
HAL Id: tel-03771331
https://theses.hal.science/tel-03771331v1

Submitted on 7 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Increasing the performance of symbolic execution by
compiling symbolic handling into binaries

Sebastian Poeplau

To cite this version:
Sebastian Poeplau. Increasing the performance of symbolic execution by compiling symbolic handling
into binaries. Computer Arithmetic. Sorbonne Université, 2020. English. �NNT : 2020SORUS451�.
�tel-03771331�

https://theses.hal.science/tel-03771331v1
https://hal.archives-ouvertes.fr

I N C R E A S I N G T H E P E R F O R M A N C E O F S Y M B O L I C E X E C U T I O N
B Y C O M P I L I N G S Y M B O L I C H A N D L I N G I N T O B I N A R I E S

sebastian poeplau

Sorbonne Université
Ecole Doctorale Informatique, Télécommunications et Electronique (ED130)

Thèse de doctorat d’Informatique
dirigée par Aurélien Francillon

Présentée et soutenue publiquement le 20 novembre 2020

devant un jury composé de :

Prof. Cristian Cadar (rapporteur) Imperial College London
Dr. Tamara Rezk (rapporteuse) INRIA Sophia Antipolis-Méditerranée
Prof. Aurélien Francillon (directeur de thèse) EURECOM
Dr. Christophe Hauser ISI, University of Southern California
Dr. Sarah Zennou Airbus
Prof. Davide Balzarotti EURECOM
Dr. Khaled Yakdan (invité) Code Intelligence

For Chrissie,
for my parents,
and for Duda

A B S T R A C T

Symbolic execution has the potential to make software more secure by
significantly improving automated vulnerability search. Its principled
reasoning can automatically explore parts of the program under test
that would otherwise be hard to reach. However, many current imple-
mentations face challenges in scalability and usability: The power of
symbolic execution comes at a cost, and the community is exploring
different approaches to make symbolic executors both efficient and
easy to use.

In this thesis, we propose a general technique that allows for more
efficient implementations of the execution component in symbolic ex-
ecutors. We first examine the state of the art and analyze the strengths
and weaknesses of current systems. From the results of this com-
parison, we derive the idea of accelerating execution by embedding
symbolic handling into compiled programs instead of symbolically
interpreting a higher-level representation of the program under test.
Using this approach, we develop a compiler-based symbolic executor
and show that it indeed achieves high execution speed in comparison
with state-of-the-art systems. Since the compiler is limited to scenarios
where source code of the program under test is available, we then
design and implement a complementary solution for symbolic execu-
tion of binaries; it uses the same basic idea of embedding symbolic
execution into fast machine code but combines the approach with
binary translation to handle the challenges of binary-only analysis.
Both systems, the compiler-based symbolic executor as well as the
binary translator, put a strong focus on ease of use with the goal of
emphasizing that symbolic execution can benefit software developers
and analysts in various fields. We conclude by discussing research di-
rections that could lead to even more practical systems and ultimately
enable the use of symbolic execution in mainstream software testing.

v

R É S U M É

L’exécution symbolique a le potentiel de rendre les logiciels plus
sûrs en améliorant considérablement la recherche automatisée des
vulnérabilités. Son principe de fonctionnement permet d’explorer
formellement et automatiquement toutes les parties du programme
qui seraient autrement difficiles à explorer. Toutefois, de nombreuses
implémentations actuelles sont confrontées à des défis en termes
d’évolutivité et d’ergonomie : La puissance de l’exécution symbolique
a un coût, et la communauté explore différentes approches pour rendre
les exécuteurs symboliques à la fois efficaces et faciles à utiliser.

Dans la présente thèse, nous proposons une technique générale
qui permet des implémentations plus efficaces de la composante
d’exécution dans les exécuteurs symboliques. Nous examinons d’abord
l’état de l’art et analysons les forces et les faiblesses des systèmes ac-
tuels. A partir des résultats de cette comparaison, nous dérivons l’idée
d’accélérer l’exécution en intégrant la manipulation symbolique dans
les programmes compilés au lieu d’interpréter symboliquement une
représentation de plus haut niveau du programme testé. En utilisant
cette approche, nous développons un exécuteur symbolique basé sur
le compilateur et nous montrons qu’il atteint effectivement une vitesse
d’exécution élevée par rapport aux systèmes actuellement les plus
performants. Comme le compilateur est limité aux scénarios où le
code source du programme testé est disponible, nous concevons et
mettons en œuvre une solution complémentaire pour l’exécution sym-
bolique des binaires ; elle utilise la même idée de base d’intégration
de l’exécution symbolique dans un code machine rapide, mais com-
bine l’approche avec la traduction binaire pour relever les défis de
l’analyse binaire seule. Les deux systèmes, l’exécuteur symbolique
basé sur le compilateur ainsi que le traducteur binaire, mettent for-
tement l’accent sur la facilité d’utilisation dans le but de souligner
que l’exécution symbolique peut profiter aux développeurs et aux ana-
lystes de logiciels dans divers domaines. Nous concluons en discutant
des directions de recherche qui pourraient conduire à des systèmes
encore plus pratiques et permettre en fin de compte l’utilisation de
l’exécution symbolique dans les tests de logiciels courants.

vi

P U B L I C AT I O N S

The thesis is based on three articles:

• Sebastian Poeplau and Aurélien Francillon. “Systematic compar-
ison of symbolic execution systems: Intermediate representation
and its generation.” In: Proceedings of the 35th Annual Computer
Security Applications Conference. ACM. 2019, pp. 163–176.

This publication forms the basis of Chapter 3, and parts of it are
used in Chapters 1 and 2.

• Sebastian Poeplau and Aurélien Francillon. “Symbolic execution
with SymCC: Don’t interpret, compile!” In: 29th USENIX Security
Symposium (USENIX Security 20). Distinguished Paper Award.
Boston, MA: USENIX Association, Aug. 2020. url: https://www.
usenix . org / conference / usenixsecurity20 / presentation /

poeplau.

Chapter 4 is based on this article, and Chapters 1 and 2 use some
of its material.

• Sebastian Poeplau and Aurélien Francillon. “SymQEMU: Compi-
lation-based symbolic execution for binaries.” Under submission.
Sept. 2020.

This is the basis of Chapter 5, and Chapter 2 contains parts of it.

Apart from those, I have been involved in the following publications
during my doctoral studies:

• Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom
Hayes, and Aurélien Francillon. “Screaming Channels: When
Electromagnetic Side Channels Meet Radio Transceivers.” In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM. 2018, pp. 163–177.

• Nassim Corteggiani, Giovanni Camurati, Marius Muench, Sebas-
tian Poeplau, and Aurélien Francillon. “SoC Security Evaluation:
Reflections on Methodology and Tooling.” In: IEEE Design & Test
(2020).

vii

https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau

A C K N O W L E D G M E N T S

Obtaining a PhD is a nontrivial undertaking, and I am grateful for all
the support that I received on the way.

First and foremost, I have to thank my amazing wife Christine for
supporting my back-and-forth travels between France and Germany
for the past three years. She encouraged me whenever I needed en-
couragement, and she cheered with me when there was reason to
celebrate. Moreover, I am extremely grateful to my parents and my
sister, without whose tireless support I could not have managed.

I consider myself very lucky to have encountered the most wel-
coming environment at EURECOM: I am deeply grateful to my PhD
advisor Aurélien Francillon for teaching me how to do research while
giving me all the freedom I wanted, and to the amazing S3 group—a
group of friends rather than colleagues. I greatly enjoyed spending
time with all of you!

Last but not least, several people and organizations helped with
my research. In particular, I am grateful to Insu Yun for patiently
answering lots of questions about QSYM, and I would like to thank
Vitaly Chipounov for his help with S2E. Code Intelligence provided
me with valuable insights into industrial applications of fuzzing, and
some of the experiments described in this thesis were carried out using
the Grid’5000 testbed, a cluster of powerful machines that we were
graciously allowed to use for free. Finally, my research was supported
by the DAPCODS/IOTics ANR 2016 project (ANR-16-CE25-0015).

ix

C O N T E N T S

1 introduction 1

2 background 3

2.1 Symbolic execution 3

2.2 Intermediate representation 6

2.3 Binary-only symbolic execution 9

3 intermediate representation 11

3.1 Introduction 11

3.2 Design space 12

3.3 Approaches under analysis 15

3.4 Evaluation 17

3.5 Discussion 31

3.6 Related work 33

3.7 Conclusion 35

4 compiler-based symbolic execution 37

4.1 Introduction 37

4.2 Compilation-based symbolic execution 40

4.3 Implementation of SymCC 44

4.4 Evaluation 50

4.5 Discussion and future work 60

4.6 Related work 62

4.7 Conclusion 64

5 compiling symbolic execution into binaries 65

5.1 Introduction 65

5.2 The state of the art 67

5.3 Relation to SymCC 69

5.4 SymQEMU 70

5.5 Evaluation 80

5.6 Future work 90

5.7 Related work 92

5.8 Conclusion 93

6 conclusion and future work 95

6.1 Execution 95

6.2 Solving 96

6.3 Coordination 97

6.4 Exploration 98

a s2e resource consumption 101

a.1 Parallel S2E 101

xi

xii contents

a.2 Memory limits 101

b french summary of the thesis 103

b.1 Introduction 103

b.2 Représentation intermédiaire 104

b.3 SymCC 109

b.4 SymQEMU 114

b.5 Conclusion 118

bibliography 119

L I S T O F F I G U R E S

Figure 2.1 Building blocks of symbolic execution 5

Figure 2.2 IR-based symbolic execution 6

Figure 2.3 IR-less symbolic execution 7

Figure 3.1 Overview of symbolic execution 13

Figure 3.2 Inflation factor per IR generation mechanism 24

Figure 3.3 Absolute execution times 26

Figure 3.4 Execution rates (IR instructions) 27

Figure 3.5 Execution rates of symbolic execution 27

Figure 3.6 Absolute numbers of queries 30

Figure 3.7 Query rates in symbolic execution 30

Figure 4.1 Compilation-based symbolic execution 42

Figure 4.2 Concrete execution time on CGC 52

Figure 4.3 Concolic execution time on CGC 53

Figure 4.4 Coverage comparison between SymCC and KLEE 54

Figure 4.5 Coverage comparison between SymCC and QSYM 55

Figure 4.6 AFL coverage over time for SymCC and QSYM 59

Figure 4.7 Real-world execution time of SymCC and QSYM 60

Figure 5.1 Overview of angr 67

Figure 5.2 Overview of S2E 68

Figure 5.3 Overview of QSYM 69

Figure 5.4 Overview of SymCC 70

Figure 5.5 Overview of regular QEMU 72

Figure 5.6 Overview of SymQEMU 74

Figure 5.7 FuzzBench ranking for target lcms 82

Figure 5.8 FuzzBench coverage for target lcms 82

Figure 5.9 FuzzBench ranking for target woff2 83

Figure 5.10 FuzzBench coverage for target woff2 83

Figure 5.11 Real-world open-source coverage of SymQEMU 86

Figure 5.12 Real-world closed-source coverage of SymQEMU 87

Figure 5.13 Real-world execution time of SymQEMU 88

Figure 5.14 Benchmark evaluation of SymQEMU 89

L I S T O F TA B L E S

Table 3.1 Design choices in symbolic execution engines 15

Table 3.2 CGC program support per engine 21

Table 3.3 CGC programs used in the IR study 22

Table 3.4 Inflation factor per IR generation mechanism 24

xiii

Table 3.5 Execution modes used by symbolic executors 26

Table 4.1 Ratio between execution and SMT solving 58

Table 5.1 Characteristics of SymQEMU and others 77

Table 5.2 Feature support in SymQEMU and others 77

Table 5.3 FuzzBench result summary 81

Table 5.4 Benchmark data for SymQEMU 90

L I S T O F L I S T I N G S

Listing 2.1 Exhaustive exploration via concolic execution 4

Listing 3.1 Demo program for SMT queries 28

Listing 3.2 SMT query generated by S2E 29

Listing 3.3 SMT query generated by KLEE 29

Listing 4.1 C++ program to demonstrate SymCC 39

Listing 4.2 Example session with SymCC 39

Listing 4.3 Example function in LLVM bitcode 41

Listing 4.4 Instrumented version of Listing 4.3 42

Listing 4.5 Bug in CGC program NRFIN_00007 50

xiv

1
I N T R O D U C T I O N

Information technology did not exist a mere century ago, but we have
come to rely on it heavily in the past few decades. Most modern
businesses would be unimaginable without computer-aided means of
data storage and processing. Our everyday lives are impacted heavily
by technology, and we rely on it in a plethora of ways, in areas as
diverse as communication, transportation and health.

Software is a key component in a lot of the technology we use,
and thus it plays a more and more important role in modern society.
Software controls the logistics underpinning our economy, it enables
communication across the globe, and it quite literally drives our cars.
Consequently, software failures can have great impact on our lives.
While most of them are just minor annoyances, if at all, some have
catastrophic consequences.

In response to the growing importance of software, our field has de-
veloped a variety of techniques to assert software correctness, ranging
from static and formal approaches like model checking to dynamic
and heuristic mechanisms such as fuzz testing. Independently of the
concrete approach, all those techniques share the common goal of
helping to build more correct software. My particular interest in the
spectrum of software testing methodologies is in symbolic execu-
tion. In my perception, it unites the beauty of rigorous mathematical
reasoning with the practicality of dynamic techniques.

Symbolic execution was conceived more than 40 years ago to aid
in software testing [43]. While it was rather impractical initially, great
advances in the field of computer-aided reasoning, in particular SAT
and SMT solving, led to the first more or less practical implementa-
tions in the early 2000s [12, 13]. Since then, symbolic execution has
been the subject of much research in both the software security and
the verification communities [17, 74, 77, 86], and the technique has
established its place in vulnerability search and program testing. In the
2016 DARPA Cyber Grand Challenge, a US-government competition
in automated vulnerability finding, exploiting and fixing, symbolic
execution was an integral part in the approaches of all three winning
teams [15, 57, 74].

Conceptually, a symbolic execution engine keeps track of how each
intermediate value is computed while executing a program. Whenever
the program hits a symbolic conditional—i.e., a branch whose outcome
depends on the program input—the symbolic execution engine can
pass the collected information to a solver in order to generate new
inputs that yield the desired outcome at the branch point. In other

1

2 introduction

words, symbolic execution can ideally generate exactly one input for
each possible path through the program under test.

Recent years have seen the development of several symbolic exe-
cution engines, both in academic environments and by commercial
actors [3]. However, the performance of symbolic execution remains
a major challenge, especially when the technique is applied to larger
software systems. Recent work has shown that combining symbolic ex-
ecution with fuzz testing has the potential of handling the weaknesses
of either approach and combining their strengths [77, 86]. In this con-
text, the speed of symbolic execution is of the essence: Exploration
is driven by the fuzzer, which also takes care of vulnerability checks
by leveraging sanitizers, and the main task of the symbolic execution
engine is to generate relevant new test inputs as quickly as possible.

The overarching goal of my work during the PhD program is to
enable faster symbolic execution, leading to more efficient program
exploration, and ultimately enabling easier discovery of software
defects. To this end, we first studied the performance of popular
symbolic execution engines, trying to discern design aspects that
play an important role in the speed of symbolic execution. Based
on the insights from this study, we developed a novel approach to
symbolic execution that significantly improves execution speed by
using a compiler where previous implementations would employ an
interpreter. Since our technique relies on the availability of source code
for the program under test, the third step of my research consisted
in the development of a similarly fast symbolic executor for binary-
only scenarios. Each of the three projects has been described in a
peer-reviewed article (with the last one still under submission at the
time of this writing); the thesis is based on material from those three
articles, rearranged, enhanced and modified where necessary to yield
a cohesive narrative.

The thesis is structured as follows: We start by presenting relevant
background information (Chapter 2). Next, we describe our perfor-
mance comparison of existing symbolic execution systems (Chapter 3).
It inspired the concept of compilation-based symbolic execution (Chap-
ter 4). We then extended the reach of our novel approach to binaries
with no source code available (Chapter 5). Finally, we discuss future
work and conclude the thesis (Chapter 6). We present related work
per chapter in order to be able to frame it in the appropriate context.

2
B A C K G R O U N D

This chapter discusses background information that is relevant to the
rest of the thesis.

2.1 symbolic execution

Symbolic execution was originally proposed by King in 1975 [43].
It was envisioned as a technique for software testing that is more
rigorous than manual tests and more practical than formal verification.
The early 2000s have finally seen the development of several more or
less practical symbolic execution engines [13], fueled by significant
improvements in Boolean satisfiability (SAT) and satisfiability modulo
theories (SMT) solving [89], and the field continues to be very active to
this day. Modern implementations are typically designed to answer
questions like “can this array access run out of bounds,” “is it possible
to take this branch of the program,” or “can this pointer be null when
it is dereferenced?” Moreover, if the answer is affirmative, symbolic
executors typically provide a test case, i.e., a new program input that
triggers the requested behavior. This ability makes symbolic execution
extremely useful for automated program testing, where the goal is to
explore as many corner cases of a program as possible and find inputs
that cause crashes or otherwise trigger bugs.

At the core of most modern symbolic execution engines, an inter-
preter runs the program under test while keeping a record of how
each intermediate value in the program is computed. Those compu-
tations are typically expressed in the logic of bit vectors and arrays.
A noteworthy exception is QSYM [86], to be discussed in more de-
tail later, which executes x86 machine code directly. Whenever the
target program encounters a conditional whose outcome depends on
intermediate values, the symbolic execution engine can express the
condition in terms of the original input values of the program, using
the knowledge of how the intermediate values were derived from the
inputs in the course of execution. Subsequently, the system needs to
solve the so-called path constraints for input values in order to generate
new inputs that cause the program to run up to the conditional and
then take the desired path out of it; in other words, the symbolic
executor needs to solve formulas in the logic of bitvectors and arrays
(see Section 3.4.5 for examples). The field of SMT solving provides
tools to address this (generally hard [45]) problem: in many cases,
modern SMT solvers can solve such difficult queries in acceptable
time, using various heuristics that are themselves an active area of

3

4 background

research. It is, however, in the best interest of any symbolic execution
engine to generate queries in a form that SMT solvers can solve quickly.
In Chapter 3 we show that the way IR is generated has a profound
impact on the complexity of the resulting SMT queries.

When symbolic execution is used with the goal of testing an entire
program, the execution engine typically tries to follow each path out
of any conditional statement, i.e., it forks and tries to generate inputs
for each possible outcome. A common problem arising from forking at
each conditional is path explosion: the number of paths to explore grows
exponentially over time. More recent approaches combine symbolic
execution with fast random testing [77, 86]. In this latter scenario,
a fuzzer selects interesting inputs, and symbolic execution merely
follows a fixed path dictated by a given concrete program input—a
process called concolic execution. The symbolic execution engine thus
does not have to cope with path explosion; it just uses the solver
to compute inputs that diverge from the predetermined path at any
desired point, possibly even trading precision for speed [86]. Especially
in this hybrid setting, faster symbolic execution amounts to more
tested code and—all else being equal—a higher chance of detecting
vulnerabilities.

Note that any concolic executor can be converted into an exhaustive
explorer by wrapping it in a loop that repeatedly feeds newly gener-
ated inputs back to the symbolic executor (see Listing 2.1). Provided
that the system keeps track of previously encountered paths across
executions, the process terminates once the target program has been
fully explored.

Listing 2.1: Shell script that transforms a concolic executor into a simple
exhaustive explorer, loosely modeled after SAGE [33]. The
executor is assumed to read the test case to follow from stan-
dard input and generate new test cases as files in a directory
called output; the initial set of test cases is expected in the
directory next_gen.

1 while ls -A $next_gen; do

2 mv next_gen cur_gen

3 for f in cur_gen/*; do

4 concolic_executor < $f

5 for new_case in output/*; do

6 mv $new_case next_gen/$(sha256sum $new_case)

7 done

8 done

9 done

In summary, every implementation of symbolic execution is con-
structed from a set of basic building blocks (see Figure 2.1):

execution The program under test is executed, and the system
produces symbolic expressions representing the computations.

2.1 symbolic execution 5

Test	cases

Constraints	

Symbolic	backend

Solver	

Program	under	test	

	Symbolic	execution	framework

Execution	environment

Figure 2.1: The building blocks of symbolic execution. The entire system
may be encapsulated in a component that handles forking and
scheduling.

These expressions are the essential asset for reasoning about the
program.

symbolic backend The sole purpose of describing computations
symbolically is to reason about them, e.g., to generate new pro-
gram inputs that trigger a certain security vulnerability. The
symbolic backend comprises the components that are involved
in the reasoning process. Typically, implementations use an SMT
solver, possibly enhanced by pre-processing techniques. For ex-
ample, KLEE [12] employs elaborate caching mechanisms to
minimize the number of solver queries, and QSYM [86] removes
all irrelevant information from queries to reduce the load on the
solver.

forking and scheduling Some implementations execute the tar-
get program only a single time, possibly along the path dictated
by a given program input, and generate new program inputs
based on that single execution (e.g., SAGE [33], Driller [77] and
QSYM [86]). On the other hand, several other implementations
contain additional facilities to manage multiple executions of the
program under test along different paths by forking execution
at branch points in the program (e.g., KLEE [12], Mayhem [15]
and angr [74]).

The three building blocks—execution, symbolic backend, and fork-
ing and scheduling—are conceptually orthogonal to each other, even
if implementations sometimes lack a clear distinction. In Chapters 4

and 5, we show that accelerating the execution component yields signif-
icant improvements in the overall performance of symbolic execution
engines. We discuss possible future work on the other components in
Chapter 6.

6 background

Test	cases

Compilation

Direct	IR	generation

IR	lifter	

Symbolic	execution	framework

Constraints	

Solver

IR	interpreter

Figure 2.2: IR-based symbolic execution interprets IR and interacts with the
symbolic backend at the same time.

2.2 intermediate representation

When emulating the execution of a program, symbolic execution faces
the challenge that the instruction sets of modern CPUs are large and
complex; writing a symbolic emulator for them is not trivial. Therefore,
it is common to lift the program under test to some intermediate
representation, which is then emulated. Symbolic execution at the IR
level also increases portability: in order to support a new architecture,
one “only” needs to reimplement the IR generator, while the rest of
the system can remain unchanged.

Symbolic execution engines differ in the choice of IR and in their
approach to generating IR from either a binary or from source code.
We refer to the process as IR generation, no matter whether the initial
artifact is a machine-code binary or source code, because the term
lifting is only appropriate for IR generation that starts from machine
code. The choice of IR-generation mechanism has considerable impact
on several aspects of symbolic execution (see Chapter 3).

2.2.1 IR-based symbolic execution

A common way of implementing symbolic execution is by means of an
intermediate representation (IR). Compared to the native instruction sets
of popular CPU architectures, IRs typically describe program behavior
at a high level and with fewer instructions. It is therefore much easier
to implement a symbolic interpreter for IRs than for machine code
directly, so this is the approach that many state-of-the-art systems
take.

IR-based symbolic execution first needs to transform the program
under analysis into IR. KLEE [12], for example, works on LLVM
bitcode and uses the clang compiler to generate it from source code;
S2E [17] also interprets LLVM bitcode but generates it dynamically
from QEMU’s internal program representation, translating each basic
block as it is encountered during execution; angr [74] transforms
machine code to VEX, the IR of the Valgrind framework [56]. In
general, IR generation can require a significant amount of work [21],

2.2 intermediate representation 7

Constraints	Solver	 Hooking

Test	cases

Analysis	engine

Symbolic	execution	framework	

Figure 2.3: IR-less symbolic execution attaches to the machine code executing
on the CPU and instruments it at run time.

especially when it starts from machine code [42]. Once the IR of
the target program is available, a symbolic interpreter can run it and
produce symbolic expressions corresponding to each computation. The
expressions are typically passed to the symbolic backend for further
processing as discussed above; Figure 2.2 illustrates the process.

2.2.2 IR-less symbolic execution

While translating target programs to an intermediate representation
simplifies the implementation of symbolic execution, interpreting IR
is much slower than native execution of the corresponding binary,
especially in the absence of symbolic data (i.e., when no symbolic rea-
soning is necessary). This observation has led to the development of
Triton [69] and QSYM [86], which follow a different approach: instead
of translating the program under test to IR and then interpreting it,
they execute the unmodified machine code and instrument it at run
time. Concretely, Triton and QSYM both control the target program’s
execution with Intel Pin [52], a framework for binary instrumenta-
tion. Pin provides facilities for inserting custom code when certain
machine-code instructions are executed. The symbolic executors use
this mechanism to inject code that handles computations symbolically
in addition to the concrete computations performed by the CPU. For
example, when the CPU is about to add the values contained in two
registers, Pin calls out to the symbolic executor, which obtains the
symbolic expressions corresponding to the registers’ values, produces
the expression that describes the sum, and associates it with the regis-
ter that receives the result of the computation. See Figure 2.3 for an
overview.

The main advantage and original goal of the IR-less approach is
speed. Run-time instrumentation still introduces overhead, but tracing
native execution while inserting bits of code is much faster than
interpreting IR. Another, more subtle, advantage is robustness: If an
IR-based system does not know how to handle a certain instruction
or a call to some library function, it is not able to continue because
the interpreter cannot execute the requested computation; in IR-less
symbolic execution, however, the CPU can always execute the target

8 background

program concretely. The injected analysis code will just fail to produce
an appropriate symbolic expression. One might say that performance
degrades more gracefully than in IR-based systems.

However, building symbolic execution directly on machine code has
considerable downsides. Most notably, the implementation needs to
handle a much larger instruction set: while the IRs that are commonly
used for symbolic execution comprise a few dozen different instruc-
tions, CPU instruction sets can easily reach hundreds to thousands
of them. The symbolic executor has to know how to express the se-
mantics of each of those instructions symbolically, which results in a
much more complex implementation. Another problem is architecture
dependence: naturally, instrumentation of machine code is a machine-
dependent endeavor. IRs, on the other hand, are usually architecture
agnostic. IR-based systems therefore work on any architecture where
there is a translator from the respective machine code to IR. This is
especially relevant for the domain of embedded devices, where a great
variety of CPU architectures is in common use.

The alternative extreme—instrumenting at the source-code level—is
less common these days [13, 32, 71] and has similar downsides to
the machine-code approach, with architecture-dependence replaced
by dependence on a particular programming language. SymCC and
SymQEMU, the systems we present in Chapters 4 and 5, respectively,
use IR and thus retain the flexibility and implementation simplicity
associated with IR-based approaches, yet our compilation-based tech-
nique allows them to reach (and surpass) the high performance of
IR-less systems.

2.2.3 Reducing overhead

In either type of symbolic execution, IR-based and IR-less, building
symbolic expressions and passing them to the symbolic backend is
necessary only when computations involve symbolic data. Otherwise,
the result is completely independent of user input and is thus irrele-
vant for whatever reasoning is performed in the backend. A common
optimization strategy is therefore to restrict symbolic handling to com-
putations on symbolic data and resort to a faster execution mechanism
otherwise, a strategy that we call concreteness checks. In IR-based im-
plementations, symbolic interpretation of IR may even alternate with
native execution of machine code on the real or a fast emulated CPU;
angr [74], for example, follows this approach. Implementations vary
in the scope of their concreteness checks—while QSYM [86] decides
whether to invoke the symbolic backend on a per-instruction basis,
angr [74] places hooks on relevant operations such as memory and
register accesses. Falling back to a fast execution scheme as often as
possible is an important optimization, which we also implement in
SymCC and SymQEMU (see Sections 4.3 and 5.4, respectively).

2.3 binary-only symbolic execution 9

2.3 binary-only symbolic execution

In some scenarios, the source code of the program under test is not
available. Symbolic execution then has to function with only the binary.
Requiring the analysis system to work with just a binary target adds
its own unique set of challenges to the field: In the absence of source
code, translating programs to an intermediate representation requires
reliable disassemblers; due to the challenges of static disassembly [60],
most implementations perform the translation on demand at run
time [17, 74]. Moreover, support for multiple architectures becomes
crucial when source code is not available: without source code, cross-
compiling a program for whichever architecture a symbolic executor
supports is not an option. If a symbolic execution system cannot
handle the target architecture of the program under test, it simply
cannot be used. This is a particular challenge for the embedded space
with its large variety of processor architectures.

IR-less symbolic executors thus face severe portability challenges in
the binary-only scenario, in addition to maintainability issues arising
from the relatively complex implementation. Executors that translate
the target program to an intermediate representation fare better, but
they still require a reliable translator for the particular target architec-
ture; significant amounts of work have gone into verifying translator
correctness [42]. This is in contrast to source-based symbolic execution,
where intermediate representations can rather easily be obtained from
the program’s source code [12].

In summary, binary-only symbolic execution puts higher demands
on architectural flexibility and the performance of (run-time) program
translation than source-based analysis.

3
T H E P E R F O R M A N C E I M PA C T O F I N T E R M E D I AT E
R E P R E S E N TAT I O N A N D I T S G E N E R AT I O N

Most implementations of symbolic execution transform the program
under analysis to some intermediate representation (IR), which is then
used as a basis for symbolic execution. There is a multitude of available
IRs, and even more approaches to transform target programs into a
respective IR.

When developing a symbolic execution engine, one needs to choose
an IR, but it is not clear which influence the IR generation process
has on the resulting system. What are the respective benefits for
symbolic execution of generating IR from source code versus lifting
machine code? Does the distinction even matter? What is the impact
of not using an IR, executing machine code directly? We felt that there
was little scientific evidence backing the answers to those questions.
Therefore, we developed a methodology for systematic comparison of
different approaches to symbolic execution; we then used it to evaluate
the impact of the choice of IR and IR generation. Our comparison
framework is available to the community for future research.

3.1 introduction

Typically, symbolic execution engines translate the program under
test to an intermediate representation (IR) which they can subsequently
execute symbolically. Generating the IR from machine code may be
the only solution when source code is not available. Testing the binary
directly also has the advantage of testing the “shipped” product,
independently of source language and compiler [8]. However, when
source is available, both approaches are possible and the choice of
how to generate IR is a distinguishing factor between the various
approaches. There is quite some conventional wisdom surrounding
it: one intuition is that high level source code semantics (e.g., buffer
boundaries, types) can be preserved and will make symbolic execution,
and bug finding, more efficient [21]. However, to the best of our
knowledge, there was no systematic study backing such claims. The
goal of this chapter is therefore to systematically assess how the choice
of IR, and the process of generating it, influence various aspects of
symbolic execution.

We selected several popular implementations, each with their own
mechanism for IR generation, and compared them to discern the effect
on their relative performance. In particular, we answer the following
research questions:

11

12 intermediate representation

1. Is there a benefit in generating IR from source code as compared
to IR generation from binaries?

2. Are there significant differences between symbolic execution of
different IRs generated from the same programs? What about
the special case of symbolically executing machine code directly?

Along the way, we discovered that the presumably simple engineer-
ing task of setting up a number of symbolic execution engines in a
stable environment and running a fair comparison on them is actually
quite a challenge in itself. We therefore made our environment and
dataset publicly available.

The answers to the research questions, as well as our observation
of usability issues in existing systems, informed the design choices
we made in our own implementations of symbolic execution, to be
discussed in Chapters 4 and 5.

In summary, the contributions of this chapter are the following:

• We devise a framework for systematic comparison of different
implementations of symbolic execution.

• We provide an assessment of the impact that the choice of IR
generation mechanism has on the performance of a symbolic
execution engine and derive recommendations for future work
in symbolic execution.

3.2 design space

While this study focuses on the generation of intermediate represen-
tations and the impact of that choice on the overall performance of
symbolic execution, the design of a symbolic execution engine in-
volves many other decisions. In this section, we give an overview of
important dimensions in the design space and frame our particular
object of study, namely the IR generation process, in the larger context.
We refer interested readers to the survey by Baldoni et al. [3] for a
more comprehensive discussion of symbolic execution techniques in
general.

Figure 3.1 gives an overview of the components in a typical sym-
bolic execution engine. We focus on IR and its execution, which is
the core part that is present in every such system. There may be addi-
tional components, such as security checks and a machinery for state
forking and scheduling. However, they are dropped in more recent
symbolic execution engines, where symbolic execution functions in
concert with a fuzzer which takes care of crash detection and input
prioritization [77, 86].

3.2 design space 13

source code

machine code

compiler

IR

native execution

1

SMT queries

IR
execution

query cache

library/OS
interface

security checks
2

state forking search strategy

SMT solver

IR generation Execution Symbolic backend

Figure 3.1: Overview of symbolic execution, showing our focus on IR, IR
execution, and SMT queries. Numbers indicate orthogonal studies
by (1) Kim et al. [42] and (2) Palikareva and Cadar [59] as well as
Liu et al. [51]. Dashed elements are not always present. IR and
machine code may be identical (e.g., in QSYM [86]).

