Computing Tools for HPDA -A Cache-Oblivious and SIMD Approach

Keywords: Numerical Precision, Vectorization, High Performance Computing

This work presents three contributions

Sommaire en Francais

Contexte global Les progrès actuels de l'apprentissage automatique stimulent simultanément le développement des logiciels et du matériel. Les exigences de calcul intenses d'applications telles que les réseaux neuronaux articiels nécessitent des logiciels ecaces qui utilisent pleinement un matériel performant. Ce besoin est si fort que les fabricants de matériel conçoivent de nouvelles machines spéciquement pour ces applications. Ce faisant, les fabricants de matériel et les chercheurs en apprentissage automatique explorent également les limites des représentations numériques acceptables.

Les réseaux neuronaux articiels (ANN) constituent une catégorie d'algorithmes d'apprentissage automatique faisant l'objet de recherches actives. Ils sont utilisés pour des applications allant des jeux de hasard [10][101], de la détection et de la reconnaissance d'objets [46], du traitement du langage naturel [16], au diagnostic médical [74] et plus encore.

Le domaine de l'apprentissage automatique évolue, tout comme les logiciels correspondants. Toutefois, il ne sut pas que les bibliothèques logicielles d'apprentissage automatique intègrent de nouvelles méthodes et techniques ; elles cherchent également à accélérer continuellement leurs performances.

Les algorithmes d'apprentissage automatique sont très exigeants en termes de calcul. Ils ont tendance à impliquer le traitement répété de grands ensembles de données. Par exemple, l'apprentissage de l'ANN PVANet [46] présenté au chapitre 4 implique d'eectuer 170 000 itérations sur un ensemble de données de 450 Mo. Par conséquent, les logiciels d'apprentissage automatique doivent tirer parti de tous les accélérateurs matériels disponibles, tels que la vectorisation du CPU, le traitement multic÷ur et les unités de traitement graphique (GPU).

Les exigences élevées en matière de calcul des logiciels d'apprentissage automatique entraînent même des développements au niveau du matériel. Outre les accélérateurs standard, des accélérateurs d'IA dédiés sont en cours de développement pour les applications d'apprentissage automatique. Les unités de traitement Tensor (TPU) de Google et les unités de traitement visuel (VPU) Movidius d'Intel, développées spéciquement pour les applications d'apprentissage automatique, en sont deux exemples notoires. Même avec ce matériel spécialisé, les applications d'apprentissage automatique sont souvent gourmandes en ressources de calcul et donc inadaptées à une utilisation de masse. C'est pourquoi des eorts sont déployés pour réduire la charge de calcul des applications d'apprentissage automatique.

Un moyen de réduire le coût des calculs d'apprentissage automatique est de réduire la précision numérique utilisée pendant les calculs. En termes simples, cela signie utiliser des nombres plus petits pour eectuer les mêmes calculs. La réduction de la précision présente deux avantages principaux : elle réduit la mémoire nécessaire pour eectuer le calcul et permet d'eectuer davantage de calculs en parallèle via la vectorisation. Ces deux avantages se combinent en une vitesse d'exécution plus rapide. Comme eet secondaire, la réduction de la précision d'une application réduit également la consommation d'énergie, car moins de calculs sont physiquement eectués par le matériel. La réduction de la précision comporte un risque de dégradation des performances. Cependant, il existe des méthodes pour atténuer ce risque [40][110]. En outre, les algorithmes d'apprentissage automatique, notamment les ANN, sont capables de produire des modèles robustes tolérant les imprécisions numériques.

Le matériel des CPU et des GPU commence à prendre en charge de nouveaux formats numériques en raison des progrès de l'apprentissage automatique. Les CPU et les GPU ont commencé à prendre en charge le format de précision demi-IEEEStandard2008[51][79][61]. En outre, il a été annoncé que le format boat16[99] serait bientôt pris en charge[27][78][98]. Si ces deux formats sont parmi les plus simples à expérimenter et à mettre en ÷uvre, ils ne sont pas les seuls à mériter d'être examinés. Certains travaux étudient la viabilité d'autres formats, tels que le format à virgule xe (xed point), le format binaire (CourbariauxB16) et le format ternaire (NNTernary). Ces travaux permettront même d'examiner la viabilité des formats à virgule ottante non standard.

Contenu Ce manuscrit sera divisé en deux parties. La première partie, intitulée État de l'art, présente les informations générales de base nécessaires à la compréhension des contributions présentes dans la deuxième partie. Cette deuxième partie, intitulée Contributions, présente les travaux réalisés au cours de cette thèse.

Le chapitre 1 présente les bases de l'architecture des ordinateurs nécessaires à la compréhension des travaux présentés dans les chapitres 5 et 6. Nous commencerons par décrire brièvement comment les nombres sont physiquement représentés à l'intérieur d'un ordinateur. Ensuite, nous montrons le coût d'exécution de diverses opérations sur ces nombres, puis certaines méthodes qui atténuent ce coût. Nous présentons ensuite l'importance et les vitesses des diérents niveaux de mémoire. Enn, nous décrivons les notions de base du parallélisme et les moyens physiques les plus courants de réaliser le parallélisme.

Le chapitre 2 se concentre sur certaines des bases de l'écriture et de l'optimisation des logiciels. Tout d'abord, nous discutons de la manière de chronométrer les logiciels an de pouvoir analyser les résultats.

Le chapitre 3 explique en détail comment les nombres sont représentés dans un ordinateur. Nous commençons par la base binaire utilisée pour représenter toutes les valeurs numériques. Nous décrivons ensuite les nombres entiers, les valeurs à virgule xe et les valeurs à virgule ottante, ainsi que leurs limites. Enn, nous décrivons les bases de l'approximation numérique des fonctions mathématiques.

Le chapitre 4 présente les réseaux neuronaux articiels. Nous commençons par une brève description de ce que sont les ANN. Nous distinguons ensuite les étapes de formation et d'inférence de l'utilisation des ANN, en précisant que nous nous concentrons spéciquement sur l'inférence dans ce travail. Ensuite, nous décrivons les calculs les plus exigeants en termes de puissance de calcul eectués par la plupart des ANN et certaines méthodes permettant d'atténuer cette intensité. Nous décrivons ensuite un moyen de mesurer la précision d'un ANN. Enn, nous décrivons le réseau ANN de PVANet qui sera examiné au chapitre 7.

Le chapitre 5 propose un algorithme pour calculer la moyenne d'un ensemble de nombres en utilisant le format de demi-précision. Ce travail a été publié précédemment dans [83]. Nous examinons d'abord les algorithmes établis pour le calcul de la moyenne. Au fur et à mesure que nous les examinons, nous notons les insusances de chaque algorithme lorsqu'il calcule avec des nombres de demi-précision. Nous proposons ensuite un algorithme qui ne subit pas de perte de précision dramatique avec des nombres de demi-précision. Enn, nous comparons à la fois la précision et la vitesse d'exécution optimisée des algorithmes examinés.

Le chapitre 6 présente les travaux réalisés pour développer une extension en virgule xe de la bibliothèque logicielle nsimd SIMD. Nous décrivons d'abord certaines des spécicités du format numérique en virgule xe. Ensuite, nous comparons quelques bibliothèques logicielles à virgule xe existantes dans le contexte de notre cas d'utilisation souhaité (les expériences présentées dans le chapitre sec:neural). Nous fournissons une description de la bibliothèque logicielle nsimd dans laquelle ce travail a été intégré. Enn, nous décrivons le type numérique à virgule xe implémenté, présentons les algorithmes utilisés pour l'implémenter, et montrons des benchmarks de ses performances.

Le chapitre 7 présente un cadre pour réaliser des expériences avec la précision numérique ANN ainsi que les résultats d'une première expérience utilisant ce cadre. Pour ce faire, nous décrivons nos besoins et examinons quelques bibliothèques logicielles ANN couramment utilisées. Ensuite, nous présentons le moteur d'inférence personnalisé développé dans le but d'eectuer nos expériences. Enn, nous présentons les résultats d'expériences utilisant ce moteur d'inférence pour faire varier la précision numérique utilisée lors de l'inférence de l'ANN PVANet.

Dans ce résumé, nous décrirons les travaux présentés dans les chapitres 5, 6, et 7.

calculs. La moyenne en cascade est généralement la deuxième plus rapide, s'exécutant au moins aussi vite que la moyenne de Kahan et toujours plus vite que la moyenne itérative.

Bibliothèque en virgule fixe

Le chapitre 6 présente les travaux réalisés pour développer une extension en virgule xe de la bibliothèque logicielle SIMD nsimd. Nous dénissons un format à virgule xe en utilisant la notation Qa.b où a est le nombre de bits entiers et b le nombre de bits décimaux. Cela nous permet de dénir comment les opérations arithmétiques seront eectuées.

Ensuite, nous expliquons l'utilisation de base de la bibliothèque nsimd et présentons quatre fonctions qui ont dû être ajoutées à celle-ci an d'implémenter l'extension de précision xe. Ces fonctions sont : lz (compter les zéros de tête), shlv (décalage variable à gauche), shrv (décalage variable à droite), et div (division entière). Chacune de ces fonctions est présentée avec un tableau indiquant quelles architectures de CPU supportent les opérations nécessaires et des benchmarks d'exécution qui conrment les performances en fonction du support matériel.

Nous présentons ensuite l'API, les fonctions fournies par, et le format de données de l'extension de précision xe. Le plus important de ces éléments est le format des données : au lieu d'utiliser les traditionnels a + b bits pour stocker un nombre Qa.b, nous choisissons d'utiliser a + 2b bits. Cela nous permet d'eectuer toutes les opérations intermédiaires en utilisant le même type de données et d'éviter les opérations de cast. Ce format de données ore des avantages signicatifs en termes d'accélération SIMD potentielle et de facilité de développement logiciel.

Enn, nous présentons un certain nombre de fonctions implémentées et comparons leurs performances d'exécution à celles d'autres bibliothèques à précision xe. Les fonctions présentées sont l'addition, la multiplication, la division, le sinus, le cosinus, la tangente, la racine carrée et la réciproque. Dans tous les cas examinés, sauf un, nos fonctions sont plus rapides que les bibliothèques comparées.

Moteur d'inférence à précision arbitraire

Le chapitre 7 présente un cadre permettant de réaliser des expériences avec une précision numérique ANN ainsi que les résultats d'une première expérience utilisant ce cadre.

Tout d'abord, nous présentons notre moteur d'inférence personnalisé. Notre moteur ore deux avantages majeurs par rapport aux autres : la possibilité de supporter des types de données C++ personnalisés et la possibilité de contrôler le type de données utilisé lors du calcul de toutes les couches d'inférence. En raison du nombre de couches présentes dans de nombreux réseaux neuronaux, ce contrôle total peut devenir compliqué à utiliser. C'est pourquoi nous avons également développé des outils de niveau supérieur permettant de dénir plus facilement les règles d'utilisation des diérents types de données.

Ensuite, nous réalisons des expériences sur le réseau neuronal PVANet. Dans ces expériences, nous choisissons un type de couche et faisons varier son type de données d'inférence tout en maintenant les calculs en virgule ottante 32 bits pour tous les autres types de couches. Nous testons avec tous les formats de virgule ottante inférieurs à 32 bits et avec une variété de formats à précision xe. Le tableau 7.2 résume les résultats de ces expériences. Nous constatons que l'inférence de PVANet peut être entièrement réduite aux formats à virgule ottante de 16 bits, alors que son inférence ne peut être entièrement réalisée en utilisant notre format à précision xe.

La première contribution est un algorithme pour calculer une moyenne avec des valeurs en virgule ottante de demi-précision.

Dans ce travail réalisé avec un support matériel de demiprécision limité, nous utilisons une bibliothèque logicielle existante pour émuler le calcul de demi-précision. Cela nous permet de comparer la précision numérique de notre algorithme à celle de divers algorithmes couramment utilisés. Enn, nous eectuons des tests de performance d'exécution en utilisant des valeurs à virgule ottante simples et doubles an d'anticiper les gains potentiels de l'application de la vectorisation du CPU aux valeurs de demiprécision.

Dans l'ensemble, nous constatons que notre algorithme présente des performances numériques légèrement inférieures dans le meilleur des cas en échange de performances numériques nettement supérieures dans le pire des cas, tout en orant des performances d'exécution similaires à celles d'autres algorithmes.

La deuxième contribution est une bibliothèque de calcul en virgule xe conçue spéciquement pour la vectorisation du CPU. Les bibliothèques existantes ne reposent pas sur l'auto-vectorisation du compilateur, qui ne parvient pas à vectoriser les opérations arithmétiques de multiplication et de division.

De plus, ces deux opérations nécessitent des opérations de cast qui réduisent la vectorisabilité et ont un réel coût de calcul. Pour remédier à ce problème, nous présentons un format de stockage de données en virgule xe qui ne nécessite aucune opération de cast pour eectuer des opérations arithmétiques. De plus, nous présentons un certain nombre de benchmarks comparant notre implémentation aux bibliothèques existantes et nous présentons la vitesse de vectorisation du CPU sur un certain nombre d'architectures. Dans l'ensemble, nous constatons que notre format en virgule xe permet des performances d'exécution égales ou supérieures à toutes les bibliothèques comparées.

La dernière contribution est un moteur d'inférence de réseau neuronal conçu pour réaliser des expériences en variant les types de données numériques utilisées dans le calcul d'inférence. Ce moteur d'inférence permet un contrôle spécique à la couche des types de données utilisés pour eectuer l'inférence. Nous utilisons ce niveau de contrôle pour réaliser des expériences visant à déterminer l'agressivité avec laquelle il est possible de réduire la précision numérique utilisée dans l'inférence du réseau neuronal PVANet. Au nal, nous déterminons qu'une combinaison des types de données standardisés oat16 et boat16 est susante pour l'ensemble de l'inférence.

to the elds of CPU vectorization and machine learning.

The rst contribution is an algorithm for computing an average with half precision oating point values.

In this work performed with limited half precision hardware support, we use an existing software library to emulate half precision computation. This allows us to compare the numerical precision of our algorithm to various commonly used algorithms.

Finally, we perform runtime performance benchmarks using single and double oating point values in order to anticipate the potential gains from applying CPU vectorization to half precision values. Overall, we nd that our algorithm has slightly worse best-case numerical performance in exchange for signicantly better worst-case numerical performance, all while providing similar runtime performance to other algorithms.

The second contribution is a xed-point computational library designed specically for CPU vectorization. Existing libraries fail rely on compiler auto-vectorization, which fail to vectorize arithmetic multiplication and division operations.

In addition, these two operations require cast operations which reduce vectorizability and have a real computational cost. To allevieate this, we present a xed-point data storage format that does not require any cast operations to perform arithmetic operations. In addition, we present a number of benchmarks comparing our implementation to existing libraries and present the CPU vectorization speedup on a number of architectures. Overall, we nd that our xedpoint format allows runtime performance equal to or better than all compared libraries.

The nal contribution is a neural network inference engine designed to perform experiments varying the numerical datatypes used in the inference computation. This inference engine allows layer-specic control of which data types are used to perform inference. We use this level of control to perform experiments to determine how aggressively it is possible to reduce the numerical precision used in inferring the PVANet neural network. In the end, we determine that a combination of the standardized oat16 and boat16 data types is sucient for the entire inference.

Introduction

Global Context Current advancements in machine learning are simultaneously driving development in both software and hardware. The intense computational demands of applications like articial neural networks drive a need for ecient software that fully utilizes performant hardware. This need is so strong that hardware manufacturers are designing new machines specically for such applications. In doing so, hardware manufacturers and machine learning researchers also explore limits of acceptable numerical representations.

Figure : Using meanshift to distinguish between rows of grains

Machine learning consists of algorithms that allow computers to nd patterns in data. One type of machine learning method is cluster analysis, which groups data points into related clusters. For example, Figure 1 shows the application of a meanshift clustering algorithm to distinguish between rows of grains.

Articial Neural Networks (ANNs) are one category of machine learning algorithms being actively researched.

They are used for applications varying from playing games [10][101], object detection and recognition [46], natural language processing [16], to medical diagnosis [74] and more.

As the eld of machine learning evolves, so must the corresponding software. However, it is not enough for machine learning software libraries to only integrate new methods and techniques they also seek to continuously accelerate their performance.

Machine learning algorithms are very computationally demanding. They tend to involve repeatedly processing large datasets. For example, training the PVANet [46] ANN presented in Chapter 4 involves performing 170,000 iterations over a 450MB dataset. As a result, machine learning software needs to take advantage of any available hardware accelerators, such as CPU vectorization, multicore processing, and Graphical Processing Units (GPUs).

The high computational demands of machine learning software are even driving developments in hardware. In addition to the standard accelerators, there are also dedicated AI accelerators in development for use by ANN applications. Two high-prole examples are Google's Tensor Processing Units (TPUs)[57] and Intel's Movidius Visual Processing Units (VPUs) [55] developed specically for use by machine learning applications. Even with this specialized hardware, machine learning applications are often computationally intensive and thus unsuitable for mass use. As a result, eorts are being made in order to reduce the computational load of machine learning applications.

One means of reducing the cost of machine learning computations is to reduce the numerical precision used during the computations. Put simply, this means using smaller numbers to perform the same computations. Reduced precision provides two main benets it reduces the memory needed to perform the computation and it allows more computations to be performed in parallel via vectorization. Both of these benets combine into a faster execution speed. As a side eect, reducing the precision of an application also reduces the energy usage, as less computations are physically performed by the hardware. There is a risk of degraded performance when reducing precision. However, there are methods to mitigate this risk [40][110]. In addition, machine learning algorithms, especially ANNs, are capable of producing robust models tolerant to numerical imprecisions.

CPU and GPU hardware are beginning to support new numerical formats because of advances in machine learning. Both CPUs and GPUs have begun supporting the half [47] precision format [51][79][61]. In addition, there are announcements that there will soon be support for the boat16[99] format [27][78][98]. While these two formats are some of the simplest to experiment with and implement, they are not the only formats worth examining. There are works researching the viability of other formats, such as xed point [66], binary [17], and ternary [69]. This work will even examine the viability of nonstandard oating point formats.

Industrial Context

The works presented here were performed while working as a software engineer at Agenium Scale, a small company that specializes in high performance computing, vectorization (both CPU and GPU), and software optimization. It uses this expertise to develop the open-source nsimd software library, which facilitates the writing of vectorized code. nsimd already supports the latest Intel and ARM architectures and is nearly ready to release CUDA support. Agenium Scale leverages its relationships with hardware manufacturers to add support for cutting edge architectures as they are being developed. This nsimd software library provides the basis and the motivation for the xed point computational library that will be presented in Chapter 6.

Agenium Scale applies its core specialties via consulting to a number of domains including machine learning, aerospace, and agriculture. The works presented in Chapter 7 were motivated and nanced by one such consulting contract to research methods for accelerating neural network inference.

The author's responsibilities within Agenium Scale during the duration of this PhD include developing image processing software for the aerospace and agricultural domains, as well as development and maintenance of the xed point library presented in Chapter 6 and the custom inference engine described in Chapter 7.

Content This manuscript will be divided into two parts. The rst part, labeled State of the Art, presents the general background information required to understand the contributions present in the second part. This second part, labeled Contributions, presents the works done during this PhD.

Chapter 1 will present the fundamentals of Computer Architecture required to understand the works presented in Chapters 5 and 6. It begins by describing briey how numbers are physically represented inside of a computer. Next, we show the cost of performing various operations on these numbers, followed by some methods that mitigate this cost. The importance and speeds of various memory levels are then presented. Finally, we describe the basic notions of parallelism and the most common physical means of achieving parallelism.

Chapter 2 focuses on some of the basics of writing and optimizing software. First, we discuss how to time software in order to be able to analyze its speed. Then we present how to take advantage of CPU vectorization. This is presented in the context of vectorization software libraries due to the limitations of compiler optimization.

Chapter 3 goes into detail about how numbers are represented within a computer. We begin with the binary base used to represent all numerical values. Next we describe integers, xed point values, and oating point values, along with their limitations. Finally, we describe the basics of how mathematical functions are approximated numerically.

Chapter 4 presents Articial Neural Networks. We begin with a brief description of what ANNs are. We then distinguish between the training and inference stages of ANN usage, noting that we focus specically on inference in this work. Next, we describe the most computationally intensive computations performed by most ANNs and some methods to alleviate this intensiveness. Then we describe one means of measuring the accuracy of an ANN. Finally, we describe the PVANet ANN that will be examined in Chapter 7.

Chapter 5 proposes an algorithm for computing the average of a set of numbers using the half precision format. This work was previously published in [83]. We rst examine established algorithms for computing the average. As we examine them, we note each algorithms inadequacies when computing with half precision numbers. We then propose an algorithm that does not suer dramatic loss of accuracy with half precision numbers. Finally, we compare both the accuracy and the optimized execution speed of the examined algorithms.

Chapter 6 presents the works performed in developing a xed point extension the the nsimd SIMD software library. We rst describe some of the specicities of the xed point numerical format. Then we compare a few existing xed point software libraries in the context of our desired use case (the experiments presented in Chapter 7). We provide a description of the nsimd software library within which this work was integrated. Finally, we describe the implemented xed point numerical type, present the algorithms used to implement it, and show benchmarks of its performance.

Chapter 7 presents a framework for performing experiments with ANN numerical precision as well as the results of a rst experiment using the framework. In order to do so, we describe our needs and examine some commonly used ANN software libraries. Next, we present the custom inference engine developed for the purpose of performing our experiments. Finally, we present the results of experiments using this inference engine to vary the numerical precision used when performing inference of the PVANet ANN.

Part I

State of the Art

-Computer Architecture

Modern computer architectures have a number of properties and features which should be considered when designing algorithms. The properties and features of interest for the purposes of this work are instruction latency, instruction ports, pipelining, branch prediction, memory hierarchies, and parallelism.

. Data Types

Computing hardware supports a certain number of native data types and operations that can be performed on each type. The natively supported data types can be broken into three major categories binary, integers, and oating point.

Binary types (bits) are the most simple in principle a binary value is simply a 0 or a 1. In practice, binary values are not stored and treated in isolation, but in groups of at least 8 binary values (1 byte). There are, however, a number of binary operations that can be performed on bytes of binary values, such as AND, NOT, and XOR operations.

Integer types represent integer, or whole, numbers with no decimal or fractional portions. Most programming languages treat 32-bit integers as the default integer type, but hardware usually also supports 8, 16, 32, and 64 -bit integers, each with signed and unsigned support. Integers require at least basic arithmetic operations (addition, subtraction, multiplication, division), but most CPUs also provide some additional complex operations.

Floating point types represent oating point values, as described in the IEEE754 standard [47]. The default oating point type is usually 32-bits, but hardware usually also supports 64-bit (double) oating point values and in recent years support for 16-bit (half) oating point values has grown [79]. Some computer architectures even implement extended precision oating point processing units as described in [47], allowing for greater than 64-bit intermediate computations.

Floating point types also require basic arithmetic operations and most CPUs also contain even more complex operations than for integers.

All of these data types will be described in much more detail in Chapter 3. Some algorithms require data types that are not natively supported by the hardware used to run them. When this happens, the data type must be emulated through software, using the native data types in such a way that they emulate the behavior of the target data type. The cost of the extra operations that perform the emulation usually cause the emulated data type to compute more slowly than any native data type.

. Instruction Sets

CPUs implement operations on data by implementing Instruction Set Architectures (ISA). An ISA denes many important features, such as the supported data types, number and types of registers, and supported operations. Section 1.1 described the data types, Section 1.6 will describe the registers. This section will focus on the types of operations, or instructions.

The most basic instructions include memory usage, arithmetic and logic (bitwise) operations, and control ow. Memory usage instructions allow the ISA to load and store values to and from memory. Arithmetic and logic operations allow the ISA to perform basic computations. Control ow contains such concepts as function calls and branching which help structure the computations. It is also possible for an ISA to provide more complex instructions. These more complex instructions can provide features such as mathematical functions, SIMD instructions, and larger scale memory transfers.

The two major classications of ISAs are known as Complex Instruction Set Computers (CISC) and Reduced Instruction Set Computers (RISC). RISC ISAs primarily implement the basic instructions and avoid implementing the more complex instructions. They generally require more individual instructions to perform computations. As a result, they tend to rely on compilers to make software development manageable. CISC ISAs implement more than just the basic instructions they implement some amount of the more complicated instructions. These complex instructions often have higher instruction latency than the more basic instructions. However, they simplify software development by providing a greater range of available instructions. Of the most commonly available ISAs, ARM's are considered to be RISC while Intel's are considered to be CISC.

. Instruction Latency

CPUs contain a number of basic operations, which are then used together to perform computations. Dierent CPU operations can require dierent amounts of clock cycles to execute because the base operations are physically implemented in the circuitry using dierent algorithms of various complexity. Some algorithms, such as addition/subtraction, are relatively simple and can be calculated in a single CPU cycle. Others, however, can be much more complex and require many more CPU cycles to calculate. Table 1.1 shows the minimum number of CPU cycles needed to perform various basic arithmetic operations [29]. The dierences are especially pronounced when performing integer arithmetic division takes 22x as many cycles as addition but still signicant for oating point arithmetic where a division operation takes slightly more than 3x as many cycles to calculate as addition. Because of this discrepancy in arithmetic calculation time, it is generally faster to multiply than to divide and generally faster to add than to multiply. As will be shown in section 5.3, the eect of arithmetic instruction latency can have Throughput is a concept strongly related to latency. It measures the number of operations that can be performed in a given time. Simplistically, it can be considered the inverse of latency an arithmetic computational unit with a latency of 0.1 seconds would have a throughput of 10 arithmetic operations per second. However, in practice it this is not always the case. For example, if a processor has three of the above computational units, it actually has a throughput of 30 arithmetic operations per second. This is indeed often the case with CPU ports.

It is also possible to invert the throughput to obtain the concept of inverse throughput, which is usually measured in cycles per instruction. Inverse throughput diers from latency in that it measures the number of operations that can be completed per unit of time, rather than the length of each operation. Continuing the above example with a latency of 0.1 seconds per operation and throughput of 30 operations per second, the inverse throughput would be 0.03 seconds per operation. One example using this type of measure is [49].

. Ports, Pipelining

Modern CPUs contain a number of computational ports [48] capable of performing specic tasks, although most tasks can be performed by multiple ports per CPU. For example, one port may be capable of adding, subtracting and multiplying, while another port may be capable of loading and storing data. Each of these ports is capable of operating independently of the others and passing its output to another port. This allows the CPU to organize a series of instructions such that the data ows through the ports as a pipeline, performing multiple instructions per clock cycle [48][93]. Figure 1.2 shows the execution of pipelined instructions. While there is a latency of 5 cycles between the start and end of a block of instructions, the throughput (once the pipeline has lled) is 1 output per cycle.

Pipelining is most useful when performing the same instructions repeatedly on independent data. In this case, it is possible to organize the instructions so that there is a continuous ow of multiple instructions being executed simultaneously. The resulting process calculates much faster than if only a single instruction were 2-15

• An in-order retirement unit that ensures that the results of execution of the micro-ops, including any exceptions they may have encountered, are visible according to the original program order.

The flow of an instruction in the pipeline can be summarized in the following progression:

1. The Branch Prediction Unit chooses the next block of code to execute from the program. The processor searches for the code in the following resources, in this order: a. Decoded I Cache.

b. I nstruction Cache, via activating the legacy decode pipeline.

c. L2 cache, last level cache (LLC) and memory, as necessary.

2. The micro-ops corresponding to this code are sent to the Rename/ retirement block. They enter into the scheduler in program order, but execute and are de-allocated from the scheduler according to data-flow order. For simultaneously ready micro-ops, FI FO ordering is nearly always maintained.

Micro-op execution is executed using execution resources arranged in three stacks. The execution units in each stack are associated with the data type of the instruction.

Branch mispredictions are signaled at branch execution. I t re-steers the front end which delivers micro-ops from the correct path. The processor can overlap work preceding the branch misprediction with work from the following corrected path. performed per clock cycle. Due to the dependency between steps of the pipeline, it takes time to initially ll the pipeline before the increased throughput can be observed. The same eect can be observed at the end of the pipeline, when there are no more iterations to perform but the last instructions have not yet nished executing [93]. However, these eects grow less inuential as the number of repeated iterations grows.

In order to maximize the eectiveness of CPU pipelines, CPUs are capable of reordering operations to perform out of order execution [48]. The operations are reordered in order to maximize port usage and length of the pipeline without aecting the computational result.

