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Titre: Outils de Calculs Pour le HPDA: Approche Cache-Oblivious et SIMD
Mots-clés: Precision Numerique, Vectorisation, Calcul Haute Performance

Résumé: Ce travail présente trois contributions
aux domaines de la vectorisation des CPU et de
l'apprentissage automatique.

La première contribution est un algorithme
pour calculer une moyenne avec des valeurs en
virgule �ottante de demi-précision. Dans ce
travail réalisé avec un support matériel de demi-
précision limité, nous utilisons une bibliothèque
logicielle existante pour émuler le calcul de
demi-précision. Cela nous permet de comparer
la précision numérique de notre algorithme à
celle de divers algorithmes couramment utilisés.
En�n, nous e�ectuons des tests de performance
d'exécution en utilisant des valeurs à virgule
�ottante simples et doubles a�n d'anticiper
les gains potentiels de l'application de la
vectorisation du CPU aux valeurs de demi-
précision. Dans l'ensemble, nous constatons
que notre algorithme présente des performances
numériques légèrement inférieures dans le meilleur
des cas en échange de performances numériques
nettement supérieures dans le pire des cas, tout
en o�rant des performances d'exécution similaires
à celles d'autres algorithmes.

La deuxième contribution est une bibliothèque
de calcul en virgule �xe conçue spéci�quement
pour la vectorisation du CPU. Les bibliothèques
existantes ne reposent pas sur l'auto-vectorisation
du compilateur, qui ne parvient pas à vectoriser
les opérations arithmétiques de multiplication et

de division. De plus, ces deux opérations
nécessitent des opérations de cast qui réduisent
la vectorisabilité et ont un réel coût de calcul.
Pour remédier à ce problème, nous présentons
un format de stockage de données en virgule
�xe qui ne nécessite aucune opération de cast
pour e�ectuer des opérations arithmétiques. De
plus, nous présentons un certain nombre de
benchmarks comparant notre implémentation aux
bibliothèques existantes et nous présentons la
vitesse de vectorisation du CPU sur un certain
nombre d'architectures. Dans l'ensemble, nous
constatons que notre format en virgule �xe permet
des performances d'exécution égales ou supérieures
à toutes les bibliothèques comparées.

La dernière contribution est un moteur
d'inférence de réseau neuronal conçu pour réaliser
des expériences en variant les types de données
numériques utilisées dans le calcul d'inférence. Ce
moteur d'inférence permet un contrôle spéci�que
à la couche des types de données utilisés pour
e�ectuer l'inférence. Nous utilisons ce niveau
de contrôle pour réaliser des expériences visant à
déterminer l'agressivité avec laquelle il est possible
de réduire la précision numérique utilisée dans
l'inférence du réseau neuronal PVANet. Au �nal,
nous déterminons qu'une combinaison des types
de données standardisés �oat16 et b�oat16 est
su�sante pour l'ensemble de l'inférence.
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Abstract: This work presents three contributions
to the �elds of CPU vectorization and machine
learning.

The �rst contribution is an algorithm for
computing an average with half precision �oating
point values. In this work performed with
limited half precision hardware support, we use
an existing software library to emulate half
precision computation. This allows us to compare
the numerical precision of our algorithm to
various commonly used algorithms. Finally,
we perform runtime performance benchmarks
using single and double �oating point values
in order to anticipate the potential gains from
applying CPU vectorization to half precision
values. Overall, we �nd that our algorithm has
slightly worse best-case numerical performance
in exchange for signi�cantly better worst-case
numerical performance, all while providing similar
runtime performance to other algorithms.

The second contribution is a �xed-point
computational library designed speci�cally for
CPU vectorization. Existing libraries fail rely on
compiler auto-vectorization, which fail to vectorize
arithmetic multiplication and division operations.

In addition, these two operations require cast
operations which reduce vectorizability and have
a real computational cost. To allevieate this,
we present a �xed-point data storage format
that does not require any cast operations to
perform arithmetic operations. In addition, we
present a number of benchmarks comparing our
implementation to existing libraries and present
the CPU vectorization speedup on a number of
architectures. Overall, we �nd that our �xed-
point format allows runtime performance equal to
or better than all compared libraries.

The �nal contribution is a neural network
inference engine designed to perform experiments
varying the numerical datatypes used in the
inference computation. This inference engine
allows layer-speci�c control of which data types
are used to perform inference. We use this level
of control to perform experiments to determine
how aggressively it is possible to reduce the
numerical precision used in inferring the PVANet
neural network. In the end, we determine that
a combination of the standardized �oat16 and
b�oat16 data types is su�cient for the entire
inference.
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Sommaire en Francais

Contexte global Les progrès actuels de l'apprentissage automatique stimulent simultanément le développement
des logiciels et du matériel. Les exigences de calcul intenses d'applications telles que les réseaux neuronaux
arti�ciels nécessitent des logiciels e�caces qui utilisent pleinement un matériel performant. Ce besoin est si
fort que les fabricants de matériel conçoivent de nouvelles machines spéci�quement pour ces applications.
Ce faisant, les fabricants de matériel et les chercheurs en apprentissage automatique explorent également
les limites des représentations numériques acceptables.

Les réseaux neuronaux arti�ciels (ANN) constituent une catégorie d'algorithmes d'apprentissage automatique
faisant l'objet de recherches actives. Ils sont utilisés pour des applications allant des jeux de hasard[10][101],
de la détection et de la reconnaissance d'objets[46], du traitement du langage naturel[16], au diagnostic
médical[74] et plus encore.

Le domaine de l'apprentissage automatique évolue, tout comme les logiciels correspondants. Toutefois,
il ne su�t pas que les bibliothèques logicielles d'apprentissage automatique intègrent de nouvelles méthodes
et techniques ; elles cherchent également à accélérer continuellement leurs performances.

Les algorithmes d'apprentissage automatique sont très exigeants en termes de calcul. Ils ont tendance
à impliquer le traitement répété de grands ensembles de données. Par exemple, l'apprentissage de l'ANN
PVANet[46] présenté au chapitre 4 implique d'e�ectuer 170 000 itérations sur un ensemble de données de
450 Mo. Par conséquent, les logiciels d'apprentissage automatique doivent tirer parti de tous les accélérateurs
matériels disponibles, tels que la vectorisation du CPU, le traitement multic÷ur et les unités de traitement
graphique (GPU).

Les exigences élevées en matière de calcul des logiciels d'apprentissage automatique entraînent même
des développements au niveau du matériel. Outre les accélérateurs standard, des accélérateurs d'IA dédiés
sont en cours de développement pour les applications d'apprentissage automatique. Les unités de traitement
Tensor (TPU) de Google et les unités de traitement visuel (VPU) Movidius d'Intel, développées spéci�quement
pour les applications d'apprentissage automatique, en sont deux exemples notoires. Même avec ce matériel
spécialisé, les applications d'apprentissage automatique sont souvent gourmandes en ressources de calcul et
donc inadaptées à une utilisation de masse. C'est pourquoi des e�orts sont déployés pour réduire la charge
de calcul des applications d'apprentissage automatique.

Un moyen de réduire le coût des calculs d'apprentissage automatique est de réduire la précision numérique
utilisée pendant les calculs. En termes simples, cela signi�e utiliser des nombres plus petits pour e�ectuer
les mêmes calculs. La réduction de la précision présente deux avantages principaux : elle réduit la mémoire
nécessaire pour e�ectuer le calcul et permet d'e�ectuer davantage de calculs en parallèle via la vectorisation.
Ces deux avantages se combinent en une vitesse d'exécution plus rapide. Comme e�et secondaire, la
réduction de la précision d'une application réduit également la consommation d'énergie, car moins de calculs
sont physiquement e�ectués par le matériel. La réduction de la précision comporte un risque de dégradation
des performances. Cependant, il existe des méthodes pour atténuer ce risque[40][110]. En outre, les
algorithmes d'apprentissage automatique, notamment les ANN, sont capables de produire des modèles
robustes tolérant les imprécisions numériques.

Le matériel des CPU et des GPU commence à prendre en charge de nouveaux formats numériques
en raison des progrès de l'apprentissage automatique. Les CPU et les GPU ont commencé à prendre
en charge le format de précision demi-IEEEStandard2008[51][79][61]. En outre, il a été annoncé que
le format b�oat16[99] serait bientôt pris en charge[27][78][98]. Si ces deux formats sont parmi les plus
simples à expérimenter et à mettre en ÷uvre, ils ne sont pas les seuls à mériter d'être examinés. Certains
travaux étudient la viabilité d'autres formats, tels que le format à virgule �xe (�xed point), le format binaire
(CourbariauxB16) et le format ternaire (NNTernary). Ces travaux permettront même d'examiner la viabilité
des formats à virgule �ottante non standard.

Contenu Ce manuscrit sera divisé en deux parties. La première partie, intitulée État de l'art, présente les
informations générales de base nécessaires à la compréhension des contributions présentes dans la deuxième
partie. Cette deuxième partie, intitulée Contributions, présente les travaux réalisés au cours de cette thèse.

Le chapitre 1 présente les bases de l'architecture des ordinateurs nécessaires à la compréhension des
travaux présentés dans les chapitres 5 et 6. Nous commencerons par décrire brièvement comment les
nombres sont physiquement représentés à l'intérieur d'un ordinateur. Ensuite, nous montrons le coût
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d'exécution de diverses opérations sur ces nombres, puis certaines méthodes qui atténuent ce coût. Nous
présentons ensuite l'importance et les vitesses des di�érents niveaux de mémoire. En�n, nous décrivons les
notions de base du parallélisme et les moyens physiques les plus courants de réaliser le parallélisme.

Le chapitre 2 se concentre sur certaines des bases de l'écriture et de l'optimisation des logiciels. Tout
d'abord, nous discutons de la manière de chronométrer les logiciels a�n de pouvoir analyser les résultats.

Le chapitre 3 explique en détail comment les nombres sont représentés dans un ordinateur. Nous
commençons par la base binaire utilisée pour représenter toutes les valeurs numériques. Nous décrivons
ensuite les nombres entiers, les valeurs à virgule �xe et les valeurs à virgule �ottante, ainsi que leurs limites.
En�n, nous décrivons les bases de l'approximation numérique des fonctions mathématiques.

Le chapitre 4 présente les réseaux neuronaux arti�ciels. Nous commençons par une brève description
de ce que sont les ANN. Nous distinguons ensuite les étapes de formation et d'inférence de l'utilisation des
ANN, en précisant que nous nous concentrons spéci�quement sur l'inférence dans ce travail. Ensuite, nous
décrivons les calculs les plus exigeants en termes de puissance de calcul e�ectués par la plupart des ANN et
certaines méthodes permettant d'atténuer cette intensité. Nous décrivons ensuite un moyen de mesurer la
précision d'un ANN. En�n, nous décrivons le réseau ANN de PVANet qui sera examiné au chapitre 7.

Le chapitre 5 propose un algorithme pour calculer la moyenne d'un ensemble de nombres en utilisant
le format de demi-précision. Ce travail a été publié précédemment dans [83]. Nous examinons d'abord les
algorithmes établis pour le calcul de la moyenne. Au fur et à mesure que nous les examinons, nous notons
les insu�sances de chaque algorithme lorsqu'il calcule avec des nombres de demi-précision. Nous proposons
ensuite un algorithme qui ne subit pas de perte de précision dramatique avec des nombres de demi-précision.
En�n, nous comparons à la fois la précision et la vitesse d'exécution optimisée des algorithmes examinés.

Le chapitre 6 présente les travaux réalisés pour développer une extension en virgule �xe de la bibliothèque
logicielle nsimd SIMD. Nous décrivons d'abord certaines des spéci�cités du format numérique en virgule �xe.
Ensuite, nous comparons quelques bibliothèques logicielles à virgule �xe existantes dans le contexte de notre
cas d'utilisation souhaité (les expériences présentées dans le chapitre sec:neural). Nous fournissons une
description de la bibliothèque logicielle nsimd dans laquelle ce travail a été intégré. En�n, nous décrivons le
type numérique à virgule �xe implémenté, présentons les algorithmes utilisés pour l'implémenter, et montrons
des benchmarks de ses performances.

Le chapitre 7 présente un cadre pour réaliser des expériences avec la précision numérique ANN ainsi
que les résultats d'une première expérience utilisant ce cadre. Pour ce faire, nous décrivons nos besoins
et examinons quelques bibliothèques logicielles ANN couramment utilisées. Ensuite, nous présentons le
moteur d'inférence personnalisé développé dans le but d'e�ectuer nos expériences. En�n, nous présentons
les résultats d'expériences utilisant ce moteur d'inférence pour faire varier la précision numérique utilisée
lors de l'inférence de l'ANN PVANet.

Dans ce résumé, nous décrirons les travaux présentés dans les chapitres 5, 6, et 7.

Moyennedemi-précision Le chapitre 5 propose un algorithme pour calculer la moyenne d'un ensemble
de nombres en utilisant le format de demi-précision, puis compare ses performances numériques et d'exécution
aux algorithmes existants.

Il existe un certain nombre d'approches pour calculer la moyenne d'un ensemble de nombres. Nous
observons d'abord les propriétés numériques d'un certain nombre d'approches, que nous appelons Naive,
Kahan et Iterative. En observant la façon dont chacune de ces approches est calculée, nous constatons
qu'elles sont sensibles à des problèmes numériques tels que le débordement et les erreurs d'arrondi. Ces
problèmes numériques ne sont généralement pas signi�catifs lorsqu'on utilise des valeurs à virgule �ottante
de 32 bits, mais ils deviennent beaucoup plus visibles avec des valeurs à virgule �ottante de 16 bits. En
réponse à cela, nous proposons un nouvel algorithme, appelé moyenne en cascade, qui évite les erreurs de
débordement et d'arrondi pour un faible coût de calcul.

En observant expérimentalement les performances numériques (Tableau 5.2), nous con�rmons que les
approches existantes peuvent échouer pour des tailles d'entrée aussi petites que 100 éléments pour les raisons
décrites ci-dessus. En examinant la moyenne de Cascading, nous con�rmons également qu'elle ne sou�re
pas d'erreurs signi�catives dues au débordement ou aux erreurs d'arrondi. Ses performances numériques
peuvent être légèrement moins précises que celles des autres approches pour les petites entrées, mais elles
deviennent beaucoup plus précises pour les grandes entrées.

En observant expérimentalement les performances d'exécution (Figure 5.2 et Figure 5.3), nous constatons
que les approches Naive et Upcast sont systématiquement les plus rapides car elles e�ectuent le moins de
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calculs. La moyenne en cascade est généralement la deuxième plus rapide, s'exécutant au moins aussi vite
que la moyenne de Kahan et toujours plus vite que la moyenne itérative.

Bibliothèqueenvirgulefixe Le chapitre 6 présente les travaux réalisés pour développer une extension
en virgule �xe de la bibliothèque logicielle SIMD nsimd.

Nous dé�nissons un format à virgule �xe en utilisant la notation Qa.b où a est le nombre de bits entiers
et b le nombre de bits décimaux. Cela nous permet de dé�nir comment les opérations arithmétiques seront
e�ectuées.

Ensuite, nous expliquons l'utilisation de base de la bibliothèque nsimd et présentons quatre fonctions
qui ont dû être ajoutées à celle-ci a�n d'implémenter l'extension de précision �xe. Ces fonctions sont : clz
(compter les zéros de tête), shlv (décalage variable à gauche), shrv (décalage variable à droite), et div
(division entière). Chacune de ces fonctions est présentée avec un tableau indiquant quelles architectures de
CPU supportent les opérations nécessaires et des benchmarks d'exécution qui con�rment les performances
en fonction du support matériel.

Nous présentons ensuite l'API, les fonctions fournies par, et le format de données de l'extension de
précision �xe. Le plus important de ces éléments est le format des données : au lieu d'utiliser les traditionnels
a+ b bits pour stocker un nombre Qa.b, nous choisissons d'utiliser a+2b bits. Cela nous permet d'e�ectuer
toutes les opérations intermédiaires en utilisant le même type de données et d'éviter les opérations de cast.
Ce format de données o�re des avantages signi�catifs en termes d'accélération SIMD potentielle et de facilité
de développement logiciel.

En�n, nous présentons un certain nombre de fonctions implémentées et comparons leurs performances
d'exécution à celles d'autres bibliothèques à précision �xe. Les fonctions présentées sont l'addition, la
multiplication, la division, le sinus, le cosinus, la tangente, la racine carrée et la réciproque. Dans tous les
cas examinés, sauf un, nos fonctions sont plus rapides que les bibliothèques comparées.

Moteur d’inférence à précision arbitraire Le chapitre 7 présente un cadre permettant de réaliser
des expériences avec une précision numérique ANN ainsi que les résultats d'une première expérience utilisant
ce cadre.

Tout d'abord, nous présentons notre moteur d'inférence personnalisé. Notre moteur o�re deux avantages
majeurs par rapport aux autres : la possibilité de supporter des types de données C++ personnalisés et la
possibilité de contrôler le type de données utilisé lors du calcul de toutes les couches d'inférence. En raison du
nombre de couches présentes dans de nombreux réseaux neuronaux, ce contrôle total peut devenir compliqué
à utiliser. C'est pourquoi nous avons également développé des outils de niveau supérieur permettant de
dé�nir plus facilement les règles d'utilisation des di�érents types de données.

Ensuite, nous réalisons des expériences sur le réseau neuronal PVANet. Dans ces expériences, nous
choisissons un type de couche et faisons varier son type de données d'inférence tout en maintenant les
calculs en virgule �ottante 32 bits pour tous les autres types de couches. Nous testons avec tous les formats
de virgule �ottante inférieurs à 32 bits et avec une variété de formats à précision �xe. Le tableau 7.2 résume
les résultats de ces expériences. Nous constatons que l'inférence de PVANet peut être entièrement réduite
aux formats à virgule �ottante de 16 bits, alors que son inférence ne peut être entièrement réalisée en
utilisant notre format à précision �xe.
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Introduction

Global Context Current advancements in machine learning are simultaneously
driving development in both software and hardware. The intense computational
demands of applications like arti�cial neural networks drive a need for e�cient
software that fully utilizes performant hardware. This need is so strong that
hardware manufacturers are designing new machines speci�cally for such applications.
In doing so, hardware manufacturers and machine learning researchers also explore
limits of acceptable numerical representations.

Figure 1: Using meanshift todistinguish between rows ofgrains

Machine learning consists of algorithms
that allow computers to �nd patterns in data.
One type of machine learning method is cluster
analysis, which groups data points into related
clusters. For example, Figure 1 shows the
application of a meanshift clustering algorithm
to distinguish between rows of grains.

Arti�cial Neural Networks (ANNs) are
one category of machine learning algorithms
being actively researched. They are used
for applications varying from playing games[10][101],
object detection and recognition[46], natural
language processing[16], to medical diagnosis[74]
and more.

As the �eld of machine learning evolves, so must the corresponding software.
However, it is not enough for machine learning software libraries to only integrate
new methods and techniques � they also seek to continuously accelerate their
performance.

Machine learning algorithms are very computationally demanding. They tend
to involve repeatedly processing large datasets. For example, training the PVANet[46]
ANN presented in Chapter 4 involves performing 170,000 iterations over a 450MB
dataset. As a result, machine learning software needs to take advantage of any
available hardware accelerators, such as CPU vectorization, multicore processing,
and Graphical Processing Units (GPUs).

The high computational demands of machine learning software are even driving
developments in hardware. In addition to the standard accelerators, there are
also dedicated AI accelerators in development for use by ANN applications. Two
high-pro�le examples are Google's Tensor Processing Units (TPUs)[57] and Intel's
Movidius Visual Processing Units (VPUs)[55] developed speci�cally for use by
machine learning applications. Even with this specialized hardware, machine learning
applications are often computationally intensive and thus unsuitable for mass use.
As a result, e�orts are being made in order to reduce the computational load of
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machine learning applications.
One means of reducing the cost of machine learning computations is to reduce

the numerical precision used during the computations. Put simply, this means using
smaller numbers to perform the same computations. Reduced precision provides
two main bene�ts � it reduces the memory needed to perform the computation and
it allows more computations to be performed in parallel via vectorization. Both of
these bene�ts combine into a faster execution speed. As a side e�ect, reducing
the precision of an application also reduces the energy usage, as less computations
are physically performed by the hardware. There is a risk of degraded performance
when reducing precision. However, there are methods to mitigate this risk[40][110].
In addition, machine learning algorithms, especially ANNs, are capable of producing
robust models tolerant to numerical imprecisions.

CPU and GPU hardware are beginning to support new numerical formats
because of advances in machine learning. Both CPUs and GPUs have begun
supporting the half[47] precision format[51][79][61]. In addition, there are announcements
that there will soon be support for the b�oat16[99] format[27][78][98]. While these
two formats are some of the simplest to experiment with and implement, they are
not the only formats worth examining. There are works researching the viability of
other formats, such as �xed point[66], binary[17], and ternary[69]. This work will
even examine the viability of nonstandard �oating point formats.

Industrial Context The works presented here were performed while working
as a software engineer at Agenium Scale, a small company that specializes in
high performance computing, vectorization (both CPU and GPU), and software
optimization. It uses this expertise to develop the open-source nsimd software
library, which facilitates the writing of vectorized code. nsimd already supports
the latest Intel and ARM architectures and is nearly ready to release CUDA
support. Agenium Scale leverages its relationships with hardware manufacturers
to add support for cutting edge architectures as they are being developed. This
nsimd software library provides the basis and the motivation for the �xed point
computational library that will be presented in Chapter 6.

Agenium Scale applies its core specialties via consulting to a number of domains
including machine learning, aerospace, and agriculture. The works presented in
Chapter 7 were motivated and �nanced by one such consulting contract to research
methods for accelerating neural network inference.

The author's responsibilities within Agenium Scale during the duration of
this PhD include developing image processing software for the aerospace and
agricultural domains, as well as development and maintenance of the �xed point
library presented in Chapter 6 and the custom inference engine described in Chapter 7.

Content This manuscript will be divided into two parts. The �rst part, labeled
State of the Art, presents the general background information required to understand
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the contributions present in the second part. This second part, labeled Contributions,
presents the works done during this PhD.

Chapter 1 will present the fundamentals of Computer Architecture required to
understand the works presented in Chapters 5 and 6. It begins by describing brie�y
how numbers are physically represented inside of a computer. Next, we show the
cost of performing various operations on these numbers, followed by some methods
that mitigate this cost. The importance and speeds of various memory levels are
then presented. Finally, we describe the basic notions of parallelism and the most
common physical means of achieving parallelism.

Chapter 2 focuses on some of the basics of writing and optimizing software.
First, we discuss how to time software in order to be able to analyze its speed.
Then we present how to take advantage of CPU vectorization. This is presented
in the context of vectorization software libraries due to the limitations of compiler
optimization.

Chapter 3 goes into detail about how numbers are represented within a computer.
We begin with the binary base used to represent all numerical values. Next we
describe integers, �xed point values, and �oating point values, along with their
limitations. Finally, we describe the basics of how mathematical functions are
approximated numerically.

Chapter 4 presents Arti�cial Neural Networks. We begin with a brief description
of what ANNs are. We then distinguish between the training and inference stages
of ANN usage, noting that we focus speci�cally on inference in this work. Next,
we describe the most computationally intensive computations performed by most
ANNs and some methods to alleviate this intensiveness. Then we describe one
means of measuring the accuracy of an ANN. Finally, we describe the PVANet
ANN that will be examined in Chapter 7.

Chapter 5 proposes an algorithm for computing the average of a set of numbers
using the half precision format. This work was previously published in [83]. We
�rst examine established algorithms for computing the average. As we examine
them, we note each algorithms inadequacies when computing with half precision
numbers. We then propose an algorithm that does not su�er dramatic loss of
accuracy with half precision numbers. Finally, we compare both the accuracy and
the optimized execution speed of the examined algorithms.

Chapter 6 presents the works performed in developing a �xed point extension
the the nsimd SIMD software library. We �rst describe some of the speci�cities
of the �xed point numerical format. Then we compare a few existing �xed point
software libraries in the context of our desired use case (the experiments presented
in Chapter 7). We provide a description of the nsimd software library within
which this work was integrated. Finally, we describe the implemented �xed point
numerical type, present the algorithms used to implement it, and show benchmarks
of its performance.

Chapter 7 presents a framework for performing experiments with ANN numerical
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precision as well as the results of a �rst experiment using the framework. In order
to do so, we describe our needs and examine some commonly used ANN software
libraries. Next, we present the custom inference engine developed for the purpose
of performing our experiments. Finally, we present the results of experiments
using this inference engine to vary the numerical precision used when performing
inference of the PVANet ANN.
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Part I

State of the Art
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1 - Computer Architecture

Modern computer architectures have a number of properties and features which
should be considered when designing algorithms. The properties and features of
interest for the purposes of this work are instruction latency, instruction ports,
pipelining, branch prediction, memory hierarchies, and parallelism.

1.1 . Data Types

Computing hardware supports a certain number of native data types and
operations that can be performed on each type. The natively supported data
types can be broken into three major categories � binary, integers, and �oating
point.

Binary types (bits) are the most simple in principle � a binary value is simply
a 0 or a 1. In practice, binary values are not stored and treated in isolation, but
in groups of at least 8 binary values (1 byte). There are, however, a number of
binary operations that can be performed on bytes of binary values, such as AND,
NOT, and XOR operations.

Integer types represent integer, or whole, numbers with no decimal or fractional
portions. Most programming languages treat 32-bit integers as the default integer
type, but hardware usually also supports 8, 16, 32, and 64 -bit integers, each with
signed and unsigned support. Integers require at least basic arithmetic operations
(addition, subtraction, multiplication, division), but most CPUs also provide some
additional complex operations.

Floating point types represent �oating point values, as described in the IEEE754
standard[47]. The default �oating point type is usually 32-bits, but hardware
usually also supports 64-bit (double) �oating point values and in recent years
support for 16-bit (half) �oating point values has grown[79]. Some computer
architectures even implement extended precision �oating point processing units
as described in[47], allowing for greater than 64-bit intermediate computations.
Floating point types also require basic arithmetic operations and most CPUs also
contain even more complex operations than for integers.

All of these data types will be described in much more detail in Chapter 3.

Some algorithms require data types that are not natively supported by the
hardware used to run them. When this happens, the data type must be emulated

through software, using the native data types in such a way that they emulate the
behavior of the target data type. The cost of the extra operations that perform
the emulation usually cause the emulated data type to compute more slowly than
any native data type.
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1.2 . Instruction Sets

CPUs implement operations on data by implementing Instruction Set Architectures
(ISA). An ISA de�nes many important features, such as the supported data types,
number and types of registers, and supported operations. Section 1.1 described
the data types, Section 1.6 will describe the registers. This section will focus on
the types of operations, or instructions.

The most basic instructions include memory usage, arithmetic and logic (bitwise)
operations, and control �ow. Memory usage instructions allow the ISA to load and
store values to and from memory. Arithmetic and logic operations allow the ISA to
perform basic computations. Control �ow contains such concepts as function calls
and branching which help structure the computations. It is also possible for an
ISA to provide more complex instructions. These more complex instructions can
provide features such as mathematical functions, SIMD instructions, and larger
scale memory transfers.

The two major classi�cations of ISAs are known as Complex Instruction Set
Computers (CISC) and Reduced Instruction Set Computers (RISC). RISC ISAs
primarily implement the basic instructions and avoid implementing the more complex
instructions. They generally require more individual instructions to perform computations.
As a result, they tend to rely on compilers to make software development manageable.
CISC ISAs implement more than just the basic instructions � they implement some
amount of the more complicated instructions. These complex instructions often
have higher instruction latency than the more basic instructions. However, they
simplify software development by providing a greater range of available instructions.
Of the most commonly available ISAs, ARM's are considered to be RISC while
Intel's are considered to be CISC.

1.3 . Instruction Latency

CPUs contain a number of basic operations, which are then used together to
perform computations. Di�erent CPU operations can require di�erent amounts
of clock cycles to execute because the base operations are physically implemented
in the circuitry using di�erent algorithms of various complexity. Some algorithms,
such as addition/subtraction, are relatively simple and can be calculated in a single
CPU cycle. Others, however, can be much more complex and require many more
CPU cycles to calculate. Table 1.1 shows the minimum number of CPU cycles
needed to perform various basic arithmetic operations[29]. The di�erences are
especially pronounced when performing integer arithmetic � division takes 22x as
many cycles as addition � but still signi�cant for �oating point arithmetic where
a division operation takes slightly more than 3x as many cycles to calculate as
addition. Because of this discrepancy in arithmetic calculation time, it is generally
faster to multiply than to divide and generally faster to add than to multiply. As
will be shown in section 5.3, the e�ect of arithmetic instruction latency can have
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Operation Integer Float SIMD FloatAddition 1 3 3Subtraction 1 3 3Multiplication 3 5 5Division 22 10 10
Table 1.1: Minimum CPU cycles required to perform basic arithmeticoperations[29] on an Intel Haswell architecture for 32 bit integers and32 bit floats.
a noticeable e�ect on computation time.

Throughput is a concept strongly related to latency. It measures the number
of operations that can be performed in a given time. Simplistically, it can be
considered the inverse of latency � an arithmetic computational unit with a latency
of 0.1 seconds would have a throughput of 10 arithmetic operations per second.
However, in practice it this is not always the case. For example, if a processor
has three of the above computational units, it actually has a throughput of 30
arithmetic operations per second. This is indeed often the case with CPU ports.

It is also possible to invert the throughput to obtain the concept of inverse
throughput, which is usually measured in cycles per instruction. Inverse throughput
di�ers from latency in that it measures the number of operations that can be
completed per unit of time, rather than the length of each operation. Continuing
the above example with a latency of 0.1 seconds per operation and throughput
of 30 operations per second, the inverse throughput would be 0.03 seconds per
operation. One example using this type of measure is [49].

1.4 . Ports, Pipelining

Modern CPUs contain a number of computational ports[48] capable of performing
speci�c tasks, although most tasks can be performed by multiple ports per CPU.
For example, one port may be capable of adding, subtracting and multiplying, while
another port may be capable of loading and storing data. Each of these ports is
capable of operating independently of the others and passing its output to another
port. This allows the CPU to organize a series of instructions such that the data
�ows through the ports as a pipeline, performing multiple instructions per clock
cycle[48][93]. Figure 1.2 shows the execution of pipelined instructions. While there
is a latency of 5 cycles between the start and end of a block of instructions, the
throughput (once the pipeline has �lled) is 1 output per cycle.

Pipelining is most useful when performing the same instructions repeatedly on
independent data. In this case, it is possible to organize the instructions so that
there is a continuous �ow of multiple instructions being executed simultaneously.
The resulting process calculates much faster than if only a single instruction were

9



2-15

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• An out-of-order, superscalar execution engine that dispatches up to six micro-ops to execution, per 
cycle. The allocate/rename block reorders micro-ops to "dataflow" order so they can execute as soon 
as their sources are ready and execution resources are available.

• An in-order retirement unit that ensures that the results of execution of the micro-ops, including any 
exceptions they may have encountered, are visible according to the original program order.

The flow of an instruction in the pipeline can be summarized in the following progression:

1. The Branch Prediction Unit chooses the next block of code to execute from the program. The 
processor searches for the code in the following resources, in this order:

a. Decoded ICache.

b. Instruction Cache, via activating the legacy decode pipeline. 

c. L2 cache, last level cache (LLC) and memory, as necessary. 