3.2.1 Path selection

At each branching point in the program under analysis, a symbolic
execution engine faces the decision which path to follow. In King’s
original proposal, the user was prompted every time [43]. Modern
systems typically employ heuristics that do not rely on user interaction.
There are two major approaches:

1. Concolic execution follows the path dictated by a given concrete
input, typically generating new inputs along the way that leave
the predetermined path. In this case, the question of path selec-
tion is addressed externally; it mostly revolves around choosing
a concrete input to process in each iteration of the system. Ex-
amples of symbolic execution engines that follow this approach
are SAGE [33] and the symbolic components of Driller [77] and
QSYM [86].

2. Some symbolic execution engines choose to pursue all feasible
code paths simultaneously, conceptually forking the executor at
each branching point. The scheduling of the resulting execution
states is a crucial element of those systems’ design because a
good selection strategy may quickly guide execution toward
interesting code, while less sophisticated strategies risk getting
stuck (e.g., in loops). KLEE [12] and Mayhem [15] are examples
of symbolic execution engines that conceptually follow all code
paths at once.

While the path selection strategy is crucial for the effectiveness of
conventional symbolic execution, it is irrelevant for systems that run
symbolic execution in concolic mode along with a fuzzer. Therefore,
we use concolic mode for all systems in our study, implementing it
where necessary. Concolic execution allows us to pass the same fixed
input to all engines and trust that they follow the same code path.

14 intermediate representation

3.2.2 Incremental solving

As symbolic execution follows a path through the code under analysis,
it collects the constraints imposed on symbolic data at each branching
point. The resulting path constraints are used whenever a branching
point is encountered: execution may proceed down a path if and
only if there exists a concrete value for the symbolic data that fulfills
(1) all path constraints conjoined with (2) the desired outcome of the
branching condition; the latter is subsequently added to the path con-
straints. Intuitively, the consequence is that path constraints are large
conjunctions that build up incrementally, one conjunct per branching
point in the program. Modern SMT solvers can take advantage of the
incremental nature of resulting SMT queries, conceptually reusing
knowledge gained in answering previous queries when processing
the next increment. Liu et al. showed that incremental solving indeed
leads to significant performance improvements in practice [51].

Some symbolic execution engines choose not to use incremental
solving. When evaluating query complexity in our study, we therefore
reset the SMT solver before each query, essentially preventing it from
exploiting any incremental nature in the queries. This eliminates
differences unrelated to our subject of study, which would otherwise
skew the results.

3.2.3 Interleaved execution

Symbolic execution is only necessary when the executed code works
with symbolic data—when everything is concrete, the code can as well
be executed natively, which is usually significantly faster. Therefore,
many symbolic execution engines have support for alternating back
and forth between symbolic execution and some form of direct exe-
cution for code that does not work with symbolic data. For instance,
QSYM distinguishes at the instruction level whether the code to be
executed has symbolic inputs. It then only instruments instructions
that need to handle symbolic data by adding complementary symbolic
computations [86]. The approaches taken by the different symbolic exe-
cution engines vary in granularity and concrete execution mechanism,
but they share the common goal of using fast execution techniques
as often as possible and only falling back to slow symbolic execution
when necessary. Therefore, even slow symbolic executors may achieve
a high overall performance in terms of test coverage per time if they
manage to execute a large portion of the code under test natively.

Among the systems in our study, some allow the user to configure
whether or not code with only concrete data is executed natively,
whereas others do not work without interleaved concrete execution
or do not support it at all. We take great care to compare only results
obtained using similar strategies when measurements are affected by

3.3 approaches under analysis 15

KLEE S2E angr QSYM

Version 4efd7f6 2018-09-24 7.8.8.1 6f00c3d

IR LLVM LLVM VEX x86

IR generator Clang (source) QEMU + lifter libvex n/a

Solver(s) Z3 (4.4.1), others Z3 (4.7.1) Z3 (4.5.1) Z3 (4.5.0)

Language C++ C, C++ Python C++

Concrete execution n/a QEMU/KVM Unicorn CPU

Table 3.1: Comparison of design choices relevant to our study in the four
symbolic execution engines that we analyze.

this aspect of symbolic execution. We discuss this problem in more
detail in Section 3.4.4.

There are many more degrees of freedom in the design of a symbolic
execution system, such as the approach to state forking, query caching
techniques, and vulnerability detection mechanisms. However, since
we focus on concolic execution (e.g., in concert with a fuzzer), those
factors do not impact our experimental setup. Therefore, we do not
discuss them here and refer to the literature for details [3].

3.3 approaches under analysis

In this study, we compare common IR generation approaches, each
represented by a tool that implements the approach. Our test set
includes KLEE [12] for source-based IR generation, S2E [17] for binary-
based generation, angr [74] as a binary-based approach with a different
IR, and QSYM [86] as representative for systems that do not use IR
at all. This section presents each of the tools, before the next section
details the actual analysis. Unless otherwise noted, when talking about
machine code we refer to the x86 and AMD64 instruction sets.

3.3.1 KLEE

Published in 2008, KLEE [12] is a well-known symbolic execution
engine that is commonly used as a basis for further research [11,
17, 20, 21, 46, 67]. KLEE interprets LLVM bitcode, the intermediate
representation of the LLVM compiler framework. Notably, the C/C++
compiler clang can emit LLVM bitcode, which is the IR generation
approach proposed originally by KLEE’s authors.1 This makes KLEE
unique in our study: it is the only tool that generates IR from source
code rather than lifting binaries. It uses the SMT solver STP [10] by
default but also supports Z3 [23], which we use as a common ground
in our study. KLEE executes all user code at the IR level.

1 We use clang version 3.8 with wllvm version 1.2.2 to generate LLVM bitcode.

16 intermediate representation

3.3.2 S2E

In order to address several perceived shortcomings of KLEE, Chi-
pounov et al. proposed Selective Symbolic Execution (S2E) [17]. It builds
on top of KLEE but executes programs inside a full virtual operat-
ing system. The important difference for our purposes is that S2E
generates IR from binaries instead of source code. The program and
its environment run inside QEMU [5], a system emulator based on
binary translation, and a lifter from QEMU’s internal representation
to LLVM IR converts the code to a format suitable for consumption
by KLEE on demand. Only code interacting with symbolic data is
executed symbolically; all other code, including the emulated operat-
ing system, runs directly in QEMU. Note that KLEE and S2E use the
same symbolic execution engine as well as the same IR but different
mechanisms to generate it. This similarity allows us to compare their
respective IR generation strategies without the measurement noise
from other differences.

3.3.3 angr

Shoshitaishvili et al. created angr [74] with the goal of implementing
various previously published binary-analysis techniques in a single
framework in order to make them comparable. Among many tools for
binary analysis, angr provides a symbolic execution engine based on
VEX, the intermediate representation used by the Valgrind tools [56].
The system translates binaries to VEX IR, which is then interpreted
by angr’s symbolic executor. The user can configure whether code
that handles only concrete data is passed on to the Unicorn CPU
emulator [66]. The symbolic executor is implemented in Python in
order to facilitate quick experimentation and scripting. This decision
influences execution speed in comparison with tools that are written
in lower-level programming languages. We discuss the aspect in more
detail during our analysis.2

3.3.4 QSYM

Yun et al. argue that IR generation and semantic discrepancy be-
tween the machine code and IR instruction sets are a major hindrance
in modern symbolic execution [86]. To address this problem, they
propose QSYM, a symbolic execution engine that directly executes
instrumented machine code. The implementation of the symbolic ex-
ecutor is more involved than in conventional IR-based systems, having
to handle the large and complex instruction sets of modern CPUs, but
the authors argue that the significant performance gains justify the

2 The authors recommend executing angr in PyPy, a JIT-compiling implementation of
Python, for performance reasons; we use PyPy version 5.1.2.

3.4 evaluation 17

additional implementation work. In our study, we are interested in
QSYM precisely because of its lack of IR generation mechanism. The
system supplies an interesting data point for our analysis of execution
speed and SMT query complexity. QSYM decides at the instruction
level whether to execute symbolically or natively.

3.4 evaluation

This section conducts the actual measurements. Recall that our ulti-
mate goal is to answer the following research questions:

1. What is the impact on symbolic execution of generating IR from
source code as opposed to IR generation from binaries?

2. Does one IR perform better than others when IR generation is
comparable? What is the impact of not using IR at all?

In order to answer those high-level questions, we need to decide on
concretely measurable properties that supply the necessary evidence.
What do we expect of an ideal IR generation technique for symbolic
execution? Since we are going to execute the IR, we want it to be easy
to interpret efficiently, and we want it to be concise. Moreover, since
SMT solving consumes a considerable portion of the overall analysis
time, we would like the IR to lead to SMT queries that the solver
can answer quickly. We therefore evaluate the various IR generation
mechanisms under three aspects:

1. How much does the translation to IR increase or decrease the
number of instructions?

2. How efficiently can we execute the resulting IR?

3. How hard are the solver queries derived from the IR?

We first discuss our methodology and the non-trivial task of generat-
ing a set of programs that are supported by all the symbolic execution
engines we selected. Then we investigate the effect on the number
of instructions before presenting the results on execution speed and
query complexity. Interested readers will find additional visualizations
and a link to raw data in the appendix. We discuss the implications
of our results in the next section, where we also answer the research
questions.

3.4.1 Experimental setup

A core challenge in assessing the impact of IR and IR generation
on symbolic execution is that different symbolic execution engines
generally differ in many factors, not just the IR generation process.
For instance, KLEE and angr differ in how they generate IR, but in

18 intermediate representation

addition to this aspect relevant to our study there are other differences
that introduce noise into our measurements:

• One is implemented in C++, the other in Python. We found that
this has a major impact on the speed of symbolic execution.

• Their respective execution engines vary in search strategy, i.e.,
they use different heuristics for prioritizing execution states.
Some simple heuristics like depth-first search are supported by
both but generally do not lead to interesting paths through the
software under test [15, 70].

• The systems have been developed with different goals in mind.
While the one focuses on speed and fully automatic execution,
the other places some emphasis on scriptability and interactive
exploration.

• Implementations of symbolic execution may be faulty. While
our goal is to evaluate a given approach, we can only analyze
the implementation at hand and have to trust that it faithfully
represents the approach. Previous work has shown that there
can be discrepancies [68].

It is therefore difficult to isolate the effects of IR generation from
the influence of other differences. One option would be to implement
a grand unified symbolic execution engine working on top of the
various IRs in order to eliminate most variables. However, the symbolic
execution engines we analyze are tuned to the properties of their
respective IRs; for instance, KLEE can run optimizations on the input
LLVM bitcode that are meant to compensate some shortcomings of
the IR generation process and make the IR more suitable for symbolic
execution. We felt that running the IR of the various systems in a
more generic execution engine would lead to a less fair comparison.
Instead, we strove to eliminate as many sources of bias as possible
by identifying design decisions that could introduce noise into our
measurements (see Section 3.2) and making minimal changes to all
systems in order to remove any such differences (discussed below).
We believe that such an analysis, despite its possible limitations, yields
the most valuable insights into the problem at hand.

While measuring the impact on code size of each system is relatively
easy, in order to evaluate the execution speed and the complexity of
generated queries we first had to find a set of target programs that all
four symbolic execution engines under analysis are able to execute.
We remark that this has turned out to be a significant challenge: while
the four systems share an overall goal, the specifics vary enough to
make it difficult to find programs for which each tool is usable. We
discuss the implications for our benchmarks in more detail below.

After some experimentation, we decided to use the programs from
DARPA’s Cyber Grand Challenge (CGC) for our evaluation, mainly for

3.4 evaluation 19

two reasons: First, the CGC programs have explicitly been designed
as a test suite for automated vulnerability detection and exploitation
systems. They are supposed to exhibit common code patterns. More-
over, they run on DECREE, a Linux-based operating system with a
simplified system call interface, originally designed in order to reduce
the engineering burden on the participants in the CGC competition.
This makes it easier for us to add missing support to symbolic execu-
tion engines. Second, S2E and angr were used by teams participating
in the CGC. Therefore, those tools are known to work with the CGC
programs. Furthermore, the authors of QSYM evaluate their system
on a variant of the CGC binaries in the original publication [86]. The
CGC suite contains a total of 131 different programs.

As discussed in Section 3.2.1, the choice of path selection and
scheduling algorithms has a major impact on symbolic execution.
We eliminate this potential source of noise in our measurements by
evaluating concolic execution, i.e., we make symbolic execution follow
the path determined by a fixed input. In particular, we use the proofs
of vulnerability (PoVs) provided by DARPA for each CGC application.
They represent interactions with the applications that exercise bugs.
Where multiple such PoVs are available, we choose the first. Our input
selection procedure is thus analogous to the QSYM authors’ strategy.
The motivation to use the PoVs for test input, as outlined by Yun et
al. [86], is the assumption that inputs reaching the bugs in the CGC
applications exercise interesting portions of code.

DARPA provides the PoVs in a custom XML format designed to
describe the interaction with a target application. We wrote a tool
that translates the XML description to raw data; we skip applications
where the translation of the corresponding PoVs was not possible. This
happened in a few cases where the input exercising the vulnerability in
a program depended on previous output received from the program—
the XML format provides facilities for handling such scenarios, but the
same logic cannot be reflected in raw data inputs. We confirmed with
the authors of QSYM that this aspect of our procedure is analogous to
their evaluation, helping comparability.

All four symbolic execution engines required modifications or ex-
tensions for our experiments. We strove to keep our changes to the
engines minimal in order to avoid interference, and we have made
our modifications available to the community. Concretely, we added
134 lines of code (LoC) to KLEE (partial support for mmap and munmap),
67 LoC to S2E (time measurements and early termination of execu-
tion states), 19 LoC to angr (timing and query logging) and 26 LoC
to QSYM (logging as well). We wrote considerably more code, but
it is concerned with the generation of suitably compiled programs,
conversion of the inputs provided by DARPA into the right formats,
proper invocation of the tools, automated measurements, etc.—it does
not affect the inner workings of the engines under analysis.

20 intermediate representation

We execute each symbolic execution engine on each CGC application
with a timeout of 30 minutes and a memory limit of 24 GB. The
experiments run under Ubuntu 16.04 and use one core of an Intel Xeon
Gold 6130 CPU each. We skip any applications that are not supported
by all engines. Note that, while 30 minutes of symbolic execution
would be far too short for vulnerability discovery, we do not let the
systems explore the target applications freely. Instead, we execute
symbolically along a predetermined path (which, coincidentally, is
known to lead to a vulnerability), observing run-time aspects such as
the speed of execution and generated SMT queries on the way. The
time frame of 30 minutes is sufficient to finish execution in most cases;
we exclude any experiments that run into a timeout or exceed the
memory quota.

3.4.2 Benchmark size

Out of the 131 CGC programs, only 24 execute successfully in all four
symbolic execution engines (see Table 3.2). While IR generation is not
typically a problem since all systems use mature generators, incom-
patibilities of the IR execution engines precluded successful analysis
in many cases. For example, KLEE immediately exits if the program
under test contains floating-point instructions; we compiled the target
programs statically to make sure that the offending instructions only
occur in programs where they are strictly required, but even so KLEE
exhibits the smallest number of supported programs. In the case of
angr, its focus on scripting and interactive exploration often renders
it too slow to work on large binaries. S2E, in turn, has only recently
gained the ability to track data through MMX/SSE registers; in earlier
versions, the contents of such registers were concretized, causing the
symbolic execution engine to lose track of the corresponding symbolic
expressions. Note that SSE registers are used in prominent places,
such as the strcmp and strncmp functions in GNU libc. The example
of S2E also demonstrates that adding all missing features ourselves
was not an option: the code for MMX/SSE register support alone
amounts to roughly 1400 lines3 of C/C++ across various libraries; and
this addresses a single limitation in a single tool. In general, the miss-
ing features typically require time-consuming engineering—which is
presumably why they have not been implemented in the first place.
Similar problems have been described by Qu and Robinson [64] and by
Xu et al. [85]. Finally, fairness requires us to base our comparison only
on targets that are supported by all engines, which further restricts
the test set.

Table 3.3 provides an overview of the CGC programs that we used
for our experiments. When programs can be used successfully for the
speed measurements in Section 3.4.4 but not for the assessment of

3 https://github.com/S2E/s2e-env/issues/144

https://github.com/S2E/s2e-env/issues/144

3.4 evaluation 21

QSYM S2E angr KLEE all

Execution speed (Section 3.4.4) 70.2% 66.4% 75.6% 35.1% 18.3%

Query complexity (Section 3.4.5) 57.3% 74.8% 87.8% 38.9% 17.6%

Table 3.2: Percentage of CGC programs (out of 131) that we were able to use
per experiment and symbolic execution engine.

query complexity in Section 3.4.5, the reason is often that the gener-
ated queries are so complex that the solver times out. In the inverse
case, i.e., programs used to measure query complexity but not for
execution speed, we encountered a few different cases: angr issues
SMT queries for each input byte in every execution, independently
of whether the data is used. In some cases, it never encounters in-
structions that operate on the symbolic input data, so that we do not
include the program in the evaluation of execution speed; however,
due to the behavior mentioned above, there are still queries whose
complexity can be assessed. Moreover, we found S2E’s statistical coun-
ters to be lagging behind in some cases. In programs with very few
symbolic operations, the counters may report zero, resulting in those
programs being excluded from the speed measurements. Since we still
see SMT queries, however, we include them in the experiments on
query complexity.

The lack of extensive tool support is the main reason why we believe
it is not currently possible to compare symbolic execution engines
on large sets of applications, especially on applications with high
complexity. Even assembling a set of 24 applications that work with
all four symbolic execution tools in our analysis has cost us significant
time and effort. Under such circumstances, is there even value in the
comparison? We strongly believe that there is, for two reasons:

1. Even on a limited data set we can see trends; such observations
add rigor to a discussion that has until now been driven by
intuition and anecdotal evidence.

2. As a community, we should incentivize comparable research—
if a new tool in the field cannot meaningfully be compared
to existing approaches, we cannot assess its value. We should
therefore strive to establish a shared benchmarking methodology
and data set; this study attempts to take a step in that direction.

3.4.3 Code size

We have previously mentioned the intuition that IR derived from
source code contains “more high-level information” than binary-based
IR; a more precise way of expressing this intuition is to say that we
expect source-derived IR to contain more semantic information per

22 intermediate representation

Name Size (LoC) Used in Section Description

3.4.4 3.4.5

CROMU_00020 414 3 3 Echo service

CROMU_00043 950 3 Protocol-aware packet analyzer

KPRCA_00010 1,391 3 3 Visualizer for uncompressed PCM audio
files in both the time domain and the
frequency domain (with FFT)

KPRCA_00011 1,497 3 Simple movie rental service

KPRCA_00014 970 3 Basic virtual machine

KPRCA_00021 1,896 3 Parser for a custom JSON-like data for-
mat

KPRCA_00022 1,442 3 3 Online job application form, modeled af-
ter web applications

KPRCA_00023 1,667 3 Online job application form, modeled af-
ter web applications

KPRCA_00028 1,529 3 Interpreter for a custom list-based pro-
gramming language

KPRCA_00031 1,927 3 Chat server with bots

KPRCA_00037 1,538 3 Extractor of section and symbol informa-
tion for CGC executables

KPRCA_00038 4,304 3 Awk clone

KPRCA_00040 1,599 3 Custom compression algorithm

KPRCA_00042 1,769 3 Simple movie rental service

KPRCA_00047 101,921 3 Optical character recognition (OCR) en-
gine

KPRCA_00053 2,387 3 Blogging site

NRFIN_00001 647 3 3 SNMP-like service

NRFIN_00004 706 3 3 Chat bots

NRFIN_00007 3,873 3 Simulation of mixing chemicals

NRFIN_00011 1,351 3 A client for HTML-like documents

NRFIN_00015 467 3 3 Stack-based virtual machine

NRFIN_00018 230 3 3 Matrix arithmetic

NRFIN_00021 398 3 Trading algorithm simulation

NRFIN_00023 1,752 3 Electronic trading system for matching
buyers and sellers

NRFIN_00026 37,288 3 3 Packet parser

NRFIN_00029 1,998 3 UTF-enabled file server

NRFIN_00032 4,053 3 Network protocol dissector

NRFIN_00035 1,266 3 PLC simulation

NRFIN_00036 667 3 3 Personal finance management tool

NRFIN_00038 2,166 3 3 Stateful session-based network service

NRFIN_00040 1,766 3 Regular language recognition and enu-
meration

NRFIN_00041 1,446 3 3 Marine tracking system fashioned after
AIS

NRFIN_00042 968 3 3 Memory as a service

YAN01_00011 398 3 Word completion game

YAN01_00012 270 3 Stack-based virtual machine

Table 3.3: Details of the CGC programs used in our measurements of execu-
tion speed (Section 3.4.4) and query complexity (Section 3.4.5).

3.4 evaluation 23

IR statement than IR derived from binaries.4 In order to test this
hypothesis we apply the IR generation techniques under analysis
to a fixed set of programs and compare the resulting number of
IR instructions. The base line for our experiments is the number of
machine-code instructions.

In addition to the CGC programs discussed above, we use the
programs of version 8.30 of the coreutils suite [28] for this comparison;
they are a popular benchmark in the literature on symbolic execution.
For each binary in the set of test programs (i.e., CGC and coreutils),
we recover the CFG with angr and subsequently apply each symbolic
execution engine’s IR translation mechanism to all discovered basic
blocks. This requires wrapping the relevant parts of code in S2E and
angr: the former exposes the translation component as a shared library
that we can use from a C++ program, whereas the latter offers a
Python interface which we use from a custom script. QSYM and KLEE
do not require custom extensions for this step of our study: the former
works directly on machine code, so that no translation is necessary,
and the latter conveniently uses the output of the C/C++ compiler
clang.

For comparison, we conducted some further experiments on the
programs of the coreutils suite:

• We added the results of McSema, a static translator from machine
code to LLVM bitcode [24] based on the commercial disassembler
IDA Pro. Note that we intentionally used McSema unmodified
for best performance, meaning that it employed IDA Pro for
disassembly rather than angr. While we had initially hoped to
be able to run KLEE on the bitcode that McSema generates, we
found that there are incompatibilities in the respective sets of
supported bitcode instructions; substantial changes would be
required to make the two systems compatible.

• We compiled the coreutils binaries for ARM, using the target
arm-none-eabi, and ran angr’s IR generation on them. The other
symbolic execution engines do not support ARM or, in the case
of KLEE, the IR does not differ significantly.

We compare the number of generated IR instructions to the corre-
sponding number of machine instructions, resulting in a quantity that
we call inflation factor. Table 3.4 shows the results of our measurements,
and Figure 3.2 visualizes the data.

We see that, in general, the binary-based techniques produce a
higher number of IR instructions than KLEE’s source-based translation;
of course, there are many factors involved in the size of the generated

4 There is the additional effect that some information is actually lost during compilation,
such as buffer sizes [19]. This is a concern for security checks that may be part of
a symbolic execution engine but does not affect the core components of symbolic
execution that we focus on in this study (see Figure 3.1).

24 intermediate representation

0
1
2
3
4
5
6
7
8
9

KLEE McSema S2E angr angr (ARM)
In

fla
ti

on
ra

te

Figure 3.2: Inflation factor per IR generation mechanism, i.e., the number of
generated IR instructions per machine-code instruction, across all
tested programs (123 CGC and 106 coreutils binaries). The box
encloses the second and third quartile of the data with a horizon-
tal line marking the median. The whiskers include data points
up to 1.5 times the interquartile range away; outliers beyond that
point are depicted individually.

IR generator IR CGC coreutils

QSYM Machine code 1.00 1.00

KLEE (clang) LLVM bitcode 0.74 0.78

S2E LLVM bitcode 6.68 6.29

angr (libvex) VEX IR 4.57 5.35

McSema LLVM bitcode 4.54

angr on ARM (libvex) VEX IR 4.40

Table 3.4: Mean inflation factor per IR generation mechanism and data set,
i.e., average number of generated IR instructions per machine-code
instruction as shown in Figure 3.2. The CGC data set contains 123

programs, the coreutils suite 106 programs.

translation artifacts. The comparison is most meaningful when the
target of the translation process is the same IR, which removes one
variable from the analysis. Therefore, the cases of S2E and McSema are
of particular interest: both tools start at the binary level and produce
LLVM IR, so we can compare their results with the source-based LLVM
IR generated by KLEE. Note that, while the IR produced from source
code is rather succinct, in almost all cases containing less instructions
than the equivalent machine code and reaching an inflation factor
below 1 on average, the corresponding IR generated from binaries
increases the number of instructions by a factor of above 6 for S2E
and 4.54 for McSema. S2E’s higher inflation factor may be due to
the two IR translations (i.e., machine code to QEMU IR to LLVM IR).
Furthermore, it is interesting to see that angr’s translation to VEX
IR yields an increase in the number of instructions that is similar

3.4 evaluation 25

to the binary-based tools translating to LLVM IR; in fact, manual
analysis suggests that the semantic content of instructions in VEX IR
is comparable to LLVM IR. The ARM experiment confirms the overall
picture on a different architecture. On average, we find that the IR
generated from binaries is considerably larger than source-based IR.

In summary, the data supports the hypothesis that a source-based
approach has more high-level information available to generate a
succinct IR.

3.4.4 Execution speed

The first aspect of symbolic execution that we are interested in is how
well the generated IR is suited for execution. There is a spectrum
between QSYM, which forgoes translation to IR entirely and directly
executes instrumented machine code, computing symbolic constraints
on the fly, and KLEE, which interprets high-level IR derived from
source code. Intuitively, we would expect IR that is close to (or identical
with) machine code to be efficiently executable, while a more abstract
representation may be more suited to static analysis but slower in
execution.

A major challenge in comparing the execution speed of the four
symbolic execution engines is that they use very different strategies on
the matter of interleaving concrete and symbolic execution, an issue
that was briefly mentioned in Section 3.2.3. In general, code can be
executed in one of four modes:

native The simplest case is native execution of machine code on the
CPU, possibly with some sort of instrumentation. This is what
QSYM does for concrete execution, and S2E uses QEMU with
KVM enabled, resulting in a similar effect.

native (emulated) This case is similar to raw native execution,
except that the CPU is emulated. angr uses emulated native
execution for code that does not work with symbolic data.

ir (symbolic) When code works with symbolic data, it has to be
translated to IR, which is then interpreted symbolically. All four
systems in our study support this mode; in the case of QSYM,
the “IR” is machine code.

ir (concrete) KLEE does not support interleaved concrete execu-
tion, so even code that works with only concrete data is executed
at the IR level. Similarly, angr may heuristically choose to run
even concrete computations with IR in situations where the cost
of switching back and forth between IR and emulated native
execution would otherwise be too high.

Table 3.5 shows the use of the various execution modes by the
systems in our analysis. We are interested in the execution of IR, so

26 intermediate representation

Native Native (emulated) IR (concrete) IR (symbolic)

QSYM 3 3

S2E 3 3

angr 3 3 3

KLEE 3 3

Table 3.5: Execution modes used by the symbolic execution engines in our
study. For QSYM, the “IR” in symbolic mode is machine code.

0.1

1

10

100

1000

10000

QSYM S2E Angr KLEE

Ex
ec

ut
io

n
ti

m
e

(s
)

Figure 3.3: Absolute execution times across 24CGC programs.

for the purpose of this study we count only instructions executed in
one of the two IR modes, and we only measure the time spent in those
modes.

Apart from the difficulty of handling different execution modes, the
question of execution speed is particularly prone to being influenced
by other factors than merely the IR generation process. In particular,
the programming language that a symbolic executor is implemented
in has a large effect on how fast it can execute its IR (see Table 3.1).
There is little we can do to eliminate this bias (short of reimplementing
all systems in a common language); we will take it into account when
interpreting our results.

In order to assess the speed of execution we count the number
of instructions executed at the IR level and the time spent on said
execution while conducting the experiments described in Section 3.4.1.
In terms of Table 3.5, we capture the last two columns, which contains
any possible execution of IR. Figure 3.3 displays the absolute execu-
tion times that we measured; we see that angr consumes an order of
magnitude more time than S2E, which is in turn significantly slower
than QSYM. Based on our measurements, we compute a quantity that
we call execution rate; it represents the number of instructions executed
per unit of time. Figure 3.4 shows the execution rates in terms of each
system’s own IR instructions per time. For comparability between
different IRs, we translate the execution rates from IR instructions
per time to the common basis of machine instructions per time using

3.4 evaluation 27

0.1
1

10
100

1000
10000

100000
1× 106
1× 107

QSYM S2E Angr KLEE

Ex
ec

ut
io

n
ra

te
(I

R
in

st
ru

ct
io

ns
/s

)

Figure 3.4: Execution speed of symbolically executed instructions across 24

CGC programs. Higher rates mean faster execution.

0.1
1

10
100

1000
10000

100000
1× 106
1× 107

QSYM S2E Angr KLEE

Ex
ec

ut
io

n
ra

te
(m

ac
hi

ne
in

st
ru

ct
io

ns
/s

)

Figure 3.5: Execution speed of symbolically executed instructions, translated
to the common basis of machine-code instructions, across 24 CGC
programs. Higher rates mean faster execution.

the inflation factors from Table 3.4. Figure 3.5 shows those final re-
sults. In other words, we obtain a measure of execution speed that is
comparable across different IR generation processes.

We observe that QSYM executes its “IR” the fastest, followed by
KLEE, S2E and angr. This matches our intuition, given that QSYM uses
the lowest-level IR and implements its symbolic component in C++.
KLEE and S2E share a common basis, but while KLEE executes a very
concise IR (see Section 3.4.3), S2E has significantly more instructions to
interpret. Moreover, S2E has to generate IR on the fly while, in the case
of KLEE, IR generation is a preprocessing step. We largely attribute
angr’s lower execution rate to the fact that its symbolic reasoning is
implemented in Python, whereas S2E uses C++.

In summary, the measurement of execution rates supports the hy-
pothesis that low-level IR can be executed faster than high-level IR,
and that LLVM bitcode and VEX IR have quite similar properties
when it comes to IR interpretation. Note that “low-level IR” refers
to the level of abstraction of the IR language, not of the artifact that

28 intermediate representation

the IR was generated from. For instance, raw machine code (QSYM)
is executed faster than LLVM bitcode (KLEE and S2E). However, the
source of the translation still impacts the concision of the generated
IR (see Section 3.4.3)—e.g., LLVM bitcode generated from binaries
(S2E) is typically more verbose than bitcode generated from source
code (KLEE) and hence requires more time to perform equivalent
computations.

3.4.5 Query complexity

Along with IR execution, SMT solving is one of the major workloads in
symbolic execution [51, 59]. Consequently, there is promise in explor-
ing to which extent the IR generation process impacts the difficulty of
the SMT queries arising during execution. Intuitively, if IR carries a lot
of semantic information it should be possible for the symbolic executor
to formulate succinct queries. For example, consider the program in
Listing 3.1; it just reads five bytes from standard input, checks a num-
ber of conditions on the input and prints a result message. Listings 3.2
and 3.3 show the queries generated by S2E and KLEE, respectively,
for the C expression data[3] == 55. While the semantic content is the
same in both queries, note how S2E expresses the equality check in
bit-wise AND and OR operations as well as a bit-vector addition; the
query is more similar to machine code than to the original C code. The
KLEE-generated query, in contrast, resembles the source code rather
closely. This example illustrates the notion that queries with identical
semantics can be formulated in different ways, which may differ in
the difficulty they pose for SMT solvers.

Listing 3.1: A simple program to demonstrate SMT queries.

1 #include <stdio.h>

2

3 int main(int argc, char* argv[]) {

4 char data[5];

5

6 for (int i = 0; i < 5; i++)

7 data[i] = getchar();

8

9 if (data[0] > 15 && data[1] == 32 && data[2] > 27 &&

10 data[2] < 100 && data[3] == 55 && data[4] == 123)

11 printf("Correct!\n");

12 else

13 printf("Try again...\n");

14

15 return 0;

16 }

3.4 evaluation 29

Listing 3.2: Part of S2E’s assertion for Listing 3.1. We use standard SMT-
LIB syntax [4] for SMT queries.

1 (= (_ bv0 64)

2 (bvand

3 (bvadd

4 ;; 0xFFFFFFFFFFFFFFC9

5 (_ bv18446744073709551561 64)

6 ((_ zero_extend 56)

7 ((_ extract 7 0)

8 (bvor

9 (bvand

10 ((_ zero_extend 56) (select stdin (_ bv3 32)))

11 ;; 0x00000000000000FF

12 (_ bv255 64))

13 ;; 0xFFFF88000AFDC000

14 (_ bv18446612132498620416 64)))))

15 (_ bv255 64)))

Listing 3.3: Part of KLEE’s assertion for Listing 3.1.