. Branch Prediction

Branches are a common code feature where future instructions depend on variable conditions. They occur when using statements such as if, for, and while. When using branches on a pipelining processor, this can create an instruction bottleneck, where we must wait for the condition to evaluate before continuing to execute instructions. The solution to this problem is branch prediction, also known as speculative execution. Rather than wait for the calculation to nish evaluating before proceeding with the next instructions, the processor may choose a branch to execute [48]. If the wrong branch is chosen, the pipeline is ushed out in order to discard the proceeding results, then the correct branch is followed. This costs the same amount of time as if the processor had simply waited for the condition calculation before continuing to execute instructions. This act of waiting for the condition to evaluate is known as a type of pipeline stall. Both pipeline stalls and pipeline ushes lower the processing throughput. If the correct branch is chosen, then the calculation proceeds normally. Processing units can implement branch prediction in the form of nitestate machines that take past branch results as input [93]. A nite-state machine is a mechanism that has a well dened set of possible states, along with well dened transitions between each state.

Each transition is a reaction to a form of input. In the case of branch prediction, this input is the result of the most recent branch condition evaluation. The state of the nite-state machine is then used to predict the likely result of the next branch condition evaluation. A simple

Take

Take

Ignore Ignore branch predicting nite-state machine deciding whether to take or ignore branches is shown in Fig. 1.4.

Ignored

For code that behaves predictably, branch prediction works very well. One such example is a for loop the loop repeats itself every time it reaches the end of the body, except for the very last iteration. On the other hand, when code behaves unpredictably depending on the data, branch prediction works poorly. One case that exemplies the extremes is the threshold calculation shown in Algo. 1. This Algorithm Sample thresholding algorithm.

for (int i = 0 ; i < A . size () ; ++ i) { if (A [i] < 0.5) A [i] = 0; } calculation performs dierently depending on the nature of the input. If the input is sorted, the calculation is much faster because the results are much more predictable each input before a certain point is below the threshold and all subsequent points are above it. A simple benchmark of Algo. 1 shows a 7x speedup on a sorted input compared to unsorted.

. Memory Hierarchy

Algorithm Loop that is likely to cause many cache misses.

void indirection (int *A , int *B , int * C) { for (int i = 0 ; i < A . size () ; ++ i) { A [i] = B [C [i]]; } }
Memory access is a major limiting factor in computational performance, especially because memory bandwidth does scale up as well as computing power. The solution oered by hardware manufacturers is the presence of multiple levels of memory Algorithm Cache unfriendly convolution algorithm.

void Convolution_unfriendly (int *A , int width , int height) { for (int x = 0; x < width ; ++ x) { for (int y = 0; y < height ; ++ y) { int i = y * width + x;

A [i] = 10 * A [i]; } } }

Algorithm

Cache friendly convolution algorithm -x speedup compared to Algo. . void Convolution_friendly (int *A , int width , int height) { for (int y = 0; y < height ; ++ y) { for (int x = 0; x < width ; ++ x) { int i = y * width + x;

A [i] = 10 * A [i]; } } } Processor L L L ARM Cortex-A -KB KB-MB n/a ARM Cortex-A -KB - KB KB-MB Intel Xeon Phi KB KB MB AMD Threadripper X KB KB MB
Table . : Cache sizes of some example processors.

hierarchy (Fig. 1.5), with dierent sizes and access speeds. These levels range from slow hard drives to the relatively fast RAM to the very fast levels of cache.

As the memory space of each level diminishes, so does the time to access data in that memory level [48]. In most cases, each of these memory levels draws data from the level directly above it. Generally, the simplest way to accommodate this limitation is to, if possible, design an algorithm in such a way that the input data is a continuous block of data. This is because each level pulls a larger than necessary block of data at each time, in case the rest of the block will also be useful.

Hard Drive

RAM

L3

L2 Cache

L1

Figure . : Memory hierarchy levels

If the memory access is regular, then the CPU can easily predict which data blocks will be needed and preemptively pull them from higher memory levels [64][48]. This is known as prefetching. As a result, regular memory accesses are much faster than irregular memory accesses. Conversely, if the memory access is irregular (see Algo. 2), then the CPU will no be able to predict which data block need to be pulled. When the CPU seeks data which is not in the cache, a cache miss occurs. Upon a cache miss, the CPU must load the requested data into the lowest level cache, halting progress until the data nishes loading. The eects of cache misses are very noticeable there is a 7x speedup when using the cache friendly convolution in Algo. 4 instead of the cache unfriendly version in Algo. 3.

Registers can be considered as a level of memory hierarchy above the smallest cache. A CPU contains a limited number of registers that it uses for active calculations. This makes registers the fastest memory available to the processing unit. However, the number of registers available is limited. If an algorithm performs calculations that require more immediate values than there are registers, some values will need to be moved to and from the stack, slowing down the calculation speed, especially if this causes a cache misses. There are generally, but not always, enough registers on modern processors to perform most straightforward algorithms. In practice, SIMD registers tend to be more available than scalar registers. This is because, given a same number of each type of registers, some of the scalar registers will be reserved for certain uses, like function arguments. The amount of registers available, both scalar and SIMD, depends on the CPU implementation. In general, RISC architectures provide more registers than CISC architectures. One way to conceptualize a simple calculation program is to consider it as a single stream of instructions (SI) being performed on a single stream of data (SD). However, it is also possible to perform multiple streams of instructions (MI) or to use multiple streams of data (MD). This lays the foundation of Flynn's taxonomy of computer architectures [28], as shown in Figure 1.6. Multiple streams of instructions operating on a single stream of data (MISD) can allow one to perform multiple unrelated calculations using the same data. Some MISD applications are fault tolerant systems, where the same computation is performed multiple times in order to detect errors, and systolic arrays, which ow a single input through a collection of specialized processors.

If we split the input data into multiple streams, we can perform a single stream of instructions on these multiple streams of data (SIMD). This allows us to gain a greater calculation throughput if this single stream of instructions can operate on the multiple streams of data simultaneously. Another early attempt at SIMD CPU architectures came in the form of parallel processing computers [8]. These computers provided a large number of very simple processors that could execute instructions simultaneously. While this approach failed to take hold at the time, the ideas behind it have returned in both CPU and GPU SIMD architectures. The current widespread approach to CPU SIMD is to implement large registers along with SIMD instructions that operate on all elements of these registers simultaneously. These SIMD instructions allow the processor to perform operations on all elements within a SIMD register, rather than single pieces of data. These large registers have xed sizes, regardless of the data type loaded into them. As a result, the amount of values that can be loaded into such a register depends on the data type being processed. Fig. 1.9 shows what types of parallel computation can be performed using a 256 bit SIMD register. For example, a 256 bit register can hold 16 half precision values, 8 single precision values, or 4 double precision values. SIMD instructions act upon all values in the register, so smaller data types are better accelerated by CPU SIMD. Because this acceleration is performed within the CPU, there is no memory transfer to diminish the potential speed gains.

The act of accelerating a program via SIMD instructions is referred to as both SIMDization and vectorization. If interpreted strictly, vectorization would be limited to the usage of vector computers. However, vectorization has been used with the same meaning as SIMDization for a number of years now [23][20][68].

Each CPU designer provides a dierent set of instructions to use to take advantage of vectorization [49][6]. This complicates the task of writing code which takes advantage of such instructions, as code written for one CPU may not be portable to another. Fortunately, there are multiple eorts to provide unied APIs which allow developers to write portable code. These eorts will be described in Section 2.2.2, along with more detail about the dierence between SIMD instruction sets oered by dierent CPU designers.

. Graphical Processing Units

Graphical Processing Units (GPUs) are another means for accelerating computations via SIMD. A GPU consists of a collection of warps, which function in a manner analogous to large CPU SIMD registers. All threads within a single warp perform the same instructions simultaneously. Unlike the other approaches mentioned in this section, GPU acceleration is not accomplished as part of a standard CPU the GPU is physically separate hardware used to add upon the CPU's capabilities. A discrete GPU has its own physical memory and contains hundreds to thousands of simple processing units specialized to perform parallel computations [80], as shown by Figure 1.10. Because the GPU and CPU are separate components with separate memory spaces, any calculation using the GPU requires that the input data be transferred from the CPU to the GPU. For large amounts of data, this transfer can take a signicant amount of time.

To allow for the large quantity of processing units, each individual processing unit is less powerful than a CPU core. First, the GPU runs at a slower speed than the CPU each core performs fewer operations per second. In addition, the GPU cores are not fully independent. They are grouped into clusters such that each cluster of GPU cores performs the same instructions at a given time. This can lead to ineciencies when using conditional statements, such as if/else statements. When a GPU encounters an if/else, each branch is entered sequentially. First, the cores that qualify for the if perform the if branch instructions. Once they have nished, the cores that did not qualify for the if perform the else instructions. During both of these steps, some of the cores are inactive because the instructions are not intended for them. As a result, GPUs are well suited for larger scale purely SIMD computations. If a computation requires interleaved SISD and SIMD segments, it may not be advantageous to use a GPU.

. Multithreading

Multithreading is the use of multiple "threads" of instructions at once to perform separate tasks. This can be used to perform either SIMD or MIMD computations, and can serve as an extra layer of parallelism on top of vectorization or GPU usage. If each separate task is dened dierently, then the program necessarily performs MIMD computations. However, if we dene the separate tasks as performing the same instructions on dierent sections of the same input data, then the resulting program can perform SIMD computations. In this context, it is important to avoid performing the same instructions on overlapping sections of the input data in order to avoid memory conicts. Depending on the type of memory conict, it is possible to obtain slower performance or false results.

There are two ways to implement multithreading using shared memory or distributed memory. Shared memory multithreading requires each thread to have access to the same physical memory. This is generally the case when using multiple threads on a single CPU. In this case, it is possible for each thread passively share data with the others. Distributed memory multithreading has no shared access requirement. It is best suited for cases where the computations are divided between multiple physical processors. In this case, any data sharing between threads requires explicit memory transfers.

Conclusion

This section has described the details of computer hardware necessary to understand the works that will be presented in Section II. We have seen how data types can aect instruction latency and how ports and instruction pipelining can mitigate such latencies. We have also seen the eects of performing computations using various levels of the memory hierarchy and some of the technologies that allow developers to parallelize software. The following section will describe the concepts involved in designing software that takes full advantage of the underlying hardware.

-Software & Optimization

This section describes the tools and techniques involved in developing ecient software, such as the works presented in Chapter 6 and Chapter 7.

. Timing

In order to discus the features that accelerate computation, it is necessary to discuss how benchmark, or measure, the eciency of the computations. Depending on the complexity of the computation being measured, and the desired level of precision, there are dierent ways to measure the time taken by a computation.

The most basic unit of time in a processing unit is the clock cycle, which corresponds to a single pulse of electricity emitted by the computer's clock generator. This pulse coordinates the components of the circuit, assuring that they are synchronized. The time taken to perform any operation can thus be measured in clock cycles. A processor running at 3GHz will perform 3 • 10 9 cycles per second, where each cycle takes 3.33 • 10 -10 seconds. Clock cycles are a natural unit of measure for basic low level operations and can also be useful when performing comparisons between dierent processors.

More complex computations may take long enough to compute that it makes more sense to measure the time in real world time (seconds, minutes, hours). For example, some mathematical functions such as trigonometric functions, exponents, and square roots can be measured in nanoseconds. More computationally intensive mathematical functions, such as matrix multiplication and image lters are usually measured in milliseconds or seconds. When performing physical simulations, the time to compute tends to range from minutes to hours to days.

There are a few CPU features that complexify the task of benchmarking a computation. The rst is the fact that any computation is a task to be performed by an operating system. Unless explicitly congured, the operating system will periodically interrupt the computation in order to perform its base functions, articially increasing the measured time [100]. Another factor is the presence of CPU C-states [48], which are used to adjust CPU power consumption depending on activity. Depending on which C-state the CPU is in, the CPU may be at reduced voltage (running more slowly). Waking a CPU from a low-voltage C-state to a fullpower C-state could also articially increase the measured time. Fortunately, these perturbations generate a predictable distribution of timings (Fig. 2.1, which can be used to obtain a descriptive benchmark value. Fig. 2.1 clearly shows one main grouping of timings followed by a small after-tail of benchmarks that were slowed down by an OS interruption. In practice, the peak of the largest curve is close to the average of the distribution, so the average of a number of runs can safely be used for simplicity [100]. When optimizing algorithms, the notion of speedup is important. The speedup is a metric describing how much an algorithm has been accelerated, as described by speedup = t old t optimized A larger speedup corresponds to a better optimization. For example, a speedup of two means that an algorithm has been accelerated to run in half the time as it did before.

Benchmark Tools

There are a number of tools of varying complexity available for benchmarking programs. If the section of code being benchmarked is well known and well dened, a simple timer (such as those dened in timeFh, stdXXhrono, or googleEenhmrk[37]) may suce. More complex tools (such as perf and llgrind [76]) are needed if one wishes to benchmark within the context of a larger software program. These more complex tools are capable of measure both the absolute time spent in various functions and the proportional time in various functions compared to the rest of the execution time.

Now that we have an idea of how to measure the speeds of algorithms, we can discuss dierent ways to accelerate them up.

. SIMD

In very simple cases, modern compilers are capable of automatically vectorizing simple calculation loops to take advantage of CPU SIMD units. These simple cases must be recognized by the compiler to match pre-identied patterns. However, in almost every practical case, vectorized code must be hand-written. Otherwise the vectorization may not be non-portable due to its compiler dependence. This is generally a non-trivial eort for a few reasons. First, the SIMD instructions need to be written directly in assembly, or machine language. Because they must be written using CPU intrinsic functions and each CPU architecture provides dierent SIMD instructions, these vectorized sections of code are not portable. Finally, on some CPUs (x86 architectures) vectorized code operates best on aligned input data, which either complicates the memory allocation process or requires breaking the data into an unaligned head, aligned body, and unaligned tail as shown in Algo. 5.

Algorithm Scalar and vectorized versions of multiplication, including head and tail management.

// Scalar for (int i = 0 ; i < A . size () (Intel) int align_beg = A . data () + (A . data () % 16) ; int align_end = A . data () + A . size () -((A . data () + A . size ()) % 16) ; for (int i = 0; i < align_beg ; ++ i)

; ++ i) { A [i] = B [i] * C [i]; } // SIMD
A [i] = B [i] * C [i]; for (int i = align_beg ; i < align_end ; i +=4) __m256 b = _mm256_load_ps (&(B [i])) ; __m256 c = _mm256_load_ps (&(C [i])) ; __m256 a = b * c ; _mm256_store_ps (&(A [i]) , a) ; for (int i = align_end ; i < A . size () ; ++ i) A [i] = B [i] * C [i];
Alignment Some SIMD architectures exhibit dierent behavior depending on whether the data they operate on is aligned [21]. In the worst case scenario, attempting to load unaligned data into an SIMD register can cause a program to crash. In a less severe scenario, using unaligned data can degrade the performance of a computation. However, these alignment concerns are generally less problematic on modern processors than previous generations.

. Dierent Architectures

Dierent CPU architectures can have dierent SIMD instructions (Algo. 6), even coming from the same manufacturer. Notable among these are Intel's SSE and AVX, ARM's NEON and SVE, and IBM's AltiVec. Each architecture has its own registers, corresponding data types, instructions, and corresponding functions. The result is that SIMD code written for a specic architecture may not work on other architectures. CPUs exhibit backwards compatibility AVX capable processors also have SSE technology and SVE processors must be NEON compatible but there is no compatibility between manufacturers.

As such, we can consider that the various architectures are organized into families where each member of a family inherits the instructions of its ancestors. For example, in the Intel family of instructions, the AVX512 architecture inherits the instructions from the AVX2 architecture, which inherits instructions from the AVX architecture, and so forth.

Algorithm SIMD addition using different architectures.

. SIMD Software Libraries

There exist a number of software libraries that facilitate the development of SIMD software. This section will present a number of them, with a focus on CPU SIMD. Table 2.1 summarizes the dierentiating features of all presented libraries.

Comparison Criteria

This section explains the criteria being compared in Table 2.1.

General Information

The most important column of the general features section is the license. Which license a software library uses aects how it can be included in various projects and what restrictions it imposes on its usage. For example, bsimd has a non-free software license because it is the only paid product listed. The MIT license is fairly non-restrictive, as it only requires the project integrating it to preserve the library's copyright and license notices. The Apache License 2.0 is similar to the MIT license in terms of restrictions, as it also preserves the library's copyright and license notices. The Boost Software License is also similar to the MIT license in terms of restrictions, as it also preserves the library's copyright and license notices. The BSD 3-Clause is also similar to the MIT license in terms of restrictions, as it also preserves the library's copyright and license notices. t-SIMD's open source software license restricts the software's usage to only scientic or academic purposes.

[] † Y Y Y Y Y Y Y Y Y Y Y N N Compiler Implicit Eigen [] MPL Y Y N Y Y Y Y Y Y Y Y N Y Op. Overload Explicit MIPP [] MIT Y Y N N Y Y N Y Y Y Y N Y Op. Overload Implicit VCL [] Apache- Y N N N Y Y N Y Y Y Y N Y Op. Overload Explicit simdpp [] Boost Software Y Y N Y Y Y N Y Y Y Y N N Exp. Template Explicit T-SIMD [] Open-Source N Y N N N Y N N Y Y Y N N Op. Overload Explicit Vc [] BSD--Clause N N N N Y Y N Y Y Y N N Y Op. Overload Implicit boost.SIMD [] Boost Software P N N N Y Y N Y Y Y Y N Y Op. Overload Implicit bsimd [] Non-free P Y N Y Y Y N Y Y Y Y N Y Exp. Template Implicit xsimd [] BSD--Clause Y Y N N Y Y N Y Y N N N Y Op. Overload Implicit nsimd [] MIT Y Y Y Y Y Y Y Y Y Y Y Y Y Op. Overload Implicit * -bit multiples up to † Implementation dependent
Instruction Set SIMD instruction sets can be classied rst by designer, then by register size.

Intel and AMD design and manufacture x86 CPUs, which implement SSE (128-bit), AVX (256-bit), and AVX-512 (512-bit, Intel only) instructions. Each successive generation also implements the previous ones for backwards compatibility. SSE and AVX are not listed in Table 2.1 because they are supported by all listed software libraries.

ARM proposes the NEON (128-bit) and SVE (variable-bit) instruction sets. SVE is a special case in that it presents a Variable Length Array (VLA) paradigm. SVE registers must be of a size multiple of 128-bits with a maximum of 2048-bits, but the exact multiple is determined by the CPU manufacturer.

IBM designs and manufactures POWER CPUs, which implement AltiVec/VMX/VSX (128-bit) instructions.

Data Type

As described in Section 2.4.3, the choice of data type can be an important consideration. Most of the libraries compared in Table 2.1 support the most common data types -32 and 64 bit oat and 8, 16, 32, and 64 bit integers. However, most do not support half precision(16-bit oat), which are beginning to be implemented on many CPUs. Currently, x86 CPUs have started implementing half precision loading and storage of data and conversions between 16-bit and 32bit oating point types. ARM CPUs have specications for half precision loading, storage, and arithmetic. Whether these features are actually implemented depends on the manufacturer. Finally, nsimd is the only library to support xed point data types and computations, which are of interest for this work.

Features

For general usage, it is useful for a SIMD wrapper to also contain some mathematical functions. Otherwise the user must implement them using basic arithmetic functions, which can be a dicult task.

The C++ technique column represents one of the technical choices made during design. The compiler directives from OpenMP are the simplest to use and give the most straightforward messages when used, but are not guaranteed to work. The expression template method can be fairly simple to use, but gives the most complicated error messages when failing and can signicantly increase compilation time. Lastly, the operator overload method can also be simple enough to use while giving reasonable error messages when failing and does not signicantly aect compilation time.

Finally, the Register Size column represents at which point the register sizes are determined. Some wrappers implicitly determine the register size according to the architecture target, while others require the user to explicitly specify the register size when writing the software.

Eigen is a C++ computational library for linear algebra functions. In order to fully take advantage of SIMD optimizations, the library implements and uses an interface that abstracts away the underlying CPU architecture. It is possible to use this interface as a SIMD library, although the user must specify the register sizes that they wish to use. Eigen is one of the few libraries to support half precision via emulation.

OpenMP is an API specication for parallel computation via compiler directives. As such, it is included with most compilers and often requires no extra installation. While OpenMP's focus is on shared-memory multithreading, it also has directives for SIMD computation. The programmer writes a normal computational loop and signals to OpenMP via the 5omp simd directive that the loop is vectorizable. At compilation, OpenMP will attempt to help the compiler vectorize the loop. However, there is no guarantee of success. In addition, OpenMP is capable of supporting half precision on some architectures that implement it.

MIPP is a C++ 11 library that wraps a portable interface around SIMD intrinsics using operator overloads. It implements the SSE, AVX, AVX-512, and NEON instruction sets for native data types, excluding 16-bit oats. Its API allows the register sizes to be determined and accounted for at compile time rather than when writing the code.

VCL is a C++ library that wraps a portable interface around SIMD intrinsics using operator overloads. It implements the SSE, AVX, and AVX-512 instruction sets for native data types, excluding 16-bit oats. Its API requires register sizes to be determined and accounted for when writing the code.

simdpp is a C++ library that wraps a portable interface around SIMD intrinsics using template metaprogramming. It implements the SSE, AVX, AVX-512, NEON, and Altivec instruction sets for native data types, excluding 16-bit oats. It supports most instruction sets except for SVE and most data types except for 16-bit oats. Despite using templates, simdpp requires the register sizes to be known when writing the code. In addition, register sizes must be powers of two, which renders SVE support incompatible with the current model.

T-SIMD is a C++ library that wraps a portable interface around SIMD intrinsics using operator overloads. It implements the SSE, AVX, AVX-512, and NEON instruction sets for 32-bit oats and integers 32 bits and smaller. It does not support 64-bit oats, 64-bit integers, or 16-bit oats. In addition, T-SIMD has a license that primarily allows academic uses. This greatly limits its applicability. T-SIMD also requires register sizes to be known when writing the code using it.

Vc is a C++ library that wraps a portable interface around SIMD intrinsics using operator overloads. It implements the SSE and AVX instruction sets for most native data types, excluding 16-bit oats and 8-bit integers. Its API allows the register sizes to be determined and accounted for at compile time rather than when writing the code.

boost.SIMD and bSIMD are intertwined, as bSIMD is the paid extension of the open-source boost.SIMD. They are both C++ libraries that wraps a portable interface around SIMD intrinsics using template metaprogramming. While boost.SIMD only supports SSE, AVX, and (partially) AVX-512, bSIMD has support for SSE, AVX, (partially) AVX-512, NEON, and Altivec. The partial AVX-512 support is limited instructions available to Intel KNL processors. They both support all native data types except for 16-bit oats. Like simdpp, the design of the library requires register sizes to be powers of two, rendering SVE support incompatible with the current model. Their API allows the register sizes to be determined and accounted for at compile time rather than when writing the code.

xsimd is a C++ library that wraps a portable interface around SIMD intrinsics using operator overloads. The mathematical functions provided by xsimd are reimplementations of the algorithms provided by boost.SIMD. xsimd implements the SSE, AVX, AVX-512, and NEON instruction sets for most native data types, excluding 16-bit oats. Its API allows the register sizes to be determined and accounted for at compile time rather than when writing the code.

nsimd is a C++ library that wraps a portable interface around SIMD intrinsics using operator overloads. It implements the SSE, AVX, AVX-512, NEON, SVE, and Altivec instruction sets for all native data types in addition to xed-point precision. Its API allows the register sizes to be determined and accounted for at compile time rather than when writing the code. In addition to a modern C++ API, nsimd also has C++98 and C APIs.

As can be inferred from the structure of this section and of Table 2.1, nsimd is used as the SIMD wrapper for the work presented in Part II. It will be described in much more detail in Section 6 where it plays an important role.

. Compilers

Modern compilers are capable of signicantly optimizing the codes that they compile. They are capable of optimizations such as reordering code instructions, removing unused code paths, and -most relevantly to this work -auto-vectorizing simple loops. While this auto-vectorization is an impressive accomplishment, compiler auto-vectorization capabilities are frequently overstated. Most compilers are capable of automatically vectorizing simple loops, as show in Algo. 7. However, some studies [58] nd that compiler automatic vectorization often achieves results "far from the architectural peak performance"[96] in realistic scenarios. It is relatively simple to design loops that are not overly complicated, but compilers fail to vectorize, such as Algo. 8, which one common compiler msvc fails to vectorize, or Algo. 9, which all tested compilers failed to vectorize (as shown in Figs. A.1 -A.8 using [35]). As a result, when vectorizing code it is always Algorithm Loop that compilers can auto-vectorize.

: function Sum(A, B, C, length)

:

for i in (, length) do : C[i] = A[i] + B[i] :
end for : end function necessary to check if the compiler has successfully auto-vectorized the code and frequently necessary to vectorize by hand when the compiler fails at this task.

Algorithm

Simple loop that compilers sometimes fail to autovectorize.

:

. Algorithm Designs

This section lists the most important factors to consider when designing algorithms.

. Complexity

The most important part to optimize is the algorithm being implemented. A well suited unoptimized algorithm can easily perform better than a nely tuned, poorly chosen algorithm. For example, modifying an algorithm that relies on a matrix-matrix multiplication (O(N 3) complexity) to obtain the same results with a matrix-vector multiplication (O(N 2) complexity) can achieve gains greater than any of the methods described in the proceeding sections.

Another algorithmic consideration is the number of operations required to perform the computation. According to Table 1.1, an algorithm that performs 20 integer addition and subtraction operations can still be faster than an algorithm that performs a single integer division operation. Section 6 involves a number of algorithms which attempt to minimize the number of operations involved.

. Memory

Another important consideration is memory usage and memory availability. One of the most important memory limitations is the size of the RAM on the machine. If a computation requires more memory than is available in the RAM, the operating system must begin using a swap partition of the physical storage memory. In the most generous comparison slow RAM with a fast solid state drive the RAM is still 10x faster than the SSD. Further, it is can also be useful to consider the size of the various cache levels available on the CPU. Due to the dierence in latencies to access data from various cache levels (Section 1.6), it is often faster to break the data into blocks and perform repeated operations on each block rather than perform repeated operations on the full data [19].

A number of common computations are limited by the available memory bandwidth. The scalar product of two vectors (Algo. 10) is one such example. The computation

Algorithm

Scalar product float sum = 0; for (int i = 0 ; i < len

; ++ i) { sum += a [i] * b [i]; }

Algorithm

Matrix multiplication of MxO and OxN matrices.

for (int i = 0 ; i < M ; ++ i) { for (int j = 0 ; j < N ; ++ j) { sum = 0; for

(int k = 0 ; k < O ; ++ k) { sum += a[i][k] * b [k][j]; } c [i][j] = sum ; } }
required to compute the scalar product is very limited compared to the memory usage it can be reduced to one fused multiply-add (fma) operation for every two load operations. This means that the computation is memory bound. Conversely, if a computation is limited by the speed of actual computation, it is compute bound. This distinction between compute bound and memory bound computations is one of the core notions of the Rooine Model[107] used to predict peak performances of computations on specic machines. In order to perform this predition it is rst necessary to compute the arithmetic intensity of the computation. This arithmetic intensity is a ratio of the computational load, referred to as work, to the amount of memory transfers, referred to as memory trac. Figure 2.2 provides a simple example of a rooine model. If the arithmetic intensity of a computation falls under the sloped portion of the graph, it is a memory bound computation. For example, the scalar product described in Algo. 10 is memory bound because it performs two memory transfers and two arithmetic operations per loop cycle. If the arithmetic intensity of a computation falls under the at portion of the graph, it is a compute bound computation. The matrix multiplication described in Algo. 11 is compute bound because it can be written to perform many more arithmetic operations than memory transfers, as the data used in the computation is frequently reused.

. Data Types

The choice of data types can also have a strong eect on the performance of a program. It is imperative to choose a data type that has enough numerical precision to calculate correct results. However, it is possible to choose a data type that is too large and slows down the calculations. The size of the data type chosen aects the memory usage of the computations. A program using 16-bit oating point precision will require quadruple the memory of a program using 64bit oating point precision. This inuences the amount of data that can t into the caches and the RAM, which can aect the speed of the computations. Due to the xed size of SIMD registers, smaller data types can obtain greater speedups. It is possible to get a theoretical gain of 4x by using half precision instead of double precision for a well vectorized computation. Finally, if using a form of parallelism that requires memory transfers, the reduced data size allows for faster memory transfers it takes about half the time to transfer half as many bits. The following section will provide much more detail about the dierent data types available.

-Numerical Representations

This section details the ways in which numbers can be represented on a computer. Dierent formats will be discussed, along with their respective strengths and weaknesses. Chapters 5, 6, and 7 will present works exploring the eects of various numerical formats applied to certain computations.