2. The micro-ops corresponding to this code are sent to the Rename/retirement block. They enter into 
the scheduler in program order, but execute and are de-allocated from the scheduler according to 
data-flow order. For simultaneously ready micro-ops, FIFO ordering is nearly always maintained. 

Micro-op execution is executed using execution resources arranged in three stacks. The execution
units in each stack are associated with the data type of the instruction. 

Branch mispredictions are signaled at branch execution. I t re-steers the front end which delivers
micro-ops from the correct path. The processor can overlap work preceding the branch mispre-
diction with work from the following corrected path. 

Figure 2-5.  Intel Microarchitecture Code Name Sandy Bridge Pipeline Functionality
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Figure 1.1: Intel Sandy Bridge micro architecture, including ports[48].While the architecture is not modern, it illustrates well the variety andduplication of operations within CPU ports.
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Figure 1.2: Example of a simple pipeline in operation. Highlightedsection shows full pipeline.
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performed per clock cycle. Due to the dependency between steps of the pipeline,
it takes time to initially �ll the pipeline before the increased throughput can be
observed. The same e�ect can be observed at the end of the pipeline, when
there are no more iterations to perform but the last instructions have not yet
�nished executing[93]. However, these e�ects grow less in�uential as the number
of repeated iterations grows.

In order to maximize the e�ectiveness of CPU pipelines, CPUs are capable
of reordering operations to perform out of order execution[48]. The operations
are reordered in order to maximize port usage and length of the pipeline without
a�ecting the computational result.

1.5 . Branch Prediction

Branches are a common code feature where future instructions depend on
variable conditions. They occur when using statements such as if, for, and while.
When using branches on a pipelining processor, this can create an instruction
bottleneck, where we must wait for the condition to evaluate before continuing to
execute instructions. The solution to this problem is branch prediction, also known
as speculative execution. Rather than wait for the calculation to �nish evaluating
before proceeding with the next instructions, the processor may choose a branch
to execute[48]. If the wrong branch is chosen, the pipeline is �ushed out in order
to discard the proceeding results, then the correct branch is followed. This costs
the same amount of time as if the processor had simply waited for the condition
calculation before continuing to execute instructions. This act of waiting for the
condition to evaluate is known as a type of pipeline stall. Both pipeline stalls and
pipeline �ushes lower the processing throughput. If the correct branch is chosen,
then the calculation proceeds normally.
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Figure 1.3: Runtime of Algo. 1depends on how sorted the inputis.

Processing units can implement
branch prediction in the form of �nite-
state machines that take past branch
results as input[93]. A �nite-state
machine is a mechanism that has a
well de�ned set of possible states, along
with well de�ned transitions between
each state. Each transition is a
reaction to a form of input. In the
case of branch prediction, this input is
the result of the most recent branch
condition evaluation. The state of
the �nite-state machine is then used
to predict the likely result of the next
branch condition evaluation. A simple

11



Take Take Ignore Ignore

Ignored Ignored Ignored

Taken Taken Taken

Ignored

Taken

Figure 1.4: A simple finite-state machine for branch prediction.
branch predicting �nite-state machine
deciding whether to take or ignore branches is shown in Fig. 1.4.

For code that behaves predictably, branch prediction works very well. One such
example is a for loop � the loop repeats itself every time it reaches the end of the
body, except for the very last iteration. On the other hand, when code behaves
unpredictably depending on the data, branch prediction works poorly. One case
that exempli�es the extremes is the threshold calculation shown in Algo. 1. This

Algorithm 1 Sample thresholding algorithm.
1 for ( int i = 0 ; i < A.size() ; ++i ) {

2 if ( A[i] < 0.5 ) A[i] = 0;

3 }

calculation performs di�erently depending on the nature of the input. If the input is
sorted, the calculation is much faster because the results are much more predictable
� each input before a certain point is below the threshold and all subsequent points
are above it. A simple benchmark of Algo. 1 shows a 7x speedup on a sorted input
compared to unsorted.

1.6 . Memory Hierarchy

Algorithm 2 Loop that is likely to cause many cache misses.
1 void indirection( int *A, int *B, int *C ) {

2 for ( int i = 0 ; i < A.size() ; ++i ) {

3 A[i] = B[C[i]];

4 }

5 }

Memory access is a major limiting factor in computational performance, especially
because memory bandwidth does scale up as well as computing power. The solution
o�ered by hardware manufacturers is the presence of multiple levels of memory
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Algorithm 3 Cache unfriendly convolution algorithm.
1 void Convolution_unfriendly( int *A, int width ,

int height ) {

2 for ( int x = 0; x < width; ++x ) {

3 for ( int y = 0; y < height; ++y ) {

4 int i = y * width + x;

5 A[i] = 10 * A[i];

6 }

7 }

8 }

Algorithm 4 Cache friendly convolution algorithm – 7x speedupcompared to Algo. 3.
1 void Convolution_friendly( int *A, int width , int

height ) {

2 for ( int y = 0; y < height; ++y ) {

3 for ( int x = 0; x < width; ++x ) {

4 int i = y * width + x;

5 A[i] = 10 * A[i];

6 }

7 }

8 }
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Processor L1 L2 L3
ARM Cortex-A32 8-64KB 128KB-1MB n/aARM Cortex-A55 16-64KB 64-256KB 512KB-4MBIntel Xeon Phi 32KB 512KB 8MBAMD Threadripper 3990X 96KB 512KB 128MB
Table 1.2: Cache sizes of some example processors.

hierarchy (Fig. 1.5), with di�erent sizes and access speeds. These levels range
from slow hard drives to the relatively fast RAM to the very fast levels of cache.
As the memory space of each level diminishes, so does the time to access data
in that memory level[48]. In most cases, each of these memory levels draws data
from the level directly above it. Generally, the simplest way to accommodate this
limitation is to, if possible, design an algorithm in such a way that the input data is
a continuous block of data. This is because each level pulls a larger than necessary
block of data at each time, in case the rest of the block will also be useful.

Hard Drive

RAM

L3

L2 Cache

L1

Figure 1.5: Memoryhierarchy levels

If the memory access is regular, then the
CPU can easily predict which data blocks will
be needed and preemptively pull them from
higher memory levels[64][48]. This is known
as prefetching. As a result, regular memory
accesses are much faster than irregular memory
accesses. Conversely, if the memory access is
irregular (see Algo. 2), then the CPU will no
be able to predict which data block need to
be pulled. When the CPU seeks data which is
not in the cache, a cache miss occurs. Upon a
cache miss, the CPU must load the requested
data into the lowest level cache, halting progress until the data �nishes loading.
The e�ects of cache misses are very noticeable � there is a 7x speedup when using
the cache friendly convolution in Algo. 4 instead of the cache unfriendly version in
Algo. 3.

Registers can be considered as a level of memory hierarchy above the smallest
cache. A CPU contains a limited number of registers that it uses for active
calculations. This makes registers the fastest memory available to the processing
unit. However, the number of registers available is limited. If an algorithm performs
calculations that require more immediate values than there are registers, some
values will need to be moved to and from the stack, slowing down the calculation
speed, especially if this causes a cache misses. There are generally, but not always,
enough registers on modern processors to perform most straightforward algorithms.
In practice, SIMD registers tend to be more available than scalar registers. This
is because, given a same number of each type of registers, some of the scalar
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registers will be reserved for certain uses, like function arguments. The amount of
registers available, both scalar and SIMD, depends on the CPU implementation.
In general, RISC architectures provide more registers than CISC architectures.

1.7 . Parallelism

Uniprocessor Fault
Tolerance

MultiprocessingVector CPUs
GPUs

SI MI

SD

MD

Figure 1.6: Flynn’s taxonomy ofcomputer architectures.

One way to conceptualize a simple
calculation program is to consider it
as a single stream of instructions (SI)
being performed on a single stream
of data (SD). However, it is also
possible to perform multiple streams
of instructions (MI) or to use multiple
streams of data (MD). This lays the
foundation of Flynn's taxonomy of
computer architectures[28], as shown
in Figure 1.6. Multiple streams of
instructions operating on a single stream of data (MISD) can allow one to perform
multiple unrelated calculations using the same data. Some MISD applications
are fault tolerant systems, where the same computation is performed multiple
times in order to detect errors, and systolic arrays, which �ow a single input
through a collection of specialized processors. If we split the input data into
multiple streams, we can perform a single stream of instructions on these multiple
streams of data (SIMD). This allows us to gain a greater calculation throughput
if this single stream of instructions can operate on the multiple streams of data
simultaneously. Figures 1.7 and 1.8 showcase the advantage of SIMD computation
over SISD. Multiple technologies exist for this purpose � most commonly GPUs,
multithreading, and SIMD CPU instruction sets.

1.7.1 . CPU SIMD
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Figure 1.7: Scalar computations.

The �rst attempts at SIMD CPU
architectures came in the form of
vector computers[73][102]. These
supercomputers implemented vector
processing instructions, which operate
a single instruction sequentially upon
a large block (vector) of data. While
the operations are not performed
in parallel, this architecture can
still provide performance gains by
eliminating the need to process and
decode instructions while processing
vectors.
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256 bit register
4× 64 bits
8× 32 bits
16× 16 bits
32× 8 bits

Figure 1.9: Various data types fitting into a 256 bit register.

Another early attempt at SIMD CPU architectures came in the form of parallel
processing computers[8]. These computers provided a large number of very simple
processors that could execute instructions simultaneously. While this approach
failed to take hold at the time, the ideas behind it have returned in both CPU and
GPU SIMD architectures.
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Figure 1.8: SIMDcomputation.

The current widespread approach to CPU
SIMD is to implement large registers along with
SIMD instructions that operate on all elements
of these registers simultaneously. These SIMD
instructions allow the processor to perform
operations on all elements within a SIMD
register, rather than single pieces of data.
These large registers have �xed sizes, regardless
of the data type loaded into them. As a result,
the amount of values that can be loaded into
such a register depends on the data type being
processed. Fig. 1.9 shows what types of parallel
computation can be performed using a 256 bit
SIMD register. For example, a 256 bit register can hold 16 half precision values, 8
single precision values, or 4 double precision values. SIMD instructions act upon all
values in the register, so smaller data types are better accelerated by CPU SIMD.
Because this acceleration is performed within the CPU, there is no memory transfer
to diminish the potential speed gains.

The act of accelerating a program via SIMD instructions is referred to as
both SIMDization and vectorization. If interpreted strictly, vectorization would be
limited to the usage of vector computers. However, vectorization has been used
with the same meaning as SIMDization for a number of years now[23][20][68].

Each CPU designer provides a di�erent set of instructions to use to take
advantage of vectorization[49][6]. This complicates the task of writing code which
takes advantage of such instructions, as code written for one CPU may not be
portable to another. Fortunately, there are multiple e�orts to provide uni�ed APIs
which allow developers to write portable code. These e�orts will be described in
Section 2.2.2, along with more detail about the di�erence between SIMD instruction
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sets o�ered by di�erent CPU designers.

1.7.2 . Graphical Processing Units

Graphical Processing Units (GPUs) are another means for accelerating computations
via SIMD. A GPU consists of a collection of warps, which function in a manner
analogous to large CPU SIMD registers. All threads within a single warp perform
the same instructions simultaneously. Unlike the other approaches mentioned in
this section, GPU acceleration is not accomplished as part of a standard CPU � the
GPU is physically separate hardware used to add upon the CPU's capabilities. A
discrete GPU has its own physical memory and contains hundreds to thousands of
simple processing units specialized to perform parallel computations[80], as shown
by Figure 1.10. Because the GPU and CPU are separate components with separate
memory spaces, any calculation using the GPU requires that the input data be
transferred from the CPU to the GPU. For large amounts of data, this transfer can
take a signi�cant amount of time.

To allow for the large quantity of processing units, each individual processing
unit is less powerful than a CPU core. First, the GPU runs at a slower speed than
the CPU � each core performs fewer operations per second. In addition, the GPU
cores are not fully independent. They are grouped into clusters such that each
cluster of GPU cores performs the same instructions at a given time. This can lead
to ine�ciencies when using conditional statements, such as if/else statements.
When a GPU encounters an if/else, each branch is entered sequentially. First,
the cores that qualify for the if perform the if branch instructions. Once they have
�nished, the cores that did not qualify for the if perform the else instructions.
During both of these steps, some of the cores are inactive because the instructions
are not intended for them. As a result, GPUs are well suited for larger scale
purely SIMD computations. If a computation requires interleaved SISD and SIMD
segments, it may not be advantageous to use a GPU.

1.7.3 . Multithreading

Multithreading is the use of multiple "threads" of instructions at once to
perform separate tasks. This can be used to perform either SIMD or MIMD
computations, and can serve as an extra layer of parallelism on top of vectorization
or GPU usage. If each separate task is de�ned di�erently, then the program
necessarily performs MIMD computations. However, if we de�ne the separate
tasks as performing the same instructions on di�erent sections of the same input
data, then the resulting program can perform SIMD computations. In this context,
it is important to avoid performing the same instructions on overlapping sections
of the input data in order to avoid memory con�icts. Depending on the type of
memory con�ict, it is possible to obtain slower performance or false results.

There are two ways to implement multithreading � using shared memory or
distributed memory. Shared memory multithreading requires each thread to have
access to the same physical memory. This is generally the case when using multiple
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Figure 1.10: Example of an NVIDIA Turing GPU architecture.[80]. Greenblocks represent Streaming Multiprocessors (SM) and yellow blocksrepresent RayTracing cores. Each SM contains 64 CUDA cores for atotal of 4606 cores.
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threads on a single CPU. In this case, it is possible for each thread passively share
data with the others. Distributed memory multithreading has no shared access
requirement. It is best suited for cases where the computations are divided between
multiple physical processors. In this case, any data sharing between threads requires
explicit memory transfers.

Conclusion

This section has described the details of computer hardware necessary to
understand the works that will be presented in Section II. We have seen how data
types can a�ect instruction latency and how ports and instruction pipelining can
mitigate such latencies. We have also seen the e�ects of performing computations
using various levels of the memory hierarchy and some of the technologies that
allow developers to parallelize software. The following section will describe the
concepts involved in designing software that takes full advantage of the underlying
hardware.
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2 - Software & Optimization

This section describes the tools and techniques involved in developing e�cient
software, such as the works presented in Chapter 6 and Chapter 7.

2.1 . Timing

In order to discus the features that accelerate computation, it is necessary to
discuss how benchmark, or measure, the e�ciency of the computations. Depending
on the complexity of the computation being measured, and the desired level of
precision, there are di�erent ways to measure the time taken by a computation.

The most basic unit of time in a processing unit is the clock cycle, which
corresponds to a single pulse of electricity emitted by the computer's clock generator.
This pulse coordinates the components of the circuit, assuring that they are
synchronized. The time taken to perform any operation can thus be measured
in clock cycles. A processor running at 3GHz will perform 3 ·109 cycles per second,
where each cycle takes 3.33 · 10−10 seconds. Clock cycles are a natural unit of
measure for basic low level operations and can also be useful when performing
comparisons between di�erent processors.

More complex computations may take long enough to compute that it makes
more sense to measure the time in real world time (seconds, minutes, hours). For
example, some mathematical functions such as trigonometric functions, exponents,
and square roots can be measured in nanoseconds. More computationally intensive
mathematical functions, such as matrix multiplication and image �lters are usually
measured in milliseconds or seconds. When performing physical simulations, the
time to compute tends to range from minutes to hours to days.

There are a few CPU features that complexify the task of benchmarking a
computation. The �rst is the fact that any computation is a task to be performed
by an operating system. Unless explicitly con�gured, the operating system will
periodically interrupt the computation in order to perform its base functions,
arti�cially increasing the measured time[100]. Another factor is the presence of
CPU C-states[48], which are used to adjust CPU power consumption depending
on activity. Depending on which C-state the CPU is in, the CPU may be at reduced
voltage (running more slowly). Waking a CPU from a low-voltage C-state to a full-
power C-state could also arti�cially increase the measured time. Fortunately, these
perturbations generate a predictable distribution of timings (Fig. 2.1, which can
be used to obtain a descriptive benchmark value. Fig. 2.1 clearly shows one main
grouping of timings followed by a small after-tail of benchmarks that were slowed
down by an OS interruption. In practice, the peak of the largest curve is close to
the average of the distribution, so the average of a number of runs can safely be
used for simplicity[100].
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Figure 2.1: Histogram of measured benchmark times(ns) over 100 runs
When optimizing algorithms, the notion of speedup is important. The speedup

is a metric describing how much an algorithm has been accelerated, as described
by

speedup =
told

toptimized

A larger speedup corresponds to a better optimization. For example, a speedup of
two means that an algorithm has been accelerated to run in half the time as it did
before.

Benchmark Tools There are a number of tools of varying complexity available
for benchmarking programs. If the section of code being benchmarked is well
known and well de�ned, a simple timer (such as those de�ned in time.h, std::chrono,
or google-benchmark[37]) may su�ce. More complex tools (such as perf and
callgrind[76]) are needed if one wishes to benchmark within the context of a
larger software program. These more complex tools are capable of measure both
the absolute time spent in various functions and the proportional time in various
functions compared to the rest of the execution time.

Now that we have an idea of how to measure the speeds of algorithms, we can
discuss di�erent ways to accelerate them up.

2.2 . SIMD
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In very simple cases, modern compilers are capable of automatically vectorizing
simple calculation loops to take advantage of CPU SIMD units. These simple cases
must be recognized by the compiler to match pre-identi�ed patterns. However,
in almost every practical case, vectorized code must be hand-written. Otherwise
the vectorization may not be non-portable due to its compiler dependence. This is
generally a non-trivial e�ort for a few reasons. First, the SIMD instructions need
to be written directly in assembly, or machine language. Because they must be
written using CPU intrinsic functions and each CPU architecture provides di�erent
SIMD instructions, these vectorized sections of code are not portable. Finally,
on some CPUs (x86 architectures) vectorized code operates best on aligned input
data, which either complicates the memory allocation process or requires breaking
the data into an unaligned head, aligned body, and unaligned tail as shown in
Algo. 5.

Algorithm 5 Scalar and vectorized versions of multiplication, includinghead and tail management.
1 // Scalar

2 for (int i = 0 ;i < A.size(); ++i) {

3 A[i] = B[i] * C[i];

4 }

5
6 // SIMD (Intel)

7 int align_beg = A.data() + (A.data() % 16);

8 int align_end = A.data() + A.size()

9 - (( A.data() + A.size() ) % 16);

10 for (int i = 0; i < align_beg; ++i)

11 A[i] = B[i] * C[i];

12 for (int i = align_beg; i<align_end; i+=4)

13 __m256 b = _mm256_load_ps( &(B[i]) );

14 __m256 c = _mm256_load_ps( &(C[i]) );

15 __m256 a = b * c;

16 _mm256_store_ps( &(A[i]) , a );

17 for (int i = align_end; i < A.size(); ++i)

18 A[i] = B[i] * C[i];

Alignment Some SIMD architectures exhibit di�erent behavior depending on
whether the data they operate on is aligned[21]. In the worst case scenario,
attempting to load unaligned data into an SIMD register can cause a program to
crash. In a less severe scenario, using unaligned data can degrade the performance
of a computation. However, these alignment concerns are generally less problematic
on modern processors than previous generations.
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2.2.1 . Di�erent Architectures

Di�erent CPU architectures can have di�erent SIMD instructions (Algo. 6),
even coming from the same manufacturer. Notable among these are Intel's SSE and
AVX, ARM's NEON and SVE, and IBM's AltiVec. Each architecture has its own
registers, corresponding data types, instructions, and corresponding functions. The
result is that SIMD code written for a speci�c architecture may not work on other
architectures. CPUs exhibit backwards compatibility � AVX capable processors
also have SSE technology and SVE processors must be NEON compatible � but
there is no compatibility between manufacturers. As such, we can consider
that the various architectures are organized into families where each member of a
family inherits the instructions of its ancestors. For example, in the Intel family
of instructions, the AVX512 architecture inherits the instructions from the AVX2
architecture, which inherits instructions from the AVX architecture, and so forth.

Algorithm 6 SIMD addition using different architectures.
1 // AVX

2 __m256 a, b;

3 __m256 c = _mm256_add_ps( a , b );

4
5 // NEON

6 float32x4_t a, b;

7 float32x4_t c = vaddq_f32( a , b );

8
9 // VMX

10 __vector float a, b;

11 __vector float c = vec_add( a , b );

2.2.2 . SIMD Software Libraries

There exist a number of software libraries that facilitate the development of
SIMD software. This section will present a number of them, with a focus on CPU
SIMD. Table 2.1 summarizes the di�erentiating features of all presented libraries.

Comparison Criteria

This section explains the criteria being compared in Table 2.1.

General Information The most important column of the general features
section is the license. Which license a software library uses a�ects how it can be
included in various projects and what restrictions it imposes on its usage. For
example, bsimd has a non-free software license because it is the only paid product
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General Information Instruction Set Data Type FeaturesName Ref License AVX-512 NEON SVE Altivec Float Integer Fixed Math C++ Register512-bit 128-bit variable∗ 128-bit 64 32 16 64 32 16 8 Point Func. Technique Size
OpenMP [18] † Y Y Y Y Y Y Y Y Y Y Y N N Compiler ImplicitEigen [39] MPL2 Y Y N Y Y Y Y Y Y Y Y N Y Op. Overload ExplicitMIPP [13] MIT Y Y N N Y Y N Y Y Y Y N Y Op. Overload ImplicitVCL [30] Apache-2 Y N N N Y Y N Y Y Y Y N Y Op. Overload Explicitsimdpp [60] Boost Software Y Y N Y Y Y N Y Y Y Y N N Exp. Template ExplicitT-SIMD [72] Open-Source N Y N N N Y N N Y Y Y N N Op. Overload ExplicitVc [63] BSD-3-Clause N N N N Y Y N Y Y Y N N Y Op. Overload Implicitboost.SIMD [22] Boost Software P N N N Y Y N Y Y Y Y N Y Op. Overload Implicitbsimd [11] Non-free P Y N Y Y Y N Y Y Y Y N Y Exp. Template Implicitxsimd [86] BSD-3-Clause Y Y N N Y Y N Y Y N N N Y Op. Overload Implicitnsimd [91] MIT Y Y Y Y Y Y Y Y Y Y Y Y Y Op. Overload Implicit
∗ 128-bit multiples up to 2048
† Implementation dependent

Table 2.1: Comparison of various SIMD wrappers. SSE is not listed as adistinguishing feature as is is supported by all wrappers.
listed. The MIT license is fairly non-restrictive, as it only requires the project
integrating it to preserve the library's copyright and license notices. The Apache
License 2.0 is similar to the MIT license in terms of restrictions, as it also preserves
the library's copyright and license notices. The Boost Software License is also
similar to the MIT license in terms of restrictions, as it also preserves the library's
copyright and license notices. The BSD 3-Clause is also similar to the MIT license
in terms of restrictions, as it also preserves the library's copyright and license
notices. t-SIMD's open source software license restricts the software's usage to
only scienti�c or academic purposes.

Instruction Set SIMD instruction sets can be classi�ed �rst by designer, then
by register size.

Intel and AMD design and manufacture x86 CPUs, which implement SSE
(128-bit), AVX (256-bit), and AVX-512 (512-bit, Intel only) instructions. Each
successive generation also implements the previous ones for backwards compatibility.
SSE and AVX are not listed in Table 2.1 because they are supported by all listed
software libraries.

ARM proposes the NEON (128-bit) and SVE (variable-bit) instruction sets.
SVE is a special case in that it presents a Variable Length Array (VLA) paradigm.
SVE registers must be of a size multiple of 128-bits with a maximum of 2048-bits,
but the exact multiple is determined by the CPU manufacturer.

IBM designs and manufactures POWER CPUs, which implement AltiVec/VMX/VSX
(128-bit) instructions.

Data Type As described in Section 2.4.3, the choice of data type can be an
important consideration. Most of the libraries compared in Table 2.1 support the
most common data types - 32 and 64 bit �oat and 8, 16, 32, and 64 bit integers.
However, most do not support half precision(16-bit �oat), which are beginning to
be implemented on many CPUs. Currently, x86 CPUs have started implementing
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half precision loading and storage of data and conversions between 16-bit and 32-
bit �oating point types. ARM CPUs have speci�cations for half precision loading,
storage, and arithmetic. Whether these features are actually implemented depends
on the manufacturer. Finally, nsimd is the only library to support �xed point data
types and computations, which are of interest for this work.

Features For general usage, it is useful for a SIMD wrapper to also contain
some mathematical functions. Otherwise the user must implement them using
basic arithmetic functions, which can be a di�cult task.

The C++ technique column represents one of the technical choices made
during design. The compiler directives from OpenMP are the simplest to use and
give the most straightforward messages when used, but are not guaranteed to work.
The expression template method can be fairly simple to use, but gives the most
complicated error messages when failing and can signi�cantly increase compilation
time. Lastly, the operator overload method can also be simple enough to use while
giving reasonable error messages when failing and does not signi�cantly a�ect
compilation time.

Finally, the Register Size column represents at which point the register sizes
are determined. Some wrappers implicitly determine the register size according
to the architecture target, while others require the user to explicitly specify the
register size when writing the software.

Eigen is a C++ computational library for linear algebra functions. In order to
fully take advantage of SIMD optimizations, the library implements and uses an
interface that abstracts away the underlying CPU architecture. It is possible to use
this interface as a SIMD library, although the user must specify the register sizes
that they wish to use. Eigen is one of the few libraries to support half precision
via emulation.

OpenMP is an API speci�cation for parallel computation via compiler directives.
As such, it is included with most compilers and often requires no extra installation.
While OpenMP's focus is on shared-memory multithreading, it also has directives
for SIMD computation. The programmer writes a normal computational loop
and signals to OpenMP via the #omp simd directive that the loop is vectorizable.
At compilation, OpenMP will attempt to help the compiler vectorize the loop.
However, there is no guarantee of success. In addition, OpenMP is capable of
supporting half precision on some architectures that implement it.

MIPP is a C++ 11 library that wraps a portable interface around SIMD intrinsics
using operator overloads. It implements the SSE, AVX, AVX-512, and NEON
instruction sets for native data types, excluding 16-bit �oats. Its API allows the
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register sizes to be determined and accounted for at compile time rather than when
writing the code.

VCL is a C++ library that wraps a portable interface around SIMD intrinsics
using operator overloads. It implements the SSE, AVX, and AVX-512 instruction
sets for native data types, excluding 16-bit �oats. Its API requires register sizes to
be determined and accounted for when writing the code.

simdpp is a C++ library that wraps a portable interface around SIMD intrinsics
using template metaprogramming. It implements the SSE, AVX, AVX-512, NEON,
and Altivec instruction sets for native data types, excluding 16-bit �oats. It
supports most instruction sets except for SVE and most data types except for
16-bit �oats. Despite using templates, simdpp requires the register sizes to be
known when writing the code. In addition, register sizes must be powers of two,
which renders SVE support incompatible with the current model.

T-SIMD is a C++ library that wraps a portable interface around SIMD intrinsics
using operator overloads. It implements the SSE, AVX, AVX-512, and NEON
instruction sets for 32-bit �oats and integers 32 bits and smaller. It does not
support 64-bit �oats, 64-bit integers, or 16-bit �oats. In addition, T-SIMD has
a license that primarily allows academic uses. This greatly limits its applicability.
T-SIMD also requires register sizes to be known when writing the code using it.

Vc is a C++ library that wraps a portable interface around SIMD intrinsics using
operator overloads. It implements the SSE and AVX instruction sets for most native
data types, excluding 16-bit �oats and 8-bit integers. Its API allows the register
sizes to be determined and accounted for at compile time rather than when writing
the code.

boost.SIMD and bSIMD are intertwined, as bSIMD is the paid extension of
the open-source boost.SIMD. They are both C++ libraries that wraps a portable
interface around SIMD intrinsics using template metaprogramming. While boost.SIMD
only supports SSE, AVX, and (partially) AVX-512, bSIMD has support for SSE,
AVX, (partially) AVX-512, NEON, and Altivec. The partial AVX-512 support is
limited instructions available to Intel KNL processors. They both support all native
data types except for 16-bit �oats. Like simdpp, the design of the library requires
register sizes to be powers of two, rendering SVE support incompatible with the
current model. Their API allows the register sizes to be determined and accounted
for at compile time rather than when writing the code.
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xsimd is a C++ library that wraps a portable interface around SIMD intrinsics
using operator overloads. The mathematical functions provided by xsimd are
reimplementations of the algorithms provided by boost.SIMD. xsimd implements
the SSE, AVX, AVX-512, and NEON instruction sets for most native data types,
excluding 16-bit �oats. Its API allows the register sizes to be determined and
accounted for at compile time rather than when writing the code.

nsimd is a C++ library that wraps a portable interface around SIMD intrinsics
using operator overloads. It implements the SSE, AVX, AVX-512, NEON, SVE,
and Altivec instruction sets for all native data types in addition to �xed-point
precision. Its API allows the register sizes to be determined and accounted for at
compile time rather than when writing the code. In addition to a modern C++
API, nsimd also has C++98 and C APIs.

As can be inferred from the structure of this section and of Table 2.1, nsimd is
used as the SIMD wrapper for the work presented in Part II. It will be described in
much more detail in Section 6 where it plays an important role.

2.3 . Compilers

Modern compilers are capable of signi�cantly optimizing the codes that they
compile. They are capable of optimizations such as reordering code instructions,
removing unused code paths, and - most relevantly to this work - auto-vectorizing
simple loops. While this auto-vectorization is an impressive accomplishment,
compiler auto-vectorization capabilities are frequently overstated. Most compilers
are capable of automatically vectorizing simple loops, as show in Algo. 7. However,
some studies[58] �nd that compiler automatic vectorization often achieves results
"far from the architectural peak performance"[96] in realistic scenarios. It is
relatively simple to design loops that are not overly complicated, but compilers
fail to vectorize, such as Algo. 8, which one common compiler � msvc � fails
to vectorize, or Algo. 9, which all tested compilers failed to vectorize (as shown
in Figs. A.1 - A.8 using [35]). As a result, when vectorizing code it is always

Algorithm 7 Loop that compilers can auto-vectorize.
1: function Sum(A, B, C, length)
2: for i in (0, length) do
3: C[i] = A[i] + B[i]
4: end for
5: end function

necessary to check if the compiler has successfully auto-vectorized the code and
frequently necessary to vectorize by hand when the compiler fails at this task.
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Algorithm 8 Simple loop that compilers sometimes fail to auto-vectorize.
1: functionMulShift(A, B, C, D[i], length)
2: for i in (0, length) do
3: C[i] = ( A[i] * B[i] ) » D[i]
4: end for
5: end function
Algorithm 9 Loop that compilers usually fail to auto-vectorize.
1: function CheckVals(A, length)
2: for i in (0, length), i += 2 do
3: if a[i] * a[i+1] < 10 then
4: return true
5: end if
6: end for
7: end function

2.4 . Algorithm Designs

This section lists the most important factors to consider when designing algorithms.

2.4.1 . Complexity

The most important part to optimize is the algorithm being implemented. A
well suited unoptimized algorithm can easily perform better than a �nely tuned,
poorly chosen algorithm. For example, modifying an algorithm that relies on a
matrix-matrix multiplication (O(N3) complexity) to obtain the same results with
a matrix-vector multiplication (O(N2) complexity) can achieve gains greater than
any of the methods described in the proceeding sections.