1 (= (_ bv55 8)

2 ((_ extract 7 0)

3 ((_ zero_extend 24) (select stdin (_ bv3 32)))))

In general, assessing the difficulty of SMT queries is not an easy task.
Even with a proper definition of the elusive concept of “difficulty”,
there may be no effective means of measuring it. We observe that, from
a practical point of view, the essential property of an “easy” query is
that the solver can answer it fast. Therefore, our approach is to run
all symbolic execution engines on the same fixed paths in concolic
mode and record the queries that are sent to the solver. We then run
the solver on those queries in isolation and measure its response time.
This allows us to assess the average solver effort for each tool on
identical workloads, isolated from external factors like IR execution
speed.

We measure the time taken by Z3 to solve all the logged queries of
successful executions as per Section 3.4.1. The four symbolic execution
engines install different versions of Z3 (see Table 3.1); for comparability,
we picked one and used it for all measurements. We chose S2E’s build
of Z3 because it is the most recent among the four, so we expect it to
gracefully handle the queries generated by the other engines. Note
that we deliberately do not set a timeout for individual queries: We
are interested in how long a query would run to completion—i.e., its
complexity—instead of just the time that it would be allowed to run in
practice.

Figure 3.6 visualizes the absolute number of queries generated by
each system. We note that angr and KLEE tend to issue more queries
than S2E and QSYM. However, we attribute the differences to the

30 intermediate representation

1

10

100

1000

10000

100000

QSYM S2E Angr KLEE
N

um
be

r
of

ge
ne

ra
te

d
qu

er
ie

s

Figure 3.6: Absolute number of queries generated by the symbolic execution
engines across 23 CGC programs.

0
100
200
300
400
500
600
700
800

QSYM S2E Angr KLEE

Z
3

qu
er

y
ra

te
(q

ue
ri

es
/s

)

Figure 3.7: Comparison of the query rates for each system (using a common
solver) as a proxy for query complexity, across 23 CGC programs.
Higher rates indicate queries that are easier to solve. Note the
differences in median.

varying degrees of instrumentation in the implementations rather
than the IR or its generation. For instance, KLEE performs bounds
checks on every memory access and tests whether pointers may be
null; QSYM only involves the solver when the control flow depends
on symbolic data and defers any security checks to the fuzzer that is
expected to run concurrently (see Figure 3.1).

Figure 3.7 shows the resulting query rates, i.e., the number of queries
that Z3 can solve in a fixed amount of time. We see that angr and
QSYM exhibit lower query rates than KLEE, whose median rate is
significantly higher. S2E’s queries fall into a range similar to KLEE’s
(which is sensible because S2E is based on KLEE), but note that
S2E’s median is considerably lower and more in line with angr and
QSYM. In general, it seems that the three binary-based symbolic
execution systems generate more difficult queries than the source-
based system KLEE. Moreover, the observation that both KLEE and
S2E issue relatively easy queries in many cases supports the notion

3.5 discussion 31

that LLVM IR is beneficial for deriving SMT queries. However, we
cannot rule out the possibility of KLEE generating simpler queries
than the other systems due to implementation details; since S2E is
based on KLEE, it would inherit the same advantage.

3.5 discussion

In this section, we interpret the results of our evaluation and discuss
their significance.

3.5.1 Results

We have measured the impact of IR generation on code size, the suit-
ability of different IRs for symbolic execution, and the complexity of
the resulting SMT queries. In summary, we have found the following:

• For code size, the most important factor is whether IR is gen-
erated from source code or binaries. While source-based IR is
often more succinct than machine code, binary-based IR tends
to inflate the code by a factor between 3 and 7.

• We do not observe a significant difference in execution speed
between LLVM bitcode and VEX IR that could not be attributed
to implementation aspects. QSYM, however, gains a distinct
advantage in speed by dispensing with a traditional IR and in-
strumenting machine code directly, at the expense of portability.

• When generated from machine code, LLVM bitcode and VEX IR
lead to queries of similar complexity; queries derived directly
from machine code are in the same range. S2E does generate
simpler queries than angr and QSYM in some cases, but the
median query rate is similar. Source-based IR, however, appears
to reliably lead to simpler queries during symbolic execution.

Therefore, we are now in a position to answer our original research
questions.

When source is available, should we generate IR from source code or
binaries? We discovered that query complexity is lower when IR is
generated from source code. Of course, we acknowledge that source
code is not always available and that sometimes low-level information
is exactly what one is interested in; therefore, there are good reasons
for binary-based symbolic execution as well.

Does any IR perform better than others? We found that the level of
abstraction of the IR is important for execution speed; in particular,
executing machine code directly yields performance benefits. When
comparing the “traditional” IRs, there is no observable difference
between LLVM bitcode (generated from binaries) and VEX IR in our
measurements; we believe that, for choosing one or the other, practical

32 intermediate representation

concerns such as API stability and the availability of language bindings
are more important factors than the impact on symbolic execution.

To summarize, we show that the most important influence on query
complexity is whether the IR is generated from source code or binaries,
whereas execution speed is mostly affected by the level of abstraction
of the IR, with raw machine code performing best. This creates an
interesting tension in the design of symbolic execution engines: for
highest execution speed, execution should be based on low-level
instructions, whereas the best solver performance is achieved with
queries generated from high-level code. We address this challenge in
Chapter 4.

3.5.2 Future work

Our study focuses on the speed of symbolic execution, and we argue
that faster execution and SMT solving yield more exploration in the
same time, thus increasing the probability of discovering vulnerabili-
ties. An interesting direction for future work, especially in the context
of combined fuzzing and symbolic execution, would be to assess the
quality of new program inputs generated by symbolic execution. A
measurable notion of quality should include factors like the resulting
increase in code coverage, similarity to existing test cases (for easier
bug triage), redundancy of test inputs, and “directedness” towards
interesting pieces of code, among others. After finding a quantifiable
definition of test case quality, one would have to develop a sound
methodology to actually measure it; we believe that the results could
be very interesting for the community.

In a similar vein, it would be interesting to evaluate what makes
queries hard for a solver. We showed in our study that IR generated
from binaries leads to harder SMT queries than IR generated from
source code—what is the root cause of the difference in difficulty?
Compiler optimizations come to mind as a possible source of complex-
ity. However, we expect at least some of them to simplify reasoning
about code rather than making it harder: for instance, when a mul-
tiplication is replaced with a bit shift during strength reduction, the
optimization should not only speed up the program but also reduce
the difficulty of the corresponding queries. A systematic evaluation of
the sources of complexity in the queries that arise during symbolic exe-
cution might lead to IR generators that produce more “solver-friendly”
IR.

Finally, in our study we have analyzed the impact of IR and IR gen-
eration on specific aspects of symbolic execution, but we have not
evaluated the effect on the overall goal: how does the IR aspect impact
bug discovery? While this is a highly interesting question, we believe
that answering it is a hard challenge. The different symbolic execu-
tion engines use vastly different strategies to generate new test cases,

3.6 related work 33

involving different choices in the selection and configuration of the
SMT solver, the caching and preprocessing of queries, the soundness
requirements on the analysis, etc. Figuratively speaking, all the com-
ponents of symbolic execution depicted in Figure 3.1 would introduce
bias in such an end-to-end comparison. We would be delighted to
see more modularization in this space: if the individual components
of symbolic execution engines were interchangeable, measuring the
impact of a single choice on the overall goal would become much
easier.

3.5.3 Limitations

Comparing design decisions of symbolic execution engines in iso-
lation is a complicated matter: we have discussed numerous ways
for seemingly unrelated design decisions to threaten the accuracy
of our measurements. And while we have invested significant effort
to eliminate such noise from our experiments, there may be effects
that we could not fully remove. Moreover, some differences cannot
be reasonably eliminated, such as the impact of the respective pro-
gramming languages that the systems are built in. Finally, we have
run our experiments on a limited set of test programs that may not be
representative. We would like to explicitly encourage follow-up work
that strives to identify remaining biases in the comparison of symbolic
execution engines.

3.5.4 Remark: programming languages

We note in passing that the choice of programming language plays
an important role in positioning a symbolic execution engine. For
example, KLEE is written in C++, which gives it considerable per-
formance advantages over angr, implemented in Python. However,
we know from experience that modifying the former is much more
time-consuming than building on top of the latter; we attribute the dif-
ference to the different characteristics of the respective programming
languages. There is, of course, no perfect solution; the ideal choice for
a given project will vary depending on, among a lot of other factors,
whether production use or experimentation and exploration are the
main goal. However, we think it is important to consider such aspects
upfront and to make a conscious decision.

3.6 related work

To the best of our knowledge, the impact of the choice of IR and
IR generation process on symbolic execution has not been studied
before. However, our work builds on top of various previous results.
In this section, we frame our study in the context of the current state of

34 intermediate representation

the art, focusing in particular on symbolic execution and intermediate
representations for static and dynamic analysis.

3.6.1 Symbolic execution

Symbolic execution lies on a spectrum between more rigorous ap-
proaches, such as model checking [26, 65], and techniques that sacrifice
soundness for practicality, such as fuzz testing [25]. Apart from the
four symbolic execution engines that form the basis of our analysis,
namely KLEE [12], S2E [17], angr [74] and QSYM [86], each repre-
senting a design category as described in Section 3.3, several others
have been proposed and implemented. Manticore [81] is similar in
focus to angr and implemented in Python as well but does not use
any intermediate representation. Triton [69] is based on dynamic bi-
nary translation, like QSYM. Mayhem [15], based on BAP [9], is the
winner of the DARPA CGC competition (but not freely available, and
BAP alone does not support symbolic execution in recent versions).
SAGE [33] is a closed-source system developed by Microsoft, follow-
ing a concolic execution approach. Inception [21], based on KLEE, is
among the few symbolic execution engines with support for ARM, and
it addresses the challenge of handling inline assembly in source-based
symbolic execution. However, it targets microcontrollers that run their
target software directly, without an operating system. This difference
in focus renders it hard to compare to the four systems in our study. Fi-
nally, various other systems extend KLEE with additional functionality,
e.g., localized vulnerability detection [67], support for floating-point
arithmetic [20], parallel analysis [11], or state merging [46]. Recently,
combining symbolic execution with fuzzing has been shown to hold
great promise [77, 86].

Our study focuses on a particular aspect in the design and imple-
mentation of symbolic execution systems. In a similar spirit, previous
work has focused on the choice of SMT solvers [59] and the impact of
incremental SMT solving [51]. Kapus and Cadar check the correctness
of symbolic execution engines via differential testing [39] (whereas we
focus on performance). Baldoni et al. [3] cover the general subject area
of symbolic execution, and Xu et al. survey challenges of the field [84].

3.6.2 Intermediate representations

There are a variety of intermediate representations. LLVM bitcode [49],
employed by KLEE and S2E, was originally designed for use inside
compilers. VEX [56], used by angr, targets binary instrumentation and
was conceived for the Valgrind framework. Others, such as REIL [50]
and BIL [9] have been developed specifically for security analysis.
Kim et al. [42] investigate the semantic correctness of lifters for many
intermediate representations. Their work is orthogonal to ours: we

3.7 conclusion 35

assess the impact of the IR and the associated generation process on
symbolic execution (presupposing correctness), while they focus on
the semantic correctness of the IR generators.

3.7 conclusion

We have presented a framework for comparing different symbolic
execution engines and applied it to the question of how IR and IR gen-
eration impact symbolic execution. We believe that such systematic
evaluation forms a much better basis for design decisions than anec-
dotal evidence or common belief. It is our hope that this study lays
the groundwork for further comparison of specific design aspects in
symbolic execution, ultimately leading to more principled decisions
and, hopefully, more efficient systems.

availability

We have made all code and data used in this study available to the com-
munity at http://www.s3.eurecom.fr/tools/symbolic_execution/ir_
study.html, hoping that it will benefit future research.

http://www.s3.eurecom.fr/tools/symbolic_execution/ir_study.html
http://www.s3.eurecom.fr/tools/symbolic_execution/ir_study.html

4
C O M P I L E R - B A S E D S Y M B O L I C E X E C U T I O N

A major impediment to practical symbolic execution is speed, espe-
cially when compared to near-native speed solutions like fuzz testing.
Based on the insights gained in the previous chapter, we propose
a compilation-based approach to symbolic execution that performs
better than state-of-the-art implementations by orders of magnitude.
We present SymCC, an LLVM-based C and C++ compiler that builds
concolic execution right into the binary. It can be used by software
developers as a drop-in replacement for clang and clang++, and we
show how to add support for other languages with little effort. In
comparison with KLEE, SymCC is faster by up to three orders of
magnitude and an average factor of 12. It also outperforms QSYM, a
system that recently showed great performance improvements over
other implementations, by up to two orders of magnitude and an
average factor of 10. Using it on real-world software, we found that
our approach consistently achieves higher coverage, and we discov-
ered two vulnerabilities in the heavily tested OpenJPEG project, which
have been confirmed by the project maintainers and assigned CVE
identifiers.

4.1 introduction

Despite the increase in popularity of symbolic execution, performance
has remained a core challenge for symbolic execution. Slow processing
means less code executed and tested per time, and therefore fewer
bugs detected per invested resources. Several challenges are commonly
identified, one of which is slow code execution: Yun et al. have recently
provided extensive evidence that the execution component is a major
bottleneck in modern implementations of symbolic execution [86].
We propose an alternative execution method and show that it leads
to considerably faster symbolic execution and ultimately to better
program coverage and more bugs discovered.

Let us first examine how state-of-the-art symbolic execution is imple-
mented. With some notable exceptions, most implementations trans-
late the program under test to an intermediate representation (e.g.,
LLVM bitcode), which is then executed symbolically (see Section 2.2).
Conceptually, the system loops through the instructions of the target
program one by one, performs the requested computations and also
keeps track of the semantics in terms of any symbolic input. This
is essentially an interpreter! More specifically, it is an interpreter for

37

38 compiler-based symbolic execution

the respective intermediate representation that traces computations
symbolically in addition to the usual execution.

Interpretation is, in general, less efficient than compilation because
it performs work at each execution that a compiler has to do only
a single time [37, 83]. Our core idea is thus to apply “compilation
instead of interpretation” to symbolic execution in order to achieve
better performance. But what does compilation mean in the context of
symbolic execution? In programming languages, it is the process of re-
placing instructions of the source language with sequences of machine
code that perform equivalent actions. So, in order to apply the same
idea to symbolic execution, we embed the symbolic processing into the
target program. The end result is a binary that executes without the
need for an external interpreter; it performs the same actions as the
target program but additionally keeps track of symbolic expressions.
This technique enables it to perform any symbolic reasoning that is
conventionally applied by the interpreter, while retaining the speed of
a compiled program.

Interestingly, a similar approach was used in early implementations
of symbolic execution: DART [32], CUTE [71] and EXE [13] instrument
the program under test at the level of C source code. In comparison
with our approach, however, they suffer from two essential problems:

1. Source-code instrumentation ties them to a single programming
language. Our approach, in contrast, works on the compiler’s
intermediate representation and is therefore independent of the
source language.

2. The requirement to handle a full programming language makes
the implementation very complex [32]; the approach may be
viable for C but is likely to fail for larger languages like C++.
Our compiler-based technique only has to handle the compiler’s
intermediate representation, which is a significantly smaller
language.

The differences are discussed in more detail in Section 4.6.
We present an implementation of our idea, called SymCC, on top

of the LLVM framework. It takes the unmodified LLVM bitcode of a
program under test and compiles symbolic execution capabilities right
into the binary. At each branch point in the program, the “symbolized”
binary will generate an input that deviates from the current execution
path. In other words, SymCC produces binaries that perform concolic
execution, a flavor of symbolic execution that does not follow multiple
execution paths at the same time but instead relies on an external entity
(such as a fuzzer) to prioritize test cases and orchestrate execution (see
Section 2.1 for details).

In the most common case, SymCC replaces the normal compiler
and compiles the C or C++ source code of the program under test

4.1 introduction 39

into an instrumented binary.1 As such, SymCC is designed to ana-
lyze programs for which the source code (or at least LLVM bitcode)
is available, for example during development as part of the secure
development life cycle. It can, however, handle binary-only libraries
and inline assembly gracefully. We discuss this aspect in more detail
in Section 4.5.

Figure 4.2 shows an example interaction with SymCC: We first com-
pile the program displayed in Listing 4.1, simulating a log-in interface.
Then we run the program with an initial test input and demonstrate
that concolic execution generates a new test input allowing us to access
the most interesting portion of the program. While this is a very basic
example, we hope that it gives the reader an idea of how SymCC can
be used.

Listing 4.1: A sample C++ program that emulates a log-in interface. The
most interesting portion of the program is reached when the user
inputs “root”.

1 #include <iostream>

2

3 int main(int argc, char *argv[]) {

4 std::cout << "What’s your name?" << std::endl;

5 std::string name;

6 std::cin >> name;

7

8 if (name == "root")

9 std::cout << "What is your command?" << std::endl;

10 else

11 std::cout << "Hello, " << name << "!" << std::endl;

12

13 return 0;

14 }

Listing 4.2: A shell session that demonstrates how a user would compile and
run the program from Listing 4.1 with SymCC. Lines prefixed
with a dollar sign indicate commands entered by the user. Note
how the analysis proposes “root” as a new test input.

1 $ sym++ -o login_symcc login.cpp

2 $ export SYMCC_OUTPUT_DIR=/tmp/symcc

3 $ echo "john" | ./login_symcc 2>/dev/null

4 What’s your name?

5 Hello, john!

6 $ cat /tmp/symcc/000008-optimistic

7 root

In larger software projects, it is typically sufficient to export CC=symcc
and CXX=sym++ before invoking the respective build system; it will pick

1 Support for additional source languages can be added with little effort; see Sec-
tion 4.3.6.

40 compiler-based symbolic execution

up the compiler settings and build an instrumented target program
transparently.

Note that SymCC fulfills the requirements for fast symbolic ex-
ecution that we found in the previous chapter (see, in particular,
Section 3.5.1): execution is based on native code, yielding high execu-
tion speed, while queries are derived from the compiler’s higher-level
program representation, which leads to simpler SMT queries. More-
over, the decision to make SymCC a drop-in replacement for the
regular compiler is a direct consequence of the usability challenges we
encountered with other symbolic execution engines (see Section 3.4.1).

In summary, this chapter makes the following contributions:

1. We propose compilation-based symbolic execution, a technique
that provides significantly higher performance than current ap-
proaches while maintaining low complexity.

2. We present SymCC, our open-source implementation on top of
the LLVM framework.

3. We evaluate SymCC against state-of-the-art symbolic execution
engines and show that it provides benefits in the analysis of
real-world software, leading to the discovery of two critical
vulnerabilities in OpenJPEG.

SymCC is publicly available at http://www.s3.eurecom.fr/tools/
symbolic_execution/symcc.html, where we also provide the raw re-
sults of our experiments, as well as the tested programs.

4.2 compilation-based symbolic execution

We now describe our compilation-based approach, which differs from
both conventional IR-based and IR-less symbolic execution but com-
bines many of their advantages. The high-level goal of our approach
is to accelerate the execution part of symbolic execution (as outlined
in Section 2.1) by compiling symbolic handling of computations into
the target program. The rest of this section is devoted to making this
statement more precise; in the next section, we describe the actual
implementation.

4.2.1 Overview

An interpreter processes a target program instruction by instruction,
dispatching on each opcode and performing the required actions. A
compiler, in contrast, passes over the target ahead of time and replaces
each high-level instruction with a sequence of equivalent machine-
code instructions. At execution time, the CPU can therefore run the
program directly. This means that an interpreter performs work during
every execution that a compiler needs to do only once.

http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html

4.2 compilation-based symbolic execution 41

In the context of symbolic execution, current approaches either in-
terpret (in the case of IR-based implementations) or run directly on
the CPU but with an attached observer (in IR-less implementations),
performing intermittent computations that are not part of the target
program. Informally speaking, IR-based approaches are easy to im-
plement and maintain but rather slow, while IR-less techniques reach
a high performance but are complex to implement. A core claim of
the thesis is that we can combine the advantages of both worlds, i.e.,
build a system that is easy to implement yet fast; this chapter makes
a first step in that direction. In essence, we compile the logic of the
symbolic interpreter (or observer) into the target program. Contrary
to early implementations of symbolic execution [13, 32, 71], we do
not perform the embedding at the source-code level but instead work
with the compiler’s intermediate representation, which allows us to
remain independent of the source language that the program under
test is written in, as well as independent of the target architecture (cf.
Section 4.6).

Listing 4.3: An example function in LLVM bitcode. It takes two integers and
checks whether the first is exactly twice the second.

1 define i32 @is_double(i32, i32) {

2 %3 = shl nsw i32 %1, 1

3 %4 = icmp eq i32 %3, %0

4 %5 = zext i1 %4 to i32

5 ret i32 %5

6 }

To get an intuition for the process, consider the example function
in Listing 4.3. It takes two integers and returns 1 if the first integer
equals the double of the second, and 0 otherwise. How would we
expect compiler-based symbolic execution to transform the program
in order to capture this computation symbolically? Listing 4.4 shows
a possible result. The inserted code calls out to the run-time support
library, loaded in the same process, which creates symbolic expressions
and eventually passes them to the symbolic backend in order to
generate new program inputs (not shown in the example). Note that
the transformation inserting those calls happens at compile time; at
run time, the program “knows” how to inform the symbolic backend
about its computations without requiring any external help and thus
without incurring a significant slowdown. Figure 4.1 summarizes the
approach; note how it contrasts with the conventional techniques
depicted in Figures 2.2 and 2.3. We will now go over the details of the
technique.

42 compiler-based symbolic execution

Compilation	to	IR

Bitcode	
instrumentation
pass

Code
generation

Binary	execution			

Test	cases

Figure 4.1: Our compilation-based approach compiles symbolic execution
capabilities directly into the target program.

Listing 4.4: Simplified instrumentation of Listing 4.3. The called functions
are part of the support library. The actual instrumentation is
slightly more complex because it accounts for the possibility of
non-symbolic function parameters, in which case the symbolic
computation can be skipped.

1 define i32 @is_double(i32, i32) {

2 ; symbolic computation

3 %3 = call i8* @_sym_get_parameter_expression(i8 0)

4 %4 = call i8* @_sym_get_parameter_expression(i8 1)

5 %5 = call i8* @_sym_build_integer(i64 1)

6 %6 = call i8* @_sym_build_shift_left(i8* %4, i8* %5)

7 %7 = call i8* @_sym_build_equal(i8* %6, i8* %3)

8 %8 = call i8* @_sym_build_bool_to_bits(i8* %7)

9

10 ; concrete computation (as before)

11 %9 = shl nsw i32 %1, 1

12 %10 = icmp eq i32 %9, %0

13 %11 = zext i1 %10 to i32

14

15 call void @_sym_set_return_expression(i8* %8)

16 ret i32 %11

17 }

4.2.2 Support library

Since we compile symbolic execution capabilities into the target pro-
gram, all components of a typical symbolic execution engine need
to be available. We therefore bundle the symbolic backend into a li-
brary that is used by the target program. The library exposes entry
points into the symbolic backend to be called from the instrumented
target, e.g., functions to build symbolic expressions and to inform the
backend about conditional jumps.

4.2 compilation-based symbolic execution 43

4.2.3 Symbolic handlers

The core of our compile-time transformation is the insertion of calls
to handle symbolic computations. The compiler walks over the entire
program and inserts calls to the symbolic backend for each computa-
tion. For example, where the target program checks the contents of
two variables for equality, the compiler inserts code to obtain sym-
bolic expressions for both operands, to build the resulting “equals”
expression and to associate it with the variable receiving the result
(see expression %7 in Listing 4.4). The code is generated at compile
time and embedded into the binary. This process replaces a lot of the
symbolic handling that conventional symbolic execution engines have
to perform at run time. Our compiler instruments the target program
exactly once—afterwards, the resulting binary can run on different
inputs without the need to repeat the instrumentation process, which
is particularly effective when combined with a fuzzer. Moreover, the
inserted handling becomes an integral part of the target program, so
it is subject to the usual CPU optimizations like caching and branch
prediction.

4.2.4 Concreteness checks

It is important to realize that each inserted call to the run-time sup-
port library introduces overhead: it ultimately invokes the symbolic
backend and may put load on the SMT solver. However, involving the
symbolic backend is only necessary when a computation receives sym-
bolic inputs. There is no need to inform the backend of fully concrete
computations—we would only incur unnecessary overhead (as dis-
cussed in Section 2.2.3). There are two stages in our compilation-based
concolic approach where data can be identified as concrete:

compile time Compile-time constants, such as offsets into data
structures, magic constants, or default return values, can never
become symbolic at run time.

run time In many cases, however, the compiler cannot know whether
data will be concrete or symbolic at run time, e.g., when it is read
from memory: a memory cell may contain either symbolic or
concrete data, and its concreteness can change during the course
of execution. In those cases, we can only check at run time and
prevent invocation of the symbolic backend dynamically if all
inputs of a computation are concrete.

Consequently, in the code we generate, we omit calls to the symbolic
backend if data is known to be constant at compile time. Moreover, in
the remaining cases, we insert run-time checks to limit backend calls
to situations where at least one input of a computation is symbolic
(and thus the result may be, too).

44 compiler-based symbolic execution

4.3 implementation of symcc

We now describe SymCC, our implementation of compiler-based sym-
bolic execution. We built SymCC on top of the LLVM compiler frame-
work [49]. Compile-time instrumentation is achieved by means of
a custom compiler pass, written from scratch. It walks the LLVM
bitcode produced by the compiler frontend and inserts the code for
symbolic handling (as discussed in Section 4.2.3). The inserted code
calls the functions exported by the symbolic backend: we provide
a thin wrapper around the Z3 SMT solver [23], as well as optional
integration with the more sophisticated backend of QSYM [86]. The
compiler pass consists of roughly 1,000 lines of C++ code; the run-time
support library, also written in C++, comprises another 1,000 lines
(excluding Z3 and the optional QSYM code). The relatively small code
base shows that the approach is conceptually simple, thus decreasing
the probability of implementation bugs.

The remainder of this section describes relevant implementation
details before we evaluate SymCC in the next section. For additional
documentation of low-level internals we refer interested readers to the
complementary material included in the source repository at http:
//www.s3.eurecom.fr/tools/symbolic_execution/symcc.html.

4.3.1 Compile-time instrumentation

The instrumentation inserted by our compiler extension leaves the
basic behavior of the target program unmodified; it merely enhances
it with symbolic reasoning. In other words, the instrumented program
still executes along the same path and produces the same effects as
the original program, but additionally uses the symbolic backend to
generate new program inputs that increase code coverage or possibly
trigger bugs in the target program.

Since our compiler extension is implemented as an LLVM pass, it
runs in the “middle-end” of LLVM-based compilers—after the front-
end has translated the source language into LLVM bitcode but before
the backend transforms the bitcode into machine code. SymCC thus
needs to support the instructions and intrinsic functions of the LLVM
bitcode language. We implement the same semantics as IR-based sym-
bolic interpreters of LLVM bitcode, such as KLEE [12] and S2E [17]. In
contrast to the interpreters, however, we do not perform the symbolic
computations corresponding to the bitcode instructions at instrumen-
tation time but instead generate code ahead of time that performs
them during execution.2 This means that the instrumentation step

2 This also distinguishes our approach from what the formal verification community
calls symbolic compilation [80]. Symbolic compilers translate the entire program to a
symbolic representation in order to reason about all execution paths at once, while
we—like all symbolic execution systems—defer reasoning to run time, where it is
necessarily restricted to a subset of all possible execution paths.

http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html

4.3 implementation of symcc 45

happens only once, followed by an arbitrary number of executions.
Furthermore, the code that we inject is subject to compiler optimiza-
tions and eventually runs as part of the target program, without the
need to switch back and forth between the target and an interpreter
or attached observer. It is for this reason that we implemented the
instrumentation logic from scratch instead of reusing code from KLEE
or others: those systems perform run-time instrumentation whereas
our implementation needs to instrument the target at compile time.

There is a trade-off in positioning SymCC’s pass relative to the
various optimization steps. Early in the optimizer, the bitcode is still
very similar to what the frontend emitted, which is typically inefficient
but relatively simple and restricted to a subset of the LLVM bitcode
instruction set. In contrast, at later stages of the optimizer pipeline,
dead code has been optimized away and expensive expressions (e.g.,
multiplication) have been replaced with cheaper ones (e.g., bit shifts);
such optimized code allows for less and cheaper instrumentation
but requires handling a larger portion of the instruction set. In the
current implementation, our pass runs in the middle of the optimiza-
tion pipeline, after basic optimizations like dead-code elimination and
strength reduction but before the vectorizer (i.e., the stage that replaces
loops with SIMD instructions on supported architectures). Running
our code even later could improve the performance of compiled pro-
grams but would complicate our implementation by requiring us to
implement symbolic handling of vector operations; we opted for im-
plementation simplicity. It would be interesting to experiment more
with the various options of positioning SymCC in the optimization
pipeline; we defer such improvements to future work.

In the previous chapter, we found that symbolic execution is fastest
when it executes at the level of machine code, but that SMT queries
are easiest when generated based on the higher-level semantics of
an intermediate representation (see Section 3.5.1). This is exactly the
setup of SymCC: we reason about computations at the level of LLVM
bitcode, but the injected code is compiled down to efficient machine
code.

It is sometimes argued that binary-based vulnerability search is
more effective than source-based techniques because it examines the
instructions that the processor executes instead of a higher-level repre-
sentation; it can discover bugs that are introduced during compilation.
A full evaluation of this claim is outside the scope of this thesis. How-
ever, we remark that SymCC could address concerns about compiler-
introduced bugs by performing its instrumentation at the very end of
the optimization pipeline, just before code generation. At this point,
all compiler optimizations that may introduce vulnerabilities have
been performed, so SymCC would instrument an almost final version
of the program—only the code-generation step needs to be trusted.

46 compiler-based symbolic execution

Moreover, the next chapter presents a way to apply compilation-based
symbolic execution to binaries in scenarios where the need arises.

The reader may wonder whether SymCC is compatible with compiler-
based sanitizers, such as address sanitizer [72] or memory sanitizer [76].
In principle, there is no problem in combining them. Recent work by
Österlund et al. shows that sanitizer instrumentation can help to guide
fuzzers [58]. We think that there is potential in the analogous applica-
tion of the idea to symbolic execution—sanitizer checks could inform
symbolic execution systems where generating new inputs is most
promising. However, our current implementation, like most concolic
execution systems, separates test case generation from input evalu-
ation: sanitizers check whether the current input leads to unwanted
behavior, while SymCC generates new inputs from the current one.
We leave the exploration of sanitizer-guided symbolic execution in the
spirit of Österlund et al. to future work.

4.3.2 Shadow memory

In general, we store the symbolic expressions associated with data
in a shadow region in memory. Our run-time support library keeps
track of memory allocations in the target program and maps them to
shadow regions containing the corresponding symbolic expressions
that are allocated on a per-page basis. There is, however, one special
case: the expressions corresponding to function-local variables are
stored in local variables themselves. This means that they receive the
same treatment as regular data during code generation; in particular,
the compiler’s register allocator may decide to place them in machine
registers for fast access.

It would be possible to replace our allocation-tracking scheme with
an approach where shadow memory is at a fixed offset from the
memory it corresponds to. This is the technique used by popular
LLVM sanitizers [72, 76]. It would allow constant-time lookup of
symbolic expressions, where currently the lookup time is logarithmic
in the number of memory pages containing symbolic data. However,
since this number is usually very small (in our experience, below 10),
we opted for the simpler implementation of on-demand allocation.

4.3.3 Symbolic backend

We provide two different symbolic backends: Our own backend is a
thin wrapper around Z3. It is bundled as a shared object and linked
into the instrumented target program. The compiler pass inserts calls
to the backend, which then constructs the required Z3 expressions
and queries the SMT solver in order to generate new program inputs.

However, since the backend is mostly independent from the exe-
cution component and only communicates with it via a simple in-

4.3 implementation of symcc 47

terface, we can replace it without affecting the execution component,
our main contribution. We demonstrate this flexibility by integrat-
ing the QSYM backend, which can optionally be used instead of our
simple Z3 wrapper: We compile a shared library from the portion
of QSYM that handles symbolic expressions, link it to our target
program and translate calls from the instrumented program into
calls to the QSYM code. The interface of our wrapper around the
QSYM code consists of a set of functions for expression creation (e.g.,
SymExpr _sym_build_add(SymExpr a, SymExpr b)), as well as helper
functions to communicate call context and path constraints; adding
a path constraint triggers the generation of new inputs via Z3. Effec-
tively, this means that we can combine all the sophisticated expression
handling from the QSYM backend, including dependency tracking
between expressions and back-off strategies for hot code paths [86],
with our own fast execution component.