. Binary

Most numbers present in everyday life are presented in base 10. This means that we have ten distinct numbers -0, 1, 2, 3, 4, 5, 6, 7, 8, 9 -that we count through before repeating (and incrementing the digit to the left of it). For example, counting past 9 gets 10, counting past 29 gets 30, and counting past 99 gets 100.

However, it is possible to count using any base we want. When counting time, we use base 60 when keeping track of hours (1 hour = 60 minutes) and minutes (1 minute = 60 seconds) and base 24 when keeping track of days (1 day = 24 hours). Here the idea is the same; counting past 59 seconds gets 1 minute, counting past 5 minutes 59 seconds gets 6 minutes, and counting past 59 minutes 59 seconds gets 1 hour.

The last and most important base to present here is base 2. Here we only have two distinct numbers -0 and 1. Counting from 0 to 9 in binary goes as follows -0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001. In order to understand how computers handle numbers, it is not base 10 that interests us, nor base 60. It is base 2 that computers use to store numbers. This is because the information is physically stored by transistors, which only have two states -on or o. Therefore, a single transistor is not capable of storing a base 10 digit, as that would require it to have 10 possible states. However, a transistor is capable of storing a digit in base 2, since base 2 only has two numbers available -0 and 1. This means that it is also possible to arrange a series of transistors so that each transistor in the series represents a base 2 digit of the full number.

In essence, a bit is a single digit of a base 2 number. Since the ideas discussed in the proceeding sections are applicable to both base 2 and base 10, they will be mostly described in base 10.

. Integers

Integers represent whole numbers. They cannot directly represent any decimal values. Numerically, an integer is represented by a set number of digits. This means that there is a set maximum and minimum number. For example, a four digit decimal number can range from 0000 to 9999 and a four bit binary number can range from 0000 (0) to 1111 (15).

In order to be able represent negative numbers in addition to positive numbers, we must devote one digit to the sign. In this case, a four digit decimal number can represent -999 to +999 and our four bit binary number can represent 1000 (-8) to 0111 (7). In contrast to decimal, binary negative numbers are not simply stored as a negative sign followed by the absolute value. Instead, processors store negative values as the two's complement of their corresponding positive values. This two's complement can be obtained by inverting each bit of the initial value, then adding one. As a result, binary numbers retain the property that the bitwise sum of a number and its negative equal zero.

The limited number of bits in an integer result in a potential problem known as overow. When an integer contains the maximum allowable value, adding to this integer causes it to overow to the minimum value. For example, the maximum four bit unsigned integer is 1111 (15). When adding one the result should be 10000 (16), but because there are only four bits available, the result is truncated to 0000 (0). In the signed integer case, adding one to 0111 (7) would overow to 1000 (-7).

Due to the indivisibility of integers, division operations can be inexact and vulnerable to truncation errors.

The decimal portion of a division result will be truncated, which can lead to signicant losses. For example, using integer math the operation 49 ÷ 10 returns 4. This is nearly 20% error relative to the mathematical result. However, for operations that do not involve division, the only risk of inaccurate results is from overow. Next, we want to be able to represent numbers with decimal points, rather than limit ourselves to whole numbers.

The simplest way to do this is to set a xed number of digits before the decimal point and a xed number of digits after the decimal point.

This notation is intuitively called a xed point representation. Fixed point numbers have many similarities to integers, as integers can be considered a special case of xed point representation where there are no decimal points. As such, they share the same susceptibility to overow when exceeding the maximum values. Fixed point values are limited to a predened number of decimal points, so they are also susceptible to the same types of rounding errors when dividing. Fixed point implementations may perform multiplication and division by computing with more digits than required, then rounding the result. However, this feature is implementation-dependent. Due to the presence of the decimals, there is also an added risk of rounding errors when multiplying. One major drawback to xed point representation is that it is usually not supported by hardware oating point representation is used instead.

Qa.b Representation

This work will describe xed point formats using the Qa.b representation. In this representation, the 'a' represents the number of bits in the integer portion of the xed point number. The 'b' represents the number of bits in the decimal portion of the number. For example, the Q5.3 value represented in Figure 3.1 contains 5 integer bits and 3 decimal bits.

Another common representation for xed point formats is the Qf format, where f is the number of fractional bits. This representation is less precise, as the number of integer bits are not specied.

. Floating Point Representation

The most common format used for handling numbers containing decimals is the oating point format. This representation is essentially the binary form of normalized scientic notation. This normalized scientic notation consists of a single digit followed by a decimal point and the decimal portion of the value followed by an exponent. For example, 123.456 in normalized scientic notation becomes 1.23456 • 10 2 . In binary, 1101.1 (13.5) becomes 1.1011 • 2 3 . The presence of the exponent allows for a dynamic range of possible values, compared to xed point representation.

Normalization provides a few benets. First, it limits each possible value to a single representation. In other words, there is only one way to represent any given value. This simplies comparisons between oating point values. In addition, normalization maximizes the amount of available digits, which is a desirable property with a limited number of digits. For example, if eight total bits are available in the mantissa, the value 0.0011011 wastes the three bits of leading zeroes. Normalizing the value to 1.1011000 allows room for greater precision. Finally, normalization allows for a memory optimization specic to binary. Binary only allows for values of 0 or 1 and normalization forces the rst bit to be nonzero. It is thus possible to make the 1 before the decimal point implicit and avoid storing it.

Floating point representation has more complexities than integer and xed point representations. The corresponding arithmetic is also more complex, as previously shown in Table 1.1. For example, oating point addition and subtraction take three cycles to evaluate, compared to one cycle for integers. One major reason for this is that oating point values can have dierent exponent values. The two operands must therefore be aligned in terms of exponents before performing the addition or subtraction. This necessitates shifting (which in binary is equivalent multiplying by a power of two) the lesser value until the exponents are equal.

The IEEE standard [47] details dierent possible levels of precision for oating point numbers. The most commonly used formats are oat (binary32) and double (binary64). These formats use 32 and 64 bits of memory, allocated in the manner indicated in Table 3.1. When performance is valued over precision, there is also the more recent half (binary16) format available which only requires 16 bits of space. However, the limitations of oating point formats, such as overow and representability, are greatly exaggerated when using half precision.

Floating Point Format A oating point value consists of the three parts shown in Fig. 3.2 a sign bit, an exponent, and a mantissa. The sign bit represents whether the value is positive or negative. The mantissa represents the decimal portion of the number. IEEE oating point numbers are normalized, meaning that there is an implicit 1 before the decimal. This eectively allows for one more bit in the mantissa. The exponent is related to the power of 2 with which the mantissa will be multiplied to obtain the actual value.

IEEE Standard

The Institute of Electrical and Electronics Engineers (IEEE) has released successive versions of their standard IEEE 754, which details numerical formats for computer processors. This standard denes the ways that computers should perform arithmetic operations and store numbers, resulting in a universal standard. As a result, code written for one IEEE compliant processor will give the same mathematical results on any IEEE (same/previous revision) compliant processor.

bfloat

The Brain Floating Point (boat16) an alternative 16-bit oating point format to the IEEE-754 half format. It is also beginning to be supported by hardware. One of the primary interests of the boat16 format is the ease of conversion between the boat16 and the IEEE-754 single precision oating point format, as the boat16 is a truncation of the single precision format.

Overflow

Overow happens when the values being stored or calculated exceed the limits of what the format can store. For example, half precision oating point numbers can only store values up to 65504. Values greater than 65504 cannot be represented, so care must be taken to avoid calculating or storing any such values in a half precision format, otherwise they will be rounded to innity.

Underflow

On the other hand, underow occurs when a value is too small to be properly represented, or subnormal. For half precision, this is any value smaller than 2 -14 .

When a calculation results in a subnormal number, a number of bits of information are lost equivalent to the number of leading zeroes required to store the value. Further, if a calculated value is smaller than 2 -24 , then it will truncate to zero.

Unit of Least Precision

Not every number can be exactly represented in oating point formats there is a lower limit to their numerical precisions. This notion is represented by the Unit of Least Precision (ULP) [36], which corresponds to the least possible dierence between two values for a given exponent. As shown in Table 3.2, the value of one ULP is not xed for each type of precision, but depends on the value of the exponent. For an extreme example, the ULP for half precision oating point values at the top of their range -between 32769 and 65504 -is 32, meaning that only multiples of 32 (2 5) can be represented. Any calculated result is thus rounded to the nearest ULP less than the mathematical result. This ULP is the natural unit to use when discussing error rates of oating point algorithms thanks to its scale invariance.

One way to calculate the ULP is described in Algo. 12. This method is used to calculate the errors presented in Section 5.3. It is also possible to compute a ULP by starting with a known ULP and scaling its exponent up or down appropriately to match the exponent of the values of interest. For example, the C language denes pvisvyx as one ULP at a value of 1 in the flotFh header. One ULP at a value of 4 could thus be computed as R B pvisvyx.

Base Value Half ULP Float ULP Double ULP 2 -10 2 -20 2 -33 2 -63 2 -10 2 -23 2 -53 2 10 2 -13 2 -43
Table . : Value of ULP at different base values for half, single, and double precisions.

Algorithm

Pseudo-algorithm for calculating a ULP. The increment/decrement functions increment and decrement the weakest bit of the mantissa while preserving the exponent and sign, causing them to each be one ULP away from x's value.

half ulp (half x) { half x_inc = increment_mantissa (x) ; half x_dec = decrement_mantissa (x) ; half ulp1 = x_inc -x ; half ulp2 = x -x_dec ;
return min (ulp1 , ulp2) ; }

Exponent Alignment

The dynamic range of oating point numbers renders arithmetic more complicated if the two values have dierent exponents, then the exponents must be aligned before performing any arithmetic. When aligning the exponents, the smaller value's exponent is increased to match that of the larger value. As a result, a number of bits equal to the dierence in the exponents are truncated from the end of the smaller value. When this dierence in exponents is large or an algorithm involves many misaligned exponents, then this truncation can lead to signicant errors. Absorption happens if the smaller value is so much smaller that it is completely negated when matching exponents. For all experimental cases presented in section 5.3, this misalignment is the dominant source of error.

Some systems alleviate the errors introduced by misaligned exponents through the use of extended precision oating point formats. However, SIMD instructions do not have any such extended precision built in.

Cancellation

It is important to remember that in many cases, the values being used to perform computational arithmetic are approximations. This can lead to results signicantly with larger error than expected. One such scenario, known as cancellation, is the subtraction of two nearly equal numbers such that almost all of the digits cancel out. The result of this subtraction is much more sensitive to the imprecision of the original approximations than other operations, such as addition and multiplication.

For example, we may consider a subtraction between the numbers 99.99 and 100.51. The real value of 100.51 -99.99 is 0.52. If we use a Q31.1 format, these values become 99.5 and 100.5, each of which is approximately 99% correct as an approximation. However, the result of the subtraction 100.5 -99.5 is 1, rather than 0.52. The result of the subtraction contains more than 90% error.

. Numerical Approximations

Due to the limitations in how numerical values are represented within a computer, it is necessary to approximate many mathematical operations that a user may want to compute. Some operations can be exact or nearly exact, such as integer addition and bitwise operations. However, most operations require some level of approximation. It should be noted that it is possible to perform exact computations using symbolic mathematical functions, but these functions tend to take much longer to compute.

There are many methods to approximate mathematical functions. Every method has its own advantages and disadvantages, making it more or less suitable for certain cases. Below, we describe some of the more simple and widely applicable methods that will be used in section 6.

. Taylor Series Expansion

The Taylor series of a function, described by eq. 3.1 is an innite sum of functions that approximate the original function, centered around a certain value.

f (x) = ∞ n=0 f (a) n! • (x -a) n (.)
This innite sum can be cut o at a chosen n in order to provide an nth order approximation. The error of this nth order approximation is equal to the sum of the remaining cut o terms. The balance between computational simplicity and permissible error thus lies in the choice of n. A small n will allow for more rapid computation at the cost of accuracy, while a large n takes longer to compute, but provides a more accurate result.

The further an input is from the center of the Taylor series (a), the less well the approximation performs. As a result, Taylor series approximations are best suited to repeating functions where it is possible to adjust the input to never be far from a, the center of the approximation. One such example, presented in Section 6.5.3, is the sine function. This function repeats itself completely within a range of 2π, meaning that it is possible to adjust the input to never be further than π from the center, improving the quality of the approximation. Taylor series approximations can also be suitable when the input domain is bound within a well dened range.

Remez Algorithm

The result of a Taylor series approximation is a polynomial function. However, there exist other methods for generating polynomial approximations, such as the Remez algorithm[88]. While it can be more dicult to compute the polynomial coecients without specialized tools such as [15], the resulting approximation is often, but not always, superior to the Taylor approximation.

. Newton-Raphson

The Newton-Raphson method is an iterative algorithm for nding the roots of a function (points where f (x) = 0) via eq. 3.2.

x i+1 = x i - f (x i) f (x i) (.)
The function f (x) is dened in such a way that the nal x i is the approximation of a function g(y) at a point of interest a.

As opposed to the Taylor method described above, the Newton-Raphson method is iterative. This means that it performs repeated iterations in order to approach a solution. As such, it can be said to converge upon the solution. Various iterative algorithms display dierent rates of convergence. A higher order rate of convergence means that an algorithm converges towards its solution more rapidly (per iteration). The Newton-Raphson method described here generally exhibits quadratic (second-order) convergence.

It can be noted that eq. 3.2 does not dene x 0 as a starting point. This leaves a degree of freedom in the choice of this x 0 starting seed. For some functions f (x), this seed can be chosen intelligently in such a way that the algorithm converges more quickly.

The choice of x 0 must respect certain conditions for the algorithm to guarantee quadratic convergence. First, f (x) must be nonzero within a region dened by the distance between x 0 and a. Otherwise the algorithm can stall if it reaches a point where f (x) = 0. Secondly, f (x) must be continuous within the same region. Finally, x 0 must satisfy certain conditions of sucient closeness to a. If all of these conditions are not satised, then the algorithm may exhibit less than quadratic convergence if it converges at all.

In order to use the Newton-Raphson method to approximate an operation g(a), f (x) must be dened in such a way that the roots of f (x) are equivalent to the result of the operation we wish to perform. In general, the simplest f (x) for an operation g(a) can be dened as f (x) = g -1 (a) -a where g -1 (a) is the inverse of the operation g(a). A few examples are provided in table 3.3.

In order to use the Newton-Raphson method, it must be possible to compute f (x), preferably in a computationally ecient manner. One famous application of this algorithm is computation of a square root. As shown in table 3.3, the operations needed to update x i are computationally simple.

The choice of the starting seed, x 0 , is very important. If it is poorly chosen, the algorithm may take signicantly longer to converge, if it does converge on the g(a)

g -1 (x) f (x) f (x) x i -f (x i) f (x i) 1 a 1 x a -1 x 1 x 2 x i • (2 -a • x i) √ a x 2 a -x 2 2 • x 1 2 • (x i + a x i) sin(a) arcsin(x) a-arcsin(x) 1 √ 1-x 2 x i -arcsin(x) • √ 1 -x 2
Table . : Newton-Raphson applied to a few example cases.

correct solution. The division example shown in table 3.3 is one such example. In this example, if x 0 is too small, the algorithm will perform a large number of small iterative steps as it accelerates towards the solution. However, if x 0 is too large, the algorithm will converge on x i = 0, rather than x i = 1 a . Section 6 will show that in some cases, it is possible to choose an ecient x 0 that avoids both of these possible problems.

There also exist other "Newton-type" methods capable of faster convergence than the classic Newton-Raphson method. For example, the methods presented in [3], [103], and [32] exhibit cubic rates of convergence rather than the classic method's quadratic convergence. While these methods converge more quickly, they also all require more computations per iteration. As a result, they are not automatically superior when considering runtime performance.

It is also possible to use other methods such as ISA instructions or faster algorithms to provide a rough approximation of an operation, then use a Netwontype method to rene the rough approximation into a better approximation. This technique is applied to the reciprocal square root compution in [108] and [67], as well as the reciprocal computation in Section 6.5.4.

Conclusion

Chapter 5 will explore the eects of substituting half precision in the place of oating point precision. Chapter 6 will apply many of the concepts presented here in order to construct a software library to eciently emulate xed-point arithmetic. Finally, chapter 7 will combine the concepts presented here with an articial neural network presented in the following chapter in order to perform a number of experiments.

Articial neural networks (ANNs) are computational tools used to predict outputs from inputs. Popular applications of ANNs tend to be problems that are dicult to generalize clearly and logically, such as object detection, image classication, and translation. These problems also tend to have large, messy inputs which are dicult to handle programmatically. This messiness and complexity is modeled in the general architecture of ANNs, which could be described as a tangled web of interrelated connections.

Input

Input Output

Figure . : Example of a simple perceptron

The basic building block of an ANN is the perceptron. A perceptron is a simple function that takes a number of inputs and converts them into a single output[89]. One simple example of such a function would be a perceptron that outputs the sum of all inputs. In human terms, this could be considered similar to a person looking at data and coming to a conclusion based on the data. It is then possible to set up a number of perceptrons into a network where the output of certain perceptrons is used as the input to other perceptrons. These perceptrons can be arranged into layers such that each layer of perceptrons generates the inputs for the next layer. In practice, neural networks are constructed of series of such layers feeding into other layers in a mostly linear fashion. If a neural network consists exclusively of layers of perceptrons, it can be referred to as a multilayer perceptron.

Rather than manually setting the weights of each perceptron, it is possible to train a neural network using a database of inputs and corresponding desired outputs [104]. The most important requirement of this training is the set of example inputs they should be representative of the target use-case and numerous enough to avoid overtting the problem. Overtting occurs when a trained network models the training images specically at the cost of its ability to solve a problem. A simple example of overtting (Fig. 4.2) would be tting a ve degree polynomial to four data points generated by a second degree polynomial.

. Training vs Inference

There are two phases in the usage of an ANN training and inference. The training phase consists of "teaching" the ANN to link inputs to known outputs, while the inference phase uses the trained links to predict the outputs corresponding to inputs that the ANN may or may not have seen before. The purpose of the training phase is to adapt the weights of the perceptrons of each layer in order to allow the entire network to predict outputs accurately. This phase requires three components a set of sample inputs, a set of outputs corresponding to the inputs, and an objective function. The inputs should ideally be representative of the inputs the neural network will receive when deployed while also being varied and numerous enough to avoid overtting issues. The outputs should be comprehensive and veried to be correct. "Garbage in, garbage out" applies very well to the data that neural networks are trained on. Finally, the objective function is a function that quanties in some way the accuracy of a prediction or set of predictions. This provides a function that can be minimized or maximized over the set of input/output pairs using techniques such as backpropagation [90] or reinforcement learning [95]. These techniques tend to be very computationally intensive due to the large amount of inputs and iterations required. While entire works can be written about neural network training, this work focuses entirely on what happens after the training phase.

Once a neural network is trained, it can be used to perform inference on new inputs. Inference requires a neural network model (or architecture), trained weights for the model, and new inputs. This stage is much less computationally intensive than training, to the point where some models can be computed in real-time. For the models cannot perform inference as quickly as the user would like, there are a number of techniques that can be used to speed up inference (Sec. 4.3).

. Layers & Computation

There are two types of layers in particular that tend to consume heavy computational resources: fully connected layers and convolutional layers. For example, the PVANet network spends approximately 36% of its inference time inside these two layers.

. Fully Connected Layer

Fully connected layers contain the majority of the trained parameters in a neural network. The number of parameters associated with a fully connected layer are proportional to the number of perceptrons in the input layer times the number of perceptrons in the output layer.

p out (j) = b(j) + N in i=0 w(i, j)p in (i) (.)
Computationally, the output is obtained via a matrix-vector multiplication, as shown in Eq. 4.1. This is a well known type of operation, often referred to as a GEMV (GEneral Matrix-Vector) or blas2 computation. Most neural network implementations take advantage of linear algebra software libraries, such as BLAS[4], ATLAS[105], or MKL [50]. Chapter 7 will explain the limitations of the above libraries when performing certain inference optimizations.

. Convolutional Layer

Convolutional layers require a signicant amount of computation with a small amount of repeated parameters. In the case of a convolutional layer, the trained parameters represent convolutional matrices, also referred to as kernels. Each of these kernels represents a transformation of the input image, as shown in Fig. 4.4.

In order to discuss convolutional layers, it is helpful to understand standalone image convolutions.

Image Convolution

An image convolution is a type of image transformation. This convolution is a simple operation that is applied to every pixel of the input image. The basis of a convolution is the kernel a matrix that describes how to transform each pixel.

Kernel sizes represent the size of the region of interest. For example, a kernel of size 1x1 looks only at the input pixel while a kernel of size 3x3 looks at the 3x3 pixel region centered on the input pixel (1 pixel away in each direction, including diagonals). Another way to view the kernel is as a sliding window that passes over the input image, pixel by pixel. At each pixel stop, the kernel is applied to the input image by multiplying the value of a kernel entry by the value of the input pixel underneath it. Then, each of these products is added together to obtain the result of the convolution. This process is repeated for each pixel of the input.

What happens when the kernel cannot be overlaid entirely on top of the input image? This is an important question because it applies to all four sides of the image. There are a few main solutions to this problem. First, it is possible to simply ignore the edges and only operate on the inner region of the image. However, this means that the output image will be smaller than the input. Sometimes this is an acceptable tradeo, sometimes other solutions are needed. Another solution is to wrap around to the opposite edge. For example, a kernel applied to the top left pixel of an image will also include some pixels from the bottom right region of the image. However, if the images contain important information near the edges, this can cause the edges to contaminate each other. A third solution is to pad, or extend the sides of, the image with 0-value pixels. This combines with the rst solution (ignoring the edges) to output an image of the same size as the input without any contamination between the edges. There exist other solutions, but these are the main ones applied in the context of this work.

Up until here, we have been describing convolutions of single image (1-channel) inputs. However, most images are stored in RGB (3-channel) format with one channel for red colors, one channel for green, and one channel for blue. Each of these channels contains a dierent type of information about the picture. We could combine the three channels into one before performing a convolution, but we would lose important information about the picture. Instead, we can simply add an extra dimension to our kernel a 5x5 kernel would become a 5x5x3 kernel. This allows our convolution output to incorporate information from each input channel.

In the context of a convolutional neural network layer, we often have more than 3 input channels and more than one output channel. As a result, the convolutional layer contains one kernel for each output channel and each kernel has a number of channels equal to the number of input channels.

. Optimizing Inference

While inference is less computationally intensive than training, it is still intensive enough to be worth optimizing. The fully connected layers contribute a large number of weights, which must be stored in memory. For example, PVANet contains 369MB of weights. In addition, the matrix-matrix multiplication required with fully connected layers are memory bound, giving a strong incentive to reduce the memory requirements. The convolution layers contribute relatively few weights but are also memory bound.

As a result, optimization tends to result in reduced memory demands. This can take the form of pruning connections to reduce the required computations and remove the associated weights or of reducing precision in order to increase the data ow and parallelizability.

. Pruning

One method of optimizing trained neural networks is to prune away unnecessary connections. Of the vast number of connections in a neural network, a certain amount can be removed with minimal or no eect on the results. This can range from removing a handful of connections within a fully connected layer, to removing a channel of an image convolution, to the removal of an entire layer.

. Reduced Precision

The method of optimizing trained neural networks focused on in this work is the reduction of precision used during inference. This provides a number of advantages. First, the memory requirements can be reduced. Moving from double precision to half precision would cut memory requirements to a quarter of the initial requirements. Second, smaller data types can be moved more quickly. This accelerates memory-bound computations. Thirdly, changing between data types can accelerate arithmetic computations. As shown in Table 1.1, integer addition, subtraction, and multiplication are faster than their oating point counterparts. Finally, reduced precision allows better parallelizability. Smaller data types are better accelerated via SIMD than larger data types.

. Validation

When experimenting with neural networks, it is important to have a means of validating and quantifying the results. In order to determine if an individual result is correct or not, a database of known inputs and outputs is required. For the purpose of this work, we use the data from the Pascal VOC Challenges [26] to validate results by calculating the mean average precision (mAP) of inference on a set of images. In order to describe the mAP computation, we will rst explain the format of the outputs and some of the concepts involved in computing the mAP.

. PASCAL VOC Dataset

The PASCAL VOC (visual object challenge) datasets are a series of image recognition datasets provided for a image recognition/detection challenge. There is one dataset per year for each year from 2005 until 2012, although this work primarily used the 2007 and 2012 datasets for validation. Each dataset consists of several thousand images with corresponding annotated objects. The annotations each contain an object category (20 total categories starting from 2007), a bounding box, and a ag marking if an object is dicult and should be excluded during mAP computation. The mAP computation relies on the concepts of precision and recall and of the intersection over union. The mAP computation relies on a pair of corresponding principles called precision and recall.

. Precision and Recall

Precision is a measure of how accurate the results of an inference are. More specically, it is the number of object detections which were correct (true positives) divided by the total number of object detections (true positives plus false positives). For example, if an inference provides 4 objects and 3 of them match their annotations, we obtain a precision of 3 ÷ 4 = 0.75.

Recall is a measure of how well an inference nds objects in an image. More specically, it is the number of correct object detections (true positives) divided by the number of objects that should have been detected (true positives plus false negatives). For example, if an inference provides 3 objects that match their annotations for an image that contains 5 annotated objects, we obtain a recall of 3 ÷ 5 = 0.6.

. Intersection over Union

In practice, the results of inferences do not perfectly match the annotated bounding boxes provided in the VOC dataset. This does not mean that the result are invalid. However, it does mean that it is necessary to dene a measure that determines if an inference result matches an annotation. For this, we use the area of intersection the annotated bounding box and the inferred bounding box divided by the area of union of the two boxes. An IoU of 1 represents a perfect match, while an IoU of 0 represents a complete mismatch. A value in between can be chosen as the threshold to determine what can be considered a match.

. mAP

The mean average precision is the mean of the average precisions of all classes considered.

In order to compute the average precision, a precision/recall curve p(r) of all results must be constructed. This curve is constructed by rst choosing a number of condence thresholds. Secondly, the corresponding precision and recall are computed considering all inferred objects above the condence threshold. Thirdly, the precision/recall curve is smoothed out by setting each point equal to the maximum of all points with a greater recall (p(r i) = max(p(r j |r j > r i)). Finally, the average precision is the area under this nal p(r).

VOC mAP

It should be noted that the VOC challenge provides two means of approximating the above integral the 2007 version and the 2012 version. The 2007 mAP computation approximates the integral using 11 points 0.0, 0.1, 0.2, ..., 0.9, 1.0. Meanwhile, the 2012 version approximates the integral using all available points along the curve. As a results, the 2012 mAP will generally be lower than the 2007 mAP.

. The PVANet Neural Network

The experiments that will be presented in Chapter 7 will use the PVANet neural network [46] Reproducibility Most importantly, the published results are reproducible the authors provide a github repository [45] with the code needed to reproduce their results.

These reproducible results take the form of an mAP computed from the results of the VOC2007 and VOC2012 challenges.

Accuracy

The open-source PVANet achieves an mAP of 84.9% on the VOC2007 challenge and 89.8% on the VOC2012 challenge when computing VOC2007 mAP. This leaves room for the experiments to degrade the output while still maintaining a coherent, usable output. Speed When computing using only the CPU, PVANet inference takes less than 2 seconds on an Intel i7-4790S at 3.20GHz CPU. This makes it an excellent target for acceleration, as it is not far from lower speed real-time processing. Even a speedup of 2 would allow for inference in less than 1 second.

Variety PVANet contains a variety of layers. Figure 4.8 shows a distribution of computational layer types present in PVANet. Section 4.5 will describe all layer types present in PVANet. Notably, the PVANet classications rely on fully connected layers in order to "provide possibility to balance between computational cost and accuracy of a network" [46].

Layers Present in PVANet

This section provides brief descriptions of both the purpose and the computational intensity (during inference) of each layer type present in PVANet. Figure 4.9 shows the relative times spent in each layer type during an inference using Cae. It should be noted that, except for the Input layer, each layer's input is the output of a preceding layer.

BatchNorm

The BatchNorm layer performs Batch Normalization of its input. This Batch Normalization serves to normalize its input values, allowing faster network training and increased stability [54]. Computationally, the BatchNorm performs one subtraction and one division operation for each element of its input.

Convolution

The Convolution layer performs an image convolution, as described in Section 4.2.2. Its purpose is to attempt to extract visual information from an input image.

The size of the convolutional kernel varies between the dierent Convolution layers present in PVANet, ranging from 7x7x16 to 1x1x32. Computationally, the intensity depends on the size of the kernel. However, the Convolution tends to be one of the more computationally intensive layers in general.

Deconvolution

The Deconvolution layer is similar to the Convolution layer. For the purposes of this work, it suces to say that the Deconvolution layer is similar in computational intensity to the Convolution layer.

