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" L’optimisme est une fausse espérance à l’usage des lâches et des imbéciles.
L’espérance est une vertu, « virtus », une détermination héroïque de l’âme. La
plus haute forme de l’espérance, c’est le désespoir surmonté. "

Georges Bernanos, La Liberté, pour quoi faire ? (1953)
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Résumé

Les réseaux de neurones profonds ont permis récemment d’importants progrès dans les prob-
lèmes d’apprentissage en grande dimension, notamment en classification d’images et en régres-
sion d’énergie en physique. Ces deux problèmes sont de nature multi-échelle. En effet, l’énergie
des molécules et des solides résulte d’interactions à différentes échelles, avec par exemple les
liaisons ioniques et covalentes à petite échelle, les interactions de Van-der-Waals aux échelles
moyennes et les interactions de Coulomb à grande échelle. De même, on peut classifier une
image en utilisant des informations de texture à petite échelle, des informations de motif à
moyenne échelle ou des informations de forme à l’échelle de l’objet. De plus, il existe une
analogie naturelle entre les techniques de classification d’images dites locales, basées sur des
petits patch d’image, et les techniques de régression énergétique dites locales, basées sur la
description de petits voisinages atomiques dans les molécules ou les solides.

Dans ce manuscrit, nous étudions l’efficacité des méthodes locales pour la classification
d’images et la régression d’énergie en physique. On observe que les méthodes locales sont
étonnamment performantes pour ces deux problèmes, et ce malgré la nature multi-échelle de
ces problèmes. Tout d’abord, nous étudions comparativement des techniques multi-échelles
et locales pour la régression d’énergie de molécules et solides. Nous constatons que les méth-
odes locales sont très performantes, même pour les solides avec des composantes énergétiques
à longue portée. Nous présentons une nouvelle méthode pour la régression d’entropie vibra-
tionnelle dans les solides. Là encore, nous observons qu’une méthode utilisant des descripteurs
locaux donne de bien meilleurs résultats que la stratégie multi-échelle étudiée. Pour la classifi-
cation d’images, nous présentons un réseau de neurones convolutif structuré basé sur l’encodage
de patch. Cette architecture donne des performances comparables à des réseaux convolutifs
standards sur la base de données ImageNet. Enfin nous présentons un classificateur d’images
basé sur des calculs de K-plus-proches-voisins de patch d’images, et dont les performances
surprenantes suggèrent une forme de basse dimension des patch d’images. Nous terminons
ce manuscrit par une ouverture sur les dispositifs interactifs humain-machine pour la création
artistique.
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Abstract

The recent success of convolutional neural networks in high-dimensional learning problems
motivated the development of new machine learning techniques in different fields. In particular,
a lot of progress has been made in image classification and energy regression in physics in the
last years. These two problems are multi-scale. Molecules’ and solids’ energy results from
interactions at different scales, e.g., ionic and covalent bonds at the short scale, Van-der-
Waals interactions at the mesoscale, Coulomb interactions at the large scale. One can classify
an image using texture information at the small scale, pattern information at a larger scale,
or shape information at the object scale. There is a natural analogy between local image
classification techniques based on small image patches and local energy regression techniques
based on small atomic neighborhood descriptions.

This dissertation studies the efficiency of local methods in image classification and energy
regression. We observe that local methods perform surprisingly well in image classification
and energy regression despite these two problems’ multi-scale nature. We first study compar-
atively multi-scale and local energy regression techniques for molecules and solids. We notice
that local methods perform very well, even for solids with long-range energy components. We
present a new strategy to regress the vibrational entropy in solids. Again, we observe that
a local method based on atomic neighborhood description has better predictive power than
a multi-scale strategy. We introduce a structured convolutional network architecture for im-
age classification based on patch encoding that reaches an accuracy that is competitive with
standard convolutional networks on ImageNet. We present an image classifier based on im-
age patches K-nearest-neighbors computations that achieves state-of-the-art performance as a
non-learned representation. We end this dissertation with an opening on artistic creativity in
the context of human-machine interactive systems.
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Chapter 1

Introduction

1.1 Curse of dimensionality in supervised learning

Supervised learning consists in learning a model from a set of input-output pairs to predict
the output on new inputs. From a deterministic point of view, it consists in approximating a
function F that maps an input x to a deterministic output y = F (x). From a probabilistic
point of view, it consists in modeling F (x) = p(y|x), the conditional probability of y given x.

Under usual regularity assumptions such as L-Lipschitz continuity, the number N of pairs
(xi, yi) needed to approximate the function F with a precision ε grows exponentially with the
dimension D. There is a curse of dimensionality. In usual supervised learning problems, the
number N of available input-output pairs goes from 103 to 109. With such numbers of pairs,
dimensions D above 10 are already too high to approximate an L-Lipschitz function correctly.

Most of the practical supervised learning problems are very high-dimensional. In image
classification, for example, the input x is an image with typically D = 3× 2562 = 2.105 pixels
and the output is the class of the object in the image. In speech recognition, the input x is
a recording of typically 10 seconds of speech sampled at 104kHz, so D = 105, and the output
is the list of spoken words. In energy regression in physics, the input x = (r1, . . . rNa) is the
set of 3-dimensional positions rNa of Na atoms. Na being typically equal to 103, the input
dimension is D = 3.103, and the output is the atomic system’s physical energy.

In recent years, deep neural networks have emerged as a potential class of non-linear func-
tions F that allowed avoiding the curse of dimensionality for image classification [Krizhevsky
et al., 2012], speech recognition [Graves et al., 2013] and energy regression in physics [Schütt
et al., 2018]. In these examples, 104 to 107 samples are sufficient to approximate the function
F with good precision. These numbers are far below an exponential of the input dimension D.

1.2 Local methods

In the second chapter Règles de la méthode of the Discours de la méthode, Descartes [1637]
states four rules for the scientific method. "The second [rule is] to divide each of the difficulties
I would examine into as many plots as I could, and as many as would be required to solve them
best." This general rule takes the following form in the context of supervised learning.

1



The input x = (x1, . . . , xD) ∈ RD is separated into a set of sub-variables sk ∈ RDk , k ∈
J1,KK that are in dimension Dk � D. These sub-variables can be, for example, subsets of the
native variables xj . They can also be defined using (non-)linear transformations Φk : RD 7→
RDk of the input variable x.

sk = Φk(x)

From a functional analysis point of view, this separation hypothesis states that the function
F to be approximated is the sum of K functions Fk of the sub-variables sk

F (x) =
K∑
k=1

Fk(sk) (1.1)

This separation allows avoiding the curse of dimensionality if the sub-variables are sufficiently
low-dimensional. The numberK of functions does not affect the dimensionality of the problem.

When the input variable has a spatial topology, one can formulate the aforementioned
separation hypothesis by gathering neighboring variables. It results in a particular type of
separation method that we call local methods.

1.2.1 Local methods in physics

In energy regression in physics, local methods consist of separating the energy into atomic
neighborhood contributions. The neighborhood of the atom i is denoted by Ni. Ni is typically
a ball of radius rcut centered on the atomic position ri. The energy is assumed to be a sum
over atomic contributions. For the energy contribution of the atom i, one considers only the
atoms j that are in the neighborhood Ni. Under these assumptions, the energy function E

becomes

E(r1, . . . , rNa) =
Na∑
i

E ({rj , j ∈ Ni}) (1.2)

Since the number of atoms in the neighborhood Ni can vary, one represents the neighborhood
Ni with a descriptor q(Ni) of fixed dimension. This descriptor has to be invariant w.r.t rotations
and translations of the atoms. It is also supposed to be uniquely determined by the atomic
neighborhood Ni, up to rotations and translations. This short-range separation hypothesis
allows breaking the curse of dimensionality as the dimensionality goes from 3Na to a fixed
dimension d of the descriptor, which is of the order of 102 typically.

This local separation hypothesis has not only been used in energy regression. In Density
Functional Theory [Hohenberg and Kohn, 1964, Kohn and Sham, 1965], this hypothesis is
known as nearsightedness [Kohn, 1996]. It assumes the locality of the electronic interactions in
the exchange-correlation energy. The local density approximation [Ceperley and Alder, 1980,
Perdew and Zunger, 1981] and generalized gradient approximation [Perdew et al., 1996] assume
the nearsightedness of electronic interactions.

1.2.2 Local methods in image classification

Before the supremacy of deep neural networks, state-of-the-art image classification techniques
relied on the image’s separation into patches [Perronnin et al., 2010, Wang et al., 2010]. An
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image x with H ×W pixels xij , i < H, j < W is decomposed into patches p with Q2 pixels
pi,j , i, j < Q. It allows reducing the dimensionality of the problem from dimension 3HW
(∼ 105 typically ) to 3Q2 (∼ 103 typically). One can further reduce the dimension to ∼ 102

computing Scale-invariant feature transform (SIFT, Lowe [2004]) or Histograms of Oriented
Gradients (HOG, Dalal and Triggs [2005]) descriptors D(p) of theses patches p. This descriptor
D(p) is then encoded into Φ(D(p)), using, for example, a finite-dimensional approximation of
the Fisher kernel [Perronnin et al., 2010]. Finally, Perronnin et al. [2010], Wang et al. [2010]
average the encoding Φ(D(p)) over image patches p. They apply a linear operator W for the
classification. The average over spatial indices and the linear operations over the encoding
Φ(D(p)) dimension can be inverted. The classification decision F (x) is a hence sum over the
patches p of the image x

F (x) =
∑
p∈x

WΦ(D(p)) .

Contrarily to physics, where the distances are absolute, and the size of the neighborhood
limited to a few Angstroms (Ȧ), the size of the patch in an image is related to the resolution of
the image. A 8× 8 image patch of a 32× 32 CIFAR-10 and A 8× 8 image patch of a 256× 256
ImageNet image contain qualitatively different information. The size of the patch in an image
corresponds hence to a certain scale. Patch separation is implicitly a form of scale separation
with a scale corresponding to the ratio between the patch size and the image size.

1.2.3 Convolutional neural networks

Convolutional neural networks (CNNs) show impressive results on image classification [Krizhevsky
et al., 2012, He et al., 2016] or energy regression in physics [Schütt et al., 2018]. Contrarily
to local methods, CNNs process the input as a whole. They do not separate the image into
patches nor a molecule into atomic neighborhoods. They yield higher accuracy than methods
based on separation in image classification and energy regression in physics.

On the one hand, removing local separation increases the input dimension: the function
is harder to approximate. On the other hand, enforcing a local separation of the input can
discard some relevant information for the classification or regression task. Classifying an
image using the whole image instead image’s patches allows analyzing global shape shapes
that are not contained in patches. LeCun et al. [2015] propose the following explanation of
the success of CNNs in image classification: " The first layer [of the convolutional network]
represents the presence or absence of edges [...] in the image. The second layer typically
detects motifs [...]. The third layer may assemble motifs into [...] parts of familiar objects, and
subsequent layers would detect objects as combinations of these parts." A similar interpretation
is given by Kriegeskorte [2015]: "the [deep convolutional] network acquires complex knowledge
about the kinds of shapes associated with each category. [...] High-level units appear to learn
representations of shapes occurring in natural images."

The energy of an atomic system results from complex many-body interactions. Moreover,
methods based on short-range separation only account for interaction in the range of 0 to
5Ȧ typically. One can hypothesize that they can not capture long-range interactions such
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as Van-der-Waals interactions ranging up to 15Ȧ. The SchNet convolutional neural network
introduced by Schütt et al. [2018] can theoretically model interactions up to a range of 30Ȧ.

1.2.4 Local methods’ efficiency for image classification and energy regres-
sion

In this dissertation, we study image classification and energy regression techniques relying on
local separation. What are the benefits of using local separation for the interpretability of the
predictions? Do the local methods performs significantly worse than non-local methods on
image classification and energy regression? If yes, how can we capture non-local components
of the function we are trying to approximate? If no, what does it tells us about the underlying
regularity properties of the supervised learning problem?

Image classification and energy regression in physics are two high-dimensional supervised
learning problems. These two problems share several similarities that make our study all the
more interesting :

• Atomic neighborhoods in atomic systems can be seen as the equivalent of patches in
images.

• Invariance properties have driven the design of descriptors of atomic neighborhood or
image patches: rotation and translation invariance for atomic neighborhoods, scale, light-
ening, and deformation invariance for image patch patterns.

• The dimension of image patches and atomic neighborhoods descriptors presented in the
literature is ∼ 102, which is significantly lower than the initial dimension but is still not
a low dimension, i.e., a dimension ≤ 10.

• These two problems are multi-scale problems. Energy results from interactions at dif-
ferent scales, e.g., ionic and covalent bonds at short range, Van-der-Waals interactions
at the mesoscale, and long-range Coulomb interactions. One can classify an image us-
ing texture information at a small scale, pattern information at a larger scale, or shape
information at the image scale.

These two problems also have notable differences that make the study complementary:

• One problem is about regression, the other is about classification.

• The atomic positions in physics are in the continuous 3D space. Natural images are
sampled on a finite grid ranging from 32× 32 to 1024× 1024 pixels typically.

• In physics, distances are absolute: the distance between an atom and its nearest neighbor
is in the order of 1Ȧ. In image classification, the number of pixels that separate two
components (e.g., two edges) of an object in the image depends upon the sampling grid.

• In terms of performance, kernel methods are on par with CNNs in energy regression in
physics. In image classification, CNNs are far above kernel methods.
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Alongside the release of open-source Python implementation of the presented techniques1,
the main contributions of this thesis are the following. In the field of energy regression in
physics:

• The Solid Harmonic Scattering Transform [Eickenberg et al., 2017] is an atomic environ-
ment descriptor relying on scale separation. It is implemented as a multi-scale convolu-
tional neural network involving a cascade of wavelet transforms. We study this descriptor
comparatively with existing local descriptors. We focus on two different energy regres-
sion benchmarks. One is about small organic molecules energy regression. The other is
about long-range energy regression in graphite solid. Results show that local descriptors
are very efficient to regress energies in these two cases.

• We present a method to regress the vibrational entropy in atomic systems, a free energy
component. We study comparatively the Solid Harmonic Scattering transform and a
local descriptor called Angular Fourier Series (AFS) [Bartók et al., 2013]. Results show a
significantly better predictive power of the local AFS descriptor. Moreover, the presented
regression model trained on small systems can extrapolate to very large atomic systems.

In the field of image classification:

• We present a structured convolutional neural network architecture that classifies images
using small patches. Performances are comparable with BagNet [Brendel and Bethge,
2019], a state-of-the-art CNN that relies on patch-separation.

• We demonstrate that one can classify images with a non-trivial accuracy using K-nearest-
neighbors computations between raw image patches solely. The presented technique
significantly outperforms existing non-learned visual representations such as Scattering
Transform [Bruna and Mallat, 2013] on CIFAR-10 and ImageNet databases with a linear
classifier.

We end this dissertation with an opening on a different topic. Algorithms developed for
supervised learning techniques have been used recently in the field of artistic creation. For
example, image classification algorithms can be used to perform artistic style transfer on images
[Gatys et al., 2015]. Image generation algorithms were used to generate "artistic" images. Some
of these generated images are sold on the art market and shown during a public exhibition
in the Centre Pompidou in Paris. These phenomena raise new questions about the notions of
creation and creativity. We study this notion of creativity from the human-machine interaction
perspective. The contributions of this thesis regarding this topic are the following:

• We propose a new form of human-machine interaction consisting of interactive rounds of
creation between artists and an algorithm on a canvas. Alongside fostering creativity, it
is a case-study of painter-algorithm interactions on a canvas.

• We present interactive painting processes in which a painter and various neural style
transfer algorithms interact on a real canvas. We study and characterize the influence

1https://github.com/louity
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of algorithms’ outputs on the final canvas. This allows describing the creative agency of
the algorithm in our interactive painting experiments.

In the following of this introduction, we review image classification and energy regression
techniques focusing on local methods. Then we present the contributions of this dissertation.

1.3 Image classification

Image classification consists in assigning to an input image one class of a given set of classes.
This set of classes can be a digit from 0 to 9 for handwritten digit recognition or a set of object
classes (e.g., car, truck, table ...). The publication of large annotated image databases has
fostered the development of image classification techniques. It began in the 90s with the MNIST
handwritten digit image database [LeCun et al., 1990, 1998]. In 2004, the Caltech101 database
[Fei-Fei et al., 2004] containing 9,146 images divided into 101 object classes was the first large
database of objects. It was followed in 2005 by the PascalVOC image databases and challenges
published every year between 2005 and 2012, containing a few thousand images divided into 19
object classes. A major shift was the publication of the ImageNet database [Russakovsky et al.,
2015] in 2010, with the corresponding ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) held every year between 2010 and 2017. Major improvements in image classification,
such as AlexNet [Krizhevsky et al., 2012], VGG [Simonyan and Zisserman, 2014], and ResNet
[He et al., 2016] were presented on the occasion of this competition.

1.3.1 Patch-based image classification

Patch decomposition is a standard in image processing. The JPEG standard for image com-
pression [Wallace, 1992] relies on the decomposition of the image into 8 × 8 patches. Early
visual texture synthesis models [Efros and Leung, 1999] and image inpainting methods [Cri-
minisi et al., 2004] are based on patch decomposition. SIFT descriptors of patches [Lowe,
2004] were at the core of image retrieval, image stitching, and 3D modeling. These descriptors
are invariant to translations, rotations, and scaling transformations in the image domain and
robust to moderate perspective transformations and illumination variations.

Before the supremacy of deep networks, state-of-the-art image classification methods were
using patch descriptors. The ISLRVC 2010 challenge was won with 71.8% top-5 accuracy
using non-linear coding [Wang et al., 2010] upon SIFT and Local Binary Patterns [He and
Wang, 1990] patch descriptors, followed by a linear SVM classifier. Sánchez et al. [2013]
have won the ISLRVC 2011 challenge with 74.3% top-5 accuracy using patches descriptors
encoded with Fisher Vectors (FV) [Perronnin et al., 2010]. This classification pipeline relies
on 24 × 24 patches extraction followed by a SIFT and Local Color Statistics (LCS) [Ah-Pine
et al., 2008] encoding. These SIFT and LCS descriptors are encoded with a finite-dimensional
approximation of the Fisher Kernel and a normalization step. Finally, a linear SVM classifier is
applied. Perronnin et al. [2010] justify the use of patches as "a standard approach to describe an
image for classification." It is not a hypothesis made on the classification function on purpose.
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1.3.2 Convolutional neural networks

Krizhevsky et al. [2012] have won the ISLRVC 2012 challenge with ∼ 85.1% top-5 accuracy
using a convolutional neural network (CNN) [LeCun et al., 1989] called AlexNet. This method
differs from the previous image classification techniques like Fisher Vectors as it does not rely
on patch separation. It processes the input image as a whole.

Neural networks CNNs are a particular type of neural network. From a formal point of
view, a neural network architecture is a class of parametric functions {Fθ, θ ∈ RP } where P
is the number of parameters. A neural network is a parametric function Fθ : x ∈ Rd 7→ F (x).
The output F (x) is computed with a succession of linear and non-linear operations:

Fθ(x) = WLρ (WL−1 (. . . ρ (W0x))) (1.3)

where Wl ∈ Rhl×hl+1 are linear operators, called the weights of the neural network.
The following hyper-parameters define a neural network architecture:

• L: the depth of the neural networks.

• ρ: the non-linear function.

• hl : the width of the lth layer of the neural network. hL+1 is the dimension of the output
of the neural network.

A neural network architecture defines a fixed class of parametric functions, parametrized by
θ = {W0, . . . ,WL}.

Convolutional neural networks In a standard neural network, an image x with C channels
and H ×W pixels is considered as a vector of RC×H×W . The first linear operator W0 maps
RC×H×W to Rh1 . It is called a "fully-connected" linear operator since each coordinate of W0x

depends upon all the coordinates of the input x.
Convolutional neural networks (CNNs) are a particular class of neural network architec-

ture. In CNNs, "fully-connected" linear operators are replaced with discrete convolution oper-
ators (see Appendix for an introduction to discrete convolutions). The hidden size hl of the
fully-connected operator is replaced by the number of channels Cl and spatial size Sl of the
convolutional operator Wl. In addition to convolutions, a pooling operator P (local average
pooling, max-pooling) allows reducing the layers’ spatial size progressively. An example of
CNN architecture is shown in Figure 1.1.

Receptive field in CNN The CNN’s receptive field at a layer l is the region’s size in the
input image upon which depend a pixel at the layer l. For example, a single convolution
operator’s receptive field is equal to the spatial size S of the convolutional operator W0. The
receptive field of a cascade of two convolution operators of sizes S1 and S2 is equal to S1+S2−1.
In CNN, non-linear operations are usually pointwise, and they do not change the receptive field.
On the contrary, pooling operations increase the receptive field. In usual CNNs such as AlexNet
[Krizhevsky et al., 2012], VGG [Simonyan and Zisserman, 2014], and ResNet [He et al., 2016],
the receptive field of the last convolutional layer is equal to the whole image size.
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Figure 1.1: The architecture of the AlexNet CNN [Krizhevsky et al., 2012]. Convolution
operations are represented by an arrow with CONV, the spatial size of the convolution, the
stride of the convolution, and the number of convolutional kernels (i.e., filters). Convolutions
are followed by a ReLU non-linearity which is not represented in the figure. Max-pooling
operations are represented by an arrow with Max POOL, the spatial size of the region, and
the stride. Fully-connected operators linear operators are represented by an arrow with FC
and are followed by a ReLU non-linearity.

1.3.3 Patch-based convolutional neural networks

BagNets [Brendel and Bethge, 2019] have shown that an image can be classified as a bag-of-
patches with a competitive classification accuracy ( 87.5% top5 accuracy on ImageNet). A
BagNet is a simple variant of the ResNet-50 architecture [He et al., 2016]. Replacing most of
the ResNet’s 3×3 convolutions by 1×1 convolutions, the receptive field of the last convolutional
layer is limited to Q ×Q pixels, with Q ∈ {9, 17, 33}. With a global average pooling before
the linear classification, this CNN’s classification decision is a sum of classification decisions
over Q ×Q image patches. It demonstrates that close to state-of-the-art performance can be
obtained with a patch separation hypothesis on the classification function.

More recently, Dosovitskiy et al. [2021] replaced the usual convolutional architecture with a
Transformer architecture for image classification. This architecture was initially developed by
Vaswani et al. [2017] for natural language processing tasks. In this technique, image patches
play the role of words in a sentence. With a few adaptations from text to image, the accuracy
obtained is 88.4% top1 (top5 accuracy not mentioned) at a fraction of the computational cost of
CNNs that have similar performances. This technique still uses positional embedding to encode
the patch position, but an ablation study shows that removing this positional information
results in an accuracy drop of about 4%. Without this positional embedding, the classification
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decision does not consider the spatial ordering of the patches. This architecture treats the
image as a "bag-of-patches."

These two results show that even in the framework of convolutional neural networks, local
methods based on image patches can obtain very good accuracy. They encourage the presented
study of local methods in the context of image classification.

1.4 Energy regression in physics

1.4.1 Potential energy surface

Energy regression in physics consists in fitting a deterministic function. This function, the
potential energy surface (PES), maps the atomic positions to the energy of a set of atoms.
The Born-Oppenheimer approximation in quantum mechanics guarantees the existence of this
function. The potential energy of a system is the lowest eigenvalue of an eigenvalue problem in
a functional space. Functions in this functional space map R3Ne to C, where Ne is the number
of electrons of the system, usually greater than the number of atoms. The number of basis
functions needed to represent a function in this functional space grows exponentially with the
dimension 3Ne. There is hence another form of curse of dimensionality in this problem. Since
one can not represent these functions numerically, one can not solve the eigenvalue problem.
One can thus not access the actual value of this function.

Electronic structure methods such as Hartree-Fock [Hartree, 1928, Fock, 1930] or Density
Functional Theory [Hohenberg and Kohn, 1964, Kohn and Sham, 1965] give access to approx-
imate values of this function. However, they require solving a complex optimization problem
whose computational cost scales like O(N2) to O(N3). This computational cost is prohibitive
for systems with a large number of atoms. One can use a coarser approximation with the use
of a potential function.

1.4.2 Empirical potentials

Empirical (or parametric) potentials are functions F of the atomic positions r1, . . . , rNa . They
are meant to avoid the computational cost of electronic structure methods and are gener-
ally less accurate. The simplest potentials only consider pairwise interactions and are called
pair-potential. For example, the widely used Lennard-Jones potential [Jones, 1924] is a pair-
potential. Its expression is

FLJ(r1, . . . rNa) = 4ε
Na∑
i,j

( σ

rij

)12

−
(
σ

rij

)6


where rij = ‖ri − rj‖ is the distance between atoms i and j, ε is a depth parameter, and σ is
the distance at which the potential crosses zero. The attractive term proportional to 1/r6 in
the potential comes from the Van-der-Waals forces’ scaling.