4.3.4 Concreteness checks

In Section 4.2.4, we highlighted the importance of concreteness checks:
for good performance, we need to restrict symbolic reasoning (i.e., the
involvement of the symbolic backend) to cases where it is necessary.
In other words, when all operands of a computation are concrete, we
should avoid any call to the symbolic backend. In our implementation,
symbolic expressions are represented as pointers at run time, and the
expressions for concrete values are null pointers. Therefore, checking
the concreteness of a given expression during execution is a simple
null-pointer check. Before each computation in the bitcode, we insert
a conditional jump that skips symbolic handling altogether if all
operands are concrete; if at least one operand is symbolic, we create
the symbolic expressions for the other operands as needed and call
out to the symbolic backend. Obviously, when the compiler can infer
that a value is a compile-time constant and thus never symbolic at run
time, we just omit the generation of code for symbolic handling.

By accelerating concrete computations during symbolic execution,
we alleviate a common shortcoming of conventional implementations.
Typically, only a few computations in a target program are symbolic,
whereas the vast majority of operations involve only concrete val-
ues. When symbolic execution introduces a lot of overhead even for
concrete computations (as is the case with current implementations
despite their concreteness checks), the overall program execution is
slowed down considerably. Our approach, in contrast, allows us to per-
form concrete computations at almost the same speed as in uninstru-
mented programs, significantly speeding up the analysis. Section 4.4
shows measurements to support this claim.

48 compiler-based symbolic execution

4.3.5 Interacting with the environment

Most programs interact with their environment, e.g., by working with
files, or communicating with the user or other processes. Any imple-
mentation of symbolic execution needs to either define a boundary
between the analyzed program and the (concrete) realm of the operat-
ing system, or execute even the operating system symbolically (which
is possible in S2E [17]). QSYM [86], for example, sets the boundary at
the system call interface—any data crossing this boundary is made
concrete.

In principle, our approach does not dictate where to stop symbolic
handling, as long as all code can be compiled with our custom com-
piler.3 However, for reasons of practicality, SymCC does not assume
that all code is available. Instead, instrumented code can call into any
uninstrumented code at run time; the results will simply be treated
as concrete values. This enables us to degrade gracefully in the pres-
ence of binary-only libraries or inline assembly, and it gives users a
very intuitive way to deliberately exclude portions of the target from
analysis—they just need to compile those parts with a regular com-
piler. Additionally, we implement a special strategy for the C standard
library: we define wrappers around some important functions (e.g.,
memset and memcpy) that implement symbolic handling where neces-
sary, so users of SymCC do not need to compile a symbolic version of
libc. It would be possible to compile the standard library (or relevant
portions of it) with our compiler and thus move the boundary to the
system call interface, similarly to KLEE and QSYM; while this is an
interesting technical challenge, it is orthogonal to the approach we
present here.

4.3.6 Supporting additional source languages

Since SymCC uses the compiler to instrument target programs, it
is in principle applicable to programs written in any compiled pro-
gramming language. Our implementation builds on top of the LLVM
framework, which makes it particularly easy to add support for pro-
gramming languages with LLVM-based compilers, such as C++ [78],
Rust [79] and Go [31]. We have implemented C++ support in SymCC,
and we use it as an example for describing the generalized process
of adding support for a new source language. The procedure con-
sists of two steps, which we discuss in more detail below: (1) loading
our LLVM pass into the compiler and (2) compiling the language’s
run-time library.

3 Our current implementation is restricted to user-space software.

4.3 implementation of symcc 49

Loading the pass

Any LLVM-based compiler eventually generates bitcode and passes it
to the LLVM backend for optimization and code generation. In order
to integrate SymCC, we need to instruct the compiler to load our
compiler pass into the LLVM backend. In the case of clang++, the
LLVM project’s C++ compiler, loading additional passes is possible
via the options -Xclang -load -Xclang /path/to/pass. Therefore, a
simple wrapper script around the compiler is all that is needed. Note
that the ability to load SymCC’s compiler pass is the only requirement
for a basic analysis; however, without instrumentation of the run-
time library (detailed below), the analysis loses track of symbolic
expressions whenever data passes through a function provided by the
library.

Compiling the run-time library

Most programming languages provide a run-time library; it often
abstracts away the interaction with the operating system, which typi-
cally requires calling C functions, and offers high-level functionality.
The result of compiling it with SymCC is an instrumented version of
the library that allows SymCC to trace computations through library
functions. In particular, it allows the analysis to mark user input read
via the source language’s idiomatic mechanism as symbolic, an essen-
tial requirement for concolic execution. C++ programs, for example,
typically use std::cin to read input; this object, defined by the C++
standard library, may rely on the C function getc internally, but we
need an instrumented version of std::cin in order to trace the sym-
bolic expressions returned by getc through the run-time library and
into user code.

For C++ support in SymCC, we chose libc++ [48], the LLVM
project’s implementation of the C++ standard library. It has the ad-
vantages that it is easy to build and that it does not conflict with
libstdc++, the GNU implementation of the library installed on most
Linux distributions. Compiling it with SymCC is a matter of setting the
CC and CXX environment variables to point to SymCC before invoking
the regular build scripts.

With those two steps—loading the compiler pass and compiling
the run-time library—we can provide full support for a new source
language.4 As a result, SymCC ships with a script that can be used as
a drop-in replacement for clang++ in the compilation of C++ code.

4 Occasionally, frontends for new languages may emit bitcode instructions that SymCC
cannot yet handle. In the case of C++, we had to add support for a few instructions
that arise in the context of exception handling (invoke, landingpad, resume, and
insertvalue).

50 compiler-based symbolic execution

4.4 evaluation

In this section we evaluate SymCC. We first analyze our system’s
performance on synthetic benchmarks (Section 4.4.1), allowing for
precisely controlled experiments. Then we evaluate our prototype on
real-world software (Section 4.4.2), demonstrating that the advantages
we find in the benchmarks translate to benefits in finding bugs in the
real world. The raw data for all figures is available at http://www.s3.
eurecom.fr/tools/symbolic_execution/symcc.html.

4.4.1 Benchmarks

For our benchmarks we use the setup that we proposed in the previous
chapter (see Section 3.4.1): at its core, it uses a set of test programs
that was published in the course of the DARPA Cyber Grand Chal-
lenge (CGC), along with inputs that trigger interesting behavior in
each application (called proofs of vulnerability or PoVs). The same set of
programs has been used by Yun et al. in the evaluation of QSYM [86],
so we know that QSYM is capable of analyzing them, which enables a
fair comparison. We applied the necessary patches for KLEE in order
to enable it to analyze the benchmark programs as well.5 Note that we
excluded five programs because they require inter-process communi-
cation between multiple components, making them hard to fit into our
controlled execution environment, and one more, NRFIN_00007, be-
cause it contains a bug that makes it behave differently when compiled
with different compilers (see Listing 4.5).

Listing 4.5: A bug in the code of NRFIN_00007. The variable ret is used unini-
tialized; if its value is non-zero, the program exits prematurely
without ever reading user input. Therefore, the program’s behav-
ior effectively depends on the stack layout and previous stack
contents.

1 int main(void) {

2 int ret;

3 size_t size;

4

5 malloc_init();

6

7 if (ret != 0)

8
_terminate(ret);

9

10 // ...

11 }

A major advantage of the CGC programs over other possible test
sets is that they eliminate unfairness which may otherwise arise from
the different instrumentation boundaries in the systems under com-

5 http://www.s3.eurecom.fr/tools/symbolic_execution/ir_study.html

http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/ir_study.html

4.4 evaluation 51

parison (see Section 4.3.5): in contrast with KLEE and QSYM, SymCC
does not currently execute the C standard library symbolically. It
would therefore gain an unfair speed advantage in any comparison
involving libc. The CGC programs, however, use a custom “standard
library” which we compile symbolically with SymCC, thus eliminating
the bias.6

We ran the benchmark experiments on a computer with an Intel
Core i7-8550U CPU and 32 GB of RAM, using a timeout of 30 minutes
per individual execution. We use SymCC with the QSYM backend,
which allows us to combine our novel execution mechanism with the
advanced symbolic backend by Yun et al.

Comparison with other state-of-the-art systems

We begin our evaluation by comparing SymCC with existing symbolic
execution engines on the benchmark suite described above, performing
three different experiments:

1. We compare pure execution time, i.e., running the target programs
inside the symbolic execution tools but without any symbolic
data.

2. We analyze execution time with symbolic inputs.

3. We compare the coverage of test cases generated during concolic
execution.

The targets of our comparison are KLEE [12] and QSYM [86]. We
decided for KLEE because, like SymCC, it works on LLVM bitcode
generated from source code; an important difference, however, is
that KLEE interprets the bitcode while SymCC compiles the bitcode
together with code for symbolic processing. Comparing with KLEE
therefore allows us to assess the value of compilation in the context of
symbolic execution. The decision for QSYM is largely motivated by
its fast execution component. Its authors demonstrated considerable
benefits over other implementations, and our own work provides ad-
ditional evidence for the notion that QSYM’s execution component
achieves high performance in comparison with several state-of-the-art
systems (see Chapter 3). Moreover, our reuse of QSYM’s symbolic
backend in SymCC allows for a fair comparison of the two systems’
execution components (i.e., their frontends). QSYM’s approach to sym-
bolic execution requires a relatively complex implementation because
the system must handle the entire x86 instruction set—we demonstrate
that SymCC achieves comparable or better performance with a much
simpler implementation (and the additional benefit of architecture

6 The Linux port of the custom library still relies on libc in its implementation, but it
only uses library functions that are thin wrappers around system calls without added
logic, such as read, write and mmap. KLEE and QSYM concretize at the system-call
interface, so the instrumentation boundary is effectively the same as for SymCC.

52 compiler-based symbolic execution

0.1

1

10

100

Native SymCC QSYM KLEE

Ti
m

e
(s

)
Figure 4.2: Time spent on pure execution of the benchmark programs, i.e.,

without symbolic data. Note the logarithmic scale of the time axis.
“Native” is the regular execution time of the uninstrumented
programs. On average, SymCC is faster than QSYM by 28× and
faster than KLEE by 30× (KLEE can execute only 56 out of 116

programs).

independence, at the cost of requiring source code or at least LLVM
bitcode).

In order to save on the already significant use of computational
resources required for our evaluation, we explicitly excluded two other
well-known symbolic execution systems: S2E [17] and Driller [77]. S2E,
being based on KLEE, is very similar to KLEE in the aspects that
matter for our evaluation, and preliminary experiments did not yield
interesting insights. Driller is based on angr [74], whose symbolic
execution component is implemented in Python. While this gives it
distinct advantages for scripting and interactive use, it also makes
execution relatively slow [86]. We therefore did not consider it an
interesting target for a performance evaluation of symbolic execution.

pure execution time We executed KLEE, QSYM and SymCC
on the CGC programs, providing the PoVs as input. For the measure-
ment of pure execution time, we did not mark any data as symbolic,
therefore observing purely concrete execution inside the symbolic
execution engines. In many real-world scenarios, only a fraction of
the data in the tested program is symbolic, so efficient handling of
non-symbolic (i.e., concrete) computations is a requirement for fast
symbolic execution [86]. Figure 4.2 shows the results: SymCC executes
most programs in under one second (and is therefore almost as fast
as native execution of uninstrumented programs), while QSYM and
KLEE need seconds up to minutes.

execution time with symbolic inputs Next, we performed
concolic execution on the CGC programs, again using the PoVs as
input. This time, we marked the input data as symbolic, so that sym-
bolic execution would generate new test cases along the path dictated
by each PoV. For a fair comparison, we configured KLEE to perform

4.4 evaluation 53

0.1

1

10

100

1000

10000

SymCC QSYM KLEE

Ti
m

e
(s

)

Figure 4.3: Time spent on concolic execution of the benchmark programs, i.e.,
with symbolic inputs (logarithmic scale). SymCC is faster than
QSYM by an average factor of 10× and faster than KLEE by 12×
(KLEE can execute only 56 out of 116 programs).

concolic execution like QSYM and SymCC. This setup avoids bias
from KLEE’s forking and scheduling components. It is worth noting,
however, that KLEE still performs some additional work compared
to QSYM and SymCC: since it does not rely on external sanitizers to
detect bugs, it implements similar checks itself, thus putting more load
on the SMT solver. Also, it features a more comprehensive symbolic
memory model. Since these are intrinsic aspects of KLEE’s design, we
cannot easily disable them in our comparison.

In essence, all three symbolic execution systems executed the target
program with the PoV input, at each conditional attempting to gener-
ate inputs that would drive execution down the alternative path. The
results are shown in Figure 4.3: SymCC is considerably faster than
QSYM and KLEE even in the presence of symbolic data.

coverage Finally, we measured the coverage of the test cases
generated in the previous experiment using the methodology of Yun et
al. [86]: for each symbolic execution system, we recorded the combined
coverage of all test cases per target program in an AFL coverage
map [88].7 On each given target program, the result was a set of
covered program points for each system, which we will call S for
SymCC and R for the system we compare to (i.e., KLEE or QSYM). We
then assigned a score d in the range [−1.0, 1.0] as per Yun et al. [86]:

d(S, R) =

|S−R|−|R−S|
|(S∪R)−(S∩R)| if S 6= R

0 otherwise

Intuitively, a score of 1 would mean that SymCC covered all program
paths that the other system covered and some in addition, whereas
a score of -1 would indicate that the other system reached all the

7 Traditional coverage measurement, e.g., with gcov, does not work reliably on the
CGC programs because of the bugs that have been inserted.

54 compiler-based symbolic execution

−1

0

1

Figure 4.4: Coverage score comparing SymCC and KLEE per tested program
(visualization inspired by Yun et al. [86]): blue colors mean that
SymCC found more paths, red colors indicate that KLEE found
more, and white symbolizes equal coverage. SymCC performs
better on 46 programs and worse on 10 (comparison restricted to
the programs that KLEE can execute, i.e., 56 out of 116).

paths covered by SymCC plus some more. We remark that this score,
while giving a good intuition of relative code coverage, suffers from
one unfortunate drawback: It does not put the coverage difference
in relation with the overall coverage. In other words, if two systems
discover exactly the same paths except for a single one, which is only
discovered by one of the systems, then the score is extreme (i.e., 1

or -1), no matter how many paths have been found by both systems.
In our evaluation, the coverage difference between SymCC and the
systems we compare to is typically small in comparison to the overall
coverage, but the score cannot accurately reflect this aspect. However,
for reasons of comparability we adopt the definition proposed by Yun
et al. unchanged; it still serves the purpose of demonstrating that
SymCC achieves similar coverage to other systems in less time.

We visualize the coverage score per test program in Figures 4.4
and 4.5. The former shows that SymCC generally achieves a higher
coverage level than KLEE; we mainly attribute differences to the sig-
nificantly different symbolic backends. The latter demonstrates that
SymCC’s coverage is comparable to QSYM’s, i.e., the compilation-
based execution component provides information of comparable qual-
ity to the symbolic backend. We suspect the reason that coverage of
some programs differs at all—despite the identical symbolic backends
in QSYM and SymCC—is twofold:

1. SymCC derives its symbolic expressions from higher-level code
than QSYM (i.e., LLVM bitcode instead of x86 machine code).
This sometimes results in queries that are easier for the SMT
solver, leading to higher coverage.

2. On the other hand, the lower-level code that QSYM analyzes can
lead to test cases that increase coverage of the program under
test at the machine-code level.

We conclude that compilation-based symbolic execution is signifi-
cantly faster than IR-based and even IR-less symbolic execution in our
benchmarks while achieving similar code coverage and maintaining a
simple implementation.

4.4 evaluation 55

−1

0

1

Figure 4.5: Comparison of coverage scores between SymCC and QSYM.
SymCC found more paths on 47 programs and less on 40; they
discovered the same paths on 29 programs. Similar coverage is
expected because SymCC uses the same symbolic backend as
QSYM.

Initialization overhead

In the course of our evaluation we noticed that QSYM and KLEE
have a relatively large constant-time overhead in each analysis. For
example, on our test machine, QSYM always runs for several seconds,
independently of the program under test or the concreteness of the
input. The overhead is presumably caused by costly instrumentation
work performed by the symbolic executor at the start of the analysis
(something that SymCC avoids by moving instrumentation to the
compilation phase). Therefore, we may assume that the execution
times TSymCC and Tother are not related by a simple constant speedup
factor but can more accurately be represented via initialization times
ISymCC and Iother, analysis times ASymCC and Aother, and a speedup
factor S that only applies to the analysis time:

TSymCC = ISymCC + ASymCC (4.1)

Tother = Iother + Aother = Iother + S · ASymCC (4.2)

Consequently, we can compute the speedup factor as follows:

S =
Tother − Iother

TSymCC − ISymCC
(4.3)

In order to obtain accurate predictions for the analysis time of long-
running programs, we therefore need to take the initialization time into
account when computing the speed-up factor. As a simple approxima-
tion for the worst case from SymCC’s point of view, we assumed that
the shortest observed execution consists of initialization only, i.e., sup-
pose ASymCC and Aother are zero in the analysis of the fastest-running
program. In other words, for each system we subtracted the time of
the fastest analysis observed in Section 4.4.1 from all measurements.
Then we recomputed the speedup in the affine model presented above.
For concolic execution with KLEE, we obtained an average factor of 2.4
at a constant-time overhead of 9.20 s, while for QSYM we computed a

56 compiler-based symbolic execution

factor of 2.7 at a constant-time overhead of 9.15 s. SymCC’s constant-
time overhead is 0.13 s; this confirms the benefit of instrumenting the
target at compile time.

Note that this model is only relevant for long-running programs,
which are rarely fuzzed.8 Otherwise, execution time is dominated by
the startup overhead of QSYM and KLEE. Nevertheless, the model
shows that SymCC’s performance advantage is not simply due to a
faster initialization—even when we account for constant-time overhead
at initialization and overestimate it in favor of QSYM and KLEE,
SymCC is considerably faster than both.

Compilation time and binary size

SymCC modifies the target program extensively during compilation,
which results in increased compilation time and larger binaries (be-
cause of inserted instrumentation). In order to quantify this overhead,
we first compiled all 116 CGC programs with both SymCC and regular
clang, and measured the total build time in either case. Compilation
required 602 s with SymCC compared to 380 s with clang; this corre-
sponds to an increase of 58 %. Note that this is a one-time overhead:
once a target program is built, it can be run an arbitrary number of
times.

Next, we compared the size of each instrumented executable pro-
duced by SymCC with the corresponding unmodified executable
emitted by clang. On average, our instrumented binaries are larger
by a factor of 3.4. While we have not optimized SymCC for binary
size, we believe that there is potential to reduce this factor if needed.
The largest contribution to code size comes from run-time concrete-
ness checks; if binary size became a major concern, one could disable
concreteness checks to trade execution time for space. In our tests we
have not experienced the necessity.

Impact of concreteness checks

In Section 4.2.4, we claimed that considerable improvements can be
gained by checking data for concreteness at run time and skipping
symbolic computation if all operands are concrete.

To illustrate this claim, let us examine just the initialization phase
of the CGC program CROMU_00001. During the startup, the CGC “stan-
dard library” populates a region in memory with pseudo-random data
obtained by repeated AES computations on a seed value; this happens
before any user input is read. In the uninstrumented version of the
program, the initialization code executes within roughly 8 ms. This is
the baseline that we should aim for. However, when we run a version
of SymCC with concreteness checks disabled on CROMU_00001, execution

8 The documentation of AFL, for example, recommends that target programs should
be fast enough to achieve “ideally over 500 execs/sec most of the time” [88].

4.4 evaluation 57

takes more than five minutes using our own simple backend, and
with the faster QSYM backend SymCC still requires 27 s. The reason
is that the instrumented program calls into the symbolic backend
at every operation, which creates symbolic expressions, regardless
of the fact that all operands are fully concrete. The QSYM backend
performs better than our simple backend because it can fold constants
in symbolic expressions and has a back-off mechanism that shields the
solver against overload [86]. However, recall that we are executing on
concrete data only—it should not be necessary to invoke the backend
at all!

In fact, concreteness checks can drastically speed up the analysis by
entirely freeing the symbolic backend from the need to keep track of
concrete computations. With concreteness checks enabled (as described
in Section 4.3.4), the symbolic backend is only invoked when necessary,
i.e., when at least one input to a computation is symbolic. For the
initialization of CROMU_00001, enabling concreteness checks results in
a reduction of the execution time to 0.14 s with the QSYM backend
(down from 27 s). The remaining difference with the uninstrumented
version is largely due to the overhead of backend initialization and
memory operations for book-keeping.

We assessed the effect across the CGC data set with PoV inputs
and found that the results confirm our intuition: concreteness checks
are beneficial in almost all situations. The only 3 cases where they
increased the execution time instead of decreasing it were very long-
running programs that perform heavy work on symbolic data.

4.4.2 Real-world software

We have shown that SymCC outperforms state-of-the-art systems in ar-
tificial benchmark scenarios. Now we demonstrate that these findings
apply as well to the analysis of real-world software. In particular, we
show that SymCC achieves comparable or better overall performance
despite its simple implementation and architecture-independent ap-
proach.

We used QSYM and SymCC in combination with the fuzzer AFL [88]
to test popular open-source projects (using AFL version 2.56b); KLEE
is not applicable because of unsupported instructions in the target
programs. For each target program, we ran an AFL master instance, a
secondary AFL instance, and one instance of either QSYM or SymCC.
The symbolic execution engines performed concolic execution on the
test cases generated by the AFL instances, and the resulting new test
cases were fed back to the fuzzers. Note that this is a relatively naive
integration between symbolic execution and fuzzer; however, since the
focus of this work is on the performance of symbolic execution, we
leave the exploration of more sophisticated coordination techniques to
future work (see Chapter 6).

58 compiler-based symbolic execution

OpenJPEG libarchive tcpdump

SymCC QSYM SymCC QSYM SymCC QSYM

Execution time (s) 1.9 14.9 1.6 19.1 0.3 27.1

Solver time (s) 26.4 15.7 0.2 1.8 0.3 8.2

Total time (s) 28.3 30.6 1.8 20.9 0.6 35.3

Execution (%) 6.7 48.7 91.7 91.2 41.7 76.8

SMT solving (%) 93.3 51.3 8.3 8.8 58.3 23.2

Factor vs QSYM 1.1 11.6 58.8

Table 4.1: Average time split between execution and SMT solving. See Fig-
ure 4.7 for a visualization of the total analysis times. Note how the
speedup factor in the last row correlates with SymCC’s improved
coverage displayed in Figure 4.6.

Fuzzing is an inherently randomized process that introduces a lot
of variables outside our control. Following the recommendations by
Klees et al. [44], we therefore let the analysis continue for 24 hours,
we repeated each experiment 30 times, and we evaluated the statis-
tical significance of the results using the Mann-Whitney U test. Our
targets are OpenJPEG, which we tested in an old version with known
vulnerabilities, and the latest master versions of libarchive and tcp-
dump. In total, we spent 3 experiments × 2 analysis systems × 30

iterations
experiment·analysis system × 3 CPU cores

iteration × 24 hours = 12 960 CPU core hours
≈ 17.8 CPU core months. The hardware used for these experiments
was an Intel Xeon Platinum 8260 CPU with 2 GB of RAM available to
each process (AFL, QSYM or SymCC).

While running the fuzzer and symbolic execution as specified above,
we measured the code coverage as seen by AFL9 (Figure 4.6) and the
time spent on each symbolic execution of the target program (Table 4.1
and Figure 4.7). We found that SymCC not only executes faster than
QSYM (which is consistent with the benchmarks of Section 4.4.1) but
also reaches significantly higher coverage on all three test programs.
Interestingly, the gain in coverage appears to be correlated with the
speed improvement, which confirms our intuition that accelerating
symbolic execution leads to better program testing.

Since we used an old version of OpenJPEG known to contain vul-
nerabilities, we were able to perform one more measurement in this
case: the number of crashes found by AFL. Unfortunately, crash triage
is known to be challenging, and we are not aware of a generally ac-
cepted approach to determine uniqueness. We therefore just remark
that there is no significant difference between the number of AFL

9 AFL’s coverage map is known to be prone to collisions and therefore does not reflect
actual code coverage [29]. However, AFL bases its decisions on the coverage map, so
the map is what counts when evaluating the benefit of a symbolic execution system
for the fuzzer.

4.4 evaluation 59

3
4
5
6
7
8
9

10
11

0h 5h 10h 15h 20h 25h

0

2

4

6

8

10

12

0h 5h 10h 15h 20h 25h

0
2
4
6
8

10
12
14
16
18

0h 5h 10h 15h 20h 25h

A
FL

m
ap

de
ns

it
y

(%
)

OpenJPEG

SymCC
QSYM

libarchive

SymCC
QSYM

tcpdump

SymCC
QSYM

Figure 4.6: Density of the AFL coverage map over time. The shaded areas are
the 95 % confidence corridors. The respective differences between
QSYM and SymCC are statistically significant with p < 0.0002.
Note that the coverage improvement correlates with the speedup
displayed in Figure 4.7.

60 compiler-based symbolic execution

0
10
20
30
40
50
60

OpenJPEG libarchive tcpdump

Ti
m

e
(s

)

SymCC
QSYM

Figure 4.7: Time per symbolic execution (median and quartiles, excluding
executions that exhausted time or memory resources). The differ-
ence between QSYM and SymCC is statistically significant with
p < 0.0001. Note the correlation between higher speed here and
increased coverage in Figure 4.6.

“unique crashes” found with QSYM and SymCC on this version of
OpenJPEG.

In the course of our experiments with OpenJPEG, SymCC found
two vulnerabilities that affected the latest master version at the time
of writing as well as previously released versions. Both vulnerabilities
were writing heap buffer overflows and therefore likely exploitable.
They had not been detected before, even though OpenJPEG is rou-
tinely fuzzed with state-of-the-art fuzzers and considerable computing
resources by Google’s OSS-Fuzz project. We reported the vulnerabil-
ities to the project maintainers, who confirmed and fixed both. The
vulnerabilities were subsequently assigned CVE identifiers 2020-6851

and 2020-8112 and given high impact scores by NIST (7.5 and 8.8,
respectively). In both cases, the problems arose from missing or in-
correct bounds checks—symbolic execution was able to identify the
potential issue and solve the corresponding constraints in order to
generate crashing inputs. In the same experiments, QSYM did not find
new vulnerabilities.

In conclusion, our experiments show that SymCC is not only faster
than state-of-the-art systems on benchmark tests—we demonstrated
that the increased speed of symbolic execution also translates to better
performance when testing real-world software.

4.5 discussion and future work

In this section, we discuss the results of our evaluation and show some
directions for future work.

4.5.1 Benefits of compilation

We have seen in that our compilation-based approach provides a
much faster execution component for symbolic execution than existing

4.5 discussion and future work 61

IR interpreters and IR-less systems. At the same time, we retain the
flexibility that comes with building symbolic execution on top of an
intermediate representation (i.e., our implementation is not tied to a
particular machine architecture) and the robustness of IR-less systems
(i.e., computations that we cannot analyze are still performed correctly
by the CPU). We believe that compilation-based symbolic execution,
where applicable, has the potential of accelerating symbolic execution
to a level that is comparable with fuzzing, making it significantly more
useful for bug discovery and rendering the combination of symbolic
execution and fuzzing even more attractive.

4.5.2 Portability and language support

Our current prototype supports programs written in C and C++. How-
ever, since we build on the LLVM framework, we could support any
program that is translatable to LLVM bitcode. In particular, this means
that we can integrate SymCC into any LLVM-based compiler, such as
the default compilers for Rust [79] and Swift [1], and the alternative
Go compiler gollvm [31]. Similarly, we can generate binaries for any
machine architecture that LLVM supports, without any changes in our
code. More generally, the technique of compilation-based symbolic
execution applies to any compiled programming language.

4.5.3 Binary analysis

So far, we have only discussed compilation-based symbolic execu-
tion in contexts where the source code of the program under test is
available. A common criticism of source-based tools is that they fall
short when the source for parts or all of a program is not available.
For example, developers may be in control of their own source code
but rely on a third-party library that is available in binary form only.
SymCC handles such situations by treating binary-only components as
black boxes returning concrete values. While this should be sufficient
for simple cases like binary-only libraries or inline assembly, there
are situations where symbolic execution of binary-only components
is necessary, i.e., where one wants to keep track of the computations
inside the black boxes. We see two promising avenues for addressing
such use cases with SymCC:

Lifting

SymCC currently uses compiler frontends to create LLVM bitcode
from source code, but there is no fundamental reason for creating the
bitcode from the source: S2E [17] popularized the idea of generating
a high-level IR from binaries for the purpose of symbolic execution.
It generates LLVM bitcode from the internal program representation

62 compiler-based symbolic execution

of QEMU [5] and runs it in KLEE [12]. A similar approach is used by
angr [74], which dynamically generates VEX IR for a symbolic inter-
preter from binaries. Several other such lifters have been designed for
purposes outside the realm of symbolic analysis [42]. While the IR ob-
tained from binaries is more verbose (see Section 3.4.3), SymCC could
be used in combination with a lifter to compile symbolic handling
into existing binaries. Trail of Bits has recently applied a similar lifting
technique to KLEE, essentially converting it from a source-based tool
to a symbolic execution engine that can work on binaries [82].

In Chapter 5, we present SymQEMU, a binary-only symbolic execu-
tor that builds on the idea of combining lifting and compilation-based
symbolic execution.

Hybrid with QSYM

It may be possible to combine our compilation-based approach with
QSYM’s capabilities of working on binaries; basically, one would
benefit from SymCC’s fast execution in the parts of the program
under test for which source code is available and fall back to QSYM’s
slower observer-based approach in binary-only parts. Considering that
SymCC can already work with QSYM’s symbolic backend, symbolic
expressions could be passed back and forth between the two realms—
the main challenge then lies in handling the transitions between source-
based and binary-only program components.

We would like to remark, however, that even binary-based symbolic
execution is often evaluated on open-source software, and many gray-
box fuzzers like AFL [88] only reach their full performance when the
source code of the program under test is available for instrumentation.

4.6 related work

As a program analysis technique, symbolic execution exists on a
spectrum. On the one extreme of that spectrum, bounded model
checking inlines all functions, unrolls loops up to a certain bound and
translates the entire program into a set of constraints [26, 65]. While
this process is sometimes called “symbolic compilation” [6], it is not to
be confused with our compilation-based symbolic execution: bounded
verification reasons about all executions at once, thus allowing for very
sophisticated queries but pushing most of the load to the SMT solver.
Our approach, in contrast, follows the tradition of symbolic execution
by reasoning about the program per execution path [12, 17, 74]. On
the other end of the spectrum, fuzz testing executes target programs
with very light or no instrumentation, heuristically mutating inputs
(and possibly using feedback from the instrumentation) in the hope
of finding inputs that evoke a certain behavior, typically program
crashes [7, 16, 25, 47, 88].

4.6 related work 63

While bounded verification provides powerful reasoning capabili-
ties, fuzzing is extremely fast in comparison. Conventional symbolic
execution lies between the two [12, 17, 74], with state-merging ap-
proaches [46, 80] leaning more towards bounded verification, and
hybrids with fuzzing attempting to produce fast but powerful practi-
cal systems [77, 86]. It is this last category of systems that forms the
basis for our approach: we target a combination of symbolic execution
and fuzzing similar to Driller [77] and QSYM [86]. By speeding up
symbolic execution, we aim to make its more sophisticated reasoning
available in situations where previously only fuzzing was fast enough.

Current work in symbolic execution, as outlined above and refer-
enced throughout the thesis, applies either interpreter- or observer-
based techniques. While early systems embedded symbolic reasoning
directly [13, 32, 71], they performed the instrumentation at the level
of C code, which severely restricts the set of possible input programs
and complicates the implementation significantly [32]. The approach
of instrumenting the program under test directly was abandoned in
KLEE [12], and subsequent work in symbolic execution mostly fol-
lowed its lead. We are not aware of any performance comparison
between the direct embedding implemented in early work and the
interpreter approach to symbolic execution implemented by KLEE
and later systems; we assume that the switch happened because in-
terpreters are more flexible and easier to implement correctly. With
SymCC, we demonstrate that directly embedding concolic execution
into the target program yields much higher performance than state-of-
the-art systems; at the same time, however, performing the embedding
at the level of the compiler’s intermediate representation allows us to
maintain the flexibility that is common in modern implementations.

The most closely related project outside the field of symbolic execu-
tion is Rosette, a “solver-aided programming language” [80]. It allows
programmers to express symbolic constraints while writing a program,
which it then executes in a “Symbolic Virtual Machine”. In contrast to
our approach, it is not meant for the analysis of arbitrary programs
but rather aims to support the development of program-synthesis and
verification tools. It requires the developer to use a domain-specific
language and design the program for symbolic analysis from the start.
Moreover, it does not compile the program to machine code but rather
executes it in a host environment, similarly to how KLEE orchestrates
multiple execution states in a single process.