Another algorithmic consideration is the number of operations required to
perform the computation. According to Table 1.1, an algorithm that performs
20 integer addition and subtraction operations can still be faster than an algorithm
that performs a single integer division operation. Section 6 involves a number of
algorithms which attempt to minimize the number of operations involved.

2.4.2 . Memory

Another important consideration is memory usage and memory availability.
One of the most important memory limitations is the size of the RAM on the
machine. If a computation requires more memory than is available in the RAM,
the operating system must begin using a swap partition of the physical storage
memory. In the most generous comparison � slow RAM with a fast solid state
drive � the RAM is still 10x faster than the SSD. Further, it is can also be useful
to consider the size of the various cache levels available on the CPU. Due to the
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di�erence in latencies to access data from various cache levels (Section 1.6), it is
often faster to break the data into blocks and perform repeated operations on each
block rather than perform repeated operations on the full data[19].

A number of common computations are limited by the available memory bandwidth.
The scalar product of two vectors (Algo. 10) is one such example. The computation

Algorithm 10 Scalar product
1 float sum = 0;

2 for ( int i = 0 ; i < len ; ++i ) {

3 sum += a[i] * b[i];

4 }

Algorithm 11Matrix multiplication of MxO and OxN matrices.
1 for ( int i = 0 ; i < M ; ++i ) {

2 for ( int j = 0 ; j < N ; ++j ) {

3 sum = 0;

4 for ( int k = 0 ; k < O ; ++k ) {

5 sum += a[i][k] * b[k][j];

6 }

7 c[i][j] = sum;

8 }

9 }

required to compute the scalar product is very limited compared to the memory
usage � it can be reduced to one fused multiply-add (fma) operation for every two
load operations. This means that the computation is memory bound. Conversely, if
a computation is limited by the speed of actual computation, it is compute bound.
Matrix multiplication (Algo 11) and the Black & Scholes model[77] are popular
examples of compute bound computations.
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Figure 2.2: Example of a roofline model graph.[34]

This distinction between compute bound and memory bound computations is
one of the core notions of the Roo�ine Model[107] used to predict peak performances
of computations on speci�c machines. In order to perform this predition it is �rst
necessary to compute the arithmetic intensity of the computation. This arithmetic
intensity is a ratio of the computational load, referred to as work, to the amount
of memory transfers, referred to as memory tra�c. Figure 2.2 provides a simple
example of a roo�ine model. If the arithmetic intensity of a computation falls under
the sloped portion of the graph, it is a memory bound computation. For example,
the scalar product described in Algo. 10 is memory bound because it performs two
memory transfers and two arithmetic operations per loop cycle. If the arithmetic
intensity of a computation falls under the �at portion of the graph, it is a compute
bound computation. The matrix multiplication described in Algo. 11 is compute
bound because it can be written to perform many more arithmetic operations than
memory transfers, as the data used in the computation is frequently reused.

2.4.3 . Data Types

The choice of data types can also have a strong e�ect on the performance of
a program. It is imperative to choose a data type that has enough numerical
precision to calculate correct results. However, it is possible to choose a data
type that is too large and slows down the calculations. The size of the data type
chosen a�ects the memory usage of the computations. A program using 16-bit
�oating point precision will require quadruple the memory of a program using 64-
bit �oating point precision. This in�uences the amount of data that can �t into
the caches and the RAM, which can a�ect the speed of the computations. Due to
the �xed size of SIMD registers, smaller data types can obtain greater speedups. It
is possible to get a theoretical gain of 4x by using half precision instead of double
precision for a well vectorized computation. Finally, if using a form of parallelism
that requires memory transfers, the reduced data size allows for faster memory
transfers � it takes about half the time to transfer half as many bits. The following
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section will provide much more detail about the di�erent data types available.
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3 - Numerical Representations

This section details the ways in which numbers can be represented on a
computer. Di�erent formats will be discussed, along with their respective strengths
and weaknesses. Chapters 5, 6, and 7 will present works exploring the e�ects of
various numerical formats applied to certain computations.

3.0.1 . Binary

Most numbers present in everyday life are presented in base 10. This means
that we have ten distinct numbers - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 - that we count
through before repeating (and incrementing the digit to the left of it). For example,
counting past 9 gets 10, counting past 29 gets 30, and counting past 99 gets 100.

However, it is possible to count using any base we want. When counting time,
we use base 60 when keeping track of hours (1 hour = 60 minutes) and minutes (1
minute = 60 seconds) and base 24 when keeping track of days (1 day = 24 hours).
Here the idea is the same; counting past 59 seconds gets 1 minute, counting past
5 minutes 59 seconds gets 6 minutes, and counting past 59 minutes 59 seconds
gets 1 hour.

The last and most important base to present here is base 2. Here we only have
two distinct numbers - 0 and 1. Counting from 0 to 9 in binary goes as follows -
0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001.

In order to understand how computers handle numbers, it is not base 10 that
interests us, nor base 60. It is base 2 that computers use to store numbers. This
is because the information is physically stored by transistors, which only have two
states - on or o�. Therefore, a single transistor is not capable of storing a base 10
digit, as that would require it to have 10 possible states. However, a transistor is
capable of storing a digit in base 2, since base 2 only has two numbers available
- 0 and 1. This means that it is also possible to arrange a series of transistors so
that each transistor in the series represents a base 2 digit of the full number.

In essence, a bit is a single digit of a base 2 number. Since the ideas discussed
in the proceeding sections are applicable to both base 2 and base 10, they will be
mostly described in base 10.

3.0.2 . Integers

Integers represent whole numbers. They cannot directly represent any decimal
values. Numerically, an integer is represented by a set number of digits. This
means that there is a set maximum and minimum number. For example, a four
digit decimal number can range from 0000 to 9999 and a four bit binary number
can range from 0000 (0) to 1111 (15).

In order to be able represent negative numbers in addition to positive numbers,
we must devote one digit to the sign. In this case, a four digit decimal number can
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represent -999 to +999 and our four bit binary number can represent 1000 (-8) to
0111 (7). In contrast to decimal, binary negative numbers are not simply stored as
a negative sign followed by the absolute value. Instead, processors store negative
values as the two's complement of their corresponding positive values. This two's
complement can be obtained by inverting each bit of the initial value, then adding
one. As a result, binary numbers retain the property that the bitwise sum of a
number and its negative equal zero.

The limited number of bits in an integer result in a potential problem known as
over�ow. When an integer contains the maximum allowable value, adding to this
integer causes it to over�ow to the minimum value. For example, the maximum
four bit unsigned integer is 1111 (15). When adding one the result should be
10000 (16), but because there are only four bits available, the result is truncated
to 0000 (0). In the signed integer case, adding one to 0111 (7) would over�ow to
1000 (-7).

Due to the indivisibility of integers, division operations can be inexact and
vulnerable to truncation errors. The decimal portion of a division result will
be truncated, which can lead to signi�cant losses. For example, using integer
math the operation 49 ÷ 10 returns 4. This is nearly 20% error relative to the
mathematical result. However, for operations that do not involve division, the only
risk of inaccurate results is from over�ow.

3.0.3 . Fixed Point

± 8 4 2 1

Integer(a)

.

1
2

1
4

1
8

Fraction(b)

Figure 3.1: Approximatebreakdown of a Q5.3 fixed pointnumber.

Next, we want to be able to
represent numbers with decimal points,
rather than limit ourselves to whole
numbers. The simplest way to
do this is to set a �xed number
of digits before the decimal point
and a �xed number of digits after
the decimal point. This notation
is intuitively called a �xed point
representation. Fixed point numbers
have many similarities to integers, as
integers can be considered a special
case of �xed point representation where there are no decimal points. As such, they
share the same susceptibility to over�ow when exceeding the maximum values.
Fixed point values are limited to a prede�ned number of decimal points, so they
are also susceptible to the same types of rounding errors when dividing. Fixed
point implementations may perform multiplication and division by computing with
more digits than required, then rounding the result. However, this feature is
implementation-dependent. Due to the presence of the decimals, there is also
an added risk of rounding errors when multiplying. One major drawback to �xed
point representation is that it is usually not supported by hardware � �oating point
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representation is used instead.

Qa.b Representation This work will describe �xed point formats using the
Qa.b representation. In this representation, the 'a' represents the number of bits
in the integer portion of the �xed point number. The 'b' represents the number of
bits in the decimal portion of the number. For example, the Q5.3 value represented
in Figure 3.1 contains 5 integer bits and 3 decimal bits.

Another common representation for �xed point formats is the Qf format, where
f is the number of fractional bits. This representation is less precise, as the number
of integer bits are not speci�ed.

3.1 . Floating Point Representation

The most common format used for handling numbers containing decimals is
the �oating point format. This representation is essentially the binary form of
normalized scienti�c notation. This normalized scienti�c notation consists of a
single digit followed by a decimal point and the decimal portion of the value followed
by an exponent. For example, 123.456 in normalized scienti�c notation becomes
1.23456 · 102. In binary, 1101.1 (13.5) becomes 1.1011 · 23. The presence of the
exponent allows for a dynamic range of possible values, compared to �xed point
representation.

Normalization provides a few bene�ts. First, it limits each possible value to
a single representation. In other words, there is only one way to represent any
given value. This simpli�es comparisons between �oating point values. In addition,
normalization maximizes the amount of available digits, which is a desirable property
with a limited number of digits. For example, if eight total bits are available in the
mantissa, the value 0.0011011 wastes the three bits of leading zeroes. Normalizing
the value to 1.1011000 allows room for greater precision. Finally, normalization
allows for a memory optimization speci�c to binary. Binary only allows for values
of 0 or 1 and normalization forces the �rst bit to be nonzero. It is thus possible to
make the 1 before the decimal point implicit and avoid storing it.

Floating point representation has more complexities than integer and �xed
point representations. The corresponding arithmetic is also more complex, as
previously shown in Table 1.1. For example, �oating point addition and subtraction
take three cycles to evaluate, compared to one cycle for integers. One major reason
for this is that �oating point values can have di�erent exponent values. The two
operands must therefore be aligned in terms of exponents before performing the
addition or subtraction. This necessitates shifting (which in binary is equivalent
multiplying by a power of two) the lesser value until the exponents are equal.

The IEEE standard[47] details di�erent possible levels of precision for �oating
point numbers. The most commonly used formats are �oat (binary32) and double
(binary64). These formats use 32 and 64 bits of memory, allocated in the manner
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Precision Sign Exponent MantissaHalf 1 5 10Single 1 8 23Double 1 11 52Quad 1 15 112
bfloat16 1 8 8

Table 3.1: Specifications of IEEE 754-2008 floating point data types andthe non-IEEE bfloat16 data type.
Sign Exponent Mantissa

1. . 2
-15

Figure 3.2: Converting a binary16 format floating point value into anumerical value.

indicated in Table 3.1. When performance is valued over precision, there is also
the more recent half (binary16) format available which only requires 16 bits of
space. However, the limitations of �oating point formats, such as over�ow and
representability, are greatly exaggerated when using half precision.

Floating Point Format A �oating point value consists of the three parts
shown in Fig. 3.2 � a sign bit, an exponent, and a mantissa. The sign bit represents
whether the value is positive or negative. The mantissa represents the decimal
portion of the number. IEEE �oating point numbers are normalized, meaning that
there is an implicit 1 before the decimal. This e�ectively allows for one more bit in
the mantissa. The exponent is related to the power of 2 with which the mantissa
will be multiplied to obtain the actual value.

IEEE Standard The Institute of Electrical and Electronics Engineers (IEEE) has
released successive versions of their standard IEEE 754, which details numerical
formats for computer processors. This standard de�nes the ways that computers
should perform arithmetic operations and store numbers, resulting in a universal
standard. As a result, code written for one IEEE compliant processor will give
the same mathematical results on any IEEE (same/previous revision) compliant
processor.
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bfloat16 The Brain Floating Point (b�oat16) an alternative 16-bit �oating
point format to the IEEE-754 half format. It is also beginning to be supported
by hardware. One of the primary interests of the b�oat16 format is the ease of
conversion between the b�oat16 and the IEEE-754 single precision �oating point
format, as the b�oat16 is a truncation of the single precision format.

Overflow

Over�ow happens when the values being stored or calculated exceed the limits of
what the format can store. For example, half precision �oating point numbers can
only store values up to 65504. Values greater than 65504 cannot be represented,
so care must be taken to avoid calculating or storing any such values in a half
precision format, otherwise they will be rounded to in�nity.

Underflow

On the other hand, under�ow occurs when a value is too small to be properly
represented, or subnormal. For half precision, this is any value smaller than 2−14.
When a calculation results in a subnormal number, a number of bits of information
are lost equivalent to the number of leading zeroes required to store the value.
Further, if a calculated value is smaller than 2−24, then it will truncate to zero.

Unit of Least Precision

Not every number can be exactly represented in �oating point formats � there is
a lower limit to their numerical precisions. This notion is represented by the Unit

of Least Precision (ULP)[36], which corresponds to the least possible di�erence
between two values for a given exponent. As shown in Table 3.2, the value of
one ULP is not �xed for each type of precision, but depends on the value of the
exponent. For an extreme example, the ULP for half precision �oating point values
at the top of their range - between 32769 and 65504 - is 32, meaning that only
multiples of 32 (25) can be represented. Any calculated result is thus rounded to
the nearest ULP less than the mathematical result. This ULP is the natural unit
to use when discussing error rates of �oating point algorithms thanks to its scale
invariance.

One way to calculate the ULP is described in Algo. 12. This method is used to
calculate the errors presented in Section 5.3. It is also possible to compute a ULP
by starting with a known ULP and scaling its exponent up or down appropriately to
match the exponent of the values of interest. For example, the C language de�nes
FLT_EPSILON as one ULP at a value of 1 in the float.h header. One ULP at a
value of 4 could thus be computed as 4 * FLT_EPSILON.
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Base Value Half ULP Float ULP Double ULP
2−10 2−20 2−33 2−63

1 2−10 2−23 2−53

210 1 2−13 2−43

Table 3.2: Value of 1 ULP at different base values for half, single, anddouble precisions.
Algorithm 12 Pseudo-algorithm for calculating a ULP. Theincrement/decrement functions increment and decrement theweakest bit of the mantissa while preserving the exponent and sign,causing them to each be one ULP away from x’s value.

1 half ulp( half x ) {

2 half x_inc = increment_mantissa( x );

3 half x_dec = decrement_mantissa( x );

4 half ulp1 = x_inc - x;

5 half ulp2 = x - x_dec;

6 return min( ulp1 , ulp2 );

7 }

Exponent Alignment

The dynamic range of �oating point numbers renders arithmetic more complicated
� if the two values have di�erent exponents, then the exponents must be aligned
before performing any arithmetic. When aligning the exponents, the smaller value's
exponent is increased to match that of the larger value. As a result, a number
of bits equal to the di�erence in the exponents are truncated from the end of
the smaller value. When this di�erence in exponents is large or an algorithm
involves many misaligned exponents, then this truncation can lead to signi�cant
errors. Absorption happens if the smaller value is so much smaller that it is
completely negated when matching exponents. For all experimental cases presented
in section 5.3, this misalignment is the dominant source of error.

Some systems alleviate the errors introduced by misaligned exponents through
the use of extended precision �oating point formats. However, SIMD instructions
do not have any such extended precision built in.

Cancellation

It is important to remember that in many cases, the values being used to perform
computational arithmetic are approximations. This can lead to results signi�cantly
with larger error than expected. One such scenario, known as cancellation, is the
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subtraction of two nearly equal numbers such that almost all of the digits cancel
out. The result of this subtraction is much more sensitive to the imprecision of the
original approximations than other operations, such as addition and multiplication.

For example, we may consider a subtraction between the numbers 99.99 and
100.51. The real value of 100.51− 99.99 is 0.52. If we use a Q31.1 format, these
values become 99.5 and 100.5, each of which is approximately 99% correct as an
approximation. However, the result of the subtraction 100.5 − 99.5 is 1, rather
than 0.52. The result of the subtraction contains more than 90% error.

3.2 . Numerical Approximations

Due to the limitations in how numerical values are represented within a computer,
it is necessary to approximate many mathematical operations that a user may
want to compute. Some operations can be exact or nearly exact, such as integer
addition and bitwise operations. However, most operations require some level of
approximation. It should be noted that it is possible to perform exact computations
using symbolic mathematical functions, but these functions tend to take much
longer to compute.

There are many methods to approximate mathematical functions. Every method
has its own advantages and disadvantages, making it more or less suitable for
certain cases. Below, we describe some of the more simple and widely applicable
methods that will be used in section 6.

3.2.1 . Taylor Series Expansion

The Taylor series of a function, described by eq. 3.1 is an in�nite sum of
functions that approximate the original function, centered around a certain value.

f(x) =

∞∑
n=0

f ′(a)

n!
· (x− a)n (3.1)

This in�nite sum can be cut o� at a chosen n in order to provide an nth order
approximation. The error of this nth order approximation is equal to the sum of
the remaining cut o� terms. The balance between computational simplicity and
permissible error thus lies in the choice of n. A small n will allow for more rapid
computation at the cost of accuracy, while a large n takes longer to compute, but
provides a more accurate result.

The further an input is from the center of the Taylor series (a), the less well the
approximation performs. As a result, Taylor series approximations are best suited
to repeating functions where it is possible to adjust the input to never be far from
a, the center of the approximation. One such example, presented in Section 6.5.3,
is the sine function. This function repeats itself completely within a range of 2π,
meaning that it is possible to adjust the input to never be further than π from the
center, improving the quality of the approximation. Taylor series approximations
can also be suitable when the input domain is bound within a well de�ned range.
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Remez Algorithm The result of a Taylor series approximation is a polynomial
function. However, there exist other methods for generating polynomial approximations,
such as the Remez algorithm[88]. While it can be more di�cult to compute
the polynomial coe�cients without specialized tools such as [15], the resulting
approximation is often, but not always, superior to the Taylor approximation.

3.2.2 . Newton-Raphson

The Newton-Raphson method is an iterative algorithm for �nding the roots of
a function (points where f(x) = 0) via eq. 3.2.

xi+1 = xi −
f(xi)

f ′(xi)
(3.2)

The function f(x) is de�ned in such a way that the �nal xi is the approximation
of a function g(y) at a point of interest a.

As opposed to the Taylor method described above, the Newton-Raphson method
is iterative. This means that it performs repeated iterations in order to approach
a solution. As such, it can be said to converge upon the solution. Various
iterative algorithms display di�erent rates of convergence. A higher order rate of
convergence means that an algorithm converges towards its solution more rapidly
(per iteration). The Newton-Raphson method described here generally exhibits
quadratic (second-order) convergence.

It can be noted that eq. 3.2 does not de�ne x0 as a starting point. This leaves
a degree of freedom in the choice of this x0 starting seed. For some functions f(x),
this seed can be chosen intelligently in such a way that the algorithm converges
more quickly.

The choice of x0 must respect certain conditions for the algorithm to guarantee
quadratic convergence. First, f ′(x) must be nonzero within a region de�ned by
the distance between x0 and a. Otherwise the algorithm can stall if it reaches
a point where f ′(x) = 0. Secondly, f ′′(x) must be continuous within the same
region. Finally, x0 must satisfy certain conditions of su�cient closeness to a. If
all of these conditions are not satis�ed, then the algorithm may exhibit less than
quadratic convergence � if it converges at all.

In order to use the Newton-Raphson method to approximate an operation g(a),
f(x) must be de�ned in such a way that the roots of f(x) are equivalent to the
result of the operation we wish to perform. In general, the simplest f(x) for an
operation g(a) can be de�ned as f(x) = g−1(a) − a where g−1(a) is the inverse
of the operation g(a). A few examples are provided in table 3.3.

In order to use the Newton-Raphson method, it must be possible to compute
f ′(x), preferably in a computationally e�cient manner. One famous application
of this algorithm is computation of a square root. As shown in table 3.3, the
operations needed to update xi are computationally simple.

The choice of the starting seed, x0, is very important. If it is poorly chosen,
the algorithm may take signi�cantly longer to converge, if it does converge on the
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g(a) g−1(x) f(x) f ′(x) xi − f(xi)
f ′(xi)

1
a

1
x

a− 1
x

1
x2

xi · (2− a · xi)
√
a x2 a− x2 2 · x 1

2
· (xi + a

xi
)

sin(a) arcsin(x) a−arcsin(x) 1√
1−x2 xi−arcsin(x) · √1− x2

Table 3.3: Newton-Raphson applied to a few example cases.
correct solution. The division example shown in table 3.3 is one such example. In
this example, if x0 is too small, the algorithm will perform a large number of small
iterative steps as it accelerates towards the solution. However, if x0 is too large,
the algorithm will converge on xi = 0, rather than xi = 1

a . Section 6 will show
that in some cases, it is possible to choose an e�cient x0 that avoids both of these
possible problems.

There also exist other "Newton-type" methods capable of faster convergence
than the classic Newton-Raphson method. For example, the methods presented
in [3], [103], and [32] exhibit cubic rates of convergence rather than the classic
method's quadratic convergence. While these methods converge more quickly,
they also all require more computations per iteration. As a result, they are not
automatically superior when considering runtime performance.

It is also possible to use other methods � such as ISA instructions or faster
algorithms � to provide a rough approximation of an operation, then use a Netwon-
type method to re�ne the rough approximation into a better approximation. This
technique is applied to the reciprocal square root compution in [108] and [67], as
well as the reciprocal computation in Section 6.5.4.

Conclusion

Chapter 5 will explore the e�ects of substituting half precision in the place of
�oating point precision. Chapter 6 will apply many of the concepts presented
here in order to construct a software library to e�ciently emulate �xed-point
arithmetic. Finally, chapter 7 will combine the concepts presented here with an
arti�cial neural network presented in the following chapter in order to perform a
number of experiments.
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4 - Arti�cial Neural Networks

Arti�cial neural networks (ANNs) are computational tools used to predict
outputs from inputs. Popular applications of ANNs tend to be problems that
are di�cult to generalize clearly and logically, such as object detection, image
classi�cation, and translation. These problems also tend to have large, messy inputs
which are di�cult to handle programmatically. This messiness and complexity is
modeled in the general architecture of ANNs, which could be described as a tangled
web of interrelated connections.

Input

Input
Output

Figure 4.1: Example of asimple perceptron

The basic building block of an ANN is
the perceptron. A perceptron is a simple
function that takes a number of inputs and
converts them into a single output[89]. One
simple example of such a function would be a
perceptron that outputs the sum of all inputs.
In human terms, this could be considered similar
to a person looking at data and coming to a
conclusion based on the data. It is then possible
to set up a number of perceptrons into a network where the output of certain
perceptrons is used as the input to other perceptrons. These perceptrons can
be arranged into layers such that each layer of perceptrons generates the inputs
for the next layer. In practice, neural networks are constructed of series of such
layers feeding into other layers in a mostly linear fashion. If a neural network
consists exclusively of layers of perceptrons, it can be referred to as a multilayer
perceptron.

Rather than manually setting the weights of each perceptron, it is possible
to train a neural network using a database of inputs and corresponding desired
outputs[104]. The most important requirement of this training is the set of example
inputs � they should be representative of the target use-case and numerous enough
to avoid over�tting the problem. Over�tting occurs when a trained network models
the training images speci�cally at the cost of its ability to solve a problem. A simple
example of over�tting (Fig. 4.2) would be �tting a �ve degree polynomial to four
data points generated by a second degree polynomial.

4.1 . Training vs Inference

There are two phases in the usage of an ANN � training and inference. The
training phase consists of "teaching" the ANN to link inputs to known outputs,
while the inference phase uses the trained links to predict the outputs corresponding
to inputs that the ANN may or may not have seen before.
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Figure 4.2: Overfitting a complex function to points generated by asimple function

Figure 4.3: Example of asmall fully connected neuralnetwork

The purpose of the training phase is to
adapt the weights of the perceptrons of each
layer in order to allow the entire network to
predict outputs accurately. This phase requires
three components � a set of sample inputs,
a set of outputs corresponding to the inputs,
and an objective function. The inputs should
ideally be representative of the inputs the
neural network will receive when deployed while
also being varied and numerous enough to
avoid over�tting issues. The outputs should
be comprehensive and veri�ed to be correct.
"Garbage in, garbage out" applies very well to the data that neural networks are
trained on. Finally, the objective function is a function that quanti�es in some way
the accuracy of a prediction or set of predictions. This provides a function that can
be minimized or maximized over the set of input/output pairs using techniques such
as backpropagation[90] or reinforcement learning[95]. These techniques tend to
be very computationally intensive due to the large amount of inputs and iterations
required. While entire works can be written about neural network training, this
work focuses entirely on what happens after the training phase.

Once a neural network is trained, it can be used to perform inference on new
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inputs. Inference requires a neural network model (or architecture), trained weights
for the model, and new inputs. This stage is much less computationally intensive
than training, to the point where some models can be computed in real-time. For
the models cannot perform inference as quickly as the user would like, there are a
number of techniques that can be used to speed up inference (Sec. 4.3).

4.2 . Layers & Computation

There are two types of layers in particular that tend to consume heavy computational
resources: fully connected layers and convolutional layers. For example, the PVANet
network spends approximately 36% of its inference time inside these two layers.

4.2.1 . Fully Connected Layer

Fully connected layers contain the majority of the trained parameters in a neural
network. The number of parameters associated with a fully connected layer are
proportional to the number of perceptrons in the input layer times the number of
perceptrons in the output layer.

pout(j) = b(j) +

Nin∑
i=0

w(i, j)pin(i) (4.1)
Computationally, the output is obtained via a matrix-vector multiplication, as
shown in Eq. 4.1. This is a well known type of operation, often referred to as
a GEMV (GEneral Matrix-Vector) or blas2 computation. Most neural network
implementations take advantage of linear algebra software libraries, such as BLAS[4],
ATLAS[105], or MKL[50]. Chapter 7 will explain the limitations of the above
libraries when performing certain inference optimizations.

4.2.2 . Convolutional Layer

Convolutional layers require a signi�cant amount of computation with a small
amount of repeated parameters. In the case of a convolutional layer, the trained
parameters represent convolutional matrices, also referred to as kernels. Each of
these kernels represents a transformation of the input image, as shown in Fig. 4.4.

In order to discuss convolutional layers, it is helpful to understand standalone
image convolutions.

Image Convolution

An image convolution is a type of image transformation. This convolution is a
simple operation that is applied to every pixel of the input image. The basis of a
convolution is the kernel � a matrix that describes how to transform each pixel.
Kernel sizes represent the size of the region of interest. For example, a kernel of
size 1x1 looks only at the input pixel while a kernel of size 3x3 looks at the 3x3
pixel region centered on the input pixel (1 pixel away in each direction, including
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Figure 4.4: Example of a step in an image convolution.

diagonals). Another way to view the kernel is as a sliding window that passes over
the input image, pixel by pixel. At each pixel stop, the kernel is applied to the
input image by multiplying the value of a kernel entry by the value of the input
pixel underneath it. Then, each of these products is added together to obtain the
result of the convolution. This process is repeated for each pixel of the input.

What happens when the kernel cannot be overlaid entirely on top of the input
image? This is an important question because it applies to all four sides of the
image. There are a few main solutions to this problem. First, it is possible to simply
ignore the edges and only operate on the inner region of the image. However, this
means that the output image will be smaller than the input. Sometimes this is
an acceptable tradeo�, sometimes other solutions are needed. Another solution is
to wrap around to the opposite edge. For example, a kernel applied to the top
left pixel of an image will also include some pixels from the bottom right region of
the image. However, if the images contain important information near the edges,
this can cause the edges to contaminate each other. A third solution is to pad,
or extend the sides of, the image with 0-value pixels. This combines with the �rst
solution (ignoring the edges) to output an image of the same size as the input
without any contamination between the edges. There exist other solutions, but
these are the main ones applied in the context of this work.

Up until here, we have been describing convolutions of single image (1-channel)
inputs. However, most images are stored in RGB (3-channel) format with one
channel for red colors, one channel for green, and one channel for blue. Each
of these channels contains a di�erent type of information about the picture. We
could combine the three channels into one before performing a convolution, but we
would lose important information about the picture. Instead, we can simply add
an extra dimension to our kernel � a 5x5 kernel would become a 5x5x3 kernel. This
allows our convolution output to incorporate information from each input channel.

In the context of a convolutional neural network layer, we often have more than
3 input channels and more than one output channel. As a result, the convolutional
layer contains one kernel for each output channel and each kernel has a number of
channels equal to the number of input channels.
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Kernel

Figure 4.5: Example of a 3-channel convolution
4.3 . Optimizing Inference

While inference is less computationally intensive than training, it is still intensive
enough to be worth optimizing. The fully connected layers contribute a large
number of weights, which must be stored in memory. For example, PVANet
contains 369MB of weights. In addition, the matrix-matrix multiplication required
with fully connected layers are memory bound, giving a strong incentive to reduce
the memory requirements. The convolution layers contribute relatively few weights
but are also memory bound.

As a result, optimization tends to result in reduced memory demands. This
can take the form of pruning connections to reduce the required computations and
remove the associated weights or of reducing precision in order to increase the data
�ow and parallelizability.

4.3.1 . Pruning

One method of optimizing trained neural networks is to prune away unnecessary
connections. Of the vast number of connections in a neural network, a certain
amount can be removed with minimal or no e�ect on the results. This can range
from removing a handful of connections within a fully connected layer, to removing
a channel of an image convolution, to the removal of an entire layer.

4.3.2 . Reduced Precision

The method of optimizing trained neural networks focused on in this work
is the reduction of precision used during inference. This provides a number of
advantages. First, the memory requirements can be reduced. Moving from double
precision to half precision would cut memory requirements to a quarter of the
initial requirements. Second, smaller data types can be moved more quickly. This
accelerates memory-bound computations. Thirdly, changing between data types
can accelerate arithmetic computations. As shown in Table 1.1, integer addition,
subtraction, and multiplication are faster than their �oating point counterparts.
Finally, reduced precision allows better parallelizability. Smaller data types are
better accelerated via SIMD than larger data types.
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4.4 . Validation

When experimenting with neural networks, it is important to have a means
of validating and quantifying the results. In order to determine if an individual
result is correct or not, a database of known inputs and outputs is required. For
the purpose of this work, we use the data from the Pascal VOC Challenges[26] to
validate results by calculating the mean average precision (mAP) of inference on a
set of images. In order to describe the mAP computation, we will �rst explain the
format of the outputs and some of the concepts involved in computing the mAP.

4.4.1 . PASCAL VOC Dataset

The PASCAL VOC (visual object challenge) datasets are a series of image
recognition datasets provided for a image recognition/detection challenge. There is
one dataset per year for each year from 2005 until 2012, although this work primarily
used the 2007 and 2012 datasets for validation. Each dataset consists of several
thousand images with corresponding annotated objects. The annotations each
contain an object category (20 total categories starting from 2007), a bounding
box, and a �ag marking if an object is di�cult and should be excluded during mAP
computation. The mAP computation relies on the concepts of precision and recall
and of the intersection over union.

4.4.2 . Precision and Recall

Positive Negative

True

False

Figure 4.6: Visualexample of True/FalsePositive/Negativeclassifications.

The mAP computation relies on a pair of
corresponding principles called precision and
recall.