The Stillinger-Weber potential [Stillinger and Weber, 1985] originally developed for Silicon
atoms considers pairs and triplets interactions. An important class of potentials for metals is
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based on the embedded-atom model (EAM) [Daw and Baskes, 1984]. They have the following
form:

F (r1, . . . , rNa) =
Na∑
i

fi

∑
j

ρ(rij)

+ 1
2

Na∑
i,j

F2(rij)

where Fi is called an embedding function that take as input a sum of pseudo electron densities
ρ(rij). The term F2 is usually a repulsive pair (two-body) potential.

1.4.3 Machine learning potentials

According to Behler [2016], a paradigm shift is taking place in the development of potentials.
While empirical potentials derive from physical approximations, the design of new potentials is
treated as a supervised learning problem. These new potentials, called Machine Learning (ML)
potentials, are functions of the atomic positions like empirical potentials. The construction of
a machine learning potential follows two steps:

1. descriptor. A descriptor Φ(r1, . . . , rNa) of the atomic position is computed. It is sup-
posed to be invariant to translations and rotations of the atomic positions since the
energy is invariant to these transformations. The descriptor has to be differentiable with
respect to the atomic positions (r1, . . . , rNa) as the derivative of the energy corresponds
to forces.

2. regression. A supervised learning regression technique, e.g., linear regression, kernel
regression, is employed to regress the energy. Using linear regression on top of a descriptor
Φ(r1, . . . , rNa), the potential F has the following form:

F (r1, . . . , rNa) = 〈θ,Φ(r1, . . . , rNa)〉+ b

One of the first descriptors presented in the literature is the Atom-centered Symmetry
Functions (ACSF) by Behler and Parrinello [2007]. This descriptor is a local descriptor. Behler
and Parrinello [2007] hypothesize that the total energy is the sum of local energy contributions

E =
Na∑
i=1

Ei

where Ei is the local contribution of the atom i to the global energy E. The energy Ei depends
upon the neighborhood Ni of the atom i, which is a ball of center ri and of radius Rcut, called
the cutoff radius. This neighborhood Ni is described with a set of atom-centered symmetry
function (ACSF) descriptors. These functions take as input the native variables, i.e., the
positions rj of the neighboring atoms j in the neighborhood Ni of the atom i.

There are two types of symmetry functions:

• the radial functions grad defined by

grad(Ni) =
∑
j∈Ni

exp(−η(rij − rs)2)fcut(rij)
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• the angular function gang defined by

gang(Ni) = 21−ξ ∑
i 6=j∈Ni

(1 + λ cos(θijk))ξ exp(−η(r2
ij + r2

ik + r2
jk))fcut(rij)fcut(rik)fcut(rjk),

where fcut is a radial cutoff function that vanished for r > Rcut, rij is the pairwise distance
between atom i and atom j, and θijk is the angle of the triplet of atoms i, j, k centered on i.
η, ξ, λ and rs are parameters that take several different values and yield different symmetry
functions. The ACSF descriptor is the concatenation of all the symmetry functions. Typically
50 to 100 symmetry functions are used per atom differing in the values of the parameters η, ξ, λ
and rs .

ACSF descriptor provides a rotation and translation invariant description of the atomic
systems as it depends on the pairwise distances rij and angles θijk. It differentiable w.r.t.
atomic position since it involves differentiable functions. It is invariant to any permutation of
atoms of the same species in the environment.

Behler and Parrinello [2007] combined this ACSF descriptor with a neural network regres-
sion to model the energy of bulk silicon atomic systems.

1.5 Contributions in energy regression in physics.

After the seminal work on atomic descriptors by Behler and Parrinello [2007] to regress the
potential energy surface of Silicon, Rupp et al. [2012] published the QM7 database of 7, 165
organic molecules with their corresponding atomization energies. Then Ramakrishnan et al.
[2014] published the QM9 database with the atomization energies of 130, 000 small organic
molecules. As for image classification, the publication of these databases fostered the devel-
opment of new machine learning potentials. These machine learning potentials’ novelty lies in
the proposed descriptor functions rather than in new regression techniques.

The first descriptor published together with the QM7 database [Rupp et al., 2012] was
the Coulomb Matrix. The majority of the descriptors published afterwards are local and rely
on neighborhood separation. For example, the Bag-of-Bonds (BoB) descriptor [Hansen et al.,
2015], the Bonds, Angles, Machine-learning (BAML) descriptor [Huang and Von Lilienfeld,
2016], the Histograms of Distances, Angles and Dihedral angles (HDAD) [Faber et al., 2017] or
the Smooth overlapping atomic positions (SOAP) descriptor [Bartók and Csányi, 2015] assume
that the energy is a sum of local contributions

E =
Na∑
i=1

Ei .

The description of atomic neighborhoods is limited to a certain cutoff distance like for the
Atom-centered symmetry functions.

Hirn et al. [2016] proposed a different approach based on scale separation and inspired by
the Scattering Transform [Mallat, 2012], an image descriptor for image classification. Hirn
et al. [2016] introduced the Wavelet Scattering for energy regression. The first step transforms
the atomic positions into a fictitious image. Then they compute a multi-scale descriptor of this
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image. Linear regression with this multi-scale descriptor predicts the energy of the molecule.
Hirn et al. [2016] restricted the application to the 454 planar molecules of the QM7 database and
the 4357 planar molecules of the QM9 database. This resctriction to planar molecules allowed
the use of 2D images and simplified computations. This technique’s regression accuracy is
competitive with the Coulomb Matrix with Kernel Regression [Rupp et al., 2012] despite a
much smaller training set.

Eickenberg et al. [2017, 2018] extended this technique to three-dimensional molecules. It
results in the Solid Harmonic wavelet scattering transform, a multi-scale descriptor of three-
dimensional atomic systems. In a nutshell, this descriptor separates scale information into
different coefficients. Contrarily to BoB [Hansen et al., 2015], BAML [Huang and Von Lilien-
feld, 2016], HDAD [Faber et al., 2017] or SOAP [Bartók et al., 2013] descriptors, the description
of the interactions is not limited to a certain cutoff radius. The interactions between different
scales are also described in the so-called second-order coefficients of this descriptor.

Energy is a complex property of the atomic state. It depends on various interactions in
the system. These interactions occur at different scales, e.g., ionic and covalent bonds at short
scale, Van-der-Waals interactions at the mesoscale, and long-range Coulomb interactions. Is
this Solid Harmonic wavelet scattering transform, based on scale separation, more appropriate
than existing local descriptors like SOAP or HDAD? Is it more efficient to regress molecules’
energy, solids’ energies, or solids’ vibrational entropy?

1.5.1 Efficiency of local methods for energy regression

This contribution has been published in part in Eickenberg, Exarchakis, Hirn, Mallat, and
Thiry [2018].

We study the Solid Harmonic Scattering transform [Eickenberg et al., 2017, 2018] and local
descriptors for molecules and solids energy regression performances for the regression compar-
atively in this first contribution. We first present the Solid Harmonic Scattering Transform
descriptor. We derive properties of this descriptor and study the effect of sampling errors on
these descriptors’ numerical computations.

Then we study comparatively Solid Harmonic Scattering transform and local descriptors for
the regression of small organic molecules. Results with Solid Harmonic Scattering transform
are competitive with the state-of-the-art on the QM9 database with 130,000 molecules. Local
descriptors like HDAD [Faber et al., 2017] and SOAP [Bartók et al., 2013, Barker et al., 2017]
descriptors obtain comparable performances.

Hence, energies of QM9 molecules happen to be essentially local energies. Is the multi-scale
separation more accurate than other methods on problems with long-range energy terms?

To have the beginning of an answer to this question, we consider a particular type of
atomic system with long-range interactions. We build a database of graphene systems, i.e.,
solids of carbon atoms at temperature ∼ 1500 Kelvin. Graphene systems are known to have
long-range Van-der-Waals interactions [Chung, 2002, Novoselov et al., 2004, Bolotin et al.,
2008]. We compute the energy with the Many-Body Dispersion [Tkatchenko et al., 2012]
electronic structure method. Many-Body dispersion is capable of modeling such long-range
Van-der-Waals energies. We hypothesize that local descriptors can not directly capture the
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total energy of such systems.
On this database, we compare two machine learning potentials, each relying on a different

form of separation:

1. A multi-scale Solid Harmonic Scattering Transform descriptor with linear regression.
This potential relies on a multi-scale separation.

2. A local SOAP descriptor [Bartók et al., 2013] with kernel regression plus a long-range
pair potential. This potential relies on spatial separation in short-range and long-range
terms. Long-range energy is first regressed with a simple pair-potential. The remaining
energy is regressed with a local SOAP descriptor.

Numerical results show that these two techniques perform similarly. Long-range forces are
efficiently captured by a pair potential in the second technique. The short-range part of the
energy is efficiently captured with a single-scale local descriptor (SOAP). This shows that a
simple two-scales separation with short-range and long-range energies is sufficient to regress
the system’s energy. Systematic multi-scale separation does not significantly improve these
results, while spatial separation offers a more interpretable result.

Numerical experiments on the QM9 database, the construction of the graphene database
and the comparative study are developed in chapter 2.

1.5.2 A local method for vibrational entropy regression

The present contribution has been published in Lapointe, Swinburne, Thiry, Mallat, Proville,
Becquart, and Marinica [2020].

In physical systems at a constant temperature T , the relevant energy is the free energy A.
It indicates whether a physical process is likely or not in the system. It is defined as the energy
F (r1, . . . , rNa) minus the temperature T times the entropy S(r1, . . . , rNa).

A(r1, . . . , rNa) = F (r1, . . . , rNa)− TS(r1, . . . , rNa).

The vibrational entropy represents the entropy S(r1, . . . , rNa) under the harmonic approxima-
tion. It is defined only for atomic positions (rm1 , . . . , rmN ) at a local minimum of the energy.

The computational cost of vibrational entropy scales like O(N3
a ), which is prohibitive for

systems with typically Na > 104. Speeding up this computation using a vibrational entropy
regression technique is the first motivation.

In the context of maximum-entropy stochastic process modeling, Scattering Transform has
shown promising results [Bruna and Mallat, 2019, Zhang and Mallat, 2019]. Moreover, the
scattering transforms’ multi-scale separation is a key aspect for this modeling as it allows
to correlate non-linearly different scales. The vibrational entropy presented here is a different
quantity, but there are connections between these definitions. Is the multi-scale Solid Harmonic
Scattering Transform efficient for vibrational entropy regression? How does it compare with
existing local descriptors?

In this contribution, we present an efficient regression technique of vibrational entropy in
iron crystals. It is the first published technique for vibrational entropy regression in bulk
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atomic systems, to the best of our knowledge. We test two descriptors based on two types of
separation :

1. The first one is a Solid Harmonic Scattering descriptor based on scale separation.

2. The second one is the Angular Fourier Series (AFS) local descriptor [Bartók et al., 2013].

Using linear regression, the AFS descriptor shows a superior predictive power on various
large systems of body-centered cubic structures of iron atoms with defects. The presented
method extrapolates on very large atom systems. Indeed, formation entropies in a range of
250 kB are predicted with less than 1.6 kB error from a training database whose formation
entropies span only 25 kB (training error less than 1.0 kB).

Numerical experiments and implementation details are described and discussed in chapter
3.

1.6 Contributions in image classification.

The different studies we have performed in the field of energy regression suggest that one can
efficiently capture long-range energy terms with pair potentials. The difficulty of energy regres-
sion lies in the local geometries whose modeling does not necessarily require scale separation.
Descriptors of local atomic neighborhoods perform well on this task.

Like energy regression in physics, image classification is a multi-scale problem. There are
typical edges and texture patterns at the patch level and global shapes at the image level for
a given object. There is a natural analogy between atomic neighborhoods in atomic systems
and patches in images.

The findings presented above suggest that the scale separation is not necessary to have a
low energy regression error in physics. We thus ask the same question for image classification.
Is a multi-scale approach necessary to have a good performance on standard classification
benchmarks like ImageNet? With the BagNets, Brendel and Bethge [2019] have demonstrated
that a competitive accuracy (87.5% top5) can be obtained with a CNN relying on patch
separation. We further study this aspect in the following contributions.

1.6.1 A structured CNN for patch-based image classification

The present contribution has not been published yet. It served as preliminary experiments for
the publication by Zarka, Thiry, Angles, and Mallat [2019].

Oyallon [2017] introduced a structured convolutional network architecture that reaches
AlexNet accuracy (79.6 % top-5) on the ImageNet 2012 database. It is first composed of a
scattering transform, [Mallat, 2012, Bruna and Mallat, 2013], which can be seen as an encoding
of image patches of size ∼ 16× 16. This scattering encoding is then fed to a cascade of 1× 1
convolutions. It ends up with a big two-hidden layer neural-network classifier. Because of the
use of the two-hidden layer classifier, this architecture does not rely on patch separation.

Can we remove this big classifier and obtain a competitive accuracy? Can we propose a
structured convolutional neural network architecture that relies on patch separation?
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In this contribution, we positively answer this specific question. We use a Scattering
Transform encoding of ∼ 16 × 16 patches. We use it directly to have ∼ 16 × 16 patches
encoding, or we concatenate Scattering descriptors to encode 32×32 image patches. On top of
this descriptor, we learn a non-linear encoding for classification. This encoding is implemented
with a sequence of N layers of 1 × 1 convolutions with C channels. Finally, a global spatial
average pooling is performed, followed by a linear classifier. Like in the BagNets, the global
spatial average pooling ensures the patch-separation of the classification decision.

With this architecture, we obtain an accuracy of 78.8% and 84.5% top-5 on ImageNet with
patch size 16 × 16 and 32 × 32 respectively. It is comparable with the BagNet accuracies
of 81.2% and 87.5% top5 with patch sizes 17 × 17 and 33 × 33 respectively. We obtain a
competitive with a relatively shallow 10-layers encoding compared to the 50 layers encoding of
the BagNet. It also suggests that the spatial component does not need to be learned to have
competitive accuracy. We perform an ablation study to analyze the relative importance of the
different parameters for classification accuracy.

The proposed architecture and numerical experiments are described and discussed in chap-
ter 4.

1.6.2 Image classification with patches K-nearest-neighbors.

The present contribution has been published in Thiry, Arbel, Belilovsky, and Oyallon [2021].
One can accurately classify an image using patch information. But one has to learn a

non-linear patch encoding to have good image classification performance. This learned repre-
sentation is hard to understand and interpret. Hence, we have few insights into the reasons
for the success of patch-based methods.

To understand this success, we first look at the performances of conceptually simple image
classification techniques based on patches. The simplest baseline we can think of is a K-
nearest-neighbor classifier. Do we get a non-trivial performance using a patch-based K-nearest-
neighbor-based classifier? How does it compare with other predefined visual representations
for classification?

In this contribution, we present an image classifier based on patches K-nearest-neighbors.
We compute the K-nearest Neighbors of each patch of an image and a fixed dictionary of
patches D, with size |D| using the Mahanalobis Euclidean distance [Chandra et al., 1936].
For a fixed dataset, this dictionary D is obtained by uniformly sampling patches from images
over the whole training set. This neighborhood representation is then fed to a linear classifier.
On CIFAR-10, we obtain an accuracy of 86.6%, in the performance range of sophisticated
convolutional kernel methods. On ImageNet, we obtain a non-trivial accuracy of 54.7%, out-
performing predefined visual representation such as Scattering Transform [Mallat, 2012, Bruna
and Mallat, 2013]. As such, this technique is a new baseline for object recognition without
representation learning methods.

According to Beyer et al. [1999], " scenario, where high-dimensional nearest-neighbors are
meaningful, occurs when the underlying dimensionality of the data is much lower than the
actual dimensionality." This performance we obtain with K-nearest-neighbors suggests that
the natural image patches have a low underlying dimension. We study this aspect using
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existing dimensionality measures.
We present this method, the numerical experiments performed, and study the patches’

low-dimensional properties in chapter 5.

1.7 Convolutional neural networks for artistic creation

In the last part of this thesis, we drive away from the central question about local methods in
energy regression and image classification to study algorithms’ applications in artistic creation.
The VGG convolutional neural network initially developed by Simonyan and Zisserman [2014]
for image classification has been used by Gatys et al. [2015] to perform artistic style transfer
on images. The success of CNNs for image classification fostered the development of CNNs for
image generation [Goodfellow et al., 2014]. These algorithms were used to generate "artistic"
images. Some of these generated images are sold on the art market and shown during a public
exhibition in the Centre Pompidou in Paris.

The use of these algorithms and the emergence of a new AI-art movement raise several
questions on creativity and art. To study the notion of creativity, we present two interactive
creation processes involving artists and algorithms. The experiments allow us to characterize
the creative agencies in such an interactive process.

1.7.1 Dialog on a canvas with a machine

The first artist-algorithm interaction process we present consists of a succession of interactive
rounds of creation between artists and machines. The algorithm and the artist repetitively
paint on the canvas with a different color one after the other. After Charly and Tina have drawn
a stroke, the algorithm partially completes the drawing using machine learning algorithms. The
completion is projected directly on the canvas, and the artists are free to insert or modify it.

Thanks to its simplicity, this process is a powerful case study of the creative agencies in an
interactive process. We present this work in the first part of chapter 6. It has been published
in Cabannes, Kerdreux, Thiry, Campana, and Ferrandes [2019].

1.7.2 Neural style transfer with artists

The second artist-algorithm interaction process we present consists of an interactive painting
process in which a painter and various neural style transfer algorithms interact on a real canvas.
The principle of style transfer allows the painter to interact with his own style. Moreover,
the generated images’ diversity was perceived as a source of inspiration for human painters,
portraying the machine as a computational catalyst.

We present this work in the second part of chapter 6. This work has been published in
Kerdreux, Thiry, and Kerdreux [2020].
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Chapter 2

Efficiency of local methods for
energy regression

After the seminal work by Behler and Parrinello [2007] for Silicon, Rupp et al. [2012] initiated
the development of small organic molecules’ energy regression. They published a database
of 7, 185 organic molecules whose energies were computed using density functional theory.
They proposed to regress these energies using a kernel ridge regression and a Coulomb matrix
descriptor and obtained promising results [Rupp et al., 2012]. Ramakrishnan et al. [2014] pub-
lished the QM9 database with the atomization energies of 130, 000 three-dimensional organic
molecules containing up to 9 non-hydrogen atoms. A variety of descriptors have been proposed
to regress QM9 molecules’ energies. A large part of these descriptors is based on spatial sep-
aration. For example, Bag of Bonds [Hansen et al., 2015], the Histogram of distances, angles,
and Dihedral angles [Faber et al., 2017] and Smooth Overlapping Atomic Positions [Bartók
et al., 2013] local descriptors represent a neighborhood of radius 3 to 5 Ȧ around the atoms.

Yet, we know that energy is not a local quantity in general. Energy depends on interactions
at different scales in the system, e.g., ionic and covalent bonds at short range, Van-der-Waals
interactions at the mesoscale, and long-range Coulomb interactions. Can we build a descriptor
that describes the geometry of the systems at different scales? How does such descriptor
compare with local descriptors like SOAP to regress molecule’s and solid’s energies?

Hirn et al. [2016] proposed a descriptor of two-dimensional molecules that separates scale
information in different coefficients. The competitive results they obtained motivated this tech-
nique’s three-dimensional extension. This three-dimensional extension is the Solid Harmonic
wavelet scattering transform [Eickenberg et al., 2017, 2018].

In this chapter, we study the efficiency of local and multi-scale methods for energy regres-
sion in molecules and solids. Solid Harmonic wavelet scattering transform is one of the few
descriptors relying on multi-scale separation in the literature. Hence we focus on this descrip-
tor for multi-scale methods. We focus on the SOAP descriptor for local methods as it has been
successfully applied to regress molecules’ [De et al., 2016] and solids’ [Szlachta et al., 2014,
Dragoni et al., 2018, Fujikake et al., 2018] energies.

Solid Harmonic wavelet scattering transform is based on the generation of a continuous
image that we call density. This continuous density has to be sampled for numerical compu-
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tations. Sampling errors cancel the crucial rotation and translation invariance properties. We
study these errors and show how to control them using Fourier analysis tools in the first part
of this chapter.

In the second part of this chapter, we compare the Solid Harmonic Scattering transform
and local SOAP descriptor’s predictive performance [Bartók et al., 2013]. We focus on two
energy regression benchmarks. The first one is the QM9 database benchmark of small organic
molecules [Ramakrishnan et al., 2014]. In classical chemistry, leading terms in the energy of
molecules tend to be in the chemical bonds [Flowers et al., 2018], hence in local interactions.
However, QM9 database molecules’ energies are computed using a theory derived from quantum
mechanics, and the resulting energy is not supposed to be localized. Energy regression results
show that Solid harmonic scattering and local methods achieve comparable mean absolute
errors (MAE) in the order of 0.5 kcal/mol. Local descriptors like HDAD [Faber et al., 2017] and
SOAP [Bartók et al., 2013, De Clercq et al., 2016] descriptors obtain comparable performances,
suggesting that QM9 energies are indeed local. We introduce a second benchmark consists of
graphene solids (Carbon atoms) with long-range Van-der-Waals interactions [Chung, 2002,
Novoselov et al., 2004, Bolotin et al., 2008]. Since energies have a long-range component, one
can assume that local descriptors can not capture such systems’ total energy. On this system,
we compare two machine learning potentials, each relying on a different form of separation:

1. A multi-scale Solid Harmonic Scattering Transform descriptor with linear regression.
This technique relies on a multi-scale separation.

2. A combination local SOAP descriptor [Bartók et al., 2013] with kernel regression plus a
long-range pair potential. This technique relies on spatial separation.

Numerical results show that these two techniques perform similarly. Simple pairwise potentials
capture efficiently long-range interactions. The short-range part of the energy is efficiently
captured with the combination of two SOAP local descriptors. This demonstrates that a simple
spatial separation in short-range and long-range energies is sufficient to regress long-range Van-
der-Waals energies. Despite the atoms’ interactions, one can capture complex interactions with
a local environment description despite the multi-scale nature of the atoms’ interactions.

The present chapter is organized as follows. We first present the continuous Solid Har-
monic Scattering Transform and derives its invariance properties. We study the errors due
to the continuous Solid Harmonic Scattering Transform sampling and show how to control
them. Then we present and discuss the numerical experiments on the QM9 database. We
detail the construction of the Graphene database for long-range energy regression. We present
the regressions technique based on the SOAP descriptor. We then compare and discuss the
performances of Solid Harmonic Scattering and SOAP descriptors on this database.

The first part of this chapter has been published in Eickenberg, Exarchakis, Hirn, Mallat,
and Thiry [2018]. My personal contributions concerned the derivation of the invariance prop-
erties, the whole study of sampling error effects, and the open-source Pytorch implementation
of the Solid Harmonic Scattering transform1.

1https://github.com/louity/pyscatharm
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The second part is based on unpublished work. It results from a collaboration with the
Theoretical Chemical Physics group at the University of Luxembourg led by A. Tkatchenko
and Professor Gábor Csányi’s team in the Cambridge University Engineering Department. My
personal contributions concerned the regression experiments protocol, the numerical experi-
ments with the Solid Harmonic Scattering transform, and the numerical results comparison
and discussion.

2.1 Continuous Solid Harmonic Scattering Transform

2.1.1 Gaussian density representation

Continuous density function

The first step in the computation of the Solid Harmonic Scattering transform is to map the
atomic positions to a continuous density function. For this purpose, we use isotropic and
normalized Gaussian functions gσ

gσ(r) = 1
(2π)3/2σ3 e

−|r|2/(2σ2)

This function is separable in Cartesian coordinates r = (x, y, z)

gσ(x, y, z) = h(x)h(y)h(z)

h(t) = 1√
2πσ

e−t
2/(2σ2)

From the persepective of Heisenberg’s uncertainty principle, Gaussian functions have an opti-
mal joint spatial-frequency localization. This is beneficial to control sampling errors.

Given the positions of the atoms (r1, . . . , rNa), the continuous density ρ representing the
atoms is a sum of Gaussian functions located at the atomic position

ρ(r) =
Na∑
i=1

cigσ(r − ri). (2.1)

ci describes the properties of the atom i. It is typically a three-dimensional vector with the
nuclear charge, the number of valence electrons, and the number of core electrons of the atom
i. If there is a single atomic species in the system, ci is simply equal to 1.

The Fourier transform of ρ is

ρ̂(ω) = ĝσ(ω)
Na∑
i=1

cie
−iri·ω. (2.2)
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Figure 2.1: 2D slice of the 3D image ρ of the C7O2H5 planar molecule. The slice plane
corresponds to the molecule’s plane.

where ĝσ(ω) is the Fourier transform of g

ĝ(u, v, w) = ĥ(u)ĥ(v)ĥ(w)

ĥ(s) = 1√
2π
e−s

2σ2/2

Overlapping conditions

We want the Gaussian functions g centered on the atomic positions not to overlap much.
Otherwise, we lose the location information. Mathematically, we want to enforce two Gaussian
functions located over two different positions to overlap with an amplitude at most equal to
the overlapping precision εo < 1.