SMT Kit [36] is a project that performs a similar embedding into
C++, and there is (incomplete) support for automatically transforming
source code to use the library [35]. The idea, if fully executed, may
have led to a system similar to SymCC, but the project seems to have
been abandoned years ago without a publication, and we have been
unable to contact the author. We anticipate that a robust source-to-
source translation would have been much more difficult to implement

64 compiler-based symbolic execution

than our IR transformation due to the complexity of the C++ language
in comparison with LLVM bitcode. Moreover, the system would have
been inherently limited to a single programming language, just like
the early implementations for C mentioned above, while SymCC’s
transformation at the IR level allows it to support any source language
for which an LLVM-based compiler exists.

4.7 conclusion

We have presented SymCC, a symbolic execution system that embeds
symbolic processing capabilities in programs under test via a compiler.
The evaluation shows that the direct embedding yields significant
improvements in the execution speed of the target programs, out-
performing current approaches by a large margin. Faster execution
accelerates the analysis at large and increases the chances of bug dis-
covery, leading us to find two high-impact vulnerabilities in a heavily
tested library. By using a compiler to insert symbolic handling into
target programs, we combine the advantages of IR-based and IR-less
symbolic execution: SymCC is architecture-independent and can sup-
port various programming languages with little implementation effort
(like IR-based approaches), but the analysis is very fast—considerably
faster even than current IR-less techniques.

availability

SymCC is publicly available at http://www.s3.eurecom.fr/tools/

symbolic_execution/symcc.html. The page also contains links to the
source code of all programs that we used in our evaluation, as well as
the raw results of the experiments. SymCC’s code base is thoroughly
documented in order to serve the community as a basis for future
research.

http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html

5
C O M P I L I N G S Y M B O L I C E X E C U T I O N I N T O
B I N A R I E S

We have shown in the previous chapter that compilation-based sym-
bolic execution can improve the performance of symbolic execution
significantly when source code is available. In this chapter, we demon-
strate a novel technique to enable compilation-based symbolic execu-
tion of binaries (i.e., without the need for source code). Our system,
SymQEMU, builds on top of QEMU, hooking into its QEMU’s dy-
namic binary translation to modify the intermediate representation of
the target program before translating it to the host architecture. This
enables SymQEMU to compile symbolic-execution capabilities into bi-
naries and reap the associated performance benefits while maintaining
architecture independence.

We present our approach and implementation, and we show that
it outperforms the state-of-the-art binary symbolic executors S2E
and QSYM with statistical significance; on some benchmarks, it even
achieves better performance than the source-based SymCC. Moreover,
our tool has found a previously unknown vulnerability in the well-
tested libarchive library, demonstrating its utility in testing real-world
software.

5.1 introduction

An important characteristic of symbolic execution systems is whether
they require the source code of the program under test (like SymCC,
presented in the previous chapter) or instead apply to binary-only pro-
grams in a black-box fashion. While source-based testing is sufficient
when one is testing one’s own products or open-source software, many
real-world scenarios require the ability to analyze binaries without the
source code available:

• We are increasingly surrounded by and rely upon embedded
devices. Their firmware is typically available in binary form only.
Security audits therefore require binary-analysis tools [73, 87].

• Even when testing one’s own products, proprietary library de-
pendencies may not ship with source code, rendering source-
based approaches infeasible.

• Source-based testing may simply be impractical for large pro-
grams under test. With a source-based tool, one typically needs
to build all library dependencies in a dedicated manner pre-
scribed by the tool, which may put a large burden on the tester.

65

66 compiling symbolic execution into binaries

Moreover, if the program under test is implemented in a mix
of programming languages, chances are that source-based tools
cannot handle all of them.

When a binary-only symbolic executor is called for, users often face
a dilemma: tools optimize either for performance or for architecture
independence but rarely provide both. For example, QSYM [86] has
shown how to implement very fast symbolic execution of binaries,
but it achieves its high speed by tying the implementation to the
instruction set of x86 processors. Not only does this render the system
architecture-dependent, it also increases its complexity due to the
sheer size of modern processors’ instruction sets; in the authors’ own
words, their approach is to “pay for the implementation complexity
to reduce execution overhead”. In contrast, S2E [17] is an example
of a system that is broadly applicable yet suffers from relatively low
execution speed. S2E can conceptually analyze code for most CPU
architectures, including kernel code. However, its wide applicability
is bought with multiple translations and finally interpretation of the
target program (to be detailed later), which increase the system’s
complexity and ultimately affect performance. In fact, it appears that
high performance in binary-only symbolic analysis is often achieved
with highly specialized implementations—a design choice that is in
conflict with architectural flexibility.

In this chapter, we show an alternative that (a) is independent of the
target architecture of the program under test, (b) has low implementa-
tion complexity, yet (c) achieves high performance. The key insight of
our system, SymQEMU, is that the CPU emulation of QEMU [5], based
on dynamic binary translation, can be combined with compilation-
based symbolic execution (see Chapter 4): instead of performing a
computationally expensive translation of the target program to an
intermediate representation that is subsequently interpreted symboli-
cally (like in S2E), we hook into QEMU’s binary-translation mechanism
in order to compile symbolic handling directly into the machine code
that the emulator emits and executes. This approach yields perfor-
mance superior to state-of-the-art systems while retaining full platform
independence. Currently, we focus on Linux user-mode programs (i.e.,
ELF binaries), but it would be possible to extend the concept to full-
system emulation for arbitrary QEMU-supported platforms (e.g., for
firmware analysis). Moreover, we will make SymQEMU publicly avail-
able to foster future research in the area.

We compared SymQEMU to state-of-the-art binary symbolic execu-
tors S2E and QSYM, and found that it outperforms both in terms of
coverage reached over time. Moreover, we show that SymQEMU’s per-
formance is similar to that of SymCC, even though the latter requires
access to source code (see Chapter 4). Finally, we submitted Sym-
QEMU to Google FuzzBench, a comparison framework for fuzzers;

5.2 the state of the art 67

Figure 5.1: Overview of angr: the target program is lifted to VEX IR and in-
terpreted symbolically or executed concretely inside the Unicorn
CPU emulator.

although the test suite is not targeted at symbolic execution systems,
SymQEMU outperformed all included fuzzers on 3 out of 21 targets.

In summary, this chapter makes the following contributions:

• We analyze state-of-the-art implementations of binary-only sym-
bolic execution and identify the respective strengths and weak-
nesses of their designs.

• We present an approach that combines the strengths of existing
systems while avoiding most of their weaknesses; the core idea is
a novel technique to apply compilation-based symbolic execution
to binaries.

• We evaluate our system in Google FuzzBench, as well as on
open-source and closed-source real-world software.

5.2 the state of the art

We now describe three popular state-of-the-art implementations and
study the design choices with which they address the challenges of
binary-only symbolic execution (see Section 2.3).

5.2.1 Angr [74]

A “classic” translating symbolic executor. It reuses VEX, the interme-
diate language and translator of the Valgrind framework [56]. The
target programs are translated at run time; the symbolic executor then
interprets the VEX instructions. As an optimization, angr can execute
computations that do not involve symbolic data (i.e., whose results do
not depend on program input) in Unicorn [66], a fast CPU emulator
based on QEMU [5]. Figure 5.1 illustrates the design.

68 compiling symbolic execution into binaries

Figure 5.2: Overview of S2E: the target program is lifted to TCG ops and
then either translated to host machine code or lifted once more
and executed symbolically in KLEE.

By virtue of being based on VEX, angr inherits support for all
architectures that VEX knows how to handle. Since the core of the
symbolic executor is written in Python, it is rather slow (see Chapter 3)
but very versatile.

5.2.2 S2E [17]

Created from the desire to extend the reach of the source-based
symbolic-execution system KLEE [12] to the target program’s de-
pendencies and the operating-system kernel. To this end, S2E runs an
entire operating system inside the emulator QEMU [5] and connects it
to KLEE in order to execute relevant code symbolically (see Figure 5.2).
The resulting system is rather complex, involving multiple translations
of the program under test:

1. QEMU is a binary translator, i.e., in normal operation, it trans-
lates the target program from machine code to an intermediate
representation (called TCG ops), then recompiles it to machine
code for the host CPU.

2. When computations involve symbolic data, the modified QEMU
used by S2E does not recompile the TCG ops to host code;
instead, it translates them to LLVM bitcode [49], which is subse-
quently passed to KLEE.

3. KLEE interprets the LLVM bitcode symbolically and hands the
concrete portion of the results back to QEMU.

This approach results in a very flexible system that can conceptually
handle many different architectures and trace computations through
all layers of the operating system.1 However, the flexibility comes at a

1 At the time of writing, only x86 is fully supported (https://github.com/S2E/
s2e-env/issues/268).

https://github.com/S2E/s2e-env/issues/268
https://github.com/S2E/s2e-env/issues/268

5.3 relation to symcc 69

Figure 5.3: Overview of QSYM: the target program is executed directly on
the CPU while QSYM instruments it dynamically.

cost: S2E is a complicated system with a large code base. Moreover, the
two-step translation from machine code to TCG ops and from there to
LLVM bitcode hurts its performance (see Chapter 3). Compared with
angr from a user’s point of view, S2E is more involved to set up and
run but provides a more comprehensive analysis.

5.2.3 QSYM [86]

With a strong emphasis on performance, QSYM does not translate the
target program to an intermediate language. Instead, it instruments
x86 machine code at run time to add symbolic tracing to binaries (see
Figure 5.3). Concretely, it employs Intel Pin [52], a dynamic binary
instrumentation framework, to insert hooks into the target program.
Inside the hooks, it performs the symbolic equivalent of the machine-
code instructions that the program executes.

This design yields a very fast and robust symbolic executor for x86

programs. However, the system is inherently restricted to a single
target architecture, and the implementation is tedious because it needs
to handle each and every x86 instruction that can be expected to occur
in relevant computations. In previous work, we have found QSYM to
be a great tool for the analysis of x86 binaries, but adding support for
another architecture would be a significant amount of work.

5.3 relation to symcc

We consider it worthwhile to point out how our work on binary-
only symbolic execution relates to SymCC, presented in the previous
chapter, and why there is a need for yet another symbolic executor.

In short, SymCC does not work on binaries. Its compilation-based
approach fundamentally requires a compiler—SymCC is therefore
applicable only when source code of the program under test is avail-
able. Nonetheless, we considered the approach promising enough
to search for a way to apply it to binary-only symbolic execution. A
major contribution of this chapter is to demonstrate how compilation-

70 compiling symbolic execution into binaries

Figure 5.4: Overview of SymCC: the source code of the target program is
compiled to machine code; symbolic handling is injected at the
level of LLVM bitcode in the compiler.

based symbolic execution can, in fact, be made to work efficiently on
binaries.

Figure 5.4 recalls the design of SymCC for comparison with the
figures in Section 5.2.

5.4 symqemu

We now present the design and implementation of our binary-only
symbolic executor SymQEMU. It draws from previous work and
combines the advantages of state-of-the-art systems with novel ideas
to create a fast yet flexible analysis engine.

5.4.1 Design

The system has two main goals:

1. Achieve high performance in order to scale to real-world soft-
ware.

2. Stay reasonably platform-independent, i.e., adding support for a
processor architecture should not require a major effort.

Based on the survey in Section 5.2, we observe that popular state-
of-the-art systems typically achieve one of those goals, but not both:
among those presented, S2E and angr are highly flexible yet fall behind
in performance (as shown in Chapter 3), whereas QSYM is very fast
but intimately tied to the x86 platform [86].

We have seen that current solutions which are platform-independent
translate the program under test to an intermediate representation—
this way, in order to support a new architecture, only the translator has
to be ported. Ideally, one picks an intermediate language for which
translators from many relevant architectures exist already. Represent-
ing programs in an architecture-independent way for flexibility is a

5.4 symqemu 71

well-known technique that has been successfully applied in many
other domains, such as compiler design [49] and static binary analy-
sis [42]. We therefore incorporate it into our design as well.

While translating programs to an intermediate representation gives
us flexibility, we need to be aware of the impact on performance:
translating binary-only programs statically is challenging because
disassembly may not be reliable (especially in the presence of indi-
rect jumps [60]), and performing the translation at run time incurs
overhead during the analysis. We believe that this is the core reason
why translating symbolic executors like S2E and angr lag behind non-
translating systems like QSYM in terms of performance. Our goal is
to find a way to build a translating system that still performs well.

First, we note that the speed of both S2E and angr is affected by
non-essential issues that could be fixed with an engineering effort:

• S2E translates the program under test twice (see Section 5.2.2).
The second translation could be avoided if symbolic execution
was implemented on the first intermediate representation.2

• Angr’s performance suffers from the Python implementation;
porting the core to a faster programming language would likely
result in a noteworthy speedup.

However, our contribution goes beyond just identifying and avoid-
ing those two problems. This is where a second observation comes into
play: Both S2E and angr, as well as all other translating binary-only
symbolic executors that we are aware of, interpret the intermediate
representation of the program under test. (This is independent of the
modifications suggested above—interpretation is a core part of their
design.) We conjecture that compiling an instrumented version of the
target program yields much higher performance. SymCC shows that
this is true of source-based symbolic execution (see Chapter 4), but its
compiler-based design inherently requires source code and therefore
doesn’t apply to the binary-only use case.

Our approach, inspired by the above observations, is the following:

1. Translate the target program to an intermediate language at run
time.

2. Instrument the intermediate representation as necessary for sym-
bolic execution.

3. Compile the intermediate representation to machine code suit-
able for the CPU running the analysis and execute it directly.

By compiling the instrumented target program to machine code, we
compensate for the performance penalty incurred by translating the

2 In fact, the developers of S2E have plans to do just that, documented at https:

//github.com/S2E/s2e-env/issues/178.

https://github.com/S2E/s2e-env/issues/178
https://github.com/S2E/s2e-env/issues/178

72 compiling symbolic execution into binaries

Figure 5.5: Overview of regular QEMU: the target program is translated to
TCG ops, which are subsequently compiled to machine code and
executed on the host CPU.

binary to an intermediate language in the first place: The CPU executes
machine code much faster than an interpreter can run the intermediate
representation, such that we achieve performance comparable to a
non-translating system while retaining the advantage of architecture
independence that comes with program translation.

5.4.2 Implementation

We implemented SymQEMU on top of QEMU [5], as suggested by the
name. We have chosen QEMU because it is a robust system emulator
that supports a plethora of architectures. Building on it, we are able to
achieve our goal of platform independence. Note that S2E is similarly
based on QEMU, presumably for similar reasons. But there is another
characteristic of QEMU that caters to our needs and differentiates
it from other translators: QEMU does not only translate binaries
to a processor-independent intermediate representation, it also has
facilities for compiling the intermediate language down to machine
code for the host CPU. We leverage this mechanism to achieve our
second goal: performance.

Note that the Valgrind framework supports a similar mechanism,
which its authors call “disassemble-and-resynthesize” [56]; the main
advantage of QEMU over Valgrind for our purposes is that QEMU
can translate binaries from a given guest architecture into machine
code for a different host architecture, as well as emulate an entire
system, which makes it a better basis for future extensions supporting
cross-architecture firmware analysis.

Concretely, we extend a component in QEMU called Tiny Code
Generator (TCG). In unmodified QEMU, TCG is responsible for trans-
lating blocks of guest-architecture machine code to an architecture-
independent language called TCG ops, then compile those TCG ops to
machine code for the host architecture (see Figure 5.5). The translated
blocks are subsequently cached for performance reasons, so transla-

5.4 symqemu 73

tion needs to happen only once per execution. SymQEMU inserts one
more step into the process: While the program under test is being
translated to TCG ops, we emit not only the instructions that emulate
the guest CPU but also additional TCG ops to construct symbolic
expressions for the results (see Figure 5.6).

For example, suppose that a function in a target program adds the
constant 42 to an input integer (using C code for the example):

1 int add42(int x) {

2 return x + 42;

3 }

With optimization enabled, GCC inlines the function and trans-
lates it to this assembly instruction when compiling for the x86-64

architecture:

1 lea esi,[rax+0x2a]

The machine code is all that SymQEMU gets; it does not have access
to the source code (which we display for illustration purposes only).
When we execute the target, TCG produces the following architecture-
independent representation of the machine code:

1 movi_i64 tmp12, $0x2a

2 add_i64 tmp2, rax, tmp12

3 ext32u_i64 rsi, tmp2

Note that the arguments of TCG ops are ordered like x86 assembly in
Intel syntax, i.e., the destination is the first argument of any instruction.
The instructions above perform a 64-bit addition and store the result
as a 32-bit integer. Regular QEMU would translate these TCG ops to
machine code for the host architecture. SymQEMU, however, inserts
additional instructions for symbolic computation before the code is
translated to the host architecture:

1 movi_i64 tmp12_expr, $0x0

2 movi_i64 tmp12, $0x2a

3

4 call sym_add_i64, $0x5, $1, tmp2_expr,

5 rax, rax_expr, tmp12, tmp12_expr

6 add_i64 tmp2, rax, tmp12

7

8 movi_i64 tmp12, $0x4

9 call sym_zext, $0x5, $1, rsi_expr, tmp2_expr, tmp12

10 ext32u_i64 rsi, tmp2

Each block of code corresponds to one of the TCG ops produced
by QEMU originally; in fact, the last instruction of every block is
identical with the respective original instruction. In the first block, we
set the expression pertaining to the constant 42 to null (i.e., we declare
the value to be concrete). In the second block, the helper sym_add_i64

creates a symbolic expression representing the addition of two 64-bit

74 compiling symbolic execution into binaries

Figure 5.6: Overview of SymQEMU: the target program is translated to TCG
ops as in regular QEMU (see Figure 5.5), but before the compi-
lation to host machine code we insert instructions to perform
symbolic execution at run time.

integers (using rax_expr, the expression corresponding to the function
input). Finally, the last block calls the helper sym_zext with argument
4 to build an expression that translates the result of the addition to
a 4-byte (i.e., 32-bit) quantity. Crucially, SymQEMU does not perform
any of these calls to the support library at translation time (as an
interpreter would)—it only emits the corresponding TCG ops and
relies on the regular QEMU mechanisms to translate them to machine
code. This way, symbolic formulas are constructed in native machine
code without incurring the overhead associated with interpreting an
intermediate language.

For the support library that constructs symbolic expressions and
solves queries over them, we reuse code from SymCC, which is in
turn based on QSYM (see Chapter 4). This has the advantage, in
addition to saving us from having to reimplement what works well
in QSYM, that it eliminates a source of noise from our evaluation:
since SymQEMU and QSYM use the same logic for building up and
simplifying expressions, as well as for interaction with the solver, we
can be sure that observed performance differences do not originate
from those orthogonal design aspects.

We currently use QEMU’s Linux user-mode emulation, i.e., we
emulate only the user space of the guest system. System calls are
translated to fulfill the host architecture’s requirements, and they are
executed against the host kernel (using normal QEMU mechanics).
Consequently, our symbolic analysis stops at the system-call boundary,
similar to QSYM and angr. Compared to full-system emulation (as
performed by S2E), this saves the effort of preparing OS images for
each target architecture, and increases performance by running ker-
nel code concretely and without emulation. Note, however, that our
implementation could be extended to work with QEMU’s full-system
emulation if necessary (see Section 5.6).

5.4 symqemu 75

Overall, SymQEMU adds about 2,000 lines of C code to QEMU.
Furthermore, we added a few lines of C++ (less than 100) to SymCC’s
support library in order to support our approach to memory manage-
ment (see Section 5.4.5).

5.4.3 Platform independence

We stated that support for multiple CPU architectures was an impor-
tant goal for SymQEMU from the start. Therefore, we now examine in
detail to which extent our system achieves it. (SymQEMU’s claim to
the second design goal, performance, is validated experimentally in
Section 5.5.)

First of all, it is important to distinguish between the architecture
of the computer that runs the analysis (typically called the host) and
the architecture that the program under test is compiled for (the guest
in QEMU parlance). Especially in firmware analysis, it is desirable
for host and guest architecture to be different—the embedded device
that a firmware under test runs on may lack the computing power to
perform symbolic analysis at a reasonable pace, so one would typically
run the symbolic executor (and, in general, any firmware tests [34])
on a more powerful machine. SymQEMU is well prepared for this use
case: QEMU runs on all major host architectures.3

But what about guest architectures? SymQEMU leverages QEMU’s
TCG translators, which cover a wide range of processor types—the
online documentation4 currently lists 22 platforms including x86,
ARM, MIPS and Xtensa, each comprising numerous processor types.
Moreover, our modifications are almost entirely independent of the
target platform: out of the 2,000 lines of C code that we added to
QEMU, only 10 are specific to the guest architecture (i.e., x86 in our
experiments). In particular, they perform the following tasks:

• 6 lines add space for symbolic expressions to the data structure
describing the registers of the emulated CPU. Adapting them to
other CPU architectures is a simple copy-paste task.

• The remaining 4 lines of code insert TCG ops on guest-level
call and return instructions. This is optional, but it allows the
code borrowed from QSYM to maintain a shadow call stack (see
Section 5.4.7). In order to support another target architecture,
one just has to identify the architecture’s respective call and
return primitives.

We confirmed the claim to easy adaptability by adding support
for AArch64 to SymQEMU. It required 17 lines of C code, excluding
the optional call and return instrumentation. Note that the current

3 Our prototype currently requires a 64-bit host system for implementation simplicity.
4 https://wiki.qemu.org/Documentation/Platforms

https://wiki.qemu.org/Documentation/Platforms

76 compiling symbolic execution into binaries

implementation expects 64-bit guest architectures (so that host ad-
dresses can be passed in guest registers), but there is no fundamental
reason for this limitation—it could be eliminated with a one-time
development effort.

In summary, SymQEMU runs on all relevant host architectures and
supports the analysis of binaries compiled for any guest architecture
that QEMU can handle, with negligible effort.

5.4.4 Comparison with previous designs

We would like to point out how SymQEMU differs from the state-of-
the-art systems presented in Section 5.2.

Like angr and S2E, SymQEMU follows the traditional approach of
implementing symbolic handling at the level of an intermediate rep-
resentation, which significantly reduces the complexity of the imple-
mentation. However, in contrast with those two, SymQEMU performs
compilation-based symbolic execution, allowing it to achieve much
higher performance (see Section 5.5).

Compared with QSYM, the most important advantage of Sym-
QEMU’s design is architectural flexibility while maintaining high
execution speed. Building on top of QEMU allows it to benefit from
the large number of platforms that the emulator supports.

SymCC, although unable to analyze binaries, shares the compilation-
based approach with SymQEMU. Both insert symbolic handling into
the target program by modifying its intermediate representation, and
both compile the result down to machine code that can be executed
efficiently. However, SymCC is inherently designed to work in a com-
piler, whereas SymQEMU addresses the different set of challenges
encountered in binary-only symbolic execution (see Section 2.3): where
SymCC instruments LLVM bitcode during (source-based) compilation,
SymQEMU instruments TCG ops during dynamic binary translation.
See Section 5.4.6 for challenges that are specific to working on top of a
dynamic binary translator. Moreover, SymQEMU handles mismatches
between target and host architectures, an issue that does not arise
in SymCC’s setting because source code is mostly independent of
the target architecture. In this context, we would like to emphasize
that SymQEMU can support cross-architecture analysis, i.e., the CPU
architecture that the program under test is compiled for does not need
to match the architecture of the machine performing the analysis.

In summary, we believe that our approach combines the main ad-
vantages of angr and S2E on the one hand (i.e., platform indepen-
dence) and QSYM on the other (i.e., performance), but avoids their
respective disadvantages (lower performance and dependence on a
particular architecture, respectively). Moreover, we found a way to
apply SymCC’s core idea of compilation-based symbolic execution to
binaries. Tables 5.1 and 5.2 summarize the comparison.

5.4 symqemu 77

Symbolic executor Reference Implementation
language

Intermediate
representation

angr [74] Python VEX

S2E [17] C/C++ TCG & LLVM

QSYM [86] C++ none

SymCC [63] C++ LLVM

SymQEMU C/C++ TCG

Table 5.1: Relevant characteristics of SymQEMU and state-of-the-art symbolic
execution systems.

Symbolic executor Speed Multiarch Binary-only Cross-architecture

angr 7 3 3 3

S2E 7 3 3 3

QSYM 3 7 3 7

SymCC 3 3 7 7

SymQEMU 3 3 3 3

Table 5.2: Feature support in SymQEMU and state-of-the-art symbolic exe-
cution systems. Speed refers to a focus on execution speed, mul-
tiarch means easy portability to various guest CPU architectures,
binary-only refers to support for analysis without source code, and
cross-architecture means the ability to analyze programs targeting a
different architecture than the host.

78 compiling symbolic execution into binaries

We now discuss some of the challenges that we faced when building
SymQEMU.

5.4.5 Memory management

As SymQEMU executes the program under analysis, it builds up
symbolic expressions that describe intermediate results and path con-
straints. The amount of memory required for those expressions in-
creases over time, so SymQEMU needs a way to clean up expressions
that are not needed anymore.

Before we describe SymQEMU’s approach to memory management,
let us discuss why managing memory is necessary in the first place.
After all, intermediate results in any reasonable program should either
have an impact on control flow or become part of the final result—
in the former case, the corresponding expressions are added to the
set of path constraints and thus cannot be cleaned up, and in the
latter case the expressions become subexpressions in the description
of the end result. So how can symbolic expressions ever become
unneeded? The key insight is that program output is conceptually part
of a program’s result, but it may be produced well before the end of
execution. Consider the example of an archive tool which lists the
contents of an archive, printing file names one by one: after each piece
of output is produced, the program can delete the associated string
data, and SymQEMU should clean up the corresponding symbolic
expressions. Otherwise, expressions would accumulate and, in the
worst case, consume all available memory.

Ideally, we would delete symbolic expressions precisely after their
last use. QSYM, whose backend we reuse, employs C++ smart pointers
to this end. However, we cannot easily follow the same approach in our
modified version of QEMU: TCG, the QEMU component at the center
of our execution mechanism, is a dynamic translator—for performance
reasons, it does not conduct any extensive analysis of translated code
(unlike static compilers, which typically collect a significant amount
of information related to variable scope and lifetime). This makes it
difficult to efficiently determine the right place for inserting cleanup
code in the translated program. Moreover, experience shows that
most programs contain relatively little symbolic data and even less
expressions that become garbage during execution, so we do not want
our cleanup scheme to incur significant overhead in the most common
case where all expressions can reside in memory until the end of
program execution.

We opted for an optimistic cleanup scheme based on an expression
garbage collector: SymQEMU keeps track of all symbolic expressions
obtained from the backend, and if their number grows too large it trig-
gers a collection. The core observation is that all live expressions can
be found by scanning (1) the symbolic registers of the emulated CPU

5.4 symqemu 79

and (2) the shadow regions in memory that store symbolic expressions
corresponding to symbolic memory contents; both are known to the
backend. After enumerating all live expressions, SymQEMU can com-
pare the resulting set with the set of all expressions ever constructed,
and free those that are not live anymore. In particular, when a program
removes the results of a computation from registers and memory (as
in the example of the archiver above), the corresponding expressions
are not considered live anymore and will thus be freed. We have
connected the expression garbage collector to QSYM’s smart-pointer
based memory management—both mechanisms need to agree that an
expression is unused before it can be freed.

5.4.6 Modifying TCG ops

Our approach fundamentally requires the ability to insert new in-
structions into the list of TCG ops that represent a piece of target
code. However, TCG was never meant to allow for such extensive
modifications during translation—being a dynamic translator, it has a
strong focus on speed. As a consequence, there is little support for pro-
grammatic editing of TCG ops. Whereas LLVM, for example, provides
an extensive API for compiler passes to inspect and modify LLVM
bitcode,5 TCG simply stores instructions in a flat linked list with-
out any navigable higher-level structure like basic blocks. Moreover,
control flow is expected to be linear within a translation block (with
very limited exceptions), precluding optimizations such as SymCC’s
embedded concreteness checks (see Section 4.3.4).

In order to minimize friction with the TCG infrastructure, our imple-
mentation emits symbolic handling for each target instruction when
the instruction itself is generated. While this prevents issues with
TCG’s optimizer and code generator, it renders advanced static op-
timizations infeasible because our view is limited to only a single
instruction at a time. In particular, we have very little opportunity to
determine statically whether a given temporary value is concrete. Sim-
ilarly, we cannot emit jumps that directly skip symbolic computations
if all operands turn out to be concrete at run time. Instead, we settled
on a compromise that accounts for the constraints of TCG’s operat-
ing environment (in particular, the need for fast dynamic translation)
while still allowing us to achieve relatively high execution speed: We
perform concreteness checks in the support library—this way, we can
still skip symbolic computations when the inputs are concrete, but the
check costs an additional library call.

5 https://llvm.org/docs/ProgrammersManual.html#helpful-hints-for-common-operations

https://llvm.org/docs/ProgrammersManual.html#helpful-hints-for-common-operations

80 compiling symbolic execution into binaries

5.4.7 Shadow call stack

QSYM introduced the concept of context-sensitive basic-block prun-
ing [86], a technique that suppresses symbolic analysis if a certain
computation is encountered frequently in the same call-stack context
(based on the intuition that repeating the analysis over and over in
the same context will not lead to new insights). In order to support
this optimization, symbolic executors need to maintain a shadow call
stack, which requires keeping track of call and return instructions.

Building on top of QEMU, we faced the challenge that TCG ops are
a very low-level representation of the target program. In particular,
calls and returns are not represented as individual instructions in
TCG but instead translate to a series of TCG ops.6 For example, a
function call on x86 results in TCG ops that push the return address
onto the emulated stack, adjust the guest’s stack pointer, and modify
the guest’s instruction pointer according to the called function. This
makes it nearly impossible to recognize calls and returns reliably
and in a platform-independent manner by just examining the TCG
ops. We chose to optimize for robustness: in the architecture-specific
QEMU code that translates machine code to TCG ops, we notify the
code generator whenever a call or a return is encountered. (Hence the
four architecture-specific lines of code in the x86 translator mentioned
earlier—one line each for call immediate, call, return immediate, and
return.) The downside is that such notifications have to be inserted
into the translation code for each target architecture; however, the task
is easy and the amount of code very small, so we consider it well
worthwhile.

5.5 evaluation

In order to evaluate SymQEMU, we performed three different sets of
experiments:

1. We compared it to a number of state-of-the art fuzzers with the
help of Google FuzzBench.

2. Since FuzzBench does not include symbolic execution tools, we
ran a comparison with popular binary-only symbolic executors
on a set of real-world programs.

3. In order to assess the difference in execution speed between
SymQEMU, QSYM and SymCC, we performed a benchmark
comparison between those concolic executors on fixed inputs.

6 There is a call instruction in TCG, but it serves a different purpose.

5.5 evaluation 81

Target Rank Seed corpus Dictionary

SymQEMU Pure AFL

bloaty 7 4 3 7

curl 5 1 3 7

freetype2 2 4 3 7

harfbuzz 2 4 3 7

jsoncpp 4 11 7 3

lcms 1 7 7 3

libjpeg-turbo 1 5 3 7

libpcap 6 10 3 7

libpng 1 7 3 7

libxml2 4 2 3 7

mbedtls 6 4 3 7

openssl 3 6 3 7

openthread 2 6 3 7

php 3 5 3 3

proj4 5 4 7 7

re2 4 6 7 7

sqlite3 5 2 3 3

systemd 3 2 3 7

vorbis 4 5 3 7

woff2 3 5 3 7

zlib 6 8 3 7

Table 5.3: Summary of the FuzzBench results for 21 targets. SymQEMU
ranked first on 3 targets and outperformed pure AFL on 14.

5.5.1 FuzzBench

Google announced FuzzBench in March 2020 as “a fully automated,
open source, free service for evaluating fuzzers”.7 It tests fuzzers
in a controlled environment, comparing their performance across a
large number of targets taken from Google OSS-Fuzz, a collection of
fuzz targets for open-source software.8 For each target, the service
compares the edge coverage obtained by the fuzzers. Integrating
a new analysis tool amounts to configuring a Docker container to
set up the environment, build the target programs, and launch the
analysis. We added a combination of SymQEMU and AFL to the set
of analysis tools, and the FuzzBench team graciously performed a
run of the experiments. In total, they ran SymQEMU and 12 fuzzer
configurations on 21 targets for 24 hours, performing 15 trials per
fuzzer and target (amounting to roughly 10 CPU core years).

7 https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.

html

8 https://google.github.io/oss-fuzz/

https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html
https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html
https://google.github.io/oss-fuzz/

82 compiling symbolic execution into binaries

Figure 5.7: Excerpt from the FuzzBench report: Ranking by median reached
coverage for the FuzzBench target lcms. SymQEMU outperforms
all other tools on this target.

Figure 5.8: Excerpt from the FuzzBench report: Mean coverage growth over
time (and 95 % confidence intervals) for the FuzzBench target
lcms. SymQEMU outperforms all other tools on this target.