Precision is a measure of how accurate the
results of an inference are. More speci�cally,
it is the number of object detections which
were correct (true positives) divided by the total
number of object detections (true positives plus
false positives). For example, if an inference
provides 4 objects and 3 of them match their
annotations, we obtain a precision of 3 ÷ 4 =

0.75.

Recall is a measure of how well an inference
�nds objects in an image. More speci�cally, it
is the number of correct object detections (true
positives) divided by the number of objects that
should have been detected (true positives plus
false negatives). For example, if an inference
provides 3 objects that match their annotations
for an image that contains 5 annotated objects,
we obtain a recall of 3÷ 5 = 0.6.
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Figure 4.7: Structure of the PVANet neural network[46].
4.4.3 . Intersection over Union

In practice, the results of inferences do not perfectly match the annotated
bounding boxes provided in the VOC dataset. This does not mean that the result
are invalid. However, it does mean that it is necessary to de�ne a measure that
determines if an inference result matches an annotation. For this, we use the area
of intersection the annotated bounding box and the inferred bounding box divided
by the area of union of the two boxes. An IoU of 1 represents a perfect match,
while an IoU of 0 represents a complete mismatch. A value in between can be
chosen as the threshold to determine what can be considered a match.

4.4.4 . mAP

The mean average precision is the mean of the average precisions of all classes
considered.

In order to compute the average precision, a precision/recall curve p(r) of all
results must be constructed. This curve is constructed by �rst choosing a number
of con�dence thresholds. Secondly, the corresponding precision and recall are
computed considering all inferred objects above the con�dence threshold. Thirdly,
the precision/recall curve is smoothed out by setting each point equal to the
maximum of all points with a greater recall (p(ri) = max(p(rj |rj > ri)). Finally,
the average precision is the area under this �nal p(r).

VOC mAP It should be noted that the VOC challenge provides two means of
approximating the above integral � the 2007 version and the 2012 version. The
2007 mAP computation approximates the integral using 11 points � 0.0, 0.1, 0.2, ..., 0.9, 1.0.
Meanwhile, the 2012 version approximates the integral using all available points
along the curve. As a results, the 2012 mAP will generally be lower than the 2007
mAP.

4.5 . The PVANet Neural Network

The experiments that will be presented in Chapter 7 will use the PVANet neural
network[46] published by Hong et al. in 2016. There are a few reasons for choosing
the PVANet network for this work.

49



InnerProduct44444444444444444

BatchNorm

8383838383838383838383838383838383

Deconvolution

11111111111111111
Convolution

8989898989898989898989898989898989
Pooling

55555555555555555Power
1919191919191919191919191919191919

ProposalLayer
11111111111111111

ReLU

8585858585858585858585858585858585

ROIPooling

11111111111111111
Scale

8383838383838383838383838383838383
Softmax

22222222222222222 Eltwise
1515151515151515151515151515151515

Figure 4.8: Distribution of layers inPVANet.

Reproducibility Most importantly,
the published results are reproducible
� the authors provide a github
repository[45] with the code
needed to reproduce their
results. These reproducible
results take the form of an
mAP computed from the results
of the VOC2007 and VOC2012
challenges.

Accuracy The open-source
PVANet achieves an mAP
of 84.9% on the VOC2007
challenge and 89.8% on the
VOC2012 challenge when computing
VOC2007 mAP. This leaves room for the experiments to degrade the output while
still maintaining a coherent, usable output.

Speed When computing using only the CPU, PVANet inference takes less than
2 seconds on an Intel i7-4790S at 3.20GHz CPU. This makes it an excellent target
for acceleration, as it is not far from lower speed real-time processing. Even a
speedup of 2 would allow for inference in less than 1 second.

Variety PVANet contains a variety of layers. Figure 4.8 shows a distribution
of computational layer types present in PVANet. Section 4.5 will describe all
layer types present in PVANet. Notably, the PVANet classi�cations rely on fully
connected layers in order to "provide possibility to balance between computational
cost and accuracy of a network"[46].

Layers Present in PVANet

This section provides brief descriptions of both the purpose and the computational
intensity (during inference) of each layer type present in PVANet. Figure 4.9
shows the relative times spent in each layer type during an inference using Ca�e.
It should be noted that, except for the Input layer, each layer's input is the output
of a preceding layer.

BatchNorm The BatchNorm layer performs Batch Normalization of its input.
This Batch Normalization serves to normalize its input values, allowing faster
network training and increased stability[54]. Computationally, the BatchNorm
performs one subtraction and one division operation for each element of its input.
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Figure 4.9: Time spent in each PVANetlayer type during inference with Caffe.Benchmarked using callgrind[76].

Concat The Concat layer
concatenates multiple inputs
into a single layer. Computationally,
this consists of a simple
memory copy from multiple
input bu�ers into a single
output bu�er.

Convolution The Convolution
layer performs an image convolution,
as described in Section 4.2.2.
Its purpose is to attempt to
extract visual information from
an input image. The size
of the convolutional kernel
varies between the di�erent
Convolution layers present in PVANet, ranging from 7x7x16 to 1x1x32.
Computationally, the intensity depends on the size of the kernel. However, the
Convolution tends to be one of the more computationally intensive layers in general.

Deconvolution The Deconvolution layer is similar to the Convolution layer.
For the purposes of this work, it su�ces to say that the Deconvolution layer is
similar in computational intensity to the Convolution layer.

Dropout The Dropout layer serves only in the training phase. It removes
weights randomly in order to avoid over�tting[44]. During inference, the Dropout
layer performs no computation. It is of no interest for the purposes of the works
presented here.

Eltwise The Eltwise layer takes two inputs and performs a single elementwise
operation between them. This combines the information present in its two inputs.
These operations generally take the form of a multiplication, an addition, or a max.
Computationally, the Eltwise layer is relatively simple.

InnerProduct The InnerProduct layer is a fully connected layer which performs
the GEMV operation described in Section 4.2.1. This layer is simultaneously the
most important and the most di�cult to describe the purpose of. It contains the
hidden, unintuitive complexity that makes most neural networks work. Computationally,
the InnerProduct layer is heavy. It represents only less than 1% of the layers (4 of
455), yet requires 11% of the computation time during inference.
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Input The Input layer, true to its name, is for inputs. It provides a bu�er into
which the input image can be copied for use by other layers. As such, it performs
no computation itself.

Pooling The Pooling layer serves to smooth out an image input. It looks at
a 2D input region and outputs either the maximum value or the average value in
the region. The computational intensity depends on the size of the region being
examined, but lies somewhere between the Eltwise layer and the Convolution layer
in intensity.

ProposalLayer The ProposalLayer is a layer custom designed for PVANet. Its
purpose is to transform the output information into a usable format. Computationally,
it is relatively lightweight to its small input size.

ReLU The ReLU layer frequently serves to accelerate training. It sets all negative
values of its input to 0 while leaving the positive values of the input intact.
Computationally, it is not particularly intensive.

Reshape The Reshape layer reshapes its input. It may be necessary to put a
Reshape layer between layers whose dimensions do not exactly match. Computationally,
the Reshape consists entirely of memory copies. If the reshape is not cache-friendly,
it may be slow.

ROIPooling The ROIPooling is a layer custom designed for PVANet. For each
region of interest (ROI) found by previous layers, it generates an output that can
be classi�ed by the following layer. Computationally, it can be heavy, depending
on the number of ROIs. For each ROI input, the ROIPooling must generate a
6x6x512 output.

Scale The Scale layer scales its inputs. This can serve to normalize the input to
some degree, or to allow further layers to behave better numerically. Computationally,
it is relatively lightweight � each output is the result of a multiply-add operation
on an input (outi = a ∗ ini + b).

Split The Split layer represents a branch in the neural network architecture. As
such, it is implicitly placed after any layer whose output is used by more than one
other layer. Computationally, it consists of a single continuous memory copy.

Softmax The Softmax layer serves to transform its inputs into probabilities.
The sum of the outputs of a Softmax layer is equal to 1. Computationally, it is
moderately intensive, as it requires multiple loops over the input.
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Conclusion

Chapter 7 will fully utilize the concepts presented in this chapter. It presents
the development of a custom neural network inference engine designed for arbitrary
precisions. Then it presents the results of performing experiments varying the
arithmetic used during inference of the PVANet neural network.
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Part II

Contributions
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5 - Half Precision Average

This chapter describes research performed in order to improve the computation
of an average of a large set of numbers using the half precision numerical format.
We will compare the numerical and runtime performances of several algorithms
(including one that we propose). Numerically, we compare the relative errors and
failure modes of each algorithm. For runtime performance, we compare SIMD
runtime performance of each algorithm using various CPU SIMD architectures.

This section speci�cally focuses on the half-precision �oating point data type
initially de�ned by the Cg programming language in 2002[81], then integrated into
the IEEE standard in 2008[47]. While other 16-bit �oating point formats[92][53]
have existed prior to this one, the IEEE normalized format is the most prominent
format. For a number of years, these half-precision types were only implemented on
certain GPUs. Nonetheless, some works experimented with emulating half-precision
via 32-bit �oating point CPU SIMD instruction sets, such as those performed by
Etiemble et al[25] and Lacassagne et al[65]. While these works showed limited
speedups due to the emulation constraints, they did show some of the potential
speed gains. In parallel, some studies implemented half-precision arithmetic on
FPGAs � such as the Shirazi et al's scalar[94] and Etiemble et al's SIMD[24]
implementations. Some works � such as Piskorski et al[85] � also implemented
half-precision arithmetic on con�gurable CPUs. These works all proved to show
some of the potential gains from physically supporting this data type. All of these
initial studies also served to explore for which types of applications half-precision
types can be su�cient. In these early experiments, they proved more than su�cient
for a number of media processing applications.

More recently, industrial use cases of half-precision algorithms, such as in
the �eld of machine learning, have renewed interest in the �eld of half-precision
computation. As a result, hardware manufacturers have begun supporting half-
precision as a native datatype (both scalar[51] and SIMD[61][79]). This increased
support in turn allows for a stronger focus on half-precision computation in other
areas, such as computer vision[85][84]. While this half-precision hardware support
is not yet ubiquitous, it is growing rapidly.

5.1 . Computing the Average

Mathematically, the formula for calculating the average of a set A of N
elements a1, ..., aN is shown in eq. 5.1.

Avg =
1

N

N∑
i=1

ai (5.1)

57



There are a few existing methods for performing this calculation computationally.
The choice of method depends on the contextual limitations under which the
average is being calculated. This section will present a few methods for calculating
the average.

5.1.1 . Sum Then Divide

The simplest algorithm to implement consists of naively summing all elements
of the set before dividing by the number of elements in the set (Algo. 13). This
naive method will be tested in section 5.3. This method has two potential

Algorithm 13 Naive algorithm for average calculation.
1: function Naive Average(Array)
2: sum = 0
3: for a in Array do
4: sum += a
5: end for
6: avg = sum / length(Array)
7: end function
weaknesses - rounding errors and over�ow. Both of these limitations are ampli�ed
and more strongly tested in a low-precision context. Rounding errors can be
compensated through the use of compensated arithmetic methods such as TwoSum[75],
Kahan Sum[59](Algo. 14), and Pairwise Summation[109]. However, the only way
to reduce over�ow errors is to increase the precision of the sum accumulator. This
strategy of increasing the precision will be referred to as the upcast method and
tested in section 5.3 along with the Kahan method.

Algorithm 14 Kahan variation for average calculation.
1: function Kahan Average(Array)
2: sum = 0
3: rem = 0
4: for a in Array do
5: y = a - rem
6: t = sum + y
7: rem = ( t - sum ) - y
8: sum = t
9: end for
10: avg = sum / length(Array)
11: end function

If one is willing to pay a higher performance cost, there is another technique
available to mitigate rounding errors � sorting the input data prior to summation.
Rounding errors are minimized when the input data is sorted from low to high,
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as this minimizes the order of magnitude di�erences between the summation
accumulator and the inputs being added to it. This sorting approach has a large
performance cost because sorting is generally more computationally expensive
operation than any of the summation algorithms and cannot be fused into the
computational loop for the summation or averaging operation.

5.1.2 . Divide Then Sum

Conversely, one may wish to avoid over�ow by dividing each input element
by the total number of elements, as seen in Algo. 15. This reduces the risk of
over�ow and remains vulnerable to rounding errors, but introduces new possible
errors (under�ow, subnormal values) via the division operation. For a su�ciently
large array, this exchanges the over�ow risk for an under�ow risk that the result of
the division calculation is less than one ULP, resulting in zero. While the rounding
error is equivalent to the Naive method (the order of magnitude di�erence is the
same), the risk of subnormal and zero results of the division can increase the overall
error. This method is not signi�cantly di�erent from the naive approach, so it

Algorithm 15 Divide then sum for average calculation.
1: function Divide First Average(Array)
2: avg = 0
3: for a in Array do
4: avg += a / length(Array)
5: end for
6: end function

will not be directly tested in section 5.3.

5.1.3 . Iterative Average

Another method for calculating an average is the iterative average. This
method iteratively calculates the average according to eq. 5.2, which leads to
Algo. 16.

Avgi+1 = Avgi +
(xi − Avgi)

i
(5.2)

Using this method entirely circumvents potential over�ow problems. However, it

Algorithm 16 Iterative algorithm for average calculation.
1: function Iterative Average(Array)
2: avg = 0
3: for i in 1→ length(Array) do
4: avg += (avg - Array[i]) / i
5: end for
6: end function
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still has limitations due to rounding errors. The larger the set of numbers being
averaged, the greater the e�ect of rounding errors arising from the division.

lim
i→∞

(xi − Avgi)
i

= 0 (5.3)
These rounding errors allow the algorithm to reach the limit shown in eq. 5.3 easily.

5.2 . Cascading Average

0 1 2 3 4 5 6 7
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Figure 5.1: Example of thecalculations performed by theCascading Average algorithm.

The method that we propose
in order to combat rounding errors
and over�ows in a low-precision
environment will be referred to as the
Cascading Average. This Cascading
Average consists of recursively splitting
the set of numbers into two sets and
calculating the weighted average of the
two sets (Algo. 17, Fig. 5.1).

This construction, consisting of a
series of weighted averages between
two numbers, o�ers a few bene�ts.
First, it avoids accumulation into a
monolithic sum, minimizing the risk of over/under�ow or absorption. Additionally,
having each calculation be an average of two numbers within the original input
range reduces the severity of truncation errors due to mismatched exponents.
There are more opportunities for arithmetic rounding errors to arise due to the
increased number of operations, but these are mitigated by the general exponent
alignment. These bene�ts allow for greater robustness over large sets of numbers
without greatly elevating the level of error accumulation.

In practice, the recursive implementation of the cascading average quickly
results in a stack over�ow. It is thus necessary to use a sequential implementation
(Algo. 18) in order to obtain good results. The sequential algorithm presented
in Algo. 18 consists of a primary computation phase, which iterates over the full
array, followed by a secondary phase which accumulates the result into a single
value. The primary phase simulates traversal of a binary tree in the same order
as the recursive version. In the case of an input that is not a power of two, the
cleanup phase then consolidates any remaining nodes of the tree into the result.
Because we traverse the input as if it were a binary tree, all divisions prior to the
cleanup phase are divisions by 2. This means that they can be implemented as
a shift operation or a multiplication by 0.5 rather than a more computationally
expensive integer division operation.
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Algorithm 17 Simplified cascading algorithm for average calculation.A sequential version of this algorithm was implemented for testingpurposes.
1: function Cascading Average(Array)
2: n = length(Array)
3: if n == 1 then
4: return Array[0]
5: else
6: return ( Cascading Average( Array[0:n/2] ) + CascadingAverage( Array[n/2:n] ) ) / 2
7: end if
8: end function

5.3 . Results

This section will discuss the runtime and numerical performance of the various
average calculation algorithms for various use cases.

5.3.1 . Performance

All performance benchmarks were run using stretches of a same input image in
order to obtain di�erent sized input arrays. We perform all speedup benchmarks
using IEEE-754 32-bit �oating point values, as SIMD 16-bit �oating point values
are not yet fully supported. While this does not re�ect the eventual performance
that 16-bit �oating point algorithms when they will be fully supported, it does
provide a baseline expectation of how each algorithm will perform.

Experimental Setup

Intel performance benchmarks were performed using an Intel Core� i7-4790S
CPU @ 3.20GHz CPU with 16GB of RAM, compiled using GCC 6.3.1. PowerPC
performance benchmarks were performed using a Power8 8348-21C @ 2.061GHz
64GB of RAM, compiled using GCC 6.3.0. NEON performance benchmarks were
performed using an ARM Cortex-A57r1 @ 1.91GHz 4GB of RAM, compiled using
GCC 5.4.1. Each algorithm was benchmarked using scalar instructions, SSE SIMD,
and AVX SIMD in order to examine how each algorithm scales with SIMD technology.
Scalar benchmarks were complied with options -O3 -std=c++0x. SSE benchmarks
were complied with options -O3 -std=c++0x -msse4.2. AVX benchmarks were
complied with options -O3 -std=c++0x -mavx2. NEON benchmarks were complied
with options -O3 -std=c++0x -march=armv8-a+simd. Altivec benchmarks were
complied with options -O3 -std=c++0x -maltivec. There was no need to disable
compiler automatic vectorization via the -fno-tree-vectorize �ag, as it did not
vectorize any of the examples. The SSE benchmarks were written using nsimd [11]
� an Agenium Scale library that provides a portable high level C++ interface for
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Algorithm 18 Sequential cascading pseudocode for averagecalculation. Consists of primary computation phase, followed bya cleanup phase.
1: function Cascading Average(Array)
2: for i = 0→ length(Array) do
3: tmp = Array[i]
4: for j = 0→ dlog2(length(Array))e do5: if !in_use[j] then
6: tmp_avg[j] = tmp
7: in_use[j] = true
8: break
9: end if
10: tmp = ( tmp_avg[j] + tmp ) / 2
11: in_use[j] = false
12: end for
13: end for
14: worth = 1
15: accumulated = 0
16: final_avg = 0
17: for j = 0→ dlog2(length(Array))e do18: if in_use[j] then
19: mul1 = acc_worth / ( worth + acc_worth );
20: mul2 = worth / ( worth + acc_worth );
21: final_avg += ( mul1 * final_avg ) + ( mul2 * tmp_avg[j] )
22: accumulated += worth
23: end if
24: worth = worth * 1
25: end for
26: end function

writing vectorial code. Benchmarks were run for the following algorithms � Naive,
Kahan summation, Iterative Average, and Cascading Average. All algorithms were
vectorized using Intel SSE4.2, Intel AVX2, ARM NEON, and IBM Altivec SIMD
instructions. At the time of these experiments, we did not yet have access to an
AVX512 machine.

All performance benchmarks were run using stretches of a same input image
in order to obtain di�erent sized input arrays.

Results

Table 5.1 provides a reference of the number of addition and division operations
required to compute each algorithm. As shown in Figure 5.2, the naive method is
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Figure 5.2: Speedup for different average calculation algorithmsrelative to naive scalar implementation for various input sizes. Biggeris better. Benchmarks performed using 32-bit floats to take advantageof SIMD acceleration.
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the fastest in all scenarios, as it performs the fewest operations per element. The
only operation performed within the loop is a single addition, which is a very fast
operation to perform. The upcast method performs equally without vectorization,
but naturally falls behind when vectorized because fewer higher precision values
�t into an SIMD register. The Kahan summation method and cascading average
perform nearly equally to each other, taking about four times as long as the naive
method to perform their calculations. This is due to the extra operations performed
per element. The Kahan average has four times as many addition/subtraction
operations per element, leading it to take about four times as long to execute
each iteration. The iterative implementation of the cascading average su�ers from
increased operations � on average two additions and divisions by two per element �
and is susceptible to incorrect branch predictions. In practice, these divisions by two
can be optimized to multiplications by 0.5, allowing faster computation. Finally,
the iterative method takes about �ve times as long to perform its calculations. This
represents the extra cost of a subtraction and an expensive division operation.

Figure 5.3 summarizes the speedups of each algorithm for each SIMD architecture
tested. The SSE and Altivec results are almost exactly as expected for 128-bit
SIMD registers. All algorithms except the upcast method show the expected
speedup of 4 (128÷ 32) on both of these architectures. The upcast method only
exhibits a speedup of 2 (128÷64), as the computations are performed using a higher
precision. The NEON speedups are similar, as the SIMD registers are also 128-bits.
The most computationally intensive and slowest algorithms � Kahan and Iterative
� exhibit the same speedup of 4. However, the Naive, Cascading, and Upcast
speedups are slightly lower, indicating that they are approaching the memory
bandwidth limits of the machine. The AVX2 results for the Naive, Cascading,
and Kahan algorithms show an expected speedup of 2 over the SSE results.
This is as expected when moving comparing 256-bit SIMD registers to 128-bit
SIMD registers. The Iterative algorithm shows a lower than expected speedup
due to its use of a division operation in the computational loop. On the Haswell
architecture used to perform the benchmarks, 32-bit SIMD division is faster than
64-bit SIMD division[49]. The Upcast algorithm also shows a lower than expected
speedup due to the cost of converting the input data from �oat to double. The
cost of this conversion is more expensive with AVX2 instructions than with SSE
instructions[49].

5.3.2 . Precision

half C++ library

The half precision �oating point format is not fully supported in most current
computer hardware. For this reason, emulation is necessary in order to test the
numerical performance of half precision algorithms. One option for emulation is
the half C++ library[87][111], which implements a IEEE compliant half precision
storage type. This library contains the functions for converting between half-
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Operation Naive Kahan Iterative Cascade UpcastAdd/Sub N 4N N N NDiv 1 1 N N∗ 1Cast 0 0 0 0 N
∗Most are substituted with multiplication operations

Table 5.1: Total number of operations per algorithm for an input of Nvalues.
precision and architecturally supported types. Arithmetic operations are performed
by converting to �oating point, using native �oating point arithmetic, then converting
back to the half precision type for storage. Because the operations are performed
in �oating point precision, there may be a di�erence in numerical precision between
the half C++ library and fully supported native half precision arithmetic.

1 #include <half.hpp >

2 int main(void) {

3 using half = half_float ::half

4 half a = 10, b = 1.25;

5 std::cout << a + b << std::endl;

6 return 0;

7 }

Listing 5.1: Example of a C++ code using the half library.

Experimental Setup

Precision benchmarks were performed in C++ using the half header-only library
to simulate IEEE compliant binary16 half-precision �oating point numbers. Various
example cases were tested in order to test the limitations of the various algorithms.
Most of the example inputs have easy to calculate averages, but are unlikely to
occur in practice. However, the random input could represent a potential real world
case and the image input does represent a real world case.

Table 5.2 summarizes the results of the experiments performed. Any entry
labelled n/a describes an instance where the result was either inf due to over�ow
in the case of the naive average or nan in the case of the kahan sum. The kahan
summation results in nan rather than inf when over�owing due to line 7 of Algo 14.
When the "sum" term over�ows to inf, line 7 results in an "inf - inf" operation
with a result of nan.

Overall, it appears that the biggest advantage of the Cascading Average method
is that it avoids the catastrophic failure that the other methods are susceptible to.
The sum then divide methods are susceptible to over�ow issues that arise when
Nā > 65504, while the iterative method fails for a su�ciently large number of
elements because it fails to update the average when A[i]/i < 1ULP.
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Input N Naive Kahan Iterative CascadeIncreasing 100 9 1 0 0+1 1000 n/a n/a 0 010000 n/a n/a 993 1Increasing 100 16 1 20 2+0.001 1000 198 1 249 410000 n/a n/a 1486 4Decreasing 100 9 1 0 0-1 1000 n/a n/a 0 010000 n/a n/a 993 1Fixed Ratio 100 1 1 17 0/(N/2) 1000 n/a n/a 3 010000 n/a n/a 994 1Fixed Diff 100 13 1 23 0+(N/2) 1000 n/a n/a 227 010000 n/a n/a 737 0Rand1 1000 271 0 249 3Rand2 1000 n/a n/a 261 4Rand3 1000 n/a n/a 246 2Rand4 1000 n/a n/a 253 3Fixed 1000 152 0 0 010 10000 1070 n/a 0 0100000 1259 n/a 0 01000000 1277 n/a 0 0+/-1 300 17 0 74 110-12 3000 709 1 128 130000 1998 n/a 128 1300000 1401 n/a 128 1Image 2073600 n/a n/a 1037 32073600 1761 391 1701 7
Table 5.2: Precision benchmark results. Results marked n/a indicatethat the trial gave an invalid result (inf or nan).
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It should be noted that for a su�ciently small input value range, the naive
method will never visibly over�ow. It will instead reach a point where sum+ ai =

sum because there are no ai larger than one ULP. The Kahan accumulation method
is much less likely to su�er this silent absorption failure due to the presence of a
remainder variable which will eventually grow larger than 1 ULP.

5.3.3 . Addendum

Since completing the works presented here, the author has discovered that
the half library used to emulate half precision �oats allows temporary over�ow
and under�ow due to its usage of expression templates. The library performs its
computations using 32-bit �oats, then reduces the results to 16-bit �oats when
assigning values. This means that any intermediate values during the computation
are represented using 32-bit �oats and not 16-bit �oats. As a result, some calculations
that should over�ow do not actually over�ow. This is evidenced by the di�erence
between Algorithm 19 and Algorithm 20.

1 half a = 65504;

2 half b = 65504;

3 half c = a + b;

4 c = c / 2;

5 std::cout << c << "\n"

;

6 >>> inf

Algorithm 19: Usage of halfthat overflows

1 half a = 65504;

2 half b = 65504;

3 half c = (a + b) / 2;

4
5 std::cout << c << "\n"

;

6 >>> 65504

Algorithm 20: Usage of halfthat avoids overflowing
One way to circumvent this problem is to modify the Cascading Average

algorithm to halve the entries being averaged before adding them, rather than
adding before dividing. This would impose a small performance cost due to the
extra division operation at every loop iteration, but avoid over�ow issues. A side
e�ect would be that very small input values are rounded to zero when divided.
However, the e�ect of rounding small values to zero is much less signi�cant than
the e�ect of over�owing to inf.
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6 - Fixed Precision Extension of nsimd

One means of accelerating and compressing neural networks being researched
is the use of �xed-point formats[70][97]. However, experiments with �xed-point
arithmetic tend to either neglect runtime performance, or be limited to FPGA
applications with hardware implementations of �xed-point arithmetic. One reason
for this may be the lack of a �exible, high performance �xed-point software library
for CPUs.

6.1 . Fixed Point Format

Fixed-point arithmetic o�ers a few advantages over �oating point arithmetic
while presenting a few challenges of its own.

One of the main advantages of �xed point arithmetic compared to �oating
point is that it is simpler. It uses integer operations, which tend to be faster than
�oating point operations (previously shown in Table 1.1). In addition, the range is
�xed, so there are no alignment concerns. This means that there are no problems
from absorption or cancellation.

The �xed range is also a disadvantage, as it increases the risk of over�ow.
In addition, �xed point arithmetic is generally not explicitly hardware-supported.
While some CPUs may include barrel-shifters to facilitate the implementation of
�xed-point arithmetic, they do not include explicit �xed-point arithmetic units. As
a result, �xed-point arithmetic must be emulated using integer operations. This
reliance on integer operations creates a signi�cant challenge � CPUs do not provide
SIMD integer division. As a result, the division operation is to be avoided as much
as possible when designing �xed-point algorithms.

As previously described in Section 3.0.3, this chapter will use the Qa.b format
to describe �xed point numbers.

Fixed Point Arithmetic It should be noted that some of the basic arithmetic
operations (add, sub, mul, div) have certain e�ects on the precision of �xed
point numbers. This is especially important to keep in mind because �xed point
arithmetic must be emulated using integers, as it is not natively supported by
processors.

When �xed point numbers are contained within integers, a Qa.b number F is
stored inside of an integer I. We may consider I(x) to be the underlying integer
representation of the �xed point value F (x). Mathematically, the relationship
between the two is

Fa.b(x) = I(x) · 2−b

From this, we can derive the properties of the basic arithmetic operations.
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Addition and subtraction have the same straightforward properties.

Fa.b(x1) + Fa.b(x2) = I(x1) · 2−b + I(x2) · 2−b = [I(x1) + I(x2)] · 2−b

The result of addition or subtraction between two Qa.b numbers is another Qa.b
number.

However, multiplication is not as straightforward

Fa.b(x1) · Fa.b(x2) = [I(x1) · 2−b] · [I(x2) · 2−b] = [I(x1) · I(x2)] · 2−2b

Numerically, the result of a multiplication between two Qa.b numbers is a Q2a.2b
number.

Division is not a simple matter either.

Fa.b(x1)÷ Fa.b(x2) = [I(x1) · 2−b]÷ [I(x2) · 2−b] = I(x1)÷ I(x2)

Numerically, the result of a naive division between two Qa.b numbers is a Qa.0
number � there are 0 bits of decimal precision.

It should be noted that the multiplication operations output a larger number
of decimal bits than the input formats (2b vs b bits). This means that a �xed
point implementation must choose a rounding method when eliminating the extra
bits. The simplest (and fastest) rounding method to implement is rounding down
via truncation. A number of other methods exist, including but not limited to
rounding up, rounding to even, and rounding to nearest (with various tie breakers).
However, all �xed point implementations examined in the following section use the
same truncation rounding method.

Section 6.5.2 will describe these problems and their solutions in greater detail.
It is su�cient to describe the properties of the basic arithmetic operations, as all
other functions provided will be constructed using these arithmetic operations.

6.2 . Fixed Point Software Libraries

A �xed point software library was needed in order to be able to perform some
of the experiments presented in Chapter 7. Table 6.1 compares a few such libraries
on the following desired qualities:

• Math - Whether the library contains math functions.

• Vectorized - Whether the library performs explicit vectorization of the
provided functions.

• Arbitrary Qa.b - Whether the library supports arbitrary integer and decimal
sizes when declaring �xed point types.

• API - The type of API o�ered by the library.
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Library Ref License Math Vectorized Multiple Arbitrary Qa.b API
liquid-fpm [33] GPL Y N N Y∗† C Macroslibfixmath [38] MIT Y N N N C99CNL [71] Boost Y Y§ Y Y‡ C++ templatesnsimd [91] MIT Y Y Y Y∗ C++ templates
∗ Extra bits are not zeroed during computation.
† a + b must equal 16 or 32.
‡ a is not actually configurable. It consumes all bits not used by b.§Uses the deprecated boost.simd library.

Table 6.1: Comparison of features in various C++ libraries with fixedpoint support.
• Multiple - Whether the library supports multiple di�erent formats within
one code

• Rounding - All libraries use truncation as their default rounding mode
for multiplication operations. As such, we do not consider it to be a
distinguishing feature.

liquid-fpm is a submodule of the free and open-source liquid-dsp software
library for digital signal processing. It leverages C macros in order to provide a
�exible C interface for �xed point types of varying integer/decimal sizes. However,
each integer/decimal combination must be de�ned ahead of time and the user
must modify a header �le in order to compile the corresponding dynamic library.
As a result, it natively supports a maximum of two Qa.b formats � one 16-bit
format and one 32-bit format. In addition, it only supports formats such that a +
b is equal to either 16 or 32.

libfixmath is a free software library for Q16.16 �xed point numbers. It provides
algorithms speci�cally designed for Q16.16 numbers and does not support any other
�xed point formats.