Let ∆ be the smallest interatomic distance. The overlapping condition yields

∀r s.t. |r| = ∆/2, |gσ(r)|
|gσ(0)| = εo

After straightforward computations, we have the following condition

∆ = σ
√
−8 log(εo). (2.3)

2.1.2 Solid harmonic wavelets

The regular solid harmonic functions are regular solutions of the Laplace equation. The have
a primary index l ∈ N and a secondary index m ∈ [−l,+l]. In spherical coordinate (u, θ, φ),
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their expression is

Rml (u, θ, φ) =
√

4π
2l + 1 rlY m

l (θ, φ)

Y m
l are the spherical harmonics defined on the sphere S2

Y m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)! Pml (cos(θ))eimφ

Pml are the associated Legendre polynomials of indices (l,m).

Definition 2.1.1. Solid harmonic wavelets are defined by multiplying a solid harmonic func-
tion by an isotropic Gaussian function. For l ∈ N and m ∈ [−l,+l], they have the following
expression

ψl,m : (u, θ, φ) 7→ Kle
−r2/2rl Y m

l (θ, φ)

Kl is a normalizing constant :

Kl =


1

π
√

2l+1(l+1)!! if l is even.

1
2

l+1
2
√

2π(2l+1)( l+1
2 )!

if l is odd.

Proposition 2.1.2. The Fourier transform ψ̂l,m of a Solid Harmonic wavelet ψl,m is also a
Solid Harmonic wavelet:

ψ̂l,m : (λ, α, β) 7→ Kl4π(−i)leλ2/2(λ)l Y m
l (α, β)

Proof. See Appendix A.

To compute scattering coefficients, we will use solid harmonic wavelets. For the scattering
transform, the smallest wavelet will have a width σw and we will use ψl,m,j , solid harmonic
wavelets of scale j:

ψl,m,j(u, θ, φ) = 1
(2jσw)3ψl,m,j

(
r

2jσw
, θ, φ

)

The scale j is usually an integer to have dyadic scales 2j , but it can be a positive real value in
general.
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2.1.3 Continuous functional operator U

Definition 2.1.3. For l ∈ N and j > 0, we define the functional operator Ul,j

Ul,j :ρ 7→ Ul,j [ρ]

Ul,j [ρ] (r) =

 l∑
m=−l

|ρ ∗ ψl,m,j |2(r)

1/2

Definition 2.1.4. For an input function f : R3 → Rd, fτ is the function f translated by
τ ∈ R3 :

fτ : r 7→ f(r − τ)

Proposition 2.1.5. The operator Ul,j is covariant to the input function translation.

∀f : R3 → Rd, ∀τ ∈ R3, Ul,j [fτ ] = (Ul,j [f ])τ

Proof. We recall that convolution and modulus operators are covariant to the translation of f

(fτ ∗ ψ)(r) = (f ∗ ψ)τ (r)
|fτ |(t) = |f |τ (r)

. We have thus:

Ul,j [fτ ] (r) =

 l∑
m=−l

|fτ ∗ ψl,m,j |2(r)

1/2

=

 l∑
m=−l

|f ∗ ψl,m,j |2(r − τ)

1/2

= (Ul,j [f ])τ (r)

Definition 2.1.6. For a function f and a rotation R , R.f is the function f rotated by R :

R.f : r 7→ f(R−1r)

Proposition 2.1.7. The operator Ul,j is covariant to rotations :

∀f : R3 → Rd, ∀R ∈ SO3, Ul,j [R.f ] = R.(Ul,j [f ])

Proof. See appendix A.

In the following, the density ρ is called the zero-order density. Ul,j [ρ] is called a first-
order density with indices l, j. Ul2,j2 [Ul1,j1 [ρ]] is called a second-order density with indices
l1, j1, l2, j2.
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2.1.4 Examples

For example, if we take ρ to be the density of a single atom, i.e., an isotropic Gaussian function
of width σ, we can compute the first-order density Ul,j [ρ] analytically (proof in Appendix A.):

Ul,j [ρ] (u, θ, φ) = Kl

s3
j

e−r
2/(2sj)2

(
r

sj

)l
sj =

√
(2jσw)2 + σ2

If we take ρ to be the density of a multi body system:

ρ(r) =
∑
k

gσ(r − rk) =
∑
k

grk
(r)

we can also compute the first order density analytically (proof in appendix):

Ul,j [ρ] (u, θ, φ) =

 l∑
m=−l

∣∣∣∣∣∑
k

(Ψl,m,j)rk
(u, θ, φ)

∣∣∣∣∣
2
1/2

2.1.5 Continuous scattering coefficients

We have defined the functional operator Ul,j which is covariant to translations and rotations
of the density ρ. We compute scattering coefficients by simply integrating the densities over
the whole space. Since the integral is invariant to translation and rotations of the functions,
the resulting coefficients are invariant to translation and rotations. The densities are positive.
These integrals are hence l1 norms.

• The zero-order scattering coefficients S0 are computed with the zero-order density

S0[ρ] =
∫
R3
ρ = ‖ρ‖1

• The first-order scattering coefficients S1
l,j are computed with the first-order density Ul,j [ρ]]

S1
l,j [ρ] =

∫
R3
Ul,j [ρ] =

∥∥Ul,j [ρ]
∥∥

1

• The second-order scattering coefficients S2
l,j,l′,j′ are computed with the second-order den-

sity Ul′,j′ [Ul,j [ρ]]]

S2
l,j,l′,j′ [ρ] =

∫
R3
Ul′,j′ [Ul,j [ρ]] =

∥∥Ul′,j′ [Ul,j [ρ]]
∥∥

1
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To create new invariants, we raise the densities to a power q ∈ N before integration.
The power function is a point-wise function. (Ul,j [ρ])q is hence covariant to translations and
rotations of ρ. One can see it as lq norms to the power q. The coefficients

S0
q [ρ] =

∫
R3
ρq = ‖ρ‖qq

S1
l,j,q =

∫
R3

(Ul,j [ρ])q =
∥∥Ul,j [ρ]

∥∥q
q

S2
l,j,l′,j′,q[ρ] =

∫
R3

(
Ul′,j′ [Ul,j [ρ]]

)q =
∥∥Ul′,j′ [Ul,j [ρ]]

∥∥q
q

are hence invariants to translations and rotations of ρ. The concatenation of these coefficients
forms the scattering vector S[ρ]. S[ρ] is a suitable descriptor of an atoms’ system for machine
learning potentials.

2.2 Discrete solid harmonic scattering transform

In practice, all computations are discrete :

1. continuous functions are sampled with step size 1, with Nx, Ny, Nz points in direction
x, y, z respectively.

2. convolutions are computed as a product in Fourier space, using the Discrete Fourier
Transform (DFT) to move from signal space to Fourier space.

3. Since functions are sampled both in signal and Fourier space, our functions are supposed
to be Nx ×Ny ×Nz periodic in signal space and 2π

Nx
× 2π

Ny
× 2π

Nz
periodic in signal space.

4. Integrals over the (Fourier or signal) space R3 are replaced by integral over a period.

Scattering coefficients are computed with integrals over the space. To have correct values
for the integrals, we need

• the support of integrand (
∣∣ρ|, ∣∣Ul,j [ρ]

∣∣, etc.) to be concentrated in the period over which
we intergrate

• to control the aliasing effect in Fourier space due to spatial sampling.

For the first point, we only need to localize the spatial support of the Gaussian functions.
For the second point, we need to use Fourier analysis tools.

2.2.1 Zero-order densities with multiple Gaussians

In our case, the density ρ is positive so |ρ| = ρ. In order to avoid all subsequent aliasing on
the zero-order density, we want the support of the Fourier transform of ρ to be essentially be
concentrated in [−π, π]3, with a precision εa � 1:

|ρ̂(ω)| < εa, ∀ω /∈ [−π, π]3
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Given the Fourier transform of ρ in eq. 2.2, it is equivalent to

|ĝσ(ω)| < εa
Na

, ∀ω /∈ [−π, π]3

. This gives
|ĥ(π)| = εa

Na

and finally

σ = 1
π

√
2 log

(
Na

εa

)
Hence, the width σ of the Gaussian function g is entirely determined by our aliasing condition.

2.2.2 First-order densities with a single Gaussian

If ρ is a single Gaussian, we have:

Ul,j [ρ] (u, θ, φ) = Kl

s3
j

e−r
2/(2sj)2

(
r

sj

)l
sj =

√
(2jσw)2 + σ2

or in Cartesian coordinates

Ul,j [ρ] (x, y, z) = Kl

s3
j

e−(x2+y2+z2)/(2sj)2
(√

x2 + y2 + z2

sj

)l

If l is even, this function is C∞ we can compute the Fourier transform:

Ûl,j [ρ](λ, α, β) = (isj)l e−s
2
jλ

2/2Hl (sjλ)

where Hl is the lth Hermite polynomial.
If l is odd, their is a discontinuity of the lth derivative at point 0, which cause a decay of

the Fourier spectrum like |λ|−(l+1), which we can see as a line of slope −(l + 1) plotting the
log of Fourier modulus w.r.t. log(λ). We can numerically see these effects :
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So for a single Gaussian density ρ, the first order density Ul,j [ρ] is much more likely to be
aliased for odd l than for even l.

2.2.3 First-order densities with multiple Gaussians

As we saw previously, if ρ is a single Gaussian, we have:

Ul,j [ρ] (u, θ, φ) =

 l∑
m=−l

∣∣∣∣∣∑
k

(ψl,m,j)rk

(
r

sj
, θ, φ

)∣∣∣∣∣
2
1/2

The first order density of multiple Gaussians appears then to be an interference figure between
solid harmonic wavelets. It could behave worse than the single Gaussian first-order density in
terms of aliasing.

To see what can happen in practice, we can do numerical experiments with two Gaussians,
for different values l :

• With l = 2, we observe the following interference pattern:

The interference is constructive, and the function is strictly positive. The square root
does not create derivative discontinuity.

• With l = 3, we observe the following interference pattern:

The interference is destructive. The is zero in the middle of the atom positions. The
square root creates derivative discontinuity. This causes slow decay of the Fourier mod-
ulus.
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• With l = 4, we observe the following interference pattern:

The interference is constructive and does not create derivative discontinuity.

• With l = 5, we observe the following interference pattern

Once again, we observe a derivative discontinuity in the middle of the two atoms. The
Fourier modulus has hence a slow decay.

Plotting the radial decay of the Fourier modulus of these different cases on the same figure
gives us an idea of which l behave better in terms of aliasing:
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So for a density ρ with two Gaussians, the first-order density Ul,j [ρ] is once again much
more likely to be aliased for odd l than for even l. It suggests using operator Ul,j [ρ] only with
even l to use a small sampling grid.

However, with a sufficiently large sampling grid, these aliasing effects can be bounded. We
see that the Fourier modulus magnitude is about 10−6 at the boundaries with approximately
200 points. One can afford a larger grid and have even lower errors.

Moreover, the nature of the interference patterns is different between even and odd indices l.
This might result in different invariants that might be complementary to regress the molecule’s
energies. We might use odd indices l in general for energy regression if they allow regressing
the energy accurately.

2.3 Numerical experiments on the QM9 database.

2.3.1 Solid Harmonic Scattering Transform parameters

For the numerical experiments on the QM9 database [Ramakrishnan et al., 2014], we use
Scattering invariant coefficients of order zero, order one, and order two. For each molecule,
we compute a density with three channels. These three channels use the number of core
electrons, the number of valence electrons, and the total number of electrons of the atoms in
the molecule. We use the values j ∈ {0, 1, 2, 3, 4} for the scale parameters and l ∈ {1, 2, 3}
for the solid harmonics. We raise the densities to the powers q ∈ {1/2, 1, 2, 3, 4} to create
supplementary invariants.
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For convenience, we adopt the following notations. We define x = (r1, z1, . . . , rNa , zNa)
the state of a system of atom, which contains the positions and nuclear charges of the atoms.
From x we can compute the densities ρx and the scattering coefficients. We concatenate these
coefficients in a Scattering vector that we denote by S[ρx].

2.3.2 Multi-linear regression

We regress the molecules’ energy with multi-linear combinations of scattering coefficients in
S[ρx]. A multilinear regression of order r is defined by:

F (x) = b+
∑
i

(
νi

r∏
k=1

(〈S[ρx], w(k)
i 〉+ c

(k)
i )

)
.

For r = 1, it gives a linear regression

F (x) = b+ 〈S[ρx], w(k)〉

For r = 2, we have a bilinear regression. It includes products of Scattering coefficients. Hence,
it allows to model interactions between different scales j and indices l. The whole regression
pipeline is illustrated in figure 2.2.

We optimize the parameters of the multilinear regression by minimizing the quadratic loss
over the N training molecules xi

N∑
i=1

(E(xi)− F (xi))2 ,

using the Adam algorithm for stochastic gradient descent [Kingma and Ba, 2015].
If F (x) is the total energy of a state x, and x is decomposable into several simpler sub-

systems, then perturbation theory analysis expands the energy F (x) into an infinite series of
higher-order energy terms:

F (x) = F0(x) + F1(x) + F2(x) + · · · ,

in which F0 captures the energies of the isolated subsystems, F1 captures their electrostatic
interactions, and F2 captures induction and dispersion energies, which result from van der
Waals interactions. The linear regression similarly expands the total energy into successively
higher-order energy terms defined by wavelet scattering coefficients.

Multi-linear regressions were trained and evaluated on five random splits of the dataset,
for r = 1, i.e., linear regression, and r = 3, tri-linear regression. The fit’s evaluation criterion
is the mean absolute error, which is the most prevalent error measure in the literature. We
use 5-fold cross-validation with 107,108 molecules for training and 26,777 for test per fit.

Results are shown in the table 2.1 and compared with other techniques. Tri-linear regression
achieves close to state-of-the-art error (0.56 kcal/mol). Notably, a simple linear regression error
is much lower than that of Coulomb matrices fit with kernel ridge regression at full sample
complexity. Furthermore, while kernel methods with appropriate kernels may decrease the
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Figure 2.2: Scattering regression pipeline. The atomic positions and charges x =(
r1, z1 . . . , rNa , zNa

)
are mapped to three-dimensional densities. An invariant scattering trans-

form is applied to each density. Invariant scattering coefficients are spatial lq norms of the
resulting zero, first, and second-order densities for several exponents q. A multilinear regres-
sion computes an estimation of the energy from these invariant scattering coefficients.
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Table 2.1: Test Mean Absolute Error (MAE) on the QM9 molecules’ atomization energies
in kcal/mol. Scatt., CM, BoB, HDAD, and SOAP stand respectively for Solid Harmonic
Scattering Transform, Coulomb Matrix, [Rupp et al., 2012], Bag of Bonds [Hansen et al.,
2015], Histogram of distances, angles, and Dihedral angles [Faber et al., 2017] and Smooth
Overlapping Atomic Positions [Bartók et al., 2013]. KRR stands for Kernel ridge regression.
Results on QM9 are taken from the corresponding publications except for SOAP, where the
results are taken from De et al. [2016].

descriptor Scatt. Scatt. CM BoB HDAD SOAP
regression Linear Tri-linear KRR KRR KRR KRR

MAE (kcal/mol) 1.89 0.56 2.95 1.53 0.58 0.53

error to 0 given a large or infinite amount of data, their representation sizes increase with the
number of samples. Using fixed-size and especially linear regressions, as we do, we can detect
their capacity limit and use the relevant prediction depending on the case.

Interestingly, the SOAP kernel achieves a test MAE of 0.5 kcal/mol with a cutoff radius of
3Ȧ. The test MAE is worse when using larger cutoff radii of 4Ȧ and 5Ȧ [De et al., 2016]. This
demonstrates that the energies of the QM9 database are very local. This database might not
be relevant to describe large-scale patterns and scale interactions with a multi-scale descriptor
like Scattering Transform. For this reason, we decide to construct a database with long-range
energies in the following.

2.4 Graphite database with long-range energies

2.4.1 About graphite

Graphite is a crystal of carbon atoms. It occurs naturally in this form and is the most stable
form of carbon under standard conditions. It is used, for example, in pencil leads. It converts
to diamond under high pressures. Graphite is a stack of Graphene layers. In Graphene layers,
carbon atoms are arranged in a hexagonal structure are (see Figure 2.3). Bonding between
layers is via weak Van-der-Waals forces [Chung, 2002]. These forces are long-range forces,
which makes the study of graphite interesting for us.

2.4.2 Generating configurations

The atomic systems we consider are 3D cubic periodic cells. They contain from 460 to 512
carbon atoms. These configurations were obtained with molecular dynamics simulations using
a Gaussian Approximation potential [Bartók and Csányi, 2015]. Precisely, the method used
was a Langevin dynamic at a temperature of 3, 000K, and there are 25 uncorrelated molecular
dynamic runs. The volumetric mass density of these systems varies in 1.00, 1.25, 1.50, 1.75, or
2.00 g.cm−3. There are five uncorrelated runs for each of these values, yielding 25 uncorrelated
runs in total. Each trajectory is the concatenation of 50 snapshots spaced 2 picoseconds apart2,

21 picosecond is 10−12 seconds

31



Figure 2.3: (Left) Graphite structure. All atoms are carbon atoms. Atoms represented with
black dots are above carbon atoms. Atoms represented with red dots are above the center
of hexagons. (right) A unit cell of the graphite crystal. The crystal is obtained by periodic
replication of this cell in the directions of the edges.

followed by 50 snapshots spaced 4 ps apart. In total, each trajectory contains a total of 100
snapshots and covers a time-lapse of 300 ps. Volker Deringer from Cambridge University
performed the generation of these trajectories.

2.4.3 Energy computations

To compute the energies, we have to use an electronic structure method that effectively models
these Van der Waals forces. For this purpose, we use the Many-body dispersion [Tkatchenko
et al., 2012, Ambrosetti et al., 2014] electronic structure method. This method uses the cou-
pled Quantum Harmonic Oscillator (QHO) model Hamiltonian. It is coupled with semi-local
Density Functional Theory (DFT) functionals by using the range-separated Density functional
[Toulouse et al., 2004]. This level of theory can account for Van der Waals forces that can
range to 15 Ȧ.

Computations were performed by Martin Stoehr from Luxemburg University using the
Many-Body Dispersion software of the Fritz-Haber Institute3.

The computed energies range between −68.29 eV and −40.19 eV. The mean energy is
−54.16 eV, and the standard deviation is 7.06 eV.

3http://www.fhi-berlin.mpg.de/ tkatchen/MBD/MBD.tar
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2.4.4 Cross-validation folds

For a fair comparison between different methods, we predefine a fivefold cross-validation split:

• The first fold ranges between −67.65 and −45.28 eV with a mean of −54.90 eV and a
standard deviation of 6.90 eV.

• The second fold ranges between −67.94 and −41.74 eV with a mean of −54.44 eV and a
standard deviation of 6.74 eV.

• The third fold ranges between −68.23 and −40.19 eV with a mean of −53.88 eV and a
standard deviation of 7.17 eV.

• The fourth fold ranges between −68.29 and −41.43 eV with a mean of −53.81 eV and a
standard deviation of 7.10 eV.

• The fifth fold ranges between −67.84 and −42.51 eV with a mean of −53.75 eV and a
standard deviation of 7.32 eV.

2.5 Spatial separation based on local SOAP descriptors

2.5.1 Local SOAP descriptor

The Smooth Overlapping of Atomic Position (SOAP) defines a similarity kernel between atomic
environment. The atomic neighborhood Ni of atom i is represented by a fictitious density
function ρi. Like in Solid Harmonic Scattering transform, this density is a sum of Gaussian
functions g centered on the atomic positions:

ρi(r) =
∑
j∈Ni

gσ(r − rj)

The rotation invariant similarity kernel K takes as input the densities ρi and ρj representing
the two atomic neighborhoods Ni and Nj . The kernel K is defined as

K (ρi, ρj) =
∫
R∈SO3

[∫
r∈R3

ρi(r)R.ρj(r)dr
]ζ

dR

where R.ρj is the density ρj rotated by R ∈ SO3 and ζ ∈ N is an integer exponent. This
similarity measure is then normalised to have the normalized similarity measure Kn

Kn (ρi, ρj) = K (ρi, ρj)√
K (ρi, ρi)K (ρj , ρj)

For numerical computations, the densities ρi are expanded over radial and Spherical harmonics
bases. One can find more details about the SOAP kernel in Bartók and Csányi [2015].
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2.5.2 Spatial separation method

Based on this SOAP kernel, we propose a method based on spatial separation. In this setting,
the total energy is a sum of three terms that correspond to different spatial components:

1. The first term accounts for long-range interactions. It takes the form of a pair potential.
It ranges to 10 Ȧ. We parametrize it using 30 basis functions were used equally spaced
on
[
0Ȧ, 10Ȧ

]
. The bases functions are orthonormalized Gaussian functions length scale

of 2Ȧ.

2. The second term is a local term. It is a SOAP kernel for each atom, with an exponent
ζ=2. It is a quadratic SOAP kernel. This kernel compares atomic neighborhoods of a
radius of 3Ȧ. The atomic densities are expanded over 10 radial basis functions and 10
angular Spherical harmonics. The Gaussian functions g representing the atoms have a
width of 0.5Ȧ. To reduce the cost of the Kernel matrix’s inversion, 1000 representative
configurations out of 2000 available are chosen via CUR decomposition of descriptor
matrix.

3. The third term is a local term with a larger range. It is a SOAP kernel for each atom,
with an exponent ζ=2. This kernel compares atomic neighborhoods of a radius of 6Ȧ.
The atomic densities are expanded over 10 radial basis functions and 10 angular Spher-
ical harmonics. The Gaussian functions g representing the atoms have a width of 1Ȧ.
Similarly, 1000 representative configurations out of 2000 available are chosen via CUR
decomposition of descriptor matrix.

The first term is fitted alone, independently of the SOAP kernel. Then the remaining
energy is fitted using the two short-range and middle-range SOAP kernels.

2.6 Regression results

2.6.1 Parameters of solid harmonic scattering representation

There is a single atomic species, carbon, in the systems we consider. Hence, we do not use the
vector ci from eq 2.1. We represent the system with a sum of Gaussian functions.

ρ(r) =
∑
i

gσ(r − ri)

We consider a periodic system with periods dx, dy, dz in the directions x, y, z. The density
we construct has to be periodic in a box of dimensions are (dx, dy, dz). We will sample this
periodic signal on a discrete grid is of shape (Nx, Ny, Nz). The spatial discretization steps are
thus (δx, δy, δz) are

(dx/Nx, dy/Ny, dz/Nz).

To computed the periodic density, we simply have to compute the Fourier transform of the
density

ρ̂(ω) = e−|ω|
2σ2/2∑

n

e−iω·rn
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on a Fourier domain corresponding to a grid of shape (Nx, Ny, Nz) and of dimensions (dx, dy, dz).
This Fourier domain Pf is the following

Pf = [−πNx/dx, πNx/dx]× [−πNy/dy, πNy/dy]× [−πNz/dz, πNx/dz] .

In practice, the ratios dx/Nx, dy/Ny and dz/Nz can not be equal in general becauseNx, Ny, Nz

are integers and dx, dy, dz are arbitrary floats. To have a similar sampling effect in each of the
x, y, z dimensions, we try to make them as equal as possible. Another constraint is to have
the shapes Nx, Ny, Nz products of powers of 2, 3, and 5 to enable the fast Fourier transform
factorization.

We compute a Solid Harmonic Scattering descriptor with coefficients of zero, first and
second order. We use the following values for the parameters:

• Integral powers q = 1, 2

• Spherical harmonics orders l = 0, 1, 2, 3

• Scales j = 0, 0.5, 1, 1.5, 2, 3, 4

Using these values, the scattering vector representing a configuration is of dimension 226.
We use a linear ridge regression implemented in the Scikit-Learn package [Pedregosa et al.,

2011]. We use 5-fold cross-validation for each value of the volumetric mass density. We train
on four runs per volumetric mass density value, which makes 2000 train samples. We test on
one run per volumetric mass density value, which makes 500 test samples.

The linear regression’s ridge parameter is set with a log-scale grid-search ranging from 10−8

to 103. The retained value is 10−6.

2.6.2 Results

We obtain a Mean Absolute Error (MAE) of 39.5 meV with the setting described below. The
Root Mean Square Error (RMSE) is 49.8 meV.

For each value of the Volumetric Mass (VM) density in {1., 1.25, 1.5, 1.75, 2.g/cm3}, we
train a linear regression using a five fold cross validation. The five cross-validation folds are
the five uncorrelated runs. We train on four folds and test on the remaining one. Results are
summed up in the table below.

