”| located about 0.5 MeV below the
global minimum of the red curve. The behavior of 24°Pu is representative of heavy doubly open-
shell nuclei but remains one example among many. We can summarize the different categories
of correlations that are treated within the framework of the EDF method, alongside with the
corresponding energy scales, as done in tab. 1.1.

Table 1.1: Categories of correlations treated by the EDF method. Ay, and Gges denote respec-
tively the number of valence nucleons and the degeneracy of the corresponding valence shell
(i.e. the number of orbitals located in top of so-called magic configurations).

Type of correlations Treatment Energy scale Vary as
bulk grasped in the functional ~ 8 A MeV A
collective static order parameter |g| # 0 (SSB) < 25 MeV Aval, Gdeg
collective dynamical quantum fluctuations of ¢ < 5 MeV Aval; Gdeg

Besides the very good description of nuclei’s gs and spectroscopic properties by the EDF
method, the empirical nature of the latter approach, due to the parametrization of the underly-
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Figure 1.3: Bound nuclei predicted via the PC-PK1 procedure used to parametrize a covariant
EDF. Figure taken from ref. [79].

ing functionals, raises numerous sensible points: i) the connection between current functionals
and elementary forces between nucleons is not explicit; ii) the predictive character of EDF pre-
dictions for experimentally undiscovered nuclei relies heavily on the area of the nuclear chart
used to constrain the free parameters of the functionals. The second flaw in the predictive
power of the EDF approach is illustrated for a covariant functional by fig. 1.3. In the latter,
one can see in particular the important variations of the driplines location® with respect to the
exploited parametrization procedure. The extensive exploitation of traditional EDFs (Gogny,
Skyrme or covariant) have shown numerous limitations of this framework related either to the
parametrization procedure, the too simple nature of the analytical forms of the functionals or
to the lack of firm theoretical foundations underlying their construction. Several approaches
can be considered to overcome such limitations:

1. Refine traditional empirical functionals either by improving the parametrization proce-
dure to grasp more non-trivial physics or by using a richer analytical form for the function-
als (finite-range features, addition of tensor terms, less drastic density dependences, ...).
The latter strategy has notably led to the Gogny functional with various parametrizations
such as DIN [80], DIM [81] and D2 [82].

2. Improve the MR EDF methods (PGCM, quasi-particle random phase approximation, ...)
or construct new ones able to tackle excited states that are so far not reliably and/or not
efficiently described by this framework.

3. Develop ab initio approaches to extend their range of applicability and to enhance their
accuracy.

4. One might also follow a parallel direction (with respect to 3.) with the aim of constructing
less empirical EDFs, connected to the QCD vacuum (possibly at finite density). A relevant
way to achieve this is to reformulate the EDF method as an EFT.

3The driplines are the boundaries on the nuclear chart that separate the bound nuclei from the unbound
ones.



The reformulation of the EDF framework as an EFT can be done through numerous relevant
perspectives [17]. It is possible for instance to employ a top-down approach in which one starts
from ab initio approaches to reach an EDF. The reverse can also be considered by following
a bottom-up philosophy in which a general EDF is constructed from first principles, before
being adjusted on experimental results or ab initio calculations. This leads us to the goals
of the present thesis work on PI approaches. Developing an EFT in nuclear physics amounts
to constructing a Lagrangian or a classical action describing the bare NN interaction. The
following step consisting in calculating nuclear observables from these functionals is usually
referred to as the treatment of the (nuclear) many-body problem. The PI framework provides
us with plenty of techniques to achieve the latter step. For instance, one can readily introduce in
these approaches new (presumably collective) dofs, notably via exact identities called Hubbard-
Stratonovich transformations (HSTs) [83, 84]. One can therefore naturally draw a parallel with
the PGCM in that respect. Moreover, just like EFTs, most PI approaches are systematically
improvable themselves, which enables us to control our approximations, another important
feature lacking in current EDFs. One should also mention the natural connection that can be
exhibited between DFT and the effective action (EA) formalism, which is a subpart of the PI
framework. Along these lines, we can mention the work of Furnstahl and collaborators |17,
50-57|, and notably the work of Valiev and Fernando [85] demonstrating that the 2-particle-
point-irreducible (2PPI) EA is suited to formulate a Kohn-Sham DFT.

From these remarks, the PI framework seems indeed relevant to formulate reliable theoretical
descriptions of nuclear systems. We will therefore aim at better understanding how this can be
achieved throughout this thesis work. To that end, we will exploit a toy model as theoretical
playground to perform a comparative study of state-of-the-art PI approaches. The chosen
model is the (0+0)-D O(N)-symmetric ¢*-theory or, more simply, (0+0)-D O(N) model®,
which will be presented in chapter 2 after giving a brief recall on the PI formalism. Considering
the importance of O(N) models [86-88] and PI techniques [87, 89, 90] in theoretical physics®
(especially due to the connection between these O(N) models and universal properties of critical
systems [95-98|), this comparative study is clearly fueled by other areas of physics, as pointed
out in the forthcoming chapters and references therein, and this thesis thus certainly finds strong
echoes in those areas as well. Besides this, a key feature of the toy model under consideration
is the presence of the O(N) symmetry, whose spontaneous breakdown will be studied with care
in this comparative study. This will enable us in particular to draw connections with the SR
and MR EDF schemes. We will also argue in chapter 2 that PI techniques can be split into
two categories: functional renormalization group (FRG) approaches and the others, coined as
diagrammatic techniques, which will be studied in chapters 4 and 3, respectively. In these two
chapters, the performances of these methods will be examined in the strongly-coupled regime of
the model under consideration, in connection with the nuclear many-body problem. Different
types of EAs and HSTs will also be exploited for many methods investigated in these two
chapters, still with the aim of identifying the most relevant dofs to treat our problem, and
we will also carefully discuss how the resulting conclusions can be extended to more realistic
models, and notably to nuclear EDFs. Finally, chapter 5 contains our concluding remarks and
outlooks for this comparative study of PI techniques.

4Throughout this thesis, we use “O(N) model” as synonym for “O(N)-symmetric p*-theory”, as is often the
case.

®To illustrate this, we point out that O(N)-symmetric p*-theories reduce to well-known models exploited
in statistical physics, i.e. to the Ising model [91], the XY model and the Heisenberg model at N = 1,2 and 3
respectively. At N =4, O(N) models are also used to study the phase structure of QCD (see refs. [92-94] as
examples).
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2.1 Relevant generating functionals and observables

We aim at describing strongly-coupled quantum many-body systems hosting collective behav-
iors of bosonic nature. A possible angle of attack involves correlation functions which contain
the complete physical information on the corresponding quantum many-body system'. In the
canonical formulation of quantum mechanics, the constituents of the theory are represented by
operator-valued distributions ¢,, with a generic index o = (a, 7, 7, ms, ¢) = (a,x) collecting
spacetime coordinates (r,7) (with r and 7 being respectively the (D — 1)-dimensional space
position vector and the imaginary time) and, if relevant, spin projection mg, charge ¢, and
internal a labels, such that:

Pam.(r,T) forc=—.
9504 = @a,x = (2'1)
@l’ms(r, T) fore=+.

The n-point correlation function G™ then stems from the expectation value, in the (interacting)
many-body system gs |vac), of a (time-ordered) product of n field operators:

G = (vac|TPa, Pay * * * Pa,, [Vac) | (2.2)

Q12 -Qp

where T stands for the time-ordered product.

Alternatively, correlation functions can be computed from standard generating function-
als [103], conveniently expressed as sum-over-histories in configuration space within Feynman’s
PI formulation of quantum mechanics [104, 105, where the dofs of the theory are now realized

In an axiomatic approach to quantum field theory (QFT), the Wightman reconstruction theorem [99-102]
states that a sequence of (tempered) n-point correlation functions completely determines the Hilbert space and
algebra of fields (realized as operator-valued distributions), up to unitary equivalence.



10 CHAPTER 2. SETTING THE STAGE

via number-valued fields?, such as @,°. Coupling the field @, to a test (external) source J,
yields the action:

S31] = S[3] — Jaa (2.3)

where S[p] stands for the (Euclidean) classical action of the system and summation over re-
peated indices is assumed, i.e.:

Ja@/a = Ja,x@a,x
hB

Z / dT/ dDil"' Ja,ms,c<7'77—)&a,ms,—6(rv7-) ’ (2.4)
0 RD—l

Ms,C,a

in a D-dimensional spacetime and with inverse temperature . The (Euclidean) PI representa-
tion of the system’s partition function in presence of the source (also called vacuum persistence

amplitude) derives from these ingredients and is given by the functional integral (also called
PI):

ZIJ =N | Dg e #5119 (2.5)
where A is a normalization factor, C the space of configurations? for the fluctuating field @, and

D¢ the PI measure. The functional Z[J] is the generating functional of correlation functions,
namely:

~ o~ o~ ~ _1
G o = (BorPas - Pen) _ /D% BB -+~ Pane +P
Q1 QO aiPas an/vac IID@ 67%5[35]

" o Z|[J) (26)

21T = 0] 800~ o | 1o

A diagrammatic representation of Z[J] consists of the sum of all vacuum diagrams, implying
that the correlation functions (2.6) contain both connected and disconnected contributions. On
the other hand, physically relevant observables often only involve the fully connected part of
Z|J], which can be summarized in terms of another generating functional called the Schwinger
functional® W[.J] defined via:

Z[J) = esWl (2.7)
The cumulants or connected correlation functions G then follow from the functional deriva-
tives of W[J|:
G(n),c _ hn—l 5nW[‘]] )
Q12 Qn 5Ja15<]042 ... 5<]o¢" J=0

(2.8)

An exact and compact representation of the generating functional Z[J] can be achieved
through the n-particle-irreducible (nPI) EA [107-109|. While the diagrammatic representation
of Z[J] consists of vacuum diagrams involving the bare propagator and vertices of the theory,

2Throughout this thesis manuscript, fluctuating fields, i.e. fields displaying quantum fluctuations treated
within a PI, are denoted with an upper tilde, like @,,.

3Although part of the derivations performed in this thesis are valid for both bosonic and fermionic field
theories, we give in sections 2.1 and 2.2 a brief introduction on the PI formalism assuming that ¢, is a bosonic
(i.e. non-Grassmann) field, as it is sufficient to present the main functionals exploited in the forthcoming
chapters. More exhaustive introductions on the PI formalism for both bosonic and fermionic field theories can
be found e.g. in refs. [89, 106].

4The integration domain defining each functional integral will be left implicit in most cases.

°In analogy with thermodynamics, Z[J = 0] is the partition function while W[J = 0] corresponds to (minus)
the free energy (up to a constant proportional to the temperature).
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the nPI EA provides a systematic method to perform non-perturbative resummations on the
m-point correlation functions (m < n) of the theory, yielding a diagrammatic series in terms of
the dressed propagator and m-point vertex functions with m < n. The diagrammatic series
expressing a nPI EA involve nPI diagrams® only, hence the name “nPI” EA. In that regard, we
point out the works of Vasil’ev and collaborators [110-115], which prove notably:

e The 1PI and 2PI natures of the diagrams expressing the 1PI and 2PI EAs, respec-
tively [110].

e The equivalence between the Schwinger-Dyson equations [103, 116] and the gap equations
of the nPI EA formalism [111].

e The convexity of nPI EAs with respect to each of their arguments [112].
e Expressions of nPI vertices in terms of 1PI vertices [113].

e The 3PI nature of the diagrams expressing the 3PI EA [114].

e The 4PI nature of the diagrams expressing the 4PI EA [115].

As will be discussed throughout chapter 4 in particular, the 2PI EA framework” is a direct
reformulation of the Green’s function formalism based on Dyson equation and the Luttinger-
Ward functional [116, 118]. It was pioneered by the work of Lee, Yang, De Dominicis and
others in statistical physics [108, 118-122|, and subsequently extended by Cornwall, Jackiw
and Tomboulis [109] to the framework of field theory discussed here, which is why the 2PI EA
approach is also coined as CJT formalism.

Regarding the mathematical definitions of nPI EAs, one first introduces (external) sources

Jo, Kajas, Lgi)oégoé37 . L&Ti)an coupled to the local field ¢, and the composite bilocal field
Loy Pay, trilocal field @u, Pay,Pass ---, n-local field @, - - - @, , respectively:

I D
SJKL(S)ML(TL) [@ =5 [@ - JaSOa - EKoqoezSDoa Pas
Lo 55 5 U - (2.9)
o gLalazas(paﬁpaz(pag - mLal"-an(an [N Soan ,
and
Z[J K L ... ] = WL ]
(2.10)

= ./\/-/IDQZ ei%SJKLB)A..[@] )
C

The nPI EA T"PD is then obtained after Legendre transforming the Schwinger functional with

6A (connected) diagram is nPI if it remains connected after cutting n non-equivalent propagator lines.
"See ref. [117] for a pedagogical introduction on the 2PT EA.
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respect to the sources:

SWI[J,K, LY, ...] SW[J K, L® ...]
(nPI) A 3) ... s LAy s , I\, 5
I [gb’ G’ £ ] w [J’ K, LY, ] + Ja 0J, + KQlO‘E 5Ka1a2
o SW[J, K, LW, ...]
a1003

5-[/&31)042053
1
== W[J K L, ] + Jaba + 5 Koy, ($ar b0, + hGayar)

1
+_L(3) ((bal ¢a2¢a3 + hGa102¢a3 + hGala3¢a2 + hGa2a3¢a1 + ﬁQVa1a2a3)

6 (o5 DY %]

+ SR
(2.11)

where the 1-point correlation function ¢,, the propagator G,,a,, the 3-point vertex V,, 0,045 -
satisfy:
§W[J7K7L(3)7...}
5Ja = gba )
5W[J,K’L(3)7...]
0K o an

(2.12)

= % [¢Oé1¢0é2 —I— hGOLlOQ:I Y (213)

WK L®, ]
(SL((X31)042043

1
B 6 [(bal ¢a2¢0¢3 + hGalaQ(bas + hGa1a3¢a2 + hGazas(bal + h2va1a2a3} ’
(2.14)

Within the nPI EA framework, the physical m-point functions (i.e. the m-point functions at
vanishing sources) of the theory with m < n are self-consistently dressed through a variational
principle, i.e. by solving the gap equations:

STPDIh G V.. ..
[6,G, V. -] ~0 Va. (2.15)
o $=3.G=C. V=V, -
ST (nPT) .
[¢7 G7 V7 ] — 0 VOél, OCQ y (216)
5Ga1a2 ¢=0,G=G, V=V
ST (nPT) e
[¢7 G7 V7 ] — 0 v()él,OéQ,Oé:’) R (217)
5Va1a2a3 ¢0=0,G=G, V=V

while the higher m-point functions (with m > n) coincide with the bare ones.

Basic properties about the system of interest can be obtained from the above generating
functionals. Among these, we will focus throughout this thesis in particular on:

e The gs energy F, of the interacting system:
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e The gs density p,s of the interacting system:

PgS(Tv T) = <&a6a>vac

B K2 62Z[J,K,--']
Z[J=0,K=0,---] 0Ja0Jq J=0,K=0,-
i hé‘zw[J7K’...] +aaaa (2-19)
0J,0J, J=0,K=0,---
_ 9 WK, -]
0K oo J=0,K =0,

e The effective potential Veg(¢), which is determined from the 1PI EA evaluated at a
uniform (i.e. spacetime-independent) field configuration ¢, after factorizing the volume
of Euclidean spacetime [123]:

TP | = / drdP'r Veg(dy) . (2.20)

2.2 Wick’s theorem and diagrammatic techniques

In order to properly explain what we refer to as diagrammatic techniques in this thesis, we
now illustrate how Wick’s theorem [124] is implemented in the PI formalism. To that end,
we first consider the non-interacting version of the generating functional Z[.J] defined by (2.3)
and (2.5):

Z[J] = JV'/D& e# (=50l +Jada)

(2.21)
— N/DQZ 6%(7%55&1G&é1a295a2+‘7&195a1) ,
where we just introduced the quadratic part of S[@], i.e. the free classical action:
1. ~
SO[SAO} - 5%0041 0,(];410[290012 ) (222)

expressed here in terms of the free propagator Go. We then exceptionally leave integration or
summation over indices more implicit by using a compact vector notation (in which X™* denotes
the transpose of X notably) in order to calculate:

1 o 1
—5 —GOJ)TGol(ga—GOJ)+§JTGOJ

~ 1 1 1 1
PTGy F + 577G God + 5T GEG 7 —W+§J/TGO/J
S”EJI‘ — ~

|
N RN~

= - _95041 Ga,}lloQQZOQ + Jal 95041 )
(2.23)

where we have notably exploited the symmetry of Gy (i.e. GI = Gp) alongside with the relation
@t J = JTp. Therefore, (2.21) is equivalent to:

Z[J] = N/DQ,E 6%<7%([ﬁiGOJ)TGal((Z*G()J)+%JTG0J)
(2.24)
— /\/’/D@/ o7 (=380, Gty 0Py +5 o1 G109 Ty )
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Besides introducing back a-indices in the second line of (2.24), we have also introduced &' via
the shift ¢ — @ + GoJ. From this, it directly follows that®:

Z1J] = N eziterGoaiazlay / DG ¢~ 2 P1G0aa,P02 (2.25)

The integral in the right-hand side (RHSY) of (2.25) is just a constant, as can be shown from
Gaussian integration (see appendix A). Replacing Z[J] in (2.25) with (2.21) leads to:

1 1~ —1 ~ ~
~ Y 1z G +J,
1 ’
IDSO ef< 2#0170,0q a9 P2 o1 Ba )

1~ -1 pe
ID& e_ﬁwalGO,oanLPCQ

= ezloGoararda; (2.26)

Finally, differentiating n times (n being even) both sides of (2.26) with respect to J before
setting J equal to zero gives us the following expression of the correlation functions of (even)
order n for the non-interacting theory specified by Sp[p]:

L [DF Fay By, €1 (73P01 00105 Pz H s Pt )
PPl = [ DF e #2100z

= h> E : GoaaP(l)o‘P@) e GoyaP(nﬂ)QP(n) )

PeSy

(2.27)
where the RHS involves a sum over all elements P of the permutation group .5, of even order
n. Result (2.27) formulates Wick’s theorem in the PI formalism. All permutations between
indices of propagators implied by the sum of the RHS of (2.27) are most conveniently rep-
resented by diagrams weighted by numerical factors called multiplicities. In this thesis, we
call diagrammatic techniques every approach relying on diagrammatic representations of the
permutations set by Wick’s theorem. This excludes notably FRG approaches, even though
the latter are based on equations that can be represented diagrammatically as well. Note also
that the quadratic part Sy[@] retained in the generating functional Z[.J] to derive (2.27) is not
necessarily the free part of the classical action S[@], such that Gy is no longer a free propagator
(but rather a more dressed object): this point is at the heart of chapter 3.

2.3 Selected topics on functional renormalization group

FRG approaches rely on a master equation dictating the evolution of a functional of interest
(typically a Schwinger functional or an EA) with respect to a parameter, called the flow pa-
rameter, which can either be a dimensionless or a dimensionful quantity representing typically
the momentum scale of the theory under consideration. In practice, this master equation is
treated via some expansion scheme (that we discuss in detail in chapter 4) to turn it into a set
of coupled first-order integro-differential equations to solve, which contrasts with self-consistent
equations such as (2.15) to (2.17) encountered in diagrammatic EA approaches. All the techni-
cal details underpinning this procedure is outlined in chapter 4 and corresponding appendices
but we want to stress at this stage a few important aspects of current FRG studies of fermionic
systems.

There are strong connections between several FRG methods and Wilson’s renormalization
group [95-97| that turned out to be successful to describe critical phenomena'’. The idea
underlying Wilson’s approach, i.e. a step-by-step integration with respect to the momentum

8The Jacobian underlying shifts like ¢ — @’ + GoJ is trivial such that D@’ = D@ in the present case.

9In the same way, “left-hand side” will be denoted as LHS.

10See ref. [125] for a pedagogical introduction on Wilson’s renormalization group and the concept of coarse-
graining.



2.3. SELECTED TOPICS ON FUNCTIONAL RENORMALIZATION GROUP 15

scale that we refer to as Wilsonian momentum-shell integration, was first implemented for
an EA by Wetterich [126], following up the previous work of Polchinski leading to the famous
Polchinski or Wilson-Polchinski equation [127]. The flow parameter of Wetterich’s FRG is thus
the momentum scale k£ (or another related parameter). Moreover, the corresponding master
equation, coined as Wetterich equation (see section 4.1.1 and appendix E.1), sets the scale
dependence of the 1PI EA describing the studied quantum system, which is why we will use
1PI-FRG as synonym for Wetterich’s FRG. This scale-dependent 1PI EA, also called average
EA, describes a coarse-grained system in the sense of Kadanoff and Wilson.

We put forward Wetterich’s approach here as it is still clearly the most widespread FRG
technique. The main reasons for this are notably a certain ease of implementation as compared
to FRG methods based on a nPI EA with n > 1, and also the Wilsonian momentum-shell
integration that makes it equipped to tackle critical phenomena and phase transitions. We
also want to emphasize in the present section some important features of the implementation
of Wetterich’s FRG in the framework of fermionic systems. In particular, it has been proven
very advantageous to introduce the so-called scale-dependent or flowing bosonization by
combining this method with HSTs: either by exploiting a HST that is scale-dependent itself [128,
129], or rather by simply letting the expectation value of the Hubbard-Stratonovich field depend
on the momentum scale [130-132]. The latter formulation has been generalized [133] such that
only the fluctuating composite operators introduced via HSTs (and not their expectation values)
are scale-dependent (see ref. [134] for a concrete example of application in the context of QCD).
A further generalization aiming at treating explicit symmetry breaking is developed in ref. [135].
We list below several reasons motivating the use of flowing bosonization:

e To overcome the Fierz ambiguity:

In order to turn the Wetterich equation into a set of integro-differential equations, one
must introduce an ansatz for the analytical form of the scale-dependent 1PI EA, which
typically involves fermionic bilinears in the framework of fermionic theories. The Fierz
ambiguity results from the possibility to apply Fierz transformations to these fermionic
bilinears. This translates into an unphysical dependence of the results obtained via mean-
field theory (MFT) with respect to a mean-field parameter'!-'? [136]. In the language of
partial bosonization, MFT is implemented by neglecting quantum fluctuations of the
Hubbard-Stratonovich field. HSTs therefore provide a natural framework to handle the
Fierz ambiguity which will be further reduced as long as we incorporate bosonic fluctu-
ations in our approximations (which is achieved by enriching the starting ansatz for the
scale-dependent 1PI EA). Rendering the bosonization scale-dependent in addition enables
us to sweep away (some of) the problematic fermionic bilinears at each momentum scale,
so as to reduce at least the adverse effects due to the Fierz ambiguity.

e To bridge the gap between the ultraviolet (UV) and the infrared (IR) scales
if the relevant dofs change during the flow:
In practice, the differential equations underlying Wetterich’s FRG are solved by letting
the momentum scale flowing from an UV scale down to an IR scale at which the scale-
dependent 1PI EA is supposedly close to the exact 1PI EA of the studied system. Further-
more, HSTs introduce bosonic fields in fermionic theories. This is interesting for example
in FRG studies of QCD, in which the computations throughout the flow can be rendered
more efficient by allowing scale-dependent quark and gluon couplings (more relevant at

1Tn particular, the Fierz ambiguity will be present in the framework of FRG if the starting ansatz used for
the scale-dependent 1PI EA results from MFT (see equation (9) of ref. [136] for a concrete example).

12Note that the diagrammatic EA approaches (such as the Schwinger-Dyson equations’ framework) do not
suffer from such an unphysical dependence and are thus free from the Fierz ambiguity [136].
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the UV scale) but also scale-dependent meson couplings (more relevant at the IR scale)
in the scale-dependent 1PI EA [137].

e To study SSBs and phase transitions:

Phase transitions stemming from an onset of SSB might result in the divergence of some
couplings (typically quartic couplings) involved in the ansatz of the scale-dependent 1PI
EA. In this situation, it might be necessary to introduce further couplings in this ansatz
(including for instance 8-fermion interactions in the flow) to have access to a proper
order parameter for such transitions, which might render the implementation of the FRG
procedure extremely difficult. If these divergences originate from quartic couplings \;, one
can replace the latter by auxiliary fields with masses m; ~ 1/); with the help of HSTs.
In this way, the aforementioned divergences are therefore not present in the partially
bosonized theory and there is hence no need to turn on further couplings during the flow
to study phase transitions in this case. Note that, since the quartic couplings \; depend
on the momentum scale, the bosonization thus performed must also be scale-dependent
to prevent the related divergences from pursuing the flow down to the IR scale.

The toy model studied in this thesis is not a relevant framework to investigate the technique
of flowing bosonization especially because it does not involve any fermionic field and therefore
does not exhibit the Fierz ambiguity, regardless of the method used to treat it. Despite that, we
believe it is important to have the above three points in mind throughout our toy model study
since they underlie many FRG applications to fermionic systems, whereas we will keep empha-
sizing the connections between the present work and more realistic (fermionic) applications in
the forthcoming chapters.

2.4 Playground of this thesis: (0+0)-D O(N)-symmetric
©*-theory

We use the O(N)-symmetric p*-theory in arbitrary spacetime dimensions to investigate various
expansion schemes expressed within the PI language, with a special emphasis on the broken-
symmetry phase, and apply our results in the exactly solvable (0-+0)-D case'®. QFTs formulated
in zero dimension feature a base manifold M reducing exactly to one point'*, i.e. M = {e}.
All fields living on M = {e} are completely specified by assigning a number (e.g. a real
one) at this one point, such that the PI measure Dp on C reduces to the standard Lebesgue
measure d@ (e.g. on R). The tremendous simplifications brought by the latter feature explain
why (0+0)-D QFTs serve as safe, more controllable and hence useful didactic playgrounds for
exploring various aspects of more complicated QFTs, as they allow for explicit solutions that
can not be obtained in higher dimensions [138-151]. The dofs of the (0+0)-D O(N) model
are represented by real fluctuating bosonic fields ¢, : {8} — R living on the base manifold
M = {e}, i.e. real random variables, with O(V)-symmetric quartic self-interaction. We store
them in the O(N) scalar multiplet:

¥1
e=1: | (2.28)

13By definition, a (n+m)-D theory lives in a spacetime with n space and m time dimensions, which means
that there is neither space nor time dimension in the case of the studied (0+0)-D toy model.

14No notion of metric can be defined on the manifold M, with the consequence that the Lorentz group and
all of its representations are trivial, i.e. all fields living on M are point-like and must be scalars.
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and consider the Lie group action O(N) ~ R” defined by left multiplication, with the infinites-
imal transformation given by:

N
566{1 = Z 6(JLb(;Zb 5 (229)

b=1
characterized by real antisymmetric matrices (i.e. €, = —€, € R) and the indices a, b, ...

(which label the N orthogonal directions in the color space defined on RY) are referred to as
color indices. The dynamics of the system is governed by the classical action’® S : RY — R,

given by the expression:
2

= m- =2 A\ 22\2
S(g@) = 790 + E <90 > s (230)
which is invariant under transformations of the O(N) group, and where the real parameters m?
and A stand for the bare squared mass and bare coupling constant, respectively. No derivative
(i.e. kinetic) terms contribute to this action owing to the (0+0)-D nature of spacetime'S. In
the present work, we consider mostly two sources with O(N) group structure, namely the local
source J whose components J, are coupled to the fields ¢, and the bilocal source K whose
elements K, are coupled to the composite fields @, . In this context, the Schwinger functional
of the theory is given by:

Z(f, K) _ i (7K) :/ iVE s (8) (2.31)
v
with
SJK@) = S(é’) _J.G- %;2’- (K{Z’) . (2.32)

The symbol “-” in (2.32) refers to the scalar product in color space defined as:

N
XY =) XY, (2.33)
a=1
while $ . (K 5) is short for:
N
> BaKaufy - (2.34)

a,b=1

The (040)-D O(N) model with the generating functional (2.31) takes the form of a prob-
ability theory for IV real stochastic variables ¢, whose probability distribution is given by
¢~ #5%(%) | The benefit of working in a (040)-D spacetime is already manifest from the fact
that expression (2.31) admits an analytical representation [147, 150] in terms of the Kummer
confluent hypergeometric function | Fj(a;b; z) [152]. After rewriting the integral of (2.31) in

hyperspherical coordinates, the exact partition function reads:

Zexact (j': 67 K = 0) — e%wexact( q:(_)’,K:O) _ QNRN—I 7 (235)

15Tn a (040)-D spacetime, the classical action S as well as all generating functionals characterizing the theory
(such as Schwinger functionals or EAs) are functions rather than functionals.

16This is why (0+0)-D QFTs are sometimes referred to as the static ultra-local limit of a QFT in finite D
dimensions.
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with!”

Ry (hym*\) = / dir i ¢ H(F T
0

( A\ /N4
2N21< > r<—+) Vm2>0and A=0

m2 2

00 Vm2§0and)\:0,

=4 .

N+3
sN—5 N1 [ A\ 4 A N+1 N—|—113m4
28 <ﬁ> [ ﬁf( 1 )F( 1 ’5’2Ah)

m2V6_ (N +3 N+3 3 3m*
- F( 1 )1F1( 1 ’5’2Ah> VA>0,

(2.36)

for N € N*. Note also that {2 denotes the surface area of the N-dimensional unit sphere:

= 2 (2.37)
N = . .
r(3)
The gs energy'® and density!'” can be obtained from:
L 1 /- -
Ep=—In (Z(J:O,K:O)) :—ﬁW(J:O,K:O), (2.38)
O A s (2.39)
K=0

with the expectation value defined as:

(- ! )/dN;; ets(@) (2.40)

Z(J=0,K=0

From these definitions, one can infer the exact solutions:

Ege;(act =—1In (QNRNfl) ; (241)
RN
exact +1
= . 2.42
Pes NRy_1 ( )

On the other hand, the computation of the 1-point correlation function:

6= <5> = %‘;’.K) , (2.43)

=1

K=

=]

17T exceptionally denotes Euler gamma function [152] and not an EA in (2.36) and (2.37).

18Tn a (0+0)-D spacetime, the extraction (2.18) of the gs energy from the partition function simplifies, after
an arbitrary scaling that cancels the factor in front of the logarithm, to Fys = —In (Z (f =0,K = 0))

9Note that the denomination “density” is abusive in the case where N = 1. Indeed, the O(N) model does
not exhibit any continuous symmetry in this situation, hence no conserved Noether current.
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or of the effective potential Vg (@ provides information on the occurrence of SSB [123|. While

Zexact

the exact solution for the former reduces to ¢ = 0 for all values of the coupling constant A

and of the squared mass m?, the latter derives from the 1PI EA according to?":

Vg (5) — P (5) - —W(f, K = 0) v Jg, (2.44)
with
aw(ji K)

> (2.45)

¢ =

K=0

The exact effective potential V. iract (qg) is evaluated numerically from (2.44) combined with
(2.45), and then plotted in fig. 2.1 for N = 2 together with the classical potential:

/(i) =@ o0

which coincides with the classical action (2.30) of the studied (0+0)-D model?.

1.0 05

exact solution - classical potential

exact solution

Figure 2.1: Classical and exact effective potentials as functions of the background constant
field’s modulus ‘5‘ at N =2, A/4! =1 and m? = —1 (left) or m? = +1 (right).

The lowest energy states of the system at the classical (i.e. at the tree) level are given by the
minima of the classical potential (2.46). In the situation where the coupling constant A is real
and zero or positive (which is a restriction followed to obtain all numerical results presented in
this thesis), we can show by minimizing the classical potential (2.46) that these are:

e For m? > 0, a unique vacuum ¢ = 0 where the O(N) symmetry is conserved (sponta-
neously as well as explicitly).

20Relation (2.20) reduces to the leftmost equality of (2.44), i.e. Vog ((;5) = arn ((E), for our (0+0)-D O(N)
model.

21 At finite dimensions, the classical action S differs from the corresponding classical potential U since the
latter does not contain any derivative (i.e. kinetic) terms.
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e For m? < 0 and X # 0, a manifold of degenerate vacua (satisfying ¢* = —3lm2/\ > 0)
where the original O(N) symmetry is spontaneously (but not explicitly) broken down to
O(N —1).

In the full theory, the lowest energy states are found by minimizing the exact effective potential
V;’%‘a“(gg), which yields a unique gs conserving the O(N) symmetry (spontaneously and explic-
itly), irrespectively of the sign of m? as shown by fig. 2.1. In what follows, we will refer to the
phase with m? < 0 (m? > 0) as broken-symmetry (unbroken-symmetry) regime or phase, even
though one must keep in mind that the O(N) symmetry is broken down only spontaneously
and only at the classical level. This absence of broken symmetry in the exact solution of the toy
model under consideration enables us to make an analogy with the study of finite-size systems
(and nuclei notably) which do not exhibit any SSB, as we discussed in chapter 1. We have also
illustrated in this way with fig. 2.1 a general result for spatial dimensions less than or equal
to two, where the divergences of Goldstone propagators cause large quantum fluctuations that
spread away any classically selected configuration, hence precluding the spontaneous breakdown
of a continuous symmetry [153].
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In this chapter, we investigate various diagrammatic PI techniques defined in section 2.2. We in-
deed saw that the PI formalism offers a powerful language for a systematic, controlled treatment
of quantum fluctuations by dressing an initial, reference configuration of a many-body system.
It also provides us with convenient mathematical manipulations for reshuffling (bosonic) collec-
tive fluctuations so that it is efficiently captured from the leading order of the description, e.g.
via a HST and/or by coupling sources to composite operators within the nPI EA framework.
The goals we ultimately have in mind are: i) to find the theoretical construct underpinning
the nuclear EDF method, for it to be rigorously formulated and turned into a systematically
improvable approach; ii) to design other optimal strategies for catching efficiently the typical
correlations at play in strongly-coupled many-body systems. To that end, we investigate several
frameworks to incorporate non-perturbative collective features at the lowest non-trivial orders.
To analyze these various diagrammatic expansions and their resummation properties, we work
within the O(NN)-symmetric ¢*-theory where the various strategies are first derived in arbitrary
spacetime dimensions for both the unbroken- and broken-symmetry regimes. We then perform
our numerical applications in the exactly solvable (0-+0)-D situation presented in section 2.4,
where we have seen that radiative corrections restore the O(N) symmetry spontaneously broken
at the classical level in the phase with m? < 0.

More precisely, the chapter is organized as follows. First, a general presentation of the var-
ious studied strategies is given in section 3.1. In section 3.2, we focus on perturbative schemes
expanding around the non-interacting physics or the classical configuration. Because of the
asymptotic nature of the perturbative series representation of our physical quantities, mean-
ingful results can only be obtained after applying proper resummation techniques, which are
examined in section 3.3. Then, we investigate the treatment of many-body systems within the
optimized perturbation theory (OPT) [154-161] in section 3.4. The latter provides a variational
improvement of a perturbative expansion by adding and subtracting an arbitrary quadratic
term in the classical action of the theory under consideration, then optimizing the perturba-
tive expansion by imposing the resulting truncated series to be stationary with respect to this
quadratic kernel at the working order rather than just at the leading order (as done for
example in MBPT implemented on top of a self-consistent mean-field configuration such as
the Hartree-Fock and HFB reference states). Finally, the nPI EA method is considered in
section 3.5. It offers a hybridation of variational and perturbative expansions, where a series
of Feynman diagrams is involved, with 1- through n-point (connected) correlation functions
obtained by self-consistently dressing the bare ones via variational equations of motion. In
particular, for n = 2, the so-called 2PPI reduction of the 2PI EA provides a firm theoretical
ground to DFT [85, 162-165], as will be explained in section 3.5.3.
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3.1 Aim of the study

We consider the finite-dimensional counterpart of the classical action (2.30):

m? A

s[#] = / [1<vx%< ) (VaB"(@)) + - Pu(@)7"(2) + 5 (Bal W(w))ﬂ

= /hﬁdT/RD 1 { (&cp 8790+Vrg0 Vw) +m72g02+i‘ (52)1 ;

with implicit summation over repeated internal indices (also called color indices). Introducing

(3.1)

a local source J| (x) and a bilocal one K (z,y), a generating functional of the theory is given by:

2[7.x] =i lx] = [pg cmionld (3.2)
with [Dg = [ D, --- [ D@y and

~a 1 ~a -

Si|3] =53] - / Jo(@)3" (@) = / 3" (2) Kap(,9) 2" () - (3.3)
xT T,y

Except for the zero-dimensional situation’, the integral in (3.2) can not be computed exactly,

and therefore needs to be treated approximatively, e.g. within the expansion schemes discussed

subsequently.

The purpose of this work is to investigate various approaches for capturing efficiently, i.e.
from the lowest non-trivial orders of the description, the correlated behavior of the system. In
wavefunction-based theory, an expansion method is specified by a splitting of the many-body
Hamiltonian H into so-called unperturbed Hy and residual H; parts. After solving (part of)
the many-body problem for Hy, one goes from an eigenstate |©®)) of Hj to an exact eigenstate
|¥) of H by incorporating the physics encoded into H; within a given expansion method (of
perturbative or non-perturbative nature). For the expansion method to converge efficiently
(and even to start in open-shell systems), a careful partitioning between unperturbed and
residual sectors must be employed. The unperturbed reference state |©(?)) can be chosen under
the form of a product state, i.e. Hy is quadratic in the fields (i.e. it is a 1-body operator).
In finite-size systems featuring so-called static correlations, responsible for collective behaviors
such as density oscillations or superfluidity, a more sophisticated choice for [©(®) is needed, e.g.
under the form of a linear combination of non-orthogonal symmetry-breaking product states,
each parametrized by a set of order parameters associated to the broken symmetries (i.e. a
PGCM ansatz). Such a linear combination captures non-negligible fluctuations of the order
parameters from the zeroth-order description, including the ones restoring the symmetries of
the system.

Likewise, in the PI language, a given expansion method is based on a splitting of the classical
action between an unperturbed and a residual part S = S° + S'. Such a partitioning is not
unique, and it is the purpose of this study to explore various splittings and to analyze their
effectiveness in catching correlations from the first non-trivial orders of the chosen approach. For
instance, S° is usually obtained after reducing the interacting theory to a free theory, possibly
with self-consistently determined parameters (e.g. in the self-consistent mean-field approach).

Typically, the quartic self-interaction (50: . 5)2 would be replaced by a term proportional to

!To clarify, the zero-dimensional situation or zero-dimensional limit refers throughout this entire thesis to
the (0+0)-D situation (and not to the (0+1)-D situation, as it is sometimes the case in the literature).
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<$ . g:0:>0$ . 5, where <§§ . $>0 is the free field average. To systematically improve on such
a SY one needs to identify some small expansion parameter, which is difficult in practice
(especially in the treatment of strongly-coupled systems). In fact, the reduction yielding S°

would be justified if, for some reasons, the (bosonic) fluctuations of the composite field gzoi cQ
were negligible compared to the fluctuations of the original field ¢ itself.

In contrast with the canonical formulation of quantum mechanics, the PI formalism makes it
very convenient to include the physics associated to the composite field ¢ - . In that respect, a
possible option involves the HST, i.e. an exact manipulation by which the two-body interaction
between the original dofs are decoupled at the price of introducing an extra, collective field
(another way to achieve this being to work within the nPT EA framework). The HST is just
based on standard Gaussian integral properties and, in the present situation, translates into

the identity:
o7 L (B@)3@)" _ | 6h / D5 o 2| FF2 (@) +i5(2)3(2)-3(a))] (3.4)
TA ’ '

where the Hubbard-Stratonovich (or auxiliary) field o(z) is a collective quantum (i.e. fluctuat-
ing) field which is a scalar in color space. The original theory based on C;’(x) is then transformed
into an equivalent one whose partition function reads, after the redefinition ¢ — #5, as
follows:

Lo = / DEDF ¢ hsmix[57] Z[f —0,K = 0} , (3.5)

with

Suix|.5] = / [(vxgé(x)) (VaB@)) + (wz?ﬂ@&(m) é<x>-$<x>+&2<:c>] - (36)

At this stage, one can work with the mixed system thus obtained, which involves both 5
and ¢ as dofs and where the original, cumbersome quartic interaction between the original dofs
has been replaced by a Yukawa interaction between ¢ and the collective field . We can also
exploit the fact that the mixed action (3.6) is now quadratic in the field @, which can therefore
be integrated out in the partition function (3.5), thus leading to:

ZCO] — /D’& e*%Scol[g] X Z|:j: G’K e 0] s (37)

with

Ser[5] = % / #(z) — %STr In(Gy)] | (3.8)

and
A
Gg_;}lb<x7 y) = <_v§ + m2 + Z\/;O’((L’)) 5ab5(x - y) ) (39)

where the supertrace STr is by definition the trace taken with respect to both color and space-
time indices, i.e. STr = Tr,Tr,.

For each of these three representations, coined as original, mixed and collective hereafter, we
will then proceed to a partitioning between unperturbed and residual sectors and account for the
physics encoded in the residual part within a given (perturbative or non-perturbative) scheme.
The performances of each strategy will be also tested in (0-+0)-D by comparing the gs energy
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and density obtained at a given order of the studied expansions with their exact counterparts
given respectively by Eg*" and pgi** defined in section 2.4. We also explained in the latter
section that the phase of the O(N) model under consideration with m? < 0 (and with A real and
positive, which is a restriction often left implicit in our forthcoming discussions, although it only
applies to our numerical applications and not to our formal derivations) exhibits a spontaneous
breakdown of the O(N) symmetry at the classical level whereas the field fluctuations lead
to the restoration of this symmetry in the framework of the exact solution. The analysis of
the gs symmetry properties at each order of the studied expansions will be carried out by

systematically extending each expansion scheme to this phase.

3.2 Loop expansions and perturbative treatment

Among the various strategies one can elaborate to tackle a many-body problem, perturbation
theory (PT) generally comes as a first attempt. In the PI formalism, PT is implemented by
splitting the classical action (in presence of the sources) into a reference part S%, and a residual
part S}, before perturbatively introducing the effects of the residual part in the Z and W
functionals. A first (naive) approach is to organize the perturbative expansion by powers of the
interaction after taking the action of the non-interacting system (i.e. at A = 0) as the reference
configuration. This translates into:

Sy [é] = STk [5] + Sy [Sﬂ ; (3.10)

G[F] =5 | F@Ckalr @) - [ L0F ). (3.11)

s xT

si[d] - 3 [ @@F@) (312

with the free propagator of the field 5 in presence of the sources:
G&}(;ab(x, y) = (=Vi+m?) dud(z —y) — Ku(z,y) . (3.13)

In particular, such a A-wise perturbative expansion breaks down in the broken-symmetry phase
where the partition function of the non-interacting system diverges.

Let us briefly mention here another expansion method for many-body systems featuring
some internal symmetry. When the dofs have N components, scalar composite fields may
exhibit small fluctuations in the large /N limit, thus providing us with a relevant leading order as
a starting point for an efficient expansion (exploiting 1/N as expansion parameter). This yields
the so-called large N or 1/N-expansions® [166]. The 1/N-expansion of the zero-dimensional
O(N)-symmetric p* model is detailed in appendix B.

Another approach consists in implementing PT under the form of a loop expansion (LE), i.e.
to organize the perturbative series by powers of the fluctuations of the field around its classical
configuration. The main assumption behind the LE is that field configurations different from
the field expectation value only give a small contribution to the functional integral. The LE
will be carried out after considering three types of splitting of the classical action, involving the
original, mixed and collective representations based on .S [{5} s Stnix [@, 5} and S, [0] respectively,
where correlations are differently shuffled between the unperturbed and residual parts.

2See ref. [88] and references therein for a complete presentation of 1/N-expansions.
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3.2.1 Splitting of the classical actions

—.

Within the LE framework, the splitting of each classical action S [(p], S mix [(E, E] and Sc[0],
added to the chosen source-dependent terms, between unperturbed and residual parts stems
from a Taylor expansion around their saddle points.

3.2.1.1 Original representation

In the original theory with classical action in presence of the external sources (3.3), the saddle
point Fq(x) satisfies:

—.

655k @]
03 (x)

5z, 09(2) _J(m)_/yK(%y)sﬁd(y) =0 Vz. (3.14)

Pcl

Setting® 5 = Ga+Vh )?, the Taylor expansion of Sk [é} around 5 = @ leads to the following
splitting:

SJK |:$ — (,BC] + \/ﬁ S_é:| — SchJK |:§éi| + S;Cl;JK |:§éi| ; (315)
= R N
S&l;m [X} = Syr[@al + 5/ X (@G%ll;JK;ab(x;y)Xb(y) , (3.16)
x,y
21 RN [, RN [
St |X] = 5 / X (2)Xa ()X (%) pars (%) + / X' (@)X (@)X (@)%0(2) . (3.17)

with G;Cll; ;5 being the unperturbed inverse propagator in presence of the sources*:

—.

525k @]
-1 = —
Gwcl;JK;ab<x’y) — 56“({E)566(y)

:SECI

yﬂ

A
= (<924 Getaana) ) badle —5) + Fomale)anl@dle -

- (lb(x?y) :
(3.18)

The propagator (3.18) differs from that of (3.13) involved in the A-wise expansion as it is
dressed by the classical solution G,. In the unbroken-symmetry phase, where Gy = 0, the A-
and A-expansions coincide. On the other hand, building the perturbative expansion on top of
the symmetry-breaking saddle point allows for the exploration of the broken-symmetry phase
within PT, contrary to the A\-expansion.

3.2.1.2 Mixed representation

The mixed representation can be based on generating functionals involving the local sources
J(x), j(z) as well as the bilocal ones K (z,y) and k(z,y), associated with the original and
collective fields respectively. This gives us e.g.:

ZmiX |:L77 ’C] - e%WmiX[jJC] - /Dép& e_%smix,JIC [‘275] I (319)

3The /I factor is explicitly introduced such that 52’ ~ O(1) and any dependence on the fluctuations around
the saddle point translates into an appropriate power of the reduced Planck’s constant .
4The propagator G’;Cll JK implicitly depends on the source J through the saddle point g.
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where
Smix,le|: i| == SIIIIX /ja \Ija - _/ \Al;a(x)lcaﬁ<xvy){f]ﬁ(y) ) (320)

with Spix given by (3.6) and with superfields living in a (N + 1)-dimensional extended color
space aggregating the N components of the original dofs and the collective one, i.e.:

U(z) = (‘Zv(x)) : (3.21)

= < i) , (3.22)

(wy) 0O
K(z,y) = < G k(a:,y)) : (3.23)

In (3.20) and hereafter, Greek indices run over the (N + 1)-dimensional superspace while Latin

indices run over the N-dimensional color space. The saddle point ¥, = (SBCI Ocl)T of Shix, 7K
satisfies: B
5Smix,JlC [\I}}

e |- =0 Vz. (3.24)

U=W

~ . . L AT - -
Setting U = \I/d—ﬂ/ﬁ =with = = (Q C) , the Taylor expansion of Snix 7k [\IJ] around ¥ = W,
leads to the splitting:

SmiX,JIC |:{IVJ - \IjCl + \/ﬁ §:| = SFOHIX\I/ cl jIC|: :| + Srlnlx Ve IK |:‘§:| ) (325)

v F] = Swwrcltel + 5 [ FG e nT ), 320

Srlnlx Wels J’C - Zh2 \/ /C ~a Xa ) ) (327>

where the unperturbed inverse propagator in presence of the sources reads:

& Srnix,JIC [{I\}]
SW(2)0U(y) |5y,

) (3.28)
_ ( V2 + m? +Z[0cl )]IN \/10(:1 ~K(ny)

— )
5%1@ )

gq_zcll;mc(% y) =

with Ip being the D-dimensional identity matrix. As compared to the original representation,
the classical configuration of the collective field o dresses the propagator of the original dofs:

A
G, (@) = <_Vi +m? + Z'\/;UCI(I)> dand(z — y) — Kap(z,y) - (329)

From the equation of motion (3.24) at vanishing sources, we show that the saddle points Fg

and o are related via:
Fa(x) = =iy 5Pa(®) - Pa(®) (3.30)
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where ﬁd and . denote respectively the configurations of @, and o, when all sources are set
equal to zero. One therefore recovers from (3.29) the inverse propagator in the original represen-
tation (3.18), up to a term which is accounted for in off-diagonal parts of the superpropagator
in the mixed representation. In other words, as long as one works within PT organized in
powers of the unperturbed propagators, the same physics is encoded in the unperturbed
sector of both the original and mixed representations, and it remains to be seen whether the
incorporation of the residual physics is more efficient in one of these two representations.

3.2.1.3 Collective representation

Finally, the collective representation relies on the partition function (3.7) which becomes, after
. . > T
introducing the local source J(z) = (J(z) j(z)) :

Zea[T] = eiWeallT) = /DE e #Seo 0] (3.31)

with

Sungl#) = Suald) = [ e)(@) ~ 5 [ I @) Grne0) ). (3.32)

where S, and G5 are given by (3.8) and (3.9) respectively. The saddle point oq of Sco s
satisfies:
5Scol,][5]
do(z)

=0 Vz. (3.33)

o=0.]

Setting 0 = o + Vh Z, a Taylor expansion of S, 7 around o = o leads to the splitting:

SCOI J [U = 0q + \/_ €:| col oo T [C} + Sclol,acl;j [E] ) (334)
S((J)Ol,UcUJ |:Z:| = colj Ucl / C 0 ot j )C(y) 5 (335)
sl ~:OO§ g™ ) C 3.36
col,oe; T C Z n col J(Ih ) In)C(xl> C(xn) ) ( . )
n=3 ' a1, zn
with
5" St 7 [5]
Seang (o1 = S ) by 337

and D,_.7(z,y) being the propagator of the collective field in presence of the sources, i.e.:
_ 2
D;1 () = S S(x,y) - (3.38)

The unperturbed and residual channels both involve the propagator of the original field 5(3:)

A
G;cij;ab(m’ y) = <_v3: + m2 + Z\/;Ucl($)) 5ab5<x - y) ) (339)

which coincides, in the limit where all sources vanish, with the mixed representation one (3.29),
with however a different configuration for the saddle point o, renormalizing the mass. We now
proceed to the perturbative expansion based on each of the three aforementioned splittings.
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3.2.2 Loop expansions

In each representation of the system, the LE is implemented after inserting the corresponding
action split into unperturbed and residual parts in the partition function Z, and then Taylor
expanding the exponential of S*.

3.2.2.1 Original loop expansion

In the framework of the original theory, the h-expansion for the partition function reads:

ZLE;orig |:i K:| _ 6_%SJK[¢C1] </ D;’ ei%fr,y ;(z).(ijl;JK(w,y)i(y))>

R [ a0)” ([E)) |

n=1

(3.40)

with the source-dependent expectation value defined as:

L e Al
e D ... e R e J K [X , 3.41
and
; ¢ Al

Z [J, K} = [ DY e " Seaux X (3.42)

The h-expansion of the Schwinger functional W1IFieris [f, K| = hln (ZLE;Ofig [j, K D derives

from (3.40) together with the linked-cluster theorem [89], by virtue of which one can substitute
the correlation functions in (3.40) by their connected counterparts, thus leading to:

W[ ] K| =[] + 2STr [1n (G
> > (4) v <(A [R@iw auw) (3] (§2<$>)2>q>c ’

(3.43)

where the term with the supertrace STr stems from Gaussian integration (see appendix A):

[ D &b (ntow0) _ chsnlin], (.44
Denoting the modulus of the classical solution ¢ as o(x) = |Fa(x)|, we can choose a = N as
the direction along which the SSB occurs in the broken-symmetry phase without any loss of

generality, i.e.:
0

Falz) = o(x) 0 . (3.45)

1

The propagator (3.18) can then be separated into the one associated to the O(N — 1) subspace
(the Goldstone manifold in the broken-symmetry phase when N > 2), namely:

A
G;cll;JK;g;ab(I7 y) - (—Vi + m2 + EQQ(ZE)) 611175(‘73 - y) - Kab('I?y) VCL, be [17 N — 1] ’ (346)
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and the one of the remaining massive (or Higgs) mode for a = N, i.e.:

A
Golntes) = (~V2 w4 52 ) oo —0) - Kux(oy) . (347

The connected correlation functions in (3.43) can therefore be rewritten as:
=2, |~ v =2 2\ 7\
(r [Fome) (V[ (F@))) (3.48)
* r 0,JK

and evaluated by means of Wick’s theorem (as presented in section 2.2), conveniently repre-
sented by a set of Feynman diagrams with the rules:

Z,a Y, b — chd;JK;ab(xa y) R (3493)
b AN
a > o CL‘ < C — )‘Q(z)éabécN ) (349b)
b d
a W ¢ — Aaplcd - (3.49¢)

Up to order O (hz) ° the perturbative series thus obtained for the Schwinger functional W [f, K }
reads:

o B
WLE,orlg |:J, K] - _ SJK [SBCI] + §STI' [111 (G¢CI;JK)}

| #
+(9<h3>.