Dropout

The Dropout layer serves only in the training phase. It removes weights randomly in order to avoid overtting [44]. During inference, the Dropout layer performs no computation. It is of no interest for the purposes of the works presented here.

Eltwise

The Eltwise layer takes two inputs and performs a single elementwise operation between them. This combines the information present in its two inputs. These operations generally take the form of a multiplication, an addition, or a max. Computationally, the Eltwise layer is relatively simple.

InnerProduct

The InnerProduct layer is a fully connected layer which performs the GEMV operation described in Section 4.2.1. This layer is simultaneously the most important and the most dicult to describe the purpose of. It contains the hidden, unintuitive complexity that makes most neural networks work. Computationally, the InnerProduct layer is heavy. It represents only less than 1% of the layers (4 of 455), yet requires 11% of the computation time during inference.

Input

The Input layer, true to its name, is for inputs. It provides a buer into which the input image can be copied for use by other layers. As such, it performs no computation itself.

Pooling The Pooling layer serves to smooth out an image input. It looks at a 2D input region and outputs either the maximum value or the average value in the region. The computational intensity depends on the size of the region being examined, but lies somewhere between the Eltwise layer and the Convolution layer in intensity.

ProposalLayer

The ProposalLayer is a layer custom designed for PVANet. Its purpose is to transform the output information into a usable format. Computationally, it is relatively lightweight to its small input size.

ReLU

The ReLU layer frequently serves to accelerate training. It sets all negative values of its input to 0 while leaving the positive values of the input intact. Computationally, it is not particularly intensive.

Reshape

The Reshape layer reshapes its input. It may be necessary to put a Reshape layer between layers whose dimensions do not exactly match. Computationally, the Reshape consists entirely of memory copies. If the reshape is not cache-friendly, it may be slow.

ROIPooling

The ROIPooling is a layer custom designed for PVANet. For each region of interest (ROI) found by previous layers, it generates an output that can be classied by the following layer. Computationally, it can be heavy, depending on the number of ROIs. For each ROI input, the ROIPooling must generate a 6x6x512 output.

Scale

The Scale layer scales its inputs. This can serve to normalize the input to some degree, or to allow further layers to behave better numerically. Computationally, it is relatively lightweight each output is the result of a multiply-add operation on an input (out i = a * in i + b).

Split

The Split layer represents a branch in the neural network architecture. As such, it is implicitly placed after any layer whose output is used by more than one other layer. Computationally, it consists of a single continuous memory copy.

Softmax

The Softmax layer serves to transform its inputs into probabilities. The sum of the outputs of a Softmax layer is equal to 1. Computationally, it is moderately intensive, as it requires multiple loops over the input.

Conclusion

Chapter 7 will fully utilize the concepts presented in this chapter. It presents the development of a custom neural network inference engine designed for arbitrary precisions. Then it presents the results of performing experiments varying the arithmetic used during inference of the PVANet neural network.

Part II Contributions

-Half Precision Average

This chapter describes research performed in order to improve the computation of an average of a large set of numbers using the half precision numerical format. We will compare the numerical and runtime performances of several algorithms (including one that we propose). Numerically, we compare the relative errors and failure modes of each algorithm. For runtime performance, we compare SIMD runtime performance of each algorithm using various CPU SIMD architectures.

This section specically focuses on the half-precision oating point data type initially dened by the Cg programming language in 2002[81], then integrated into the IEEE standard in 2008 [47]. While other 16-bit oating point formats [92][53] have existed prior to this one, the IEEE normalized format is the most prominent format. For a number of years, these half-precision types were only implemented on certain GPUs. Nonetheless, some works experimented with emulating half-precision via 32-bit oating point CPU SIMD instruction sets, such as those performed by Etiemble et al[25] and Lacassagne et al[65]. While these works showed limited speedups due to the emulation constraints, they did show some of the potential speed gains. In parallel, some studies implemented half-precision arithmetic on FPGAs such as the Shirazi et al's scalar[94] and Etiemble et al's SIMD[24] implementations. Some works such as Piskorski et al[85] also implemented half-precision arithmetic on congurable CPUs. These works all proved to show some of the potential gains from physically supporting this data type. All of these initial studies also served to explore for which types of applications half-precision types can be sucient. In these early experiments, they proved more than sucient for a number of media processing applications.

More recently, industrial use cases of half-precision algorithms, such as in the eld of machine learning, have renewed interest in the eld of half-precision computation. As a result, hardware manufacturers have begun supporting halfprecision as a native datatype (both scalar [51] and SIMD [61][79]). This increased support in turn allows for a stronger focus on half-precision computation in other areas, such as computer vision [85][84]. While this half-precision hardware support is not yet ubiquitous, it is growing rapidly.

. Computing the Average

Mathematically, the formula for calculating the average of a set A of N elements a 1 , ..., a N is shown in eq. 5.1.

Avg = 1 N N i=1 a i (.)
There are a few existing methods for performing this calculation computationally.

The choice of method depends on the contextual limitations under which the average is being calculated. This section will present a few methods for calculating the average.

. Sum Then Divide

The simplest algorithm to implement consists of naively summing all elements of the set before dividing by the number of elements in the set (Algo. 13). This naive method will be tested in section 5.3. This method has two potential

Algorithm

Naive algorithm for average calculation. . However, the only way to reduce overow errors is to increase the precision of the sum accumulator. This strategy of increasing the precision will be referred to as the upcast method and tested in section 5.3 along with the Kahan method.

Algorithm

Kahan variation for average calculation. If one is willing to pay a higher performance cost, there is another technique available to mitigate rounding errors sorting the input data prior to summation. Rounding errors are minimized when the input data is sorted from low to high, as this minimizes the order of magnitude dierences between the summation accumulator and the inputs being added to it. This sorting approach has a large performance cost because sorting is generally more computationally expensive operation than any of the summation algorithms and cannot be fused into the computational loop for the summation or averaging operation.

. Divide Then Sum

Conversely, one may wish to avoid overow by dividing each input element by the total number of elements, as seen in Algo. 15. This reduces the risk of overow and remains vulnerable to rounding errors, but introduces new possible errors (underow, subnormal values) via the division operation. For a suciently large array, this exchanges the overow risk for an underow risk that the result of the division calculation is less than one ULP, resulting in zero. While the rounding error is equivalent to the Naive method (the order of magnitude dierence is the same), the risk of subnormal and zero results of the division can increase the overall error. This method is not signicantly dierent from the naive approach, so it

Algorithm

Divide then sum for average calculation. end for : end function will not be directly tested in section 5.3.

. Iterative Average

Another method for calculating an average is the iterative average. This method iteratively calculates the average according to eq. 5.2, which leads to Algo. 16.

Avg i+1 = Avg i + (x i -Avg i) i (.)
Using this method entirely circumvents potential overow problems. However, it

Algorithm

Iterative algorithm for average calculation.

lim i→∞ (x i -Avg i) i = 0 (.)
These rounding errors allow the algorithm to reach the limit shown in eq. 5.3 easily. The method that we propose in order to combat rounding errors and overows in a low-precision environment will be referred to as the Cascading Average. This Cascading Average consists of recursively splitting the set of numbers into two sets and calculating the weighted average of the two sets (Algo. 17, Fig. 5.1).

. Cascading Average

This construction, consisting of a series of weighted averages between two numbers, oers a few benets. First, it avoids accumulation into a monolithic sum, minimizing the risk of over/underow or absorption. Additionally, having each calculation be an average of two numbers within the original input range reduces the severity of truncation errors due to mismatched exponents. There are more opportunities for arithmetic rounding errors to arise due to the increased number of operations, but these are mitigated by the general exponent alignment. These benets allow for greater robustness over large sets of numbers without greatly elevating the level of error accumulation.

In practice, the recursive implementation of the cascading average quickly results in a stack overow. It is thus necessary to use a sequential implementation (Algo. 18) in order to obtain good results. The sequential algorithm presented in Algo. 18 consists of a primary computation phase, which iterates over the full array, followed by a secondary phase which accumulates the result into a single value. The primary phase simulates traversal of a binary tree in the same order as the recursive version. In the case of an input that is not a power of two, the cleanup phase then consolidates any remaining nodes of the tree into the result. Because we traverse the input as if it were a binary tree, all divisions prior to the cleanup phase are divisions by 2. This means that they can be implemented as a shift operation or a multiplication by 0.5 rather than a more computationally expensive integer division operation.

2 16 2 22 2 28 2 -2 2 -1 2 0 Input Size Speedup Scalar Performance 2 10 2 16 2 22 2 28 2 0 2 1 2 2
Input Size SSE Performance the fastest in all scenarios, as it performs the fewest operations per element. The only operation performed within the loop is a single addition, which is a very fast operation to perform. The upcast method performs equally without vectorization, but naturally falls behind when vectorized because fewer higher precision values t into an SIMD register. The Kahan summation method and cascading average perform nearly equally to each other, taking about four times as long as the naive method to perform their calculations. This is due to the extra operations performed per element. The Kahan average has four times as many addition/subtraction operations per element, leading it to take about four times as long to execute each iteration. The iterative implementation of the cascading average suers from increased operations on average two additions and divisions by two per element and is susceptible to incorrect branch predictions. In practice, these divisions by two can be optimized to multiplications by 0.5, allowing faster computation. Finally, the iterative method takes about ve times as long to perform its calculations. This represents the extra cost of a subtraction and an expensive division operation.

2 10 2 16 2 22 2 28 2 0 2 1 2 2 2 3 Input Size Speedup AVX Performance 2 10 2 16 2 22 2 -1 2 0 2 1 2 2 Input Size NEON Performance 2 10 2 16 2 22 2 28 2 -1 2 0 2 1 2 2 Input Size Speedup Altivec Performance Naive Kahan Iterative Cascade Upcast
Figure 5.3 summarizes the speedups of each algorithm for each SIMD architecture tested. The SSE and Altivec results are almost exactly as expected for 128-bit SIMD registers. All algorithms except the upcast method show the expected speedup of 4 (128 ÷ 32) on both of these architectures. The upcast method only exhibits a speedup of 2 (128÷64), as the computations are performed using a higher precision. The NEON speedups are similar, as the SIMD registers are also 128-bits. The most computationally intensive and slowest algorithms Kahan and Iterative exhibit the same speedup of 4. However, the Naive, Cascading, and Upcast speedups are slightly lower, indicating that they are approaching the memory bandwidth limits of the machine. The AVX2 results for the Naive, Cascading, and Kahan algorithms show an expected speedup of 2 over the SSE results. This is as expected when moving comparing 256-bit SIMD registers to 128-bit SIMD registers. The Iterative algorithm shows a lower than expected speedup due to its use of a division operation in the computational loop. On the Haswell architecture used to perform the benchmarks, 32-bit SIMD division is faster than 64-bit SIMD division [49]. The Upcast algorithm also shows a lower than expected speedup due to the cost of converting the input data from oat to double. The cost of this conversion is more expensive with AVX2 instructions than with SSE instructions[49].

. Precision half C++ library

The half precision oating point format is not fully supported in most current computer hardware. For this reason, emulation is necessary in order to test the numerical performance of half precision algorithms. One option for emulation is the hlf C++ library [87][111], which implements a IEEE compliant half precision storage type. This library contains the functions for converting between half- precision and architecturally supported types. Arithmetic operations are performed by converting to oating point, using native oating point arithmetic, then converting back to the half precision type for storage. Because the operations are performed in oating point precision, there may be a dierence in numerical precision between the hlf C++ library and fully supported native half precision arithmetic.

5 inlude `hlf F hpp b int min @ void A { using hlf a hlfflot XX hlf hlf a IH D a IFPSY std XX out `` C ``std XX endl Y return HY } Listing . : Example of a C++ code using the half library.

Experimental Setup

Precision benchmarks were performed in C++ using the hlf header-only library to simulate IEEE compliant binary16 half-precision oating point numbers. Various example cases were tested in order to test the limitations of the various algorithms. Most of the example inputs have easy to calculate averages, but are unlikely to occur in practice. However, the random input could represent a potential real world case and the image input does represent a real world case.

Table 5.2 summarizes the results of the experiments performed. Any entry labelled n/a describes an instance where the result was either inf due to overow in the case of the naive average or nn in the case of the kahan sum. The kahan summation results in nn rather than inf when overowing due to line 7 of Algo 14. When the "sum" term overows to inf, line 7 results in an "inf -inf" operation with a result of nn.

Overall, it appears that the biggest advantage of the Cascading Average method is that it avoids the catastrophic failure that the other methods are susceptible to. The sum then divide methods are susceptible to overow issues that arise when N ā > 65504, while the iterative method fails for a suciently large number of elements because it fails to update the average when A[i]/i < 1ULP. It should be noted that for a suciently small input value range, the naive method will never visibly overow. It will instead reach a point where sum + a i = sum because there are no a i larger than one ULP. The Kahan accumulation method is much less likely to suer this silent absorption failure due to the presence of a remainder variable which will eventually grow larger than 1 ULP.

Input

. Addendum

Since completing the works presented here, the author has discovered that the hlf library used to emulate half precision oats allows temporary overow and underow due to its usage of expression templates. The library performs its computations using 32-bit oats, then reduces the results to 16-bit oats when assigning values. This means that any intermediate values during the computation are represented using 32-bit oats and not 16-bit oats. As a result, some calculations that should overow do not actually overow. This is evidenced by the dierence between Algorithm 19 and Algorithm 20. One way to circumvent this problem is to modify the Cascading Average algorithm to halve the entries being averaged before adding them, rather than adding before dividing. This would impose a small performance cost due to the extra division operation at every loop iteration, but avoid overow issues. A side eect would be that very small input values are rounded to zero when divided. However, the eect of rounding small values to zero is much less signicant than the eect of overowing to inf.

One means of accelerating and compressing neural networks being researched is the use of xed-point formats [70][97]. However, experiments with xed-point arithmetic tend to either neglect runtime performance, or be limited to FPGA applications with hardware implementations of xed-point arithmetic. One reason for this may be the lack of a exible, high performance xed-point software library for CPUs.

. Fixed Point Format

Fixed-point arithmetic oers a few advantages over oating point arithmetic while presenting a few challenges of its own.

One of the main advantages of xed point arithmetic compared to oating point is that it is simpler. It uses integer operations, which tend to be faster than oating point operations (previously shown in Table 1.1). In addition, the range is xed, so there are no alignment concerns. This means that there are no problems from absorption or cancellation.

The xed range is also a disadvantage, as it increases the risk of overow. In addition, xed point arithmetic is generally not explicitly hardware-supported. While some CPUs may include barrel-shifters to facilitate the implementation of xed-point arithmetic, they do not include explicit xed-point arithmetic units. As a result, xed-point arithmetic must be emulated using integer operations. This reliance on integer operations creates a signicant challenge CPUs do not provide SIMD integer division. As a result, the division operation is to be avoided as much as possible when designing xed-point algorithms.

As previously described in Section 3.0.3, this chapter will use the Qa.b format to describe xed point numbers.

Fixed Point Arithmetic

It should be noted that some of the basic arithmetic operations (add, sub, mul, div) have certain eects on the precision of xed point numbers. This is especially important to keep in mind because xed point arithmetic must be emulated using integers, as it is not natively supported by processors.

When xed point numbers are contained within integers, a Qa.b number F is stored inside of an integer I. We may consider I(x) to be the underlying integer representation of the xed point value F (x). Mathematically, the relationship between the two is

F a.b (x) = I(x) • 2 -b
From this, we can derive the properties of the basic arithmetic operations.

Addition and subtraction have the same straightforward properties.

F a.b (x 1) + F a.b (x 2) = I(x 1) • 2 -b + I(x 2) • 2 -b = [I(x 1) + I(x 2)] • 2 -b
The result of addition or subtraction between two Qa.b numbers is another Qa.b number. However, multiplication is not as straightforward

F a.b (x 1) • F a.b (x 2) = [I(x 1) • 2 -b] • [I(x 2) • 2 -b] = [I(x 1) • I(x 2)] • 2 -2b
Numerically, the result of a multiplication between two Qa.b numbers is a Q2a.2b number.

Division is not a simple matter either.

F a.b (x 1) ÷ F a.b (x 2) = [I(x 1) • 2 -b] ÷ [I(x 2) • 2 -b] = I(x 1) ÷ I(x 2)
Numerically, the result of a naive division between two Qa.b numbers is a Qa.0 number there are 0 bits of decimal precision.

It should be noted that the multiplication operations output a larger number of decimal bits than the input formats (2b vs b bits). This means that a xed point implementation must choose a rounding method when eliminating the extra bits. The simplest (and fastest) rounding method to implement is rounding down via truncation. A number of other methods exist, including but not limited to rounding up, rounding to even, and rounding to nearest (with various tie breakers). However, all xed point implementations examined in the following section use the same truncation rounding method. Section 6.5.2 will describe these problems and their solutions in greater detail. It is sucient to describe the properties of the basic arithmetic operations, as all other functions provided will be constructed using these arithmetic operations.

. Fixed Point Software Libraries

A xed point software library was needed in order to be able to perform some of the experiments presented in Chapter 7. Table 6.1 compares a few such libraries on the following desired qualities:

• Math -Whether the library contains math functions.

• Vectorized -Whether the library performs explicit vectorization of the provided functions.

• Arbitrary Qa.b -Whether the library supports arbitrary integer and decimal sizes when declaring xed point types.

• API -The type of API oered by the library. • Multiple -Whether the library supports multiple dierent formats within one code

• Rounding -All libraries use truncation as their default rounding mode for multiplication operations. As such, we do not consider it to be a distinguishing feature. liquid-fpm is a submodule of the free and open-source liquid-dsp software library for digital signal processing. It leverages C macros in order to provide a exible C interface for xed point types of varying integer/decimal sizes. However, each integer/decimal combination must be dened ahead of time and the user must modify a header le in order to compile the corresponding dynamic library. As a result, it natively supports a maximum of two Qa.b formats one 16-bit format and one 32-bit format. In addition, it only supports formats such that a + b is equal to either 16 or 32.

libfixmath is a free software library for Q16.16 xed point numbers. It provides algorithms specically designed for Q16.16 numbers and does not support any other xed point formats.

CNL , or the Compositional Numeric Library, is a C++ library for xed point numbers. It allows some, but not full exibility in the allowed Qa.b sizes. Fixed point types are declared with template arguments for the base storage type and the location of the decimal point. However, the xed point types will always ll the entire base type, limiting the possible supported integer/decimal combinations.

nsimd is a software library that simplies SIMD programming. This chapter presents a xed point library developed as a submodule of nsimd for the purpose of meeting the needs described above. The xed point submodule leverages C++ metaprogramming to allow for arbitrary integer/decimal combinations (provided they t within a maximum of 64 bits). In addition, it is developed with vectorization in mind, as opposed to the other libraries which focus on scalar computations. The Qa.b denition is not strict if the sum of a and b is less than the size in bits of a native integer type, the remaining bits can nonetheless contribute extra precision to computations as additional integer bits. However, nsimd clears these extra bits when performing comparison operations.

. nsimd

The nsimd C++ library mostly solves the problems presented in section 1.7.1.

As shown in Algo. 21, it provides a single interface that allows one to write SIMD code that is portable between architectures and a set of functions that account for the memory alignment requirement. Code written using nsimd has a level of verbosity between that of scalar code and that of SIMD code written in assembly.

Algorithm

Using nsimd to write portable SIMD code

; i < A . size () ; ++ i) A [i] = B [i] * C [i];
The xed point library we developed was implemented as a module of nsimd, so we must rst describe how to use nsimd before approaching the xed point library.

. Usage

C/C++/Advanced C++ APIs

As of this writing, nsimd provides 4 APIs C89, C++98, C++11, and C++14 interfaces providing varying levels of ease and style of use in terms of types provided and function calls. Each API contains all features provided by the APIs preceding it. For example, the C++98 API contains the C89 features and the C++14 API provides all features from all APIs. The C++98 API will be referred to as the basic C++ and the C++11 and C++14 APIs will be described together as the advanced C++ API, as the C++14 API only provides a few minor improvements over the C++11 API.

Includes

C Types

For ease and consistency of use, nsimd provides aliases for the native built-in C scalar types, as well as the emulated half-precision oating point type (f16). A full list of the provided types (as of this writing) is provided in Table 6.2. For each provided scalar type ({iGuGf}x), nsimd provides a type corresponding to a SIMD register of that type (v{iGuGf}x)and a type corresponding to a SIMD register of logical values for the scalar type (vl{iGuGf}x). These logical values are the result of SIMD logical operations, such as equls or greter thn operations. One example use case is the ifelseI function, which outputs a result that depends on whether the logical values for each entry correspond to true or false. While these logical values can be considered equivalent to boolean true of false values, their bitwise representation can vary depending on the SIMD architecture in use. C Functions When calling an nsimd function using the C API, it is necessary to be aware of the target SIMD architecture when calling functions. This is because all functions take the form nsimd{funtion}{extension}{type}. A few examples of function calls are listed below.

Signed

vfTR rI a nsimdddpufTR @ vfTR I D vfTR P A Y vliQP rP a nsimdltvxPiQP @ viQP I D viQP P AY vuIT rQ a nsimdshlrhTRuIT @ vuIT I D int P A Y

Basic C++ Functions

The basic C++ API for calling functions is simpler, thanks to function overloads it is possible to have multiple versions of a function with the same name but dierent arguments. The SIMD extension is automatically inferred from the information provided by the input types (vfTR, vuIT, etc.). However, the type must still be specied when calling a function, as shown below.

vfTR rI a nsimd XX dd @ vfTR I D vfTR P D fTR @A AY vliQP rP a nsimd XX lt @ viQP I D viQP P D iQP @A AY vuIT rQ a nsimd XX shl @ vuIT I D int P D uIT @A AY

Advanced C++ Functions

The advanced C++ API is simpler to use than the basic C++ API, as the pk structure provides all of the information the compiler needs to deduce the correct function to call, as shown below.

nsimd XX pk `fTR b rI a nsimd XX dd @ nsimd XX pk `fTR b I D nsimd XX pk `fTR b P AY nsimd XX pk `int b rP a nsimd XX lt @ nsimd XX pk `int b I D nsimd XX pk `int b P AY uto rQ a nsimd XX shl @ nsimd XX pk `uIT b I D int P A Y

The two exceptions to this is the lod type functions, which are unfortunately common. These two functions require the type to be explicitly specied, as show below.

nsimd XX pk `fTR b rI a nsimd XX lodu `nsimd XX pk `fTR b b@ fTR B pI AY

Operator Overloading

The advanced C++ API overloads many common operators for arithmetic, bitwise operations, and logical operations for the pk structure. This allows the user to treat pks similarly to native variables when writing code. Below are a few lines demonstrating valid code that uses these overloads.

nsimd

. Developers -Adding a New Function

This section details how to add a new function to nsimd by walking through the steps involved using an example function that was added for use by the xedpoint module. All code will be written to various les in the nsimdGegg directory. The process involves adding the function as an 'operator', writing the code that generates the platform-specic code, and specializing (if necessary) the code that generates unit tests for the function. The function that will be used as an example is the lz function, which takes an integer as input and returns the number of bits set to zero above the strongest set bit.

Operator

The rst step is to add a class representing the function to the opertorsFpy le and ll it appropriately. The class must contain the following members:

• fullnme -short description of the function.

• signture -signature that the function will have. Of the most common signature types, v represents a vector, l a vector of logicals, , p an integer, and s a scalar.

• tegories -the categories contain the documentation categories where the function should be listed.

In addition, the class may optionally contain the following members:

• des -full description of what the function does.

• types -types which the function can take as input.

• domin -the input domain.

• doenh -set to plse if the function is not to be automatically benchmarked.

• testsulps -sets the allowed ULP tolerance of error in the unit tests.

• enhutoginst -benchmark comparable function from X library for comparison.

• testsmpfr -when performing unit tests, compare to the mpfr library.

• xxopertor -C++ operator to overload with a call to this function.

As an example, the lz code is listed below.

lss glz @ ypertor AX fullnme a 9 ount leding zeroes 9 signture a 9v lz v 9 domin a homin @ 9 9A tegories a howis types a ommon F iutypes des a 9 gount numer of zero its efore the lrgest set it 9

The signature is set to 9v lz v9 because the function takes a vector as input and outputs another vector. In addition, the types are set to ommonFiutypes in order to limit the inputs to signed and unsigned integers.

Platforms

In order to generate code for the function to call, it is necessary to add the function to the various platform les. As of this writing, there are three such les pltformpuFpy for CPUs with no SIMD extensions, pltformxVTFpy for x86 CPUs (SSE/AVX), and pltformrmFpy for ARM CPUs (NEON/SVE).

For each platform, there are three modications that must be made per functions. The rst modication is to write the function capable of generating the platformspecic C code. This function will be given the SIMD extension (unless CPU) and the input type as function inputs and return a string containing the appropriate C/ASM code. Each platform provides its own fmtspe variable which contains a number of useful predened strings. For example, here are a few of the predened strings provided in pltformrmFpy

• simdext : raw SIMD extension (aarch64, neon, sve)

• typ : input type • styp : ARM register type corresponding to input type (eg. inITxVt or flotQPxRt)

• totyp : output type

• suf : ARM function sux corresponding to input type (eg. the sQP part of vddsQP)

• inH : rst input (inI -inT are also provided if needed)

• typnits : total number of bits in the input type (eg. 64 for double, 8 for char)

These helpers contained in fmtspe make it possible to write the code below.

def lz @ simdext D fromtyp AX if fromtyp in 9iV 9 D 9 uV 9 D 9 iIT 9 D 9 uIT 9 D 9 iQP 9 D 9 uQP 9 X return 999 return vlzq { suf }@ { inH } AY 999F formt @BB fmtspe A else X return emulteopI @ 9 lz 9 D simdext D fromtyp A

The suf variable makes it easy to write a code that is generic for all input types. In cases where a function does not have a corresponding intrinsic, nsimd provides the emulteopI function (among others), which generates the code necessary to call the scalar (CPU) version of the function being generated. The next modication is to add an appropriate line to the impls array at the end of the le. This array contains a list of the functions to be implemented and the functions they call to generate their C code. For the CPU lz function, this means adding the following line to the list. 9 lz 9 X lmd X lz @ fromtyp A D Meanwhile, the x86 and ARM function calls also require information about the SIMD architecture being used. 9 lz 9 X lmd X lz @ simdext D fromtyp A D

The nal modication is to update the header les that are needed by the function. This is done by adding to the getdditionlinlude function. If the code generated by the rst step does not call any other nsimd functions, this step is not needed. For example, the CPU lz calls the nsimd shrv function, so the following lines of code are needed. elif fun aa 9 lz 9X return 999 5 inlude `nsimd G pu G pu G shrv Fh b 999

Testing

By default, nsimd will generate unit tests for a function that compare the CPU outputs to the SIMD outputs for randomly generated inputs. If the SIMD output diers from the CPU output, the test will fail. For many functions, this is sucient. However, some functions may have a limited input domain or special characteristics that may cause these outputs to dier for certain inputs.

The lz function falls in the latter category for an input of 0, the output may depend on the compiler being used. This is because the CPU implementation calls compiler built-in functions when possible; these built-in functions do not all behave exactly the same for an input of 0. As a result, we wish to avoid inputs of 0 when testing, so we modify the code that generates the random inputs by adding the following lines in the appropriate location.

if op F nme aa 9 lz 9X vinrnd a 9 vinI i a rnd @A Y nwhile @ 3 vinI i A vinI i a rnd @A Y 9

This modies the random input generation function to avoid outputting any 0 inputs.

Functions Added

A small number of functions needed to be added to the nsimd library in order to implement the xed point algorithms presented in Section 6.5. Depending on the implementation, the output of the lz function may be unspecied for an input of zero. However, some implementations do make the eort to output the total number of bits in the input (eg. 32 for a 32-bit integer). In the nsimd implementation of lz, we choose not to make this eort. For performance reasons, the output of nsimd's lz@HA is the same as lz@IA 31.

Architecture i

u i u i u i u x AVX N N N N N N N N x AVX N N N N N N N N x AVX N N N N Y * Y * Y * Y * NEON Y Y Y Y Y Y N N SVE Y Y Y Y Y Y Y Y *
The scalar lz implementation attempts to use the equivalent compiler builtin function if available. Otherwise, variations of Algorithm 22 (adapted from [43, p. 97] and [106]) are used. The algorithm varies in length depending on the size (in maximum bits) of the input. However, the computations are essentially the same. Algorithm 22 performs a binary search for the location of the rst nonzero bit in x while simultaneously updating the result value in r.