VM density (g/cm3) 1.00 1.25 1.50 1.75 2.00
MAE (meV) 49.6 42.1 52.2 44.5 39.6
RMSE (meV) 64.0 54.0 66.0 57.4 50.3

Scale analysis

To analyze the importance of long-range interaction, we study the evolution of the error w.r.t.
to the length of interactions. Solid harmonic scattering coefficients of scale j have a receptive
field limited to 2j . Using the fitted linear regression coefficients, we compute the error using
only coefficients of scale smaller than j. So we compute the evolution of the error w.r.t. the
length. We plot this quantity in figure 2.4.
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Figure 2.4: Evolution of the error w.r.t. the maximum length captured by scattering coeffi-
cients.

2.6.3 Results with two SOAP and a pairwise potential

Figure 2.5: (left) Predicted energies using the pair potential w.r.t. true MBD-energies. (right)
Learned pair potential w.r.t. the pairwise distance r.

The regression technique is a Bayesian kernel ridge regression or Gaussian process regres-
sion. The regularization parameter is chosen to be 5.10−5.

The fitting of the pair potential yields a mean square error of 442 meV. The predictions of
this pair potential and the fitted potential are shown in figure 2.5.

The two SOAP kernels that account for short-range and middle-range interactions are fitted
on the difference between the pair potential predictions and the true MBD energies. It yields
an RMSE of 52.8 meV. The predictions and the errors of the whole model based on this spatial
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Figure 2.6: (left) Predicted energies and (right) errors using the whole model with 2 SOAP
kernels and the pair potential.

separation are shown in figure 2.6.

Figure 2.7: (left) Predicted energies a using 2 SOAP kernels without the pair potential.

When fitting the two SOAP kernels directly on the MBD energies, the RMSE is 70.0 meV.
This increase of 17 meV is due to the limited range of this model to 6 Ȧ. Predictions of this
two-SOAP model are shown in figure 2.7.

2.6.4 Discussion

The Solid Harmonic Scattering transform with a linear regression gives a smaller error, with
49.8 meV compare to 52.2 meV of the model with two SOAP kernels and a pair potential.
This difference is relatively small w.r.t. the magnitude of these errors. An error of 50meV
corresponds to 1.153 kcal/mol, which is approximately the chemical accuracy. Having a lower

37



error, we might overfit the MBD energies while caring for the true physical energies. So we
can consider that these two models perform similarly on the prediction of the MBD energy.

The model with two SOAP kernels and a pair potential based on spatial separation presents
advantages in terms of interpretation. The long-range potential gives interesting insights into
the nature of long-range interactions. Short-range and middle-range contributions to the energy
are separated in the two SOAP kernels. One can analyze them separately.

The Solid Harmonic Scattering Transform does not offer these possibilities directly. It
allows solely to analyze the evolution of the error w.r.t. length of interactions as shown in
figure 2.4. Physicists would typically prefer a method based on spatial separation that offers
more physical interpretability than a systematic multi-scale treatment.

We can notice that when limiting the length to 6 Ȧ, the error is 65 meV, in the same range
as the 70 meV error of two-SOAP kernels without pair potential. Not modeling the long-range
energies induce an increase of 20 meV in the RMSE. Their importance is thus relatively small.
This opens further comparison between multi-scale Solid Harmonic descriptor and descriptors
based on spatial separation on new energies databases where long-range interactions count
significantly in the total energy.
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Chapter 3

A local method for vibrational
entropy regression

In the previous chapter, we have seen that despite the multi-scale nature of the ground state en-
ergy of molecules or solids, descriptors based on scale separation like Solid Harmonic Scattering
Transform do not have a superior predictive power to local ad-hoc descriptors.

However, the ground state energy is not the only thermodynamical property that drives
the atoms’ evolution in a physical system. At a constant temperature T , the free energy A is
the relevant quantity to describe the system evolution. It indicates whether a physical process
is likely or not in the system.

The free-energy A is defined as the energy F (r1, . . . , rNa) minus the temperature T times
the entropy S(r1, . . . , rNa).

A(r1, . . . , rNa) = F (r1, . . . , rNa)− T × S(r1, . . . , rNa)

The vibrational entropy represents the entropy S(r1, . . . , rNa) under the harmonic approxima-
tion. It is defined only for atomic positions (rm1 , . . . , rmN ) at a local minimum of the energy.
Computing the vibrational entropy involves the diagonalization of the system’s Hessian. In
a Na atoms system, the system’s Hessian is a 3Na × 3Na symmetric matrix. This matrix’
spectrum computational cost scales like O(N3

a ). It is prohibitive for systems with typically
Na > 104. Avoiding this computational burden using a regression model is the first motivation
for the presented work.

Scattering Transform has shown promising results [Bruna and Mallat, 2019, Zhang and
Mallat, 2019] in the context of maximum-entropy stochastic process modeling and sampling.
The multi-scale invariant coefficients computed with a cascade of wavelet transforms, non-
linearity, and averaging offer appropriate statistics to characterize non-Gaussian processes like
turbulence. Moreover, the multi-scale separation of the Scattering Transforms is a key aspect
of these statistics. It allows correlating non-linearly phenomena and structures occurring at
different scales. The vibrational entropy presented here is a different quantity, but there are
connections between these definitions. Is the scale separation appropriate in our context of
vibrational entropy regression? How does the Solid Harmonic Scattering Transform descriptor
compare with descriptors relying on spatial separation?
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We answer these questions in the present chapter. We construct a database of body-
centered cubic (BCC) crystals of iron atoms with defects. These configurations are all relaxed
to a local minimum of the energy landscape. We compute the spectrum of the Hessian of the
system and the exact vibrational entropies of these systems. We then test and compare two
regression methods based on two descriptors relying on two types of separation :

1. The first one is a Solid Harmonic wavelet Scattering Transform that we studied in the
previous chapter in the context of energy regression.

2. The second one is the Angular Fourier Series (AFS) local descriptor introduced by Bartók
et al. [2013]. The AFS descriptor separates the angular and radial information in different
channels.

Using linear regression, the AFS descriptor shows a superior predictive power on various
large systems of body-centered cubic structures of iron atoms with defects. Moreover, the
vibrational entropy’s short-range separation property allows our method to extrapolate on
very large atom systems. With the AFS descriptor, Vibrational entropies in a range of 250 kB
are predicted with less than 1.6 kB using training samples in a range of 25 kB.

This chapter is organized as follows. After having presented the physical background of our
problem, we present entropy computations under the harmonic approximation. Then we detail
the generation of the configurations’ database and the vibrational entropy computations. We
present two regression techniques based on two types of separation. Finally, we present and
discuss the results.

This work has been published in Lapointe, Swinburne, Thiry, Mallat, Proville, Becquart,
and Marinica [2020]. My personal contributions concerned the regression experiments with the
Solid Harmonic Scattering Transform and the python open-source implementation of the AFS
descriptor 1.

3.1 Physical background

Defects in iron crystals can have extraordinarily diverse morphologies [Marinica et al., 2011,
Alexander et al., 2016, Marinica et al., 2012]. The distribution of these defects across the iron
crystal exhibits significant variation with temperature.

The complex properties of defect populations are reflected in the underlying defect-free
energy landscape. Accurate free energies are essential to model the formation of these defects.
At finite temperature T , the energy F must be supplemented with the calculation of vibrational
entropy S to give the free energy A

A(r1, . . . , rNa) = F (r1, . . . , rNa)− T × S(r1, . . . , rNa)

There are now many well-established methods in computational material science to calcu-
late the total energy to varying degrees of accuracy. Due to continuous increases in compu-
tational power and parallel software development, sophisticated electronic structure methods

1https://github.com/louity/AFS-python
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can routinely access thousands of atoms [Dezerald et al., 2016, Domain and Becquart, 2018,
Alexander et al., 2016, Olsson et al., 2010]. However, due to the at best O(N3

a ) scaling of
computational effort a single vibrational entropy calculation, exploring free-energy landscape
is practically infeasible.

Here, we propose a method to regress the vibrational entropy directly from the relaxed
atomic positions. We use a descriptor combined with linear regression and the computational
cost scales like O(N). The method is applied to a wide range of point defects in empirical atom-
istic body-centered cubic (BCC) iron models. This conceptually simple method we propose
exhibits an exceptional degree of transferability, giving the ability to rapidly assess free-energy
landscapes at realistic temperatures.

We note that an O(N) approach has been developed by Huang et al. [2013]. They approxi-
mate the probability distribution of the Hessian eigenvalues. They use distribution using a set
of Chebyshev polynomials with a random basis set for this approximation. Whilst this stochas-
tic approach is indeed superior to the above O(N3

a ) treatment for large systems, a converged
result requires selecting a suitably large set of polynomials and basis vectors, requiring a sub-
stantial computational effort. It is still impractically high for the high-throughput evaluation
presented here, motivating the proposed regression method.

3.2 Vibrational entropy in the harmonic approximation

In the harmonic approximation, the entropy is defined only for atomic positions (rm1 , . . . , rmN ) at
a local minimum of the energy. This entropy is called vibrational entropy. Since (rm1 , . . . , rmN )
is a minimum, i.e. the gradient ∇F of F is zero and the Hessian ∇2F of F is positive definite

∇F (rm1 , . . . , rmN ) = 0
∇2F (rm1 , . . . , rmN ) < 0

The Hessian ∇2F (rm1 , . . . , rmN ) has 3N positive eigenvalues ων=1...3N . The vibrational entropy
is defined as follows

S(T ) = kB

3N∑
ν=1

[
ln
(
kBT

~ων

)
+ 1

]
(3.1)

where kB and ~ are the Boltzmann and Planck constants, respectively. This approximation is
valid in the limit of high temperatures such as

∀ν, ~ων
kBT

� 1

For finite crystalline systems containing Nb bulk atoms and ±Nd point defects, the vibra-
tional formation entropy Sf is defined as

Sf (T,Nd) = Sd(T,Nb ±Nd)−
Nb ±Nd

Nb
Sb(T,Nb), (3.2)

where the entropies Sb and Sd of the bulk and defective systems are computed at the same
volume V . With Hessian eigenvalues ω2

νb
and ω2

νd
for the bulk and defect systems, equation
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(3.2) yields a harmonic formation entropy of

Sf (T,Nd) = kB ln

∏νb
(~ωνb

)
Nb±Nd

Nb∏
νd
~ωνd

 . (3.3)

Using Green function formalism, one can show [P. H. Dederichs, 1980, Lapointe et al., 2020]
that the total entropy is the exact sum of local entropy contributions:

S =
N∑
i=1

Si

where Si represents the local entropy contribution of the neighborhood of the atom i. From
our perspective, the regression of the vibrational entropy is a separable problem with a local
separation. Hence a local method is reasonable to regress the vibrational entropy.

3.3 Configuration database

3.3.1 Generating configurations

Any regression model heavily relies on the database used for training. We used the ART
method [Barkema and Mousseau, 1996, Malek and Mousseau, 2000, Cancès et al., 2009,
Machado-Charry et al., 2011], following the methodology of previous studies by Marinica et al.
[2011], to generate a large number of configurations for small vacancy and interstitial clusters
in bcc Fe. All clusters contained between 1-4 removed or additional atoms, which we label
as Vn and In respectively, with n = 1, 2, 3, 4. Despite their apparent simplicity, such defect
configurations’ energy landscape is known to have many thousands of binding configurations
[Marinica et al., 2011, 2012, Swinburne and Perez, 2018]. To test the sensitivity of our re-
gression model to the underlying energy model, all calculations were performed in duplicate
using two interatomic potentials for bcc Fe, the embedded atom model (EAM) potential of
Ackland et al. [2004] (AM04), and the modified embedded atom model (MEAM) potential
from Etesami and Asadi [2018].

After an initial period of structure generation, all configurations were pairwise compared
to ensure the final database only contained non-equivalent structures. Two configurations are
considered as non-equivalent if their energies differ by more than 10−2 eV and if the sum of
squares of the principal components of inertia tensor of the interstitial atoms are different.
Interstitial atoms are localized using the Wigner-Seitz method.

The resulting database is an order of magnitude larger than that obtained by Marinica
et al. [2011]. This is partly due to a more aggressive ARTn parametrization to promote escape
from and discovery of deep super basins. In particular, relaxing an earlier restriction that
rejected saddle points of more than 2eV above the low energy ‘parallel dumbell’ configuration
[Marinica et al., 2011] allows the discovery of very low energy C15 type I4 clusters [Marinica
et al., 2012] that were previously missed. The resulting database is summarised in Table 3.1.
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System (Na, ε) Type of point defects (Ncf ) Total
I2 I3 I4 V4

1024, ε = +0% 434 1105 1280 1701 4520
1024, ε = −1% 434 1105 1280 1701 4520
1024, ε = +1% 434 1105 1280 1701 4520
1024, ε = +2% 434 1105 1280 1701 4520
1024, ε = +3% 434 1105 1280 1701 4520
2000, ε = +0% 434 1105 1280 1701 4520
3456, ε = +0% 434 1105 1280 1701 4520
Total 3038 7735 8960 11907 31640

Table 3.1: Database used to train the present regression model. Na is the number of atoms in
the perfect system, Ncf the number of distinct instances for a point defect class. I2−4 and V4
denotes the interstitial clusters with 2 up to 4 SIAs and the quadri-vacancy, respectively. The
size of these systems with defects are Na + (2 . . . 4) and Na − 4 for I2−4 and V4, respectively.
ε is an isotropic and homogeneous rate of deformation for the system

3.3.2 Computing vibrational entropies

To compute the harmonic entropy for each configuration, the Hessian was computed from 3Na

force evaluations using the standard finite difference formula with a displacement of 10−3 Å.
Each configuration was tested to be a minimum by counting the number of eigenfrequencies.
The relaxation of each configuration was performed using LAMMPS [Plimpton, 1995a,b]. The
eigenvalues for the vibrational entropies were computed using the PHONDY package [Marinica
and et al, 2007-2019, Marinica and Willaime, 2007, Soulié et al., 2018, Berthier et al., 2019].

3.4 Regression of the vibrational entropy.

3.4.1 Permutation invariance and short-range separation

In our system, we compute a descriptor φ(Ni) for each atomic neighborhood Ni. Since the
system’s energy is invariant w.r.t the atoms’ permutation, the descriptor representing our
atoms’ system has to be invariant w.r.t. to permutation of the indices of our atoms. This is
obtained by simply summing the descriptors

Φ(r1, . . . , rN ) =
∑
i

φ(Ni)

Since we use linear regression, the entropy is simply

A = 〈w,Φ(r1, . . . , rN )〉 =
∑
i

〈w, φ(Ni)〉

On the one hand, this summation yields the extensivity property of the entropy. A system
with twice the number of atoms has a twice bigger entropy. On the other hand, given the fact
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Figure 3.1: Training of different models using on a MEAM dataset of 2-4 interstitial clusters
I2−4 and quadvacancies V4, as detailed in the first line of Table 3.1. The descriptors used were
(a-b) A20,10, and SJ ,L with scales J = {0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5}. As is indicated in the
root mean square error (RMSE) and mean average error (MAE), the A20,10 model has superior
predictability.

Figure 3.2: Training of models using on (left) an EAM and (right) database dataset of 2-4
interstitial clusters I2−4 and quadvacancies V4, as detailed in the first line of Table 3.1. The
descriptors used were AFS descriptors A20,10. Metrics used are the root mean square error
(RMSE) and the mean average error (MAE). The analyticity of the MEAM potential gives
smoother curvatures, which the linear model can better predict.
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that the entropy is a sum of local contributions

S =
∑
i

Si

we can identify the local entropies Si with the contribution of the atomic neighborhood Ni in
the linear regression

Si = 〈w, φ(Ni)〉 (3.4)

Compared to more sophisticated kernel methods and neural networks [Rasmussen, 2004, Behler,
2011], the linear approach followed here offers many advantages in transferability, overfitting
control, and analytic connection to thermodynamic properties.

3.4.2 Local AFS descriptor

The Angular Fourier Series (AFS) descriptor An,l combines the radial and angular information
of the local atomic environment. The n and l components account for the radial and angular
information of the neighborhood Ni of the atom i. Here Ni is the ball of center ri and radius
rcut. The AFS descriptor is defined as follows

Ain,l =
∑

j,k∈Ni

gn(rij)gn(rik) cos (lθij,ik) fi(rij)fi(rik),

where rij is the distance between the atom i and the atom j and θij,ik the angle formed by
the triplet of atom i, j, k centred on i. The sum involves the pairs and the triplets of atoms
formed by the central ith atom and the neighbouring atoms inside the sphere with the radius
rcut around the atom i by definition of Ni. f is a cut-off function and ∀r ≥ rcut, fi(r) =
0. The radial functions gn are obtained from the ortho-normalization of the polynomials
pn(x) = xn+2, n = 1, . . . , nmax. The angular functions are the Tchebyshev polynomials with
0 ≤ l ≤ lmax.

As An,l is formed from a product of the radial and angular channels, the descriptor has
a total of nmax(lmax + 1) components. The AFS descriptor enables a wide-ranging level of
accuracy on the radial and the angular information by imposing nmax and lmax.

We used nmax = 20, and lmax = 10 and the cut-off distance of 5 in all the experiments
performed with AFS. Hence, the total number of components for the AFS descriptor used
here is 220. AFS descriptors of the retained configurations were computed using AFS-Python
code2.

3.4.3 Solid harmonic scattering descriptor

The solid harmonic wavelet scattering transform has been presented and studied in the previous
chapters. There is a single atomic species, iron, in our systems. Hence, we don’t use a vector
ci describing the properties of the atomic species. We use scattering coefficients of order
zero and one. We use a single integral power q = 2, L = 9 angular indices and 9 scales
J = {0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5}, yielding a descriptor of size 90.

2https://github.com/louity/AFS-python
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Solid Harmonic Scattering descriptors of the retained configurations were computed using
the PyScatHarm package 3.

3.4.4 Linear regression

We use Bayesian linear regressions with a Gaussian prior on the likelihood. In the numerical
experiments, we use the Scikit-Learn package [Pedregosa et al., 2011]. The initial value of σ
for the Gaussian prior has been set using the default value. We also tested standard ridge
regression, which gives the same results.

Figure 3.3: Illustration of the performance of the training of the linear model using deformed
supercells of I2−4/V4 clusters (MEAM database) and by using A20,10 descriptor. The initial
configurations have a (8a0)3 volume and have been deformed by applying a homogeneous and
isotropic dilatation of the supercell. The deformation rates are from −1% to 3%. The figure
illustrates the results of the regression model depending on the type of defect in the supercell
(a) or depending on the deformation rate (b).

3.5 Results

3.5.1 Influence of interatomic potential and descriptor set

The linear model was tested on BCC defect systems as described above, initially in a supercell
of size 8a0×8a0×8a0. The bulk lattice contained 1024 atoms before introducing 2-4 interstitial
atoms to produce I2−4 defects or removal of 4 atoms for the V4 quadvacancies. No supercell
relaxation from the equilibrium bulk was performed.

We first tested the influence of the underlying interatomic potential models by training
and testing the linear model on either the EAM or MEAM datasets. The MEAM potential

3https://github.com/louity/PyScatHarm
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augments the EAM potential form with angular three-body terms. It employs analytic expres-
sions for the pair and embedding functions [Daw and Baskes, 1984, Daw et al., 1993, Baskes,
1992] as opposed to the tabulated cubic splines of EAM potentials.

We compared two sets of descriptors for the linear model, the A20,10 AFS descriptor with
rcut = 5.0, and the Scattering Transform descriptor SJ ,L. In our tests the A20,10 was around
50% faster to evaluate than SJ ,9.

For both choices of descriptors, the MEAM results have lower RMSE and MAE, a feature
we found replicated across other training sets. As the linear model regresses curvature-based
entropies to descriptors of atomic structure, the poorer predictive power on the EAM dataset
is almost certainly due to curvature irregularities induced by the nonanalytic tabulations used
in the EAM formalism. As a result, we use the MEAM potential exclusively [Etesami and
Asadi, 2018] in the following.

The results of regressions to the MEAM data with different descriptor functions are shown
in Figure 3.1. On formation entropies ranging between 8kB and 28 kB, the performance in
descriptor sets has limited variation, but we find A20,10 consistently outperforms SJ ,9 despite
the greater computational efficiency, with an RMSE of resp. 0.8kB and 0.7kB to 0.3kB

3.5.2 Modeling datasets with multiple defect species and variable supercell
volume

Crystal defects are subject to long-range elastic fields due to external loading conditions and
interactions with the wider defect distribution. It is therefore highly desirable to have pre-
dictability on the changes in formation entropy under deformations of the simulation supercell,
as this can be used as a proxy for changes in the formation entropy under varying microstruc-
tural environments.

Since our linear model receives an input vector of fixed dimension independent of system
size, it is possible to simultaneously train the model on datasets with a variable number of
atoms.

As a first application, we trained the linear model on a large dataset of all I2−4 and
V4 configurations found in the ARTn searches with the same 8a0 cubic supercell as above,
where each configuration was additionally copied, subjected to an isotropic dilation of −1%
to 3% before a calculation of a new descriptor vector and harmonic entropy, giving a fivefold
multiplication in the dataset size. Figure 3.3 illustrates the remarkable accuracy of the linear
model using a single weight vector w for the entire dataset, with an RSME error of only 0.4kB.

3.5.3 Training on combined disordered and crystalline datasets

To test the ability of our linear model with descriptor functions to predict formation entropies
beyond largely crystalline structures, we created an additional database of highly disordered
structures from an ARTn database of I2−4 and V4 configurations in cubic supercells of dimension
8a0, 10a0 and 12a0, as described in Tab. (3.1). Many individual atoms were subject to random
displacements for each configuration, creating many Frenkel pairs before relaxation to a highly
defective structure containing up to 22 vacancies and 26 interstitials. The set of such structures
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will be referred to as the random database. The distribution of defects in the random database
is presented in Figure 3.4; the difference between the number of interstitials and vacancies
is conserved before and after the disordering procedure, giving a strong correlation between
the effective vacancy and interstitial count. Figure 3.5 presents the results of a linear model
trained on this highly diverse dataset. We find that the RSME error is only doubled to 0.8kB,
which is to be compared to a formation entropy range of approximately 250kB. This high
value of the formation entropy is attributable to the much higher effective number of defects
in the system. As shown in the inset figure, this impressive performance is maintained even
with a highly aggressive train/test splitting of 90%.

The presence of vacancies induces local softening of the vibrational modes, whilst interstitial
defects both harden and soften. In particular, 〈111〉 interstitials exhibit an extremely soft
mode due to an almost free translation of the dumbbell along the 〈111〉 direction [Lucas and
Schäublin, 2009, Marinica and Willaime, 2007, Chiesa et al., 2009]. The same phonon mode
is highly active in the α − γ martensitic transition of Fe and the pair kinks nucleation in the
1/2〈111〉 dislocation [Proville et al., 2012]. The present linear model’s ability to mimic the
physics of those soft modes is nontrivial, as the characteristic wavelength is far beyond the
cutoff radius of the descriptors used to sample the local atomic environment. Despite this,
the linear regression in the descriptor space can reconstruct the correlation of high formation
entropies to large phonons wavelengths by predicting the right values of entropies at high
values.

Figure 3.4: The analysis of the distribution of randomly generated point defects in the random
database. This database is derived from the ARTn database only using the supercells of volume
(10a0)3 and (12a0)3 by random creation of Frenkel pairs. The plot emphasizes the occurrences
in the entire random database of number of SIAs and vacancies in the same supercell. The
random database contains 9016 configurations.
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3.5.4 Transferability of the crystalline model to disordered structures

In this final example, we artificially tested the transferability of the linear model by training
only on the ARTn database of defect structures with variable supercell sizes before attempting
to predict the formation entropies of the random database. As illustrated in Figure 3.5b),
despite training on a dataset in an essentially disjoint region of the energy landscape, with a
training formation entropy range of less than 25kB, the model achieved a remarkable predictive
accuracy with an RSME error of only 1.53kB.

Figure 3.5: The robustness, and the transferability of our linear model is tested by (a) crossing
validation using several splitting proportions between train and tested configurations of the
joined ARTn database and the random database (the entropies are computed using MEAM
potential [Etesami and Asadi, 2018] and the linear model employs A20,10 descriptor). The
error metrics we use are the RMSE And MAE. The RMSE remains stable even for a low
learning proportion.
(b) The model’s predictive power trained on the ARTn database and validated on the random
database. The statistical indicators, RMSE and MAE, are computed for the random database.
The order of magnitude of the statistical indicator is the same as for (a), while the model is
in an extrapolation regime.

3.6 Discussion

The presented regression method offers several advantages. It allows computing the defects’
vibrational entropy in crystalline solids directly from the Cartesian coordinates. The atomic
environment descriptor functions are calculated for each atom in a relaxed configuration, then
summed across all N atoms, giving a model input space of dimension d independent of the
system size N . The extensivity claimed by classical thermodynamics results from the use of
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a linear model on top of this summed descriptor. These physical foundations of the presented
model ensure robustness and remarkable extrapolation capabilities.