CNL , or the Compositional Numeric Library, is a C++ library for �xed point
numbers. It allows some, but not full �exibility in the allowed Qa.b sizes. Fixed
point types are declared with template arguments for the base storage type and
the location of the decimal point. However, the �xed point types will always �ll
the entire base type, limiting the possible supported integer/decimal combinations.

nsimd is a software library that simpli�es SIMD programming. This chapter
presents a �xed point library developed as a submodule of nsimd for the purpose
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of meeting the needs described above. The �xed point submodule leverages C++
metaprogramming to allow for arbitrary integer/decimal combinations (provided
they �t within a maximum of 64 bits). In addition, it is developed with vectorization
in mind, as opposed to the other libraries which focus on scalar computations. The
Qa.b de�nition is not strict � if the sum of a and b is less than the size in bits of a
native integer type, the remaining bits can nonetheless contribute extra precision
to computations as additional integer bits. However, nsimd clears these extra bits
when performing comparison operations.

6.3 . nsimd

The nsimd C++ library mostly solves the problems presented in section 1.7.1.
As shown in Algo. 21, it provides a single interface that allows one to write SIMD
code that is portable between architectures and a set of functions that account
for the memory alignment requirement. Code written using nsimd has a level of
verbosity between that of scalar code and that of SIMD code written in assembly.

Algorithm 21 Using nsimd to write portable SIMD code
1 // SIMD (All architectures)

2 int align_beg = A.data() + (A.data() %

NSIMD_MAX_ALIGNMENT);

3 int align_end = A.data() + A.size()

4 - (( A.data() + A.size() ) %

NSIMD_MAX_ALIGNMENT);

5 for (int i = 0; i < align_beg; ++i)

6 A[i] = B[i] * C[i];

7 for (int i = align_beg; i<align_end; i+=nsimd ::

len(float ())

8 ns::pack <float > b = ns::load( &(B[i]) );

9 ns::pack <float > c = ns::load( &(C[i]) );

10 ns::pack <float > a = b * c;

11 ns:: store( &(A[i]) , a );

12 for (int i = align_end; i < A.size(); ++i)

13 A[i] = B[i] * C[i];

14

The �xed point library we developed was implemented as a module of nsimd,
so we must �rst describe how to use nsimd before approaching the �xed point
library.

6.3.1 . Usage
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C/C++/Advanced C++ APIs

As of this writing, nsimd provides 4 APIs � C89, C++98, C++11, and C++14
interfaces � providing varying levels of ease and style of use in terms of types
provided and function calls. Each API contains all features provided by the APIs
preceding it. For example, the C++98 API contains the C89 features and the
C++14 API provides all features from all APIs. The C++98 API will be referred
to as the basic C++ and the C++11 and C++14 APIs will be described together as
the advanced C++ API, as the C++14 API only provides a few minor improvements
over the C++11 API.

Includes To use the C89 and basic C++ APIs of nsimd, one simply needs to

1 #include <nsimd/nsimd.h>

This will automatically include all functions provided by nsimd. The advanced
C++ API instead requires

1 #include <nsimd/cxx_adv_api.hpp >

Both the basic and advanced C++ APIs provide all types and functions inside of
the nsimd namespace.

C89 Types For ease and consistency of use, nsimd provides aliases for the native
built-in C scalar types, as well as the emulated half-precision �oating point type
(f16). A full list of the provided types (as of this writing) is provided in Table 6.2.
For each provided scalar type ({i/u/f}N), nsimd provides a type corresponding
to a SIMD register of that type (v{i/u/f}N)and a type corresponding to a SIMD
register of logical values for the scalar type (vl{i/u/f}N). These logical values
are the result of SIMD logical operations, such as equals or greater than

operations. One example use case is the if_else1 function, which outputs a
result that depends on whether the logical values for each entry correspond to
true or false. While these logical values can be considered equivalent to boolean
true of false values, their bitwise representation can vary depending on the SIMD
architecture in use.

Signed Integer Unsigned Integer Float
Scalar i8 i16 i32 i64 u8 u16 u32 u64 f16 f32 f64Vector vi8 vi16 vi32 vi64 vu8 vu16 vu32 vu64 vf16 vf32 vf64Logical vli8 vli16 vli32 vli64 vlu8 vlu16 vlu32 vlu64 vlf16 vlf32 vlf64

Table 6.2: Types provided by the nsimd C89 API
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Advanced C++ Types The advanced C++ APIs allow for greater control of
low level details though the templated pack and packl structures. For basic usage,
a pack only needs a type, such as i8 or uint32_t, as a template option. Here
are a few examples of variable declarations using the pack interface.

1 nsimd::pack <i32 > v1;

2 nsimd::pack <uint64_t > v2;

3 nsimd::packl <float > v3;

As in the C89 API, a pack<type> represents a SIMD register of the corresponding
type.

C89 Functions When calling an nsimd function using the C API, it is necessary
to be aware of the target SIMD architecture when calling functions. This is because
all functions take the form nsimd_{function}_{extension}_{type}. A few
examples of function calls are listed below.

1 vf64 r1 = nsimd_add_cpu_f64( vf64 a1 , vf64 a2 );

2 vli32 r2 = nsimd_lt_avx2_i32( vi32 b1 , vi32 b2 );

3 vu16 r3 = nsimd_shl_aarch64_u16( vu16 c1 , int c2 )

;

Basic C++ Functions The basic C++ API for calling functions is simpler,
thanks to function overloads � it is possible to have multiple versions of a function
with the same name but di�erent arguments. The SIMD extension is automatically
inferred from the information provided by the input types (vf64, vu16, etc.).
However, the type must still be speci�ed when calling a function, as shown below.

1 vf64 r1 = nsimd::add( vf64 a1 , vf64 a2 , f64() );

2 vli32 r2 = nsimd::lt ( vi32 b1 , vi32 b2 , i32() );

3 vu16 r3 = nsimd::shl( vu16 c1 , int c2 , u16() );

Advanced C++ Functions The advanced C++ API is simpler to use than the
basic C++ API, as the pack structure provides all of the information the compiler
needs to deduce the correct function to call, as shown below.

1 nsimd::pack <f64 > r1 = nsimd::add( nsimd::pack <f64 >

a1 , nsimd::pack <f64 > a2 );

2 nsimd::pack <int > r2 = nsimd::lt ( nsimd::pack <int >

b1 , nsimd::pack <int > b2 );

3 auto r3 = nsimd::shl( nsimd::pack <u16 > c1 , int c2 )

;

The two exceptions to this is the load type functions, which are unfortunately
common. These two functions require the type to be explicitly speci�ed, as show
below.
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1 nsimd::pack <f64 > r1 = nsimd::loadu <nsimd::pack <f64

>>( f64* p1 );

Operator Overloading The advanced C++ API overloads many common
operators for arithmetic, bitwise operations, and logical operations for the pack

structure. This allows the user to treat packs similarly to native variables when
writing code. Below are a few lines demonstrating valid code that uses these
overloads.

1 nsimd::pack <int > r1, r2, r3;

2 nsimd::packl <int > l1, l2, l3;

3 r3 = r1 + r2; // Addition

4 r3 = r1 * r2; // Multiplication

5 r3 = r1 / r2; // Division

6 r3 = r1 & r2; // Bitwise And

7 l3 = r1 > r2; // Comparison

LoopUnrolling The pack structure provided by the advanced C++ API allows
for automatic loop unrolling via a second template argument. It can be declared
with an integer value as a second template argument, representing the amount of
unrolling to do. The example below unrolls the loop by a factor of 3.

1 for ( int i = 0 ; i < size ; i += nsimd::len( int()

) ) {;

2 nsimd::pack <int ,3> r1 = nsimd::loadu <nsimd::pack <

int ,3>>( *p1 );

3 nsimd::pack <int ,3> r2 = nsimd::loadu <nsimd::pack <

int ,3>>( *p2 );

4 r1 = nsimd::sin( r1 * r2 );

5 }

Instructions for installing, navigating, and compiling nsimd are provided in
Annex B.

6.3.2 . Developers - Adding a New Function

This section details how to add a new function to nsimd by walking through
the steps involved using an example function that was added for use by the �xed-
point module. All code will be written to various �les in the nsimd/egg directory.
The process involves adding the function as an 'operator', writing the code that
generates the platform-speci�c code, and specializing (if necessary) the code that
generates unit tests for the function. The function that will be used as an example
is the clz function, which takes an integer as input and returns the number of bits
set to zero above the strongest set bit.
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Operator

The �rst step is to add a class representing the function to the operators.py �le
and �ll it appropriately. The class must contain the following members:

• full_name - short description of the function.

• signature - signature that the function will have. Of the most common
signature types, v represents a vector, l a vector of logicals, b, p an integer,
and s a scalar.

• categories - the categories contain the documentation categories where
the function should be listed.

In addition, the class may optionally contain the following members:

• desc - full description of what the function does.

• types - types which the function can take as input.

• domain - the input domain.

• do_bench - set to False if the function is not to be automatically benchmarked.

• tests_ulps - sets the allowed ULP tolerance of error in the unit tests.

• bench_auto_against_X - benchmark comparable function from X library
for comparison.

• tests_mpfr - when performing unit tests, compare to the mpfr library.

• cxx_operator - C++ operator to overload with a call to this function.

As an example, the clz code is listed below.

1 class Clz(Operator):

2 full_name = 'count leading zeroes '

3 signature = 'v clz v'

4 domain = Domain('R')

5 categories = [DocMisc]

6 types = common.iutypes

7 desc = 'Count number of zero bits before the

largest set bit'

The signature is set to 'v clz v' because the function takes a vector as input
and outputs another vector. In addition, the types are set to common.iutypes in
order to limit the inputs to signed and unsigned integers.
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Platforms

In order to generate code for the function to call, it is necessary to add the
function to the various platform �les. As of this writing, there are three such
�les � platform_cpu.py for CPUs with no SIMD extensions, platform_x86.py
for x86 CPUs (SSE/AVX), and platform_arm.py for ARM CPUs (NEON/SVE).
For each platform, there are three modi�cations that must be made per functions.

The �rst modi�cation is to write the function capable of generating the platform-
speci�c C code. This function will be given the SIMD extension (unless CPU) and
the input type as function inputs and return a string containing the appropriate
C/ASM code. Each platform provides its own fmtspec variable which contains a
number of useful prede�ned strings. For example, here are a few of the prede�ned
strings provided in platform_arm.py

• simd_ext : raw SIMD extension (aarch64, neon, sve)

• typ : input type

• styp : ARM register type corresponding to input type (eg. in16x8_t or
float32x4_t)

• to_typ : output type

• suf : ARM function su�x corresponding to input type (eg. the _s32 part
of vadd_s32)

• in0 : �rst input (in1 - in6 are also provided if needed)

• typnbits : total number of bits in the input type (eg. 64 for double, 8 for
char)

These helpers contained in fmtspec make it possible to write the code below.

1 def clz(simd_ext , from_typ):

2 if from_typ in [ 'i8' , 'u8' , 'i16' , 'u16' , '

i32' , 'u32' ]:

3 return '''\

4 return vclzq_{suf}( {in0} );

5 '''.format (** fmtspec)

6 else:

7 return emulate_op1('clz', simd_ext , from_typ)

The suf variable makes it easy to write a code that is generic for all input types.
In cases where a function does not have a corresponding intrinsic, nsimd provides
the emulate_op1 function (among others), which generates the code necessary to
call the scalar (CPU) version of the function being generated.

The next modi�cation is to add an appropriate line to the impls array at the
end of the �le. This array contains a list of the functions to be implemented and
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the functions they call to generate their C code. For the CPU clz function, this
means adding the following line to the list.

1 'clz' : lambda : clz(from_typ),

Meanwhile, the x86 and ARM function calls also require information about the
SIMD architecture being used.

1 'clz' : lambda : clz(simd_ext ,from_typ),

The �nal modi�cation is to update the header �les that are needed by the
function. This is done by adding to the get_additional_include function. If
the code generated by the �rst step does not call any other nsimd functions, this
step is not needed. For example, the CPU clz calls the nsimd shrv function, so
the following lines of code are needed.

1 elif func == 'clz':

2 return '''

3 #include <nsimd/cpu/cpu/shrv.h>

4 '''

Testing

By default, nsimd will generate unit tests for a function that compare the CPU
outputs to the SIMD outputs for randomly generated inputs. If the SIMD output
di�ers from the CPU output, the test will fail. For many functions, this is su�cient.
However, some functions may have a limited input domain or special characteristics
that may cause these outputs to di�er for certain inputs.

The clz function falls in the latter category � for an input of 0, the output
may depend on the compiler being used. This is because the CPU implementation
calls compiler built-in functions when possible; these built-in functions do not all
behave exactly the same for an input of 0. As a result, we wish to avoid inputs of
0 when testing, so we modify the code that generates the random inputs by adding
the following lines in the appropriate location.

1 if op.name == 'clz':

2 vin_rand = 'vin1[i] = rand();\ nwhile ( !

vin1[i] ) vin1[i] = rand();'

This modi�es the random input generation function to avoid outputting any 0
inputs.

Functions Added

A small number of functions needed to be added to the nsimd library in order to
implement the �xed point algorithms presented in Section 6.5.
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Architecture i8 u8 i16 u16 i32 u32 i64 u64
x86 AVX N N N N N N N Nx86 AVX2 N N N N N N N Nx86 AVX512 N N N N Y∗ Y∗ Y∗ Y∗NEON Y Y Y Y Y Y N NSVE Y Y Y Y Y Y Y Y
∗ Limited to Skylake architecture and above

Table 6.3: clz intrinsics supported by various architectures.
clz The clz, or count leading zeroes, is illustrated in Figure 6.1. This function
takes integer types as inputs and returns the number of zero bits preceding the
strongest bit of the input.

0 0 0 1 0 1 1 0=22

0 0 0 0 0 1 1 1=7

1 1 1 1 1 1 1 1=255

0 0 0 0 0 0 1 0=2

clz
=

3

5

0

6

Figure 6.1: Example of the clz function.

Depending on the implementation,
the output of the clz function
may be unspeci�ed for an
input of zero. However, some
implementations do make the
e�ort to output the total
number of bits in the input (eg.
32 for a 32-bit integer). In
the nsimd implementation of
clz, we choose not to make
this e�ort. For performance
reasons, the output of nsimd's clz(0) is the same as clz(1) � 31.

The scalar clz implementation attempts to use the equivalent compiler built-
in function if available. Otherwise, variations of Algorithm 22 (adapted from [43,
p. 97] and [106]) are used. The algorithm varies in length depending on the size
(in maximum bits) of the input. However, the computations are essentially the
same. Algorithm 22 performs a binary search for the location of the �rst nonzero
bit in x while simultaneously updating the result value in r.

For the SIMD implementation of clz, we attempt to take advantage of intrinsic
functions when available (see Table 6.3). At the moment, when intrinsics are not
available the clz function falls back to the scalar implementation. This means
that it will store the contents of the SIMD register, use the scalar clz function,
and reload the results into an SIMD register. Document [5] was used to determine
availability of intrinsics on the ARM SVE architecture.

shlv The shlv, or shift left variably, function is illustrated in Figure 6.2. It takes
as input a register of integers to be shifted and a register of integer values listing
the magnitude of the shift. The output is thus each input integer shifted left by
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Algorithm 22 Algorithm used by nsimd to compute the clz functionfor 8 bit integers.
1 int8_t clz( int8_t arg0 ) {

2 int8_t x = arg0;

3 int8_t q, r;

4
5 if ( x > 0xF ) q = 1;

6 else q = 0;

7 q = q << 2;

8 x = x >> q;

9 r = q;

10
11 if ( x > 0x3 ) q = 1;

12 else q = 0;

13 q = q << 1;

14 x = x >> q;

15 r = r | q;

16
17 r = r | ( x >> 1 );

18 r = 7 - r;

19 if ( r < 0 ) r = 0;

20
21 return r;

22 }

shlv

0 0 0 1 0 1 1 0
0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0

,

1
2
3
4

=

0 0 1 0 1 1 0 0
0 0 0 1 1 1 0 0
1 1 1 1 1 0 0 0
0 0 1 0 0 0 0 0

Figure 6.2: Example of the shlv function.
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Architecture i8 u8 i16 u16 i32 u32 i64 u64
x86 AVX N N N N N N N Nx86 AVX2 N N N N Y Y Y Yx86 AVX512 N N Y Y Y Y Y YNEON Y Y Y Y Y Y Y YSVE Y Y Y Y Y Y Y Y

Table 6.4: shlv intrinsics supported by various architectures.
the corresponding magnitude.

The shlv function simply performs bitwise left shifts on the input register
according to the magnitude register.

The scalar shrv implementation reuses code from the shl function which
shifts all values by the same magnitude. However, it requires a slight modi�cation
in order to shift the inputs by di�erent magnitudes. Algorithm 23 shows the scalar
code generated for 16-bit unsigned integers.

Algorithm 23 Algorithm used by nsimd to compute the shlv functionfor 16 bit unsigned integers.
1 nsimd_cpu_vu16 nsimd_shlv_cpu_u16(nsimd_cpu_vu16

a0 , nsimd_cpu_vu16 a1) {

2 nsimd_cpu_vu16 ret;

3 ret.v0 = (u16)(a0.v0 << a1.v0);

4 ret.v1 = (u16)(a0.v1 << a1.v1);

5 ret.v2 = (u16)(a0.v2 << a1.v2);

6 ret.v3 = (u16)(a0.v3 << a1.v3);

7 return ret;

8 }

For the SIMD implementation of shlv, we attempt to take advantage of
intrinsic functions when available (see Table 6.4). At the moment, when intrinsics
are not available the shlv function falls back to the scalar implementation. This
means that it will store the contents of the SIMD register, use the scalar shlv
function, and reload the results into an SIMD register.

shrv The shrv, or shift right variably, function is illustrated in Figure 6.3. It
takes as input a register of integers to be shifted and a register of integer values
listing the magnitude of the shift. The output is thus each input integer shifted
right by the corresponding magnitude.

If signed integers are given to the shrv function, it will perform arithmetic
shifts which preserve the sign of the input. For unsigned inputs, the shrv simply
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shrv

0 0 0 1 0 1 1 0
0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0

,

1
2
3
4

=

0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 1
0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0

Figure 6.3: Example of the shrv function.
Architecture i8 u8 i16 u16 i32 u32 i64 u64
x86 AVX N N N N N N N Nx86 AVX2 N N N N Y Y N Nx86 AVX512 N N Y Y Y Y Y YNEON Y∗ Y∗ Y∗ Y∗ Y∗ Y∗ Y∗ Y∗SVE Y Y Y Y Y Y Y Y
∗ Supported via left shift by negative values

Table 6.5: shrv intrinsics supported by various architectures.
performs a bitwise shift operation.

The scalar shrv implementation reuses code from the shr function which
shifts all values by the same magnitude. However, it requires a slight modi�cation
in order to shift the inputs by di�erent magnitudes. Algorithm 24 shows the scalar
code generated for 64-bit signed integers. Note that lines 11-14 serve to preserve
the sign of the input. For unsigned inputs, the computation consists of a single
shift operation � line 16 without the masking operation.

For the SIMD implementation of shrv, we attempt to take advantage of
intrinsic functions when available (see Table 6.5). At the moment, when intrinsics
are not available the shrv function falls back to the scalar implementation. This
means that it will store the contents of the SIMD register, use the scalar shrv
function, and reload the results into an SIMD register. When comparing Table 6.5
to Table 6.4, one may note that levels of support are not identical depending on
the direction of the shift.

div The div function performs division. Most architectures do not provide SIMD
instructions for integer division, as seen in Table 6.6. As a result, vectorized integer
division must be implemented through software.

Here we present the vectorization of Algorithm 25 labeled Algorithm D in
[62] and coded in C in [43]. This algorithm performs the binary version of the
decimal long division algorithm commonly taught in elementary school. Lines 9-
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Algorithm 24 Algorithm used by nsimd to compute the shrv functionfor 64 bit signed integers.
1 nsimd_cpu_vi64 nsimd_shrv_cpu_i64(nsimd_cpu_vi64

a0 , nsimd_cpu_vi64 a1) {

2 union {

3 i64 i;

4 u64 u;

5 } val;

6
7 nsimd_cpu_vi64 ret;

8 u64 mask;

9
10 /* --------------------------------------------

*/

11 const int shift0 = 64 - 1 - a1.v0;

12
13 val.i = a0.v0;

14 mask = (u64)((val.u >> (64 - 1)) * ~(u64)(0) <<

shift0);

15
16 ret.v0 = (i64)((val.u >> a1.v0) | mask);

17
18 return ret;

19 }
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12 of Algorithm 25 show the only portion of the algorithm which is not trivially
parallelizable. Despite this, it is still possible to accelerate this algorithm via SIMD
instructions. Algorithm 25 is only valid for positive inputs. Signed integers are
converted to positive unsigned integers prior to the actual computation, then the
result is given the appropriate sign before being output.

Note at line 5 of Algorithm 25 that the number of loop iterations is equal to
the number of bits in the input type. This is the true limiting factor in how well
integer division can be e�ciently vectorized using this algorithm. Doubling the size
of an input size quadruples the time needed to perform this integer division � half
as many elements �t into an SIMD register and twice as many loop iterations are
needed.

One peculiarity of this algorithm is that the result accumulator result needs
no initialization. This is because each iteration of the loop updates the weakest
current bit, then shifts the value left (multiplying by two). The current value
of the result is never used for other computation. After the full number of
iterations (equal to the number of total bits) have completed, none of the original
uninitialized bits remain.

Algorithm 25 Scalar algorithm for bitwise long division of integers.
1 template <typename T> bitwise_long_division( T

top , T bot ) {

2 T result;

3 T remainder = 0;

4
5 for ( int i = (8* sizeof(T) -1) ; i >= 0 ; --i

) {

6 result = result << 1;

7 remainder = remainder << 1;

8 remainder = remainder | ( ( top >> i ) & T

(1) );

9 if ( remainder >= bot ) {

10 remainder = remainder - bot;

11 result = result | T(1);

12 }

13 }

14 return result;

15 }
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Architecture i8 u8 i16 u16 i32 u32 i64 u64
x86 AVX N N N N N N N Nx86 AVX2 N N N N N N N Nx86 AVX512 N N N N N N N NNEON N N N N N N N NSVE Y Y Y Y Y Y Y Y

Table 6.6: div intrinsics supported by various architectures.
Benchmarks

This section presents benchmarks performed on the clz, shrv, shlv, and div

functions. All benchmarks present the speedup between the scalar CPU implementations
and the SIMD implementations of the functions within nsimd. We choose not to
perform any benchmarks on architectures of Intel AVX or lower, as they do not
support any instructions for the implemented functions.

Raw benchmark data is provided in Annex C. Each graph presented contains
a link to a table of raw data. Each raw data table provides a link back to the
corresponding graph, so don't be afraid to click back and forth if you're reading
this as a pdf.

Benchmarks were performed using the speci�cations described in Table 6.7.
For convenience, Table 6.8 provides the ideal speedup for each register size.

SIMD Compiler SIMD Flag Register Size Frequency RAM
AVX2 gcc 8.2 -mavx2 256 3.2 Ghz 16GBAVX512 gcc 11.0.0 -mavx512f 512 2.4 Ghz 188GBAARCH64 gcc 5.4 -marmv8-a 64 1.0 Ghz 126GB

Table 6.7: Specifications used to perform fixed point benchmarks.

clz Figure 6.4 shows the performance of the clz function. As expected from
Table 6.3, the AVX2 clz o�ers no acceleration. The AVX512 clz provides

Register Size (bits) 8 bits 16 bits 32 bits 64 bits
64 8 4 2 1128 16 8 4 2256 32 16 8 4512 64 32 16 8

Table 6.8: Ideal speedups for each combination of register size anddata size.
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Figure 6.4: Speedup of the SIMD nsimd clz function compared to itsscalar equivalent. Raw data in Table C.1.
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Figure 6.5: Speedup of the SIMD nsimd shlv function compared to itsscalar equivalent. Raw data in Table C.3.
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Figure 6.6: Speedup of the SIMD nsimd shrv function compared to itsscalar equivalent. Raw data in Table C.2.
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Figure 6.7: Speedup of the SIMD nsimd div function compared to itsscalar equivalent. Raw data in Table C.4.
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the greatest speedup, when supported, thanks to its largest register sizes. This
speedup is signi�cantly lower at 8 and 16 bits, as we must convert these to 32-bit
types before being able to take advantage of the implemented intrinsic functions.
However, the aarch64 clz does o�er a speedup, although it is not as large as
the ideal speedup. This is because the comparison between SIMD and scalar
clz functions is actually a comparison between a CPU instruction (SIMD) and a
compiler builtin function (scalar). It appears that the compiler builtin clz function
is slightly faster than the SIMD instruction.

shlv Figure 6.5 shows the performance of the shlv function. As expected
from Table 6.4, the AVX2 shlv only shows any speedup when there exists a
corresponding CPU function at 32 and 64 bits. At 8 and 16 bits, the cost of
storing the data in the heap, performing the scalar implementation, then loading
the data back into an SIMD register degrades the performance compared to
simply performing scalar computation. We also tested the shlv function using
type conversions to the supported 32-bit type. However, the performance was
equivalent to scalar emulation. For simplicity, we chose to keep the scalar emulation
implementation. For the AVX512 shlv we see the greatest acceleration, once
more thanks to the large register sizes. This speedup is reduced at 8 bits, as we
must convert these to 16-bit types before being able to take advantage of the
implemented intrinsic functions. The magnitude of the reduction is signi�cantly
greater for unsigned 8-bit types, as intrinsic functions only exist for converting
signed 8-bit types to 16-bits. The SIMD aarch64 shlv scales perfectly linearly.
However, the speedup is not so linear due to inconsistencies in the scalar performance.
The scalar 32-bit shlv is actually faster than the SIMD instruction, while the 8
and 16 -bit scalar performances are similar to each other and the 64-bit scalar
performance is signi�cantly slower.

shrv Figure 6.6 shows the performance of the shrv function. One immediately
visible feature is that, compared to the previous graphs, shrv performance di�ers
noticeably between signed and unsigned types. This is because the shrv implements
an arithmetic shift, requiring extra computation to preserve the sign of signed types.
In comparison, the unsigned version can blindly shift using the CPU instruction.
On the AVX2 architecture, the corresponding CPU instruction only exists for 32-bit
integer types. This shows very clearly in the speedup graph, which only shows an
AVX2 speedup at 32 bits. As with the shlv function, we use scalar emulation
for unsupported types, as the performance is equal to type conversions. For the
AVX512 shrv we see the greatest acceleration, once more thanks to the large
register sizes. This speedup is reduced at 8 bits, as we must convert these to
16-bit types before being able to take advantage of the implemented intrinsic
functions. As with the shlv function, the shrv function scales perfectly linearly
on the aarch architecture. Once again, the scalar performance makes the speedup
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appear nonlinear. The 32-bit scalar performance is noticeably faster than the
others, while the 64-bit is signi�cantly slower.

div Figure 6.7 shows the performance of the div function. As expected, the
integer division algorithm implemented scales badly with the number of bits in
the input type on all tested architectures. On the AVX2 architecture, we see that
there is an actual speedup for both 8 and 16 -bit inputs. At 32 and 64 bits, the
division algorithm is no longer worthwhile due to its poor scaling. On the AVX512
architecture, we see a more signi�cant speedup at 8 and 16 bits. However, the poor
scaling prevents any speedup at 32 and 64 bits. On the aarch64 architecture, the
small register size (64 bits) limits the potential speedup. As a result, the algorithm
is never parallel enough to recuperate the cost of the additional computations.

The �nal implementation of integer division in nsimd takes these results into
account, applying the vectorized algorithm only where it is worthwhile.

6.4 . nsimd Fixed Point Type

This section describes the �xed point datatype added to nsimd for the purpose
of performing �xed point operations. The goal was to provide a simple interface
to a �xed point datatype which allows arbitrary Qa.b combinations. We achieve
this goal through the use of C++ template metaprogramming.

6.4.1 . API

Base Type The �xed point extension of nsimd provides both a scalar interface
and a SIMD interface, as shown below. The scalar interface takes the form
nsimd::fixed_point::fp_t<a,b>. Meanwhile, there are two SIMD interfaces.
The �rst is the standalone nsimd::fixed_point::fpsimd_t<a,b>, while the
second makes use of the nsimd::pack<T> interface where one simply needs to
place the scalar fp_t as the template argument T. The two SIMD interfaces are
functionally equivalent. The fpsimd_t exists because the library was developed
outside of nsimd and is used internally to represent �xed point SIMD registers. It
should be noted that, for reasons described in the following section, a Qa.b number
will be stored in the smallest sized integer capable of containing (a + 2b) bits.
All fp_ts are signed. There is no current implementation of unsigned �xed point
numbers.

1 using namespace nsimd:: fixed_point;

2 fp_t <2,3> a1(3.1); // Q2.3 (8 bits)

3 fp_t <8,8> a2 = 14.7; // Q8.8 (32 bits)

4 pack <fp_t <4,6>> v1; // Vector of Q4.6 (16 bits)

5 pack <fp_t <16,16>> v2; // Vector of Q16.16 (64 bits)
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Operation Operator Scalar (fp_t) SIMD (pack<fp_t>) Example Usage
Add + Y Y c = a + bSub - Y Y c = a - bMul * Y Y c = a * bDiv / Y Y c = a / bAdd to self += Y N a += bSub from self -= Y N a -= bMul self by *= Y N a *= bDiv self by /= Y N a /= bNegative self - Y N c = -aCast to T T Y N c = int(a)Equals == Y Y if ( a == b )Not Equal != Y Y if ( a != b )Less < Y Y if ( a < b )Less Equal <= Y Y if ( a <= b )Greater > Y Y if ( a > b )Greater Equal >= Y Y if ( a >= b )Bitwise Or | Y N c = a | bBitwise Xor � Y N c = a � bBitwise And & Y N c = a & bBitwise Not ! Y N c = !a

Table 6.9: List of currently overloaded operators to fp_t and
pack<fp_t>.
Operators For ease of development, the �xed point extension of nsimd overloads
a number of common operators for both the scalar and SIMD interfaces. A full list
of currently supported operators with examples is listed in Table 6.9. As with the
nsimd advanced C++ API, this allows the user to treat the �xed point types in
a similar manner to native variables when developing code. At the moment, only
operations between �xed point numbers of the same format are supported. As
the nsimd �xed point extension is still a work in progress, some operators are still
awaiting implementation.

Function Calls In addition to the overloaded operators, we also provide a small
number of basic mathematical functions. When calling functions, the user does not
need to specify the format of the �xed point number � it is automatically deduced
through template metaprogramming. See below for some example function calls.

1 using namespace nsimd:: fixed_point;

2 std::vector <fp_t <2,3>> v1(100);

3 nsimd::pack <fp_t <8,8>> b1, b2, b3;

4 v1[0] = cos( v1[1] );

5 v1[2] = log( v1[3] );
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a.b 0 < a+ 2 · b ≤ 8 8 < a+ 2 · b ≤ 16 16 < a+ 2 · b ≤ 32 32 < a+ 2 · b ≤ 64Scalar Type i8 i16 i32 i64Vector Type vi8 vi16 vi32 vi64

Table 6.10: Storage types of valid Qa.b combinations
6 v1[4] = exp( v1[5] , v1[6]);

7 v1[7] = exp( v1[5] , 3 );

8 b1 = loadu <fp_t <2,3>>( v1.data() );

9 b2 = sin( b1 );

10 b3 = b2 * b1;

11 storeu( v1.data() , b3 );

6.4.2 . Implementation Details

Base Type Behind the scenes, the fp_t stores data in the smallest integer that
�ts twice the size of the decimal portion plus the size of the integer portion, as
evidenced by Table 6.10.