For the SIMD implementation of lz, we attempt to take advantage of intrinsic functions when available (see Table 6.3). At the moment, when intrinsics are not available the lz function falls back to the scalar implementation. This means that it will store the contents of the SIMD register, use the scalar lz function, and reload the results into an SIMD register. Document [5] was used to determine availability of intrinsics on the ARM SVE architecture.

shlv The shlv, or shift left variably, function is illustrated in Figure 6.2. It takes as input a register of integers to be shifted and a register of integer values listing the magnitude of the shift. The output is thus each input integer shifted left by

u i u i u i u x AVX N N N N N N N N x AVX N N N N Y Y Y Y x AVX N N Y Y Y Y Y Y NEON Y Y Y Y Y Y Y Y SVE Y Y Y Y Y Y Y Y
Table . : shlv intrinsics supported by various architectures.

the corresponding magnitude.

The shlv function simply performs bitwise left shifts on the input register according to the magnitude register.

The scalar shrv implementation reuses code from the shl function which shifts all values by the same magnitude. However, it requires a slight modication in order to shift the inputs by dierent magnitudes. Algorithm 23 shows the scalar code generated for 16-bit unsigned integers.

Algorithm

Algorithm used by nsimd to compute the shlv function for bit unsigned integers. nsimd_cpu_vu16 nsimd_shlv_cpu_u16 (nsimd_cpu_vu16 a0 , nsimd_cpu_vu16 a1) { nsimd_cpu_vu16 ret ; ret . v0 = (u16) (a0 . v0 << a1 . v0) ; ret . v1 = (u16) (a0 . v1 << a1 . v1) ; ret . v2 = (u16) (a0 . v2 << a1 . v2) ; ret . v3 = (u16) (a0 . v3 << a1 . v3) ; return ret ; } For the SIMD implementation of shlv, we attempt to take advantage of intrinsic functions when available (see Table 6.4). At the moment, when intrinsics are not available the shlv function falls back to the scalar implementation. This means that it will store the contents of the SIMD register, use the scalar shlv function, and reload the results into an SIMD register.

shrv The shrv, or shift right variably, function is illustrated in Figure 6.3. It takes as input a register of integers to be shifted and a register of integer values listing the magnitude of the shift. The output is thus each input integer shifted right by the corresponding magnitude.

If signed integers are given to the shrv function, it will perform arithmetic shifts which preserve the sign of the input. For unsigned inputs, the shrv simply performs a bitwise shift operation.

Architecture i u i u i u i u x AVX N N N N N N N N x AVX N N N N Y Y N N x AVX N N Y Y Y Y Y Y NEON Y * Y * Y * Y * Y * Y * Y * Y * SVE Y Y Y Y Y Y Y Y *
The scalar shrv implementation reuses code from the shr function which shifts all values by the same magnitude. However, it requires a slight modication in order to shift the inputs by dierent magnitudes. Algorithm 24 shows the scalar code generated for 64-bit signed integers. Note that lines 11-14 serve to preserve the sign of the input. For unsigned inputs, the computation consists of a single shift operation line 16 without the masking operation.

For the SIMD implementation of shrv, we attempt to take advantage of intrinsic functions when available (see Table 6.5). At the moment, when intrinsics are not available the shrv function falls back to the scalar implementation. This means that it will store the contents of the SIMD register, use the scalar shrv function, and reload the results into an SIMD register. When comparing Table 6.5 to Table 6.4, one may note that levels of support are not identical depending on the direction of the shift. div The div function performs division. Most architectures do not provide SIMD instructions for integer division, as seen in Table 6.6. As a result, vectorized integer division must be implemented through software.

Here we present the vectorization of Algorithm 25 labeled Algorithm D in [62] and coded in C in [43]. This algorithm performs the binary version of the decimal long division algorithm commonly taught in elementary school. Lines 9-parallelizable. Despite this, it is still possible to accelerate this algorithm via SIMD instructions. Algorithm 25 is only valid for positive inputs. Signed integers are converted to positive unsigned integers prior to the actual computation, then the result is given the appropriate sign before being output.

Note at line 5 of Algorithm 25 that the number of loop iterations is equal to the number of bits in the input type. This is the true limiting factor in how well integer division can be eciently vectorized using this algorithm. Doubling the size of an input size quadruples the time needed to perform this integer division half as many elements t into an SIMD register and twice as many loop iterations are needed.

One peculiarity of this algorithm is that the result accumulator result needs no initialization. This is because each iteration of the loop updates the weakest current bit, then shifts the value left (multiplying by two). The current value of the result is never used for other computation. After the full number of iterations (equal to the number of total bits) have completed, none of the original uninitialized bits remain.

Algorithm

Scalar algorithm for bitwise long division of integers.

template < typename T > bitwise_long_division (T top , T bot) { T result ;

T remainder = 0;

for (int i = (8* sizeof (T) -1) ; i >= 0 ; --i) { result = result << 1; remainder = remainder << 1;

remainder = remainder | ((top >> i) & T (1)) ; if (remainder >= bot) { remainder = remainder -bot ; result = result | T (1) ; } } return result ; } Architecture i u i u i u i u x AVX N N N N N N N N x AVX N N N N N N N N x AVX N N N N N N N N NEON N N N N N N N N SVE Y Y Y Y Y Y Y Y
Table . : div intrinsics supported by various architectures.

Benchmarks

This section presents benchmarks performed on the lz, shrv, shlv, and div functions. All benchmarks present the speedup between the scalar CPU implementations and the SIMD implementations of the functions within nsimd. We choose not to perform any benchmarks on architectures of Intel AVX or lower, as they do not support any instructions for the implemented functions. Raw benchmark data is provided in Annex C. Each graph presented contains a link to a table of raw data. Each raw data table provides a link back to the corresponding graph, so don't be afraid to click back and forth if you're reading this as a pdf.

Benchmarks were performed using the specications described in Table 6.7. For convenience, Table 6.8 provides the ideal speedup for each register size.

SIMD

Compiler the greatest speedup, when supported, thanks to its largest register sizes. This speedup is signicantly lower at 8 and 16 bits, as we must convert these to 32-bit types before being able to take advantage of the implemented intrinsic functions. However, the aarch64 lz does oer a speedup, although it is not as large as the ideal speedup. This is because the comparison between SIMD and scalar lz functions is actually a comparison between a CPU instruction (SIMD) and a compiler builtin function (scalar). It appears that the compiler builtin lz function is slightly faster than the SIMD instruction.

shlv Figure 6.5 shows the performance of the shlv function. As expected from Table 6.4, the AVX2 shlv only shows any speedup when there exists a corresponding CPU function at 32 and 64 bits. At 8 and 16 bits, the cost of storing the data in the heap, performing the scalar implementation, then loading the data back into an SIMD register degrades the performance compared to simply performing scalar computation. We also tested the shlv function using type conversions to the supported 32-bit type. However, the performance was equivalent to scalar emulation. For simplicity, we chose to keep the scalar emulation implementation. For the AVX512 shlv we see the greatest acceleration, once more thanks to the large register sizes. This speedup is reduced at 8 bits, as we must convert these to 16-bit types before being able to take advantage of the implemented intrinsic functions. The magnitude of the reduction is signicantly greater for unsigned 8-bit types, as intrinsic functions only exist for converting signed 8-bit types to 16-bits. The SIMD aarch64 shlv scales perfectly linearly. However, the speedup is not so linear due to inconsistencies in the scalar performance.

The scalar 32-bit shlv is actually faster than the SIMD instruction, while the 8 and 16 -bit scalar performances are similar to each other and the 64-bit scalar performance is signicantly slower.

shrv Figure 6.6 shows the performance of the shrv function. One immediately visible feature is that, compared to the previous graphs, shrv performance diers noticeably between signed and unsigned types. This is because the shrv implements an arithmetic shift, requiring extra computation to preserve the sign of signed types.

In comparison, the unsigned version can blindly shift using the CPU instruction.

On the AVX2 architecture, the corresponding CPU instruction only exists for 32-bit integer types. This shows very clearly in the speedup graph, which only shows an AVX2 speedup at 32 bits. As with the shlv function, we use scalar emulation for unsupported types, as the performance is equal to type conversions. For the AVX512 shrv we see the greatest acceleration, once more thanks to the large register sizes. This speedup is reduced at 8 bits, as we must convert these to 16-bit types before being able to take advantage of the implemented intrinsic functions. As with the shlv function, the shrv function scales perfectly linearly on the aarch architecture. Once again, the scalar performance makes the speedup appear nonlinear. The 32-bit scalar performance is noticeably faster than the others, while the 64-bit is signicantly slower.

div Figure 6.7 shows the performance of the div function. As expected, the integer division algorithm implemented scales badly with the number of bits in the input type on all tested architectures. On the AVX2 architecture, we see that there is an actual speedup for both 8 and 16 -bit inputs. At 32 and 64 bits, the division algorithm is no longer worthwhile due to its poor scaling. On the AVX512 architecture, we see a more signicant speedup at 8 and 16 bits. However, the poor scaling prevents any speedup at 32 and 64 bits. On the aarch64 architecture, the small register size (64 bits) limits the potential speedup. As a result, the algorithm is never parallel enough to recuperate the cost of the additional computations.

The nal implementation of integer division in nsimd takes these results into account, applying the vectorized algorithm only where it is worthwhile.

. nsimd Fixed Point Type

This section describes the xed point datatype added to nsimd for the purpose of performing xed point operations. The goal was to provide a simple interface to a xed point datatype which allows arbitrary Qa.b combinations. We achieve this goal through the use of C++ template metaprogramming.

. API

Base Type

The xed point extension of nsimd provides both a scalar interface and a SIMD interface, as shown below. The scalar interface takes the form nsimdXXfixedpointXXfpt`Db. Meanwhile, there are two SIMD interfaces. The rst is the standalone nsimdXXfixedpointXXfpsimdt`Db, while the second makes use of the nsimdXXpk`b interface where one simply needs to place the scalar fpt as the template argument . The two SIMD interfaces are functionally equivalent. The fpsimdt exists because the library was developed outside of nsimd and is used internally to represent xed point SIMD registers. It should be noted that, for reasons described in the following section, a Qa.b number will be stored in the smallest sized integer capable of containing (a + 2b) bits. All fpts are signed. There is no current implementation of unsigned xed point numbers.

using nmespe nsimd XX fixedpoint Y fpt `P DQ b I @QFIA Y GG P FQ @V its A fpt `V DV b P a IRFUY GG V FV @QP its A pk `fpt `R DT b b vI Y GG etor of R FT @IT its A pk `fpt `IT DIT b b vP Y GG etor of IT FIT @TR its A

C Y Y a C Sub E Y Y a E Mul B Y Y a B Div G Y Y a G Add to self Ca Y N Ca Sub from self Ea Y N Ea Mul self by Ba Y N Ba Div self by Ga Y N Ga Negative self E Y N a E Cast to T Y N a int@A Equals aa Y Y if @ aa A Not Equal 3a Y Y if @ 3a A Less `Y Y if @ ` A Less Equal `a Y Y if @ `a A Greater b Y Y if @ b A Greater Equal ba Y Y if @ ba A Bitwise Or | Y N a | Bitwise Xor ¢ Y N a ¢ Bitwise And 8 Y N a 8 Bitwise Not 3 Y N a 3
Table . : List of currently overloaded operators to fp_t and pack<fp_t>.

Operators For ease of development, the xed point extension of nsimd overloads a number of common operators for both the scalar and SIMD interfaces. A full list of currently supported operators with examples is listed in Table 6.9. As with the nsimd advanced C++ API, this allows the user to treat the xed point types in a similar manner to native variables when developing code. At the moment, only operations between xed point numbers of the same format are supported. As the nsimd xed point extension is still a work in progress, some operators are still awaiting implementation.

Function Calls

In addition to the overloaded operators, we also provide a small number of basic mathematical functions. When calling functions, the user does not need to specify the format of the xed point number it is automatically deduced through template metaprogramming. See below for some example function calls.

. Implementation Details

Base Type Behind the scenes, the fpt stores data in the smallest integer that ts twice the size of the decimal portion plus the size of the integer portion, as evidenced by Table 6.10.

Minimum storage size(Qa.b) = a + 2 • b
We chose this storage limitation in order to be able to perform multiplication operations without upcasting the integer to a higher size. This provides two major benets. First, it simplies the development of vectorized algorithms, as it removes the need to decide when to upcast. Secondly, it provides performance benets by removing conversions between vectorized data types. The conversion itself has a time cost and the proceeding operations performed using the upcasted type only operate on half as many values as the operations performed using the original type.

For simple algorithms, the cost of the conversion can be signicant compared to the cost of the actual computations. For more complex algorithms, the reduced potential acceleration leads to a signicant performance cost. Section 6.5.2 will describe how the extra bits are used during multiplication and division computations.

We achieve this selective storage size by leveraging SFINAE (Substitution Failure Is Not An Error) via the use of the stdXXenleif structure. This limits C++ compatibility to C++11 or newer, although the stdXXenleif structure can be easily reimplemented using earlier C++ standards. Table 6.10 lists the implemented Qa.b combinations and their associated types. We limit support to types that t in 64 bits, as that is the largest commonly physically supported integer type. If a code sets Qa.b such that a + 2 • b > 64, the code will produce an error and not compile.

Helper Types All valid fpt types dene the following types for ease of development:

• vluetype -the base type used to store scalar values.

• positivetype -unsigned equivalent of vluetype

• logiltype -the base type used to store scalar logical values.

• simdtype -the nsimd type used to store SIMD registers.

• simdlogil -the nsimd type used to store SIMD logical registers.

These types can be useful when developing algorithms that use the raw data stored in the fpt. Alignment Fixed point numbers represented such that the last bit in the containing integer type contains the smallest decimal bit of the xed point number. Any reserved or unused bits are contained in the strongest bits, as shown in Figure 6.8. This choice of alignment serves to enable the multiplication algorithm described in Section 6.5.2.

One notable side eect of this alignment is that the number of integer bits available during computations can be eectively larger than the number of integer bits assigned in the type declaration. For example, a fpt`RDRb uses 16 bits of storage, but only requires 12 bits (8 storage + 4 reserved) for any xed point computations. The remaining 4 bits are not zeroed during computation and thus eectively contribute 4 extra integer bits during some computations. In the future, it may be desirable to add a "strict" mode that zeroes these extra 4 integer bits after every computation.

Overflow

In implementing the xed point extension of nsimd, we chose to not make any special cases or error handling for overow. This is similar to the behavior of the integer types used to store the values and perform the arithmetic. However, the presence of unused and reserved bits causes a slight dierence in behavior from many signed integers. When a Qa.b number overows past the a integer bits, it overows through 0, rather than the largest negative value. This is because the signed integer storing the xed point number has not yet overowed to the largest negative value. If the magnitude of the overow is suciently large to overow the underlying integer, the xed point number will overow in the same way as a signed integer.

. General Usage

Installation The xed point extension of nsimd is included in the nsimd library as a module. As such, the installation instructions are the same (see Section B.1).

Organization

The xed point extension comprises entirely of header les. These les are located in the nsimdGinludeGnsimdGmodules directory. At this level is the fixedpointFhpp le which implements the pk interface and makes the entire xed point API accessible. At this level is also the fixedpoint directory, containing most of the actual implementation. The important les and folders are as described below. helper -functions that aid during development.

Compilation

The procedure to compile the xed point extension of nsimd is the same as for compiling nsimd alone. The only dierence is that there is no current C interface for xed point numbers.

Usage In order to make use of the xed point extension, one only needs to include the following le.

inlude `nsimd G modules G fixedpoint F hpp b

This le includes all les necessary for use of the xed point extension and allows the user to take advantage of the features previously described in Section 6.4.1.

. Algorithms & Performance

This section presents some of the mathematical functions implemented by the xed point extension of nsimd. We break these functions into three categories arithmetic functions, trigonometric functions, and other functions. Each individual function will be presented rst in its scalar form, then its vectorized form. Generally, the scalar algorithms are designed to be vectorizable, so this aids in understanding the vectorized forms. Benchmarks will also be presented, comparing the scalar and vectorized performances to comparable xed point libraries.

. Benchmark Design

The benchmarks presented below were obtained using the Google benchmark [37] tool. The computational loop to be repeated by the benchmark tool consists of a 1024 element input array (or arrays if multiple inputs) of random values. The result of the operation is stored into another array and the benchmark tool ensures that the computational loop is not optimized away. The benchmark tool outputs the raw time in nanoseconds. In order to obtain the cycles per element, we must divide this raw time by the number of elements and multiply by the clock frequency of the CPU used to perform the benchmark. cycles/element = raw time total elements

• clock frequency Each benchmark compares the nsimd performance, both scalar and SIMD, to the other libraries listed in Section 6.2. Comparisons will be made with respect to the size of the underlying integer representations. For example, an nsimd fpt`VDVb uses 32-bit integer storage, while a liquid-dsp qIT uses 16-bit integer storage. This comparison is generous to nsimd, as some formats use more storage space with nsimd than the other libraries. Table 6 The basic arithmetic functions will also be compared to the performance of the equivalent function on a same-sized integer. This allows us to compare the performance to a natively supported type and see the cost of emulating xed point numbers.

When examining the performances of the liquid-dsp and libxmath libraries, it should be noted that these two libraries have compiled components. The cost of making a function call to the compiled functions will be very evident in some cases. In addition, these two libraries do not support all storage sizes. The liquiddsp library supports 16 and 32 bit formats, while the libxmath library only supports 32 bit formats.

All benchmarks were performed on the following machines: All benchmark binaries were compiled using the EyQ ag to obtain maximum performance for all libraries. In the library comparison benchmarks, the pk entries present the results using AVX2 vectorization.

As in Section 6.3.2, all graphs contain links to the corresponding raw data tables in Annex C. These data tables also contain links back to their corresponding graphs. As described in Section 6.1, multiplication of two Qa.b numbers results in a Q2a.2b number. The rst a bits and the last b bits of this multiplication are of no interest, as we wish to output a Qa.b number. We may neglect the rst a bits, as we choose not to make special cases for integer overow (Section 6.4.2). This is why we chose to use a + 2b bits to store a Qa.b value a + 2b bits are sucient to store the last Qa.2b bits of the multiplication. It is then sucient to shift the remaining bits to the right (preserving the sign) in order to transform the Qa.2b number into a Qa.b number. Figure 6.13 shows a visual example of the nsimd implementation of xed point multiplication of two Q4.6 numbers. These Q4.6 numbers are store in a 16-bit integer (4 + 2 • 6 = 16), with 6 bit reserved for intermediate computations. After the integer multiplication, the top 4 bits of information are lost to overow, as we would need 20 bits to store a Q8.12 number. However, the next 4 bits are the integer bits corresponding to our Q4.6 result. At this point, the result integer is not yet in Q4.6 format, it is in Q4.12. In order to return to the Q4.6 format, we must shift this result right by 6 bits. Finally, we obtain the Q4.6 result of the multiplication.

. Arithmetic Functions

Addition/Subtraction 0 0.1 0.2 0.3 0.4 0.5 6 . 3 8 • 1 0 -2 0 . 1 3 0 . 2 6 0 . 5 2 6 . 3 8 • 1 0 -2 0 . 1 3 0 . 2 6 0 . 5 2 6 . 4 1 • 1 0 -2 0 . 1 4 0 . 2 6 0 . 5 1 6 . 3 8 • 1 0 -2 0 . 1 3 0 . 2 7 0 . 5 1 0 . 1 3 0 .
It should be noted that this implementation rounds o the extra bits via truncation. This rounding method was chosen for performance reasons, as a simple shift operation is faster than the computation required for any of the more advanced methods.

More formally, the transformations being performed are as follows

F a.b (x 1) • F a.b (x 2) = [I(x 1) • 2 -b] • [I(x 2) • 2 -b] = I(x 1)I(x 2) • 2 -2b = F a.2b (x result) F a.2b (x result) = I(x result) • 2 -2b • 2 b = I(x result) • 2 -b = F a.b (x result)
Numerically, we achieve this via the following shift operation.

F a.2b (x result) >> b = F a.b (x result)
In comparison, if we had chosen to only store a + b bits to store a Qa.b number, it would not be possible to store the a + 2b bits of result. Instead we would have to choose between two possible solutions to performing multiplication. The rst solution would be to convert to a datatype capable of storing at least a + 2b bits. In most cases, this involves converting to a larger datatype, performing the multiplication and shift operations, then converting back to the original datatype. Most xed point implementations blindly upcast in order to store the full 2a + 2b result of the multiplication. Some SIMD implementations provide integer multiplication instructions that output a larger datatype (for example, 32-bit int multiplication results in a 64-bit output). However, it is still necessary to perform the shift operations with the larger datatype, then downcast the results back to the original datatype and pay the associated runtime performance costs. The second solution would be to compute only the middle a + b bits of the multiplication. This does not require any datatype conversions. However, it does signicantly complicate the computations. In order to compute the middle a + b bits, our simple multiplication would become a series of shifts, multiplications, and additions.

Example with Numbers

For example, if we wish to multiply 2.125 and 3.5 as Q3.3 values, we rst convert the inputs to their implemented integer representations:

I(2.125) = 2.125 • 2 3 = 17 I(3.5) = 3.5 • 2 3 = 28
We can then perform an integer multiplication of the two:

17 • 28 = 476
However, this operation actually overows the 9 (3+2•3) bits available, so the value overows down to 476%256 = 220

We must then shift this value back from a Q3.6 integer representation to the Q3.3 integer representation. 356 • 2-3 = 59.5 → 59

Where we round the 0.5 down via truncation. Finally, we convert back from the integer representation to see that 59

• 2 -3 = 7.375
This is the closest Q3.3 value that does not exceed the numerical result of 7.4375.

Comparison Figure 6.11 compares the performances of the mul function for all xed point libraries. Most evidently, the liquid-dsp and libxmath bars show we see the cost of calling a function from a compiled library. At all sizes, the native integer multiplication is fastest, as the xed point multiplications must perform extra computations after performing an integer multiplication themselves. All header-only libraries require take less than one cycle per element. This means that, once again, the compiler has succeeded in vectorizing the scalar codes. The scalar nsimd fpt is generally the fastest xed point library for multiplication. This is thanks to the implementation choice to choose a storage type that holds enough bits that no casting operations are needed, avoiding extra computation.

Speedup Figure 6.12 compares the speedups obtained when using the pk`fptb structure to vectorize the mul function on various architectures. However, it does not appear to have optimally auto-vectorized the 8, 16, and 32 bit codes, as the pk implementation does show a slight speedup in these cases.

The exception here is the SSE 4.2 architecture, where the speedup for 8-bit inputs is approximately one. This is because the architecture does not support native 8-bit integer multiplication. The nsimd implementation converts the 8-bit inputs to 16-bits in order to perform vectorized multiplication. It appears that the cost of this conversion neutralizes any gains from the vectorization.

Meanwhile, at 64 bits, we observe a loss in performance when using the pk`fptb structure. For the SSE 4.2 and AVX2 architectures, this is because there are no instructions that allow for 64-bit integer multiplication. It is not possible to use the same workaround as described for 8-bit inputs, so nsimd uses its scalar fallback. As a result, the SIMD multiplication can only be slower than the scalar multiplication. For the aarch64 architecture, this loss in performance is simply because the 64-bit SIMD register only contains a single 64-bit value. This makes it dicult to achieve any speedup at this level of precision. C As described in Section 6.1, division of one Qa.b numbers by another results in a Qa.0 number. However, we wish to produce a result with Qa.b precision. We achieve this by converting the numerator to Qa.2b format (by shifting the numerator b bits to the left) before performing integer division, as shown in Figure 6.16. The resulting value will be in the desired Qa.b format. This is always possible thanks to the b reserved bits.

More formally, the transformations being performed are as follows

F a.b (x 1) F a.b (x 2) = I(x 1) • 2 -b I(x 2) • 2 -b F a.2b (x 1) F a.b (x 2) = I(x 1) • 2 -2b I(x 2) • 2 -b = I 1 I 2 •2 -b = F a.b (x result)
In comparison, if we had chosen to only store a + b bits to store a Qa.b number, it would not be possible to perform the shift without losing bits of information. In most cases, it would instead be necessary to convert to a datatype capable of storing at least a + 2b bits. This involves converting to a larger datatype, performing the shift and division operations, then converting back to the original datatype. Most xed point implementations blindly upcast in order to store the 2a + 2b bits and be more than certain to store result of the shift operation.

Example with Numbers

For example, if we wish to divide 2.25 by 2 using Q3.3 values, we rst convert the inputs to their implemented integer representations:

I(2.375) = 2.375 • 2 3 = 19 I(2.0) = 2.0 • 2 3 = 16
Next we shift the numerator 3 bits left 19 • 2 3 = 152 before performing the integer division 152 ÷ 16 = 9.5 → 9

Where we round the 0.5 down via truncation. Finally, we convert back from the integer representation to see that

9 • 2 -3 = 1.125
This is the closest Q3.3 value that does not exceed the numerical result of 1.1875.

Comparison Figure 6.14 compares the performances of the div function for all xed point libraries. Here we observe again observe similar performance among all header-only libraries. Looking at the pk bars, we see the eects of using the vectorized integer division implemented directly into nsimd for 8 and 16 bit inputs. At 32 and 64 bits, nsimd falls back to scalar division, displaying similar performance to the other division operations. Overall, we can observe that the cost of an integer division operation is dwarfs the cost of the shift operation, as the native integer division performance is similar to the xed point division performance. Once more, the eect of calling a compiled function from a library can be seen at 32 bits with the liquid-dsp and libxmath libraries.

Speedup Figure 6.15 compares the speedups obtained when using the pk`fptb structure to vectorize the div function on various architectures. We can observe the eects of the vectorized integer division of nsimd at 16 and 32 bits for the AVX2 architecture. For the other architectures, the variations in performance depend on the post-compilation cost of the nsimd scalar fallback mechanism.

. Trigonometric Functions

All trigonometric functions presented in this section were implemented using Taylor series approximations centered around zero. This choice was made in order to maximize comparability with the other xed point libraries. While Taylor series approximations increase in error as the input gains distance from the center of the approximation, this error can be mitigated by exploiting the symmetry of trigonometric functions in order to reduce the input domain. In all functions presented, we reduce the input domain to Raw data in Table C. .

The sine function was implemented using a Taylor series expansion around zero (more specically a Maclaurin series). The Taylor expansion of the sine around zero is

sin(x) = ∞ n=0 -1 n (2n + 1)! • x 2n+1 = x - x 3 3! + x 5 5! - x 7 7! + ...
We can factor the above equation into

sin(x) = x - x 3 3! + x 5 5! - x 7 7! + ... = x • (1 - x 2 2 • 3 (1 - x 2 4 • 5 -(1 - x 2 6 • 7 (1 -...))))
This has the eect of reducing the number of computations, and reducing the magnitude of the values involved. The maximum power of x is x 2 and we avoid computing large exponentials. For example, the fourth term is x 2 6•7 rather than x 7 7! . Reducing these magnitudes reduces the risk of numerical errors that arise from overow or division by a large number negating a term. At the moment, we nd that limiting computations to this fourth term provides sucient numerical accuracy. In the future, it would be ideal to use SFINAE to determine the number of terms to use according to the number of decimal bits. Table 6.13 shows the level of precision each term of the expansion provides, where the Log2(denominator) entry is the approximate level of decimal bits needed for the term to have an impact.

Order of the term Expression

x x 3 3! x 5 5! x 7 7! x 9 9!
x 11 11!

x 13 13! Log (denominator)

Table . :

The approximate impact of each sin Taylor expansion term on the final result.

In order to minimize the error that arises when inputs are distant from the center of the expansion (zero), it is necessary to resize inputs using symmetry. We exploit the following properties of the sine function in the following order to reduce the input domain:

Initial : -∞ < x < ∞ sin(-x) = -sin(x) : 0 ≤ x < ∞ sin(x + n • (2π)) = sin(x) : 0 ≤ x < 2π sin(x + •π) = -sin(x) : 0 ≤ x < π sin(x) = cos(x - π 2) : - π 2 ≤ x < π 2
Comparison Figure 6.17 compares the performances of the sin function for all xed point libraries. The fpt and pk`fptb performances are consistently faster than the other libraries. However, as the following paragraph will describe, this is more due to compiler optimizations than any code optimization. The CNL and libxmath libraries are generally within a factor of 3x, while the liquid-dsp library shows slower performance.

Speedup Figure 6.18 compares the speedups obtained when using the pk`fptb structure to vectorize the sin function on various architectures. On the SSE 4.2 and AVX2 architectures, the low speedup is actually due to the compiler optimizations of the scalar implementation. The C++ code contains a number of divisions by constant (calculable at compile-time) xed-point values in order to perform the input range reduction described above. However, when disassembling the compiled code, there is no trace of any integer division the compiler has replaced them with multiplication by by integer constants whose properties lead to eects equivalent to multiplying by the inverses of the original constants. This avoids the need to perform a computationally expensive integer division operation, greatly accelerating the overall computation. The remaining addition, multiplication, and shift operations are signicantly faster than division operations. In addition, they are operations that the compiler is capable of auto-vectorizing. Meanwhile, the SIMD implementation does not contain this optimization of the division by constants.