It demonstrates a good transferability from supercells containing only one defect cluster
to complex configurations having more defects and clusters. The encouraging low error in
predictions opens many perspectives. For example, the defects can be trained separately in
small cells, whilst, complicated structures as those in the radiation damage can be accurately
predicted.

The local Angular Fourier Series shows a superior predictivity among the descriptors used.
The Solid Harmonic Scattering descriptor based on scale separation achieves a twice bigger
error. This example demonstrates the efficiency of local methods for free energy regression.
Wavelet Scattering coefficients offer appropriate statistics for maximum entropy processes mod-
eling, but not well suited for the direct regression of Vibrational entropy of iron crystal.
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Chapter 4

Structured patch-based
convolutional neural network for
image classification

The different studies we have performed in the field energy regression showed that local methods
perform well on various regression tasks. Descriptors of molecules’ and solids’ small neighbor-
hoods are very efficient in regressing energies and vibrational entropies. Although we know
that energy results of multi-scale interactions, high-performing energy regression does not nec-
essarily require a descriptor relying on scale separation.

Concomitantly to our work in energy regression, Brendel and Bethge [2019] have demon-
strated that a competitive accuracy (87.5% top5) can be obtained using a CNN encoding
small image patches. Local methods seem to perform very well in energy regression and image
classification. We would like to understand better the reasons for this success.

The CNN introduced by [Brendel and Bethge, 2019] is based on a 50-layer ResNet archi-
tecture, and hence hard to analyze in terms of learning and classification mechanisms. Can we
build a structured convolutional neural network architecture that encodes small image patches
and reaches a competitive accuracy?

Following the research line of Mallat [2012], Bruna and Mallat [2013], Mallat [2016], Oyal-
lon et al. [2019], we use the Scattering Transform to build a structured convolutional neural
network. Scattering transform is a simplified convolutional neural network with wavelet fil-
ters that are not learned [Bruna and Mallat, 2013]. It provides state-of-the-art classification
results among predefined representations. It is nearly as efficient as learned deep networks on
relatively simple image datasets, such as digits in MNIST, textures, [Bruna and Mallat, 2013]
or small CIFAR images [Oyallon and Mallat, 2014]. However, over complex datasets such as
ImageNet, a learned deep convolutional network’s classification accuracy is much higher than
a Scattering Transform or any other predefined representation. Oyallon et al. [2017] proposed
a structured deep convolutional neural network based on a Scattering transform, a cascade
of 1 × 1 convolutions, and a huge MLP classifier. It reaches an accuracy of 79.6% on the
ImageNet dataset. It is more amenable to analysis of the learning mechanism than usual deep
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convolutional networks [LeCun et al., 2015].
In the presented architecture, overlapping image patches of size ∼ 16 × 16 are encoded

with a Scattering Transform descriptor1 which linearizes variabilities due to geometric trans-
formations such as translations and small deformations. We concatenate Scattering encoding
into a descriptor representing image patches. This descriptor is then encoded with a cascade
of 1 × 1 convolutions and ReLU non-linearities. A global average pooling is performed at
the end, followed by a linear classification. This structured architecture relies explicitly on
patch-separation. We obtain a top-5 classification accuracy of 84.5% and 78.8% with patch
sizes 32 × 32 and 16 × 16 respectively. These results are comparable with the 50-layers Bag-
Net [Brendel and Bethge, 2019] with a similar patch-size despite a shallower encoding. These
results are higher than the previous structured networks using Scattering Transform [Oyallon
et al., 2017], although we have introduced patch separation in the architecture.

This chapter is organized as follows. First, we review the Scattering Transform. We detail
the proposed architecture. We describe and analyze the numerical experiments we performed
and compared with other methods on ImageNet. Finally, we discuss the results and the next
research directions.

This work is the result of personal investigations and has not been published. PyTorch
code to reproduce the classification experiments is available2. This work served as preliminary
work for the publication by Zarka, Thiry, Angles, and Mallat [2019].

1The use of the word descriptor is rather unconventional for the Scattering transform. We use it here to
insist on the analogy between atomic neighborhood descriptors in physics and image patches descriptors in
visual representations.

2https://github.com/louity/scattering_patch_cnn
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4.1 Scattering Transform descriptor of patches

A scattering transform is a cascade of wavelet transforms and modulus non-linearities. It can
be interpreted as a deep convolutional network with predefined wavelet filters [Mallat, 2016].
For images, wavelet filters are calculated from a mother complex wavelet ψ whose average is
zero. It is rotated by r−θ and dilated by 2j :

ψj,θ(u) = 2−2jψ(2−jr−θu)

We choose a Morlet wavelet as in Bruna and Mallat [2013] to produce a sparse set of non-
negligible wavelet coefficients.

Scattering coefficients of order m = 1 are computed by averaging rectified wavelet coeffi-
cients with a subsampling stride of 2J :

Sx(u, j, θ) = |x ? ψj,θ,α| ? φJ(2J−ou)

where o ∈ N is an oversampling factor, and φJ is a Gaussian dilated by 2J [Bruna and Mallat,
2013]. Note that for appropriate wavelets, Scattering coefficients of order m = 1 are equivalent
to SIFT coefficients [Lowe, 2004]. The DAISY approximation [Tola et al., 2009] shows that
one can approximate SIFT coefficient with |x ? ψλ1 | ?Φ2J , where ψλ1 are partial derivatives of
a Gaussian computed at the finest image scale along eight different orientations, and Φ2J is a
Gaussian filter scaled by 2J .

The averaging by φJ eliminates the variations of |x ? ψj,θ| at scales smaller than 2J . This
information is recovered by computing their variations at all scales 2j′ < 2J , with a second
wavelet transform. Scattering coefficients of order two are:

Sx(u, j, θ, j′, θ′) = ||x ? ψj,θ| ? ψj′,θ′ | ? φJ(2J−ou) for j′ > j

One can observe that at a spatial position u, a scattering coefficient Sx(u) corresponds
to a descriptor of a patch of the initial image. This patch is a square domain whose bottom
left corner is the pixel x(2Ju) has a spatial size ∼ 2J . If the oversampling factor o is set
to 0, the scattering our coefficients are obtained with downsampling of 2J , which means the
Scattering representation of an image can be interpreted as a concatenation of descriptors
of non-overlapping patches. With a non-zero oversampling factor, it can be interpreted as a
concatenation of descriptors of overlapping patches.

We use a Scattering descriptor with order 1 coefficients and order 2 coefficients. We choose
J = 4 and hence 4 scales 0 ≤ j < J . We use 8 angles θ evenly spaces in [0, π[. We set the
oversampling factor o to 1. Scattering coefficients are computed with the software package Ky-
matio [Andreux et al., 2018]. They preserve the image information, and x can be approximately
recovered from Sx [Oyallon et al., 2019].

The scattering transform is Lipschitz continuous to translations and deformations [Mallat,
2012]. Intra-class variabilities due to translations smaller than 2J and small deformations are
linearized. Good classification accuracies are obtained with a linear classifier over scattering
coefficients in image datasets where translations and deformations dominate intra-class vari-
abilities. This is the case for digits in MNIST or texture images [Bruna and Mallat, 2013].
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However, it does not consider the variabilities of pattern structures and clutter that domi-
nate complex image datasets. Removing this clutter while preserving class separation requires
some form of supervised learning. The next section introduces a supervised local encoding of
Scattering Transform descriptors, implemented in a convolutional network for this purpose.

4.2 Classification with patch separation

4.2.1 Supervised local encoding of Scattering.

We propose to apply a local encoding to the Scattering transform descriptor. This encoding Φ
is learned in a supervised way. We choose Φ to be a neural network composed of a cascade of N
fully connected layers of hidden size nc with batch-normalization and ReLU non-linearity. We
apply this encoding Φ identically on Sx(u), concatenation of Scattering descriptors of spatial
size 3 × 3. Due to the overlapping of 8 pixels of image patches described in the Scattering
transform, 3 × 3 Scattering patch represents an image patch of size ∼ 32 × 32. It can be
implemented as a cascade of convolutional operators. The first convolutional operator has a
spatial size 3 and nc channels. The following ones have a spatial size 1 × 1 and nc channels
on top of the Scattering Descriptors with spatial index u. Our supervised local encoding is a
vector of dimension nc and can be written Φ(Sx(u)) ∈ Rnc .

4.2.2 Patch separation

A global average pooling follows this cascade of 1×1 convolutions and a fully connected linear
classifier W . The result of this linear prediction is compared with the image label using the
standard cross-entropy loss.

Our classification function is thus

F (x) = W
∑
u

Φ (Sx(u))

Since the classification operatorW does not take into account the spatial index u, we can write

F (x) =
∑
u

WΦ (Sx(u))

Sx(u) is a descriptor of the image patch. We have here explicitly a separation hypothesis (eq.
1.1) of the classification function with the image patches as sub-variables.

As in the BagNet [Brendel and Bethge, 2019], this patch-separation allows explaining the
classification decisions from patch evidence. For each patch encoded in Sx(u), our classifi-
cation function infers evidences WΦ (Sx(u)) for each ImageNet classes. It yields a heatmap
of resolution 224/2J−o that shows which image patches contribute most to the classification
decisions.

4.3 Image Classification on ImageNet

ImageNet 2012 is a challenging color image dataset of 1.2 million training images and 50,000
validation images, divided into 1000 classes. Before convolutional networks, SIFT representa-
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Figure 4.1: Architecture of the presented convolutional neural network. Scattering Transform
with J = 4 and order 2 coefficients is a three-dimensional tensor. It has 1251 channels and a
spatial size M ×M . When using no oversampling, M is equal to 14, and with an oversampling
factor o = 1, M is equal to 28. In the main experiment, we used nc = 2048 and N = 8 layers
for the non-linear encoding part. After the global average pooling, the image representation is
simply a vector of dimension nc. The final vector’s dimension is the number of classes, 1000
for ImageNet. When encoding 16×16 patches, the first 3×3 convolution is replaced by a 1×1
convolution.

tions combined with Fisher vector encoding and a linear classifier reached a Top 5 classification
accuracy of 74.3% with multiple model averaging [Perronnin et al., 2010]. This technique uses
patch separation with a patch size of size 24× 24. In their PyTorch implementation, the Top
5 accuracy of AlexNet and BagNet33 is 79.1%3 and 87.0%4 respectively.

For the training, we use a stochastic gradient descent algorithm with a momentum of 0.9
and a weight decay of 10−5. The optimization runs 100 epochs, i.e., 100 loops over the dataset.
The initial learning rate is 0.1. We decay the learning rate by a factor of 10 every 30 epochs.

We use the standard cross-entropy loss between the network’s predictions and the true
labels of the images. For data-augmentation, the image is rescaled using a random ratio in
[3/4, 4/3]. A random crop with a uniform random scale in [0.8, 1] is performed, and this crop
is resized to 224× 224. For the validation, the smallest size of the image is resized to 256, and
we select the center crop of size 224× 224.

With an oversampling of 1, the Scattering Transform Sx at a scale 2J = 16 of an Ima-
geNet color image is a three-dimensional tensor with spatial dimensions 30× 30 and a channel
dimension equal to 1251. This representation, with a linear classifier, achieves an accuracy of
41.6% top5. Using the proposed non-linear local encoding with N = 8 layers of width 2048,
we obtain an accuracy of 84.5% top5. The non-linear local encoding brings an improvement
of 42.9% and reaches an accuracy in the range of the BagNets with a similar patch size (see
table 4.1).

To identify the relevant parameters for the performance, we perform an ablation study for
the proposed architecture. First, we remove the 3× 3 concatenation of Scattering descriptors.
We simply encode Scattering descriptors with a sequence of 1× 1 convolutions. It corresponds
to an encoding of ∼ 16× 16 patches. The performance drops by 5.7 %, yielding a 78.8 % top5
accuracy. This performance drop is consistent with the 5.8 % performance drop of the Bagnets
between patch sizes 32× 32 and 16× 16. Now, we vary the parameters of the two blocks: the

3Accuracy taken from https://pytorch.org/docs/master/torchvision/models.html
4Using the authors’ implementation: https://github.com/wielandbrendel/bag-of-local-features-models
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Table 4.1: Top 1 and Top 5 accuracy on ImageNet of Fisher Vectors [Perronnin and Larlus,
2015], AlexNet [Krizhevsky et al., 2012], BagNet17 and BagNet33 [Brendel and Bethge, 2019],
Scattering with linear classifier (ours) and Scattering with supervised local encoding (ours).
Accuracy of AlexNet and BagNets are obtained from Pytorch implementations.

Fisher AlexNet BagNet17 BagNet33 Scattering + Scattering +
Vectors linear non-linear enc.

Top1 - 56.5 58.8 66.7 23.4 63.8
Top5 74.3 79.1 81.2 87.0 41.6 84.5

Scattering transform and the non-linear encoding.

Scattering When removing the coefficients of order 2 in the Scattering transform descriptor,
the performance drops of 2.3%, yielding an accuracy of 82.2%. As explained before, second-
order coefficients are meant to recover the information eliminated by the averaging by φJ of
|x ? ψj,θ|. The relatively small performance drop suggests that this lost information does not
significantly affect the classification. In the following ablation experiments, we keep removing
the order 2 Scattering coefficients as they significantly speed up the computations. Hence, the
reference accuracy is 82.2% in the following.

When using no oversampling in the Scattering Transform, we observe a performance drop of
2.7%, yielding an accuracy of 79.8%. This performance is comparable with the CNN AlexNet
[Krizhevsky et al., 2012]. The oversampling increases the number of encoded patches. The
spatial size of the Scattering Transform of an image of size 224 × 224 increases from 14 × 14
to 28 × 28 when using an oversampling factor o = 1. We suppose that increasing this spatial
resolution reduces the final vector’s variance after the global average pooling while keeping the
class separated. Hence, the classification performance increases.

Non-linear encoding After the Scattering transform, our pipeline’s second block is the
non-linear encoding composed of 1 × 1 convolutions. We perform an ablation study on the
parameters of this encoding, i.e., the number of layers N and the width of the layer nc. As in
standard CNNs, we expect the performance to drop when reducing the width and the number
of layers.

Using a layer of width 1024 instead of 2048, we observe a performance drop of 1.7%, yielding
an accuracy of 80.5%. When using 4 layers of 1 × 1 convolutions instead of 8, we observe a
performance drop of 3.0% yielding an accuracy of 79.2%. Our model follows the general trend
of convolutional neural networks: the deeper, the better, the wider, the better.
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4.4 Discussion

We demonstrated that learning a non-linear encoding of image patches on top of a predefined
scattering representation allows reaching competitive accuracy on ImageNet. The resulting
deep convolutional network is a scattering transform followed by a supervised local encoder.
The classification function relies explicitly on a patch separation. Classification decisions can
thus be explained in terms of patch evidence.

Compared to the BagNets [Brendel and Bethge, 2019], we have presented here a structured
convolutional neural network based on patch separation. Using a predefined Scattering trans-
form based on wavelets, we encode 32× 32 images in a non-linear way. This relatively shallow
encoding of 10 layers is sufficient to obtain competitive accuracy, compared to the 50 layers of
the ResNet backbone used by Brendel and Bethge [2019].

This result opens, among others, two main research directions:

• The first one is to propose a model for the supervised local encoding achieved by the
sequence of 1×1 convolutions. This was done by Zarka, Thiry, Angles, and Mallat [2019].
They proposed to model this encoding as a `1 sparse code in a dictionary matrix learned
for classification.

• The second one is to study the properties of the image patches for image classification.
The first block of the proposed architecture, the Scattering Transform, is meant to create
an invariant (or stable) representation of image patches w.r.t. geometric deformations.
Can we remove this encoding and work with raw image patches? Is there already regu-
larity and structure in the raw image patches? How does the performance change when
we replace the learned encoding with K-nearest neighbors encoding? We address these
questions in the next chapter.
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Chapter 5

Image classification with patches
K-nearest-neighbors

In the previous chapters, we have observed the efficiency of local methods for energy regression
and image classification. Atomic neighborhoods and small image patches contain most of the
information for energy regression and image classification on usual benchmarks. For energy
regression, the SOAP kernel proposed by Bartók et al. [2013] ensures translation and rotation
invariance, stability to deformations and locality on the energy. For image classification, the
Scattering Transform [Mallat, 2012] is also a local descriptor that ensures invariance properties
for image classification. But we have seen that it is not sufficient to have state-of-the-art per-
formances on complex datasets. One needs to learn a non-linear encoding on top of Scattering
Transform to have good image classification performance. This learned representation is hard
to understand and interpret. Hence, we have no insights into the reasons for the success of
patch-based methods.

To understand this success, we first look at the performances of conceptually simple image
classification baseline based on patches. The simplest baseline we can think of is a K-nearest-
neighbor classifier. K-nearest-neighbors do not incorporate prior invariance information, they
simply use the underlying structure in the data. What is the performance of a patch K-nearest-
neighbor-based classifier? Is Alexei Efros’ motto "Brain-dead lookup, a.k.a. nearest-neighbors,
often works surprisingly well"1 true even in the context of image classification ? Do we get
better performance when applying this K-nearest-neighbors strategy at the patch level rather
than at the image level? How does it compare with predefined invariance-based representations
like Scattering Transform?

For the whole image, K-nearest-neighbor classifiers give non-trivial but poor results. On
CIFAR 10, a K-nearest neighbor classifier on the raw image yields a classification accuracy of
58.3%2. On the Imagenet 2010 results table3, Georges Quenot from Laboratoire d’informatique
de Grenoble obtains a 30.5% top5 accuracy using a "K-Nearest-Neighbors with color histogram
and Gabor texture, optimized for the flat measure". We hypothesize that the images are too

1See for example these slides or this talk.
2https://gist.github.com/louity/c6b0c91810c9957f57c56c952323b29e
3http://image-net.org/challenges/LSVRC/2010/results
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large and too high-dimensional to classify them using K-nearest-neighbors successfully.
To our knowledge, there are no published results of K-nearest-neighbor techniques based

on image patches that outperform these results with K-nearest-neighbors at the image level.
Indeed, designing a K-nearest-neighbor classifier based on image patches is not straightforward.
Assigning the class of the image to all the patches of an image might be a bit rash. Only a
small fraction of the patches of an image are informative of the class [Brendel and Bethge,
2019, Geirhos et al., 2019]. Then, one has to aggregate small evidence at the patch level into
a global classification decision via a voting system.

In this chapter, we present a classification method based on raw image patches K-nearest-
neighbors. We use the Mahanalobis Euclidean distance, [Chandra et al., 1936] which is the
usual `2 Euclidean distance after a linear whitening operation. We encode the natural image
patches K-nearest neighbors in a dictionary of randomly selected patches. This representation
combined with a linear classifier outperforms by a very large margin K-nearest-neighbors at the
image level. We obtain 88.5 % accuracy on CIFAR-10, which is in the range of sophisticated
convolutional kernel methods. On ImageNet, such a simple approach exceeds all existing non-
learned representation methods by a substantial margin. The presented method shall hence
serve as a new baseline for image classification without representation learning.

This chapter is organized as follows. First, we draw connections between the presented
method and Convolutional Kernel Methods. Then, we explain precisely how our visual rep-
resentation is built. We present classification results on the vision datasets CIFAR-10 and
the large-scale ImageNet. Finally, we discuss these results and analyze the low-dimensional
properties of image patches for classification.

This work has been published in Thiry, Arbel, Belilovsky, and Oyallon [2021]. My per-
sonal contributions concerned the proposition of the K-nearest neighbors encoding of image
patches, the PyTorch implementation of the method4 and the achievement of all classification
experiments on CIFAR-10 and ImageNet.

4https://github.com/louity/patches
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5.1 Convolutional Kernel Methods

One can analyze the presented method through the lens of finite-dimensional convolutional
kernel methods. In general, convolutional kernel methods can achieve reasonable performances
on the CIFAR-10 dataset. Due to their computational cost, it remains open to what extent
they achieve similar performances on more complex datasets such as ImageNet. Data-driven
convolutional kernels compute a similarity measure between two images x and y using statistics
from the training set of images X . In particular, we focus on similarities K that are obtained
by first standardizing a representation Φ of the input images and then feeding it to a predefined
kernel k:

Kk,Φ,X (x, y) = k(LΦx, LΦy) , (5.1)

where a rescaling and shift is (potentially) performed by a diagonal affine operator L = L(Φ,X )
and is mainly necessary for the optimization step Jin et al. [2009]: it is typically a standard-
ization. The kernel K(x, y) is said to be data-driven if Φ depends on training set X , and
data-independent otherwise. The convolutional structure of the kernel K can come either from
the choice of the representation Φ (convolutions with a dictionary of patches [Coates et al.,
2011]) or by the design of the predefined kernel k [Shankar et al., 2020], or a combination of
both [Li et al., 2019, Mairal, 2016].

Our methodology is based on ablation experiments: we would like to measure the effect
of incorporating data while reducing other side effects related to the design of Φ, such as the
depth of Φ or the implicit bias of a potential optimization procedure. Consequently, we focus on
1-hidden layer neural networks of any widths, which have favorable properties, like the ability
to be a universal approximator under non-restrictive conditions. The output linear layer shall
be optimized for a classification task, and we consider the first layers, which are predefined
and kept fixed, similarly to Coates et al. [2011]. We will see below that simply initializing
the weights of the first layer with whitened patches leads to a significant improvement of
performances, compared to a random initialization, a wavelet initialization, or even a learning
procedure. This patch initialization is used by several works [Li et al., 2019, Mairal, 2016]
and is implicitly responsible for their good performances. Other works rely on a whitening
step followed by very deep kernels [Shankar et al., 2020], yet we noticed that this was not
sufficient in our context. Here, we also try to understand why incorporating whitened patches
is helpful for classification. Informally, this method can be thought of as one of the simplest
possible in the context of deep convolutional kernel methods. We show that the depth or
the non-linearities of such kernels play a minor role compared to patches. In our work, we
decompose and analyze each step of our feature design on gold-standard datasets and find that
a method based solely on patches and simple non-linearities is actually a strong baseline for
image classification.

We investigate the effect of patch-based pre-processing for image classification through a
simple baseline representation that does not involve learning (up to a linear classifier) on both
CIFAR-10 and ImageNet datasets: the path from CIFAR-10 to ImageNet had never been
explored until now in this context. Thus, we believe our baseline to be of high interest for
understanding ImageNet’s convolutional kernel methods, which almost systematically rely on
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a patch (or descriptor of a patch) encoding step. Indeed, this method is straightforward and
involves limited ad-hoc feature engineering compared to the deep learning approach: here,
contrary to [Mairal, 2016, Coates et al., 2011, Recht et al., 2019, Shankar et al., 2020, Li
et al., 2019] we employ modern techniques that are necessary for scalability (from thousands
to millions of samples) but can still be understood through the lens of kernel methods (e.g.,
convolutional classifier, data augmentation, ...). Our method allows understanding the relative
improvement of such encoding step. We show that our method is a challenging baseline for
classification on Imagenet: we outperform by a large margin the classification accuracy of
former attempts to get rid of representation learning on the large-scale ImageNet dataset.

One of our major contributions is introducing a representation that does not involve learning
(up to a linear classifier). To our knowledge, it outperforms by a large margin the classification
accuracy of former attempts to get rid of representation learning on the large-scale ImageNet
dataset. This baseline is of high interest to understand non-deep learning methods on ImageNet
that almost systematically rely on a patch (or descriptor of a patch) encoding step: we show
that patches solely are a challenging baseline. The presented method allows understanding the
relative improvement of the encoding step.

5.2 Method

We first introduce our preliminary notations to describe an image. A patch p of size P of a
larger image x is a restriction of that image to a squared domain of surface P 2. We denote by
N2 the size of the natural image x and require that P ≤ N . Hence, for a spatial index i of the
image, pi,x represents the patch of image x located at i. We further introduce the collection of
all overlapping patches of that image, denoted by: Px = {pi,x, i ∈ I} where I is a spatial index
set such that |I| = (N − P + 1)2. Fig. 5.1 corresponds to an overview of our classification
pipeline that consists of 3 steps: an initial whitening step of a dictionary D of random patches,
followed by a nearest-neighbor quantization of images patches via D that are finally spatially
averaged.

Whitening We describe the single pre-processing step that we used on our image data,
namely a whitening procedure on patches. Here, we view natural image patches of size P 2

as samples from a random vector of mean µ and covariance Σ. We then consider whitening
operators which act at the level of each image patch by first subtracting the mean µ then
applying the linear transformation W = (λI + Σ)−1/2 to the centered patch. The additional
whitening regularization with parameter λ was used to avoid ill-conditioning effects.

The whitening operation is defined up to an isometry. The Euclidean distance between
whitened patches (i.e., the Mahanobolis distance [Chandra et al., 1936]) does not depend upon
the choice of isometry leading to PCA, ZCA, etc. This point is detailed in Appendix B. In
practice, the mean and covariance are estimated empirically from the training set to construct
the whitening operators. For the sake of simplicity, we only consider whitened patches. Unless
explicitly stated, we assume that each patch p is already whitened, which holds in particular
for the collection of patches in Px of any image x. Once this whitening step is performed, the
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Figure 5.1: Our classification pipeline described synthetically to explain how we build the
representation Φ(x) of an input image x.
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Euclidean distance over patches is approximatively isotropic and is used in the next section to
represent our signals.