5.5 evaluation 83

Figure 5.9: Excerpt from the FuzzBench report: Ranking by median reached
coverage for the FuzzBench target woff2. SymQEMU reaches 3rd
rank on this target.

Figure 5.10: Excerpt from the FuzzBench report: Mean coverage growth over
time (and 95 % confidence intervals) for the FuzzBench target
woff2. SymQEMU reaches 3rd rank on this target.

84 compiling symbolic execution into binaries

Figures 5.7, 5.8, 5.9 and 5.10 exemplify the outcome for two targets,
and Table 5.3 summarizes the results; we provide the full report on-
line.9 On average across all experiments, SymQEMU outperformed
all fuzzers but Honggfuzz, 5 of them with statistical significance, in-
cluding the popular industrial-strength tool libfuzzer. On 3 out of 21

targets, SymQEMU achieved the highest coverage among all tools, and
it outperformed pure AFL on 14 targets; it is worth mentioning, how-
ever, that pure AFL consequently performed better than our hybrid
fuzzer on 7 targets. The specific potential contribution of symbolic
execution generally depends on several factors, including the avail-
ability of a seed corpus or dictionary, and the nature of the analyzed
code—for instance, if the target makes heavy use of hash functions
or other irreversible operations, the utility of symbolic execution is
diminished.

Overall, we take the results as a confirmation of SymQEMU’s power,
especially since we have not optimized for any of the FuzzBench
targets to avoid overfitting. Note also that SymQEMU achieves this
without using the targets’ source code, and that the overwhelming
majority of the targets are accompanied by good seed corpora and/or
dictionaries, where symbolic execution typically does not contribute
as much in terms of raw coverage as it would if no seeds were avail-
able (see Section 5.5.2). Finally, our rather crude integration simply
dedicates 50 % of CPU time to symbolic execution; we believe that a
more sophisticated coordination strategy between fuzzer and symbolic
executor (e.g., in the spirit of the recently presented Pangolin [38]),
could further improve the results (see Chapter 6).

5.5.2 Comparison with other symbolic execution systems

SymQEMU’s primary goal is binary-only symbolic execution. In this
section, we therefore compare it to state-of-the-art tools in this space.
In particular, we evaluate it against S2E because, like SymQEMU, S2E
is based on QEMU (see Section 5.2.2), and against QSYM because
it is the fastest binary-only symbolic executor that we are aware of
(see Section 5.2.3). We omitted angr (Section 5.2.1) from the com-
parison because preliminary experiments showed that its execution
speed is significantly lower than that of the other tools (see also Chap-
ter 3). Finally, we added raw AFL as a baseline, and we compared
with SymCC (see Chapter 4) because it introduced the concept of
compilation-based symbolic execution. Note, however, that SymCC
has an advantage over the other tools because it uses the source code of
the program under test, i.e., it can benefit from high-level code struc-
tures and compiler optimizations. Naturally, we can only evaluate
against SymCC on open-source targets.

9 http://www.s3.eurecom.fr/~seba/2020-05-24-symqemu.zip

http://www.s3.eurecom.fr/~seba/2020-05-24-symqemu.zip

5.5 evaluation 85

For our comparison, we performed hybrid fuzzing of a number
of target programs and measured code coverage over time. Like in
the evaluation of SymCC, we used AFL’s notion of coverage because
it is what drives the exploration process (see Section 4.4). Following
the recommendations by Klees et al. [44], we analyzed each target
for 24 hours, and we repeated each experiment 30 times. In order to
check for statistical significance, we used a two-tailed Mann-Whitney
U test, again as recommended by Klees et al. Our targets were the
open-source programs OpenJPEG, libarchive and tcpdump on the
one hand, and the closed-source program rar on the other hand. The
reason for choosing these programs is that (a) we used the three open-
source tools for the evaluation of SymCC already (see Section 4.4), so
we know that both SymCC and QSYM work on them, and (b) rar is
an easy-to-obtain closed-source program whose strict requirements
on the format of the input present interesting challenges to symbolic
execution, and whose license does not prohibit this type of analysis.
For OpenJPEG and rar, we provided a seed input of the expected
format; on libarchive and tcpdump, we started with an empty corpus.

The various systems under comparison were set up as follows:

• SymQEMU, QSYM and SymCC. We ran those systems together
with AFL, using the same integration as QSYM and SymCC (i.e.,
exchanging test cases via fuzzer queues in AFL’s distributed
mode). We executed one AFL primary instance, one AFL sec-
ondary instance, and one SymQEMU, QSYM or SymCC instance,
each on one CPU core and with 2 GB of RAM. AFL was allowed
to use the source code when it was available; otherwise, we ran
it in QEMU mode.

• S2E. For S2E, we created an analysis project per target, making
the test input fully symbolic when there was one, and providing
a symbolic file of all zeros otherwise. We enabled the Func-
tionModels plugin and extended the TestCaseGenerator plugin to
produce a new test case whenever a new execution state was
forked.10 We used the default searcher stack and ran the exper-
iments in the 64-bit Debian image provided by the authors of
S2E. Since S2E’s parallel mode was not stable enough in our ex-
periments, we accumulated the results from three independent
analyses (to match the three CPU cores available to SymQEMU,
QSYM and SymCC); see Appendix A for details. In order to
assess code coverage, we evaluated the test cases with AFL after
the end of the analysis.

• Pure AFL. We executed AFL in distributed mode, running one
primary and two secondary instances, each on one CPU core
with 2 GB of RAM. Like for SymQEMU, QSYM and SymCC, we

10 We contributed our extension to upstream S2E, see https://github.com/S2E/s2e/

commit/8eae6e37a5e7829e77ae5cbd4fbd70656672fc46.

https://github.com/S2E/s2e/commit/8eae6e37a5e7829e77ae5cbd4fbd70656672fc46
https://github.com/S2E/s2e/commit/8eae6e37a5e7829e77ae5cbd4fbd70656672fc46

86 compiling symbolic execution into binaries

3
4
5
6
7
8
9

10
11

0h 5h 10h 15h 20h 25h
0

2

4

6

8

10

12

0h 5h 10h 15h 20h 25h

0
2
4
6
8

10
12
14
16
18
20

0h 5h 10h 15h 20h 25h

A
FL

m
ap

de
ns

it
y

(%
)

OpenJPEG libarchive

tcpdump

SymQEMU
SymCC
QSYM

AFL
S2E

Figure 5.11: Coverage over time on the open-source targets, expressed via
the density of AFL’s coverage map, showing median and 95 %
confidence corridor. SymQEMU achieves higher coverage than
all other systems with statistical significance (Mann-Whitney U,
p < 0.005 two-tailed), except on libarchive, where there is no
statistically significant difference with SymCC. Note, however,
that SymCC requires the source code of the program under test.

gave AFL access to the target’s source code when it was available
and used QEMU mode otherwise.

The experiments were conducted on an Intel Xeon Platinum 8260

CPU. We spent a total of roughly 5 CPU core years (4 target programs,
5 systems under comparison, 3 cores per experiment, 30 iterations, 24

hours).
Figure 5.11 shows the results for the open-source targets. We ob-

tained coverage data for AFL and the hybrid fuzzers from the logs
written by afl-fuzz, using the same set of AFL-instrumented binaries
to evaluate each tool; for S2E, we ran the generated program inputs
through afl-showmap (again, using the same binaries) in order to com-
pute an equivalent coverage metric. Moreover, recall that we used
identical strategies to integrate AFL with QSYM, SymCC and Sym-
QEMU. We see that SymQEMU achieves significantly more coverage
over time than both QSYM and S2E, thus outperforming those state-
of-the-art binary symbolic executors. It also covers more code than
pure AFL, showing the value of symbolic execution in exploring the
target programs. Finally, SymQEMU somewhat surprisingly reaches a

5.5 evaluation 87

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

0h 5h 10h 15h 20h 25h

A
FL

m
ap

de
ns

it
y

(%
)

rar

SymQEMU
QSYM

AFL
S2E

Figure 5.12: Coverage over time on the closed-source rar program, expressed
via the density of AFL’s coverage map, showing median and
95 % confidence corridor. All tools except S2E converge towards
the same coverage level, but SymQEMU reaches it faster than
AFL and therefore requires less computing power per coverage.
Moreover, its speed is similar to QSYM’s, but QSYM cannot be
easily ported from x86 to other targets.

coverage level that is comparable with SymCC’s results, even though
SymCC has access to the targets’ source code and therefore more po-
tential for optimization. Manual investigation shows that SymCC does
not use this potential to the maximum extent possible; for example, it
does not trigger another memory-to-register optimization pass after
inserting its instrumentation (resulting in unnecessary memory oper-
ations in the target program), nor does it use link-time optimization
to inline calls to the support library. We believe that this is the main
reason why a binary-only symbolic executor like SymQEMU can keep
up with a source-based tool like SymCC. In summary, the results
confirm that SymQEMU is more efficient than the other binary-only
symbolic execution systems in our comparison.

In our analysis of libarchive, SymQEMU found an input that leads
to a use-after-free error on the heap. The bug can be triggered, for
example, by making a user list the contents of a manipulated archive
with the bsdtar utility, and we consider it likely to be exploitable. We
have reported the issue to the developers of libarchive; at the time of
writing, we have not received a reply.

Figure 5.12 displays the results for the closed-source rar program.
SymQEMU, QSYM and AFL all converge towards the same level
of coverage, but SymQEMU reaches saturation as fast as the less
architecturally flexible QSYM and faster than AFL. Note further that
SymQEMU and QSYM quickly discover paths that pure AFL (i.e.,
without symbolic execution) needs more time to find. S2E cannot
analyze as much code as the other tools but arguably covers more of
the data space on the discovered paths.11 This experiment shows that

11 https://ccadar.blogspot.com/2020/07/measuring-coverage-achieved-by-symbolic.

html

https://ccadar.blogspot.com/2020/07/measuring-coverage-achieved-by-symbolic.html
https://ccadar.blogspot.com/2020/07/measuring-coverage-achieved-by-symbolic.html

88 compiling symbolic execution into binaries

0
10
20
30
40
50
60

OpenJPEG libarchive tcpdump rar
Ti

m
e

(s
)

SymQEMU
SymCC
QSYM

Figure 5.13: Target execution times per symbolic executor and target program.
Note that SymQEMU is faster than QSYM and at least as fast
as the source-based SymCC. The notion of execution time is not
applicable to S2E; SymCC cannot analyze rar because the source
code is not available.

SymQEMU can work with closed-source targets, like other binary-
only symbolic executors, but with the additional advantage of easily
supporting a large number of target architectures.

It is interesting to note that symbolic execution generally contributes
the most in terms of code coverage when no seed inputs are available,
as demonstrated by our analysis of libarchive and tcpdump. On Open-
JPEG and rar, in contrast, the seed files give AFL sufficient information
to also achieve a good coverage level in relatively little time.

Finally, Figure 5.13 shows the execution times of the symbolic execu-
tion engines in our experiments, providing evidence that SymQEMU
is consistently faster than QSYM and at least on par with the source-
based SymCC. We omitted S2E from the figure because there is no
equivalent notion of execution time for its approach: while we could
measure how long each execution state exists, this would ignore the
fact that S2E performs many checks that the other systems delegate to
fuzzer and sanitizers, and hence would put S2E at an unfair disadvan-
tage in the comparison.

5.5.3 Benchmark comparison

We have seen that SymQEMU outperforms state-of-the-art binary-only
symbolic executors in real-world hybrid fuzzing. Let us now check
our hypothesis that those results are indeed due to SymQEMU’s high
execution speed. To this end, we performed a third set of experiments
with the goal of assessing precisely how fast SymQEMU executes code
in comparison with the other two concolic executors in our evaluation,
SymCC and QSYM.

The core idea of this experiment is to run concolic execution on a
fixed set of inputs, therefore making all systems in the comparison
follow the same paths on the same target programs. In other words,
we remove one variable from the comparison: the choice of paths

5.5 evaluation 89

0

0.2

0.4

0.6

0.8

1

QSYM
Sym

QEM
U

Sym
CC

0

0.2

0.4

0.6

0.8

1

QSYM
Sym

QEM
U

Sym
CC

0

0.2

0.4

0.6

0.8

1

QSYM
Sym

QEM
U

Sym
CC

Ti
m

e
(n

or
m

al
iz

ed
)

OpenJPEG

Ti
m

e
(n

or
m

al
iz

ed
)

libarchive

Ti
m

e
(n

or
m

al
iz

ed
)

tcpdump

Execution
Solving

Figure 5.14: Time spent in execution and SMT solving, respectively, averaged
across concolic execution of a fixed set of test cases (1000 cases
per target, chosen at random and analyzed in each of the three
symbolic executors). Times are normalized to the total execution
time of the slowest engine per target to show the differences in
the overall amount of time required to complete the benchmark.

to follow. Concretely, for each of the three open-source targets used
in Section 5.5.2 we combined the test cases found by SymQEMU,
SymCC and QSYM during the 24-hour hybrid-fuzzing session; then we
selected 1000 test cases per target at random. We performed concolic
execution on the selected inputs, measuring the time spent in execution
and SMT solving, respectively.

Figure 5.14 and Table 5.4 show the observed time split per target
and symbolic executor. We see that, on all three targets, SymQEMU
spends less time in execution than QSYM; this provides evidence that
SymQEMU’s higher performance in hybrid fuzzing (see Figure 5.11)
is indeed due to higher execution speed. The source-based SymCC
spends even less time in execution than both SymQEMU and QSYM
because, unlike the binary-only symbolic executors, SymCC does not
incur the overhead of dynamic binary translation or dynamic binary
instrumentation.

It is also interesting to note that the three systems invest different
amounts of time in SMT solving. Since the program paths are fixed
and the symbolic executors use the same backend to interact with
the solver, we conclude that there is a difference in the difficulty of

90 compiling symbolic execution into binaries

QSYM SymQEMU SymCC

Exec 8.5 h 35.1 % 4.0 h 17.2 % 0.5 h 2.3 %

OpenJPEG SMT 15.8 h 64.9 % 19.2 h 82.8 % 21.0 h 97.7 %

Total 24.3 h 23.2 h 21.5 h

Exec 6.8 h 47.3 % 1.7 h 25.1 % 0.7 h 82.6 %

libarchive SMT 7.6 h 52.7 % 5.0 h 74.9 % 0.1 h 17.4 %

Total 14.3 h 6.7 h 0.8 h

Exec 8.2 h 32.7 % 5.2 h 56.5 % 1.2 h 59.3 %

tcpdump SMT 16.9 h 67.3 % 4.0 h 43.5 % 0.8 h 40.7 %

Total 25.1 h 9.1 h 2.0 h

Table 5.4: Results of our benchmark comparison on fixed inputs, visualized
in Figure 5.14.

SMT queries. Manual inspection confirms that SymCC’s queries are
shorter and less nested than those generated by the other systems
(except on the OpenJPEG target, where we see a lot of arithmetic
and bit-level operations in all systems’ queries, which we attribute
to the compression algorithm of the JPEG format). The difference in
difficulty is likely due to the different intermediate representations
that the analyses are based on. In particular, our observation that
SymCC often generates simpler queries and consequently spends less
time in the SMT solver than the other two systems provides evidence
for our earlier hypothesis that high-level intermediate representations
lead to simpler SMT queries (see Section 3.5).

In summary, we have shown that SymQEMU outperforms state-of-
the-art binary-only symbolic executors in real-world hybrid fuzzing,
and that the reason for its higher performance is its fast execution
component. In comparison with QSYM, SymQEMU achieves 19 %
higher coverage on average after 24 hours (Figures 5.11 and 5.12, geo-
metric mean) and 58 % faster execution in the benchmark experiment
(Figure 5.14, geometric mean).

5.6 future work

We have several ideas for future work based on SymQEMU, which we
document in this section.

5.6.1 Full-system emulation

SymQEMU currently performs symbolic execution of Linux user-mode
binaries. It would be interesting to extend it to full-system analysis.
Especially in the embedded space, it is common for firmware to run on
custom operating systems or even directly on hardware [55]; analyzing
such programs would require support for full-system emulation.

5.6 future work 91

We believe that it is possible to implement such a system on top
of SymQEMU. The basic process of lifting the target to TCG ops,
instrumenting those, and compiling the result down to host machine
code would stay the same. One would have to add a mechanism to
introduce symbolic data into the guest system (e.g., inspired by S2E’s
fake-instruction technique), and the shadow-memory system would
have to account for the virtual MMU when mapping between guest
memory and symbolic expressions. The result would be a symbolic
executor that could reason about kernel code in addition to user-space
programs. Moreover, the extended system would be able to analyze
code for non-Linux operating systems, as well as bare-metal firmware.

5.6.2 Caching across executions

Hybrid fuzzing is characterized by a large number of successive exe-
cutions of the same program. Being a dynamic translator, QEMU (and
hence, SymQEMU) translates the target program on demand, at run
time. And although the results of the translation are cached for the
duration of a single execution, they are discarded when the target pro-
gram terminates. We conjecture that the overall performance of hybrid
fuzzing with SymQEMU could be improved by caching translation
results across executions. The main challenges would be to ensure that
the target is loaded deterministically, and special handling would need
to be put in place for self-modifying code. Therefore, the potential
benefit of this optimization depends heavily on the characteristics of
the program under test.

5.6.3 Symbolic QEMU helpers

QEMU represents target machine code with TCG ops. However, some
target instructions are too complex to be efficiently expressed in TCG,
especially on CISC architectures (e.g., Intel’s SSE extensions). In such
cases, QEMU uses helpers: built-in compiled functions that can be
called from TCG, emulating single complex instructions of the target
architecture. Since helpers operate outside the regular TCG framework,
SymQEMU’s instrumentation at the TCG level cannot insert symbolic
handling into them. The result is implicit concretization, yielding a
loss of precision in the analysis of targets that make heavy use of
complex instructions.

We see two ways to implement symbolic handling of QEMU helpers
when the need arises:

1. One approach is to hand-craft symbolic equivalents for each
required helper, much like the function summaries used for com-
mon libc functions in some symbolic executors.12 This approach

12 E.g., http://s2e.systems/docs/Plugins/Linux/FunctionModels.html.

http://s2e.systems/docs/Plugins/Linux/FunctionModels.html

92 compiling symbolic execution into binaries

is easy to implement but does not scale to large numbers of
helpers.

2. An alternative is to build symbolic versions of the helpers auto-
matically. To this end, SymCC could be used to compile symbolic
tracing into the helpers, whose source code is available as part of
QEMU. The resulting binaries would be compatible with Sym-
QEMU because SymCC uses the same backend for symbolic
reasoning. S2E follows a similar approach when compiling the
helpers to LLVM bitcode for interpretation in KLEE.

Since such improvements would provide benefit mainly for very
specific targets that make heavy use of complex instructions, we leave
them to future work.

5.7 related work

We now place SymQEMU in the context of previous work.

5.7.1 Binary-only symbolic execution

Angr [74], S2E [17] and QSYM [86] have been described in Section 5.2,
and we have compared them to SymQEMU in Section 5.4.4. May-
hem [15] is a high-performance interpreter-based implementation of
symbolic execution that won the DARPA CGC competition; unfor-
tunately, it is not publicly available for comparison. Triton [69] has
a symbolic execution component that can operate in two different
modes: one uses binary translation (like QSYM), the other works with
CPU emulation (like S2E and angr). Eclipser [18] covers some middle
ground between fuzzing and symbolic execution by assuming linear
relations between branch conditions and input data; the constraint
simplification increases the system’s performance at the cost of reason-
ing power, so that Eclipser cannot find all the paths that conventional
symbolic execution can. In a similar vein, Redqueen [2] searches for
correspondence between branch conditions and input bytes using
a number of heuristics. SymQEMU, in contrast, implements “full”
symbolic execution.

5.7.2 Run-time bug detection

Hybrid fuzzing relies on the fuzzer and sanitizers to detect bugs.
Address sanitizer [72] is a very popular sanitizer that checks for certain
memory errors. Since it requires source code to produce instrumented
target programs, Fioraldi et al. have recently proposed QASan [27],
a QEMU-based system that implements similar checks for binaries.
There is a plethora of other sanitizers, often requiring source code [75].
We conjecture that it would be possible to use many of them on

5.8 conclusion 93

binaries via emulation in the spirit of QASan. They could complement
hybrid fuzzing with SymQEMU, but such work is orthogonal to what
we present here.

5.7.3 Hybrid fuzzing

Driller [77] is a hybrid fuzzer based on angr, similar in concept to
QSYM but slower because of its Python implementation and interpreter-
based approach [86]. In comparison with QSYM and SymQEMU, it
uses a more elaborate strategy to coordinate fuzzer and symbolic
executor: it monitors the fuzzer’s progress and switches to symbolic
execution whenever the fuzzer appears to encounter obstacles that it
cannot overcome on its own. In a similar spirit, the recently proposed
Pangolin [38] enhances the fuzzer’s benefit from symbolic execution
by providing the fuzzer not only with new test cases but also with
an abstraction of the symbolic constraints, along with a fast sampling
method; using those, the fuzzer can generate new inputs that have
a high probability of fulfilling the path constraints determined by
symbolic execution.

We believe that more sophisticated coordination strategies between
fuzzer and symbolic executor can greatly enhance the performance
of hybrid fuzzing (see also Chapter 6). However, since such improve-
ments are orthogonal to the speed of the symbolic executor (which is
our main concern), they are outside the scope of this thesis.

5.8 conclusion

We have presented SymQEMU, a novel approach to apply compilation-
based symbolic execution to binaries. Our evaluation shows that Sym-
QEMU significantly outperforms state-of-the-art binary symbolic ex-
ecutors and even keeps up with source-based techniques. Moreover,
SymQEMU is easy to extend to many target architectures, requiring
just a handful lines of code to support any architecture that QEMU
can handle. Finally, we have demonstrated SymQEMU’s real-world
use by discovering a previously unknown memory error in the heavily
tested libarchive library.

availability

We will make all source code for SymQEMU publicly available at
a later point in time. We will also provide detailed instructions to
reproduce our experiments, and we will share the raw results of our
own evaluation.

6
C O N C L U S I O N A N D F U T U R E W O R K

Throughout this thesis, our goal has been to improve the performance
of symbolic execution by increasing its speed. We have presented
compilation-based symbolic execution, a novel approach inspired
by a systematic observation of prior work. We have shown that our
compiler-based technique outperforms existing alternative approaches
with a considerable margin, and finally we have extended the reach
of compilation-based symbolic execution—originally a source-based
technique—to the realm of binary-only analysis. It is my hope that
this work provides value to the community in its quest to construct
more and more practical symbolic execution systems.

However, increasing the speed of symbolic execution is only one
way to improve its overall performance, and there are other options
besides accelerating the execution component, which has been the aim
of my work. The remainder of this chapter provides an outlook on
avenues of future research that I consider promising, complementing
and improving on my own contribution.

Our observations from previous chapters suggest that the cost of
symbolic execution is dominated by two core factors: execution—i.e.,
running programs in a monitored environment in order to trace com-
putations symbolically—and solving. This notion is also supported
by measurements from Yun et al. [86]. Furthermore, there is a coor-
dination cost: standalone symbolic executors need to fork execution
states and/or snapshot execution, and systems used in hybrid fuzzing
need to communicate with a fuzzer. Finally, efficiency in terms of bugs
discovered per time is heavily impacted by the exploration strategy:
which parts of a program are the most interesting to examine? The
following sections discuss each of those aspects in more detail.

6.1 execution

Increasing the performance of the execution component in symbolic
executors has been the primary goal of the work described in this
thesis. I am convinced that compiler-inserted instrumentation has
great potential; Chapters 4 and 5 have already suggested various
directions of future work in this area.

Moreover, it could be beneficial to improve the abstract under-
standing that symbolic executors have of the target code. Consider,

95

96 conclusion and future work

for example, the following code snippet, based on a user report for
SymCC:1

1 const unsigned expected = 42;

2 unsigned input; // symbolic user input

3

4 // ...

5

6 unsigned result = 0;

7 for (unsigned i = 0; i < input; i++) {

8 result++;

9 }

10

11 printf("%s\n", (result == expected) ? "yes" : "no");

The program reads an integer from the user, then increments the
variable result in a loop until it equals input. Finally, it compares
result to the constant expected. As humans, we can recognize that the
loop is equivalent to the assignment result = input, and therefore the
required input to make the last line print “yes” is the value of the
constant expected.2 Symbolic execution systems, however, currently
lack such abstraction capabilities; they analyze the program instruction
by instruction, producing new test cases (or forking execution states)
when encountering the comparison i < input. Eventually, they find
the solution, but their approach is roughly equivalent to trying each
possible value for input.

While it is theoretically impossible to mechanically “understand”
every possible fragment of code, we already have good heuristics for
many common cases. Modern compilers, for example, can statically
simplify the loop in the above example to result = input; after this
optimization, symbolic execution can immediately infer the expected
input in the last line. It would be interesting to explore to which extent
the “code understanding” of compilers and static analyzers can be
incorporated into and benefit symbolic execution systems. Kapus et al.
have recently presented work on symbolically summarizing a special
type of loops that they call memoryless loops [40]. State merging [46]
produces a type of loop summary dynamically but faces its own set
of challenges.

6.2 solving

SMT solving is a major source of power for symbolic execution. It
would be hard to imagine a symbolic executor that does not rely on
the advanced reasoning capabilities of modern SMT solvers. However,
answering an SMT query is a difficult problem, with the exact meaning

1 https://github.com/eurecom-s3/symcc/issues/14

2 I found it highly instructive to replace one or more of the types in the example with
int or uint64_t: between integer overflows, implicit conversions and undefined
behavior, I was almost unable to work out the program’s behavior.

https://github.com/eurecom-s3/symcc/issues/14

6.3 coordination 97

of “difficult” depending on the logic underlying the query. The queries
that arise in symbolic execution typically use at least the logic of
quantifier-free formulas over bit vectors, commonly referred to as
QF_BV in the SMT community. Many solvers handle this logic by
translating queries into instances of the Boolean satisfiability problem
(SAT) in a process called “bit blasting”, and SAT is well known to
be NP-complete. It is therefore reasonable to expect that no solver
can efficiently answer every query, and that we need good heuristics
adapted to our use case.

Intuitively, representing the path constraints of symbolic execution
as SAT instances discards a lot of information about structure: vari-
ables in a program are typically related via arithmetic operations, often
even in linear relations. Such high-level structure may be exploitable
in the solver. (Admittedly, bit-level operations and integer overflows
complicate the picture.) For example, STP [30], the default solver in
KLEE [12], was specifically developed for software analysis: it features
a preprocessing step that efficiently solves linear arithmetic problems
before bit blasting; Kapus et al. have recently implemented a similar
approach for KLEE’s Z3 backend [41]. Similarly, a specialized solver
could represent and reason about operations on common data struc-
tures like lists, sets and dictionaries. However, most recent symbolic
executors use Z3 [23], a general-purpose SMT solver from Microsoft
Research. While there are good reasons to rely on a solver whose
development is supported by a large corporation, the community
may miss some targeted optimizations that could be applied to the
workload of symbolic execution.

Another aspect is the relation between queries: a concolic executor
(or a single execution state of a forking symbolic executor) collects
path constraints as it executes the program, effectively building up
a large conjunction of terms that is only ever added to. SMT solvers
can exploit this structure by reusing the results of earlier queries.
angr [74], for example, uses the solver in this iterative mode, and
KLEE preprocesses queries based on subset and superset relations
with earlier queries in order to reduce the load on the SMT solver.
However, research on the SMT side with a focus on the particular
sequences of SMT queries generated by symbolic execution might lead
to further improvements.

6.3 coordination

Symbolic execution does not typically run in a vacuum. There are
other tools and processes to coordinate with, and the coordination
strategy has an impact on the overall system’s performance. Here
we focus on the common case of hybrid fuzzing, where a symbolic
executor cooperates with a fuzzer to discover software defects.

98 conclusion and future work

The core idea of hybrid fuzzing is to combine the efficiency of
fuzzers with the sophisticated reasoning capabilities of symbolic exe-
cution: the fuzzer quickly explores the easy-to-reach parts of the target
program, while symbolic execution generates test cases to explore the
more difficult-to-reach areas. In the simplest case, fuzzer and symbolic
executor just exchange test cases. This is the approach followed by
QSYM [86], SymCC (Chapter 4) and SymQEMU (Chapter 5); it is easy
to implement and flexible, yet it wastes a lot of potential. For exam-
ple, as long as the fuzzer makes progress, CPU time is probably best
invested into fuzzing, while symbolic execution should be used only
when complicated constraints need to be solved; Driller [77] imple-
ments a heuristic along those lines, but more sophisticated scheduling
strategies are conceivable. Moreover, a symbolic executor that just
passes test cases to the fuzzer effectively throws away a lot of its
results: the path constraints, for example, can be used to guide the
fuzzer’s mutation of the new test cases. Pangolin [38] implements this
idea with great success, but again, more research on the topic may
lead to even more efficient techniques. Finally, there are mundane
technical optimizations that could be worked on: file-based coordina-
tion strategies, for example, may become a bottleneck in case of I/O
saturation, and symbolic executors need clear indications which test
cases the fuzzer considers most promising.

6.4 exploration

Standalone symbolic executors typically feature a component that as-
signs priorities to execution states and schedules them for exploration.
In hybrid fuzzing, concolic executors rely on the fuzzer for similar
tasks. In either scenario, current approaches largely base their deci-
sions on code coverage. Additionally, the community is experimenting
with directed approaches, where test cases are judged based on their
estimated distance to some point of interest in the target program [7,
16]; KATCH [54] selects such points of interest based on changes in the
version-control history, and ParmeSan [58] uses potentially vulnerable
code patterns identified by sanitizers. However, even with directed
strategies, success is often defined in terms of reaching a particular
piece of code, disregarding the question of coverage in the data space.
In the most basic example of a pointer dereference, merely reaching
the dereferencing instruction does not reveal a bug—unless the pointer
happens to have an invalid value. Ankou [53] has recently proposed a
more elaborate function for judging the merit of individual test cases,
which accounts for hit counts in addition to regular branch coverage.
Research into functions that take data-space coverage into account
may help to direct symbolic execution towards parts of a program that
are most likely to contain defects.

6.4 exploration 99

This concludes the outlook on future work, and my thesis. I hope the
reader enjoyed reading it as much as I took pleasure in its creation.

Sebastian Poeplau,
August 2020

A
S 2 E R E S O U R C E C O N S U M P T I O N

We encountered a few challenges related to resource consumption
when setting up S2E for comparison with SymQEMU (see Chapter 5).
While they are not essential to the discussion, we still think they are
interesting to document.

a.1 parallel s2e

S2E has a parallel mode, in which it starts multiple processes and
assigns each process a dedicated portion of the state tree.1 Initially,
we tried to use this mode to compensate for the fact that the other
symbolic executors in our comparison each use 3 CPU cores. However,
in our setup, parallel mode was prone to deadlocks and crashes that
turned out to be hard to debug and fix. As a workaround, we started
3 independent S2E instances, relying on randomization of the search
strategy to prevent them from exploring the same paths. This is not
ideal but seemed the fairest approach given the circumstances.

a.2 memory limits

Like the other systems in the comparison, we attempted to execute
S2E with 2 GB of RAM per CPU core (i.e., per S2E process). Setting
a hard limit via cgroups, as we did for the other systems, turned
out impossible because S2E runs the entire analysis in a single long-
running process—if the operating system terminates that process due
to excessive memory consumption, the analysis fails. (In contrast,
AFL, SymQEMU, QSYM and SymCC create many short-lived analysis
processes; if one of them fails, the analysis just continues with the next
one.)

S2E provides the ResourceMonitor plugin for such cases.2 Its task
is to monitor memory consumption (with the limit defined via a
cgroup) and prevent further forking or terminate execution states as
consumption approaches the limit. Unfortunately, in our experiments,
the plugin did not reduce memory consumption aggressively enough—
while the analysis ran slightly longer, it would still eventually exceed
the memory limit and trigger the operating system’s OOM killer. We
experimented with adjusting the plugin (e.g., trigger earlier than the
default threshold of 95 % memory consumption) but could not find a
configuration that would permit the analysis to run for 24 hours.

1 http://s2e.systems/docs/Howtos/Parallel.html

2 http://s2e.systems/docs/FAQ.html#how-to-keep-memory-usage-low

101

http://s2e.systems/docs/Howtos/Parallel.html
http://s2e.systems/docs/FAQ.html#how-to-keep-memory-usage-low

102 s2e resource consumption

Finally, we resorted to the following strategy: instead of enforcing
2 GB per S2E instance, we only imposed a total limit on the cumulative
memory consumption of all S2E processes. As a result, some processes
were terminated by the operating system whereas others were allowed
to consume significantly more than 2 GB of RAM and thus analyze
the target for 24 hours. The reason that this strategy did not result in
higher variance of the results for S2E (see Figure 5.11) is that most
execution states were forked in the first few minutes of the analysis,
i.e., before any process hit the memory limit.