50ne might also refer to order O(hQ) as the 2-loop order or 2-loop level. Indeed, for LEs of Schwinger
functionals or diagrammatic expansions of EAs, the powers of & count the number of loops in the corresponding
diagrams. In other words, n-loop order is synonymous with order (’)(h”) in the language used here.

(3.50)
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Further details on the evaluation of the diagrams contributing to the latter diagrammatic series
are given in appendix C.1.

In the (040)-D limit, the perturbative expansion of the Schwinger functional given by (3.50)
reduces to:

R . h
WLE,Orlg (J) K) = — SJK (SOCI) + E [(N — 1) In (27r®¢cl;JK§g) + In (27TG¢01;JK;NN)]

R\
+ 72 |: N 36§2‘7CIZJK§Q (_1 + N2) + 15Gi017JK7NN)\Q2

72
+ Gicl;JK;NN (_9 + 64,0k (-1+N) >‘92>
+ Gy NN By iicg (—1 4+ N) (=6 + G ymg (1+ N) Ao?) ]
+0O(h%),
(3.51)
where we have assumed that K,, = K, so that (3.46) becomes:
Gt kgar = Gn il Ya,b € [LLN = 1], (3.52)
with \
O iy =M+ 20" — K (3.53)
When J = 0 and K = 0, the modulus p satisfies:
0 vm®>>0,
0’ = 92(f= 0, K = 0) = , (3.54)
6
—% Vm? < 0and A #0,
which yields the following expressions for &, _.7x.q and G,k nvn at vanishing sources:
1
GD = — In_q Vm2 >0 ,
m
Goan = Bpugln-1 = VN >2, (3.55)
ooly_y Vm?<0and A#0,
1 2
GO =— vm >0 s
m
G NN = VN>1.  (3.56)
1
——— Vm?<0and A #£0,
2m?2

From (2.38) and (2.39), one can then obtain the corresponding series for the gs energy and den-
sity. Setting x = hA/m? (thus showing that our loop-wise expansion amounts to an expansion
in powers of the coupling constant \), we get in the regime with m? > 0 and for N € N*:

ELBers — _ Eln (2_7r> + N(2+N)x _ N(6+5N+N2)x2
2 m? 24 144 (3.57)
L V(1204 128N + 44N 4 5N7) 0
2592 ’
and
— (1 2 J;Nw N 5]1i;+ N? 120+ 128N£644N2 £5N® (9(;#)) |

gs m?2

(3.58)
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In the regime with m? < 0, we have for N = 1:

. 3 1 T x 2 1123
ELE;orlg - _1 _____ O 4 359
e 2w 2 n(—m2) s 1 o5 oW (3:59)
and
LE; orlg h 6 z 2372 11%3 -+ O(.%’4) (3 60)
pgs m2 T 2 3 8 ‘ ‘

For N' > 1, no finite results can be obtained in the phase with m? < 0 for the gs energy

and density, as long as we stick with the original dofs ¢, because in this case the Goldstone
propagator G, exhibits (IR) divergences [153] which, as discussed in section 2.4, preclude
the spontaneous breakdown of the continuous O(N) symmetry.

3.2.2.2 Mixed loop expansion

Repeating the calculations outlined between (3.40) and (3.43) for the mixed case, the LE yields:

WLE;miX [j7 ’C] = SmiX,JIC [\chl] + ESTT [hl (gq’d?‘]K)}
- ( hn+1)\n on\\ € (361)
2 Co <<(/C )) >>o,j/<7

where the superpropagator Gy_.7x(, y) can be written in terms of the propagator G, 7 (x,y)

of the original dofs czp:, the propagator D, .7x(z,y) of the collective dof & and the mixed prop-
agator F, .7x(z,y) as follows:

Gougc Foygr
g\yc T = cl; Pcl , (362)
: FT] T DUcl T

with the supertrace STr satisfying STr = Tr,Tr,, while the source-dependent expectation
value involves the following reference measure:

Do = gty | PF oo ¢ BB 569

mlx 0

and

Zmixo [T K] = / DE ¢ #hvacE] (3.64)
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The connected correlation functions are once again conveniently represented by Feynman dia-
grams with the rules:

a \3’3, b
R A SV (3.652)

a g b
T,a Y, b — chl;j;c;ab(l‘, y) R (365b)
T~~~ Y Dyge(x,y) (3.65¢)
ha ===== y — F@cl;JlC;a(l'a y) : (3'65d)

Up to order O(h2), we derive in this way the following expression of the Schwinger functional:

N h
WLE,mlx [j, ]C] — Smix,J’C[\IlCl] + §ST7" [ln (g\Ilcl;J’C)]
1 1 1 /—\\ /,\\
| 5 (OO *E@ MEANE A

1 SN 1Y
+6<} Q\-// +6 \\_//

+O(K%),

(3.66)

and we refer to appendix C.2 for additional details on the determination of the diagrams.

In the (0+0)-D situation, the gs energy and density are obtained from the Schwinger func-
tional according to the relations:

;mix 1 ;mix
B = — 5 WHEH(J = 0,K = 0) (3.67)
‘ aWLE;mix K LE;mix — —
pLSE;mlx — 3Tra (j’ ) = —an (j O’ K 0) , (368)
5 N 0K . N om?
K=0

which are the counterparts of (2.38) and (2.39) in the mixed representation. When the sources
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J and K vanish, the saddle point ¥, reduces to:

Py
<O> Ym? >0,
0
T = Wa(T = 0,6 = 0) = (gc:) _ (3.60)
¢ —6m?2 >
\/ e
A Vm? < 0and A # 0,
im?,/3
)

with € a unit N-component vector. In the unbroken-symmetry regime and when all sources are
set equal to zero, the inverse propagator gg,jl =G0, 'is diagonal:

. Iy 0
G = <m6TN D : (3.70)

so that all propagators of the theory reduce to the bare ones, i.e.:

1

chl = GO = G() ]IN = - HN s (371)
m

D,,=Dy=1, (3.72)

F, =F=0. (3.73)

In this case, the Schwinger functional (3.66) reads up to order O(h*):

h B2\

WLE;miX(j =0, K= O) — 5 {N ln(27rG0) + 1n<D0)] — g (QDOG(%N + DoGgNQ)
%
+ T (6D3GEN + 5D5GyN? + DiGoN?)
BN
— 505 (120D3GON + 128 DjGEN? + 44DJGON + 5DGIN')
+0(R),

(3.74)

which coincides with the Schwinger functional (3.51) of the original theory, still evaluated at
m? > 0 and vanishing sources. Therefore, the same series representation of the gs energy
and density as in the original theory are found in the mixed representation. Likewise, we get
identical results in the regime with m? < 0. At m? < 0, A # 0 and N = 1 for instance, we can

show from (3.69) that the inverse superpropagator at vanishing sources reads:

-1 0 —V2m?2
g% = (_ 52 ) , (3.75)
and thus X X
Gy, =— | 27 Ve | (3.76)
V2m?2 0

leading to the same series as in the original representation in the broken-symmetry regime (and
more specifically to the series (3.59) and (3.60) for Eg and pg, respectively). For N > 1, G !
is a singular matrix and we face the same limitations as in the original representation. To
conclude, the LE based on the mixed representation does not bring anything more compared
to that of the original theory.
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3.2.2.3 Collective loop expansion

We now focus on the LE in the collective representation, i.e. the collective LE. Such a technique
is sometimes called the e-expansion, as e.g. in ref. [167|. This designation follows from early
works with collective actions [168|, which name their expansion parameter € instead of A. For
the sake of completeness, we also point out the works of refs. [169, 170] which discuss the
differences of renormalization issues between the collective case and the original one based on
a o* self-interaction for the original dofs. We do not address the matter of renormalization
here as it is absent from our (0+0)-D applications. Furthermore, the collective LE is usually
not exploited beyond its first non-trivial order. We will outline in this section how to construct
the collective LE series up to their first non-trivial order for our O(N) model at arbitrary
dimensions but we will perform applications of this method up to its third non-trivial order
and combine it with resummation procedures in (0+0)-D. To our knowledge, the collective LE
has neither been pushed up to its third non-trivial order nor been combined with resummation
theory so far, regardless of the model under consideration. Following the same steps as in the
previous representations, the partition function of the theory based on (3.32) reads up to the
first non-trivial order (i.e. up to order O(h)):

7 LE;col [j} — o #Scotgloal (/ DE 6—%fw Z(:c)Dacll;y(x,y)f(y))

X

1- % /zyzu Stolr (@9, 2,0) <C($)C(y)4(2)4<u)>o,j

o [ S 0SS sz (o)),

72 Jon
Lo(r)]
(3.77)
where
(- Dog = #M/DZ e HRegs [ : (3.78)
and

ZCOLO [j} = /DE e_%SSOI’UCI;J [Z] . (379)
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Introducing the Feynman rules:

z,a Y:b — G, .qm(T,y) (3.80a)
T~~~ Y 5 D,g(,y) (3.80b)
A
a-eb i\/;éab , (3.80c)
;,801 — Jo(z) (3.80d)
b
5% 3.80
T Yy — coLJ(xvyﬂ Z) ) ( e)
u_z
xy — Sc(il)’j(x,y,z,u) , (3.80f)

the terms involved in the brackets of the RHS of (3.77) read:

[ s Godiei), - s LB e

and

[ 8t 8 s ) (Ee) ) )G, =9 C Bl S

T2,Y2,22
+6 @ .

(3.82)

In these expressions, the propagator of the collective field as well as the vertex functions can
be evaluated after exploiting the following expression for the derivative of the original field
propagator G defined by (3.9):

6Gow(r,y) _ 0(G51),, (1.9)
0o (2) a(2)

)
/ G >6G5—<(>) G, (v,9) (3.83)

\/7Gaa ‘T Z O'Cb(Z y)
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where the derivative of the second line was evaluated with expression (3.9) of G5, (x,y). Since
the propagator G, .7 (involved in (3.39) and (3.80a)) corresponds to G evaluated at ¢ = oq,
we show the following relations directly from (3.83):

DU_CT;J(x7y) = - i i - % SBOZ/ + 5(ZE - y) ) (384)

xr Yy

V4 V4
& = z + z + + f , (3.85)
T Y x oy ®/x/\g§\® x Y

and

After plugging the vertex functions (3.85) and (3.86) into (3.81) and (3.82) combined with (3.77),
the Schwinger functional in the collective representation is expressed up to order O(ﬁQ) as fol-
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lows:

. h
1y LEscol [ j} = — Seor7]oa] + Tr [ln (Doc1 J)]

TR T RO %

t15 6 +3

+6 " @
+1 4 +4 <§ §)+
8

+4 +2®M+

+O(R%) .
(3.87)

In the (0+0)-D limit, the Schwinger functional expanded up to the second non-trivial order
(i.e. up to order O(h?)) reads:
. h
WLE@Ol(j) = — Seol7(0a) + 5 m(DUd;J)

2
Gl D2y NX2| = 2T = 108Gl 7% + 5G2, 5 Diryig NA

648
+30G% ;Do g J*NA+45G, . 7Dy 7 J*NA

s 17236 1 Go gDl g N | = 540 = 320G 5 4 360G2, s Doy N
+ 2880G2 . ij gJ°NX =T750G) ., D2 J*N°)\?
+270G5 ;D3 S J'NPA® + 540G(, g DE S IONEN
+405G) ;D3 S JPNPN + 3G, Dy, jN)\(1836J4
—25D,,,7NX) + 5GS . ;D2 N?N*(—495J*
+ Dyig NX) 460G, . D2 7 J*N?X*( — 457
+ Doyig NN |

+0(nY),

(3.88)
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where it follows from (3.84) that:

AN
D;(j;j 6 ng;J (2Gvc1;JJ2 + 1) +1, (3.89)

where we have used the relations J, = J Va and G, 7.06 = Go,.70a With G, .7 given by:

X
Gl =m?+ z'\/;acl , (3.90)

as can be deduced from (3.39). In contrast with the original and mixed representations, the LE
in the collective representation is not organized with respect to the coupling constant A, thus
making it non-perturbative. The corresponding expressions for the gs energy and density are
deduced once again after imposing that all sources vanish. The saddle points of the collective
classical action S¢ (i.e. the solutions of (3.33) at vanishing external sources and in (0+0)-D)
read:

(3.91)

Ecl = Ucl[j =

0 i V3m? £ /3m* + 2N\
= e :

to be compared to the equivalent quantity (3.30) in the mixed representation. The propagator

of the original field thus takes the same form G;i;ab = G;cll(ilb = <m2 + i\/§6d> 04 at vanishing
sources in both the mixed and collective representations but, while the trivial expression for
0. in the mixed representation leads to the same renormalization of the squared mass as
in the original representation, the non-perturbative expression (3.91) for @ in the collective

representation yields a non-trivial dressing of G, i.e.:

1 2
G, = B <m2 FA/mt+ 5/\N> , (3.92)

obtained after inserting (3.91) into (3.90) at vanishing 7 (i.e. (3.92) is the configuration of (3.90)
when the source J vanishes). Similarly, in moving from the mixed to the collective represen-
tation, we go from a trivial collective field propagator to the non-perturbative expression:

. 2AN
= S+ 1, (3.93)

DUCI
3 (m2 Fy/mt+ %AN)

which results from the combination of (3.89) at vanishing J and (3.92). We finally deduce the
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series expansions for the gs energy and density valid for all N > 1 and for both signs of m?:

4 ) 127
3m* + N\ m\/9m4+6N)\+2N/\1H<3m2+\/m>

ELE;CO] - _
& 4h\

6N
+-In{1+ 5
2 (3m2 + VOm* + 6N )
NN

6 (3m* + 2N\ +m2\/9m? + 6NN |
10m?N )3

(3m4 +2NX + 7712\/97714—|—W)6
x [108m 10 + 90mENA + 15m2N2A2 + (N2A2 4 18m* N A + 36m°) vom + GN A
2N\

45 (3m* + 2N A + m2V/9m* + 6NX)”

X [918540077120 + 11136204m'° N X + 3610818m'* N?\? + 52650m° N> \?
— 70605m* N*X* — 1792N°X° + ( — 7T119m* N*A* — 48474m N3 \?
+476550m ' N2\? 4 2691468m™* N\ + 3061800m'%)v/9m* + 6N\

+0(n'),

_n 27Tm* + 8N + 9m2V/Ime + 6NA}

+ K2

— B

(3.94)

and

LE;col __ 6

Pe T g2 L JOm L 6N
N V3m?2 + /3m* + 2N\
V3mt L 2NA

6
. { N h(3m2 +VOmT+ 6NN (3m* + 2NX + m2V/9m* + 6N))
L2202 (3m2 + VOm* + 6NX) (9m* + NX + 3m>V/9m* + 6NN
(3m4 + 2N+ m2\/M)4
s 10X (3m Vom* + 6NN
(3m4 + 2N X+ m2/mT + 6NA)
X {54m8 +15m*NA = 2N?A% + (—=m* N + 18m°) m}

20 (3m2 + VOmT + 6NN
9 (3m? + 2NA + m2v/9m¥ + 6NX) "
X {11340m12 +2538m N A — 1722m* N?A\* — 21N°\ + (= 226m* N>\’

+h

+ At

— 414m°N X + 3780m'%) v9m* + 6N>\] +O(R°) } :

(3.95)



3.2. LOOP EXPANSIONS AND PERTURBATIVE TREATMENT 41
where relations homologous to (3.67) and (3.68) were exploited, i.e.:

1
LE;col __ LE;col _
Bl = W7 = 0) (3.96)

: 2 OWLEcl( 7 = ()
LE;col __
Ps - TN om? ' (397)

3.2.3 Discussion

The comparison between the exact gs energy and density and the ones obtained within the LE
based on the original (or mixed) and collective representations is performed in figs. 3.1 and 3.2
at N = 1 and 2, respectively. Moreover, we will also examine the vacuum expectation value
of the original field, which signals the spontaneous breakdown of the O(N) symmetry when
becoming finite. It is defined as:

o (3.98)
J=0
K=0

0u(@) = 0T = 0. K = 0:2] = (Za(@)

where

<>JK _ ﬁ /Dg? R [5} ‘ (3.99)

Note that ¢ can only be computed for N = 1 in the original (or mixed) LE, but for all N
=(n) =
in the collective one. In the original and mixed representations, ¢ , i.e. ¢ computed up to

order O(ﬁ”) in the LE, stems from the derivative of the corresponding Schwinger functional W

with respect to the source .J, thus yielding the following relations from series (3.51) (at h = 1,
m?=—1and N = 1):

—(0 6 _
RO (3.100)
—(1) A—8 /3
= ——A/ =< 3.101
o e (3.101)
— 4102 + 192X — 1
¢(2)__ + 19 5367 (3.102)
256V 6
- 2173 22 4\ — 2
<Z5(3) _ 3 + 82A° + 38 307 ’ (3.103)
512+v/6A
— 645731 + 308163 + 7872\% + 36684\ — 294912
5= i i - : (3.104)

49152v/6
which are plotted in fig. 3.3.

According to figs. 3.1 and 3.2 (and thus for N = 1 and 2), the original (as well as the
mixed) LE(s) only yields (yield) a reasonable description of the gs energy and density for very
small values of the coupling constant A\ < 0.2 (hence A\/4! < 8.107%), as expected from the fact
that PT based on the original (and mixed) dofs is, at best, an intrinsically weakly-interacting
approach. The description quickly deteriorates for larger A. Furthermore, fig. 3.3 shows that,
at N = 1, the expectation value of ¢ is badly reproduced at each order of the original (and
mixed) LE(s), with no sign of restoration of the (discrete) symmetry broken at the classical
level. However, the first orders of the collective LE yield results close to the exact solutions,
even in the broken-symmetry phase where no finite results can be obtained for N > 2 within
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®  exact solution —=— collective LE O(h) ®  exact solution —=— collective LE O(h)
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—e LEO@Y) ©  1/N-expansion O(1/N) ~e LE O(2?) ©  1/N-expansion O(1/N)

Figure 3.1: Gs energy Fy (left) or density pgs (right) calculated at A =1, m? = £1 and N =1
(Re(A) > 0 and Zm(\) = 0), and compared with the corresponding exact solution (black
dots). The indication “(’)(h")” for the collective LE results specifies that the series representing
WEEol has been exploited up to order O(h") (which implies notably that the corresponding
series for B! is calculated up to order O(h"~!') according to (3.96)). Recall also that the
expansion parameter x is defined as x = h\/m?.

the original (and mixed) LE(s). Regarding the expectation value of @ in the framework of
the collective LE, we deduce from the derivative of the generating functional Z., (expressed
by (3.31)) with respect to the source J that:

9fr) o

x { / DG ( /y Gs(z,y) *(y)) e;scol,y[a}} (3.105)

:67

Sy

[=NeT]

to all orders of the collective LE, regardless of the dimension. In other words, the O(N)
symmetry, although possibly (spontaneously) broken down at the classical level, always gets
exactly restored from the first non-trivial order of the collective LE.

In the original and mixed representations (as well as in the collective one, but to a lesser
extent), the perturbative series derived so far show no signs of convergence: the results obtained
for Eys and pg worsen as the truncation order (with respect to h) of these series increases,
except for very small values of A. This behavior signals the illegitimate application of PT
to a system where the fundamental phenomena are non-perturbative in nature. Indeed, in
quantum mechanics and QFT, PT typically produces asymptotic series with a zero radius
of convergence, whose origin lies in instanton-like effects, i.e. an instability of the theory at
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some phase of the coupling (here for A < 0, where the potential becomes unbounded), which
translates into a factorial growth of the number of Feynman diagrams with the order of the
expansion [171, 172]. Note however that the series underlying the 1/N-expansion are not
asymptotic, although the 1/N-expansion coincides with the collective LE at their first non-
trivial orders according to figs. 3.1 and 3.2. The series underlying the collective LE being
asymptotic however, this equivalence breaks down at higher truncation orders but illustrates
the non-perturbative character of the collective LE. From this connection, we also expect the
collective LE to be more and more performing as N increases, which is in accordance with
figs. 3.1 and 3.2.

Asymptotic series however hide relevant information about the system, that needs to be
deciphered through proper resummation techniques. Within this frame, PT is typically com-
bined with a meticulously crafted analytic continuation function, yielding accurate results far
beyond the weakly-interacting regime, and even allowing for the computation of genuinely
non-perturbative features from low-order PT, as discussed in the next section.

3.3 Resummation of the perturbative series

3.3.1 Borel analysis

The dominant method for giving a meaning to an asymptotic series relies on Borel analysis [173].
Let P(x) be a physical quantity of interest, for which we only know a representation in terms
of a divergent, asymptotic series expansion for small x:

P(z) ~ Y paz", (3.106)
n=0

with the generic large-order behavior:

~ (=1)"nla"nbc <1+0<1)) : (3.107)

n— 00 n

Typically, the parameter a only depends on the classical action of the system while the pa-
rameters b and ¢ are specific to the quantity P(x) under consideration. Borel analysis first
consists in introducing the Borel transform of the asymptotic series under consideration, which
translates for (3.106) into:

— - Dn n
B[P](¢) = n§:0 T D) 1)c v¢eC, (3.108)
which is a specific case of the Borel-Le Roy transform [174]:
P
PIQ)=) =" R . 1
B,[P](¢) nEO r(n+s+1)C Vs eR,¥( e C (3.109)

Both transforms (3.108) and (3.109) remove the factorial growth of the initial series coefficients
prn and the (-complex plane is referred to as Borel plane. The new series B;s[P](¢), also called
Borel-Le Roy sum (or simply Borel sum at s = 0), now has a finite non-zero radius of conver-
gence and is analytic in a disk around the origin. The original function P(x) is then recovered
from B,[P](¢) after taking the inverse Borel-Le Roy transform, i.e.:

Pe(z) = / e e B [P)(aC) (3.110)

0
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which derives from the identity:
_Jodegmre
I'n+s+1)

By construction, Pg, (x) has the same asymptotic expansion as the function P(x). It is actu-
ally an analytic continuation of P(z) to a larger domain and may therefore provide sensible
results out of the original asymptotic series. However, the Borel-Le Roy transform B[P]({)
often exhibits poles and branch cuts along the integration path in (3.110), so that the integral
in (3.110) needs to be performed after deforming the integration contour in order to avoid the
singularities in the Borel plane. P(zx) is said to be non Borel-summable when the result of the
integration depends on the choice of contour, reflecting the fact that the half-line [0, c0) (where
the perturbative expansion parameter takes values) is a so-called Stokes line. In this case, the
singularities in the Borel plane induce a non-perturbative ambiguity: different integration paths
yield functions with the same asymptotic behavior, but differing by exponentially suppressed
terms which correspond to non-perturbative contributions. A unique well-defined resummation
procedure can still be obtained after including the contributions from instanton-like configura-
tions, thus resulting in a representation of the perturbative expansion under the more general
form of a resurgent transseries. The latter can be derived for instance via the Picard-Lefschetz
integration method, that we discuss next.

1

(3.111)

3.3.2 Lefschetz thimbles decomposition

Picard-Lefschetz theory provides an elegant framework for generating an ambiguous-free rep-
resentation of a perturbative series [175, 176]. For the sake of simplicity, we illustrate its
application to the studied zero-dimensional model at N = 1. Extensions to higher-dimensional
PIs and systems invariant under continuous symmetries are detailed, e.g., in refs. [175, 176].
Adding a multiplicative constant 1/ vVl for later convenience, the partition function of the
studied (0+0)-D O(N) model at N = 1 reads:

Z(m* X\ h) = \/_/dgoe 75 (3.112)

with classical action:

S(p) = 790 + 4'90 (3.113)
The analysis can be straightforwardly extended to more general integrals of the form:
/d@ e 1S @I (3.114)
R
or
/ A3 p(P)e 5@ | (3.115)
R

with p($) a polynomial in the field . Redefining the field via @ — @/v/ yields:
1 _lvy(s
Z(m? g)=— [ dpe V@ (3.116)

with ¢ = A\ and
m?_, 1

V()= S@)har = 57 + 58" (3.117)

The fundamental idea behind Picard-Lefshetz theory applied to the PI is appealingly summa-
rized by Paul Painlevé in ref. [177]: “between two truths of the real domain, the easiest and
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shortest path quite often passes through the complex domain”. In the present situation, even
if the integral Z(m?,g) is defined over real variables, the natural space in which the saddle
(or critical) points of the action V(¢) and their corresponding integration cycles live is the
complexification of the original space. Understanding the behavior of Z(m? g) for ¢ € R
therefore passes by the study of its analytic continuation where g = |g|e?’ € C. The argument
of the exponential in (3.116) becomes complex-valued, thus turning the partition function into
a violently oscillating integral whose evaluation is difficult. One can significantly improve the
properties of the integral by:

e Continuing the integrand into the complex plane, i.e. viewing the action V(z) as a
holomorphic function of the complex variable z, such that Z now reads as an open contour
integral:

Z(m?, g) /dz e av(z) (3.118)
\/_

where C is a cycle with real dimension 1, coinciding with the real line when g € R™.

e Continuously deforming the integration domain as g varies such that the integral (3.118)
is convergent.

Picard-Lefschetz integration method provides a decomposition of the integration cycle C
into a linear combination C = ). n,J; (with n; € Z) of nicer cycles (over which the integral
is convergent) J; attached to the saddle points z¥ of V(2)° and obtained after solving the
gradient flow (or steepest descent) equations:

0=  OF
o7~ o
(3.119)
0z  OF
o= on
where F(z) = —V(z)/g, 7 is the flow parameter and the upper bars denote the complex

conjugation. The cycles J; are called Lefschetz thimbles or simply thimbles. Along the flow,
Re(F) is strictly decreasing (except for the trivial solution that sits at a saddle point z} for
all 7) and Zm(F) is constant and equal to Zm(F'(z})). In the studied case, the saddle points
of V(2) are z5 = 0 and 21 = +v/—6m?, and sit on the imaginary (real) axis when m? > 0
(m? < 0). Saddle points and solutions of (3.119) are displayed in fig. 3.4 for different values of
m? and g = 1 £ 0.14.

The integer coefficients n; are found after considering the upward flows C; (which are called
anti-thimbles), solutions of the converse (steepest ascent) equations:

0z oF
or 9z
(3.120)
9z OF
E = +§ )

shown as dotted lines in fig. 3.4. Along the anti-thimbles KC;, Re(F') is monotonically increasing
(making the integral divergent) and Zm(F') is constant and equals to Zm(F(z})). According

6As a complex version of Morse theory [178], this Picard-Lefschetz decomposition can only be performed for
isolated critical points, i.e. for saddle points z} such that V"' (z}) # 0.
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Figure 3.4: Critical points (black dots) of F'(z) and their downward (solid lines) and upward
(dotted lines) flows in the z-complex plane, for g = 1 — 0.1¢ (left column) and g = 1+ 0.1¢
(right column), and for m? = +1 (upper panels), the degenerate case m? = 0 (middle panels)
and m? = —1 (lower panels). The value of Re(F) is given by the colormap.

to Picard-Lefschetz theory, n; corresponds to the intersection pairing of the original contour C
and the upward flow KC;. The partition function (3.118) can then be written as:

Z(m?,g) = _niZi(m*,g) . (3.121)

where

1 1
Zi(m?, g) = — dz e"sV®) (3.122)
V9 Jaio
admits an asymptotic power series expansion around the saddle point z, which is Borel-
summable to the exact result [179] (recall that 6 = arg(g)).
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As can be seen in fig. 3.4, the intersection numbers (ng = +1,n4+ = 0) of the upward flows
IC; with the original integration cycle (i.e. the real axis) do not depend on the sign of Zm(g)
in the phase with m? > 0. In this case, the integration cycle coincides with a single thimble,
which translates into:

1
Z(m*>0,9) = Zy(m*> > 0,9) = \/_ dz e sV (3.123)
Jo(0

By expanding around the saddle point zj = 0, the partition function of the theory can therefore
be unambiguously represented by an asymptotic power series Z(m? > 0, ¢g) = Z©m*> 02(9) =
>om Z0m*>0 g" which is Borel-summable to the exact result, i.e. Z(m?* > 0,g) = Zgi)’m “(g)
with:

1 1 * o
Zgi),m2>0(g) _ _egV(Zo)/ dC C’Se—CBs |:Z(0),m2>0:| (gC) , (3124)
NG 0
and
250 () 7 0),m?>0
Bs |:Z ,m=> :| n TL . 3125
Z I'(n+s+ 1 ( )

n=0

In the phase with m? < 0, the integral is on the Stockes line, which is reflected by the jump
of the intersection numbers from (ng = +1,nL = +1) for Zm(g) < 0 to (ng = —1,n4 = +1)
for Zm(g) > 0. Since the integrals over the thimbles J; and J_ yield the same result, the
partition function of the theory can be written as follows:

Z(m* < 0,9) = £Zo(m* < 0,9)+2Z4(m* < 0,9) VIm(g)s0, (3.126)

where each Z; can again be represented by an asymptotic series Z#*<0(g) = 37 Z{m*<0 g
after being expanded around the corresponding saddle point 2 and being Borel resummed
thus yielding the resurgent transseries:

1 1y (% 0 )
Z(m? <0,9) = —<{ + e—gV(Zo)/ d¢ ¢3e~SB, | Z(@m?<0
( 2 \/ﬁ{ 0 ¢¢ [ } (9¢)

+ 2™ V(1) /Oo d¢ CPe B, [Z(+),m2<0] (gg)} VIm(g)sO0.
0
(3.127)

In practice, only the first terms of the asymptotic series Z) (g) are known, such that cal-
culating the integral [ d( ¢(*e B,[Z"](g¢) only amounts to reinserting the I'(n + s + 1)
factors and leads back to the initial diverging series. Getting non-trivial results thus requires
to make some assumptions about the unknown coefficients of the series, e.g. by re-expressing
the Borel-Le Roy transform B; [Z (")} (¢) in terms of a non-polynomial function whose first Tay-
lor coefficients match the known terms of the former. In what follows, we investigate three
kinds of such functions, defining the so-called Padé-Borel(-Le Roy), conformal mapping and
Borel-hypergeometric resummations.

3.3.3 Padé-Borel resummation

We consider once again the generic physical quantity P(z) represented by a factorially divergent
asymptotic series (3.106), which is transformed into (3.109) and (3.110) by means of Borel-Le
Roy transforms. The idea behind Padé-Borel-Le Roy resummation [173, 174, 180-183]| is to
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rewrite the Borel-Le Roy transform B,[P] as a Padé approximant PY/V B,[P], which is a rational
function and can therefore develop a richer analytic behavior (with singularities in particular)
as compared to the polynomial representing B,[P] initially. The Padé approximant PY/Y B,[P]
is constructed from the knowledge of the Borel-Le Roy transform partial sum up to order M
as:

U n
PUVBIPI) = [ (3.129
n=0 "N

with U+V = M. The coefficients {a, } and {b,} are fixed by equating order by order the Taylor
series of (3.128) with the expansion (3.109), up to the desired order. The original function P(z)
is estimated after substituting the Borel-Le Roy sum B,[P] by its Padé approximant PY/V B,[P]
in the integral of (3.110). For our numerical applications, we will focus on the Padé-Borel
resummation, i.e. on the Padé-Borel-Le Roy resummation with s = 0, for which we define
PBp[U/V] = PY/VB,_s[P]. We point out however that there exists recent studies, such as
that of ref. [184], discussing the determination of optimal values for the s parameter within the
framework of Padé-Borel-Le Roy resummation, which is a task that we defer to future works
for the O(IV) model considered in this thesis.
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Figure 3.5: Gs energy Fy (left) or density pys (right) calculated at A =1, m?* = £1 and N = 1
(Re(A) > 0 and Zm(A\) = 0), and compared with the corresponding exact solution (black
dots). All presented results are obtained from series determined via the LE in the original
representation.

We compared the performances of the Padé-Borel resummation procedure in reproducing
the gs energy and density for the studied toy model under various settings, namely by following
the step-by-step procedure: i) change the order M of PT up to order O(SE?’); ii) consider all the
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possible Padé approximants” at a given order M iii) either resum the power series or transseries
representation of the partition function Z and, from there, compute the gs energy and density
(indicated by PBy in figs. 3.5 and 3.6), or directly derive the perturbative expansion of the gs
energy and density and then proceed with their resummation (indicated by PBg,, and PB,,,
in figs. 3.5 and 3.6). The best results are displayed as lines with a e symbol (the color indicates
the truncation order in PT while the filled/open aspect refers to the power series/transseries
representation of the resummed quantity) in figs. 3.5 and 3.6, at N = 1 and 2 respectively.
In the unbroken-symmetry regime, the best description of the gs energy on the one hand is
obtained at N = 1 and 2 with the Padé-Borel resummation of the perturbative series for Egq
pushed up to order O(x3) (o), with [1/2] Padé approximants. On the other hand, the best
reproduction of the gs density in the unbroken-symmetry regime is achieved via Padé-Borel
resummation of the perturbative series for p,s pushed up to order (’)(133) (--e- ) (up to order
O(z) (-e-)) with [1/2] ([0/1]) Padé approximants at N =1 (N = 2). In the broken-symmetry
regime at N = 1, the best description of the gs energy and density is given by the Padé-Borel-
Ecalle resummation of the transseries representation of Z (obtained from a slight modification
of the integration path underlying the inverse Borel transforms in the corresponding Padé-Borel
resummation procedure [185], thus avoiding singularities in the Borel plane) at order (9(:1:2) in
PT ( ), with [1/1] Padé approximants. In all these cases, a major improvement over the
bare PT results can be noticed, i.e. (except for m? < 0) the global behavior of the gs energy
and density with respect to the coupling strength A/4! is now consistent with the exact trend
over the whole range of tested values (i.e. for A/4! € [0, 10], which is wider than [0, 1] considered
in figs. 3.1 and 3.2), and even quantitatively reproduced up to A/4! ~ 2.
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Figure 3.6: Same as fig. 3.5 with m? = +1 and N = 2 instead. As in fig. 3.2, no finite
results can be obtained in the broken-symmetry phase from the LE in the original and mixed
representations.

“In this thesis, all Padé approximants are determined with the PadeApproximant function of
Mathematica 12.1.
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3.3.4 Conformal mapping

While the Padé-Borel(-Le Roy) resummation procedure only involves the knowledge about the
first terms of the initial perturbative series (3.106), the method of Borel(-Le Roy) transform
with conformal mapping [186] aims at more reliable results by incorporating in addition the
knowledge on the large-order behavior (3.107) of p,,. The parameters a, b and ¢ in (3.107) can be
computed via, e.g., the Lipatov method where the coefficients p,, are represented by the contour
integral p, = ﬁ fc d¢ g(ﬂ calculated for large n through steepest descent. In particular, the
coefficient a determines the position of the singularity of the Borel-Le Roy transform (3.109)
which is the closest to the origin, i.e. B,[P](() is analytical in a circle of radius 1/a, with
a=2/3(a =4/3) at N =1 (N = 2) for the studied (0+0)-D O(N) model. One of the
methods for continuing the Borel-Le Roy transform beyond its circle of convergence, and (to a
certain extent) accelerating the convergence of Pg, (), relies on the conformal mapping of the

Borel plane:
v1i+al—1

W= MTvacs1
(3.129)
4 )
Cfau—wy'

Under this transformation, a point in the (-complex plane is mapped within a disk of unit radius
|w| = 1. In particular, the origin is left invariant and the branch-cut singularity ¢ €] —o0, —1/a]
is mapped to the boundary of the w-unit disk, thus turning the Taylor expansion of the function
B[ P)(w) = Bs[P]({(w)) into a convergent one for |w| < 1. The original quantity P(x) is then
determined after re-expanding B,[P](x() in the new variable w(x() in (3.110), i.e. after writing
(assuming that only the first M terms of the original series are known):

BA[P](¢) =) Wa (w(()" (3.130)
with
R Dk AN (k+n-1)
W%_ggrw+s+m(a)(n—mu%—1ﬂ' (3.131)

and we will also set s = 0 in our numerical applications.

The gs energy and density obtained for our toy model after a conformal mapping resumma-
tion of the partition function Z are displayed as -+ (-#- ) when Z is represented by a power
series (transseries) in figs. 3.5 and 3.6, at N = 1 and 2 respectively. As far as the energy is con-
cerned, the conformal mapping resummation applied to the partition function yields results in
better agreement with the exact ones, especially in the strongly-interacting regime (for A/4! 2> 2
more specifically), in comparison with the estimates obtained via Padé-Borel resummation of
the energy perturbative series at the same order of PT. The results are however not as good for
the gs density. In the phase with m? < 0 where the partition function is not Borel-summable,
fig. 3.5 shows the gs energy and density of the system obtained both from Z represented by
an ambiguous power series and by a resurgent transseries. In the former case, the global be-
havior of the gs energy with the coupling strength is fairly well reproduced, but a quantitative
reproduction of the exact result is not achieved, even in the weakly-interacting limit. The gs
density, when deduced from a power series representation of Z, misses the monotonic decreasing
displayed by the exact result when going from weak to strong couplings. Representing Z by a
transseries slightly improves the description of the gs energy and density of the system, with
now a correct description of the range set by A/4! < 1.
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3.3.5 Borel-hypergeometric resummation

Borel-hypergeometric or Meijer-G resummation [187-193| extends the idea behind Padé ap-
proximants while trying to overcome the known issues of the latter® by working with more
sophisticated continuation functions, i.e. hypergeometric functions, which can notably mimic
branch cuts in the complex plane, and whose (inverse) Borel transforms are known and conve-
niently represented by Meijer G-functions [194, 195]. To our knowledge and unlike the other
resummation methods discussed previously, the Borel-hypergeometric resummation has never
been applied to any O(N)-symmetric theory, putting aside the (0+0)-D case at N = 1 [192].
We will push our investigations in (0+0)-D up to N = 4 in the present study. Regardless of
the model under consideration, the recipe underlying the Borel-hypergeometric resummation
procedure can be presented as follows [192, 193]

1. As for the other resummation procedures, starting from the asymptotic series representing
P(z) truncated at an odd order M (the case of even truncation orders will be discussed
below), one starts by computing the coefficients b, = p,/n! = p,,/I'(n + 1) of the Borel
transform Bp = By—[P].

2. One then computes the M ratios by/bg, -+ ,by/bar—1 of two consecutive coefficients of
the Borel series and makes the ansatz that such ratios b,1/b, are rational functions of
n, coined as rp/(n) and defined as:

> g it”
1+ 5 vpnk

with { = (M —1)/2. The 2 4 =1 = M unknowns u, and vy, are determined from the
M equations:

v (n) , (3.132)

bn
b“ = ry(n) | (3.133)

where n runs from 0 to M — 1.

3. Hypergeometric vectors © = (1,—xzy, -+ ,—x;) and § = (—yi,--+,—y;) are then con-
structed via the equations:

> uprt =0, (3.134)

!
L+ ot =0, (3.135)
k=1
and used to define the hypergeometric approximant of the Borel transform Bp in terms
of the generalized hypergeometric function:
U

HYBp(() = 11 Fi (977,@ —C) : (3.136)

U1
4. One finally recovers the original function P(x) through an inverse Borel transform, which

z), ie.:

o0 !
PHB(QL') = A d( eiCHMBPCCC) — WG1+2,1 < 1,—y1, =y

k=1 F(—xk) l+1,l+2 1’1771.1"“’711

. .. . at, - ,a
can be represented in terms of a Meijer G-function Gzz” by ,bf

(3.137)

8 As rational functions, Padé approximants built-in singularities are poles. Hence, since many poles are needed
to mimic a branch cut, the Padé-Borel resummation procedure converges slowly when the Borel transform to
be approximated displays branch cuts.
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For an even truncation order M, one first subtracts the constant zeroth-order term from the
original series, then factors out the first-order term and finally follows the above recipe on
the resulting series with an odd (M — 1) truncation order. The final answer is obtained after
re-multiplying the resummed series by the first-order term and re-adding the constant.

The gs energy and density of the system obtained from the Borel-hypergeometric resum-
mation of the partition function are reported in figs. 3.5 and 3.6 at N = 1 and 2 respectively.
Results corresponding to the third non-trivial order of PT are displayed as --4-- (--¢-- ) when Z
is represented by a power series (transseries). The Borel-hypergeometric resummation of the
partition function yields the best results among all the resummation schemes, and even leads
to an exact description of the partition function of the O(2)- and O(4)-symmetric theories from
the third non-trivial order of the original LE, as shown by fig. 3.7.
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Figure 3.7: Gs energy Egglc (left) or density pgsﬂc (right) calculated from Borel-hypergeometric
resummation applied to the original (or mixed) LE series up to their third non-trivial order
(notably labeled “LE H3By” in figs. 3.5 and 3.6, which correspond to the present results (in the
unbroken-symmetry regime) labeled “N = 1”7 and “N = 2”, respectively). More specifically, we
show here the difference between these results and the corresponding exact solution Eg;‘a“ or

potat h=1,m?=+1 and N =1,2,3 and 4 (Re()\) > 0 and Zm()\) = 0).

3.3.6 Conclusion

Resummation techniques offer an impressive way of extracting sensible results from the very
simple ordinary PT over a wide range of values for the coupling constant A/4!, including the
strongly-coupled regime. The various resummation techniques at our disposal actually render
the LE (and all other techniques based on asymptotic series) rather versatile. The description

of the gs energy and density (as well as the 1-point correlation function ¢ at N = 1 in the phase
with m? < 0) are significantly improved at trivial cost. However, a very accurate reproduction
of the system’s features requires to reach at least the third non-trivial order of PT, which can be
difficult to determine in realistic cases. Besides, the theoretical foundation of the nuclear EDF
can not be found in standard PT (even when completed by a resummation procedure), as no
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self-consistent dressing of, e.g., the field propagator is achieved and the energy is not obtained
as a functional of the density in the spirit of DFT. We now turn to an optimized version of PT
which bears stronger resemblance with EDFs via the use of self-consistent expansions.

3.4 Optimized Perturbation Theory

3.4.1 Spirit of the optimized perturbation theory

In standard PT formulated in the original representation (which was discussed in section 3.2),
the splitting of the classical action S = S°+ S into an unperturbed reference part S° (which is
supposedly simple enough to compute the corresponding energies and correlation functions
without any approximation) and a residual part S' was performed within the LE, which
amounts to a A-wise expansion in the unbroken-symmetry phase of the studied O(N) model.
In this situation, S° coincides with the classical action of the non-interacting system and S*
contains the interaction. OPT? challenges such a splitting by optimizing the reference part S°
around which one expands. Namely, there exists an infinite number of acceptable reference
parts S? depending on some parameter o(x) (not to be confused with the collective Hubbard-
Stratonovich field &(x)), thus yielding the following splitting:

—

5[] = % [7] + % [7]

(5°[] - 3 [ o) @) + (5[5 + 5 [ o) G

where the original splitting appears as the particular case where o(z) = 0. Formally, one
has done nothing but adding and subtracting an arbitrary quadratic term in the classical
action. The idea behind OPT is then to exploit the introduction of such a Gaussian kernel
to reorganize the partitioning into unperturbed and residual parts in a more flexible fashion,
where non-perturbative correlations are shifted towards the easily solvable unperturbed channel.
Indeed, when the perturbative expansion around S? is truncated at some finite order, physical
quantities exhibit an artificial dependence in the parameter o(x) that must be fixed. Relevant
choices of o(x), such that S? mimics as faithfully as possible the full action S, allow us to dress
the propagator of the original field with non-trivial physics and turn the original divergent
perturbative series into an exponentially-fast convergent one. At its first non-trivial order
and depending on the condition chosen to fix o(z), OPT can lead to identical results as self-
consistent mean-field approaches like the Hartree-Fock theory (which is different from standard
PT in the original representation, presented in section 3.2, whose propagator is not the one
involved in Hartree-Fock theory but just corresponds to the bare propagator, possibly dressed
by the vacuum expectation value of @(z) within the LE in the broken-symmetry regime), as
will be illustrated later in section 3.5.2.2. The key principle underlying OPT is that o(z) is
optimized at the working order, i.e. is different at each truncation order, which is essential
to obtain the aforementioned systematic improvement of our results and thus contrasts with
methods based on asymptotic series.

Several optimization criteria can be devised to this end:

e In the ODM approach, o(x) is determined according to mathematical convergence prop-
erties of the series [221].

9We name OPT all strategies involving an optimized splitting into unperturbed and residual parts via some
conditions, which includes more approaches than those exploited in refs. [154, 157-160, 196-214], such as
variational PT (VPT) [90, 183, 215], linear delta-expansion (LDE) [216], self-consistent expansion (SCE) [217,
218], self-similar PT [219] or order-dependent mapping (ODM) [220, 221].
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e Other classes of strategies are based on the fact that a given physical quantity O®)

computed at kth order of the OPT expansion exhibits an artificial dependence with
respect to o(z), so that one should try to make O*) minimally sensitive to it. This can
be achieved via the so-called principle of minimal sensitivity (PMS) [154], i.e. a
variational principle imposing:
5Ok)
do(x)

=0 Vz, (3.139)
o=o®)
PMS
or via the turning point (TP) method [222| where one rather looks for a plateau in the
behavior of O%) with respect to o(x):

520k)
do(z)?

=0 Vz, (3.140)

o=orp

or via the fastest apparent convergence (FAC) [154] where o(x) is fixed so that O
calculated at two subsequent OPT orders yields the same result, i.e.:

(oW =D ) =0, (3.141)

which amounts to imposing that the kth coefficient in the OPT expansion is zero.

e Another kind of optimization procedure involves a self-consistent condition (SCC) for
o(x) where some physical features of the system are asked to be faithfully reproduced
from the zeroth order of the description. In the spirit of Kohn-Sham DFT, one can ask
that the 2-point correlation function of the system calculated at kth order of the OPT

—

—

(k)
expansion <95(:v) : gp(y)> (which reduces to the density at y = x) coincides with the

= =\
zeroth-order one <g0(x) : go(y)> :

(Fw-30)" - (B 3w)"] =0 wy. @i

Such an optimization procedure, like the previous ones (PMS, TP, FAC), requires the
calculation of a physical quantity at kth order of the OPT expansion, which is often
difficult to achieve. We can use instead the following alternative implementation of the

SCC:
[< (é(x) : ﬁ(y)>m(k)>(l) — <<§5(x) . s?“(y))m(k)>(0)] —0 Va,y, (3.143)

_ (k)
0=0gcc

which is only a first-order relation, therefore easy to compute. The dependence in the
working expansion order k appears via the exponent of the correlation function m(k). In
particular, a dependence of the form m(k) = k was studied in ref. [223] and shown to
yield an exponentially-fast convergent series representation of physical quantities. One can
understand the first-order nature of the last optimization procedure along the following
lines: since the OPT expansion creates itself its partitioning between unperturbed and
residual sectors such that the residual part is indeed small (in some sense) compared to
the unperturbed one, we expect that the first-order correction will be the dominant one.
In other words, the condition imposing a given correlation function computed at the first
order of the OPT expansion to coincide with the zeroth-order one should not be very
different from the same criteria for the correlation functions computed at the working
order k£ > 1 (instead of k = 1), which is why the difference is expected to be captured by
simple forms of m(k) (such as m(k) = k).
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OPT has been widely used for decades via the above optimization criteria [90, 154, 157
160, 183, 196-221|. In particular, we can mention a previous study [150] of the unbroken-
symmetry phase of the (0-+0)-D O(N) model considered in this thesis using OPT based on the
PMS, the TP method and the FAC. However, this work exploits the (0+0)-D nature of the
problem to directly expand the quantities of interest, thus bypassing notably the diagrammatic
constructions underlying Wick’s theorem that can hardly be avoided in finite dimensions. In
what follows, we will not use such a shortcut and construct the diagrammatic series underlying
OPT for our O(N) model in arbitrary dimensions'’ as usual. We will investigate the SCC as
well and extend results of ref. [150] to the broken-symmetry regime of the studied (0+0)-D
O(N) model.

3.4.2 Splitting of the classical action

We thus focus as a next step on the classical action of the studied (finite-dimensional) O(N)
model whose expression is recalled here for convenience:

= 1 ~ ~a m2 ~ ~a A ~ ~a
sl -/ {5 (Voal@)) (Vo' (@) + - Ba(@)3"(0) + 5 Ga(0)P* @) . (3.144)
The implementation of OPT first requires to introduce a set of non-fluctuating (i.e. classical)
collective fields coupled to relevant bilinears in the original field(s). In the present case, the only
relevant bilinear form in the field p(z) is @(x) - p(y), or its local counterpart p(z) - o(x). We
therefore introduce a single collective field o ()", thus resulting in the following partitioning:

S[(E] s [5] + 5! [é} , (3.145)
8[F] =3 [ F@CLENP0). (3.146)

1 - -

28] = [ 15 (3w 8@) + so@de) - 3w (3147)
7 . | 4! 2 ’ '
with the OPT propagator defined as follows:

G, (z.y) = (=Vi+m’—o(z)) dud(z — y) . (3.148)

o;ab

3.4.3 Perturbative expansion

We proceed as before with the perturbative expansion of the partition function'?:

7 — / DG o~ (se el st [7]) , (3.149)

where a fictitious factor o has been introduced in order to keep track of the order for the OPT
expansion (d must therefore be set equal to 1 at the end of all calculations, which is the condition
for (3.149) to reduce to the original partition function of the studied O(N) model). Contrary
to the mixed representation including the original field é(x) and the fluctuating collective
Hubbard-Stratonovitch field o(z), there is no path-integration over the configurations of o(z)
in the present case, which is why we stressed above the non-fluctuating character of this field.

10Note that the construction of diagrammatic series in the framework of OPT has already been discussed in
ref. [197] for a p*-theory, but not for the O(IN)-symmetric case.

1 The absence of tilde on ¢ highlights the fact that it is a non-fluctuating field.

12We set h = 1 in this entire section on OPT.
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Taylor expanding the exponential of the residual action S} in (3.149) yields the following
expressions:

ZOPT _ ( / DG e o 5(9&)-(6‘01(@@/)@@)))

X 1+§; (—]j)k lzi; (’lf) <<%/wg(x)g§2(x))kl (%/x (52(x))2)l>0 | (3.150)

and

- L N Lo\

WOPT = STy [In(G, )] +}; <—]j) IZ; (’lf) <(% / o(x)E (:c)> (% / (F) ) >070 |
where the o-dependent expectation value is defined by (8.151)
(e = ZOU/D sl (3.152)

with
/m” st lF (3.153)

The connected correlation functions in (3.151) are then rewritten with the help of Wick’s
theorem together with the Feynman rules:

z,a Y:b = G, y) (3.154a)

b d
o YK ¢ = Aapdea (3.154b)
a‘z‘b — 0 (2)dap - (3.154c¢)

In this way, the Schwinger functional reads up to order (’)(62):

WOPT — %STr [In(G,)]

O OO+
2 24 12

(3.155)
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where further information on the determination of the diagrams can also be found in ap-
pendix C.1.