Figure 5.2: An example of whitened dictionary D with patch size P = 6 from ImageNet-
128 (Left), ImageNet-64 (Middle), CIFAR-10 (Right). The atoms have been reordered via a
topographic algorithm from Montobbio et al. [2019] and contrast adjusted.

K-Nearest Neighbors on patches This algorithm’s basic idea is to compare the distances
between each patch of an image and a fixed dictionary of patches D, with size |D| that is
the number of patches extracted. Note that we also propose a variant where we use a soft-
assignment operator. For a fixed dataset, this dictionary D is obtained by uniformly sampling
patches from images over the whole training set. We augment D into ∪d∈D{d,−d} because
it allows the dictionary of patches to be contrast invariant and we observe it leads to better
classification accuracies; we still refer to it as D. An illustration is given by Fig. 5.2. Once
the dictionary D is fixed, for each patch pi,x we consider the set Ci,x of pairwise distances
Ci,x = {‖pi,x−d‖ , d ∈ D}. For each whitened patch we encode the K-Nearest Neighbors of pi,x
from the set D, for some K ∈ N. More formally, we consider τi,x the K-th smallest element of
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Ci,x, and we define the K-Nearest Neighbors binary encoding as follow, for (d, i) ∈ D × I:

φ(x)d,i =

1, if ‖pi,x − d‖ ≤ τi,x
0, otherwise.

(5.2)

Eq. 5.2 can be viewed as a Vector Quantization (VQ) step with hard-assignment [Coates and
Ng, 2011]. The representation φ encodes the patch neighborhood in a subset of randomly
selected patches and can be seen as a crude description of the image patches’ topological
geometry. Moreover, it allows viewing the distance between two images x, y as a Hamming
distance between the patches neighborhood encoding as:

‖φ(x)− φ(y)‖2 =
∑
i,d

1φ(x)d,i 6=φ(y)d,i
. (5.3)

To reduce the computational burden of our method, we perform an intermediary average-
pooling step. Indeed, we subdivide I in squared overlapping regions Ij ⊂ I, leading to the
representation Φ defined, for d ∈ D, j by:

Φ(x)d,j =
∑
i∈Ij

φ(x)d,i . (5.4)

Hence, the resulting kernel is simply given by K(x, y) = 〈Φ(x),Φ(y)〉. One can find implemen-
tation details in Appendix B. The next section describes our classification pipeline, as we feed
our representation Φ to a linear classifier on challenging datasets.

5.3 Experiments

We train shallow classifiers, i.e., linear classifier and 1-hidden layer CNN (1-layer) on top of
our representation Φ on two major image classification datasets, CIFAR-10 and ImageNet,
which consist respectively of 50k small and 1.2M large color images divided, respectively into
10 and 1k classes. We systematically used mini-batch SGD with a momentum of 0.9 and no
weight decay. We used the standard cross-entropy loss.

Classifier parametrization In each experiments, the spatial subdivisions Ij are imple-
mented as an average pooling with kernel size k1 and stride s1. We then apply a 2D batch-
normalization [Ioffe and Szegedy, 2015] to standardize our features on the fly before feeding
them to a linear classifier. To reduce the linear classifier’s size (following the same line of idea
of a bottleneck [He et al., 2016]), we factorize it into two convolutional operators. The first one
with kernel size k2 and stride 1 reduces the number of channels from D to c2. The second one
with kernel size k3 and stride 1 outputs NC channels, NC being the number of image classes.
Then we apply a global average pooling. For the 1-hidden layer experiment, we simply add a
ReLU non-linearity between the first and the second convolutional layer.
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Table 5.1: Classification accuracies on CIFAR-10. VQ indicates whether vector quantization
with hard-assignment is applied on the first layer. One layer patch-based classification accu-
racies on CIFAR-10. Amongst methods relying on random patches, ours is the only approach
operating online (and therefore allowing for scalable training).

Method |D| VQ Online P Acc.

Coates et al. [2011] 1,000 X × 6 68.6
Wavelets [Oyallon and Mallat, 2015] - × × 8 82.2

Recht et al. [2019] 256,000 × × 6 85.6
SimplePatch (Ours) 2,000 X X 6 82.5
SimplePatch (Ours) 16,000 X X 6 85.6
SimplePatch (Ours) 64,000 X X 6 86.7
SimplePatch (Ours) 64,000 × X 6 86.9

Table 5.2: Supervised accuracies on CIFAR-10 with comparable shallow supervised classifiers.
Here, e2e stands for end-to-end optimized classifier and 1-layer for a 1-layer classifier, and
kernel for kernel classifier.

Method VQ Depth Classifier Acc.

SimplePatch (Ours) X 2 1-layer 88.5
AlexNet [Krizhevsky et al., 2012] × 5 e2e 89.1

NK [Shankar et al., 2020] × 5 kernel 89.8
CKN [Mairal, 2016] × 9 e2e 89.8

5.3.1 CIFAR-10

Implementation details Our data augmentation consists of horizontal random flips and
random crops of size 322 after reflect-padding with 4 pixels. For the dictionary, we choose a
patch size of P = 6 and tested various sizes of the dictionary |D| and whitening regularization
λ = 0.001 . In all cases, we used K = 0.4|D|. The classifier is trained for 175 epoch with a
learning rate decay of 0.1 at epochs 100 and 150. The initial learning rate is 0.003 for |D| = 2k
and 0.001 for larger |D|.

Single layer experiments For the linear classification experiments, we used an average
pooling of size k1 = 5 and stride s1 = 3, k2 = 1 and c2 = 128 for the first convolutional
operator and k3 = 6 for the second one. Our results are reported and compared in Table 5.1.
First, note that contrary to experiments done by Coates et al. [2011], our method has surpris-
ingly good accuracy despite the hard-assignment due to VQ. Sparse coding, soft-thresholding,
and orthogonal matching-pursuit-based representations used by Coates and Ng [2011], Recht
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Table 5.3: Accuracies on CIFAR-10 with Handcrafted Kernels classifiers with and without
data-driven reprensentations. For SimplePatch, we replace patches with random Gaussian
noise. D-D stands for Data-Driven and D-I for Data-Independent. Whit., Acc., and Improv.
stand respectively for whitening, accuracy, and improvement.

Method VQ Online Depth D-I Acc. Data used
(D-D Improv.)

NK [Shankar et al., 2020] × × 5 77.7 (8.1) ZCA Whit.
Simple Patch (Ours) X X 1 78.6 (8.1) Patches + Whit.
CKN [Mairal, 2016] × × 2 81.1 (5.1)5 Patches + Whit.
NTK [Li et al., 2019] × × 8 82.2 (6.7) Patches + Whit.

et al. [2019] can be seen as soft-assignment VQ and yield comparable classification accuracy
(resp. 81.5% with 6.103 patches and 85.6% with 2.105 patches). However, these representa-
tions contain much more information than hard-assignment VQ as they allow to reconstruct
a large part of the signal. We get better accuracy with only coarse topological information
on the image patches, suggesting that this information is highly relevant for classification. To
obtain comparable accuracies with a linear classifier, we use a single binary encoding step
compared to, Mairal [2016] and we need a much smaller number of patches than Recht et al.
[2019], Coates and Ng [2011]. Moreover, Recht et al. [2019] is the only work in the literature,
besides the one presented here, that achieves good performance using a linear model solely
with depth one. To test the VQ importance, we replace the hard-assignment VQ implemented
with a binary non-linearity 1‖pi,x−d‖≤τi,x

(see Eq. 5.2) by a soft-assignment VQ with a sigmoid
function (1 + e‖pi,x−d‖−τi,x)−1. The accuracy increases by 0.2%, showing that the use of soft-
assignment in VQ, which is crucial for performance in Coates and Ng [2011], does not affect
our representation’s performances.

Importance of data-driven representations As we see in Table5.3, the data-driven rep-
resentation is crucial for good performances of handcrafted kernel classifiers. We remind that a
data-independent kernel is built without using the dataset, which is, for instance, the case with
a neural network randomly initialized. The accuracies from Shankar et al. [2020] correspond
to Myrtle5 (CNN and kernel) because the authors only report an accuracy without ZCA for
this model. As a sanity check, we consider D whose atoms are sampled from a Gaussian white
noise: this step leads to a drop of 8.1%. This is aligned with the finding of each work we
compared to: performances drop if no ZCA is applied or if patches are not extracted. Using
a dictionary of size |D| = 2048, the same model trained end-to-end (including the learning of
D) yields the same accuracy (- 0.1 %), showing that here, sampling patches is as efficient as
optimizing them.

Non-linear classification experiments To test the discriminative power of our features,
we use a 1-hidden layer classifier with ReLU non-linearity and an average pooling of size k1 = 3
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and stride s1 = 2, k2 = 3, c2 = 2048 and k3 = 7 . Our results are reported and compared
with other non-linear classification methods in Table5.2. Using a shallow non-linear classifier,
our method is competitive with end-to-end trained methods [Li et al., 2019, Shankar et al.,
2020, Krizhevsky et al., 2012]. This further indicates the relevance of patches neighborhood
information for the classification task.

Hyper-parameter analysis CIFAR-10 is a relatively small dataset that allows fast bench-
marking. Thus we conducted several ablation experiments to understand the relative improve-
ment due to each hyper-parameter of our pipeline. We thus vary the size of the dictionary |D|,
the patch size P , the number of nearest neighbors K and the whitening regularization λ, which
are the hyper-parameters of Φ. Results are shown in Fig. 5.3. Note that even a relatively
small number of patches is competitive with much more complicated representations, such as
Oyallon and Mallat [2015]. While it is possible to slightly optimize the performances accord-
ing to P or K, the fluctuations remain minor compared to other factors, indicating that our
method’s performances are relatively stable w.r.t. this set of hyper-parameters. The whitening
regularization behaves similarly to a thresholding operator on the eigenvalues of Σ1/2, as it
penalizes larger eigenvalues. Interestingly, we note that this hyper-parameter does almost not
affect the classification performances under a certain threshold. This goes in hand with both
a fast eigenvalue decay and stability to noise discussed further in the section 5.3.3.

Classifier factorization To test our classifier’s inductive bias, we replace it with a simple
fully-connected layer, with 6 times more parameters than ours: the train and test accuracies
are 93.0% and 81.6% compared to 88.9% and 82.5%. The use of this factorized classifier
significantly reduces overfitting while reducing the number of computations. We note that
using convolutions is well motivated by the structure of natural images whose class is relatively
invariant to translation.

5.3.2 ImageNet

Implementation details To reduce the computational overhead of our method on Ima-
geNet, we followed the same approach as Chrabaszcz et al. [2017]: we reduce the resolution
to 642, instead of the standard 2242 length. They observed that this does not alter much the
top-performances of standard models (5% to 10% drop of accuracy on average). We believe
it introduces a useful dimensionality reduction, as it removes unstable high-frequency parts
of images [Mallat, 1999]. We set the patch size to P = 6 and the whitening regularization
to λ = 10−2. Since ImageNet is a much larger than CIFAR-10, we restricted to |D| = 2048
patches. As for CIFAR-10, we set K = 0.4|D|. The parameters of the linear convolutional
classifier are chosen to be: k1 = 10, s1 = 6, k2 = 1, c2 = 256, k3 = 7. For the 1-hidden layer
experiment, we used kernel size of k2 = 3 for the first convolution. Our models are trained
during 60 epochs with an initial learning rate of 0.003 decayed by a factor 10 at epochs 40
and 50. ly to Chrabaszcz et al. [2017] use random flip during training, and we select random
crops of size 64, after a reflect-padding of size 8. At testing time, we resize the image to 64.
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Figure 5.3: CIFAR-10 ablation experiments, train accuracies in blue, test accuracies in red.

This procedure differs slightly from the usual procedure, consisting of resizing images while
maintaining ratios before random cropping.

Classification experiments Table5.4 reports the accuracy of our method, as well as the
accuracy of comparable methods. Despite a smaller image resolution, our method outperforms
by a large margin ( ∼ 10% Top5) the Scattering Transform [Mallat, 2012], which was the pre-
vious state-of-the-art-method in the context of no-representation learning. It also outperforms
randomly initialized neural networks [Arandjelovic et al., 2017]. Note that our representation
uses only 2.103 randomly selected patches, a tiny fraction of the billions of ImageNet patches.

Sánchez et al. [2013] obtain 72.0% top-5 accuracy with a patch representation computed in
three steps (SIFT, Fisher kernel, power-normalization/compression). This patch representation
lives in dimension 6.104 in the best setting. Using a smaller patch representation of dimension
4.103, they obtain 64.1% top-5 accuracy. The performance of our method tested on lower
resolution images (1282) using a representation of dimension 2.103 (= |D|) is relatively close to
the performance of the 4.103 dimensional Fisher Vectors, but further large scale experiments
would be needed to confirm if this holds for higher dimensions. This visual representation
involves the learning of a Gaussian mixture model and several PCA dimensionality reductions.
These engineering choices are crucial for performance [Perronnin et al., 2010]. Still, a major
difference between our representation and both Scattering Transform and Fisher Vector is the
hard-assignment VQ that discards signal information. The image can be fairly reconstructed
using Scattering coefficients or SIFT descriptors starting from random noise and optimizing
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the pixels by gradient descent [Oyallon et al., 2017, Weinzaepfel et al., 2011]. We can not use
this technique since the hard-assignment VQ zeros all the gradients.

In Table5.5, we compare our performances with supervised models trained end-to-end using
convolutions with small receptive fields. Here, D = 2k. BagNets [Brendel and Bethge, 2019]
have shown that competitive classification accuracies can be obtained with patch-encoding that
consists of 50 layers. Our shallow experiment’s performance with a 1-hidden layer classifier
is competitive with a BagNet with a similar patch-size. It suggests once again that hard-
assignment VQ does not degrade much of the classification information. We also note that our
approach with a linear classifier outperforms supervised shallow baselines that consist of 1 or 2
hidden-layers CNN [Belilovsky et al., 2018]. This indicates that a patch-based representation
is a non-trivial baseline for shallow CNNs.

To measure the resolution’s importance on the performances, we run a linear classification
experiment on ImageNet images with twice bigger resolution (N = 1282, P = 12, k1 = 20, s1 =
12). We observe that it improves classification performances. Note that the patches used are in
432− dimensional space, which is a very high dimension. This improvement is surprising since
distances to nearest-neighbors are known to be meaningless in high-dimension [Beyer et al.,
1999]. This shows a form of low-dimensionality in the natural image patches that we study in
the next section.

Random filters and whitening On Imagenet64, removing the whitening step leads to an
accuracy of 18% top-1, i.e., a drop of about 16%. As for CIFAR-10, this step is crucial for
performance.

Table 5.4: Handcrafted accuracies on ImageNet, via a linear classifier. No other weights are
explicitely optimized. Res. stands for resolution.

Method |D| VQ P Depth Res. Top1 Top5

Random [Arandjelovic et al., 2017] - × - 9 224 18.9 N.C.
Wavelets [Zarka et al., 2019] - × 32 2 224 26.1 44.7

SimplePatch (Ours) 2,000 X 6 1 64 33.2 54.3
SimplePatch (Ours) 2,000 X 12 1 128 35.9 57.4
SimplePatch (Ours) 2,000 × 12 1 128 36.0 57.6

5.3.3 Dictionary structure

The performance obtained with the surprisingly simple classifier hints at a low dimensional
structure in the classification problem that is exploited by the patch-based classifier we pro-
posed. This motivates us further to analyze the structure of the patches’ dictionary to uncover
a lower-dimensional structure and investigate how the whitening, which highly affects perfor-
mance, relates to such lower-dimensional structure.
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Table 5.5: Supervised accuracies on ImageNet, for which our model uses |D| = 2048 patches.
Res., e2e, 1-layer, N.C. respectively stand for resolutions, end-to-end, 1-hidden layer classifier,
not communicated

Method VQ P Depth Res. Classifier Top1 / Top5

Belilovsky et al. [2018] × - 1 224 e2e N.C. / 26
Belilovsky et al. [2018] × - 2 224 e2e N.C. / 44
SimplePatch (Ours) X 6 2 64 1-layer 39.4 / 62.1

BagNet [Brendel and Bethge, 2019] × 9 50 224 e2e N.C. / 70.0
AlexNet[Krizhevsky et al., 2012] - × 10 224 e2e 56.5 / 79.1

Figure 5.4: Spectrum of Σ1/2 on CIFAR-10 (left) and ImageNet-64 (right) using small patch
sizes in dark-brown to larger patch sizes in light-brown.
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Spectrum of D As a preliminary analysis, we propose to analyse the singular values (spec-
trum) of Σ1/2 sorted by a decreasing order as λ1 ≥ ... ≥ λdext with dext = 3P 2 being the
extrinsic dimension (number of colored pixels in each patch). From this spectrum, it is straight-
forward to compute the covariance dimension dcov of the patches defined as the smallest number
of dimensions needed to explain 95% of the total variance. In other words, dcov is the smallest
index such that ∑dcov

i=1 λi ≥ 0.95∑dext
i=1 λi. Fig. 5.4 shows the spectrum for several values of

P , normalized by λ1 on CIFAR-10 and ImageNet-32. The first observation is that patches
from the ImageNet-32 dataset tend to be better conditioned than those from CIFAR-10 with
a conditioning ratio of 102 for ImageNet vs 103 for CIFAR-10. This is probably due to the
use of more diverse images than on CIFAR-10. Second, note that the spectrum tends to decay
exponentially (linear rate in semi-logarithmic scale). This rate decreases as the patch’s size
increases (from dark brown to light brown) suggesting an increased covariance dimension for
larger patches. This is further confirmed in Fig. 5.5(left) which shows the covariance dimen-
sion dcov as a function of the extrinsic dimension dext, with and without whitening. Before
whitening, this linear dimension is much smaller than the ambient dimension: whitening the
patches increases the patches’ linear dimensionality, which still increases at a linear growth as
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a function of P 2.

Figure 5.5: Covariance dimension (left) and nearest neighbor dimension (right) as a function
of the extrinsic dimension of the patches.

0 500 1000
dext

0

200

400

600

800

dcov

Covariance dimension
whitened ImageNet32
ImageNet32
whitened Cifar10
Cifar10

0 500 1000
dext

20

40

60

80

100

dint

 Nearest neighbor dimension 

Intrinsic dimension of D We propose to refine our measure of linear dimensionality to a
non-linear measure of the intrinsic dimension. Under the assumption of a non-linear manifold,
the linear dimensionality is only an upper bound of image patches’ true dimensionality. To get
more accurate non-linear estimates, we propose to use the notion of intrinsic dimension dint
introduced in [Levina and Bickel, 2004]. It relies on a local estimate of the dimension around a
patch point p, obtained by finding the k-Nearest Neighbors to this patch in the whole dataset
and estimating how much the Euclidean distance τk(p) between the k-Nearest Neighbor and
patch p varies as k increases up to K ∈ N:

dint(p) =
(

1
K − 1

K−1∑
k=1

log τK(p)
τk(p)

)−1

. (5.5)

In high dimensional spaces, it is possible to have many neighbors that are equi-distant to p,
thus τk(p) would barely vary as k increases. As a result the estimate dint(p) will have large
values. Similarly, a small dimension means large variations of τk(p) since it is not possible
to pack as many equidistant neighbors of p. This results in a smaller value for dint(p). An
overall estimate of the dint is then obtained by averaging the local estimate dint(p) over all
patches, i.e. dint = 1

|D|
∑
p∈D dint(p). Fig. 5.5 (right) shows the intrinsic dimension estimated

using K = 4 · 103 and a dictionary of size |D| = 16 · 103. In all cases, the estimated intrinsic
dimension dint is much smaller than the extrinsic dimension dext = 3P 2. Moreover, it grows
even more slowly than the linear dimension when the patch size P increases. Finally, even
after whitening, dint is only about 10% of the total dimension, which is strong evidence that
the natural image patches are low dimensional.
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5.4 Discussion

We’ve presented an image classification method that is not based nor inspired by the image
class’s invariance w.r.t. transformations. The representation used is based solely on Mahanalo-
bis distances between raw image patches.

Interestingly, recently developed convolutional kernel methods for image classification [Recht
et al., 2019, Mairal, 2016, Li et al., 2019, Shankar et al., 2020, Lu et al., 2014] share an ad-
ditional implicit ingredient. Li et al. [2019], Mairal [2016], Mairal et al. [2014], Recht et al.
[2019] use of a dictionary of whitened patches and Shankar et al. [2020] use a whitening step of
the whole image. Ablation experiments show the crucial importance of the whitening aspect
for the performance of these methods . We obtain here a comparable performance with a
single whitening step followed by K-nearest-neighbors encoding. Without this whitening step,
our performance drops significantly. It proposes hence a line of explanation for the whitening
step’s importance in convolutional kernel methods. The Mahanalobis distance is much more
relevant than the usual Euclidean distance to have discriminative patch’s nearest-neighbors.

Our results reveal implicitly that there is a low-dimensional structure on the raw image
patches. This low-dimensional structure might explain in part the success of data-driven kernels
and CNNs based on patch separation. We used a shallow, predefined visual representation,
which is not optimized by gradient descent. Surprisingly, this method is highly competitive
with other data-driven kernels.

Due to limited computational resources, we restricted ourselves on ImageNet to small
image resolutions and a relatively small number of patches. Conducting proper large-scale
experiments on the challenging ImageNet dataset would be of great interest to have further
insights on the properties of image patches for classification.

71



Chapter 6

Creativity in human-machine
artistic interaction

Recently developed algorithms have found applications in the field of artistic creation. For
example, CNNs used for image classification can be used to perform artistic style transfer on
images [Gatys et al., 2015]. Generative adversarial networks (GANs) developed initially for
image generation were used to generate "artistic" images [Elgammal et al., 2017]. A so-called
"AI art" movement1 is emerging from the use of these new techniques in the artistic field.
They often portray the algorithm as creative, for example, the Creative adversarial networks
[Elgammal et al., 2017]. But creativity is a vast notion. Can we propose a more precise
characterization of the creativity and creative agency of these algorithms?

The power of these new algorithms and the new interaction possibilities they offer to artists
are opportunities to understand better and grasp the qualitative difference between the artist’s
and the algorithm’s creativity. This chapter proposes to design interactive creative systems,
focusing on a painting on a canvas. We present two modalities of interactions. The first one,
Dialog on a canvas with a machine, consists of an iterative interplay between an artist and
an algorithm generating strokes. We developed it in collaboration with Tina&Charly. The
second one, Interactive Neural Style Transfer, is an interactive painting setting with a painter
and its own style using style transfer techniques. We developed it in collaboration with Erwann
Kerdreux. Development of these two systems, we realize how enriching the collaboration with
artists is when thinking about creativity. Moreover, the experiments conducted with these two
systems allow us to characterize some aspects of the algorithm’s creativity compared to the
artist.

This work has been published in Cabannes, Kerdreux, Thiry, Campana, and Ferrandes
[2019] and Kerdreux, Thiry, and Kerdreux [2020]. It is the result of a global collaboration with
equal contributions between the authors.

1https://aiartists.org/
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6.1 Dialog on a canvas with a machine

The first artist-algorithm interaction setting is a pictorial game consisting of interactive rounds
of creation between artists and an algorithm. They repetitively paint one after the other. At
its rounds, the computer partially completes the drawing using machine learning algorithms
and projects its additions directly on the canvas, which the artists are free to insert or mod-
ify. Alongside fostering creativity, the process is designed to question the growing interaction
between humans and machines.

6.1.1 Creation Process.

With the on-going technological revolution, human-machine interaction is deeply evolving.
Hence art creation could benefit from new tools while simultaneously clarifying how these
interactions affect humans.

Contrarily to previous works in which the humans are either engineers or curators of an
algorithm that produce potential artworks [Tan et al., 2017, Jin et al., 2017, Donahue and
McAuley, 2017, Elgammal et al., 2017, Zhao et al., 2018, Chu, 2018, Lin and Su, 2018, Grimm,
2018, Jetchev et al., 2018], We propose a new utilization of the machine, integrating it at
the core of a human creative process. The idea is to suggest to humans, while painting,
ramifications, and directions of their on-going artwork. In the following, we approach this
generic idea under a specific interactive framework.

Figure 6.1: Tina&Charly glossary, which could be given to a computer as a pictorial vocabulary.

For this purpose, we worked with the artist duo Tina&Charly. They have explored inter-
action using canvas as a media using their own glossary (Fig 6.1). To begin a creation, they
choose a theme and symbolize in black on a white canvas. Then a game starts. At each round,
using a basis of strokes and symbols that forms their pictorial vocabulary, Charly waits for
Tina to schematize her emotions and thoughts in red before answering her in green on the
on-going painting. Rounds follow up until a consensus is reached about ending the painting.
The whole process takes place in silence, the only dialog being on the canvas.