On the aarch64 and AVX512 architectures, the compiler is not able to perform the same optimizations. This allows for a more impressive speedup. The AVX512 compiler is capable of vectorizing some parts of the code for only 16-bit inputs, reducing the possible observable speedup at this data point. C. .

The cosine function was implemented using a Taylor series approximation around zero. The Taylor expansion of the cos around zero is

cos(x) = ∞ n=0 -1 n (2n)! • x 2n = 1 - x 2 2! + x 4 4! - x 6 6! + ...
We can factor the above equation into

cos(x) = 1 - x 2 2! + x 4 4! - x 6 6! + ... = 1 - x 2 1 • 2 (1 - x 2 3 • 4 -(1 - x 2 5 • 6 (1 -...)))
As with the sine function, this reduces the number of operations to perform and reduces the magnitude of the higher order terms. Once more, the computations are currently limited (here to the fth term) with possible optimization via SFINAE. We exploit the following properties of the cosine function in the following order do reduce the input domain:

Initial : -∞ < x < ∞ cos(-x) = cos(x) : 0 ≤ x < ∞ cos(x + n • (2π)) = cos(x) : 0 ≤ x < 2π cos(x + •π) = -cos(x) : 0 ≤ x < π cos(x) = -sin(x - π 2) : - π 2 ≤ x < π 2
Comparison Figure 6.19 compares the performances of the os function for all xed point libraries. The fpt and pk`fptb performances are consistently faster than the other libraries. However, as the following paragraph will describe, this is more due to compiler optimizations than any code optimization. The CNL and libxmath libraries are generally within a factor of 3x, while the liquid-dsp library shows slower performance.

SIMD Figure 6.20 compares the speedups obtained when using the pk`fptb structure to vectorize the os function on various architectures. The os function benets from the same compiler optimizations as the sin function. As a result, the SSE and AVX2 scalar performances once more contain optimizations not present in the SIMD implementations, limiting the possible speedups. C. .

The tangent function is implemented using the sine and cosine functions via the following property. tan(x) = sin(x) cos(x)

It rst performs range reduction using the properties of the tangent function, then calls the range reduced versions of the sine and cosine functions. We exploit the following properties of the tangent function in the following order do reduce the input domain:

Initial : -∞ < x < ∞ tan(-x) = -tan(x) : 0 ≤ x < ∞ tan(x + n • π) = tan(x) : 0 ≤ x < π tan(x + n • π) = tan(x) : - π 2 ≤ x < π 2
Comparison Figure 6.21 compares the performances of the tn function for all xed point libraries. The CNL library is not present, as it does not present a tn function. While the scalar fpt performance is still faster than the remaining libraries, the dierence is reduced.

SIMD Figure 6.22 compares the speedups obtained when using the pk`fptb structure to vectorize the tn function on various architectures. Compared to Figures 6.18 and 6.20, it appears that the tn function does not benet from as strong of compiler optimizations as the sin and os functions. As a result, the vectorized pk`fptb implementation can show a better speedup than the previous functions. The SSE 4.2 and AVX2 architectures exhibit a peak at 16 bits rather than 8 bits due to the usage of a number of operations that are implemented for 16, but not 8 bit inputs. Raw data in Table C. .

. Other Functions

The reciprocal function can be implemented in two ways. The rst way is to perform xed point division of 1 by the input. However, SIMD instruction sets do not include the integer division required to do this. We present a long division algorithm which enables vectorized integer division for smaller integer types, but we still need an ecient reciprocal for larger integer types. For this, we use the Newton-Raphson iterative method to divide 1 by the input according to the following equation, where a is the input.

x i+1 = x i • (2 -(x i • a))
Depending on the choice of starting seed x 0 , this formula may or may not converge to x f = 1 a . The formula stops updating when x i+1 = x i , which can occur when

x i+1 = x i = x i • (2 -(x i • a)) 0 = -x i + 2x i -ax 2 i 0 = x i -ax 2 i 0 = x i (1 -ax i) x i ∈ {0, 1 a }
Here we see that there are two values which cause the iterations to stop updating the correct answer (1 a) and zero. This means that we wish to avoid any seeds which cause the updates to pass through zero. We want to avoid values that satisfy the following formula

x i+1 = 0 = x i • (2 -(x i • a)) 0 = 2x i -ax 2 i 0 = x i (2 -ax i) x i ∈ {0, 2 a }
This means that we want to choose the starting seed such that

0 < x 0 < 2 a
Otherwise the nal result will be zero. This appears to be a narrow window of possible starting values, but it is possible to numerically make a very good starting guess by exploiting the following relationship

(a = 2 log 2 (a)) -1 → 1 a = 2 -log 2 (a)
While the exact log 2 (a) is not trivial to compute numerically, its integer portion log 2 (a) can be. Numerically, log 2 (a) only requires that we locate the strongest set bit. This is possible via the lz function implemented in Section 6.3.2. The lz function counts the number of zero bits before the strongest set bit. It can be used to compute log 2 (a) via the formula log 2 (a) = N total bits -lz(a)

Because log 2 (a) is an integer value, we can compute 2 -log 2 (a) via a shift operation.

Remembering that the relationship between a xed point value and its integer representation is

F a.b (x) = I(x) • 2 -b this formula becomes log 2 (F a.b (x)) = log 2 (I(x) • 2 -b) = N total bits -lz(I(x)) -b
Our seed x 0 is thus computed via

F a.b (x 0) = 2 -(N total bits -clz(I(x))-b) = 2 clz(I(x))+b-N total bits I(x 0) = F a.b (x 0) • 2 b = 2 b • 2 clz(I(x))+b-N total bits = 2 clz(I(x))+2b-N total bits
Numerically, we can eciently compute this power of 2 using shift operators. Unfortunately, not all shift operations dene the behavior of shifting by a negative value. This means that we want to reframe the computation to only perform valid shifts in one direction. To accomplish this, we choose to start with a value of 2 -b (which sets the weakest bit to 1). As a result, any x 0 computation that requires a right shift is not representable in the Qa.b format and we do not need to specify the result. Finally, we can numerically compute our starting seed by beginning with

I(x 0) = I(2 -b) • 2 clz(I(a))+2b-N total bits = I(2 -b) << [lz(I(x)) + 2b -N total bits]
In practice, we nd that the choice of starting seed allows for rapid convergence. As such we limit the maximum number of SIMD iterations to 10. While this has yet to prove insucient in our applications, more in depth tests are required to determine if 10 iterations are sucient in all cases.

Example with Numbers

For example, if we wish to compute the reciprocal of 15 using a Q8.12 (32-bit) format, we must rst convert it to its integer representation. 15 = F 8.12 (15) = I 8.12 (15) • 2 -12 I 8.12 (15) = F 8.12 (15)

• 2 +12 = 15 • 2 12
Next, we compute the starting seed. clz(I 8.12 (15)) = 16

I(x 0) = I(2 -12) << (16 + 24 -32) I(x 0) = I(2 -12) << 8 = 1 << 8 = 2 8
To see what number this integer format represents, we can convert it back to a xed point value.

F 8.12 (x 0

) = I(x 0) • 2 -12 = 2 8 * 2 -12 = 2 -4 = 1 16 = 0.625
Finally, we use this starting seed to and perform our iterations to compute the reciprocal.

x 1 = 0.6025

• (2 -(0.0625 • 15)) = 0.06640625 x 2 = 0.06640625 • (2 -(0.06640625 • 15)) = 0.06665039 x 3 = 0.06665039 • (2 -(0.06665039 • 15)) = 0.06665039
Thanks to the choice of a good starting seed, the computation converges rapidly in 3 iterations.

Comparison Figure 6.23 compares the performances of the re function for all xed point libraries. The scalar fpt implementation uses scalar integer division, while the SIMD pk`fptb implementation uses the Newton-Raphson algorithm described in this section. As a result, the scalar results are identical to the results presented for division (Section 6.5.2), but the vectorized results are slower.

Speedup Figure 6.24 compares the speedups obtained when using the pk`fptb structure to vectorize the re function on various architectures. Here we see that the Newton-Raphson implementation is slower than the scalar implementation on most architectures for all input sizes. This is because of the high cost of the starting seed computation, which makes use of the lz and shlv functions described in Section 6.3.2. Either the necessary instructions do not exist (SSE4.2 and AVX2) or the register sizes are insucient to amortize the extra computations (aarch64). The exception to this is the AVX512 architecture, which has the largest register size and provides appropriate intrinsic functions. Most interestingly, the re function is twice as fast as the div function on AVX512 16-bit types. This indicates that, while of very limited usefulness today, the re function will be worth using on future architectures with large SIMD register sizes and full support for the necessary intrinsic functions. In most cases, however, the fpt re function should be implemented using the div function instead. C The square root function is implemented using the Newton-Raphson iterative method described in Section 3.2.2. This gives us the following formula for iterating towards the output.

Square

x i+1 = 1 2 • (x i + a x i)
We nd that setting the starting seed x 0 to be equal to the input value to be sucient initial tests show that this allows tested inputs to converge within 10 iterations. As such, the vectorized implementation blindly performs 10 iterations to avoid the cost of checking if all inputs have converged. More in depth tests are necessary to determine if this 10 iterations are truly sucient for all possible inputs. Unlike the reciprocal function, there is only one simple numerical problem to avoid when implementing the square root avoiding division by zero. This scenario can only occur when the initial seed is equal to zero, so in theory a single check before beginning the iterations is sucient to avoid the problem. In practice, it is possible for the mathematical result to be smaller than one ULP, so this check must be performed with every loop iteration.

Example with Numbers

For example, if we wish to compute the square root of 15 using a Q8.12 (32-bit) format, we perform the following iterations.

x 0 = 15 In this example, we converge in 6 iterations.

x 1 = 1 2 • (15 + 15 15) = 8 x 2 = 1 2 • (8 + 15
Comparison Figure 6.25 compares the performances of the sqrt function for all xed point libraries. At 8 bits, the CNL library is nearly by far the fastest. However, it scales poorly with size, as it implements a digit-by-digit algorithm for computing the square root. As we saw in Section 6.5.2, this type of algorithm scales very poorly with the number of bits. The scalar fpt algorithm is much less ecient at 8 and 16 bits even the liquid library is faster at 16 bits. However, it vectorizes well enough that the SIMD implementation is fastest for 16-bit and larger numbers.

Speedup Figure 6.26 compares the speedups obtained when using the pk`fptb structure to vectorize the sqrt function on various architectures. The sqrt performance graph resembles the graph showing the performance of integer division (Figure 6.7) for good reason. The limiting factor in the SIMD performance of the sqrt function is the presence of an integer division in each loop iteration.

. Conclusion

The xed point computational library presented here presents a dierent approach than traditionally used when storing xed point numbers. This approach allows us to avoid converting between dierent sized types when performing computations. While the gains are not always noticeable when performing scalar computations, this storage method allows us to write much more ecient vectorized code. In addition, it allows us to write simple scalar code for the compiler to optimize. Our use of template metaprogramming allows us to easily support a vast array of xed point congurations. The result of all of this is a exible, ecient computation library for xed point numbers. However, this library is still very much a work in progress.

The rst avenue of improvement is the addition of more functions. A few functions, such as the exponent and logarithm, already have scalar implementations but no corresponding vectorized implementations.

A second avenue of improvement is the optimization of the existing functions. For example, the compiler optimizations of the sin and os functions should be applicable to all architectures both scalar and bectorized. Some optimizations would need to be performed via the use of SFINAE to select between dierent implementations depending on the xed point format being used. For example, the square root algorithm implemented by CNL could be implemented and selected for use with 8-bit storage types. Another target for optimization is the trigonometric functions, which could vary the depth of the Taylor expansion depending on the number of decimal bits.

The third avenue of improvement is the user interface. There are two clear ways to improve the user interface of this xed point library. The rst is to add support for unsigned xed point numbers. Unsigned xed point numbers would not suer the irregular overow described in Section 6.4.2. In addition, some algorithms allow for dierent optimizations depending on whether the inputs are signed or not. The second user interface improvement is to add a strict mode which enforces the number of integer bits. It would cause signicant performance loss the simplest implementation would require an extra mask operation after every single operation performed on a xed point number. However, this strict mode could be very useful when exploring the eects of strongly limited numerical precision as we will in Chapter 7.

-Neural Network Precision

The subject of which numerical precision to use for neural network inference is a subject of active research [42][2][17]. Candidates for useful numerical precisions are not limited to the traditionally supported types (int, oat, char, etc.); some types have been researched and found interesting enough to be worth adding hardware support for, such as the oat16 [7][41] and boat16 [98][52] formats. The goal of the research into useful numerical precisions is to determine precisions which strike a balance between runtime performance and numerical performance by reducing the precision as much as possible without losing delity of results. This chapter will rst present a framework developed to perform experiments which vary the numerical precisions used in neural network inference, then it will present the results of the rst experiments performed using this framework.

The framework presented in Section 7.1.2 is a neural network inference engine that allows the use of arbitrary data types. It is even possible to use user-dened custom types with minimal eort (Sec. 7.1.2). In addition to allowing the use of arbitrary types, it also allows the inference data types to be set per-layer. This exibility enables a vast array of possible experiments, to the point that the question is not "What can we test?" but "What should we test?".

The experiments presented in Section 7.2 consist of computing the mAP (described Sec. 4.4) when performing inference of the PVANet network with various data types. Each experiment performs inference using two data types 32-bit oating point and a specic custom data type. Which layers use which data types during inference depends on the experiment being performed. For example, the experiment performed in Section 7.3.2 shows the mAP when computing the Convolution layers with each chosen xed-point data type and the remaining layers with 32-bit oats.

. Software

In order to test the eects of reducing the numerical precision of neural network inference, it is necessary to have an inference engine capable of using arbitrary types during inference. A survey of the existing engines failed to nd any that met this requirement. As a result, we developed an in-house neural network inference engine capable of computing with arbitrary types via C++ template metaprogramming in order to perform the experiments presented in this section. • Ext -whether the software can be Extended to support alternative datatypes.

. Existing Inference Engines

• Mixed -Availability of mixed-precision inference.

• SIMD -Library used to achieve SIMD vectorization. BLAS and MKL only provide high-level vectorized functions.

• CUDA -Presence of CUDA support.

• OpenMP -Usage of OpenMP for parallelization.

• Portable -Portability between at least x86 and ARM platforms.

• Backend -Programming language of software backend.

• API -Programming language of provided APIs.

Caffe is a deep learning framework initially developed by the University of California Berkeley and now developed by Facebook. It is somewhat portable, although the portability takes the form of dierent forks of the codebase for dierent architectures. Despite using C++ templates in its codebase, it only supports IEEE 16, 32, and 64 bit oats. It does not allow for easy extension of the supported types. In addition, its mixed-precision capabilities are limited to mixing 16 and 32 bit oats.

PyTorch is a machine learning library which includes deep learning as one of its features. It is also owned by Facebook, and Cae has recently been merged into the PyTorch library [12]. Being a python library, it is generally portable. It denes a number of types that can be used in computation including integers, booleans, bytes, half precision oats, and boat16 oats. In addition, its mixed-precision capabilities are limited to mixing 16 and 32 bit oats. mxnet is a deep learning framework developed by Apache. In addition to providing deep learning functionality, it can also wrap other deep learning frameworks, allowing for greater portability. Despite using C++ templates in its codebase, it only supports IEEE 16, 32, and 64 bit oats. It does not allow for easy extension of the supported types. Custom This work presents a custom inference-only neural network engine developed by Agenium Scale with Université de Clermont-Auvergne. It consists entirely of header-only C++ code and makes use of template metaprogramming. The templates are used in such a way that adding new datatype support is relatively simple (see Section 7.1.2). In addition, platform-specic optimizations are implemented using the nsimd software library, allowing for both portability and performance.

. Custom Inference Engine

In order to perform the experiments presented in Section 7.2, it was necessary to develop a custom neural network inference engine. This engine was developed in C++ and leverages both template metaprogramming and operator overloading in order to support arbitrary data types. Usage of template metaprogramming is nonetheless limited to C++98 features to allow for wider portability of the engine.

The goal was to develop an engine capable of controlling the data types used in inference with layer-level granularity. Manually selecting the data type of each layer would be a tedious process, so the engine implements a system of transitions to dene boundaries between regions using dierent data types. Each region between transitions consists of a series of layers using the same data type. Each transition represents a boundary where the data type being used changes. Defining Transitions When writing code using the custom inference engine, transitions may be specied using either their number in the order of layers or their name in the Fprototxt le dening the network. The layer listed in the transition is considered to be the rst layer to use the new type. The data type used in the last transition will be used in all layers until the end of the network. The rst dened data type will be used in all layers from the start until the rst transition. If there is no layer corresponding to a dened transition, there will be a warning output to the standard output. For example, the code below denes the transitions needed to implement the regions dened in Figure 7.1.

std XX vetor `ns XX rnsition b trnsitions Y trnsitions F pushk @ ns XX rnsition @ ns XX ypeI D ns XX ypeP D R A A Y trnsitions F pushk @ ns XX rnsition @ ns XX ypeP D ns XX ypeI D 4 fU 4 A AY

The transitions can be dened in any order. This array of transitions must be dened before creating a network object (to allow for memory optimizations).

Once the array of transitions is dened, the network object may be created. By default, networks using 2 and 3 dierent types during inference are supported. However, it is possible to support any number of data types by generating the appropriate header les. This is done by running the python script toolsGmultinetworkGgenmultinetworkFpy En 5 types with the number of types needed as an argument. Code generation is used for this instead of template metaprogramming for ease of development and to allow the possibility of compiling using older C++ standards. The object used to represent a network using X data types during inference is nsXXmixednetworkX.

Loading a Network

As of this writing, there are two ways to initialize a network object. The rst way is to use a prebuilt ffe network to read the Fprototxt and Fffemodel les and allow the network to copy the appropriate data. The second way is to convert the Fprototxt and Fffemodel les to a custom format, then use the new les to load the network. In either case, the multinetwork object is declared with a number of template arguments equal to the number of data types to be used plus one. The rst template argument is the type used by the Fffemodel le in order to store the weights of the network. All following template arguments are the data types to be used during inference. Below is an example of a code that loads the information using a ffe object.

ns XX mixednetworkP `flot D int D flot b ustomnetwork @ ffenetwork D trnsitions AY Accessing Data It is fairly simple to access the data within the network object for loading inputs and accessing outputs. This is done using the lokynme method of the network object. This function takes 3 arguments the name of the layer to be accessed, and two pieces of information about the layer's data type. The rst piece of information is the data types number in the order of types declared in the declaration. For example, in the listing above this paragraph, the rst inference type listed in int, so it corresponds to nsXXypeI. The second piece of information is the data type being requested. This must be specied due to the limitations of C++ compilers' type deductions. int B smsnfo a ustomnetwork F lokynme @ 4 iminfo 4 D ns XX ypeI D int @A A Y smsnfo H a width Y smsnfo I a height Y

The output of this method is a pointer to the raw data containing the requested data. It can be directly accessed using the [] operator (unlike the commonly used stdXXshredpointer which only implements the operator since C++11).

Performing Inference Once the input layers are loaded, performing inference is as simple as the following code.

ustomnetwork F ivlute @A Y

If one wishes to perform inference on a subsection of the network, there is also the ivlutepromo@ int D int A method.

Supported Layers

Supported Data Types

The custom inference engine is capable of performing inference using any data type that overloads the basic arithmetic operators (+-*/), implements three mathematical functions (sqrt, pow, exp), and implements the cast operator (opertor@A). If the data type meets these standards, adding support to the engine requires specializing the three mathematical functions in the inludeGnsmthFhpp le. For example, the following code adds xed point capabilities to the engine: templte `b int sqrt @ int in A { return int @ std XX sqrt @ flot @ in A AA Y } templte `b int pow @ int in D int pow A { return int @ std XX pow @ flot @ in A D flot @ pow AAA Y } templte `b int exp @ int in A { return int @ std XX exp @ flot @ in AA A Y }

Code Generator

In order to facilitate rapid prototyping and enable experiments that would be tedious to handcode, a code generator is provided in the toolsGgenexperimentsGgenexperimentsFpy le. In its current state, the code generator only supports PVANet. However, it is designed to allow easy extension for other neural networks. In order to generate an experiment, the code generator requires two input les.

The rst required le contains the layer information for the network being used. This le allows the code generation to occur much faster than if the generator loaded the entire network to obtain the layer information. The layer information le can be obtained by compiling srGppGlyernumersFpp and running it on the network of interest.

The second required le is a le containing the experiment parameters. It must be placed in the toolsGgenexperimentsGprmetersG directory. This le must dene a number of python functions that will be called by the code generator. The following code is a minimal example of a parameter le, commented to explain each function being dened. 5 ht types to use X first entry will e the initil G entry type def typelist @A X return 4 flot 4 D 4 int 4 5 ype tht ffe ws trined with F WW7 hne of flot def ffetype @A X return 4 flot 4 5 vyers tht we need the pointers to def outputlyers @A X return 9 rois 9 D 9 oxpred 9 D 9 lspro 9 5 snput lyers tht we need pointers to def inputlyers @A X return 9 dt 9 D 9 iminfo 9 5 gonstrints X 4 s wnt this lyer to hve this type 4 5 pormt of network is lyer numer D lyer type D lyer nme D outputs FFF FFF def qengonstrints @ network D types AX return inglernsition @ network D types D IH A def inglernsition @ network D types D num AX ret a if @ num b len @ network A A X print @ 4 xo trnsitions generted E num b numer of lyers 4 A return ret ret F ppend @ network num P D types I A ret F ppend @ network num CIP D types H A return ret This example generates an experiment that uses the flot data type for the rst 10 layers (layers 0-9), then uses the int data type for the remaining layers. For a more interesting example of what is possible with the code generator, the following denition of the qengonstrints function creates an experiment where all Convolution layers use int data types, while the rest of the network uses flot data types. See Figure 7.2 to visualize the type of network that would be generated.

def qengonstrints @ network D types AX return ynlygonvolution @ network D types A def ynlygonvolution @ network D types AX ret a for i in rnge @ H D len @ network A A X if @ network i I aa 4 gonvolution 4 A X ret F ppend @ network i P D types I A ret F ppend @ network i CIP D types H A return ret Generating the Code Once the appropriate input les have been written, the code generator can be used to generate the desired experiment(s). By default, with only the required ags, the code generated will use MPI to perform inference on all images in a directory and output the resulting bounding boxes in a chosen location.

• Eh -help

• El file -Required -layer information le created by running an auxiliary executable.

• Eo file -Required -where to output generated C++ le.

• E file -Required -conguration le that denes the experiment being generated.

• !noEmpi -Optional -disable MPI.

• !vis -Optional -visualize results using OpenCV.

• !noEwrite -Optional -do not output bounding boxes to a le.

• !re -Optional -output images with bounding boxes.

• !th -Optional -batched input. Generated code will take a list of les instead of a directory as input.

For prototyping, it is suggested to use the !noEmpi, !vis, and !noEwrite ags to easily visualize the results without storing them. This allows one to see if a set of parameters results in a visually coherent output. Otherwise, the default ags are ideal for inferring a large number of images in order to compute an mAP.

. Numerical Types

The tests presented in this chapter are performed using 3 categories of data types natively supported types, customizable oating point types (discussed below), and customizable xed point types(presented in Chapter 6. The purpose of using these data types is to explore what types could be interesting to use in neural network without limiting ourselves to the types currently supported by hardware.

Custom Floats

In order to perform experiments limiting the oating point format, a suitable data type is needed to represent the modied oats. A few qualities were sought after.

First, the data type needs to be capable of fully customizing and limiting the size of both the mantissa and the exponent. This disqualies the Boost Multiprecision[9] library, as it does not allow full customization of the exponent.

Second, the data type needs to be capable of easily representing multiple dierent oating point formats. This disqualies the MPFR[31] software library, as the exponent and mantissa bits are specied as global variables.

Finally, the data type needs to emulate as well as possible the format being chosen. This disqualies any approaches leveraging expression templates, as they only respect the chosen format during storage operations and not while performing chains of intermediate computations.

Ultimately, it was simplest to code a limited custom oating point format. This custom implementation uses a native 32-bit oat to store values and perform operations. After every operation performed upon a custom oat, the exponent is checked for overow. If the value should overow, the value stored is ±infty. Otherwise, a mask is applied to remove any extra precision in the mantissa.

There are three notable custom oating point congurations to consider when examining the results presented in Section 7.3.1. These are the IEEE 32-bit oat (8-bit exponent, 24-bit mantissa), IEEE 16-bit oat (5-bit exponent, 11-bit mantissa), and boat16 format (8-bit exponent, 8-bit exponent)

. Methodology

The ultimate goal is to reduce numerical precision at intervals that allow for better SIMD parallelism. However, the exibility of the inference engine allows us to test an incredible variety of numerical precisions. We test broad ranges of numerical precision, regardless of SIMD performance, in order to see if any patterns emerge.

Test Design

In order to study which numerical precisions can be acceptable, we chose to compute the mAP (described in Sec. 4.4) for a range of combinations of numerical precisions. All results presented here use 32-bit oating point types when not otherwise specied. The custom numerical precisions used were the custom oating point types and the xed point types.

Both types were tested in a similar fashion. For each experiment, one type of layer is chosen (for example, the Convolution layer). During inference, all layers of this type use the data type being studied. All other layer types use the default IEEE 32-bit oat during inference. Inference is performed upon all images of the VOC-2007 dataset. The results are used to compute a VOC-2007 mAP for the given data type and layer being studied.

The experiments on xed point formats and custom oats dier in one manner exhaustivity. The custom oating point types are tested exhaustively for all congurations (184). Testing Hardware All experiments presented here were performed by our colleagues at the Université Clermont Auvergne using the Mesocentre, their computational cluster. The Mesocentre comprises 42 computational nodes with a total of 720 physical cores and 6 TB of RAM. The neural network inference computations performed in these experiments are trivially parallelizable and thus well suited to making use of such a computational cluster. We used MPI to parellelize the inference computations required in order to be able to compute the mAP for each conguration.

For context, every single mAP computation requires the computation of 4,952 inferences. At approximately 10 seconds per inference, this represents more than 8 hours of computation for a single data point of each graph presented in this section. Access to a computational cluster allowed the experiments to involve signicantly more data points.

PVANet All experiments presented here are performed using the PVANet neural network (presented in Section 4.5). This network was chosen for a number of reasons.

• It is relevant as a state of the art network, having been published in 2016 [46].

• The source code is open-source[45], allowing for reproduction of the published results.

• A number of dierent layer types (17) are used, allowing for varied experimentation. Ensuring that the custom inference engine works for PVANet ensures that it is caecompatible.

Before running any tests, we ensured that the inference engine is capable of perfectly reproducing the mAP results obtained via the code on the PVANet code repository[45].

. Results

This section presents the results of the experiments described in Section 7.2, separated rst by data type studied and then by layer type studied.

. Custom Floats

This section presents the results of computing the mAP when computing specic layers using all valid custom oat congurations. For each layer presented, the layer in question is computed using a custom oat format and the remaining layers using normal IEEE 32-bit oats. Each graph shows how the mAP varies with the size of both the mantissa and the exponent. Remember that, as described in Section 3.1, a 1-bit mantissa represents 2-bits of information thanks to normalization. The mAP for all tested combinations of mantissas and exponents is shown in Figure 7.3. Most evidently, this graph shows a dramatic cli between a 5-bit exponent and a 6-bit exponent. This indicates the presence of a threshold below which the computation fails due to overow and above which there are no problems. There appears to be no gain from going above 6 bits in the exponent. When looking at the eects of varying the number of bits in the mantissa, we see that the BatchNorm layer is very tolerant of low precision. For the usable exponents (6, 7, 8 bits), the mAP is approximately 0.57 for a 1-bit mantissa, 0.76 for a 2-bit mantissa, and a 3-bit mantissa is sucient to nearly match the initial 0.88 mAP with oats.

Overall, the BatchNorm layer appears to allow for strongly reduced precision it is possible to reduce the size to an 8-bit format (2-bit mantissa, 6-bit exponent) and still obtain reasonable results. The mAP for all tested combinations of mantissas and exponents is shown in Figure 7.4. Once more, this graph shows a dramatic cli, this time between a 4-bit exponent and a 5-bit exponent.

As in the BatchNorm layer, this appears to be a threshold eect such that once the 5-bit threshold is reached, there are no gains to be had by further increasing the number of bits in the exponent. Figure 7.4 indicates that an 11-bit mantissa is sucient to nearly replicate the performance of oats (mAP of 0.882 vs 0.883). On the lower end, 8 bits in the mantissa are the minimum to produce coherent results (mAP = 0.70).