We deduce the expressions of the partition function and the Schwinger functional of our
O(N) model in the zero-dimensional limit (pushed up to order O(6%) in the OPT expansion
and setting § = 1):

ZOPT;(3) _ (QWGU)% 1 NUQG'J N N(]\/;— 2) (02 B %) G2 4 N(N+i)g(N+4) (A= 0?) 0G?
+}WN+2XN+®@V+®(§_UﬁAG§
192 6
_JWN+9XN+4KN+6NN+@A%G5
2304 7
NV +2)(N + (N +6)(N +8)(N +10) 15
82944 717’

(3.156)

and

. N NoG, 1 1
WOPTG) — B In(27G,) — 02 - ﬂN (AN +2) —60%) G2 + ENO’ (AN +2) —20%) G
1 1
+ MY (N+2) (AN(N+3)—180%) G, — %)\QNU (N? +5N +6) G
1
— mA3N (5N? 4+ 44N? + 128N +120) G,
(3.157)
with the dressed propagator:
1
G, = , (3.158)

and o to be determined via one of the optimization conditions discussed previously. The gs
energy and density of our (0+0)-D O(N) model (for all N > 1 and for both the unbroken- and
broken-symmetry phases) obtained from OPT thus read:

Emmaz_ﬂm< 2 )

g8 2 m2 —o

N 1 2+ N) — 602 21 2+ N) — 202
N 19960 4+ 08(A(2+ N) —60%) 2160(A(2+ N) —207)
2592(m? — o) m?2—o (m? —0)?
182+ N)(AB+N) — 180%)  T2X%(6 + 5N + N)o
(m? — o) (7 — o)
A3(120 + 128N + 44N? + 5N?)
+ ;
(2 — o)

(3.159)
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and
1
OPT;(3) __
Pt = ——
_ 2 _ 3
L (g6 4 S0ACEN) —6o%)  108(A2+ N)o — 207)
216(m? — 0)? mE—o (% — o)
(m? —o0)3 (m? — o)
(m? = o)’ '

A definite estimate of the gs energy and density is only obtained after fixing a value for o, as
we discuss next.

3.4.4 Optimization of ¢

What distinguishes OPT from many other approaches is the fact that the optimization of the
field o depends on the working order k. We focus on three classes of optimization criteria for
o, namely the PMS, the TP method and the SCC'?,

3.4.4.1 Principle of minimal sensitivity

We first consider the PMS, where we either ask the partition function ZOPT:® the gs energy

ELTT® or the gs density por ™| computed at order k (i.e. up to order O(8%)) of the OPT
expansion, to be extremal with respect to o, i.e.:

aZOPT;(k)
e =0, (3.161)
g O':0'<k)
PMS;Z
aEOSPT§(k)
— =0, (3.162)
Jo ®
—YPMS;E
o OSPT§(1<)
e ~0. (3.163)
oo o
“ Y PMS;p

For instance, at the first non-trivial order (i.e. up to order O(4)) of the OPT expansion, the
three above equations are polynomial and second-order with respect to ¢ and their solutions
read:

1 3m*(N+4)+ /3N (A (N?+4N +4) +3Nm?) (3.164)
OpMS;Z — 6(N +2) , )
1 2\
s = <m2 + \/ m+ (N + 2)) , (3.165)
(1) L i
ot = 5 <m +/m* + AN + 2)) . (3.166)

13The study of ref. [150] has already shown that the FAC optimization procedure is less performing than the
PMS approach when determining the gs energy, the self-energy and the fourth-order vertex function I1PD(#) (gf) =
6) in the framework of the unbroken-symmetry phase of the toy model considered in this thesis.
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The complexity of the PMS equations (3.161) to (3.163) increases with the truncation order,
i.e. with the working order k. We illustrate in fig. 3.8 that, for the purpose of determining Fg
O pgs, it is in general more efficient to apply the PMS directly on the OPT series representing
E,s or pgs respectively (i.e. to exploit (3.162) and (3.163)), rather than on Z (i.e. rather than
using (3.161)). We can already appreciate in this figure the nice convergence properties of OPT
at its first two non-trivial orders, which will be discussed further later in this section.
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Figure 3.8: Difference between the calculated gs energy Eg;“c and the corresponding exact
solution ES** at N = 1 (left) and N = 2 (right), with & = 1 and m* = £1 (Re(\) > 0 and
Im(A) =0).

3.4.4.2 Turning point

The optimization of ¢ via the TP method is based on the equations:

32EgOSPT;(k)
o0t | =0, (3.167)

0=0T1p.E

82 OPT;(k)

Pgs
_— =0, (3.168)
0o2 "

T=01p,,

whose solutions are, at the first non-trivial order of the OPT expansion:

A
o = i\/m4 +5 (N +2), (3.169)
1
ot =1 <m2 + \/9m* 18X (N + 2)) . (3.170)

As for the PMS, the complexity of the TP optimization equations such as (3.167) and (3.168)
grows with the working order k.
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3.4.4.3 Self-consistent condition

We implement the optimization of ¢ via the SCC by solving the equation:

<<§3.$)k>(1) L= <(§2‘-§2’>k>(0) . (3.171)

0,0=0g¢¢ 0,0=03¢¢

where the o-dependent expectation value is already defined by (3.152) and (3.153) in arbitrary
dimensions. Whatever the working order £ in the OPT expansion, the complexity of the SCC
equation (3.171) remains that of a second-order polynomial equation in o. It is the order of
the correlation functions involved in both the RHS and LHS of this SCC equation that changes
with k. One can then write the solutions of (3.171) for all k as:

1 2
aggC:§ (m2:t\/m4+?(N+k+1)> . (3.172)

Hence, the solutions (3.165) and (3.172), obtained respectively from the PMS and the SCC,
coincide at k = 1. In other words, we obtain the same solution for ¢ either by imposing the
gs energy calculated up to the first non-trivial order of the OPT expansion to be extremal
with respect to o or by demanding that the density (or propagator) calculated at the first non-
trivial order of the OPT expansion coincides with the one obtained from the zeroth order. We
postpone to future works the investigation of the validity of this connection at higher truncation

- =\ (k) - =\(0)
orders k, where the SCC is implemented in the form <§5 §5> o = <§5 {5>

_ (k) -~
0,0=0g4cc

0,0=04cc

3.4.5 Discussion

As explained in section 3.4.1, OPT optimizes the partitioning of the original classical action S
into an unperturbed reference part S° and a residual part S', which translates into a non-trivial
dressing of the unperturbed field propagator G, (defined by (3.148) for the studied O(/N') model
in arbitrary dimensions) with non-perturbative correlations. It is instructive to compare how
the propagator gets renormalized in the frameworks of both OPT and LEs, within the mixed
and collective representations in particular. To that end, we write the dressed unperturbed

propagators in the generic form:
. 1
Ouab =+ 0ab » (3.173)

*

with m, being a renormalized mass. As discussed right below (3.91), we have obtained for both

the mixed and collective LEs:
A
mipg =m’+ i\/;ﬁd : (3.174)

with 7 being the saddle point of the mixed or collective classical action at vanishing sources,
and where the collective Hubbard-Stratonovich dof & is a fluctuating field participating to the
PI measure. More specifically, we have found the following expressions for &:

0 Ym?>0,

Ocl;mix = —¢ \/ Egpcl P = (3175)

i\/ng Vm? < 0and A # 0,

and'
G = ]2 (2= fmr+ 2N (3.176)
el T 9\ 3

40Only the minus sign solution (which is the physical solution) is taken in (3.91) to obtain (3.176).
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according to (3.69) and (3.91) for the mixed and collective LEs, respectively. After insert-
ing (3.175) and (3.176) into (3.174), we obtain the following unperturbed inverse propagators:

m? VYm? >0 ,
mz;LE;mix = (3177)
0 Vm?<0and A #0,

1 / 2\

These (inverse) propagators are the same whatever the working order k of the LE, i.e. regardless
up to which order O(hk) the LE is carried out. In other words, only the series representing the
quantities of interest (i.e. the gs energy and density in this study), which involve the dressed
unperturbed (inverse) propagator m?, vary with the working order k of the LE, whereas m?
remains independent of k and is always given by (3.177) or (3.178) for the mixed and collective
representations, respectively.

and

However, the dressed (inverse) propagator involved in OPT depends on the collective dof o
(i.e. on a non-fluctuating field to be adjusted), which itself depends on the working order & (i.e.
it depends up to which order O(0*) the OPT is carried out), namely m?qpp = m2.opp(a(k)).
In other words, both the OPT series of the gs energy and density on the one hand and the
dressed unperturbed propagator on the other hand change with the working order k. Focusing
on the PMS and SCC optimization procedures only, we obtain'® at the first non-trivial order
of the OPT expansion:

1 2
mi;OPT;PMS;E;(l) = 5 <m2 + \/m4 + ? (N + 2)) ) (3179)

1
mz;OPT;PMS;p;(l) — 9 (m2 +/mt+ A (N + 2)) , (3.180)

and, up to order O((Sk) of the OPT expansion,

1 2\
mz;OPT;SCC;(k) - 92 <m2 + \/m4 + ?(N + kA 1)) : (3.181)

We recover of course the property miOPT;SCC;(l) = miOPT;PMS; Ey(1) discussed before right be-
low (3.172) but we can also see a significant resemblance between the renormalized masses
(3.179) and (3.181) obtained from OPT via PMS and SCC on the one hand and, on the other
hand, that given by (3.178) for the collective LE.

An excellent reproduction of the gs energy and density is achieved with OPT based on the
PMS, which notably results in an accuracy around 0.5% at the third non-trivial order in both
the unbroken- and broken-symmetry regimes at N = 2, as shown notably by fig. 3.10. At the
first non-trivial order, the PMS and the SCC lead to identical results, as justified below (3.172)
and illustrated by fig. 3.9 at N = 2. However, fig. 3.10 shows (still at N = 2) that the PMS
slightly outperforms the SCC: for example, the corresponding estimates for E,¢ are respectively

15Similarly to (3.176), expressions (3.179), (3.180) and (3.181) are all physical solutions. They are obtained
by taking the minus sign solutions of (3.165), (3.166) and (3.172), respectively. Their physical character can be
seen from the fact that they all reduce to m? = m? at A = 0 and m? > 0.
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Figure 3.9: Difference between the calculated gs energy Egglc (left) or density pgglc (right) and
the corresponding exact solution ES** or p&** at h = 1, m* = £1 and N = 2 (Re()\) > 0
and Zm(\) = 0). The presented results are the first non-trivial orders of the collective LE and
OPT with the three different tested optimization procedures. See also the caption of fig. 3.1

for the meaning of the indication “O(h")” for the collective LE results.

around 0.6% and 1.1% throughout most of the tested range of values for the coupling constant
(i.e. for A/4! € [0,10]). This loss of accuracy of the SCC as compared to the PMS is rather
small considering the simplicity of the underlying equations to solve: at the third non-trivial
order (and regardless of the values of N and m?), the SCC still amounts to finding the roots
of a quadratic polynomial whereas the PMS criterion is now a polynomial equation of order
6. Note also that, according to figs. 3.9 and 3.10, the TP method is clearly less performing
than the SCC and the PMS at the first non-trivial order of the OPT expansion but becomes
comparable to SCC at the third one, whereas the underpinning equations to solve are closer to
those of the PMS in terms of complexity. The TP method is thus disappointing (as compared
to both the PMS and the SCC) in that respect.

Comparing the two best approaches investigated so far, i.e. OPT and the collective LE,
figs. 3.9 and 3.10 show that, after combination with resummation, the collective LE outperforms
OPT at both the first and third non-trivial orders for both E,y and pgs, at N = 2. Furthermore,
as discussed earlier from figs. 3.1 and 3.2, the performances of the collective LE are expected to
improve with N due to its connection with the 1/N-expansion whereas such an argument does
not hold for OPT (for instance, the performances of OPT in fig. 3.8 do not differ significantly
at N = 1 and 2). However, regarding the formalisms underpinning these two techniques,
the diagrammatic representations of their respective expansions is much more demanding to
determine on the side of the collective LE: whereas OPT diagrams are directly obtained by
adding the square vertex (3.154c) to the diagrams of the original LE at @, = 0 (i.e. in
the unbroken-symmetry regime) in all possible ways, the collective LE requires to construct
the diagrammatic expressions of all vertex functions S(EZR g form = 2,... 2k to determine

the corresponding Schwinger functional up to order O(hk) As can be inferred from (3.85)

and (3.86) expressing respectively Sﬁﬁf 7 and S((:(A)‘l)’ 7> the determination of the diagrammatic

expressions of Sc(gﬁ 7 becomes quickly lengthy as n increases. This cumbersomeness directly
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Figure 3.10: Same as fig. 3.9 but for the third non-trivial orders of the collective LE (includ-
ing the best tested resummation procedures among the Padé-Borel and Borel-hypergeometric
schemes) and of OPT.

results from the logarithm structure of the collective classical action. Besides this, we should
also stress that the collective LE (as any other approach formulated in the mixed or collective
representation) rely on a HST and is therefore subject to a well-known drawback of the latter,
i.e. the fatal focusing of HSTs on a single channel [160] that may yield considerable difficulties
when trying to describe more realistic systems exhibiting competing instabilities (which is
notably the case for most nuclei of the nuclear chart). The origin of this problem lies in the
fact that, for such systems, we have an infinite number of choices to implement the HST (e.g.
should we integrate out the coupling associated to the particle-hole channel or that associated
to the particle-particle one? Mixtures are also possible, which explains the infinite number of
choices). Once one has integrated out the chosen channel, the physics of the other channel(s)
are automatically resummed into the propagator of the newly obtained theory, as a result
of the fluctuating character of the Hubbard-Stratonovich field. Although this might seem
appealing at first sight, such a propagator is often very hard to calculate in practice, hence
the aforementioned difficulties for methods based on HST(s). The implementation of OPT
described in the present section is designed to circumvent this issue. Generalizing the recipe
outlined in section 3.4.2, we can indeed introduce a classical field coupled to each relevant
bilinear in the original field(s) of the theory under consideration, thus treating all channels in
an equitable fashion. Hence, the simplicity of the underlying diagrammatic construction and
the possibility to circumvent the fatal focusing of HSTs are both important advantages of OPT
(over the collective LE in particular) for the purpose of describing realistic many-body systems.

In conclusion, OPT offers an interesting framework to describe strongly-coupled many-body
systems at low cost. As opposed to LEs, OPT results are directly systematically improvable
in the sense that they do not rely on resummation procedures: they take the form of (tremen-
dously) fast convergent series (see notably refs. [224-227] for detailed studies on the convergence
behavior of OPT series). However, the energy and the density are not tied in a functional as
in the EDF approach. We now investigate the third and last family of approaches considered
in the present chapter. These approaches are based on EAs from which one can work with
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functionals of the correlation functions of the theory, or their local versions that can coincide
with e.g. the density of the system.

3.5 Effective action

The EA framework allows for representing the partition function of a given theory in an exact
and compact fashion. As discussed in section 2.1, the nPI EA can be expressed in terms
of diagrams with dressed propagators and dressed k-point vertex functions for £k < n. We
investigate the 1PI, 2P(P)I and 4PPI EAs either organized with respect to i or A, for the
original, mixed and collective representations of the studied O(N) model, as summarized in
tab. 3.1. Within these various EA implementations, expressions will be worked out via the
inversion method'® (IM) introduced by Fukuda and collaborators [162, 163], especially since
it enables us to draw direct connections with Kohn-Sham DFT via the 2PPI EA [85]. There
are of course other methods to derive the diagrammatic expressions of EAs, like for instance a
method developed by Carrington to exploit the 4PI EA [229]. We choose to focus on the IM
especially because of the links that it enlights between the EA formalism and DFT which is
particularly precious to us in our aim to reformulate the nuclear EDF method. Hence, we will
wait until section 3.5.3 on the 2PPI EA to present the general principles underlying the IM and
its aforementioned connections with DFT but we stress that the derivations of all diagrammatic
expressions of the EAs treated in this chapter are discussed in detail in appendix D within the
IM framework.

Table 3.1: All EA implementations investigated in the present study of the (0+0)-D O(N)-
symmetric p*-theory. The designation “no 1-pt” indicates that all 1-point correlation functions
(i.e. the 1-point correlation function of the original field and possibly that of the Hubbard-
Stratonovich field) are imposed to vanish in the corresponding formalism. In addition, “A-
expansion” and “A-expansion” refer to the parameter organizing the expansion (and therefore
the truncation) of the EA, i.e. either the A constant or the coupling constant A of the studied
O(N) model.

Original EA Mixed EA Collective EA
h-expansion | A-expansion | h-expansion | A-expansion | h-expansion | A-expansion
1PI EA v v v
2P(P)I v v
2P(P)I EA (no 1-pt) v v v v
4PPI EA (no 1-pt) v v

3.5.1 1PI effective action

3.5.1.1 Original effective action

h-expansion: We start our discussion on EA approaches with the original 1PT EA (i.e. the
1PI EA formulated in the original representation) organized with respect to h. Note that for
any nPI EAs with a h-expansion, we could actually directly express the EA by simply retaining
all the nPI diagrams up to a certain power of & in the LE series of the corresponding Schwinger
functional. We have however carried out the IM in such cases in order to illustrate how the IM

16The formalism of part of the 1PI and 2PT EA approaches discussed in this thesis (those expressed in the
original representation and A-wise organized) are discussed in ref. [228] for a p?-theory (but not for the O(N)-
symmetric case) and QCD. As opposed to this work and for the sake of clarity, we explicitly construct here the
1PI EA via the IM instead of directly giving the 1PI diagrams contributing to it.
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formalism enables us to recover this diagrammatic property (see appendix D.2). The 1PI EA
under consideration is defined by the following Legendre transform:

1PL) | 7| — J ()]
K >[¢] :_W[J] +/xJ (z) (:ng (3.182)

_ W[f +/Ja(x)¢a($) :

T

| S |

with
owlg]
- 8Ja(x)

Pa() (3.183)

and W[j] corresponds to the original Schwinger functional determined in section 3.2 via the
LE at K =0, i.e. W[f] = WlEore [f, K = 0]. This EA can be expressed diagrammatically
as (see appendix D.2.1):

(P [(ﬂ - 5[5} — ;zSTr [ln (Gqsﬂ

et | O ) o L o) — e [ o L
24 12 18 36

+0O(h%),
(3.184)
with the Feynman rules:
z,a Y:b = Gyap(,y) , (3.185a)
b AN -
A R A A)qs(x) Surden (3.185h)
b o ¢
a T c — )\éabécd , (31850)

where, as in our previous treatment of LEs in section 3.2, we have fixed our coordinates in
color space such that a spontaneous breakdown of the O(N) symmetry can only occur in the
direction set by a = N (still without any loss of generality). Such a convention will be followed
throughout the entire section 3.5. This translates into:

qg(x)‘ a0 (3.186)
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Moreover, the propagator G, is not dressed by the classical configuration ¢ of the original
field as in (3.18) for the original LE, but by its 1-point correlation function gz? = <<:p:> (satisfy-
J

ing (3.183)), which contains quantal or radiative corrections. It is defined by:

525(2)
0 (2)6@b(y)

— (924 + 26 @60 ) 8udla — ) + oulhne)oa ).

G;;ab(x7 y) =

= -

(3.187)

Let us then evaluate I'™"Y in the (04+0)-D limit. As in section 3.2 (with (3.52) to (3.56)
more specifically), we separate the (inverse) propagator G;l into the Goldstone modes one

G;é = (’5;;3]11\/_1 = <m2 + )\52/6> Iy_1 and that of the Higgs mode (associated to the direction

a = N in color space according to our choice of coordinates) G;&V N =m?+ )\52 /2. From this,
we evaluate the diagrams contributing to TUFD at order O(h?):

Q/\/\NO = MGy + (N = 1) &% (3.188)

@ =A[Giay+(N-1)87 ], (3.189)
x-'\|\,-x = N203GE (3.190)

- )‘2¢?VG¢%NN [Gi;NN + (N 1) jS;g] : (3.191)

According to (3.188) to (3.191), it follows that (3.184) reduces in the zero-dimensional limit to:

(PD <q§’> — 5(5) _h [(N—1)In (27844) + In (20Gynn) ]

2
A
+ 1 = (9 (Govn)® +3(Byg)” (N? = 1) = 6 (Gonn)’ AR
(3.192)
- 2G¢;NNQ5¢;9 (N - 1) (_3 + Q5¢;9)‘¢?v) )]
+0(h%),

with S (gg) = m?¢% /2 + A’} /4! here. This expression of the 1PT EA is then exploited by fixing
the configuration of the 1-point correlation function qz; and more specifically of its component
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¢n. This is achieved by solving the gap equation:

o (PI) (@ L A _ 1 B
0= Odn . - (65;9) O + 5 G&NN)@N + 56&9 (_1 + N) APy
1 =
+ 1 @)‘QQSN( —45 (G&NN)3 -3 (6&9)3 (_1 + N2)

4 2 2 -9
+27 <G$;NN) Ady +3 (G&NN) B (-1 +N) ( -3+ 6@;9)@1\7)
+Gonn (65;9)2 (=1+N) ( -9+ 2®¢;g)‘<_b?\7>>]

+O(R%),
(3.193)
With 6 = @ ey ) = (0 0 3y)" 650 = m? 4 AG/6 and G5, =

m? + )\5?\, /2 (the latter two quantities corresponding respectively to the configurations of Qﬁqjé

and G@\/N at J = 6) The gs energy is subsequently inferred from the solution ¢ together
with (3.192) according to:

ord 1 =
EésPI EAjorig __ ﬁr(lPI) <¢ — ¢> . (3194)

M-expansion: Exploiting instead \ as expansion parameter'’, the 1PI EA (still defined by
(3.182) and (3.183)) reads (see appendix D.2.1):

P [(2_51 _ 5[5} _ %STr [In (Go)]

P
1 1 1 O\/\/\/\,(/ L I (3.195)
+24QNW\©+12@+12 e U
+
+0(N?),
with the Feynman rules:
z,a Y:b = Go.ap(z,9) , (3.196a)
T,0 -=-X ¢ (z), (3.196b)
b o ¢
a 2K ¢ = Mapdea - (3.196c¢)

1"Tn this thesis, we always set h = 1 while treating A-expansions of EAs.
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We stress that, in the framework of the A\-expansion, the 1PI EA involves the bare propagator
G, which is no longer dressed by the 1-point correlation function ¢ according to the relation:

Goup(x,y) = (=V24+m?) bud(z —y) (3.197)
which is to be compared with (3.187) for the h-expansion.

As a next step, we take the zero-dimensional limit. The diagrams of (3.195) are thus

evaluated as follows:
OWW\O — AN2G2, (3.198)
@ = ANGE, (3.199)

P
O —aveza, (3.200)
Y+
X X

WY = 263G, (3.201)

with
Goop = Go 0oy = m*6ap - (3.202)

After combining (3.198) to (3.201) with (3.195), we infer the following expression of ['PD:

N? +2N
24

N +2
12

1m0 (3) = 5(3) - J i (2n6o) + 4 (S 26+ S 2RGa) +0(%) 320y

where we still have to specify a configuration for gg This is done after solving the gap equation:

(
- or (1P ( @
Opn

- 1-— N +2—
= onGo' + A (gﬁb?’v + T¢NG0) +0(N), (3.204)

s

where fé is already defined right below (3.193). The value of ¢, thus obtained enables us to
infer an estimate for the gs energy by using (3.194) as for the Ai-expansion. It can also be noted
that the results of the h-expansion up to order O(k?) (given by (3.192) and (3.193)) and those

—

of the A-expansion up to order O(A) (given by (3.203) and (3.204)) coincide if ¢ =¢=0. This
remark remains valid if we compare h-expansion results up to order (’)(hnH) and A\-expansion
results up to order (9()\”) for any n € N.
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3.5.1.2 Collective effective action

Similarly to the analysis made in the section dedicated to the LE and for the same motivations
(namely investigating whether the introduction of an auxiliary collective field helps in grasping
more efficiently non-trivial correlations at low orders), we now focus on the collective 1PI EA,
i.e. the 1PT EA implemented in the collective representation (defined in section 3.2.1.3) where
the original field c,? has been integrated out in favor of the collective Hubbard-Stratonovich
field o. There are numerous works exploiting the collective 1PI EA. These applications take
multiple forms for the following reasons:

e One can use the Schwinger-Dyson equations formalism, equivalent to that of the EA
treated in this chapter [168, 230-242]. The collective 1PI EA formalism in this form is
referred to as mean-field PT, mean-field theory or self-consistent field approximation.

e The EA can be expanded using different expansion parameters like 1/N [235, 240, 241,
243-248] or fi [167, 242, 249-260]'*.

We stress that all of these approaches are equivalent as long as the truncation of the EA is
organized with respect to the same parameter, e.g. 1/N or h typically (see ref. [241] for an
exhaustive discussion on truncation schemes of Schwinger-Dyson equations). If the parameter in
question is A, the resulting approach is sometimes called mean-field expansion [249, 250] or, more
recently, auxiliary field LE (LOAF) [167, 242, 253-260] (see ref. [242] for a detailed discussion
on this technique). The LOAF should not be confused with the LOAF approximation which
consists in keeping only the term of order O (ho) (i.e. the leading order) in the series representing
the collective 1PI EA in the framework of the LOAF. For the purpose of determining the gs
energy and density of the toy model under study, this amounts to considering the leading orders
of the collective LE series (3.94) and (3.95)"?. The latter remark is only true assuming that the
physical configuration of the 1-point correlation function of the original field qg determined from
the gap equations in the LOAF approximation is zero (see appendix D.2.2 for further details
on that point).

The collective 1PI EA is also defined by Legendre transforming the corresponding Schwinger
functional. This translates into:

D) =~ Wo[g] + [ 7o) eald]
” /z ) (3.205)

— = Warl7] + [ T @u(a).

with -
Do (z) = MTlg , (3.206)

or, in terms of the 1-point correlation functions of the original and Hubbard-Stratonovich fields

(i.e. qz?(x) = <g:0:(x)> and n(x) = (a(x)), respectively),

d(z) = (fg;) . (3.207)

18Let us stress once again that the parameter that we refer to as A in the collective situation sometimes bear
different names in the literature, like € [168] or 6 [252].

9The leading order of the energy series expressed by (3.94) corresponds to a term of order O(h’l) and not
O(n?).
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Note also that W,y [.7 } is the collective Schwinger functional treated in section 3.2 with the
LE, i.e. Weq[J] = WEE[F]. The collective 1PI EA can be represented diagrammatically
according to (see appendix D.2.2):

1) = Sualil + 5 | @Gtz ) - " [ (Da)]

w R ;+ X X X X
1 1 1 1
(1 -
2 +2 +2 +4
Nig * * x
X
AED R KA
4 8 2* 12

+0(r%),
(3.208)

where G and Dg are the original and collective field propagators respectively, conveniently
collected in the superpropagator G¢ as follows:

_(Gy O
Ga = ( C: D@) | (3.209)
G;}ab(x, y) = (—Vi +m?+ 2\/?77(@) dard(z — 1), (3.210)
_ 62501, 7[0]
1 _ 1L,J
D<I> (ff,y) - 55(1‘)5&(y> §_:17 ) (3211)

with Jp being a source coefficient introduced in the framework of the IM (see appendix D.2.2).
Result (3.208) relies on the Feynman rules:

T,a Y:b — Goup(z,y) , (3.212a)
A
“a-eb — i\/;%b . (3.212¢)

As a next step, we study the collective 1PT EA in (0+0)-D. In this limit, the propaga-
tors (3.210) and (3.211) respectively satisfy:

A
Goly = G 0t = <m2 + Z\/;n> Sab (3.213)
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A A
Dy' = 3Gady + TNGy +1, (3.214)

and the diagrams involved in (3.208) read:

4
D - M :(@' %) GBD24% | (3.215)

@ = & :(i\/§>4NG§>D3D, (3.216)

X X X X 6
A

= = (z\/;> GaDiody (3.217)
* * x
6

i = NGngqsfv, (3.218)
6

i = NQG?DD?D. (3.219)

1PI)

Therefore, according to (3.208) as well as (3.215) to (3.219), F( ) becomes in (0+40)-D:

1 R
Fv(ziﬁl) ((I)) = Scol(n) + _Gq_)ld)?v — 5 In (Dcp)
+ G3 LD}0% - 2 NGAD; + = G“ L D30k + 54N GiDjok
(3.220)
A3
2 N2 6D3
* 324 G

+0(r%),

with Seal(n) = %772 — % In (27TG¢). As before, the expression for the 1PI EA becomes exploitable
after fixing the relevant 1-point correlation function(s) (i.e. the components of ® here), which
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is now done via the gap equations:

or'ry — h -
0= —2 2 ( ) = Gg@v + 3 GsDgAon

Opn |,_
W2 — —GED2NG L DZN2)? — 42G5DgAos
- 162G o <36+G‘1> 2 CaDgAdN (3.221)
3 12 272 2 —4
+ 6GEDENN Gy + 3G3DgA (~5N +3DgAd ) )]
+O(h*),
and
ari (@) i \F _ iGZDg\> g
0= — =T+ -/ = (GgN —h—22"_ (GgN
an = 77+2 3( 3 +¢N> 6v3 ( 3 +¢N>

iGED2)3
324+/3
+6G5 (9N = 10D5AGy ) +9GED5AGx (~TN + DgpAdy,)

(GDEN?X + 1085, + TGEDEIN* NG,

+ 1SG%D5N)\< N+ D@Ej‘v)) ]

+0(r’) ,
(3.222)

X — = T S— — — AT — A\T _ . —
with ¢ = ((25 ﬁ) = (¢1 Oy On 77) = (0 o 0 oy 77) ; Ggl = m?+ Z\/gn
and D%l = %Ggaif + %NG% + 1 (as follows respectively from (3.213) and (3.214) in the case

where J vani_shes). Finally, the gs energy and density are respectively deduced after plugging
the solution @ into:

1
EPTBAcel — hrC}fI (®=19), (3.223)

égl EA; COl N l (3224)

The latter relation follows by considering the followmg classical equation of motion in the mixed

representation:
0Smic(2,5)  _ [N =2
T i — =0, 3.225
0o o+ 127 ( )

which can be inferred from (3.24) in (0+0)-D with all external sources set equal to zero. In the
spirit of the Schwinger-Dyson equations formalism, we take the expectation value of (3.225) to

turn it into the equality?:
1 (F) - i 12 (3.226)
Pe=N\7/ =NV X '

20The definition of the gs density used in (3.226) was introduced in (2.39) with an expectation value defined
by (2.40).

in accordance with (3.224).
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For both signs of m?, the physical solutions found from the extremization of both the original
1PI EA (in the h- and A-expansions) and the collective 1PI EA at order O(h?) (i.e. from the
resolution of the corresponding gap equations) possess a vanishing 1-point correlation function

¢ for the original field. As explained below (3.204), this implies that the i~ and A-expansions
of the original 1PI EA are equivalent in this situation. Most importantly, this means that these
1PI EA approaches do not exhibit any spurious spontaneous breakdown of the O(N) symmetry
at their first non-trivial orders, which is in accordance with the minimum of the exact effective
potential V§xact (gz;) lying at qg = 0 regardless of the sign of m? (as discussed in section 2.4). Even

though this is a reassuring feature, it is also fatal for the original 1PI EA since ¢ is the only
adjustable variable that can be used to grasp correlations in this framework. This is illustrated
by fig. 3.11 where the gs energy estimated from the original 1PI EA diverges very quickly as A
increases. This approach is thus completely irrelevant to tackle the non-perturbative regime of
our model, regardless of the calculated quantity (i.e. gs energy, gs density, ...).

1.0
0.81
0.61
&b
0.41
0.21
0.0, . .
—10 -5 0 5 10
I A
e  exact solution e 1P EA O(1?) 41m?
---- collective LE O(h?) - collective 1P1 EA O(K?) ®  exact solution —o— OPT (PMS on pg) O(0)
—— OPT (PMS on Eg) O(9) --®- collective LE O(R%) — -—- collective 1P EA O(h?)

Figure 3.11: Gs energy E,s or density pgs calculated at h =1, m?* = £1 and N =2 (Re()\) >0
and Zm(X\) = 0). The indication “O(k")” for the results obtained from the h-expanded 1PI
EAs specifies that the series representing the EA in question has been exploited up to order
O(h”) (which implies notably that the corresponding series for the gs energy is calculated up
to order O(h"!) according to (3.194) and (3.223)).

While the constraint of the O(NN) symmetry is too strong for the original 1PI EA, the
collective one manages to capture non-perturbative physics thanks to the 1-point correlation
function 1 of the Hubbard-Stratonovich field. This illustrates the key advantage of HSTs by
which one introduces a new field in the arena that is not constrained by the symmetries of
the model under consideration. The Hubbard-Stratonovich field being a scalar with respect
to the O(N) transformations in the present case, its expectation value can be finite without
spoiling the O(N) symmetry and can therefore dress the propagator G¢ with non-perturbative
physics. However, we can question the efficiency of the collective 1PI EA from another angle
as fig. 3.11 shows for both Eg and pgs at N = 2 that this EA approach is outperformed by
the collective LE over the whole range of tested values for the coupling constant (i.e. for
A/4! € [0,10]). Even though the determination of the diagrammatic representation of the 1PI
EA is less demanding than that of the Schwinger functional (as the latter includes connected
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I-particle-reducible (1PR) diagrams as opposed to the 1PI EA), the EA framework requires
to solve also gap equations which are self-consistent for realistic models. This is a significant
reason to favor the LE as compared to the EA method in this situation, especially considering
the good performances of the collective LE beyond its first non-trivial order illustrated notably
by figs. 3.9 and 3.10. Besides this, it should also be noted that the diagrammatic constructions
are significantly more demanding to develop in the framework of the collective representation,
as compared to the original and mixed ones. Hence, we will investigate the 2PI EA in the next
section for the original and mixed versions of the studied O(N) model, still paying particular
attention to the presence or absence of SSB in the solutions of the corresponding gap equations.
The 2PI EA enables us to express the energy as a functional of the 2-point correlation function
(or Green’s function or full propagator) of the system, which gets dressed with non-perturbative
physics via the resolution of the corresponding gap equation. We will also carefully illustrate
how the mixed 2PI EA exploits the Hubbard-Stratonovich field to capture correlations.

3.5.2 2PI effective action

3.5.2.1 Original effective action

Full original 2PI EA: We first point out that the original 2PI EA has already been in-
vestigated for the O(N)-symmetric ¢! model but many of these studies consider a 1/N-
expansion [261-263]. We will focus in section 3.5.2 on the A- and A-expansions exclusively
and discuss the connections between these two expansion schemes as a next step.

As before, we start by giving the definition of the EA under consideration, i.e. the original
2P1 EA here. It relies on the Legendre transform:

rem[§ 6] = - w(i K| +/Ja(x)5w[f,1q +/ Kab(w)aw[f,K}
T T,y

dJe(x) Kb (z,y)
—-W[IK]+ [ r@aw g [ s@E o) (3.227)
vy [ K Gutya)
with
t SW[J, K]
¢alT) = 7o) (3.228)
S2WIJ, K] 26W[J, K] 1
Gaup(2,y) = 5Ja(x[)5jb<i) = 55Ka[b(x’y}> — +%a(@)n(y) , (3.229)

and W[j, K } = VVLE;Oﬂg[J_’7 K } has already been expressed diagrammatically via the LE in
section 3.2. From definition (3.227), it can be shown that the original 2PI EA can be ex-
pressed in terms of 2PI diagrams only, which translates for the studied O(/N) model into (see
appendix D.3.1):

rels G| = s(a) - gSTr I (@)] + ZSTr G, G -1

et | Omn() o & o) — Lo [N L
24 12 18 36

+0O(R*) ,

(3.230)
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with I being the identity with respect to both spacetime and color indices (i.e. I(z,y) =
dapd(x — y)) and (3.230) is based on the Feynman rules:

Y b — Gup(r,y) , (3.231a)

b 7

0> e A )¢(x) Subden | (3.231D)
b o @

a 2K ¢ = Aapdea - (3.231c¢)

Note that the propagator G is more general than the one involved in the original 1PI EA,
i.e. G4. The former will be dressed by non-trivial correlations through the corresponding gap
equations while the latter is the mere unperturbed propagator, however possibly dressed by the
1-point correlation function q;

We then examine the original 2PI EA in the zero-dimensional limit. To that end, we evaluate
the different contributions to the RHS of (3.230) in (0+0)-D:

G;}HGH —1 for N=1 s
STr [G,'G —1] = G,,,G" — 0, = (3.232)
G;}HGH + G;;122G22 —2 for N=2 s

N 2 AG?, for N=1,
O =+(36.) - 2

A (GH + G22)2 for N =2 ,

N AG?, for N=1,
@ =A> G, = (3.234)

N N@IG3, for N =1,
* -\D-x = \¢% Z GNGuGoy =
a ab=1 N¢3 (G, (Gii +2G) + G3,)  for N =2,
(3.235)
N Np?G3, for N=1,
= NoyGay Y Goy =
ab=1 N3G (GF + 2G5, + G3,)  for N =2,
(3.236)

where we have notably used the symmetry property of G (i.e. Ga = Gy, Va,b) to simplify
our expressions for N = 2. To further specify (3.232), we also recall the expression of G;l
introduced for the 1PI EA in section 3.5.1.1, based on a splitting between Goldstone and Higgs
modes:

Gy = 6,4 (1= 0an) (1= 64n) + Gy yOanOon (3.237)
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with &0 = m? + Ap?/6 and G,y = m* + AP2/2 (and ¢? = ¢% as usual). With the

)

help of (3.232) to (3.236), we show that expression (3.230) of the original 2PT EA becomes in
(0+0)-D:

e For N =1:
o = 1 1 A 1
(2P1D) (QS, G) _ S<¢> +hl = 5111 (27TG11) + 3 (m2 + 5@%) G — 5]
) 3.238
vrla - %G?’] o
+O(R%) .
e For N = 2:
(2P1) (ng G) — 5(5)
1 1 2 A 2
+h| = 3 (In (27G11) +1In (27Ga2)) + S + 69252 Gu
+ (m2+ éqbQ)G ) - 1]
9 2 22
(3.239)
A
+ h? = <G11 (6G22 - 4G%2/\¢g) +3G5, (3 - 2G22>‘¢§)

+ G711 (9 — 2G2u)¢3) — 12G7, (—1 + Gas)g3) )]

+O(R°) .

We stress that ¢ and G are independent. However, the components of G are constrained by
its symmetry (i.e. Gg = Gyq), so that the 2PI EA T'?PD ((;;, G) depends on (N?+ N)/2 +1
independent variational variables forming the set { ¢n, Gop| a,b € N*,a < b < N}. This enables
us to derive the following gap equations for I'?PD (gg, G):

e For N =1:
aF(2PI) ((57 G) 27 )\—3 1 - 9 1 o— —3 ,
0= BT P Mgy + o +h <§A¢>1G11) —h <6)\ ¢1G11) +O(R)
G=G
(3.240)
areP) (4. @ Fe 1 - L o, o
0= % - = ZGH <—2 + 2m2G11 + )\¢1G11> + Z <)\G11 _ )\2¢1G11>
G=G

+0(1’) .
(3.241)
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e For N =2:
oreP (g G —  A-3 I - = Yal
0= % Lo Tt ot R GAd (G +5Cx)
G=G
1 o o —
— R? [1—8)\2(b2 <2G11G32 + G31G22 + 6G32G22 + 3G§2) ]
+0O(r%)
(3.242)
Or(2PD) (Qg G) 1——1 1 A—2
— —7 — h — —G - 2 -
0 8G11 d;:g 2 11 + 2 (m + 6¢2)
G=G
1 o e _
— B [%/\ (—3G22 + Qsz/\Gb; +Gn <—9 + 2G22/\¢;>> ]
+0O(r’),
(3.243)
o (2P (5, G) 1——1 1 5 A2
G=G

1 o o L P —g  _

— K [%A <—3G11 — 9Gas + G Ay + 6G1,\G, + 9G§2A¢§> ]
+0O(r%)
(3.244)
ore (¢, G 1 G B 4 3G\
3=
e=G

The gs energy and density can be obtained from the solutions of the latter gap equations via
the relations:

. 1 S = —
Egspl EAjorig _ ﬁFQPI) <¢ =¢,G = G) ; (3.246)

szI EA;orig — % (th"a (@) + g . g) . (3.247)

Fig. 3.12 shows two different solutions obtained by solving the gap equations (3.242) to
(3.245) up to order (’)(hQ): only one of these two solutions exhibits a spontaneous breakdown

of the O(N) symmetry, with a finite 1-point correlation function ¢ in the non-perturbative
regime'. It is however the solution without SSB (at least over the whole range of values
for A/4! shown in fig. 3.12) that minimizes the gs energy and can thus be coined as physical

21Tt is acknowledged that solutions of gap equations for this 2PI EA have a tendency to violate Ward identities
associated with global symmetries. This is synonymous to violations of Goldstone’s theorem [264-266] and
appearance of massive Goldstone bosons if SSB occurs. A recent extension of the 2PI EA formalism, known as
symmetry-improved 2PI (SI2PI) EA or symmetry-improved CJT EA [267], has been constructed to overcome
the drawbacks of previous approaches that already address this issue [268-277]. The SI2PI EA formalism
consists in constraining the extremization of the standard 2PI EA by imposing the Ward identities of the model
under consideration as a constraint via the method of Lagrange multipliers, thus resulting in a modified set of
gap equations whose solutions can not violate Goldstone’s theorem by construction. The SI2PI EA has already
been successfully applied to several models [267, 278-281], especially to a O(2)-symmetric p*-theory [267, 282].
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20.07
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e,
"

-—= 2PIEA (¢ =0) O(h?) —-—= 2PIEA (¢ =0) O’
------ 2PI EA O(R’) wee 2PI EA O(R?)

Figure 3.12: Two different solutions of the gap equations of the 2PI EA T'PD ((5, G) at its first

non-trivial order for the gs energy F, or the 1-point correlation function dath=1m?>=—1
and N = 2 (Re(A) > 0 and Zm(\) = 0). More precisely, the left-hand plot shows the difference
between the gs energy Eg?lc calculated from each of these solutions on the one hand and the
corresponding exact solution Eg;‘a“ on the other hand. See also the caption of fig. 3.11 for the
meaning of the indication “O(h”)” for the results obtained from A-expanded EAs.

solution. This illustrates that, for the O(N) model under consideration whose exact solution
does not break the O(N) symmetry, we can safely consider the 2PT EA at gg — 0 defined as
reriq) = reen [qg = 0, G/, without any loss of accuracy for a given truncation order. This
could have been anticipated from our previous results of fig. 3.11 which showed that the 1-point

correlation function qz; is not capable of capturing non-trivial physics in the framework of the
1PI EA either.

Original 2PI EA with vanishing 1-point correlation function: Hence, we will now
focus on the 2PI EA at qg =0, i.e. [2PD [G]. This restriction imposes notably that all diagrams
involving vertex (3.231b) vanish, thus rendering the enhanced complexity of the underpinning
diagrammatic expansion with increasing truncation orders more tractable. We will thus push
the present investigation up to its third non-trivial order (i.e. up to order O(h*) for the EA).
This will be done by determining every 2PI diagram contributing to WLtEeris [j =0, K] up to

order O(h4) (the source J is no longer useful if we assume that qg = 0 since every non-vanishing
correlation function can be expressed by differentiating the Schwinger functional with respect
to K in this case). Note that all these diagrams and the corresponding multiplicities can be
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found in appendix C.1. This procedure leads to:

remG) = — ZSTr In (G)] + ZSTr (GG —1T]

1 1
* 24 +12

1 1
Rl = -

72@+144m

1 1 1 1

[l - — — —

* 32 @+108%+324 +216

+0(R),
(3.248)

where the Feynman rules are still given by (3.231a) and (3.231¢) and G is the bare propagator
(defined by (3.197)) which coincides with Gy (defined by (3.187)) at ¢ = 0.

As a next step, we consider the zero-dimensional situation. First of all, since SSB can
not occur in the present approach because of the constraint gg = 0, G must also be invariant
under O(N) transformations, which means that its structure in color space must be trivial, i.e.
G = G Oy Ya,b. With this in mind, we evaluate in (0+0)-D the following supertrace:

STr [Gy'G — 1] =N (m*G - 1) , (3.249)

and the diagrams involved in (3.248):

Q/\N\/\O = AN?G? | (3.250)

= ANG?, (3.251)

@ = MNG*, (3.252)

= \2N2G* | (3.253)
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= AMNGY | (3.254)

% = m = MN2GY | (3.255)
m = N3N3GS (3.256)

From (3.248) and (3.249) to , it follows that:

2 2
reP(@) = b (—g In(27G) + g (m?G — 1)) R (%AGQ) e <%A2G4)

L <N3 + 10N? + 16N

3,6 5
300 )\G)JrO(h).

(3.257)

Finally, the differentiation of (3.257) yields the following gap equation:

ree(q N1 N N?+2N N% 42N
o= AT (G n (-t e D) e (G e (e
G |o_@ 2 2 12 36
N? +10N? + 16N 55
4 3 5
+h( 516 AG>+O(h),

(3.258)

with Gy = G 64 Va,b. The gs energy and density are obtained from the solution G as well

as (3.246) and (3.247) with ¢ = 0. Besides, as was shown earlier for the 1PT EA at the first
non-trivial orders, the A- and A-expansions for the 2PI EA coincide at gg = 0. It can indeed
be seen in (3.257) that the power series of [?PD(QG) is equivalently organized with respect to
h and A. More specifically, h-expansion results truncated at order (9(71"“) are equivalent to
those of the A-expansion truncated at order O()\”) for all n € N.

The results thus obtained from I'*")(QG) are displayed in fig. 3.13. The first non-trivial
order, which is implemented by truncating I'**V(G) right beyond order O(h?), coincides with
the standard Hartree-Fock result as it can be shown that the gap equation (3.258) is equivalent
to a Dyson equation with Hartree-Fock self-energy if all terms of order O(h3) or higher are
ignored. According to fig. 3.13, this truncation is barely affected as the coupling constant A
increases in the regime set by A/4! > 1 (for both signs of m?) and achieves an accuracy of
about 10% for both Ey and pes at N = 2 in this situation. We have illustrated in this way the
non-perturbative character of the Hartree-Fock theory and we can thus see that the present
2PI EA approach is designed to improve this Hartree-Fock result in a systematic fashion.
However, if we consider the solutions of the gap equation (3.258) at the next two orders in A,
we actually observe the reverse: in almost the entire interval A\/4! € [0,10] for both signs of
m?, the resulting estimates of Eu and pgs worsen as the truncation order with respect to h
increases. This is because, just like our perturbative series derived with the LE in section 3.2,
the series representing I'?"D(G) (i.e. (3.248) or (3.257) in (0+0)-D) is asymptotic, even after
setting G = G.
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Figure 3.13: Difference between the calculated gs energy Eg?lc or density pgglc and the cor-
responding exact solution ES¥* or p2** at h = 1, m* = £1 and N = 2 (Re(\) > 0 and
Im(\) = 0). See also the caption of fig. 3.11 for the meaning of the indication “O(h")” for the

results obtained from h-expanded EAs.

We therefore exploit a resummation procedure, and more specifically the Padé-Borel re-
summation scheme, to illustrate the expected improvement with respect to the Hartree-Fock
result. It amounts to modifying the underlying procedure as follows: the expression of '?*D(Q)
(given by (3.257)) truncated at the chosen order with respect to & is replaced by a given Padé
approximant to subsequently derive the gap equations. In this way, the solution G is system-
atically improved via resummation. As a next step, the gs energy and density are still inferred
from (3.246) and (3.247) at ¢ = 0, with one additional peculiarity for E: T**)(¢ = 0,G = G)
is rewritten in (3.246) with the Padé-Borel resummation procedure outlined in section 3.3.3.
We refer to this entire procedure as Padé-Borel resummation of the EA, even though there
is no Borel transform involved in the determination of pys. The implementation of the Borel-
hypergeometric resummation is not that straightforward for the EA formalism since we do not
have analytical formulae to rewrite derivatives of Meijer G-functions with respect to each of
their entries [283]. Considering the good performances of this resummation procedure at the
level of the LE, we can definitely expect it to be relevant in the framework of EAs as well, but
we postpone such an investigation to future works.

Regarding the numerical results thus obtained with the Padé-Borel resummation, we can
indeed see in fig. 3.13, which shows the results obtained from the best Padé approximants at
each of the three first non-trivial orders of I'*PU(Q), that a [2/1] Padé approximant reaches
an accuracy of 1% for both E,s and pg for A/4! € [0, 10], which is to be compared with the
10% of the Hartree-Fock result. However, the best Padé approximants at the first two non-
trivial orders, i.e. the [0/1] and [1/1] approximants, do not manage to clearly improve the
corresponding bare results (labeled respectively “2P1 EA (¢ = 0) O(h?)” and “2P1 EA (¢ = 0)
O(k?)” in fig. 3.13) for all values of the coupling constant A in both the unbroken- and broken-
symmetry phases, which leads us to another important point on renormalization that we now
discuss.
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The absence of integrals over spacetime indices in the studied (0+0)-D problem exempts
us from renormalization issues. Until recently, there was no renormalization recipe to exploit
reliably the EA approaches of this chapter beyond their lowest non-trivial orders (i.e. beyond
the Hartree-Fock level). More specifically, whereas a procedure to renormalize 2PI EAs with
counterterms has been put forward in the early 2000s [284-287], it is acknowledged that nPI
EAs have a tendency to break gauge invariance at order O(hm) when m > n. In other words,
nPI EAs are optimally exploited when they are considered at order (’)(h”) [288, 289|, which
implies that, to perform calculations beyond the Hartree-Fock level of 2PI EAs, one should
handle 3PI or higher-order EAs, for which there was no renormalization recipe until recently.
This limitation was overcome by a recent study [290] developing a new renormalization scheme
based on FRG that enables us to handle the divergences encountered in any nPI EA approaches,
and thus safely exploit nPI EAs up to any order even for gauge theories. In addition to
this longstanding lack of renormalization recipe for EA approaches beyond their lowest non-
trivial orders, resummation procedures are in general inefficient at first non-trivial orders of
diagrammatic expansions, as is illustrated with fig. 3.13. This explains that there are only very
few studies [149] investigating the EA formalism in combination with resummation theory.
However, the latter remains a key aspect of the present approach as it is the resummation that
enables us to turn the EA techniques treated in this chapter into systematically improvable
approaches. We will therefore not content ourselves with the present resummation analysis and
perform similar applications to what will turn out to be the most performing EA method of
this chapter, i.e. the mixed 2PI EA.

3.5.2.2 Mixed effective action

h-expansion for the full mixed 2PI EA: Although mixed EAs of O(N) models were
pioneered by the work of Coleman, Jackiw and Politzer [153], the developments of their 2PI
versions were carried out by Cooper and collaborators [168, 291-295] and later by Aarts et
al. [296] for instance. Note also some applications of this formalism to the study of chiral
symmetry restoration [275]. As for the collective LE discussed in section 3.2.2.3, the present
study is to our knowledge the first pushing this approach based on the mixed 2PI EA up to its
third non-trivial order (i.e. up to order O(h*) for the A-expansion of this EA*?) and to combine
it with a resummation procedure. Furthermore, a well-known implementation of the mixed 2PI
EA is the bare vertex approximation (BVA) [292-294|, which is equivalent to the first non-trivial
order of the h-expansion (for which the EA is still considered up to order O(h?)). The BVA
was notably shown to be successful in the framework of QFTs at finite temperature. For an
O(N)-symmetric ¢*-theory in (1+1)-D for instance, the problematic absence of thermalization
found in the framework of the Hartree approximation is cured by the BVA [294].