Minimum storage size(Qa.b) = a+ 2 · b

We chose this storage limitation in order to be able to perform multiplication
operations without upcasting the integer to a higher size. This provides two major
bene�ts. First, it simpli�es the development of vectorized algorithms, as it removes
the need to decide when to upcast. Secondly, it provides performance bene�ts by
removing conversions between vectorized data types. The conversion itself has a
time cost and the proceeding operations performed using the upcasted type only
operate on half as many values as the operations performed using the original type.
For simple algorithms, the cost of the conversion can be signi�cant compared to
the cost of the actual computations. For more complex algorithms, the reduced
potential acceleration leads to a signi�cant performance cost. Section 6.5.2 will
describe how the extra bits are used during multiplication and division computations.

We achieve this selective storage size by leveraging SFINAE (Substitution
Failure Is Not An Error) via the use of the std::enable_if structure. This limits
C++ compatibility to C++11 or newer, although the std::enable_if structure
can be easily reimplemented using earlier C++ standards. Table 6.10 lists the
implemented Qa.b combinations and their associated types. We limit support to
types that �t in 64 bits, as that is the largest commonly physically supported
integer type. If a code sets Qa.b such that a + 2 · b > 64, the code will produce
an error and not compile.

Helper Types All valid fp_t types de�ne the following types for ease of
development:
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• value_type - the base type used to store scalar values.

• positive_type - unsigned equivalent of value_type

• logical_type - the base type used to store scalar logical values.

• simd_type - the nsimd type used to store SIMD registers.

• simd_logical - the nsimd type used to store SIMD logical registers.

These types can be useful when developing algorithms that use the raw data stored
in the fp_t.

Unused

Reserved

Q3.2

Q2.3

Q4.3

Q4.6

Figure 6.8: Examples of howvarious Qa.b formats are storedand aligned.

Alignment Fixed point numbers
represented such that the last bit in
the containing integer type contains
the smallest decimal bit of the �xed
point number. Any reserved or unused
bits are contained in the strongest
bits, as shown in Figure 6.8. This
choice of alignment serves to enable
the multiplication algorithm described
in Section 6.5.2.

One notable side e�ect of this
alignment is that the number of integer
bits available during computations can
be e�ectively larger than the number
of integer bits assigned in the type
declaration. For example, a fp_t<4,4>
uses 16 bits of storage, but only
requires 12 bits (8 storage + 4
reserved) for any �xed point computations. The remaining 4 bits are not zeroed
during computation and thus e�ectively contribute 4 extra integer bits during some
computations. In the future, it may be desirable to add a "strict" mode that zeroes
these extra 4 integer bits after every computation.

Overflow In implementing the �xed point extension of nsimd, we chose to not
make any special cases or error handling for over�ow. This is similar to the behavior
of the integer types used to store the values and perform the arithmetic. However,
the presence of unused and reserved bits causes a slight di�erence in behavior from
many signed integers. When a Qa.b number over�ows past the a integer bits, it
over�ows through 0, rather than the largest negative value. This is because the
signed integer storing the �xed point number has not yet over�owed to the largest
negative value. If the magnitude of the over�ow is su�ciently large to over�ow
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the underlying integer, the �xed point number will over�ow in the same way as a
signed integer.

6.4.3 . General Usage

Installation The �xed point extension of nsimd is included in the nsimd library
as a module. As such, the installation instructions are the same (see Section B.1).

Organization The �xed point extension comprises entirely of header �les.
These �les are located in the nsimd/include/nsimd/modules directory. At
this level is the fixed_point.hpp �le which implements the pack interface and
makes the entire �xed point API accessible. At this level is also the fixed_point
directory, containing most of the actual implementation. The important �les and
folders are as described below.

` modules

` fixed_point.hpp - includes all �les below. Implements pack<fp_t
interface.

` fixed_point

` fixed.hpp - implements fp_t interface.

` simd.hpp - implements fpsimd_t interface.

` fixed_math.hpp - agglomerates #includes for all scalar math
functions.

` simd_math.hpp - agglomerates #includes for all SIMD math
functions.

` constants.hpp - de�nes a number of useful scalar constants.

` function - contains scalar function implementations.

` simd - contains SIMD function implementations.

` helper - functions that aid during development.

Compilation The procedure to compile the �xed point extension of nsimd is
the same as for compiling nsimd alone. The only di�erence is that there is no
current C interface for �xed point numbers.

Usage In order to make use of the �xed point extension, one only needs to
include the following �le.

1 #include <nsimd/modules/fixed_point.hpp >

This �le includes all �les necessary for use of the �xed point extension and allows
the user to take advantage of the features previously described in Section 6.4.1.
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6.5 . Algorithms & Performance

This section presents some of the mathematical functions implemented by the
�xed point extension of nsimd. We break these functions into three categories �
arithmetic functions, trigonometric functions, and other functions. Each individual
function will be presented �rst in its scalar form, then its vectorized form. Generally,
the scalar algorithms are designed to be vectorizable, so this aids in understanding
the vectorized forms. Benchmarks will also be presented, comparing the scalar and
vectorized performances to comparable �xed point libraries.

6.5.1 . Benchmark Design

The benchmarks presented below were obtained using the Google benchmark[37]
tool. The computational loop to be repeated by the benchmark tool consists of
a 1024 element input array (or arrays if multiple inputs) of random values. The
result of the operation is stored into another array and the benchmark tool ensures
that the computational loop is not optimized away. The benchmark tool outputs
the raw time in nanoseconds. In order to obtain the cycles per element, we must
divide this raw time by the number of elements and multiply by the clock frequency
of the CPU used to perform the benchmark.

cycles/element =
raw time

total elements
· clock frequency

Each benchmark compares the nsimd performance, both scalar and SIMD, to
the other libraries listed in Section 6.2. Comparisons will be made with respect
to the size of the underlying integer representations. For example, an nsimd
fp_t<8,8> uses 32-bit integer storage, while a liquid-dsp q16 uses 16-bit integer
storage. This comparison is generous to nsimd, as some formats use more storage
space with nsimd than the other libraries. Table 6.11 lists the C++ types used for
each storage format.

Library 8 Bits 16 Bits 32 Bits 64 Bitsnative int8_t int16_t int32_t int64_tfp_t fp_t<2,3> fp_t<4,6> fp_t<16,8> fp_t<16,16>pack pack<fp_t<2,3> > pack<fp_t<4,6> > pack<fp_t<16,8> > pack<fp_t<16,16> >liquid q16_t q32_tfixmath Fix16CNL∗ <int8_t,power<-2� <int16_t,power<-4� <int32_t,power<-8� <int64_t,power<-16�Value is the T in cnl::scaled_integer<T>.

Table 6.11: C++ types used for each combination of storage size andlibrary.
The basic arithmetic functions will also be compared to the performance of

the equivalent function on a same-sized integer. This allows us to compare the
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performance to a natively supported type and see the cost of emulating �xed point
numbers.

When examining the performances of the liquid-dsp and lib�xmath libraries,
it should be noted that these two libraries have compiled components. The cost
of making a function call to the compiled functions will be very evident in some
cases. In addition, these two libraries do not support all storage sizes. The liquid-
dsp library supports 16 and 32 bit formats, while the lib�xmath library only supports
32 bit formats.

All benchmarks were performed on the following machines:

SIMD Compiler SIMD Flag Frequency RAM
SSE4.2 gcc 8.2 -msse4.2 3.2 Ghz 16GBAVX2 gcc 8.2 -mavx2 3.2 Ghz 16GBAVX512 gcc 11.0.0 -mavx512f 2.4 Ghz 188GBAARCH64 gcc 5.4 -marmv8-a 1.0 Ghz 126GB

Table 6.12: Machines used to perform fixed point benchmarks.
All benchmark binaries were compiled using the -O3 �ag to obtain maximum

performance for all libraries. In the library comparison benchmarks, the pack entries
present the results using AVX2 vectorization.

As in Section 6.3.2, all graphs contain links to the corresponding raw data
tables in Annex C. These data tables also contain links back to their corresponding
graphs.

6.5.2 . Arithmetic Functions

Addition/Subtraction
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Figure 6.9: Comparison of fixed point library performances for the add function. Raw datain Table C.13.
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As described in Section 6.1, addition and subtraction operations between �xed point
numbers are straightforward. They are also similar enough that it is su�cient to present
a single one of the two operations. It is enough to perform a simple integer addition or
subtraction of the two values to obtain the correct �xed point result.

Comparison Figure 6.9 compares the performances of the add function for all �xed point
libraries. All performances except for the pack<fp_t> are functionally identical for the this
function. This is because the computation and the code are both simple enough for the
compiler to automatically vectorize the add function.

Speedup Figure 6.10 compares the speedups obtained when using the pack<fp_t> structure
to vectorize the add function on various architectures. Most speedup curves are fairly �at,
as the compiler is capable of successfully vectorizing the scalar version. The one exception is
AVX512, where the compiler has completely neglected to vectorize the scalar code.

Example with Numbers For example, if we wish to add 2.125 and 4.5 as Q3.3 values,
we �rst convert the inputs to their implemented integer representations:

I(2.125) = 2.125 · 23 = 17

I(4.5) = 4.5 · 23 = 36

We can then perform an integer sum of the two:

17 + 36 = 53

And �nally we can convert back from the integer representation to obtain the result.

53 · 2−3 = 6.625

Of course, these conversions to and from integer representation are only performed when
interacting with other numerical types and formats. When performing operations using only
�xed point types of the same format, no conversions are ever necessary.
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Figure 6.11: Comparison of fixed point library performances for the mul function. Raw datain Table C.14.
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Figure 6.13: Visual breakdown of how nsimdmultiplies two Q4.6 numbers.

As described in Section 6.1,
multiplication of two Qa.b numbers
results in a Q2a.2b number. The
�rst a bits and the last b bits
of this multiplication are of no
interest, as we wish to output a
Qa.b number. We may neglect
the �rst a bits, as we choose not
to make special cases for integer
over�ow (Section 6.4.2). This is
why we chose to use a + 2b bits
to store a Qa.b value � a + 2b bits
are su�cient to store the last Qa.2b
bits of the multiplication. It is then
su�cient to shift the remaining bits
to the right (preserving the sign) in
order to transform the Qa.2b number into a Qa.b number.

Figure 6.13 shows a visual example of the nsimd implementation of �xed point multiplication
of two Q4.6 numbers. These Q4.6 numbers are store in a 16-bit integer (4 + 2 · 6 = 16),
with 6 bit reserved for intermediate computations. After the integer multiplication, the top
4 bits of information are lost to over�ow, as we would need 20 bits to store a Q8.12 number.
However, the next 4 bits are the integer bits corresponding to our Q4.6 result. At this point,
the result integer is not yet in Q4.6 format, it is in Q4.12. In order to return to the Q4.6
format, we must shift this result right by 6 bits. Finally, we obtain the Q4.6 result of the
multiplication.

It should be noted that this implementation rounds o� the extra bits via truncation. This
rounding method was chosen for performance reasons, as a simple shift operation is faster
than the computation required for any of the more advanced methods.

More formally, the transformations being performed are as follows

Fa.b(x1) · Fa.b(x2) = [I(x1) · 2−b] · [I(x2) · 2−b] = I(x1)I(x2) · 2−2b = Fa.2b(xresult)[
Fa.2b(xresult) = I(xresult) · 2−2b

]
· 2b = I(xresult) · 2−b = Fa.b(xresult)

Numerically, we achieve this via the following shift operation.

Fa.2b(xresult) >> b = Fa.b(xresult)

In comparison, if we had chosen to only store a + b bits to store a Qa.b number, it would
not be possible to store the a + 2b bits of result. Instead we would have to choose between
two possible solutions to performing multiplication. The �rst solution would be to convert to
a datatype capable of storing at least a + 2b bits. In most cases, this involves converting to
a larger datatype, performing the multiplication and shift operations, then converting back
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to the original datatype. Most �xed point implementations blindly upcast in order to store
the full 2a + 2b result of the multiplication. Some SIMD implementations provide integer
multiplication instructions that output a larger datatype (for example, 32-bit int multiplication
results in a 64-bit output). However, it is still necessary to perform the shift operations with
the larger datatype, then downcast the results back to the original datatype and pay the
associated runtime performance costs. The second solution would be to compute only the
middle a + b bits of the multiplication. This does not require any datatype conversions.
However, it does signi�cantly complicate the computations. In order to compute the middle
a + b bits, our simple multiplication would become a series of shifts, multiplications, and
additions.

Example with Numbers For example, if we wish to multiply 2.125 and 3.5 as Q3.3
values, we �rst convert the inputs to their implemented integer representations:

I(2.125) = 2.125 · 23 = 17

I(3.5) = 3.5 · 23 = 28

We can then perform an integer multiplication of the two:

17 · 28 = 476

However, this operation actually over�ows the 9 (3+2·3) bits available, so the value over�ows
down to

476%256 = 220

We must then shift this value back from a Q3.6 integer representation to the Q3.3 integer
representation.

356 · 2−3 = 59.5→ 59

Where we round the 0.5 down via truncation. Finally, we convert back from the integer
representation to see that

59 · 2−3 = 7.375

This is the closest Q3.3 value that does not exceed the numerical result of 7.4375.

Comparison Figure 6.11 compares the performances of the mul function for all �xed
point libraries. Most evidently, the liquid-dsp and lib�xmath bars show we see the cost of
calling a function from a compiled library. At all sizes, the native integer multiplication is
fastest, as the �xed point multiplications must perform extra computations after performing
an integer multiplication themselves. All header-only libraries require take less than one cycle
per element. This means that, once again, the compiler has succeeded in vectorizing the scalar
codes. The scalar nsimd fp_t is generally the fastest �xed point library for multiplication.
This is thanks to the implementation choice to choose a storage type that holds enough bits
that no casting operations are needed, avoiding extra computation.
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Speedup Figure 6.12 compares the speedups obtained when using the pack<fp_t> structure
to vectorize the mul function on various architectures. However, it does not appear to have
optimally auto-vectorized the 8, 16, and 32 bit codes, as the pack implementation does show
a slight speedup in these cases.

The exception here is the SSE 4.2 architecture, where the speedup for 8-bit inputs is
approximately one. This is because the architecture does not support native 8-bit integer
multiplication. The nsimd implementation converts the 8-bit inputs to 16-bits in order to
perform vectorized multiplication. It appears that the cost of this conversion neutralizes any
gains from the vectorization.

Meanwhile, at 64 bits, we observe a loss in performance when using the pack<fp_t>

structure. For the SSE 4.2 and AVX2 architectures, this is because there are no instructions
that allow for 64-bit integer multiplication. It is not possible to use the same workaround
as described for 8-bit inputs, so nsimd uses its scalar fallback. As a result, the SIMD
multiplication can only be slower than the scalar multiplication. For the aarch64 architecture,
this loss in performance is simply because the 64-bit SIMD register only contains a single
64-bit value. This makes it di�cult to achieve any speedup at this level of precision.
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Figure 6.14: Comparison of fixed point library performances for the div function. Raw datain Table C.15.
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Figure 6.16: Example of the operationsinvolved in scalar and 8/16-bit SIMDQ4.6 divisions.

As described in Section 6.1, division of
one Qa.b numbers by another results in a
Qa.0 number. However, we wish to produce
a result with Qa.b precision. We achieve this
by converting the numerator to Qa.2b format
(by shifting the numerator b bits to the left)
before performing integer division, as shown
in Figure 6.16. The resulting value will be
in the desired Qa.b format. This is always
possible thanks to the b reserved bits.

More formally, the transformations being
performed are as follows

Fa.b(x1)

Fa.b(x2)
=
I(x1) · 2−b

I(x2) · 2−b

Fa.2b(x1)

Fa.b(x2)
=
I(x1) · 2−2b

I(x2) · 2−b
=
I1
I2
·2−b = Fa.b(xresult)

In comparison, if we had chosen to only store a + b bits to store a Qa.b number, it would
not be possible to perform the shift without losing bits of information. In most cases, it would
instead be necessary to convert to a datatype capable of storing at least a + 2b bits. This
involves converting to a larger datatype, performing the shift and division operations, then
converting back to the original datatype. Most �xed point implementations blindly upcast in
order to store the 2a + 2b bits and be more than certain to store result of the shift operation.

Example with Numbers For example, if we wish to divide 2.25 by 2 using Q3.3 values,
we �rst convert the inputs to their implemented integer representations:

I(2.375) = 2.375 · 23 = 19

I(2.0) = 2.0 · 23 = 16

Next we shift the numerator 3 bits left

19 · 23 = 152

before performing the integer division

152÷ 16 = 9.5→ 9

Where we round the 0.5 down via truncation. Finally, we convert back from the integer
representation to see that

9 · 2−3 = 1.125

This is the closest Q3.3 value that does not exceed the numerical result of 1.1875.
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Comparison Figure 6.14 compares the performances of the div function for all �xed
point libraries. Here we observe again observe similar performance among all header-only
libraries. Looking at the pack bars, we see the e�ects of using the vectorized integer division
implemented directly into nsimd for 8 and 16 bit inputs. At 32 and 64 bits, nsimd falls back
to scalar division, displaying similar performance to the other division operations. Overall,
we can observe that the cost of an integer division operation is dwarfs the cost of the shift
operation, as the native integer division performance is similar to the �xed point division
performance. Once more, the e�ect of calling a compiled function from a library can be seen
at 32 bits with the liquid-dsp and lib�xmath libraries.

Speedup Figure 6.15 compares the speedups obtained when using the pack<fp_t> structure
to vectorize the div function on various architectures. We can observe the e�ects of the
vectorized integer division of nsimd at 16 and 32 bits for the AVX2 architecture. For the
other architectures, the variations in performance depend on the post-compilation cost of the
nsimd scalar fallback mechanism.

6.5.3 . Trigonometric Functions

All trigonometric functions presented in this section were implemented using Taylor
series approximations centered around zero. This choice was made in order to maximize
comparability with the other �xed point libraries. While Taylor series approximations increase
in error as the input gains distance from the center of the approximation, this error can be
mitigated by exploiting the symmetry of trigonometric functions in order to reduce the input
domain. In all functions presented, we reduce the input domain to [−π

2 ,
π
2 ].

Sine
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Figure 6.17: Comparison of fixed point library performances for the sin function. Raw data inTable C.18.
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The sine function was implemented using a Taylor series expansion around zero (more
speci�cally a Maclaurin series). The Taylor expansion of the sine around zero is

sin(x) =
∞∑
n=0

−1n

(2n+ 1)!
· x2n+1 = x− x3

3!
+
x5

5!
− x7

7!
+ ...

We can factor the above equation into

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ ... = x · (1− x2

2 · 3
(1− x2

4 · 5
− (1− x2

6 · 7
(1− ...))))

This has the e�ect of reducing the number of computations, and reducing the magnitude of the
values involved. The maximum power of x is x2 and we avoid computing large exponentials.
For example, the fourth term is x2

6·7 rather than x7

7! . Reducing these magnitudes reduces
the risk of numerical errors that arise from over�ow or division by a large number negating
a term. At the moment, we �nd that limiting computations to this fourth term provides
su�cient numerical accuracy. In the future, it would be ideal to use SFINAE to determine
the number of terms to use according to the number of decimal bits. Table 6.13 shows the
level of precision each term of the expansion provides, where the Log2(denominator) entry is
the approximate level of decimal bits needed for the term to have an impact.

Order of the term 1 2 3 4 5 6 7
Expression x x3

3!
x5

5!
x7

7!
x9

9!
x11

11!
x13

13!Log2(denominator) 0 2.5 6.9 12.3 18.5 25.2 32.5
Table 6.13: The approximate impact of each sin Taylor expansion term on thefinal result.

In order to minimize the error that arises when inputs are distant from the center of the
expansion (zero), it is necessary to resize inputs using symmetry. We exploit the following
properties of the sine function in the following order to reduce the input domain:

Initial : −∞ < x <∞
sin(−x) = −sin(x) : 0 ≤ x <∞

sin(x+ n · (2π)) = sin(x) : 0 ≤ x < 2π

sin(x+ ·π) = −sin(x) : 0 ≤ x < π

sin(x) = cos(x− π

2
) : −π

2
≤ x < π

2

Comparison Figure 6.17 compares the performances of the sin function for all �xed point
libraries. The fp_t and pack<fp_t> performances are consistently faster than the other
libraries. However, as the following paragraph will describe, this is more due to compiler
optimizations than any code optimization. The CNL and lib�xmath libraries are generally
within a factor of 3x, while the liquid-dsp library shows slower performance.
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Speedup Figure 6.18 compares the speedups obtained when using the pack<fp_t> structure
to vectorize the sin function on various architectures.

On the SSE 4.2 and AVX2 architectures, the low speedup is actually due to the compiler
optimizations of the scalar implementation. The C++ code contains a number of divisions
by constant (calculable at compile-time) �xed-point values in order to perform the input
range reduction described above. However, when disassembling the compiled code, there is
no trace of any integer division � the compiler has replaced them with multiplication by by
integer constants whose properties lead to e�ects equivalent to multiplying by the inverses
of the original constants. This avoids the need to perform a computationally expensive
integer division operation, greatly accelerating the overall computation. The remaining
addition, multiplication, and shift operations are signi�cantly faster than division operations.
In addition, they are operations that the compiler is capable of auto-vectorizing. Meanwhile,
the SIMD implementation does not contain this optimization of the division by constants.

On the aarch64 and AVX512 architectures, the compiler is not able to perform the same
optimizations. This allows for a more impressive speedup. The AVX512 compiler is capable
of vectorizing some parts of the code for only 16-bit inputs, reducing the possible observable
speedup at this data point.
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Figure 6.19: Comparison of fixed point library performances for the cos function. Raw datain Table C.19.
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The cosine function was implemented using a Taylor series approximation around zero.
The Taylor expansion of the cos around zero is

cos(x) =

∞∑
n=0

−1n

(2n)!
· x2n = 1− x2

2!
+
x4

4!
− x6

6!
+ ...

We can factor the above equation into

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ ... = 1− x2

1 · 2
(1− x2

3 · 4
− (1− x2

5 · 6
(1− ...)))

As with the sine function, this reduces the number of operations to perform and reduces the
magnitude of the higher order terms. Once more, the computations are currently limited
(here to the �fth term) with possible optimization via SFINAE.

We exploit the following properties of the cosine function in the following order do reduce
the input domain:

Initial : −∞ < x <∞
cos(−x) = cos(x) : 0 ≤ x <∞

cos(x+ n · (2π)) = cos(x) : 0 ≤ x < 2π

cos(x+ ·π) = −cos(x) : 0 ≤ x < π

cos(x) = −sin(x− π

2
) : −π

2
≤ x < π

2

Comparison Figure 6.19 compares the performances of the cos function for all �xed point
libraries. The fp_t and pack<fp_t> performances are consistently faster than the other
libraries. However, as the following paragraph will describe, this is more due to compiler
optimizations than any code optimization. The CNL and lib�xmath libraries are generally
within a factor of 3x, while the liquid-dsp library shows slower performance.

SIMD Figure 6.20 compares the speedups obtained when using the pack<fp_t> structure
to vectorize the cos function on various architectures. The cos function bene�ts from the
same compiler optimizations as the sin function. As a result, the SSE and AVX2 scalar
performances once more contain optimizations not present in the SIMD implementations,
limiting the possible speedups.
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Figure 6.21: Comparison of fixed point library performances for the tan function. Raw datain Table C.20.

8 16 32 640

1

2

3

4

5

6

2.34

3.67

1.48

0.59

4.95
5.4

2.27

0.92

6.35
6.13

2.59

1.4

5.24

4.56

2.2

0.47

Bits Storage

Spe
edu

p

tan - Fixed Point Speedup

SSE 4.2 AVX2 AVX512 aarch64

Figure 6.22: Speedup when using pack<fp_t> instead of fp_t for tan on variousarchitectures. Raw data in Table C.12.
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The tangent function is implemented using the sine and cosine functions via the following
property.

tan(x) =
sin(x)

cos(x)

It �rst performs range reduction using the properties of the tangent function, then calls the
range reduced versions of the sine and cosine functions. We exploit the following properties
of the tangent function in the following order do reduce the input domain:

Initial : −∞ < x <∞
tan(−x) = −tan(x) : 0 ≤ x <∞

tan(x+ n · π) = tan(x) : 0 ≤ x < π

tan(x+ n · π) = tan(x) : −π
2
≤ x < π

2

Comparison Figure 6.21 compares the performances of the tan function for all �xed point
libraries. The CNL library is not present, as it does not present a tan function. While the
scalar fp_t performance is still faster than the remaining libraries, the di�erence is reduced.

SIMD Figure 6.22 compares the speedups obtained when using the pack<fp_t> structure
to vectorize the tan function on various architectures. Compared to Figures 6.18 and 6.20,
it appears that the tan function does not bene�t from as strong of compiler optimizations
as the sin and cos functions. As a result, the vectorized pack<fp_t> implementation can
show a better speedup than the previous functions.

The SSE 4.2 and AVX2 architectures exhibit a peak at 16 bits rather than 8 bits due to
the usage of a number of operations that are implemented for 16, but not 8 bit inputs.
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6.5.4 . Other Functions

Reciprocal
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Figure 6.23: Comparison of fixed point library performances for the rec function. Raw datain Table C.16.
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The reciprocal function can be implemented in two ways. The �rst way is to perform �xed
point division of 1 by the input. However, SIMD instruction sets do not include the integer
division required to do this. We present a long division algorithm which enables vectorized
integer division for smaller integer types, but we still need an e�cient reciprocal for larger
integer types. For this, we use the Newton-Raphson iterative method to divide 1 by the input
according to the following equation, where a is the input.

xi+1 = xi · (2− (xi · a))

Depending on the choice of starting seed x0, this formula may or may not converge to xf = 1
a .

The formula stops updating when xi+1 = xi, which can occur when

xi+1 = xi = xi · (2− (xi · a))

0 = −xi + 2xi − ax2i
0 = xi − ax2i

0 = xi(1− axi)

xi ∈ {0,
1

a
}

Here we see that there are two values which cause the iterations to stop updating � the
correct answer ( 1a) and zero. This means that we wish to avoid any seeds which cause the
updates to pass through zero. We want to avoid values that satisfy the following formula

xi+1 = 0 = xi · (2− (xi · a))

0 = 2xi − ax2i
0 = xi(2− axi)

xi ∈ {0,
2

a
}

This means that we want to choose the starting seed such that

0 < x0 <
2

a

Otherwise the �nal result will be zero. This appears to be a narrow window of possible starting
values, but it is possible to numerically make a very good starting guess by exploiting the
following relationship

(a = 2log2(a))−1 → 1

a
= 2−log2(a)

While the exact log2(a) is not trivial to compute numerically, its integer portion blog2(a)c can
be. Numerically, blog2(a)c only requires that we locate the strongest set bit. This is possible
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via the clz function implemented in Section 6.3.2. The clz function counts the number of
zero bits before the strongest set bit. It can be used to compute blog2(a)c via the formula

blog2(a)c = Ntotal bits − clz(a)

Because blog2(a)c is an integer value, we can compute 2−blog2(a)c via a shift operation.
Remembering that the relationship between a �xed point value and its integer representation
is

Fa.b(x) = I(x) · 2−b

this formula becomes

blog2(Fa.b(x))c = blog2(I(x) · 2−b)c = Ntotal bits − clz(I(x))− b

Our seed x0 is thus computed via

Fa.b(x0) = 2−(Ntotal bits−clz(I(x))−b) = 2clz(I(x))+b−Ntotal bits

I(x0) = Fa.b(x0) · 2b = 2b · 2clz(I(x))+b−Ntotal bits = 2clz(I(x))+2b−Ntotal bits

Numerically, we can e�ciently compute this power of 2 using shift operators. Unfortunately,
not all shift operations de�ne the behavior of shifting by a negative value. This means that we
want to reframe the computation to only perform valid shifts in one direction. To accomplish
this, we choose to start with a value of 2−b (which sets the weakest bit to 1). As a result,
any x0 computation that requires a right shift is not representable in the Qa.b format and
we do not need to specify the result. Finally, we can numerically compute our starting seed
by beginning with

I(x0) = I(2−b) · 2clz(I(a))+2b−Ntotal bits = I(2−b) << [clz(I(x)) + 2b−Ntotal bits]

In practice, we �nd that the choice of starting seed allows for rapid convergence. As
such we limit the maximum number of SIMD iterations to 10. While this has yet to prove
insu�cient in our applications, more in depth tests are required to determine if 10 iterations
are su�cient in all cases.

Example with Numbers For example, if we wish to compute the reciprocal of 15 using
a Q8.12 (32-bit) format, we must �rst convert it to its integer representation.

15 = F8.12(15) = I8.12(15) · 2−12

I8.12(15) = F8.12(15) · 2+12 = 15 · 212

Next, we compute the starting seed.

clz(I8.12(15)) = 16
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I(x0) = I(2−12) << (16 + 24− 32)

I(x0) = I(2−12) << 8 = 1 << 8 = 28

To see what number this integer format represents, we can convert it back to a �xed point
value.

F8.12(x0) = I(x0) · 2−12 = 28 ∗ 2−12 = 2−4 =
1

16
= 0.625

Finally, we use this starting seed to and perform our iterations to compute the reciprocal.

x1 = 0.6025 · (2− (0.0625 · 15)) = 0.06640625

x2 = 0.06640625 · (2− (0.06640625 · 15)) = 0.06665039

x3 = 0.06665039 · (2− (0.06665039 · 15)) = 0.06665039

Thanks to the choice of a good starting seed, the computation converges rapidly in 3
iterations.

Comparison Figure 6.23 compares the performances of the rec function for all �xed
point libraries. The scalar fp_t implementation uses scalar integer division, while the SIMD
pack<fp_t> implementation uses the Newton-Raphson algorithm described in this section.
As a result, the scalar results are identical to the results presented for division (Section 6.5.2),
but the vectorized results are slower.

Speedup Figure 6.24 compares the speedups obtained when using the pack<fp_t> structure
to vectorize the rec function on various architectures. Here we see that the Newton-Raphson
implementation is slower than the scalar implementation on most architectures for all input
sizes. This is because of the high cost of the starting seed computation, which makes use
of the clz and shlv functions described in Section 6.3.2. Either the necessary instructions
do not exist (SSE4.2 and AVX2) or the register sizes are insu�cient to amortize the extra
computations (aarch64). The exception to this is the AVX512 architecture, which has the
largest register size and provides appropriate intrinsic functions. Most interestingly, the rec

function is twice as fast as the div function on AVX512 16-bit types. This indicates that, while
of very limited usefulness today, the rec function will be worth using on future architectures
with large SIMD register sizes and full support for the necessary intrinsic functions. In most
cases, however, the fp_t rec function should be implemented using the div function instead.

Square Root
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Figure 6.25: Comparison of fixed point library performances for the sqrt function. Raw datain Table C.17.
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The square root function is implemented using the Newton-Raphson iterative method
described in Section 3.2.2. This gives us the following formula for iterating towards the
output.

xi+1 =
1

2
· (xi +

a

xi
)

We �nd that setting the starting seed x0 to be equal to the input value to be su�cient �
initial tests show that this allows tested inputs to converge within 10 iterations. As such, the
vectorized implementation blindly performs 10 iterations to avoid the cost of checking if all
inputs have converged. More in depth tests are necessary to determine if this 10 iterations
are truly su�cient for all possible inputs.