The Convolution layer can easily be computed using a 16-bit oating point format. An IEEE half-precision oat provides 11 bits of mantissa and 5 bits of exponent, which is sucient to nearly replicate the original performance. Meanwhile, a boat16 with an 8-bit exponent and 8-bit mantissa, is sucient to achieve degraded results. The mAP for all tested combinations of mantissas and exponents is shown in Figure 7.5. As with the previous layers, this graph shows a cli along the exponent axis between 3 bits and 4 bits. Once the 4-bit threshold is reached, there are no further gains to be had by increasing the size of the exponent.

Along the mantissa axis, Figure 7.5 is nearly at.

With a 1-bit mantissa, it is already possible to obtain an mAP of 0.87, leaving very little room for improvement before reaching the original mAP of 0.883. This indicates that the Deconvolution layer is fairly insensitive to specic values, as opposed to orders of magnitudes.

Overall, the Deconvolution layer can tolerate signicantly reduced precision it is possible to nearly replicate the original performance with only 5 bits (1-bit mantissa with 4-bit exponent). The mAP for all tested combinations of mantissas and exponents is shown in Figure 7.6. This graph shows a less dramatic cli along the exponent axis than the previous layers examined it occurs between 3 bits and 5 bits. Once at the top of the cli at 5 bits, there are no further gains from increasing the number of bits in the exponent.

Along the mantissa axis, a similar cli can be observed. At 1 bit, the results are incoherent. At 2 bits, the results are degraded, but coherent (mAP = 0.74). At 3 bits, the results already approach the original performance (mAP = 0.86).

Overall, the Eltwise layer does not need much precision it is possible to nearly replicate the original performance with 8 total bits (3-bit mantissa and 5-bit exponent). The mAP for all tested combinations of mantissas and exponents is shown in Figure 7.7. This graph shows the usual cli along the exponent axis between 2 bits and 4 bits. There are no gains from increasing the size of the exponent beyond 4 bits. The mantissa axis shows the least steep incline so far, showing most of the growth between 7 and 11 bits. At 11 bits, the mAP (0.87) approaches the original performance using oats.

Overall, the InnerProduct computation can be done using a 16-bit format. With the 11 bits mantissa and 5 bits exponent of a IEEE half, it allows for an mAP of 0.87 very nearly the original performance. However, a boat16 with 8 bits mantissa and 8 bits exponent only allows for an mAP of 0.32 a strongly degraded result. The mAP for all tested combinations of mantissas and exponents is shown in Figure 7.8. This graph shows the cli along the exponent axis between 3 bits and 4 bits. There are no gains from increasing the size of the exponent beyond 4 bits.

Along the mantissa axis, Figure 7.8 is nearly at. With a 1-bit mantissa, it is already possible to obtain an mAP of 0.86, leaving very little room for improvement before reaching the original mAP of 0.883. This indicates that the Pooling layer is fairly insensitive to specic values, as opposed to orders of magnitudes.

Overall, the Pooling layer can tolerate signicantly reduced precision it is possible to nearly replicate the original performance with only 5 bits (1-bit mantissa with 4-bit exponent). The mAP for all tested combinations of mantissas and exponents is shown in Figure 7.9. As usual, this graph along the exponent axis shows a cli between, this time between 4 and 5 bits. There appears to be no gain from going above 5 bits in the exponent.

Along the mantissa axis, a similar cli can be observed. At 1 bit, the results are incoherent. At 2 bits, the results are degraded, but somewhat useful (mAP = 0.50). At 3 bits, the results are degraded, but coherent (mAP = 0.74). At 4 bits, the results already approach the original performance (mAP = 0.84).

Overall, the ProposalLayer layer can tolerate signicantly reduced precision it is possible to approach the original performance with only 8 bits (4-bit mantissa with 4-bit exponent). The mAP for all tested combinations of mantissas and exponents is shown in Figure 7.10. This graph shows a less dramatic cli along the exponent axis than the previous layers examined it occurs between 3 bits and 4 bits. Once at the top of the cli at 4 bits, there are no further gains from increasing the number of bits in the exponent.

Along the mantissa axis, a similar cli can be observed. At 1 bit, the results are incoherent. At 2 bits, the results are degraded, but coherent (mAP = 0.74). At 3 bits, the results already approach the original performance (mAP = 0.86).

Overall, the ReLU layer does not need much precision it is possible to nearly replicate the original performance with 8 total bits (4-bit mantissa and 4-bit exponent). The mAP for all tested combinations of mantissas and exponents is shown in Figure 7.11. As usual, this graph along the exponent axis shows a cli between, this time between 4 and 5 bits. There appears to be no gain from going above 5 bits in the exponent.

Along the mantissa axis, a similar cli can be observed. At 1 bit, the results are incoherent. At 2 bits, the results are degraded, but somewhat useful (mAP = 0.63). At 3 bits, the results already approach the original performance (mAP = 0.80).

Overall, the ROIPooling layer can tolerate signicantly reduced precision it is possible to approach the original performance with only 8 bits (3-bit mantissa with 5-bit exponent). The mAP for all tested combinations of mantissas and exponents is shown in Figure 7.12. This graph shows the usual cli along the exponent axis between 3 bits and 5 bits. There are no gains from increasing the size of the exponent beyond 5 bits.

Along the mantissa axis, a similar cli can be observed. At 2 bit, the results are incoherent. At 3 bit, the results are strongly degraded, but occasionally useful (mAP = 0.34). At 4 bits, the results are degraded, but somewhat useful (mAP = 0.76). At 5 bits, the results already approach the original performance (mAP = 0.86).

Overall, the Scale computation can just barely be done using an 8-bit format with a 4-bit mantissa and 4-bit exponent (mAP = 0.76). However, it becomes much more reliable when adding one more bit to both the mantissa and exponent. The mAP for all tested combinations of mantissas and exponents is shown in Figure 7.13. This graph shows the cli along the exponent axis between 0 bits and 2 bits. There are no gains from increasing the size of the exponent beyond 2 bits. Along the mantissa axis, Figure 7.13 is nearly at. With a 1-bit mantissa, it is already possible to obtain an mAP of 0.881, leaving very little room for improvement before reaching the original mAP of 0.883. This indicates that the Softmax layer is fairly insensitive to specic values, as opposed to orders of magnitudes.

Overall, the Softmax layer can tolerate signicantly reduced precision it is possible to nearly replicate the original performance with only 3 bits (1-bit mantissa with 2-bit exponent).

. Fixed Point

This section presents the results of computing the mAP after performing inference where specic layers use certain xed point formats with the nsimd xed point module. For each layer presented, the layer in question is computed using various xed point formats and the remaining layers using normal IEEE 32-bit oats. Each plot contains three graphs. The rst graph represents an initial exploratory run that tests a variety of Qa.b formats by symmetrically increasing the number of bits in both the integer and decimal portions of the xed point numbers. When this ceases to be possible due to the maximum storage size of a + 2b < 64, bits, we continue increasing the decimal bits while decreasing the number of integer bits. The second graph sets the integer bits to 3 and varies the number of decimal bits in order to explore the eects of having a low number of integer bits. The third graph sets the integer bits to 21 and varies the number of decimal bits in order to explore the eects of having a larger number of integer bits.

Each plot additionally contains a number of colored dashed lines. Every dashed line represents a change in the storage type of the xed point numbers being represented by the curve of the same color. The storage type to the right of the dashed line is larger than the storage type to the left of the dashed line.

Integer Bits When examining the results in this section, the eects of the extra integer bits described in Section 6.4.2 (paragraph "Alignment") will become apparent in some cases. As a reminder, when the total number of bits required to store a xed point number is less than the total number of bits available for storage, the extra bits can be used as extra integer bits. For example, a Q4.4 number requires 12 bits but is stored using 16 bits. These 4 extra bits can be used as integer bits during certain computations.

BatchNorm

Figure 7.14 shows the results of the xed point experiments on the BatchNorm layer. The results are clear and simple it is not possible to compute the BatchNorm layer using the nsimd xed point module. This is due to the presence of certain parameter values of very low magnitude which are used as themselves and in their reciprocal form. As a result, the BatchNorm computation within PVANet network requires a larger number of integer and decimal bits than our numerical format allows.

Convolution

Figure 7.15 shows the results of the xed point experiments on the Convolution layer. Along all three graphs, there is a cli between 8 and 10 decimal bits where the mAP rises from near zero to nearly 0.6. After this cli, there does not appear to be signicant variation (with one exception explained below) in the mAP depending on the number of decimal bits. However, none of the tested xed point formats approach the initial mAP of 0.883. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 20 18 16 14 12 10 8 6 4 The Q3.X graph allows us to infer some of the eects of varying integer bits on the mAP, as evidenced by the dip at the Q3.13 and Q3.14 formats. These formats approach the upper limit of their storage types and thus do not benet from many extra integer bits. The Q3.14 format eectively has 4 integer bits during computations, while the Q3.13 has 6 and the Q3.12 has 8. It thus appears that the lower bound to achieve the displayed mAP of 0.6 is 8 integer bits.

When comparing with Section 7.3.1, we can conclude that this loss of mAP is due to a lack of simultaneous integer and decimal precision in the types tested. Section 7.3.1 shows that a oating point value requires 11 bits of mantissa and 5 bits of exponent to approach the initial oat32 mAP. Using xed point numbers to represent the same range of values would require approximately 15 bits of integer bits and 25 bits of decimal bits. Unfortunately, this combination is not representable using our xed point format, as it requires 65 bits of storage when accounting for the reserved bits. As a result, we fail to match the initial mAP with any tested xed point format.

If future experiments are possible, they should be initially performed along the axes of 8 integer bits and 25 decimal bits.

Deconvolution

Figure 7.16 shows the results of the xed point experiments on the Deconvolution layer. It appears that 4 integer bits are sucient to obtain the initial mAP of 0.883, and any further increase is not needed. Due to the eective extra integer bits, the variable graph does not truly test integer bit numbers of 1 or 3. However, the rightmost point of the graph (Q2.31) does show that 2 integer bits are insucient. This is coherent with the 4 exponent bit requirement found in Section 7.3.1. Future experiments should test if 3 integer bits or 0 decimal bits are sucient to maintain the 0.883 mAP.

Eltwise

Figure 7.17 shows the results of the xed point experiments on the Eltwise layer. All tested congurations proved sucient to replicate the initial mAP. This means that even the most extreme Q2.31 and Q7.1 formats were sucient, which is more tolerant than the minimum 3 bit exponent and 5 bit mantissa found in Section 7.3.1. Future experiments would require a strict xed point format in order to resolve the conict between these ndings.

InnerProduct

Figure 7.18 shows the results of the xed point experiments on the InnerProduct layer. The most perplexing feature of this graph is the small peak at 6 decimal bits. This peak occurs on all three curves, so it cannot be discounted as a random occurrence. It also cannot be explained as a side eect of the unused bits in the storage type, as the three curves greatly dier in how they use the available bits. The Q3.X curve uses 15 bits with 1 extra, the Q21.X curve uses 33 bits with 31 extra, and the variable curve uses 18 bits with 14 extra. As of this writing, no viable explanation of this result has yet been found. Further experiments are required to test if this result is replicable and if it is truly consistent over the entire Qa.6 axis.

Ignoring the Qa.6 points, we observe the familiar presence of a cli between 12 and 14 decimal bits along all three curves, showing that we can obtain an acceptable mAP of approximately 0.8 at 13 decimal bits and replicate the initial mAP with 14 bits. To the far right of the graph, we can observe that 2 integer bits are clearly insucient, while 4 bits allow replication of the initial mAP. This is coherent with the ndings of Section 7.3.1.

Pooling

Figure 7.19 shows the results of the xed point experiments on the Pooling layer. Unfortunately, these results revealed and were impacted by a bug in the implementation of the Pooling layer that aects non-oat types. Every Pooling layer in PVANet uses max pooling, which outputs the maximum value in a region. The implementation of this pooling type in the custom inference engine initializes the variable that stores the in-progress maximum value to be Epvwe. However, this Epvwe is far larger in magnitude than anything that a xed point number can represent and causes behavior that depends on the xed point format being converted to. This could have been avoided by instead initializing this value to the rst value in the region to be examined. This set of experiments must be re-run with the above bugx in order to obtain usable results. The rst inconsistency is the behavior of the Q3.X curve. When transitioning from 8bit storage to 16-bit storage and 16-bit to 32-bit, we observe a drop to zero followed by a return to the baseline mAP. However, no such drop is observed when transitioning from 32-bit storage to 64 bits.

ProposalLayer

The second inconsistency is the Q3.2 mAP contrasted with the Q2.31 and the Q21.1 mAPs. At Q3.2, the mAP is zero, while both Q2.31 and Q21.2 display mAPs of 0.88. The Q2.31 format has less integer bits (declared and eective) while the Q21.1 has less decimal bits, yet both simultaneously display a higher mAP. This points towards a conclusion that the ProposalLayer requires either a certain number of decimal bits or a certain number of integer bits. However, this conclusion is not numerically coherent. Neither inconsistency has yet been adequately explained. Further testing and verication of the source code are required in order to draw any real conclusions.

ReLU

Figure 7.21 shows the results of the xed point experiments on the ReLU layer. The ReLU layer appears to have a minimum number of required integer bits and no dependence on the number of decimal bits. The Q2.31 data point shows that 2 integer bits appear to be insucient to output acceptable results. In addition, we observe a small dip in the mAP at the Q3.2 and Q2.2 data points with 4 eective integer bits. However, neither the Q3.6 nor the Q3.14 show the same dip in mAP. This indicates that the small loss of mAP at 4 integer bits can be oset by having more decimal bits. Further testing with strict xed point types would allow us to determine with certainty if this is the case.

ROIPooling

Scale

Figure 7.23 shows the results of the xed point experiments on the Scale layer. This graph shows a need for a minimum number of both integer and decimal bits. The Q21.X curve shows that, while 1 decimal bit can produce acceptable results, 2 decimal bits are needed to approach the initial mAP. For the integer bits, the curves consistently show that 4 bits is insucient, 6 bits can be acceptable, but 8 are needed to approach the initial mAP. This can be seen in the dips in the variable and Q3.X curves which occur when the number of eective integer bits reduces before upgrading the storage type. These results appear to be coherent with the Section 7.3.1.

Softmax

Figure 7.24 shows the results of the xed point experiments on the Softmax layer. These results are signicantly worse than the results found in Section 7.3.1. In addition, the behavior of the curves is somewhat reminiscent of the Pooling and ROIPooling graphs. However, there does not appear to be any similar type of initialization bug in the Softmax layer. If this behavior is due to a software bug, it is a bug that has yet to be found. Some dierences may be due to the use of an exponential function, as the xed point implementation has lower precision than the custom oating point implementation which computes the exponential using full oat32 numbers (via stdXXexp). However, these dierences are insucient to explain the discrepancy between the xed and oating point behaviors. We are still working to resolve this inconsistency.

. Conclusion

Table 7.2 summarizes the results of this chapter's experiments. In nearly all cases, the minimum number of bits required for a layer type is less with custom oating point numbers than xed point numbers. This is due to the exibility of oating point numbers compared to xed point numbers.

In the oating point experiments, we can see that all layers can be compressed into 16 bits. Unfortunately, it is not quite possible to apply either of the natively support 16-bit oating point formats to all layers. The oat16 (11-bit mantissa, 5-bit exponent) format does not have enough exponent bits to support the BatchNorm layer while the boat16 (8bit mantissa, 8-bit exponent) format does not have enough mantissa bits to support the Convolution and InnerProduct layers. However, a combination of the two formats could allow the PVANet inference to be performed using entirely using natively supported 16-bit oating point numbers. If performed on hardware capable of accelerating computation involving both formats, this would achieve a theoretical 2x speedup over 32-bit oating point numbers.

The xed point experiments feel much less complete than the oating point experiments. This is primarily due to the lack of exhaustivity only a limited number of xed point formats were tested. It was not even possible to truly test all of the desired formats, as the xed point library used did not allow full control over the number of integer bits used during computation. In addition, some of the results suered from avoidable software bugs, limiting even further the amount of information these experiments provide. These experiments would greatly benet from being re-run exhaustively with the bugs xed and with a strict xed point mode allowing for precise control over the number of integer bits.

From the information we do have, it does not appear to be possible to perform inference of PVANet using only xed point numbers. Most notably, the BatchNorm layer was conrmed to be incapable of supporting xed point computation. However, some layers do appear capable of being computed using smaller xed point numbers. For example, the Eltwise layer can be computing with as little as 4 bits with some careful coding, it would be possible to t two such computations within an 8-bit data type.

Conclusion

In this work, we have presented two useful applications a high performance xed point numerical library and a highly exible numerical inference engine.

The custom inference engine presented in Chapter 7 oers an unparalleled level of numerical exibility to neural network inference. No other articial neural network library oers the same level of control over the the numerical types used during inference in terms of either allowed numerical precisions or layer-by-layer control over the precision used. While today it primarily has research applications, in the future it could conceivably be used for applications such as the design of neural network-specic ASIC hardware.

The vectorized xed point computational library presented in Chapter 6 oers a exible xed point type while providing a runtime performance that is generally equivalent or greater than similar libraries. As a result, it can be applied to any application requiring xed point numbers and rapid runtime performance.

Difficulties

The overarching theme connecting all of the contributions is the evolution of numerical precision in the face of an evolving landscape of hardware support. Some of the numerical precisions discussed are implemented in recent hardware (oat16), while some others are planned for support in the near future (boat16). The remaining precisions (custom oats and xed point), are still worth considering for future support.

As a result of the general lack available hardware support for the numerical precisions of interest, it is currently necessary to emulate these numerical formats via software emulation. However, the choice of how to emulate remains a dicult question a number of software libraries exist for each purpose, each with its own advantages and drawbacks. In Chapter 5, we chose to use an existing software library to emulate the oat16 format. However, Section 5.3.3 shows that even for a relatively simple use case, the disadvantages can be signicant. In the remaining works presented, we ultimately opted for the most exible solution implementing each desired numerical format ourselves. For xed point software libraries, it was the only path towards simultaneously having full control over the Qa.b format and accelerating computations via vectorization. For the experiments on neural network inference, it was the only path towards having a simple implementation with full control over the oating point format. In addition, our experiments on neural network inference required the development of a custom inference engine, as no existing solution oers easy extension of numerical support along with the desired level of exibility in arithmetic used during inference.

Applications

The oat16 average computation presented in Chapter 5 can be applied to any application that computes the average of a large set of numbers. This commonly occurs in machine learning algorithms such as meanshift or k-means.

The xed point extension to nsimd presented in Chapter 6 has a number of applications thanks to its combination of speed and exibility. One major use case is the embedded domain, where the use of xed point precision is common. This domain aects many important applications, such as telecommunications, aerospace, and medical applications. Another possible use-case is for prototyping computations using various xed point formats prior to implementing them on an FPGA or while designing an ASIC. Especially when designing an ASIC with a single specic use case, this can allow a manufacturer to achieve extra eciency, allowing for lower energy consumption. One more domain that can make use of this work is nance, in the cases where monetary amounts sometimes need to be exactly represented and runtime performance can be critical.

The custom inference engine presented in Chapter 7 has some possible current applications, along with some applications that will become worthwhile as the eld of ANNs matures. Currently, the most interesting application of the custom inference engine is to experiment with precision reduction. The inference engine allows for easily testing various numerical formats in order to obtain the best balance of accuracy and speed. As the state of the art neural networks in the eld of ANNs begin to stabilize, it may become worthwhile to develop processors adapted to specic neural networks. In order for these processors to be maximally ecient in both runtime and energy usage, we will want to use the minimum possible numerical precision that provides accurate results. Our custom inference engine can allow for hardware manufacturers to achieve this balance.

Overall, all of the works presented combine into a useful toolbox for experimenting with modied numerical precision within applications and for potentially developing new hardware that perfectly adapts to its use case.

Future Works All of the works presented here can be expanded as hardware manufacturers continue to add new functionalities, in terms of both supported numerical precisions and vectorization technologies. The oat16 format is already implemented on some of the latest hardware, while the boat16 format instructions are currently being added to others. Some architectures already provide limited instructions for using xed-point numbers. These capabilities may be expanded in the future, allowing for faster xed-point computation. On the vectorization side, there is already limited support for the oat16 format and incoming support for the boat16 format. In addition to the additional numerical formats, each generation of vectorization hardware adds new instructions and/or expands the sizes of the registers. An example of the former is the upcoming Intel AMX instructions and an example of the latter the latter is the ARM SVE and SVE2 technologies. Every single one of these developments is an opportunity to update the works performed here, examining the eects of using these new technologies.

The study on computing an average presented in Chapter 5 can primarily be expanded in two directions. The rst direction of expansion is to study various other simple-seeming algorithms implemented using the oat16 format. The second direction would be to study the eects of computing an average using various other numerical types. In addition, these two approaches can be combined, allowing for a number of possible future works.

The xed point extension to nsimd presented in Chapter 6 is far from complete there are a number of ways to expand and improve it. One improvement that would aid the works presented in Chapter 7 is the addition of a strict mode that clears the reserved and unused bits after every single operation. Another possible improvement is the addition of an unsigned xed point type. If a user is within one bit of changing underlying storage types, this could make a signicant dierence. In addition, an unsigned xed point type would exhibit well dened overow. One nal expansion could be the addition of a C API for easier integration into embedded applications.

Another important avenue for improvement of the xed point extension to nsimd is the development of new algorithms and the optimization of the existing ones. For all functions presented, very few numerical approximation techniques were actually used. More techniques should be studied and, if relevant, applied in order to achieve gains in either performance or precision. For all functions using Taylor series approximations, we should apply SFINAE in order to modulate the depth of the approximation according to the available precision. Finally, the addition of new functions would increase the usability of the xed point extension, as the number of supported functions is somewhat limited.

The custom neural network inference engine presented in Chapter 7, along with the experiments it enabled, can be expanded and improved in a few ways.

The inference engine itself can be improved in a few ways. Most importantly, the software bugs discovered when the experiments were performed must be xed. Work is currently being done in order to enable quantization of layers. Without quantization, the trained network weights are simply reinterpreted prior to computation. With quantization, layers using various numerical precisions can be adapted to better t into the numerical types being used.

The experiments can be expanded rst by re-running the xed point portions aected by software bugs. If possible, the xed point experiments would also benet from the same level of exhaustiveness as the oating point experiments. However, this would require a large amount of computational resources. It would also be interesting to perform a similar study of other state of the art neural networks. For example, the YOLO neural network is much more lightweight than PVANet, and could be more easily studied exhaustively.

C.2 . Fixed Point Speedup

 Titre: Outils de Calculs Pour le HPDA: Approche Cache-Oblivious et SIMD Mots-clés: Precision Numerique, Vectorisation, Calcul Haute Performance Résumé: Ce travail présente trois contributions aux domaines de la vectorisation des CPU et de l'apprentissage automatique.

Figure . :

 . Figure . : Example of a simple pipeline in operation. Highlighted section shows full pipeline.

Figure . :

 . Figure . : Runtime of Algo. depends on how sorted the input is.

 Figure . : A simple finite-state machine for branch prediction.

 Figure . : Flynn's taxonomy of computer architectures.

 Figure . : Scalar computations.

 Figure.: SIMD computation.

Figure . :

 . Figure . : Example of an NVIDIA Turing GPU architecture.[]. Green blocks represent Streaming Multiprocessors (SM) and yellow blocks represent RayTracing cores. Each SM contains CUDA cores for a total of cores.

 Figure . : Histogram of measured benchmark times(ns) over runs

 __vector float a , b; __vector float c = vec_add (a , b) ;

 Matrix multiplication (Algo 11) and the Black & Scholes model[77] are popular examples of compute bound computations.

Figure . :

 . Figure . : Example of a roofline model graph.[]

 Figure.: Approximate breakdown of a Q . fixed point number.

 Figure . : Overfitting a complex function to points generated by a simple function

Figure . :

 . Figure . : Example of a step in an image convolution.

 Figure . : Example of a -channel convolution

 Figure . : Visual example of True/False Positive/Negative classifications.

Figure . :

 . Figure . : Structure of the PVANet neural network[].

Figure . :

 . Figure . : Distribution of layers in PVANet.

:

 / length(Array) : end function weaknesses -rounding errors and overow. Both of these limitations are amplied and more strongly tested in a low-precision context. Rounding errors can be compensated through the use of compensated arithmetic methods such as TwoSum[75], Kahan Sum[59](Algo. 14), and Pairwise Summation[109]

:

:

:

 still has limitations due to rounding errors. The larger the set of numbers being averaged, the greater the eect of rounding errors arising from the division.

 Figure.:Example of the calculations performed by the Cascading Average algorithm.

Figure . :

 . Figure . : Speedup for different average calculation algorithms relative to naive scalar implementation for various input sizes. Bigger is better. Benchmarks performed using -bit floats to take advantage of SIMD acceleration.

/

 / SIMD (All architectures) int align_beg = A . data () + (A . data () % NSIMD_MAX_ALIGNMENT) ; int align_end = A . data () + A . size () -((A . data () + A . size ()) % NSIMD_MAX_ALIGNMENT) ; for (int i = 0; i < align_beg ; ++ i) A [i] = B [i] * C [i]; for (int i = align_beg ; i < align_end ; i += nsimd :: len (float ()) ns :: pack < float > b = ns :: load (&(B [i])); ns :: pack < float > c = ns :: load (&(C [i])); ns :: pack < float > a = b * c ; ns :: store (&(A [i]) , a) ; for (int i = align_end

 To use the C89 and basic C++ APIs of nsimd, one simply needs to 5 inlude `nsimd G nsimd Fh b This will automatically include all functions provided by nsimd. The advanced C++ API instead requires 5 inlude `nsimd G xxdvpi F hpp b Both the basic and advanced C++ APIs provide all types and functions inside of the nsimd namespace.

 XX pk `int b rI D rP D rQ Y nsimd XX pkl `int b lI D lP D lQ Y rQ a rI C rP Y GG eddition rQ a rI B rP Y GG wultiplition rQ a rI G rP Y GG hivision rQ a rI 8 rP Y GG fitwise end lQ a rI b rP Y GG gomprison Loop Unrolling The pk structure provided by the advanced C++ API allows for automatic loop unrolling via a second template argument. It can be declared with an integer value as a second template argument, representing the amount of unrolling to do. The example below unrolls the loop by a factor of 3. for @ int i a H Y i `size Y i Ca nsimd XX len @ int @A A A {Y nsimd XX pk `int DQ b rI a nsimd XX lodu `nsimd XX pk ìnt DQ b b@ B pI A Y nsimd XX pk `int DQ b rP a nsimd XX lodu `nsimd XX pk ìnt DQ b b@ B pP A Y rI a nsimd XX sin @ rI B rP A Y } Instructions for installing, navigating, and compiling nsimd are provided in Annex B.

Figure . :

 . Figure . : Example of the clz function.

 Figure . : Example of the shrv function.

 using nmespe nsimd XX fixedpoint Y std XX vetor `fpt `P DQ b b vI @IHHA Y nsimd XX pk `fpt `V DV b b I D P D Q Y vI H a os @ vI I AY vI P a log @ vI Q AY a.b 0 < a + 2 • b ≤ 8 8 < a + 2 • b ≤ 16 16 < a + 2 • b ≤ 32 32 < a + 2 • b ≤ 64 types of valid Qa.b combinationsvI R a exp @ vI S D vI TA Y vI U a exp @ vI S D Q AY I a lodu `fpt `P DQ b b@ vI F dt @A A Y P a sin @ I AY Q a P B I Y storeu @ vI F dt @A D Q AY

 Figure . :Examples of how various Qa.b formats are stored and aligned.

 modules fixedpointFhpp -includes all les below. Implements pk`fpt interface. fixedpoint fixedFhpp -implements fpt interface. simdFhpp -implements fpsimdt interface. fixedmthFhpp -agglomerates 5inludes for all scalar math functions. simdmthFhpp -agglomerates 5inludes for all SIMD math functions. onstntsFhpp -denes a number of useful scalar constants. funtion -contains scalar function implementations. simd -contains SIMD function implementations.

 Figure . : Comparison of fixed point library performances for the div function. Raw data in Table C. .

 Figure . : Example of the operations involved in scalar and / -bit SIMD Q . divisions.

 Figure . : Comparison of fixed point library performances for the cos function. Raw data in Table C. .

 Figure . : Comparison of fixed point library performances for the tan function. Raw data in Table C. .

 Figure . : Comparison of fixed point library performances for the rec function. Raw data in Table C. .

 Figure . : Comparison of fixed point library performances for the sqrt function. Raw data in Table C. .