B
F R E N C H S U M M A RY O F T H E T H E S I S

Ce chapitre est un résumé de la thèse en français.

b.1 introduction

L’exécution symbolique est un technique pour l’analyse systématique
et automatique de logiciels. Elle a été inventée par James C. King
en 1976 [43] pour simplifier le test des logiciels, ce qui était surtout
un travail manuel. L’idée est de tracer l’exécution du logiciel pour
comprendre exactement comment chaque résultat intermédiaire est
calculé. À chaque branchement conditionnel le système connaît pré-
cisément l’expression qui est évaluée et comment elle est dérivée de
l’entrée utilisateur. Un solveur peut ensuite déterminer une nouvelle
entrée qui changera le résultat du branchement. Cette stratégie peut
simplifier la création d’une entrée qui mène à un point d’intérêt dans
le logiciel analysé, et la répétition automatique aide à l’exploration de
tous les chemin d’exécution possibles.

La réalisation de King était très interactive : elle demandait une
décision d’un utilisateur humain à chaque branchement. En outre,
comme les performances des ordinateurs de l’époque étaient faibles
en comparaison avec ceux que nous avons aujourd’hui, le solveur
de King n’était pas très puissant. Les réalisations récentes sont plus
automatisées, et elles exploitent les avancements importants dans le
domaine des solveurs SAT (satisfiabilité booléenne) et SMT (satis-
fiabilité modulo des théories) des années 90 et 2000. Les systèmes
modernes d’exécution symbolique sont plutôt automatique, et leur
solveurs sont très capables.

Malgré les importants progrès, l’exécution symbolique souffre tou-
jours de problèmes de performance pour lesquelles il y a deux raisons
principales :

1. Les problèmes SMT sont, en général, NP-complets. Bien qu’il
y ait des approches heuristiques qui fonctionnent en pratique,
il n’est probablement pas possible de trouver une solution en
temps polynomial (sauf si P = NP). D’ailleurs, il y a des logiciels
qui effectuent des calculs difficilement réversibles, comme le chif-
frement. Mais la réversibilité de toute opération dans l’exécution
d’un logiciel est nécessaire pour l’exécution symbolique.

2. L’exécution d’un logiciel sous surveillance afin de tracer toute
opération est coûteuse en temps de calcul. La plupart des réalisa-
tions actuelles fonctionnent comme un interpréteur d’un langage

103

104 french summary of the thesis

de programmation ou d’une représentation intermédiaire, ce qui
est plus coûteux que l’exécution normale dans le processeur.

Ma thèse se focalise sur le deuxième aspect, qui sera décrit plus en
détail dans les sections suivantes. (Un autre problème de l’exécution
symbolique et ce qui s’appelle « path explosion » en anglais – la
croissance exponentielle de la nombre de chemins possibles. Mais
comme c’est une difficulté de toute stratégie qui essaie de traverser un
logiciel par tous les chemins possibles, on va l’ignorer dans le contexte
de ce résumé.)

Des travaux récents ont démontré que la combinaison de l’exécu-
tion symbolique avec le fuzzing est prometteur. Le fuzzing est une
technique plus simple pour tester des logiciels : le programme analysé
est exécuté avec des entrées aléatoires, en espérant qu’une d’entre
elles trouve un dysfonctionnement dans le logiciel. Bien que c’est
un mécanisme simple et rapide à implémenter, le fuzzing ne trouve
souvent pas tous les chemins dans un logiciel parce qu’il manque un
moyen pour résoudre les questions difficiles associées à la création de
nouvelles entrées pour certains chemins (le rôle du solveur SMT dans
l’exécution symbolique). La combinaison du fuzzing avec l’exécution
symbolique est intéressant parce qu’elle permet de découvrir vite
une large partie du logiciel par le fuzzing alors que les chemins plus
difficiles à trouver sont découverts par l’exécution symbolique.

Dans le contexte de ma thèse, j’ai travaillé sur des méthodes pour
accélérer l’exécution symbolique afin d’atteindre une performance
suffisante pour appliquer ce type d’analyse a des situations réelles,
toujours en combinaison avec le fuzzing. Dans la section B.2, je décrie
l’analyse de systèmes d’exécution symboliques actuelles, en particulier
l’impact de la représentation intermédiaire sur la performance. La
section B.3 présente SymCC, une réalisation inspirée par les résultats
de cet analyse. SymCC permet l’exécution symbolique très efficace de
logiciels dont le code source est disponible. Enfin, la section B.4 résume
le travail sur SymQEMU, un système complémentaire pour l’exécution
symbolique de fichiers binaires. Le principe clé de SymCC et de
SymQEMU est d’intégrer des capacités d’analyse directement dans
un binaire, ainsi il n’est pas nécessaire d’interpréter le programme
analysé.

b.2 analyse de l’effet de la représentation intermé-
diaire

Cette section (et le chapitre correspondant de la thèse) est basée sur
l’article « Systematic Comparison of Symbolic Execution Systems :
Intermediate Representation and its Generation », publié lors de l’An-
nual Computer Security Applications Conference (ACSAC 2019) à San
Juan, Porto Rico.

B.2 représentation intermédiaire 105

En règle générale, les moteurs d’exécution symbolique traduisent le
programme testé en un représentation intermédiaire (RI) qu’ils peuvent
ensuite exécuter symboliquement. La génération de la RI à partir du
binaire peut être la seule solution lorsque le code source n’est pas dis-
ponible. Tester directement le binaire a également l’avantage de tester
le produit mis en production, indépendamment du langage source et
du compilateur. Cependant, lorsque le code source est disponible, les
deux approches sont possibles et le choix de la façon de générer la
RI est un facteur distinctif entre les implémentations différentes. Il y
a une certaine sagesse conventionnelle qui l’entoure : l’intuition est
que la sémantique du code source de haut niveau (par exemple, les li-
mites des tableaux mémoire, types) peuvent être préservés et rendront
l’exécution symbolique et la recherche de dysfonctionnements plus
efficace. Cependant, aucune étude systématique ne soutenait de telles
affirmations. Nous avons donc systématiquement évalué la manière
dont le choix des RI et le processus de les générer influencent de
divers aspects de l’exécution symbolique.

Nous avons sélectionné plusieurs implémentations populaires, cha-
cune avec son propre mécanisme de génération de RI, et nous avons
comparé leur performances. En particulier, nous avons répondu aux
questions de recherche suivantes :

1. Y a-t-il un avantage à générer la RI à partir du code source par
rapport aux RI générées à partir de binaires ?

2. Existe-t-il des différences significatives entre l’exécution symbo-
lique de différentes RI généré à partir des mêmes programmes ?
Qu’en est-il du cas particulier d’exécuter symboliquement le
code machine directement ?

En cours de route, nous avons découvert que la tâche d’ingénierie
vraisemblablement simple de mettre en place un certain nombre de
moteurs d’exécution symbolique dans un environnement stable afin
d’en faire un comparaison équitable est en réalité un réel défi. Cela a
été une inspiration majeure dans notre quête pour rendre nos propres
systèmes faciles à utiliser et comparer.

b.2.1 Représentation Intermédiaire

Lors de l’émulation de l’exécution d’un programme, l’exécution sym-
bolique fait face au défi que les jeux d’instructions des processeurs
modernes sont complexes et constitués d’un grand nombre d’ins-
tructions ; leur écrire un émulateur symbolique n’est pas anodin. Par
conséquent, il est courant de transformer le programme testé dans
une représentation intermédiaire, qui est ensuite émulé. L’exécution
symbolique au niveau RI augmente également la portabilité : pour
prendre en charge une nouvelle architecture, il suffit de réimplémenter
le traducteur RI, tandis que le reste du système peut rester inchangé.

106 french summary of the thesis

Les moteurs d’exécution symboliques diffèrent dans l’approche
choisie pour la traduction en RI que ce soit à partir d’un binaire
ou d’un code source. Nous référons au processus comme génération
RI, que l’artefact initial soit un fichier binaire de code machine ou
code source, car le terme lifting (« levage ») qui est utilisé en anglais
convient uniquement pour la génération à partiir du code machine. Le
choix du mécanisme de génération RI a une influence considérable sur
plusieurs aspects de l’exécution symbolique, ce qui était la motivation
de cette étude.

b.2.2 Les solveurs SMT

Les moteurs d’exécution symbolique doivent résoudre les contraintes
de chemin pour les valeurs d’entrée ; en d’autres termes, ils doivent
résoudre des formules dans la logique des vecteurs de bits et des
tableaux. Le domaine de la résolution SMT fournit des outils pour
résoudre ce problème (généralement difficile [45]) : dans de nombreux
cas, les solveurs SMT modernes peuvent résoudre ces requêtes diffi-
ciles dans temps acceptable, en utilisant diverses heuristiques qui sont
elles-mêmes un domaine actif de recherche. C’est cependant dans le
meilleur intérêt de tout moteur d’exécution symbolique de générer
des requêtes sous une forme que les solveurs SMT peuvent résoudre
rapidement. Nous conjecturions que la façon dont la RI est généré a
un impact profond sur la complexité des requêtes SMT résultantes.

b.2.3 Les approches analysées

Dans cette étude, nous avons comparé des approches de génération
RI classiques, chacune représentée par un outil. Notre ensemble de
test comprenait KLEE [12] pour la génération RI basée sur le source,
S2E [17] pour la génération binaire, angr [74] comme une approche
binaire avec une autre RI et QSYM [86] comme représentant pour les
systèmes qui n’utilisent pas de RI du tout. Le cas échéant, nous avons
ajouté les résultats de McSema [24], un traducteur statique du code
machine à la RI LLVM basé sur le désassembleur commercial IDA Pro.

b.2.4 Évaluation

Afin de répondre à nos questions de haut niveau, nous devions choisir
des propriétés concrètement mesurables qui fourniraient les preuves
nécessaires. Qu’attendons-nous d’une technique de génération RI
idéale pour l’exécution symbolique ? Puisque nous allons exécuter
la RI, nous voulons qu’elle soit facile à interpréter efficacement, et
nous la voulons être concis. De plus, étant donné que la résolution
SMT consomme une partie considérable du temps d’analyse global,
nous aimerions que la RI conduise à des requêtes SMT auxquelles

B.2 représentation intermédiaire 107

le solveur peut répondre rapidement. Nous avons donc évalué les
mécanismes de génération RI différents sous trois aspects motivés par
les observations ci-dessus :

1. Dans quelle mesure la traduction en RI augmente-t-elle ou
diminue-t-elle le nombre d’instructions ?

2. Dans quelle mesure pouvons-nous exécuter efficacement la RI
résultante ?

3. Quelle est la difficulté des requêtes SMT dérivées de la RI ?

Taille du code

Nous avons déjà mentionné l’intuition que la RI dérivée du code
source contient plus d’informations de haut niveau que la RI binaire ;
une manière plus précise d’exprimer cette intuition est de dire que
nous nous attendons à ce que la RI dérivée du source contienne plus
d’informations sémantiques par instruction RI que la RI dérivée de
binaires. Afin de tester cette hypothèse, nous avons appliqué les tech-
niques de génération RI analysées à un ensemble fixe de programmes
et nous avons comparé les nombre d’instructions RI résultant. Nous
avons pris comme référence de comparaison le nombre d’instructions
natives présentes dans le programme compilé.

Nous avons vu que, en général, les techniques basées sur le binaire
produisaient un plus grand nombre d’instructions RI que la traduction
basée sur le source (KLEE) ; bien sûr, il y a beaucoup de facteurs qui
impliquent la taille des artefacts de traduction générés. C’est plus
significatif lorsque la cible du processus de traduction est la même
RI, ce qui supprime une variable de l’analyse. Par conséquent, la
comparaison de S2E et McSema est particulièrement intéressante :
les deux outils commencent au niveau binaire et produisent de la RI
LLVM, nous avons donc pu comparer leurs résultats avec la RI LLVM
générée à partir du source par KLEE. Alors que la RI produite à partir
du code source était plutôt succincte, et dans presque tous les cas
contenant moins d’instructions que le code machine équivalent, la
RI correspondante générée par les binaires augmentaient le nombre
d’instructions d’un facteur de supérieur à 6 pour S2E et 4,54 pour
McSema. De plus, il était intéressant de voir que la traduction vers
VEX IR entraînait une augmentation du nombre d’instructions qui
était similaire aux outils binaires traduisant en RI LLVM ; une analyse
manuelle suggère que le contenu sémantique des instructions dans la
RI VEX est comparable à la RI LLVM. Une expérience sur l’architec-
ture ARM a globalement confirmé ces résultats sur une architecture
différente. En moyenne, nous avons constaté que la RI générée à partir
de binaires était considérablement plus grand que la RI basée sur le
source.

108 french summary of the thesis

Vitesse d’exécution

Un autre aspect de l’exécution symbolique qui nous intéressait était
de savoir dans quelle mesure la RI générée est adaptée à l’exécution.
Il existe un large spectre de choix entre QSYM, qui renonce à la tra-
duction en RI et exécute directement le code machine instrumenté,
calculant des contraintes symboliques à la volée, et KLEE, qui inter-
prète une RI de haut niveau dérivée du code source. Intuitivement,
nous nous attendrions à ce qu’une RI proche (ou identique à) du
code machine soit efficace à exécuter, tandis qu’une représentation
plus abstraite soit plus adaptée à l’analyse statique mais plus lente en
exécution.

Afin d’évaluer la vitesse d’exécution, nous avons compté le nombre
d’instructions exécutés au niveau RI et le temps consacré à cette
exécution lors de la conduite nos expériences. Le résultat était une
quantité que nous appelions taux d’exécution ; il représente le nombre
d’instructions exécutées par unité de temps. Nous avons observé que
QSYM exécute son « RI » le plus rapidement, suivi de KLEE, S2E et
angr. Cela correspondait à notre intuition, étant donné que QSYM
réalise l’exécution symbolique directement sur l’assembleur. KLEE et
S2E partagent une base commune, mais tandis que KLEE exécute une
RI très concise, S2E a beaucoup plus d’instructions à interpréter. De
plus, S2E doit générer sa RI à la volée alors que, dans le cas de KLEE,
la génération RI est une étape de prétraitement.

Complexité des requêtes

Parallèlement à l’exécution RI, la résolution SMT est l’une des prin-
cipales charges de travail de l’exécution symbolique. Il est donc im-
portant d’explorer l’impact de la génération de la RI sur la complexité
des requêtes SMT lors de l’exécution. Intuitivement, si la RI porte
beaucoup d’informations sémantiques, il devrait être possible pour le
moteur d’exécution symbolique de formuler des requêtes succinctes.

Nous avons mesuré le temps mis par Z3 (un solveur SMT populaire)
pour résoudre toutes les requêtes enregistrées dans nos expériences.
Nous appelons le nombre de requêtes traitées par fois le taux de
requêtes. Nous avons observé que angr et QSYM affichaient des taux
de requêtes plus faibles à KLEE, dont le taux médian était significa-
tivement plus élevé. Les requêtes de S2E entraient dans une plage
similaire à celle de KLEE (qui est raisonnable car S2E est basé sur
KLEE), mais la médiane de S2E était considérablement plus faible
et similaire à angr et Qsym. En général, il semblait que les trois sys-
tèmes d’exécution symboliques binaires généraient des requêtes plus
difficiles que KLEE, le système basé sur le source.

B.3 symcc 109

b.2.5 Conclusion

En résumé, nous avons constaté ce qui suit :

1. Pour la taille du code, le facteur le plus important est de savoir
si la RI est générée à partir de code source ou de binaires. Alors
que la RI basée sur la source est souvent plus succincte que le
code machine, la RI binaire a tendance à gonfler le code d’un
facteur compris entre 3 et 7.

2. Nous n’avons pas observé de différences significatives de vitesse
d’exécution entre la RI LLVM et la RI VEX. QSYM, cependant,
gagne un avantage distinct dans la vitesse en se dispensant d’une
RI traditionnelle et instrumentant le code machine directement,
au détriment de portabilité.

3. Lorsqu’elles sont générées à partir du code machine, la RI LLVM
et la RI VEX conduisent à des requêtes de complexité similaire ;
les requêtes dérivées directement du code machine sont rela-
tivement similaires. S2E génère des requêtes plus simples que
angr et QSYM dans certains cas mais le taux de requêtes médian
est similaire. Cependant, la RI basé sur le source apparaît pour
conduire de manière fiable à des requêtes plus simples lors de
l’exécution symbolique.

Étant donné que la vitesse d’exécution la plus élevée est obtenue
avec des instructions de bas niveau, alors que les meilleures perfor-
mances du solveur sont obtenues avec des requêtes générées à partir
de code de haut niveau, nous avons conçu un nouveau moteur d’exécu-
tion symbolique avec exactement ces deux propriétés, qui sera décrit
dans la section suivante.

b.3 symcc : intégrer l’exécution symbolique par le com-
pilateur

Cette section est basée sur le papier « Symbolic execution with SymCC :
Don’t execute, compile ! », publié dans le 29ième USENIX Security
Symposium (USENIX Security 2020) à Boston, MA, USA.

Inspirés par notre comparaison avec les systèmes existants, nous
avons proposé une méthode d’exécution alternative et avons montré
que cela conduit à une exécution symbolique considérablement plus
rapide et une meilleure couverture du programme et donc plus de
bugs découverts.

Examinons d’abord la manière dont les moteurs d’exécution symbo-
lique les plus performants sont mise en œuvre. À quelques exceptions
notables (qui seront examinées en détail plus loin), la plupart les
implémentations traduisent le programme testé en une représenta-
tion intermédiaire (par exemple, le bitcode LLVM), qui est ensuite

110 french summary of the thesis

exécutée symboliquement. Conceptuellement, le système parcourt les
instructions du programme cible un par un, effectue les calculs de-
mandés et assure également le suivi des sémantique en termes de
toute entrée symbolique. Il s’agit essentiellement d’un interpréteur !
L’interprétation est, en général, moins efficace que la compilation car
elle effectue un travail à chaque exécution qu’un compilateur ne doit
faire qu’une seule fois [37, 83]. Notre idée centrale est donc d’ap-
pliquer la « compilation au lieu de l’interprétation » à l’exécution
symbolique pour obtenir de meilleures performances. Mais qu’est-ce
que la compilation dans le cadre de l’exécution symbolique ? Dans les
langages de programmation, c’est le processus de remplacement des
instructions de la langue source par séquences de code machine qui
effectuent des actions équivalentes. Donc, pour postuler la même idée
à l’exécution symbolique, nous avons intégré le traitement symbolique
dans le programme cible. Le résultat final est un binaire qui s’exé-
cute sans le besoin d’un interpréteur externe ; il effectue les mêmes
actions que le programme cible mais garde en plus les expressions
symboliques. Cette technique lui permet d’effectuer tout raisonnement
symbolique qui est conventionnellement appliqué par l’interpréteur,
tout en conservant la vitesse d’un programme compilé. Nous avons
présenté une implémentation de notre idée, appelée SymCC, qui utilise
l’infrastructure compilateur LLVM.

b.3.1 Implémentation

Dans le contexte de l’exécution symbolique, les approches actuelles
interprètent (dans le cas des implémentations basées sur une RI) ou
exécutent directement sur le CPU mais avec un observateur attaché
(dans les implémentations sans RI), effectuant des calculs qui ne font
pas partie du programme cible. De manière informelle, Les approches
RI sont faciles à mettre en œuvre et à maintenir mais plutôt lentes,
tandis que les techniques sans RI atteignent des performances élevées
mais sont complexes à mettre en œuvre. Un de nos objectifs princi-
pal est de combiner les avantages des deux approches, c’est-à-dire,
construire un système qui est facile à mettre en œuvre mais rapide.
Pour ce faire, nous avons compilé la logique de l’interpréteur sym-
bolique (ou observateur) dans le programme cible. Nous décrivons
maintenant certains aspects fondamentaux de notre conception.

Gestionnaires symboliques

Le cœur de notre transformation au moment de la compilation est
l’insertion d’appels à gérer des calculs symboliques. Nous avons écrit
une passe de compilateur personnalisée qui parcourt le bitcode LLVM
produit par le frontend du compilateur et insère le code pour la
gestion symbolique. Le code inséré appelle les fonctions exportées
par le backend symbolique : nous fournissons un wrapper fin autour

B.3 symcc 111

du solveur SMT Z3 [23], ainsi que l’intégration optionnelle avec le
backend plus sophistiqué de QSYM [86].

Bibliothèque de support

Comme nous compilons des capacités d’exécution symboliques dans
le programme cible, tous les composants d’un moteur d’exécution
symbolique typique doivent être disponibles. On a donc regroupé
le backend symbolique dans une bibliothèque qui est utilisée par le
programme cible. La bibliothèque expose les points d’entrée dans le
backend symbolique à appeler à partir de la cible instrumentée, par
exemple, des fonctions pour construire des expressions symboliques
et pour informer le backend des sauts conditionnels.

Contrôles de variables concrètes

Il est important de réaliser que chaque appel a la bibliothèque de
support inséré introduit des frais généraux : elle invoque finalement
le backend symbolique et peut mettre la charge sur le solveur SMT.
Cependant, impliquer le backend symbolique n’est nécessaire lors-
qu’un calcul reçoit des entrées symboliques. Il n’est pas nécessaire
d’informer le backend de calculs entièrement concrets – ce qui permet
d’éviter des calculs inutiles. Par conséquent, dans le code que nous
générons, nous omettons les appels au backend symbolique si les don-
nées sont connues pour être constantes au moment de la compilation.
De plus, dans les autres cas, nous insérons des contrôles d’exécution
pour limiter les appels backend aux situations où au moins une entrée
d’un calcul est symbolique (et donc le résultat peut l’être aussi). Dans
notre implémentation, les expressions symboliques sont représentées
comme des pointeurs au moment de l’exécution, et les expressions
pour les valeurs concrètes sont des pointeurs nuls. Par conséquent, vé-
rifier le caractère concret d’une expression donnée lors de l’exécution
est une simple vérification de pointeur nul.

Memoire de recopie

En général, nous stockons les expressions symboliques associées aux
données dans une région recopie en mémoire. Notre bibliothèque de
support assure le suivi des allocations de mémoire dans le programme
cible et les mappe aux régions recopies contenant les expressions
symboliques correspondantes qui sont allouées page par page. Il y
a cependant un cas particulier : les expressions correspondant a des
variables locales sont stockées dans des variables locales elles-mêmes.
Cela signifie qu’ils reçoivent le même traitement que les données
régulières lors de la génération du code ; en particulier, l’allocateur de
registre du compilateur peut décider de les placer dans les registres
de la machine pour accès rapide.

112 french summary of the thesis

Taille de l’implémentation

La passe du compilateur se compose d’environ 1000 lignes de code
C++ ; la bibliothèque de support d’exécution, également écrite en
C++, comprend encore 1000 lignes (à l’exclusion de Z3 et du code
QSYM facultatif). Cette base de code relativement petite montre que
l’approche est conceptuellement simple, diminuant ainsi la probabilité
de bugs d’implémentation.

b.3.2 Évaluation

Nous avons d’abord analysé les performances de notre système sur
des benchmarks synthétiques, permettant des expériences contrôlées
avec précision. Ensuite, nous avons évalué notre prototype sur des
logiciels du monde réel, démontrant que les avantages que nous avons
trouvés dans les benchmarks se traduisent par des avantages à trouver
des bugs dans le monde réel.

Pour notre évaluation de performance, nous avons comparé SymCC
aux moteurs d’exécution symboliques existants, effectuant trois expé-
riences différentes :

1. Nous avons comparé le temps d’exécution pur, c’est-à-dire l’exé-
cution des programmes cibles à l’intérieur des outils d’exécution
symboliques mais sans aucune donnée symbolique.

2. Nous avons analysé le temps d’exécution avec des entrées sym-
boliques.

3. Nous avons comparé la couverture des cas de test générés lors
de l’exécution symbolique.

Les cibles de notre comparaison sont KLEE et QSYM. Nous avons
opté pour KLEE car, comme SymCC, il fonctionne sur le bitcode LLVM
généré à partir du code source ; une différence importante, cependant,
est que KLEE interprète le bitcode tandis que SymCC compile le bitcode
avec le code pour le traitement symbolique. La comparaison avec KLEE
permet donc d’évaluer la valeur de la compilation dans le contexte
de l’exécution symbolique. Le choix de QSYM est largement motivé
par sa composante d’exécution rapide. Ses auteurs ont démontré des
avantages considérables par rapport à d’autres implémentations, et
nos propres travaux fournissent des preuves supplémentaires de la
notion selon laquelle le composant d’exécution de QSYM atteint des
performances élevées par rapport à plusieurs systèmes à l’état de
l’art. De plus, notre réutilisation du backend symbolique de QSYM
dans SymCC permet une comparaison équitable des composants
d’exécution des deux systèmes (c’est-à-dire, leurs frontends).

En comparant le temps d’exécution pur, nous avons constaté que
SymCC exécute la plupart des programmes en moins d’une seconde

B.3 symcc 113

(et donc presque aussi rapidement que les programmes natifs non
instrumentés), tandis que QSYM et KLEE ont besoin de quelques
secondes à quelques minutes. Lors de l’exécution avec une entrée sym-
bolique (c’est-à-dire, une tentative de générer, à chaque branchement,
des entrées qui entraîneraient l’exécution sur le chemin alternatif),
SymCC est considérablement plus rapide que QSYM et KLEE. Enfin,
nous avons comparé la couverture du code et constaté que SymCC
atteint généralement un niveau de couverture plus élevé que KLEE ;
nous attribuons principalement des différences aux backends symbo-
liques significativement différents. De plus, la couverture de SymCC
est comparable à celle de QSYM, c’est-à-dire que le composant d’exé-
cution basé sur la compilation fournit des informations de qualité
comparable au backend symbolique. Nous avons conclu que l’exécu-
tion symbolique basée sur la compilation est beaucoup plus rapide
que l’exécution symbolique basée sur une RI et même sans RI dans
nos benchmarks tout en obtenant une couverture de code similaire et
en maintenant une implémentation simple.

Ensuite, nous avons démontré que ces résultats s’appliquent éga-
lement à l’analyse de logiciels réels. En particulier, nous avons mon-
tré que SymCC atteint des performances globales comparables ou
meilleures malgré sa mise en œuvre simple et son approche indépen-
dante de l’architecture du processeur. Nous avons utilisé QSYM et
SymCC en combinaison avec l’outil de fuzzing AFL [88] pour tester
des projets open source populaires ; il n’a pas été possible de réali-
ser les mêmes comparaisons avec KLEE en raison d’instructions non
prises en charge dans les programmes cibles. Lors de l’expérience,
nous avons mesuré la couverture de code vue par AFL et le temps
passé sur chaque exécution symbolique du programme cible. Nous
avons constaté que SymCC s’exécute non seulement plus rapidement
que QSYM, mais atteint également une couverture considérablement
plus élevée sur les trois programmes de test. Fait intéressant, le gain
de couverture semble être corrélé à l’amélioration de la vitesse, ce qui
confirme notre intuition selon laquelle l’accélération de l’exécution
symbolique conduit à de meilleurs tests de programme.

Au cours de nos expériences avec la bibliothèque OpenJPEG, SymCC
a trouvé deux vulnérabilités qui affectaient la dernière version prin-
cipale au moment de la rédaction ainsi que les versions précédentes
publiées. Les deux vulnérabilités écrivaient des débordements de tam-
pon de tas et étaient donc probablement exploitables. Ces vulnérabili-
tés n’avaient pas été détectés précédemment, malgré que OpenJPEG
soit testé régulièrement par des fuzzers à l’état de l’art et avec des
ressources de calcul considérables par le projet OSS-Fuzz de Google.
Nous avons signalé les vulnérabilités aux responsables du projet, qui
ont confirmé et corrigé les deux. Les vulnérabilités se sont ensuite vu
attribuer les identifiants CVE 2020-6851 et 2020-8112 et ont reçu des
scores d’impact élevés par le NIST (7,5 et 8,8, respectivement). Dans

114 french summary of the thesis

les deux cas, les problèmes provenaient de vérifications de limites
manquantes ou incorrectes – l’exécution symbolique a été en mesure
d’identifier le problème potentiel et de résoudre les contraintes corres-
pondantes afin de générer des entrées qui déclenchent le problème.
Dans les mêmes expériences, QSYM n’a pas trouvé de nouvelles vul-
nérabilités.

b.3.3 Conclusion

Nous avons présenté SymCC, un système d’exécution symbolique qui
intègre des capacités de traitement symbolique dans les programmes
testés via un compilateur. L’évaluation a montré que l’incorporation di-
recte entraîne des améliorations significatives de la vitesse d’exécution
des programmes cibles, surpassant largement les approches actuelles.
Une exécution plus rapide accélère l’analyse dans son ensemble et
augmente les chances de découverte de bugs, nous amenant à trouver
deux vulnérabilités à fort impact dans une bibliothèque largement
testée. En utilisant un compilateur pour insérer la gestion symbolique
dans les programmes cibles, nous avons combiné les avantages de
l’exécution symbolique basée sur une RI et sans RI : SymCC est indé-
pendant de l’architecture et peut prendre en charge divers langages
de programmation avec peu d’effort d’implémentation (comme les
approches basées sur RI), mais l’analyse est très rapide – considérable-
ment plus rapide même que les techniques actuelles sans RI.

b.4 symqemu : intégrer l’exécution symbolique par un

émulateur

Les travaux décrits dans cette section seront soumis pour publication
au Network and Distributed System Security Symposium (NDSS).

Une caractéristique importante des systèmes d’exécution symbo-
lique est de savoir s’ils requièrent le code source du programme testé
(comme SymCC) ou s’appliquent à la place aux programmes binaires
uniquement de manière boîte noire. Alors que les tests basés sur la
source sont suffisants lorsque l’on teste ses propres produits ou logi-
ciels open source, de nombreux scénarios du monde réel nécessitent
la capacité d’analyser les binaires sans le code source disponible :

• Nous sommes de plus en plus entourés et comptons sur des
appareils embarqués, dont le micrologiciel est généralement
disponible uniquement sous forme binaire. Les audits de sécurité
nécessitent donc des outils d’analyse binaires.

• Même lors du test de ses propres produits, les dépendances de
bibliothèques propriétaires peuvent ne pas être fournies avec
le code source, ce qui rend les approches basées sur la source
irréalisables.

B.4 symqemu 115

• Les tests basés sur la source peuvent tout simplement ne pas
être pratiques pour les grands programmes testés. Avec un outil
basé sur la source, il est généralement nécessaire de créer toutes
les dépendances de bibliothèque d’une manière dédiée prescrite
par l’outil, ce qui peut imposer une lourde charge au testeur. De
plus, si le programme testé est implémenté dans un mélange de
langages de programmation, il est probable que les outils basés
sur la source ne puissent pas tous les gérer.

Lorsqu’un exécuteur symbolique uniquement binaire est requis, les
utilisateurs sont souvent confrontés à un dilemme : les outils opti-
misent soit pour les performances soit pour l’indépendance de l’archi-
tecture mais fournissent rarement les deux. Par exemple, QSYM [86] a
récemment montré comment implémenter une exécution symbolique
très rapide des binaires, mais il atteint sa vitesse élevée en liant l’implé-
mentation au jeu d’instructions des processeurs x86. Non seulement
cela rend le système dépendant de l’architecture, mais cela augmente
également sa complexité en raison de la taille des jeux d’instructions
des processeurs modernes ; selon les propres mots des auteurs, leur
approche consiste à « payer pour la complexité de la mise en œuvre
afin de réduire les frais d’exécution ». En revanche, S2E [17] est un
exemple d’un système qui est largement applicable mais souffre de
performances relativement inférieures. S2E peut analyser conceptuel-
lement le code de la plupart des architectures CPU, y compris le code
du noyau. Cependant, sa large applicabilité est achetée avec plusieurs
traductions du programme cible, ce qui augmente la complexité du
système et affecte finalement les performances. En fait, il apparaît que
des performances élevées en analyse symbolique uniquement binaire
sont souvent obtenues avec des implémentations hautement spécia-
lisées – un choix de conception qui est en conflit avec la flexibilité
architecturale.

Nous avons montré une alternative qui (a) est indépendante de
l’architecture cible du programme testé, (b) a une faible complexité
d’implémentation, mais (c) atteint des performances élevées. L’idée
clé de notre système, SymQEMU, est que l’émulation de plate-forme
de QEMU [5] peut être combinée avec un mécanisme très léger pour
l’exécution symbolique : au lieu d’une traduction coûteuse en calcul
du programme cible vers une représentation intermédiaire qui est
ensuite interprétée symboliquement (comme dans S2E), nous nous
connectons au mécanisme de traduction binaire de QEMU afin de
compiler la gestion symbolique directement dans le code machine que
l’émulateur émet et exécute (comme SymCC, mais pour les binaires).
Cette approche donne des performances similaires à QSYM tout en
conservant une indépendance totale de la plate-forme.