Unlike the reciprocal function, there is only one simple numerical problem to avoid when
implementing the square root � avoiding division by zero. This scenario can only occur when
the initial seed is equal to zero, so � in theory � a single check before beginning the iterations
is su�cient to avoid the problem. In practice, it is possible for the mathematical result to be
smaller than one ULP, so this check must be performed with every loop iteration.

Example with Numbers For example, if we wish to compute the square root of 15
using a Q8.12 (32-bit) format, we perform the following iterations.

x0 = 15

x1 =
1

2
· (15 +

15

15
) = 8

x2 =
1

2
· (8 +

15

8
) = 4.9375

x3 =
1

2
· (4.9375 +

15

4.9375
) = 3.98755

x4 =
1

2
· (3.98755 +

15

3.98755
) = 3.87451

x5 =
1

2
· (3.87451 +

15

3.87451
) = 3.87280

x6 =
1

2
· (3.87280 +

15

3.87280
) = 3.87280

In this example, we converge in 6 iterations.

Comparison Figure 6.25 compares the performances of the sqrt function for all �xed
point libraries. At 8 bits, the CNL library is nearly by far the fastest. However, it scales poorly
with size, as it implements a digit-by-digit algorithm for computing the square root. As we
saw in Section 6.5.2, this type of algorithm scales very poorly with the number of bits. The
scalar fp_t algorithm is much less e�cient at 8 and 16 bits � even the liquid library is faster
at 16 bits. However, it vectorizes well enough that the SIMD implementation is fastest for
16-bit and larger numbers.
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Speedup Figure 6.26 compares the speedups obtained when using the pack<fp_t> structure
to vectorize the sqrt function on various architectures. The sqrt performance graph resembles
the graph showing the performance of integer division (Figure 6.7) for good reason. The
limiting factor in the SIMD performance of the sqrt function is the presence of an integer
division in each loop iteration.

6.6 . Conclusion

The �xed point computational library presented here presents a di�erent approach than
traditionally used when storing �xed point numbers. This approach allows us to avoid
converting between di�erent sized types when performing computations. While the gains
are not always noticeable when performing scalar computations, this storage method allows
us to write much more e�cient vectorized code. In addition, it allows us to write simple
scalar code for the compiler to optimize. Our use of template metaprogramming allows us to
easily support a vast array of �xed point con�gurations. The result of all of this is a �exible,
e�cient computation library for �xed point numbers. However, this library is still very much
a work in progress.

The �rst avenue of improvement is the addition of more functions. A few functions, such
as the exponent and logarithm, already have scalar implementations but no corresponding
vectorized implementations.

A second avenue of improvement is the optimization of the existing functions. For
example, the compiler optimizations of the sin and cos functions should be applicable to all
architectures both scalar and bectorized. Some optimizations would need to be performed
via the use of SFINAE to select between di�erent implementations depending on the �xed
point format being used. For example, the square root algorithm implemented by CNL could
be implemented and selected for use with 8-bit storage types. Another target for optimization
is the trigonometric functions, which could vary the depth of the Taylor expansion depending
on the number of decimal bits.

The third avenue of improvement is the user interface. There are two clear ways to
improve the user interface of this �xed point library. The �rst is to add support for unsigned
�xed point numbers. Unsigned �xed point numbers would not su�er the irregular over�ow
described in Section 6.4.2. In addition, some algorithms allow for di�erent optimizations
depending on whether the inputs are signed or not. The second user interface improvement
is to add a strict mode which enforces the number of integer bits. It would cause signi�cant
performance loss � the simplest implementation would require an extra mask operation after
every single operation performed on a �xed point number. However, this strict mode could
be very useful when exploring the e�ects of strongly limited numerical precision as we will in
Chapter 7.
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7 - Neural Network Precision

The subject of which numerical precision to use for neural network inference is a subject
of active research[42][2][17]. Candidates for useful numerical precisions are not limited to the
traditionally supported types (int, �oat, char, etc.); some types have been researched and
found interesting enough to be worth adding hardware support for, such as the �oat16[7][41]
and b�oat16[98][52] formats. The goal of the research into useful numerical precisions is
to determine precisions which strike a balance between runtime performance and numerical
performance by reducing the precision as much as possible without losing �delity of results.
This chapter will �rst present a framework developed to perform experiments which vary the
numerical precisions used in neural network inference, then it will present the results of the
�rst experiments performed using this framework.

The framework presented in Section 7.1.2 is a neural network inference engine that allows
the use of arbitrary data types. It is even possible to use user-de�ned custom types with
minimal e�ort (Sec. 7.1.2). In addition to allowing the use of arbitrary types, it also allows
the inference data types to be set per-layer. This �exibility enables a vast array of possible
experiments, to the point that the question is not "What can we test?" but "What should
we test?".

The experiments presented in Section 7.2 consist of computing the mAP (described
Sec. 4.4) when performing inference of the PVANet network with various data types. Each
experiment performs inference using two data types � 32-bit �oating point and a speci�c
custom data type. Which layers use which data types during inference depends on the
experiment being performed. For example, the experiment performed in Section 7.3.2 shows
the mAP when computing the Convolution layers with each chosen �xed-point data type and
the remaining layers with 32-bit �oats.

7.1 . Software

In order to test the e�ects of reducing the numerical precision of neural network inference,
it is necessary to have an inference engine capable of using arbitrary types during inference.
A survey of the existing engines failed to �nd any that met this requirement. As a result, we
developed an in-house neural network inference engine capable of computing with arbitrary
types via C++ template metaprogramming in order to perform the experiments presented in
this section.

7.1.1 . Existing Inference Engines

Table 7.1 compares some of the most commonly used neural network software on the
following categories:

• Types - Supported types. Integers, IEEE �oat16 and b�oat16 types are considered.

125



Info Types FeaturesLibrary Ref License int f16 bf16 Ext Mixed SIMD CUDA OpenMP Portable Backend API
Caffe [56] BSD-2 N Y N N Y∗ BLAS Y Y N C++ C++PyTorch [82] BSD Y Y Y N Y† MKL Y Y Y C++ Python/C++mxnet [14] Apache-2 N Y N N Y† Varies‡ Y Y Y C++ ManyTensorFlow [1] Apache-2 Y Y Y Y Y† Eigen Y N Y C++ ManyCustom 7.1.2 TBD Y Y Y Y Y nsimd N Y Y C++ C++

∗ The base caffe does not support mixed-precision inference, but the NVIDIA fork does
† Limited types allowed in mixed-precision
‡ SIMD implementation depends on backend library being wrapped

Table 7.1: Feature comparison of various neural network software.
• Ext - whether the software can be Extended to support alternative datatypes.

• Mixed - Availability of mixed-precision inference.

• SIMD - Library used to achieve SIMD vectorization. BLAS and MKL only provide
high-level vectorized functions.

• CUDA - Presence of CUDA support.

• OpenMP - Usage of OpenMP for parallelization.

• Portable - Portability between at least x86 and ARM platforms.

• Backend - Programming language of software backend.

• API - Programming language of provided APIs.

Caffe is a deep learning framework initially developed by the University of California
Berkeley and now developed by Facebook. It is somewhat portable, although the portability
takes the form of di�erent forks of the codebase for di�erent architectures. Despite using
C++ templates in its codebase, it only supports IEEE 16, 32, and 64 bit �oats. It does not
allow for easy extension of the supported types. In addition, its mixed-precision capabilities
are limited to mixing 16 and 32 bit �oats.

PyTorch is a machine learning library which includes deep learning as one of its features. It
is also owned by Facebook, and Ca�e has recently been merged into the PyTorch library[12].
Being a python library, it is generally portable. It de�nes a number of types that can be used
in computation including integers, booleans, bytes, half precision �oats, and b�oat16 �oats.
In addition, its mixed-precision capabilities are limited to mixing 16 and 32 bit �oats.

mxnet is a deep learning framework developed by Apache. In addition to providing deep
learning functionality, it can also wrap other deep learning frameworks, allowing for greater
portability. Despite using C++ templates in its codebase, it only supports IEEE 16, 32, and
64 bit �oats. It does not allow for easy extension of the supported types.
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Figure 7.1: Example of a division of a neural network

TensorFlow is a software library developed by Google which contains machine learning
and deep learning features. It is used on a variety of platforms and supports a variety of types.
Its Python API allows for extending the supported datatypes via a variant umbrella type.
However, usage of the variants appears to disable parallelization.

Custom This work presents a custom inference-only neural network engine developed by
Agenium Scale with Université de Clermont-Auvergne. It consists entirely of header-only
C++ code and makes use of template metaprogramming. The templates are used in such a
way that adding new datatype support is relatively simple (see Section 7.1.2). In addition,
platform-speci�c optimizations are implemented using the nsimd software library, allowing for
both portability and performance.

7.1.2 . Custom Inference Engine

In order to perform the experiments presented in Section 7.2, it was necessary to develop
a custom neural network inference engine. This engine was developed in C++ and leverages
both template metaprogramming and operator overloading in order to support arbitrary data
types. Usage of template metaprogramming is nonetheless limited to C++98 features to
allow for wider portability of the engine.

The goal was to develop an engine capable of controlling the data types used in inference
with layer-level granularity. Manually selecting the data type of each layer would be a tedious
process, so the engine implements a system of transitions to de�ne boundaries between regions
using di�erent data types. Each region between transitions consists of a series of layers using
the same data type. Each transition represents a boundary where the data type being used
changes.
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Figure 7.2: Example of a network using ints for Convolutions and floats for therest.
Defining Transitions When writing code using the custom inference engine, transitions
may be speci�ed using either their number in the order of layers or their name in the
.prototxt �le de�ning the network. The layer listed in the transition is considered to be the
�rst layer to use the new type. The data type used in the last transition will be used in all
layers until the end of the network. The �rst de�ned data type will be used in all layers from
the start until the �rst transition. If there is no layer corresponding to a de�ned transition,
there will be a warning output to the standard output. For example, the code below de�nes
the transitions needed to implement the regions de�ned in Figure 7.1.

1 std::vector <ns::Transition > transitions;

2 transitions.push_back( ns:: Transition( ns::Type1 , ns::

Type2 , 4 ) );

3 transitions.push_back( ns:: Transition( ns::Type2 , ns::

Type1 , "fc7" ) );

The transitions can be de�ned in any order. This array of transitions must be de�ned before
creating a network object (to allow for memory optimizations).

Once the array of transitions is de�ned, the network object may be created. By default,
networks using 2 and 3 di�erent types during inference are supported. However, it is possible
to support any number of data types by generating the appropriate header �les. This is
done by running the python script tools/multi_network/gen_multi_network.py -n [#

types] with the number of types needed as an argument. Code generation is used for this
instead of template metaprogramming for ease of development and to allow the possibility of
compiling using older C++ standards. The object used to represent a network using X data
types during inference is ns::mixed_network_X.
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Loading a Network As of this writing, there are two ways to initialize a network object.
The �rst way is to use a prebuilt caffe network to read the .prototxt and .caffemodel

�les and allow the network to copy the appropriate data. The second way is to convert the
.prototxt and .caffemodel �les to a custom format, then use the new �les to load the
network. In either case, the multi_network object is declared with a number of template
arguments equal to the number of data types to be used plus one. The �rst template argument
is the type used by the .caffemodel �le in order to store the weights of the network. All
following template arguments are the data types to be used during inference. Below is an
example of a code that loads the information using a caffe object.

1 ns:: mixed_network_2 <float ,int ,float > custom_network(

caffe_network , transitions );

Accessing Data It is fairly simple to access the data within the network object for loading
inputs and accessing outputs. This is done using the block_by_name method of the network
object. This function takes 3 arguments � the name of the layer to be accessed, and two
pieces of information about the layer's data type. The �rst piece of information is the data
types number in the order of types declared in the declaration. For example, in the listing
above this paragraph, the �rst inference type listed in int, so it corresponds to ns::Type1.
The second piece of information is the data type being requested. This must be speci�ed due
to the limitations of C++ compilers' type deductions.

1 int *ImInfo = custom_network.block_by_name( "im_info" , ns

::Type1 , int() );

2 ImInfo [0] = width;

3 ImInfo [1] = height;

The output of this method is a pointer to the raw data containing the requested data. It can
be directly accessed using the [ ] operator (unlike the commonly used std::shared_pointer

which only implements the operator since C++11).

Performing Inference Once the input layers are loaded, performing inference is as
simple as the following code.

1 custom_network.Evaluate ();

If one wishes to perform inference on a subsection of the network, there is also the EvaluateFromTo(
int , int ) method.

Supported Layers The custom inference engine currently supports only the layers necessary
to use the PVANet and YOLO neural networks. The list of supported layers is as follows:
BatchNorm, Concat, Convolution, Deconvolution, Eltwise, InnerProduct, Input, Pooling,
Power, ProposalLayer (PVANet), ReLU, Reshape, ROIPooling, Scale, Softmax, Split, Upsample,
Yolov3DetectionOutput (YOLO).
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Supported Data Types

The custom inference engine is capable of performing inference using any data type that
overloads the basic arithmetic operators (+-*/), implements three mathematical functions
(sqrt, pow, exp), and implements the cast operator (operator()). If the data type meets
these standards, adding support to the engine requires specializing the three mathematical
functions in the include/nsmath.hpp �le. For example, the following code adds �xed point
capabilities to the engine:

1 template <uint8_t lf, uint8_t rt>

2 using fp_t = nsimd:: fixed_point ::fp_t <lf, rt >;

3
4 template <uint8_t a, uint8_t b>

5 fp_t <a, b> sqrt(fp_t <a, b> in) { return nsimd:: fixed_point

::sqrt(in); }

6 template <uint8_t a, uint8_t b>

7 fp_t <a, b> pow(fp_t <a, b> in, fp_t <a, b> pow) {return nsimd

:: fixed_point ::exp(in, pow); }

8 template <uint8_t a, uint8_t b>

9 fp_t <a, b> exp(fp_t <a, b> in) { return nsimd:: fixed_point ::

exp <a, b>(in); }

And the following code adds integer support to the engine:

1 template <> int sqrt(int in) { return int(std::sqrt(float(in)

)); }

2 template <> int pow(int in, int pow) { return int(std::pow(

float(in), float(pow))); }

3 template <> int exp(int in) { return int(std::exp(float(in)))

; }

Code Generator

In order to facilitate rapid prototyping and enable experiments that would be tedious to hand-
code, a code generator is provided in the tools/gen_experiments/gen_experiments.py

�le. In its current state, the code generator only supports PVANet. However, it is designed
to allow easy extension for other neural networks. In order to generate an experiment, the
code generator requires two input �les.

The �rst required �le contains the layer information for the network being used. This �le
allows the code generation to occur much faster than if the generator loaded the entire network
to obtain the layer information. The layer information �le can be obtained by compiling
src/cpp/layer_numbers.cpp and running it on the network of interest.

The second required �le is a �le containing the experiment parameters. It must be placed
in the tools/gen_experiments/parameters/ directory. This �le must de�ne a number of
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python functions that will be called by the code generator. The following code is a minimal
example of a parameter �le, commented to explain each function being de�ned.

1 # Data types to use : first entry will be the initial/entry

type

2 def type_list ():

3 return [ "float" , "int" ]

4
5 # Type that caffe was trained with. 99% chance of float

6 def caffe_type ():

7 return "float"

8
9 # Layers that we need the pointers to

10 def output_layers ():

11 return [

12 'rois'

13 , 'bbox_pred '

14 , 'cls_prob '

15 ]

16
17 # Input layers that we need pointers to

18 def input_layers ():

19 return [

20 'data'

21 , 'im_info '

22 ]

23
24 # Constraints: "I want this layer to have this type"

25 # Format of network is [ [ layer number , layer type , layer

name , outputs ... ] ... ]

26 def GenConstraints( network , types ):

27 return SingleTransition( network , types , 10 )

28
29 def SingleTransition( network , types , num ):

30 ret = []

31 if ( num > len(network) ):

32 print( "No transitions generated - num > number of layers

" )

33 return ret

34 ret.append( [network[num ][2] , types [1] ] )

35 ret.append( [network[num +1][2] , types [0] ] )

36 return ret

This example generates an experiment that uses the float data type for the �rst 10 layers
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(layers 0-9), then uses the int data type for the remaining layers. For a more interesting
example of what is possible with the code generator, the following de�nition of the GenConstraints
function creates an experiment where all Convolution layers use int data types, while the
rest of the network uses float data types. See Figure 7.2 to visualize the type of network
that would be generated.

1 def GenConstraints( network , types ):

2 return OnlyConvolution( network , types )

3
4 def OnlyConvolution( network , types ):

5 ret = []

6 for i in range( 0 , len(network) ):

7 if ( network[i][1] == "Convolution" ):

8 ret.append( [network[i ][2] , types [1] ] )

9 ret.append( [network[i+1][2] , types [0] ] )

10 return ret

Generating the Code Once the appropriate input �les have been written, the code
generator can be used to generate the desired experiment(s). By default, with only the
required �ags, the code generated will use MPI to perform inference on all images in a
directory and output the resulting bounding boxes in a chosen location.

• -h - help

• -l [file] - Required - layer information �le created by running an auxiliary executable.

• -o [file] - Required - where to output generated C++ �le.

• -c [file] - Required - con�guration �le that de�nes the experiment being generated.

• �no-mpi - Optional - disable MPI.

• �vis - Optional - visualize results using OpenCV.

• �no-write - Optional - do not output bounding boxes to a �le.

• �rec - Optional - output images with bounding boxes.

• �batch - Optional - batched input. Generated code will take a list of �les instead of
a directory as input.

For prototyping, it is suggested to use the �no-mpi, �vis, and �no-write �ags to easily
visualize the results without storing them. This allows one to see if a set of parameters
results in a visually coherent output. Otherwise, the default �ags are ideal for inferring a
large number of images in order to compute an mAP.
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7.1.3 . Numerical Types

The tests presented in this chapter are performed using 3 categories of data types �
natively supported types, customizable �oating point types (discussed below), and customizable
�xed point types(presented in Chapter 6. The purpose of using these data types is to explore
what types could be interesting to use in neural network without limiting ourselves to the
types currently supported by hardware.

Custom Floats

In order to perform experiments limiting the �oating point format, a suitable data type is
needed to represent the modi�ed �oats. A few qualities were sought after.

First, the data type needs to be capable of fully customizing and limiting the size of both
the mantissa and the exponent. This disquali�es the Boost Multiprecision[9] library, as it
does not allow full customization of the exponent.

Second, the data type needs to be capable of easily representing multiple di�erent �oating
point formats. This disquali�es the MPFR[31] software library, as the exponent and mantissa
bits are speci�ed as global variables.

Finally, the data type needs to emulate as well as possible the format being chosen.
This disquali�es any approaches leveraging expression templates, as they only respect the
chosen format during storage operations and not while performing chains of intermediate
computations.

Ultimately, it was simplest to code a limited custom �oating point format. This custom
implementation uses a native 32-bit �oat to store values and perform operations. After every
operation performed upon a custom �oat, the exponent is checked for over�ow. If the value
should over�ow, the value stored is ±infty. Otherwise, a mask is applied to remove any
extra precision in the mantissa.

There are three notable custom �oating point con�gurations to consider when examining
the results presented in Section 7.3.1. These are the IEEE 32-bit �oat (8-bit exponent, 24-bit
mantissa), IEEE 16-bit �oat (5-bit exponent, 11-bit mantissa), and b�oat16 format (8-bit
exponent, 8-bit exponent)

7.2 . Methodology

The ultimate goal is to reduce numerical precision at intervals that allow for better SIMD
parallelism. However, the �exibility of the inference engine allows us to test an incredible
variety of numerical precisions. We test broad ranges of numerical precision, regardless of
SIMD performance, in order to see if any patterns emerge.

Test Design In order to study which numerical precisions can be acceptable, we chose to
compute the mAP (described in Sec. 4.4) for a range of combinations of numerical precisions.
All results presented here use 32-bit �oating point types when not otherwise speci�ed. The
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custom numerical precisions used were the custom �oating point types and the �xed point
types.

Both types were tested in a similar fashion. For each experiment, one type of layer is
chosen (for example, the Convolution layer). During inference, all layers of this type use
the data type being studied. All other layer types use the default IEEE 32-bit �oat during
inference. Inference is performed upon all images of the VOC-2007 dataset. The results are
used to compute a VOC-2007 mAP for the given data type and layer being studied.

The experiments on �xed point formats and custom �oats di�er in one manner � exhaustivity.
The custom �oating point types are tested exhaustively for all con�gurations (184).

8 mantissa possibilities ∗ 23 exponent possibilities = 184 con�gurations

However, the �xed point format (Qa.b) is capable of many more con�gurations (2080), so it
is not tested exhaustively.

a + b ≤ 64→
64∑
i=0

i = 2080 con�gurations

The methods used to select which �xed point con�gurations were tested are described in
Section 7.3.2

Testing Hardware All experiments presented here were performed by our colleagues at
the Université Clermont Auvergne using the Mesocentre, their computational cluster. The
Mesocentre comprises 42 computational nodes with a total of 720 physical cores and 6 TB of
RAM. The neural network inference computations performed in these experiments are trivially
parallelizable and thus well suited to making use of such a computational cluster. We used
MPI to parellelize the inference computations required in order to be able to compute the
mAP for each con�guration.

For context, every single mAP computation requires the computation of 4,952 inferences.
At approximately 10 seconds per inference, this represents more than 8 hours of computation
for a single data point of each graph presented in this section. Access to a computational
cluster allowed the experiments to involve signi�cantly more data points.

PVANet All experiments presented here are performed using the PVANet neural network
(presented in Section 4.5). This network was chosen for a number of reasons.

• It is relevant as a state of the art network, having been published in 2016[46].

• The source code is open-source[45], allowing for reproduction of the published results.

• A number of di�erent layer types (17) are used, allowing for varied experimentation.

134



• It uses a (slightly modi�ed version of a) well-known open-source deep learning framework.
Ensuring that the custom inference engine works for PVANet ensures that it is ca�e-
compatible.

Before running any tests, we ensured that the inference engine is capable of perfectly
reproducing the mAP results obtained via the code on the PVANet code repository[45].
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7.3 . Results

This section presents the results of the experiments described in Section 7.2, separated
�rst by data type studied and then by layer type studied.

7.3.1 . Custom Floats

This section presents the results of computing the mAP when computing speci�c layers
using all valid custom �oat con�gurations. For each layer presented, the layer in question
is computed using a custom �oat format and the remaining layers using normal IEEE 32-bit
�oats. Each graph shows how the mAP varies with the size of both the mantissa and the
exponent. Remember that, as described in Section 3.1, a 1-bit mantissa represents 2-bits of
information thanks to normalization.
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Figure 7.3: mAP using custom floatsin the BatchNorm layer.

The mAP for all tested combinations of mantissas
and exponents is shown in Figure 7.3. Most
evidently, this graph shows a dramatic cli�
between a 5-bit exponent and a 6-bit exponent.
This indicates the presence of a threshold below
which the computation fails due to over�ow
and above which there are no problems. There
appears to be no gain from going above 6 bits in
the exponent.

When looking at the e�ects of varying the
number of bits in the mantissa, we see that the
BatchNorm layer is very tolerant of low precision.
For the usable exponents (6, 7, 8 bits), the mAP
is approximately 0.57 for a 1-bit mantissa, 0.76
for a 2-bit mantissa, and a 3-bit mantissa is
su�cient to nearly match the initial 0.88 mAP with �oats.

Overall, the BatchNorm layer appears to allow for strongly reduced precision � it is
possible to reduce the size to an 8-bit format (2-bit mantissa, 6-bit exponent) and still
obtain reasonable results.
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Convolution
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Figure 7.4: mAP using custom floatsin the Convolution layer.

The mAP for all tested combinations of mantissas
and exponents is shown in Figure 7.4. Once
more, this graph shows a dramatic cli�, this time
between a 4-bit exponent and a 5-bit exponent.
As in the BatchNorm layer, this appears to be a
threshold e�ect such that once the 5-bit threshold
is reached, there are no gains to be had by further
increasing the number of bits in the exponent.

Figure 7.4 indicates that an 11-bit mantissa
is su�cient to nearly replicate the performance
of �oats (mAP of 0.882 vs 0.883). On the lower
end, 8 bits in the mantissa are the minimum to
produce coherent results (mAP = 0.70).

The Convolution layer can easily be computed
using a 16-bit �oating point format. An IEEE half-precision �oat provides 11 bits of mantissa
and 5 bits of exponent, which is su�cient to nearly replicate the original performance.
Meanwhile, a b�oat16 with an 8-bit exponent and 8-bit mantissa, is su�cient to achieve
degraded results.

Deconvolution
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Figure 7.5: mAP using custom floatsin the Deconvolution layer.

The mAP for all tested combinations of mantissas
and exponents is shown in Figure 7.5. As with the
previous layers, this graph shows a cli� along the
exponent axis between 3 bits and 4 bits. Once
the 4-bit threshold is reached, there are no further
gains to be had by increasing the size of the
exponent.

Along the mantissa axis, Figure 7.5 is nearly
�at. With a 1-bit mantissa, it is already
possible to obtain an mAP of 0.87, leaving very
little room for improvement before reaching the
original mAP of 0.883. This indicates that the
Deconvolution layer is fairly insensitive to speci�c
values, as opposed to orders of magnitudes.

Overall, the Deconvolution layer can tolerate signi�cantly reduced precision � it is possible
to nearly replicate the original performance with only 5 bits (1-bit mantissa with 4-bit
exponent).
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Eltwise
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Figure 7.6: mAP using custom floatsin the Eltwise layer.

The mAP for all tested combinations of mantissas
and exponents is shown in Figure 7.6. This graph
shows a less dramatic cli� along the exponent
axis than the previous layers examined � it occurs
between 3 bits and 5 bits. Once at the top of the
cli� at 5 bits, there are no further gains from
increasing the number of bits in the exponent.

Along the mantissa axis, a similar cli� can be
observed. At 1 bit, the results are incoherent.
At 2 bits, the results are degraded, but coherent
(mAP = 0.74). At 3 bits, the results already
approach the original performance (mAP =
0.86).

Overall, the Eltwise layer does not need much
precision � it is possible to nearly replicate the original performance with 8 total bits (3-bit
mantissa and 5-bit exponent).
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Figure 7.7: mAP using custom floatsin the InnerProduct layer.

The mAP for all tested combinations of mantissas
and exponents is shown in Figure 7.7. This graph
shows the usual cli� along the exponent axis
between 2 bits and 4 bits. There are no gains
from increasing the size of the exponent beyond
4 bits.

The mantissa axis shows the least steep
incline so far, showing most of the growth
between 7 and 11 bits. At 11 bits, the mAP
(0.87) approaches the original performance using
�oats.

Overall, the InnerProduct computation can
be done using a 16-bit format. With the 11 bits
mantissa and 5 bits exponent of a IEEE half, it
allows for an mAP of 0.87 � very nearly the original performance. However, a b�oat16 with
8 bits mantissa and 8 bits exponent only allows for an mAP of 0.32 � a strongly degraded
result.

138



Pooling
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Figure 7.8: mAP using custom floatsin the Pooling layer.

The mAP for all tested combinations of mantissas
and exponents is shown in Figure 7.8. This graph
shows the cli� along the exponent axis between
3 bits and 4 bits. There are no gains from
increasing the size of the exponent beyond 4 bits.

Along the mantissa axis, Figure 7.8 is nearly
�at. With a 1-bit mantissa, it is already possible
to obtain an mAP of 0.86, leaving very little room
for improvement before reaching the original
mAP of 0.883. This indicates that the Pooling
layer is fairly insensitive to speci�c values, as
opposed to orders of magnitudes.

Overall, the Pooling layer can tolerate
signi�cantly reduced precision � it is possible to
nearly replicate the original performance with only 5 bits (1-bit mantissa with 4-bit exponent).
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Figure 7.9: mAP using custom floatsin the ProposalLayer layer.

The mAP for all tested combinations of mantissas
and exponents is shown in Figure 7.9. As usual,
this graph along the exponent axis shows a cli�
between, this time between 4 and 5 bits. There
appears to be no gain from going above 5 bits in
the exponent.

Along the mantissa axis, a similar cli� can be
observed. At 1 bit, the results are incoherent. At
2 bits, the results are degraded, but somewhat
useful (mAP = 0.50). At 3 bits, the results
are degraded, but coherent (mAP = 0.74). At
4 bits, the results already approach the original
performance (mAP = 0.84).

Overall, the ProposalLayer layer can tolerate
signi�cantly reduced precision � it is possible to approach the original performance with only
8 bits (4-bit mantissa with 4-bit exponent).
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ReLU
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Figure 7.10: mAP using customfloats in the ReLU layer.

The mAP for all tested combinations of mantissas
and exponents is shown in Figure 7.10. This
graph shows a less dramatic cli� along the
exponent axis than the previous layers examined
� it occurs between 3 bits and 4 bits. Once at
the top of the cli� at 4 bits, there are no further
gains from increasing the number of bits in the
exponent.

Along the mantissa axis, a similar cli� can be
observed. At 1 bit, the results are incoherent.
At 2 bits, the results are degraded, but coherent
(mAP = 0.74). At 3 bits, the results already
approach the original performance (mAP =
0.86).

Overall, the ReLU layer does not need much precision � it is possible to nearly replicate
the original performance with 8 total bits (4-bit mantissa and 4-bit exponent).

ROIPooling
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Figure 7.11: mAP using customfloatsin the ROIPooling layer.

The mAP for all tested combinations of mantissas
and exponents is shown in Figure 7.11. As usual,
this graph along the exponent axis shows a cli�
between, this time between 4 and 5 bits. There
appears to be no gain from going above 5 bits in
the exponent.

Along the mantissa axis, a similar cli� can be
observed. At 1 bit, the results are incoherent. At
2 bits, the results are degraded, but somewhat
useful (mAP = 0.63). At 3 bits, the results
already approach the original performance (mAP
= 0.80).

Overall, the ROIPooling layer can tolerate
signi�cantly reduced precision � it is possible to
approach the original performance with only 8 bits (3-bit mantissa with 5-bit exponent).

140



Scale
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Figure 7.12: mAP using customfloats in the Scale layer.

The mAP for all tested combinations of mantissas
and exponents is shown in Figure 7.12. This
graph shows the usual cli� along the exponent
axis between 3 bits and 5 bits. There are no gains
from increasing the size of the exponent beyond
5 bits.

Along the mantissa axis, a similar cli� can be
observed. At 2 bit, the results are incoherent.
At 3 bit, the results are strongly degraded, but
occasionally useful (mAP = 0.34). At 4 bits, the
results are degraded, but somewhat useful (mAP
= 0.76). At 5 bits, the results already approach
the original performance (mAP = 0.86).

Overall, the Scale computation can just
barely be done using an 8-bit format with a 4-bit mantissa and 4-bit exponent (mAP =
0.76). However, it becomes much more reliable when adding one more bit to both the
mantissa and exponent.
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Figure 7.13: mAP using customfloats in the Softmax layer.

The mAP for all tested combinations of mantissas
and exponents is shown in Figure 7.13. This
graph shows the cli� along the exponent axis
between 0 bits and 2 bits. There are no gains
from increasing the size of the exponent beyond
2 bits.