The definition of the mixed 2PT EA can be inferred from that of the original 2PI EA (given
by (3.227) to (3.229)) by replacing correlation functions and sources by their supercounterparts,
thus leading to:

== Whix [T, K] + / T (x)Pa(z) +% / D (2) K (2, 9)Ps(y) (3.259)

h
+ 5/ /Caﬁ(x,y)gﬁa(y,x) )
z,y

22To clarify, the present full mixed 2PI EA approach has to our knowledge never been pushed up to its third
non-trivial order regardless of the chosen expansion scheme, even in the framework of the 1/N-expansion
which is often considered for 2PT EA studies notably [292-294, 296].
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with
6Wmix j7 ]C
Calr) = —5 05— ji(x) } ; (3.260)
52VVmix [j7 ’C] 2 5Wmix [ja IC] 1
Gas(,y) = = =Po(2)Ps(y) , (3.261)

C 0T @) T (y) b 0KP(xy)  h

—

or, to further specify our supernotations (still involving the 1-point correlation functions ¢(z) =

(@)} and n(x) = &(x))),
P = (@ , (3.262)

G— (gf ZF)) , (3.263)

and the Schwinger functional Wy [T, K] = WHEmX[7 K] has already been introduced in
section 3.2. The mixed 2PI EA organized in powers of h can be written in terms of 2PI
diagrams only, which yields for the O(N) model under consideration (see appendix D.3.2):

h h
P [2,6] = Susl®] = 58T7 [n ()] + 5577 [0, — ]
1 1 ’/‘\\
| = e 5
BN NP @ R
]- 1 ! _ 1 ].I 1
_h?’ _ . | _ | - | - C).
72 36 :><: BT PN T

S -

1 1 1 -
" 108 T (7)

+0(r) ,

(3.264)

with the superidentity J,5(z,y) = da30(z — y) and the Feynman rules:
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a \S,U, b
Ce b b VN G, (3.265)
a \S.U b
z,a y,b Gab(x7y) , (3265b)
N Y 5 Fy(zy), (3.265d)

whereas the propagator Gg satisfies:

82 S i [ V]

G () = SF )

- (Vi+%i£ﬁ($)>h 2'@15(9:) o). (3266

There is no direct analytical expression relating the components of G (i.e. G, D and F ) to
the 1-point correlation function ® (or to ¢ and n) because these propagators are introduced
through (3.263) and not as (inverses of) derivatives of the classical action Sp. This should
be contrasted with (3.187) (defining G,) as well as (3.210) and (3.211) (defining G¢ and
Dg), which constitute the propagator lines of the original and collective 1PI EAs in (3.184)
and (3.208), respectively. Hence, since propagator lines represent G, D and F in the present
matrix implementation of mixed EAs and since such propagators are not easily tied to the
corresponding 1-point correlation functions gz? and 7, the mixed representation is not suited for
a 1PI formulation, as opposed to the original and collective approaches discussed previously.

As a next step, we then turn to the (040)-D situation in which we evaluate the different
contributions to (3.264) as follows:

STr[Gs'G =] = GapG™ = da”
gq:;lngn + gq:}lQQQI + 95;121912 + 95;122922 -2 forN=1,

95;111911 + Q;;lmgzz + 95;123%2 + 953132%3 + gq:;lg,ggg?) -3 for N=2,

(3.267)
N
@ =D )Y G,
a,b=1

(3.268)
ADG?}, for N=1,

AD (G}, + 2G5, + G3,)  for N =2,
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s7 TN N

‘_\? = Z F.G o Fy

’
a,b=1

(3.269)
AFEG,, for N=1,

A (F12G11 -+ 2F1F2G12 + F22G22) for N =2 y

N
@ :/\2D2 Z Gabichdea
a,b,c,d=1

N D?GY, for N=1,

ND? (G, + 4G5, G, + 2GY, + 4G1G,Gos + AG3,G5, + Gyy)  for N =2,
(3.270)

—— N 2
.’:><; — )2 (Z FaGabe>

-- a,b=1

NFIG2, for N=1, (3.271)

N (F2Ghy + 2R FyGho + F2Ga)® for N =2,

N N
o oo (3r) (3 cuane.)
~ a=1

a,b,c=1

NDFGS, for N=1, (3:272)

ND (F7 + F3) (G}, + 3G11GY, + 3G1,Go + G3,)  for N =2,

N
II g,\ :)\QD Z FaGabichdFd
a,b,c,d=1

2 2,3 _
=49 ND(F{G}, 4+ 2F F,G3,Gys + 2F} GG, + F;G11 G5, + 2F PG,
120 F,G11G 115Gy + FEGE,Goy + 2F;G2,Gao + 2F1 F,G12G5,
+F22G§2) for N =2,
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N
NS 2 E 2
NG = A GabiCFaFch
~_-® a,b,c,d=1

NFIGF, for N=1,

N(FIGY + FIF}GSy 4 2F F,G 1 G + 2B Fy GG + FIGY, + 2F F GS,
+Fy Gy + 2F FsG19Gas + 2F1 F G15Gas + FLF; G5y + FyG3,)  for N =2,
(3.274)

N
@ = @ = \D3 Z GuGyGeiGicGefGia
a,b,c,de, f=1

NMD3GS, for N=1,

+12G1,G1,Go + 6G2 G2, G2, + 9G1,G3,
+6G11G%2G%2 + GG%QG%Q + GSQ) fOl" N - 2 3

(3.275)
N 2
@ = )\3D3 ( Z Gabicha>
a,b,c=1
ND3GS, for N=1, (3.276)

where we have exploited the symmetry property of G (i.e. Gg = Gy Va,b) at N = 2.
Moreover, the mixed classical action reads Spix(®) = m2¢3%,/2 + n?/2 + i\/\/12 nd% in the
present case and the components of G5 ' in (3.267) are found from the (0-+0)-D version of (3.266),
lLe.:

Gy = <m2+i\/§n>hi 39 . (3.277)

z'\/§<£T 1

According to (3.267) to (3.277), (3.264) reduces in (0+0)-D to:
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e For N =1:

L (2.9) = Suix(®)
+h| — 11n(27rG11) - %ln(D) + ;( (m +Z\/> ) G, +2Z\/>¢1F1 +D> - 1]

+h?

1
EAGH (2F12 + DG11)

+h? EAQGi (10F} + 12DF}Gy, + D*G?Y)) ]

-+ %A?’D?’G?l +O(F?)
+O(-h5) :
(3.278)

e For N = 2:

T (®,G) = Suix(®)
_ lln (27TG11) — 1ln (27TG22) — %ln(D) + % < <m2 + z\/gn) (G11 + Ga2)

+h 5
A 3

200 = F5s +D | — =
+Z\/g¢2 2+ ) 2]

1
E)\ (2F}G11 + AR FoGrs + 2F5Go + D (G5, + 2Gi, + G3,)) ]

+h?

+13 | == \? <2F4 (5G3, +4G3,) + 8FT FyGha (3G + 2Ga) + 2Fy (4G, + 5G3,)

+4DF} (G}, + 5G1 G, + 1G1,Ga + 3G3,) + D*(GY, + 4G1, G, + 2G
+4G11G,G + 4G, G5, + Gy) + 8F1 F>Gra (Fy (2G11 + 3Ga) + 2D (G,
2

2
+G1, + GG + G3,)) + AFE(Fy (2G4 6GY, 4+ G11Ga + 2G3,)

+D (3G, + TG G2y + 5G2Gay + Gig)))

o 324A3D 3 <5G?1 + 330G, G2, + 8GS, + 45G,G2, + 30G%,GY,y + 5G
+3G2, (15G, +8G2,G2,) + 2G3, (15G2%,Gay + G,) + 6G11 (11G,G

+5G§2G§2)) +0 (ﬁ?)

+0(R) .

(3.279)

The gap equations associated to Ffjlzl)
(3.279) (and by considering the symmetry of G discussed right below (3.239)) as follows

=m?p, + Z\@ 76 +h (z@ 71) : (3.280)

(®,G) are determined by differentiating (3.278) and

e For N =1:
ar (2P1) ((I) g)

mix

I

P
g

Ql
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\/> G+ h ( \/7 GH) : (3.281)

3.5. EFFECTIVE ACTION
8F (2PT) ((ID g

mix

on

- 1—71 1 ) \/X_
—h[ 2G11 +2<m +1 377)

Q &
Il 1l

QI

1. 1——
+ R (éFfA +5D GH)\)

mix

6F (2PT) ((I) g)

6G11 s
G=G
1—
— (158F GuN'+DF G+ 18D Gll)\Z)
4 3
+h [541) G +0< )]
+0(r),
(3.282)
8Fﬁ§1 (®,9) 1——1 1 o [ 1 =2
= | =t (—§D + 5) +h (EGH)\>
G=G
1—2—3 1 ——4
- (éFlGll)‘Q + 3—D GH/\Q) (3.283)
4| 9 3
+ i {1081) G +0( )]
+0(r),
arel (e,g) \/X _ 1
0= —mix A 7/ =h|i\/ = R =F1Gui )
OF: . v 3¢1 + (3 1 11)
e (3.284)
55— 1— — — :
— (gFi’Gflv +3D FlGi’lAz)
+0O(n") .
e For N =2:

mix

I

=m?p, + Z\/é N ¢y + R (z@ Fz) , (3.285)

ar (2PT) ((I) g)

P
g

Il
QI

\/7 (G +G22)] , (3.286)

8F (2PI) ((I) g

mix

on

peafE s

N
Qlg
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2 —
en +h [6A(F2+D Gm)]

P
g

QI

. 1—71 1 2 .\/X_
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R 18)\2 <4F FoGrs 4+ 5FaGas + D F. (7G12 n 9G22)
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+0(r),

(3.288)
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(3.289)

1

| 1, /=2 —92 2
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+ Kt
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1o e
o (8F1F2G12 (Gf1 + G+ GiGa + G§2>

+ 27} (3G, + TGn Gy + 5G1aGin + Gy ) + 275 (G,
+5G1 Gy + TGLGx + 3Ghy) + DG, + 4G, Gy

+2G; + 4G G1,Gon + 4G, Gy + Gy ) )

1 __ _ Y R _ Y R
mX’)D2 (5(;7?1 430G, Gy + 8Goy + 45G Gy

+ 30G1,Gy, + 5Ghy + 3G, (15G), + 5G .Gy )
+2G), (1561, + Gy ) + 6G 1 (11G1,G

+5GLE0)) + 0 (f)

+0(r),

(3.290)
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O = h? |:§)\ (FlGll + F2G12):|

Q&

1 _ __ __ o _ _
— Kt SX? (F‘Z’ (5G31 n 4G32) +3F; FyGhy (3G + 2Ga)
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+G1Gos + 632) +F\F, (zail +6Goy + G Goo
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1 __a___ _ _ o __ __
o (Fi’c;12 (3G, + 2Ga) + T F, (20?1 +6Gy

(3.291)

aF(QPI) ((I), g)

0= mix

oF;

QI

2]
g

— B

+ GG +2Ghy ) + Ty (4G, + 56y ) + D Fa( G,
+5G1 Gy + GG + 3Ghy ) + F1Ga (T3 (6Guy
+9G) + 25(531 + Gy + GGy + 552)»]

+O(h') .
(3.292)

Note that the gap equations (3.280) to (3.292) rely on the relations:

1 0

3— <%) o |=|0o ] (3.203)
On N
Ui 7

and _ _ _ _
gn gm guv Fy

— = G21 G22 et GQN F2
( ) — : S : : . (3.294)

a_m a_m a_NN F_N
K Fy -~ Fx D

Similarly to (3.246) and (3.247) for the original 2PI EA, the gs energy and density are now
obtained from the solutions of the gap equations ® and G alongside with the equalities:

mix 1 =
B2 EAmix _ 1 (2PT) (®=3,6=0), (3.295)

pzspl EA;mix _ % (hTra (a) + g . g) . (3.296)
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Furthermore, we assume no spontaneous breakdown of the O(N) symmetry if the mixed 2PI
EA is Con81dered up to order O(h4) hence the term O(F?) in (3.264). This means that we

can set (b =0, Gy = G 6, and F = 0 in the gap equations (3.280) to (3.292) if the latter are
exploited up to order O(h*).
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Figure 3.14: Difference between the calculated gs energy ECaLlC or density pcalc and the cor-
responding exact solution ES¥™ or p2* at h = 1, m* = — fland N = 1 (Re()\) > 0 and
Zm(\) = 0). See also the caption of fig. 3.11 for the meaning of the indication “(’)(hn)” for the
results obtained from h-expanded EAs.

The estimations of the gs energy and density determined in this way from the mixed 2PI
EA at N =1 and N = 2 are presented in figs. 3.14 and 3.15, respectively. With or without
resummation, the mixed 2PI EA results outperform in general those of the original 2PI EA
I?PD(Q) for a given truncation with respect to h. This is illustrated for both Ey and pgs in
figs. 3.14 and 3.15 for the first non-trivial orders of these approaches and, after resummation,
for their third non-trivial orders (with the [2/1] Padé approximants). In particular, these two
figures show that, in the non-perturbative regime of the studied model at N = 1 and 2, the
mixed 2PI EA achieves an accuracy of about 2% for E,s (to be compared with about 5% to 8%
for the corresponding results of the original 2PI EA), and even less for pg, already at its first
non-trivial order, which corresponds to the BVA result mentioned previously. Furthermore, as
the solutions of the gap equations leading to our mixed 2PI EA results never break the O(NV)

symmetry (and notably always satisfy F' = 0) at the first two non-trivial orders (i.e. when the
mixed 2PI EA is considered up to orders O(h?) and O(k?)), we can reasonably expect no SSB at
the next non-trivial order, which motivates our previous assumption ignoring the contribution
of F -dependent diagrams at order O(h4) in (3.264). Interestingly, the absence of SSB at first
non-trivial order (of the fi-expansion) for the mixed 2PI EA also implies that only the Fock
diagram with a wiggly line (i.e. with a D propagator) contributes to the BVA result, which
means that the latter is equivalent to the result obtained from the same mixed 2PI EA at order
(9(1 /N ) Although we do not treat 1/N-expansions of EAs in this study, it is interesting to
know that its first non-trivial order in the expansion of the mixed 2PI EA coincides with the
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Figure 3.15: Same as fig. 3.14 with N = 2 instead.

excellent BVA approximation for the studied model, which illustrates that 1/N can be a viable
alternative to h or A as expansion parameter.

Furthermore, as the mixed 2PI EA method clearly stands out among the EA approaches
treated so far, we compare it in fig. 3.16 with the best methods investigated in sections 3.2
and 3.4 (i.e. the collective LE and OPT via PMS) for N = 2, at first and third non-trivial orders.
We can see on this figure that, after resummation if necessary, the excellent performances of
the collective LE, OPT with PMS and the mixed 2PI EA are very close both at first and third
non-trivial orders, with the exception of the first non-trivial order for OPT with PMS which
is known to coincide with the Hartree-Fock result of the original 2P1 EA TCPD(Q) for E,,
(note however that the original 2PI EA relies on asymptotic series, and thus on resummation
procedures, whereas OPT does not), as can be seen from fig. 3.16. These performances should
of course be put in contrast with the ability to treat different channels in more realistic systems,
in which case, for reasons explained previously at the end of section 3.4, both the collective
LE and the mixed 2PI EA might encounter significant difficulties as they both rely on a HST.
We postpone such an application to more realistic systems with competing channels to future
studies but we just point out at this stage that the performances of OPT are the most likely
to be unaffected in these situations.

Although the BVA has already been applied to many QFTs, this is certainly not the case
of higher truncation orders of the mixed 2PI EA (i.e. for truncations of this EA beyond order
O(k?)). In addition, we are performing to our knowledge the first applications of resummation
theory to the mixed 2PI EA. Choosing once again the Padé-Borel scheme as resummation
procedure, we find that the best Padé approximant obtained from the first non-trivial order
of the mixed 2PI EA does not manage to clearly improve the corresponding bare results (i.e.
the BVA results) in general, according to figs. 3.14 and 3.15. Padé-Borel resummation thus
starts being efficient at order O(h3) and, at the third non-trivial order (and more specifically
from [2/1] Padé approximants), yields excellent results which are barely distinguishable from
the exact solution in both figs. 3.14 and 3.15.
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+1 and N = 2 (Re()\) > 0 and
See also the captions of figs. 3.1 and 3.11 for the meaning of the indication

In conclusion, the significant improvement as compared to the original 2PI EA results
can be attributed to both the 1-point correlation function 7 and the propagator D of the

Hubbard-Stratonovich field since we always find ¢ = F = 0 in the solutions of the mixed
2PI EA’s gap equations leading to the results of figs. 3.14 and 3.15, i.e. we do not find any

spontaneous breakdown of the O(N

) symmetry in the framework of the mixed 2PI EA. We will

thus determine as a next step how efficient the mixed 2PI EA formalism is if we impose the
1-point correlation function 7 of the Hubbard-Stratonovich field to vanish, which will enable us
to better understand the role of both 77 and D in the mixed 2PI EA approach.

h-expansion for the mixed 2PI EA with vanishing 1-point correlatlon functions:
We then study the mixed 2PI EA with both 1-point correlation functlons gb and 7 set equal to

zero, i.e. I’

(2PT)

Il’llX

9] =

_ 1P g

mix

discard all F-dependent diagrams in (3.264):

r

(2PT)

mix

9]

h2
*ﬁ

= DsTr [ (9)] + 28Tr (650 -

3]

h3
72
108 @ 324

324

[ =0 Q] This condition also imposes F= O which enables us to

(3.297)
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with (3.265a) to (3.265¢) as Feynman rules and the propagator Gy is given by:

gal(Ly) _ ((—Vi %:er) Iy ?) (5(m _ y) ’ (3.298)

which coincides with (3.266) when ® vanishes.

Let us then focus on the zero-dimensional situation by evaluating the different terms involved
in the RHS of (3.297) in (0+0)-D. For that purpose, we first note that the constraint ¢ = 0
imposes that the O(N) symmetry can not be broken down in the framework of the present

approach and therefore G, = G d4, Va, b, as discussed above (3.249) for the original 2PT EA.
This considerably simplifies (3.297) according to:

STr|6;'G -3 =Nm*G+D—(N+1), (3.299)

@ — NADG? (3.300)

@ = NA*D*G* (3.301)
@ = {8} = NAD*GS | (3.302)
@ = N?X*D3GS . (3.303)

As a consequence, expression (3.297) of kb [g} becomes in (0-+0)-D:

N 1 1
r20(g) =n (—5 In (27G) — 5 In(D) + 5 (Nm?G + D — N — 1))
N N N2 + 4N
2 (D pa2) w3 [ azp2ed 4 3 D336 5
+h (12A G> h(72/\ G)+h( TR G)+O(h),
(3.304)
and the corresponding gap equations are:
3F(2~PI)(9) N1 N 5 (N | — = N ,—2—3
— Tmx \FJ — - - D — R =)D
0 G ) h( 2G +2m)+h (6)\ G) h(lS)\ G)
G=G (3.305)
N? +4N 35
| ————X\°D n’
n ( - G)+O( ),
and
3F(2FI)(Q) 1—1 1 N o N — 4
— T mx \¥V/ — __D - 2 - _ #3 - 2D
- O () e () e ()
g (3.306)

Y <N2+4N

S A?ﬁzéﬁ) +0(r)
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with o
G 0 --- 00
= 0 G --- 0 0
g:(ﬁT E): N (3.307)
00 --- G 0
00 --- 0 D

A-expansion for the mixed 2PI EA with vanishing 1-point correlation functions:
In the framework of the mixed 2PI EA, h- and A-expansions are not equivalent even if all
1-point correlation functions are imposed to vanish. Hence, we now derive Ffzf(l) [G] via the
A-expansion®’. We thus obtain (see appendix D.3.2):

g = - %STr [In (G)] + %5% (GG — 7]

1 1 1 (3.308)
| 321 108 * 301

+0(\Y),

where we have used the Feynman rules (3.265a) to (3.265¢) and the superpropagator G is now
diagonal, i.e.:

G- (OS’; g) | (3.300)

The diagrams contributing to FSIE(I) [G] in (3.308) are not all 2PI (some are even disconnected).

As opposed to the A-expansion scheme, there is actually no guarantee that the diagrams gener-
ated by the Legendre transform of the 2PI EA cancel out with all 2PR graphs of the Schwinger
functional in the framework of the A-expansion (some disconnected diagrams are actually also
generated by this Legendre transform), even though it turned out that the A-expansion of the
1PI EA yielded I'PD in (3.195) expressed in terms of 1PI diagrams only. Nevertheless, we keep

Z3We stress again that we set h = 1 while doing so.
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referring to the functional Fgg) [G] as a 2PI EA in the present situation since the diagrams

contributing to it are indeed all 2PI when expanded with respect to &, as shown by (3.297).

We then study (3.308) in the zero-dimensional situation. The absence of SSB still allows
us to set Gop = Gap dgp. Hence, in (0+0)-D, the rightmost supertrace term and the diagrams
of (3.308) reduce to:

STr [gglg — ’J} = Nm?G+D — (N +1), (3.310)

M = N°ADG”? | (3.311)
@ = NADG?, (3.312)
@ = NX*D*G* (3.313)

(O <€) = N2 (3.314)

OO
OO

@ = @ = NAD3GS | (3.316)

@ = N2X3D3GS | (3.317)
C}w@@ — N3NSDAGH (3.318)
(O O ) = N3G (3.319)

OO — NOA3DRGS (3.320)
OO
GO

(€)= NSA3D3GS . (3.321)
OO

= N*\?D*G* (3.315)
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Figure 3.17: Difference between the calculated gs energy Eg?lc or densaty pcalc
at h = 1, m?

exact

responding exact solution Eg* or pgX

and the cor-

= 41 and N = (Re()\) > 0 and

Zm(X) = 0). See notably the caption of fig. 3.11 for the meaning of the indication “O(h")”

for the results obtained from A-expanded EAs.

Note also that there are no results for the

A-expansion in the regime with m? < 0 as the corresponding approach is ill-defined in this case.
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From this, (3.308) becomes:

PD (g) - _ gln(QwG) — %IH(D) + % (Nm2G +D— N — 1)

N? £ oN N* 4 AN® _ 8N
4 (chﬂ) et ( * D2G4)

24 576
Y N®+ 6N+ 6N* — 12N3 + 16N? 4 64N
5184

(3.322)

D3G6)
+ 0\,
and the corresponding gap equations are given by:

o (9)

N—-—1 N N? 42N N* 4+ 4N3 — 8N —2_3
0 =G +=m A —= DG+ N\ DG
oG |, . 2 T ( 12 >+ ( 144 )
N6+ 6N° + 6N* — 12N3 + 16N? + 64N 5
(o TRV NS ) o),
864
(3.323)
- orZlg)| 51, Ly (NP 42Nz |y (N4 AN — 8N
- 0D 2 2 24 288
N6+ 6N + 6N* — 12N3 + 16N? + 64N —o_
o ( — 1728 : - DQGG) +O,

(3.324)
with G and D defined via (3.307).

All results obtained from the mixed 2PI EA are compared in fig. 3.17, which logically
illustrates that the full mixed 2PI EA method outperforms its homologous approaches impos-
ing (¢,n) = (0,0). This clearly shows that the 1-point correlation function of the Hubbard-
Stratonovich field, i.e. 7, plays an essential role in the performances of the full mixed 2PI
EA, both in the unbroken- and broken-symmetry regimes. We can also see in fig. 3.17 that
the mixed 2PI EA approach with (gg, n) = (5, 0), based on the Ai- or on the A-expansion, does
not outperform its original counterpart (which is based on the 2PI EA I'?PD(Q)) at their first
non-trivial orders. This section clearly puts forward the full mixed 2PI EA and the ability of
the Hubbard-Stratonovich field to capture correlations. We will then investigate the 4PPI EA
as another direction in the purpose of outperforming the original 2PI EA method via collective
dofs. We will remain in the framework of the original representation to see how the addition of
a new source (coupled to a quartic combination of the field) in the Schwinger functional could

enable us to achieve this purpose. Before this, we will discuss the 2PPI EA formalism via the
IM which is used thereafter to exploit the 4PPI EA.

3.5.3 2PPI effective action

The IM was first developed in the framework of the 2PPI EA [162, 163], a few years after the
introduction of the 2PPI EA itself [297, 298|. The original motivation for the IM was that, in
finite dimensions, the Legendre transform defining the 2PPI EA (or any other nPPI EA) can
not be done explicitly, as opposed to those of nPI EAs (the technical reason for this will be
explained below in the present section). Hence, we were in need for a method that would be able
to carry out the Legendre transform underlying the EAs indirectly or, more specifically, order
by order with respect to a given expansion parameter, which is exactly what the IM does. This
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method has paved the way to a whole research effort which has notably led to refs. [299-302]
for further applications of the 2PPI EA via the IM in atomic physics and especially ref. [303]
which is the first paper addressing superconductivity with the 2PPI EA. We will rather focus
here, on the one hand, on the works of Fukuda et al. [162] and of Valiev and Fernando [85], who
have shown that the 2PPI EA constitutes a means to implement Kohn-Sham DFT, and, on the
other hand, on that of Okumura [304], who studied exhaustively the diagrammatic properties
of the 2PPI EA. Both refs. [85] and [304] exploit the IM for a field theory involving a single field
and impose the corresponding 1-point correlation function to vanish. We will therefore follow
the same restriction here?*. The starting point of the IM consists in expanding the functionals
of interest with respect to the chosen expansion parameter, i.e. /& in the present case®

(
PEPPD [ p] = Z PP, (3.325a)
= Wi[K]n", (3.325b)
n=0
= S Ko (3.325¢)
n=0
p=>_ pulKIH", (3.325d)
n=0
where the EA under consideration is now a functional of the density p:
WIK]
g = Wi+ [
5K (z) (3.326)
—~WIK] + 5 [ Kelpialpa(o).
with 2 W K]
pal) = 5 Ke(z)’ (3.327)
and the Schwinger functional W[K]| defined by:
21K) = 0 — [ D5 o] (3.325)
= = 1 o
sk[3] = s[3] - 5 / K*()3(x) . (3.329)

The W, coefficients are deduced from the LE result (3.50) for the studied model with J = 0 and
Ku(z,y) = Ku(x)dwd(z — y). Note however that most of the present discussion on refs. [85,
162, 304] is model-independent.

2ARefs. [85, 304] also use a coupling constant instead of h as expansion parameter for the IM. We will stick
to the fi-expansion scheme here to prepare the ground for the 4PPI EA treated in section 3.5.4 but one should
keep in mind that, for the studied O(N) model as well as for many other theories, i- and A-expansions of the
2PPI EA are equivalent if all 1-point correlation functions vanish, as was pointed out below (3.258) for the
original 2PI EA.

Z5n (3.325a) to (3.325d), we specify all variables on which I'@PPD W, K and p depend but part of these
dependences will be left implicit in the forthcoming derivations.
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Following the recipe of the IM, we combine the definition (3.326) with (3.325a), (3.325b)
and (3.325¢):

Zr@l’” ZW [ZK Jn"

The Taylor expansion of the W, coefficients around K = K in (3.330) yields**:?"?% (see ap-

R 4 — Z / K°[p; @] pa(x) A" . (3.330)

pendix D.5.3 with (, = M,[p, (] = Mpa[p, (] =0 Vo, n):
I‘(QPPI){ ] Wn K KO Z/ 5Wn m Kmya[p; ZC]
K=Ky
n—1 n
]. / (5 W n1+...+n )[K]
- ol = Knhal [p7 x ] U Knrnyam, [p7 xm]
mZQ m! ny ~an:1 T1,Tm 0K, ( ) 0Ky, (:Cm) K=K 1
{ny++nm<n}
1
a 577,
+5 /x ()01
5Wn m
=W, [K = K| — Z/ Konalp; 7]
=177 K=Ko
1 / n—(n++nn) K]
- - Koy [p§ T ] Ko [p§ xm]
Z ml n, zn:m—l ) 0K, (Z’m) K=Ky 1

{n1+-+nm<n}

1
+5 [ Klpalpala)tn

(3.331)
where the second equality was obtained by using the relation:
Wi [K]
pa(x) = (3.332)
5Ka<l'> K=Ky

The latter equality results from the independence of p with respect to h, i.e. p is a quantity
of order (’)(hO). It might seem surprising at first for an object encoding quantum information
like p to be independent of A. This striking feature is a direct consequence of the Legendre
transform defining T'?"PD in (3.326) (see (D.15) in appendix D.2 for a mathematical proof
of this property). From this, (3.332) directly follows after inserting (3.325b) into (3.327) at
K = Ky, i.e.

pa(x) =2 OWolK] Rt 42 oW K] o IWalK] hi+ 2 OWs K] B2 4.
. OK*(@) | g, . OK* (%) | fe—g, . 0K (%) | e—g, OK* (@) | g, )
0 pavz) 0
(3.333)

‘The zeroth-order coefficient of the 2PPI EA equals zero since the 1-point correlation function
of ¢ is imposed to vanish (T QPPI)[ | = —WolK =Ko =5(p= 6) = 0) and we then discuss in

26We exceptionally use a1, as, - - - instead of a,b,--- to denote color indices in (3.331).
1 ifn>q.
0 otherwise .

Z8The curly braces below discrete sums contain a condition that must be satisfied by each term of the sum
in question.

2"Note that (3.331) involves the shorthand notation 8>, =
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further details the cases where n = 1 and 2 in (3.331):

PP 0] = — Wi [K = Ko] + / K&[p: x)pa() | (3.334)

TP ] = —Wh|K = Ky . (3.335)
We then differentiate both sides of (3.334) with respect to p:

K = K Kb K|
% /(WgKb 06 y M /5 p’ , (3.336)

where K, was introduced via:

STEPPD g
dp*(x) T2
which can be deduced from (3.326). From (3.336), it follows that:

[ WK=K 1 IK§[p; y]
0_/y( SKI() *2”’(”) Sou(a) (3:338)

anl,a[p; x](anl ) (3337)

We thus recover (3.332) from (3.338) assuming that:

5K[)7a(x) - 6Ka<l'> KK 9 (3339)
and 5Kb[ J
Py
o) £0. (3.340)

Valiev and Fernando have actually proven that (3.340) is a consequence of the strict concavity?’
of TZPPD[p] (or, equivalently, of T*"V[p]) [85], i.e.:

OKSpsy) 82T )
0pa() 6pa(2)0pp(y)

as follows from (3.337). The strict concavity of the 2PPI EA results itself from that of the
Schwinger functional [85]:

<0, (3.341)

WK+ (1-v)K'] > vW[K]+ (1 -v)W[K'] , (3.342)

for 0 < v < 1. From the latter result, it also follows that the mapping {K'} — {p}, between
the set of allowable external sources K and the corresponding densities p generated by (3.327),
is one-to-one. This is a very fundamental property for the IM applied to the 2PPI EA as it
guarantees that (3.327) can be inverted to obtain K [p] without ambiguity. Besides the IM, it
can also be viewed as an existence proof of the 2PPI EA, which plays the role of the density
functional in the present analogy with DFT. In other words, the one-to-one nature of the map-
ping {K} — {p} implies that I'®*PD[p], and therefore the corresponding gs energy, is a unique
functional of the density p, which is none other than the first Hohenberg-Kohn theorem [40].
This should be coupled with the proof that I'®PFD[p] satisfies the second Hohenberg-Kohn

?In ref. [85], Valiev and Fernando use the convention PPV [p] = +W[K] — [ K®[p;x ]5%[{;}), as opposed

to (3.326), and therefore prove that T(?PPD[p] is strictly convex instead of strlctly concave.
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theorem [40], which follows by shifting the external source by an arbitrary external potential
Vexs [162]:

0P =~ WiK] + 5 [ Kelpsalpata)

:—W%XtO[K_%Xt]+g/(Ka[p; ] Vet)l(t( )) (x) Z/Vecj(t( ) (1‘) (3.343)

-~

[y =0 (0]

Hence, the 2PPI EA satisfies the second Hohenberg-Kohn theorem simply because the Schwinger
functional depends on K and Vg in the same fashion. These existence proofs shown in refs. [85,
162] mean that the framework of the 2PPI EA contains all the ingredients of a DFT. Further-
more, as pointed out in ref. [85] via the IM, the Kohn-Sham implementation [41, 42] is also
present in this framework. On the one hand, according to (3.332) and the one-to-one nature
of the mapping {K} — {p}, the exact gs density of the interacting system can be obtained,
for a single configuration K, of the source K, from the first-order coefficient W;[K| which is
independent of the coupling constant A*’. On the other hand, the Kohn-Sham implementation
states that there is a unique external potential Viy ks such that this exact gs density character-
izing the interacting system coincides with that of an auxiliary non-interacting one submitted
to Vextks. Therefore, the Kohn-Sham implementation acquires its meaning in the 2PPI EA
formalism after noticing that K plays the role of the Kohn-Sham potential. Moreover, we can
also split the 2PPI EA according to the Kohn-Sham scheme: the kinetic part can be isolated
through a derivative expansion of the EA and the exchange-correlation part can be approxi-
mated using usual methods (local density approximation, ...) [162]. Thus, we can conclude that
DFT is always present in the framework of the 2PPI EA according to the above proofs of the
Hohenberg-Kohn theorems and exploiting the 2PPI EA via the IM amounts to implementing
a Kohn-Sham DFT.

We will then explain how the Kohn-Sham self-consistent procedure works in the framework
of the IM by differentiating expression (3.335) of FQQPP” with respect to p:
STEPD ) W K = Ky

opi(x)  p(w)
_ / OWa[K = Kol 6Kos(p;y]

0Kop(y)  op*(x)
L[ SWlK = K] (BPWAK = Ko\
‘E/y 53 (1) (Mo( JoKo(a >>

B 5W2[K Ky
_ /Dab Koty =g

(3.344)

where the third line is obtained from (3.332) and the following propagator was introduced:

Wi [K = Ky
D, | Ky x,y| = ) 3.345
U= S (oK) (331
Hence, we have just used the chain rule:
o o
D Ko, 3.346
(5,0 ( / ab 0 y] 5K0b( ) ( )

30Recall that, since we have imposed the 1-point correlation function of @ to vanish here, h-expansion results
truncated at order (’)(h"“) coincide with those of the A-expansion truncated at order (’)()\”) for all n € N.
This implies that W;[K] does not depend on X in the fi-expansion scheme.
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As a next step, we infer from (3.337) and (3.344):

SWlK = K]
Klapa /Dab KOa T,y ] 5K0b< ) : (3347)

This recipe can be applied at the next order, i.e. setting n = 3 in (3.331) to obtain an expression
for F(2PPI) [p] that we differentiate with respect to p in order to deduce Ks[p] according to (3.337).
We can proceed in this way up to any order, which would yield all 2P and K, coefficients
thus derived expressed in terms of the D propagator and W), coefficients as well (recall that
the W, coefficients are fully specified by the LE and are thus considered as inputs of the IM
procedure). For a truncation order V;, this procedure can be represented as follows:

K, 11(213131) y K, o , [(2PPD)

FgQPPI) F;QPPI)
6F(22PPI) [p}

Kilp] =2 5

(3.348)
As a result, the 2PPI EA is expressed in terms of the zeroth-order coefficient of the source (i.e.
Ky here) instead of the argument of the EA (i.e. p here). In fact, the dependence of TGPPD[p]
with respect to p in its expression resulting from the IM is implicit through Ko[p]*!. The reason
for this difference was given at the beginning of this section: for nPPI EAs and contrary to nPI
EAs, the Legendre transform underlying the definition of the EA can not be done explicitly in
finite dimensions. Technically, this translates into the fact that the relation (3.332) can not be
inverted to write Ky explicitly in terms of p**. In (0+0)-D and after imposing that all 1-point
correlation functions vanish (so that all bilocal sources involved in the 2PI EA formalism reduce
to scalars in color space), this problem vanishes since the 2PPI EA reduces to the 2PI one in
this situation, as discussed at the end of this section.

Hence, in the framework of the 2PPI EA, we must solve the gap equation for K| instead of
p. This equation is therefore more conveniently rewritten as follows:

] 1Y BN & 21 N v ] RN i 21 ROV
opa(T) |,—p 6pa(z) | 0pa(x) | Opa(z) | 0pa(z) |
‘Of % Ko,q(2)

(3.349)

and, more conveniently:

o ST 2PPD
Ko Z D} [Ko = Ko;z,y] (SK—[IO] ; (3.350)
n=2"Y D7b(y) Ko=Ko

where we have used the functional chain rule (3.346). The self-consistent procedure aiming at
extracting K from (3.350) is completely analogous to that treating the Kohn-Sham equations.
It consists in the 5 following steps:

1) Choose a truncation order N; with respect to f.

31Consequently, the D propagator is convenient here notably because it enables us through the chain
rule (3.346) to turn derivatives of the r{ZFFD
K.

320n the contrary, we notably show in appendix D.2 that the Legendre transform underlying the 1PI EA can
be carried out explicitly. This can be seen in the framework of the IM from (D.55) which can be inverted to

coefficients with respect to p into derivatives with respect to

express Jo [q;] explicitly in terms of the 1-point correlation function &, as shown by (D.65). In finite dimensions,
there is no counterpart of this procedure for Ky[p] in the present case.
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2) Make an initial guess for K that we denote as Fédd).

(2PPI)[ ] (2PPI)[ ]
3) Determine the derivatives 6;—” R 5K— , where the coeffi-
0,a(2) Kool 0.a(x) Kol
0="H9 0=08Ho
cients F(QPPI) o, ,Fﬁtppl) [p] are found from the IM.

4) Evaluate the new configuration K ") of the Kohn-Sham potential Ky from (3.350) rewrit-

ten as:
—(new) . 5F$LQPPI)
Z D, [Ko = K¢,y }—[p] , (3.351)
n=2"vY 5K0,b(y) Koz?gold)

where the RHS is completely specified by steps 1, 2 and 3.

ew) .

5) Replaee K o by K in step 2 and repeat steps 2 to 4 until the difference |Féﬂew) —

?O ‘ becomes reasonably small, i.e. until self-consistency is achieved.

Such a self-consistent procedure is basically identical to that used to treat gap equations for
other nPPI or nPI EAs, whether we solve these equations for zeroth-order coefficients of the
sources or for the arguments of the EA. We just present this recipe in detail here to conclude
our discussion on the connection between the 2PPI EA and Kohn-Sham DFT, which entirely
follows from the fact that K is a Kohn-Sham potential.

We then briefly discuss the diagrammatic properties of the 2PPI EA. The IM outlined
above would yield an expression for the 2PPI EA in terms of the K, coefficient. Such an
expression can be represented diagrammatically after constructing the Feynman rules for the
D propagator as well as for other propagators and vertex functions involved in the LE of the
Schwinger functional. It was shown in ref. [304] that the diagrams thus obtained are all 1-
vertex-irreducible (1VI) beyond the Hartree-Fock level, i.e., for our A-expansion, AT PPD[p] =
LEPPDp) — F((]QPPI) [p] — TV 5] — TEPPV[p] is only given by 1VI diagrams®. More specifi-
cally, such a diagrammatic rule can be formulated as follows for our finite-dimensional O(N)-
symmetric p? model:

[ DEDG #5179

AT@PPD —— = , (3.352)
ID(ZDQ e_ﬁSO |:%Q} conn/tree/1VI/excl
with the classical action:
> 1 ~a —1 ~b 1 Y ab
§512.9= 5 | @6 Kz P W) +5 | @) DalKoiz gl )
:L',y x?y
S [;75] (3.353)
A ~ ~a 2 1 Oa ~2
+ 5 GE )+ [ @R,

33A diagram is l-vertex-reducible (1VR) if at least one of its vertices can be split to render the diagram
disconnected. If a diagram is neither a trivial skeleton (i.e. a diagram that does not contain any vertex, which
usually represents STrln terms) nor 1VR, it is 1VI by definition. For example, in the case of the diagrams
resulting from the LE in section 3.2.2.1, splitting a zigzag vertex simply means cutting the corresponding zigzag
line in half.
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where G|Ky] = Gk[K = K] is defined from the propagator G involved in the LE of W[K],
le.

325 [2)]
07 (2)6"(y) |-,

Gl_éab[KQ z,y] = — Ko(2)0apd(z — y) = (—Vi +m? — Ka(x)) dand(z —y) -
(3.354)
Owing to the absence of spontaneous breakdown of the O(/N) symmetry in the present frame-
work, the source K as well as all the K, coefficients are scalars in color space, i.e. K,(z) = K(z)
and K, ,(z) = K,(x) V¥n,a,z, which implies the same trivial structure for both Gx[K]| and
G[Ky), i.e. Graw|K;z,y] = Gr|[K;x,y]0w and Gu[Ko; z,y] = G[Ko; ©,y]dw Ya,b,z,y. We

also stress that ) is a fake quantum field which has nothing to do with the auxiliary field intro-

duced via HST or OPT. In other words, 2 is just a mathematical artifact introduced in (3.352)
after noticing that the diagrammatic expression of the 2PPI EA of a p?-theory resulting from
the IM looks like that of a theory with both ¢* and Yukawa interaction terms, in which the
propagator associated to the “meson” field is D~![Ky|*!. According to the rule (3.352), the
diagrammatic expression resulting from the IM for the 2PPT EA with vanishing 1-point cor-
relation function (for ®) can be equivalently obtained by performing a LE of the generating

functional in the numerator of the RHS of (3.352) around (gzp", ﬁ) = (6,6) The indication
“conn/tree/1VI/excl” means that, among all diagrams generated by this LE, only those that
are connected, 1VI and tree with respect to the D propagator®® are kept and we must also
exclude every diagram that contains self connections, i.e.:

@,
O

and/or double connections, i.e.:

with the Feynman rule:

Y,b — Gu[Koiz,y] - (3.355)

These restrictions are quite drastic so that, for the studied model, there are no diagrams

involving D~![Kj] in the three first non-trivial orders of the 2PPI EA, i.e. in the NS
coefficients for n < 4. However, the following diagram contributes to F?PPI) [p] for instance:
; (3.356)

34Note that our definition (3.345) of the D propagator is the inverse of that of Okumura in ref. [304] (see
equation (2.89) in ref. [304]).

35The expression “tree with respect to the DD propagator” is synonymous to “1PR with respect to each D
propagator”. Namely, a diagram is tree with respect to the D propagator either if it does not contain any D
propagator or if removing any of its D propagators renders this diagram disconnected.



108 CHAPTER 3. DIAGRAMMATIC TECHNIQUES

where D~![K] is represented according to:

T, a ﬁé Y:b — DMKy 2,y , (3.357)

and the zigzag vertex is as usual given by:
b o 4
a WK ¢ = Adapdea - (3.358)

Therefore, as opposed to nPI EAs, some diagrams involved in the final expression of the 2PPI
EA are not present at the level of the LE of the Schwinger functional in the framework of the
h-expansion. For example, the LE of W[K| does not yield diagrams in terms of D~'[Ky] such
as (3.356). In conclusion, the diagrammatic construction of the 2PPI EA is based on more
demanding rules than those of the 2PI EA but this must be contrasted with the numerical
resolution of the gap equations which is more difficult in the situation of the 2PI EA since the

latter is a functional of propagators (i.e. of bilocal objects) as opposed to the density functional
[ (2PPI)

Most of the present discussion on the IM readily extends to QFTs with several fields or to
one field with additional external sources coupled with combinations of this field other than
@%(x) encountered in (3.329). However, one has to keep in mind that this section does not
discuss the most general implementation of the IM. If the Schwinger functional involves several
sources (as e.g. for a 4PPI EA), the procedure (3.348) is not convenient to determine the source
coefficients so that one must rather follow the most general implementation of the IM [304, 305]
based on the series representing the arguments of the EA (such as (3.325d) in the studied case)
and outlined in appendix D. This remark applies in particular to the case of one field with a
local source J added to (3.329) such as:

six[] =5[7] - [ r@pua) -5 [ K@), (3.359)

in order to include a finite 1-point correlation function in the 2PPI EA formalism. This would
define a promising area to construct a DFT able to treat SSB, notably for O(N)-symmetric
theories. There are already applications of the 2PPI EA to the O(N)-symmetric ¢*-theory
which include a possible non-vanishing 1-point correlation function in the formalism [261, 262,
272, 306]. They have notably found an unphysical SSB at next-to-leading order (NLO) of a
1/N-expansion in (1+1)-D at finite temperature. However, each approach aiming at avoiding
possible violations of Ward identities in the framework of the 2PT EA| like the SI2PI EA [267],
the method of non-vanishing external sources of Garbrecht and Millington [307] or even the
mixed 2PT EA [153, 168, 291-293, 295, 296|, is straightforwardly adaptable to the 2PPI EA.

For the 2PPI EA with possible non-zero 1-point correlation function, we would find, as for
the 2PI EA (see appendix D.3.1), that the proliferation of diagrams is already cumbersome at
the first non-trivial order in the framework of the IM. Unfortunately, as explained above, we can
no longer simply pick the relevant diagrams among those of the LE of the Schwinger functional
in the framework of the 2PPI EA. Nevertheless, one could tackle this issue by generalizing the
rule (3.352) and/or using the whole machinery of the IM presented above and in appendix D
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to write a code determining all the diagrams contributing to a 2PPI EA with finite 1-point
correlation functions. A numerical tool constructing all the diagrams involved in Bogoliubov
MBPT (BMBPT) up to any truncation order is discussed in refs. [308-310] and could be used
as a starting point. Such a code would be of great use for any nPPI or nPI EA, especially in the
case of realistic models for which the diagrams generated by the LE might be very numerous
at the first non-trivial orders as well.

Let us finish this general presentation of the 2PPI EA by discussing the work of Furnstahl
and collaborators [17, 53, 54, 56, 57, 311] who brought the 2PPI EA (still via the IM) in nuclear
physics:

e Refs. [53, 54| aim at turning the Hartree-Fock implementation of the Skyrme EDF into
a systematically improvable approach by exploiting the 2PPI EA via the IM. In order
to achieve this, the latter method is applied to a dilute fermion gas with short-range
interaction. The authors use the product askr instead of h as expansion parameter for
the EA®®, with as and kp being respectively the s-wave scattering length and the Fermi
momentum of the gas. The diagrammatic underlying the expansion of the Schwinger
functional used as input for the IM is that of an EFT combined with a renormalization
scheme (based on dimensional regularization with minimal subtraction) worked out in

ref. [50].

e The inclusion of pairing correlations in the framework of the 2PPI EA is worked out in
ref. [56]. The latter shows notably how to recover results of the BCS theory with this PI
technique.

e Refs. [17, 57, 311] are reviews making a state of play of the methods relevant to turn
the nuclear EDF approach into a DFT, like the 2PPI EA. In particular, these references
discuss the techniques of quantization of gauge theories in the PI framework. Gauge
symmetries and associated SSBs have proven to be powerful tools to describe open-shell
nuclei, notably in the current EDF framework [7|. In technical terms, this requires the
quantization of gauge theories. This can be achieved in the PI formalism by, e.g., intro-
ducing ghost fields via the Faddeev-Popov method [312]. Another possibility suggested
in ref. [17, 57| consists in exploiting the BRST symmetry [313-315] to get rid of spurious
dofs (and thus work with a unique gs) [316, 317|. The latter direction might be less
cumbersome than that of Faddeev-Popov, in particular in the case of non-Abelian gauge
theories. However, both of these quantization techniques, and their combination with
the PI techniques applied in the present comparative study, remain to be explored in the
framework of nuclear physics.

Following the above IM procedure, the 2PPI EA of the studied O(/N) model with vanishing
1-point correlation function can be expressed as follows (see also appendix D.4 for a derivation

36The short-range feature of the interaction renders the product askr small enough to be a relevant expansion
parameter.
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of result (3.368) from which (3.360) can be deduced by setting My .[p, (; 2] = 0 Va, x):

EDly] - — 28T [ (Go])] + 5 [ Klpalpao)

1 1
2 — —
1 1
_3 —_— —
" 72@+144m
1 1 1 1
[ - — — —
M @ +108% "3 " 316

* 1206

L o),
(3.360)

where the Feynman rules are given by (3.355) and (3.358). The (0+0)-D version of (3.360)
(which can be directly deduced from a result of section 3.5.4 as well, i.e. by setting My(p, () =0
into (3.383)) satisfies:

24
N3+ 10N2 + 16N
1296

TCPPD(p) = [—g In(2mp(Ko)) + g (m?p(Ko) — 1)} + b FA (N +2N) (p(Ko))Z]

s [V 2N
144

A2 (p(KO))Zl} R [ " (p(Ko>>61 +O(R°) |

(3.361)

with p, being also a scalar in color space, i.c. p, = p(Ko) = (m?— Ko(p))~" Va. By com-
paring (3.248) with (3.360), we can see that the 2PI and 2PPI EAs with vanishing 1-point
correlation function are expressed, up to order O(h4), in terms of the same diagrams which
contribute to both EAs with the same numerical factors. The difference between these two EAs
is hidden in the propagator which is dressed by the bilocal functional Ky 4(z,y) for the 2PI
EA on the one hand and by the local functional K ,(z) for the 2PPI EA on the other hand.
At order O(h5), the diagrams of the 2PPI and 2PI EAs no longer coincide due to the appear-
ance of diagrams such as (3.356) in the expression of the 2PPI EA. Nevertheless, in (040)-D,
the expressions of the 2PI and 2PPI EAs coincide in the absence of SSB, i.e. results (3.257)
and (3.361) are equivalent, since the equality Gu(x,y) = G 04 = p(Ko) 0q4p is valid in this
case®”. However, one should bear in mind that this equivalence a priori does not hold (even
in (0+0)-D) if the O(N) symmetry is (spontaneously) broken down since there is no reason to
enforce the relation Gy, = G d,p for the 2PI EA in this situation.

3"The gap equation of the 2PPI EA expressed by (3.361) can therefore be directly deduced in (0+0)-D
from (3.258) after substituting G by p(Kj).
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3.5.4 4PPI effective action

A first application of the 4PPI EA was carried out by Okopinska [305]. The 4PPI EA is
deduced from the 4PI one by assuming that all sources are local. Hence, the 4PPI and 4PI EA
formalisms are very similar and we can find most of the relevant information for the presentation
of the 4PPI EA formalism in the literature related to the 4PT EA [115, 229, 318, 319]. As
opposed to all EA approaches based on a h-expansion that we have investigated in the rest
of section 3.5, no diagrammatic rule has been worked out so far for the 4PPI EA in order to
determine general properties of the underpinning diagrams (as opposed to (3.352) for the 2PPI
EA with its 1VI diagrams notably). We will not develop such a diagrammatic rule below but
construct instead the diagrammatic expression of the 4PPI EA via the IM for the O(N) model
under consideration (see appendix D.4). Moreover, neither the 4PI nor the 4PPI EA has ever
been exploited in the framework of an O(N)-symmetric theory to our knowledge. Since the
4PT and 4PPI EAs of our O(N) model coincide in (0+0)-D and in the absence of spontaneous
breakdown of the O(N) symmetry®®, the present study is the first to perform such applications.
More specifically, we now investigate the 4PPI EA with vanishing 1-point correlation function
in the original representation, still in arbitrary dimensions as a first step. This functional is
defined by the following Legendre transform:

WMMGEWWMH/K%06WKM /Magéme

K dMe(x)
Wi+ 5 [ Kl Gialpto) + 5 [0 Gl + 3 [ 2ot
(3.362)
with
 20W[K, M]
pa(x) - A 5Ka(13) ) (3363)
24 SW[K,M] 3,

_ = -z .364
Ca(l') hS 6Ma(l') hpa(‘r) ’ (3 36 )

and the Schwinger functional W[K, M] satisfying:
Z|K, M| = exWIEM — / DG e ks3] (3.365)

St [é] = s[3] - = / Koz i! L M ()3 (x) . (3.366)

38The 4PI and 4PPI EAs of the studied O(IN) model coincide without SSB and in (0+0)-D since the absence of
SSB imposes that all non-local sources underlying the 4PI EA reduce to scalars in color space. Since spacetime
indices vanish in (0+0)-D, this implies that all these sources become local, in which case the definitions of the
4PI and 4PPI EAs become indeed equivalent. For further details, one can compare the definition of the 4P1 EA
given in ref. [229] with that of the 4PPI EA given by (3.362) to (3.366).
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The IM is then implemented from the following power series:

(

n=0
Klp, ¢ h] = ZK ;¢
M(p,(;h) = ZM p.C

p=">_ pullS, MR .

n=0

DD, ] = 3 T, 1

WK, M;:h] = iWn[K, MR .

From the IM, we show that the 4PPI EA (3.362) reads (see appendix D.4):

TUPPDp, (] = — SSTr [In (G[K

+hr | =

+hr | - =

hi
+§LK3[p,C;x]pa(x)

1 1
. @ v 4 [ Mgl ol

+ I L + L + L
324 108 324

216

(3.367a)

(3.367b)

(3.367¢)

(3.367d)

(3.367¢)

(3.367f)

(3.368)
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and the corresponding Feynman rules are:

Y:b — Gu|Ko:z,9] (3.369a)

b d
a yWVVVVK C - (/\ - MO,a[p; C) x](sac) 5abécd . (3369b)

T

where the propagator G[Ky| = Gk|K = K] is already defined by (3.354) and remains a scalar
in color space as for the 2PPI EA formalism discussed in section 3.5.3. The coefficients Ky and
M, introduced via the power series (3.367¢) and (3.367d), also exhibit such a simple structure
in color space and are the variational parameters of the present EA approach. Furthermore,
we can see that (3.360) and (3.368), expressing respectively T?PPD[p] and TUFPPD[p (], are very
close: the diagrams have identical topologies and are weighted with the same factors up to
order O(h4). However, the two expressions are of course not identical due to the presence of
the My coefficient in the case of the 4PPI EA (notably via the zigzag vertex (3.369b)).