116 french summary of the thesis

b.4.1 Implémentation

Nous présentons maintenant la conception et la mise en œuvre de
notre exécuteur symbolique binaire SymQEMU. Il s’appuie sur les
travaux antérieurs et combine les avantages des systèmes de pointe
avec de nouvelles idées pour créer un moteur d’analyse rapide mais
flexible. Le système a deux objectifs principaux :

1. Obtenir des performances élevées afin de s’adapter aux logiciels
du monde réel.

2. Rester raisonnablement indépendant de la plateforme, c’est-à-
dire que l’ajout de la prise en charge d’une architecture de
processeur ne devrait pas nécessiter d’effort majeur.

Nous avons vu que les solutions actuelles atteignent l’indépendance
de la plate-forme en traduisant le programme testé en une représen-
tation intermédiaire – de cette façon, afin de prendre en charge une
nouvelle architecture, seul le traducteur doit être porté. Idéalement,
on choisit un langage intermédiaire pour lequel des traducteurs de
nombreuses architectures pertinentes existent déjà. Représenter des
programmes d’une manière indépendante de l’architecture pour plus
de flexibilité est une technique bien connue qui a été appliquée avec
succès dans de nombreux autres domaines, par exemple, la conception
de compilateurs [49] ou l’analyse binaire statique [42]. Nous l’avons
donc également intégré à notre conception.

Bien que la traduction de programmes vers une représentation inter-
médiaire nous donne de la flexibilité, nous devons être conscients de
l’impact sur les performances : la traduction statique de programmes
binaires est difficile car le désassemblage peut ne pas être fiable et
l’exécution de la traduction au moment de l’exécution entraîne des
frais généraux lors de l’analyse. Nous pensons que c’est la raison prin-
cipale pour laquelle les exécuteurs symboliques traducteurs comme
S2E et angr ont des performances bien en dessous des systèmes qui
ne sont pas basés sur une traduction, comme QSYM. Alors, comment
pouvons-nous construire un système de traduction qui fonctionne
toujours bien ? Notre approche est la suivante :

1. Traduire le programme cible dans une langue intermédiaire au
moment de l’exécution.

2. Instrumenter la représentation intermédiaire comme nécessaire
pour l’exécution symbolique.

3. Compiler la représentation intermédiaire en code machine adapté
au CPU exécutant l’analyse et l’exécuter directement.

En compilant le programme cible instrumenté en code machine,
nous compensons la pénalité de performance encourue par la traduc-
tion du binaire dans un langage intermédiaire en premier lieu : le CPU

B.4 symqemu 117

exécute le code machine beaucoup plus rapidement qu’un interpréteur
ne peut exécuter la représentation intermédiaire, de sorte que nous
atteignons performances comparables à un système sans traduction
tout en conservant l’avantage de l’indépendance de l’architecture qui
accompagne la traduction de programme.

Concrètement, nous avons étendu un composant dans QEMU ap-
pelé TCG (pour « Tiny Code Generator »). Dans QEMU non modifié,
TCG est responsable de la traduction des blocs de code machine d’ar-
chitecture invitée en un langage indépendant de l’architecture appelé
TCG ops, puis compile ces opérations TCG en code machine pour
l’architecture hôte. Les blocs traduits sont ensuite mis en cache pour
des raisons de performances, la traduction ne doit donc se produire
qu’une seule fois. SymQEMU insère une étape de plus dans le pro-
cessus : pendant que le programme testé est en cours de conversion
en opérations TCG, nous émettons non seulement les instructions
qui émulent le processeur invité, mais ajoutons des opérations TCG
supplémentaires pour construire des expressions symboliques pour
les résultats. Par exemple, supposons que le programme cible ajoute
deux octets d’entrée. QEMU traduirait l’instruction de code machine
à ajouter en opérations TCG qui chargent les opérandes à partir des
registres ou de la mémoire du CPU émulé, effectuent l’addition et
stockent le résultat dans le registre cible ; il traduirait ensuite ces
opérations TCG en code machine et les exécuterait sur le CPU hôte.
SymQEMU effectue la même traduction, mais insère en outre des
opérations TCG qui appellent une bibliothèque de support (la même
que dans SymCC) afin de construire une expression symbolique re-
présentant l’addition des deux octets d’entrée. Fondamentalement,
SymQEMU n’effectue pas ces appels à la bibliothèque de support
(comme le ferait un interpréteur) – il n’émet que les opérations TCG
correspondantes et s’appuie sur les mécanismes QEMU normaux pour
les traduire en code machine. De cette façon, les formules symboliques
sont construites en code machine natif sans encourir la surcharge
associée à l’interprétation d’un langage intermédiaire. Globalement,
SymQEMU ajoute environ 2000 lignes de code C à QEMU.

b.4.2 Évaluation

Afin d’évaluer SymQEMU, nous avons effectué deux ensembles d’ex-
périences différents :

1. Nous l’avons comparé à un certain nombre de fuzzers à l’état de
l’art à l’aide de Google FuzzBench.

2. Étant donné que FuzzBench n’inclut pas d’outils d’exécution
symbolique, nous avons effectué une comparaison avec les exé-
cuteurs symboliques populaires uniquement binaires sur un
ensemble de programmes du monde réel.

118 french summary of the thesis

Google a annoncé FuzzBench en mars 2020 en tant que service gra-
tuit entièrement automatisé et open source pour évaluer les fuzzers.
Il teste les fuzzers dans un environnement contrôlé, en comparant
leurs performances sur un grand nombre de cibles issues de Google
OSS-Fuzz, une collection de cibles fuzz pour les logiciels open source.
Pour chaque cible, le service compare la couverture obtenue par les
fuzzers. L’intégration d’un nouvel outil d’analyse revient à configu-
rer un conteneur Docker pour configurer l’environnement, créer les
programmes cibles et lancer l’analyse. Nous avons ajouté une com-
binaison de SymQEMU et AFL à l’ensemble d’outils d’analyse, et
l’équipe FuzzBench a gracieusement effectué une série d’expériences.
Au total, ils ont exécuté SymQEMU et 16 configurations de fuzzer sur
21 cibles pendant 24 heures, effectuant 15 essais par fuzzer et cible.
En moyenne dans toutes les expériences, SymQEMU a surperformé
tous les fuzzers sauf Honggfuzz, 6 d’entre eux avec une signification
statistique. Sur 3 des 21 cibles, SymQEMU a atteint la couverture
la plus élevée de tous les outils. Nous considérons cela comme une
confirmation de la puissance de SymQEMU.

Nous avons également comparé SymQEMU à des outils de pointe
dans le domaine de l’exécution symbolique. En particulier, nous
l’avons évalué par rapport à QSYM, un exécuteur symbolique très
rapide qui peut fonctionner avec des binaires x86 arbitraires. Nous
avons omis angr de la comparaison car les expériences préliminaires
ont montré que sa vitesse d’exécution est nettement inférieure à celle
des autres outils ; angr privilégie la polyvalence et la facilité d’utili-
sation interactive par rapport à la vitesse brute. Nous avons constaté
que SymQEMU surpasse QSYM par une grande marge en termes de
couverture de code et de temps d’exécution.

b.5 conclusion

Dans ma thèse, j’examine d’abord l’état de l’art dans l’exécution sym-
bolique avec un accent particulier sur la performance. Sur la base de
cette étude, je développe une approche basée sur un compilateur pour
l’exécution symbolique qui fonctionne bien mieux que les systèmes
actuels. Enfin, j’applique une technique similaire à l’exécution sym-
bolique uniquement binaire, montrant que l’incorporation directe de
la gestion symbolique peut conduire à des gains de performances
élevés. J’espère que mon travail a contribué à faire de l’exécution sym-
bolique un outil pratique dans le développement, le test et l’analyse
de logiciels.

B I B L I O G R A P H Y

[1] Apple Inc. Swift.org – Compiler and Standard Library. https://
swift.org/compiler-stdlib/#compiler-architecture.

[2] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert
Gawlik, and Thorsten Holz. “REDQUEEN: Fuzzing with Input-
to-State Correspondence.” In: Network and Distributed System
Security Symposium (NDSS). Vol. 19. 2019, pp. 1–15.

[3] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil
Demetrescu, and Irene Finocchi. “A survey of symbolic execu-
tion techniques.” In: ACM Computing Surveys (CSUR) 51.3 (2018),
p. 50.

[4] Clark Barrett, Aaron Stump, and Cesare Tinelli. “The SMT-LIB
standard: Version 2.0.” In: Proceedings of the 8th International
Workshop on Satisfiability Modulo Theories (Edinburgh, England).
Vol. 13. 2010, p. 14.

[5] Fabrice Bellard. “QEMU, a fast and portable dynamic transla-
tor.” In: USENIX Annual Technical Conference, FREENIX Track.
Vol. 41. 2005, p. 46.

[6] Rastislav Bodík, Kartik Chandra, Phitchaya Mangpo Phothilimthana,
and Nathaniel Yazdani. “Domain-specific symbolic compila-
tion.” In: 2nd Summit on Advances in Programming Languages
(SNAPL 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik. 2017.

[7] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Ab-
hik Roychoudhury. “Directed greybox fuzzing.” In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM. 2017, pp. 2329–2344.

[8] Ella Bounimova, Patrice Godefroid, and David Molnar. “Bil-
lions and Billions of Constraints: Whitebox Fuzz Testing in
Production.” In: Proceedings of the 2013 International Conference
on Software Engineering. ICSE ’13. San Francisco, CA, USA: IEEE
Press, 2013, pp. 122–131. isbn: 978-1-4673-3076-3. url: http:
//dl.acm.org/citation.cfm?id=2486788.2486805.

[9] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J
Schwartz. “BAP: A binary analysis platform.” In: International
Conference on Computer Aided Verification. Springer. 2011, pp. 463–
469.

119

https://swift.org/compiler-stdlib/#compiler-architecture
https://swift.org/compiler-stdlib/#compiler-architecture
http://dl.acm.org/citation.cfm?id=2486788.2486805
http://dl.acm.org/citation.cfm?id=2486788.2486805

120 bibliography

[10] Robert Brummayer and Armin Biere. “Boolector: An efficient
SMT solver for bit-vectors and arrays.” In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.
Springer. 2009, pp. 174–177.

[11] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea.
“Parallel symbolic execution for automated real-world software
testing.” In: Proceedings of the 6th ACM SIGOPS/EuroSys Confer-
ence on Computer Systems. ACM. 2011, pp. 183–198.

[12] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. “KLEE:
Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs.” In: OSDI. Vol. 8. 2008, pp. 209–
224.

[13] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill,
and Dawson R. Engler. “EXE: automatically generating inputs of
death.” In: ACM Transactions on Information and System Security
(TISSEC) 12.2 (2008), p. 10.

[14] Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom
Hayes, and Aurélien Francillon. “Screaming Channels: When
Electromagnetic Side Channels Meet Radio Transceivers.” In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM. 2018, pp. 163–177.

[15] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David
Brumley. “Unleashing Mayhem on binary code.” In: 2012 IEEE
Symposium on Security and Privacy. IEEE. 2012, pp. 380–394.

[16] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei
Xie, Xiuheng Wu, and Yang Liu. “Hawkeye: Towards a de-
sired directed grey-box fuzzer.” In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security.
ACM. 2018, pp. 2095–2108.

[17] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea.
“S2E: A platform for in-vivo multi-path analysis of software
systems.” In: ACM SIGARCH Computer Architecture News. Vol. 39.
1. ACM. 2011, pp. 265–278.

[18] Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha.
“Grey-box concolic testing on binary code.” In: 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE.
2019, pp. 736–747.

[19] Cristina Cifuentes and K. John Gough. “Decompilation of bi-
nary programs.” In: Software: Practice and Experience 25.7 (1995),
pp. 811–829.

[20] Peter Collingbourne, Cristian Cadar, Paul H.J. Kelly, et al. “Sym-
bolic crosschecking of floating-point and SIMD code.” In: Euro-
pean Conference on Computer Systems (EuroSys 2011). 2011.

bibliography 121

[21] Nassim Corteggiani, Giovanni Camurati, and Aurélien Fran-
cillon. “Inception: system-wide security testing of real-world
embedded systems software.” In: 27th USENIX Security Sympo-
sium (USENIX Security 18). 2018, pp. 309–326.

[22] Nassim Corteggiani, Giovanni Camurati, Marius Muench, Sebas-
tian Poeplau, and Aurélien Francillon. “SoC Security Evaluation:
Reflections on Methodology and Tooling.” In: IEEE Design &
Test (2020).

[23] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT
solver.” In: International conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer. 2008, pp. 337–340.

[24] Artem Dinaburg and Andrew Ruef. “McSema: Static translation
of x86 instructions to LLVM.” In: ReCon 2014 Conference, Montreal,
Canada. 2014.

[25] Joe W. Duran and Simeon Ntafos. “A Report on Random Test-
ing.” In: Proceedings of the 5th International Conference on Software
Engineering. ICSE ’81. San Diego, California, USA: IEEE Press,
1981, pp. 179–183. isbn: 0-89791-146-6. url: http://dl.acm.org/
citation.cfm?id=800078.802530.

[26] E. Allen Emerson and Edmund M. Clarke. “Characterizing cor-
rectness properties of parallel programs using fixpoints.” In:
International Colloquium on Automata, Languages, and Program-
ming. Springer. 1980, pp. 169–181.

[27] Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo Querzoni.
“Fuzzing Binaries for Memory Safety Errors with QASan.” In:
(). url: https://andreafioraldi.github.io/assets/qasan-
secdev20.pdf.

[28] Free Software Foundation. Coreutils - GNU core utilities. https:
//www.gnu.org/software/coreutils/. 2016.

[29] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li,
Zhongyu Pei, and Zuoning Chen. “CollAFL: Path sensitive
fuzzing.” In: 2018 IEEE Symposium on Security and Privacy. IEEE.
2018, pp. 679–696.

[30] Vijay Ganesh and David L Dill. “A decision procedure for bit-
vectors and arrays.” In: International Conference on Computer Aided
Verification. Springer. 2007, pp. 519–531.

[31] Go git repositories. gollvm. https://go.googlesource.com/
gollvm/.

[32] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART:
directed automated random testing.” In: ACM Sigplan Notices.
Vol. 40. 6. ACM. 2005, pp. 213–223.

http://dl.acm.org/citation.cfm?id=800078.802530
http://dl.acm.org/citation.cfm?id=800078.802530
https://andreafioraldi.github.io/assets/qasan-secdev20.pdf
https://andreafioraldi.github.io/assets/qasan-secdev20.pdf
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/coreutils/
https://go.googlesource.com/gollvm/
https://go.googlesource.com/gollvm/

122 bibliography

[33] Patrice Godefroid, Michael Y. Levin, and David Molnar. “SAGE:
whitebox fuzzing for security testing.” In: Communications of the
ACM 55.3 (2012), pp. 40–44.

[34] Eric Gustafson et al. “Toward the Analysis of Embedded Firmware
through Automated Re-hosting.” In: 22nd International Sympo-
sium on Research in Attacks, Intrusions and Defenses (RAID 2019).
Chaoyang District, Beijing: USENIX Association, Sept. 2019,
pp. 135–150. isbn: 978-1-939133-07-6. url: https://www.usenix.
org/conference/raid2019/presentation/gustafson.

[35] Alex Horn. Clang CRV Front-end. https://github.com/ahorn/
native-symbolic-execution-clang. 2014.

[36] Alex Horn. SMT Kit. https://github.com/ahorn/smt- kit.
2014.

[37] C.-A. Hsieh, M. T. Conte, T. L. Johnson, J. C. Gyllenhaal, and
W.-W. Hwu. “Compilers for improved Java performance.” In:
Computer 30.6 (June 1997), pp. 67–75. doi: 10.1109/2.587551.

[38] H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang. “Pangolin: In-
cremental Hybrid Fuzzing with Polyhedral Path Abstraction.”
In: 2020 IEEE Symposium on Security and Privacy (SP). Los Alami-
tos, CA, USA: IEEE Computer Society, May 2020, pp. 1613–
1627. doi: 10.1109/SP40000.2020.00063. url: https://doi.
ieeecomputersociety.org/10.1109/SP40000.2020.00063.

[39] Timotej Kapus and Cristian Cadar. “Automatic Testing of Sym-
bolic Execution Engines via Program Generation and Differential
Testing.” In: IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2017). Urbana-Champaign, IL, USA, Nov.
2017, pp. 590–600.

[40] Timotej Kapus, Oren Ish-Shalom, Shachar Itzhaky, Noam Rinet-
zky, and Cristian Cadar. “Computing Summaries of String
Loops in C for Better Testing and Refactoring.” In: ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2019). Phoenix, AZ, USA, June 2019, pp. 874–888.

[41] Timotej Kapus, Martin Nowack, and Cristian Cadar. “Con-
straints in Dynamic Symbolic Execution: Bitvectors or Integers?”
In: International Conference on Tests and Proofs. Springer. 2019,
pp. 41–54.

[42] Soomin Kim, Markus Faerevaag, Minkyu Jung, SeungIl Jung,
DongYeop Oh, JongHyup Lee, and Sang Kil Cha. “Testing inter-
mediate representations for binary analysis.” In: Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software
Engineering. IEEE Press. 2017, pp. 353–364.

[43] James C. King. “Symbolic execution and program testing.” In:
Communications of the ACM 19.7 (1976), pp. 385–394.

https://www.usenix.org/conference/raid2019/presentation/gustafson
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://github.com/ahorn/native-symbolic-execution-clang
https://github.com/ahorn/native-symbolic-execution-clang
https://github.com/ahorn/smt-kit
https://doi.org/10.1109/2.587551
https://doi.org/10.1109/SP40000.2020.00063
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00063
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00063

bibliography 123

[44] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael
Hicks. “Evaluating fuzz testing.” In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security.
2018, pp. 2123–2138.

[45] Gergely Kovásznai, Helmut Veith, Andreas Fröhlich, and Armin
Biere. “On the complexity of symbolic verification and decision
problems in bit-vector logic.” In: International Symposium on
Mathematical Foundations of Computer Science. Springer. 2014,
pp. 481–492.

[46] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and
George Candea. “Efficient state merging in symbolic execution.”
In: Acm Sigplan Notices. Vol. 47. 6. ACM. 2012, pp. 193–204.

[47] LLVM Project. libFuzzer – a library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html.

[48] LLVM Project. “libc++” C++ Standard Library. https://libcxx.
llvm.org/.

[49] Chris Lattner and Vikram Adve. “LLVM: A compilation frame-
work for lifelong program analysis & transformation.” In: Pro-
ceedings of the International Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optimization. IEEE
Computer Society. 2004, p. 75.

[50] Lixin Li and Chao Wang. “Dynamic analysis and debugging of
binary code for security applications.” In: International Conference
on Runtime Verification. Springer. 2013, pp. 403–423.

[51] Tianhai Liu, Mateus Araújo, Marcelo d’Amorim, and Mana
Taghdiri. “A comparative study of incremental constraint solv-
ing approaches in symbolic execution.” In: Haifa Verification
Conference. Springer. 2014, pp. 284–299.

[52] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. “Pin: building customized program analysis
tools with dynamic instrumentation.” In: Acm sigplan notices.
Vol. 40. 6. ACM. 2005, pp. 190–200.

[53] Valentin J. M. Manès, Soomin Kim, and Sang Kil Cha. “Ankou:
Guiding Grey-box Fuzzing towards Combinatorial Difference.”
In: Proceedings of the International Conference on Software Engineer-
ing. 2020, pp. 1024–1036.

[54] Paul Dan Marinescu and Cristian Cadar. “KATCH: High-coverage
testing of software patches.” In: Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering. 2013, pp. 235–245.

https://llvm.org/docs/LibFuzzer.html
https://libcxx.llvm.org/
https://libcxx.llvm.org/

124 bibliography

[55] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon,
and Davide Balzarotti. “What you corrupt is not what you
crash: Challenges in fuzzing embedded devices.” In: NDSS
2018, Network and Distributed Systems Security Symposium, 18-21
February 2018, San Diego, CA, USA. 2018.

[56] Nicholas Nethercote and Julian Seward. “Valgrind: a framework
for heavyweight dynamic binary instrumentation.” In: ACM
SIGPLAN 2007 Conference on Programming Language Design and
Implementation (PLDI 2007). Vol. 42. 6. ACM. 2007, pp. 89–100.

[57] Anh Nguyen-Tuong, David Melski, Jack W. Davidson, Michele
Co, William Hawkins, Jason D. Hiser, Derek Morris, Ducson
Nguyen, and Eric Rizzi. “Xandra: An Autonomous Cyber Battle
System for the Cyber Grand Challenge.” In: IEEE Security &
Privacy 16.2 (2018), pp. 42–51.

[58] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. “ParmeSan: Sanitizer-guided Greybox Fuzzing.” In:
29th USENIX Security Symposium (USENIX Security 20). 2020.

[59] Hristina Palikareva and Cristian Cadar. “Multi-solver support
in symbolic execution.” In: International Conference on Computer
Aided Verification. Springer. 2013, pp. 53–68.

[60] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Geor-
gios Portokalidis, Bing Mao, and Jun Xu. “SoK: All You Ever
Wanted to Know About x86/x64 Binary Disassembly But Were
Afraid to Ask.” In: arXiv preprint arXiv:2007.14266 (2020).

[61] Sebastian Poeplau and Aurélien Francillon. “Systematic compar-
ison of symbolic execution systems: Intermediate representation
and its generation.” In: Proceedings of the 35th Annual Computer
Security Applications Conference. ACM. 2019, pp. 163–176.

[62] Sebastian Poeplau and Aurélien Francillon. “SymQEMU: Compi-
lation-based symbolic execution for binaries.” Under submission.
Sept. 2020.

[63] Sebastian Poeplau and Aurélien Francillon. “Symbolic execu-
tion with SymCC: Don’t interpret, compile!” In: 29th USENIX
Security Symposium (USENIX Security 20). Distinguished Pa-
per Award. Boston, MA: USENIX Association, Aug. 2020. url:
https : / / www . usenix . org / conference / usenixsecurity20 /

presentation/poeplau.

[64] Xiao Qu and Brian Robinson. “A case study of concolic testing
tools and their limitations.” In: 2011 International Symposium
on Empirical Software Engineering and Measurement. IEEE. 2011,
pp. 117–126.

[65] Jean-Pierre Queille and Joseph Sifakis. “Specification and verifi-
cation of concurrent systems in CESAR.” In: International Sympo-
sium on Programming. Springer. 1982, pp. 337–351.

https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau

bibliography 125

[66] Nguyen Anh Quynh and Dang Hoang Vu. Unicorn – The ultimate
CPU emulator. https://www.unicorn-engine.org/. 2015.

[67] David A. Ramos and Dawson Engler. “Under-constrained sym-
bolic execution: Correctness checking for real code.” In: 24th
USENIX Security Symposium (USENIX Security 15). 2015, pp. 49–
64.

[68] Eric F Rizzi, Sebastian Elbaum, and Matthew B. Dwyer. “On
the techniques we create, the tools we build, and their misalign-
ments: a study of KLEE.” In: 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). IEEE. 2016, pp. 132–
143.

[69] Florent Saudel and Jonathan Salwan. “Triton: A Dynamic Sym-
bolic Execution Framework.” In: Symposium sur la sécurité des
technologies de l’information et des communications, SSTIC, France,
Rennes, June 3-5 2015. SSTIC, 2015, pp. 31–54.

[70] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley.
“All you ever wanted to know about dynamic taint analysis
and forward symbolic execution (but might have been afraid
to ask).” In: 2010 IEEE Symposium on Security and Privacy. IEEE.
2010, pp. 317–331.

[71] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: a concolic
unit testing engine for C.” In: ACM SIGSOFT Software Engineer-
ing Notes. Vol. 30. 5. ACM. 2005, pp. 263–272.

[72] Konstantin Serebryany, Derek Bruening, Alexander Potapenko,
and Dmitriy Vyukov. “AddressSanitizer: A fast address sanity
checker.” In: Presented as part of the 2012 USENIX Annual Technical
Conference (USENIX ATC 12). 2012, pp. 309–318.

[73] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christo-
pher Kruegel, and Giovanni Vigna. “Firmalice – Automatic
Detection of Authentication Bypass Vulnerabilities in Binary
Firmware.” In: Network and Distributed System Security Sympo-
sium (NDSS). 2015.

[74] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, et al. “SoK: (State of) The Art of
War: Offensive Techniques in Binary Analysis.” In: 2016 IEEE
Symposium on Security and Privacy. IEEE. 2016, pp. 138–157.

[75] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na,
Stijn Volckaert, Per Larsen, and Michael Franz. “SoK: Sanitizing
for Security.” In: 2019 IEEE Symposium on Security and Privacy
(SP). IEEE. 2019, pp. 1275–1295.

https://www.unicorn-engine.org/

126 bibliography

[76] Evgeniy Stepanov and Konstantin Serebryany. “MemorySan-
itizer: fast detector of uninitialized memory use in C++.” In:
Proceedings of the 13th Annual IEEE/ACM International Symposium
on Code Generation and Optimization. IEEE Computer Society.
2015, pp. 46–55.

[77] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. “Driller: Augmenting Fuzzing
Through Selective Symbolic Execution.” In: NDSS. Vol. 16. 2016,
pp. 1–16.

[78] The Clang Team. Clang C Language Family Frontend for LLVM.
https://clang.llvm.org/. 2019.

[79] The Rust Programming Language Team. Guide to rustc develop-
ment. https://rust-lang.github.io/rustc-guide/. 2019.

[80] Emina Torlak and Rastislav Bodik. “A lightweight symbolic
virtual machine for solver-aided host languages.” In: ACM SIG-
PLAN Notices. Vol. 49. 6. ACM. 2014, pp. 530–541.

[81] Trail of Bits. Manticore: Symbolic execution for humans. https:
//blog.trailofbits.com/2017/04/27/manticore-symbolic-

execution-for-humans/. 2017.

[82] Trail of Bits. Binary symbolic execution with KLEE-Native. https:
/ / blog . trailofbits . com / 2019 / 08 / 30 / binary - symbolic -

execution-with-klee-native/. 2019.

[83] Clark Wiedmann. “A Performance Comparison Between an APL
Interpreter and Compiler.” In: SIGAPL APL Quote Quad 13.3
(Mar. 1983), pp. 211–217. issn: 0163-6006. doi: 10.1145/390005.
801219. url: http://doi.acm.org/10.1145/390005.801219.

[84] Hui Xu, Zirui Zhao, Yangfan Zhou, and Michael R. Lyu. “Bench-
marking the Capability of Symbolic Execution Tools with Logic
Bombs.” In: IEEE Transactions on Dependable and Secure Computing
(2018).

[85] Hui Xu, Yangfan Zhou, Yu Kang, and Michael R. Lyu. “Con-
colic execution on small-size binaries: challenges and empirical
study.” In: 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE. 2017, pp. 181–188.

[86] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.
“QSYM: A Practical Concolic Execution Engine Tailored for
Hybrid Fuzzing.” In: 27th USENIX Security Symposium (USENIX
Security 18). 2018, pp. 745–761.

[87] Jonas Zaddach, Luca Bruno, Aurélien Francillon, and Davide
Balzarotti. “AVATAR: A Framework to Support Dynamic Secu-
rity Analysis of Embedded Systems’ Firmwares.” In: Network
and Distributed System Security Symposium (NDSS). Vol. 14. 2014,
pp. 1–16.

https://clang.llvm.org/
https://rust-lang.github.io/rustc-guide/
https://blog.trailofbits.com/2017/04/27/manticore-symbolic-execution-for-humans/
https://blog.trailofbits.com/2017/04/27/manticore-symbolic-execution-for-humans/
https://blog.trailofbits.com/2017/04/27/manticore-symbolic-execution-for-humans/
https://blog.trailofbits.com/2019/08/30/binary-symbolic-execution-with-klee-native/
https://blog.trailofbits.com/2019/08/30/binary-symbolic-execution-with-klee-native/
https://blog.trailofbits.com/2019/08/30/binary-symbolic-execution-with-klee-native/
https://doi.org/10.1145/390005.801219
https://doi.org/10.1145/390005.801219
http://doi.acm.org/10.1145/390005.801219

bibliography 127

[88] Michał Zalewski. american fuzzy lop. http://lcamtuf.coredump.
cx/afl/.

[89] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and
Sharad Malik. “Efficient conflict driven learning in a boolean
satisfiability solver.” In: Proceedings of the 2001 IEEE/ACM in-
ternational conference on Computer-aided design. IEEE Press. 2001,
pp. 279–285.

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Abstract
	Résumé
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	2 Background
	2.1 Symbolic execution
	2.2 Intermediate representation
	2.2.1 IR-based symbolic execution
	2.2.2 IR-less symbolic execution
	2.2.3 Reducing overhead

	2.3 Binary-only symbolic execution

	3 Intermediate representation
	3.1 Introduction
	3.2 Design space
	3.2.1 Path selection
	3.2.2 Incremental solving
	3.2.3 Interleaved execution

	3.3 Approaches under analysis
	3.3.1 KLEE
	3.3.2 S2E
	3.3.3 angr
	3.3.4 QSYM

	3.4 Evaluation
	3.4.1 Experimental setup
	3.4.2 Benchmark size
	3.4.3 Code size
	3.4.4 Execution speed
	3.4.5 Query complexity

	3.5 Discussion
	3.5.1 Results
	3.5.2 Future work
	3.5.3 Limitations
	3.5.4 Remark: programming languages

	3.6 Related work
	3.6.1 Symbolic execution
	3.6.2 Intermediate representations

	3.7 Conclusion
	Availability

	4 Compiler-based symbolic execution
	4.1 Introduction
	4.2 Compilation-based symbolic execution
	4.2.1 Overview
	4.2.2 Support library
	4.2.3 Symbolic handlers
	4.2.4 Concreteness checks

	4.3 Implementation of SymCC
	4.3.1 Compile-time instrumentation
	4.3.2 Shadow memory
	4.3.3 Symbolic backend
	4.3.4 Concreteness checks
	4.3.5 Interacting with the environment
	4.3.6 Supporting additional source languages
	Loading the pass
	Compiling the run-time library

	4.4 Evaluation
	4.4.1 Benchmarks
	Comparison with other state-of-the-art systems
	Initialization overhead
	Compilation time and binary size
	Impact of concreteness checks

	4.4.2 Real-world software

	4.5 Discussion and future work
	4.5.1 Benefits of compilation
	4.5.2 Portability and language support
	4.5.3 Binary analysis
	Lifting
	Hybrid with QSYM

	4.6 Related work
	4.7 Conclusion
	Availability

	5 Compiling symbolic execution into binaries
	5.1 Introduction
	5.2 The state of the art
	5.2.1 Angr shoshitaishvili2016angr
	5.2.2 S2E chipounov2011s2e
	5.2.3 QSYM yun2018qsym

	5.3 Relation to SymCC
	5.4 SymQEMU
	5.4.1 Design
	5.4.2 Implementation
	5.4.3 Platform independence
	5.4.4 Comparison with previous designs
	5.4.5 Memory management
	5.4.6 Modifying TCG ops
	5.4.7 Shadow call stack

	5.5 Evaluation
	5.5.1 FuzzBench
	5.5.2 Comparison with other symbolic execution systems
	5.5.3 Benchmark comparison

	5.6 Future work
	5.6.1 Full-system emulation
	5.6.2 Caching across executions
	5.6.3 Symbolic QEMU helpers

	5.7 Related work
	5.7.1 Binary-only symbolic execution
	5.7.2 Run-time bug detection
	5.7.3 Hybrid fuzzing

	5.8 Conclusion
	Availability

	6 Conclusion and future work
	6.1 Execution
	6.2 Solving
	6.3 Coordination
	6.4 Exploration

	A S2E resource consumption
	A.1 Parallel S2E
	A.2 Memory limits

	B French summary of the thesis
	B.1 Introduction
	B.2 Représentation intermédiaire
	B.2.1 Représentation Intermédiaire
	B.2.2 Les solveurs SMT
	B.2.3 Les approches analysées
	B.2.4 Évaluation
	Taille du code
	Vitesse d'exécution
	Complexité des requêtes

	B.2.5 Conclusion

	B.3 SymCC
	B.3.1 Implémentation
	Gestionnaires symboliques
	Bibliothèque de support
	Contrôles de variables concrètes
	Memoire de recopie
	Taille de l'implémentation

	B.3.2 Évaluation
	B.3.3 Conclusion

	B.4 SymQEMU
	B.4.1 Implémentation
	B.4.2 Évaluation

	B.5 Conclusion

	 Bibliography