Along the mantissa axis, Figure 7.13 is
nearly �at. With a 1-bit mantissa, it is already
possible to obtain an mAP of 0.881, leaving
very little room for improvement before reaching
the original mAP of 0.883. This indicates that
the Softmax layer is fairly insensitive to speci�c
values, as opposed to orders of magnitudes.

Overall, the Softmax layer can tolerate
signi�cantly reduced precision � it is possible to nearly replicate the original performance
with only 3 bits (1-bit mantissa with 2-bit exponent).
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7.3.2 . Fixed Point

This section presents the results of computing the mAP after performing inference where
speci�c layers use certain �xed point formats with the nsimd �xed point module. For each
layer presented, the layer in question is computed using various �xed point formats and the
remaining layers using normal IEEE 32-bit �oats. Each plot contains three graphs. The �rst
graph represents an initial exploratory run that tests a variety of Qa.b formats by symmetrically
increasing the number of bits in both the integer and decimal portions of the �xed point
numbers. When this ceases to be possible due to the maximum storage size of a+ 2b < 64,
bits, we continue increasing the decimal bits while decreasing the number of integer bits.
The second graph sets the integer bits to 3 and varies the number of decimal bits in order to
explore the e�ects of having a low number of integer bits. The third graph sets the integer
bits to 21 and varies the number of decimal bits in order to explore the e�ects of having a
larger number of integer bits.

Each plot additionally contains a number of colored dashed lines. Every dashed line
represents a change in the storage type of the �xed point numbers being represented by the
curve of the same color. The storage type to the right of the dashed line is larger than the
storage type to the left of the dashed line.

Integer Bits When examining the results in this section, the e�ects of the extra integer
bits described in Section 6.4.2 (paragraph "Alignment") will become apparent in some cases.
As a reminder, when the total number of bits required to store a �xed point number is less
than the total number of bits available for storage, the extra bits can be used as extra integer
bits. For example, a Q4.4 number requires 12 bits but is stored using 16 bits. These 4 extra
bits can be used as integer bits during certain computations.

BatchNorm

Figure 7.14 shows the results of the �xed point experiments on the BatchNorm layer. The
results are clear and simple � it is not possible to compute the BatchNorm layer using the
nsimd �xed point module. This is due to the presence of certain parameter values of very
low magnitude which are used as themselves and in their reciprocal form. As a result, the
BatchNorm computation within PVANet network requires a larger number of integer and
decimal bits than our numerical format allows.

Convolution

Figure 7.15 shows the results of the �xed point experiments on the Convolution layer. Along
all three graphs, there is a cli� between 8 and 10 decimal bits where the mAP rises from near
zero to nearly 0.6. After this cli�, there does not appear to be signi�cant variation (with one
exception explained below) in the mAP depending on the number of decimal bits. However,
none of the tested �xed point formats approach the initial mAP of 0.883.
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Figure 7.14: mAP using different fixed point formats in the BatchNorm layer. a =number of integer bits.
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Figure 7.15: mAP using different fixed point formats in the Convolution layer. a= number of integer bits.
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Figure 7.16: mAP using different fixed point formats in the Deconvolution layer.a = number of integer bits.
The Q3.X graph allows us to infer some of the e�ects of varying integer bits on the mAP,

as evidenced by the dip at the Q3.13 and Q3.14 formats. These formats approach the upper
limit of their storage types and thus do not bene�t from many extra integer bits. The Q3.14
format e�ectively has 4 integer bits during computations, while the Q3.13 has 6 and the
Q3.12 has 8. It thus appears that the lower bound to achieve the displayed mAP of 0.6 is 8
integer bits.

When comparing with Section 7.3.1, we can conclude that this loss of mAP is due to a
lack of simultaneous integer and decimal precision in the types tested. Section 7.3.1 shows
that a �oating point value requires 11 bits of mantissa and 5 bits of exponent to approach the
initial �oat32 mAP. Using �xed point numbers to represent the same range of values would
require approximately 15 bits of integer bits and 25 bits of decimal bits. Unfortunately, this
combination is not representable using our �xed point format, as it requires 65 bits of storage
when accounting for the reserved bits. As a result, we fail to match the initial mAP with any
tested �xed point format.

If future experiments are possible, they should be initially performed along the axes of 8
integer bits and 25 decimal bits.

Deconvolution

Figure 7.16 shows the results of the �xed point experiments on the Deconvolution layer. It
appears that 4 integer bits are su�cient to obtain the initial mAP of 0.883, and any further
increase is not needed. Due to the e�ective extra integer bits, the variable graph does not truly
test integer bit numbers of 1 or 3. However, the rightmost point of the graph (Q2.31) does
show that 2 integer bits are insu�cient. This is coherent with the 4 exponent bit requirement
found in Section 7.3.1.
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Figure 7.17: mAP using different fixed point formats in the Eltwise layer. a =number of integer bits.
Future experiments should test if 3 integer bits or 0 decimal bits are su�cient to maintain

the 0.883 mAP.

Eltwise

Figure 7.17 shows the results of the �xed point experiments on the Eltwise layer. All tested
con�gurations proved su�cient to replicate the initial mAP. This means that even the most
extreme Q2.31 and Q7.1 formats were su�cient, which is more tolerant than the minimum
3 bit exponent and 5 bit mantissa found in Section 7.3.1. Future experiments would require
a strict �xed point format in order to resolve the con�ict between these �ndings.

InnerProduct

Figure 7.18 shows the results of the �xed point experiments on the InnerProduct layer. The
most perplexing feature of this graph is the small peak at 6 decimal bits. This peak occurs
on all three curves, so it cannot be discounted as a random occurrence. It also cannot be
explained as a side e�ect of the unused bits in the storage type, as the three curves greatly
di�er in how they use the available bits. The Q3.X curve uses 15 bits with 1 extra, the Q21.X
curve uses 33 bits with 31 extra, and the variable curve uses 18 bits with 14 extra. As of
this writing, no viable explanation of this result has yet been found. Further experiments are
required to test if this result is replicable and if it is truly consistent over the entire Qa.6 axis.

Ignoring the Qa.6 points, we observe the familiar presence of a cli� between 12 and
14 decimal bits along all three curves, showing that we can obtain an acceptable mAP of
approximately 0.8 at 13 decimal bits and replicate the initial mAP with 14 bits. To the far
right of the graph, we can observe that 2 integer bits are clearly insu�cient, while 4 bits allow
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Figure 7.18: mAP using different fixed point formats in the InnerProduct layer. a= number of integer bits.
replication of the initial mAP. This is coherent with the �ndings of Section 7.3.1.

Pooling

Figure 7.19 shows the results of the �xed point experiments on the Pooling layer. Unfortunately,
these results revealed and were impacted by a bug in the implementation of the Pooling
layer that a�ects non-�oat types. Every Pooling layer in PVANet uses max pooling, which
outputs the maximum value in a region. The implementation of this pooling type in the
custom inference engine initializes the variable that stores the in-progress maximum value to
be -FLT_MAX. However, this -FLT_MAX is far larger in magnitude than anything that a �xed
point number can represent and causes behavior that depends on the �xed point format being
converted to. This could have been avoided by instead initializing this value to the �rst value
in the region to be examined.

This set of experiments must be re-run with the above bug�x in order to obtain usable
results.

ProposalLayer

Figure 7.20 shows the results of the �xed point experiments on the ProposalLayer layer. The
ProposalLayer results show two major inconsistencies.

The �rst inconsistency is the behavior of the Q3.X curve. When transitioning from 8-
bit storage to 16-bit storage and 16-bit to 32-bit, we observe a drop to zero followed by a
return to the baseline mAP. However, no such drop is observed when transitioning from 32-bit
storage to 64 bits.

The second inconsistency is the Q3.2 mAP contrasted with the Q2.31 and the Q21.1
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Figure 7.19: mAP using different fixed point formats in the Pooling layer. a =number of integer bits.
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Figure 7.20: mAP using different fixed point formats in the ProposalLayer layer.a = number of integer bits.
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Figure 7.21: mAP using different fixed point formats in the ReLU layer. a =number of integer bits.
mAPs. At Q3.2, the mAP is zero, while both Q2.31 and Q21.2 display mAPs of 0.88. The
Q2.31 format has less integer bits (declared and e�ective) while the Q21.1 has less decimal
bits, yet both simultaneously display a higher mAP. This points towards a conclusion that the
ProposalLayer requires either a certain number of decimal bits or a certain number of integer
bits. However, this conclusion is not numerically coherent.

Neither inconsistency has yet been adequately explained. Further testing and veri�cation
of the source code are required in order to draw any real conclusions.

ReLU

Figure 7.21 shows the results of the �xed point experiments on the ReLU layer. The ReLU
layer appears to have a minimum number of required integer bits and no dependence on
the number of decimal bits. The Q2.31 data point shows that 2 integer bits appear to be
insu�cient to output acceptable results. In addition, we observe a small dip in the mAP at
the Q3.2 and Q2.2 data points with 4 e�ective integer bits. However, neither the Q3.6 nor
the Q3.14 show the same dip in mAP. This indicates that the small loss of mAP at 4 integer
bits can be o�set by having more decimal bits. Further testing with strict �xed point types
would allow us to determine with certainty if this is the case.

ROIPooling

Figure 7.22 shows the results of the �xed point experiments on the ROIPooling layer. This
graph resembles Figure 7.19, and for good reason. The ROIPooling layer su�ers from the
same type of software bug � it contains a variable that is initialized to -FLT_MAX. As a result,
it is di�cult to draw any suitable conclusions without re-running the experiments with the
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Figure 7.22: mAP using different fixed point formats in the ROIPooling layer. a =number of integer bits.
bug �xed.

Scale

Figure 7.23 shows the results of the �xed point experiments on the Scale layer. This graph
shows a need for a minimum number of both integer and decimal bits. The Q21.X curve
shows that, while 1 decimal bit can produce acceptable results, 2 decimal bits are needed
to approach the initial mAP. For the integer bits, the curves consistently show that 4 bits is
insu�cient, 6 bits can be acceptable, but 8 are needed to approach the initial mAP. This can
be seen in the dips in the variable and Q3.X curves which occur when the number of e�ective
integer bits reduces before upgrading the storage type. These results appear to be coherent
with the Section 7.3.1.

Softmax

Figure 7.24 shows the results of the �xed point experiments on the Softmax layer. These
results are signi�cantly worse than the results found in Section 7.3.1. In addition, the behavior
of the curves is somewhat reminiscent of the Pooling and ROIPooling graphs. However, there
does not appear to be any similar type of initialization bug in the Softmax layer. If this
behavior is due to a software bug, it is a bug that has yet to be found.

Some di�erences may be due to the use of an exponential function, as the �xed point
implementation has lower precision than the custom �oating point implementation which
computes the exponential using full �oat32 numbers (via std::exp). However, these di�erences
are insu�cient to explain the discrepancy between the �xed and �oating point behaviors. We
are still working to resolve this inconsistency.
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Figure 7.23: mAP using different fixed point formats in the Scale layer. a =number of integer bits.
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Figure 7.24: mAP using different fixed point formats in the Softmax layer. a =number of integer bits.
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Custom Float Fixed PointLayer Mantissa Exponent Total Integer Decimal TotalBatchNorm 2 6 8 - - -Convolution 11 5 16 - - -Deconvolution 1 4 5 4 1 6Eltwise 3 5 8 2 1 4InnerProduct 11 5 16 4 14 32Pooling 1 4 5 - - -ProposalLayer 4 4 8 - - -ReLU 4 4 8 4 3 10ROIPooling 3 5 8 - - -Scale 4 4 8 8 2 12Softmax 1 2 3 - - -
Table 7.2: Minimum numbers of bits required to achieve > 95% of the initialmAP for tested layers.

7.4 . Conclusion

Table 7.2 summarizes the results of this chapter's experiments. In nearly all cases, the
minimum number of bits required for a layer type is less with custom �oating point numbers
than �xed point numbers. This is due to the �exibility of �oating point numbers compared
to �xed point numbers.

In the �oating point experiments, we can see that all layers can be compressed into 16
bits. Unfortunately, it is not quite possible to apply either of the natively support 16-bit
�oating point formats to all layers. The �oat16 (11-bit mantissa, 5-bit exponent) format
does not have enough exponent bits to support the BatchNorm layer while the b�oat16 (8-
bit mantissa, 8-bit exponent) format does not have enough mantissa bits to support the
Convolution and InnerProduct layers. However, a combination of the two formats could allow
the PVANet inference to be performed using entirely using natively supported 16-bit �oating
point numbers. If performed on hardware capable of accelerating computation involving both
formats, this would achieve a theoretical 2x speedup over 32-bit �oating point numbers.

The �xed point experiments feel much less complete than the �oating point experiments.
This is primarily due to the lack of exhaustivity � only a limited number of �xed point formats
were tested. It was not even possible to truly test all of the desired formats, as the �xed
point library used did not allow full control over the number of integer bits used during
computation. In addition, some of the results su�ered from avoidable software bugs, limiting
even further the amount of information these experiments provide. These experiments would
greatly bene�t from being re-run exhaustively with the bugs �xed and with a strict �xed point
mode allowing for precise control over the number of integer bits.
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From the information we do have, it does not appear to be possible to perform inference of
PVANet using only �xed point numbers. Most notably, the BatchNorm layer was con�rmed to
be incapable of supporting �xed point computation. However, some layers do appear capable
of being computed using smaller �xed point numbers. For example, the Eltwise layer can be
computing with as little as 4 bits � with some careful coding, it would be possible to �t two
such computations within an 8-bit data type.
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Conclusion

In this work, we have presented two useful applications � a high performance �xed point
numerical library and a highly �exible numerical inference engine.

The custom inference engine presented in Chapter 7 o�ers an unparalleled level of numerical
�exibility to neural network inference. No other arti�cial neural network library o�ers the same
level of control over the the numerical types used during inference in terms of either allowed
numerical precisions or layer-by-layer control over the precision used. While today it primarily
has research applications, in the future it could conceivably be used for applications such as
the design of neural network-speci�c ASIC hardware.

The vectorized �xed point computational library presented in Chapter 6 o�ers a �exible
�xed point type while providing a runtime performance that is generally equivalent or greater
than similar libraries. As a result, it can be applied to any application requiring �xed point
numbers and rapid runtime performance.

Difficulties The overarching theme connecting all of the contributions is the evolution
of numerical precision in the face of an evolving landscape of hardware support. Some of
the numerical precisions discussed are implemented in recent hardware (�oat16), while some
others are planned for support in the near future (b�oat16). The remaining precisions (custom
�oats and �xed point), are still worth considering for future support.

As a result of the general lack available hardware support for the numerical precisions of
interest, it is currently necessary to emulate these numerical formats via software emulation.
However, the choice of how to emulate remains a di�cult question � a number of software
libraries exist for each purpose, each with its own advantages and drawbacks. In Chapter 5, we
chose to use an existing software library to emulate the �oat16 format. However, Section 5.3.3
shows that even for a relatively simple use case, the disadvantages can be signi�cant. In the
remaining works presented, we ultimately opted for the most �exible solution � implementing
each desired numerical format ourselves. For �xed point software libraries, it was the only path
towards simultaneously having full control over the Qa.b format and accelerating computations
via vectorization. For the experiments on neural network inference, it was the only path
towards having a simple implementation with full control over the �oating point format. In
addition, our experiments on neural network inference required the development of a custom
inference engine, as no existing solution o�ers easy extension of numerical support along with
the desired level of �exibility in arithmetic used during inference.

Applications The �oat16 average computation presented in Chapter 5 can be applied to
any application that computes the average of a large set of numbers. This commonly occurs
in machine learning algorithms such as meanshift or k-means.

153



The �xed point extension to nsimd presented in Chapter 6 has a number of applications
thanks to its combination of speed and �exibility. One major use case is the embedded domain,
where the use of �xed point precision is common. This domain a�ects many important
applications, such as telecommunications, aerospace, and medical applications. Another
possible use-case is for prototyping computations using various �xed point formats prior to
implementing them on an FPGA or while designing an ASIC. Especially when designing an
ASIC with a single speci�c use case, this can allow a manufacturer to achieve extra e�ciency,
allowing for lower energy consumption. One more domain that can make use of this work is
�nance, in the cases where monetary amounts sometimes need to be exactly represented and
runtime performance can be critical.

The custom inference engine presented in Chapter 7 has some possible current applications,
along with some applications that will become worthwhile as the �eld of ANNs matures.
Currently, the most interesting application of the custom inference engine is to experiment
with precision reduction. The inference engine allows for easily testing various numerical
formats in order to obtain the best balance of accuracy and speed. As the state of the
art neural networks in the �eld of ANNs begin to stabilize, it may become worthwhile to
develop processors adapted to speci�c neural networks. In order for these processors to be
maximally e�cient in both runtime and energy usage, we will want to use the minimum
possible numerical precision that provides accurate results. Our custom inference engine can
allow for hardware manufacturers to achieve this balance.

Overall, all of the works presented combine into a useful toolbox for experimenting with
modi�ed numerical precision within applications and for potentially developing new hardware
that perfectly adapts to its use case.

FutureWorks All of the works presented here can be expanded as hardware manufacturers
continue to add new functionalities, in terms of both supported numerical precisions and
vectorization technologies. The �oat16 format is already implemented on some of the
latest hardware, while the b�oat16 format instructions are currently being added to others.
Some architectures already provide limited instructions for using �xed-point numbers. These
capabilities may be expanded in the future, allowing for faster �xed-point computation. On the
vectorization side, there is already limited support for the �oat16 format and incoming support
for the b�oat16 format. In addition to the additional numerical formats, each generation of
vectorization hardware adds new instructions and/or expands the sizes of the registers. An
example of the former is the upcoming Intel AMX instructions and an example of the latter
the latter is the ARM SVE and SVE2 technologies. Every single one of these developments
is an opportunity to update the works performed here, examining the e�ects of using these
new technologies.

The study on computing an average presented in Chapter 5 can primarily be expanded
in two directions. The �rst direction of expansion is to study various other simple-seeming
algorithms implemented using the �oat16 format. The second direction would be to study

154



the e�ects of computing an average using various other numerical types. In addition, these
two approaches can be combined, allowing for a number of possible future works.

The �xed point extension to nsimd presented in Chapter 6 is far from complete � there
are a number of ways to expand and improve it. One improvement that would aid the works
presented in Chapter 7 is the addition of a strict mode that clears the reserved and unused
bits after every single operation. Another possible improvement is the addition of an unsigned
�xed point type. If a user is within one bit of changing underlying storage types, this could
make a signi�cant di�erence. In addition, an unsigned �xed point type would exhibit well
de�ned over�ow. One �nal expansion could be the addition of a C API for easier integration
into embedded applications.

Another important avenue for improvement of the �xed point extension to nsimd is the
development of new algorithms and the optimization of the existing ones. For all functions
presented, very few numerical approximation techniques were actually used. More techniques
should be studied and, if relevant, applied in order to achieve gains in either performance or
precision. For all functions using Taylor series approximations, we should apply SFINAE in
order to modulate the depth of the approximation according to the available precision. Finally,
the addition of new functions would increase the usability of the �xed point extension, as the
number of supported functions is somewhat limited.

The custom neural network inference engine presented in Chapter 7, along with the
experiments it enabled, can be expanded and improved in a few ways.

The inference engine itself can be improved in a few ways. Most importantly, the software
bugs discovered when the experiments were performed must be �xed. Work is currently being
done in order to enable quantization of layers. Without quantization, the trained network
weights are simply reinterpreted prior to computation. With quantization, layers using various
numerical precisions can be adapted to better �t into the numerical types being used.

The experiments can be expanded �rst by re-running the �xed point portions a�ected
by software bugs. If possible, the �xed point experiments would also bene�t from the same
level of exhaustiveness as the �oating point experiments. However, this would require a large
amount of computational resources. It would also be interesting to perform a similar study
of other state of the art neural networks. For example, the YOLO neural network is much
more lightweight than PVANet, and could be more easily studied exhaustively.
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A - Compiler Outputs

Figure A.1: Clang succeeding to vectorize Algo. 8.
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Figure A.2: icc succeeding to vectorize Algo. 8.

Figure A.3: gcc succeeding to vectorize Algo. 8.
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Figure A.4: MSVC failing to vectorize Algo. 8.

Figure A.5: Clang failing to vectorize Algo. 9.
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Figure A.6: icc failing to vectorize Algo. 9.

Figure A.7: gcc failing to vectorize Algo. 9.
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Figure A.8: MSVC failing to vectorize Algo. 9.
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B - Installing nsimd

B.1 . Installation

Dependencies Python 3 is required to generate platform-speci�c code. CMake and a
C++14 compiler are required to compile the library.

Optional Dependencies ninja is recommended over make for faster compilation.
clang-format allows the python code to format the generated code. MIPP and Sleef, and
Google Benchmark must be installed if performing benchmarks. MPFR and the Google Test
library must be installed if performing unit tests.

Download In order to install nsimd, one must obtain the code via github.

git checkout https :// github.com/agenium -scale/nsimd

Code Generation Next, the platform-speci�c code must be generated using the python
script egg/hatch.py.

cd nsimd

python3 egg/hatch.py -A

The -A �ag tells the script to "Generate code for all architectures, C and C++ APIs", as
well as all tests and benchmarks. The -h �ag provides a list of other �ags that one may wish
to use.

Compilation Once the code has been generated, we can compile the library.

mkdir build

cd build

cmake ..

make

This compiles nsimd's scalar functions. In order to compile for a SIMD architecture, the cmake
command must include a -DSIMD=<simd> option, where <simd> is the target architecture
(AVX2, SSE4_2, AARCH64, etc.).

B.2 . Organization

The root directory of nsimd is fairly straightforward. The functions of most of the
directories are evident from their names.
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• benches contains the benchmarks as de�ned by egg/gen_benches.py.

• cmake contains some cmake code to aid compilation.

• doc contains some basic documentation by default, plus the documentation generated
by egg/gen_doc.py.

• egg contains the core of nsimd. It contains the python code that will generate all of
the platform-speci�c functions, benchmarks, unit tests, code to be compiled, and some
of the documentation.

• include contains the generated nsimd API and corresponding header-only code, as
well as the �xed-point module.

• scripts contains a few auxiliary scripts.

• src contains the generated code that is used to compile all platform-speci�c libraries.

• tests contains the tests as de�ned by egg/gen_tests.py.

B.3 . Compilation

In order to compile C or C++ code using nsimd, it is necessary to provide certain compiler
�ags for the following information:

• path to includes (-I/path/to/nsimd/include)

• path to compiled library (-L/path/to/nsimd/build)

• link with compiled library (-lnsimd_<arch> - for example, -lnsimd_avx2)

• Activate correct SIMD instructions in compiler (-m<architecture> - for example,
-mavx2 or -march=native)

• Activate correct SIMD instructions in nsimd (-DNSIMD_<arch> - for example, -DNSIMD_AVX2)
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C - Raw Benchmark Data

This annex provides the raw benchmark data (all times in nanoseconds) of all benchmarks
performed in Chapter 6.

C.1 . Functions Added to nsimd

Type avx2 avx2(SIMD) avx512 avx512(SIMD) aarch64 aarch64(SIMD)i8 455 803 597 161 474 87.2i16 497 1305 809 108 409 167i32 643 862 857 52.1 328 327i64 1605 1042 2142 103 1289 2403u8 455 693 597 161 474 87.2u16 497 1200 651 73.2 409 167u32 643 863 857 52.0 328 327u64 1605 1089 2142 103 1289 2658
Table C.1: Raw performance data in ns for the clz function. Used for Figure 6.4.

Type avx2 avx2(SIMD) avx512 avx512(SIMD) aarch64 aarch64(SIMD)i8 421 1681 2184 73.6 1262 826i16 339 2169 1937 36.9 1200 1134i32 272 103 1727 65.1 817 1906i64 1459 4044 1940 129 1894 2750u8 296 1181 707 73.6 729 706u16 229 1214 759 25.6 569 809u32 184 109 794 65.0 435 1522u64 345 1122 918 129 1012 2549
Table C.2: Raw performance data in ns for the shrv function. Used for Figure 6.6.
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Type avx2 avx2(SIMD) avx512 avx512(SIMD) aarch64 aarch64(SIMD)i8 296 1181 813 73.6 675 114i16 228 1225 759 36.6 575 221i32 184 103 798 65.1 329 435i64 338 164 887 306 1283 912u8 296 1181 707 73.6 675 114u16 229 1213 759 25.6 568 221u32 185 108 791 65.0 332 435u64 339 164 916 129 1268 865
Table C.3: Raw performance data in ns for the shlv function. Used for Figure 6.5.
Type avx2 avx2(SIMD) avx512 avx512(SIMD) aarch64 aarch64(SIMD)i8 2595 1079 3221 748 2084 3985i16 2586 2280 3329 1505 2118 15240i32 2577 14661 3215 7304 2118 59973i64 9395 61824 11599 34213 2126 245495u8 2591 833 2902 623 2102 3664u16 3149 2032 2902 1274 2120 14661u32 3220 14771 2794 7412 2120 58789u64 8987 58124 10683 33913 2123 238378
Table C.4: Raw performance data in ns for the div function. Used for Figure 6.7.

C.2 . Fixed Point Speedup

Bits sse4_2 sse4_2(SIMD) avx2 avx2(SIMD) avx512 avx512(SIMD) aarch64 aarch64(SIMD)8 42.1 40.2 20.4 20.5 22.4 10.6 90.5 96.816 86.8 88.1 40.6 43.8 70.3 26.2 170 18632 175 180 84.1 83.8 182 65.4 331 36464 347 362 165 164 363 129 706 748
Table C.5: Raw performance data in ns for the fixed point add function. Used forFigure 6.10.
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Bits sse4_2 sse4_2(SIMD) avx2 avx2(SIMD) avx512 avx512(SIMD) aarch64 aarch64(SIMD)8 204 201 148 101 98.3 46.9 199 14216 129 101 74.6 51.9 98.2 33.0 388 27532 354 254 180 129 239 78.0 771 54964 729 959 728 1269 557 189 1503 3677
Table C.6: Raw performance data in ns for the fixed point mul function. Used forFigure 6.12.

Bits sse4_2 sse4_2(SIMD) avx2 avx2(SIMD) avx512 avx512(SIMD) aarch64 aarch64(SIMD)8 3214 2992 3007 1173 3219 763 2107 180616 3219 3259 3215 2292 3219 1506 2111 200932 2894 2736 2902 2705 3219 3509 2126 210764 9408 9873 9443 8709 11603 12071 2167 3307
Table C.7: Raw performance data in ns for the fixed point div function. Used forFigure 6.15.

Bits sse4_2 sse4_2(SIMD) avx2 avx2(SIMD) avx512 avx512(SIMD) aarch64 aarch64(SIMD)8 2893 8526 2893 4519 3218 2142 2104 446516 2892 8587 2897 4344 3218 998 1813 892232 2895 11242 2898 5560 3131 3435 1711 1783664 9343 53860 9354 35899 11364 10453 1708 117657
Table C.8: Raw performance data in ns for the fixed point rec function. Used forFigure 6.24.

Bits sse4_2 sse4_2(SIMD) avx2 avx2(SIMD) avx512 avx512(SIMD) aarch64 aarch64(SIMD)8 37207 36549 37491 11971 57902 9496 28827 2616516 50491 43317 50165 25568 77204 22568 34913 3230032 44219 43144 44549 35911 72192 41605 28300 4460964 125762 100483 125857 91570 176986 124174 28291 68960
Table C.9: Raw performance data in ns for the fixed point sqrt function. Usedfor Figure 6.26.

Bits sse4_2 sse4_2(SIMD) avx2 avx2(SIMD) avx512 avx512(SIMD) aarch64 aarch64(SIMD)8 3176 1933 2182 2017 8833 1488 22905 220316 4870 2688 2904 2857 2237 2120 29188 288632 8805 2090 4186 3109 10018 4112 21641 520264 7863 4288 7538 20866 8656 9837 29592 11163
Table C.10: Raw performance data in ns for the fixed point sin function. Usedfor Figure 6.18.
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Bits sse4_2 sse4_2(SIMD) avx2 avx2(SIMD) avx512 avx512(SIMD) aarch64 aarch64(SIMD)8 3261 3447 2142 1927 8272 1429 21051 335316 4799 4378 2887 2809 2304 2066 32175 712932 8935 5406 4364 3414 12086 4482 23740 1474564 10149 27816 10186 22401 10744 10324 32680 62015
Table C.11: Raw performance data in ns for the fixed point cos function. Usedfor Figure 6.20.

Bits sse4_2 sse4_2(SIMD) avx2 avx2(SIMD) avx512 avx512(SIMD) aarch64 aarch64(SIMD)8 17581 7513 17455 3524 15763 2482 29861 570016 33022 8992 32813 6080 29524 4818 47837 1049532 18716 12630 18859 8298 22777 8799 39780 1805064 30511 51321 34642 37708 33160 23729 50157 106091
Table C.12: Raw performance data in ns for the fixed point tan function. Usedfor Figure 6.22.
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C.3 . Fixed Point Comparison to Other Libraries

Library i8 i16 i32 i64native 20.4 41.8 84.0 165fp_t 20.4 40.6 84.1 165pack 20.5 43.8 83.8 164liquid 40.7 84.3fixmath 84.2CNL 20.4 42.5 86.5 164
Table C.13: Raw performance data in ns of various libraries for the fixed point
add function. Used for Figure 6.10.

Library i8 i16 i32 i64native 60.7 42.5 98.2 487fp_t 148 74.6 180 728pack 101 51.9 129 1269liquid 2256 2256fixmath 3512CNL 220 225 184 1109
Table C.14: Raw performance data in ns of various libraries for the fixed point
mul function. Used for Figure 6.12.
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Library i8 i16 i32 i64native 2897 2896 2894 9361fp_t 3007 3215 2902 9443pack 1173 2292 2705 8709liquid 3869 10439fixmath 23248CNL 2904 2897 2900 9343
Table C.15: Raw performance data in ns of various libraries for the fixed point
div function. Used for Figure 6.15.

Library i8 i16 i32 i64fp_t 2893 2897 2898 9354pack 4519 4344 5560 35899liquid 26193 32721fixmath 11271CNL 2893 2893 2898 9334
Table C.16: Raw performance data in ns of various libraries for the fixed point
rec function. Used for Figure 6.24.

Library i8 i16 i32 i64fp_t 37491 50165 44549 125857pack 11971 25568 35911 91570liquid 36334 77885fixmath 97371CNL 6046 43550 71371 206850
Table C.17: Raw performance data in ns of various libraries for the fixed point
sqrt function. Used for Figure 6.26.

Library i8 i16 i32 i64fp_t 2182 2904 4186 7538pack 2017 2857 3109 20866liquid 47464 86991fixmath 10002CNL 10626 11697 12081 86155
Table C.18: Raw performance data in ns of various libraries for the fixed point
sin function. Used for Figure 6.18.
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Library i8 i16 i32 i64fp_t 2142 2887 4364 10186pack 1927 2809 3414 22401liquid 47404 87466fixmath 10227CNL 9829 11473 11213 86334
Table C.19: Raw performance data in ns of various libraries for the fixed point
cos function. Used for Figure 6.20.

Library i8 i16 i32 i64fp_t 17455 32813 18859 34642pack 3524 6080 8298 37708liquid 49870 97231fixmath 45048
Table C.20: Raw performance data in ns of various libraries for the fixed point
tan function. Used for Figure 6.22.
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