We conclude this section by studying the zero-dimensional limit as usual. In order to evalu-
ate the diagrams of (3.368) in (0+0)-D, we must have in mind that the zigzag vertex (3.369b) is
dressed by My[p, (] if and only if the color indices at each four ends of this vertex are identical,
as a result of the presence of 4045004 in (3.369b). This yields:

3 Kol pa = 3 Koalp. 004 ) = NEalp, Op(a) = N (mio(Ka) ~1) , (3370)

> Moulp,Q)p2 =Y Moa(p, ) < GO ) = NMy(p,¢) (p(Ko))* (3.371)

ZMO,a(pa C)ga = - ZMO,a(pv C) % = _NMO(pa g) (/\ - MO(p7 C)) (p(KO))4 )

(3.372)

OWWO = [N (A= Mo(p, Q) + N (N = 1) Al (p(Kp))* (3.373)

@ = N (A = Mo(p, Q) (p(K0))” (3.374)
@ = N (A = Mo(p,€))* (p(Ko))" (3.375)

= [N (A= My(p, 0))* + N (N = 1) N] (p(K))" (3.376)
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m = [N (A = Mo(p, €))" + N (N = 1) ] (p(£0))° (3.378)

= [N (A= Mo(p,0))* + N (N = 1) N] (A= My(p, Q) (p(K0))® ,  (3.379)

_ {N (A= Mo(p,O))* + 3N (N = 1) A2 (A — My(p, O))
(3.380)

FN (N = 1) (N =2) 8] (p(F0))" |

where we have used relations derived in appendix D.4 (i.e. (D.235) and (D.236)) in (3.370),
(3.371) and (3.372). As mentioned earlier, the absence of spontaneous breakdown of the O(V)
symmetry in the present situation induces notably that G(Ky), Ko(p, () and My(p, ¢) all reduce
to scalars in color space, which translates into the relations: Guy(Ko) = p(Ko)dap, Koul(p, () =
Ko(p, ) Ya and My .(p,¢) = My(p, ) Va. Moreover, by noticing that the contribution of each
diagram must be of order O(N™) when My(p, ¢) = 0, with m being the number of independent
propagator loops in the diagram under consideration, we can infer the following sum rules for

the factors involved in the RHSs of (3.373), (3.376), (3.378), (3.379) and (3.380):
e For m =2 (i.e. for (3.373), (3.376), (3.378) and (3.379)):
N+N(N-1)=N?. (3.381)

e For m =3 (i.e. for (3.380)):
N+3N(N—-1)+N(N—-1)(N—-2)=N>. (3.382)

According to (3.370) to (3.380), (3.368) reduces in (040)-D to:

PP 5,6) = | — 5 @mp(Ke) + 5 (m2p() 1)

+ h? :i)\ (N? 4+ 2N) (p(KO))Q]

1

— 3 —
L 144

N (=3 (My(p. ) + (24 N) ¥?) <p<Ko>>4}

o :ﬁN( — 27 (Mo(p, 0))° + 81 (Mo(p, ) A — 9My(p, ) (8 + N) X2

+ (16 + 10N + N?) X?) (p(KO))ﬁ]

+0(R) .

(3.383)
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By exploiting the relations® p, = p(Ko) = (m*— Ko(p,¢))" Va and ¢, = ((Ko, My) =
— (A= My(p,©)) (p(Ko))* Va (see appendix D.4 and more specifically (D.235) and (D.236) for
the derivation of these two relations in arbitrary dimensions), we then construct the following
chain rules in order to derive the gap equations associated to I'“FPD(p, ():

dp dp 0Ky dp oM,
0
_(Op(Ky)\ " 9 (3.384)
U 0K, 0K,

:4mmm25%,

a9 0K o¢  OM,
—~1 -1
_ (8<(KO:MO)> 8 + (aC(K(hMO)) a (3.385)
GKO 8K0 8M0 aMO
1 _ 5 0 4 0
= = g O = Mo, ) (K)o (oK) ™ 5

The gap equations associated to [*PFD (p, ¢) actually satisfy (see appendix D.4 and more specif-
ically (D.200a) and (D.200b) to justify the simplifications of the derivatives of I'“FPD(p ()
outlined in (3.386) and (3.387)):

o RO _ o™ o T 00|
ap =r ap p=p ap p=p ap p=p
= =¢ ¢=C ¢=¢
Y e
[ 4PPI) p(4PPD)
+ dl's (p, <) R ary (p,€) h4+(9(h5),
ap s dp s
¢=¢ ¢=C
(3.386)
o O o™ o0 L T 00|
ag P=r ag P=pP ag p=p ac p=p
¢=¢C R C=Zj N C=§ R C=EJ
0 0 0
[(4PPD) [(4PPD)
+ dl's (p, Q) R ary (p,¢) h4+(’)(h5),
a¢ - o¢ -
\ = ¢=¢
31 Mo
(3.387)
with p, = p = (m2 —Fo)_l Va and (, = ( = — ()\ —Mo) p* Va. Finally, after combin-

39The conservation of the O(N) symmetry in the present framework also imposes that both arguments of the
4PPI EA, i.e. p and (, are scalars in color space.
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ing (3.383), (3.384) and (3.385) with (3.386) and (3.387), we obtain the two gap equations:

ATUPPI) (5 () h— o[ 1 B .1 ., N
0==—5, |, = 3Foth [EN(%LN)AP} —h {%N (—3M0+(2+N))\ >p}
¢=¢
4 1 S p— _ )
+ 1| o= (= 270 + 8INIoA — 93 (8 + N) A
+ (16 + 10N + N?) )G”)p"’]
+0(R),
(3.388)
or“rPl (p, ¢) L
N P T
¢=¢
1 - - ) JR—
- nt {@ (A = My) 1N( — 81M§ + 243M(2)>\ — 3M, (76 + 5N) \?

(3.389)

whereas the gs energy and density are deduced from the solutions of these two gap equations
as follows:

orig | =
PP EAvoris _ EF(ALPPI) (p=7¢=0), (3.390)
ngl BAsoris _ p5 (3.391)

One can directly infer from (3.387) that, if contributions to I“PF of order O (k*) or higher are
ignored, the solution of the gap equations for My(p, ¢) is inevitably trivial, i.e. My = 0. This
implies that we need to push our investigations at least up to order O(h4) (i.e. up to the third
non-trivial order) to find non-trivial solutions for My(p,() so that the 4PPI EA formalism
might improve the 2PPI one for a vanishing 1-point correlation function. This feature gets
accentuated for higher nPPI EAs: the 4PPI and 6PPI EAs’ results would not differ below the
fifth non-trivial order (still for a vanishing 1-point correlation function) and so on’. We are
just illustrating in this way a well-known fact, i.e. that nP(P)I EAs all yield identical results
at order O(R™) for n > m [320].

Furthermore, the results obtained at third non-trivial order for our (0+0)-D O(N) model
do not clearly improve the 2PPI EA results in all phases, as can be seen from figs. 3.18 and 3.19
for N = 1 and 2 respectively. For most results of fig. 3.18 and thus at N = 1, the 4PPI EA
approach clearly outperforms the 2PPI EA one at order O(h4), with the exception of pg in
the broken-symmetry phase. At N = 2 however, fig. 3.19 shows that the best 4PPI EA results
(besides the trivial solution My = 0 for which 2PPI and 4PPI EAs coincide, as can be seen by
comparing (3.361) and (3.383)) are even worse than the best 2PPI EA ones. Nevertheless, the

40 Although we do not show it here, we point out that the situation is slightly improved if the 1-point and
3-point correlation functions are allowed to take finite values. In this case, the 4PPI EA might improve the
2PPI EA results already at order O(h?) (i.e. at second non-trivial order) if the n-point correlation functions
with n odd are not constrained to vanish according to the symmetries of the problem. The latter condition does
not hold in the case of the studied O(NN) model for which the 4PPI EA results are thus still expected to coincide
with the 2PPI EA ones at second non-trivial order even if the underlying formalism allows for non-trivial 1-point
and 3-point correlation functions.
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~10 ~5 0 5 10
A
4m?
®  exact solution e 2PPI EA (¢ = 0) O(hY) ® exactsolution e 2PPI EA (¢ = 0) O(1")
---= 2PPIEA (6 =0) O(h®) —— 4PPIEA (¢ = 0) O(h") --== 2PPIEA (¢=0) O(h*)  —— 4PPIEA (¢ =0) O(h")
_____ 2PPI EA (6 = 0) O(F?) ——= 2PPI EA (¢ = 0) O(I*)

Figure 3.18: Gs energy Fy or density pgs calculated at A=1, m* =+l and N =1 (Re(\) >0
and Zm(X) = 0). See also the caption of fig. 3.11 for the meaning of the indication “O(k")” for
the results obtained from hA-expanded EAs.

—2.04 .

e exact solution e 2PPI EA (6 = 0) O(1%) e exact solution e 2PPI EA (
---- 2PPIEA (¢ =0) O(h)) —— 4PPIEA (¢ = 0) O(i") --== 2PPIEA (¢ =10) O(h*) —— 4PPIEA (¢ =10) O(r*)
=0

2
————— 2PPI EA (¢ = 0) O(*) == 2PPIEA (¢ = 0) O(h")

Figure 3.19: Same as fig. 3.18 with N = 2 instead.

comparisons between 2PPI and 4PPI EAs in figs. 3.18 and 3.19 should be taken with caution
as we are considering asymptotic series without resummation here. We will actually not apply
resummation theory to the 4PPI EA as the previous discussion is sufficient to make our point
on nP(P)I EAs with n > 2, which is as follows.

All above remarks outlined below (3.389) are inherent to the present choice of expansion
parameter, i.e. h, and do not hold a priori in the framework of another expansion scheme.
From this, we conclude that nP(P)I EAs with n > 2 are less efficient than HSTs to introduce
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new collective dofs in the arena, at least in the framework of the h-expansion for a model
that does not exhibit competing instabilities. We have illustrated in this chapter how HSTs
and nP(P)I EAs with n > 2 can be used separately or together to introduce collective dofs
in our description. Note that nPI EA formalisms are based in general on self-consistent gap
equations®' involving bilocal, trilocal, ... and n-local objects as variational parameters, which
might significantly burden the underpinning numerical procedure. We can circumvent this by
dealing instead with nPPI EAs for which all variational parameters are local, but the price
to pay is a significant complexification on the side of the formalism, as was illustrated in
section 3.5.3 for the 2PPI EA (or in appendix D.4 for the 4PPI EA). Besides this, 2P(P)I EAs
and higher-order EAs enable us to exploit densities as dofs (either through a propagator with
e.g. the 2PI EA or directly with density functionals such as the 2PPI EA), which provides us
with an interesting connection with the nuclear EDF formalism. We will remain in the EA
framework in the next chapter on FRG techniques which rely on different expansion schemes
for EAs (as compared to the h-, A- and 1/N-expansions discussed in the present chapter), thus
grasping non-perturbative physics in a very different manner.

4In (0+0)-D, these gap equations are not self-consistent but just algebraic, as we have seen throughout the
whole section 3.5.
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We pursue our investigations on PI methods in this chapter, now focusing on FRG approaches.
The questions underlying our study remain identical to those put forward in chapter 3: what
are the most efficient methods in catching correlations at the non-perturbative level and what
are the relevant dofs to achieve this? We will still exploit our (040)-D O(N)-symmetric ?-
theory as a playground for our numerical applications and the latter question will be addressed
by considering the mixed and collective representations of this model on various occasions. The
link with the EDF formalism is less direct with FRG methods than with the EA approaches
dealt with in chapter 3. All FRG techniques, which still belong to the EA formalism, rely
on integro-differential equations whereas the EDF methods, as well as the diagrammatic EA
techniques treated in chapter 3 that we will now refer to as self-consistent PT for the sake
of clarity, require to solve self-consistent equations for realistic models. In that respect, the
FRG framework is a serious candidate to produce a new generation of approaches in nuclear
theory. The study presented in this chapter aims at better understanding the ability of FRG
techniques to achieve this and more generally to describe strongly-coupled quantum systems.
To that end, we will discuss FRG techniques formulated from a 1PI EA, a 2PI EA and a 2PPI
EA, coined respectively as 1PI-FRG [126, 133], 2PI-FRG [321, 322| and 2PPI-FRG [323], and
we will emphasize in particular the connections between these different FRG approaches.

More specifically, the present chapter is split into three sections treating separately the 1PI-
FRG, the 2PI-FRG and finally the 2PPI-FRG. Each of these sections contains two parts, the
first one presenting the general formalism of the FRG approach under consideration at arbitrary
dimensions and the second one specifying to our (040)-D O(N) model. While there already
exists plenty of applications of the 1IPI-FRG to O(NN) models [324-333|, we develop and apply
the 2PI-FRG and the 2PPI-FRG to an O(N) model for the first time to our knowledge. We will
also illustrate the links between certain implementations of the 2PI-FRG and self-consistent
PT. Some of these implementations are actually capable of taking the results of self-consistent
PT as inputs. Since self-consistent PT is equivalent to Hartree-Fock(-Bogoliubov) theory at its
first non-trivial order, this will enable us to draw an interesting parallel with the MR step of
the nuclear EDF approach |7, §|.

4.1 1PI functional renormalization group

4.1.1 State of play and general formalism

As we already discussed in chapter 2, the most widespread FRG approach is the 1PI-FRG
proposed by Wetterich in refs. [126, 334-336] alongside with others [337-341]. It remains
an active area in numerous fields of physics, as e.g. in QCD [134, 135, 342-352|, quantum
gravity [353-362], condensed matter physics [363-373] or nuclear physics [374, 375]. Note
also some applications to out-of-equilibrium systems [376-386]. We will present the 1PI-FRG
formalism for a general QFT involving a single fluctuating field ¢, depending on a single index
a = (a,x), with x = (r,7) being the spacetime position (r and 7 being respectively the
space position and the imaginary time) and a an internal quantum number that, if specified,
coincides with the color index of an O(N) model. The output of this method is the EA, as in all
FRG approaches investigated in the present study. The 1PI-FRG relies on the scale-dependent
generating functional:

ZulJ] = Wil — / D o~ SA-ASU+, oo (4.1)

'We set A = 1 throughout the entire chapter 4 and corresponding appendices.
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where W]
k
a = « - 5 4.2
o = brald] = T2 (4.2
and ]
ASk [SZ} = 5/ Szale,ogagSZozz ) (43)

using the shorthand notation for the integration:

/Oézza:/xzza:/oﬁch/dl)lr. (4.4)

Furthermore, Ry is called cutoff function or regulator whereas k denotes the momentum scale
of the theory under consideration and will be referred to as flow parameter. The cutoff function
Ry plays a central role in the present approach, as in all FRG approaches. It must notably
exhibit the same symmetry properties as the corresponding propagator. Therefore, as we are
considering the case of a bosonic field, R;, is symmetric, i.e.? Rk oios = Riasar = dayanRi(z1 —
Ty) Yoy, ay (for a fermionic field, Ri a0, = —Rikasas Yo, a2). Note also that, for realistic
applications, the final equations to solve are usually written in momentum space. It is indeed
more natural to do so as the flow parameter corresponds to a momentum scale. Recalling
that ¢, = ¢.(x), this is achieved via the following Fourier transformations in D-dimensional
Fuclidean spacetime:

@@z/am%w, (4.5)

Fglll,:’l),(gg [¢7p17 T 7pn] = (271-)*7113 / eiizzL:l pmme((lﬁlj)I),(gg [¢7 U P 7xn] ) (46)
Tl Tn
SOPD() __ srrUrngg) APDm) [, _ 5Py
where Fa1-..an [¢7p17 7pn] - 5¢v5a1([)1)"’5<z>an(pn)’ Fal-..an [¢,x1, ;xn} = 8a, (x1)00an (Tn) and

the momentum p = (p, iw,) is such that px = p-r —w, 7, with w, being a Matsubara frequency.
In this situation, we also Fourier transform the regulator Ry, thus leading to:

V)

85.00) = 530 [ Gt ®)ain( =) (4.7

with

Rkﬂlﬂm (p1,p2) = (27T)D6a1a25(D) (p1 +p2)§{k,a1 (p1) (4.8)
where 67 is the D-dimensional Dirac delta function [387]. We will actually rather focus on
the properties of R, instead of those of Ry in the discussions to come (we will switch to a
more common notation thereafter, denoting S)u%k(p) rather as Ry(p)). However, we point out
that, due to the absence of spacetime indices in the framework of our toy model study, we will
not exploit Fourier transforms in the forthcoming applications of the 1PI-FRG, or of any other
FRG approaches.

The flowing EA F,(:PI) is defined through the modified Legendre transform:

I?Ww=4nm+/@%—A&m, (49)

where the need for the rightmost term —ASk[¢] will be clarified below. After differentiating (4.1)
with respect to k, we end up with an exact flow equation for Wj[J]| which is equivalent to

2In the present chapter and in the corresponding appendices, we will denote color indices by a1, as, as, ...
instead of a, b, ¢, ... as was done in the previous chapters.
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Polchinski’s flow equation [127]. With the help of definition (4.9), we can turn this into an
exact flow equation for F,(Clpl) [¢], which is nothing other than the Wetterich equation [126] (see
appendix E.1):

. 1 . -1
PP 1) = 9,0V g] = 5STr [Rk (F,SPW) 0] + Rk) ] , (4.10)
(aPD)(2); o _ 820"V [g) (1PT)

where the matrix Iy, (9] = — 55 18 the Hessian® of the flowing EA ', and STr denotes
the supertrace as usual. We also stress that, in our notations, the dot will always denote
derivatives with respect to the flow parameter, in the present as well as in the forthcoming
sections treating other FRG approaches. The Wetterich equation is solved by evolving the flow
parameter k from the chosen UV cutoff A to zero. Throughout this procedure, we actually
probe the energy range [0,A] by incorporating quantum corrections to the classical action until

it coincides with the full-fledged EA. Hence, the flowing EA F,(:PI) must satisfy the following
boundary conditions:

TVl = S[E =¢] - (4.11a)
(6] = TP [g] (4.11D)

These boundary conditions are translated into constraints for the cutoff functions:

Ri—paya, =00 Vag,an . (4.12a)

Rk:O,a1a2 =0 Val,az . (412b)

The link between (4.11b) and (4.12b) can be directly established from the definition of FSPI)
given by (4.9). It can be shown on the other hand that the constraint of (4.12a) enables us to
satisfy (4.11a) by considering (4.9) in the form (see appendix E.1 and more specifically (E.7)
for a derivation of (4.13)):

B 5F](£1PI) [¢]

JOél - 5¢ +/ Rk,a1a2¢a2 . (413)

By exploiting the latter equality at k = A, we can show that combining (4.1) and (4.9) leads

3The Hessian of F,(:PI) is sometimes denoted as F,(cl’l) = %Fk%, where & = %@ is a column vector
whose components are given by the (complex and real) fields on which the 1PI EA T'y, depends [388, 389].

4According to (4.1) and (4.3), the introduction of the cutoff function R}, dresses the (inverse) free propagator
ClasC™! = Cp ' = ¢-' 4+ Rj. However, we can equivalently use a multiplicative cutoff function via
C~' — C;' = R,C~1, in which case (4.12b) is no longer valid. Hence, the constraints (4.12a) and (4.12b)
can be respectively rephrased as C’k_:lA’oqa2 = oo Yoy, s and C’k;l = C~! Vai,as so that they become

independent of the way Ry is introduced.

0,1 o
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to:
efr,ngU [¢] — Wi=alIl=J, Jabat3 [o ay Po1 Ri=r.aqaybay

_ (/ D(,O e_S[&]_% fal’QQ &al Rk:A,aloLQ@aQ"rfa Ja&a) 6_ fa Jad)a"r% fa17a2 ¢o¢1 Rk:A,a1a2¢a2

(1PI)

. ~ 0T \'le] - ~
— (/ Dg’b’ e_Sm_%faL% @ale:A,alaQSDag“!‘fa k5;5/o\¢ wa—i_fal,ag (bale—A,alaQ(PaQ)

sri V9]

1
X e fa Sda ba—73 fal,a2 Py Rik=A,aq agPag

(1P1)

STy el - - ~
_ / DG e SIPH I T Baba) (b Sy iy (o =01 ) Rt gy (o =)

e Y

~8[p—¢] according to (4.12a)

(4.14)

which gives us:
T [g] ~ Slel (4.15)

as expected. The condition (4.15) sets the starting point of the flow: needless to say that it is
a very useful condition as the classical action is known in practice. Note however that (4.15)
would not be satisfied if we would not have modified the Legendre transform defining the flowing
EA I‘,(:PI), hence the relevance of the extra term AS in (4.9).

We are now left with discussing the analytic form of the cutoff function Ry for 0 < k < A.
In that respect, let us first point out that, except for simple toy models [147], the Wetterich
equation can not be directly integrated and must therefore be approximated in some way. Since
approximations are almost always necessary to solve the Wetterich equation, the flow depends
on the choice of Rj. This implies that physical results might themselves depend on the latter,
even if the boundary conditions (4.12a) and (4.12b) are fulfilled. The predictive power of the
FRG approach can therefore be improved by implementing optimization procedures aiming
at minimizing such an undesirable feature. Here are examples of optimization procedures
developed so far: one based on the principle of minimal sensitivity [329, 330, 390, 391], which
determines the optimal values for the parameters of a given cutoff function, and the Litim-
Pawlowski method [133, 392-396], leading to the so-called theta or Litim regulator [392, 393]:

Riy(p) =C (K —p*) © (K* — p°) , (4.16)

where C is a constant of order unity and © is the Heaviside function [152]. The regulator (4.16) is
not suited to be combined with all approximations of the Wetterich equation (and in particular
not with the derivative expansion discussed below) since it is not a differentiable function.
However, in some situations, it has the advantage to allow for performing integrals analytically
in the integro-differential equations deduced from the Wetterich equation. Another common

choice of cutoff function is:
2

Ri(p) = C—ir— (4.17)

P /K2 17

which is referred to as the exponential regulator. The cutoff functions (4.16) and (4.17) are
both considered as soft, in contrast to sharp regulators which are rather used in the framework
of perturbative approaches (see fig. 4.1).
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Figure 4.1: General forms of soft and sharp cutoff functions.

To summarize, there are essentially two features influencing the predictive power of the 1PI-
FRG (and of all other FRG approaches): the choice of the cutoff function (alongside with the
aforementioned optimization procedures) and the approximation used to solve the Wetterich
equation (or other flow equations for other FRG approaches). The implementation of such
an approximation is a two-step procedure: the Wetterich equation must be expanded in some
way before being truncated. We will refer to the combination of these two steps as truncation
scheme. For the 1PI-FRG, several truncation schemes have been developed and tested. As
examples, we can mention:

e The vertex expansion [341, 397|: it relies on a Taylor expansion of the flowing action

F,(:PI) [¢] in powers of the field ¢ (and not of its spacetime derivatives):
1PI (1P1) FUPD () _
r{Pg) = TOP 4 Z / TP (-G (6-B), »  (418)
-
= 5 TUPD _ 1PI (AP (n) gty -
where ¢ , = gi’;a‘]] Fk )[¢ qbk} Lyogan, = (MTE B and ¢, must

extremize the ﬂowmg EA, ie. e
PI
oo

= . 4.1
7 0 Va,k (4.19)

=0y,

Inserting the expansion (4.18) into the Wetterich equation and identifying the terms with
identical powers of ¢ — ¢, in the LHS and RHS turns it into an infinite tower of differential
equations (see section 4.1.2 for a concrete application). In order to deal with a closed
finite set of equations, the simplest option consists in defining a truncation order Ny ..
and imposing:

—=(1PI)(n)
k,ay-an

= Fl(glpf?(()z1) - Val, sty O, k‘, Vn > Nmax .

(4.20)

r

If the EA depends on several fields, it is convenient to rewrite first the Wetterich equation
as:

. 1 ~
FSPI) _ §STT [@q In (F’(€1PI)(2) + Rkﬂ ’ (4.21)

where the operator 5k is a derivative with respect to k that only acts on the cutoff function
R;.. The fluctuation matrix Fj, is then introduced as:

F(lpl + Ry, =Py, + Fi (4.22)
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where Fj, and P, denote respectively the field-dependent and field-independent parts.
Combining (4.21) and (4.22), the vertex expansion can be implemented by expanding the
Wetterich equation as:

PP — %STr [(@ﬂ) P,;l} + % i

n=1

ni

ST [0 (PR (4.23)

The relevance of the vertex expansion relies on the validity of the Taylor expansion
n (4.18) or (4.23). Put differently, the vertex expansion is useful as long as the momen-
tum dependence of the vertex functions does not play a significant role in the physical
process to be described.

The derivative expansion (DE): it mimics the expansion of the free energy in Landau
theory for the flowing EA [324, 329-331, 398, 399]. The general idea of the DE is to
expand the flowing EA with respect to the field and its spacetime derivatives. There
are also different truncation orders for the DE, the simplest being the local-potential
approximation (LPA). This scheme is most usually formulated for an O(N) model in
which case we rather deal with the O(N)-invariant p[gﬂ = ¢2/2 or, more explicitly®,
p[(ﬂ = SN (#a(2))?/2. The main reason for this is that the flowing classical action

Sk = S + ASi and the flowing EA F,(CIPI) exhibit the same linear symmetries (e.g. the

O(N) symmetry) and invariant of these symmetries (e.g. p for the O(N) symmetry) are

PI)

natural choices to play the role of expansion parameter for F,(Cl in particular. The most

widespread implementations of the DE are:

— LPA: ,
ri[d] - [ [5(99)" + v (124
— LPA’: ) ,
(4] - [ % (96)" + il (4.25)
— DEs: )
r™(3) - [ _Z’;[”] (96)" + o) (90) + Um} S (420)

where the effective potential Ug[p] only encompasses even powers of the field, as follows
from the definition of p. The functional Uy[p| gives us access to the most relevant in-
formation related to thermodynamics (equation of state, ...). The above ansétze, and
notably (4.26), have been proven to be very successful in treating O(N) [326] and Gross-
Neveu [400] models. However, for more complicated models, it turns out that addi-
tional approximations are almost always necessary, as illustrated by the work of Tissier et
al. [325, 327, 328]. In such situations, several invariants might come into play (instead of
just p) and one usually needs new functions (other than Z; and Y;) to achieve a reason-
ably good physical description, which renders the FRG procedure much more demanding
numerically. To handle this, a convenient additional approximation is to expand U, and
7, with respect to all invariants and then truncate the power series thus obtained®.

Let us put aside these additional approximations for the rest of our discussion on the
DE. In order to achieve a practical calculation based on the DE; we insert ansétze (4.24),

5The arrow still symbolizes the vector character in color space.
6See ref. [329] for a concrete example.
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(4.25) and (4.26) into the Wetterich equation in order to extract from the latter an exact
flow equation for the effective potential Uy[p]. For instance, after exploiting the O(N)

symmetry of the problem as well as the relation F,(CIPI) [qg = ggu} = QUlp = pu] (22 being
the spacetime volume of the system and p, = p[(g = g;u} being evaluated by definition
at a uniform field configuration ¢y, uniform meaning ¢,(z) = ¢, Vz), we obtain for the

LPA™#:
i) = 3 [ ol u0) Gl + (V=D Guapp)) . (42)
where
GkL (p,p) = (F " (0,p) + Ri(p ))_1
= (¥ +UP0) +20U2(0) + Reln) (4.28)
Grarl(p,p) = (TEF® (0 ) + Rilp ))_1
— (»*+ ") +Rk(p)>1 , (4.28b)

\

with U, lgn)(p) denoting the n'™-order derivative of Uy with respect to p. The subscripts
“L” and “T” respectively label longitudinal and transverse components with respect to the
direction associated with SSB, e.g. I‘,(;PI denotes the second-order derivative of F (1PD

with respect to ¢a_y(z) if ¢ = (Gaen(z))

As its name suggests, DE, is referred to as the second order of the DE whereas the
LPA and the LPA’ can both be seen as its first order. The only difference between
the LPA and the LPA’ is the presence of the running field renormalization constant Z
n (4.25). Despite its simplicity, the LPA has notably proven successful in the study
of SSBs in the framework of O(N) models [332]. Moreover, as shown in ref. [332], the
LPA results satisfy the Mermin-Wagner theorem [401-403] assuming that the effective
potential Ug[p] in (4.24) is not further approximated. However, the LPA turns out to
be disappointing in the determination of critical exponents, especially for the anomalous
dimension 7. More precisely, the LPA always yields n = 0, as can be seen from the flowing

1
propagator G (p,p) = (F,E}PI)(Z)(p,p) + Ry (p)) which reduces to Gy—o(p = 0,p) = 1/p?

at criticality which contrasts with the expected critical behavior Gx—o(p = 0,p) ~ 1/|p|*™"
with 7 finite in less than 4 dimensions [125, 326, 333, 404-408|. The LPA’ cures this
problem thanks to Z: after choosing a relevant cutoff function [333, 409], it enables us
to define a flowing anomalous dimension 7, = —k0dy In(Zy), so that n = }CILI(I) M, can be

extracted at the end of the flow at criticality. Besides this improvement with respect to
the LPA, the LPA’ is often not sufficient to achieve a satisfactory quantitative accuracy in
the determination of critical exponents. Nonetheless, let us point out that the successes
of the LPA (and the LPA’) suggest that the DE is performed around an efficiently chosen
starting point, hence the motivation for exploiting the second order of the DE (in which
Zx, becomes a function of p alongside with Y}) [326, 335, 410-416], or even higher orders
such as the fourth [330, 417, 418] and the sixth [419].

"We refer to refs. [125, 147| for more details on the derivation of (4.27).
8In a uniform field configuration, p is no longer a function of z, which implies e.g. that Uy is no longer a
functional but a function, hence the notation Uy(p) instead of Uy[p].
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As for the vertex expansion, the relevance of the ansitze underlying the DE (i.e. (4.24),
(4.25) and (4.26) for the first two orders) does not rely on the smallness of a given
coupling constant so that the 1PI-FRG combined with the DE is still a non-perturbative
method. However, the validity of these ansatze is certainly not as clear as that of the
vertex expansion. Firstly, we can argue that, thanks to the flow parameter k acting as
an IR regulator, the flowing EA F ('PD" Joes not suffer from the divergences characterizing

critical behaviors’. The latter only affect the physical EA, i.e. F(IPI gﬂ arn [(5]

Therefore, the 1PI vertices F,(gg () (qgu, [ PRER pn) are smooth functions of the momenta

p; so that F,(;PI) can be expanded in terms of spacetime derivatives of the field gg to

capture the long-distance physics (typically the physics associated to a scale larger than
k=Y or m~!, with m being the mass of the field (E) More rigorously, the convergence of
the DE relies on the fact that the expansion of F,(:PI) with respect to p?/k? has a finite
radius of convergence r..,y on the one hand and, on the other hand, that the momentum
cutoff peutot is sufficiently small'® for e, to be significantly greater than p? . /k*. Such
conditions are usually satisfied in unitary theories for instance.

In conclusion, as opposed to the vertex expansion, the DE is particularly suited to catch
long-distance physics and thus to study critical phenomena. However, such a truncation
scheme does not retain the full momentum dependence of the vertex functions kept by
the truncation. Although we discuss below other truncation schemes developed in order
to cure this problem, we can also point out a slight modification of the LPA’, called
the LPA” [420-422|, which enables us to capture the full momentum dependence of the
propagator Gy, inducing notably better estimates of the critical exponents [421, 422].
The LPA” has led to many successful applications, in equilibrium as well as in out-of-
equilibrium physics [423-427].

e The BMW approximation (named after its inventors Blaizot, Méndez-Galain and
Wschebor): it is inspired from previous study of critical phenomena in the framework
of liquid state theory [428, 429] and relies on a set of coupled flow equations obtained by
differentiating the Wetterich equation with respect to the arguments of the EA (hence

¢ for TUPV[]) [430-438]'L. In this way, we obtain in momentum space a differential

equation expressmg e.g. O F (LRI ((bu, p) (evaluated in a uniform field configuration ¢,)

in terms of F,(glpl (¢u,p,—q,—(p + q)) and FSPI)(L")(gbu,p, —p,q, —q). Moreover, as the
derivative Oy Ry (q) regularizes the momentum integrals such that the terms with |¢| 2 &
vanish, we can consider the zero-momentum version of this equation (i. e we set ¢ = 0) as
a first level of approximation. As F,&lpl)(g)(gbu,p, —q, —(p+q)) and F(IPI (bu, 0, =D, ¢, —q)
are directly related to F,(CIPI @ (gbu, p) at ¢ = 0, the equation thus obtained can be con-
sidered as a closed set for FUPI (¢u,p). Onme can also solve this integro-differential
equation altogether with the exact equation (4.27) for the effective potential Uy derived
in the framework of the LPA, which then gives us access to many physical quantities of
interest. Hence, the implementation of the BMW approximation does not require to drop
any vertices, as opposed to e.g. condition (4.20) for the vertex expansion. Although the
equations are solved in the zero-momentum sector (as we have set ¢ = 0), the momentum

9Technically, this translates into the fact that the derivative 0y Ry(q) regularizes all momentum integrals
involved in the set of integro-differential equations to solve.

10Recall that the momentum peutosr is set by the derivative Ok Rk (q) regularizing the momentum integrals so
that only the momentum modes satisfying |p| < peutosr contribute to the flow, with peytor & k as illustrated by
fig. 4.1.

HSee also ref. [125] for a pedagogical introduction on the BMW approximation.
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Figure 4.2: Schematic illustration of the 1PI-FRG flow.

dependence of the flowing vertices (F,(CIPI) (2)(¢u, p) in the above example) is fully taken
into account whereas part of their field dependence is lost, which contrasts with the DE.

The present discussion on the truncation schemes of the 1PI-FRG is not exhaustive. For
instance, there are also truncation schemes for the 1PI-FRG which are inspired from the 2PI
EA formalism, and more specifically from ®-derivable approximations'? [440, 441], which has
definitely shed some light on the renormalization and possible extensions of the latter type of
approximations. For more details, we refer to the recent review [333] and references therein.
The latter notably compares the critical exponents (i.e. the correlation-length exponent v,
the anomalous dimension 7 and the correction-to-scaling exponent w) calculated with different
orders of the DE and the BMW approximation.

In conclusion, the FRG procedure based on the Wetterich equation starts from the clas-
sical theory (according to (4.15)), incorporates progressively quantum correlations on top of
it throughout the flow (i.e. by solving the set of integro-differential equations resulting from
the vertex expansion, the DE, the BMW approximation or from any other truncation scheme
of the Wetterich equation), so as to reach the corresponding quantum theory (or rather an
approximated version of it in practice) at the end of the flow (see fig. 4.2).

4.1.2 Application to the (040)-D O(N)-symmetric p!-theory
4.1.2.1 Original 1PI functional renormalization group

Applications of the 1PI-FRG to the quantum anharmonic oscillator, i.e. to the (0+1)-D ¢?-
theory, are presented in ref. [408]. We will deal here with the (0+0)-D situation via our O(V)
model introduced in section 2.4. Note also that the 1PI-FRG has already been applied to this
toy model, but only in its original representation, in its unbroken-symmetry phase and using
the vertex expansion [147|. However, it should be noted that, in (0+0)-D, the DE amounts
to rewriting exactly the Wetterich equation, i.e. the DE is no longer an approximation, as
discussed in ref. [147]. This is simply due to the absence of spacetime indices in (0+0)-D. As a

12The Luttinger-Ward functional fulfills a set of conservation laws identified by Baym and Kadanoff, even after
truncation of its diagrammatic expression in terms of 2PI diagrams [439]. Any approximation that is equivalent
to such a truncation (and thus does not violate the corresponding conservation laws) is called ®-derivable.
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result, all derivative terms in the ansétze (4.24) to (4.26), or in any other ansétze underlying
a DE, vanish, which implies that the effective potential U, coincides with the flowing 1PI EA
F,(;PI). We will therefore not investigate the DE in the present comparative study. Furthermore,
as the main motivation for using the BMW approximation is to better grasp the momentum
dependence of vertex functions (which is absent in (0+0)-D), we will not exploit this truncation
scheme either and content ourselves with the vertex expansion. We will actually see later that
we only exploit the vertex expansion to treat the exact flow equations of all FRG approaches
tested in this study, although this may not appear clearly in all FRG formalisms (especially
for the 2PI-FRG). Considering the aforementioned successes of both the DE and the BMW
approximation for the 1PI-FRG, we will have to keep in mind, while drawing conclusions from
the present (040)-D study, that efficient truncation schemes other than the vertex expansion
can be used in the framework of finite-dimensional models.

Exceptionally for the 1IPI-FRG, we will directly take the zero-dimensional limit before car-
rying out the vertex expansion. The reason behind this is that we intend to reach quite high
truncation orders for which the equations become already quite cumbersome even in (0+0)-D.
This is especially the case in the framework of the mixed theory that will be investigated to a
lesser extent for other FRG approaches. In (04-0)-D, the Wetterich equation for an EA F (1P1) @
reads:

r"](flPI) (5) _ %STr |:Rk <FSPI)(2) (5) + Rk) _1} % Z Ry 0,0,Grarar (gb) , (4.29)
a1,a2=1
with
Gitnas (7) = T () + Recoras - (4.30)

As can be deduced from the general formalism presented in section 4.1.1, the vertex expan-

sion procedure applied to (4.29) starts from the Taylor expansion of FSPI) around its flowing

extremum at ¢ = ¢,,, which reduces in (0-+0)-D to:

1ﬂ(m)( ) _ F (1PI) n Z X Z Fklfll)(2< sz>a1 o <$_ gk)an ' (4.31)

a1, ,an=1

We have used in (4.31) the definitions:

T = pUrn (gb ¢k> vk | (4.32)
(1P

—apnemy _ 0TV ()
T _ O 0) Yag, - ank 4.33
k,a1--an a¢a1' agban L ay, , ( )

_d)k
and —(1PI)(1

T =0 va,k (4.34)

by construction. We will then distinguish two situations to pursue the vertex expansion further.
On the one hand, in the unbroken-symmetry regime (i.e. in the phase with m? > 0) where

o = 0 Vk, the infinite set of differential equations resulting from the vertex expansion includes
(see appendix E.2.1):

T, — ﬂzﬁzk (G -a) . (4.35)

LaPD@ N2
T, = ;RkaP;PD”, (4.36)
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=IPh) N 48 — 2 N+4.
T = RG (TP - 1*0‘ RGATUPNO (4.37)

_aPy© 5N 4130 N 16
L, =G, (0" )) LN + 14) Ry GTUPVOTIPNO X E0 p GRpene)
(4.38)

where, as shown below by (4.46) and (4.47), G}, and @;0) are respectively the diagonal parts of
the propagators Gy and é,(f) defined by:

-1 PI)(

= ].
Gk ,aias — Fk ,a1a2 Rk: ,a1a2 (439)
— -1 .
(G;E;O)> = Doy + Riaras (4.40)
with
Rk,a1a2 - Rk 5a1a2 ) (441)

and k; being the initial value of the flow parameter k. We have also used the following relations
resulting from the O(N) symmetry:

w(IPD(2) _ =(1PD(2)

Fk ,a1a2 Fk 6@1(12 val; a 9 (442)

H(PD)(4)

—=(1PI)(4)
sz ,a1a2a304

=TIy (0araz0asas + Oaras0azas + Oayasdasas) Va1,02,a3, a4
(4.43)

(0a1a20a3a40a5a6 T Oaraz0asasOasas + OarazdasagOasas + OarasOazasdasa

+ aya50aza50asa6 + OayasOazagOasas t OarasdazasOasas T OarasOazasOaza

+ dayas0aragOasas + OayasOazasOasas + OarasOazasOazas + OarasOazasOazas

+5a1a65a2a36a4a5 + 5a1a66a2a45a3a5 + 6a1a65a2a55a3a4) valv cr Q6

H(PI)(6)

Fk: ,a102a3040506

F,(:PI)( )

(4.44)
F]ilfll)(Zi 0 Val, Cee O, VYn odd . (445)
As a consequence of (4.42), the propagators G, and E,(f) satisfy:
— — -1
Gk7a1a2 = Gk 6‘11112 - (F](:PI)( + Rk) 50,1(12 9 (446)
— — -1
Gl(f(?c)an = GI(CO) 5a1a2 = <F(1PI) + Rk) 5a1a2 . (447)

Note that the differential equations (4.35) to (4.38) are already given in ref. [147]. On the other
hand, in the broken-symmetry regime (i.e. in the phase with m? < 0), the homologous infinite
set of differential equations contains at N = 1 (see appendix E.2.1 for the corresponding flow
equations expressing the derivatives of the 1PI vertices of order 5 and 6 with respect to k):

~aP) 1. s _
o =5k <Gk - fo)) , (4.48)
- 1 (1PT)(3
o= —mma G (4.49)
ZFk
=(IPDHE) = —apPn(@3 —(1PD(3)\ 2 (IPI)( )

Fk - ¢kF(IPI)( o 3Rka ( (1PI)(3)> + SRkaFk (1PI)(4)

IT Rka TUO (451)
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=(1PD)(4)
T, _ ¢krk1PI)( i 12Rka <F 1PI)(3)> _ 18R Gk (F(lPI)(S)) F(lPI)(4)

4.52)
s 2 (
LR F(1PI)( )FSPI)(s) . 3RkG1§ (F](glPI)(zl)) _ —RkG F(1PI)( )

with F,(:f 11( " = F,(:PI)( Moreover, the propagators G = G}.1; and Ek = é,m are still given

by (4. 39) and (4.40), respectively.

We also point out that, in order to avoid unphysical contributions to f,(clpl) during the flow,

we have performed the replacement G, — G — E,ﬁo) in the output of the vertex expansion
procedure so as to obtain (4.35) and (4.48)'3. The necessity of this subtraction can be seen by

the fact that no quantum corrections must be added to f,(:PI) throughout the flow if A\ = 0,

i.e. the relation F,(C Pkl) = F(lpkl) must hold in the free case. Indeed, we have in this situation
< (1P1)(2)
F,(:PI)( ) F,(:PI)( = 0 Vk, thus implying I', = 0 Vk or, equivalently, Fklpl)( ) F,(CIP; Vk.

- (1P1)
Hence, such a replacement allows for I, ~ to vanish for all £ if A = 0, in which case we have

f,(:j;) = F,(:Pkl) as expected.

At the present stage, we still have not specified the model under consideration: all we know
is that we are dealing with a 1PI EA depending on a single field (E which is a vector in color space
and lives in a zero-dimensional spacetime. In the framework of FRG approaches, the model (i.e.
the classical action under consideration) is often only specified via the initial conditions used
to solve the set of differential equations resulting from the truncation applied to the exact flow
equation of the method (i.e. the Wetterich equation here). The initial conditions used to solve
the above two sets of differential equations for our (0-+0)-D O(N) model can also be obtained
by assuming that the O(/N) symmetry can only be spontaneously broken in the direction set
by a = N in color space, i.e. by assuming that &2 = ¢3%. In this case, they are given by:

0 Va, Vm?*>0,

ak:ki,a = @cl,a = 6m2 (453)
+ _T(S“N Va, Vm? < 0and A # 0,
N 27 - = N 21 9
[ n() e
= = m2 =2 )\ )
S<90:¢k:ki> ¢k s + Cbk s vm”~ <0,
sarne %S (5)
k=ki,a1a2 — W B
ParOPas |5 5 " (4.55)
A—2
= m*6aya; + ¢k kN Vai,ag
g &5 ()
i,a1a20a3 =~ ~ ~
agpma@@a@ag ézgk:ki (456)
= )‘Q_bk:ki,N (5(111\75(12(13 + 5(12N5a1a3 + 6{13]\/5(11(12) Val, ag, ds ,

w(1PI)

13Such a shift is allowed since it amounts to adding a constant (at fixed k) to T'j, and, as a result, to

F,(:PI) ((E) Physical observables are therefore not affected by this operation.
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R )
) 0Pa; 0Pay 0Pay 0P, =t (4.57)
= A (Oaraz0asas + Oarazasas + OayasOasas) Va1, 02,03, a4 ,
T ——
P 0pay v+ 0fa, | 5 = (4.58)

=Pr=1k;

=0 Vay,---,a,, ¥/n>5.

From (4.55), (4.57) and (4.58), we readily deduce the initial conditions for the symmetric part
F,(;PI)(") of the 1PI vertices of even order n introduced via (4.42) to (4.44) for m? > 0:

=(1PD(2) 2

T =, (4.60)
T =0 wn>6. (4.61)

In accordance with (4.20), the truncation of the infinite tower of differential equations containing
either (4.35) to (4.38) (for all N and m? > 0) or (4.48) to (4.52) (for N = 1 and m?* < 0) is

implemented by the condition:
T Tk i s N (4.62)

where f,&lpl)(n) corresponds to: i) the symmetric part of the 1PI vertices of (even) order n (as

defined via (4.42) to (4.44) up to n = 6) for all N and m? > 0; ii) the 1PI vertices themselves for
N =1 and m? < 0 according to the definition f,(:PI)(n) = f,(:fl)l(n) Note also that the logarithm

term in (4.54) was added to shift the calculated gs energy E,s so that the latter coincides with
the corresponding exact solution for A = 0 and m? > 0. We deduce indeed the gs energy from

fSPI) at the end of the flow using the relation:

- ;ori =PI
By PR =T (4.63)

which would hold exactly if the infinite tower of differential equations resulting from the vertex
expansion was solved without approximation (such as (4.62)). Furthermore, the gs density pgs
is inferred at m? > 0 from (2.19) in the form:

N N
. 1 PWi—y, (J) 1 —@pn(2)\ ! —@apn2)\ !

1PI-FRG;ori _ _

Pes SNl on ) NZ<F’f:’ff > (F’f:kf ) - 46

J=0 a=1

a=

which results from (4.42). We will actually neither calculate Eg nor pg in the regime with
m? < 0, as explained below. Furthermore, the chosen cutoff function for both m? < 0 and
m? > 0 is:

Ry oy = Rii 0ayay = (k7" — 1) 0aya, Vai,as . (4.65)

Since the cutoff function does not depend on position or momentum in (0+0)-D, the only
relevant conditions to choose its analytical form are (4.12a) and (4.12b), that (4.65) obviously
satisfies if the flow parameter &k runs from k; = 0 to k¢ = 1 (which indeed implies that Ry_y, = oo
and Rk:kf = 0)

Regarding the regime with m? > 0, we solve the differential equations (4.35) to (4.38) up
t0 Nmax = 6, with the initial conditions (4.59) to (4.61) and the cutoff function (4.65). Due
to the symmetry constraint (4.45), this enables us to determine the first two non-trivial orders
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Figure 4.4: Same as fig. 4.3 with N = 2 instead.

of the 1PI-FRG, the first one being set by the truncation N, = 4 and the second one by
Nmax = 6. The results thus obtained are displayed in figs. 4.3 and 4.4 for both E,¢ and pgs with
N =1 or 2. While the first non-trivial order results all lie within a few percents away from the
corresponding exact solution over the whole range of tested values for the coupling constant
(A/4! € [0,10] as usual), the second one’s are hardly distinguishable from their exact solutions.
The performances of this FRG approach are also barely affected as the coupling constant A /4!
evolves, hence the non-perturbative character of this approach.

However, the resolution of the system given by (4.48) to (4.52) with m? < 0 (together with
additional differential equations given in appendix E.2.1 for 4 < Ny.x < 6), using the initial
conditions (4.53) to (4.58) and the cutoff function (4.65), is prevented, the system being too
stiff (at least for the NDSolve function of Mathematica 12.1). Hence, we only display 1PI-FRG
results for the unbroken-symmetry phase in the framework of the original theory.
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For fermionic systems nonetheless, the original field ¢ is of Grassmannian nature. In this
situation, the only truncation scheme at our disposal is a vertex expansion around the config-
uration where this field vanishes. This is because functionals of Grassmann variables can only
be exploited via their Taylor expansions. Unfortunately, such an expansion is equivalent to a
LE which means that, after truncation, this FRG formulation is a perturbative approach. Such
a limitation can be overcome with a recent extension of the 1PI-FRG called DMF?RG [442-
444], in which the standard 1PI-FRG procedure is slightly modified so that the flow starts at
the results of dynamical MFT (DMFT) [445, 446] instead of the classical theory'!. HSTs also
provide us with other means to tackle non-perturbative physics efficiently in the framework of
the 1PI-FRG: this indeed enables us to introduce bosonic fields in the problem, which allows
for expansions around non-trivial minima, and are thus more suited to grasp non-perturbative
effects. This stresses the importance of the upcoming discussions on the mixed and collective
representations. We will notably check if the stiffness of the equation systems to solve within
the 1PI-FRG is sufficiently reduced in these situations to tackle the regime with m? < 0.