The goal of this method is to introduce an algorithm as a third player in Tina&Charly’s
dialog. The AI machine first captures a raw representation of the painting, then analyzes this
signal to partially complete the on-going painting. This completion is projected back on the
canvas. At this point, the artists are free to incorporate the machine’s suggestion in blue,
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Figure 6.2: Computer captures of the on-going Monopole painting. Before taking the picture,
the system projects white light on the canvas to better light and ease the following processing
steps.

Figure 6.3: Four 110 × 160 cm acrylic on canvas paintings. Two diptychs: Active, Passive and
Emitter, Receptor, from left to right. The blue strokes are the computer suggestions projected
on the canvas and interpreted by the artists. In Emitter it only completes its own strokes or
the black strokes of the canvas, while in its dual Receptor, it completes any. It symbolizes
a landmark of human-machine interaction when a human starts to systematically send back
information that could condition the machine’s actions.

a color that has not been assigned to any player. In the end, having used different colors
allows analyzing players’ contributions. Figure 6.2 shows several creation steps of the painting
Monopole.

6.1.2 Installation and Specifications.

The engineered system is composed of a camera and a projector connected to a computer on
a fixed support (see Figure 6.4). At computer round, the system acquires an image of the
painting and analyzes it to recover the exact canvas strokes. This pre-processing was made
robust to most luminosity variation for the interaction to be applicable in any studio in a
seamless fashion. Those strokes feed a neural sketcher that outputs new strokes to add to the
painting. Finally, post-processing allows projecting those additions back on the canvas.

The neural sketcher is a recurrent neural network based on the recent powerful improvement
[Ha and Eck, 2018] of the seminal work of [Graves, 2013]. It is fed using doodling representation
as a sequence of points and a channel encoding for stroke breaks [Graves, 2013, Ha and Eck,
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Figure 6.4: Some images of the painting process in Atelier 6B, Saint-Denis, France. (Top left)
Artists install canvas while computer scientists install their machine. The machine is made of
a camera, a computer and a projector, it is highly portable. (Top middle) The artist draws
under the scrutiny of the computer. (Top left) The computer analyzes the on-going painting
in order to suggest additions. (Bottom left) Those suggestions are projected on the canvas
for the artists to discuss addition. (Bottom middle) Additions are incorporated in blue on the
canvas. (Bottom right) At the end, the artists apply a glaze mixture to protect their creations.

2018]. The sketcher then outputs a similar series that we convert back as strokes on the
original painting. To train the network, we used the QuickDraw data set [Jongejan et al.,
2018], It enables the network to produce human-like strokes. For a smoother integration
with Tina&Charly style, we further refined the learning using a sketch database from previous
paintings of the artists, collected by finding strokes of these and decomposing them into ordered
points.

6.1.3 Fostering Creativity.

The artists found the machine strokes surprising and suggestive of moves they would not have
done by themselves. Some painters have actually expressed how evocative unintended strokes
could be [Deleuze, 1981, Chapter XII]. Our installation, where the machine projects comple-
tions without painting, combined with generative network capability, allows us to explore that
in a principled way. Furthermore, the ability to change parameters, such as the learning data
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set or the amount of completion, adds more degree for the human to control their use of the
machine.

Figure 6.5: Three acrylic on canvas paintings, each 110 × 160 cm. Those are the first three
paintings of the series Influence, Convergence, Contrôle and Monopole.

6.1.4 Human and Machine Interplay.

Our physically interactive installation aims to be used by anybody, hoping to raise awareness
and initiate human and machine interplay thoughts. Arguably, it embodies that our technology
use is a middle ground where machines are made human-friendly and human drift from their
original routines and spaces. Indeed, Tina&Charly felt interacting with a full-body system –
it has been designed to superficially borrow as much as possible human-like painting behavior.
They experienced the machine as sometimes constraining, hard to grasp, and sometimes mag-
ical, infusing new dimensions to the painting. Feeling, while in the creative process, that the
machine could either be collaborative or muzzling was an unexpected echo to what technologies
seem to be in our daily life.

From an outside perspective, the machine distorts their original painting style, both on the
short-term artworks resulting from their interaction (see Figure 6.6) and on their long-term
body of work as it inspired them on their machine-free paintings. As such, the interaction
is not innocuous, even though, contrarily to our daily experience, we have made the machine
impact as explicit as possible with its recognizable blue contributions.

6.2 Interactive neural style transfer with artists

We present interactive painting processes in which a painter and various neural style transfer
algorithms interact on a real canvas. Understanding what these algorithms’ outputs achieve
is paramount to describing the creative agency in our interactive experiments. We gather a
set of paired painting-pictures images and present a new evaluation methodology based on the
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Figure 6.6: Comparing the style of Tina&Charly’s diptych without the algorithm (left) and
with the algorithm (right). Acrylic on canvas, 110 × 160 cm.

predictivity of neural style transfer algorithms. We point some algorithms’ instabilities and
show that they can enlarge the diversity and pleasing oddity of the images synthesized by the
numerous existing neural style transfer algorithms. This diversity of images was perceived as a
source of inspiration for human painters, portraying the machine as a computational catalyst.

6.2.1 Introduction

Neural style transfer [Gatys et al., 2015], which seeks at rendering the content of one image
using the style of another, provides impressive results as it takes advantage of the rich hierar-
chical representation of images produced by convolutional neural networks (CNN) to quantify
the style and content of images. The many ways to manipulate these complex maps and
their increasing ease of implementation have underpinned the development of many successful
methods in this area of computational artistic rendering.

Several evaluation techniques exist to compare all different methods. On the one hand,
many methods focus on quantifying how much a neural style transfer method attains a nu-
merical objective. These are good engineering indicators, but we highlight that they are not
necessarily relevant to measuring the quality of the style transfer algorithm’s outputs. On
the other hand, qualitative evaluation methods typically collect many subjective impressions
on the algorithms’ outputs. It provides average scores on the content preservation and style
quality of the algorithms’ outputs. However, it does not reveal the specificity of an algorithm
compared to another.

To have a more precise characterization of these algorithms, we introduce a new evaluation
methodology based on the predictivity of neural style transfer algorithms and gather a set
of paired paintings and photographs for this evaluation. The predictivity consists of assessing
whether or not the algorithms’ outputs are close to an existing painting when using this painting
as the style image and the associated photograph as the content image. This is also a crucial
point in the computational creativity perspective. Some outputs are deemed interesting while
bearing not much resemblance with the initial painting, i.e., with what the painter did.

Besides, when showing artists some outputs of style transfer algorithms using their paintings
as style images, they often do not observe their practice. However, they sometimes identify
inspiring aspects in the various outputs of different algorithms, implicitly acknowledging their
computational creativity. This naturally led us to painting processes with artists, who could not
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only edit groups of style transfer outputs but use them as basic elements to widen their style.
This constructively interlaces the agency attribution of the algorithms part in the creative
process.

We further encouraged this complexity by exploring these algorithms in the real world,
where the outputs are projected onto a real canvas, the classical space for human painters.
Human and machine contributions are then mingled in a single canvas. Interestingly, to help
the observer that seeks to untangle each agent’s contribution, the canvas can be shown together
with the various computational suggestions. The algorithms were experienced as computational
catalysts to human creativity in such creative processes, a middle ground between creative
agents and technical tools.

We first describe the new methodology for the qualitative evaluation of different style trans-
fer algorithms. We indicate that some approaches to neural style transfer do not satisfy a basic
property, which leads to an instability behavior that ultimately allows reinforcing the diversity
of style transfer outputs. This study helps us understanding and qualifying better what style
transfer algorithms achieve. We then present various interactive painting experiments between
human and style transfer outputs. This leads us to the notion of computational catalyst that
helps characterize the algorithms’ contribution in our specific settings.
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(a) content (b) style

(c) AdaIn (d) MST (e) WCT (f) STROTSS (g) Gatys

Figure 6.7: Outputs of neural style transfer algorithms AdaIn [Huang and Belongie, 2017],
MST [Zhang et al., 2019b], WCT [Li et al., 2017], STROTSS [Kolkin et al., 2019] and Gatys
[Gatys et al., 2015] on the same {content, style} pair.

6.2.2 Evaluating Neural Style Transfer Methods

Neural methods for style transfer originated with the optimization-based technique of Gatys
et al. [2015], which leverages the image features extracted from convolutional neural networks
(CNN). To speed up the process as well as to have access to representations of a particular
painting style, [Li and Wand, 2016, Ulyanov, 2016, Johnson et al., 2016] then proposed to train
a neural network dedicated to a particular style, enabling to do neural style transfer of an image
with a single forward pass instead of a full optimization procedure. Later on, universal neural
style transfer methods were developed to transfer any style to a content image, again with
a single forward pass [Ghiasi et al., 2017, Li et al., 2017, Huang and Belongie, 2017]. These
approaches are much faster than the optimization-based approaches, but they suffer from the
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well-documented instabilities of neural networks [Szegedy et al., 2013]. We show that a specific
instability that, to the best of our knowledge, has not been pointed out yet, can notably be
beneficial as it enlarges the creative possibilities of neural style transfer.

Alternatively, to explore other creative opportunities of such algorithms, several user control
methods have been developed using, for example, semantic correspondences [Lu et al., 2017,
Gatys et al., 2017, Kolkin et al., 2019], allowing to hand-tune the color histograms [Gatys et al.,
2017] or the scale of the patterns [Risser et al., 2017]. It is also possible to transfer multiple
styles [Mroueh, 2019, Cheng et al., 2019] at once.

Many works are still exploring different neural style transfer approaches, for instance, work-
ing with histogram losses [Risser et al., 2017], using various relaxation of optimal transport
[Kolkin et al., 2019, Mroueh, 2019, Kotovenko et al., 2019] or trying to match semantic pat-
terns in content and style images [Zhang et al., 2019a]. All these methods achieve impressive
plastic results, but it is hard to characterize one w.r.t. the other. They may not yet actually
stylize an image in the many ways a human would. We thus study the question of evaluation
methods for style transfer.

Qualitative evaluation A natural way of evaluating a neural style transfer method is to
measure the content preservation and the stylization quality of the outputs. The variety of
possible input images for content and style makes this task difficult in general. For example,
Gatys successfully transferred Van Gogh’s Starry Night style, but the examples shown in figures
6.7 and 6.8show notable artifacts. Such an evaluation can still be done by gathering a large
number of responses as Kolkin et al. [2019] did for measuring the content or style preservation of
their method compared to the others. Results showed that their method (STROTSS) offered,
on average, the best trade-off between content and style preservation but do not say in what
sense the style and content are better preserved.

To have a systematic and more refined comparison, we propose to study the predictivity
of style transfer algorithm: does an algorithm stylize the image in a way similar to what a
painter would have done? Precisely, when considering a photograph as a content image and a
figurative painting of this image as a style image, one can compare the output of the neural
style transfer algorithm with the figurative painting. One can further judge whether the style
transfer technique succeeds in predicting the painting. If not, one can try to characterize how
it differs from it.

Such pairs of photographs and content-preserving paintings are not readily available. Land-
scapes are constantly changing. Face portraits are rarely faithful to the original, and we rarely
possess the model’s photograph. Building paintings, however, is a good class of paintings for
the proposed study. We thus construct a set of photographic-painting pairs2, see Figures 6.8-
6.9 for instance, focusing on the Series Notre Dame de Rouen Cathedral by Claude Monet.
It consists of about forty paintings capturing the facade of Notre Dame de Rouen Cathedral
from nearly the same viewpoint at different times of the day and year and under different
meteorological and lighting conditions [Kleiner, 2009, p. 656].

With this set, qualitative evaluation can be done more systematically and less arbitrarily;
2https://www.di.ens.fr/louis.thiry/Monet.zip
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(a) Hassam painting (b) photograph (c) STROTSS (d) Gatys

Figure 6.8: Detail of Quai St Michel, Childe Hassam, corresponding photo and style transfer
outputs.

in the example shown in Figure 6.9, STROTSS output is qualitatively the closest to the Monet
painting, especially for the lightening effect on the door and the left of the portal. Gatys and
WCT suffer from spatial inconsistency as the blue sky is replaced by a sunlight halo in the
first one, and the background is hardly distinguishable in the second one. We release this set
and the outputs of the style transfer algorithms to facilitate and systematize the qualitative
evaluation of neural style transfer techniques.

(a) Monet painting (b) photograph (c) STROTSS (d) Gatys

Figure 6.9: Detail of Le Portail de la cathédrale de Rouen au soleil, Monet, corresponding
photograph and style transfer outputs
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6.2.3 Quantitative evaluation

Numerical evaluation methods have the benefit of being more systematic and objective. How-
ever, we point here that most neural style transfer evaluation methods are specific to certain
algorithms and are not always relevant for the output’s stylization quality.

In computer vision, perceptual losses are becoming the standard to compare the visual sim-
ilarity between images [Zhang et al., 2018]. These methods based on CNN features comparison
offer state-of-the-art performance on image similarity judgment datasets using different CNN
architectures. Since neural style transfer originally consists of optimizing an image to match
the CNN features of another style image, the perceptual loss between the outputs and the
target style image might be artificially small despite notable perceptual differences.

Other numerical evaluation techniques were proposed; Sanakoyeu et al. [2018] test whether
a pre-trained neural network for artist classification on real paintings succeeds in classifying
the artist of the style image based on an algorithm’s output. Jing et al. [2017] consider com-
paring saliency maps between images since the saliency maps’ spatial integrity and coherence
should remain similar after style transfer. Moreover, as neural style transfer relies on a certain
quantification of the style based on CNN features, we Jing et al. [2017] propose to evaluate
how much the optimization objective is achieved in style transfer. In the following case, we
show that improving the optimization objective is not necessarily related to the output’s visual
quality.

Optimization-based neural style transfer methods consist of optimizing the pixels of an
image I to minimize a loss l. This loss l is usually the sum of a content loss lc(I, Ic) measuring
the content similarity between I and the content image Ic and a style loss ls(I, Is) measuring
the style similarity between I and the style image Is. In the STROTSS method, Kolkin et al.
[2019] define the style loss as the Earth Movers Distance (EMD) between CNN features of the
image I and the style image Is. Given the CNN features Φ(I),Φ(Is) of the images I, Is, we
compute the distance matrix CI,Is between Φ(I) and Φ(Is) and the EMD is defined as the
solution of the following optimization problem

EMD(I, Is) = min
T≥0∑

j
Tij=1/m∑

i
Tij=1/n

∑
ij

TijC
I,Is
ij .

Exact EMD computations are too expensive for neural style transfer applications, and
a relaxed EMD (REMD) is used in STROTSS. It consists of taking the maximum of two
simple lower bounds of the EMD, each obtained removing one of the two linear constraints
sets ∑i or j Tij applied on the transport plan T

REMD(I, Is) = max


min

T≥0,
∑

i Tij=1/n

∑
ij
TijC

I,Is
ij ,

min
T≥0,

∑
j Tij=1/m

∑
ij
TijC

I,Is
ij

 .

Despite the use of this loose relaxation, the human evaluation done via Amazon Mechan-
ical Turk (AMT) indicates that STROTSS statistically offers the best style/content trade-off
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compared to the other neural style transfer techniques [Kolkin et al., 2019, §4] in the opinion
of the AMT workers. Experiments done with artists confirmed this trend as the artists were
mostly impressed by results produced by STROTSS.

The authors mentioned that a better approximation might yield better style transfer results.
Sinkhorn-distance [Cuturi, 2013] in its log-domain stabilized version [Schmitzer, 2019] is a good
candidate for this purpose. We thus replaced the relaxed earth movers distance REMD by the
Sinkhorn earth movers distance

SEMDε(I, Is) = min
T≥0∑

j
Tij=1/m∑

i
Tij=1/n

∑
ij

TijC
I,Is
ij − εh(T )

where h is the entropy of the transport plan T

h(T ) = −
∑
ij

Tij log Tij

and ε is the entropic regularization parameter. The corresponding optimization problem is
convex and is solved iteratively with a fixed number of iterations N . SEMDε is an upper-
bound of the EMD, and it converges to the exact EMD as ε goes to 0. We release a Pytorch
[Paszke et al., 2019] implementation3 of STROTSS, including the SEMD.

Figure 6.10: Left to right, content, style and style transfer outputs using REMD, and SEMD
ε = 1e−3, N = 50.

Figure 6.10 shows a comparison of experimental results, suggesting that getting much closer
to the mathematical quantification of the style does not necessarily lead to more relevant
results, and numerical evaluation of how much the mathematical objective is achieved is not
essential from a visual perspective.

In the same idea, the instability phenomena commonly assumed to be detrimental in the
neural networks literature (e.g., adversarial examples) can qualitatively increase the creative
possibilities of neural style transfer.

3https://github.com/human-aimachine-art/pytorch-STROTSS-improved
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6.2.4 Instability phenomena

Neural style transfer instabilities have been pointed out by Risser et al. [2017] and Gupta et al.
[2017] in the case of real-time style transfer for videos. The aim is to identify and remove
the time-inconsistent artifacts that create unpleasing effects. Here we outline instabilities
stemming from another type of inconsistency and propose to take advantage of them.

A style transfer method is simply a function f that takes as input a style image s and a
content image c and outputs a stylized version f(s, c) of c with s. It is reasonable when giving
such a method the same image as content and style to expect the image itself, i.e., that f
satisfies f(s, s) ≈ s. Let us now consider the following recursion

xt+1 = f(xt, xt) , (6.1)

where x0 is an initial image. Optimization based methods empirically converge to an equi-
librium where f(x, x) = x independently of the initialization. On the opposite, feed-forward
approaches to style transfer [Ulyanov, 2016, Johnson et al., 2016, Li et al., 2017, Huang and
Belongie, 2017] lead to oscillating sequences (xt) around non-trivial (i.e., not a monochrome
image) forms, yet typically bearing absolutely no resemblance with the initial image x0. Since
the pixel values are clamped between 0 and 1, colors end up being either saturated or zero, but
not uniformly and still revealing specific patterns in Figure,6.11. Interestingly, when starting
from uniform color images x0, for some f , the sequence would still show the same type of
instability in the long-run. This phenomenon happens on this video4, for instance.

From the perspective of computational creativity, this apparent failure is interesting. In
the first iterations, we observe that some methods produce a series of images progressively
stylized. Given a style transfer function f , the same effect happens across all sequences we
experimented with. For instance, in Figure 6.13 we see a distinct tessellation effect in the
images on the first row. We use this technique to produce more diverse and computationally
creative style transfer outputs in the interactive painting experiments. See image (f) in Figure
6.16 for instance.

Alternatively, the asymptotical regime of the sequences (xt) produces surprising anima-
tions. The appearing patterns are completely different from one approach to another but are
experimentally the same for different initialization images and a given method. Sequences are
shown in Figure 6.12, refer to this video5 or this one6 for a more lively visualisation.

6.2.5 Interactive Portrait Painting Experiments

In the previous sections, we have questioned the relevance of neural style transfer evaluation.
To go beyond comparing techniques, we propose to take advantage of the diversity of the
outputs and to use them as a source of inspiration for artists.

Some painters have recently explored interactive processes with machines in the real world,
particularly in painting. For instance, Chung [2015] among others, leveraged on the algorithms

4https://youtu.be/WCJNLWb-H2M
5https://youtu.be/gAq1lvb1G1c
6https://youtu.be/s87R-9JITvE
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Figure 6.11: Showing the fourth iterates of sequence (xt) as defined in Equation (6.1) for MST
method on various fragments of portraits. The tessellation effect is maintained across all the
images.
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Figure 6.12: We observe the asymptotic regime of Equation (6.1) as the images represents the
first (x4k)k=0,...,11 iterations of (6.1) for a given initial image.

from artificial intelligence to paint interactively with humans in the real world, where a machine
would act on the real canvas via a robotic arm. ? also explore such an interaction, where the
machine does not act but suggests via projection. However, none of these use style transfer
algorithms outputs to paint interactively with an artist on the canvas.

We explore that possibility through various series of interactively painted portraits. We
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Figure 6.13: Each row represents the first fourth iterate of sequence defined in Equation (6.1)
with a different neural style transfer approach. The first row corresponds to MST [Zhang et al.,
2019b], the second to WCT [Li et al., 2017] and the third to AdaIn [Huang and Belongie, 2017].
The first method has a clear tessellation effect, the second has a blurring effect, and the third
gives an increasingly clownish style to the image. These effects appear to be the same across
images, see Figure 6.11.

describe various interactive painting experiments inserting outputs of neural style transfer
algorithms during the human painting process. In all cases, the algorithms’ creations are
projected onto the canvas but never automatically painted, for instance, via a robotic arm or a
printer. We first describe the experiments on canvas and then motivate the underlying design
choices. We finally show how the notion of computational catalyst naturally emerges. Note
also that all the paintings revolve around portrait themes.

Editing multiple styles in one portrait. Neural style transfer outputs are diverse from
one method to another, as outlined in Figure 6.7 for instance. To edit these outputs’ creative
content into a single final artwork, we select a person’s photography as a content image, and we
transfer the style of previous artists’ painting into this content image using various algorithms.
We then show the stylized images to the artist, but not the original content image, which he
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never sees. He then selects some of the outputs that best resonate with his practice. These
style transfer outputs are finally alternatively projected on a canvas for a certain amount of
time. Figure 6.14is an example of canvas realized according to this process; we complement
the final canvas with the various style transfer outputs selected by the artist. We also explore
other variations of that idea, for instance, via collage, where the selected outputs are mingled
together into a single image projected afterward.

Figure 6.14: Left: two panels of 100×50 cm oil canvas. Right: the style transfer outputs that
formed the painter theme and were successively projected on the canvas. For each, the three
canvas in Figure 6.17 were used as style images; the content was a photographic portrait.

Pixelizing portrait construction. This creative process’s motivation is to artificially cre-
ate an interactive loop between the painter and the algorithm. The initial image is projected
onto or next to the canvas, which is divided into squares. The painter is then asked to paint
sequentially on each square of the canvas. Whenever a square is completed, we use it as a
new style image to stylize the initial photograph. The stylized image is then projected on the
canvas. Images (a)-(d) in Figure 6.15 are some of these projected outputs. The painter only
sees an interpretation of the photographic portrait by a style transfer algorithm taking the
painter’s style in the previous painting. We show one example of a canvas produced in such a
way in Figure 6.15.

Note that the style transfer output should be the machine’s prediction of what the artist
would do, provided that the previous square contains all the painter’s style information and
that the style transfer method is ideal. This remark was then the basis for a gamification
exploration of the painting process, where the artist was asked to attempt to fail the machine
prediction as much as possible.

This decomposition of the painting process produces painting artworks that are sequential
objects. All of the successive iterations of the painting are of interest and not only the final
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canvas. Actually, algorithms in image computational creativity are much less performative at
generating images as sequences of brushstrokes than generating images all at once, like with
GANs, [Goodfellow et al., 2014] for instance. This is simply because paintings are usually not
sequential objects. Indeed we very rarely observe all the steps leading to a painting, apart
from large quantities and categories of simple sketches [Eitz et al., 2012, Jongejan et al., 2018].
Alternatively, computationally inferring the steps of a painting from the final canvas [Xie et al.,
2013, Ganin et al., 2018, Nakano, 2019] is not yet very successful. This arguably explained
why in painting art, compared to other domains such as music, whose artworks are sequential
by nature, the computationally creative algorithms are harder to frame in a fully interactive
way with humans, hence limiting the painter’s ability to interact with machines truly.

Interactive series of portraits. We then considered using neural style transfer outputs
for series of portraits. We select a photographic portrait, and we stylize it with a neural style
transfer algorithm using a previous artists’ painting as a style image. We project the stylized
image as inspiration for the painter. When the painter has finished the painting, we stylize
the photographic portrait again using the painting that has just been painted. We project the
new stylized image as the next inspiration, and we repeat the process, typically two or three
times. Figure 6.16-6.17 present two series of canvas in chronological order. In figure 6.16 all
canvas stem from the same photographic portrait, while in Figure 6.17 we alternate between
two photographic portraits to avoid specialization of the artist to particular content.

We played on the many ways to generate new style images at each iteration. Importantly,
at each iteration, the previous image serves as a style image. This allows the artist to interact
with a computational version of his past work, a key aspect computational creativity offers.

Also, in Figure 6.16, the photographic portrait is an input in the first canvas. The sub-
sequent machine only uses as content or style images the preceding paintings. The observed
divergence is hence an intertwined responsibility between the painter and the algorithms.

6.2.6 Computational catalyst in the interaction

Neural style transfer algorithms are computationally creative because they may produce new
images with an aesthetic that can significantly differ from what a painter would do. To turn this
creativity into artwork, we have specified various painting experiments on a real canvas between
a painter and outputs from these algorithms. We now report how these attempts shed light on
a few aspects of the computational creativity of neural style transfer algorithms and cast them,
in this specific setting, as computational catalysts to human creativity. The interactive painting
process itself was designed to embody some questions related to computational creativity and
human-machine interplay, which has arguably become a major societal theme.