Figure . :

 . Figure . : Example of a division of a neural network

 templte `uintVt lf D uintVt rt b using fpt a nsimd XX fixedpoint XX fpt `lf D rt bY templte `uintVt D uintVt b fpt ` D b sqrt @ fpt ` D b in A { return nsimd XX fixedpoint XX sqrt @ in AY } templte `uintVt D uintVt b fpt ` D b pow @ fpt ` D b in D fpt ` D b pow A { return nsimd XX fixedpoint XX exp @in D pow AY } templte `uintVt D uintVt b fpt ` D b exp @ fpt ` D b in A { return nsimd XX fixedpoint XX exp ` D b@ in A Y } And the following code adds integer support to the engine:

8

 mantissa possibilities * 23 exponent possibilities = 184 congurations However, the xed point format (Qa.b) is capable of many more congurations (2080), so it is not tested exhaustively. a + b ≤ 64 → 64 i=0 i = 2080 congurations The methods used to select which xed point congurations were tested are described in Section 7.3.2

•

 It uses a (slightly modied version of a) well-known open-source deep learning framework.

Figure . :

 . Figure . : mAP using custom floats in the BatchNorm layer.

Figure

 Figure . : mAP using custom floats in the Convolution layer.

Figure

 Figure . : mAP using custom floats in the Deconvolution layer.

Figure

 Figure . : mAP using custom floats in the Eltwise layer.

Figure . :

 . Figure . : mAP using custom floats in the InnerProduct layer.

Figure

 Figure . : mAP using custom floats in the Pooling layer.

Figure . :

 . Figure . : mAP using custom floats in the ProposalLayer layer.

Figure

 Figure . : mAP using custom floats in the ReLU layer.

Figure . :

 . Figure . : mAP using custom floats in the ROIPooling layer.

Figure

 Figure . : mAP using custom floats in the Scale layer.

Figure . :

 . Figure . : mAP using custom floats in the Softmax layer.

Figure

 Figure . : mAP using different fixed point formats in the Deconvolution layer. a = number of integer bits.

Figure

 Figure . : mAP using different fixed point formats in the Eltwise layer. a = number of integer bits.

 Figure . : mAP using different fixed point formats in the InnerProduct layer. a = number of integer bits.

Figure 7 .

 7 Figure 7.20 shows the results of the xed point experiments on the ProposalLayer layer. The ProposalLayer results show two major inconsistencies.The rst inconsistency is the behavior of the Q3.X curve. When transitioning from 8bit storage to 16-bit storage and 16-bit to 32-bit, we observe a drop to zero followed by a return to the baseline mAP. However, no such drop is observed when transitioning from 32-bit storage to 64 bits.The second inconsistency is the Q3.2 mAP contrasted with the Q2.31 and the Q21.1

Figure

 Figure . : mAP using different fixed point formats in the Pooling layer. a = number of integer bits.

Figure . :

 . Figure . : mAP using different fixed point formats in the ProposalLayer layer. a = number of integer bits.

Figure 7 .

 7 Figure 7.22 shows the results of the xed point experiments on the ROIPooling layer. This graph resembles Figure 7.19, and for good reason. The ROIPooling layer suers from the same type of software bug it contains a variable that is initialized to Epvwe. As a result, it is dicult to draw any suitable conclusions without re-running the experiments with the

Figure

 Figure . : mAP using different fixed point formats in the Scale layer. a = number of integer bits.

Figure . :

 . Figure . : mAP using different fixed point formats in the Softmax layer. a = number of integer bits.

Table . :

 . Comparison of various SIMD wrappers. SSE is not listed as a distinguishing feature as is is supported by all wrappers.

end if : end for : end function

		function MulShift(A, B, C, D[i], length)
	:	for i in (, length) do
	:	C[i] = (A[i] * B[i]) » D[i]
	:	end for
	: end function
	Algorithm Loop that compilers usually fail to auto-vectorize.
	: function CheckVals(A, length)
	:	for i in (, length), i += do
	:	if a[i] * a[i+] < then
	:	return true
	:	

 published byHong et al. in 2016. There are a few reasons for choosing the PVANet network for this work.

	Convolution		Deconvolution
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		BatchNorm
	Pooling		89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89	83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83		
	Power ProposalLayer	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85	83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83	2 2 2 2 2 2 2 2 2 2 2 2 2 2 15 15 15 15 15 15 15 15 15 15 15 15	InnerProduct Softmax Eltwise
	ReLU	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Scale	
		ROIPooling			

Table . :

 . Total number of operations per algorithm for an input of N values.

	Operation Naive Kahan Iterative Cascade Upcast
	Add/Sub	N	N	N	N	N
	Div			N	N *	
	Cast					N
	* Most are substituted with multiplication operations	

Table . :

 . Precision benchmark results. Results marked n/a indicate that the trial gave an invalid result (inf or nan).

	N	Naive Kahan Iterative Cascade
	Increasing		
	+	n/a	n/a
		n/a	n/a
	Increasing		
	+ .		
		n/a	n/a
	Decreasing		
	-	n/a	n/a
		n/a	n/a
	Fixed Ratio		
	/(N/)	n/a	n/a
		n/a	n/a
	Fixed Diff		
	+(N/)	n/a	n/a
		n/a	n/a
	Rand		
	Rand	n/a	n/a
	Rand	n/a	n/a
	Rand	n/a	n/a
	Fixed		
			n/a
			n/a
			n/a
	+/-		
	-		
			n/a
			n/a
	Image	n/a	n/a

Table . :

 . Extra bits are not zeroed during computation. † a + b must equal or . ‡ a is not actually configurable. It consumes all bits not used by b. §Uses the deprecated boost.simd library. Comparison of features in various C++ libraries with fixed point support.

	Library	Ref License Math Vectorized Multiple Arbitrary Qa.b	API
	liquid-fpm []	GPL	Y	N	N	Y * †	C Macros
	libfixmath []	MIT	Y	N	N	N	C
	CNL	[]	Boost	Y	Y §	Y	Y ‡	C++ templates
	nsimd	[]	MIT	Y	Y	Y	Y *	C++ templates
	*							

Table . :

 . Types provided by the nsimd C APIAdvanced C++ TypesThe advanced C++ APIs allow for greater control of low level details though the templated pk and pkl structures. For basic usage, a pk only needs a type, such as iV or uintQPt, as a template option. Here are a few examples of variable declarations using the pk interface.

	nsimd XX pk `iQP b vI Y							
	nsimd XX pk `uintTRt b vP Y						
	nsimd XX pkl `flot b vQ Y						
	As in the C89 API, a pk`typeb represents a SIMD register of the corresponding	
	type.											
				Integer			Unsigned Integer		Float	
	Scalar	i	i	i	i	u	u	u	u	f	f	f
	Vector	vi	vi	vi	vi	vu	vu	vu	vu	vf	vf	vf
	Logical vli	vli	vli	vli	vlu	vlu	vlu	vlu	vlf	vlf	vlf

 Limited to Skylake architecture and above Table . : clz intrinsics supported by various architectures.

	clz The lz, or count leading zeroes, is illustrated in Figure 6.1. This function
	takes integer types as inputs and returns the number of zero bits preceding the
	strongest	bit	of	the	input.

Table . :

 . Specifications used to perform fixed point benchmarks.clz Figure6.4 shows the performance of the lz function. As expected from Table6.3, the AVX2 lz oers no acceleration. The AVX512 lz provides

					clz -nsimd Speedup shrv -nsimd Speedup
		signed unsigned	AVX	52.49	signed unsigned	20.8 AVX	20.8
					AVX aarch		16.48	16.45	AVX aarch
	Speedup Speedup		29.67	8.89 29.65			26.53
		0.66 3.71 5.44 9.61 0.25 1.03	0.57 5.44 3.71 0.25 1.53		0.41 2.45 0.19 0.7	0.38 7.49 2.45 0.16 1.06	0.75 12.22 1 1.69 0.29	0.75 1 0.43 2.64	1.47 7.12 0.48 0.31 0.4	1.54 15.04 0.54 0.36 0.69
						Bits Bits		
					shlv -nsimd Speedup div -nsimd Speedup
	AVX AVX AARCH	gcc . 4.66 gcc . . gcc . 4.31 3.11	SIMD Flag Register Size Frequency RAM -mavx . Ghz 29.65 signed unsigned signed unsigned GB -mavx f . Ghz GB -marmv -a . Ghz AVX AVX AVX AVX GB aarch aarch
	Speedup Speedup	Register Size (bits) 0.25 0.25 5.92 0.52 0.57 5.92 11.05 9.61 2.41	bits 0.19 0.19 2.6 2.57 0.14 0.14 1.13 20.74 3.61 • 10 -2 bits 1.71 0.76 0.22 0.38 12.17 1.55 2.21 2.28	bits 1.79 0.76 0.18 0.44 3.53 • 10 -2 bits 2.07 1.47 0.15 8.91 • 10 -3 0.32 7.1 12.26	2.06 2.9 1.41 0.15 8.66 • 10 -3 0.34
						Bits Bits		
	data size. scalar equivalent. Raw data in Table C. . Table . : Ideal speedups for each combination of register size and Figure . : Speedup of the SIMD nsimd shlv function compared to its Figure . : Speedup of the SIMD nsimd div function compared to its

Figure . : Speedup of the SIMD nsimd clz function compared to its scalar equivalent. Raw data in Table C. .

Figure . : Speedup of the SIMD nsimd shrv function compared to its scalar equivalent. Raw data in

Table C. . scalar equivalent. Raw data in Table C. .

 .11 lists the C++ types used for each storage format. Value is the T in cnl::scaled_integer<T>.

	Library	Bits	Bits	Bits	Bits
	native	int8_t	int16_t	int32_t	int64_t
	fp_t	fp_t<2,3>	fp_t<4,6>	fp_t<16,8>	fp_t<16,16>
	pack	pack<fp_t<2,3> >	pack<fp_t<4,6> >	pack<fp_t<16,8> >	pack<fp_t<16,16> >
	liquid		q16_t	q32_t	
	fixmath			Fix16	
	CNL *	<int8_t,power<-2 <int16_t,power<-4 <int32_t,power<-8 <int64_t,power<-16

Table . :

 . C++ types used for each combination of storage size and library.

Table . :

 . Machines used to perform fixed point benchmarks.

	SIMD	Compiler SIMD Flag Frequency RAM
	SSE .	gcc .	-msse .	. Ghz	GB
	AVX	gcc .	-mavx	. Ghz	GB
	AVX	gcc . .	-mavx f	. Ghz	GB
	AARCH	gcc .	-marmv -a	. Ghz	GB

 Comparison of fixed point library performances for the add function. Raw data in Table C. . Of course, these conversions to and from integer representation are only performed when interacting with other numerical types and formats. When performing operations using only xed point types of the same format, no conversions are ever necessary. Comparison of fixed point library performances for the mul function. Raw data in Table C. . Speedup when using pack<fp_t> instead of fp_t for mul on various architectures. Raw data in Table C. .

	Runtime (cycles per element) Runtime (cycles per element)	2 6 0 . 2 6 0.97 1 2.78 0.91 add -Fixed Point Speedup Bits Storage add -Fixed Point Libraries native fp_t pack CNL liquid fixmath Figure . : 1 1.5 2 2.5 3 1.05 0.99 1 0.93 2.11 2.68 0.93 0.91 Bits Storage Speedup SSE . AVX Figure . : Speedup when using pack<fp_t> instead of fp_t for add on various 0.96 1.01 2.81 0.94 AVX aarch Multiplication 0 2 4 6 8 10 12 0 . 1 9 0 . 1 3 0 . 3 1 1 . 5 2 0 . 4 6 0 . 2 3 0 . 5 6 2 . 2 8 0 . 3 2 0 . 1 6 0 . 4 3 . 9 7 0 . 6 9 0 . 7 0 . 5 8 3 . 4 7 7 . 0 5 7 . 0 5 1 0 . 9 8 Bits Storage mul -Fixed Point Libraries native fp_t pack CNL liquid fixmath Figure . : 0.5 1 1.5 2 2.5 3 1.01 1.28 1.39 0.76 1.47 1.44 1.4 0.57 2.1 2.98 3.06 2.95 1.4 1.41 1.4 0.41 Bits Storage Speedup mul -Fixed Point Speedup SSE . AVX AVX aarch × = Overow Extraneous >> 6 Figure . : Visual breakdown of how nsimd Figure . : Reserved multiplies two Q . numbers.
		architectures. Raw data in Table C. .

And nally we can convert back from the integer representation to obtain the result. 53 • 2 -3 = 6.625

 . . Speedup when using pack<fp_t> instead of fp_t for div on various architectures.

				div -Fixed Point Speedup
			4.22	SSE .	AVX	AVX	aarch
		4			
	Speedup	2 3	2.56	2.14	
				1.4	
		1	1.07 1.17	0.99 1.05	1.06 1.07 0.92 1.01	0.95 1.08 0.96 0.66
				Bits Storage	
	Figure . : Raw data in Table C. .		

 Comparison of fixed point library performances for the sin function. Raw data in TableC. . Speedup when using pack<fp_t> instead of fp_t for sin on various architectures.

					sin -Fixed Point Libraries
	Runtime (cycles per element)	50 100 150 200 250	6 . 8 2 6 . 3 fp_t pack CNL liquid fixmath 9 . 0 8 8 . 9 3 3 3 . 2 1 3 6 . 5 5 1 4 8 . 3 2	1 3 . 0 8 9 . 7 2 3 7 . 7 5 2 7 1 . 8 5 3 1 . 2 6	2 3 . 5 6 6 5 . 2 1 2 6 9 . 2 3
		0			
					Bits Storage
		Sine Figure . : 0 2 4 6 8 Speedup 10	1.64 1.08 5.94 10.4	1.81 1.02 1.06 sin -Fixed Point Speedup 4.21 1.35 2.44 4.16 10.11 SSE . AVX	[-π 2 , π 2]. AVX	1.83 0.36 0.88 2.65 aarch
					Bits Storage
		Figure . :		

 . . Speedup when using pack<fp_t> instead of fp_t for sqrt on various architectures. Raw data in TableC. .

			sqrt -Fixed Point Speedup	
		6.1	SSE .	AVX	AVX	aarch
	Speedup	3.13	3.42		
		1.02 1.1	1.17 1.96 1.08	1.02 1.24 1.74		1.25 1.37 1.43
				0.63		0.41
			Bits Storage		
	Figure . :				

Table 7 .

 7 1 compares some of the most commonly used neural network software on the following categories:• Types -Supported types. Integers, IEEE oat16 and boat16 types are considered.

		Info				Types					Features		
	Library	Ref	License	int	f	bf	Ext	Mixed	SIMD	CUDA	OpenMP	Portable	Backend	API
	Caffe	[]	BSD-	N	Y	N	N	Y *	BLAS	Y	Y	N	C++	C++
	PyTorch	[]	BSD	Y	Y	Y	N	Y †	MKL	Y	Y	Y	C++	Python/C++
	mxnet	[]	Apache-	N	Y	N	N	Y †	Varies ‡	Y	Y	Y	C++	Many
	TensorFlow	[]	Apache-	Y	Y	Y	Y	Y †	Eigen	Y	N	Y	C++	Many
	Custom	. .	TBD	Y	Y	Y	Y	Y	nsimd	N	Y	Y	C++	C++
	* The base caffe does not support mixed-precision inference, but the NVIDIA fork does				
	† Limited types allowed in mixed-precision									
	‡ SIMD implementation depends on backend library being wrapped						

Table . :

 . Feature comparison of various neural network software.

 Figure . : Example of a network using ints for Convolutions and floats for the rest.

		f l o a t	i n t	f l o a t		i n t	f l o a t		i n t		f l o a t
	i n	c o n v	b n	r e l u	s o f t	c o n v	b n	r e l u	s o f t	c o n v	b n	r e l u	s o f t	o u t

 The custom inference engine currently supports only the layers necessary to use the PVANet and YOLO neural networks. The list of supported layers is as follows:

	BatchNorm, Concat, Convolution, Deconvolution, Eltwise, InnerProduct, Input, Pooling,
	Power, ProposalLayer (PVANet), ReLU, Reshape, ROIPooling, Scale, Softmax, Split, Upsample,
	Yolov3DetectionOutput (YOLO).

 2

								Deconvolution using Fixed Points
				1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 20 18 16 14 12 10 8 6 4 2 Variable Integer Bits
				0.8				BatchNorm using Fixed Points
			mAP	0.4 0.6				Variable Integer Bits
	mAP			0.2				Variable	a = 3	a = 21
				0	0	2	4	6	8	10 12 14 16 18 20 22 24 26 28 30 32
								Variable Decimal Bits	a = 3	a = 21
								Decimal Bits
	Figure . : mAP using different fixed point formats in the BatchNorm layer. a =
	number of integer bits.
								Convolution using Fixed Points
		1		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 20 18 16 14 12 10 8 6 4 2 Variable Integer Bits
		0.8					
	mAP	0.4 0.6					
		0.2					
								Variable	a = 3	a = 21
		0	0	2	4	6	8	10 12 14 16 18 20 22 24 26 28 30 32
								Decimal Bits
	Figure . : mAP using different fixed point formats in the Convolution layer. a
	= number of integer bits.

Table . :

 . Minimum numbers of bits required to achieve > 95% of the initial mAP for tested layers.

		Custom Float	Fixed Point	
	Layer	Mantissa Exponent Total Integer Decimal Total
	BatchNorm	-	-	-
	Convolution	-	-	-
	Deconvolution			
	Eltwise			
	InnerProduct			
	Pooling	-	-	-
	ProposalLayer	-	-	-
	ReLU			
	ROIPooling	-	-	-
	Scale			
	Softmax	-	-	-

Table C .

 C : Raw performance data in ns for the fixed point add function. Used for Figure . .

	Bits sse _	sse _ (SIMD) avx	avx (SIMD) avx	avx (SIMD) aarch	aarch (SIMD)
					.	.		
				
						.		
	Bits sse _	sse _ (SIMD) avx	avx (SIMD) avx	avx (SIMD) aarch	aarch (SIMD)
	
		
				.	.		.	

Table C .

 C : Raw performance data in ns for the fixed point mul function. Used for Figure . .

	Bits sse _	sse _ (SIMD) avx	avx (SIMD) avx	avx (SIMD) aarch	aarch (SIMD)

Table C .

 C : Raw performance data in ns for the fixed point div function. Used for Figure . .

	Bits sse _	sse _ (SIMD) avx	avx (SIMD) avx	avx (SIMD) aarch	aarch (SIMD)

Table C .

 C : Raw performance data in ns for the fixed point rec function. Used for Figure . .

	Bits sse _	sse _ (SIMD)	avx	avx (SIMD) avx	avx (SIMD) aarch	aarch (SIMD)

Table C .

 C : Raw performance data in ns for the fixed point sqrt function. Used for Figure . .

	Bits sse _	sse _ (SIMD) avx	avx (SIMD) avx	avx (SIMD) aarch	aarch (SIMD)

Table C .

 C : Raw performance data in ns for the fixed point sin function. Used for Figure . .

	Bits sse _	sse _ (SIMD) avx	avx (SIMD) avx	avx (SIMD) aarch	aarch (SIMD)

Table C .

 C : Raw performance data in ns for the fixed point cos function. Used for Figure . .

	Bits sse _	sse _ (SIMD)	avx	avx (SIMD) avx	avx (SIMD) aarch	aarch (SIMD)

Table C .

 C : Raw performance data in ns for the fixed point tan function. Used for Figure . .C.3 . Fixed Point Comparison to Other Libraries

	Library	i	i	i	i
	native	.	.	.	
	fp_t	.	.	.	
	pack	.	.	.	
	liquid		.	.	
	fixmath			.	
	CNL	.	.	.	

Table C .

 C : Raw performance data in ns of various libraries for the fixed point add function. Used for Figure . .

	Library	i	i	i	i
	native	.	.	.	
	fp_t		.		
	pack		.		
	liquid				
	fixmath				
	CNL				

Table C .

 C : Raw performance data in ns of various libraries for the fixed point mul function. Used for Figure . .

	Library	i	i	i	i
	native				
	fp_t				
	pack				
	liquid				
	fixmath				
	CNL				

Table C .

 C : Raw performance data in ns of various libraries for the fixed point div function. Used for Figure . .

	Library	i	i	i	i
	fp_t				
	pack				
	liquid				
	fixmath				
	CNL				

Table C .

 C : Raw performance data in ns of various libraries for the fixed point rec function. Used for Figure . .

	Library	i	i	i	i
	fp_t				
	pack				
	liquid				
	fixmath				
	CNL				

Table C .

 C : Raw performance data in ns of various libraries for the fixed point sqrt function. Used for Figure . .

	Library	i	i	i	i
	fp_t				
	pack				
	liquid				
	fixmath				
	CNL				

Table C .

 C : Raw performance data in ns of various libraries for the fixed point sin function. Used for Figure . .

	Library	i	i	i	i
	fp_t				
	pack				
	liquid				
	fixmath				
	CNL				

Table C .

 C : Raw performance data in ns of various libraries for the fixed point cos function. Used for Figure . .

	Library	i	i	i	i
	fp_t				
	pack				
	liquid				
	fixmath				

Table C .

 C : Raw performance data in ns of various libraries for the fixed point tan function. Used for Figure . .

Moyenne demi-précisionLe chapitre 5 propose un algorithme pour calculer la moyenne d'un ensemble de nombres en utilisant le format de demi-précision, puis compare ses performances numériques et d'exécution aux algorithmes existants.Il existe un certain nombre d'approches pour calculer la moyenne d'un ensemble de nombres. Nous observons d'abord les propriétés numériques d'un certain nombre d'approches, que nous appelons Naive, Kahan et Iterative. En observant la façon dont chacune de ces approches est calculée, nous constatons qu'elles sont sensibles à des problèmes numériques tels que le débordement et les erreurs d'arrondi. Ces problèmes numériques ne sont généralement pas signicatifs lorsqu'on utilise des valeurs à virgule ottante de 32 bits, mais ils deviennent beaucoup plus visibles avec des valeurs à virgule ottante de 16 bits. En réponse à cela, nous proposons un nouvel algorithme, appelé moyenne en cascade, qui évite les erreurs de débordement et d'arrondi pour un faible coût de calcul.En observant expérimentalement les performances numériques (Tableau 5.2), nous conrmons que les approches existantes peuvent échouer pour des tailles d'entrée aussi petites que 100 éléments pour les raisons décrites ci-dessus. En examinant la moyenne de Cascading, nous conrmons également qu'elle ne soure pas d'erreurs signicatives dues au débordement ou aux erreurs d'arrondi. Ses performances numériques peuvent être légèrement moins précises que celles des autres approches pour les petites entrées, mais elles deviennent beaucoup plus précises pour les grandes entrées.

Algorithm

Simplified cascading algorithm for average calculation. A sequential version of this algorithm was implemented for testing purposes.

. Results

This section will discuss the runtime and numerical performance of the various average calculation algorithms for various use cases.

. Performance

All performance benchmarks were run using stretches of a same input image in order to obtain dierent sized input arrays. We perform all speedup benchmarks using IEEE-754 32-bit oating point values, as SIMD 16-bit oating point values are not yet fully supported. While this does not reect the eventual performance that 16-bit oating point algorithms when they will be fully supported, it does provide a baseline expectation of how each algorithm will perform.

Experimental Setup

Intel performance benchmarks were performed using an Intel Core i7-4790S CPU @ 3.20GHz CPU with 16GB of RAM, compiled using GCC 6.3.1. PowerPC performance benchmarks were performed using a Power8 8348-21C @ 2.061GHz 64GB of RAM, compiled using GCC 6.3.0. NEON performance benchmarks were performed using an ARM Cortex-A57r1 @ 1.91GHz 4GB of RAM, compiled using GCC 5.4.1. Each algorithm was benchmarked using scalar instructions, SSE SIMD, and AVX SIMD in order to examine how each algorithm scales with SIMD technology. Scalar benchmarks were complied with options EyQ EstdaCCHx. SSE benchmarks were complied with options EyQ EstdaCCHx EmsseRFP. AVX benchmarks were complied with options EyQ EstdaCCHx EmvxP. NEON benchmarks were complied with options EyQ EstdaCCHx EmrharmvVECsimd. Altivec benchmarks were complied with options EyQ EstdaCCHx Emltive. There was no need to disable compiler automatic vectorization via the EfnoEtreeEvetorize ag, as it did not vectorize any of the examples. The SSE benchmarks were written using nsimd [11] an Agenium Scale library that provides a portable high level C++ interface for

Algorithm

Sequential cascading pseudocode for average calculation. Consists of primary computation phase, followed by a cleanup phase. All performance benchmarks were run using stretches of a same input image in order to obtain dierent sized input arrays.

Results

Table 5.1 provides a reference of the number of addition and division operations required to compute each algorithm. As shown in Figure 5.2, the naive method is Algorithm used by nsimd to compute the clz function for bit integers.

int8_t clz (int8_t arg0) { int8_t x = arg0 ; int8_t q , r ;

if (x > 0 xF) q = 1; else q = 0; q = q << 2; x = x >> q ; r = q; if (x > 0 x3) q = 1; else q = 0; q = q << 1; x = x >> q ; r = r | q ; r = r | (x >> 1) ; r = 7 -r ; if (r < 0) r = 0; return r ; } ---*/ const int shift0 = 64 -1 -a1 . v0 ; val . i = a0 . v0 ; mask = (u64) ((val . u >> (64 -1)) * ~(u64) (0) << shift0) ;

ret . v0 = (i64) ((val . u >> a1 . v0) | mask) ; return ret ; } As described in Section 6.1, addition and subtraction operations between xed point numbers are straightforward. They are also similar enough that it is sucient to present a single one of the two operations. It is enough to perform a simple integer addition or subtraction of the two values to obtain the correct xed point result.

Comparison Figure 6.9 compares the performances of the dd function for all xed point libraries. All performances except for the pk`fptb are functionally identical for the this function. This is because the computation and the code are both simple enough for the compiler to automatically vectorize the dd function.

Speedup Figure 6.10 compares the speedups obtained when using the pk`fptb structure to vectorize the dd function on various architectures. Most speedup curves are fairly at, as the compiler is capable of successfully vectorizing the scalar version. The one exception is AVX512, where the compiler has completely neglected to vectorize the scalar code.

Example with Numbers

For example, if we wish to add 2.125 and 4.5 as Q3.3 values, we rst convert the inputs to their implemented integer representations:

We can then perform an integer sum of the two: Optional Dependencies ninj is recommended over mke for faster compilation. clang-format allows the python code to format the generated code. MIPP and Sleef, and Google Benchmark must be installed if performing benchmarks. MPFR and the Google Test library must be installed if performing unit tests.

A -Compiler Outputs

Download

In order to install nsimd, one must obtain the code via github.

git hekout https XGG githu F om G genium E sle G nsimd Code Generation Next, the platform-specic code must be generated using the python script eggGhthFpy.

d nsimd pythonQ egg G hth F py Ee

The Ee ag tells the script to "Generate code for all architectures, C and C++ APIs", as well as all tests and benchmarks. The Eh ag provides a list of other ags that one may wish to use.

Compilation

Once the code has been generated, we can compile the library.

mkdir uild d uild mke FF mke

This compiles nsimd's scalar functions. In order to compile for a SIMD architecture, the cmake command must include a Ehswha`simdb option, where `simdb is the target architecture (AVX2, SSE4_2, AARCH64, etc.).

B.2 . Organization

The root directory of nsimd is fairly straightforward. The functions of most of the directories are evident from their names.

• enhes contains the benchmarks as dened by eggGgenenhesFpy.

• mke contains some cmake code to aid compilation.

• do contains some basic documentation by default, plus the documentation generated by eggGgendoFpy.

• egg contains the core of nsimd. It contains the python code that will generate all of the platform-specic functions, benchmarks, unit tests, code to be compiled, and some of the documentation.

• inlude contains the generated nsimd API and corresponding header-only code, as well as the xed-point module.

• sripts contains a few auxiliary scripts.

• sr contains the generated code that is used to compile all platform-specic libraries.

• tests contains the tests as dened by eggGgentestsFpy.

B.3 . Compilation

In order to compile C or C++ code using nsimd, it is necessary to provide certain compiler ags for the following information:

• path to includes (EsGpthGtoGnsimdGinlude)

• path to compiled library (EvGpthGtoGnsimdGuild)

• link with compiled library (Elnsimd`rhb -for example, ElnsimdvxP)

• Activate correct SIMD instructions in compiler (Em`rhitetureb -for example, EmvxP or Emrhantive)

• Activate correct SIMD instructions in nsimd (Ehxswh`rhb -for example, EhxswheP)

C -Raw Benchmark Data

This annex provides the raw benchmark data (all times in nanoseconds) of all benchmarks performed in Chapter 6.

C.1 . Functions Added to nsimd