4.1.2.2 Mixed 1PI functional renormalization group

Let us now consider the Wetterich equation for our zero-dimensional O(NN) model after per-
forming a HST, i.e. in the mixed representation. It reads:

(e (5, n) - %STr [Rk (rgfgp <¢ ) + Rk> _1} , (4.66)

where the Hessian of the flowing EA is now given by:

aQF(IPI) aQF(IPI)

Iy i s (P16 PG 1)

i (6n) = ( oty ity | = | (®orn  Spen | (467)
mixk mixk mix,k mix,k
omdg Onon

and the cutoff function R, exhibits the following matrix structure in extended color space:

R?” 0 Ry 0
- - — Rillysy . 4.68
R ( o R,(:') R, Rily 11 (4.68)

We will now apply the vertex expansion procedure to (4.66), starting from the Taylor series:

() =T (1) z T3, (63, o

(4.69)
with (P
= (1PT)
Fmix,k = rrix k <¢ ¢k7 n= nk) Vs ) (470)
T il Mwy
FSE{I;{(af’fﬂaZ) = mix k(d) 77) Val, Cee Oy, k , (471)
* D - D00, O™ | 2.
n=ng
and15 =(1PI)(1 =(1PI)(1
anix}f(,ad)) = anix}f( " =0 va’v k ) (472)

MDMFT is a non-perturbative method, and so does the DMF2RG as a consequence. It consists in mapping
a lattice model (i.e. a many-body system) into an auxiliary problem in the form of a quantum impurity model,
typically an Anderson impurity model [447]. The quantities of interest are then extracted from the latter model

via some approximations (typically, the self-energy is assumed to be local).
15The relations 11( PI)(n¢) f(lPI)(mb,On) nd F(11?’1)(7”7) f(lPI)(Wann)

mix,k = * mix,k mix,k = + mix,k
as in subsequent equations.

are assumed for all n in (4.72) as well



4.1. 1PI FUNCTIONAL RENORMALIZATION GROUP 135

since the flowing EA is now extremal at (gz? 77) = (gk ﬁk)' Furthermore, as the latter EA

now depends on several fields, we follow the corresponding recipe outlined in section 4.1.1 and
perform the splitting put forward in (4.22):

rUPD@ L Ry =Py + F (4.73)

mix,k

where the fluctuation matrix contains all the field dependence:

r(PDe) _ f(l_PI)(2¢>) PDs1n) _ 11(1_PI)(1¢>,177)
Fi = ( ABDGe1  =(PDGl)  elen@m  w(PhE) ) , (4.74)
Ui k — Dok Dk~ Diixk
which imposes that P}, satisfies:
P ( R}(f)(l;)r(%%(w) rﬁf&w An) ) )
U O S

to be consistent with (4.73). For m? > 0, we will use the counterparts of (4.42) to (4.45)
introducing the symmetric parts of 1PI vertices:

—(1PD)(26,n —(1P1)(26,n
anix L(alagn) = FEnix,?c( " 6!11&2 val? az, n , (476)
—=(1PI)(4¢,n 1PI)(4¢,n
F1(111x,3€(,a1a22)3a4 Fl(nlx L( " (6111!12 5a3a4 + 5a1a3 5aza4 + 5a1a46a2a3) Val? Qz,as, a4, N ,
(4.77)
FSEL(ZT";Z) =0 Vai, - ,a,,m, Yn odd. (4.78)

As explained in section 4.1.1, the next step of the vertex expansion consists in carrying out
matrix products between P, Vand F,. If m?> < 0, we can not use the O(N) symmetry to
impose (4.78), which renders the resulting differential equations very cumbersome. For this
reason, we will just present our analytical re_s)ults of the mixed 1PI-FRG for the unbroken-

symmetry phase (i.e. for m? > 0), in which ¢, = 0 Vk. In this situation, we show with the
help of (4.74) and (4.75) as well as (4.76) to (4.78) that the differential equations resulting
from the vertex expansion procedure applied to (4.66) are for example (see appendix E.2.2 for
the corresponding flow equations expressing the derivatives of the 1PI vertices of order 3 and
4 with respect to k):

e For N =1: (4PD) ] 1
Fmi&k _ 5 (Gk B G(¢)(0)> 4= (@I(gn) o aéﬂ)@)) 7 (4‘79)
M = —(1P1)(2n) m1xk: + mix,k k ’ ( : )
2Fmlxk
=(PD(2¢) . _1PI)(20,17)
mix,k = nkrmixk !
(1P1)(26,21) [(— ) (1PT)(4¢)
__Rk: (Fmif K (Gﬁ”) + Gy )( mlxi Gy (4.81)
(1PI)(2¢,1n) =) | =9
_2<Fm1xk 77) Gk <Gkn+Gk )))7
=(IPD(2n) . _—1P1)(3n)
mix,k =N mix,k
1. 1PI)(4n) [—=(n)\ 2 —aPDBN)\2 (=)
L (Ffmx (@) 2 (T ™) (G (4.82)

N (51(:5))2 (fgifiw’zm Ly (ﬂg;(w,ln))?@g)) ) ,
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e For N =2: (pD )
fmix,k _ (al(;ﬁ) _ al(f)(o)) i 5 <a](€77) _ aéﬁ)(@) ’ (4.83)
. Ry (0PhG) (A2 |, om(IPDEeIN) (~(0))2
Mk = ——aPh@n) (Fmix,k (Gk ) + 20 ik (Gk ) ; (4.84)
211nﬂx,k
=(PD(2¢) . _(1PI)(26,17)
mix,k = 77I€Fmix,k’ !
1. —(1P1)(2¢,2n) (—=(n)\ 2 =(1PD)(4¢) [(=(#))?
— gt (SFme,L( " (G?)) + ATt (Gf@ )> (4.85)
_ 2 () [— _
6 (FEEL(%’I”)) GG <Gl(€17) N G,(f’)) ) |
=(APD(2n) . _(1PI)(3n)
mix,k =M mix,k
. 1— N2 2, N3 _ N 2
s ( 3 QFEEL(M) (va)> N (F&f}){%sm) (G;n)> _ [UPDes20) (Ggﬁ))
(T (@),
(4.86)
where we have introduced the propagators:
s —1 o —1 _
(@) = (CF)  bures = (T + Be) durax Var,az,  (487)
alag
—on -1 —
() =T+ R (4.88)

and their classical counterparts introduced for the same reason as that mentioned below (4.52):

- -1 . —1 —
(Gl(js)(m) _ (G;@(O)) Gray = (rgi‘fik:ki +Rk> Oaray Vai,az, (4.89)

aiaz

— -1 _
(G") =T+ Bi. (4.90)

Moreover, as a first level of approximation which is nothing other than the MFT already
discussed in section 2.3, we can set all bosonic entries of P, ! equal to zero [136]. For the toy
model under consideration, this amounts to neglecting the bottom-right component of P, ', i.e.

this amounts to setting P ]lv LNl = @,ﬁ”) = 0. The sets of differential equations to solve in
the framework of MFT for Np.x < 2 can therefore be directly inferred from (4.79) to (4.82)
for N = 1 and from (4.83) to (4.86) for N = 2 (and from the results of appendix E.2.2 for

Noax < 4 and N = 1 or 2) by setting G = 0.

Whether we restrict ourselves to MFT or not, the initial conditions used to solve the dif-
ferential equations within the mixed 1PI-FRG, for all N and for m? > 0, are inferred from the
classical action Sy (together with the definitions (4.76) to (4.78) notably), which gives us:

ﬁk:ki - EC] - O 5 (491)

—(1PI) N 27 - = - _ N 27
Dbty = =5 In (ﬁ) + Six (90 = Qi) 0 = nk:ki> =——1In (— : (4.92)
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Tty = m?, (4.93)
=(1PT)(2n)
lexk ki — 1 (494)
—(1PD(28,17) . [A
lexk ki =1 g ) (495)
(1PI)(3 )
lexk Z - 0 (496)
T — 0 Y m4n >4, (4.97)

The truncation of the infinite set of differential equations containing e.g. (4.79) to (4.82) (at
N =1 and m? > 0) or (4.83) to (4.86) (at N =2 and m? > 0) is now imposed by:

I AL N RS (4.98)

As explained below (4.62) for (4.54), the logarithm in (4.92) was only introduced to shift Ey,
which is deduced in the present case from:

1PI)

ElPI-FRG;mix — fr(nix,kzzkf , (499)
and the gs density follows from:
al (1PT)(2 =(1PT)(2¢) ~ !
pLPTFRGsmix _ Z < o ’)c( i’f)) _ (F;lxi(:‘g) : (4.100)
where Ffmx L( ? is introduced in the RHS using (4.76) at n = 0. We will also exploit the cutoff

function (4 65) for both the original and auxiliary field sectors:

R,=k"t—1. (4.101)

Let us first concentrate our discussion on the regime with m? > 0. The corresponding mixed
1PI-FRG results are obtained by solving the equation system comprised of (4.79) to (4.82) for
N =1 and of (4.83) to (4.86) for N = 2 (together with additional differential equations given
in appendix E.2.2 for 2 < Nyax < 4), with the initial conditions (4.91) to (4.97) and the
cutoff function (4.101). Without the MFT approximation, they exhibit a distinct convergence
towards the exact solution, as can be seen in figs. 4.3 and 4.4 for both E,s and pgs with N =1
and 2. For example, at Np., = 4, the mixed 1PI-FRG outperforms the original 1PI-FRG in
all these situations, although one can also point out that N., = 4 corresponds to the third
non-trivial order of the mixed 1PI-FRG but only to the first one of the original 1PI-FRG (the
first three non-trivial orders of the mixed 1PI-FRG approach correspond to Ny« = 2,3 and 4).
The superiority of the mixed 1PI-FRG as compared to the original one for a given N., can
notably be attributed to the 1-point correlation function of the auxiliary field taking non-trivial
values, as illustrated by fig. 4.5. This echoes very clearly our comparison between the original
and mixed 2PI EAs in chapter 3 where the 1-point correlation function of the auxiliary field
was also put forward to explain the difference between the BVA and the original Hartree-Fock
result.

We have also implemented the MFT by setting the propagator @fj) equal to zero for all
k. This amounts to setting the mass of the bosonic field o (or equivalently the associated
cutoff function R,(j) introduced in (4.68)) to infinity. This completely freezes the fluctuations
of this field. In other words, the MFT can not capture radiative corrections associated with



138

—0.11

L
(3

e
i
i
i
i
i
i

|
=
N

—— mixed classical solution
mixed 1PI-FRG (MFT) Nyax = 2

mixed 1PI-FRG (MFT) Nyax = 4

mixed 1PI-FRG N = 2

- mixed 1PI-FRG Npox = 3
---- mixed IPI-FRG (MFT) Nyax =3 ===

mixed 1PI-FRG N = 4

CHAPTER 4. FUNCTIONAL RENORMALIZATION GROUP TECHNIQUES

0.0
0.2
=04
S !
—0.611
L
e
\
Ay
—0.81 %,
0 . ; ; 3 10
A
4'm?

—— mixed classical solution

mixed 1PI-FRG (MFT) Nyax = 2
mixed 1PI-FRG (MFT) Nyax = 3
mixed 1PI-FRG (MFT) Ny = 4

mixed 1PI-FRG Ny = 2
- mixed 1PI-FRG Ny = 3
mixed 1PI-FRG Ny = 4

Figure 4.5: Imaginary part of the 1-point correlation function of the auxiliary field in the
framework of the mixed representation at N = 1 (left) and N = 2 (right) with m? = +1
(Re(A) > 0 and Zm(A) = 0).

017 e -
_/"/‘/” o
NS’ 0.0 fe=sTrernmmmmensrasrassas oot T T ‘3 0.4
g\ —0.11 %_\
S8 o9 5502
= h
|
—0.31 9
2, I
2004
~— —0.41 \,\
.\.\ __________________ -
0.5k : : : . , : : ; : , :
0 2 i 3 10 0 2 o 8 10

4!m?
~-—~ mixed 1PI-FRG (MFT) Ny = 2 ---- mixed 1PI-FRG (MFT) Nyax = 2
mixed 1PI-FRG (MFT) Ny = 3 —— mixed 1PI-FRG (MFT) Nyux = 3
mixed 1PI-FRG (MFT) Ny = 4 mixed 1PI-FRG (MFT) Ny = 4

Figure 4.6: Difference between the calculated gs energy E' (left) or density p¢2'® (right) and
the corresponding LOAF approximation results EE?SOAF or péSOAF at m* = +1 and N = 1
(Re(A) > 0 and Zm(\) = 0).

the auxiliary field. This notably excludes all contributions beyond the leading order of the
collective LE. Therefore, the MFT can not, by construction, outperform the leading order of
the collective LE, which coincides with the LOAF approximation as explained in chapter 3.
This means that the MFT should tend to the LOAF approximation as the truncation order
Nax increases, which is illustrated by figs. 4.6 and 4.7.
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Finally, although figs. 4.8 and 4.9 show that the approximation underlying MFT induces a
significant loss in the accuracy of mixed 1PI-FRG results, they also illustrate that its efficiency
is not affected in the strongly-coupled regime: the MFT can therefore be considered as a first
level of non-perturbative approximations.

Regarding the phase with m? < 0, we encounter the same limitation as in the original
theory: the set of differential equations resulting from the vertex expansion procedure applied
to (4.66) is too stiff to be solved from k; = 0 to kr = 1 (still using the NDSolve function of
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Mathematica 12.1). We will therefore turn to the collective representation as our last attempt
to describe the broken-symmetry phase with the 1PI-FRG.

4.1.2.3 Collective 1PI functional renormalization group

In (0+0)-D and for the collective theory, the Wetterich equation reduces to:

. . 1.
Ptk (qb) = 5 1Dr(n) (4.102)

with
Dyt () =T () + Ric (4.103)

Hence, the collective situation is very similar to the original one (based on (4.29)) with N = 1.
The output of the vertex expansion procedure applied to (4.102) can therefore be directly
deduced from the set of differential equations presented in (4.48) to (4.52). Up to Npax = 4,
this gives us:

_~ (1PI) 1 - _ _
Leos = 51 (Dk - D,ﬁ”) , (4.104)
- 1 (1P1)(3)
Me = WR’“D’“ colk (4.105)
2Fcol k
=(IP)(2) 1PI)( . 1PI)(3 1PI
Lo = nkriol k) Vg RkD (Fiol k)( )) - §RkD Fid k)( : ; (4.106)

~(IPT)(3) 1PI - —4 [—=(1PT)(3 1PI 1PI)(4 1. 1PI
Fcol,k = nkriol k)( - 3Ry Dy, (F((:ol,k)( )> + 3RkD Fiol k)( )Fiol,k)( - §RkD Fiol k)( : , (4.107)

_~ (1PI)(4) 1PI . 5 /—(1PD(3)\ 4 4 /—(1PI)(3 -
Fcol,k: - nkriol k)( : + 12R, D), (Fiolﬁ)( )) — 18R D), <F£:ol k)( )) F( "

F(IPD(3)=(1PT)(5) o =3 (=(1P)(4) 2 —(1PI)(6) (4.108)
+ 41D, Kok Leoly 1 30Dy, (Fcol,k ) Rk‘Dcol KL oLk

Y

with

—=(1PI)
1—‘col,lc = Fg(l)f)lle)(n nk) Vk ) (4109)
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—apnmy 0T ()

ok = T vk, (4.110)
N=Ny
and
D, =T0? + Ry, (4.111)
S -1 —
(DY) =Tun + R (4.112)

where E,(CO) plays the same role as @,(CO) in the original case (see the explanation below (4.52) for
more details). The corresponding initial conditions are:

V3m?2 — V/3m* + 2N\

T =Ty =i 7 4.113
nk_kl 1 ( 2\/} ( )

—(1PI) -~ _ 1, 2 N 2m
Fcol,ka’i — Pcol (U - nk:ki) - 5 (nk:ki) B 5 n - ’ <4114)

m? + Z\/;nk:ki
ooy 0" Sen(3) N Wi\
F((:(IDL;C):(Z) = —ac:iln = 5n2 + (_1)n+15 (n - 1)' Vn>2.
M m? + i\/gﬁk:ki

(4.115)

In addition, the infinite tower of differential equations including (4.104) to (4.108) is truncated
by imposing:

T TV Y Wi > Ny (4.116)

Furthermore, the gs energy is deduced from:
EéSPI-FRG;col _ fiiili):kf 7 (4.117)

as in (4.63), whereas the gs density is estimated by exploiting (3.226) as follows:

FRG:co v [12_
PPt FRG;col _ = /Tnk:kf . (4.118)

Finally, we still use (4.101) as cutoff function. Note that all analytical results given since
equation (4.104) are valid for both m? < 0 and m? > 0. This follows from the fact that the
O(N) symmetry does not constrain the auxiliary field as it does for the original field via (4.42)
to (4.45). Hence, as opposed to the original situation, there is no additional difficulty in treating
the regime with m? < 0 instead of m? > 0 in the framework of the collective representation.

The collective 1PI-FRG procedure is carried out by solving the equation system given
by (4.104) to (4.108), with the initial conditions (4.113) to (4.115) and the cutoff function
(4.101). From this, we are able to calculate Ey and pgs for all signs of m?, which yields notably
our first 1PI-FRG results for m? < 0. These results, shown in figs. 4.10 and 4.11, are however
disappointing in the sense that, for m? > 0, they are all outperformed by the original and
mixed 1PI-FRG approaches at a given Np,... Actually, for both m? < 0 and m? > 0, figs. 4.10
and 4.11 show that the collective 1IPI-FRG must be pushed at least up to Ny.x = 4 to yield an
accuracy below 10%, whereas this is already achieved by the mixed 1PI-FRG at Ny, = 2 for
m? > 0.
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Figure 4.11: Same as fig. 4.10 with N = 2 instead.

Note also that the connection between the collective 1PI-FRG and MFT is also clear. The
starting point of the collective 1PI-FRG procedure coincides with the collective classical action,
i.e. with the LOAF approximation towards which the MFT tends. Hence, the collective 1PI-
FRG incorporates quantum corrections (which correspond to the bosonic fluctuations neglected
by the MFT) on top of the LOAF approximation throughout the flow: it is therefore by
construction more efficient than the MF'T version of the mixed 1PI-FRG.
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4.2 2PI functional renormalization group

4.2.1 State of play and general formalism

Formulations of FRG approaches for 2PI EAs have started since the early 2000s [133, 321,
448-450|. Some of these approaches discuss the implementation of symmetries in an exhaustive
manner [133, 448|, as e.g. the conservation of U(1) Ward identities for the description of
superconductivity. The detailed discussion of ref. [133] also outlines the recipe to construct
flow equations for any nPI EA (i.e. for nPI EAs with n > 1) by interpreting cutoff functions as
shifts for the sources. Moreover, in ref. [449], the ideas of the work of Alexandre, Polonyi and
Sailer [451, 452| deriving a generalization of the Callan-Symanzik equation [453-455] via the 1PI
EA are exploited to determine a flow equation for the 2PI EA. The resulting approach, called
internal space (IS) RG, has been compared with other RG methods, including the standard
Callan-Symanzik RG, the Wegner-Houghton RG [456], the LPA treatment of the 1PI-FRG, in
the framework of a comparative study on a (0+1)-D O(N)-symmetric ¢*-theory [457].

We will rather focus in this section on the more recent 2PI-FRG formalism put forward by
Dupuis in refs. [321, 322|, and more specifically on its different versions called C-flow [321],
U-flow [322] and CU-flow [322] that we will define further below. The U-flow and CU-flow
can be both formulated via a modification of the Legendre transform defining the 2PI EA, in
the same way as for the 1IPI-FRG with the extra term ASi[¢] in (4.9). In any case, the aim
remains to obtain a starting point as convenient as possible for the flow: the presence of ASk[¢]
in (4.9) enables us to start the 1PI-FRG procedure at the classical theory whereas the 2PI-FRG
flow can begin at the result of self-consistent PT in this way'®. We save once again technical
explanations for later discussions in this section but we just want to point out at this stage
the connections between the 2PI-FRG a la Dupuis and the 1PI-FRG based on the Wetterich
equation. In fact, Wetterich also developed a 2PI-FRG approach based on a modified Legendre
transform as well [450]. However, as opposed to this work, Dupuis’ 2PI-FRG is based on flow
equations for the Luttinger-Ward functional and not for the 2PI EA itself, which significantly
improves its convergence!”. Moreover, both Wetterich and Dupuis ignore the field dependence
of the 2PI EA in their 2PI-FRG formulations, i.e. they consider I'?*D[¢ = 0, G], which is also
referred to as bosonic EA [450]. This explains part the appealing features of Dupuis’ 2PI-FRG'®
listed below, stressing some advantages of this 2PI-FRG as compared to its 1PI counterpart:

e The simplified 2P1 EA I'®"D[¢ = 0, G] does not depend on Grassmann variables, which
implies that there is no Fierz ambiguity in the framework of any 2PI-FRG approach
relying on such a functional. Note also that, prior to FRG studies, the bosonic EA has
also been put forward as a means of avoiding the Fierz ambiguity encountered with MFT
in the framework of self-consistent PT [458].

e Contrary to a 1PI EA depending only on Grassmann fields, expansions of I'?"D[¢ = 0, G]
around non-trivial minima are possible since the propagator G is a bosonic vari-
able. This notably renders the 2PI-FRG well suited to grasp non-perturbative physics in
fermionic systems, even without HSTs.

e When the 2PI-FRG flow is designed to take results of self-consistent PT as inputs, the
2PI-FRG offers the possibility to start the flow in a broken-symmetry phase, which

16See more specifically the discussion below (4.231) for a clarification on the link between modified Legendre
transform and starting point of the 2PI-FRG flow.

17This improvement will be thoroughly discussed below and illustrated via the numerical applications pre-
sented in section 4.3.2.2 on the 2PPI-FRG.

18In what follows, 2PI-FRG refers implicitly to the 2PI-FRG & la Dupuis developed in refs. [321, 322].
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enables us to avoid phase transitions (and the associated problematic divergences encoun-
tered in the 1PI-FRG) during the flow.

e Besides its convenient starting points, the 2PI-FRG is designed itself to avoid the unde-
sirable divergences from which the 1PI-FRG suffers. This is simply because the quantities
calculated during the flow are different: one calculates the 1PI vertices (i.e. derivatives
of the 1PI EA) during the 1PI-FRG flow and the 2PI vertices (i.e. derivatives of the
Luttinger-Ward functional) during the 2PI-FRG flow. A concrete example is given in
ref. [321] for an application of the C-flow implementation of the 2PI-FRG to the BCS
theory: in this study, the entrance into the broken-symmetry phase during the flow is
just signaled by a finite value of the anomalous self-energy and the divergences of certain
response functions can only be noticed by solving a posterior: the relevant Bethe-Salpeter
equations with the calculated 2PI vertices.

According to the latter remarks, it is tempting to say that there is no need at all for
scale-dependent bosonization in the framework of the 2PI-FRG. It would actually be more
advantageous to present this in another way: the absence of Fierz ambiguity renders us free
to exploit scale-dependent bosonization for other purposes. Actually, it turns out that Bethe-
Salpeter equation(s) must be solved at each step of the flow for most implementations of the
U-flow and the CU-flow versions of the 2PI-FRG. The corresponding flow equations are thus
quite demanding to solve numerically (and especially more demanding as compared to the
corresponding 1PI-FRG equations). In that respect, it would be very interesting to freeze the
evolution of the 2PI vertices that must be fed to this (these) Bethe-Salpeter equation(s) during
the flow. In this situation, such an equation (such equations) must only be solved once and for
all at the starting point of the flow, which would considerably lower the weight of the numerical
procedure to implement, as we will discuss below.

This is probably due to this important numerical weight that very few applications of the
2PI-FRG have been carried out so far. Among these, we can mention the work of Rentrop,
Jakobs and Meden on the (0+1)-D ¢*-theory [459] and on the (0+1)-D Anderson impurity
model' [460]. Later on, the 2PI-FRG has been designed by Katanin so as to take the 2PI
vertices calculated from DMFT as inputs [462], thus developing a 2PI counterpart for the
DMF?RG discussed in section 4.1.2. Most importantly, the tower of differential equations
resulting from this approach are tractable enough to tackle a (2+1)-D Hubbard model, as
proven by the results presented in ref. [462]. Although the Hubbard model is most often taken
as first playground to formulate 2PI-FRG approaches [322, 450, 462], the work of ref. [462] is
notably the first to present numerical results for the self-energy of such a model, which are fairly
close to corresponding diagrammatic determinant Monte Carlo results [463]. To our knowledge,
we have thus discussed all applications of the 2PI-FRG published so far, illustrating in this way
that this promising approach has barely been beyond the stage of toy model applications.

Let us then present the 2PI-FRG formalism. All implementations of this method investi-
gated in the present study are based on the generating functional:

21K) = VK = [ D 5l o Betii (4.119)

where 1) is either a real bosonic field (¢ = +1) or a real Grassmann field (¢ = —1). The index
a = (a,x) used in (4.119) combines this time an internal index a (e.g. the color index for an

Note that the work of refs. [459, 460] echoes that of ref. [461] which treats the same models with the
1PI-FRG.
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O(N) model) with = = (7, 7, ms, ¢) including the space coordinate 7, the imaginary time 7, the
spin projection m, and a charge index c if necessary. Regarding the latter, note that, in the
framework of the 2PI-FRG as presented here, 1, is always mathematically treated as a real
field with an extra index, instead of a complex one. This extra index is the charge index c
defined as follows* _

N N Yam,(r,7) for c=—

wa = wa,x = (4120)

@ZT J(r,7) forc=+.

In addition, we have exploited in (4.119) the shorthand notation:

/ Z/ ZZ/ dT/le (4.121)

a msg,C

assuming that the studied system lives in a D-dimensional spacetime. It will be also most
convenient to group a-indices by pairs via a bosonic index:

7= (o, ) . (4.122)
For instance, the connected correlation functions can be expressed in terms of such indices:

FWIK]  §"WIK]

W M = S SR, ™ SRy - 0K

Y1 Un

<1’/7a1%3---%n{/7% >K L (4.123)
which defines the connected propagator:

G, = WK] = <Ja@Za,>K , (4.124)
for n = 1 (see appendix F.1), using an expectation value defined as:

1 ~ Sl ot 7 .,
(), = m/@¢ o S s B (4.125)

As the components of the source K satisfy Koo = (Kyq, the correlation functions of (4.123)
possess the symmetry properties:

(n) (n)
W o at)-(ana)(amsary BT = CWGt oy (oo (amar ST (4.126a)
Wi (K] =wi KT (4.126b)

with P denoting an arbitrary element of the permutation group of order n, and especially:
Gaa’ = CGo/oz ) (4127)

at n = 1. With this bosonic index notation, the Legendre transform defining the 2PI EA under
consideration reads:

F(QPI)[G] /K”/ K, (4128)

= - W[K]+ Tr,(KG) ,

20Tn other words, whether the relation JT = 1; is satisfied or not, we will always use formulae pertaining to
real fields in the framework of the 2PI-FRG, like Gaussian integral formulae (see appendix A).
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where the second line was obtained using (4.124) and the trace with respect to bosonic indices
was introduced:

1 1
Tr (M) = / My =5 [ Mewyow (4.129)
~ a,o

with M being an arbitrary bosonic matrix. In contrast, the trace (or supertrace) with respect to
a-indices will be denoted as Tr, in the whole section 4.2 (as well as in corresponding appendices)
for the sake of clarity. Note also that, as in (4.129), an integration over bosonic indices amounts
to integrating (or just summing) over all its constituent indices:

/E/M/, (4.130)

where the integrals of the RHS are defined by (4.121). In what follows, we will use a DeWitt-like
notation for the integration over bosonic indices. For n arbitrary bosonic matrices M, (with
m=1,...,n), it takes the following form:

1
vt Mn,’%—l"{z = F/ R Ml,’h’% T Mn,’?n—l’yz ] (4131)
Y1 Yn—1

M,
where the hatted indices are all dummy and the non-hatted ones are all free by convention.
The 1/2 factors involved in (4.129) and (4.131) are purely conventional but convenient as a
result of the symmetry properties outlined in (4.126) (see appendix F.1).

In the framework of the 2PI-FRG, it is also natural to consider the Luttinger-Ward func-
tional ®[G], which corresponds to the interaction part of the 2PI EA defined via (4.128):

o[G) =T [q) — TG (4.132)
where the free part of the 2PI EA is given by:

riq) = —%Tra In(G)] + gTra [Ge™t —1] , (4.133)

as can be derived via Gaussian functional integration (see appendix F.2), with I denoting the
identity with respect to a-indices (i.e. I, 0, = 0aya,) and C' being the free propagator, i.e.:

528
cl = ~—[@ : (4.134)
6wa5¢a/ QZZO
in terms of the classical action S. Recall that the Luttinger-Ward functional is the sum of
2PI diagrams, with propagator lines corresponding to the full propagator G. The so-called
2PI vertices correspond to its derivatives, i.e. @2’}?..% [G] = %Y Note that, in order to

- 6G71"'6G"/n ’
determine gs energies, the thermodynamic potential:
1
Q[G] = EF@PD 1G], (4.135)

will also be considered.

In order to determine the physical configuration G, of the propagator g throughout the
flow, we will consider Dyson equation. Note that the upper bars (as that in G) label physical
configurations as usual, i.e. a functional evaluated at vanishing source’’ (i.e. at K, = 0 Vv

2lFor instance, the physical configurations of the 2PI EA under consideration and of the corresponding
Luttinger-Ward functional respectively read fSPI) = (2P [G = 55} and @, = ® [G = 65].
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here). Furthermore, in the present framework, all these physical quantities are subject to evolve
during the flow and they therefore all possess a subscript s to stress that point, s denoting the
flow parameter for all 2PI-FRG approaches®? as well as for all 2PPI-FRG implementations
discussed in subsequent sections. Turning back to Dyson equation, we point out that the
latter follows directly from the above definition of the Luttinger-Ward functional. In order to
illustrate this, we can differentiate the definition of the 2PI EA given by (4.128) with respect
to the source K, which leads to (see appendix F.1):

5F(2PI) [G]
en

=K, . (4.136)
This equality can be shown to be equivalent to Dyson equation in the form (see appendix F.2):

G l'=C'-%G - K,, (4.137)
by exploiting (4.132) together with the following expression of the self-energy:

590G
3G,

5, (G = (4.138)

Between (4.119) and (4.138), we have only discussed various features of the 2PI EA formalism.
Let us then specify to the 2PI-FRG formalism by introducing one or several cutoff functions
into the generating functional (4.119). There are different ways to achieve this, which will be
discussed thereafter, but our main point for the time being is that most quantities introduced
since (4.119) (e.g. W[K], T@?PD[G], ®[G] and X[G]) now become dependent on the flow param-
eter 5. In particular, by setting K, = 0 Vv in (4.136), we then define G, as the propagator

configuration that extremizes the flow-dependent 2PI EA ngpl) [G] at each step of the flow, i.e.:

ST
o 1G] -0 Yv,s, (4.139)
4G, _
G=GCs
which leads to (4.137) with K, =0 Vv, i.e.
Gor=(C7=%0) (4.140)

Differentiating both sides of this equation with respect to the flow parameter yields the first-
order differential equation:

aﬁ,ala’l = asas,alo/l = _/ @57041042 <CY_1 - Eﬁ) , aﬁ,cxécx’l ) (4141)
o0l oty

where the dot still indicates a derivative with respect to the flow parameter, as will always be
the case in what follows. Note also that, in the framework of the 2PI-FRG, the propagator G
is obtained from the flow-dependent Schwinger functional:

G, = G, [K] = WYK], (4.142)

57’Y

in parallel with (4.2) for the 1PI-FRG.

22In comparison with the 1PI-FRG presented previously, we will see in further discussions that the flow
parameter s coincides with a momentum scale in certain (but not all) versions of the 2PI-FRG implementing a
Wilsonian momentum-shell approach.
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The general form of the equation system to solve in the framework of the 2PI-FRG corre-
sponds to the following infinite tower of differential equations:

é5,0110/1 - _/ aﬁ,alag (C’il — ig) @5,0/20/1 , (4143&)
az,al, azal,
Q, = 3[0,@,@,1 {55,”);71 > 2}] , (4.143D)
$5 = Ts + és,’yq)S; 55 - és,fyis,fy ) (41430)
iﬁ,’y = 5 Gs ’y(I)g '37 s (4143d)
—(n) —(n) —(n+1)
S = = o, R G5 AP sy T2, (4.143e)

where §, is a functional to be specified. The RHSs of (4.143¢) to (4.143¢) were obtained through
the chain rule based on bosonic indices (see appendix F.1). Similarly to the 1PI-FRG procedure,
the above flow equations are usually rewritten with the help of Fourier transformations. We
refer to the works of Dupuis [322] and Katanin [462] for more details on these transformations
and the associated conventions.

By introducing the Luttinger-Ward functional via the splitting set by (4.132), (4.143a)
to (4.143e) can equivalently be obtained by performing a vertex expansion of the flow-dependent
2PI EA TPV |G] as follows:

F2PD (2PT)( — —
D D M= (AN R MR
(2P1) _ 2PI 2PI)(n) _ 5P (g o
with T, = [G =G, T S = 305G | g, and the first-order derivative of

I vanishes at G = G, according to (4.139), which is the counterpart of (4.19) underlying
the vertex expansion for the 1PI-FRG. After plugging this expansion into the different master
equations that can be derived for I{*"™" in the framework of the 2PI-FRG (see appendix F.4) and
comparing the terms with identical powers of G — G, in the LHS and RHS of the equations thus
obtained, one should get back the differential equations expressed by (4.143a) to (4.143e), thus
specifying the analytical forms of the function § in (4.143b) as well as those of the derivatives

®,, s and @, (with n > 2)%.

All 2PI-FRG approaches treated in this thesis can be applied to any system whose classical
action can be put in the form:

S[0) = So[é] + S[d] =5 | GOttty [ VosssssaitiostesGous

2
(4.145)
with the two-body interaction U satisfying the symmetry property:
(P
Ua1a2a3a4 = C )Uap(l)ap(z)ap(g)ap(4) ) (4146)

ZWe actually follow a different (although equivalent) path to derive the analytical forms of F, gﬁ, Es and
=(n)
¢, (with n > 2) in appendix F.4.
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Figure 4.12: Schematic illustrations of the C-flow, U-flow and CU-flow for the 2PI-FRG. Recall
that C' and U are respectively the free propagator and the two-body interaction of the model
under consideration (specified by the classical action expressed by (4.145)).

N(P) being the number of inversions in the permutation P. Hence, in the present 2PI-FRG
study, we are only treating systems with two-body interactions at most. However, it is straight-
forward to generalize the formalism presented in the whole section 4.2 to interactions which are
three-body or more after including in Siy; terms being sextic in the field (i.e. varying as ~ 1°%)
or more. Following the derivations discussed in chapter 3 for the 2PI EA, one can deduce from
the classical action (4.145) the following expression of the Luttinger-Ward functional in terms

of 2PI diagrams:

B[G] = DecprlU, G] = % C{) - % L o?)

1 1
= / U“/szWlGW - 48/ Ua1a2a3a4Ua’1a'2aéaﬁlG71G’Y2G’Y3G’Y4 + O(US) ’
1,72 Y1,72573574

8
(4.147)

We have introduced in this way the functional ®gcpr[U, G|, which is identical to the Luttinger-
Ward functional, although we stress its dependence with respect to the interaction U (usually
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left implicit) and the subscript “SCPT” indicates that we consider its expression (4.147) usu-
ally taken as input for the variational procedure underlying self-consistent PT. This concludes
our introduction for the 2PI-FRG and we will then discuss in further details its specific im-
plementations. The latter are coined as C-flow, U-flow or CU-flow, depending on the way the
cutoff function R, is introduced in the classical action (4.145): either in the free propagator
(e.g. via C™t — C;' = C~' + R,) for the C-flow, either in the two-body interaction (e.g. via
U — U, = U + R,) for the U-flow or in both for the CU-flow (see fig. 4.12).

4.2.1.1 C-flow

Main features: The C-flow version of the 2PI-FRG was introduced in ref. [321]. The under-
lying idea remains to implement the momentum-shell integration a la Wilson, as in the 1PI-FRG
based on Wetterich equation, except that we are now computing the 2P EA T'?"D[G] through-
out the flow instead of the 1PI one. In particular, the flow parameter s can be interpreted now
as a momentum scale. By definition, the C-flow consists in considering a flow-dependent free
propagator Cs. This amounts to inserting a cutoff function R, in the classical action (4.145) via
the substitution C~! — C; ! = R,C'~! or equivalently C~! — C.; ! = C~! + R,, which is exactly
what is done for the 1PI-FRG by introducing the term ASy in (4.1). The C-flow is therefore
close in spirit to Wetterich’s approach. Owing to such a connection, we can deduce the required
values for Cs—s, and C,—;, from the boundary conditions for Ry set by (4.12a) and (4.12b):

Comey =0 Yy, (4.148a)

Coms, = C', (4.148Db)

with s; and s¢ being respectively the values of the flow parameter at the beginning and at the
end of the flow.

The Luttinger-Ward functional does not depend on the free propagator C, and therefore
not on s for the C-flow. Consequently, it is an invariant of the flow, which translates into**

PGl =0 Vs . (4.149)

In particular, (4.149) implies that all components of ®,, 3; and ¢, (with n > 2) vanish, which
enables us to simplify the three lowest equalities in the set of (4.143) as:

—Gs’ﬁzs,@ . (4150&)

Ve = —GosDen, (4.150b)
—=(n) = —(nt1)

5,71 Vn = G5 ’Y®5 AV YN vn Z 2. (4150C)

The flow dependence of G, involved in (4.150a) to (4.150c) follows from that of C; according

to Dyson equatlon in the form of (4.140). Moreover, the flow equation (4.143b) expressing

~ =(2P
Q =iT F is basically determined by computing an expression for F from the generating

functlonal (4.119) (see appendix F.4.1). However, it is not tractable in this form because of

24Besides the qualitative argument just given to justify (4.149), a mathematical proof of the latter is given in
appendix F 4.
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the initial condition Gs—y,, = 0 V7 (see discussion around (4.157) for the justification of this
— - (2PI)
initial condition) since it induces a divergence of the derivative of %Tra [ln(GE)} in Iy, at

the starting point of the flow, i.e. at s = 5;. Therefore, we will calculate during the flow the
following quantity:

AQ, = (Ff”) — T [Cﬁ]> _ 0+ ST ()] (4.151)

1

B 20

instead of (). The extra term Iy 4[Cy] eliminates the aforementioned divergence problem, as a
result of (4.148a).

In conclusion, the tower of differential equations underlying the C-flow version of the 2PI-
FRG is thus given by (see appendix F.4.1):

Coora = — / Gsonan (C; ! —i) ., Goateq - (4.152)
a0l asal

AT, = %0;; @ -C). . (4.153)

P, = —és AYs (4.154)

i —G,0) (4.155)

_(”j =GBy >0 (4.156)

The desired value of the thermodynamic potential, i.e. Q4—,,, is readlly obtained at the end of
the flow of AQ through (4.151) in the form Qu_,, = AQ_, — Tra [In(Cs—s,)]-

Initial conditions: From Dyson equation and more specifically from (4.140), it is clear that
the initial condition for C; given by (4.148a) implies that:

Goeey =0 V. (4.157)

This condition enables us to find the initial conditions for ®, and the corresponding derivatives
from the diagrammatic expansion of the Luttinger-Ward functional expressed by (4.147) (see
appendix F.5.1 for the derivations of (4.160) and (4.161)):

By, = 0, (4.158)
Yemsy =0 Vv, (4.159)
=(2)

(I)szsi,ng = U"/l’Yg ) (4160)

— 1 / / / /
(I)ii)swwzvsm ) [({ [Umawaaniaéaé% + (o & al)] +( (a2 O‘z)} + ¢ (a3 <> 043)) +((aq & a4)] )
(4.161)
aiz)sim,,% =0 Y7y, ,%, Vnodd. (4.162)

Even though (4.158) to (4.162) are derived from a truncated result in practice, these equations
are exact at § = §; because of (4.157). It remains to determine the initial condition for Af.
Combining (4.151) with (4.132) and (4.133) at s = s; gives us:

AQ,_, =+ (T2~ ()

B 5=5j 0,5=s;
1
= E (—%Tra [hl(Gg 5,)] Tra ra =5i ' 5=5; ] + q)s 51 gTra [1n<05:5i)]) :

(4.163)
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According to (4.148a), (4.157) and (4.158), this is equivalent to:

AQ,—y, = 0. (4.164)

Truncations:

o tC-flow:
The truncated C-flow (tC-flow) is a specific implementation of the C-flow in which the in-
finite tower of differential equations given by (4.152) to (4.156) is rendered finite according

to the condition: :
n
=5;

3 =3 Vs, Vi > N - (4.165)

In this way, the equation system made of (4.152) to (4.156) reduces to a set of Npax + 2
first-order differential equations. It is shown in ref. [459] that the tC-flow scheme with
truncation order Npy.x = 2Nscpr — 1 or 2Ngcpr (with Ngcpr € N*) is equivalent to self-
consistent PT up to order (’)(U NSCPT), e.g. the tC-flow with Ny, = 1 or 2 is equivalent
to Hartree-Fock theory.

Let us then prove the latter statement at Ny, = 1 following the lines set out by ref. [459].

In this situation, we have notably 5552) = _552:)51 = U Vs according to (4.165) alongside

with the initial condition (4.160). In this way, (4.155) becomes:
Yor = —Gaslss | (4.166)

which, after integration with respect to s, yields®:

Yoy = —Gs3Us (4.167)
and more specifically at s = s;:
iﬁzﬁm - _aﬁzsfm‘yU% ’ (4.168)

which is nothing else than the Hartree-Fock self-energy. From (4.167), the flow equa-
tion (4.154) for the Luttinger-Ward functional is turned into the equality:

O, = Gy5,Us,4,Gs 5, - (4.169)

After integration with respect to s, this gives us®’:

(I)5=5f = %GS:Sffh U’Yl’m 5=s¢,92 » (4170)
which now corresponds to the Hartree-Fock approximation of the Luttinger-Ward func-
tional, as can be seen after comparison with (4.147). Therefore, according to (4.168)
and (4.170), all flowing quantities reduce to their Hartree-Fock results at the end of the
flow. We have proven in this way that the tC-flow with truncation order N, = 1 is
equivalent to self-consistent PT at the Hartree-Fock level (i.e. at order O(U)). This
remark can be extended to Ny = 2 since:

—~(2) -

pt0)
ot = G Py
Y172 TS Y11Y2

=0 Vs, (4.171)

25The integration constant in (4.168) equals zero according to the initial conditions (4.157) and (4.159).
26The integration constant in (4.170) also vanishes, now according to the initial conditions (4.157) and (4.158).
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and thus 552) = Ei)si = U Vs in this case as well, as a consequence of (4.160), (4.162) (for
n = 3) and (4.165) (for n = 3). Actually, we can show in the same manner that, if Ny is
odd, the truncation orders Ny, and Ny., + 1 are equivalent in the framework of the tC-
flow. In addition, the arguments leading to (4.168) and (4.170) can be straightforwardly
extended to any truncation of the tC-flow (i.e. to any Np.x € N*) in order to prove its
connection with the corresponding order of self-consistent PT. In this fashion, we have
shown that, for any non-zero positive integer Ngcpr, the tC-flow with Ny.x = 2Nscpr — 1
or 2Ngcpr and Ni&pp-order self-consistent PT are equivalent, as stated above. This
has the interesting consequence that identical results can be obtained by solving two
different types of equations: first-order integro-differential equations for the tC-flow and
self-consistent equations for self-consistent PT.

o mC-flow:
The modified C-flow (mC-flow) implements a truncation of the C-flow’s infinite tower via
the following condition:

(1) (n)
@5 = QSCPT,NSCPTyﬁ UH@(Q) VE, vn > Nmax 9 (4172)

with .
=(2) =(2) =(2) =(2)
(I)sym,s,alazagou; = g <(b5,0410420430¢4 + (Ds,a2a3a1a4 + ®5,a3a1a2a4> ‘ (4173)

The truncation condition (4.172) is an ansatz based on the perturbative expression of the
Luttinger-Ward functional, i.e. (4.147). The functional ®scpr ngopr [U, G| corresponds to
the Ngcpr first terms of the perturbative series of the RHSs of (4.147). According to this
definition, we have for example:

1

— —@2)
PscPT Nsepr=1s| 5 = 3 / Poyms e Gsm
Y1,72

o - (4.174)

Q

sym,s 8

Furthermore, the motivation for replacing U by @f) is set by the initial condition for

37 e (4.160). Generalizing the latter relation to all s indeed suggests to substitute U

5 Y
by 552) in (4.172) but the problem is that U and 59 have different symmetry properties.
Indeed, the condition:

N(P
Ua1a2a3a4 :C ( )Uap(l)ap(z)ap(g)ap(4> 9 (4175)
imposes an invariance of U (up to a sign) under 4! = 24 transformations as opposed
to (4.126), i.e.:
=2 S~ ) S ~) _ 52
(I)s,(a1,o/1)(a2,a’2) = C(bs,(o/l,oq)(az,o/z) = C(I)s,(al,a’l)(afz,@) = (1)57(0/17(11)(&/27062) , (4176)
which relates to 4 transformations only. This brings us to the relevance of Egim which
is constructed so as to possess the same symmetry properties as U [459]:
=2 _ ~N(P)GH?2)
(I)sym,s,a1a2a3a4 - C (I)sym,s,ap(1>ocp(2)ap(3>ap(4) ? (4177)

hence the substitution U — ) . in (4.172).

sym,s

In conclusion, the equation system to solve contains N,,.. + 2 differential equations for both
the tC-flow and the mC-flow. Only the flow equations for the 2PI vertex of order N,., differ
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between these two versions of the C-flow:

.
;(Nmax) —_ _(Nmax+1)
v, = G5 Pog 591y, for the tC-flow (4.178a)
;(Nmax) = _(Nmax“l‘l)
S <®SCPT7NSCPT75 oo ) for the mC-flow , (4.178Db)
sym,s AY1 Y Nmax

where Ngcpr remains a positive integer to be specified. According to expression (4.147) of the

Luttinger-Ward functional, a choice Ngcpr < Npax/2 induces 5(512??}1SLPT75[U ,G] = 0 Vs, which

implies that the mC-flow reduces to the tC-flow in this case.

4.2.1.2 U-flow

Main features: The U-flow scheme, which was put forward in refs. [322, 459|, provides an
alternative to the C-flow in which the cutoff function Ry is inserted into the two-body interaction
U rather than in the free propagator C'. In other words, it is based on the substitution U —
Us = R,U or equivalently U — U; = U + R,. Just like the C-flow, the U-flow implements in
principle the Wilsonian momentum-shell integration, with s being connected to the momentum
scale. This is notably the case with the cutoff function R, chosen in ref. [322]*" which plays
the role of an IR regulator for (low-energy) collective fluctuations, thus preventing problematic
divergences during the flow. However, as we will see in our zero-dimensional applications
of section 4.2.2.4, a perfectly valid choice (even in finite dimensions) for R, could be set by
Us = R;U = sU, with s a dimensionless parameter. This follows the philosophy of the 2PPI-
FRG discussed in section 4.3 and the resulting 2PI-FRG implementation does not carry out
the momentum-shell integration a la Wilson. However, we will see that such a choice for R,
does not necessarily diminish the power of the U-flow version of the 2PI-FRG (see notably the
discussion below (4.235) to conclude section 4.2.1.2). The boundary conditions for U, are:

Us=simy. =0 V71,72 (4.179a)

Uses, = U . (4.179b)
Hence, the starting point of the flow corresponds to the free theory (or to the results of self-
consistent PT, as explained below in more detail) in the U-flow scheme and, just as for the

C-flow, the fully interacting quantum theory is recovered at the end of the flow.

In the framework of the U-flow, we will frequently consider the pair propagator IT1[G] defined

as:
I,.,6] = W33, () = St (4.150)
from the free version of the generating functional given by (4.119), i.e.:
Zo|K] = e"oli = / D 50844 fa BaFarthr (4.181)
It can be shown that definition (4.180) is equivalent to (see appendix F.3):
I1,5,[G] = Goyoy Gatas + (GarasGapay, - (4.182)

27See notably section IV.C. of ref. [322].
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The inverse pair propagator is given by (see appendix F.3):

(6] = G, L, Gol, + GGy

Y1772 a2

Gl (4.183)

[e3Re D)
where the exponent “inv” denotes an inverse with respect to bosonic indices, i.e.:

Z

Y2

MﬁmeYerV2 , (4.184)
for an arbitrary bosonic matrix M. Inverses with respect to a-indices are still indicated via
“—17 as an exponent. From (4.182) and (4.183), we infer the following symmetry properties of
the pair propagator and its inverse:

(inv) (inv) inv) _ yq(inv)
H'\ﬂw [G] CH(aﬁ’al)"O[ ] gH’Yl (o, 042)[G] - H(a’l,al)(aé,ag)[G] ) (4185&)
iG] = niya] (4.185b)

which are similar to those of the connected correlation functions, i.e. to (4.126). It is also
important to note that the pair propagator is related to the derivatives W®[K] and ®®[G]
via the Bethe-Salpeter equation:

W3 K] = 0[G] — OGP [GIWP[K] . (4.186)

This equation can be derived from the following equivalent relation (see appendix F.3):

inv

WO[K] = (TCPO[G)™ = (T™][G] + ?[G)) (4.187)

Using the latter equalities (especially (4.182) and (4.187)), the tower of differential equations
associated with the U-flow implementation of the 2PI-FRG can be derived from the generating
functional (4.119) after introducing the cutoff function R, in the manner discussed previously.
This leads to (see appendix F.4.2 for the corresponding flow equation expressing the derivative
of the 2PI vertex of order 3 with respect to s):

5570410/1 :/ aﬁvalwis,azagas,aga/l , (4.188)
o2,
- 1 . —(2) 1—
O, = —UE,%% <W5 —+ —Hﬁ) , (4.189)
65 2 2
- 1 _ 1—
By = ~Ussys, (Wf) + 5115)
Y271
la =@ - —(2) —inv 011544 —(3) —(2) 1611, - 01Ls 5455
+ 625 A1 Ws 7172U5,’?3’?4 |:W5,'”y4’y5 Hs,’yyyg 5G : 7H5 Ards q)s,%’ys’ys 5,9893 2 5G = ,
5,92 5,92
(4.190)
- 1 o inv o inv . _ inv . o
o o (e ) )]
1 2) :vl . —(2) (3) (2) e (4.191)
"5 <I LD )m Ussizis W ann Paznauss Wsasaa »
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@ 1.
o, =-U.

5,712 3 5,9192

W(%) A (ﬁinY 5]._[5 A4 ﬁlnv _ 5(3) o )W(Q?

5,9293 5,939 5G 5,95%6 5,7193%6 5,597
5,7

% (ﬁmv 61_[5 A9 Trinv B 6(3) B )W(%)

5,9798 5G 5,%9910 5,7297910 5,91091
5,72
—inv (SH5 Aads TNV 51_[5 A6 —(2)
B Wﬁ 2937 78,9394 5G : 5,956 G ° 7H5 “/7’78W57'AYS’A71 <4'192)
5,71 5,72
—inv 5 Hg Aads  Tinv —(4) —(2)
+ 2W5 42793 < 5&3%% 5959 (I)ﬁrvwz’?s% Wﬁ,’%’h
1 52ﬁ5 Y21 =(3)
4 6G5’71 6G5’72 59 %5 A2
where 5o
I7172 = 5G’YI - 6&1042 oo, + Céalaé(sa’ as ) (4193)
Y2

denotes the components of the identity matrix in the bosonic index formalism (see appendix F.1)
and we have used the notation:
TR OMI[G]

— — = . 4.194
0Gory -+ 0Gs,,  0Gy, - 0G,, |, ( )

The components of the bosonic matrix WEZ) involved in the differential equations (4.189)
to (4.192) must a priori be determined by solving the Bethe-Salpeter equation (either in the
form of (4.186) or (4.187)), unless we use a different (supposedly drastic) approximation for
Wf). This remark is not without consequences for the U-flow as this numerical resolution,
which might be demanding for realistic models, must be repeated at each step of the flow.

We discuss two main implementations of the U-flow: the plain U-flow (pU-flow) and the
modified U-flow (mU-flow). As opposed to the C-flow, such implementations do not only differ
by the truncation of the hierarchy based on (4.188) to (4.192). We will see in particular that,
as opposed to the pU-flow, the mU-flow does not directly rely on the latter equation system
such that the starting point for these two versions of the U-flow are sharply different as well.

pU-flow:

e Truncation:
The pU-flow consists in solving the tower of differential equations including (4.188)
to (4.192) with the truncation established by (4.165). In that respect, the pU-flow is
the counterpart of the tC-flow for the U-flow.

e Initial conditions:
As implied by (4.179a), the starting point of the pU-flow coincides with the free theory.
In this situation, the Luttinger-Ward functional vanishes by definition, as well as the self-
energy and all corresponding 2PI vertices, so that the initial conditions for the pU-flow

read: B
Go—s, = C', (4.195)

Qazéﬁmm:qz—inﬁmmy (4.196)

20
D, =0, (4.197)
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Yomgy =0 Vv, (4.198)
B =0 Yy, Yn>2, (4.199)

where (4.196) is deduced from (4.133) with the condition G,—,, = C which directly follows
from Dyson equation (4.140) combined with (4.198).

o tU-flow:
The truncated U-flow (tU-flow) is a computationally more affordable version of the pU-
flow. In the framework of the tU-flow, (4.187) is truncated in a drastic fashion so as

to obtain a simple expression of WEQ), thus bypassing the necessity to solve the Bethe-
Salpeter equation. This approximation is applied to (4.187) as follows:

WP T, 10 (69) ~TI, . (4.200)

Such a truncation indeed induces a cancellation of the inverse propagators involved e.g.
in the flow equations (4.190) and (4.192) via the relation:

o ~we Ty (4.201)

5,972 SMY 82

=1I

5771’?