Computational Creativity and Catalyst. The initial motivation for designing human-
neural-style-transfer interactive experiments was to create a single object out of many different
style transfer outputs, focusing on a painting instead of a printed version of the numerical
output. This echoes other creative works with machines where some artists playfully worded
themselves as editors of the machine creativity, see, for instance, the rationale surrounding the
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last A.I. assisted musical album Chain Tripper of the band YACHT [2019]. During our painting
experiments, the intertwining between the machine’s outputs and painter interpretation was
non-trivial since the painter was altering the machine suggestions. The painter felt the outputs
gave new style directions, wording them as computational catalysts to his own creativity.

In these interactions with algorithms, we exploit the ability of style transfer methods to
produce outputs based on the painter’s previous works. This is a simple yet powerful idea that
allows an artist to interact with computationally influenced versions of its own (past) work.
The painter felt this was a semi-extraneous interpretation of his past techniques, allowing
him to rediscover some elements of his old practice in a surprising way. Besides our specific
framework, this seems to be another major benefit and specificity of computational creativity.

Importantly, in these portrait paintings, the artist could not see the real photographic
portrait except in the beginning. We purposely designed it so that the painting practice could
embody the fact of perceiving the world only through the machines’ lens. This has critical
societal echoes; for instance, the issues raised by the so-called fake news stems to some extent
from generative algorithms capacities, a technical point of view. From a societal point of
view, it comes from our increasingly resorting to numerical pieces of information as a way
to perceive the world. Hence, we implicitly explore what a painter felt when relying only on
machine outputs to see the portraits.

Alternatively, it also gives another perspective on computationally creative algorithms,
offering new inspirational spaces to portray. Indeed we may not only explore algorithms outputs
through printed versions, pretty much as we do not capture nature only through photography.
Computationally creative outputs may hence be thought of as new types of landscapes for
painters to capture.

Note also that the transient essence of these computational landscapes has very different
rules than that of Nature. The painting could remain the only imprint of the machine outputs
by erasing the content files or algorithms’ outputs. This again is a specificity of computational
creativity, when framed as a theme creator for artists, that is worth exploring.

Designing Human-Machine painting processes. Amajor aspect of these human-machine
interactive processes is that we engineered the numerical outputs out in the real world, rather
than having a painter who interacts with machines on a tablet.

When the painting process materializes in a numerical tablet, it strongly constrains the
painter’s sensations; he does not feel the brushstrokes’ gesture, the canvas is not perceived
in the full-dimensional space, etc. Even with interactive experiments on a real-canvas, the
painter felt some processes as being too intrusive or constraining, like the experiment reported
in Figure,6.16 which forces the artist to follow unusual rules for creating. This highlights
that computational creativity, when considered in such a human-machine interplay, is notably
conditioned by the current state in the engineering of such interactive systems. For instance,
how much projection is less intrusive than a robotic arm?

This level of machine’s intrusion is inherently linked with how the computational creativity
of the algorithms is perceived, notably concerning the creative agency that is attributed to the
machine outputs. Part of the discussion around computational creativity may hence be tightly
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related to some artists’ feelings of losing a share of the creative agency when algorithms become
more than a disposable tool.

So it appears that when engineering such systems, there are typically two directions in
the interfacing, either the machine goes out of the numerical world, or reversely, the human
interacts with the machine in the numerical world. And as we described previously, the interface
puts the artists in very different situations. However, this may not only be considered as a
limitation as each constraint forces the painter to embody what we may feel in our daily
interaction with machines. In particular, each type of interfacing echoes, and may advocate
then, a different societal relation humans have with machines; in the era of machines, it is
primal to explore many such experiments.

Plastic point of view. These interactive painting experiments were also designed to explore
pictorial aspects.

For instance, the photographic portrait that initiates the series in Figure 6.17-6.16 were in
black and white. However, the style transfer algorithm and the painter were not constrained
in the grey-scale space. The painter could observe in projected outputs of the machine, or
conversely initiate in the real canvas, the emergence of the colors. For instance, in Figure
6.17, red appears on the eyebrows, while in Figure 6.16 the colors are intended as variations
of shade, which only exists through the machine.

While this is interesting from the creation point of view, it is also from the observer con-
cerned about agency attribution. For a given aspect of the painting, like colors, did the painter
simply repeat the machine colorization outputs, re-interpreted it, or even started it? This re-
inforces the importance, in an exhibition, of algorithms’ outputs as testimonies of the final
artworks.

6.3 Discussion

The development of these two interactive settings reveals many potential benefits of leveraging
computational creativity in this interactive framework. The use of algorithms such as Sketch-
RNN and Neural Style Transfer in a real-world interaction also helps to understand what
these algorithms achieve. Rather than being creative on its own, the algorithm acts as a
computational catalyst to human creativity, offering new sources of inspiration to the artists.
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(left) final canvas (right) steps 1, 3, 5, 7.

Original photographic and projections after steps 1, 3, 5, 7.

Figure 6.15: A 50×50 cm oil pastel canvas inspired by an evolving projection. The canvas was
divided into 9 squares, and the painter had painted sequentially on each square. After each
square was completed, the output of the style transfer algorithm using the original photograph
as content and the current canvas as a style image was projected.
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(a) First canvas (b) Second canvas (c) Third canvas

(d) Projection 1 (e) Projection 2 (f) Projection 3

Figure 6.16: Three 50×50 cm oil on canvas of the same face. Iteratively showing style re-
interpretation to the painter. Image (a) served as a style image to produce (e); Image (b)
served as a style image to produce (f). Note that outputs (f) is the third iterate of Equation
(6.1) with the MST style transfer algorithm to produce a slight tessellation effect.
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(a) First canvas. (b) Second canvas. (c) Third canvas.

(d) NST output 1 (e) NST output 2 (f) NST output 3

Figure 6.17: The top row collects pictures of the paintings, 50×50 cm oil on canvas. The
bottom row gathers the outputs of the neural style transfer (NST) methods which were chosen
by the painter as his basis theme. The first is the stylization of the photographic image with a
previous painting of the painter. The second one is the stylization of a different photographic
image with the first painting as a style image. The third is the stylization of the same previous
photographic image with the second painting as a style image. Note that the order of the
painting is chronological.
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Chapter 7

Conclusion

This dissertation studied local methods for two high-dimensional supervised learning problems:
image classification and energy regression in physics. We observed their surprising efficiency
despite the multiscale nature of these two learning problems.

7.1 Summary of findings

In the field of regression in physics, we have studied the Solid Harmonic Scattering Transform
[Eickenberg et al., 2017, 2018]. This atomic system descriptor differs from other descriptors of
the literature. It is inspired by image classification techniques and relies on scale separation.

To study the relevance of scale separation, we have compared this descriptor with descrip-
tors that rely on three different tasks. The first one is the regression of the atomization energy
of small organic molecules. The second one is the regression of the energy of Graphite periodic
cells. The third one is the regression of the vibrational entropy in Iron periodic cells. On
these three problems, methods relying on spatial separation offered similar or better predictive
powers than the Solid Harmonic Scattering Transform.

This finding is not intuitive as energy is a complex property of the atomic state. Energy
depends on various interactions in the system. These interactions occur at different scales,
e.g., ionic and covalent bonds at short range, Van-der-Waals interactions at the mesoscale, and
long-range Coulomb interactions. Despite this, local methods capture efficiently even long-
range interactions. This might be due to a weak correlation. For example, if typical local
patterns result from a certain type of interaction, the regression technique can predict the
correct long-range energy from this local information.

Following the natural analogy between image patches and atomic neighborhood, we have
studied image classification from the perspective of patch separation. First, we have presented a
structured CNN architecture based on Scattering Transform encoding of image patches followed
by a supervised local encoding. It outperforms previous attempts by a large margin [Oyallon
et al., 2017]. Performances are comparable with the BagNet [Brendel and Bethge, 2019] despite
a much shallower encoding. One can explain the classification decision in terms of patch
evidence.
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Finally, we present a non-learned visual representation based on K-nearest neighbors en-
coding of image patches using a Euclidean distance. The non-trivial accuracy that we obtain
with a linear classifier demonstrates that invariance is not a necessary aspect for predefined
visual representation. This method shares a crucial ingredient with high-performing convolu-
tional kernel methods [Li et al., 2019, Recht et al., 2019, Shankar et al., 2020, Mairal, 2016],
namely a whitening procedure. It suggests that this ingredient is a key to the performance
of these methods. Moreover, the finite-dimensional aspect of our convolutional kernel allows
scaling experiments to large datasets like ImageNet. Our method shall serve as a baseline for
future investigations of convolutional kernel methods on ImageNet. Finally, we have demon-
strated that in the context of classification, "brain-dead lookup, a.k.a. nearest-neighbors, works
surprisingly well" to quote Alexei Efros1.

We have revealed the importance of short-range/local interaction in the two studied prob-
lems. These short-range/local interactions are the leading first-order term in both energy
regression and image classification.

At the end of this dissertation, we studied the impact of algorithms in the field of artistic
creation. For this purpose, we presented two interactive systems for human-machine co-creation
based on two different deep learning algorithms. In addition to the produced artworks, the
experiments and discussion with artists allowed characterizing and refining our perception of
creativity from the human-machine interaction perspective.

7.2 Future perspectives

Concerning the relevance of scale separation for energy regression in physics, we do not draw
a general conclusion from the three examples we have studied. We wait for physicists and
chemists to publish energy databases where the local methods do not perform well.

Given how-well the free-energy regression technique we have presented [Lapointe et al.,
2020] works, we consider using it to explore free energy landscapes using, for example, the
genetic algorithms proposed by Kaczmarowski et al. [2015].

The major drawback of these energy regression techniques is the lack of generality of the
learned functions. A regression model trained on small organic molecules performs terribly
badly on Carbon solids. On the opposite, electronic structure methods like Density Functional
Theory yield reasonably good results for both molecules and solids apart from specific failure
cases [Cohen et al., 2008, Cohen and Mori-Sánchez, 2016]. Supervised learning offers a great
opportunity to correct these failures and improve electronic structure methods. And multi-
scale invariants might be appropriate descriptors to go beyond local approximations, such as
local density approximation [Perdew and Zunger, 1981, Ceperley and Alder, 1980]. Regressing
a density functional is a future research direction we consider looking at.

Very recently, Dosovitskiy et al. [2021] adapted the natural language processing "Trans-
former" architecture [Vaswani et al., 2017] to image classification. They essentially replaced
words with image patches. They obtain state-of-the-art results (88.55 % top-1 accuracy on

1See for example these slides or this talk.
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ImageNet) when pretraining on very large private datasets. The fact that the same architec-
ture gives state-of-the-art results for natural language processing and image classification lets
us believe that there are structural similarities between text and images, between words and
image patches. Simple word vector representation like Word2vec [Mikolov et al., 2013] exhibit
low dimensional properties related to meaning similarity. In the Word2Vec vector space, the
nearest neighbor of the combination −−→King−−−→Man+−−−−−→Woman is −−−−→Queen2. The results obtained with
our K-nearest-neighbors-based classifier show that the image patches also have low-dimensional
nearest neighbor properties, similarly to vector word representations. Trying to characterize
more precisely this low-dimensional structure is one of the next research directions.

The works produced with the artists materialize the paste of the algorithm in a creative
interaction. We see them as universal supports to think about the importance of these new
technologies in our lives. We have recently worked on creating diptychs that are reinterpreta-
tions of an original image according to machine’s and human’s attentions [Cabannes, Kerdreux,
and Thiry, 2020]. We used them to discuss some crucial issues of current task-oriented artificial
intelligence and ambiguities on the notion of perception. We believe that using appropriate
wording opens the possibility of understanding the impact of machine learning research in
our societies. The overuse of anthropomorphic expressions like artificial intelligence, neural
network, or agent to describe computer programs tends to confuse or even frighten people
outside of the scientific community. We think that these expressions must be used precisely
and sparingly. Describing an image classification pipeline as non-linear patch encoding is ben-
eficial to the global understanding as it states the image classification problem from a formal
point of view. Presenting an interactive creation system as a computational catalyst to human
creativity allows understanding the role a machine can play in artistic creation. We hope the
work presented in this dissertation is a step forward in a correct formulation and description
of what machines achieve, from image classification algorithms to interactive artistic creation
systems.

2We denote by −−−→Word the Word2vec representation of the word "Word".
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Appendix A

Solid harmonic scattering transform

A.1 Solid harmonic wavelets normalization

The normalizing constant Kl is such that ||Wl||1 =
∫
|Wl| = 1 where Wl is defined by:

Wl(u) =

 l∑
m=−l

|ψl,m(u)|2
1/2

.

By definition of the wavelets ψl,m, we have:

Wl(u) = Kl

√
2l + 1

2π e−r
2/2σ2

rl

. so :

||Wl||1 = Kl

√
2l + 1

2π

∫ ∞
r=0

∫ 2π

θ=0

∫ π

φ=0
e−r

2/2σ2
rlr2sin(φ)drdθdφ

= Kl

√
2π(2l + 1)

2π

∫ ∞
r=0

e−r
2/2rl+2

Using the formulas below : ∫ ∞
0

x2ne−
x2
a2 dx =

√
π
a2n+1(2n− 1)!!

2n+1∫ ∞
0

x2n+1e−
x2
a2 dx = n!

2 a
2n+2

(!! is double factorial), we have :

∫ ∞
r=0

rl+2e−r
2/2 =


√

π
2 (l + 1)!! if l is even.

2 l+1
2 ( l+1

2 )! if l is odd.
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and thus:

Kl =


1

π
√

2l+1(l+1)!! if l is even.

1
2

l+1
2
√

2π(2l+1)( l+1
2 )!

if l is odd.
(A.1)

A.2 Fourier transform of solid harmonic wavelets

The plane wave u 7→ eiω·u can be expanded over spherical harmonics in the following way :

eiω·u = 4π
∞∑
l′=0

l′∑
m′=−l′

il
′
jl′(|ω||u|)Y m′

l′ (ω)Y m′
l′ (u)

where :

Y m
l (r, θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)! Pml (cos(θ))eimφ in spherical coordinates

jl(r) =
√
π

2rJl+1/2(r)

Jo being the Bessel function of first kind and of order o.
By definition, the Fourier transform of the solid harmonic wavelet ψl,m is:

ˆψl,m(ω)

=
∫
R3
ψl,m(u)eiω·udu

= Kl

∫
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The spherical harmonics are orthonormal functions of S2, i.e. for (l1,m1) 6= (l2,m2):∫ 2π

θ=0

∫ π

φ=0
Y m1
l1

(θ, φ)Y m2
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(θ, φ)dθdφ = 0
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Thus, in spherical coordinates:

ˆψl,m(λ, α, β) = 4πKli
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A.3 Covariance of the operator U to rotations

Since a rotation R commutes with the Laplacian operator ∆, they share eigenspaces. The
eigenspaces of the laplacian with eigenvalue l(l + 1) are span (Y m′

l )m′=−l...l. So ∀l ∈ N, ∀m ∈
[−l, l]:

R.Y m
l ∈ span (Y m′

l )m′=−l...l
so ∀R ∈ SO3(R), ∀l ∈ N, ∀m ∈ [−l, l], ∃

(
Cl,m,m′

)
m′=−l...l :

R.Y m
l =

l∑
m′=−l

CRl,m,m′Y
m′
l (A.2)

The rotations preserves the integral over the sphere S2:∫
S2
R.f =

∫
S2
f

thus it preserves the scalar product and the l2 norm on the sphere S2 that we denote by ‖.‖2,S2 :

〈R.f,R.g〉S2 = 〈f, g〉S2

‖R.f‖2,S2 = ‖f‖2,S2

Since the functions (Y m′
l )m′=−l...l are orthonormal, ∀R ∈ SO3(R), ∀l ∈ N, ∀(m,m1,m2) ∈

[−l, l]3,m1 6= m2:

‖R.Y m
l ‖2,S2 = ‖Y m

l ‖2,S2 = 1〈
R.Y m1

l , R.Y m2
l

〉
S2 =

〈
Y m1
l , Y m2

l

〉
S2 = 0

Using the decomposition (A.2) on the orthonormal functions (Y m′
l )m′=−l...l, we have :

‖R.Y m
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l∑
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〈
R.Y m1

l , R.Y m2
l

〉
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thus
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and we can define the unitary matrix

ΓRl =
(
CRl,m,m′

)
m,m′∈[−l,l]

∈ U2l+1(C) (A.3)

Using the spherical coordinates r = (u, θ, φ), we decompose the wavelet ψl,m,j in angular
and radial part:

ψl,m,j(u, θ, φ) = F (u)Y m
l (θ, φ)

The radial part F (u)is not affected a rotation R, thus:

R.ψl,m,j(u, θ, φ) = F (r) R.Y m
l (θ, φ)

= F (r)

 l∑
m′=−l

CRl,m,m′Y
m′
l (θ, φ)


=

l∑
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Then when convolving with a function f , we have:
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∫
f(R−1r −R−1v)ψl,m,j(v)dv
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∫
f(R−1r − w)ψl,m,j(Rw)dw by change of variable v = Rw

=
∫
f(R−1r − w)(R−1.ψl,m,j)(w)dw

= f ∗ (R−1.ψl,m,j)(R−1r)

= f ∗

 l∑
m′=−l

CR
−1

l,m,m′ψl,m′,j

 (R−1r)

=
l∑

m′=−l
CR

−1
l,m,m′ f ∗ ψl,m′,j(R−1r)

=
l∑

m′=−l
CR

−1
l,m,m′ R.(f ∗ ψl,m′,j)(r)

Then taking the modulus square and summing over m yields:

(Ul,j [R.f ](r))2 =
l∑

m=−l
|(R.f) ∗ ψl,m,j(r)|2

=
l∑

m=−l

∣∣∣∣∣∣
l∑

m′=−l
CR

−1
l,m,m′ R.(f ∗ ψl,m′,j)(r)

∣∣∣∣∣∣
2
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If we define the vector:

αRl,j(r) =
(
R.(f ∗ ψl,m′,j)(r)

)
m′∈[−l,l]

such that
l∑

m′=−l
CR

−1
l,m,m′ R.(f ∗ ψl,m′,j)(r) =

(
ΓR−1
l αRl,j

)
m

(r)

we have:

(Ul,j [R.f ](r))2 =
l∑

m=−l
|
(
ΓR−1
l αRl,u

)
m
|2(r)

= ‖ΓR−1
l αRl,j(r)‖2,C2l+1

= ‖αRl,u(r)‖2,C2l+1 , since ΓR−1
l is a unitary matrix

=
l∑

m=−l
|R.(f ∗ ψl,m,j)|2(r)

=
l∑

m=−l
R.|(f ∗ ψl,m,j)|2(r)

= R.

 l∑
m=−l

|(f ∗ ψl,m,j)|2
 (r)

= R. (Ul,j [f ](r))2

Then, taking the square root gives us the rotation covariance of Ul,j [f ].

A.4 Examples of Ul,j [ρ]

A.4.1 Single gaussian

Indeed, if there is only one body in our multi-body system, the density ρ is a single Gaussian
function:

ρ(u) = 1√
(2π)3σ3 e

−|u|2/(2σ2)

ρ̂(ω) = e−|ω|
2σ2/2

The convolutions ρ ∗ ψl,m,j can be computed analytically :

• Recall that ψl,m,j Fourier transform is:

ψ̂l,m,j(λ, α, β) 7→ Kl
4π(−i)l
√

2π3 e−σ
2
w,jλ

2/2(σw,jλ)lY m
l (α, β)
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• The Fourier transform of the convolution is:

̂ρ ∗ ψl,m,j : (λ, α, β) 7→ Kl
4π(−i)l
√

2π3 e−(σ2
w,j+σ2)λ2/2(σw,jλ)lY m

l (α, β)

• We introduce the variance sj =
√
σ2
w,j + σ2 and the ratio k = sj

σw,j
such that:

̂ρ ∗ ψl,m,j(λ, α, β) = Kl

kl
4π(−i)l
√

2π3 eσ
2
w,j(kλ)2/2(σw,jkλ)lY m

l (α, β)

= Kl

kl
ψ̂l,m,j(kλ, α, β)

• Using the fact that the function ω 7→ f̂(kω) is the Fourier transform of the function
t 7→ 1

k3 f(t/k), we have:

ρ ∗ ψl,m,j(r, θ, φ) = Kl

kl
1

√
2π3

s3
j

e−r
2/(2s2

j )
(
r

sj

)l
Y m
l (θ, φ)

= Kl

kl
1
s3
j

ψl,m,0( r
sj
, θ, φ)

We define the function Ψl,m,j = ρ ∗ ψl,m,j :

Ψl,m,j(r, θ, φ) = Kl

kl
1
s3
j

ψl,m,0( r
sj
, θ, φ)

Take the modulus square and summing over m and taking the square root gives:

Ul,j [ρ] (r, θ, φ) = 1
kl
Kl

s3
j

 l∑
m=−l

|ψl,m,0( r
sj
, θ, φ)|2

1/2

= 1
kl
Kl

s3
j

e−r
2/(2s2

j )
(
r

sj

)l

A.4.2 Multiple Gaussians

In the general case, we can compute Ul,j [ρ]. Indeed, since :

ρ(u) =
∑
k

g(u− rk) =
∑
k

grk
(u)
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we have :

ρ ∗ ψl,m,j(u) =
∑
k

grk
∗ ψl,m,j(u)

=
∑
k

(g ∗ ψl,m,j)rk
(u)

=
∑
k

(g ∗ ψl,m,j)rk
(u)

=
∑
k

(Ψl,m,j)rk
(u)

So we have:

Ul,j [ρ] (r, θ, φ) =

 l∑
m=−l

∣∣∣∣∣∑
k

(Ψl,m,j)rk
(r, θ, φ)

∣∣∣∣∣
2
1/2
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Appendix B

Patches K-nearest-neighbors image
classifier

B.1 Mahanalobis distance and whitening

The Mahalanobis distance [Chandra et al., 1936, McLachlan, 1999] between two samples x and
x′ drawn from a random vector X with covariance Σ is defined as

DM (x, x′) =
√

(x− x′)TΣ−1(x− x′)

If the random vector X has identity covariance, it is simply the usual euclidian distance :

DM (x, x′) = ‖x− x′‖ .

Using the diagonalization of the coraviance matrix, Σ = PΛP T , the affine whitening oper-
ators of the random vector X are the operators

w : X 7→ OΛ−1/2P T (X− µ), ∀O ∈ On(R) . (B.1)

For example, the PCA whitening operator is

wPCA : X 7→ Λ−1/2P T (X− µ)

and the ZCA whitening operator is

wZCA : X 7→ PΛ−1/2P T (X− µ) .

For all whitening operator w we have

‖w(x)− w(x′)‖ = DM (x, x′)

since

‖w(x)− w(x′)‖ = ‖OΛ−1/2P T (x− x′)‖

=
√

(x− x′)TPΛ−1/2OTOΛ−1/2P T (x− x′)

=
√

(x− x′)TPΛ−1P T (x− x′)

= DM (x, x′) .
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B.2 Implementation of the patches K-nearest-neighbors encod-
ing

In this section, we explicitly write the whitened patches with the whitening operatorW . Recall
that we consider the following set of euclidean pairwise distances:

Ci,x = {‖Wpi,x −Wd‖ d ∈ D} .

For each image patch we encode the K nearest neighbors of Wpi,x in the set Wd, d ∈ D,
for some K ∈ 1 . . . |D|. We can use the square distance instead of the distance since it doesn’t
change the K nearest neighbors. We have

‖Wpi,x −Wd‖2 = ‖Wpi,x‖2 − 2〈pi,x,W TWd〉+ ‖Wd‖2

The term ‖Wpi,x‖2 doesn’t affect the K nearest neighbors, so the K nearest neighbors are the
K smallest values of {

‖Wd‖2

2 + 〈pi,x,−W TWd〉, d ∈ D
}

This can be implemented in a convolution of the image using −W TWd as filters and ‖Wd‖2/2
as bias term, followed by a "vectorwise" non-linearity that binary encodes theK smallest values
in the channel dimension. Once this is computed, we can then easily compute{

‖Wd‖2

2 + 〈pi,x,W TWd〉, d ∈ D
}

which is the quantity needed to compute the K nearest neighbors in the set of negative patches
D. This is a computationally efficient way of doubling the number of patches while making
the representation invariant to negative transform.

B.3 Intrinsic dimension estimate

The following estimate of the intrinsic dimension dint is introduced in Levina and Bickel [2004]
as follows

dint(p) =
(

1
K − 1

K−1∑
k=1

log τK(p)
τk(p)

)−1

, (B.2)

where τk(p) is the euclidean distance between the patch p and it’s k-th nearest neighbor int
the training set.
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