Z

Y172

Finally, the flowing 2PI vertices in the tU-flow scheme are still selected according to the

truncation condition (4.165). The tU-flow is actually particularly suited to deal with the
~(2)
truncation order N, = 2. In this situation, the differential equation expressing @,

reduces to a form simple enough to be directly integrated so that the equation system to
solve becomes (see appendix F.4.2):

a5,0110/1 :/ aﬁ,alagis,agagas,ago/l ) (4202)
a2,
N 1 . —inv inv 1—
Qs = _Us 192 <H5 + U5> + —H5 s (4203)
66~ 2 F2
- 1. —inv inv 1—
b, = _Uﬁﬁﬂz (Hs + Uﬁ) + ;1
6 2 -
Y271
1< —inv inv . = inv 5ﬁ574{5¢y6 = inv 1 5ﬁs,’y4’y3
gt (Hs * Us)mg Ussoia | (T +ILUs) 5, G, T+ ILUs) 5, 2 6G.s, |

(4.204)

- 1 — inv - (I—FﬁgUg)iAnVA 5H5,&4% (I—i—ﬁgUﬁ)inv +16 5,9392

Voy = —¢ (Z +TLUs) 5, Usioie

Y

4394 5@57% Y592 9 565’%
(4.205)
=(2)
cbﬁ,’)/lvz = U51’71’Y2 : (4.206)

In summary, (4.202) to (4.206) are respectively obtained from the pU-flow equations

(4.188) to (4.192) by imposing that all components of 6&3) and §§4) vanish (to enforce
the truncation order Ny, = 2) and by exploiting the approximation (4.200) in the form
of (4.201) (to implement the tU-flow).
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mU-flow:

e Definition of the modified Luttinger-Ward functional:
The mU-flow is based on the following transformation of the Luttinger-Ward functional:

D, [G] = O[G] + Pscpr Nsepr [Us G — Pscpt Nsepr [Us: G (4.207)

where ®,[G] will be referred to as the modified Luttinger-Ward functional and the func-
tional ®gcepr Noopr U, G| was already introduced in (4.172) to present the mC-flow. As a
consequence of (4.207) combined with (4.132), we can also define a bold counterpart for

the 2PI EA TP™V[@) as:
FgQPI) [G] = F§2PI) [G] + q)SCPT,NSCPT [U7 G] - QSCPT,NSCPT [Uﬁ’ G] ’ <4208)

with the corresponding thermodynamic potential:
1

2.(6) = Sre7lG) (1.209)
and the modified 2PT vertices ®{") ... [G] = % satisfy:

2("(G] = B [G+PsCpr Nocpr (U G = PeCpr nope (U G VR €N', (4.210)
which, at n = 1, gives us the self-energy:

0P, [G]

3., =—
7 G,

(4.211)

We can also introduce the configuration G, of the propagator G which extremizes the
bold 2PI EA of (4.208) according to:

5F§2PI) [G]

—0 V 4212
5 7,5, ( )

G=G;

which is the counterpart of (4.139). Note that (4.212) can also be rewritten in the form
of a Dyson equation:

G.,=(C'— i,);l , (4.213)

using (4.211). Although the relevance of the splitting of (4.207) will become clearer
with the following discussion on the initial conditions for the present approach, we can

already state at this stage that the general idea underlying the mU-flow is to calculate
D, =P, [G = Gs] and its derivatives:

= _  0"®[G]
¢57'Yl"'7n = (SG : (SG 0 (4214)
7O =G,

instead of @, [G = @5} and the corresponding 2PI vertices during the flow. The mU-flow
equations can therefore be obtained from the pU-flow ones (e.g. (4.188) to (4.192)) by
substituting the flowing quantities Gs, s, ®,, % and 5?) (with n > 2) by their bold
counterparts (i.e. Gy, Q,, ®,, 3B, and Eﬁn) with n > 2, respectively) according to the
above definitions. That being so, we stress that, according to (4.179b), the functional
®,[G] and all other bold entities introduced here are constructed such that they coincide
with their original counterparts at the end of the flow, e.g. ®,_,[G] = ®s—,,[G]. Physical
quantities are thus still recovered at s = s¢. It is also important to keep in mind that,
in the present discussion on the mU-flow and notably in (4.213), all upper bars label a
functional evaluated at G = G, and not at G = G, as opposed to all other 2PI-FRG
implementations presented in this chapter.
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e Truncation:
The truncation is no longer implemented by the condition (4.165) which is replaced by:

B =3 Vs, Vn > Ny . (4.215)

The truncation of the mU-flow is therefore more refined than that of the pU-flow. Indeed,

whereas the initial conditions Eﬁ)ﬁi are simply inferred from the free theory in (4.198)

and (4.199), the quantities Eii)si contain non-perturbative information transcribing the
correlations resummed via self-consistent PT according to (4.210) and (4.214) alongside

with (4.179a), (4.198) and (4.199).

e Initial conditions:
Let us discuss the latter statement in more detail. According to the initial condition
Us—s, = 0 set by (4.179a), (4.207) and (4.210) reduce at s = s; to:

(PSZSi [G] - @SCPT,NSCPT[U; G] 9 (4216)
Ye—s [G] = _CD(SIC%PT,NSCPT U, G, (4.217)
B, [G] = Oty nyop [U.G] V> 2. (4.218)

Hence, at the beginning of the flow, ®,[G], ¥,[G] and " [G] possess the analytical form
respectively of ®[G], ¥[G] and ®™[G] in the framework of self-consistent PT up to order
(’)(U NSCPT). However, we are more specifically interested in these functionals evaluated
at G = G, so we must now address the determination of G,—,.. The latter configuration
can be determined from Dyson equation (4.213), i.e. from:

-1
5

[ (O Yy (4.219)

Since, as we just discussed with (4.217), 3., [G] coincides with a truncated perturbative
expression of the self-energy, (4.219) is nothing else than the usual gap equation for the
propagator encountered in the CJT formalism. If we denote as Gscpr neepr @ chosen
solution®® of this self-consistent equation, we have:

EﬁZﬁi = ESCPT,NSCPT . (4.220)

From (4.220) as well as (4.216) to (4.218), we infer the rest of the relevant initial conditions
for the mU-flow:

— 1 _ —
Qs:si = 35 (F(()ZPI) [G = GSCPT,NSCPT] + ®SCPT,NSCPT |:Ua G - GSCPT,NSCPT}>

s
— - im @ ‘T [G C T
= B — 5 Ty [H( SCPT,NSCPT):| + 5 Tq [ SCPT,NscpT - ] (4221)

+ PscPT, Nyopr [U7 G = ESCPT,NSCPT}) )

65:51 = ©SCPT7NSCPT |:U7 G = @SCPT,NSCPT} 9 (4222)
_ 1 -
Yo, = _(I)r(sc)PT,NSCPT [Ua G = GSCPT,NSCPT] ) (4.223)

Z8The self-consistent gap equation (4.219) possesses a priori several solutions. In other words, there are several
possible starting points of the mU-flow for a given approximation of ®scpr[U, G| (i.e. for a given Ngcpr). Such
a freedom can be seen as a considerable advantage of the mU-flow approach, as discussed below (4.235).
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B = Bt v [U,G = Csoprngens] ¥n>2.  (4.224)

5=5;j =
Therefore, as non-perturbative information has been incorporated into Gscpr nNgopr Via
the self-consistent procedure followed in the resolution of (4.219), the same applies to

Qo—, Doy, X, and Eii)ﬁi (with n > 2). For example, we can already resum Hartree
and Fock diagrams (e.g. for Ngcpr = 1) or even some ring diagrams (e.g. for Ngcpr = 2)
before even starting to solve the flow equations, so we have now a very efficient starting
point. In conclusion, the mU-flow is designed to take the results of self-consistent PT
(with any approximation) as inputs for the FRG procedure®.

e mU-flow equations with Hartree-Fock starting point:
Let us then set Nscpr = 1 in order to specify to the situation where the starting point
of the mU-flow coincides with the Hartree-Fock approximation. We can deduce from the
perturbative series (4.147) that:

1
®SCPT:NSCPT:1[U7 G] = g/ U’Yl'YQG'YlG'YQ ) (4'225)
Y1,72
which implies that the transformations underlying the mU-flow for Ngcpr = 1 read:
(

1
Qs [G] == Qs [G] + % (U — Us),;ﬂfy? G% G’Yz . (4226&)

1
®,[G]| = 0,[G]| + 5 (U - Us)%% G5, G5, . (4.226b)
3:,[G] =5, [G] - (U - Us)w G5 . (4.226¢)
@) ,[G) = 08) L [G)+ Usny = Uss - (4.226d)
(@), [G] = @) [G] ¥n=>3. (4.226¢)

With the help of (4.226a) to (4.226e), we can introduce €[G], the modified Luttinger-
Ward functional ®,[G] and its derivatives into the pU-flow equations (4.189) to (4.192),
thus obtaining the differential equations underlying the mU-flow with Ngcpr = 1. For
instance, (4.189) to (4.191) become in this way (see appendix F.4.2 for the corresponding
flow equation expressing the derivative of the modified 2PI vertex of order 2 with respect

to s):
5 _ Lo =) =
Qo= —Usss, <W5 - H5>A o (4.227)
6ﬁ 7271
- 1. e —
B, = Ussyi (W -1
Y27
1< _
+6 [25”1 (U = Us)yys, Gm}
w72 772 Tinv 6ﬁ5ﬁ yg TNV —(3) —(2) 1(5ﬁ57A 5
XW e 513 Us s [Wsﬁs%( 53647 55;/;:8 s s _CI)s,%“?s%) 550 §TZZ4 :

(4.228)

29There is also an implementation of the 1PI-FRG for partially bosonized fermionic models (i.e. for fermionic
models in their mixed representations) constructed to exploit the results of the self-consistent Hartree ap-
proximation (using the fermionic density as a variational parameter) as starting point of the flow [464]. The
underlying formalism could be in principle adapted to treat the toy model considered in this thesis but we defer
this to future works.
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- __1 — —(2) inv
Sy =3 <I+ L3, )

Rll!

. ( (e (@ ) (e @ ven) ]
Ly w@ B 0 T @A
_§U5a'72’73W57‘/3ﬁ4(I)ﬁﬂl‘/ﬁswﬁﬁs’?z - 3U57’?1’?2G5,'A72 )
(4.229)
where Wiz) [K] is still given by the Bethe-Salpeter equation in the form:
WOK] = (TG + 82[G) - U + U)"™ | (4.230)

as can be deduced from (4.187) and (4.226d). However, the flow equation controlling the
evolution of G is not inferred from the pU-flow equations but simply by differentiating
the Dyson equation (4.213) with respect to the flow parameter’:

Gs,ala’l :/ Gs,alagzs,aga’QGs,a’Qa’l . (4231)
az,0d

Furthermore, the bold 2PI EA can be expressed by multiplying both sides of (4.226a)
by B:

1
r[G) = 16 + 5 (U= Us)sys, G2 G
1 (4.232)
= —W[K]—G—TIFY(KG)—FE(U—Us) G’YlG’YQ :

Y142
Therefore, the bold 2PI EA is defined via a Legendre transform modified by the term?':
1 1

1
5 (U =Us)sps, G3uGao = 5 (U = (U A+ Rs))sp5, G2 Grp = =5 Ren G Gy s (4:233)
for Ngcpr = 1, just like the Legendre transform underlying the 1PT EA is modified in (4.9)
by the term:
1
- ASk[¢] = _5/ ¢a1Rk,a1a2¢a2 . (4234)
Q1,02

The same remark applies to any value of Ngcpr for the mU-flow, in which case the bold
2P1 EA is defined by (4.208) and the term modifying the Legendre transform is:

CI)SCPT,NSCPT [Uu G] - CI)SCPT,NSCPT[U57 G] . (4235)

According to our previous explanations, the extra terms (4.233) to (4.235) are just means
to enforce a convenient starting point for the corresponding FRG procedure (the classical
theory for the 1PI-FRG and self-consistent PT for the mU-flow version of the 2PI-FRG).

Finally, let us consider the situation where the choice for the scale-dependent interaction
Us (or, equivalently, for the cutoff function R;) is such that the Wilsonian momentum-
shell integration is not implemented through the U-flow. At first sight, this could be taken

30 As opposed to the flow equations (4.227) to (4.229) which rely on the mU-flow transformations at Ngcp = 1
given by (4.226a) to (4.226e), (4.231) is valid regardless of the value of Ngcpr.

31'We assume that Us = U + R, in (4.233) only to clarify its link with (4.234) but we stress that all derivations
presented so far are valid regardless of the analytical form of Us.
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as a severe limitation of this approach for the purpose of describing critical phenomena.
However, this issue is remarkably circumvented in the framework of the mU-flow which
can be designed to start in a broken-symmetry phase if necessary (or more generally in
the phase that we aim to describe) so as to avoid undesirable phase transitions during the
flow, depending on the solution ascpp Neopr Chosen for the initial conditions. This remark
only applies if the different solutions of the Dyson equation (4.219) give us access to each
phase that we seek to describe, which works in principle for the U(1) symmetry notably,
and therefore for the description of superfluid systems, as the relevant order parameters
can be identified as components of the propagator G in such a situation®.

4.2.1.3 CU-flow

Main features: The CU-flow version of the 2PI-FRG was developed in ref. [322]. It es-
sentially amounts to combining the C-flow and the U-flow, and more specifically the tC-
flow and the pU-flow, together. A noticeable fact is that, as the C-flow and (if the cor-
responding cutoff function is chosen accordingly) the U-flow, such an approach also carries
out the Wilsonian momentum-shell integration. Hence, the CU-flow relies on the transforma-
tion C™! — C;' = C7t + R (or, equivalently, C~1 — C;1 = RéC)C’*l) combined with
U—-U,=U+ RV (or, equivalently, U — U, = RéU)U), with as before:

(

Cosy =0 V. (4.236a)
Cos = C' . (4.236b)
Us—s; e =0 V71,72 . (4.236¢)
Uee = U . (4.236d)

Due to the initial condition (4.236a), the starting point of the CU-flow suffers from the same
divergence problem as that of the C-flow, which is why we will consider the functional AQ,
(defined by (4.151)) in the present framework as well. Furthermore, we can expect the differ-
ential equations underlying the CU-flow to contain contributions from both the C-flow and the

U-flow, besides the flow equation expressing G which is given by (4.152) as in the C-flow. This

can clearly be seen from the CU-flow equation expressing A€, (see appendix F.4.3):

=~ 1. /= 1 —2) 1=
AG = Lot @ - ).+ Lo, (ws ; -n5> . (4.237)
g 760 2 ) s

TV
C-flow contribution U-flow C(:thribution

However, since the Luttinger-Ward functional is an invariant of the C-flow (according to

(4.149)), the flow equations expressing ®;, ¥, and ¢, (with n > 2) coincide in principle
- =(2)

with those of the pU-flow, and notably with (4.190) for ®; and (4.192) for ®, . There is how-

ever a subtlety that implies that (4.191) (which expresses 3, for the pU-flow) is not valid in the
present situation. We have thus rewritten this equation in a form exploitable for the CU-flow

32However, the mU-flow as presented here does not provide us with a similar freedom to tackle an O(N) sym-
metry as neither I'?PD [G] nor r@rn [G] is capable of spontaneously breaking such a symmetry by construction
(as they can not exhibit a non-zero 1-point correlation function for the field ).
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(see appendix F.4.3):

. ]_ o inv . o inv . —
Sor=-3 {2 (z 4TI, f)) U. (I LTI, f)) + Usl G
X atalol (4.238)
: —2) =) =7(2) = =2
+ _U57'A71’72 Wﬁv%% (I)ﬁ,v%% Wﬁﬁﬁl o Gsv’?(bﬁﬂ“/ :

(@)

Truncations: The infinite tower of differential equations for the CU-flow is closed by enforcing
the same truncation condition as in the tC-flow and the pU-flow (i.e. (4.165)), which is why we
mentioned above that the CU-flow is essentially a merger of the latter two approaches.

Initial conditions: On the one hand, as for the C-flow, the condition Ci—y,, = 0 Vv
(i.e. (4.236a)) induces that:

Goesin =0 Vv, (4.239)
AQ,y, = 0. (4.240)

On the other hand, as for the pU-flow, the condition Us—s, 1,4, = 0 V71,72 (i-e. (4.236¢)) implies
that:

Ty =0, (4.241)
Yemsn =0 Vv, (4.242)
3 =0 Yy, V> 2. (4.243)

4.2.2 Application to the (04+0)-D O(N)-symmetric p!-theory
4.2.2.1 Symmetrization of the two-body interaction

We present in the whole section 4.2.2 our applications of the 2PI-FRG to the studied zero-
dimensional O(N) model. The novel feature of this 2PI-FRG study is the treatment of the
O(N) symmetry (and especially of the broken-symmetry phase of an O(N) model), which has
never been tackled before with such a formalism to our knowledge. As a first step, we show
that the 2PI-FRG is applicable to the O(/N) model under consideration. The C-flow, U-flow
and CU-flow versions of the 2PI-FRG can indeed all be exploited to treat the original version
of this model as its classical action is in accordance with the analytical form (4.145), i.e.:

$(2) = 5a(8) + 8 () = gmt A (5
N

N
1 o~ 1 e e~
= 3 § SOG«ICaiLQSOG«Q + ] E Uaraza304Par Pas Pas Pas (4.244)

ai,az=1 a1,a2,a3,a4=1

1 S S
-5 wa1ca11a2¢a2 +E/ Ua1a2a3a4¢a1¢a2¢a3¢a47

2 1,02 1,002,003,004

where the fluctuating field J coincides with the bosonic field é:

Yo = Pa, (4.245)
the integrals are now just discrete sums:

/ = i : (4.246)

a,a’=1
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as a-indices reduce to color indices in the present situation:
v = (a,d) = (a,d) (4.247)
whereas the free propagator and the two-body interaction are respectively given by?*:

Cl =m*aa, (4.248)

a1a2

A
Ua1a2a3a4 = g (5(110«2503614 + 60«1035a2a4 + 56016046@2(13) : (4249)

For any application of the 2PI-FRG to a bosonic (fermionic) theory, the two-body interaction
must be constructed so as to be symmetric (antisymmetric) under permutation of its indices,
i.e. so as to satisfy (4.146) which was widely exploited to derive the 2PI-FRG flow equations
given in section 4.2.1. For our bosonic toy model, U must therefore be symmetric, i.e.:
Ua1a2a3a4 =0,

AP(1)@P(2)2P(3)4P(4)

(4.250)

under any permutation P, which is indeed satisfied by (4.249). However, the classical actions
underlying the mixed and collective representations (given in arbitrary dimensions by (3.6)
and (3.8) respectively) can not be written in the required form (4.145). Therefore, the gen-
eral 2PI-FRG formalism presented in section 4.2.1 (and especially the U-flow and CU-flow
implementations) can not be directly applied to these two versions of the toy model under
consideration. We can nonetheless quite readily extend the C-flow formalism to these two
situations by rederiving the initial conditions from the diagrammatic expressions of the corre-
sponding Luttinger-Ward functionals (i.e. from the counterparts of (4.147)) and by taking into
account that a second fluctuating field enters the arena in the mixed situation. Formulations
of the U-flow and CU-flow implementations of the 2PI-FRG in the framework of the mixed
representation are however much less straightforward, as will be discussed in more detail in
section 4.2.2.4.

4.2.2.2 Original 2PI functional renormalization group C-flow

In almost all cases®*, we will just rewrite the general 2PI-FRG flow equations presented in
section 4.2.1 for the studied toy model by simply replacing integrals over bosonic indices by
summations over color indices, as follows from (4.246). We thus start by deducing in this
way the tower of differential equations for the C-flow in the framework of the original theory

from (4.152) to (4.156):

N
Es,ala’l —_ — Z 657a1a2 (Cﬁ_l —is> 65’a/2a3 B (4251)

azal,

az,ah=1

33As opposed to the conventions followed so far, matrices that live in color space are no longer written in
bold characters in section 4.2.2 (and corresponding appendices), e.g. the free propagator and the self-energy
are denoted as C and ¥ instead of C' and X, respectively. The reason behind this is to keep the bold characters
for the modified 2PI vertices and other quantities introduced in the framework of the mU-flow, thus avoiding
overlapping notations.

34There are only two exceptions: i) the application of the C-flow in the framework of the mixed representation
for which we generalize in addition the C-flow formalism to a field theory involving two fields, as we just
mentioned at the end of section 4.2.2.1; ii) the application of the mU-flow with N = 2 and Ny,.x = 2 or 3 where

we will exploit a trick (inherent to the (04-0)-D situation) in order to avoid evaluating the derivatives 5%115 and
5,

in the flow equations expressing the derivatives of the 2PI vertices of order 2 and 3 with respect to

5°T,
3G 710G,y
s (see appendix F.8.2).
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N
| L
A s = 5 ;1 Cs,aa’ (G5 - Cﬁ)aa/ ) (4252)
’ I ¢ (2)
5,10 _5 Z Gs,azagq)s,(ag,aé)(al,a’l) ) (4253)
az,ab=1
N
= (n) 1 . — (1)
5’(0'1’0/1).”(0'"’&/”) 5 Z Gs’a"+1affl+l 5)(an+1)a;7,+l)(a1aa/1)"'(an7a41) vn Z 2 ’
an+1’aﬁb+1:1
(4.254)

with AQs = Qs+ 2 Tr, [In(27Cs)]. We will exploit the flow equation expressing @, (or ®, for the
mU-flow) in none of our 2PI-FRG applications. This stems from the fact that we are interested
in the gs energy E s and gs density pgs, which are deduced respectively from Qs = oy, and
Goes, = Gos, as follows:

BRI = Qg = Qe (4.255)
N 1 N

pgfl FRG = - N Z Gﬁzsf,aa - N Z Gs:sf,aa , (4256)
a=1 a=1

and the flow equations expressing Q and G (or Q, and G, for the mU-flow) never depend on
@, (or ®, respectively), whether it is in the framework of the C-flow, the U-flow or the CU-
flow. Relations (4.255) and (4.256) will actually be used to estimate respectively Egs and pgs for
all 2PI-FRG approaches (including the C-flow in the framework of the mixed representation)
treated in this section 4.2.2. Furthermore, we have basically two symmetry arguments that
allow us to simplify the flow equations (4.251) to (4.254):

e General symmetry argument:
The symmetry properties of the correlation functions W) given by (4.126a) and (4.126b)
are also exhibited by the propagator Gs, the self-energy 3, and all other 2PI vertices

3" (with n > 2). For the 2PI vertex 6(2) at N = 2 for instance, we have a priori

S

24 = 16 components <I>(2()

a1,a!)(a,a) b0 consider for the flow. However, since <I>

al»%)(az,az) -

FA%) A% A% —(2)
s 0f,a1)(a2.05) = Po(or,00)ag.2) = P(af,1)(ag,2) BCCOTAInG to (4.126a) and Dg o, o1)(ay 01) =
5(7()%@2)(@1#,1 ) according to (4.126b), this set reduces to 6 flowing components, which are

. =(2) =(2) =(2) =(2) =(2) =(2)
for instance: P; 1)1y o112 Po1,1)22)0 Po1,2)(1,2)0 Poy(1,2)(2,2) and Dy (2,2)(2.2)-
e Symmetry argument inherent to the O(N) symmetry:
Since the 2PI-FRG formalism was developed in a framework that can not exhibit any
spontaneous breakdown of the O(N) symmetry®, all matrices reduce to scalars in color
space throughout the entire flow, i.e.:

Crow = Co Oawr Vs, (4.257)
Goaw = Gs O V5, (4.258)
Yoaa = 2o Oaar V5 . (4.259)

The cutoff function R must therefore be chosen such that condition (4.257) is fulfilled.
After rewriting the flow equations (4.251) to (4.254) with (4.257) to (4.259), we can see

35We recall that the O(IN) symmetry can not be spontaneously broken down in the framework of the 2PI-
FRG since its main functionals T@PD[G] = TP [¢ = 0,G] and ®[G] = ®[¢p = 0,G] are all defined in the

configuration where the 1-point correlation function of the field 1/) vanishes, i.e. where ¢, = <1/1a> =0 Va.
K
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that the components of the 2PI vertices 5?) which have at least one bosonic index with

distinct color indices (i.e. at least one index v = (a,d’) with a # &’) are somehow cut
out of the flow. In particular, this translates into the fact that they do not affect (2,_,

and G,—,, which are the quantities of interest for us in the present study. Getting back

(2)

to our example on ®, , the number of corresponding components of interest for the flow

is thus further reduced from 6 to 3: 5;2()1’1)(171), 5:(;,2()1’1)(272) and 53()272)(2’2). Finally, since

the color space is isotropic in the absence of SSB*®, we have 6;2()272)(272) = 557(171)(171) Vs,

thus ending up with only 2 relevant components.

Such symmetry constraints significantly simplify the flow equations (4.251) to (4.254) for
N > 2. We thus rewrite these differential equations explicitly for NV = 1 and 2 by exploiting
the above symmetry arguments in the latter case:

e For N =1 (VNpax):

G.= -G (C;l - i) , (4.260)
N 1 1
AQ, = 5C; (Gs —Cs) (4.261)
>, = —§G5<I>§2) , (4.262)
—(n) 1— —mn
s = §Gs<1>§ o>, (4.263)
e For N =2 (up to Npax = 3):
G.=-G (O*l . i) , (4.264)
AQ, =7 (G- C) (4.265)
> 1% (5@ 5@
2 = _§G (q)s an T Lo, 2)) ; (4.266)
~=(2) 1
LPRERACRY QGs <(I)(3()1 1)(1,1)(1,1) T ‘I)i ()1 1)(1,1)(2, 2)> ; (4.267)
—=(2) 1— /—
L5, 11)(22) §G5 <¢)(3()1 (1,122 T (I)i ()1 1)(2,2)(2, 2)) ; (4.268)
3® 1= (W —(4)
s T G Gs ( )1+ @,(1,1)(1,1)(1,1)(2,2)) ; (4.269)
3 1= (3w —(4)
5,(1,1)(1,1)(2,2) 5 s ( y22) T @,(1,1)(1,1)(2,2)(2,2)) : (4.270)

We have introduced the shorthand notation 551) = 521()1,1),_(1,1) in (4.260) to (4.263), which
will be used again repeatedly in 2PI-FRG flow equations at N = 1. The initial conditions
required to solve the latter two sets of differential equations are directly deduced from those
given by (4.157) to (4.164) in our previous general discussion on the C-flow. For all N, they

are given by (see appendix F.5.2.1 for the expression of the components of 524:)&):

Gomsiawr =0 Va,d (4.271)

—B) .. . =) —(3) —(3) —(3)
For @, this implies . (5 2)(2.2)(2,2) = Pa.(1.1)(1.1)(1,1) V5, but also @y (1 1) 5 2)2.2) = Ps(1,1)(1.1)(2.2) V8-
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AQey, =0, (4.272)
Yemsaar =0 Va,d (4.273)
FC) A
(I)5=51,(a1,a'1)(a2,a/2) = U(a1,a/1)(a27a'2) = g ((Sala’lfsaza/2 + 5a1a25a’1a’2 + 5a1a’25a’1a2) , (4274)

6(”)

5:5i7(a17al1)“'(an7a'ln)

=0 Vaj,a}, - ,an,a,, Ynodd, (4.275)

where (4.249) was used to express Ua, a/)(az.ay) 0 (4.274). We will implement the tC-flow up
to Nmax = 10 at N = 1, which requires to determine all [ up to n = 10 (recall that the

5=5;
truncation orders Ny.x = 9 and Ny, = 10 are equivalent for the tC-flow). This is achieved

from the following perturbative expression of the Luttinger-Ward functional at N = 1 [149]:

1 1 1 5 101
P G) = -AG? — NG+ N3G — NGB+ — NG+ 0\ 4.276
sorr(G) 8 48 T 128 * 960 o). ( )

from which we infer:

32 =\, (4.277)
aii)si = -8\, (4.278)
3 = 960\% (4.279)
3 = 403200\, (4.280)
310 = 390942720)° (4.281)

where we have taken into account that the identity matrix of the bosonic index formalism (given
by (4.193)) reduces to 2 (and not 1) in the (0+0)-D limit at N = 1, i.e. (4.193) becomes in the
(04-0)-D limit:

0G g u
I(al,a’l)(ag,a’z) = oG : /1 - 5a1a25a’1a’2 + 5a1a’25a’1a2 y (4282)
azal,

which yields at N = 1:
_ G _
=30~

Hence, for the O(N) model under consideration at N = 1, the 2PI-FRG flow equations of
our toy model can either be derived via standard derivation rules or by taking the (0+0)-D
limit of their more general versions (written in terms of bosonic indices) using (4.283). We
always follow the latter procedure in this study but solving the equations thus obtained in
both situations leads in principle to identical results (see appendix F.6). Finally, the conditions
implementing the truncations of the tC-flow and mC-flow schemes in the framework of the
(0+0)-D O(N)-symmetric p?-theory are:

2. (4.283)

e For the tC-flow:
3" =3 Vs, Vi > N . (4.284)

5=56;
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e For the mC-flow®™* (at N = 1):

— At Nmax =2
* At NSCPT =2:
=3) _ =) —2)\?—=
By = Pyopr Noopr=s| |z = 4 (3”) ¢ (4.285)
* At Ngcpr = 3:
0 _ F® 52V’ & @)’ =3
q)ﬁ = (I)SCPTJVSCPT:?:,S )\_}5(2) = —4 (q)s ) G5 + 20 <(I)5 ) Gs . (4286)
— At Nmax =3:
* At NSCPT = 2:
@ _ @) —(2)\ 2
P, = q)SCPT,NSCPT:Q,s NIRC) = -8 (q)g ) . (4.287)

x At NSCPT =3:

@4 =@ =(2)) 2 =)\ =2
3, = Bscrr Nooprmt|, - = —8 <<I>5 ) +120 (q>5 ) G2, (4.288)
— At Npax = 4
x At NSCPT =3
=(5) _ =(5) =2\ =
3, = Berr vocrr—ts|, o = 480 ((I)s ) G, . (4.289)

Finally, the cutoff function R, chosen for every application of the C-flow version of the
2PI-FRG in the framework of the original theory is identical to (4.65) used for the 1PI-FRG,
ie.:

Comiay = Carty + Regray = (M* + Re) 6410, Van,as (4.290)

$,a102 ajaz
with
Ri=s5'-1, (4.291)

which satisfies the required boundary conditions set by (4.148a) and (4.148b) as the flow pa-
rameter still runs from s; = 0 to sy = 1 during the flow. Note that, just like £ in our 1PI-FRG
applications discussed in section 4.1.2, s is also a dimensionless number here.

In conclusion, our C-flow results for the original theory are obtained by solving the differ-
ential equations (4.260) to (4.263) for N = 1 (up to Npyax = 10) and (4.264) to (4.270) for
N =2 (up to Nyax = 4), with initial conditions given by (4.271) to (4.275) (along with (4.277)
to (4.281) for N = 1) and the cutoff function set by (4.290) and (4.291) for all N. Moreover,
the truncations are imposed by (4.284) for all NV in the framework of the tC-flow and by (4.285)
to (4.289) for N = 1 in the framework of the mC-flow. This leads to all results presented in
fig. 4.13 for N = 1 and to the tC-flow result (obtained within the original representation) shown
in fig. 4.14 for N = 2. Focusing first on fig. 4.13, we can see that, for both Eg and pg, the

3TRecall that, as discussed below (4.178b), it is pointless to investigate the mC-flow with Nscpr < Niax/2
as it reduces to the tC-flow in this situation.

38 According to the definition of 653,211,5 given by (4.173), we have ®
N =1.

(2)

sym,s

= 63) for the studied toy model at
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Figure 4.13: Difference between the calculated gs energy Egsalc or density pg;lc and the corre-

sponding exact solution Eg or p&* at m* = +1 and N =1 (Re(A) > 0 and Zm()) = 0).

tC-flow curves are further and further away from the exact solution (except for A\/4! < 1) as
the truncation order N, increases. This is certainly an odd feature for an FRG approach but
it is consistent with the equivalence between the tC-flow and self-consistent PT discussed in
section 4.2.1: such a worsening is thus a manifestation of the asymptotic character of the series
underlying self-consistent PT, which is at the heart of chapter 3.

We can also note that there are no tC-flow results for the truncation orders N« = 3 or 4
and Np.x = 7 or 8 in fig. 4.13 as we face the same stiffness issues (with the NDSolve function
of Mathematica 12.1) as those encountered in section 4.1.2 for our 1PI-FRG applications in
the broken-symmetry phase. We have also checked that the same problem manifests itself at
N = 2 with Ny, = 3 or 4: the only tC-flow curve for the original theory shown in fig. 4.14
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Figure 4.14: Difference between the calculated gs energy E;glc or density pg;‘lc and the corre-
sponding exact solution ES¥* or p&** at m* = +1 and N = 2 (Re(\) > 0 and Zm()) = 0).
See notably the caption of fig. 3.11 for the meaning of the indication “O(h”)” for the results

obtained from h-expanded EAs within self-consitent PT.

is just obtained for Ny., = 1 or 2. However, all those tC-flow calculations (with or without
stiffness issues) have been performed in the unbroken-symmetry phase, which suggests that
the origin of these stiffness problems for the 1PI-FRG flow equations (only occurring in the
broken-symmetry phase) on the one hand and for the 2PI-FRG tC-flow on the other hand
are different. Despite such limitations, it is rather fruitful to further exploit the equivalence
between the tC-flow implementation of the 2PI-FRG and self-consistent PT. To that end, we
recall that, as we have done in chapter 3, self-consistent PT for I'?*D(G) is carried out by
solving the gap equations extremizing I'?*V(@) with respect to G and then picking up the
physical solution® G. Remarkably, the initial conditions of the C-flow are such that the tC-

39The physical solution G leading to all our results from self-consistent PT applied to T*PD(G) (shown
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flow results coincide with those of our physical solutions for Ny.x = 1 or 2, Nyax = 5 or 6 and
Nmax = 9 or 10 at N =1 (according to fig. 4.13) and for N, = 1 or 2 at N = 2 (according to
fig. 4.14). Nevertheless, there is a change of physical solutions in the perturbative regime (i.e.
for \/4! < 1) for self-consistent PT applied up to order O(A\?) (or, equivalently, O(h%)) and
O(M) (or, equivalently, O(h°)), as can be seen in fig. 4.15. These correspond respectively to the
tC-flow approach with truncation orders Ny, = 3 or 4 and Ny, = 7 or 8, which are precisely
the Npax values where the stiffness problem arises. This illustrates that the tC-flow is not suited
to fully reproduce self-consistent PT when there is a change of physical solutions involved in
the latter framework for the chosen truncation of the EA. This limitation can be attributed
to the fact that the initial conditions for the tC-flow are fixed once and for all (i.e. regardless
of the values of coupling constants) from the perturbative expression of the Luttinger-Ward
functional, which does not allow for reproducing the change of solutions observed in fig. 4.15.
This also implies that the stiffness problem arising in our tC-flow calculations is inherent to
the C-flow formalism and not to the used numerical tools.

1.0 1

0.81

0.4+

® exactsolution e self-consistent PT 2P EA (¢ = 0) O(\’)
self-consistent PT 2P1 EA (¢ = 0) O()) x  2PI-FRG tC-flow Nypax =1 or 2
self-consistent PT 2PI EA (¢ = 0) O()2) *  2PIFRG tC-Alow Nyax = 5 or 6

---— self-consistent PT 2PI EA (¢ = 0) O(\?) #  2PIFRG tC-flow Nimax =9 or 10
—-=-= self-consistent PT 2P| EA (¢ = 0) O(\")

Figure 4.15: Gs density pgs calculated at m? = +1 and N =1 (Re(\) > 0 and Zm(\) = 0),
and compared with the corresponding exact solution (black dots).

Regarding the mC-flow, we can see that the corresponding ansatz underlying the truncation
manages to cure the aforementioned stiffness problem for N, = 3 or 4, but not for all choices
of Nscpr: the combination (Npyax, Nscpr) = (3, 2) set by (4.287) still suffers from it for instance.
Besides, it also introduces this issue at the truncation order N,.. = 2 which is not affected in
the framework of the tC-flow: this problem arises e.g. at the truncation (Npyax, Nscpr) = (2, 3)
(set by (4.286)), hence its absence from fig. 4.13. Furthermore, we can also see that mC-flow
results might deteriorate as Np.x and/or Ngcpr increase(s), as can be seen by comparing the
curves associated with (Npax, Nscpr) = (2,2) and (Npax, Nscpr) = (3,3) in fig. 4.13. This
is an important drawback as it shows that we loose accuracy while incorporating explicitly
more information in our truncation. The ansatz underlying the mC-flow truncation is therefore
not reliable. Moreover, although we have only investigated the mC-flow truncation scheme for

notably in figs. 3.13 and 4.15) is defined as the solution of the gap equation (for the propagator G) yielding the
calculated complex gs density pSI that is closest to the corresponding exact solution pg’s‘“t, i.e. that gives
— pg’s‘“t|. The term “norm” should be understood here as the norm of a complex

gs,comp
calc

us the smallest norm | Pgs,comp

number as pﬂég}gmnp might have a non-zero imaginary part. Recall that pgglc = Re(

calc

Pgs,comp) in all our plots.
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N = 1, the problematic features of the mC-flow that we have just put forward are expected
to manifest themselves for any N. We thus consider the present discussion on fig. 4.13 to be
sufficient to make our point for the mC-flow in the framework of the original representation.

All applications of the C-flow version of the 2PI-FRG have been discussed for m? > 0 so
far. The corresponding formalism is actually not suited to treat the regime with m? < 0: if one
might set m? equal to a negative value to solve the equation system made of (4.251) to (4.254),
the results thus obtained would be unphysical (with e.g. a negative estimate of the gs density
pPes)- A more relevant way the tackle the unbroken-symmetry regime with a C-flow approach
would be to add a linear source in the generating functional (4.119) as follows:

Z[J, K] = VK] = / Do oS o JaBatd for FaKoarbar | (4.292)

We would then reintroduce a cutoff function R, in the quadratic part of the classical action in
order to develop an extension of the C-flow formalism able to treat regimes with a non-vanishing
1-point correlation function ¢ of the field ). However, there are several reasons according to
which such an extension is of little interest:

e The central object of the resulting approach would no longer be I'?"D[G] = TPD[¢p =
0,G] but the full 2P EA T'?*D[¢, G] instead. Hence, as the 1-point correlation function
¢ is a Grassmann field for applications to fermionic systems, the Fierz ambiguity might
arise and we would loose in this way an important advantage of the 2PI-FRG.

e This extension would reduce to the usual C-flow approach developed for I'?*"D[G] in the
regime with m? > 0. We have already shown that this C-flow approach possesses severe
drawbacks (for its tC-flow as well as its mC-flow implementations), which would hold in
principle in the regime with m? < 0 via such an extension.

Hence, we will stop our C-flow investigations at the present stage for the original theory and
rather exploit other implementations of the 2PI-FRG to tackle the broken-symmetry regime.

In conclusion, we have studied the unbroken-symmetry regime of our O(N) model by im-
plementing higher truncation orders for the tC-flow and the mC-flow as compared to the ap-
plications presented in refs. [459, 460] with the purpose of getting a clearer idea of the ability
to control our approximations in these frameworks. The conclusion is rather negative as our
results show that none of the two tested C-flow implementations are systematically improvable
in a reliable fashion: i) the tC-flow worsens with increasing truncation orders and does not en-
able us to go reliably beyond its first non-trivial order (which coincides with the Hartree-Fock
result); ii) the ansatz underlying the mC-flow does not seem reliable either as the corresponding
results might also deteriorate as Ny, and/or Nscpr increase(s). Hence, we will then apply
these methods to the mixed representation of the studied toy model (still in the regime with
m? > 0) in order to check if these limitations can be lifted.

4.2.2.3 Mixed 2PI functional renormalization group C-flow

In the framework of the mixed theory, a second fluctuating field o enters the arena and the
Schwinger functional to consider involves the source-dependent terms %Zfim:l cﬁalKéng@QQ
and %K ()52 in that case, where K and K@) are both bilocal sources in finite dimensions.
The corresponding Luttinger-Ward functional ®,,;(G, D) thus depends on two propagators,
D being the propagator associated with the Hubbard-Stratonovich field. Furthermore, the
C-flow is now implemented by introducing two cutoff functions, Ré“o) and Rﬁ"), dressing respec-

tively the free propagator of the original field (via (C®)~1 — (C¥)~1 = (C®)~1 + R
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or (CO)1 — (C¥h-1 = RP(C®)~1) and that of the Hubbard-Stratonovich field (via
(COY1 5 (CYN1 = (@)1 4+ R or (C@)~1 — (C!)~1 = RI(C@)~1). Hence, the
contribution of the Hubbard-Stratonovich sector simply adds up to the flow equations of the
original C-flow such that the tower of differential equations underlying the C-flow in the frame-
work of the mixed representation of our (040)-D O(NN) model is directly deduced from (4.251)
0 (4.254):

- N _ . -1 _ (o) _
Gﬁ,ala’l = — Z G57a1a2 ((Céw)> — Es ) Gﬁ,aéa’l , (4293)
az,ab=1 azal,
—_ —9 (o -1 _(o’)
Ds=-D: <<C§ >> ) ) , (4.204)
G L5 (o) @ oW Lie@ " (B, - o
A0 =3 30 (A7), @=09),+5 (A7) (P-cr) (1209
a,a’=1
(@) 1 & - (2G) 1= —(1G,1p)
saial _5 Z Gs,azaé(bmix,s,(ag,aé)(al,a’l) - §D (Dmuc:s,ala’l ) (4296)
az,ah=1
1 = —(1G,1D) 1- D)
§ Z 5a1a1q)mlxﬁa1a1 - §D q)rruxs ) (4297)
N
+(nGmD) 1 = —((n+1)G,mD)
mix,s,(a1,a})(an,al) 5 Z G5:an+1a%+1q)m1x5 (an+1,a], 1) (a1,a))(an,al,)
An+1, ai},-‘—l:l (4298)
1= =G, (m+1)D)

+ 2D (I)mlxs JS(a1,a))-(an,a},) V(TL, m) \ {(17 0)7 (O’ 1)} )

where AQ, = Q, + %Tra [ln <27TC§LP))i| + %ln (C’éa)> and the self-energies are defined as:

0P .ix (G, D)
E(SD? G D)y=-——2=222777 4.299
aa( Y ) aGaa’ ) ( )
0P .ix (G, D)
() D)= XA 4.
(G, D) e (4:300)
,mD) artman D) (G D)

Note also that we have used the shorthand notation <I>fmf 6.(a1,0))(ansa}) = DG -G OD™
" ajay” nan

G=Cs
D=Ds
together with <I>fmx)5 = @f;ffm nd @ﬁfl @gg ZD) Vn in (4.296) and (4.297). The symmetry

arguments put forward previously for the orlgmal C-flow also apply to the original sector in
the present situation. This implies notably that:

(CO) o = (C) b s, (4.301)
Eﬁ,aa’ = éﬁ (5aa’ Vs 5 (4302)
5 =5 G Vs (4.303)

Therefore, the sums over color indices in (4.293) to (4.298) can be dealt with in the same
manner as in (4.251) to (4.254). In this way, (4.293) to (4.298) become:
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e For N =1 (VNpax):

G, = -G ((@w))‘l — if)) : (4.304)

D,=-D. (((;;(o))_l _ i(f)> , (4.305)

AQ, = % (cgw)l (G, — C?) + % ((};”))1 (D, — C)) | (4.306)

5. = LAl - palil” (4.307)

A %G o) %D e (4.308)

B = GBI DA W m)\((1,0),(0,1)) . (4309

e For N =2 (up to Npax = 2):

G.=-& ((05(@))_1 - if)) , (4.310)
(

D,=-D. (Cgff))_l _if)> , (4.311)
- N 1/ \—1
AQ, = <C§“’)) (Go— ) +3 (05(0)) (D. — C)Y (4.312)
iﬁ-w 6 ( nic)i)s T (I)l(nfli)s (LD, 2)> - ;E 6&&;?3,1) : (4.313)
s = Galen ;D CN (4.314)
:i)s (D) = %5 (cbfjg)s 1), T ‘I)Sli)s (L1)(1L,1)(2,2 )>+;E ‘ng;?nu,n , (4.315)
@ii)s (1,1)(2,2) = %E (‘I’Sis (1,1)(1,1)(2,2) T ‘I)n?ﬁ)s (1,1)(2,2)(2,2) )+2D <I>r§§ ;D1)1)(2,2) , (4.316)
B = Gl + S DA (1.317)
$S§:jf1),1) = %as (61(35351,?1),1)(171) + ¢$§i?1)1)(2 2)) + %Dsq)r(igjl()l)l) : (4.318)

The initial conditions required to solve the latter equation systems are determined in the
same manner as for the original theory, with one additional subtlety: as was discussed in
chapter 3, the series representing the Luttinger-Ward functional ®,,;(G, D) in the framework
of self-consistent PT differ whether h or A is used as expansion parameter. Hence, we define
these two distinct series from (3.297) and (3.308) as follows:

h2
P nix SCPT froexp (G, D) = B + (9(713)

(4.319)
- —hQAD Z G?

a1,a2=1

aiaz ) ’
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1 1
P mix SCPT Aexp (G, D) = o Q\’\O + 1 @ +0(N)

0 (S0.) 0 3 chrow),

ar=1 al,ax= 1

(4.320)

Relations (4.319) and (4.320) are thus exploited to determine the initial conditions 5§i§’mm

which are identical whether we consider (4.319) or (4.320) for all combinations of m and n
except for m = 2n, as a consequence of G 500 = D5:si = 0 Va,d'. In conclusion, we obtain
the following initial conditions for all N (see appendix F.5.2.2):

Gi—spaer =0 Va,d' | (4.321)
Doy, =0, (4.322)
AQy, =0, (4.323)
59w =0 Vad (4.324)
79—
s=s; — U (4.325)
2>\ . .
— (5(11&25@/1,1(2 + (5a1a/2(5a/1a2) from the Ai-expansion (i.e. from (4.319))
—(2G,1D) 3
(I)mix s=si,(a1,a})(az,ah) —
o 2
3 (0ara; Oazat, + Oarasdata, + Oaraydaiay)  from the A-expansion (i.e. from (4.320)) ,
(4.326)
—(nG,mD)
q)mix,szsi,(m,a’1)~~~(an,a41) =0 vala a/17 T, Ay, a;u vn 7é 2m .
(4.327)

Finally, we address the truncation of the present C-flow approach. For the mC-flow, we will
exploit the three first non-trivial orders of both ®yix SCPT fexp (G, D) and @iy scpT rexp (G D)
(deduced respectively from (3.304) and (3.322)) at N = 1:

1 1 5
D op(G, D) = —=R*ADG? — ——R*N°D*G* + ——h'N’D*G® b 4.32
mix SOPT pesp (G, D) = SWPADG? — PN D*G + o WX DG +0O(R°),  (4.328)
1 2 1 2124 1 33,6 4
Puiscrrexp(G D) = SADG” = 5 M DG + 2 AP DPGE + O\ . (4.329)

Hence, the truncation of the tower of differential equations for the C-flow in the framework of
the mixed representation is set by (see appendix F.7 for the mC-flow’s truncation conditions
up to NSCPT = 3 with Nmax = 1)

e For the tC-flow:

§(nG,mD) _ 6(nG,mD)

5=5;

Vs, V' n+m > Npax . (4.330)
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e For the mC-flow® (at N =1 and Ny = Nscpr = 1):

— From the h-expansion at i =1 (i.e. from (4.328)):

(2G —(2G) 1—@c1p)—=
(I)s = CI)mj)QSCPT,h-exp,NscPT:1,5 A%%@iQG’ID) = 5(1)5 D5 y (4331)
=(2D) _ =(2D)
Py = P SCPT hexp, Nscpr=1,8 A 3FEGD) =0, (4.332)
—(1G,1D)  —(1G,1D) 1—©c1D)—=
®5 = q)mix,SCPT,h—exp,NSCPT:175 X—>§5(2G’1D) = 5 5 G5 . (4333)
4
— From the A-expansion (i.e. from (4.329)):
=(2G)  =(26) 1_—2¢1p)—=
q)s = (pmiX,SCPT,)\-EXp,NSCPT:1,5 s 1@(2G ,1D) 5@ D5 5 (4334)
=(2D) _ =(2D)
@5 = @mix,SCPT,)\—exp,NSCpTzls Aol q)(zg 1D) =0 ) (4335)
—(1G,1D)  —(1G,1D) 1—@61D)—=
(I)s = (pmiX,SCPT7)\—eXp,NSCPT:175 Ay 1F(261D) = 5 5 G, . (4-336)
2% s

Note that the integer Ngcpr still indicates that the Ngcpr first terms of the chosen pertur-
bative expression of the Luttinger-Ward functional (i.e. either @ scpT nexp(G, D) in (4.328)
up to order O(RNscPT™) or @i seopT aexp(G; D) in (4.329) up to order O(AYscrT)) have been
considered to establish the truncation conditions of the mC-flow. The last ingredient required
to perform our calculations are the analytic forms of the cutoff functions ng) and Rég). We
choose:

(@) = (C¥) " + R, = (m?+R)0ua Yaraz, (4337)

)a1a2

55,0102
(€)' =(C) R =1+R,, (4.338)
and
Ri=s'-1, (4.339)

with §; = 0 and s¢ = 1, similarly to (4.291) for the original representation.

To summarize, our numerical results for the C-flow in the framework of the mixed theory
are determined up to Ny.x = 4 by solving the differential equation system made of (4.304)
0 (4.309) for N =1 and of (4.310) to (4.318) for N = 2, with initial conditions set by (4.321)
o (4.327), truncation conditions given by (4.330) for the tC-flow and by (4.331) to (4.336)
for the mC-flow at N = 1 and Np.x = Nscpr = 1 (see appendix F.7 for Ngcpr = 1,2 or 3
with Nyax = 1). Finally, (4.337) to (4.339) set the chosen cutoff functions. The gs energy and
density thus calculated are presented by figs. 4.16 for N = 1 and 4.14 for N = 2. First of all, we
can see in both of these figures, and thus for N = 1 and N = 2, that the first non-trivial order
of self-consistent PT is well reproduced by the tC-flow, in the framework of the h-expansion
as well as the A\-expansion. The formal proof of the equivalence between the tC-flow and self-
consistent PT, given in the discussion of section 4.2.1 on the C-flow, is indeed straightforwardly
generalizable to the mixed situation. We thus conclude that, in the framework of the original

(2G 1D) (2G 1D)

= 4)/3 an _ = 2) at N = 1, respectively from the
. —(2G,1D) —(2G,1D)
h-expansion and from the A-expansion, Wthh explalns the substltutlons A= 30, /4 and A — @, /2

in the corresponding implementations of the mC-flow.

40The initial condition (4.326) induces ®,_
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Figure 4.16: Same as fig. 4.14 with N = 1 instead.

and of the mixed representations, the tC-flow approach is not systematically improvable in
itself. One might further investigate the properties of the underlying series (4.144) representing
the 2PI EA to see whether a combination of the tC-flow with resummation theory might be
relevant to overcome this limitation.

Regarding the mC-flow results of fig. 4.16, our qualitative conclusions do not change either
as compared to the original theory. For Egs and p,, the tC-flow at Ny = 2 and mC-flow at
Npax = Nscpr = 1 coincide for both the h-expansion and the A-expansion. This could have

been directly deduced from the truncation conditions (4.331) to (4.336) which are equivalent
= (2G) _(2D) - (1G,1D)
to the differential equations expressing ¢, , ®, and P, in the framework of the tC-

flow at Npa.x = 2. Furthermore, as for the tC-flow and self-consistent PT, the mC-flow results
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determined from the A-expansion always outperform in fig. 4.16 those obtained from the h-
expansion for a given choice of Np.x and Ngcpr (note that the mC-flow with (Nyax, Nscpr) =
(1,2) and truncation deduced from the h-expansion of the Luttinger-Ward functional is absent
from fig. 4.16 due to the stiffness problem discussed earlier, slightly after (4.291)). However, at
Nmax = 1, the mC-flow results associated with the A-expansion clearly worsen from Ngcpr = 1
to Ngcpr = 2 (at least for A\/4! € [0,10]) and, in particular for E,q, the corresponding curve
at Ngcpr = 3 is barely closer to the exact solution than that at Ngcpr = 1. Furthermore, the
mixed mC-flow results of fig. 4.16, which are all determined for Ny, = 1 (but up to Ngcpr = 3,
which can turn out to be a very demanding truncation to reach for a realistic theory), are either
worse or only slightly better than the best mC-flow estimates for Ey and p,s obtained in the
original theory (with (Npax, Nscpr) = (2,2)) in fig. 4.13. Hence, the present mC-flow approach
does not appear to be very efficient at exploiting the Hubbard-Stratonovich field to grasp further
correlations but, besides the performance, our main point is that the mC-flow truncation is not
more reliable in the mixed representation than it is in the original one.

In conclusion, we have contented ourselves with the original and mixed situations for the
C-flow (and only at N =1 for the mC-flow) as we believe that such applications are sufficient
to make our point: the C-flow is rather disappointing and not reliable to design well-controlled
systematically improvable approximation schemes. However, we have illustrated the interesting
equivalence between the tC-flow and self-consistent PT (with a restriction to odd truncation
orders Ngcpr for self-consistent PT in the framework of the original theory). There is no reason
that such observations change for the collective representation (for which the determination of
the initial conditions would actually be significantly more cumbersome due to the more involved
nature of the diagrammatic representation of the Luttinger-Ward functional in this situation).
Unless some extensions of these methods are designed to change these qualitative features, these
approaches are therefore of little interest for us in our aim to construct reliable approaches to
study strongly-coupled quantum many-body systems. Thus, we now turn to the U-flow in order
to see how this can be achieved via the 2PI-FRG.

4.2.2.4 2PI functional renormalization group U-flow

Plain U-flow: Let us first stress that the symmetry arguments put forward for the C-flow
also hold for the U-flow as none of the 2PI-FRG approaches treated in this study are able to
exhibit a spontaneous breakdown of the O(N) symmetry since they are all based on the 2PI
EA T?PD[G] = TP [¢ = 0, (] with vanishing 1-point correlation function ¢. In particular, the
propagator G, and the self-energy ¥, still satisfy respectively (4.258) and (4.259) for all 2PI-
FRG applications to the O(/N) model under consideration. This implies that the corresponding
pair propagator, defined previously by (4.182), reduces to:

I 2

s,(a1,a})(az,ah) = Es,alagés,a’lag + 65,a1a265,a/1a/2 = 65 (5a1a’25a’1a2 + 5a1a26a/1a/2) ) (434())

and, according to (4.187) and (4.193) expressing respectively the derivative W2 and the bosonic
identity matrix, this also leads to:

—(2) —inv  =(2)\ "V
W ar.a’ Mao.a’ :<H +® )
s,(a1, 1)( 2, 2) 5 5 (al,all)(a2,a/2)
1 N (2) inv
=3 > Meera)asay) (Z + 1L @, ) L (4.341)
as,ap=1 (a3,a3)(az,a3)

-G (z + ﬁ@?)

)
(a1,a])(az,ay)
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with

N
— —(2) 1 = —(2)
<I + Hg@ > - I(a ,a’)(a ,a/) + 5 Hﬁv(a 7a/)(a 7al)® (a a’)(a a,)
* /(@) (az.ap) pn et 2(132,%:1 B (4.342)

= 5a1a25a’1a’2 =+ 6a1a/25a’1a2 + G (I)s J(a1,a!)(az,ab) >
where (4.282) was used to replace Z(, a/)(az.ay)- Furthermore, we already specify the chosen
cutoff function for Us:

SA
Us,a1a2a3a4 = RsUa1a2a3a4 = 5Ua1a2a3a4 = ? (5(11(125(13(14 + 5a1a35a2a4 + 5a1a45a2a3) V(Il, a2, a3, a4 ,

(4.343)
as this will enable us to simplify the final forms of our flow equations thanks to Kronecker
deltas brought in by the interaction U (expressed by (4.249)). Note that the flow parameter s
still runs from s; = 0 to 8¢ = 1 in the present situation, thus implying that (4.343) satisfies the
required boundary conditions (4.179a) and (4.179b). With all of this in mind, we rewrite the
general pU-flow equations given by (4.188), (4.189) and (4.191) in the framework of the studied
toy model:

G. =G5, (4.344)
: )\ 2 N (2) inv N (2) inv
Q. = —5 (Z+H<I> ) +2 (I+ﬁ$ ) +N2+N)| ,
72 5 alaz2_1 (a1,a1)(az2,a2) alazfl_l 5 g (a1,a})(a1,a}) ( )
(4.345)
hd A N (2) inv
Y, =——G (I +1L,® )
A ,Zl T anana)
a,a’,a2=
N .
Z < )an (I + ﬁ5_§2))an
1 (a1,a2)(as,a3) (a4,a4)(az,a’)
N inv inv
2 Y ( ) (I + ﬁ@f))
asahl (a1,a2)(as3,a%) (a3,a})(az,a’)
A N (2) inv
~ G (N +2 (I LD )
37 (V2 2_: * ) e (4.346)
a1=1
)\ 4 N (2) inv ( ) inv
G (z L3 ) <I 4TI, )
+ 576 ° Z + (1,1)(a1,a}) (az,a2)(aq,a})
a1,a’,a2,a3,a4,a},a5,05=1
5O T2\
X @, J(a1,a})(as,a})(as,al) (I + 11D, >(a57a,5)(a37a3)
)\ 4 N (2) inV (2) iIlV
el <I+H<I> ) <I+ﬁ_ )
288 ° Z 0 (1) (ar,a}) T ) (az,ay)(as,al)

’ / ’ ’
ai,aq,a2,a45,a3,03,04 7a4:1

—(3) inv

= =(2)
X (I)s J(a1,a])(a3,a})(as,a}) (I + ng)s )

(as,05)(az,ap)

where the color indices set equal to 1 in the RHS of (4 346) just result from our convention
3 = 25 11 (which is arbitrary in the sense that Es 11 = 2saa Va owing to the conservation of
the O(N) symmetry). Hence, the resolution of the Bethe-Salpeter equation during the flow
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now simply amounts to inverting (I + ﬁ55£2)>, i.e. to solve:

N
1 T H?
Lorafaray) =5 D (I +1L2, >(

az,ay=1

(I LD ))mv , (4.347)
a1,a’)(asz,af) (a3,a%)(az,ab)

which is nothing other than a set of N* coupled algebraic equations.

Furthermore, as opposed to our presentation of the C-flow equations, we will not evaluate
explicitly the sums over color indices for N = 2 in the U-flow equations as the relations thus
obtained (in particular from (4.346)) would be extremely cumbersome and certainly pointless
for our discussion. We simply carry out these summations numerically instead. However, we
will still pay particular attention to the case with N = 1 on which we now focus. In this
situation, the definitions given in our general presentation of the U-flow in section 4.2.1 take a
very simple form. For example, the definition (4.184) of the inverse of a given bosonic matrix

M becomes: A

M™ = — 4.348
M ? ( )
as a result of (4.283), whereas the pair propagator and its inverse read:
I(G) = 2G*, (4.349)
inv 2
m(G) = o (4.350)

from which we can deduce the following expression of Wﬁz)

— 4

W= = (4.351)
2G. " 4 B!

according to (4.187) (or (4.341)) and the derivatives:

II(G)

o = 5G. (4.352)
2
0 aHé? 16, (4.353)

still according to (4.283). From (4.188), (4.189), (4.191) and (4.192) as well as (4.343) specifying
the chosen cutoff function for Us, we infer the following pU-flow equations for the studied O(V)
model at N = 1 with the help of (4.348) to (4.353) (see appendix F.8.1 for the corresponding
flow equation expressing the derivative of the 2PI vertex of order 3 with respect to s):

G. =G5, (4.354)

Q= 2—1 (4 (26,7 + 69)_1 + Ef) , (4.355)

>, = —% (2 + 659) - ((2@; gt 65.2))2 (86; - Eff’)) + @,) , (4.356)
b — %(2 (267 + 6§2’>_3 8G.° - 65”)2 — 64 <2G +3,”) en

(4.357)
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where (4.354), (4.355) and (4.356) are respectively equivalent to (4.344), (4.345) and (4.346)
at N = 1. We deduce in the same way the tU-flow equations at Ny.x = 2 and N = 1
from (4.202), (4.203), (4.205) and (4.206):

G, =G5, (4.358)

Q, = % (4 (2@; gt 5)\> g 65) , (4.359)

S, = -G, (2+5\G2) B (8 (2+5\G7) Ty 1) (4.360)
2 : i :

3% =), (4.361)

The initial conditions required to solve the pU-flow equations (including the tU-flow ones) in
the framework of the toy model under consideration are:

1

ESZSi,aa’ - Caa’ = W(saa’ ’ (4362)
— N 2
Qe = =5 In (%) , (4.363)
Yo =0 Va,d (4.364)
aii)ﬁi,(aw/l)...(am%) =0 Vay,a}, - ,an,a,, ¥Yn>2, (4.365)

and the truncation of the corresponding tower of differential equations is set by (4.284). We
stress that condition (4.284) is already implemented in the tU-flow equations (4.358) to (4.361)
for the truncation at Npa.x = 2.

Thus, our pU-flow calculations are performed by solving the equation system made of (4.344)
to (4.346) at Npax = 1 for all N (for N = 2 especially), (4.354) to (4.357) up to Nyax = 2 at
N =1 or (4.358) to (4.361) for the tU-flow at Nyax = 2 and N = 1. The initial conditions used
to solve these differential equations are given by (4.362) to (4.365), the associated truncation
condition is expressed by (4.284) whereas (4.343) sets the chosen cutoff function for U;. The pU-
flow results thus obtained for NV = 1 are notably presented in fig. 4.17. The latter shows that the
pU-flow exhibits a clear convergence from Ny.x = 1 to Ny = 3 towards the exact solution for
the gs energy E,, and density pgs, thus achieving an accuracy of about 1% or less at A\/4! = 10
and Nyax = 3 for both E,y and pgs. As could have been expected from the drastic character of
the approximation underpinning the tU-flow, the latter approach is significantly less performing
than the standard implementation of the pU-flow, as can be seen in fig. 4.17 at Ny. = 2. It
shows actually that the tU-flow at Ny.. = 2 is even less efficient than the standard pU-flow
at Npax = 1 in almost the entire interval A\/4! € [0, 10] for both E. and pgs. We recall here
that the idea motivating the introduction of the tU-flow was to avoid solving the Bethe-Salpeter
equation repeatedly throughout the flow. However, the standard implementation of the pU-flow
i
Vs according to the truncation condition (4.284), which implies that Z +ﬁﬁ§2) =7 Vs and the
Bethe-Salpeter equation in the form of (4.347) becomes immediately trivial. Therefore, since
the pU-flow at Np.x = 1 outperforms in general its tU-flow simplification at Ny, = 2, the
latter is of very little relevance, at least at N., = 2. As truncation orders N,., larger than 2
are already quite demanding to reach for realistic theories, we thus conclude that we must rely
on other approximations to circumvent the numerical weight underlying the implementation of
the pU-flow (or of the mU-flow) version of the 2PI-FRG. Note also that our pU-flow results at
N = 2 and Npax = 1 are shown in fig. 4.24 for E,s and pgs in comparison with other approaches
like the mU-flow on which we then focus.

only requires to solve this equation at Ny.x > 2. At Ny. = 1, we have indeed 522
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Figure 4.17: Difference between the calculated gs energy Egglc or density pgzlc and the corre-

sponding exact solution E* or p&** at m* = 41 and N =1 (Re()) > 0 and Zm()) = 0).

Modified U-flow: We will start by giving the mU-flow equations expressing G5, Q, and X,
with Ngcpr = 1 in the framework of our (0+0)-D O(N) model for all N. There are essentially
two manners to achieve this at this stage: either we deduce such equations from our general
results of section 4.2.1 (i.e. from (4.227), (4.229) and (4.231)) by exploiting the O(/N) symmetry
in the same way as for the pU-flow or directly by rewriting the pU-flow equations (4.344)

to (4.346) in terms of the bold quantities underlying the mU-flow, which involves notably the
modified Luttinger-Ward functional defined as:

Qﬁ(G) = ®5(G) + (pSCPT,NSCPT:l(Ua G) - ®SCPT,NSCPT=1(UE7 G)

N 2 N
1 1 (4.366)
= ©(G)+A(1-s) | o (Z G) + 4 Y Gl
a1=1 ay,a2=1

with

1 1
et vann-10,6) = 5 () + @

(4.367)
N 2 N
A A 5
- ﬂ <Z Gal‘”) + E Z Galaz :
a1=1 a1,a2=1
In any case, the O(N) symmetry implies:
aﬁ,aa’ - aﬁ 5aa’ Vs 5 (4368)

Es,aa’ = Es 5aa’ Vs s (4369)
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= —2

HS,(al,all)(ag,a’Q) = Gs (5a1a'25a’1a2 + 5a1a25a’1a’2) 5 (4370)

and the expression of Wiz) to consider now can be directly inferred from (4.341) (alongside
with (4.367) and (4.370)):

77(2) —inv  =—(2)  =(2) 2) inv
W s,(a1,01)(az,a3) — <H5 + (I)5 + (DSCPTaNSCPT:LE(U) (I)SCPT Nscpr= 15(U)>( 1,a7)(az2,a5)
a1,a})(az,a5
N
1 T ~~inv
= 5 Z Hﬁ’(a‘hall)(a&a/g)TS,(a&ag)(aQ,aé) (4371)
as,a /3:1
- G Tﬁ J(a1,a))(az,a}) >
with
s,(a1,a])(az,ay) = + + SCPT,NSCPT:Ls( s)_ SCPTvNSCPT:LS( ) IV
a1,a;)(az,ah

2
s, al»al)(a2,f12)

- 5a1a25a’a’ + 5a1a 5a lasz + G (I)

- %(1 - )G2 (5a1a’ 6a2a/ + 5a1a25a’a’2 + 6a1a’ 5a’1a2) )

(4.372)
where the last line simply follows from the definition (4.282) of the bosonic identity matrix and:

=(2) A
(q)SCPT Nscpr= ls(U ) CDSCPT,NSCPT:I,s(U))(al o Y(an,al) = _5(1 - 5) (6111(1/16112(1’2 + 5a1a25a’1a’2 + 6a1a/25a’1a2) )
(4.373)
as a result of (4.367). We also recall once again that the bar labels functions evaluated at
G = G, instead of G = G, in the framework of the mU-flow. The three mU-flow equations
thus obtained are:

G, =G3,. (4.374)
ey A -2 ==inv —=inv
Q= =G, Z 1T ara1) (az,a2) T 2 Z 1T ey —2N(N+2) |, (4.375)

N

—%@ > (Z + ﬁ@f))

/
ai,ay,a2=1

inv

(1,1)(a1,a’1)

~=inv ~—=inv ~=inv ~=inv
( z T (a1,a2)(as3,a3) T J(a4,a4)(az,a}) +2 Z T J(a1,a2)(as, ad)’r J(a3,a%) (a2 a1)>

az,as=1 a3,afy=1

N
)\ R (2) inv
+LG N+ Y (T+TLS, )
18° ( )(1121 (1,1)(a1,a1)
A al 2\ i (3) i
“F%Gs Z (I H 5 )(1 Da1,a)) Ts,(az,az)(a4,a’4)(ﬁs,(al,a/l)(a4,ag‘)(a5,ag)Tﬁ,(a5,ag)(a3,a3)
a1,a},a2,a3,a4,a),a5,a5=1 ’ T
A al 2\ ™ i (3) i
UBTTICE > (z+ 13, )(1’1)@1,&,1 ) Lotenat)anay) Pofanat) as.af) s ) Voas alpiazat) -

’ ’ / [
a1,a},a2,a,,a3,a3,a4,a;=1

(4.376)

where the color indices equal to 1 in the RHS of (4.376) follow from the convention X, =
25711 36 40 Va, similarly to (4.346). We have pushed our mU-flow derivations so as to be able
to perform calculations up to N, = 3 for all N. However, instead of calculating the differential
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equations involving 5;2 and Eﬁg) to achieve this, we have exploited the fact that the 2PI and
2PPI EAs of the studied (0+0)-D model coincide in the absence of SSB to develop a mU-flow
formulation of the 2PPI-FRG treated in section 4.3 (see appendix F.8.2). The derivation of the
underpinning differential equations is less demanding than for the present 2PI-FRG approach.

. . . . . i 2
In particular, it does not require to evaluate derivatives such as -2 and —%e —  For
0Gs,~ 0Gs,y, 6Gs vy
oI,

instance, the evaluation of o led to a consequent step in the derivation of (4.376)* (see
notably (F.97) and (F.98) in appendix F.4.2). This 2PPI-FRG approach is not suited to treat
finite-dimensional systems (as we explain technically in appendix F.8.2) but the existence of
such a shortcut illustrates an important advantage of the zero-dimensional toy model chosen
for this comparative study.

Let us nevertheless focus on the quantities involved in (4.374) to (4.376), which will enable
us to further clarify the general features of the implementation of the mU-flow. The bosonic

matrix Z + ﬁ5$(2) satisfies the equality:

S

2)

s(a1 ’all)(a2 10’/2) )

<I + ﬁﬁaf)) = (5a1a2 (5a/1a/2 + 5a1a/2 5a/1a2 + @i@ﬁ (4.377)

(a1,a1)(az,a3)

which can be derived in the same way as in (4.342) with G, and 59 respectively replaced

by G, and 59). Hence, as can be seen from (4.375) and (4.376), solving the Bethe-Salpeter
equation now translates into inverting the bosonic matrices Z + ﬁ5$£2) and Y,. Actually, by
comparing (4.372) with (4.377), we can notice that T, reduces to I+ﬁ5$£2) by setting s = 1 in

the very last line of (4.372). Hence, the components of (Z + ﬁ5$§2)> ™ can be directly deduced

AAInV . ~
from those of T, as well and we can content ourselves to invert T, i.e. to solve:

N
Y Totarat) o) Tofasat)azat) - (4.378)

az,ab=1

N | —

I(a1 ,ah)(az,ab) —

The inversion of Y, is not trivial at Nyax = 1 and N > 2, as opposed to Z + ﬁﬁf) for the
pU-flow??. At N = 1 however, T,  is readily found according to (4.348):
TinV _

S

, (4.379)

;%|| e~

with T, = Ts,(l,l)(l,l) whereas, at N = 2, we solve 2* = 16 coupled algebraic equations deduced

from (4.378) combined with (4.372). Among the 16 components of T:w at N = 2, only 8 differ
from zero and are given by:

9 (2 + 5)\@§>

Ts,(l,l)(1,1) = T57(2,2)(272) = o 95)\52 N 252)\2E4 , (4.380)
5 5
~=inv ~=inv 35)\63

T5,(1,1)(2,2) = T5,(2,2)(1,1) = (4-381)

9+ 9s\G. + 26°X2G,

4 TFor the same reasons, we could develop a similar 2PPI-FRG approach to push our pU-flow and CU-flow
calculations to higher truncation orders for NV > 2 but we rather focus on the mU-flow which will turn out to

be the most performing 2PI-FRG method tested in this study.
42 As we explained when treating the pU-flow, the triviality of the inversion of Z + IIs®, " at Nyax = 1 VN
follows from the truncation condition 622) = Ef:)si = 0, thus implying that 7 +ﬁ§f) reduces to the identity Z.

We clearly do not have such a condition at our disposal here to simplify T, that drastically, even at Npax = 1.

(2
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~=inv ~=inv ==inv =~=inv 3

Ts,(1,2)(1,2) = Ts,(1,2)(2,1) = Ts,(2,1)(1,2) = T5,(2,1)(2,1) = 3 +5)\a§ .

Following our previous explanation below (4.377), we directly infer from this the 8 non-vanishing

components of (I + ﬁ5$§2)> ;

(4.382)

— =(2)\ = =)\ ) (2 G, )
<I + L& ) - (I L ILB ) - IR (4.383)
(1,1)(1,1) 2222 9+ 9\G, + 212G,
inv inv 3G,

(Z+ ﬁ5$§2)> _ <z+ﬁ§§2)) — LI (4.384)

(1,1)(2,2) (2,2)(1,1) 9+ 9N\G, + 212G,
(I I ﬁsgf)) inv _ (Z " ﬁsaf)) inv _ (Z " ﬁ56£2)> inv _ (Z " ﬁ5$§2)> inv _ 3 .

(1,2)(1,2) (1,2)(2,1) (2,1)(1,2) (2,1)(2,1) 3 + )\GS

(4.385)

We will also treat the mU-flow with Ngcpr up to 3 at N = 1. Hence, we investigate the 2PI-FRG
with starting point coinciding with each of the three first non-trivial orders of self-consistent
PT. Note that the mU-flow has only been tested at Ngcpr = 1 in the comparative studies of
2PI-FRG approaches mentioned earlier (i.e. in refs. [459, 460]). The expression of the modified
Luttinger-Ward ®,(G) at Nscpr = 3 can be deduced from the perturbative expression (4.276),
which leads to:

(I)s(G) - (I)s(G) + (I)SCPT,NSCPT:3,5(U7 G) - (I)SCPT,NSCPT:?;,s(Us» G)

_ 1 2 o _l24 _ &2 i36 _ &3
= (G) + JAG" (1 - 9) 48>\G(1 5)+48)\G(1 s°) .

(4.386)

From this relation, we can determine the differential equations underlying the mU-flow up
to Nscpr = 3 from the pU-flow equations (4.354) to (4.356). We obtain in this way (see
appendix F.8.1 for the corresponding flow equations expressing the derivative of the modified
2P1 vertices of order 2 and 3 with respect to s):

e For Ngcpr = 1:
—_— _2_

G, =G3,, (4.387)
= A ——2  —(2) -
Q=2 (4 (205 + 3 —A<1—5))

2

L —1 1. —
+ G’5> — g)\G5 , (4.388)

5

52 (rca?) ( (26,7 + 37 - a(1-9) (s, - 3) - 2@) |

(4.389)
e For NSCPT =2 ) )
G.=G.3,, (4.390)
0= (4 (267 + 8~ 2 (1-9)+ 3G (1 - 52))_1 LG ) -G+ Laa
T s : s) TN Tt T
(4.391)

T, = % (2 +a§$§2>)1 ( (2@;2 +3Y A1 —8) + NG (1 - 52))2

X (8@5‘3 _ 55») —4ANG, (1 - 52)> —2G, + 25/\@f) :
(4.392)
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e For NSCPT =3: . .
G, =G3,, (4.393)
= A ——2  —=—(2) 92 9 S R— 3 o
Q.= o | 426G, + 2, —)\(1—5)+>\G5(1—5)—5/\G5(1—5) + G,
1

-4 1 —6
245)\26’5 - —s°\'G, |

1. —2
— = \G
8 s 16

(4.394)

>
2
x (3G, ~ B — G, (1 - 5%) + 200G, (1-57))

s

. _ —2
5= (2r@a?) ( (2@;2 1B A8 NG (1-) - oNE (1 _53))

9G4 260G — gswaj) |
(4.395)

As already stated by (4.221) to (4.224) as well as (4.220), the initial conditions of the mU-
flow are directly inferred from the self-consistent PT results up to the chosen order (’)(U NSCPT).
For the present application to the (0+0)-D O(N)-symmetric ¢?-theory, they read:

G.—s, = GsepT Nscrr » (4.396)
Q= s, SCPT,Nscpr (4.397)
Yy, = _(I)gc)JPT,NscpT (U, G = Gscrrnsopr) » (4.398)
B = Wt ven (U, G = Gsoprngeps)  V¥n > 2. (4.399)

We thus point out a peculiarity of (04+0)-D applications: €, directly coincides with the gs
energy calculated from self-consistent PT up to order O(UNsePT) ie. Eyqscpr Necpr, Since the
zero-temperature limit defining the gs energy vanishes in (0+0)-D (as was already discussed
when introducing (2.38)). At Nscpr = 1, the initial conditions (4.396) to (4.399) reduce to:

65251 = ESCPT,NSCPT::l I (4400)
ﬁs:si = gS,SCPT,NSCPTZI ) (4401)
A al A
25:5i7(a1,a’1) = _66‘11‘1/1 Z GSCPT,NSCPTZLGQGQ - gGSCPTJVSCPT:l,ala/l 3 (4402)
as=1
=(2) A

5:5i,(a1,a’1)(a2,a/2) = U(al,a’l)(ag,aé) == g (50,1(1’1 5a2a'2 ‘l’ 5a1a25a’1a’2 + 6(11&’25@/1&2) s (4403)
3" =0 Vay,d ' Yn >3, (4404

s=si,(a1,a})(an,ah,) — a1,y 5 Ay Gy VI Z 9 ( . )

as can be deduced from (4.367) together with identity (4.282). Finally, we recall that, regardless
of the chosen value for Ngcpr, the infinite tower of differential equations underlying the mU-flow
is truncated with the condition:

) _ 3™

3" =B Vs, V> Ny - (4.405)
In summary, our mU-flow results at Ny.x = 1 are determined by solving the set of differential
equations (4.374) to (4.376) for all N (for N = 2 especially) and at Ngcpr = 1 as well as (4.387)

to (4.395) at N = 1 for more involved starting points (i.e. for Ngcpr = 1,2 or 3). The
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Figure 4.18: Difference between the calculated gs energy Egglc or density pg;‘lc and the corre-

sponding exact solution ES or p&* at m* = 41 and N =1 (Re(A) > 0 and Zm()) = 0).

corresponding initial conditions are inferred from the perturbative expression of the Luttinger-
Ward functional (given e.g. by (4.367) for all N and by (4.276) at N = 1), as shown by (4.396)
to (4.399) which reduce to (4.400) to (4.404) at Ngcpr = 1 for all N. Finally, the truncation
condition for the mU-flow is given by (4.405) and the cutoff function for the two-body interaction
is still set by (4.343). Comparing first the pU-flow and the mU-flow with the simplest starting
point (i.e. with a Hartree-Fock starting point corresponding to Ngcpr = 1) in fig. 4.18, we can
see that the convergence is significantly faster for the latter approach: at the first non-trivial
order for instance, the mU-flow results of fig. 4.18 exhibit an accuracy below 2% for E,, and
even less for pgs, over the whole range A/4! € [0, 10] with m? > 0. This could have been expected
from the quality of the starting points of the two methods thus compared: the Hartree-Fock
starting point of the mU-flow already incorporates a consequent part of the correlations within
the studied systems (even at the non-perturbative level), as opposed to the free theory for the
pU-flow.

It is then quite natural to test the mU-flow for more involved starting points, i.e. for
Nscpr > 1, which has never been done so far to our knowledge. Hence, fig. 4.19 shows mU-flow
results up to Npax = 3 with Ngcpr = 1,2 and 3 for both E, and pg in the unbroken- and
broken-symmetry regimes of our toy model. We point out first of all the appearance of the same
stiffness issues as before (still with the NDSolve function of Mathematica 12.1) for the mU-flow
at Ngcpr = 2 and 3 with Ny, = 2, hence explaining the absence of the corresponding curves
in fig. 4.19. This does not prevent us from noticing in this figure that, besides a few exceptions,
the mU-flow at Ngcpr = 1 is more performing than at Nscpr = 2 or 3 for a given truncation
order Ny, for Eg as well as for pgs. Although the starting point contains more and more
information about the system to describe as Ngcpr increases, we recall that it is the bare self-
consistent PT results (i.e. without resummation) that the mU-flow procedure takes as inputs.
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Figure 4.19: Difference between the calculated gs energy Egglc or density pgglc and the corre-

sponding exact solution ES* or p&** at m* = +1 and N =1 (Re(A) > 0 and Zm()) = 0).

Such results take the form of diverging asymptotic series for T?*D(G) (as we have shown in
chapter 3) and the corresponding estimates for E,s and p,s all worsen as the truncation order
Ngcpr increases. It was only after applying a resummation procedure that we managed to turn
self-consistent PT into a systematically improvable technique in chapter 3. In the light of the
latter comments, we can conclude that, unlike resummation procedures, the mU-flow approach
is not suited to extract the full information from the asymptotic series representing the 2PI EA
(and the corresponding 2P vertices) taken as input(s). The mU-flow is thus most efficient at
Nscpr = 1, which is why we have tested this approach in the unbroken- and broken-symmetry
regimes for N = 1 and 2, as shown by figs. 4.20 and 4.21. Our qualitative conclusions on the



4.2. 2PI FUNCTIONAL RENORMALIZATION GROUP

189
10.0 i
2- /fi
7.t’ D /'//._/:._-I \\\\\\\
NS 7 = o= T ' it
S -0
_— 5.0 —~
g g
S <2 /
N e 3
% 2 N TSQ% —4
@/ =259 e N2
\\'\‘ —6'
~5.0 \
10 -5 0 5 10 —10 -5 0 S 10
A A
4Im? Am?
self-consistent PT 2P| EA (¢ = 0) O(h?) —— self-consistent PT 2PI EA (¢ = 0) O(h?)
— 2PI-FRG mU-flow (Nyax, Nscpr) = (1,1) ——m 2PI-FRG mU-flow (Npax, Nscpr) = (1, 1)
—mem 2PI-FRG mU-flow (Npax, Nscpr) = (2,1) —mm 2PI-FRG mU-flow (Npax, Nscpr) = (2, 1)
e 2PI-FRG mU-flow (Nypay, Nscpr) = (3, 1) i 2PI-FRG mU-flow (Nax, Nscpr) = (3,1)
Figure 4.20: Difference between the calculated gs energy ECalc or density p"al" and the corre-
sponding exact solution Eg* or p&* at m? = £1 and N = i1 (Re(A) >0 and Im(A) =0). See
also the caption of fig. 3.11 for the meaning of the indication “O(h”)” for the results obtained
from h-expanded EAs within self-consitent PT.
1] i
o ’f;l: N
S 101 NS 0 s e T T T e
= —
g S 1
5okl o
S <
| | =27
K <
< n ——— S N
O 8D () frrmRE S G it Qo0 9
8 S 3
N~— | e e e e
e § i,
N\,
—5 . A . . : " - "
—10 -5 0 5 10 —10 -5 0 5 10
A A
4m? 4m?
self-consistent PT 2Pl EA (¢ = 0) O(h?) —— self-consistent PT 2PI EA (¢ = 0) O(h?)
— 2PI-FRG mU-flow (Npay, Nscpr) = (1,1) —— 2PI-FRG mU-flow (Nuax, Nscpr) = (1,1
—cee 2PI-FRG mU-flow (Npmay, Nscpr) = (2,1) e 2PI-FRG mU-flow (Nyax, Nscpr) = (2, 1)
— 2PI-FRG mU-flow (Nyax, Nscpr) = (3,1) — 2PI-FRG mU-flow (Nyay, Nscpr) = (3,1)

Figure 4.21: Same as fig. 4.20 with N = 2 instead.

two latter figures are identical: for Fy and pg and for both signs of m?, we see that the mU-flow

procedure at Ny =

1 clearly improves the Hartree-Fock curve representing its starting point,

and this mU-flow result is itself improved by increasing the truncation order N.. until the
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curve corresponding to Ny, = 3 becomes barely distinguishable from the exact solution.

Besides these appealing performances of the mU-flow, one might also address the numerical
weight of the underpinning numerical procedure which is significantly increased by the Bethe-
Salpeter equation to solve throughout the flow. A possibility to diminish the weight of this
numerical procedure would be to freeze the evolution of 59 (or 59 for the pU-flow) in the
spirit of the scale-dependent HSTs discussed in section 2.3 for the 1PI-FRG. To achieve this,
we would need to develop a U-flow version of the 2PI-FRG in the mixed representation, i.e.

for a theory based on a Yukawa interaction. Such approaches would be based on generating
functionals like:

Y

Zmix[j; K] — 6Wmix[j’K] — /’DI’ED’O‘-/ efsrnix,o [J’E} 7% le,'yQ U1172&11’(Za21za/2+fa ja5a+% fa,a’ {E‘D‘Kaa”z;a/

(4.406)

or

Y

Zoial T, K] = Wl T K] /D\ff oS [5] =5 Foy oy U Ty W gy - T T3 [ 00 05K 500
)

(4.407)
instead of (4.119). Note that S o denotes the free part of the classical action Spix, the

supernotations used in (4.407) are introduced in chapter 3 via (3.21) to (3.23) and the super
Yukawa interaction ¢ is such that:

/ﬂ uﬂl’mqjﬁl \1152\11% = / Ua:172511¢a2¢o/2 . (4.408)
1,72 1,72

According to the excellent performances of the 1PI-FRG combined with HSTs, one might
assume that a linear source directly coupled to the bosonic field ¢ would be sufficient to add
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so as to extend the original U-flow into an efficient approach in the mixed representation, as
was done in (4.406). In order to develop a mU-flow approach, it should however be noted
that the corresponding self-consistent PT results (referred to as “self-consistent PT 2PI/1PI
EA” in fig. 4.22) are however worse than those of the original 2PI EA I'?PD(@) for the studied
toy model, as can be seen from fig. 4.22. According to the latter, it is clearly appealing to
design a mU-flow approach starting from the self-consistent PT results of the full mixed 2PI
EA*, although it would inevitably be more demanding to implement than the method based
on (4.406). This can be done by considering the generating functional (4.407) instead of (4.406).
Therefore, extending the U-flow to the mixed representation could not only allow for monitoring
the numerical weight of the 2PI-FRG procedure but also to improve the performances of the
FRG approach itself by exploiting the Hubbard-Stratonovich field to grasp correlations before
even starting the flow (via self-consistent PT) as well as throughout the flow. However, because
of the index structure of the Yukawa interaction U (in (4.406)) or U (in (4.407)), the derivation
of the corresponding flow equations (following the lines set out in appendix F.4.2 for the original
U-flow version of the 2PI-FRG) requires to invert matrices with components of the form:

Mo, (4.400)
for (4.406), with the bosonic index defined as usual as v = (a, o), or:
Mﬂl% ) (4410)

for (4.407), with v = (5, 5’). The definitions of the corresponding inverse(s) do not straightfor-
wardly follow from the bosonic index formalism as exploited so far. In the case of (4.406) for
instance, the definitions set by:

/ M%%Mio?ng = I’Y1’Yz ) (4.411)
as

and

1 inv
5/ Mal'YZSM’ngQ = 6011042 ) (4412)
73

do not provide the right number of conditions to fix the components of M™ in an unambiguous
manner. Hence, extending the mU-flow implementation of the 2PI-FRG in the framework of
the mixed theory still requires a consequent work on the side of the formalism. The present
discussion has put forward several appealing features of such a direction that we postpone to
subsequent projects.

4.2.2.5 2PI functional renormalization group CU-flow

As for the mU-flow, we have two options at our disposal to derive the CU-flow equations ex-

pressing G5, AQ, and X, for the studied O(N) model: either we combine the corresponding
C-flow and pU-flow equations already formulated for our (040)-D model in the present sec-
tion 4.2.2 by following the general recipe set out in the CU-flow discussion of section 4.2.1
or we start our derivations from the results of the latter section (i.e. from (4.152), (4.237)
and (4.238)) and simplify them by exploiting the O(N) symmetry as we already did for the
C-flow and U-flow approaches. In all cases, the obtained differential equations can be put in
the form:

G.= -G (C;l - is) , (4.413)

43Recall that self-consistent PT based on the full mixed 2PI EA is presented in section 3.5.2.2 and definitely
stood out among the diagrammatic techniques tested in chapter 3.
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¢ (I+ﬁ5§ ) +2 <I+ﬁ6 ) +N@2+N) ],
79 F ala22:1 s (a1,a1)(az,a2) alaz_l §¥g (a1,0})(ar,al) ( )

(4.414)

N . .
- A — — —(2)\ v — —(2)\
X =—5:Gs Z (I 1 ) )(az,az) (I 1L, >

(a3,a3)(a1,1)

N
)\ — . inv - inv
2 Y <I n Hscbf)) ) (I + Hﬁcpf))

18 1,a9,a,=1 (L,a1)( (az,a%)(a1,1)
ai,a2,a5=
)\ 4 N (2) inv (3) (2) inv
+2G (zm@ ) Y (I+ﬁ6 )
288 °° a1.az agazla4 o —1 o (a1,01)(a3,a3) o (b1 (es.a5)(as,01) o (as,a})(az,a2)
102,03,03,04,04=
A —4 al (2)\ inv (3) 2)\ v
+2G (zm@ ) 3 (I+ﬁ6 )
144 ¢ 1., a2azla3 ol —1 o (a1,a7)(az,a5) s:(L1)(az.a3)(a3.a5) o (as,az)(a1,a})
,01,02,05,43,03=
N
uxel ls 5 5®
— 150 (N +2) = 3G, > e

a1=1

(4.415)

where the definition ¥, = i;,ll was also used in (4.415) to set color indices equal to 1. In
particular, (4.413) to (4.415) were derived from relations (4.257) to (4.259) implementing the
conservation of the O(N) symmetry during the flow. We also choose the same cutoff functions
as those used previously for the C-flow and the U-flow, which are specified by (4.291) (along
with (4.290)) and (4.343). The CU-flow will notably be investigated up to the truncation order
Nimax = 3 at N = 1, in which case (4.413) to (4.415) reduce to (see appendix F.8.1 for the
corresponding flow equations expressing the derivative of the 2PI vertices of order 2 and 3 with
respect to s):

G.=-G (C;l—is) , (4.416)
AL = 07 @ C) o (42671 30) 4@ (4.417)
5 2 5 5 5 24 5 5 5 ’ .
= A— —2—2)\ 2 [ 153—(3) A 12—
.= G, (24 G® oY _4) -G - —a.e? . 4.41
[ (2 ca) ” (Go) \G, - 1.3 (1418)

Finally, we recall that, in the framework of the CU-flow, all quantities calculated throughout
the flow vanish at the starting point, i.e.:

Goesawr =0 Va,d | (4.419)
AQy, =0, (4.420)
Yesaar =0 Va,d | (4.421)

6(”)

s=si,(a1,a})(an,al,)

=0 Vay,a}, - ,an,a,, Yn>2, (4.422)

as was already indicated by (4.239) to (4.243), and the associated infinite tower of differential
equations is truncated by imposing (4.284).
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Figure 4.23: Difference between the calculated gs energy Egglc or density pgglc and the corre-

sponding exact solution ES¥** or p&** at m* = +1 and N = 1 (Re(A) > 0 and Zm()) = 0).
The mC-flow curve represents the best C-flow result up to N, = 3 whereas the green, orange
and purple mU-flow curves correspond to the best U-flow results obtained at Ny, = 1,2 and 3,
respectively.

Hence, our CU-flow results at Ny, = 1 are obtained by solving (4.413) to (4.415) (which
reduce respectively to (4.416) to (4.418) at N = 1), with the initial conditions (4.419) to (4.422)
and the truncation condition (4.284). The corresponding cutoff functions are still set by (4.291)
(with (4.290)) for C; ! and by (4.343) for U,. In fig. 4.23 which shows the results thus obtained
at N =1, the CU-flow estimates for Fy and pg clearly outperform at Np.x = 2 the mC-flow
curve which can be considered as our best C-flow result (including those obtained in the mixed



194 CHAPTER 4. FUNCTIONAL RENORMALIZATION GROUP TECHNIQUES

) - 102

exact

gs

—FE

calc
S

ES:

g

(

---- 2PI-FRG tC-flow Ny =1 or 2 ---- 2PI-FRG tC-flow Ny.x =1 or 2

—— 2PI-FRG pU-flow Npax =1 —— 2PI-FRG pU-flow Ny =1

———— 2PI-FRG mU-flow (Nmax, NSCPT) = (1, 1) ——— 2PI-FRG mU-flow (Nmm;, NSCPT) = (1, 1)
-------- 2PI-FRG CU-flow Ny =1 weee 2PI-FRG CU-flow Nppax = 1

Figure 4.24: Difference between the calculated gs energy Eggﬂc or density pgglc and the corre-
sponding exact solution ES¥* or p&** at m* = +1 and N = 2 (Re(\) > 0 and Zm()) = 0).
The tC-flow and mU-flow curves correspond respectively to the best C-flow and U-flow results

obtained at Ny« = 1.

representation), as can be seen from fig. 4.16. Furthermore, fig. 4.23 also shows that the CU-
flow results are comparable to the best mU-flow ones (i.e. to the mU-flow results at Ngcpr = 1)
up to Npax = 3 for both E, and pgs. These remarks also apply to the case where N = 2 at
Nmax = 1, as can be checked from fig. 4.24. Note however that, for the same reasons as the
C-flow, the CU-flow is not suited to treat the regime with m? < 0.

4.3 2PPI functional renormalization group

4.3.1 State of play and general formalism

The 2PPI-FRG was first developed in the early 2000s by Polonyi and Sailer [323] and discussed
in the context of quantum electrodynamics (QED). Links between this approach and DFT
were also emphasized in ref. [323|, as well as in ref. [164] which puts forward the 2PPI-FRG
as a means for calculating properties of nuclear systems in a systematic manner. The first
numerical application of this method came out almost a decade later with the work of Kemler
and Braun [148|, who took as theoretical laboratories the (0+0)-D (?-theory in its unbroken-
symmetry regime (i.e. the studied toy model with N = 1 and m? > 0) and to the (0+1)-D
©*-theory, still in the phase without SSB. Corrections of the application to the latter toy model
were pointed out subsequently by Rentrop and collaborators in ref. [459]. A few years later,
an extension of the 2PPI-FRG formalism, coined as Kohn-Sham FRG (KS-FRG) due to its
connection with the Kohn-Sham scheme, was developed by Liang, Niu and Hatsuda [151]. To
our knowledge, the KS-FRG has only been applied to the toy model considered in this thesis
with V=1 and in its unbroken-symmetry regime.
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The 2PPI-FRG practitioners have also managed to treat a (1+1)-D model [465-469], called
the Alexandrou-Negele nuclei as a consequence of an earlier work of Alexandrou, Myczkowski
and Negele on this model using a Monte Carlo approach [470]. Such a model reproduces some
basic properties of the nuclear force (short-range repulsive and long-range attractive). As any
other toy model, the Alexandrou-Negele nuclei have been used to benchmark different theoreti-
cal approaches (see ref. [471] for the similarity renormalization group (SRG)) but they have also
been exploited to describe real physical systems such as ultracold fermionic atoms interacting
via a dipolar interaction [472]. For that reason in addition to the technical difficulties related
to the inclusion of a space dimension, the work of Kemler and Braun presented in ref. [465] can
be considered as a pioneering work for the 2PPI-FRG community. More specifically, it presents
results obtained for the gs energies (in comparison with Monte Carlo results [470]), intrinsic
densities and density correlation functions. Other subsequent applications were carried out for
an infinite number of particles by Yokota and collaborators in order to study spinless nuclear
matter with this model: this led to the determination of the nuclear saturation curve and other
gs properties on the one hand [467] and to the calculation of spectral functions for the study
of excited states on the other hand [468].

Then, applications to higher-dimensional systems were performed recently by Yokota and
collaborators on a (2+1)-D homogeneous electron gas [469, 473| and on a (3+1)-D homogeneous
electron gas [474], thus achieving the first two-dimensional and three-dimensional applications
of the 2PPI-FRG. Note also the work of ref. [475] which designs a 2PPI-FRG approach to
describe classical liquids. This paper shows through an application to a (14-0)-D toy model
that this novel approach compares favorably with more conventional methods based on integral
equations. Finally, the 2PPI-FRG formalism has also been generalized to treat superfluid
systems [476], thus marking a significant step towards the description of systems with competing
instabilities. The resulting approach can actually be considered as a DFT for systems with
pairing correlations and echoes the work of Furnstahl and collaborators with the 2PPI EA and
the IM [56].

As a first step, we now outline the basic ingredients of the 2PPI-FRG formalism in order to
prepare the ground for our toy model applications. The generating functional underlying this
FRG approach is given by**

ZIK] = VKl = / DIDY e S[II)HI Kl b (4.423)

where we now consider a complex field QZ which is either bosonic or Grassmannian. The equa-
tions underlying the 2PPI-FRG are barely modified if ® is a real field (which is the case of
interest for our toy model study), besides a few numerical factors. We choose to keep the
present discussion to the framework of a complex ﬁeldj/; and postpone the discussion of such
details to section 4.3.2. The different configurations of 1) are now specified by an a-index which
is essentially the same as that used in section 4.2.1 in our presentation of the 2PI-FRG, with
the exception of the charge index c. The latter is indeed no longer necessary as we distinguish
explicitly ¢ from its complex conjugate W in the present formalism. Therefore, the following
conventions are used in (4.423) and will hold in the rest of section 4.3.1:

/ Z/ ZZ/ dT/le (4.424)

44 Although the notations for the generating functionals Z[K] and W[K] are identical to those of (4.119)
related to the 2PI-FRG, we stress that Z[K] and W[K] are always defined by (4.423) in the whole section 4.3
and in corresponding appendices.
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with a = (a,x) and = (v, 7, ms) (a, 7, 7 and m; being defined between (4.119) and (4.120)).
The connected correlation functions deduced from (4.423) are:

S"WIK] ~ ~ o~
) (K] = i A cot 4.42
Wal..-an[ ] 5Ka1 . 5Kan <¢a1 wal wanwan>K ) ( 5)
which yields the density:

pa = WIK) = (Glda) . (4.426)

at n = 1, where we have just introduced the expectation value®’:
1 T S [0t Kadlda
<~~.>K:m DYDY - e o . (4.427)

As opposed to the 2PI-FRG, the source is now a bosonic object regardless of the nature of
Y (i.e. Grassmannian or not), which implies notably the following symmetry property for the
correlation functions of (4.425):

w (K] =w (K], (4.428)

Q10 Qp(1)Ap(n)

to be compared with (4.126a) and (4.126b) for the 2PI-FRG formalism. The following 2PPI
EA is at the heart of the present approach:

SWIK]
3K,

:—W[KH/Kapa,

rE ) = - WK + [ K,
' /a (4.429)

where the second line follows from (4.426).

All implementations of the 2PPI-FRG treated below are applicable to any system whose
classical action can be written as:

S [&t Jj| = SO [&Ty Jj| + Sint [JT’ 1;] = /JL (87' + Okin + Va - M) Ja + % {ZLIJLQUMQﬂZazTZM ;

o (4.430)
where Oy corresponds to the kinetic operator® and we place ourselves in the grand canonical
ensemble here by using a chemical potential y to monitor the particle number®”. In the frame-
work of the 2PPI-FRG, it is typically the one-body potential V' and the two-body interaction
U which are rendered flow-dependent by introducing cutoff functions, i.e. the Schwinger func-
tional W[K] and the 2PPI EA T'?PPD[s] become dependent on s via the substitution U — U,
sometimes combined with V' — V,. After doing so, we exploit in particular the following
convention:

Pa = ps,oz[K] = W(l)[K] ) (4431)

which is the counterpart of (4.2) and (4.142) used respectively for the 1PI-FRG and the 2PI-
FRG. Moreover, although the classical action (4.430) only contains a two-body interaction, the

“SFollowing up the remark of footnote 44, the expectation value (- - >K is given by (4.427) and not by (4.125)
in all 2PPI-FRG discussions.

46For instance, Oin = 0,0" = O for a Klein-Gordon Lagrangian, Oin = iv*0, for a Dirac Lagrangian or
@kin = —% for any non-relativistic system of mass m.

47 Alternatively, one can also simply impose a given particle number at the initial conditions of the 2PPI-FRG
procedure since the particle number is conserved during the flow, as shown in ref. [465].
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present FRG method can be straightforwardly extended to treat three-body and even higher-
body interactions by including higher powers of 11y into (4.430), similarly to (4.145) for the
2PI-FRG.

As a side comment, we want to point out that any theoretical approach based on the gen-
erating functional (4.423) is not relevant to describe superfluid systems, as opposed to (4.119)
for the 2PI-FRG. In that respect, we would indeed need to calculate the expectation values of
Ui and 1Tt and the generating functional (4.423) is not suited to achieve this. Following the
steps of ref. [476], we can generalize (4.423) as follows in that purpose:

Z{K(m KW ( K(@)*] _ WK@K (£09)T] / DYDY e ~S[31 ] +f, KO B bat [, K Gaart f, (K)! il
(4. 432)
where the anomalous densities can now be accessed via:
WK ~ ~
[(H)] — (Yatha) - (4.433)
5Ka K
[ el B ) 4.434
5oy = (L), (1434

Such an extension is not necessary for the 2PI-FRG as presented previously since some com-
ponents of the propagator Gaa/ already coincide with expectation values of ¢¢ and WW (for
charge indices satisfying ¢ = ¢ = + or ¢ = ¢ = — according to (4.124)). There are also
some subtleties underpinning the implementation of a 2PPI-FRG procedure from the generat-
ing functional (4.432). This is beyond the scope of the present discussion but we refer to the
work of Yokota and collaborators [476] for more details on this topic. Although this formulation
of the 2PPI-FRG is suited to describe SSBs (related to superfluid systems at least), it should
be noted that it does not carry out the momentum-shell integration a la Wilson, and neither
do all of the 2PPI-FRG approaches treated thereafter. Our main point here is that, unlike
the 2PI-FRG considered in section 4.2, the 2PPI-FRG formalism exploited in this thesis is not
adapted to tackle superfluid systems, although the necessary extensions to achieve this (which
are irrelevant for our toy model study) are well established [476].

4.3.1.1 Standard 2PPI functional renormalization group

Main features: We start by discussing the standard version of the 2PPI-FRG, as proposed
by Polonyi and Sailer [323] and then exploited e.g. by Kemler and Braun [148, 465]. After
performing the substitutions V' — V; and U — Us into the classical action (4.430), we can show
that the corresponding flow-dependent 2PPI EA ngm)[

satisfies the master equation (see appendix G.1):

p], originally expressed via (4.429),

. . 1 . -1 1 :
FgQPPI) [p] = /‘/5,011004 + §ST1" |:U5 (FgQPPI)(Z) [p]) ] + —/ Us,alcmpalpfm ) (4435)

where we just introduced back the notation STr to indicate the trace with respect to a-indices®®
and the 2PPI vertices satisfy:

n(2PPI)
F(QPPI)(n)[ ol = 0"l 0]

5,01 Qn

. 4.4
510041 e 5pom ( 36)

48We recall that Tr, was introduced in section 4.2 on the 2PI-FRG to denote the trace with respect to a-
indices. The underlying reason was specific to the 2PI-FRG formalism as we stressed in this way the difference
with the trace taken with respect to bosonic indices (i.e. Tr,).
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Moreover, it can also be rather advantageous to consider the flow equation for the Schwinger
functional instead of that of the corresponding EA (see appendix G.1):

. ) 1 . 1 .
W) == [VeaWIK = 5 [ O WK1 = 5 [ Ui WL KIWIR, K]
«a 1,02 1,02

2 2
(4.437)
as was done in ref. [465]. Although (4.435) and (4.437) are fully equivalent (i.e. they can be
deduced from each other without approximation), the initial conditions might be much less
cumbersome to determine in the latter case, as explained in more detail below.

In practice, the exact flow equation (4.435) is turned into an infinite tower of differential

equations with a vertex expansion of T{*""V[g]:
2PPI) FPPI() _ _
O R T N NS
_ _ n 1 (2PPI) . . .
where T T = S [0 =74, Ffapf_l,lf = H and the flowing density p, extremizes
’ " 1 on P=Ps
the flowing 2PPI EA:
ST 2PPD
E(S—M =0 Va,5, (4.439)
Pa _
p=Ps

in the same manner as (4.19) for the 1PI-FRG and (4.139) for the 2PI-FRG. The flow equa-
tion (4.437) is treated in the same spirit by Taylor expanding W;[K| around the configuration
where the source K vanishes, i.e.:

- + Z/ 5a1 anKOél e Kan 5 (4440)

with
w =5 (4.441)

5,0 5,0

according to (4.431). Finally, the expansion of the 2PPI EA given by (4.438) is inserted into the
corresponding master equation and the terms of identical powers of p — p, are then identiﬁed
to deduce an infinite set of differential equations for p, and the 2PPI vertices F(QPPI) . The
same is done for the expansion (4.440) of W,[K] except that the identification is performed
with respect to the powers of the source K.

Regarding the boundary conditions, U, must satisfy the same relations as those encountered
in the U-flow implementation of the 2PI-FRG, i.e.:

U5:5i,o<1042 =0 VOéhO[Q . (4442&)

Upeo, = U . (4.442D)

However, the initial condition (4.442a) does not always imply that the starting point of the
flow coincides with the free theory. This actually depends on the analytical form chosen for the
one-body potential V;, and more specifically on the initial condition Vi, (Vizs, = V' is always
imposed to recover (4.430) at the end of the flow). In that respect, we can mainly distinguish
two situations:
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o I, =V Vs:
A possibility consists in choosing V; independent from s, i.e. V; =V Vs. As a result, the
two-body interaction Uy is gradually turned on during the flow while V; is kept equal to
its initial value V,—,, = V. Hence, this approach can be qualified as a U-flow scheme.

o V,=(1—-5)Vks Vs (with 5; = 0 and s; = 1):

Self-bound systems such as nuclei are by definition not subjected to an external potential
such that the condition V,—s—1, = 0 Va must be fulfilled. In this case, a natural option
consists in starting the flow at the Kohn-Sham system with the choice V, = (1 — §)Vks
such that V,_; o = Vks, with Vkg being the solution of the Kohn-Sham equation for the
optimal one-body potential [164]. This induces a particularly elegant structure of the
flow: the two-body interaction U; is gradually turned on and the mean-field V; gradually
switched off